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Lagrangian properties of turbulent channel flow: a numerical study

Abstract The Lagrangian perspective, describing a flow from the trajectories of fluid tracers, is
a natural framework for studying dispersion phenomena in turbulent flows. In wall-bounded
turbulence, the motion of fluid tracers is affected by mean shear and by strong inhomogeneity
and anisotropy near walls. We investigate the Lagrangian properties of a turbulent channel flow
using direct numerical simulations at a moderate Reynolds number. Lagrangian acceleration
statistics are compared to particle tracking experiments performed in parallel to this work. As
in homogeneous isotropic turbulence (HIT), the acceleration components along Lagrangian
paths decorrelate over time scales representative of the smallest scales of the flow, while the
acceleration norm stays correlated formuch longer. The persistence of small-scale anisotropy far
from the wall is demonstrated in the form of a non-zero cross-correlation between acceleration
components. As a result of the average fluxes of kinetic energy inwall turbulence, tracers initially
located close to the wall travel and spread over longer distances when tracked backwards
in time than forwards. The relative dispersion of tracer pairs is finally investigated. At short
times, pair separation is ballistic for all wall distances. As in HIT, relative dispersion is time
asymmetric, with tracers separating faster when tracked backwards in time. At longer times,
mean shear dominates leading to rapid separation in the mean flow direction. A ballistic
cascade model previously proposed for HIT is adapted to inhomogeneous flows.

Keywords turbulence, Lagrangian description, wall turbulence, channel flow, direct numerical
simulation, dispersion, acceleration

Propriétés lagrangiennes d’un écoulement de canal turbulent : une étude numérique

Résumé La perspective lagrangienne, décrivant un écoulement selon les trajectoires de traceurs
fluides, est une approche naturelle pour étudier les phénomènes de dispersion dans les écou-
lements turbulents. En turbulence de paroi, le mouvement des traceurs est influencé par le
cisaillement moyen et par une forte inhomogénéité et anisotropie en proche paroi. On étudie les
propriétés lagrangiennes d’un écoulement de canal turbulent par simulation numérique directe
à un nombre de Reynolds modéré. Les statistiques d’accélération lagrangienne sont comparées
aux expériences de suivi de particules réalisées en parallèle à ce travail. Comme en turbulence
homogène isotrope (THI), les composantes d’accélération le long des trajectoires lagrangiennes
se décorrèlent sur des temps comparables aux plus petites échelles de l’écoulement, tandis que
la norme de l’accélération reste corrélée plus longtemps. La persistance d’anisotropie à petite
échelle loin de la paroi est constatée par l’existence d’une corrélation croisée non nulle entre
deux composantes de l’accélération. On montre que, en conséquence des flux moyens d’énergie
cinétique en turbulence de paroi, près des parois les traceurs se déplacent et s’étalent sur des
plus grandes distances quand ils sont suivis en arrière dans le temps qu’en avant. La dispersion
relative de paires de traceurs est aussi étudiée. Aux temps courts, la séparation des paires est
balistique pour toutes les distances à la paroi. Comme en THI, les traceurs se séparent plus
rapidement lorsqu’ils sont suivis en arrière dans le temps. Aux temps plus longs, le cisaillement
moyen accélère la séparation dans la direction de l’écoulement moyen. Un modèle de cascade
balistique initialement proposé pour la THI est adapté aux écoulements inhomogènes.

Mots-clés turbulence, description lagrangienne, turbulence de paroi, écoulement de canal,
simulation numérique directe, dispersion, accélération
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1 Introduction

The present work concerns the characterisation of a turbulent channel flow from
a Lagrangian perspective. In this chapter, fundamental aspects of the Lagrangian
properties of turbulent flows and of wall-bounded turbulence are presented. The
Lagrangian description is introduced in section 1.1 along with relevant investigations
on the Lagrangian properties of turbulence. Then, section 1.2 introduces the channel
flow geometry and parameters, followed by an overview of the properties of wall-
bounded turbulent flows. In section 1.3, relevant Lagrangian studies of wall-bounded
turbulent flows are reviewed. Finally, the objectives of this work and the structure of
this document are outlined in section 1.4.

1.1 Lagrangian description of turbulent flows

In the Lagrangian framework, a fluid flow is described in terms of the trajectories
of fluid particles (or tracers) that follow the flow. A fluid particle is understood as
an indivisible fluid element, of infinitesimal size in the macroscopic continuum ap-
proximation implied by the Navier–Stokes equations. The Lagrangian approach may
describe the evolution of fluid properties such as its velocity or temperature along the
trajectories of fluid particles.
The Lagrangian description is naturally linked to the problem of mixing and dis-

persion of species (e.g. contaminants) by fluid flows. Under certain conditions, the
transport of such species (or scalars) immersed in a fluid can be assimilated to the dis-
persion of fluid particles. For this, the scalar must be passive, i.e. its presence must have
no influence on the motion of the carrying fluid. Moreover, it must faithfully follow the
fluid velocity field. This requires the scalar to be composed of particles smaller than
the typical distance over which the fluid velocity field changes, and to have a density
similar to that of the fluid [108, p. 580]. Finally, the scalar molecular diffusion must be
negligible. This last requirement is generally satisfied in turbulent flows, as turbulence
is much more efficient at diffusing species than molecular agitation.
The Lagrangian perspective and its application to turbulent flows are introduced

in the following sections. In section 1.1.1, the Lagrangian formalism is introduced
in relation to the Eulerian description of the flow and to the relevant equations of
motion. Some basic Lagrangian properties of turbulent flows are then introduced in
section 1.1.2. In section 1.1.3, two simple stochastic models for the dynamics of tracer
particles are presented and linked to the Lagrangian properties of turbulence. This also
serves as an introduction to the classical framework used in the study of turbulent flows.
Evidence of the intermittency of Lagrangian velocity increments in isotropic turbulent

1



1 Introduction

𝒙0 = 𝑿(0, 𝒙0)

𝑿(𝑡, 𝒙0)

𝒗(𝑡, 𝒙0) = 𝒖(𝑿(𝑡, 𝒙0), 𝑡)

Figure 1.1. Schematic of a Lagrangian trajectory.

flows is presented in section 1.1.4. These results are extended in section 1.1.5 to the
case of the Lagrangian acceleration, whose dynamics are associated to that of vortex
filaments in turbulence. Finally, some remarks are made in section 1.1.6 regarding the
Lagrangian properties of anisotropic turbulent flows.

1.1.1 Eulerian and Lagrangian formulations

The Lagrangian viewpoint is usually contrasted with the Eulerian approach, in which
flow properties are probed at fixed locations of the spatial domain. Although it is argu-
ably more intuitive to describe a flow by looking at the trajectories of fluid tracers, the
Eulerian approach has been historically more popular among investigators for several
reasons. Experimentally, it is simpler to measure flow properties at fixed locations. As
an example, hot-wire probes are commonly used to measure velocity fluctuations at
fixed points in space in turbulent laboratory flows at relatively low implementation
and operation costs. In comparison, Lagrangian velocity measurements are much
more challenging, with requirements including (i) small neutrally-buoyant particles
behaving as passive tracers, (ii) the capability to identify and track individual particles
over sufficiently long times, and (iii) high sampling rates ensuring that measured
trajectories are smooth enough to be numerically differentiated (evidently, this last
requirement is even more critical for acceleration measurements) [205]. From a the-
oretical perspective, the equations governing the motion of fluid flows are naturally
written in the Eulerian frame, in terms of spatial fields (e.g. velocity, pressure) and
their spatial gradients. Numerically, these fields are typically computed on a fixed
(Eulerian) spatial grid, enabling the numerical estimation of their gradients appearing
in the governing equations.
In the Eulerian description, the fluid velocity field 𝒖 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) is a function

of position and time, 𝒖 = 𝒖(𝒙, 𝑡). Here, the subscripts 𝑥, 𝑦 and 𝑧 denote the three
Cartesian components of the velocity vector. By contrast, the tracer velocity 𝒗 in the
Lagrangian frame is parametrised by the initial tracer position 𝒙0 at 𝑡 = 0 (which
uniquely identifies the tracer), and by the elapsed time 𝑡, as illustrated by fig. 1.1. The
trajectory of a Lagrangian particle, 𝑿(𝑡, 𝒙0), is then linked to the Eulerian velocity field
𝒖(𝒙, 𝑡) by

𝜕𝑿(𝑡, 𝒙0)
𝜕𝑡 = 𝒗(𝑡, 𝒙0) = 𝒖(𝑿(𝑡, 𝒙0), 𝑡), 𝑿(0, 𝒙0) = 𝒙0. (1.1)

In this work, we assume that the Eulerian velocity field obeys the incompressible

2



1.1 Lagrangian description of turbulent flows

Navier–Stokes equations,

𝛁 ⋅ 𝒖 = 0, (1.2a)
D𝒖
D𝑡 = 𝜕𝒖

𝜕𝑡 + (𝒖 ⋅ 𝛁)𝒖 = −1
𝜌𝛁𝑝 + 𝜈∇2𝒖 + 𝒇, (1.2b)

where 𝑝(𝒙, 𝑡) is the pressure field required to satisfy the incompressibility con-
straint (1.2a), and 𝒇(𝒙, 𝑡) is a forcing term that may represent the action of an external
force (e.g. a large-scale mechanism driving the flow). The fluid density 𝜌 and kin-
ematic viscosity 𝜈 are supposed constant throughout the physical domain. In eq. (1.2b),
D/D𝑡 = 𝜕𝑡 + (𝒖 ⋅ 𝛁) is the material (or Lagrangian) derivative operator, representing
the temporal variation of a quantity along a Lagrangian path.
The Eulerian and Lagrangian formulations contain the same information about a

fluid flow, and in theory, it is possible to transform back and forth between the two
descriptions. For instance, knowing the evolution of the Eulerian velocity field 𝒖(𝒙, 𝑡)
over 𝑡 ∈ [0, 𝑇], the trajectory of a Lagrangian particle 𝑿(𝑡, 𝒙0) starting from any given
position 𝒙0, can be fully described over the same time interval. Conversely, since fluid
particles (as mathematical objects) cover the whole fluid domain at all times, knowing
the instantaneous velocity of all tracers at time 𝑡 is equivalent to knowing the Eulerian
velocity field 𝒖(𝒙, 𝑡) at that time.

In practice, it is challenging to transform back and forth between the two formula-
tions. Experimentally, a turbulent flow can be studied by seeding particles behaving
as Lagrangian tracers into the flow. If the particle concentration is high enough, it be-
comes possible to reconstruct the Eulerian velocity field based on subsequent particle
snapshots, provided they are performed over a short temporal window. This is the
principle of the particle image velocimetry technique [3]. However, due to the high
particle concentration required, it is virtually impossible to identify individual particles
and track them over long times using this approach. To obtain a true Lagrangian char-
acterisation of the flow, lower tracer particle concentrations must be used, enabling
particles to be individually tracked over time.1 However, the capability to accurately
reconstruct instantaneous Eulerian fields is lost as a consequence. Similarly, in numer-
ical simulations, the most common approach to a Lagrangian description of the flow
(and the one used in this work, as described in section 2.2) is to resolve the governing
equations in an Eulerian reference frame, from which the resulting velocity field is
then estimated at the positions of Lagrangian particles seeded into the simulation. Due
to computational constraints, the number of seeded particles is typically insufficient
for recovering Eulerian fields from Lagrangian data.
The equivalence of the Lagrangian and Eulerian frameworks does not imply that

flow properties evolve equally at a fixed point in space and along a fluid particle path.
In a stationary flow (in which 𝜕𝑡𝒖 = 𝟎), the velocity of a fluid particle may change over
time despite the stationarity of the Eulerian velocity field. A simple example in two
dimensions is the stationary velocity field induced by a point vortex (as illustrated

1This is the basis of the particle tracking velocimetry (PTV) method. See section 3.1 for more details.
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Figure 1.2. Visualisation of grid-generated turbulence using smoke wires. Reproduced from
Van Dyke [185]. Photograph by T. Corke and H. Nagib.

later in fig. 1.7a). In this velocity field, a fluid particle moves in a circular orbit about
the vortex. Although the magnitude of the particle velocity stays constant, its direction
changes (periodically) over time.
The difference between both descriptions is particularly significant in turbulent

flows, which are characterised by motions occurring over a hierarchy of scales. In
three-dimensional turbulent flows, the large-scale motions are typically determined
by the particular mechanism by which turbulence is generated. A classical example is
the uniform flow passing through a fixed grid made of solid rods, as seen in fig. 1.2.
Behind the grid, turbulent motions (or eddies) are generated with sizes comparable
to the spacing between the rods. The classical picture of the energy cascade describes
the generation of smaller-scale eddies from the initial motions at the scale of the grid,
eventually leading to the decay of turbulent motion. In other words, turbulent kinetic
energy is transferred from the large-scale eddies to small-scale motions. Ultimately,
very small eddies are dissipated as they reach a characteristic size at which viscous
effects become important.

As seen in fig. 1.2, eddies of different size spatially coexist. In other words, large-scale
turbulentmotions also advect smaller-scale structures. As postulated by Tennekes [176],
this implies that the high-frequency temporal variations of the flow at a fixed point
in space are not only given by the rapidly varying small-scale motions, but also by
the advection (or sweeping) of these motions by the random large-scale eddies. As a
result, the temporal variations of the velocity that are observed in the Eulerian frame
are even faster (i.e. have a shorter time scale) than the characteristic rate of change of

4



1.1 Lagrangian description of turbulent flows

Figure 1.3.Comparison between Lagrangian (top) and Eulerian (bottom) velocity time series.
Each line represents a different sample. Data was obtained from isotropic turbulence direct
numerical simulations at a Taylor-scale Reynolds number Re𝜆 = 140 [204]. (In isotropic
turbulent flows, Re𝜆 = 𝜎𝑢𝜆/𝜈 where 𝜎𝑢 is the magnitude of the velocity fluctuations, 𝜆 =
(15𝜈𝜎2

𝑢/𝜀)1/2 the Taylor microscale, and 𝜀 themean energy dissipation rate per unit mass [177].)
Values are normalised by 𝜎𝑢 and the Lagrangian integral time scale 𝑇𝐿. Reproduced from
Yeung [205].

the small-scale motions. This is not the case for the temporal fluctuations observed in
the Lagrangian reference frame, which are not affected by random sweeping. This is
qualitatively confirmed in fig. 1.3, where Eulerian and Lagrangian velocity time series
are compared. The sharper temporal variations of the Eulerian data are a consequence of
random sweeping. For this reason, the Lagrangian description is generally considered
to be more appropriate to describe the temporal evolution of turbulent flows [180].

1.1.2 Lagrangian properties of isotropic turbulent flows

In the following we introduce some relevant aspects of the dynamics of Lagrangian
particles in turbulent flows. Due to their complexity and chaotic behaviour, an exact
treatment of turbulent flows is impractical and a statistical approach is needed to
describe the flow. For now, the discussion is limited to turbulent flows which are
statistically homogeneous and isotropic, i.e. their statistical properties (such as the
velocity probability density function (PDF)) do not depend on the sampled location,
and are invariant with respect to spatial rotations (e.g. all velocity components share
the same statistics). Moreover, the turbulence is assumed to be statistically stationary,
i.e. its statistical properties do not vary with time. This requires a large-scale forcing of
the flow in order to compensate for the dissipation of energy at small scales. Finally,
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Figure 1.4. Lagrangian velocity auto-correlation function in isotropic turbulence. Filled symbols,
experimental data of Sato and Yamamoto [152] at Re𝜆 = 46 and 66; open circles, DNS data
of Yeung and Pope [206] at Re𝜆 = 90; solid line, Langevin model 𝜌𝑣(𝜏) = exp(−𝜏/𝑇𝐿).
Reproduced from Pope [137].

the average fluid velocity is taken as zero throughout space.2

An important quantity for characterising the time evolution of a turbulent flow is
the Lagrangian velocity auto-correlation function,

𝜌 𝑣(𝜏) =
⟨𝑣𝑖(𝑡, 𝒙0) 𝑣𝑖(𝑡 + 𝜏, 𝒙0)⟩

𝜎2𝑢
, (1.3)

where repeated indices, representing Cartesian coordinates, do not imply summation.
Due to isotropy, the three velocity components have the same auto-correlation 𝜌 𝑣(𝜏).
The Lagrangian mean ⟨⋅⟩ represents an ensemble average among Lagrangian trajector-
ies, and 𝜎2

𝑢 = ⟨𝑣2
𝑖 ⟩ is the velocity variance. By ergodicity, due to statistical stationarity

and homogeneity, the Lagrangian mean is equivalent here to an average among all
initial locations 𝒙0 and times 𝑡.
Typical Lagrangian velocity auto-correlation functions obtained in homogeneous

isotropic turbulence (HIT) are shown in fig. 1.4. The curves decrease roughly ex-
ponentially indicating that Lagrangian particles lose memory of their velocity over
time. The auto-correlation function provides an estimate of the characteristic time over
which a fluid particle loses memory of its instantaneous velocity. Traditionally, this

2Statistical homogeneity and stationarity imply that the average velocity 𝑼 is constant in space and time.
Therefore, a Galilean reference frame moving with velocity 𝑼 can be chosen in which the average
velocity is effectively zero.
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1.1 Lagrangian description of turbulent flows

characteristic time is quantified by the Lagrangian integral time scale,

𝑇𝐿 = ∫
∞

0
𝜌 𝑣(𝜏)d𝜏 . (1.4)

In his classical work, Taylor [175] linked the statistics of fluid particle dispersion in
turbulent flows with the Lagrangian velocity auto-correlation 𝜌 𝑣 and the Lagrangian
integral time scale 𝑇𝐿. Namely, he showed that the mean-square fluid particle displace-
ment is given by [177, p. 225]

⟨𝛿𝑥2
𝑖 ⟩(𝜏) ≡ ⟨(𝑋𝑖 − 𝑥0𝑖)2⟩(𝜏) = 2𝜎2

𝑢𝜏 ∫
𝜏

0
(1 − 𝑠

𝜏) 𝜌 𝑣(𝑠)d𝑠 , (1.5)

where 𝑥0𝑖 and 𝑋𝑖 are the 𝑖-th components of the initial and instantaneous particle
positions, respectively. It is readily shown that at very long times (𝜏 ≫ 𝑇𝐿), eq. (1.5) is
approximated by

⟨𝛿𝑥2
𝑖 ⟩(𝜏) ≈ 2𝜎2

𝑢𝑇𝐿𝜏. (1.6)

Therefore, at sufficiently long times, the mean-square displacement grows linearly in
time. This suggests that at long times, the motion of fluid particles in turbulent flows
is analogous to Brownian motion (where ⟨𝛿𝑥2

𝑖 ⟩(𝜏) = 2𝐷𝜏), with an effective turbulent
diffusion coefficient 𝐷𝑇 = 𝜎2

𝑢𝑇𝐿.

1.1.3 Lagrangian stochastic models

Here we briefly introduce two simple stochastic models predicting the dynamics of
fluid particles in HIT. The development and application of Lagrangian stochastic
models are beyond the scope of this work. The aim is just to provide an additional
motivation for the Lagrangian description of turbulent flows, and to introduce some
important concepts that are further discussed in the following sections. Lagrangian
stochastic models are commonly used for predicting the dispersion of species (pollen,
contaminants) in atmospheric flows [194] as well as in the ocean [90, 187]. As shown
in the following, the study of the Lagrangian properties of turbulent flows can serve to
improve and feed these models with relevant parameters.

Langevin equation One of the simplest Lagrangian stochastic models is the Langevin
equation, which models the velocity of a particle undergoing Brownian motion. In
statistically stationary HIT, the Langevin equation may be expressed as a stochastic
differential equation (SDE) for the velocity increment d𝑣 [139],

d𝑣(𝑡) = −𝑣(𝑡)
𝑇𝐿

d𝑡 + (2𝜎2
𝑢

𝑇𝐿
)

1/2
d𝑊(𝑡), d𝑥(𝑡) = 𝑣(𝑡)d𝑡, (1.7)

where 𝑥(𝑡) and 𝑣(𝑡) are the particle position and velocity in a given direction, and 𝑊(𝑡)
is a Wiener process. That is, the increment d𝑊(𝑡) = 𝑊(𝑡 + d𝑡) − 𝑊(𝑡) is Gaussian
with zero mean and variance d𝑡, and non-overlapping increments are independent
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1 Introduction

of each other [187]. The Langevin model assumes the particle position and velocity
to be jointly Markovian, and is thus considered a first-order model [153]. This is
equivalent to assuming that the particle acceleration 𝑎 is delta-correlated in time, i.e.
⟨𝑎(𝑡) 𝑎(𝑡 + 𝜏)⟩ = ⟨𝑎(𝑡)2⟩ 𝛿(𝜏) where 𝛿 is the Dirac delta. According to eq. (1.7), the
velocity increment d𝑣 is the sum of a deterministic drift term (−𝑣d𝑡/𝑇𝐿) causing the
velocity to relax to zero, and a Gaussian diffusion term with zero mean and variance
2𝜎2

𝑢 d𝑡/𝑇𝐿 [137].
The stochastic process 𝑣(𝑡) generated by eq. (1.7), called theOrnstein–Uhlenbeck pro-

cess, is continuous, statistically stationary and Gaussian, with zero mean, and variance
⟨𝑣(𝑡)2⟩ = 𝜎2

𝑢 [139]. Its auto-correlation function is exponential, 𝜌 𝑣(𝜏) = exp(−|𝜏|/𝑇𝐿),
and its integral time scale is 𝑇𝐿. In fig. 1.4, the exponential auto-correlation associ-
ated to this process is shown to correctly describe velocity auto-correlation data in
turbulent flows. However, as noted by Pope [137], the exponential curve predicted
by the model is incorrect at very short times (𝜏 ≪ 𝑇𝐿), since the derivative of the
auto-correlation function at 𝜏 = 0 should vanish (instead of being negative) due to
statistical stationarity. Indeed, from eq. (1.3), it can be shown that

d𝜌 𝑣(𝜏)
d𝜏 ∣

𝜏=0
= 1

2𝜎2𝑢
⟨

𝜕𝑣2
𝑖

𝜕𝑡 (𝑡, 𝒙0)⟩ = 1
2𝜎2𝑢

𝜕
𝜕𝑡⟨𝑣2

𝑖 (𝑡, 𝒙0)⟩, (1.8)

which is necessarily zero since statistics are time-invariant.
In high-Reynolds numbers turbulent flows, the Lagrangian integral time scale 𝑇𝐿

appearing in eq. (1.7) can be related to other properties of the turbulent flow by
assuming that the Langevin equation is consistent with Kolmogorov’s K41 similarity
theory [83]. To introduce the implications of K41 theory on Lagrangian turbulence
statistics and their connection to the Langevin equation, we first define the Lagrangian
second-order velocity structure function,

𝐷2(𝜏) = ⟨[𝑣(𝑡 + 𝜏) − 𝑣(𝑡)]2⟩ = ⟨[𝛥𝜏𝑣(𝑡)]2⟩, (1.9)

which is nothing else than the variance of the Lagrangian velocity increments 𝛥𝜏𝑣(𝑡) =
𝑣(𝑡 + 𝜏) − 𝑣(𝑡) over a fixed time delay 𝜏.

K41 theory predicts that, when 𝜏 is much larger than the characteristic time scale of
the dissipative motions 𝜏𝜂 and much smaller than the Lagrangian time scale 𝑇𝐿, the
Lagrangian structure function is independent of viscosity and of the precisemechanism
of energy injection, and it only depends on 𝜏 and on the mean turbulent energy
dissipation rate denoted by 𝜀. The range 𝜏𝜂 ≪ 𝜏 ≪ 𝑇𝐿 is called the inertial range,3 and
𝜏𝜂 is the Kolmogorov time scale defined as 𝜏𝜂 = (𝜈/𝜀)1/2.
Under the assumptions of K41 theory, dimensional arguments then lead to the

prediction that
𝐷2(𝜏) = 𝐶0𝜀𝜏 for 𝜏𝜂 ≪ 𝜏 ≪ 𝑇𝐿, (1.10)

3Our formulation is somewhat unusual in that Kolmogorov’s similarity theory is most often presented
and applied in the Eulerian reference frame. In particular, the inertial range is typically introduced in
terms of characteristic lengths as opposed to time scales.

8



1.1 Lagrangian description of turbulent flows

with 𝐶0 a non-dimensional constant supposed universal, i.e. independent of the Reyn-
olds number and of the turbulence generation mechanism. At the present time, there
is no conclusive evidence confirming the universality of the Kolmogorov constant 𝐶0,
although its value tends to plateau at 𝐶0 ≈ 7 at high Reynolds numbers [180]. This is
discussed in some more detail in section 3.5.

The K41 prediction can be matched to that of the Langevin equation [137],

𝐷2(𝜏) = 2𝜎2
𝑢𝜏/𝑇𝐿 for 𝜏 ≪ 𝑇𝐿, (1.11)

leading to the estimation of the Lagrangian integral time scale as 𝑇𝐿 = 2𝜎2
𝑢/(𝐶0𝜀). Since

it has no concept of a short time scale comparable to 𝜏𝜂, the Langevin equation assumes
eq. (1.11) to be valid for any arbitrarily short time lag 𝜏. In other words, according to
the Langevin equation, the inertial range extends up to infinitesimally small time lags.
In turbulent flows, this corresponds to the infinite Reynolds number limit.4

Second-order stochastic model As discussed above, the Langevin equation is inap-
propriate to capture the Lagrangian dynamics at very short times comparable to the
Kolmogorov time scale 𝜏𝜂. To account for finite Reynolds number effects, Sawford [153]
proposed a second-order stochastic model which, in contrast to the first-order Langevin
model, considers the particle position, velocity and acceleration as jointly Markovian.
For this, Sawford’s model introduces the Kolmogorov time scale 𝜏𝜂 as a second model
variable, in addition to the Lagrangian integral time scale 𝑇𝐿, in order to account for
dissipation range (𝜏 ≪ 𝜏𝜂) statistics. In the model, the acceleration SDE is expressed as

d𝑎(𝑡) = −𝛼1𝑎(𝑡)d𝑡 − 𝛼2 ∫
𝑡

0
𝑎(𝑠)d𝑠d𝑡 + √2𝛼1𝛼2𝜎2𝑢 d𝑊(𝑡), (1.12)

and the velocity and position are obtained by successive integrations of the acceleration
𝑎(𝑡). The parameters 𝛼1 and 𝛼2 are related to the integral and Kolmogorov time scales.
They are defined so that the model matches the Lagrangian structure functions 𝐷2(𝜏)
predicted by K41 theory both in the dissipation and inertial ranges. In the dissipation
range, the K41 prediction is given by [109, p. 359]

𝐷2(𝜏) = 𝑎0𝜀3/2𝜈−1/2𝜏2 for 𝜏 ≪ 𝜏𝜂. (1.13)

The non-dimensional parameter 𝑎0 is equal to the acceleration variance ⟨𝑎(𝑡)2⟩ normal-
ised by 𝜀 and 𝜈. As with 𝐶0, K41 theory predicts that 𝑎0 is a universal constant for high
Reynolds numbers flows. As discussed in section 3.5, currently available data suggests
that 𝑎0 actually strongly varies with Reynolds number. The velocity auto-correlation
function 𝜌 𝑣(𝜏) resulting from Sawford’s second-order model is expressed as the dif-
ference between two exponentials, and by construction (since dissipation scales are
properly accounted for), its derivative correctly vanishes at 𝜏 = 0.
4The empirical law of finite energy dissipation states that 𝜀 remains finite at vanishing viscosity [55].
Therefore, in the limit of infinite Reynolds number (𝜈 → 0), the Kolmogorov time scale 𝜏𝜂 = (𝜈/𝜀)1/2

tends to zero.
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Figure 1.5. Lagrangian intermittency in isotropic turbulence. (a) PDF of velocity increments 𝛥𝜏𝑣
from experiments at Re𝜆 = 740, for time lags 100𝜏/𝑇𝐿 = 1.3, 2.7, 5.4, 11.2, 22.4, 44, 89.3 and
174. The curves are displayed with a vertical shift for clarity. Crosses correspond to a model
prediction. Reproduced fromMordant et al. [114]. (b) Extended self-similarity estimates of the
scaling exponent ratio 𝜁𝑝/𝜁2 in the inertial range. Markers correspond to different simulations
and experiments: blue filled circles, Sawford and Yeung [157] (Re𝜆 = 38 – 1000); magenta
squares, Benzi et al. [16] (Re𝜆 = 600); red crosses, Mordant et al. [118] (Re𝜆 = 75 – 1000);
cyan open circles, Xu et al. [197] (Re𝜆 = 200 – 815). The black solid line represents the K41
prediction 𝜁𝑝 = 𝑝/2. Other lines correspond to different model predictions. Reproduced from
Sawford and Yeung [157].

1.1.4 Lagrangian intermittency

Experimental and numerical Lagrangian studies of turbulent flows have shown that
the Lagrangian velocity increments 𝛥𝜏𝑣, introduced in section 1.1.3, are actually highly
intermittent at small time lags 𝜏 [180]. That is, fluid particles, in very rare occasions,
see abrupt changes in their velocity over short time spans. This is manifested by PDFs
of velocity increments 𝛥𝜏𝑣 which are strongly non-Gaussian when 𝜏 is small (fig. 1.5a),
with heavy, stretched exponential tails corresponding to rare events associated to very
intense velocity increments [115, 118, 157]. This intermittency is not captured by the
simple Lagrangian stochastic models introduced in section 1.1.3.

Equivalently, intermittency is reflected in a departure from Kolmogorov K41 theory,
which predicts that the Lagrangian velocity structure function of order 𝑝 should scale
as

𝐷𝑝(𝜏) ≡ ⟨ ∣𝛥𝜏𝑣(𝑡)∣𝑝⟩ ∼ (𝜀𝜏)𝑝/2, 𝑝 = 1, 2, 3, … , (1.14)

for inertial-range time increments 𝜏. Attempts have been made to determine the actual
scaling exponents 𝜁𝑝 (such that 𝐷𝑝(𝜏) ∼ 𝜏𝜁𝑝) from Lagrangian turbulence data, and
to compare them with the K41 prediction 𝜁𝑝 = 𝑝/2. For the particular case 𝑝 = 2, it
has been argued [26] that as a consequence of the linear dependence of 𝐷2(𝜏) on 𝜀
in eq. (1.14), the scaling exponent 𝜁2 is not affected by intermittency, i.e. 𝜁2 = 1 as
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1.1 Lagrangian description of turbulent flows

predicted by K41 theory.5
At the finite Reynolds numbers of laboratory experiments and simulations, clear

power laws 𝐷𝑝(𝜏) ∼ 𝜏𝜁𝑝 are generally not observed [118]. Therefore, to determine
the 𝜁𝑝 exponents from available data, researchers have resorted to the extended self-
similarity procedure first introduced in the context of Eulerian structure functions [17].
In the present context, this corresponds to estimating the scaling exponents 𝜁𝑝 from
curves of 𝐷𝑝(𝜏) plotted against 𝐷2(𝜏) instead of against 𝜏. This immediately leads
to estimates of the scaling exponent ratios 𝜁𝑝/𝜁2. In addition, the assumption that
𝐷2(𝜏) ∼ 𝜏 in the inertial range (i.e. 𝜁2 = 1) may be used to determine the other
scaling exponents 𝜁𝑝. Extended self-similarity has resulted in relatively robust scaling
exponents reproduced in various numerical and experimental settings [14, 19, 22, 24,
118, 197]. As shown in fig. 1.5b, the consensus is that the K41 predictions do not hold
for Lagrangian structure functions of order higher than 2, confirming the intermittency
of Lagrangian velocity increments in turbulent flows.

1.1.5 Lagrangian acceleration

The Lagrangian velocity increments 𝛥𝜏𝑣 are evidently related to the Lagrangian particle
acceleration, which is obtained from 𝛥𝜏𝑣 in the limit of small 𝜏. We have observed
above that the Lagrangian velocity increments become more and more intermittent
as the time lag 𝜏 is reduced. From this, it can be anticipated that the acceleration is a
highly intermittent quantity in turbulent flows.6

Lagrangian accelerations were first measured in turbulent laboratory flows by Voth
et al. [190]. Soon after, it was observed that the acceleration of fluid particles is very
intermittent, and characterised by highly non-Gaussian PDFs with long stretched
exponential tails [89, 189] as seen in fig. 1.6a. As expected, the shape of the acceleration
PDFs resembles that of the velocity increments 𝛥𝜏𝑣 for small 𝜏 (fig. 1.5a). The inset
of fig. 1.6a shows the flatness factor ⟨𝑎4⟩/⟨𝑎2⟩2, representing the departure of the
acceleration distribution from Gaussianity. The large flatness values, which can be
contrasted to the value of 3 associated to a Gaussian distribution, quantify the high
intermittency of the acceleration, as they indicate that extreme accelerations much
higher than the standard deviation occur relatively frequently in turbulent flows.

High-acceleration events in turbulent flows have been linked to fluid particles being
trapped in helical motions such as the one visualised in fig. 1.6b. In the figure, the size
of the helical loops is about 15𝜂 (where 𝜂 = (𝜈3/𝜀)1/4 is the Kolmogorov length scale
associated to the smallest scales of turbulent motion), while changes of orientation
occur over periods of the order of theKolmogorov time scale 𝜏𝜂 [189]. This suggests that
changes of acceleration occur very rapidly and are associated to small-scale turbulent
5As noted by Xu et al. [197], this is analogous to the case of the third-order Eulerian velocity structure
function 𝑆3(𝑟) = [𝑢‖(𝒙 + 𝒓) − 𝑢‖(𝒙)]3 (where 𝑢‖ = (𝒖 ⋅ 𝒓)/𝑟 and 𝑟 = |𝒓|), with the difference that
there is an exact expression for 𝑆3(𝑟) in the limit of infinite Reynolds number, namely Kolmogorov’s
four-fifths law 𝑆3(𝑟) = − 4

5 𝜀𝑟 [55, 84].
6Chronologically, the intermittency of the acceleration was studied before that of the Lagrangian velocity
increments.
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Figure 1.6. Lagrangian acceleration in laboratory experiments. (a) PDFs of acceleration normal-
ised by its standard deviation at different Reynolds numbers. Dashed line, Gaussian distribution
with unit variance; solid line, fit of Re𝜆 = 970 data. Inset: flatness of the acceleration distribu-
tion, ⟨𝑎4⟩/⟨𝑎2⟩2, as a function of Re𝜆. Reproduced from La Porta et al. [89]. (b) Trajectory of a
high-acceleration spherical tracer particle (diameter 46µm) in a turbulent flow at Re𝜆 = 970.
Colours represent the acceleration magnitude. Reproduced from Voth et al. [189].

structures close to the dissipation range. These structures can be identified as the
intense, elongated vortex filaments of diameter of order 𝜂, which are a signature of
small-scale intermittency in turbulent flows [164, 171].

Intuitively, a fluid particle rotating in helical motion experiences a centripetal acceler-
ation towards the centre of rotation. Centripetal accelerations are associated to changes
of orientation of a particle trajectory. Hence, it may be speculated that vortex filaments
contribute to the intermittency of acceleration by inducing high-magnitude centripetal
accelerations associated to sharp changes of orientation of trapped fluid particles. This
hypothesis was examined by Toschi et al. [179], who compared the PDF of the centri-
petal acceleration, 𝑎𝑐 = |𝒂 × 𝒗|/|𝒗|, with that of the longitudinal acceleration (aligned
with the velocity 𝒗), 𝑎𝑙 = (𝒂 ⋅ 𝒗)/|𝒗|. They found the centripetal component to be much
more intermittent than the longitudinal one, in support of the above hypothesis.

If we again suppose that the acceleration of a tracer trapped in a vortical structure is
mainly determined by a centripetal component, the above picture also suggests that,
as the tracer circulates in helical motion, its acceleration vector continuously changes
direction (as it is mainly directed towards the vortex axis) while the acceleration
magnitude changes more slowly. To illustrate this idea, we come back to the simple
two-dimensional point vortex model briefly mentioned in section 1.1.1. A point vortex
induces a velocity field, in polar coordinates, 𝒖 = (𝛤/2𝜋𝑟)𝒆𝜃, where 𝛤 is the vortex
circulation. The circular path of a fluid particle in this velocity field is depicted in
fig. 1.7a. In this ideal example, the fluid particle acceleration only has a centripetal
component which is constant in magnitude, i.e. its speed |𝒗| stays constant while
the orientation of displacement changes steadily. Moreover, the orientation of the
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Figure 1.7. Structure of the acceleration vector in turbulent flows. (a) Lagrangian path induced
by a point vortex in two dimensions. The vorticity field is of the form 𝝎(𝒙) = 𝛤𝛿(𝒙)𝒆𝑧, where 𝛤
is the vortex circulation and 𝛿 is the Dirac delta. Fluid particles travel in circular orbits. The
Lagrangian velocity and acceleration have constant magnitudes but varying orientations over
time. (b) Auto-correlation of acceleration magnitude |𝒂| (solid line) and of the acceleration
components 𝑎𝑥, 𝑎𝑦 and 𝑎𝑧 ( , , ). Triangles ( , , ) represent cross-correlations between
acceleration components. The flow is driven by two counter-rotating disks in a cylindrical
tank at Re𝜆 = 690. Inset: same curves in semi-logarithmic scale. Reproduced from Mordant
et al. [117].

acceleration vector clearly changes over time as the tracer rotates about the vortex. Point
vortices have already been used to describe the Lagrangian dynamics of turbulence. An
example is the work of Rast and Pinton [144], who introduced a model of interacting
point vortices to explain the Lagrangian intermittency of turbulence.
The above simple model may serve as an explanation for the observation that in

turbulent flows, the Lagrangian acceleration magnitude |𝒂| stays correlated for much
longer than the components of the acceleration vector [93, 117, 206]. As seen in fig. 1.7b,
the acceleration components completely decorrelate over a time comparable to 𝜏𝜂,
suggesting that their dynamics are governed by the small-scale turbulent motions
(as also hinted by the trajectory in fig. 1.6b). The much longer decorrelation time
of |𝒂|, comparable to 𝑇𝐿 [203], indicates that the rapid variations of the acceleration
components correspond to changes of orientation of the acceleration vector, likely due
to the action of vortex filaments and similar small-scale structures.
The trapping events described above are also expected to have an influence on

the Lagrangian velocity increments at finite time lag 𝜏, and thus on the structure
functions discussed in section 1.1.4. The effect of such events has been analysed by
filtering out their contributions to the Lagrangian structure functions 𝐷𝑝(𝜏) [24], and
by comparing the statistics to those obtained for heavy inertial particles [14], which are
usually expelled from small-scale helical motions due to their inertia.7 These studies
7In other words, the response time of the heavy inertial particles (quantified by the Stokes number) is
too large compared to the characteristic period of the small-scale helical motions, which is comparable
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found that trapping events enhance intermittency of Lagrangian velocity increments
for time lags up to 10𝜏𝜂, which helped explain discrepancies between the scaling
exponents estimated from numerical simulations and experiments [14].

1.1.6 Anisotropic and inhomogeneous flows

Most of the Lagrangian investigations cited above have been performed in nominally
isotropic turbulent flows. We first make some precisions regarding the statistical iso-
tropy of those flows. Numerical studies of HIT are generally performed using direct
numerical simulation (DNS), in which the Navier–Stokes equations (1.2) are solved up
to the smallest scales of motion. The physical domain is a triply periodic box, i.e. a cube
with periodic boundary conditions. This enables the use of pseudo-spectral methods
by decomposing the velocity field into Fourier modes (see section 2.1.1 for details). To
ensure the statistical stationarity of the flow, i.e. to compensate for the energy dissipated
at the small scales, a large-scale forcing, corresponding to the 𝒇 term in eq. (1.2b), must
be applied. For the flow to be isotropic, the forcing term, which can be stochastic, is
chosen as statistically isotropic. Still, some weak anisotropy usually persists due to the
inherent anisotropy of the cubical grid. For instance, small differences may be observed
for two-point statistics computed along a line parallel to the grid (say, parallel to the 𝑥
axis) and along a diagonal of the cube [49].

The case of laboratory experiments is more complex, as the unavoidable presence of
solid boundaries and the forcing mechanism invariantly introduce some anisotropy
into the flow. The aim is for these anisotropy-generating features to be far enough from
themeasurement regionwhere the flow is analysed, so that the small-scale statistics can
be considered as isotropic in that region. The experiments cited in the previous sections
were all conducted in von Kármán swirling flows between two coaxial counter-rotating
disks in a cylindrical tank [116, 190]. This choice of flow is particularly convenient
as it allows for very high Reynolds numbers in a confined geometry. In fig. 1.7b, the
auto-correlation curves associated to the three acceleration components (𝑥 and 𝑦 are
parallel to the disks; 𝑧 is the axial direction) display very similar results indicating
that the flow is nearly isotropic. The isotropy is also supported by the vanishing cross-
correlations between acceleration components. As shown later in section 3.4, things
are very different in highly anisotropic flows. Nevertheless, some anisotropy may still
persist in the measurements. For instance, using the same von Kármán experimental
apparatus as in [190], Ouellette et al. [129] showed that the second-order Lagrangian
structure function 𝐷2 was clearly anisotropic. Namely, for all time lags 𝜏, computing
𝐷2(𝜏) from the 𝑥 and 𝑦 velocity components, parallel to the disks, resulted in larger
values than the statistics associated to the 𝑧 component.

In conclusion, even in controlled settings such as the experimental installations refer-
enced above, it is very difficult to avoid anisotropy in real flows. Practical flows found in
natural and industrial applications are much more complex than ideal isotropic flows
due to several factors which may include – to only name a few – temporal variability,

to 𝜏𝜂. Hence, the particles are not ‘fast’ enough to respond to the solicitations of small vortex filaments.
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the presence of solid boundaries, and global rotation of the system. We finish this
section by introducing arguably the simplest possible anisotropic flow, which can serve
as a starting point to study the effects of anisotropy in turbulence.

Homogeneous shear flow Different canonical flows have been devised to understand
the effects of large-scale anisotropy in turbulence. Here, we onlymention homogeneous
shear flow (HSF) due to its simplicity and its relevance for the present study. In HSF,
an unidirectional mean velocity field is imposed of the form

𝑈(𝑦) = 𝑆𝑦, (1.15)

where 𝑈 is the mean velocity in the 𝑥 (streamwise) direction, 𝑦 is the cross-stream co-
ordinate along which the mean velocity varies, and 𝑆 is a constant mean shear rate,
𝑆 = d𝑈/d𝑦 . HSF is statistically homogeneous, i.e. turbulence statistics are invariant
under spatial translations (for instance, the magnitude of the velocity fluctuations is
the same for all 𝑦). It is therefore a simpler variant of wall-bounded turbulence (sec-
tion 1.2), as it is characterised by mean shear but in the absence of wall confinement.
However, HSF is not really statistically stationary, as length scales continuously grow
in the streamwise direction [177, p. 230].
The dispersion of tracer particles in turbulent HSF was considered theoretically by

Corrsin [44], who suggested that at asymptotically long times, the mean-square tracer
displacement in the streamwise direction grows as [108, p. 558]

⟨𝛿𝑥2⟩(𝜏) = 2
3𝑆2𝑢′2𝑦 𝑇𝐿,𝑦𝜏3 for 𝜏 ≫ 𝑇𝐿,𝑦, (1.16)

where 𝑇𝐿,𝑦 is the Lagrangian integral time scale associated to the cross-stream velocity
component 𝑢𝑦. This can be contrasted to Taylor’s prediction in HIT, ⟨𝛿𝑥2⟩(𝜏) ∼ 𝜏
[eq. (1.6)], showing that mean shear greatly enhances dispersion. To understand the
effect of mean shear on dispersion, one may consider a group of fluid particles initially
located on the 𝑦 = 0 plane. Over time, due to turbulent fluctuations, tracers will spread
in the cross-stream direction, and thus will be located in regions of different mean
streamwise velocity 𝑈. At that point, mean shear will rapidly spread the particles in the
streamwise direction, leading to a large variability of their streamwise displacements
at long times.
Corrsin’s estimation assumes the statistical stationarity of the flow. However, as

mentioned above, HSF is not stationary, and the global kinetic energy content actually
grows at long times. For this reason, DNS results have shown that the mean-square
streamwise displacement asymptotically grows slightly faster than 𝜏3 [165, 169]. Both
Squires and Eaton [169] and Shen and Yeung [165] also considered the Lagrangian
velocity correlations, which, as described in section 1.1.2, are linked to the dispersive
properties of the flow. They observed that the streamwise velocity component stays
correlated for longer along Lagrangian paths than the other two components. In
addition, Yeung [203] showed that Lagrangian acceleration correlations are nearly
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isotropic in HSF, consistently with the idea of a return to isotropy at the small scales.

The present work deals with a Lagrangian description of wall-bounded turbulent
flows. Some fundamental aspects of wall turbulence are introduced in section 1.2.
Compared to turbulent HSF, wall-bounded turbulence is more complex since it is not
only anisotropic but also inhomogeneous in the direction normal to the wall, and the
presence of the wall limits the possible motions in the wall-normal direction. Moreover,
the near-wall dynamics are dominated by inherently anisotropic coherent motions
as described in section 1.2.4. As a consequence of inhomogeneity, the Lagrangian
description of the flow is more complex since an additional dependence of Lagrangian
statistics on distance from the wall must be considered. The Lagrangian description of
wall-bounded turbulence is discussed in more detail in section 3.3.

1.2 Wall-bounded turbulence

A large number of turbulent flows in nature and industrial applications are subject to
the presence of walls or solid boundaries. Wall-bounded turbulence is highly inhomo-
geneous and anisotropic, adding more complexity to the relatively simple description
of turbulence initiated by Kolmogorov. Therefore, understanding and modelling wall-
bounded turbulent flows is a fundamental challenge in turbulence research. To this
day, much effort has gone into understanding wall-bounded flows. Different low-order
formulations and modelling approaches have been proposed. In this regard, some cur-
rent trends have been recently reviewed by McKeon [104], Jiménez [77], and Marusic
and Monty [103]. However, no clear consensus still exists on appropriate models for
predicting wall effects in practical flows.
In this work, we consider a turbulent channel flow between two smooth parallel

plates. Channel flow is one of the canonical settings for studying wall turbulence, along
with pipes of circular cross-section and boundary layer flows over a single flat plate.
These flows share some of the same features and, due to their relative simplicity, they
are particularly convenient for the study of wall turbulence.

In section 1.2.1 we describe the channel flow geometry, including its statistical sym-
metries and relevant physical definitions. The different regions that are classically
distinguished in wall-bounded turbulence are then briefly introduced in section 1.2.2.
This is followed in section 1.2.3 by a characterisation of the mean velocity profile in
each of these regions. Finally, section 1.2.4 gives an overview of the coherent motions
typically found in wall-bounded turbulence.

1.2.1 Turbulent channel flow

We consider the turbulent flow in a channel between two parallel walls with infinite
extent. A Cartesian coordinate system is introduced, with 𝑥 and 𝑧 the wall-parallel
directions, and 𝑦 the direction normal to the walls. The flow is driven by an imposed
constant pressure gradient 𝛁𝑝0 aligned with the 𝑥 direction, resulting in an unidirec-
tional average flow. Consequently, 𝑥 is referred to as the streamwise direction, while 𝑦
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Figure 1.8.Channel flow geometry and coordinate system.

and 𝑧 are respectively the wall-normal and spanwise directions. For numerical purposes,
the infinite domain in 𝑥 and 𝑧 is modelled as a periodic domain of period 𝐿𝑥 and 𝐿𝑧 in
each respective direction, as depicted in fig. 1.8. On the two walls, the flow velocity
vanishes due to no-slip boundary conditions. The separation between the two walls is
2ℎ, with 𝑦 = 0 and 𝑦 = 2ℎ their respective positions. As a consequence, the domain of
interest is 𝛺 = [0, 𝐿𝑥] × [0, 2ℎ] × [0, 𝐿𝑧].

Statistical symmetries The turbulent velocity field 𝒖(𝒙, 𝑡) in the channel is governed by
the incompressible Navier–Stokes equations (1.2). The symmetry of the flow implies
that statistics do not depend on the spanwise coordinate 𝑧 (i.e. the flow is statistic-
ally homogeneous in that direction). The flow is studied once it has achieved a fully
developed state, in which statistics are independent of time and of the streamwise
coordinate 𝑥. The flow is therefore statistically stationary and is inhomogeneous only in
the wall-normal direction. In particular, Eulerian single-point single-time statistics only
depend on 𝑦, and the Eulerian mean velocity field writes 𝒖(𝒙, 𝑡) = 𝒖(𝑦). The notation
(⋅) represents an Eulerian average, that is, an ensemble average of a physical quantity
over infinite repetitions of the flow, on a set of one or more fixed points in space {𝒙𝑖}
and time points {𝑡𝑗}. Due to homogeneity and stationarity, this ensemble average can
be replaced by an average over time and over the periodic directions 𝑥 and 𝑧.

Mean velocity field As a consequence of flow symmetry, the spanwise mean velocity
component 𝑢𝑧 is zero. The same is true for the wall-normal component 𝑢𝑦, as can be
shown by ensemble-averaging the continuity equation (1.2a) along with the imper-
meability condition (𝑢𝑦 = 0) at the walls. Therefore, the mean velocity is expressed
as

𝑢𝑖(𝑦) = 𝑈(𝑦)𝛿𝑖𝑥, (1.17)

where 𝑈(𝑦) is the mean streamwise velocity and 𝛿𝑖𝑗 is the Kronecker delta. The mean
velocity field is zero at the walls due to no-slip conditions, andmaximum at the channel
centreline located at 𝑦 = ℎ.
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External pressure gradient The externally applied pressure gradient 𝛁𝑝0 drives the
flow in the channel. For convenience, we choose to include 𝛁𝑝0 in the forcing term of
the Navier–Stokes equations as 𝒇 = 𝛁𝑝0/𝜌 [eq. (1.2b)]. With this choice of notation,
the pressure field 𝑝(𝒙, 𝑡) appearing in the momentum equation (1.2b) is effectively
periodic and statistically homogeneous in 𝑥 and 𝑧. By ensemble-averaging eq. (1.2b), it
can be shown [137, p. 266] that, for the flow to be homogeneous in 𝑥, then 𝑝0 must be
necessarily independent of 𝑦. Then, its gradient can be written as 𝛁𝑝0 = d𝑝0

d𝑥 𝒆𝑥 = −𝐺𝑝𝒆𝑥
where 𝒆𝑥 is the unit vector in the streamwise direction, and𝐺𝑝 is the constantmagnitude
of the external pressure gradient, which is positive for a flow moving on average in
the positive 𝑥 direction.

Energy injection and dissipation To the imposed mean pressure gradient is associated
a steady energy injection into the large-scale flow, which corresponds to the work
performed by the imposed pressure gradient. The mean kinetic energy injection rate
(or mean input power) per unit mass is given by (see appendix B.1 for more details)

𝛱in =
𝐺𝑝𝑈𝑏

𝜌 , (1.18)

where the bulk velocity is defined as

𝑈𝑏 = 1
2ℎ ∫

2ℎ

0
𝑈(𝑦)d𝑦 . (1.19)

In a statistically stationary flow, the input power 𝛱in must be exactly compensated by
the global kinetic energy dissipation rate per unit mass,

𝜀𝑏 = 1
2ℎ ∫

2ℎ

0
𝜀𝑇(𝑦)d𝑦 , (1.20)

where the total kinetic energy dissipation rate is defined as

𝜀𝑇(𝑦) = 𝜈𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

. (1.21)

Here and in the rest of this document, repeated indices imply summation over the
components 𝑥, 𝑦 and 𝑧 unless noted otherwise.
In high Reynolds number flows, most of the kinetic energy is dissipated by the

turbulent fluctuations. The turbulent kinetic energy dissipation rate is similarly defined as

𝜀(𝑦) = 𝜈
𝜕𝑢′

𝑖
𝜕𝑥𝑗

𝜕𝑢′
𝑖

𝜕𝑥𝑗
, (1.22)

where primes denote a fluctuation from the Eulerian mean, 𝑢′
𝑖(𝒙, 𝑡) = 𝑢𝑖(𝒙, 𝑡) − 𝑢𝑖(𝑦).

A comparison between total and turbulent dissipation rates in a turbulent channel flow
is provided in appendix A.2 (fig. A.3a).
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1.2 Wall-bounded turbulence

Centreline Reynolds number The Reynolds number in the channel can be defined based
on the mean centreline velocity 𝑈0 = 𝑈(ℎ),

Re = 𝑈0ℎ
𝜈 . (1.23)

The Reynolds number characterises the importance of inertia relative to viscous dissip-
ation within the flow. These effects are respectively represented by the non-linear term
(𝒖 ⋅ 𝛁)𝒖 and the viscous term 𝜈∇2𝒖 in the momentum equation (1.2b). At low Reynolds
number, the flow is laminar and the fluid velocity is given by the plane Poiseuille flow
solution to the Navier–Stokes equations,

𝑢𝑖(𝒙) = 𝑈0(1 − ̃𝑦2)𝛿𝑖𝑥, (1.24)

with ̃𝑦 = (𝑦 − ℎ)/ℎ and 𝑈0 = 𝐺𝑝ℎ2/(2𝜌𝜈). Linear stability theory predicts that
plane Poiseuille flow becomes unstable at Re = 5772 [124], meaning that above this
threshold, infinitesimal flow perturbations are amplified and the flow eventually be-
comes turbulent. However, due to the non-linearity of the Navier–Stokes equations,
finite-amplitude perturbations can induce transition to turbulence at much lower
Reynolds numbers [99]. Recently, the global instability threshold above which self-
sustained turbulence can persist has been estimated at Re ≈ 840 [151, 183]. Slightly
above this threshold, turbulence may coexist with laminar flow, for example in the form
of localised turbulent spots [38]. Uniform turbulence, as opposed to laminar-turbulent
coexistence, is only possible beyond a critical value of Re ≈ 1600 [99].

Viscous scales To achieve global equilibrium of forces in a stationary channel flow, the
force applied by themeanpressure gradient to accelerate the fluidmust be compensated
by the mean wall shear stress 𝜏𝑤 decelerating the fluid at the walls. This balance writes
(see e.g. [96])

𝐺𝑝 = 𝜏𝑤
ℎ , (1.25)

where the mean wall shear stress is given by

𝜏𝑤 = 𝜌𝜈 d𝑈
d𝑦 ∣

𝑦=0
. (1.26)

The mean wall shear stress 𝜏𝑤 and the viscosity 𝜈 are the most relevant parameters
for describing the dynamics of the near-wall region in wall-bounded turbulence. It
is therefore appropriate to rescale physical quantities by combinations of these two
parameters. The relevant velocity scale near the wall is the friction velocity,

𝑢𝜏 = √𝜏𝑤
𝜌 , (1.27)
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while the associated viscous time and length scales are respectively

𝜏𝜈 = 𝜈
𝑢2𝜏

and 𝛿𝜈 = 𝜈
𝑢𝜏

. (1.28)

Throughout this work, the superscript + is used to indicate non-dimensional quantities
normalised by the viscous scales defined above. Such a quantity is said to be given in
wall (or viscous) units.

Friction Reynolds number As an alternative to the centreline Reynolds number Re, the
friction Reynolds number can be defined from the viscous scales,

Re𝜏 = 𝑢𝜏ℎ
𝜈 . (1.29)

The friction Reynolds number is more relevant than Re when discussing the near-wall
dynamics of wall turbulence. Moreover, it allows for a comparison with other wall-
bounded flows, where Re𝜏 is defined similarly. In pipe and boundary layer flows, ℎ is
replaced by the pipe radius 𝑅 and the boundary layer thickness 𝛿, respectively [167].
At the present time, the highest friction Reynolds number achieved by DNS of

turbulent channel flow is Re𝜏 = 8000 by Yamamoto and Tsuji [199], using high-order
finite difference schemes with a 8640 × 4096 × 6144 spatial grid resolution. Compared
to pipe and spatially developing boundary-layer flows, the channel flow setting is
particularly suitable for numerical studies due to the simplicity of its geometry, which
(unlike pipe flow) can be represented naturally using a Cartesian reference frame.
Moreover, the homogeneity of channel flows in the streamwise direction allows for
periodic boundary conditions and thus Fourier decomposition of the velocity field in
that direction. Homogeneity also increases the convergence rate of Eulerian statistics,
as these can be computed from spatial averages in the streamwise direction, in addition
to averages in the spanwise direction and in time.
In laboratory experiments, the situation of channel flow compared to other wall-

bounded geometries is the opposite. Channel flow experiments are particularly chal-
lenging due to the need of (i) a long development region upstream of the measurement
section, and (ii) a high aspect ratio between the channel spanwise width 𝑊 and the
wall-normal size 2ℎ to ensure a statistically two-dimensional flow far from the span-
wise walls [210]. The minimum required aspect ratio 𝑊/(2ℎ) has been estimated to
be 7 [46, 112]. The largest Reynolds numbers achieved in channel flow experiments
are Re𝜏 ≈ 4000 in Melbourne [112] and 4800 in Erlangen [209]. In this regard, higher
Reynolds numbers can be achieved in other wall-bounded geometries such as pipe and
boundary-layer flows. Some notable examples of circular pipe flow experiments cap-
able of very high Reynolds numbers are the Princeton superpipe [72] and the CICLoPE
facility in Bologna [123], which have respectively achieved air flows atRe𝜏 ≈ 98 000 and
Re𝜏 ≈ 40 000, as well as the Hi-Reff facility in Japan [56] reaching up to Re𝜏 ≈ 53 000
in a water pipe flow. As for boundary layers, some recent high-Reynolds number meas-
urements include include the High-Reynolds-Number Boundary Layer Wind Tunnel
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1.2 Wall-bounded turbulence

(HRNBLWT) in Melbourne [8] (up to Re𝜏 ≈ 22 800), and the atmospheric surface
layer measurement campaigns in the Surface Layer Turbulence and Environmental
Science Test (SLTEST) in Utah’s salt flats [74] (up to Re𝜏 ∼ 6 × 105).

1.2.2 Scales of wall-bounded turbulence

Wall-bounded turbulent flows are classically described as being composed of two
main regions that follow different scalings [102, 177]. Very close to the wall (for wall
distances 𝑦 ≪ ℎ), in the so-called inner region, viscous stress is important and even
dominant, and the viscous length 𝛿𝜈 = 𝜈/𝑢𝜏 and friction velocity 𝑢𝜏 are the appropriate
parameters for scaling flow quantities. Conversely, in the outer region sufficiently far
from the wall (𝑦 ≫ 𝛿𝜈), direct viscous effects become negligible (as in unbounded
turbulent flows) and the appropriate characteristic length scale is the channel half-
height ℎ (or the boundary-layer thickness 𝛿, in the case of flat-plate boundary layers).
Classically, the characteristic velocity scale in the outer region is 𝑢𝜏 as in the inner layer,
since 𝑢𝜏 determines the inner boundary condition for the outer flow [101]. However,
there is currently no consensus on this choice, and other scales such as 𝑈0 and (𝑈0−𝑢𝜏)
have also been proposed [80, 102].

The friction Reynolds number defined in eq. (1.29) can be written as the length scale
ratio Re𝜏 = ℎ/𝛿𝜈, and thus represents the separation between outer and inner scales
in wall turbulence. Provided that this scale separation is sufficiently large, i.e. at high
Reynolds numbers, an intermediate overlap region (also called the logarithmic layer due
to the predicted shape of the mean velocity profile, as described in section 1.2.3) exists
in the range 𝛿𝜈 ≪ 𝑦 ≪ ℎ, connecting the inner and outer regions.

The above picture of scale separation is clearly reminiscent of the spectral structure
of turbulence, in which viscous effects are negligible except at the smallest scales of
motion (at which kinetic energy is dissipated), and an intermediate inertial range
exists between the largest and the dissipative scales. In fact, in analogy to the turbulent
energy cascade, the dynamics of the flow in the logarithmic region has been interpreted
as a cascade of momentum towards the wall by a self-similar hierarchy of eddies [76].
The wall acts as a momentum sink, similar to the way the dissipative scales act as a
sink of kinetic energy in the turbulent energy spectrum [177].

1.2.3 Mean velocity profile

The above picture of the different regions of wall turbulence has implications on the
expected shape of the mean velocity profile 𝑈(𝑦) in each region.
In the inner region, the mean velocity profile only depends on the wall distance 𝑦

and on the scaling parameters 𝑢𝜏 and 𝛿𝜈. Dimensional analysis then implies that

𝑈+ = 𝑓 (𝑦+) for 𝑦 ≪ ℎ, (1.30)

where 𝑈+ = 𝑈/𝑢𝜏 and 𝑦+ = 𝑦/𝛿𝜈, and 𝑓 is a universal function supposed independent
of Reynolds number [57]. The inner region is usually divided into the viscous sublayer,
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where the mean velocity profile is 𝑈+ = 𝑦+, and the buffer layer, where the profile is no
longer linear. The viscous sublayer extends from the wall to about 𝑦+ = 5. The buffer
layer connects the viscous sublayer with the logarithmic layer.
In the outer region, the appropriate length scale is ℎ, and the mean velocity profile

is defined in terms of the velocity defect 𝑈0 − 𝑈. The mean velocity profile then takes
the form of the velocity-defect law,

𝑈+
0 − 𝑈+ = 𝑔 (𝑦

ℎ) for 𝑦 ≫ 𝛿𝜈. (1.31)

The velocity profile in the logarithmic region is obtained by matching the asymptotic
inner profile (1.30) when 𝑦+ → ∞, with the asymptotic outer profile (1.31) when
𝑦/ℎ → 0 [177, p. 154]. The result is the logarithmic law of the wall,

𝑈+ = 1
𝜅 ln 𝑦+ + 𝐵 for 𝛿𝜈 ≪ 𝑦 ≪ ℎ, (1.32)

where 𝜅 is the von Kármán constant and 𝐵 is called the additive constant.
Both 𝜅 and 𝐵 are expected to be universal constants. However, it is well accepted

that their values actually depend on the type of flow [101, 120]. In channel flow
experiments at Re𝜏 up to 4000, Monty [112] estimated 𝜅 = 0.389 and 𝐵 = 4.23. These
results are consistent with the more recent channel flow DNS results by Lee and
Moser [94] at Re𝜏 = 5200 and by Yamamoto and Tsuji [199] at Re𝜏 = 8000, who
respectively obtained 𝜅 = 0.384 and 0.387, and 𝐵 = 4.27 and 4.21. At lower Reynolds
numbers, a distinctive logarithmic region is not clearly identified due to the weaker
scale separation between 𝛿𝜈 and ℎ, and the estimated values of 𝜅 and 𝐵 are larger. For
instance, at Re𝜏 ≈ 1000, available numerical and experimental results suggest that
𝜅 ≈ 0.4 and 𝐵 ≈ 5 in channel flows [120]. The extent of the logarithmic layer, where
the mean velocity profile approximately has the form (1.32), is classically estimated as
30 < 𝑦+ < 0.15Re𝜏, and therefore, to observe a decade of logarithmic velocity profile,
Re𝜏 > 2000 is required [167].

A mean velocity profile measured in a boundary layer experiment at Re𝜏 = 20 000 in
theMelbournewind tunnel [150] is plotted in fig. 1.9. Also shown is the profile obtained
from our channel flowDNS at Re𝜏 = 1440 (Re ≈ 33 800 based on the centreline velocity
𝑈0), described later in section 2.1.4. As a result of the large Reynolds number, two
decades of logarithmic layer are observed in the experimental profile. This can be
contrasted with the moderate Reynolds number of our DNS, in which slightly less than
a decade is expected according to the above stated criterion (since 0.15Re𝜏 = 216 <
300).
The experimental profile in fig. 1.9 starts at 𝑦+ ≈ 10, and data closer to the wall is

seemingly unavailable. This is explained by the high Reynolds number of the experi-
ment and the technical limitations of the measurement apparatus. As the Reynolds
number increases, the viscous length 𝛿𝜈 becomes smaller. In the conditions of the
experiment, the viscous length is only 17.2µm at Re𝜏 = 20 000 [150], and thus the
whole inner region is about half a millimetre. Therefore, very high resolution probes
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Figure 1.9.Mean velocity profile scaled in wall units. Experimental data (circles) is from a flat-
plate boundary layer flow at Re𝜏 = 20 000 by Samie et al. [150]. Solid line, channel flow DNS
at Re𝜏 = 1440. Dashed line, logarithmic law (1.32) with parameters fitting the experimental
data, 𝜅 = 0.384 and 𝐵 = 4.17 [150]. Dotted line, linear profile 𝑈+ = 𝑦+. The vertical dotted
lines delimit the different regions of the flow at the Reynolds number of the experimental data.

are needed to measure the flow in the near-wall region. Namely, they use nanoscale
thermal anemometry probes specifically manufactured for the measurement of high
Reynolds number wall-bounded flows [184].

1.2.4 Coherent structures

Thus far we have briefly introduced wall-bounded flows in a statistical sense, namely in
terms of the most basic statistical quantity which is the mean velocity profile 𝑈(𝑦). This
statistical approach is appropriate considering the random nature of turbulent flows.
In wall turbulence, an alternative structural description of wall-bounded flows has also
caught much interest. This description views the flow as a collection of interacting
organised motions or coherent structures that greatly contribute to the flow dynamics.
Taken to the extreme, the structural view can be applied as an attempt to describe a
wall-bounded turbulent flow in a deterministic manner [77].

The concept of a coherent structure is controversial since it has no precise definition,
although it is clear that their study has helped improve the understanding of wall
turbulence [101]. Coherent structures can be roughly defined as turbulentmotionswith
a spatial and temporal persistence, and which contribute importantly to the transport
of momentum, mass and heat [101].
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Figure 1.10. Coherent motions in wall turbulence. (a) Visualisation of low-speed streaks in
boundary layer on a wall-parallel plane at 𝑦+ = 4.3 using hydrogen bubbles generated along
an upstream wire (left of the image). Reproduced from Kline et al. [82]. (b) Conceptual model
of a wall-attached hairpin vortex and its induced motion. Reproduced from Adrian et al. [2].

Smits et al. [167] classify coherent structures into four main types. The first two are
near-wall streaks and hairpin vortices, which have been known to exist and have been
studied for several decades. The other two, large scale motions (LSMs) and very large
scale motions (VLSMs), have been observed more recently as they are characteristic of
high Reynolds number wall turbulence, and due to their significant size, their study
requires large spatial observation windows and simulation domains.

Near-wall streaks One of the first experimental observations of coherent structures in
wall turbulence was by Kline et al. [82], who used small hydrogen bubbles to visualise
low-speed streaks in a boundary layer very near the wall. Figure 1.10a shows one of
their observations in the viscous sublayer. It can be seen that despite the dominance
of viscous shear in that region, the flow there is not laminar, but characterised by
spatial fluctuations and unsteadiness. The concentration of bubbles in the form of
elongated streaks indicates the existence of a fluctuating spanwise velocity 𝑢𝑧 that
displaces the bubbles uniformly generated along an upstream wire. The streaks were
identified by Kline et al. as regions of low-speed streamwise flow relative to the mean
velocity (i.e. of negative streamwise fluctuation 𝑢′

𝑥). Their average spanwise spacing
was found to be 𝛥𝑧+ ≈ 100 in the buffer layer. Subsequent studies revealed that this
value is independent of Reynolds number and of the type of wall-bounded flow [4,
170], although it increases with wall distance away from the viscous sublayer [102].
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Figure 1.11. Instantaneous streamwise velocity at 𝑦+ = 9.7 obtained from channel flow DNS at
Re𝜏 = 1440.

Similar near-wall streaks in our channel flow simulations, which display roughly the
same spanwise spacing 𝛥𝑧+ ≈ 100, are visible in the instantaneous streamwise velocity
field shown in fig. 1.11.

Near-wall streaks have been associated to bursting events, which are described by
streaks oscillating in the wall-normal direction with increasing intensity until they are
lifted away from the wall and eventually break down into smaller-scale motions [4,
137]. Bursting events have been further characterised as a sequence of increasingly
stronger ejections of slow fluid away from the wall, as opposed to individual ejection
events [4]. To satisfy continuity, ejections must be necessarily compensated by motion
of fluid towards the wall [137], a mechanism referred to as sweeps. Since the average
flow is faster away from the wall, sweeps most often bring relatively fast fluid towards
the wall, thus locally increasing the streamwise velocity gradient and wall shear stress.

Both sweeps and ejections have been linked to the action of quasi-streamwise vortices
(QSVs), which are elongated vortical structures almost aligned with the streamwise
coordinate, but slightly tilted in the wall-normal direction at a positive angle. Ejections
are induced by pairs of counter-rotating QSVs on either side of a low-speed streak.
QSVs are typically found in the buffer layer and their average diameter is of 40 viscous
units, that is, comparable to the size of the buffer region. As noted by Marusic and
Adrian [102], this similarity is no coincidence as QSVs dominate the dynamics of the
buffer layer and determine its average structure. The streamwise length of the QSVs
greatly varies from about 100 to 10 000 viscous units. The characteristic length of the
induced near-wall streaks is of the order of 1000 viscous units [130], which coincides
with the peak of the spectrum of the streamwise velocity fluctuations (𝑢′

𝑥) along the
streamwise direction in the buffer layer [102].
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Figure 1.12. Visualisation of near-wall vortices in channel flow DNS at Re𝜏 = 1440. Vortices
are identified using isocontours of the second invariant of the velocity gradient tensor at the
level 𝑄+ = 0.05 [73]. Isocontours are coloured by the streamwise vorticity (red, 𝜔𝑥 > 0;
blue, 𝜔𝑥 < 0). The plane on the left is an instantaneous slice of the streamwise velocity field.
Rendered with Blender (www.blender.org).

Hairpin vortices Away from the buffer layer, the most significant coherent motions are
hairpin vortices such as the one sketched in fig. 1.10b. These are formed by pairs of QSVs
that lift up from thewall andmerge forming a loop [102]. HenceQSVs are often the legs
of hairpin vortices, and represent their extension into the inner region of the flow. The
head of a hairpin vortex is typically located above 𝑦+ ≈ 100. Remarkably, the hairpin
vortex cross-section size has been found to scale with the Kolmogorov length scale 𝜂,
which increases with wall distance (see e.g. fig. A.3a in appendix A.2). Concretely, the
typical diameter of the legs and of the head section is close to 16𝜂, a value that presents
little variation with wall distance [62]. This is similar to the case of vortex filaments in
HIT, whose diameter distribution scales with 𝜂 [78]. The existence of hairpin vortices
has been a subject of long controversy, although relatively recent works such as the
flat-plate boundary layer DNS of Wu and Moin [195] seem to confirm their ubiquitous
presence in wall-bounded turbulence. A collection of near-wall vortical motions from
our DNS are visualised in fig. 1.12 using the 𝑄 criterion [73], which identifies zones
of strongly rotating fluid. Besides some QSVs with negative and positive streamwise
vorticity very near the wall, a broken hairpin vortex is visible in the foreground (centre
left), as well as some vortices elongated along the spanwise direction (centre right)
which may correspond to heads of hairpin vortices.

As sketched in fig. 1.10b, hairpin vortices induce a fluctuating flow around them.
In the buffer layer, the hairpin vortex is a pair of counter-rotating QSVs which, as
mentioned above, induces an ejection of the slow fluid between them. As it extends
into the logarithmic region, the hairpin vortex is inclined by about 45° relative to the
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Figure 1.13. Conceptual model of wall-attached hairpin vortex packets proposed by Adrian
et al. [2]. Reproduced from Adrian [4].

wall. The whole loop of the vortex, including the neck and the head, induce a negative
fluctuating velocity field below the vortex head.

Large scale motions There has been evidence in the last few decades that hairpin vor-
tices tend to group in streamwise succession, effectively forming hairpin vortex packets
(HVPs) that travel at the same convective velocity [4, 167]. These packets are a predom-
inant form of large scale motion, and have streamwise sizes of up to 3𝛿 (in channels, the
boundary layer thickness 𝛿 is comparable to the channel half-width ℎ). HVPs extend
deeply into the logarithmic layer and sometimes reach the outer region of the flow.
Due to the accumulation of their individual effects, they can induce large regions
of coherent velocity referred to as uniform momentum zones [4]. The observations
of HVPs are summarised by the conceptual model in fig. 1.13, which depicts three
different packets moving at different convective velocities, each consisting of several
hairpin vortices, and each inducing a low-speed region beneath their structure.

Very large scale motions In the logarithmic layer, it has been observed that the stream-
wise spectrum of 𝑢′

𝑥 presents two peaks, one associated to LSMs (of size 𝒪(𝛿)), and
the other associated to larger structures of size 𝒪(10𝛿) [10, 61] classified as VLSMs.
This has been reproduced in the three canonical wall-bounded flows. In the particular
case of channel flow, Monty et al. [111] observed long meandering structures with
streamwise lengths of up to about 25ℎ at Re𝜏 ≈ 3200 (fig. 1.14). As in many experi-
ments, their observations were obtained using fixed hot-wire probes and thus rely
on Taylor’s frozen turbulence hypothesis, in which velocity time series are converted
into spatial data by assuming that velocity fluctuations 𝑢′

𝑖 are much weaker than the
mean velocity 𝑈 [137]. Taylor’s hypothesis loses accuracy as the apparent size of the
detected spatial structures increases, casting some doubt on the observed VLSMs [101].

27



1 Introduction

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0.8

0.8

0.8

–3

–2

–1

0

1

2

3
a

b

c

Figure 1.14.Visualisation of VLSMs in turbulent channel flow at Re𝜏 = 3178. Colours represent
streamwise velocity fluctuations 𝑢′

𝑥 scaled in wall units. Wall distances are (a) 𝑦 = 0.08ℎ, (b)
𝑦 = 0.14ℎ and (c) 𝑦 = 0.56ℎ. Reproduced from Monty et al. [111].

However, the results are consistent with other studies. For instance, from channel
flow DNS at Re𝜏 ≈ 550 in a very large domain (𝐿𝑥 = 60𝜋ℎ, 𝐿𝑧 = 6𝜋ℎ), Lozano-Durán
and Jiménez [95] showed that non-negligible amounts of turbulent kinetic energy
were associated to structures of streamwise wave length 𝜆𝑥 ≈ 100ℎ, in support of the
existence of very large structures in channel flow turbulence.

1.3 Lagrangian investigations of wall turbulence

The objective of the present study is to describe a wall-bounded turbulent flow from a
Lagrangian perspective. This section reviews relevant investigations that have been
performed on this issue in the past. We focus on studies concerning tracer particles,
while inertial particle investigations are beyond the scope of this review. Chronologic-
ally, the first Lagrangian investigations of wall turbulence were performed in channel
flows using numerical simulations. A selection of these studies are introduced in sec-
tion 1.3.1. To our knowledge, besides the recent work of Stelzenmuller [173] performed
in parallel to our study (their work is partially presented in chapter 3), experimental
Lagrangian studies of turbulent channel flows have not been attempted. This is not
the case in pipe and boundary layer flows, where the few existent Lagrangian studies
are predominantly experimental. Investigations in these two geometries are briefly
reviewed in section 1.3.2.

1.3.1 Channel flow

An early numerical study of the Lagrangian statistics of wall-bounded flows was per-
formed by Deardorff and Peskin [47] in 1970 using large eddy simulation (LES) in
a channel flow geometry. Due to the computational resources available at the time,
they tracked 480 tracer particles on a numerical grid of resolution 24 × 14 × 20. They
discussed Lagrangian velocity auto-correlations, as well as one- and two-particle dis-
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persion statistics. In particular, they observed that mean shear greatly accelerates the
relative separation of particle pairs. Moreover, they found that two-particle Lagrangian
velocity correlations were more persistent than single-particle ones.

Channel flow DNS became feasible much later, with the first simulations reported
by Kim et al. [81] in 1987 at Re𝜏 = 180. Soon after, Bernard et al. [20] considered the
Lagrangian trajectories in channel flowDNS at nearly the same Reynolds number. They
followed a mostly graphical approach, in which they related images of Lagrangian
paths, tracked over relatively short times, with sweeps and ejections near the wall.
Later, Lagrangian tracking of fluid particles in turbulent channel flow was performed
by Kontomaris et al. [85] at a low Reynolds number, Re𝑏 = 2ℎ𝑈𝑏/𝜈 ≈ 4500 based on the
bulk velocity 𝑈𝑏. They mainly focused on the numerical methods, but also considered
the mean-square dispersion of tracers ⟨𝛿𝑥′2

𝑖 ⟩(𝜏) released from the channel centre.
They compared their results to Taylor’s theory for isotropic turbulence predicting
⟨𝛿𝑥′2

𝑖 ⟩(𝜏) ∼ 𝜏 at asymptotically long times [eq. (1.6)]. Here, 𝛿𝑥′
𝑖 = 𝛿𝑥𝑖 − ⟨𝛿𝑥𝑖⟩ is the

displacement fluctuation relative to the displacement averaged among all particles,
⟨𝛿𝑥𝑖⟩. Kontomaris et al. found that only the spanwise displacement 𝛿𝑧 asymptotically
follows Taylor’s prediction. In the streamwise direction, the mean-square dispersion
growsmuch faster due to the effect ofmean shear. Their result is qualitatively consistent
with the fast growth of the mean-square dispersion predicted in HSF [eq. (1.16)]. In
the wall-normal direction, the authors found that the mean-square dispersion slows
down at long times due to the walls limiting the motion of tracers in that direction.
With the objective of characterising the inhomogeneity of Lagrangian statistics in

turbulent channel flows, Choi et al. [41] tracked fluid particles in a DNS at Re𝜏 = 200
and 400. They computed Lagrangian auto-correlations of velocity and acceleration
components. Near the wall, they observed that the streamwise velocity decorrelates
more slowly along Lagrangian paths, followed by the spanwise and the wall-normal
components. As in HIT [206], the acceleration components decorrelate over short
time lags 𝜏 ≈ 2𝜏𝜂, with the exception of the streamwise acceleration in the inner
region where it presented a much longer correlation time. The authors associated the
observed near-wall behaviour to the effect of quasi-streamwise vortices. Choi et al.
also considered the mean-square displacement ⟨𝛿𝑥2

𝑖 ⟩ of tracers released from different
channel locations. In contradiction with theoretical predictions in HSF, the authors
found that ⟨𝛿𝑥2⟩ grows asymptotically as 𝜏2 and not as 𝜏3, concluding that the effect
of mean shear on dispersion is minimal. In fact, the analogy of channel flow with
HSF is only reasonable as long as tracers stay within one half of the domain. Once
tracers cross the channel centreline, the direction of mean shear is reversed and the
asymptotic behaviour differs from HSF. Finally, Choi et al. examined the second-order
Lagrangian velocity structure function 𝐷2(𝜏) [eq. (1.9)] associated to the three velocity
components, from which they estimated the supposedly universal constants 𝑎0 and 𝐶0.
The normalised acceleration variance 𝑎0 was only weakly anisotropic and, consistently
with HIT, it increased with the local Taylor-scale Reynolds number Re𝜆. Meanwhile,
the 𝐷2 curves computed at different wall distances did not display the linear scaling
predicted by K41 theory in the inertial range [eq. (1.10)], which can be explained by
the lack of scale separation at their Reynolds number.

29



1 Introduction

Lagrangian acceleration As an extension to the work of Choi et al. [41], Lee et al. [93]
performed channel flow DNS at Re𝜏 between 100 and 400 focusing on the behaviour of
the acceleration near the walls. The authors observed that, as in HIT, the Lagrangian
acceleration is highly intermittent. This was quantified by the acceleration flatness,
which was close to 15 away from the viscous sublayer. Perhaps surprisingly, this value
changed little with Reynolds number, in contrast with HIT where the flatness shows
strong Reynolds number dependence especially for low values of Re𝜆 (see inset of
fig. 1.6a). Lee et al. further linked the intermittency of acceleration near the wall to
the action of quasi-streamwise vortices and hairpin vortices inducing helical particle
motions associated to strong centripetal accelerations, in analogy to the effect of vortex
filaments in HIT.
The study of acceleration in near-wall turbulence was later extended by Yeo et

al. [202] using channel flow DNS at Re𝜏 between 180 and 600. Their approach was
purely Eulerian, as their statistics were computed from the acceleration field obtained
as

𝒂 = −1
𝜌𝛁𝑝 + 𝜈∇2𝒖 = 𝒂𝐼 + 𝒂𝑆, (1.33)

where 𝒂𝐼 and 𝒂𝑆 are respectively called the irrotational and the solenoidal acceleration.
In isotropic turbulence, the solenoidal component is generally negligible and the
acceleration is dominated by 𝒂𝐼 [64, 188]. As shown by Yeo et al. [202], the solenoidal
term 𝒂𝑆 becomes important in the viscous sublayer, where it has a larger variance than
𝒂𝐼. However, the intermittency of the acceleration in that region, where the flatness
factor exceeds 100, is still dominated by extreme values of the irrotational term 𝒂𝐼.
The authors associated the strong intermittency in the viscous sublayer to the effect of
vortical structures near the wall.

Dispersion and stochastic models Besides the analysis of Kontomaris et al. [85] and
Choi et al. [41] discussed above, other authors have considered the dispersion of tracers
in turbulent channel flows using DNS, especially in relation with the application of
Lagrangian stochastic models to predict dispersion statistics. For instance, Mito and
Hanratty [105] incorporated spatially-varying Lagrangian time scales obtained from a
channel flow DNS to a Langevin equation adapted to inhomogeneous turbulence. The
proposed model was compared to channel flow DNS at Re𝜏 = 150 and 300. For tracers
released from different wall-normal locations, the model accurately reproduced the
single-particle dispersion PDFs evaluated at later times, except for particles released
very close to the wall.

More recently, Kuerten and Brouwers [88] performed channel flowDNS atRe𝜏 = 950.
They computed Lagrangian velocity and wall-normal tracer dispersion statistics as a
function of initial wall distance 𝑦0, and compared their results to an inhomogeneous
Langevin model they proposed. The model used as input parameters Eulerian quantit-
ies computed from their DNS, namely the dissipation profile 𝜀(𝑦), the mean velocity
profile 𝑈(𝑦) and the Reynolds stress tensor 𝑢′

𝑖𝑢′
𝑗(𝑦), as well as the Kolmogorov constant

𝐶0 which they chose as equal to 6 to fit their DNS results. Near the wall (𝑦+
0 < 100),
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significant deviation was observed between computed and modelled velocity auto-
correlation functions, especially for the streamwise velocity component. The authors
attributed this difference to the limited Reynolds number of the DNS, which did not
allow for a large separation of scales required for the application of Kolmogorov’s
hypothesis (which are implied in their stochastic model). Regarding tracer diffusion,
the model underpredicted the wall-normal mean-square dispersion ⟨𝛿𝑦′2⟩ close to the
wall and overpredicted it near the channel centre. The authors tracked fluid particles
over a relative short time 𝑇+ = 190, shorter than the time required for Lagrangian
velocity auto-correlations to decay to zero. As a consequence, they were unable to
characterise the long-time dispersion limit from their DNS results.

Particle pair dispersion As mentioned above, the relative dispersion of particle pairs in
channel flow was considered in the early work of Deardorff and Peskin [47] using LES,
where they showed that mean shear greatly enhances the relative separation of particle
pairs in the streamwise direction. Concretely, they observed that the streamwise mean-
square particle separation ⟨𝐷2

𝑥⟩ (where 𝑫 = 𝒙𝐵 − 𝒙𝐴 is the separation vector between
two particles) grew approximately as 𝜏3 at long times. They attempted to relate this
observation to Richardson’s law [146], which predicts ⟨𝑫2⟩ ∼ 𝜀𝜏3 in turbulent flows
(see section 5.1.1 for details), by arguing that mean shear generates dissipation.

The feasibility of DNS in the last few decades has facilitated the study of relative
dispersion of tracer pairs in turbulent flows.However, relevant investigations in channel
flows (and inwall-bounded flows in general) are to our knowledge almost non-existent.
In this context, we can only cite the relatively recent work of Pitton et al. [134], who
analysed the relative dispersion of tracers and heavy inertial particles in a channel
flow DNS at Re𝜏 = 150. Their work, as well as the relevant DNS work of Shen and
Yeung [165] in HSF, is discussed in more detail in section 5.1.2.

1.3.2 Pipe and boundary layer flows

The initial Lagrangian investigations of wall turbulence were performed using nu-
merical simulations of turbulent channel flows, as described above. The other two
canonical wall-bounded flows have been considered in later years. In a turbulent pipe
flow, Walpot et al. [192] computed Lagrangian velocity auto- and cross-correlations
using both particle-tracking velocimetry (PTV) and DNS, with the aim of determining
the drift tensor coefficients appearing in an anisotropic variant of the Langevin equa-
tion (1.7). To estimate the value of the Kolmogorov constant 𝐶0, they also considered
the second-order velocity structure functions associated to each velocity component.
They found that 𝐶0 decreases with wall distance and depends on the considered
velocity component, which they attributed to their relatively low Reynolds number,
Re𝑏 = 𝑈𝑏𝐷/𝜈 ≤ 10 300 based on the bulk velocity 𝑈𝑏 and the pipe diameter 𝐷. In the
same experimental apparatus and at the same Reynolds number, Oliveira et al. [122]
considered Lagrangian velocity and acceleration correlations for tracers and inertial
particles. They found that the acceleration of inertial particles decorrelated more slowly
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than that of fluid tracers, while the latter present a decorrelation time comparable to
the Kolmogorov time scale 𝜏𝜂.
Lagrangian properties of turbulent boundary layers have also been studied experi-

mentally. Although it concerns inertial particles, it is worth mentioning the work of
Gerashchenko et al. [58] due to its significance. They performed PTV to investigate
the effects of mean shear on the acceleration statistics of heavy inertial particles in
a flat-plate boundary layer. The authors measured two components of the particle
trajectories using a single high-speed camera that moved at the mean flow velocity.
They reported acceleration PDFs and related acceleration moments, and found that
close to the wall, the acceleration mean and variance are larger in magnitude, and
the acceleration PDFs become more skewed and narrower. The latter observation was
attributed to the increasing Stokes number andmean shear as the wall is approached. A
few years later, Schröder et al. [162] performed 3D PTV using tracer particles, combined
with time-resolved tomographic PIV in a turbulent boundary layer at Re𝜏 ≈ 800. This
enabled the measurement of three-dimensional Lagrangian and Eulerian fields. They
observed that Lagrangian acceleration PDFs in the logarithmic region of the flow are
long-tailed and almost symmetric, with slight differences observed among acceleration
components. More recently, Schröder et al. [163] applied the novel Shake-The-Box PTV
technique [160], which allows for higher particle seeding densities, to a boundary
layer flow at Re𝜏 = 929. Owing to the high number of seeding particles, they were
able to reconstruct the Eulerian velocity field and near-wall coherent structures from
Lagrangian particle data.

1.4 Objectives and outline

Some fundamental Lagrangian properties of turbulent flows are introduced in sec-
tion 1.1, mainly focusing on the case of homogeneous isotropic turbulence. Then, a
short overview of wall-bounded turbulence is given in section 1.2, highlighting some
of the current questions which revolve mostly around high Reynolds number effects
in wall-bounded flows. This overview is presented from a fundamentally Eulerian
perspective, in coherence with the vast majority of the relevant studies available on
the subject. In section 1.3, some previous attempts to link the Lagrangian description
with wall-bounded turbulence are presented.

The aim of the present work is to apply the Lagrangian framework to the description
of a moderate Reynolds number wall-bounded turbulent flow. Specifically, a channel
flow geometry is chosen for its simplicity from a numerical simulation standpoint,
and also due to the availability of Lagrangian data from channel flow experiments
that were performed in parallel to this work (the experimental setup is described in
section 3.1). A moderate friction Reynolds number matching that of the experiments,
Re𝜏 = 1440, is chosen for the ensemble of the results presented in this thesis. In
light of the discussion in section 1.1.1, we believe that the Lagrangian description can
complement the more usual Eulerian description of wall-bounded turbulent flows and
contribute to a better understanding of their dynamics. In particular, it can provide
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an alternative characterisation of the coherent motions introduced in section 1.2.4, as
well as improving the understanding of the dispersive properties of wall turbulence.
Furthermore, it can provide necessary input data for existing Lagrangian stochastic
models such as those introduced in section 1.1.3.

The higher Reynolds of the present investigation compared to the Lagrangian studies
referenced in section 1.3 can lead to a better understanding of highly turbulent wall-
bounded flows. At this Reynolds number, a larger scale separation between inner
and outer motions of the wall-bounded flow is available. As a consequence, a clear
logarithmic region that is absent in low Reynolds number flows begins to appear (as
seen in fig. 1.9). In particular, a larger region of the flow is dominated by mean shear,
which is expected to have an impact on dispersion statistics in the channel.

Another aspect of wall-bounded turbulence that has remained almost unexplored
until now is the backwards in time Lagrangian dynamics. That is, the past behaviour of
fluid particles given a chosen final condition at a reference time 𝑡0 (which by abuse of
language we refer to as the initial time). As an example illustrating the importance of
such an effort, the backward dispersion of particle pairs is relevant to describe turbulent
mixing phenomena, since it concerns the coalescence of trajectories originating from
different locations [158]. A fraction of the present study is devoted to characterise
the difference between forwards and backwards in time Lagrangian statistics in wall
turbulence.
The numerical approach applied in this work is described in chapter 2, where the

pseudo-spectral channel flow DNS method and the Lagrangian particle tracking al-
gorithms are detailed and validated. Lagrangian acceleration statistics from channel
flow experiments and from our DNS are presented in chapter 3, and contrasted to
previously existent studies in isotropic turbulence and in turbulent channel flows at
lower Reynolds numbers. In chapter 4, we present statistics of single-tracer dispersion
in channel flows focusing on the temporal asymmetry of dispersion statistics. These
results are extended to statistics of relative dispersion of tracer pairs in chapter 5. Finally,
general conclusions and perspectives for future investigations are given in chapter 6.
As a final remark, the present work is limited to the dynamics of ideal Lagrangian

tracers in wall turbulence. The study of inertial particles [9, 180, 191], characterised by a
finite size and often by a density different to that of the fluid, is beyond the scope of this
work. Nevertheless, an important motivation for future work is to extend the results
presented in the following chapters to the case of inertial particles. In this context, col-
laborative work has resulted in a publication on the acceleration dynamics of elongated
spheroidal particles in moderate Reynolds number channel flow turbulence [127].
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2 Numerical methods

Lagrangian aspects of wall-bounded turbulence are studied in this work by means of
turbulent channel flow direct numerical simulation (DNS) combined with Lagrangian
particle tracking. This chapter introduces the numerical methods that are employed
to solve the governing equations of the fluid flow, followed by a presentation of the
Lagrangian particle tracking algorithms.

In section 2.1, the pseudo-spectral method used to numerically solve the incompress-
ible Navier–Stokes equations and its application to channel flow are first described
(sections 2.1.1 and 2.1.2). The solver implementation in terms of a massively parallel
DNS code is then presented (section 2.1.3). The simulation parameters used in this
work are then introduced, and Eulerian velocity and acceleration statistics are validated
in the case of channel flow simulations at Re𝜏 = 1440 (section 2.1.4).

Section 2.2 describes the Lagrangian particle tracking algorithms, starting with the
equations governing the fluid particle dynamics and their temporal discretisation
(section 2.2.1). Then, different interpolation schemes for evaluating Eulerian fields
at the particle positions are assessed, and a choice is made according to accuracy
and efficiency considerations (section 2.2.2). This is followed by details on the imple-
mentation of the particle tracking algorithms within the parallel solver (section 2.2.3).
Some resulting Lagrangian statistics are validated against their equivalent Eulerian
counterparts (section 2.2.4).
Finally, section 2.3 is devoted to general conclusions on the presented numerical

methods.

2.1 Direct numerical simulations

The incompressible Navier–Stokes equations (1.2) are resolved in an infinite channel
geometry by DNS using NadiaSpectral,1 an in-house C++ code developed by Marc
Buffat at the Laboratoire de Mécanique des Fluides et d’Acoustique (LMFA) [35].
In this section, the mathematical formulation of the channel flow DNS approach is
presented. This is followed by a description of its implementation and the parallelisation
strategy used to efficiently solve the resulting discrete system in high-performance
computing clusters. The physical and numerical parameters used throughout this
work to numerically solve the Navier–Stokes equations are then introduced. The solver
and the choice of parameters are validated by comparison of Eulerian velocity and
acceleration statistics against DNS results found in the literature.
1For a description, examples, and relevant publications, see https://perso.univ-lyon1.fr/marc.
buffat/NadiaSpectral/index.html.
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2 Numerical methods

2.1.1 General aspects of spectral methods

Spectral and pseudo-spectral methods are known for their high accuracy. For well-
behaved solutions, e.g. in the absence of discontinuities, the error of a spectral method
decreases exponentially with the number of spatial degrees of freedom (as 𝑁−𝑁,
where 𝑁 is the number of degrees of freedom). This is sometimes referred to as
the exponential convergence of spectral methods [31]. In comparison, finite difference
methods are characterised by an algebraic convergence, which is asymptotically much
slower than for spectral methods. For instance, second-order finite difference schemes
are characterised by an error that decreases as 𝑁−2. Such second-order schemes are still
used (see [133] for a recent example of a high Reynolds number channel flow DNS).
More interestingly for practical problems where high accuracy is not required, the
number of degrees of freedomneeded in a 3D spectral simulation to obtain amoderately
accurate solution is typically an order of magnitude lower than in finite difference
methods [31, 37, 107], resulting in a significant reduction of memory requirements.

In a spectral method, the solution to the partial differential equation

𝐻𝑢(𝑥) = 𝑓 (𝑥) for 𝑥 ∈ 𝛺, (2.1)

where 𝐻 is a differential operator, is approximated as a weighted sum of basis functions,

̃𝑢(𝑥) =
𝑁

∑
𝑛=0

𝑎𝑛𝑢𝑛(𝑥), (2.2)

where 𝑎𝑛 are the weights or spectral coefficients. The basis (or trial) functions 𝑢𝑛 are
global in the sense that they are defined over the entire spatial domain, and are infinitely
differentiable. In contrast, finite differencemethods are expressed in terms of local basis
functions, typically low-order piecewise polynomials. The goal of a spectral method is
to determine the coefficients 𝑎𝑛 that, according to some criterion, best match the exact
solution of the governing equations (2.1). This requirement is typically expressed as
an optimisation problem, in which the optimal coefficients are those that minimise the
residual

𝑅(𝑥; 𝒂) = 𝐻 ̃𝑢(𝑥) − 𝑓 (𝑥), (2.3)

where 𝒂 = [𝑎0 𝑎1 ⋯ 𝑎𝑁]𝑇 is the vector of spectral coefficients.
Most strategies for minimising the residual may be written in terms of the method

of mean weighted residuals (MWR) [53], in which 𝑁 + 1 equations of the form

⟨𝜙𝑖, 𝑅⟩ = 0, 𝑖 = 0, 1, … , 𝑁 (2.4)

need to be simultaneously satisfied [31]. The functions 𝜙𝑖(𝑥) are called test functions,
while the inner product between two complex functions 𝑓 and 𝑔 is defined by

⟨𝑓 , 𝑔⟩ = ∫
𝛺

𝑓 (𝑥) 𝑔∗(𝑥) 𝑤(𝑥)d𝑥 , (2.5)

with 𝑤(𝑥) a non-negative weight function, and 𝑔∗ the complex conjugate of 𝑔. Spectral
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methods are usually classified according to the choice of test functions. Canuto et
al. [37] identify three families of spectral methods:

• in collocation methods (also called pseudo-spectral methods) the governing
equations are satisfied exactly on a chosen set of collocation points {𝑥𝑖} (or equi-
valently, the residual is zero at those points). In this case, the test functions
are given by the Dirac delta function centred at each of the collocation points,
𝜙𝑖(𝑥) = 𝛿(𝑥 − 𝑥𝑖);

• in Galerkin methods, the test functions are the same as the trial functions,
𝜙𝑖(𝑥) = 𝑢𝑖(𝑥), and they individually satisfy the boundary conditions. In the
more general case where trial and test functions differ, the method is said to be
of Petrov–Galerkin type;

• Tau methods are similar to Galerkin methods, except that test functions do not
need to satisfy the boundary conditions of the problem. Therefore, boundary
conditions must be enforced by an additional set of equations.

Generally, the set of trial functions 𝑢𝑛 is chosen to be an orthogonal basis with respect
to the inner product (2.5), i.e.

⟨𝑢𝑚, 𝑢𝑛⟩ = 𝛷2
𝑛𝛿𝑚𝑛, (2.6)

where the 𝛷𝑛 are normalisation constants and 𝛿 is the Kronecker delta function. When
the trial functions are orthogonal, the spectral coefficient associated to a given mode
𝑢𝑛 can be simply evaluated as

𝑎𝑛 = ⟨𝑢𝑛, ̃𝑢⟩/⟨𝑢𝑛, 𝑢𝑛⟩ = ⟨𝑢𝑛, ̃𝑢⟩/𝛷2
𝑛. (2.7)

The system of equations (2.4) obtained from the MWR method establishes that the
approximation ̃𝑢 is solution of the weak form of the governing equation (2.1),

⟨𝜙𝑖, 𝐻𝑢⟩ = ⟨𝜙𝑖, 𝑓⟩, 𝑖 = 0, 1, … , 𝑁, (2.8)

which is obtained by taking the inner product between eq. (2.1) and each of the
test functions 𝜙𝑖. The weak form (2.8) is also called the variational formulation of
problem (2.1). If the differential operator 𝐻 is linear, then the weak form may be
written as the matrix equation

𝑀𝑖𝑗𝑎𝑗 = ̂𝑓𝑖, 𝑖 = 0, 1, … , 𝑁, (2.9)

where 𝑀𝑖𝑗 = ⟨𝜙𝑖, 𝐻𝑢𝑗⟩ and ̂𝑓𝑖 = ⟨𝜙𝑖, 𝑓⟩, which can then be solved to obtain the spectral
coefficients 𝑎𝑛.

Fourier series In spectral methods, the most commonly used trial function bases are
Fourier series and Chebyshev polynomials. The Fourier series expansion of a periodic
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function 𝑓 may be written as

𝑓 (𝑥) =
∞
∑

𝑛=−∞
𝑎𝑛𝑒2𝕚𝜋𝑛/𝐿, (2.10)

where 𝐿 is the period and 𝕚 = √−1. Fourier series are typically used when periodic
boundary conditions need to be satisfied, since every Fourier basis function is periodic
of period 𝐿 (or a fraction thereof). The corresponding Fourier coefficients are given by

𝑎𝑛 = 1
𝐿 ∫

𝐿

0
𝑓 (𝑥)𝑒−2𝕚𝜋𝑛/𝐿 d𝑥 . (2.11)

According to definition (2.6), the Fourier basis functions are orthogonal given a con-
stant weight function, e.g. 𝑤(𝑥) = 1.

Chebyshev polynomials Chebyshev polynomials are often used in non-periodic prob-
lems. They are related to Fourier series (more specifically to Fourier cosine series)
by a change of variable. Consequently, they share most of the properties of Fourier
series [31]. The Chebyshev series of a function defined on the interval [−1, 1] is

𝑓 (𝑥) =
∞
∑
𝑛=0

𝑎𝑛𝑇𝑛(𝑥), (2.12)

where the Chebyshev polynomials 𝑇𝑛 are the unique polynomials satisfying

𝑇𝑛 (cos 𝜃) = cos(𝑛𝜃). (2.13)

The Chebyshev basis is orthogonal given the weight function 𝑤(𝑥) = 1/√1 − 𝑥2, with
⟨𝑇0, 𝑇0⟩ = 𝜋 and ⟨𝑇𝑛, 𝑇𝑛⟩ = 𝜋/2 for 𝑛 ≠ 0.

Pseudo-spectral evaluation In numerical applications, Fourier and Chebyshev series
are truncated to their first 𝑁 elements. For non-linear problems, the matrix elements
𝑀𝑖𝑗 in the Galerkin method are usually computed using numerical integration of
quantities evaluated over a set of collocation points. In this case, Galerkin methods are
also referred to as pseudo-spectral due to their equivalencewith collocationmethods [31].
With Fourier and Chebyshev series, the numerical integration is more efficient when
using the fast Fourier transform (FFT) algorithm [43], provided the collocation points
are chosen adequately. For Fourier series, the collocation points are equidistant, i.e.

𝑥𝑛 = 𝑛𝐿
𝑁 , 𝑛 = 0, … , 𝑁 − 1. (2.14)

In the case of Chebyshev polynomials, either the ‘roots’ (or Gauss–Chebyshev) grid,

𝑥𝑛 = cos [(2𝑛 + 1)𝜋
2𝑁 ] , 𝑛 = 0, … , 𝑁 − 1, (2.15)
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or the ‘extrema’ (or Gauss–Lobatto) grid,

𝑥𝑛 = cos [ 𝑛𝜋
𝑁 − 1] , 𝑛 = 0, … , 𝑁 − 1, (2.16)

may be chosen. The latter is usually preferred when boundary conditions need to be
specified, since it includes the endpoints 𝑥 = ±1.

2.1.2 Application to channel flow simulations

The NadiaSpectral code solves the Navier–Stokes equations (1.2) in a channel flow
geometry using the Petrov–Galerkin method first proposed by Moser et al. [119]. The
method is briefly presented by Canuto et al. [37] and described in more detail by
Pasquarelli et al. [131], Godeferd and Lollini [59] and Buffat et al. [35]. The approach
consists in choosing a space of divergence-free (or solenoidal) trial functions 𝒖𝑛 which
vanish on solid boundaries, so that the approximate velocity field automatically sat-
isfies the incompressibility condition (1.2a) and no-slip boundary conditions on the
walls. Moreover, an appropriate selection of the space of test functions 𝝓𝑖 leads to
the elimination of the fluctuating pressure field from the weak form of the governing
equations.
An important feature of the present formulation is that, as described by Buffat et

al. [35], the velocity field is decomposed into two 𝐿2-orthogonal vector fields respect-
ively defined in terms of the wall-normal velocity component 𝑢𝑦 and the wall-normal
vorticity component 𝜔𝑦. This makes the formulation particularly adapted for the study
of transition to turbulence in wall-bounded flows, since the two terms of the decom-
position are related to the Orr–Sommerfeld and Squire equations in linear stability
theory [161].

We first write the Navier–Stokes equations in the periodic channel as

𝛁 ⋅ 𝒖 = 0, in 𝛺, (2.17a)
𝜕𝒖
𝜕𝑡 + (𝛁 × 𝒖) × 𝒖 + 1

2𝛁|𝒖|2 = −1
𝜌𝛁𝑝 + 𝜈∇2𝒖 + 𝒇 in 𝛺, (2.17b)

where the solution domain2 is 𝛺 = [0, 𝐿𝑥] × [−1, 1] × [0, 𝐿𝑧]. The forcing term is given
here by the mean streamwise pressure gradient driving the flow, 𝒇 = −𝛁𝑝0/𝜌, while the
fluctuating pressure 𝑝, required to keep the flow incompressible, is periodic in 𝑥 and 𝑧.
The non-linear term is written in its rotation form [37], (𝒖 ⋅ 𝛁)𝒖 = (𝛁 × 𝒖) × 𝒖 + 𝛁|𝒖|2/2.
Equations (2.17) are complemented by no-slip boundary conditions on the walls, i.e.
𝒖 = 𝟎 at 𝑦 = ±1.

2For simplicity of the presentation, the wall-normal bounds are set in this section to 𝑦 ∈ [−1, 1] (as
they are actually set in the numerical implementation) instead of the range 𝑦 ∈ [0, 2ℎ] used in the
rest of this document.
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2.1.2.1 Variational formulation

In the following, the Navier–Stokes equations are written under their weak form. The
space of trial and test functions are respectively defined by (see Pasquarelli et al. [131]
for a more rigorous definition)

𝑊 = {𝒖∶ 𝛺 → ℝ3, periodic in (𝑥, 𝑧) | 𝒖 = 𝟎 at 𝑦 = ±1 and 𝛁 ⋅ 𝒖 = 0 } , (2.18)
𝑉 = {𝝓∶ 𝛺 → ℝ3, periodic in (𝑥, 𝑧) | 𝝓 = 𝟎 at 𝑦 = ±1 and 𝛁 ⋅ (𝑤𝝓) = 0 } , (2.19)

where 𝑤(𝒙) is the weight function associated to the inner product (2.5). Note that trial
and test functions are now three-component vector functions, and they both satisfy
no-slip boundary conditions at the walls. Unlike trial functions, test functions are not
divergence-free; only their product by the weight function 𝑤 is.

The variational formulation of (2.17b) then writes

find 𝒖 ∈ 𝑊 such that ⟨𝝓, 𝜕𝒖
𝜕𝑡 ⟩ = 𝜈 ⟨𝝓, ∇2𝒖⟩ + ⟨𝝓, 𝑭⟩ ∀𝝓 ∈ 𝑉, (2.20)

where 𝑭 = −(𝛁 × 𝒖) × 𝒖 − 𝛁𝑝0/𝜌 includes the non-linear and forcing terms. Both the
periodic pressure term and the potential part of the non-linear term vanish when
projected onto the space of test functions 𝑉. Indeed, using integration by parts along
with definition (2.5) and setting 𝑃 = 𝑝 + |𝒖|2/2,

⟨𝝓, 𝛁𝑃⟩ = − ∫
𝛺

𝑃 𝛁 ⋅ (𝑤𝝓)d𝑉 + ∫
𝜕𝛺

𝑤𝑃(𝝓 ⋅ 𝒏)d𝑆 , (2.21)

where 𝜕𝛺 represents the domain boundaries, and 𝒏 is the unitary normal on each
boundary, pointing outwards of the domain. As a consequence of definition (2.19),
the first integral is zero since 𝑤𝝓 is divergence-free, while the second one vanishes due
to 𝝓 satisfying impermeability conditions at 𝑦 = ±1 and periodic conditions in 𝑥 and 𝑧
(this also requires periodicity of the weight function 𝑤).

2.1.2.2 Choice of trial and test functions

Following the method of Moser et al. [119], trial and test function basis are first written
in terms of Fourier series in the periodic directions 𝑥 and 𝑧,

𝒖𝑖𝑗𝑘(𝑥, 𝑦, 𝑧) = 𝒖𝑖𝑘
𝑗 (𝑦) 𝑒𝕚(𝛼𝑖𝑥+𝛽𝑘𝑧), (2.22)

𝝓𝑖𝑗𝑘(𝑥, 𝑦, 𝑧) = 𝝓𝑖𝑘
𝑗 (𝑦) 𝑒𝕚(𝛼𝑖𝑥+𝛽𝑘𝑧), (2.23)

where 𝛼𝑖 = 2𝜋𝑖/𝐿𝑥 and 𝛽𝑘 = 2𝜋𝑘/𝐿𝑧 are respectively the streamwise and spanwise
Fourier wave numbers, and 𝒖𝑖𝑘

𝑗 and 𝝓𝑖𝑘
𝑗 are complex vector functions that still need to

be defined. Their definitions must be consistent with the requirements of spaces 𝑊
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and 𝑉, namely

𝒖𝑖𝑘
𝑗 (±1) = 0 and 𝛁 ⋅ [𝒖𝑖𝑘

𝑗 𝑒𝕚(𝛼𝑥+𝛽𝑧)] = 0, (2.24a)

𝝓𝑖𝑘
𝑗 (±1) = 0 and 𝛁 ⋅ [𝑤 𝝓𝑖𝑘

𝑗 𝑒𝕚(𝛼𝑥+𝛽𝑧)] = 0. (2.24b)

As discussed in section 2.1.1, the orthogonality of the Fourier basis functions is achieved
by taking a constant weight function in the inner product (2.5). Consequently, the
weight function 𝑤(𝒙) is here taken to be constant in 𝑥 and 𝑧, so that the inner product
between functions in 𝛺 is explicitly written as

⟨𝑓 , 𝑔⟩ = ∫
𝐿𝑥

0
∫

𝐿𝑧

0
∫

1

−1
𝑓 (𝑥, 𝑦, 𝑧) 𝑔∗(𝑥, 𝑦, 𝑧) 𝑤(𝑦)d𝑦d𝑧d𝑥 . (2.25)

Furthermore, trial and test function spaces are truncated to 𝑁𝑥 ×(𝑁𝑦 +1)×𝑁𝑧 modes,
with 𝑁𝑥 and 𝑁𝑧 even numbers. As a result, the velocity field is expanded as

𝒖(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁𝑥/2−1

∑
𝑖=−𝑁𝑥/2

𝑁𝑧/2−1

∑
𝑘=−𝑁𝑧/2

𝑁𝑦

∑
𝑗=0

𝑎𝑖𝑘
𝑗 (𝑡) 𝒖𝑖𝑘

𝑗 (𝑦, 𝛼𝑖, 𝛽𝑘) 𝑒𝕚(𝛼𝑖𝑥+𝛽𝑘𝑧), (2.26)

where the 𝑎𝑖𝑘
𝑗 are the unknown spectral coefficients of the expansion. By plugging

expansion (2.26) into the variational formulation (2.20), and as a consequence of the
orthogonality of the Fourier basis functions under the inner product (2.25), one finds
𝑁𝑥 × 𝑁𝑧 uncoupled systems of equations

𝘼𝑖𝑘d𝒂𝑖𝑘

d𝑡 = 𝜈𝘽𝑖𝑘𝒂𝑖𝑘 + 𝒇 𝑖𝑘, (2.27)

where 𝒂𝑖𝑘 = [𝑎𝑖𝑘
0 𝑎𝑖𝑘

1 ⋯ 𝑎𝑖𝑘
𝑁𝑦

]𝑇 is the vector of unknown spectral coefficients associated
to the Fourier mode (𝛼𝑖, 𝛽𝑘); and 𝘼𝑖𝑘 and 𝘽𝑖𝑘 are (𝑁𝑦 + 1) × (𝑁𝑦 + 1) matrices with
elements

𝐴𝑖𝑘
𝑙𝑗 = ⟨𝝓𝑖𝑘

𝑙 , 𝒖𝑖𝑘
𝑗 ⟩ , (2.28)

𝐵𝑖𝑘
𝑙𝑗 = ⟨𝝓𝑖𝑘

𝑙 ,
d2𝒖𝑖𝑘

𝑗

d𝑦2 − 𝜎2𝒖𝑖𝑘
𝑗 ⟩ , (2.29)

where 𝜎 = √𝛼2
𝑖 + 𝛽2

𝑘 is the norm of the wall-parallel Fourier wave number. The vector
𝒇 𝑖𝑘 in eq. (2.27) accounts for the contribution of the non-linear and forcing terms.
From this point on, the indices 𝑖 and 𝑘 associated to wall-parallel Fourier wave

numbers are dropped for clarity. It is desirable to define functions 𝒖𝑗 and 𝝓𝑙 yielding
sparsematrices𝘼 and𝘽, so that the system (2.27) can be efficiently inverted numerically.
The strategy is to choose quasi-orthogonal bases so that the inner product ⟨𝝓𝑙, 𝒖𝑗⟩ is non-
zero only when the indices 𝑙 and 𝑗 are ‘close enough’, thus yielding banded matrices.
As a consequence of the incompressibility constraint, the velocity field can be de-
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composed into two independent vector fields (instead of three in the compressible
case). The same is true for trial and test functions, since they must satisfy the solen-
oidal constraints in eq. (2.24). Consequently, Moser et al. [119] proposed to split the
basis 𝒖𝑗(𝑦) into two orthogonal bases {𝒖+

𝑗 , 𝒖−
𝑗 }, and similarly 𝝓𝑙(𝑦) into {𝝓+

𝑙 , 𝝓−
𝑙 }. The

decomposition is such that the orthogonality conditions ⟨𝝓+
𝑙 , 𝒖−

𝑗 ⟩ = 0 and ⟨𝝓−
𝑙 , 𝒖+

𝑗 ⟩ = 0
are also met. As a result of this decomposition, the system (2.27) is effectively split
into two independent systems,

𝘼+d𝒂+

d𝑡 = 𝜈𝘽+𝒂+ + 𝒇 + and 𝘼−d𝒂−

d𝑡 = 𝜈𝘽−𝒂− + 𝒇 −, (2.30)

for each Fourier mode (𝛼, 𝛽). Hence, a total of 2 × 𝑁𝑥 × 𝑁𝑧 linear systems needs to be
inverted.

The choice of the above decompositions is not unique. Buffat et al. [35] proposed
to decompose the velocity field into two vector fields 𝒖os and 𝒖sq that are expressed in
terms of the wall-normal velocity 𝑢𝑦 and the wall-normal vorticity 𝜔𝑦. The fields are
solenoidal and orthogonal with respect to the 𝐿2 inner product,

𝒖 = 𝒖os + 𝒖sq with 𝛁 ⋅ 𝒖os = 𝛁 ⋅ 𝒖sq = 0 and ∫
𝛺

𝒖os ⋅ 𝒖sq d𝑉 = 0, (2.31)

and satisfy the constraints

(𝛁 × 𝒖os) ⋅ 𝒆𝑦 = 0, 𝒖sq ⋅ 𝒆𝑦 = 0 and 𝒖sq(𝑦) = 𝟎. (2.32)

These requirements express that 𝒖os has zero wall-normal vorticity while 𝒖sq has zero
wall-normal velocity. Additionally, to satisfy orthogonality, the average of 𝒖sq over
wall-parallel planes vanishes. The superscripts os and sq are a reference to the Orr–
Sommerfeld and Squire equations, which respectively describe the response of the
wall-normal velocity and the wall-normal vorticity components to an infinitesimal
perturbation of a laminar viscous shear flow [161].

In terms of trial functions, the decomposition of Buffat et al. [35] translates into
modes

𝒖+
𝑗 (𝑦) =

⎛⎜⎜⎜⎜⎜⎜
⎝

𝕚𝛼𝑣′
𝑗(𝑦)/𝜎2

𝑣𝑗(𝑦)
𝕚𝛽𝑣′

𝑗(𝑦)/𝜎2

⎞⎟⎟⎟⎟⎟⎟
⎠

and 𝒖−
𝑗 (𝑦) =

⎛⎜⎜⎜⎜⎜⎜
⎝

−𝕚𝛽𝜔𝑗(𝑦)/𝜎2

0
𝕚𝛼𝜔𝑗(𝑦)/𝜎2

⎞⎟⎟⎟⎟⎟⎟
⎠

(2.33)

for non-zero wall-parallel wave numbers 𝜎 = √𝛼2 + 𝛽2. Here, 𝑣𝑗(𝑦) and 𝜔𝑗(𝑦) are
functions associated to the wall-normal velocity and wall-normal vorticity, respectively,
and primes denote differentiation with respect to 𝑦. It is readily verified that the two
bases are orthogonal in the geometrical sense, i.e. 𝒖+

𝑗 ⋅ 𝒖−
𝑗 = 0, and that both respect

the constraints of eq. (2.24a) provided that the boundary conditions

𝑣𝑗(±1) = 𝑣′
𝑗(±1) = 𝜔𝑗(±1) = 0 (2.34)
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are met. Up to multiplication factors 𝜎 for 𝒖+
𝑗 and 𝕚𝜎 for 𝒖−

𝑗 , the decomposition (2.33)
is the same as the one proposed by Moser et al. [119]. With respect to the original
decomposition, an advantage of the present formulation is that it can be physically
interpreted in terms of wall-normal velocity and vorticity modes.

Analogously to the trial functions, the test function decomposition writes

𝝓+
𝑙 (𝑦) =

⎛⎜⎜⎜⎜⎜⎜
⎝

𝕚𝛼[𝑤(𝑦)𝑄𝑙(𝑦)]′/[𝑤(𝑦)𝜎2]
𝑄𝑙(𝑦)

𝕚𝛽[𝑤(𝑦)𝑄𝑙(𝑦)]′/[𝑤(𝑦)𝜎2]

⎞⎟⎟⎟⎟⎟⎟
⎠

and 𝝓−
𝑙 (𝑦) =

⎛⎜⎜⎜⎜⎜⎜
⎝

−𝕚𝛽𝑃𝑙(𝑦)/𝜎2

0
𝕚𝛼𝑃𝑙(𝑦)/𝜎2

⎞⎟⎟⎟⎟⎟⎟
⎠

, (2.35)

where 𝑄𝑙(𝑦) and 𝑃𝑙(𝑦) must satisfy the boundary conditions

𝑄𝑙(±1) = [𝑤𝑄𝑙]′(±1) = 𝑃𝑙(±1) = 0 (2.36)

for the constraints (2.24b) to be satisfied.
Noting that the vectors defined in eqs. (2.33) and (2.35) are ill-defined when 𝛼 = 𝛽 =

0, the zero wave number case is treated differently. In this case, the spectral coefficients
give the velocity field averaged over the two periodic directions. Since the average field
must satisfy no-slip boundary conditions and the average wall-normal velocity must
vanish on each wall-parallel plane, the vectors are chosen as

𝒖+
𝑗 =

⎛⎜⎜⎜
⎝

𝜔𝑗(𝑦)
0
0

⎞⎟⎟⎟
⎠

, 𝒖−
𝑗 =

⎛⎜⎜⎜
⎝

0
0

𝜔𝑗(𝑦)

⎞⎟⎟⎟
⎠

, 𝝓+
𝑙 =

⎛⎜⎜⎜
⎝

𝑃𝑙(𝑦)
0
0

⎞⎟⎟⎟
⎠

and 𝝓−
𝑙 =

⎛⎜⎜⎜
⎝

0
0

𝑃𝑙(𝑦)

⎞⎟⎟⎟
⎠

, (2.37)

consistently with Moser et al. [119].
To summarise, trial and test vectors are written in terms of the weight function 𝑤(𝑦),

alongwith functions 𝑣𝑗(𝑦),𝜔𝑗(𝑦),𝑄𝑙(𝑦) and𝑃𝑙(𝑦) satisfying boundary conditions (2.34)
and (2.36). As proposed by Moser et al. [119], these functions are chosen in terms of
Chebyshev polynomials,

𝑣𝑗(𝑦) = (1 − 𝑦2)2 𝑇𝑗(𝑦), 𝜔𝑗(𝑦) = (1 − 𝑦2)𝑇𝑗(𝑦),

𝑄𝑙(𝑦) = 1
4 [ 𝑇𝑙+4(𝑦)

(𝑙 + 2)(𝑙 + 3) − 2𝑇𝑙+2(𝑦)
(𝑙 + 1)(𝑙 + 3) + 𝑇𝑙(𝑦)

(𝑙 + 2)(𝑙 + 1)] ,

𝑃𝑙(𝑦) = 𝑇𝑙(𝑦) − 𝑇𝑙+2(𝑦)
2(𝑙 + 1) ,

(2.38)

and the weight is taken as the Chebyshev weight function 𝑤(𝑦) = 1/√1 − 𝑦2. With this
choice of functions, the matrices 𝘼+ and 𝘼− in eq. (2.30) have respectively 7 and 4 non-
zero diagonals. Moreover, since they are expressed in terms of integrals of products
between Chebyshev polynomials, matrix coefficients can be calculated analytically,
thus eliminating quadrature errors [35]. Since Chebyshev polynomials 𝑇𝑛 have even
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symmetry for 𝑛 even, and odd symmetry for 𝑛 odd, each of the two (𝑁𝑦 + 1) × (𝑁𝑦 + 1)
systems in eq. (2.30) is further split into two decoupled systems of roughly half the
size.

2.1.2.3 Temporal discretisation

The linear systems (2.30) are integrated in time using a semi-implicit second-order
finite-difference scheme with a constant time step 𝛥𝑡. At each iteration, the unsteady
term is approximated by a first-order forward difference 𝜕𝒖/𝜕𝑡 ≈ (𝒖𝑛+1 − 𝒖𝑛)/𝛥𝑡,
where 𝒖𝑛 is the known velocity field at time 𝑡𝑛 = 𝑛𝛥𝑡 and 𝒖𝑛+1 is the unknown
velocity field at time 𝑡𝑛+1. The viscous term is treated by an implicit second-order
Crank–Nicolson scheme, 𝜈∇2𝒖 ≈ 𝜈∇2(𝒖𝑛 + 𝒖𝑛+1)/2, while the non-linear terms are ap-
proximated by an explicit second-order Adams–Bashforth scheme, 𝑭 ≈ (3𝑭 𝑛 −𝑭 𝑛−1)/2.
As a result, the systems (2.30) are discretised as

(𝘼 − 𝛥𝑡
2 𝜈𝘽) 𝒂𝑛+1 = (𝘼 + 𝛥𝑡

2 𝜈𝘽) 𝒂𝑛 + 𝛥𝑡
2 (3𝒇 𝑛 − 𝒇 𝑛−1) , (2.39)

where the+ and− superscripts have been omitted. Note that this discretisation requires
the additional storage of the non-linear terms at time 𝑡𝑛−1.
The numerical linear stability threshold associated to the use of a second order

Adams–Bashforth scheme is given by the Courant-Friedrichs-Lewy (CFL) condition

CFL = 𝜋𝛥𝑡 [𝑁𝑥 max ∣𝑢𝑥∣
𝐿𝑥

+
𝑁𝑦 max ∣𝑢𝑦∣

2 + 𝑁𝑧 max ∣𝑢𝑧∣
𝐿𝑧

] < 1, (2.40)

where 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 are the three velocity components, and the maxima are taken over
the ensemble of 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 collocation points [35].

2.1.2.4 Sequence of an iteration

At each time iteration, the non-linear term −(𝛁×𝒖)×𝒖 is evaluated pseudo-spectrally in
physical space and then decomposed using Fourier expansions in the 𝑥 and 𝑧 directions
and Chebyshev polynomials in 𝑦. This requires a total of 9 FFTs, one for each spatial
direction and one for each vector component. Since the computation of the non-linear
term in physical space introduces aliasing of the spectral coefficients, Orszag’s two-
thirds rule [31, 125] is then applied in the Fourier directions to eliminate aliasing
error. Then, the forcing term 𝒇 = −𝛁𝑝0/𝜌 is added in spectral space and the result is
advanced in time according to the Adams–Bashforth scheme introduced above. Finally,
the viscous and unsteady terms are evaluated in spectral space, and the linear systems
introduced above are inverted to obtain the spectral coefficients of the velocity field
𝒖𝑛+1. Using 9 inverse FFTs, the velocity field is recovered in physical space, enabling
the evaluation of the non-linear terms at the next iteration.
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2.1.2.5 Computation of the acceleration field

An important part of the physical analysis performed in this work is dedicated to
the study of the acceleration of fluid tracers in turbulent channel flows. As described
later in section 2.2, the Lagrangian acceleration of a fluid tracer is determined by
interpolation of the acceleration field 𝒂(𝒙, 𝑡), described in the Eulerian reference frame,
at the instantaneous tracer position. By definition, the fluid acceleration is the material
derivative of the velocity field, i.e. its derivative along fluid particle paths,

𝒂 = D𝒖
D𝑡 = 𝜕𝒖

𝜕𝑡 + (𝒖 ⋅ 𝛁)𝒖, (2.41)

and corresponds to both the left-hand side and the right-hand side of the momentum
equation (2.17b).
Since the pseudo-spectral solver does not explicitly compute the pressure field,

we obtain the acceleration from the left-hand side of the momentum equation, both
for consistency with the solver and for performance concerns. Considering that the
rotational term (𝛁 × 𝒖) × 𝒖 is already calculated by the simulation at each iteration
(computed in physical space, then transformed to spectral space), only the unsteady
term (or local acceleration) 𝜕𝒖/𝜕𝑡 and the potential term 𝛁|𝒖|2/2 remain to be explicitly
computed. The unsteady term is discretised in time using a second-order central
difference scheme. As a result, the acceleration field at iteration 𝑛 is estimated as

𝒂𝑛 = 𝒖𝑛+1 − 𝒖𝑛−1

2𝛥𝑡 + 1
2𝛁∣𝒖𝑛∣2 + (𝛁 × 𝒖𝑛) × 𝒖𝑛. (2.42)

To minimise the number of required FFTs, the three terms are first added in spectral
space and then transformed back to physical space. The potential term is obtained by
first computing |𝒖|2 in physical space, then transforming to spectral space (requiring
3 FFTs), and finally computing its gradient. The rotational term is already stored by
the simulation in spectral space in dealiased form, as well as the velocity fields 𝒖𝑛−1

and 𝒖𝑛+1, hence they can be readily summed. Before transforming back to physical
space (9 additional FFTs), the spectral coefficients are dealiased to prevent aliasing
errors from the computation of the non-linear term 𝛁|𝒖|2. This method requires the
additional storage of the velocity field 𝒖𝑛−1 between two subsequent simulations to
preserve the temporal continuity of the acceleration field.
Putting aside the specificities of our DNS solver, it is worth discussing whether

it would be preferable to compute the acceleration field from the right-hand side of
eq. (2.17b) as opposed to its left-hand side. In high-Reynolds number HIT, it is well
known that the pressure gradient contribution to the acceleration (the irrotational
component 𝒂𝐼 = −𝛁𝑝/𝜌) is dominant over the viscous contribution (the solenoidal com-
ponent 𝒂𝑆 = 𝜈∇2𝒖) [64, 109, 188]. The same has been shown to be true in wall-bounded
flows, with the exception of the viscous sublayer where the solenoidal component is
dominant [93, 202]. Hence, the decomposition of acceleration onto an irrotational and
a solenoidal component has a clear physical interpretation, with two components that
are generally uncorrelated and typically with different magnitudes. On the other hand,

45



2 Numerical methods

the alternative decomposition of acceleration into a local acceleration 𝒂𝐿 = 𝜕𝒖/𝜕𝑡 and
a convective acceleration 𝒂𝐶 = (𝒖 ⋅ 𝛁)𝒖 was studied in HIT by Tsinober et al. [182]. The
authors found that both components tend to cancel out: they are nearly anti-aligned,
approximately equal in magnitude, and their individual magnitudes are much lar-
ger than that of the total Lagrangian acceleration (i.e. |𝒂𝐿| ∼ |𝒂𝐶| ≫ |𝒂| ). A similar
behaviour was observed in channel flow DNS at Re𝜏 = 720 by Chen et al. [40]. By
analysing standard deviation profiles of acceleration components, Chen et al. found
that, for 𝑦+ > 10, the fluctuations of local and convective acceleration were of the same
magnitude, and were about an order of magnitude larger than the fluctuations of the
total acceleration. To conclude, the two alternative decompositions have very different
properties. From a numerical standpoint, adding two quantities that tend to cancel out
may be detrimental to the numerical precision of the result, however the impact may
be negligible when working with double precision floating-points, especially when
the difference between |𝒂𝐿| and |𝒂| fluctuations is less than two orders of magnitude.

2.1.3 Parallelisation strategy

2.1.3.1 Domain decomposition

The NadiaSpectral solver is parallelised using the Message Passing Interface (MPI)
protocol, enabling the code to run on distributed memory systems. The parallelisation
strategy is presented in detail by Montagnier et al. [110] and is briefly described below.
The code implements a 2D domain (or pencil) decomposition, in which the domain is
partitioned in two Cartesian directions. Each MPI process manages the data associated
to a chunk of the partition. With respect to a simpler 1D (or slab) decomposition, a
pencil decomposition is less limited by the maximum possible number of domain
chunks, or equivalently, by the maximum possible number of MPI processes. Hence,
pencil decomposition is preferable when the code is executed on massively parallel
computing systems. For this reason, this strategy is commonly found on modern DNS
codes and related libraries.3
Domain decomposition is particularly challenging when global operations such as

FFTs need to be performed. Commonly used FFT libraries are serial, thus requiring the
operated data to be stored within a single domain chunk. This is the case of the FFTW
library [54] used in NadiaSpectral. Even parallel FFT libraries such as P3DFFT [132]
ultimately rely on FFTW or other sequential libraries while handling themselves the
domain decomposition. Hence, in the case of a pencil-decomposed domain (say, parti-
tioned in 𝑥 and 𝑦), FFTs can only be performed in the direction in which decomposition
is not applied (in 𝑧). To circumvent this issue when FFTs need to be applied in all
three directions, it is necessary to deal with three different decomposition layouts in
which either the 𝑥, 𝑦 or 𝑧 direction is not partitioned. These layouts are referred to as
𝑥-pencil, 𝑦-pencil and 𝑧-pencil schemes, respectively. Furthermore, it must be possible

3Some open source examples are the Incompact3d DNS code [91] and the P3DFFT parallel FFT lib-
rary [132].
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Figure 2.1.Domain decomposition configurations. Each colour represents a differentMPI process.

to transpose the data from one configuration to the other, requiring time-intensive
interprocess communications associated to data transfers between MPI processes.

The different decomposition layouts used in NadiaSpectral are illustrated in fig. 2.1.
The code includes functions to transpose field data from a given layout to another. The
transpositions are done through calls to the non-blocking MPI routines MPI_Isend and
MPI_Irecv, enabling a more fine-grained control of the inter-process communications
compared to MPI_Alltoall and its non-blocking variant MPI_Ialltoall. As stated
above, each decomposition layout enables the evaluation of FFTs in a single direction.
At a given iteration, the non-linear terms are computed in physical space in the 𝑧-pencil
configuration. Then, an FFT is applied along 𝑧 before transposing to the 𝑥-pencil layout,
in which a second FFT is applied in the 𝑥 direction. Finally, the Fourier-transformed
data is transposed to the 𝑦-pencil configuration, followed by a discrete Chebyshev
transform in that direction. At this point the viscous and unsteady terms can be added
in spectral space, and the linear systems introduced in section 2.1.2 can be inverted.
After this, the inverse process is applied to transform the spectral coefficients of the
solution back to physical space.

2.1.3.2 Parallel file I/O

An important challenge arising with data being distributed among a large number of
computing processes is that of file input/output (I/O) operations. In a DNS, saving
restart data (in our case velocity fields and non-linear terms) or datasets for further
post-processing or visualisation can be very time-demanding. This is especially the case
in high-resolution simulations generating large amounts of data. The most straightfor-
ward approach to writing parallel data is the one-file-per-process method, in which
each process independently writes the portion of data it owns to a separate file. Besides
being simple to implement, this approach is usually faster than concurrently writing
parallel data to a single file. However, the one-file-per-process approach does not scale
well with the number of processors. Parallel file systems such as Lustre,4 typically
found on Linux computing clusters, see a decreased performance when a very large
number of files is present in a single directory. In addition, it becomes cumbersome and
impractical for the user to interact with the files, be it for file transfers, visualisation or
post-processing [97]. Restarting a simulation using a different number of processors

4http://lustre.org
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or a different domain decomposition layout becomes a complicated task, since data
stored in the files must be merged, split or rearranged in often non-trivial ways.
An alternative to the one-file-per-process approach is writing the data from all

processes to a single file. Hybrid approaches are also possible, in which process subsets
share a common output file. In one possible implementation of the single-file approach,
a single process is responsible for writing the data from all the processes to a file.
Such a master-slave model does not scale well with the number of processes due to
the increasingly high number of required communications. A different possibility
is all processes writing concurrently to a shared file. This requires a high level of
coordination between processes, since data needs to be written in a deterministic order
that can be understood once the file is read later. With MPI, this is typically done using
the MPI-IO specification, either directly or through higher-level libraries making use
of MPI-IO.
Originally, NadiaSpectral used the one-file-per-process approach to write data to

VTK files, allowing the direct visualisation of the results generated by each process us-
ing software such as ParaView.5 Although the files could be easily visualised, perform-
ing other post-processing operations on a large number of VTK XML files containing
binary data in a high-level programming language such as Julia [21] or Python proved
to be impractical. Such operationsmay include estimating spatial statistics from a single
flow snapshot, rearranging simulation restart files in order to run a simulation under
a different number of processes, or simply determining the portion of the domain
associated to a given MPI process.

For the above reasons, we have implemented an alternative solution using the HDF5
format [86], commonly used in the scientific community to store data generated by
experiments and simulations. HDF5 files are self-describing, in the sense that they
include not only the raw data (e.g. velocity fields) but also the associated metadata,
including array dimensions, data types and byte order information. Datasets can
be easily compressed using zlib6 or other compression libraries. This is particularly
convenient when storing datasets containing many zeros, as is the case of dealiased
fields in spectral space. HDF5 file I/O is performed through the HDF5 libraries, which
are accessible from awide range of programming languages including thosementioned
above. These libraries are readily available in common Linux distributions and in most
computing clusters, and provide convenient command-line and graphical interfaces
for quickly inspecting and comparing HDF5 files.

At first, the VTK output was replaced by serial HDF5 files using the original one-file-
per-process approach. This greatly simplified themanipulation of simulation-generated
files, although the issues associated to the large number of files remained unsolved. In a
subsequent step, the option for parallel HDF5 output, in which all MPI processes write
their data to a shared file, was implemented. The HDF5 libraries support parallel I/O
using the MPI-IO specification mentioned above. However, parallel I/O can perform
very poorly if not done carefully. In our implementation, we have applied multiple

5https://www.paraview.org
6http://zlib.net
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optimisations that have enabled writing and reading times that are comparable to
serial I/O, namely:

• datasets are written using collective I/O operations, in which the writes are
coordinated over all MPI processes. This leads to a better performance compared
to independent I/O operations;

• each process writes their own data to a single contiguous chunk in the file. This
requires all the processes to deal with the same amount of data. Writing a single
large chunk per process is considerably faster thanwriting several smaller chunks;

• by default, the HDF5 library fills a new dataset with a constant value (zero
by default). Disabling this behaviour (for instance via the H5Pset_fill_time
function) reduced the dataset writing time by one half;

• parallel file systems such as Lustre are able to perform file striping, in which
different chunks of a file are stored on different physical or virtual storage disks.
Striping of a file is defined in terms of a stripe count, which is the number of disks
over which the file is stored, and a stripe size, which is the size in bytes of each file
chunk. By properly adjusting these two parameters at file creation (see below for
details), we have achieved a tenfold decrease of the dataset reading and writing
times.

As the official HDF5 C++ interface does not currently support parallel I/O we have
developed our own lightweight C++11 interface wrapping the HDF5 C libraries.7

We have evaluated the performance impact associated to dealing with parallel HDF5
files in comparison to serial HDF5 files after applying the above optimisations. For
a Re𝜏 = 1440 channel flow simulation using nearly 9 × 108 grid points, running on
1024 MPI processes distributed among 37 computing nodes on a Lustre file system,8 a
three-component velocity field took about 4.5 seconds to be written to a single 21GiB
parallel HDF5 file, as opposed to 2.2 seconds for the serial (one-file-per-process) case.
This was achieved using a stripe count of 37 (same as the number of nodes) and a
stripe size of 4MiB, which was found to minimise the writing times. For comparison,
a single iteration of flow simulation, not considering the time associated to Lagrangian
particle tracking or the computation of acceleration fields, took in average 2.3 seconds.
In conclusion, the present implementation is capable of reading and writing global
domain data to a single file shared among all processes, with a relatively low perform-
ance penalty when compared to the one-file-per-process case, while providing a much
more convenient management of the generated files after the simulation.

7This HDF5 C++ interface is open source and available at https://gitlab.com/jipolanco/HDF5mm.
8The simulations ran on the Occigen cluster administered by the Centre Informatique National de
l’Enseignement Supérieur (CINES).
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2.1.4 Parameters and validation of the Eulerian solver

2.1.4.1 Simulation parameters

Throughout this work, we consider a turbulent channel flow at a friction Reynolds
number Re𝜏 = 1440. In this section, the choice of numerical parameters for simulating
this case are presented. The relevant parameters determining the accurate prediction
of channel flow turbulence are the domain size, the number of spectral modes in each
spatial direction (or equivalently, the spacing between collocation points) and the time
step. The domain size needs to be sufficiently large to allow the formation of large-scale
coherent structures typically found in wall-bounded turbulence. The grid spacing and
the time step must be small enough to capture the velocity variations at the smallest
turbulent length and time scales, at which turbulent energy is dissipated. Moreover,
their combination must respect the CFL condition (2.40) to ensure the numerical
stability of the DNS solver.

The choice of numerical parameters for the considered Reynolds number are listed
in table 2.1. Also shown for reference is a lower Reynolds number case, Re𝜏 = 180, that
has been used for testing purposes. Included in the table are the domain dimensions,
𝐿𝑥, 𝐿𝑦 and 𝐿𝑧; the number of spectral modes before dealiasing, 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧; the
grid spacing and simulation time step in wall units, 𝛥𝑥+, 𝛥𝑦+, 𝛥𝑧+ and 𝛥𝑡+; and the
CFL number for each simulation. Since the distribution wall-normal grid points is not
uniform, both the minimum (at the walls) and the maximum (at the channel centre)
values of 𝛥𝑦+ are given.

Turbulent channel flows at Re𝜏 = 180 have been extensively studied by DNS in
the last 30 years. The numerical parameters of our DNS at this Reynolds number are
coherent with most recent studies. For comparison, the seminal work of Kim et al. [81]
used a larger domain (𝐿𝑥 = 4𝜋ℎ, 𝐿𝑧 = 2𝜋ℎ) but at a coarser grid resolution (𝛥𝑥+ ≈ 12,
𝛥𝑦+

min ≈ 0.05, 𝛥𝑧+ ≈ 7). More recently published DNS at the same Reynolds numbers
have increased the grid resolution to values closer to those found in table 2.1 (for some
examples see [1, 93, 202]). Yeo et al. [202] found that, due to the high intermittency
of fluid acceleration, the accurate computation of high-order acceleration statistics
requires a finer spatial resolution than that typically used for the velocity. ForRe𝜏 = 180
and 600, they used a grid resolution given by 𝛥𝑥+ = 11.8, 𝛥𝑦+

min = 0.05 and 𝛥𝑧+ = 3.93,
which is similar if not slightly coarser than the resolution in table 2.1. At Re𝜏 = 180,
they showed this resolution to be sufficient to correctly resolve the flatness factors of
the spanwise acceleration, which quantify the acceleration intermittency. Since the
parameters used for the Re𝜏 = 180 case are consistent with many contemporary studies
found in the literature, validation details are only provided for the less common and
more demanding Re𝜏 = 1440 case.

In the rest of this section, a validation of theRe𝜏 = 1440 configuration is presented. To
evaluate the suitability of the chosen domain size, the spatial velocity and acceleration
auto-correlations along the two periodic dimensions are analysed. Ideally, the domain
should be large enough for these auto-correlations to vanish at long-enough distances.
In other words, the domain should be able to represent multiple independent large-
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Table 2.1.Numerical parameters for channel flow DNS.

Re𝜏 Re 𝐿𝑥 𝐿𝑦 𝐿𝑧 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝛥𝑥+ 𝛥𝑦+
min /max 𝛥𝑧+ 𝛥𝑡+ CFL

180 3280 3𝜋ℎ 2ℎ 4
3 𝜋ℎ 192 192 192 8.84 0.024 / 2.95 3.93 0.033 0.65

1440 33 800 4𝜋ℎ 2ℎ 𝜋ℎ 2048 432 1024 8.81 0.038 / 10.4 4.41 0.033 0.71

scale turbulent structures within its volume. In practice, however, it is very challenging
to resolve the largest structures in wall-bounded turbulence using DNS. As stated
in the introduction (section 1.2.4), VLSMs in the channel can achieve lengths that
are many times the channel half-height. Using hot-wire anemometry in a turbulent
channel flow at Re𝜏 = 3178, Monty et al. [111] detected the presence of coherent
motions elongated in the streamwise direction, with lengths up to 25ℎ. These large-
scale structures affect the near-wall turbulence through modulation of the near-wall
cycle [167]. Lozano-Durán and Jiménez [95] discussed the effect of the domain size
on channel flow DNS. Using a very large domain of dimensions 60𝜋ℎ × 2ℎ × 6𝜋ℎ at
Re𝜏 = 547, they found that in order to capture 80% of the streamwise turbulent kinetic
energy at the channel centre, structures of longitudinal wavelength up to 𝜆𝑥 ≈ 100ℎ
need to fit within the simulation domain. On the other hand, they also performed two
Re𝜏 = 2009 simulations with domain sizes 2𝜋ℎ×2ℎ×𝜋ℎ and 8𝜋ℎ×2ℎ×3𝜋ℎ. They found
no difference between the one-point Eulerian velocity statistics obtained from the two
simulations, suggesting that a very large domain is not required for this purpose, even
though the very large scales are not correctly reproduced in the smaller domain.

2.1.4.2 Eulerian two-point auto-correlations

The Eulerian two-point auto-correlation of a velocity component 𝑢𝑖(𝒙, 𝑡) between two
locations 𝒙 and 𝒙 + 𝒓 at a time 𝑡 is defined by

𝜌𝑢
𝐸,𝑖𝑖(𝒙, 𝒓, 𝑡) = 𝑢′

𝑖(𝒙, 𝑡) 𝑢′
𝑖(𝒙 + 𝒓, 𝑡) / [𝑢′2

𝑖 (𝒙, 𝑡) 𝑢′2
𝑖 (𝒙 + 𝒓, 𝑡)]

1/2
, (2.43)

where 𝑢′
𝑖 = 𝑢𝑖−𝑢𝑖 is the fluctuation of 𝑢𝑖 about its mean value. No summation is applied

over repeated indices. In statistically stationary channel flow, the auto-correlation
neither depends on time nor on the streamwise and spanwise positions of one of the
probed locations, so that 𝜌𝑢

𝐸,𝑖𝑖(𝒙, 𝒓, 𝑡) reduces to 𝜌𝑢
𝐸,𝑖𝑖(𝑦, 𝒓) where 𝑦 is the wall-normal

position of the first point. The acceleration auto-correlation 𝜌𝑎
𝐸,𝑖𝑖(𝑦, 𝒓) is defined in an

analogous manner.
In fig. 2.2, two-point auto-correlations of velocity and acceleration are represented

over two wall-parallel planes, 𝑦 = ℎ/2 and 𝑦 = ℎ, for spatial displacements in the
streamwise (𝒓 = 𝑟𝑥𝒆𝑥) and spanwise (𝒓 = 𝑟𝑧𝒆𝑧) directions. Due to the symmetry of the
auto-correlation function in the periodic directions, displacements are plotted over the
ranges 0 ≤ 𝑟𝑥 ≤ 𝐿𝑥/2 and 0 ≤ 𝑟𝑧 ≤ 𝐿𝑧/2. On the two planes, the three acceleration com-
ponents completely decorrelate over short distances relative to the domain dimensions,
suggesting that the box size is large enough to correctly predict the Eulerian structure
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Figure 2.2. Two-point velocity and acceleration auto-correlations at Re𝜏 = 1440. Wall-parallel
planes are 𝑦 = ℎ/2 (𝑦+ = 720; subfigures a-b) and 𝑦 = ℎ (𝑦+ = 1440; subfigures c-d). Left:
auto-correlations along the streamwise direction. Right: auto-correlations along the spanwise
direction. Colours and symbols represent different velocity and acceleration components.

of the acceleration field. This also shows that the acceleration is a small-scale quantity,
since the variations of the fluctuating acceleration in space happen over much shorter
lengths than those of the fluctuating velocity. As confirmed in section 3.4, the same is
true in a Lagrangian reference frame, i.e. the acceleration of a fluid tracer varies much
faster than the velocity along its trajectory. Interestingly, in all cases the longitudinal
acceleration component (the one aligned with the direction of displacement) displays
a weak negative auto-correlation at short offsets that is not observed for the transverse
components (perpendicular to the direction of displacement). This behaviour may
be explained by the effect of small-scale vortex filaments, which are responsible for
high-magnitude centripetal accelerations in turbulent flows [93, 118, 179] (see also
section 1.1.5). This can be better understood from the point vortex model depicted
in fig. 1.7a. If the Eulerian auto-correlation is computed along a line that intersects a
vortex centre, the longitudinal acceleration is the same as the centripetal acceleration,
and it changes orientation from one side of the vortex to the other, thus explaining the
change of sign of the correlation.
More relevant for evaluating the effects of the domain size are the velocity auto-
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correlations, since velocity variations in turbulent flows happen over a wide range of
scales. For streamwise displacements, fig. 2.2 shows that the wall-normal and spanwise
velocity components decorrelate over short spatial offsets on the two chosen wall-
parallel planes. The streamwise velocity component has a longer decorrelation distance.
At 𝑦 = ℎ/2 (fig. 2.2a), it becomes completely decorrelated at an offset 𝑟𝑥 ≈ 5ℎ, i.e. about
two-fifths of the domain length in that direction. At the channel centre (𝑦 = ℎ, fig. 2.2c),
the streamwise velocity does not achieve a full decorrelation over the chosen domain
length, even though the auto-correlation coefficient becomes smaller than 10% for
offsets 𝑟𝑥 > 2ℎ. This indicates that the domain is not long enough to reproduce the
largest turbulent structures that may be visible in the channel centre.
In the spanwise direction, both the streamwise and spanwise velocity components

display a weak negative auto-correlation at the largest spatial offsets on the 𝑦 = ℎ/2
plane (fig. 2.2b), indicating that the spanwise domain size is not large enough to
compute the largest turbulent structures at this distance from the wall. This is not the
case at the channel centre (fig. 2.2d), where the three velocity components decorrelate
over the spanwise domain size.
In conclusion, the chosen domain is sufficiently large to reproduce acceleration

fluctuations in channel flow, which are inherently small-scale quantities. On the other
hand, the Eulerian structure of the velocity field may not exactly represent the very
large-scale structure of a real wall-bounded flow, even though the degree of coherence
at the large scales remains very low. For the purposes of this study, this is not a critical
issue since fluid tracers mostly see the local flow structure while being swept by the
mean flow and the large-scale turbulent motion. The only potential issue is with the
relative dispersion of particle pairs, since our simulationsmay not accurately reproduce
certain situations where two particles belong to two independent large-scale motions.

2.1.4.3 Velocity statistics

To validate the accuracy of the velocity and acceleration fields in our Re𝜏 = 1440
simulations, one-point statistics are compared in this section to other channel flow
simulations found in the literature.

Velocity statistics are compared to those obtained by Hu et al. [69] from channel flow
DNS at the same Reynolds number, Re𝜏 = 1440. Hu et al. used a spectral method based
on Fourier and Chebyshev expansions. The non-linear terms were discretised in time
using a third-order Runge–Kutta scheme. In their DNS, the domain size was nearly
the same as in our DNS in the streamwise direction (𝐿𝑥 = 12ℎ), while it was almost
twice as large in the spanwise direction (𝐿𝑧 = 6ℎ). However, their spatial discretisation
was almost twice as coarse in both wall-parallel directions, with 𝛥𝑥+ = 16.88 and
𝛥𝑧+ = 8.44. Mean and variance velocity profiles are compared in fig. 2.3. To illustrate
the Reynolds number effects on velocity statistics, also added to the comparison are
the channel flow simulations by Hoyas and Jiménez [67] at Re𝜏 = 950 and 2000. For
their high Reynolds number case, Hoyas and Jiménez applied Fourier expansions in
the wall-parallel direction and seven-point compact differences in the wall-normal
direction, along with a third-order Runge–Kutta scheme for time discretisation the
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Figure 2.3.Mean and variance velocity profiles along the channel width. Comparison between
the present DNS at Re𝜏 = 1440 (solid lines) and the DNS by Hu et al. [69] (Re𝜏 = 1440, circles)
and by Hoyas and Jiménez [67] (Re𝜏 = 950, dotted lines; Re𝜏 = 2000, dash-dotted lines). On
the left, the red dashed line represents the log law 𝑢𝑥

+ = 𝜅−1 ln 𝑦+ + 𝐵 with 𝜅 = 0.404 and
𝐵 = 5.016.

non-linear terms.
The mean streamwise velocity from the different simulations (fig. 2.3a) collapses

to a single profile characteristic of wall-bounded turbulent flows. The velocity profile
is nearly logarithmic in the range 40 ≲ 𝑦+ ≲ 600, as shown by the fit of the law of
the wall 𝑢𝑥

+ = 𝜅−1 ln 𝑦+ + 𝐵 where 𝜅 is the von Kármán constant (section 1.2.3).
Regarding the velocity variance (fig. 2.3b), a clear Reynolds number effect is observed
when comparing the profiles from different simulations. As expected, wall-scaled
velocity fluctuations become more intense far from the wall as the Reynolds number is
increased. Slight differences are found between the two Re𝜏 = 1440 DNSs, which may
be explained by the coarser grid resolution used in the simulations by Hu et al. [69].
In all cases, the streamwise velocity fluctuations are the most intense throughout the
channel, followed by the spanwise and finally the wall-normal velocity. Each variance
profile presents a single peak located in the near-wall region. At higher Reynolds
numbers, recent experiments suggest the appearance of a secondary (or outer) peak in
the 𝑢𝑥 variance profile located in the logarithmic layer [101, 150].

2.1.4.4 Acceleration statistics

Acceleration statistics at Re𝜏 = 1440 are discussed and compared against the channel
flow DNS of Yeo et al. [202] at Re𝜏 = 600. Yeo et al. used a spectral method with
dealiased Fourier and Chebyshev expansions in the periodic and wall-normal dir-
ections, respectively. Time discretisation was based on a third-order Runge–Kutta
method for the non-linear terms. In contrast to our simulations, Yeo et al. computed
the fluid acceleration from the right-hand side of the momentum equation (2.17b).
The discussion here is limited to the numerical accuracy of the acceleration statistics
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Figure 2.4. Mean and variance acceleration profiles along the channel width. Comparison
between the present DNS at Re𝜏 = 1440 (solid lines) and the DNS by Yeo et al. [202] at
Re𝜏 = 600 (crosses).

and to apparent Reynolds number effects; a physical interpretation of the profiles is
deferred to chapter 3. Mean and variance acceleration profiles are plotted in wall units
in fig. 2.4. The mean acceleration profiles from the two simulations (fig. 2.4a) nearly
collapse, indicating that 𝑢𝜏 and 𝜈 are the appropriate normalisation parameters for
acceleration statistics in wall turbulence, as is the case for velocity statistics. The mean
acceleration components can be written as gradients of the Reynolds stresses,

𝑎𝑥 = d
d𝑦𝑢′𝑥𝑢′𝑦 and 𝑎𝑦 = d

d𝑦𝑢′2𝑦 , (2.44)

while the spanwise component is zero due to flow symmetry. As for the acceleration
variance (fig. 2.4b), slight differences are found between the two simulations. This may
be explained by a Reynolds number effect, in which acceleration fluctuations far from
the wall become more intense as the flow becomes more turbulent, and is similar to the
Reynolds number effect observed in the velocity profiles (fig. 2.3b). The 𝑎𝑧 variance
profiles at Re𝜏 = 600 are not shown since they were not reported by Yeo et al. [202].

Also of interest are the acceleration skewness and flatness factors, as they are good
indicators of the anisotropy and intermittency of the acceleration fluctuations. These
are respectively defined as

𝑆𝑎
𝑖 = 𝑎′3

𝑖 / 𝑎′2
𝑖

3/2
and 𝐹𝑎

𝑖 = 𝑎′4
𝑖 / 𝑎′2

𝑖
2
. (2.45)

For Re𝜏 = 600, Yeo et al. [202] only reported the skewness and flatness of the wall-
normal acceleration, which is both the most anisotropic and the most intermittent
acceleration component within the viscous sublayer. This is seen in fig. 2.5, where their
results are compared against ourRe𝜏 = 1440 simulation. Both the skewness and flatness
of the wall-normal acceleration agree well in the logarithmic and buffer regions of the
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Figure 2.5. Skewness and flatness acceleration profiles along the channel width. Comparison
between the present DNS at Re𝜏 = 1440 (solid lines) and the DNS by Yeo et al. [202] at
Re𝜏 = 600 (crosses).

channel, where the statistics appear to be Reynolds-number independent. On the other
hand, important differences are observed in the viscous sublayer for 𝑦+ < 3, where
their DNS predicts higher skewness and flatness values despite their lower Reynolds
number. This disagreement may be explained by the difference in the spatial resolution
of both simulations or by the different approaches to computing the acceleration field
(from the pressure gradient and viscous terms by Yeo et al.). Further tests of sensibility
to the numerical parameters are required to clearly identify the source of disagreement.
Nevertheless, the acceleration field away from the viscous sublayer, most relevant for
the physical analysis in this work, does not appear to be affected by these accuracy
issues.

2.1.5 Conclusion

The pseudo-spectral Galerkin method used to numerically solve the Navier–Stokes
equations in a periodic channel is described in this section. The velocity field is de-
composed into Fourier expansions in the two periodic directions and Chebyshev
polynomials in the wall-normal direction. Through an appropriate selection of test
and trial functions, the method eliminates the pressure term from the weak form of
the Navier–Stokes equations.

The domain decomposition strategy for parallelisation of the solver using MPI is de-
scribed. A pencil decomposition method is applied, in which the domain is partitioned
in two Cartesian directions, allowing the computation of FFTs in the third direction loc-
ally within each MPI process. To fully transform a field from physical to spectral space
or back, transposition of data between different pencil decomposition configurations
is performed, requiring communication-intensive data exchange operations between
MPI processes. A parallel I/O approach, for saving Eulerian solution fields to data
files shared among all processes, has been implemented and optimised. The approach
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takes advantage of the capabilities of parallel file systems, while greatly simplifying the
handling of Eulerian solution files generated by highly parallel simulations, and has a
low performance penalty relative to the less convenient one-file-per-process approach.
The physical and numerical parameters of the Eulerian solver used for the sim-

ulations presented in this work are introduced. To evaluate the appropriateness of
the chosen domain size at Re𝜏 = 1440, two-point auto-correlations of velocity and
acceleration components along the periodic directions are analysed. The domain is
large enough to correctly resolve the acceleration field, which is to be expected since
acceleration is an inherently small-scale quantity. On the other hand, the streamwise
velocity component fails to completely decorrelate within the extent of the domain, in-
dicating that very large-scale flow structures (VLSMs) may not be accurately resolved.
This is not expected to visibly affect the Lagrangian dynamics of the flow which are at
the core of this work, since tracers are mostly affected by the local flow structure while
being swept by the large-scale motions.
Finally, one-point velocity and acceleration statistics obtained at Re𝜏 = 1440 are

validated against results from other channel flow DNSs found in the literature. Velocity
statistics agree well with the results by Hu et al. [69] at the same Reynolds number.
Acceleration statistics are compared to the simulations by Yeo et al. [202] at a lower
Reynolds number, Re𝜏 = 600. Mean and variance profiles agree well between both
simulations, with slight differences in the variances which are attributed to the effect
of the Reynolds number. Since acceleration is a highly intermittent quantity in wall-
bounded turbulent flows, higher order statistics, namely the skewness and flatness
factors, are also of interest. In the viscous sublayer of the channel, important differences
are found between both DNSs. These are likely caused by differences in the numerical
methods or in the spatial resolutions, although further tests are required to identify the
exact source of inaccuracy. These issues do not appear to affect the acceleration statistics
in the region away from the viscous sublayer, most relevant for tracer dispersion and
the present work.

2.2 Lagrangian tracking of fluid particles

Lagrangian flow statistics are computed from the trajectories of fluid particles (or
tracers) that follow the fluid flow. In the DNS, particles are spawned in the numerical
domain at an initial time. Their positions and other properties are then updated over
time according to the Eulerian fields computed by the solver. In the following, the
numerical methods used for determining the particle properties at each iteration are
introduced. Different interpolation schemes used to evaluate field data at particle
positions are examined, and their influence on Lagrangian statistics are assessed.
Details on the implementation of Lagrangian tracking algorithms are then briefly
discussed. Finally, generated Lagrangian particle data is validated by comparison with
one-point Eulerian statistics of the flow.
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2.2.1 Governing equations and time discretisation

The position of a particle at a given time 𝑡 is uniquely determined by its position 𝒙0 at
an initial time 𝑡0 and by its velocity history between 𝑡0 and 𝑡. By definition, the velocity
of a Lagrangian particle is equal to the velocity of the fluid at the instantaneous particle
position. Hence, the position 𝑿 of the particle over time satisfies the evolution equation

𝜕𝑿(𝑡, 𝒙0)
𝜕𝑡 = 𝒖(𝑿(𝑡, 𝒙0), 𝑡), 𝑿(𝑡0, 𝒙0) = 𝒙0, (2.46)

where 𝒖(𝒙, 𝑡) is the fluid velocity field. In the rest of this document, the dependency of
a particle trajectory on 𝒙0 is omitted unless stated otherwise.
In the DNS, the fluid velocity field 𝒖(𝒙, 𝑡) is known at each iteration. In order to

determine the position of a tracer at any given iteration, first the fluid velocity is evalu-
ated at the particle position, and secondly eq. (2.46) is integrated using an appropriate
numerical scheme. Some possible interpolation schemes for performing the first step
are discussed in section 2.2.2. As for the second step, a finite difference scheme is
used to update the particle position based on its velocity. For consistency with the
Eulerian solver (see section 2.1.2.3), an explicit second-order Adams–Bashforth scheme
is applied, so that the fluid particle position at iteration 𝑛 + 1 is obtained as

𝑿𝑛+1 = 𝑿𝑛 + 𝛥𝑡 (3
2𝒗𝑛 − 1

2𝒗𝑛−1) , (2.47)

where 𝒗 is the particle velocity, 𝛥𝑡 is the simulation time step, and the superscrip-
ted indices denote temporal iterations. The integration of the particle trajectories is
performed using the same time step as the Eulerian solver.

Similarly to the velocity, fluid particle accelerations are obtained by interpolation of
the fluid acceleration field, first computed in the Eulerian frame according to eq. (2.42),
at the instantaneous particle positions. This choice is discussed in section 2.2.2.3 and
compared to themore common approach consisting in differentiating particle velocities
in time.

2.2.2 Interpolation of Eulerian fields

The choice of the interpolation scheme used for evaluating Eulerian fields (e.g. velocity,
acceleration) at the particle positions is critical for the accurate calculation of the tracer
trajectories and can have an important impact on the associated Lagrangian statistics.
Choi et al. [41] examined different interpolation schemes and their effects on the tracer
trajectories, velocities and accelerations in a pseudo-spectral turbulent channel flow
DNS. They showed that schemes based on linear interpolation and on sixth-order
Lagrange polynomials quickly diverge from the exact evaluation of the velocity field
using its spectral coefficients, while interpolations based on Hermite polynomials are
much more accurate at correctly representing the particle velocities and accelerations
over time. In particular, they found that low-order interpolation schemes induce large
oscillations of the particle acceleration prediction in time. This is partially explained by
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the authors’ choice of evaluating the particle acceleration from the temporal derivative
of its velocity. In that case, the (possibly small) interpolation error carried by the
velocity signal is strongly amplified when the velocity is differentiated over time.

In the following, different possible interpolation schemes are introduced and ex-
amined in the context of our Re𝜏 = 1440 simulation. Then, a choice is made based on a
trade-off between numerical accuracy and time efficiency.

2.2.2.1 Interpolation methods

Spectral interpolation Given the pseudo-spectral nature of the Eulerian flow solver, it
is technically possible to evaluate an Eulerian field at any arbitrary point of the domain
with spectral accuracy, using the spectral coefficients of the field of interest. For instance,
the velocity at a given point (𝑥, 𝑦, 𝑧) can be evaluated as

𝒖(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁𝑥/2−1

∑
𝑖=−𝑁𝑥/2

𝑁𝑧/2−1

∑
𝑘=−𝑁𝑧/2

𝑁𝑦

∑
𝑗=0

𝒖̂𝑖𝑗𝑘(𝑡) 𝑇𝑛(𝑦) 𝑒𝕚(𝛼𝑖𝑥+𝛽𝑘𝑧), (2.48)

where 𝒖̂𝑖𝑗𝑘 are the spectral coefficients of the velocity field decomposed into Fourier
and Chebyshev polynomials, 𝑇𝑛 is the 𝑛-th Chebyshev polynomial, and 𝛼𝑖 = 2𝜋𝑖/𝐿𝑥
and 𝛽𝑘 = 2𝜋𝑘/𝐿𝑧 are the streamwise and spanwise Fourier wave numbers (see also
section 2.1.2.2). Spectral interpolation yields the highest possible accuracy, but at an
exceedingly high computational cost that makes it impractical for actual simulations.
Indeed, to interpolate a field at the position of a single particle, it is necessary to
evaluate several Fourier and Chebyshev basis functions at the particle position (which
can be done relatively efficiently by using recurrence relations). More critically, due to
the global nature of eq. (2.48), it is necessary to perform a sum over all the spectral
coefficients of the field weighted by the evaluated basis functions. As the spectral
coefficients are typically distributed over all the computing processes in a parallel
simulation, this requires intensive communications between processes. Needless to
say, this approach becomes very slow when the number of particles is large, as the
same operations need to be applied for each particle. For this reason, to our knowledge
this approach is never used in spectral codes other than to evaluate the accuracy of
faster interpolation methods.

Trilinear interpolation In contrast, trilinear interpolation is one of the fastest means
to estimate three-dimensional field data at an arbitrary location, albeit at the cost of
poor accuracy. It requires the data to be known on a regular grid in physical space.
To determine the value of a field 𝑢(𝒙) at a point 𝒙 = (𝑥, 𝑦, 𝑧), the values of 𝑢 at the 8
vertices of the cell where the point is located are needed, as represented in fig. 2.6.
A trilinear interpolation can be constructed as a composition of 7 subsequent one-
dimensional linear interpolations. First, four linear interpolations are performed in
one direction (say 𝑥, i.e. along the cell edges 𝐴𝐵, 𝐷𝐶, 𝐸𝐹 and 𝐻𝐺 in fig. 2.6), then the
results are interpolated along a second direction (e.g. along 𝑦, on the planes 𝐴𝐵𝐶𝐷
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Figure 2.6. Schematic of an eight-point interpolation cell used for trilinear and Hermite interpol-
ations.

and 𝐸𝐹𝐺𝐻). A last interpolation along the third direction gives the approximate value
at 𝒙. This interpolation is said to be first-order accurate since, along each direction, the
interpolated function is approximated by a first-order polynomial (the interpolant),
whose coefficients are such that the interpolant matches the actual values of 𝑢 at the
grid nodes.
In terms of the parallel implementation of trilinear interpolation, it is important to

note that the vertices in fig. 2.6 may belong to different MPI subregions. For instance,
if the domain is decomposed in the 𝑥 direction, the field data associated to vertices
𝐴, 𝐷, 𝐸, and 𝐻 may be stored in one MPI process, while vertices 𝐵, 𝐶, 𝐹 and 𝐺 may
belong to a neighbouring process. When a pencil decomposition scheme is used (see
section 2.1.3.1), the data in one interpolation cell may be split among up to four different
processes. For this reason, previous to applying interpolations, MPI processes must
exchange data with their neighbours so that they have access to the field values at
the interfaces. Since the exchanges are performed locally between small groups of
processes, and since the amount of exchanged data is relatively small, this operation is
fast compared to other operations such as global data transpositions required by FFTs.

Hermite interpolation One possible way to improve the accuracy of trilinear interpola-
tion is to make the interpolant match not only the values of 𝑢 at the grid nodes, but
also the values of the derivatives of 𝑢. This is the principle of the Hermite interpolation
scheme.
Let us first consider the interpolation of an unknown function 𝑢(𝑥) defined in 𝑥 ∈

[𝑥0, 𝑥1], whose values and derivatives 𝑢′ = d𝑢/d𝑥 are known at the boundaries 𝑥 = 𝑥0
and 𝑥1. The Hermite interpolant of 𝑢 can be constructed as

̃𝑢(𝑥) = 𝑢(𝑥0) 𝐻0(𝑋) + 𝑢(𝑥1) 𝐻1(𝑋) + 𝛥𝑥 [𝑢′(𝑥0) 𝐺0(𝑋) + 𝑢′(𝑥1) 𝐺1(𝑋)] , (2.49)

where the 𝐻𝑖 and 𝐺𝑖 are third-order polynomials, 𝛥𝑥 = 𝑥1 − 𝑥0, and 𝑋 = (𝑥 − 𝑥0)/𝛥𝑥. It
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can be shown that, in order for ̃𝑢 and ̃𝑢′ to respectivelymatch 𝑢 and 𝑢′ at the boundaries,
these polynomials are necessarily given by

𝐻0(𝑥) = (1 + 2𝑥)(1 − 𝑥)2, 𝐺0(𝑥) = 𝑥(1 − 𝑥)2, (2.50)
𝐻1(𝑥) = 𝑥2(3 − 2𝑥), 𝐺1(𝑥) = −𝑥2(1 − 𝑥). (2.51)

In three dimensions, Hermite interpolation in an interval 𝒙 = (𝑥, 𝑦, 𝑧) ∈ [𝑥0, 𝑥1] ×
[𝑦0, 𝑦1] × [𝑧0, 𝑧1] can be constructed in an analogous way to trilinear interpolation,
by composition of subsequent 1D interpolations in the three spatial directions. This
procedure leads to an interpolant of the form

̃𝑢(𝒙) =
1

∑
𝑖=0

1
∑
𝑗=0

1
∑
𝑘=0

𝐻𝑖(𝑋) 𝐻𝑗(𝑌) 𝐻𝑘(𝑍) 𝑢(𝒙𝑖𝑗𝑘) + 𝛥𝑥 𝐺𝑖(𝑋) 𝐻𝑗(𝑌) 𝐻𝑘(𝑍) 𝜕𝑢
𝜕𝑥(𝒙𝑖𝑗𝑘)

+ 𝛥𝑦 𝐻𝑖(𝑋) 𝐺𝑗(𝑌) 𝐻𝑘(𝑍) 𝜕𝑢
𝜕𝑦(𝒙𝑖𝑗𝑘) + 𝛥𝑧 𝐻𝑖(𝑋) 𝐻𝑗(𝑌) 𝐺𝑘(𝑍) 𝜕𝑢

𝜕𝑧 (𝒙𝑖𝑗𝑘)

+ 𝛥𝑥 𝛥𝑦 𝐺𝑖(𝑋) 𝐺𝑗(𝑌) 𝐻𝑘(𝑍) 𝜕2𝑢
𝜕𝑥𝜕𝑦(𝒙𝑖𝑗𝑘) + 𝛥𝑥 𝛥𝑧 𝐺𝑖(𝑋) 𝐻𝑗(𝑌) 𝐺𝑘(𝑍) 𝜕2𝑢

𝜕𝑥𝜕𝑧(𝒙𝑖𝑗𝑘)

+ 𝛥𝑦 𝛥𝑧 𝐻𝑖(𝑋) 𝐺𝑗(𝑌) 𝐺𝑘(𝑍) 𝜕2𝑢
𝜕𝑦𝜕𝑧(𝒙𝑖𝑗𝑘)

+ 𝛥𝑥 𝛥𝑦 𝛥𝑧 𝐺𝑖(𝑋) 𝐺𝑗(𝑌) 𝐺𝑘(𝑍) 𝜕3𝑢
𝜕𝑥𝜕𝑦𝜕𝑧(𝒙𝑖𝑗𝑘),

(2.52)
where 𝑌, 𝑍, 𝛥𝑦 and 𝛥𝑧 are defined analogously to 𝑋 and 𝛥𝑥, and 𝒙𝑖𝑗𝑘 = (𝑥𝑖, 𝑦𝑗, 𝑧𝑘)
represents one of the corners of the interpolation box (nodes 𝐴 through 𝐻 in fig. 2.6).

According to eq. (2.52), three-dimensional Hermite interpolations require not only
the gradient of 𝑢(𝒙) to be known at the grid nodes, but also its mixed second- and
third-order derivatives. This means that, previous to interpolating a scalar field, a total
of 7 spatial derivatives must be computed in the DNS. If the derivatives are computed
in spectral space (to preserve the spectral accuracy of the fields), this has a considerable
computational cost since each derivative must be transformed back to physical space
via a 3D FFT. For this reason, we also examine a partial Hermite interpolation scheme
in which the terms in eq. (2.52) associated to the mixed derivatives are neglected, so
that only the first-order gradients are computed.

Aswith trilinear interpolation, neighbouringMPI processesmust exchange field data
stored at the interface between MPI subregions. In the case of Hermite interpolation, it
is necessary to exchange not only the interpolated field but also its derivatives. This
represents a higher communication cost, which is however much smaller than the
cost of calculating the gradients themselves. It is finally worth noting that both the
computation of the derivatives and the data exchanges between neighbouring processes
are done once per interpolated scalar field, while the sum in eq. (2.52) is performed
once for each particle and for each field. In practice, this means that adding more
particles to a simulation does not impact the computational time provided the number
of particles is kept reasonably small. We have found this to be the case when tracking
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nearly 5 million particles in our Re𝜏 = 1440 simulations.

Other interpolation schemes The list of interpolation methods introduced above is not
exhaustive, and other schemes have been applied in existing numerical studies. For
instance, Yeung et al. have used cubic splines to interpolate the fluid velocity at the tracer
positions in isotropic [157, 206] and in homogeneous shear flow DNS [165]. In channel
flow DNS, Pitton et al. [134] used sixth-order Lagrange polynomials to study the
dispersion of fluid and inertial particle pairs. As mentioned above, however, Lagrange
polynomialswere considered insufficient byChoi et al. [41] to correctly capture the fluid
particle accelerations in channel flow simulations. Therefore, they settled for a hybrid
between four-point (seventh-order) Hermite polynomials in the two homogeneous
directions (as opposed to the two-point/third-order Hermite polynomials introduced
above), and Chebyshev spectral interpolation in the wall-normal direction. Such a
high-order scheme is not required in our work as our approach to compute the tracer
acceleration is less sensible to interpolation error (see section 2.2.2.3 below).
Finally, van Hinsberg et al. [186] proposed an interpolation scheme based on B-

splines for spectral DNS codes in periodic boxes (i.e. based on Fourier decomposi-
tions in the three spatial directions). Their approach is particularly interesting since
it achieves a similar accuracy to Hermite interpolation, but without the high cost
of computing field derivatives and associated FFTs. As a perspective, an interesting
development would be to adapt their scheme to our channel flow DNS, perhaps by
using B-splines in the homogeneous directions and another scheme (e.g. Chebyshev,
Hermite) in the wall-normal direction.

2.2.2.2 Evaluation and choice of interpolation scheme

The interpolation methods described above are assessed in the Re𝜏 = 1440 case (see
table 2.1 for simulation parameters). For each scheme, 100 fluid particles are seeded
at the same initial positions, using the same initial velocity field, and are tracked for
a duration 𝛥𝑇+ ≈ 65. Particle data is saved at each iteration of simulation, i.e. every
𝛥𝑡+

𝑝 ≈ 1/30. Such a high-frequency sampling is typically not required for Lagrangian
statistics (in chapter 3 we use 𝛥𝑡+

𝑝 ≈ 1/3 for acceleration statistics), but is required for
capturing the spurious oscillations associated to interpolation errors.

In table 2.2, the performance of the different interpolation methods is evaluated. For
local interpolation schemes (Hermite and trilinear), initialisation operations clearly
have the highest impact on performance. The number of particles is expected to have
a negligible influence on the computation time, even for particle numbers of the
order of one million. The initialisation cost of partial Hermite interpolation is roughly
3/7 of that of full Hermite interpolation, which is consistent with the number of
derivatives computed in each case. As for spectral interpolations, although they do
not need an initialisation step, the cost of interpolation per particle is extremely high
compared to the local schemes, rendering simulations with more than a hundred
particles impractical.
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2.2 Lagrangian tracking of fluid particles

Table 2.2.Average time for the interpolation of a scalar field using different interpolation schemes.
Initialisation refers to data exchanges at the MPI partition interfaces and, for Hermite interpola-
tions, computation of field gradients. Interpolation corresponds to the actual interpolation time
per particle (not including initialisation time). Total refers to the total interpolation time for
100 particles. Times are in milliseconds. Simulations were performed on 256 processors.

Initialisation (ms) Interpolation (ms / particle) Total (ms)

Spectral 0 30.5 3050
Hermite (full) 3540 5.9 × 10−6 3540
Hermite (partial) 1533 4.0 × 10−6 1533
Trilinear 10.6 1.2 × 10−6 10.6

The temporal evolution of a sample tracer particle as estimated from the examined
interpolation schemes is presented in fig. 2.7. In the observed time interval, both
Hermite interpolations correctly reproduce the particle trajectory when compared to
spectral interpolation (fig. 2.7a), while the trajectory predicted by trilinear interpolation
diverges over time from the other schemes. Figure 2.7b shows the spanwise component
of the particle velocity over time. This component was arbitrarily chosen, and the
same observations are valid for the other velocity components. The velocity signal
obtained from trilinear interpolation importantly differs from that of the other schemes,
presenting high-amplitude fluctuations with a seemingly constant oscillation period
which corresponds to the average time the particle needs to cross a numerical grid cell.
This is demonstrated by the associated power spectrum in fig. 2.7c, where the highest
peak is located at the average grid-cell-crossing frequency 𝑓𝑔 = 𝑉𝑥/𝛥𝑥 with 𝑉𝑥 the
time-averaged streamwise particle velocity and 𝛥𝑥 the streamwise grid spacing in the
DNS. Lower-amplitude peaks are also observed at the harmonics of 𝑓𝑔. This estimation
of the crossing frequency is valid as long as the streamwise velocity dominates over
the other components, as is generally the case in wall-bounded flows.
As illustrated by fig. 2.7b, Hermite interpolations accurately capture the particle

velocity. Nevertheless, they are still subject to the same type of spurious oscillation
at the frequency 𝑓𝑔, albeit at a significantly reduced fluctuation amplitude (fig. 2.7c).
Full Hermite interpolation provides a noticeable improvement in the damping of
oscillations when compared to the partial Hermite scheme, but at a considerably
higher computational cost.

The above observations are also valid for the particle acceleration, whose spanwise
component is examined in fig. 2.7(d-e). It is worth noting that the interpolation error
associated to the velocity and the acceleration are of the same order of magnitude, as
inferred by the amplitude of the peaks in the respective power spectra. As noted below
in section 2.2.2.3, this is a consequence of directly interpolating the acceleration field
computed in the Eulerian frame. The error in the particle acceleration is considerably
higherwhen the acceleration is obtained as the temporal derivative of the (interpolated)
particle velocity.

To estimate the effect of the different interpolation schemes on Lagrangian statistics,
the Lagrangian auto-correlation of the particle acceleration components is computed
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Figure 2.7.Assessment of different interpolation schemes for a single particle. (a) Particle tra-
jectory over time, projected on a 𝑥-𝑦 plane. (b) Spanwise particle velocity over time and (c)
associated power spectrum normalised by the spanwise particle velocity variance. (d-e) Same
for the spanwise particle acceleration. In (c) and (e), the vertical line marks the average stream-
wise grid-cell-crossing frequency of the particle, 𝑓𝑔 = 𝑉𝑥/𝛥𝑥 (see text for details).
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Figure 2.8. (a) Lagrangian auto-correlation of wall-normal acceleration resulting from different
interpolation schemes. The inset shows an interval 𝛥𝑡+ = 1. (b) Error of partial and full Hermite
interpolations relative to spectral interpolation, 𝐸(𝜏) = 𝜌𝑎

𝑦𝑦(𝜏) − 𝜌𝑎
𝑦𝑦,spectral(𝜏). (See fig. 2.7 for

legends.)

from the 100 particles used in the test. The Lagrangian acceleration correlation tensor
is defined here as

𝜌 𝑎
𝑖𝑗(𝜏) =

⟨𝑎′
𝑖(𝑡0) 𝑎′

𝑗(𝑡0 + 𝜏)⟩

⟨𝑎′2
𝑖 (𝑡0)⟩1/2⟨𝑎′2

𝑗 (𝑡0 + 𝜏)⟩1/2 , (2.53)

where the Lagrangian average ⟨⋅⟩ is an ensemble average performed over all particles,
and the primes represent a fluctuation about the Lagrangian average, i.e. 𝑎′

𝑖(𝑡) =
𝑎𝑖(𝑡) − ⟨𝑎𝑖(𝑡)⟩. This definition differs from the one used later in chapter 3 in that it does
not take into account the initial particle wall distance 𝑦0, rendering it inappropriate
for a phenomenological analysis of wall-bounded flows. It is nevertheless used given
the reduced number of particles in the interpolation tests. The resulting wall-normal
acceleration auto-correlation is presented in fig. 2.8a. Consistently with the results
of fig. 2.7, trilinear interpolation fails to correctly predict the correlations, with an
error that increases over time. The gap between Hermite and spectral interpolations is
almost imperceptible at all times. The error associated to the partial Hermite scheme
is only slightly more pronounced than that of full Hermite interpolation (fig. 2.8b),
confirming that the former is sufficiently adapted for the computation of Lagrangian
correlations.

Based on the observations in this section, we choose to use the partial Hermite
interpolation scheme for the simulations presented in this work, as it represents an
appropriate balance between time efficiency and accuracy of the resulting Lagrangian
statistics.
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Figure 2.9.Acceleration of a single fluid particle over time in a Re𝜏 = 1440 simulation. From left
to right: streamwise, wall-normal and spanwise acceleration components. The acceleration is
alternatively computed by interpolation of the acceleration field (thick orange lines) and by
differentiation of the particle velocity (thin blue lines). The fluid velocity and acceleration fields
are interpolated using a partial Hermite scheme. The particle is located within 𝑦+ ∈ [80, 140].
Insets show accelerations over the temporal range 𝑡+ ∈ [120, 122].

2.2.2.3 Note on fluid particle accelerations

As mentioned in section 2.2.1, tracer accelerations are obtained from interpolation of
the fluid acceleration first computed on the Eulerian grid. Since the tracer acceleration
is simply the time derivative of its velocity, a more straightforward approach would
instead be to numerically differentiate the tracer velocity over time. For instance, a
centred finite difference scheme could be used, 𝒂𝑛 ≈ (𝒗𝑛+1 − 𝒗𝑛−1)/(2𝛥𝑡). This kind of
approach is very commonly used in DNS studies of Lagrangian acceleration statistics
(see for instance [157, 179, 206] in HIT and [41] in channel flow).

Figure 2.9 shows that, when using partial Hermite interpolations, the differencing
approach for computing the particle acceleration leads to very high-amplitude noise
in the generated particle acceleration signal. The noise is explained by an amplification
of the (relatively weak) interpolation error carried by the velocity signal observed in
fig. 2.7(b-c). The present acceleration signals show a clear oscillation period which is,
as for the velocity, characterised by the grid-cell-crossing frequency 𝑓𝑔, however at an
oscillation amplitude that is orders of magnitude more intense.
Similar issues were observed by Choi et al. [41] in channel flow DNS when com-

puting fluid particle accelerations from their velocity history. As mentioned above,
the authors resorted to using very high-order interpolation schemes to suppress the
spurious oscillations. Using a different version of our DNS code and an independ-
ent implementation of the particle tracking algorithms, Zamansky et al. [207] found
the same issues, and applied a different solution consisting in low-pass filtering the
velocity signal before differentiating it. Their approach is based on a technique first
proposed byMordant et al. [113] for experimentally measured particle tracks, in which
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2.2 Lagrangian tracking of fluid particles

they estimated particle accelerations from the convolution of the particle trajectories
against the second derivative of a Gaussian kernel, which resulted in a low-pass filtered
acceleration signal.
From a practical viewpoint, the interpolating approach can also be applied for

studying the dynamics of inertial particles, since their motion may be determined by,
among other forces, an added mass term written in terms of the fluid acceleration at
the particle positions.

2.2.3 Implementation details and parallel strategy

The implementation of the particle tracking algorithms is consistent with the domain
decomposition strategy of the Eulerian solver (see section 2.1.3.1). Namely, each MPI
processmanages the data associated to the particles locatedwithin its local domain sub-
region. The process is therefore responsible for updating the local particle properties,
including position, velocity and acceleration vectors. This also means that particle data
is transferred from one MPI process to another when a particle crosses the boundaries
of a parallel subregion.
Regarding the in-memory structure of the particle data, there exist two common

strategies referred to as Array of Structures (AoS) and Structure of Arrays (SoA). The
first consists in defining a Particle structure that holds all the data associated to a
single particle. In this case, the data from all the particles is stored in a single array of
Particle objects. The second corresponds to storing all the particle data in a few large
arrays. For instance, a single array may store the position of all particles, another their
velocities, and so on. From an implementation standpoint, the AoS strategy is generally
considered as more convenient, as it is naturally consistent with the object-oriented
programming paradigm. On the other hand, it has been argued that the SoA strategy
performs better in DNS codes due to memory locality, leading to a better use of cache
and vectorisation [66].

We decide to use a hybrid approach in which some particle properties are stored in
a Particle structure, while others are stored in separate arrays. In order to transfer
particle data from one MPI process to another (when a particle crosses a parallel
subregion), the particle only needs to remember a subset of its properties, which are
those contained in the Particle structure. In our implementation, these properties
are the current particle position, velocity, acceleration, as well as a unique identifier
(an integer value), and three Cartesian indices identifying the current location of the
particle in the Eulerian grid. To transfer particle data between processes, we define a
customMPI data type describing the structure of these fields within a Particle object.
Data stored in separate arrays include the particle velocities at a previous iteration (for
advancing particle positions; see eq. (2.47)), and, for inertial particles, the velocity and
acceleration of the fluid at the position of the particles.
As a final note, the current implementation allows to track multiple independent

particle sets, each having different properties, within the same simulation. For instance,
it is possible to follow, at the same time, a set of fluid particles along with multiple
sets of inertial particles having different Stokes numbers or using different models for
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𝑦0 2ℎℎ𝑦𝑛 𝑦𝑛+1

Figure 2.10. Illustration of wall-normal bins for computation of Lagrangian statistics. Dots repres-
ent randomly positioned particles. Here, bin edges follow a Gauss–Lobatto node distribution,
𝑦𝑛/ℎ = 1 − cos(𝑛𝜋/𝑁), with 𝑁 = 12. Coloured particles belong to the same wall-normal bin
[𝑦𝑛, 𝑦𝑛+1) and count towards the statistics associated to that bin.

their equations of motion. This approach is valid as long as the particles do not have a
feedback effect on the carrying flow, as in the case of a one-way coupling approximation.
The implementation is very convenient for studying the effect of the very same flow on
different kinds of particles, while greatly reducing the computational cost associated
to the numerical solution of the Navier–Stokes equations and to the initialisation of
Hermite interpolations (as these operations are shared among all the particle sets).

2.2.4 Validation against Eulerian statistics

Single-point single-time flow statistics can be computed both from the Eulerian and the
Lagrangian reference frames, and both approaches yield in theory equivalent results.
To validate our Lagrangian tracking algorithms, Lagrangian acceleration moments
are compared to their Eulerian counterparts, which were already presented in sec-
tion 2.1.4.4. This validation also serves as an introduction to some of the technicalities
associated to the calculation of Lagrangian statistics.
In wall-bounded flows, single-time Lagrangian statistics depend on the instantan-

eous wall distance of the particles. Therefore, to compute statistics, the wall-normal
coordinate is discretised into wall-normal bins as illustrated by fig. 2.10. For each
temporal snapshot, every particle is assigned a wall-normal bin according to its instant-
aneous position, and the current particle state is used to update the statistics associated
to that bin.

The choice of bin edges is arbitrary. We decide to use the same Gauss–Lobatto node
distribution that is used by the DNS solver [eq. (2.16)] in order to better capture
the rapid variation of the flow statistics in the near-wall region. If the particles are
uniformly distributed throughout the domain, this has the disadvantage that fewer
particles are found in the smaller bins near the walls, and therefore near-wall statistics
take longer to converge. This issue is clearly illustrated by fig. 2.10 where only a few
particles are located in the wall-adjacent bins (those with edges at 𝑦 = 0 and 2ℎ).
The variance and skewness of the fluid acceleration components obtained both

from Eulerian acceleration fields and from Lagrangian particle data are compared
in fig. 2.11. The agreement between both approaches is generally very good, with
the only exception being the skewness of the wall-normal acceleration within the
viscous sublayer. This difference is explained by the lack of statistical convergence in
the Lagrangian case, since, as noted above, the wall-normal bins near the wall are
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Figure 2.11.Acceleration variance (left) and skewness (right) profiles obtained from Eulerian
fields and from Lagrangian particle data at Re𝜏 = 1440.

much smaller than in the rest of the channel, leading to a lower number of samples
per bin in that region. As presented in appendix A.1, similar differences are observed
for the acceleration flatness (fig. A.2d), while for lower-order velocity and acceleration
moments the agreement is excellent at all wall distances.

2.2.5 Conclusion

The method for tracking fluid particles in our channel flow DNS is described here. To
determine the velocity and acceleration of a fluid particle, the fluid velocity and acceler-
ation fields, known in the Eulerian reference frame, are evaluated at the instantaneous
particle position using a variant of the third-order Hermite interpolation scheme. Then,
a second-order Adams–Bashforth scheme is applied to advance the particle position in
time based on its new velocity.
The chosen interpolation scheme, based on regular 3D Hermite interpolation but

neglecting terms containing high-order field derivatives, is appropriate for the estima-
tion of fluid particle velocities and accelerations as well as Lagrangian statistics such
as acceleration auto-correlations. Furthermore, the chosen approach for evaluating
the fluid particle accelerations proves to be significantly more robust to interpolation
error than the more common method consisting in time-differentiating the particle
velocity signal. This enables us to avoid very-high-order interpolation schemes, as well
as filtering steps, that have been used in similar works to suppress high-amplitude
interpolation noise.

Details on the numerical implementation are briefly discussed, including the parallel
implementation and the in-memory layout of particle data. The current implementation
allows to simultaneously track particle sets with different properties within the same
simulation. This is convenient when analysing the dynamics of different groups of
inertial particles using point-particle models with a one-way coupling approximation.

Finally, acceleration statistics obtained from Lagrangian particle data are compared
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with Eulerian one-point statistics. The very good agreement between both approaches
serves as a validation of the Lagrangian particle tracking implementation.

2.3 General conclusion

The pseudo-spectral method used to numerically solve the Navier–Stokes equations
in a periodic channel flow geometry is described in this chapter. The velocity field
is decomposed into Fourier modes in the two periodic directions and Chebyshev
polynomials along the wall-normal coordinate. Through an appropriate selection
of trial and test function spaces, the pressure term of the Navier–Stokes equations
is eliminated. The massively parallel implementation of the method is described,
including the domain decomposition strategy and its consequences in terms of global
FFT operations and on-disk storage of solution files. Then, the numerical and physical
parameters used for ourRe𝜏 = 1440 simulations are introduced. By analysing the decay
of Eulerian velocity and acceleration auto-correlations within the numerical channel
in the large Reynolds number case, the chosen domain size is shown to be adapted
for studying tracer dispersion and Lagrangian flow statistics. Moreover, computed
velocity and acceleration statistics are validated against DNS results at similar Reynolds
numbers found in the literature [67, 69, 202].
Lagrangian particle tracking algorithms and their integration within the existing

DNS code are then described. Fluid particle velocities and accelerations are estim-
ated from interpolation of the respective Eulerian fields. For this purpose, different
interpolation methods are examined. Their effects on tracer trajectories, velocities and
accelerations, as well as on resulting Lagrangian statistics, are assessed. A partial third-
order Hermite interpolation scheme is chosen as it represents a reasonable trade-off
between time efficiency and accuracy. Implementation details are discussed including
the parallelisation of particle tracking algorithms and the in-memory layout of particle
data. Finally, the implementation is validated by comparison of single-point single-time
Eulerian acceleration statistics with equivalent Lagrangian statistics.
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As discussed in the introduction, understanding the Lagrangian dynamics of acceler-
ation in turbulent flows is of great importance for describing the small scales of the
flow, since the components of acceleration vary very rapidly along tracer trajector-
ies when compared to the fluid velocity. The characteristic times over which velocity
and acceleration components evolve can serve as input for stochastic models aiming
either at predicting the dynamics of tracer particles in fluid flows [136, 138, 153], or
at predicting the unresolved subgrid-scale flow dynamics in large eddy simulations
(LES) [148, 208]. From a phenomenological standpoint, the dynamics of Lagrangian
acceleration is closely related to the presence of small-scale structures including vortex
filaments in turbulent flows, which induce intense centripetal accelerations towards
their centre of rotation [118, 179]. Analogously, in the case of wall-bounded turbulent
flows, large-magnitude accelerations are often associated to quasi-streamwise vortices
in the near-wall region [93, 202].

In this chapter, Lagrangian statistics of acceleration in a turbulent channel flow are
presented and the associated Lagrangian time scales are characterised. The statistics are
obtained both fromPTVmeasurements performed byN. Stelzenmuller andN.Mordant
in a turbulent channel flow at the Laboratoire des Écoulements Géophysiques et
Industriels (LEGI) in Grenoble, France, and from our direct numerical simulations at
Re𝜏 = 1440 described in chapter 2. An important part of this chapter is adapted from
our article ‘Lagrangian Acceleration Statistics in a Turbulent Channel Flow’ [174].
In section 3.1, the channel flow experiments performed at LEGI are presented. An

initial description of the flow is given in section 3.2 in terms of Eulerian velocity and
acceleration single-point statistics obtained from experiments and DNS. Section 3.3
introduces the approach for computing Lagrangian single-particle statistics in wall-
bounded flows. In section 3.4, this approach is used to describe the time correlations
of fluid acceleration along Lagrangian trajectories. The associated acceleration (and
velocity) time scales are discussed in section 3.5. In section 3.6, the probability distri-
bution of the acceleration components is presented in the channel and compared to
the isotropic case. Finally, section 3.7 is devoted to the conclusions.

3.1 Experimental setup

The channel flow installation at LEGI consists in a closed-loop water tunnel with a
3.2m long test section shown in fig. 3.1. The experiment is briefly described below. For
more details the reader is referred to Stelzenmuller [173].
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Figure 3.1. Sketch of the turbulent channel used in the experiment at LEGI. (a) Cross-section of
the channel (spanwise direction is vertical), illustrating the aspect ratio 16.9:2 of the channel
section as well as the positions of the two cameras. (b) Streamwise–wall-normal slice of the test
section and field of view (FoV) of the vertical camera. (c) 3D rendering of the experimental
setup, including the positions of the two cameras and the laser sheet used to illuminate the
measurement volume. Figure adapted from Stelzenmuller [173, fig. 2.2].

3.1.1 Channel flow

Channel flow experiments are performed in a closed-loop water tunnel. The test region
of the channel has a rectangular cross-section of dimensions 𝐿𝑦 × 𝐿𝑧 = 2 ℎ × 16.9 ℎ =
37.5 × 317mm2 (fig. 3.1a). The high aspect ratio 𝐿𝑧/𝐿𝑦 = 8.45 enables the flow to be
statistically homogeneous in the spanwise direction far from the spanwise walls, as it is
superior to the aspect ratio of 7 found by Dean to be required for this purpose [46, 173].
The mean centreline velocity is 𝑈0 = 1.75ms−1, resulting in a centreline Reynolds
number of Re ≈ 31 000. The Reynolds number based on the friction velocity 𝑢𝜏 at the
walls is Re𝜏 ≈ 1350.

To achieve a fully developed turbulent state, i.e. a statistically homogeneous flow in
the streamwise direction, themeasurement section is placed downstream of a 𝐿 = 2.9m
long development region (seen in fig. 3.1(b-c)). The development length, 𝐿/ℎ = 155
in terms of the channel half-width ℎ, is considered to be long enough to achieve a
fully developed flow except very close to the channel centre, where the boundary
layers on the two sides of the channel are not fully merged [112, 173]. The entrance
of the development section is equipped with boundary layer trips to ensure the even
development of the boundary layers along the two walls.

72



3.1 Experimental setup

3.1.2 Particles and PTV system

In the experiment, water is chosen as the working fluid as it allows to use nearly
neutrally-buoyant particles. Concretely, particles are fluorescent polystyrene spheres
with diameter 𝑑𝑝 = 10.2µm and density 𝜌𝑝 = 1.05 g cm−3. The particle diameter is
smaller than the viscous length scale 𝛿𝜈 = 𝜈/𝑢𝜏 = 14µm in the present experimental
conditions. Therefore, particles are expected to faithfully follow the carrying fluid,
acting as fluid tracers, even in the viscous sublayer of the channel. The Stokes number
of the particles is small, ranging from St ≈ 0.017 near the wall to 9.8 × 10−4 at the
channel centre [173]. Here, the Stokes number is defined as the ratio between the
particle relaxation time 𝜏𝑝 = 𝜌𝑝𝑑2

𝑝/(18𝜌𝜈) and the Kolmogorov time scale 𝜏𝜂 = (𝜈/𝜀)1/2

describing the characteristic time of the dissipative (smallest) turbulent motions, with
the mean turbulent energy dissipation rate estimated as 𝜀 = 𝜈(𝜕𝑗𝑢′

𝑖)(𝜕𝑗𝑢′
𝑖). Since the

flow is statistically inhomogeneous in the wall-normal direction, the dissipation and
its derived quantities (including the Stokes number) vary with wall distance, i.e.
𝜀 = 𝜀(𝑦) and St = St(𝑦). In wall-bounded flows, it is also appropriate to define a
Stokes number St𝜈 based on the viscous time scale 𝜏𝜈 = 𝜈/𝑢2

𝜏 ≈ 0.18ms, yielding
St𝜈 = 𝜏𝑝/𝜏𝜈 ≈ 0.03. The small value of the different Stokes numbers confirms that the
particles are practically inertialess under the present experimental conditions.
Three-dimensional particle trajectories are measured by 3D PTV. The PTV system

consists of a thick 25W laser sheet that illuminates a 34 × 20 × 8mm3 region of the
channel, alongwith twohigh-speedPhantomv2511 cameraswith amaximumsampling
frequency of 25 000 frames/s. The cameras are equipped with 180mm and 150mm
macro lenses with optical filters tuned to the emission frequency of the fluorescent
particles. Themeasurement volume covers about half of the channelwidth. Considering
that particles are mainly swept away from the measurement volume by the mean
streamwise velocity, the streamwise length of the illuminated areamust be long enough
for particles to stay in the area for a reasonably long time. The present dimensions
of the measurement volume allow to capture the full decorrelation of the particle
acceleration components, and close to the wall, of the particle velocity (where the
mean flow is slower and the velocity decorrelates faster; see section 3.5). Particle
velocities and accelerations are obtained by convolution of the trajectories against
the derivatives of a Gaussian kernel, which also acts as a low-pass filter reducing
measurement noise [113]. As recently discussed by Lawson et al. [92], a limitation
of this method is that filtered quantities are undefined at the track ends, since the
filter requires raw data to be available over a temporal window centred at the output
time. Using synthetic Lagrangian particle tracking in isotropic turbulence DNS, the
authors showed that this leads to a selection bias by which faster particles are under-
represented, an effect that increases with the filter size. Since high accelerations are
correlated with large velocities, this resulted in an underestimation of the acceleration
variance in their simulations.

Fluorescent particles were chosen in the experiment to avoid two problems related
to PTV measurements [173]. First, tracer particles are difficult to distinguish from
microbubbleswhich are invariably present in the channel. By using fluorescent particles
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along with adapted optical filters on the cameras, microbubbles can be eliminated from
the generated PTV images. Secondly, the same optical filters also eliminate reflections
of the laser light on the channel walls and thus improve contrast in the near-wall region.
Due to reflection of images on the wall and to inaccuracies related to the appar-

ent particle size in the images, particle positions are not accurately measured in the
viscous subregion and up to about 50µm from the wall. Hence, the actual range of
measurement spans over 𝑦+ ∈ [4, 1440], i.e. more than two decades of wall distance.

3.2 Velocity and acceleration profiles

To introduce the average Eulerian characteristics of turbulent channel flows, mean
and variance velocity and acceleration profiles are presented in this section along
the channel width. The statistics are obtained both from the experiment described
in section 3.1 and from our DNS. As described above, DNS and experiments are
performed at roughly the same Reynolds number Re𝜏 ≈ 1440.
Experimental statistics are computed from PTV-measured particle velocities and

accelerations conditioned by their instantaneous wall distance. The wall-normal co-
ordinate is discretised into bins using a similar procedure as the one described in
section 2.2.4 for DNS data (see also fig. 2.10). Throughout this chapter, and unless
stated otherwise, error bars on experimentally obtained statistics are estimated using
the bootstrap method for a 95% confidence interval [15, 48]. Uncertainty estimations
also take into account, using a standard approach [106], the experimental precision
associated to flow parameters used to report normalised statistics (e.g. 𝜈, 𝑢𝜏).

3.2.1 Velocity profiles

Figure 3.2 compares mean and variance velocity profiles from experiments and sim-
ulations. The numerical profiles have been validated earlier in section 2.1.4 against
simulations at similar Reynolds numbers (see fig. 2.3). The mean velocity profile ob-
tained from both approaches (fig. 3.2a) displays a clear logarithmic region in the range
40 ≲ 𝑦+ ≲ 600. Small departures of the experimental profile relative to the simula-
tions are observed in the near-wall region (𝑦+ < 30) and towards the channel centre
(𝑦+ > 500). These differences are within the uncertainty estimations. Pronounced
differences are observed for the streamwise velocity variance profile (fig. 3.2b), in
which case the experiment underestimates the 𝑢𝑥 fluctuations at 𝑦+ < 50, and in partic-
ular, fails to reproduce the variance peak at 𝑦+ ≈ 15. On the other hand, wall-normal
and spanwise velocity variances are in good agreement between experiments and
simulations at nearly all measured wall distances (with slight differences near the
wall).

3.2.2 Acceleration profiles

Mean and variance acceleration profiles are shown in fig. 3.3. Similarly to the velocity
profiles, acceleration statistics from our simulations have been validated in section 2.1.4
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Figure 3.2.Mean and variance velocity profiles at Re𝜏 = 1440. Comparison between experiments
(dashed lines) and DNS (solid lines). Velocity variance profiles are shifted vertically for clarity.
Error bars on experimental data represent a 95% confidence interval.

against the channel flow DNS of Yeo et al. [202] at Re𝜏 = 600 (see figs. 2.4 and 2.5).
In the near-wall region, both experiments and simulations show a negative mean
acceleration in the streamwise direction and a positive one in the wall-normal direction
(fig. 3.3a). Far from the wall the sign of both components is inverted while being
considerably weaker than near the wall. As explained in the next paragraph, near
the wall the mean streamwise acceleration is mainly determined by the mean viscous
stress, i.e. 𝑎𝑥 ≈ 𝜈d2𝑢𝑥

d𝑦2 < 0. As for the wall-normal acceleration, its positive value near
the wall is explained by a mean pressure gradient directed towards the wall.
As noted in section 2.1.4, the mean acceleration components can be expressed in

terms of the Reynolds stresses,

𝑎𝑖 = 𝜕
𝜕𝑥𝑗

𝑢𝑖𝑢𝑗 = d
d𝑦𝑢′

𝑖𝑢′𝑦, (3.1)

where the last relation is due to the statistical homogeneity of the flow in the streamwise
and spanwise directions. It is readily seen from eq. (3.1) that the mean spanwise
acceleration 𝑎𝑧 is zero due to flow symmetry in that direction. Alternatively, Yeo
et al. [202] studied the decomposition of the mean acceleration into an irrotational
and a solenoidal contribution, which are respectively given by the mean pressure
gradient and the mean viscous diffusion terms of the Reynolds-averaged Navier–
Stokes equations. In the streamwise direction, when normalised by the viscous scales,
this decomposition writes

𝑎+
𝑥 = 𝐴𝐼+

𝑥 + 𝐴𝑆+
𝑥 = 1

Re𝜏
+ d2𝑢+

𝑥

d𝑦+2 . (3.2)
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Figure 3.3.Mean and variance acceleration profiles at Re𝜏 = 1440. Comparison between experi-
ments (dashed lines) and DNS (solid lines). Error bars on experimental data represent a 95%
confidence interval.

Near thewall, the solenoidal term𝐴𝑆+
𝑥 dominates [93, 202], suggesting that the negative

peak of the mean streamwise acceleration at 𝑦+ ≈ 7 is a result of mean viscous stress
near the wall. In the case of the mean wall-normal acceleration, the corresponding
solenoidal term 𝐴𝑆+

𝑦 is zero (since 𝑢𝑦 = 0). Therefore, its profile is entirely determined
by the mean wall-normal pressure gradient, i.e. 𝑎𝑦 = −(1/𝜌) 𝜕𝑝/𝜕𝑦 . At 𝑦+ < 20, an
increasingly large difference is observed between the mean wall-normal acceleration
obtained from experiments and DNS. This may be explained by difficulties in the
experiment to capture trajectories near the wall, as a consequence of light reflection on
its surface.

Acceleration variance profiles are shown in fig. 3.3b. Qualitative agreement is found
between experiments and simulations, despite large uncertainty in the experimental
data near thewall. These differences are again attributed to the increasingly challenging
reconstruction of experimental trajectories near the wall. Interestingly, the standard
deviation of the acceleration components is more intense than the mean acceleration at
all wall distances. As noted by Yeo et al. [202], the peak of 𝑎′2𝑥 coincides with that of 𝑎𝑥
at 𝑦+ ≈ 7, and can again be explained by the effect of viscous stresses near the wall [93].
On the other hand, the peaks of wall-normal and spanwise acceleration variance are
found in the outer part of the buffer layer, respectively at 𝑦+ ≈ 30 and 20. In that
region, the presence of quasi-streamwise vortices is associated to intense centripetal
accelerations towards the vortex centres [93]. The effect of these turbulent structures on
particle accelerations is clearly seen in fig. 3.4, where a selection of particle trajectories
subject to high accelerations near the wall is visualised. The displayed particles follow
helical paths while having accelerations that are many times the acceleration standard
deviation.1

1From fig. 3.3b, the highest standard deviation of an acceleration component is 𝑎+
𝑧,std ≈ √0.0275 ≈ 0.17.
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Figure 3.4. Sample high-acceleration particle trajectories obtained fromDNS. Particles are located
in the near-wall region (𝑦+ < 200). Trajectories are shown over 𝛥𝑡+ = 120. The shadow is
projected on the wall. Colours represent the norm of particle acceleration. In the experiment,
∣𝒂+∣ = 1 roughly corresponds to 430ms−2. Rendered with Blender (www.blender.org).

3.3 Lagrangian description of wall-bounded flows

As demonstrated by fig. 3.4, Lagrangian particle tracking can reveal flow properties
that are otherwise hidden in the Eulerian reference frame. To quantify Lagrangian
aspects of the turbulent flow, including particle dispersion and relevant turbulent time
scales, a statistical approach is appropriate. In the following, the statistical framework
for characterising the flow from a Lagrangian viewpoint is introduced.
In the Lagrangian approach, the flow is described from the trajectories of fluid

particles that are tracked from their initial position 𝒙0 at a reference time 𝑡0. A Lag-
rangian trajectory is then parametrised by 𝒙0, 𝑡0, and by a time delay 𝜏 relative to 𝑡0.
Hence, in the most general case, Lagrangian single-particle statistics2 depend on the
parameter set (𝒙0, 𝑡0, 𝜏).
Lagrangian statistics have been extensively documented in statistically stationary

homogeneous isotropic turbulence (HIT) or in nearly isotropic flows, as described
in section 1.1. In these cases, Lagrangian statistics do not depend on the initial time
𝑡0 due to statistical stationarity, nor on the initial position 𝒙0 due to translational
invariance. Therefore, the only relevant parameter is the time delay 𝜏. This is not the
case of statistically inhomogeneous flows, where the translational invariance is lost

2As opposed to multi-particle quantities such as the relative particle pair dispersion statistics discussed
in chapter 5. In the case of two-particle relative dispersion, an additional dependency on the initial
particle separation vector must be included.
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Figure 3.5. Illustration of the Lagrangian averaging procedure. The curves represent trajectories
of tracer particles located at 𝑦+ = 𝑦+

0 ± 0.5 𝛿𝑦+ at a reference time 𝑡0 (here 𝑦+
0 = 20 and

𝛿𝑦+ = 5). Trajectories are shifted in the streamwise direction so that 𝑥(𝑡0) = 0. The thick
curve represents the Lagrangian-averaged particle position ⟨𝒙⟩(𝜏, 𝑦0). The channel centre is
at 𝑦+ = 1440. Trajectories 𝒙(𝒙0, 𝑡0 + 𝜏) are shown for time lags 𝜏+ ∈ [−333, 333]. The zoomed
inset represents time lags 𝜏+ ∈ [−13, 13]. Grey filled areas represent the spread of streamwise
particle displacements at the two time extrema. Their width is the standard deviation of the
streamwise displacements, ⟨𝛿𝑥′2⟩1/2 (see chapter 4, section 4.5.2 for details).

and consequently the dependency on 𝒙0 must be retained. Since the turbulent channel
flow considered here is statistically homogeneous in two Cartesian directions, the
dependency on the initial position reduces to a dependency on the initial wall distance
𝑦0 of the particles.
The Lagrangian averaging procedure for channel flow turbulence is illustrated in

fig. 3.5 using the example of the mean particle position ⟨𝒙⟩(𝜏, 𝑦0). The Lagrangian
mean ⟨⋅⟩ designates an ensemble average among the subset of particles located at 𝑦0 at
the labelling time 𝑡0. In practice, to account for the dependency on 𝑦0, particles located
within a wall distance 𝑦 = 𝑦0 ± 0.5 𝛿𝑦 at the reference time 𝑡0 are selected. Hence, the
wall-normal coordinate is effectively discretised into wall-normal bins as described in
section 2.2.4 (fig. 2.10). The bin size 𝛿𝑦 must be small enough for the Eulerian structure
of the flow not to change significantly within a bin.

From fig. 3.5, a few aspects of Lagrangian dispersion in channel flow turbulence are
apparent. First, tracers initially located near the wall tend on average to drift towards
the channel centre at long times. Furthermore, a careful inspection of the average
trajectory makes it clear that the dispersion is not symmetric in time, as tracers on
average travel a longer distance when tracked backwards in time than forwards in the
near-wall region. Finally, as suggested by the width of the filled areas, tracers spread
over longer streamwise distances for negative time lags than positive. These aspects
are discussed in more detail in chapter 4 where single-tracer dispersion is analysed in
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the channel.

3.4 Lagrangian acceleration correlations

The analysis of the dynamics of tracer velocities and accelerations over time can yield
important insights on the Lagrangian properties of the turbulent flow. In particular, it
can serve to characterise the typical Lagrangian time scales (e.g. Lagrangian integral
scales) and their relation with other quantities such as the Kolmogorov time scale 𝜏𝜂.
In this section, Lagrangian correlations of acceleration are described in the channel,
and the evolution of the associated time scales with wall distance is characterised
qualitatively from the results. Later in section 3.5, Lagrangian acceleration (and also
velocity) time scales are quantified from the correlation curves and discussed.

The Lagrangian acceleration correlation tensor is defined as

𝜌 𝑎
𝑖𝑗(𝜏, 𝑦0) =

⟨𝑎′
𝑖(𝑡0, 𝒙0) 𝑎′

𝑗(𝑡0 + 𝜏, 𝒙0)⟩

⟨𝑎′2
𝑖 (𝑡0, 𝒙0)⟩1/2⟨𝑎′2

𝑗 (𝑡0 + 𝜏, 𝒙0)⟩1/2 , (3.3)

where 𝑎′
𝑖(𝑡0 +𝜏, 𝒙0) = 𝑎𝑖(𝑡0 +𝜏, 𝒙0)−⟨𝑎𝑖⟩(𝜏, 𝑦0) is the fluctuation of the 𝑖-th acceleration

component relative to its Lagrangian mean (defined in section 3.3) at a time lag 𝜏.
The initial particle position 𝒙0 is such that its wall-normal component is equal to 𝑦0.
In other words, all particles are at the same wall distance 𝑦0 at the labelling time 𝑡0.
Hence, the tensor component 𝜌 𝑎

𝑖𝑗 correlates the initial acceleration fluctuation 𝑎′
𝑖 of a

fluid particle located at 𝑦0, with its acceleration fluctuation 𝑎′
𝑗 at a time lag 𝜏.

We briefly discuss the above definition of the acceleration fluctuation 𝑎′
𝑖. In inhomo-

geneous flows, the Lagrangian mean ⟨𝑎𝑖⟩(𝜏, 𝑦0) at non-zero time lags is fundamentally
different from the Eulerian mean 𝑎𝑖(𝑦). Since Lagrangian particles migrate from their
initial location and diffuse for 𝜏 ≠ 0 (as seen in fig. 3.5), the Lagrangian mean repres-
ents an average over regions where the Eulerian flow properties can vary significantly.
The Lagrangian acceleration fluctuation 𝑎′

𝑖 introduced above is calculated relative to
this Lagrangian mean. An alternative approach, which has been applied in homogen-
eous shear flow [165] and in channel flowDNS [41], consists in defining the fluctuating
velocity (or acceleration) of a fluid particle as its velocity relative to the mean Eulerian
velocity at its current position, 𝑣𝑖(𝑡) = 𝑣𝑖(𝑡) − 𝑢𝑖(𝒙(𝑡)).3 We apply this approach later
in section 5.4 to characterise the contribution of the fluctuating Eulerian velocity field
to the relative separation of particle pairs. A disadvantage of this definition is that in
general ⟨𝑣𝑖⟩(𝜏, 𝑦0) ≠ 0, i.e. this ‘fluctuation’ has a non-zero average with respect to the
Lagrangian mean, and therefore the statistical interpretation of 𝑣𝑖 is less clear than that
of 𝑣′

𝑖. In particular, ⟨𝑣′2
𝑖 ⟩(𝜏, 𝑦0) represents the velocity variance among particles initially

located at 𝑦0 after a time 𝜏, whereas the same is generally not true for ⟨𝑣𝑖
2⟩(𝜏, 𝑦0).

Therefore, our definition of 𝑣′
𝑖 is more consistent with the usual definition of Eulerian

3Here we exemplify with the Lagrangian velocity, but the same applies to the acceleration and to any
other flow quantity.
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Figure 3.6. Lagrangian auto-correlations of (a) streamwise, (b) wall-normal and (c) spanwise
acceleration. Comparison between experiments (red dashed lines) and DNS (blue solid lines).
Circles indicate time lags 𝜏 = ±𝜏𝜂. Curves are shifted vertically by increments of 0.5 for clarity.
From bottom to top, the curves correspond to particles initially located at 𝑦+

0 = 20, 60, 200, 600
and 1000. Horizontal grid lines show the zero-correlation level for each 𝑦+

0 . In the experiment,
𝜏+ = 1 corresponds to 0.18ms. Error bars on experimental and numerical data are obtained
from the percentile bootstrap method with a 95% confidence interval.

and Lagrangian correlations. In wall-bounded flows, the difference between both
definitions is seen more clearly in the wall-normal velocity, which generally has a
non-zero Lagrangian mean for 𝜏 ≠ 0 (as implied by the average wall-normal drift
seen in fig. 3.5) as opposed to its Eulerian mean which is zero at all wall distances.
Hence, the ‘fluctuation’ 𝑣𝑦 is equal to the total velocity 𝑣𝑦 which, as stated above, has a
non-zero Lagrangian mean.

3.4.1 Acceleration auto-correlations

Lagrangian auto-correlations of acceleration, corresponding to the diagonal terms of 𝜌 𝑎
𝑖𝑗,

are shown in fig. 3.6 for different initial wall distances 𝑦0 and for positive and negative
time lags. Auto-correlations are nearly symmetric in time, e.g. 𝜌 𝑎

𝑥𝑥(−𝜏, 𝑦0) ≈ 𝜌 𝑎
𝑥𝑥(𝜏, 𝑦0),

which can be explained by the time-symmetric tracer displacements in the wall-normal
direction as illustrated by fig. 3.5 (and as confirmed in section 4.1).

For the three acceleration components, the decorrelation time increases significantly
with wall distance as a result of the flow inhomogeneity. In all cases except for the
streamwise acceleration near the wall, the decorrelation time is about two times the
Kolmogorov time scale 𝜏𝜂(𝑦) = √𝜈/𝜀(𝑦) (circles in fig. 3.6), which characterise the
temporal variations of the smallest turbulent scales at which energy is dissipated. This
is consistent with DNS results in HIT, where acceleration components decorrelate after
𝜏 ≈ 2𝜏𝜂 [118, 206], and in turbulent channel flow at lower Reynolds numbers [41].
Moreover, it is an indication of the rapidly-varying nature of the tracer acceleration and
its connection to the small-scale flow dynamics. Close to the wall, the decorrelation
times are also comparable to the viscous time scale 𝜏𝜈 = 𝜈/𝑢2

𝜏 (corresponding to 𝜏+ = 1
in fig. 3.6), indicating the relevance of wall scales to describe small-scale quantities
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Figure 3.7. Sample particle trajectories projected on a 𝑦-𝑧 plane. Arrows represent the instant-
aneous particle acceleration vector. Trajectories and arrows are coloured by the acceleration
norm. Trajectories are shown over 𝛥𝑡+ = 67 and are shifted in 𝑧 for clarity.

such as the acceleration near the wall. Lagrangian acceleration decorrelation times and
their relation to other characteristic flow time scales are further discussed in section 3.5.
In general, very good agreement is found in fig. 3.6 between experimental and

numerical results. Significant differences are only found very far from the wall, at
𝑦+

0 = 1000, for the wall-normal and spanwise acceleration components. Differences in
𝜌 𝑎

𝑧𝑧 aremainly observed at short time lags, and are explained by a higher level of noise in
the measurement of the spanwise component, which is a technical consequence of the
way the PTV is performed, concretely due to the position of the horizontal camera [173].
As a consequence, the signal-to-noise ratio is larger for the spanwise components, and
comes close to the limits of the filteringmethods described in section 3.1. The short-time
behaviour of the experimentally obtained 𝜌 𝑎

𝑧𝑧 at 𝑦+
0 = 1000 thus corresponds in part to

the auto-correlation of noise. In the case of 𝜌 𝑎
𝑦𝑦, the differences at 𝑦+

0 = 1000 may be
explained by a form of statistical bias in the experiment associated to particles leaving
the measurement volume at 𝜏 > 0 through its wall-normal boundary located near
the channel centreline (represented in fig. 3.1b). Namely, particles moving towards
the centreline (𝑣𝑦 > 0) may leave the measurement volume through the wall-normal
boundary, in which case they stop contributing to the statistics, while particles moving
towards the wall (𝑣𝑦 < 0) stay within the measurement volume for longer times and
end up having a more important weight on the statistics [173, sec. 2.4.3]. Evidently,
this form of bias has a more noticeable effect when particles are initially located near
the aforementioned boundary (in which case particles are more likely to exit the
measurement volume), i.e. near the channel centre.
As expected, signs of flow anisotropy are mainly observed in the auto-correlations

near the wall. This is visible in the form of different correlation shapes for the stream-
wise, wall-normal and spanwise accelerations. While 𝜌 𝑎

𝑦𝑦 and 𝜌 𝑎
𝑧𝑧 computed at 𝑦+

0 = 20
become negative at 𝜏 ∼ 2𝜏𝜂, the streamwise acceleration decorrelates more slowly and
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Figure 3.8. (a-b) Lagrangian cross-correlations of acceleration 𝜌𝑎
𝑥𝑦 and 𝜌𝑎

𝑦𝑧. (c) Lagrangian auto-
correlation of the acceleration magnitude, 𝜌|𝒂|. From bottom to top, the curves correspond to
particles initially located at 𝑦+

0 = 20, 60, 200, 600 and 1000. (See fig. 3.6 for details.)

does not display a significant negative correlation at longer times. This can be explained
by the preferential orientation of vortices near the wall. It has been observed in HIT
that vortex dynamics are responsible for high-acceleration events [118, 179]. A fluid
particle in the vicinity of a vortex filament is affected by a large centripetal acceleration
towards the vortex centre. Moreover, since the particle rotates about the vortex core,
the centripetal acceleration changes direction when seen from a fixed reference frame.
After half a rotation, the orientation of the centripetal acceleration is opposite to its
initial orientation, leading to a negative auto-correlation of the centripetal acceleration
at half the rotation period. Since vortex filaments do not have a preferential orientation
in HIT, this affects the Lagrangian correlation of any arbitrary acceleration compon-
ent. In the case of near-wall turbulence, rotational motions mainly exist in the form
of elongated quasi-streamwise vortices, whose rotation axis is oriented roughly in
the streamwise direction. As they rotate about these vortices, fluid particles near the
wall (such as the ones visible in fig. 3.4) mostly see centripetal accelerations in the
wall-normal and spanwise directions [93, 202]. This is seen more clearly in fig. 3.7,
where the particle acceleration vector is projected on a plane normal to the streamwise
direction for two sample particle trajectories near the wall. Therefore, mainly these two
components display a negative correlation after a short time lag, while the streamwise
acceleration is not affected by a systematic change of sign.

3.4.2 Acceleration cross-correlations

Due to 𝑧 ↔ −𝑧 symmetry, the cross-correlations containing the spanwise acceleration
component are zero at all time lags. This is verified for the case of 𝜌 𝑎

𝑦𝑧 in fig. 3.8b. On
the other hand, the cross-correlation 𝜌 𝑎

𝑥𝑦 between the streamwise and wall-normal
acceleration components is in general different from zero in wall-bounded turbulence
as shown in fig. 3.8a. Close to the wall, 𝜌 𝑎

𝑥𝑦 is strongly time-asymmetric, with a small
positive correlation for 𝜏 < 0 and a larger negative correlation which peaks at a
positive time lag that scales with 𝜏𝜂. As it is seen more clearly in fig. 3.9, where time
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Figure 3.9. Lagrangian cross-correlation between streamwise and wall-normal acceleration
components. Time delay 𝜏 is normalised with the local Kolmogorov time scale 𝜏𝜂. From bottom
to top, the curves correspond to particles initially located at 𝑦+

0 = 20, 60, 200, 600 and 1000. (See
fig. 3.6 for details.)

lags are normalised by 𝜏𝜂, the value of 𝜏/𝜏𝜂 at the negative peak varies between 0.5
and 0.7. Furthermore, the change of sign of the correlation does not actually happen at
𝜏 = 0, where the correlation is negative, but at a small negative time lag.4 Note that,
due to symmetry about the channel centreline, 𝜌 𝑎

𝑥𝑦 is necessarily zero at the channel
centre. Far from the wall, this change of sign around 𝜏 = 0 persists although the
maximum correlation decreases, suggesting a (partial) return to isotropy. Moreover,
the correlation becomes antisymmetric in time, i.e. 𝜌 𝑎

𝑥𝑦(𝑦0, −𝜏) ≈ −𝜌 𝑎
𝑥𝑦(𝑦0, 𝜏). The

change of sign of 𝜌 𝑎
𝑥𝑦 at 𝜏 ≈ 0 suggests the idea of casualty between the two acceleration

components. Concretely, in the Lagrangian frame, a given wall-normal acceleration
fluctuation 𝑎′

𝑦 is on average followed by a streamwise acceleration fluctuation 𝑎′
𝑥 of the

same sign, which is then followed by an opposite-sign 𝑎′
𝑦.

The non-zero value of 𝜌 𝑎
𝑥𝑦 at all wall distances indicates the presence of small-scale

anisotropy even in the outer layer of the channel, where wall effects are less important
and a return to isotropy may be expected. To describe this anisotropy, we first note that
𝜌 𝑎

𝑥𝑦(𝜏, 𝑦0) describes the changes of orientation of the acceleration fluctuation vector
𝒂′(𝑡0 + 𝜏, 𝒙0) projected on the 𝑥-𝑦 plane. Therefore, the observed behaviour implies
that there is a preferential direction of rotation of 𝒂′ along a fluid particle trajectory.
Moreover, as deduced from fig. 3.9, such changes of orientation of 𝒂′ happen over times
of the order of the Kolmogorov time scale. This implies that the anisotropy is associated
with the smallest scales of turbulence. The preferential direction of rotation implied
by the change of sign of 𝜌 𝑎

𝑥𝑦 is consistent with the direction of mean shear. The latter
can be expressed in terms of the average vorticity 𝜔𝑧 = − d𝑈/d𝑦 , which is negative in
the lower half of the channel where the presented statistics are obtained. The present

4Only the lower half of the channel (0 < 𝑦 < ℎ) is considered in the present analysis. Due to symmetry,
the same behaviour with opposite correlation signs is found in the upper half of the channel (ℎ < 𝑦 <
2ℎ).
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Figure 3.10. Schematic of a particle approaching the wall. As the particle approaches the wall, its
streamwise velocity 𝑣𝑥 diminishes translating into a negative streamwise acceleration. At the
same time, the wall stops the particle in its motion towards the wall resulting in an acceleration
towards the channel centre (𝑎𝑦 > 0).

results are consistent with evidence of small-scale anisotropy found in other turbulent
flows characterised by large-scale anisotropy. For instance, from DNS of homogeneous
shear flow, Pumir and Shraiman [140] found signs of small-scale anisotropy which did
not decrease at increasing Reynolds number, in contradiction with Kolmogorov’s local
isotropy hypothesis [55, 83]. In their work, small-scale anisotropy was quantified by
the skewness of the spanwise vorticity 𝜔𝑧, which was shown to be of the same sign as
the large-scale average vorticity. More recently, and using a similar approach, Pumir
et al. [142] showed the presence of small-scale anisotropy throughout the logarithmic
layer using DNS of turbulent channel flow at Re𝜏 ≈ 1000. Our results show that such
small-scale anisotropy has a noticeable effect on the Lagrangian acceleration statistics.
Practically, this suggests that, to account for small-scale anisotropy in shear flows, a
stochastic model for the acceleration of fluid particles should aim at reproducing the
observed non-zero cross-correlation 𝜌 𝑎

𝑥𝑦.
At zero time lag, the correlation 𝜌 𝑎

𝑥𝑦 is characterised by an increasingly negative
value as the wall is approached. In this special case, 𝜌 𝑎

𝑥𝑦 is equivalent to the Eulerian
single-point single-time correlation between 𝑎𝑥 and 𝑎𝑦. As illustrated by fig. 3.10, this
negative correlation is partially explained by the increasing viscous effects as a tracer
approaches the wall (the particle slows down in its streamwise motion, i.e. 𝑎𝑥 < 0),
combined with the effect of wall confinement which limits the motion of the particle
towards the wall (the particle experiences an acceleration opposing this motion, i.e.
𝑎𝑦 > 0). This is discussed in more detail in section 3.6 where the joint PDF between
both components is studied.

3.4.3 Acceleration magnitude

We briefly comment on the auto-correlation of the acceleration magnitude |𝒂| plotted
in fig. 3.8c. From the figure, it is shown that, at all wall distances, |𝒂| stays correlated
for much longer than the acceleration components. This behaviour is consistent with
results inHIT [117, 206], and it reflects that changes in the orientation of the acceleration
vector occur at much faster rate than changes in its magnitude. In near-wall turbulence,
this observation is again associated to the effect of streamwise vortices. While the
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orientation of centripetal accelerations induced by these vortices changes at a rate
comparable with the fastest scales of the flow, the centripetal acceleration magnitude
varies over a much longer time scale [93].

3.5 Lagrangian time scales

From the acceleration auto-correlations described in section 3.4.1, Lagrangian time
scales characterising the typical rate of change of the acceleration components can be
deduced. In the following, the Lagrangian acceleration time scales are defined as

𝑇𝑎,𝑖(𝑦0) = ∫
𝜏𝑐

0
𝜌 𝑎

𝑖𝑖(𝜏, 𝑦0)d𝜏 , (3.4)

where 𝜏𝑐 is the time lag at which the auto-correlation first crosses 𝜌𝑐 = 0.05. This
unusual definition can be contrasted to more common estimations of the Lagrangian
time scales. On the one hand, the usual definition of the Lagrangian integral time scale
𝑇𝐿, in which the velocity auto-correlation is integrated for 𝜏 between zero and infinity,
cannot be used for the acceleration components since their correlations generally
become negative after a certain time lag (as shown in fig. 3.6). This is also the case
in HIT where the integral of the acceleration auto-correlation is actually zero due
to the statistical stationarity of the velocity. On the other hand, the zero-crossing
time proposed e.g. by Yeung and Pope [206] can neither be used here because some
correlations obtained from the experiment, especially near the channel centre, do not
cross zero during the observation time. The definition eq. (3.4) works around these two
issues while being equally appropriate to represent typical Lagrangian decorrelation
times. In typical cases, the present definition yields roughly half the value of the more
usual zero-crossing time.5 For consistency between the different time scales, the same
definition eq. (3.4) is used to estimate Lagrangian velocity (integral) time scales 𝑇𝐿,𝑖,
as well as the acceleration norm time scale 𝑇|𝒂|. As shown in fig. 3.8c for the case of
|𝒂|, these quantities stay correlated for much longer along Lagrangian paths than the
acceleration components.
In the experiment, due to the limited size of the measurement volume, the full

decorrelation of the velocity components and of the acceleration norm is not achieved
far from the wall. This is explained by two complementary mechanisms. First, particles
far from the wall spend less time within the measurement volume due to the increasing
mean streamwise velocity that sweeps them away from the volume. Secondly, as seen
in figs. 3.6 and 3.8 for the acceleration and confirmed below in fig. 3.12, Lagrangian
decorrelation times increase with wall distance, i.e. longer particle tracks are needed
to capture the full decorrelation of velocity and acceleration. For these reasons, the
associated time scales are approximated in the experiment by extrapolation of the
measured auto-correlation functions as illustrated by fig. 3.11. This introduces an
uncertainty in the estimated time scales which increases with increased fraction of
5This relation would be exact had we chosen 𝜌𝑐 = 0 instead of 0.05 (in which case 𝜏𝑐 would precisely
be the zero-crossing time) and if the correlation function decayed linearly with time.
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Figure 3.11.Estimation of Lagrangian velocity time scales in the experiment. In (a), the measured
wall-normal velocity auto-correlation 𝜌𝑣

𝑦𝑦 at 𝑦+
0 = 925 is shown (solid black line) along with its

exponential extrapolation at long times (dashed black line). The extrapolation is estimated
from the section of the curve between the two vertical dashed lines. The filled areas under the
curves are used to estimate the Lagrangian integral time scales shown in (b).

extrapolated data, or equivalently, with wall distance. Extrapolation is not required to
calculate the acceleration time scales𝑇𝑎,𝑖, since the decorrelation time of the acceleration
components is short enough to capture their full decorrelation (as seen in fig. 3.6).
Extrapolation is neither required for DNS data as the computed Lagrangian trajectories
are longer than the typical velocity decorrelation times.
Lagrangian velocity and acceleration time scales across the channel are shown in

fig. 3.12 normalised in wall units. As deduced from the auto-correlation curves in
fig. 3.6 and fig. 3.8c, Lagrangian acceleration time scales 𝑇𝑎,𝑖 and 𝑇|𝒂| generally increase
with wall distance. The same is observed for the Lagrangian integral time scales 𝑇𝐿,𝑖.
According to fig. 3.12a, the time scale of the acceleration norm is comparable to the
integral time scales. In other words, |𝒂| varies over long times scales characteristic of
the energy-containing turbulent motions. Relative to the time scales associated to the
acceleration components (fig. 3.12b), 𝑇|𝒂| is about one order of magnitude larger than
𝑇𝑎,𝑖 for all wall distances.
Regarding the Lagrangian velocity time scales (fig. 3.12a), signs of anisotropy are

observed at all wall distances. Concretely, the wall-normal velocity varies over shorter
times than the other two components. This behaviour is observed both in experiments
and DNS. As expected, the difference is more significant near the wall where the flow is
strongly anisotropic. Similar observations can be made for the acceleration components
(fig. 3.12b), although differences between components are mainly visible in the viscous
and buffer layers. Noting that the acceleration is a small-scale quantity, the nearly
isotropic behaviour far from the wall may be a sign of return to isotropy at the small
scales (even though isotropy is not fully recovered as discussed above in section 3.4.2).

In section 3.4.1, it has been qualitatively observed that the acceleration components
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Figure 3.12. Lagrangian velocity and acceleration time scales in wall units. Experiments, crosses;
DNS, solid lines. Colours represent velocity or acceleration components. The acceleration
magnitude time scale 𝑇|𝒂| is represented by dashed black lines.

decorrelate over time lags 𝜏 ∼ 2𝜏𝜂 in most of the channel, similarly to the case of HIT.
To quantify this, the acceleration time scales 𝑇𝑎,𝑖 are plotted in fig. 3.13 normalised
by the Kolmogorov time scale 𝜏𝜂. We recall that, due to inhomogeneity, 𝜏𝜂 varies
with wall distance. Its profile along the channel width is presented in the inset of
fig. 3.13. The curves are consistent with our observations in section 3.4.1. Namely, the
acceleration time scales are close to 𝜏𝜂 in the channel, except for 𝑇𝑎,𝑥 near thewall which
displays a much larger value. This is consistent with the slower decorrelation time of
the streamwise acceleration relative to the other components in that region (fig. 3.6a),
associated to the presence of coherent structures such as quasi-streamwise vortices
near the wall. In the other cases, the value 𝑇𝑎,𝑖 ≈ 𝜏𝜂 is consistent with a decorrelation
time of approximately 2𝜏𝜂. Nevertheless, even in the logarithmic and outer regions,
small differences are found between 𝑇𝑎,𝑦 and the time scales associated to the other
components suggesting again the presence of small-scale anisotropy far from the wall.

Since Lagrangian acceleration and velocity time scales are respectively related to the
dissipative and energy-containing scales of the flow, their ratio gives an indication of
the degree of scale separation in the turbulent flow. In other words, it determines the
extent of the inertial range of Lagrangian time scales, 𝑇𝑎,𝑖 ∼ 𝜏𝜂 ≪ 𝜏 ≪ 𝑇𝐿,𝑖, over which
Lagrangian statistics are supposedly independent of energy injection and dissipation
mechanisms according to Kolmogorov’s K41 theory [83]. In HIT it is well accepted that,
for a given Reynolds number, the separation of Lagrangian scales is much weaker than
that of Eulerian scales, and as a consequence, larger Reynolds numbers are required
to observe universal scaling of Lagrangian statistics in the inertial range than for
Eulerian statistics [180, 205]. As introduced in section 1.1.3, Sawford [153] proposed
a second-order stochastic equation for the fluid particle acceleration accounting for
finite Reynolds number effects by including both 𝜏𝜂 and the Lagrangian integral time
scale 𝑇𝐿 as model parameters. Based on this model, Sawford derived an expression
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Figure 3.13. Lagrangian acceleration time scales normalised by the local Kolmogorov time scale
(DNS results only). Inset: local Kolmogorov time scale in wall units.

for the ratio between these two time scales as a function of the Taylor-scale Reynolds
number, Re𝜆 = 𝑘√20/(3𝜈𝜀) (with 𝑘 = 𝑢′

𝑖𝑢′
𝑖/2 the mean turbulent kinetic energy),

𝑇𝐿
𝜏𝜂

= 2Re𝜆

𝐶0√15
⎛⎜
⎝

1 +
√15

4
𝐶2

0
𝑎0Re𝜆

⎞⎟
⎠

, (3.5)

where, according to K41 scaling, 𝑎0 and 𝐶0 are universal dimensionless constants. In
isotropic turbulence experiments and simulations, both have been found to actually
increase with Reynolds number, with the former estimated as

𝑎0 = 1.9Re0.135
𝜆 /(1 + 85Re1.135

𝜆 ) (3.6)

by Sawford et al. [154] and the latter approaching 𝐶0 ≈ 7 at high Reynolds num-
bers [180]. We note that, following K41 scaling, 𝑎0 represents the normalised accelera-
tion variance 𝑎0 = 𝑎′2

𝑖 √𝜈/𝜀3, while 𝐶0 appears in the expected inertial-range form of the
Lagrangian second-order velocity structure function 𝐷2(𝜏) = ⟨[𝑣𝑖(𝑡0 + 𝜏) − 𝑣𝑖(𝑡0)]2⟩,
i.e. 𝐷2(𝜏) ≈ 𝐶0𝜀𝜏 for 𝜏𝜂 ≪ 𝜏 ≪ 𝑇𝐿. To present day, available experimental and numer-
ical results have not found conclusive evidence of such an inertial-range behaviour,
although a tendency is seen in favour of this prediction at increasingly high Reynolds
numbers [156, 180].

The component-wise ratios between Lagrangian velocity and acceleration time scales
along the channel width are shown in fig. 3.14a. In the buffer layer and logarithmic
regions, the streamwise and spanwise components display nearly the same behaviour,
consistentlywith the curves in fig. 3.12. In the logarithmic region, their ratio stays nearly
constant, meaning that velocity and acceleration time scales grow at the same rate. On
the other hand, the ratio between wall-normal velocity and acceleration time scales
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Figure 3.14. Lagrangian time scale ratios. Experiments, crosses; DNS, solid lines. (a) Ratio
between the Lagrangian velocity and acceleration time scales, by component. The dash-dotted
line represents the ratio 𝑇𝐿,𝑖/𝜏𝜂 in HIT as predicted by Sawford’s second-order stochastic
model [153] (eq. (3.5), with 𝑎0 given by eq. (3.6) and 𝐶0 = 7). (b) Ratio between time scales of
acceleration magnitude and of the acceleration components.

is smaller than for the other components throughout the channel. This is consistent
with the smaller value of the integral time scale 𝑇𝐿,𝑦 relative to the other components
as seen in fig. 3.12a, and it suggests that, as a result of confinement, the Lagrangian
separation of scales is weaker when the wall-normal motions are considered.

Also shown in fig. 3.14a is Sawford’s prediction (3.5) for isotropic turbulence. Since
𝑇𝑎,𝑖 ≈ 𝜏𝜂 in most of the channel (fig. 3.13), this prediction should match the 𝑇𝐿,𝑖/𝑇𝑎,𝑖
ratios were the model applicable to the present flow. We also note that the Taylor-scale
Reynolds number appearing in eq. (3.5) varies with wall distance as a result of its
dependence on 𝑘 and 𝜀. In fig. 3.15, it is shown that Re𝜆 increases with wall distance
up to the end of the logarithmic layer, where it reaches Re𝜆 ≈ 100 at 𝑦+ ≈ 600. Then it
slightly decreases in the outer layer of the channel. Due to the anisotropy displayed by
the Lagrangian time scales, Sawford’s isotropic model cannot be expected to match
the statistical data. However, the model captures the observed trends especially in the
logarithmic region, where the predicted values are in between the ratios found for the
different velocity and acceleration components.
As discussed above, the acceleration components and its norm change over very

different time scales. Based on this observation, models for the fluid particle accel-
eration have been proposed treating the fast-varying orientation of acceleration and
the slow-varying acceleration norm as two independent random processes obeying
different stochastic equations [148, 208]. The ratios of acceleration norm to acceleration
component time scales are shown in fig. 3.14b. For 𝑦+ > 50, the ratios are weakly
varying, and only small differences are observed between the three acceleration com-
ponents. Moreover, the observed values are comparable in magnitude to the ratios
between velocity and acceleration time scales (fig. 3.14a).
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Figure 3.15. Taylor-scale Reynolds number in the channel at Re𝜏 = 1440.

3.6 Acceleration PDFs

High-acceleration events such as the ones shown in fig. 3.4 are a form of intermittency
of turbulent flows, by which tracers occasionally experience accelerations that are many
times more intense than the acceleration standard deviation. In HIT, this intermittency
has been associated to very long tails in the PDF of the acceleration components
relative to a Gaussian distribution [89]. The same has been observed in wall turbulence
at lower Reynolds numbers [202]. The intermittency of fluid particle accelerations
is confirmed in the present channel flow as shown in fig. 3.16, where the PDF of
the three acceleration components is plotted at different wall distances. Once again,
good agreement is achieved between experiments and simulations. Superposed to
the curves is the analytical expression for the acceleration PDF proposed by Mordant
et al. [117] under the assumptions that the accelerationmagnitude follows a log-normal
probability distribution and that the acceleration vector is isotropic,

𝑃(𝑎𝑖) = 𝑒𝑠2/2

4𝑚
⎡⎢
⎣
1 − erf⎛⎜

⎝
ln(|𝑎𝑖|/𝑚) + 𝑠2

√2𝑠
⎞⎟
⎠

⎤⎥
⎦

, (3.7)

where 𝑚 determines the variance of 𝑎𝑖 (𝑚 = √3/𝑒2𝑠2 for variance 1), while 𝑠 determines
the shape of the PDF. As in [117], 𝑠 = 1 is used in the figure. This expression accurately
predicts the behaviour of the three acceleration components near the channel centre
(𝑦+ = 1200), where the flow is nearly isotropic at the small scales. Closer to the wall,
anisotropy increases and thus the prediction becomes less accurate for the streamwise
and wall-normal accelerations. Surprisingly, this is not the case for the spanwise accel-
eration PDF which is very well represented by eq. (3.7) very near the wall, suggesting
that this component is not strongly affected by anisotropy. The general agreement of
the presented curves with the shape of the isotropic PDF suggests that intermittency
of Lagrangian accelerations is extremely strong even at the moderate Reynolds num-
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Figure 3.16. PDF of (a) streamwise, (b) wall-normal and (c) spanwise tracer acceleration. Ex-
periments, symbols with error bars; DNS, solid lines. Dotted lines represent the analytical
prediction for the acceleration PDF in HIT proposed by Mordant et al. [117] (eq. (3.7) with
𝑚 = √3/𝑒2𝑠2 and 𝑠 = 1). The PDFs are normalised by the standard deviation of the acceleration
components. From bottom to top, the curves correspond to particles located at 𝑦+ = 10, 20,
200 and 1200. The statistical convergence of the statistical data is represented by error bars
proportional to 1/√𝑛𝑖 where 𝑛𝑖 is the number of events in the 𝑖-th wall bin.

bers of the present wall-bounded flow, i.e. Re𝜆 ∼ 60 to 100 in the logarithmic layer
(fig. 3.15), whereas it was close to 1000 in La Porta et al. [89]. This also shows that
the shape of the acceleration PDF presents some universality, not only because it is
seemingly Reynolds number-independent, but also because it only weakly depends
on the large-scale properties of the flow (at least in regions where anisotropy is weak).
Due to statistical symmetry, the spanwise acceleration displays a symmetric PDF

at all wall distances. This is not the case for the streamwise and wall-normal accelera-
tions, which present increasingly asymmetric behaviours as the wall is approached.
Compared to the isotropic PDF, the streamwise acceleration PDF is slightly shifted
and skewed towards negative accelerations near the wall. As shown earlier in fig. 3.3a,
its mean is also negative for 𝑦+ < 60. Conversely, the distribution of wall-normal
accelerations is skewed towards positive values very near the wall, which is again
consistent with the positive 𝑎𝑦 in that region (fig. 3.3a). As shown by Yeo et al. [202],
the intermittency of acceleration is explained at all wall distances by the contribution
of the irrotational term 𝒂𝐼 = −(1/𝜌)𝛁𝑝. Perhaps surprisingly, this includes the viscous
sublayer where the streamwise acceleration variance is actually dominated by the
solenoidal component 𝑎𝑆

𝑥 = 𝜈∇2𝑢𝑥 [202].
The asymmetry of the streamwise and wall-normal acceleration distributions is

quantified in fig. 3.17 in terms of their skewness 𝑆𝑎
𝑖 = ⟨𝑎′3

𝑖 ⟩/⟨𝑎′2
𝑖 ⟩3/2 along the channel

width. The spanwise acceleration is not shown since its skewness is zero due to flow
symmetry. The curves confirm the previous observation that very close to the wall,
the 𝑎𝑥 and 𝑎𝑦 distributions are strongly skewed towards negative and positive values,
respectively. The signs of 𝑆𝑎

𝑥 and 𝑆𝑎
𝑦 are both inverted after 𝑦+ ≈ 20. Their respective
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Figure 3.17. Skewness of streamwise and wall-normal acceleration components. Experiments,
crosses; DNS, solid lines. Circles indicate the skewness of 𝑎𝑦 at 𝑦+ = 10, 20, 200 and 1200, where
the PDFs in fig. 3.16 were obtained. In the inset, skewness profiles are represented with 𝑦+ in
logarithmic scale.

values are nearly constant and different from zero at larger wall distances and up
to the channel centre. This is yet another indication of the persistence of small-scale
anisotropy even near the channel centre.

The cross-correlation between the streamwise and wall-normal acceleration com-
ponents discussed in section 3.4.2 suggest a significant interdependency between these
two components along Lagrangian paths. Near the wall, their cross-correlation at zero
time lag, equal to the normalised single-time covariance 𝑎′𝑥𝑎′𝑦, is negative. To better
understand this behaviour, their joint PDF 𝑃(𝑎𝑥, 𝑎𝑦) is shown in fig. 3.18 at two wall
distances, 𝑦+ = 15 and 59. At 𝑦+ = 15, the joint PDF has a stretched shape, showing a
preference for events of negative 𝑎𝑥 and positive 𝑎𝑦. These events can be associated to
fluid particles moving towards the wall, as previously illustrated by fig. 3.10. These
particles probe regions of decreasing mean streamwise velocity, leading on average
to a streamwise deceleration of their motion (𝑎𝑥 < 0). Simultaneously, their negative
wall-normal velocity is reduced due to confinement by the wall limiting their motion in
that direction, resulting in a positive wall-normal acceleration (𝑎𝑦 > 0). As for particles
moving away from the wall, a positive streamwise acceleration is expected as they
probe regions of faster mean velocity. However, since their motion is less affected by
wall confinement, their contribution to the wall-normal accelerations is less visible in
the joint PDF. The conditional means ⟨𝑎𝑥 | 𝑎𝑦⟩ and ⟨𝑎𝑦 | 𝑎𝑥⟩, which are superposed to
the joint PDF contours in fig. 3.18, confirm that streamwise and wall-normal accelera-
tions are on average of opposite signs near the wall. As expected, further away from
the wall (𝑦+ = 59, fig. 3.18b) the joint PDF partially loses its stretched form and the
interdependency between both components becomes weaker.
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3.7 Conclusion

The acceleration of fluid particles in a turbulent channel flow is studied in this chapter by
comparison between our DNS and the 3D PTVmeasurements performed by N. Stelzen-
muller and N. Mordant at LEGI at nearly the same Reynolds number Re𝜏 ≈ 1440.
A remarkable agreement is found between both approaches in most of the channel.
Our findings are largely consistent with previous observations in homogeneous iso-
tropic turbulence experiments and DNS and in lower Reynolds number channel flow
simulations. Namely, acceleration is a highly intermittent quantity, i.e. fluid particles
occasionally experience accelerations which are many times more intense than their
standard deviation [89]. This intermittency translates into a substantial departure from
Gaussianity of the acceleration PDFs, which present very long tails corresponding to
extreme acceleration events. This is observed even at the moderate Reynolds number
of the present wall-bounded flow, in which Re𝜆 barely exceeds a value of 100 in the
logarithmic region.

The fluid acceleration presents a dual temporal behaviour, that is, the orientation of
the acceleration vector changes very quickly along Lagrangian paths (its decorrelation
time is comparable to the dissipation time scale 𝜏𝜂), while its norm stays correlated for
much longer, over times comparable to the Lagrangian integral time scales 𝑇𝐿,𝑖. This
has already been observed in nearly isotropic flows [117], and has been associated to
the effect of vortex filaments on nearby fluid particles [118, 179]. As they rotate about
one such vortex, particles see intense centripetal accelerations oriented towards the
rotation axis. These vortex filaments are responsible for the intermittency of acceleration
mentioned above [118]. In wall-bounded turbulence the samemechanism describes the
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Lagrangian dynamics of acceleration, with the difference that near the wall, rotational
motions inducing centripetal accelerations have preferential orientations mainly in
the form of quasi-streamwise vortices [93, 202]. This results in rapidly varying wall-
normal and spanwise acceleration components, while the streamwise acceleration stays
correlated for longer times.
The present work confirms previous observations on the Lagrangian dynamics of

acceleration in wall-bounded turbulence at a higher Reynolds number, and, for the
first time, with support of experimental measurements. In addition, it characterises the
small-scale anisotropy of the flow and its effect on Lagrangian acceleration statistics. In
particular, it is shown that the Lagrangian cross-correlation between the streamwise and
wall-normal accelerations is non-zero at all wall distances over time lags of the order
of 𝜏𝜂. This contradicts the expectation of a return to isotropy far from the wall, i.e. it
confirms that small-scale anisotropy persists even near the channel centre. Furthermore,
the dependency between 𝑎𝑥 and 𝑎𝑦 is analysed in terms of their joint PDF, which
suggests a preference for negative 𝑎𝑥 and positive 𝑎𝑦 events close to the wall. These
events are associated to particles migrating towards the wall, which are decelerated in
their streamwise motion due to increasing viscous effects, and at the same time, due to
wall confinement, experience a force which opposes their motion towards the wall.

The results presented in this chapter can serve as a basis for the improvement
of existing stochastic models for the fluid acceleration in wall-bounded flows. The
Lagrangian velocity and acceleration time scales, which are fully characterised in
this work, can serve as input for such models. More importantly, to properly account
for small-scale anisotropy in wall-bounded turbulence and more generally in shear
flows, stochastic models for the acceleration should be able to reproduce the described
dependency between acceleration components, namely the effect of coherent structures
and wall confinement near the wall, as well as the shear-induced small-scale anisotropy
resulting in non-zero acceleration cross-correlations.
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The single-particle dispersion problem, attempting to statistically describe the trajector-
ies of particles in turbulent flows, is arguably the most natural application of the Lag-
rangian approach. The statistical framework for obtaining single-particle Lagrangian
statistics in turbulent channel flow has been applied in chapter 3 for characterising the
dynamics of Lagrangian accelerations in the channel. In this chapter, more details are
provided on the dispersion of single fluid particles in the channel, which have been
qualitatively discussed in section 3.3 for the case of particles initially located near the
wall.

In chapter 3, fig. 3.5 gives an intuition about the properties of particle dispersion in
wall-bounded flows. Despite the low number of particles represented in the illustration,
the figure suggests that tracers that are initially close to the wall tend to migrate on
average towards the channel centre. This has been observed in other channel flow
simulations [41, 193], and is explained by particles ‘forgetting’ their initial positions at
very long times, resulting in a uniform particle distribution across the channel width.
The same is observed when tracers are followed backwards in time, i.e. for 𝜏 < 0.
The latter point raises the question of whether the migration occurs at the same rate
when particles are tracked backwards and forwards in time. A negative answer to
this question may indicate the existence of a temporal asymmetry as a consequence
of the irreversibility of the turbulent flow [196]. From fig. 3.5 alone, not much can
be said regarding the time asymmetry of the mean particle migration away from the
wall. On the other hand, in the streamwise direction, fig. 3.5 indicates that particles
in the near-wall region travel on average a longer distance when tracked backwards
(⟨𝛿𝑥+⟩ ≈ −4770 at 𝜏+ = −333) than forwards in time (⟨𝛿𝑥+⟩ ≈ 4060 at 𝜏+ = 333).

Following the above discussion, here we quantify the dynamics of fluid particle
trajectories in the channel. Whenever appropriate, we emphasise on the temporal asym-
metry of dispersion statistics, which is intimately linked to the Lagrangian dynamics
of kinetic energy and to the irreversibility of turbulence [79, 141, 196]. In inhomogen-
eous flows, contrarily to the case of stationary HIT, average kinetic energy fluxes may
exist across spatial regions. As discussed in this chapter, this has consequences on the
temporal asymmetry of dispersion. The spatial flux of turbulent kinetic energy (TKE)
and its link to dispersion have been recently studied experimentally by Huck [71] in
a von Kármán flow between two counter-rotating disks in a square tank. The flow
is strongly anisotropic at the geometric centre of the tank, where it has a stagnation
point topology with one converging direction and two diverging directions, and where
turbulence production is dominated bymean strain. To our knowledge, these questions
have not been discussed in wall-bounded turbulent flows where turbulent fluctuations
are produced by mean shear and where similar spatial energy fluxes exist.
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The structure of this chapter is as follows. In section 4.1 the average displacement
of fluid particles in the wall-normal direction is briefly described. The case of the
average streamwise displacement is treated in section 4.2, where the time asymmetry
discussed above is quantified and linked to the mean streamwise acceleration profile
in the channel. Mean-square displacement and dispersion statistics are introduced in
section 4.3, along with analytical short-time estimations relating the time asymmetry
of the statistics to the mean Lagrangian power and the velocity-acceleration covariance.
These two quantities are discussed in more detail in section 4.4, and their influence
on short-time dispersion statistics is estimated in section 4.5 where numerical mean-
square dispersion results are presented. Finally, general conclusions and perspectives
are given in section 4.6.

4.1 Mean wall-normal particle displacement

We first consider the average particle drift towards the channel centre. The quantity
of interest here is the average wall-normal particle position ⟨𝑦⟩(𝜏, 𝑦0), or equivalently,
the average wall-normal particle displacement ⟨𝛿𝑦⟩(𝜏, 𝑦0) = ⟨𝑦⟩(𝜏, 𝑦0) − 𝑦0. At short
time lags 𝜏, the time evolution of ⟨𝛿𝑦⟩ is given by the Taylor expansion

⟨𝛿𝑦⟩(𝜏, 𝑦0) = ⟨𝑣𝑦⟩(0, 𝑦0) 𝜏 + 1
2⟨𝑎𝑦⟩(0, 𝑦0) 𝜏2 + 𝒪(𝜏3). (4.1)

At 𝜏 = 0, Lagrangian statistics coincide with their Eulerian counterparts evaluated at
𝑦0. Since the mean wall-normal velocity is zero at all wall distances, eq. (4.1) reduces
to

⟨𝛿𝑦⟩(𝜏, 𝑦0) = 1
2𝑎𝑦(𝑦0)𝜏2 + 𝒪(𝜏3). (4.2)

Near the wall, the mean wall-normal acceleration 𝑎𝑦 is positive (fig. 3.3a), hence an
average motion of the particles away from the wall is to be expected at short times.
Conversely, theweakly negativemean acceleration found far from thewall (at 𝑦+ > 100)
predicts an average initial motion towards the wall.
Average wall-normal particle positions, conditioned by their initial wall distance

𝑦0, are plotted in fig. 4.1a for time lags 𝜏+ ∈ [−3000, 3000]. On average, all particles
drift away from the wall at long times. This is consistent with the hypothesis that
particles tend to forget their initial position at very long times, their distribution
across the channel becoming uniform. In fig. 4.1b, forward (𝜏 > 0) and backward
(𝜏 < 0) displacement curves are superposed for selected values of 𝑦0. Also shown
are mean forward displacements obtained from a longer-extent fluid particle dataset
labelled DS21 (𝜏+

max ≈ 17 000), which confirm that tracers on average drift towards
the channel centre at long times. There is no clear difference between backward and
forward mean displacements (small differences are most likely explained by the finite
size of the statistical sample), indicating that the Lagrangian-averaged wall-normal
1This dataset was initially used for relative pair dispersion statistics and is described in more detail in
chapter 5.
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Figure 4.1. Mean wall-normal tracer displacement in the channel. (a) Average wall-normal
particle position ⟨𝑦⟩(𝑦0, 𝜏) for particles initially located at varying wall distances 𝑦0. The red
dashed line represents the channel centre. (b) Detail on particle sets initially located at 𝑦+

0 = 3,
250, 500, 750, 1000 and 1250 (from bottom to top). Time lag 𝜏 is represented in logarithmic
scale. Dotted lines represent backward displacement (𝜏 < 0). Circles represent the short-time
estimation ⟨𝑦⟩ ≈ 𝑦0 + 𝑎𝑦(𝑦0)𝜏2/2 [eq. (4.2)]. Grey lines represent forward statistics obtained
from the long-extent particle dataset DS2 described in chapter 5.

displacement is time-symmetric. Interestingly, near the channel centre the average
trajectory is described by a weak initial displacement towards the wall, followed by a
return towards the centre.
According to fig. 4.1b, on average tracers start drifting towards the channel centre

after 𝜏+ ∼ 100 for particles near the wall and 𝜏+ ∼ 1000 for particles in the outer
layer. As seen in sections 3.4 and 3.5, at 𝜏+ ∼ 100 the tracer acceleration components
are completely decorrelated. Therefore, the mean drift towards the channel centre is
not explained by the effect of the mean initial acceleration and thus by the short-time
estimation (4.2), which by its nature is not valid at long times. This is confirmed in
fig. 4.1b, where the circles representing eq. (4.2) do not predict the observed mean drift
after 𝜏+ ∼ 100. Therefore, other mechanisms must be taken into account to explain the
mean particle drift towards the channel centre.
To summarise, the zero average wall-normal velocity for all 𝑦 implies that, initially,

particles stay on average on their initial wall-normal plane 𝑦0 (as seen more clearly
in fig. 4.1b), and start drifting away from 𝑦0 at a finite time |𝜏| as they are dispersed
by the fluctuating flow. Note that the existence of an average drift at |𝜏| > 0 implies a
non-zero value of the Lagrangian average of the wall-normal velocity ⟨𝑣𝑦⟩(𝜏, 𝑦0), since
⟨𝑣𝑦⟩ = 𝜕⟨𝑦⟩/𝜕𝜏 . This can be contrasted with the Eulerian average 𝑢𝑦(𝑦) which is zero
for all 𝑦. Fluid particles released from a given wall distance, drift on average towards
the channel centre to achieve the predicted uniform particle distribution throughout
the channel at very long times. The average drift is much slower than the decorrelation
of the tracer acceleration, and hence the latter cannot explain the observed average
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wall-normal tracer displacement.

4.2 Mean streamwise particle displacement

A similar procedure can be applied to characterise the average particle displacement in
the streamwise direction, and in particular, its time asymmetry qualitatively observed
in fig. 3.5. In the following we show that the average initial particle acceleration can ef-
fectively explain the short-time streamwise displacement including its time asymmetry,
at least in regions where the average acceleration is relatively important.

As in section 4.1, we first consider the short-time Taylor expansion of the streamwise
displacement of a particle,

𝛿𝑥(𝜏) = 𝑣0𝑥𝜏 + 1
2𝑎0𝑥𝜏2 + 𝒪(𝜏3) = 𝑣0𝑥𝜏 (1 + 𝑎0𝑥

2𝑣0𝑥
𝜏 + 𝒪(𝜏2)) , (4.3)

where 𝑣0𝑥 and 𝑎0𝑥 are the particle velocity and acceleration at 𝜏 = 0. It follows that the
absolute streamwise displacement is

∣𝛿𝑥∣(𝜏) = 𝑣0𝑥|𝜏| (1 + 𝑎0𝑥
2𝑣0𝑥

𝜏 + 𝒪(𝜏2)) = 𝑣0𝑥|𝜏| + 1
2𝑎0𝑥|𝜏|𝜏 + 𝒪(𝜏3), (4.4)

under the assumptions that the streamwise particle velocity 𝑣0𝑥 is positive,2 and that
the term in the parenthesis is also positive, which can be expected for |𝜏| ≪ 𝑣0𝑥/|𝑎0𝑥| .
Equation (4.4) expresses that the particle displacement is initially described by its
initial velocity followed by a correction due to its initial acceleration. More interestingly,
this implies a temporal asymmetry of the particle displacement,

∣𝛿𝑥∣(𝜏) − ∣𝛿𝑥∣(−𝜏) = 𝑎0𝑥|𝜏|𝜏 + 𝒪(𝜏3). (4.5)

Equations (4.4) and (4.5) can be averaged among particles initially located at a wall
distance 𝑦0, assuming that all the particles have a positive initial streamwise velocity,
to yield

⟨∣𝛿𝑥∣⟩(𝜏) = ⟨𝑣0𝑥⟩|𝜏| + 1
2⟨𝑎0𝑥⟩|𝜏|𝜏 + 𝒪(𝜏3), (4.6)

⟨∣𝛿𝑥∣⟩(𝜏) − ⟨∣𝛿𝑥∣⟩(−𝜏) = ⟨𝑎0𝑥⟩|𝜏|𝜏 + 𝒪(𝜏3), (4.7)

where the dependency of the statistics on 𝑦0 has been omitted for clarity.
Figure 4.2 presents mean streamwise displacements results for particles initially

located at different wall distances 𝑦0. In fig. 4.2a, backwards and forwards in time
displacements are shown. As predicted by eq. (4.6), the mean displacement is de-
termined at short times by the average streamwise velocity at the starting position. At
long times, particles initially close to the wall accelerate on average, i.e., their average

2This is a very reasonable assumption in the present flow, where turbulent fluctuations are nearly always
weaker than the mean streamwise velocity.
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Figure 4.2.Mean streamwise tracer displacement in the channel. (a) Average streamwise dis-
placement ⟨∣𝛿𝑥∣⟩(𝑦0, 𝜏). Colours indicate the initial particle wall distance 𝑦0 (see legend on the
right). Curves are normalised by the displacement due to the initial mean particle velocity,
⟨𝑣0𝑥⟩|𝜏|. Dotted lines represent backward displacement (𝜏 < 0). Curves are shifted vertically
by increments of 0.25 for clarity. Squares and triangles represent the short-time estimation
⟨∣𝛿𝑥∣⟩ ≈ ⟨𝑣0𝑥⟩|𝜏| + 1

2 ⟨𝑎0𝑥⟩|𝜏| 𝜏 for 𝜏 > 0 and 𝜏 < 0, respectively. Dash-dotted lines represent
forward statistics obtained from dataset DS2. (b) Difference between mean displacements
forwards and backwards in time, normalised by ⟨𝑎0𝑥⟩𝜏2.

streamwise velocity ⟨𝑣𝑥⟩(𝜏) is larger for large |𝜏| than at 𝜏 = 0. This can be understood
by considering that tracers are uniformly distributed across the channel at very long
times. Under this assumption, the asymptotic mean streamwise velocity of the tracers
is equal to the bulk velocity 𝑈𝑏 in the channel [eq. (1.19)]. This is verified in fig. 4.3
where the average streamwise velocity of tracers released at different wall distances
is plotted for positive time lags. Therefore, if tracers are initially labelled in a region
where the mean velocity 𝑈(𝑦) is small relative to 𝑈𝑏, the tracers are expected to gain
streamwise velocity on average at long times. Conversely, particles initially located near
the channel centre decelerate on average since their initial mean streamwise velocity is
higher than the bulk flow velocity.

As predicted from fig. 3.5, the mean streamwise displacement is asymmetric in time
(fig. 4.2a). This is clearly visible for particles initially located near the wall, which
travel longer distances when tracked backwards in time. For the initial wall distance
𝑦+

0 = 18, where the mean streamwise acceleration is relatively important compared to
the rest of the channel (fig. 3.3a), the initial particle acceleration is sufficient to explain
this asymmetry, as seen by the good agreement at short times between our data and
the estimation (4.6) (symbols in fig. 4.2a). The validity of the short time estimation
is further evaluated in fig. 4.2b, where the difference between backward and forward
mean displacements is plotted normalised by the estimation (4.7). According to the
figure, the short-time estimation is appropriate for a characteristic duration 𝜏+ ∼ 10,
which actually varies with the initial wall distance.
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Figure 4.3.Mean streamwise tracer velocity ⟨𝑣𝑥⟩(𝑦0, 𝜏) for different initial particle wall distances
𝑦0. The horizontal dashed line represents the bulk velocity in the channel, 𝑈𝑏 = 1

2ℎ ∫2ℎ
0 𝑈(𝑦)d𝑦.

The analysis presented here shows that Taylor expansions are appropriate to de-
scribe the streamwise tracer displacement up to times of the order of 10 wall units.
In practice, this observation may serve as an estimate for the temporal resolution re-
quired to estimate mean accelerations from mean displacement statistics, for instance
in particle tracking experiments. At later times following the kinematic regime, the
mean streamwise displacement is intuitively described by a tendency of the mean
streamwise tracer velocity to approach the bulk velocity 𝑈𝑏 in the channel. Therefore,
tracers initially located near the wall are accelerated on average as the local mean
velocity is smaller than 𝑈𝑏, and conversely for tracers near the channel centre.

4.3 Mean-square dispersion: theory and definitions

Above we have considered the average displacement ⟨𝛿𝑥𝑖⟩ of an ensemble of fluid
particles conditioned by their initial distance from the wall. In the following sections
we characterise the typical variation of the tracer displacements away from their average
displacements. This is quantified by the standard deviation of the displacements or
equivalently by its variance ⟨𝛿𝑥′2

𝑖 ⟩(𝜏, 𝑦0), which is referred to in the following as the
mean-square dispersion. Here 𝛿𝑥′

𝑖 has the meaning of a fluctuating displacement relative
to the mean Lagrangian displacement ⟨𝛿𝑥𝑖⟩, i.e.

𝛿𝑥′
𝑖(𝑡0 + 𝜏, 𝒙0) = 𝛿𝑥𝑖(𝑡0 + 𝜏, 𝒙0) − ⟨𝛿𝑥𝑖⟩(𝜏, 𝑦0) (4.8)

= ∫
𝑡

0
[𝑣𝑖(𝑡0 + 𝜏, 𝒙0) − ⟨𝑣𝑖⟩(𝜏, 𝑦0)]d𝜏 . (4.9)

We note that, unlike 𝛿𝑥𝑖, the fluctuating displacement 𝛿𝑥′
𝑖 is Galilean-invariant since it

can be expressed in terms of a velocity difference.
First, the case of isotropic turbulent flows is discussed in section 4.3.1, including

well-established results and more recent discussions on the time asymmetry of single-
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particle Lagrangian statistics. In section 4.3.2, short-time estimations for the mean-
square displacement ⟨𝛿𝑥2

𝑖 ⟩ and the mean-square dispersion ⟨𝛿𝑥′2
𝑖 ⟩ are derived, and

their time asymmetry is respectively expressed in terms of the mean Lagrangian power
and the velocity-acceleration covariance. Later in section 4.4, a physical interpretation
of these two quantities and their values across the channel are discussed. Finally,
numerical results are presented in section 4.5 and compared to analytical predictions.

4.3.1 Single-particle dispersion in isotropic flows

In HIT, since the average displacement ⟨𝛿𝑥𝑖⟩ is zero at all times, the mean-square
dispersion ⟨𝛿𝑥′2

𝑖 ⟩ is the lowest-order statistic that can provide a significant description
of the dispersion properties of the flow. For the same reason, in HIT no distinction
is made between ⟨𝛿𝑥′2

𝑖 ⟩ and the mean-square displacement ⟨𝛿𝑥2
𝑖 ⟩. Moreover, due to

isotropy, the displacement along a single arbitrary direction is sufficient to characterise
tracer dispersion.
In turbulent flows, the time evolution of tracer dispersion is closely linked to the

Lagrangian time scales of the flow. In the case of single-particle dispersion, the most
important quantity is the Lagrangian integral time scale 𝑇𝐿 characterising the typical
decorrelation time of the tracer velocity fluctuations (see also section 3.5). As stated
in the introduction (section 1.1.2), Taylor [175] linked the mean-square displacement
⟨𝛿𝑥2

𝑖 ⟩ in a stationary system to the Lagrangian velocity auto-correlation 𝜌 𝑣(𝜏),

⟨𝛿𝑥2
𝑖 ⟩(𝜏) = 2𝜎2

𝑢𝜏 ∫
𝜏

0
(1 − 𝑠

𝜏) 𝜌 𝑣(𝑠)d𝑠 , (4.10)

where 𝜎2
𝑢 = 𝑢′2

𝑖 is the velocity variance. At small time delays 𝜏 ≪ 𝑇𝐿, the Lagrangian
velocity does not change importantly, which is reflected by an auto-correlation 𝜌 𝑣(𝜏) ≈
1. This leads to a ballistic growth of the mean-square displacement at short times,
⟨𝛿𝑥2

𝑖 ⟩(𝜏) ≈ 𝜎2
𝑢𝜏2. On the other hand, at times 𝜏 ≫ 𝑇𝐿, particles lose memory of their

initial velocities (𝜌 𝑣(𝜏) ≈ 0) and dispersion is described by Brownian motion [51].
From eq. (4.10), the asymptotic diffusive regime is given by

⟨𝛿𝑥2
𝑖 ⟩(𝜏) ≈ 2𝜎2

𝑢𝑇𝐿𝜏 for 𝜏 ≫ 𝑇𝐿. (4.11)

In recent years, the question of the consequences of the time irreversibility of tur-
bulence on Lagrangian statistics has been raised. As demonstrated by Falkovich et
al. [52], single-particle Lagrangian statistics in homogeneous flows are necessarily
time-symmetric provided that the statistics are invariant under Galilean transforma-
tion. An important example is the family of Lagrangian velocity structure functions
𝐷𝑝(𝜏) = ⟨∣𝑣𝑖(𝑡0 + 𝜏) − 𝑣𝑖(𝑡0)∣𝑝⟩ (see section 1.1.4). In statistically stationary HIT, Xu
et al. [196] recently found that the irreversibility of turbulence is visible on the Lag-
rangian evolution of kinetic energy. They observed that fluid particles lose their kinetic
energy faster than they gain it, a phenomenon they called ‘flight-crash events’. Since
kinetic energy is not Galilean-invariant, this does not contradict the observations by
Falkovich et al. [52]. Xu et al. [196] associated their findings with a negative skewness
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of the Lagrangian power 𝛱 = D𝐸/D𝑡 = 𝒗 ⋅ 𝒂, where 𝐸 = |𝒗| 2/2 is the fluid particle
kinetic energy. We note that in HIT, the skewness is the first non-zero odd moment
of 𝛱, since the mean Lagrangian power 𝛱 necessarily vanishes due to stationarity
(the global energy content is conserved) and homogeneity (there is no mean energy
flux across spatial regions). From experimental and DNS data at Re𝜆 between 170
and 690, Xu et al. [196] further showed that the skewness is nearly Reynolds-number
independent and is close to −0.5 in statistically stationary 3D turbulence. Furthermore,
Lagrangian power fluctuations were shown by Pumir et al. [141] to be dominated
by the pressure gradient force, which, although it does not exert an average work on
the flow,3 tends to redistribute energy in 3D HIT by accelerating high-velocity fluid
particles and decelerating slow particles.

4.3.2 Mean-square dispersion at short times

In the rest of this chapter, the distinction is made between the mean-square displace-
ment ⟨𝛿𝑥2

𝑖 ⟩(𝜏, 𝑦0) and the mean-square dispersion ⟨𝛿𝑥′2
𝑖 ⟩(𝜏, 𝑦0), where the fluctuating

displacement 𝛿𝑥′
𝑖 is defined as in eq. (4.8). In the spanwise direction (as in HIT), both

quantities are equal in the channel since the average displacement ⟨𝛿𝑧⟩ is zero due to
𝑧 ↔ −𝑧 symmetry. As seen in sections 4.1 and 4.2, this is generally not the case in the
streamwise and wall-normal directions.

The motion of a particle at short times can be approximated by the effect of its initial
velocity 𝒗0 = 𝒗(𝒙0, 𝑡0) and, at the second order, of its initial acceleration 𝒂0 = 𝒂(𝒙0, 𝑡0).
The associated Taylor expansion of the short-time particlemotion leads to the estimation
of the mean-square displacement

⟨𝛿𝑥2
𝑖 ⟩(𝜏, 𝑦0) = ⟨𝑣2

0𝑖⟩𝜏2 + ⟨𝑣0𝑖 𝑎0𝑖⟩𝜏3 + 𝒪(𝜏4), (4.12)

where 𝑣0𝑖 and 𝑎0𝑖 are the 𝑖-th components of the initial particle velocity and acceleration,
respectively. In eq. (4.12) and in the rest of this chapter, summation is not implied over
repeated indices. The zero-lag Lagrangian means can be replaced by their Eulerian
counterparts to yield

⟨𝛿𝑥2
𝑖 ⟩(𝜏, 𝑦0) = 𝑢2

𝑖 (𝑦0)𝜏2 + 𝑢𝑖𝑎𝑖(𝑦0)𝜏3 + 𝒪(𝜏4). (4.13)

The first term on the right-hand side of eq. (4.13) indicates that, at short times, the
displacement of a particle away from its initial position is given by the ballistic regime
mentioned in section 4.3.1. The ballistic regime appropriately describes the mean-
square particle displacement for durations over which the mean particle velocity does
not change importantly, i.e. for 𝜏 much smaller than the Lagrangian integral time scale
𝑇𝐿,𝑖 representing the characteristic tracer velocity decorrelation time.

3Thework exerted by the pressure gradient at a fixed point 𝒙 and time 𝑡 is𝑊𝑝(𝒙, 𝑡) = −𝒖(𝒙, 𝑡)⋅𝛁𝑝(𝒙, 𝑡)/𝜌.
This is the contribution of the pressure gradient force to the Lagrangian power. In other words, if
𝑊𝑝(𝒙, 𝑡) > 0, the pressure gradient is increasing the kinetic energy of a tracer located at 𝒙 at time 𝑡. In
HIT, the average work 𝑊𝑝 is zero. See also appendix B.1 and eq. (B.1).
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4.4 Lagrangian power and velocity-acceleration covariance

Similarly to section 4.2, the second-order correction 𝑢𝑖𝑎𝑖𝜏3 may provide an indication
of the temporal asymmetry of the dispersion at short times. From eq. (4.13), the
forwards and backwards in time behaviours can be subtracted to obtain

⟨𝛿𝑥2
𝑖 ⟩(𝜏, 𝑦0) − ⟨𝛿𝑥2

𝑖 ⟩(−𝜏, 𝑦0) = 2𝑢𝑖𝑎𝑖(𝑦0)𝜏3 + 𝒪(𝜏5). (4.14)

Therefore, a non-zero value of 𝑢𝑖𝑎𝑖 indicates that, at short times, the dispersion is time
asymmetric. As mentioned in section 4.3.1, the velocity-acceleration product 𝒗 ⋅ 𝒂 is
equal to the Lagrangian power 𝛱, representing the energy instantaneously gained
or lost by a fluid particle with velocity 𝒗 and acceleration 𝒂. The mean Lagrangian
power appears in the total mean-square displacement, obtained from adding the three
components of eq. (4.14),

⟨𝛿𝒙2⟩(𝜏, 𝑦0) − ⟨𝛿𝒙2⟩(−𝜏, 𝑦0) = 2𝒖 ⋅ 𝒂(𝑦0)𝜏3 + 𝒪(𝜏5). (4.15)

Hence, the mean Lagrangian power 𝛱 = 𝒖 ⋅ 𝒂 quantifies the short-time temporal
asymmetry of the average squared tracer displacement. Equation (4.15) expresses the
intuitive idea that an increase of the average particle kinetic energy is associated with
an acceleration of their motion, and therefore particles tend to travel longer distances
forwards than backwards in time.
It is readily shown that the following analogue equations to eqs. (4.13) to (4.15)

describe the short-time behaviour of the mean-square dispersion ⟨𝛿𝑥′2
𝑖 ⟩,

⟨𝛿𝑥′2
𝑖 ⟩(𝜏, 𝑦0) = 𝑢′2

𝑖 (𝑦0)𝜏2 + 𝑢′
𝑖𝑎′

𝑖(𝑦0)𝜏3 + 𝒪(𝜏4), (4.16)
⟨𝛿𝑥′2

𝑖 ⟩(𝜏, 𝑦0) − ⟨𝛿𝑥′2
𝑖 ⟩(−𝜏, 𝑦0) = 2𝑢′

𝑖𝑎′
𝑖(𝑦0)𝜏3 + 𝒪(𝜏5), (4.17)

⟨𝛿𝒙′2⟩(𝜏, 𝑦0) − ⟨𝛿𝒙′2⟩(−𝜏, 𝑦0) = 2𝒖′ ⋅ 𝒂′(𝑦0)𝜏3 + 𝒪(𝜏5). (4.18)

The time asymmetry of the mean-square dispersion is therefore quantified by the
velocity-acceleration covariance 𝒖′ ⋅ 𝒂′, analogously to the mean Lagrangian power 𝛱
for the case of ⟨𝛿𝒙2⟩. As discussed below in section 4.4, 𝒖′ ⋅ 𝒂′ is related (but not exactly
equal) to the average rate of change of TKE along Lagrangian paths.

4.4 Lagrangian power and velocity-acceleration covariance

In the following, the profiles of mean Lagrangian power 𝒖 ⋅ 𝒂 and velocity-acceleration
covariance 𝒖′ ⋅ 𝒂′ appearing in eqs. (4.15) and (4.18) are presented in the channel,
as well as the contributions from the three velocity and acceleration components
appearing in eqs. (4.14) and (4.17).

Unlike in homogeneous flows, where there is no average flux of energy across spatial
regions,4 in wall turbulence most of the energy is injected far from the walls and
dissipated by viscous shear near the walls. Indeed, as discussed in more detail in
appendix B.1, the mean Lagrangian power profile 𝛱(𝑦) across the channel results

4There is an energy flux across spatial scales, i.e. the energy cascade, but this is not discussed here.

103



4 Single-particle dispersion

10−1 100 101 102 103

y+

−0.6

−0.4

−0.2

0.0

u
a i
i+

a

10−1 100 101 102 103

y+

−5

0

5

10

15

20

u
a

ε
i

i/

b

u a⋅

u a′⋅ ′

u a′ ′x x

u ax x

u ay y

u az z

Figure 4.4. Mean velocity-acceleration product across the channel non-dimensionalised (a)
in wall-units and (b) by the mean turbulent dissipation rate 𝜀(𝑦). Solid lines represent total
components 𝑢𝑖𝑎𝑖 (no summation implied). The dashed line represents the velocity-acceleration
covariance 𝑢′

𝑥𝑎′
𝑥. Circles represent the Lagrangian power 𝒖 ⋅ 𝒂 and squares represent the covari-

ance 𝒖′ ⋅ 𝒂′. In subfigure (b), the red dotted line corresponds to 𝑢𝑖𝑎𝑖 = −𝜀. Mean fluctuating
products 𝑢′

𝑦𝑎′
𝑦 and 𝑢′

𝑧𝑎′
𝑧 are not shown since they are equal to their total counterparts.

from the balance between (i) the mean input power 𝛱in, which corresponds to the
average work performed by the mean pressure gradient driving the flow; (ii) the total
mean energy dissipation rate 𝜀𝑇 = 𝜈(𝜕𝑗𝑢𝑖)(𝜕𝑗𝑢𝑖); and (iii) a viscous diffusion term
that mainly redistributes kinetic energy from the buffer layer to the viscous subregion.
Since the mean input power is proportional to the local mean streamwise velocity in
the channel [eq. (B.4)], most of the energy is injected where the average velocity is
higher, i.e. far from the walls. The total kinetic energy budget across the channel is
plotted in fig. B.1 (appendix B.1). Due to statistical stationarity, the total energy in
the system is conserved over time, and therefore the globally-averaged mean power is
necessarily zero, i.e. ∫ℎ

−ℎ 𝛱(𝑦)d𝑦 = 0, which is verified in our simulations.
Profiles of mean Lagrangian power, as well as the contributions from the three

velocity and acceleration components, are shown in fig. 4.4. The mean power is mainly
determined by the streamwise velocity and acceleration components, while the other
two components have a negligible contribution. Thismeans that themean rate of change
of kinetic energy mostly describes an average increase or decrease of the fluid particle
streamwise velocity. The negative peak of the mean power at 𝑦+ ≈ 9 indicates that fluid
particles on average lose kinetic energy in the near-wall region, and as a consequence
they travel on average shorter streamwise distances when tracked forwards in time.
This is consistent with the observations from figs. 3.5 and 4.2. Similar behaviour of the
mean Lagrangian power across the channel has been observed in the experiments by
Stelzenmuller [173, sec. 3.4]. Far from the wall and up to the channel centre, the mean
Lagrangian power is weakly and increasingly positive. This is more visible in fig. 4.4b,
where quantities are normalised by the local mean turbulent energy dissipation rate
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4.4 Lagrangian power and velocity-acceleration covariance

𝜀(𝑦). This suggests that fluid particles on average gain energy in that region, albeit at a
much slower rate than the loss of energy near the wall.
Also shown in fig. 4.4 is the velocity-acceleration covariance 𝒖′ ⋅ 𝒂′, which, as for

𝒖 ⋅ 𝒂, is almost entirely determined by the streamwise fluctuations 𝑢′𝑥𝑎′𝑥. As noted
above, the velocity-acceleration covariance is the analogue of the mean Lagrangian
power when the mean-square dispersion ⟨𝛿𝑥′2

𝑖 ⟩ is considered, as it determines its
short-time temporal asymmetry. The covariance is related to the mean power via the
Reynolds decomposition 𝑢′

𝑖𝑎′
𝑖 = 𝑢𝑖𝑎𝑖 − 𝑢𝑖 𝑎𝑖. Since the mean velocity 𝑢𝑖 is zero in the

wall-normal and spanwise directions, the components 𝑢′𝑦𝑎′𝑦 and 𝑢′𝑧𝑎′𝑧 are equal to their
non-fluctuating counterparts.
From fig. 4.4 it is seen that, in the buffer layer, 𝒖′ ⋅ 𝒂′ represents a non-negligible

fraction of the mean Lagrangian power, accounting for about 30% of the total loss of
kinetic energy at the peak located near 𝑦+ = 10. As opposed to the total power, which
is weakly positive for 𝑦+ > 200, the covariance is negative at all wall distances. This
is seen more clearly in fig. 4.4b where data is normalised by the local mean turbulent
dissipation rate 𝜀(𝑦). Interestingly, 𝒖′ ⋅ 𝒂′ ≈ −𝜀 in most of the channel. This can be
explained, at least in the logarithmic region of the channel, by considering the relation
between 𝒖′ ⋅ 𝒂′ and the average rate of change of TKE along tracer paths derived in
appendix B.2 [eq. (B.17)],

D𝑘
D𝑡 (𝑦) = 𝒖′ ⋅ 𝒂′(𝑦) + 𝒫(𝑦), (4.19)

where 𝑘 = |𝒖′| 2/2 is the TKE5 and 𝒫 = −𝑢′𝑥𝑢′𝑦 d𝑈/d𝑦 is the turbulent kinetic energy
production rate [137]. In the logarithmic region, 𝒖′ ⋅ 𝒂′ and 𝒫 cancel out ensuring that,
on average, fluid particles do not gain or lose TKE in that region (fig. B.2). At the same
time, TKE production and dissipation rates are nearly balanced in the logarithmic
region [see e.g. 94], which leads to the observed value 𝒖′ ⋅ 𝒂′ ≈ −𝜀.

Alternatively, from the kinetic energy budget derived from the Navier–Stokes equa-
tions [137], it is shown in appendix B.2 that the velocity-acceleration covariance can be
written as [eq. (B.25)]

𝒖′ ⋅ 𝒂′ = −𝜀 + 𝜈d
2𝑘

d𝑦2 − 1
𝜌
d
d𝑦𝑢′𝑦𝑝′, (4.20)

where the last two terms on the right-hand side represent viscous diffusion andpressure
transport. The relation 𝒖′ ⋅ 𝒂′ ≈ −𝜀 can be explained by these last two terms vanishing
far from the wall, which has been observed away from the viscous and buffer layers in
previous studies [1, 68, 100]. More generally, this relation is expected to be valid in
other inhomogeneous turbulent flows. For instance, Huck et al. [70, 71] analysed in

5The notation 𝑘 denotes in this work the instantaneous turbulent kinetic energy evaluated at a fixed
position in space, or equivalently, the instantaneous TKE of a fluid particle. Other works, including
Pope [137] referenced above, use 𝑘 to denote the Eulerian average of the TKE, which is here given by
𝑘.
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4 Single-particle dispersion

detail the TKE budget equations in a von Kármán flow between two counter-rotating
disks in a square tank. They found 𝒖′ ⋅ 𝒂′ ≈ −𝜀 far from the impellers where energy is
injected into the flow, and suggested that this result can provide an alternative method
for estimating the local dissipation rate in inhomogeneous turbulence experiments
using single-particle Lagrangian data. In particular, this approach is simpler than
relying on the relation 𝛿𝒖 ⋅ 𝛿𝒂 ≈ −2𝜀 involving relative increments of velocity and
acceleration between particle pairs (see section 5.3.1 for details), which requires higher
particle concentrations [70].

To summarise, in contrast with the direct relation between 𝒖 ⋅ 𝒂 and the total kinetic
energy 𝐸, the velocity-acceleration covariance 𝒖′ ⋅ 𝒂′ does not directly represent the
mean rate of change of TKE, towhich it is instead related by eq. (4.19). Far from thewall,
𝒖′ ⋅ 𝒂′ only represents the loss of TKE by fluid particles associated to the dissipation
𝜀, without being counterbalanced by the TKE production term 𝒫. In particular, this
suggests that the mean-square dispersion is time-asymmetric in the logarithmic region
despite the balance between production and dissipation of TKE, i.e. despite the fact
that tracers on average do not gain or lose TKE in that region.

4.5 Mean-square dispersion in the channel

In this section, mean-square dispersion statistics obtained from our channel flow DNS
at Re𝜏 = 1440 are presented. Results are compared with the short-time predictions
in section 4.3.2. In particular, the temporal asymmetry of mean-square dispersion
statistics is evaluated in terms of the profiles of mean Lagrangian power and velocity-
acceleration covariance discussed in section 4.4.

4.5.1 Mean-square streamwise displacement

The case of the streamwise displacement 𝛿𝑥 is shown in fig. 4.5. In fig. 4.5a, the mean-
square displacement ⟨𝛿𝑥2⟩ is plotted compensated by the short-time ballistic regime
(eq. (4.12) truncated to its first-order term) for positive and negative time lags 𝜏. The
ballistic approximation accurately describes the mean tracer motion at short times.
This ballistic regime is valid over a characteristic time that increases with wall distance,
consistently with the behaviour of the Lagrangian integral time scales in the channel
(see section 3.5, fig. 3.12).

Following the ballistic regime, the mean-square displacement evolves differently for
positive and negative time lags, demonstrating the time asymmetry of the streamwise
particle motion. For tracers initially located near the wall, ⟨𝛿𝑥2⟩ grows faster backwards
in time. This is consistent with the observations for the absolute streamwise displace-
ment (fig. 4.2). In the case of 𝑦+

0 = 18 and 67, the temporal asymmetry is explained
at short times, up to |𝜏| ∼ 10, by the negative value of the streamwise contribution to
the mean Lagrangian power 𝑢𝑥𝑎𝑥 observed in fig. 4.4. This is confirmed in fig. 4.5b,
where the difference between backward and forward displacement is compensated by
2𝜏3. Under this normalisation, the short-time estimation (4.14) predicts a short-time

106



4.5 Mean-square dispersion in the channel

100 101 102 103

| |τ+

1.0

1.5

2.0

2.5

⟨
⟩

δx
v

τ
2

0
2

/[
⟨

⟩
]

x

ay0
+

18

67

232

784

1436

100 101 102 103

τ+

−0.4

−0.3

−0.2

−0.1

0.0

[
]

⟨
⟩

⟨
⟩

δx
τ

δx
τ

τ
2

2
3

(
)

−
(−

)
/(

2
) b

Figure 4.5. Streamwise mean-square displacement in the channel. (a) Streamwise mean-square
displacement ⟨𝛿𝑥2⟩ compensated by the ballistic short-time approximation ⟨𝛿𝑥2⟩ ≈ ⟨𝑣2

0𝑥⟩𝜏2.
Solid lines, forward dispersion (𝜏 > 0); dotted lines, backward dispersion (𝜏 < 0). Colours
represent different initial wall-normal planes 𝑦0. (b) Difference between ⟨𝛿𝑥2⟩(𝜏) for 𝜏 > 0 and
𝜏 < 0 compensated by 2𝜏3 and non-dimensionalised in wall units. Dashed lines correspond
to the streamwise contribution to the Lagrangian power ⟨𝑣𝑥𝑎𝑥⟩ evaluated from tracer data at
𝜏 = 0.

plateau at 𝑢𝑥𝑎𝑥, represented by dashed lines in fig. 4.5b.
The short-time estimation (4.14) is valid for all wall distances according to fig. 4.5b.

In the case of 𝑦+
0 = 232, 𝑢𝑥𝑎𝑥 ≈ 0 leading to a nearly time-symmetric mean-square

displacement at short time lags. As shown in fig. 4.4, 𝑢𝑥𝑎𝑥 is weakly positive at larger
wall distances, and therefore tracers travel slightly longer distances when tracked
forwards in time, which is confirmed by fig. 4.5b. As discussed in section 4.4, this
reflects the fact that tracers gain kinetic energy on average far from the wall.

Up to this point we have only explained the temporal asymmetry of ⟨𝛿𝑥2⟩ in terms of
the short-time Taylor expansion (4.14). A qualitative description can bemade regarding
the asymmetry at longer times by taking into account the mean Lagrangian power
profiles in fig. 4.4. For tracers initially located near the wall, the negative gap between
forward and backward displacements can be expected to increase as long as tracers
stay within a region of negative 𝑢𝑥𝑎𝑥, i.e. within 𝑦+ < 200. In fig. 4.5b, it is shown that
for particles initially located at 𝑦+ = 18, the gap increases fastest for short time lags,
while at later times the gap keeps increasing at a lower rate. This may be explained
by particles migrating on average away from the wall where the mean Lagrangian
power is weaker, leading to a slower rate of change of the mean tracer kinetic energy
and thus to a slower growth of the forwards-backwards gap. As seen in fig. 4.5b, this
is not the case for tracers released at 𝑦+ = 67, where the compensated gap increases
at some intermediate time lag. This may reflect the fact that some particles migrate
towards the wall where the mean Lagrangian power is strongly negative. In this case,
the average kinetic energy lost by the subset of particles migrating towards the wall
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Figure 4.6. Streamwisemean-square dispersion in the channel. Equivalent of fig. 4.5 for themean-
square dispersion ⟨𝛿𝑥′2⟩. In (a), the ballistic short-time approximation is given by ⟨𝛿𝑥′2⟩ ≈
⟨𝑣′2

0𝑥⟩𝜏2. In (b), dashed lines correspond to the streamwise velocity-acceleration covariance
𝑢′

𝑥𝑎′
𝑥 evaluated at each initial wall distance. See fig. 4.5 for more details.

would strongly contribute to the temporal asymmetry after the initial ballistic regime.
In comparison, the positive contribution of the particles migrating towards the channel
centre to the mean kinetic energy would be much weaker, since the mean Lagrangian
power is only weakly positive at 𝑦+ > 200 (fig. 4.4a).
We now briefly comment on the general long-time behaviour of the mean-square

displacement curves in fig. 4.5a. The interpretation is similar to that of the mean
displacement ⟨𝛿𝑥⟩ (section 4.2). At long times, the streamwise displacement of tracers
initially located close to the wall is accelerated compared to their initial ballistic regime
since their average velocity increases (fig. 4.3). The opposite occurs with tracers initially
located near the channel centre, i.e. their average velocity decreases to match the bulk
velocity 𝑈𝑏 at long times.

4.5.2 Mean-square streamwise dispersion

We now consider the mean-square dispersion ⟨𝛿𝑥′2⟩, i.e. the variance of the streamwise
tracer dispersion in the channel quantifying the streamwise particle spread over time.
The time evolution of ⟨𝛿𝑥′2⟩, for positive and negative time lags, is presented in fig. 4.6a
compensated by the ballistic regime associated to eq. (4.16). The curves display a clear
ballistic regime at short times, which has however a shorter characteristic duration than
for ⟨𝛿𝑥2⟩, discussed above. This difference is explained by the fact that the fluctuating
tracer velocity changes more abruptly, in relative terms, than its total velocity.6 As for

6In other words, a change in the streamwise velocity of a fluid particle, 𝛿𝑣𝑥 = 𝑣𝑥(𝑡 + 𝜏) − 𝑣𝑥(𝑡), results
in a more important relative modification of the particle fluctuating velocity than of its total velocity,
i.e. ∣𝛿𝑣′

𝑥/𝑣′
𝑥∣ ≫ ∣𝛿𝑣𝑥/𝑣𝑥∣. At short time lags 𝜏, this can be proved by noting that 𝛿𝑣′

𝑥 ≈ 𝛿𝑣𝑥 and
∣𝑣𝑥∣ ≈ ∣𝑈(𝑦) + 𝑣′

𝑥∣ ≫ ∣𝑣′
𝑥∣. This is valid as long as tracers stay in the same region of the channel where
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4.5 Mean-square dispersion in the channel

⟨𝛿𝑥2⟩, we find that the characteristic time of validity of the ballistic regime grows with
wall distance, as do the turbulence time scales in the channel (fig. 3.12).

At longer times, a clear divergence between positive and negative time lags is ob-
served. For all initial wall distances, tracers spread faster over the streamwise direction
when tracked backwards in time. This is qualitatively consistent with the short-time
estimation (4.17) and the observation that the streamwise velocity-acceleration covari-
ance 𝑢′𝑥𝑎′𝑥 is negative everywhere in the channel (fig. 4.4).
The temporal asymmetry is quantified in fig. 4.6b, where the difference between

forward and backward mean-square dispersion compensated by 2𝜏3 is plotted. The
short-time plateaus confirm that the estimation (4.17) correctly predicts the time
asymmetry at short time lags, and therefore that the velocity-acceleration covariance
determines the irreversibility of the streamwise dispersion. In all cases, the gap between
backward and forward dispersion increases at faster rate for small time increments
and slows down for larger time lags.

4.5.3 Mean-square wall-normal displacement

The wall-normal motion of tracer particles has been initially described in section 4.1
in terms of the average displacement ⟨𝛿𝑦⟩(𝜏, 𝑦0). It has been shown that tracers drift
on average towards the channel centre, consistently with the hypothesis that tracers
lose memory of their initial positions over time and tend asymptotically to a uniform
distribution across the channel at infinite time lags. This hypothesis is evaluated here
in terms of the expected values of the wall-normal mean-square displacement ⟨𝛿𝑦2⟩
and dispersion ⟨𝛿𝑦′2⟩.
The asymptotically uniform distribution of tracers across the channel can be ex-

pressed as the uniform PDF describing the wall-normal location 𝑦 of a tracer,

𝑃(𝑦) = 1
2ℎ for 𝑦 ∈ [0, 2ℎ], (4.21)

where ℎ is the channel half-width. From eq. (4.21), the expected value of 𝑦2 is ⟨𝑦2⟩ =
4ℎ2/3. From here, it is readily shown that the asymptotic expected values of 𝛿𝑦2 and
𝛿𝑦′2 are given by

⟨𝛿𝑦2⟩ = ℎ2

3 + (ℎ − 𝑦0)2 and ⟨𝛿𝑦′2⟩ = ℎ2

3 . (4.22)

The time evolution of ⟨𝛿𝑦2⟩ and ⟨𝛿𝑦′2⟩ for different initial wall distances 𝑦0 is presen-
ted in fig. 4.7. The ballistic regime predicted by eqs. (4.13) and (4.16) is recovered
at short times for all wall distances. At long times, the curves tend to the asymptotic
values given by eq. (4.22), which are represented by horizontal dashed lines in the
figure. Results are shown for positive and negative time lags, although the difference
between both is barely visible suggesting that wall-normal dispersion is symmetric
in time. This is consistent with the negligible contribution of 𝑢𝑦𝑎𝑦 to the Lagrangian

the mean velocity 𝑈(𝑦) does not change significantly.
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Figure 4.7. (a) Wall-normal mean-square displacement ⟨𝛿𝑦2⟩. (b) Wall-normal mean-square
dispersion ⟨𝛿𝑦′2⟩. Solid lines, forward dispersion (𝜏 > 0); dotted lines, backward dispersion
(𝜏 < 0). Forward dispersion curves are obtained from longer-extent dataset DS2. Horizontal
dashed lines on the top right represent the asymptotic estimations (4.22). Quantities are non-
dimensionalised in wall units. Curves are shifted vertically by increments of one decade for
clarity.

power (fig. 4.4), to which is associated a negligible 𝜏3 term in eq. (4.14). Interestingly,
for initial locations in the logarithmic layer (𝑦+

0 = 67 and 232 in the figure), the diffusive
regime ⟨𝛿𝑦′2⟩ ∼ 𝜏 predicted by Taylor is observed at intermediate times before reaching
the asymptotic state mentioned above. This may be explained by tracers staying within
the logarithmic region, where the wall-normal velocity variance 𝑢′2𝑦 is maximum and
nearly constant (see fig. 3.2b), before leaving towards either the inner or the outer layer
where the intensity of the wall-normal velocity fluctuations (and thus the dispersion
rate) is lower.

Comparison between fig. 4.7(a) and (b) shows that the time evolutions of ⟨𝛿𝑦2⟩ and
⟨𝛿𝑦′2⟩ are very similar. In other words, the mean-square displacement ⟨𝛿𝑦2⟩ is mainly
determined by the spreading of tracers over the wall-normal direction and not so much
by the mean drift ⟨𝛿𝑦⟩. The latter, as seen in section 4.1, evolves very slowly in time. A
rough comparison of the length scales associated to the mean drift and to the mean
dispersion is as follows. From fig. 4.1, it is seen that on average, tracers near the wall
require 𝜏+ ∼ 1000 to travel a distance ⟨𝛿𝑦⟩+ ∼ 200. Over the same time, fig. 4.7 gives a
mean-square dispersion of ⟨𝛿𝑦′2⟩+ ∼ 105 for particles initially located at 𝑦+

0 = 18, i.e.
a spreading of √105 ≈ 300 wall units. Hence, dispersion acts faster than mean drift
for particles initially located near the wall. Further away from the wall, the difference
between the evolution rates of dispersion and drift is expected to grow as mean drift
becomes slower (fig. 4.1).
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Figure 4.8. Spanwise mean-square displacement ⟨𝛿𝑧2⟩ (a) non-dimensionalised in wall units,
and (b) compensated by the ballistic short-time approximation ⟨𝛿𝑧2⟩ ≈ ⟨𝑣2

0𝑧⟩𝜏2. Solid lines,
forward dispersion (𝜏 > 0); dotted lines, backward dispersion (𝜏 < 0). In (a), curves are
shifted vertically by increments of one decade for clarity.

4.5.4 Mean-square spanwise dispersion

Finally, the mean-square dispersion in the spanwise direction is represented in fig. 4.8a.
Noting that themean displacement ⟨𝛿𝑧⟩ is zero due to 𝑧 ↔ −𝑧 symmetry in the channel,
the mean-square displacement ⟨𝛿𝑧2⟩ and the mean-square dispersion ⟨𝛿𝑧′2⟩ are equal
and therefore only one of them is represented in the figure. At long times, the curves
tend to the normally-diffusive regime first predicted by Taylor [175], i.e. ⟨𝛿𝑧2⟩ ∼ 𝜏. As
for the other displacement components, a clear ballistic regime is observed at short
times. The time of validity of this ballistic regime is roughly equal to that observed for
the streamwise mean-square dispersion (fig. 4.6a). This is clearer in fig. 4.8b where
the mean-square dispersion is compensated by the short-time ballistic regime.

Similarly to the case of the wall-normal dispersion, ⟨𝛿𝑧2⟩ does not display significant
time asymmetry, which is again consistent with the approximately zero value of 𝑢𝑧𝑎𝑧
in the channel (fig. 4.4). Differences between backward and forward dispersion are
more visible in fig. 4.8b due to the chosen normalisation, but they are negligible and
most likely a result of the finite size of the statistical sample.

4.6 Conclusion

Single-tracer dispersion in turbulent channel flow at Re𝜏 = 1440 is described in this
chapter. The time asymmetry of dispersion is analysed with regard to the average
fluxes of kinetic energy across the channel which are a sign of the irreversibility of
this kind of flow, and which distinguish wall-bounded turbulence from homogeneous
turbulent flows.
As opposed to HIT where there are no preferential directions, in wall-bounded

turbulence there exists an average tracer drift. The most evident average drift is related
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to the effect of the mean flow which advects tracers at high speed in the streamwise
direction. As described in section 4.1, tracers are also affected by a (much slower)
average advection in the wall-normal direction due to the cumulative effect of the
velocity fluctuations in that direction. Tracers drift on average towards the channel
centre, since they tend to distribute uniformly across the channel at very long times as
they losememory of their initial locations. However, the precisemechanisms explaining
this wall-normal drift are not understood at this point. A better understanding of this
phenomenon is relevant for modelling the dispersion of tracers, and more concretely, it
would lead to improvements of the ballistic particle pair dispersion model introduced
later in chapter 5 by properly accounting for the absolute drift of particle pairs.
The irreversibility of wall-bounded turbulent flows is reflected on the time asym-

metry of the streamwise motion of tracers in the channel. For instance, tracers located
near the wall at a reference time 𝑡0 travel on average longer distances when tracked
backwards in time than forwards (fig. 4.2a). Furthermore, groups of tracers probed at
any fixed wall distance spread over larger streamwise distances for negative time lags
(fig. 4.6).

In section 4.2, the first observation is associated to a non-zero value of the average
streamwise acceleration, although this is only valid at very short times, and in regions
of strong average acceleration, i.e. near the wall. A more complete explanation is given
in section 4.3 in terms of the average flux of total kinetic energy in the channel. In
statistically stationary channel flow turbulence, even though the mean energy content
is constant in time, energy is mainly injected far from the wall where the mean velocity
is higher, and is dissipated mainly in the near-wall region due to viscous stresses. This
imbalance implies that, close to the wall where dissipation is more important, tracers
lose kinetic energy on average, while the opposite occurs far from the wall. This is
quantified by the mean Lagrangian power 𝛱 = 𝒖 ⋅ 𝒂, which is negative close to the
wall and slightly positive near the channel centre. As a result, on average tracers see an
ever-decreasing streamwise convection speed as long as they stay within the near-wall
region, leading to the observed temporal asymmetry.
The second observation mentioned above is explained in section 4.3 by linking the

short-time temporal asymmetry of the mean tracer spreading rate in the streamwise
direction, to the velocity-acceleration covariance 𝒖′ ⋅ 𝒂′, which is itself negative all
across the channel, and approximately equal to −𝜀 in the logarithmic and outer regions
of the channel. This suggests that the mean spreading rate decreases over time due to
turbulent energy dissipation, while TKE production does not play a role on tracer dis-
persion. This finding differentiates the present flow fromHIT where Galilean-invariant
single-particle statistics (such as the mean-square dispersion) are time-symmetric.

Temporal asymmetry is not observed in wall-normal and spanwise dispersion stat-
istics. This is consistent with the contributions of the respective components to 𝒖 ⋅ 𝒂
and 𝒖′ ⋅ 𝒂′ being negligible compared to the streamwise contributions. Additionally,
the expected long-time behaviour of wall-normal and spanwise dispersion statistics is
evaluated from numerical data. In the wall-normal direction, the expectation is that
tracers become uniformly distributed across the channel at very long times, which is ex-
pressed by an asymptotic mean-square dispersion ⟨𝛿𝑦′2⟩ = ℎ2/3. Due to isotropy in the
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spanwise direction, the normally-diffusive regime ⟨𝛿𝑧′2⟩ ∼ 𝜏 predicted by Taylor [175]
is expected in 𝑧. The available data confirms the tendency towards these two regimes
at asymptotically long times.
To improve the understanding of Lagrangian kinetic energy dynamics and their

link to tracer dispersion, it may be instructive to analyse the average evolution of Lag-
rangian power along tracer paths, ⟨𝒗 ⋅ 𝒂⟩(𝜏, 𝑦0), as well as the evolution of the velocity-
acceleration variance ⟨𝒗′ ⋅ 𝒂′⟩(𝜏, 𝑦0). As an additional perspective, the present analysis
may be completed by studying the temporal evolution of the crossed streamwise–wall-
normal component of the single particle dispersion (or displacement) tensor ⟨𝛿𝑥′𝛿𝑦′⟩.
This component is expected to be non-zero, and may be affected by the temporal
irreversibility of wall-bounded turbulence.
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The description of tracer dispersion in turbulent channel flows is expanded in the
present chapter by analysing the separation dynamics of pairs of fluid particles over
time. Due to its direct relation to turbulent mixing and to the dissipation of scalar
fluctuations, the relative dispersion problem is relevant for practical applications such
as the growth of a cloud of pollutant in the atmosphere [149, 155]. Since the seminal
work of Richardson [146] in 1926, relative dispersion in turbulent flows has been the
subject of numerous studies. However, up to this day definite answers to some of
the questions derived from Richardson’s work have not been provided even in the
ideal setting of homogeneous isotropic turbulence. In particular, no clear consensus
exists regarding the conditions of validity of the enhanced pair separation dynamics
described by Richardson.

In this chapter, we present relative dispersion statistics in a turbulent channel flow
obtained from DNS at Re𝜏 = 1440. This Reynolds number, although still moderate, is
significantly higher than previous relative dispersion studies in wall-bounded turbu-
lence [134], and thus the expectation is that a higher degree of scale separation shall
provide a clearer identification of the different dispersion regimes in inhomogeneous
flows. In the following, the time asymmetry of relative dispersion in wall-bounded tur-
bulence is considered and its short-time behaviour is contrasted to the case of HIT [79].
The anisotropy of pair dispersion is then studied via the relative dispersion tensor.
A preliminary model for the dispersion of tracer pairs in inhomogeneous flows is
introduced, based on the ballistic cascade phenomenology proposed by Bourgoin [29].
The present chapter is adapted from our article ‘Relative Dispersion of Particle Pairs in
Turbulent Channel Flow’ [135].

The outline of this chapter is as follows. Relative dispersion investigations in iso-
tropic and anisotropic turbulent flows relevant in the context of the present work are
presented in section 5.1. The numerical approach for obtaining relative dispersion
statistics in channel flow simulations is then described in section 5.2. In section 5.3,
forwards and backwards in time mean-square dispersion statistics are presented. Their
short-time evolution is analysed including relevant dispersion time scales, as well as
their time asymmetry and their dependence on the initial particle pair spatial con-
figuration. To characterise the influence of mean shear on relative dispersion, pair
separation is decomposed in section 5.4 into contributions by the mean and fluctuating
velocity fields, and the mean-square dispersion induced by the fluctuating flow is
studied. The anisotropy of pair separation is then analysed in section 5.5 in terms of
the relative dispersion tensor, describing the mean-square separation in each direc-
tion and the relation between separation components. Then, the ballistic dispersion
model by Bourgoin [29] is adapted to inhomogeneous flows in section 5.6 and assessed
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against our channel flow DNS results. Finally, section 5.7 is devoted to conclusions and
perspectives.

5.1 Introduction

5.1.1 Relative dispersion in isotropic turbulent flows

In turbulent flows, the spreading of a cloud of passive scalar about its centre of mass
can be described by the statistics of relative dispersion between fluid particle pairs [13,
155]. As first described by Richardson [146], turbulent motion can greatly enhance the
pair separation process. In his seminal paper, Richardson proposed that the separation
of two tracers in turbulent flows can be described (in a statistical sense) by a diffusive
process with a scale-dependent diffusion coefficient 𝐾(𝐷), where 𝐷 = | 𝒙𝐵 − 𝒙𝐴| is the
separation between the two particles. When 𝐷 is in the inertial subrange (𝜂 ≪ 𝐷 ≪ 𝐿,
where 𝜂 = (𝜈3/𝜀)1/4 is the Kolmogorov length scale and 𝐿 is the characteristic size of
the largest turbulent eddies), Richardson found from measurements that the diffusion
coefficient 𝐾(𝐷) is proportional to 𝐷4/3. This is since then known as Richardson’s
4/3 law. As later shown by Obukhov [121], the same relation can be derived from
dimensional arguments in the framework of Kolmogorov’s K41 local isotropy the-
ory [83] leading to 𝐾 ∼ 𝜀1/3𝐷−4/3. In principle, this relation cannot be valid at short
times following the identification of the particle pairs, when dispersion also depends
on the initial separation 𝐷0 [12], which has to be additionally accounted for in the
dimensional arguments.

A consequence of Richardson’s law is that the mean-square separation between two
particles is expected to grow as

⟨𝐷2(𝑡)⟩ = 𝑔𝜀𝑡3 (5.1)

when𝐷 is in the inertial subrange. Equation (5.1) is referred to as Richardson–Obukhov
law [149]. Here, 𝑔 is known as Richardson’s constant and is expected to have a universal
value. As mentioned above, the Richardson–Obukhov regime cannot be expected to
hold at short times when the initial separation 𝐷0 must be taken into account. This
dependency on the initial separation is described by Batchelor’s regime [12], which
expresses that the short-term mean-square change of separation between particle pairs
is ballistic,

⟨𝑹2(𝑡)⟩ = ⟨(𝑫(𝑡) − 𝑫0)2⟩ = ⟨𝛿𝒗2
0⟩𝑡2 for 𝑡 ≪ 𝑡𝐵. (5.2)

Here 𝑫(𝑡) is the instantaneous particle separation vector and 𝑫0 = 𝑫(0), 𝛿𝒗0 is the
initial relative velocity between the particles, and 𝑡𝐵 is a characteristic time scale of the
ballistic regime, which may be related to the characteristic time scales of the turbulent
flow. Batchelor’s regime can be derived from the Taylor expansion of 𝑫(𝑡) about
𝑡 = 0. The Lagrangian average ⟨⋅⟩, introduced in section 3.3 in the context of single-
particle statistics, denotes here an ensemble of particle pairs initially separated by
𝑫0. In HIT, if 𝐷0 = ∣𝑫0∣ is within the inertial subrange, the ballistic time 𝑡𝐵 may be
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estimated to be proportional to the eddy-turnover time at the scale 𝐷0, resulting in
the Batchelor time scale 𝑡𝐸 = 𝐷0

2/3𝜀−1/3 [12]. Here, the initial mean square relative
velocity ⟨𝛿𝒗2

0⟩ is nothing else than the Eulerian second-order velocity structure function
𝑆2(𝒙, 𝒓) = [𝒖(𝒙 + 𝒓, 𝑡) − 𝒖(𝒙, 𝑡)]2 evaluated at the separation 𝒓 = 𝑫0. In HIT, if the
distance 𝑟 = |𝒓| is in the inertial range, K41 theory predicts a structure function of
the form 𝑆2(𝑟) = 11

3 𝐶2(𝜀𝑟)2/3. Here 𝐶2 is Kolmogorov’s constant for the longitudinal
second-order velocity structure function [55] which has the well-accepted value of
𝐶2 ≈ 2.1 in high-Reynolds numbers homogeneous isotropic flows [172].

It is important to note that the ballistic regime (5.2) is a purely kinematic relation, as
it is derived from a Taylor expansion andmakes no assumptions on the underlying flow.
Moreover, it is exactly valid for the change of separation 𝑹(𝑡) = 𝑫(𝑡)−𝑫0 and not for the
separation 𝑫(𝑡) itself. Some authors have attempted to identify the ballistic separation
regime using the relation ⟨𝑫2(𝑡)⟩ − 𝑫2

0 ≈ ⟨𝛿𝒗2
0⟩𝑡2. This relation is derived from the

Taylor expansion of 𝑫(𝑡) under the additional assumption that ⟨𝑫0 ⋅ 𝛿𝒗0⟩ = 0, i.e. that
the initial separation and the initial relative velocity are uncorrelated [149]. This was
originally assumed by Batchelor [12] and is expected to hold in isotropic turbulence.
However, as first verified by Ouellette et al. [128] in a von Kármán turbulent flow
between two counter-rotating impellers, this term cannot be neglected in anisotropic
flows. That is, if ⟨𝑫2⟩ − 𝑫2

0 is plotted instead of ⟨𝑹2⟩, the universal 𝑡2 scaling at very
short times is lost, as it is polluted by the additional ⟨𝑫0 ⋅ 𝛿𝒗0⟩ term.
Relative dispersion of particle pairs has been extensively investigated in isotropic

flows [149, 155]. These studies show that the initial particle separation is extremely
influential in relative separation statistics at short times, and on the time scales de-
termining the transition from the ballistic to Richardson–Obukhov regime. Using PTV
in a nearly isotropic flow at Re𝜆 = 815, Bourgoin et al. [30] experimentally showed
that Batchelor’s regime (5.2) governs pair separation over several time decades, while
signs of Richardson–Obukhov regime (5.1) were not observed for any of the initial pair
separations 𝐷0. The authors concluded that even larger turbulence levels are required
to achieve Richardson–Obukhov super-diffusive regime. Indeed, this regime requires
the existence of an intermediate time range in which the following two conditions are
simultaneously satisfied: (i) the initial separation 𝐷0 has been forgotten (𝑡 ≫ 𝑡𝐵), and
(ii) particle separation remains small enough for their trajectories to remain correlated
(𝐷(𝑡) ≪ 𝐿). The second condition is equivalent to 𝑡 ≪ 𝑇𝐿 where 𝑇𝐿 is the Lagrangian
integral time scale [149]. This implies a large separation of scales requiring very high
Reynolds number turbulent flows. We finally note that at long times 𝑡 ≫ 𝑇𝐿, the mo-
tion of the particles in a pair becomes decorrelated and their mean-square separation
follows twice Taylor’s [175] prediction [see also eq. (1.6)],

⟨𝐷(𝑡)2⟩ ≈ 4𝑢′2
𝑖 𝑇𝐿𝑡 for 𝑡 ≫ 𝑇𝐿. (5.3)

Experimentally, Ott and Mann [126] observed a Richardson–Obukhov regime in the
inertial range at Re𝜆 ≈ 100 provided that a temporal offset is applied to eq. (5.1), i.e.
⟨𝐷(𝑡)2⟩ = 𝑔𝜀(𝑡 − 𝑇0)3. The authors chose the offset 𝑇0 by a fit of their data, finding a
Richardson constant 𝑔 ≈ 0.5. This value is consistent with more recent experimental
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and numerical studies in HIT [18, 25, 27, 34, 75]. Boffetta and Sokolov [27] found great
uncertainty in their estimation of 𝑔, which they attributed to turbulence intermittency.
They improved their estimation by using exit-time statistics, in which statistics are
gathered over particle pairs separated at the same scales (see also Biferale et al. [23]).
Exit-time statistics reduce crossover effects related to averaging over separations be-
longing to different length scales. Also in HIT, Rast and Pinton [145] studied pair
dispersion in a point-vortex flow model by analysing the time scale 𝑡𝑑 during which
individual particle pairs remain together before their separation increases significantly.
The authors suggested that pair separation may be understood as an average over
particle pairs which separately follow Richardson–Obukhov scaling, but each after a
different time delay 𝑡𝑑.

Relative dispersion in isotropic turbulence is known to be a time-asymmetric process.
That is, when fluid particles are tracked backwards in time (conditioned to an imposed
final separation), they separate faster on average than in the forward case [18, 34, 158].
Recently, Bragg et al. [32] and Jucha et al. [79] associated this temporal asymmetry at
short times to the irreversibility of turbulence, which can be understood as the direc-
tionality of the turbulent energy cascade (from large to small scales in 3D turbulence).
Bragg et al. [32] also considered the separation of inertial particles, and noted that
the ratio of backward to forward mean-square separation may be up to an order of
magnitude larger than for fluid particles in isotropic turbulence. Inertial particles were
found to experience an additional source of irreversibility arising from the non-local
contribution of their velocity dynamics.

5.1.2 Relative dispersion in shear and wall-bounded flows

Fewer studies have been devoted to the case of anisotropic and inhomogeneous turbu-
lent flows. In inhomogeneous flows, the relative dispersion problem is more complex,
since the statistics depend not only on the magnitude, but also on the orientation of the
initial separation 𝑫0 and on the initial particle pair position 𝒙0. Moreover, particles do
not separate equally in each direction. Therefore, the mean-square separation ⟨𝑹2(𝑡)⟩
can be generalised into a relative dispersion tensor 𝛥𝑖𝑗(𝑡) = ⟨𝑅𝑖(𝑡)𝑅𝑗(𝑡)⟩ [13, 109]
containing more than a single independent component (as opposed to the isotropic
case).

The dispersion of tracer pairs in a homogeneous shear flow was studied using DNS
by Shen and Yeung [165]. The authors observed that particles separate faster when
they are initially oriented in the cross-stream direction, i.e. in the direction of the mean
velocity gradient. This is simply explained by particles being initially located in regions
of different mean velocities, and thus being separated by the mean shear from the
beginning. More generally, mean shear enhances particle dispersion in the streamwise
direction. In stationary homogeneous shear flow, it was suggested by Corrsin [44] (see
also Squires and Eaton [169] and Monin and Yaglom [108, p. 558]) that the streamwise
mean-square particle displacement (defined in section 4.3) increases at asymptotically
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long times as
⟨𝛿𝑥2⟩(𝑡) ≈ 2

3𝑆2𝑢′2𝑦 𝑇𝐿,𝑦𝑡3 for 𝑡 ≫ 𝑇𝐿,𝑦, (5.4)

where 𝑆 = d𝑈/d𝑦 is the mean shear rate and 𝑇𝐿,𝑦 is the Lagrangian integral time scale
associated to the cross-stream velocity component 𝑢𝑦. In analogy to the case of isotropic
turbulence, this asymptotic regime leads to an asymptotic streamwise mean-square
particle separation 𝛥𝑥𝑥(𝑡) ≈ (4/3)𝑆2𝑢′2𝑦 𝑇𝐿,𝑦𝑡3. The regime 𝛥𝑥𝑥 ∼ 𝑡3 was observed at
long times by Shen and Yeung [165] for their largest initial separations, 𝐷0 = 64𝜂. In
the cross-stream and spanwise directions, the mean-square separation is expected to
asymptotically evolve linearly with time consistently with Taylor’s prediction. This
was however not exactly observed in the simulations of Shen and Yeung [165] due
to deviation of their simulated flow away from statistical stationarity. Indeed, homo-
geneous shear flows are inherently non-stationary as a consequence of being spatially
unbounded, since the largest turbulent scales grow over time as mean shear deforms
the fluid [169].
To study the impact of shear on a passively advected non-reactive scalar, Celani

et al. [39] considered a simple flow model given by the superposition between a
linear shear and an isotropic turbulent velocity field obeying K41 scaling. The authors
described the existence of a temporal transition between a first stage of separation,
where turbulent fluctuations dominate and Richardson’s law can be expected to hold,
and a second stage where shear becomes dominant. The transition is expected to
happen at a crossover time which is proportional to the characteristic time scale of the
shear.

More recently, Pitton et al. [134] studied the separation of fluid and inertial particle
pairs in a turbulent channel flow using DNS at a low friction-Reynolds number
Re𝜏 = 150. Consistently with the studies mentioned above, the authors observed that
mean shear induces a super-diffusive regime at large times, when particle separation
becomes of the order of the largest scales of the flow. Arguably due to an insufficient
separation of scales, the Richardson–Obukhov regime was not clearly identified. Pitton
et al. [134] removed the effect of mean shear by tracking fluid and inertial particles
which followed the fluctuating velocity field only. The authors found that, although
pair separation is importantly reduced at long times compared to the case with mean
shear, separation in the streamwise direction remains dominant over the wall-normal
and spanwise separations. Since the authors considered the mean-square separation
⟨𝑫2(𝑡)⟩ as opposed to the mean-square change of separation ⟨𝑹2(𝑡)⟩, their results do
not display a clear Batchelor regime (see eq. (5.2) and discussion in section 5.1.1).

5.2 Particle pair datasets

Dispersion of particle pairs is studied in this work by DNS of turbulent channel flow
at Re𝜏 = 1440 described in chapter 2. In particular, simulation parameters are listed in
table 2.1 and Lagrangian particle tracking algorithms are described in section 2.2. In
the following we describe the two fluid-particle datasets, labelled DS1 and DS2, from
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Table 5.1. Particle pair datasets. 𝑦+
0 , nominal initial wall distance; 𝐷0, initial pair separation

distance; 𝒆0, initial pair orientation; 𝑇+
max, maximum time lag of statistics; bw, backward disper-

sion; 𝑁𝑝, number of particles in dataset; 𝑁𝑝 / set, number of particles sharing the same initial
configuration (same 𝑦+

0 and, for DS2, same 𝐷0 and 𝒆0).

Dataset 𝑦+
0 𝐷0/𝜂 𝒆0 𝑇+

max bw 𝑁𝑝 total 𝑁𝑝 / set

DS1 20 to 1000 < 16 any 5.3 × 103 yes 2 × 106 > 17 000
DS2 3 to 1440 1, 4, 16, 64 𝒆𝑥, 𝒆𝑦, 𝒆𝑧 1.7 × 104 no ∼ 3.2 × 106 20 093

𝑦0

𝛿𝑦̃𝒙

𝐷max
0 = 16𝜂

a

𝑦 = 𝑦0

𝒆𝑥

𝒆𝑦

𝒆𝑧

b

Figure 5.1. Schematic of particle pair datasets DS1 and DS2. (a) Particle pairs in dataset DS1 have
initial separations |𝑫0| < 16𝜂. Their centroid ̃𝒙 is located within wall-normal bins 𝑦 = 𝑦0 ± 𝛿𝑦/2
with 𝛿𝑦 = 8𝜂 (filled rectangle). (b) In dataset DS2, oriented particle clusters are initialised at
chosen wall distances 𝑦0. The central particle (blue) is paired with every satellite particle (grey)
in the cluster. In the schematic, 6 different pairs are formed which count towards different
initial configurations (𝑦0, 𝑫0).

which relative dispersion statistics are computed. These datasets respectively serve
the purposes of comparing backwards and forwards in time dispersion statistics, and
of characterising the effect of the initial particle pair spatial configuration as well as
the asymptotic long-time dispersion regimes. Dataset properties are summarised in
table 5.1, and their respective configurations are sketched in fig. 5.1.

The dataset DS1 consists of 2 × 106 fluid particles initialised at random positions in
the domain. During post-processing, particle pairs are identified at chosen times 𝑡0
according to the criterion described further below. Then, statistics are computed over
the temporal range 𝑡 ∈ [𝑡0 − 𝑇/2, 𝑡0 + 𝑇/2]. This naturally allows to obtain backward
and forward dispersion statistics, and is similar to the approach used by Berg et al. [18]
and more recently by Buaria et al. [34] to study backward dispersion in HIT. The
temporal window length 𝑇 and the spacing between two reference times 𝑡0 are chosen
respectively as 𝑇+ ≈ 1.1 × 104 and 𝛥𝑡+

0 ≈ 1.3 × 10−3.
The criterion for particle pair identification in dataset DS1 is as follows. Pairs sep-

arated by |𝑫0| < 𝐷max
0 at 𝑡0 are identified such that their centroids are located within

bins of wall-normal distance 𝑦 = 𝑦0 ± 𝛿𝑦/2, as sketched in fig. 5.1a. The maximum pair
separation is taken as 𝐷max

0 = 16𝜂, where the Kolmogorov length scale 𝜂, which in-
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Figure 5.2. Sample trajectories of two particle pairs from dataset DS2. Trajectories are shown
over 𝑡+ = 600. Markers are drawn every 𝛥𝑡+ = 100. In both cases, the initial pair wall distance
is 𝑦+

0 = 18 and the initial separation is 𝐷0 = 16𝜂 (𝐷+
0 = 27). Pairs P and Q are initially oriented

in the spanwise (𝑧) and wall-normal (𝑦) directions, respectively.

creases with wall distance, is defined as 𝜂 = (𝜈3/𝜀)1/4. Here, the mean turbulent energy
dissipation rate is estimated as 𝜀 = 𝜈(𝜕𝑗𝑢′

𝑖)(𝜕𝑗𝑢′
𝑖), where 𝒖′(𝒙, 𝑡) is the instantaneous

fluctuating velocity field. The mean dissipation profile 𝜀(𝑦) has been computed in the
Eulerian frame from the same DNS. Pair dispersion statistics are computed over sets of
particle pairs identified at the same reference wall distance 𝑦0. In wall units, the posi-
tions 𝑦+

0 = 20, 60, 200, 600 and 1000 are chosen (the channel centre is at 𝑦+ = 1440). The
bin widths are taken as 𝛿𝑦 = 8𝜂. The Kolmogorov length scale ranges from 𝜂+ ≈ 1.72
at 𝑦+ = 20 to 𝜂+ ≈ 5.31 at 𝑦+ = 1000 (see fig. A.3 in appendix A.2). Consequently,
particles in the 𝑦+

0 = 20 group may actually be located within 0 < 𝑦+ < 40 at the
reference time 𝑡0. Due to the evolution of 𝜂 with wall distance and to the above pair
selection scheme, the total number of statistical samples (particle pairs) is lower for
particle sets near the wall. Concretely, the total number of identified particle pairs
varies from roughly 1.7 × 104 samples at 𝑦+

0 = 20, to 1.5 × 106 samples at 𝑦+
0 = 1000.

The dataset DS1 has already been used to study the acceleration of Lagrangian tracers
in the same turbulent channel flow (see chapter 3 and Stelzenmuller et al. [174]), as
well as for the analysis of backwards and forwards single-particle dispersion statistics
(chapter 4).

A disadvantage of dataset DS1 is that the exact spatial configuration of the particle
pairs at time 𝑡0 (initial position and separation vector) is not prescribed. In particular,
particle pairs with different initial orientations 𝒆0 and separations 𝐷0 < 16𝜂 are aver-
aged together. This dataset is therefore not adapted for studying the influence of the
anisotropic Eulerian structure of the flow on pair separation, which, as shown in the
next sections, has a great impact on the short-time separation statistics. For this reason,
a second dataset labelled DS2 is generated. Particles in dataset DS2 are initialised at
chosen locations in order to characterise the influence of the initial configuration of
the pairs on relative dispersion. Each initial configuration is defined by 3 parameters:
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5 Relative dispersion of particle pairs

(i) the initial wall distance 𝑦+
0 of one of the particles in the pair, (ii) the separation

distance 𝐷0 between the two particles, and (iii) the orientation of the particle pair
𝒆0, so that the initial pair separation vector is 𝑫0 = 𝐷0𝒆0. The particle arrangement is
sketched in fig. 5.1b. In the simulations, 10 initial wall distances 𝑦+

0 are chosen ranging
from 3 to 1440, combined with separations 𝐷0/𝜂 = 1, 4, 16 and 64, and orientations
in the three Cartesian directions (𝒆0 ∈ {𝒆𝑥, 𝒆𝑦, 𝒆𝑧}). This results in 120 different initial
configurations. For each parameter combination, the size of the statistical sample (i.e.
the number of particle pairs) is roughly 20 000. Only forward dispersion statistics are
obtained from this dataset. Applying the same approach to backward dispersionwould
require the storage of an exceedingly large amount of Eulerian velocity fields, with a
prohibitive cost in terms of storage memory [158]. The present scheme is similar to the
‘tetrahedron’ particle pair arrangement used by Shen and Yeung [165] in a homogen-
eous turbulent shear flow DNS and by Pitton et al. [134] in a turbulent channel flow
DNS.

In fig. 5.2, the trajectories of two pairs of particles initialised near the wall are shown.
At the initial time, both particle pairs differ only in the orientation 𝒆0 of their initial
separation, namely pair P is oriented in the spanwise direction, and pair Q in the
wall-normal direction. At the initial stages of separation, mean shear has no influence
on the separation of pair P as both particles are at the same wall distance 𝑦+. As long as
their wall-normal separation 𝐷𝑦 stays relatively small, turbulent fluctuations dominate
particle separation over mean shear. The case of pair Q is different, since the two
particles are initially in regions of different mean velocity, and therefore mean shear
effects are important from the start. As can be seen from fig. 5.2, under the influence
of mean shear, particles in pair Q separate faster than those in pair P following their
release, reaching larger separations 𝐷 at short times. At larger times, the influence of
the initial orientation is less noticeable, as observed from the comparable separations
of pairs P and Q at the end of their trajectories (𝑡+ = 600).

5.3 Mean-square separation

In this section, we consider themean-square change of separation between two particles
⟨𝑹2(𝑡)⟩ = ⟨(𝑫(𝑡) − 𝑫0)2⟩, as given by eq. (5.2) describing Batchelor’s regime.We recall
that 𝑫(𝑡) is the instantaneous separation vector and 𝑫0 = 𝑫(0) is the initial separation.
In HIT, two-particle Lagrangian statistics depend on two scalar parameters: the initial
pair separation distance 𝐷0 = |𝑫0| and time 𝑡. In statistically stationary channel flow,
as already discussed in section 3.3 for single-particle Lagrangian statistics, the initial
position of the pair relative to the walls needs to be taken into account as a consequence
of statistical inhomogeneity. This is done here by fixing the wall-normal position 𝑦0 of
one of the particles in the pair.1 Moreover, due to anisotropy, the full initial separation
vector 𝑫0 must be retained, as opposed to only its magnitude 𝐷0. This dependency on

1This is not the only possible choice. For instance, one can instead choose the initial distance between
the wall and the pair centroid, 𝑦𝑐 = (𝑦𝐴 + 𝑦𝐵)/2, where 𝐴 and 𝐵 denote the two particles in a pair.
This is done in section 5.6 where a model for the mean-square pair separation is introduced.
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Figure 5.3. Backward and forward mean-square change of separation ⟨𝑹2⟩ normalised by the
initial mean-square separation ⟨𝑫2

0⟩. Particle pairs are initially separated by 𝐷0 < 16𝜂 (dataset
DS1). Different colours correspond to different initial wall distances 𝑦+

0 . Solid lines: forward
dispersion. Dashed lines: backward dispersion.

𝑫0 is alternatively written as a simultaneous dependency on the distance 𝐷0 and on the
orientation 𝒆0, where 𝑫0 = 𝐷0𝒆0 and |𝒆0| = 1. To summarise, two-particle Lagrangian
statistics depend on the parameter set (𝑡, 𝑦0, 𝑫0), where 𝑦0 is the wall-normal position
of the first particle in the pair at 𝑡 = 0, and 𝑫0 is their separation vector at the same
instant, pointing from the first to the second particle. To simplify the notations, the
dependency on 𝑦0 and 𝑫0 is omitted from the equations (e.g. we write ⟨𝑹2(𝑡)⟩ instead
of ⟨𝑹2⟩(𝑡, 𝑦0, 𝑫0)). We note that, as described in section 5.2, statistics obtained from
dataset DS1 include contributions from all possible orientations 𝒆0, from all separations
in 𝐷0/𝜂 ∈ [0, 16], and from a range of initial wall-normal distances 𝑦∗

0 = 𝑦0 ± 4𝜂.
Figure 5.3 shows the time evolution of themean-square change of separation ⟨𝑹2⟩ for

initial separations 𝐷0 < 16𝜂, for different initial positions 𝑦0, and for particles tracked
both backwards and forwards in time (dataset DS1). As stated above, statistics are
averaged among all initial separation vectors 𝑫0 within a sphere of radius 16𝜂. At short
times, the ballistic regime predicted by eq. (5.2) is recovered for both backward and
forward separations, and for all wall distances. Following this initial regime, a growing
gap is observed at intermediate times between backward and forward dispersion, with
the former being faster than the latter. This time asymmetry is qualitatively consistent
with observations in 3D HIT as described in section 5.1.1 [18, 32, 79, 158].

In the following sections, first the short-time ballistic dispersion regime is analysed.
By considering the Taylor expansion of the separation at short times (section 5.3.1),
the influence of the second-order Eulerian velocity structure function 𝑆2 and of the
crossed velocity-acceleration structure function 𝑆𝑎𝑢 is emphasised. The evolution of
these structure functions in the channel is discussed in section 5.3.2. In section 5.3.3, a
suitable definition of the ballistic time scale is introduced, which leads in section 5.3.4
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5 Relative dispersion of particle pairs

to a proper short-time normalisation of the mean-square dispersion curves shown
in fig. 5.3. The temporal asymmetry of pair dispersion in the present flow is then
addressed in section 5.3.5, followed by the influence of the initial separation distance
and orientation in section 5.3.6.

5.3.1 Short-time dispersion

To understand the observed short-time ballistic regime and the deviation that follows,
we consider the Taylor expansion of the separation between two particles at short
times,

𝑫(𝑡) = 𝑫0 + 𝛿𝒗0𝑡 + 1
2𝛿𝒂0𝑡2 + 𝒪(𝑡3), (5.5)

where 𝛿𝒗0 = 𝒗𝐵
0 − 𝒗𝐴

0 and 𝛿𝒂0 = 𝒂𝐵
0 − 𝒂𝐴

0 are respectively the relative particle velocity
and acceleration at 𝑡 = 0 (superscripts identify particles in the pair). As a result, the
short-time mean-square change of separation is expressed as

⟨𝑹2(𝑡)⟩ = ⟨𝛿𝒗2
0⟩𝑡2 + ⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩𝑡3 + 𝒪(𝑡4) for 𝑡 ≪ 𝑡𝐵, (5.6)

where the time scale 𝑡𝐵 characterises the duration of the short-time regime. At the
leading order, the mean-square separation follows Batchelor’s regime introduced in
eq. (5.2), duringwhich particles travel at their initial velocities [12]. As discussed in sec-
tion 5.1.1, the mean-square initial relative velocity ⟨𝛿𝒗2

0⟩ is equal to the second-order Eu-
lerian structure function 𝑆2(𝒙0, 𝑫0) = 𝛿𝒖2(𝒙0, 𝑫0) = [𝒖(𝒙0 + 𝑫0, 𝑡) − 𝒖(𝒙0, 𝑡)]2, where
𝒖(𝒙, 𝑡) is the Eulerian velocity field, and 𝒙0 is the initial position of the first particle
in the pair. In channel flow, due to statistical homogeneity in the streamwise and
spanwise directions, the dependency of 𝑆2 on 𝒙0 reduces to a dependency on the wall-
normal distance 𝑦0. In stationary HIT, 𝑆2 only depends on the separation 𝐷0 = |𝑫0| .
Moreover, when this separation is within the inertial subrange, K41 theory predicts
the well-known relation

𝑆2(𝐷0) = 11
3 𝐶2(𝜀𝐷0)2/3, (5.7)

where 𝐶2 ≈ 2.1 is Kolmogorov’s constant for the longitudinal second-order velocity
structure function [137, 172].
At the next order, the ballistic term in eq. (5.6) is corrected by a 𝑡3 term whose

coefficient ⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩ is equal to the crossed velocity-acceleration structure function
𝑆𝑎𝑢(𝒙0, 𝑫0) = 𝛿𝒖 ⋅ 𝛿𝒂(𝒙0, 𝑫0). In 3D turbulence, under the conditions of local homo-
geneity and stationarity and if the spatial increment 𝑟 = |𝒓| is in the inertial subrange,
the velocity-acceleration structure function is given by

𝑆𝑎𝑢(𝒙, 𝒓) = − [𝜀(𝒙) + 𝜀(𝒙 + 𝒓)] = −2𝜀𝑝(𝒙, 𝒓), (5.8)

where 𝜀𝑝 is the mean turbulent dissipation rate averaged among the two probed
positions [51, 63, 98]. This relation is exact in the limit of infinite Reynolds numbers,
and is the Lagrangian equivalent of Kolmogorov’s 4/5 law [55]. The negative sign of
𝑆𝑎𝑢 is associated with the direction of the turbulent cascade, from large to small scales
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in 3D turbulence. Thus, under the assumptions for eq. (5.8), the 𝑡3 term of eq. (5.6) is
negative for forward dispersion (𝑡 > 0) and positive for backward dispersion (𝑡 < 0).
As first suggested by Jucha et al. [79], this explains the short-time temporal asymmetry
of relative dispersion in isotropic flows. The 𝑡3 term is reminiscent of Richardson–
Obukhov super-diffusive regime in which ⟨𝑹2⟩ ∼ 𝑡3 [eq. (5.1)]. However, eq. (5.6)
cannot explain Richardson dispersion as it is only valid at short times. Moreover, for
forward dispersion the 𝑡3 term in eq. (5.6) is negative and thus leads to a deceleration
of the pair separation rate, opposing the expected effect of Richardson dispersion.

5.3.2 Structure functions 𝑆2 and 𝑆𝑎𝑢

To characterise the short-time dispersion regime eq. (5.6) in the channel, we invest-
igate the evolution of the structure functions 𝑆2 and 𝑆𝑎𝑢 with wall distance and with
spatial increment. To our knowledge, only few studies in the literature have dealt
with Eulerian structure functions in wall-bounded flows. Moreover, studies charac-
terising the crossed velocity-acceleration structure function 𝑆𝑎𝑢 in such flows are non-
existent. Relevant works have focused on the logarithmic region of boundary layers,
and have mainly considered the second-order streamwise velocity structure function
𝑆𝑥𝑥(𝑦, 𝒓) = 𝛿𝑢2𝑥(𝑦, 𝒓), and only for streamwise separations (i.e. 𝒓 = 𝑟𝒆𝑥) [7, 45, 166].
Recently, Yang et al. [200] proposed scalings for the complete fluctuating velocity struc-
ture function tensor 𝑆′

𝑖𝑗(𝑦, 𝒓) = 𝛿𝑢′
𝑖𝛿𝑢′

𝑗(𝑦, 𝒓) in the logarithmic region, derived from a
model based on Townsend’s attached-eddy hypothesis [103, 181]. However, when
considering spanwise separations (𝒓 = 𝑟𝒆𝑧), their predicted scalings do not match
the results from channel flow DNS at moderate Reynolds number [95]. A very recent
extension of the same model [201], this time accounting for wall-normal and spanwise
velocity fluctuations in the logarithmic region, may provide improved predictions for
the velocity structure functions in wall-bounded turbulence.
We estimate 𝑆2 and 𝑆𝑎𝑢 across the channel from Lagrangian data at 𝑡 = 0 when

particles of dataset DS2 are released. The estimation is performed over all initial particle
configurations, namely for a range of wall distances 𝑦 = 𝑦0 and spatial displacement
vectors 𝒓 = 𝑫0. We stress that the statistics are obtained a posteriori from a single flow
snapshot, and more converged statistics could be computed from a new DNS. The
evolution with wall distance of the structure functions, for different increments 𝒓 = 𝑟𝒆𝑟,
is given in fig. 5.4. Since 𝑆𝑎𝑢 is mostly negative (as expected in homogeneous flows),
we plot −𝑆𝑎𝑢 instead.

In the near-wall region, the structure functions display a strong dependency on
the orientation of the increment 𝒓. This strong anisotropy is a clear manifestation of
the complexity of near-wall turbulence, which is characterised by the presence of
preferentially-oriented motions including quasi-streamwise vortices and the associated
sweeps and streaks [147]. Moreover, mean shear is important in this region, i.e. the
mean streamwise velocity𝑈(𝑦) changes quicklywithwall distance. For this reason, 𝑆2 is
expected to be larger for spatial offsets in the wall-normal direction (𝒓 = 𝑟𝑦𝒆𝑦), since in
this case it includes a contribution of themean velocity increment 𝛿𝑈 = 𝑈(𝑦+𝑟𝑦)−𝑈(𝑦).
This is confirmed by the curves in fig. 5.4. Moreover, near the wall 𝑆2 is larger for
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Figure 5.4. Structure functions 𝑆2(𝑦, 𝒓) (crosses) and −𝑆𝑎𝑢(𝑦, 𝒓) (circles) in wall units, for all
initial configurations of dataset DS2. Subfigures (a) through (d) present statistics for spatial
increments 𝑟/𝜂 = 1, 4, 16 and 64, respectively. Increments are oriented in the streamwise (𝒆𝑥,
solid lines), wall-normal (𝒆𝑦, dashed lines) and spanwise (𝒆𝑧, dotted lines) directions. Filled
circles represent positive values of 𝑆𝑎𝑢. Black dash-dotted lines represent isotropic estimations
of 𝑆2 and 𝑆𝑎𝑢. For small separations (subfigures a-b), the dissipation-range estimations 𝑆′

2 =
𝑟2/(3𝜏2

𝜂) and 𝑆𝑎𝑢 = 𝛽𝑟2/(3𝜏3
𝜂) are plotted, with 𝛽 = −0.16. For large separations (subfigures

c-d), the inertial-range estimations 𝑆2 = 11
3 𝐶2(𝜀𝑟)2/3 and 𝑆𝑎𝑢 = −2𝜀 are plotted, with 𝐶2 = 2.1.
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spanwise than for streamwise displacements, with a difference that ismore pronounced
with smaller separations 𝑟. This is due to the effect of streaks and quasi-streamwise
vortices, which induce a fluctuating velocity field that is correlated over longer distances
in the streamwise direction (see e.g. Robinson [147]). Hence, the velocity increment
between two points in the near-wall region is weaker if the points are aligned in the
streamwise direction (since both points are likely to be found within the same coherent
structure) than in the spanwise direction.

As seen in fig. 5.4, the velocity-acceleration structure function 𝑆𝑎𝑢 is also anisotropic
near the wall. For small separations (𝑟/𝜂 = 1 and 4), its behaviour is similar to that of
𝑆2 in that its absolute value is larger for wall-normal displacements and smaller for
streamwise displacements. As mentioned above, 𝑆𝑎𝑢 is mostly negative. Positive values
are obtained in a few extreme cases where one of the probed locations is at 𝑦+ < 10
while the other is at 𝑦+ + 𝑟+

𝑦 with 𝑟𝑦/𝜂 ≥ 16 (𝑟+
𝑦 ≳ 25). In these cases the velocity and

acceleration increments relate the flow in the viscous sublayer (or the beginning of the
buffer layer) with that at the beginning of the logarithmic region. Since these regions
have very different dynamics, homogeneity is not expected to hold on the resulting
two-point statistics. Furthermore, in these cases 𝑆𝑎𝑢 is dominated by the scalar product
between the mean velocity and mean acceleration increments, 𝛿𝒖 ⋅ 𝛿𝒂 = 𝛿𝑢𝑥𝛿𝑎𝑥.2 As
seen in section 3.2 (fig. 3.3; see also [174, 202]), in the buffer layer and the beginning of
the logarithmic region the mean streamwise acceleration 𝑎𝑥(𝑦) is an increasing function
of wall distance, similarly to the mean velocity 𝑢𝑥(𝑦) = 𝑈(𝑦). This results in a positive
product 𝛿𝑢𝑥𝛿𝑎𝑥 when locations across the buffer layer are sampled.
Away from the wall, the structure functions become nearly independent of the dis-

placement orientation, suggesting a return to isotropy towards the bulk of the channel.
Still, a slight difference persists for 𝑆2 at nearly all wall distances, with the streamwise
orientation resulting in a weaker structure function. This may be associated with the
persistence of very-large-scale motions in the channel [167]. A similar behaviour is
observed for 𝑆𝑎𝑢 at the smallest separations 𝑟/𝜂 = 1 and 4.

Dissipation-range estimations In fig. 5.4, the 𝑆2 profiles obtained from our DNS at
the small separations 𝑟/𝜂 = 1 and 4 are compared with the dissipation-range estima-
tion for the fluctuating part of the structure function, 𝑆′

2(𝑟) ≈ 1
3(𝜕𝑗𝑢′

𝑖)(𝜕𝑗𝑢′
𝑖)𝑟2, which

is derived from the first-order Taylor expansion 𝛿𝑢′
𝑖 ≈ 𝒓 ⋅ 𝛁𝑢′

𝑖 and the isotropy as-
sumption. The estimation above can be expressed in terms of the mean turbulent
dissipation rate 𝜀 = 𝜈(𝜕𝑗𝑢′

𝑖)(𝜕𝑗𝑢′
𝑖), which varies with wall distance. This leads to

𝑆2(𝑟) ≈ 𝜀𝑟2/(3𝜈) = 𝑟2/(3𝜏2
𝜂), where 𝜏𝜂 = (𝜈/𝜀)1/2 is the Kolmogorov time scale.

For the two small separations, the computed 𝑆2 profiles closely match the predic-
tion, suggesting that separations up to 4𝜂 are not within the inertial subrange. Sim-
ilarly, the behaviour of 𝑆𝑎𝑢 over dissipation-range increments 𝑟 can be approxim-
ated by 𝑆𝑎𝑢(𝑟) ≈ 1

3(𝜕𝑗𝑢𝑖)(𝜕𝑗𝑎𝑖)𝑟2. From K41-like dimensional considerations, one has
(𝜕𝑗𝑢𝑖)(𝜕𝑗𝑎𝑖) = 𝛽𝜀/𝜂2 with 𝛽 a non-dimensional constant. This ultimately leads to the

2Note that the velocity-acceleration structure function follows the Reynolds decomposition 𝑆𝑎𝑢 =
𝛿𝒖 ⋅ 𝛿𝒂 = 𝛿𝒖 ⋅ 𝛿𝒂 + 𝛿𝒖′ ⋅ 𝛿𝒂′.
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dissipation-range estimation 𝑆𝑎𝑢(𝑟) ≈ 𝛽𝑟2/(3𝜏3
𝜂). The value 𝛽 = −0.16 is found to fit

the ⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩ data at the smallest separation 𝑟 = 𝜂. For 𝑟 = 4𝜂, the prediction slightly
overestimates the results obtained from tracer data in the bulk of the channel, hinting
the transition from the dissipative to the inertial regime.

Inertial-range estimations Furthermore, we compare the larger separations 𝑟/𝜂 = 16
and 64 with the inertial-range K41 prediction for locally isotropic turbulence, 𝑆2(𝑟) =
11
3 𝐶2(𝜀𝑟)2/3, with 𝐶2 = 2.1. In the channel, the local isotropy hypothesis is more likely
to hold in the logarithmic and outer regions. In the bulk of the channel, the obtained 𝑆2
profiles follow the same evolution with wall distance as the K41 prediction. However,
in general the prediction slightly overestimates the numerical results. This difference
may be interpreted as a finite-Reynolds number effect, leading to an insufficient scale
separation and the absence of a proper inertial range. Indeed, at the present Taylor-scale
Reynolds number, Re𝜆 ∼ 100, the Kolmogorov constant 𝐶2 is expected to be lower than
the chosen (and well-accepted) value of 𝐶2 = 2.1 [172].
Similarly, to verify the validity of relation (5.8), the obtained 𝑆𝑎𝑢 profiles at separa-

tions 16𝜂 and 64𝜂 are compared with −2𝜀(𝑦). For non-zero wall-normal displacements
𝑟𝑦 = 𝒓 ⋅ 𝒆𝑦, one has 𝜀(𝑦) ≠ 𝜀𝑝(𝑦, 𝒓), and therefore this comparison is not exactly equi-
valent to eq. (5.8) when wall-normal orientations are considered. Remarkably, the
prediction holds almost exactly over a wide range of wall distances. This is especially
true for spanwise increments, for which a good agreement is found at nearly all wall
distances.

Integral-scale structure functions Wefinally comment on the value of the structure func-
tions 𝑆2 and 𝑆𝑎𝑢 for integral-scale separations. In channel flow, the velocity structure
function can be decomposed as

𝑆2(𝑦, 𝒓) = 𝑆2(𝑦, 𝒓) + 𝑆′
2(𝑦, 𝒓) (5.9)

= [𝑢𝑥(𝑦 + 𝑟𝑦) − 𝑢𝑥(𝑦)]
2

+ 𝑢′
𝑖𝑢′

𝑖(𝑦) + 𝑢′
𝑖𝑢′

𝑖(𝑦 + 𝑟𝑦) − 2𝑢′
𝑖(𝒙, 𝑡)𝑢′

𝑖(𝒙 + 𝒓, 𝑡),
(5.10)

where 𝑟𝑦 = 𝒓 ⋅ 𝒆𝑦. For integral-scale separations 𝒓, the last term in eq. (5.10) vanishes as
the velocity fluctuations become uncorrelated. Hence, 𝑆2 is given by contributions of
mean shear and of the velocity variances (or equivalently, of the mean TKE 𝑘 = 𝑢′

𝑖𝑢′
𝑖/2)

at the two probed locations. In the particular case of wall-parallel offsets (𝑟𝑦 = 0),
eq. (5.10) reduces to 𝑆2 = 2𝑢′

𝑖𝑢′
𝑖(𝑦) = 4𝑘(𝑦), as in homogeneous flows.

Similarly, the velocity-acceleration structure function can be decomposed as 𝑆𝑎𝑢 =
𝑆𝑎𝑢 + 𝑆′

𝑎𝑢, with

𝑆𝑎𝑢(𝑦, 𝒓) = [𝑢𝑥(𝑦 + 𝑟𝑦) − 𝑢𝑥(𝑦)] [𝑎𝑥(𝑦 + 𝑟𝑦) − 𝑎𝑥(𝑦)] , (5.11)
𝑆′

𝑎𝑢(𝑦, 𝒓) = 𝑢′
𝑖𝑎′

𝑖(𝑦) + 𝑢′
𝑖𝑎′

𝑖(𝑦 + 𝑟𝑦) − 𝑢′
𝑖(𝒙, 𝑡)𝑎′

𝑖(𝒙 + 𝒓, 𝑡) − 𝑢′
𝑖(𝒙 + 𝒓, 𝑡)𝑎′

𝑖(𝒙, 𝑡). (5.12)
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5.3 Mean-square separation

For large-enough separations, the last two terms in eq. (5.12) vanish.3 Moreover, as
discussed in section 4.4, the velocity-acceleration covariance is 𝑢′

𝑖𝑎′
𝑖(𝑦) ≈ −𝜀 in most

of the channel, more precisely for 𝑦+ ≳ 20 (see also fig. B.2 in appendix B.2). For
wall-parallel displacements (𝑟𝑦 = 0), 𝑆𝑎𝑢 = 0 and therefore 𝑆𝑎𝑢(𝑦, 𝒓) ≈ −2𝜀(𝑦) in most
of the channel. This is verified in fig. 5.4d, where this equality holds throughout the
channel for offsets 𝑟 = 64𝜂 in the streamwise and spanwise directions. Even in the
case of wall-normal offsets, 𝑆𝑎𝑢 is close to −2𝜀 in the logarithmic and outer layers,
implying that the contribution of 𝑆𝑎𝑢 is relatively weak. To summarise, the observation
that 𝑢′

𝑖𝑎′
𝑖 ≈ −𝜀 in most of the channel allows to generalise eq. (5.8), initially valid for

inertial-range spatial increments, beyond the inertial range and up to integral-scale
increments.

5.3.3 Ballistic time scale

As seen in section 5.3.1, the structure functions 𝑆2 and 𝑆𝑎𝑢 described in the previous
section are relevant to the initial ballistic regime given by eq. (5.6). Here, we assess
possible definitions of the characteristic duration 𝑡𝐵 of the ballistic regime. Originally,
Batchelor [12] assumed this time as proportional to the eddy-turnover time at scale
𝐷0, i.e. 𝑡𝐸 = 𝐷2/3

0 𝜀−1/3 [55] when the separation 𝐷0 is in the inertial range.
An alternative proposed by Bitane et al. [25] is to consider the time 𝑡0 over which

the two leading-order terms of eq. (5.6) have the same magnitude,

𝑡0 = ⟨𝛿𝒗2
0⟩/|⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩| = 𝑆2(𝒙0, 𝑫0)/|𝑆𝑎𝑢(𝒙0, 𝑫0)| . (5.13)

This characteristic time naturally describes the duration of the short-time regime, since
for 𝑡 ≪ 𝑡0 the 𝑡2 term is dominant and thus ballistic separation takes place, while
for 𝑡 ≈ 𝑡0 this term is overtaken by subleading-order terms and thus the Taylor ex-
pansion (5.6) is no longer valid [25]. The characteristic time 𝑡0 may be approximated
by the dissipation- and inertial-range predictions for 𝑆2 and 𝑆𝑎𝑢 introduced in sec-
tion 5.3.2. For separations 𝐷0 in the dissipation and inertial ranges, these estimations
are respectively given by

𝑡𝐷 =
𝜏𝜂
𝛽 and 𝑡𝐼 = 11

6 𝐶2𝐷2/3
0 𝜀−1/3

𝑝 . (5.14)

We note that, in homogeneous flows (where 𝜀𝑝 = 𝜀), 𝑡𝐼 is proportional to the eddy-
turnover time 𝑡𝐸.
The time scales 𝑡0, 𝑡𝐷 and 𝑡𝐼 are computed for each of the initial configurations

of dataset DS2. The results for the pairs initially oriented in the spanwise direction
(𝒆0 = 𝒆𝑧) are shown in fig. 5.5. Also plotted are the mean shear time scale across the
channel, 𝑇𝑆(𝑦) = [d𝑈(𝑦)/d𝑦]−1, and the Lagrangian integral time scale 𝑇𝐿(𝑦). In fact,
3In fact, the Eulerian two-point cross-correlation between velocity and acceleration components is
expected to decay over lengths smaller than the integral length scale, since the acceleration is a small-
scale quantity. For a qualitative comparison between velocity and acceleration length scales, see their
respective Eulerian auto-correlations in fig. 2.2.
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Figure 5.5.Characteristic ballistic time scales in wall units along the channel width, for different
initial separations 𝐷0 in the spanwise direction (𝒆0 = 𝒆𝑧). Subfigures (a) through (d) present
initial separations 𝐷0/𝜂 = 1, 4, 16, 64. Results are obtained from dataset DS2. Circles, 𝑡0 =
⟨𝛿𝒗2

0⟩/|⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩| ; crosses, dissipation-range estimation 𝑡𝐷 = 𝜏𝜂/𝛽; squares, inertial-range
estimation 𝑡𝐼 = 11

6 𝐶2𝐷2/3
0 𝜀−1/3

𝑝 . Non-dimensional constants are 𝐶2 = 2.1 and 𝛽 = −0.16. Also
represented are the Lagrangian integral time scale 𝑇𝐿 (black dashed lines) and the mean shear
time scale 𝑇𝑆 = (d𝑈/d𝑦)−1 (red dotted lines).
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5.3 Mean-square separation

as shown in section 3.5 (see also Stelzenmuller et al. [174]), due to anisotropy a different
Lagrangian integral time scale 𝑇𝐿,𝑖 can be defined for each velocity component. In
fig. 5.5, we take 𝑇𝐿 as the quadratic mean among the three components, 𝑇2

𝐿 = 𝑇𝐿,𝑖𝑇𝐿,𝑖/3.
As shown in fig. 5.5, the dissipation-range estimation 𝑡𝐷 = 𝜏𝜂/𝛽 matches the ballistic

time 𝑡0 over all wall distances for the smallest separation. This is expected since the
value of 𝛽 was chosen to match the behaviour of 𝑆𝑎𝑢 at 𝐷0 = 𝜂 in section 5.3.2. For
𝐷0 = 4𝜂, there is still good agreement between both time scales, even though a weak
departure from dissipation-range scaling is observed. This departure is consistent
with observations in section 5.3.2 concerning the validity of the dissipation-range
estimation of 𝑆𝑎𝑢 at 𝐷0 = 4𝜂. The agreement between 𝑡0 and 𝑡𝐷 shows the relevance
of the characteristic dissipation time 𝜏𝜂 on the ballistic separation regime for small
initial separations. As expected, for the larger initial separations 𝐷0/𝜂 = 16 and 64,
the dissipation-range prediction 𝑡𝐷 loses validity due to transition from dissipative to
inertial scales.

For 𝐷0/𝜂 = 16 and 64, the inertial-range estimation 𝑡𝐼 differs from 𝑡0 in the near-wall
region, where the isotropy hypothesis implied by 𝑡𝐼 is far from being valid. Away from
the wall, both time scales display a similar evolution with wall distance. In particular,
in the logarithmic region they are approximately proportional, i.e. their curves present
a nearly constant gap consistently with the difference observed between the velocity
structure function 𝑆2 and its isotropic inertial-range estimation (fig. 5.4(c-d)). As
discussed in section 5.3.2, a lower value of the Kolmogorov constant 𝐶2 would narrow
the gap between the estimated and observed velocity structure functions.
When compared to the Lagrangian integral time scale 𝑇𝐿, the ballistic time 𝑡0 is of

the same order of magnitude for small separations, and considerably larger for large
separations. This suggests that the scale separation needed for observing Richardson’s
super-diffusive regime is not achieved in the present flow, since an intermediate time
range between 𝑡0 and 𝑇𝐿 does not exist. We also compare 𝑡0 with the characteristic time
of the mean shear 𝑇𝑆, which gives an indication of the time needed for mean shear to
govern the relative dispersion process. As shown in fig. 5.5, this time scale is small
near the wall, where the mean velocity gradient is most intense, and grows far from
the wall as shear decreases. For separations 𝐷0/𝜂 = 1 and 4, 𝑇𝑆 is smaller than 𝑡0 in
the near-wall region (up to 𝑦+ ≈ 80). For larger separations, 𝑇𝑆 < 𝑡0 everywhere in
the channel. In these cases, mean shear is expected to influence relative dispersion
statistics from the beginning of the separation process.

5.3.4 Normalised mean-square separation

The time scales 𝑡𝐷 and 𝑡𝐼 introduced in the previous section are constructed from
assumptions on the underlying turbulent flow, namely local homogeneity and isotropy
as well as initial separations falling either in the dissipative or the inertial subrange. In
contrast, 𝑡0 is obtained according to purely kinematic considerations, and it is chosen
in the following as the characteristic ballistic time. Using 𝑡0, eq. (5.6) can be normalised
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Figure 5.6. Backward and forward mean-square change of separation ⟨𝑹2⟩ normalised by the
structure function ⟨𝛿𝒗2

0⟩ and the ballistic time scale 𝑡0 = ⟨𝛿𝒗2
0⟩/|⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩| . Pairs are initially

separated by 𝐷0 < 16𝜂 (dataset DS1). Solid lines: forward dispersion. Dashed lines: backward
dispersion.

as
⟨𝑹2⟩

⟨𝛿𝒗2
0⟩𝑡2

0
= ( 𝑡

𝑡0
)

2
+ 𝑠( 𝑡

𝑡0
)

3
+ 𝒪(𝑡4) for 𝑡 ≪ 𝑡0, (5.15)

where 𝑠 ∈ {−1, 1} is the sign of ⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩.
In fig. 5.6, dispersion curves of fig. 5.3 are normalised against the expected ballistic

regime according to eq. (5.15). Under this scaling, forward dispersion curves associated
to different wall distances collapse for times up to 𝑡 ≈ 2𝑡0, emphasising the relevance
of the proposed scaling. At longer times, the separation rate increases for pairs that
are initially far from the wall. A remarkable 𝑡2 ballistic regime is observed for all wall
distances. Starting from 𝑡 ≈ 0.1𝑡0, the separation rate becomes slightly slower than
ballistic for forward dispersion, and slightly faster for backward dispersion, consistently
with a negative sign of the 𝑡3 term in eq. (5.15). Starting from 𝑦+

0 = 60, normalised
curves differ only slightly, consistently with the decay of inhomogeneity and anisotropy
far from the wall.

Figure 5.7 plots the local scaling exponents of ⟨𝑹2(𝑡)⟩, i.e. the local slope of the curves
shown in fig. 5.6, for forward and backward dispersion. An initial plateau with a value
of 2, corresponding to the ballistic regime, is recovered for both forward and backward
dispersion. A deviation from this regime is observed as early as |𝑡|/𝑡0 ≈ 0.01. As already
seen in fig. 5.6 and as discussed in more detail in section 5.3.5, the deviation is given by
a separation rate that decreases in the forward case, and increases in the backward case.
The early deviation from the ballistic regime can be associated to the purely kinematic
effect of the 𝑡3 term in eq. (5.15) provided that 𝑠 = −1 (i.e. ⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩ < 0). This is
confirmed by the comparison between the numerical results and the truncated Taylor
expansion of ⟨𝑹2(𝑡)⟩ in the figure.
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Figure 5.7.Local scaling exponents of themean-square change of separation ⟨𝑹2(𝑡)⟩. (a) Forward
dispersion. (b) Backward dispersion. Pairs are initially separated by 𝐷0 < 16𝜂 (dataset DS1).
The dotted line represents the truncated Taylor expansion ⟨𝑹2(𝑡)⟩ = ⟨𝛿𝒗2

0⟩𝑡2 + ⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩𝑡3

assuming ⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩ < 0. For each initial wall distance 𝑦+
0 , markers indicate the local value of

the Lagrangian integral time scale 𝑇𝐿 (circles) and of the mean shear time scale 𝑇𝑆 (triangles).

At intermediate times, all cases present an increasing separation rate that ends
with a peak. As described further below, this increased separation rate is explained
by the enhancing effect of mean shear on the streamwise pair separation. Except for
the smallest initial wall distance 𝑦+

0 = 20, the peak is found at 2 < |𝑡|/𝑡0 < 5. The
local separation rate reaches larger values in the forward case than in the backward
one. A possible interpretation is that, since backward dispersion is faster, integral-
scale separations are reached earlier for negative time lags than for positive ones, and
thus less time is spent in the intermediate super-diffusive regime for negative lags.
In some cases, the local scaling exponents reach values around 3, in accordance with
Richardson’s 𝑡3 super-diffusive regime. However, Richardson dispersion is not expected
in the present flow due to the absence of sufficient scale separation and because of
the interference of mean shear since the early stages of dispersion, as discussed in
section 5.3.3. As seen in fig. 5.7, the peaks of the local separation rate occur at times
larger than the Lagrangian integral time scale 𝑇𝐿 (represented by circles in the figure),
and therefore the accelerated dispersion cannot be attributed to Richardson’s regime,
which occurs in the inertial range of scales. More likely, the rapid separation rate
is caused by mean shear as suggested above and as observed for fluid and inertial
particles by Pitton et al. [134] in channel flow. This regime is also comparable to the
long-time 𝑡3 streamwise separation rate expected in homogeneous shear flow [165,
169], as discussed in section 5.1.2. However, as opposed to homogeneous shear flow,
in channel flow the mean velocity gradient is not constant and actually changes sign
at the channel centre. This implies that at sufficiently long times for particles to cross
the channel centre, the shear-induced separation rate is expected to decrease, which is
precisely the long-time behaviour observed in fig. 5.7.
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Figure 5.8.Difference between backward and forward mean-square separation compensated by
−2⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩𝑡3. Pairs are initially separated by 𝐷0 < 16𝜂 (dataset DS1). Inset: mean-square
separation difference compensated by the initial mean-square separation ⟨𝑫2

0⟩.

5.3.5 Temporal asymmetry

The results presented above show that relative dispersion is time-asymmetric in tur-
bulent channel flows. Moreover, fig. 5.7 suggests that the time asymmetry at short
times can be explained by the subleading-order term describing the deviation from
ballistic separation in eq. (5.6). This idea was first proposed by Jucha et al. [79], who
considered the difference between forward and backward mean-square separation at
short times,

⟨𝑹2(𝑡)⟩ − ⟨𝑹2(−𝑡)⟩ = 2⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩𝑡3 + 𝒪(𝑡5) for 𝑡 ≪ 𝑡0, (5.16)

which is readily obtained from the expansion (5.6). As discussed in section 5.3.1,
the structure function 𝑆𝑎𝑢 = ⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩ is equal to −2𝜀𝑝 under local homogeneity
conditions and for separations in the inertial range [63]. In section 5.3.2 we have shown
that this relation is approximately verified in the logarithmic and outer regions of the
channel for large-enough separations (𝐷0 ≥ 16𝜂). Even for smaller separations and
near-wall locations, 𝑆𝑎𝑢 is generally negative, except in a few extreme cases where the
average fields 𝑢𝑖 and 𝑎𝑖 dominate the velocity and acceleration increments. Furthermore,
in light of the relation 𝑢′

𝑖𝑎′
𝑖 ≈ −𝜀 in the channel (section 4.4), we have argued in

section 5.3.2 that the estimate 𝑆𝑎𝑢 ≈ −2𝜀𝑝 holds in the channel even for integral-scale
separations. As a result, the 𝑡3 term in eq. (5.16) is generally negative for 𝑡 > 0, and
therefore particles separate faster backwards than forwards in time as in the isotropic
case [79].
The difference between backward and forward mean-square separations is plotted
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in fig. 5.8 compensated by 2⟨𝛿𝒗0 ⋅ 𝛿𝒂0⟩𝑡3. As predicted by eq. (5.16), a plateau with a
value of 1 is initially found for all initial wall distances. A deviation from this plateau
is observed starting from 𝑡 = 0.05𝑡0, which is quantitatively consistent with results
in HIT [79]. This departure may be explained by the neglected 𝑡5 term in eq. (5.16),
or by a loss of memory of the initial particle pair properties as scales larger than 𝐷0
are sampled. In the inset of fig. 5.8, the difference between backward and forward
statistics is normalised by the initial mean-square separation ⟨𝑫2

0⟩. The positive sign
of this difference at all times confirms that backward dispersion evolves at faster rate
than forward dispersion for all initial positions. Moreover, starting from 𝑦+

0 = 60,
similarity of the temporal asymmetry with wall distance is observed. The gap between
negative and positive time lags grows at faster rate at short times, where its evolution
is described by eq. (5.16), while at very long times it tends to a constant value.

5.3.6 Influence of the initial separation

Up to this point, we have presented relative dispersion statistics averaged over all
possible initial orientations 𝒆0 and over all separations in𝐷0 < 16𝜂. As already observed
in section 5.3.2, the structure functions characterising the short-time regime given
by eq. (5.6) are strongly anisotropic near the wall, and therefore relative dispersion
statistics are expected to depend on the initial pair orientation in that region. Moreover,
the structure function 𝑆2 governing the initial ballistic separation typically increases
with the separation in the dissipative and inertial scales (as confirmed by fig. 5.4), and
therefore an influence of 𝐷0 on the statistics is also expected. To characterise the impact
of the precise initial pair configuration on the dispersion, we consider here the DS2
dataset, described in section 5.2, in which particles are initialised according to chosen
combinations of the initial wall-normal location 𝑦0 and initial pair separation vector
𝑫0.

In fig. 5.9, the mean-square change of separation ⟨𝑹2⟩ is shown for a range of initial
wall-normal positions 𝑦0, separation distances 𝐷0, and separation orientations 𝒆0. As
stated above, initial orientation plays an important role for particles initialised near
the wall (subfigures a-b), while its impact is weaker far from the wall (subfigures c-d).
In all cases, the initial ballistic separation is more effective when the initial separation
𝐷0 is larger, consistently with the increasing behaviour of 𝑆2 with spatial increment.
As expected, particles separate faster at short times when they are oriented in the
wall-normal direction, in which case mean shear enhances pair separation from the
beginning. As mentioned in section 5.1.2, similar observations were made in a ho-
mogeneous shear flow by Shen and Yeung [165], who found that particles separate
faster when they are initially oriented in the cross-stream direction. Regarding the
wall-parallel directions, in which mean shear does not have an influence at short times,
spanwise orientations are found to lead to faster ballistic separations than streamwise
separations. Again, this can be seen in terms of the structure function 𝑆2, which is larger
for spanwise than for streamwise increments (fig. 5.4). As discussed in section 5.3.2,
near the wall this is explained by the presence of streaks and quasi-streamwise vortices,
which imply weaker velocity increments between two points aligned in the streamwise
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Figure 5.9. Forward mean-square change of separation for different initial configurations, in
wall units. Pairs are initially located at 𝑦+

0 = 8, 18, 67 and 427 (subfigures (a) to (d)). Line styles
represent the initial pair orientation: streamwise, solid lines; wall-normal, dashed lines; span-
wise, dotted lines. Line colours represent different initial separations 𝐷0/𝜂. Squares indicate
the ballistic time 𝑡0 associated to each initial condition. Results are obtained from dataset DS2.
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5.4 Mean shear influence

direction than in the spanwise direction (in other words, velocity stays correlated for
longer distances in the streamwise direction).
At very long times, the mean-square separation no longer depends on the initial

pair configuration. The curves from all the initial configurations collapse due to loss
of memory of the initial condition. An intermediate time range connects the initial
ballistic regime, strongly dependent on the initial configuration, and the long-time
dispersion regime, independent of the initial configuration. The ballistic time scale 𝑡0,
represented by squares over each curve of fig. 5.9, suitably represents the transition
from ballistic separation to the intermediate regime. The latter is described as a super-
diffusive process which separates particles faster than the initial ballistic regime, as
already observed in section 5.3.4 for pairs with initial separations 𝐷0 < 16𝜂. In fig. 5.9,
the slope of the intermediate regime is steeper when the initial ballistic regime is slower,
that is, when the structure function 𝑆2(𝑦0, 𝑫0) is weaker. This is the case for small
separations 𝐷0, as well as for wall-parallel orientations, in which case the contribution
of mean shear to 𝑆2 is zero.

5.4 Mean shear influence

In order to characterise the influence of mean shear on relative dispersion in the chan-
nel, the time evolution of the particle pair separation is decomposed into a separation
induced by the mean velocity field, 𝑹(𝑡), and a separation due to the fluctuating velo-
city field, 𝑹′(𝑡). This decomposition is introduced in section 5.4.1. Then, in section 5.4.2,
short-time dispersion is described based on the Taylor expansion of 𝑹′(𝑡), in an ana-
logous manner to the short-time description of the total separation (section 5.3.1).
Finally, in section 5.4.3, the time asymmetry of the fluctuation-induced separation 𝑹′

is discussed.

5.4.1 Decomposition of the mean-square separation

By definition, the velocity of a fluid particle is 𝒗(𝑡) = 𝒖(𝒙(𝑡), 𝑡), where 𝒖(𝒙, 𝑡) is the
Eulerian velocity field and 𝒙(𝑡) is the instantaneous particle position. The tracer velocity
may be decomposed into contributions by the Eulerian mean and fluctuating velocity
fields, 𝒖(𝒙) and 𝒖′(𝒙, 𝑡). Their contributions, denoted 𝑼(𝑡) and 𝒗̃(𝑡), are given by

𝒗(𝑡) = 𝑼(𝑡) + 𝒗̃(𝑡) = 𝒖(𝒙(𝑡)) + 𝒖′(𝒙(𝑡), 𝑡). (5.17)

We stress that 𝒗̃ is the Eulerian fluctuation of the velocity 𝒖 evaluated at the tracer
position. From a Lagrangian viewpoint, as discussed in section 3.4 in the context
of Lagrangian correlation functions, 𝒗̃ is not the true velocity fluctuation, since its
Lagrangian mean ⟨𝒗̃(𝑡)⟩ is generally non-zero for 𝑡 ≠ 0. Hence, the choice of notation
is made to avoid confusion with the Lagrangian fluctuation defined in section 3.4.

Similarly to 𝒗(𝑡), the relative velocity between two tracers, 𝛿𝒗(𝑡) = 𝒗𝐵(𝑡) − 𝒗𝐴(𝑡), can
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Figure 5.10. Backward and forward mean-square change of separation due to the fluctuating
flow ⟨𝑹′2⟩, normalised (a) by the initial mean-square separation ⟨𝑫2

0⟩ and (b) by the structure
function ⟨𝛿𝒗̃2

0⟩ and the ballistic time scale 𝑡′
0 = ⟨𝛿𝒗̃2

0⟩/|⟨𝛿𝒗̃0 ⋅ 𝛿 ̃𝒂0⟩| . Particle pairs are initially
separated by 𝐷0 < 16𝜂 (dataset DS1). Solid lines: forward dispersion. Dashed lines: backward
dispersion. In (a), circles represent the total mean-square separation ⟨𝑹2(𝑡)⟩ for 𝑦+

0 = 20 and
𝑡 > 0.

be decomposed as

𝛿𝒗(𝑡) = 𝛿𝑼(𝑡) + 𝛿𝒗̃(𝑡) (5.18)
= [𝒖 (𝒙𝐵(𝑡)) − 𝒖 (𝒙𝐴(𝑡))] + [𝒖′(𝒙𝐵(𝑡), 𝑡) − 𝒖′(𝒙𝐴(𝑡), 𝑡)] , (5.19)

where 𝒙𝐴(𝑡) and 𝒙𝐵(𝑡) are the instantaneous positions of the two tracers. Noting that
the change of separation 𝑹(𝑡) = 𝑫(𝑡)−𝑫0 between two tracers over time is the integral
of their relative velocity 𝛿𝒗(𝑡), from eq. (5.18) 𝑹(𝑡) can be decomposed as

𝑹(𝑡) = 𝑹(𝑡) + 𝑹′(𝑡) = ∫
𝑡

0
𝛿𝑼(𝜏)d𝜏 + ∫

𝑡

0
𝛿𝒗̃(𝜏)d𝜏 , (5.20)

where 𝑹(𝑡) and 𝑹′(𝑡) are the separations induced by the mean and fluctuating velocity
fields, respectively.

Furthermore, we denote by ̃𝒂(𝑡) the material derivative of 𝒗̃,

̃𝒂(𝑡) = D𝒗̃(𝑡)
D𝑡 = 𝒂(𝑡) − (𝒗(𝑡) ⋅ 𝛁) 𝒖(𝒙(𝑡)), (5.21)

where 𝒂(𝑡) = D𝒗/D𝑡 is the total tracer acceleration. We note that ̃𝒂 differs from the
fluctuating fluid acceleration at the tracer position, which is instead given by 𝑎′

𝑖(𝑡) =
𝑎𝑖(𝑡) − 𝜕𝑗𝑢𝑖𝑢𝑗(𝒙(𝑡)). In channel flow, the mean velocity field takes the form 𝒖(𝒙) =
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𝑈(𝑦)𝒆𝑥, and therefore eq. (5.21) writes

̃𝒂(𝑡) = 𝒂(𝑡) − 𝑣𝑦(𝑡)d𝑈(𝑦(𝑡))
d𝑦 𝒆𝑥, (5.22)

where 𝑦(𝑡) and 𝑣𝑦(𝑡) are the wall-normal particle position and velocity, respectively.
The last term in eq. (5.22) is the contribution of the Eulerian mean velocity field to the
acceleration of a tracer. Concretely, mean shear accelerates the tracer in the streamwise
direction if the latter moves in the direction of the mean velocity gradient (e.g. 𝑣𝑦 > 0
in the lower half of the channel). Hence, ̃𝒂 can be interpreted as the contribution of the
Eulerian fluctuating velocity field to the fluid particle acceleration.

The time evolution of themean-square separation induced by the fluctuating velocity
field is plotted in fig. 5.10a for pairs initially separated by 𝐷0 < 16𝜂 (dataset DS1).
Compared to the total mean-square separation ⟨𝑹2⟩ (fig. 5.3), ⟨𝑹′2⟩ is about one order
of magnitude weaker at very long times (𝑡+ ≈ 5000). When the influence of mean
shear is removed, the super-diffusive regime at intermediate times is considerably
weaker. Concerning the initial ballistic regime, the difference between ⟨𝑹2⟩ and ⟨𝑹′2⟩
is more pronounced when pairs are initially located close to the wall. For 𝑦+

0 = 20, ⟨𝑹2⟩
(represented by circles in the figure) evolves considerably faster than ⟨𝑹′2⟩ during the
ballistic regime, implying that ⟨𝛿𝒗2

0⟩ > ⟨𝛿𝒗̃2
0⟩. This is a result of mean shear having a

dominant role on the separation dynamics in the near-wall region, where the mean
velocity gradient is most intense. For larger wall distances, the influence of mean shear
on the ballistic regime is much weaker, implying that away from the wall the initial
separation regime (or equivalently the structure function 𝑆2) is governed by turbulent
fluctuations.

Similarly to the total relative dispersion described in the previous sections, relative
dispersion induced by the fluctuating flow is a time-asymmetric process,with backward
dispersion being faster than forward dispersion. As before, this asymmetry is first
evidenced as a deviation from the initial ballistic separation. The gap between backward
and forward dispersion increases at intermediate times, and then decreases at very long
times. The present results confirm that the temporal asymmetry of relative dispersion in
turbulent channel flow is a consequence of the irreversibility of turbulent fluctuations,
as is in isotropic flows [79].

5.4.2 Short-time dispersion

Similarly to the case of the total relative dispersion (section 5.3.1), the mean-square
separation due to the fluctuating flow can be expanded at short times as

⟨𝑹′2(𝑡)⟩ = ⟨𝛿𝒗̃2
0⟩𝑡2 + ⟨𝛿𝒗̃0 ⋅ 𝛿 ̃𝒂0⟩𝑡3 + 𝒪(𝑡4) for 𝑡 ≪ 𝑡′

0, (5.23)

where 𝛿𝒗̃0 = 𝛿𝒗̃(0) and 𝛿 ̃𝒂0 = 𝛿 ̃𝒂(0), with 𝛿 ̃𝒂(𝑡) = ̃𝒂𝐵(𝑡)− ̃𝒂𝐴(𝑡). According to eq. (5.23),
the separation 𝑹′(𝑡) is also expected to follow an initial ballistic growth, although the
characteristic duration of this regime is not necessarily the same as for the total change
of separation 𝑹(𝑡). Consistently with the discussion in section 5.3.3, the ballistic time
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scale associated to 𝑹′ is defined here as 𝑡′
0 = ⟨𝛿𝒗̃2

0⟩/∣⟨𝛿𝒗̃0 ⋅ 𝛿 ̃𝒂0⟩∣. In fig. 5.10b, forward
and backward ⟨𝑹′2(𝑡)⟩ curves of subfigure (a) are normalised according to the short
time regime (5.23). The collapse of the curves confirms the validity of the above
expansion and of the chosen time scale.

Structure functions As for the total mean-square separation, the coefficients governing
the short-time expansion eq. (5.23) are Eulerian structure functions evaluated at the
initial particle pair configuration. Since 𝒗̃ is the fluctuating velocity field at the position
of a tracer, ⟨𝛿𝒗̃2

0⟩ is equal to the fluctuating velocity structure function 𝑆′
2(𝑦0, 𝑫0) already

introduced in section 5.3.2 [eq. (5.9)]. The case of ⟨𝛿𝒗̃0 ⋅ 𝛿 ̃𝒂0⟩ is more subtle, since ̃𝑎
differs from the fluctuating fluid acceleration 𝒂′, and therefore ⟨𝛿𝒗̃0 ⋅ 𝛿 ̃𝒂0⟩ is not equal
to the structure function 𝑆′

𝑎𝑢 defined in eq. (5.12). Instead, ⟨𝛿𝒗̃0 ⋅ 𝛿 ̃𝒂0⟩ is given by the
structure function

̃𝑆𝑎𝑢(𝒙, 𝒓) = [𝑢′
𝑖(𝒙 + 𝒓, 𝑡) − 𝑢′

𝑖(𝒙, 𝑡)][
D𝑢′

𝑖
D𝑡 (𝒙 + 𝒓, 𝑡) −

D𝑢′
𝑖

D𝑡 (𝒙, 𝑡)]. (5.24)

In particular, for integral-range separations |𝒓| ≫ 𝐿, the fluctuations at the two probed
locations become decorrelated. Noting that 𝑢′

𝑖 D𝑢′
𝑖/D𝑡 is the material derivative of the

TKE 𝑘(𝒙, 𝑡), this leads to

̃𝑆𝑎𝑢(𝒙, 𝒓) ≈ D𝑘
D𝑡 (𝒙) + D𝑘

D𝑡 (𝒙 + 𝒓) for |𝒓| ≫ 𝐿. (5.25)

The quantity D𝑘/D𝑡(𝒙) represents the average rate of change of TKE among fluid
particles instantaneously located at 𝒙. As shown in appendix B.2 (see fig. B.2), this
quantity is close to zero in most of the channel except for 𝑦+ < 40, implying that
tracers on average do not gain or lose TKE in the logarithmic and outer layers. Most
importantly for the present study, this implies that ̃𝑆𝑎𝑢 ≈ 0 for sufficiently large initial
particle pair separations. This can be contrasted with the relation 𝑆𝑎𝑢 ≈ −2𝜀𝑝, which, as
discussed in section 5.3.2, is valid both for inertial- and integral-scale separations in the
channel. The relation ̃𝑆𝑎𝑢 ≈ 0 at large separations ultimately indicates that, according
to the short-time expansion (5.23), ⟨𝑹′2(𝑡)⟩ is not expected to be time-asymmetric if
the initial pair separation 𝐷0 is in the integral scales. This is consistent with the case
of isotropic turbulence, where particle separation is not time-asymmetric for paired
trajectories that are completely uncorrelated.

Local scaling exponents The local scaling exponents of ⟨𝑹′2(𝑡)⟩ are shown in fig. 5.11
with time normalised by 𝑡′

0. As with ⟨𝑹2(𝑡)⟩ (fig. 5.3), for all wall distances the initial
ballistic regime is followed by a decelerated separation rate in the forward case, and
by an accelerated separation rate in the backward case, which are both explained by
a negative value of ⟨𝛿𝒗̃0 ⋅ 𝛿 ̃𝒂0⟩ in eq. (5.23). The observed behaviour closely follows
the truncated Taylor expansion of ⟨𝑹′2(𝑡)⟩ at short times. Consistently with previous
observations, comparison with fig. 5.7 indicates that the super-diffusive regime at
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Figure 5.11. Local scaling exponents of the mean-square separation by the fluctuating flow
⟨𝑹′2(𝑡)⟩. (a) Forward dispersion. (b) Backward dispersion. Pairs are initially separated by
𝐷0 < 16𝜂 (dataset DS1). The dotted line represents the truncated Taylor expansion ⟨𝑹′2(𝑡)⟩ =
⟨𝛿𝒗̃2

0⟩𝑡2 + ⟨𝛿𝒗̃0 ⋅ 𝛿 ̃𝒂0⟩𝑡3 assuming ⟨𝛿𝒗̃0 ⋅ 𝛿 ̃𝒂0⟩ < 0. For each initial wall distance 𝑦+
0 , markers

indicate the local value of the Lagrangian integral time scale 𝑇𝐿 (circles) and of the mean shear
time scale 𝑇𝑆 (triangles).

intermediate times is remarkably weaker for ⟨𝑹′2(𝑡)⟩ than for the total separation
⟨𝑹2(𝑡)⟩, with maximum values that barely exceed the initial ballistic separation ⟨𝑹′2⟩ ∼
𝑡2. This confirms that the intermediate super-diffusive regime observed in the previous
sections, approaching a Richardson-like scaling ⟨𝑹2⟩ ∼ 𝑡3, is due to mean shear and
not to Richardson’s law. At very long times, the average separation rate decreases
continuously. It may be predicted that the diffusion by the fluctuating flow should
tend to a normally-diffusive process as in HIT [175], which would correspond to a
scaling ⟨𝑹′2⟩ ∼ 𝑡. However, the available data is insufficient to verify this statement.

5.4.3 Temporal asymmetry

Analogously to the case of ⟨𝑹2(𝑡)⟩ given by eq. (5.16), following eq. (5.23) the temporal
asymmetry of ⟨𝑹′2(𝑡)⟩ is described at short times by

⟨𝑹′2(𝑡)⟩ − ⟨𝑹′2(−𝑡)⟩ = 2⟨𝛿𝒗̃0 ⋅ 𝛿 ̃𝒂0⟩𝑡3 + 𝒪(𝑡5) for 𝑡 ≪ 𝑡′
0. (5.26)

As noted above, for a given initial pair configuration (𝑦0, 𝑫0), ⟨𝛿𝒗̃0 ⋅ 𝛿 ̃𝒂0⟩ is equal to
the Eulerian structure function ̃𝑆𝑎𝑢(𝑦, 𝒓) (defined in eq. (5.24)) evaluated at 𝑦 = 𝑦0
and 𝒓 = 𝑫0. The validity of this analytical prediction is verified from simulation
data in fig. 5.12, where the difference ⟨𝑹′2(𝑡)⟩ − ⟨𝑹′2(−𝑡)⟩ is plotted compensated by
2⟨𝛿𝒗̃0 ⋅ 𝛿 ̃𝒂0⟩𝑡3. The expected plateau at 1 is recovered for times 𝑡 ≲ 0.1𝑡′

0, similarly to the
case of ⟨𝑹2⟩ (fig. 5.8), and consistently with equivalent results in HIT [32, 79]. Namely,
Jucha et al. [79] plotted the compensated difference as given in fig. 5.12 using DNS and
experimental HIT data at different Reynolds numbers ranging from Re𝜆 = 200 to 690.

141



5 Relative dispersion of particle pairs

10−3 10−2 10−1 100 101 102

t t/ ′0

0.0

0.2

0.4

0.6

0.8

1.0

⟨
⟩

R
R

v
a

′
(−

)
−

′
(

)
/

−
2

̃
⋅

̃
2

2
0

0
3

t
t

δ
δ

t
[

]
⟨

⟩
10−310−210−1 100 101 102

t t/ ′0

10−7

10−5

10−3

10−1

101

103

⟨
⟩

R
R

D
′

(−
)

−
′

(
)

/
2

2
2 0

t
t

⟨
⟩

∼ t3

y0
+

20

60

200

600

1000

Figure 5.12.Difference between backward and forwardmean-square separation by the fluctuating
flow, compensated by −2⟨𝛿𝒗̃0 ⋅ 𝛿 ̃𝒂0⟩𝑡3. Pairs are initially separated by 𝐷0 < 16𝜂 (dataset DS1).
Inset: mean-square separation difference compensated by the initial mean-square separation
⟨𝑫2

0⟩.

All their data showed a clear plateau up to 𝑡 ≈ 𝑡𝐸/10, where 𝑡𝐸 is the eddy-turnover
time at the scale 𝐷0 (introduced in section 5.3.3). Here, the plateau is observed even
close to the wall, where the flow is strongly anisotropic. Interestingly, for 𝑦+

0 = 20,
the curve closely matches the behaviour at larger wall distances, which was not the
case for ⟨𝑹2⟩ shown in fig. 5.8. More generally, the spread of the curves associated to
different 𝑦+

0 is reduced with respect to those obtained for ⟨𝑹2⟩ (fig. 5.8), emphasising
the impact of mean shear on ⟨𝑹2⟩, at relatively short times close to the wall and at
larger times away from the wall. This is confirmed in the inset of fig. 5.12, where the
backwards-forwards difference compensated by the initial mean-square separation
⟨𝑫2

0⟩ collapses for the different initial wall distances. We note that, as described in
section 5.2, the initial wall distance of particles in the 𝑦+

0 = 20 set is actually within
0 < 𝑦+ < 40. Therefore, the present data does not allow for a finer description of
the temporal asymmetry of pair dispersion close to the wall, where the Eulerian flow
structure changes rapidly with 𝑦+.
The contributions of the three separation components to the backwards-forwards

difference are plotted in fig. 5.13 for the initial wall distances 𝑦+
0 = 60 and 600. For

𝑦+
0 = 60, backward dispersion is faster than forwards in the three directions at short

times, indicating that the contribution of each component to the structure function ̃𝑆𝑎𝑢
is negative. However, this difference is dominated by the streamwise separation, which
is approximately equal to the total difference at all times. Meanwhile, the differences
in the wall-normal and spanwise directions stay small and even change sign after the
initial regime. In the case of 𝑦+

0 = 600, the three separation components contribute
nearly equally to the backwards-forwards difference at short times, indicating that
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Figure 5.13.Difference between backward and forwardmean-square separation by the fluctuating
flow by separation component, compensated by ⟨𝑫2

0⟩. Initial wall distances are (a) 𝑦+
0 = 60

and (b) 𝑦+
0 = 600. The black dashed line is the total difference ⟨𝑹′2(−𝑡)⟩ − ⟨𝑹′2(𝑡)⟩. Pairs are

initially separated by 𝐷0 < 16𝜂 (dataset DS1).

̃𝑆𝑎𝑢(𝑦, 𝒓) is nearly isotropic in this region of the channel. For the three components,
the difference stays positive at all times (meaning that particle pairs separate over
longer distances backwards in time in the three directions), although the streamwise
separation dominates at long times.

5.5 Relative dispersion tensor

Until now, we have mostly considered statistics related to the change of separation
distance between a pair of particles, |𝑹(𝑡)| = ∣𝑫(𝑡) − 𝑫0∣. However, the statistics of
separation between two particles in inhomogeneous and anisotropic flows present
an anisotropic evolution in time. In the particular case of shear flows, the presence of
mean shear enhances particle separation in the streamwise direction, while it does not
have a direct effect in the other directions.
The anisotropy of relative dispersion can be investigated in terms of the relative

dispersion tensor [13, 109],
𝛥𝑖𝑗(𝑡) = ⟨𝑅𝑖(𝑡)𝑅𝑗(𝑡)⟩, (5.27)

where 𝑅𝑖(𝑡) = 𝐷𝑖(𝑡)−𝐷𝑖(0) is the 𝑖-th component of 𝑹(𝑡). The trace of 𝛥𝑖𝑗 is equal to the
mean-square change of separation, 𝛥𝑖𝑖(𝑡) = ⟨𝑹2(𝑡)⟩. By construction, 𝛥𝑖𝑗 is a symmetric
tensor. In channel flow, due to the statistical symmetry 𝑧 ↔ −𝑧, its non-diagonal
components 𝛥𝑥𝑧 and 𝛥𝑦𝑧 are zero. As a consequence, the relative dispersion tensor
contains a single independent non-diagonal component, 𝛥𝑥𝑦 = 𝛥𝑦𝑥. Each component
of the relative dispersion tensor depends on the initial wall distance 𝑦0 and on the
initial pair separation vector 𝑫0.

The short-time evolution of ⟨𝑹2(𝑡)⟩ as predicted by expansion (5.6) can be general-
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Figure 5.14.Components of the relative dispersion tensor 𝛥𝑖𝑗, compensated by the mean-square
initial relative velocity ⟨𝛿𝒗2

0⟩ and the characteristic ballistic time 𝑡0. Pairs are initially located at
𝑦+

0 = 8, 18, 67 and 427 (subfigures (a) to (d)). The initial separation vector is 𝑫0 = 16𝜂𝒆𝑧. The
total mean-square separation 𝛥𝑖𝑖 = ⟨𝑹2⟩ is also represented. Dotted horizontal lines mark the
level 𝛥𝑖𝑗 = 2ℎ2/3, where ℎ is the channel half-width. Negative values of 𝛥𝑥𝑦 are represented by
dashed lines. Results are obtained from dataset DS2.

ised to

𝛥𝑖𝑗(𝑡) = ⟨𝛿𝑣0𝑖𝛿𝑣0𝑗⟩𝑡2 + (⟨𝛿𝑣0𝑖𝛿𝑎0𝑗⟩ + ⟨𝛿𝑣0𝑗𝛿𝑎0𝑖⟩)
𝑡3

2 + 𝒪(𝑡4) for 𝑡 ≪ 𝑡0. (5.28)

Hence, each component of𝛥𝑖𝑗 independently follows an initial ballistic regime according
to the velocity structure function tensor

⟨𝛿𝑣0𝑖𝛿𝑣0𝑗⟩ = 𝑆𝑖𝑗(𝒙0, 𝑫0) = 𝛿𝑢𝑖(𝒙0, 𝑫0, 𝑡) 𝛿𝑢𝑗(𝒙0, 𝑫0, 𝑡), (5.29)

where 𝛿𝑢𝑖(𝒙, 𝒓, 𝑡) = 𝑢𝑖(𝒙 + 𝒓, 𝑡) − 𝑢𝑖(𝒙, 𝑡). At the next order, the 𝑡3 term is governed
by the symmetric part of the crossed velocity-acceleration structure function tensor,
⟨𝛿𝑣0𝑖𝛿𝑎0𝑗⟩ = 𝛿𝑢𝑖(𝒙0, 𝑫0, 𝑡) 𝛿𝑎𝑗(𝒙0, 𝑫0, 𝑡).
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5.5 Relative dispersion tensor

5.5.1 Short-time dispersion

The temporal evolution of the 𝛥𝑖𝑗 components is shown in fig. 5.14 for particle pairs
initially separated in the spanwise direction by 𝐷0 = 16𝜂, for different initial wall
distances 𝑦0. Because of the spanwise initial alignment of the pairs, mean shear does
not play a role during the initial ballistic separation. As predicted by eq. (5.28), a ballistic
separation is observed for each component of 𝛥𝑖𝑗. This ballistic regime is anisotropic,
i.e. it displays different separation rates in each direction. As expected, the anisotropy
of the short-time separation is stronger near the wall (𝑦+

0 = 8 and 18), where tracers
separate faster in the streamwise direction, while separation in the other directions is
comparatively negligible. (note that the curves for 𝛥𝑥𝑥 and the trace ⟨𝑹2⟩ are nearly
superposed at all times). The strong anisotropy near the wall can be explained by the
effect of near-wall streaks. These are elongated regions in the streamwise direction,
carrying low-speed and high-speed fluid alternating in the spanwise direction [147].
Two tracers initially belonging to two neighbouring streaks (a high-speed streak next
to a low-speed streak), experience a rapid streamwise separation due to the velocity
difference between the streaks.

As expected, short-time statistics approach isotropy as particles are released further
away from the wall. This is consistent with the observations in section 5.4.3 (see
fig. 5.13), in which the temporal asymmetry of the short-time dispersion is close to
isotropy far from the wall. In all cases, for each diagonal component of 𝛥𝑖𝑗, the ballistic
separation is immediately followed by a short-lived deceleration of the separation rate.
Following eq. (5.28) and consistently with the observations from previous sections,
this deceleration is associated with a negative value of the component-wise crossed
structure function ⟨𝛿𝑣0𝑖𝛿𝑎0𝑖⟩ (where repeated indices do not imply summation).

5.5.2 Intermediate and long-time dispersion

At intermediate times starting from 𝑡 ≈ 𝑡0, 𝛥𝑥𝑥 displays an accelerated separation rate,
while 𝛥𝑦𝑦 and 𝛥𝑧𝑧 evolve at slower rates compared to the initial ballistic regime. The
rapid separation in the streamwise direction can be attributed to the effect of mean
shear. The shear-dominated separation is most effective until 𝑡 ≈ 10𝑡0, where it is
characterised by a steep slope of the 𝛥𝑥𝑥 evolution. This is consistent with the duration
of the super-diffusive regime observed for ⟨𝑹2⟩, as discussed in section 5.3.4 (fig. 5.7).

Concerning the wall-normal component 𝛥𝑦𝑦, an estimate can be made for its asymp-
totic long-time behaviour noting that the wall-normal pair separation is limited to
|𝐷𝑦| ≤ 2ℎ (where ℎ is the channel half-width) due to confinement by the channel walls.
As discussed in section 4.5.3 in the context of single-particle displacements, under the
assumption of loss of memory of the initial particle position, the wall-normal position
of a single particle obeys a uniform distribution at long times, described by the PDF
𝑃𝑦(𝑦) = 1/(2ℎ) for 0 ≤ 𝑦 ≤ 2ℎ. Furthermore, the trajectories of two paired particles are
expected to decorrelate over sufficiently long times. As a consequence, the joint PDF
describing the wall-normal positions of the two particles, 𝑃𝑦𝑦(𝑦1, 𝑦2), becomes equal
to 𝑃𝑦(𝑦1)𝑃𝑦(𝑦2). Under these assumptions, the asymptotic wall-normal mean-square
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5 Relative dispersion of particle pairs

separation is given by

⟨𝐷2
𝑦⟩ = ∫

2ℎ

0
∫

2ℎ

0
(𝑦2 − 𝑦1)2𝑃𝑦𝑦(𝑦1, 𝑦2)d𝑦1 d𝑦2 = 2

3ℎ2. (5.30)

This estimation can be extended to the wall-normal component of the dispersion tensor,
i.e. 𝛥𝑦𝑦 ≈ 2ℎ2/3, provided the initial wall-normal pair separation is small compared to
the channel dimensions, |𝐷0𝑦| ≪ ℎ. In fig. 5.14, this estimate (represented by dotted
horizontal lines) accurately predicts the behaviour of𝛥𝑦𝑦 at long times.We have verified
this to be the case for 𝑡+ > 1 × 104 for all 𝑦+

0 (not shown here). This is consistent with
results in fig. 5.9 showing that after 𝑡+ ≈ 1 × 104, statistics no longer depend on the
initial particle pair configuration.

5.5.3 Time evolution of cross-term 𝛥𝑥𝑦

We finally discuss the evolution of the non-diagonal term 𝛥𝑥𝑦 shown in fig. 5.14, which
may yield additional insight on the mechanisms of pair separation in wall-bounded
turbulence. Initially, 𝛥𝑥𝑦 evolves ballistically with an increasingly negative value at
all wall distances. Following eq. (5.28), this corresponds to a negative value of the
structure function 𝑆𝑥𝑦(𝑦, 𝒓), in this case for 𝒓 = 16𝜂𝒆𝑧. This is consistent with the model
of Yang et al. [200] (briefly discussed in section 5.3.2), predicting a structure function
𝑆+

𝑥𝑦 between −1 and −2 when the two probed locations are within the logarithmic
region. The ballistic regime ends with a deviation of 𝛥𝑥𝑦 towards positive values,
resulting from a positive value of the 𝑡3 term in eq. (5.28). This leads to a change of
sign of 𝛥𝑥𝑦, which becomes positive at 𝑡 ≈ 𝑡0/2 for all initial wall distances.
At intermediate times, 𝛥𝑥𝑦 displays a rapid growth, coinciding with the super-

diffusive growth of 𝛥𝑥𝑥. As for 𝛥𝑥𝑥, this is explained by the influence of mean shear. To
illustrate this, one can consider a pair of tracers A and B initially located in the lower
half of the channel (0 < 𝑦0 < ℎ). At some point, even if the tracers are initially close,
their wall-normal separation |𝐷𝑦| = |𝑦𝐵 − 𝑦𝐴| will grow due to turbulent diffusion
until |𝐷𝑦| becomes large enough for mean shear to become important. Without loss
of generality, we assume that particle B is further away from the wall than particle A,
i.e. 𝐷𝑦 > 0. Hence, as long as the particles stay within the lower half of the channel,
particle B is located in a region of faster average flow than A, and thus their streamwise
separation 𝐷𝑥 grows rapidly due to mean shear. The result is a product 𝐷𝑥𝐷𝑦 which
rapidly grows over time as long as 𝐷𝑦 remains positive. This is no longer valid once a
tracer crosses the channel centre, which explains the decelerated growth of 𝛥𝑥𝑦 at later
times.

5.6 Ballistic dispersion model

The presented results confirm that the ballistic separation of particle pairs is a universal
property of relative dispersion, which is not limited to isotropic turbulence (or even to
turbulent flows, for that matter). This makes ballistic motion a fundamental aspect
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of relative dispersion, which can not only explain the separation of particle pairs at
short times following their release, but may also give an explanation for the long-
time dispersion including Richardson’s explosive separation regime. This is precisely
the path taken by several authors, who have attempted to model relative dispersion
in isotropic flows based on the idea of subsequent ballistic separations to obtain a
description of the long-time dispersion dynamics [29, 50, 168, 178].

In the following we consider the iterative ballistic model proposed by Bourgoin [29]
for isotropic turbulence, and we propose a simple extension to anisotropic flows ac-
counting formean shear and finite-Reynolds effects. Bourgoin’s ballisticmodel is briefly
described in section 5.6.1. In section 5.6.2, an extension of themodel to anisotropic flows
is formulated. The model is compared to our channel flow DNS results in section 5.6.3.
Finally, potential model improvements are discussed in section 5.6.4.

5.6.1 Ballistic cascade model in isotropic turbulence

Bourgoin [29] formulated the ballistic cascade in turbulent flows as a simple iterative
model illustrated by fig. 5.15. Starting from an initial separation 𝐷0 within the inertial
subrange, themean-square separation ⟨𝑫2⟩ is incremented at each iteration by a ballistic
assumption according to

𝐷2
𝑘+1 = 𝐷2

𝑘 + 𝑆2(𝐷𝑘)𝑡∗2
𝑘 (𝐷𝑘) for 𝑘 = 0, 1, 2, … , (5.31)

where 𝐷2
𝑘 is the mean-square separation at iteration 𝑘. Here, 𝑆2(𝐷𝑘) = 11

3 𝐶2(𝜀𝐷𝑘)2/3 is
the isotropic second-order Eulerian velocity structure function for a separation 𝐷𝑘 in
the inertial subrange, as introduced in section 5.1.1. The duration of the 𝑘-th iteration
is given by 𝑡∗

𝑘 = 𝛼𝑡𝑘, where 𝑡𝑘 = 𝑆2(𝐷𝑘)/(2𝜀) is a characteristic time of the ballistic
regime (equal to 𝑡𝐼 as defined in eq. (5.14)), and 𝛼 is a non-dimensional positive
constant referred to as the persistence parameter. A value 𝛼 < 1 expresses that the
actual duration of the ballistic separation regime is smaller than the characteristic time
𝑡0, as observed in isotropic turbulent flows [25, 30] and in the present channel flow
(see e.g. fig. 5.7). In the above model, the total time elapsed by the end of iteration 𝑘 is
𝑇𝑘+1 = ∑𝑘

𝑛=0 𝑡∗
𝑛(𝐷𝑘) (fig. 5.15).

Besides Kolmogorov’s constant 𝐶2, which has the well-accepted value 𝐶2 ≈ 2.1 in
high-Reynolds numbers flows [172], 𝛼 is the only free parameter of the model. By
analytically relating 𝐶2 and 𝛼 to Richardson’s constant, Bourgoin [29] found 𝛼 = 0.12
as the value that best matches the well-accepted Richardson constant in 3D turbulence,
𝑔 ≈ 0.55 [149]. With this value of the persistence parameter, the ballistic cascade
model reproduces with great accuracy the DNS results from Bitane et al. [25] in HIT
at Re𝜆 = 730, with initial particle separations 𝐷0 ranging from 2𝜂 to 48𝜂.
The model described by eq. (5.31) is symmetric in time, i.e. it predicts the same

separation rates for forward and backward dispersion. Bourgoin [29] also proposed a
time-asymmetric extension of the model by including the 𝑡3 term in the Taylor expan-
sion (5.6), associated to the crossed velocity-acceleration structure function 𝑆𝑎𝑢. This
refined model captures a ratio between backward and forward Richardson constants
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𝐷0

𝐷1
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⋮

𝐷2
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𝑘 + 𝑆2(𝐷𝑘)𝑡∗2
𝑘 (𝐷𝑘)

𝑡∗
0

𝑡∗
1

⋮
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𝑘

𝑇 𝑘
+

1
=

∑
𝑘 𝑛=

0
𝑡∗ 𝑛(

𝐷
𝑛)

Figure 5.15. Schematic of the iterative ballistic cascade model proposed by Bourgoin [29]. At
each iteration 𝑘, the mean-square particle pair separation grows ballistically from 𝐷2

𝑘 to 𝐷2
𝑘+1

during a time 𝑡∗
𝑘(𝐷𝑘), with a growth rate given by 𝑆2(𝐷𝑘) [eq. (5.31)]. Figure adapted from

Bourgoin [29].

𝑔bw/𝑔fw = 1.9, consistent with available experimental and numerical results [18, 32].
The model (5.31) implies that the ballistic separation is approximated by ⟨𝑫2(𝑡)⟩ −

𝑫2
0 ≈ 𝑆2(𝐷0)𝑡2 at short times. As discussed in section 5.1.1, this relation is exact

only if ⟨𝑫0 ⋅ 𝛿𝒗0⟩ = 0, i.e. if the initial separation and the initial relative velocity are
uncorrelated. This is generally not true in anisotropic flows [128], in which case a
(possibly small) approximation error is incurred by the model at short times. As also
discussed by Bourgoin [29], a stronger approximation implied by the model is that,
over time, the full distribution of particle pair separations is replaced by its second-
order moment, i.e. the mean-square separation ⟨𝑫2⟩. In reality, over time different
particle pairs have different separations, and thus their ballistic growth rate should
be obtained from the two-point statistics at their own instantaneous separation. This
suggests a probabilistic approach, such as the one proposed by Thalabard et al. [178],
in which the full distribution of particle pair separations is modelled. Nevertheless, as
mentioned above, the approximationsmade by Bourgoin’s iterativemodel are sufficient
to accurately describe mean-square separation statistics observed in simulations and,
in the case of the time-asymmetric model extension, the ratio between backward and
forward Richardson constants.

5.6.2 Ballistic cascade model in inhomogeneous turbulence

As shown in the previous sections, the mean-square separation of particle pairs in
channel flow is accurately described at short times by an average ballistic separation.
Therefore, a model based on a succession of ballistic separations seems suitable for
predicting pair dispersion statistics in the present flow. In this section, such a model is
proposed based on Bourgoin’s approach, which is adapted to account for the effect of
an inhomogeneous mean velocity field 𝑼(𝒙). The model is also adjusted to account
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5.6 Ballistic dispersion model

for the transition from inertial- to integral-scale separations at sufficiently long times.
In addition to the mean velocity field, the present model requires as input the mean
turbulent dissipation rate 𝜀(𝒙).

In contrast to the isotropic model, where the output is the (mean-squared) separ-
ation 𝐷(𝑡), the present model needs to keep track of the full mean separation vector
𝑫(𝑡) and of the absolute particle pair position in order to account for anisotropy and
inhomogeneity. The position of the pair is determined here by the particle pair centroid
̃𝒙(𝑡) = (𝒙𝐴(𝑡) + 𝒙𝐵(𝑡))/2, where 𝒙𝐴 and 𝒙𝐵 are the positions of the two particles. In

channel flow, due to homogeneity in the streamwise and spanwise directions, only
the wall-normal component ̃𝑦 = ̃𝒙 ⋅ 𝒆𝑦 needs to be considered. Moreover, the model
requirements reduce to the mean streamwise velocity profile across the channel 𝑈(𝑦),
and the mean turbulent dissipation rate 𝜀(𝑦). The model is started with the initial
particle pair configuration, determined by the initial separation vector 𝑫0 and the
wall-normal centroid position ̃𝑦0 = (𝑦𝐴

0 + 𝑦𝐵
0 )/2.

We model the time evolution of the mean-square separation vector ⟨𝑫2⟩ and the
mean position of the pair centroid ̃𝒙 iteratively. As a first approximation, the centroid
is kept fixed over time, i.e. ̃𝒙𝑘 = ̃𝒙0 at every iteration 𝑘. This will be improved in future
versions of the model, by taking into account the drift of the particle pair centroid
based on the single-particle dispersion statistics presented in chapter 4. At iteration 𝑘,
the mean-square separation in each direction 𝑖 ∈ {𝑥, 𝑦, 𝑧} is incremented according to

𝐷2
𝑘+1,𝑖 = 𝐷2

𝑘,𝑖 + 𝑆2𝑖( ̃𝒙𝑘, 𝑫𝑘) 𝑡∗2
𝑘 ( ̃𝒙𝑘, 𝑫𝑘) for 𝑘 = 0, 1, 2, … , (5.32)

where 𝐷2
𝑘,𝑖 is the mean-square separation in the 𝑖-th direction at iteration 𝑘. The total

mean-square separation is then 𝐷2
𝑘 = 𝐷2

𝑘,𝑥 + 𝐷2
𝑘,𝑦 + 𝐷2

𝑘,𝑧.

The structure function 𝑆2𝑖 is associated to the velocity component 𝑢𝑖. Applying the
Reynolds decomposition, 𝑆2𝑖 can be written as the superposition of a mean and a
fluctuating component,

𝑆2𝑖( ̃𝒙𝑘, 𝑫𝑘) = 𝑆2𝑖( ̃𝒙𝑘, 𝑫𝑘) + 𝑆′
2𝑖( ̃𝒙𝑘, 𝑫𝑘). (5.33)

The mean component is readily obtained from the mean velocity field,

𝑆2𝑖( ̃𝒙𝑘, 𝑫𝑘) = [𝑈𝑖(𝒙𝐵
𝑘 ) − 𝑈𝑖(𝒙𝐴

𝑘 )]2, (5.34)

where 𝒙𝐴
𝑘 and 𝒙𝐵

𝑘 are the modelled positions of the two particles,

𝒙𝐴
𝑘 = ̃𝒙𝑘 − 𝑫𝑘

2 and 𝒙𝐵
𝑘 = ̃𝒙𝑘 + 𝑫𝑘

2 . (5.35)

Meanwhile, the fluctuating component 𝑆′
2𝑖 is estimated so as to account for the transition

from inertial- to integral-scale separations. In the inertial range, 𝑆′
2𝑖 is assumed to be
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isotropic and thus it is estimated as [137]

𝑆𝐼
2𝑖( ̃𝒙𝑘, 𝑫𝑘) = 𝐶2 (𝜀( ̃𝒙𝑘) ∣𝑫𝑘∣)

2/3 ⎛⎜
⎝

4
3 − 1

3
𝐷2

𝑘,𝑖

∣𝑫𝑘∣2
⎞⎟
⎠

, (5.36)

which is directly related to expression (5.7) for the total structure function 𝑆2. As
discussed in section 5.3.2 [eq. (5.10)], for integral-scale separations, the velocity fluctu-
ations at the two locations become decorrelated and the structure function 𝑆′

2𝑖 is given
by the sum of the velocity variances at the two positions,

𝑆𝐿
2𝑖( ̃𝒙𝑘, 𝑫𝑘) = 𝑢′2

𝑖 (𝒙𝐴
𝑘 ) + 𝑢′2

𝑖 (𝒙𝐵
𝑘 ), (5.37)

where 𝑢′2
𝑖 is the variance of the velocity component 𝑢𝑖.

Noting that the velocity structure function typically increases with the spatial in-
crement (or equivalently, the velocity auto-correlation decreases with distance), it is
reasonable to model 𝑆′

2𝑖 as an increasing function of the separation |𝑫𝑘|. Hence, we
choose to implicitly model the transition from inertial- to integral-scale separations by
taking

𝑆′
2𝑖( ̃𝒙𝑘, 𝑫𝑘) = min {𝑆𝐼

2𝑖( ̃𝒙𝑘, 𝑫𝑘), 𝑆𝐿
2𝑖( ̃𝒙𝑘, 𝑫𝑘)} , (5.38)

that is, the transition happenswhen the components of the separation vector𝑫𝑘 become
large enough for the inertial-scale estimation 𝑆𝐼

2𝑖 to overcome the integral-scale structure
function 𝑆𝐿

2𝑖. A weakness of this model is that it predicts a sharp transition between
scales, given by an abrupt (non-differentiable) structure function at the separation
where the transition happens, whereas the structure function should be a smooth
function of the separation. This is illustrated by fig. 5.16, which compares the structure
functions 𝑆′

2𝑖 obtained from eq. (5.38) with their values in channel flow DNS, for
separations 𝑫𝑘 in the spanwise direction. For small separations, the overestimation of
𝑆′

2𝑖 by the model is explained both by dissipative-scale separations not being included
in the model, and by the lack of sufficient scale separation at the present Reynolds
number, as discussed in section 5.3.2. In the figure, the fluctuating value of 𝑆′

2𝑥 from
DNS at large separations is a numerical artefact due to the finite domain size in the
spanwise direction, as discussed in section 2.1.4.2.

We finally note that, according to eq. (5.38), the three separation components 𝐷𝑖
may transition to the integral scales at different times. This is not an issue since, in
inhomogeneous flows, the characteristic size of the integral scales generally depends
on the considered orientation.

As in the original model by Bourgoin [29], the iteration time is taken as 𝑡∗
𝑘 = 𝛼𝑡𝑘,
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Figure 5.16.Modelled and computed velocity structure functions 𝑆′
2𝑖(𝑦, 𝒓) in wall units, for (a)

𝑦+ = 67 and (b) 𝑦+ = 427. Spatial increments are in the spanwise direction, 𝒓 = 𝑟𝒆𝑧. Dashed
lines with markers, modelled structure functions according to eq. (5.38); solid lines, channel
flow DNS at Re𝜏 = 1440.

with the ballistic time scale estimated as4

𝑡𝑘( ̃𝒙𝑘, 𝑫𝑘) = 𝑆2( ̃𝒙𝑘, 𝑫𝑘)
2𝜀( ̃𝒙𝑘) = 1

2𝜀( ̃𝒙𝑘)
3

∑
𝑖=1

𝑆2𝑖( ̃𝒙𝑘, 𝑫𝑘). (5.39)

Here, the structure functions 𝑆2𝑖 are determined from eqs. (5.33), (5.34) and (5.38).
The estimation (5.39) is obtained from definition (5.13) for the ballistic time scale,
along with the assumption that the crossed velocity-acceleration structure function
is given by 𝑆𝑎𝑢( ̃𝒙𝑘, 𝑫𝑘) = −2𝜀( ̃𝒙𝑘). The value of the persistence parameter 𝛼 = 0.12
is kept unchanged from the isotropic model. Finally, the time elapsed by the end of
iteration 𝑘 is 𝑇𝑘 = ∑𝑘

𝑛=0 𝑡∗
𝑘( ̃𝒙𝑛, 𝑫𝑛).

As described above, a limitation of the present model is that the centroid position ̃𝒙𝑘
stays fixed over time. Since the mean turbulent dissipation rate is always evaluated
at ̃𝒙𝑘 [eqs. (5.36) and (5.39)], the effective dissipation also stays constant in time, as
in the isotropic model. In fact, the present model falls back to the isotropic model
when a constant mean velocity field is imposed (i.e. in the absence of mean shear),
as long as separations stay within the inertial subrange. A stronger limitation of the
inhomogeneous model is that it does not account for the presence of solid boundaries
and thus for wall confinement in wall-bounded flows. In other words, the model
allows particles to travel beyond walls. When a particle crosses a channel wall, the
mean velocity at its position is taken as 𝑼 = 0. Further work is required to properly
4In our publication [135] a different definition was used, with 𝑆′

2𝑖 instead of 𝑆2𝑖. As a consequence, the
model results presented in this work differ from those of the article and are closer to the DNS statistics.
The present definition yields a longer duration of each ballistic iteration, and is consistent with the
ballistic regime being determined by the full relative particle velocity and not only by its fluctuating
component.
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Figure 5.17. Inhomogeneous ballistic cascade model compared to pair dispersion statistics ob-
tained from DNS. Particle pairs are initially located at (a) 𝑦+

0 = 67 and (b) 𝑦+
0 = 427. The initial

separation vector is 𝑫0 = 16𝜂𝒆𝑧. Black solid line, DNS results; dash-dotted line, ballistic model
with zero velocity profile; line with markers, full ballistic model with velocity profile 𝑈(𝑦).
Markers are drawn at every ballistic iteration. Dotted lines and crosses are drawn once one of
the modelled particles has crossed the channel walls.

account for wall confinement.

5.6.3 Application to turbulent channel flow

The model formulated above is tested in the channel flow configuration, using as input
a mean velocity profile 𝑈(𝑦), velocity variance profiles 𝑢′2

𝑖 (𝑦), and a mean turbulent
dissipation rate profile 𝜀(𝑦) obtained from our DNS at Re𝜏 = 1440 (profiles are plotted
in appendix A, figs. A.1 and A.3). We test two initial configurations, corresponding
to initial wall distances 𝑦+

0 = 67 and 427. In both cases the initial particle separation
is 𝑫0 = 16𝜂𝒆𝑧. The DNS results obtained from these two cases have been analysed in
previous sections (see e.g. fig. 5.14(c-d)). Since the present model assumes isotropy to
estimate inertial-range structure functions (eq. (5.36)), model predictions are expected
to bemore accurate for particles initialised far from thewall where anisotropy is weaker.
Furthermore, the chosen initial separation𝐷0 = 16𝜂 is considered favourable for testing
the model since, as shown in fig. 5.4, the velocity structure function 𝑆2 closely matches
the inertial-range isotropic behaviour predicted by K41 theory. This is not the case for
smaller separations including 𝐷0/𝜂 = 1 and 4. For these separations, the model should
be extended by including dissipation-range structure function estimations such as the
ones proposed in section 5.3.2.

A comparison between the model and DNS results is shown in fig. 5.17 for the two
chosen initial configurations. Also shown is a variant of the model with a zero mean
velocity profile (𝑈(𝑦) = 0), so that mean shear effects are neglected. As mentioned

152



5.6 Ballistic dispersion model

0 1 2 3
x h/

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

y
h/

y0
+ = 67 a

0 10 20 30
x h/

̃x

y0
+ = 427 b

Figure 5.18. Trajectories of modelled particle pairs projected on a 𝑥-𝑦 plane. Initial configurations
are as in fig. 5.17. Markers are drawn at every ballistic iteration. The pair centroid ̃𝒙, represented
by a dotted line, is advected by the mean streamwise velocity 𝑈( ̃𝒙). The lower wall and the
channel centreline are represented by solid and dashed lines, respectively.

above, this variant is equivalent to Bourgoin’s isotropic model as long as separations
stay within the inertial subrange. Figure 5.17 is complemented by fig. 5.18 illustrating
the modelled particle pair trajectories for the two initial configurations, up to the
moment a particle crosses the wall. In fig. 5.17, the full model closely predicts the
DNS data during the first few ballistic iterations. Up to 𝑡 ≈ 𝑡0, the two model variants
closely match, suggesting that turbulent fluctuations dominate the separation over
mean shear. At later times, the full model accurately describes the transition to the
shear-dominated separation regime, in which the separation rate is accelerated with
respect to the initial 𝑡2 scaling. Contrarily to the results presented by Bourgoin [29],
here the zero-shear model does not show evidence of Richardson’s 𝑡3 regime due to
lack of scale separation, since particle pairs do not spend enough time in the inertial
subrange.
For both initial wall distances, the model slightly overpredicts the separation at

the first iteration compared to the DNS data. This is explained by inaccuracies in
the prediction of the structure functions 𝑆2𝑖. This is clearer in fig. 5.19, where each
component of themodelled and computedmean-square separation is separately plotted
compensated by the initial ballistic regime in 𝑡2. For both initial wall distances, the
model overpredicts the initial ballistic regime (and therefore 𝑆2𝑖) in the wall-normal
and spanwise directions. The ballistic streamwise separation is correctly predicted
at very short times for 𝑦+

0 = 67. However, this seems to be coincidental as the same
separation is overestimated at 𝑦+

0 = 427, where the model is expected to be more
accurate due to return to isotropy far from the wall. The overprediction of 𝑆2𝑖 can be
explained by the relatively small Reynolds number of the present flow (Remax

𝜆 ∼ 100).
As discussed in section 5.3.2, a lower value of the Kolmogorov constant 𝐶2 would fit
more closely the velocity structure functions in the channel. This can be expected to
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improve the comparisons with DNS data.
At intermediate times, fig. 5.19 shows that the model qualitatively captures the

decreasing separation rates in the wall-normal and spanwise directions, as well as the
hierarchy of separations in the different directions (𝐷2

𝑥 > 𝐷2
𝑧 > 𝐷2

𝑦) and the explosion
of the streamwise separations due to mean shear. Moreover, it accurately predicts the
time where the transition to the shear-dominated regime occurs.

The inhomogeneous model strongly departs from the DNS data at long times. This
is explained by the model not accounting for the presence of walls, which limit the
wall-normal motion of particles. As a result, over time the model overestimates the
wall-normal particle separation 𝐷𝑦. This is more visible in fig. 5.19b, where at long
times the modelled 𝐷𝑦 displays a growth rate faster than 𝑡2. In turn, this results in an
overestimation of the separation by mean shear, since the mean velocity difference
increases with 𝐷𝑦 as long as particles do not cross the channel centreline.

5.6.4 Discussion and perspectives

As shown above, the inhomogeneous ballistic model proposed here is capable of
qualitatively describing aspects of pair dispersion in channel flow turbulence at short
and intermediate times, including not only the initial ballistic regime, but also the
transition from turbulence- to shear-dominated diffusion regimes. However, the model
has several shortcomings. First, it overpredicts the initial ballistic separation regime,
which is explained above by an overestimation of the velocity structure functions 𝑆2𝑖
due to finite-Reynolds number effects. Secondly, the model does not account for the
presence of solid walls and therefore it strongly overestimates the wall-normal particle
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separation at intermediate and long times, while allowing particles to cross beyond
walls.

The presence of solid boundaries may be partially modelled by estimating the drift
of the particle pair centroid ̃𝒙 away from walls. In channel flow, the modelled particle
pair centroid should drift at long times towards the channel centre, in agreement
with single-tracer displacement statistics (see section 4.1). However, modelling the
evolution of ̃𝒙 would only delay particles from reaching (and crossing) the walls
without completely preventing it, since particles would still be allowed to separate
indefinitely in the wall-normal direction. Consequently, an additional restriction on the
wall-normal particle separation 𝐷𝑦 needs to be included. In the channel, 𝐷2

𝑦 must be
bounded by, and tend to, the long-term asymptotic wall-normal separation 𝐷2

𝑦 = 2ℎ2/3
(eq. (5.30)). Therefore, the model may be extended by adding a repulsive response
from walls which would negate a fraction of the particle wall-normal motion. The
intensity of the response would increase with the proximity of particles to the walls.
However, the issue of quantifying such a response in a way that is consistent with
observed Lagrangian dispersion statistics in the channel has not been resolved at
present time.
Further extensions to improve the predictive capabilities of the model in finite-

Reynolds numbers inhomogeneous flows are possible. To properly estimate the bal-
listic dynamics at small separations, dissipative-scale structure function estimations
(such as the ones proposed in section 5.3.2 for the present flow) may be introduced
into the model. On the other hand, a tensor formulation of the model, based on the
short-time ballistic evolution of the dispersion tensor components (eq. (5.28)), may
improve relative dispersion predictions in general anisotropic flows. In the channel, this
would require an additional model for the 𝑆𝑥𝑦 structure function briefly discussed in
section 5.5.3. This must be complemented with anisotropy corrections for the diagonal
components of 𝑆𝑖𝑗, which are presently assumed to be isotropic for inertial-range separ-
ations (eq. (5.36)). Approaches based on Townsend’s attached-eddy hypothesis [181],
such as the one proposed by Yang et al. [200], could be a good starting point for
estimating the required structure functions.

5.7 Conclusion

In this chapterwe study the relative dispersion of tracer pairs in a turbulent channel flow
from direct numerical simulations. Statistics are conditioned on the initial particle pair
wall distance 𝑦0 and initial separation vector 𝑫0 = 𝐷0𝒆0. At short times following their
release, particle pair separation statistics are determined by the Eulerian flow structure
at their initial locations. In particular, their mean-square change of separation ⟨𝑹2⟩
follows an initial ballistic growth, ⟨𝑹2⟩ ≈ 𝑆2(𝑦0, 𝑫0)𝑡2, where 𝑆2(𝑦, 𝒓) is the Eulerian
second-order velocity structure function at a wall distance 𝑦 and spatial increment 𝒓.
At the next order, the crossed velocity-acceleration structure function 𝑆𝑎𝑢(𝑦, 𝒓) governs
the deviation from the initial ballistic separation at short times. In our simulations, the
ballistic regime and the deviation that follows are invariably observed and linked to 𝑆2
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and 𝑆𝑎𝑢, for all the analysed initial wall distances and initial separation vectors. This
confirms the robustness of the short-time ballistic regime, which is based purely on
kinematic considerations, consistently with observations in isotropic flows [25, 30].
The characteristic duration of the initial regime is accurately described in our sim-

ulations by the ballistic time scale 𝑡0 = 𝑆2/|𝑆𝑎𝑢| first proposed by Bitane et al. [25].
However, due to the relative complexity of wall-bounded flows at finite Reynolds
numbers, accurate estimates of 𝑆2 and 𝑆𝑎𝑢 are not easily obtained, especially near the
wall where the flow is strongly anisotropic and driven by coherent turbulent struc-
tures. We show that isotropic estimations of 𝑆2 and 𝑆𝑎𝑢 describe reasonably well the
observed statistics in the logarithmic and outer layers (fig. 5.4), although improve-
ments can be made to account for the persistence of small-scale anisotropy, large- and
very-large-scale motions, and finite Reynolds number effects. Nevertheless, the relation
𝑆𝑎𝑢(𝑦, 𝒓) = −2𝜀, expected to hold for inertial-scale increments |𝒓| at large Reynolds
numbers if the flow is locally homogeneous [63], is accurate in most of the channel for
large-enough increments. More generally, 𝑆𝑎𝑢 is negative for nearly all the considered
initial particle pair configurations.

Consistentlywith studies in isotropic turbulence, tracers separate fasterwhen tracked
backwards in time than forwards. At short times, this time asymmetry is explained by
negative values of 𝑆𝑎𝑢 [79]. The time-asymmetric behaviour persists when only the
separation by the fluctuating flow is considered, confirming that the asymmetry is
linked to the irreversibility of turbulent fluctuations.

Mean shear drives particle separation at intermediate and long times starting from
𝑡 ≈ 𝑡0. Its effect is to enhance the streamwise particle separationwhen particle pairs find
themselves in regions of the channel with different mean velocities. This shear-induced
super-diffusive regime is more effective at intermediate times, and slows down at
long times as particles cross the channel centreline where the mean velocity gradient
direction is reversed. At intermediate times, the separation rate is higher in cases where
the initial ballistic regime is less effective. This is the case for small initial separations
𝐷0, as well as for wall-parallel orientations (fig. 5.9), in which cases mean shear has
a negligible effect on the initial separation dynamics. Conversely, when the ballistic
regime is driven by mean shear, the separation rate at intermediate times is lower.

The anisotropy of pair dispersion is characterised by the relative dispersion tensor 𝛥𝑖𝑗.
Each tensor component separately follows a ballistic growth at short times. The dom-
inant role of mean shear is described by an increasing rate of change of the streamwise
mean-square separation 𝛥𝑥𝑥 and of the cross-term 𝛥𝑥𝑦 at intermediate times following
the ballistic growth (fig. 5.14). At the chosen initial separation (𝑫0 = 16𝜂𝒆𝑧), 𝛥𝑥𝑦 is
negative at small times as a consequence of the local Eulerian flow structure, while
it becomes positive and rapidly grows at later times due to mean shear. Meanwhile,
the wall-normal and spanwise separation rates decrease following the initial ballistic
regime. Due to wall confinement in the channel, 𝛥𝑦𝑦 tends to an asymptotic value 2ℎ2/3
at long times.
Finally, a simple model for the mean-square separation in inhomogeneous flows is

introduced based on the ballistic cascade phenomenology proposed by Bourgoin [29]
for isotropic turbulence, which relies on the robustness of ballistic pair separations in
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turbulent flows. The present model further accounts for the presence of mean shear
through an imposed mean velocity field, as well as for integral-scale separations. The
model correctly predicts the initial stages of separation in channel flow for inertial-
range initial separations, including the ballistic regime and the subsequent transition to
the shear-dominated separation. However, the agreement remains mostly qualitative,
and further refinements to the estimation of structure functions are needed to improve
model predictions. More importantly, the present model does not account for the
presence of walls, effectively allowing particles to cross solid boundaries. This very
strong limitation needs to be corrected in future developments of the model.

The present study leaves unanswered questions regarding the impact of the proper-
ties of wall-bounded turbulence on relative dispersion. Besides their implicit effect on
the structure functions governing the short-time separations, the effect on dispersion
of near-wall structures such as quasi-streamwise vortices, responsible for sweep and
ejection events, has not been considered explicitly. The role of these structures will be
examined in future studies via statistics conditioned to the occurrence of such events.
Furthermore, the determination of pair separation PDFs may yield a more complete
description of relative dispersion in the channel. Forthcoming studies will also deal
with Lagrangian dispersion of fluid particle tetrads as well as with relative dispersion
of inertial particles.
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The Lagrangian perspective can provide important insight on the temporal evolution
of turbulent flows and on the dispersion of species resulting from their chaotic motion.
In wall-bounded turbulence, the Lagrangian properties of the flow are determined
not only by random turbulent motion, but also by wall confinement, which limits the
motion of Lagrangian tracers in the wall-normal direction; by preferentially oriented
coherent motions near the wall, which contribute to the anisotropy of Lagrangian
statistics; and by mean shear, which strongly enhances the relative separation between
tracers. The effect of these characteristic properties of wall turbulence on different
Lagrangian observables is described and quantified in the present investigation, with
a focus on the properties of the Lagrangian acceleration and of tracer dispersion in
confined wall-bounded flows. The moderate Reynolds number Re𝜏 = 1440 chosen for
this study allows to observe, in addition to a near-wall region dominated by viscous
shear and coherent motions, a significant outer region where mean shear is the main
source of anisotropy.
In the inner region of the flow, Lagrangian acceleration statistics are consistent

with previous observations in wall-bounded turbulence at lower Reynolds number.
Namely, the acceleration is strongly anisotropic, and is highly intermittent due to the
dominant influence of coherent structures inducing helical trajectories associated to
strong centripetal accelerations. In the buffer layer, while the wall-normal and spanwise
acceleration components are strongly influenced by quasi-streamwise vortices, negative
streamwise accelerations are commonly associated to increasing viscous shear as tracers
move towards the wall. The outer region of the flow is dominated by large-scale mean
shear. It is shown that mean shear is responsible for small-scale anisotropy of the
Lagrangian acceleration statistics even near the channel centre, in contradiction with
the idea of a return to isotropy, which is commonly applied in numerous subgrid-
scale models for turbulent flows in LES. This is suggested by the Lagrangian cross-
correlations between streamwise andwall-normal acceleration,which become non-zero
after a short time lag 𝜏 ∼ 𝜏𝜂 with a sign that is consistent with the direction of mean
shear.
In wall-bounded turbulence, the inner region acts as a sink of total kinetic energy

which is injected mainly in the outer region of the flow. As a consequence, on average
tracers located in the inner region lose kinetic energy over time. As demonstrated in
this study, this has a clear impact on tracer trajectories: when tracers are conditioned to
a chosen near-wall location, they travel shorter streamwise distances on average when
they are tracked forwards in time than backwards. Evidence of time irreversibility is
also observed in the spreading of particles in the streamwise direction, quantified by the
variance of the streamwise displacement ⟨𝛿𝑥′2⟩. For all wall distances, tracers spread
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over longer distances when they are tracked backwards in time. This observation is
linked to the dynamics of turbulent kinetic energy in wall turbulence. In particular,
away from the inner region, the difference between backward and forward spreads at
short times grows proportionally to the mean turbulent kinetic energy dissipation rate
𝜀.
As shown by previous studies, mean shear greatly influences the relative separ-

ation of pairs of tracers in wall-bounded and shear flows. This influence is evident
at intermediate times following the release of particle pairs, after the initial ballistic
separation that is determined by the initial relative velocity of the pair. By decomposing
the relative separation into components due to the mean and the fluctuating velocity
fields, we show that, in the present flow, mean shear is responsible for the accelerated
separation rate observed at intermediate times. The separation rate is comparable to
that predicted by Richardson’s law in high Reynolds number turbulent flows, although
the mechanisms are not the same, and thus the observed behaviour cannot be related
to Richardson’s law. By quantifying the time scales associated to relative dispersion, we
estimate that much larger Reynolds numbers are required to expect Richardson’s law
in our flow. The long-time limit of relative dispersion is also explored. At long times,
the enhancing effect of mean shear slows down due to tracers crossing the channel
centreline where mean shear changes direction.

The time asymmetry of pair dispersion is also investigated. Pairs of tracers separate
faster when they are tracked backwards in time than forwards. As in three-dimensional
HIT, this is explained at short times by the negative value of the crossed velocity-
acceleration structure function 𝑆𝑎𝑢(𝑦, 𝒓), which is equal to−2𝜀 under local homogeneity
conditions for spatial increments |𝒓| in the inertial range. This relation is verified away
from the inner region for sufficiently large initial particle separations.

Taking into account the dominant role of mean shear on relative dispersion, a simple
model the mean-square particle separation in the channel is proposed. The model
describes relative dispersion as a sequence of discrete ballistic separations, and is
based on a similar formulation for isotropic flows. Besides considering the existence
of a non-uniform mean velocity field, the proposed model accounts for the transition
from inertial- to integral-scale particle separations. The model correctly reproduces
the transition to the shear-dominated separation regime. However, the model fails at
later times since it does not currently account for confinement by the walls.

Perspectives

The present investigation highlights the effect of certain statistical quantities, such
as the mean velocity profile, on the dispersion of Lagrangian particles. In contrast,
the effect of coherent motions on tracer dispersion has not been explored with much
detail in this work. Coherent motions can be expected to have a dominant role on tracer
dispersion, especially for particles located in the inner region. In the buffer layer, sweeps
and ejections are associated to wall-normal displacement of tracers. These features are
usually produced by quasi-streamwise vortices, and therefore tracers initially caught
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in an ejection may be expected to describe, at later (and earlier) times, a spiralling
motion along one of these structures. In addition, tracers captured by quasi-streamwise
vortices may have longer residence times in the near-wall region, while other tracers
may spread faster towards the outer region of the flow.An interesting question concerns
the characteristic residence time of tracers in the near-wall region as a consequence of
coherent motions. We have also hinted that the short-time relative separation of tracers
near the wall is determined by the typical structure of the coherent motions in the inner
region. For instance, two tracers caught respectively in an ejection and a neighbouring
sweep event will quickly separate in the streamwise andwall-normal directions, at least
at short times. On the other hand, if the tracers are within the same quasi-streamwise
vortex, chances are that their separation will remain bounded over relatively long times
comparable to the typical life time of such structures. A more precise characterisation
of the influence of coherent structures on the relative separation of particles is needed
to understand the Lagrangian dynamics of near-wall turbulence.
It is clear that small-scale coherent motions influence the geometry of Lagrangian

paths. This influence may be quantified in terms of the curvature and torsion of Lag-
rangian trajectories in space, as it has been done in HIT [33, 42, 159, 198] and more
recently in different inhomogeneous rotating flows [5], where these parameters have
been linked to the presence of small-scale vortices. Alternatively, the changes of direc-
tion of Lagrangian paths over variable time lags 𝜏 have been studied in HIT [28] and in
rotating Rayleigh–Bénard convection [6]. In wall turbulence, an important question is
how mean shear and near-wall coherent motions influence the topology of Lagrangian
paths, and how their impact compares to the effect of vortex filaments in isotropic
turbulence. In the outer region of the flow, the evidence of small-scale anisotropy
presented in this work suggests a preferential direction of curvature of Lagrangian
paths. This could also be verified by a geometric study of tracer trajectories.

Finally, as mentioned in the introduction, a logical extension of the present work con-
cerns the dynamics of inertial particles in wall-bounded turbulence. A first step in this
direction would be to consider small heavy inertial particles (e.g. small solid particles
in air), which have been extensively studied in many turbulent flow configurations,
including isotropic turbulence and wall-bounded flows [87]. Such particles are simple
to model in numerical simulations since they can be smaller than the smallest scales
of the flow, and thus they see a uniform flow around them which is not affected by
their presence. Despite the considerable amount of work on this issue, most available
particle-laden simulations in wall-bounded flows are at relatively low Reynolds num-
bers. Moreover, to our knowledge the time asymmetry of particle dispersion statistics
has not been considered in this kind of flow. In wall turbulence, heavy particles are
known to migrate on average towards the wall where the turbulent kinetic energy is
lower, a phenomenon known as turbophoresis [87]. This clearly represents an addi-
tional source of time asymmetry which is not present in the case of fluid tracers. In
this regard, an interesting question is whether inertial particle statistics are affected by
the same sources of time asymmetry as fluid tracers, and how this effect compares to
(or interacts with) that of turbophoresis.

As a follow-up question, the dynamics of finite-size particles in wall-bounded tur-
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bulence may also be considered. This problem is interesting not only as a point of
comparison with tracers and smaller particles, but also from a modelling standpoint.
Indeed, predicting the motion of finite-size particles represents a significant challenge
when the particle size is larger than the smallest turbulent scales, since (i) particles
larger than the smallest scales of motion clearly perturb the surrounding flow, and (ii)
the motion of a real particle is determined by the average force applied by the fluid
on its surface, which cannot simply be replaced by a fluid property evaluated at an
infinitesimal point, i.e. at the particle centre. In this regard, previous numerical studies
in wall-bounded turbulence exist. One approach is to fully resolve the boundary of
each individual particle, which yields a correct representation of the physics, but is
very costly from a computational standpoint, and thus it is limited to a relatively small
number of particles. For these reasons, it would be interesting to determine whether
an accurate simplified description of finite-size particles can be made using a point-
particle model. Such model may rely on Faxén corrections, which have already been
used in HIT [36, 65], as well as on additional lift forces on the particles, including the
Magnus effect resulting from their own rotation, and Saffman lift resulting from the
shear around them.
Alternatively, a promising development regarding the modelling of large inertial

particles was recentlymade by Barge [11], based on the point-particlemodel previously
proposed by Gorokhovski and Zamansky [60] to simulate particles with diameter
𝑑𝑝 > 𝜂 in LES. The model supposes that the force applied by the flow on a particle
follows K41 scaling. Hence, if the particle diameter is in the inertial range, the particle
acceleration is written in terms of 𝑑𝑝 and of the local dissipation rate at the particle
position 𝜀𝑑. Barge applied this model to an isotropic turbulence DNS at Re𝜆 = 90 using
particle diameters up to 41𝜂 and different particle densities, and was able to reproduce
the particle acceleration PDFs obtained by Qureshi et al. [143] in a wind tunnel using
a wide variety of particle sizes and densities. The question of whether this model can
be applied or adapted to wall-bounded turbulence remains currently unanswered.
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A Single-point statistics at Re𝜏 = 1440

A.1 Velocity and acceleration statistics

In figs. A.1 and A.2, single-point single-time velocity and acceleration statistics at
Re𝜏 = 1440 obtained both from Eulerian fields and from Lagrangian particle data are
compared.
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Figure A.1. (a) Velocity mean and (b) variance profiles obtained from Eulerian fields and from
Lagrangian particle data at Re𝜏 = 1440.
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Figure A.2. (a) Acceleration mean, (b) variance, (c) skewness and (d) flatness profiles obtained
from Eulerian fields and from Lagrangian particle data at Re𝜏 = 1440.
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A.2 Dissipation and turbulent scales

A.2 Dissipation and turbulent scales

Figure A.3a shows the turbulent and total mean kinetic energy dissipation rates across
the channel width at Re𝜏 = 1440, respectively defined as

𝜀(𝑦) = 𝜈
𝜕𝑢′

𝑖
𝜕𝑥𝑗

𝜕𝑢′
𝑖

𝜕𝑥𝑗
and 𝜀𝑇(𝑦) = 𝜈𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

. (A.1)

The above definition of 𝜀, used throughout this document, is actually referred to as
the pseudo-dissipation by Pope [137]. The real turbulent kinetic energy dissipation rate
is given by

𝜀𝑅 = 2𝜈 𝑠′
𝑖𝑗𝑠′

𝑖𝑗 = 𝜀 + 𝜈
𝜕2𝑢′

𝑖𝑢′
𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
, (A.2)

where 𝑠′
𝑖𝑗 = (𝜕𝑗𝑢′

𝑖 + 𝜕𝑖𝑢′
𝑗)/2 is the fluctuating rate of strain [137, p. 124]. In channel flow,

the above expression simplifies to

𝜀𝑅(𝑦) = 𝜀(𝑦) + 𝜈
d2𝑢′2𝑦

d𝑦2 . (A.3)

We have verified in our Re𝜏 = 1440 simulations that 𝜀 and the real kinetic dissipation
𝜀𝑅 are virtually equivalent, with a maximum relative difference of about 0.1%.

Also shown in fig. A.3a are the Kolmogorov length and time scales

𝜂(𝑦) = (𝜈3

𝜀 )
1/4

and 𝜏𝜂(𝑦) = √𝜈
𝜀 . (A.4)

FigureA.3b plots the Taylor-scale Reynolds number across the channelwidth, estimated
as

Re𝜆(𝑦) = 𝑘 ( 20
3𝜈𝜀)

1/2
, (A.5)

where 𝑘 = 𝑢′
𝑖𝑢′

𝑖/2 is the turbulent kinetic energy.
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A Single-point statistics at Re𝜏 = 1440
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Figure A.3. (a) Mean turbulent kinetic energy dissipation rate (𝜀), total mean kinetic energy
dissipation rate (𝜀𝑇), and Kolmogorov length and time scales (𝜂 and 𝜏𝜂) across the channel
width for Re𝜏 = 1440. Quantities are non-dimensionalised in wall units. (b) Taylor-scale
Reynolds number across the channel width.
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B Mean Lagrangian dynamics of kinetic energy

In this appendix, the average rate of change of total and turbulent kinetic energy
along tracer paths in turbulent channel flows is described in terms of kinetic energy
budgets and of related quantities including the Lagrangian power 𝒖 ⋅ 𝒂 and the velocity-
acceleration covariance 𝒖′ ⋅ 𝒂′.
Appendix B.1 presents the budgets of total kinetic energy 𝐸 = |𝒖| 2/2, whose aver-

age rate of change along Lagrangian paths is given by the mean Lagrangian power
𝛱 = D𝐸/D𝑡 = 𝒖 ⋅ 𝒂. Then, appendix B.2 relates the average rate of change of turbulent
kinetic energy 𝑘 = |𝒖′| 2/2 along Lagrangian paths to the velocity-acceleration covari-
ance 𝒖′ ⋅ 𝒂′. An expression for the latter is obtained based on the TKE budget across
the channel.

B.1 Total kinetic energy budget

An evolution equation for the total kinetic energy per unit mass 𝐸(𝒙, 𝑡) = |𝒖| 2/2 can be
derived from the momentum equation (1.2b) (see e.g. [137, p. 123]),

D𝐸
D𝑡 = −1

𝜌𝒖 ⋅ 𝛁𝑝 + 𝜈𝒖 ⋅ ∇2𝒖 + 𝒖 ⋅ 𝒇 (B.1)

= −1
𝜌𝛁 ⋅ (𝑝𝒖) + 𝜈∇2𝐸 − 𝜈𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝒖 ⋅ 𝒇. (B.2)

In channel flow, the driving force is the mean pressure gradient 𝒇 = −𝛁𝑝0/𝜌 = 𝐺𝑝𝛿𝑖𝑥/𝜌,
while the fluctuating pressure 𝑝 is periodic in the streamwise and spanwise directions.
Equation (B.2) can be averaged in those directions and time to yield an expression for
the average variation of kinetic energy along tracer paths (the mean Lagrangian power)
as a function of wall distance,

D𝐸
D𝑡 (𝑦) = 𝛱in(𝑦) − 𝜀𝑇(𝑦) + 𝑇(𝑦), (B.3)

where the input power 𝛱in corresponds to the average work done by the driving force
per unit time,

𝛱in(𝑦) = 𝒖 ⋅ 𝒇 =
𝐺𝑝
𝜌 𝑢𝑥(𝑦), (B.4)

and 𝑇(𝑦) = 𝜈 d2𝐸(𝑦)/d𝑦2 represents mean kinetic energy diffusion by viscous effects.
The pressure term in eq. (B.2) vanishes when the kinetic energy equation is integrated
along the periodic directions, as can be shown by application of the divergence theorem
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B Mean Lagrangian dynamics of kinetic energy

combined with the periodicity of 𝑝𝒖.
Equation (B.3) can be averaged in 𝑦 to obtain the global mean energy budget in the

channel,

1
2ℎ ∫

2ℎ

0
D𝐸
D𝑡 (𝑦)d𝑦 = 1

2ℎ ∫
2ℎ

0
[𝛱in(𝑦) − 𝜀𝑇(𝑦)]d𝑦 + 𝜈

2ℎ [d𝐸
d𝑦 (2ℎ) − d𝐸

d𝑦 (0)] . (B.5)

The left-hand side term is zero due to statistical stationarity (the global kinetic energy
content is conserved over time). The rightmost term also vanishes since wall-normal
energy gradients are zero at the walls.1 The resulting equation is a balance between
the globally averaged energy production and dissipation,

1
2ℎ ∫

2ℎ

0
𝛱in(𝑦)d𝑦 = 1

2ℎ ∫
2ℎ

0
𝜀𝑇(𝑦)d𝑦 . (B.6)

To summarise, the mean kinetic energy dissipation rate 𝜀𝑇 must exactly compensate
the mean input power 𝛱in when globally averaged in the channel. The diffusion term
𝑇(𝑦) in eq. (B.3) redistributes kinetic energy along the wall-normal direction, and it
does not contribute to the global energy balance.

Finally, it is worth noting that the rate of change of kinetic energy can be written in
terms of the fluid velocity and acceleration,

D𝐸
D𝑡 = D𝒖2

D𝑡 = 𝒖 ⋅ D𝒖
D𝑡 = 𝒖 ⋅ 𝒂. (B.7)

In other words, the kinetic energy of a fluid particle changes over time as the product
𝒗 ⋅ 𝒂, where 𝒗 and 𝒂 are the particle velocity and acceleration.
The mean kinetic energy budget (B.3) is evaluated in fig. B.1a. The diffusion term

𝑇 mainly redistributes energy from the buffer layer to the viscous subregion, where
energy is strongly dissipated by viscous shear. The sum of the terms in eq. (B.3)
is shown to match the mean rate of change of kinetic energy D𝐸/D𝑡 = 𝒖 ⋅ 𝒂, thus
validating the expression obtained for the energy budget.

The same curves are shown in fig. B.1b premultiplied by wall distance, so that the
area under the curves effectively represent integrated quantities in the chosen semi-log
representation. From the premultiplied curves, it is clearly seen that most of the energy
production happens far from the wall, where the mean streamwise velocity is more
intense. Energy dissipation peaks at 𝑦+ ≈ 7, although dissipation occurs everywhere
in the channel. Globally, it is found that production and dissipation rates compensate
each other (the corresponding filled areas have the same surface), and thus the global
balance (B.6) is verified. Near the channel centre, the imbalance between production
and dissipation leads to positive values of the mean Lagrangian power 𝒖 ⋅ 𝒂, meaning
that on average, fluid particles in that region gain energy over time. The opposite is
true in the buffer layer (i.e. 𝒖 ⋅ 𝒂 < 0), which is explained both by a negligible energy

1To prove this, one can consider the wall-normal derivative of the instantaneous energy, 𝜕𝑦𝐸(𝒙, 𝑡) =
𝜕𝑦(𝑢𝑖𝑢𝑖)/2 = 𝑢𝑖𝜕𝑦𝑢𝑖. At the walls, 𝑢𝑖 = 0 and therefore 𝜕𝑦𝐸 = 0.
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Figure B.1.Mean kinetic energy budget in the channel for Re𝜏 = 1440. (a) Terms of the mean
kinetic energy budget (B.3) (coloured lines) and their sum (black line). Black circles represent
the mean Lagrangian power 𝒖 ⋅ 𝒂. Quantities are non-dimensionalised in wall units. (b) Same
curves premultiplied by 𝑦+, so that the area under the curves equals integrated quantities.
Filled areas represent the integrated production and dissipation terms appearing in the global
kinetic energy budget (B.6).

production rate 𝛱in, and by the average redistribution of energy towards the viscous
subregion by the diffusion term 𝑇.

B.2 Lagrangian dynamics of the turbulent kinetic energy

B.2.1 Decomposition of D𝑘/D𝑡

As discussed in section 4.4 and in appendix B.1, the product 𝒗 ⋅ 𝒂 describes the instant-
aneous rate of change of the total kinetic energy of a fluid particle with velocity 𝒗 and
acceleration 𝒂. Hence, the mean Lagrangian power 𝛱(𝑦) = 𝒖 ⋅ 𝒂(𝑦) indicates whether
fluid particles located at a wall distance 𝑦 either gain or lose kinetic energy on average.
Analogously, the velocity-acceleration covariance 𝒖′ ⋅ 𝒂′ (also discussed in section 4.4)
can be linked to the mean temporal variation of the instantaneous TKE 𝑘 = |𝒖′| 2/2 of a
tracer particle, although the connection is not as straightforward as that between 𝒖 ⋅ 𝒂
and the total kinetic energy in anisotropic flows.

To construct a relation between the covariance 𝒖′ ⋅ 𝒂′ and the TKE, we start by writing
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B Mean Lagrangian dynamics of kinetic energy

the fluctuating acceleration 𝑎′
𝑖 according to

𝑎′
𝑖 = 𝑎𝑖 − 𝑎𝑖 (B.8)

= D𝑢𝑖
D𝑡 − D𝑢𝑖

D𝑡 (B.9)

= 𝜕
𝜕𝑡(𝑢𝑖 − 𝑢𝑖) + 𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗 − 𝑢𝑖𝑢𝑗) (B.10)

=
𝜕𝑢′

𝑖
𝜕𝑡 + 𝜕

𝜕𝑥𝑗
(𝑢′

𝑖𝑢𝑗 + 𝑢𝑖𝑢′
𝑗 − 𝑢′

𝑖𝑢′
𝑗) , (B.11)

where we have used the incompressibility condition 𝜕𝑗𝑢𝑗 = 0. This result can be used
to express the rate of change of the fluctuating velocity along tracer paths in terms of
𝑎′

𝑖,

D𝑢′
𝑖

D𝑡 =
𝜕𝑢′

𝑖
𝜕𝑡 + 𝜕

𝜕𝑥𝑗
(𝑢′

𝑖𝑢𝑗) (B.12)

= 𝑎′
𝑖 + 𝜕

𝜕𝑥𝑗
(𝑢′

𝑖𝑢′
𝑗 − 𝑢𝑖𝑢′

𝑗) . (B.13)

Noting that the rate of change of the TKE along tracer paths is D𝑘/D𝑡 = 𝑢′
𝑖 D𝑢′

𝑖/D𝑡 ,
from eq. (B.13) one can write

D𝑘
D𝑡 = 𝑢′

𝑖𝑎′
𝑖 + 𝑢′

𝑖
𝜕

𝜕𝑥𝑗
(𝑢′

𝑖𝑢′
𝑗 − 𝑢𝑖𝑢′

𝑗) (B.14)

= 𝑢′
𝑖𝑎′

𝑖 + 𝜕
𝜕𝑥𝑗

(𝑢′
𝑖𝑢′

𝑖𝑢′
𝑗) − 𝑢′

𝑖𝑢′
𝑗
𝜕𝑢′

𝑖
𝜕𝑥𝑗

− 𝑢′
𝑖𝑢′

𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

, (B.15)

where the incompressibility condition 𝜕𝑗𝑢′
𝑗 = 0 has been applied.

Finally, eq. (B.15) can be ensemble-averaged to obtain the mean Lagrangian rate of
change of TKE,

D𝑘
D𝑡 = 𝑢′

𝑖𝑎′
𝑖 − 𝑢′

𝑖𝑢′
𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= 𝑢′
𝑖𝑎′

𝑖 + 𝒫. (B.16)

Hence, the variations of TKE along fluid particle paths are determined by contributions
from the velocity-acceleration covariance 𝒖′ ⋅ 𝒂′ and from the turbulent kinetic energy
production term 𝒫 = −𝑢′

𝑖𝑢′
𝑗𝜕𝑗𝑢𝑖, which is typically positive and transfers kinetic energy

from the mean flow to the velocity fluctuations [137, p. 125].

In turbulent channel flow, the mean velocity gradient is given by the mean shear
𝜕𝑗𝑢𝑖 = d𝑈/d𝑦 𝛿𝑖𝑥𝛿𝑗𝑦, where 𝑈(𝑦) is the mean streamwise velocity. Therefore, the
production term is 𝒫 = −𝑢′𝑥𝑢′𝑦 d𝑈/d𝑦 , and eq. (B.16) writes

D𝑘
D𝑡 = 𝑢′

𝑖𝑎′
𝑖 − 𝑢′𝑥𝑢′𝑦

d𝑈
d𝑦 . (B.17)
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B.2 Lagrangian dynamics of the turbulent kinetic energy

As we shall see below, the production term is associated to the TKE gained or lost by a
fluid particle when it moves in the direction perpendicular to the mean shear, i.e. away
from or towards the wall. Meanwhile, the velocity-acceleration covariance expresses
that a fluid particle gains (or loses) TKE when it accelerates in the same (or opposite)
direction as its fluctuating velocity 𝒗′ relative to the local mean flow. A negative value
of 𝑢′

𝑖𝑎′
𝑖 would then indicate that the acceleration tends to act opposite to the fluctuating

velocity, thus suppressing turbulent fluctuations. As shown below (fig. B.2), this is
found to be the case in the whole channel.

To better understand the decomposition (B.17), one can consider a fluid particle
moving between two infinitesimally close instants 𝑡 and 𝑡 + 𝛿𝑡 with a wall-normal
velocity 𝑣𝑦. The streamwise velocity of the particle at the two instants is then

𝑣𝑥(𝑡) = 𝑈(𝑦(𝑡)) + 𝑣′
𝑥(𝑡), (B.18)

𝑣𝑥(𝑡 + 𝛿𝑡) = 𝑈(𝑦(𝑡 + 𝛿𝑡)) + 𝑣′
𝑥(𝑡 + 𝛿𝑡), (B.19)

where 𝑦(𝑡) is the instantaneous particle wall-normal position, and 𝑣′
𝑥 is the fluctuating

streamwise velocity at the particle position. During an infinitesimal time 𝛿𝑡, the particle
moves by 𝛿𝑦 = 𝑣𝑦(𝑡)𝛿𝑡 in the wall-normal direction, and thus 𝑈(𝑦(𝑡 + 𝛿𝑡)) = 𝑈(𝑦 +
𝑣𝑦(𝑡)𝛿𝑡) = 𝑈(𝑦) + 𝑣𝑦(𝑡)𝛿𝑡d𝑈(𝑦)

d𝑦 . Hence, by subtracting eqs. (B.18) and (B.19) and
rearranging terms, one finds

𝛿𝑣′
𝑥 = 𝛿𝑣𝑥 − 𝑣𝑦𝛿𝑡d𝑈

d𝑦 , (B.20)

where 𝛿𝑣𝑥 = 𝑣𝑥(𝑡 + 𝛿𝑡) − 𝑣𝑥(𝑡) and similarly for 𝛿𝑣′
𝑥. Finally, one can multiply by 𝑣′

𝑥/𝛿𝑡
and replace 𝛿/𝛿𝑡 by the Lagrangian derivative D/D𝑡 to find

𝑣′
𝑥
D𝑣′

𝑥
D𝑡 = 𝑣′

𝑥𝑎𝑥 − 𝑣′
𝑥𝑣𝑦

d𝑈
d𝑦 , (B.21)

where we have additionally applied the definition of the acceleration 𝑎𝑥 = D𝑣𝑥/D𝑡 .
The left-hand side of eq. (B.21) is nothing else than the variation of the streamwise
velocity contribution to the particle TKE. The first term on the right-hand side is the
contribution to the TKE by the variation of the total particle streamwise velocity over
time (i.e. its streamwise acceleration). The second term is the variation of TKE when
the particle moves in the cross-stream direction, in which case the local mean velocity
𝑈 changes and hence there is an exchange between the particle fluctuating kinetic
energy and its mean kinetic energy. For instance, assuming that its total velocity 𝑣𝑥
stays constant, a tracer having a velocity deficit relative to the mean flow (𝑣′

𝑥 < 0) gains
kinetic energy when it moves to a region of faster mean velocity, since its velocity deficit
increases and so does 𝑣′2

𝑥 . In wall-bounded turbulence, this is precisely the mechanism
behind ejections of ‘pockets’ of slow fluid away from the wall (section 1.2.4). This
mechanism is at the core of the TKE production by the mean flow, which is on average
represented by the production term𝒫. Finally, the streamwise contribution to eq. (B.17)
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B Mean Lagrangian dynamics of kinetic energy

can be recovered by ensemble-averaging eq. (B.21) at a fixed wall distance. This is
readily verified noting that 𝑣𝑦 = 𝑣′

𝑦 and 𝑣′𝑥𝑎𝑥 = 𝑣′𝑥𝑎′𝑥 (since 𝑣′𝑥𝑎𝑥 = 0).

B.2.2 Turbulent kinetic energy budget

It is interesting to contrast eq. (B.17) with the turbulent kinetic energy budget that can
be derived from the Navier–Stokes equations [see e.g. 100, 137],

D̄𝑘
D̄𝑡

(𝑦) = 0 = 𝒫 − 𝜀 + 𝜈d
2𝑘

d𝑦2 − d
d𝑦𝑢′𝑦𝑘 − 1

𝜌
d
d𝑦𝑢′𝑦𝑝′, (B.22)

where D̄𝑄/D̄𝑡 = 𝜕𝑡𝑄 + 𝑢𝑗𝜕𝑗𝑄 represents the rate of change of a quantity 𝑄 along the
path of an ‘average’ tracer moving with the mean flow velocity. The terms on the
right-hand side of eq. (B.22) respectively represent TKE production, TKE dissipation,
viscous diffusion, turbulent transport, and pressure transport. It is readily shown that

D𝑘
D𝑡 = D̄𝑘

D̄𝑡
+ 𝜕

𝜕𝑥𝑗
𝑢′

𝑗𝑘 = D̄𝑘
D̄𝑡

+ d
d𝑦𝑢′𝑦𝑘. (B.23)

Hence, the mean variation of TKE along tracer paths is given by

D𝑘
D𝑡 = 𝒫 − 𝜀 + 𝜈d

2𝑘
d𝑦2 − 1

𝜌
d
d𝑦𝑢′𝑦𝑝′. (B.24)

It follows from eqs. (B.17) and (B.24) that the velocity-acceleration covariance can be
written as

𝑢′
𝑖𝑎′

𝑖 = −𝜀 + 𝜈d
2𝑘

d𝑦2 − 1
𝜌
d
d𝑦𝑢′𝑦𝑝′. (B.25)

B.2.3 Profiles at Re𝜏 = 1440

The mean Lagrangian derivative of the TKE along the channel width for Re𝜏 = 1440 is
shown in fig. B.2a, along with the two terms of its decomposition (B.17). The global
variation of TKE in the channel, ∫2ℎ

0 D𝑘/D𝑡 d𝑦, has been verified to be zero, consistently
with the statistical stationarity of the flow. The mean variation of TKE along fluid
particle paths is close to zero in most of the channel, except for the near-wall region up
to 𝑦+ ≈ 40, where turbulent kinetic energy is transferred from the viscous region to the
buffer layer. Away from the wall, the two contributions from the velocity-acceleration
covariance and from TKE production cancel each other out, meaning that tracers on
average do not gain or lose TKE. In the logarithmic region, it is verified that turbulent
energy production and dissipation rates are nearly equal (see e.g. [94, 137, p. 281]).
This is seenmore clearly in fig. B.2b where curves are normalised by 𝜀. Hence, 𝑢′

𝑖𝑎′
𝑖 ≈ −𝜀

results in a mean particle TKE variation that is close to zero in that region. Moreover,
under this normalisation, a small negative value of D𝑘/D𝑡 is visible near the channel
centre where dissipation reaches its minimum. This is a result of both the Reynolds
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Figure B.2. Mean Lagrangian derivative of the turbulent kinetic energy, D𝑘/D𝑡 , across the
channel, for Re𝜏 = 1440. Data is non-dimensionalised (a) in wall-units and (b) by the mean
turbulent dissipation rate 𝜀(𝑦). Also shown is 𝜀 (dotted lines), as well as the contributions
of the velocity-acceleration covariance 𝑢′

𝑖𝑎′
𝑖 and of the turbulent kinetic energy production 𝒫

(eq. (B.17)). The term D𝑘/D𝑡 is computed here using eq. (B.17), and its integral along the
channel width is verified to be zero.

stresses and the mean shear dropping to zero at the centre due to flow symmetry, while
the 𝑢′

𝑖𝑎′
𝑖 contribution is non-zero in that region, instead keeping a value close to −𝜀.
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