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Mécanique: Annie Girard, Florence Cornu, David Holleville, Bertrand Venon, Jean-Pierre et
Jean-Jacques. Je voudrais remercier les gens de la cantine (mention speciale a Corinne) et de
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Introduction

Atomic clocks have undergone tremendous development over the past 60 years. They give
a good illustration of the application of quantum physics to everyday life. Mobile phone net-
works, for example, are synchronized to the signal of atomic clocks. Satellite navigation is
another prime example. By equipping each satellite with a set of atomic clocks the Global
Positioning System (GPS) can localize, by triangulation, a point on Earth to a resolution of a
few meters. Fast and reliable telecommunication is increasingly at the core of society and the
need for stable frequency references will certainly continue to grow in the future.

Atomic clocks also provide today’s best primary frequency standards: since 1968 the SI
second has been defined as the duration of 9 192 631 770 periods of the radiation corresponding
to the transition between the two hyperfine levels of the ground state of the caesium 133 atom
[1]. This definition was refined in 1997 to account for recent technical advances by underlining
that this definition refers to a caesium atom at rest at a temperature of 0 K [2]. Nowadays, the
SI second is realized by atomic fountains operating in various places around the world. The
fantastic accuracy of these devices has other interests for fundamental physics: for example,
in the accurate measurement of the ground state hyperfine splitting [3] or constraining the
temporal variations of fundamental constants [4].

The search for ultimate accuracy is not yet over. Currently the most accurate fractional
frequency measurements are obtained on optical transitions in trapped neutral ensembles or
single ions. With stabilities of 3× 10−15/

√
τ these systems can reach total uncertainties in

the 3× 10−17 range [5, 6]. It becomes possible to observe the change of an atom’s frequency
occurring during a displacement of 33 cm in the Earth’s gravitational field [7]. In the future
these devices could be used to map the gravitational field around a planet [8].

Besides these extremely accurate devices there are atom clocks, although more modest in
performance, that have greater potential to be made compact. Based on well-established te-
chnologies, the aim is to be able to industrially produce these compact devices for them to be
used in onboard systems such as satellites, submarines or space missions [9]. Several projects
(references will be given later in this manuscript) are currently under development that all
target the realization of liter-sized devices with frequency stabilities in the low 10−13/

√
τ .

The Trapped Atom Clock on a Chip (TACC) is one such project. At its core, cold 87Rb
atoms are trapped below a micro-structured chip and interrogated by a microwave signal.
Numerous properties motivate the selection of 87Rb: its collision properties, favorable for
both cooling and spectroscopy: a rather large hyperfine splitting; the possibility for magnetic
trapping; the existence of a magic field around which the clock frequency dependence on the
magnetic field cancels to first order. Structurally the atom chip is the key for compactness:

1
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technologies for cooling, trapping, interrogating and manipulating atoms are progressively in-
tegrated [10], as witnessed by the on-chip microwave guide used in our experiment.

However, TACC is not only an atomic clock, it is also a dedicated system for fundamen-
tal studies and for developing tools to manipulate atoms. Among other features it offers the
possibility to work with either non-degenerate (thermal clouds) or degenerate quantum gases
(Bose-Einstein condensates or BECs). This property makes it the ideal experiment for as-
sessing the potential of each of these two regimes for time metrology, and, more widely, for
high-resolution measurements. As shown in the work of my predecessors [11] thermal clouds
can be operated in a regime where the exchange collisions keep the atomic spins synchronized
for extremely long times, in the order of one minute. BECs obey a dramatically different
physics: given their much higher typical densities (typically a factor ∼ 100 higher than thermal
clouds), interactions become dominant and can no longer be treated as a perturbation. As
strongly correlated systems, they also constitute a good starting point for quantum metrology
beyond the standard quantum limit.

Another open question is the application of the long interrogation times to portable atom
interferometers with large sensitivities: atomic clocks, but also atomic force sensors (gravime-
ters, gyrometers, magnetometers) or more practical devices such as portable powermeters.

This thesis aims to make several contributions to the growing field of on-chip atom clocks
and interferometers. It reports a number of metrology experiments carried out with trapped
cold atoms on a chip, with either non-degenerate or degenerate quantum gases. These expe-
riments range from fundamental studies of atomic properties to the development and de-
monstration of tools for producing and manipulating atoms on a chip.

This manuscript is organized as follows:

• We begin by introducing the global context of on-chip metrology with trapped atoms.
After recalling the founding principles of time and frequency metrology and the current
status of compact atomic frequency references we briefly present the concept of magnetic
microtraps for neutral atoms. We expose the properties of 87Rb among which is the
existence of a pseudo-magic magnetic trap. Finally, we describe the two main effects of
atomic interactions: the frequency collisional shift and the identical spin rotation effect
(ISRE).

• The second chapter deals with experimental methods. We give a description of the setup
and focus on the special features of our experiment. We describe in particular two double-
state detection methods, one of which was established during this thesis. As we work with
very dilute traps, the existence of residual cloud oscillations in the clock interrogation
trap becomes an issue that we also discuss.

• The third chapter is a characterization of the frequency stability of the clock operated
with non-condensed gases. The clock frequency is affected by technical noise that is under
investigation. After a description of the analysis tools we list all known mechanisms that
produce noise on the clock frequency. We then report on our experimental investigation
of the noise sources and amplitudes. Our research points out the existence of shot-to-shot
fluctuations of the cloud temperature and places upper bounds on several other contri-
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butions. We finally present the best clock stability observed so far and suggest ideas for
the next steps of the characterization.

• Degenerate gases is the focus of the fourth chapter. We study the potential of Bose-
Einstein condensates for metrology. BECs are useful resources in the case of high spa-
tial resolution measurements and entanglement-assisted quantum metrology. The study
starts with the measurement and modeling of the state-dependent spatial dynamics, a
well-known phenomenon in BECs. One consequence of the dynamics is the modulation of
the Ramsey contrast in time, as it depends on the wavefunction overlap between the two
states. The coherence of BECs is studied as a function of the interrogation time, atom
number and clock frequency spatial inhomogeneity. We show evidence for noise in the
data that could be related to an elongation of the collective spin state in the Bloch sphere.

• In the fifth chapter we report on the manipulation of the atomic external state by inho-
mogeneous interrogation fields. This study was carried out with thermal clouds. We show
an illustration of pulse engineering used to control the red/blue sideband asymmetry. In
the non-sideband resolved case we observe interferences between atoms transferred on
the carrier and on the sideband.

• In the sixth chapter we give an experimental proof-of-principle of the realization of an
atomic microwave powermeter by characterizing the response of our system over a mi-
crowave power range of 80 dB. This work employs the concept of using trapped atoms as
a microwave power (secondary in our case) standard which could, in the long term, be
useful in metrology applications.

• Finally, in the seventh chapter we report on the experimental investigation of fast alkali
pressure modulation under ultra-high vacuum conditions. Modulating the alkali pressure
above 1 Hz is a conceptually simple technique for boosting the repetition rate of cold-atom
based systems. One of its requirements is the design of fast sources. We demonstrate the
realization of a device for modulating the pressure modulation on the 100 ms timescale
and loading of a MOT (magneto-optical trap) within 1.2 s. Both the short and the long
term behavior of the source are investigated. Adsorption and desorption processes appear
to play a major role and will be considered. We also present alternative fast sources based
on laser-heated and reduced thermal mass rubidium dispensers.
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Chapter 1

Atom trapping on a chip: a tool for
metrology

This chapter aims to provide the reader with an introduction to the founding concepts of
the Trapped Atom Clock on a Chip (TACC). We will begin with a brief discussion of the basic
principles and advantages of atomic time keeping and will include an overview of compact
atomic clocks with specific focus on the benefits of trapped atoms for application in metrology.
We will then describe the idea of atom trapping on microstructures, also called atom chips.
In trapped atom clocks interactions play a leading role, this will be referred to and expanded
upon in the concluding part of this chapter. In particular we will focus on two effects that play
crucial roles in our experiment: the collisional shift of the clock frequency and the identical
spin rotation effect.

1.1 Basic concepts of time metrology

1.1.1 Atomic clocks

Figure 1.1: Locking principle of an oscillator on a atomic resonance. This scheme illustrates the basic

principle of atomic clocks. The locked local oscillator provides the useful signal.

An atomic clock is essentially constituted of two elements: a local oscillator and an atomic
reference. The general idea is to lock the local oscillator frequency fLO on an atomic transition
of frequency fat. The response of the atom gives the difference between the two frequencies
which is used as an error signal (figure 1.1 ). Ideally, the frequency of the local oscillator
reproduces the atomic frequency exactly.

5
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An atomic transition is the most stable frequency reference currently available. This is be-
cause it does not drift in time due to the fact that atoms are stable objects within the limit of
their radioactive disintegration time (47.5× 109 yr for 87Rb). The atomic transition is selected
to have a very narrow natural linewidth such that the width of the spectroscopy is limited by
the interrogation time (Fourier-limited). The atomic response is the dependance of the state
populations on the detuning fat− fLO, and changes with the interrogation scheme (Ramsey or
Rabi spectroscopy). To make the atomic response as steep as possible, and thus provide the
most sensitive frequency measurement, long interrogations times are needed.

Figure 1.2: Example of the atomic response in the case of Rabi interrogation. Long interrogation times

are needed to make the atomic response steep and provide high sensitivity to frequency changes.

The resolution we are able to achieve when measuring an atomic frequency is fundamen-
tally limited by the atomic shot noise. However, in the real world, the atomic line position can
fluctuate under the influence of interatomic interactions or external fields causing fluctuations
of the local oscillator frequency.

Clock accuracy and clock stability When the clock is locked, the local oscillator frequency
can be written

fLO(t) = fat [1 + ε+ y(t)] , (1.1)

where y(t) may fluctuate, but its average is equal to 0. The accuracy of the clock is the error
of the offset ε: this denotes how well the clock reproduces the atomic frequency of the atom
isolated from the outside world. The ability to build accurate 133Cs clocks is one reason for its
choice as the international time reference. Primary frequency standards need to be accurate
clocks.

The fluctuating part y(t) characterizes the stability of the clock. It must be as small as
possible. It is fundamentally limited by the atomic shot noise, which arises from the measure-
ment process.

A clock with unknown accuracy but with y(t) of small amplitude and averaging to zero can
be used as a secondary frequency standard. Such a clock delivers a signal at the clock frequency
fat(1 + ε). The offset ε can be calibrated against a primary standard. In fact most applications
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of atomic clocks require frequency stability rather than accuracy since they can be calibrated
periodically. The Trapped Atom lock on a Chip aims to be a highly stable secondary frequency
standard.

1.1.2 Atom-field interaction

The interaction between the local oscillator and the atom is treated in the near-resonant
case. The atom can be reduced to the 2 clock levels and the general theory of a two-level
atom interacting with an electromagnetic field applies. We call Ω the Rabi frequency of the
atom/field coupling, and δ = fLO − fat the detuning.

Figure 1.3: Model of the two-level atom interacting with an electromagnetic field. Ω is the Rabi fre-

quency.

1.1.3 Ramsey and Rabi spectroscopy

Two interrogation schemes are commonly used [12].

• Rabi spectroscopy involves interrogating the atoms with one pulse of constant amplitude
and duration T . The atomic response, defined as the probability of the atom to transfer
from state |1〉 to state |2〉 is given by

P2 =
Ω2

Ω2 + 4π2δ2
sin2

(√
Ω2 + 4π2δ2

T

2

)
. (1.2)

• Ramsey interrogation consists of applying two short pulses separated by a free evolution
time TR. The pulses used have an area of π/2. If the pulse durations are omitted the
atomic response is given by

P2 =
1

2
[1 + cos (2πδTR)] (1.3)

In the Bloch sphere picture, the first pulse of the Ramsey interrogation is equivalent to
placing the atom in the equatorial plane. During the Ramsey time, TR, the atom evolves freely
corresponding to a precession of the pseudospin along the equator at the frequency fat. The
second pulse converts the accumulated phase into population difference of |1〉 and |2〉.

For equal interrogation times the Ramsey method provides an atomic response ∼ 1.6 times
more sensitive to frequency changes than the Rabi scheme. Another major advantage of the
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Ramsey interrogation is that the atom is not subject to the interrogation field during the phase
evolution (to our level of approximation Ω does not appear).

1.1.4 Compact frequency references

In this section we provide an overview of the various different types of compact atomic
clocks and their applications in order to give the reader a broader perspective of our continued
interest in researching and building atomic clocks.

Applications of compact atomic clocks

Global positioning system Now available in almost every car or smartphone, GPS consists
of a set of satellites that continuously broadcast their position and time, exact to a billionth of
a second. A GPS receiver takes this information and uses it to calculate the car’s or phone’s
position on the planet. For this it compares its own time with the time sent by three satel-
lites. This method requires that both the satellites and the receiver carry clocks of remarkable
accuracy. However, by picking up a signal from a fourth satellite the receiver can compute
its position using only a relatively simple quartz clock. To ensure time accuracy each satellite
carries four atomic clocks, which are periodically re-calibrated when passing over the control
stations [13].

Very Large Baseline Interferometry This is a technique that uses distant antennas poin-
ting to the same radiofrequency stellar source (for example quasars) to increase angular reso-
lution. The useful information is contained in the difference of the signal arrival times on each
of the two antennas. These arrival times need to be known accurately on both remote devices.
The needs, in terms of clock stability, are so stringent that most stations use hydrogen masers
for the synchronization [14].

Geophysics Atomic clocks may be applied and utilized in studies of the Earth’s rotation and
the movements of tectonic plates for earthquake detection. [9].

Other fields such as space missions, meteorology and environment (monitoring of the atmo-
sphere) might also benefit from the development of compact atomic frequency references [9].
There is no doubt that further applications of compact and stable atomic clocks will appear in
the future.

Current status of compact atomic clocks

In this subsection we do not provide a complete overview of the field of compact atomic
clocks, rather, we focus on a few projects that target performances similar to ours in terms of
size and frequency stability.

Pulsed, optically pumped clock (INRIM) This clock is composed of a vapor cell placed
in a microwave cavity. It uses the Ramsey scheme with interrogation times of a few milliseconds
due to the short coherence time of the atoms. First, an intense laser pulse pumps the atoms
into one of the two states. The microwave transition is driven and a second laser pulse detects
the atomic population. Recently, a short-term stability of 1.7× 10−13/

√
τ was demonstrated,
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with an integrated instability of ∼ 5× 10−15 and drifts below ∼ 10−14 per day [15].

Coherent population trapping (CPT) These clocks also interrogate the hyperfine tran-
sition in an atomic vapor. They do not involve microwaves but two phase-coherent laser beams
that are detuned by the clock frequency. Under these conditions the atoms can be pumped into
a dark state where their resonance peaks sharply and may be used for locking the local oscilla-
tor. The SYRTE CPT clock is operated in pulsed mode for a reduced sensitivity to laser power.
Its latest status is a short term stability of 7× 10−13/

√
τ integrating down to 4× 10−14/

√
τ [16].

Trapped mercury ion clock This project is being developed at the Jet Propulsion Labo-
ratory. Mercury ions are captured in a linear multipole trap, where microwave spectroscopy of
the hyperfine transition is performed. The population is detected with a discharge lamp. In the
last publication (2009) [17], a short-term stability of 2× 10−13/

√
τ was reported , integrating

down to ∼ 10−15 in one day for a ∼ 3 L physics package.

Cold atoms in an isotropic cavity (HORACE) This project is being developed at
SYRTE. The basic idea is to use a spherical cavity to both cool and interrogate the atoms.
Optical molasses is created inside the cavity and a Ramsey spectroscopy is performed on the
free falling atoms. Atoms are recaptured at the end of each cycle and cycle times of 80 ms can
be achieved. The current status of this project is a short term stability of 2.2× 10−13/

√
τ ,

limited by the atomic shot noise, and frequency instability of ∼ 3× 10−15 after 104 seconds of
integration [18].

The TACC project also targets a stability of & 10−13/
√
τ . As explained later in this thesis,

the discovery of the effect of spin self-rephasing [11, 19] gives hope that this target may even
be surpassed. In the next section we discuss the advantages and drawbacks of using trapped
atoms for metrology.

1.1.5 Using trapped atoms for metrology

The interest of using trapped atoms for metrology lies in the long interrogation times that
can be achieved whilst keeping the system compact. However, special traps must be engineered
in order to disturb the two clock states energies in the same way, as we will see in this section.
Traps also enable one to cancel the atom’s recoil from the interrogation photon as in optical
clocks.

Extended interrogation times

In atomic fountains the atoms are under free fall. The upper limit of the interrogation time
is given by the size of the apparatus. By launching the atoms up against gravity one can gain
a factor of 2, but the slow scaling of the free fall time t =

√
2h/g with the size of the apparatus

h makes it hard to gain. We note, however, that recently an atomic fountain exceeding 10 m
was proposed for testing general relativity [20, 21].
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By trapping the atoms one can achieve arbitrarily long interrogation times. The new li-
mitations to the interrogation time become the coherence time of the superposition (T ∗2 in the
language of the nuclear magnetic resonance), the lifetime of the atomic trapped cloud, the
natural linewidth of the transition or the coherence time of the local oscillator.

Cancelation of the effect of the trap on the clock frequency

Magic traps for accurate clocks Atom trapping consists of giving the atomic state’s ener-
gy a spatial dependance while metrology implies insensitivity to external fields. The apparent
contradiction can be solved if we consider situations where the energy varies with the external
field for both clock states in the same way. In such a trap the energy difference between the
two clock states becomes insensitive to the trapping field to first order, and the frequency of
the trapped atom is identical to the atomic frequency in free space (see figure 1.4). Such traps
are called magic traps, and are the primary requirement in achieving clock accuracy.

A magic optical trap can be created by choosing a magic wavelength [22] at which both
clock states have identical electric polarizabilities. For microwave clocks (typically Cs or Rb)
there have been proposals to combine the polarization of the trapping light with a magnetic
field in order to eliminate the effect of the optical trap on the clock frequency [23], however,
this is at the expense of an increased magnetic field sensitivity.

Magic traps for stable clocks The clock stability at the standard quantum limit is pro-
portional to 1/C where C is the fringe contrast. When operating with thermal atomic clouds
one faces the issue of atom dephasing. In this regime the atoms are all independent and the
precession speed in the Bloch sphere is different for each of them: it depends on the clock
frequency landscape experienced by an atom during its trajectory. As time passes atoms will
dephase from each other which will reduce the contrast of the Ramsey fringes. Dephasing is
greatly reduced in a magic trap as a result of the clock frequency being independent of position
(or atom’s coordinates). Magic traps are tools for building stable clocks.

A second feature of magic traps is that they make the clock frequency insensitive to fluc-
tuations of the external field, leading to a reduction in the technical noise associated with these
fluctuations.

Pseudo-magic traps We define a pseudo-magic trap as a trap that possesses the following
two properties: (1) no dephasing and (2) clock frequency insensitivity to changes of the trap
amplitude, but does not reproduce the free-space frequency (see figure 1.4). Such a trap is the
starting point for constructing a secondary frequency standard: (1) high clock quality factors
are accessible as a result of long dephasing times and (2) the clock frequency is insensitive to
trap magnitude fluctuations, which removes a source of technical noise.

This gives the philosophy of the Trapped Atom Clock on a Chip (TACC). As mentioned,
TACC relies on the existence of a pseudo-magic magnetic trap for 87Rb, the details of which
are elaborated on further in this manuscript.



1.2. Neutral atom trapping on a chip 11

 E
n

er
g

y

 

 

(a)
 

 

(a)
 State |1>
 State |2>

 Position
(b)(b) (c)(c)

Figure 1.4: (a) Atomic levels in free space. (b) A magic trap reproduces the free space atomic frequency.

(c) A pseudo-magic trap does not reproduce the free space atomic frequency.

Cancelation of the photon recoil

When an atom emits or absorbs a photon of wave vector k from a plane wave, it recoils with
the momentum ~~k. This recoil can provoke a Doppler shift of the atomic transition frequency
and introduce a bias on the frequency measurement. This recoil effect can be inhibited [24] if
the trap frequency ω/(2π) and the mass of the atoms m obey (Lamb-Dicke regime):

η =

√
~k2

2mω
� 1. (1.4)

η is the Lamb-Dicke parameter.

Operating in such a regime is particularly crucial for clocks based on optical transitions, for
which the recoil momentum is 105 times larger than for a microwave clock. This is one reason
for choosing optical traps for such clocks, with typical trap frequencies of 100 kHz.

For a microwave clock, the Lamb-Dicke condition is less stringent and magnetic traps, which
are typically less confining than optical traps, can be used. In the case of 87Rb, a trap frequency
of 10 Hz gives a Lamb-Dicke parameter of 3× 10−4.

1.2 Neutral atom trapping on a chip

This section will include a brief account of the principles of magnetic trapping of neutral
atoms with particular consideration of 87Rb for which a pseudo-magic magnetic trap exists.
We will also give an overview of the basic concept of atom trapping on chips including examples
of some trap configurations.

1.2.1 Magnetic trapping

Neutral atoms interact with the magnetic field via their magnetic dipole moment µ. In
low magnetic fields (i.e. causing energy shifts much smaller than the hyperfine splitting) the
atomic dipole moment is directly proportional to the total angular momentum F with the
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proportionality constant −µBgF (gF is the Lande factor). The interaction energy in a magnetic
field B takes the form

U = −µ ·B = µBgfF ·B = µBgFmF |B|. (1.5)

Maxwell’s equations allows only the existence of local minima of the magnetic field B in
space. Thus, only atoms with a magnetic dipole moment antiparallel to the field (low field
seekers) can be trapped, in minima of the magnetic field.

To keep the atoms in the trap, it is important that their dipole moment adiabatically follows
the local direction of the magnetic field. The criteria is that the rate of change of the field’s
direction θ (in the reference frame of the moving atom) must be smaller than the Larmor
frequency [10]:

dθ

dt
� ωL =

µB|gF |B
~

. (1.6)

In regions of very small magnetic fields this condition is violated, resulting in atom losses
(Majorana losses).

1.2.2 A pseudo-magic trap for 87Rb

Equation 1.5 is only approximate, and a rigorous derivation of the magnetic energy must
include the hyperfine splitting. For states of J = 1/2, the hamiltonian can be diagonalized
analytically and leads to the Breit-Rabi formula, which gives the eigenenergies as a function
of the magnetic field. At low fields, the eigenstates are very close to the |F,mF 〉 states, and in
the rest of the manuscript they are considered as equal.

The magnetic energy of the two trappable states |1〉 = |F = 1,mF = −1〉 and |2〉 = |F =
2,mF = 1〉 can be calculated. In particular there is a field Bm around which the energy of
these two states have identical dependence to the magnetic field to first order. Around this
magic field the corresponding energies can be expanded:

U1(r) = αmB(r) + hβ1(B(r)−Bm)2 (1.7)

U2(r) = A2 −A1 + αmB(r) + hβ2(B(r)−Bm)2.

(1.8)

Here A2 −A1 = ∆Ehfs + h∆f0, where ∆Ehfs/h = 6.834 682 GHz, αm = 1.001 661× µB/2,
∆f0 = −4497.31 Hz and β = β2 − β1 = 431.3596 Hz G−2. The value of the magic field is
Bm = 3.228 917 G [25].

The transition frequency between these two states reads

f|1〉→|2〉 =
∆Ehfs
h

+ ∆f0 + β(B(r)−Bm)2. (1.9)

At Bm the magnetic trap is a pseudo-magic trap. It has features of both low dephasing
and first order magnetic insensitivity of the transition frequency. It is the configuration of our
experiment.
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The atomic system The Trapped Atom Clock on a Chip uses 87Rb atoms and the pair of
states |1〉 and |2〉. Besides the existence of a magic field for this transition 87Rb is also relatively
convenient for laser and evaporative cooling, possesses a rather large hyperfine splitting and
scattering lengths are almost equal for both states.

Figure 1.5: Energy diagram of the hyperfine structure of 87Rb in presence of a quantization magnetic

field. Our two clock levels are displayed in orange. The transition can be addressed by the combination

of two signals: microwave (red) and radiofrequency (blue). Both are detuned from the intermediate level

(dashed orange) by ∆ ' +500 kHz.

The transition between |1〉 and |2〉 must be addressed by two photons, each of them de-
tuned from an intermediate level. We typically detune the two signals by 500 kHz from the
|F = 2,mF = 0〉 level. The total Rabi frequency of the coupling Ω can be expressed as a
function of the one-photon Rabi frequencies Ωmw and Ωrf [26]:

Ω =
ΩmwΩrf

2∆
. (1.10)

1.2.3 Magnetic microtraps

Atom trapping by a wire

An infinite wire carrying a current I produces a magnetic field of amplitude B(r) =
µ0I/(2πr). When a homogeneous external field, B, perpendicular to the current flow is added
the total magnetic field cancels at the point z0 = µ0I/(2πB). Around this point the total
magnetic field is a 2 dimensional quadrupole in which atoms can be confined.

Quadrupole trap

Confinement in the third direction can be obtained by adding two wires perpendicular to the
first wire with contrapropagating currents. These wires add a field gradient in the x direction.
A more convenient configuration is to use a single wire in a U shape in place of the three wires.
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Figure 1.6: A single wire carrying a current (a) combined with a homogeneous magnetic field (b) creates

a 2 dimensional quadrupole magnetic trap (c). Figure taken from [27].

A U wire combined with a homogeneous field provides a 3D quadrupole field: it is used to form
the magneto-optical trap.

Dimple trap

Figure 1.7: Scheme of the dimple trap. The current I0 combined to the homogeneous field By creates a

2-D quadrupole trap identical to figure 1.6. The current I1 creates a field gradient along x and modifies

the position of the field minimum along y (plain line). The dashed line indicates the field minimum for

I1 = 0. Here the potential is repulsive along x as shown by the plot of Bx. By adding a homogeneous

field along x the potential can be tuned to become attractive [27]. Figure taken from [27].

Instead of the two perpendicular wires, the confinement in the third direction can be ob-
tained using only a single wire placed perpendicularly to the first wire (figure 1.7). If this new
wire is combined with a large enough homogeneous field (perpendicular to it) the potential
becomes confining in the x direction [27]. This Ioffe-Pritchard geometry dimple trap is used
for both the evaporative cooling and the interrogation sequence (with different parameters).
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If the pure 2D quadrupole trap minimum is along the x axis, the field minimum of the
dimple trap is tilted in the xy plane.

Effect of the gravity The effect of gravity is to pull down the trapped atoms away from
the point of minimum field. The gravitational sag is the distance z0 between the cloud center
r0 = (0, 0, 0) and the point of minimum field. It is defined by αm(∂B/∂z)(r0) = mg. The trap
frequencies are given by (∂2B/∂x2

i )(r0) = mω2
i /αm. Around the cloud center, the magnetic

field can be expressed

B(r) = B(r0) +
mω2

x

2αm
x2 +

mω2
y

2αm
y2 +

mω2
z

2αm
z2 +

mg

αm
z. (1.11)

1.3 Interactions between cold atoms

In this part we describe two effects arising from the interactions between atoms. The first
one is a shift of the clock frequency also referred to as the collisional shift. The second one, the
identical spin rotation effect, can be understood as an exchange of the atoms’ internal states
during a collision.

1.3.1 General framework: collisions at low energy

Atoms colliding at low energy can be described using the approach of [28]. In a dilute, cold
gas the binary s-wave collisions are dominant and the interaction potential can be written

V (r− r′) = gδ(r− r′) =
4π~2a

m
δ(r− r′). (1.12)

a is the scattering length and depends on the internal state of the atoms involved in the
collision. For the two states of 87Rb which we use, the scattering lengths are a11 = 100.44,
a12 = 98.09 and a22 = 95.47 in units of the Bohr radius a0 [29].

The hamiltonian describing the system, in terms of the boson field operator ψ̂, reads:

H =

∫
V
d3r

∑
α

ψ̂†α(r)

(
−~2∇2

2m
+ Uα(r)

)
ψ̂α(r) +

2π~2

m

∫
V
d3r

∑
α,β

aαβψ̂
†
α(r)ψ̂†β(r)ψ̂α(r)ψ̂β(r).

(1.13)
Here α and β label the internal states of the atom. We have omitted the coupling between

internal states by the interrogation field.

The interaction hamiltonian is treated as a perturbation. The field operator is expanded
over the trap eigenstates with the help of the creation operators ĉν,α (creating an atom in the

trap state ϕν(r) and internal state α): ψ̂α(r) =
∑

ν,α ϕν(r)ĉν,α. The interaction part of 1.13
can be written

Hint =
2π~2

m

∑
α,β

∑
ν1,ν2,ν3,ν4

aαβ ĉ
†
ν1,αĉ

†
ν2,β

ĉν3,αĉν4,β

∫
V
d3rϕ∗ν1

(r)ϕ∗ν2
(r)ϕν3(r)ϕν4(r). (1.14)
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Lateral and forward collisions This form is useful for identifying two different collision
processes: (1) for {ν1 = ν3, ν2 = ν4} or {ν1 = ν4, ν2 = ν3} the trap levels occupied by the atoms
are unchanged. They are called collisions in the forward direction; (2) all other processes for
which atoms are scattered to other trap states are called lateral collisions.

The balance between lateral and forward collisions is given by the cloud temperature. For
{ν1, ν2} 6= {ν3, ν4} it can be shown that

∫
|ϕν1 |2|ϕν2 |2 � |

∫
ϕ∗ν1

ϕ∗ν2
ϕν3ϕν4 | [30]. The cloud

temperature gives the number of trap levels that are populated and over which the sum in 1.14
must be calculated. The forward collisions will become dominant at temperatures low enough
to maintain the inequality even after summing over the trap states νi.

We will now consider two effects arising from s-wave collisions: the first effect is a density-
dependent shift of the clock frequency. It seems relevant to recall its expression for both the
non-condensed and the condensed case. The second effect, the identical spin rotation effect, is
specific to the non-degenerate case.

1.3.2 Collisional shift

The derivation of the collisional shift can be found in [28]. The authors derive the density-
dependent shift of the clock frequency for a spatially homogeneous system:

∆fcoll,nc =
4~
m

[a22n2 − a11n1 + a12(n1 − n2)] (1.15)

for a non-condensed gas and

∆fcoll,c =
2~
m

[a22n2 − a11n1 + a12(n1 − n2)] (1.16)

for a pure condensate. n1 and n2 are the densities of states |1〉 and |2〉 respectively. The
two expressions differ only by a factor 2: this is due to the absence of exchange interaction in a
condensate. In a BEC all the atoms occupy the same spatial state and, therefore, no exchange
process can occur during collisions, which reduces the number of processes involved in the in-
teraction by a factor 2 [28]. This phenomenon was experimentally confirmed by a measurement
of the 87Rb clock frequency dependence on mean density in both the non-condensed and the
condensed case [29].

1.3.3 Identical spin rotation effect (ISRE)

In this section we discuss the identical spin rotation effect. This effect arises from exchange
interaction and, therefore, applies only to the non-degenerate case.

The two atoms model

Here we derive the identical spin rotation effect in the model of two atoms colliding [31].
We consider only the forward collision. In this case the problem reduces to two atoms with
internal states |1〉 and |2〉 evolving in the subspace of their two wavefunctions before collision
{ϕv, ϕw}. The interaction hamiltonian can be simplified to
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Hint =
2π~2

m

∑
{α,β}∈{1,2}
{ν1,ν2}∈{v,w}

aαβ

(
ĉ†ν1,αĉ

†
ν2,β

ĉν1,αĉν2,β + ĉ†ν1,αĉ
†
ν2,β

ĉν2,αĉν1,β

)∫
V
d3r|ϕν1(r)ϕν2(r)|2.

(1.17)
The direct and exchange terms appears clearly. This hamiltonian is diagonal in the basis

of symmetrized eigenstates:

|u〉 = ĉ†v,1ĉ
†
w,1|0〉

|d〉 = ĉ†v,2ĉ
†
w,2|0〉

|t〉 =
(
ĉ†v,2ĉ

†
w,1 + ĉ†v,1ĉ

†
w,2

)
|0〉/
√

2

|s〉 =
(
ĉ†v,2ĉ

†
w,1 − ĉ

†
v,1ĉ
†
w,2

)
|0〉/
√

2, (1.18)

or, in the language of first quantization, by labeling the two atoms a and b:

|u〉 = |1a1b〉 [ϕv(ra)ϕw(rb) + ϕw(ra)ϕv(rb)] /
√

2

|d〉 = |2a2b〉 [ϕv(ra)ϕw(rb) + ϕw(ra)ϕv(rb)] /
√

2

|t〉 = (|2a1b〉+ |1a2b〉) [ϕv(ra)ϕw(rb) + ϕw(ra)ϕv(rb))] /2

|s〉 = (|2a1b〉 − |1a2b〉) [ϕv(ra)ϕw(rb)− ϕw(ra)ϕv(rb)] /2. (1.19)

The matrix elements of Hint read Hint
uu = 8π~2a11I/m, Hint

dd = 8π~2a22I/m, Hint
tt =

8π~2a12I/m (I =
∫
V d

3r|ϕv(r)ϕw(r)|2), and 0 everywhere else. The interactions shift the
energy levels of the triplet states |u〉, |d〉, |t〉, but leave the singlet state |s〉 unaffected (figure
1.8.a).

In the special case of 87Rb the situation is simple due to the fact that the scattering length
for the three states |d〉, |u〉 and |t〉, respectively a11, a22 and a12, are nearly identical. The
interactions produce a nearly identical shift of these three states by the amount ~ωex whereas
|s〉 does not interact and is not shifted (figure 1.8.a):

~ωex =
8π~2a12

m

∫
V
d3r|ϕv(r)ϕw(r)|2 (1.20)

Evolution of the atomic spins We now consider that the two atoms are placed by a π/2
pulse on the equator of the Bloch sphere and assume that they have acquired a different phase
depending on their energy (figure 1.8.b). In the Bloch sphere the two spins are dephased by
an angle, 2α. For simplicity we consider that the two atoms lie symmetrically on each side of
the x axis, and make an angle α with it.

The initial wavefunction of the system before the collision reads

|ψ〉 =

(
ĉ†v,1 + eiαĉ†v,2

)
√

2

(
ĉ†w,1 + e−iαĉ†w,2

)
√

2
|0〉 =

1

2

(
|u〉+ |d〉+

√
2 cosα|t〉 − i

√
2 sinα|s〉

)
.

(1.21)
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Figure 1.8: (a) Energy scheme of the |u〉, |d〉, |t〉 and |s〉 states before (black) and during (grey) the

collision for the case of 87Rb. (b) Bloch sphere picture of the two atoms before the collision. They are

dephased because their total energies are different: the red (“hot”) atom precesses faster than the blue

(“cold”) one. (c) After the collision the atomic spins have rotated around each other, due to the fact

that the |s〉 level is not shifted by the interactions. Figure adapted from [32].

We note that dephasing causes the spins to be partially distinguishable, which populates
the state |s〉. In the interaction picture this state evolves as:

|ψ(t)〉 =
e−iωext

2

(
|u〉+ |d〉+

√
2 cosα|t〉 − ieiωext

√
2 sinα|s〉

)
. (1.22)

In order to picture the two spins in the Bloch sphere we compute the Bloch vectors Bv

and Bw associated with the wavefunctions ϕv and ϕw. By definition of the Bloch vector
ρ̂v(t) = (1 + Bv(t) · σ̂)/2 where {σ̂i} are the Pauli matrices and ρ̂v is the density matrix for
the spin in ϕv. The three components of the Bloch vector can be calculated by noting that
Bi = 〈Ŝi〉 = 〈σ̂i〉/2 where Ŝ is the spin operator. For the spin state of the atom in ϕv we
compute:

Bv(t) =

 cosα
− cos (ωext) sinα

− sin (ωext) sinα cosα

 . (1.23)

This corresponds to an “elliptic” precession around the x axis. This is also the direction of
the geometric sum of the two initial Bloch vectors (figure 1.8.c). A similar calculation holds
for Bw(t). The identical spin rotation effect causes the two spins to rotate around their sum.

System entanglement We note that for the times t = nπ/ωex the total state |ψ(t)〉 is
separable, which corresponds to pure spin states for both ϕv and ϕw. At these times the Bloch
vectors Bv(t) and Bw(t) have a norm 1. For all other times the system is in an entangled state
and |Bv,w(t)| < 1. That is, the two spins are correlated. Assuming we are able to discriminate
between states ϕv and ϕw during the measurement, we could measure the probability of finding
the ϕw atom in internal state |2〉 knowing that ϕv was measured in |2〉. This probability is
given by
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P (v : 2|w : 2) =
1

2 + 2 sin (2α) sin (ωext)
. (1.24)

Degenerate gases It is interesting to note that if we consider two particles in the same in-
ternal state the model does not apply because we can no longer symmetrize or antisymmetrize
the total wavefunction. In our description atoms cannot be in the same external state and have
different spin states simultaneously. This is the case of a Bose-Einstein condensate for which,
by definition, all particles occupy the same external state. Therefore, no exchange effects and
no identical spin rotation are expected in a BEC.

The semiclassical description

A derivation of the spin rotation effect in the semiclassical description was given by Lhuil-
lier and Laloë in [33]. They carefully treated the particle indistinguishability during a binary
collision and showed that the internal state exchange occurs during a collision in the forward
direction. For spin 1/2 atoms this effect is equivalent to a rotation of the individual spins
around their sum [34]. The direction of rotation depends only on the statistical nature of the
particles (bosons or fermions). It is purely caused by particle indistinguishability and does not
involve any spin-dependant interaction. They also show that at low energies the spin rotation
effect in the forward direction becomes the dominant process in the collision which is consistent
with our model.

Lhuillier and Laloë derived a kinetic equation for the spin density and obtained for the rates
of forward (ωex) and lateral (γc) collisions in the case of 87Rb [34]:

ωex
2π

=
2~|a12|〈n〉

m
and

γc
2π

=
32
√
πa2

12〈n〉
3

√
kBT

m
. (1.25)

Since the direction of rotation only depends on the statistical nature of the particles, the
spin rotation effect is cumulative. An atom crossing the atomic cloud will always undergo spin
rotations in the same direction, independently of its direction of propagation. In this respect
ISRE is similar to the Faraday effect for photons in a static magnetic field.

Consequences of the identical spin rotation effect

ISRE is the driving mechanism of spin waves observed in dilutes gases: in spin polarized
hydrogen gas, 3He, dilute 3He-4He solutions [34], and, more recently, in ultracold gas of 87Rb
bosons [35, 36, 37, 38, 39] and 6Li fermions [40, 41, 42]. In our experiment ISRE has other
expressions: it induces a self-rephasing of the spins which leads to extremely long dephasing
times and contrast revivals in the atomic ensemble [11] (see also [19]). Its effect on the clock
frequency itself is under investigation. Spin waves were observed under the application of in-
homogeneous excitations [43].

Long dephasing times The evidence for spin-self synchronisation in our experiment was
given by the observation of extremely long dephasing times (measured as the Ramsey contrast
decay time) in the order of 58(12) s [11]. These spectacular dephasing times are the longest
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ever observed on a collection of neutral atoms. For the ISRE to indeed act as a spin self-
synchronisation mechanism the following conditions must be fulfilled:

ωex � ∆0, γc. (1.26)

∆0 is the typical inhomogeneity of the clock frequency over the cloud extension. The inter-
pretation is straightforward: the spins need to dephase slowly enough for the synchronization
mechanism to take place. Also, the lateral collision rate must be small enough for the forward
collisions to be dominant and no rethermalization to take place during the exchange process.

Spin waves and collisional shift from inhomogeneous excitations A short inhomo-
geneous pulse spreads the atomic spins in the vertical plane of the Bloch sphere. A similar
calculation as made above can be carried out and the spin rotation effect also takes place. In
particular, our system was used to confirm predictions of a collisional shift in fermionic clocks
arising from the inhomogeneity of the interrogation pulses [31, 43].



Chapter 2

Experimental methods

In this chapter we will give a brief description of the experimental setup and present ex-
perimental results that will be referred to throughout this manuscript. We will present the
implementation of a new double-state detection scheme involving an adiabatic rapid passage.
Finally we will discuss the problem of loading very shallow traps, as it is highly relevant to
metrology with trapped atoms.

2.1 Overview of the experimental setup

In this section we briefly review the experimental setup. For a more in-depth explanation
of the construction of the experiment we refer the reader to the works of my predecessors who,
with great care and precision, designed and built this compact experiment under metrological
constraints [26, 44, 32]. The purpose of this description is rather to emphasize the peculiarities
of our experiment, give general conventions and indicate a few technical improvements that
were made during this thesis.

2.1.1 The vacuum system and the chip

Vacuum cell The central part of the experiment is the vacuum cell (figure 2.1). The atom
chip is glued onto it and plays the role of a cell wall, giving easy access to its electrical con-
nections. Glued on the chip is a copper block that contains a macroscopic U and a macroscopic
I wire. The copper block is cooled by temperature-regulated water. The chip is oriented hori-
zontally and atoms are trapped below it. A commercial rubidium dispenser [45] continuously
emits atoms into the cell.

The atom chip is made of two layers glued on top of each other (figure 2.2). Electrical
connections were made by bond wires. An important feature of the science chip is the inte-
grated microwave guide designed to interact with the atoms via its evanescent field. Because
of this geometry, the microwave field is not homogeneous in space, a feature which will be used
in chapter 5. The microwave guide is constituted of three parallel wires. The central wire,
hereafter referred to as stripline wire, carries also a DC current. It is combined to the central
wire of the base chip known as dimple wire to form a dimple trap (figure 2.2).

21
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Figure 2.1: Left: Expanded view of the vacuum system. Right: Expanded view of the cell only, together

with the chip and the macroscopic U and I. We also show the axis convention that we will follow

throughout this manuscript. In the experiment the chip is mounted horizontally such that gravity is

along z. Pictures from [26].

Figure 2.2: Left: Scheme of the base chip. Middle: Scheme of the science chip, where the microwave

guide is pictured in red. The central part of the microwave guide defines the x axis. Right: Photo of the

two layers after gluing. Pictures from [26].

2.1.2 Magnetic shielding and optical hat

An optical hat (figure 2.3) was designed to fit around the cell. It holds 3 pairs of coils and
six fiber collimators and their polarization optics. Four beams are used for atom trapping and
cooling in a mirror-MOT (magneto-optical trap) configuration: two along x and a further two
in the yz plane pointing upwards at a 45 ˚ angle to the vertical axis. Along the x and y axis are
placed the two beams used for optical pumping and detection. An Andor iKon M 934-BRDD
camera is placed on the x axis and PCO Sensciam QE on the y axis.

A double-layer MuMetal magnetic shield surrounds the optical hat and the cell and ensures
attenuation of external magnetic perturbations.

2.1.3 The interrogation photons

A microwave synthesis chain was built to convert the 100 MHz from a hydrogen maser
(distributed to all SYRTE laboratories) up to the hyperfine frequency of 87Rb (∼ 6.834 GHz).
Figure 2.4 gives a schematic view. To evaluate the noise performances of such a device, it was
compared to an identical chain. The measured performances [46] are equivalent to a frequency
stability of 10−14 at 1 s. Recent measurements have confirmed that the noise added by the
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Figure 2.3: Scheme of the mechanical structure of the experiment. The optical hat was designed to

fit around the vacuum cell. It holds the coils and light collimators as well as some polarisation optics.

Around the whole system a two-layer magnetic shield was placed, allowing only minimal access for

cameras, electrical connections, water cooling pipes and vacuum cell body. Picture from [26].
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Figure 2.4: Schematic view of the microwave synthesis chain. NLTL: Non-Linear Transmission Line;

DDS: Direct Digital Synthesiser; DRO: Dielectric Resonator Oscillator. The middle arm provides a

signal at 6.4 GHz. The top arm provides 400 MHz and allows control of the chain output power. The

bottom arm gives fine tuning of the total frequency with a DDS clocked on a 40 MHz signal derived from

the 100 MHz reference signal. Picture from [32]. See [26] for a complete description.

synthesis chain to the maser signal is negligible.

The radiofrequency signal needed for the two-photon transition is provided by a DDS (Stan-
ford Research System) clocked on the same 100 MHz reference signal. It is combined with ad-
equate switches and amplifier (see details in [26]). The radiofrequency amplifier has not been
characterized and in the rest of this report we will always give the radiofrequency power before
the amplifier.
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2.1.4 Low noise current sources

Specifically developed for the needs of our experiment, the low noise current sources deliver
up to 3 A and show relative RMS noise of 2.5× 10−6 for frequencies between 10 Hz and 100 kHz.
The drift is below 4× 10−5 during the first hour, and reduces to 10−5 when in continuous op-
eration [26]. During the interrogation phase the magnetic trap is formed by low noise current
sources exclusively whilst all other current sources are physically disconnected.

2.1.5 Optical bench

The optical bench consists of two extended-cavity laser diodes [47] (Master and Repump)
and a slave diode. They provide the light for atom trapping and cooling, optical pumping
and detection. The lock scheme works in the following way: the Repump laser is locked on a
rubidium line thanks to a saturated adsorption spectroscopy. The Master laser is locked on the
Repump laser by means of a beat between the two lasers. The Slave laser is injection-locked
by the Master.

During this thesis the Repump laser was replacedin order to benefit from a design with
better thermal stability with which the laser typically stays on lock for days. The Slave laser
was also replaced once and its collimation optics adapted. The power splitting scheme of the
Master laser was adjusted in order to send more power into the detection beam. The detuning
scheme of the Repump laser was modified: its frequency is no longer changed throughout the
cycle, reducing the chances of unlocking. The frequency of AOM 6 (controlling the optical
pumping light derived from the Repump laser) was consequently adjusted to 73.5 MHz.

2.2 Typical cycle

The different steps of a typical experimental cycle are:

• Mirror MOT The 1/e loading time of the MOT is typically 8 s. Full loading of the MOT
provides about 8× 106 atoms. However, a loading time of 4 s gives good atom number
(3.2× 106 atoms) and reasonably short cycle times.

• The compressed MOT consists of a short (14 ms) compression of the captured cloud
through increase of the magnetic gradient.

• The atoms are further cooled by 4 ms of optical molasses. The cloud final temperature
is < 10 µK.

• A short light pulse applied on the y axis together with a quantization magnetic field along
y perform optical pumping of atoms in the |1〉 state.

• Transfer to the magnetic trap The magnetic trap is switched on and approximately
60 % of the atoms are captured.
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• Evaporative cooling The cloud is compressed into a tight dimple trap (frequencies
∼ {0.120, 1.2, 1.2} kHz) and a radiofrequency ramp is applied on a chip wire. After 3.3 s
an ultracold atomic cloud is obtained. By adjusting the final value of the radiofrequency
ramp one can choose to reach quantum degeneracy (Bose-Einstein condensation) or stay
above the condensation temperature.

• The transfer to the interrogation trap passes from a very tight trap to a very shal-
low one with frequencies {ωx, ωy, ωz} = 2π × {2.9, 92, 74}Hz. The transfer ramp takes
700 ms and is discussed further in section 2.4. Due to the low rethermalization rate in
the dilute trap, the temperatures in all three axis are different. They typically read
{Tx, Ty, Tz} = {40, 115, 100}nK.

• Interrogation of the atomic sample Microwave and radiofrequency signals address
the two-photon transition.

• Double state detection The atom distributions of both states are detected by absorp-
tion imaging after 5 msto30 ms time of flight.

2.3 Double state detection methods

It is crucial to measure both clock state populations at each shot. This allows us to, among
others, correct the clock frequency for shot-to-shot atom number fluctuations (see chapter 3).

Two different methods can be used to to this: Double detection and Detection with adia-
batic passage. During this thesis the latter method was implemented. Both methods rely on
the detection of the atoms on the cycling transition |F = 2,mF = 2〉 → |F ′ = 3,m′F = 3〉 of
the D2 line. The imaging beam is set on resonance with the cycling transition and polarized
σ+ with respect to the quantization magnetic field.

2.3.1 Double detection: detection with Repump light

In this method the cloud is released and exposed to the imaging beam twice (figure 2.5).
The first pulse images the atoms in |2〉, which are resonant with the detection light. They are
rapidly pumped onto the cycling transition and scatter detection photons. A few milliseconds
later a second pulse is applied together with the repump light which is sent through the 45 ˚
MOT beams. With this combination, atoms in state |1〉 are pumped into the |F = 2〉 state
and then onto the detection transition. Between the two pulses a 200 µs pulse resonant with
|F = 2,mF = 2〉 → |F ′ = 3,m′F = 3〉 is applied via the 45 ˚ beams to push the |2〉 atoms out
of the way of the imaging beam.

This method requires a fast transfer mode on the camera: the two pulses are separated by
a few milliseconds and this is not enough for the camera to read all the pixels. A fast transfer
mode consists of taking two images successively and performing the read-out of both images
at a later time.
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CCD CCD

Figure 2.5: Symbolic scheme of the double detection method. (a) Atoms in clock state |1〉 (blue) and |2〉
(red) are magnetically trapped. (b) The trap is released and the atoms fall. (c) The first light pulse (light

red) resonant with the |2〉 state images of the |2〉 cloud distribution. (d) The push-out pulse ensures

complete disappearance of the |2〉 atoms. (e) The second pulse is sent some ms later together with

repump light coming from the side (light blue). This combination performs pumping of |1〉 atoms onto

the cycling transition and provide an image of the |1〉 cloud.

2.3.2 Detection with adiabatic passage

Microwave Pulse

CCD

Figure 2.6: Symbolic scheme of the detection with adiabatic passage. (a) Atoms in clock state |1〉 (blue)

and |2〉 (red) are magnetically trapped. (b) A 1 ms microwave pulse transfers atoms from |1〉 to the

|F = 2,mF = 0〉 untrapped state (brown) with 99.5 % efficiency. Atoms in |3〉 begin to fall. (c) The trap

is released some ms later and the |2〉 atoms also fall. (d) A single resonant pulse (light red) images both

states that are spatially separated.

An alternative to the double detection method involves transferring trapped |1〉 atoms to
the untrapped |F = 2,mF = 0〉 state. They will begin to fall whilst the |2〉 atoms remain
trapped. Some milliseconds later the trap is released and a single imaging pulse is sent. All
atoms are resonant with the imaging pulse and the two clouds are spatially discriminated (fi-
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gure 2.6).

We will now focus on the transfer |1〉 → |3〉 = |F = 2,mF = 0〉 achieved with the use of a
microwave pulse. A feature of the microwave is the inhomogeneity of the field produced. For the
atoms to experience an almost homogeneous microwave field the transfer must occur on a short
enough timescale. Given the typical spatial inhomogeneity of the microwave amplitude (the
amplitude decreases exponentially along z on the scale δ ∼ 33 µm [43]) the field experienced
by the falling atoms is approximately constant during the timescale t <

√
2δ/g ∼ 3 ms. As ex-

plained in the following, it is possible to efficiently transfer the atoms during this time window
with the adiabatic rapid passage technique provided the microwave power is large enough.

Theory of the adiabatic rapid passage The adiabatic passage is best understood in the
formalism of the dressed atom. We consider a two-level atom (states |1〉 and |3〉) in interaction
with the microwave field. Ω denotes the Rabi frequency and δ the detuning. In the dressed
atom picture, the eigenstates of the {atom + field} system read:

|+〉 = sin θ|1, n〉+ cos θ|3, n− 1〉 (2.1)

|−〉 = cos θ|1, n〉 − sin θ|3, n− 1〉, (2.2)

where n is the number of photons in the field, and cot θ = −δ/Ω [48]. The atom is initially
in the |1〉 state. If δ is swept slowly across the resonance, the mixing angle θ turns from 0 to
π/2, and consequently |−〉 evolves from |1, n〉 to |3, n − 1〉 causing transfer of the atom from
|1〉 to |3〉 (see figure 2.7). To ensure adiabaticity during the transfer, the following condition
must be fulfilled [49]:

dδ

dt
� Ω2. (2.3)

This equation can be summarized by the statement “the more microwave power, the more
adiabatic”. If equation 2.3 is fulfilled the adiabatic passage method bears the advantage of
being insensitive to microwave power fluctuations.

Results for the adiabatic rapid passage in an inhomogeneous field In the experiment
the detuning δ is controlled by the trap bottom field B0. To minimize off-resonant excitations,
we use Blackman shapes for both the magnetic field and the microwave pulse. Due to the
response time and delays of the microwave attenuator (in the order of 1 ms), the microwave
pulse has an unusual shape on the 1 ms timescale (figure 2.8).

Even with the maximum power provided by the microwave chain we were not able to reach
full transfer within the interrogation trap and this was attributed to a lack of microwave power.
The strategy employed involved moving the trap closer to the chip in order to benefit from
larger microwave power. In the new trap, after experimental optimization of the timings and
detuning sweep amplitude we were able to reach a transfer efficiency of 99.5 % which is com-
parable to the value of 99 % reported in [50].
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Figure 2.7: Energy of the {atom + field} eigenstates as a function of the microwave detuning. For low

and large detunings they correspond to the atom being in |1〉 or |3〉. When the detuning is swept across

resonance and if the Rabi frequency is high enough the atomic state is transferred adiabatically from |1〉
to |3〉 [48].
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Figure 2.8: Temporal profiles of the microwave power and bottom magnetic field sweep used for achieving

adiabatic rapid passage. Ideally they have Blackman shapes, which minimizes off-resonant excitations.

Due to the response time and delays of the microwave attenuator the microwave power has an unusual

profile. Nevertheless, this configuration gives transfer efficiencies from |1〉 to |3〉 of 99.5 % within 1.1 ms.

2.3.3 Comparison of the two methods

Double detection The double detection method can give rise to a lower detection efficiency
for the state |1〉. This is because, in order for the atom to reach the imaging transition a certain
number of repump photons need to be scattered: during the pumping time no detection photon
is scattered. For dense clouds such as BECs, this effect is enhanced by the fact that atoms in
the cloud center experience less light power.

In such a scheme laser frequency fluctuations might be problematic. As different pulses are
used to image each state, the contribution to detection noise from laser frequency fluctuations
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add independently. Although [32] mentions this effect, recent measurements show that this
factor does not limit the detection noise (see section 3.3.1). Finally, as already stressed, a
camera with a frame transfer mode is needed for this scheme.

Adiabatic rapid passage detection In this method none of the three effects mentioned
above occurs. Detection laser frequency fluctuations are in common mode for the two states
which renders the probability P2 = N2/(N1 + N2) insensitive to these. However the current
implementation requires that the trap be moved closer to the chip. This results in compression
of the cloud causing its image after time of flight to be larger than for the double detection
method. This leads to higher detection noise (σNi = 117 atoms vs σNi = 59 atoms, see chapter 3
for more details). An alternative would be to use a second microwave generator allowing higher
output powers coupled to the atoms via an antenna placed within the magnetic shielding. An
adequate shaping of the pulse should give even higher transfer efficiencies.

2.4 Loading very shallow traps

2.4.1 Motivations for producing very dilute clouds

Atomic clocks generally suffer from the collisional shift. In the trapped atomic clock this
is even more problematic since large densities are reached. This shift can limit the long term
stability of the clock, and prevent one from building highly accurate clocks. Finally its spatial
dependence may cause dephasing of the atomic ensemble, leading to reduced contrast and sen-
sitivity.

Another useful property of very dilute clouds is the reduced effect of asymmetric atomic
losses, which affect both states unequally. They are density-dependent and lead to contrast
loss and noise on the clock frequency (see chapter 3).

In order to reduce the density in single trap configurations, such as ours, very shallow traps
are used. Two problems appear by having low trap frequencies: (1) the adiabaticity condition
may not be fulfilled during the decompression and (2) the trap position becomes more and
more sensitive to stray gradients as the trap frequency is lowered.

2.4.2 Adiabaticity

Decompression After the evaporative cooling the atoms need to be transferred from a tight
trap (frequencies {0.120, 1.2, 1.2} kHz) to a shallow trap (frequencies {2.9, 92, 74}Hz). Adia-
baticity during the decompression is required to minimize cloud excitations. For an isotropic
harmonic trap of frequency ω/(2π) and a linear decompression ramp, the adiabaticity condition
reads [51]

dω

dt
� ω2. (2.4)
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Displacement It turns out that, during this transfer, not only do the trap frequencies change
but also the trap position. The second adiabaticity condition with regards to the trap displace-
ment can be formulated as [52]

ωTd � 1, (2.5)

where Td is the displacement time.

Our experimental situation Because of the low trapping frequency along x (2.9 Hz) the
trap position is very sensitive to any stray field gradient that may exist along x. Indeed we
observed that the interrogation trap is displaced by ∼ 130 µm along x from the theoretical
prediction. The reason for this displacement could be a subtle effect of the x coils curvature,
for example, if these coils were misaligned by ∼ 1 mm. The trap displacement of about 150 µm
along z direction matches the expectation (see figures 2.9.a and 2.9.d).

Figure 2.9: Symbolic drawing of the trap positions (red). The stripline and dimple wires are pictured

in black. (a) Cooling trap. (b) Intermediate trap used up to this point. (c) New intermediate trap.

(d) Interrogation trap. The transfer used up to this point consisted of a → b → d produces a residual

oscillation along x, even with a 600 ms ramp. The new scheme consists of a → c → d, and permits to

both cancel the cloud oscillation and reduce the ramp time. However, it excites unexplained oscillations

in the y and z axis.

Up to this point the strategy involved separating the transfer ramp into two moves: the
first ramp (displacement ramp) brings the cloud to its final position along z while keeping it
tight (figure 2.9.b). The second ramp (decompression ramp) performs the decompression at a
constant position: typically this takes about 600 ms. This long ramp does not, however, fulfill
condition 2.5 for the displacement along x as shown by our recent measurement of the cloud
residual oscillation along x (figure 2.10). As the cloud oscillates we observe a temperature in-
crease on a time scale comparable with the center-of-mass oscillation damping. This damping
time (2 s) is comparable to the rethermalization time computed from the lateral collision rate
(3.6 s). We note that the damping of the center-of-mass oscillation is a signature of the trap
anharmonicity [53]. For a BEC we observe no damping of the center-of-mass oscillation within
2 s, in agreement with its superfluidity properties (figure 2.10).

2.4.3 Canceling the oscillation along x

One approach to avoid exciting oscillations during the displacement follows the philosophy
explained above: the intermediate trap is displaced along x until the position of the inter-
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Figure 2.10: Effect of the residual oscillation along x on the cloud center-of-mass position and size.

The atoms are in |2〉 (a) Center of mass position. Damping is observed only for the thermal cloud

since the BEC is superfluid. The damping is a signature of a trap anharmoniticity. We fit the data

with f(t) = A + B sin (2π(t− t0)f) exp (−(t− t0)/τ1). (b) Cloud size obtained from a gaussian fit for

thermal clouds and a parabolic fit for BECs. For a thermal cloud the size increases with time as the

cloud rethermalizes. We fit the data with f(t) = A + B [1− exp (−(t− t0)/τ2)] and find τ1 ∼ τ2 ∼ 2 s,

which is comparable to the expected value of 3.6 s. For a BEC the size decreases in time as a consequence

of the atom losses.

rogation trap is reached (figure 2.9.c) and finally decompressed at constant position. The
displacement is obtained by driving an additional chip wire oriented along y. The correspond-
ing current is ramped up during the displacement ramp and eventually down to 0 during the
decompression ramp. The latter ramp is adjusted point-by-point to maintain the trap at a
constant position.

Figure 2.11 shows the results obtained with this method: it permits to almost cancel the
residual oscillation along x. However, we observe increased oscillations in the two other di-
rections. The origin of these excitations is not clear yet: as a result of higher trap frequencies
in these directions we expect the adiabaticity criteria to be fulfilled. Further investigations of
this problem are currently ongoing.

Reaching smaller ramp times Figure 2.11 shows that this approach is a way for reducing
the decompression ramp time: for the 200 ms ramp with the extra wire the residual oscillation
along x is already ∼ 2 times smaller than for the 600 ms ramp without the extra wire. We are
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Figure 2.11: (a) Oscillations along x can be reduced by adding an extra wire during the transfer ramp.

(b) and (c) The new transfer ramp excites larger oscillations in the two other axis. This is not yet

understood. (d) The new transfer ramp allows a reduction of the transfer time. Here the ramp was

optimized for a ramp time of 600 ms. For other ramp times an optimization of the current ramp shape

of the additional wire shall be done. Nevertherless, one observes that for the new ramp and a transfer

time of 200 ms, even non optimized, the residual cloud oscillation is already smaller than for the 600 ms

ramp with no extra wire.

confident that with further optimization transfer times of 100 ms or less can be reached.



Chapter 3

Clock frequency stability

Earlier works [29, 54, 55] have anticipated the potential of using magnetically trapped cold
87Rb atoms as an atomic frequency reference. High clock quality factors can be achieved with
cold, non-condensed ensembles near the magic field for which coherence times of 2 sto3 s have
been observed [29, 54]. With atom chip technologies the construction of a liter-sized atomic
clock with a frequency stability in the low 10−13/

√
τ range have become a realistic project, with

high potential for onboard applications. Since these predictions were made, the phenomenon of
spin self-synchronization in cold atomic ensembles has been discovered [11]. This gives access
to interrogation times of tens of seconds and opens the route to liter-sized atomic clocks with
frequency stabilities below the value of 10−13/

√
τ mentioned above. In these estimations it

is assumed that the clock is limited by the atomic shot noise. Before this fundamental limit
can be reached a great amount of work is required in order to bring all technical noises below it.

In TACC the quantum projection limit has not yet been reached. The best observed
frequency stability, 5.8× 10−13/

√
τ , is still 4 times larger than the standard quantum limit

(1.5× 10−13/
√
τ). In this chapter we give the current status of the characterization of the

noises on the clock frequency and show that there are still unidentified noise(s). This chapter
is organized as follows: the first part contains the general tools of noise analysis. The second
part applies to the calculation of the known noises. In the third part we present an experimen-
tal investigation of the noise sources. Finally we comment on the best observed stability and
discuss thermal effects.

3.1 Frequency stability analysis

3.1.1 Allan variance

The characterization of the frequency stability of oscillators is done with the Allan variance.
Also called two-sample variance, it gives a classification of the noise types according to their
spectral density. The frequency power spectral density admits a decomposition in powers of
the frequency F :

S(F ) =
∑
α

hαF
α. (3.1)

For example α = 0 corresponds to a white frequency noise (see figure 3.1). Only the values
−2 < α < 2 are relevant to common noises.

33
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If we consider a finite number N of frequency measurements {fk} spaced by the time interval
Tc, the Allan variance of the normalized deviations yk = fk/fat − 1 is defined by [12]:

σ2
y(Tc) =

1

2(N − 1)

N−1∑
k=1

(yk+1 − yk)2 (3.2)

The Allan variance at larger integration times τ = p Tc (p > 1, p ∈ N) is obtained by con-

structing the dataset
{
y′m = (1/p)

∑(mp)
k=(m−1)p+1 yk

}
and computing 3.2 for it.

The plot σy(τ) gives information on the type of noise involved at each time scale according
to the correspondence given in table 3.1. A linear drift of frequency f(t) = f0 +Dt can also be
identified by the Allan variance: it gives a slope of +1 in the logarithmic plot of σy(τ) (figure
3.1).

α Noise type slope in σy(τ)

2 white phase noise -1
1 flicker phase noise -1
0 white frequency noise -1/2
-1 flicker frequency noise 0
-2 random walk frequency noise 1/2

Table 3.1: Classification of noise types by their power spectral density and their slope in the log/log plot

of σy(τ). The exact correspondence between the different descriptions can be found for example in [12].
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Figure 3.1: Typical variations of the Allan deviation for an atomic clock and the corresponding noise

types at each time scale.

Shot-noise limited clock If dominated by the atomic shot noise (a white frequency noise)
the clock frequency deviation takes the form [12, 56]

σy,QPN =
1

αQat
√
Nat

√
Tc
τ

. (3.3)
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Here Nat is the number of atoms detected, Qat = fat/∆f is the atomic (or clock) quality
factor with ∆f the full width at half height of the atomic response. α is a numerical coefficient
that depends only on the spectroscopic method (α = π for a Ramsey interrogation).

Short and long term stabilities In practice, the frequency noise is not white at all times.
Typical clock stabilities integrate for some time and eventually reach a flicker floor or start to
drift. We refer to short term stability as the white frequency noise extrapolated to 1 s. The
quantity σy(Tc) (computed with 3.2) is naturally called stability at one shot. The long term
stability refers to the long term behavior of the frequency: spectral density of the dominant
noise (typically flicker frequency noise on drift), lowest integrated value of the clock frequency
Allan deviation.

3.1.2 Principle of the characterization of TACC

To characterize the frequency stability of our setup we benefit from a 100 MHz signal of
the SYRTE hydrogen maser which is upconverted to ∼ 6.834 GHz by TACC microwave chain.
The characterization of the clock frequency stability is achieved by direct comparison with the
frequency stability of the local oscillator (maser + microwave chain). The atomic clock is in
open loop and no correction is applied on the local oscillator.

In the following ∆f denotes the difference between the clock frequency f and the bare
atomic frequency fat.

3.2 Analysis of the sources of noise on the clock frequency

There are several ways to classify the noise sources. A natural choice is to distinguish the
noises affecting the transition probability from those affecting the frequency. More specifically,
there would be:

1. Noise of the transition probability P2: it converts into frequency noise via the atomic
response.

2. Fluctuations of ∆f .

3. Fluctuations of the local oscillator frequency.

4. Noise added by the post-correction process.

For the fluidity of the presentation we have preferred, however, to order the noises according
to their physical origin. In the following the frequency noise is always given at τ = Tc (noise
at one shot).
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3.2.1 Quantum projection noise

Also called atomic shot noise, it is of fundamental origin. Consider an atom in a quantum
superposition of two states: quantum mechanics only predicts the probability of detecting the
atom in either of the two states. For N uncorrelated atoms, each having the probability p = P2

to be detected in state |2〉, the probability of measuring N2 atoms in state |2〉 is given by the
binomial law [57]:

p(N2) =
N !

N2!(N −N2)!
pN2(1− p)N−N2 , (3.4)

whose mean value is 〈N2〉 = pN and variance σ2
N2

= Np(1− p).

The resulting noise on the transition probability P2 = N2/(N1 +N2) is given by:

σP2,QPN =

√
p(1− p)
N

(3.5)

For p = 1/2, corresponding to the steepest atomic response, we obtain σP2,QPN = 1/(2
√
N).

Quantum projection noise for a reduced contrast If the contrast C = 1 it is obvious
that all N atoms contribute to the signal, and equation 3.5 predicts the quantum noise. A
reduced contrast C < 1 can arise from two mechanisms: decoherence or dephasing. Their
signature on the quantum noise are different:

• In case of dephasing each atom is in a quantum state superposition and 3.5 can be used
with the total number of atoms N . At the standard quantum limit the frequency stability
for Ramsey interrogation would read, accordind to equation 3.3,

σy,QPN =
1

πCTRfat
√
N

√
Tc
τ

. (3.6)

• In case of decoherence, some atoms have been projected on either of the two states.
Decohered atoms do not produce projection noise and 3.5 can be used, but with the
atom number C N . In this case the frequency stability reads

σy,QPN =
1

πCTRfat
√
CN

√
Tc
τ

. (3.7)

Dephasing and decoherence are different mechanisms and the quantum noise measurement
provides an interesting way of discriminating between them.

3.2.2 Detection noise

The detection noise is the uncertainty in measuring the atom number in a given cloud. The
two contributions are: the photon shot noise and the optical disturbances from interference
fringes in the image. The photon shot noise is determined by various parameters including
imaging pulse intensity and duration, optics transmission and camera efficiency (see [32] for
a full description). Influence of interference fringes is greatly reduced by numerically recom-
posing the reference image [32, 58]. For the other parameters the general rules are as follows:



3.2. Analysis of the sources of noise on the clock frequency 37

the cloud image on the camera must be as small as possible (minimizing the number of pixels
involved to reduce the photon shot noise) and the detection intensity must be at the saturation
intensity. The pulses must be as long as possible and are in practice limited by saturation of
the camera [32].

All of the contributions can be approximated by a constant noise on the atom number in
state i, σNi,det. Assuming the same value for both states the resulting noise on the probability
P2 for a 50/50 superposition takes the form [59]:

σP2,det =
σNi,det√

2N
(3.8)

The noise of the total atom number is given by σN,det =
√

2σNi,det.

Detection accuracy Recently we became aware of a problem in the atom number measure-
ment. Due to light diffraction effects circular fringes appear around the cloud image for large
optical densities. For large atom numbers we observe a reduced detectivity at short times of
flight (see figure 3.2). This effect could become limiting in future experiments. As long as it is
stable and repeatable it should not affect clock stability measurements.
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Figure 3.2: Measured atom number as a function of the time of flight. For small atom numbers the

measured value does not depend on the time of flight. For larger atom numbers the measured atom

number depends on the time of flight. Cloud images show circular fringes which suggests an effect of

light diffraction by the atomic cloud. Images are taken at resonance.

3.2.3 Atom number fluctuations

The total atom number fluctuates shot-to-shot by typically σN,fluct/N ' 1 % due to fluctu-
ations in the MOT loading. It might also undergo drifts in the order of 50 % over several hours.
The resulting fluctuations of the collisional shift can be corrected for, this will be explained in
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section 3.3.2.

3.2.4 Temperature fluctuations

The cloud temperature is likely to fluctuate and drift. The impact of a cloud temperature
fluctuation σT on the clock frequency shift ∆f is twofold:

1. The temperature enters the cloud density and thus impacts the collisional shift.

2. The temperature determines the cloud extension in the trap. A change of temperature
produces a change of the mean magnetic field experienced by the cloud, which directly
translates to a change of the magnetic shift in ∆f .

Assuming the same temperature T = (TxTyTz)
1/3 in all three axis, the thermal gas model

and equations 1.9 and 1.11 we predict

σy,T =

∣∣∣∣3~(a22 − a11)〈n〉
mfatT

+
βkB

2αmω2
zfat

[
2mg2 + ω2

z(15kBT + 6αm∆B)
]∣∣∣∣σT , (3.9)

where ∆B = B0 − Bm. We predict that the sensitivity to the cloud temperature vanishes
for a field

B0 = Bm −
mg2

3ω2
zαm

− 5kBT

2αm
− ~(a22 − a11)〈n〉

mβkBT
. (3.10)

With T = 80 nK (measured for a cloud of 4× 104 atoms) we obtain B0 = Bm − 35 mG. At
B0 = Bm, σT /T = 1 % leads to σy,T = 1.6× 10−13.

3.2.5 Magnetic field fluctuations

We call σB the amplitude of magnetic field fluctuations. Using equation 1.9 we deduce the
corresponding noise on the clock frequency:

σy,B,magn =

√
2βσ2

B

fat
+

2βσB(B0 −Bm)

fat
. (3.11)

The magnetic noise is averaged by the atoms during the interrogation sequence, therefore
the relevant magnetic noise is the one averaged at the Ramsey time σB(TR). This noise is not
known precisely. In section 3.3.5 we give an upper limit to σB(3 s) deduced from clock stability
measurements.

3.2.6 Atomic losses

Symmetric losses

The lifetime of the atoms in the trap τ ∼ 6 s (limited by the collisions with background
atoms) is in the order of the typical Ramsey time ( 3 s). Therefore the number of trapped atoms
significantly decays during the interrogation. Our imaging method is destructive and we have
only access to the atom number Nf at the end of the sequence. Due to the random character of
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the trap loss there is a statistical uncertainty on the initial atom number. It translates via the
collisional shift into an uncertainty on the clock frequency we can fundamentally not correct
for. In the following we estimate this error.

Forward distribution This discussion is inspired by the description of the decay of an
ensemble of radioactive atoms [60]. We first consider a cloud of Ni trapped atoms with a trap
decay constant γ = 1/τ . γ can be reinterpreted as the (constant) probability rate for the atoms
to be ejected from the trap. At the time t, the probability for a given atom to still be trapped
is e−γt, and its probability to have left the trap is 1 − e−γt. Starting with Ni atoms at t = 0,
the probability of having n atoms at t is

p(Nf = n, t) =
Ni!

n!(Ni − n)!
e−nγt(1− e−γt)Ni−n. (3.12)

For Ni � n (or equivalently γt � 1) the distribution tends to a Poisson distribution of
intensity µ = Niγ.

Reverse distribution In fact we are interested in the opposite case where we know the
number Nf and want to know the initial atom number. If n0 atoms were present in the trap
at t = 0, n0 − Nf atoms have been ejected during the elapsed time t and Nf atoms are still
trapped. The probability of such an event is proportional to e−Nfγt(1− e−γt)n0−Nf and to the
number of possible combinations:

p(Ni = n0, t) = A
n0!

Nf !(n0 −Nf )!
e−Nfγt(1− e−γt)n0−Nf . (3.13)

The normalization gives A = e−γt. A more rigorous derivation of this reverse distribution
was done by C. Texier [61].

To compute the resulting noise on the clock frequency, we assume that the losses only affect
the atom number and leave the temperature unchanged. The time-averaged clock frequency
collisional shift reads

∆fcoll = k
1

TR

∫ TR

0
N(t) dt, (3.14)

where k is the dependance of the collisional shift with the atom number. This value could
be computed from the theoretical prediction ktheo = 2~(a22 − a11)/(8m

√
π3〈x2〉〈y2〉〈z2〉), but

a better estimation can be extracted from the f/Nf correlation which we will discuss in section
3.3.2. Doing so we assume that k does not change in time.

The distribution law of N(t) is known at each time via 3.13. Approximating the binomial
laws by gaussian distributions, it is possible to find an expression for the standard deviation of
3.14 [61]:

σy,loss,stat =
k

fatγTR

√
Nfe2γTR

(
1− 2γTT e−γTR − e−2γTR

)
. (3.15)
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Asymmetric losses

The calculation above relies on the assumption that all atoms have the same lifetime in the
trap. In fact, due to the existence of spin-flip collisions, atoms in state |2, 1〉 have a shorter
lifetime. This is essentially due to the collision channel

2× |2, 1〉 → |2, 0〉+ |2, 2〉, (3.16)

the equivalent of which does not exist for state |1〉 (we have adopted the convention |F,mF 〉).
These collisions lead to the build up of incoherent population in the states |2, 2〉 which remain
trapped (N ′2). An incoherent population also builds up in |1,−1〉 (with N ′1 = 2N ′2) arising from
the |1,−1〉 part of atoms initially in a state superposition that have decohered through 3.16.
Atoms in |2, 0〉 are not trapped and do not play a role on the noise.

The rate of 3.16 is given by the lifetime difference between the two clock states. In our
typical experimental conditions it amounts to γasym ' 1/45 s−1 . Asymmetric losses have
several consequences:

1. The first parasitic effect is a fluctuation of the number of atoms detected in state |2〉: the
|2, 2〉 and |1,−1〉 populations fluctuate shot-to-shot because the total number of atoms
fluctuates. The |1,−1〉 atoms are transferred by the second pulse into an equal superpo-
sition of the two clock states, and only contribute to the clock signal as decohered atoms.
|2, 2〉 atoms are not affected by the second pulse and create a noise on the transition
probability P2:

σP2,asym =
σN,fluct

2N
(1− e−γasymTR). (3.17)

For σN,fluct/N = 1 % and TR = 3 s we find σP2 = 3× 10−4, which is 10 times smaller
than the quantum projection noise of 25× 103 atoms.

2. Fluctuating populations in |2, 2〉 and decohered |1,−1〉 produce fluctuations of the colli-
sional shift. These are proportional to the total number of atoms N and are taken into
account in our post-experiment correction procedure.

3. The third effect is the statistical noise associated with the asymmetric losses. Given
γasymTR � 1, the decay process can be approximated by a Poisson distribution and the
statistical noise of the incoherent population N ′2 is given by

√
N ′2. We assume that the

system is an uncoherent mixture of constant populations, equal to their final values (this
avoids the calculation of the integral 3.14 and overestimates the noise). Following [28] we
find the corresponding frequency fluctuation:

σy,asym,stat =
2~
mfat

(a22 − 2a11 + a12)

√
N ′2

8
√
π3〈x2〉〈y2〉〈z2〉

. (3.18)

With the rough approximation N ′2 = NγasymTR/2 (doing so we neglect the losses of |2, 2〉
and decohered |1,−1〉 atoms from collisions with the background gas, which overestimates
the noise), we estimate σy,asym,stat = 1.3× 10−14.
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3.2.7 Rabi frequency fluctuations

Power fluctuations of the interrogation pulses affect the frequency stability at three different
levels. It seems relevant to recall the calculations of these contributions [26, 32]:

1. The first effect is a noise on the pulse area that affects both the preparation and the
phase readout in a Ramsey configuration. We call σP2,Rabi the noise in the prepara-
tion of the initial state superposition. This noise will be evaluated in section 3.3.1 to
σP2,Rabi < 1× 10−4, which is more than 30 times smaller than the projection noise.

2. The second effect, related to the first one, concerns the collisional shift fluctuations in-
duced by a noisy preparation. The resulting noise on the clock frequency reads

σy,Rabi,Coll =
2~
m

(2a12 − a11 − a22)〈n〉
2σP2,Rabi

fat
. (3.19)

With σP2,Rabi < 10−4 we anticipate σy,Rabi,Coll < 10−16.

3. The third effect is a fluctuation of the AC Zeeman shift induced by the interrogation
photon on the clock transition (during the Ramsey pulses). In a Ramsey interrogation
this contribution can be expressed as a function of the π-pulse duration τπ and the AC
Zeeman shift ∆fLS on the transition [32]:

σy,Rabi,LS =
8∆fLSσP2,Rabi

πfat

(
1 + πTR

2τπ

) . (3.20)

With ∆fLS = 0.2 Hz, TR = 3 s and τπ = 150 ms it amounts to σy,Rabi,LS < 3× 10−16.

3.2.8 Local oscillator frequency

Fluctuations of the local oscillator frequency on time scales � TR are not detected as they
are averaged by the atoms during the interrogation. LO frequency noise on time scales & TR
does affect the clock frequency. In fact pulsed atomic clocks are especially sensitive to the
LO frequency noise at the harmonics of the inverse cycle time, 1/Tc. This is called the Dick
effect [62]. The clock sensitivity function [56, 63], which depends on the timings TR, Tc and τπ
provides the link between the LO frequency noise spectra and the noise on the clock frequency.

A detailed analysis of our local oscillator frequency noise was carried out by Ramon Szmuk,
who kindly provided the estimations of the LO Dick effect referred to in this manuscript. More
details will surely be found in his PhD thesis.

3.2.9 Noise added by the post-correction

When applying the post-correction procedure one mechanically adds noise onto the clock
frequency. This is due to the fact that the correcting parameter is not known with infinite
accuracy. For the correcting parameter αj , assuming it is distributed with a width σαj , the
corresponding noise on the frequency reads
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σy,corr,j =
1

fat

∣∣∣∣∂∆f

∂αj

∣∣∣∣σαj . (3.21)

For the correction with the atom number the relevant noise is the detection noise σN,det.
This value is the measurement noise for a given cloud and should not be confused with the
shot-to-shot atom number fluctuation σN,fluct.

3.3 Experimental investigation

In this section we present an experimental characterization of the technical noise on the
clock frequency. We will start with a measurement of the detection and preparation noise,
known as “noise on P2”. The second result is a study of the post-correction and shows that
the best correction is achieved with the total atom number. We then estimate the effect of a
residual oscillation of the cloud and of detectivity fluctuations: both appear to have negligible
impact on the clock frequency stability. This will be followed by an analysis of the clock stabi-
lity dependence with the bottom magnetic field. We finally present experimental optimizations
of the Ramsey time and the atom number.

3.3.1 Measurement of the uncertainty on P2

To characterize the uncertainty on the determination of the transition probability P2 =
N2/(N1 + N2) we performed a frequency-insensitive measurement (TR = 0, no second pulse).
Here a single π/2 pulse of 70 ms is applied to the cloud and the detection follows directly after.
The standard deviation σP2 is obtained by repeating the experiment many times. Noise contri-
butions are: the preparation σP2,Rabi, the detection σP2,det and the projection noise σP2,QPN .
To discriminate between the three we make use of their different scaling with the total atom
number N and repeat the experiment for various atom numbers (Figure 3.3). The total Allan
deviation at one shot σP2 is given by the quadratic sum of the three contributions:

σP2 =

√(
σNi,det√

2N

)2

+

(
1

2
√
N

)2

+ σP2,Rabi. (3.22)

Experimental details The Double Detection method was used combined with bright frame
recomposition. The times of flight were 8.5 ms for state |1〉 and 5.5 ms for |2〉. The fit of σP2 has
two free parameters, σNi,det and σP2,Rabi. We obtain σNi,det = 59 atoms. The fit is consistent
with σP2,Rabi < 1× 10−4 (see figure 3.3).

Effect of the atom number inaccuracy Figure 3.3 shows that the scaling at high atom
numbers is consistent with the expected quantum projection noise. Since the latter depends
on the atom number we conclude that the atom number inaccuracy does not affect the results
shown here as times of flight larger than 5 ms were chosen, the threshold below which deviations
occur (see figure 3.2).
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Figure 3.3: P2 Allan deviation at one shot as a function of the total atom number for times of flight

of 8.5 ms for state |1〉 and 5.5 ms for |2〉. We fit the data with the quadratic sum of the detection noise

σP2,det, the quantum projection noise σP2,QPN and the preparation noise σP2,Rabi (equation 3.22). The

fit gives σNi,det = 59 atoms and is consistent with σP2,Rabi < 1× 10−4.

Suggestion To measure the contribution σP2,asym of the asymmetric losses to the noise on
P2 (equation 3.17) a similar measurement should be carried out with a trapping time of TR
between the preparation pulse and the detection.

3.3.2 The best post-correction parameter

Figure 3.4 shows a comparison of the clock frequency Allan deviations for the same dataset
with three different post-corrections: raw data, post-correction with the total atom number N ,
post-correction with the mean column density (i.e. correction with N/ (σyσz) where σi is the
cloud gaussian size after TOF in the i direction).

The best correction is achieved with the total atom number, improving the stability at one
shot from 3.1× 10−13 to 1.8× 10−13. Further correcting with the cloud temperature worsens
the clock frequency fluctuations. This indicates that even though we have cloud temperature
fluctuations, our measurement of the cloud temperature is too noisy.

3.3.3 Cloud oscillation

If the cloud oscillates along x the interrogation frequency can be Doppler-shifted. A non-
reproducible cloud oscillation would give a shot-to-shot noise on the clock frequency via the
Doppler effect but also via the magnetic shift. Here we raise the question of the frequency noise
caused by the residual oscillation along x that was identified (see section 2.4).

To do so we have performed a comparison of two clock frequency stability measurements:
one with the usual {2.7, 92, 74}Hz trap where the residual oscillation exists and one with a



44 Chapter 3. Clock frequency stability

10
0

10
1

10
2

10
3

10
4

10
5

10
−14

10
−13

10
−12

 Time (s)

 F
ra

ct
io

n
n

al
 f

re
q

u
en

cy
 A

lla
n

 d
ev

ia
ti

o
n

 

 

 No correction
 Correction with mean column density
 Correction with total atom number
 Expectation for white frequency noise

10
0

10
1

10
2

10
3

10
4

10
5

10
−14

10
−13

10
−12

 Time (s)

 F
ra

ct
io

n
n

al
 f

re
q

u
en

cy
 A

lla
n

 d
ev

ia
ti

o
n

 

 

Figure 3.4: (a) Allan deviation of the clock frequency after different treatments: raw data, post-

correction with the total atom number and post-correction with the mean column density. The atom

number post-correction reduces the frequency fluctuations at one shot from 3.1× 10−13 to 1.8× 10−13.

Further correcting with the cloud temperature makes them worse. We conclude that even though we have

cloud temperature fluctuations we cannot correct for them because our measurement of the cloud temper-

ature is not sensitive enough. (b) Typical correlation between the raw frequency data and the total atom

number. A linear fit gives the post-correction function. The measured slope −3.1× 10−6 Hz atom−1 is

∼ 50 % larger that the theoretical prediction −1.9× 10−6 Hz atom−1, which is not yet understood.

more confining trap of frequencies {17, 89, 76}Hz where no oscillation was observed.

Changing the trap frequency changes the cloud density and affects all the noises that are
density-dependent. To make a fair comparison between the two experiments we estimate and
subtract all of the known noises that depend on density (correction, symmetric losses) and on
atom number (detection, quantum projection noise). The comparison is shown in table 3.2.
After the quadratic substraction, the rest is larger for the case with no oscillation. We conclude
that the residual oscillation along x does not play a significant role in the frequency instability.
Additionally, this result suggests the existence of an unidentified density-dependent noise: it
could be caused by cloud temperature fluctuations.

3.3.4 Detectivity fluctuations

In this part we question the state detectivity fluctuation. In the double detection (DD)
scheme the experiment is sensitive to the fluctuations of the Repump laser power and fre-
quency. Conversely, in the adiabatic rapid passage (ARP) detection method such fluctuations
do not play a role, whereas the imperfect transfer may play a role.

Table 3.3 shows a comparison of two stability measurements that differ only by the detection
scheme: one was taken with the double detection and the other with the adiabatic rapid passage
detection. As stressed previously the cloud image on the camera and therefore the detection
noise are larger for the ARP detection. For a fair comparison we quadratically subtract the
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Trap Measured σy ∂f/∂N σy,det σy,QPN σy,corr σy,loss Rest σy,rest

{17, 89, 76}Hz 8.37 −7.5× 10−6 1.3 2.2 3.4 3.1 6.5

{2.7, 92, 74}Hz 6.4 −2.6× 10−6 1.4 2.3 1.2 1.0 4.8

Table 3.2: Comparison of clock frequency stability at 1 s (values given in the unit 10−13/
√
τ) for two

traps. In the tight trap there is no residual oscillation whereas there is one in the loose trap. The slope

∂f/∂N is given in Hz atom−1. We estimate the density-dependent and atom number-dependent noise.

σy,rest is obtained by (quadratic) subtraction of all known noises from the measured value. There is no

striking difference in the rests between the two traps, which eliminates the residual oscillation from the list

of dominant noise sources. The rest is even larger for the tight trap which suggests a density-dependent

noise not yet identified.

detection, correction and quantum projection noises from the measured frequency stability.
After this operation the two rests have comparable amplitude: this indicates that Repump
laser fluctuations are not a limiting contribution to the clock frequency noise.

Detection Measured σy ∂f/∂N σy,det σy,QPN σy,corr Rest σy,rest

ARP 7.3 −2.39× 10−6 2.9 2.3 2.1 5.9

DD 6.8 −2.95× 10−6 1.1 2.0 1.3 6.3

Table 3.3: Comparison of clock stability at 1 s (values given in the unit 10−13/
√
τ) for the two detection

schemes and comparable atom numbers. The slope ∂f/∂N is given in Hz atom−1. We estimate the

detection, quantum projection and correction noise. After a quadratic subtraction the rests are nearly

equal, showing that fluctuations of the Repump laser are to be erased from the list of dominating noise

sources.

3.3.5 Variation with the bottom magnetic field

List of the bottom field-dependent effects Magnetic noise is highly dependent on the
value of the magnetic field at the trap bottom. When changing the field at the trap bot-
tom, four effects are expected: (1) a direct fluctuation of the clock frequency σy,B,magn caused
by a variation σB of the magnetic field; (2) an indirect frequency fluctuation σy,T caused by
cloud temperature fluctuations; (3) changing the bottom field also changes the fringe contrast
(see figure 3.5.b): if there is a remaining noise on P2 it will translate into a magnetic-field de-
pendent noise on the frequency; (4) the trap frequency change which impacts the cloud density.

The cloud density change (fourth effect) is on the order of 10 % over the range 3 Gto3.3 G
and can be neglected. The first effect is minimized at a field ∼ Bm − 5 mG, the second one
vanished for a field ∼ Bm − 35 mG whereas the third one is minimal at the compensation
field Bc ∼ Bm − 35 mG. The known noises on P2 can be subtracted. In order to discriminate
these contributions we have carried out a measurement of the clock frequency stability as a
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Figure 3.5: (a) Stability at 1 s vs trap bottom magnetic field. For each point we subtract quadratically

the noises on P2 (detection and quantum projection noises) from the measured value. We can set a

upper bound for the contribution of magnetic field fluctuations by attributing, for the highest point, all

the remaining noise to σB. This gives the worst-case magnetic noise and σB(3 s) < 13 µG. Assuming

the temperature fluctuations dominate we fit in the rest with the equation
√
σ2
0 + σ2

y,T (σy,T is given

by equation 3.9 and σ0 is a constant value). For a fixed cloud temperature T = (TxTyTz)
1/3 = 80 nK

we obtain σ0 = 5.5× 10−13/
√
τ and σT = 0.5 nK but a bad convergence. Setting T free gives σ0 =

5.1× 10−13/
√
τ , σT = 0.5 nK and T = 125 nK, which is a reasonable value. (b) Fringe contrast as a

function of the trap bottom magnetic field. The maximum contrast defines the compensation field Bc.

(c) Clock frequency dependence with the trap bottom magnetic field, defining the magic field Bm.

function of the bottom magnetic field. Figure 3.5.a shows the raw data together with data
after quadratic subtraction of all the known noises on P2 (detection and quantum projection
noises). We observe that the rest is minimum for a field ∼ Bm − 40 mG.

Upper bound for the magnetic noise We can first give an upper bound for σB(3 s) by
considering the highest point and assuming all the remaining noise is magnetic. We obtain
σB(3 s) < 13 µG and we can put an upper bound for the contribution of magnetic field fluctu-
ations for each point (see figure 3.5).

Upper bound for the cloud temperature noise We now assume that the effect of
cloud temperature fluctuations dominates the two others. We fit the data with the func-

tion
√
σ2

0 + σ2
y,T where σy,T is given by 3.9 and σ0 is constant and accounts for other noises

that do not depend on B0. If we force the mean temperature to T = (TxTyTz)
1/3 = 80 nK

the fit does not converge properly. If T is set free the fit converges towards T = 125 nK,
σ0 = 5.1× 10−13/

√
τ and σT = 0.5 nK. These values are reasonable considering the atom

number was not constant during the measurement but varied by factor ∼ 2 between the two
extremes: T = 80 nK was measured for 4× 104 atoms and we know that the atom number
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plays a role in the cloud temperature.

Remaining noise on P2 If the rest was an unidentified noise on P2 one should observe a
linear dependence with the fringe contrast C. With the present data we can not exclude such
a contribution.

Conclusion Our data is consistent with a cloud temperature T = 125 nK, a fluctuation of
σT /T = 1.4 % and no additional noise on P2. When summing up all the other effects (local
oscillator, losses, correction) we obtain 3.3× 10−13/

√
τ which is sensibly smaller than σ0. We

conclude that if our assumption of pure temperature noise is true, there is still an unknown
contribution to the clock frequency noise of amplitude 3.9× 10−13/

√
τ . To confirm or quash

this assumption one would need further measurements: for example a determination of the
frequency sensitivity to cloud temperature as a function of the magnetic field.

3.3.6 Optimizing the Ramsey time

2 4 6
0

1

2

3

4

5

6

7

8
x 10

−13

 Ramsey time (s) F
ra

ct
io

nn
al

 fr
eq

ue
nc

y 
A

lla
n 

de
vi

at
io

n 
@

 1
s 

(H
z

−1
/2

)

 

 

 Measured, after N−correction
 Sum of all known noises
 QPN + Detection (meas.)
 Dick effect (calc.)
 Losses (calc.)
 Correction (calc.)

2 4 6
0

1

2

3

4

5

6

7

8
x 10

−13

 Ramsey time (s) F
ra

ct
io

nn
al

 fr
eq

ue
nc

y 
A

lla
n 

de
vi

at
io

n 
@

 1
s 

(H
z

−1
/2

)

 

 

Figure 3.6: Stability at 1 s vs Ramsey time TR. The cycle time is Tc = TR + 11 s. From left to right:

the clock quality factor increases and the Dick effect decreases; the effect of atomic losses becomes more

and more significant, and in the stability at one second the cycle time plays a role by the extrapolation

to 1 s (effect of the factor
√
Tc). An optimal Ramsey time is observed at 5 s.

An interesting feature of trapped atomic clocks is the possibility to change the interrogation
time TR. In a shot noise-limited clock for TR � Tc the stability scales as 1/TR and whereas for
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TR ∼ Tc it scales as 1/
√
TR: in principle it is always profitable to increase the Ramsey time.

In practice the Ramsey time is bounded by the fringe contrast decay time and atomic losses.
The sampling of the local oscillator frequency noise is modified when the duty cycle TR/Tc is
changed.

To measure the optimal Ramsey time we repeated the experiment for TR between 1 s and 7 s
whilst keeping all other parameters constant (apart from the cycle time equal to Tc = TR+11 s).
The results are shown in figure 3.6. From this measurement we conclude that our system is not
yet sensitive to the Dick effect. We observe an optimum for TR = 5 s giving a short-term clock
frequency stability of 5.8× 10−13/

√
τ (see section 3.4 for a detailed discussion of this result).

3.3.7 Optimizing the atom number
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Figure 3.7: Clock frequency stability for various atom numbers (a) extrapolated to 1 s and (b) at one

shot. In the latter there is no effect of the cycle time increase. We observe an degradation of the

frequency stability as the number of atoms increases, suggesting the presence of a density-dependent

effect. A cloud temperature fluctuation of 1.4 % does not explain the missing noise, especially at low

atom numbers.

In this section we investigate the stability dependence with the number of interrogated
atoms, which may help to identify the remaining unknown noise. All other parameters are
equal apart from the MOT loading time (and therefore the cycle time). We observe on figure
3.7.a that the missing contribution at 1 s increases with the atom number. This could simply
be an effect of the increased cycle time. Figure 3.7.b shows the stability at one shot where the
latter effect is not included. A similar behavior is observed which suggests that the unknown
noise depends on the cloud density. A temperature fluctuation of 1.4 % computed with the
mean atom number does not explain the unidentified noise: it is too high at large atom num-
bers and too small at small atom numbers. By repeating this measurement on a wider range of
atom numbers and densities and with a constant cycle time (to keep the Dick effect constant)
one must be able to get more insight on the missing noise.
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3.4 Best frequency stability up-to-date

In this section we present in more detail the best frequency stability observed so far. It was
acquired for TR = 5 s and N = 4× 104 atoms initially obtained with the bottom magnetic field
at compensation value Bc and a cycle time of 16 s. The data are the same as in figure 3.6).
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Figure 3.8: Clock frequency fluctuations for a stability measurement with TR = 5 s and N =

4× 104 atoms initially. (a) normalized frequency deviation before the correction with the atom num-

ber and (b) after the correction. (c) Allan deviation of the clock frequency after correction that shows

a white frequency noise until ∼ 130 s, corresponding to 8 shots. On (a) and (b) we report the value

averaged on 8 shots, which exhibits the long-term fluctuations. Long term fluctuations on the time scale

of ∼ 1 h can be seen on both (b) and (c). It may be a thermal effect.

Contribution Amplitude σy @1 s

Measured, after correction 5.8× 10−13

Local oscillator 2.7× 10−13

Symmetric losses 1.8× 10−13

Quantum projection 1.5× 10−13

Correction 1.3× 10−13

Detection 9× 10−14

Missing 4.3× 10−13

Table 3.4: Summary of the contributions of the dominant noise sources for the best measured clock

frequency stability at 1 s. All values are given in the unit Hz−1/2. The missing contribution could be a

cloud temperature fluctuation or an additional noise on P2.

Figure 3.8 shows the time variations of the raw frequency data and after the post-correction,
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as well as the Allan deviation of the corrected frequency. It integrates as white frequency noise
up to 8 shots (∼ 130 s). In figure 3.8.b we have also reported the data averaged over 8 shots,
which gives a better sensitivity to search for long term drifts or fluctuations. Long term fluc-
tuations on the time scale ∼ 1 h appear and correspond to the bump at 4000 s of the Allan
deviation. They could be thermal effects.

Table 3.4 gives a breakdown of the relevant contributions to the clock frequency noise at 1 s.
The missing contribution amounts to σy = 4.3× 10−13/

√
τ . Our analysis permits to exclude

magnetic frequency noise, detectivity fluctuations and effects of the cloud residual oscillation.
Cloud temperature fluctuations must have low impact in these conditions. An unidentified
noise on P2 could be explain this remaining noise.

3.5 Long term thermal effects
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Figure 3.9: (a) Normalized frequency deviation for a stability measurement with TR = 3 s and N =

4× 104 atoms initially, where the experiment was initially cold at rest for some hours. (b) Image of the

temperature of the copper bloc glued on the atom chip. The heating of the experiment can be clearly seen

during the first hour. Spikes at later times correspond to irregularities of the clock cycle time. (c) Allan

deviation of the corrected fractional frequency. When removing the first 4 h of data the oscillation at 1 h

reduces, suggesting a thermal effect of the chip.

If the experiment was off for some hours before a stability measurement is started we ob-
serve an initial drift of the clock frequency. It is correlated to the signal of a thermistance
placed on the copper bloc that holds the chip (figure 3.9). The corresponding Allan variance
is shown in figure 3.9.c.

When removing the first 4 h of data one reduces the amplitude of the oscillation at ∼ 4000 s
(figure 3.9.c). It suggests that this oscillation is caused by a thermal effect on the chip.
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3.6 Conclusion

In this chapter we have given a detailed description of all possible sources of noise on the
clock frequency identified so far. We have carried out an experimental investigation of the
unidentified technical noise.

Our measurements show that this noise is not predominantly due to magnetic field fluctu-
ations. We have shown that the missing noise is dominated neither by an effect of the residual
cloud oscillation nor by a fluctuation of the Repump laser. A good candidate for most of this
noise is a cloud temperature fluctuation: a shot-to-shot fluctuation of 1.4 % would be enough to
explain part of it. We have suggested measurements that could be done in the future to confirm
or infirm this hypothesis. Cloud temperature fluctuations can be caused by fluctuations of the
atom number(but in this case they would be eliminated by the post-correction procedure) or
fluctuations of the cooling parameters (laser detuning, magnetic field, radiofrequency power...).
Even with the assumption of a cloud temperature noise of 1.4 % (an upper limit), a noise of
amplitude ∼ 4× 10−13/

√
τ remains to be identified. This noise could be appearing on P2 at

long trapping times (for example, an effect of the asymmetric losses, or another decoherence
effect which has not been identified). To verify this point a frequency-insensitive measurement
of P2 noise for long trapping times is needed.

We have nevertheless performed an optimization of the clock Ramsey time and found an
optimum of the best short-term stability of 5.8× 10−13/

√
τ for TR = 5 s. At this working

point contributions from the symmetric losses and noise of the local oscillator were found to
be significantly higher than the projection noise.

The effects of trap losses will be mechanically smaller with a better quality vacuum. The
Dick effect contribution would be lowered by referencing the interrogation signals to a sapphire
cryogenic oscillator instead of the maser. It could also be reduced by increasing the TR/Tc
ratio, currently equal to ∼ 20 %. This would require an acceleration of the cloud preparation
time: MOT loading time, evaporative cooling time and ramp times.

For shortening the MOT loading time two options are available: (1) a double-chamber setup
for example with the well-established technique of the 2D-MOT; (2) a single-chamber setup
where the rubidium pressure is modulated in time. The latter bears the two advantages of
compactness and simplicity. In chapter 7 we present an experimental study of fast rubidium
pressure modulation for this purpose and discuss its limitations. To speed up the evaporation
step (currently: 3.3 s) one could go to tighter traps. Cooling times of 1 s have been demon-
strated on atom chip setups [64]. Finally the transfer ramp could be shorten by using a new
trap that is not displaced along x. There are methods to shortcuts the adiabaticity during the
decompression [65].

The frequency noise from symmetric atom losses may at some point become a limiting
factor. Assuming a total preparation time of 1 s, comparable densities, trap lifetimes of 1 min,
TR = 20 s and C = 0.9 this noise amounts to 7× 10−14/

√
τ , equivalent to the projection noise

of 8× 103 atoms. Only a further reduction of the density would make this contribution lower.
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Chapter 4

Bose-Einstein condensates for time
metrology

Since Bose-Einstein condensates in dilute gases were obtained in 1995 [66, 67], a large
amount of theoretical and experimental work has been done to understand their coherence
properties. Thought of as macroscopic matter waves, Bose-Einstein condensates (BECs) be-
have in many ways like coherent radiation fields, and can exhibit interferences. However, unlike
photons of a laser field, atoms in a BEC interact strongly with each other, which has conse-
quences for their spatial dynamics and coherence properties.

A particularly interesting problem is the evolution of the coherence between two condensates
initially prepared in a state with a well defined relative phase, as in a Ramsey interrogation.
The coherence defines the fringe contrast C and the clock stability at the standard quantum
limit which scales as 1/(C

√
N). Due to evaporative cooling BECs typically contain fewer atom

than thermal clouds. They have much higher densities (typically a factor 100 more) than ther-
mal clouds, which enhances the role of interactions and the corresponding frequency noise. As
a consequence of their small atom numbers and high densities one might expect BECs to be less
efficient timekeepers than thermal clouds. However, one advantage of BECs is the possibility
of creating interaction-driven spin-squeezed states [68], opening the path for metrology beyond
the standard quantum limit.

Another key advantage of using BECs for precision measurements lies in their small size
making them the best suited for high spatial resolution experiments: for example in the ma-
gnetic field cartography [69] or measurement of deviations from Newton’s law at short distances
[70]. At LNE BECs were chosen for application in their absolute atomic gravimeter because
their small size will reduce systematic effects from the laser’s wavefront curvature [71].

Our experimental setup is particularly well suited for the study of the coherence in BECs
as it was built under metrological constraints. These constraints include fast production rate
(typically every 20 s), repeatability, extremely good control over the magnetic fields and an
ultra-low noise local oscillator. Recently, Ramsey contrasts of 0.75 at 1.5 s were measured
in BECs of 5.5× 104 87Rb atoms and modeled by a combination of state-dependent spatial
dynamics, technical noise and quantum phase diffusion (or phase collapse) [72]. The direct
observation of the latter is a particularly exciting experimental challenge.

In this chapter we present a study of the coherence of BEC superpositions. We will begin

53
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by introducing the Gross-Pitaevskii equation as well as its numerical modeling. Following this
we will describe measurements of the BEC properties including condensed fraction and state
lifetimes. We will then report on our observations of the state-dependent spatial dynamics
which is qualitatively reproduced by a numerical simulation. We shall investigate the phase
coherence of BECs using Ramsey spectroscopy, in particular, as a function of the interrogation
time, number of atoms and clock frequency spatial inhomogeneity. We will also report on the
existence of a sweet spot for the clock frequency with respect to atom number fluctuations
across the condensation threshold. Finally, we discuss the effects of interactions of the collec-
tive spin dynamics and give theoretical predictions to explain these.

4.1 Theory of a dual component BEC

We begin this chapter with a general description of BEC. Firstly we will describe the general
hypotheses used in the explanation of a single component BEC, and from this an extension of
the theory applying to a dual component BEC. Secondly we will introduce the phenomenon of
state-dependent spatial dynamics. Finally we shall describe the numerical modeling that we
have developed.

4.1.1 The Gross-Pitaevskii equation for a single component

As in [73] we start with the hamiltonian governing the evolution of the field operator
(equation 1.13) derived in the Born approximation, for a single component. We decompose the
field operator ψ̂ in the basis of single-particle wavefunctions {ϕi}:

ψ̂(r) = ϕ0(r)â0 +
∑
i 6=0

ϕi(r)âi. (4.1)

The Bogoliubov approximation consists of ignoring the noncommutativity of â0 and â†0 and

is valid in the case N = 〈â†0â0〉 � 1 (BEC corresponds to a macroscopic occupation of the
state ϕ0). In this approximation the ϕ0â0 component is treated as a classical field ψ0 =

√
Nϕ0,

also called the BEC order parameter. It is a complex number, ψ0(r) = |ψ0(r)|eiθ(r). If we
approximate that δψ̂(r) =

∑
i 6=0 ϕi(r)âi is negligible (system at zero temperature), the time

evolution is given by the Gross-Pitaevskii equation (GPE):

i~∂tψ0(r, t) =

(
−~2∇2

2m
+ U(r) + g|ψ0(r, t)|2

)
ψ0(r, t), (4.2)

where g = 4π~2a/m and a is the scattering length. The many-body wave function of the
system takes the form:

Φ(r1, ..., rN ) =

(
1√
N
ψ0(r1)

)
...

(
1√
N
ψ0(rN )

)
. (4.3)

Stationary states

Stationary solutions are of the form ψ0(r)e−iµt/~, where µ = ∂E/∂N is the chemical poten-
tial.
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4.1.2 Gross-Pitaevskii system for a dual component BEC

The case of a mixture of two states leads to a set of coupled Gross-Pitaevskii equations for
the order parameters. A new inter-component interaction term appears:

i~∂tψ1(r, t) =

(
−~2∇2

2m
+ U1(r) + g11|ψ1(r, t)|2 + g12|ψ2(r, t)|2

)
ψ1(r, t) (4.4)

and symmetrically for state |2〉;

i~∂tψ2(r, t) =

(
−~2∇2

2m
+ U2(r) + g22|ψ2(r, t)|2 + g12|ψ1(r, t)|2

)
ψ2(r, t). (4.5)

Collisional shift of the clock frequency In the spatially homogeneous case the phase
difference between the two wavefunctions equals

θ2 − θ1 =
(

[g22n2 − g11n1 + g12(n1 − n2)] + (U2 − U1)
) t
~

, (4.6)

where the term in square brackets is nothing more than the collisional shift (equation 1.16).

Atom losses Three-body recombination losses dominate in a pure |1〉 BEC (with the rate
γ111), but two-body inelastic collisions dominate in a pure |2〉 BEC (with the rate γ22) and in a
mixed BEC (with the rate γ12) [74]. To account for the losses, one can add the phenomenologi-
cal terms −i~[γ111|ψ1(r, t)|4 +γ12|ψ2(r, t)|2]ψ1(r, t)/2 into equation 4.4 and −i~[γ22|ψ2(r, t)|2 +
γ12|ψ2(r, t)|2]ψ1(r, t)/2 into equation 4.5.

4.1.3 State-dependent spatial dynamics

Two quantum fluids will be miscible or immiscible, depending on the values of the in-
teraction parameters. Phase separation of quantum fluids was observed long ago in 3He-4He
mixtures. For binary mixtures of BECs, which can be thought of as two interacting quantum
fluids, phase separation also occurs.

We consider a dual component BEC and make the additional assumptions that (1) the gases
are confined in a square box and that (2) the Thomas-Fermi approximation can be made. We
also neglect, for now, any energy difference between the two spin states. For a uniform mixture
of the two components the energy of the system reads [73]:

Eunif =
g1

2

N2
1

V
+
g2

2

N2
2

V
+ g12

N1N2

V
(4.7)

and for a phase-separated configuration, where the two components do not overlap at all:

Esepar =
g1

2

N2
1

V1
+
g2

2

N2
2

V2
, (4.8)

where V1 and V2 are the volumes occupied by the two components (V = V1+V2). When wri-
ting the condition of mechanical equilibrium between the two phases (∂Esepar/∂V1 = ∂Esepar/∂V2)
we can express Esepar as
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Esepar =
g1

2

N2
1

V
+
g2

2

N2
2

V
+
√
g1g2

N1N2

V
. (4.9)

When comparing with equation 4.7 one can see that the condition for having phase sepa-
ration (Esepar < Eunif ) is

g12 >
√
g1g2. (4.10)

In this condition the ground state of the system is made up of two wavefunctions that
are separated in space. If the two wavefunctions are initially superimposed, the system will
undergo state demixing and remixing.

In the case of a non-uniform gas (for example in a harmonic trap), there is no analytical
treatment.

Prior observations of demixing for 87Rb The first observations of demixing of a BEC
mixture of 87Rb in the spin states |1〉 and |2〉 goes back to 1998 [75]. The atoms were initially in
|1〉 and were prepared in the ground state of the potential. A π/2 pulse was applied to place the
BEC in a state superposition. The system relaxed to a state where species |1〉 had the spatial
form of a shell, creating a crater in which the atoms in |2〉 could reside. Due to the hierarchy
a11 > a22 in the scattering lengths, atoms in the |1〉 state tend to stay at the periphery of the
trap. This is in agreement with the prediction of 4.10, although derived for homogeneous BECs.

More recently, [74] reports the observation of demixing of the same states. The author’s ex-
periment can be reproduced with very good accuracy by a numerical resolution of the coupled
Gross-Pitaevskii equations that include the loss terms . In [50] the same experiment was repro-
duced on an atom chip setup and analyzed using the same model. Finally, such a state demixing
was also observed in a dipole trap with the magnetic-insensitive clock transition of 87Rb [76, 77].

Consequences for the fringe contrast When the second π/2 pulse is applied to the atomic
cloud, it only drives those atoms in the wavefunction overlap region. That is, if states demix
and remix, one must observe oscillations of the contrast driven by the state dynamics.

4.1.4 Numerical modeling

To the best of our knowledge there is no analytical treatment for the spatial dynamics of
a BEC superposition. Due to the intrinsic non-linearity of the interaction term a numerical
simulation is required.

We perform a 3-dimensional numerical integration of the coupled GPEs with the time-
splitting spectral method [78]. We use a {x, y, z} grid of {60× 10× 10} points spaced by
{0.5, 0.2, 0.2} × aho,x (aho,x =

√
~/(mωx)). Trap frequencies are {2.9, 92, 74}Hz (measured).

The mesh is chosen to be smaller than the typical healing length in the center of the BEC,
ξ = 1/

√
8πn(0)a11 (1.2×aho,x for 104atoms in |1〉). Time steps of 2× 10−4/ωx ensure negligible

numerical noise: we have checked that the simulation conserves the norm of the wavefunction
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to the < 1× 10−11 level up to 5 s of evolution.

The ground state of the system is obtained by propagation in imaginary time. As this
evolution is non-unitary the wavefunction is renormalized at each time step. This approach
causes exponential damping of all modes but the ground state.

For now we neglect the term β(B(r) − Bm) and give the two states an identical trapping
potential. The values for two-body and three-body loss coefficients are take from [74]=. A one-
body loss term with a time constant τ = 6 s is added to account for the losses from collisions
with atoms from the background.

In the case ωx � ω⊥ = ωy = ωz [79] the 3D equation can be approximated using a 1-
dimensional model. We chose ω⊥ =

√
ωyωz and find that this approximate model gives data

that are close to the 3-dimensional solution. This 1D model gives a first approximation of the
physical behavior and is particularly useful if a fine grid is needed. In fact, as exposed in the
following, the dynamics in the experiment is essentially 1D.

These numerical simulations are valuable tools required to understand the experimental
data presented in the subsequent sections of this chapter.

4.2 Preparing Bose-Einstein condensates

In this part we detail the procedure and results of the characterization of our BECs inclu-
ding: temperature and condensed fraction measurements, critical temperature and lifetimes of
the clock states.

4.2.1 Condensed fraction measurements

A common method used to determine the condensed fraction is to fit a bimodal distribu-
tion of the cloud density profile. In the Thomas-Fermi limit, the BEC density profile is well
approximated by a reversed parabola, whereas the cloud shape of the thermal phase is given
by a gaussian profile.

We perform the BEC purity analysis in a tighter trap (frequencies ×{264, 266, 274}Hz). In
this trap the Thomas-Fermi approximation is valid and the bimodal fit is justified. The transfer
into the dilute trap ({2.9, 92, 74}Hz) is adiabatic such that it lowers the cloud temperature.
Thus, the results given here are upper bounds for the temperature and lower bounds for the
condensed fraction in the dilute trap.

There is an issue with bimodal fit of small BECs; the Thomas-Fermi profile is indeed only
valid for the central part of the condensate, where the density is large [73]. On the wings of the
condensate the cloud profile is smooth, much like the wings of a gaussian. This can lead to bad
convergence of a bimodal fit, resulting in the gaussian profile converging on the condensate.
To circumvent this, we use the following procedure inspired by [80]: (1) the image is split into
two parts: a central region larger than the expected size of the condensate and an outer re-
gion containing only the thermal part; (2) we fit a gaussian profile onto the second region, this
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Figure 4.1: Condensed fraction and atom number in each phase as a function of the final value of the

RF cooling ramp Fstop. The analysis is done in a tighter trap with frequencies ∼ 2π×268 Hz in all three

axes. We demonstrate the production of BECs of 104atoms with a purity level exceeding 95 %. Thanks

to adiabatic decompression the purity level is equal or higher in the dilute trap. For Fstop < 1.95 MHz

the radiofrequency starts to outcouple atoms from the BEC itself.

gives an estimation of the thermal part; (3) we fit the central part with a pure parabolic profile.

The results of this analysis can be seen in figure 4.1 as a function of the final value of
the radiofrequency cooling ramp Fstop. For all the data points, the number of atoms loaded
into the initial trap was at the maximum (MOT loading time of 20 s). On this figure one can
clearly see the point at which the radiofrequency starts to outcouple atoms from the BEC itself
(Fstop < 1.95 MHz).

4.2.2 Critical temperature

To check the validity of our results we have compared them to the non-interacting theory.
The thermodynamics of the non-interacting Bose gas confined in a 3 dimensional harmonic po-
tential gives the well-known formula for the critical temperature Tc, below which a macroscopic
occupation of the ground state occurs [73]:

Tc =
~ω
kB

(
N

ζ(3)

)1/3

' 0.94
~ω
kB

N1/3, (4.11)

as a function of the total number of particles N and the geometric mean of the trap fre-
quencies ω/(2π). The number of condensed atoms N0 is related to the temperature T via
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= 1−

(
T

Tc

)3

. (4.12)

We show on figure 4.2 the condensed fraction N0/N as a function of the ratio T/Tc. Our
data shows qualitative agreement with the independent prediction for the non-interacting Bose
gas. For an interacting Bose gas containing a finite number of atoms data points are expected
below the interaction-free theory curve. In [81] it was shown that this shift is about 20 % for
5× 103 atoms confined in a spherical trap of frequency 236 Hz. Adopting this number, since
our experimental conditions are fairly comparable, we conclude that our method overestimates
the condensed fraction by ∼ 20 %. The number given above must be refined: our BECs of
< 1× 104 atoms have a purity level of > 75 %.

In fact, as stated before, the cloud temperature is much lower in the dilute trap. The lower
bound given above is thus a conservative number for the dilute trap. A more qualitative but
widely used approach is to quantify the thermal phase by looking at the the cloud image. In
the dilute trap and for N < 1× 104 atoms we see no thermal atoms, suggesting that the BECs
are almost pure.

4.2.3 BEC lifetimes

Lifetime measurements are done by preparing a 50/50 state superposition and counting the
remaining atoms as a function of the trapping time. We obtain typical lifetimes of 5 s for state
|1〉 and 2 s for state |2〉 (see figure 4.3). For comparison the values measured with a thermal
cloud are both in the order of 6 s, limited by collisions with the background gas. We conclude
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Figure 4.3: BEC lifetimes in the dilute trap for an initial 50/50 state superposition and their dependence

on the number of atoms. The background-limited lifetime is 6 s, such that the BEC lifetimes in this trap

are dominated by inelastic collisions.

that both lifetimes are limited by the two-body and three-body inelastic collisions in the BEC.

To be able to give numbers for these rates one needs to measure the decay constant of a
pure |2〉 cloud, which has not yet been done. For our simulation we will rely on the values
reported in [74], although these values give lifetimes (typically: 3.5 s for |1〉 and 1.4 s for |2〉)
that are shorter than our experimental values.

4.3 State-dependent spatial dynamics

In this part we present our studies of the BECs spatial dynamics after preparing the system
in an equal state superposition. Because of the differences in the scattering lengths the ground
states are different for N atoms in state |1〉 or N/2 atoms in each clock state. The preparation
procedure is as follows: first a BEC is created in state |1〉 in the ground state of the potential; a
resonant π/2 pulse of 12.5 ms is applied, this prepares the system in an excited, non-stationary
state. The atoms are kept in the trap for some time t and are finally imaged along the y axis
after a 30 ms time of flight.

4.3.1 Experimental observations

We only observe dynamics in the x direction, corresponding to the weakest confinement.
Figure 4.4 shows the typical density profiles integrated along y and z for a BEC of 1× 104 atoms
initially. State |1〉 tends to occupy the periphery of the trap and splits into two parts after
∼ 0.6 s. Conversely |2〉 is attracted towards the trap center and becomes denser in the same
timescale. After ∼ 1.1 s a remixing of the states is observed. This is followed by a second
demixing/remixing.
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Figure 4.5: Wavefunctions along x calculated with a one-dimensional approximation of the coupled

GPEs for N1 = N2 = 5× 103 atoms. We show the ground state in the trap and the shape after 30 ms

of time of flight. The cloud remain of the same shapes during the expansion and are larger by a factor

∼ 1.20.

Cloud expansion during the time of flight For a single-component BEC in the Thomas-
Fermi regime the cloud expansion during the time of flight has an analytical solution [82]. In
the case of a dual component BEC there is no straightforward extension of this calculation. To
estimate the effect of the time of flight on the cloud profiles we have used the one-dimensional
approximation of the coupled GPEs. Starting from the ground state with 5× 103 atoms in
each state we calculate the cloud expansion for a time of flight of 30 ms (figure 4.5). It is
observed that the cloud maintains the same shape and expands by a factor ∼ 1.20 during this
time. We used this number to make the link between in-trap results of the simulation and
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after-time-of-flight experimental results.

4.3.2 Data modelling
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Figure 4.6: Cloud profiles after TOF integrated along y and z for a BEC of 104 atoms prepared in

an equal superposition of the two states. Abscissa correspond to the x axis in the experiment. (a)

Raw experimental data. We observe the common mode residual oscillation of the two clouds in the

trap. We fit this oscillation. (b) Experimental data after subtracting the residual cloud oscillation. (c)

Experimental data after substraction of the residual oscillation for 7× 103 atoms. (d) Reproduction of

the cloud dynamics from our 3D numerical integration of the coupled Gross-Pitaevskii equations for

104 atoms. Our simulation gives the cloud profiles within the trap and to account for the expansion

during time of flight we have rescaled the data by a factor of 1.20. We observe that the simulation

reproduces qualitatively the data. However, it overestimates the remixing time by ∼ 20 %.

Figure 4.6.a shows the density profile of both clouds integrated along y and z as a function
of time for a condensate of 104 atoms initially. We observe the residual common-mode cloud
oscillation resulting from the non-adiabatic transfer discussed in section 2.4. We fit the data
with a sine function and subtract this oscillation (figure 4.6.b). The state-dependent dynamics
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appears clearly with cloud |1〉 splitting into two parts while in cloud |2〉 density sharpening.
The two states remix after 1.1 s. We then observe a second demixing and a second remixing
after 2.1 s.

We reproduce the experimental data using the 3D numerical simulation (figure 4.6.d). Since
the simulation gives the cloud shapes within the trap, we rescale the numerical results by a
factor 1.20 to account for their expansion during time of flight. We observe a qualitative agree-
ment bewteen the data and the simulation. However, the simulation overestimates the first
remixing time by ∼ 20 %. This discrepancy could be caused by a default in the detection:
however, if this was the case our detection would have to overestimate the number of atoms by
more than a factor 2, which is unreasonable.

Adding finer details in the simulation We tried introducing to the simulation a potential
difference hβ(B(r)−Bm) between the two states and found that this had no visible effect on the
cloud dynamics. Secondly we tried taking loss constants 20 % smaller than the value reported
in [74] and observed that it had not effect on the remixing time. Next we tried using the 1D nu-
merical model to include the residual oscillation along x and found that it did not impact on the
remixing time either. As we believe the atom number calibration is reliable this discrepancy
could be caused by other effects that have not been modeled yet, for example: small non-
adiabaticity of the decompression ramp causing the initial BEC to be far from the trap ground
state; or the influence of a residual non-condensed part, although this is invisible on the images.
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Figure 4.7: Demixing parameter and cloud size along x extracted from figure 4.6 for (a) 104 atoms and

(b) 7× 103 atoms initially. The demixing parameter is defined by the distance between the left and right

centers of mass of state |1〉 (defined with respect to the median line). We fit the data with the function

A + Be−t/τd sin2 (πfdt) and find for (a) fd = 0.89(2) Hz, τd = 0.86(12) s and for (b) fd = 0.87(2) Hz,

τd = 1.13(20) s. We have also reported the results of the 3D numerical simulation. As stressed previously

the demixing dynamics is slower by ∼ 20 % in the simulation.
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Demixing parameter We define the demixing parameter as follows: we artificially separate
the cloud into two halves along x and compute the distance between the left-hand side and
right-hand side centers of mass. This distance is the demixing parameter. It is a measurement
of how much the system is demixed. For state |2〉 the relevant parameter is the cloud size
along x. Figure 4.7 shows state |1〉 demixing parameter and state |2〉 cloud size, extracted from
the data of figure 4.6, for both 104 atoms and 7× 103 atoms. The data can be fitted with a
damped oscillation, A+Be−t/τd sin2 (πfdt). We obtain fd = 0.89(2) Hz and τd = 0.86(12) s for
104 atoms, and fd = 0.87(2) Hz and τd = 1.13(20) s for 7× 103 atoms. As previously mentioned,
the simulation does not reproduce exactly, this is particularly true for the value of the demixing
frequency fd.

In conclusion, our simulation qualitatively reproduces our observations. For a more quan-
titative agreement one would, perhaps, have to include other effects in the model, such as a
residual non-condensed phase, or the excitation of collective modes of the condensate during
the decompression. Our observations of demixing are in qualitative agreement with the results
published by other groups [74, 50, 76, 77]. As it modulates the overlap between the two wave-
functions, the state demixing must have consequences for the Ramsey contrast. This is the
focus of the next section.

4.4 Coherence of a BEC superposition

The study of coherence is carried out using Ramsey interrogation. The experiment begins
similarly to that detailed above but with a second π/2 pulse is applied which closes the inter-
ferometer. The contrast corresponds to the amplitude of the Ramsey fringes.

4.4.1 In time domain

In the first experiment the interrogation signal was detuned by ∼ 10 Hz and we acquired
Ramsey fringes in time domain.

Figure 4.8 shows the experimental results for three different atom numbers: 104 atoms,
7× 103 atoms and 2.5× 103 atoms initially. On the same graphs we have plotted the fitted
values of the demixing parameters for state |1〉, which are identical to figure 4.7. The demixing
parameter is a measurement of the overlap of the two wavefunctions. We observe revivals of the
Ramsey contrast at the remixing times, which shows explicitly that the fringe contrast depends
on the overlap of the two wavefunctions. We also observe that the contrast hardly decays over
5 s for the smallest atom number. It does decays for larger atom numbers, however, it does
not reach zero and seems to saturate at a constant value. At the same time, we observe the
appearance of a jitter on the signal. We will discuss this phenomenon in section 4.5. In the
following section we present, among others, a more in-depth study of the contrast evolution in
time.
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Figure 4.8: Ramsey fringes in time domain for a BEC of (a) 104 atoms, (b) 7× 103 atoms and (c)

2.5× 103 atoms initially. The fitted demixing parameter are also reported and gives a measurements

of the overlap of the two wavefunctions. The atomic response does not reach 1 at t = 0, this is a

consequence of the AC Zeeman shift induced by the interrogation photons on the clock transition. We

observe revivals of the atomic response at the same times the system remixes (corresponding to the

minima of the demixing parameter). This result shows explicitly that the Ramsey contrast depends on

the overlap of the two wavefunctions. We observe that the contrast decay is slower for smaller atom

numbers; in fact the contrast hardly decays over 5 s in (c). Lastly, in (a) and (b), for times > 2 s, we

observe a jitter of the signal which is not visible in (c). We will discuss this phenomenon in section 4.5.

4.4.2 In frequency domain

In the second experiment we worked with a fixed Ramsey time and varied the interrogation
frequency.

Ramsey spectra

Figure 4.9 shows typical Ramsey spectra. We recorded 28 points over 4 fringes, this was
enough to extract the contrast from a sinusoidal fit with a good precision. The fit also provides
the value f of the clock frequency.

On figure 4.9 we observe the appearance of noise for increasing atom numbers and Ramsey
times. This noise is further discussed in section 4.5.

Contrast evolution in time

In this experiment the bottom field was set at Bm. The contrast measurement was repeated
for several Ramsey times TR and with BECs of different sizes. The data is shown in figure
4.10 and compared with the results for a thermal cloud. The behavior related to the number
of atoms is exactly opposite in each case: in BECs larger densities lead to faster contrast loss
whereas in thermal clouds larger densities imply better spin-synchronization and thus slower
contrast decay. The physical phenomena are different: in thermal clouds the contrast loss is
caused by dephasing of the atomic ensemble; in BECs it is a combined effect of the overlap
and the relative phase of the two wavefunctions. It is, however, difficult to distinguish between
these two effects. Our model includes both contributions.
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Figure 4.9: Typical Ramsey spectra. The Ramsey time is constant and the detuning of the local oscillator

is scanned. We typically record 28 points over 4 fringes. A sinusoidal fit gives access to the contrast C

which is also the fringe amplitude. The noise appearing for increasing atom numbers and Ramsey times

is discussed further in section 4.5.

Displayed on the same graph is the calculated contrast C = 2|
∫
ψ2(r, t)∗ψ1(r, t)dr|/

∫
(|ψ2(r, t)|2+

|ψ2(r, t)|2)dr where ψi(r, t) are the order parameters before the second pulse. The numerical
contrast is multiplied by a factor 0.94 to account for the additional contrast reduction from the
interrogation photon AC Zeeman shift. The data for small atom numbers, and in particular
the contrast revival at the remixing time is well reproduced by the model. For larger atom
numbers (N > 3600 atoms), the numerical model does not reproduce the experiment. The
reason of this discrepancy at high atom numbers is under investigation.

Contrast dependence on the clock frequency spatial inhomogeneity

An interesting question is the dependance of the contrast on the clock frequency spatial
inhomogeneity. This inhomogeneity is given by the difference of the trapping potential of the
two states, which can be tuned using the bottom field B0. B0 = Bm gives almost identical
trapping potentials for the two states.

For thermal clouds it is known that the contrast is maximized at the compensation field
Bc < Bm, whose value depends on the cloud and trap parameters, these include: temperature,
density, trap frequencies. This compensation can be understood in a model of independent
atoms: it is the field for which the clock frequency spatial inhomogeneity arising from the
collisions is best compensated by the clock frequency spatial inhomogeneity arising from the
trapping potential. It corresponds to the point where dephasing of atoms from different energy
classes is minimized. It can also be seen as the point at which the two contributions cancel
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Figure 4.10: Contrast evolution in time for (a) BECs and (b) thermal clouds. The lighter colors

illustrate the statistical uncertainty given by the fit. In both graphs the contrast is not 1 at t = 0 which is

a consequence of the interrogation photon AC Zeeman shift. In (a) we observe that the contrast decays

faster for larger BECs. There are contrast revivals for N = 3600 atoms and N = 6200 atoms. On the

same graph we report the results of our numerical model multiplied by a factor 0.94 to account for the

contrast reduction due to the interrogation photon AC Zeeman shift (full lines). The model reproduces

the data for the smallest atom numbers and diverges from the experiment for larger atom numbers. For

N = 18 000 atoms we have no theoretical prediction since the BEC is not pure. In (b) we observe the

typical behavior of a ISRE-synchronized gas [11], in the same trap: as the number of atoms (or density)

increases the exchange rate ωex becomes larger and the spin synchronization stronger, leading to higher

contrasts. The dependence with the atom number is the exact opposite as for BECs.

each other out to second order in position.

In BECs one can make an approximate calculation by considering only the x axis and
assuming the Thomas-Fermi approximation. In this case the position dependent collisional
shift reads:

∆fcoll(x) =

(
µ

g11
− mω2

xx
2

2g11

)
~
m

(a22 − a11) (4.13)

and the position dependant magnetic shift expanded to second order in x:

∆fmagn(x) = β (B0 −Bm)2 − β (B0 −Bm)
mω2

xx
2

αm
. (4.14)

Here B0 is the field at the trap bottom, g11 = 4π/~2a11/m, αm ' µB/2 (cf chapter 1) and
µ is the chemical potential of the BEC in |1〉. The cancelation of the x2 terms requires

(B0 −Bm) = − α

4πβ~

(
1− a22

a11

)
. (4.15)

The value of the right-hand side is −10 G, it is neither dependent on the trap frequency nor
on the atom number. This working point is not accessible since Bm = 3.23 G. For comparison,
we find for a thermal cloud of 5× 104 atoms at 100 nK in our usual trap: (B0 −Bm) = −70 mG,
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Figure 4.11: Contrast of the Ramsey fringes at 1 second as a function of the trap bottom field, that

controls the spatial inhomogeneity of the clock frequency. The measurement was repeated for BECs of

several sizes. An asymmetry in the detection leads to contrasts larger than 1 for small BECs, which is

not physical. We have also recalled the typical curve obtained for a thermal cloud, for which the existence

of a compensation field that maximizes the contrast is well understood. From this measurement we learn

that no spatial clock shift compensation happens in BECs in the explored range of inhomogeneity. Rather,

the contrast is entirely driven by the atomic interactions.

which is in the order of the experimental measurement (B0 −Bm) = −35 mG.

To check this prediction we performed a measurement of the BEC contrast at TR = 1 s as a
function of the trap bottom field (figure 4.11). The measurement was repeated for BECS of var-
ious sizes. On the same graph we present the results obtained for a thermal cloud of 105 atoms
initially for which the fringe contrast is at a maximum at a bottom field Bc ∼ Bm − 15 mG.
For BECs, however, no such compensation is observed and the contrast remains flat over the
range of the bottom field. These results show that a difference between the trapping potential
of the two states plays a negligible role on the coherence of a BEC superposition. Therefore,
we conclude that the coherence of a BEC superposition is entirely governed by the interactions.

Clock frequency: a sweet spot across the condensation threshold

The clock frequency exhibits an interesting behavior across the condensation threshold. In
this measurement only the final value Fstop of the radiofrequency cooling ramp was varied.
For each value of Fstop a Ramsey spectra was recorded from which the central frequency was
extracted. We observe (figure 4.12) that the clock frequency admits a minimum for a total
atom number N ∼ 104 atoms. This is, potentially, an interesting feature for making an atomic
clock which is first-order insensitive to atom number fluctuations.
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Figure 4.12: Clock frequency across the condensation threshold as a function of the total atom number.

This was measured for a Ramsey time of 200 ms. The experimental curve admits a minimum around

∼ 104 atoms. We also show the results of our approximated model of an independent BEC-thermal

cloud mixture. The parameters of this model (atom numbers and temperature) are taken from a bimodal

fit on the cloud images. The prediction of the model were shifted by an arbitrary constant in order to

match the first point. Our model qualitatively reproduces the shape of the curve. For a more detailed

explanation one would have to take into account the interactions between condensed and non-condensed

phase, which was neglected here.

To understand this behavior in greater detail we used the following approximate model:
the cloud is constituted of an independent mixture of BEC and thermal cloud. Interactions
between the two are neglected such that we anticipate the model to be accurate only for the
two limits of a pure BEC and a pure thermal cloud. For each constituent the clock frequency
is shifted by two contributions: (1) the collisional shift and (2) the magnetic shift coming from
the cloud extension. The total clock frequency is computed by weighting the contribution of
each phase by its fraction.

This model used the values of the atom number in each phase and of the cloud tempera-
ture extracted from a bimodal fit on the cloud profiles. Figure 4.12 shows that it qualitatively
reproduces the measured data, indicating that our approach is on the right path to explaining
these data. For a more complete analysis one would have to take into account the interactions
between the condensed and the non-condensed phase.
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Figure 4.13: Fine Ramsey spectra for a cloud of N = 2.1× 104 atoms, condensed at 80 %, for interro-

gation times of 0.2 s and 1.2 s. There is an increase in noise as the Ramsey time increases. As noted in

this section the technical noises do not give a complete explanation for the amplitude of this noise. We

conclude that we may be seeing a collective spin state deformed by the non-linear spin dynamics.

4.5 Evidence for increased noise on the atomic response

In this section we discuss, in greater detail, the increased noise on P2 observed in figure
4.9. The noise increase can also be seen in figure 4.10.a where the error bars on the contrast
increase with interrogation time. The same process probably causes the jitter observed for the
largest atom numbers in figure 4.8.

Figure 4.13 shows a fine scan in the frequency domain, for a BEC condensed at ∼ 80 %.
We observe that the data are much noisier after 1.2 s than after 0.2 s of interrogation. We
compute two numbers to characterize this noise: (1) the noise on P2, that is, the standard
deviation of the difference between the data points and the mean value (given by the fit); (2)
the noise on the detuning, that is, the same quantity for the abscissa. From figure 4.13.b we
obtain σP2,mes = 7.5× 10−2 and σ∆,mes = 0.15 Hz. These quantity are the noise we have to
explain for. In the following we give an estimation of the amplitude of all the technical noise
contributions that we expect.

Detectivity The data, acquired with the Double Detection method, were corrected for a
detectivity difference between the two states. After this correction the measured shot-to-shot
atom number fluctuation is σN/N = 2.3 %.



4.5. Evidence for increased noise on the atomic response 71

4.5.1 Estimation of the technical noise contributions

Here we give estimations for the amplitudes of all the known sources of technical noise. We
discriminate bewteen the noise on P2 and the noise on the detuning ∆.

Noise on P2

Detection noise If this noise was dominant we would observe an equal amplitude on both
graphs of figure 4.13. In fact we estimate σP2,det = 2× 10−3.

Noise on P2 arising from the asymmetric losses For shot-to-shot atom number vari-
ations of σN/N = 2.3 % we compute that this effect leads to fluctuations σP2 = 7× 10−3,
making it smaller than the measured noise.

Noise of the preparation We use the upper bound of 10−4 for σP2,Rabi measured for ther-
mal clouds and 70 ms pulses. We rescale it to take into account the change in pulse length
(12.5 ms): this gives a preparation noise of σP2 = 6× 10−4.

As can be seen all three contributions are far too small to explain the observed noise on P2

of σP2,mes = 7.5× 10−2.

Noise on ∆

The calculations presented here use the mean density of a fully condensed BEC of 2.1× 104 atoms,
n = 1.6× 1013 atoms cm−3, this is an overestimation considering the cloud is not fully con-
densed in the experiment. The description of the noise contributions was done in chapter 3.

Collisional shift from shot-to-shot atom number fluctuations We compute σf,σNfluct
=

70× 10−3 Hz. If the noise that we observed was dominated by shot-to-shot atom number fluc-
tuations, we should be able to reduce the noise amplitude by proceeding to a post-selection of
the data according to the final atom number. Figure 4.14 shows the results of such a post-
selection; we observe the post-selection does not reduce the noise, suggesting that this noise is
not caused by atom number fluctuations.

Noise on the collisional shift from a noisy preparation We use the upper bound of 10−4

for σP2,Rabi measured for thermal clouds and 70 ms pulses. We rescale it to take into account
the change in pulse length (12.5 ms): this gives a frequency noise of σf,σNfluct

= 4× 10−4 Hz.

Frequency uncertainty due to symmetric atom losses To compute this noise we con-
sider the worst case scenario by taking the smallest lifetime of the two clouds. We find
σf,loss,stat = 13× 10−3 Hz.
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Figure 4.14: Post-selection of the data from figure 4.13.b. according to the total atom number. (a)

Ramsey fringes as a function of the detuning. (b) Final atom number as a function of the detuning for

the same data. We have post-selected the data corresponding to atom number fluctuations of < 0.5 %

deviation from the mean. The post-selected data are indicated in red on both graphs. In (a) we observe

that post-selecting the data does not reduce the observed noise, showing that the noise is not dominated by

shot-to-shot frequency noise, which is consistent with our estimation (70× 10−3 Hz < 150× 10−3 Hz).

Frequency uncertainty due to asymmetric atom losses We estimate this contribution
to σf,asym,stat = 13× 10−3 Hz (conservative estimation).

Fluctuations of the bottom magnetic field With σB(3 s) = 60 µG (worst case estima-
tion) and assuming white noise for the magnetic field for τ < 3 s we estimate that magnetic
field fluctuations give frequency fluctuations in the order of 4× 10−4 Hz.

Shot-to-shot fluctuations of the magnetic shift by the BEC extension The magnetic
shift of the clock transition depends on the cloud extension in the trap. In a pure BEC the cloud
extension is determined by the number of atoms. With our simulation we compute the depen-
dence of this shift on the atom number in the region of N = 2× 104 atoms: ∆fmag,N = AN
with A = 6.5× 10−8 Hz atoms−1. For σN/N = 2.3 % this leads to shot-to-shot frequency fluc-
tuations of 3× 10−3 Hz typically.

Shot-to-shot fluctuations of the magnetic shift by the thermal cloud extension The
cloud we analyzed was not fully condensed. With σT /T = 1.4 % and by considering the cloud
to be half condensed we estimate the effect of shot-to-shot temperature fluctuations to amout
to ∼ 2× 10−3 Hz.

Noise of the local oscillator Its contribution to the shot-to-shot noise on the detuning is
estimated to be 6× 10−4 Hz.
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At this point we reach the conclusion that all these contributions are too small to explain
the observed noise on the data. Another possibility is that there is an increased noise of the
atomic response P2 driven by a fundamental process. This could be caused by a deformation
of the BEC collective spin state on the Bloch sphere. The next section focuses on this phe-
nomenon.

4.5.2 Non-linear spin dynamics in a dual component BEC

Up to now we have considered that, after the preparation pulse, the system can be de-
scribed as having N/2 atoms in each spin state, this is known as the Fock state description. In
fact we have to consider that each atom is in a state superposition. If φ0 is the wavefunction
before the pulse and all the atoms are in the spin state |1〉, the state of the system directly
after the pulse reads [83] |ψ(0)〉 = [c1|1, φ0〉+ c2|2, φ0〉]N where c1 = c2 = 1/

√
2 for a π/2

pulse (assuming the pulse is short on the BEC dynamics timescale). This phase state (the
two components have a well-defined relative phase) is equal to a superposition of Fock states:

|ψ(0)〉 =
∑N

N1=0,N2=N−N1

(
N !

N1!N2!

)1/2
cN1

1 cN2
2 |N1 : φ0, N2 : φ0〉. The notation |M : φ0, L : φ0〉

stands for M atoms in internal state |1〉 and external state φ0 and L atoms in internal state
|2〉 and external state φ0.

Because of the intrinsic non-linearity of the GPEs, each of the states |N1 : φ0, N2 : φ0〉
evolves with its own dynamics: |N1 : φ1(N1, N2, t), N2 : φ2(N1, N2, t)〉. In principle the propa-
gation of state |ψ(0)〉 would require one to solve N independent sets of coupled Gross-Pitaevskii
equations.

Fortunately, approximations can be made using the fact that the distributions peak around
the mean atom numbersNi = |ci|2N . In this approach the hamiltonian ruling the spin dynamics
can be approximated by [84, 85]:

H = δSz + ~χS2
z , (4.16)

where δ is the local oscillator detuning from resonance and the non-linearity takes the form

χ =
1

2
[(∂N1 − ∂N2)(ε1 − ε2)](N1, N2), (4.17)

where εi is the energy per atom of state i (εi = µi for stationary states).

Stationary states The effect of such an hamiltonian in the case of stationary states is de-
picted on figure 4.15. The system is initially in a phase state prepared by a π/2 pulse. The
non-linear evolution creates a twist of the state on the collective Bloch sphere. When the state
is elongated to the point that it covers almost the entire equator of the Bloch sphere, the in-
formation on the phase gets lost: this is the phase collapse. A second effect of this hamiltonian
is to create spin-squeezed states: at certain times there is a direction Θ along which the width
of the state is inferior to the standard quantum limit. To represent a metrological interest
the gain by spin-squeezing has to be larger that the loss in contrast: the metrological interest
is best quantified by the squeezing parameter ξ defined as ξ2 = N∆S2

θ,min/〈Sx〉2, where S is
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Figure 4.15: Effect of the twisting hamiltonian 4.16 in the collective Bloch sphere picture for N = 100.

The probability of measuring the spin in a given direction is given by the color intensity. (a) At t = 0

the system in is a phase state, prepared by a π/2 pulse. A measurement of the spin state is limited by the

standard quantum limit. (b) State after evolution under the non-linear hamiltonian during t = 0.05/χ

(corresponding the the predicted best squeezing time for stationary states). The spin state becomes

elongated along the angle defined by Θ. In the Θ direction one can measure a noise below the standard

quantum limit (spin-squeezing). Picture from [68].

the collective spin, N the atom number and ∆S2
Θ,min the variance calculated in the direction

Θ. The stability of a spin-squeezed clock would be improved by a factor ξ compared to the
standard quantum limit.

Non-stationary states In the case of non-stationary states, such as in our situation, the
parameter χ has a time dependence. The effect on the dynamics of the collective spin state
may be somewhat different than in the stationary case. We are currently calculating the con-
sequences that the non-linear spin dynamics should have in our system.

4.6 Perspectives

The results presented here on the coherence of a BEC superposition opens the path to new
studies.

A finer simulation As explained before there is a discrepancy between our theoretical pre-
dictions for a pure BEC and the observed behavior. In particular, the calculation overestimates
the remixing time by ∼ 20 % when carried out for the measured atom number. To quantita-
tively explain the data one needs to artificially reduce the number of atoms. This suggests
the existence of a non-negligible thermal phase, although none can be observed on the cloud
images. This could also explain the mismatch between the measured and calculated contrast.
Our simulation reproduces the behavior of a BEC in the trap ground state. At this point we
cannot exclude the excitation of collective modes in the condensate during the decompression
ramp affecting the BEC dynamics.
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Quantum correlations In order to check our predictions we would need to perform a quan-
tum tomography of the BEC state. In this experiment the state is rotated by a variable angle
θ. For each angle one records a large number of points in order to compute the noise on the
collective spin measurement. If this noise shows variations with the angle θ one can conclude
that the collective spin state has been deformed by the non-linear dynamics. In order to reduce
the frequency noise associated with shot-to-shot atom number fluctuations, this measurement
should be carried out using a post-selection of the data according to the total atom number.
It may even be possible to observe a noise below the standard quantum limit (spin squeezing).
It would also be interesting to measure Ramsey fringes for times longer than 2 s: one might be
able to experimentally observe the phase collapse, this should manifest itself by the appearance
of noisy Ramsey fringes on which it is no longer possible to fit a sine function.

Fighting the demixing State demixing happens naturally because of the difference in scat-
tering length between the two states, it would be interesting to change the demixing properties
by tuning the scattering length. In fact, the control of demixing in dual condensates has a
broader range of application: for example it is a key step toward the creation of ultracold
heteronuclear molecules in the lower vibrational state. The use of broad Feshbach resonance
to control demixing was demonstrated for mixed species in [86, 87].
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Figure 4.16: Ratio of the trap frequencies experienced by the two states as a function of the trap bottom

field, calculated with the Breit-Rabi formula.

Alternatively, one might think that the demixing could be avoided by achieving greater con-
finement of species |1〉. For purely static magnetic fields, only a small range of ratios ω2/ω1 < 1
are accessible (see figure 4.16). Also, if the trap frequencies are different for each state the grav-
itational sag would also be state-dependent. However, by using microwave or radiofrequency
state-dependent potentials one could control the trap frequencies independently for the two
clock states.

Clock shifts in non-homogeneous systems For inhomogeneous systems, the clock shift
dependance on the cloud density should differ from the homogeneous case. It would be in-
teresting to investigate this problem experimentally, and to determine the conditions required
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for the predictions of the homogeneous theory to stay valid for the cloud mean density. In
particular one may wonder whether the clock frequency is modulated as the system demixes.

Exchange collisions in partially condensed samples As observed by measuring the clock
frequency across the condensation threshold, mixed samples of BEC and thermal clouds can
exhibit complex and interesting features. It may be interesting to consider the effect exchange
collisions. In a mixed system the situation is more complex and requires both a theoretical and
an experimental investigation. Exchange collisions lead to ISRE in non-condensed clouds and
must spin exchange must also occur during collisions between condensed and non-condensed
atom. For example, one could imagine that the collective spin of a small condensate surrounded
by a spin self-synchronized thermal component would undergo a spin-locking effect mediated
by spin exchange collisions with the non-condensed part.



Chapter 5

Coherent sideband transition by a
field gradient

In this chapter we report on the use of inhomogeneous microwave and radiofrequency pulses
in the manipulation of the external state of trapped atoms.

Control of the motion of trapped atoms is the first step towards integrated atom interfer-
ometry for measuring forces. It is usually performed with laser beams in Raman configuration.
Lasers bear the advantage of having strong phase gradients (i.e. strong wavevector k) in
comparison to plane microwaves. Consequently they are more efficient in driving transitions
between external states. Microwaves, however, have the advantage of a simple synthesis and
handling. Here we show that they can drive transitions between external states if there is a
large amplitude gradient.

Large microwave gradients can be realized in the evanescent field of a coplanar waveguide.
This approach has been used to create on-chip state-dependent potentials [88]. Recently it
has also been used to drive sideband transitions and produce entanglement in systems of ions
trapped above a microstructure [89]. It seems to be a promising way to replace Raman beams
and gain in simplicity and compactness.

In our experiment both the radiofrequency (RF) and the microwave (MW) interrogation
signals have position-dependent amplitudes as they are produced by microstructures on the
chip. Here we study how they can be combined to control the external state of a cloud of
∼ 4× 104 atoms trapped atoms in the thermal regime. In particular, we show that it is possi-
ble to reach a regime where only one sideband (blue or red) is excited. We will also show that
the sidebands are driven coherently, in the sense that the atoms transferred on the carrier and
on the sideband maintain a phase relation.

This chapter is organized as follows: first we give the formulae used to describe sideband
transitions. Secondly we give experimental results on the sideband excitation and demonstrate
the cancelation of the red sideband. Thirdly we examine the coherence of the process by look-
ing at interferences between the sideband and the carrier.

77
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5.1 Theory of the sideband excitation by an inhomogeneous
field

Fundamentally, driving transitions between external states requires an inhomogeneity of
the coupling field. The magnetic field responsible for the coupling takes the generic form

B(r̂)eik·r̂−[ω−ω0(r̂)]t (5.1)

The inhomogeneity of the coupling field can arise from the inhomogeneity of the amplitude
B(r̂), phase k · r̂ or detuning [ω − ω0(r̂)] t. We estimate each contribution. We will limit the
calculation to first order in position, which, as we will see further in this chapter, corresponds
to single sideband excitations.

5.1.1 Field inhomogeneity

Phase inhomogeneity

The inhomogeneity of the phase is given by the wavevector k = 50 m−1 [26].

Clock frequency inhomogeneity

The inhomogeneity of the clock frequency comes from the combination of the static trap-
ping field and the collisional shift. Figure 5.1 shows the calculated spatial profile of the clock
frequency for typical cloud parameters and for a bottom field equal to the magic field. In this
case the clock frequency varies quadratically in space to lowest order. Thus, the clock frequency
inhomogeneity will only contribute to multiple sideband transition processes.

Amplitude inhomogeneity

The spatial dependence of the field amplitude can be expressed as a spatial dependence of
the Rabi frequency. The two-photon Rabi frequency takes the form

Ω(r) =
Ωmw(r̂)Ωrf (r̂)

2∆(r̂)
. (5.2)

Figure 5.2 shows the calculated profile of the microwave field of the waveguide in space.
The inhomogeneity of the microwave field is predominantly along z. For the radiofrequency
field, as the radiating wire is oriented along x, the inhomogeneity is predominantly along y and
z. To lowest order we may write

Ωmw(rf)(r̂) = Ωmw(rf),0

(
1 + δmw(rf) · r̂

)
. (5.3)

and

∆(r̂) = ∆0 (1 + δ∆ · r̂) . (5.4)

δmw, δrf and δ∆ are the typical inhomogeneities. Estimations of their amplitudes are as
follows:
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Figure 5.1: Variation of the magnetic field, density and clock frequency in space calculated for B0 = Bm,

N = 4× 104 atoms, Tx = 46 nK, Ty = 114 nK and Tz = 100 nK. Top: Variation of the magnetic field

and the cloud density. Along z the cloud is shifted away from the magnetic minimum by the gravity.

Bottom: Spatial variation of the magnetic and collisional shifts of the clock frequency. To lowest order

in position, their sum varies quadratically in all directions.
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Figure 5.2: Calculated profile of the one-photon resonant microwave Rabi frequency. The amplitude

inhomogeneity of the microwave field emitted by the waveguide is predominantly along z. We estimate

δmw,z ∼ 3× 104 m−1 [43]. δmw,z is zero by symmetry. Picture adapted from [26].

• Rabi frequency along x: The microwave may be partially stationary. The maximum
typical inhomogeneity along x is given by the wavevector k: δmw,x ∼ k = 50 m−1 [26].
The RF field inhomogeneity along x is negligible.

• Rabi frequency along y: In the magnetostatic approximation, for a wire placed along
the x axis the field around the point r0 = (y0, z0) the field reads:
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B(y, z, t) =
µ0I(t)

2πr0

(
1− y0

r2
0

(y − y0)− z0

r2
0

(z − z0)

)
. (5.5)

y0 ∼ 500 µm and z0 ∼ 330 µm give δrf,y ∼ 1.3× 103 m−1. This number is only an es-
timation as the RF field is not only determined by the radiating wire. In fact we have
evidence for inductive coupling in the other chip wires. δmw,y is zero by symmetry (figure
5.2).

• Rabi frequency along z: The magnetostatic approximation gives δrf,z ∼ 9× 102 m−1.
The MW inhomogeneity of our waveguide along z was estimated in [43]. It involves the
measurement of the fringe contrast decay under the application of pulses of variable du-
ration. The measurement gives δmw,z ∼ 3× 104 m−1.

• Detuning inhomogeneity The detuning from the intermediate level |2, 0〉, ∆(r), may
also have some spatial inhomogeneity due to the trap:

∆(r) = ∆0 +
αm
~
Bt(r). (5.6)

Bt is the trapping magnetic field and αm refers to the convention of equation 1.8. In
the x and y directions the field varies quadratically and the corresponding spatial in-
homogeneity of the detuning is 0 to our level of approximation. In the z direction the
magnetic field across the cloud is linear due to the gravitational sag. We estimate the
typical inhomogeneity to be

δ∆,z =
mg

~∆0
∼ 4.3× 103 m−1. (5.7)

At this point we can summarize the results by saying that the inhomogeneity along z is
dominated by the inhomogeneous one-photon microwave Rabi frequency. Along y it is domi-
nated by the inhomogeneous one-photon radiofrequency Rabi frequency. Along x the typical
inhomogeneity is given by the wavevector k. Experimentally we did not observe sidebands at
the x trapping frequency.

5.1.2 Calculation of the total coupling element

In this part we compute the total coupling element between the initial state |1, n〉 (we have
adopted the convention: |internal state, external state〉) and the final state |2, n′〉. We will re-
strict ourselves to the z direction, however, a similar derivation applies for the other directions.
We also use a generic notation that applies to both the MW and RF fields. There are two effects
to be considered: the first one is the spatial inhomogeneity of the two-photon Rabi frequency.
The second effect is specific to our two-photon transition: the effect of an inhomogeneous AC
Zeeman shift is to produce a displacement of the trap centers.

Effect of an inhomogeneous Rabi frequency

If â† is the ladder operator of the harmonic trap along z the Rabi frequency can be expressed
as
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Ω(ẑ) = Ω0 (1 + δz ẑ) = Ω0

(
1 + δz

√
~

2mω
(â+ â†)

)
. (5.8)

Effect of an inhomogeneous AC Zeeman effect: trap displacement

The effect of the dressing by an inhomogeneous AC Zeeman effect is to displace the trap
centers. We call ∆zi the distance between the centers of the dressed and undressed traps for
state i. A detailed calculation of the AC Zeeman shift of both interrogation signals can be
found in appendix A. We consider the generic energy shift of state i: ~Ω(z)2/(4∆). Here the
spatial dependence of ∆ is neglected, as it is of second order in position in the x and y direction,
and along z the inhomogeneity is dominated by Ω(z)2. The trap center displacement resulting
from this shift is given by

∆zi =
~Ω2

0 δz
∆ (mω2

z)
. (5.9)

The two-photon pulse drives a transition between traps that are separated by dz = ∆z2 −
∆z1. If |n[i]〉 denotes the trap levels for an atom in the internal state |i〉 we obtain the following
equality:

|n[2]〉 = e−
idzp̂z

~ |n[1]〉. (5.10)

The distance dz can be expressed:

dz =
~

∆mω2
x

(αΩ2
rf,zδrf,z − Ω2

mw,zδmw,z), (5.11)

where α is a coefficient that takes into account the polarization of the RF field at the atoms’
position (see appendix A).

Total coupling element

The total coupling element between the states |1, n[1]〉 and |2, n′[2]〉 can be expressed as

Ωn,1→n′,2 = 〈2, n′[1]|Ω(ẑ)e
idzp̂z

~ |1, n[1]〉. (5.12)

In terms of ladder operators we obtain, to first order:

Ωn,1→n′,2 = 〈n′, [1], 2|Ω0

(
1 +

√
~

2mωz

[
δz +

dzmωz
~

]
â+

√
~

2mωz

[
δz −

dzmωz
~

]
â†

)
|n, [1], 1〉.

(5.13)

On this expression it is clear that a field gradient can drive sideband transitions. We note
that the coupling element for the red sideband is proportional to

√
n− 1 and the coupling for

the blue sideband to
√
n.
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Sideband extinction We also observe that the combination of the two effects can give rise
to sideband cancelation. From equation 5.13 we derive the condition for the red (−) or blue
(+) sideband extinction:

δz = ±dzmωz
~

, (5.14)

which does not depend on the trap level |n〉.

In the succeeding sections we present the experimental realization of sideband transitions.

5.2 Spectra of trapped thermal atoms under inhomogeneous
excitation

In all the following the atomic cloud is interrogated with Rabi pulses. The trap used
for these experiments is characterized by the frequencies {fx, fy, fz} = {ωx, ωy, ωz} /(2π) =
{2.9, 92, 74}Hz.

5.2.1 Typical data

Figure 5.3 shows an example of the typical spectra acquired. The central structure corre-
sponds to a transfer on the carrier. On both sides of the carrier we observe the appearance of
sharp peaks located at the detunings −fy, fz and fy. We can also distinguish smaller peaks
at detunings of 2fz and fz + fy. As the power is increased we observe the emergence of extra
sidebands at: 2fy and −fz. This result gives the demonstration that trap sideband can be
driven in our system.

There are several other comments to be made on this figure: first, we observe a strong
asymmetry of the spectra. This point is discussed further in section 5.2.3. Second, we observe
that the position of the sidebands does not correspond exactly to the trap frequencies. For ex-
ample, their location depends on the microwave power applied. We consider this phenomenon
in section 5.2.4.

5.2.2 Transfer efficiency

For a given wire geometry and trap position the field inhomogeneities are constant. An
increase in coupling on the sideband can be achieved by increasing the interaction time, power
or the mean state index n (for a given state |n〉).

Figure 5.4 shows a comparison of the sideband transitions obtained for 1 s and 2 s interac-
tion times. We observe that longer interrogation times can increase the sideband amplitude,
giving transfer efficiencies up to 65 %.

Figure 5.5 shows the dependence of the blue sideband amplitude as a function of the final
frequency of the RF cooling ramp (controlling the cloud temperature and thus the mean oc-
cupation number 〈n〉). For this measurement we used pulses of 50 ms, Prf = −12 dBm and
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Figure 5.3: Rabi spectra for 1 s pulses and Prf = −12 dBm. We choose the carrier frequency as 0. The

ensemble of peaks around zero corresponds to a transfer on the carrier. Top: We observe the existence of

sharp peaks located at detunings of −fy, fz and fy as well as 2fz and fz+fy. These peaks correspond to

single and double sideband transitions. Bottom: as the MW power is increased we observe the emergence

of the −fz and 2fy sidebands. This result demonstrates the possibility to drive sideband transitions in

our system. We also observe a strong asymmetry of the spectra, as well as a displacement of the sideband

location as the MW power increases. These two points will be investigated further.
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but for interrogation times of 1 s and 2 s. Longer interrogation times can increase the sideband amplitude.
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Figure 5.5: The amplitude of the z blue sideband as a function of the evaporation final frequency (the

evaporation final frequency is an increasing function of the cloud temperature). For this measurement we

used pulses of 50 ms, Prf = −12 dBm and Pmw = 1.7 dBm. For constant powers, the sideband amplitude

increases with the cloud temperature, which is consistent with the fact that the coupling element of a

given state |n〉 is proportional to (n+ 1).

Pmw = 1.7 dBm. We observe that the sideband amplitude increases with cloud temperature.
This is consistent with the fact that the coupling element of a given state |n〉 is proportional
to (n+ 1).

5.2.3 Observation of the sideband cancelation

In the experiment the inhomogeneity δz cannot be easily adjusted (it would require one
to change the trap position). Conversely, the trap displacement dz can be adjusted as it is
determined by the MW and RF power.

An interesting feature of the two-photon transition lies in the ability to change the RF and
MW power while keeping the two-photon Rabi frequency constant. Figure 5.6 compares two
measurements taken with 1 s pulses and different RF and MW powers. We observe that the
blue z sideband is extinguished at Prf = −12 dBm whilst the amplitude of all other peaks
remains comparable. As the two-photon Rabi frequency of the two experiments were quite
similar we attribute this extinction to the combined effect of the inhomogeneous two-photon
Rabi frequency and the inhomogeneous one-photon AC Zeeman shift explained previously.

Thus, by tuning the RF power we can achieve the extinction of the red z sideband. In
the sideband extinction condition, the only parameter that can be tuned is the trap center
displacement dz. From the fact that tuning the RF power changes the amplitude of the red z
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Figure 5.6: Rabi spectra for pulses where T = 1 s, different RF/MW power configurations and compa-

rable two-photon Rabi frequencies. Top: Prf−17 dBm, Pmw−18.7 dBm and Ω0/(2π) = 2.98 Hz. Bot-

tom: Prf−12 dBm, Pmw−21.9 dBm and Ω0/(2π) = 2.23 Hz. On the upper spectrum we observe the

extinction of the z red sideband while all other peaks remain of comparable amplitude. Since the Rabi

frequencies are comparable we attribute the sideband extinction to the cancelation condition 5.14. We

also learn from this experiment that the trap displacement along z is dominated by the RF power, i.e.

Ωmw,0
2δmw � Ωrf,0

2αδrf .

sideband we conclude that the displacement dz is dominated by the RF contribution, that is,
Ωmw,0

2δmw � Ωrf,0
2αδrf .

We have observed in data that are not shown here that the z red sideband remains canceled
up to two-photon Rabi frequencies of Ω0/(2π) = 22.5 Hz. Coming back to figure 5.3 we observe
for Ω0/(2π) = 39.3 Hz a weak coupling of the z red sideband, this might be the effect of higher
order terms of the inhomogeneity.

Assuming Ωmw,0
2δmw � Ωrf,0

2αδrf the z red sideband cancelation condition reads:

−
Ω2
rf,0α

2ωz∆
= 1 +

δmw,z
δrf,z

. (5.15)

In this experiment α < 0 and ∆ > 0 which is consistent with the extinction of the red
sideband. The blue sideband extinction should happen for a detuning ∆′ = −∆. We compute
the left-hand side of equation 5.15 and get ∼ 1.75 (see appendix A), which is fairly close to the
independent estimation of the right-hand side (∼ 1.6).

We also note that the sideband extinction condition cannot be fulfilled at the same time
as in the z and y directions: as δrf,y ' δrf,z, δmw,z � δmw,y and ωy ∼ ωz, no extinction of
the y sideband can be observed within the power range used to demonstrate the z sideband
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cancelation.

5.2.4 Sideband dressing by the carrier
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Figure 5.7: Peak position as a function of the carrier Rabi frequency. Full lines sketch the model Ω0/w
2
i

which describes a dressing of the sideband transitions by the carrier. We find good agreement between

data and prediction. The deviation from the red sideband prediction at high power remains unexplained.

An intriguing phenomenon is the attraction of the sideband frequencies toward the carrier
at high powers. Figure 5.7 shows a systematic measurement of the sideband position with
respect to the carrier as a function of the two-photon Rabi frequency. We interpret this attrac-
tion as the dressing of the sideband transitions by the carrier. In fact, our results agree closely
with the expectation for this effect, given by the AC Zeeman shift Ω0/w

2
i .

5.3 Cloud dynamics induced by sideband excitations

5.3.1 Non sideband-resolved regime

Full spectrum

The non sideband-resolved regime, Ω0 � ωz, ωy corresponds to the carrier transition being
so broad that it is no longer possible to separate the sideband and the carrier spectra (figure
5.8). As a first approximation we fit the data with a sum of two Rabi spectra, that is to say,
we neglect the coherence between the carrier and the sidebands for now. This fit gives an idea
of the amount of atoms that are transferred on the carrier or on the sideband.
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Figure 5.8: Rabi spectrum obtained for Pmw = 1.7 dBm, Prf = −12 dBm and T = 50 ms. As a first

approximation we fit the spectra with a sum of two Rabi spectra. This gives an indication of the amount

of atoms that are transferred on the sideband and on the carrier.

At several points of this spectrum, we have recorded the cloud dynamics of state |1〉 and
|2〉 by repeating the experiment with a variable trapping time t = 0 msto50 ms after the inter-
rogation. Then the clouds are imaged after 20 ms of time of flight.

m = 1: Excitation on the carrier only

Figure 5.9 shows the cloud profiles after time of flight as a function of the holding time for
a quasi-pure excitation on the carrier (m = 1 in figure 5.8). We observe that both |1〉 and |2〉
clouds have a gaussian shape.

m = 2: Mixed carrier/sideband excitation

Figure 5.10.a shows the cloud profiles after time of flight as a function of the holding time
for a mixed carrier/sideband excitation (m = 2 in figure 5.8). About half of the atoms in the |2〉
are transferred on the carrier and half on the sideband. On the state |2〉 cloud shape we observe
a beat dynamics at the frequency 74 Hz, which corresponds to the z trapping frequency. We in-
terpret this signal as the interference between the wavefunctions of the carrier and the sideband.

We model, for now, the data by assuming that the state transferred on the carrier has a
gaussian profile Ψ0(z) = Ae−z

2/(2σ2
z) whereas the state transferred on the sideband has a profile

of the form Ψ1(z) = Bze−z
2/(2σ2

z). We consider the sum
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Figure 5.9: Excitation on the carrier only (m = 1 in figure 5.8). (a) Cloud profiles after time of flight

integrated along y and x as a function of the holding time after the pulse. The scale is given in atoms.

(b) Cloud profiles integrated along x and (c) along x and y for 10 ms holding time. Both cloud profiles

are gaussian.
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Figure 5.10: Excitation by a mixed carrier-sideband pulse (m = 2 in figure 5.8). (a) Cloud profiles

after time of flight integrated along y and x as a function of the trapping time after the pulse. The scale

is given in atoms. We observe a beat dynamics on the cloud shape of the |2〉 state at the frequency 74 Hz.

We interpret this beat as an interference between atoms transferred on the carrier and on the sideband.

At the same time state |1〉 undergoes out-of-phase oscillations in the trap. (b) Reproduction of the |2〉
cloud profile with the approximate model described in the text.

ψtot(z, t) = Ψ0(z) + Ψ1(z)eiωzt. (5.16)

and find that the function A0 + |Ψtot| reproduces the experimental data fairly well with
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A0 = −80, A = 352, B/A = 0.25e−1.1i, ωz = 2π · 74 Hz and σz = 11.18 px (see figure 5.10.b).
Our modeling may seem somewhat arbitrary. We give in section 5.3.3 a qualitative justifica-
tion. The derivation of a more rigorous explanation based on the Wigner function formalism
is currently ongoing in our team. It would also have to explain the oscillation of state |1〉 that
we observe.

m = 3: Excitation on the sideband only
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Figure 5.11: Excitation on the sideband only (m = 3 in figure 5.8). (a) Cloud profiles after time of

flight integrated along y and x as a function of the holding time after the pulse. The scale is given

in atoms. (b) Cloud profiles integrated along x and (c) along x and y for 22 ms holding time. Whilst

state |1〉 profile remains gaussian, state |2〉 profile exhibits a double-peak structure which qualitatively

corresponds to the function |Ψ1(z)|2. In (a) we observe an out-of-phase oscillation of the two clouds at

the trap frequency.

Figure 5.11 shows the cloud profiles after time of flight as a function of the holding time for
a quasi pure excitation on the sideband (m = 3 in figure 5.8). We observe that state |1〉 profile
is gaussian. State |2〉 profile has a double-peak structure, which qualitatively corresponds to
the function |Ψ1(z)|2. In figure 5.11.a we observe an oscillation of both clouds at the z trap
frequency. This could be a similar beat signal as observe in the mixed sideband/carrier situa-
tion, and would mean that the transfer is not purely on the sideband.

By going to the sideband-resolved regime one should reduce such an effect.

5.3.2 Sideband-resolved regime

Figure 5.12.a shows the cloud profiles after time of flight as a function of the holding time for
a pure excitation on the sideband, in the sideband-resolved regime. We used Pmw = −3.5 dBm,
Prf = −17 dBm and T = 1 s. We clearly observe a double structure for state |2〉 profile. State
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Figure 5.12: Sideband excitation in the sideband-resolved regime for Pmw = −3.5 dBm, Prf = −17 dBm

and T = 1 s. (a) Cloud profiles after time of flight integrated along y and x as a function of the trapping

time after the pulse. The scale is given in atoms. (b) Cloud profiles integrated along x and (c) along

x and y for 22 ms holding time. Whilst state |1〉 profile remains gaussian, state |2〉 profile exhibits a

double-peak structure which qualitatively corresponds to the function |Ψ1(z)|2. In (a) we do not observe

cloud oscillations.

|1〉 profile has a sharper, non-gaussian structure along z.

5.3.3 Interpretation

We have shown the existence of a cloud dynamics when driving sideband transitions in our
system. The interpretation of these observations is not straightforward, as we are dealing with
a thermal cloud of mean occupation number 〈n〉 ∼ 30. Thus, many different trap states are
occupied by the atoms and it is not obvious that we must observe such interferences. The ap-
proximate model we have used suggests that our system reproduces the behavior of a quantum
harmonic oscillator reduced to its ground and first excited states. However, the link between
the thermal cloud and the quantum harmonic oscillator must be clearly established.

A detailed modeling of the data is currently ongoing in our team. Here we would like to
justify the use of a function of the form Ψ1(z) = Bze−z

2/(2σ2
z) to describe the atoms transferred

on the sideband. We consider the density matrix of a thermal gas

ρ̂ =

∞∑
n=0

pn|ϕn〉〈ϕn|, (5.17)

where pn is given by the Bolztmann distribution. The corresponding cloud profile in the
momentum space is gaussian. The sideband transition corresponds the application of the â†

ladder operator to the state. After the application of this operator the new density matrix
takes the form
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ρ̂′ =
∞∑
n=1

npn−1|ϕn〉〈ϕn|. (5.18)

The distribution npn−1 is peaked around a finite value of n, as opposed to the distribution
pn, peaked around n = 0. We are currently calculating whether this could explain the double-
peak profile observed. In a next step, one would have to model the beat dynamics. Moving
to the Heisenberg picture, one can intuitively see that the beat will be provoked by the time
evolution of the â† operator. This calculation is also ongoing.

5.4 Conclusion

In this chapter we have given an experimental demonstration of the coherent manipulation
of the external state of trapped atoms in the thermal regime. We have demonstrated that, due
to the existence of field gradients, we are able to drive sideband transitions.

A special feature of the two-photon transition is the existence of an AC Zeeman shift. We
have shown both theoretically and experimentally that, by tuning the balance between the ef-
fect of an inhomogeneous AC Zeeman shift and an inhomogeneous two-photon Rabi frequency,
it is possible to control the asymmetry between the blue and the red sideband or even have
complete extinction of one of them.

When exciting the sideband the cloud profiles dynamics reveals unexpected features: for
a pure sideband excitation we observe a double-peak structure whilst we observe a gaussian
structure for a pure transition on the carrier. When the excitation mixes the sideband and the
carrier, we observe a beat signal at the trap frequency. Due to the fact that we deal with a
thermal cloud, many trap states are occupied and the exact modeling of this behavior remains
to be done. Nevertheless, the observation of a beat signal confirms the coherence of the transfer
process.

By engineering the RF and microwave fields one could reach extinction of the carrier it-
self: this could be done by creating quadrupole fields that cancel at the trap center [89]. In
this configuration pure sidebands could be excited with broad spectrums (large powers, short
pulses) which is adapted to the realization of an on-chip atom interferometer.
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Chapter 6

An atomic microwave powermeter

Today’s primary standards for measuring radiofrequency or microwave powers are based on
a comparison of the heat produced by a RF signal with that of a DC signal [90]. This approach
gives uncertainties that are dominated by the differences in the RF and DC heat dissipation
processes. The general trend in metrology is to define all the units by fundamental properties
of quantum systems, according to the philosophy of atomic clocks.

A proof of principle of a primary microwave power standard with an atomic fountain was
reported Crowley at al. [91]. Atoms were launched through a microwave cavity and Rabi oscil-
lations between the two states were observed as a function of microwave field strength. With
this approach the microwave power measured using atoms agreed to within less than 5 % with
the value given by a conventional device.

Exact knowledge of the field distribution is required to build an absolute microwave power
standard. With this aim in mind a dedicated microwave transmission line was designed at
the National Research Council of Canada. By probing the field with a cloud of cold atoms
passing through the transmission line, an agreement of 1.3 % with the value of a conventional
powermeter was obtained [92].

In this chapter we will give an experimental proof of principle of a cold atom-based mi-
crowave powermeter. It does not measure the absolute power but confirms the linearity of
another device over 80 dB. Working with trapped atoms, i. e. disposing of timescales from
1 ms to 5 s enables one to explore a large range of microwave powers. We investigate three
different methods: (1) based on the measurement of the Rabi frequency in frequency domain;
(2) based on the measurement of the Rabi frequency in time domain; (3) based on the mea-
surement of the AC Zeeman frequency shift on the clock transition induced by the microwave.

All the experiments presented here were carried out with a thermal cloud in the interroga-
tion trap of frequencies {ωx, ωy, ωz} /(2π) = {2.9, 92, 74}Hz. The radiofrequency power during
interrogation is equal to −12 dBm unless otherwise specified. The power at the output of the
microwave guide was measured by a conventional powermeter (Agilent E4418B) used for the
comparison.

93
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6.1 Rabi spectra

6.1.1 Principle of the experiment

The aim of the experiment is to record Rabi spectra for various input microwave powers.
By using a fit of the form 1.2 one determines two quantities: the Rabi frequency Ω0 and the
central frequency f0 (figure 6.1). The central frequency is displaced by the AC Zeeman shift
of the microwave photon (see section 6.3). In this section we only consider the Rabi frequency.

Typical spectra An example of typical spectra is shown on figure 6.1.a. The statistical error
from the fit gives the error on the measurement of Ω0.
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Figure 6.1: (a) A typical Rabi spectra for a 50 ms interrogation. The fit gives the two-photon Rabi

frequency Ω0 = 12.74(6) Hz for a contrast C = 0.98. (b) A typical Rabi spectra where the blue sideband

is excited at ∼ ωz. The best fit of the data is obtained when ignoring the sideband.

Excitation of the trap sidebands The existence of field gradients for both the microwave
and the radiofrequency signals can lead to excitation of trap sidebands, which may add noise
when trying to determine the fit parameters. In some cases (Ω0 � ωz) we can ignore them
when fitting the data (see figure 6.1.b). In a purpose built device one would avoid such effects.

Contrast loss for high powers At high microwave powers we observe typical spectra as
shown in figure 6.2. Around the resonance the signal does not decrease down to zero. The
same phenomenon is observed in the Rabi interrogation in time domain (see section 6.2). We
discuss possible causes of this contrast loss in section 6.4. Here we would like emphasize that
the Rabi frequency can, nevertheless, be extracted from such a spectra since the periodicity
with Ω0 is well visible.
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Figure 6.2: (a) Rabi spectra for Ω0/(2π) = 251.1(4) Hz and 10 ms pulse duration. Around the resonance,

the signal does not decrease to zero, this effect is discussed further in section 6.2. Further away from the

resonance, it does. Consequently, the fit with eq 1.2 does not match the data points exactly. However,

the Rabi frequency can be determined with a small error since it only depends on the fringe period. (b)

Rabi spectra for Ω0/(2π) = 75 mHz and a 6 s interrogation. This is the smallest Rabi frequency observed

so far. It gives an atomic linewidth of 0.2 Hz.

Pulse asymmetry at very low powers We have demonstrated Rabi interrogations up to
6 s giving a typical linewidth of 0.2 Hz (figure 6.2.b) and a Rabi frequency of 75 mHz. This is
the smallest Rabi frequency observed so far. Under these conditions we observe asymmetric
Rabi spectra on which the simple Rabi pedestal function does not fit the data well. To extract
the Rabi frequency one has to force the signal amplitude to C = 0.9. It is not clear what causes
this asymmetry. On this timescale a certain number of significant phenomena occur, includ-
ing: trap losses, spin-exchange collisions, lateral collision and cloud rethermalization. Further
investigation is needed to explain these observations.

The data shown in figure 6.2.b were taken with a radiofrequency power Prf,2 = −35 dBm.
To be able to compare them with data taken at Prf,1 = −12 dBm we proceed to a rescaling
of the microwave power assuming somewhat artificially that the radiofrequency amplitude re-
sponds perfectly to the programmed power.

6.1.2 Results

The Rabi frequency Ω0 is expected to vary with the microwave power x expressed in dBm
as

Ω0 ∝ 10x/20. (6.1)

Figure 6.3 shows the results over a span of 80 dB. On the same graph we have plotted the
expected slope of 0.05. We observe that the experimental data is in good agreement with the
expected slope in the range −23 dBmto−10 dBm. At high power we observe deviations from
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linearity of up to 30 %. Possible reasons for such deviations are discussed in section 6.4.
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Figure 6.3: Comparison of the Rabi frequency measured from spectra and the microwave power measured

with a commercial microwave powermeter: Agilent E4418B. The magenta points were acquired with a

23 dB lower radiofrequency power and are shown rescaled for comparison. We expect the slope 0.05 (full

red line). The experimental data agree only within the range −23 dBmto−10 dBm. Possible causes for

the deviations from linearity at high power are discussed in section 6.4.

6.2 Temporal Rabi oscillations

6.2.1 Principle of the experiment

Following this we conducted an experiment in which we measured the Rabi frequency by
recording Rabi oscillations in the time domain. For each microwave power the interrogation
frequency was set on resonance and the Rabi oscillations in time were recorded by changing
the pulse length.

6.2.2 Typical experimental data

Figure 6.4 shows data for a Rabi frequency Ω0 = 38.4 Hz. The contrast decreases and revives
once at T1 = 365(4) ms and a second time at T2 = 808(2) ms. We also show the Fourier spectrum
on which peaks at ω0/(2π) =∼ 38 Hz, ωz/(2π) = 74 Hz, and (−ωy + ωz + Ω0)/(2π) ∼ 18.5 Hz
can be observed. Although the fringe contrast varies in time, which is not yet fully understood,
the Rabi frequency given by the Fourier spectra can be extracted with a good resolution.
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The shape of the Rabi oscillations contrast qualitatively changes with the microwave power
applied. Here we present another three typical behaviors (figures 6.5, 6.6 and 6.7). One these
graphs we observe Rabi oscillations and contrast revivals. The Fourier spectra show peaks
which can be identified as the Rabi frequency and its mixing with the trap frequencies.
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Figure 6.4: (a) Rabi oscillations at resonance for a Rabi frequency Ω0/(2π) = 38 Hz. We observe

contrast revivals at T1 = 365(4) ms and at T2 = 808(2) ms. (b) Fast Fourier transform of the signal after

subtracting its mean. Peaks appear at Ω0/(2π) = 38 Hz, ωz = 74 Hz, (−ωy + ωz + Ω0)/(2pi) ∼ 18.5 Hz.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 T
ra

n
si

ti
o

n
 p

ro
b

ab
ili

ty

 Time (s)

 (a)

0 50 100 150 200

10
−4

10
−3

10
−2

10
−1

0 50 100 150 200

10
−4

10
−3

10
−2

10
−1

 A
m

p
lit

u
d

e

 Frequency (Hz)

 (b)

Figure 6.5: (a) Rabi oscillations for Ω0/(2π) = 63 Hz. We observe contrast revivals with a period

of ∼ 100 ms, corresponding to the ωz − Ω0. (b) Fast Fourier transform after subtraction of the mean.

We identify peaks at Ω0/(2π) = 63 Hz, ωz = 74 Hz (ωz) and ωy92 Hz. There is also a peak at (ωy −
Ω0)/(2π) ∼ 30 Hz.
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Figure 6.6: (a) Rabi flopping for Ω0/(2π) = 75 Hz. (b) Fast Fourier transform after subtracting the

mean. It exhibits a double peaked structure including ωz = 74 Hz.
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Figure 6.7: (a) Rabi flopping for Ω0/(2π) = 115 Hz. We observe contrast revivals with a period of

∼ 50 ms, corresponding to Ω0−ωy. The signal revives at T1 = 330(10) ms, and also at T2 = 650(30) ms.

(b) Fast Fourier transform of the signal after subtraction of the mean. We identify peaks at ωz = 74 Hz,

ωy = 92 Hz and Ω0/(2π) = 115 Hz (Ω0). The peak at ∼ 40 Hz corresponds to Ω0 − ωz.

Possible driving mechanisms The modeling of these data remains to be done. The rea-
son for the appearance of beat frequencies is probably due to the existence of microwave or
radiofrequency field gradients. In the case of a rabi frequency gradient one can use the model
of non-interacting thermal clouds to demonstrate that the atomic response has a tendency to
decay and then revive at the trap periods. This suggests that the revival observed on some
graphs at ∼ 350 ms is caused by a field gradient along x. The revival times depend on the
microwave power, this could be caused by a trap deformation by the field gradient. The same
phenomenon can explain the appearance of peaks in the Fourier spectra at the beat frequencies
between Ω0, ωy and ωy, as well the contrast loss. In the model of the non-interacting thermal
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cloud, however, the contrast equals 1 at the revival times, which is not observed. This model is
thus too naive and ISRE certainly plays a determining role as it does for Ramsey interrogation
with identical interrogation times.

6.2.3 Results

For each Rabi oscillation the Rabi frequency is deduced from a gaussian fit of the Fourier
spectrum and the error is taken equal to the gaussian width. The data we obtained is shown
in figure 6.8. We observe that there is a good agreement with the expected slope in the range
−30 dBmto−10 dBm. At higher power we observe a deviation from linearity of ∼ 10 %. We
discuss its possible causes in section 6.4.
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Figure 6.8: Comparison of Rabi frequency measured from temporal Rabi oscillations and the reading

given by the conventional powermeter. The error bars correspond to the peak width in the Fourier

space. We observe good agreement with the expected slope for the range −30 dBmto−10 dBm. Possible

explanations for the deviation of ∼ 10 % at higher power will be discussed in section 6.4.

6.3 Clock frequency shift measurements

In a third experiment we used the shift of the clock frequency induced by the microwave
photon. These data are extracted from the same Ramsey spectra used in section 6.1.
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Figure 6.9: Frequency AC Zeeman shift ff0 of the clock transition induced by the microwave as a

function of the microwave power. The frequency f was obtained from the fit of the Rabi spectra. f0 is

obtained by averaging f over the 5 points of lowest Rabi frequency. We also plot the expected slope. We

observe a good agreement within the error bars.

6.3.1 Principle of the experiment

Through the AC Zeeman effect, the microwave photon produces a frequency shift of the
clock transition of the form

∆fmw,|1〉→|2〉 = −~Ω2
mw

4∆
. (6.2)

Here Ωmw is the one-photon Rabi frequency of the microwave and ∆ the detuning from the
intermediate level, |2, 0〉, as explained in chapter 1.

The outcome of our measurement is the clock frequency f = f0 + ∆fmw,|1〉→|2〉 where f0 de-
pends on the magnetic field, the cloud density and the radiofrequency photon power. Thus, we
expect the quantity f−f0 to scale as 10x/10 (x is the microwave power in dBm). We obtain f0 by
averaging f over the five points of lowest Rabi frequency, for which no frequency shift is visible.

6.3.2 Results

Figure 6.9 shows the comparison of f − f0 with the microwave power given by the conven-
tional powermeter. We observe a good agreement with the expected slope within the error bars.
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6.4 Discussion
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Figure 6.10: Comparison of the three methods for realizing an atomic microwave powermeter. Dark

(1) and light (2) blue points correspond to Rabi frequency measurements and plotted on the left axis.

The expected slope (black) is the same one as the one of figures 6.3 and 6.8. On the right axis we have

reported the results from the clock frequency shift measurements (3). The span of the right axis is exactly

twice as large as the span of the left axis. We have adjusted the lower value of the right axis for the

data points to sit approximately on the expected slope. We observe that, at high power, data (1) and (2)

begin to deviate from the expected slope at the same point, this suggests a common bias.

We have investigated three different methods for realizing an atomic microwave powerme-
ter. Figure 6.10 is an accumulation of the results in order to make a comparison. We observe
that, at high power, the methods (1) and (2) deviate identically from the expected behavior,
suggesting that the bias is common for both experiments. We also note that, at very low power,
the points are significantly away from the expectation.

Deviation at high power The deviation could be a deviation of the conventional po-
wermeter: we have checked its reading against a synthesizer (Agilent E8267D) and found
an agreement within 0.5 % within the whole range of power explored. Thus, the deviation must
be attributed to the atomic device. We now discuss possible causes for the deviation of the
atomic device at high power: trap center displacement, state-selective trap center displacement,
non-linear effect in the transmission line:

• Trap center displacement As explained in the previous chapter a microwave gradient
displaces the trap center experienced by state |1〉. At the position of the displaced trap
the Rabi frequency is different from the one experienced at the initial position. The
higher the microwave power the stringer the shift and the error on the Rabi frequency.
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We make an overestimation for the amplitude of this effect by considering the value of
the Rabi frequency at the displaced trap position. It can be written Ωmw,0(1 + η) where

ηi =
~Ωmw,0δ

2
mw,i

2∆mω2
i

(6.3)

for the direction i. We estimate that an error of 1 % corresponds to Ωmw,0 ∼ 100 kHz.
This effect is too small to explain our data.

• State-selective trap center displacement The effect leads to a reduction of the
wavefunction overlap between the two states, which reduces the coupling element. This
effect causes underestimation of the actual microwave power. We estimate its amplitude
by computing the missoverlap η′i between the cloud density profiles in the i direction:

η′i = exp−δmw,i
2~2Ωmw

4

4∆2kBTmω2
i

. (6.4)

We estimate that the density overlap starts to differ from 1 by more than 1 % for
Ωmw > 17 kHz. Thus, this effect is far too small to explain quantitatively the devia-
tion at high microwave power.

• Non-linear affect in the transmission line We cannot exclude a non-linear affect in
the transmission line. A power-dependent loss coefficient, or a power-dependence of the
microwave field polarization would modify the Rabi frequency experienced by the atoms.

Limit at low power To measure low power the limiting factor becomes the interrogation
time of the atoms. We have demonstrated interrogation times up to 6 s showing, however,
intriguing asymmetry in the spectra. On the timescale of several seconds collective effects such
as spin rotation effect, symmetric and asymmetric atom losses play a non-negligible role and
must impact the power measurement.

Conclusion We have carried out a preliminary characterization of an atomic microwave po-
wermeter. The data show that the powermeter is sensitive to microwave power over a range
of at least 80 dB. Further experimental and theoretical investigation is needed in order to
understand the characterize completely the powermeter at low powers and to understand the
deviations from linearity observed at high powers. Our measurement confirms that trapped
atoms have a potential for metrology of microwave and radiofrequency powers. To conclude,
we note that atoms can also be used for microwave power stabilization [93], imaging of the
magnetic field distribution around a microwave guide [94, 95] or microwave electrometry [96].
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Fast alkali pressure modulation

The sensitivity of atomic sensors at the standard quantum limit increases with the number
of interrogated atoms N , the interrogation time and the measurement rate. As most cold atom
experiments begin with loading a MOT (magneto-optical trap), it is necessary that the MOT
loading is fast and efficient. There is also a need for long lifetimes of the cold clouds, implying
low background pressures. This can be done by using two-chamber systems, such as 2D-MOTs,
where loading and trapping are spatially decoupled.

An alternative approach is to separate the MOT loading and the trapping in time. This
approach is compatible with single-chamber systems making it well suited for compact expe-
riments and, eventually, industrial applications, for which simplicity is an important criteria.
In this chapter we investigate the possibility of rapidly modulating the 87Rb pressure (also
applicable to any alkali) in a glass cell. The target is to reach modulation frequencies > 1 Hz
as it is where the method becomes relevant to atom chip setups. We will begin by presenting
the concepts mentioned above in greater detail. We will then establish a list of technical re-
quirements of atom sources that are needed in order to obtain fast modulation. We will show
that a commercial rubidium dispenser attached to a properly designed heat sink fulfills these
requirements. We investigate both its short and long term behavior. Finally we will present the
characterization of alternative fast sources, among which laser-heated dispensers, light-induced
atom desorption and dispensers with a reduced thermal mass are included.

7.1 Optimizing the preparation of cold atomic clouds

7.1.1 Reminders: MOT loading and trap decay

MOT loading

In the case of a low density MOT where two-body losses and light assisted collisions are
negligible processes [97], the number of trapped atoms Nmot is described by the rate equation

dNmot

dt
= R− γNmot. (7.1)

The equation is driven by a gain term R and a loss term −γNmot. If the trap is loaded
from a background vapor the gain term R is proportional to the 87Rb density n87Rb in the cell:

103
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R(t) = An87Rb(t), (7.2)

where the factor A depends on the magnetic field geometry and laser beam shapes, geome-
tries and intensities. It has no analytical derivation. [98] proposes an approximative model for
A.

The decay constant can be expressed as

γ(t) =
∑
i

σivini(t), (7.3)

where σi stands for the collisional cross-section between a trapped 87Rb atom and an un-
trapped atom of species i, vi the mean velocity and ni the density of the atoms of species i.

Trap decay

We now consider a conservative trap, for example a magnetic or dipolar trap. If the trap
losses are dominated by collisions with the background gas, the number of trapped atoms
Ntrap(t) obeys

dNtrap

dt
= −γNtrap, (7.4)

with a loss term identical to that of the MOT loading equation.

7.1.2 Constant background pressures case

If all pressures in the cell are constant, we get the following expression for the MOT atom
number, for trapping starting at t = 0:

Nmot(t) =
R

γ
(1− e−γt). (7.5)

At a given time (t0) a fraction (α) of the atoms are transferred into the conservative trap.
The trapped atom number reads

Ntrap(t) = αNmot(t0)e−γ(t−t0). (7.6)

Lifetime The time τbkg = 1/γ is called ”background-limited lifetime”. We note that it is
equal to the MOT loading time.

Balancing N and τbg Equation 7.5 shows that large MOTs and short loading times are
achieved for high 87Rb background pressures. Conversely, equations 7.3 and 7.6 indicate that
long trapping times require low background pressures. Thus, if the 87Rb background pressures
are increased in order to boost the MOT atom number, one automatically shortens the trap
lifetime.
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For atom chip experiments this compromise corresponds to a 87Rb pressure of a few
∼ 10−10mbar. It enables one to capture millions of atoms in the MOT while preserving trap
lifetimes on the order of 5 s. This limitation can be overcome in two ways: (1) by a spatial
separation of the loading and trapping processes or (2) by a temporal modulation of the pres-
sure. The latter is more appropriate for compact experiments.

7.1.3 Solutions with a double-chamber setup

In double chamber setups the vacuum system one of the chambers is maintained at “high”
pressure (typically 10−8/10−9 mbar). The second chamber, the “science chamber”, is main-
tained at lower background pressure (< 10−10 mbar) and provides long trapping times. The
two chambers are connected by a small hole which makes it possible to maintain a pressure
difference of several orders of magnitude thanks to differential pumping. There are two main
configurations for a double chamber system:

Trap transport The atoms are trapped in the first chamber and physically transported to
the science chamber. This is done by moving the trapping potential and requires a translation
stage or an adjustable magnetic trap.

Cold atom beams The high pressure chamber delivers a collimated beam of cold atoms
that is directed towards a magneto-optical trap in the science chamber. With this approach
most of the atoms entering the science chamber are trapped. The beam of cold atoms can be
produced by a Zeeman slower or a two-dimensional MOT. Two-dimensional MOTs can deliver
fluxes of 1010 atoms s−1, allowing for loading of a three-dimensional MOT in ∼ 100 ms.

A disadvantage of double-chamber setups is the increased complexity of the system: not
only is a more sophisticated vacuum system needed, but also additional cooling power and/or
moving potentials. Pressure temporal modulation, however, can be performed in simple cells
and is well adapted to compact experiments. This is what motivated our work on fast pressure
modulation.

7.1.4 Fast pressure modulation: a solution for single-cell setups

Review of previous experiments

Dispenser current modulation The idea of temporal pressure modulation is not new. In
[99] the authors report a modulation of the rubidium pressure by controlling the current in
a commercial dispenser. They achieved the loading of 107atoms in the MOT in less than 2 s
whilst keeping trap lifetimes of ∼ 30 s (in this paper the lifetime is assumed to be equal to the
MOT decay time). When the source is turned off the pressure does not decay to zero even after
45 s, it is qualitatively explained that this is a result of atom desorption from the cell surfaces.
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Figure 7.1: Illustration of the principle of temporal modulation of the 87Rb. The MOT loading phase is

colored in grey and the trapping phase in white. Top: for constant background pressures, there is equality

between loading time and background-limited decay time. Bottom: by modulating the pressure, one can

achieve shorter loading times, larger numbers of atoms and longer background-limited decay time.

Light-Induced Atom Desorption (LIAD) In this approach atom desorption from the cell
surface is stimulated by the application of light, generally in the blue or UV range. LIAD is
simple to implement, but suffers from a lack of theoretical understanding and reproducibility
[100]. The behavior is known to vary from one experiment to another, this is probably due to
the combined influence of the nature and state of the surfaces and the pumping time of the cell.
Nevertheless, Light-Induced Atom Desorption contributed to the achievement of Bose-Einstein
condensation in dilute gases in several experiments [101, 102, 103]

Collimated dispensers There have been attempts to collimate an atomic beam and direct
it towards the MOT in order to increase the ratio between trapped and untrapped atoms. In
[104] a rubidium dispenser was combined with a cold copper shroud with the aim of capturing
the untrapped atoms. The authors explain that this method does not enable them to reduce the
experimental cycle time to under 20 s due to too high a background pressure in the chamber.
More recently, [105] reports on the MOT loading by a directional atomic beam using an alkali
metal dispenser and a collimation nozzle. The authors demonstrate MOT loading times of 7 s
and show that the source can be turned off in 1.8 s.

Our approach: dispenser cooling

It is well known that dispensers take a few seconds to stop emitting atoms after the heating
current is switched off [106, 107, 108]: this turn-off time gives the upper limit for the frequency
of the pressure modulation. Our approach is inspired by the results and conclusions from [99]
where it is mentioned that the dispenser turn-off time in a vacuum is dominated by radiative
heat losses. Our idea involves shortening the dispenser cooling time by increasing its conductive
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heat losses.

Requirements

At this point it is important to recall a few numbers in order to elaborate on the list
of technical requirements of the atom source. The MOT loading time in TACC is typically
4 sto12 s and the evaporative cooling time is currently 3.3 s. The useful part of the cycle, the
interrogation phase, typically takes 1 sto10 s. The trap lifetime is 6 s.

Pressure decay time When the source is turned off, the evolution of pressure in the cell is
determined by two quantities:

• The evacuation time τev which is the time needed to pump atoms away from the cell.

• The source turn-off time τs which is the time taken for the source to stop emitting atoms.

Whichever is the largest determines the cell pressure decay time τoff. The pressure decay
time must be much shorter than evaporative cooling time, such that we require τoff < 1 s.

Source turn-on time To represent a substantial improvement with respect to the current
MOT loading time, the source turn-on time τon must equally be much shorter than one second:
τon < 1 s.

Release The source must enable us to load ∼ 107 atoms in the MOT. However, we keep
in mind that the number of trapped atoms depends greatly on the trapping beams’ size and
power, which may vary from one experiment to another.

Trap lifetime The source must preserve trap lifetimes of at least 6 s.

Reproducibility From the perspective of integration into continuously operating devices,
the atom source must be repeatable both in the mid term (hours) and in the long term (days).

7.2 Experimental methods

In this section we provide some details about the measurement system used for characteri-
zing the fast sources. We will also describe the method we used for monitoring pressures in the
cell based on the MOT loading.

Our system consists of a three-dimensional MOT for 87Rb.
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Figure 7.2: Overview of the experimental setup used for fast alkali pressure modulation experiments.

(a) Full view of the copper heat sink designed to cool the dispenser (described in section 7.3.1). (b) Full

view of the vaccum system, including a 25 L s−1 ion pump and a glass cell. Inside the glass cell one can

see the copper mount (a). (c) Side view of the vacuum system after adding the aluminium structure

holding the MOT components.

7.2.1 Vacuum system

The vacuum system is simple, along the line of atom chips experiments performed in our
group. A quartz cell of 50 × 50 × 90 mm3 is bound to a glass-to-metal transition that is con-
nected to a 6-way cross. Connected to the cross are: an electrical feedthrough, an all-metal
valve, a 25 L s−1 ion pump separated from the cross by an all metal valve and a steel tube (see
figure 7.2.b).

7.2.2 Optics and coils

The MOT An aluminium structure holds 6 beam collimators composed by of 60 mm focal
length, 1 in diameter aspherical lens followed by a quarterwave plate (figure 7.2.c). Each beam
carries 1.6 mW of cooling light and 250 µW of Repump light. Two coils create a magnetic field
gradient of ∼ 10 G cm−1.

The upper face of the cell constitutes another optical access that was used to focus a pow-
erful laser (10 W) onto the dispenser (see section 7.4).

The lasers The laser system consists of two extended-cavity laser diodes [47] and a slave
laser diode (see figure 7.3). The cooling light is detuned by δ = −13 MHz from the cooling
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transition. Locking loops lend them a stability of several days.

Figure 7.3: Picture of the optical bench. Symbolic colors sketch the path of the three lasers: blue for

the master, red for the slave and green for the repumper.

The detection The atomic fluorescence is detected using a 1 cm2 photodiode on which the
MOT is imaged by a lens. The photocurrent is converted into a voltage through a trans-
impedance circuit with the conversion factor R = 3.9 MΩ. Combined with the photodiode
capacity CPD = 1100 pF it gives a response time of 4 ms.

The number of atoms in the MOT, Nmot, is calculated using the power, PPD, received by
the photodiode [109]:

PPD = ~ωγNmot
Ω

4π
T 2, (7.7)

with

γ =
s0Γ/2

1 + s0 + (2δ/Γ)2
. (7.8)

Here ω/(2π) is the frequency of the cooling transition, T is the transmission coefficient at
the air/glass interface (our cell is not coated) and Ω the solid angle of detection. s0 = I/Isat
is the saturation parameter, I the intensity of the 6 beams, Isat the saturation intensity and Γ
the linewidth of the transition.

The calibration gives:

C = 7.3× 106 atoms V−1. (7.9)
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The photodiode is also sensitive to the fluorescence of untrapped atoms from the back-
ground gas. This signal is directly proportional to the 87Rb pressure in the cell.

7.2.3 Pressure measurements

Pressure in the cell can be estimated with the MOT loading curve. According to equations
7.5, 7.2 and 7.3, the MOT loading curve in an environment of constant pressure gives us two
pieces of information [110]:

• The loading rate R: this is also the initial slope of the curve. It is directly proportional
to the 87Rb pressure in the cell, with a proportionality constant that depends only on
the MOT parameters (beam power and diameter, magnetic field gradient).

• The background-limited lifetime τbkg = 1/γ: this is a decreasing function of the total
pressure in the cell.

These two quantities allow us to follow the evolution of the 87Rb pressure and the total
pressure in the cell. This will be particularly useful in the study of long-term evolution when
the fast source is emitting.

If the pressures in the cell are not constant but are approximately constant on the timescale
tp, equations 7.5, 7.2 and 7.3 still hold for times t� tp.

7.3 A device for sub-second alkali pressure modulation

In this part we present the main results of this chapter. These results concern the design
and characterization of a fast atom source obtained by fastening the dispenser thermal dyna-
mics using a heat sink.

7.3.1 Presentation and design

Commercial dispensers

Several properties explain the popularity of alkali metal dispensers in the field of cold atoms:
ultra-high vacuum compatibility, easy handling, reliability and reproducibility. One dispenser
contains enough atoms to supply an atom chip experiment for several years.

To our knowledge two companies sell rubidium dispensers, each with differing working prin-
ciples. Our work focused on the ones by SAES Getters, therefore, the information given in this
thesis refers to their dispensers.

These dispensers are made of a NiChrome shell filled with a mixture of rubidium chromate
and St101 getter [45]. The reduction reaction between the two produces rubidium atoms in
the vapor phase. The chemical reaction is inhibited at room temperature but can be activated
by elevating the temperature of the medium. This is done by running a current through the
metallic shell: due to the high resistivity of nickel-chrome, relatively low currents (∼ 3 Ato5 A)
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are sufficient to reach the alkali vapor emission temperature (∼ 500 ◦C).

According to the company, the dispensers release almost exclusively rubidium, a statement
which is confirmed by the measurements of [111]. The level of purity of the emissions surely
depends on the emission rate: it is well known that in cold atom experiments where low emis-
sion rates are used, dispensers do not only emit rubidium atoms but also a significant amount
of impurities.

Alkali metal dispensers can also be made in the laboratory with only basic chemical re-
quirements [112].

Fastening the dispenser thermal dynamics

Dispensers are usually electrically connected to copper wires inside the vacuum. In [107]
the dispenser turn-on and turn-off times were measured. The authors observed that rubidium
atoms appear some tens of seconds after the current is turned on. When the current is switched
off, the rubidium density in the cell follows an exponential decay with a time constant of ∼ 3 s,
independent of the value of the current. Similar observations were reported in [106, 108].

This rather long turn off time can be explained by the thermal inertia of the dispenser. In
fact, in a vacuum environment and with a mounting on thin copper wires, the heat loss of a
dispenser is governed by thermal radiation: the authors of [99] have observed that the tempe-
rature of a cooling dispenser follows a law of the form: dT/dt = CT 4 where C is a constant.

We adopt the following model for the thermal dynamics of the dispenser: we assume that
the temperatures T (of the dispenser) and T0 (of the copper wires) are homogeneous. T0 is
also the room temperature. The thermal conductivity of the copper is taken to be infinite,
and the thermal contact between the dispenser and the copper is characterized by the thermal
conductance h. In this case T obeys:

c
dT

dt
= P (t)− h(T − T0)− σεSd(T 4 − T 4

0 ). (7.10)

We label c the thermal capacity of the dispenser, P (t) the supplied (Joule) power, Sd the
dispenser total surface, ε its emissivity and σ the Stefan-Boltzmann constant. Our measure-
ments give c = 0.089 J K−1.

Conductive cooling time The conductance h for a bar of section S, length L and ther-
mal conductivity k reads h = kS/L. In our case the relevant length L is half the length of the
dispenser, and S the contact surface with the copper wire. With k = 15 W m−1 K−1 (NiChrome
alloy), L = 5 mm, S = 0.1 mm2, we estimate the 1/e cooling time by pure conduction to be
∼ 300 s.

Radiative cooling time With T (0) = 700 K and ε = 1 we estimate the 1/e cooling time for
pure radiation to be 45 s. This confirms that the dispenser cooling is dominated by radiation
losses [99].
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We conclude from this qualitative analysis that an increase of the contact surface S by a
factor > 10 will reduce the cooling time of the dispenser.

Source design

Figure 7.4: Copper heat sink designed to fasten the dispenser thermal dynamics. (a) Picture of the

copper mount. It is used for both cooling and electrically contacting the dispenser. On this picture we

can see a thermocouple that was glued onto the dispenser (white spot and thin wires): it was not present

under vacuum. 6 screws ensure squeezing of the dispenser against the copper. (b) Scheme of the section

along AA’. The dispenser is sketched in light grey, the screws in darker grey and the copper in orange.

We have designed a copper heat sink to increase the contact surface between the dispenser
and the copper (figure 7.4). The heat sink consists of two 20 cm copper rods (see figure 7.2).
One of them is attached to a home-made copper flange which is also the vacuum seal for the
electrical feedthrough. In this configuration the vacuum body is in good thermal contact with
the copper and plays the role of a thermal reservoir. The second rod is connected to a pin from
the electrical feedthrough.

Source turn-off time In the first experiment we turned off the MOT coils and applied short
current pulses to the dispenser. The photodiode delivers a signal directly proportional to the
fluorescence of the 87Rb atoms in the cell. For 1 s pulses, we found that the rubidium emission
threshold lies at around 18 A. Figure 7.5 shows the fluorescence signal for a pulse of 20.2 A.
After the current pulse the rubidium density in the cell decays exponentially with the time
constant τ = 112 ms. This time is shorter by a factor > 20 than the values reported for bare
dispensers [107, 106]. This result opens the way to fast modulation of the rubidium pressure
in a vacuum cell.

7.3.2 MOT loading by a pulse

In the second experiment we turned on the MOT coils at the same time as the current pulse
(figure 7.6.a). The MOT is loaded in ∼ 1.2 s, a time that includes the dead time constituted
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Figure 7.5: Fluorescence signal of the 87Rb vapor when driving the source with current pulses of 20.2 A

and 1 s. The data are averaged over 29 shots. We fit the 87Rb decay with the function A+Be−t/τ and

find τ = 112 ms.
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Figure 7.6: (a) Fluorescence signal from the MOT when driving the source with current pulses of 20.2 A

and 1 s. The data are averaged over 10 shots. On the same graph we present the density peak from 7.5.

(b) Number of atoms loaded in the MOT as a function of the dispenser current for 1 s pulses. We

demonstrate loading of > 2.5× 107 atoms into the MOT over approximately 1.2 s (including the pulse

duration).

by the current pulse. Most of the loading happens within 0.5 s.

When increasing the current in the dispenser we observe that the number of atoms in the
MOT increases, meaning that the MOT saturation has not yet been reached. We demonstrate
loading of > 2.5× 107 atoms into the MOT over approximately 1.2 s.
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7.3.3 Sensitive measurement of the pressure decay
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Figure 7.7: (a) MOT loading curve by a 87Rb pulse with a MOT delay 0.19 s. The MOT delay is

defined as the time between the end of the current pulse and the start of the magnetic field. (b) Initial

MOT loading rate as a function of the MOT delay. This is the direct image of the 87Rb density in the

cell. The density decays to a constant value nb. An exponential fit with the decay time τ = 108 ms,

in agreement with 112 ms reported above. Inset: on longer term nb is not constant and decays. This

phenomenon is further analyzed in the next section.

The photodiode is not sensitive to low 87Rb densities. The MOT gives more sensitive mea-
surements of the density. As stressed previously, the MOT initial loading rate is proportional
to the 87Rb density in the cell.

We repeated the last experiment with a variable delay ∆tB between the end of the cur-
rent pulse and the time that the magnetic field is turned on (∆tB = −1 s in figure 7.6.a).
At the end of each shot, the magnetic field was turned off for 0.3 s in order to allow the trap
to be emptied. For each shot we extract the initial slope of a MOT loading curve by a linear fit.

Short term The results of this experiment are shown in figure 7.7.b. For the short term
(∆tB < 2 s) we fit the data with the function nb + Be−t/τ and find τ = 108 ms, this is in
agreement with the value of 112 ms reported above.

Long term On the long term (inset of figure 7.7.b) we observe that the floor nb is indeed
not constant but decays on the time scale ∼ 100 s. We explain the existence of this floor by the
slow desorption of 87Rb atoms from the surfaces. This is discussed further in the next sections.
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7.3.4 Rate equations for the adsorption/desorption dynamics

The adsorption and desorption of 87Rb atoms from the inner walls of the cell play a dom-
inant role. Here we introduce a model following the approach of [113] that reports a study of
the adsorption/desorption dynamics of rubidium atoms on a gold surface.

Model The adsorption phenomenon is characterized by a rate Ca and the desorption by a
rate Cd. The ion pump evacuates atoms from the cell with the rate Cp. We call Nv(t) the
number of atoms in the vapor phase and Na(t) the number of atoms adsorbed on the surface.
We also introduce the production rate Rs(t) equal to the number of 87Rb emitted by the source
per second.

In this approach the number of adsorbed atoms obeys:

dNa

dt
= CaNv − CdNa. (7.11)

The number of atoms in the vapor phase follows:

dNv

dt
= −CaNv + CdNa − CpNv +Rs. (7.12)

We now give estimations for the three independent parameters of our model. For this we
will refer to another fast source involving a high-power laser diode focused onto the dispenser
active powder (see section 7.4.3). This source will be introduced later in this chapter.

Estimation of the pumping constant We compute the pumping speed at the cell us-
ing the conventional formulae: after multiplication by the cell volume we find Cp = 15 s−1

(1/Cp = 66 ms).

Estimation of the adsorption probability The adsorption constant is related to the
sticking probability p0

Ca =
vSp0

4V
, (7.13)

with V and S the volume and internal surface of the cell and v the mean velocity of the
87Rb atoms.

On the short term, the 87Rb density decay is governed by the smallest of Ca, Cp and 1/τs
(τs is the source turn-off time). The idea for measuring Ca is to use a very fast atom source,
for which the 87Rb density decay would be dominated by the adsorption process. By consider-
ing our fastest source, obtained by focusing a powerful laser directly onto the dispenser active
power, we obtain a lower bound for Ca. From the measured pressure decay time of 9 ms we
infer Ca > 111 s−1 and p0 > 0.02.
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Estimation of the desorption constant Desorption is the slowest process. By solving
equations 7.11 and 7.14 for R = 0 and Cd � Ca, Cp one shows that at times t � 1/Ca, 1/Cp
the number of atoms in the cell evolves as:

Nv(t) ∝ e−Ct, (7.14)

with C = CdCp/(Ca + Cp). The situation R = 0 is realized by turning off the source and
observing the long-term pressure decay in the cell. Figure 7.8 shows the evolution of the MOT
loading rate in time after the source was turned off. The decay observed is not exponential,
which indicates that our model for desorption is too naive. Nevertheless, this data gives the
timescale on which the base pressure in the cell responds to a change of the source parameters:
∼ 200 s (1/e time).
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Figure 7.8: Evolution of the MOT loading rate (∝ p87Rb) in time. The source was emitting over a

number of hours and turned off at t = 0. The source used here is the laser-base fast source but similar

results were obtained with the current-driven dispenser on a copper sink. The pressure decay is not

exponential, which shows that our adsorption/desorption model is too simple. Nevertheless, this data

gives the timescale on which the base pressure in the cell responds to a change of the source parameters:

∼ 200 s (1/e time).

Vacuum system curing It is well known that a freshly baked vacuum system in which an
alkali is introduced undergoes curing during a period of several weeks [114]. This transitory
regime can be interpreted as the time taken for the atoms to form (on the walls) the first
adsorption layer, which is tightly bound and does not desorb. All the experiments presented
in this chapter were carried out long after the system had cured (i.e. after several months of
operation).

7.3.5 Long term evolution of the pressure

We are now equipped to study the long-term behavior of the current-driven dispenser on a
copper sink.
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Time to steady-state

In the first experiment we measured the time taken for the system to reach its steady-state
whilst maintaining the bottom copper flange at a temperature of 15 ˚ using water flow. Current
pulses were applied to the dispenser every T = 5 s. Each pulse loaded atoms into the MOT,
and the trap was emptied at each cycle by turning off the magnetic field. Every Np = 150
pulses we stopped the source for Tcm = 60 s and recorded a MOT background loading in order
to monitor the pressure in the cell. We call this a check MOT. The sequence was repeated
over several hours until the steady-state was reached. By choosing Tcm � NpT we ensured
that the system’s behavior is similar to that of a continuously pulsed dispenser (where Tcm = 0).

Figure 7.9 shows typical behavior. The steady-state is reached after ∼ 6 h. The transitory
regime is not a simple exponential growth, showing evidence for a process more complex than
a simple thermal equilibrium. We interpret this shape and especially the “bump” observed at
∼ 1.5 h as being caused by atoms desorbing from the cell walls during the system heating.

The second observation we make is that, in the steady-state, the values of the total pressure
and of the 87Rb pressure are higher than in the initial state. This is discussed further in the
next part.

Limits to modulation imposed by atom desorption

In order to better understand the existence of a slowly decaying base pressure we repeated
the previous experiment for various current pulse amplitudes. For each setting we waited until
the steady-state was reached and recorded the parameters. Figure 7.10 summarizes the data.
They are plotted as a function of the number of atoms loaded by a pulse in the MOT NMOT,stat,
which is an increasing function of the mean number of atoms released by the source per pulse,
〈RS〉. The main observation is that both the 87Rb and the total pressure increase with the
mean number of atoms released by the source.

Modulation factor We also plot the modulation factor, defined as:

η =
NMOT,stat

RbkgT
, (7.15)

where Rbkg is the loading rate in absence of pulse (from background), T , the pulse dura-
tion and, NMOT,stat, the number of atoms loaded per pulse in the MOT. From the adsorp-
tion/desorption model we expect Rbkg to be proportional to the mean atom release rate of
the source 〈RS〉 (since the steady-state number of atoms in the vapor phase reads Nv,stat =
〈RS〉/Cp). From the dependence of η on NMOT,stat we conclude that either NMOT,stat, Rbkg or
both are not proportional to 〈RS〉.

Composition of the background gas It would be interesting to know whether the back-
ground gas is predominantly composed of rubidium or other gases. In the case of dominance
by other gases, work on the source purity could further push the modulation limit. In the
current system, however, it impossible for us to give a precise estimation of the background
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Figure 7.9: System evolution to steady-state. We applied 1 s current pulses every T = 5 s. Each pulse

loads atoms into the MOT. The trap was emptied at the end of each cycle. Every Np = 150 pulses we

recorded “check MOT” over 60 s to monitor the pressure in the cell. The system takes ∼ 6 h to reach its

steady-state. The transitory regime has an unusual “bump” shape that we interpret as being caused by

atoms desorbing from the heating surfaces.

gas composition.

Origin of the background gas Thus, we are confident that the background gas originates
from atom desorption from the walls. There are two possible explanations for the origin of these
atoms: (1) they are atoms that were stuck on the walls initially. As the surface temperature
rises the desorption rate of these atoms increases and so does the background pressure; (2)
they are atoms that were not initially present on the walls. They were produced by the source
and adsorbed on the walls earlier. We show in section 7.4.3 evidence for the predominance
of phenomenon (2). This is obtained by considering a laser-based source of rubidium, which
dissipates considerably less power to the system in the form of heat.
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Figure 7.10: Evolution of the steady-state parameters as a function of the number of atoms loaded

per pulse, NMOT,stat, which is a measurement of the mean release rate of the source, 〈RS〉. In these

experiments the timings were all identical and the source release was tuned by the pulse current amplitude.

(a) Background-limited lifetime. (b) MOT loading rate from background. (c) Modulation factor. As the

production rate of atoms in the cell increases both the total pressure and the 87Rb pressure in the cell

increase. We interpret this dependence as being mediated by the atom desorption from the cell walls.

The fact that the modulation factor depends on NMOT,stat indicates that either NMOT,stat, Rbkg or both

are not proportional to 〈RS〉.

7.4 Other fast sources

7.4.1 Local heating with a laser

Motivations

A second option for reducing the source turn-off time is through local heating: the less
energy brought to the system, the shorter the recovery time. [115] reports on heating of a
rubidium dispenser using a Nd:YAG laser focused on 35 µm. After switching off the laser,
the authors observed pressure decay times < 10 ms. The authors of the study note that after
working on the same spot for several weeks, a decrease of 10 %to20 % of the MOT atom number
was observed. This was attributed to the depletion of the local rubidium concentration in the
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dispenser. However, this experiment did not further investigate the potential of laser heating
for fast pressure modulation.

A systematic study of a pulsed, laser-heated dispenser had to be carried out. To do so we
installed a 10 W, laser diode emitting at 915± 10 nm 1, focused on the dispenser. A special
feature of our laser diode is the possibility of ”hard-pulsing”, that is to say, the laser diode
switching at ∼ 1 Hz rates, leading to high thermal stress. We estimated the laser spot size to
∼ 67 µm.

This laser has been used to activate two different dispensers: a commercial dispenser and
an open dispenser that gives direct access to the active power inside it.

7.4.2 Laser heating of a commercial Dispenser

The heating laser was focused onto a commercial dispenser. Even after isolating the detec-
tion photodiode with a narrow band filter at 780 nm, a significant amount of heating light was
reaching the photodiode. The source characterization involved measuring reference signals and
subtracting them in order to obtain the 87Rb contribution only.

Short-term Figure 7.11 shows a measurement of the rubidium density during a laser pulse.
We observe that the rubidium decay after the heating pulse can be fitted with a double expo-
nential function, yielding the two time constants of 9 ms and 70 ms.

Source release It appeared that this source gives rather modest release, even at full power
4 s are needed to provide 107atoms in the trap. Due to this unfavorable property the long-term
behavior of the source has not been investigated any further.

7.4.3 Laser heating of the dispenser active powder

In the previous configuration most of the laser light is reflected by the dispenser. Most
of the energy absorbed by the dispenser is wasted in heating the NiChrome shell rather than
the active powder. We constructed a new source with direct optical access to the power by
removing the upper half of the NiChrome shell of a commercial dispenser (figure 7.12.a).

Short term Figure 7.12.b shows a measurement of the source dynamics, carried out in the
same way as explained above. Very short turn on times in the order of ∼ 100 ms could be
achieved. The source turn-off follows a double-exponential decay with two time constants of
11 ms and 90 ms.

1. 10W 9xxnm Uncooled Multimode Laser Diode Module, Ref. BMU10A-915-01-R (Oclaro).
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Figure 7.11: Speed of the the laser-heated dispenser. The heating laser light is detected by the photodiode.

The 87Rb fluorescence is obtained by subtracting the heating laser signal. The 87Rb density decay can be

fitted with a double-exponential of time constants 9 ms and 70 ms.
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Figure 7.12: (a) Picture of the open-dispenser obtained by removing the upper half of the central part

of the NiChrome shell. (b) Source speed. A double-exponential fit gives the time constants 11 ms and

90 ms. (c) In the long term we observe that the rubidium release tends to decrease, which we attribute to

the local depletion of the source. We observe a clear correlation between NMOT and the pressures. This

indicates unambiguously that the background gas is composed of desorbing atoms that have been emitted

by the source, confirming the statement made in section 7.3.5.

Long term In the long term this source shows a depletion behavior which we attribute to
the local reduction in rubidium (figure 7.12.c). It also exhibits random spikes that might be
caused by fluctuations of the laser position. This is a disadvantage of local heating. We observe
a clear correlation between NMOT and the pressures. This indicates unambiguously that the
background gas is composed of desorbing atoms that have been emitted by the source, con-
firming the statement made in section 7.3.5.



122 Chapter 7. Fast alkali pressure modulation

7.4.4 Light-induced atom desorption
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 (a)  UV Pulse
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Figure 7.13: (a) Rubidium pulse obtained when applying a UV pulse on the cell. The decay can be

fitted with a double-exponential of time constants 31(2) ms and 0.7(1) s. The reasons for this behaviour

are not understood. (b) Amplitude of the 87Rb signal in time when applying repeated UV pulses. The

rubidium release decays rapidly with the number of pulses, showing that, on its own, LIAD is a poor

atom source in our geometry.

Light-induced atom desorption has been demonstrated with rubidium [116] and sodium,
[117]. As previously stressed LIAD behavior is known to depend, amongst other things, on
the cell geometry and nature. In the glass cells used in our group LIAD is known to give
poor results. Atom vapor production reduces significantly after a few desorption pulses, which
prevents it from being a reproducible atom source. However, as we will show here, it can be
used as a complementary source. In particular, LIAD can help to push the limit to modulation
imposed by the atom desorption.

Figure 7.13.a shows the behavior of the rubidium density in the cell during application of
a UV light pulse. The density decay shape consists of a double exponential of time constants
32(2) s−1 and 1.3(1) s−1, this is not yet understood. On figure 7.13.b we show how the LIAD
release efficiency decreases with the number of pulses applied. We understand this behavior as
the atoms in vapor phase being pumped away from the cell (the pumping time is estimated to
67 ms).

Table 7.1 compares two experiments carried out with a laser-based atom source. In the first
experiment no LIAD was applied. In the second experiment LIAD was applied during the laser
pulse. The comparison shows that for an identical number of atoms trapped in the MOT the
background pressure is lower in the second experiment. This observation is consistent with the
fact that the background gas originates from atom desorption: the application of LIAD cleans
the surfaces at the same time as it increases the rubidium pressure in the cell. Thus, LIAD
can be used as a complementary source.
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Here we would like to point out that UV light does not desorb only rubidium atoms, which
may constitute a limit to the amount of UV light that is used for assisting the main source.
This effect should be reduced by preparing cleaner vacuum systems: applying UV light during
the bakeout procedure may be one way to reduce the effect.

Without LIAD With LIAD

Atom number loaded per pulse 1.6× 106 1.6× 106

Lifetime (s) 7.4 8.5

Loading rate from background (at/s) 1.0× 106 0.66× 106

Modulation factor 3.2 4.8

Table 7.1: Comparison of two experiments carried out with 0.5 s pulses of heating laser onto the active

powder. In the second experiment only, UV light was added during the laser pulses. We compare the ex-

periments at a point where the number of atoms loaded in the MOT after the pulse are equal. We observe

that LIAD enables us to increase the modulation factor. UV pulses can be used as a complementary

source: they desorb some of the adsorbed atoms, allowing for a lower background pressure.

7.4.5 Reduced thermal mass dispenser

At this point our conclusions can be summarized as follows: laser-based sources are fast but
not reproducible on the long term; on its own, LIAD is not efficient in our cells; the current-
driven dispenser is fast and reproducible but suffers from the long time needed to reach the
steady-state. It also requires a considerable amount of power (typically 40 W). A way to reduce
the two last effects is to reduce the dispenser thermal mass.

Attempts During close inspection of commercial dispensers one realizes that most of their
heat capacity arises from the NiChrome shell. We have made two attempts to reduced the
amount of NiChrome involved in the dispenser: one is the open dispenser presented in section
7.4.3. The second one is a home-made dispenser: this was constructed by placing the active
powder inside a 25 µm thin NiChrome envelope. With these two sources we have observed that
the source turn-off time was reaching a rather high steady-state value of ∼ 600 ms, making
them too slow to modulate the pressure. Our understanding is that this behavior is caused
by poor thermal contact within the active powder itself and between the active power and
the NiChrome shell. In fact, in these two configurations the powder was simply placed and
manually squeezed into its shell, consequently it does not reach the compactness of commercial
dispensers.

Proposal for a new fast source These considerations lead us to propose the following
design for a low-thermal mass, current driven atom source. It involves a combination of a thin
NiChrome layer, a copper heat sink and the possibility of mechanically maintaining the powder
against the NiChrome with a system of screws. With this design it may be that the thermal
conductance between the dispenser and the heat sink becomes too high. This could be adjusted
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by digging stripes in the copper holders (see figure 7.14).

Figure 7.14: Proposal for a new low-thermal source. It involves a 25 µm thin NiChrome envelope

where the active powder sits. The dispenser is squeezed by two screws between two pieces of copper.

The thermal conductance can be adjusted by digging stripes into the copper pieces as sketched on the

left-hand-side diagram. This source should allow us to perform fast modulation with good reproducibility

whilst requiring lower activation power than the commercial dispenser on copper.

7.5 Conclusions and perspectives

In conclusion we have studied a large variety of sources for achieving rubidium pressure mo-
dulation on the sub-second timescale in a vacuum cell. The commercial dispenser on copper,
the laser-heated dispenser and the laser-heated active powder are all suitable sources for this
task. Our attempts towards a reduced-thermal mass dispenser were unsuccessful regarding the
source speed. Besides the source speed, reproducibility is an important criteria of choice. Only
the commercial dispenser on copper fulfills the latter criteria. Laser-based sources appeared to
suffer from either a poor rubidium release or a fast depletion of the powder concentration in
rubidium.

We have studied in detail the long-term behavior of the commercial dispenser on a copper
heat sink and concluded that a limit to modulation is set by the atoms slowly desorbing from
the cell walls and contributing to the background pressure. We have evidence to suggest that
these atoms originate predominantly from the source. We have also shown that LIAD can help
to further push the limit set by the atom desorption.

Atom adsorption on the walls explains why we are able to observe density decay times as
short as 10 ms. If there was no adsorption the density decay time would be limited by the
pumping speed created by the ion pump, giving pumping times of ∼ 67 ms. This pumping
time is, however, short enough to allow for a sub-second pressure modulation. This means that
chemical treatment of the surfaces could be performed to reduce the rubidium atoms sticking
time, with this one should be able to improve the modulation factor.

With the commercial dispenser on a copper heat sink we have demonstrated the loading of
> 2.5× 107 atoms in the MOT within 1.2 s. Our MOT volume is, however, rather small and
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the relevant parameter is the modulation factor in the steady-state, that reaches values of up
to 16. This modulation factor decreases when the mean atom release per pulse is increased.
This may be due to the release of gases other than 87Rb by the source.

A new source was proposed that would combine speed, reproducibility and lower activation
power. A smaller heat sink could be designed in order to reduce the time to thermal equilibrium.
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Conclusion

In this thesis we have presented several experiments carried out with either degenerate or
non-degenerate atoms trapped on a chip.

Degenerate gases As shown by our study, degenerate and non-degenerate clouds obey a
dramatically different physics. The first key difference is the absence of exchange collisions
in pure BECs. Exchange collisions combined to particle indistinguishability are the driving
mechanism of the identical spin rotation effect, which leads to dephasing times on the order
of a minute. With such incredibly long dephasing times an atomic clock with a stability be-
low 10−13/

√
τ becomes realistic, surpassing the initially anticipated performances. Conversely,

interactions dominate the BEC physics. As a result of the difference in scattering length be-
tween the two clock states, a state-dependent spatial dynamics occurs. This dynamics affects
both the overlap and the relative phase of the two states’ wavefunction, which translates into
a modulation of the fringe contrast. We note that in the case of BECs it is not possible to
discriminate between the role of the phase and the role of the wavefunction overlap in the
interference term. The two effects drive each other. However, the accurate description of the
Ramsey interferometer must be treated with the phase state formalism. In the case of BECs,
as the evolution hamiltonian depends on the number of atoms in each state, a deformation
of the collective spin state occurs. Strongly correlated systems, BECs create naturally spin-
squeezed states. Such natural spin-squeezed states have not yet been observed. TACC is the
ideal experiment for observing this effect given its metrological features. Another question
is the possibility of directly observing the BEC phase diffusion. In particular one should be
able to observe the phase collapse, predicted in [83]. It is a consequence of the collective spin
state being so elongated that the information on the phase is completely lost. Our results on
interfering BECs open exciting new perspectives.

Clock stability Non-degenerate gases can be interrogated for seconds. Thanks to this
property we could perform Ramsey interrogations of 5 s and demonstrate a clock stability
of 5.8× 10−13/

√
τ , integrating down to 2× 10−14. Our study shows that the experiment is

affected by shot-to-shot cloud temperature fluctuations. However, these cloud temperature
fluctuations have a negligible contribution to the best measured clock frequency stability, as it
was acquired at a field of minimum sensitivity to them. Magnetic noise appears not to be a
limiting factor to the clock performance. Rather, we suspect the existence of a shot-to-shot,
density-dependent noise on the clock states populations. This could arise from the phenomenon
of asymmetric losses, or from another process of atomic decoherence that remains to be iden-
tified.
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Atomic microwave powermeter As another application of these long dephasing times, we
have demonstrated Rabi interrogations up to 6 s. We have characterized the response of the
system over 80 dB of microwave power. The results deviate from the expected scaling at high
powers which is attributed to the atomic device. With further investigation we could determine
the reason for such a deviation, possible explanations include: a non-linear effect in the trans-
mission guide, a consequence of atomic interactions or a subtle effect from the interrogating
field inhomogeneity.

Sideband transitions The inhomogeneity of the interrogation field is a special feature of
our experiment and can be exploited to control the atoms’ external dynamics. This approach
was already used for ions trapped on a chip, although it greatly differs from our system by
the atom’s confinement. This prevents us from performing, for example, sideband cooling.
Nevertheless, we have demonstrated sideband transition with efficiency of up to 70 % and we
have also demonstrated that the transitions are driven coherently. This technique opens new
perspectives and may contribute to the demonstration of an on-chip atom interferometer.

Fast modulation We have concluded the manuscript with the investigation of fast alkali
pressure modulation and its application to high-repetition rate atom loading. Our study started
with the design of a fast atom source that enables one to modulate the rubidium pressure in a
sub-second timescale. With such a source we have determined that the current limitation to the
modulation amplitude is set by the slow desorption of atoms (stuck during the source emission)
from the cell surfaces. Sticking is a fast process and partly explains the efficient pumping of
the atoms. However, we estimate that the ion pump on its own would be sufficient to reach
sub-second modulation. We have investigated numerous fast sources and concluded that the
best compromise between long-term reproducibility and simplicity would be a reduced thermal
mass dispenser, assisted by UV desorption pulses. Such a device remains to be designed and
tested. A second research axis is the modifications of the cell surface sticking properties to
further push the limit set by desorption.

Perspectives We conclude this manuscript with an overview of future tests and experi-
ments that could be carried out on TACC. Firstly, as already stated, a more in-depth study
of the non-linear evolution of the BEC collective spin should provide exciting fundamental
results as well as, perhaps, a starting point for quantum metrology beyond the standard limit
[85]. Non-degenerate gases can also be used for quantum metrology as entanglement has been
demonstrated in coupled atom-cavity systems [118]. However, in our experiment, and in order
to take full advantage of spin-squeezed states for metrology, one would first need to reduce the
technical noise to below the standard quantum limit.



Appendix A

AC Zeeman shifts of the clock
frequency

In this appendix we compute the AC Zeeman shift of the clock frequency induced by both
the microwave and the radiofrequency photons. We use this calculation to provide a measure-
ment of the radiofrequency polarization imbalance.

Figure A.1: Energy diagram of 87Rb hyperfine structure in the presence of a quantization magnetic

field. The clock levels are displayed in orange. The full arrows sketch the two-photon transition. Dotted

arrows indicate transitions that we also take into account to compute the AC Zeeman shift. We neglect

contributions from other levels which are far detuned. For each transition we have indicated the relevant

component of the field as well as the relevant component of the transition strength 〈F ′,m′F |Ĵ|F,mF 〉
[26]. The detuning ∆ is defined as the microwave field detuning from the |F = 1,mF = −1〉 → |F =

2,mF = 0〉 transition.

Figure A.1 is a scheme of the levels involved in the AC Zeeman shift together with the
relevant components of the magnetic field and of the transition strengths 〈F ′,m′F |Ĵ|F,mF 〉.
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The microwave photon only affects the |1〉 level and via its σ+ component. The corre-
sponding freuency shift of the level reads

∆Emw,|1〉 = ~
~Ωmw

4∆0
. (A.1)

The radiofrequency photon affects both |1〉 and |2〉 = |F = 2,mF = 1〉 levels. Hav-
ing defined the detuning ∆ for the microwave photon, the detuning of the radiofrequency
photon from the intermediate level is −∆. If we express the RF magnetic field ~B(t) =∑
{q=−,0,+}Bq~eqe

iωt + h.c. in the
{
~e± = (~ex + ~ey)/

√
2, ~e0 = ~ez

}
basis [94] (here ~ez is the di-

rection of the quantization axis) we obtain the following expressions:

∆Erf,|1〉 = − ~
4(−∆)

(
2gJµB
~2

B−

)2

. (A.2)

and

∆Erf,|2〉 = − ~
4(−∆)

(
2gJµB
~2

B+

√
3

)2

+
~

4(−∆)

(
2gJµB
~2

B+

√
2

)2

(A.3)

Measurement of the RF polarization imbalance Here we give a measurement of the RF
polarization imbalance κ = B−/B+ as an application of the Ac Zeeman shift calculations. This
measurement is only possible because the microwave photon affects the transition exclusively
via its B+ component. ΩRF is defined by 2gJµBB+

√
3/~2. We can reformulate the net RF Ac

Zeeman shift on the clock transition as:

∆ERF,|1〉→|2〉 = ∆Erf,|2〉 −∆Erf,|1〉 =
~Ω2

RF

4∆

(
1− κ2

)
3

. (A.4)

We define α =
(
1− κ2

)
/3. It turns out that the RF AC Zeeman shift is 0 for κ = 1. This

corresponds to the field radiated by a single wire. Although only one wire is driven in the ex-
periment we have evidence to suggest that inductive RF coupling in neighboring wires modifies
the field. The chip reflective coating at 780 nm may also influence the field configuration and
lead to κ 6= 1.

The total AC Zeeman shift on the clock transition reads ∆Etot,|1〉→|2〉 = ~
4∆

(
−Ω2

mw + Ω2
rfα
)

.

If we call Pmw and Prf the MW and RF input powers respectively, we can define the proportion-
ality constants a and b by Ωmw = a

√
Pmw and Ωrf = b

√
Prf . The two-photon Rabi frequency

takes the form

Ω =
ab
√
PmwPrf

2∆
, (A.5)

and the total AC Zeeman shift on the clock transition

∆Etot,|1〉→|1〉 =
~

4∆

(
−a2Pmw + b2αPrf

)
. (A.6)

a2 and b2α can be measured by the AC Zeeman shift dependence on Pmw and Prf . ab is
given by the dependence of Ω on

√
PrfPmw (figure A.2). Using this method we estimate the

value of κ in two configurations:
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• with the RF interrogation signal plugged into the “Sc−1” chip wire: κ1 = 1.45. Here the
AC Zeeman shift produced by the RF radiation on the clock transition is negative.

• with the RF interrogation signal plugged into the “Sc+1” chip wire: κ2 = 0.63, with a
positive AC Zeeman shift produced by the RF photon.
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Figure A.2: Data used for measurement of the RF polarization imbalance κ. The RF interrogation

signal was plugged into the (a) “Sc−1” and (b) “Sc+1” chip wire. For each configuration we plot the

Rabi frequency dependence on
√
PrfPmw (blue) and the clock frequency AC Zeaamn shift dependence of

Pmw (purple) and Prf (cyan). A fit of the slopes gives κ.
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Appendix B

List of abbreviations and symbols

symbol meaning

h Planck constant
~ Reduced Planck constant
µB Bohr magneton
kB Boltzmann constant
m Mass of a 87Rb atom
BEC Bose-Einstein condensate
MOT Magneto-optical trap
RF Radiofrequency
MW Microwave
TACC Trapped Atom Clock on a Chip
ISRE Identical Spin Rotation Effect
ARP Adiabatic Rapid Passage
AOM Accousto-Optical Modulator
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Resumé Le piégeage d’atomes sur puce ouvre de nouvelles possibilités pour la métrologie
temps-fréquence et l’interférométrie atomique intégrée. L’expérience TACC (Trapped Atomic
Clock on a Chip) a pour but d’étudier le potentiel des gaz quantiques, dégénérés ou non, pour
la métrologie, et d’élaborer de nouveaux outils pour la manipulation des atomes. Elle vise
notamment la réalisation d’un étalon secondaire de fréquence avec une stabilité de quelques
10-13 à une seconde. Cette thèse s’inscrit dans ce contexte. Nous y présentons les résultats
de quelques expériences de métrologie réalisées avec des nuages thermiques ou des condensats
de Bose-Einstein. Dans un premier temps nous démontrons une stabilité de 5.8 x 10-13 à une
seconde et caractérisons les bruits techniques limitant cette stabilité. Nous présentons ensuite
une étude de la cohérence des condensats et en particulier l’effet des interactions. Les données
sont comparées à un modèle numérique. Dans un deuxième temps nous présentons quelques
outils développés pour la production et la manipulation d’atomes sur puce. Nous démontrons
d’abord la réalisation d’un puissancemètre atomique pour la micro-onde et estimons les limites
actuelles de ses performances. Nous démontrons ensuite que des champs micro-onde ayant des
gradients élevés permettent la manipulation cohérente de l’état externe des atomes. Enfin nous
présentons et caractérisons un nouveau dispositif pour la production de nuages d’atomes froids
à haute cadence consistant en la modulation rapide de la pression de rubidium dans une cellule.

Mots-Clé Horloge atomique compacte - Gaz quantiques - Condensation de Bose-Einstein -
Puce à atomes - Métrologie - Puissancemètre - Modulation rapide de la pression.

Abstract Atom trapping on chip opens new perspectives for time and frequency metrology
and integrated atom interferometry. The TACC experiment (Trapped Atomic Clock on a Chip)
was built to study the potential of degenerate and non-degenerate quantum gases for metrology
and to develop new tools for atom manipulation. One of the aims is the demonstration of a
secondary frequency standard with a stability of a few 10-13 at one second. This is the context
of this thesis. We report on several metrology experiments carried out with thermal clouds or
Bose-Einstein condensates. Firstly, we demonstrate a stability of 5.8 x 10-13 at one second and
characterize the limiting technical noise. We then present a study of the coherence of Bose-
Einstein condensates and, in particular, the effect of interactions. The data is compared with a
numerical model. Secondly, we introduce several tools for producing and manipulating atoms
on a chip. We show the realization of an atomic microwave powermeter and assess the current
limits of its performance. We then demonstrate that high-gradient microwave fields allow one
to coherently manipulate the atoms’ external motion. Finally, we present and characterize a
new device for high-repetition rate atom loading involving fast modulation of the rubidium
pressure.
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