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, si H est une contraction de G dans laquelle chaque sommet de H est le résultat de l'identification d'un ensemble de sommets de taille (resp. de diamètre) au plus s. H est un mineur de G, noté H m G, si H peut être obtenu à partir de G par une série de suppression d'arêtes, de suppression de sommets et de contraction d'arêtes. H est un mineur topologique de G, noté H tm G si H peut être obtenu à partir de G par une série de suppression d'arêtes, de suppression de sommets et dissolution de sommets. Cette dernière opération consiste à contracter une arête dont l'une des extrémités a exactement deux voisins. Les définitions formelles de ces notions sont données au Chapitre 2.

En utilisant l'approche basée sur le rang, Bodlander et cie.

. D'une part, Jansen et cie. [92] ont présenté un algorithme, dont le temps d'exécution est O * (2 O(tw•log tw) ), comme sous-routine cruciale dans la conception d'un algorithme FPT paramétré par k. D'autre part, Marcin Pilipczuk [122] a montré, en utilisant le canevas introduit par Lokshtanov et cie. [110] pour prouver des bornes inférieures super-exponentielles, que, sous ETH, il n'existe pas d'algorithme résolvant Vertex Planarization en temps O * (2 o(tw•log tw) ). Nous proposons une généralisation de ces trois problèmes. Pour cela, nous fixons une collection de graphes F et nous définissons le problème F-M-Deletion (resp. F-TM-Deletion) qui, étant donné un graphe G et un entier k, détermine si nous pouvons retirer du graphe au plus k sommets tel que le graphe résultant ne contienne aucun graphe de F en tant que mineur (resp. mineur topologique). Dans un soucis de lisibilité, nous utiliserons la notation F-Deletion dans les affirmations qui s'appliquent en même temps à F-M-Deletion et à F-TM-Deletion. De plus nous supposerons que F n'est pas vide et ne contient pas le graphe à un seul sommet. Notons que, dans cette définition, Vertex Cover, Feedback Vertex Set, et Vertex Planarization correspondent Nos résultats. Dans la Section 5.3, nous présentons deux algorithmes résolvant Compatibility of Unrooted Phylogenetic Trees et Agreement of Unrooted Phylogenetic Trees, en un temps 2 O(k 2 ) • n, où k est le nombre d'arbres donnés en entrée et n est la taille totale de l'entrée. Pour cela, nous présentons deux algorithmes de programmation dynamique. À partir des arbres donnés en entrée, nous créons un graphe particulier appelé graphe d'accord, dont la définition est présentée en Section 5.3. Scornavacca et cie. [133] ont montré que si l'instance donnée en entrée était une instance positive, alors le graphe d'accord avait une treewidth bornée par k, le nombre d'arbres donnés en entrée. Nous proposons alors deux algorithmes de programmation dynamique relativement complexes, utilisant une structure de données technique. * Q = {u}, γ 0 (x) = γ(x), and ϕ(x) = i or * γ(x) ≡ γ(y), X = {u}, Q = {y}, γ 0 (y) = max{γ(x), γ(y)}, and ϕ(y) = i, or CHAPTER 5. APPLICATIONS
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Une introduction en français

Un graphe est une structure de données permettant de modéliser les relations binaires entre entités. Formellement, un graphe G est une paire (V, E) tel que V est un ensemble et chaque élément de E est un ensemble de deux éléments de V . Les éléments de V sont appelés sommets du graphe et correspondent, en général, aux entités que nous voulons représenter. Les éléments de E sont appelés arêtes du graphe et représentent les liens entre deux entités.

Un graphe est une structure abstraite et générique qui peut représenter un très grand nombre d'objets ou de concepts. Les graphes sont présents en informatique, mais aussi dans d'autres disciplines telles la physique statistique, la physique des particules, la biologie, l'économie, la finance, la recherche opérationnelle, la climatologie ou la sociologie. Un exemple de graphe que l'on croise dans notre vie quotidienne est le réseau routier. Ce réseau routier peut être représenté par un graphe, chaque intersection est alors représentée par un sommet et chaque route est représentée par une arête. Les graphes sont très utilisés en chimie, en particulier avec l'étude des molécules. Une molécule peut en effet être représentée comme un graphe dont les sommets sont les atomes de la molécule et les arêtes sont les liaisons chimiques entre deux atomes.

Cette représentation de phénomènes réels par des graphes permet d'étudier des problèmes concrets concernant ces phénomènes de manière abstraites sur les graphes les représentant. Par exemple, un problème classique dans un réseau routier est celui de trouver, étant donné un départ et une destination, quel est le chemin le plus court entre ces deux points. Ce problème est connu en théorie des graphes sous le nom de Shortest Path. En chimie, une question importante est celle de trouver des similarités entre molécules. En particulier, il est intéressant de déterminer si la structure d'une molécule est une sous-structure d'une autre molécule. Ce problème est connu en théorie de graphes sous le nom de Subgraph Isomorphism.

La réponse aux questions posées peuvent prendre trois formes différentes en fonction de la manière dont la question est posée. Nous pouvons demander un objet spécifique possédant certaines propriétés, telles que trouver un chemin de longueur minimum entre deux sommets, soit demander un entier, tel que la longueur d'un chemin de taille minimum, soit poser une question fermée dont les seules réponses possibles sont oui ou non, telle que : est-ce que, pour une valeur prédéfinie de k, le chemin le plus court est de taille au plus k ? Ces trois formes de question sont liées. En effet, à partir de la réponse à une certaine forme de question, nous pouvons obtenir la réponse aux autres formes de question.

UNE INTRODUCTION EN FRANÇAIS

Un algorithme est une procédure, spécifique à une question et à une classe d'instances de cette question, qui prend en entrée une instance et répond à la question posée sur cette instance. Le temps d'exécution d'un algorithme est le temps nécessaire à celui-ci, dans le pire des cas, pour calculer la réponse. Il est spécifique à chaque algorithme et est fonction de la taille de l'entrée. Nous distinguons deux types d'algorithmes : les algorithmes déterministes, qui ont une unique exécution et une unique réponse pour chaque entrée, et les algorithmes non déterministes, qui peuvent produire différentes exécutions pour une même entrée.

Étant donné un ensemble d'instances, un problème de décision est une question fermée qui peut être posée pour chaque instance de cet ensemble. Dans cette thèse, lorsque nous utiliserons le terme problème, nous sous-entendrons implicitement que ce problème est un problème de décision. Une question naturelle est celle de déterminer à quelle vitesse un problème peut être résolu, c'est à dire, quel est l'algorithme le plus rapide pour résoudre ce problème. Notons que tout algorithme devant résoudre un problème donné doit effectuer un nombre minimum d'opérations. Pas exemple, il est souvent nécessaire de lire l'entrée. Ces opérations nécessaires permettent de définir des bornes inférieures sur le temps d'exécution des algorithmes.

Un problème est dans P s'il peut être résolu en temps polynomial par un algorithme déterministe et est dans NP s'il peut être résolu en temps polynomial par un algorithme non déterministe. est dans NP s'il existe un algorithme non déterministe dont l'une des exécutions retourne une solution en temps polynomial.

La question la plus célèbre en Informatique est de savoir si ces deux classes coïncident. Pour classifier les problèmes, nous utilisons la notion de difficulté. Cette notion est liée à la notion de réduction de Karp, définie comme suit. Un problème Π peut être réduit à un autre problème Π s'il existe une fonction g calculable en temps polynomial telle que pour toute instance x de Π, x est une instance positive de Π si et seulement si g(x) est une instance positive de Π . Étant donné une classe de complexité C, c'est à dire, un ensemble de problèmes dont la résolution nécessite la même quantité d'une certaine ressource, un problème Π est C-dur si tous les problèmes de C peuvent être réduits à Π. De plus, un problème Π est C-complet si Π est dans C et Π est C-dur. Par exemple, Shortest Path est un problème dans P et Subgraph Isomorphism est un problème NP-complet.

Par la suite, nous supposerons que les problème NP-durs ne peuvent être résolus en temps polynomial, c'est à dire, que P = NP. Cela implique que dans les situations pratiques, lorsque la taille de l'entrée augmente, l'utilisation d'algorithmes déterministes pour résoudre des problèmes NP-durs n'est pas abordable. C'est pourquoi les problèmes NPdurs peuvent être vus comme des problèmes "difficiles". Désormais nous nous intéresserons uniquement aux problèmes NP-durs dans les graphes généraux.

La théorie de la complexité classique classifie les problèmes en prenant en compte uniquement leur vitesse de résolution en fonction de la taille de l'entrée. Cependant, dans les problèmes provenant de la vie réelle, l'entrée a généralement plus de structure qu'uniquement sa taille. Par exemple, les villes sont régulières, les objets construits ont tendance à être construits d'une manière compréhensible à partir d'autres objets déjà con-struits avant, l'esprit des gens a tendance à ne fonctionner qu'avec quelques alternances de quantificateur, etc. Pour pouvoir prendre en compte ces informations données par la structure de l'entrée, Downey and Fellows [START_REF] Downey | Parameterized Complexity[END_REF] ont introduit, dans les années 90, la théorie de la complexité paramétrée. Cette théorie a été développée dans une série d'articles fondateurs par Downey and Fellows [START_REF] Downey | Complexity theory. chapter Fixed-parameter Tractability and Completeness III: Some Structural Aspects of the W Hierarchy[END_REF][START_REF] Downey | Fixed-parameter intractability[END_REF][START_REF] Downey | Fixed-parameter tractability and completeness i: Basic results[END_REF][START_REF] Downey | Fixed-parameter tractability and completeness ii: On completeness for w[1[END_REF][START_REF] Downey | Parameterized Computational Feasibility[END_REF]. La théorie de la complexité paramétrée mesure la complexité des problèmes non seulement en fonction de la taille de l'entrée, mais aussi en fonction d'un paramètre. Ce dernier étant une valeur numérique dépendant de l'entrée mais ne dépendant pas de la taille de cette entrée. L'idée principale est de considérer des situations pour lesquelles nous savons que le paramètre est petit comparativement à la taille totale de l'entrée. En trois décennies, cette théorie est devenue un sujet incontournable de l'informatique fondamentale avec plusieurs milliers d'articles et quatre livres [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF][START_REF] Flum | Parameterized Complexity Theory[END_REF][START_REF] Niedermeier | Invitation to Fixed-Parameter Algorithms[END_REF].

Le degré maximum des sommets du graphe d'entrée, la taille de la solution ou la somme des deux sont des paramètres possibles. Formellement, étant donné un ensemble d'instances I, un paramètre de minimisation est une fonction p : I → N telle qu'il existe une collection d'objets X p , une fonction de poids ν p : X p → N, et une fonction booléenne ξ p : I × X p → {0, 1}, correspondant à la propriété que l'on veut satisfaire, tel que pour chaque I ∈ I, p(I) = min{ν p (X) | X ∈ X p , ξ p (I, X) = 1}.

Nous définissons de la même manière les paramètres de maximisation à la différence près que les occurrences de min sont remplacées par des max. Pour chaque paramètre de minimisation (resp. de maximisation), nous associons un problème de décision Π p , appelé problème de minimisation (resp. problème de maximisation), qui, étant donné une entrée I ∈ I et un entier k ∈ N, réponds si p(I) ≤ k (resp. p(I) ≥ k). Les paramètres de minimisation et de maximisation sont aussi appelés paramètres d'optimisation. De plus, quand ceux-ci prennent comme entrée un graphe, nous parlons alors de paramètres de graphes.

Vertex Cover est un exemple classique de problème de minimisation correspondant au paramètre de minimisation vc : G → N, où G désigne l'ensemble de tous les graphes et où vc calcule le plus petit nombre de sommets que nous devons enlever au graphe donné en entrée, tel que le graphe résultant de cette suppression ne contienne aucune arête. Clique est pour sa part un exemple classique de problème de maximisation dans les graphes. Le paramètre de maximisation correspondant à Clique est le paramètre cl : G → N qui calcule la taille du plus gros ensemble de sommets du graphe donnée en entrée tel que pour chaque paire de sommets de l'ensemble, il existe une arête dans le graphe les connectant.

Un aspect important de la théorie de la complexité paramétrée est le concept de problème facilement calculables à paramètre fixé. L'idée est de s'intéresser à des algorithmes résolvant des problèmes NP-durs, dont le temps d'exécution est polynomial en la taille de l'instance et dont le "comportement non polynomial" est capturé par une fonction dépendant exclusivement du paramètre. En particulier cette théorie nous informe que certains problèmes NP-durs dans les graphes généraux deviennent polynomiaux lorsque le paramètre est borné.
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Le paramètre ajoute une seconde dimension à l'analyse de complexité permettant ainsi une plus grande variété de classes de complexité. De nouvelles techniques algorithmiques permettent, en choisissant judicieusement le paramètre, de résoudre des problèmes paramétrés de manière efficace pour de petites valeurs du paramètre. L'une de ces nouvelles techniques est l'extraction de noyau. Cette technique consiste à prendre une instance et, en temps polynomial, sortir une instance équivalente dont la taille est bornée par une fonction du paramètre. Une autre technique fortement utilisée est celle de de la programmation dynamique. Cette technique consiste à séparer le problème en une collection de problèmes plus simples, à résoudre chacun de ces nouveaux problèmes une seul fois, et à garder en mémoire la solution dans le cas où le même problème réapparaisse.

Formellement, un problème paramétré est la combinaison d'un problème et d'un paramètre. Étant donné un problème paramétré Π défini sur un ensemble d'instances I avec pour paramètre p : I → N, nous appelons algorithme facilement calculable à paramètre fixé, ou algorithme FPT, un algorithme qui résout le problème Π sur l'instance I ∈ I et dont le temps d'exécution est bornée par f (p(I)) • n O (1) , pour une fonction f calculable, où n correspond à la taille de l'instance. Par commodité, lorsque l'entrée est un graphe, nous utiliserons la notation O * (•) qui supprime le facteur polynomial qui dépend de la taille du graphe donnée en entrée. Avec cette notation, lorsque l'entrée est un graphe, le temps d'exécution des algorithmes FPT paramétré par p deviennent O * (f (p(I))). Un problème paramétré est dit FPT s'il est soluble par un algorithme FPT.

Vertex Cover, paramétré par la taille de la solution voulue, est un problème paramétré classique. Dans ce problème, les instances sont de la forme (G, k), où G est un graphe et k un paramètre. Ainsi paramétré, Vertex Cover demande s'il existe un ensemble de taille au plus k qui touche toutes les arêtes du graphe G. Un exemple d'ensemble couvrant est présenté sur la Figure 1. Pour ce problème une simple observation permet de construire un algorithme de programmation dynamique qui soit FPT. En effet chaque arête doit être touchée par l'ensemble couvrant et, donc, au moins l'une des deux extrémités de cette arête doit être dans l'ensemble couvrant. Nous pouvons donc, en utilisant cette observation, construire l'algorithme de programmation dynamique suivant. S'il n'y a pas d'arête, alors notre instance est une instance positive. S'il y a au moins une arête, disons {a, b}, nous supprimons a du graphe et nous regardons si le graphe (G \ v {a}, k -1), c'est à dire, l'instance pour laquelle nous avons retiré a du graphe G et 1 de k, est une instance positive de Vertex Cover en appliquant l'algorithme récursivement. Si c'est le cas alors nous pouvons répondre que (G, k) est une instance positive de Vertex Cover. Nous effectuons indépendamment la même opération pour b. Si aucune des deux suppressions ne permet d'obtenir une instance positive alors nous savons qu'il n'existe pas d'ensemble couvrant dans G de taille au plus k. Dans le pire des cas, nous avons fait 2 k appels récursifs. De plus le problème peut être résolu facilement à chaque feuille de l'arbre de récursion en temps O(n). Nous pouvons en déduire que Vertex Cover peut être résolu en temps O * (2 k ) et donc ce problème paramétré est FPT.

Une partie importante de cette thèse consiste à concevoir des algorithmes FPT et, pour certains d'entre eux, sous des hypothèses de complexité raisonnables, et en ignorant les facteurs polynomiaux, montrer que ces algorithmes sont serrés, c'est à dire, que si ). L'hypothèse considérée est l'hypothèse de temps exponentiel, ou ETH. Cette hypothèse a été formulée pour la première fois par Impagliazzo et Paturi [START_REF] Impagliazzo | On the complexity of k-sat[END_REF]. Elle concerne le problème 3-SAT, qui détermine si une formule logique sous forme normale conjonctive telle que chaque clause contienne au plus trois littéraux est satisfaisable. Dans ce contexte, ETH affirme qu'il existe une constante c > 0 tel qu'il n'existe pas d'algorithme résolvant 3-SAT sur une instance ϕ à n variables en temps O * (2 cn ). En particulier, ETH implique que P = NP. Cette hypothèse est utilisée pour prouver des bornes inférieures sur la complexité des problèmes et est une hypothèse fréquemment utilisée dans cette thèse.

La largeur arborescente, ou treewidth, est l'un des paramètres de graphes les plus étudiés. Elle sert de mesure de distance entre la structure d'un graphe et la structure topologique d'une forêt, c'est à dire, d'un graphe sans cycle. En particulier, les forêts ont une treewidth de un. L'idée majeure est que de nombreux problèmes NP-durs dans les graphes généraux peuvent être résolus en temps polynomial dans les forêts. Le concept de treewidth a été introduit par Gavril [START_REF] Gavril | The intersection graphs of subtrees in trees are exactly the chordal graphs[END_REF] puis réintroduit par Robertson et Seymour [START_REF] Robertson | Graph Minors. II. Algorithmic aspects of tree-width[END_REF] dans leur monumental projet sur les mineurs de graphes. Robertson and Seymour ont utilisé la treewidth dans ce projet comme ingrédient crucial afin de résoudre un problème combinatoire, à savoir la conjecture de Wagner [START_REF] Robertson | Graph minors. xx. wagner's conjecture[END_REF], qui stipule que toute classe de graphes close par mineurs peut être définie par un ensemble fini de mineurs interdits (les définitions formelles sont données dans le Chapitre 2).

La treewidth a de nombreuses applications algorithmiques. C'est le cas typiquement de Vertex Cover. Un algorithme facile, dans le cas où le graphe est une forêt, est le suivant. Si l'arbre contient un sommet ou moins, alors il ne reste rien à faire. S'il reste une arête, alors nous choisissons arbitrairement l'un des deux sommets extrémité. Dans ces deux cas, la solution est triviale. Sinon, nous rajoutons le voisinage des feuilles de l'arbre à l'ensemble couvrant. Nous pouvons alors appliquer récursivement notre algorithme sur chacune des composantes connexes de l'arbre auquel nous avons retiré les feuilles et leur voisinage. Un exemple d'exécution de cet algorithme est présenté dans la Figure 2.
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Cet algorithme peut clairement être implémenté en temps linéaire. Partant de cette observation, il est naturel de conjecturer que les problèmes NP-durs en général mais polynomiaux dans les arbres doivent aussi être polynomiaux dans les graphes qui sont proches des arbres, et donc dans les graphes de treewidth bornée. Un résultat fondamental dans cette direction a été présenté par Courcelle [START_REF] Courcelle | The monadic second-order logic of graphs. I. Recognizable sets of finite graphs[END_REF]. Le théorème de Courcelle affirme que tout problème de graphes exprimable en logique monadique du second ordre, dont la définition est donnée dans le Chapitre 2, peut être résolu en temps linéaire dans les graphes de treewidth bornée. Nous obtenons donc ainsi une grande classe de problèmes, difficiles dans les graphes généraux mais faciles dans les graphes de treewidth bornée [START_REF] Arnborg | Easy problems for tree-decomposable graphs[END_REF][START_REF] Courcelle | The monadic second-order logic of graphs. I. Recognizable sets of finite graphs[END_REF][START_REF] Courcelle | The expression of graph properties and graph transformations in monadic second-order logic[END_REF].

→ →

Figure 2: Une exécution de l'algorithme pour Vertex Cover dans un arbre. A chaque étape, nous sélectionnons les sommets marqués d'un carré et nous les retirons du graphe, ainsi que les feuilles de l'arbre.

La notion de treewidth est liée à la notion de décomposition arborescente. Formellement une décomposition arborescente d'un graphe G est une paire D = (T, X ), où T est un arbre et X = {X t | t ∈ V (T)} est une collection de sous-ensembles de V (G) telle que :

• t∈V (T) X t = V (G),

• pour chaque arête {u, v} ∈ E(G), il existe t ∈ V (T) tel que {u, v} ⊆ X t et • pour chaque {x, y, z} ⊆ V (T) tel que z soit sur l'unique chemin entre x et y dans T, X x ∩ X y ⊆ X z .

Les ensembles dans X sont les sacs de D. La largeur de la décomposition arborescente D = (T, X ) est max{|X t | | t ∈ V (T)} -1. La treewidth de G, désignée par tw(G), est le plus petit entier w tel qu'il existe une décomposition arborescente de G de largeur w. Le "-1" apparaissant dans la formule existe pour que les forêts aient une treewidth de 1.

Le théorème de Courcelle présente un méta-algorithme constructif pour construire des algorithmes pour chaque problème de graphe exprimable en logique monadique du second ordre. Le temps d'exécution de ces algorithmes est f (tw) • n, où f est une tour d'exponentielles dont la hauteur dépend du nombre d'alternances de quantificateurs dans la formule logique [START_REF] Flum | Parameterized Complexity Theory[END_REF]. Par exemple, le problème de Vertex Cover peut s'exprimer avec la formule suivante : Il existe un ensemble S de taille au plus k tel que pour toute arête e du graphe, il existe v dans S tel que v est une extrémité de e. Cette formule contenant trois alternances de quantificateurs, le théorème de Courcelle nous donne donc un algorithme pour Vertex Cover dont le temps d'exécution est 2 2 2 O(tw)

• n. Cet algorithme, bien que linéaire dans les graphes de treewidth bornée, possède une dépendance conséquente en tw correspondant à des constantes qui ne sont pas abordables.

L'utilisation de techniques désormais classiques, utilisant la décomposition arborescente du graphe d'entrée, permet d'obtenir un algorithme plus rapide pour résoudre Vertex Cover. Cet algorithme utilise la programmation dynamique sur l'arbre de décomposition du graphe d'entrée et calcule vc, le paramètre de graphe correspondant à Vertex Cover. Pour cela, nous commençons par choisir arbitrairement un sommet r de le décomposition arborescente que nous appelons la racine. Sans perdre de généralité, nous pouvons supposer que chaque noeud qui n'est pas une feuille de la décomposition arborescente possède exactement deux fils. Cette hypothèse se justifie par l'existence d'une décomposition arborescente spéciale, dite "belle", qui est définie dans le Chapitre 2. Sur cette décomposition arborescente, nous allons effectuer un parcours de bas en haut, en partant donc des feuilles et en remontant vers la racine. Dans cette approche, par définition de la décomposition arborescente, une fois qu'un sommet n'est plus dans le sac correspondant au noeud en cours d'étude mais qu'il l'a déjà été, alors il ne le sera plus jamais, et donc nous n'avons plus réellement besoin de nous préoccuper de ses effets. Pour chaque sac de la décomposition arborescente, nous associons une table. Ces tables jouent un rôle critique dans l'exécution des algorithmes de programmation dynamique. En effet, elles concentrent les informations nécessaires concernant les sommets que nous avons déjà étudiés et elles nous permettent "d'oublier" des sommets dans les étapes suivantes de l'algorithme. Pour notre algorithme, nous pouvons travailler avec des tables correspondant à tous les sous-ensembles de sommets du sac courant et ne considérer que les potentiels ensembles couvrant S relativement au sac courant. Alors, pour chaque noeud t de la décomposition arborescente, nous considérons chaque solution partielle, c'est à dire, chaque sous-ensemble S de X t tel que chaque arête de G ayant ses deux extrémités dans X t possède au moins une extrémité dans S. Nous désignons par I t l'ensemble des solutions partielles associées au noeud t. Notre objectif est d'utiliser ces solutions partielles pour définir la valeur vc(G). Pour cela, pour chaque noeud t, nous définissons la fonction vc t : I t → N qui, à chaque solution partielle S ∈ I t , associe la taille du plus petit ensemble S qui contient chaque sommet de S, qui ne contient aucun sommet de X t \ S et tel que chaque arrête ayant ses deux extrémités dans le sac X t ou ses descendants possède une de ses extrémités dans S. De manière plus intuitive, vc t (S) correspond à la taille du plus petit ensemble couvrant de la partie du graphe déjà traité et qui soit consistant avec S. Pour chaque feuille, disons t, le calcul de vc t est facile puisqu'il correspond à une fonction taille. Pour les autres noeuds, disons t, nous pouvons supposer que vc t et vc t sont déjà calculés pour les deux enfants t et t de t. Pour chaque S ∈ I t , nous vérifions quel est le plus petit S ∈ I t et le plus petit S ∈ I t , vis à vis des fonctions vc t et vc t respectivement, qui soient cohérent avec S, c'est à dire, S ∩ X t = S ∩ X t et S ∩ X t = S ∩ X t . Pour ces valeurs spécifiques de S et S , nous obtenons que vc t (S) = vc t (S ) + vc Supposons que cet algorithme est utilisé avec une décomposition arborescente de n noeuds et de largeur w. Pour chaque noeud de la décomposition arborescente, nous calculons un ensemble de taille au plus 2 w+1 correspondant à chaque sous-ensemble possible du sac. De plus, le calcul pour les noeuds internes, ceux qui ne sont pas des feuilles, doit considérer toutes les combinaisons de sous-ensembles des sacs des fils. Comme nous avons supposé que ces noeuds avaient exactement deux fils, nous obtenons que le calcul de vc t pour chaque noeud t peut se faire en temps 2 O(w) . Finalement, nous obtenons que vc(G) peut être calculé en temps 2 O(w) • n. En utilisant l'algorithme d'approximation de Bodlaender et cie. [START_REF] Bodlaender | A c k n 5-Approximation Algorithm for Treewidth[END_REF], qui permet d'obtenir une décomposition arborescente d'un graphe G de largeur au plus 5 • tw(G) + 4 en temps 2 O(k) • n, nous obtenons que vc(G) peut être calculé en temps 2 O(tw(G)) • n.

Cet algorithme, bien plus rapide que l'algorithme donné par le théorème de Courcelle, motive un axe de recherche dont le but est d'optimiser la dépendance en tw pour chaque problème. Tout comme Vertex Cover, de nombreux autres problèmes peuvent être résolus en temps simplement exponentiel, c'est à dire, en temps O * (2 O(tw) ), en utilisant le même type de techniques. Par la suite, nous utiliserons le terme "simplement exponentiel" uniquement pour les problèmes paramétrés par la treewidth du graphe d'entrée. Nous citons trois problèmes parmi les nombreux problèmes NP-durs qui peuvent être résolus en temps simplement exponentiel : le problème Independent Set, qui demande s'il existe un ensemble, dont la taille est inférieure à une borne fixée, tel que deux sommets de cet ensemble ne soient pas adjacents ; le problème Dominating Set, qui demande s'il existe un ensemble, dont la taille est inférieure à une borne fixée, tel que chaque sommet du graphe soit dans cet ensemble ou dans son voisinage ; et le problème de 3-Coloration, qui demande s'il est possible de colorer les sommets du graphes avec trois couleurs en colorant deux sommets adjacents avec des couleurs différentes La technique de programmation dynamique classique que nous venons de présenter permettant la conception d'algorithmes simplement exponentiels fonctionne tant que les problèmes ont des certificats qui peuvent être vérifiés localement. Malheureusement, de nombreux problèmes n'ont pas cette propriété. Nous pouvons citer comme exemple le problème de Longest Path, qui demande la longueur du plus long chemin dans un graphe. Dans ce problème, il n'est pas suffisant de se souvenir des sous-ensembles de chaque sac de la décomposition arborescente puisqu'il faut aussi se souvenir de la manière dont les sommets sont connectés entre eux via la partie du graphe déjà traitée. En effet, comme présenté dans la Figure 3, le plus long chemin peut traverser plusieurs fois un même sac de la décomposition arborescente. Pour pouvoir utiliser la technique de programmation dynamique présentée précédemment, il faut alors, au lieu de stocker dans les tables les sous-ensembles de sommets du sac, il faut stocker tous les couplages possibles entres les sommets du sac. Ces couplages sont au nombre de 2 O(w log w) pour un sac de taille w ce qui produit un algorithme s'exécutant en temps O * (2 O(w log w) ). Il semble que ce comportement se produise dès lors que la solution recherchée nécessite de satisfaire une condition de connexité. C'est le cas en effet pour le problème de Connected Vertex Cover, qui demande un ensemble couvrant de taille inférieure à une borne fixée et qui soit connexe, ou pour le problème Steiner Tree qui, étant donné un graphe, un ensemble de sommets dénommés terminaux et un entier k, demande s'il existe un sous-graphe connexe de taille au plus k qui contienne tous les terminaux. Les problèmes de ce type sont souvent appelés problèmes de connexité et ont été étudiés en particulier dans [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF][START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF][START_REF] Dorn | Dynamic programming and planarity: Improved tree-decomposition based algorithms[END_REF][START_REF] Dorn | Catalan structures and dynamic programming in H-minor-free graphs[END_REF][START_REF] Dorn | Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions[END_REF][START_REF] Rué | Dynamic programming for graphs on surfaces[END_REF].

Figure 3: Trois possibilités qu'un plus long chemin croise un sac de la décomposition arborescente. Dans chaque cas, les lignes en pointillées correspondent aux connections qui doivent être mémorisées dans les tables.

Une série d'articles améliore la technique classique en fournissant des algorithmes simplement exponentiels pour des problèmes de connexité lorsque l'entrée est restreinte à des graphes dits creux, à savoir planaire [START_REF] Dorn | Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions[END_REF], de genre borné [START_REF] Dorn | Fast subexponential algorithm for non-local problems on graphs of bounded genus[END_REF][START_REF] Rué | Dynamic programming for graphs on surfaces[END_REF], ou excluant un graphe fixé en temps que mineur [START_REF] Dorn | Catalan structures and dynamic programming in H-minor-free graphs[END_REF][START_REF] Rué | Dynamic programming for H-minor-free graphs[END_REF]. L'idée commune à ces travaux est l'utilisation d'un type spécial de décomposition par branche, qui est un objet similaire à la décomposition arborescente et qui possède des propriétés intéressantes qui reposent très fortement sur le fait que l'entrée soit creuse.

La question de savoir s'il existait des algorithmes simplement exponentiels pour les problèmes de connexité dans les graphes généraux est restée ouverte jusqu'à ce que Cygan et cie. [START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF] introduisent une nouvelle technique algorithmique appelé Cut & Count. Cette technique permet de produire des algorithmes randomisé simplement exponentiels pour une série de problèmes et, en particulier, les problèmes de connexité tels que Longest Path, Feedback Vertex Set, ou Connected Vertex Cover. Bodlaender et cie. [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF] ont ensuite présenté une autre technique, dénommée rank based approach, ou approche basée sur le rang en français, qui génère des algorithmes déterministes simplement exponentiels pour globalement les même problèmes de connexité. Fomin et cie. [START_REF] Fomin | Efficient computation of representative families with applications in parameterized and exact algorithms[END_REF] ont présenté une méthode alternative basée sur les matroides et que nous appellerons méthode par représentation de matroïdes. Ces techniques proposent une nouvelle manière de construire des algorithmes de programmation dynamique. Ils utilisent le fait que, parfois, nous pouvons représenter l'ensemble des informations contenues dans l'ensemble des certificats partiels de manière plus efficace qu'en représentant naivement les informations essentielles pour chaque certifical partiel séparément. Au lieu de stocker chacune UNE INTRODUCTION EN FRANÇAIS des 2 O(tw log tw) solution partielle, ils ne stockent que des représentants qui sont, eux, au nombre de 2 O(tw) et qui représentent toutes les solutions partielles. Par exemple, dans la technique de l'approche basée sur le rang [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF], les auteurs présentent un ensemble d'opérations basiques et prouvent que si l'algorithme de programmation dynamique peut être exprimé en utilisant uniquement ces opérateurs, alors, à chaque étape, on peut obtenir un ensemble de représentants de taille 2 O(tw) , ce qui permet d'obtenir un algorithme simplement exponentiel. Un exemple complet d'utilisation de l'approche basée sur le rang est présenté dans la Section 3.2.

Ces nouvelles techniques ont été considérées comme une découverte capitale et, en particulier, impliquent que l'essentiel des problèmes de connexité qui étaient connus comme étant solubles en temps simplement exponentiel dans les graphes creux [44-46, 128, 129] sont aussi solubles en temps simplement exponentiel dans les graphes généraux [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF][START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF][START_REF] Fomin | Efficient computation of representative families with applications in parameterized and exact algorithms[END_REF].

On pourrait alors penser que ses résultats impliquent que tous les problèmes de connexité qui peuvent être résolus en temps simplement exponentiel dans les graphes planaires peuvent aussi être résolus en temps simplement exponentiel dans les graphes généraux. Cygan et cie. [START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF], en supposant que ETH, ont fourni une réduction montrant que Cycle Packing ne peut être résolu en temps O * (2 o(tw log tw) ) dans les graphes généraux. Cette réduction, combinée au fait que Cycle Packing peut être résolu en temps O * (2 O(tw) ) dans les graphes planaires [START_REF] Kloks | New algorithms for k-Face Cover, k-Feedback Vertex Set, and k-Disjoint Cycles on plane and planar graphs[END_REF], montre que l'affirmation précédente est fausse.

Nos résultats. Après cette série d'articles, on pourrait penser que tous les problèmes de connexité solubles en temps O * (2 O(tw log tw) ) dans les graphes généraux peuvent être résolus en temps O * (2 O(tw) ) dans les graphes planaires. Nous montrons que cela est faux en exhibant un problème, à savoir Monochromatic Disjoint Paths, qui est une variante du classique Disjoint Paths sur un graphe dont les sommets sont colorés avec une restriction sur les couleurs utilisées pour chaque chemin. Disjoint Paths est connu comme étant soluble en temps O * (2 O(tw log tw) ) dans les graphes généraux [START_REF] Lokshtanov | Slightly superexponential parameterized problems[END_REF][START_REF] Scheffler | A practical linear time algorithm for disjoint paths in graphs with bounded tree-width[END_REF]. Dans la Sous-Section 3.1, nous montrons que les mêmes techniques algorithmiques permettent de montrer que Monochromatic Disjoint Paths peut aussi être résolu en temps O * (2 O(tw log tw) ) dans les graphes généraux. De plus nous montrons que, en supposant ETH, il n'existe pas d'algorithme qui résolve Monochromatic Disjoint Paths en temps O * (2 o(tw log tw) ) même si l'on se restreint aux graphes planaires. Des problèmes de connexité de ce type, solubles en temps O * (2 O(tw log tw) ) dans les graphes généraux mais non solubles en temps O * (2 o(tw log tw) ) dans les graphes planaires n'étaient pas encore connus.

Cut & Count, l'approche basée sur le rang et la méthode par représentation des matroïdes ont aussi eu des effets collatéraux sur les problèmes de modification de graphes. Un problème de modification de graphes est un problème qui demande soit un ensemble de sommets à être supprimé, soit un ensemble d'arêtes à être supprimé, soit un ensemble d'arêtes à être ajouté, tels que le graphe résultant ait une propriété donnée. Par la suite, les propriétés qui nous intéresserons seront l'existence ou la non existence d'un graphe donné en temps que contraction, mineur ou mineur topologique. Un graphe H est dit contraction d'un graphe G et écrit H c G, si H peut être obtenu à partir de G par une série de contractions d'arêtes. Cette dernière opération consiste à supprimer une arête et à identifier ses deux extrémités. H est une contraction de taille s (resp. contraction de diamètre s) de G, noté H
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à F-Deletion où F = {K 2 }, F = {K 3 }, et F = {K 5 , K 3,3 }, respectivement. Notons aussi que le théorème de Kuratowski [START_REF] Kuratowski | Sur le problème des courbes gauches en topologie[END_REF] nous informe que F-M-Deletion et F-TM-Deletion sont équivalents lorsque F = {K 5 , K 3,3 }.

Du point de vue de la complexité classique, d'après le résultat de Lewis et Yannakakis [START_REF] Lewis | The node-deletion problem for hereditary properties is NP-complete[END_REF], si F contient des graphes avec au moins une arête, le problème F-Deletion est NP-dur. De plus comme la propriété de contenir un graphe comme mineur (topologique) peut être exprimée en logique monadique du second ordre (la formule explicite pouvant être trouvée dans [START_REF] Kim | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF]), alors, en utilisant le théorème de Courcelle, F-Deletion peut être résolu en temps O * (f (tw)) pour une certaine fonction calculable f . Nos résultats. Dans la Section 3.2, nous procédons à une étude méthodique de la complexité du problème F-Deletion lorsqu'il est paramétré par tw, la treewidth du graphe d'entrée. Nous présentons un algorithme de programmation dynamique qui résout F-M-Deletion (resp. F-TM-Deletion) en temps 2 2 O(tw•log tw) • n si F est une collection régulière de graphes, c'est à dire une collection finie et non vide de graphes non vide, et en temps 2 O(w•log w) • n si F est une collection régulière de graphes connexes contenant au moins un graphe planaire (resp. planaire de degré maximum trois). L'algorithme avec un temps d'exécution en 2 2 O(tw•log tw) • n utilise et même améliore la machinerie des graphes frontières, des relations d'équivalences et des représentations provenant des travaux fondateurs de Bodlaender et cie. [START_REF] Bodlaender | Meta) kernelization[END_REF], qui ont été utilisés par la suite dans [START_REF] Fomin | Bidimensionality and kernels[END_REF][START_REF] Garnero | Explicit linear kernels via dynamic programming[END_REF][START_REF] Kim | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF]. Pour obtenir un algorithme plus rapide, à savoir en 2 O(tw•log tw) • n, lorsque F est une collection régulière de graphes connexes dont au moins un est un graphe planaire (resp. planaire de degré maximum trois), nous combinons les ingrédients précédents avec un argument qui borne le nombre et la taille des représentants des relations d'équivalences, elles même définies par l'encodage que nous utilisons pour construire les solutions partielles. Dans ce cas, la connectivité de F garantit que chaque composante connexe d'un représentant de taille minimum intersecte l'ensemble frontière du dit graphe frontière. Le fait que F contienne un graphe planaire (de degré maximum 3) est essentiel pour pouvoir borner la treewidth de graphe résultant après suppression de la solution partielle. Nous présentons ces algorithmes pour la version mineur topologique. Il est ensuite facile d'en déduire les même résultats pour la version mineur.

Nous présentons aussi des algorithmes simplement exponentiels pour F-Deletion lorsque F ∈ {{P 3 }, {P 4 }, {C 4 }}. Ces algorithmes sont ad hoc. À savoir, les algorithmes pour {P 3 }-Deletion et {P 4 }-Deletion exploitent la structure très simple des graphes ne contenant pas de graphe P 3 ou P 4 comme mineur afin d'utiliser des techniques standard de programmation dynamique sur les graphes de treewidth bornée. L'algorithme pour {C 4 }-Deletion est plus compliqué. Il utilise l'approche par le rang introduite par Bodlaender et cie. [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF], en exploitant, ici aussi, la structure très simple des graphes ne contenant pas de C 4 comme mineur. Il peut sembler contre intuitif que cette technique fonctionne pour C 4 mais pas pour C 5 , comme indiqué dans la Table 1. Une raison possible à cela est le fait que les seuls cycles que nous pouvons trouver dans un graphe ne contenant pas des C 4 comme mineur sont des cycles de taille 3, or pour chaque tel cycle, il existe un sac de la décomposition arborescente qui contienne ces trois sommets. Cette propriété, qui n'est plus vraie pour les graphes ne contenant pas de C i comme mineur pour tout i ≥ 5, permet de garder une trace de la structure des solutions partielles dans des tables de petite taille.

Nous présentons aussi deux bornes inférieures. Le première, O * (2 o(tw) ), s'appliquent à toute collection de graphes connexes et repose sur une réduction simple de Vertex Cover. La seconde, O * (2 o(tw•log tw) ), plus haute, s'applique a une grande famille de collection de graphes connexes. Cette dernière borne inférieure repose fortement sur les idées présentées par Marcin Pilipczuk [START_REF] Pilipczuk | A tight lower bound for Vertex Planarization on graphs of bounded treewidth[END_REF] pour Vertex Planarization et généralise son résultat.

Nous résumons nos résultats dans la Table 1 pour les cas où F contient uniquement une clique, un cycle ou un chemin. Notons que pour les cas i ≤ 3, les résultats étaient déjà connus [START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF][START_REF] Impagliazzo | Which problems have strongly exponential complexity[END_REF], à l'exception du cas Jusqu'à maintenant, les résultats présentés concernant la treewidth utilisaient principalement une décomposition arborescente. Comme expliqué précédemment, la treewith est apparue avec un objectif combinatoire, à savoir celui de prouver la conjecture de Wagner. Il est pertinent de chercher à utiliser d'autres résultats combinatoire pour améliorer la conception d'algorithme. Un résultat combinatoire fondamental est le théorème d'exclusion de grilles. Ce théorème lie la treewidth d'un graphe à l'existence d'une grille en tant que mineur de ce graphe. Nous distinguons deux types de grilles, à savoir k , la grille classique de taille k sur k, et Γ k la grille triangulée de taille k sur k. Ces grilles sont illustrées dans la Figure 4(a) et la Figure 4(b), respectivement, et seront définies formellement dans le Chapitre 2. Le théorème d'Exclusion de Grilles démontré par Robertson et Seymour [START_REF] Robertson | Graph minors. V. Excluding a planar graph[END_REF], affirme qu'il existe une fonction f : N → N tel que tout graphe ne contenant pas la grille de taille k sur k en tant que mineur a une treewidth au plus f (k). De nombreux articles ont suivi ces résultats, améliorant progressivement la borne supérieure de la fonction f [START_REF] Diestel | Highly connected sets and the excluded grid theorem[END_REF][START_REF] Kawarabayashi | Linear min-max relation between the treewidth of Hminor-free graphs and its largest grid[END_REF][START_REF] Leaf | Tree-width and planar minors[END_REF]. La question de savoir si la fonction f est polynomiale est restée ouverte pendant un long moment. Elle a été résolue par Chekuri et Chuzhoy [START_REF] Chekuri | Polynomial bounds for the grid-minor theorem[END_REF] qui ont montré que c'était le cas. Chuzhoy [START_REF] Chuzhoy | Improved bounds for the excluded grid theorem[END_REF] a donné à ce jour la meilleure borne supérieure sur f , à savoir f (k) = k 19 • log O(1) k. Négativement, il est possible de montrer que toute fonction satisfaisant cette propriété satisfait f (k) = Ω(k 2 • log k) [START_REF] Thilikos | Graph minors and parameterized algorithm design[END_REF]. Le théorème d'exclusion de grille est un ingrédient clef menant à l'introduction de la théorie de la bidimensionnalité [START_REF] Demaine | Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs[END_REF]. Cette théorie a été développée dans une série d'articles [START_REF] Demaine | Bidimensional parameters and local treewidth[END_REF][START_REF] Demaine | Bidimensionality: New connections between FPT algorithms and PTASs[END_REF][START_REF] Demaine | The bidimensionality theory and its algorithmic applications[END_REF][START_REF] Demaine | The bidimensional theory of boundedgenus graphs[END_REF][START_REF] Fomin | Contraction bidimensionality: the accurate picture[END_REF][START_REF] Fomin | Contraction obstructions for treewidth[END_REF][START_REF] Fomin | Bidimensionality and EPTAS[END_REF][START_REF] Fomin | Bidimensionality and geometric graphs[END_REF][START_REF] Fomin | Bidimensionality and kernels[END_REF][START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF]. Elle offre des techniques générales pour la conception d'algorithmes FPT efficaces, d'algorithmes d'approximation et d'extraction de noyaux pour des problèmes NP-durs dans de nombreuses classes de graphes [29, 32-34, 37, 59].

F = {P 3 }. H H H H H H F i 2 3 4 5 ≥ 6 
K i tw tw tw • log tw tw • log tw ↔ 2 O(tw•log tw) tw • log tw ↔ 2 O(
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La théorie de la bidimensionnalité s'applique à des paramètres de graphes et des classes de graphes spécifiques que nous allons définir. Un paramètre de graphes p est clos par mineur (resp. clos par contraction) si, étant donné deux graphes un algorithme simplement exponentiel résolvant notre problème. Or l'existence de tels algorithmes est donnée par des conditions purement meta-algorithmiques basées sur une variante de la logique modale [START_REF] Pilipczuk | Problems parameterized by treewidth tractable in single exponential time: A logical approach[END_REF]. De plus, de très nombreux problèmes d'optimisation ont déjà été montrés comme étant solubles en temps simplement exponentiel dans les classes de graphes satisfaisant la propriété SQGM [START_REF] Dorn | Fast subexponential algorithm for non-local problems on graphs of bounded genus[END_REF][START_REF] Dorn | Fast subexponential algorithm for non-local problems on graphs of bounded genus[END_REF][START_REF] Dorn | Catalan structures and dynamic programming in H-minor-free graphs[END_REF][START_REF] Rué | Dynamic programming for H-minor-free graphs[END_REF][START_REF] Rué | Dynamic programming for graphs on surfaces[END_REF] ou dans les graphes généraux [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF][START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF][START_REF] Fomin | Efficient computation of representative families with applications in parameterized and exact algorithms[END_REF]. La seconde conséquence méta-algorithmique est la conception de EPTAS. Un PTAS est un algorithme qui prend une entrée I, un paramètre d'optimisation p et un paramètre

G et H, H m G ⇒ p(H) ≤ p(G) (resp. H c G ⇒ p(H) ≤ p(G)
-pour un certain δ > 0, ∃k 0 ∈ N : ∀k ≥ k 0 , p( k ) k 2 > δ et • bidimensionnel par contraction si -p est clos par contraction et -pour un certain δ > 0, ∃k 0 ∈ N : ∀k ≥ k 0 , p(Γ k ) k 2 > δ.
> 0 et calcule en temps n O(f ( 1 )) une valeur comprise entre (1 -) • p(I) et (1 + ) • p(I). Un PTAS dont le temps d'exécution est de f ( 1 ) • n O(1) est appelé EPTAS.
Fomin et cie. [START_REF] Fomin | Bidimensionality and EPTAS[END_REF] ont montré que si le paramètre de graphes p est réductible, bidimensionnel par mineur (resp. contraction) et a la propriété de séparation et que la classe de graphe H est dans SQGM(c) (resp. SQGC(c)) alors pour un certain 1 ≤ c < 2, il existe un EPTAS pour p appliqué à H. La notion de réductible et de séparation correspondent à des propriétés logiques et structurelles, respectivement, sur le paramètre de graphes p qui seront définis dans le Chapitre 2.

La troisième conséquence méta-algorithmique concerne l'extraction de noyaux. Un algorithme d'extraction de noyaux, ou simplement noyaux, pour un problème paramétré

UNE INTRODUCTION EN FRANÇAIS

Π est un algorithme A qui à chaque instance (x, k) de Π fabrique, en temps polynomial en |x| une instance équivalente (x , k ) de Π où |x | + k ≤ g(k) pour une certaine fonction calculable g : N → N correspondant à la taille du noyau. Si la fonction g est une fonction polynomiale (resp. linéaire) en le paramètre k, alors Π admet un noyau polynomial (resp. un noyau linéaire). Quand x correspond à un graphe, la taille du noyau est une fonction du nombre de sommets du graphe dans l'instance équivalente. L'extraction de noyaux est souvent utilisée comme un calcul effectué en amont permettant d'obtenir une instance plus simple à calculer. Il est important de noter qu'un problème admet un noyau si et seulement si il est FPT. De plus l'application d'un algorithme de force brute sur un noyau permet d'obtenir un algorithme FPT.

Fomin et al. [START_REF] Fomin | Bidimensionality and kernels[END_REF] ont montré que si le paramètre de graphe p était exprimable en min/max-CMSO logique, bidimensionnel par mineur (resp. contraction) et linéairement séparable et que la classe de graphes H était une classe de SQGM(c) (resp. SQGC(c)) pour un certain 1 ≤ c < 2 alors la restriction de p à H admet un noyau linéaire. Les notions de min/max-CMSO et de linéairement séparable correspondent à des propriétés logiques et structurelles, respectivement, sur le paramètre de graphe p qui seront définis formellement dans le Chapitre 2.

Clairement, les domaines d'applicabilité des résultats présentés ci-dessus sont délimités par les propriétés SQGM et SQGC. Nous représentons schématiquement ces domaines d'applications dans la Figure 5, dans laquelle les triangles en traits pleins indiquent le domaine d'application de la théorie de la bidimensionnalité par mineurs de les triangles en traits pointillés indiquent le domaines d'application de la théorie de la bidimensionnalité par contractions. La borne inférieure Ω(k 2 • log k) précédemment présentée pour le théorème d'exclusion de grilles indique que SQGM(c) ne contient pas tous les graphes si c < 2. De ces remarques se dégage un axe de recherche consistant à déterminer la classe de graphe la plus générique possible contenue dans SQGM(c) et SQGC(c) pour chaque

1 ≤ c < 2.
Jusqu'à récemment, seules des classes de graphes closes par mineurs étaient connues comme ayant les propriétées SQGM ou SQGC. À savoir, toute classe de graphes excluant un graphe H en tant que mineur est dans SQGM(1) [START_REF] Demaine | Linearity of grid minors in treewidth with applications through bidimensionality[END_REF] et toute classe de graphes excluant un graphe apex H (dont la définition est présenté en Chapitre 2) en tant que mineur est dans SQGC(1) [START_REF] Fomin | Contraction obstructions for treewidth[END_REF].

Certaines classes géométriques, n'étant pas closes par mineur sont aussi dans SQGM(1). C'est le cas typiquement des graphes d'intersection de lignes de degré d'arête borné. Ces graphes sont définis comme suit. Étant donné une collection L de lignes dans le plan, telle que trois lignes ne se croisent pas en un même point, le graphe d'intersection G L de L est le graphe dont les sommets sont les éléments de L et tel que pour tout c J. Avec ce formalisme, les résultats de Grigoriev et cie. [START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF] peuvent être réécrits de la manière suivante : étant donné deux entiers

L 1 , L 2 ∈ L, {L 1 , L 2 } ∈ E(G L ) si et seulement si L 1 ∩ L 2 = ∅.
s 1 et s 2 , si H ∈ SQGC(c) pour un certain 1 ≤ c < 2, alors H (s 1 ,s 2 ) ∈ SQGM(c).
Les résultats précédents impliquent que SQGM(1) contiennent ex m (H) (s 1 ,s 2 ) pour tout graphe apex H et tout entiers s 1 et s 2 , où ex m (H) est la classe de tous les graphes excluant H comme mineur. Le fait que la classe des graphes planaires P l soit dans SQGC(1) [START_REF] Fomin | Contraction obstructions for treewidth[END_REF] et que pour tout d ∈ N, S d ⊆ P l (1,d) [86], classe dans SQGM(1) la classe de graphe S d . Il en résulte que le domaine d'application de la théorie de la bidimensionnalité par mineurs s'étend désormais a une vaste famille de classes de graphes géométriques.

Nos résultats. Les résultats de Grigoriev et cie. [START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF] montrent un "manque de symétrie". En effet, l'hypothèse de départ est "qualitativement plus forte" que la conclusion. Leur résultats couvrent, pour le cas de S d , les triangles en traits pleins de la Figure 1.4, mais laissent ouvert les triangles en traits pointillés. Dans la Section 4.2, nous compléterons ce manque en montrant que étant donné deux entiers

s 1 et s 2 , si H ∈ SQGC(c) pour un certain 1 ≤ c < 2, alors H (s 1 ,s 2 ) ∈ SQGC(c).
Ces résultats étendent l'horizon d'application de la bidimensionnalité par contractions plus loin que les graphes ne contenant pas de graphes apex comme mineur : SQGC(1) Nous nommons G k la classe des graphes de treewidth au plus k. Cette classe nous intéresse pour son comportement vis à vis des algorithmes FPT paramétrés par la treewidth. En effet sur cette classe de graphes, les problèmes FPT paramétrés par la treewidth peuvent être résolus en temps polynomial. Une question naturelle est de se demander quelle est la taille de G k . Lorsque nous essayons de répondre à cette question, nous sommes confrontés à deux obstacles distincts. Le premier obstacle est le fait qu'il ne faut pas compter deux fois deux graphes isomorphes. Cet obstacle est classique en combinatoire et nous l'outrepassons, comme souvent, en étiquetant les sommets et en nous intéressant au décompte des graphes étiquetés de treewidth au plus k. Le second obstacle réside dans le fait que tout graphe sans arrête est un graphe de treewidth zéro, et par conséquent, pour tout entier k, G k contient une infinité de graphes. Nous contournons cet obstacle en nous intéressant uniquement aux graphes à n sommets pour un entier donné n. Finalement, étant donné deux entiers k et n, nous définissons G k n comme étant l'ensemble de tous les graphes étiquetés à n sommets de treewidth au plus k. Par la suite nous chercherons à donner une estimation la plus précise possible de la taille de G k n . Le nombre de k-arbres étiquetés à n sommets, correspondant aux graphes étiquetés, maximal en nombre d'arêtes, à n sommets et de treewidth au plus k, a déjà été déterminé par Beineke and Pippert [START_REF] Beineke | The number of labeled k-dimensional trees[END_REF], puis par Moon [START_REF] Moon | The number of labeled k-trees[END_REF] and Foata [START_REF] Foata | Enumerating k-trees[END_REF]. Cette valeur vaut :
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n k (kn -k 2 + 1) n-k-2 . ( 1 
)
Alors que cette valeur est connue précisément, nous en savons peu sur la taille de G k n . Il semble que seuls les cas k = 1 (les forêts) et k = 2 (les graphes séries-parallèles) ont été étudiés. À savoir, le nombre de forêts étiquetées à n sommets est asymptotiquement √ en n-2 [START_REF] Takács | On the number of distinct forests[END_REF], et le nombre de graphes série-parallèles à n sommets est asymptotiquement g • n -5/2 γ n n! pour des constantes g et γ ≈ 9.07 explicites [START_REF] Bodirsky | Enumeration and limit laws for seriesparallel graphs[END_REF]. 

Nos résultats. Soit n ∈ N + et k ∈ 1, n -1 .
|G k n | ≤ 2 kn-k(k+1) 2 n k (kn -k 2 + 1) n-k-2 . ( 2 
)
Des calculs simples nous donnent, en oubliant les termes de petit ordre, que [START_REF] Cayley | A theorem on trees[END_REF]. Puisque chaque sommet particulier peut être connecté à la forêt de 2 n-k+1 manières différentes, nous obtenons que

|G k n | ≤ (k2 k n) n 2 -k(k+1) 2 k -k ≤ (k2 k n) n . (3) 
(n -k + 1) sommets, soit (n -k + 1) n-k-1
|G k n | ≥ (n -k + 1) n-k-1 2 (k-1)(n-k+1) . (4) 
Si nous supposons que n k tend vers l'infini, cela nous donne asymptotiquement que

|G k n | ≥ 2 k-1 n n-o(1) . (5) 
Nous en concluons que le nombre de graphes étiquetés à n-sommets et de treewidth au plus k est situé entre 

(2 k n) n et (k2 k n) n .
|G k n | ≥ 1 128e • k2 k n log k n 2 -k(k+3) 2 k -2k-2 . ( 6 
) La valeur |G k n | est donc asymptotiquement située entre k log k 2 k n n et (k2 k n) n .
L'écart restant entre les deux bornes est désormais de (log k) n à la place de k n correspondant à l'écart entre les deux bornes faciles présentées précédemment.

Dans le Chapitre 5, nous présentons des utilisations de la treewidth dans trois applications pratiques. Ces trois applications sont des problèmes provenant des réseaux et de la bioinformatique. Nous allons présenter le contexte de chacun d'entre eux.

Notre premier problème appliqué concerne les réseaux de capteurs Considérons un réseau de capteurs dans lequel chaque capteur possède une portée définie et ne peut envoyer un message qu'à un autre capteur présent dans sa zone de transmission. Si un capteur S à besoin d'envoyer un message à un capteur R qui n'est pas à l'intérieur de sa zone de transmission alors le message va devoir être transmis à travers le réseau. Notre objectif est de s'assurer que le message est correctement acheminé jusqu'à sa destination. De nombreuses approches ont déjà été proposées pour améliorer la fiabilité de ce genre de réseau de capteurs [START_REF] Hong | Effective probabilistic approach protecting sensor traffic[END_REF][START_REF] Lim | A game-theoretic approach for high-assurance of data trustworthiness in sensor networks[END_REF][START_REF] Rezvani | Secure data aggregation technique for wireless sensor networks in the presence of collusion attacks[END_REF]. Dans l'approche de contrôle des arêtes [START_REF] Dong | Edge self-monitoring for wireless sensor networks[END_REF][START_REF] Neggazi | A self-stabilizing algorithm for edge monitoring in wireless sensor networks[END_REF][START_REF] Wei | A distributed node self-monitoring mechanism in wireless sensor networks[END_REF], l'idée est de sélectionner un ensemble de capteurs, appelés contrôleurs, tel que lorsqu'un noeud A transfère un message à un noeud B, alors le moniteur M du lien {A, B} vérifie
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que le noeud B transmet lui aussi le message. Si B ne transmet pas le message, alors nous sommes face à un comportement indésirable. Cette approche a déjà été étudiée dans la littérature [START_REF] Hsin | Self-monitoring of wireless sensor networks[END_REF][START_REF] Wang | The self-protection problem in wireless sensor networks[END_REF][START_REF] Wang | Efficient algorithms for p-self-protection problem in static wireless sensor networks[END_REF]. De la même manière, les contrôleurs peuvent aussi détecter une action néfaste, comme retard de transmission, la non transmission, la modification du paquet envoyé ou même sa fabrication. Pour pouvoir contrôler un lien entre les deux capteurs A et B, un contrôleur M a besoin de se trouver dans l'intersection des zones de transmissions des capteurs A et B.

Un premier modèle pour ce réseau a été proposé par Dong et cie. [START_REF] Dong | Edge self-monitoring for wireless sensor networks[END_REF]. Dans ce modèle, les réseaux de capteurs sont représentés par des graphes de disques unitaires. Les auteurs prouvent que même dans cette classe de graphes, le problème est NP-dur.

Formellement, une arête est contrôlée par un sommet si les deux extrémités de l'arête sont dans le voisinage de ce sommet. Dans le problème de Weighted Edge Monitoring, nous avons en entrée un graphe G, une fonction de poids ω : E(G) → N sur les arêtes de G et un entier k et nous cherchons à savoir s'il existe un ensemble S d'au plus k sommets de G tel que chaque arête de G soit contrôlée par au moins ω(e) sommets de S. Le problème de Weighted Edge Monitoring généralise le plus classique problème Edge Monitoring qui est définie de la même manière à l'exception de la fonction de poids qui est la fonction constante égale à 1. Le second problème appliqué que nous étudions dans cette thèse provient aussi des réseaux. Considérons un réseau composé de plusieurs sous-réseaux. Passer d'un sousréseau à un autre a un coût de transition, appelé coût de recharge. Nous supposerons que le coût correspondant à une transition d'un sous-réseau vers le même sous-réseau est négligeable. Ce concept de coût de recharge est dû à Wirth and Steffan [START_REF] Wirth | Reload cost problems: minimum diameter spanning tree[END_REF].

Nos

Le concept de coût de recharge a de nombreuses applications en télécommunication, en transport, et en distribution d'énergie. Par exemple, considérons un chargement devant utiliser plusieurs moyens de transport pour être acheminé à destination. Chaque moyen de transport peut être représenté par un sous-réseau du réseau de transport. Passer d'un moyen de transport à un autre a un coût en temps et en énergie. Il faut en effet décharger puis recharger la cargaison. Il arrive que ce coût de recharge dépasse le coût du transport des biens dans un même sous-réseau [START_REF] Galbiati | The complexity of a minimum reload cost diameter problem[END_REF]. Dans des réseaux de communications hétérogènes, faire transiter des messages nécessite de transiter à travers différentes technologies comme les liens câblés, la fibre et les liens satellites. Dans ce cas, chaque technologie induit un sous-réseau du réseau de communication. À cause de la nécessité de convertir les données entre deux sous-réseaux incompatibles, changer de sous-réseaux induit un coût dépassant largement le coût pour faire transiter les paquets le long d'un même sous-réseau. Les applications du concept de coût de recharge augmentent continuellement. En particulier, l'aspect touchant à la consommation d'énergie lors d'un changement est particulièrement mis en avant par la recherche, très active, des réseaux verts qui s'attaque au problème de l'augmentation de la demande énergétique des réseaux d'informations et de communications [START_REF] Bianzino | A survey of green networking research[END_REF][START_REF] Celik | Green cooperative spectrum sensing and scheduling in heterogeneous cognitive radio networks[END_REF].

Ce concept à été largement utilisé récemment, par exemple : obtenir une couverture par cycles minimisant le coût de recharge [START_REF] Galbiati | On minimum reload cost cycle cover[END_REF], trouver un chemin entre deux points donnés minimisant ce coût de recharge [START_REF] Gourvès | The minimum reload s-t path, trail and walk problems[END_REF], trouver un arbre couvrant qui minimise la somme des coûts de recharge de tous les chemins présent dans cet arbre [START_REF] Gamvros | Reload cost trees and network design[END_REF], et trouver une coloration d'arête du graphe qui minimise le coût de recharge total [START_REF] Gözüpek | Edge coloring with minimum reload/changeover costs[END_REF] Wirth and Steffan [START_REF] Wirth | Reload cost problems: minimum diameter spanning tree[END_REF] ont introduit le problème de Diameter Tree en même temps que le concept de coût de recharge. Dans ce problème, nous avons en entrée un graphe G, une fonction de coloration d'arêtes χ : E(G) → X, une fonction de coût de recharge c : X 2 → N, et un entier k, et nous cherchons à déterminer s'il existe un arbre T couvrant G tel que pour chaque chemin P dans T , le coût de recharge de P est au plus k, où le coût de recharge d'un chemin est défini comme suit. Si P est un chemin dans G tel que

E(P ) = {e i | i ∈ 1, }, pour un entier , et que pour chaque i ∈ 1, -1 , e i ∩ e i+1 = ∅, alors le coût de recharge de P est -1 i=1 c(χ(e i ), χ(e i+1 )).
Wirth and Steffan [START_REF] Wirth | Reload cost problems: minimum diameter spanning tree[END_REF] ont prouvé que Diameter Tree n'est pas approximable avec un facteur meilleur que 3, et donc, en particulier, le problème est NP-dur, même si nous restreignons le graphe d'entrée à avoir un degré maximum de 5. Ils présentent aussi un algorithme polynomial pour le problème lorsque le graphe d'entrée a un degré maximum de 3 et que la fonction de coût de recharge satisfait l'inégalité triangulaire, dont la définition est reportée à la Section 5.2. Galbiati [START_REF] Galbiati | The complexity of a minimum reload cost diameter problem[END_REF] a montré des résultats de difficulté plus forts pour ce problème en montrant que, dans les graphes de degré maximum 4, le problème n'est pas approximable avec un facteur meilleur que 2 si la fonction de coût de recharge ne satisfait pas l'inégalité triangulaire, et avec un facteur meilleur que 5/3 si la fonction de coût de recharge satisfait l'inégalité triangulaire. La complexité de Diameter Tree, dans le cas général, sur les graphes de degré maximum 3 restait ouverte.

Nos résultats. Dans la Section 5.2, nous procédons à une étude méthodique de la complexité de Diameter Tree en portant l'accent sur sa complexité paramétrée pour plusieurs choix de paramètres. À savoir, nous considérons toutes les combinaisons des paramètres k, le coût de recharge de la solution, tw, la treewidth du graphe d'entrée, et ∆, le degré maximum du graphe d'entrée. Nous tenons à préciser que ces paramètres ont une importance pratique dans les réseaux de communication. En effet, l'importance du paramètre naturel k est assez claire. De plus de nombreux réseaux modélisant des situations réelles ont une petite treewidth [START_REF] Jensen | Bayesian Networks and Decision Graphs[END_REF][START_REF] Lauritzen | Local computations with probabilities on graphical structures and their application to expert systems[END_REF]. Finalement, le degré maximum dans un réseau de communication est lié au nombre d'émetteurs-récepteurs qui ont un coût important dans différents types de réseaux tels les réseaux optiques [START_REF] Konda | Algorithm for traffic grooming in optical networks to minimize the number of transceivers[END_REF]. Pour ces raisons, le degré maximum d'un réseau prend souvent de faibles valeurs.

Les résultats que nous allons présenter sont résumés dans le Tableau 2. En premier lieu, nous montrons, par une réduction de 3-SAT, que Diameter Tree est NP-dur dans les graphes planaires extérieurs, qui ont une treewidth au plus 2, qui ne contiennent qu'un seul sommet ayant un degré plus grand que 3, uniquement trois coûts de recharge différents qui satisfont l'inégalité triangulaire et k = 9. Notons que dans le cas où le coût de recharge satisfait l'inégalité triangulaire, avoir un seul sommet avec un degré supérieur à 3 est le mieux possible étant donné que si tous les sommets ont degré au plus 2, le problème est soluble en temps polynomial [START_REF] Wirth | Reload cost problems: minimum diameter spanning tree[END_REF]. Notons aussi que la borne sur le treewidth est la meilleure possible, étant donné que le problème est trivialement soluble dans les graphes de treewidth 1, c'est à dire, dans les forêts. Nous présentons aussi un algorithme polynomial sur la classe de graphes des cactus, qui est une classe de graphes de treewidth au plus 2. Les cactus sont des graphes tels que deux cycles ont au plus un sommet en commun. Cet algorithme est plutôt compliqué et, en résumé, traite le block tree, qui est un objet similaire à la décomposition arborescente et dont la définition est reportée au Chapitre 2, du cactus et à chaque étape, l'algorithme résout une instance de 2-SAT comme sous-routine.
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Revenons aux résultats de difficulté. Nous montrons aussi, via une réduction de 3-SAT, que Diameter Tree est NP-dur dans les graphes tels que ∆ ≤ 3, même avec seulement deux coûts différents, k = 0, et un nombre limité de couleurs. En particulier, cela scelle la complexité du problème dans les graphes généraux tels que ∆ ≤ 3 lorsque l'inégalité triangulaire n'est pas forcément satisfaite, question qui avait été laissée ouverte dans les travaux précédents [START_REF] Galbiati | The complexity of a minimum reload cost diameter problem[END_REF][START_REF] Wirth | Reload cost problems: minimum diameter spanning tree[END_REF]. Notons que ∆ ≤ 3 est le meilleur résultat possible car Diameter Tree peut facilement être résolu dans les graphes tels que ∆ ≤ 2.

Notre dernier résultat de NP-difficulté montre, en utilisant une réduction depuis Partition, que Diameter Tree est NP-dur dans les graphes planaires tel que tw ≤ 3 et ∆ ≤ 3.

Les résultats de difficulté évoqués ci-dessus impliquent que Diameter Tree est para-NP-dur pour toute combinaison de deux paramètres parmi les trois paramètres k, tw et ∆, c'est à dire, que le problème est NP-dur pour certaines valeurs fixées de deux des trois paramètres considérés. Du point de vue algorithmique, nous montrons que Diamter Tree est FPT paramétré par les trois paramètres considérés précédemment.

Cet algorithme utilise des techniques classiques de programmation dynamique sur une décomposition arborescente du graphe d'entrée.

Puisque notre réduction montrant la para-NP-difficulté de Diamter Tree avec paramètre tw + ∆ provient de Partition qui est un exemple classique de problème faiblement NPdur [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NPcompleteness[END_REF], une question naturelle est de se demander si Diameter Tree, avec comme paramètre tw + ∆, est para-NP-dur, XP, W[1]-dur, ou FPT lorsque le coût de recharge est borné polynomialement par la taille du graphe d'entrée. Nous résolvons complètement cette question. Nous montrons que dans ce cas, le problème est dans XP, et donc n'est pas para-NP-dur, et est W [START_REF] Agarwal | Dynamic spectrum access for energy-constrained CR: single channel versus switched multichannel[END_REF]-dur paramétré par tw + ∆. La réduction de W[1]-difficulté provient d'une réduction du problème Unary Bin Packing paramétré par le nombre de poubelles qui a été montré comme étant W[1]-dur par Jansen et cie. [START_REF] Jansen | Bin packing with fixed number of bins revisited[END_REF].

En combinant l'ensemble de ces résultats, nous présentons une image précise de la complexité paramétrée du problème Diameter Tree.

Notre dernier problème appliqué provient de la Bioinformatique. Un objectif essentiel en phylogénétique est de clarifier les liens de parenté entre les espèces toujours existantes. Si X est un ensemble de gènes provenant d'une famille de gènes d'une espèce encore en vie, les liens de parentés entre les éléments de X sont représentés pas un arbre, dit arbre phylogénétique, tel que les feuilles de cet arbre soient en bijection avec X. Comme les sommets de degré 2 n'apportent pas d'informations, nous supposerons que les arbres phylogénétiques ne contiennent pas ce type de noeuds. Lorsque X correspond à un ensemble de gènes, l'arbre phylogénétique correspondant est appelé arbre de gènes et lorsque X correspond à des espèces existantes, l'arbre phylogénétique correspondant est appelé arbre des espèces. Un arbre de gènes peut être différent d'un arbre des espèces [START_REF] Maddison | Reconstructing character evolution on polytomous cladograms[END_REF]. Ainsi, une manière habituelle de construire un arbre des espèces pour un ensemble d'espèces X est de choisir plusieurs familles de gènes qui apparaissent dans les génomes des espèces de X, de construire un arbre de gènes pour chacune des familles de gènes puis de combiner ces arbres en un unique arbre qui maximise la "concordance" avec les arbres de gènes. L'idée sous-jacente à cette approche est qu'utiliser plusieurs gènes va diminuer le risque d'erreur lors de la construction de l'arbre unique. Si les arbres de gènes sont tous définis sur le même ensemble étiqueté, nous sommes dans le cadre d'un consensus. Sinon les arbres sont définis sur des ensembles étiquetés qui se superposent mais ne sont pas identiques, et dans ce cas nous sommes dans le cadre d'un supertree. Plusieurs méthodes de consensus et de supertree existent dans la littérature [START_REF] Bininda-Emonds | Phylogenetic supertrees: combining information to reveal the tree of life[END_REF][START_REF] Bininda-Emonds | The (super) tree of life: procedures, problems, and prospects[END_REF][START_REF] Scornavacca | Supertree methods for phylogenomics[END_REF] et diffèrent dans la manière dont la concordance est définie.

Dans cette thèse, nous étudions un problème qui apparaît dans le cadre d'un supertree. Étant donné un ensemble d'arbre de gènes T = {T i | i ∈ 1, k }, pour un certain entier k, tel que pour tout i ∈ 1, k , l'ensemble d'étiquettes de T i est X i , est-ce qu'il existe un arbre des espèces sur X := k i=1 X i qui accorde tous les arbres de T ? Ce problème est le problème de Compatibility of Unrooted Phylogenetic Trees. La notion "d'accord " utilisé dans la communauté phylogénétique coïncide avec la notion de "contenir en tant que mineur" de la communauté des graphes. Un autre problème lié au précédent est Strict Compatibility (or Agreement) of Unrooted Phylogenetic Trees
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dans lequel la notion "d'accord" est remplacée par la notion "d'accord strict" correspondant à la notion de "contenir en tant que mineur topologique".

Ces deux problèmes sont solubles en temps polynomial quand les arbres de gènes ont une racine commune ou lorsqu'ils contiennent tous une même étiquete [START_REF] Aho | Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions[END_REF][START_REF] Ng | Reconstruction of rooted trees from subtrees[END_REF]. Dans le cas général, les deux problèmes sont NP-complet [START_REF] Steel | The complexity of reconstructing trees from qualitative characters and subtrees[END_REF] et FPT en le nombre k d'arbres donnés en entrée [START_REF] Bryant | Compatibility of unrooted phylogenetic trees is FPT[END_REF][START_REF] Scornavacca | The agreement problem for unrooted phylogenetic trees is FPT[END_REF]. Les deux problèmes pouvant être exprimés en logique monadique du second ordre [START_REF] Bryant | Compatibility of unrooted phylogenetic trees is FPT[END_REF][START_REF] Scornavacca | The agreement problem for unrooted phylogenetic trees is FPT[END_REF] avec quatre alternances de quantificateur, le problème est donc FPT d'après le théorème de Courcelle, et peut être résolu d'après Frick et cie. [START_REF] Frick | The complexity of first-order and monadic second-order logic revisited[END_REF] en temps f (k) • n où f est une tour d'exponentielles de hauteur 4. Clairement, cette fonction f n'est pas abordable dans des cas appliqués. Depuis ces résultats, aucun algorithme FPT "raisonnable" pour ces problèmes n'a été proposé.

Chapter 1

Introduction s

Introduction

A graph is a data structure that models pairwise relations between entities. Formally, a graph G is a pair (V, E) such that V is a set and each element of E is a set of two elements of V . The elements of V are the vertices of the graph and often correspond to the entities we want to model. The elements of E, called edges, represent the links between two such entities.

A graph is an abstract and general structure that can model a huge amount of objects or concepts. Graphs are present in Computer Science but also in other disciplines, like for instance Statistical Physics, Particle Physics, Electrical Engineering, Biology, Economics, Finance, Operations Research, Climatology, or Sociology. As a first example, graphs play an important role in the field of Transportation where, in a road network, each crossroad is naturally modeled by a vertex and each road is modeled by an edge. A second example, appearing in Chemistry, is the study of molecules. In this case, each atom of a molecule is modeled by a vertex and each chemical bound between two atoms is modeled by an edge.

Graphs are useful to express a great variety of computational problems in diverse application domains. For instance, a classical question on a transportation network is the following: given two positions in a network, determine the shortest path between the two positions. This problem is known in Graph Theory as the Shortest Path problem. In Chemistry, it is important to find similarities between molecules. In particular, a natural question is to determine whether the structure of a given molecule is a substructure of another one. This problem is known in Graph Theory as the Subgraph Isomorphism problem.

The answer to such questions can take three forms depending on how the question is asked. We can ask for a specific object having some particular properties, like finding a path of minimum length between two positions. We also can ask for an integer, like the length of a path of minimum length. Finally, we can also ask a YES/NO question like: is 32 CHAPTER 1. INTRODUCTION the length of a shortest path at most some given value? It appears that from the answers to one form of the question, we can deduce the answers to the other forms of the question.

An algorithm is a procedure, specific to a question and a class of instances of this question, which takes as input an instance and outputs an answer to this question on this instance. The running time of an algorithm is the time the algorithm needs, in the worst case, to compute the answer. It is specific to each algorithm and is a function of the size of the input. We distinguish two kinds of algorithms: the deterministic algorithms, that have a unique execution and a unique output for each input, and the non-deterministic algorithms, that can produce different executions for the same input.

Given a set of instances, a decision problem is a YES/NO question that can be asked for any instance of this set. In this thesis, when we say problem, we mean decision problem. A natural question is to determine how fast a problem can be solved, i.e., which is the fastest algorithm that solves this problem. It is worth mentioning that any algorithm applied to an instance needs to perform a minimum number of operations. For instance it is often needed to read the input. These needed operations give a lower bound on the running time of any algorithm that solves a given problem.

A problem is in P if there exists a deterministic algorithm that, for any instance, outputs a solution in polynomial time and is in NP if there exists a non-deterministic algorithm such that at least one of the executions outputs a solution in polynomial time. The most famous question in computer science is whether the two classes coincide.

To classify problems, we use the notion of hardness. This notion is linked to the notion of Karp reduction defined as follows. We say that a decision problem Π can be reduced to another decision problem Π if there is a polynomial time computable function g such that for each instance x of Π, x is a positive instance of Π if and only if g(x) is a positive instance of Π . Given a complexity class C, i.e., a set of problems of related resource-based complexity, a problem Π is C-hard if any problem in C can be reduced to Π. Moreover, we say that Π is C-complete if Π is in C and Π is C-hard. For example, Shortest Path is a problem in P and Subgraph Isomorphism is an NP-complete problem.

For our concern, we assume that NP-hard problems cannot be solved in polynomial time, i.e., that P = NP. This implies that, in practical situations, when the size of the input is big, applying a deterministic algorithm that solves an NP-hard problem on this input is not affordable. This is why NP-hard problems can be seen as "difficult" problems. In the following, we focus on problems that are NP-hard on general graphs.

Classical complexity classifies problems by taking into account how fast they can be solved as a function of the total size of the input. It appears that in problems coming from "real life", the inputs usually come equipped with more structure than only its size. For instance, cities are regular, objects people construct tend to be built in some comprehensible way from smaller ones constructed earlier, people's minds do not tend to work with more than a few alternations of quantifiers, etc. In order to take into account the information given by the structure of the input, Downey and Fellows [START_REF] Downey | Parameterized Complexity[END_REF] introduced, in the 90's, the theory of Parameterized Complexity. This theory was developed in a series of foundational articles of Downey and Fellows [START_REF] Downey | Complexity theory. chapter Fixed-parameter Tractability and Completeness III: Some Structural Aspects of the W Hierarchy[END_REF][START_REF] Downey | Fixed-parameter intractability[END_REF][START_REF] Downey | Fixed-parameter tractability and completeness i: Basic results[END_REF][START_REF] Downey | Fixed-parameter tractability and completeness ii: On completeness for w[1[END_REF][START_REF] Downey | Parameterized Computational Feasibility[END_REF]. Parameterized Complexity theory measures the complexity of computational problems not only in terms of the input size, but also in terms of a parameter, which is a numerical value that may depend on the input in an arbitrary way. The main intention is to address complexity issues in situations where we know that the parameter is comparatively small with respect to the total input size. During the last three decades, this theory became a mainstream topic of theoretical computer science with thousands of new papers and four books [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF][START_REF] Flum | Parameterized Complexity Theory[END_REF][START_REF] Niedermeier | Invitation to Fixed-Parameter Algorithms[END_REF].

The maximum degree of a vertex of the input graph, the size of the desired solution of the problem, or the sum of both are possible parameters. Formally, given a set of instances I, a minimization parameter is a function p : I → N such that there exist a collection of objects X p , a weight function ν p : X p → N, and a Boolean function ξ p : I × X p → {0, 1}, that corresponds to the property we want to satisfy, such that for each I ∈ I,

p(I) = min{ν p (X) | X ∈ X p , ξ p (I, X) = 1}.
Similarly, we say that p is a maximization parameter if in the above definition we replace "min" by "max". With each minimization parameter (resp. maximization parameter), we associate a decision problem Π p , called minimization problem (resp. maximization problem), which given an input I ∈ I and an integer k ∈ N, answers whether p(I) ≤ k (resp. p(I) ≥ k). Minimization or maximization parameters are called optimization parameters. When an optimization parameter takes as input a class of graphs, we say that it is a graph parameter.

Vertex Cover is a typical minimization problem corresponding to the minimization parameter vc : G → N, where G denotes the set of all graphs and where vc computes the minimum number of vertices we need to remove from the input graph such that the remaining graph does not contain any edge. Clique is a typical example of maximization problem. The maximization parameter corresponding to Clique is the function cl : G → N that computes the size of the largest subset of vertices such that there is an edge between every two vertices of this set.

An important aspect of Parameterized Complexity theory is fixed-parameter tractability. Here, we look for algorithms for NP-hard problems whose running times are polynomial with respect to the size of the input and where the "nonpolynomial behavior" is captured by a function depending only on the parameter. In particular, this theory provides that some intractable problems become tractable when the parameter is bounded.

The parameter adds a "second dimension" to the complexity analysis. It leads to a much larger variety of complexity classes and to more complicated reductions than those in classical complexity theory, that consider only the size of the input. This theory has significant impact on the design of algorithms. By "wisely" choosing the parameter, new algorithmic techniques solve parameterized problems efficiently for small values of the parameter. One among these techniques is kernelization, which is a procedure that given an instance of a given problem, creates in polynomial time a smaller instance of the same problem whose size is bounded by a function of the parameter. Another one is the dynamic programming technique that consists in breaking the problem into a collection of simpler subproblems and in solving these problems only once by remembering the solution for the next time the same subproblem occurs.

Formally, a parameterized problem is a problem together with a parameter. Given a parameterized problem Π, defined on a set of instances I, with a parameter p : I → N, we say that an algorithm that solves Π on each instance I of I is a fixed-parameter tractable algorithm, or FPT algorithm for short, if its running time is bounded by f (p(I)) • n O (1) , for some computable function f , where n denotes the size of the input plus the value of the parameter. For convenience, when the input is a graph, we use the notation O * (•) that suppresses polynomial factors depending on the size of the input graph. With this notation, when the input is a graph, the running time of an FPT algorithm parameterized by p is O * (f (p(I))). A parameterized problem is FPT if it can be solved by an FPT algorithm.

Vertex Cover parameterized by the size of the solution is a classical parameterized problem. In this problem, the inputs have the form (G, k), where G is a graph and k is the parameter. Vertex Cover asks if there exists a set of vertices of size at most k such that for every edge of G, at least one of the endpoints is in the set. An example of vertex cover is depicted in Figure 1.1. For this problem, it turns out that a simple observation yields to a dynamic programming FPT algorithm. The crucial point it that every edge should have one of its endpoints in the vertex cover, and so, at least one of these two vertices needs to be selected. This leads to the following typical dynamic programming algorithm. If there is no edge, then we have a trivial solution. As long as there is at least one edge, say {a, b}, we try to remove a from the graph and check if (G \ v {a}, k -1), i.e., the instance where we remove a from G and 1 from k, is a positive instance of Vertex Cover by running recursively the algorithm. If this is the case, then we know that (G, k) is a positive instance of Vertex Cover. We do the same independently for b. If both removals lead to a negative answer, we can answer that there is no vertex cover of size at most k in G. In the worst case, the algorithm makes 2 k recursive calls. Moreover, the problem can be solved easily at the leaves of the recursive tree in time O(n). Therefore, Vertex Cover can be solved in time O * (2 k ) and so, it is FPT when parameterized by the size of the solution. An important part of this thesis consists in designing FPT algorithms and, for some of them, under reasonable complexity assumptions and disregarding the polynomial factors, proving that these algorithms are tight, i.e., if the running time of the algorithm parameterized by k is O * (f (O(k))), then there is no algorithm running in time O * (f (o(k))). The reasonable assumption that we consider is the Exponential Time Hypothesis, or ETH for short. This assumption was introduced by Impagliazzo and Paturi [START_REF] Impagliazzo | On the complexity of k-sat[END_REF]. It is about the 3-SAT problem, where we are given a logical formula in conjunctive normal form, where each clause contains at most three literals, and we want to know if the formula is satisfiable. In this context, ETH states that there exist a constant c > 0 such that there is no algorithm that, given an instance ϕ of 3-SAT with n variables, solves 3-SAT on ϕ in time O * (2 cn ). In particular, ETH implies that P = NP. This assumption is used for proving lower bounds on the computational complexity of problems and is a basic assumption for the results of this thesis.

Treewidth is one of most well-studied parameters in graph algorithms. It serves as a measure of how close a graph is to the topological structure of a tree. In particular, forests have treewidth one. The concept was introduced first by Gavril [START_REF] Gavril | The intersection graphs of subtrees in trees are exactly the chordal graphs[END_REF] and then reintroduced by Robertson and Seymour [START_REF] Robertson | Graph Minors. II. Algorithmic aspects of tree-width[END_REF] in their monumental Graph Minors project. Robertson and Seymour used treewidth in this project as a crucial ingredient in order to prove a combinatorial property, namely Wagner's conjecture [START_REF] Robertson | Graph minors. xx. wagner's conjecture[END_REF], which states that every minorclosed class of graphs can be defined by a finite set of forbidden minors (see Chapter 2 for formal definitions).

It appears that treewidth has a huge number of algorithmic applications. The key point is the fact that many problems that are NP-hard on general graphs can be solved in polynomial time on trees. This is the case, for instance, for Vertex Cover. Indeed, on a tree an easy algorithm solving Vertex Cover can be seen as follows. If the tree contains one vertex or less, then there is no remaining edge to cover, and if it contains exactly two vertices, choose one arbitrarily and add it to the vertex cover. In both cases, we have all the information needed to output the solution. Otherwise, add the neighbourhood of the leaves inside the vertex cover, remove the leaves and its neighborhood from the tree, and apply the algorithm recursively on every remaining tree. An example of the execution of this algorithm is depicted in Figure 1.2. This algorithm can clearly be implemented in linear time. Starting from this observation, one may think that NP-hard problems that are easy on trees can also be solved in polynomial time on graphs that are "close" to trees, and so, on graphs with small treewidth. A fundamental result in this direction was proved by Courcelle [START_REF] Courcelle | The monadic second-order logic of graphs. I. Recognizable sets of finite graphs[END_REF]. Courcelle's Theorem states that any graph problem that can be expressed in Counting Monadic Second Order logic (see Chapter 2 for a formal definition) can be solved in linear time on graphs of bounded treewidth. This implies that a wide class of intractable problems on general graphs becomes tractable when restricted to graphs of bounded treewidth [START_REF] Arnborg | Easy problems for tree-decomposable graphs[END_REF][START_REF] Courcelle | The monadic second-order logic of graphs. I. Recognizable sets of finite graphs[END_REF][START_REF] Courcelle | The expression of graph properties and graph transformations in monadic second-order logic[END_REF].

The notion of treewidth is linked to the notion of tree-decomposition. Formally, a tree-decomposition of a graph G is a pair D = (T, X ), where T is a tree and X = {X t | t ∈ V (T)} is a collection of subsets of V (G) such that:

• t∈V (T) X t = V (G), → → Figure 1.
2: An execution of the algorithm for Vertex Cover in a tree. At each step we select the squared vertices and remove them and the leaves from the graph.

• for every edge {u, v} ∈ E(G), there is a t ∈ V (T) such that {u, v} ⊆ X t , and

• for each {x, y, z} ⊆ V (T) such that z lies on the unique path between x and y in T, X x ∩ X y ⊆ X z .

We call the sets in X bags of D. The width of a tree-decomposition D = (T, X ) is

max{|X t | | t ∈ V (T)} -1.
The treewidth of G, denoted by tw(G), is the smallest integer w such that there exists a tree-decomposition of G of width at most w. Note that the "-1" in the formula appears such that the treewidth of a forest is 1. Notice also that treewidth is a minimization parameter.

Courcelle's Theorem gives a constructive meta-algorithm providing algorithms for every graph problem that can be expressed in CMSO logic. The running time of the created algorithms is f (tw) • n, where f is a tower of exponentials whose height depends on the number of alternative quantifiers in the CMSO formula [START_REF] Flum | Parameterized Complexity Theory[END_REF]. For instance, the Vertex Cover problem can be expressed by the following formula: there exists a set S of size at most k such that for each edge e of the graph, there exists v in S such that v is an endpoint of e. As we can see, this formula contains three alternations, leading by Courcelle's Theorem to an algorithm with running time 2 2 2 O(tw)

• n. This algorithm, even if it is linear on graphs of bounded treewidth, has an incredibly huge dependency on tw, leading to unaffordable constants.

A faster algorithm for Vertex Cover can be derived using a tree-decomposition of the input graph G. Namely, this algorithm uses the dynamic programming technique on a tree-decomposition of the input graph to compute vc, the minimization parameter corresponding to Vertex Cover. We first select a special node r that we call the root of the tree-decomposition. We can assume without loss of generality that every non-leaf node of the tree-decomposition has exactly two children. This assumption can be derived from the existence of a special tree-decomposition, called nice tree-decomposition, that is defined in Chapter 2. We consider a bottom-up approach, by recursively processing the bags from the leaves to the root. Note that, in this approach, by definition of a tree-decomposition, once a vertex leaves the current bags, i.e., if a vertex appears in a previously considered bag but not in the current one, it will never come back, and 1.1. INTRODUCTION 37 hence we do not really need to keep track of its effect in the desired solution. With each bag of the tree-decomposition, we associate one table. These tables play a critical role in dynamic programming algorithms. They gather the needed information about the already processed vertices, i.e., the vertices that have left the current bag, and so, they allow to "forget" these vertices in the next steps of the algorithm. For our algorithm, we can work with tables corresponding to all the subsets of the current bag and their relative weights, and need only to consider potential vertex covers S relative to the current bag. Then, for each node t of the tree-decomposition, we consider every partial solution, i.e., every subset of vertices S of X t such that any edge with both endpoints in X t has an endpoint in S. We denote by I t the set of every partial solution associated with a node t. Using all these partial solutions, we need to define the value vc(G). For this, for each t, we define the function vc t : I t → N that, for each partial solution S ∈ I t , corresponds to the size of a smallest set S that contains every vertex of S, no vertex of X t \ S, and such that every edge with both endpoints in the bag X t or one of its descendents has an endpoint in S. More intuitively, vc t (S) corresponds to the size of a smallest vertex cover on the already processed subgraph that is consistent with S. For each leaf node, say t, the computation of vc t is easy, as it is the size function. For a non-leaf node, say t, we can assume that vc t and vc t are already computed for the two children t and t of t. Then, for each S ∈ I t , we need to check which is the smallest S ∈ I t and which is the smallest S ∈ I t , with regard to the functions vc t and vc t , respectively, which are consistent with S, i.e., S ∩ X t = S ∩ X t and S ∩ X t = S ∩ X t . We obtain that for these specific sets S and S , we have that vc t (S) = vc t (S ) + vc t (S ) + |S| -|S ∩ S | -|S ∩ S |. By definition of vc r , the desired value vc(G) is min{vc r (S) | S ∈ I r }.

Assume that we run this algorithm on a tree-decomposition of width w with n nodes. For each node of the tree-decomposition, we compute a set of size at most 2 w+1 , corresponding to each possible subset of the current bag. Moreover, this computation for a non-leaf node needs to consider every possible combination of subsets of children's bags. As we have assumed that each non-leaf nodes has exactly 2 children, we obtain that the computation of vc t for each node t can be done in time 2 O(w) . Thus, vc(G) can be computed in time 2 O(w) • n. Using the approximation algorithm from Bodlaender et al. [START_REF] Bodlaender | A c k n 5-Approximation Algorithm for Treewidth[END_REF], which given a graph G computes a tree-decomposition of G of size at most 5

• tw(G) + 4 in time 2 O(tw(G)) • n, we obtain that vc(G) can be computed in time 2 O(tw(G)) • n.
This algorithm, much faster than the one given by Courcelle's Theorem, motivates an avenue of research where the goal is to optimize the dependency on tw for each problem. It appears that many other problems can also be solved in single exponential time, i.e., in time O * (2 O(tw) ), by using the same kind of techniques. Henceforth, we will always refer to "single exponential time" when dealing with a problem parameterized by the treewidth of its input graph. For instance, the Independent Set problem, which asks for a set of size at least some given value such that no two edges of this set are adjacent, the Dominating Set problem, which asks for a set of size at most some given value such that every vertex of the graph is either in this set or in its neighborhood, and the 3-Colorability problem, which asks for a coloring of the vertices of the graph into three CHAPTER 1. INTRODUCTION colors such that every two adjacent vertices have different colors, are three among the huge set of NP-hard problems that can be solved in single exponential time.

The classical dynamic programming technique we have presented leads to single exponential algorithms as long as the problems have locally checkable certificates, that is, certificates consisting of a constant number of bits per vertex that can be checked by a cardinality check and by iteratively looking at the neighborhoods of the input graph. Unfortunately, it turns out that some problems do not have this property. For instance, the Longest Path problem asks for, given a graph, the length of a longest simple path in this graph. In this problem, it is not enough to remember subsets in each bag of the tree-decomposition, since we also need to remember how the vertices of a bag are connected below, i.e., through the already processed vertices. Indeed, as depicted in Figure 1.3, a longest path can cross a bag multiple times. If we want to use the previous idea of dynamic programming algorithm for Longest Path, then for each bag, instead of storing a subset of vertices of the bag, we need to store matchings over the vertices of the bag. These matchings are 2 O(w log w) many for a bag of size w, and so we obtain an algorithm running in time O * (2 O(w log w) ). It seems that this behavior occurs as far as the solution needs to satisfy a connectivity requirement. This is the case, for instance, for the Connected Vertex Cover problem that asks for a vertex cover of size at most some given that is connected, or for the Steiner Tree problem that asks, given a graph, a set of vertices called terminals, and an integer k, whether there exists a connected subgraph of size at most k that contains every terminal. The problems of this kind are often called connectivity problems and have been studied, for instance, in [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF][START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF][START_REF] Dorn | Dynamic programming and planarity: Improved tree-decomposition based algorithms[END_REF][START_REF] Dorn | Catalan structures and dynamic programming in H-minor-free graphs[END_REF][START_REF] Dorn | Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions[END_REF][START_REF] Rué | Dynamic programming for graphs on surfaces[END_REF]. The considered bag contains the three depicted vertices. In each case, the dotted lines correspond to the connections that should be remembered.

A series of articles improved the classical technique by providing single exponential algorithms for connectivity problems when the input graphs are restricted to be sparse, namely planar [START_REF] Dorn | Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions[END_REF], of bounded genus [START_REF] Dorn | Fast subexponential algorithm for non-local problems on graphs of bounded genus[END_REF][START_REF] Rué | Dynamic programming for graphs on surfaces[END_REF], or excluding a fixed graph as a minor [START_REF] Dorn | Catalan structures and dynamic programming in H-minor-free graphs[END_REF][START_REF] Rué | Dynamic programming for H-minor-free graphs[END_REF]. The common key idea of these works is to use special types of branch-decompositions (which are objects similar to tree-decompositions) with nice combinatorial properties, which strongly rely on the fact that the input graphs are sparse. [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF] presented another technique, called the rank based approach, which creates deterministic algorithms for basically the same connectivity problems, and Fomin et al. [START_REF] Fomin | Efficient computation of representative families with applications in parameterized and exact algorithms[END_REF] presented an alternative method based on matroids, which, from now on, we call matroid representation method. These techniques propose a new way to construct dynamic programming algorithms. They use the fact that sometimes we can represent the joint essential information for sets of partial certificates more efficiently than naively representing essential information for every partial certificate separately. Instead of storing every partial solution, which are typically 2 O(tw log tw) many for connectivity problems, they store a set of so called representatives, whose size is 2 O(tw) , which represent all the partial solutions. For instance, in the rank based approach [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF], the authors present some basic operations and prove that, if we can express a dynamic programming algorithm using only these operations, then we can, at each step, obtain a set of representatives of size 2 O(tw) , leading to a single exponential time algorithm. A complete example of the rank based approach is developed in Section 3.2.

These new techniques have been considered a breakthrough and in particular they imply that essentially all connectivity problems that were known to be solvable in single exponential time on sparse graph classes [44-46, 128, 129] are also solvable in single exponential time on general graphs [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF][START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF][START_REF] Fomin | Efficient computation of representative families with applications in parameterized and exact algorithms[END_REF].

One may think that these results imply that every connectivity problem that can be solved by a single exponential algorithm on the class of planar graphs can also be solved by a single exponential algorithm on general graphs. Cygan et al. [START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF], assuming that ETH holds, provided a reduction showing that Cycle Packing cannot be solved in time O * (2 o(tw log tw) ). This reduction, together with the fact that Cycle Packing, when the input graph is restricted to be planar, can be solved in time O * (2 O(tw) ) [START_REF] Kloks | New algorithms for k-Face Cover, k-Feedback Vertex Set, and k-Disjoint Cycles on plane and planar graphs[END_REF], shows that the above statement is false.

Our results. After this series of articles, one may also think that every connectivity problem that can be solved in time O * (2 O(tw log tw) ) on general graphs, can be solved in time O * (2 O(tw) ) when restricted to planar graphs. We prove that this is false by constructing a problem, namely Monochromatic Disjoint Paths, which is a variant of the famous Disjoint Paths problem on a vertex-colored graph with additional restrictions on the allowed colors for each path. Disjoint paths is known to be solvable in time O * (2 O(tw log tw) ) on general graphs [START_REF] Lokshtanov | Slightly superexponential parameterized problems[END_REF][START_REF] Scheffler | A practical linear time algorithm for disjoint paths in graphs with bounded tree-width[END_REF]. In Subsection 3.1, we show that, using similar techniques as for Disjoint paths, Monochromatic Disjoint Paths is also solvable in time O * (2 O(tw log tw) ) on general graphs. Moreover, we prove that, under ETH, there is no algorithm that solves Monochromatic Disjoint Paths in time O * (2 o(tw log tw) ), even when restricted to planar graphs. The existence of such connectivity problem, solvable in time O * (2 O(tw log tw) ) on general graphs but not solvable in time O * (2 o(tw log tw) ) even when restricted to planar graphs, was not known before.

CHAPTER 1. INTRODUCTION

Cut & Count, the rank based approach, and the matroid representation method also have some side effects on graph modification problems. A graph modification problem is a problem that asks for a set of vertices to be removed, a set of edges to be removed, or a set of edges to be added to the input graph such that the new graph has a given property. In the following, the properties that we study concern the existence or the non-existence of a given graph as a contraction, minor, or topological minor. We say that a graph H is the contraction of a graph G, denoted H c G, if H can be obtained from G by a series of edge contractions, i.e., removing an edge and identifying its two endpoints. We say that H is a s-size contraction (resp. a s-diameter contraction) of G, denoted

H (s) c G (resp. H s c G), if
H is a contraction of G and each vertex of H is the result of the identification of a set of vertices of G of size (resp. of diameter) at most s. We say that H is a minor of G, denoted H m G, if H can be obtained from G by a series of edge deletions, edge contractions, and vertex deletions. We also say that H is a topological minor of G, denoted H tm G, if H can be obtained from G by a series of edge deletions, vertex deletions, and vertex dissolutions, i.e., removing a vertex with exactly two neighbors and adding an edge between these neighbors if the edge does not already exist. The formal definitions are postponed to Chapter 2.

Using the rank based approach, Bodlander et al. [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF] gave a single exponential algorithm to solve Feedback Vertex Set on general graphs. This implies that the complexity of Feedback Vertex Set is, roughly speaking, the same as the complexity of Vertex Cover when parameterized by treewidth. It is worth mentioning that the two problems, namely Vertex Cover and Feedback Vertex Set, can be defined in a similar way. Indeed, in the Vertex Cover (resp. Feedback Vertex Set) problem, we are looking for a set of vertices of size at most some integer k such that its removal creates a graph that does not contain the graph K 2 (resp K 3 ) as a minor. Another graph modification problem that can be defined in a similar way than Vertex Cover and Feedback Vertex Set is Vertex Planarization. Indeed, in the Vertex Planarization problem, we are looking for a set of vertices of size at most some integer k such that its removal creates a planar graph, i.e., a graph that does not contain neither the graph K 5 nor the graph K 3,3 as a minor. This problem has been studied when parameterized by k, the size of the vertex set we want to remove [START_REF] Fomin | Hitting forbidden minors: Approximation and kernelization[END_REF][START_REF] Fomin | Planar F-deletion: Approximation, kernelization and optimal FPT algorithms[END_REF][START_REF] Kim | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF]. On the one hand, Jansen et al. [START_REF] Jansen | A near-optimal planarization algorithm[END_REF] presented an algorithm running in time O * (2 O(tw•log tw) ) as a crucial subroutine in an FPT algorithm parameterized by k. On the other hand, Marcin Pilipczuk [START_REF] Pilipczuk | A tight lower bound for Vertex Planarization on graphs of bounded treewidth[END_REF] proved, by using the framework introduced by Lokshtanov et al. [START_REF] Lokshtanov | Slightly superexponential parameterized problems[END_REF] for proving superexponential lower bounds, that, under ETH, there is no algorithm that solves Vertex Planarization in time O * (2 o(tw•log tw) ).

We propose two generalizations of Vertex Cover, Feedback Vertex Set, and Vertex Planarization. For this, we fix a collection of graphs F and we define F-M-Deletion (resp. F-TM-Deletion), where given a graph G and an integer k, we are looking for a set of vertices of G of size at most k such that its removal creates a graph that does not contain any graph of F as a minor (resp. topological minor). For the sake of readability, we use the notation F-Deletion in statements that apply to both F-M-Deletion and F-TM-Deletion. Moreover, we always assume that F is non-empty and does not contain the empty graph or the graph with only one vertex. Note that with this definition, Vertex Cover, Feedback Vertex Set, and Vertex Planarization correspond to F-Deletion where F = {K 2 }, F = {K 3 }, and F = {K 5 , K 3,3 }, respectively. Note that when F = {K 5 , K 3,3 }, by Kuratowski's Theorem [START_REF] Kuratowski | Sur le problème des courbes gauches en topologie[END_REF], F-M-Deletion and F-TM-Deletion are equivalent.

From the classical result of Lewis and Yannakakis [START_REF] Lewis | The node-deletion problem for hereditary properties is NP-complete[END_REF], we know that if F contains a graph with at least one edge, then F-Deletion is NP-hard. Moreover, as the property of containing a graph as a (topological) minor can be expressed in Monadic Second Order logic (see [START_REF] Kim | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF] for explicit formulas), by Courcelle's Theorem [START_REF] Courcelle | The monadic second-order logic of graphs. I. Recognizable sets of finite graphs[END_REF], F-Deletion can be solved in time O * (f (tw)), where f is some computable function.

Our results. In Section 3.2, we initiate a systematic study of the complexity of F-Deletion when parameterized by tw, the treewidth of the input graph. We present dynamic programming algorithms that solve F-M-Deletion (resp. F-TM-Deletion) in time 2 2 O(tw•log tw) • n if F is a regular collection of graphs, i.e. a finite and non-empty collection of non-empty graphs, and in time 2 O(w•log w) • n if F is a connected collection of graphs, i.e. a regular collection of graphs containing only connected graphs, containing at least a planar graph (resp. a planar subcubic graph). The algorithm running in time 2 2 O(tw•log tw) •n uses and, a sense, enhances, the machinery of boundaried graphs, equivalence relations, and representatives originating in the seminal work of Bodlaender et al. [START_REF] Bodlaender | Meta) kernelization[END_REF], and which has been subsequently used in [START_REF] Fomin | Bidimensionality and kernels[END_REF][START_REF] Garnero | Explicit linear kernels via dynamic programming[END_REF][START_REF] Kim | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF]. In order to obtain the faster algorithm running in time 2 O(tw•log tw) • n when F is a connected collection of graphs containing at least a (subcubic) planar graph, we combine the above ingredients with additional arguments to bound the number and the size of the representatives of the equivalence relation defined by the encoding that we use to construct the partial solutions. Here, the connectivity of F guarantees that every connected component of a minimum-sized representative intersects its boundary set. The fact that F contains a (subcubic) planar graph is essential in order to bound the treewidth of the resulting graph after deleting a partial solution. We present these algorithms for the topological minor version and then it is easy to derive the same result for the minor version within the claimed running time.

We also present single exponential algorithms for F-Deletion when F ∈ {{P 3 }, {P 4 }, {C 4 }}. These algorithms are ad hoc. Namely, the algorithms for {P 3 }-Deletion and {P 4 }-Deletion use standard (but nontrivial) dynamic programming techniques on graphs of bounded treewidth, exploiting the simple structure of graphs that do not contain P 3 or P 4 as a minor (or as a subgraph, which in the case of paths is equivalent). The algorithm for {C 4 }-Deletion is more involved, and uses the rank based approach introduced by Bodlaender et al. [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF], exploiting again the structure of graphs that do not contain C 4 as a minor. It might seem counterintuitive that this technique works for C 4 , and stops working for C i with i ≥ 5 (see Table 1.1). A possible reason for that is that the only cycles of a C 4 -minor-free graph are triangles and each triangle is contained in a bag of a tree decomposition. This property, which is not true anymore for C i -minor-free graphs with i ≥ 5, permits to keep track of the structure of partial solutions with tables of small size.

We also prove two lower bounds. We present a first lower bound, O * (2 o(tw) ), for connected collections of graph based on a simple reduction from Vertex Cover and a second lower bounds in O * (2 o(tw•log tw) ) that applies to wider families of connected collections of graphs F. These lower bounds are strongly based on the ideas presented by Marcin Pilipczuk [START_REF] Pilipczuk | A tight lower bound for Vertex Planarization on graphs of bounded treewidth[END_REF] for Vertex Planarization and generalize the result of Marcin Pilipczuk [START_REF] Pilipczuk | A tight lower bound for Vertex Planarization on graphs of bounded treewidth[END_REF] itself.

We summarize our results in Table 1.1, for the case where F contains only a clique, a cycle, or a path. Note that the cases with i ≤ 3 were already known [START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF][START_REF] Impagliazzo | Which problems have strongly exponential complexity[END_REF], except when Until here, the results about treewidth we have presented are mostly based on treedecompositions. As we explained before, treewidth appeared with a combinatorial purpose, namely the proof of Wagner's conjecture. It is then a natural question whether there exist other combinatorial results that can be used in order to improve the design of algorithms. A fundamental structural result on treewidth, known as Grid Exclusion Theorem, links treewidth to the existence of a grid as a minor. We distinguish two kinds of grids, namely k , the classical (k × k)-grid and Γ k , the triangulated (k × k)-grid. These grids are illustrated in Figure 2.1(a) and Figure 2.1(b), respectively, and are formally defined in Chapter 2. The Grid Exclusion Theorem, proved by Robertson and Seymour [START_REF] Robertson | Graph minors. V. Excluding a planar graph[END_REF], states that there exists a function f : N → N such that every graph excluding a (k × k)-grid as a minor has treewidth at most f (k). After that, several papers subsequently improved the upper bounds on the function f [START_REF] Diestel | Highly connected sets and the excluded grid theorem[END_REF][START_REF] Kawarabayashi | Linear min-max relation between the treewidth of Hminor-free graphs and its largest grid[END_REF][START_REF] Leaf | Tree-width and planar minors[END_REF]. For a long time, it was an open problem whether the smallest such function f was polynomial. This question was answered by Chekuri and Chuzhoy [START_REF] Chekuri | Polynomial bounds for the grid-minor theorem[END_REF] who provided a polynomial function f . Chuzhoy [START_REF] Chuzhoy | Improved bounds for the excluded grid theorem[END_REF] gave the current best upper bound on f , namely 1) k. On the other side, it is possible to show that any function f that satisfies this property is such that f

F = {P 3 }. H H H H H H F i 2 3 4 5 ≥ 6 
K i tw tw tw • log tw tw • log tw ↔ 2 O(tw•log tw) tw • log tw ↔ 2 O(
f (k) = k 19 • log O(
(k) = Ω(k 2 • log k) [140].
The Grid Exclusion Theorem is a key ingredient leading to the introduction of the theory of Bidimensionality [START_REF] Demaine | Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs[END_REF]. This theory has been further developed in [START_REF] Demaine | Bidimensional parameters and local treewidth[END_REF][START_REF] Demaine | Bidimensionality: New connections between FPT algorithms and PTASs[END_REF][START_REF] Demaine | The bidimensionality theory and its algorithmic applications[END_REF][START_REF] Demaine | The bidimensional theory of boundedgenus graphs[END_REF][START_REF] Fomin | Contraction bidimensionality: the accurate picture[END_REF][START_REF] Fomin | Contraction obstructions for treewidth[END_REF][START_REF] Fomin | Bidimensionality and EPTAS[END_REF][START_REF] Fomin | Bidimensionality and geometric graphs[END_REF][START_REF] Fomin | Bidimensionality and kernels[END_REF][START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF]. It offers general techniques for designing efficient fixed-parameter algorithms, approximation schemes, and kernelization for NP-hard graph problems on broad classes of graphs (see [29, 32-34, 37, 59]).

The theory of Bidimensionality applies to specific graph parameters and classes of graphs that we proceed to define. A graph parameter p is minor-closed (resp. contractionclosed ) if for every two graphs G and

H, H m G ⇒ p(H) ≤ p(G) (resp. H c G ⇒ p(H) ≤ p(G)). A graph parameter p is • minor bidimensional if -p is minor-closed and -for some δ > 0, ∃k 0 ∈ N : ∀k ≥ k 0 , p( k ) k 2 > δ and • contraction bidimensional if -p is contraction-closed and -for some δ > 0, ∃k 0 ∈ N : ∀k ≥ k 0 , p(Γ k ) k 2 > δ.
We say that a problem Π p is minor bidimensional (resp. contraction bidimensional ) if the graph parameter p is minor bidimensional (resp. contraction bidimensional ). Notice that if a problem is minor bidimensional, then it is also contraction bidimensional.

In order to give an idea of the importance of minor bidimensional and contraction bidimensional problems in the literature, we give a list of minor bidimensional problems: Vertex Cover, Feedback Vertex Set, Longest Cycle, Longest Path, Cycle Packing, Path Packing, Diamond Hitting Set, Minimum Maximal Matching, Face Cover, and Max Bounded Degree Connected Subgraph, and a list of problems that are contraction bidimensional, but not minor bidimensional: Connected Vertex Cover, Dominating Set, Connected Dominating Set, Connected Feedback Vertex Set, Induced Matching, Induced Cycle Packing, Cycle Domination, Connected Cycle Domination, d-Scattered Set, Induced Path Packing, r-Center, connected r-Center, Connected Diamond Hitting Set, and Unweighted TSP Tour.

The theory of Bidimensionality applies to graph classes that have one of the two following properties. Let H be a graph class. We say that H has the subquadratic grid minor property (SQGM property for short) if there exists a constant 1 ≤ c < 2 such that every graph G ∈ H which excludes t as a minor, for some integer t, has treewidth O(t c ). In other words, this property holds for H if the Grid Exclusion Theorem can be proven for a subquadratic function f on the graphs of H. Similarly, we say that H has the subquadratic grid contraction property (SQGC property for short) if there exists a constant 1 ≤ c < 2 such that every graph G ∈ H which excludes Γ t as a contraction, for some integer t, has treewidth O(t c ). For brevity, we say that H ∈ SQGM(c) (resp. H ∈ SQGC(c)) if H has the SQGM (resp. SQGC) property for the constant c. Notice that, for every 1 ≤ c < 2, SQGC(c) ⊆ SQGM(c).

CHAPTER 1. INTRODUCTION

The theory of Bidimensionality has three main meta-algorithmic consequences. The first one is to derive of subexponential parameterized algorithms, i.e., algorithms whose running time is

O * (2 o(k) )
where k is the parameter corresponding to the size of the solution. Assume that p is a minor bidimensional (resp. contraction bidimensional) minimization parameter and H ∈ SQGM(c) (resp. H ∈ SQGC(c)) for some 1 ≤ c < 2. If there exists an algorithm A that, for each instance

(G, k), solves Π p on (G, k) in time O * (2 O(tw(G)) ), then we can solve Π p on (G, k) in time O * (2 O( √ k c )
). This can be seen in the following way. As p is minor bidimensional, we know that for some δ > 0,

∃k 0 ∈ N : ∀k ≥ k 0 : p( k ) k 2 > δ. Let us fix the values of δ and k 0 . Let (G, k) be an instance of Π p such that G ∈ H and k ≥ δ•k 2 0 . If √ k/δ is a minor of G then p(G) ≥ p( √ k/δ ) > k and we have that (G, k) is a negative instance of Π p . Otherwise, if √ k/δ is not a minor of G, then as G ∈ H and H ∈ SQGM(c), this implies that tw(G) = O( √ k c
). Thus, in this case, the algorithm A solves Π p on

(G, k) in time O * (2 O( √ k c )
). The same arguments can also be applied to the contraction version. The existence of single exponential time algorithms can be implied by a purely meta-algorithmic condition that is based on some variant of Modal Logic [START_REF] Pilipczuk | Problems parameterized by treewidth tractable in single exponential time: A logical approach[END_REF]. There is a wealth of results that give single exponential time algorithms for various optimization problems either on classes satisfying the SQGM property [START_REF] Dorn | Fast subexponential algorithm for non-local problems on graphs of bounded genus[END_REF][START_REF] Dorn | Fast subexponential algorithm for non-local problems on graphs of bounded genus[END_REF][START_REF] Dorn | Catalan structures and dynamic programming in H-minor-free graphs[END_REF][START_REF] Rué | Dynamic programming for H-minor-free graphs[END_REF][START_REF] Rué | Dynamic programming for graphs on surfaces[END_REF] or on general graphs [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF][START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF][START_REF] Fomin | Efficient computation of representative families with applications in parameterized and exact algorithms[END_REF].

The second main meta-algorithmic consequence is the derivation of EPTAS. A PTAS is an algorithm which takes an instance I of an optimization parameter p and a parameter > 0 and, in time n O(f ( 1 )) , outputs a value between (1 -) • p(I) and (1 + ) • p(I). A PTAS with running time f ( 1 ) • n O (1) , is called efficient PTAS (EPTAS ).

Fomin et al. [START_REF] Fomin | Bidimensionality and EPTAS[END_REF] showed that given a reducible minor (resp. contraction) bidimensional parameter p with the separation property and given H ∈ SQGM(c) (resp. H ∈ SQGC(c)) for some 1 ≤ c < 2, there is an EPTAS for p on H. The notions of reducibility and separability correspond to a logical property and a structural property, respectively, on the optimization parameter p that are formally defined in Chapter 2.

The third main meta-algorithmic consequence concerns kernelization. A kernelization algorithm, or simply a kernel, for a parameterized problem Π is an algorithm A that, given an instance (x, k) of Π, outputs, in time polynomial on |x|, an equivalent instance (x , k ) of Π where |x | + k ≤ g(k) for some computable function g : N → N called the size of the kernel. If the size g is a polynomial (resp. linear) function of the parameter k, then we say that Π admits a polynomial (resp. linear) kernel. When x corresponds to a graph we treat the size of a kernel as a function of the number of vertices of the graph in the equivalent instance. Kernelization can be seen as a set of preprossessing rules that can be applied in polynomial time and that produces an instance whose size is bounded by a function of the parameter. It is worth mentioning that a problem has a kernel if and only if it is FPT [START_REF] Cygan | Parameterized Algorithms[END_REF] and that applying a brute-force algorithm on a polynomial kernel leads to efficient FPT algorithms.

Fomin et al. [START_REF] Fomin | Bidimensionality and kernels[END_REF] showed that given a min/max-CMSO minor (resp. contraction) bidimensional parameter p that is linearly separable and given H ∈ SQGM(c) (resp. H ∈ SQGC(c)) for some 1 ≤ c < 2, the restriction of p to H admits a linear kernel. The notions of min/max-CMSO and linear separability correspond to a logical property and a structural property, respectively, on the optimization parameter p that are formally defined in Chapter 2.

Clearly, the applicability of all above results is delimited by the SQGM property and the SQGC property. This is schematically depicted in Until recently, only some minor-closed classes of graphs were known to have the SQGM or the SQGC property. Namely, any class of graphs excluding a given graph H as a minor is in SQGM(1) [START_REF] Demaine | Linearity of grid minors in treewidth with applications through bidimensionality[END_REF] and any class of graphs excluding a given apex graph (whose definition is postponed in Chapter 2) H as a minor is in SQGC(1) [START_REF] Fomin | Contraction obstructions for treewidth[END_REF].

It appears that some geometric classes of graphs that are not minor-closed are in SQGM(1). This is the case for string graphs with bounded edge-degree, which are defined as follows. Given a collection L of curves in the plane such that there is no point belonging to more than two curves, the intersection graph G L of L is the graph whose vertex set is L and where for each

L 1 , L 2 ∈ L, {L 1 , L 2 } ∈ E(G L ) if and only if L 1 ∩ L 2 = ∅.
We denote by S d the set containing every graph G L where L is a collection of curves in the plane such that each curve intersects at most d times the other curves. S d is the set of string graphs with edge-degree bounded by d. Grigoriev et al. [START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF] showed that this class of graph is in SQGM(1), generalizing a result from Fomin et al. [START_REF] Fomin | Bidimensionality and geometric graphs[END_REF] that states that two CHAPTER 1. INTRODUCTION subclasses of S d , namely unit disk graphs, which are intersection graphs of unit disks in the plane, of bounded degree and map graphs, which are intersection graphs of face boundaries of planar graph embeddings, of bounded degree, are in SQGM [START_REF] Agarwal | Dynamic spectrum access for energy-constrained CR: single channel versus switched multichannel[END_REF], where a planar graph embeddings is a representation of a planar graph on a sphere without edge-crossing (see Chapter 2 for a formal definition). S d includes a much wider variety of classes of intersection graphs [START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF]. As an example, consider C d,α as the class of all graphs that are intersection graphs of α-convex 2-dimensional bodies in the plane and have degree at most d, where a 2-dimensional body is a set of points in the plane that is homeomorphic to the closed disk {(x, y) | x 2 + y 2 ≤ 1} and where a 2-dimensional body B is a α-convex if every two points can be the extremes of a line L consisting of α straight lines such that L ⊆ B. In [START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF], it was proven that C d,α ⊆ S c where c depends polynomially on d and c (see [START_REF] Matoušek | String graphs and separators[END_REF] for other examples of classes included in S d ).

Given a class of graph H and two integers s 1 and s 2 , we define H (s 1 ,s 2 ) as the set containing every graph H such that there exist a graph G ∈ H and a graph J that satisfy G (s 1 ) c J and H s 2 c J. The combinatorial results of Grigoriev et al. [START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF] can be rewritten as follows: given two integers s 1 and s

2 , if H ∈ SQGC(c) for some 1 ≤ c < 2, then H (s 1 ,s 2 ) ∈ SQGM(c).
The previous results imply that SQGM(1) contains ex m (H) (s 1 ,s 2 ) for every apex graph H and positive integers s 1 , s 2 , where ex m (H) is the class of all graphs excluding H as a minor. The facts that the class of planar graphs P l is in SQGC(1) [START_REF] Fomin | Contraction obstructions for treewidth[END_REF] and that for every d ∈ N, S d ⊆ P l (1,d) [86] classify in SQGM(1) the graph class S d , and therefore a large family of bounded degree intersection graphs. As a result of this, the applicability of Bidimensionality theory for minor Bidimensional problems has been extended to much wider families (not necessarily minor-closed) of graph classes of geometric nature.

Our results. The results of Grigoriev et al. [START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF] exhibit some apparent "lack of symmetry" as the assumption is "qualitatively stronger" than the conclusion. This does not permit the application of Bidimensionality for contraction bidimensional parameters on classes further than those of apex-minor free graphs, the classes of graphs that exclude an apex graph as a minor. In other words, the results in [START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF] covered, for the case S d , the triangles with bold lines in Figure 1.4 but left the triangles with dotted lines open. In Section 4.2, we fill this gap by proving that given two integers s 1 and s

2 , if H ∈ SQGC(c) for some 1 ≤ c < 2, then H (s 1 ,s 2 ) ∈ SQGC(c).
This result extends the applicability horizon of contraction Bidimensionality further than apex-minor free graphs: SQGC(1) contains ex m (H) (s 1 ,s 2 ) for every apex graph H and positive integers s 1 , s 2 . As a special case of this, we have that S d ∈ SQGC [START_REF] Agarwal | Dynamic spectrum access for energy-constrained CR: single channel versus switched multichannel[END_REF].

Let G k be the class of graphs of treewidth at most k. Our main interest about G k is that FPT graph problems parameterized by treewidth are polynomial when restricted to G k . This observation leads to a natural question: how large is G k ? There are two distinct issues when counting the graphs in G k . The first one is not to count twice two isomorphic graphs. This issue is an important obstacle in Combinatorics, and in Section 4.1, as it is often done for such kind of problems, we get ride of it by labeling the vertices of the 1.1. INTRODUCTION 47 graphs and counting labeled graphs. The second problem is that, as every graph with no edges has treewidth 0, for every integer k, G k is infinite. We fix this issue by counting only labeled graphs with n vertices, for some integer n. Given two integers k and n, we define G k n to be the set of n-vertex labeled graphs of treewidth at most k. We want to evaluate the size of G k n . A formula for the number of labeled k-trees on n vertices, that are maximal n-vertex graphs of treewidth at most k, was first found by Beineke and Pippert [START_REF] Beineke | The number of labeled k-dimensional trees[END_REF], and alternative proofs were given by Moon [START_REF] Moon | The number of labeled k-trees[END_REF] and Foata [START_REF] Foata | Enumerating k-trees[END_REF]. They proved that the number of n-vertex labeled k-trees is equal to

n k (kn -k 2 + 1) n-k-2 . (1.1)
While the number of n-vertex labeled k-trees is known exactly, it appears that very little is known about the size of G k n . Indeed, to the best of our knowledge, only the cases k = 1 (forests) and k = 2 (series-parallel graphs) have been studied. Namely, the number of n-vertex labeled forests is asymptotically √ en n-2 [START_REF] Takács | On the number of distinct forests[END_REF], and the number of n-vertex labeled series-parallel graphs is asymptotically g • n -5/2 γ n n! for some explicit constants g and γ ≈ 9.07 [START_REF] Bodirsky | Enumeration and limit laws for seriesparallel graphs[END_REF].

Our results. Let n ∈ N + and k ∈ 1, n -1 . We first give an easy upper bound on |G k n | using the fact that we know the exact number of n-vertex labeled k-trees. Indeed, every partial k-tree, that is, a graph of treewidth at most k, is a subgraph of a k-tree and every k-tree has exactly kn -k(k+1) 2 edges. This gives the following upper bound on the size of G k n :

|G k n | ≤ 2 kn-k(k+1) 2 n k (kn -k 2 + 1) n-k-2 . (1.2)
Simple calculations yield, disregarding lower-order terms, that

|G k n | ≤ (k2 k n) n 2 -k(k+1) 2 k -k ≤ (k2 k n) n . (1.3) 
We can also give an easy lower bound on |G k n |. For this, we create the following construction. Starting from an (n -k + 1)-vertex forest, we add k -1 apices, that is, k -1 vertices with an arbitrary neighborhood in the forest. Every graph created in this way has exactly n vertices and is of treewidth at most k, since adding an apex increases the treewidth by at most one. The number of labeled forests on n -k + 1 vertices is at least the number of trees on n -k + 1 vertices, which is (n -k + 1) n-k-1 [START_REF] Cayley | A theorem on trees[END_REF]. Since each apex can be connected to the ground forest in 2 n-k+1 different ways, we obtain

|G k n | ≥ (n -k + 1) n-k-1 2 (k-1)(n-k+1) . (1.4)
If we assume that n k tends to infinity, then asymptotically 1) .

|G k n | ≥ 2 k-1 n n-o(
(1.5)

We conclude that the number of n-vertex labeled graphs of treewidth at most k is essentially between (2 k n) n and (k2 k n) n . These bounds differ by a factor k n . For constant k this does not matter much since, except when k = 1, 2, we do not have a precise estimate on |G k n |. However, when k goes to infinity, this gap k n is quite significant. In Section 4.1, we considerably reduce the previous gap by providing a better lower bound. Indeed, we show that given n ∈ N and k ∈ 2, n -1 , the set G k n of n-vertex labeled graphs with treewidth at most k satisfies

|G k n | ≥ 1 128e • k2 k n log k n 2 -k(k+3) 2 k -2k-2 . (1.6) It follows that |G k n | is asymptotically between k log k 2 k n n and (k2 k n) n .
Thus the gap is now of order (log k) n instead of k n given by the "easy" bounds we provided above.

In Chapter 5, we demonstrate the applicability of treewidth by presenting three applications. These tree problems are problems originating from Networks and Bioinformatics. We now explain the context for each of them.

Our first "real life" problem originates from Networks. Namely, we consider a sensor network on which each sensor has a transmission range and can only send messages to other sensors that are inside this transmission range. If a sensor S needs to send a message to a sensor R, then the message needs to be routed through this network. Our goal is to ensure that the message is correctly delivered. Many approaches have been proposed to improve the reliability of this kind of sensor networks [START_REF] Hong | Effective probabilistic approach protecting sensor traffic[END_REF][START_REF] Lim | A game-theoretic approach for high-assurance of data trustworthiness in sensor networks[END_REF][START_REF] Rezvani | Secure data aggregation technique for wireless sensor networks in the presence of collusion attacks[END_REF]. In the edge monitoring approach [START_REF] Dong | Edge self-monitoring for wireless sensor networks[END_REF][START_REF] Neggazi | A self-stabilizing algorithm for edge monitoring in wireless sensor networks[END_REF][START_REF] Wei | A distributed node self-monitoring mechanism in wireless sensor networks[END_REF], also known as self-monitoring, we want to select a set of sensors, called monitors, such that when a node A forwards a message to a node B, the monitor M of the link {A, B} verifies that node B also forwards the message. If B does not forward the message, then it is misbehaving. This aspect has already been studied in the literature [START_REF] Hsin | Self-monitoring of wireless sensor networks[END_REF][START_REF] Wang | The self-protection problem in wireless sensor networks[END_REF][START_REF] Wang | Efficient algorithms for p-self-protection problem in static wireless sensor networks[END_REF]. Similar to this, monitoring nodes are able to detect any malicious actions such as delaying, dropping, modifying, or even fabricated packets. To be able to monitor the link between node A and node B, the monitor M needs to be inside the transmission range of A and the transmission range of B.

A first model of this network was proposed by Dong et al. [START_REF] Dong | Edge self-monitoring for wireless sensor networks[END_REF]. They represent the sensor network by a unit disk graph and prove that even on unit disk graphs, the problem is NP-hard.

Formally, we say that an edge is monitored by a vertex if both endpoints of the edge are in the neighborhood of the vertex. In the Weighted Edge Monitoring problem, we have given a graph G, a weight function ω : E(G) → N on the edges of G, and an integer k and we want to know if we can find a set S of at most k vertices such that every edge e of E(G) are monitored by at least ω(e) vertices of S. The Weighted Edge Monitoring problem generalizes the classical Edge Monitoring problem, which is defined in the same way except that ω is the constant function with 1 as unique output.

Our results. In Section 5.1 we prove, by a reduction from Red-Blue Dominating Set, that Edge Monitoring is W [2]-hard parameterized by k, we present a dynamic programming FPT algorithm for Weighted Edge Monitoring parameterized by tw and ω M = max{ω(e) | e ∈ E(G)}, and we apply the theory of Bidimensionality to present an FPT algorithm for Weighted Edge Monitoring parameterized by k and ω M for some restricted classes of graphs.

Our second practical problem also originates from Networks. In this case, we consider a network composed of some subnetworks. Switching from a subnetwork to another has a transition cost, called reload cost, and we assume that the cost for shifting through a subnetwork can be neglected. The value of the reload cost depends on the subnetwork transition. Wirth and Steffan introduced in [START_REF] Wirth | Reload cost problems: minimum diameter spanning tree[END_REF] this concept of reload cost.

The reload cost concept has many important applications in telecommunication networks, transportation networks, and energy distribution networks. For instance, consider a cargo transportation network using different means of transportation. Each mean of transportation induces a subnetwork of the cargo transportation network. Switching from one kind of transportation to another consumes time and energy as we need to unload the goods and reload them. This reload cost may outweigh the cost of carrying the cargo from one point to another [START_REF] Galbiati | The complexity of a minimum reload cost diameter problem[END_REF]. In heterogeneous communication networks, routing requires switching among different technologies such as cables, fibers, and satellite links. In this case, each technology induces a subnetwork of the communication network. Due to data conversion between incompatible subnetworks, this switching causes high costs, largely outweighing the cost of routing the packets within each subnetwork. The recently popular concept of vertical handover [START_REF] Desset | Energy savings for wireless terminals through smart vertical handover[END_REF], which allows a mobile user to have undisrupted connection during transitioning between different technologies such as 3G (third generation) and wireless local area networks (WLAN), constitutes another application area of the reload cost concept. Even within the same technology, switching between different service providers incurs switching costs. Another paradigm that has received significant attention in the wireless networks research community is cognitive radio networks (CRN), a.k.a. dynamic spectrum access networks. Unlike traditional wireless technologies, CRNs operate across a wide frequency range in the spectrum and frequently requires frequency switching; therefore, the frequency switching cost is indispensable and of paramount importance. Many works in the CRNs literature focused on this frequency switching cost from an application point of view (for instance, see [START_REF] Agarwal | Dynamic spectrum access for energy-constrained CR: single channel versus switched multichannel[END_REF][START_REF] Arkoulis | On the optimal, fair and channel-aware cognitive radio network reconfiguration[END_REF][START_REF] Bayhan | Scheduling in centralized cognitive radio networks for energy efficiency[END_REF][START_REF] Bayhan | Low complexity uplink schedulers for energy-efficient cognitive radio networks[END_REF][START_REF] Eryigit | Channel switching cost aware and energy-efficient cooperative sensing scheduling for cognitive radio networks[END_REF][START_REF] Gözüpek | A spectrum switching delay-aware scheduling algorithm for centralized cognitive radio networks[END_REF][START_REF] Shami | A joint multi-channel assignment and power control scheme for energy efficiency in cognitive radio networks[END_REF]) by analyzing its various aspects such as delay and energy consumption. Operating in a wide range of frequencies is indeed a property of not only CRNs but also other 5G technologies. Hence, applications of the reload cost concept in communication networks continuously increment. In particular, the energy consumption aspect of this switching cost is especially important in the recently active research area of green networks, which aim to tackle the increasing energy consumption of information and communication technologies [START_REF] Bianzino | A survey of green networking research[END_REF][START_REF] Celik | Green cooperative spectrum sensing and scheduling in heterogeneous cognitive radio networks[END_REF].

Recent works in the literature focused on numerous problems related to the reload cost concept: the minimum reload cost cycle cover problem [START_REF] Galbiati | On minimum reload cost cycle cover[END_REF], the problems of finding a path, trail or walk with minimum total reload cost between two given vertices [START_REF] Gourvès | The minimum reload s-t path, trail and walk problems[END_REF], the problem of finding a spanning tree that minimizes the sum of reload costs of all paths between all pairs of vertices [START_REF] Gamvros | Reload cost trees and network design[END_REF], various path, tour, and flow problems related to reload costs [START_REF] Amaldi | On minimum reload cost paths, tours, and flows[END_REF], the minimum changeover cost arborescence problem [START_REF] Galbiati | On minimum changeover cost arborescences[END_REF][START_REF] Gözüpek | Parameterized complexity of the MINCCA problem on graphs of bounded decomposability[END_REF][START_REF] Gözüpek | Constructing minimum changeover cost arborescenses in bounded treewidth graphs[END_REF][START_REF] Gözüpek | On the complexity of constructing minimum changeover cost arborescences[END_REF], and problems related to finding a proper edge coloring of the graph so that the total reload cost is minimized [START_REF] Gözüpek | Edge coloring with minimum reload/changeover costs[END_REF].

Wirth and Steffan [START_REF] Wirth | Reload cost problems: minimum diameter spanning tree[END_REF] introduce the Diameter Tree problem. In this problem, we are given a graph G, an edge coloring function χ : E(G) → X, a reload cost function c : X 2 → N, and integer k, and we ask whether there exists a spanning tree T of G such that for any path P in T , the reload cost of P is at most k, where the reload cost of a path is defined as follows. If P is a path in G such that E(P ) = {e i | i ∈ 1, }, for some integer , and for each i ∈ 1, -1 , e i ∩ e i+1 = ∅, then the reload cost of P is

-1 i=1 c(χ(e i ), χ(e i+1 )).
Wirth and Steffan [START_REF] Wirth | Reload cost problems: minimum diameter spanning tree[END_REF] proved that Diameter Tree is inapproximable within a factor better than 3 (in particular, it is NP-hard), even on graphs with maximum degree 5. They also provided a polynomial time exact algorithm for the special case where the maximum degree is 3 and the reload costs satisfy the triangle inequality (see Section 5.2 for the formal definition). Galbiati [START_REF] Galbiati | The complexity of a minimum reload cost diameter problem[END_REF] showed stronger hardness results for this problem, by proving that even on graphs with maximum degree 4, the problem cannot be approximated within a factor better than 2 if the reload costs do not satisfy the triangle inequality, and cannot be approximated within any factor better than 5/3 if the reload costs satisfy the triangle inequality. The complexity of Diameter Tree (in the general case) on graphs with maximum degree 3 was left open.

Our results. In Section 5.2 we initiate a systematic study of the complexity of the Diameter Tree problem, with special emphasis on its parameterized complexity for several choices of the parameters. Namely, we consider any combinations of the parameters k (the cost of a solution), tw (the treewidth of the input graph), and ∆ (the maximum degree of the input graph). We would like to note that these parameters have practical importance in communication networks. Indeed, besides the natural parameter k, whose relevance is clear, many networks that model real life situations appear to have small treewidth [START_REF] Jensen | Bayesian Networks and Decision Graphs[END_REF][START_REF] Lauritzen | Local computations with probabilities on graphical structures and their application to expert systems[END_REF]. On the other hand, the degree of a node in a network is related to its number of transceivers, which are costly devices in many different types of networks such as optical networks [START_REF] Konda | Algorithm for traffic grooming in optical networks to minimize the number of transceivers[END_REF]. For this reason, in practice the maximum degree of a network usually takes small values.

Before elaborating on our results, a summary of them can be found in Table 1.2. We first prove, by a reduction from 3-SAT, that Diameter Tree is NP-hard on outerplanar graphs (which have treewidth at most 2) with only one vertex of degree greater than 3, even with three different costs that satisfy the triangle inequality, and k = 9. Note that, in the case where the costs satisfy the triangle inequality, having only one vertex of degree greater than 3 is best possible, as if all vertices have degree at most 3, the problem can be solved in polynomial time [START_REF] Wirth | Reload cost problems: minimum diameter spanning tree[END_REF]. Note also that the bound on the treewidth is best possible as well, since the problem is trivially solvable on graphs of treewidth 1, i.e., on forests.

Toward investigating the border of tractability of the problem with respect to treewidth, we exhibit a polynomial time algorithm on a relevant subclass of the graphs of treewidth Table 1.2: Summary of our results, where k, tw, and ∆ denote the cost of the solution, the treewidth, and the maximum degree of the input graph, respectively. NPh stands for NP-hard. The symbol ' ' denotes that the result above still holds for polynomial costs. XP and W [START_REF] Agarwal | Dynamic spectrum access for energy-constrained CR: single channel versus switched multichannel[END_REF] are complexity classes that are defined in Chapter 2.

at most 2: cactus graphs, i.e., graphs on which two cycles have at most one vertex in common. This algorithm is quite involved and, in a nutshell, processes in a bottom-up manner the block tree, which is an object similar to tree-decomposition and whose formal definition is postponed to Chapter 2, of the given cactus graph, and uses at each step of the processing an algorithm that solves 2-SAT as a subroutine. Back to hardness results, we also prove, by a reduction from a restricted version of 3-SAT, that Diameter Tree is NP-hard on graphs with ∆ ≤ 3, even with only two different costs, k = 0, and bounded number of colors. In particular, this settles the complexity of the problem on graphs with ∆ ≤ 3 in the general case where the triangle inequality is not necessarily satisfied, which had been left open in previous work [START_REF] Galbiati | The complexity of a minimum reload cost diameter problem[END_REF][START_REF] Wirth | Reload cost problems: minimum diameter spanning tree[END_REF]. Note that ∆ ≤ 3 is best possible, as Diameter Tree can be easily solved on graphs with ∆ ≤ 2.

As our last NP-hardness reduction, we prove, by a reduction from Partition, that the Diameter Tree problem is NP-hard on planar graphs with tw ≤ 3 and ∆ ≤ 3.

The above hardness results imply that the Diameter Tree problem is para-NPhard for any combination of two of the three parameters k, tw, and ∆, i.e., is NP-hard for some fixed values of the two considered parameters. On the positive side, we show that Diameter Tree is FPT parameterized by the three of them, by using a (highly nontrivial) dynamic programming algorithm on a tree-decomposition of the input graph.

Since our para-NP-hardness reduction with parameter tw + ∆ is from Partition, which is a typical example of weakly NP-complete problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NPcompleteness[END_REF], a natural question is whether Diameter Tree, with parameter tw + ∆, is para-NP-hard, XP, W[1]-hard, or FPT when the reload costs are polynomially bounded by the size of the input graph. We manage to answer this question completely: we show that in this case the problem is in XP (hence not para-NP-hard) and W[1]-hard parameterized by tw + ∆. The W[1]-hardness reduction is from the Unary Bin Packing problem parameterized by the number of bins, proved to be W[1]-hard by Jansen et al. [START_REF] Jansen | Bin packing with fixed number of bins revisited[END_REF].

Altogether, our results provide an accurate picture of the (parameterized) complexity of the Diameter Tree problem.

CHAPTER 1. INTRODUCTION

Our last practical problem originates from Bioinformatics. A central goal in phylogenetics is to clarify the relationships of extant species in an evolutionary context. If X is a set of genes issued from a gene family of extant species, the relationship between the elements of X is modeled by a tree, called phylogenetic tree, such that the leaves of the tree are in bijection with X. As a node of degree two does not add any information, we assume that a phylogenetic tree does not contains such node. When X corresponds to a set of genes issued from a gene family, we refer to the corresponding phylogenetic tree as a gene tree, and when X corresponds to a set of extant species, we refer to this tree as a species tree. A gene tree can differ from the species tree depicting the evolution of the species containing the gene for a number of reasons [START_REF] Maddison | Reconstructing character evolution on polytomous cladograms[END_REF]. Thus, a common way to estimate a species tree for a set of species X is to choose several gene families that appear in the genome of the species in X, reconstruct a gene tree per each gene family (see [START_REF] Felsenstein | Inferring Phylogenies[END_REF] for a detailed review of how to infer phylogenetic trees), and finally combine the trees into a unique tree that maximizes the "concordance" with the given gene trees. The idea underlying this approach is the confidence that, using several genes, the species signal will prevail and emerge from the conflicting gene trees. If the gene trees are all defined on the same label set, we are in the consensus setting; otherwise the trees are defined on overlapping -but not identical -sets of labels, and we are in the supertree setting. Several consensus and supertree methods exist in the literature (see [START_REF] Bininda-Emonds | Phylogenetic supertrees: combining information to reveal the tree of life[END_REF][START_REF] Bininda-Emonds | The (super) tree of life: procedures, problems, and prospects[END_REF][START_REF] Scornavacca | Supertree methods for phylogenomics[END_REF] for a review), and they differ in the way the concordance is defined.

In Section 5.3, we study a problem that arises in the supertree setting: given a set of gene trees T = {T i | i ∈ 1, k }, for some integer k, such that for each i ∈ 1, k , the label set of T i is X i , does there exist a species tree on X := k i=1 X i that displays all the trees in T ? This is the so-called Compatibility of Unrooted Phylogenetic Trees problem. The notion of "displaying" used by the phylogenetic community coincides with the notion of "containing as a minor" in the graph community. Another related problem is the Strict Compatibility (or Agreement) of Unrooted Phylogenetic Trees problem, where the notion of "displaying" is replaced by that of "strictly displaying". This notion coincides with that of "containing as a topological minor" in the graph community.

Both problems are polynomial time solvable when the given gene trees are out-branching, i.e., rooted away from a fixed root, or all contain some common label [START_REF] Aho | Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions[END_REF][START_REF] Ng | Reconstruction of rooted trees from subtrees[END_REF]. In the general case, both problems are NP-complete [START_REF] Steel | The complexity of reconstructing trees from qualitative characters and subtrees[END_REF] and fixed-parameter tractable in the number of trees k [START_REF] Bryant | Compatibility of unrooted phylogenetic trees is FPT[END_REF][START_REF] Scornavacca | The agreement problem for unrooted phylogenetic trees is FPT[END_REF]. The fixed-parameter tractability of these problems has been established via Monadic Second Order Logic (MSOL) together with a reduction to graphs of bounded treewidth. For both problems, it can be checked that the corresponding MSOL formulas [START_REF] Bryant | Compatibility of unrooted phylogenetic trees is FPT[END_REF][START_REF] Scornavacca | The agreement problem for unrooted phylogenetic trees is FPT[END_REF] contain four alternate quantifiers, implying by Frick et al. [START_REF] Frick | The complexity of first-order and monadic second-order logic revisited[END_REF] that the dependency on k in the derived algorithms is given by a tower of exponentials of height four. Clearly, this is prohibitively large for practical applications. Therefore, even if the notion of compatibility has been defined quite some time ago [START_REF] Gordon | Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labeled leaves[END_REF], at the moment no "reasonable" FPT algorithms existed for these problems.

Our results. In Section 5.3, we fill this lack by providing two algorithms, solving Compatibility of Unrooted Phylogenetic Trees and Agreement of Unrooted Phylogenetic Trees, with running time 2 O(k 2 ) • n, where k is the number
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of trees and n is the total size of the input. Our approach for proving the two above theorems is to present explicit dynamic programming algorithms on graphs of bounded treewidth. From the input trees, we create a special graph, called display graph, whose formal definition is postponed to Section 5.3. Scornavacca et al. [START_REF] Scornavacca | The agreement problem for unrooted phylogenetic trees is FPT[END_REF] show that if the input is a positive instance, then the corresponding display graph has treewidth bounded by k, the number of input trees. As one could suspect from the fact that the corresponding MSOL formulas are quite involved [START_REF] Bryant | Compatibility of unrooted phylogenetic trees is FPT[END_REF][START_REF] Scornavacca | The agreement problem for unrooted phylogenetic trees is FPT[END_REF], it turns out that our dynamic programming algorithms are quite involved as well, implying that we are required to use a technical data structure.

Organization of this thesis. In Chapter 2, we present the definitions of the concepts that will be used in the remaining of the thesis.

In Chapter 3, we study two algorithmic aspects of treewidth. Namely, in Section 3.1 we focus on the role of planarity in connectivity problems parameterized by treewidth, and in Section 3.2 we take a close look at the F-Deletion problem when parameterized by treewidth.

In Chapter 4, we study two combinatorial aspects of treewidth. Namely, in Section 4.1 we estimate the number of n-vertex graphs of treewidth at most k, for any pair of integers n and k, and in Section 4.2 we extend the applicability horizon of contraction Bidimensionality further than apex-minor free graphs.

In Chapter 5, we apply treewidth-based techniques to practical problems originating from Networks and Bioinformatics. Namely, we study the Edge Monitoring problem in Section 5.1, the Diameter tree problem in Section 5.2, and the Supertree problem in Section 5.3.

In Chapter 6, we present an overview of the Ph.D. together with some topics for further research.

Publications

The results presented in this thesis have led to seven publications: During this Ph.D., I also worked on projects that are not directly (or strongly) linked to treewidth. For the sake of coherence, we decided not to present these results in this thesis. These works have led to four other publications: In this paper we consider the problem of, given a graph G and three integers r, and k, deciding whether we can remove k vertices form G such that the vertex set of remaining graph can be partitioned into r independent sets and cliques.

The problem was open for (r, ) ∈ {(2, 1), (1, 2), (2, 2)}. We show that, for these values, the problem can be solved in time O * (2 O(k) ). Moreover, the running time is asymptotically optimal in terms of k, under ETH. We consider as well the version of (r, )-Vertex Deletion where the set of vertices to be removed has to induce an independent set, and provide also a parameterized complexity dichotomy for this problem. A matching in a graph is uniquely restricted if no other matching covers exactly the same set of vertices. We provide an approximation algorithm, with an asymptotic ratio of 9/5, for computing a uniquely restricted matching of maximum size in subcubic bipartite graphs improving over a 2-approximation algorithm presented by Mishra [START_REF] Mishra | On the maximum uniquely restricted matching for bipartite graphs[END_REF]. Furthermore, we study the uniquely restricted chromatic index of a graph, defined as the minimum number of uniquely restricted matchings into which its edge set can be partitioned. We provide tight upper bounds in terms of the maximum degree and characterize all extremal graphs.

• Degenerate matchings and edge colorings, with Dieter Rautenbach, submitted. Also on arXiv: CoRR, abs/1702.02358, 2017.

A matching M in a graph G is r-degenerate if the subgraph of G induced by the set of vertices incident with an edge in M is r-degenerate. We describe an efficient algorithm to determine the maximum size of an r-degenerate matching of a given chordal graph. Furthermore, we study the r-chromatic index of a graph, defined as the minimum number of r-degnerate matchings into which its edge set can be partitioned, obtaining upper bounds and discussing extremal graphs.

• Ruling out FPT algorithms for Weighted Coloring on forests, with Júlio Araújo and Ignasi Sau, to appear in the IX Latin and American Algorithms, Graphs and Optimization Symposium (LAGOS 2017). Also on arXiv: CoRR, abs/1703.09726, 2017. Given a graph G, a proper k-coloring of G is a partition c = (S i ) i∈ 1,k of V (G) into k stable sets. Given a weight function w : V (G) → R + , the weight of a color S i is defined as w(i) = max v∈S i w(v) and the weight of a coloring c as w(c) = k i=1 w(i).

The weighted chromatic number of a pair (G, w), denoted by σ(G, w), is the minimum weight of a proper coloring of G. For each r ∈ N + , σ(G, w; r) is the minimum of w(c) among all proper r-colorings c of G. Araújo et al. [START_REF] Araujo | Weighted coloring in trees[END_REF] show that computing σ(G, w) can be done in time 2 O(n log n) on graphs of bounded treewidth and cannot be done, under ETH, in time 2 o(n log n) on trees. Therefore, Weighted Coloring on forests is unlikely to be in P, as this would contradict the ETH, and also unlikely to be NP-hard, as in that case all problems in NP could be solved in subexponential time, contradicting again the ETH. We provide hardness results for computing σ(G, w) and σ(G, w; r) when G is a forest, relying on complexity assumptions weaker than the ETH. Inspired by the reductions of Araújo et al. [START_REF] Araujo | Weighted coloring in trees[END_REF], we prove that, assuming Chapter 2

FPT = W [1], when G is a forest, computing σ(G, w) is W[1]-hard

Preliminaries

In this chapter, we provide the definitions that will be used in the thesis. Some definition have already appeared in Chapter 1 for the sake of readability. Nevertheless, for completness, they appear in this chapter again.

Sets and integers.

In this thesis we denote by N the set of non-negative integers and by N + the set of positive integer. Given two elements p and q of N, we define If S is a collection of objects where the operation is defined, then we denote S = X∈S X.

p, q = {x | x ∈ N, p ≤ x ≤ q} and p, ∞ = {x | x ∈ N, p ≤ x}.
Functions. Let f, g : N → N be two functions. We say that g

(x) = O(f (x)) if there exist c ∈ N and x 0 ∈ N such that for each x ≥ x 0 , g(x) ≤ c • f (x). We say that g(x) = o(f (x)) if for every c ∈ N, there exists x 0 ∈ N such that for each x ≥ x 0 , c • g(x) ≤ f (x).
Given three sets X, X , and Y such that X ⊆ X and two functions f : X → Y and g : X → Y , we say that f = g| X if for each x ∈ X, f (x) = g(x).

Given three sets X, X , and X and two functions f : X → X and g : X → X , we define g • f as the function X → X such that for each x ∈ X, g

• f (x) = g(f (x)).
Graphs. We use standard graph-theoretic notation, and the reader is referred to [START_REF] Diestel | Graph Theory[END_REF] 

H is a subgraph of G if V (H) ⊆ V (G), and E(H) ⊆ E(G). Moreover, we say that H is a spanning subgraph of G if V (H) = V (G). Given S ⊆ V (G), we denote by G[S] the graph (S, E(G) ∩ S 2 ) and by G \ v S the graph (V (G) \ S, E(G) ∩ V (G)\S 2 ). Given S ⊆ E(G), we denote by G \ e S the graph (V (G), E(G) \ S). We say that G[S] is the subgraph of G induced by S. Given a graph G and a vertex v ∈ V (G), we define the neighborhood of v as N G (v) = {u | {u, v} ∈ E(G)}, the closed neighborhood of v as N G [v] = N G (v) ∪ {v}, and the degree of v as δ G (v) = |N G (v)|. Moreover, given a graph G and a set X ⊆ V (G), we define N G (X) = v∈X N G (v) \ X and N G [X] = N G (X) ∪ X. Given a graph G, we denote by ∆(G) the maximum degree of G, i.e., ∆(G) = max{δ G (v) | v ∈ V (G)}. A graph G is subcubic if ∆(G) ≤ 3.
Let G be a graph. The graph obtained by dissolving a vertex v of degree two in G is the graph (V (G\ v {v}), (E(G\ v {v})∪{x, y}), where x and y are the two neighbors of v in G. The graph obtained by identifying two vertices v and v of V (G) is the graph

(V (G\ v {v, v })∪{v * }, E(G\ v {v, v })∪{{x, v * } | {x, v} ∈ E(G) or {x, v } ∈ E(G)}).
The graph obtained by contracting an edge e = {v, v } in G is the graph G where we identify the vertices v and v .

Two graphs G and G are isomorphic if there is a bijective function α :

V (G) ∪ E(G) → V (G ) ∪ E(G ) such that α(V (G)) ⊆ α(V (G )), α(E(G)) ⊆ α(E(G ))
, and for every edge e = {v, v } ∈ E(T ), α(e) = {α(v), α(v )}.

General graph classes.

We denote by G the set of all graphs. Given a graph G ∈ G and two vertices v and v , a {v, v }-path P in G is a minimal subgraph of G, with respect to the subgraph relation, such that either

-v = v and V (P ) = {v} or -δ P (v) = δ P (v ) = 1 and for each u ∈ V (P ) \ {v, v }, δ P (u) = 2. A graph G is a path if there exist two vertices v and v in V (G) such that G is a {v, v }-path in G.
Note that any {v, v }-path is a path. We denote by P a the set of all paths. Given a graph G we denote by P a (G) the set of all subgraphs of G that are in P a . Given G ∈ P a and a vertex v ∈ V (G), we say that v in an internal vertex

of G if δ G (v) = 2. A collection Q of subpaths of a graph G is internally disjoint if none of the internal vertices of some path in Q is a vertex of some other path in Q. Given i ∈ N + , we say that a graph G is i-connected if for every two vertices v and v of V (G) we can find i internally disjoint {v, v }-paths. We say that a graph G is connected if it is 1-connected. A graph G is a cycle if it
is connected and each vertex of V (G) has degree exactly two in G. Given an integer i ∈ 3, ∞ , we denote by C i the unique cycle with i vertices.

A graph G is a complete graph if E(G) = V (G) 2
. Given an integer i ∈ N + , we denote by K i the unique complete graph with i vertices. A graph G is a complete bipartite graph if we can partition V (G) into two sets S 1 and

S 2 such that E(G[S 1 ]) = E(G[S 2 ]) = ∅ and for each v 1 ∈ S 1 and each v 2 ∈ S 2 , {v 1 , v 2 } ∈ E(G).
Given two integers r 1 and r 2 , we denote by K r 1 ,r 2 the unique complete bipartite graph such that |S 1 | = r 1 and |S 2 | = r 2 . Given r ∈ N, we denote by K + 2,r the graph obtained from K 2,r by adding the edge S 1 . Note that in this case, the set S 1 can be seen as an edge because it is of size exactly two. We name diamond the graph

K + 2,2 . A graph G is a forest if it does not contain any cycle as a subgraph. A tree is a connected forest. Given i ∈ N, a graph G is i-regular if for every v ∈ V (G), δ G (v) = i. A graph is a matching if it is 1-regular. Given a graph G and a set S ⊆ V (G), we say that a graph M is a matching over S if M is a matching and V (M ) ⊆ S.
A connected component of a graph G is a maximal subgraph of G that is connected. Given a graph G, we denote by cc(G) the number of connected component of G.

The unique graph G ∈ G such that V (G) = ∅ is called the empty graph. Let G ∈ G be a graph and S ⊆ V (G). If G[S] is a complete graph, then we say that S is a clique in G. If E(G[S]) = ∅, then we say that S is an independent set in G. If G[S] is a connected graph, then we say that S is an connected vertex set of G. Given a forest G, we denote by leaf(G) = {v | v ∈ V (G), δ G (v) ≤ 1}. Given a graph G and a vertex v ∈ V (G), v is a cut vertex if cc(G \ v {v}) < cc(G).
Given a graph G and a surface Σ, an embedding function σ of G on Σ is a function

V (G) ∪ E(G) → 2 Σ such that -for each v ∈ V (G), σ(v) is a single point of Σ,
for each {x, y} ∈ E(G), σ({x, y}) is a simple arc whose endpoints are σ(x) and σ(y),

-for each {x, y} ∈ E(G) and for each z ∈ V (G) \ {x, y}, σ({x, y}) ∩ σ(z) = ∅, and 
-for each e, e ∈ E(G), σ(e) ∩ σ(e ) ⊆ σ(V (G)).
Moreover, an embedding of G with respect to the embedding function σ is the set of points

σ(V (G)∪E(G)). A face of G is a maximal open disc of Σ\σ(V (G)\E(G)).
We say that a face F of G is a triangle if there exist three edges e 1 , e 2 , and e 3 such that σ({e 1 , e 2 , e 3 }) is homeomorphic to a circle and F is a maximal open disc of Σ \ σ({e 1 , e 2 , e 3 }).

Let Σ be the sphere {(x, y, z) ∈ R 3 : x 2 + y 2 + z 2 = 1}. A planar graph is a graph that has an embedding on the sphere Σ. A planar graph is triangulated if, for any embedding of G on Σ, every face of G is a triangle. Note that the planar triangulated graphs are the maximal planar graphs. Moreover, it is well-known that in a planar graph [START_REF] Diestel | Graph Theory[END_REF], for instance). An apex graph is a graph G such that there exists a vertex v ∈ V (G) called the apex such that G \ v v is planar. Given an integer k ≥ 2, the graph Γ k is obtained from the grid k by adding, for all (x, y) ∈ 0, k -2 2 , the edge {(x + 1, y), (x, y + 1)} and then adding a new vertex a that is adjacent to all the vertices (x, y) with x ∈ {0, k -1} or y ∈ {0, k -1}, i.e., to the whole border of k . We finally define the graph Γ k as the result of the contraction in Γ k of the edge {(k -1, k -1), a}. Note that Γ k and Γ k are triangulated plane graphs, i.e., all their faces are triangles. In Γ k , we refer to the vertex a as the apex vertex. For an illustration, the graphs 5 , Γ 5 , and Γ 5 are depicted in Figure 2.1. Distances. Let G be a graph. Given two elements x and y of V (G) ∪ E(G), we define the distance in G between x and y, denoted by dist G (x, y), as the smallest number of edges of a path in G that contains them both. Given x ∈ V (G), we denote by

G, |E(G)| = O(|V (G)|) (see
(b) Γ 5 a (c) Γ 5 (a) 5
N c G (x) the set {y | y ∈ V (G), dist G (x, y) ≤ c}. The diameter of the graph G is max{dist G (x, y) | x, y ∈ V (G)}. Block trees. A connected graph G is biconnected if for any v ∈ V (G), G \ v {v} is connected (notice that K 2 is the only biconnected graph that it is not 2-connected).
A block of a graph G is a maximal biconnected subgraph of G. We name block(G) the set of all blocks of G and we name cut(G) the set of all cut vertices of G. If G is connected, we define the block tree of G to be the tree bct(G) = (V, E) such that

-V = block(G) ∪ cut(G) and -E = {{B, v} | B ∈ block(G), v ∈ cut(G) ∩ V (B)}.
Note that leaf(bct(G)) ⊆ block(G). It is worth mentioning that the block tree of a graph can be computed in linear time using depth-first search [START_REF] Hopcroft | Efficient algorithms for graph manipulation[END_REF].

Let F be a connected collection of graphs such that for each H ∈ F, |V (H)| ≥ 2. Given H ∈ F and B ∈ leaf(bct(H)), we say that (H, B) is an essential pair if for each H ∈ F and each B ∈ leaf(bct(H )), |E(B)| ≤ |E(B )|. Given an essential pair (H, B) of F, we define the first vertex of (H, B) to be, if it exists, the only cut vertex of H contained in V (B), or an arbitrarily chosen vertex of V (B) of minimum degree in B otherwise. We define the second vertex of (H, B) to be an arbitrarily chosen vertex of V (B) that is a neighbor in H[B] of the first vertex of (H, B). Note that, given an essential pair (H, B) of F, the first vertex and the second vertex of (H, B) exist and, by definition, are fixed. Moreover, given an essential pair (H, B) of F, we define the core of (H, B) to be the graph H \ v (V (B) \ {a}) where a is the first vertex of (H, B). Note that a is a vertex of the core of (H, B).

We define two other graph classes. A graph G is a cactus if each block of G is either a path of size two or a cycle. We define the set K as the set of every connected graph G such that for each

B ∈ leaf(bct(G)), B ∈ {K 2,r , K + 2,r | r ∈ N}.
Topological minors. Given two graphs H and G and two injective functions

φ : V (H) → V (G) and σ : E(H) → P a (G), we say that (φ, σ) is a topological minor model of H in G if -for every {x, y} ∈ E(H), σ({x, y}) is a {φ(x), φ(y)}-path in G and -σ(E(H)) is internally disjoint.
The branch vertices of (φ, σ) are the vertices in φ(V (H)), while the subdivision vertices of (φ, σ) are the internal vertices of the paths in σ(E(H)).

We say that G contains H as a topological minor, denoted by H tm G if there is a topological minor model (φ, σ) of H in G.

Minors. Given two graphs H and G and a function φ :

V (H) → 2 V (G) , we say that φ is a minor model of H in G if -for every x ∈ V (H), G[φ(x)] is a connected non-empty graph, -for every x, y ∈ V (H), φ(x) ∩ φ(y) = ∅, and 
-for every {x, y} ∈ E(H), there exist x ∈ φ(x) and y ∈ φ(y) such that {x , y } ∈ E(G).
We say that G contains H as a minor, denoted by H m G if there is a minor model φ of H in G.

Contractions. Given two graphs H and G and a function φ :

V (G) → V (H), we say that φ is a contraction model of H in G if -for every x ∈ V (H), the graph G[φ -1 (x)
] is a non-empty connected graph and

CHAPTER 2. PRELIMINARIES -for every x, y ∈ V (H), {x, y} ∈ E(H) ⇐⇒ G[φ -1 (x) ∪ φ -1 (y)] is connected.
We say that G contains H as a contraction, denoted by

H c G, if there is a contraction model φ of H in G. Note that φ : V (G) → V (H) for a contraction model but φ : V (H) → V (G)
for a topological model. Given a contraction model φ of H in G, if there exists c such that for every x ∈ V (H), the graph G[φ -1 (x)] has diameter at most c, then we say that H is a s-diameter contraction of G, and write H s c G and if there exists c such that for every x ∈ V (H), |φ -1 (x)| ≤ c + 1, then we say that H is a s-size contraction of G, and write

H (s) c G.
Given a class of graph H and two integers c 1 and c 2 , we define H (c 1 ,c 2 ) as the set containing every graph H such that there exist a graph G ∈ H and a graph J that satisfy G

(c 1 ) c J and H c 2 c J. Keep in mind that H (c 1 ,c 2 ) and H (c 2 ,c 1 ) are different graph classes.
Given a graph G, we define bcg(G) as the minimum k for which G can be contracted to the uniformly triangulated grid Γ k .

Relations between topological minors, minors, and contraction. There are many relations linking the three concepts of topological minors, minors, and contractions. Some of them can be found in [START_REF] Diestel | Graph Theory[END_REF]. In what follows we present the relations that will be needed later.

The following propositions easily follows from the above definitions. Proof: Let G be a connected planar graph and let H be a planar triangulated graph such that H m G. By Proposition 2.2, we know that there exist G , a subgraph of G, and a contraction model φ of H in G . We define

V * = V (G) \ V (G ) and E * = E(G) \ E(G ). Claim 2.4 Let x and y be two distinct vertices of V (G ). If P is a {x, y}-path in G such that V (P ) ⊆ V * ∪ {x, y} and E(P ) ⊆ E * , then φ(x) = φ(y) or {φ(x), φ(y)} ∈ E(H).
Proof of the claim: Suppose, to the contrary, that φ(x) = φ(y) and {φ(x), φ(y)} is not an edge of H. We define G = (V , E ) where V = V (G ) ∪ V (P ) and

E = E(G ) ∪ E(P ). Note that G is a subgraph of G. We set H = (V (H), E(H) ∪ {φ(x), φ(y)}) and we define φ : V (G ) → V (H ) such that -∀u ∈ V (G ), φ (u) = φ(u) and -∀u ∈ V (P ) \ {y} φ (u) = φ(x).
The above implies that φ is a contraction model of H in G . As H is a planar triangulated graph, then H is non-planar. This means that G is not planar and we arrive to a contradiction. This completes the proof of the claim. ♦

We now use the above claim in order to prove that

H is a contraction of G. Let C be the set of connected components of G[V (G) \ V (G )].
We set up a function ρ :

C → V (G ) such that if B ∈ C, then ρ(B) is an, arbitrarily chosen, vertex of V (G ) that is adjacent with a vertex of B in G. We define φ * : V (G) → V (H) such that -if v ∈ V (G ), then φ * (v) = φ(v), -if v ∈ V * , then φ * (v) = φ(ρ(B)), where B is the component of C that contains v.
Notice that, due to the above claim, for each B ∈ C, if X B is the set of all vertices in V (G ) that are adjacent to B in G, then any pair of vertices in φ(X B ) should be adjacent in H. This implies that φ * is a contraction model of H in G and concludes the proof.

Let H be a graph. We define the set of graphs tpm(H) as follows: among all the graphs containing H as a minor, we consider only those that are minimal with respect to the topological minor relation. k-trees and partial k-trees. Let k be an integer. We define a k-tree by induction. Given a graph G with n vertices, we say that G is a k-tree if either

-n = k + 1 and G is a clique or -n > k + 1 and there exists a vertex v ∈ V (G) such that δ G (v) = k, N G (v) is a clique in G, and G \ v {v} is a k-tree. A graph G is a partial k-tree if it is a subgraph of a k-tree.
Tree-decompositions. A tree-decomposition of a graph G is a pair D = (T, X ), where T is a tree and X = {X t | t ∈ V (T)} is a collection of subsets of V (G) such that:

-t∈V (T) X t = V (G),

for every edge {u, v} ∈ E(G), there is a t ∈ V (T) such that {u, v} ⊆ X t , and for each {x, y, z} ⊆ V (T) such that z lies on the unique path between x and y in T, X x ∩ X y ⊆ X z .

We call the vertices of T nodes of D and the sets in X bags of D. The width of a tree-

decomposition D = (T, X ) is max{|X t | | t ∈ V (T)} -1.
The treewidth of G, denoted by tw(G), is the smallest integer w such that there exists a tree-decomposition of G of width at most w. For each t ∈ V (T), we denote by

E t the set E(G[X t ]). A path-decomposition of a graph G is a tree-decomposition (T, X ) such that T is a path.
The pathwidth of G, denoted by pw(G), is the smallest integer w such that there exists a path-decomposition of G of width at most w.

Basic properties on treewidth. The following property is well-known and a proof can be found, for instance, in [START_REF] Kloks | Computations and Approximations[END_REF].

Property 2.7 Let k ∈ N. A graph G is a partial k-tree if and only if tw(G) ≤ k.
Lemma 2.8 Let G be a graph and let H be a c-size contraction of G. Then tw(G) ≤ (c + 1) • (tw(H) + 1) -1.

Proof: Let φ : V (G) → V (H) be a c-size contraction model of H is G. By definition, {φ -1 (x) | x ∈ V (H)} is a partition of V (G) and for each x ∈ V (H), |φ -1 (x)| ≤ c + 1.
Consider now a tree-decomposition (T, X ) of H. We claim that the pair (T, X ), where X t := x∈Xt φ -1 (x), for each t ∈ E(T), is a tree-decomposition of G. Clearly all vertices of G are included in some bag, since all vertices of H where. For each e ∈ E(G) such that e ⊆ φ -1 (x), for some x ∈ V (H), we know that for t ∈ E(T) such that x ∈ X t , we have e ⊆ X t . Otherwise, assume that e has one endpoint in φ -1 (x) and the other endpoint in φ -1 (y) for some x, y ∈ V (H). This implies that {x, y} ∈ E(H). Thus, there is a node t of T for which x, y ∈ X t and therefore e ⊆ X t . Moreover, the continuity property remains unaffected, since for any vertex x ∈ V (H) each vertex in φ -1 (x) induces the same subtree in T that x did.

Nice tree-decompositions. We give a definition of nice tree-decomposition that slightly differs from the usual definition that can be found, for instance, in [START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF]. Let D = (T, X ) be a tree-decomposition of a graph G, r be a vertex of T, and G = {G t | t ∈ V (T)} be a collection of subgraphs of G, indexed by the vertices of T. We say that the triple (D, r, G) is a nice tree-decomposition of G if the following conditions hold.

-X r = ∅ and G r = G.

-Each node of D has at most two children in T.

-For each leaf t ∈ leaf(T), X t = ∅ and G t = (∅, ∅). Such a t is called a leaf node.

-If t ∈ V (T) has exactly one child t , then either * X t = X t ∪ {v insert } for some v insert ∈ X t and G t = G[V (G t ) ∪ {v insert }]. The node t is called introduce vertex node and the vertex v insert is the insertion vertex of X t , * X t = X t \ {v forget } for some v forget ∈ X t and G t = G t . The node t is called forget vertex node and v forget is the forget vertex of X t .
-If t ∈ V (T) has exactly two children t and t , then

X t = X t = X t and G t = (V (G t ) ∪ V (G t ), E(G t ) ∪ E(G t ))
. The node t is called a join node.

In the following, we assume that in a nice tree-decomposition (D, r, G), T is rooted at r. Theorem 2.9 (Bodlander et al. [START_REF] Bodlaender | A c k n 5-Approximation Algorithm for Treewidth[END_REF]) Let G be a graph and k be an integer. In time 2 O(k) •n, we can either decide that tw(G) > k or construct a tree-decomposition of G of width at most 5k + 4.

Moreover, if we have a tree-decomposition of a graph G, then we can build a nice tree-decomposition of G with the same width in linear time [START_REF] Kloks | Computations and Approximations[END_REF].

Edge nice tree-decompositions. Let D = (T, X ) be a tree-decomposition of a graph G, r be a vertex of V (T), and G = {G t | t ∈ V (T)} be a collection of subgraphs of G, indexed by the vertices of T. We say that (D, r, G) is a edge nice tree-decomposition if the following conditions hold.

-X r = ∅ and G r = G.

-Each node of D has at most two children in T.

-For each leaf t ∈ leaf(T), X t = ∅ and G t = (∅, ∅). Such a t is called a leaf node.

-If t ∈ V (T ) has exactly one child t , then either * X t = X t ∪{v insert } for some v insert ∈ X t and G t = (V (G t )∪{v insert }, E(G t )).
The node t is called introduce vertex node and the vertex v insert is the

insertion vertex of X t , * X t = X t and G t = (G t , E(G t ) ∪ {e insert }
) where e insert is an edge of G with endpoints in X t . The node t is called introduce edge node and the edge e insert is the insertion edge of X t , or * X t = X t \ {v forget } for some v forget ∈ X t and G t = G t . The node t is called forget vertex node and v forget is the forget vertex of X t .

-If t ∈ V (T) has exactly two children t and t , then

X t = X t = X t , G t = (V (G t ) ∪ V (G t ), E(G t ) ∪ E(G t ))
, and E(G t ) ∩ E(G t ) = ∅. The node t is called a join node.

Again, we assume that in an edge nice tree-decomposition (D, r, G), T is rooted in r.

Branch-decompositions. Branch-decompositions have been defined in [START_REF] Robertson | Graph minors. X. Obstructions to tree decomposition[END_REF]. Here we present this definition adapted to the needs of dynamic programming. Let G be a graph and let

R ⊆ V (G). A branch-decomposition of (G, R) is a pair (T, σ)
where T is a ternary tree and σ : E(G) ∪ {R} → L(T ) is a bijection. We call r = σ(R) the root of T and we denote by e r the unique edge in T that is incident to r. For each edge e ∈ E(T), we define the tree T e as the one of the two connected components of T \ e {e} that does not contain the root r and we define the graph G e such that E(G e ) = σ -1 (L(T e )) and V (G e ) = E(G e ). We also define

mid (T,σ) (e) = E(G e ) ∩ R ∪ (E(G) \ E(G e )) .
When context is clear we write mid(e) instead of mid (T,σ) . The width of (T, σ) is max{|mid(e)| | e ∈ E(T)}. The branchwidth of (G, R), denoted by bw((G, R)), is the minimum width over all branch-decompositions of (G, R).

When R = ∅, we also say that (T, σ) is a branch-decomposition of G instead of (G, R) and we denote by bw(G) the branchwidth of (G, ∅).

Given a branch-decomposition (T, σ) with root r, we say that e ∈ E(T) is a leaf edge if e = e r and e contains an endpoint of degree 1 in T. Given a non-leaf edge e, we say that e is a child of e if they have a common endpoint, say x and the unique {x, r}-path in T contains e. Note that as T is a ternary tree, each non-leaf edge has exactly two children.

In this thesis, when context is clear, n will denote the size of the input graph, tw its treewidth, bw its branchwidth, and w the width of a tree-decomposition or the branch-decomposition given together with the input graph. Note that because of Theorem 2.9, we may assume that given a graph, a tree-decomposition of width w = 5tw + 4 is given.

Lemma 2.10 Given a graph G and R ⊆ V (G), bw((G, R)) ≤ bw(G) + |R|.
Proof: Let (T , σ ) be a branch-decomposition of G with root r. We construct a branch-decomposition (T, σ) of (G, R) as follows: we set T = T and σ

= (σ \ {(∅, r)}) ∪ {(R, r)}. Note that mid (T ,σ ) (e) ⊆ R ∪ mid (T,σ) (e). This implies that |mid (T ,σ ) (e)| ≤ |R| + |mid (T,σ) (e)|. Thus bw((G, R)) ≤ bw(G) + |R|.
Robertson and Seymour show in [START_REF] Robertson | Graph minors. X. Obstructions to tree decomposition[END_REF] that branchwidth and treewidth are relatively close to each other in the way expressed in Proposition 2.11. Proposition 2.11 Given a graph G with at least three edges, we have bw(G) -1 ≤ tw(G) ≤ 3 2 bw(G) -1.

The following lemma is a combination of Theorem 2.9 and Proposition 2.11. It is worth noting that from the proofs of these inequalities, simple polynomial time algorithms for transforming a branch-decomposition (resp. tree-decomposition) into a tree-decomposition (resp. branch-decomposition) can be derived.

Lemma 2.12 Let G be a graph and k be an integer. In time 2 O(k) • n, we can either decide that bw(G) > k or construct a branch-decomposition of G of width O(k).

Robertson and Seymour in [START_REF] Robertson | Graph minors. V. Excluding a planar graph[END_REF] gave the following fundamental structural property, called Grid Exclusion Theorem.

Proposition 2.13 There is a function f : N → N such that every graph excluding a (k × k)-grid as a minor has treewidth at most f (k).

Chekuri and Chuzhoy [START_REF] Chekuri | Polynomial bounds for the grid-minor theorem[END_REF] proved that the Grid Exclusion Theorem is valid for a polynomial function f . Chuzhoy [START_REF] Chuzhoy | Improved bounds for the excluded grid theorem[END_REF] gave the current best upper bound on f , namely 1) k. On the other side, it is possible to show that any function f that satisfies this property is such that Proof: Let G ∈ ex tm (F) and let F ∈ F be a planar subcubic graph. Since F is subcubic and F tm G, it follows (see [START_REF] Diestel | Graph Theory[END_REF]) that F m G, and since F is planar this implies by [START_REF] Robertson | Graph minors. V. Excluding a planar graph[END_REF] that tw(G), hence bw(G) as well, is bounded by a function depending only on F .

f (k) = k 19 • log O(
f (k) = Ω(k 2 • log k) [140].
Sphere cut decompositions. Let Σ be the sphere {(x, y, z) ∈ R 3 : [START_REF] Dorn | Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions[END_REF][START_REF] Seymour | Call routing and the ratcatcher[END_REF]. Sc-decompositions were the first structures used to design single-exponential algorithms for connectivity problems on planar graphs [START_REF] Dorn | Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions[END_REF]. The main idea is that, the number of ways to connect vertices, that are in the border of a disk, by staying on the disk and without edge-crossing corresponds exactly to the number of non-crossing matchings that is asymptotically 2 O(n) where n is the number of vertices. The sc-decompositions have been generalized to graphs on surfaces [START_REF] Rué | Dynamic programming for graphs on surfaces[END_REF] and minor-free graphs [START_REF] Rué | Dynamic programming for H-minor-free graphs[END_REF].

x 2 + y 2 + z 2 = 1}. An O-
Graph separators and (topological) minors. Let G be a graph and S ⊆ V (G).

For each connected component C of G \ v S, we define the cut-clique of the triple (C, G, S) to be the graph whose vertex set is V (C) ∪ S and whose edge set is

E(G[V (C) ∪ S]) ∪ S 2 .
Lemma 2.15 Let i ≥ 2 be an integer, let H be an i-connected graph, let G be a graph, and let S be a subset of V (G) of size at most i -1. If H is a topological minor (resp. a minor) of G, then there exists a connected component G of G \ v S such that H is a topological minor (resp. minor) of the cut-clique of (G , G, S).

Proof: We prove the lemma for the topological minor version, and the minor version can be proved with the same kind of arguments.

Let i, H, G, and S be defined as in the statement of the lemma. Assume that H tm G and let (φ, σ) be a topological minor model of H in G. Assume for contradiction that there exist two connected components G 1 and G 2 of G \ v S and two distinct vertices x 1 and

x 2 of H such that φ(x 1 ) ∈ V (G 1 ) and φ(x 2 ) ∈ V (G 2 ).
Then, as H is i-connected, there should be i internally vertex-disjoint paths from φ(x 1 ) to φ(x 2 ) in G. As S is a separator of size at most i -1, this is not possible. Thus, there exists a connected component 

G of G \ v S such that for each x ∈ V (H), φ(x) ∈ V (G ) ∪ S.
B tm G[V ∪ {v}], then H tm G \ v V .
Proof: Let G, v, V , and H be defined as in the statement of the lemma. Let

B ∈ leaf(bct(H)). If B is a single edge, then the condition B tm G[V ∪ {v}] implies that V = ∅. But V is the vertex set of a connected component of G \ v {v}
and so V = ∅. This implies that the case B is a single edge cannot occur. If B is not a simple edge, then by definition B is 2-connected and then, by Lemma 2.15, B tm G \ v V . This implies that there is a topological minor model (φ, σ) of H in G such that for each B ∈ leaf(bct(H)) and for each b ∈ B, φ(b) ∈ V .

We show now that for each

x ∈ V (H), φ(x) ∈ V . If V (H)\( B∈leaf(bct(H)) V (B)) = ∅ then the result is already proved. Otherwise, let x ∈ V (H) \ ( B∈leaf(bct(H)) V (B)).
By definition of the block tree, there exist b 1 and b 2 in B∈leaf(bct(H)) V (B) such that x lies on a {b 1 , b 2 }-path P in H. Let P i be the unique {b i , x}-path in P for each i ∈ {1, 2}. By definition of P , we have that V (P 1 ) ∩ V (P 2 ) = {x}. This implies that there exists a {φ(b 1 ), φ(x)}-path P 1 and a {φ(b 2 ), φ(x)}-path P 2 in G such that V (P 1 ) ∩ V (P 2 ) = {φ(x)}. Then, as v is a cut vertex of G, it follows that φ(x) ∈ V . Thus, for each x ∈ V (H), φ(x) ∈ V . Let {x, y} be an edge of E(H). As σ({x, y}) is a {φ(x), φ(y)}-path, both φ(x) and φ(y) are not in V and v is a cut vertex of G, we have, with the same argumentation that before that, for each z ∈ V (σ({x, y}), z ∈ V . This concludes the proof.

Using the same kind of argumentation with minors instead of topological minors, we also obtain the following lemma.

Lemma 2.17 Let G be a connected graph, let v be a cut vertex of G, and let V be the vertex set of a connected component of

G \ v {v}. If H is a graph such that H m G and for each leaf B of bct(H), B m G[V ∪ {v}], then H m G \ v V .
Problem definition. A minimization parameter is a function p : I → N, where I is the domain in which the parameter p is defined, such that there exist a collection of objects X p , a weight function ν p : X p → N and a boolean function ξ p : I × X p → {0, 1} such that for each I ∈ I,

p(I) = min{ν p (X) | X ∈ X p , ξ p (I, X) = 1}.
With each minimization parameter, we associate a decision problem, called minimization problem, as follows.

Π p Input: An input I ∈ I and an integer k ∈ N. Question: Is p(I) ≤ k?

Similarly, we say that p is a maximization parameter if in the above definition we replace "min" by "max". In this case, the associated decision problem is called maximization problem and is defines in the same way than the minimization problem where we replace ≤ by ≥. Minimization or maximization parameters are jointly called optimization parameters.

We show in Proposition 2.18 that computing the optimization parameter and solving the associated decision version are strongly connected. In the remainder of the thesis we will switch from one to the other depending on which one is the most convenient. Note that, when our goal is just to decide whether there exists an element in X such that ξ(I, X) = 1, then we omit the definition of the optimization parameter, as it corresponds to a case where ν p is a constant function and directly define the decision problem.

Let I be a set, let p : I → N be a minimization parameter (resp. maximization parameter) and let Π p ⊆ I × N be the corresponding minimization problem (resp. maximization problem). Given I ∈ I and k ∈ N, if (I, k) ∈ Π p , we say that (I, k) is a positive instance of Π p , otherwise we say that that (I, k) is a negative instance of

Π p . A certificate that (I, k) is a positive instance of Π p is an element X ∈ X p such that ν p (X) ≤ k (resp. ν p (X) ≥ k) and ξ p (I, X) = 1.
We extend this definition and say that an element X ∈ X is a certificate of p(I) if it is a certificate that (I, p(I)) is a positive instance of Π p . Given an optimization parameter p : I → N, we say that a function f :

I → X p is a certificate function if for each I ∈ I, f (I) is a certificate of p(I).
The following proposition is a classical result. We provide a proof for completeness. Proof: Assume that p is a maximization parameter and let Π p , A, and f defined as before. Let I ∈ I. If for p ∈ {0, 1}, A outputs that (I, p) is a negative instance of Π p then the value of p(I) is trivially obtained. Otherwise, we run the algorithm A on (I, 2 k ) for each value of k starting from k = 1 until the algorithm returns that (I, 2 k ) is a negative instance of Π p . Let k 0 be the first integer such that (I, 2 k 0 ) is a negative instance. By construction of k 0 , 2 k 0 -1 ≤ p(I) < 2 k 0 . We then proceed to a binary search between 2 k 0 -1 and 2 k 0 in order to find p(I). In the whole procedure, we run the algorithm A at most 2 • log(p(I)) + 2 times and in each run the input (I, p) is such that p < 2 • p(I). The proposition follows.

When an optimization parameter p is such that p : G → N, we say that p is a graph parameter. If Π p is a problem whose input contains a graph, then we define Planar Π p to be the same problem restricted to the input graphs that are planar. A graph parameter p is minor-closed (resp. contraction-closed ) if for every two graphs G and

H, H m G ⇒ p(H) ≤ p(G) (resp. H c G ⇒ p(H) ≤ p(G)). A graph parameter p is -minor bidimensional if * p is minor-closed and * for some δ > 0, ∃k 0 ∈ N : ∀k ≥ k 0 , p( k ) k 2 > δ and -contraction bidimensional if * p is contraction-closed and * for some δ > 0, ∃k 0 ∈ N : ∀k ≥ k 0 , p(Γ k ) k 2 > δ.
We say that a problem Π p is minor bidimensional (resp. contraction bidimensional ) if the graph parameter p is minor bidimensional (resp. contraction bidimensional ). Notice that if a problem is minor bidimensional, then it is also contraction bidimensional.

CHAPTER 2. PRELIMINARIES

Logic. The syntax of Monadic Second Order Logic (MSO) of graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices, and sets of edges, the quantifiers ∀, ∃ that can be applied to these variables, and the following five binary relations:

u ∈ U where u is a vertex variable and U is a vertex set variable;

d ∈ D where d is an edge variable and D is an edge set variable;

inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is that the edge d is incident with the vertex u;

adj(u, v), where u and v are vertex variables and the interpretation is that u and v are adjacent;

equality of variables representing vertices, edges, sets of vertices, and sets of edges.

For instance, the existence of a vertex cover in a graph can be expressed in the following way. There exists a set of vertices S, such that for every edge e, there exists v ∈ S, such that e is incident with v. In addition to the usual features of monadic second-order logic, if we have atomic formulas testing whether the cardinality of a set is equal to q modulo r, where q and r are integers such that 0 ≤ q < r and r ≥ 2, then this extension of MSO logic is called Counting Monadic Second-Order logic, or CMSO for short. Thus CMSO is MSO enriched with the following atomic formula for a set S: card q,r (S) = true if and only if |S| ≡ q (mod r).

Separability. Let f : N → N be a function. We say that a graph parameter p, such that X p is a collection of vertex sets, is f -separable if for every graph G, every optimal solution S of p on G, and for every

L ⊆ V (G) such that |N G (V (G)\L)| ≤ t, it holds that |S ∩ L| -f (t) ≤ p(G[L]) ≤ |S ∩ L| + f (t).
A graph parameter p is called separable if there exists a function f such that p is f -separable, and it is called linearly separable if it is f -separable for some linear function f . min/max-CMSO parameters. Given a graph parameter p, we say that p is a max-CMSO (resp. max-CMSO) parameter if X p is a collection of vertex or edge sets, ν p is such that for each X ∈ X p , ν p (X) = |X|, and ξ p is a CMSO-expressible property.

Reducible parameters. A graph parameter p is reducible if there exist a min/max-CMSO parameter p and a function f : N → N such that there is a polynomial time algorithm that, given a graph G and a set Complexity classes. We already presented the context of Parameterized Complexity in Chapter 1. We provide here some formal definitions that will be usefull in Chapter 3, 4, and 5. These classical definitions can also be found, for instance, in [START_REF] Cygan | Parameterized Algorithms[END_REF].

X ⊆ V (G), outputs a graph G such that p(G) -O(|X|) ≤ p (G ) ≤ p(G) + O(|X|) and tw(G ) ≤ f (tw(G \ v X))
Definition 2.19 A parameterized problem is a language L ⊆ Σ * × N where Σ is a fixed finite alphabet. For an instance (x, k) ∈ Σ * × N, k is called the parameter.
Definition 2.20 let Σ be a finite alphabet. A parameterized problem L ⊆ Σ × N is called fixed-parameter tractable (FPT for short) is there exists an algorithm A, a computable function f : N → N, and a constant c such that, for each (x, k) ∈ Σ × N, the algorithm A correctly decides whether

(x, k) ∈ L in time at most f (k) • (|x| + k) c .
We denote by FPT the complexity class of all fixed-parameter tractable problems.

A typical problem that is FPT parameterized by treewidth is the computation of the minimization parameter vc : G → N, defined such that for each G ∈ G,

vc(G) = min{|S| | S ⊆ V (G), ∀e ∈ E(G) : S ∩ e = ∅},
that is the parameter that corresponds to the Vertex Cover problem, defined as: k) . We denote by XP the complexity class of all slice-wise polynomial problems.

Vertex Cover

CHAPTER 2. PRELIMINARIES

We give two examples of problems in FPT when parameterized by treewidth. The first is the computation of the maximization parameter cl : G → N, defined such that for each G ∈ G,

cl(G) = max{|S| | S ⊆ V (G) is a clique},
that is the parameter that corresponds to Clique problem, defined as:

Clique

Input: A graph G and an integer k.

Parameter: k. Question: Is cl(G) ≥ k?
The second is the computation of the minimization parameter ds : G → N, defined such that for each G ∈ G,

ds(G) = min{|S| | S ⊆ V (G), N [S] = V (G)},
that is the parameter that corresponds to the Dominating set problem, defined as:

Dominating Set

Input: A graph G and an integer k. Parameter: k. Question: Is ds(G) ≤ k?

Definition 2.22 Let Σ be a finite alphabet and let A and B be two parameterized problems of Σ * × N. A parameterized reduction from A to B is an algorithm that, given an instance (x, k) of A, output an instance (x , k ) of B such that

-(x, k) ∈ A if and only if (x , k ) ∈ B, -k ≥ g(k)
for some computable function g, and 1) for some computable function f .

-the running time is f (k) • |x| O(
The W -hierarchy is a set of complexity classes introduced by Downey and Fellows [START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF] to capture the exact complexity of NP-hard problems that are unlikely to be FPT. In this thesis, we will only need from this hierarchy the classes of problems that are W [1]-hard and W [2]-hard. We skip the formal definitions of these classes and only give an equivalent definition.

Definition 2.23 A parameterized problem Π is

Chapter 3

Algorithmic aspects of treewidth

In this chapter, we provide new lower and upper bounds on the running time of algorithms solving graph problems parameterized by the treewidth of the input graph.

In Section 3.1, we show that the connectivity problems that can be solved, on general graphs, in time O * (2 O(tw log tw) ) but not in time O * (2 o(tw log tw) ) can have different behaviours on planar graphs.

In Section 3.2, we study a "meta-problem", namely F-Deletion, that contains, in particular, well-known problems like Vertex Cover, Feedback Vertex Set, or Vertex Planarization. We provide lower bounds and upper bounds depending of the family of graphs F.
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The role of planarity in connectivity problems

In this section we show that the connectivity problems that can be solved, on general graphs, in time O * (2 O(tw log tw) ) but cannot be solved, under ETH, in time O * (2 o(tw log tw) ), can be separated into at least two groups depending on their behaviours on planar graphs. Namely, we say that such a problem is of Type 

The Cycle Packing problem

The maximization parameter cp : G → N corresponding to Cycle Packing is defined such that for each G ∈ G, Proof: Let G be a graph, (T, σ) be a branch-decomposition of G of width w and of root r, and k be an integer. For each e ∈ E(T), we define

cp(G) = max{cc(H) | H is a 2-regular subgraph of G}, and 
I e = {(X, M ) | X ⊆ mid(e)
, M is a matching over mid(e) \ X} and the function r e : I e → N such that for each (X, M ) ∈ I e ,

r e (X, M ) = max{cc(H) | H is a 2-regular subgraph of G e , V (H) ∩ mid(e) ⊆ X, ∀{u, v} ∈ E(M ), there exists a {u, v}-path P u,v in G e \ v V (H), V (P u,v ) ∩ mid(e) ⊆ X ∪ {u, v}, ∀{u, v}, {u , v } ∈ E(M ), V (P u,v ) ∩ V (P u ,v ) = ∅}
Observe that cp(G) = r er (∅, ∅). We now explain how to compute the function r e for each e ∈ E(T). Let e ∈ E(T). We assume we have already computed the function r e for each child e of e and we proceed to the computation of r e . We distinguish several cases depending on the type of edge e.

If e is a leaf then G e = ({x, y}, {(x, y)}), I e = {(∅, ∅), (∅, {(x, y)}), ({x}, ∅), ({y}, ∅), ({x, y}, ∅)}, and for each (X, M ) ∈ I e , r e (X, M ) = 0.

Otherwise, if we assume that e and e are the two children of e, then for each (X, M ) ∈ I e , r e (X, M ) = max{r e (X , M ) + r e (X , M ) + cc(H)

| (X , M ) ∈ I e , (X , M ) ∈ I e , X ∩ (X ∪ V (M )) = X ∩ (X ∪ V (M )) = ∅, H is a 2-regular subgraph of M M , X = (X ∪ X ∪ {v ∈ mid(e) | δ M M (v) = 2}) ∩ mid(e),
for each {u, v} ∈ E(M ), there exists an {u, v}-path P u,v , in

(M M ) \ v V (H), ∀{u, v}, {u , v } ∈ E(M ), V (P u,v ) ∩ V (P u ,v ) = ∅},
where, if M 1 and M 2 are two matchings, the graph M 1 M 2 is defined such that

V (M 1 M 2 ) = V (M 1 ) ∪ V (M 2 ) ∪ E(M 1 ) ∪ E(M 2 ) and E(M 1 M 2 ) = {{u, e} | ∃i ∈ {1, 2} : u ∈ V (M i ), e ∈ E(M i ), u ∈ e}.
It is easy to check that for each e ∈ E(T), the algorithm correctly computes r e with this algorithm. We now focus on the running time of the algorithm. First, for each e ∈ E(T), we bound the number of pairs (X, M ) belonging to I e . We have at most 3 w choices for X and V (M ), and for each choice of V (M ), we have at most In order to give a lower bound on the running time of the algorithms solving Cycle Packing on planar graphs, we will present a reduction from Planar 3-Colorability. The 3-Colorability problem is defined as follows.

|V (M )| |V (M )| choices for E(M ).

3-Colorability

Input: A graph G. Question: Is there a coloring function c : V (G) → {1, 2, 3} such that for all {x, y} ∈ E(G), c(x) = c(y)?

A proof of the following theorem can be deduced from [START_REF] Garey | Some simplified NP-complete graph problems[END_REF]. We give another proof here for completeness.

Theorem 3.2 Planar 3-Colorability cannot be solved in time 2 o( √ n) • n O(1)
unless the ETH fails, even when the input graph has maximum degree at most 4.

Proof:

We start with defining some planar gadgets. The first one is depicted in Figure 3.1 and called color gadget, C-gadget for short. This gadget ensures that two vertices u and u are in the same color class. Note that we can extend the C-gadget for three vertices u, u , and u and ensure the three vertices to be in the same color class by fixing a C-gadget between u and u and another C-gadget between u and u . The second gadget is depicted in Figure 3.2 and called cross-color gadget, CCgadget for short. In this gadget, originally introduced in [START_REF] Garey | Some simplified NP-complete graph problems[END_REF], one can check that if u, v, u , and v are in the same face before being connected by the gadget, and oriented in this order around the face, then u and u are in the same color class and v and v are in the same color class.

We reduce from 3-Colorability. Let G be a general graph as an input of 3-Colorability. Let n = |V (G)| and assume that V = {v i | i ∈ 1, n }. We define a planar graph H, illustrated in Figure 3.3 for n = 4, as follows. •

For each i ∈ 1, n , u H,i , v H,i , w H,i ∈ V (H).
• For each i, j ∈ 1, n , i < j, α H,i,j ∈ V (H) and β H,i,j ∈ V (H).

• For each i ∈ 1, n -1 , there is a C-gadget between u H,i and α H,i-1,i .

• For each i ∈ 2, n , there is a C-gadget between u H,i and β H,i-1,i .

• There is a C-gadget between u H,n and w H,n .

• There is a C-gadget between u H,1 and v H,1 .

• For each i, j ∈ 2, n , i < j there is a CC-gadget between α H,i,j , β H,i,j , α H,i,j+1 , and β H,i-1,j .

• For each i ∈ 2, n , i < j there is a CC-gadget between α H,i,n , β H,i,n , w H,i , and β H,i-1,n .

• For each j ∈ 2, n , i < j there is a CC-gadget between α H,1,j , β • There is a CC-gadget between α H,1,n , β H,1,n , w H,1 , and v H,n .

• For each i, j ∈ 1, n , i < j, if {v i , v j } ∈ E, then {α H,i,j , β H,i,j } ∈ E(H).
As the C-gadget and the CC-gadget are planar, H is indeed planar (see Figure 3.3).

Because of the properties of the C-gadget and the CC-gadget, for each i in 1, n , u H,i , v H,i , and w H,i are in the same color class. Because of the edges {α H,i,j , β H,i,j }, if there is an edge between v i and v j in G, then u H,i and u H,j should receive different colors. Given a 3-coloring of G, then by coloring u H,i with the color of v i for each i ∈ 1, n , we find a 3-coloring of H. Conversely, if we have a coloring of H, for each i ∈ 1, n we color each vertex v i of V with the color of u H,i .

Let us now argue about the maximum degree of the graph H. With the construction Let us finally argue about the number of vertices of H. Note that H can be seen as a spanning subgraph of a grid of size n, where each vertex has been replaced either by a C-gadget or a CC-gadget, or it has been removed. These two gadgets have a constant number of vertices and are introduced at most n 2 times. After the introduction of these two gadgets, each vertex has degree at most 7. In the worst case, we introduce the gadget of Figure 3.4 for each vertex. As this latter gadget has a constant number of vertices, we obtain that |V (H)| = O(n 2 ). As 3-Colorability cannot be solved in time 1) unless the ETH fails [START_REF] Impagliazzo | Which problems have strongly exponential complexity[END_REF], the theorem follows.

2 o(n) • n O(
Corollary 3.3 Planar 3-Colorability cannot be solved in time

2 o(tw) • n O(1)
unless the ETH fails, even if the input graph has maximum degree at most 4.

Proof: As a planar graph G on n vertices satisfies tw(G) = O( √ n) [START_REF] Fomin | New upper bounds on the decomposability of planar graphs[END_REF], an algorithm in time 2 o(tw) • n O (1) for Planar 3-Colorability implies that there is an algorithm in time 1) , which is impossible by Theorem 3.2 unless the ETH fails. Proof: We present a reduction from Planar 3-Colorability restricted to input graph G such that G is planar and ∆(G) ≤ 4. We know by Theorem 3.2 that this problem cannot be solved in time 1) unless the ETH fails.

2 o( √ n) • n O(
2 o( √ n) • n O(
Let G be a planar graph such that ∆(G) ≤ 4 as an input of Planar 3-Colorability.

We assume that n = |V (G)| and

V (G) = {v i | i ∈ 1, n }.
We construct from G a planar graph H. Then we will see (H, k) as an input of Planar Cycle Packing for an appropriate k.

For the construction of (H, k), we start from k = 0 and each time we say that we ask for x cycles in a gadget, then we increase k by x. At the end, the value k is set such that cp(H) = k.

Before going through the reduction, we need to introduce three auxiliary gadgets. The first two ones, called expel and double-expel gadgets, are depicted in Figure 3.6. Formally, for two vertices u and u , the expel gadget between u and u is defined as

EG u,u = ({u, u , v, v }, {{u, v}, {u, v }, {u , v}, {u , v }, {v, v }}),
where the vertices v and v are new vertices. Each time we introduce an expel gadget, we increase k by 1. With this gadget we can assume that if both u and u are inside the same cycle, then this cycle is a subgraph of EG u,u . Moreover, this gadget ensures that either u or u is inside a cycle that is a subgraph of EG u,u .

Similarly, the double-expel gadget for three vertices u, u , and u is defined as

DEG u,u ,u = ({u, u , u , v, v }, {{u, v}, {u, v }, {u , v}, {u , v }, {u , u }, {v, v }}).
Again, each time we introduce a double-expel gadget, we increase k by 1. Moreover this gadget ensures that either u is inside a cycle that is a subgraph of EG u,u , or both u and u are inside a cycle that is a subgraph of EG u,u .

In the following construction, the edges of the expel gadgets will cross each other.

In order to simulate these crossings and to keep the planarity, we define the pathcrossing gadget depicted in Figure 3 . If a cycle does not respect this property, we say that the cycle turns inside the path-crossing gadget. That is, the gadget preserves the existence of the original crossing edges whenever there are no cycles that turn inside it. Note that the two paths corresponding to the two original crossing edges cannot be used simultaneously by a set of cycles in the planar graph H we are going to construct.

u i,1 c i u i,3 b i a i u i,2
u i,0 Let now start the construction of the graph H. For each i ∈ 1, n , we define and introduce in H the SC i -gadget, depicted in Figure 3.5, as the graph such that

V (SC i ) = {a i , b i , c i , u i,0 , u i,1 , u i,2 , u i,3 } E(SC i ) = {{u i,0 , u i,1 }, {u i,0 , u i,2 }, {u i,0 , u i,3 }, {a i , u i,1 }, {a i , u i,2 }, {b i , u i,2 }, {b i , u i,3 }, {c i , u i,1 }, {c i , u i,3 }}.
For each of these gadgets, we increase k by 1. This cycle that we allow ensures that at least one of the vertices in {a i , b i , c i }, named a selected vertex of the SC i -gadget, is used by the inner cycle and leaves the possibility that the two others are free.

The intended meaning of each SC i -gadget is as follows. The three vertices a i , b i , and c i correspond to the three colors in the 3-coloring of G, namely a, b, and c. If for instance a i is a selected vertex for index i, it will imply that vertex v i can be colored with color a. Therefore, each SC i -gadget defines the available colors for vertex v i , which we call the color output of vertex v i .

In order to construct a graph H that defines a valid 3-coloring of G, we need, for each i ∈ 1, n , to propagate the color output of v i as many times as the degree of v i in G. For this, we introduce a gadget called bifurcate gadget. Before proceeding to the

pc 4 pc 2 pc 1 pc 3 w 0 w 1,1 E w 2,2 w 2,1 E w 3,2 w 3,1 E w 4,2 w 4,1 E w 1,2
The gadget.

pc 2 pc 4 pc 1 PC pc 3
The representation. description of the gadget, let us describe its intended functionality. The objective is, starting with the vertices a i , b i , and c i of the SC i -gadget, to construct, for each 1 ≤ j ≤ δ G (v i ), a set of triples {a i,j , b i,j , c i,j } such that in each triple there will be again at least one selected vertex, defined by the cycles that we will construct in the bifurcate gadgets. Note that in the SC i -gadget the choice of a selected vertex in each triple {a i,j , b i,j , c i,j }, 1 ≤ j ≤ δ G (v i ), naturally defines a color output for vertex v i . The crucial property of the gadget is that the intersection of the color outputs given by all the triples is non-empty if and only if the graph H contains enough vertex-disjoint cycles. In other words, the existence of the appropriate number of vertex-disjoint cycles in H will define an available color for each vertex v i of G.

We can now define the bifurcate gadget, which is depicted in Figure 3.8(a), where each of the 12 edge-crossings should be replaced by a path-crossing gadget. Note that, before doing this replacement, we may need to subdivide the edges. Note that the bifurcate gadgets contains 6 expel and 3 double-expel gadgets and 12 pathcrossing gadgets. As each path-crossing gadget contains 4 expel gadgets, in order to satisfy each expel and double-expel gadget inside the bifurcate gadget, we need to increase k by 57. Note that, given a triple {a i , b i , c i } defining a color output for a vertex v i , the cycles asked in the bifurcate gadget define two triples {a i,1 , b i,1 , c i,1 } and {a i,2 , b i,2 , c i,2 }, which in turn define two color outputs compatible with the one defined by {a i , b i , c i }, in the sense that there is a common available color for v i . For example, in Figure 3.8(b) vertex a i is the only selected vertex of {a i , b i , c i } (given by the corresponding SC i -gadget, which is not shown in the figure for the sake of visibility), and the bold cycles define the selected vertices for the triples

a i b i c i a i,1 b i,1 c i,1 a i,2 b i,2 c i,2 (a) 
The gadget. 

a i b i c i a i,1 b i,1 c i,1 a i,2 b i,2 c i,2 (b) An example. 
{a i,1 , b i,1 , c i,1 } and {a i,2 , b i,2 , c i,2 }.
Note that color a is simultaneously available for the three triples. We would like to stress that there are other choices of a maximumcardinality set of cycles in the bifurcate gadget of Figure 3.8(b), but all of them yield color a available. For each vertex v i , we need as many triples {a i,j , b i,j , c i,j } as δ G (v i ).

For that, we concatenate the bifurcate gadgets δ G (v i ) -1 times in the following way. Inductively, we consider the triple {a i,2 , b i,2 , c i,2 } of Figure 3.8(a) as the original triple {a i , b i , c i }, and plug another bifurcate gadget starting from this triple.

With the gadgets defined so far, we have a representation of the colored vertices of G in H. We now proceed to capture the edges of G in H. For this, we introduce, for each {v i , v i } ∈ E, i, i ∈ 1, n , an edge gadget depicted in Figure 3.9, where all the 12 edge-crossings should be replaced by a path-crossing gadget. Note that, again, before doing this replacement, we may need to subdivide the edges. We increase k by 51 for each edge gadget, namely 3 for the expel gadgets and 48 for the 12 pathcrossing gadgets. We plug one side of this gadget to a triple {a i,j , b i,j , c i,j }, j ∈ δ G (v i ), defining a color output of v i and the other side to a triple {a i ,j , b i ,j , c i ,j }, j ∈ δ G (v i ), defining a color output of v i . The edge gadget ensures that the intersection of the two color outputs is empty. This completes the construction of H, which is First note that any internal cycle in an expel or a double-expel gadget should contain both vertices v and v . Also note that if some external cycle in an expel or a doubleexpel gadget contains the vertex v or v of an expel or a double-expel gadget, then it also contains the vertex u (or u and u ), and then we are not able to find an internal cycle anymore. Therefore, any external cycle containing v or v kills the cycle on the set of vertices {u, v, v } or {u , u , v , v }.

a i,k a j,k b i,k b j,k c i,k c j,k
Note that if an external cycle of a path-crossing gadget turns inside it, then without loss of generality, we may assume that it contains the vertices pc 1 , w 1,1 , w 1,2 , w 0 , w 2,2 , w 2,1 , and pc 2 of the path-crossing gadget. This external cycle kills the cycle inside the expel gadget between w 1,1 and w 2,2 . Moreover, note that another disjoint external cycle turning in the same path-crossing gadget kills another internal cycle in the path-crossing gadget, namely the one inside the expel gadget between w 3,1 and w 4,2 .

Let C be a cycle in H that is not entirely contained in only one expel, double-expel, or SC i -gadget. Because of the previous remarks, we have that C cannot turn in two different path-crossing gadgets, and that if it does not turn in any path-crossing gadget, then by construction it uses at least two expel or double-expel gadgets and The only remaining choice for C is to turn exactly once in one path-crossing gadget.

If it happens inside a bifurcate gadget, then C contains vertices of two expel gadgets, namely expel 1 and expel 2 , corresponding to two different colors. The only way to connect vertices corresponding to different colors outside the path-crossing gadget is by using an SC i -gadget. So either C kills the cycles of expel 1 and expel 2 , or it may also use a path leading to an edge gadget. If C turns in a path-crossing gadget inside an edge gadget, then the analysis is similar, but there is an extra case where the edge gadget representing the edge between v i and v i is directly plugged into the SC i -gadget. In this case, note that none of the vertices a i , b i , c i can be a selected vertex with the set of cycles we currently ask for, and therefore in order to allow it we need to decrease the number of cycles in the solution. ♦

We claim that (H, k) is a positive instance of Planar Cycle Packing if and only if G is a positive instance of Planar 3-Colorability.

First assume that (H, k) is a positive instance of Planar Cycle Packing and let S be a certificate of it. We have, using Claim 3.5, that for each i ∈ 1, n the selection of a cycle in the SC i -gadget selects a color for v i , that can be any color that belongs simultaneously to all color outputs of v i , and the edge gadgets ensure that two adjacent vertices are in two different color classes. So in this way we obtain a certificate that G is a positive instance of Planar 3-Colorability.

Conversely, assume that G is a positive instance of Planar 3-Colorability and let c : V (G) → {a, b, c} be a certificate of it.

We construct S, a set of cycles in H as follows. For each i ∈ 1, n we choose in the SC i -gadget the cycle of length 4 that contains u i,0 and the vertex c(v i ) i in {a i , b i , c i } that corresponds to the color of v i . We also choose in the bifurcate gadgets the cycles selecting vertices in {a i,1 , b i,1 , c i,1 , a i,2 , b i,2 , c i,2 } that lead to two identical color outputs coinciding with the color output of {a i , b i , c i }. This choice has the property that the color output of {a i , b i , v i } is a subset of the color output of {a i,1 , b i,1 , c i,1 } and the color output of {a i,2 , b i,2 , c i,2 }, and leaves as many free vertices as possible for other cycles in other gadgets. Inside the edge gadget representing {v i , v i } ∈ E(G), we select the three cycles that are allowed by the free vertices. We complete the selection of cycles by selecting a cycle in each expel gadget contained in a pathcrossing gadget. By Claim 3.5, this choice leads to a certificate that (H, k) is a positive instance of Planar Cycle Packing.

As the degree of each vertex in G is bounded by 4, the number of gadgets we introduce for each v i ∈ V (G) to construct H is bounded by a constant. Moreover, for each edge of G we introduce in H a constant number of vertices. We obtain that

|V (H)| = O(|V (G)| + |E(G)|). As G is planar, we have that |E(G)| = O(|V (G)|).
Thus, the total number of vertices of H is linear in the number of vertices of G. Therefore, if we could solve Planar Cycle Packing in time 1) , which is impossible by Theorem 3.2 unless the ETH fails.

2 o( √ n) • n O(1) then we could also solve Planar 3-coloring in time 2 o( √ n) • n O(

The Monochromatic Disjoint Paths problem

In order to define formally the Monochromatic Disjoint Paths problem, we need some extra definitions.

A triple (G, γ, Z) is a monochromatic disjoint paths input if G is a graph, γ : V (G) → 0, tw(G)
is a coloring function, and Z is a matching over V (G). We denote by I md the set of all monochromatic disjoint paths inputs.

If (G, γ, Z) is a monochromatic disjoint paths input, then we say that two colors c 1 and c 2 in 0, tw(G) are compatible, and we denote it by

c 1 ≡ c 2 , if c 1 • c 2 = 0 or c 1 = c 2 .
Given a path P in G, we say that P is monochromatic if for each u, v ∈ V (P ), γ(u) ≡ γ(v). If P is a monochromatic path of G, we define γ(P ) = max v∈V (P ) γ(v) and we say that γ(P ) is the color of the monochromatic path P or P is colored γ(P ).

We can now define the following decision problem.

Monochromatic Disjoint Paths

Input: A monochromatic disjoint paths input (G, γ, Z).

Parameter: tw(G). Question: Does there exist a set Q of pairwise vertex-disjoint monochromatic paths of G such that, for each z ∈ E(Z), Q contains a z-path?

The proof of the following lemma is inspired of the algorithm given in [START_REF] Scheffler | A practical linear time algorithm for disjoint paths in graphs with bounded tree-width[END_REF] for the Disjoint Paths problem on general graphs. Proof: Let (G, γ, Z) be a monochromatic disjoint paths input, let (T, σ) be a branch-decomposition of G of width w and root r, let m = |E(Z)|, and assume that

E(Z) = {z i | i ∈ 1, m }.
For each e ∈ E(T), we define

I e = {(X, Q, M, L, γ 0 , ϕ) | X ⊆ mid(e), Q ⊆ mid(e), X ∩ Q = ∅, M and L are two matching over the vertex set mid(e) \ (X ∪ Q) such that V (M ) ∩ V (L) = ∅, γ 0 : Q ∪ V (M ) ∪ V (L) → 0, tw(G) , ϕ : Q → 1, m is an injective function},
and the function r e : I e → {0, 1}, such that for each (X, Q, M, L, γ 0 , ϕ) ∈ I e , -r e (X, Q, M, L, γ 0 , ϕ) = 1 if * there exist a collection P of paths in G e such that * for each i ∈ 1, m such that z i = {s, t} and z i ⊆ V (G), either • there exists a monochromatic {s, t}-path in P, or • there exists {s , t } ∈ E(M ) such that there exist a monochromatic {s, s }-path P s in P and a monochromatic {t, t }-path P t in P such that γ(P s ) = γ(P t ) = γ 0 (s ) = γ 0 (t ). * for each i ∈ 1, m , such that z i = {s, t}, s ∈ V (G e ), and t ∈ V (G e ),

• there exist s ∈ Q such that ϕ(s ) = i and a monochromatic {s, s }path P s in P such that γ(P s ) = γ 0 (s ), * for each {u, v} ∈ E(L),

• there exists a monochromatic {u, v}-path P in P such that γ(P ) = γ 0 (x) = γ 0 (y) * for each P 1 and P 2 in P such that P 1 = P 2 , V (P 1 ) ∩ V (P 2 ) = ∅, * X is such that:

X = {v | ∃P ∈ P : v ∈ V (P ) ∩ mid(e), δ P (v) = 2} ∪ {v | ∃P ∈ P : v ∈ V (P ) ∩ V (Z) ∩ mid(e), δ P (v) = 1}
r e (X, Q, M, L, γ 0 , ϕ) = 0 otherwise.

If e is a leaf, then we have:

I e = {(∅, ∅, (e, {e}), ∅, γ 0 , ∅) | γ 0 : e → 0, tw(G) } ∪ {(∅, ∅, ∅, (e, {e}), γ 0 , ∅) | γ 0 : e → 0, tw(G) } ∪ {(X, Q, (∅, ∅), (∅, ∅), γ 0 , ϕ) | X ∪ Q ⊆ e, X ∩ Q = ∅ γ 0 : Q → 0, tw(G) , ϕ : Q → 1, m is an injective function},
and for each (X, Q, M, L, γ 0 , ϕ) ∈ I e , r e (X, Q, M, L, γ 0 , ϕ) = 1 if and only if one of the following happens:

there exists i ∈ 1, m such that e = z i and either X = e or M = (e, {e}) and γ 0 = γ| e , there exists i, j ∈ 1, m such that 

e∩z i = {u i }, e∩z j = {u j }, Q = {u i , u j } = e, γ 0 (u i ) = γ(u i ), γ 0 (u j ) = γ(u j ), ϕ(u i ) = i,
X = Q = V (M ) = V (L) = ∅ or * e = {u, u }, γ(u) ≡ γ(u ), L = (e, {e}), γ 0 (u) = γ 0 (u ) = max{γ(u), γ(v)}.
If e is not a leaf, then let e and e be the two children of e then for each tuple (X, Q, M, L, γ 0 , ϕ) ∈ I e , r e (X, Q, M, L, γ 0 , ϕ) = 1 if and only if there exist a tuple (X , Q , M , L , γ 0 , ϕ ) ∈ I e and (X , Q , M , L , γ 0 , ϕ ) ∈ I e such that, with the definitions

-S = Q ∪ V (M ) ∪ V (L ), -S = Q ∪ V (M ) ∪ V (L ),
-H is the graph such that

V (H) = S ∪ S ∪ E(L ) ∪ E(L ) and E(H) = {{u, e} | (u, e) ∈ (V (L ) × E(L )) ∪ (V (L ) × E(L )), u ∈ e}, and 
-γ H : V (H) → 0, tw(G) is the coloring function such that ∀e ∈ E(L ) ∪ E(L ), γ H (e) = 0, ∀u ∈ S ∩ S , γ H (u) = max{γ 0 (u), γ 0 (u)}, ∀u ∈ S \ S , γ H (u) = γ 0 (u), and ∀u ∈ S \ S , γ H (u) = γ 0 (u),
we have

-X ∩ S = X ∩ S = X ∩ X = ∅, -for each u ∈ S ∩ S , γ 0 (u) ≡ γ 0 (u),
there exists a set P of paths in H such that * for each {u, v} ∈ E(L), there exist a monochromatic {u, v}-path P in P such that γ

H (P ) = γ 0 (u) = γ 0 (v), * for each {u, v} ∈ E(M ) ∪ E(M ), either
• there exists a monochromatic {u, v}-path P in H, or • there exist {u , v } ∈ E(M ) and two monochromatic path P u and P v in P such that γ(P u ) = γ(P v ), P u is a {u, u }-path, P v is a {v, v }-path, and γ 0 (u

) = γ 0 (v) = max{γ H (P u ), γ H (P v )}, * for each u ∈ Q (resp. u ∈ Q ) either
• there exists v ∈ Q and a monochromatic {u, v}-path P in P such that

ϕ(v) = ϕ (u) (resp. ϕ(v) = ϕ (u)) or • there exists v ∈ Q (resp. u ∈ Q ) such that ϕ (u) = ϕ (v) (resp. ϕ (u) = ϕ (v)
) and a monochromatic {u, v}-path P in P,
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93 * for each P 1 , P 2 ∈ P such that P 1 = P 2 , V (P 1 ) ∩ V (P 2 ) = ∅, and * X is such that:

X = (X ∪ X ) ∩ mid(e) ∪ {v | ∃P ∈ P : v ∈ V (P ) ∩ mid(e), δ P (v) = 2} ∪ {v | ∃P ∈ P : v ∈ V (P ) ∩ V (Z) ∩ mid(e), δ P (v) = 1}.
It is easy to check that for each e ∈ E(T), we compute r e accordingly to its definition. We now focus on the running time of the algorithm. First for each e ∈ E(T), we bound the number of inputs (X, Q, M, L, γ 0 , ϕ) of I e . We have at most 5 w choices for X, Q, V (M ), and V (L). We need to define the k × k-Hitting Set problem, first introduced in [START_REF] Lokshtanov | A linear kernel for planar connected dominating set[END_REF]. Given an integer k, we set We state the following theorem in terms of the pathwidth of the input graph, and as any graph G satisfies tw(G) ≤ pw(G), it implies the same lower bound for treewidth as well. Proof: We present a reduction from k × k-Hitting Set. Let k be an integer and let (S, m) ∈ I k×k . For convenience, we assume that S = {S i | i ∈ 1, m }. We will construct an input (G, γ, Z) such that G is planar.

I k×k = {(S, m) | m ∈ N, |S| = m, ∀S ∈ S : S ⊆ 1, k × 1, k , ∀i ∈ 1, k : |S ∩ ({i} × 1, k )| ≤ 1}. k × k-
We start from two empty graphs G and Z, and given two vertices s and t of V (G), we say that we introduce a request {s, t} to say that we add s and t to V (Z) and {s, t} to E(Z).

For each row {r} × 1, k , r ∈ 1, k , we construct a gadget which selects the unique pair p of the potential certificate S, of k × k-Hitting Set, in this row. For this, for each r ∈ 1, k , we introduce two new vertices s r and t r in V (G), a request {s r , t r }, m + 1 vertices v r,i , i ∈ 0, m , in V (G), and m + 2 edges {e r,0 = (s r , v r,0

)} ∪ {e r,i = (v r,i-1 , v r,i ) | i ∈ 1, m } ∪ {e r,m+1 = (v r,m , t r )} in E(G).
That is, we have a {s r , t r }path with m + 3 vertices.

Each edge of these paths, except the last one, will be replaced by an appropriate gadget. Namely, for each r ∈ 1, k , we replace the edge e r,0 by the gadget depicted in Figure 3.10, which we call color-selection gadget. In this figure, vertex u r,i is colored i. The vertex u r,i , i ∈ 1, k , used by the {s r , t r }-path, will define the color of this {s r , t r }-path and will also define the pair (r, i) of the potential certificate S in the row {r} × 1, k .

We now have k gadgets that define a potential certificate S. The following gadgets ensure that S is a certificate, i.e., that for each S ∈ S, S ∩ S = ∅. For this, we start by defining the gadget depicted in Figure 3.11, which we call expel gadget. For each

s v t u
The gadget.

u E v
The representation. 

v 1,i-1 a 1,i v 1,i v 2,i-1 a 2,i v 2,i v 3,i-1 a 3,i v 3,i v k,i-1 a k,i v k,i w 1,i,2 E w 2,i,1 w 2,i,2 E w 3,i,1 w 3,i,2 w k,i,1
The gadgets.

v 1,i-1 v 1,i v 2,i-1 v 2,i v 3,i-1 v 3,i v k,i-1 v k,i SET i SET i SET i SET i
The representation. such gadget, we introduce a request {s, t}. This new requested path contains at least one vertex between u and v. This implies that only one of these two vertices can be in the vertex set of another path. We now use this gadget inside a bigger one. For each i ∈ 1, m , we replace all the edges {e r,i | r ∈ 1, k } by the gadget depicted in Figure 3.12. This gadget, called the set gadget, ensures that S ∩ S i = ∅. In the figure, for each r ∈ 1, k , either ({r} × 1, k ) ∩ S i = {{r, c r,i }} and a r,i is colored Formally, G is such that

s 1 CS v 1,0 v 1,1 v 1,2 v 1,m-1 v 1,m t 1 s 2 CS v 2,0 v 2,1 v 2,2 v 2,m-1 v 2,m t 2 s 3 CS v 3,0 v 3,1 v 3,2 v 3,m-1 v 3,m t 3 s k CS v k,0 v k,1 v k,2 v k,m-1 v k,m t k SET 1 SET 1 SET 1 SET 2 SET 2 SET 2 SET m SET m SET m SET 1 SET 2 SET m
V (G) = {s r | r ∈ 1, k } ∪ {t r | r ∈ 1, k } ∪ {v r,i | r ∈ 1, k , i ∈ {0, m}} ∪ {u r,c | r ∈ 1, k , c ∈ 1, k } ∪ {w r,i,b | r ∈ 1, k , i ∈ 1, m , i ∈ {1, 2}}\{w r,i,b | i ∈ 1, m , (r, b) ∈ {(1, 1), (k, 2)}} ∪ {s r,i | r ∈ [k -1], i ∈ 1, m } ∪ {t r,i | r ∈ [k -1], i ∈ 1, m } ∪ {a r,i | ∃c ∈ 1, k , (r, c) ∈ S i } and E(G) = {{s r , u r,c } ∈ V (G) × V (G) | r ∈ 1, k , c ∈ 1, k } ∪ {{u r,c , v r,0 } ∈ V (G) × V (G) | r ∈ 1, k , c ∈ 1, k } ∪ {{v r,i-1 , w r,i,b } ∈ V (G) × V (G) | r ∈ 1, k , i ∈ 1, m , b ∈ {1, 2}} ∪ {{w r,i,b , v r,i } ∈ V (G) × V (G) | r ∈ 1, k , i ∈ 1, m , b ∈ {1, 2}} ∪ {{v r,i-1 , a r,i } ∈ V (G) × V (G) | r ∈ 1, k , i ∈ 1, m } ∪ {{a r,i , v r,i } ∈ V (G) × V (G) | r ∈ 1, k , i ∈ 1, m } 3.1. THE ROLE OF PLANARITY IN CONNECTIVITY PROBLEMS 97 ∪ {{v r,m , t r } ∈ V (G) × V (G) | r ∈ 1, k } ∪ {{s r,i , w r,i,2 } ∈ V (G) × V (G) | r ∈ [k -1], i ∈ 1, m } ∪ {{s r,i , w r+1,i,1 } ∈ V (G) × V (G) | r ∈ [k -1], i ∈ 1, m } ∪ {{t r,i , w r,i,2 } ∈ V (G) × V (G) | r ∈ [k -1], i ∈ 1, m } ∪ {{t r,i , w r+1,i,1 } ∈ V (G) × V (G) | r ∈ [k -1], i ∈ 1, m }.
Note that because of the expel gadgets, for each r ∈ 1, k , the request {s r , t r } imposes a path between v r,i-1 and v r,i , for each i ∈ 1, m . Note also that because of the expel gadgets, for each i ∈ 1, m , there exists r ∈ 1, k such that the paths between v r,i-1 and v r,i contains the vertex a r,i , as otherwise at least two paths would intersect. Conversely, if for each i ∈ 1, m , there exists r ∈ 1, k such that the paths between v r,i-1 and v r,i contains the vertex a r,i , then we can find all the desired paths in the corresponding set gadgets by using the vertices w r,i,b .

Assume that (G, γ, Z) is a positive instance of Planar Monochromatic Disjoint Paths and let P, a collection of path in G, be a certificate of it. We define

S = {(r, c) | r ∈ 1, k and the {s r , t r }-path in P is colored c}. First S is such that | S ∩ ({i} × 1, k )| = 1. Moreover, for each i ∈ 1, m , the set gadget ensures that S ∩ S i = ∅.
Conversely, assume that (S, m) is a positive instance of k × k-Hitting Set and let S be a certificate of it. We define P to be the set of each {s, t}-path, {s, t} ∈ E(Z).

We focus on the {s r , t r }-path, r ∈ 1, k . For each (r, c) ∈ S, the unique {s r , t r }path of P will be colored c. For each i ∈ 1, m , we arbitrarily choose (r, c) ∈ S ∩ S i and in the set gadget labeled i, we impose that the path from v r,i-1 to v r,i contains vertex a r,i . By using the vertices w r,i,b for the k -1 other paths, we find the k desired monochromatic paths. The (k -1)•m remaining path are the paths requested inside the expel gadgets and that can be find by construction of the set gadgets.

Let us now argue about the pathwidth of G. We define for each r, c ∈ 1, k the bag 

B 0,r,c = {s r | r ∈ 1, k } ∪ {v r ,0 | r ∈ 1, k } ∪ {u r,c }, for each i ∈ 1, m , the bag B i = {v r,i-1 | r ∈ 1, k } ∪ {v r,i | r ∈ 1, k } ∪ {a r,i ∈ V (G) | r ∈ 1, k } ∪ {w r,i,b ∈ V (G) | r ∈ 1, k , b ∈ 1, 2 } ∪ {s r,i | r ∈ 1, m -1 } ∪ {t r,i | r ∈ 1, m -1 }, and the bag B m+1 = {v r,m | r ∈ 1, k } ∪ {t r | r ∈ 1, k }. We note that the size of each bag is at most 2 • (k -1) + 5 • k -2 = O(k). A path-decomposition of G consists of all bags B 0,r,c , r, c ∈ 1, k , and B i , i ∈ 1, m + 1 , and edges {B i , B i+1 }, for each i ∈ 1, m , {B 0,r,c , B 0,r,c+1 }, for r ∈ 1, k , c ∈ 1, k -1 , {B 0,r,k , B 0,r+1,1 }, for r 

The F-Deletion problem

In this section we focus on the F-Deletion problem. Let F be a regular collection of graphs. We define the minimization parameters m F : G → N and tm F : G → N such that for each G ∈ G,

m F = min{|S| | S ⊆ V (G), G \ v S ∈ ex m (F)} and tm F = min{|S| | S ⊆ V (G), G \ v S ∈ ex tm (F)}.
We also define the corresponding minimization problems.

F-M-Deletion

Input: A graph G and an integer k.

Parameter: tw(G). Question: Is m F ≤ k?

F-TM-Deletion

Input: A graph G and an integer k.

Parameter: tw(G). Question: Is tm F ≤ k?

Our objective in this section is to study the complexity of F-M-Deletion and F-TM-Deletion when parameterized by the treewidth of the input graph.

In Subsection 3.2, we present dynamic programming algorithms that solve F-M-Deletion (resp. F-TM-Deletion) in time 2 2 O(tw•log tw) • n if F is a regular collection of graphs and in time 2 O(w•log w) • n if F is a connected collection containing at least a planar graph (resp. a planar subcubic graph). The algorithm running in time 2 2 O(tw•log tw) • n uses and, in a sense, enhances, the machinery of boundaried graphs, equivalence relations, and representatives originating in the seminal work of Bodlaender et al. [START_REF] Bodlaender | Meta) kernelization[END_REF], and which has been subsequently used in [START_REF] Fomin | Bidimensionality and kernels[END_REF][START_REF] Garnero | Explicit linear kernels via dynamic programming[END_REF][START_REF] Kim | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF]. In order to obtain the faster algorithm running in time 2 O(tw•log tw) • n when F is a connected collection containing at least a (subcubic) planar graph, we combine the above ingredients with additional arguments to bound the number and the size of the representatives of the equivalence relation defined by the encoding that we use to construct the partial solutions. Here, the connectivity of F guarantees that every connected component of a minimum-sized representative intersects its boundary set (cf. Lemma 3.14). The fact that F contains a (subcubic) planar graph is essential in order to bound the treewidth of the resulting graph after deleting a partial solution (cf. Lemma 2.14). We present these algorithms for the topological minor version and then it is easy to derive the same result for the minor version within the claimed running time (cf. Lemma 3.11).

In Subsection 3.2, we present single exponential algorithms for F-Deletion when F ∈ {{P 3 }, {P 4 }, {C 4 }}. These algorithms are ad hoc. Namely, the algorithms for {P 3 }-Deletion and {P 4 }-Deletion use standard (but nontrivial) dynamic programming techniques on graphs of bounded treewidth, exploiting the simple structure of graphs that do not contain P 3 or P 4 as a minor (or as a subgraph, which in the case of paths is equivalent). The algorithm for {C 4 }-Deletion is more involved, and uses the rank based approach introduced by Bodlaender et al. [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF], exploiting again the structure of graphs that do not contain C 4 as a minor (cf. Lemma 3.30). It might seem counterintuitive that this technique works for C 4 , and stops working for C i with i ≥ 5 (see Table 1.2). A possible reason for that is that the only cycles of a C 4 -minor-free graph are triangles and each triangle is contained in a bag of a tree decomposition. This property, which is not true anymore for C i -minor-free graphs with i ≥ 5, permits to keep track of the structure of partial solutions with tables of small size.

In Subsection 3.2 we present a general lower bound of O * (2 o(tw) ) for connected collections of graphs based on a simple reduction from Vertex Cover.

In Subsection 3.2 we present a lower bounds of O * (2 o(tw•log tw) ) that applies to a large families of connected collections of graphs F. These lower bounds are strongly based on the ideas presented by Marcin Pilipczuk [START_REF] Pilipczuk | A tight lower bound for Vertex Planarization on graphs of bounded treewidth[END_REF] for Vertex Planarization and generalize the result of Marcin Pilipczuk [START_REF] Pilipczuk | A tight lower bound for Vertex Planarization on graphs of bounded treewidth[END_REF] itself.

Dynamic programming algorithms for computing tm F

The purpose of this subsection is to prove the following results. The following lemma is a direct consequence of Observation 2.6.

Lemma 3.11 Let F be a regular collection of graphs. Then, for every graph G, it holds that m F (G) = tm F (G) where F = F ∈F tpm(F ).

It is easy to see that for every (planar) graph F , the set tpm(F ) contains a subcubic (planar) graph. Combining this observation with Lemma 3.11 and Observation 2.5, we obtain that, in Theorem 3.9 and in Theorem 3.10, the computation of m F (G) follows directly from the computation of tm F (G). In the rest of this subsection, we focus on the computation of tm F (G) for Theorem 3.9 and Theorem 3.10

Boundaried graphs and their equivalence classes. Many of the following definitions were introduced in [START_REF] Bodlaender | Meta) kernelization[END_REF][START_REF] Fomin | Bidimensionality and kernels[END_REF] (see also [START_REF] Garnero | Explicit linear kernels via dynamic programming[END_REF][START_REF] Kim | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF]).

Boundaried graphs. Let t ∈ N. A t-boundaried graph is a triple G = (G, R, λ)
where G is a graph, R ⊆ V (G), |R| = t, and λ : R → N + is an injective function. We call R the boundary of G and we call the vertices of R the boundary vertices of G.

We also call G the underlying graph of G. Moreover, we call t = |R| the boundary size of G and we define the label set of G as Λ(G) = λ(R). We also say that G is a boundaried graph if there exists an integer t such that G is an t-boundaried graph. We say that a boundary graph

G is consecutive if Λ(G) = 1, |R| . We define the size of G = (G, R, λ), as |V (G)| and we use the notation V (G) and E(G) for V (G) and E(G), respectively. If S ⊆ V (G), we define G = G \ v S such that G = (G , R , λ ), G = G \ v S, R = R \ S
, and λ = λ| R . We define B (t) as the set of all t-boundaried graphs. We also use the notation B ∅ = ((∅, ∅), ∅, ∅) to denote the (unique) 0-boundaried empty boundaried graph.

Given a t-boundaried graph G = (G, R, λ), we define ψ G : R → 1, t such that for each v ∈ R, ψ G (v) = |{u ∈ R | λ(u) ≤ λ(v)}|. Note that, as λ is an injective function, ψ G is a bijection and, given a boundary vertex v of G, we call ψ G (v) the index of v.

Let t ∈ N. We say that two t-boundaried graphs

G 1 = (G 1 , R 1 , λ 1 ) and G 2 = (G 2 , R 2 , λ 2 ) are isomorphic if there is a bijection σ : V (G 1 ) → V (G 2 ) that is an isomorphism σ : V (G 1 ) → V (G 2 ) from G 1 to G 2 and additionally ψ -1 G 1 • ψ G 2 ⊆ σ, i.
e., σ sends the boundary vertices of G 1 to equally-indexed boundary vertices of G 2 . We say that G 1 and

G 2 are boundary-isomorphic if ψ -1 G 1 •ψ G 2 is an isomorphism from G 1 [R 1 ] to G 2 [R 2 ]
and we denote this fact by G 1 ∼ G 2 . It is easy to make the following observation. Observation 3.12 For every t ∈ N, if S is a collection of t-boundaried graphs where |S| > 2 ( t 2 ) , then S contains at least two boundary-isomorphic graphs.

Topological minors of boundaried graphs.

Let G 1 = (G 1 , R 1 , λ 1 ) and G 2 = (G 2 , R 2 , λ 2 ) be two boundaried graphs. We say that G 1 is a topological minor of G 2 if there is a topological minor model (φ, σ) of G 1 in G 2 such that -ψ G 1 = ψ G 2 • φ| R 1 , i.e.
, the vertices of R 1 are mapped via φ to equally indexed vertices of R 2 and none of the vertices in R 2 \ φ(R 1 ) is a subdivision vertex of (φ, σ).

Operations on boundaried graphs.

Let G 1 = (G 1 , R 1 , λ 1 ) and G 2 = (G 2 , R 2 , λ 2 )
be two t-boundaried graphs. We define the gluing operation ⊕ such that

(G 1 , R 1 , λ 1 )⊕ (G 2 , R 2 , λ 2 )
is the graph G obtained by taking the disjoint union of G 1 and G 2 and then, for each i ∈ 1, t , identifying the vertex ψ -1 G 1 (i) and the vertex ψ -1 G 2 (i). Keep in mind that G 1 ⊕ G 2 is a graph and not a boundaried graph. Moreover, the operation ⊕ requires both boundaried graphs to have boundaries of the same size.

Let G = (G, R, λ) be a t-boundaried graph and let I ⊆ N. We denote G| I = (G, λ -1 (I), λ| λ -1 (I) ), i.e., we do not include in the boundary anymore the vertices that are not indexed by numbers in I. Clearly, G| I is a t -boundaried graph where

t = |I ∩ Λ(G)|. Let G 1 = (G 1 , R 1 , λ 1 ) and G 2 = (G 2 , R 2 , λ 2 ) be two boundaried graphs. Let also I = λ 1 (R 1 ) ∩ λ 2 (R 2 ) and let t = |R 1 | + |R 2 | -|I|. We define the merging operation such that (G 1 , R 1 , λ 1 ) (G 2 , R 2 , λ 2 ) is the t-boundaried graph G = (G, R, λ)
where G is obtained by taking the disjoint union of G 1 and G 2 and then for each i ∈ I identify the vertex λ -1 1 (i) with the vertex λ -1 2 (i). Similarly, R is the obtained by R 1 ∪ R 2 after applying the same identifications to pairs of vertices in R 1 and R 2 . Finally, λ = λ 1 ∪ λ 2 where, for j ∈ 1, 2 , λ j is obtained from λ j after replacing each (x, i) ∈ λ j (for some i ∈ I) by (x new , i), where x new is the result of the identification of λ -1 1 (i) and λ -1 2 (i). Observe that G 1 G 2 is a boundaried graph and that the operation does not require input boundaried graphs to have boundaries of the same size.

Let G = (G, R, λ) be a consecutive t-boundaried graph and let I ⊆ N be such that |I| = t. We define G = (G, R, λ) I as the unique t-boundaried graph G = (G, R, λ ) where λ : R → I is a bijection and ψ G = λ.

Equivalence relations. Let F be a regular collection of graphs and let t be a nonnegative integer. We define an equivalence relation ≡ (F ,t) on t-boundaried graphs as follows: Given two t-boundaried graphs G 1 and G 2 , we write

G 1 ≡ (F ,t) G 2 to denote that ∀G ∈ B (t) F tm G ⊕ G 1 ⇐⇒ F tm G ⊕ G 2 .
It is easy to verify that ≡ (F ,t) is an equivalent relation. We set up a set of representatives R (F ,t) as a set containing, for each equivalent class C of ≡ (F ,t) , some consecutive t-boundaried graph in C with minimum number of edges and no isolated vertices out of its boundary (if there are more than one such graphs, pick one arbitrarily). Given a t-boundaried graph G we denote by rep (F ) (G) the t-boundaried graph B ∈ R (F ,t) where B ≡ (F ,t) G and we call B the F-representative of G. Clearly, rep (F ) (B) = B.

Note that if B = (B, R, λ) is a t-boundaried graph and F tm B, then rep (F ) (B) is, by definition, a consecutive t-boundaried graph whose underlying graph is a graph H ∈ F with minimum number of edges, possibly completed with t -|V (H)| isolated vertices in the case where |V (H)| < t. We denote this graph by F (F ,t) (if there are many possible choices, just pick one arbitrarily). Note also that the underlying graph of every boundaried graph in R (F ,t) \ {F (F ,t) } belongs in ex tm (F).

We need the following three lemmata. The first one is a direct consequence of the definitions of the equivalence relation ≡ (F ,t) and the set of representatives R (F ,t) . Lemma 3.13 Let F be a regular collection of graphs and let t ∈ N. Let also B 1 and B 2 be two t-boundaried graphs. Then B 1 ≡ (F ,t) B 2 if an only if

∀G ∈ R (F ,t) , F tm G ⊕ B 1 ⇐⇒ F tm G ⊕ B 2 .
Lemma 3.14 Let F be a connected collection of graphs and let t ∈ N. Let also B ∈ R (F ,t) . Then every connected component of the underlying graph of B intersects its boundary set. ,t) . As the lemma follows directly in the case where B = F (F ,t) , we may assume that F tm B. We assume, towards a contradiction, that B has a component C whose vertex set does not contain any of the vertices of R. This means that B can be seen as the disjoint union of C and B = B \ V (C). As F tm B, we also have that

Proof: Let B = (B, R, λ) ∈ R (F
F tm C. Let now B = (B , R, λ). Clearly |E(B )| < |E(B)|.
We will arrive to a contradiction by proving that B ≡ (F ,t) B. Let G ∈ B (t) . Note that G ⊕ B is the disjoint union of G ⊕ B and C. As all graphs in F are connected, it follows that a (connected) graph H ∈ F is a topological minor of G ⊕ B if and only if H is a topological minor of G ⊕ B . We conclude that B ≡ (F ,t) B, a contradiction. Lemma 3.15 Let F be a connected collection of graphs. Then, for every graph B, it holds that rep (F ) ((B, ∅, ∅)) = B ∅ if and only if F tm G. ,t) . As F does not contain the empty graph, we have that

Proof: Let B = (B, ∅, ∅) where B is a graph. Recall that if F tm B, then rep (F ) (B) = F (F
F (F ,t) = B ∅ , therefore rep (F ) (B) = B ∅ .
Suppose now that F tm B. We have to prove that for every (0) . Note that G ⊕ B is the disjoint union of G and B and that G ⊕ B ∅ = G. As F tm B and F is connected, it follows that the disjoint union of B and G contains some (connected) graph in F if and only if B does. This implies that F tm G ⊕ B ⇐⇒ F tm G ⊕ B ∅ , as required.

G ∈ B (0) , F tm G ⊕ B ⇐⇒ F tm G ⊕ B ∅ . Let G = (G, ∅, ∅) ∈ B
Folios. Let F be a regular collection of graphs. Given t, r ∈ N, we define A (t) F ,r as the set of all pairwise non-isomorphic boundaried graphs, that contain at most r nonboundary vertices, whose label set is a subset of 1, t , and whose underlying graph Given a t-boundaried graph B and an integer r ∈ N, we define the (F, r)-folio of B, denoted by folio(B, F, r), the set containing all boundaried graphs in A (t) F ,r that are topological minors of B. Moreover, in case F tm B, we also include the graph F (F ,t) in folio(B, F, r).

We also define

F (t) F ,r = 2 A (t)
F ,r ∪{F (F ,t) } and notice that {folio(B, F, r)

| B ∈ B (t) } ⊆ F (t) F ,r , i.e., F (t) 
F ,r contains all different (F, r)-folios of t-boundaried graphs. Lemma 3.16 Let t ∈ N, let F be a regular collection of graphs, and let d = size(F). For every t-boundaried graph B and every r ∈ N, it holds that |folio(B, F, r)| = 2 O r+d (t log t) . Moreover,

|F (t) F ,r | = 2 2 O r+d (t log t) .
Proof: Let t ∈ N, let F be a regular collection of graphs, let r ∈ N, and let n = t + r. We prove a stronger result, namely that |A 

F ,r is in ex tm (F). If we want to construct an element G = (G, R, λ) of A (t)
F ,r with at most n vertices, then there are asymptotically at most c

• n • n 2 c•n ≤ c • n 1+2•c
•n choices for the edge set E(G), at most t • n t ≤ t • n t choices for R, and t |R| ≤ t t choices for the function λ. We obtain that A (t)

F ,r is of size at most c • 2 (1+2•c•n) log n • t • 2 t log n • 2 t log t = 2 O r+d (t log t)
, and the lemma follows.

The following lemma indicates that folios define a refinement of the equivalence relation ≡ (F ,t) . Lemma 3.17 Let F be a regular collection of graphs and let d = size(F). Let also B 1 and B 2 be two t-boundaried graphs.

If folio(B 1 , F, d) = folio(B 2 , F, d), then B 1 ≡ (F ,t) B 2 .
Proof: Let B 1 and B 2 be two t-boundaried graphs such that folio(B 1 , F, d) = folio(B 2 , F, d). We fix G ∈ B (t) , and we need to prove that

F tm G ⊕ B 1 if and only if F tm G ⊕ B 2 .
Assume that F tm G ⊕ B 1 . Then there exists a graph F ∈ F and a topological minor model (φ, σ) of F in G ⊕ B 1 . This topological minor model (φ, σ) can be naturally decomposed into two topological minor models (φ 0 , σ 0 ) and (φ 1 , σ 1 ) of two graphs F 0 and F 1 in A (t) F ,d , respectively, with F 0 F 1 = F , such that (φ 0 , σ 0 ) (resp. (φ 1 , σ 1 )) is a topological minor model of F 0 (resp. F 1 ) in the (boundaried) graph G (resp. B 1 ). Since folio(B 1 , F, d) = folio(B 2 , F, d), there exists a topological minor 104
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Combining the topological minor models (φ 0 , σ 0 ) and (φ 2 , σ 2 ) gives rise to a topological minor model (φ , σ ) of F in G ⊕ B 2 , and therefore

F tm G ⊕ B 2 .
We show symmetrically that if F tm G ⊕ B 2 , then F tm G ⊕ B 1 . The lemma follows.

Lemmata 3.16 and 3.17 directly imply the following.

Lemma 3.18 There exists a function h

1 : N × N → N such that if F is a regular collection of graphs and t ∈ N, then |R (F ,t) | ≤ h 1 (d, t) where d = size(F). Moreover h 1 (d, t) = 2 2 O d (t•log t) .
Branch-decompositions of boundaried graphs. Given a boundaried graph G = (G, R, λ), we extend the definition of the branch-decomposition to G to be the branch-decomposition of (G, R). Given a branch-decomposition (T, σ) of a boundaried graph G = (G, R, λ) with root r = σ(R) and given a vertex labeling function ρ of G such that λ ⊆ ρ, we associate for each e ∈ E(T) the boundaried graph G e = (G e , R e , λ e ) where the definition of G e is given by the definition of branchdecomposition, R e = mid(e), and λ e = ρ| Re . We also set t e = |R e | and observe that G e is a t e -boundaried graph. We denote by bw(G) the branch-width of G, i.e., bw((G, R)).

We now have all the ingredients to prove Theorem 3.9.

Proof of Theorem 3.9: We provide a dynamic programming algorithm for the computation of tm F (G) for the general case where F is a regular collection of graphs. We first consider an, arbitrarily chosen, vertex labeling ρ of G. From Lemma 2.12, we may assume that we have a branch-decomposition (T, σ) of (G, ∅, ∅) of width w = O(tw(G)). This gives rise to the t e -boundaried graphs G e = (G e , R e , λ e ) for each e ∈ E(T). Moreover, if r is the root of T, σ -1 (r) = ∅ = R er and G er = (G, ∅, ∅). Keep also in mind that, for each e ∈ E(T), t e ≤ w.

For each e ∈ E(T), we say that (L, C) is an e-pair if L ⊆ R e and C ∈ F 

F (∅, C) | C ∈ 2 A (0)
F ,d }.
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Hence, our aim is to give a way to compute tm (e)

F for every e ∈ E(T). Our dynamic programming algorithm does this in a bottom-up fashion, starting from the leaf edges. Let ∈ L(T) \ {r} and let e be the unique edge of T that contains it. Let also σ -1 ( ) = {x, y}. Clearly, G e = ({x, y}, {{x, y}}) and

P e = ({x, y}, A 0 F ,d ) ∪ ( {x}, {y} × A (1) F ,d ) ∪ ({∅} × A (2) F ,d ).
As the size of the elements in P e depends only on d, it is possible to compute tm

(e l ) F in O d (1) steps.
Let e ∈ {e r } ∪ E(T \ L(T)) and let e 1 and e 2 be the two other edges of T that share an endpoint with e and where each path from them to r contains e.

Let e ∈ {e r } ∪ E(T \ L(T)) and let e 1 and e 2 be the two children of e. We also set

F e = R e 1 ∪ R e 2 \ R e .
For the dynamic programming algorithm, it is enough to describe how to compute tm (e) F given tm

(e i ) F , i ∈ 1, 2 .
For this, given an e-pair (L, C) ∈ P e it is possible to verify that tm (e) F can be done again in time 2 2 O d (w log w) . This means that the whole dynamic programming can be done in time

F (L, C) = min tm (e 1 ) F (L 1 , C 1 ) + tm (e 2 ) F (L 2 , C 2 ) -|L 1 ∩ L 2 | | (L i , C i ) ∈ P e i , i ∈ 1, 2 , L i \ F e = L ∩ R e i , i ∈ 1, 2 , L 1 ∩ F e = L 2 ∩ F e , and C = (B 1 ,B 2 )∈C 1 ×C 2 folio (B 1 Z 1 ) (B 2 Z 2 ) | Z , F, t e -|L| where Z = ρ(R e \ L) and Z i = ρ(R e i \ L i ), i ∈ 1, 2 .

Note that given tm

2 2 O d (w•log w) • |V (T)| = 2 2 O d (w log w) • |E(G)|. As |E(G)| = O(tw(G) • |V (G)|), the claimed running time follows.
Bounding the sets of representatives. We now prove the following result. Lemma 3.19 Let t ∈ N, let F be a connected and planar collection of graphs, let d = size(F), and let R (F ,t) be a set of representatives. Then |R (F ,t) | = 2 O d (t•log t) . Moreover, there exists an algorithm that given F and t, constructs a set of representatives R (F ,t) 

in time 2 O d (t•log t) .
Before we proceed with the proof of Lemma 3.19, we need a series of results. The proof of the following lemma uses ideas similar to the ones presented by Garnero et al. [START_REF] Garnero | Explicit linear kernels via dynamic programming[END_REF]. Lemma 3.20 There is a function h 2 : N × N → N such that if -F is a connected and planar collection of graphs,

-d = size(F), -t, z ∈ N, -B = (B, R, λ) ∈ R (F ,t) \ {F (F ,t) }, and -X is a subset of V (B) such that X ∩ R = ∅ and |N B (X)| ≤ z, then |X| ≤ h 2 (z, d). Proof: We set h 2 (z, d) = 2 h 1 (d,µ(d)+z)•(z+µ(d)+1
)+ζ(µ(d)+z)-1 + z, where h 1 is the function of Lemma 3.18, µ is the function of Lemma 2.14, and ζ :

N → N is a function such that, for each x ∈ N, ζ(x) = 2 ( x 2 ) . Let y = µ(d), let q = h 1 (d, y + z) • (x + y + 1) • ζ(y + z), let s = h 2 (z, d),
and let observe that s = 2 q-1 + z. Towards a contradiction, we assume that |X| > s. (F ,t) } and let ρ be a vertex-labeling of B where λ ⊆ ρ. As B = F (F ,t) , it follows that B ∈ ex tm (F). Note now that G has at most |R | connected components. Indeed, if it has more, then one of them, say C, will not intersect |R |. This, together with the fact that R ∩ X = ∅, implies that C is also a connected component of B whose vertex set is disjoint from R, a contradiction to Lemma 3.14. We conclude that

Let B = (B, R, λ) ∈ R (F ,t) \ {F
|E(G)| ≥ |V (G)| -|R | ≥ |V (G)| -z > s -z = 2 q-1 .
Let (T, σ) be a branch-decomposition of G of width at most y + z with root r. We also consider the graph G e = (G e , R e , λ e ), for each e ∈ E(T ) (recall that λ e ⊆ ρ).

Observe that

∀e ∈ E(T ), |R e | ≤ y + z. (3.3) 3.2. THE F-DELETION PROBLEM 107 
We define

H = {rep F (G e ) | e ∈ E(T )}. From (3.3), H ⊆ i∈ 0,y+z R (F ,i) . From Lemma 3.18, |H| ≤ (y + z + 1) • h 1 (d, y + z), therefore q ≥ |H| • ζ(y + z).
Let P be a longest path in T that has r as an endpoint. As B has more than 2 q-1 edges, T also has more than 2 q-1 leaves different from r. This means that P has more than q edges. Recall that q ≥ |H| • ζ(y + z). As a consequence, there is a set S ⊆ {G e | e ∈ E(P )} where |S| > ζ(y + z) and rep F (S) contains only one boundaried graph (i.e., all the boundaried graphs in S have the same F-representative). From Observation 3.12, there are two graphs G e 1 , G e 2 ∈ S, e 1 = e 2 , such that

G e 1 ≡ (F ,t) G e 2 and (3.4) G e 1 ∼ G e 2 .
(3.5)

Without lose of generality, we assume that e 1 is in the path in T between r and some endpoint of e 2 . This implies that the underlying graph of G e 1 is a proper subgraph of the underlying graph of G e 2 , therefore

|E(G e 2 )| < |E(G e 1 )|. (3.6) Recall that G e i = (G e i , R e i , λ e i ), i ∈ 1, 2 . Let B -= B \ (V (G e 1 ) \ R e 1 )
and we set B -= (B -, R e 1 , λ e 1 ). Clearly, B -∼ G e 1 . This, combined with (3.5), implies that We now claim that B ≡ (F ,t) B * . For this, we consider any D = (D, R, λ) ∈ B (t) . We define B = (B -, R, λ), D + = D ⊕ B , and D + = (D + , R e 1 , λ e 1 ). Note that

B -∼ G e 2 . ( 3 
D ⊕ B = D + ⊕ G e 1 and (3.9) D ⊕ B * = D + ⊕ G e 2 .
(3.10) From (3.4), we have that

F tm D + ⊕ G e 1 ⇐⇒ F tm D + ⊕ G e 2 .
This, together with (3.9) and (3.10), implies that F tm D ⊕ B ⇐⇒ F tm D ⊕ B * , therefore B ≡ (F ,t) B * , and the claim follows.

We just proved that B ≡ (F ,t) B * . This, together with (3.8), contradict the fact that B ∈ R (F ,t) . Therefore |X| ≤ s, as required.

Given a graph G and an integer y, we say that a vertex set S ⊆ V (G) is a branchwidth-y-modulator if bw(G \ S) ≤ y. This notion is inspired from treewidthmodulators, which have been recently used in a series of papers (cf., for instance, [START_REF] Bodlaender | Meta) kernelization[END_REF][START_REF] Fomin | Bidimensionality and kernels[END_REF][START_REF] Garnero | Explicit linear kernels via dynamic programming[END_REF][START_REF] Kim | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF].

The following proposition is a (weaker) restatement of [67, Lemma 3.10 of the full version] (see also [START_REF] Kim | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF]). Proof:

We define h 3 : N → N so that h 3 (d) = 2 + h 2 (f 2 (d, µ(d)), µ(d))
where h 2 is the function of Lemma 3.20, f 2 is the function of Proposition 3.21, and µ is the function of Lemma 2.14. F ) . As F (F ,t) has at most d vertices, we may assume that G = F (F ,t) . Note that G ∈ ex tm (F), therefore, from Lemma 2.14, bw(G) ≤ µ(d). We set y = µ(d) and we observe that R is a branchwidth-y-modulator of G. Therefore, we can apply Proposition 3.21 on G and R and obtain a partition X of V (G) and an element X 0 ∈ X such that

Let G = (G, R, λ) ∈ R (t,
R ⊆ X 0 , (3.11) max{|X 0 |, |X | -1} ≤ 2 • |R|, and (3.12) ∀X ∈ X \ {X 0 } : |N G (X)| ≤ f 2 (d, y) (3.13)
From (3.11) and (3.13), each d,y). Therefore, from Lemma 3.20, for each X ∈ X \ {X 0 }, |X| ≤ h 2 (f 2 (d, y), d). We obtain that

X ∈ X \ {X 0 } is a subset of V (G) such that X ∩ R = ∅ and |N G (X)| ≤ f 2 (
|G| = |X 0 | + X∈X \{X 0 } |X| ≤ (3.12) 2 • |R| + |R| • h 2 (f 2 (d, y), d) = t • (2 + h 2 (f 2 (d, y), d)) = t • h 3 (d),
as required.

The next proposition follows from Equation (1.3) and Proposition 2.11.

Proposition 3.23 Let n, y ∈ N. The number of labeled graphs with at most n vertices and branchwidth at most q is 2 Oq(n•log n) .

Proof of Lemma 3.19: Before we proceed to the proof we need one more definition.

Given n ∈ N, we set B (F ,t)

≤n = A (t)
F ,n-t ∪ {F (F ,t) }. The algorithm claimed in the second statement of the lemma constructs a set of representatives R (F ,t) as follows: first it finds a partition Q of B (F ,t) ≤n into equivalence classes with respect to ≡ (F ,t) and then picks an element with minimum number of edges from each set of this partition.

The computation of the above partition of B (F ,t)

≤n is based on the fact that, given two t-boundaried graphs B 1 and

B 2 , B 1 ≡ (F ,t) B 2 if and only if, for every G ∈ B (F ,t) ≤n , F tm G ⊕ B 1 ⇐⇒ F tm G ⊕ B 2 .
This fact follows directly from Lemma 3.13 and taking into account that R (F ,t) ⊆ B (F ,t) ≤n .

Note that we can construct

Q in time |B (F ,t) ≤n | 3 • O d (1) • t O(1) . As |B (F ,t) ≤n | = 2 O d (t•log t)
, the construction of Q, and therefore of R (F ,t) as well, can be done in the claimed running time.

(More) dynamic programming. We are now ready to prove Theorem 3.10. The main difference with respect to the proof of Theorem 3.9 is an improvement on the size of the tables of the dynamic programming algorithm, namely |P e |, where the fact that F is a connected and planar subcubic collection of graphs is exploited.

Proof of Theorem 3.10: We provide a dynamic programming algorithm for the computation of tm F (G). We first consider an, arbitrarily chosen, vertex labeling ρ of G. From Lemma 2.12, we may assume that we have a branch-decomposition (T, σ) of (G, ∅, ∅) of width at most w = O(bw(G)) = O(tw(G)). This gives rise to the t e -boundaried graphs G e = (G e , R e , λ e ) for each e ∈ E(T). Moreover, if r is the root of T, σ -1 (r) = ∅ = R er and G er = (G, ∅, ∅). Keep also in mind that for each e ∈ E(T), t e ≤ w. Our next step is to define the tables of the dynamic programming algorithm. Let e ∈ E(T). We call the pair (L, B) an e-pair if F ) where t e = |R e \ L| = t e -|L|.

1. L ⊆ R e 2. B = (B, R, λ) ∈ R (t e ,
Note that this definition of e-pair is different from the definition given in the proof of Theorem 3.9 as here we request B to be in R (t e ,F ) instead of F 

2 i • |R (F ,te-i) | = (t e + 1) • 2 te • 2 O d (te•log te) (from Lemma 3.19) = 2 O d (w•log w) .
We then define the function tm (e)

F : P e → N such that if (L, B) ∈ P e , then tm (e) F (L, B) = min{|S| | S ⊆ V (G e ), L = R e ∩ S, B = rep F (G e \ S)}.
Note that

P er = {(∅, B ∅ ), (∅, F (F ,t) )} where B ∅ = ((∅, ∅), ∅, ∅). We claim that tm F (G) = tm (er) F (∅, B ∅ ). Indeed, tm F (G) = min{|S| | F tm G \ S} (from definition of tm F ) = min{|S| | B ∅ = rep F ((G \ S, ∅, ∅))} (from Lemma 3.15) = min{|S| | ∅ = ∅ ∩ S, B ∅ = rep F (G \ S, ∅, ∅)} = min{|S| | ∅ = R re ∩ S, B ∅ = rep F (G er \ S)} = tm (er) F (∅, B ∅ ).
Therefore, our aim is to give a way to compute tm (e)

F for every e ∈ E(T). Our dynamic programming algorithm does this in a bottom-up fashion, starting from the leaf edges. Let ∈ L(T) \ {r} and let e be the edge of T that contains it. Let also σ -1 (e ) = {x, y}. Clearly, G e = ({x, y}, {{x, y}}) and

P e = ( {x, y} × R (0,F ) ) ∪ ( {x}, {y} × R (1,F ) ) ∪ ( ∅ × R (2,F ) ).
As the size of the elements in P e depends only on F, it is possible to compute tm

(e ) F in O d (1) steps.
Let e be a non-leaf edge and let e 1 and e 2 be its two children. We also set F e = R e 1 ∪ R e 2 \ R e . For the dynamic programming algorithm, it is enough to describe how to compute tm (e) F given tm

(e i ) F , i ∈ 1, 2 .
For this, given an e-pair (L, B) ∈ P e where B = (B, R, λ), it is possible to verify that tm (e) F can again be done in time 2 O d (w•log w) . This means that the whole dynamic programming can be done in time

F (L, B) = min tm (e 1 ) F (L 1 , B 1 ) + tm (e 2 ) F (L 2 , B 2 ) -|L 1 ∩ L 2 | | (L i , B i ) ∈ P e i , i ∈ 1, 2 , L i \ F e = L ∩ R e i , i ∈ 1, 2 , L 1 ∩ F e = L 2 ∩ F e , and B = rep F (B 1 Z 1 ) (B 2 Z 2 ) | Z , t e -|L| where Z = ρ(R e \ L) and Z i = ρ(R e i \ L i ), i ∈ 1, 2 .
2 O d (w•log w) • |E(T)| = 2 O d (w•log w) • O(|E(G)|). As |E(G)| = O(bw(G) • |V (G)|), the claimed running time follows.

Single exponential algorithms for hitting paths and cycles

In this subsection we show that if F ∈ {{P 3 }, {P 4 }, {C 4 }}, then tm F can be computed in single exponential time. Note that for such F, tm F = m F . It is worth mentioning that the {C i }-TM-Deletion problem has been studied in digraphs from a non-parameterized point of view [START_REF] Paik | Deleting vertices to bound path length[END_REF]. We first need a simple observation. Observation 3.24 Let G be a graph and h be a positive integer. Then the following assertions are equivalent.

-G contains P h as a topological minor.

-G contains P h as a minor.

-G contains P h as a subgraph.

Moreover, the following assertions are also equivalent.

-G contains C h as a topological minor.

-G contains C h as a minor.

A single exponential algorithm for tm {P 3 } . We first give a simple structural characterization of the graphs that exclude P 3 as a topological minor. Proof: Let G be a graph. If G has a connected component of size at least 3, then clearly it contains a P 3 . This implies that, if P 3 tm G, then each connected component of G has size at most 2 and so, each vertex of G has degree at most 1. Conversely, if each vertex of G has degree at most 1, then, as P 3 contains a vertex of degree 2, P 3 tm G.

We present an algorithm using classical dynamic programming techniques over a tree-decomposition of the input graph. Let G be an instance of {P 3 }-TM-Deletion and let ((T, X ), r, G) be a nice tree-decomposition of G.

We define, for each t ∈ V (T), the set I t = {(S, S 0 ) | S, S 0 ⊆ X t , S ∩ S 0 = ∅} and a function r t : I t → N such that for each (S, S 0 ) ∈ I t , r(S, S 0 ) is the minimum such that there exists a set S ⊆ V (G t ), called the witness of (S, S 0 ), that satisfies:

-| S| ≤ , -S ∩ X t = S, -P 3 tm G t \ v S, and 
-S 0 is the set of each vertex of X t of degree 0 in G t \ v S.
Note that with this definition, tm F (G) = r r (∅, ∅). For each t ∈ V (T), we assume that we have already computed r t for each children t of t, and we proceed to the computation of r t . We distinguish several cases depending on the type of node t.

Leaf. I t = {(∅, ∅)} and r t (∅, ∅) = 0.

Introduce vertex. If v is the insertion vertex of X t and t is the child of t, then for each (S, S 0 ) ∈ I t ,

r t (S, S 0 ) = min {r t (S , S 0 ) + 1 | (S , S 0 ) ∈ I t , S = S ∪ {v}} ∪ {r t (S, S 0 ) | (S, S 0 ) ∈ I t , S 0 = S 0 ∪ {v}, N Gt[Xt] (v) \ S = ∅} ∪ {r t (S, S 0 ) | (S, S 0 ) ∈ I t , S 0 = S 0 \ {u}, u ∈ S 0 , N Gt[Xt] (v) \ S = {u}} .
Forget vertex. If v is the forget vertex of X t and t is the child of t, then for each (S, S 0 ) ∈ I t , r t (S, S 0 ) = min{r t (S , S 0 ) | (S , S 0 ) ∈ I t , S = S \ {v}, S 0 = S 0 \ {v}} Join. If t and t are the children of t, then for each (S, S 0 ) ∈ I t , r(S, S 0 ) = min{r(S , S 0 ) + r(S , S 0 ) We now show that for each t ∈ V (T), the function r t is correctly computed by the algorithm.

-|S ∩ S | | (S , S 0 ) ∈ I t , (S , S 0 ) ∈ I t , S = S ∪ S , S 0 = S 0 ∩ S 0 , X t \ S ⊆ S 0 ∪ S 0 }.
Leaf. This follows directly from the definition of r t .

Introduce vertex. Let v be the insertion vertex of X t . As v is the insertion vertex, we have that N Gt[Xt] (v) = N Gt (v), and so for each value we add to the set, we can find a witness of (S, S 0 ) of size bounded by this value.

Conversely, let (S, S 0 ) ∈ I t and let S be a witness. If v ∈ S, then (S \ {v}, S 0 ) ∈ I t and r(S \ {v}, S 0 ) ≤ | S| -1, if v ∈ S 0 then (S, S 0 \ {v}) ∈ I t and r(S, S 0 \ {v}) ≤ | S|, and if v ∈ X t \ (S ∪ S 0 ), then by definition v has a unique neighbor, say u, in G t \ v S, moreover u ∈ X t \ (S ∪ S 0 ), v is the unique neighbor of u in G t \ v S, (S, S 0 ∪ {u}) ∈ I t , and r(S, S 0 ∪ {u}) ≤ | S|.

Forget vertex. This also follows directly from the definition of r t .

Join. Let (S , S 0 ) ∈ R t and let (S , S 0 ) ∈ I t with witnesses S and S , respectively. If S = S ∪ S and S 0 ∪ S 0 = X t \ S, then the condition X t \ S ⊆ S 0 ∪ S 0 ensures that G t \ v ( S ∪ S ) has no vertex of degree at least 2 and so S ∪ S is a witness of (S, S 0 ∩ S 0 ) ∈ I t of size at most r t (S , S 0 ) + r t (S , S 0 ) -|S ∩ S |.

Conversely, let (S, S 0 ) ∈ I t with witness S. If S = S ∩ V (G t ) and S = S ∩ V (G t ), then by definition of S, S is a witness of some (S , S 0 ) ∈ I t , and S is a witness of some (S , S 0 ) ∈ I t such that S = S = S , S 0 ∪ S 0 = X t \ S, and S 0 = S 0 ∩ S 0 , and we have r t (S , S 0 ) + r t (S , S 0 ) -|S| ≤ | S|.

The following theorem summarizes the above discussion. As we did for tm {P 4 } , we present an algorithm using classical dynamic programming techniques over a tree-decomposition of the input graph. Let G be an instance of {P 4 }-Deletion, and let ((T, X ), r, G) be a nice tree-decomposition of G.

CHAPTER 3. ALGORITHMIC ASPECTS OF TREEWIDTH

We define, for each t ∈ T, the set I t as the set of each tuple (S, S 1+ , S 1-, S * , S 3+ , S 3-) such that {S, S 1+ , S 1-, S * , S 3+ , S 3-} is a partition of X t and the function r t : I t → N such that, for each (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t , r t (S, S 1+ , S 1-, S * , S 3+ , S 3-) is the minimum such that there exists a triple ( S, S * , S 3-

) ⊆ V (G t ) × V (G t ) × V (G t )
, called the witness of (S, S 1+ , S 1-, S * , S 3+ , S 3-), which satisfies the following properties:

-S, S * , and S 3-are pairwise disjoint,

-S ∩ X t = S, S * ∩ X t = S * , and S 3-∩ X t = S 3-, -| S| ≤ , -P 4 tm G t \ v S, -S 1+ is a set of vertices of degree 0 in G t \ v S,
each vertex of S 1-has a unique neighbor in G t \ v S and this neighbor is in S * ,

-each connected component of G t [ S 3-] is a C 3 , -there is no edge in G t \ v S between a vertex of S 3-and a vertex of V (G t ) \ ( S ∪ S 3-),
there is no edge in G t \ v S between a vertex of S 3+ and a vertex of V (G t ) \ ( S ∪ S 3+ ), and there is no edge in G t \ v S between two vertices of S * .

Intuitively, S corresponds to a partial solution in G t . Note that, by Lemma 3.27, each component of G t \ v S must be either a star or a C 3 . With this in mind, S * is the set of vertices that are centers of a star in G t \ v S, S 1+ is the set of leaves of a star that are not yet connected to a vertex of S * , S 1-is the set of leaves of a star that are already connected to a vertex of S * , S 3-is the set of vertices that induce C 3 's in G t , and S 3+ is a set of vertices that will induce C 3 's when further edges will appear.

Note that with this definition, tm F (G) = r r (∅, ∅, ∅, ∅, ∅, ∅). For each t ∈ V (T), we assume that we have already computed r t for each children t of t, and we proceed to the computation of r t . We distinguish several cases depending on the type of node t.

Leaf. I t = {(∅, ∅, ∅, ∅, ∅, ∅)} and r t (∅, ∅, ∅, ∅, ∅, ∅) = 0.

Introduce vertex. If v is the insertion vertex of X t and t is the child of t, then, for each (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t , r t (S, S 1+ , S 1-, S * , S 3+ , S 3-) is equal to 

min {r t (S, S 1+ , S 1-, S * , S 3+ , S 3-) + 1 | (S , S 1+ , S 1-, S * , S 3+ , S 3-) ∈ R t , S = S ∪ {v}} ∪ {r t (S, S 1+ , S 1-, S * , S 3+ , S 3-) | (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ R t , S 1+ = S 1+ ∪ {v}, N Gt[Xt\S] (v) = ∅} ∪ {r t (S, S 1+ , S 1-, S * , S 3+ , S 3-) | (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ R t , S 1-= S 1-∪ {v}, z ∈ S * , N Gt[Xt\S] (v) = {z}} ∪ {r t (S, S 1+ , S 1-, S * , S 3+ , S 3-) | (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ R t , S * = S * ∪ {v}, N Gt[Xt\S] (v) ⊆ S 1+ , S 1+ = S 1+ \ N Gt[Xt\S] (v), S 1-= S 1-∪ N Gt[Xt\S] (v)} ∪ {r t (S, S 1+ , S 1-, S * , S 3+ , S 3-) | (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ R t , S 3+ = S 3+ ∪ {v}, [N Gt[Xt\S ] (v) = ∅] or [z ∈ S 3+ , N Gt[Xt\S] (v) = {z}, N Gt[Xt\S] (z) = {v}]} ∪ {r t (S, S 1+ , S 1-, S * , S 3+ , S 3-) | (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ R t , S 3+ = S 3+ \ {z, z }, S 3-= S 3-∪ {z, z , v}, z, z ∈ S 3+ , N Gt[Xt\S] (v) = {z, z }, N Gt[Xt\S] (z) = {v, z }, N Gt[Xt\S] (z ) = {v, z}} . Forget vertex. If v is the forget vertex of X t and
) ∈ I t , (S 1+ ∪ S 1-) ∩ (S 3+ ∪ S 3-) = (S 1+ ∪ S 1-) ∩ (S 3+ ∪ S 3-) = ∅, ∀v ∈ S 1-∩ S 1-, ∃z ∈ S * : N Gt[Xt\S] (v) = {z}, ∀v ∈ S 3-∩ S 3-, ∃z, z ∈ S 3-∩ S 3-: v, z, z induce a C 3 in G t [X t \ S]}.
Let us analyze the running time of this algorithm. As, for each t ∈ V (T), S, S We now show that for each t ∈ V (T), r t is correctly computed by the algorithm. For each (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t , it can be easily checked that each value we compute respects the property r t (S, S 1+ , S 1-, S * , S 3+ , S 3-) ≤ . Conversely, we now argue that for each (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t , the computed value is such that for any witness ( S, S * , S 3-) of (S, S 1+ , S 1-, S * , S 3+ , S 3-) is such that ≤ | S|.

We again take a node t ∈ V (T), assume that the property is true for any child of t, and distinguish the type of node t.

Leaf. This follows directly from the definition of r t .

Introduce vertex. Let v be the insertion vertex of X t , let (S, S 1+ , S 1-, S * , S 3+ , S 3-) be a tuple of R t , and let ( S, S * , S 3-) be a witness.

-If v ∈ S, then (S \ {v}, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t and r t (S \ {v}, S 1+ , S 1-, S * , S 3+ , S 3-) ≤ | S| -1.

-

If v ∈ S 1+ , then v is of degree 0 in G t \ v S, hence (S, S 1+ \{v}, S 1-, S * , S 3+ , S 3-) is in I t and r t (S, S 1+ \ {v}, S 1-, S * , S 3+ , S 3-) ≤ | S|.
-If v ∈ S 1-, then v has a unique neighbor that is in S * . As v is the insertion vertex of X t , it implies that N Gt (v) ⊆ S * , and so (S, S 1+ , S 1-\ {v}, S * , S 3+ , S 3-) ∈ I t and r t (S,

S 1+ , S 1-\ {v}, S * , S 3+ , S 3-) ≤ | S|. -If v ∈ S * , then every neighbor of v is in S 1-and has degree 1 in G t \ v S.
Thus, (S, 

S 1+ ∪ N Gt[Xt\S] (v), S 1-\ N Gt[Xt\S] (v), S * \ {v}, S 3+ , S 3-) ∈ I t and r t (S, S 1+ ∪ N Gt[Xt\S] (v), S 1-\ N Gt[Xt\S] (v), S * \ {v}, S 3+ , S 3-) ≤ | S|. -If v ∈ S 3+ , then (S, S 1+ , S 1-, S * , S 3+ \{v}, S 3-) ∈ I t and r t (S, S 1+ , S 1-, S * , S 3+ \ {v}, S 3-) ≤ | S|. -If v ∈ S 3-, then there exist z and z in S 3-such that {v, z, z } induce a C 3 in G t \ v S
S = S ∩ V (G t ), S = S ∩ V (G t ), S * = S * ∩V (G t ), S * = S * ∩V (G t ), S 3-⊆ S 3-∩V (G t ), and S 3-⊆ S 3-∩V (G t ), such that each connected component of G t [ S 3-] (resp. G t [ S 3-]) is a C 3 and G t \ v ( S ∪ S 3-) (resp. G t \ v ( S ∪ S 3-)) is a forest). Then we define -S = S ∩ X t , -S 1+ = S 1+ ∪ {v ∈ S 1-| N Gt\v S (v) ⊆ S * }, -S 1-= {v ∈ S 1-| N Gt\v S (v) ⊆ S * }, -S * = S * ∩ V (G t ), -S 3-= S 3-∩ X t , and -S 3+ = S 3+ ∪ (S 3-\ S 3-).
Note that (S , S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t . We define (S , S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t similarly. Moreover we can easily check that We give some definitions that will be needed. Given a graph G, we denote by andc 3 (G) the number of C 3 's that are subgraphs of G. Recall that cc(G) denotes the number of connected components of G. We say that G satisfies the C 4 -condition if the following conditions hold:

-S = S = S , S * = S * = S * , -(S 1+ ∪ S 1-) ∩ (S 3+ ∪ S 3-) = (S 1+ ∪ S 1-) ∩ (S 3+ ∪ S 3-) = ∅, -∀v ∈ S 1-∩ S 1-, ∃z ∈ S * : N Gt[Xt\S] (v) = {z}, -∀v ∈ S 3-∩ S 3-, ∃z, z ∈ S 3-∩ S 3-: v, z, z induce a C 3 in G t [X t \ S], -(S, S 1+ , S 1-, S * , S 3+ , S 3-) = (S, S 1+ ∩ S 1+ , S 1-∪ S 1-, S * , S 3+ ∩ S 3+ , S 3-∪ S 3 
n(G) = |V (G)|, m(G) = |E(G)|,
-G does not contain the diamond as a subgraph, and

-n(G) -m(G) + c 3 (G) = cc(G).
As in the case of P 3 and P 4 , we state in Lemma 3.30 a structural characterization of the graphs that exclude C 4 as a (topological) minor. We first need an auxiliary lemma.

Lemma 3.29 Let n 0 be a positive integer. Assume that for each graph G such that 

1 ≤ n(G ) ≤ n 0 , C 4 tm G if
(G) = n 0 , then n(G) -m(G) + c 3 (G) ≤ cc(G).
Proof: Let n 0 be a positive integer, and assume that for each graph G such that

1 ≤ n(G ) ≤ n 0 , C 4 tm G if and only if G satisfies the C 4 -condition.
Let G be a graph that does not contain a diamond as a subgraph and such that n(G)

= n 0 . Let S ⊆ E(G) such that C 4 tm G \ v S and cc(G \ v S) = cc(G)
(note that any minimal feedback edge set satisfies these conditions). We have, by hypothesis, that 

G \ v S satisfies the C 4 -condition, so n(G\ v S)-m(G\ v S)+c 3 (G\ v S) = cc(G\ v S).
G such that 1 ≤ n(G ) < n(G), if G satisfies the C 4 -condition, then C 4 tm G .
We prove that this last implication is also true for G. Note that, as two C 3 cannot share an edge in G, we have that

c 3 (G) ≤ m(G)
3 . This implies that the minimum degree of G is at most 3. Indeed, if each vertex of G had degree at least 4, then m(G) ≥ 2n(G), which together with the relations n(G) -m(G)

+ c 3 (G) = cc(G) and c 3 (G) ≤ m(G)
3 would imply that cc(G) < 0, a contradiction. Let v ∈ V (G) be a vertex with minimum degree. We distinguish two cases according to the degree of v.

If v has degree 0 or 1, then the graph G \ v {v} satisfies the C 4 -condition as well, implying that C 4 tm G \ v {v}. As v has degree at most 1, it cannot be inside a cycle, hence C 4 tm G.

Assume that v has degree 2 and participates in a C 3 . As G does not contain a diamond as a subgraph, C 4 tm G if and only if Finally, assume that v has degree 2 and does not belong to any C 3 . Using the induction hypothesis and Lemma 3.29, we have that n(G We are now going to restate the tools introduced by Bodlaender et al. [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF] that we need for our purposes.

C 4 tm G \ v {v}. Moreover n(G \ v {v}) = n(G) -1, m(G \ v {v}) = m(G) -2, c 3 (G \ v {v}) = c 3 (G) -
\ v {v}) -m(G \ v {v}) + c 3 (G \ v {v}) ≤ cc(G \ v {v}). As n(G \ v {v}) = n(G) -1, m(G \ v {v}) = m(G) -2, c 3 (G\ v {v}) = c 3 (G), v
Let U be a set. We define Π(U ) to be the set of all partitions of U . Given two partitions p and q of U , we define the coarsening relation such that p q if for each S ∈ q, there exists S ∈ p such that S ⊆ S . (Π(U ), ) defines a lattice with minimum element {{U }} and maximum element {{x} | x ∈ U }. On this lattice, we denote by the meet operation and by the join operation. These operations are defined as follow. Given two partition p and p of Π(U ), p p is the greatest partition q such that q p and q p and p p is the least partition q such that p q and p q.

Let p ∈ Π(U ). For X ⊆ U , we denote by

p ↓X = {S ∩ X | S ∈ p, S ∩ X = ∅} ∈ Π(X)
the partition obtained by removing all elements not in X from p, and analogously for U ⊆ X we denote

p ↑X = p ∪ {{x} | x ∈ X \ U } ∈ Π(X)
the partition obtained by adding to p a singleton for each element in X \ U . Given a subset S of U , we define the partition

U [S] = {{x} | x ∈ U \ S} ∪ {S}. A set of weighted partitions is a set A ⊆ Π(U ) × N. We also define rmc(A) = {(p, w) ∈ A | ∀(p , w ) ∈ A : p = p ⇒ w ≤ w }.
We now define some operations on weighted partitions. Let U be a set and A ⊆ Π(U ) × N.

Union. Given B ⊆ Π(U ) × N, we define A ∪ ↓ B = rmc(A ∪ B).

Insert. Given a set X such that X ∩ U = ∅, we define ins(X, A) = {(p ↑U ∪X , w) | (p, w) ∈ A}.

Shift. Given w ∈ N, we define shft(w , A) = {(p, w + w ) | (p, w) ∈ A}.

Glue. Given a set S, we define Û = U ∪ S and glue(S,

A) ⊆ Π( Û ) × N as glue(S, A) = rmc({( Û [S] p ↑ Û , w | (p, w) ∈ A}).
Given w : Û × Û → N , we define glue w ({u, v}, A) = shft(w(u, v), glue({u, v}, A)).

Project. Given X ⊆ U , we define X = U \ X and proj(X, A) ⊆ Π(X) × N as proj(X, A) = rmc({(p ↓X , w) | (p, w) ∈ A, ∀e ∈ X : ∃e ∈ X : p U [ee ]}). Join. Given a set U , B ⊆ Π(U ) × N, and Û = U ∪ U , we define join(A, B) ⊆ Π( Û ) × N as join(A, B) = rmc({(p ↑ Û q ↑ Û , w 1 + w 2 ) | (p, w 1 ) ∈ A, (q, w 2 ) ∈ B}).
Proposition 3.32 (Bodlaender et al. [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF]) Each of the operations union, insert, shift, glue, and project can be carried out in time s ) , where s is the size of the input of the operation. Given two weighted partitions A and B, join(A, B) can be computed in time 1) .

• |U | O(1
|A| • |B| • |U | O(
Given a weighted partition A ⊆ Π(U ) × N and a partition q ∈ Π(U ), we define opt(q, A) = min{w | (p, w) ∈ A, p q = {U }}. Given two weighted partitions
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A, A ⊆ Π(U ) × N, we say that A represents A if for each q ∈ Π(U ), opt(q, A) = opt(q, A ).

Given a set Z and a function f : 2 Π(U )×N × Z → 2 Π(U )×N , we say that f preserves representation if for each two weighted partitions A, A ⊆ Π(U )×N and each z ∈ Z, it holds that if A represents A then f (A , z) represents f (A, z).

Proposition 3.33 (Bodlaender et al. [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF]) The union, insert, shift, glue, project, and join operations preserve representation.

Theorem 3.34 (Bodlaender et al. [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF]) There exists an algorithm reduce that, given a set of weighted partitions

A ⊆ Π(U )×N, outputs in time |A|•2 (ω-1)|U | •|U | O(1)
a set of weighted partitions A ⊆ A such that A represents A and |A | ≤ 2 |U | , where ω denotes the matrix multiplication exponent.

We now have all the tools needed to describe our algorithm. Let G be a graph and k be an integer. We recall that the algorithm we describe solves the decision version of {C 4 }-TM-Deletion. This algorithm is based on the one given in [14, Section 3.5] for Feedback Vertex Set.

We define a new graph

G 0 = (V (G) ∪ {v 0 }, E(G) ∪ E 0 ), where v 0 is a new vertex and E 0 = {{v 0 , v} | v ∈ V (G)}.
The role of v 0 is to artificially guarantee the connectivity of the solution graph, so that the machinery of Bodlaender et al. [START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF] can be applied. In the following, for each subgraph H of G, for each Z ⊆ V (H), and for each

Z 0 ⊆ E 0 ∩ E(H), we denote by H Z, Z 0 the graph Z, Z 0 ∪ E(H) ∩ Z\{v 0 } 2 .
Given a nice tree-decomposition of G of width w, we define a nice tree-decomposition ((T, X ), r, G) of G 0 of width w + 1 such that the only empty bags are the root and the leaves and for each t ∈ V (T), if X t = ∅ then v 0 ∈ X t . Note that this can be done in linear time. For each bag t, each integers i, j, and , each function s : X t → {0, 1}, each function s 0 : {v 0 } × s -1 (1) → {0, 1}, and each function

r : E(G t s -1 (1), s -1 0 (1) ) → {0, 1}, if C 4 tm G t s -1 (1), s -1 0 (1)
, we define the set E t (p, s, s 0 , r, i, j, ) as the set

{(Z, Z 0 ) | (Z, Z 0 ) ∈ 2 Vt × 2 E 0 ∩E(Gt) |Z| = i, |E(G t Z, Z 0 )| = j, c 3 (G t Z, Z 0 ) = , G t Z, Z 0 does not contain the diamond as a subgraph, Z ∩ X t = s -1 (1), Z 0 ∩ (X t × X t ) = s -1 0 (1), v 0 ∈ X t ⇒ s(v 0 ) = 1, ∀u ∈ Z \ X t : either t is the root or ∃u ∈ s -1 (1) : u and u are connected in G t Z, Z 0 , ∀v 1 , v 2 ∈ s -1 (1) : p V t [{v 1 , v 2 }] ⇔ v 1 and v 2 are connected in G t Z, Z 0 , ∀e ∈ E(G t Z, Z 0 ) ∩ s -1 (1) 2 : r(e) = 1 ⇔ e is an edge of a C 3 in G t Z, Z 0 }
Let (G, k) be an input of the Vertex Cover problem and let < be an arbitrary total order on V (G). We build a graph G starting from G. For each vertex v of G, we add a copy of A, which we call A v , and we identify the vertices v and a. For each edge e = {v, v } ∈ E(G) with v < v , we remove e, we add a copy of B, which we call B e , and we identify the vertices v and a and the vertices v and b. This finish the construction of G . Note that

|V (G )| = |V (G)| • |V (A)| + |E(G)| • |V (B) \ {a, b}| and tw(G ) = max{tw(G), tw(H)}.
We claim that (G, k) is a positive instance of Vertex Cover if and only if (G , k) is a positive instance of F-TM-Deletion.

Assume first that (G , k) is a positive instance of F-TM-Deletion and let S be a certificate of it. By definition of the problem, for each e = {v, v } ∈ E(G) with v < v , either B e contains an element of S or A v contains an element of S.

Let S = {v ∈ V (G) | ∃v ∈ V (G) : v < v , e = {v, v } ∈ E(G), (V (B e ) \ {v, v }) ∩ S = ∅} ∪ {v ∈ V (G) | V (A v ) ∩ S = ∅}. We have that |S | ≤ |S| ≤ k. Then S is a certificate that (G, k) is a positive instance of Vertex Cover.
Assume now that (G, k) is a positive instance of Vertex Cover and let S be a certificate of it. We prove that S is also a certificate that (G , k) is a positive instance of F-TM-Deletion. For this, we fix an arbitrary H ∈ F and we show that H is not a topological minor of G \ v S. First note that the connected components of G \ v S are of one of the following type of graphs.

-

A v \ v {v} if v ∈ S,
-B e \ v e if e ⊆ S, or the union of A v with zero, one, or more graphs

B {v,v } \ {v } such that {v, v } ∈ E(G) if v ∈ V (G) \ S.
As F is a topological minor antichain, for any

v ∈ V (G), H tm A v \ v {v} and for any e ∈ E(G), H tm B e \ v e. Moreover, let v ∈ V (G) \ S and let K be the connected component of G \ v S containing v. K is the union of A v and of every B {v,v } \ v {v } such that {v, v } ∈ E(G). As, for each v ∈ V (G) such that {v, v } ∈ E(G), v is not an isolated vertex in B {v,v } , by definition of B, for any B ∈ leaf(bct(H )), |E(B {v,v } \ v {v })| < |E(B )|. This implies that for each leaf B of bct(H ) and for each {v, v } ∈ E(G), B tm B {v,v } \ v {v }.
Moreover, it follows by definition of F that H tm A v . This implies by Lemma 2.16 that H is not a topological minor of K, hence not a minor of G \ v S either. This finish the proof for the topological minor version.

Note that the same proof also works for F-M-Deletion if we replace F-TM-Deletion by F-M-Deletion, we replace topological minor by minor, we replace tm by m , and

k × k Permutation Clique Input: A k × k input (G, k). Parameter: k. Question: Is there a permutation σ : 1, k → 1, k such that {(i, σ(i)) | i ∈ 1, k } induces a clique in G?
Lemma 3.41 (Lokshtanov et al. [START_REF] Lokshtanov | Slightly superexponential parameterized problems[END_REF]) There is no algorithm that, given a k×k input (G, k), solves k × k Permutation Clique in time 2 o(k log k) , unless the ETH fails.

We now present the common part of the construction for both P ≥6 and K. Let F be a regular collection of graphs such that F ⊆ P ≥6 or F ⊆ K. In the following, we assume without loss of generality, that F is a topological minor antichain. Note that if F ⊆ P ≥6 , then |F| = 1. Let us fix (H, B) to be an essential pair of F.

We first define few gadgets that generalize the gadgets introduced in [122, Lemma 2]. Given a graph G and two vertices x and y of G, by introducing an H-edge gadget between x and y we mean that we add a copy of H where we identify the first vertex of (H, B) with y and the second vertex of (H, B) with x. Note that {x, y} is a cut set that separates the H-edge gadget and the remaining of the graph. Note also that the role of x and y is not symmetric. Using the fact that an H-edge gadget between two vertices x and y is a copy of H and that {x, y} is a cut set, we have that the H-edge gadgets clearly satisfy the following proposition. In what follows, we will always assume that the certificate that we take into consideration satisfies the properties given by Proposition 3.42. Moreover, we will restrict the certificate to contain only vertices of H-edge gadgets by setting an appropriate budget to the number of vertices we can remove from to input graph G.

Given a graph G and two vertices x and y of G, by introducing a B-edge gadget between x and y, we mean that we add a copy of B where we identify the first vertex of (H, B) to y and the second vertex of (H, B) to x.

Given a graph G and three vertices x, y, and z of G, by introducing a double H-edge gadget between x and z through y, we mean that we introduce an H-edge gadget between z and y and we introduce a B-edge gadget between x and y. Note that this implies that there is an H-edge gadget between x and y and an H-edge gadget between z and y.
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Given a set of s vertices {x i | i ∈ 1, s }, by introducing an H-choice gadget connecting {x i | i ∈ 1, s }, we mean that we add 2s + 2 vertices z i , i ∈ 0, 2s + 1 , for each i ∈ 0, 2s , we introduce an H-edge gadget between z i and z i+1 , and for each i ∈ 1, s , we introduce two B-edge gadgets, one between x i and z 2i-1 and another between x i and z 2i . We see the H-choice gadget as a graph induced by the vertices

{x i | i ∈ 1, s } ∪ {z i | i ∈ 0, 2s
}, the B-edge gadgets, and the H-edge gadgets.

We copy the following proposition from [START_REF] Pilipczuk | A tight lower bound for Vertex Planarization on graphs of bounded treewidth[END_REF].

Proposition 3.43 Let G * be an H-choice gadget connecting a set of s vertices

{x i | i ∈ 1, s }.
-(G * , 2s -1) is a negative instance of F-TM-Deletion.

-(G * , 2s) is a positive instance of F-TM-Deletion, moreover for every i ∈ 1, s , there exists a certificate S of it such that x i ∈ S and every certificate S of it of size 2s is such that there exists i ∈ 1, s such that x i ∈ S.

Proof: In any certificate we need, for each i ∈ 1, s , to take two vertices among x i , z 2i-1 , and z 2i . This implies that any certificate is of size at least 2s. Moreover, for every i ∈ 1, s , the set

{x j | j = i} ∪ {z 2j-1 | j ∈ 1, i } ∪ {z 2j | j ∈ i, s } is a certificate that (G * , 2s
) is a positive instance of F-TM-Deletion. This can be seen using Lemma 2.16 and the fact that F is a topological minor antichain, as we did in the proof of Theorem 3.37. Finally, note that any certificate need to contain at least s + 1 vertices from {z i | i ∈ 0, 2s + 1 }. This implies that in any certificate S of size at most 2s, at least one vertex from

{x i | i ∈ 1, s } is not in S.
We now start the description of the general construction. Given an instance (G, k) of k×k Permutation Clique, we construct an instance (G , ) of F-TM-Deletion, which we call the general H-construction of (G, k).

We first introduce k 2 + 2k vertices, namely

{c i | i ∈ 1, k }, {r i | i ∈ 1, k }, and {t i,j | i, j ∈ 1, k }.
For each i, j ∈ 1, k , we add the edges {r i , t i,j } and {t i,j , c j }.

For each i ∈ 1, k , we introduce an H-choice gadget connecting {t i,j | j ∈ 1, k }.
This part of the construction is depicted in Figure 3.14.

We now describe how we encode the edges of G in G . For each edge e ∈ E(G), we define integers p(e), γ(e), q(e), δ(e) ∈ 1, k such that e = {(p(e), γ(e)), (q(e), δ(e))} with p(e) ≤ q(e). Note that the edges e such that p(e) = q(e) are not relevant to our construction and hence we safely forget them. For each edge e ∈ E(G), we add to G three new vertices, d e , d m e , and d r e , and four edges {d e , r p(e) }, {d e , c γ(e) }, {d r e , r q(e) }, and {d r e , c δ(e) }. Then we introduce a double H-edge gadget between d e and d r e through d m e . The encoding of an edge e ∈ E(G) is depicted in Figure 3.15. For each 1 ≤ p < q ≤ k, we define E(p, q) = {e ∈ E(G) | (p(e), q(e)) = (p, q)} and we introduce an H-choice gadget connecting {d e | e ∈ E(p, q)}. Note that even if the construction seems to give a privilege to vertices of type d e over the vertices of type d r e , the roles of vertices of type d e and d r e are symmetric. We set = 3|E(G)| + 2k 2 . By construction, this budget is tight and permits to take only a minimum-size certificate in every H-choice gadget and one endpoint of each edge gadget between d r e and d m e , e ∈ E(G). This complete the construction of (G , ).

c 1 r 1 c 2 r 2 c 3 r 3 t 1,1 t 1,2 t 1,3 t 2,1 t 2,2 t 2,3 t 3,1 t 3,2 t 3,3
The budget correspond to the sum of the budget given by Proposition 3.43 over all the H-choice gadgets introduced in the construction plus 1 for each e ∈ E(G).

Because of the double H-edge gadget, any certificate that (G , ) is a positive instance of F-TM-Deletion contains, for each e ∈ E(G), either d m e or both d e and d r e . Indeed, for each e ∈ E(G), the budget given for each edge permits to include d m e in the certificate and if the H-choice gadget connected to d e already chooses d e to be in the certificate, then we can safely use the budget given for the edge e to add d r e in the certificate instead of d m e . In the case d m e is chosen, then in the resulting graph r p(e) remains connected to c γ(e) and r q(e) remains connected to c δ(e) . In the following, we take into consideration only a certificate S such that, for each e ∈ E(G), either Let σ : 1, k → 1, k be a permutation. We denote by e σ p,q the edge {(p, σ(p)), (q, σ(q))}. If σ is a certificate that (G, k) is a positive instance of k ×k Permutation Clique, then we associate a σ-general H-certificate S such that

-S ⊆ V (G ), -|S| = 3|E(G)| + 2k 2 , -for each i ∈ 1, k , if G * is the H-choice gadget connecting {t i,j | j ∈ 1, k } , then S ∩ V (G * ) is a certificate that (G * , 2k) is a positive instance of F-TM- Deletion such that {t i,j | j ∈ 1, k } \ {t i,σ(i) } ⊆ S and t i,σ(i) ∈ S, -for each p, q ∈ 1, k , p < q, such that e σ p,q ∈ E(G), if G * is the H-choice gadget connecting {d e | e ∈ E(p, q)}, then S ∩ V (G * ) is a certificate that (G * , 2|E(p, q)|) is a positive instance of F-TM-Deletion such that {d e | e ∈ E(p, q) \ {e σ
p,q }} ⊆ S and d e σ p,q ∈ S, for each p, q ∈ 1, k , {d r e | e ∈ E(p, q) \ {e σ p,q }} ⊆ S and d r e σ p,q ∈ S, and for each p, q ∈ 1, k , d m e σ p,q ∈ S.

Note that, with this construction of S, we already impose 3|E(G)| + 2k 2 vertices to be in S, and therefore no other vertex of G can be in S.

Given S ⊆ V (G ), we say that S satisfies the permutation property if for each e ∈ E(p, q) such that d e ∈ S and for each i ∈ 1, k \ {p(e)}, t i,γ(e) ∈ S and for each e ∈ E(p, q) such that d r e ∈ S and for each i ∈ 1, k \ {q(e)}, t i,δ(e) ∈ S. 

Lemma 3.44 If S is a subset of V (G ) such that -|S| ≤ 3|E(G)| + 2k 2 , -for each H-choice gadget G * , S ∩ V (G * ) is a certificate of minimum size that (G * , )
σ : 1, k → 1, k such that S ∩ {t i,j | i, j ∈ 1, k } = {t i,j | i, j ∈ 1, k } \ {t i,σ(i) | i ∈ 1, k } and -{(i, σ(i)) | i ∈ 1, k } induces a clique in G.
Proof: By hypothesis, for each 1 ≤ p < q ≤ k, we know that there is an edge e ∈ E(p, q) such that d e ∈ S and d r e ∈ S. As S satisfies the permutation property, this implies that for each set {t i,j | j ∈ 1, k }, i ∈ 1, k , at most one vertex of the set is not in S. As the H-choice gadgets impose that for each set {t i,j | i ∈ 1, k }, j ∈ 1, k , at least one vertex is not in S, this implies that there is a unique permutation

σ : 1, k → 1, k such that S ∩ {t i,j | i, j ∈ 1, k } = {t i,j | i, j ∈ 1, k } \ {t i,σ(i) | i ∈ 1, k }.
Moreover, for each 1 ≤ p < q ≤ k, e σ p,q ∈ E(G). Indeed, if e σ p,q ∈ E(G), then there exists e ∈ E(p, q) such that γ(e) = σ(p) or δ(e) = σ(q) and such that d e ∈ S and d r e ∈ S. Assume without loss of generality, that γ(e) = σ(p). As t p,σ(p) ∈ S, this contradicts the fact that S satisfies the permutation property.

We call the permutation given by Lemma 3.44 the associated permutation of S.

In the following, we will give a specific proof for each collection of graphs F such that F ⊆ P ≥6 or F ⊆ K. For each such F, we will assume without loss of generality that F is a topological minor antichain, we will fix (H, B) to be an essential pair of F, and given an instance (G, k) of k × k Permutation Clique we will start from the general H-construction (G , ) and add some edges and vertices in order to build an instance (G , ) of F-TM-Deletion. We will show that if (G, k) is a positive instance of k×k Permutation Clique and σ is a certificate of it, then the σ-general H-certificate is a certificate that (G , ) is a positive instance of F-TM-Deletion. Conversely, we will show that if (G , ) is a positive instance of F-TM-Deletion and S is a certificate of it, then S satisfies the permutation property. This automatically gives, using Lemma 3.44, that the associated permutation σ of S is a certificate that (G, k) is a positive instance of k × k Permutation Clique.

The case of the paths. Theorem 3.45 Let h ≥ 6 be an integer. There is no algorithm that, given a graph G and an integer k, solves {P h }-TM-Deletion on (G, k) in time 2 o(tw log tw) •n O (1) , unless the ETH fails.

Proof: Let h ≥ 6 be an integer and let F = {P h }. Let (G, k) be an instance of k × k Permutation Clique and let (G , ) be the general P h -construction of (G, k) described in Subsection 3.2. Note that the first vertex of P h is one of the two vertices of degree 1. We build G starting from G by adding, for each i, j ∈ 1, k , CHAPTER 3. ALGORITHMIC ASPECTS OF TREEWIDTH a pendant path of size h -6 to t i,j . This completes the construction of G . Note that if h = 6, then G = G . Assume that (G, k) is a positive instance of k × k Permutation Clique with certificate σ and let S be the σ-general P h -certificate. To show that G \ v S does not contain P h as a topological minor, we show that each connected component of G \ v S does not contain P h as a topological minor. Note that, by definition of S, the only connected components of G \ v S that can contain P h are the connected components that contain a vertex in

{r i | i ∈ 1, k } ∪ {c j | j ∈ 1, k }. Moreover, each of these connected components is a subgraph of G induced by {r i , c σ(i) , t i,σ(i) } ∪ {d e | e ∈ E(G), σ(p(e)) = γ(e), σ(q(e)) = δ(e), p(e) = i} ∪ {d r
e | e ∈ E(G), σ(p(e)) = γ(e), σ(q(e)) = δ(e), q(e) = i} and the vertices of the path of size h -6 pendant to t i,σ(i) , for some i ∈ 1, k . These connected components, depicted in Figure 3.2 for the case h = 8, do not contain P h as a topological minor, as it can be easily checked that a longest path in them has h -1 vertices. Therefore, S is a certificate that (G , ) is a positive instance of F-TM-Deletion.

r i c σ(i) t i,σ(i) • • • pendant path of size 2 Figure 3.16:
The connected component of G \ v S that contains the vertex r i , i ∈ 1, k where h = 8.

Conversely, assume that (G , ) is a positive instance of F-TM-Deletion and S is a certificate of it. We first show that S satisfies the permutation property. Let e ∈ E(G) be such that d e ∈ S and assume that t i,γ(e) ∈ S for some i ∈ 1, k \{p(e)}. By construction of the P h -choice gadget, we know that there exists j 0 ∈ 1, k such that t p(e),j 0 ∈ S. This implies that the path induced by r i , t i,γ(e) , c γ(e) , d e , r p(e) , and t p(e),j 0 together with the pendant path with h -6 vertices attached to t p(e),j 0 form a path with h vertices. As the same argument also works if d r e ∈ S, it follows that S satisfies the permutation property, concluding the proof.

The case of the subsets of K.
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Theorem 3.46 Let F ⊆ K be a regular collection of graphs. There is no algorithm that, given a graph G and an integer k, solves F-TM-Deletion on (G, k) in time 2 o(tw log tw) • n O (1) , unless the ETH fails.

Proof: Let F ⊆ K be a regular collection of graphs. We assume without loss of generality that F is a topological minor antichain. Let (H, B) be an essential pair of F, let a be the first vertex of (H, B), let b be the second vertex of (H, B), let B = (V (B), E(B)\{a, b}), and let C be the core of (H, B). Note that, by definition of F, B is a connected graph. Let (G, k) be an instance of k × k Permutation Clique and let (G , ) be the general H-construction of (G, k). We build G starting from G by adding a new vertex r 0 , adding a copy of the core of (H, B) and identifying a and r 0 , and adding for each i ∈ 1, k a copy of B in which we identify a and r 0 , and b and r i . This completes the construction of G .

Assume that (G, k) is a positive instance of k × k Permutation Clique with certificate σ and let S be the σ-general H-certificate. We show that F tm G \ v S. For this, let us fix H ∈ F. Note that, by definition of S, the only connected component of G \ v S that can contain H is the one containing

{r i | i ∈ 1, k }∪{c j | j ∈ 1, k }.
Let K be this connected component, depicted in Figure 3.17. Note that, for each i ∈ 0, k , r i is a cut vertex of K. Moreover, as F is a topological minor antichain, we have that H tm C, as (H, B) is an essential pair, we have that for each B ∈ leaf(bct(H )), B tm B, and by definition of F, we have that B tm K 2,k . This implies, using Lemma 2.16, that H is not a topological minor of K. Therefore, S is a certificate that (G , ) is a positive instance of F-TM-Deletion. Conversely, assume that (G , ) is a positive instance of F-TM-Deletion with certificate S. We show that S satisfies the permutation property. Let e ∈ E(G) be such that d e ∈ S and assume that t i,γ(e) ∈ S for some i ∈ 1, k \ {p(e)}. This implies that there exists in G \ v S a (r 0 , r p(e) )-path that contains the vertices r 0 , r i , , t i,γ(e) , c γ(e) , d e , and r p(e) and that does not contain any edge of the graph B = (V (B), E(B) \ {a, b}) between r 0 and r p(e) . By construction, this implies that CHAPTER 3. ALGORITHMIC ASPECTS OF TREEWIDTH H is a topological minor of G \ v S. As the same argument also works if d r e ∈ S, it follows that S satisfies the permutation property, concluding the proof.

The minor version. Theorem 3.45 and Theorem 3.46 permit to prove the topological minor part of Theorem 3.38. The minor part of Theorem 3.38 can be obtained using the same proof than for the topological version by applying the following semantic modifications:

we replace F-TM-Deletion by F-M-Deletion, we replace topological minor by minor, we replace tm by m , and we replace Lemma 2.16 by Lemma 2.17.

Chapter 4 Combinatorial results

In this chapter, we provide new combinatorial results about treewidth.

In Section 4.1, we estimate the number of n-vertex labeled graphs of treewidth at most k.

In Section 4.2, we show that the theory of contraction Bidimensionality can be applied to the same family of geometric graphs than the theory of minor Bidimensionality.
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Number of partial k-trees

In this section, we estimate the number of n-vertex graphs of treewidth at most k. We recall that G k n is the set containing every n-vertex graph of treewidth at most k. As discussed in Chapter 1, we can easily obtain an upper bound on the size of G k n , that is, disregarding lower-order terms, (k2 k n) n , and a lower bound on the size of G k n , that is, asymptotically, when n k tends to infinity, 2 k-1 n n-o (1) . Our objective in this section is to improve the lower bound by proving the following theorem.

Theorem 4.1 Let n ∈ N and k ∈ 2, n -1 , the set G k n of n-vertex labeled graphs with treewidth at most k satisfies |G k n | ≥ 1 128e • k2 k n log k n 2 -k(k+3) 2 k -2k-2 . ( 4.1) 
For this, we fix n ∈ N and k ∈ 1, n -1 and we construct a set R n,k of n-vertex labeled partial k-trees. We set R n,k = |R n,k |. We show that the lower bound given in the theorem applies to R n,k and so to |G k n | as well. In Subsection 4.1 we describe how we construct the set R n,k . This construction follows the construction given by the definition of a k-tree. We add some extra requirements in order to be able to count the objects we are creating. We prove that the treewidth of the graphs generated in this way is indeed at most k. In fact, we prove a stronger property, namely that the graphs we construct have properpathwidth at most k, where the proper-pathwidth, defined later, is a graph parameter that is at least the pathwidth, which is at least the treewidth.

In Subsection 4.1, we provide a lower bound on R n,k . For this, we first count the number of graphs that have been created and then we provide an upper bound on the number of times the same element may have been created.

The construction of some n-vertex partial k-trees

Notation and definitions. Let σ : 1, n → 1, n be a permutation of 1, n such that σ(1) = 1. Inspired by the definition of k-trees, we will introduce vertices {v i | i ∈ 1, n } one by one following the order given by σ. If i ∈ 1, n , then i is called the index of v σ(i) , the vertex v σ(i) is the i-th introduced vertex, and for each j ∈ 1, i -1 , the vertex v σ(j) is said to be to the left of v σ(i) . In the following, when the context is clear, we abuse notation say vertex i instead of v σ(i) .

In order to build explicitly a class of n-vertex partial k-trees, for every i ∈ k + 1, n we define: 1. A set A i ⊆ 1, i -1 of active vertices, corresponding to the clique to which a new vertex can be connected in the definition of k-trees, such that

|A i | = k. v σ(i 1 ) v σ(i 2 ) v σ(i 3 ) v σ(i 4 ) v σ(i 5 ) v σ(i 6 ) A i-1 v σ(i)
block of s vertices We assume that i 1 < i 2 < i 3 < i 4 < i 5 < i 6 < i, and note that i 5 = i -2 and i 6 = i -1. We have defined f (i) = v σ(i 1 ) and a i = v σ(i 2 ) . The frozen vertex f (i) is marked with a cross, and the anchor a i is marked with a circle. We choose N (i) = {i 2 , i 3 , i 5 }.

2.

A vertex a i ∈ A i , called the anchor, whose role will be described in the next paragraph.

3. An element f (i) ∈ A i , called the frozen vertex, which corresponds to a vertex that will not be active anymore.

4. A set N (i) ⊆ A i , which corresponds to the indices of the neighbors of v σ(i) to the left.

The construction works with blocks of size s, for some integer s depending of n and k, to be specified later. Namely, we insert the vertices by consecutive blocks of size s, with the property that all vertices of the same block share the same anchor and are adjacent to it.

In the description of the construction, we use the term choose for the elements for which there are several choices, which will allow us to provide a lower bound on the number of elements in R n,k . It will be the case for the functions σ, f , and N . As will become clear later (see Section 4.1), once σ, f , and N are fixed, all the other elements of the construction are uniquely defined.

For every index i ∈ k + 2, n , we impose that

|N (i)| ≥ k + 1 2 ,
in order to have simultaneously enough choices for N (i) and enough choices for the frozen vertex f (i), which will be chosen among the vertices in N (i -1). On the other hand, as will become clear later, the role of the anchor vertices is to determine uniquely the vertices belonging to "its" block. To this end, when a new block starts, its anchor is defined as the smallest currently active vertex.

that V = {v i | i ∈ 1, n }, and E = {{v σ(i) , v σ(j) } | i ∈ 2, n , j ∈ N (i)}.
Note that, given (σ, f, N ), the graph G(σ, f, N ) is well-defined. We denote by R n,k the set of all graphs G(σ, f, N ) such that (σ, f, N ) is constructible.

Bounding the treewidth. We start by defining the notion of proper-pathwidth of a graph. This parameter was introduced by Takahashi et al. [START_REF] Takahashi | Minimal acyclic forbidden minors for the family of graphs with bounded path-width[END_REF] and its relation with search games has been studied in [START_REF] Takahashi | Mixed searching and proper-path-width[END_REF].

Let G be a graph, let r be an integer, and let

X = {X i | i ∈ 1, r } be a sequence of subsets of V (G). The width of X is max 1≤i≤r |X i | -1.
X is called a proper-path decomposition of G if the following conditions are satisfied:

1. For each i, j ∈ 1, r such that i = j, X i ⊆ X j . 2. r i=1 X i = V (G). 3.
For every edge {u, v} ∈ E(G), there exists an i such that u, v ∈ X i .

4. For all a, b, and c with 1

≤ a ≤ b ≤ c ≤ r, X a ∩ X c ⊆ X b .
5. For all a, b, and c with 1

≤ a < b < c ≤ r, |X a ∩ X c | ≤ |X b | -2.
The proper-pathwidth of G, denoted by ppw(G), is the minimum width over all proper-path decompositions of G. If X satisfies conditions 1-4 above, then X is called a path-decomposition, which coincides with the definition of pathwidth given in Chapter 2.

From the definitions, for any graph G it clearly holds that

ppw(G) ≥ pw(G) ≥ tw(G). (4.2) 
Let us show that any element of R n,k has proper-pathwidth at most k. Let (σ, f, N ) be constructible such that G(σ, f, N ) ∈ R n,k and let A i be defined as in Subsection 4.1. We define for every i ∈ k + 1, n the bag

X i = {v σ(j) | j ∈ A i ∪ {i}}. The sequence X = {X i | i ∈ k + 1
, n } is a path-decomposition satisfying the five conditions of the above definition, and for every i

∈ k + 1, n , |X i | = k + 1.
It follows that G(σ, f, N ) has proper-pathwidth at most k, so it also has treewidth at most k, and therefore, by Lemma 2.7, G(σ, f, N ) is a partial k-tree.

Proof of the main result

In this section we analyze our construction and give a lower bound on R n,k . We first start by counting the number of constructible triples (σ, f, N ) generated by the algorithm, and then we provide an upper bound on the number of duplicates. Finally, we determine the best choice for the parameter s defined in the construction.
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Number of constructible triples (σ, f, N ). We proceed to count the number of constructible triples (σ, f, N ) created by the algorithm given in Subsection 4.1. As σ is a permutation of 1, n such that σ(1) = 1, there are (n -1)! distinct possibilities for the choice of σ. f (i) can take more than one value only for i ∈ k + 2, n such that i ≡ k + 2 (mod s). This represents n -(k + 1) -n-(k+1) s cases. In each of these cases, there are at least k-1 2 distinct possible values for f (i). Thus, we have at least

( k-1 2 ) (n-(k+1)-n-(k+1) s
) distinct possibilities for the choice of the function f . For every i ∈ 2, k + 1 , N (i) can be chosen as any subset of i -1 vertices containing the fixed vertex v σ(1) . This yields k+1 i=2 2 i-2 = 2

k(k-1) 2 
ways to define N over 2, k + 1 . For each i ∈ k + 2, n , N (i) can be chosen as any subset of size at least k+1 2 of a set of k elements with one element that is imposed. This results in

k i= k+1 2 k-1 i-1 ≥ 2 k-2 possible choices for N (i). Thus, we have 2 k(k+1) 2 
2 (n-(k+1))(k-2) distinct possibilities to construct the function N .
By combining everything, we obtain that there exist at least

(n -1)! k -1 2 n-(k+1)- n-(k+1) s 2 k(k-1) 2 2 (n-(k+1))(k-2) (4.3) 
distinct constructible triples (σ, f, N ).

Bounding the number of duplicates. Let H be an element of R n,k . Our objective is to obtain an upper bound on the number of constructible triples (σ, f, N ) such that H = G(σ, f, N ).

Given H, we start by reconstructing σ. Firstly, we know by construction that σ(1) = 1. Secondly, we know that f (k + 2) = 1 and so, for every i ∈ k + 2, n , 1 ∈ A i , implying that 1 ∈ N (i). It follows that the only neighbors of v σ(1) are the vertices {v σ(i) | i ∈ 2, k + 1 }. So the set of images by σ of 2, k + 1 is uniquely determined. Then we guess the function σ over this set 2, k + 1 . We have k! possible such guesses for σ.

Thirdly, assume that we have correctly guessed σ on 1, k + 1 + ps for some p ∈ N with k + 1 + ps < n. Then a k+1+ps+1 is the smallest active vertex that is adjacent to at least one element that is still not introduced after step k + 1 + ps. Then the neighbors of a k+1+ps+1 over the elements that are not introduced yet after step k+1+ps are the elements whose indices are between k+1+ps+1 and k+1+(p+1)s, and these vertices constitute the next block of the construction; see Figure 4.3 for an illustration. As before, the set of images by σ of k + 1 + ps + 1, k + 1 + (p + 1)s is uniquely determined, and we guess σ over this set. We have at most s! possible such guesses. Fourthly, if k + 1 + (p + 1)s > n (that is, for the last block, which may have size smaller than s), we have t! possible guesses with t = n -(k + 1) -s n-(

We know that the first, the second, and the fourth cases can occur only once in the construction, and the third case can occur at most n-(k+1) s times. Therefore,
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block of s vertices is connected to all the s vertices of the current block but will not be connected to any of the remaining non-introduced vertices.

an upper bound on the number of distinct possible guesses for σ is k!(s!)

n-(k+1) s t!, where t = n -(k + 1) -s n-(k+1) s .
Let us now fix σ. Then the function N is uniquely determined. Indeed, for every i ∈ 1, n , N (i) corresponds to the neighbors of v σ(i) to the left. It remains to bound the number of possible functions f . In order to do this, we define for every i ∈ 2, n , D i = {j ∈ N (i) | ∀j ∈ i + 1, n , {v σ(j) , v σ(j ) } ∈ E(H)}. Then, for every i ∈ k + 2, n , by definition of f (i), f (i) ∈ D i-1 . Moreover, for each i, j ∈ k + 2, n such that i = j, it holds that, by definition of D i and D j , D i ∩D j = ∅. Indeed, assume w.l.o.g. that i < j, and suppose for contradiction that there exists a ∈ D i ∩ D j . As a ∈ D j , it holds that a ∈ N (j), but as a ∈ D i , for every j ∈ i + 1, n , a ∈ N (j ), hence a ∈ N (j), a contradiction.

We obtain that the number of distinct functions f is bounded by n i=k+1 |D i |. As, for every i, j ∈ k + 1, n with i = j, we have D i ∩ D j = ∅ and, for every 

i ∈ k + 1, n , D i ⊆ 1, n , we obtain that n i=k+1 |D i | ≤ n. Let I = {i ∈ k + 1, n | |D i | ≥
|D i | = i∈I |D i | ≤ i∈I |D i | k k ≤ 2k k k = 2 k . (4.4)
To conclude, the number of constructible triples that can give rise to H is at most

2 k (s!) n-(k+1) s t! where t = n -(k + 1) -s n-(k+1) s
. Thus, we obtain that

R n,k ≥ (n -1)! k-1 2 n-(k+1)- n-(k+1) s 2 k(k-1) 2 
2 (n-(k+1))(k-2) 2 k k!(s!) n-(k+1) s (n -(k + 1) -s n-(k+1) s )! . ( 4.5) 
For better readability, we bound separately each of the terms in on the right-hand side:

• (n -1)! ≥ ( n e ) n 2 -n , 2 k(k-1) 2 
2 (n-(k+1))(k-2) ≥ 2 kn-k(k+3) 2 2 -2n . • (k -1) (n-(k+1)-n-(k+1) s ) ≥ 2 -n k (n-n s -k-2) , since k ≥ 2. • 2 k k! ≤ 2 n k k , (s!) n-(k+1) s (n -(k + 1) -s n-(k+1) s )! ≤ s n .
Applying these relations to (4.5) gives

R n,k ≥ 1 64e • k2 k n k 1/s s n 2 -k(k+3) 2 k -2k-2 . (4.6)
Choosing the parameter s. We now discuss how to choose the size s of the blocks in the construction. In order to obtain the largest possible lower bound for R n,k , we would like to choose s minimizing the factor k 1/s s in the denominator of (4.6). To be as general as possible, assume that s is a function s(n, k) that may depend on n and k, and we define t(n, k) = s(n,k) log k . With this definition, it follows that

log k 1 s(n,k) s(n, k) = log k s(n, k) + log s(n, k) = 1 t(n, k) + log t(n, k) + log log k. (4.7)
It is elementary that the minimum of 1 t(n,k) + log t(n, k) is achieved for t(n, k) = 1. Thus, we obtain that s(n, k) = log k is the function that maximizes the lower bound given by Equation (4.6). Therefore, we obtain that

R n,k ≥ 1 128e • k2 k n log k n 2 -k(k+3) 2 k -2k-2 , (4.8) 
concluding the proof of Theorem 4.1, where we assume that k ≥ 2.
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Bidimensionality

In this section, we extend the horizon of applicability of the theory of contraction Bidimensionality. We recall that a class of graphs H is in SQGM(c) (resp. SQGC(c)) for some 1 ≤ c < 2 if every graph G ∈ H which excludes t as a minor (resp. Γ t as a contraction), for some integer t, has treewidth O(t c ). We also recall that given a class of graph H and two integers s 1 and s 2 , we define H (s 1 ,s 2 ) as the set containing every graph H such that there exist a graph G ∈ H and a graph J that satisfy G (s 1 ) c

J and H s 2 c J. Before focusing on contraction Bidimensionality, let us discuss about the consequences that minor Bidimensionality has on the F-M-Deletion problem. We can easily check that, when F is a connected and planar collection of graphs, then m F (G) is minor bidimensional, and so the theory of minor Bidimensionality can be applied to this parameter. In particular, we obtain the following result. 

(G, k) in time 2 O d ( √ k c •log k) • n.
As discussed in Chapter 1, there is a bunch of problems that are contraction bidimensional but not minor bidimensional. In order to be able to apply the theory of Bidimensionality to these problems in the most general way, it is important to find the most general class of graphs that has the SQGC property. In this section, we provide a new step in this direction by proving the following theorem.

Theorem 4.3 Let s 1 and s 2 be two positive integers. If H ∈ SQGC(c) for some 1 ≤ c < 2, then H (s 1 ,s 2 ) ∈ SQGC(c).

In Subsection 4.2, we provide some easy observations and give some extra definitions.

In particular, we define a complex data structure, namely the Λ-state configurations, that is the key to the proof of Lemma 4.7.

In Subsection 4.2, we focus on Lemma 4.7 that is the most technical part of the proof. We show that if a graph H is the contraction of a graph G that contains a triangulated grid as a contraction, then H also contains a (smaller) triangulated grid as a contraction. For this we first define a Λ-state configuration of G and then modify it to be consistent with H. In its final form, a Λ-state configuration is a representation of the contraction model of the requested triangulated grid in H.

In Subsection 4.2, we conclude the proof of Theorem 4.3.

Some specific definitions

Before we proceed with the proof of Theorem 4.3 we make first the following three observations. (In all statements, we assume that G and H are two graphs and

σ : V (G) → V (H) is a contraction model of H in G.)
Observation 4.4 Let S be a connected subset of V (H). Then the set x∈S σ -1 (x) is connected in G.

Observation 4.5 Let S 1 ⊆ S 2 ⊆ V (H). Then σ -1 (S 1 ) ⊆ σ -1 (S 2 ) ⊆ V (G).
Observation 4.6 Let S be a connected subset of V (G). Then the diameter of σ(S) in H is at most the diameter of S in G.

Given a graph G and S 1 , S 2 ⊆ V (G) we say that S 1 and S 2 touch if either S 1 ∩S 2 = ∅ or there is an edge of G with one endpoint in S 1 and the other in S 2 .

Let A be a collection of subsets of V (G). We say that A is a connected packing of G if its elements are connected and pairwise disjoint. If additionally A is a partition of V (G), then we say that A is a connected partition of G and if, additionally, all its elements have diameter bounded by some integer s, then we say that A is a s-diameter partition of G.

Λ-state configurations. Let G be a graph. Let Λ = (W, E) be a graph whose vertex set is a connected packing of G, i.e., its vertices are connected subsets of V (G). A Λ-state configuration of a graph G is a quadruple S = (X , α, R, β) where 1. X is a connected packing of G, 2. α is a bijection from W to X such that for every W ∈ W, W ⊆ α(W ),

3. R is a collection of internally disjoint paths of G, and

4. β is a bijection from E to R such that if {W 1 , W 2 } ∈ E then the endpoints of β({W 1 , W 1 }) are in W 1 and W 2 and V (β({W 1 , W 2 })) ⊆ α(W 1 ) ∪ α(W 2 ). A Λ-state configuration S = (X , α, R, β) of G is complete if X is a partition of V (G).
We refer to the elements of X as the states of S and to the elements of R as the freeways of S. We define

indep(S) = V (G) \ X∈X X.
Note that if S is a Λ-state configuration of G, S is complete if and only if indep(S) = ∅. Let q ∈ Q. If q ∈ Q in then we set N q = N s Γ (q). If q = b out , then we set N q = q ∈Qout N s Γ (q ). Note that for every q ∈ Q, N q ⊆ V (Γ). For every q ∈ Q, we define X q = σ -1 (N q ). Note that X q ⊆ V (G). We also set X = {X q | q ∈ Q}. Let p and q be two linked elements of Q. If both p and q belong to Q in , and therefore are vertices of Γ, then we define Z p,q as the unique shortest path between them in Γ. If p = b out and q ∈ Q in , then we know that q = b i,j where i ∈ {1, k } or j ∈ {1, k }. In this case we define Z p,q as any shortest path in Γ between b i,j and the vertices in Q out . In both cases, we define P p,q by picking some path between W p and W q in G[σ -1 (V (Z p,q ))] such that |V (P p,q ) ∩ W q | = 1 and |V (P p,q ) ∩ W p | = 1.

Let E = {{W p , W q } | p and q are linked} and let Λ = (W, E). Notice that Λ is isomorphic to Γ k and consider the isomorphism that correspond each vertex q = b i,j , i, j ∈ 1, k 2 to the vertex with coordinates (i, j). Moreover b out corresponds to the apex vertex of Γ k .

Let α : W → X such that for every q ∈ Q, α(W q ) = X q . Let also R = {P p,q | p, q ∈ Q, p and q are linked}. We define β : E → R such that if q and p are linked, then β(W q , W p ) = P p,q . We use notation S = (X , α, R, β). Proof of the claim: We first see that S is a Λ-state configuration of G. Condition 1 follows by the definition of X q and Observation 4.4. Condition 2 follows directly by the definitions of W q and X q . For Condition 3, we first observe that, by the construction of Γ and the definition of Z p,q , for any two pairs p, q and p , q of pairwise linked elements of Q, the paths Z p,q and Z p ,q are internally vertex-disjoined paths of Γ. It implies that P p,q and P p ,q can intersect each other only on the vertices of W p ∪ W q ∪ W p ∪ W q . But P p,q (resp. P p ,q ), by construction contains only two vertices of W p ∪ W q ∪ W p ∪ W q that are the extremities of P p,q , (resp. P p ,q ). So P p,q and P p ,q are internally vertex-disjoined, as required. For Condition 4, assume that {W p , W q } ∈ E. The fact that the endpoints of β({W p , W q }) are in W p and W q follows directly by the definition of β({W p , W q }) = P p,q . It remains to prove that V (β({W p , W q })) ⊆ α(W p ) ∪ α(W q ) or equivalently, that V (P p,q ) ⊆ X p ∪ X q . Observe that, if both p, q ∈ Q in , then every vertex in the shortest path Z p,q should be within distance s from either p or q. Similarly, if p ∈ Q in and q = b out , then every vertex in the shortest path Z p,q should be within distance s from either p or some vertex in Q out . So for every p, q ∈ Q, with p = q, Z p,q ⊆ N p ∪ N q . By Observation 4.5, every vertex in σ -1 (V (Z p,q )) belongs to X p ∪ X q and the required follows as V (P p,q ) ⊆ σ -1 (V (Z p,q )). This completes the proof that S is a Λ-state configuration of G.

We now prove that S is A-normal. Recall that A is a s-diameter partition of G. Let C be an A-cloud and let C = σ(C) be a subset of V (Γ). As C is of diameter at most s, then, from Observation 4.6, C is also of diameter at most s. Notice that if C intersects some member W of W, then C = σ(C) also intersects σ(W ), therefore C intersects some element of

Q in ∪Q out . If C contains p ∈ Q in ∪Q out , then C ⊆ N p .
From Observation 4.4, C ⊆ X p = α(W p ), therefore C satisfies Condition (A). By construction, the distance in Γ between two elements of Q in is either 2s+1 or at least 4s + 2. The distance in Γ between on elements of Q in and any element of Q out is a multiple of 2s + 1. This implies that if p, q ∈ Q, p = q, N p ∩ C = ∅, and N q ∩ C = ∅, then p and q are linked. By construction, if p and q are linked, then for every r ∈ Q and every u ∈ Z p,q , dist Γ (r, u) ≥ min(dist Γ (r, p), dist G (r, q)), where for every x ∈ Q in , the quantity dist Γ (x, b out ) is interpreted as min{dist Γ (x, q ) | q ∈ Q out }. This implies that if C intersects Z p,q for some p, q ∈ Q, then for every r ∈ Q\{p, q}, C does not intersect N r . We will use this fact in the next paragraph towards completing the proof of Condition (B).

We now claim that if C intersects two distinct paths in {Z p,q | (p, q) ∈ Q 2 , p = q}, then C intersects at most one of the sets in {N q | q ∈ Q}. Let Z p,q and Z p ,q be two distinct paths intersected by C . We argue first that p, q, p , q cannot be all different. Indeed, if this is the case, as C intersects Z p,q then C cannot intersect N p or N q as p , q ∈ {p, q}. As Z p ,q ⊆ N q ∪ N p , we have a contradiction. Assume without lose of generality that p = p and q = q . As C intersects Z p,q , then it does not intersect N r for any r ∈ Q \ {p, q}, and as it intersects Z p,q , then it does not intersect N r for any r ∈ Q \ {p, q }. We obtain that C intersects at most one of the sets in {N r | r ∈ Q} that is N p . By definition of the states, we obtain that C shadows at most one state that is X p . That completes the proof of condition (B). ♦

We define below three ways to transform a Λ-state configuration of G. In each of them, S = (X , α, R, β) is an A-normal Λ-state configuration of G and C is an A-cloud in front A (S).

1. The expansion procedure applies when C intersects at least two freeways of S. Let X be the state of S shadowed by C (this state is unique because of property (B) of A-normality). We define (X , α , R , β ) = expand(S, C) such that * X = X \ {X} ∪ {X ∪ C}, * for each W ∈ W, α (W ) = X where X is the unique set of X such that W ⊆ X , * R = R, and β = β.

2. The clash procedure applies when C intersects exactly one freeway P of S.

Let X 1 , X 2 be the two states of S that intersect this freeway. Notice that P = β(α -1 (X 1 ), α -1 (X 2 )), as it is the only freeway with vertices in X 1 and X 2 . Assume that (C ∩ V (P )) ∩ X 1 = ∅ (if, not, then swap the roles of X 1 and X 2 ). We define (X , α , R , β ) = clash(S, C) as follows:

* X = {X 1 ∪ C} ∪ X∈X \{X 1 } {ucc G (X \ C, α -1 (X))} (notice that α -1 (X) ⊆ X \ C, for every X ∈ X , because of property (A) of A-normality), * for each W ∈ W, α (W ) = X where X is the unique set of X such that W ⊆ X , * R = R \ {P } ∪ {P }
, where P = P 1 ∪ P * ∪ P 2 is defined as follows: let s i be the first vertex of C that we meet while traversing P when starting from its endpoint that belongs in W i and let P i the subpath of P that we traversed that way, for i ∈ {1, 2}. We define P * by taking any {s 1 , s 2 }-path inside G[C], and

* β = β \ {({W 1 , W 2 }, P )} ∪ {{W 1 , W 2 }, P }.

3:

The annex procedure applies when C intersects no freeway of S and touches some country X ∈ X . We define (X , α , R , β ) = anex(S, C) such that * X = {X 1 ∪ C} ∪ X∈X \{X 1 } {ucc G (X \ C, α -1 (X))} (notice that α -1 (X) ⊆ X \ C, for every X ∈ X , because of property (A) of A-normality), * for each W ∈ W, α (W ) = X where X is the unique set of X such that W ⊆ X , * R = R, and β = β. Proof of the claim: We first show that S is an A-normal Λ-state configuration of G. In each case, the construction of S makes sure that X is a connected packing of G and that the countries are updated in a way that their capitals remain inside them. Moreover, the highways are updated so to remain internally disjoint and inside the corresponding updated countries. We next prove that S is A-normal. Condition (A) is invariant as the cloud we take into consideration cannot intersect any W ∈ W and a cloud intersecting some capital W ∈ W cannot be disconnected from W . It now remains to prove Condition (B). Because of Condition 4 of the definition of a Λ-state configuration, if a cloud C intersects a freeway, then it shadows at least one state. Now assume that a cloud C intersects two freeways in S , then by construction of S , it also intersects at least the two same freeways in S. This along with the fact that S satisfies Condition (B), implies that S satisfies Condition (B) as well, as required.

Notice that, for any cloud C * ∈ A \ {C}, if C * does not intersect a state X in S, then the corresponding state X in S , i.e., the state X = α (α -1 (X)), also does not intersect C * . This means that cost(S , A) ≤ cost(S, A).

Notice now that by the construction of S , C is not in front A (S ). Thus, when cov S (C) ≥ 1 we have that cost(S , A) < cost(S, A).

Notice also that the case cov S (C) = 0 happens only when action = anex and there is an edge with one endpoint in C and one in some country X * of S that does not intersect C. Moreover ucc G (X \ C, α -1 (X)) = X, for every state X of S. This implies that indep(S ) ⊆ indep(S). To continue with the proof of Lemma 4.7 we explain how to transform the A-normal Λ-state configuration S of G to a complete one. This is done in two phases. First, as long as there is an A-cloud C ∈ front(S) where cov S (C) ≥ 1, we apply one of the above three procedures depending on the number of freeways intersected by C. We again use S to denote the A-normal Λ-state configuration of G that is created in the end of this first phase. Notice that, as there is no A-cloud with cov S (C) ≥ 1, then cost A (S) = 0. The second phase is the application of anex(S, C), as long as some C ∈ front A (S) is touching some of the countries of S. We claim that this procedure will be applied as long as there are vertices in indep(S). Indeed, if this is the case, the set front A (S) is non-empty and by the connectivity of G, there is always a C ∈ front A (S) that is touching some country of S. Therefore, as cost A (S) = 0 (by Claim 4.9), procedure anex(S, C) will be applied again.

By Claim 4.9, |indep(S)| is strictly decreasing during the second phase. We again use S for the final outcome of this second phase. We have that indep(S) = ∅ and we conclude that S is a complete A-normal Λ-state configuration of G such that |front A (S)| = 0.

We are now going to create a graph isomorphic to Λ only by doing contractions in G. For this we use S, a complete A-normal Λ-state configuration of G such that |front A (S)| = 0, obtained as describe before. We contract in G every country of S into a unique vertex. This can be done because the countries of S are connected. Let G be the resulting graph. By construction of S, G is a contraction of H. Because of Condition 4 of Λ-state configuration, every freeway of S becomes an edge in G . This implies that there is a graph isomorphic to Λ that is a subgraph of G . So Γ k is isomorphic to a subgraph of G with the same number of vertices. Let see Γ k as a subgraph of G and let e be an edge of G that is not an edge of Γ k . As e is an edge of G , this implies that in G, there is two states of S such that there is no freeway between them but still an edge. This is not possible by construction of S.

We deduce that G is isomorphic to Γ k . Moreover, as |front A (S)| = 0, then every cloud is a subset of a country. This implies that G is also a contraction of H. By contracting in G the edge corresponding to {a, (k -1, k -1)} in Γ k , we obtain that Γ k is a contraction of H. Lemma 4.7 follows.

Proof of the main result

We now have all the ingredients to prove Theorem 4.3.

Proof of Theorem 4.3: Let λ, c, s 1 , and s 2 be integers. It is enough to prove that there exists an integer λ = O(λ • s 1 • (s 2 ) c ) such that for every graph class H ∈ SQGC(c),

∀G ∈ H tw(G) ≤ λ • (bcg(G)) c ⇒ ∀G ∈ H (s 1 ,s 2 ) tw(G) ≤ λ • (bcg(G)) c . Let H ∈ SQGC(c) be a class of graph such that ∀G ∈ H tw(G) ≤ λ • (bcg(G)) c . Let H ∈ H (s 1 ,s 2 )
and let G and J be two graphs such that G ∈ H, G (s 1 ) c J, and H s 2 c J. G and J exist by definition of H (s 1 ,s 2 ) .

-By definition of H and J, tw(H) ≤ tw(J).

Chapter 5 Applications

In this chapter, we provide applications of treewidth and, more generally, to the theory of Parameterized Complexity, to practical problems originated from Networks and Bioinformatics.

In Section 5.1 we study the Weighted Edge Monitoring problem parameterized by the size of the solution, the treewidth of the input graph, and the maximum value of the weight function on the edges of the input graph.

In Section 5.2, we study the Diameter tree problem parameterized by the cost of a solution, the treewidth of the input graph, and the maximum degree of the input graph.

In Section 5.3, we study the Supertree problem parameterized by the treewidth of the display graph, that corresponds to the number of trees in the input. 154 CHAPTER 5. APPLICATIONS

The Edge Monitoring problem

In this section we study the Weighted Edge Monitoring problem parameterized by the size of the solution, the treewidth of the input graph, and the maximum value of the weight function on the edges of the input graph.

Given a graph G we define the set of monitors of an edge {a, b} ∈ E(G) as the set Notice that for each monitorable triple (G, ω, M ), em(G, ω, M ) is well-defined and em(G, ω, M ) ≤ |M |. The main objective of this section is to study the complexity of the problem of computing em. For this, we will take into consideration three different parameters: the size of the solution, the treewidth of the input graph, and the maximum value of the weight function on the edges of the input graph. The associated decision problem is the following.

M G ({a, b}) = N G (a) ∩ N G (b). Given a vertex v ∈ V (G)

Weighted Edge Monitoring

Input: A monitorable triple (G, ω, M ) and an integer k. Parameter: ω M and either k or tw(G). Question: Is em(G, ω, M ) ≤ k?

The usual Edge Monitoring problem correspond to the instances ((G, ω, M ), k) of Weighted Edge Monitoring where ω is the constant function with value 1. In particular, for any instance of Edge Monitoring, ω M = 1.

In Subsection 5.1, we prove that Edge Monitoring is W [2]-hard parameterized by k by presenting a reduction from Red-Blue Dominating Set, which is known to be W [2]-hard when parameterized by the size of the solution [START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF].

In Subsection 5.1, we present a natural FPT algorithm for Weighted Edge Monitoring parameterized by tw and ω M . In Subsection 5.1, we use the framework of the theory of Bidimensionnality in order to present an FPT algorithm for Weighted Edge Monitoring parameterized by k and ω M for any class of graph of SQGC(c), for any 1 ≤ c < 2. Note that as Weighted Edge Monitoring is not contraction-closed, in order to be able to 

E(G ) = {{v 1 , v 2 } | v ∈ V r } ∪ {{v b , w 1 } | {v, w} ∈ E} ∪ {{v b , w 2 } | {v, w} ∈ E} ∪ {{a i j , v i } | i ∈ {1, 2}, j ∈ {1, 2, 3}} ∪ {{a i j , v b } | i ∈ {1, 2}, j ∈ {1, 2, 3}} ∪ {{a i j , a i j } | i ∈ {1, 2}, j, j ∈ {1, 2, 3}, j = j } ∪ {{a i j , b i j }, {a i j , c i j }, {b i j , c i j } | i ∈ {1, 2}, j ∈ {1, 2, 3}}.
We now show that solving Red-Blue Dominating Set on ((G, V r , V b ), k) is equivalent to solving Weighted Edge Monitoring on ((G , ω, M ), k + 18). Assume that ((G, V r , V b ), k) is a positive instance of Red-Blue Dominating Set and let S be a certificate of it. Note that it implies that each vertex of V r has at least one neighbor in V b . Let S = {v b | v ∈ S ∩V b }∪V a . Then we prove that S is a certificate that ((G , ω, M ), k + 18) is a positive instance of Weighted Edge Monitoring.

Fist note that, as |S| ≤ k and |V a | = 18, we have |S | ≤ k + 18. We now show that each edge of G is monitored by S . Let e ∈ E(G ). We distinguish several cases

The Diameter tree problem

In this section, we study the Diameter tree problem parameterized by the cost of a solution, the treewidth of the input graph, and the maximum degree of the input graph.

We recall some of the definitions given in the introduction. An edge colored graph is a triple (G, X, χ) where G is a graph, X is a finite set of colors, and χ : V (G) → X is a coloring function. A reload cost function is a function c : X 2 → N. We assume that each reload cost function is symetric. A reload cost input is a tuple (G, X, χ, c) where (G, X, χ) is an edge colored graph, G is a connected graph, and c : X 2 → N is a reload cost function. We denote by I dt the set of all reload cost inputs.

Let (G, X, χ, c) be a reload cost input. Given two edges of E(G) that are incident in G, we extend the definition of c such that c(e 1 , e 2 ) = c(χ(e 1 ), χ(e 2 )). If for every three distinct edges e 1 , e 2 , e 3 of E(G) incident to the same node, it holds that c(e 1 , e 3 ) ≤ c(e 1 , e 2 ) + c(e 2 , e 3 ), then we say that the reload cost function c satisfies the triangle inequality. This assumption is sometimes used in practical applications [START_REF] Wirth | Reload cost problems: minimum diameter spanning tree[END_REF]. If is an integer, P is a path with edges, and a subgraph of G, such that E(P ) = {e i | i ∈ 1, } and for each i ∈ 1, -1 , e i ∩ e i+1 = ∅, then we again extend the definition of c and define the reload cost of P as c(P ) = -1 i=1 c(e i , e i+1 ). Then for any spanning subgraph G of G, we define the induced reload cost distance function such that, for each u, v in V (G ), dist c G (u, v) = min{c(P ) | P is a path from u to v in G }. In this section specifically, we use an other definition of diameter. We define the diameter of a subtree T of G as diam(T ) = max u,v∈V (G) dist c T (u, v), where for notational convenience we assume that the edge coloring function χ and the reload cost function c are clear from the context. We also define the eccentricity of a vertex u in a subtree T of G as max v∈V (G) dist c T (u, v). Given a graph G, we define by spant(G) the set of all spanning tree of G. We define the minimization parameter dt :

I dt → N such that for each (G, X, χ, c) ∈ I dt , dt(G, X, χ, c) = min{diam(T ) | T ∈ spant(G)}.
The main objective of this section is to study the problem of computing dt. For this, we will take into consideration three different parameters: the size of the solution, the maximum degree of the input graph, and the treewidth of the input graph. The associated decision problem is the following.

Diameter Tree

Input: A reload cost input (G, X, χ, c) and an integer k. Parameter: k, ∆(G) or tw(G). Question: Is dt(G, X, χ, c) ≤ k?

In Subsection 5.2, we show that even if two of the three parameters k, ∆(G), and tw(G) are bounded by some given constants, Diameter Tree remains NP-hard. We present three distinct reductions. Two of them are from 3-SAT and the last one is from Partition.

In Subsection 5.2, we exhibit a dynamic programming algorithm that computes dt in polynomial time on cacti. This algorithm is quite involved and, in a nutshell, processes in a bottom-up manner the block tree of the given cactus graph, and uses at each step of the processing an algorithm that solves 2-SAT as a subroutine.

In Subsection 5.2, we exhibit an FPT algorithm where the parameter is k + ∆(G) + tw(G) by using a (highly nontrivial) dynamic programming algorithm on a treedecomposition of the input graph.

In Subsection 5.2, we show that if the maximal cost value is polynomially bounded by the size of the input, then Diameter Tree is W [1]-hard parameterized by tw(G) and ∆(G).

Para-NP-hardness results

In this subsection we give three proofs of NP-hardness for Diameter Tree. For each of them, the input is such that two parameters are bounded by a constant. Namely, in Theorem 5.5, we have tw(G) ≤ 2 and k ≤ 9, in Theorem 5.6, we have ∆(G) ≤ 3 and k ≤ 0, and in Theorem 5.7, we have tw(G) ≤ 3 and ∆(G) ≤ 3, where in each case, G is the input graph. Since outerplanar graphs have treewidth at most 2, in particular, Diameter Tree is para-NP-hard parameterized by tw(G) and k, where G is the input graph.

Proof: We present a simple reduction from 3-SAT. Given a formula ϕ with n variables and m clauses, we create an instance ((G, X, χ, c), 9) of Diameter Tree as follows. We may assume that there is no clause in ϕ that contains a literal and its negation. The graph G contains a distinguished vertex r and, for each clause c j = ( 1 ∨ 2 ∨ 3 ), we add a clause gadget C j consisting of three vertices v j 1 , v j 2 , v j and five edges {r, v j 1 }, {r, v j 2 }, {r, v j 3 }, {v j 1 , v j 2 }, and {v j 2 , v j 3 }. This completes the construction of G. Note that G does not depend on the formula ϕ except for the number of clause gadgets, and that it is an outerplanar graph with only one vertex of degree greater than 3; see Figure 5.3 for an illustration. Note that this cost function satisfies the triangle inequality since the reload costs between edges incident to r are 5 and 10, and the reload costs between edges incident to other vertices are 1.

C j v j 1 v j 2 v j
We claim that ϕ is satisfiable if and only if G contains a spanning tree with diameter at most 9. Since r is a cut vertex and every clause gadget is a connected component of G \ v r, in every spanning tree, the vertices of C j together with r induce a tree with four vertices. Moreover the reload cost associated with a path from r to a leaf of this tree is always at most 2. Therefore, the diameter of any spanning tree T is at most 4 plus the maximum reload cost incurred at r by a path of T .

Assume first that ϕ is satisfiable, fix a satisfying assignment ψ of ϕ, and let us construct a spanning tree T of G with diameter at most 9. For each clause c j , the tree T j is the tree spanning C j and containing the edge between r and an arbitrarily chosen literal of c j that is set to true by ψ. T is the union of all the trees T j constructed in this way. The reload cost incurred at r by any path of T traversing it is at most 5, since we never choose a literal and its negation. Therefore, it holds that diam(T ) ≤ 9.

Conversely, let T be a spanning tree of G with diam(T ) ≤ 9. Then, the reload cost incurred at r by any path traversing it is at most 5 since otherwise diam(T ) ≥ 10. For every j ∈ 1, m , let T j be the subtree of T induced by C j and let {r, v j i j } be one of the edges incident to r in T j . We note that for any pair of clauses c j 1 , c j 2 we have i j 1 = i j 2 , since otherwise a path using these two edges would incur a cost of 10 at r. The variable in the literal i j is set by ψ so that i j is true. All the other variables are set to an arbitrary value by ψ. Note that ψ is well-defined, since we never encounter a literal and its negation during the assignment process. It follows that ψ is a satisfying assignment of ϕ.

Theorem 5. [START_REF] Arnborg | Easy problems for tree-decomposable graphs[END_REF] The Diameter Tree problem is NP-hard even when restricted to the set of inputs ((G, X, χ, c), k) such that

-∆(G) ≤ 3, -|X| ≤ 9,
c : X 2 → {0, 1}, and

-k = 0.
In particular, it is para-NP-hard parameterized by k and ∆(G) where G is the input graph.

Proof: We present a reduction from the restriction of 3-SAT to formulas where each variable occurs in at most three clauses; this problem was proved to be NPcomplete by Tovey [START_REF] Tovey | A simplified NP-complete satisfiability problem[END_REF]. It is worth mentioning that one needs to allow for clauses of size two or three, as if all clauses have size exactly three, then it turns out that all instances are satisfiable [START_REF] Tovey | A simplified NP-complete satisfiability problem[END_REF].

We may assume that each variable occurs at least once positively and at least once negatively, as otherwise we may set such variable x to the value that satisfies all clauses in which it appears, and delete x together with those clauses from the formula. We may also assume that each variable occurs exactly three times in the given formula ϕ. Indeed, let x be a variable occurring exactly two times in the formula. We create a new variable y and we add to ϕ two clauses (x ∨ y) and (y ∨ y). Let ϕ be the new formula. Clearly ϕ and ϕ are equivalent, and both x and y occur three times in ϕ . Applying these operations exhaustively clearly results in an equivalent formula where each variable occurs exactly three times. Summarizing, we may assume the following property: Each variable occurs exactly three times in the given formula ϕ of 3-SAT. Moreover, each variable occurs at least once positively and at least once negatively in ϕ.
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Given a formula ϕ with n variables and m clauses, we create an instance ((G, X, χ, c), k) of Diameter Tree with ∆(G) ≤ 3, |X| ≤ 9, c : X 2 → {0, 1}, and k = 0 as follows. Let {x i | i ∈ 1, n } be the set of variables of ϕ. For every i ∈ 1, n , we add to G a variable gadget consisting of five vertices u i , v i , p i , r i , n i and five edges {u i , v i }, {v i , p i }, {p i , r i }, {r i , n i }, and {n i , v i }. For every i ∈ 1, n -1 , we add the edge {u i , u i+1 }. For every j ∈ 1, m , the clause gadget in G consists of a single vertex c j . We now proceed to explain how we connect the variables and the clause gadgets. For each variable x i , we connect the vertex p i (resp. n i ) to a vertex corresponding to a clause of ϕ in which x i appears positively (resp. negatively). Finally, we connect the vertex r i to the remaining clause in which x i appears (positively or negatively). Note that these connections are well-defined because of property . This completes the construction of G, and note that it indeed holds that ∆(G) ≤ 3; see Figure 5.4(a) for an example of the construction of G for a specific satisfiable formula ϕ with n = 4 and m = 5.

Let us now define the set of colors X, the coloring χ, and the cost function c. We define X = 1, 9 . For i ∈ 1, n , we set χ({p i , r i }) = 1 and χ({r i , n i }) = 2, and all edges incident to u i or v i have color 3. Finally, for j ∈ 1, m , we color the edges containing c j with colors in 4, 9 , so that incident edges get different colors, and edges corresponding to positive (resp. negative) occurrences get colors in 4, 6 (resp. 7, 9 ); note that such a coloring always exists as each clause contains at most three variables; see Figure 5.4(b). We now define the function c : X 2 → {0, 1}. For this, we set

-c(1, 2) = 1, -for each i ∈ 4, 6 , c(1, i) = 1, -for each i ∈ 7, 9 , c(2, i) = 1,
for each i, j ∈ 4, 9 , i = j, c(i, j) = 1, and each other costs are set to 0.

We claim that ϕ is satisfiable if and only if ((G, X, χ, c), 0) is a positive instance of Diameter Tree. Assume first that ϕ is satisfiable, fix a satisfying assignment ψ of ϕ, and let us construct a spanning tree T of G with diameter 0 that is a certificate that ((G, X, χ, c), 0) is a positive instance of Diameter Tree. For every i ∈ 1, n , the tree T contains all the edges containing vertex u i or v i . If variable x i is set to true by ψ, we include the edge {r i , n i } to T , and otherwise, that is, if x i is set to false by ψ, we include the edge {p i , r i }. Finally, for each j ∈ 1, m , we add to T one of the edges containing c j that corresponds to a literal satisfying that clause. It can be easily checked that T is a spanning tree of G with diameter 0; see Figure 5.4(a) for an example.

Conversely, assume that ((G, X, χ, c), 0) is a positive instance of Diameter Tree, and let T be a certificate of it. Since the cost associated with any two distinct colors in 4, 9 is 1, it follows that, for j ∈ 1, m , vertex c j has degree one in 

p 1 r 1 n 1 v 1 u 1 p 2 r 2 n 2 v 2 v 3 v 4 u 2 u 3 u 4 p 3 r 3 n 3 p 4 r 4 n 4 c 1 c 2 c 3 c 4 c 5 (a) (b) u i v i p i r i n i 3 
= (x 1 ∨ x 2 ∨ x 3 ) ∧ (x 1 ∨ x 4 ) ∧ (x 3 ∨ x 4 ) ∧ (x 1 ∨ x 2 ∨ x 3 ) ∧ (x 2 ∨ x 4 ).
The vertices p i , r i , n i corresponding to positive (resp. negative) occurrences are depicted with circles (resp. squares). An assignment satisfying ϕ is given by x 1 = x 2 = 1 and x 3 = x 4 = 0, and a solution spanning tree T with diameter 0 is emphasized with thicker edges. (b) The (possible) colors associated with edge edge of G are depicted in blue.

T . Therefore, the variable gadgets need to be connected in T via the vertices of {u i | i ∈ 1, n }, implying that all edges containing a vertex of {u i | i ∈ 1, n }, belong to T . For each i ∈ 1, n , in order for T to contain all four vertices v i , p i , r i , n i , by construction of G and since all clause vertices have degree one in T , the tree T necessarily contains exactly three out of the four edges of the 4-cycle defined by v i , p i , r i , n i . Since c(1, 2) = 1 and diam(T ) = 0, the missing edge is necessarily either {p i , r i } or {r i , n i }. We define an assignment ψ of the variables {x i | i ∈ 1, n } as follows: for each i ∈ 1, n , if the edge {r i , n i } belongs to T , we set x i to true; otherwise, we set x i to false. We claim that ψ satisfies ϕ. Indeed, let fix j ∈ 1, m . c j is a vertex in G corresponding to a clause of ϕ. Since c j has degree one in T , it is attached to exactly one of the vertices p i , r i , n i for some i ∈ 1, n . Suppose that the edge containing c j corresponds to a positive occurrence of x i , the other case being symmetric. Then, by construction, necessarily the edge containing c j is either {c j , p i } or {c j , r i }. In both cases, if the edge {p i , r i } were in T , this edge together with {c j , p i } or {c j , r i } would incur a cost of 1 in T , contradicting the hypothesis that diam(T ) = 0. Therefore, the edge {p i , r i } cannot be in T , implying that the edge {r i , n i } must be in T . According to the definition of the assignment ψ, this implies that variable x i is set to true in ψ, and therefore the clause corresponding to c j is satisfied by variable x i . This concludes the proof.

Note that in the above reduction the cost function c does not satisfy the triangle inequality at vertices p i or n i , i ∈ 1, n , and recall that this is unavoidable since otherwise the problem would be polynomial [START_REF] Wirth | Reload cost problems: minimum diameter spanning tree[END_REF]. It is worth mentioning that using the ideas in the proof of [82, Theorem 4 of the full version] it can be proved that the Diameter Tree problem is also NP-hard on planar graphs with ∆ ≤ 4, k = 0, and bounded number of colors; we omit the details here.

Theorem 5.7 The Diameter Tree problem is NP-hard even when restricted to the set of inputs ((G, X, χ, c), k) such that -G is a planar graph,

tw(G) ≤ 3, and

-∆(G) ≤ 3.
In particular, it is para-NP-hard parameterized by tw(G) and ∆(G) where G is the input graph.

Proof: We present a reduction from the Partition problem, which is a typical example of a weakly NP-complete problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NPcompleteness[END_REF]. The Partition problem is defined as follows. Let G be the graph constructed so far. We then define G to be the graph obtained from two disjoint copies of G by adding an edge between both roots. Note that G is a planar graph with ∆(G) = 3 and tw(G) = 3. (The claimed bound on the treewidth can be easily seen by building a path decomposition of G with consecutive bags of the form {u

i-1 , d i-1 , u i , d i }, {u i , d i , m i , u i }, {d i , m i , u i , m i }, {d i , u i , m i , d i }, . . .)
Let us now define the set of color X, the coloring χ, and the cost function c. For simplicity we set X = E(G). With this definition of X, it is enough to describe the cost function c for every pair of incident edges of G. We define the costs for one of the copies of G , and the same costs apply to the other copy. if such a tree exists, and ⊥ otherwise. Note that, as G x,e B and G y,e B have only the vertex a(B) in common, minimizing the eccentricity of a(B) in T [S x,e B ] and minimizing the eccentricity of a(B) in T [S y,e B ] are two independent objectives. If for some block B ∈ block(G) we have r B (e) = ⊥ for every edge e of E(B), then G B (and therefore G as well) does not contain a spanning tree of diameter at most k. In this case the algorithm stops and returns that ((G, X, χ, c), k) is a negative instance. Otherwise, the processing continues until finally B r is processed successfully and the algorithm returns that ((G, X, χ, c), k) is a positive instance, since there exists e ∈ E(B r ) such that r Br (e) = ⊥ which is a certificate that ((G, X, χ, c), k) is a positive instance of Diameter Tree.

Given a cycle block B ∈ block(G), an edge e = {x, y} of E(B), a subgraph T of G B , and two integers i and j, we say that T satisfies the (e, i, j)-condition if:

-T is a tree, of diameter at most k, that does not contain e, the eccentricity of a(B) in T [S x,e B ] is at most i, and the eccentricity of a(B) in T [S y,e B ] is at most j.

Given an edge block B ∈ block(G), a subgraph T of G B , and an integer i, we say that T satisfies the (i)-condition if:

-T is a tree of diameter at most k and the eccentricity of a(B) in T is at most i.

Let us fix a block B ∈ block(G) and an edge e of E(B). In the sequel our goal is to describe how to compute r B (e). We assume that for every C ∈ child(B), the CHAPTER 5. APPLICATIONS function r C has already been computed and C contains at least one edge e ∈ E(C) such that r C (e ) = ⊥, since otherwise the algorithm would have stopped.

We define T e to be the tree obtained by taking the union of all the following:

- If B is an edge block, we define for each i ∈ 0, k the set

v, v , v of V (C) such that v = v , v = a(C), and {v, v } and {v , v } are in E(C), if R v,{v,v } C and R v ,{v ,v } C are defined, then R v,{v,v } C is a subgraph of R v ,{v ,v } C . We define R B = {R x ,e C | C ∈ child(B) is a cycle block, e ∈ E(C), r C (e ) = ⊥, x ∈ e }.
R (i) B = {R ∈ R B | T e R satisfies the (i)-condition}.
Note that, if B is a cycle block (resp. an edge block), then for each i, j ∈ 0, k and

for each R 1 , R 2 ∈ R B such that R 2 is a subtree of R 1 , then R 2 ∈ R (e,i,j) B ⇒ R 1 ∈ R (e,i,j) B (resp. R 2 ∈ R (i) B ⇒ R 1 ∈ R (i) B ). We associate a boolean variable v(R) = v x ,e C with each R = R x ,e C ∈ R B .
With a slight abuse of notation, we say that a set Q ⊆ R B satisfies a formula φ over these variables if φ is satisfied when each variable of {v(R) | R ∈ Q} is set to true and each variable of {v(R) | R ∈ R B \ Q} is set to false simultaneously. In the following we are going to build three formulas φ 0 , φ 1 , and φ 2 , and if Q ⊆ R B satisfies φ 0 ∧ φ 1 ∧ φ 2 then this implies that T e Q is a correct value for r B (e). Along with the description, the reader is referred to Figure 5.7 and Table 5.1 to get some intuition about the formulas φ 0 , φ 1 , and φ 2 . 5.1. In the general case, the clauses deal with

T e {R v ,{v ,v } C 1 ,R w ,{w ,w } C 2 }
instead of the path v , v, w, w , but the main idea behind the clauses is the same.

We construct a 2-Sat formula φ 0 such that for each

R 1 , R 2 ∈ R B where R 2 is a subgraph of R 1 , φ 0 contains the clause v(R 1 ) ⇒ v(R 2 ). It is easy to see that given Q ⊆ R B , Q satisfies φ 0 if and only if Q = close R B (Q).
We construct a 2-Sat formula φ 1 as follows. For every C ∈ child(B) such that C is a cycle block and every two consecutive edges e

1 = {v 1 , v 2 } and e 2 = {v 2 , v 3 } of E(C) such that a(C) / ∈ {v 1 , v 2 } and R v 2 ,e 1 C , R v 2 ,e 2 C ∈ R B , we add to φ 1 two clauses v v 2 ,e 1 C ∨ v v 2 ,e 2 C and v v 2 ,e 1 C ∨ v v 2 ,e 2 C
. This complete the definition of φ 1 . We now state the following claim. Claim 5.9 Let Q be a subset of R B such that Q satisfies φ 0 . Q satisfies φ 1 if and only if T e Q is a spanning tree of G B .

Proof of the claim: Let Q ⊆ R B . First assume that T e Q is a spanning tree of G B . Let C ∈ child(B) be a cycle block, and let e 1 = {v 1 , v 2 } and e 2 = {v 2 , v 3 } be two consecutive edges of C such that e 1 = e 2 , v 1 = a(C), and

v 2 = a(C). As T e Q is connected, the clause v v 2 ,e 1 C ∨ v v 2 ,e 2 C is satisfied. As T e Q does not contain any cycle, the clause v v 2 ,e 1 C ∨ v v 2 ,e 2 C is satisfied.
Assume now that Q satisfies φ 1 , and let z be a vertex of G B . If z ∈ V (B), then there is a path from z to a(B) in T e and hence also in T e Q . Otherwise, let C z ∈ child(B) be the block such that z ∈ V (G Cz ), and let s(z) be the first vertex of V (C z ) in a path from z to a(C z ). Note that this definition is independent of the considered path and if

z ∈ V (C z ), then s(z) = z. If C z is an edge block, then z ∈ V (T e ); therefore, there is a path from a(B) to z in T e Q . Otherwise, if C z is a cycle block, then the condition v v 2 ,e 1 C ∨ v v 2 ,e 2 C
, with v 2 = s(z), ensures that z ∈ T e Q and that there is a path in T e Q from a(B) to z. Thus, T e Q is connected and V (T e Q ) = V (G B ). We need to show that T e Q does not contain any cycle. By construction of T e Q , if it contains a cycle, this cycle should be some C where C ∈ child(B).

The condition v v 2 ,e 1 C ∨ v v 2 ,e 2 C
and the fact that Q satisfies φ 0 ensure that C is not a subgraph of T e Q . ♦

)), and for every two vertices of V (C 1 ) ∪ V (C 2 ), say v and w , the clause

v(R v ,{v ,v } C 1 ) ∨ v(R w ,{w ,w } C 2
) is a clause of φ 2 if and only if the path defined by v , v, w, w has diameter greater than k.

Table 5.1: Formula given when computing r B (e) on the graph depicted in Figure 5.7

We build a formula φ 2 over the variables {v

(R) | R ∈ R (e,k,k) B }. For each R 1 , R 2 ∈ R (e,k,k) B , R 1 = R 2 , if T e {R 1 ,R 2 }
has diameter greater than k, then we add the clause v(R 1 ) ∨ v(R 2 ) to φ 2 . This complete the definition of φ 2 . We now state the following claim.

Claim 5.10 Let B be a cycle block (resp. an edge block), i and j be two integers of 0, k , and Q be a subset of R (e,i,j) B (resp. of R

B ) such that Q satisfies φ 0 and φ 1 . Q satisfies φ 2 and T e satisfies the (e, i, j)-condition (resp. the (i)-condition) if and only if T e Q is a spanning tree of G B that satisfies the (e, i, j)-condition (resp. the (i)-condition).

Proof of the claim: Assume that B is a cycle block. Let i, j be two integers in 0, k and let Q ⊆ R (e,i,j) B

.

First assume that T e Q is a spanning tree of G B that satisfies the (e, i, j)-condition. This directly implies that T e also satisfies the (e, i, j)-condition. It remains to show that Q satisfies φ 2 . For this, assume that there exist R 1 and R 2 in Q such that T e {R 1 ,R 2 } has diameter more than k. Since T e {R 1 ,R 2 } is a subtree of T e Q , this implies that T e Q also has diameter more than k, which is a contradiction because T e Q satisfies the (e, i, j)-condition.

exhibit an FPT algorithm with parameter k + ∆(G) + tw(G). Theorem 5.12 Let (G, X, χ, c) be a reload cost input. There exists an algorithm that computes dt(G, X, χ, c) in time 1) where k = dt(G, X, χ, c) together with a certificate of it. In particular, it is FPT parameterized by k+tw(G)+ ∆(G).

(k ∆•tw •∆•tw) O(tw) •n O(
Proof: Before proceeding to the description of the algorithm, we need some definitions. Given a graph G and a set S ⊆ V (G), we define adj G (S) = {e ∈ E(G) | e ∩ S = ∅}. Let (F, R, α) be a triple where F is a forest, R ⊆ V (F ), and α : R×R F → 0, k ∪{⊥}, where R F = V (F )∪(E(F )\adj F (R)). Keep in mind that R F contains all vertices and edges of F except from the edges that are incident to vertices in R. We say that (F, R, α) is a transfer triple if, for each (v, a) ∈ R × R F , α(v, a) = ⊥ if and only if v and a belong in different connected components of F . The function α will be used for indicating for each pair (v, a) the "cost of transfering" from v to a in F (α is not necessarily a distance function).

Let (F 1 , R 1 , α 1 ) and (F 2 , R 2 , α 2 ) be two transfer triples where R = R 1 = R 2 , E(F 1 )∩ E(F 2 ) = ∅, and such that F = F 1 ∪ F 2 is a forest. Let also β : adj F 1 (R) × adj F 2 (R) → 0, k ∪ {⊥}.
We require a function α 1 ⊕ β α 2 : R × R F → 0, k ∪ {⊥} that builds the transferring costs of moving in F by taking into account the corresponding transferring costs in F 1 and F 2 . The values of α 1 ⊕ β α 2 are defined as follows:

Let (v, a) ∈ R × R F . Let P be the shortest path in F containing v and a and let V (P ) = {v i | i ∈ 0, r }, where r = |V (P )| -1, ordered in the way these vertices appear in P and assuming that v 0 = v. To simplify notation, we assume that {v 0 , v 1 } is an edge of F 1 (otherwise, exchange the roles of F 1 and F 2 ). Given i ∈ 1, r -1 , we define e - i (resp. e + i ) as the edge incident to v i that appears before (resp. after) v i when traversing P from v to a. We define the set of indices

I = {i | e -
i and e + i belong to different sets of {E(F 1 ), E(F 2 )}}. Let I = {i h | h ∈ 1, q }, with q = |I|, where numbers are ordered in increasing order and we also set i 0 = 0. Then we set

α 1 ⊕ β α 2 (v, a) = h∈ 0, q-1 2 α 1 (v 2i h , v 2i h +1 ) + h∈ 0, q-2 2 α 2 (v 2i h +1 , v 2i h +2 ) + h∈ 1,q β(e - i h , e + i h ) + α (q mod 2)+1 (v iq , a).
Given a graph G and a set S ⊆ V (G), we say that S is good for G if each connected component of G contains at least one vertex of S.

Let F be a forest and let S be a set of vertices in F that is good for F . We define Reduce(F, S) as the forest F that is obtained from F by repetitively applying the following operations to vertices that are not in N F [S] as long as this is possible:

CHAPTER 5. APPLICATIONS removing a vertex of degree 1 and dissolving a vertex of degree 2.

Suppose now that Reduce(F, S) = F . We define the associated reduce function ϕ : V (F ) → V (F ) ∪ E(F ) as follows. For every vertex z ∈ V (F ), we define K z to be the set of vertices x of V (F ) such that z and x are in the same connected component in the graph F \ v (V (F ) \ {x}). If K z contains only one element x, then we define ϕ(z) = x, otherwise we define ϕ(z) = K z . To show that ϕ is welldefined, we claim that

1 ≤ |K z | ≤ 2 and if |K z | = 2 then K z ∈ E(F ). Indeed, since each connected component of F contains an element of S, we have that |K z | ≥ 1.
Assume that K z contains two distinct vertices x 1 and x 2 . By definition, we know that x 1 and x 2 are in the same connected component of F and also of F . Let P i be the path from z to x i , i ∈ {1, 2}, in F and let P be the path from

x 1 to x 2 in F [V (P 1 ) ∪ V (P 2 )]
. By definition of x 1 and x 2 , V (P ) ∩ V (F ) = {x 1 , x 2 }. Moreover, since F is a forest, then P is the unique path from x 1 to x 2 in F . Let assume that {x 1 , x 2 } is not an edge of F and let x 3 be a vertex of F on the path from x 1 to x 2 in F . Then x 3 should be in P . This contradicts the fact that

V (P )∩V (F ) = {x 1 , x 2 }.
As F is a forest, this also implies that |K z | ≤ 2.

We now proceed with the dynamic programming algorithm that solves Diameter Tree. Let ((G, X, χ, c), k) be an instance of Diameter Tree. Let ((T, X ), r, G) be a edge nice tree-decomposition of G with width w. For each t ∈ V (T) we set w t = |X t |. We also refer to the vertices of X t as t-terminals and to the edges that are incident to vertices in X t as t-terminal edges. We provide a table R t that the dynamic programming algorithm computes for each node of D. For this, we need first the notion of a t-pair, that is a pair (F, α) where:

-F is a forest such that 1. X t is good for F , 2. X t ⊆ V (F ), 3. N F (X t ) ⊆ N G (X t ), 4. |V (F ) \ N F [X t ]| ≤ w t -2, and 5. |{e ∈ E(F ) | e ∩ X t = ∅}| ≤ 2w t -3, -α : X t × X F t → 0, k ∪ {⊥}, We call the vertices in V (F ) \ N F [X t ] external vertices of F and the edges of {e ∈ E(F ) | e ∩ X t = ∅} external edges of F .
We need the function β t : adj G (Xt) 2 → 0, k ∪{⊥} so that, for each e 1 , e 2 ∈ adj G (X t ), if there exists x ∈ X t such that e 1 ∩ e 2 = {x}, then β t (e 1 , e 2 ) = c(e 1 , e 2 ), otherwise β t (e 1 , e 2 ) = ⊥.

Let (F, α) be a t-pair. Recall that X F t contains all t-terminals and all non-t-terminal edges of F . Given a t-pair (F, α) as above we say that (F, α) is admissible if for every (a, a ) ∈ X F t × X F t one of the following holds:

there is no path between a and a in F containing a vertex in X t ,

one, say a, of a, a is a vertex in X t and α(a, a ) ≤ k, some internal vertex b of the path P between a and a in F belongs in X t and α t (b, a) + β t (e -, e + ) + α t (b, a ) ≤ k, where e + , e -are the two edges in P that are incident to b.

Intuitively, the admissibility of a t-pair (F, α) assures that the transferring cost, indicated by α, between any two external elements is bounded by k.

It is now time to give the precise definition of the table R t of our dynamic programming algorithm. A t-pair (F, α) belongs in R t if G contains a spanning tree T where diam( T ) ≤ k and the forest F = T [V (G t )] (i.e., the restriction of T to the part of the graph that has been processed so far) satisfies the following properties:

-Reduce( F , X t ) = F , with the reduce function ϕ, for each x ∈ X t and y ∈ X F t , α(x, y) = ⊥ if and only if x and y are in two different connected components in F and if α(x, y) = ⊥, then for each z ∈ ϕ -1 (y), cost F (x, z) = ⊥ and α(x, y) ≥ cost F (x, z).

Notice that each (F, α) as above is a t-pair. Indeed, Conditions 1-3 follow by the fact that T is a spanning tree of G and therefore F is a spanning forest of G t . Conditions 4 and 5 follow by the fact that the internal vertices (resp. edges) of a tree with no vertices of degree 2 are at most two less than the number of its leaves (resp. at most twice the number of its leaves minus three). Moreover, the values of α are bounded by k because the diameter of T is at most k and therefore the same holds for all the connected components of F . Notice that, for the same reason, all pairs in R t must be admissible.

In the above definition, the external vertices and edges of F correspond to the parts of F that have been "compressed" during the reduction operation and the function α stores the transfer costs between those parts and the terminals. In this way, the trees in the t-pairs in R t "represent" the restriction of all possible solutions in G t . Moreover, the values of α indicate how these partial solutions interact with the t-terminals.

Our next concern is to bound the size of R t . Claim 5.13 For every t ∈ V (T), it holds that

|R t | ≤ k O(∆•w 2 ) • (∆ • w) O(w) .
Proof of the claim: As we impose N [X t ] ⊆ V (F ), we have at most 2 ∆•w choices for the set {e ∈ E(F ) | e ∩ X t = ∅} and at most (∆ • w) O(w) choices for the other edges or vertices. So the number of forest we take into consideration in R t is at most 2 ∆•w • (∆ • w) O(w) . As the number of vertices and the number of edges of F is upper bounded by O(∆ • w), the number of function α is at most k O(w) and the claim holds. ♦

O(∆•w 2 ) . So |R t | ≤ k O(∆•w 2 ) • (∆ • w)
Clearly, ((G, X, χ, c), k) is a positive instance if and only if R r = ∅. We now proceed with the description of how to compute the set R t for every node t ∈ T . For this, we will assume inductively that, for every descendent t of t, the set R t has already been computed. We distinguish several cases depending on the type of node t:

Leaf. G t = {∅, ∅} and R t = {((∅, ∅), ∅)}.

Introduce vertex. If v is the insertion vertex of X t and t is the child of t then

R t = (V (F ) ∪ {v}, E(F )), α | ∃(F , α ) ∈ R t : α = α ∪ (v, v), 0 ∪ (v, a), ⊥ | a ∈ X F t \ {v} .
Notice that at this point v is just an isolated vertex of G t . This vertex is added in F and α is updated with the corresponding "void" transfer costs.

Introduce edge. If e is the insertion edge of X t and t is the child of t, then we define F = (X t , {e}) and we set up α :

X t × X F t → 0, k ∪ {⊥} (notice that X F t = X t ) so that α (x, y) = α (y, x) = 0 and is ⊥ for all other pairs of X t ×X t . We obtain that R t = R t ∪ {(F, α) | (F, α) is an admissible t-pair,
F is a forest, and there exists a pair (F , α ) ∈ R t such that F = F ∪ F and α = α ⊕ βt α }.

In the above case, the single edge graph F is defined and the F of each new tpair is its union with F . Similarly, the function α encodes the trivial transfer costs in F . Also, α is updated so to include the fusion of the transfer costs of α and α .

Forget vertex. If v is the forget vertex of X t and t is the child of t, then R t contains every t-pair (F, α) such that there exists (F , α ) ∈ R t where:

if t is not the root of T, then the connected component of F containing v also contains an other element v ∈ X t (this is necessary as X t should always be good for F ), -F = Reduce(F , X t ), with associated reduce function ϕ, we denote by Z the set of every edge and every vertex that is in

F but not in F . Moreover, if ϕ(v) is a vertex, then we further set Z ← Z ∪ {ϕ(v)}. Notice also that if z ∈ Z, then ϕ(z) = ϕ(v). Then α = α | Xt×(X F t \{ϕ(v)}) ∪ (x, ϕ(v)), max y∈Z α (x, y) | x ∈ X t .
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Notice that F is further reduced because v has been "forgotten" in X t . This may change the status of v as follows: either v is not any more in F or v is still in F but it is not a t-terminal. In the first case ϕ(v) is either a vertex or an edge of F and in the second ϕ(v) = v. In any case we should update the values of α(x, φ(v)) for every x ∈ X t to the maximum transition cost (with respect to α ) from x to some element of Z.

Join. If t and t are the children of t, then we define

R t = R t ∪ {(F, α) | (F, α
) is an admissible t-pair, F is a forest, and there exist two pairs (F , α ) ∈ R t and (F , α ) ∈ R t , such that F = F ∪ F and α = α ⊕ βt α }.

The above case is very similar to the case of the introduce edge node. The only difference is that F is now taken from R t .

Taking into account Claim 5.13 on the bound of the size of R t , it is easy to verify that, in each of the above cases, R t can be computed in time

k O(∆•w 2 ) • (∆ • w) O(w) . So we can solve Diameter Tree on ((G, X, χ, c), k) in time k O(∆•w 2 ) •(∆•w) O(w) •n.
The theorem follows by applying Proposition 2.18.

Corollary 5.14 If the maximum cost value is polynomially bounded by the size of the input, the Diameter Tree problem is in XP parameterized by tw(G) and ∆(G) where G is the input graph.

Polynomially bounded costs

In Subsection 5.2 we show that Diameter Tree is NP-hard even when the input graph G is such that tw(G) ≤ 3 and ∆(G) ≤ 3. In Subsection 5.2 we show that Diameter Tree is in XP parameterized by tw(G) and ∆(G) when the maximum cost value is polynomially bounded by the size of the input. In this subsection we focus on the parameterized complexity of Diameter Tree when the maximum cost value is polynomially bounded by the size of the input.

Theorem 5. [START_REF] Bodlaender | A c k n 5-Approximation Algorithm for Treewidth[END_REF] The Diameter Tree problem is W[1]-hard parameterized by tw(G) and ∆(G) even when restricted to the set of inputs ((G, X, χ, c), k) such that the maximum cost value is polynomially bounded by the size of ((G, X, χ, c), k).

Proof: We present a parameterized reduction from the Bin Packing problem parameterized by the number of bins. In Bin Packing, we are given a multiset {a i | i ∈ 1, n } of n integer item sizes and an integer capacity B, and the objective is to partition the items into a minimum number of bins with capacity B. Jansen et al. [START_REF] Jansen | Bin packing with fixed number of bins revisited[END_REF] proved that Bin Packing is W[1]-hard parameterized by the number of bins in the solution, even when all item sizes are bounded by a polynomial of the input size. Equivalently, this version of the problem corresponds to the case where the item sizes are given in unary encoding; this is why it is called Unary Bin Packing in [START_REF] Jansen | Bin packing with fixed number of bins revisited[END_REF].

Given an instance (({a i | i ∈ 1, n }, B), k) of Unary Bin Packing, where k is the number of bins in the solution and where we can assume that k ≥ 2, we create an instance ((G, X, χ, c), 2B) of Diameter Tree as follows. The graph G contains a vertex r and, for each i ∈ 1, n and each j ∈ 1, k , we add to G the vertices v i , i j , r i j and edges {r, 1 j }, {v i , i j }, {v i , r i j }, and { i j , r i j }. Finally, for i ∈ 1, n -1 and j ∈ 1, k , we add the edge {r i j , i+1 j }. Let G be the graph constructed so far; see Figure 5.8 for an illustration. Similarly to the proof of Theorem 5.7, we define G to be the graph obtained by taking two disjoint copies of G and identifying vertex r of both copies. Note that G can be clearly built in polynomial time, and that tw(G) ≤ k + 1 and ∆(G) = 2k (since we assume k ≥ 2). Therefore, tw(G) + ∆(G) is indeed bounded by a function of k, as required. (Again, the claimed bound on the treewidth can be easily seen by building a path decomposition of G with consecutive bags of the form {v

v 2 v i v n r i 1 i 2 i k r i 1 r i 2 r i k 1 1 1 2 1 k 2 1 2 2 2 k n 1 n 2 n k r n 1 r n 2 r n k r 2 1 r 2 2 r 2 k r 1 1 r 1 2 r 1 k v 1
i , i 1 , i 2 , . . . , i k , r i 1 }, {v i , i 1 , i 2 , . . . , i k-1 , r i 1 , r i 2 }, {v i , i 1 , i 2 , . . . , i k-2 , r i 1 , r i 2 , r i 3 }, . . .)
Let us now define the set of color X, the coloring χ, and the cost function c. Once more, for simplicity, we set X = E(G). The cost function is symmetric for both copies of G , so we just focus on one copy. For each i ∈ 1, n , let e 1 , e 2 be two distinct edges containing vertex v i . We set c(e 1 , e 2 ) = 2B + 1 unless e 1 = {v i , i j } and e 2 = {v i , r i j } for some j ∈ 1, k , in which case we set c(e 1 , e 2 ) = a i . The cost associated with any other pair of edges of G is set to 0. Note that, as Assume first that (({a i | i ∈ 1, n }, B), k) is a positive instance of Unary Bin Packing, and let {S i | i ∈ 1, k } be the k subsets of 1, n defining the k bins in the solution. We define a spanning tree T of G with diam(T ) ≤ 2B as follows. For each of the two copies of G , the tree T contains, for each i ∈ 1, n -1 and for each j ∈ 1, k , the edges {r, 1 j } and {r i j , i+1 j }. For i ∈ 1, n -1 , if the item a i belongs to the set S j , j ∈ 1, k , we add to T the two edges {v i , i j } and {v i , r i j }. Otherwise we add to T the edge { i j , r i j }. Since the total item size of each bin in the solution of Unary Bin Packing is at most B, it can be easily checked that T is a spanning tree of G with diam(T ) ≤ 2B and so T is a certificate that ((G, X, χ, c), 2B) is a positive instance of Diameter Tree.

(({a i | i ∈ 1, n }, B), k) is
Conversely, assume that ((G, X, χ, c), 2B) is a positive instance of Diameter Tree and let T be a certificate of it. We proceed to define a certificate

{S i | i ∈ 1, k } that (({a i | i ∈ 1, n }, B), k
) is a positive instance of Unary Bin Packing. Let T 1 and T 2 be the restriction of T to the two copies of G . By the choice of the reload costs and since diam(T ) ≤ 2B, for every i ∈ 1, n and every x ∈ {1, 2}, the tree T x contains the two edges {v i , i j } and {v i , r i j } for some j ∈ 1, k , and none of the other edges incident with vertex v i . Therefore, for every x ∈ {1, 2}, the tree T x consists of k paths sharing vertex r. This implies that diam(T ) ≥ 1 2 diam(T 1 ) + 1 2 diam(T 2 ), and since diam(T ) ≤ 2B, it follows that there exists x ∈ {1, 2} such that diam(T x ) ≤ B. Assume without loss of generality that x = 1, i.e., that diam(T 1 ) ≤ B. We define the bins {S i | i ∈ 1, n } as follows. For every i ∈ 1, n , if T 1 contains the two edges {v i , i j } and {v i , r i j }, j ∈ 1, k , we add item a i to the bin S j . Let us verify that this defines a certificate of Unary Bin Packing. Indeed, assume for contradiction that for some j ∈ 1, k , the total item size in the bin S j exceeds B. As the bin S j corresponds to one of the k paths in tree T 1 , the diameter of this path would also exceed B, contradicting the fact that diam(T 1 ) ≤ B.

The Supertree problem

In this section, we study the Supertree problem parameterized by the treewidth of the display graph, that corresponds to the number of trees in the input.

If Y is a subset of vertices of a tree T , then T | Y is the tree obtained from the minimal subtree of T containing Y by dissolving all vertices of degree 2. For simplicity, we may sometimes consider the vertices of T | Y also as vertices of T .

An unrooted phylogenetic tree on a label set X is a pair (T, φ) where T is a tree with no vertex of degree 2 and φ : leaf(T ) → X is a bijection. We say that a vertex v ∈ leaf(T ) is labeled with label φ(v). Two unrooted phylogenetic trees (T, φ) and (T , φ ) are isomorphic if there exists an isomorphism α from T to T satisfying that if v ∈ leaf(T ) then φ (α(v)) = φ(v).

The following three graph operations can be naturally generalized to unrooted phylogenetic trees: dissolving a vertex, identifying two vertices, and contracting an edge. In this context, two vertices to be identified are either both unlabeled or both labeled with the same label. In the latter case, the newly created vertex inherits the label of the identified vertices. Finally, contractions in unrooted phylogenetic trees are restricted to edges incident to two unlabeled vertices. In this case, we speak about upt-contraction. If (T, φ) is an unrooted phylogenetic tree and Y is subset of leaves of leaf(T ), then (T, φ)| Y is the unrooted phylogenetic tree (T | Y , φ| Y ) where φ| Y is the restriction of φ to the label set Y .

Let k be an integer and T = {(T i , φ i ) | i ∈ 1, k } be a collection of unrooted phylogenetic trees, not necessarily on the same label set. We say that an unrooted phylogenetic tree (T, φ) is a compatible supertree of T if for every i ∈ 1, k , leaf(T i ) ⊆ leaf(T ) and (T i , φ i ) ∈ T can be obtained from (T, φ)| leaf(T i ) by performing upt-contractions. The phylogenetic tree (T, φ) is a strictly compatible supertree of T if for every

i ∈ 1, k , leaf(T i ) ⊆ leaf(T ) and (T i , φ i ) ∈ T is isomorphic to (T, φ)| leaf(T i ) .
If a collection T of unrooted phylogenetic trees admits a (strictly) compatible supertree, then we say that T is (strictly) compatible. The two definitions are equivalent when T contains only binary phylogenetic trees, that is, unrooted trees in which every vertex that is not a leaf has degree 3.

Note that, as mentioned in the introduction, the notions of "being a compatible supertree" and "being a strictly compatible supertree" correspond, modulo the conditions on the labels, to the notions of "containing as a minor" and "containing as a topological minor", respectively.

We consider the two following parameterized problems: i ∈ 1, k , ϕ| V (T i ) is a minor model of T i in T . For every i ∈ 1, k and every vertex v ∈ V (T i ) we call vertex-model of v the set ϕ(v). Note that T i [ ϕ(v)] is a tree. Observe that by the definition of the upt-contraction operation, the vertexmodel of a leaf is a singleton. Moreover, if u, v ∈ V (T i ) are two adjacent vertices in T i , then there is exactly one edge in T that connects the vertex-model of u to the vertex-model of v. We call such an edge of T the edge-model of {u, v} ∈ E(T i ).

Observe that a vertex of T may belong to several vertex-models, but then these vertex-models correspond to vertices from different trees of T . Also, an edge of T may be the edge-model of edges of different trees of T .

Similarly, if T is a strictly compatible supertree of T , then according to the definition of topological minor, for every i ∈ 1, k , every vertex v ∈ V (T i ) can be mapped to a vertex of T , called the vertex-model of v, in such a way that this mapping is injective when restricted to every i ∈ 1, k . In this case, if u, v ∈ V (T i ) are two adjacent vertices in T i , then there is exactly one path in T that connects the vertex-model of u to the vertex-model of v called the edge-model of {u, v} ∈ E(T i ). Similarly to the vertex-models, the edge-models of the same tree need to be pairwise disjoint, except possibly for their endvertices.

The display graph. Let k be an integer and T = {(T i , φ i ) | i ∈ 1, k } be a collection of k unrooted phylogenetic trees. The display graph D T = (V D , E D ) of T is the graph obtained from the disjoint union of the trees in T by iteratively identifying every pair of labeled vertices with the same label. We denote by L D the set of vertices of D T resulting from these identifications. The elements of L D are called the labeled vertices. Observe that every vertex of V D \ L D (resp. every edge of E D ) is also a vertex (resp. an edge) of some tree T i ∈ T . If v is a vertex of L D , then we will say, with a slight abuse of notation, that v is a vertex of T i if it results from the identification of some leaf of T i . Finally, the display graph D T is equipped with a coloring function c : V D ∪ E D → 0, k defined as follows. If v ∈ L D , then we set c(v) = 0; if v ∈ (V D \ L D ) ∪ E D belongs to the tree T i , we set c(v) = i. Observe that if a vertex v ∈ L D is incident to an edge e such that c(e) = i, then v belongs to T i . Suppose that T is a (strictly) compatible supertree of T . Then we extend the definition of vertex-model and edge-model for the vertices and edges of the T i 's to the vertices and edges of the display graph D T .

The following theorem provides a bound on the treewith of the display graph of a (strictly) compatible family of unrooted phylogenetic trees: Theorem 5.18 (Bryant and Lagergren [17]) Let k be an integer and T = {(T i , φ i ) | i ∈ 1, k } be a collection of k (strictly) compatible unrooted phylogenetic trees, not necessarily on the same label set. The display graph of T has treewidth at most k.

In the following we use Theorem 5.18 in order to prove Theorem 5.16.
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Description of the algorithm

In this subsection, we present an FPT algorithm for Compatibility of Unrooted Phylogenetic Trees parameterized by k. Let k be an integer, T = {(T i , φ i ) | i ∈ 1, k } be a set of k unrooted phylogenetic trees, D = (V D , E D ) be the display graph of T , and n = |V (D)|. By Theorem 2.9 and Theorem 5.18, we may assume that we are given an edge nice tree-decomposition ((T, X ), r, G) of D of width w ≤ 5k + 4, as otherwise we can safely conclude that T is not compatible. In the following, for readability, we assume that, for each ∈ leaf(T), |X | = 1 instead of X = ∅. Note that this modification correspond to the removal of all the leaves of T such that X = ∅.

Our objective is to build a compatible supertree T of T , if such exists. We would like to note that there could exist an exponential number of compatible supertrees; we are just interested in constructing one of them. For this we process ((T, X ), r, G) in a bottom-up way from the leaves to the root, where we will decide whether a solution exists or not. We first describe the data structure used by the algorithm along with a succinct intuition behind the defined objects, and then we proceed to the description of the dynamic programming algorithm itself.

Description of the data structure. Before defining the dynamic programming table associated with every node t ∈ V (T), we need a few more definitions. Moreover, we say that a (Z, t)-supertree (T, ϕ, ψ, ρ) is valid if

• for every {u, v} ∈ E(G t ) such that u, v ∈ Z, then the unique edge e between ϕ(u) and ϕ(v) exists in T and satisfies c({u, v}) ∈ ψ(e).

For a node t ∈ V (T), we define an X t -supertree as a (X t , t)-supertree and a V tsupertree as a (V (G t ), t)-supertree. Intuitively, condition (2) of Invariant 5.23 guarantees that for every vertex v ∈ V (T ), we can recover the set of trees for which v has already appeared in a vertexmodel of a vertex of V (G t )\X t . On the other hand, condition (3) of Invariant 5.23 is useful for the following reason. When a vertex is forgotten in the tree-decomposition, we need to keep track of its "trace", in the sense that the colors given to the corresponding shadow vertex guarantee that the algorithm will construct vertex-models appropriately. If γ is a coloring function satisfying conditions (2) and (3), we say that γ is consistent with T ps .

For Z = ∅ and for each t ∈ V (T), we denote by the unique colored shadow (Z, t)supertree. From the above description, it follows that the collection T is compatible if and only if ∈ R r . Indeed, for t = r we have that X r = ∅ and V r = V D . In that case, the only condition imposed by Invariant 5.23 is the existence of a valid V Dsupertree. Then, by Definition 5.19, the existence of such a supertree is equivalent to the existence of a compatible supertree T of T in which the vertex-models and edge-models are given by the functions ϕ and ψ, respectively. Finally, note that the first condition of Definition 5.19, namely that | T | ≤ |X tr | + |V tr | = |V D |, is not a restriction on the set of solutions, as we may clearly assume that the size of a compatible supertree is always at most the size of the display graph.

Description of the dynamic programming algorithm. Let ((T, X ), r, G) be an edge nice tree-decomposition of the display graph D of T . We proceed to describe how to compute the set R t for every node t ∈ T. For that, we will assume inductively that, for every descendant t of t, we have at hand the set R t that has been correctly built. We distinguish several cases depending on the type of node t:

1. Leaf. If X t = {v} then R t = {((T, ϕ, ψ, ρ), γ)}, where T is a tree with only one vertex a, ρ(v) = a, ϕ(v) = {a}, ψ : ∅ → 2 1,k , and γ(a) = {c(v)}. Introduce vertex such that the insertion vertex v of X t is unlabeled. If t is the child of t then for every element (T = (T , ϕ , ψ , ρ ), γ ) of R t , we add to R t the elements of the form (T = (T, ϕ, ψ, ρ), γ) that can be built according to one of the following four cases. For all of them, we define the vertexrepresentative function such that ρ(v) = a for some vertex a ∈ V (T ), and for every u ∈ X t , ρ(u) = ρ (u). The different cases depend on this vertex a. (iii) ρ(v) = a with a / ∈ V (T ) and a is connected to a vertex x ∈ V (T ). See -T = T | z X t . -For every a ∈ O(T ), γ(a) = γ (a).

-For every z ∈ S(T ), if x and y are the neighbors of z in T , then γ(z) = {i | ∃a ∈ V (T ) on the path between x and y in T :

(i ∈ γ (a)) and (∀u ∈ X t : a ∈ ϕ (u))}.

6. Join. If t and t are the children of t, then for each (T = (T, ϕ, ψ , ρ), γ ) ∈ R t and for each (T = (T, ϕ, ψ , ρ), γ ) ∈ R t such that for every z ∈ V (T ), γ (z) ∩ γ (z) = ∅ and for every e ∈ E(T ), ψ (z) ∩ ψ (z) = ∅, we construct (T = (T, ϕ, ψ, ρ), γ) as an element of R t as follows:

for every e ∈ E(T ), ψ(e) = ψ (e) ∪ ψ (e) and for every z ∈ V (T ), γ(z) = γ (z) ∪ γ (z).

Correctness of the algorithm

Let t ∈ V (T). Our objective is to prove that, on the one hand, the elements (T, γ) generated by the algorithm indeed belong to the set R t (that is, that they satisfy Invariant 5.23) and, on the other hand, that all the elements of the set R t are constructed by the algorithm. We will assume inductively that both claims are true for every descendant t of t.

Our approach for proving that the generated elements belong to R t is the following. We distinguish again the cases of the algorithm. For each of them, the assumption that R t has been correctly built for every descendant t of t guarantees the existence, for every element (T , γ ) of R t , of the corresponding certificate T ps that implies by Invariant 5.23 that (T , γ ) ∈ R t . We will then use T ps to prove, for each of the elements (T, γ) constructed by the algorithm, that there exists a certificate T ps implying that (T, γ) ∈ R t .

We would like to stress that, in order to prove that (T, γ) ∈ R t , we only need to worry about the existence of such a certificate T ps , and not about how it can be constructed. However, if we are interested in constructing a compatible supertree (and not only knowing whether it exists or not), we can easily do it as well. Indeed, starting from the leaves of the tree-decomposition, by using the operations described below we can inductively grow the certificates T ps of R t to get the certificates T ps of R t , within the same running time of the algorithm.

We now proceed by distinguishing the different cases of the dynamic programming algorithm presented in Subsection 5.3:

1. Leaf. If X t = {v} then T ps is a tree with only one vertex a, ρ ps (v) = a, ϕ ps (v) = {a}, and ψ ps : ∅ → 2 1,k .

2. Introduce vertex such that the insertion vertex v of X t is unlabeled. Let t be the child of t. Given an element (T , γ ) of R t with the corresponding certificate T ps , we distinguish the different cases of the algorithm that create elements of the form (T, γ), and we define for each case a certificate T ps of T, which implies that (T, γ) ∈ R t .

(i) ρ(v) = a such that a ∈ V (T ) and c(v) ∈ γ (a). Then T ps = T ps . Let us define ρ ps , ϕ ps , and ψ ps . * Definition of the vertex-representative function:

• ρ ps (v) = ρ(v) = a and • for every u ∈ V (G t ), ρ ps (u) = ρ ps (u). * Definition of the vertex-model function:

• T ps [ϕ ps (v)] is connected and contains a, ϕ(v)∩O(T ) = ϕ ps (v)∩O(T ),

• for every u ∈ X t , ϕ ps (u) = ϕ ps (u), and • for every u, u ∈ V (G t ) with c(u) = c(u ), ϕ ps (u) ∩ ϕ ps (u ) = ∅. * Definition of the edge-model function:

• for every e ∈ E(T ), ψ ps (e) = ψ ps (e).

(ii) ρ(v) = a and a subdivides an edge {x, y} of T with c(v) ∈ ψ ({x, y}). T ps is obtained from T ps by removing an edge {x ps , y ps } on the path between x and y, and adding a vertex a and two edges {x ps , a} and {a, y ps }. Let us define ρ ps , ϕ ps , and ψ ps . * Definition of the vertex-representative function:

• ρ ps (v) = ρ(v) = a and • for every u ∈ V (G t ), ρ ps (u) = ρ ps (u). * Definition of the vertex-model function:

• T ps [ϕ ps (v)] is connected and contains a,

• for every u ∈ V (G t ), T ps [ϕ ps (u)] is connected, ϕ ps (u) ⊆ ϕ ps (u) ⊆ ϕ ps (u) ∪ {a}, and if u is unlabeled, then ϕ ps (u) = ϕ ps (u), • for every u ∈ X t , ϕ(u) ∩ O(T ) = ϕ ps (u) ∩ O(T ),

• for every u, u ∈ V (G t ) with c(u) = c(u ), ϕ ps (u) ∩ ϕ ps (u ) = ∅, and • for every {u, u } ∈ E(G t ), there exist w ∈ ϕ ps (u) and w ∈ ϕ ps (u ) such that {w, w } ∈ E(T ps ). * Definition of the edge-model function:

• for every e ∈ E(T ) \ {{x ps , a}, {a, y ps }}, ψ ps (e) = ψ ps (e) and • ψ ps ({x ps , a}) = ψ ps ({a, y ps }) = ψ ps ({x ps , y ps }).

by the value of ρ(v), in the sense that we consider all the possible ways to add a vertex ρ(v) to a tree T . It appears that there are four different ways to add ρ(v) to T . Indeed, ρ(v) can either be an already existing vertex of T , or a new vertex that subdivides an edge, or a new vertex connected to an already existing vertex, or a new vertex connected to another new vertex that subdivides an edge. Our algorithm precisely explore these four possibilities for ρ(v), and then updates T , ϕ, ψ, and γ in all the possible ways such that the resulting element is still in R. So in particular, the algorithm necessarily created the element (T, γ) of R t , as we wanted to show.

Running time analysis of the algorithm

Let us now discuss the running time of the dynamic programming algorithm described in Subsection 5.3. Let w be the width of ((T, X ), r, G). We have that w ≤ 5k + 4. For each t ∈ V (T), we bound the size of R t as follows. Each element in R t is of the form (T = (T, ϕ, ψ, ρ), γ). Note that T has at most 3w nodes, and that there are at most (3w) 3w-2 = 2 O(k log k) distinct trees on 3w vertices [START_REF] Cayley | A theorem on trees[END_REF]. Concerning the complexity of computing R t , we distinguish several cases. This computation is trivial in Case 1 of the algorithm, that is, when t is a leaf. In Cases 

Agreement version

In this subsection, we present an FPT algorithm for Agreement of Unrooted Phylogenetic Trees parameterized by k. Again, by Theorem 2.9 and Theorem 5.18, we may assume that we are given an edge nice tree-decomposition ((T, X ), r, G) of D of width at most 5k + 4. Again we assume that for each leaf of T, |X | = 1.

The algorithm follows closely the one described in Subsection 5.3 for the compatibility version, so we will just describe the changes to be done to deal with the agreement version. Intuitively, these changes appear because now we are looking for a supertree containing each of the trees in T as a topological minor, instead of a minor, and this forces us to redefine the notions of vertex-model and edgemodel functions. Namely, each vertex-model becomes a single vertex (instead of a Chapter 6

Conclusion

This thesis was centered around problems parameterized by treewidth and involved several dynamic programming techniques. We presented meta-algorithmic approaches that use dynamic programming techniques and combinatorial approaches that permit, in particular, to improve the design of dynamic programming algorithms. Finally, we applied these techniques to "real life" problems. Together with these algorithms, we provided hardness results implying that some of our algorithms are optimal under some reasonable complexity assumptions.

Catalan structures are tools that can improve the design of dynamic programming algorithms when the input graphs are restricted to be sparse. These tools are really efficient, in particular when the studied problem is a connectivity problem. In Section 3.1, we presented a dynamic programming algorithm using these tools for Planar Cycle Packing. We also showed their limits by proving that, for a specific connectivity problem, namely Monochromatic Disjoint Paths, Catalan structures cannot improve the algorithms' design when the input graphs are restricted to be planar.

We feel that the results about the role of planarity in connectivity problems parameterized by treewidth are just a first step in a subject that can be much exploited. For instance, it is known that Disjoint Paths can be solved in time 2 O(tw log tw) • n O (1) on general graphs [START_REF] Scheffler | A practical linear time algorithm for disjoint paths in graphs with bounded tree-width[END_REF], and that this bound is asymptotically tight under the ETH [START_REF] Lokshtanov | Known algorithms on graphs of bounded treewidth are probably optimal[END_REF]. The fact whether Disjoint Paths can be solved in time 2 O(tw) • n O (1) on planar graphs remains an important open problem that we have been unable to solve.

In Section 3.2, we analyzed the parameterized complexity of F-M-Deletion and F-TM-Deletion taking as the parameter the treewidth of the input graph. These problems generalize well-known problems like Vertex Cover, Feedback Vertex Set, or Vertex Planarization. We obtained a number of lower and 201 202 CHAPTER 6. CONCLUSION upper bounds for general and specific collections F, several of them being tight (in particular, for all cycles). The upper bounds were again given by dynamic programming algorithms using classical techniques, the rank based approach, and the machinery of boundaried graphs. In order to complete the dichotomy for cliques and paths (see Table 1.1), it remains to settle the complexity of F-Deletion when F = {K i } with i ≥ 5 and when F = {P 5 }.

An ultimate goal is to establish the tight complexity of F-Deletion for all collections F, but we are still very far from it. In particular, we do not know whether there exists some F for which a double-exponential lower bound can be proved, or for which the complexities of F-M-Deletion and F-TM-Deletion differ.

In the last years, the F-M-Deletion problem has been extensively studied in the literature taking as the parameter the size of the solution [START_REF] Fomin | Hitting forbidden minors: Approximation and kernelization[END_REF][START_REF] Fomin | Planar F-deletion: Approximation, kernelization and optimal FPT algorithms[END_REF][START_REF] Jansen | A near-optimal planarization algorithm[END_REF][START_REF] Joret | Hitting and harvesting pumpkins[END_REF][START_REF] Kim | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF][START_REF] Kim | A single-exponential FPT algorithm for the K 4 -minor cover problem[END_REF]. In all these papers, FPT algorithms parameterized by treewidth play a fundamental role. We think that our results will be helpful in this direction and we presented a first step by showing that the theory of Bidimensionality can be applied to F-Deletion. Note that the connectivity of F was also relevant in previous work [START_REF] Fomin | Hitting forbidden minors: Approximation and kernelization[END_REF][START_REF] Fomin | Planar F-deletion: Approximation, kernelization and optimal FPT algorithms[END_REF][START_REF] Kim | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF], as it is the case of several results presented in Section 3.2. Getting rid of connectivity in both the lower and upper bounds we presented is an interesting avenue.

Our algorithms for {C i }-Deletion may also be used to devise approximation algorithms for hitting or packing long cycles in a graph (in the spirit of [START_REF] Chatzidimitriou | An O(log OP T )approximation for covering/packing minor models of Θ r[END_REF] for other patterns), possibly by using the fact that cycles of length at least i satisfy the Erdős-Pósa property [START_REF] Fiorini | A tighter Erdős-Pósa function for long cycles[END_REF].

While treewidth is one of the most studied graph parameters, to the best of our knowledge, the number of n-vertex labeled graphs of treewidth at most k was unknown. In Section 4.1, we provided an estimate of this number. Comparing Equations (1.3) and (4.1), there is still a gap of (128e • log k) n in the dominant term of |G k n |, and closing this gap remains a challenging open problem. The factor (log k) n appears because, in our construction, when a new block starts, we force the frozen vertex to be the previous anchor. Therefore, this factor is somehow artificial, and we believe that it could be avoided.

One way to improve the upper bound would be to show that every partial k-tree with n vertices and m edges can be extended to at least a large number α(n, m) of k-trees, and then use double counting. This is the approach taken in [START_REF] Osthus | On random planar graphs, the number of planar graphs and their triangulations[END_REF] for bounding the number of planar graphs, but so far we have not been able to obtain a significant improvement using this technique.

Our results also apply to other relevant graph parameters such as pathwidth and proper-pathwidth. For both parameters, besides improving the lower bound given by our construction, it may be also possible to improve the upper bound given by Equation (1.3). For proper-pathwidth, a modest improvement can be obtained as follows. It follows easily from the definition of proper-pathwidth that the edgemaximal graphs of proper-pathwidth k, which we call proper linear k-trees, can be constructed starting from a (k+1)-clique and iteratively adding a vertex v i connected to a clique K v i of size k, with the constraints that v i-1 ∈ K v i and K v i \{v i-1 } ⊆ K v i-1 . From this observation, and taking into account that the order of the first k vertices is not relevant and that there are 2k initial cliques giving rise to the same graph, it follows that the number of n-vertex labeled proper linear k-trees is equal to

n!k n-k-1 1 (2k)k! . (6.1)
From this and the fact that a k-tree has kn -k(k+1) 2 edges, an easy calculation yields that the number of n-vertex labeled graphs of proper-pathwidth at most k is at most k2 k n c n , for some absolute constant c ≥ 1.88.

Finally, it would be interesting to count graphs of bounded "width" in other cases. For instance, branchwidth seems to be a good candidate, as by Proposition 2.11, if a graph G has more than 3 edges, then bw(G) ≤ tw(G)+1 ≤ 3 2 bw(G). Other relevant graph parameters are cliquewidth, rankwidth, tree-cutwidth, or booleanwidth. For any of these parameters, a first natural step would be to find a "canonical" way to build such graphs, as in the case of partial k-trees.

In Section 4.2, we presented an extension of the horizon of applicability of the theory of Bidimensionality. One of the aspects of this theory consists in using some dynamic programming algorithms parameterized by treewidth to create subexponential dynamic programming algorithms parameterized by the size of the requested solution. Our work allows to apply contraction Bidimensionality to S d , the class of string graphs with edge-degree at most d, by proving that this class has the SQGC property for c = 1. This means that, for fixed d, if a graph in S d excludes as a contraction the uniformly triangulated grid Γ k , then its treewidth is bounded by a linear function of k. Recall that string graphs are intersection graphs of lines in the plane. It is easy to extend our results to intersection graphs of lines on some orientable (or non-orientable) surface of genus γ. Let S d,γ be the corresponding class. To prove that S d,γ ∈ SQGC(1) we need first to prove that S d,γ ⊆ B , where B γ is the class of graphs of genus at most γ (which is not hard) and then use Theorem 4.3 and the fact that the class of graphs of bounded genus belongs in SQGC(1) (see e.g., [START_REF] Demaine | The bidimensional theory of boundedgenus graphs[END_REF]).

Of course, the main general question is to detect wide graph classes with the SQGM/SQGC property. In this direction, some interesting open issues are the following:

-Is the bound on the edge-degree necessary? Are there classes of intersection graphs with unbounded or "almost bounded" maximum degree that have the SQGM/SQGC property? 204 CHAPTER 6. CONCLUSION -All the results known so far classify graph classes in SQGM(1) or SQGC [START_REF] Agarwal | Dynamic spectrum access for energy-constrained CR: single channel versus switched multichannel[END_REF]. Are there (interesting) graph classes in SQGM(c) or SQGC(c) for some 1 < c < 2 that do not belong in SQGM(1) or SQGC(1), respectively? An easy example of such a class is the class Q d of the q-dimensional grids, i.e., the cartesian products of q ≥ 2 equal-length paths. It is easy to see that the largest k for which an n-vertex graph G ∈ Q q contains a (k × k)-grid as a minor is k = Θ(n

2 ). On the other hand, it can also be proven that tw(G) = Θ(n q-1 q ). These two facts together imply that Q q ∈ SQGM(2 -2 q ) while Q q ∈ SQGM(2 -2 q -) for every > 0.

-Usually the graph classes in SQGC(1) are characterized by some "flatness" property. For instance, see the results in [START_REF] Giannopoulou | Optimizing the graph minors weak structure theorem[END_REF][START_REF] Kawarabayashi | New proof of the flat wall theorem[END_REF][START_REF] Kawarabayashi | New proof of the flat wall theorem[END_REF] for H-minor free graphs, where H is an apex graph. Can SQGC(1) be useful as an intuitive definition of the "flatness" concept? Does this have some geometric interpretation?

Finally, we applied dynamic programming techniques to several problems arising from applications. Namely, we presented algorithms for Edge Monitoring, Diameter Tree, and Supertree.

In Section 5.1, we showed that, on general graphs, Edge Monitoring is unlikely to be solvable in FPT time when parameterized by the size of the solution, but is FPT when parameterized by treewidth. We used the theory of Bidimensionality to show that if applied on a graph class with the SQGC property for some 1 ≤ c < 2 and on which the number of edges of a graph is linearly bounded by its number of vertices, then Edge Monitoring can be solved in time • n on this same graph class.

Sensor networks can be modeled by many classes of graphs. Often, they are modeled by planar graphs or unit disk graphs [START_REF] Clark | Unit disk graphs[END_REF][START_REF] Santi | Topology control in wireless ad hoc and sensor networks[END_REF]. More generally, the transmission range of a wireless sensors delimits a 3-dimensional connected area and so, wireless sensor networks can be modeled as intersection graphs of bodies, corresponding to these area. These graphs are string graphs. We showed that as long as the string graph has bounded edge-degree, there exists an FPT algorithm for Weighted Edge Monitoring parameterized by the size of the solution and the maximal weight.

For this problem, we were limited by the horizon of applicability of the theory of Bidimensionality. In particular, we do not know if these results can be extended to unit disk graphs with arbitrary maximum degree.

In Section 5.2, we provided an accurate picture of the parameterized complexity of the Diameter Tree problem for any combination of the parameters k, tw, and ∆, distinguishing whether the reload costs are polynomial or not. In particular, we presented a dynamic programming algorithm that solves Diameter Tree on cactus graphs in polynomial time. Some questions still remain open. First of all, in the hardness result of Theorem 5.7, we already mentioned that the bound ∆ ≤ 3 is tight, but the bound tw ≤ 3 might be improved to tw ≤ 2. A relevant question is whether the problem admits polynomial kernels parameterized by k + tw + ∆ (recall that it is FPT by Theorem 5.12). Theorem 5.15 motivates the following question: when all reload costs are bounded by a constant, is the Diameter Tree problem FPT parameterized by tw + ∆? It also makes sense to consider the color-degree as a parameter (cf. [START_REF] Gözüpek | Constructing minimum changeover cost arborescenses in bounded treewidth graphs[END_REF]). Finally, we may consider other relevant width parameters, such as pathwidth (note that the hardness results of Theorems 5.5, 5.7, and 5.15 also hold for pathwidth), cliquewidth, treedepth, or tree-cutwidth. In Section 5.3, we gave the first "reasonable" FPT algorithms for both versions of the Supertree problems, namely the Compatibility and the Agreement problems. As it could be expected, these algorithms use dynamic programming. Even though this is, from a theoretical point of view, a big step further toward solving this problem in reasonable time, our running times are still prohibitive to be of any use in real life phylogenomic studies, where k can go up very quickly [START_REF] Delsuc | Phylogenomics and the reconstruction of the tree of life[END_REF]. One possibility to design a practical algorithm is to devise reduction rules to keep k small. Another possibility would be to design an FPT algorithm with respect to a parameter that is smaller than the number of gene trees in phylogenomic studies.

From a more theoretical perspective, a natural question is whether the function 2 O(k 2 ) in the running times of our algorithms can be improved. It would also be interesting to prove lower bounds for algorithms parameterized by treewidth to solve these problems, assuming the ETH.

In this thesis, we study the Parameterized Complexity of combinatorial problems on graphs. More precisely, we present a multitude of dynamic programming algorithms together with reductions showing optimality for some of them. We mostly deal with the graph parameter of treewidth, which can be seen as a measure of how close a graph is to the topological structure of a tree. We also parameterize some of our algorithms by two other parameters, namely the size of a requested solution and the maximum degree of the input graph. We obtain a number of results, some of which are listed in the following. We estimate the number of labeled graphs of bounded treewidth. We extend the horizon of applicability of the theory of contraction Bidimensionality further than apex-minor free graphs, leading to a wider applicability of the design of subexponential dynamic programming algorithms. We show that the Catalan structure technique, that is a tool used to improve algorithm efficiency for connectivity problems where the input graph is restricted to be sparse, cannot be applied to all planar connectivity problems. We consider the F-M-Deletion problem that, given a set of graphs F, a graph G, and an integer k, asks if we can remove at most k vertices from G such that the remaining graph does not contain any graph of F as a minor. We also consider the topological version of this problem, namely F-TM-Deletion. Both problems generalize some well-known vertex deletion problems, namely Vertex Cover, Feedback Vertex Set, and Vertex Planarization. Depending on the set F, we use distinct dynamic programming techniques to solve F-M-Deletion and F-TM-Deletion when parameterized by treewidth. Namely, we use standard techniques, the rank based approach, and the framework of boundaried graphs. Finally, we apply these techniques to two problems originating from Networks, namely a variation of the classical dominating set problem and a problem that consists in finding a spanning tree with specific properties, and to a problem from Bioinformatics, namely that of construcing a tree that contains as a minor (or topological minor) a set of given trees corresponding to the evolutionary relationships between sets of species.

Résumé

Dans cette thèse, nous étudions la complexité paramétrée de problèmes combinatoires dans les graphes. Plus précisément, nous présentons une multitude d'algorithmes de programmation dynamique ainsi que des réductions montrant que certains de ces algorithmes sont optimaux. Nous nous intéressons principalement à la treewidth, un paramètre de graphes pouvant être vu comme une mesure de distance entre la structure d'un graphe et la structure topologique d'un arbre. Certains de nos algorithmes sont aussi paramétrés par la taille de la solution demandée et le degré maximum du graphe donné en entrée. Nous avons obtenu un certain nombre de résultats dont certains d'entre eux sont listés ci-dessous. Nous présentons un encadrement du nombre de graphes étiquetés de treewidth bornée. Nous étendons le domaine d'application de la théorie de la bidimensionalité par contraction au delà des graphes ne contenant pas de graphe apex en tant que mineur. Nous montrons aussi que la technique des structures de Catalan, outil améliorant l'efficacité des algorithmes résolvant des problèmes de connexité lorsque le graphe d'entrée est creux, ne peut être appliquée à la totalité des problèmes de connectivité, même si l'on ne considère, parmi les graphes creux, que les graphes planaires. Nous considérons le problème F-M-Deletion qui, étant donné une collection de graphes F, un graphe G et un entier k, demande s'il est possible de retirer au plus k sommets de G de telle sorte que le graphe restant ne contienne aucun graphe de F en tant que mineur. Nous considérons aussi la version topologique de ce problème, à savoir F-TM-Deletion. Ces deux problèmes généralisent des problèmes de modification de graphes bien connus tels que Vertex Cover, Feedback Vertex Set et Vertex Planarization. En fonction de la collection de graphes F, nous utilisons différentes techniques de programmation dynamique pour résoudre F-M-Deletion et F-TM-Deletion paramétrés par la treewidth. Nous utilisons des techniques standards, la structure des graphes frontières et l'approche basée sur le rang. En dernier lieu, nous appliquons ces techniques algorithmiques à deux problèmes issus du réseau de communications, à savoir une variation du problème classique de domination et un problème consistant à trouver un arbre couvrant possédant certaines propriétés, et un problème issu de la bioinformatique consistant à construire un arbre contenant en tant que mineur (topologique) un ensemble d'arbres donnés correspondant à des relations d'évolution entre ensembles d'espèces.
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 1 Figure 1: Un exemple d'ensemble couvrant. Les sommets sélectionnés sont marqués par un carré.

  t (S ) + |S| -|S ∩ S | -|S ∩ S |. Par définition de UNE INTRODUCTION EN FRANÇAIS vc r , la valeur voulue vc(G) est min{vc r (S) | S ∈ I r }.

Figure 4 :

 4 Figure 4: Les graphes 5 et Γ 5 .

  ). Par simplicité, nous dirons que H ∈ SQGM(c) (resp. H ∈ SQGC(c)) si H à la propriété SQGM (resp. SQGC) pour la constante c. Notons que pour tout 1 ≤ c < 2, SQGC(c) ⊆ SQGM(c). La théorie de la bidimensionnalité a trois principales conséquences méta-algorithmiques. La première consiste à concevoir des algorithmes sous-exponentiels, c'est à dire dont le temps d'exécution est O * (2 o(k) ), pour un paramètre k correspondant à la taille de la solution. Supposons que p soit un paramètre de minimisation bidimensionnel par mineur (resp. contraction) et que H soit une classe de graphes de SQGM(c) (resp. SQGC(c)) pour un certain 1 ≤ c < 2. S'il existe un algorithme A qui pour chaque instance (G, k) résout Π p appliqué à (G, k) en temps O * (2 O(tw(G)) ), alors nous pouvons résoudre Π p appliqué à (G, k) en temps O * (2 O( √ k c ) ). Pour pouvoir appliquer cette technique, il faut pouvoir obtenir

  Une borne supérieure facile à obtenir pour |G k n | repose sur le fait que nous connaissons exactement le nombre de k-arbres étiquetés à n sommets. En effet, comme chaque k-arbres partiels, qui sont les graphes de treewidth au plus k, est un sous-graphe d'un k-arbre, et que chaque k-arbre possède exactement kn -k(k+1) 2 arêtes, nous pouvons en déduire une borne supérieure sur |G k n | :

  Ces deux bornes diffèrent d'un facteur k n . Pour des valeurs constantes de k, ce facteur nous importe peu puisque, à part pour k = 1 et k = 2, nous n'avons pas d'estimation précise de |G k n |. En revanche, quand k tend vers l'infini, cet écart devient important. Dans la Section 4.1, nous réduisons significativement cet écart en exhibant une meilleure borne inférieure. Nous montrons que pour n ∈ N et k ∈ 2, n -1 , l'ensemble G k n des graphes étiquetés à n sommets et de treewidth au plus k satisfait

  résultats. Dans la Section 5.1 nous montrons que le problème Edge Monitoring est W [2]-dur lorsqu'il est paramétré par la taille de la solution k, nous présentons un algorithme FPT paramétré par tw et ω M = max{ω(e) | e ∈ E(G)} résolvant Weighted Edge Monitoring et nous appliquons la théorie de la bidimensionnalité afin de présenter un algorithme FPT pour Weighted Edge Monitoring paramétré par k et ω M pour certaines classes de graphes.
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 11 Figure 1.1: An example of vertex cover where the selected vertices are depicted by the squares.

Figure 1 . 3 :

 13 Figure 1.3: Three different ways a longest path can cross a bag of a tree-decomposition.The considered bag contains the three depicted vertices. In each case, the dotted lines correspond to the connections that should be remembered.
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 1414 Figure 1.4: The applicability of Bidimensionality theory.

  k + tw + ∆ cases NPh for NPh for NPh for FPT in P on Diameter Tree k = 9, tw = 2 k = 0, ∆ = 3 tw = 3, ∆ = 3 (Thm 5

  Given a set S, we denote by 2 S = {S | S ⊆ S} the set of all subsets of S, and we denote by S 2 = {S | S ⊆ S, |S | = 2} the set of all subsets of S of size two. Let k ∈ N. In the set 1, k × 1, k , a row is a set {i} × 1, k where i ∈ 1, k , and a column is a set 1, k × {i} where i ∈ 1, k .

CHAPTER 2 .

 2 PRELIMINARIESGrids and triangulated grids. Given an integer k ≥ 2, we define the (k × k)grid, denoted by k , as a graph with vertex set {(x, y) | (x, y) ∈ 0, k -1 2 } where two different vertices (x, y) and (x , y ) are adjacent if and only if |x-x |+|y-y | = 1.
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 21 Figure 2.1: The graphs 5 , Γ 5 , and Γ 5 .

CHAPTER 2 .

 2 PRELIMINARIESLemma 2.14 There exists a function µ : N → N such that for every planar subcubic collection of graphs F, every graph in ex tm (F) has branchwidth at most y = µ(d) where d = size(F).
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 2 18 Let I be a set, let p : I → N be an optimization parameter, and let Π p be the associated decision problem. If there exists an algorithm A and an function f : I × N → N such that for each I ∈ I and each p, q ∈ N, p ≤ q, f (I, p) ≤ f (I, q) and for any I ∈ I and k ∈ N, the algorithm A returns whether (I, k) is a positive instance of Π in time bounded by f (I, k), then for each I ∈ I, there is an algorithm that computes p(I) in time bounded by (2 • log(p(I) + 2) + 2) • f (I, 2 • p(I) + 1).

  and there is a polynomial time algorithm that, given a graph G, a set X ⊆ V (G), a graph G , and a vertex (or edge) set S such that ξ p (G , S ) = 1, outputs S such that ξ p (G, S) = 1 and |S | -O(|X|) ≤ ν p (S) ≤ |S | + O(|X|).

  Input: A graph G and an integer k. Parameter: tw(G). Question: Is vc(G) ≤ k? Definition 2.21 Let Σ be a finite alphabet. A parameterized problem L ⊆ Σ × N is called slice-wise polynomial (XP for short) is there exists an algorithm A and two computable functions f : N → N and g : N → N such that, for each (x, k) ∈ Σ × N, the algorithm A correctly decides whether (x, k) ∈ L in time at most f (k)•(|x|+k) g(

  Cycle Packing itself is defined as: Cycle Packing Input: A graph G ∈ G and an integer k ∈ N. Parameter: tw(G). Question: Is cp(G) ≥ k? Lemma 3.1 Let G be a graph. If a branch-decomposition of G of width w is given, then cp(G) can be computed in time 2 O(w log w) • n. Moreover, if G is planar, then cp(G) can be computed in time 2 O(w) • n.

  This gives |I e | ≤ 3 w • w w . As for each non-leaf edge e ∈ E(T ), r e can be computed in time |I e | • |I e | • w O(1) where e and e are the two children of e, we obtain that we can compute cp(G) in time O(9 w • w 2w • w O(1) • n).Assume now that the graph G is planar. Then we can use the same algorithm as for the general case with the extra condition that the branch-decomposition (T, σ) is a sc-decomposition. In this case, we obtain that if V (M ) is fixed, then the number of choices of E(M ) is bounded by the number of non-crossing matchings on |V (M )| elements, which is at most 2 |V (M )| . Thus we obtain that |I e | ≤ 3 w • 2 w and so cp(G) can be computed in time O(36 w • w O(1) • n).
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 31 Figure 3.1: Color gadget.
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 32 Figure 3.2: Cross-color gadget.
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 33 Figure 3.3: An example of the graph H for n = 4.
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 183 THE ROLE OF PLANARITY IN CONNECTIVITY PROBLEMSSimulation of the same vertex with maximum degree 4.

Figure 3 . 4 :

 34 Figure 3.4: Reducing the maximum degree from 7 to 4.

Theorem 3 . 4

 34 Planar Cycle Packing cannot be solved in time2 o( √ n) • n O(1)unless the ETH fails. Therefore, Planar Cycle Packing cannot be solved in time 2 o(tw) • n O(1) unless the ETH fails.
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 35 Figure 3.5: The SC i -gadget.
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 36 Figure 3.6: The expel gadget and the double-expel gadget.
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 37 Figure 3.7: Path-crossing gadget.
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 38 Figure 3.8: The bifurcate gadget: To keep planarity, there is a path-crossing gadget in each edge intersection.

Figure 3 . 9 :

 39 Figure 3.9: Edge gadget: To keep planarity, there is a path-crossing gadget in each edge intersection.
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 1 THE ROLE OF PLANARITY IN CONNECTIVITY PROBLEMS 89 kills their internal cycles. In both configurations, adding C to the solution decreases the number of vertex-disjoint cycles that we can find in H.

Lemma 3 . 6

 36 Let (G, γ, Z) be a monochromatic disjoint paths input. If a branchdecomposition of G of width w of G is given, then Monochromatic Disjoint Paths on (G, γ, Z) can be solved in time 2 O(w log w) • n.

  and ϕ(u j ) = j, there exists i ∈ 1, m such that e ∩ z i = {u} and e \ V (Z) = {u } and either CHAPTER 3. ALGORITHMIC ASPECTS OF TREEWIDTH e ∩ V (Z) = ∅ and either *

  For each selection of V (M ), we have at most |V (M )| |V (M )| choices for E(M ), and for each selection of V (L), we have at most |V (L)| |V (L)| choices for E(L). There are at most tw(G) + 1 colors and at most (tw(G) + 1) w choices for γ 0 . As |{ϕ(x)|x ∈ Q}| ≤ |Q| ≤ w, there are at most w w possible different choices for the function ϕ. This gives us that |I e | ≤ 5 w •w 3w •(tw(G)+1) w . As for each non leaf edge e ∈ E(T ), r e can be computed in time |I e | • |I e | • w O(1) where e and e are the two children of e, we obtain that we can compute Monochromatic Disjoint paths in time O(25 w • w 6w • (tw(G) + 1) w • w O(1) • n). Using Proposition 2.11, the lemma follows.

Theorem 3 . 7 (

 37 Hitting Set Input: (S, m) ∈ I k×k Parameter: k. Question: Is there a set S ⊆ 1, k × 1, k such that, for each i ∈ 1, k , |S ∩ ({i} × 1, k )| = 1 and for each S ∈ S, S ∩ S = ∅? Lokshtanov et al. [111]) Let k be an integer and let (S, m) ∈ I k×k . k × k-Hitting Set on (S, m) cannot be solved in time 2 o(k log k) • m O(1) unless the ETH fails.

Figure 3 . 10 :

 310 Figure 3.10: Color-selection gadget, where u r,i is colored i for each i ∈ 1, k .

Figure 3 . 11 :

 311 Figure 3.11: Expel gadget.

Figure 3 . 12 :

 312 Figure 3.12: Set gadgets.

Figure 3 . 13 :

 313 Figure 3.13: Final graph G in the reduction of Theorem 3.8.

∈ 1 ,

 1 k , and {B 0,k,k , B 1 }. Therefore, as we have that pw(G) = O(k), if one could solve Planar Monochromatic Disjoint Paths in time 2 o(w log w) • n O(1) , then one could also solve k × k-Hitting Set in time 2 o(k log k) • m O(1) , which is impossible by Theorem 3.7 unless the ETH fails.CHAPTER 3. ALGORITHMIC ASPECTS OF TREEWIDTH

Theorem 3 . 9

 39 Let F be a regular collection of graphs, let d = size(F), and let G be a graph. If a branch-decomposition of G of width w is given, then both m F (G) and tm F (G) can be computed in time2 2 O d (w•log w) • n.Theorem 3.10 Let F be a connected and planar collection of graphs, let d = size(F), and let G be a graph. If a branch-decomposition of G of width w is given, then m F (G) can be computed in time 2 O d (w•log w) • n. Moreover, if F is a connected and planar subcubic collection of graphs and if a branch-decomposition of G of width w is given, then tm F (G) can be computed in time 2 O d (w•log w) • n.
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 2 THE F-DELETION PROBLEM 103 belongs in ex tm (F). Note that a graph in A (t) F ,r is not necessarily a t-boundaried graph.

F

  ,r | = 2 O r+d (t log t) . The claimed bound on |F (t) F ,r | then follows directly by definition of the set F (t) F ,r . By [102], there exists a constant c such that for each G ∈ ex tm (F), |E(G)| ≤ c • |V (G)|. By definition, every underlying graph of an element of A (t)

(t e ) F

 ) ,dwhere t e = t e -|L|. We also denote by P e the set of all e-pairs. Clearly,|P e | = i∈ 0,te 2 i • |F (te-i) F ,d |, therefore, from Lemma 3.16, |P e | = 2 2 O d (w log w) .We then define the function tm (e) F : P e → N such that if (L, C) ∈ P e , then tm (e) F (L, C) = min{|S| | S ⊆ V (G e ), L = R e ∩ S, C = folio(G e \ S, F, d)}. Note that P er = ∅ × F (0) F ,d . Note also that the set A (0) F ,d contains only those that do not contain some graph in F as a topological minor. Therefore tm F (G) = min{tm (er)

(e i ) F

 ) , i ∈ 1, 2 and (L, B) ∈ P e , the value of tm

F

  (L, B) can be computed by the above formula in time O(|P e 1 | • |P e 2 |) = 2 2 O d (w log w) . As |P e | = 2 2 O d (w log w) , the computation of the function tm (e)

(3. 1 )

 1 We set G = B[N B[X]] and observe that|V (G)| ≥ |X| > s. As G is a subgraph of B, (3.1) implies that G ∈ ex tm (F),(3.2)and therefore, from Lemma 2.14, bw(G) ≤ y. Let R = N B (X) and let λ = ρ| R . We set G = (G, R , λ ). From Lemma 2.10, bw(G) ≤ bw(G)+|R | ≤ y+|R | = y+z.

. 7 )

 7 Let now B * = B -⊕ G e 2 . Combining (3.6) and (3.7), we may deduce that |E(B * )| < |E(B)|. (3.8) We now set B * = (B * , R, λ) and recall that t = |R|. Clearly, both B and B * belong in B (t) .

CHAPTER 3 .

 3 ALGORITHMIC ASPECTS OF TREEWIDTH Proposition 3.21 There exists a function f 2 : N + × N → N such that if d ∈ N + , y ∈ N, and G is a graph such that G ∈ ex tm (K d ) and G contains a branchwidthy-modulator R, then there exists a partition X of V (G) and an elementX 0 ∈ X such that R ⊆ X 0 , max{|X 0 |, |X | -1} ≤ 2 • |R|, and for every X ∈ X \ {X 0 }, |N G (X)| ≤ f 2 (d, y).Lemma 3.22 There is a function h 3 : N → N such that if t ∈ N and F is a connected and planar collection of graphs, where d = size(F), then every graph in R (t,F ) has at most t • h 3 (d) vertices.

(t e ) F 110 CHAPTER 3 .

 )1103 ,d . For each ALGORITHMIC ASPECTS OF TREEWIDTH e ∈ E(T), we denote by P e the set of all e-pairs. Note that |P e | = i∈ 0,te

3. 2 .

 2 THE F-DELETION PROBLEM 111 Note that given tm (e i ) F , i ∈ 1, 2 , and (L, B) ∈ P e , the value of tm (e) F (L, B) can be computed by the above formula in time O(|P e 1 | • |P e 2 |) = 2 O d (w•log w) . As |P e | = 2 O d (w•log w) , the computation of the function tm (e)

Lemma 3 .

 3 [START_REF] Courcelle | The expression of graph properties and graph transformations in monadic second-order logic[END_REF] Let G be a graph. P 3 tm G if and only if each vertex of G has degree at most 1.

  Moreover, as G does not contain a diamond as a subgraph, each edge of G participates in at most one C 3 , and thusc 3 (G)-c 3 (G\ v S) ≤ |S|. As by definition n(G) = n(G\ v S) and m(G) -m(G \ v S) = |S|, we obtain that n(G) -m(G) + c 3 (G) ≤ cc(G \ v S) = cc(G).Lemma 3.30 Let G be a non-empty graph. C 4 tm G if and only if G satisfies the C 4 -condition.Proof: Let G be a non-empty graph, and assume first that C 4 tm G. This directly implies that G does not contain the diamond as a subgraph. In particular, any two cycles of G, which are necessarily C 3 's, cannot share an edge. Let S be a set containing an arbitrary edge of each C 3 in G. By construction, G \ v S is a forest. As in a forest F , we have n(F ) -m(F ) = cc(F ), and S is defined such that |S| = c 3 (G) because each edge of G participates in at most one C 3 , we obtain that n(G) -m(G) + c 3 (G) = cc(G). Thus, G satisfies the C 4 -condition.Conversely, assume now that G satisfies the C 4 -condition. We prove that C 4 tm G by induction on n(G). If n(G) ≤ 3, then n(G) < n(C 4 ) and so C 4 tm G. Assume now that n(G) ≥ 4, and that for each graph

  1, and cc(G \ v {v}) = cc(G). This implies that G \ v {v} satisfies the C 4 -condition, hence C 4 tm G \ v {v}, and therefore C 4 tm G.

  has degree 2 in G, and G satisfies the C 4 -condition, we obtain that cc(G \ v {v}) = cc(G) -1. This implies that G \ v {v} satisfies the C 4 -condition, and thus C 4 tm G \ v {v}. Since v disconnects one of the connected components of G it cannot participate in a cycle of G, hence C 4 tm G. Lemma 3.31 If G is a non-empty graph such that C 4 tm G, then m(G) ≤

3 2

 3 (n(G) -1).Proof: As C 4 tm G, by Lemma 3.30, G satisfies the C 4 -condition. It follows that c 3 (G) ≤1 3 m(G). Moreover, as G is non-empty, we have that 1 ≤ cc(G). The lemma follows by using these inequalities in the equality n(G) -m(G) + c 3 (G) = cc(G).

Proposition 3 .

 3 [START_REF] Dong | Edge self-monitoring for wireless sensor networks[END_REF] If (G, k) is a positive instance of F-TM-Deletion, then every certificate of it intersects every H-edge gadget and there exists a certificate S such that for each edge gadget A between two verticesx and y, V (A) ∩ S ⊆ {x, y} and {x, y} ∩ S = ∅.

Figure 3 . 14 :Figure 3 . 15 :

 314315 Figure 3.14: The general H-construction, where the dotted parts correspond to H-edge gadgets, without the encoding of the edges of E(G).

CHAPTER 3 .

 3 ALGORITHMIC ASPECTS OF TREEWIDTH {d e , d m e , d r e } ∩ S = {d e , d r e } or {d e , d m e , d r e } ∩ S = {d m e }. Let us now discuss about the treewidth of G . By deleting 2k vertices, namely the vertices {c j | j ∈ 1, k } and the vertices {r i | i ∈ 1, k }, we obtain a graph where each connected component is an H-choice gadget, with eventually some pendant Hedge gadgets or double H-edge gadgets. As the treewidth of the H-choice gadget, the H-edge gadget, and the double H-choice gadget is linear in |V (H)|, we obtain that tw(G) = O d (k) (recall that d = size(F)).

  is a positive instance of F-TM-Deletion, for each edge e ∈ E(G), S is such that either {d e , d m e , d r e } ∩ S = {d e , d r e } or {d e , d m e , d r e } ∩ S = {d m e }, and -S satisfies the permutation property, 3.2. THE F-DELETION PROBLEM 131 then there is a unique permutation

Figure 3 . 17 :

 317 Figure 3.17: The main connected component of G \ v S.

Figure 4 . 1 :

 41 Figure 4.1: Introduction of v σ(i) with i ∈ k + 2, n and i ≡ k + 2 (mod s), s = 4, and k = 5.We assume that i 1 < i 2 < i 3 < i 4 < i 5 < i 6 < i, and note that i 5 = i -2 and i 6 = i -1. We have defined f (i) = v σ(i 1 ) and a i = v σ(i 2 ) . The frozen vertex f (i) is marked with a cross, and the anchor a i is marked with a circle. We choose N (i) = {i 2 , i 3 , i 5 }.

Figure 4 . 3 :

 43 Figure 4.3:The current anchor v σ(i 1 ) is connected to all the s vertices of the current block but will not be connected to any of the remaining non-introduced vertices.

Theorem 4 . 2

 42 Let F be a connected and planar collection of graphs, let d = size(F), let 1 ≤ c < 2, and let H ∈ SQGM(c). There exists an algorithm that, for each G ∈ H and each integer k, solves F-M-Deletion on

Figure 4 . 4 :

 44 Figure 4.4: A visualization of the proof of Lemma 4.7. In this whole graph Γ k , we initialize our search of Γ k such that every internal red hexagon, corresponding to a state, will become a vertex of Γ k and the border, also circle by a red line, will become the vertex b out . The blue edges correspond to the freeways. Red cycles correspond to the boundaries of the starting countries. Blue paths between big-black vertices are the freeways. Bigblack vertices are the capitals.

Claim 4 . 8 S

 48 is an A-normal Λ-state configuration of G.

Claim 4 . 9

 49 Let S = (X , α, R, β) be an A-normal Λ-state configuration of G, and C ∈ front A (S). Let S = action(S, C) where action ∈ {expand, clash, anex}. Then S is an A-normal Λ-state configuration of G where cost(S , A) ≤ cost(S, A). Moreover, if cov S (C) ≥ 1, then cost(S , A) < cost(S, A) and if cov S (C) = 0 (which may be the case only when action = anex), then |indep(S )| < |indep(S)|.

  As C ⊆ indep(S) and C ∩ indep(S ) = ∅, we conclude that |indep(S )| < |indep(S)| as required.♦

  and an edge e ∈ E(G) of a graph G, we say that v monitors e or e is monitored by v if v ∈ M G (e). We say that a pair (G, ω) is an edge weighted graph if G is a graph and ω : E(G) → N is a weighed function. Moreover, we say that a triple(G, ω, M ) is a monitorable triple if (G, ω) is an edge weighted graph, M ⊆ V (G), ∀e ∈ E(G) : |M G (e) ∩ M | ≥ ω(e),and ∃e ∈ E(G) : ω(e) ≥ 1. If (G, ω, M ) is a monitorable triple, we define ω M = max{ω(e) | e ∈ E(G)}. We set I em to be the set all monitorable triples. We define the minimization parameter em : I em → N such that for each (G, ω, M ) ∈ I em , em(G, ω, M ) = min{|S| | S ⊆ M, ∀e ∈ E(G) : |S ∩ M G (e)| ≥ ω(e)}.

Figure 5 . 1 :, a 1 2 , and a 1 3 , a 2 2 , and a 2 3 like w b and e 2

 5123232 Figure 5.1: Edge Monitoring gadget. For readability, some edges are drawn as dotted and for some of them, only one extremity is drawn. In the figure, the vertices u b , v b , w b , d 1 , e 1 , and f 1 are connected to the three vertices a 1 1 , a 1 2 , and a 1 3 like u b and d 1 are, and the vertices u b , v b , w b , d 2 , e 2 , and f 2 are connected to the three vertices a 2 1 , a 2 2 , and a 2 3

Theorem 5 . 5

 55 The Diameter Tree problem is NP-hard even when restricted to the set of inputs ((G, X, χ, c), k) such that -G is an outerplanar graph, only one vertex of V (G) has degree greater than 3, c : X 2 → {1, 5, 10}, c satisfies the triangle inequality, and k = 9.

3 rFigure 5 . 3 :if e 1 = 1 }, e 2 = 2 } 1 }, e 2 = 2 }

 3531122122 Figure 5.3: Example of the graph G built in the reduction of Theorem 5.5.

9 Figure 5 . 4 :

 954 Figure 5.4: (a) Graph G described in the reduction of Theorem 5.6 for the formula ϕ= (x 1 ∨ x 2 ∨ x 3 ) ∧ (x 1 ∨ x 4 ) ∧ (x 3 ∨ x 4 ) ∧ (x 1 ∨ x 2 ∨ x 3 ) ∧ (x 2 ∨ x 4 ).The vertices p i , r i , n i corresponding to positive (resp. negative) occurrences are depicted with circles (resp. squares). An assignment satisfying ϕ is given by x 1 = x 2 = 1 and x 3 = x 4 = 0, and a solution spanning tree T with diameter 0 is emphasized with thicker edges. (b) The (possible) colors associated with edge edge of G are depicted in blue.

Figure 5 . 6 :

 56 Figure 5.6: A cactus with 8 blocks, 5 cycle blocks, and 3 edge blocks. The vertices inside the dotted rectangle are the vertices of S x,e B and the bold path corresponds to a possible R x,e B .

For

  Q ⊆ R B we denote by T e Q the graph obtained by taking the union of T e and each element ofQ. If there exists R ∈ R B such that Q = {R}, we write T e R instead of T e Q . We define close R B (Q) to be the set of elements of R B that are subgraphs of T e Q . Note that T e Q = T e close R B (Q) . If B is a cycle block, we define for each i, j ∈ 0, k the set R (e,i,j) B = {R ∈ R B | T eR satisfies the (e, i, j)-condition}.

Figure 5 . 7 :

 57 Figure 5.7: Exemple of a cycle block B with two children C 1 and C 2 . When computing r B (e), we obtain the formula given in Table5.1. In the general case, the clauses deal with T e

Figure 5 . 8 :

 58 Figure 5.8: Graph G built in the reduction of Theorem 5.15. The reload costs are not depicted.

  an instance of Unary Bin Packing, the reload costs of the instance ((G, X, χ, c), 2B) of Diameter Tree are polynomially bounded by |V (G)|. Again, the following claim concludes the proof. We claim that (({a i | i ∈ 1, n }, B), k) is a positive instance of Unary Bin Packing if and only if ((G, X, χ, c), 2B) is a positive instance of Diameter Tree.
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 519 Given a node t ∈ V (T), and a subset Z ⊆ V (G t ), a (Z, t)supertree is a tuple T = (T, ϕ, ψ, ρ) such that• T is a tree containing at most |X t | + |Z| vertices, • ϕ : Z → 2 V (T ) , called the vertex-model function, associates every v ∈ Z with a subset ϕ(v) such that • T [ϕ(v)] is connected and if v is a labeled vertex, then |ϕ(v)| = 1,and • if u and v are two vertices of Z such that c(u) = c(v), then ϕ(u)∩ϕ(v) = ∅, • ψ : E(T ) → 2 1,k , called the edge-model function, associates a subset of colors with every edge of T , and • ρ : Z → V (T ), called the vertex-representative function, selects, for each vertex v ∈ Z, a representative ρ(v) in the vertex-model ϕ(v) ⊆ V (T ).

Figure 5 . 9 :

 59 Figure 5.9: The four possible cases (i-iv) in the dynamic programming algorithm. The configurations above correspond to T , while the ones below correspond to T . Full dots correspond to vertices in O(T ), the other ones being in S(T ).
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  (i) ρ(v) = a such that a ∈ V (T ) and c(v) ∈ γ (a). See Figure5.9(i) for an example. We define T = T . Let us define ϕ, ψ, and γ. * Definition of the vertex-model function: T [ϕ(v)] is connected, contains a, and for every z ∈ ϕ(v), c(v) ∈ γ (z). For every u ∈ X t , ϕ(u) = ϕ (u). * Definition of the edge-model function: For every e ∈ E(T ), ψ(e) = ψ (e). * Definition of the coloring function:For every z ∈ V (T ), γ(z) = γ (z) ∪ {c(v) | z ∈ ϕ(v)}. (ii) ρ(v) = a and a subdivides an edge {x, y} of T with c(v) ∈ ψ ({x, y}).See Figure5.9(ii) for an example. Since T is a shadow tree, assume w.l.o.g. that x ∈ O(T ) and y ∈ S(T ). Then T is obtained from T by removing the edge {x, y}, adding two vertices a ∈ O(T ) and s ∈ S(T ) and three edges {x, s}, {s, a}, and {a, y}. Let us define ϕ, ψ, and γ. * Definition of the vertex-model function: T [ϕ(v)] is connected, contains a, and for each z ∈ ϕ(v), c(v) ∈ γ (z). For each u ∈ X t , T [ϕ(u)] is connected, ϕ (u) ⊆ ϕ(u) ⊆ ϕ (u) ∪ {a} ∪ S(T ), and if u is unlabeled, then ϕ(u) = ϕ (u). For each u, u ∈ X t with c(u) = c(u ), ϕ(u)∩ϕ(u ) = ∅. * Definition of the edge-model function: For each e ∈ E(T )\{{x, s}, {s, a}, {a, y}}, ψ(e) = ψ (e). Also, ψ({x, s}) = ψ({s, a}) = ψ({a, y}) = ψ ({x, y}). * Definition of the coloring function: For each z ∈ O(T ) \ {a}, γ(z) = γ (z) ∪ {c(v) | z ∈ ϕ(v)}. γ(a) = {i | ∃u ∈ X t : c(u) = i and a ∈ ϕ(u)} ∪ ψ ({x, y}). For each z ∈ S(T ), γ(z) = γ (z) ∪ {i | ∃u ∈ X t : c(u) = i and z ∈ ϕ(u)}. Finally, γ(s) = {i | ∃u ∈ X t : c(u) = i and s ∈ ϕ(u)} ∪ ψ ({x, y}).

Figure 5 . 9 (

 59 iii) for an example. T is obtained from T by adding two vertices a ∈ O(T ) and s ∈ S(T ) and two edges {a, s} and {s, x}. Let us define ϕ, ψ, and γ. * Definition of the vertex-model function: T [ϕ(v)] is connected, contains a, and for each z∈ ϕ(v), c(v) ∈ γ (z). For each u ∈ X t , T [ϕ(u)] is connected, ϕ (u) ⊆ ϕ(u) ⊆ ϕ (u) ∪ {a} ∪ S(T ), and if u is unlabeled, then ϕ(u) = ϕ (u). For each u, u ∈ X t with c(u) = c(u ), ϕ(u)∩ϕ(u ) = ∅.

There are at most 2

 2 |V (T )|•|Xt| ≤ 2 3w•w possible functions ϕ, 2 |E(T )|•k ≤ 2 3w•k possible functions ψ, |V (T )| |Xt| ≤ (3w) w possible functions ρ, and 2 |V (T )|•k ≤ 2 3w•k possible functions γ. Thus, it holds that |R t | = 2 O(k 2 )for every node t ∈ V (T).

c

  ) •n. We even showed that the weighted version of the problem, namely Weighted Edge Monitoring, can be solved in time 2

  Un problème Π p est dit bidimensionnel par mineur (resp. bidimensionnel par contraction), si le paramètre de graphes p est bidimensionnel par mineur (resp. bidimensionnel par contraction).Pour donner une idée de l'importance des problèmes bidimensionnels par mineur et par contraction dans la littérature, nous présentons une listede problèmes bidimensionnels par mineur : Vertex Cover, Feedback Vertex Set, Longest Cycle, Longest Path, Cycle Packing, Path Packing, Diamond Hitting Set, Minimum Maximal Matching, Face Cover et Max Bounded Degree Connected Subgraph, et une liste de problèmes bidimensionnels par contraction mais pas par mineur : Connected Vertex Cover, Dominating Set, Connected Dominating Set, Connected Feedback Vertex Set, Induced Matching, Induced Cycle Packing, Cycle Domination, Connected Cycle Domination, d-Scattered Set, Induced Path Packing, r-Center, connected r-Center, Connected Diamond Hitting Set et Unweighted TSP Tour. La théorie de la bidimensionnalité s'applique aux classes de graphes ayant l'une des deux propriétés présentées ci-dessous. Soit H une classe de graphes. H possède la propriété SQGM s'il existe une constante 1 ≤ c < 2 telle que tout graphe G ∈ H qui exclut t comme mineur, pour un certain entier t, a une treewidth O(t c ). En d'autres termes, cette propriété n'est satisfaite que si pour H, le théorème d'exclusion de grille peut être montré pour une fonction f sous-quadratique sur les graphes de H. De la même manière H a la propriété SQGC s'il existe une constante 1 ≤ c < 2 telle que tout graphe G ∈ H qui exclut Γ t comme contraction, pour un certain entier t, a une treewidth O(t c

  Nous désignons par S d l'ensemble des graphes G L tel que L est une collection de lignes dans le plan tel que chaque ligne croise au plus d fois une autre ligne. S d est l'ensemble des graphes d'intersection de lignes de degré d'arête borné par d. Grigoriev et cie.[START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF] ont montré que cette classe de graphes était dans SQGM(1), généralisant un résultat de Fomin et cie.[START_REF] Fomin | Bidimensionality and geometric graphs[END_REF] affirmant que deux sousclasses de S d étaient dans SQGM(1), à savoir, la classe des graphes de disques unitaires de
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Figure 5: Domaine d'application de la théorie de la bidimensionnalité.

degré borné, qui sont des graphes d'intersection de disques dans le plan, et la classe des graphes cartes de degré borné, qui sont des graphes d'intersection des bords des faces d'un plongement planaire d'un graphe planaire, c'est à dire, des faces de la représentation d'un graphe planaire sur une sphère telle que deux arrêtes ne se croisent pas. La définition formelle est donnée dans le Chapitre 2. S d inclut bien d'autre graphes d'intersections

[START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF]

.

Étant donné une classe de graphes H et deux entiers s 1 et s 2 , nous définissons H (s 1 ,s 2 ) comme étant l'ensemble des graphes H tel qu'il existe un graphe G ∈ H et un graphe J tels que G (s 1 ) c J et H s 2

  1 ,s 2 ) pour tout graphe apex H et tout entiers s 1 et s 2 . En particulier, nous obtenons que S d ∈ SQGC(1).

Table 2 :

 2 Résumé de nos résultats dans lequel k, tw et ∆ désignent le coût de la solution, la treewidth et le degré maximum du graphe d'entrée, respectivement. Nous utilisons l'abréviation NPh pour NP-dur. Le symbole '' ' indique que le résultat est aussi valable lorsque les coûts sont polynomiaux. XP et W[1] sont des classes de complexité définie en Chapitre 2.

Table 1 .

 1 1: Summary of our results when F equals {K i }, {C i }, or {P i }. If only one value 'x' is written in the table (like 'tw'), it means that the corresponding problem can be solved in time O

	tw•log tw)

* (2 O(x) ), and that this bound is tight. An entry of the form 'x ↔y' means that the corresponding problem cannot be solved in time O * (2 o(x) ), and that it can be solved in time O * (2 O(y) ). We interpret {C 2 }-Deletion as Feedback Vertex Set. Grey cells correspond to known results.
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  parameterized by the size of a largest connected component of G, and computing σ(G, w; r) is W[2]-hard parameterized by r.

  All the graphs we consider are undirected and contain neither loops nor multiple edges. Let G be a graph. We denote by V (G) the set of vertices of G and by E(G) its set of edges. The size of the graph G is |V (G)|. Given two graphs G and H, we say that

for any undefined term. A graph G is a pair (V, E) where V is a set and E ⊆ V 2 . The elements of V are called vertices and the elements of E are called 57 CHAPTER 2. PRELIMINARIES edges.

  Proposition 2.1 Let H and G be two graphs. H is a minor of G if and only if there exists a subgraph G of G such that H is a contraction of G . Let H and G be two graphs. H is a topological minor of G if and only if we can obtain, from a subgraph G of G, a graph G that is isomorphic to H, by only dissolving vertices. Let G be a connected planar graph and let H be a planar triangulated graph. If H is a minor of G, then H is also a contraction of G.

	Proposition 2.2 Lemma 2.3

  planar subcubic collection) of graph if it is regular and at least one of the graphs in F is planar (resp. planar and subcubic). We say that F is a connected collection of graph if it is regular and all the graphs in F are connected. We say that F is a (topological) minor antichain if no two of its elements are comparable via the (topological) minor relation.Let F be a regular collection of graphs. We extend the (topological) minor relation to F such that, given a graph G, F tm G (resp. F m G) if and only if there exists a graph H ∈ F such that H tm G (resp. H m G). We also denote ex tm (F) = {G | F tm G}, i.e., ex tm (F) is the class of graphs that do not contain any graph in F as a topological minor. The set ex m (F) is defined analogously.

The following two observations follow easily from the definitions. Observation 2.5 There is a function f 1 : N → N such that for every h-vertex graph H, every graph in tpm(H) has at most f 1 (h) vertices.

Observation 2.6 Given two graphs H and G, H is a minor of G if and only if some of the graphs in tpm(H) is a topological minor of G.

Graph collections. Let F be a collection of graphs. If F is a collection of graphs that is finite, non-empty, and all its graphs are non-empty, then we say that F is a regular collection of graphs. For any regular collection of graphs F, we define size(F) = max({|V (H)| | H ∈ F} ∪ {|F|}). Note that if the cardinality of F is bounded, then the size of the graphs in F is also bounded. We say that F is CHAPTER 2. PRELIMINARIES a planar collection (resp.

  This implies that H is a topological minor of the cut-clique of (G , G, S).Lemma 2.16Let G be a connected graph, let v be a cut vertex of G, and let V be the vertex set of a connected component of G \ v {v}. If H is a graph such that H tm G and for each leaf B of bct(H),

  1 if it can be solved in time O * (2 O(tw) ) on planar graphs, and is of Type 2 if it cannot be solved, under ETH, in time O * (2 o(tw log tw) ) on planar graphs.In Subsection 3.1, we consider Cycle Packing that is an example of problem of Type 1. Indeed, it is proved in[START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF] that Cycle Packing cannot be solved in time O * (2 o(tw log tw) ) on general graphs unless the ETH fails. On the other hand, a dynamic programming algorithm for Planar Cycle Packing running in time O * (2 O(tw) ) can be found in[START_REF] Kloks | New algorithms for k-Face Cover, k-Feedback Vertex Set, and k-Disjoint Cycles on plane and planar graphs[END_REF]. In Lemma 3.1 we provide an alternative algorithm for Planar Cycle Packing running in time O * (2 O(tw) ), which is a direct application of the techniques based on Catalan structures introduced in[START_REF] Dorn | Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions[END_REF]. Our algorithm yields slightly better constants than the algorithm of[START_REF] Kloks | New algorithms for k-Face Cover, k-Feedback Vertex Set, and k-Disjoint Cycles on plane and planar graphs[END_REF]. We also provide a proof that Planar Cycle Packing cannot be solved in time O

* 

(2 o(tw) ) unless the ETH fails. This proof is based on a reduction from Planar 3-Colorability. This latter problem is known to be not solvable, under ETH, in time O * (2 o(tw) )

[START_REF] Garey | Some simplified NP-complete graph problems[END_REF] 

but we give an alternative proof for completeness.

In Subsection 3.1, we define the Monochromatic Disjoint Paths, which is a variant of Disjoint Paths problem on a vertex-colored graph with additional restrictions on the allowed colors for each path, and show that this problem is of Type 2. We adapt the algorithm that solves Disjoint Paths on general graphs in time O * (2 O(tw log tw) ) given in

[START_REF] Lokshtanov | Slightly superexponential parameterized problems[END_REF][START_REF] Scheffler | A practical linear time algorithm for disjoint paths in graphs with bounded tree-width[END_REF] 

to solve Monochromatic Disjoint Paths on general graphs. Then using a reduction from k × k-Hitting Set, we show that Planar Monochromatic Disjoint Paths cannot be solved, under ETH, in time O * (2 o(tw log tw) ).

  .7. Formally, if two edges {pc 1 , pc 3 } and {pc 2 , pc 4 } cross each other, we remove both edges, we add the new vertices w 0 , w 1,1 , w 1,2 , w 2,1 , w 2,2 , w 3,1 , w 3,2 , w 4,1 , and w 4,2 , we add two paths pc 1 , w 1,1 , w 1,2 , w 0 , w 3,2 , w 3,1 , pc 3 and pc 2 , w 2,1 , w 2,2 , w 0 , w 4,2 , w 4,1 , pc 4 , and we add 4 expel gadgets EG w 1,1 ,w 2,2 , EG w 2,1 ,w 3,2 , EG w 3,1 ,w 4,2 , EG w 4,1 ,w 1,2 . As we have added 4 expel gadgets, we increase k by 4 for each such path-crossing gadget. This gadget ensures that, in order to have enough vertex-disjoint cycles, an external cycle that contains an edge from a path-crossing gadget should go straight, i.e., for all α ∈ 1, 4 , if the cycle arrives at a vertex pc α it should leave by pc (α+1 (mod 4))+1

  Also, from Lemma 2.14, all graphs in B O d (t•log t) follows easily by applying Proposition 3.23 for n and y.
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	Note that, from Lemma 3.22, R (F ,t) ⊆ B	(F ,t)
	(F ,t) ≤n	have branchwidth at most y = max{µ(d), t}. The
	fact that |B ≤n | = 2 (F ,t)	

≤n , where n = t • h 3 (d).

  Let us analize the running time of this algorithm. As, for each t ∈ V (T), S and S 0 are disjoint subsets of X t , we have that|I t | ≤ 3 |Xt| . Note that if t is a leaf, thenr t can be computed in time O(1), if t is an introduce vertex or a forget vertex node and t is the child of t, then r t can be computed in time O(|I t | • |X t |), and if t is a join node and t and t are the two children of t, then r t can be computed in time O(|I t | • |I t | • |X t |).

  Lemma 3.27 Let G be a graph. P 4 tm G if and only if each connected component of G is either a C 3 or a star. First note that if each connected component of G is either a C 3 or a star, then P 4 tm G. Conversely, assume that P 4 tm G. Then each connected component of G of size at least 4 should contain at most 1 vertex of degree at least 2, hence such component is a star. On the other hand, the only graph on at most 3 vertices that is not a star is C 3 . The lemma follows.

Theorem 3.26 Given a graph G, if a nice tree-decomposition of G of width w is given, tm {P 3 } can be computed in time O(9 w • w • n).

A single exponential algorithm for tm {P 4 } . Similarly to what we did for tm {P 3 } , we start with a structural definition of the graphs that exclude P 4 as a topological minor.

Proof:

  t is the child of t, then, for each (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t ,r t (S, S 1+ , S 1-, S * , S 3+ , S 3-) = min{r t (S , S 1+ , S 1-, S * , S 3+ , S 3-) | (S , S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t , S = S \ {v}, S 1-= S 1-\ {v}, S 1+ , S 1-, S * , S 3+ , S3-) is min{r t (S, S 1+ , S 1-, S * , S 3+ , S 3-) + r t (S, S 1+ , S 1-, S * , S 3+ , S 3-) -|S| | (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t , (S, S 1+ , S 1-, S * , S 3+ , S 3-

* = S * \ {v}, S 3-= S 3-\ {v}}.

Join. If t and t are the children of t, then for each (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t , r t (S, S

  1+ , S 1-, S * , S 3+ , and S 3-form a partition of X t , we have that |I t | ≤ 6 |Xt| . Note that if t is a leaf, then r t can be computed in time O(1), if t is an introduce vertex or a forget vertex node, and t is the child of t, then r t can be computed in time O(|I t | • |X t |), and if t is a join node, and t and t are the two children of t, then r t can be computed in time O(|I t | • |I t | • |X t |).

  (G t \ v S) \ {x, z, z }. So (S, S 1+ , S 1-, S * , S 3+ ∪ {z, z }, S 3-\ {x, z, z }) ∈ I t and r t (S, S 1+ , S 1-, S * , S 3+ ∪ {z, z }, S 3-\ {x, z, z }) ≤ | S|.Forget vertex. Let v be the forget vertex of X t , let (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t , and let ( S, S * , S 3-) be a witness. If v has degree 0 in G t \ v S, then (S, S 1+ , S 1-, S * ∪ {v}, S 3+ , S 3-) ∈ I t and r t (S, S 1+ , S 1-, S * ∪ {v}, S 3+ , S 3-) ≤ | S|. If v has degree at least 1 in G t \ v S, then N Gt\v S (v) ∩ S 3+ = ∅, as otherwise there would be an edge in G t \ v S between a vertex of S 3+ and a vertex of V (G t ) \ ( S ∪ S 3+ ). So, one of the following case occurs:v ∈ S, (S ∪ {v}, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t , and r t (S ∪ {v}, S 1+ , S 1-, S * , S 3+ , S 3-) ≤ | S|,

and there is no edge in G t \ v S between a vertex of {v, z, z } and a vertex of Vv ∈ S * , (S, S 1+ , S 1-, S * ∪ {v}, S 3+ , S 3-) ∈ I t , and

r t (S, S 1+ , S 1-, S * ∪ {v}, S 3+ , S 3-) ≤ | S|, -N Gt\v S (v) ⊆ S * , (S, S 1+ , S 1-∪ {v}, S * , S 3+ , S

3

-) ∈ I t , and r t (S, S 1+ , S 1-∪ {v}, S * , S 3+ , S 3-) ≤ | S|, or v ∈ S 3-, (S, S 1+ , S 1-, S * , S 3+ , S 3-∪ {v}) ∈ I t , and r t (S, S 1+ , S 1-, S * , S 3+ , S 3-∪ {v}) ≤ | S| Join. Let (S, S 1+ , S 1-, S * , S 3+ , S 3-) ∈ I t , and let ( S, S * , S 3-) be a witness. Let t and t be the two children of t. We define

  CHAPTER 3. ALGORITHMIC ASPECTS OF TREEWIDTHThis concludes the proof of correctness of the algorithm. The following theorem summarizes the above discussion.Theorem 3.28 Given a graph G, if a nice tree-decomposition of G of width w is given, tm {P 4 } can be computed in time O(36 w • w • n).A single exponential algorithm for tm {C 4 } . As discussed before, in this part we use the dynamic programming techniques introduced by Bodlaender et al.[START_REF] Bodlaender | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF] to obtain a single exponential algorithm for computing tm {C 4 } . The algorithm we present solves the decision version, namely {C 4 }-TM-Deletion. We then can obtain tm {C 4 } by using Proposition 2.18

-), and r t (S , S 1+ , S 1-, S * , S 3+ , S 3-) + r t (S , S 1+ , S 1-, S * , S 3+ , S 3-) -|S| ≤ | S|.

  2}, and note that |I| ≤ k. By the previous discussion, it holds that i∈I |D i | ≤ 2k. So it follows that, by using Cauchy-Schwarz inequality,

	n
	i=k+1

  the graph B \ e e if B is a cycle block, the graph B if B is an edge block, and r C (e C ) for every child C of B that is an edge block containing only the edge e C . For every C ∈ child(B) such that C is a cycle block, for every edge e ∈ E(C) such that r C (e ) = ⊥ and for each x ∈ e , the tree R x ,e C is defined as r C (e )[S x ,e B ]. Note that, given C ∈ child(B) such that C is a cycle block, and three vertices

  2, 3, 4, and 5, the set R t can be clearly computed in time polynomial in |R t |, where t is the child of t. Finally, in Case 6, that is, when t is a join node, the set R t can also be clearly computed in time polynomial in |R t | and |R t |, where t and t are the two children of t. Finally, as we can assume that |V (T)| = O(n)[START_REF] Kloks | Computations and Approximations[END_REF], the running time claimed in Theorem 5.16 follows.
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-W [1]-hard if there exists a parameterized reduction from Clique to Π.

-W [START_REF] Aho | Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions[END_REF] 

This assumption is stronger that P = NP and weaker than ETH.

Definition 2.24 A parameterized problem Π, with parameter p is para-NP-hard if it is NP-hard for some fixed constant value of the parameter k.

Note that, unless P = NP, a para-NP-hard problem cannot be in XP, hence it cannot be FPT either.

CHAPTER 3. ALGORITHMIC ASPECTS OF TREEWIDTH and we define the set A t (s, s 0 , r, i, j, ) as the set {p | p ∈ Π(s -1 (1)), E t (p, s, s 0 , r, i, j, ) = ∅}.

Otherwise, i.e., if C 4 tm G t s -1 (1), s -1 0 (1) , we define A t (s, s 0 , r, i, j, ) = ∅.

Note that we do not need to keep track of partial solutions if C 4 tm G t s -1 (1), s -1 0 (1) , as we already know they will not lead to a global solution. Moreover, if C 4 tm G t s -1 (1), s -1 0 (1) , then by Lemma 3.31 it follows that m(G t s -1 (1), s -1 0 (1) ) ≤ 3 2 (n(G t s -1 (1), s -1 0 (1) ) -1).

Using the definition of A r , Lemma 3.30, and Lemma 3.31 we have that tm {C 4 } (G) ≤ k if and only if for some i ≥ |V (G) ∪ {v 0 }| -k and some j ≤ 2 3 (i -1), we have A r (∅, ∅, ∅, i, j, 1 + j -i) = ∅. For each t ∈ V (T), we assume that we have already computed A t for each children t of t, and we proceed to the computation of A t . As usual, we distinguish several cases depending on the type of node t.

Leaf. By definition of A t we have A t (∅, ∅, ∅, 0, 0, 0) = {∅}.

Introduce vertex. Let v be the insertion vertex of X t , let t be the child of t, let s, s 0 , and r the functions defined as before, let H = G t s -1 (1), s -1 0 (1) , and let d 3 be the number of C 3 's of H that contain the vertex v.

-If C 4 tm H or if v = v 0 and s(v 0 ) = 0, then by definition of A t we have that A t (s, s 0 , r, i, j, ) = ∅. -Otherwise, if s(v) = 0, then, by definition of A t , A t (s, s 0 , r, i, j, ) = A t (s| X t , s 0 | E t , r| E t , i, j, ).

-Otherwise, if v = v 0 , then by construction of the nice tree-decomposition, we know that t is a leaf of T and so s = {(v 0 , 1)}, s 0 = r = ∅, j = = i -1 = 0 and A t (s, s 0 , r, i, j, ) = ins({v 0 }, A t (∅, ∅, ∅, 0, 0, 0)). -Otherwise, we know that v = v 0 , s(v) = 1, and C 4 tm H. As s(v) = 1, we have to insert v and we have to make sure that all vertices of N H [v] are in the same connected component of H. Moreover, by adding v we add one vertex, |N (v)| edges, and d 3 C 3 's. Therefore, we have that A t (s, s 0 , r, i, j, ) is equal to

THE F-DELETION PROBLEM

Forget vertex. Let v be the forget vertex of X t , let t be the child of t, and let s, s 0 , and r the functions defined as before. For each function, we have a choice on how it can be extended in t , and we potentially need to consider every possible such extension. Note the number of vertices, edges, or C 3 's is not affected. We obtain that A t (s, s 0 , r, i, j, ) = A t (s ∪ {(v, 0)}, s 0 , r, i, j, )

s 0 :{v 0 }×s -1 (1)→{0,1}, s 0 | X t =s 0 r :E(Gt s -1 (1),s -1 0 (1) )→{0,1}, r | X t =r proj({v}, A t (s , s 0 , r , i, j, )).

Join. Let t and t be the two children of t, let s, s 0 , and r be the functions defined as before, let H = G t s -1 (1), s -1 0 (1) , and let S ⊆ E(H) be the set of edges that participate in a C 3 of H. We are going to join every compatible entries A t (s , s 0 , r , i , j , ) and A t (s , s 0 , r , i , j , ). For two such entries being compatible, we need s = s = s and s 0 = s 0 = s 0 . Moreover, we do not want the solution graph to contain a diamond as a subgraph, and for this we need r -1 (1) ∩ r -1 (1) = S. Indeed, either H contains the diamond as a subgraph, and then A t (s , s 0 , r , i , j , ) = A t (s , s 0 , r , i , j , ) = {∅}, or the diamond is created by joining two C 3 's, one from t and the other one from t , sharing a common edge. This is possible only if (r -1 (1) ∩ r -1 (1)) \ S = ∅. For the counters, we have to be careful in order not to count some element twice. We obtain that A t (s, s 0 , r, i, j, ) = ↓ r ,r :E(H)→{0,1}, r -1 (1)∩r -1 (1)=S i +i =i+|V (H)| j +j =j+|E(H)| + = +c 3 (H) join(A t (s, s 0 , r , i , j , ), A t (s, s 0 , r , i , j , )). Proof: The algorithm works in the following way. For each node t ∈ V (T) and for each entry M of its table, instead of storing A t (M ), we store A t (M ) = reduce(A t (M )) by using Theorem 3.34. As, by Proposition 3.33, each of the operation we use preserves representation, we obtain that for each node t ∈ V (T) and for each possible entry M , A t (M ) represents A t (M ). In particular, we have that A r (M ) = reduce(A r (M )) for each possible entry M . Using the definition of A r , Lemma 3.30, and Lemma 3.31, we have that tm {C 4 } (G) ≤ k if and only if for some i ≥ |V (G) ∪ {v 0 }| -k and some j ≤ 2 3 (i -1), we have A r (∅, ∅, ∅, i, j, 1 + j -i) = ∅. We now focus on the running time of the algorithm. The size of the intermediate sets of weighted partitions, for a leaf node and for an introduce vertex node are upperbounded by 2 |s -1 (1)| . For a forget vertex node, as in the big union operation we take CHAPTER 3. ALGORITHMIC ASPECTS OF TREEWIDTH into consideration a unique extension of s, at most 2 possible extensions of s 0 , and at most 2 |s -1 (1)| possible extenstions for r, we obtain that the intermediate sets of weighted partitions have size at most |+2 . For a join node, as in the big union operation we take into consideration at most 2 |E(H)| possible functions r and as many functions r , at most n+|s -1 (1)| choices for i and i , at most 3 2 (n -1) + |E(H)| choices for j and j , and at most 1 2 (n -1) + 

As each time we can check the condition C 4 tm H, by Lemma 3.31, m(H) ≤ 3 2 (n(H) -1), so we obtain that the intermediate sets of weighted partitions have size at most 6 • n 3 • 2 5|s -1 (1)| . Moreover, for each node t ∈ V (T), the function reduce will be called as many times as the number of possible entries, i.e., at most 2 O(w) • n 3 times. Thus, using Theorem 3.34, A t can be computed in time 2 O(w) • n 6 . The theorem follows by taking into account the linear number of nodes in a nice tree-decomposition.

No algorithm in O * (2 o(tw) ) for F-Deletion

In this subsection, we prove a lower bounds for F-TM-Deletion and F-M-Deletion when parameterized by the treewidth of the input graph. The first lower bound applies to any connected collection of graphs F and is based on a reduction from Vertex Cover. Theorem 3.36 (Impagliazzo et al. [START_REF] Impagliazzo | Which problems have strongly exponential complexity[END_REF]) There is no algorithm that, given a graph G and an integer k, solves Vertex Cover on (G, k) in time 2 o(tw) • n O (1) , unless the ETH fails.

We use Theorem 3.36 in order to prove Theorem 3.37.

Theorem 3.37 Let F be a connected collection of graphs. There is no algorithm that given a graph G and an integer k solves F-TM-Deletion or 1) , unless the ETH fails.

Proof: Let F be a connected collection of graphs. Without loss of generality, we can assume that F is a topological minor antichain. We first present a reduction from Vertex Cover to F-TM-Deletion, both parameterized by the treewidth of the input graph, and then we explain the changes to be made to prove the lower bound for F-M-Deletion.

We fix an essential pair (H, B) of F. Let a be the first vertex of (H, B), b be the second vertex of (H, B), and A be the core of (H, B).

CHAPTER 3. ALGORITHMIC ASPECTS OF TREEWIDTH

we replace Lemma 2.16 by Lemma 2.17.

A O * (2 o(tw log tw) ) lower bound for some collections F

We now focus on the graph classes P ≥6 = {P i | i ≥ 6} and K and we show the following theorem. Let us recall that K is the set containing every connected graph G such that for each B ∈ leaf(bct(G)) and for each p ∈ N, B tm K 2,p . Theorem 3.38 Let F be a regular collection of graphs such that F ⊆ P ≥6 or F ⊆ K. There is no algorithm that, given a graph G and an integer k, solves F-TM- 1) , unless the ETH fails.

In particular, this theorem implies the result given by Pilipczuk in [START_REF] Pilipczuk | A tight lower bound for Vertex Planarization on graphs of bounded treewidth[END_REF] as a corollary. Indeed Vertex Planarization correspond to F-M-Deletion where F = {K 5 , K 3,3 }. Corollary 3.39 There is no algorithm that, given a graph G and an integer k, solves Vertex Planarization on (G, k) in time 2 o(tw log tw) • n O (1) , unless the ETH fails.

Note also that Theorem 3.38 also implies the results stated in items 4 and 5 of the introduction, as all these graphs are easily seen to belong in K.

Corollary 3.40 Unless the ETH fails, for each

In the following we focus on the proof of Theorem 3.38 for F-TM-Deletion. We explain at the end how to modify the proof to obtain the result for F-M-Deletion. We first give a general construction and then apply it independently for the case F ⊆ P ≥6 and the case F ⊆ K.

The general construction. In order to prove Theorem 3.38, we will reduce from the following problem, defined by Lokshtanov et al. [START_REF] Lokshtanov | Slightly superexponential parameterized problems[END_REF]. We say that

Description of the construction. Given a permutation σ : 1, n → 1, n , a function f : k + 2, n → 1, n , and N : 2, n → 2 1,n , we say that a triple (σ, f, N ) is constructible if it can be defined according to the following algorithm: Choose σ, a permutation of 1, n such that σ(1) = 1.

block of s vertices We assume that i 1 < i 2 < i 3 < i 4 < i 5 < i 6 < i, and note that i 5 = i -2 and i 6 = i -1. We have defined a i = a i-1 = v σ(i 1 ) . The frozen vertex f (i) is marked with a cross, and the anchor a i is marked with a circle. We choose

is a neighbor of v σ(i 5 ) , and

Let (σ, f, N ) be a constructible triple. We define the graph G(σ, f, N ) = (V, E) such

NUMBER OF PARTIAL K-TREES

Let A be a s-diameter partition of G. We refer to the sets of A as the A-clouds of G. We define front A (S) as the set of all A-clouds of G that are not subsets of some X ∈ X . Given an A-cloud C and a state X of S we say that C shadows X if C ∩ X = ∅. The coverage cov S (C) of an A-cloud C of G is the number of states of S that are shadowed by C. A Λ-state configuration S = (X , α, R, β) of G is A-normal if its satisfies the following conditions:

(B) If an A-cloud over S intersects the vertex set of at least two freeways of S, then it shadows at most one state of S.

We define cost A (S) =

cov S (C).

Given S 1 ⊆ S 2 ⊆ V (G) where S 1 is connected, we define ucc G (S 2 , S 1 ) as the unique connected component of G[S 2 ] that contains S 1 .

Triangulated grids inside triangulated grids

Lemma 4.7 Let G and H be graphs and s, k be non-negative integers such that

For each (i, j) ∈ 0, k + 1 2 , we define b i,j to be the vertex of Γ with coordinate (i(2s + 1), j(2s + 1)). We set

Here b out can be seen as a vertex that "represents" all vertices in Q out .

Let p, q be two different elements of Q. We say that p and q are linked if they both belong in Q in and their distance in Γ is 2s + 1 or one of them is b out and the other is b i,j where i ∈ {1, k } or j ∈ {1, k }.

For each q ∈ Q in , we define W q = σ -1 (q). W q is connected by the definition of σ. In case q = b out , we define W q = q ∈Qout σ -1 (q ). Note that as Q out is a connected set of Γ, then, by Observation 4.4, W bout is connected in G. We also define W = {W q | q ∈ Q}. Given some q ∈ Q we call W q the q-capital of G and a subset

use the framework introduced in Section 4.2, we need an ad-hoc proof. This stresses that the theory of Bidimensionality can be applied to a wider class of problems that only minor and contraction bidimensional ones.

Weighted Edge Monitoring is W [2]-hard when parameterized by the size of the solution

In this subsection we show that the problem is W [2]-hard when parameterized by the size of the solution. In order to prove that, we reduce from Red-Blue Dominating Set, which is known to be W [2]-hard when parameterized by the size of the solution [START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF]. A red-blue input is a triple

We denote by I rb the set of all red-blue inputs. In order to define Red-Blue Dominating Set, we first introduce the minimization parameter rb :

The corresponding decision problem is the following.

Red-Blue Dominating Set

Input: A red-blue input (G, V r , V b ), and an integer k.

-hard parameterized by the size of the solution k, even when restricted to the set of inputs ((G, ω, M ), k) such that

Proof: Let (G, V r , V b ) be a red-blue input and let k be an integer. We want to solve Red-Blue Dominating Set on ((G, V r , V b ), k). Without lost of generality, we can assume that G does not contains any isolated vertex.

We construct from

, and depending on the type of edge e.

-If e = {v 1 , v 2 } with v ∈ V r , then by definition of S, there exists t ∈ S that is neighbor of v in G, so t b monitors e in G .

-

is a triangle where all the vertices are in S , all the edges of this triangle are monitored.

-As, for each i ∈ {1, 2} and each j ∈ {1, 2, 3}, {a i j , b i j , c i j } is a triangle where all the vertices are in S , all the edges of this triangle are monitored.

We assume now that ((G , ω, M ), k + 18) is a positive instance of Weighted Edge Monitoring and let S be a certificate of it. For each i ∈ {1, 2} and j ∈ {1, 2, 3}, the edges {a i j , b i j }, {a i j , c i j }, and {b i j , c i j } can be monitored only by the vertices c i j , b i j , and a i j respectively. This implies that V a ⊆ S . One can check that the only edges not monitored by V a are the edges of the form {v 1 , v 2 }, and by construction of G the only vertices that can monitor them are vertices from

An FPT algorithm for Weighted Edge Monitoring parameterized by treewidth and ω M In this subsection we present a standard dynamic programming algorithm for the following lemma. Lemma 5.2 Let (G, ω, M ) be a monitorable triple and k be an integer. If a nice tree-decomposition of G of width w is given, then Weighted Edge Monitoring on ((G, ω, M ), k) can be solved in time 2 O(w 2 •log(ω M +1)) • n.

Proof: Let (G, ω, M ) be a monitorable triple, ((T, X), r, H) be a nice tree-decomposition of G, ω M = max{ω(e) | e ∈ E(G)}, and k be an integer.

We present an algorithm using classical dynamic programming techniques.

For each t ∈ V (T), we define

Note that em(G, ω, M ) = r r (∅, ∅). We now explain how to compute the function r t for each t ∈ V (T). Let t ∈ V (T). We assume that we have already compute the function r t for each children t of t and we proceed to the computation of r t . We distinguish several cases depending on the type of node t.

Leaf. r t = {((∅, ∅), 0)}.

Introduce vertex. If v is the insertion vertex of X t and t is the child of t, then for each (S, α) ∈ I t ,

Forget vertex. If v is the forget vertex of X t and t is the child of t, then for each

Join. If t and t are the children of t, then for each (S, α) ∈ I t ,

. We obtain that for each t ∈ V (T), r t can be computed in time

Let A be an apex graph. Then there exists a constant a such that for each

In particular, this implies that in the previous complexity analysis, if

. This directly gives the following lemma. Proof: Let λ > 0, 1 ≤ c < 2, and H ∈ SQGC(c). Let λ and c such that for each

The selected squares are illustrated in Figure 5.1. By construction, the squares Q i,j are pairwise vertex-disjoint. For each i, j in 1,

This edge e i,j is called the representative edge of Q i,j . By definition,

are vertex-disjoint, there are no two distinct representative edges in G that can be monitored by the same vertex of G. This means that the solution should be of size at least k + 1, that is the number of squares we had consider. Thus, ((G, ω, M ), k) is a negative instance of Weighted Edge Monitoring.

Now assume that tw(G) ≤ λ(2 (k + 1) + 2) c + c . Using Theorem 2.9, we know that we can construct a nice tree-decomposition of G of width w such that w ≤ 5•(λ(2 (k + 1) +2) c +c )+4. Using the algorithms given in Lemma 5.2 and in Lemma 5.3 with this nice tree-decomposition, we obtain the requested algorithms.

CHAPTER 5. APPLICATIONS The graph G built in the reduction of Theorem 5.7, where the reload costs are depicted in blue at the angle between the two corresponding edges. For better visibility, not all costs and vertex labels are depicted and we write B instead of B + 1. The typical shape of a solution spanning tree is highlighted with thicker edges. associated with the two edges containing r in one of the copies G are set to 0. For e = {r 1 , r 2 }, where r 1 and r 2 are the roots of the two copies of G , we set, for each of the four edges e incident to e, c(e, e ) = 0. The cost associated with any other pair of edges of G is equal to B + 1; see Figure 5.5 for an illustration, where (some of) the reload costs are depicted in blue, and a typical solution spanning tree of G is drawn with thicker edges. The following claim concludes the proof.

We claim that S is a positive instance of Partition if and only of ((G, X, ω, c), B) is a positive instance of Diameter Tree. Assume first that S is a positive instance of Partition, and let (S 1 , S 2 ) be a certificate of it, i.e., S 1 and S 2 form a partition of S and x∈S 1 x = x∈S 2 x. We define a spanning tree T of G with diameter B as follows. We describe the subtree of T restricted to one of the copies of G , say T . The spanning tree T of G is defined by union of two symmetric copies of T , one in each copy of G , together with the edge {r 1 , r 2 }. The tree T consists of the two edges {r, u 1 }, {r, d 1 } and two paths P u , P d (corresponding to the upper and the lower path, respectively defined as follows; see Figure 5.5). For each i ∈ 1, n -1 , the path P u (resp. P d ) contains the edge {u i , u i+1 } (resp. {d i , d i+1 }), and if a i ∈ S 1 we add the three edges {u i , m i }, {m i , m i }, {m i , u i } to P u , and the edge {d i , d i } to P d . Otherwise, if a i ∈ S 2 , we add the edge {u i , u i } to P u and the three edges

2 , it can be easily checked that both paths P u and P d have diameter B 2 in each of the two copies of G , and therefore T is a spanning tree of G with diameter B.

Conversely, assume that ((G, X, ω, c), B) is a positive instance of Diameter Tree and let T be a certificate of it, i.e., T is a spanning tree of G such that diam(T ) ≤ B. Let G 1 , G 2 be the two copies of G in G, and let r 1 , r 2 be their respective roots. Since the edge {r 1 , r 2 } is a bridge of G, it necessarily belongs to T . By the construction of G, the choice of c, and since diam(T ) ≤ B, it can be verified that, for each j ∈ {1, 2}, T ∩ G j consists of two paths P j u , P j d intersecting at the root r i . Furthermore, P j u (resp. P j d ) contains the edge {u i , u i+1 } (resp. {d i , d i+1 }) of the corresponding copy 5.2. THE DIAMETER TREE PROBLEM 169 of G , and the intersection of P j u (resp. P j d ) with the subgraph H i in the corresponding copy of G is given by either the three edges {u i , m i }, {m i , m i }, {m i , u i } (resp. {d i , m i }, {m i , m i }, {m i , d i }) or by the edge {u i , u i } (resp. {d i , d i }). Therefore, for j ∈ {1, 2} and x ∈ {u, d}, with the definition d j

x := diam(P j x ), it holds that d j x = i∈I j x a i , where I j x is the set of indices i ∈ 1, n such that the edge {m i , m i } belongs to path P j

x . Note also that, for j ∈ {1, 2}, by construction we have that

On the other hand, by the structure of T it holds that

(5.1) Equation ( 5.1) implies, in particular, that

A polynomial algorithm for cacti

In Subsection 5.2, we have shown that Diameter Tree is NP-hard even if the input graph G is restricted to be an outerplanar graph. In this subsection, we focus on cactus graphs that are some specific outerplanar graphs. We provide a polynomial time algorithm that computes dt when the input graph G is a cactus. This algorithms solves Diameter-Tree, the associated decision problem, using dynamic programming on the block tree of the input graph and then returns the value of the function dt by using Proposition 2.18, Roughly speaking, the algorithm first fixes an arbitrary non-cut vertex r of G and the block B r that contains it. Then it processes the block tree of G in a bottom-up manner starting from its leaves, proceeding towards B r while maintaining partial solutions for each block. At each step of the processing, it uses an algorithm that solves an instance of the 2-Sat problem as a subroutine. The intuition behind the instances of 2-Sat created by the algorithm is the following.

Suppose that we are dealing with a cycle block B of the block tree of G (the case of an edge block being easier). Note that any spanning tree of G contains all edges of B except one. Let G B be the graph processed so far (including B). For each potential partial solution Q in G B , we associate, with each edge e of B, a variable that indicates that e is the non-picked edge by the solution in B. Now, for any two such variables corresponding to intersecting blocks, we add to the formula of 2-Sat essentially two types of clauses: the first set of clauses, namely φ 1 , guarantees that the non-picked edges (corresponding to the variables set to true in the eventual assignment) indeed define a spanning tree of G B , while the second one, namely φ 2 , forces this solution to have diameter and eccentricity not exceeding the given budget CHAPTER 5. APPLICATIONS k. The fact the G is a cactus allows to prove that these constraints containing only two variables are enough to compute an optimal solution in G B .

Theorem 5.8 Let (G, X, χ, c) be a reload cost input. If G is a cactus, then there exists an algorithm that computes dt(G, X, χ, c) in polynomial time together with a certificate of it.

Proof: Let (G, X, χ, c) be a reload cost input such that G is a cactus and k be an integer. We fix a non-cutting vertex r and we denote by B r the only block of G that contains r. We root bct(G) in B r . For each B ∈ block(G), we denote by child(B) the set of blocks of G that are immediate descendants of B in the block tree of G, i.e., in bct(G). With a slight abuse (since we ignore the cut vertices in the block tree), we will refer to them as the children of B. The parent of a block B ∈ block(G) \ {B r }, is the first block after B on the path from B to B r in bct(G). We denote by G B the subgraph of G induced by the union of the vertex set of all descendants of B (including B itself). The anchor a(B) of a block B is the cut vertex separating B from its parent if B = B r , and r if B = B r .

Let B be a cycle block of block(G) and let e = {x, y} be an edge of E(B). We assume, without loss of generality, that y = a(B). Clearly, the graph G B \ e e is connected. Moreover, if x = a(B), then a(B) is a cut vertex of G B \ e e. For z ∈ {x, y} we define S z,e B as the set of vertices that are reachable from z in G B \ e e without traversing a(B). See Assume now that Q satisfies φ 2 and T e satisfies the (e, i, j)-condition. As Q satisfies φ 1 , we know by Claim 5.9 that T e Q is a spanning tree of G B . As Q ⊆ R (e,i,j) B and T e satisfies the (e, i, j)-condition, then the eccentricity of a(B) in T e Q [S x,e B ] is at most i, and the eccentricity of a(B) in T e Q [S y,e B ] is at most j. Indeed, let z ∈ S x,e B . If z ∈ V (B) then, as T e satisfies the (e, i, j)-condition, we have that cost

Q is a spanning tree of G B , we have that there exists R ∈ Q such that z ∈ V (R). By definition of R (e,i,j) B

, we obtain that cost T e Q (a(b), z) ≤ i. The same argument applies if z ∈ S y,e B . It remains to show that T e Q is of diameter at most k. Let z and z be two vertices of T e Q . If both z and z are in V (B), then as T e satisfies the (e, i, j)-condition, this implies that cost

The same arguments apply if B is an edge block. ♦

To prove the completeness of the algorithm, we state the following claim.

Claim 5.11 If B is a cycle block (resp. an edge block) and if there exists a spanning tree T B of G B that satisfies the (e, i, j)-condition (resp. (i)-condition) for some i, j ∈ 0, k , then there exists Q ⊆ R (e,i,j)

B ) that satisfies φ 0 , φ 1 , and φ 2 .

Proof of the claim: For readability, we consider the case where B is an edge block. Let x = a(B). Assume that there exists T B , a spanning tree of G B , that satisfies the (i)-condition for some i ∈ 0, k . We define

and we claim that Q satisfies φ 0 , φ 1 , and φ 2 . By definition of close R B , Q satisfies φ 0 . It is not difficult to see that T e Q is a spanning tree and so, by Claim 5.9, Q satisfies B and Q satisfies φ 2 . The same arguments also work if B is a cycle block but we should take care about the part that is in S x,e B and the part that is in S y,e B separately. ♦ CHAPTER 5. APPLICATIONS

We now have all the elements to compute the value r B (e). We assume that B is a cycle block (resp. an edge block). If there is no

B ) that satisfies φ 0 , φ 1 , and φ 2 , or T e does not satisfy the (e, k, k)-condition (resp. (k)condition), then we set r B (e) = ⊥. Otherwise, we aim at computing two integers i 0 and j 0 that are the smallest i and j in 0, k such that there exists Q ⊆ R (e,i,j)

B ) that satisfies φ 0 , φ 1 , and φ 2 and such that T e satisfies the (e, i, j)condition (resp. (i)-condition). In order to compute i 0 and j 0 , we first fix j to be k and do a binary search on i, between 0 and k, to find the smallest value i 0 such that there exists

B ) that satisfies φ 0 , φ 1 , and φ 2 and such that T e satisfies the (e, i 0 , k)-condition (resp. (i 0 )-condition). We fix this value of i 0 and we do a second binary search, this time on j, between 0 and k, to find the smallest value j 0 such that there exists

B ) that satisfies φ 0 , φ 1 , and φ 2 and such that T e satisfies the (e, i 0 , j 0 )-condition (resp. (i 0 )-condition). We fix this value of j 0 and we also fix

B ) that satisfies φ 0 , φ 1 , and φ 2 . We set r B (e) = T e Q . Using Claim 5.9 and Claim 5.10, we know that the graph r B (e) is a spanning tree of G B that satisfies the (e, i 0 , j 0 )-condition (resp. (i 0 )condition). Moreover, using Claim 5.11, we know that there is no spanning subtree of G B that satisfies the (e, i 1 , j 1 )-condition (resp. (i 1 )-condition) with i 1 < i 0 or j 1 < j 0 (resp. i 1 < i 0 ). This finishes the description of the algorithm.

Let us now discuss about the running time of the algorithm. At each step, given a cycle block (resp. an edge block) B and e ∈ E(B), for each i, j ∈ 0, k , we can check if T e satisfies the (e, i, j)-condition (resp. the (i)-condition) in time O(n 2 ). Moreover, the number of elements in R B is linear in n and for each i, j ∈ 0, k , R (e,i,j) B can be computed in time O(n 2 ). As R B contains at most O(n) elements, then the 2-Sat formulas φ 0 , φ 1 , and φ 2 contain at most O(n 2 ) clauses. We can check for each of the O(n 2 ) possible clauses if it is in φ 0 , φ 1 , or φ 2 in time O(n). Hence, we can compute φ 0 , φ 1 and φ 2 in time O(n 3 ). As they contain at most O(n 2 ) clauses, we can solve them in time O(n 2 ). Since for each block B and each edge e ∈ E(B), we perform at most two (independent) binary searches to find i 0 and j 0 , we can compute r B (e) in time O(n 3 • log k). Because there is a linear number of values r B (e) to compute, we obtain an algorithm that solves Diameter Tree on

By Proposition 2.18, we obtain an algorithm that, for each reload cost input (G, X, χ, c), computes dt(G, X, χ, c) in time O(n 4 • (log dt(G, X, χ, c)) 2 ). Moreover, note that by applying the previous algorithm on the input ((G, X, χ, c), dt(G, X, χ, c)), then we obtain a certificate that it is a positive instance of Diameter Tree An FPT algorithm for Diameter Tree In Subsection 5.2, we prove that Diameter Tree is para-NP-hard when parameterized by two parameters between k, ∆(G), and tw(G). In this subsection we

Compatibility of Unrooted Phylogenetic Trees

Input: A set T of k unrooted phylogenetic trees. Parameter: k. Question: Does there exist an unrooted phylogenetic tree (T, φ) that is a compatible supertree of T ?

Agreement (or Strict Compatibility) of Unrooted Phylogenetic Trees

Input: A set T of k unrooted phylogenetic trees. Parameter: k. Question: Does there exist an unrooted phylogenetic tree (T, φ) that is a strictly compatible supertree of T ?

The purpose of this section is to prove the following theorems.

Theorem 5. [START_REF] Bodlaender | Meta) kernelization[END_REF] The Compatibility of Unrooted Phylogenetic Trees problem can be solved in time 2 O(k 2 ) • n, where k is the number of input trees and n is the total size of the input.

Theorem 5.17 The Agreement of Unrooted Phylogenetic Trees problem can be solved in time 2 O(k 2 ) • n, where k is the number of trees and n is the total size of the input.

In Subsection 5.3, we provide some extra definitions, and in particular, we define the display graph that is the graph that will be processed by our dynamic programming algorithms.

In Subsection 5.3, we present an FPT algorithm for Compatibility of Unrooted Phylogenetic Trees parameterized by k. The correctness of the algorithm is given in Subsection 5.3 and its running time is analyzed in Subsection 5.3.

In Subsection 5.3 we explain how to modify the previous algorithm such that the new one solves the Agreement of Unrooted Phylogenetic Trees problem.

Formal definitions

For notational simplicity, we may henceforth drop the function φ from an unrooted phylogenetic tree (T, φ), and just assume that each leaf of T comes equipped with a label. Assume that T is a compatible supertree of T . Then, according to the definition of minor, We can define a function ϕ : i∈ 1,k V (T i ) → V ( T ) such that for each CHAPTER 5. APPLICATIONS To give some intuition on why (Z, t)-supertrees capture partial solutions of our problem, let us assume that T is a compatible supertree of T and consider a node t ∈ V (T). Then we can define a X t -supertree T = (T, ϕ, ψ, ρ) as follows:

• for every vertex v ∈ X t , ρ(v) can be chosen as any element in the set ϕ(v),

• for every edge e ∈ E(T ), i ∈ ψ(e) if there exist an edge {u, v} ∈ E(G t ), with c({u, v}) = i, and an edge f ∈ E( T ) such that f is incident to a vertex of ϕ(u) and to a vertex of ϕ(v), and f is on the unique path in T between the vertices incident to e.

The edge-model function ψ introduced in Definition 5.19 allows to keep track, for every edge e ∈ E(T ), of the set of trees in T containing an edge having e as an edge-model. The validity property will be guarantee by the invariant of the dynamicprogramming algorithm. Observe that the size of a vertex-model ϕ(v) in T of some vertex v ∈ V D may depend on n (so, a priori, we may need to consider a number of vertex-models of size exponential in n). We overcome this problem via the vertexrepresentative function ρ, which allows us to store a tree T of size at most 2k. This tree T captures how the vertex-models in T "project" to the current bag, namely X t , of the tree-decomposition of the display graph.

Storing a representative ρ(v) of the vertex-model of every vertex v ∈ X t will ease to keep track of how the vertex-models in T project to T .

Before we describe the information stored at each node of the tree-decomposition, we need three more definitions.

Definition 5.20 A tuple T s = (T s , ϕ s , ψ s , ρ s ) is called a shadow X t -supertree if there exists a X t -supertree T = (T, ϕ, ψ, ρ) such that

• T s is a tree obtained from T by subdividing every edge once, called shadow tree.

The new vertices are called shadow vertices and denoted by S(T s ), while the original ones, that is, V (T s ) \ S(T s ), are denoted by O(T s ),

, where we licitly consider the vertices in

• ψ s : E(T s ) → 2 1,k such that for every s ∈ S(T s ), if x and y are the neighbors of s in T s , then ψ s ({x, s}) = ψ s ({s, y}) = ψ({x, y}), and

• ρ s : X t → V (T s ) such that for every v ∈ X t , ρ s (v) = ρ(v).
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We say that T s is a shadow of T. Note that T may have more than one shadow satisfying Definition 5.20.

Definition 5.21 Let t ∈ V (T), Z ⊆ V (G t ), and T = (T, ϕ, ψ, ρ) be a (Z, t)supertree. The restriction of T to a subset of vertices Y ⊆ V (G t ) is defined as the (Y, t)-supertree T| Y = ( T , φ, ψ, ρ), where

• for every e ∈ E( T ), ψ(e) = f ∈E(Pe) ψ(f ), where P e is the unique path in T between the vertices incident to e, and

If T is a (Z, t)-supertree and X t ⊆ Z, we define a shadow restriction of T to X t as a shadow of T| Xt , and we denote it by T| s Xt .

Definition 5.22 Two (Z, t)-supertrees T = (T, ϕ, ψ, ρ) and T = (T , ϕ , ψ , ρ ) are equivalent, and we denote it by T T , if there exists an isomorphism α from T to T such that

• ∀e ∈ E(T ), ψ(e) = ψ (α(e)), and

Every node t ∈ V (T) is associated with a set R t of pairs (T, γ), called colored shadow X t -supertrees, where T = (T, ϕ, ψ, ρ) is a shadow X t -supertree and γ : V (T ) → 2 1,k is the so-called coloring function. The dynamic programming algorithm will maintain the following invariant:

Invariant 5.23 A colored shadow X t -supertree (T = (T, ϕ, ψ, ρ), γ) belongs to R t if and only if there exists a valid V t -supertree T ps = (T ps , ϕ ps , ψ ps , ρ ps ) such that

(1) T T ps | s Xt , (2) for every a ∈ V (T ), a color i ∈ γ(a) if and only if there exists u ∈ V (G t ) with c(u) = i such that a ∈ ϕ ps (u), and

(3) for every z ∈ S(T ) with neighbors x and y in V (T ), a color i ∈ γ(z) if there exists u ∈ V (G t ) with c(u) = i and x, y ∈ ϕ ps (u) such that the unique path between x and y in T ps uses at least one vertex of ϕ ps (u). (iv) ρ(v) = a with a / ∈ V (T ) and a subdivides an edge {x, y} of T . See Figure 5.9(iv) for an example. Again, we may assume that x ∈ O(T ) and y ∈ S(T ). Then T is obtained from T by removing the edge {x, y}, adding four vertices a, b ∈ O(T ) and s 1 , s 2 ∈ S(T ), and five edges {x, s 1 }, {s 1 , b}, {b, y}, {a, s 2 }, and {s 2 , b}. Let us define ϕ, ψ, and γ.

* Definition of the vertex-model function: 3. Introduce vertex such that the insertion vertex v of X t is labeled. This case is very similar to Case 2 but, as vertex v is a leaf, only Case 2(iii) and Case 2(iv) can be applied. In both cases, we further impose that ϕ(v) = {a} and γ(v

4. Introduce edge. If e = {v, w} is the insertion edge of X t , c({v, w}) = i, and t is the child of t, then for each (T = (T , ϕ , ψ , ρ ), γ ) ∈ R t such that there exist a ∈ ϕ (v) and b ∈ ϕ (w) such that {a, b} ∈ E(T ) and i ∈ ψ ({a, b}), we construct (T = (T, ϕ, ψ, ρ), γ) as an element of R t as follows.

-

-For every e ∈ E(T ) \ {{a, b}}, ψ(e) = ψ (e).

ψ({a, b}) = ψ ({a, b}) ∪ {i}.

-For every v ∈ V (T ), γ(v) = γ (v).

5. Forget vertex. If v is the forget vertex of X t and t is the child of t, then for each (T = (T , ϕ , ψ , ρ ), γ ) ∈ R t , we construct (T = (T, ϕ, ψ, ρ), γ) as an element of R t as follows.

(iii) ρ(v) = a with a / ∈ V (T ) and a is connected to a vertex x ∈ V (T ). T ps is obtained from T ps by adding a vertex a and an edge {a, x}. Let us define ρ ps , ϕ ps , and ψ ps .

* Definition of the vertex-representative function:

• ρ ps (v) = ρ(v) = a and • for every u ∈ V (G t ), ρ ps (u) = ρ ps (u). * Definition of the vertex-model function:

• T ps [ϕ ps (v)] is connected and contains a,

• for every u, u ∈ V (G t ) with c(u) = c(u ), ϕ ps (u) ∩ ϕ ps (u ) = ∅, and • for every {u, u } ∈ E(G t ), there exist w ∈ ϕ ps (u) and w ∈ ϕ ps (u ) such that {w, w } ∈ E(T ps ). * Definition of the edge-model function:

• for every e ∈ E(T ) \ {{a, x}}, ψ ps (e) = ψ ps (e) and • ψ({a, x}) = ∅.

(iv) ρ(v) = a with a / ∈ V (T ) and b subdivides an edge {x, y} of T . T ps is obtained from T ps by removing an edge {x ps , y ps } on the path between x and y, and adding two vertices a and b and three edges {x ps , b}, {b, y ps }, and {a, b}. Let us define ρ ps , ϕ ps , and ψ ps . * Definition of the vertex-representative function:

• ρ ps (v) = ρ(v) = a and • for every u ∈ V (G t ), ρ ps (u) = ρ ps (u). * Definition of the vertex-model function:

• T ps [ϕ ps (v)] is connected and contains a,

and • for every {u, u } ∈ E(G t ), there exist w ∈ ϕ ps (u) and w ∈ ϕ ps (u ) such that {w, w } ∈ E(T ps ). * Definition of the edge-model function:

• for every e ∈ E(T ) \ {{a, b}, {x ps , b}, {b, y ps }}, ψ(e) = ψ (e),

• ψ ps ({x ps , b}) = ψ ps ({b, y ps }) = ψ ps ({x ps , y ps }), and • ψ ps ({a, b}) = ∅.

CHAPTER 5. APPLICATIONS

3.

Introduce vertex such that the insertion vertex v of X t is labeled. As explained in the description of the algorithm, this case is very similar to Case 2, taking into account that only Case 2(iii) and Case 2(iv) can be applied, and by adding the following constraints:

In the next two cases, let (T , γ ) be the element of R t from which the algorithm has started, let T ps be a certificate of (T , γ ), and let (T, γ) be the element created by the algorithm. In both cases, we construct a certificate T ps of (T, γ ) showing that (T, γ) ∈ R t .

4. Introduce edge. Let e = {v, w} be the insertion edge of X t , c({v, w}) = i, and let t be the child of t. We construct T ps = (T ps , ϕ ps , ψ ps , ρ ps ) as follows:

• for every e ∈ E(T ) \ {{a, b}}, ψ ps (e) = ψ ps (e), and • ψ ps ({a, b}) = ψ ps ({a, b}) ∪ {i}.

5. Forget vertex. Let v be the forget vertex of X t and t is the child of t. In this case, we just define T ps = T ps .

6. Join. Let t and t be the children of t and let (T , γ ) ∈ R t , let (T , γ ) ∈ R t from which the algorithm has started, and let T ps = (T ps , ϕ ps , ψ ps , ρ ps ) and T ps = (T ps , ϕ ps , ψ ps , ρ ps ) be their certificates, respectively. We define T ps = (T ps , ϕ ps , ψ ps , ρ ps ), that is, a certificate of (T, γ) showing that (T, γ) ∈ R t , just by setting, for every e ∈ E(T ), ψ ps (e) = ψ ps (e) ∪ ψ ps (e). Note that T ps , ϕ ps , and ρ ps are those given by (T , γ ) (or by (T , γ )).

Finally, let us argue that all the elements of the set R t are indeed constructed by the algorithm. Let (T, γ) be an element of R t , with T = (T, ϕ, ψ, ρ), and our objective is to show that the algorithm indeed generates this element (T, γ). In order to do this, we need to consider each case of the algorithm separately. We will only detail the arguments for Case 2, which is the most involved one, and the other ones follow by using a similar argumentation.

By definition of the set R t , there exists a valid V t -supertree T ps such that T = T ps | s Xt and such that γ is consistent with T ps . Let T ps = T ps | V (G t ) . It can be easily checked that T ps is a valid V t -supertree. Let T = T ps | s X t and let γ be the coloring function consistent with T ps . Then, as Invariant 5.23 is satisfied, (T , γ ) is an element of R t . Note that T = T| X t . As the sets X t and X t differ by just one vertex, the elements T and T are quite close to each other. Indeed, the way they differ is mainly given We first proceed by partially redefining the data structure, and then we will focus on the changes in the dynamic programming algorithm.

Changes in the data structure. For a node t of the tree-decomposition, our tables R t store again elements of the form (T, γ) satisfying the same invariant as in Subsection 5.3, namely Invariant 5.23, the difference is that we update some definitions of the data structure. Namely, the vertex-model function in the definition of (Z, t)-supertree, cf. Definition 5.19, is updated as follows:

• ϕ : Z → V (T ) is such that if u and v are two vertices of Z with c(u) = c(v), then ϕ(u) = ϕ(v),

We also modify slightly the definition of "valid supertrees" and say that a (Z, t)supertree (T, ϕ, ψ, ρ) is valid if

• for every {u, v} ∈ E(G t ) such that u, v ∈ Z, every edge e on the path between ϕ(u) and ϕ(v) in T satisfies c({u, v}) ∈ ψ(e) and

• if i ∈ ψ(e) for some i ∈ 1, k , then there exists a unique pair {u, v} ∈ E t with u, v ∈ Z with c({u, v}) = i such that e lies on the path between ϕ(u) and ϕ(v).

It is worth noting that the dynamic programming algorithm described below satisfies that, for every vertex v ∈ Z, ϕ(v) = ρ(v), and therefore the vertex-representative function ρ becomes superfluous. Nevertheless, in order for the notation to deviate as little as possible to that of Subsection 5.3, we keep ρ in the tuple T.

Changes in the dynamic programming algorithm. The fact that the image of the vertex-model function ϕ is now a single vertex allows us to substantially simplify the algorithm. In particular, in the subcases of the two cases where t is an introduce-vertex node (namely, Cases 2 and 3), we do not have to worry anymore about how the image of ϕ grows when introducing a new vertex, except, naturally, for this newly introduced vertex. The latter simplification implies that we do not need to update the coloring function γ either, except again for the newly introduced vertex. Finally, as the function ρ is now redundant, we may omit it from the description of the algorithm.

More precisely, Cases 1, 2, 3, 5, and 6 of the algorithm from Subsection 5.3 remain unchanged, just by taking into account that ϕ(v) returns just one element, namely ϕ(v) = a. The changes occur in Case 4, which becomes as follows: we construct (T = (T, ϕ, ψ, ρ), γ) as an element of R t as follows:

• T = T ,

• for every v ∈ X t , ϕ(v) = ϕ (v),

• for every e ∈ E(T ) \ P v,w , ψ(e) = ψ (e),

• for every e ∈ P v,w , ψ(e) = ψ (e) ∪ {i}, and • for every v ∈ V (T ), γ(v) = γ (v).

The correctness of the algorithm can be proved analogously to the proof given in Subsection 5.3. Finally, note that the analysis of the running time carried out in Subsection 5.3 also applies to this case, as the size of the objects stored in the tables is upper-bounded by the size of those used in the algorithm of Subsection 5.3. Furthermore, the performed operations incur the same time complexity, except for the case of an introduce-edge node, for which in the previous algorithm we looked for the existence of an appropriate edge in T , whereas in the current one we look for the existence of an appropriate path in T , which can be performed in time O(|V (T )|). This additional running time is clearly dominated by the overall running time of the algorithm, namely 2 O(k 2 ) • n.