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Une thèse n’est rien sans son encadrement, et à ce titre je remercie les per-
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Cette thèse a bénéficié d’un financement dans le cadre des bourses CIFRE. Si
elle avait eu d’autres sponsors, nul doute que l’on aurait pu nommer : (i) l’Adada,
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C.2.1 Généralités et imagerie 2D . . . . . . . . . . . . . . . . . . 159
C.2.2 Imagerie 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
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CHAPTER 1

Interventional neuroradiology: a clinical context

This introductory chapter presents the clinical context of this thesis. It de-
scribes the main pathologies and treatments in interventional neuroradiology,
and shows how imaging modalities are used in this context. The observation
that 3D X-ray imaging with C-arm systems performs poorly compared to
diagnostic X-ray computed tomography (CT) in terms of head soft-tissue
imaging, is at the origin of this work, whose goals are given at the end of
this chapter.

Contents

1.1 Pathologies and treatments . . . . . . . . . . . . . . . 2
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1.1.1.2 Mechanical thrombectomy . . . . . . . . . . . 3

1.1.2 Aneurysm coiling . . . . . . . . . . . . . . . . . . . . . . 4
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1.2 Enabling INR procedures with imaging . . . . . . . . 6
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Interventional radiology (Wible, 2017) refers to minimally invasive image-
based technologies and procedures used in the diagnosis and treatment of diseases
by inserting devices directly in the vascular system or by inserting needles inside
the body to reach the location of the intervention. This discipline bridges the
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Figure 1.1 – Carotid artery stenting of a stenosis (National Heart, Lung and Blood
Institute, 2018).

gap between pre-operative diagnostic steps and surgical procedures that are more
invasive for the patient.

Interventional neuroradiology (INR) focuses on diseases of the head, neck and
spine. In the following, we describe the main vascular diseases and interventional
procedures involved in INR. All interventional procedures listed below require the
clinician to insert a thin guidewire from the access point (typically, the femoral
artery in the groin) to the location of the pathology via the arterial tree. A thin
flexible tube, called a catheter, is then pushed over the wire and navigated through
the blood vessels until it reaches the vascular territory of interest. Contrast
agent and therapeutic devices are brought through the catheter, depending on
the procedure.

1.1 Pathologies and treatments

1.1.1 Restoring blood flow

1.1.1.1 Balloon angioplasty and stent

A stenosis is a narrowing of a vessel that may even lead to vessel obstruction.
In case of a calcified arterial stenosis, the narrowing is due to atherosclerotic
plaques on the inner walls of arteries (Figure 1.1). In a first stage, the vessel wall
enlarges to include the presence of deposit, while keeping a normal cross section
size, thus maintaining a normal blood flow. At some point, the cross section
narrows, and the reduced blood flow can create imbalance between oxygen and
nutrient demand and supply.
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Figure 1.2 – Stroke frequency by mechanism (CVD stands for cardiovascular disease)
(González et al., 2011).

In order to restore the original blood flow in a stenotic vessel, a balloon is
threaded over the guidewire up to the lesion, and inflated for several seconds
in order to compress atherosclerotic plaques. The balloon is removed when the
blood flow is correctly restored. The risk of re-stenosis can be reduced by further
expanding a thin mesh tube of (metallic) wires called a stent, that is wrapped
around the balloon and remains in the vessel after the balloon is removed (Fig-
ure 1.1).

1.1.1.2 Mechanical thrombectomy

When a blood clot obstructs the blood flow through the vascular tree, the disease
is called a thrombosis. In the brain, thromboses are responsible for ischemic stroke
events. 87% of all strokes are ischemic strokes (Benjamin et al., 2017).

Many stroke patients have carotid atherosclerosis, indicating a link between
cardiac and cerebrovascular disease (González et al., 2011). A carotid plaque is
dangerous not only because of its stenotic effects, but also because it may rup-
ture or dissect at the atherosclerotic wall, showering debris into the bloodstream,
leading to multiple embolic cerebral infarcts downstream. The ruptured, ulcer-
ated plaque can also be a source of thrombus formation. Intracranial or aortic
atherosclerosis are other causes for ischemic stroke, along with cardiac abnormal-
ities (Figure 1.2).

Globally, hypertension is the most significant risk factor for stroke, both is-
chemic and hemorrhagic. Elevation in blood pressure plays a large role in the
development of vascular disease, including coronary heart disease, ventricular
failure, atherosclerosis of the aorta and cerebrovascular arteries, as well as small
vessel occlusion. Diabetes mellitus ranks highly as a stroke risk factor. Stroke is
the number-one cause of long-term disability and the fifth leading cause of death
in the United States (Yang et al., 2017).

Mechanical thrombectomy consists in inserting a medical device in the vascu-
lar tree up to the thrombus location. Many devices have been proposed; among
them, stent retrievers are the most commonly used (Fanous & Siddiqui, 2016;
Zaidat et al., 2018; Baek et al., 2017). An example of stent retriever is shown in
Figure 1.3.
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(a) (b)

Figure 1.3 – Medtronic’s SolitaireTM Platinum revascularization device. (a) A catheter
is navigated through the thrombus and a stent retriever is brought through the catheter.
(b) once the catheter is removed, the stent is opened and catches the thrombus. Once
caught by the stent, the entire apparatus with the clot is removed from the body out a
small puncture in the femoral artery at the groin (Medtronic, 2018).

Mechanical thrombectomy has several advantages over chemical thrombolysis
(González et al., 2011), which consists in delivering drugs that fluidify blood.
First, it lessens and may even preclude the use of thrombolytics, in this manner
reducing the risk of intracranial hemorrhage (ICH). Second, by avoiding the use
of thrombolytics it may be possible to extend the treatment window beyond six
hours. Also, clot retrieval devices may provide faster restoration of blood flow.

This procedure is now recommended by the American Stroke Association for
stroke patients “older than 18 years with non-significant pre-stroke disability”
within six hours of onset of symptoms (Powers et al., 2018). Indeed, recent
clinical studies showed the clinical benefits of performing mechanical clot removal
as compared to chemical thrombolysis (Berkhemer et al., 2015; Bracard et al.,
2016; Nogueira et al., 2018; Mulder et al., 2018), suggesting that the time window
for mechanical thrombectomy could even be further extended to up to 24 hours.
Still, the clinical outcome improves as the procedure is performed closer to the
onset of symptoms: indeed, ischemic stroke patients are expected to lose millions
of neurons per minute, causing the brain to age more than three times faster than
a normal brain. Hence, despite wider time windows to treat ischemic strokes, the
phrase “time is brain” is still valid (Saver, 2006; Zivelonghi & Tamburin, 2018).

1.1.2 Aneurysm coiling

An aneurysm is an abnormal inflation similar to a bubble or a balloon on the wall
of a blood vessel (Figure 1.4). The ballooning develops because of a weakness
of the vessel wall, which is inflated by arterial blood pressure. If not treated, an
aneurysm may rupture, leading to internal hemorrhage. A ruptured aneurysm
is a medical emergency. The incidence of spontaneous aneurismal subarachnoid
hemorrhage is 6–10 per 100,000 patients per year (Murphy & Robertson, 2013),
and the prevalence of intracranial aneurysms is between 1% and 5% of the pop-
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Figure 1.4 – Aneurysm coiling (Society of NeuroInterventional Surgery (SNIS), 2018).
From left to right: a coil is brought to the aneurysm location by a micro-catheter and
deployed in the aneurysm. The process is repeated until the aneurysm is filled by the
coils (Society of NeuroInterventional Surgery (SNIS), 2018).

ulation.
In order to isolate the aneurysmal cavity from the normal blood flow cir-

culation, the aneurysm is filled with metallic coils that are inserted during the
endovascular procedure. Once the coils block the normal blood flow from enter-
ing the aneurysm, the risk of rupture is removed. Coiling procedures may be
complemented by a stenting procedure to help the coils fit in the aneurysm.

In absence of complicated procedure, the hospital stay is usually one to two
days. Recovery after the operation usually takes five to seven days. For a com-
plicated surgery or endovascular treatment, or if an aneurysm has bled into the
brain, hospitalization may last from one to four weeks, depending on the patient’s
medical condition and any complications caused by the hemorrhage (Americal
Stroke Association, 2018).

1.1.3 Embolization of arteriovenous malformation

Brain arteriovenous malformations (AVMs) are rare and heterogeneous vascular
abnormalities. AVMs are formed of an abnormal connection between arteries and
veins. Arterial blood shunts directly into veins instead of going through a bed of
capillaries, leading more blood flowing through and abnormal blood pressure in
the brain (Figure 1.5). Prevalence is approximately 18 per 100,000 adults with an
incidence of approximately 1.3 per 100,000 adults per year (Murphy & Robertson,
2013). The causes of AVMs are unknown.

Embolization is generally performed to treat AVMs. A catheter is inserted
in one of the feeding arteries to the AVM, through which an embolization agent
is injected, such as small particles or a glue-like substance, in order to block the
artery and reduce blood flow into the AVM.
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Figure 1.5 – Arteriovenous malformation (AVM) embolization (Mayo Clinic, 2018).

1.2 Enabling INR procedures with imaging

Minimally invasive procedures are made possible by the development of imaging
systems both for diagnosis and real-time image guidance. In the following, we
describe the commonly used diagnostic imaging modalities and we present the
INR suite that is used during endovascular procedures.

1.2.1 Pre-operative imaging

There exists different pre-operating imaging modalities that can be used to plan
INR procedures. The choice of each modality depends on the clinical task. Ultra-
sound imaging, for example, is a low-cost, real-time imaging solution that can be
used to detect intracranial arterial occlusions (Hurst & Rosenwasser, 2007) and for
basic examinations. Ultrasound can also be an option to monitor interventional
procedures as a per-operative modality. It is also used to screen newborns and
to check premature infants for signs of intracranial hemorrhage (Sartor, 2002).
One interest of ultrasound imaging is that it does not require radiation expo-
sure. However, the obtained images are operator-dependent, and the acoustic
window restrictions prevent from using this modality for accurate imaging of the
vascular anatomy of the brain (Wible, 2017). Moreover, ultrasound waves do not
propagate well through the skull, making it a difficult imaging modality for INR
procedures in the brain.

By contrast, magnetic resonance imaging (MRI) can provide a fully three-
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Figure 1.6 – The Revolution CT scanner (GE Healthcare, Chicago, IL, USA).

dimensional image of the brain. It is the best tool for tissue characterization
(Wible, 2017), with excellent contrast resolution for soft-tissue imaging. Magnetic
resonance angiography (MRA) also provides a three-dimensional map of the brain
vessels. However, by design, MRA is not robust to mixed blood flow phases,
yielding potential false detections of stenoses (Hurst & Rosenwasser, 2007). MRI
can be used to diagnose intracranial aneurysms, carotid stenoses and AVMs.
Diffusion-weighted imaging (DWI) may also be useful in the characterization
of ischemic stroke events (Hurst & Rosenwasser, 2007). However, the effective
utilization of MRI in INR procedures is still a research topic (Chalela et al., 2007;
Menjot et al., 2017; Simonsen et al., 2018). The main drawbacks of MRI are the
limited spatial resolution of the reconstructed images and its cost. Moreover,
MRI is a time-consuming imaging modality.

X-ray computed tomography (CT) is widely used for diagnostic imaging in
INR (Figure 1.6). CT scanners outnumber magnetic resonance imagers. Diag-
nostic CT can provide a fully three-dimensional image of the brain. It is a digital,
computer-based imaging modality, where the body anatomy of interest – here,
the head – is scanned with X-rays that pass accross the imaged region (Sartor,
2002). A detector records X-ray attenuations along projections obtained around
the patient, and an algorithm reconstructs a gray-valued image of the scanned
body section. The gray levels are related to the tissue densities. Visual interpre-
tation of sectional images is facilitated by selecting portions of the density scale
(windows) that modulate the image contrast (Figure 1.7).

The CT modality is the primary imaging modality for the diagnosis of is-
chemia and intracranial hemorrhage (Hurst & Rosenwasser, 2007). CT imaging
further spreads between contrast-enhanced CT (CECT), where an iodinated con-
trast agent is injected in the blood vessels, and non-enhanced CT (NECT), that
is used for soft-tissue imaging in the brain. CT perfusion (CTp) is a functional
imaging mode using contrast enhancement that provides maps of the blood vol-
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(a) Soft-tissue window (b) Bone window

Figure 1.7 – Influence of windowing on image visualization. Case of an axial CT scan of
a head (Sartor, 2002).

ume and of the blood perfusion within the brain. As for MRI, in the case of
strokes, the benefits of CTp in terms of estimation of the impacted brain terri-
tory are still a research topic.

CT scanners accurately demonstrate the vascular anatomy and offer superior
spatial resolution than MRI. They allow brain soft-tissue imaging with good
contrast resolution. Acquisition and image reconstruction times are also much
lower than with MRI. In particular, CT scanners are used in clinical routine for
the detection of signs of bleeding, for example, the diagnosis of nontraumatic
hemorrhage and the evaluation of unruptured or ruptured aneurysms. They
also remain the gold standard for the diagnosis of ischemic strokes (Hurst &
Rosenwasser, 2007).

Examples of NECT brain soft-tissue images are shown in Figure 1.8. In Fig-
ure 1.8a, the left image shows an axial slice of a brain with a ruptured aneurysm.
The arrow shows the location of the aneurysm. The hyper-densities (light grey
structures) leaving from the aneurysm are signs of bleeding. In comparison, the
right image in Figure 1.8a shows an axial slice of a brain with an unruptured
intracranial aneurysm (arrow). In Figure 1.8b, one can observe in two axial slices
of a brain a vast hypo-dense territory (darker grey area shown with the arrows),
that is characteristic of the infarct zone induced by an ischemic stroke event.

CT imaging involves the use of X-rays, which are a form of ionizing radia-
tion. Although it is known that exposure to such radiation increases the risk of
cancer, the amount of X-rays used in CT imaging (or in the interventional room,
see Section 1.2.2) remains low, and its associated risks are orders of magnitude
smaller than the lifetime risk of dying from cancer in the US (US Food and Drug
Administration, 2017).
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(a) Signs of bleeding

(b) Ischemia

Figure 1.8 – NECT to detect signs of bleeding and ischemic stroke events (Hurst &
Rosenwasser, 2007).

1.2.2 Per-operative imaging: the INR suite

Once the patient is diagnosed a disease that can be treated via minimally invasive
procedures, he is brought to the INR suite (Figure 1.9). The INR suite consists
of two main rooms:

• a control room (Figure 1.9a), from which the clinician and assistants can
monitor the imaging system and review recorded images;

• an exam room (Figure 1.9b), where the patient lies on a table and the
clinician performs the procedure itself under the guidance of the imaging
system; protective screens to block X-ray radiations and large display mon-
itors are part of the accessories surrounding the clinician within the exam
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(a) View from the control room (left) and schematic view of the interventional room (right)

(b) Example of INR exam room (CHRU de Nancy, 2018)

Figure 1.9 – Example of INR suite (CHRU de Nancy, 2018).

room.

1.2.2.1 2D imaging

The main component of the INR suite is the image guidance system, called an
interventional C-arm system. It allows visualizing the patient’s anatomy by the
means of X-rays to perform minimally invasive interventions. Interventional tools
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are navigated under live control of the imaging system, which provides two-
dimensional, low-dose, real-time X-ray videos (known as fluoroscopic images)
when the clinician presses the X-ray pedal. In INR procedures, it is often con-
venient to get X-ray images from two C-arm systems displaying real-time X-ray
images from two different orientations (Figure 1.10a).

The imaging system displays projective images, showing contrasts between
dense anatomical structures such as bones and interventional devices, that are
designed with radio-opaque materials, super-imposing over an undifferentiated
background composed of soft tissues and blood vessels. In order to see the vascu-
lar tree, contrast agent (iodine) is injected directly in the artery. However, this
information quickly fades away and many injections are required during the pro-
cedure. However, due to the toxicity of iodine, it is desirable to reduce contrast
media usage as much as possible, especially in the navigation phase.

To this end, roadmapping solutions have been proposed, which consist in
using previously acquired data containing vessels filled with contrast media, and
combining this information with live fluoroscopic images. In addition, fluoroscopic
images can be displayed in subtracted mode, where a mask averaging multiple
frames of the static patient anatomy (like the skull) is subtracted from live images,
so that focus can be made on injected vessels, roadmap information, and device
navigation over a flat background (Figure 1.10b).

Endovascular therapy always starts with an angiographic mapping of the ves-
sels (Sartor, 2002). Digital subtraction angiography (DSA, Figure 1.10c) provides
a sequence of high-dose X-ray projections of iodinated contrast agent injected in
the vascular tree. Again, the first, non-injected frames of the DSA can be used
as a mask that is subtracted from the subsequent frames, leaving only the image
of the contrast agent propagating in the vascular tree.

1.2.2.2 3D imaging

Historically, C-arm systems have been designed for 2D real-time imaging only.
However, it is now possible to provide a fully three-dimensional image of the
head as well. Interventional C-arm cone-beam CT (CBCT) is now routinely used
for vascular imaging (Anxionnat et al., 1998). 3D imaging does not suffer from
the ambiguities of 2D X-ray projections, which superimpose three-dimensional
information onto a single plane. Three-dimensional subtracted angiography is
now used to characterize the size of an aneurysm before a coiling procedure (Orth
et al., 2008). Figure 1.11 shows a volume rendering of such a 3D image.

As with diagnostic CT, interventional C-arm systems can also provide 3D
images without injection of iodinated contrast agent, bringing soft tissue imaging
in the interventional room. Hence, patients need not be transferred to a CT
scanner. However, current interventional C-arm CBCT images lack reliability,
and may miss low-contrast information that only diagnostic CT would reveal,
such as signs of bleeding and ischemic stroke events. Figure 1.12 shows two axial
slices of a brain. The slices come from a diagnostic CT scanner in Figure 1.12a.
Hyper-densities can be identified as abnormalities in the distribution of grey and
white matters. A C-arm CBCT of the same patient is shown in Figure 1.12b.
The images are much more difficult to interpret: indeed, the abnormalities from

11



Chapter 1. Interventional neuroradiology: a clinical context

(a) IGS 630 biplane C-arm system (GE Healthcare, Chicago, IL, USA)

(b) Subtracted fluoroscopy with roadmapping
(white vessels)

(c) Digital subtraction angiography (DSA)

Figure 1.10 – A C-arm biplane system for INR procedures (a) provides 2D real-time
image guidance through fluoroscopic images (b) or high-dose imaging such as digital
subtraction angiography (DSA, (c)).

Figure 1.12a are barely distinguishable from errors originating from the imaging
system. There are multiple sources of artifacts in C-arm CBCT images; in order
to identify them, one must dig into the different parts of the 2D and 3D imaging
chains. The main components of these imaging chains will be the topic of the next
chapter. In particular, we will point out the main factors impacting soft-tissue
imaging, whether they come from the acquisition workflow or from the system
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Figure 1.11 – Volume rendering of a three-dimensional digital subtraction angiography.

imaging chain.

1.3 Goal of this thesis

1.3.1 Contributions

As presented in this quick overview of INR procedures, soft-tissue imaging is es-
sential to assess that no sign of bleeding appears after the procedure is completed.
It is also necessary at a diagnostic and planning stage in the case of ischemic stroke
events, in order to evaluate the presence and the extent of infarction in the brain.

Current clinical workflows require to bring patients to a diagnostic CT scan-
ner first, and then to transfer them to an INR suite, which further delays the
mechanical thrombectomy. Moreover, the assessment of the clinical outcome of-
ten requires to bring back the patient in a diagnostic CT scanner, which is also
time-consuming. Thus, there would be an interest to have access to high-quality
soft-tissue imaging directly within the INR suite.

The goal of this thesis is to reduce the gap between diagnostic CT and inter-
ventional C-arm CBCT in terms of brain soft-tissue imaging. Taking diagnostic
CT scanners as our gold standard, we study the specificities of the C-arm imaging
chain, that is primarily designed for two-dimensional real-time image guidance.
We identify the key factors impacting low-contrast resolution in C-arm CBCT,
namely, scattered intensities, sampling, and dose. Without any hardware modi-
fication, we propose to use a set of two C-arm CBCT acquisitions, that we call
a dual-rotation acquisition, in order to increase low-contrast detection. We use
this acquisition to mimic X-ray beam modulation achieved in diagnostic CT by
the means of bow-tie filters.

The flexibility that we leave on the design of this acquisition puts more effort
on the reconstruction part. An iterative reconstruction strategy based on pre-
vious works (Langet et al., 2015) is proposed (Reshef et al., 2016, 2017a), that
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(a) CT slices

(b) C-arm CBCT slices

Figure 1.12 – Performance comparison between diagnostic CT images (a) and interven-
tional C-arm CBCT images (b) in terms of soft-tissue imaging.

is able to address both full-volume and region-of-interest (ROI) imaging in the
context of dual-rotation CT. By revisiting classical direct reconstruction meth-
ods, we also propose an alternative, dual-rotation direct reconstruction formula
to accurately merge the information from both acquisitions (Reshef et al., 2017b;
Reshef, Riddell, et al., 2018; Reshef, Nikoukhah, et al., 2018). Interestingly, this
approach is also adapted to low-contrast imaging in the context of ROI imaging.

The works cited in the previous paragraph were published during this thesis.
The list of publications, including supervised Master’s theses, can be found in
Appendix B.

1.3.2 Thesis outline

We now provide a brief overview of the next chapters.

Chapter 2 reviews the fundamentals of X-ray imaging and provides the clues to
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understand the approaches proposed in the following chapters. It describes
the physical and mathematical concepts of tomographic image acquisition
and reconstruction from interventional C-arm systems and raises awareness
of the complex interactions of such systems on 3D image quality, more
specifically on 3D low-contrast detection.

Chapter 3 focuses on the virtual bow-tie problem for C-arm CBCT. In this
chapter, the problem of low-contrast detection is reduced to a problem
of noise and scattered radiations. The concept of dual-rotation acquisi-
tion is proposed, where one un-truncated, low-exposure acquisition is com-
plemented by truncated, high-exposure data. An iterative reconstruction
framework is designed and experiments on real acquisitions of a quality as-
surance phantom and on a head phantom show improved images in terms
of low-contrast detection.

Chapter 4 proposes a different, direct reconstruction method for dual-rotation
acquisitions. From a semi-discrete framework, we derive a single formula
connecting classical filtered backprojection (FBP) to Hilbert-transformed
differentiated backprojection (DBP-HT) and backprojection-filtration (BPF)
algorithms that uniquely exposes and addresses the issues of angular sub-
sampling. It successfully merges data from dual-rotation acquisitions into
a single image, as shown on experimental phantom acquisitions.

Chapter 5 further explores the potential of dual-rotation acquisitions, by highly
subsampling the un-truncated acquisition, shifting the problem from full-
volume imaging to region-of-interest (ROI) imaging. Interestingly, a small
change in the method from Chapter 3 makes it still applicable to this new
case. Thanks to its intrinsically view-based behavior, the method from
Chapter 4 is particularly adapted to setups involving angular subsampling,
thus providing an interesting alternative to the methods from the literature
for ROI reconstruction.

Chapter 6 concludes on this work and proposes some industrial and theoretical
perspectives based on this thesis.
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CHAPTER 2

Imaging with C-arm systems

C-arm systems play a key role in interventional procedures. They were pri-
marily designed for two-dimensional, real-time X-ray imaging, and they were
further adapted to three-dimensional imaging as well. This chapter reviews
the fundamentals of X-ray imaging and provides the clues to understand the
approaches proposed in the next chapters. It describes the physical and math-
ematical concepts of tomographic image acquisition and reconstruction from
X-ray imaging systems and raises awareness of the complex interactions of
interventional C-arm systems on 3D image quality, and more specifically on
3D low-contrast detection. In particular, we identify scattered intensities,
sampling, and dose, as key factors for C-arm cone-beam CT (CBCT) low-
contrast detection. We refer the interested reader to (Dowsett et al., 2006;
Dendy, 2011; Dance et al., 2014) for a deeper insight into X-ray physics, and
to (Kak & Slaney, 2001; Zeng, 2010) for more details about the mathematics
of computed tomography.
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2.2.3.5 Sampling . . . . . . . . . . . . . . . . . . . . . 49

2.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1 2D X-ray imaging

2.1.1 System description

A C-arm system is an X-ray imaging system. An open, rigid arm, named C-arm
after its shape, holds an X-ray tube on one side and a flat-panel detector on
the other side. It leaves access to the patient lying on the bed table during the
interventional procedure. The C-arm can be either mobile, hold by a multi-axis
arm, ceiling-mounted or floor-mounted. In interventional neuroradiology, biplane
systems combining a floor-mounted and a ceiling-mounted C-arm (the lateral
and the frontal C-arms) are preferably used due to the complex anatomy of the
vascular tree.

The geometry of C-arm systems used as two-dimensional real-time X-ray video
cameras is the following (Figure 2.2). X-rays produced by the tube are assumed
to originate from a single point and the tube is covered by a radio-opaque material
(lead) that only leaves a small window allowing the emission of X-rays outside
the tube within a cone. The cone axis intersects the isocenter (center of the 3D
field-of-view) at a distance d from the X-ray source, called the source-to-object
distance (SOD). In the ideal case, the flat-panel detector is orthogonal to the
cone axis. It intersects the cone axis at a distance D from the source, called the
source-to-image distance (SID). The air gap is the space left between the object
and the detector.

The GE Healthcare IGS (Interventional Guided System) X-ray interventional
system family is composed of a set of interventional X-ray C-arm systems. These
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2.1. 2D X-ray imaging

(a) GE Healthcare OEC Elite CFD mobile
C-arm system

(b) Siemens Artis zeego robotic C-arm system

(c) Philips Allura Xper ceiling-mounted
C-arm system

(d) GE Healthcare IGS 630 biplane C-arm
system

Figure 2.1 – Photographs of commercially available C-arm systems.

systems are designed to perform monoplane (Figure 2.3) or biplane (Figure 2.1d)
fluoroscopic X-ray examinations, in order to provide the imaging information
needed to perform minimally invasive interventional imaging procedures. Addi-
tionally, in hybrid operating rooms, these systems allow for surgery and X-ray
image-guided surgical procedures. IGS X-ray systems are stationary equipments
(permanently installed equipments).

Functionally, the IGS system can be described as follows:

• An X-ray beam is generated (X-ray production) and directed to the
region-of-interest (ROI) in the patient, who lies on a table. Multiple trans-
lational and rotational axes allow for flexible placement of the ROI.
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Figure 2.2 – Main components of a 2D X-ray imaging system.

Figure 2.3 – Photograph of GE Healthcare IGS 730 monoplane system.

• The X-ray beam then interacts with matter (X-ray attenuation) as it
crosses the ROI.

• The X-ray beam that crossed the ROI is finally captured and converted into
a digital image data matrix (image formation), on which various digital
treatments and enhancements are applied before the resulting image is sent
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2.1. 2D X-ray imaging

Figure 2.4 – Coolidge X-ray tube (Dendy, 2011).

out to a monitor for the physician to visualize the ROI in real time, and to
perform image-guided procedures.

We describe the X-ray production, attenuation and the image formation steps
in the next sections.

2.1.2 X-ray production

X-rays are electromagnetic waves with wavelength λ ∼ 1 Å. Earth is constantly
bombarded by cosmic radiation, which involves X-rays, but at such low levels that
its effects are virtually unnoticed. X-rays were first observed in a laboratory by
Wilhelm Röntgen in 1895, and were soon used for medical purposes. Medical X-
rays are now produced by Coolidge X-ray tubes (Figure 2.4). X-ray production
involves bombarding a small surface (called the focal spot) of a metal target
anode with high-speed electrons that have been accelerated by tens to hundreds
of kilovolts (kV) of electric potential difference between the anode and a heated
filament cathode. The accelerated electron beam can be controlled by:

• the value of the potential difference, called the peak kilovoltage or kVp;

• the intensity of the filament tube current, expressed in milliamperes (mA).

The deceleration of fast electrons entering the anode is mostly converted into
heat (99% of electron interactions). The rest of the electrons convert into X-rays
in the following ways.

2.1.2.1 Bremsstrahlung

When hitting the metal anode, electrons are slowed down in matter by collisions
and excitation interactions. If an energetic electron comes close to an atomic
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Figure 2.5 – Schematic of an X-ray spectrum produced by an X-ray tube.

nucleus, its trajectory changes due to the attractive Coulomb forces, and it emits
X-ray radiation, called Bremsstrahlung radiation (or “braking radiation”). The
energy of the emitted X-ray photon is subtracted from the kinetic energy of the
electron.

The number of photons passing per unit area perpendicular to the direction
of motion of the photons is called the fluence, denoted by Φ. Heuristically, one
can deduce the ideal Bremsstrahlung-induced energy spectrum by considering
the electron bombardment of an infinitesimally thin target, that yields a constant
energy fluence from zero up to the initial electron kinetic energy (gray rectangle in
Figure 2.5), given by the kVp value. The metal target anode can be decomposed
as a superimposition of infinitesimally thing layers, each of them producing a
rectangular distribution of energy fluence. Because the electron is slowed down
in each layer, the maximum energy distribution descreases until its kinetic energy
reaches zero. The ideal energy spectrum results from the superimposition of all
the energy distributions from infinitesimally thin targets, thus the triangular
shape of the energy distribution for a thick metal target (dashed line).

2.1.2.2 Characteristic radiations

Electrons can collide with electrons from inner shells of the atoms of the metal
anode when their kinetic energies are higher than the binding energies of the
electrons in these shells. Ejected primary electrons keep the difference of kinetic
energies and binding energies, and the vacancies are filled when electrons drop
down from higher energy levels and emit X-rays called “characteristic radiations”.
The energies of the emitted X-rays correspond to the difference in binding energies
of the shells involved. These radiations are characteristic of the metal anode
element and appear as peaks in the X-ray spectrum (black impulses in Figure 2.5).
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2.1. 2D X-ray imaging

Figure 2.6 – Illustration of off-focal radiation. A second pair of collimator blades partly
blocks off-focal X-rays (dashed arrows).

2.1.2.3 Off-focal radiation, collimation

The focal spot (the surface of the anode that is actually bombarded by the electron
beam) is defined by an additional negatively charged focusing cup, and a bevel
angle of the anode that further reduces the effective focal spot size. Electrons
hitting the focal spot also emit secondary electrons, that interact deeper in the
metal anode before they produce secondary X-ray radiations. Thus, secondary
X-ray radiations are produced by a halo of lower-energy source points around the
focal spot; they compose the so-called off-focal radiation.

Once X-rays are produced, they are further shaped into a rectangular cone
beam using radio-opaque collimator blades, that define a rectangular exposed area
on the detector called the 2D field of view (2D FOV). Collimation ensures that
the X-ray beam exposes at most the detector area or a smaller area corresponding
to the object of interest. In order to remove most of the off-focal radiation, a
second pair of collimator blades is used (Figure 2.6).
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Figure 2.7 – Contribution of coherent scattering, Compton scattering and photo-electric
effect to the total attenuation.

2.1.3 X-ray attenuation

2.1.3.1 Interactions with matter

X-rays interact with atoms in four different manners that we describe hereafter.
These interactions are summed up by Beer’s law, which is at the core of all X-ray
imaging systems (Figure 2.7).

Rayleigh-Thomson scattering The Rayleigh-Thomson scattering event is an
elastic scattering event during which the incoming X-ray is deviated from its
original trajectory by an atom whose nucleus is small in diameter compared
to the X-ray wavelength. The deviation occurs without energy transfer,
meaning that the deviated X-ray has the same wavelength as the incoming
X-ray. The elastic scattering effect occurs mainly at low energies; it sta-
bilizes as the energy increases, so that other competing processes become
dominant in the energy range of diagnostic and interventional radiology (it
is involved in less that 1% of interactions with matter).

Compton scattering The Compton scattering event is an elastic scattering
event: this time, the deviation of the incoming X-ray comes with an energy
transfer to an electron, so that the scattered photon is at lower energy.
Compton scattering is one of the dominant effects in diagnostic and inter-
ventional radiology, along with photoelectric absorption.

Photoelectric absorption During photoelectric absorption, the X-ray photon
is completely absorbed and ejects an electron from an inner shell of the
atom; such vacancy is refilled by an electron from the outer shell, which
comes with the emission of a characteristic X-ray photon. The photoelec-
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2.1. 2D X-ray imaging

tric absorption is responsible for the characteristic rays that appear in the
middle of the X-ray spectrum.

Pair production Pair production is an event that only occurs for very high
energy photons (greater than 1 MeV). The high-energy photon can then
be converted into a pair of one electron and one positron. This is not an
interaction that happens in diagnostic and interventional radiology.

2.1.3.2 Beer’s law

The interaction processes listed previously are statistically independent. When
N0(kV) monochromatic X-ray photons with energy E (in kilo-electronvolts) tra-
verse an infinitesimally thin section of a mono-material, the number N(kV) of
photons after all the interactions with the atoms of the mono-material is re-
duced. This reduction is characterized by a linear attenuation coefficient µ(kV),
defined as the attenuation of the mono-material per unit distance at energy kV.
The number N(kV) can be seen as a random variable following a Poisson distri-
bution; the probability of observing n such photons knowing the mean number
of observed photons N̄(kV) is given by:

P(n, N̄(kV)) =
N̄(kV)ne−N̄(kV)

n!
. (2.1)

The expected number of photons N̄(kV) is given by Beer’s law:

N̄(kV) = N0(kV)e−µ(kV)δx, (2.2)

where δx is the thickness of the material.
Equation (2.2) is local; when X-rays traverse a thick section of multiple mate-

rials, Beer’s law can be applied in cascade to each layer localized by its coordinate
x, and with linear attenuation coefficient µ(kV, x), resulting in:

N̄(kV) = N0(kV)e−
∫

µ(kV,x)dx. (2.3)

2.1.3.3 Intensities, dose

Note that Beer’s law can also be expressed in terms of energy fluences or inten-
sities:

I(kV) = I0(kV)e−
∫

µ(kV,x)dx, (2.4)

where I(kV) = keV ·Φ(kV) and I0(kV) = keV ·Φ0(kV). When X-rays only traverse
air, µair(kV) ≈ 0 and I = I0 is the intensity of X-rays leaving the tube. By defi-
nition, the air intensity I0 varies linearly with respect to the number of photons,
which is directly proportional to the product of the tube current by the exposure
time, expressed in milliampere-seconds (mAs). However, I0 varies non-linearly
with respect to kV; it approximately follows a power law, whose power is also a
function of the energy:

I0(kV,mAs) ∝ mAs × kVα(kVp) . (2.5)
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Figure 2.8 – Examples of linear attenuation coefficients as a function of the photon energy
(Hubbell & Seltzer, 1995).

Values of α(kVp) typically range between 2 and 6.
The dose is defined as the absorption of X-ray energy per unit mass of matter.

The unit to measure dose is the Gray (Gy): 1 Gy = 1 J/kg. Dose is approximately
linear with respect to I0, so that the techniques (kVp,mAs) are used to monitor
dose. Of course, the mAs cannot increase indefinitely, because of the maximal
admissible tube current; this limitation is compensated by an increase of the kVp
value if needed, despite a lower contrast resolution at higher kVp values.

2.1.3.4 Polychromaticity and beam hardening

Equation (2.4) only considers monochromatic X-rays. When X-ray energies are
distributed according to a given spectrum, the mean attenuated intensity is given
by:

〈I〉 =

kVp∫

0

I(kV)d kV =

kVp∫

0

I0(kV)e−
∫

µ(kV,x)dxd kV . (2.6)

When polychromatic radiation passes through matter, the lower-energy pho-
tons are preferentially absorbed (Figure 2.8), resulting in the fact that the remain-
ing transmitted photons are higher-energy photons; hence, the mean kV value of
the spectrum of 〈I〉 is higher than the mean kV of the spectrum of 〈I0〉: we say
that the beam hardens during its passage, and we refer to this phenomenon as
beam hardening.

Low-energy photons that are absorbed by the patient contribute to the patient
dose, but are not useful to the X-ray beam detection: hence, it is desirable to
cut low-energy X-rays before they reach the patient skin. This is achieved by
inserting thin, flat copper sheets right after the anode of the X-ray tube. Copper
filtration pre-hardens the beam so that less hardening happens within the patient.
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Figure 2.9 – Attenuation of an X-ray spectrum through different thicknesses of copper.
Note that the mean energy of the attenuated spectrum increases with the copper thickness
(beam hardening).

Figure 2.10 – Contribution of scattered radiations to the image formation. Scattered
intensities (dashed lines) superimpose to the primary intensity (thick arrow).

Examples of attenuated spectrums through different thicknesses of copper are
shown in Figure 2.9.
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Anatomy Panel size Number of pixels

Heart 21 cm 1024
Head 31 cm 1536

Abdomen, extremities 41 cm 2048

Table 2.1 – Detector sizes for different clinical fields.

Figure 2.11 – Photograph of GE Innova 4100 flat-panel detector.

2.1.4 Image formation

2.1.4.1 Primary intensities, scattered intensities

Conventional X-ray detectors are energy-integrating detectors: they measure
mean intensity values 〈I〉 with respect to the X-ray spectrum. When X-rays
come directly from the source point, 〈I〉 is called the primary intensity. How-
ever, when interacting with matter, some photons are scattered due to elastic
(Rayleigh-Thomson) and inelastic (Compton) scattering events. As a result, a
detector point may be exposed to a superimposition of intensities due to X-rays
coming from random directions and forming an additional intensity value that
is not the projection of the X-ray source (Figure 2.10): this value is called the
scatter intensity.

Scattered intensities lower contrast resolution in 2D X-ray imaging and are a
source of artifacts in 3D X-ray imaging, as we will discuss in Section 2.2.3.4.

2.1.4.2 Flat-panel detector technology

GE Healthcare IGS C-arm system flat-panel detectors considered in this work are
square matrices with square pixels of 0.2 mm (Figure 2.11). The size of flat-panel
detectors depends on the clinical field (Table 2.1). For INR systems, the detectors
used on GE Healthcare IGS 630 biplane systems are 30 cm wide.

These detectors are called indirect detectors (Granfors, 1999; Granfors &
Aufrichtig, 2000; Granfors & Albagli, 2009). Contrary to direct X-ray detectors,
which perform a direct conversion from X-ray photons to electronic charges, in-
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2.1. 2D X-ray imaging

Figure 2.12 – Indirect conversion detector steps (adapted from (Dendy, 2011)).

direct X-ray detectors first convert X-rays into light photons, which are further
converted into electronic charges by photodiodes. Conversion from X-rays to light
photons is performed by a scintillator. A scintillator is a material that absorbs
the incoming X-ray energy and re-emits it in the form of light photons. Scintil-
lation generally occurs isotropically: hence, structured scintillators are preferred
to better guide light photons to photodiodes, such as needle-like CsI polycrystals
that limit lateral dispersion (Figure 2.12). Furthermore, a mirror is placed on the
top of the scintillator to reflect light photons emitted opposite to the photodiodes.

Electronic charges are further sent to a readout electronics via thin-film tran-
sistors (Rowlands & Yorkston, 2000; W. Zhao & Siewerdsen, 2014) The analog-to-
digital conversion (ADC) step, also known as quantization, defines a subdivision
of the real line and assigns a finite digit to each interval, that encodes the analog
signal whenever it falls within this interval. Quantization will be covered in more
details in Section 3.1.1.

2.1.5 Real-time image guidance

2.1.5.1 Imaging modes

Besides single-frame acquisitions, flat-panel detectors are extensively used for
real-time image guidance (Granfors & Albagli, 2009). Fluoroscopy is a tempo-
rary low dose X-ray exposure. It can represent more than 90% of the duration
of an intervention. Fluoroscopy is used to localize vascular pathologies, position
intravascular equipment, such as catheters, balloons, or stents, and perform vas-
cular interventions in real time. In INR procedures, fluoroscopy is used at a few
frames per second, and up to 30 Hz (or frame per second, denoted fps) to visual-
ize the fastest arterial flows, resulting in a 20 µs readout time for each row of a
20 cm panel with 1000 rows of pixels. This contraint on readout times requires
an efficient ADC step that allows high frame rates, as discussed in Section 3.1.1.

In addition to low-dose fluoroscopic imaging, C-arm systems also provide other
2D real-time imaging modes that are higher-dose and automatically recorded on
the storing disk. Cardiac Record is a non-subtracted high-dose X-ray exposure
which offers high image quality. It is usually employed, once the catheter is
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Panel size
Field-of-view 41 cm 31 cm 21 cm

40 cm 2 × 2 – 4 × 2 NA NA
32 cm 2 × 1 – 4 × 2 2 × 1 – 3 × 2 NA
20 cm 1 × 1 – 2 × 1 1 × 1 – 2 × 1 1 × 1 – 2 × 1
17 cm NA NA 1 × 1 – 2 × 1
16 cm 1 × 1 – 2 × 1 1 × 1 – 2 × 1 1 × 1 – 2 × 1
15 cm NA NA 1 × 1 – 2 × 1
12 cm NA 1 × 1 – 2 × 1 1 × 1 – 2 × 1

Table 2.2 – Available binning modes for each FOV and each detector size, in pixel ×
pixel.

in place, to document the pre-interventional region of interest, or for evidence
of a completed interventional action. In INR procedures, Digital Subtraction
Angiography (DSA) is often performed. DSA is used for any investigation in
vessels (arteries, veins, lymphatic and bile ducts) that requires to keep a record
from the examination: evidence of an interventional action, pre-interventional
record of the region of interest with injection of contrast medium, diagnosis of
a vessel disease with injection of contrast medium. Before injecting the contrast
medium to illuminate the vessels, the first image of the sequence is log-subtracted
from the next ones, so that only the injected vessels remain in the displayed image.
Depending on the clinical application, DSA may be performed at 7.5 fps, 15 fps
or 30 fps.

2.1.5.2 Field of view and binned modes

The flat-panel detectors support different field-of-views (denoted FOV). In order
to limit bandwidth and reach acceptable frame rates, detector pixels are binned to
matrices smaller than 1024 × 1024. Hence, 40 cm flat-panel detectors are always
read with a 0.4 mm pitch. In addition, anisotropic binning are also used in order
to achieve higher frame rates.

The different binning modes with respect to detector sizes are summarized in
Table 2.2. Note that for a given detector size, the binning modes differ depending
on whether the FOV is higher than 20 cm, or lower than 20 cm. When the binning
mode is 1 × 1, the native pitch (0.2 mm) is used.

2.1.5.3 Exposure management

Fixed X-ray techniques (kVp, mAs) may not provide optimal image quality over
the whole image sequence. Automatic exposure control (AEC) is thus the norm
for C-arm systems. AEC fine-tunes the imaging parameters based on a real-time
analysis of images, and a continuous estimation of delivered dose. The concept
assumes that one can sufficiently pre-determine the optimal X-ray techniques to
use for any application and patient size once technique information is known from
a previous exposure.
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Figure 2.13 – Toy example of a uniform material with attenuation µ embedding a small
object with attenuation µ+ ∆µ, exposed to a uniform, monochromatic intensity I0.

Current X-ray techniques, along with other acquisition parameters such as the
focal spot, the spectral filtration and the pulse width, are used to alternatively
estimate the patient dose and the equivalent patient thickness (EPT) in terms of
PMMA1 attenuation. The EPT is then used to adjust the new X-ray techniques
by tuning the mAs, or, if necessary, by switching to a higher kVp value. Note
that AEC never computes I0 explicitely. In fact, most of the time, I0 is unknown,
as the 2D FOV is often too small to image the whole anatomy of interest.

2.1.6 Artifacts

2.1.6.1 Scattered intensities

As mentioned previously, flat-panel detectors measure at each pixel the sum of
the primary intensity and the scatter intensity. The effect of scattered radiations
on the 2D X-ray image quality is twofold. First, as an additional measured
signal, they improve the signal-to-noise ratio (SNR) in the image; in particular,
it is a relatively low-frequency phenomenon (Rührnschopf & Klingenbeck, 2011b).
However, they also reduce the contrast resolution in the image. Indeed, let us
consider the toy example from Figure 2.13. The relative contrast of the small
rectangular object with respect to the uniform material it is embedded in is given
by:

C =
I2 − I1

I2
. (2.7)

In absence of scatter, intensities I1 and I2 are given by I1 = I0e
−µLe−∆µ∆L and

I2 = I0e
−µL. Hence C = 1 − e−∆µ∆L. Moreover, the contrast-to-noise ratio is

given by:

CNR = C
I2

σ(I2)
= C

√
I2. (2.8)

However, if measurements of I1 and I2 are corrupted by an additional constant
scatter value S, the relative contrast becomes:

CS =

(
1 − S

I2 + S

)
C =

1

1 + SPR
C, (2.9)

1PMMA refers to poly(methyl methacrylate), also known as acrylic or Plexiglas. It is a
water-equivalent material.
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where SPR = S
I2

is the scatter-to-primary ratio. Hence, the contrast is reduced
due to scattered radiations. Assuming that the superimposition of the primary
and scattered intensities approximately follows a Poisson statistics, the resulting
contrast-to-noise ratio becomes:

CNRS = CS
I2 + S

σ(I2 + S)
=

1√
1 + SPR

CNR. (2.10)

The contrast-to-noise ratio is also reduced by scattered radiations. Note that
both in the case of contrast loss and CNR loss, the involved quantity is the SPR,
which is insensitive to the mAs.

Scatter rejection methods consist in physically preventing scattered radiations
from reaching the detector array cells (Altunbas, 2014). In 2D X-ray imaging,
three basic hardware approaches are used (Altunbas, 2014; Fahrig et al., 2014):

• increase the air gap between the imaged object and the detector;

• reduce the field of view with the collimator blades;

• insert an anti-scatter grid on the top of the detector.

An anti-scatter grid consists of an array of (radio-opaque) lead strips, focused
towards the X-ray source, that can be inserted on the top of the detector to reduce
the amount of scattered radiations reaching the detector cells. In addition, lower
kVp will be preferred to minimize the generation of scattered radiations.

2.1.6.2 Non-uniform pixel response

Detectors also need to be corrected for non-uniform pixel responses over the de-
tector active matrix (Granfors & Albagli, 2009; W. Zhao & Siewerdsen, 2014).
Pixel-wise affine corrections are performed in two steps. Because of variations in
the electronics of the detector (charge retention, diode leakage, etc.), a pixel-wise
offset correction is needed. The detector signal is read in absence of exposure
and stored as a two-dimensional offset image, that will be subtracted from subse-
quent X-ray images. Since the offsets vary with the temperature, the frame rate
and the detector radiation history, the offset map is permanently refreshed as a
background task.

Flat field images (no object in the field of view) are not natively uniform
but made uniform by gain calibration. The sources of variations are diverse: for
example, they include differences in the pixel gains, or changes in thickness of
the CsI crystal. The gain calibration also compensates for the variations of solid
angle and accounts for imperfections of the anti-scatter grid. As for offsets, a gain
map is generated and stored in the system during a specific pixel gain calibration
procedure with flat-field images. Offset-corrected image pixels are then multiplied
by their gain correction coefficients. Gain maps are collected periodically every
few months.

Bad pixels (with abnormal offsets, gains or noise) are also masked and in-
painted from the neighboring pixel values. The detector corrections are sum-
marized in Figure 2.14. In addition, the detector also corrects for undesirable
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Figure 2.14 – Non-uniform flat-panel detector pixel response correction. An offset map
is subtracted from the uncorrected image, that is further multiplied by a gain map.
Remaining bad pixels are identified and inpainted to provide the corrected intensity
image.

Parameters GE Healthcare IGS 7x

Frame rate 50 fps
Rotation speed 16◦/s - 28◦/s - 40◦/s
Acquisition time 12.5 s - 7 s - 5 s
Amount of views 600 - 350 - 250
Angular coverage 200◦

SID (mm) 1295 (large) - 1180 (short)

Table 2.3 – Tomographic acquisition parameters of IGS 7x C-arm systems.

image retention from frame to frame, or lag artifact, typically coming from the
trapping of electrons in the diodes of the readout electronics. In-house correction
algorithms are performed after high-dose acquisitions between the offset and gain
correction steps.

2.2 3D X-ray imaging

In addition to 2D real-time image guidance, C-arm systems can provide fully
three-dimensional images of the patient anatomy. The C-arm rotates around
the patient and acquires a series of 2D X-ray images over 200◦, called a spin
(Figure 2.15a). A reconstruction algorithm then reconstructs a 3D image of
linear attenuation coefficients µ from the spin and the system parameters. Slices
of the 3D image are usually displayed along one of the anatomical planes shown in
Figure 2.15b. An example of such reconstructed image is shown in Figures 2.15c–
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2.15e. The main parameters of GE Healthcare IGS 7x C-arm systems are given
in Table 2.3.

The computed attenuation coefficient depends upon the X-ray energy spec-
trum of the imaging device. The values are converted to a device-independent
unit, called Hounsfield unit, by normalizing them by the attenuation of water
computed by the same device via2:

f(l) = 1000 · µ

µwater
. (2.11)

The principles of circular computed tomography are presented in the next
subsection. The non-idealities of realistic C-arm systems are then discussed with
respect to the mathematical theory of tomographic reconstruction.

2.2.1 Principles of circular computed tomography

2.2.1.1 Geometries

The mathematical basis of circular computed tomography is best understood in
the parallel-beam geometry (Figure 2.16), which was the geometry of the first-
generation CT scanners and is still used in single-photon emission computed
tomography (SPECT) (Hsieh, 2009). The parallel-beam acquisition geometry
assumes that incoming rays are parallel to each other and orthogonal to the
detector. They are parametrized by angle θ with respect to the x-axis, so that the
rays are oriented along vector θ = (cos θ, sin θ)T . The detector axis is orthogonal
to the incoming rays, hence it is oriented along vector θ⊥ = (− sin θ, cos θ)T . We
take the projection of the origin point O as the origin of the detector axis. Any
point x projects onto the detector axis at coordinate:

uθ(x) = x · θ⊥. (2.12)

The projection view at angle θ of a two-dimensional image f : R
2 → R is denoted

by Rθ [f ] = pθ; it is defined at detector coordinate u as the sum of f over the ray
orthogonal to the detector and passing by u:

∀u ∈ R, Rθ [f ] (u) = pθ(u) =

+∞∫

−∞

f(tθ + uθ⊥)dt. (2.13)

Note that when f is compactly supported, pθ is also compactly supported. Pro-
jection pθ satisfies the symmetry property pθ+π(−u) = pθ(u) and is 2π-periodic.
The continuous parallel-beam circular tomographic acquisition is the collection3:

p = {pθ | θ ∈ [0, 2π]} . (2.14)

2Note that this is not the standard definition of Hounsfield units; however, since µair ≪ µ

for typical values of µ, we set µair ≈ 0. We also shifted the scale by 1000, so that air is 0 HU
and water is 1000 HU.

3Acquisitions over the half circle [0, π] are enough to invert the problem; however, we define
the parallel-beam tomographic acquisition over the full circle [0, 2π] to make it more consistent
with the divergent-beam case.

34



2.2. 3D X-ray imaging

(a) Spin acquisition

(b) Anatomical planes

(c) Reconstructed image
(axial view)

(d) Reconstructed image
(coronal view)

(e) Reconstructed image
(sagittal view)

Figure 2.15 – 3D cone-beam computed tomography on a C-arm system.
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Figure 2.16 – Parallel-beam circular tomographic acquisition geometry.

The goal of circular tomographic reconstruction is to recover the 2D function f
from the collection of 1D projections p. We will denote by Bθ, the backprojection
operator from angle θ:

Bθ :

(
(R → R) → (R2 → R)

φ 7→ φ ◦ uθ

)
. (2.15)

Note that Bθ is actually the adjoint operator of Rθ when using the classical L2

inner product (Kak & Slaney, 2001).
In divergent-beam acquisition geometries with linear or planar detectors (Fig-

ure 2.17), the X-ray source is now located at point ξ, and we denote by d = |ξ|
the SOD. The orthogonal projection of the source over the detector defines an
angle θ̂ with respect to the x-axis. In the fan-beam geometry, the detector axis is
oriented along θ̂⊥ (Figure 2.17a), while in the cone-beam geometry, the detector
plane is orthogonal to θ̂ (Figure 2.17b). In any case, the detector is located at a
distance D from the X-ray source, which is the SID. Again, the projection of O
defines the origin of the detector axis. Note that in the ideal, circular (planar)
source-detector trajectory, the fan-beam geometry corresponds to the plane z = 0
of the cone-beam geometry, which projects onto the line v̂ = 0 of the detector
plane.

In the circular cone-beam geometry, a 3D point x = (x, y, z)T projects onto
the detector plane at coordinate (ûθ̂(x), v̂θ̂(x)), where:



sθ̂(x)ûθ̂(x)
sθ̂(x)v̂θ̂(x)
sθ̂(x)


 =




−D sin θ̂ D cos θ̂ 0 0
0 0 D 0

cos θ̂ sin θ̂ 0 d




︸ ︷︷ ︸
P

θ̂




x
y
z
1


 . (2.16)

Matrix Pθ̂ is called the projection matrix at view angle θ̂. Note that Pθ̂ is defined

36



2.2. 3D X-ray imaging

(a) Fan-beam geometry

(b) Cone-beam geometry

Figure 2.17 – Divergent-beam circular tomographic acquisition geometries.

up to a constant scaling. Cone-beam projections are written:

p̂θ̂(û, v̂) = R̂θ̂ [f ] (û, v̂) =

+∞∫

0

f(ξ + tl(û, v̂))dt, (2.17)

where:

l(û, v̂) =
1√

D2 + û2 + v̂2
(Dθ + ûθ̂⊥ + v̂ζ). (2.18)

The cone-beam full-scan circular tomographic acquisition is the collection:

p̂ =
{
p̂θ̂ | θ̂ ∈ [0, 2π]

}
, (2.19)

and the cone-beam backprojection operator is defined as:

B̂θ̂ :

(
(R2 → R) → (R3 → R)

φ 7→ φ(ûθ̂, v̂θ̂)

)
. (2.20)
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All the notations above extend to the fan-beam geometry by letting z = 0 (hence
v̂θ̂ = 0), and v̂ = 0. In this geometry, we drop the fixed coordinates for sake of
simplicity. Finally, note that when (D, d) → (+∞,+∞), the fan-beam geometry
reduces to the parallel-beam geometry.

2.2.1.2 Filtered backprojection

The projection-slice theorem is at the core of computed tomography (Kak &
Slaney, 2001). It states that:

F1 [pθ] (ρ) = F2 [f ] (ρθ⊥), (2.21)

where Fn is the n-dimensional Fourier transform operator. Hence, when θ ∈ [0, π],
projection lines pθ describe the whole 2D Fourier plane of f and the inversion of
the Fourier transform of f yields the filtered backprojection (FBP) formula:

f =
1

2

2π∫

0

BθD [pθ] dθ =
1

2

2π∫

0

D [pθ] (uθ)dθ, (2.22)

where D denotes the linear ramp filtering operator, which amounts to a multipli-
cation in the Fourier domain by the frequency module |ρ|. If one denotes by B
the cumulative backprojection operator:

B [φ] =
1

2

2π∫

0

Bθ [φ] dθ, (2.23)

and if one still denotes by D the operator ramp-filtering all projection lines in p,
then FBP can be further written as:

f = BD [p] . (2.24)

Note that since the true ramp filter has an infinite support in the Fourier space,
it is actually weighted by an apodization window in practice.

Reconstruction from the fan-beam full-scan, circular tomographic acquisition
can be derived from the parallel-beam FBP formula from Equation (2.22) by
exploiting the relationship between fan-beam parameters (θ̂, û) and the equivalent
parallel-beam parameters (θ, u) for the same projection ray (Kak & Slaney, 2001):




θ = θ̂ + γ(û)

u =
ûd√

û2 +D2

, where γ(û) = arctan

(
û

D

)
. (2.25)

There are two ways of exploiting this equivalence. The simplest approach is
to perform a rebinning of the fan-beam data into the equivalent parallel-beam
projections. Once rebinned, the data can be reconstructed using any parallel-
beam reconstruction method, such as the parallel-beam FBP method. We can
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also apply the change of variables from parallel-beam to fan-beam parameters
from Equation (2.25), yielding the fan-beam FBP formula:

f =
1

2

2π∫

0

D2

sθ̂
2
B̂θ̂D [p̃θ̂

]
dθ̂, (2.26)

where:

p̃θ̂(û) =
d

D
· cos γ(û) · p̂θ̂(û) =

d

D
· D√

û2 +D2
· p̂θ̂(û). (2.27)

In parallel-beam and fan-beam geometries, the FBP formulas from Equa-
tions (2.22) and (2.26) are exact. In the cone-beam full-scan circular geometry,
however, it is not possible to find an exact inversion formula: indeed, a circular
source-detector trajectory does not completely determine the cone-beam trans-
form. This is a consequence of Tuy’s condition for exact reconstruction (Tuy,
1983), which states that every plane intersecting the object must contain a point
from the source-detector trajectory. Despite its non-exactness, the Feldkamp-
David-Kress (FDK) method (Feldkamp et al., 1984) remains the most used direct
reconstruction method in cone-beam computed tomography (CBCT). FDK is a
direct extension of the fan-beam FBP formula to the cone-beam case. The FDK
reconstructed image is written as:

fFDK =
1

2

2π∫

0

D2

sθ̂
2
B̂θ̂D [p̃θ̂(·, v̂θ̂)

]
dθ̂, (2.28)

where:

p̃θ̂(û, v̂) =
d

D
· D√

û2 + v̂2 +D2
p̂θ̂(û, v̂). (2.29)

Whenever v̂ = 0, FDK reduces to the fan-beam FBP formula. It is thus an
exact reconstruction within the trajectory plane. Moreover, FDK is exact outside
the trajectory plane when the object to be reconstructed is invariant in the z-
direction (Feldkamp et al., 1984). FDK reduces to row-wise ramp filtering of
cosine-weighted projections, followed by a weighted backprojection step.

2.2.1.3 Semi-discrete formulation

The FBP/FDK formulas have been proposed in a continuous formulation: FBP is
an exact analytical inversion formula, from which FDK provides an approximate
solution to the continuous reconstruction problem. In order to implement them
in practice, they need to be further discretized. In particular, a discretization of
the angular range is needed. Assuming a uniform angular sampling of N angular
samples, we define the set:

Θ =

{
θi =

(
i− 1

2

)
∆θ, i = 1, · · · , N

}
, where ∆θ =

2π

N
. (2.30)

Then, the semi-discrete formulation for the parallel-beam FBP is:

fN =
1

2

∑

θ∈Θ

BθD [pθ] ∆θ =
π

N

∑

θ∈Θ

BθD [pθ] . (2.31)
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Similarly, the semi-discrete formulation for FDK (which reduces to the semi-
discrete fan-beam FBP in the midplace) is:

fFDK,N =
1

2

∑

θ̂∈Θ

D2

s2
θ̂

B̂θ̂D [p̃θ̂(·, v̂θ̂)
]
∆θ =

π

N

∑

θ̂∈Θ

D2

s2
θ̂

B̂θ̂D [p̃θ̂(·, v̂θ̂)
]
. (2.32)

We call these formulations semi-discrete, as only angles are discretized here. They
are closer to real cases, where obviously there is only a finite set of measurements.
The semi-discrete setting also breaks the trivial equalities from the continuous
case: for example, a continuous fan-beam FBP is equal to a continuous parallel-
beam FBP, which is not the case with the semi-discrete formulations.

Semi-discrete formulations will be useful in Chapter 4 in order to derive direct
reconstruction formulas that remain intrinsically view-based, in the sense that
the reconstruction algorithm amounts to cumulating information from different
projection views independently.

2.2.1.4 Iterative reconstruction

Instead of discretizing continuous formulas, or expressing the problem in the
semi-discrete setting, one can also directly translate the tomographic problem
into a discrete problem. In this case, f represents a vector, whose size is equal
to the number of voxels in the finite 3D grid. Projections are concatenated into
a single vector p of size N times the number of pixels of the detector array. The
projection matrix R is now a rectangular matrix such that Rf = p. The FDK
solution, which can be written as fFDK = FDK(p) = RT Dp once the problem
is discretized, is only an approximate solution to the cone-beam tomographic
reconstruction problem. In particular, FDK does not handle cone-beam artifacts.
Instead of the direct FDK reconstruction, iterative methods (Fessler, 2006; Langet
et al., 2015) solve a minimization problem of the form:

min
f

{C(f, p) + χ(f)} , (2.33)

where C(f, p) is a data fidelity term ensuring that f is consistent with measured
data p, and χ(f) is a regularization term based on a priori knowledge on the image
structure. In particular, a least-squares criterion can be minimized (Langet et
al., 2015):

fiFDK = argmin
f

1

2
(Rf − p)T D(Rf − p) (2.34)

The ramp filter D, which is diagonal in the Fourier space, is included in the
quadratic form. A gradient descent scheme with fixed gradient step τ > 0 yields
the iterative FDK (iFDK) algorithm:

f (i+1) = f (i) − τRT D(Rf (i) − p) = f (i) − τ · FDK(Rf (i) − p). (2.35)

iFDK is typically used to deal with non-uniform or redundant measurement as
well as truncation. Fast convergence is also expected when sampling conditions
are favorable, since the FDK reconstruction f (1) is already close to the desired
solution.
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(a) FDK (b) iFDK-TV (homotopy)

Figure 2.18 – FDK reconstruction of a head (a), and iFDK reconstructions with homotopy
of the same dataset using total variation regularization (b). Isotropic voxel size: 0.78
mm3. Window level-width: 1100-1020. Source: (Langet et al., 2015).

Regularization can be added to Equation (2.34) via a convex, not necessarily
differentiable penalty function χ(f) (Langet et al., 2015):

fiFDK = argmin
f

{
1

2
(Rf − p)T D(Rf − p) + χ(f)

}
. (2.36)

Such minimization problems can be solved iteratively using the forward-backward
splitting algorithm, consisting in alternating one iFDK iteration (one gradient
step) with a filtering step (proximity operator):

{
f (i+1/2) = f (i) − τ · FDK(Rf (i) − p)

f (i+1) = proxτχ(f (i+1/2))
. (2.37)

Here, we used the notation proxτχ(f∗) to denote the proximity operator of τχ at
point f∗, defined as:

proxτχ(f∗) = argmin
f

{
1

2
‖f − f∗‖2 + τχ(f)

}
. (2.38)

Proximity operator proxτχ(f∗) can be seen as a black box filtering step, depend-
ing on penalty χ(f). Often, we write χ(f) = λ · ψ(f), and parameter λ may be
decreased during the iterations (this approach is called homotopy or continua-
tion). This reduces the bias induced by the penalty function, until λ reaches zero
(un-biased solution).

Figure 2.18 compares two iFDK reconstructed images with the standard FDK
reconstruction. The iFDK reconstructions used homotopy with 21 stages of ei-
ther total variation or non-linear isotropic diffusion using Weickert’s diffusivity
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(a) Photograph of the
Catphanr 500

(b) Schematic of the 528
spatial resolution module

(c) Schematic of the 515
low-contrast detection

(LCD) module

Figure 2.19 – The Catphanr 500 phantom (Goodenough, 2012).

map (Langet et al., 2015). The FDK image (Figure 2.18a) shows dark lines (high-
lighted by the arrows) that are cone-beam artifacts. These artifacts are removed
by iFDK (Figures 2.18b, which yields much flatter images. Iterative reconstruc-
tions also display a higher resolution because it removes the smoothing effect of
the apodization filter (Section 2.2.1.2).

2.2.2 Image quality assessment

C-arm CBCT image quality is assessed with respect to spatial resolution and
contrast resolution (in particular, with respect to noise). Visual assessment of
the impact of specific artifacts (motion streaks, geometric distortion, scatter-
induced cupping artifact, etc.) may also be used. Evaluations are performed
on quality assurance phantoms such as the Catphanr phantom, as well as on
anthropomorphic phantoms.

2.2.2.1 The Catphanr 500 phantom

The Catphanr 500 phantom (Goodenough, 2012) is designed as a series of cylin-
drical modules, each of them testing a specific performance of the system (Fig-
ure 2.19). We focus on the performance of C-arm CBCT in terms of spatial
resolution and low-contrast detection.

The Catphanr CTP 528 spatial resolution module (Figure 2.19b) is made of
21 groups of highly contrasted aluminium lines cast into epoxy. The lines are all
oriented radially. The gap between two consecutive lines of one group is fixed,
but it varies from one group to the other, resulting in different line pairs per
centimeter (denoted lp/cm). Groups are ranged in increasing order from 1 lp/cm
to 21 lp/cm. A visual assessment of the maximum number of differentiable line
pairs per centimeter provides an information on the spatial resolution.

The Catphanr CTP 515 LCD module (Figure 2.19c) consists of a uniform
water-equivalent cylinder with small cylindrical contrast inserts of various diam-
eters. Relative contrasts of the inserts are 1%, 0.5% and 0.3%. Their diameters
vary from 2 mm to 15 mm. The diameters of the central (subslice) inserts vary
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(a) Catphanr CTP 528 (b) Zoom

Figure 2.20 – IGS 740 C-arm CBCT of the Catphanr CTP 528 module. FDK recon-
struction from 600 views covering 200◦ (Parker’s weights used), at SID = 1295 mm and
SOD = 820 mm, on a 40 cm square FOV. Isotropic voxel size: 0.48 mm3. Window
width: 1000 HU.

from 3 mm to 9 mm.

2.2.2.2 Spatial resolution

C-arm CBCT is known to achieve a very good spatial resolution. With a voxel
size of 0.48 mm, the image of the Catphanr CTP 528 module reconstructed
from a spin acquired on GE Healthcare IGS 740 at 16◦/s, an SID of 1295 mm
and an SOD of 820 mm, and on a 40 cm square FOV, achieves an 8 lp/cm spatial
resolution (Figure 2.20). However, spatial resolution depends both on the voxel
size and on the actual pixel size (which may be greater than 0.2 mm because of
binning in large FOV sizes). With a voxel size of 0.96 mm, the resolution drops
to 5 lp/cm. By contrast, with a voxel size of 0.48 mm and a spin acquired with
the same parameters except that the FOV is now a 12 cm square, the resolution
increases to 21 lp/cm. In comparison, diagnostic CT scanners achieve no more
than 13 lp/cm.

2.2.2.3 Contrast resolution

In terms of low-contrast detection, however, C-arm CBCT underperforms diag-
nostic CT. This can be observed when reconstructing the Catphanr CTP 515
module, as shown in Figure 2.21. Figure 2.21a shows a 10 mm thick axial slice of
the CT reconstruction of the CTP 515 module. The 1% contrast inserts are eas-
ily detectable, and 0.5% inserts can be visually detected from diameters 15 mm
down to 7 mm. The 0.3% contrast inserts are more difficult to detect, but are
still noticeable, in particular for the 15 mm and 9 mm inserts. Regarding sub-
slice inserts, the axial averaging decreases their contrast values, but all the 9 mm
inserts can be detected.
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(a) Diagnostic CT (b) C-arm CBCT

Figure 2.21 – Comparison between an IGS 740 C-arm CBCT and a diagnostic CT of the
Catphanr CTP 515 module. (a) FBP reconstruction from a CT acquisition. Axial slices
were averaged over 10 mm. Window width: 50 HU. (b) FDK reconstruction from 600
views covering 200◦ (Parker’s weights used), at SID = 1295 mm and SOD = 820 mm,
on a 40 cm square FOV. Voxel size (mm3): 0.48 × 0.48 × 9.6. Window width: 50 HU.

Figure 2.22 – Factors impacting low-contrast detection in C-arm CBCT. Factors that
will not be covered by this thesis are shown in light gray.

On the other hand, the C-arm CBCT reconstruction of the same module
(Figure 2.21b), averaged along the axial slice over 9.6 mm, does not perform well
for contrasts lower than 1%. Of all the 0.5% contrast inserts, only the 15 mm and
9 mm inserts are visible, and the 0.3% inserts are almost lost. The background
also appears less uniform than in the diagnostic CT image. The performance of
C-arm CBCT, with respect to diagnostic CT, is even worse when looking at the
central, subslice inserts, which are barely noticeable.

44



2.2. 3D X-ray imaging

2.2.3 Factors impacting low-contrast detection in C-arm CBCT

Low-contrast detection in C-arm CBCT images depends on a number of factors
all along the imaging chain. These factors are summarized in Figure 2.22. We
describe them in the following paragraphs, and we highlight the key factors that
will be the topic of this thesis: namely, scattered intensities, sampling issues,
quantization, and dose (hence noise).

2.2.3.1 Quantum noise

Patient safety requires not to deliver unnecessary dose to the tissues. In partic-
ular, if a given dose achieves a good SNR on a particular area of the detector,
it is not needed to increase dose on this area. Noise, however, is not uniform
on the detector for a uniformly exposed patient. Because of the exponential de-
crease of Beer’s law, a small change in thickness yields a higher change in dose
at the detector. The dose profile (hence the noise profile) may vary a lot on the
detector. In particular, thin structures may be over-exposed to acquire thicker
parts with enough SNR. Diagnostic CT scanners address this issue via the use of
bow-tie filters (see Section 2.2.3.3), that flatten the dose profile with respect to
the expected anatomy.

The influence of the reconstruction algorithm on the 3D noise behavior is
also fundamental (Barrett et al., 1976; Fessler, 2000). FDK is not a statistical
method: it does not handle the Poisson statistics of incoming photons. Instead,
FDK images show a rather uniform noise distribution. The rationale behind this
behavior is that FDK can be seen as the approximate solution to a Gaussian least-
squares problem with constant variance model, as presented in Section 2.2.1.4.

Quantum noise is directly related to the amount of X-ray photons produced
by the X-ray tube for a given spectrum (hence a given kVp value). The higher the
tube current, the higher the number of photons, hence the lower the noise. C-arm
systems do not address noise issues the same way as diagnostic CT scanners do,
in particular because of the way the X-ray beam is pre-shaped in diagnostic CT
(see Section 2.2.3.3). Therefore, we will need to investigate to which extent noise
is responsible for poorer contrast resolution of C-arm systems with respect to
diagnostic CT (see Chapter 3).

2.2.3.2 Detector non-idealities

The C-arm CBCT image quality also depends on the engineering design choices
of the flat-panel detector. The detector efficiency, that is also related to 2D image
noise, the scintillator properties, in particular in terms of X-ray saturation, may
impact the overall low-contrast detection in the reconstructed images. However,
the study of their actual influences is out of the scope of this work.

2D X-ray imaging with flat-panel detectors requires calibration procedures
in order to account for defective pixels and for gain and offset deviations (Sec-
tion 2.1.6.2). Each of these corrections needs to be done accurately, as a pixel
with a deterministic bias backprojects this error as an arc of a circle in the axial
slices of the reconstructed volume (“ring artifacts”). Note that since the recon-
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struction step accumulates information from more than a hundred projections,
ring artifacts may appear in the reconstructed volume even when the pixel bias
does not impact the image quality of a single projection. The improvement of
calibration steps to better handle pixel gain and offset biases is, again, a matter
of engineering design choices, and is out of the scope of this work. Moreover,
simple ring artifact post-correction methods (Prell et al., 2009), combined with
current calibration procedures, are generally sufficient to remove most of the ring
artifacts in the images.

Another factor impacting 3D low-contrast detection from the detector’s side
is the analog-to-digital conversion (ADC) step, or quantization. Indeed, the aim
of quantization is to represent X-ray intensities with a finite set of symbols. It is
an irreversile process, and a source of information loss. In particular, saturation
induced by the ADC step can be of much importance. IGS systems use a quanti-
zation step that significantly differs from the one used in diagnostic CT scanners.
It is thus desirable to check whether this step is responsible for poorer contrast
resolution of C-arm systems with respect to diagnostic CT (see Chapter 3).

2.2.3.3 X-ray beam

The X-ray beam quality also impacts C-arm CBCT low-contrast detection. For a
given target entrance dose at the detector (thus a given noise level), it is desirable
to keep the peak kilovoltage as low as possible (Nakayama et al., 2006). This
means that the tube current should compensate for low kVp values, resulting in
tube heating. By design, GE Healthcare in-house automatic exposure control
(AEC) selects the best pair (kVp,mAs) for a target image quality metric. In this
work, we do not intend to modify the AEC mechanism. When it is not used, we
fix the kVp to a value such that for our target exposure levels, we are able to set
the mAs accordingly.

As presented in Section 2.1.3.4, the X-ray beam is intrinsically polychromatic:
the photon energies vary between 0 kV and the peak kilovoltage kVp. Hence,
measured intensities are subject to the beam hardening effet. For a given intensity
value on the detector, the line integrals are under-estimated, and this effect gets
more dramatic as the path lengths increase. The result of this beam hardening
effect is a low frequency cupping artifact in the reconstructed image (water beam
hardening), as well as streaks along the paths where very dense objects (bone,
iodine) are present. Although adequate beam filtration can already harden the
incoming beam spectrum, additional processing steps are needed to correct for
beam hardening artifacts.

Beam hardening is not specific to C-arm CBCT: diagnostic CT scanners also
need to account for the polychromaticity of the X-ray beam. To do so, a wa-
ter beam hardening pre-correction, along with a skull beam hardening post-
correction, can be used (Joseph & Spital, 1978). These corrections rely on
polychromatic corrections to recover a quasi-linear relationship between the log-
transformed intensities and the true materials’ thicknesses, be it water or cortical
bone. In practice, we observe that similar corrections in C-arm CBCT produce
the same effects as in diagnostic CT, and we do not further explore the influence
of polychromaticity on C-arm CBCT low-contrast detection.
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Figure 2.23 – Illustration of a bow-tie filter (Hsieh, 2009).

In order to reduce the dynamic range of the detector and improve the noise
homogeneity, diagnostic CT scanners use additional physical beam shapers in
front of the X-ray tube, called bow-tie filters (Figure 2.23). Their shapes are
designed to compensate for the variable path lengths of the patient accross the
FOV: to this end, the filter thicknesses increase quickly from the center to the
outer edge. In addition to providing flatter dynamic ranges and better dose
profiles on the detector, bow-tie filters also significantly reduce the patient’s skin
dose.

A major drawback of bow-tie filters is their dependency to a given patient
shape. As a result, a single filter cannot be optimal for all anatomical scans, and
multiple bow-tie filters should be available in order to use the more appropriate
one depending on the patient’s size and anatomy. Moreover, bow-tie filters require
an accurate centering of the patient anatomy: when the patient is off-centered
with respect to the beam shapers, significant noise increase may result (Hsieh,
2009). The use of bow-tie filters with C-arm systems is still a research topic
(Mail et al., 2009; Menser et al., 2010; G. Zhang et al., 2013). Lastly, we point
out that bow-tie filters require an accurate, ray-dependent, open field intensity
measurement or calibration. Although prior air calibration steps are able to
transform open field intensities into a constant I0 value on the detector, this
value can only be estimated via in-house calibration models on C-arm systems.

We will build upon the concept of bow-tie filters to design a new acquisition
and reconstruction framework in Chapter 3.

2.2.3.4 Scatter

Scattered intensities have a strong impact on C-arm CBCT low-contrast detection
(Siewerdsen et al., 2014; Fahrig et al., 2014). Indeed, writing P the primary in-
tensites given by Beer’s law and S the scatter intensities, the measured intensities
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(a) Scatter-corrupted (b) Scatter-corrected

Figure 2.24 – Standard reconstruction from scatter-corrupted data of a Catphanr low-
contrast detection module (a) and the same reconstruction (b) from scatter pre-corrected
data (Siewerdsen et al., 2006). Window level-width: 1050-50 HU.

write I = P + S and measured densities are given by:

p′ = log

(
I0

P + S

)
= log

(
I0

P (1 + SPR)

)
= p− log(1 + SPR), (2.39)

where p = log(I0/P ) denotes the true line integrals. Equation (2.39) shows
that measured line integrals are under-estimated, and that this under-estimation
depends on the SPR. Typical values of SPR for head C-arm CBCT can be up
to 1 or 2, where diagnostic CT scanners would show typical SPR values of 0.1
or 0.2. Image artifacts resulting from scattered radiations are of two forms: a
low-frequency cupping strongly reducing contrast resolution (Figure 2.24a), and
dark streaks between dense structures (Siewerdsen et al., 2014). Scatter rejection
methods (Section 2.1.6.1) can still be used. However the air gap needs to be kept
short in the case of head imaging (short SID) to prevent truncation artifacts in
the reconstructed images (Section 2.2.3.5). The field of view also depends on the
clinical application; reducing it is not always an option and may even generate
truncation artifacts. Thus, most of scatter rejection is achieved by the anti-
scatter grid. Because C-arm systems can easily change the SID, anti-scatter grids
cannot be strongly focused on the X-ray source; moreover, the grid also partially
attenuates the primary rays, thus limiting the performance of anti-scatter grids
in terms of SPR. By contrast, diagnostic CT scanners have a fixed geometry,
so that perfectly focused anti-scatter collimators can be used, in addition to
bow-tie filters that reduce the SPR by up to 50% (Altunbas, 2014). Hence,
scatter correction methods have been developed for C-arm CBCT. The scatter
correction method used in IGS systems is based on the approach of (Siewerdsen
et al., 2006). It is a measurement-based correction method (Rührnschopf &
Klingenbeck, 2011a; Love & Kruger, 1987; Ning et al., 2004; Siewerdsen et al.,
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2006; Liu et al., 2006; Rinkel et al., 2007). These methods make use of actual
measurements of the phenomenon and are mathematically less demanding than
system-theoretic approaches (Rührnschopf & Klingenbeck, 2011a). Siewerdsen et
al. (2006) make use of already embedded collimator blades to measure scatter at
the borders of the field of view. The method relies on the assumption that the
intensities measured in the shadow of the collimator blades are entirely due to
scattered radiations. Samples of column-wise (in the case of vertical collimation)
scatter intensity profiles are independently interpolated by polynomial functions,
smoothed laterally and then smoothed again between consecutive views. Scatter
estimates are then subtracted from measured intensities.

Scatter-induced artifacts are typical of C-arm CBCT. Diagnostic CT scanners,
which have a fixed geometry, can use focused anti-scatter collimators, in addition
to bow-tie filters that reduce the SPR by up to 50% (Altunbas, 2014). Alternative
scatter correction methods have been proposed over the years (Rührnschopf &
Klingenbeck, 2011b, 2011a) and finding more precise scatter correction methods
is still a research topic (Wiegert, 2007; Schörner, 2012; Bhatia, 2016). We thus
keep in mind that reducing the contribution of scattered intensities is key for
C-arm CBCT low-contrast detection. Although we do not intend to propose
improved correction strategies in this thesis, we will design our solutions in such
a way that they can be efficient in terms of scatter rejection, and in such a way
that they may be further used to propose smarter scatter correction strategies,
that are out of the scope of this work (see Chapter 6 for perspectives on scatter
correction).

2.2.3.5 Sampling

The square shape of the detector defines a reconstruction cylinder of about 20 cm
in height and diameter for a 30 cm flat-panel detector, which represents a small
transaxial field of view: data truncation is thus the norm. Lateral truncation is
forbidden by the FDK method, as the ramp filter needs complete row data. In
head imaging, truncation is reduced by changing the magnification factor via a
shorter SID, despite its bad influence on scatter. Interestingly, C-arm CBCT is
often used to do region-of-interest (ROI) imaging, with limited contrast detection
due to truncation artifacts. In diagnostic CT, truncation only occurs in case of
wide anatomies and poor patient centering, typically in the case of abdominal
imaging. In head imaging, however, CT scans never show truncation artifacts.
This thesis will propose a way to handle truncated data both to enrich full-FOV
projections for full-volume imaging and to perform ROI reconstruction.

As mentioned previously, C-arm systems do not perform a rotation of 360◦

around the anatomy of interest; instead, they cover an angular range of 200◦,
which corresponds to 180◦ plus the angular spread (fan angle) of the divergent
beam in the source-detector plane. Even in this plane, which satisfies Tuy’s con-
ditions (Tuy, 1983), redundancy needs to be taken into account in the reconstruc-
tion. The simplest way of handling data redundancy is to apply Parker’s weights
prior to ramp filtering in the FDK method (Parker, 1982). Parker’s weights cre-
ate a smooth window that set to zero most of the redundant projection columns,
do not alter most of non-redundant projection columns, and smoothly applies a
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weight between 0 and 1 on a few projection columns. The smoothness is imposed
by the fact that ramp filtering strongly enhances discontinuities. Note also that
setting projection columns to zero is not optimal in terms of dose usage. Short-
scan artifacts related to data redundancy, as well as cone-beam artifacts out of
the midplane, will need to be handled by iterative reconstruction methods.

Angular sampling is also of much interest in C-arm CBCT. Indeed, in diag-
nostic CT, several hundreds of projections are acquired every 360◦ rotation of
the X-ray tube, yielding a very fine angular sampling. In C-arm CBCT with IGS
systems, for the same acquisition speed (frame rate) of 50 frames per second (fps)
and the same angular coverage, three rotation speeds are available (Table 2.3),
leading to spins of 250 to 600 views sampling a short-scan of 200◦. For imaging
the soft-tissue low contrasts, the rotation must be set to its lowest speed, lead-
ing to the highest number of views. However, it would be desirable to design
reconstruction methods that could apply to coarser angular sampling as well.

2.2.4 Discussion

C-arm systems use a complex 2D X-ray imaging chain for real-time 2D image
guidance. By letting the C-arm rotate around the patient, a tomographic acqui-
sition can be performed and a fully three-dimensional image can be reconstructed.

Artifacts may corrupt the reconstructed image, either because the reconstruc-
tion algorithm did not account for all the aspects of the X-ray physics (poly-
chromatic beam, scattered radiations), or because of system non-idealities (pixel
biases, sampling). Most of these limitations disappear in diagnostic CT: excel-
lent pixel calibration only leaves small residual ring artifacts in the image, that
can be easily corrected; larger fields of view make it possible to perform head
imaging without lateral truncation over 360◦, and with excellent angular sam-
pling. Bow-tie filters reduce the contribution of scattered intensities and flatten
the dose profile, yielding narrower dynamic ranges on the detector, that are finely
quantized. The residual scattered intensities are almost completely rejected by
focused collimator blades.

From these observations, we conclude that the key factors in C-arm CBCT
low-contrast detection are:

• scattered intensities, that need to be at least rejected as much as possible;

• sampling, as truncation needs to be accounted for, and angular sampling
must be as fine as reasonably achievable;

• quantization, which seems much coarser on IGS systems than in diagnostic
CT scanners;

• and dose (hence noise), since X-rays are not shaped with bow-tie filters on
C-arm systems.

The next chapter will show that, although we listed four items here, quantization
can be partially discarded as a key factor for low-contrast detection in C-arm
CBCT. More precisely, we will show that saturation has a stronger impact on low-
contrast detection than the actual number of quantization bins. The remaining
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chapters will try to design optimal acquisition and reconstruction frameworks to
increase low-contrast detection in C-arm CBCT, in such a way that they emulate
bow-tie filters, reduce the contribution of scattered intensities in the reconstructed
images, and account for the presence of truncated data, in particular for ROI
imaging.

We end this chapter by a final remark. FDK was designed to reconstruct
a static object from projections acquired over a circular source-detector trajec-
tory. If the C-arm system vibrates during the spin, and if these vibrations are
repeatable, geometric calibration procedures can be performed in order to better
characterize projection matrices Pθ in Equation (2.16) with respect to system
deformations. We will assume that all repeatable distortions have been taken
into account in calibration procedures when performing our own acquisitions on
C-arm systems. We also discard any additional object motion in our study. Per-
spectives on the applications of the results of this thesis to patients with head
motion can be found in Chapter 6.
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CHAPTER 3

Virtual bow-tie C-arm CBCT

Chapter 2 described the fundamentals of 2D and 3D X-ray imaging with
C-arm systems, as well as the factors impacting C-arm CBCT image qual-
ity. Scattered intensities, sampling, quantization and X-ray exposure (thus
noise), were shown to be the key differences with respect to diagnostic CT. In
this chapter, we show that, more than quantization, dose is a critical factor
for low-contrast detection in C-arm CBCT. Building up on this observation,
we investigate the capabilities of a dual-rotation C-arm CBCT framework to
improve non-contrast-enhanced low-contrast detection for full volume brain
imaging. The idea is to associate two spins: one over the full detector field
of view (FOV) at low dose, and one collimated to deliver a higher dose to
the central densest parts of the head. The method is intended to act as a
virtual bow-tie. Full volume reconstruction of dual-rotation simulations and
phantom acquisitions are shown to have increased low-contrast detection for
less dose, with respect to a single-rotation acquisition.
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3.1 A matter of noise

In this section, we reduce the key factors impacting low-contrast detection to
quantization and noise, by focusing on a specific acquisition setting of the Catphanr

CTP 515 LCD module. Firstly, for actual Catphanr 515 acquisitions, the 2D
FOV height was set at its minimum, in order to reduce scattered radiations as
much as possible. Lateral collimation was not applied in order to limit lateral
truncation to its minimum as well. Moreover, we will focus on central slices, so
that cone-beam artifacts are not expected to impact the observed image quality.
Since the Catphanr 515 module is a uniform water-equivalent cylinder with small
contrast inserts, the only beam hardening effect that can be observed is due to
water: in this case, a water beam hardening pre-correction method is enough to
account for the polychromaticity of X-rays. Lastly, acquisitions are performed at
the slowest rotation speed, leading to the highest number of views for accurate
tomographic reconstruction.

Hence, only quantization and noise remain as factors impacting low-contrast
detection in the image. In the following, we describe the principles of analog-
to-digital conversion (ADC) and how it is performed on IGS systems. We then
simulate fan-beam acquisitions with and without quantization, in order to eval-
uate the impact of the ADC step on low-contrast detection. We then show that,
more than quantization, dose is a critical factor for low-contrast detection in
C-arm CBCT.

3.1.1 Impact of analog-to-digital conversion

3.1.1.1 Principle of analog-to-digital conversion

Once X-rays are converted into electronic charges, they are further converted
into digital numbers through analog-to-digital conversion (ADC). The ADC step
essentially defines a subdivision of the real line −∞ = q−1 < q0 < · · · < qB <
qB+1 = +∞, and assigns a constant quantized value Qi to each interval [qi−1, qi[.
The quantization step can thus be defined as a function Q such that:

Q(I) =
B+1∑

i=0

Qi1[qi−1,qi[(I). (3.1)
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In the ideal case of noise-free measurements for the toy example of Figure 2.13,
if Q(I2) does not under- or over-saturate (namely, if Q(I2) = Qi 6∈ {Q0, QB+1}),
then I1 and I2 are quantized on two different values if and only if:

I2 − I1 = I2

(
1 − e−∆µ∆L

)
> δi = Qi − qi−1. (3.2)

Hence, quantization limits contrast resolution, since Equation (3.2) yields:

∆µ∆L > − log

(
1 − δi

I2

)
. (3.3)

In practice, however, thank to the random nature of X-ray photon statistics, the
lower detectable contrast can be lower than the one given by Equation (3.3) (see
for example (Lipshitz et al., 1992) for an analysis of the impact of noisy samples
on quantization).

Quantization also bounds the admissible dynamic range: if one needs to image
a material with attenuation µ and with thicknesses L ranging from Lmin to Lmax,
the incoming X-ray intensity I0 should be such that:

I0e
−µLmin ≤ qB and I0e

−µLmax > q0, (3.4)

hence:
q0e

µLmax < I0 ≤ qBe
−µLmin . (3.5)

The choice of I0 remains a compromise between high CNR values, admissible dose
levels, and achievable detector dynamic ranges. If I0 is too high, quantization
will be blind to a range of small thicknesses µL between 0 and log(I0) − log(qB),
which may lead to heavy information loss.

3.1.1.2 Ramp-based quantization

The definition of the ADC subdivision {qi}i depends on the noise distribution
of the input signal. Linear quantization corresponds to a uniform subdivision
qi = q0 + i

B (qB −q0) and to a uniform noise distrubtion. Quantization can also be
performed via a non-linear transfer function, which means that the quantization
step δi = qi − qi−1 between two coded values is not constant. The rationale for
non-linear quantization comes from the X-ray photon statistics. If I is the input
signal then σ ∝

√
I, since the variance of a Poisson distribution is proportional

to its mean (because of the blur induced by detector cells, σ2 is not strictly equal
to

√
I, typically σ = c

√
I with c ≈ 0.6).

It is tempting to choose δi so that it does not quantize below quantum noise,
i.e., δi ∝

√
I, which makes it possible to increase the signal range of the analog-

to-digital converter, while keeping the number of bits to a minimum. An example
of such a quantization is given in Figure 3.1. The x-axis represents the number
of conversion levels. In Figure 3.1a, the gray bins assign values of the interval
[0, 1] to each conversion level according to a quadratic ramp function. The same
ramp shape is used to re-map each of these 50 indexes to digits (gray bins in
Figure 3.1b) varying linearly (up to the quantization error) with the analog input
value (Figure 3.1c), with a quantization step proportional to the square root of
the input analog signal. The quantized values range from 0 to 2401, so we need
⌈log2(2401)⌉ = 12 bits to store our 50 samples in this example.
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Figure 3.1 – Example of a quadratic input ramp (a) quantizing [0, 1] on 50 levels and
its corresponding output ramp (b) remapping these 50 levels to integer values. These
integer values are the quantized input signal values. The quantized values vary linearly
with the analog values (c), with a non-uniform quantization step.
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Figure 3.2 – Actual linear-quadratic output ramp (a) and two-step ramp comparison
process (b) in Apollo Readout Chips.

3.1.1.3 Actual ramp-based ADC

Because the offset map needs to be stored with enough accuracy, a linear ramp
is defined in a range corresponding to the offset zone, with a typical quantization
step of 1 or 2. The rest of the ramp is quadratic, with a C1-continuity between
both portions of this linear-quadratic ramp function (Garverick & Michon, 1994;
Granfors, 1999; Granfors & Aufrichtig, 2000; Wrigley et al., 2014). It is expected
that quantized X-ray photons hit the quadratic portion of the ramp, unless the
entrance dose is very low. The ramps used for CBCT quantize on 850 conversion
levels that spread over a 14-bit dynamic range (Table 3.1). An example of such
ramps and of the actual ADC step is shown in Figure 3.2. Up to 47% of these
conversion levels may be used for the linear part of the ramp. The 14-bit quantized
signal is further compressed to a 12-bit image by applying a square-root shaped
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Parameters Low-dose Medium-dose High-dose

Lower bound 1053 1053 1053
Upper bound 16383 16383 16383

Total conversion levels 850 850 850
Saturating dose (nGy) 1900 4680 7590
Linear upper bound 1853 1653 1353

Linear conversion levels 400 300 300
Linear quantization step 2 2 1

Table 3.1 – Ramp specifications in IGS 540 (CBCT 2 × 2 binned modes).

function, that uniformizes noise in the image. This 12-bit square-root encoding
is of course further decoded prior to reconstruction. Note that as compared to
diagnostic CT scanners, that benefit from a full 24-bit linear quantization, C-
arm systems seem to be limited by the lower dynamic range and the even smaller
number of actual quantization bins.

3.1.1.4 Quantization and low-contrast detection

Studies of the influence of quantization on image quality have already been pub-
lished (Knaup et al., 2012; J. Xu et al., 2016a) but they rely on a linear quanti-
zation over 2q conversion levels, where q is the bit depth of the dynamic range.
This is very different from sampling N ≪ 2q quantization values non-uniformly
spread over 2q values.

In order to determine the effect of quantization on low-contrast detection,
we performed a simulation study in the 2D fan-beam geometry with a linear
detector. Analytical full-scan (1440 views sampling 360◦) density sinograms of a
2D phantom similar to the CTP 515 were generated and converted into intensities
using Beer’s law. The value of I0 was set to an arbitrary value and at each
detector bin an additional zero-mean Gaussian noise with variance proportional
to the initial intensity value (σ2 = κI0e

−p, where κ > 0 and p is the density
projection) was generated.

We simulated a quantization through a quadratic ramp with a slope of 1
at the origin and spreading 850 conversion levels between 0 and 16383. Hence,
quantization is over 14 bits. The quantized, noisy intensity sinograms were fur-
ther re-converted into density sinograms and reconstructed by the FBP method.
Reconstructed images were compared to density sinograms obtained from the
non-quantized, noisy intensity sinograms. The final images were also applied a
Gaussian filter. The Gaussian standard deviation and the coefficient of propor-
tionality κ were set empirically to match the noise level and the spatial resolution
of standard reconstructed volumes from IGS C-arm tomographic acquisitions with
fixed techniques (76 kVp, 3.4 mAs).

Results of the simulation are shown in Figure 3.3. We first simulated four ac-
quisitions with I0 = 16383, so that the full dynamic range fits in the quantization
ramp (Figure 3.3a). Although it is difficult to identify contrast inserts with rel-
ative contrasts lower than 1%, they can be detected more easily when averaging
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(a) I0 = 16383

(b) Average of 4 acquisitions, I0 = 16383

(c) I0 = 4 × 16383

Figure 3.3 – Effect of quantization on low-contrast detection. The quantization ramp
is quadratic with slope 1 at the origin and spreads 850 conversion levels between 0 and
16383. Residual images on the right are the obtained by subtracting to the left columns
the reconstructed images from non-quantized sinograms. Window level: 50 HU.
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the images reconstructed from the four acquisitions (Figure 3.3b). Moreover, the
difference between this averaged image and the averaging of the images recon-
structed from the four non-quantized acquisitions does not show any structural
information. However, both dose and quantization were increased by averaging
four noisy reconstructed images. We thus simulate an additional acquisition at
I0 = 4 × 16383, and we clip intensity values larger than 16383 to this value
even in the non-quantized case (Figure 3.3c). The central contrast inserts be-
come clearly visible, although saturation of intensities higher than 16383 yields a
strong non-uniformity in the reconstructed image.

The simulation study tends to show that the current quantization design,
despite the small number of quantization levels in comparison with diagnostic
CT, is sufficient to reconstruct low-contrast inserts. Quantum noise, on the other
hand, is of much importance if one wishes to detect low-contrast inserts.

3.1.2 Influence of dose increase

3.1.2.1 Experiments and results

Experiments We acquired four spins of the Catphanr CTP 515 at (76 kVp,
3.4 mAs) with 0.3 mm of copper filtration on an IGS 630 biplane system whose
flat-panel detector is 30 cm wide. In order to increase the dose by a factor 4, a
shifted spectrum at 120 kVp was used to acquire a fifth spin, all other parameters
being equal. Note that the influence of X-ray spectrum is neglected here. We
compare the FDK reconstructed images with Parker’s weights from the high-
dose spin with the image reconstructed from one regular-dose spin, and with the
average of four images reconstructed from regular-dose spins.

Results FDK reconstructed Catphanr phantoms are shown in Figure 3.4. As
in the simulated case, the regular-dose FDK reconstruction is too noisy to identify
the central low-contrast inserts (Figure 3.4b), although they become visible if
one averages four such reconstructed images (Figure 3.4d). Figure 3.4e shows an
inverse cupping that is due to the ramp saturation on the detector, which yields
a strong low-frequency non-uniformity in the reconstructed image. Despite this
non-uniformity, the central low-contrast inserts are visible (Figure 3.4f).

3.1.2.2 Conclusion

The simulation study tends to show that the current quantization design, despite
the small number of quantization levels in comparison with diagnostic CT, is
sufficient to reconstruct low-contrast inserts. Quantum noise, on the other hand,
and detector saturation, on the other hand, are of much importance if one wishes
to detect low-contrast inserts.

Experiments on the Catphanr CTP 515 module confirm the simulation study:
dose is definitely a critical factor, as we observe that low-contrast inserts are
visible at high dose. Of course, multiplying the dose by a factor 4 is not possible
in practice, as peripheral areas are over-exposed, yielding to saturation on the
detector and non-uniformities in reconstructed images. If saturation is only due
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3.1. A matter of noise

(a) 1 acquisition at dose × 1 (b) 1 acquisition at dose × 1

(c) 4 acquisition at dose × 1 (d) 4 acquisition at dose × 1

(e) 1 acquisition at dose × 4 (f) 1 acquisition at dose × 4

Figure 3.4 – Influence of dose on low-contrast detection of a Catphanr CTP 515. Image
(b) (resp. (d), (f)) is a zoom of image (a) (resp. (c), (e)). Voxel size (mm3): 0.78 ×
0.78 × 4.68. Window level-width: 1070-50 HU (a), (b), (c), (d); 1085-50 HU (e), (f).

61



Chapter 3. Virtual bow-tie C-arm CBCT

to the readout (and not to the scintillator), a dual-gain readout (Roos et al., 2004;
Matsinos & Kaissl, 2006; Schmidgunst et al., 2007) providing a double reading
of the input signal (one quantizing accurately low-signal values, one doing the
same for high-signal values) may get rid of quantization artifacts. However, this
solution does not address over-exposure. A physical bow-tie filter would help
preventing saturation.

3.2 Virtual bow-tie via the dual-rotation framework

The mechanical flexibility provided by C-arm systems does not allow for efficient
scatter rejection and the small number of C-arm CBCT acquisitions of brain
soft tissues that need to be performed per day does not warrant the expensive
integration of a bow-tie filter dedicated to this specific imaging task. Without a
bow-tie filter, higher intensities must be recorded on the detector together with
a wider dynamic range. This is a challenge for flat-panel detectors, that must be
addressed by improved detector readout (Sukovic & Clinthorne, 2001; J. Xu et
al., 2016b) or exposure (Sisniega et al., 2013; Ritschl et al., 2013). Higher scatter
fraction must be corrected separately prior to reconstructing the image (Zellerhoff
et al., 2005; Siewerdsen et al., 2006). There is thus an interest in designing an
acquisition with a non-uniform exposure delivering better measurements with less
dose to the patient.

We propose to study the capabilities of a dual rotation acquisition to improve
low-contrast detection when imaging the full brain without administration of
contrast agent in C-arm CBCT. The proposed dual rotation consists of two short-
scan spins, one over the full detector FOV and the second with a detector FOV
that is reduced by collimation. The second spin is truncated to bring more dose
to the center of the patient’s anatomy. This acquisition can sample the brain
with two degrees of freedom: (i) the aperture of the truncated spin, (ii) the dose
ratio between both spins. They allow us to emulate a bow-tie filter to increase
low-contrast detection. This work has been published in (Reshef et al., 2016,
2017a).

3.2.1 Acquisition

3.2.1.1 Assumptions

Ideal system measurements are intensity projections I related to density projec-
tions p via Beer’s law I = I0e

−p where I0 is the intensity of the X-ray beam
measured in air. We assume that prior calibration steps transformed the open-
field intensities into a constant I0 value on the detector. Intensity projections
are related to object density f through a linear projection operator R such that
R [f ] + log(I) = log(I0). Of course, real data are also corrupted by noise and
scattered radiations.

We consider two sets of intensity projections (Figure 3.5): one set of full-
FOV projections (indexed by F), and one set of truncated projections (indexed
by T). In order to mimic a bow-tie filter for dose optimization, the full-FOV
spin is acquired at low dose – this prevents unnecessary patient dose – while the
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3.2. Virtual bow-tie via the dual-rotation framework

Figure 3.5 – Dual-rotation acquisition: a set of NT truncated projections is acquired at
the dose required by the central thickest areas and a set of NF full-FOV projections is
acquired at a lower dose, sufficient for the less dense, external areas.

truncated spin is acquired at a higher dose to achieve an exposure target at the
center of the imaged object that is thicker. In the following, we assume that the
number of views in each tomographic acquisition is approximately the same, and
we denote by N this number.

We intend the dual-rotation acquisition to be as little restrictive as possible:

• we do not assume to know the exposure ratio between the full-FOV spin and
the truncated spin, even though truncated data do not contain a reference
air measurement of the incoming X-ray beam;

• we do not assume the geometry to be the same for each acquisition; in par-
ticular, the angular sampling may vary both in terms of angular positions;
however, in this work, we assume that both acquisitions have the same
number of projection views.

3.2.1.2 Parameters

The flexibility of the dual-rotation acquisition comes from two degrees of freedom.

(i) First, although one acquisition is always assumed to be full-FOV, the open-
ing of the truncated FOV is a free parameter; we denote by t, 0 < t ≤ 1, the
level by which truncation reduces the exposed detector area as compared
to the un-collimated case1.

(ii) Secondly, we do not impose any constraint on the intensity ratio that is used
between the two acquisitions: if IF

0 denotes the air intensity corresponding

1Parameter t is actually a ratio of 2D FOV areas; if the truncated (resp. full-FOV) 2D FOV
height is hT (resp. hF ) and its width is wT (resp. wF ), then t is defined as: t = hT ·wT

hF ·wF

. Since
in general, hT = hF , the truncation ratio t becomes a ratio of 2D FOV widths.
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to the exposure at the center of the object achieved with the full-FOV spin
and IT

0 is the intensity of the truncated spin, we write x = IT
0 /I

F
0 , so that

the actual exposure at the center of the object is equal to (1 + x)IF
0 in the

dual-rotation acquisition. Putting aside a dual-energy approach, x is simply
the mAs ratio.

3.2.1.3 Virtual bow-tie

To emulate a bow-tie that increases low-contrast detection over the full volume,
we choose x ≥ 1. Truncation is controlled by t and depends on the targeted dose
optimization.

We define the dose reduction factor d as how much dose to the object is saved
with the dual-rotation acquisition as compared to an equivalent single-rotation,
full-FOV acquisition achieving the same exposure level at the center of the object.
This factor is thus equal to:

d =
IF

0 + IT
0

IF
0 + t · IT

0

=
1 + x

1 + tx
. (3.6)

3.2.2 Reconstruction

Given (t, x), we define the contribution of the full-FOV acquisition to the overall
dose as:

αF =
IF

0

IF
0 + t · IT

0

=
1

1 + tx
. (3.7)

Reciprocally, we define the contribution of the truncated acquisition as αT =
1 − αF.

3.2.2.1 Analytical reconstruction

If intensity spins IT and IF were acquired at the very same angular positions, the
data could be blended according to:

p =

{
αF · pF + αT · pT in the collimated area,
pF elsewhere.

(3.8)

Equation (3.8) is sensitive to offset errors in pF or pT. In C-arm CBCT, pro-
jections are acquired with short-scan spins. They are reconstructed with the
Feldkamp-Davis-Kress (FDK) algorithm (Feldkamp et al., 1984) using Parker’s
weights to account for data redundancy (Parker, 1982). We denote fFDK =
BD [pw] this analytical reconstruction, with pw the Parker-weighted version of
density projections p, D the ramp filter and B the backprojection operator. In
the discrete case, B = RT , the transpose of the projection operator R.

If acquisition geometries are different, there is no standard solution and for
each situation clever re-sampling or extrapolation of the truncated data must be
derived. We instead propose a unique iterative algorithm to handle all dose and
sampling configurations.
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3.2. Virtual bow-tie via the dual-rotation framework

3.2.2.2 Energy minimization

We define two quadratic forms for n ∈ {F,T}:

Qn(f) =
1

2
(Rnf + log(In))T Dn(Rnf + log(In)), (3.9)

where RF (resp. RT) is the projection operator for the untruncated (resp. trun-
cated) geometry, and DF (resp. DT) is the ramp filtering operator for untruncated
(resp. truncated) signals.

Since log(In) is known instead of the density projections pn, we cannot recon-
struct an image f such that Rnf + log(In) = log(In

0 ) but only such that:

Dn(Rnf + log(In)) = Dn(log(In
0 )) = 0. (3.10)

Consequently, Dn must remove any unknown offset log(In
0 ).

We minimize both data fidelity terms simultaneously through:

argmin
f





∑

n∈{F,T}

αnQn(f) + χ(f)



 , (3.11)

where χ(f) is a convex regularizing term. Quadratic forms like Qn(f) have al-
ready been used (Langet et al., 2015) with sparsity-enforcing regularizers to cor-
rect for angular sub-sampling and cone-beam artifacts. Dual-rotation however
is aimed at avoiding the need for a strong a priori like sparsity. Therefore, we
use a small quadratic regularization χ(f) = λ‖∇f‖2 that is known to induce a
Gaussian diffusion with full width at half maximum (FWHM) equal to 3.33

√
λ

(Riddell et al., 2004). Following Langet et al. (2015), we solve Equation (5.3)
using a forward-backward splitting scheme:




f (i+1/2) = f (i) − τ

∑
n∈{F,T}

αnRT
n Dn

(
Rnf

(i) − pn

)

f (i+1) = proxτχ(f (i+1/2))
. (3.12)

3.2.2.3 Ramp filtering operators

Row-wise ramp filtering of the projection data is usually performed in the Fourier
space. It has been reported (Zeng, 2015) that, for acurate FDK reconstruction,
the discrete ramp filter should be computed as the Fourier transform of the finite
spatial ramp kernel. Yet this results in a non-zero DC value, which does not
satisfy Dn(log(In

0 )) = 0.
Instead we take advantage of the decomposition of the ramp filter into a

derivative operator ∂u and a Fourier-based Hilbert transform H. Applying ∂u

guarantees that Dn(log(In
0 )) = 0. We write:

DF = H∂u. (3.13)

In the case of DT, ∂u is local and applied within the truncated FOV. How-
ever, the Fourier-based Hilbert transform needs data extrapolation. The residual
RTf + log(IT) is expected to converge to a constant that cannot be zero-padded.
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Instead, extrapolation of ∂u(RTf + log(IT)) with zeroes prior to computing the
Fourier-based Hilbert transform makes perfect sense. However, non-idealities in
the data may still introduce some undesirable discontinuities near the truncation
boundaries. To ensure a smooth transition, a Hanning window is applied to the
residual after it is differentiated. The minimization problem (5.3) thus actually
uses two different operators DF and DT, where DF is defined in Equation (3.13)
and:

DT = HW∂u, (3.14)

with W being the Hanning apodization operator.

3.2.3 Experiments

3.2.3.1 Simulations

We arbitrarily fixed x = 4, and determined through simulations which truncation
width t would provide the best approximation to a true bow-tie to flatten the noise
distribution in the reconstructed images. An analytical density sinogram p was
computed and consisted of 600 profiles in parallel-beam geometry of a centered
disk with diameter 15 cm and density µ = 0.376 cm−1. The value of IF

0 was fixed
to 105 to generate two intensity sinograms IF and IT corrupted by Gaussian
approximations of Poisson noise, further transformed into noisy densities pF =
log(IF

0 ) − log(IF) and pT = log(IT
0 ) − log(IT). Sinogram pT was then digitally

truncated by keeping a fraction t of the initial FOV (Figure 3.8a). Projections
pF and pT were then blended according to Equation (3.8). The blended sinogram
is equivalent to a single acquisition at high-dose, using an ideal beam filter that
absorbs five times more energy at its peripheries. We generated 100 pairs of noisy
sinograms at low and high dose, yielding 100 reconstructed images per value of t.

We also generated 100 sinograms using I0 = IT
0 + IF

0 and a simulated bow-tie
filter perfectly compensating the shape of the disk, by computing a flat, noisy
sinogram further divided by the gain map of the bow-tie filter. All reconstructions
were performed using data blending and analytical (FBP) reconstruction. Maps
of the pixel-wise standard deviation were computed using all replicate recon-
structions. Since the simulated phantom is rotationally invariant, we computed a
radial averaging to obtain radial profiles characteristic of the noise distribution.

3.2.3.2 Acquisitions, reconstructions

We tested the dual-rotation framework on the CTP 515 and on two anthropo-
morphic head phantoms. One head phantom contains a few brain soft-tissue-like
structures, the other is a skull filled with a uniform tissue-equivalent material.

Acquisitions were performed on an IGS-740 C-arm system. The IGS-740 flat-
panel detector has a size of 40 cm ×40 cm, resulting in 500 × 500 projection
images with pixels of size 0.8 mm × 0.8 mm.

The source-to-object distance (SOD) is 820 mm. The source-to-image-distance
(SID) was set at 1295 mm, yielding a magnification factor of 1.58. The full-FOV
width was always 40 cm. The FOV height was first set at 5.8 cm to minimize
scattered radiation, leading to an anatomical coverage of 3.7 cm. Each spin was
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Nominal contrast Diameter Single Dual

1.0% 15 mm 1.5 2.8
0.5% 15 mm 1.0 2.0
0.3% 15 mm 0.5 1.0

1.0% 7 mm (length: 7 mm) 1.0 2.6
1.0% 7 mm (length: 5 mm) 0.8 1.8
1.0% 7 mm (length: 3 mm) 1.4 3.0

Table 3.2 – CNR of single- and dual-rotation reconstructions of the CTP 515 (Figure 3.9a
and 3.9c).

acquired as a single acquisition, then dual-rotation spin pairs were formed asso-
ciating one full-FOV spin with a truncated spin of same FOV height and same
truncation t = 0.6. For each pair, both spins uniformly sampled the 194◦ short-
scan circular orbit, and at least one spin had 607 views (16◦/s rotation at 50 views
per second). In order to test a larger anatomical coverage, one pair of spins was
acquired with a FOV height of 15.6 cm, corresponding to a coverage of 9.9 cm.
For this case, the truncated spin was acquired at a faster gantry rotation speed
(28◦/s at 50 views per second), yielding 347 projections.

For X-ray exposure techniques the system automatic exposure control (AEC)
would use 80 kVp for the head. For the Catphanr, we decided to use 120 kVp
to generate intensities beyond the usual clinical practice in order to reach the
higher dose levels needed for resolving lower contrast inserts. The current was
set to 3.4 mAs for the high-dose, truncated projections and 0.85 mAs for the
low-dose full FOV spins (hence x = 4). The readout is achieved via a single-gain
mode and was not changed between acquisitions. Thus for the highest intensities
(120 kVp × 3.4 mAs) the detector readout would saturate for thicknesses lower
than a few centimeters.

Reconstructed images have isotropic voxels of size 0.94 mm. We used 50
iterations with a gradient step of 0.9. The quadratic regularization strength was
always set to an FWHM of 1 voxel. Using these settings, the reconstruction of
the Catphanr 528 module resolved the 5 line pairs per cm target (Figure 3.6).
For comparison purposes, single-rotation iterative reconstructions were obtained
using αF = 1 for the full-FOV spin and αT = 1 for the truncated one.

3.2.3.3 Image quality measures

The CTP 515 was used to evaluate the performance of the dual-rotation frame-
work in terms of contrast detection. The contrast was measured for the inserts
listed in Table 3.2. The background region was defined as a hollow cylinder
around the target contrast insert with mean µbkg, and the foreground region was
defined as a plain cylinder with a smaller radius, completely included in the con-
trast insert, and whose mean value is denoted by µfg. Each average was computed
over at least 36 voxels.

Noise was estimated from two volumes f1 and f2 reconstructed from two
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(a) Single-rotation (b) Dual-rotation

(c) Single-rotation: zoom on the
5 lp/cm (right) and 6 lp/cm (left)

gauges

(d) Dual-rotation: zoom on the 5 lp/cm
(right) and 6 lp/cm (left) gauges

Figure 3.6 – Single- and dual-rotation reconstructions of the Catphanr 528 spatial res-
olution module.

replicated projection sets, each one being a statistical realization of the same
acquisition protocol (either single-rotation or dual-rotation). By doing so, vol-
ume ∆ = f1 − f2 contained only noise. Since the Catphanr can be considered
rotationally invariant, noise was estimated in K concentric hollow cylinders Ωk

containing all voxels of radius rk−1 ≤ r < rk. The radial sampling {r1, · · · , rK}
was non-uniform in order to keep the total number of voxels |Ωk| approximately
constant. With a cylinder height of 8 slices, this number was equal to 805. We
thus computed the radial standard deviation as:

σ(Ωk) =

√√√√ 1

|Ωk|
∑

v∈Ωk

1

2
∆2(v). (3.15)

The contrast-to-noise ratios (CNR) of insert i belonging to hollow cylinder Ωj

was then computed as:

CNR(i) =
|µfg − µbkg|
σ(Ωj)

. (3.16)
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Figure 3.7 – Simulation setting in parallel-beam geometry.

3.2.4 Results

3.2.4.1 Simulations

The simulated noise distributions are shown in Figure 3.8a. The single-rotation
case corresponds to the FBP reconstruction from pF only, which means that the
entrance dose profile is uniform. The noise is much higher at the center of the
disk than at its periphery. By contrast, the noise distribution produced by the
bow-tie filter shows a flat profile.

Dual-rotation shows an intermediate behavior. The tail of the noise standard
deviation has globally the same shape as in the single-rotation case, and char-
acterizes an unnecessary high dose in the peripheral areas. But at the center of
the disk, the noise standard deviation matches the case of a bow-tie filter, as was
targeted. A transition between the two FOV creates a bump that is stronger
as t gets smaller. Figure 3.8b shows that when t gets higher, noise decreases
significantly at the periphery of the disk and that when t is lower, the image is
noisier. Using t ≈ 0.4–0.6 provided the lowest variability of the radial profiles,
while t ≈ 43% matches the profile mean level of the bow-tie (black dot).

In these simulations, blended density sinograms were reconstructed with FBP,
since air intensity measurements are perfectly known. We now show the results
on real phantom data using our dedicated reconstruction method.

3.2.4.2 Real phantom data

The dose-area products (DAP) were the one reported by the system and corre-
sponding to the system uniform exposure. They are summarized in Table 3.3.
Summing the DAPs of the truncated, high-dose acquisition (first row) and of the
full-FOV, low-dose acquisition (second row) yields the DAP of the dual-rotation
acquisition (third row). The equivalent single-rotation acquisition corresponds to
the case of a unique full-FOV rotation achieving the same dose level at the center
of the object. The equivalent DAP is obtained by summing five times the DAP
of the full-FOV, low-dose acquisition (fourth row). The empirical dose reduction
factor is calculated by dividing the DAP of the single-rotation acquisition by the
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Figure 3.8 – Simulation of equivalent noise distribution in dual-rotation. (a) Radial
profiles of the standard deviations of reconstructed images using FBP, with a single
acquisition only and with different truncated FOV. (b) Noise uniformity, computed as
the standard deviation of the noise radial profiles from (a) as a function of their mean
values.

DAP of the dual-rotation acquisition, yielding demp = 1.54 ≈ d.
Figure 3.9a shows an axial slice of the 515 low-contrast detection module. The

image is flat, but the noise level prevents a good visualization of the inserts. Fig-
ure 3.9b is the dual-rotation reconstruction without smoothing the differentiated
residual of the truncated data with a Hanning window. The image is already
improved in terms of noise reduction and contrast detection; however, intense
streaks are reconstructed as well. Figure 3.9c shows the dual-rotation reconstruc-
tion using the additional smoothing with a Hanning window. The image shows
a uniform background with lower noise. The improvement extends beyond the
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Phantom Catphan Soft-tissue head

Truncated, 3.4 mAs 60.0 13.3
Full-FOV, 0.85 mAs 26.8 7.7

Dual-rotation 86.8 21.0
Equivalent single-rotation 134.1 38.5

Table 3.3 – Dose-area products (dGy · cm2) for the dual-rotation acquisition and for
the equivalent single-rotation acquisition achieving the same dose at the center of the
phantom.

truncated FOV, as the backprojection operator redistributes density projections
along the entire projection lines. Low-contrast inserts thus become visible and
the truncated FOV introduces no artifact.

Noise radial standard deviations are shown in Figure 3.10. The noise in the
single-rotation reconstruction from the full-FOV spin is almost uniform, and tends
to be lower at the periphery of the Catphanr. The dual-rotation reconstructed
image shows a similar behavior, with much less noise. One can observe that the
ratio between both curves varies from 1.9 to 2.6, with an average gain of 2.4. The
CNR values for a set of inserts are given in Table 3.2. If we set a detectability
index as CNR ≥ 1, all inserts of the Table 3.2 are detected with high confidence,
except the less dense one of 0.3% at 15 mm that is borderline.

We further compare the reconstructed image of the CTP 515 using our ap-
proach with the image obtained on a conventional diagnostic multislice CT scan-
ner (Figure 3.11). When averaged over 10 mm on the axial direction, the axial
slice of the dual-rotation reconstructed image (Figure 3.11a) becomes less noisy
and inserts with relative contrast of 0.3% start to appear. Despite low-frequency
non-uniformity of the background and some oblique streaks due to the trunca-
tion of the bed table in C-arm acquisitions, the result is comparable to the CT
reconstruction of the CTP 515 (Figure 3.11b).

Figure 3.12 shows an axial slice cutting the 515 module at the same position
as in Figure 3.9 and a coronal slice cutting through the center of both the 515
and the 518 modules, that have different attenuations. The figure compares the
iterative reconstruction from the full-FOV acquisition only and the dual-rotation
reconstruction at a larger FOV height for the same truncation level t = 0.6.
The reconstructed image from the low-dose, full-FOV spin is now both noisy and
corrupted by scattered radiations, which results in a contrast loss. Associating
this spin with the high-dose, truncated spin, which is less corrupted by scattered
radiations, results in a visually more uniform and less noisy image, despite a
residual cupping.

Figure 3.13a shows the reconstruction from the low-dose, full-FOV spin only.
Again, the image is flat but noisy. Figure 3.13b shows the dual-rotation recon-
struction. We observe no visible artifact coming from the fact that a truncated
spin is involved in the reconstruction. Thus image quality fully benefits from the
noise reduction.
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(a)

(b)

(c)

Figure 3.9 – (a) Single-rotation reconstruction from the full-FOV, low-dose spin. (b)
Dual-rotation reconstruction without using the Hanning window in Equation (3.14). (c)
Dual-rotation reconstruction. Isotropic voxel size: 0.94 mm3. Window width: 50 HU.
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Figure 3.10 – Noise radial standard deviation for the single- and dual-rotation recon-
structed images of the CTP 515.

(a) (b)

Figure 3.11 – Comparison between dual-rotation CBCT (a) and diagnostic multislice CT
(b) reconstructions of the CTP 515. Slice thickness: 10 mm. Window width: 50 HU.
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(a) (b)

(c) (d)

Figure 3.12 – Reconstructed images from acquisitions at a 3D FOV height of 9 cm. (a)
Iterative reconstruction from the full-FOV acquisition only. (b) Dual-rotation recon-
struction. (c) (resp. (d)) Coronal slice of (a) (resp. (b)). Isotropic voxel size: 0.94 mm3.
Window width: 50 HU for (a),(b) and 75 HU for (c),(d).

(a) (b)

Figure 3.13 – Iterative reconstructions of the soft-tissue head phantom from (a) a single
low-dose, full-FOV spin, (b) a dual-rotation acquisition. Isotropic voxel size: 0.94 mm3.
Window width: 150 HU.
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3.3 Discussion and conclusion

Dual-rotation CBCT routinely provides three-dimensional digital subtracted an-
giography (Anxionnat et al., 1998). Cardiac imaging is achieved via multiple
sweeps of the C-arm gantry as well (Lauritsch et al., 2006). We here show that
dual-rotation is also suitable for improved non-contrast-enhanced low-contrast
detection in brain imaging. An iterative reconstruction algorithm was designed
to handle the two degrees of freedom of the dual-rotation, namely, the truncation
level t and the dose ratio x between spin intensities.

It simultaneously reconstructs two spins in a single volume, without merging
measurements in the projection domain, in order not to require the knowledge
of the incoming X-ray beam intensities in the truncated views, nor that mea-
surements be taken at the exact same position twice. This thus puts no specific
constraints on the mechanical design, but puts more weight on the computation
infrastructure. As we mentioned, if the mechanical design is made precise enough
to sample the exact same positions twice, analytical reconstruction is sufficient for
full volume imaging. Let us emphasize that the proposed iterative reconstruction
has more flexibility than a standard formulation. The optimization criterion di-
rectly handles the logarithm of the intensities log(In), not the density projections.
Filtering with zero-padding of the difference between the reprojected image and
the truncated data easily implements the extrapolation of the truncated data by
the full-FOV acquisition through the image space (Cho et al., 2009). Most impor-
tantly, we found that an extra apodization is needed to get the desired uniformity
in the solution. Note that this step formally makes the criterion non-symmetrical,
but this seems minor as we never experienced any convergence issue. Finally, we
designed our optimization criterion using only a small quadratic regularization
term. Although our reconstruction framework would handle more sophisticated
sparsity-enforcing penalties such as the image total variation (TV) (Bian, Han,
et al., 2010), the reconstructed images using TV show modified textures in the
soft-tissue contrast window, that are often undesirable in practice. However, we
did not find the need to move from smooth regularization to TV.

On a quality assurance phantom and on an anthropomorphic head phantom,
images showed superior low-contrast detection and no artifactual trace of being
made of two separate spins. High CNR values in 0.94 mm thick slices with dose
reduction were obtained at 120 kVp with fixed techniques, a dose ratio of 4, a
truncation level of 0.6 and 607 views per spin. These values certainly are beyond
the needs of the clinical practice. They primarily illustrate the capabilities of
dual-rotation framework and should not be considered optimal.

To provide optimal parameters, we need to take into account all aspects of the
system with respect to the targeted clinical task. Let us mention a few. Angular
automatic exposure control (AEC) is the norm. Total acquisition time should be
as short as possible, so that the truncated spin might be acquired with less views
at a faster speed. The scatter contamination depends on the collimated aperture,
and the signal read by the detector in the shadow of the collimation provides
pure scatter measurement than can be used for scatter correction (Siewerdsen et
al., 2006). Flat-panel detectors limited bit-depth with respect to CT degrades
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the measured signal and thus the contrast resolution. Electronic noise degrades
detection of very low intensities.

The proposed acquisition and reconstruction framework does not require to
know nor to estimate the X-ray techniques used by the AEC. It allows one to
vary the truncation (potentially dynamically) in order to better handle scatter.
The increased number of measurements increases the overall bit-depth, but is
more sensitive to electronic noise.

An obvious drawback of C-arm dual-rotation acquisition is that it takes twice
as much time and is thus more sensitive to patient motion. Because C-arm
detectors have low acquisition frame rates, several rotation speeds are available
to yield more or less images for a given acquisition frame rate. Low-contrast
resolution requires the maximum angular sampling, thus the lowest speed. In
addition, the iterative reconstruction method increases the overall complexity of
this framework.
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CHAPTER 4

Direct reconstruction for virtual bow-tie

C-arm CBCT

The iterative reconstruction framework from Chapter 3 was designed in or-
der to deal with truncated data, that could not be handled by simple direct
methods like FBP. In this chapter, we show that, by switching from FBP to
backprojection-filtration (BPF) methods, an alternative, direct reconstruc-
tion for dual-rotation acquisitions is possible. We revisit the standard direct
reconstruction formulas in parallel-beam and fan-beam geometries with linear
detectors, and derive a new semi-discrete BPF formula, that is well suited
to coarse angular sampling of C-arm data. The formula, extended to C-arm
cone-beam geometries, gives access to an unfiltered backprojection space, that
is used to combine the data from the dual-rotation acquisition. Simulations
on synthetic data, as well as experiments on the Catphanr CTP 515 and
on the head phantom with soft-tissue-like structures confirm the potential of
this new, direct reconstruction framework.
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4.1 Filtered backprojection, backprojection-filtration

4.1.1 Challenges of dual-rotation direct reconstruction

In the previous chapter, an iterative reconstruction was designed because the
dual-rotation acquisition cannot be pre-processed in the projection space prior
to using a single-rotation, direct reconstruction method such as FDK. Indeed, as
already discussed, we did not enforce any constraint on the repeatability of the
actual positions of the acquired projection views in both spins.

A post-processing solution, that would blend images reconstructed separately
from each spin of the dual-rotation acquisition, was not an option either. In-
deed, this would imply reconstructing a region of interest (ROI) from the trun-
cated acquisition only, which cannot be performed through direct reconstruction
(Natterer, 2001). In particular, since the ramp filter D is non-local, applying
FDK to truncated data pT would inevitably yield artifacted images when rows of
the acquired projection views are not known over their whole supports.

In order to apply a direct reconstruction method to dual-rotation acquisitions,
it seems necessary to blend data from pF and pT in the 3D image space, but prior
to filtering. This observation makes us move from filtered backprojection methods
to backprojection-filtration (BPF) methods, which apply the non-local filtering
operator in the image space. In the following, we review the main state-of-the-art
BPF methods.

4.1.2 Backprojection-filtration methods: a literature review

The standard parallel-beam FBP method first performs a one-dimensional ramp
filter to each projection view and then backprojects the filtered projections in
the image space. It is mathematically equivalent to swap the order of the steps,
namely, to backproject unfiltered projections and to apply a two-dimensional
ramp filter to the backprojected image (Kak & Slaney, 2001). However, this so-
lution is not implementable in practice, since the backprojected image is infinitely
supported but it is actually computed only over a bounded support.
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In the context of diagnostic helical CT, a new type of BPF formula was pro-
posed (Zou & Pan, 2004a, 2004b), that is based on the reconstruction of PI-lines.
PI-lines are straight lines connecting two points of a helical source trajectory, that
are separated by less than one helix turn. The proposed reconstruction method
backprojects locally filtered projections over PI-lines, that are further filtered by a
Hilbert transform: hence, the filtering step remains intrinsically one-dimensional.
The local filtering step is a differentiation with respect to the source trajectory
curvilinear abcissa.

These results were further extended to a broader class of source trajectories
(Zhuang et al., 2004; Zou et al., 2005; Pack et al., 2005; Schöndube et al., 2007;
Bian, Xia, et al., 2010). They were also reformulated in the circular parallel-
beam and fan-beam geometries by Noo et al. (2004). The authors first define the
differentiated backprojection (DBP) in the parallel-beam geometry as the back-
projection of differentiated projections with respect to the detector coordinates;
they relate it to the true image f via:

DBP(x) =

π∫

0

Bθ

[
p′

θ

]
(x)dθ = −2πH π

2
[f ] (x), (4.1)

where Hα applies the one-dimensional Hilbert transform to all lines oriented along
α⊥. When f is derived through Equation (4.1), we call the method the Hilbert-
transformed DBP, denoted DBP-HT. Only a local operation (the derivation) is
applied to the projections. The authors further adapted this result to fan-beam
projections by applying a change of variables from parallel-beam to fan-beam
parameters in the integrals.

The previous results involve the inversion of the one-dimensional Hilbert
transform. A simple multiplication by −i sgn(ρ) in the Fourier space is not an
option in practice: again, the supports of backprojection lines are infinite, and
only truncated lines are actually computed. To address this issue, alternative
formulas to invert truncated Hilbert transforms have been proposed (Noo et al.,
2004; Pack et al., 2005; You & Zeng, 2006; Ye et al., 2007; Zeng et al., 2007).
Solutions rely on the assumption that the lines are truncated Hilbert transforms
of a compactly supported function. If so, alternative inversion formulas can be
derived. Let φ(t) = f(x + tα) for some point x and α = π

2 . The inversion
formulas look like:

φ(t) =
−1

w(t)

(
H
[
w ·

(
H [φ] · 1[−R,R]

)]
(t) + C(p)

)
, (4.2)

where H [φ] · 1[−R,R] is the truncated Hilbert line, known only over [−R,R] such

that supp(φ) ⊂ [−R,R], w(t) =
√

(t+R)(R− t) for t ∈ [−R,R] and w(t) = 0
otherwise, and C(p) is a constant value that depends on projection data p =
{pθ}θ∈[0,π]. Note that since function:

t 7→ w(t) ·
(
H [φ] (t) · 1[−R,R](t)

)
(4.3)

is zeroed outside [−R,R], the application of the Hilbert transform to this function
can be performed by simple multiplication by −i sgn(ρ) in the Fourier domain.
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Alternative inversion methods for truncated Hilbert transforms have also been
investigated; they either rely on a different computation of H

[
w ·

(
H [φ] · 1[−R,R]

)]

(Schöndube et al., 2010), on a least-squares fit of coefficients in a given basis ex-
pansion (Sidky & Pan, 2005), or on inversion approaches based on singular value
decomposition (Katsevich, 2010).

Such BPF methods were originally designed for 2D geometries or for 3D he-
lical geometries of diagnostic CT. They were further extended to cone-beam
geometries (Pack et al., 2005; Ye et al., 2005; S. Zhao et al., 2005; L. Yu et al.,
2006; Zhuang & Chen, 2006; D. Xia et al., 2007) and to a wider class of trajec-
tory curves. Such extensions use differentiated projections with respect to the
trajectory curve, thus this curve needs to be densely sampled, which is always the
case in diagnostic CT. In C-arm CBCT, however, angular sampling is coarser.
Noo et al. (2007) proposed a new differentiation scheme that is more robust to
changes in the data acquisition geometry and to coarser angular sampling, but
still needs about 200 views to sample a half circular trajectory.

In the following, we propose a semi-discrete BPF formula, that we call the K-
pass Hilbert-transformed DBP formula, and that we denote DBP-HT-K, in the
parallel-beam geometry. It is equivalent to the discretized DBP-HT when K = 1
and to the semi-discrete FBP when K is equal to the number of projections. In
the context of C-arm CBCT, angular sampling can be an issue; we thus elaborated
on the proposed parallel-beam formula to derive a divergent-beam extension of it,
such that it performs as good as FBP whatever the number of projections. Parts
of this work has been published in (Reshef et al., 2017b; Reshef, Nikoukhah, et
al., 2018; Reshef, Riddell, et al., 2018).

4.2 K-pass Hilbert-transformed DBP (DBP-HT-K)

We start by some mathematical notations. A linear filtering operator O, typ-
ically defined over the Schwartz space S(Rn) of rapidly decreasing functions of
C∞(Rn,R) such that all their derivatives are also rapidly decreasing, applies a
linear filter through the convolution by a kernel function h ∈ S(Rn):

O :

(
S(Rn) → S(Rn)
φ 7→ φ ⋆ h

)
. (4.4)

We use the notations Fn [O] and Fn [h] interchangeably and we use the term
“Fourier transform of O” to denote the n-dimensional Fourier transform of filter
kernel h used by operator O.

4.2.1 Parallel-beam case

4.2.1.1 Notations

The FBP reconstructed image f is obtained by summing up elementary contri-
butions from different view angles sampling the interval [0, 2π] (we intentionally
place ourselves over the full circle already, as in the divergent-beam case). In the
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semi-discrete setting, we denote the finite set of N uniformly sampled angles:

Θ =

{
θi =

(
i− 1

2

)
∆θ, i = 1, · · · , N

}
, where ∆θ =

2π

N
. (4.5)

We define a subdivision of Θ as a collection of subsets {Θk}k=1,··· ,K such that:

K⋃

k=1

Θk = Θ and ∀k 6= l, Θk ∩ Θl = ∅. (4.6)

Then, our semi-discrete FBP reconstruction is:

fN =
π

N

∑

θ∈Θ

BθD [pθ] =
π

N

K∑

k=1

gΘk
, (4.7)

where:
gΘk

=
∑

θ∈Θk

BθD [pθ] . (4.8)

Note that when K = 1, ΘK = [0, 2π] and we have π
N gΘK

= fN . On the other
hand, if K = N , Θk = {θk} is reduced to a single view angle, gΘk

is the back-
projection along lines colinear to θk of the ramp-filtered projection at angle θk,
D [pθk

]. In this case, we write gθk
= g{θk} = Bθk

D [pθk
]. In between these two

extreme cases, a natural subdivision of [0, 2π] is ΘFRT =
[

π
4 ,

3π
4

]
∪
[

5π
4 ,

7π
4

]
, the

subset of frontal views, and ΘLAT = Θ \ ΘFRT, the subset of lateral views.

4.2.1.2 Angular splitting

We now have a closer look at elementary contribution gθ. Note that more gen-
erally, the ramp filter operator can be decomposed into an order-n derivative
operator and a residual operator:

D [pθ] = F (n)
[
p

(n)
θ

]
, (4.9)

where F (n) writes in the Fourier space as:

F1

[
F (n)

]
(ρ) =

|ρ|
(2iπρ)n

. (4.10)

Typically, n ∈ {0, 1}. We also denote by F
(n)
α , the two-dimensional filter that

amounts to filtering each line Lα(t) = {tα + uα⊥ | u ∈ R} with F (n) (Table 4.1).
The first result of this section is Theorem 4.2.1. The proof is given in Section 4.5.1.

Theorem 4.2.1. Let α ∈ R such that θ · α 6= 0. Then the following holds:

gθ = F (n)
α

[
b

(n)
θ (α; ·)

]
, (4.11)

where:
b

(n)
θ (α, ·) = Bθ

[
σα

θ (θ · α)n−1p
(n)
θ

]
, and σα

θ = sgn(α · θ). (4.12)
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n = 0 n = 1
Ramp D Hilbert H

(−2π)nF1

[
F (n)

]
(ρ) |ρ| −i sgn(ρ)

(−2π)nF2

[
F

(n)
α

]
(ν) |ν · α⊥| −i sgn(ν · α⊥)

Table 4.1 – Operator F (n) of Equation (4.10) for n ∈ {0, 1}, and the corresponding

formulation of the 2D mono-directional filter F
(n)
α .

Figure 4.1 – Backprojection-filtration over an angular subset

We now discuss the consequences of Theorem 4.2.1. First, by showing that
it is possible to swap the filtering and the backprojection steps, it provides a
BPF formula for an elementary FBP image gθ. The trivial case is α = θ, which
means that backprojecting a filtered projection oriented along θ⊥ is equivalent to
backprojecting first the unfiltered projection (that is, copying translated versions
of the original projection in the image space), and then filtering each line colinear
to θ⊥. Of course, this is not preferred to conventional FBP.

The interesting result is that α can be arbitrarily selected as long as θ ·α 6= 0.
In particular, let Θk = [θmin, θmax]  [0, π]. Then α can be chosen fixed for all
θ ∈ Θk. More specifically, any α ∈ ]

θmax − π
2 , θmin + π

2

[
is an admissible angle

such that Equation (4.11) holds for all θ ∈ Θk (Figure 4.1). Hence:

gΘk
= F (n)

α

[
b

(n)
Θk

(α; ·)
]
, b

(n)
Θk

(α; ·) =
∑

θ∈Θk

b
(n)
θ (α; ·). (4.13)

Equation (4.13) is the backprojection-filtration counterpart of Equation (4.8).
It tells that projections can be applied a local operator first (namely, an order-
n derivative operator), weighted, then backprojected in the image space; the
filtering step is applied along lines Lα of the image space; it thus reduces to a
collection of one-dimensional filtering operations.

We are now able to propose our K-pass BPF formula for reconstructing f
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α

α⊥

θmin

θmax

Bθmin

Bθmax

Figure 4.2 – Extended support for filtering a backprojection over an angular subset. Lines
that cross the circular field of view (black circle) have a finite intersection with the support
of the backprojection (dark area). It is thus sufficient to compute the backprojection over
a rectangular extended support (black rectangle) to perform Fourier-based filtering along
direction α⊥ (arrow).

from the set p = {pθ}θ∈Θ of projections, using the splitting approach from Equa-
tion (4.7) and the backprojection-filtration formula from Equation (4.13).

Theorem 4.2.2. If for each angular subset Θk there exists an appropriate αk

satisfying Equation (4.13), then:

fN =
π

N

K∑

k=1

F (n)
αk

[
b

(n)
Θk

(αk; ·)
]
. (4.14)

Let us have a closer look at the filtering step. As already mentioned, it reduces
to one-dimensional filtering along lines Lα. We take advantage of the fact that if
Θk = [θmin, θmax]  [0, π], and if α ∈ ]

θmax − π
2 , θmin + π

2

[
, then the intersection

between the support of the backprojection over Θk and any line Lα is finite
(Figure 4.2). In other words, provided that the bounded support, over which the
backprojection is actually computed, is large enough (namely, if it extends in the
direction α⊥ from 2R to 2R

(
1 + max

(|θmin · α|−1, |θmax · α|−1
))
, where R is

the radius of the circular field of view), all lines Lα that are needed to recontruct
fN are known over their entire supports, and can thus be filtered in the Fourier
domain directly instead of using the finite inverse Hilbert transform, just like in
FBP. Note that this observation remains valid whatever the angular sampling
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Figure 4.3 – General reconstruction flowchart for the splitting BPF method.

N : there is an equivalence between the semi-discrete FBP and the proposed
semi-discrete BPF formula.

When n = 1, we call our formula the K-pass Hilbert-transformed DBP for-
mula, denoted DBP-HT-K. As a special case of the general flowchart of Fig-
ure 4.3, we suggest to use K = 2 and to divide projection views into lateral and
frontal views (Figure 4.4). For frontal views, we choose αFRT = π

2 , leading to
horizontal filtering of the backprojected lines. The support of the backprojected
lines does not exceed (1 +

√
2) times the reconstructed FOV diameter along the

x-axis. For lateral views, we choose αLAT = 0, leading to vertical filtering of the
backprojected columns. Again, the support of the backprojected columns does
not exceed (1 +

√
2) times the reconstructed FOV diameter along the y-axis.

4.2.1.3 Differentiated backprojection

We set n = 1 and K = 1. Then, using α1 = π
2 , we get:

fN =
π

N
gΘ1

=
1

2π
H π

2


 π
N

∑

θ∈Θ

Bθ

[
p′

θ

]

 . (4.15)

Equation (4.15) is our DBP-HT-1 reconstruction formula. It is nothing but the
discretized formulation of the DBP-HT formula from (Noo et al., 2004), which is
easily recovered by letting N → +∞. Let us make two observations at this point:

(i) When K = 1, the support of the backprojected image b
(1)
Θ

(
π
2 , ·
)
may spread

far in the direction of the x-axis; more precisely, the size of the original

square grid is increased by a factor

(
1 + cos

(
π−∆θ

2

)−1
)
, where ∆θ = 2π

N

along the x-axis. Although it is still theoretically possible to perform the
Hilbert filtering step in the Fourier domain, it becomes intractable in prac-
tice, as it would require to compute the backprojection over a very large
support. Hence, the shift from “traditional” Hilbert filtering to alterna-
tive inversion methods when the Hilbert line is only known over a bounded
support.
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(a) Practical angular subset decomposition

(b) Corresponding reconstruction workflow

Figure 4.4 – Practical parallel-beam BPF reconstruction.

(ii) These alternative inversion methods are defined in the context of analytical
reconstruction; they are not adapted to semi-discrete settings where N gets
smaller. This will be investigated in Chapter 5.

4.2.2 Divergent-beam case

We now study the translation of our method from the parallel-beam to the fan-
beam geometry. A first resampling method is derived in a similar way as for
the fan-beam FBP method, which was also used in (Noo et al., 2004) for the
fan-beam Hilbert-transformed differentiated backprojection method. Limits of
this approach are discussed and a new, intrinsically fan-beam method is then
proposed.

4.2.2.1 Resampling formula for the fan-beam case

We place ourselves in the continuous domain, by letting N → +∞ and replacing
the Riemann sums by integrals over [0, 2π]. The resampling formula first rewrites
integrals involved in Theorem 4.2.1 in order to use parallel-beam parameters
(θ, u), and then performs the change of variables provided in Equation (2.25).

We first write b
(n)
θ (α; x) as (Kak & Slaney, 2001; Noo et al., 2004):

b
(n)
θ (α,x) =

2π∫

0

+∞∫

−∞

sgn(θ′ ·α)(θ′ ·α)n−1δ(n)(x·θ′⊥−u)pθ′(u)δ(θ′−θ)dudθ′, (4.16)
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where we denoted by δ(n) the convolution kernel associated with the order-n
derivative, which is (−n − 1)-homogeneous1, and δ is the Dirac delta function.
Fan-beam parameters are related to parallel-beam parameters via the formulas
given in Equation (2.25). The corresponding Jacobian determinant writes:

J =
D2d

√
û2 +D23 . (4.17)

We end up with the following result. The proof is given in Section 4.5.2.

Theorem 4.2.3. The un-filtered backprojection b
(n)
θ (α, ·) can be expressed using

fan-beam projections via:

b
(n)
θ (α, ·) =

2π∫

0

D2

sn+1

θ̂

B̂θ̂

[
dn

dûn

{
p̃θ̂(û) sgn(ω · α) (ω · α)n−1

× δ

(
θ̂ + arctan

(
û

D

)
− θ

)}]
dθ̂,

(4.18)

where ω = Dθ̂ + ûθ̂⊥, and:

p̃θ̂(û) =
d

D
· D√

û2 +D2
p̂θ̂(û). (4.19)

Again, Equation (4.18) can be seen as an extension of the fan-beam Hilbert-
transformed differentiated backprojection formula, whose proof is left in Ap-
pendix A. Of course, chain rules should be further applied to put the discon-
tinuities induced by the Dirac delta function out of the derivative operator (Noo
et al., 2004). However, this approach needed to get back to a continuous for-
mulation, from which discretization should be applied. Here, moving from the
continuous domain to a finite number of projections is not straightforward: in-
deed, since the integrals use resampling of the fan-beam data, they must be densly
sampled both spatially and angularly around view θ, in order to find a pair (θ̂, û)

that satisfies the equation θ̂ + arctan
(

û
D

)
= θ. Although this can be the case in

diagnostic CT, this will not be the case for C-arm CBCT, nor, a fortiori, for an
arbitrarily small number N of views.

4.2.2.2 Semi-discrete fan-beam BPF formula

Instead of computing the same quantities as in the parallel-beam case using fan-
beam projections and the change of variables from Equation (2.25), we compute
different quantities that are intrinsically related to the fan-beam geometry. The
new method derives directly from what was done in parallel-beam geometry using
the parallel-beam FBP formula; here, we start from the fan-beam FBP from
Equation (2.26). We can still write:

fN =
π

N

K∑

k=1

gΘk
, (4.20)

1Recall that h is β-homogeneous if h(λx) = |λ|βh(x) for any x and any λ
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and:

gΘk
=
∑

θ̂∈Θk

D2

s2
θ̂

B̂θ̂D [p̃θ̂

]
. (4.21)

We write gθ̂ = g{θ̂} and we derive an elementary BPF formula for gθ̂, that
relies on the decomposition of the ramp filter D into a spatial derivative operator
and a Hilbert transform. We further observe that, for a given 2D point x =
(x · α)α + (x · α⊥)α⊥, the corresponding detector coordinate ûθ̂ is written as:

(
sθ̂(x)ûθ̂(x)
sθ̂(x)

)
= Hα

θ̂
(x · α)

(
x · α⊥

1

)
, (4.22)

where Hα
θ̂

(x · α) ∈ R
2×2 is a homography matrix, whose inverse is also a homog-

raphy matrix. Hence, projection and backprojection can be seen as a collection
of homographic transformations applied from/to lines colinear to α⊥. The proof
of Theorem 4.2.4 is given in Section 4.5.3.

Theorem 4.2.4. Let α ∈ [0, 2π] such that α⊥ is not colinear to an acquired ray
at view angle θ̂, which means (Figure 2.17a):

det
(
Hα

θ̂
(x · α)

)
6= 0. (4.23)

We further define σα
θ̂

(x) = sgn
(
det

(
Hα

θ̂
(x · α)

))
. The following holds:

gθ̂ =
1

2π
Hα

[
b

(1)

θ̂
(α; ·)

]
, (4.24)

where:

b̂
(1)

θ̂
(α, ·) = σα

θ̂

D2

s2
θ̂

B̂θ̂

[
p̃′

θ̂

]
. (4.25)

Theorem 4.2.4 states that the weighted backprojection of Hilbert-transformed
projections p̃′

θ̂
is equal to the Hilbert-filtering along direction α⊥ of the weighted

backprojection (with the same geometrical weights) of p̃′
θ̂
. In other words, the

weighted backprojection operator commutes with the Hilbert transform operator,
which can be taken in 2D as a collection of mono-directional Hilbert operators
along an arbitrary direction α⊥.

As for the parallel-beam case, the same result yields for an angular subset Θk:

gΘk
(x) =

1

2π
Hα

[
b̂

(1)
Θk

(α, ·)
]

(x), b̂
(1)
Θk

(α,x) =
∑

θ∈Θk

b̂
(1)

θ̂
(α,x). (4.26)

We again obtain a semi-discrete reconstruction formula in the fan-beam geometry
by cumulating partial reconstructions over all subsets.

Theorem 4.2.5 (Semi-discrete fan-beam DBP-HT-K). If one can choose a value
of αk such that Equation (4.26) holds for each subset Θk, then image fN can be
recovered as:

fN =
π

N

K∑

k=1

1

2π
Hαk

[
b̂

(1)

Θ̂k
(αk, ·)

]
. (4.27)
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Until now, the local derivative operator was kept in the projection space, and
only the Hilbert transform was applied in the image space. In the following, we
also show that the derivative operator can be moved out of the backprojection
step, so that the full ramp filtering can be applied after backprojection. The
proof is given in Section 4.5.4.

Theorem 4.2.6. Let α ∈ [0, 2π] such that (x + dθ̂) · α 6= 0. The following holds
wherever ûθ̂(x) is non-degenerate (that is, wherever x is not the source point):

gθ̂(x) = Dα

[
b̂

(0)

θ̂
(α, ·)

]
(x), (4.28)

where:

b̂
(0)

θ̂
(α,x) = σα

θ̂
(x)

D2

det(Hα
θ̂

(x · α))
B̂θ̂

[
p̃θ̂

]
(x). (4.29)

The corresponding splitting reconstruction formula is given by:

fN =
π

N

K∑

k=1

Dαk

[
b̂

(0)
Θk

(αk, ·)
]
, b̂

(0)
Θk

(α, ·)
∑

θ∈Θk

b̂
(0)

θ̂
(α, ·). (4.30)

Note that Equations (4.27) and (4.30) not only coincide with the fan-beam FBP
formula when N → +∞: indeed, they yield the same semi-discrete reconstruction
as the semi-discrete fan-beam FBP formula from Equation (2.26). The general
reconstruction flowchart from Figure 4.3 can thus be used with n = 0 and n = 1

using b̂
(n)

Θ̂k
as backprojected images.

4.2.2.3 Extension to C-arm CBCT

As already pointed out, the Tuy conditions are not satisfied by the circular cone-
beam geometry. Hence, only approximate direct reconstruction methods exist,
such as the FDK method. FDK is a direct extension of the fan-beam FBP
method to circular cone-beam geometries (Feldkamp et al., 1984). Following the
same approach, we propose an immediate extension of our method to cone-beam
data. We define this time

b̂
(0)

θ̂
(α,x) = σα

θ̂
(x)

D2

det(Hα
θ̂

(x · α))
B̂θ̂

[
p̃θ̂

]
(x). (4.31)

b̂
(1)

θ̂
(α,x) = σα

θ̂
(x)

D2

sθ̂(x)2
B̂θ̂

[
∂p̃θ̂

∂û

]
(x), (4.32)

where α is orthogonal to the z-axis. This time, the homography matrix Hα
θ̂

(x ·
α)) ∈ R

3×3 is defined by:



sθ̂ûθ̂
sθ̂v̂θ̂
sθ̂


 = Hα

θ̂
(x · α)




x · α⊥

z
1


 . (4.33)
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The approximate splitting BPF methods for circular cone-beam data are:

f̂N,0 =
π

N

K∑

k=1

Dαk

[
b̂

(0)

Θ̂k
(αk, ·)

]
(x), (4.34)

f̂N,1 =
π

N

K∑

k=1

1

2π
Hαk

[
b̂

(1)

Θ̂k
(αk, ·)

]
(x). (4.35)

Note that if the object is invariant along the z-axis, the reconstruction formulas
are exact, in the sense that they correspond to the semi-discrete slice-by-slice
fan-beam FBP formula, which leads to the exact fan-beam FBP when N → +∞.
The proof is given in Section 4.5.5.

Theorem 4.2.7. Assume that f is invariant along the z-axis. Then the recon-
struction formulas from Equation (4.34) are equal to the semi-discrete slice-by-
slice fan-beam FBP formula: f̂N,0 = f̂N,1 = fN .

As for FDK, these formulas would yield cone-beam artifacts in practice,
since anatomies of interest are not invariant along the z-axis. Equation (4.34)
also amounts to a slice-by-slice parallel-beam reconstruction when (D, d) →
(+∞,+∞). An interesting property of formulas from Equation (4.34) is that
they involve quantities such as det(Hα

θ̂
) or sθ̂, which are intrinsically related to

projection matrices. Hence, these formulas are well adapted to non-ideal orbits,
which may differ from a pure circular orbit, but whose differences are encoded
into projection matrices.

Again, in practice, a two-pass reconstruction using frontal and lateral views
is used, yielding, for n = 1:

fBPF =
π

N

1

2π

(
H π

2

[
b̂

(1)
ΘFRT

(
π

2
; ·
)]

+ H0

[
b̂

(1)
ΘLAT

(0; ·)
])
. (4.36)

4.2.3 Simulations

4.2.3.1 Planar geometries

In this section, we compare reconstructions from non-truncated projections us-
ing our approach with either n = 0 or n = 1 to standard FBP. Ideal parallel-
beam projections of a uniform centered unit disk were analytically generated
(Figure 4.5a); we computed a geometry of 720 view angles uniformly distributed
over 180◦. Images are reconstructed over a square grid of size 5122. Three cases
were investigated:

(i) the noise-free, fully sampled case (Figure 4.5b);

(ii) the noise-free, under-sampled case, where only 22 views out of 720, uni-
formly distributed over 180◦, were used (Figure 4.5c);

(iii) the noisy, fully sampled case, where projection lines p were corrupted by
noise according to the Poisson statistics of I0e

−p with parameter I0e
−p

(Figure 4.5d).
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(a) Simulated disk
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(b) Noise-free case (720 views)
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(c) Noise-free case (22 views)
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(d) Noisy case (720 views)

Figure 4.5 – Parallel-beam reconstructions of a uniform disk. Profiles are taken along
the orange line shown in (a).
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(a) Noise-free case
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(b) Noisy case

Figure 4.6 – Fan-beam reconstructions of a uniform disk from 1440 views uniformly
spread over 360◦. Profiles are taken along the orange line shown in Figure 4.5a.

The value of I0 was set to 3 · 105. In all cases, the line profiles show a very good
agreement between all three methods.

We now set n = 1. Ideal fan-beam projections of the same disk were analyti-
cally generated for 1440 views uniformly distributed over 360◦. We set D = 1195
and d = 720 in this experiment. Noise-free simulations include fully sampled
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(a) Noise-free case
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(b) Zoom from (a)
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(c) Zoom from (a)

Figure 4.7 – Fan-beam reconstructions of a uniform disk from 45 views uniformly spread
over 360◦. Profiles are taken along the orange line shown in Figure 4.5a.

(1440 view) and under-sampled (45 views) data; our fan-beam reconstructions
using the rebinning method or the intrinsically fan-beam method are compared
to standard FBP. Results are shown in Figures 4.6 and 4.7. Line profiles are taken
along the same orange line depicted in Figure 4.5a. All three methods show a sim-
ilar behavior when the angular sampling is dense (Figure 4.6a and Figure 4.6b).
However, in the under-sampled case (Figure 4.7a), the rebinned method lacks re-
construction accuray, compared to the intrinsically fan-beam approach: the flat
area of the line profile is corrupted by oscillatory patterns (Figure 4.7b), and
under-sampling streak patterns near the object differ from the patterns given by
FBP (Figure 4.7c).

4.2.3.2 CBCT reconstruction of a uniform cylinder

In this section, we still fix n = 1 and we keep the angular sampling to 1440 projec-
tion views uniformly distributed over 360◦. Density projections were analytically
generated for a uniform cylinder centered at the z-axis. This time, D = 1295 and
d = 820. We compare our reconstruction method to FDK. Results are shown in
Figure 4.8.

We can make two interesting observations from this result. First, the axial
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(a) FDK (axial) (b) FDK (sagittal)

(c) Proposed (axial) (d) Proposed (sagittal)
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Figure 4.8 – CBCT direct reconstruction of a uniform cylinder with FDK (a),(b) and
with the proposed method (c),(d). Line profiles in axial (e) and sagittal (f) views are
shown for both methods.
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4.2. K-pass Hilbert-transformed DBP (DBP-HT-K)

Figure 4.9 – CBCT direct reconstruction of a numerical Defrise phantom with FDK (red)
and with the proposed method (blue). The line profile is taken over a vertical line at the
center of the sagittal slice.

slice of the FDK reconstructed image (Figure 4.8a) shows an accurate reconstruc-
tion within the reconstructed FOV, but values outside the FOV become nonzero.
This is due to the fact that FDK backprojects filtered 2D projections, whose rows
have been ramp-filtered. Ramp-filtered signals of compactly supported signals are
infinitely supported; in the particular case of a uniform cylinder, the filtered rows
tend to zero asymptotically from negative values. In practice, however, only trun-
cated versions of the filtered rows are computed and backprojected: this explains
why positive values outside the FOV cannot be compensated by missing negative
tails of the filtered projections. By contrast, the axial slice of the reconstructed
image using our approach shows a flat background even outside the FOV (Fig-
ure 4.8c). The difference between both reconstructed images can be observed
over a line profile in Figure 4.8e. Of course, this makes no difference in practice,
as it is assumed that only the 3D FOV needs to be reconstructed accurately.

The second observation regards the boudary effects on the sagittal slices.
These boundary effects are visually similar in both FDK and our method (Fig-
ures 4.8b and 4.8d), but it seems that FDK achieves a more uniform reconstruc-
tion over a larger number of axial slices, as suggested on the plotted line profile
in Figure 4.8f. This is confirmed by the reconstruction of a numerical Defrise
phantom using the same parameters (Figure 4.9), which shows more accurate
reconstruction with FDK than with the proposed method. However, for small
cone angles, both methods are equivalent.

4.2.3.3 CBCT reconstruction of a head

A diagnostic CT scan of a head was forward-projected over an ideal circular
orbit using D = d = 1180 mm. A total of 1440 projections sampling Θ was
generated. The projections were reconstructed using FDK (yielding image fFDK)
and Equation (4.36) (yielding image fBPF). We computed the relative error image
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(a) FDK (axial) (b) FDK (coronal) (c) FDK (sagittal)

(d) Proposed (axial) (e) Proposed (coronal) (f) Proposed (sagittal)

(g) Error (axial) (h) Error (coronal) (i) Error (sagittal)

0% 1% ≥ 2%

Figure 4.10 – Noise-free CBCT direct reconstruction of a head using FDK (a),(b),(c),
and the proposed method (d),(e),(f). Pointwise relative error with respect to FDK are
shown in (g),(h),(i). Window width: 50 HU.

of fBPF with respect to fFDK, and we computed the mean relative error (MRE)
over a mask Ω0, denoted ∆Ω0

(fBPF, fFDK), using the formula:

∆Ω(f, f∗) =
1

Card(Ω)

∑

x∈Ω

|f(x) − f∗(x)|
|f∗(x)| (4.37)

Mask Ω0 was defined in order to keep only the voxels higher than 750 HU. Images
were reconstructed on a 256×256×256 grid with isotropic voxels of size 1.17 mm3.

We repeated the experiment using modified projection data corresponding to
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(a) FDK (axial) (b) FDK (coronal) (c) FDK (sagittal)

(d) Proposed (axial) (e) Proposed (coronal) (f) Proposed (sagittal)

(g) Error (axial) (h) Error (coronal) (i) Error (sagittal)

0% 1% ≥ 2%

Figure 4.11 – Noisy CBCT direct reconstruction of a head using FDK (a),(b),(c), and
the proposed method (d),(e),(f). Pointwise relative error with respect to FDK are shown
in (g),(h),(i). Window width: 50 HU.

1.6 · 106 photons per ray emitted from the X-ray source, in order to check the
stability of the method with respect to noise, yielding images fnoisy

FDK and fnoisy
BPF .

Noise-free reconstructed images are shown in Figure 4.10. The images fFDK

and fBPF are visually very similar. Both reconstructions are exact and identical
in the fan-beam geometry of the midplane. However, fBPF is more sensitive to the
cone-beam incomplete sampling over a circular orbit (see the dark streaks near
the temporal bones in the coronal and sagittal slices), which was expected by the
reconstruction of the Defrise phantom in the previous experiment. Similar noise
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behavior occurs for both methods when reconstructing from noisy projections
(Figure 4.11).

On average, the MRE inside Ω0 is equal to 0.42% in the noise-free case and
to 0.43% in the noisy case, the higher errors being located towards points with
high cone angles, as shown in Figures 4.10g–4.10i and in Figures 4.11g–4.11i.

We have provided a new BPF reconstruction method that extends to C-arm
CBCT. In contrast to previous BPF approaches, it is an intrinsically view-based
method, that is well suited to C-arm CBCT acquisitions. We now take advantage
of this new reconstruction method to address the problem of dual-rotation direct
reconstruction for virtual bow-tie C-arm CBCT.

4.3 Application to virtual bow-tie C-arm CBCT

4.3.1 Principle

Recall that two acquisitions are available: one acquisition is a collection pT of N
truncated projections acquired at high dose; the second acquisition is a collection
pF of N non truncated views acquired at low dose. As stated in the beginning
of this chapter, merging the data in the projection space is not relevant, nor is a
simple post-processing step after reconstructing both pF and pT independently.

The key for a good dual-rotation direct reconstruction is to handle data trun-
cation from pT prior to any non-local filtering step. With FBP-like methods,
filtering applies directly to the projections, so that truncation needs to be han-
dled in the projection space, e.g. by ad hoc data extrapolation (Ohnesorge et al.,
1999), with a risk that such empirical solutions leave a residual low-frequency er-
ror in the reconstructed image. In BPF approaches, however, filtering applies to
the backprojected image of locally filtered projections, so that truncation may be
handled either in the projection space or in the unfiltered backprojection space.

We choose the latter as our merging space (Figure 4.12). Since local opera-
tions are applied to projections pT, they correctly sample the unfiltered backpro-
jected image bT within the truncated 3D FOV. Outside this FOV, however, each
backprojected point is observed over a limited angular range, which differs from
one point to the other. We thus merge the truncated 3D FOV of bT with the
unfiltered backprojected image bF obtained from pF, yielding image M(bF, bT)
such that:

M(bF, bT) =

{
wF · bF + wT · bT inside the truncated 3D FOV;
bF outside the truncated 3D FOV.

(4.38)

Weighting functions wF and wT are such that wF + wT = 1. Function wF :
R

3 → [0, 1] can be either a constant or a smooth function ensuring a continuous
transition from bF to bT at the boundaries of the truncated 3D FOV. In the
framework of our proposed BPF method, merging is performed separately for the
frontal views and the lateral views.
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Figure 4.12 – General dual-rotation direct reconstruction flowchart.

4.3.2 Validation on phantom acquisitions

4.3.2.1 Experiments

We first consider the spin obtained by forward-projecting a diagnostic CT scan
of a head as in Section 4.2.3.3. The truncated projections pT were simulated by
applying a digital transaxial truncation to the previous set of 1440 noisy projec-
tions, corresponding to a cylindrical, centered field of view Ω′ whose edges cross
the head skull. For the un-truncated projections pF, we simulated an acquisition
of 1440 projections corresponding to 105 photons per ray emitted from the X-ray
source (hence the dose ratio between the un-truncated and the truncated acqui-
sitions is fixed to 1/16). The BPF reconstruction from pF is denoted fF

BPF. The
merging step was performed using the following weighting function:

wF(x) =
1

2

(
1 − cos

(
π · |x| − rΩ′

∆r

))
, (4.39)

where rΩ′ denotes the radius of the cylindrical ROI Ω′, and ∆r is the transition
zone radial width. In the following, ∆r was arbitrarily set to 5 voxels. The
dual-rotation BPF reconstructed image is denoted fF&T

BPF . The MRE over the
intersection set Ω = Ω′ ∩ Ω0 was computed with respect to the un-truncated
FDK reconstruction fnoisy

FDK (see Figures 4.11a–4.11c). We also show the relative

error images with respect to fF
BPF and to fnoisy

BPF (see Figures 4.11d–4.11f).
Experiments on real data were performed on the Catphanr CTP 515 LCD

module and on the head phantom with soft-tissue-like structures. The acquisition
parameters were the same as in the previous chapter: spins were acquired on an
IGS 740 C-arm system, with SOD = 820 mm and SID = 1295 mm. The full-FOV
width is the detector width, which is 40 cm. The FOV height was 5 cm for the
CTP 515 module and 17.5 cm for the head phantom. For the truncated, high dose
acquisitions, parameter t was set to 0.5 for the CTP 515 module and to 0.3 for the
head phantom. Fixed techniques were used at 0.85 mAs (respectively 3.4 mAs)
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for the full-FOV (respectively truncated) acquisitions. A 120 kVp spectrum was
used for the CTP 515 module, while the head phantom was acquired at 80 kVp.
The short-scan circular orbit was sampled with 607 projections.

Because the reconstruction method is not iterative anymore, the computa-
tional complexity of the method is reduced. Hence, we reconstruct higher resolu-
tion images with isotropic voxel size 0.48 mm. Single-rotation reconstructions use
wF = 1 in Equation (4.38). They are compared to dual-rotation reconstructions,
which use the weighting function wF defined as a radial function of x:

wF(x) =
1

2

(
1 − cos

(
π · |x| − r′

rT − r′

))
, (4.40)

where rT denotes the radius of the truncated 3D FOV, and r′ = rT −∆r < rT. In
the following, ∆r was arbitrarily set to 7.5 mm. Hence, the defined weights select
image bT in the 3D FOV with radius r′ and image bT whenever |x| > rT, with a
smooth blending in the hollow cylinder defined by r′ < |x| ≤ rT. Reconstructions
used n = 1: hence, the filtering step was reduced to a Fourier-based Hilbert
transform.

4.3.2.2 Results

Results of the single-rotation reconstruction from the low-dose spin pF and the
dual-rotation reconstruction are shown in Figure 4.13. The single-rotation recon-
struction fF

BPF (first column) is very noisy and a narrow display window cannot
clearly show the difference between gray and white matters in the brain.

The dual-rotation reconstruction fF&T
BPF (second column) is visually similar to

the reference FDK reconstruction fnoisy
FDK inside the ROI Ω′. Outside the ROI,

image fF&T
BPF shows a very noisy reconstruction of the head. However, the high

noise contained in pF does not seem to propagate inside Ω′. The value of the
MRE inside region Ω = Ω′ ∩ Ω0 with respect to fnoisy

FDK is 0.44%, which is very
similar to the MRE value between the untruncated FDK and BPF reconstructed
images of Section 4.2.3.3.

The relative errors of fF&T
BPF with respect to fnoisy

BPF and fF
BPF are shown in the

first and second columns of Figure 4.14, respectively. The error with respect to
fnoisy

BPF (first column) shows a very good agreement between fF&T
BPF and fnoisy

BPF inside
Ω′.On the axial slice (Figure 4.14a), vertical and horizontal patterns are visible:
they correspond to the proposed two-pass split between frontal and lateral views.
The error with respect to fF

BPF (second column) is also interesting. Indeed, it
shows that fF&T

BPF remains very close to fF
BPF in the regions of the head that are

not in Ω′. This confirms our observation, that the noise patterns contained in
the un-filtered backprojected images do not spread over the whole image after
filtering. Again, the vertical and horizontal bands crossing the axial slice in
Figure 4.14b are characteristic of the two-pass algorithm.

Results on real C-arm CBCT acquisitions are shown in Figures 4.15 and 4.16.
Figure 4.15 shows the results on the CTP 515 module. Figure 4.15a shows a native
thin slice of the BPF reconstructed image from the full-FOV spin only. Contrast
inserts with relative contrasts lower than 1% are barely visible due to the noise
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(a) Single-rotation (axial) (b) Dual-rotation (axial)

(c) Single-rotation (coronal) (d) Dual-rotation (coronal)

(e) Single-rotation (sagittal) (f) Dual-rotation (sagittal)

Figure 4.13 – Dual-rotation direct reconstruction of a head (right column). In comparison,
the single-rotation, FDK reconstruction from the noisy, un-truncated spin is also shown
(left column). Window width: 50 HU.
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(a) Target: low-noise BPF (axial) (b) Target: high-noise BPF (axial)

(c) Target: low-noise BPF (coro-
nal)

(d) Target: high-noise BPF (coro-
nal)

(e) Target: low-noise BPF (sagit-
tal)

(f) Target: high-noise BPF (sagit-
tal)

0% 0.5% ≥ 1%

Figure 4.14 – Dual-rotation direct reconstruction of a head: relative errors (left column)
with respect to the FDK reconstruction from the less noisy, un-truncated acquisition
(Figure 4.11, first row) and (right column) with respect to the FDK reconstruction from
the noisy, un-truncated acquisition (Figure 4.13, left column).
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4.3. Application to virtual bow-tie C-arm CBCT

(a) Single-rotation, 0.48 mm thin slice (b) Single-rotation, 10 mm thick slice

(c) Dual-rotation, 0.48 mm thin slice (d) Dual-rotation, 10 mm thick slice

(e) Difference, 0.48 mm thin slice (f) Difference, 10 mm thick slice

Figure 4.15 – Dual-rotation direct reconstruction of the CTP 515 LCD module. Window
width: 50 HU.
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(a) Single-rotation (b) Single-rotation (zoom)

(c) Dual-rotation (d) Dual-rotation (zoom)

(e) Difference (f) Difference (zoom)

Figure 4.16 – Dual-rotation direct reconstruction of the head phantom. Window width:
150 HU.
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level in the image. Averaging the axial slices over 10 mm (Figure 4.15b) increases
the detectability of peripheral inserts, but does not help to recover sublice central
inserts. Both images are still corrupted by a small residual cupping artifact due
to scattered radiations.

Dual-rotation reconstruction (Figure 4.15c) both reduces the cupping artifact
and increases low-contrast detection of the central contrast inserts. In particular,
one can note that more 0.3% contrast inserts are visible in the 10 mm averaged
thick slice of Figure 4.15d than in Figure 4.15c. From the subtraction of the
single-rotation reconstructed image from the dual-rotation reconstructed image
(Figures 4.15e and 4.15f), one immediately observes that changes only regard the
truncated 3D FOV, where blending actually occured. In this area, the difference
image only shows noise and a low-frequency capping, confirming that noise and
scatter-induced cupping were reduced with dual-rotation reconstruction.

All these observations are confirmed in the more realistic case of the head
phantom with soft-tissue-like structures (Figure 4.16). Noise is reduced with dual-
rotation reconstruction within the truncated 3D FOV (Figures 4.16c and 4.16d)
as compared to the single-rotation case (Figures 4.16a and 4.16b). The scatter-
induced cupping is also reduced in the truncated FOV. Outside this FOV, how-
ever, the difference remains negligible (Figures 4.16e and 4.16f).

4.4 Discussion

A new BPF method was designed in both planar and C-arm CBCT geometries,
that can perform as well as FBP-like methods whatever the number of projection
views, even in divergent-beam geometries: hence, this method is particularly
adapted to the angular sampling of C-arm systems, which is coarser than in
diagnostic CT. We took advantage of the BPF approach to blend dual-rotation
acquisitions in the unfiltered backprojection space. The backprojected image bT is
only well sampled within the truncated 3D FOV, so that blending can only occur
in this area; the full-FOV backprojected image bF is used as a means to handle
data truncation by extrapolating the truncated 3D FOV in the image space.
Filtering is performed by Fourier-based multiplication along lines or columns of
the image space.

As in the iterative reconstruction framework, the insertion of truncated data
acquired at smaller FOV and (potentially) higher air gap reduces the impact
of the scatter-induced cupping artifact in the reconstructed images. In terms
of noise distribution, however, the direct reconstruction framework differs from
the previous approach. The ramp filter and the Hilbert transforms are high-
pass filters that localize high frequency contents, despite being non-local filtering
operators. This property explains why peripheral noise does not corrupt low-noise
data in the truncated 3D FOV of image M(bF, bT). Conversely, the peripheral
noise is not mitigated by the insertion of bT at the center of the image.

Hence, the direct reconstruction method for dual-rotation acquisitions intrin-
sically reconstructs regions of interest (ROI). In the context of virtual bow-tie
imaging, ROI reconstruction should be understood in terms of dual resolution:
our method reconstructs an image that is noisy outside the ROI and with reduced
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noise inside the ROI. Although we believe that the proposed merging strategy
within an iterative framework would improve both the final result and the conver-
gence of the iterations, we propose to study the behavior of our two dual-rotation
reconstruction methods (namely, the iterative and the direct methods) for ROI
imaging in the next chapter.

4.5 Proofs of the theorems

4.5.1 Proof of Theorem 4.2.1

Let θ ∈ [0, 2π] and b
(n)
θ (α; ·) = Bθ

[
σα

θ (θ · α)n−1p
(n)
θ

]
, where σα

θ = sgn(α · θ). Let

x ∈ R
2. Then one can write:

b
(n)
θ (α; x) = σα

θ (θ · α)n−1p
(n)
θ (x · θ⊥) (4.41)

= sgn(A)An−1p
(n)
θ (Ax · α⊥ +B), (4.42)

where A = θ · α and B = (−x · α)θ · α⊥. The Fourier transform of AA,B[p′
θ] :

u 7→ p
(n)
θ (Au+B) is related to the Fourier transform of p

(n)
θ through:

F
[
AA,B[p

(n)
θ ]
]

(ρ) =
1

|A|F
[
p

(n)
θ

] ( ρ
A

)
e2iπ ρ

A
B. (4.43)

Hence, applying F
(n)
α to b̄θ(α; ·) is equivalent to multiplying the right-hand side

of Equation (4.43) by sgn(ρ)
(2iπ)nρn−1 , prior to taking the inverse Fourier transform:

F (n)
α

[
b

(n)
θ (α; ·)

]
(x) =

1

|A|

+∞∫

−∞

sgn(
ρ

A
)

An−1

(2iπ)nρn−1
F1

[
p

(n)
θ

] ( ρ
A

)
e2iπ ρ

A
(Ax·α⊥+B)dρ.

(4.44)
Taking the change of variables ρ′ = ρ

A yields:

F (n)
α

[
b

(n)
θ (α; ·)

]
(x) =

+∞∫

−∞

sgn(ρ′)

(2iπ)n(ρ′)n−1
F1

[
p

(n)
θ

]
(ρ′)e2iπρ′x·θ⊥

dρ. (4.45)

The right-hand side of Equation (4.45) is equal to BθF
(n)
[
p

(n)
θ

]
= BθD [pθ], which

concludes the proof.

4.5.2 Proof of Theorem 4.2.3

The proof of Theorem 4.2.3 relies on some ingredients from the proof of the fan-
beam DBP-HT formula of (Noo et al., 2004), which is given in Appendix A. We
start from the formulation given in Equation (4.16), and we perform the change
from parallel-beam to fan-beam variables in the integrals. First, note that, since
δ(n) is (−n− 1)-homogeneous:

δ(n)(x · θ⊥ − u) =

√
û2 +D2

sθ̂(x)n+1
δ(n)(ûθ(x) − û). (4.46)
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Moreover:

(θ · α) = cos(θ − α) = cos(θ̂ + γ − α) = cos γ · (θ̂ · α) + sin γ · (θ̂⊥ · α), (4.47)

where γ = arctan
(

û
D

)
. Hence:

(θ · α) =
D√

û2 +D2
(θ̂ · α) +

û√
û2 +D2

(θ̂⊥ · α), (4.48)

and:

(θ · α)n−1 =
1

√
û2 +D2n−1

((
Dθ̂ + ûθ̂⊥

)
· α
)n−1

, (4.49)

which can be rewritten as:

(θ · α)n−1 =
1

√
û2 +D2n−1 (ω · α)n−1 , (4.50)

where ω =
(
Dθ̂ + ûθ̂⊥

)
. Hence, the change of variables in Equation (4.16) yields:

b
(n)
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2π∫
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+∞∫

−∞

sgn(ω · α)
1

√
û2 +D2n−1 (ω · α)n−1p̂θ̂(û)
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× δ(n)(ûθ(x) − û)δ

(
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(
û

D

)
− θ

)
D2d

√
û2 +D23 dûdθ̂,

(4.51)

which further simplifies into:

b
(n)
θ (α,x) =

2π∫

0

D2

sθ̂(x)n+1
B̂θ̂

[
dn

dûn

{
p̃θ̂(û) sgn(ω · α) (ω · α)n−1

× δ

(
θ̂ + arctan

(
û

D

)
− θ

)}]
(x)dθ̂,

(4.52)

which concludes the proof.

4.5.3 Proof of Theorem 4.2.4

The proof of Theorem 4.2.4 relies on Lemma 4.5.1 that we prove below.

Lemma 4.5.1. For a matrix H̄ =

(
h̄11 h̄12

h̄21 h̄22

)
∈ R

2×2 such that det H̄ = ±1,

define operator:

UH̄ : φ 7→
(
y 7→ 1

h̄21y + h̄22

φ

(
h̄11y + h̄12

h̄21y + h̄22

))
. (4.53)

The Hilbert transform commutes with operator UH̄ up to a sign:

HUH̄ = sgn(det H̄) · UH̄H. (4.54)
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Proof. Define φ1 = UH̄H [f ] and φ2 = HUH̄ [f ]. Then:

φ1(y) =
1

h̄21y + h̄22

H [f ]

(
h̄11y + h̄12

h̄21y + h̄22

)
(4.55)

=
1

π

+∞∫

−∞

f(y′)dy′

h̄11y + h̄12 − y′
(
h̄21y + h̄22

) . (4.56)

Moreover:

φ2(y) =
1

π
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−∞

UH̄ [f ](y′)dy′
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=

1

π

+∞∫

−∞

(h̄21y
′ + h̄22)−1f

(
h̄11y′+h̄12

h̄21y′+h̄22

)

y − y′
dy′. (4.57)

Define the change of variables y′′ = h̄11y′+h̄12

h̄21y′+h̄22
; since det H̄ = ±1, we end up with

dy′′ = sgn(det H̄)(h̄21y
′ + h̄22)−2dy′ = sgn(det H̄)(−h̄21y

′′ + h̄11)2dy′. Hence, φ2

becomes:

φ2(y) =
sgn(det H̄)

π

+∞∫

−∞

f(y′′)dy′′

h̄11y + h̄12 − y′′
(
h̄21y + h̄22

) = sgn(det H̄)φ1(y),

(4.58)
which concludes the proof.

We are now ready to prove Theorem 4.2.4. Let x = (x, y)T . Let α ∈ [0, 2π],
we write x = xαα + xα⊥α⊥; we keep xα fixed, and we write:

Φ(xα⊥) =
1

sθ̂(xα⊥)2
B̂θ̂

[
H
[
p̃′

θ̂

]]
(xα⊥). (4.59)

The relationship between the detector coordinate and xα is given by:
(
sθ̂(xα⊥)û(xα⊥)

sθ̂(xα⊥)

)
= Hα

(
xα⊥

1

)
(4.60)

where Hα ∈ R
2×2 is a homography matrix. In the ideal circular source-detector

trajectory, Hα is equal to:

Hα =

(
Dθ̂ · α −xαDθ̂ · α⊥

θ̂ · α⊥ d+ xαθ̂ · α

)
. (4.61)

Define H̄α = | detHα|−1/2Hα: then the determinant of H̄α is equal to ±1; in
other words: H̄α ∈ SL(2,R), and from Lemma 4.5.1:

Φ(xα⊥) =
1

sθ̂(xα⊥) detHα
UH̄α

H
[
p̃′

θ̂

]
(xα⊥) (4.62)

=
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θ̂
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H
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H
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[
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θ̂

]]
(xα⊥). (4.64)
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We now take advantage of the affine behavior of sθ̂ with respect to xα⊥ ; indeed
sθ̂(xα⊥) can be written as:

sθ̂(xα⊥) = Axα⊥ +B, (4.65)

where A and B are constant. We then use the following property of the Hilbert
transform: given a function φ, if one defines ψ : y 7→ yφ(y), then:

H [ψ] (y) = − 1

π

+∞∫

−∞

φ(y′)dy′ + yH [φ] (y). (4.66)

Hence, we end up with :

H [
sθ̂Φ
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(xα⊥) = sθ̂(xα⊥)H [Φ] (xα⊥) − A

π

+∞∫

−∞

Φ(x′)dx′. (4.67)

But from Equation (4.64) we also have:
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[
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Combining Equation (4.67) and (4.68) yields:
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so that applying −H one more time to each side of the previous equation leads
to:

Φ(xα⊥) = H
[
σα

θ̂

s2
θ̂

B̂θ̂

[
p̃′

θ̂

]]
(xα⊥) − κH

[
1

sθ̂

]
(xα⊥), (4.70)

where κ = Aπ−1
+∞∫
−∞

Φ(x′)dx′ is constant. We now use a last result on Hilbert

transforms: the Hilbert transform of the Dirac Delta function δ is given by:

H [δ] (y) = η(y), where η(y) =
1

πy
. (4.71)

Since:
1

sθ̂(xα⊥)
=

1

Axα⊥ +B
= A−1τ− B

A
η(xα⊥), (4.72)

where τag(x) = g(x− a), we conclude that:
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(
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B

A

)
. (4.73)

Hence, whenever û(x) is non-degenerate, the Dirac function is equal to zero and:

Φ(xα⊥) = H
[
σα

θ̂

s2
θ̂

B̂θ̂

[
p̃′

θ̂

]]
(xα⊥), (4.74)

which concludes the proof.
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4.5.4 Proof of Theorem 4.2.6

From Theorem 4.2.4, the following holds:

gθ̂(x) =
1

2π
Hα

[
b̂

(1)

θ̂
(α, ·)

]
(x), (4.75)

where:
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B̂θ̂

[
p̃′

θ̂

]
(x). (4.76)

Let x = (x, y)T . Let α ∈ [0, 2π] such that detHα 6= 0, where Hα was defined in
Equation (4.60). We write x = xαα + xα⊥α⊥; we keep xα fixed, and we define:
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1

sθ̂(xα⊥)2
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We observe that:
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Hence:
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Finally:

b̂
(1)

θ̂
(α,x) = σα

θ̂

D2

det(Hα)

∂B̂θ̂

[
p̃θ̂

]

∂xα⊥

(xα⊥), (4.81)

and:
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[
b̂

(0)

θ̂
(α, ·)

]
(x), (4.82)

where:
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θ̂
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detHα
B̂θ̂

[
p̃θ̂

]
(x), (4.83)

which concludes the proof.
Note that in the case of a circular trajectory, we have detHα = D(x+dθ̂) ·α,

and:

b̂
(0)

θ̂
(α,x) = σα

θ̂

D

(x + dθ̂) · α
B̂θ̂

[
p̃θ̂

]
(x). (4.84)

4.5.5 Proof of Theorem 4.2.7

The proof follows the remarks of Feldkamp et al. (1984), which we recall below
for n = 1. The case n = 0 is derived in a similar way. Note that if f is invariant
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along the z-axis, then a projection along a given ray is equal to its projected ray
onto the midplane axis (z = 0), up to a geometrical factor. More specifically:

p̂θ̂(û, v̂) =

√
D2 + û2 + v̂2

√
D2 + û2

p̂θ̂(û, 0). (4.85)

Hence, the cosine-weighted projections p̃θ̂ satisfy:

p̃θ̂(û, v̂) =
D√

D2 + û2
p̂θ̂(û, 0) = p̃θ̂(û, 0). (4.86)

Consequently, derivatives with respect to û are such that:

∂p̃θ̂

∂û
(û, v̂) =

∂p̃θ̂

∂û
(û, 0) (4.87)

and:

b
(1)

θ̂
(α; x) = σα

θ̂

D2

sθ̂(x)2

∂p̃θ̂

∂û
(û(x), 0). (4.88)

Since sθ̂(x) and û(x) do not depend on the z-coordinate, bθ̂(α; x) is invariant

along the z-axis, and so are the b
(1)
Θk

(α; x) for all subsets Θk. Since Equation (4.34)
is exact in the midplane, it is exact everywhere, which concludes the proof.
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CHAPTER 5

From virtual bow-tie to region-of-interest

C-arm CBCT

Although we used it to emulate a virtual bow-tie, our dual-rotation frame-
work is intrinsically related to region-of-interest (ROI) imaging through its
truncated acquisition. In this chapter, we shift from full-volume imaging to
ROI imaging, given a dual-rotation acquisition, that has now a third degree
of freedom, namely, the angular sampling ratio between both acquisitions.
The previous iterative reconstruction framework is shown to successfully re-
construct regions of interest with only a few additional full-FOV projections,
provided that the weights of the minimization problem are adapted to account
for different angular sampling ratios. In the context of direct reconstruc-
tion, we highlight the issue of angular sampling in the well known Hilbert-
transformed differentiated backprojection method of Noo et al. (2004), and
we show that, with no change in the reconstruction framework, our direct
method also works for ROI imaging. A multi-resolution strategy can further
accelerate the computation time. Simulations in planar geometries and ex-
periments on actual C-arm data demonstrate the feasibility of dual-rotation
direct reconstruction for ROI imaging.
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(a) Large-object truncation (b) Large-object truncation (c) Interior tomography

Figure 5.1 – Truncation in ROI imaging. The FOV is indicated as a dashed circle. (a),(b)
Large-object truncations. (c) Interior tomography problem.
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5.1 Challenges of ROI imaging

5.1.1 ROI imaging: a literature review

Region-of-interest (ROI) imaging consists in reconstructing the image FOV de-
fined by transaxially truncated projection data. Data truncation may originate
from the limited detector size, or from the use of collimator blades to reduce the
patient exposure to X-rays. ROI imaging arises in many medical applications
including image-guided radiotherapy, three-dimensional angiography, breast CT,
micro-CT, and C-arm CBCT. We differentiate large-object truncation cases (Fig-
ures 5.1a and 5.1b), where projections acquired along the source-detector trajec-
tory are truncated only over subsets of this trajectory, from the case of interior
tomography (Figure 5.1c), where the 3D FOV is completely inside the imaged
object. We refer to (Wang & Yu, 2013; Y. Xia, 2016) for a deeper insight into
ROI imaging. We hereafter provide an overview of existing methods in this topic.

When density projections p = {pθ = Rθ [f ] | θ ∈ Θ} are truncated, FBP fails
at reconstructing the true object f from p. In the case of interior tomography
(Figure 5.1c), it is known that image reconstruction within the ROI cannot be
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obtained exactly (Natterer, 2001). Truncation, however, is a low-frequency prob-
lem (Bilgot et al., 2012). In the context of FBP, the challenge of reconstructing
an image from truncated projections is related to the non-local property of the
ramp filtering operator D (Hsieh, 2009). Hence, truncation must be handled prior
to filtering. Ramp filtering is performed in the Fourier domain, thus padding is
required. Zero-padding truncated data artificially create strong signal disconti-
nuities, that are enhanced by the high-frequency ramp filter. Instead, different
padding schemes can be used, that do not create such discontinuities, such as
data mirroring or anti-mirroring, and affine padding. An illustration of these op-
tions is shown in Figure 5.2. The reference signal is the parallel-beam projection
of a uniform disk. The truncated 1D signal is the central portion of this projec-
tion (Figure 5.2a). The padding schemes are shown in Figure 5.2b. The original
data are located in the shaded region. When ramp-filtering the zero-padded full
projection signal, we almost get a constant line over the truncated region (black
horizontal line in Figure 5.2c). However, ramp-filtering the zero-padded trun-
cated projection signal yields a much different signal, that suffers from a strong
non-uniformity. This phenomenon is reduced when using continuous padding
schemes, although the signal still suffers from a low-frequency non-uniformity
and a DC shift (Figure 5.2c).

One solution consists in using other additional information to extrapolate the
truncated data. This information may either come from a priori knowledge, or
from additional measurements. We hereafter discuss these two options.

5.1.1.1 A priori knowledge

Empirical data extrapolation (or de-truncation) methods were proposed, for ex-
ample in (Ohnesorge et al., 1999; Hsieh, Chao, et al., 2004; Sourbelle et al., 2005;
Zellerhoff et al., 2005; Zamyatin et al., 2006; Maltz et al., 2007; Kolditz, Meyer,
et al., 2010). These methods provide empirical means to estimate the missing
data. They rely on the assumption that the truncated 3D FOV is most probably
embedded into a medium that is not far from a water-equivalent shape (often a
cylinder or an ellipsoid). By fitting the shape parameters to the data, one can
extrapolate the truncated projections. Alternatively, Maier et al. (2012) optimize
the extrapolated density values to reduce some known symptomatic artifacts in
the reconstructed image. Bier et al. (2013) suggest to take advantage of the
scattered radiations measured in the shadow of collimator blades to estimate a
reasonable extrapolation of missing projection data. All these methods are rou-
tinely used in commercial C-arm CBCT systems; they are used in diagnostic CT
only in the rarer cases where the patients do not fit the image FOV (e.g., when
imaging obese patients with out-of-FOV arms down). However, although the
image quality of the reconstructed images is good enough for the examination
of highly contrasted structures, it is still not enough when using narrow window
widths that are necessary in soft-tissue imaging (Maier et al., 2012).

Instead of finding empirical data extrapolation prior to FBP-like reconstruc-
tion, BPF-based reconstruction methods rely on a priori knowledge about the
support of the imaged object f (Noo et al., 2004; Pan et al., 2005; L. Yu et al.,
2006; Defrise et al., 2006; Zhuang et al., 2004; Cho et al., 2007; Courdurier et
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(a) 1D signals

(b) Padding (original truncated signal in the shaded area)

(c) Ramp-filtered 1D signals

Figure 5.2 – Padding, truncation and Fourier-based filtering.
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al., 2008; Hoskovec et al., 2016; Clackdoyle et al., 2017). They decompose the
ramp filter into a derivative operator and a Hilbert transform. The latter, which
is non-local, is applied to the backprojected lines of the differentiated projections.
In (Noo et al., 2004), such lines correspond to truncated Hilbert lines of the dif-
ferentiated backprojection (DBP). They can be inverted using inversion formulas
for the truncated Hilbert transform, provided that the support of image f is in-
cluded in the computed truncated Hilbert lines. In case of large-object truncation
(Figures 5.1a and 5.1b), some lines within the 3D FOV can still be recovered ex-
actly using the Hilbert-transformed DBP approach. Defrise et al. (2006) further
relaxed the conditions on the reconstructible Hilbert lines and showed that f
could be inverted wherever one end-point of the truncated Hilbert transform lies
outside the support of f . However, the interior tomography problem is still not
solvable with these methods.

Building on these approaches, several works tried to extend the area of the
truncated image FOV that could be recovered from Hilbert lines (Ye et al., 2007;
Courdurier et al., 2008; Kudo et al., 2008; Lauzier et al., 2010; Taguchi et al.,
2011; Tang et al., 2012; Ueda et al., 2017). These approaches assume the existence
of a “tiny a priori knowledge”, in the sense that they assume that f is known
over a given subregion (Ye et al., 2007; Courdurier et al., 2008; Kudo et al.,
2008; Lauzier et al., 2010). Under some conditions on the subregion, the authors
show that this additional information is enough to solve the interior tomography
problem. However, the choice of the known subregion is still an open issue.
Taguchi et al. (2011) suggest to manually select a region from an artifacted, FBP-
like ROI reconstruction, and to estimate the true attenuation coefficients within
this subregion through the minimization of a regularized reconstruction problem
using total variation (TV). Ueda et al. (2017) constrain the ROI reconstruction
by imposing a TV regularization over a band shape near the ROI boundaries.
Such methods demonstrate that, although the interior tomography problem can
be solved theoretically, the issue of actually knowing f over a subregion is not
straightforward and often needs an intermediate iterative reconstruction loop
using sparsity-enforcing penalties.

Other authors suggested to embed such sparsity-enforcing priors in the re-
construction problem (B. Zhang & Zeng, 2007; Ziegler et al., 2008; H. Yu &
Wang, 2009; Q. Xu et al., 2011; Maier et al., 2012; Lee et al., 2014; Sidky et
al., 2014; Z. Zhang et al., 2015; Ward et al., 2015; Y. Xia, 2016; Hu et al., 2016;
H. Zhang et al., 2016; Arcadu et al., 2017; D. Xia et al., 2018). These compressed-
sensing-based iterative reconstruction methods, however, introduce a bias in the
reconstruction problem, and the resulting images often lack texture information,
that is essential when looking at the low-contrast structures of soft-tissues in the
brain.

Recently, Y. Xia et al. (2014) propose to decompose the ramp filtering oper-
ator into an order-2 Laplace filtering operator and its residual, non-local filter.
This filter was shown to be more robust to data truncation. The authors show
good reconstruction results for high-contrast imaging; however, they still need
empirical artifact reduction techniques, and their method is not robust to the
presence of highly contrasted objects at the boundary of the image FOV. Hence,
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the method is not adapted to soft-tissue imaging.

5.1.1.2 Knowledge from additional data

Alternatively, additional information may directly come from additional mea-
surements. One way to acquire missing data points, while severely reducing the
patient dose outside the ROI, is to use physical beam shapers that pre-attenuate
X-rays passing outside the ROI (R. N. Chityala et al., 2004; R. Chityala et al.,
2005; Létourneau et al., 2005; Moore et al., 2006; Patel et al., 2008; Chen et
al., 2008; Cho et al., 2009; Schafer et al., 2010; Lück et al., 2013). Once the
projections are converted into densities, direct reconstruction methods are used.
However, this conversion to densities requires accurate air intensity estimates,
which are not constant over the 2D FOV. This would require additional calibra-
tion steps on C-arm systems. Similar to beam shapers, bow-tie filters may also
be used (Yoo & Yin, 2006; Mail et al., 2009; Menser et al., 2010; G. Zhang et al.,
2013), but their fixed shapes lack flexibility for ROI imaging.

Full-FOV data may be also obtained from prior low-dose, possibly undersam-
pled or low-resolution acquisitions (H. Yu et al., 2006; Chen et al., 2009; Maaß et
al., 2011; Shen et al., 2011; Kolditz et al., 2012; Sen Sharma et al., 2013), which
are used to extrapolate the truncated data prior to a direct FBP-like reconstruc-
tion. When acquisition geometries are different, a first image reconstructed from
the full-FOV projections is reprojected in the acquisition geometry of the trun-
cated projections, and used to extrapolate the missing data (Chen et al., 2009;
Maaß et al., 2011; Kolditz et al., 2012). When only a few full-FOV projec-
tions are available (Sen Sharma et al., 2013), the first reconstructed image can
be iteratively improved, e.g., by including a total variation (TV) penalty in the
minimization problem, prior to reprojection in the geometry of the truncated
projections. When the acquisition geometries are the same, data can be merged
in the projection space and a direct FBP or BPF method can be applied to the
merged projection data (H. Yu et al., 2006; Shen et al., 2011). This puts more me-
chanical constraints on the imaging system. It would also require, in the context
of C-arm CBCT, two acquisitions with the same number of projections, where
the full-FOV data are acquired at much lower dose than the truncated data.
This case falls into our virtual bow-tie imaging framework, which was already
explored in Chapters 3 and 4 with more general acquisition settings. Moreover,
in contrast to our proposed approach for virtual bow-tie imaging C-arm CBCT,
these methods only use the full-FOV data as a pre-processing step. We showed
previously the interest of considering the full dual-rotation acquisition as a whole
and to combine the data within a single reconstruction framework.

Interestingly, wavelet-based reconstruction methods using a few additional
full-FOV projections were proposed in (Olson & DeStefano, 1994; Olson, 1995;
Delaney & Bresler, 1995; Langer & Peyrin, 2010). They take advantage of the
localization of wavelet bases to compute part of the wavelet expansion of the
truncated projections, and complement them with coarser wavelet coefficients es-
timated from the full-FOV projections. Reconstruction is obtained by backpro-
jecting filtered wavelets. Wavelet-based approaches have not been investigated in
this work.
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S. B. Jin et al. (2014) also suggest to use a few additional full-FOV projec-
tions and to solve simultaneously two TV minimization problems, resulting in a
dual-resolution image reconstruction. By doing so, they succeed in extrapolating
the image outside the ROI, even at a coarser resolution. By contrast, Lu et al.
(2014) propose to acquire a dense set of low-dose projections, and to use a few ad-
ditional high-dose, truncated projections to improve the image quality within the
truncated FOV, via a compressed-sensing-based iterative reconstruction frame-
work. The resulting image, however, lacks low-contrast texture information in
the ROI. A hybrid solution was proposed in (Y. Xia et al., 2015a) in the context
of interventional neuroradiology. The authors relied on two orthogonal fluoro-
scopic images acquired on a biplane C-arm system in order to estimate a 3D
shape model of the head. This model was then used as a prior on the support
of empirically extrapolated rows. This method was shown to perform as good as
the work of (Kolditz, Meyer, et al., 2010), but still lacks low-contrast resolution
for soft-tissue imaging.

5.1.2 Proposed dual-rotation acquisition

Direct FBP-like reconstruction methods require a non-local, Fourier-based fil-
tering. In ROI imaging, data extrapolation is needed prior to filtering. Data
extrapolation methods may either rely on a priori knowledge or from additional
full-FOV measurements. Previous works showed that with a little spatial a priori
knowledge, the interior tomography problem could be solved. However, finding
this known subregion is still an open issue. It is likely that this information
would not be available in the clinical practice. Model-based iterative reconstruc-
tion based on sparsity-enforcing regularizers is an alternative to these methods,
but it still introduces a bias in the image, and it is more demanding in terms of
computational complexity.

Instead, acquiring a few additional full-FOV data on a C-arm system seems
to be more feasible than guessing an a priori information on the image content.
We thus consider a dual-rotation acquisition in which the full-FOV projections
are angularly subsampled. Hence, we add a third free parameter to the pair (t, x)
characterizing respectively the amount of truncation of pT with respect to pF, and
the mAs ratio between the two acquisitions. In the following, we always assume
that projection views are uniformly sampled over the source trajectory, and we
further write:

s =
NT

NF
, (5.1)

where NT is the number of truncated projections and NF is the number of full-
FOV projections. Typically, NF ≪ NT in ROI imaging (see Figure 3.5).

In the following, we focus on the reconstruction of such dual-rotation acquisi-
tions, when increasing the sampling ratio s. We rely on our previous reconstruc-
tion methods developed for virtual bow-tie C-arm CBCT, and we investigate
their application to interior tomography. As mentioned previously, we believe
that it is beneficial to simultaneously use the truncated and un-truncated data
in the reconstruction problem. We show that, provided a small modification in
the cost function, the same iterative reconstruction framework as in Chapter 3
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can be used for ROI imaging as well; in particular, it does not require a more
demanding compressed-sensing-based reconstruction framework. We also revisit
the Hilbert-transformed DBP method in the context of dual-rotation acquisitions.
We highlight the limits of this approach with respect to angular sampling, and
we propose a dual-resolution workaround in parallel-beam geometry. More gen-
erally, we revisit our direct BPF method from Chapter 4 and we show that it can
accurately solve the interior problem. A dual-resolution variant is proposed only
to speed-up the reconstruction.

5.2 Iterative reconstruction

5.2.1 Adapting the virtual bow-tie framework

We adapt the definition of weights αF and αT = 1 − αF in order to account for
different angular sampling ratios s. The contribution of the full-FOV acquisition
to the overall dose is now (Reshef et al., 2017a):

αF =
NFI

F
0

NFI
F
0 + t ·NTI

T
0

=
1

1 + txs
. (5.2)

Note that when NT = NF, then s = 1 and we recover the previous formulation
of Chapter 3. Since s > 1 in ROI imaging, no projection-based blending strategy
can be used as a pre-processing step prior to direct reconstruction. However,
using the new weights defined above, the same iterative reconstruction strategy
as proposed for full-volume imaging can still be used for ROI reconstruction. In
particular, we still minimize the following energy:

argmin
f





∑

n∈{F,T}

αnQn(f) + χ(f)



 , (5.3)

where the regularizing term is kept smooth χ(f) = λ‖∇f‖2. The definition of
the ramp filtering operators remains the same as in the full-FOV imaging case.
Note that χ(f) only acts as a stabilizer of the iterative reconstruction loop. Since
it is smooth, we do not expect to extrapolate the image outside the ROI.

5.2.2 Experiments and results

Acquisitions were done with the same parameters as described in Section 3.2.3.
For ROI imaging, spins with less views were obtained by digital uniform down-
sampling by varying s from 8 to 128, yielding sets of 4 to 75 full-FOV projections.
On a separate experiment, truncation was applied digitally.

5.2.2.1 Catphanr CTP 515

When no full-FOV view is available (Figure 5.3a), the quadratic criterion does
not bring in any a priori information and performs no better than what would
be obtained with an analytical reconstruction with extrapolation, which was ex-
pected. The association with 9 low-dose full-FOV projections yields an image
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(a) (b)

(c) (d)

Figure 5.3 – Dual-rotation ROI imaging of the Catphanr 515 module. (a) Single-rotation
iterative reconstruction. (b), (c) Dual-rotation reconstructions using (b) 9 projections
and (c) 18 projections. (d) Dual-rotation reconstruction using the fully sampled full-FOV
spin. The truncated FOV is shown as a dashed circle.

with severe distortions outside the ROI, but provides a much better uniformity
inside, as shown in Figure 5.3b. At 19 projections (Figure 5.3c), the cupping
within the ROI is entirely removed and all inserts can be seen as well as in Fig-
ure 5.3d where all full-FOV views have been used for the reconstruction. The plot
of Figure 5.4 shows the central profiles through the ROI, after subtracting each
profile with its mean value to remove DC-shifts that also affect the reconstruc-
tion of truncated data. It confirms how a small number of full-FOV projections
flattens the profiles.
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Figure 5.4 – Dual-rotation ROI imaging: deviations from the mean line profiles values.
The line profile is the one drawn in Figure 5.3a.

5.2.2.2 Uniform head phantom

Figure 5.5 shows the reconstructions of the uniform head phantom acquisition for
s = 16 to 128, after it has been digitally truncated right through the skull bones,
a case that no simple extrapolation can compensate. Again, when no full-FOV
view is available, the quadratic criterion does not perform any better than an
analytical reconstruction. The skull outside the ROI is not even visible in the
windowing of Figure 5.5a, but appears heavily distorted with the first subset of
four full-FOV views (Figure 5.5b). As the number of full-FOV views is increased,
the distortions disappear progressively outside the ROI and, most interestingly,
much more quickly within the ROI (Figure 5.5b–5.5f). The profiles taken through
the line shown in Figure 5.5a were similar and flat as soon as full-FOV views were
introduced. However, they differed by DC shifts of 20% maximum for s = 128
(graph not shown). Once corrected for these offsets, absolute values of the errors
with respect to the profile of the reference image (Figure 5.5f) are shown as
histograms in Figure 5.6.

This measurement singles out the truncated case as much worse than when
even 4 views only are introduced in the reconstruction criterion. The bar chart,
however, does not show a consistent error reduction with respect to the increasing
number of views: the case s = 128 has less voxels with errors greater than 3%
than cases s = 64 and s = 32. This is possible due to the fact that it only
captures part of the error, as it does not take into account the DC shift. We
find that the DC shift is consistently reduced by increasing the number of views.
The fact that the entire skull had been truncated did not change the behavior of
the dual-rotation framework with respect to the Catphanr case: what appears
as distortions outside the ROI is a sufficiently good depiction of the missing low
frequencies to correct for truncation artifacts within the ROI.
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(a) (b) (c)

(d) (e) (f)

Figure 5.5 – Dual-rotation ROI imaging of a head phantom consisting of a skull with
uniform soft tissues. (a) Iterative reconstruction from the truncated spin only. (b)–(e)
Dual-rotation ROI reconstructions using respectively 4, 9, 37 and 75 additional full-FOV
projections. (f) Iterative reconstruction from the full-FOV spin only. Isotropic voxel size:
0.94 mm3. Window width: 150 HU.

Figure 5.6 – Deviations from mean profile values along the line profile from Figure 5.5.
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5.2.3 Discussion

Dual-rotation CBCT was shown to successfully emulate a virtual bow-tie in Chap-
ters 3 and 4. We here show that it is also adapted to ROI imaging. The same
iterative reconstruction algorithm was used for both virtual bow-tie and ROI
imaging. A minor adaptation of weights αF and αT made it handle not only the
truncation level t and the dose ratio x between spins, but also the ratio of views
per spins s. The algorithm reconstructed the entire FOV with severe distortion
outside the ROI, but it was quite accurate inside when using less than 10 addi-
tional views, that is 1/60th of additional views. This is better than what we antic-
ipated when analyzing the literature on ROI imaging with two acquisitions. Our
understanding of prior art is that authors searched for a low-dose low-frequency
image of the outer field of view to extrapolate the missing low-frequencies. When
they rely on angular undersampling, they used a sparsity prior to compensate the
undersampling (Kolditz, Kyriakou, & Kalender, 2010; Kästner et al., 2015). On
the other hand, authors working on interior tomography succeeded using “tiny”
a priori information (Kudo et al., 2008, 2013; Wang & Yu, 2013). Our setup
shows that what is a distorted image of the object outside the field of view still
is a faithful-enough depiction of the low frequencies whose truncation causes ar-
tifacts in the ROI. The polar sampling of the tomographic acquisition does not
need many angles to sample those central frequencies; therefore a least-square
criterion does not need extra sparsity a priori to reconstruct the ROI well. The
“tiny” a priori can thus be replaced by a “tiny” amount of full-FOV views.

5.3 Direct reconstruction

We now explore the feasibility of a dual-rotation direct reconstruction method
for ROI imaging, including the interior tomography problem. We first adapt the
Hilbert-transformed DBP approach of Noo et al. (2004) to dual-rotation acquisi-
tions in the parallel-beam geometry. We highlight the important issue of angular
sampling in the Hilbert-transformed DBP method, that will be handled by a dual-
resolution reconstruction. We then move to our BPF-based dual-rotation direct
reconstruction method and show that it is suited for ROI imaging as well. A
dual-resolution variant of the proposed method is also proposed to further speed
up the reconstruction.

5.3.1 Adapting the Hilbert-transformed DBP

5.3.1.1 Hilbert-transformed DBP and angular sampling

In the parallel-beam geometry, the Hilbert-transformed DBP method (Noo et al.,
2004) relies on Equation (4.1), that we rewrite below:

DBP(x) =

π∫

0

Bθ

[
p′

θ

]
(x)dθ = −2πH π

2
[f ] (x). (5.4)

The inversion of operator H π
2
is carried out by using inversion formulas for the

truncated Hilbert transform like Equation (4.2), assuming that each line of image
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DBP is the truncated Hilbert transform of a compactly supported function f .
This equality was derived in the continuous domain; when N finite projection

views p = {pθk
}k=0···N−1 are available and uniformly distributed over [0, π], the

integral becomes:

DBPN (x) =
π

N

N−1∑

k=0

Bθk

[
p′

θk

]
(x) ≈ −2πH π

2
[f ] (x). (5.5)

More specifically, one can show that DBPN is equal to −2πH π
2

[fN ], where fN is
the semi-discrete FBP reconstruction from p.

Theorem 5.3.1. Let fN be the FBP reconstruction from p = {pθk
}k=0···N−1:

fN (x) =
π

N

N−1∑

k=0

Bθk
D [pθk

] (x). (5.6)

Then the following holds:

DBPN (x) = −2πH π
2

[fN ] (x). (5.7)

Proof. Rewrite fN (x) with an integral over [0, π] using Dirac functions:

fN (x) =

π∫

0

(
D [pθ] (x · θ⊥) · π

N

N−1∑

k=0

δ(θ − θk)

)
dθ. (5.8)

Write the ramp filtering step in the Fourier space and use the projection-slice
theorem and the change of variables from polar to Cartesian coordinates to obtain:

fN (x) =

+∞∫

−∞

+∞∫

−∞

F2 [f ] (ν) · π
N

N−1∑

k=0

δ(∠ν − θk)e2iπν·xdν, (5.9)

with ∠ν denoting the polar angle of Cartesian coordinate ν (∠ν = θ if ν = ρθ⊥).
Hence, the Fourier transform of fN is:

F2 [fN ] (ν) = F2 [f ] (ν) · π
N

N−1∑

k=0

δ(∠ν − θk). (5.10)

As expected, F2 [fN ] is nothing but a radial sampling of lines of F2 [f ]. Similarly,
one can write DBPN (x) using Dirac functions, and as in (Noo et al., 2004),
express the derivative operator as a multiplication in the Fourier domain, and
use again the projection-slice theorem and the change of variables from polar to
Cartesian coordinates to obtain:

DBPN (x) = −2π

+∞∫

−∞

+∞∫

−∞

(−i sgn(ν · α))F2 [f ] (ν) · π
N

N−1∑

k=0

δ(∠ν − θk)e2iπν·xdν

= −2πHα [fN ] (x),

(5.11)

where α = π
2 . This concludes the proof.
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(a) 22 projections, M = 32 (b) 22 projections, M = 1024
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Figure 5.7 – Angular sampling, resolution and image support.

When N → +∞, then fN → f , and the support of fN gets closer to the
support of f , which is compact. Hence, in the context of diagnostic CT, where
the source trajectory is finely sampled, one can apply the finite Hilbert transform
formula of Equation (4.2) to the lines of DBPN . Recall that the issue of fine
or coarse angular sampling depends on the resolution of the reconstruction grid
(hence of the detector sampling) (Kak & Slaney, 2001). In theory, for an image
of size M × M corresponding to a sampling of the detector axis into M bins, a
natural choice is to ensure that all samples in the 2D Fourier plane are separated
by no more than 1, yielding N = π

2M . In practice, satisfying this equality is not
necessary, but N is still chosen approximately equal to M . Angular subsampling
occurs when N is significantly lower than M .
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An illustration of this observation is shown in Figure 5.7. A uniform disk is
reconstructed from N = 22 projections on a grid of sizeM = 32×32 (Figure 5.7a)
and M = 1024 × 1024 (Figure 5.7b). Although blurred, the low-resolution image
shows a compactly supported disk with an approximately flat background equal
to zero. By contrast, the high-resolution image shows many subsampling streaks
in the background. When plotting a horizontal line profile passing through the
center of the disk (Figure 5.7), the reconstructed image suffers from subsampling
streaks. These streaks create oscillating bumps outside of the support of the
object, so that the support of the line profile depicted in Figure 5.7c is not
compact anymore.

Hence, the approximation of f by image fN is valid at a given spatial res-
olution. Heuristically, one can find a low-pass filter L, such that L[fN ] is close
enough to L[f ]. Indeed, projections p provide a radial sampling of the 2D Fourier
transform of f : hence, the lower N , the lower the frequencies that are well sam-
pled by p. As a low-pass filter, we consider an isotropic Gaussian filter Gσ with
standard deviation σ. We thus obtain:

Gσ[DBPN ] = −2πGσH π
2

[fN ] = −2πH π
2
Gσ[fN ] ≈ −2πH π

2
Gσ[f ], (5.12)

and the inversion of Equation (4.2) can now be applied to Gσ[DBPN ].
In the context of dual-rotation direct reconstruction, we merge the DBP im-

ages DBPF and DBPT, obtained respectively from projections pF and pT, using
the following operator:

MROI(DBPF,DBPT) =

{
wF ·Gσ[DBPF] + wT · DBPT inside the ROI;
Gσ[DBPF] outside the ROI.

(5.13)
The weighting functions wF and wT = 1 −wF are the same as in Chapter 4. The
finite inverse Hilbert transform formula from Equation (4.2) is then applied to
each line of image MROI(DBPF,DBPT).

5.3.1.2 Experiments

We used a diagnostic CT slice of a brain (Figure 5.8a) and forward-projected it
to simulate parallel-beam acquisitions. 720 parallel-beam projections of 576 bins
were generated, sampling uniformly 180◦. Truncated data pT consisted of the
720 projections with a digital truncation keeping the detector bins corresponding
to a centered, circular 2D FOV of 256 in diameter. Non-truncated data pF were
samples of the 720 original projections, that are uniformly distributed over 180◦.
Images were reconstructed on a square grid of size 5122. No noise was added
to the data in this experiment, so that only the angular sampling of the non-
truncated data was varied. The Hilbert-transformed DBP image obtained from
the full set of 720 non-truncated projections was used as our reference image fref .
The weighting function wF was the same as in Equation (4.39), with ∆r = 15
pixels. The inversion of the Hilbert transform was handled by the finite inverse
transform formula of You and Zeng (2006).

In order to study the influence of the Gaussian kernel standard deviation σ,
we varied it from 0 (no smoothing) to 40 with steps of 5, for each sampling ratio
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(a) Reference image
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Figure 5.8 – Hilbert-transformed DBP-based dual-rotation reconstruction for ROI imag-
ing. Window width: 50 HU.

s. In the simulations, we set s = 2q, with q varying from 0 (s = 1) to 7 (s = 128).
For each reconstructed image fσ,s, the mean relative error (MRE) with respect
to the reference image was computed over the ROI as:

MREσ,s =
1

|ROI|
∑

x∈ROI

|fσ,s(x) − fref(x)|
|fref(x)| , (5.14)

where |ROI| denotes the total number of pixels within the ROI.

5.3.1.3 Results

The mean relative errors are shown in Figure 5.8b. For each value of s, the
minimum MRE is indicated with a green dot. These values are also recalled in
Table 5.1. Although for NF ≥ 90 (s ≤ 16), the minimum MRE values seem
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s NF σ MREσ,s (%)

1 720 0 0.00
2 360 0 8 · 10−3

4 180 1 0.04
8 90 3 0.97
16 45 6 0.30
32 22 31 1.10
64 11 27 1.11
128 5 30 3.72

Table 5.1 – Optimal smoothing parameter σ and corresponding MRE for each angular
subsampling ratio s.

to follow a smooth curve on the plane (σ, s), they are significantly higher and
towards much higher σ values when NF drops to as few as 22 (s ≥ 32). This
change of behavior suggests that the proposed approach may fail when s is too
high.

Reconstructed images with the optimal value of σ according to the MRE cri-
terion are shown in Figure 5.9. For each case, the dual-rotation reconstruction
without Gaussian smoothing of DBPF is also shown. In all cases, when no Gaus-
sian smoothing is applied to DBPF (Figures 5.9a, 5.9c, 5.9e), the reconstructed
ROI suffers from horizontal streaks due to the invalid inversions of the Hilbert
lines, even with 90 full-FOV projections (Figure 5.9e). For s < 32, the opti-
mal smoothing of DBPF strongly reduces the impact of horizontal streaks in the
ROI, resulting in values of the MRE of 0.003 for s = 16 (Figure 5.9d) and 0.001
for s = 8 (Figure 5.9f). As observed previously in Figure 5.8b, when s = 32,
the strong Gaussian smoothing applied on DBPF reduced the effect of the hor-
izontal streaks, but the reconstructed image suffers from residual low-frequency
non-uniformities (Figure 5.9b).

5.3.1.4 Discussion

In this study in the parallel-beam geometry, we adapted the Hilbert-transformed
DBP method to dual-rotation acquisitions for ROI imaging, when only a few full-
FOV projections are available. The case of angularly subsampled acquisitions was
not investigated by the previous works on Hilbert-transformed DBP (Noo et al.,
2004). Our study confirms that inversion formulas for the finite Hilbert transform
are not appropriate when dealing with angular subsampling.

To overcome this limitation, a dual-resolution approach was proposed, and
the hybrid DBP image MROI(DBPF,DBPT) merges the truncated DBP image
at the native spatial resolution with the full-FOV DBP image, convolved with
a Gaussian kernel with standard deviation σ. In our simulations, an exhaustive
search was performed in order to find an optimal σ value for each sampling
ratio s. However, automatizing this selection is still an open issue: the choice of
the smoothing parameter should result from a compromise between a reduction
of subsampling streaks and a preservation of the true high-frequency structures
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(a) σ = 0, s = 32 (b) σ = 31, s = 32

(c) σ = 0, s = 16 (d) σ = 6, s = 16

(e) σ = 0, s = 8 (f) σ = 3, s = 8

Figure 5.9 – Dual-rotation reconstruction via the Hilbert-transformed DBP method with-
out and with optimal smoothing of DBPF. Window width: 50 HU.
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(a) Merging strategy
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Figure 5.10 – Merging step in dual-rotation ROI direct reconstruction.

that are needed to extrapolate the Hilbert lines of DBPT.
Our method successfully reconstructed the ROI when s is not too high. When

using the optimal values of σ, the MRE was kept lower than 1% when s < 32.
However, when s gets higher than 32, no good compromise between streak removal
and structure preservation could be found for the value of σ, resulting in low-
frequency non-uniformities in the reconstructed ROI.

One may wonder whether this approach is adapted to fan-beam geometries.
In (Noo et al., 2004), the authors applied a change of variables from parallel-
beam parameters (u, θ) to fan-beam parameters (û, θ̂) in the integral definition of
DBP. As a result, relevant fan-beam rays are picked up from the densely sampled
projection data to reconstruct the same DBP as in the parallel-beam geometry.
Unfortunately, this method cannot be used when the full-FOV acquisition is
angularly subsampled. Instead, we take advantage of our proposed splitting BPF
method (Chapter 4).

5.3.2 View-wise BPF solution

5.3.2.1 Standard scheme

The proposed dual-rotation direct reconstruction from Chapter 4 can be used
without any modification in the context of ROI imaging. We recall how the
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Figure 5.11 – Flowchart of the multiresolution dual-rotation direct reconstruction. Sym-
bol ↓ σ denotes a downsampling of factor σ, and ↑ σ denotes an upsampling of factor σ.

merging step is carried out in Figure 5.10a. This example is in parallel-beam

geometry, for n = 1 and for Θ2 =
[

π
4 ,

3π
4

]
. Each line of the merged image is

then filtered by a Hilbert transform computed as a multiplication in the Fourier
transform.

One example of such hybrid line profiles is shown in Figure 5.10b. In Chap-
ter 4, the tails of this line (blue areas) were as finely estimated as the central part
of the line (green area), coming from the truncated projection data. The only
difference was the amount of statistical noise corrupting the data at a higher level
in the blue areas with respect to the green area. Here, the tails of the line are
estimated from only a few full-FOV views, resulting in strong spikes along the line
in the blue areas. However, these spikes oscillate around the true lower-frequency
line, so that on average, the shape of the Hilbert line is still well estimated.
Moreover, as in the previous chapter, the filtering operators, whether the ramp
filter or the Hilbert transform, are expected not to propagate the zero-mean,
high-frequency content of these spikes too far from their original locations.

As already shown in Chapter 4, this approach can be extended to C-arm
CBCT via a Feldkamp-like extension of the fan-beam case.

5.3.2.2 Sped-up reconstruction through a dual-resolution strategy

Note that the support of the reconstructed image exceeds the support of the ROI.
However, data outside the ROI are not of much interest here. Hence, it is not
necessary to reconstruct areas outside the ROI at the native spatial resolution.

We thus propose to backproject unfiltered, non-truncated views into a lower-
resolution grid (Figure 5.11). This solution speeds up the reconstruction process,
since backprojection is a step that is computationally expensive, especially for C-
arm cone-beam data; it also mitigates the subsampling streak artifacts in case of
highly subsampled data. Of course, the choice of the subsampling factor depends
on the content of the image: the higher the frequencies of the image, the less a
low-resolution backprojected image will be able to extrapolate the data missing
in the truncated projections.
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Once the low-resolution backprojection step is done, the low-resolution image
is further upsampled to the correct resolution, and merging of the unfiltered
backprojection images can be performed as already mentioned previously.

5.3.2.3 Experiments

We first looked at the standard scheme in a simulated circular, full-scan, fan-
beam geometry with a linear detector. We used the same diagnostic CT slice of
a head as before. We set d = 720 and D = 1195. Since the source trajectory
samples the full circle, 1440 density projections were generated, that uniformly
sample 360◦. Again, truncation was set digitally such that the ROI is centered,
circular, with a diameter of 256 pixels. The reference image is the single-rotation
BPF reconstruction from the 1440 full-FOV projections, and the actuall full-
FOV projections used in our dual-rotation reconstruction were uniformly sampled
from these 1440 projections. For each value of s that was tested, the MRE was
computed.

We then used again our ideal, circular cone-beam projections of a head CT
scan. The truncated projections pT were the same as in Section 4.3.2.1: they were
obtained by applying a digital transaxial truncation to the previous set of 1440
noisy projections, corresponding to a cylindrical, centered field of view Ω′ whose
edges cross the head skull. It is thus expected that empirical projection extrapo-
lation methods would not perform as well. Such a reconstruction was computed
using (Hsieh, Chao, et al., 2004; Hsieh, Armstrong, et al., 2004), yielding image
fROI

FDK. For the un-truncated projections pF, we simulated an acquisition of 90
projections corresponding to 1.6 · 106 photons per ray, yielding image fROI

BPF. As
in Section 4.3.2.1, the dose ratio between the un-truncated and the truncated
acquisitions is fixed to 1/16. The merging step was performed using the same
weighting function as in Equation (4.39).

Experiments were also performed on the Catphanr CTP 515 LCD module as
in Section 4.3.2.1, with the same weighting function wF. A uniform angular sub-
sampling was applied to the full-FOV projections. The size of the reconstructed
isotropic voxels is 0.48 mm, so that images consist of cubes of 5123 voxels. For the
dual-resolution strategy, the full-FOV projections were backprojected on coarser
grids with voxel sizes varying from 0.48 mm (native resolution, σ = 1, grid of size
5123) to 7.68 mm (coarsest resolution, σ = 16, grid of size 323). Coarse backpro-
jected images were upsampled to the full resolution using trilinear interpolation.
We used the dual-rotation direct reconstruction with the full set of full-FOV pro-
jections (s = 1) at the native resolution (σ = 1) as our reference image and we
used the mean relative error (MRE) as our quality measure. Parker’s weights
were used to handle redundancy in the short-scan acquisition trajectory (Parker,
1982).

We then keep σ = 1 (single-resolution case) and we used a clinical non-injected
acquisition of 600 projections of the head acquired over a short-scan trajectory.
The truncated projections pT were simulated by applying a digital transaxial
truncation of t = 0.52. Additional vertical collimation was digitally applied.
Full-FOV spins with less views were obtained by digital uniform downsampling.
We first studied the limit case NF = 2, when the full-FOV projections only
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Figure 5.12 – Mean relative error as a function of the number of full-FOV projections.

consist of two orthogonal views. In this case, the reconstructed image has an
isotropic voxel size of 0.48 mm. We then set s = 16, yielding a set of 37 full-FOV
projections, and we reconstructed an image with isotropic voxel size 0.96 mm
in order to mitigate the image noise and better visualize the brain soft-tissues.
Because it is a real clinical acquisition, the auto-exposure control (AEC) loop was
used to adapt the tube techniques with respect to the patient’s radio-opacity at
each view angle.

5.3.2.4 Results

The results in the fan-beam geometry are shown in Figure 5.12. The MRE de-
creases quickly when increasing the number of full-FOV projections. We observe
that the MRE drops below 0.2% when NF ≥ 45 (s = 32).

Reconstructed images in the fan-beam geometry are shown in Figure 5.13. As
expected, a single-rotation reconstruction from the truncated projections (Fig-
ure 5.13a) induces a strong capping artifact, that forbids the use of short window
widths for visualization. The reconstructed ROI is much flatter when using as
few as 22 full-FOV projections (s = 64, Figure 5.13b), despite some residual
non-uniformities localized near the boundaries of the ROI. When s gets lower,
the reconstructed images are visually equivalent to the reference image in the
ROI (Figures 5.13c and 5.13d); they achieve MRE values of 0.13% and 0.05%,
respectively.

Results of ROI reconstruction in the ideal circular cone-beam geometry are
shown in Figure 5.14. The left column shows the FDK reconstruction from the
truncated projections only using empirical projection extrapolation. As expected,
such extrapolation cannot perform well when highly contrasted structures such
as bones lie at the edge of the field of view. The image fROI

FDK suffers from a shift
in gray values and from low-frequency non-uniformities that prevent from using a
narrow window display. Our reconstruction method is shown in the right column.
It yields an image that is visually similar to the reference FDK reconstruction
fnoisy

FDK (Figure 4.11, first row) inside the ROI Ω′. Outside the ROI, image fROI
BPF

shows streaks characteristic of angular subsampling. However, they do not seem
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5.3. Direct reconstruction

(a) Single-rotation (truncated) (b) s = 64

(c) s = 32 (d) s = 16

Figure 5.13 – Dual-rotation direct reconstruction for ROI imaging: circular, full-scan,
fan-beam geometry with linear detector. Window width: (a) 150 HU (b)–(c)–(d) 50 HU.

to propagate much inside Ω′. The values of the MRE inside region Ω = Ω′ ∩ Ω0

with respect to fnoisy
FDK remain below 1%, at 0.50% for fROI

BPF.
As in the case of virtual bow-tie direct reconstruction, it is interesting to look

at the pointwise relative error images shown in Figure 5.15. The left column
shows axial, coronal and sagittal slices of the relative error image with respect to
the FDK reconstruction from low-noise, un-truncated, subsampled acquisitions.
This column shows a very good agreement between the reference image and the
proposed reconstruction inside the head and outside the ROI. As in Figure 5.15,
the vertical and horizontal bands in Figure 5.15a reveal the processing steps of
the two-pass approach. The same patterns can be seen in Figure 5.15b, but this
time, the image and all the right column represent the relative error image with
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respect to the FDK reconstruction from un-truncated, low-noise, fully sampled
acquisitions (see Figure 4.11, first row). This time, the error is minimal within
the ROI, with vertical and horizontal patterns that can be observed in the error
image but are visually unidentifiable in the proposed dual-rotation reconstruction
from Figure 5.14.

Results on the CTP 515 module are summarized in Figure 5.16. The MRE
is minimal at full resolution with the finest angular sampling of the full-FOV
data (top right corner), and increases when either the angular sampling or the
resolution of the full-FOV backprojection gets coarser. We observe that the MRE
remains below 1% when s ≥ 32 (NF ≥ 18) and the coarse voxel size does not
exceed 3.84 mm (reconstruction grid of size 643). Examples of reconstructed
CTP 515 modules are shown in Figure 5.17 for s = 16 (NF = 37) and various
dual-resolution settings. The reconstructed image that is closest to the reference
image (Figure 5.17a) according to the MRE uses the native resolution (σ = 1,
Figure 5.17b). Using a resolution that is four times coarser for the full-FOV
backprojection (σ = 4, Figure 5.17c) only increases the MRE by 0.03 points,
from 0.15% to 0.18%, with visually no effect on the reconstructed ROI. However,
when the resolution of the full-FOV backprojection gets too coarse (σ = 16,
Figure 5.17d), it fails at reconstructing the ROI, which suffers from streaks and
non-uniformities, and shifted gray values, a behavior that is similar to the one
observed on simulations in parallel-beam geometry in Section 5.3.1.3. Despite
this effect, the central contrast inserts with relative contrasts of 1% are visually
detectable in all cases.

Results on the clinical head case are shown in Figure 5.18 in the limit case
where using only two full-FOV projections. Visually, the reconstructed ROI (Fig-
ure 5.18a) looks very much like the image reconstructed from the full-FOV, fully
sampled projections (Figure 5.18b). In particular, the structures of the tempo-
ral bones are correctly reconstructed. A profile taken along the yellow line in
Figure 5.18a is shown in Figure 5.18c. The profile from the reconstructed ROI
matches the profile from the reference image. The residual error (black curve) is
negligible with respect to the reconstructed coefficients. However, this error still
lies between -300 HU and 100 HU: hence, as expected by our previous simulation
studies, using only two full-FOV views is not enough for soft-tissue imaging (note
the large window width used for visualization of the bone structures).

Results on the clinical head case using 37 full-FOV projections are shown
in Figure 5.19. The MRE with respect to the image reconstructed from the
full-FOV, fully sampled projections (left column) and taken within the ROI was
0.88%. A window width of 100 HU was used to display the results, with no
visual difference in the ROI between the two reconstructions. This experiment
is in very good agreement with the simulated full-scan cone-beam acquisition of
the CT head scan, despite a small lateral truncation even in theoretically un-
truncated data pF.
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(a) FDK (axial) (b) Proposed (axial)

(c) FDK (coronal) (d) Proposed (coronal)

(e) FDK (sagittal) (f) Proposed (sagittal)

Figure 5.14 – Dual-rotation direct reconstruction for ROI imaging: circular, full-scan,
cone-beam geometry with flat-panel detector. Window width: 200 HU (left column),
50 HU (right column).
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(a) Error from subsampled FDK
(axial)

(b) Error from reference FDK
(axial)

(c) Error from subsampled FDK
(coronal)

(d) Error from reference FDK
(coronal)

(e) Error from subsampled FDK
(sagittal)

(f) Error from reference FDK
(sagittal)

0% 0.5% ≥ 1%

Figure 5.15 – Dual-rotation direct reconstruction for ROI imaging (see Figure 5.14):
relative errors (left column) with respect to the FDK reconstruction from the subsampled,
un-truncated acquisition (reconstruction not show) and (right column) with respect to the
FDK reconstruction from the noisy, un-truncated acquisition (Figure 4.13, left column).
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Figure 5.16 – Mean relative error as a function of the angular sampling and the resolution
of the backprojection of the full-FOV projections.

(a) Reference image, MRE = 0.00% (b) σ = 1, MRE = 0.15%

(c) σ = 4, MRE = 0.18% (d) σ = 16, MRE = 9.27%

Figure 5.17 – ROI direct reconstruction of the Catphanr 515 LCD module using different
resolution factors for the full-FOV, subsampled spin. The MRE is computed within the
ROI, with respect to the reference image (a), which is reproduced from Figure 4.15b.
Window width: 50 HU.
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(a) Full-FOV reconstruction (b) ROI reconstruction

(c) Line profiles

Figure 5.18 – ROI reconstruction of a digitally truncated clinical C-arm CBCT acquisition
of a head, using two additional full-FOV projections. The line profiles are taken along
the yellow line displayed in (a). Window width: 2800 HU.

138



5.3. Direct reconstruction

(a) (b)

(c) (d)

(e) (f)

Figure 5.19 – ROI reconstruction of a digitally truncated clinical C-arm CBCT acquisition
of a head, using 37 additional full-FOV projections (right column). The same reconstruc-
tion from the fully sampled full-FOV spin is also shown (left column) for comparison.
Window width: 100 HU.
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5.4 Discussion

In this chapter, we switched our viewpoint from full-volume imaging to ROI imag-
ing using dual-rotation acquisitions. In this context, by contrast to the virtual
bow-tie case, we did not look at the lowest possible dose per view but rather at
vastly undersampling the full-FOV spin. By introducing an additional weight s
defined as the ratio of views per spins, we successfully used the same iterative
algorithm as in Chapter 3. Interestingly, the DBP-HT-K formula, that was used
to propose an alternative, direct virtual bow-tie reconstruction in Chapter 4,
could be used “as is” with undersampled full-FOV spins for ROI imaging, with
almost no visible artifact in the reconstructed ROI when using as few as 1/32th
of additional views. Heuristically, this can be understood from the fundamental
property of the Hilbert transform, which localizes high frequency contents such
as noise in the virtual bow-tie case, or more structured patterns such as subsam-
pling streaks in the case of ROI imaging. Hence, neither the noise in the previous
chapter, nor the streaks in this chapter, seem to propagate much inside the ROI.

Since reconstructed points outside the truncated 3D FOV are not of interest,
a dual-resolution reconstruction could also be used, where a coarser reconstruc-
tion grid is selected when backprojecting the undersampled, full-FOV projections.
Little image distortion was observed when using voxels four times larger outside
the truncated FOV, showing the robustness of the approach to coarser recon-
struction grids. Of course, at some point, the grid becomes too coarse to capture
a reasonable extrapolation of the data, leading to low-frequency non-uniformities
in the reconstructed ROI. The same phenomenon was observed in the special
case of dual-rotation ROI imaging using DBP-HT-1 in parallel-beam geometry.
This special case requires careful Hilbert transform inversion, since Fourier-based
filtering is not an option anymore. Using K = 1, the formula DBP-HT-K also
becomes intrinsically mono-directional, since only a single pass in one direction
is required: it is thus the only case that may open the gates to diagnostic CT
reconstruction methods based on pi-lines (Zou et al., 2005).

Although the main focus of this work has been low-contrast detection, it is
instructive to see that a two-view extrapolation can yield a good ROI reconstruc-
tion for high-contrast imaging. This proof of concept demonstrates the feasibility
of arbitrary high-contrast ROI reconstruction using only two additional, orthog-
onal full-FOV views, for example from fluoroscopic images acquired on a biplane
C-arm system (Y. Xia et al., 2015b). Of course, this reconstruction would fail at
recovering lower contrasts, which suggests that a more complex workflow would
be needed to actually acquire a full-FOV spin, although undersampled.
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6.1 Outcomes of this work

In the context of interventional neuroradiology, 3D X-ray imaging with C-arm
systems is of much interest to reduce the time needed to treat patients and im-
prove the clinical outcomes. In terms of soft-tissue imaging, however, C-arm
systems still show inferior performance as compared to diagnostic CT scanners.

This work proposed to investigate the challenges of low-contrast detection
with a commercial C-arm system. The CBCT imaging chain is complex: the
X-ray tube, the mechanical deformations of the gantry, the non-idealities of the
X-ray detector, the reconstruction algorithm, can all impact the 3D image quality.
Through specific setups and simulations, we managed to isolate scattered radia-
tions, dose, and sampling, as key factors to improve C-arm CBCT low-contrast
detection. In particular, we discarded the quantization step as a key factor, de-
spite the relatively low number of quantization bins that are used on IGS systems
as compared to diagnostic CT.

As a proof of concept, we aimed at designing adapted acquisition and re-
construction frameworks to improve low-contrast detection, without the need to
change the imaging system itself. To this end, we proposed a dual-rotation acqui-
sition strategy, that associates one spin over the full detector field of view (FOV)
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at low dose, with a spin that is collimated to deliver a higher dose to the central
densest parts of the head. The method acts as a virtual bow-tie, and full vol-
ume reconstruction of dual-rotation simulations and phantom acquisitions have
increased low-contrast detection for less dose, with respect to a single-rotation
acquisition. An iterative reconstruction scheme was used, that is based on it-
erative FBP (iFBP) with smooth regularization. It simultaneously reconstructs
two spins in a single volume, without merging measurements in the projection
domain, in order not to require the knowledge of the incoming X-ray beam inten-
sities in the truncated views, nor that measurements be taken at the exact same
position twice. This thus puts no specific constraints on the mechanical design,
but puts more weight on the computation infrastructure. In particular, we found
that an extra apodization is needed to get the desired uniformity in the solution.

By switching from FBP to BPF approaches, an alternative, direct reconstruc-
tion for dual-rotation acquisitions was made possible. We revisited the standard
direct reconstruction formulas in parallel-beam and fan-beam geometries with
linear detectors, and derived a new BPF method in a semi-discrete formulation,
called the K-pass Hilbert-transformed differentiated backprojection (DBP-HT-
K), which performs as good as FBP with arbitrarily coarse angular sampling.
The method, extended to the C-arm cone-beam geometry, gives access to an
unfiltered backprojection space, that was used to combine the data from the
dual-rotation acquisition. Simulations on synthetic data, as well as experiments
on the Catphanr CTP 515 and on the head phantom with soft-tissue-like struc-
tures, confirmed the potential of this new, direct reconstruction framework for
virtual bow-tie C-arm CBCT.

Although we used it to emulate a virtual bow-tie, our dual-rotation acquisition
framework is intrinsically related to region-of-interest (ROI) imaging through the
truncated acquisition. Hence, we shifted from full-volume imaging to ROI imag-
ing, given a dual-rotation acquisition, that has now a third degree of freedom,
namely, the angular sampling ratio between both acquisitions. Interestingly, both
reconstruction frameworks could successfully reconstruct regions of interest with
only a few additional full-FOV projections. In particular, our iterative recon-
struction framework could reconstruct the ROI without the need for sparsity
criteria in the optimization problem. In the context of direct reconstruction, we
highlighted the issue of angular sampling in the well known Hilbert-transformed
differentiated backprojection method of Noo et al. (2004), and we showed that
our direct method also works for ROI imaging, with almost no visible artifact in
the reconstructed ROI when using as few as 1/32th of additional views. Heuris-
tically, this can be understood from the fundamental property of the Hilbert
transform, which localizes high frequency contents such as noise in the virtual
bow-tie case, or more structured patterns such as subsampling streaks in the case
of ROI imaging. A multi-resolution strategy further accelerated the computa-
tion time. Simulations in planar geometries and experiments on actual C-arm
data demonstrated the feasibility of dual-rotation direct reconstruction for ROI
imaging, without any a priori information (neither through spatial a priori, nor
through sparsity-enforcing regularization).
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6.2 Perspectives

6.2.1 Engineering perspectives

In this work, we proposed dedicated acquisition and reconstruction frameworks
to increase low-contrast detection in C-arm CBCT images. Now that the results
showed that good image quality could be achieved on current C-arm systems
using dual-rotation acquisitions, alternative engineering design solutions may be
searched in order to better match the clinical constraints of INR procedures. In
particular, we highlight that our proposed solutions are applicable in absence
of patient motion, which would introduce inconsistencies both within a single
spin and between the two acquisitions of the dual-rotation framework. This may
become a limiting factor for clinical applications. For example, it is quite common
to observe head motion in ischemic stroke patients (Fahmi et al., 2013). Hence,
the current system design, that we used as a starting point for our study, may
need further adjustments in order to reduce the acquisition time.

One solution may be to get back to traditional single-rotation acquisitions.
In this case, as discussed in Chapter 3, it would be necessary to adjust either the
beam shape using bow-tie filters, or to increase the detector readout and thus its
dynamic range. The latter case, however, is not optimal in terms of patient skin
dose, since this design does not include a spatial modulation of X-ray exposure.
On the other side, bow-tie filters are instrinsically related to exposure modula-
tion, and we expect them to achieve similar results as the ones from Chapter 3,
including reduced scatter contribution (Altunbas, 2014). Unfortunately, this de-
sign choice would not be very attractive due to the lack of flexibility and the
limited clinical applications (brain soft-tissue imaging).

Acquiring two sets of projections, as proposed in this thesis, may also be
achieved in a single-rotation acquisition. In this case, it would be necessary to
perform fast, dynamic collimation to acquire interleaved sets in one rotation. Al-
though this seems feasible for ROI imaging (Kästner et al., 2015), it would still
double the angular sampling per rotation in the context of virtual bow-tie acqui-
sitions, thus doubling the acquisition time anyways. Hence, faster acquisitions,
either with one rotation and ultra-fast dynamic collimation, or with the proposed
dual-rotation strategy, would require increased rotation speeds, and thus higher
numbers of frames per second as well.

Fortunately, in the context of high-contrast imaging, three-dimensional digi-
tal subtracted angiography (Anxionnat et al., 1998), also obtained through dual-
rotation acquisitions, would benefit from system improvements in terms of rota-
tion speed and frame rate, that would reduce both sampling streaks and motion
artifacts during the injection of contrast media in the arteries. It is thus rea-
sonable to expect further improvements in these directions in a near future, that
would help improve clinical outcomes in a larger number of use cases.

In any case, the next engineering design choices will be able to benchmark with
respect to motion-free, dual-rotation acquisition and reconstruction frameworks
proposed in this thesis.
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Figure 6.1 – Improved scatter correction using dual-rotation acquisitions.

6.2.2 Theoretical perspectives

6.2.2.1 Improved scatter correction

Scattered intensities have been identified as a key factor impacting low-contrast
detection in C-arm CBCT (Chapter 2). However, the proposed dual-rotation ap-
proaches did not include any scatter correction method in their pipelines: indeed,
we either worked with simulated, scatter-free data, or we designed experimental
setups that were the most favorable in terms of scattered radiations. In clinical
practice, however, larger FOV sizes may be used.

Our dual-rotation frameworks take advantage of the truncated acquisition,
which, by design, rejects more scatter than the un-truncated acquisition. Hence,
reconstructed images are less impacted by scatter-induced cupping artifacts. It
may be possible to bring scatter reduction one step further in the context of dual-
rotation, by estimating the scatter contribution in the two spins. For truncated
acquisitions, a wide area of the flat-panel detector is covered by the shadow of
the collimator blades. Hence, measurement-based scatter correction, such as the
one proposed by Siewerdsen et al. (2006), may be quite efficient at providing a
reasonable estimation of the scatter contribution in the truncated 2D FOV.

The same scatter reduction method may be used on full-FOV projections,
by reading under the shadow of top and bottom collimator blades. However,
additional constraints may be derived from the scatter correction in the trun-
cated acquisition (Figure 6.1). Indeed, the subtraction of the scatter-corrected,
truncated projections (rescaled with respect to the exposure ratio x, as defined
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in Chapter 3) from the full-FOV projections provides an additional scatter es-
timation in the central area of the detector. This information is generally not
available, unless beam stoppers are used (Ning et al., 2004; Liu et al., 2006).
Note that the acquisition angles of both spins need not be exactly the same, due
to the low-frequency behavior of scattered radiations. Finally, this additional
scatter estimate, along with measurements in the shadow of collimator blades in
the full-FOV projections, may be used in a similar, measurement-based scatter
correction algorithm; it may also be used to fit parameters of model-based scatter
estimation methods, which may lead to more precise, hybrid scatter correction
methods.

6.2.2.2 Applications of DBP-HT-K

From a theoretical perspective, the main contribution of this work was built on
our K-pass Hilbert-transformed DBP formula (Chapter 4). Contrary to ana-
lytical reconstruction formulas, which are further discretized for implementation
purposes, DBP-HT-K directly takes into account the finite number of projections
available through its semi-discrete formulation. A natural research axis would be
to investigate the use of DBP-HT-K in an iterative framework to further reduce
cone-beam artifacts (Langet et al., 2015). In addition, comparing the behavior
of DBP-HT-K and FBP with respect to small lateral truncation and out-of-FOV
structures, such as a bed table in C-arm CBCT acquisitions, is under investiga-
tion. It seems that performing the backprojection as a first step averages the
missing information in the backprojection space, while filtering empirically ex-
trapolated projections (Hsieh, Armstrong, et al., 2004) localizes the error near
out-of-FOV structures (Figure 6.2). However, although the error due to table
truncation seems stronger with FDK in the examples from Figure 6.2, the recon-
structed images using DBP-HT-2 show a shift in the Hounsfield units. Yet, these
first experiments tend to show the potential of DBP-HT-K to mitigate bed table
artifacts in C-arm CBCT.

The applications of DBP-HT-K to ROI imaging illustrate the flexibility of
the proposed approach. The framework is not limited to dual-rotation acquisi-
tions: instead, it is general enough to handle multiple-rotation acquisitions. It
is also well adapted to multiple-resolution tomography (Maaß et al., 2011). It
also provides a third research axis between reconstruction methods aiming at re-
constructing specific families of ROI without any additional information (namely,
DBP-based methods (Noo et al., 2004) reconstructing some lines of the FOV in
the case of large-object truncation), and reconstruction methods aiming at recon-
structing any type of ROI using additional a priori knowledge (which include the
interior tomography problem, by either using spatial a priori knowledge (Kudo
et al., 2008) or sparsity-enforcing regularization terms in iterative reconstruction
(Kolditz, Kyriakou, & Kalender, 2010; J.-Y. Jin et al., 2010; Lu et al., 2014)).
Here, our method based on DBP-HT-K aims at reconstructing any type of ROI
using a few additional full-FOV measurements with little extra cost in terms of
patient dose, and without any other a priori of any kind. We believe this is an in-
teresting alternative research axis, since a priori information may be questionable
in practice.
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(a) Clinical case, FDK (b) Clinical case, DBP-HT-2

(c) Simulation, FDK (d) Simulation, DBP-HT-2

(e) Simulation setup.

Figure 6.2 – Influence of out-of-FOV structures on FDK and DBP-HT-2. In the sim-
ulation setup (e), the FOV is shown as a dashed circle, and the bed table is partially
truncated. Window width: 100 HU.

As mentioned in Section 5.1.1.2, we did not investigate wavelet-based recon-
struction methods (Olson & DeStefano, 1994). However, there seems to be some
connections between these approaches and our dual-rotation ROI direct recon-
struction. Both use a few additional full-FOV projections to extrapolate low
frequencies. On one side, coarse wavelet coefficients are estimated from full-FOV
projections; on the other side, they are used to extrapolate the tails of Hilbert
transforms. However, the relationships between both methods have not been
explored yet; they could be the object of further works.
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Figure 6.3 – General flowchart for dynamic ROI update. A single full-FOV spin pt=1
F is

used to reconstruct a static background. Multiple truncated spins pt=m

T are acquired to
update the reconstruction within the ROI.

Our direct ROI reconstruction is not limited to the context of INR proce-
dures; image-guided therapy and breast CT may also benefit from the framework
proposed in this thesis. An interesting application may also include the recon-
struction of a moving ROI embedded in a static background, where the ROI
would be updated as it moves, while using the same un-filtered backprojection
of a single set of full-FOV data to extrapolate each acquired motion phase of
the ROI (Figure 6.3). Cardiac imaging seems to be a good clinical context to
investigate the feasibility of this approach (Delaney & Bresler, 1995). More gen-
erally, the flexibility of our framework may be beneficial to alternative imaging
devices and modalities, especially coming from X-ray or molecular small-animal
imaging as well as from non-destructive testing, where exotic designs are allowed
to compensate for the peculiarities of the imaging situation, by simplifying and
accelerating the reconstruction task with respect to iterative algorithms.
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APPENDIX A

Proof of the fan-beam DBP-HT formula

Noo et al. (2004) define the differentiated backprojection (DBP) using parallel-
beam projections as:

bπ
0 (x) = b

(1)
[0,π](α,x) =

π∫

0

p′
θ(x · θ⊥)dθ. (A.1)

More generally, they define:

bφ+π
φ (x) =

1

2

2π∫

0

p′
θ(x · θ⊥) sgn(sin(θ − φ))dθ (A.2)

The authors derive a formula for bφ+π
φ (x) starting from fan-beam projections,

that we prove in this subsubsection. The proof is divided into three steps:

1. Find the actual differentiated function that is integrated in the fan-beam
geometry;

2. Write the derivative of a product as a sum of two terms, one of which will
put the discontities outside of the derivative operator;

3. Calculate the integral of the second term, that will provide the additional
corrective terms of the full-scan, fan-beam DBP formula.

A.1 Step 1: find the actual differentiated function

We start from the parallel-beam case and we write sgn(X) = 2 Hv(X) − 1 and
Hv stands for the Heaviside function (we recall that Hv′ = δ, the Dirac delta
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function). The previous formula can be written using the Heaviside function:

bφ+π
φ (x) =

2π∫

0

p′
θ(x · θ⊥) Hv(sin(θ − φ))dθ +

1

2

2π∫

0

p′
θ(x · θ⊥)dθ

︸ ︷︷ ︸
=0

(A.3)

We now write the derivative as a convolution step with kernel δ′:

bφ+π
φ (x) =

2π∫

0

+∞∫

−∞

pθ(u)δ′(x · θ⊥ − u) Hv(sin(θ − φ))dudθ (A.4)

We use the change of variables between fan-beam and parallel-beam variables:





θ = θ̂ + arctan

(
û

D

)

u =
ûd√

û2 +D2

(A.5)

so that the Jacobian is equal to:

∣∣∣∣∣
∂(θ, u)

∂(θ̂, û)

∣∣∣∣∣ =
D2d

(û2 +D2)
3

2

(A.6)

and (δ′ being homogeneous with degree −2, meaning that δ′(λX) = λ−2δ′(X))

δ′(x · θ⊥ − u) = δ′

(
sθ̂(x)√
û2 +D2

(
D

sθ̂(x)
x · θ̂⊥ − û

))
(A.7)

=
û2 +D2

sθ̂(x)2
δ′

(
D

sθ̂(x)
x · θ̂⊥ − û

)
(A.8)

where sθ̂(x) = x · θ̂ + d. Hence:

bφ+π
φ (x) =

2π∫

0

Dd

sθ̂(x)2

+∞∫

−∞

D√
û2 +D2

p̂θ̂(û) Hv

(
sin

(
θ̂ + arctan

(
û

D

)
− φ

))

×δ′

(
D

sθ̂(x)
x · θ̂⊥ − û

)
dûdθ̂

(A.9)

so that:

bφ+π
φ (x) =

2π∫

0

Dd

sθ̂(x)2

∂

∂û

{
D√

û2 +D2
p̂θ̂(û) Hv

(
sin

(
θ̂ + arctan

(
û

D

)
− φ

))}

︸ ︷︷ ︸
∆(θ̂)

|û
θ̂
(x)dθ,

(A.10)
where ûθ̂(x) = D

s
θ̂
(x)x · θ̂⊥ is the coordinate of the projection of x at view θ̂.

150



A.2. Step 2: find the residual integral

A.2 Step 2: find the residual integral

We now focus on ∆(θ̂):

∆(θ̂) = Hv

(
sin

(
θ̂ + arctan

(
û

D

)
− φ

))
∂

∂û

(
D√

û2 +D2
p̂θ̂(û)

)

+
D√

û2 +D2
p̂θ̂(û)

∂

∂û

(
Hv

(
sin

(
θ̂ + arctan

(
û

D

)
− φ

)))

︸ ︷︷ ︸
η

(A.11)

The quantity η is computed using the property Hv′ = δ:

η =
D

û2 +D2
cos

(
θ̂ + arctan

(
û

D

)
− φ

)
× δ

(
sin

(
θ̂ + arctan

(
û

D

)
− φ

))

(A.12)
Putting all together eq. (A.10), (A.11), and (A.12) we end up with:

bφ+π
φ (x) =

2π∫

0

Dd

sθ̂(x)2
Hv

(
sin

(
θ̂ + arctan

(
û∗

D

)
− φ

))
∂

∂û

{
D√

û2 +D2
p̂θ̂(û)

}

û
θ̂
(x)

dθ̂

+ S,

(A.13)

where:

S =

2π∫

0

D3d

sθ̂(x)2(ûθ̂(x)2 +D2)
3

2

p̂θ̂(ûθ̂(x)) cos

(
θ̂ + arctan

(
ûθ̂(x)

D

)
− φ

)

×δ
(

sin

(
θ̂ + arctan

(
ûθ̂(x)

D

)
− φ

))
dθ̂.

(A.14)

In the next step, we will focus on the second integral S, which will translate into
corrective terms for the fan-beam DBP formula. Note that the first integral still
uses the Heaviside function Hv(X), but can be written using the sign function
sgn(X) = 2 Hv(X) − 1 as well:

2π∫

0

Dd

sθ̂(x)2
Hv

(
sin

(
θ̂ + arctan

(
ûθ̂(x)

D

)
− φ

))
∂

∂û

{
D√

û2 +D2
p̂θ̂(û)

}

û
θ̂
(x)

dθ̂

=
1

2

2π∫

0

Dd

sθ̂(x)2
sgn

(
sin

(
θ̂ + arctan

(
ûθ̂(x)

D

)
− φ

))
∂

∂û

{
D√

û2 +D2
p̂θ̂(û)

}

û
θ̂
(x)

dθ̂

+

2π∫

0

Dd

sθ̂(x)2

∂

∂û

{
D√

û2 +D2
p̂θ̂(û)

}

û
θ̂
(x)

dθ̂

︸ ︷︷ ︸

=
2π∫
0

p′
θ
(x·θ⊥)dθ=0

(A.15)
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The boxed line corresponds to the first integral of the full-scan, fan-beam DBP
formula in (Noo et al., 2004). Writing this integral with the sign function has the
benefit of actually using all the projection views, i.e. the full circle [0, 2π], while
the Heaviside function would only select rays whose equivalent parallel-beam
angles lie in [0, π].

A.3 Step 3: deduce the corrective terms

We then need to put our last efforts on the computation of S. We will use the
following lemma.

Lemma A.3.1. For sufficiently regular functions f and g the following holds:

∫

Rn
f(x)δ(g(x))dx =

∫

g−1(0)

f(x)

|∇g(x)|dσ(x). (A.16)

Using Lemma A.3.1 yields:

S =
∑

k: sin

(
θ̂k+arctan(û

θ̂k
(x)/D)−φ

)
=0

D3d

sθ̂k
(x)2(ûθ̂k

(x)2 +D2)
3

2

p̂θ̂k

(
ûθ̂k

(x)
)

× cos

(
θ̂k + arctan

(
ûθ̂k

(x)

D

)
− φ

)

×
∣∣∣∣∣∣
∂

∂θ̂

{
sin

(
θ̂ + arctan

(
ûθ̂k

(x)

D

)
− φ

)}

θ̂=θ̂k

∣∣∣∣∣∣

−1

(A.17)

Now:

∂

∂θ̂

{
sin

(
θ̂ + arctan

(
ûθ̂(x)

D

)
− φ

)}
= cos

(
θ̂ + arctan

(
ûθ̂(x)

D

)
− φ

)

×
(

1 +
D

û2
θ̂

+D2

∂ûθ̂(x)

∂θ̂

) (A.18)

and:

∂ûθ̂(x)

∂θ̂
=

∂

∂θ̂

(
D(−x1 sin θ̂ + x2 cos θ̂)

x1 cos θ̂ + x2 sin θ̂ + d

)
=

D

sθ̂(x)
(−x · θ̂) − û∗2

D

=
Dd

sθ̂(x)
−
û2

θ̂
+D2

D
.

(A.19)

Hence:

1 +
D

ûθ̂(x)2 +D2

∂u∗

∂θ̂
= 1 +

D

ûθ̂(x)2 +D2

(
Dd

sθ̂(x)
− ûθ̂(x)2 +D2

D

)

=
D2d

sθ̂(x)(ûθ̂(x)2 +D2)

(A.20)
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Putting together eq. (A.17), (A.18) and (A.20), we end up with:

S =
∑

k: sin

(
θ̂k+arctan(û

θ̂k
(x)/D)−φ

)
=0

D

sθ̂k
(x)
√
û2

θ̂k
+D2

p̂θ̂k
(ûθ̂k

)

× sgn

(
cos

(
θ̂k + arctan

(
ûθ̂k

D

)
− φ

))
.

(A.21)

Using the Thales theorem (see Figure 2.17a):

‖x − ξ‖ =
sθ̂(x)

D

√
ûθ̂(x)2 +D2, (A.22)

so that:

S =
∑

k: sin

(
θ̂k+arctan(û

θ̂k
(x)/D)−φ

)
=0

pθ̂k
(ûθ̂k

(x))

‖x − ξθ̂=θ̂k
‖

× sgn

(
cos

(
θ̂k + arctan

(
ûθ̂k

D

)
− φ

))
.

(A.23)

Because the equation:

sin

(
θ̂k + arctan

(
ûθ̂k

(x)

D

)
− φ

)
= 0, (A.24)

has only two solutions θ̂1 and θ̂2, which lie on the same diameter of the trigono-
metric circle, we end up with:

S =
p̂θ̂1

(ûθ̂1
(x))

‖x − ξθ̂=θ̂1
‖ −

p̂θ̂2
(ûθ̂2

(x))

‖x − ξθ̂=θ̂2
‖ . (A.25)

Summing the two boxed equations of this proof provides the full-scan, fan-beam
DBP formula of Noo et al. (2004).

153



Appendix A. Proof of the fan-beam DBP-HT formula

154



APPENDIX B

Publications

B.1 Journals (with review committee)

Langet, H., Riddell, C., Reshef, A., Trousset, Y., Tenenhaus, A., Lahalle, E.,
Fleury, G., & Paragios, N. (2015). Compressed-sensing-based content-driven hi-
erarchical reconstruction: Theory and application to C-arm cone-beam computed
tomography. Medical Physics, 42 (9), pp. 5222–5237.

Reshef, A., Riddell, C., Trousset, Y., Ladjal, S., & Bloch, I. (2017). Dual-
rotation C-arm cone-beam computed tomography to increase low-contrast detec-
tion. Medical Physics, 44 (9), pp. e164-e173.

B.2 Conferences (with review committee)

Reshef, A., Riddell, C., Trousset, Y., Ladjal, S., & Bloch, I. (2016). Dual-
rotation C-arm cone-beam computed tomography to increase low-contrast reso-
lution. 4th International Conference on Image Formation in X-Ray Computed
Tomography. Bamberg, Germany.

Reshef, A., Riddell, C., Trousset, Y., Ladjal, S., & Bloch, I. (2017). Recon-
struction tomographique 2D : une nouvelle méthode de rétro-projection filtrée.
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APPENDIX C

Acquisitions et reconstructions tomographiques

par rotation double sur arceau interventionnel

pour la détection des faibles contrastes en

imagerie des tissus mous de la tête

C.1 Contexte clinique

La neuroradiologie interventionnelle (Wible, 2017) traite des pathologies vascu-
laires du cerveau de manière minimalement invasive par voie endovasculaire. Des
outils sont insérés directement dans le réseau vasculaire, ou des aiguilles sont in-
sérées à travers le patient pour atteindre le lieu de l’intervention. Cette discipline
dresse un pont entre les étapes de diagnostic pré-opératoire et les procédures
chirurgicales, qui sont plus invasives pour le patient.

Les pathologies traitées concernent principalement :

1. La restoration du flux sanguin dans des vaisseaux dont la lumière est réduite
suite à des dépots de plaques lipidiques (on parle de vaisseaux sténosés).
Un ballon est apporté jusqu’au lieu de la sténose, gonflé pour compresser les
plaques, puis retiré du réseau artériel (angioplastie). Une prothèse tubulaire
(stent) peut être enroulée autour du ballon, puis déployé au gonflement de
ce-dernier; il reste alors en place une fois le ballon retiré.

2. La restoration du flux sanguin dans des vaisseaux obstrués par un caillot
ou thrombus (on parle d’accident vasculaire ischémique provoqué par une
thrombose). Un outil est introduit dans le réseau artériel et amené jusqu’au
thrombus; celui-ci est alors capturé par l’outil et ramené hors du patient
(thrombectomie mécanique). La thrombectomie mécanique est maintenant
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la procédure recommandée par l’Association Américaine des Accidents Vas-
culaires Cérécraux (Powers et al., 2018).

3. L’isolation d’une cavité issue d’un gonflement anormal de la paroi d’un
vaisseau (anévrisme). Celle-ci est souvent obtenue en remplissant la cavité
par des “coils”métalliques à mémoire de forme, qui bloquent le flux sanguin
dans l’anévrisme. Le placement d’un stent dans le vaisseau porteur complète
souvent la procédure.

4. La condamnation de connexions anormales entre les réseaux artériel et
veineux (malformation artério-veineuse ou MAV). Un produit d’embolisation
est injecté au niveau de l’artère alimentant la malformation, afin de bloquer
l’artère à cet endroit et de réduire ainsi le flux sanguin dans la MAV.

Le développement des interventions minimallement invasives est rendu pos-
sible par le degré de maturité des technologies d’imagerie utilisées à des fins
pré-opératoires (échographie, résonance magnétique, tomodensitométrie) et per-
opératoires (arceau interventionnel rayon X). En imagerie pré-opératoire, la to-
modensitométrie (ou “computed tomographie”, notée CT) reste la modalité de
référence pour l’imagerie des tissus mous du cerveau ; elle produit des images
tridimensionnelles, et c’est un excellent compromis entre le coût de l’examen, le
temps consacré à celui-ci, et la résolution en contraste obtenue par les scanners
CT.

L’arceau interventionnel (ou “C-arm”) a d’abord été conçu pour de l’imagerie
rayon X bidimensionnelle temps réel. Cependant, il est possible de fournir des
images tridimensionnelles de l’anatomie imagée avec le même système. On parle
alors de tomodensitométrie (ou tomographie) conique sur arceau intervention-
nel, ou CBCT (“cone-beam CT”) sur arceau interventionnel. Si le CBCT sur
arceau interventionnel est utilisé en routine clinique pour l’imagerie vasculaire
(Anxionnat et al., 1998), son application à l’imagerie des tissus mous, qui per-
mettrait d’obtenir une information clinique sans transférer le patient d’une salle
interventionnelle (où se trouve l’arceau) à une salle d’imagerie diagnostique (où
se trouve le scanner CT), est encore minoritaire. En effet, les images reconstru-
ites manquent encore de précision aux niveaux de contrastes des tissous mous du
cerveau.

L’imagerie des tissous mous est indispensable pour certifier qu’aucun saigne-
ment n’apparâıt à l’issue d’une procédure de neuroradiologie interventionnelle.
Elle est aussi nécessaire en tant qu’imagerie diagnostique et imagerie de planifi-
cation du geste interventionnel, dans le cas des accidents vasculaires ischémiques,
afin d’évaluer la présence et l’étendue d’une zone d’infarct dans le cerveau.

Ce travail de thèse contribue à réduire l’écart entre l’imagerie CT diagnostique
et le CBCT sur arceau interventionnel, en termes d’imagerie des tissus mous du
cerveau. En prenant le CT diagnostic comme notre modalité de référence, nous
étudions les particularités de la châıne d’imagerie 3D du CBCT sur arceau inter-
ventionnel, qui s’appuie sur la châıne d’imagerie 2D du système. Nous identifions
les principaux facteurs d’influence sur la résolution en contraste du CBCT sur
arceau : le rayonnement diffusé, l’échantillonnage, et la dose. Sans modification
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matérielle du système, nous proposons de combiner deux jeux d’acquisition ro-
tationnelle, que nous appelons une acquisition par rotation double, et que nous
utilisons pour améliorer la détection des faibles contrastes. Nous imitons ainsi la
modulation de faisceau obtenue en CT diagnostic par le biais de filtres physiques
dits “bow-tie” (en noeud papillon).

En laissant une grande flexibilité sur les paramètres d’acquisition, nous por-
tons notre effort sur l’étape algorithmique de reconstruction tomographique. Nous
proposons une stratégie de reconstruction itérative fondée sur de précédents
travaux (Langet et al., 2015), capable de gérer à la fois la reconstruction d’un
volume entier, et la reconstruction de régions d’intérêt (“region-of-interest”, ou
ROI) dans le contexte d’acquisitions par rotation double (Reshef et al., 2016,
2017a). En revisitant les méthodes classiques de reconstruction directe, nous
proposons également une reconstruction directe alternative pour les acquisitions
par rotation double, qui mélangent astucieusement l’information des deux jeux de
données (Reshef et al., 2017b; Reshef, Riddell, et al., 2018; Reshef, Nikoukhah,
et al., 2018). Nous observons que sans rien changer à l’approche proposée, celle-
ci est également adaptée à l’imagerie des faibles contrastes dans le contexte de
l’imagerie de régions d’intérêt.

C.2 Imagerie sur arceau interventionnel

C.2.1 Généralités et imagerie 2D

Un arceau interventionnel est un système d’imagerie rayon X. Un bras ouvert et
rigide en forme de “C”, appelé le “C-arm” en anglais, porte deux masses à chaque
extrémité : d’un côté, un tube à rayon X produit et envoie des photons X ; de
l’autre, un détecteur reçoit les rayons ayant traversé l’anatomie imagée. L’arceau
laisse accès au patient, allongé sur une table pendant la procédure intervention-
nelle. L’arceau peut être mobile, tenu par un bras robotisé, tenu par un plafon-
nier, ou fixé au sol. En neuroradiologie interventionnelle, des systèmes biplans
combinant un arceau fixé au sol et un arceau fixé au plafond (les arceaux frontal
et latéral, respectivement), sont utilisés, en raison de la complexité de l’anatomie
de l’arbre vasculaire dans la tête.

Historiquement, l’arceau interventionnel est utilisé comme une caméra vidéo
rayon X. Le faisceau de rayons X interagit avec la matière traversée, et l’image
formée au détecteur résulte de l’atténuation de ce faisceau. Le tube à rayon
X produit des photons selon un spectre d’énergie, et pour une énergie donnée
(paramétrée en kilovolts ou kV), l’intensité I(kV) après interaction le long d’une
ligne L est donnée par la loi de Beer-Lambert :

I(kV) = I0(kV)e−
∫

L
µ(kV,x)dx, (C.1)

où I0(kV) est l’intensité en sortie du tube (ou intensité dans l’air), et µ(kV, x) ré-
sume en chaque point de l’espace x et pour un niveau d’énergie kV, l’atténuation
locale de l’intensité résultant des interactions multiples avec la matière. On
appelle µ(kV) le coefficient linéaire d’atténuation; il est caractéristique d’un
matériau. On notera que I0 est linéaire avec le produit du courant du tube par
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le temps d’exposition, exprimé en milli-ampères-secondes (mAs), et non-linéaire
avec la différence de potentiel appliquée entre l’anode et la cathode du tube.

A l’autre bout de la châıne image, un détecteur de type panneau plan à
conversion indirecte est utilisé; celui-ci est constitué d’un cristal appelé scintil-
lateur, qui permet la conversion des photons X en photons lumineux. Ces pho-
tons lumineux excitent une matrice de photodiodes, qui convertissent le signal
lumineux en un signal électrique. Enfin, une conversion analogique-numérique
(CAN), aussi appelée étape de quantification, convertit ce signal électrique en un
signal numérique.

Avec cette technologie, le détecteur mesure l’intensité moyenne par rapport à
la distribution du spectre du rayons X du tube. Un pixel du détecteur mesure non
seulement l’intensité du rayon atténué provenant directement de la source (aussi
appelé intensité primaire), mais aussi des intensités venant de directions aléatoires
dues au phénomène de diffusion élastique et inélastique (effet Compton).

C.2.2 Imagerie 3D

L’arceau interventionnel est utilisé comme une caméra vidéo rayons X, perme-
ttant de suivre en temps réel la navigation d’outils dans le réseau vasculaire
du patient dans des images projectives. Il est également possible, en laissant
l’arceau acquérir une collection de projections à différentes positions, de recon-
struire l’image tridimensionnelle de l’anatomie ainsi imagée. Typiquement, les
arceaux interventionnels acquièrent une collection de projections selon une tra-
jectoire circulaire couvrant 180◦ plus l’angle du faisceau divergent, soit environ
200◦ (trajectoire dite circulaire “short-scan”, par opposition à une trajectoire cir-
culaire couvrant 360◦). On parle d’imagerie tomographique.

En géométrie parallèle 2D, l’inversion du problème de reconstruction tomo-
graphique se fonde sur le théorème coupe-projection, qui relie la transformée de
Fourier 1D d’une projection en densité (on parle de projection en densité lorsqu’on
s’intéresse à p = log(I0) − log(I)), à une ligne de la transformée de Fourier 2D
de l’image à reconstruire. On obtient alors une inversion analytique du prob-
lème tomographique, aussi appelée formule de rétro-projection filtrée (“filtered
backprojection” ou FBP) :

f =
1

2

2π∫

0

BθD [pθ] dθ =
1

2

2π∫

0

D [pθ] (uθ)dθ, (C.2)

où uθ(x) est la coordonnée de la projection du point x sur le détecteur, D est le
filtre rampe (D [q] revient à multiplier par |ρ| la transformée de Fourier de q), et
Bθ est l’opérateur de rétro-projection.

Un changement de variable permet, à partir de la formule précédente, d’en
déduire une formule de rétro-projection filtrée en géométrie divergente 2D (aussi
connue sous le nom de géométrie en éventail). En revanche, il n’existe pas
d’inversion exacte pour la géométrie divergente 3D ou géométrie conique; mais
la formule de Feldkamp-Davis-Kress (FDK, (Feldkamp et al., 1984)), qui est une
extension directe de FBP en géométrie divergente 2D, est une formule raisonnable
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de reconstruction approchée. L’image obtenue par FDK est :

fFDK =
1

2

2π∫

0

D2

sθ̂
2
B̂θ̂D [p̃θ̂(·, v̂θ̂)

]
dθ̂, (C.3)

où :

p̃θ̂(û, v̂) =
d

D
· D√

û2 + v̂2 +D2
p̂θ̂(û, v̂). (C.4)

Dans la suite, la formulation semi-discrète, consistant à considérer un nombre
fini d’échantillons angulaires, sera utile pour l’obtention d’une formule originale
de reconstruction directe restant intrinsèquement une formule vue par vue. Dans
cette formulation, l’image FDK obtenue à partir de N échantillons équirépartis
sur 2π est :

fFDK,N =
1

2

∑

θ̂∈Θ

D2

s2
θ̂

B̂θ̂D [p̃θ̂(·, v̂θ̂)
]
∆θ =

π

N

∑

θ̂∈Θ

D2

s2
θ̂

B̂θ̂D [p̃θ̂(·, v̂θ̂)
]
, (C.5)

où :

Θ =

{
θi =

(
i− 1

2

)
∆θ, i = 1, · · · , N

}
, where ∆θ =

2π

N
. (C.6)

En reconstruciton itérative, le problème tomographique est directement ex-
primé en un problème complètement discret ; ici, nous minimiserons une énergie
de la forme (Langet et al., 2015) :

fiFDK = argmin
f

{
1

2
(Rf − p)T D(Rf − p) + χ(f)

}
, (C.7)

où R est l’opérateur de projection, et D est le filtre rampe, qui est diagonal dans
l’espace de Fourier, et inclus dans la forme quadratique qui compose le terme
d’attache aux données. χ(f) est une régularisation convexe qui peut être ou non
différentiable.

C.2.3 Qualité image des faibles contrastes

Pour quantifier les performances de l’arceau interventionnel en terme de résolution
en contraste, nous utilisons un fantôme d’assurance qualité appelé le Catphanr

(Goodenough, 2012). Le module CTP 515 du Catphanr (Figure 2.19c) est consti-
tué d’un cylindre équivalent à de l’eau, avec des inserts de contrastes cylindriques
de différents diamètres. Les contrastes relatifs des inserts sont 1%, 0.5% et 0.3%.
Leurs diamètres varient de 2 mm à 15 mm. Les diamètres des inserts centraux
(dits “subslice”) varient de 3 mm to 9 mm.

Une analyse système le long de la châıne image 3D de l’arceau intervention-
nel a permis d’identifier les principaux facteurs influant sur la qualité image des
faibles contrastes (Figure 2.22). Il s’agit du bruit quantique, des non-idéalités
du détecteur (dérives de gain, conversion analogique-numérique), de la qualité
du faisceau de rayons X (polychromaticité du faisceau) et de la dynamique ex-
ponentielle de son atténuation (compensée en scanner diagnostic par des filtres
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“bow-tie”), du rayonnement diffusé (qui est un facteur essentiel de perte de résolu-
tion en contraste, et qui est donc forcément corrigé sur un arceau interventionnel),
et des problématiques d’échantillonnage (champ de vue tronqué, nombre de vues
acquises).

De cette analyse, nous déduisons que les principaux facteurs d’influence sont :

• Le rayonnement diffusé, qui doit être rejeté le plus possible, ou, à défaut,
corrigé ;

• L’échantillonnage, puisque la troncation doit être évitée le plus possible, et
le nombre de vues rester aussi fin que possible ;

• La conversion analogique-numérique, qui semble plus grossière sur arceau
interventionnel qu’elle ne l’est sur un scanner diagnostic ;

• La dose (et donc le bruit), puisque nous ne disposons pas d’un filtre “bow-
tie” sur les arceaux interventionnels.

Nous avons laissé le côté la problématique du mouvement de l’objet pendant
l’acquisition du spin : en-dehors des vibrations mécaniques de l’arceau, dont on
suppose qu’une calibration géométrique a pu les prendre en compte à la recon-
struction, nous supposons qu’il n’y a pas d’autre mouvement parasite dans notre
étude.

C.3 Bow-tie virtuel en tomographie conique rayons X

C.3.1 Une question de bruit

Si, comme indiqué dans la section précédente, les principaux éléments influant
sur la détection des faibles contrastes sont le diffusé, l’échantillonnage, la quantifi-
cation et la dose, nous pouvons restreindre l’analyse aux deux derniers éléments,
et via cette analyse, montrer que la dose est un élément plus déterminant que la
quantification lorsqu’il s’agit de visualiser les faibles contrastes en 3D.

Pour réduire le problème, nous utilisons le module de faibles contrastes du
fantôme Catphanr (CTP 515), et nous acquérons des spins en environnement
contrôlé : pas de collimation latérale, un champ de vue vertical réduit à son
minimum pour réduire la contribution du diffusé dans l’image, observation des
coupes centrales, écartant l’influence des artefacts coniques. Une pré-correction
du durcissement de faisceau dû à l’eau permet de s’affranchir des enjeux de la
polychromaticité des rayons X. Enfin, les images sont acquises à la plus faible
vitesse de rotation, aboutissant à un fort échantillonnage angulaire pour une
reconstruction tomographique plus précise. Ne restent alors que la quantification
et la dose comme points ouverts.

L’étape de quantification consiste à définir une subdivision de l’axe des réels
−∞ = q−1 < q0 < · · · < qB < qB+1 = +∞, et à assigner une valeur quantifiée Qi

à chaque intervalle [qi−1, qi[. On peut donc la résumer à une fonction Q définie
de la manière suivante :

Q(I) =
B+1∑

i=0

Qi1[qi−1,qi[(I). (C.8)
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Afin de ne pas quantifier au-delà du bruit statistique, une rampe quadratique peut
être utilisée (on rappelle que la variance du bruit au détecteur est proportionnelle
à l’intensité du faisceau de rayons X). En réalité, afin de corriger en offsets les
pixels du détecteur, il est nécessaire de lire précisément le panneau à vide (en
absence de rayon X), de sorte qu’un erampe linéaire-quadratique est utilisée en
pratique.

Nous simulons des projections analytiques de disques avec des inserts de con-
trastes similaires à ceux du Catphanr CTP 515, bruitées, dans une géométrie 2D
en éventail. Nous générons ensuite des projections quantifiées sur 850 niveaux
de quantifications répartis sur une dynamique de 14 bits (Figure 3.3). Grâce au
processus d’accumulation de projections bruitées, on remarque que les images
reconstruites avec FBP diffèrent peu selon qu’elles ont été quantifiées ou non sur
850 niveaux. En revanche, les faibles contrastes et les inserts centraux sont bien
plus facilement identifiables lorsque quatre reconstructions sont moyennées. En
revanche, réaliser une acquisition à quatre fois la dose originale demanderait une
rampe de quantification qui aille quatre fois plus haut ; si cela n’est pas le cas, une
saturation numérique intervient, créant une non-uniformité du fond de l’image
inacceptable en pratique.

Ainsi, il s’agirait davantage d’un problème de dose, que d’un problème de
quantification. Cette hypothèse est confirmée par des expériences sur données
réelles acquises sur un système biplan IGS 630. Le Catphanr CTP 515 a été
acquis quatre fois à (76 kVp, 3.4 mAs) avec 0.3 mm de filtration de cuivre au
niveau du tube, et avec un détecteur de 30 cm de largeur. Afin d’utiliser une dose
quatre fois supérieure, un spectre différent, de 120 kVp, a été utilisé pour acquérir
un cinquième spin, tous les autres paramètres étant gardés fixes par ailleurs.
L’influence de différents spectres de rayons X a été négligée ici. L’algorithme
FDK avec des poids de Parker a été utilisé pour reconstruire les images.

C.3.2 Bow-tie virtuel par rotation double

La flexibilité mécanique d’un arceau interventionnel ne permet pas de rejeter
efficacement tout le rayonnement diffusé, et le coût d’un filtre bow-tie dédié à
l’imagerie des tissus mous de la tête, rapporté au nombre d’acquisitions néces-
saires, n’est pas une option aujourd’hui. Il y a donc un intérêt à convevoir une
acquisition à exposition non uniforme conduisant à de meilleures mesures à moin-
dre dose au patient.

Nous proposons une acquisition double définie comme suit. Un spin est plein
champ (“full-FOV”, indexé par F) et un spin est tronqué (indxé par T), et n’image
qu’un champ de vue 3D inclus dans le champ de vue 3D du spin plein champ.
Le spin plein champ est acquis à faible dose, ce qui évite d’irradier inutilement
le patient, tandis que le spin tronqué est, lui, acquis à une dose plus élevée pour
atteindre une exposition cible au centre de l’objet, où l’épaisseur traversée par
les rayons X est plus importante.

Nous concevons cette acquisition double de sorte qu’elle puisse être aussi
flexible que possible, aussi nous nous donnons deux degrés de liberté :

(i) L’ouverture du champ de vue tronqué : nous notons t, 0 < t ≤ 1, le niveau

163



Appendix C. French summary

de réduction du champ de vue par rapport au champ non tronqué.

(ii) Le ratio d’intensités entre les deux acquisitions : si IF
0 est l’intensité dans

l’air correspondant à l’exposition au centre de l’objet obtenue avec le spin
plein champ, et si IT

0 est l’intensité du spin tronqué, nous notons x = IT
0 /I

F
0 ,

de sorte que l’exposition au centre de l’objet est égale à (1 + x)IF
0 dans

une acquisition double. En travaillant aux mêmes énergies pour les deux
acquisitions, x est simplement un ratio des mAs.

Pour simuler un bow-tie, nous choisissons x ≥ 1. Nous définissons la réduction
de dose d par rapport à une acquisition simple plein champ apportant le même
niveau de dose au centre de l’object comme suit :

d =
IF

0 + IT
0

IF
0 + t · IT

0

=
1 + x

1 + tx
. (C.9)

Nous définissons les contributions relatives de chaque spin à la dose totale via
les poids suivants :

αF =
IF

0

IF
0 + t · IT

0

=
1

1 + tx
, αT = 1 − αF. (C.10)

Nous résolvons le problème de minimisation suivant :

argmin
f





∑

n∈{F,T}

αnQn(f) + χ(f)



 , (C.11)

où χ(f) = λ‖∇f‖2, et le terme d’attache aux données est une combinaison con-
vexe des formes quadratiques (n ∈ {F,T}) :

Qn(f) =
1

2
(Rnf + log(In))T Dn(Rnf + log(In)), (C.12)

où RF (resp. RT) est l’opérateur de projection pour la géométrie non tronquée
(resp. tronquée), et DF (resp. DT) est le filtre rampe pour les signaux non
tronqués (resp. tronqués). Un schéma itératif de type forward-backward splitting
(Langet et al., 2015) suffit à résoudre ce problème.

Ecrire ce problème de minimisation directement en utilisant log(In) permet
de s’affranchir de la connaissance de l’intensité dans l’air, qui se transforme en
un offset après application du logarithme, et qui est annulé par la rampe intégrée
à la forme quadratique. Ceci est vrai si le filtre n’est pas implémenté comme la
transformée de Fourier d’un noyau fini, ce qui est recommandé en pratique, mais
aboutit à une valeur non nulle de la composante continue.

Nous écrivons donc plutôt DF = H∂u, où ∂u est un dérivateur, et H est
la transformée de Hilbert. Afin d’assurer une transition lisse aux bords de
∂u (log(IT)), une fenêtre de Hanning est appliquée avant de calculer la trans-
formée de Hilbert, de sorte que nous avons : DT = HW∂u, où W est l’opérateur
d’apodisation de Hanning.

Les expériences faites sur le Catphanr 515 sont décrites en détail en Sec-
tion 3.2.3. En guise de métrique de qualité image, nous avons choisi le ratio
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contraste-à-bruit (“contrast-to-noise ratio” ou CNR), que nous avons appliqué
aux inserts de contrastes du module rappelés dans le Tableau 3.2. Nous montrons
qu’une acquisition double améliore la détection de faibles contrastes et réduit, par
conception, la contribution du diffusé dans l’image reconstruite. L’apodisation,
dans le filtre rampe utilisée sur le spin tronqué, est nécessaire pour récupérer une
uniformité souhaitée dans l’image finale. Enfin, une régularisation aussi simple
que celle proposée suffit à fournir une image de bonne qualité ; en particulier,
cette régularisation ne modifie pas fondamentalement la texture de l’image recon-
struite, ce qui est souvent le cas avec des régularisations plus avancées de type
variation totale.

La conséquence de cette approche par rotation double est bien sûr qu’elle
requiert deux fois le temps d’une acquisition standard : en réalité, elle demande
même davantage, à cause de la complexité de calcul requise par la reconstruction
itérative, qui augmente la complexité de la solution proposée.

C.4 Une reconstruction directe pour le bow-tie virtuel

Une approche par reconstruction itérative a été proposée parce qu’un mélange di-
rect des projections n’était pas envisageable, dans la mesure où nous n’imposons
pas de contrainte sur la répétabilité des positions angulaires des vues d’une ac-
quisition à l’autre. Mélanger deux images reconstruites indépendamment néces-
siterait de savoir reconstruire avec suffisamment de précision le spin tronqué, ce
qui n’est pas possible sans autre a priori (Natterer, 2001).

C.4.1 Rétro-projection différenciée à K passes de Hilbert

Nous proposons ici une formule de filtrage des rétro-projections (en anglais,
“backprojection-filtration”, ou BPF), que nous appelons la formule de rétro-
projection différenciée à K passes de Hilbert (DBP-HT-K), en géométrie paral-
lèle. Elle est équivalente à la rétro-projection différenciée à une passe de Hilbert
de la littérature (Noo et al., 2004) lorsque K = 1, et au FBP semi-discret lorsque
K est égal au nombre de projections. Notre analyse repose sur l’idée que dans
le cadre semi-discret, l’image FBP est obtenue en sommant des contributions
élémentaires :

fN =
π

N

∑

θ∈Θ

BθD [pθ] =
π

N

K∑

k=1

gΘk
, (C.13)

où :
gΘk

=
∑

θ∈Θk

BθD [pθ] . (C.14)

Ici, nous notons Θk un élément d’une subdivision de Θ.
En décomposant le filtre rampe en un dérivateur d’ordre n (typiquement,

n = 0 ou n = 1), et un filtre résiduel non local, nous montrons qu’il est possible
d’obtenir gΘk

en rétro-projetant une image dérivée, et en appliquant le filtre
non local à cette rétro-projection (Théorème 4.2.1). Ce filtre, tout en étant
bidimensionnel, traite l’espace 2D ligne par ligne ; d’autre part, il est possible
de choisir plusieurs orientations de lignes, de sorte que nous pouvons en choisir
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une garantissant que chaque ligne a un support fini. La formule DBP-HT-K
est déduite par sommation des reconstructions partielles sur chaque Θk de la
subdivision.

Ce résultat est assez intuitif en géométrie parallèle. Est-il transposable en
géométrie divergente ? Lorsque l’échantillonnage angulaire tend vers l’infini (cas
continu), les sommes sont remplacées par des intégrales sur [0, 2π]. Tradition-
nellement, de cette vue continue en géométrie parallèle, un changement de vari-
ables entre (u, θ) en géométrie parallèle, et (û, θ̂) en géométrie divergente, permet
d’exprimer la même quantité dans le cas divergent. C’est ce que fait (Noo et
al., 2004), et c’est ce que nous avons fait également. Les deux formules sont
équivalentes lorsque K = 1, et souffrent toutes deux d’une limitation lorsque
l’échantillonnage angulaire devient un enjeu. En effet, les intégrales en jeu ré-
échantillonnent les données en géométrie divergente, ce qui suppose des échan-
tillonnage spatial et angulaire fins. Si cela ne pose pas de problème en imagerie
scanner diagnostic, cela peut être un enjeu en imagerie sur arceau interventionnel,
et a fortiori, pour un nombre arbitrairement petit N de vues.

Au lieu de calculer la même quantité qu’en géométrie parallèle, nous calculons
une quantité différente, intrinsèquement adaptée à la géométrie divergente, et qui
tend vers la formule DBP-HT-K de la géométrie parallèle lorsque la position de
la source tend vers l’infini. Cette formule en géométrie divergente utilise la même
approche que pour DBP-HT-K en géométrie parallèle. On écrit encore :

fN =
π

N

K∑

k=1

gΘk
, (C.15)

mais cette fois :

gΘk
=
∑

θ̂∈Θk

D2

s2
θ̂

B̂θ̂D [p̃θ̂

]
. (C.16)

En géométrie divergente, rétro-projeter une projection revient à redistribuer sur
chaque ligne de l’image 2D une transformation homographique de cette projec-
tion. Ainsi, afin d’appliquer la partie non local de la rampe (le filtre de Hilbert)
après rétro-projection, il est nécessaire de vérifier la commutativité d’une trans-
formation homographique et d’une transformation de Hilbert. C’est ce que nous
montrons (Théorème 4.2.4). De même qu’en géométrie parallèle, on peut trouver
une direction de filtrage commune à tout un sous-secteur angulaire Θk, et som-
mer sur les éléments de la subdivision Θ pour obtenir la version divergente de
DBP-HT-K (Théorème 4.2.5). De même, une version où la rampe complète est
passée après rétro-projection est proposée.

L’extension à la géométrie conique de l’arceau interventionnel peut se faire
de la même manière que FDK étend FBP à cette géométrie. On a alors des
formules de reconstruction approchée, différentes de FDK, qui vérifient les mêmes
propriétés que FDK, à savoir : la formule approchée devient exacte si l’object à
reconstruire est invariant selon z, et elle revient à la formule exacte sur chaque
coupe axiale lorsque la position de la source part à l’infini.

Dans la suite, par souci de simplicité, et par analogie avec les formules de
reconstruction en géométrie rectifiée (Riddell & Trousset, 2006), nous prenons
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K = 2 et nous coupons le spin entre les vues frontales, ΘFRT =
[

π
4 ,

3π
4

]
∪
[

5π
4 ,

7π
4

]
,

et les vues latérales, ΘLAT = Θ \ ΘFRT.
De nombreuses simulations, en géométries planaires et en géométrie conique,

illustrent ces résultats. L’erreur relative moyenne entre les reconstructions FDK
et DBP-HT-2, définie comme la moyenne des erreurs relatives par rapport à FDK
sur tous les voxels d’une région d’intérêt (sur un fantôme anatomique de tête, cela
correspond aux voxels supérieurs à -250 HU), est inférieure à 0,5%, avec les erreurs
les plus hautes situées là où l’angle du cone est le plus grand.

C.4.2 Application au bow-tie virtuel

Nous disposons donc d’un spin de N projections pF plein champ, non tronquées,
à faible dose, et de N projections pT tronquées, à haute dose. Comme présenté
au début de cette partie, il n’est pas possible de mélanger les projections directe-
ment, ni de reconstruire séparément les deux images issues de pF et pT. Avec les
méthodes de type FBP, le filtre non local s’appliquant directement sur les pro-
jections, la gestion de la troncation (par exemple par une extrapolation ad hoc
des projections aux extrémités) se fait forcément dans l’espace des projections.

Avec les méthodes de type BPF, il est possible de gérer la troncation dans
un nouvel espace, qui est l’espace des rétro-projections avant filtrage non local.
Puisque seules des opérations locales ont été appliquées aux projections, leurs
rétro-projections sont justes dans leurs champs de vue 3D respectifs (au bruit
près). On se propose donc d’utiliser un opérateur de mélange M comme suit :

M(bF, bT) =

{
wF · bF + wT · bT dans le champ 3D tronqué;
bF ailleurs.

(C.17)

Ici, bF et bT sont les rétro-projections des projections localement filtrées, et wF,
wT sont des fonctions de poids (constantes ou non) qui vérifient wF + wT = 1.
Cette opération est effectuée indépendamment sur les rétro-projections frontales
et latérales.

Des simulations sur fantôme de tête, et des expériences sur de véritables acqui-
sitions de Catphanr 515, et de fantôme anatomique de tête, illustrent l’efficacité
de cette approche. Qualitativement, on observe aussi une réduction des non-
uniformités basses fréquences liées au rayonnement diffusé dans la reconstruction
proposée. L’erreur relative moyenne dans les simulations, entre une reconstruc-
tion FDK plein champ, haute dose, et la reconstruction directe du bow-tie virtuel,
est également de l’ordre de 0,5% à l’intérieur du champ tronqué. Il est intéressant
de noter qu’après le filtrage de Hilbert, le bruit de l’image à faible dose ne semble
pas se propager particulièrement dans le champ tronqué. En revanche, la dose du
champ tronqué ne se propage pas non plus en-dehors de ce champ, et n’améliore
donc pas le reste de l’image, comme le permettait l’approche itérative.

Ainsi, la reconstruction directe pour acquisitions doubles est essentiellement
une reconstruction de régions d’intérêt (“region-of-interest”, ou ROI). Bien que
nous nous attendions à ce que cette approche, intégrée à un schéma itératif,
améliore à la fois le résultat final et la convergence des itérations, nous nous
intéressons maintenant au comportement de nos deux solutions (reconstruction
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itérative et reconstruction directe DBP-HT-K) pour la reconstruction de régions
d’intérêt.

C.5 Du bow-tie virtuel à l’imagerie de régions d’intérêt

L’imagerie de régions d’intérêt (ROI) consiste à reconstruire le champ de vue
d’une 3D d’une image dont les projections transaxiales sont tronquées. Dans
ce cas-là, la méthode FBP ne parvient pas à reconstruire l’objet correspon-
dant aux projections. Dans le cas de la tomographie intérieure (Figure 5.1c),
il n’existe pas de reconstruction exacte (Natterer, 2001). Une façon de parvenir
à une reconstruction raisonnable est d’utiliser une information supplémentaire
pour extrapoler les données tronquées. Cette information peut être donnée a
priori, ou venir de mesures complémentaires. Notre approche s’inscrit dans la
deuxième catégorie. Dans le contexte d’une acquisition double, nous réduisons
à quelques vues seulement le jeu de projections plein champ. Nous notons s le
ratio d’échantillonnage angulaire, c’est-à-dire le ratio entre le nombre de vues
tronquées et le nombre de vues plein champ. On a donc typiquement s ≫ 1 dans
le cas de l’imagerie de région d’intérêt.

C.5.1 Reconstruction itérative

Dans ce contexte, il est nécessaire de modifier les contributions relatives αF et
αT = 1 − αF définies dans le schéma itératif. La contribution des projections
plein champ à la dose totale est maintenant égale à :

αF =
NFI

F
0

NFI
F
0 + t ·NTI

T
0

=
1

1 + txs
. (C.18)

Cette modification étant faite, nous appliquons le même algorithme que précédem-
ment dans le cas du bow-tie virtuel. En particulier, notre régularisation reste
lisse, de sorte que nous n’attendons pas d’amélioration de l’image en-dehors de
la région d’intérêt.

Les résultats sur fantômes (Catphanr 515 et fantôme de tête uniforme) mon-
trent qu’avec moins de 10 projections non tronquées, c’est-à-dire un soixantième
des vues tronquées, la région d’intérêt peut être reconstruite avec peu de varia-
tions parasites basses fréquences, malgré un décalage de la composante continue.
Notre compréhension de ces résultats, qui n’allaient pas de soi à la lecture de la
littérature, est que malgré la corruption de l’image hors de la région d’intérêt, due
au sévère sous-échantillonnage angulaire des vues plein champ, celle-ci reste une
estimation suffisante des basses fréquences de l’image hors de la région d’intérêt ;
de plus, l’échantillonnage polaire de l’acquisition tomographique ne nécessite pas
autant de vues pour échantillonner correctement ces basses fréquences : ainsi, le
petit a priori spatial de la littérature (Kudo et al., 2008) peut être remplacé par
une petite quantité de vues non tronquées dans une acquisition double.
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C.5.2 Reconstruction directe

Nous proposons deux approches de reconstruction directe pour l’imagerie de ré-
gions d’intérêt par acquisition double. La première approche consiste à adapter
la méthode de (Noo et al., 2004) aux acquisitions doubles, en géométrie paral-
lèle. Dans (Noo et al., 2004), les auteurs montrent l’égalité (à un facteur près),
dans le domaine continu, entre la rétro-projection des projections dérivées, et la
transformée de Hilbert ligne par ligne de l’objet f . Cette relation reste vrai dans
le cadre semi-discret, où l’on a :

DBPN (x) = −2πH π
2

[fN ] (x), (C.19)

où DBPN est la rétro-projection différenciées des N vues disponibles, et fN

est l’image obtenue par FBP à partir de ces mêmes N vues. On rappelle que
Hα est l’opérateur 2D qui revient à filtrer chaque ligne orientée selon α⊥ =
(− sinα, cosα)T par la transformée de Hilbert 1D. Lorsque N est grand par rap-
port à la taille de la grille de reconstruction, l’échantillonnage angulaire est fin,
et le support de fN peut être considéré comme compact. Ainsi, l’inversion ligne
par ligne de la transformée de Hilbert peut être réalisée via l’application de la
transformée de Hilbert tronquée (Noo et al., 2004). Afin de pouvoir toujours
utiliser cette inversion lorsque N se limite à quelques vues, il est donc nécessaire
de réduire la taille de la grille de reconstruction ; ou, de manière équivalente, il
suffit d’appliquer un filtre passe-bas à DBPN avant d’utiliser la transformée de
Hilbert tronquée.

Nous proposons donc l’opérateur de mélange suivant entre les rétro-projections
différenciées de nos deux acquisitions :

MROI(DBPF,DBPT) =

{
wF ·Gσ[DBPF] + wT · DBPT dans la ROI;
Gσ[DBPF] hors de la ROI.

(C.20)
Ici, Gσ est un opérateur de flou gaussien d’écart type σ.

Les simulations sur des acquisitions en géométries parallèles d’une coupe de
scanner diagnostic d’une tête, montrent qu’il est possible, avec la bonne valeur
σ associée à chaque ratio d’échantillonnage angulaire s, de garder l’erreur rel-
ative moyenne inférieure à 1% même à s = 32. Cependant, la question de la
sélection automatique de l’écart type σ est encore une question ouverte ; d’autre
part, lorsque s devient trop grand, il n’existe plus de valeur de σ permettant
le bon compromis entre la préservation de structures et le retrait des stries de
sous-échantillonnage dans DBPF, et l’image résultante devient traversée de non-
uniformités basses fréquences (Figure 5.9b). Enfin, cette approche ne dispose pas
d’extension en géométrie divergente. En revanche, en n’opérant aucune subdivi-
sion de l’espace angulaire (K = 1, Θ1 = Θ), il s’agit de la seule approche qui
permette la reconstruction d’une ligne.

Il est intéressant de noter que le schéma de mélange mis en place pour la
reconstruction directe d’une acquisition double pour le bow-tie virtuel, utilisant
l’opérateur M dans l’espace des rétro-projections des projections localement fil-
trées, peut tout à fait s’appliquer dans le cas où s est supérieur à 1. Les lignes
de Hilbert, en-dehors de la région d’intérêt, sont évidemment corrompues par des
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oscillations dues au sous-échantillonnage angulaire (Figure 5.10b), mais la forme
basse fréquence de la transformée de Hilbert est préservée, et de même que dans
le cas du bow-tie virtuel, on ne s’attend pas à ce que les phénomènes hautes
fréquences de ces oscillations se propagent loin de leurs positions initiales.

Contrairement au cas du bow-tie virtuel, l’information de l’image en-dehors
de la région d’intérêt n’a d’autre nécessité que de permettre une extrapolation
des transformées de Hilbert. Nous proposons donc une stratégie multi-résolution,
où la rétro-projection des données plein champ est faite sur une grille de re-
construction échantillonnée grossièrement. Ainsi, la rétro-projection, dont le
coût d’exécution est non négligeable, se trouve accélérée. Le choix du sous-
échantillonnage de la grille de reconstruction dépend bien sûr du contenu de
l’image ; plus le contenu d’une image a de hautes fréquences, moins une image
basse résolution sera capable d’extrapoler les données manquantes dans les pro-
jections tronquées. Une fois la rétro-projection basse résolution obtenue, l’image
est rééchantillonnée à la bonne résolution (une interpolation trilinéaire suffit),
avant d’être utilisée par l’opérateur de mélange M.

C.6 Conclusion

C.6.1 Contributions

Cette thèse a porté sur l’étude des défis liés à la détection des faibles contrastes
en tomographie conique rayons X sur arceau interventionnel. La châıne image 3D
est complexe : le tube à rayons X, les déformations mécaniques de l’arceau, les
non-idéalités du détecteur, l’algorithme de reconstruction, peuvent tous, à leur
niveau, influencer la qualité image des faibles contrastes. A travers des simu-
lations et des conceptions d’expériences en environnement contrôlé, nous avons
isolé les principaux facteurs influençant la qualité image des faibles contrastes.
En particulier, nous avons pu écarter l’étape de conversion analogique-numérique
de la liste des principaux suspects.

Notre proposition d’acquisition double est une preuve de concept. C’est une
manière d’utiliser le système d’imagerie actuel au maximum de ses capacités, sans
avoir à changer de composant physique. Cette acquisition double peut être vue
comme un bow-tie virtuel, et a nécessité le développement d’une méthode de
reconstruction itérative améliorant l’ensemble du volume reconstruit.

En passant d’une approche de type FBP à une approche de type BPF, nous
avons revisité les reconstructions classiques et proposé une formule originale de
reconstruction directe, que nous appelons la rétro-projection différenciée à K
passes de Hilbert (DBP-HT-K), qui se comporte comme FBP même aux faibles
échantillonnages angulaires. Cette formule nous a permis de proposer une recon-
struction alternative pour le bow-tie virtuel.

Enfin, nous avons changé de point de vue, et étudié dans quelle mesure nos
méthodes de reconstruction d’acquisitions doubles pouvaient répondre au prob-
lème de l’imagerie de régions d’intérêt. Les deux approches ont montré qu’il
était possible de reconstruire une région d’intérêt en utilisant quelques vues non
tronquées en plus, sans recourir à une information supplémentaire a priori (qu’il
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s’agisse d’un a priori spatial, ou d’une régularisation parcimonieuse).

C.6.2 Perspectives

Les résultats de cette thèse sont un point de départ. Afin de faire face à d’autres
contraintes, des choix de conception auront à être pris pour raffiner le travail
et l’adapter au milieu de la neuroradiologie interventionnelle. En particulier,
la présence de mouvement au cours de l’acquisition (fréquent dans le cas d’un
accident vasculaire ischémique) devra être pris en compte.

Le retour à une rotation simple est une option pour accélérer le temps d’acquisition
et réduire les risques de mouvement du patient pendant le spin. Si les limites d’une
acquisition simple ont été mises en évidence dans cette thèse, il reste envisageable
d’acquérir deux spins en une rotation : dans ce cas, une collimation dynamique,
rapide, sera nécessaire, de même qu’il faudra augmenter la vitesse de rotation et
la fréquence de lecture du détecteur plan.

Cette thèse n’a pas cherché à proposer de stratégies de correction du rayon-
nement diffusé. En revanche, la conception de la solution à double acquisition
prend en compte le bénéfice de l’acquisition tronquée en terme de réjection du
diffusé. En combinant les deux acquisitions, tronquées et non tronquées, et en
bénéficiant de lectures du signal sous l’ombre des lames de collimation, on peut
raisonnablement espérer pouvoir estimer plus précisément le diffusé dans l’image
(Siewerdsen et al., 2006).

D’un point de vue théorique, notre plus grande contribution concerne la
rétro-projection différenciée à K passes de Hilbert (DBP-HT-K). L’étude de
l’utilisation de DBP-HT-K dans un schéma itératif est une piste de recherche
naturelle. D’autre part, l’étude du comportement de FBP et DBP-HT-K à de
petites troncations latérales et à la présence de structures hors champ, comme le
lit du patient, est un travail en cours.

Les applications de DBP-HT-K à la reconstruction de régions d’intérêt illustre
la flexibilité de l’approche proposée. Ce schéma n’est pas limité à des acquisitions
doubles, et pourrait tout à fait s’appliquer à des acquisitions multiples, ou multi-
résolutions (Maaß et al., 2011). Nous pensons qu’une démarche consistant à
utiliser peu de mesures supplémentaires, avec un coût marginal en terme de dose,
est pertinente : nous proposons une alternative aux approches utilisant des a
priori de différentes sortes, et discutables en pratique.

Enfin, nous insistons sur le fait que les travaux de cette thèse dépassent le
cadre de la neuroradiologie interventionnelle. La radiothérapie, le scanner di-
agnostic du sein, l’imagerie cardiaque, sont autant d’applications où nos solu-
tions sont susceptibles d’apporter une réponse. Plus généralement, la flexibilité
de notre approche devrait pouvoir bénéficier à d’autres modalités et systèmes
d’imagerie, où des conceptions exotiques sont destinées à compenser les particu-
larités de la situation, en simplifiant et en accélérant la tâche de reconstruction
par rapport aux algorithmes itératifs actuels.
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Dual-rotation C-arm cone-beam tomographic
acquisition and reconstruction frameworks for

low-contrast detection in brain soft-tissue imaging

Aymeric RESHEF

RESUME : L’arceau interventionnel est un système d’imagerie rayons X temps réel. Il dispose d’une op-
tion tomographique qui, grâce à une rotation de l’arceau autour du patient, permet d’acquérir des images
en coupes dont la résolution en contraste est plus faible que celle des tomodensitomètres diagnostiques,
rendant l’information clinique des tissus mous du cerveau inexploitable. Nous proposons un nouveau
mode d’acquisition et de reconstruction tomographiques sur arceau interventionnel pour l’amélioration de
la détection des faibles contrastes en imagerie interventionnelle des tissus mous de la tête. Afin d’ému-
ler un filtre « bow-tie » (en nœud papillon), une double acquisition est envisagée. Les spécificités de la
double acquisition imposent la conception d’un algorithme de reconstruction itérative dédié, incluant le
filtre rampe dans l’énergie de minimisation. En bifurquant des approches par rétro-projection filtrée vers
celles par filtration des rétro-projections, une méthode de reconstruction directe, alternative à la précé-
dente, est proposée pour les acquisitions doubles. Pour une acquisition simple, la méthode est assurée
de faire aussi bien que l’algorithme de rétro-projection filtrée quel que soit l’échantillonnage angulaire
en géométrie planaire, et offre une approximation alternative à l’algorithme de Feldkamp-Davis-Kress
en géométrie conique. Nous montrons qu’avec peu ou pas de modifications aux schémas précédents,
les deux méthodes de reconstruction (itérative et directe) s’adaptent bien à la reconstruction de régions
d’intérêt, à laquelle l’acquisition double reste étroitement liée à travers son acquisition tronquée.

MOTS-CLEFS : filtre « bow-tie », imagerie du cerveau, tomographie, reconstruction, rétro-projection,
détection des faibles contrastes, région d’intérêt

ABSTRACT : Interventional C-arm systems are real-time X-ray imaging systems, that can
perform tomographic acquisitions by rotating the C-arm around the patient ; however, C-arm
cone-beam computed tomography (CBCT) achieves a lower contrast resolution than diagnos-
tic CT, which is necessary in order to benefit from the clinical information of soft tissues in the
brain. We propose a new C-arm CBCT acquisition and reconstruction framework to increase
low-contrast detection in brain soft-tissue imaging. In order to emulate a bow-tie filter, a dual-
rotation acquisition is proposed. To account for all the specificities of the dual-rotation acquisi-
tion, a dedicated iterative reconstruction algorithm is designed, that includes the ramp filter in
the cost function. By switching from filtered backprojection (FBP) to backprojection-filtration
(BPF) reconstruction methods, we propose an alternative, direct reconstruction method for
dual-rotation acquisitions. For single-rotation acquisitions, the method ensures to perform as
good as FBP with arbitrarily coarse angular sampling in planar geometries, and provides a
different approximation from the Feldkamp-Davis-Kress (FDK) algorithm in the cone-beam
geometry. Although we used it to emulate a virtual bow-tie, our dual-rotation acquisition fra-
mework is intrinsically related to region-of-interest (ROI) imaging through the truncated acqui-
sition. With few or no modification of the proposed reconstruction methods, we successfully
addressed the problem of ROI imaging in the context of dual-rotation acquisitions.

KEY-WORDS : bow-tie filter, brain imaging, tomography, reconstruction, backprojection-
filtration, low-contrast detection, region-of-interest
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