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Introduction

Handling and processing the massive amount of 3D data has become a challenge with
countless applications, such as computer-aided design, biomedical computing, interactive
games, machine perception, robotics, etc. Geometry Processing is an area of research at
the interface between algorithmics, applied mathematics and computer science related to
the above applications, that exists since approximately 50 years. It is a large topic of
research that includes sub-areas. Below we mention a few.

Segmentation

Shape segmentation consists in, given a 3D shape, often represented as a triangle mesh,
finding a partition or decomposition of this shape into individual components. We may
want, for example, a partition into a small number of connected components that satisfy
some geometric constraints such as being flat or having a small diameter. See [84] for a
survey on shape segmentation techniques.

Remeshing

Remeshing is a classical problem in Geometry Processing, which essentially involves
finding a “better” discrete approximation of the geometry of some given 3D shape. By
“better”, one may mean that the new approximation should be given by a mesh that
should be more regular [93], should preserve sharp edges of the surface, should follow
the anisotropic curvature of the surface [6], should use a given type of polygons (such as
triangles), or should simply have a user-specified smaller (or larger) density, or connectivity
for example [93]. An important example of application is that the mesh may be optimized
so that the finite element method becomes more accurate [74].

Geometric optimization

Combinatorial optimization consists in optimizing a function under some constraints. In
most practical cases, the constraints satisfy some properties such as symmetries, and
the complexity of the problem can be reduced. Geometric optimization is a subset of
Combinatorial optimization, where the constraints are derived from a geometric setting.
See [3] for a survey.

Surface reconstruction from Point clouds

This problem consists in finding an accurate representation of some 3D shape (typically
assumed to be a surface), given a noisy point cloud approximation [37]. For example we
can be interested in removing outliers from a noisy point cloud [44,56], or reconstructing
the enclosed volume.
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Correspondences

The problem of shape correspondence (also known as “shape matching”) consists in, given
a pair of shapes, finding a “good” correspondence between them. For example we may
want the correspondence to preserve geodesic distances, or local geometric features. This
problem has received a growing interest, in part due to its wide applicability, for example
in animation, shape morphing or statistical shape modeling. See [100] for a survey on
shape correspondence.

The functional map framework, originally introduced in [69] is a recent tool that has
shown many useful properties for shape matching. This approach provides a smooth
compact representation of correspondences between shapes, and most constraints over
functional maps can be expressed as linear constraints, which allows a least squares
formulation of the problem.

Organization

In this thesis we focus on the problem of shape correspondence, specifically using functional
maps. The overall goal of the thesis is to show how the functional maps pipeline can
be improved using functional algebra. The main contribution is to improve both the
accuracy of the functional map matrix, computed using the same set of descriptors,
and the accuracy of the function transfer, computed using the same functional map
matrix. These improvements remain compatible with the classical linear formulation of
the functional maps framework.

In Chapter 1 we introduce basic notions and notations that will be used throughout
the thesis, related to continuous and discrete surfaces, the Laplace-Beltrami operator,
the problem of non-rigid shape matching, and the standard functional map computation
pipeline.

In Chapter 2 we notice that functional maps that are induced by point-to-point maps
should satisfy point-wise product preservation constraints. We apply this observation
to shape descriptors in order to improve the previous classical constraints on functional
maps. This leads to an approach that allows to extract more information from existing
constraints and results in better correspondences, particularly when the number of
independent descriptors is small.

In Chapter 3 we build on the previous remark, but this time in the situation where we
already have a functional map that was computed by an existing method. We notice that
the point-wise product preservation can also be used to extend the domain over which
the given functional map can transfer functions. We show that this allows to improve the
accuracy of function transfer.

In Chapter 4 we extend the approach proposed in Chapter 3 by noticing that instead
of using point-wise function products, the point-wise composition by any fixed operator
should also be preserved. We use a neural network that optimizes the approximation of a
given function that we want to transfer, as a point-wise function of some basis functions
that we already know how to transfer using a given functional map. We then describe
how to apply this trained network to the image of the basis functions to construct the
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image of the function that we want to transfer. We show preliminary results that suggest
that this method can lead to significant improvement for function transfer.

Main limitations:

• The proposed improvement on the functional map matrix heavily relies on the
quality of the input descriptors, and is computationally more expensive than the
previous approach.

• The proposed improvement on function transfer heavily relies on the quality of the
functional map matrix, and seem to imply natural extensions that are not so easy
to perform in practice.

As future work, we plan to use a preservation rule different from the product preservation
proposed in Chapter 2 ; extend the ideas proposed in Chapters 3 and 4 using the
composition with any smooth function (using neural networks is just one possible option)
; use a composition with a function that does not only apply point-wise as proposed in
Chapter 4, but also applies to the neighbors of each vertex for example.

Finally, in Chapter 5 we mention other topics studied during the thesis, that are
unrelated to non-rigid shape matching.

Publications This thesis is based on the following publications:

• “Informative descriptor preservation via commutativity for shape matching” [68]
(EUROGRAPHICS 2017), for Chapter 2.

• “Improved Functional Mappings via Product Preservation” [67] (EUROGRAPHICS
2018), for Chapter 3.

• “Deep Learning for Non-linear Function Approximation and Mapping” (submitted
to EUROGRAPHICS 2019), for Chapter 4.

• [23], [30], [27] for Chapter 5.





Introduction en français

La manipulation et le traitement d’énormes quantités de données en 3D est devenu un défi
ayant d’innombrables applications, telles que la conception assistée par ordinateur, le calcul
biomédical, les jeux interactifs, la perception des machines, la robotique, etc. Le traitement
de données géométrique est un sujet de recherche à l’interface entre l’algorithmique, les
mathématiques appliquées et l’informatique en lien avec les applications sus-mentionnées,
qui existe depuis une cinquantaine d’années. C’est un domaine de recherche vaste qui
inclut des sous-domaines. Ci-dessous nous en mentionnons quelques uns.

Segmentation

La segmentation de maillage consiste à, étant donnée une forme en 3D, trouver une
partition ou décomposition de la forme en composantes individuelles. On peut vouloir,
par exemple, une partition en un petit nombre de composantes connexes qui satisfont
une contrainte géométrique telle qu’être plate ou avoir un petit diamètre. Voir [84] pour
un état de l’art des techniques de segmentation de maillage.

Remaillage

Le remaillage est un problème classique en traitement de données géométrique, qui
consiste essentiellement à trouver une «meilleure» approximation discrète de la géométrie
d’une forme 3D donnée. Par «meilleure», on peut entendre que la nouvelle approximation
doit être un maillage plus régulier [93], doit préserver les arêtes saillantes de la surface,
doit coller à la courbure anisotrope de la surface [6], doit utiliser un certain type de
polygones (par exemple des triangles), ou doit simplement avoir une densité plus faible
(ou plus élevée) selon les spécifications de l’utilisateur, ou une connectivité spécifiée par
exemple [93]. Un exemple important d’application est que le maillage peut être optimisé
pour rendre la méthode des éléments finis plus précise [74].

Optimisation géométrique

L’optimisation combinatoire consiste à optimiser une fonction sous contraintes. Dans
la plupart des situations réelles, les contraintes satisfont des propriétés telles que des
symétries, et la complexité du problème peut être réduite. L’optimisation géométrique
est une branche de l’optimisation combinatoire, qui correspond au cas où les contraintes
sont issues d’une situation géométrique. Voir [3] pour un état de l’art.

Reconstruction de surface à partir d’un nuage de points

Ce problème consiste à trouver une représentation exacte d’une forme 3D (typiquement
une surface), étant donnée une approximation bruitée par un nuage de points [37].
Par exemple on peut vouloir retirer les intrus d’un nuage de points bruité [44, 56], ou
reconstruire le volume englobé.
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Correspondances

Le problème de correspondances de forme consiste à, étant donnée une paire de formes,
trouver une «bonne» correspondance entre elles. Par exemple on peut vouloir que la
correspondance préserve les distances géodésiques, ou des caractéristiques locales. Ce
problème a attiré un intérêt croissant, en partie dû à ses nombreuses applications, par
exemple en animation, interpolation de formes ou modélisation statistique de formes.
Voir [100] pour un état de l’art sur les correspondances de formes.

Le cadre des correspondances fonctionnelles, introduit à l’origine dans [69] est un
outil récent qui a dévoilé de nombreuses propriétés utiles pour les correspondances de
formes. Cette approche donne une représentation régulière et compacte du problème
de correspondances entre formes, et la plupart des contraintes sur les correspondances
fonctionnelles peuvent s’exprimer sous forme de contraintes linéaires ce qui permet une
formulation du problème par moindres carrés.

Organisation

Dans cette thèse on se concentre sur le problème de correspondance de forme, spécifique-
ment en utilisant des correspondances fonctionnelles. L’objectif général de la thèse est
de montrer comment le processus de calcul des correspondances fonctionnelles peut être
amélioré en utilisant l’algèbre de fonctions. La contribution principale est l’amélioration
de la précision du calcul de la matrice des correspondances fonctionnelles, calculée en util-
isant le même ensemble de descripteurs, et la précision du transfert de fonctions, calculé
en utilisant la même matrice de correspondances fonctionnelles. Ces améliorations restent
compatibles avec la formulation linéaire classique des correspondances fonctionnelles.

Au Chapitre 1 on introduit les notions et notations de base qui seront utilisées le long
de la thèse, liées aux surfaces continues ou discrètes, l’opérateur de Laplace-Beltrami,
le problème de correspondance de forme non rigide, et le processus standard du calcul
d’une correspondance fonctionnelle.

Au Chapitre 2 on remarque que les correspondances fonctionnelles induites par des
correspondances point à point doivent satisfaire des contraintes de préservation de produits
point par point. On applique cette observation à des descripteurs de formes pour améliorer
la formulation classique des contraintes sur les correspondances fonctionnelles. Cela mène
à une approche qui permet d’extraire plus d’information des contraintes existantes et donne
de meilleures correspondances, surtout lorsqu’il y a peu de descripteurs indépendants.

Au Chapitre 3 on s’appuie sur la remarque précédente, mais cette fois dans le cas
où on a déjà obtenu une correspondance fonctionnelle par une méthode existante. On
remarque que la préservation du produit point par point peut aussi être utilisée pour
étendre le domaine sur lequel la correspondance fonctionnelle peut transférer des fonctions.
On montre que cela permet d’améliorer la précision du transfert de fonction.

Au Chapitre 4 on étend l’approche proposée au Chapitre 3 en remarquant qu’au
lieu d’utiliser le produit point par point de fonctions, la composition par n’importe
quel opérateur fixé doit aussi être préservée. On utilise un réseau de neurones pour
optimiser l’approximation d’une fonction donnée qu’on veut transférer, comme fonction
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point par point de fonctions d’une base précalculée, qu’on sait déjà transférer à l’aide de
la correspondance fonctionnelle. Puis on décrit comment évaluer ce réseau de neurones
entrainé sur l’image des fonctions de la base afin de construire l’image de la fonction que
l’on souhaite transférer. On montre des résultats préliminaires qui suggèrent que cette
méthode peut apporter des améliorations significatives au transfert de fonctions.

Limites principales :

• L’amélioration proposée sur la matrice des correspondances fonctionnelles dépend
beaucoup de la qualité des descripteurs utilisés, et repose sur des calculs plus lourds
que l’approche précédente.

• L’amélioration proposée sur le transfert de fonctions dépend beaucoup de la qualité
de la matrice de correspondance fonctionnelle, et semble naturellement impliquer
des extensions qui ne sont pas si faciles à réaliser en pratique.

Pour poursuivre, noux prévoyons d’utiliser une règle différente de la préservation du
produit proposée au Chapitre 2; étendre les idées proposées aux Chapitres 3 et 4 en
utilisant la composition avec n’importe quelle fonction régulière (l’utilisation de réseaux
de neurones n’est qu’une option possible) ; utiliser la composition avec une fonction qui
ne s’applique pas que point par point tel que proposé au Chapitre 4, mais aussi aux
voisins de chaque sommet par exemple.

Finalement, au Chapitre 5 on aborde les autres sujets étudiés lors de la thèse, qui
n’ont aucun lien avec les correspondances non rigides.

Publications Cette thèse est basée sur les publications suivantes :

• “Informative descriptor preservation via commutativity for shape matching” [68]
(EUROGRAPHICS 2017), pour le Chapitre 2.

• “Improved Functional Mappings via Product Preservation” [67] (EUROGRAPHICS
2018), pour le Chapitre 3.

• “Deep Learning for Non-linear Function Approximation and Mapping” (soumis à
EUROGRAPHICS 2019), pour le Chapitre 4.

• [23], [30], [27] pour le Chapitre 5.
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Chapter 1

Introduction to non-rigid shape
matching

Non-rigid shape matching is an important task in Geometry Processing, with a range
of applications that includes deformation transfer [91], statistical shape modelling [35]
and segmentation transfer among others. It consists in, given two shapes M and N ,
finding a good correspondence between them. We assume thatM and N are represented
as surfaces in R3. Each shape is discretized using a triangle mesh. The shapes may
represent the same animal / human / item in a different position, or they may represent
two different objects that share some similar underlying structure. In any case, there
should be a natural correspondence between the two surfaces that should preserve some
shared structure. In the case of the same human in different positions, the “natural”
correspondence would match the same parts of the body together, i.e. left hand to left
hand, etc. Such a correspondence can be naturally discretized as a function defined from
the finite set of vertices of N , VN to the finite set of vertices ofM, VM.

1.1 Surface

1.1.1 Continuous setting

In the continuous setting, a surfaceM will be represented as a 2D manifold embedded in
3D. This means thatM is a subset of R3 such that for each x ∈M there exists an open
subset ofM, Ux, and a smooth map mx : Ux → R2 such that mx is a diffeomorphism
between Ux and an open set of R2 [34]. The degree of smoothness that applies to all the
maps mx and m−1x defines the degree of smoothness of the manifoldM. For simplicity, we
typically assume smooth manifolds, for which all diffeomorphisms involved are infinitely
differentiable.

1.1.2 Discrete setting

In the discrete setting a continuous surface may be approximated using a point cloud,
where each point is represented using three floating point coordinates in practice. In
addition the point cloud is often converted to a triangular mesh, see for example [79] for a
survey on algorithms that perform this conversion. In order to obtain a triangular mesh,
the point cloud should be equipped with a set of triangles that covers the point cloud.
Each endpoint of a triangle has to be a point of the point cloud, and a good triangulation
should be such that the triangles follow the original surface. For instance, the normal of
these triangles should closely match the normals of the represented surface at points that
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Figure 1.1 – Area associated to the vertex vi
shown in red

are near the triangle. A triangulation will
be stored as a finite set of triplets of in-
tegers (i, j, k), where i, j and k are the
respective indices of the points in the point
cloud that correspond to the endpoints of
the triangle.

In addition we will often assume that
our triangle meshes should be connected,
manifold and possibly without boundary.
For the triangle mesh to be manifold, all
edges should be adjacent to at most two
triangles (exactly two if we do not allow
boundaries). For each vertex we should
be able to order its adjacent triangles in
a cycle of triangles that share exactly one
edge, and all triangles adjacent to a given
vertex should not intersect anywhere else
than at the shared edge, as discussed in
[16]. In my thesis each surface will be
represented as a triangle mesh, I will not work directly on point clouds.

1.1.3 Discretization of a function and its gradient

A real-valued function f defined on a surfaceM will be discretized by the vector of its
values on the vertices of the triangle mesh. For example if f :M→ R is a real-valued
function, it will be discretized as a vector f = (f1, . . . , fnM) ∈ RnM , where nM is the
number of vertices ofM.

In order to discretize the gradient ∇f of a real-valued function f : M → R, we
assume that the function is piece-wise linear on each triangle. This means that on a
vertex v situated in the triangle (vi, vj , vk), f takes the value f(v) = αifi + αjfj + αkfk
where αi, αj , αk ∈ [0, 1] are the barycentric coordinates of v, such that αi + αj + αk = 1
and v = αivi + αjvj + αkvk. In the triangle (vi, vj , vk), the gradient of f will take the
constant value

∇f =
1

2A(vi, vj , vk)

(
fi(vk − vj)⊥ + fj(vi − vk)⊥ + fk(vj − vi)⊥

)
where ⊥ means that we consider the vector rotated by π

2 in the plane of the triangle
(vi, vj , vk), and A(vi, vj , vk) is the area of the triangle (vi, vj , vk). We can then obtain the
formula of ∇f by linearity, combining linear functions that take the value 1 on only one
vertex among vi, vj , vk, value 0 on the two other vertices. See a complete proof in [16].

1.1.4 Area weights

In the discrete model, we need to associate area weights to each unit, in our case to each
vertex. We will denote the area weights associated to vertex vi by Avi or simply Ai. To
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all the vertices that are within the area range of each point, we will associate the behavior
of the point. For example we could discretize the integral of a function by the sum of the
discretized function weighted by the area weights:

∫
x∈M f(x)dx ≈∑nM

i=1 fiAi.
For each vertex vi, this area weight is defined as the area enclosed by a polygon

delimited by lines that join each median of edges adjacent to vi to each barycenter of
an adjacent triangle as shown on Figure 1.1. Its value is 1

3 of the sum of the areas
of neighboring triangles: the area of each triangle is equally split between its adjacent
vertices.

1.2 Laplace-Beltrami operator

1.2.1 Continuous setting

In the continuous setting, the Laplace-Beltrami operator is a linear operator that takes as
input a smooth function f on a surfaceM, f :M→ R, and produces as output another
function ∆f :M→ R such that ∆f = −div (∇f). We remind that these operators are
defined on R2 by:

• ∇ :
(
R2 → R

)
→
(
R2 → R2

)
: ∀f : R2 → R,∇f(x, y) =

(
∂f
∂x ,

∂f
∂y

)
• div :

(
R2 → R2

)
→
(
R2 → R

)
: ∀F = (F1,F2) : R2 → R2, divF(x, y) = ∂F1

∂x + ∂F2
∂y .

• ∆ :
(
R2 → R

)
→
(
R2 → R

)
: ∀f : R2 → R,∆f(x, y) = −∂2f

∂x2
− ∂2f

∂y2

We can see that ∆ = −div ◦ ∇, and by computing ∇, div, and ∆ in a rotated basis
we can show that they do not depend on the choice of the orthonormal basis. This is
still true on a general surfaceM. We refer the reader to [64] for the definition of these
operators on a general surface.

The Laplace-Beltrami operator of a constant function is 0 If f : M → R is
constant, then ∆f = 0.

The Laplace-Beltrami operator is symmetric If f (1), f (2) : M → R are smooth
functions that vanish on the boundary ofM, then∫

x∈M
f (1)(x)∆f (2)(x)dx =

∫
x∈M

∆f (1)(x)f (2)(x)dx

The Laplace-Beltrami operator is locally supported If x ∈M, f :M→ R is a
smooth function, then for any x′ 6= x, there exists a neighborhood N(x) of x such that
x′ 6∈ N(x) and ∆f(x) is independent from the values of f outside of N(x).

The Laplace-Beltrami operator has a linear precision If M is included in a
Euclidean plane and f : (x, y, z)→ f0 + f1x+ f2y + f3z for some f0, f1, f2, f3 ∈ R is a
linear function, then ∆f = 0.
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The Laplace-Beltrami operator satisfies the maximum principle If ∆f = 0 in
the interior ofM, then f does not have any maximum in the interior ofM.

The Laplace-Beltrami operator is positive semidefinite For any f , we have∫
x∈M f(x)∆f(x)dx ≥ 0. More precisely:∫

x∈M
f(x)∆f(x)dx =

∫
x∈M

‖∇f(x)‖2dx.

It has been shown that all the discrete equivalent of the aforementioned properties
cannot be satisfied at once by any discretization [106].

The Sturm-Liouville’s decomposition In the continuous setting, the Sturm-Liouville’s
decomposition states that there is an orthonormal basis Φ1,Φ2,Φ3, . . . associated to eigen-
values 0 = λ1 ≤ λ2 ≤ λ3 ≤ . . .→∞ such that any function f ∈ L2(M) can be written
as a convergent series in L2(M)

f =
∞∑
i=1

fiΦi

for some coefficients fi.

The divergence theorem The divergence operator satisfies a property called the
divergence theorem (proof in [64]). For any vector valued function F and a delimited
area A included inM, this theorem states that:∫

u∈A
divF(u)du =

∫
∂A

F(u) · n(u)du

where n(u) is the outer normal, and ∂A is the boundary of the enclosed surface A.
For the discrete case we will use this divergence theorem to define our discrete

Laplace-Beltrami operator.

1.2.2 Discrete setting

We discretize the Laplace-Beltrami operator using the classical cotangent-weight scheme
[63,76]:

∆f(vi) =
1

2Ai

∑
vj∈N1(vi)

(cotαi,j + cotβi,j) (fi − fj)

where Ai is the area associated to the vertex vi, βi,j is the inner angle of the vertex vk
such that vi, vj , vk is a direct triangle and αi,j is the inner angle of the vertex vk′ such
that vi, vj , vk′ is an indirect triangle. N1(vi) is the 1 ring neighborhood around vi. See
notations on Figure 1.2.
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Figure 1.2 – notations for a triangle vi, vj ,
vk

First note that this formula defines a
discrete Laplacian ∆f from a discrete real
valued function f . This formula is linear
in f and allows us to define a sparse ma-
trix that will operate on vectors f . For
completeness of the discussion, we prove
the formula below.

For the proof, we use the divergence
theorem for a vector valued function F in
the continuous setting, which states that:∫

Ai

divF(u)du =

∫
∂Ai

F(u) · n(u)du

where n(u) is the outer normal, u repre-
sents a point on the surface Ai and ∂Ai is
the boundary of the enclosed surface Ai.

We apply it to −∇f , which is discretized as a piecewise constant vector on triangles:

Ai∆f(vi) = −
∫
∂Ai

∇f(u) · n(u)dl

Only triangles that are adjacent to vi have a non zero contribution, and using Figure 1.2,
we can see that the contribution of a direct triangle (vi, vj , vk) adjacent to vi is given by

−1

2

〈
(vj − vk)⊥|∇f

〉
= − 1

2A(vi, vj , vk)

(
fi

〈
(vj − vk)⊥|(vk − vj)⊥

〉
+ fj

〈
(vj − vk)⊥|(vi − vk)⊥

〉
+ fk

〈
(vj − vk)⊥|(vj − vi)⊥

〉)
=

1

2
((fi − fj) cot(βi,j) + (fi − fk) cot(αi,k))

where A(vi, vj , vk) denotes the area of the triangle (vi, vj , vk).
Summing over all triangles gives the cotangent formula.

The Laplace-Beltrami operator is symmetric Similarly to the continuous coun-
terpart, the discrete Laplace-Beltrami operator is symmetric. This is a consequence of
the symmetry in the coefficients: cotαi,j + cotβi,j = cotβj,i + cotαj,i

The Laplace-Beltrami operator and positive semidefiniteness By analogy to
the continuous case, we can show that for any function f : VM → R,

∑
x∈VM Axf(x)∆f(x) =∑

(x,x′) edge of M
(
cotαx,x′ + cotβx,x′

)
(f(x)− f(x′))2.

While in most practical cases
(
cotαx,x′ + cotβx,x′

)
> 0 and the discrete Laplace-

Beltrami operator is semidefinite positive, i.e.,
∑

x∈VM Axf(x)∆f(x) ≥ 0 for all f ,
this may not always be true and there are counter-examples of specific triangle mesh
configurations that lead to a failure of this property. Indeed, as mentioned above, a
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seminal result in Geometry Processing is that no discretization of the Laplace-Beltrami
operator exists that would always satisfy several basic properties of the continuous
operator in all cases [106].

In addition we can see in the equation above that in the situation where the coefficients(
cotαx,x′ + cotβx,x′

)
> 0 are positive,

∑
x∈VM Axf(x)∆f(x) = 0 if and only if f takes

constant values over all edges, i.e. if f takes constant values on all connected components.
Since we only work with connected manifolds, this means for us that the Laplace-Beltrami
operator usually has the eigenvalue 0 with multiplicity 1, associated to a constant
eigenfunction.

Whenever the discrete Laplace-Beltrami operator is positive semi-definite, and the
triangle mesh consists of a single connected component, as is most often the case in
practice, this will lead to exactly one eigenvalue equal to 0 and the associated to the
constant eigenfunction, and all other eigenvalues being positive.

Discrete basis approximation We use the analogy between the Sturm-Liouville’s
decomposition of the continuous setting and our discretization to justify that we will
compute the first few eigenfunctions of our discretized Laplacian and stack them into a
matrix ΦM. Then, for a given function f : VM → R we will project it on ΦM.

1.3 Goal

As mentionned in the previous chapter, our goal is to study problems related to finding
correspondences and relations between items in 3D. An item in 3D is represented by its
surface, that may have been scanned using recent technological tools such as Microsoft
Kinect or a CT scan. After scanning the surface we get a triangle mesh, for example
using surface reconstruction techniques mentionned above. We consider two items that
can naturally be mapped to each other. This means that each part of one item has a
meaningfully corresponding part on the other. Our main problem consists in finding, for
each vertex of one item, the best corresponding vertex on the other. For example if one
of the surface represents a sitting cat and another represents a standing cat, then a good
solution should be a correspondence that maps the tip of the left paw of the sitting cat to
the tip of the left paw of the standing cat, the nose of the sitting cat to the nose of the
standing cat, etc. We measure our error using geodesic distances: a good correspondence
will preserve geodesic distances as well as possible. Theoretically it is possible to exactly
preserve geodesic distances if and only if the shapes are isometric (we mean non-rigid
isometry). Ideally our method should be as general as possible. For example we should
also be able to find a correspondence between a cat and a dog, since both animals have
similar body parts: four legs, a head, a tail, etc. Pushing this idea further, we may want
to find (at least partial) correspondences between a cat and a human for instance.

There are multiple reasons why we may be interested in finding such a correspondence.
Shape matching has a wide range of applications ranging from shape morphing [42],
statistical shape modeling [13,35], deformation transfer [91].
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1.4 Related work

The problem of rigid shape registration consists in aligning a 3D model to another, using
a rigid motion defined by a rotation and a translation. It has been well studied, and
efficient solutions already exist. Rigid alignment is typically solved using methods like
ICP or sampling the shapes and checking the consistency of potential transforms. See [94]
for a survey on rigid shape matching.

The problem of non-rigid shape matching is harder to formulate and harder to evaluate,
one of the reasons being that it cannot be parameterized by a few parameters (a rotation
and a translation).

We look for a correspondence T between a surface N and a surface M. In the
discussion below we will interchangeably refer to the discrete or the continuous versions:
N and M represent both surfaces and triangulations. T : N → M represents both a
map between surfaces and a map VN → VM between the nN vertices of the discretized
N and the nM vertices of the discretizedM. This is because we want to develop tools
that have a well founded equivalence in the continuous setting. In order to represent the
correspondence T : VN → VM, the most natural way is to use a list of integers. The value
at position i, T (i), will be the index of the vertex of M that best corresponds to the
ith vertex of N . Most existing methods formulate the problem using this combinatorial
representation of point-to-point correspondences [20,103]. Using this list T as variable,
we often get a huge search space that leads to non-convex problems that are hard to solve.
Existing methods use hierarchical matching, probabilistic matching, or a relaxation [18].

Below we discuss the works that are most closely related to ours, especially those
based on the functional map framework.

Most early methods designed to find correspondences between shapes undergoing
non-rigid transformation have concentrated on establishing mappings that minimize
some distortion energy, such as conformality (locally angle preservation) [5, 43, 50], or
approximate intrinsic isometries (preserving geodesic distances) (e.g., [18,71,96] among
many others). Both the theoretical formalism and the computational methods associated
with these approaches are mature and can often result in high-quality mappings whenever
the deformations follow the prescribed models. However, such methods often lack
flexibility, making it hard to introduce additional information, in the form of expected
geometric or appearance properties (descriptors) that should be preserved by the map, and
are badly-suited in the presence of more general non-rigid deformations. Another, more
recent, set of techniques has been proposed to obtain soft, or approximate correspondences
rather than point-to-point maps [69,89]. This includes both maps between probability
densities [62,89,90] and region-level maps [21,31], which can be used in a multi-scale way
to obtain accurate (sometimes even pointwise) correspondences. These techniques are
often more robust in the presence of geometric and structural variability, and in many
cases allow to inject domain-specific knowledge, such as expected descriptor preservation
into the computational pipeline.

Although in recent years, there have been several approaches proposed to address
the point-wise correspondence problem, especially when formulated as a special case
of more general quadratic assignment [29,41, 90, 102], these methods are still typically
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computationally very expensive and do not scale well beyond a relatively small number
of points on the shapes. As a result, several alternatives have been proposed, including
the functional maps framework that we concentrate on throughout our work.

1.5 Partial correspondences

Some works deal with partial correspondences, which leads to additional complexity in the
formulation of the objective since the parts that are to be found in correspondence are not
specified in advance. We are interested in shape matching with potentially large variations.
Previous methods include surface deformation [39,107], matching approximately isometric
shapes [17,50], or including high level geometric informations such as labeled segments [99].
We refer the interested reader to the surveys on shape matching for a more in-depth
overview of the field [100].

1.6 Overview of the Functional Maps Framework

In this section we describe the general setting of non-rigid shape matching, introduce the
main notations that will be used in the rest of the thesis, and give an overview of the
functional map framework introduced in [69], including the main computational steps
required for estimating functional maps in practice.

1.6.1 Setup

The main goal in the problem of shape matching is to try to find a correspondence or a
mapping between a pair of shapesM and N that represent similar physical objects, for
which one would expect a natural correspondence to exist.

The simplest and most common approach is to represent a solution to the shape
matching problem as a correspondence T : VN → VM that maps each vertex in N to
a vertex in M according to some quality criteria. Such a correspondence can also be
written as a matrix Π of size nN × nM, that has exactly one 1 on each line, and zeros
everywhere else. When the number of points is the same, nN = nM, and the map T is a
bijection then Π is a standard permutation matrix. If we allow convex combinations of
vertices (or equivalently probability distributions) as solutions, as in [90], then we can
relax the binary 0, 1 constraint to allow the entries of Π to lie in the interval [0, 1] with
the additional constraint that all lines of Π should sum to 1.

Another, more general relaxation that was considered in [69] is via linear mappings
between real-valued functions defined on the shapes. It is a dual point of view: instead
of using point-to-point correspondences we consider function to function correspondences
that allow to distinctly represent each point-to-point correspondence via composition.
A map T : VN → VM is represented via the equivalent map c : (VM → R)→ (VN → R)
defined by composition: c(f) = f ◦T . Thus, given a function f :M→ R defined on shape
M, we can use T to transfer f onto N through composition to define g = f ◦ T . Here,
g : N → R and g(y) = f(T (y)), for any point y on N . For any fixed T , the mapping c
between functions f 7→ g is linear, and thus can be represented as a matrix in the discrete
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setting. If functions are represented as discrete vectors, then using the notation above,
we can simply write: g = Πf , if the functions are expressed as vectors with respect to the
standard basis. An advantage of this representation is that c is linear. It maps a space of
dimension nM (number of vertices on shapeM) to a space of dimension nN (number of
vertices on shape N ), therefore it can be represented using a matrix Π of size nN × nM.
Note that any real-valued matrix Π corresponds to a valid linear functional map, even if
it does not represent a correspondence between points or probability distributions. A
given linear map c : (VM → R) → (VN → R) may not come from any point-to-point
map T . This representation is injective: each correspondence T is associated to a unique
c, but the space (VM → R) → (VN → R) in which c is defined is larger, therefore the
opposite is not true.

By looking at the image of the indicator function of a vertex, one can show that it is
possible to recover T from c. Indeed, if ep is the indicator function at a vertex p ∈M,
then c(ep) is the indicator function of T−1(p) ⊂ N . This allows to infer T−1(p) for each
p ∈M, therefore it allows to infer T . Note that we may not assume T to be invertible
because nM may be different from nM, and because even if nM = nN the topology of
the triangle meshes ofM and N may not be the same.

The key aspect of the functional map representation proposed in [69] is to use a
“reduced basis” to encode the functional map, instead of working in the full spaces RnM

and RnN . Thus, suppose we are given some set of basis functions on shapes M and
N , encoded as matrices ΦM,ΦN respectively, having sizes nM × kM and nN × kN for
some kM � nM and kN � nN , where each column corresponds to a basis function
on the corresponding shape. Typically 1000 ≤ nM, nN ≤ 100000, and we choose
10 ≤ kM, kN ≤ 200. Then, the functional map matrix can be written as C = ΦN

†ΠΦM,
where † denotes the Moore-Penrose pseudoinverse. For example, if the basis functions
are orthonormal with respect to the standard inner product then C = ΦT

NΠΦM, whereas
if the basis functions are orthonormal with respect to a weighted inner product, so that
ΦT
NANΦN = InN where AN is a matrix of weights, then C = ΦN

TANΠΦM.
We may prefer using smooth elements of our vector space in our reduced basis.

Intuitively, finding correspondences in the vector spaces spanned by smooth functions
would then be closer to finding correspondences between regions of M and regions
of N than finding correspondences between vertices of N and vertices of M. Indeed,
transferring a function corresponds to transferring a weighted region, where a value 0
means that the point is out of the region that we want to transfer and a high value means
that the point is in the region. This point of view is indeed closer to what one should
expect from a correspondence.

The expression above allows to compute the matrix C if the initial correspondence
matrix Π is known. In practice, however, the shape matching problem consists precisely
in trying to recover this correspondence for a given pair of shapes. This means that the
matrix C will be an unknown.

In practice, the most commonly-used basis in functional map computations is given
by the eigenfunctions, corresponding to the smallest eigenvalues of the Laplace-Beltrami
operator, although the ideas presented in the thesis are not tied to this choice. These eigen-
functions have a multi-scale effect, since the eigenfunctions are ordered from low-frequency
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(smoothest) to high-frequency according to the eigenvalues. These eigenfunctions are a
generalization of Fourier functions to surfaces, and provide a way to approximate well any
smooth function using relatively few functions [1]. By far the most common discretization
of this Laplace-Beltrami operator is the classical cotangent-weight scheme introduced in
section 1.2.2, which allows to represent it as a matrix L = A−1W , where A is a diagonal
matrix of area weights and W is a sparse matrix of cotangent weights. In this case the
eigenfunctions can be found by solving the generalized eigenvalue problem Wφ = λAφ,
and the matrix of eigenfunctions Φ satisfies the relation ΦTAΦ = Id, and Φ+ = ΦTA.

Functional Map Estimation Many constraints that should be satisfied by the map
T can be formulated as linear constraints over the functional map matrix C, which can
then be optimized using least squares. An example of such a constraint would be that
a function f (1) : VM → R defined using local geometry of the shape M (we call such
a function a descriptor) should be mapped to its counterpart on N , g(1) : VN → R.
Examples of descriptors are the Gaussian curvature, the mean curvature, or multi-scale
descriptors such as the Heat Kernel signature or the Wave Kernel signature [8, 73, 92] for
some range of parameter choices (i.e., each f (p), g(p) corresponds to a parameter, such
as time in the HKS). The key aspects in estimating functional maps therefore consists
in formulating pairs of function preservation constraints f (p), g(p) and solving the linear
system of equations to recover the unknown matrix C. Alternatively function preservation
constraints can also represent knowledge of parts or feature points that are known to
match, in which case the functions can be either indicators of given parts, or derived
quantities, such as distance function to a feature. Once all of the function preservation
constraints are computed, they can be stacked into matrices f and g whose columns are
f (1), f (2), . . ., g(1), g(2), . . .). We express these matrices in the given (Laplace-Beltrami)
basis: F = Φ†Mf ,G = Φ†N g, where † denotes the Moore-Penrose pseudoinverse. Then,
the optimal functional map is found by solving the following system in the least squares
sense:

Copt = arg min
C

‖CF −G‖2 + α‖∆NC −C∆M‖2. (1.1)

Here, ∆N ,∆M are diagonal matrices of eigenvalues of the Laplace-Beltrami operator and
α is a small scalar weight. In other words, the optimal functional map C can be computed
so that it preserves the given functions and commutes with the Laplace-Beltrami operator
itself. This latter constraint is associated with the standard assumption that the sought
map should be approximately intrinsically isometric (see Apendix of [69]). The use of
the small weight α makes it a regularization term. This means that the second term is a
corrective term over the main optimization.

One of the main advantages of the functional map representation is that the optimiza-
tion step above for computing Copt in Eq. 1.1 can be solved efficiently using standard
numerical linear algebra tools, and in the most basic case reduces to solving a simple
linear system of equations. This step has been extended, by both employing manifold
constraints, robust optimization methods [47], and by formulating better descriptor
preservation, and regularization terms [53]. On the other hand, as has been observed in
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several follow-up works (see, e.g. [81]), converting a functional map to a point-to-point
map in step 4. of the pipeline can be a challenging and error-prone step in itself. At
the same time, as argued in the original article [69] (Section 8.3), the knowledge of a
point-to-point map might not be required in certain applications. Indeed, the functional
map matrix C can be used, e.g. to transfer real-valued functions across shapes, which
can be directly used, e.g. to transport segmentations across shapes [69] or images [104] as
well as other information such as tangent vector fields [9] or cross-fields [10]. Thus, given
a real-valued function f , its image under the functional map C can be computed as:

g = Πf = ΦNC(ΦM)†f ,

where † denotes the Moore-Penrose pseudo-inverse. Note that the large nN × nM matrix
Π representing the functional map in the ‘spatial’ domain is never actually constructed
explicitly. Note however that this transfer is only limited to the subspace of functions
spanned by ΦM, which can be restrictive. In some cases we may want to expand the
space over which we can accurately transfer functions.

This pipeline was further extended in several follow-up works [24,77,80].
In this thesis we show different methods for expanding this transfer (Chapters 3 &

4), and a way of defining a better functional map based on a larger space than standard
approaches (Chapter 2).

1.7 Definitions and Notations

Along this thesis, we will keep the notationsM, N respectively for the first shape and
the second shape, both continuous and discretized versions. We will use VM, VN for the
set of vertices ofM and N , nM and nN will denote their number of vertices. ΦM and
ΦN are matrices of size nM × kM and nN × kN that contain the first k eigenfunctions of
the Laplace-Beltrami operator, unless specified otherwise.





Chapter 2

Informative descriptor preservation
via commutativity for shape

matching

We consider the problem of non-rigid shape matching, and specifically the
functional maps framework that was recently proposed to find correspondences
between shapes. A key step in this framework is to formulate descriptor preservation
constraints that help to encode the information (e.g., geometric or appearance) that
must be preserved by the unknown map. In this chapter, we show that considering
descriptors as linear operators acting on functions through multiplication, rather than
as simple scalar-valued signals, allows to extract significantly more information from a
given descriptor and ultimately results in a more accurate functional map estimation.
Namely, we show that descriptor preservation constraints can be formulated via
commutativity with respect to the unknown map, which can be conveniently encoded
by considering relations between matrices in the discrete setting. As a result, when
the vector space spanned by the descriptors has a dimension smaller than that of the
reduced basis, our optimization may still provide a fully-constrained system leading
to accurate point-to-point correspondences, while previous methods might not. We
demonstrate on a wide variety of experiments that our approach leads to significant
improvement for functional map estimation by helping to reduce the number of
necessary descriptor constraints by an order of magnitude, even given an increase in
the size of the reduced basis.

2.1 Introduction

In this chapter we study the problem of non-rigid shape matching, which consists in
trying to find a good correspondence between two shapes that might undergo a non-
rigid transformation, such as articulated motion of humans. This problem has many
applications such as deformation transfer [91], shape interpolation [42] and even statistical
shape modeling [35] among myriad others. A wide variety of methods has been used to
tackle this problem over the years [100], primarily by restricting the search space either
using feature-point correspondences [18], or using a reduced model, such as conformal or
isometric shape deformations.

In this chapter, we concentrate on the functional map framework introduced in [69],
which has been widely adopted since its introduction due to its efficiency for representing
and computing correspondences, which in the most basic case reduces to solving a linear
system of equations. A key step in this framework, first introduced in the original
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article [69] and then used in most follow-up works, including [24,53,77] among others,
is to formulate function preservation constraints, which typically encode information
(e.g., geometric or appearance) that must be preserved by the unknown map. These
constraints are typically enforced simply by requesting that the function values must be
globally preserved by the functional map. This means, however, that the constraints
formulated using this approach often lead to underconstrained, badly defined optimization
problems, especially when the number of linearly-independent descriptor functions is
smaller than the number of basis functions, used to represent the map itself. This is
especially problematic in the presence of non-rigid, possibly noisy deformations, for which
obtaining a large set of informative, linearly independent descriptor functions can be very
challenging.

Our main contribution is to notice that the standard approach for enforcing function
preservation does not extract all of the information from a given descriptor. For example,
the level-sets of the given function (i.e., the indicator functions of regions of constant
value) are not necessarily preserved when using the basic function preservation constraint.
This has two consequences: on the one hand, as mentioned above, this requires many
descriptor functions to obtain a good approximation of a functional map, and on the other,
perhaps more importantly, a solved-for functional map will not necessarily correspond
to a point-to-point map, as it might not respect the “structural” properties of function
preservation, as described in Section 2.4.1 in more detail. Indeed, one of our main
motivations is to introduce constraints that would help guide the optimization process
towards functional maps that are closer to point-to-point maps, without introducing
additional computational complexity.

We show that much more information can be encoded into function (or descriptor)
preservation constraints, while maintaining the overall linear system nature of the
functional map framework, making it attractive from the computational standpoint. In
particular, we show that when function preservation is encoded via commutativity with
an underlying map, rather than simply via function value preservation, the resulting
maps are both more accurate, and moreover can be obtained by using only a handful of
descriptors (sometimes as few as 2-3), compared to hundreds required by the standard
approach. We demonstrate on a wide range of experiments that our method helps to
obtain better correspondences, largely removes the dependency of the descriptor number
on the size of the reduced basis, and helps to obtain functional maps that are closer to
point-to-point maps in a theoretically well-justified way.

2.2 Related work

Most closely related to this chapter are the methods based on the functional map
framework, initially introduced in [69], and later extended significantly in follow-up works
(e.g., [53,77,80] to name a few). These methods are based on the notion that it is often
easier to obtain correspondences between functions, rather than points, by first using a
reduced functional basis and second by formulating many linear constraints that allow to
recover the functional map by solving a least squares system. An approach that tackles
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the problem of extracting a good point-to-point correspondence from a functional map
can be found in [81]. This framework has a particular advantage of being flexible and
allowing to easily incorporate constraints including preservation of geometric quantities
(descriptors), while at the same time being able to incorporate deformation models (e.g.,
isometries) via commutativity with various operators.

Despite this flexibility, one notable difficulty of using the functional map representation
is that typically a large number of constraints is necessary to obtain a good solution. This
includes using many descriptor preservation constraints [69], even in the case of partial
maps [80] (where for example, the authors use 352-dimensional descriptors). Unfortunately,
obtaining a large set of high-quality robust and informative descriptor functions can
be challenging [24], and moreover noisy descriptor functions can severely affect the
resulting quality of the functional map. This is especially problematic since in the original
formulation [69], which has been also used in follow-up works, the number of descriptor
preservation constraints is tightly linked to the size of the reduced basis, meaning that
in order to obtain better correspondences more constraints are necessary, even in the
absence of noise. Thus, several previous methods have tried to use regularization to
improve the conditioning of the functional map computation, e.g., via sparsity [45].

In this chapter we argue, that the previously proposed approach for function preser-
vation constraints in the functional map framework does not extract all of the available
information from a given function. By drawing a link between theoretical guarantees
under which functional maps correspond to point-to-point maps, we show that it is
possible to formulate the descriptor preservation constraints in a way that is both more
informative, and results in higher quality functional maps even as the number of basis
functions increase. Remarkably, we show that this is possible without sacrificing the
overall linear least squares computational advantage of this framework. Our approach is
general and can be used within any other method based on the functional map represen-
tation (e.g., [53, 69,77, 80]), by simply changing the way that constraints are formulated
and solved for.

To summarize, our main contributions include:

• A novel approach to formulating function (e.g., descriptor) preservation constraints
within the functional maps framework.

• Theoretical analysis demonstrating that our method results in desired point-to-point
maps, in the presence of perfect descriptors.

• Both theoretical guarantees and experimental evidence that our constraints allow
to extract strictly more information from descriptor functions compared to previous
approaches.

We evaluate our method on a wide variety of data, and show that using our simple
modification can result in significant improvement in the quality of functional maps and
reduce the number of necessary descriptor constraints by an order of magnitude.
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2.3 Overview

Section 2.4 describes our proposed modification to the functional map pipeline introduced
in section 1.6, and discusses the main properties of the constraints that we introduce.
We start by giving a general motivation and theoretical justification for our constraints
in Section 2.4.1 and then describe how they can be introduced into the functional map
estimation pipeline in Section 2.4.2. We list some of the properties of these constraints
in Section 2.4.3, in particular proving that our approach is strictly more informative
than the standard method for function preservation, and that it provably allows us to
extract more information from the same given descriptors. Section 2.5 is dedicated to the
experiments, which demonstrate that our constraints result in more accurate functional
maps, and allow to obtain high quality maps with significantly fewer descriptors. Finally
we conclude with Section 4.8 by mentioning some interesting challenges and directions
for future work.

2.4 Novel Approach for Functional Correspondences

Classical functional map pipeline Recall that the standard functional map pipeline
consists in the following steps:

• Compute the “reduced bases” ΦM onM, ΦN on N , using the first eigenfunctions
of the Laplace-Beltrami operator

• Compute a set of descriptors f for shapeM, and the corresponding set of descriptors
g for shape N . Each column p of the matrix f , f (p) : VM → R corresponds to a
given descriptor.

• Project these descriptors in the reduced basis F = Φ†Mf , G = Φ†N g

• Find the optimal functional map matrix Copt using least squares, as the minimizer
of

‖CF −G‖2 + α‖∆NC − C∆M‖2

where ∆N , ∆M are matrices that represent the Laplace-Beltrami operator and α is
a small regularizer weight.

• Copt can then be used to transfer a given function h : VM → R by projection on
the reduced basis. h is mapped to ΦNCopt

(
Φ†Mh

)
See Section 1.6 for more details.

Limitations of the classical functional map pipeline Although simple and effi-
cient, the basic pipeline, described above, and in Section 1.6, has several limitations:
first the number of linearly independent function preservation constraints must be suffi-
ciently high to ensure that the least squares system leads to a good approximation of
the functional map. Without additional assumptions, such as sparsity, in most cases this
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implies that the number of descriptors must be approximately equal to the number of
basis functions (which typically ranges between 80-100). Unfortunately, obtaining a large
number of descriptor functions that are robust, informative and linearly independent
can often be difficult. Moreover, as described below, this basic method for enforcing
descriptor preservation does not extract the full information from the given functions,
leading to sub-optimal results. Finally, and perhaps most importantly, this approach
does not have constraints or regularizers that would lead to the solution to point-to-point
maps, which can affect the overall accuracy of the correspondence estimation pipeline.

2.4.1 Motivation

One of the primary motivations behind our approach to function preservation within the
functional maps framework is a classical result that states that any non-trivial linear
functional map C corresponds to a point-to-point map if and only if it preserves pointwise
products of functions c(f · h) = c(f) · c(h) for any pair of smooth functions f, h : M → R
(See for example Corollary 2.1.14 of [87] for a proof). Here f · h represents a function
whose value at every point x equals to the product f(x)h(x). Intuitively, this is because
a functional map that preserves products of functions must satisfy c(f2) = c(f)2. If f
is an indicator function of a region then f2 = f and this latter condition implies that
c(f) = c(f2) = c(f)2 which means that c(f) must itself be an indicator function of a
region. Thus, the preservation of products of functions is directly related to guiding
general functional maps to correspond to point-to-point maps in both the continuous
and the discrete setting. Here non-trivial means that c(1M ) = 1N , where 1M is the
constant function equal to one everywhere on M . This constraints is indeed trivial,
because 1 ◦ T = 1 for any T . We also note that without this trivial constraint, the
preservation of products of functions is still a very strong condition on a functional map
and guarantees a partial correspondence coming from a generalized composition operator
(See Example 2.1.10 on p. 21 of [87] for a discussion).

Perhaps the simplest way to introduce this result and intuition into the pipeline de-
scribed above is by taking multiple pairs of descriptor functions f (p1), g(p1) and f (p2), g(p2)

for which we expect Cf (p1) ≈ g(p1), Cf (p2) ≈ g(p2), and producing new function preser-
vation constraints f (p3), g(p3) via f (p3) = f (p1) · f (p2) and g(p3) = g(p1) · g(p2). There are
however, several issues with such an approach: first, it is not clear how many additional
constraints are necessary and what pairs of descriptor functions should be taken. Secondly,
any noise in the descriptors will be amplified when pairs of such functions are taken.
Thus, we take a slightly different approach as described below.

To motivate our construction further, consider a pair of descriptors f (p), g(p) that
are “fully discriminative,” in the sense that for every point x ∈M there exists a unique
point y on N such that g(p)(x) = f (p)(y). Given such a pair of descriptors, we would
expect to recover the underlying point-to-point map using a single function (descriptor)
preservation constraint. However, if we simply enforce Cf (p) = g(p), then even in the full
basis we will not be able to recover the underlying map, since the function preservation
constraint only leads to kN linear equations instead of the required kMkN equations. This
is because the simple function preservation constraint does not preserve the individual



30
Chapter 2. Informative descriptor preservation via commutativity for

shape matching

level-sets of the function values, which should be expected from a map. A simple method
might be to decompose a single pair of descriptor functions f (p), g(p), into multiple
function preservation constraints by introducing new functions by considering level-sets
(or Gaussians around certain values, as in [72], Section 4.1), but this again can result in
more noise and additional parameters.

2.4.2 Our constraints

In this chapter, we propose a different approach to function preservation constraints.
Namely, we start with the observation that in the full basis, given a pair of corresponding
probe functions f (p), g(p), we would expect the mapping matrix Π to be such that
Πi,j · (f (p)j − g

(p)
i ) = 0 for all i, j, which is equivalent to saying that indicator functions of

regions of constant values of f (p) and g(p) are preserved. This corresponds to the intuition
that the level-sets of functions must be preserved along with the values of the functions
themselves. This constraint can be rewritten via commutativity as ΠDiag(f (p)) =
Diag(g(p))Π, where Diag(v) is the matrix that contains the values of the vector v along
the diagonal and is zero elsewhere. This form also makes apparent the relation between
preservation of level sets and function products. Indeed, if h : M → R is any function
on M , then its pointwise product with f (p) is obtained, in the discrete formulation,
via the matrix vector product Diag(f (p))h. Therefore, ΠDiag(f (p)) = Diag(g(p))Π
implies ΠDiag(f (p))h = Diag(g(p))Πh, which implies that the associated linear mapping
C between functions must satisfy c(f (p) · h) = g(p) · c(h) for any h : M → R, which
corresponds exactly to the product rule.

Our constraints in the reduced basis As discussed above, in the functional map
framework, the key map estimation step is done in the reduced basis. Thus, we introduce
our constraints by following the idea of commutativity with an operator based on the
descriptor, as discussed in the previous paragraph. However, in the reduced basis the com-
muting matrices will not remain diagonal. For a given pair of descriptor functions f (p), g(p),
we therefore create matrices X(p) = Φ+

MDiag(f
(p))ΦM and Y (p) = Φ+

NDiag(g
(p))ΦN .

Finally, we add the corresponding constraints to the system into Eq. 1.1 by requiring the
unknown map C to satisfy in the least squares sense:∑

s

‖CX(p) − Y (p)C‖2, (2.1)

where the summation is across the available descriptors, and we use the Frobenius matrix
norm.

2.4.3 Properties

As mentioned above, the descriptor preservation constraints alone do not extract all of
the information that is present in a given descriptor. In particular even if the descriptors
are perfect and identify each vertex uniquely, the classical constraints CF = G may still
not be sufficient to identify each vertex. As a toy example, if nM = 2, nN = 2 and
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f = (1, 2) and g = (1, 2), then there is a unique point-to-point map that preserves these

functions. However, using only the constraint Π

(
1
2

)
=

(
1
2

)
could also lead to the

solution Π1 =

(
0 0.5
2 0

)
. Thus, we can see that although Π1 preserves the descriptor

functions, it fails to preserve the values pointwise: it fails to map vertices that have
a value to vertices that have a similar value. Π1 does not preserve the commutativity
constraint, and indeed Π1 is not a permutation matrix.

Below we show that the above phenomenon cannot happen if Π is enforced to be a
doubly stochastic matrix: i.e., having entries that all lie in the interval [0, 1] and whose
rows and columns sum to 1:

Theorem 2.4.1 Let f ∈ Rn and g ∈ Rn be such that the multiset of values contained
in f and in g are the same. Let Π be an n× n matrix such that ∀i, j, 0 ≤ Πi,j ≤ 1 and∑

k Πi,k = 1,
∑

k Πk,j = 1. Then Πf = g implies Πi,j = 0 whenever fj 6= gi.

Proof : We proceed by induction on the values of f . Let L = max(f) = max(g). By
assumption, the sets If = {k|fk = L} ⊂ {1, . . . , n} and Ig = {k|gk = L} ⊂ {1, . . . , n}
must have the same cardinality. Moreover, each gk for k ∈ Ig can only be obtained from
combinations of fk for k ∈ If . Thus, Πk,k′ = 0 if k ∈ Ig and k′ /∈ If . These constraints
also imply Πk,k′ = 0 if k /∈ Ig and k′ ∈ If , because each column of Π should sum to 1. �

Unfortunately, enforcing a matrix to be a stochastic matrix involves inequality con-
straints that do not translate well in the reduced basis: e.g., the projection of a stochastic
matrix in the reduced basis may not remain stochastic. Thus, it is not easy to restrict to
such matrices in the reduced basis. Instead, rather than enforcing inequality constraints
we propose to introduce the commutativity with respect to the operators derived from
the descriptor functions as described above. In our toy example, the commutativity
constraint would be

Π

(
1 0
0 2

)
=

(
1 0
0 2

)
Π

We can see that enforcing such a constraint eliminates the wrong solution Π1.
Recall that any functional map that corresponds to a point-to-point map should

satisfy Π1 = 1, which would thus be a natural constraints to use in our optimization.
Interestingly our new commutativity constraint along with the additional regularization,
requiring the map to preserve the constant function Π1 = 1, implies the previously used
constraints Πf = g even in the reduced basis, as proved in the following theorem:

Theorem 2.4.2 If f ∈ RnM , g ∈ RnN and Π ∈ MnN ,nM (R), then ΠDiag(f) =
Diag(g)Π and Π1 = 1 implies that Πf = g. Similarly, if C is in the reduced basis,
where the first basis function is a constant function, and Ce1 = e1, then the commutativity
constraint CΦ+

MDiag(f)ΦM = Φ+
NDiag(g)ΦNC implies that CΦ+

Mf = Φ+
Ng.
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Proof : We consider the first case, in the full basis: Πf = ΠDiag(f)1 = Diag(g)Π1 =
Diag(g)1. For the second case, by assumption, we have: CΦ+

Mf = CΦ+
MDiag(f)ΦMe1 =

Φ+
NDiag(g)ΦNCe1 = Φ+

NDiag(g)ΦNe1 = Φ+
Ng. �

However, in practice, it might still be useful to enforce both the commutativity
constraint and the CF = G constraint as the latter might give more control on the
importance of preserving the function globally, by e.g., adding a scalar weight. Note that
this theorem is only meant to be a theoretical guarantee that our formulation includes at
least as much information as the previous one.

2.5 Experiments

As described above, the new commutativity constraints allow us to extract more informa-
tion from the same set of descriptors, and furthermore allow us to guide the functional
map estimation process closer to point-to-point maps, while still maintaining the linear
(least squares) complexity of the optimization. Below we demonstrate the utility of these
constraints on a wide range of shapes and deformations and show that our approach
allows to significantly reduce the number descriptor functions necessary to estimate an
accurate functional map, and even improve results with the increase in the size of the basis
for a fixed number of descriptors, which is not true for the previously used constraints.

2.5.1 Using few descriptors

In our first set of experiments, we plot the average correspondence error for several
methods on three standard benchmarks: FAUST [13], SCAPE [7], and TOSCA [19].

Our main goal in this experiment is to show that by formulating the descriptor
preservation constraints via commutativity, rather than using the original approach based
on preservation of values, results in more accurate functional map inference, without
requiring any additional information.

We compare our results to the following methods:

• Blended Intrinsic Maps [43]

• The original method proposed in [69] and used in follow-up works [77, 80], that
formulates function preservation constraints, based on values.

We note that our approach can be incorporated into any pipeline for estimating
functional maps, which uses function (e.g., descriptor) preservation constraints. As
such, it can be easily combined with the other techniques that have been introduced
for optimizing functional map computations, e.g., based on sparsity [77] or specific
prior structure existing in partial correspondences [80]. Therefore, our goal is not to
demonstrate that our particular choice of descriptors or parameters results in state-of-
the-art correspondences on these benchmarks, but rather to show that our formulation of
function preservation via commutativity allows to obtain more accurate results than the
one based on function values alone.
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(a) Error plots showing the accuracy of our descriptor
preservation via commutativity (solid lines) compared
to simple value preservation (dotted) and the Blended
Intrinsic maps (red) on shape pairs from the FAUST
dataset. Our method allows to obtain superior perfor-
mance using even a very small descriptor set.

(b) Example maps obtained by formulating the de-
scriptor preservation with the simple method (up)
and using our commutativity approach (down), us-
ing exactly the same descriptor functions.

Figure 2.1 – Performance of our technique on the FAUST dataset [13] compared to the
standard functional maps approach and Blended Intrinsic Maps [43].

For this, we used the original functional map estimation pipeline introduced in [69],
with the same code and parameters. Namely, we used a varying number (1, 2, 10, and
100) of descriptor functions, and compared the results of estimating the functional map
either by minimizing:

Copt = arg min
C

‖CF −G‖2 + α‖∆2C − C∆1‖2,

as described in Section 1.6 or using our constraints, which simply adds an extra term to
the energy above, given by

∑
i ‖CXi − YiC‖2, as described in Eq. 2.1 above. In both

cases we computed the functional map C by solving a linear least squares system, using a
vectorization of the functional map C (re-writing it as a vector c), and solving the system
Ac = b, where A and b are obtained by rewriting the above energy in matrix-vector form.
After estimating the functional map C we used the post-processing technique of [69]
based on high-dimensional ICP to both refine the functional map and convert it to a
point-to-point correspondence.

In all of the experiments in this section we used neig = 100 eigenfunctions to represent
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(a) Error plots showing the accuracy of descriptor
preservation via our commutativity approach (solid
lines) compared to simple value preservation (dotted)
and the Blended Intrinsic maps (red) on the TOSCA
dataset.

(b) Example maps obtained by formulating the de-
scriptor preservation with the simple method (up)
and using our commutativity approach (down), us-
ing exactly the same descriptor functions.

Figure 2.2 – Performance of our technique on the TOSCA dataset [19] compared to the
standard functional maps approach and Blended Intrinsic Maps [43].

the functional basis, by discretizing the Laplace-Beltrami operator using the standard
cotangent-scheme [63,76], and a sparse eigensolver, to estimate the basis. We followed
the exact pipeline suggested in [69] for map estimation and simply sub-sampled the set
of descriptors used in that work (Wave Kernel Signature [8] and Wave Kernel map based
on segment correspondences).

Figures 2.1a, 2.2a, 2.3a show the results obtained using our approach compared to
the basic function-preservation method on the three benchmarks, using a varying number
of descriptor preservation constraints. We evaluated each method on 100 pairs of shapes
in the FAUST dataset, 76 shape pairs in TOSCA and 71 pairs in SCAPE, by taking each
shape to be a source in exactly one pair. We follow the evaluation protocol introduced
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(a) Error plots showing the accuracy of our descriptor
preservation via commutativity (solid lines) compared
to simple value preservation (dotted) and the Blended
Intrinsic maps (red) on the SCAPE dataset. Our
method allows to obtain superior performance using
even a very small descriptor set.

(b) Example maps obtained by formulating
the descriptor preservation with the simple
method (up) and using our commutativity
approach (down), using exactly the same de-
scriptor functions.

Figure 2.3 – Performance of our technique on the SCAPE dataset [7] compared to the
standard functional maps approach and Blended Intrinsic Maps [43].

in [43], by plotting on the x-axis a geodesic threshold, and on the y-axis, the fraction of
the correspondences obtained by each method that are at a distance that is less than
this threshold from the ground truth map. The geodesic distances (approximated using
Dijkstra’s algorithm) are divided by the scaling factor

√
Area, where Area is the total

area of the shape. In this work, similarly to other non-symmetry aware intrinsic methods,
we do not disambiguate left-right symmetries, and thus take the minimum between the
distance between the matched vertex and the ground truth, and the distance between
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the matched vertex and the symmetric of the ground truth as our distance to target.
In each plot, the red curves represent the performance of [43], the blue/green curves

represent approaches based on the functional map framework (green: using only 1
descriptor, blue: using 100 descriptors). The curves with ∗ symbols use the original
function-preservation formulation, whereas those with solid lines use our new approach.

We notice the following general trend: the method that uses our commutativity
constraints usually leads to better results compared to the classic descriptor preservation
constraints, and the improvement is particularly large when only a few descriptors are
used. Using more descriptors leads to little improvement for this new method, which,
together with the previous fact, highlights that the new formulation helps in extracting
more information from the same descriptors.

We also notice that increasing the number of descriptors used to 100 is not generally
the best choice for getting better results, which shows that this method is well-suited for
performing on few reliable descriptors.

Perhaps most remarkably, our new formulation allows to obtain results with only two
descriptor functions (e.g., on the SCAPE dataset) that are better than the ones produced
by the original method using the full set of 100 descriptors.

In Figures 2.1b, 2.2b and 2.3b we also provide some example maps computed using
descriptor preservation with commutativity vs. the simple value-based approach. Note
that the resulting maps are typically less noisy and more globally consistent, despite
using exactly the same information in the optimization, which also suggests that our
formulation helps to obtain more accurate functional map. For visualization, we sampled
100, 300 and 200 points on the source shape uniformly from the list of all vertices, for the
pairs from the FAUST (Fig. 2.1b), TOSCA (Fig. 2.2b), and SCAPE datasets (Fig. 2.3b)
respectively.

2.5.2 Changing the dimension of the reduced space

In our second range of experiments, we show the dependence of the results on the number
of functions used in the basis for functional maps. Here, rather than changing the number
of descriptor functions, we fix the descriptor set and change the dimensionality of the
basis and evaluate the quality of the approximation of the point-to-point correspondences
using the functional map pipeline.

In Figure 2.4 we show the average correspondence error between a subset of shapes in
the FAUST dataset [13], using the same pipeline described in the previous section, for a
fixed number (in this case two) of descriptor functions. In particular, we used the Wave
Kernel Signature for a single energy value, along with a single descriptor function that is
aimed at segment preservation using the Wave Kernel Map with a fixed energy value.
This gives us two descriptor functions, which we incorporate into the functional map
energy using either the standard descriptor preservation constraints, as done in [69] or
using our commutativity-based approach. We then convert the estimated functional map
to a point-to-point correspondence and evaluate its accuracy using the distance to the
ground truth. We plot the average pointwise map error, computed the same way as in
the previous experiment, across the shape pairs for a varying number of basis functions.
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Figure 2.4 – Average error on pairs of shapes in the FAUST dataset, depending on the
number of basis functions in the functional map representation, for a fixed number (two
in this case) descriptors. Unlike the standard approach of [69], which deteriorates when
the size of the basis significantly exceeds the number of descriptors, our method continues
to produce high-quality results even for a small number of descriptors and a large number
of basis functions. The average error is computed as the average geodesic distance to the
ground truth correspondence, symmetries allowed.

As can be seen in Figure 2.4, compared to the basic method for descriptor preservation,
our approach allows not only to improve quality of the correspondences significantly,
without using any additional information, but also provides more resilience with respect
to the choice of the number of basis functions, for a fixed descriptor set. This implies
that our approach can potentially enable more accurate correspondence computation
based on the functional map pipeline, without requiring any additional information, and
supports the idea that using our formulation allows to extract additional information
from descriptor functions, which in turns results in better pointwise maps.
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2.6 Conclusion, Limitations & Future work

We proposed a new formulation for incorporating descriptor (or more general function)
preservation constraints within the functional map framework, which enables finding
better solutions to the non-rigid shape matching problem. Our formulation is especially
useful when the number of descriptors is lower than the dimension of the reduced space
of functions since it allows to extract more information from the same set of given
descriptors. Our formulation is applicable in the same settings as the original functional
maps framework, with the main limiting factor being the computational time necessary
to assemble and solve our optimization problem, which nevertheless remains linear in
the unknown map. We also note that we do not enforce the preservation of the constant
function in practice, and thus our formulation should, in principle be also applicable even
to partial maps. We leave the exploration of this as an interesting direction for future
work.

Conceptually, we propose to consider descriptors or functions as linear functional
operators acting on other functions through multiplication, unlike the standard approach
which views them simply as scalar-valued signals. We believe that this idea is particularly
exciting for future work, and are planning to investigate other ways in which informative
descriptors and constraints can be defined directly as functional operators, opening the
door to a much richer way of characterizing shapes and their geometry, which can be
useful in shape matching problems.



Chapter 3

Improved functional mappings via
product preservation

In this chapter, we consider the problem of information transfer across shapes and
propose an extension to the widely used functional map representation. Our main
observation is that in addition to the vector space structure of the functional spaces,
which has been heavily exploited in the functional map framework, the functional
algebra (i.e., the ability to take pointwise products of functions) can significantly
extend the power of this framework. Equipped with this observation, we show
how to improve one of the key applications of functional maps, namely transferring
real-valued functions without conversion to point-to-point correspondences. We
demonstrate through extensive experiments that by decomposing a given function
into a linear combination consisting not only of basis functions but also of their
pointwise products, both the representation power and the quality of the function
transfer can be improved significantly. Our modification, while computationally
simple, allows us to achieve higher transfer accuracy while keeping the size of the
basis and the functional map fixed. We also analyze the computational complexity
of optimally representing functions through linear combinations of products in a
given basis and prove NP-completeness in some general cases. Finally, we argue that
the use of function products can have a wide-reaching effect in extending the power
of functional maps in a variety of applications, in particular by enabling the transfer
of high-frequency functions without changing the representation size or complexity.

3.1 Introduction

Shape correspondence is one of the key problems in digital geometry processing with
applications in fields ranging from manufacturing to shape morphing [42], statistical
shape analysis [13,35], texture mapping, animation and deformation transfer [91] among a
wide variety of others. In all of these applications, the key requirement of shape matching
algorithms is to enable information transfer across two or more shapes.

Over the past several decades, a large number of computational techniques has been
developed for addressing the shape matching problem. While most early methods have
concentrated on rigid shape matching, more recently numerous approaches have also been
proposed in the more general context of finding correspondences between non-rigid shapes,
such as humans in arbitrary poses [100]. One of the major challenges arising in this
setting is that the space of possible correspondences between points on a pair of shapes is
exponential, which gives rise to difficult optimization problems when establishing reliable
point-to-point maps.
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Figure 3.1 – Transferring a real-valued function from a source shape (left) onto the target
using a fixed functional map with the standard approach (center) vs. our extended
method (right).

To address this challenge, recent works have focused either on defining a consistent
parameterization for a pair of shapes, often with the use of landmarks (e.g., [4,5,50]), or by
choosing a different representation for shape correspondences, which is more amenable to
direct optimization and manipulation. These include either soft maps or measure couplings,
which can benefit from computational techniques in optimal transport [89,90], and a class
of techniques based on the recently introduced functional map representation [69, 70].
This latter is based on the idea of using correspondences between real-valued function
rather than points on the shapes. Since certain (e.g., square integrable) function spaces
admit a vector space structure and therefore can be endowed with a multi-scale functional
basis (e.g., the Laplacian eigenbasis), a common approach is to restrict the search for
an optimal correspondence to a subspace spanned by a small number of basis functions.
This implies that the optimal functional map can be represented using a moderate-sized
matrix, independent of the number of points on a pair of shapes.

This restriction to functional maps between small subspaces significantly reduces
the computational complexity of the shape correspondence problem as it leads to sim-
pler optimization problems with fewer unknowns (in the simplest setting, the shape
correspondednce boils down to a least-squares problem [70]). At the same time, it also
somewhat reduces the utility of the computed functional map especially since converting
a functional to a point-to-point map can be a challenging problem in itself [81, 101].
Motivated by this fact, several applications have argued for using functional maps directly,
by exploiting their ability to transfer real-valued functions across shapes without recov-
ering the point-to-point map. Examples of applications include segmentation transfer,
demonstrated in the original article [69], tangent-vector field design [9], image and shape
co-segmentation [38,104] and even more recently, consistent mesh quadrangulation [10].
In all of these works, a given function on the source shape is represented as a linear
combination of the basis functions which are then transferred using the functional map
onto the target. Since in most cases, the basis consists of the first few eigenfunctions of
the Laplace-Beltrami operator, in practice functional maps can only transfer sufficiently
smooth functions, leaving out high-frequency details, which severely limits the applicabil-
ity of the entire functional maps framework. As a possible remedy, several recent works
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considered alternatives to the Laplace-Beltrami basis [46,60,66].
In this work, we argue that more accurate function transfer can be achieved within

the functional maps framework without changing the basis or increasing its size. In
particular, we propose to use the algebraic structure of function spaces [36], which means
that in addition to defining a vector space through scalar multiplication and addition,
functions can also naturally be multiplied pointwise. Moreover, most natural functional
maps (i.e., those arising from point-to-point ones) must preserve this algebraic structure.
Putting these two properties together, our key observation is that the ability to transfer
basis functions also gives us the ability to transfer their pointwise products. This means
that if a given function on a source shape can be represented via not just the elements
of the basis, but also their pointwise products, a given functional map can be used to
transfer it accurately onto the target, as shown in Figure 3.1.

We demonstrate through extensive experiments that this observation can lead to a
significant improvement in the function transfer quality without changing the functional
map representation. Remarkably, it allows us to map even high frequency information by
using only a low-frequency basis without converting a functional map to a point-to-point
one. As a result, our approach can have a direct impact on all applications of the
functional map framework.

3.2 Related Work

As mentioned above, relating information across different shapes is among the most basic
problems in shape analysis. Since our approach is designed to better exploit a given
functional map and as such is more closely related to representing correspondences, rather
than computing them, in the following we primarily give an overview of the most common
representations for maps between shape, and refer an interested reader to recent surveys
on shape matching [12,94,100] for a more in-depth discussion of correspondence problems.

Most early models of non-rigid correspondences between shapes are based on the
standard notion of pointwise mappings, e.g., [18, 43, 50, 71]. A particular instance of
this class of methods is based on spectral embeddings defined by the Laplace-Beltrami
eigenfunctions, followed by a correspondence procedure in the embedding space, e.g. [28,57].
Shtern and Kimmel proposed constructing spectral embedding using pointwise products
of Laplace-Beltrami eigenfunctions [85] and the triple products of their gradients with the
surface normal [86] as a means of capturing additional information. The main drawback of
pointwise correspondence models is that such frameworks can often be unstable and lead
to difficult non-linear non-convex optimization problems. As a result, several authors have
proposed to consider more general notions of mappings, which are more amenable to direct
optimization. In the most basic setting, such generalized mappings arise as relaxations of
pointwise correspondence problems, as e.g., in [11,48]. In these scenarios, however, such
representations are typically used as intermediate steps, aimed at facilitating pointwise
map recovery.

A more principled approach to soft mappings is provided by the notion of measure cou-
plings, that have been used for both representing and finding correspondences [61, 62, 89]
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and that are intimately related to the formalism of optimal transport. These represen-
tations have a probabilistic interpretation and benefit from computational advances in
efficiently solving certain optimal transport problems [26,88]. Consequently, they have
recently gained prominence in addressing shape matching and alignment tasks [54,90].
Nevertheless, the complexity of these representations is directly related to the sampling
density of the shapes, and can quickly become prohibitive, often requiring heuristics and
multi-resolution schemes.

A different formalism that this chapter directly builds on is provided by the functional
maps framework [69]. This representation is based on representing correspondences
through their action (via pull-back) of real-valued functions. Since the pull-back of
functions is linear and since functional spaces can be endowed with a multi-scale basis,
this leads to a representation of correspondences as moderately-sized matrices, which
can be directly manipulated and optimized for. Although initially introduced as a
tool for shape matching, functional maps have been used for relating tangent vector
fields [9], extending the Generalized Multi-Dimensional Scaling to the spectral domain [2],
computing maps between symmetric [72] and partial [52,53,80] shapes, coupled bases [46]
and even consistent quadrangulation [10] among others. Most recently, functional maps
were integrated as differentiable layers into intrinsic deep learning architectures [51].

All of these applications benefit from the properties of the functional representation,
including its compactness, which often translates into relatively simple optimization
problems, and its capacity for information transfer. Indeed, although the original
article [69] proposed an approach for recovering a point-to-point map from a functional
one, follow-up works, have observed that, in many scenarios functional maps can be used
directly for transferring information such as tangent vector fields [9] or segmentations in
shape collections [38] among others. In these works, the information being transferred is
represented by using the vector space structure of functional spaces. At the same time,
as we argue in this chapter, real-valued functions also have a natural algebra defined
through pointwise products, which can be used directly to improve the quality of function
transfer without relying on point-to-point maps. Remarkably, we show how this property
can be exploited to transfer high-frequency functions even in the presence of a functional
map relating only low-frequency bases.

In the previous chapter we saw that by representing descriptors as linear operators
acting on functions through pointwise multiplication, it is possible to obtain a significant
improvement in the quality of the recovered functional map. Similarly to the previous
chapter, this chapter is also motivated by the classical result that a non-trivial functional
map acts as a point-to-point map if and only if it preserves pointwise function products [87].
However, rather than trying to improve the quality of an optimized functional map through
better use of descriptors, our emphasis is on showing how a given functional map can
be used more effectively by allowing the transfer of not just basis functions but also
their (possibly high-order) point-wise products. More concretely, unlike previous works,
including the previous chapter, which have always restricted the functional subspaces
to linear combinations of basis functions, we show that a much richer space can be
constructed and used without sacrificing the computational and storage efficiency of
functional maps, by exploiting pointwise products of basis functions.
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3.3 Motivation and Overview

Classical functional map pipeline We recall that the basic functional map pipeline,
introduced in [69] consists in the following steps (see also Section 1.6 and the previous
chapter for a more detailed discussion):

• Compute the “reduced bases” ΦM onM, ΦN on N , using the first eigenfunctions
of the Laplace-Beltrami operator

• Compute a set of descriptors f for shapeM, and the corresponding set of descriptors
g for shape N . Each column p of the matrix f , f (p) : VM → R corresponds to a
given descriptor.

• Project these descriptors in the reduced basis F = Φ†Mf , G = Φ†N g

• Find the optimal functional map matrix Copt using least squares, as the minimizer
of

‖CF −G‖2 + α‖∆NC − C∆M‖2

where ∆N , ∆M are matrices that represent the Laplace-Beltrami operator and α is
a small regularizer weight.

• Copt can then be used to transfer a given function h : VM → R by projection on
the reduced basis. h is mapped to ΦNCopt

(
Φ†Mh

)
Limitations of the classical functional map pipeline While very simple and
intuitive, this basic functional map procedure has a severe limitation: it only allows to
transfer functions (or their projections) that lie within the vector space spanned by ΦM.
When the basis is given by the first kM eigenfunctions of the Laplace-Beltrami operator,
which is the most popular choice in practice, this implies that only sufficiently smooth or
low-frequency functions can be transferred using the map C.

Functional Algebra In this chapter, we argue that this is an unnecessary restriction,
which can be, at least partially lifted in many settings. For this we propose using the
algebraic structure of the functional spaces on the shapes, which has so far not been
exploited fully. The key property we consider is that in addition to defining a vector
space via inner products, real-valued (square integrable) functions also have a well-defined
point-wise product operation: f1 � f2 → f3, where f3(x) = f1(x)f2(x) at every point
x ∈M.

This point-wise product operation is compatible with functional maps: it is well-
known [87] that a non-trivial linear functional map corresponds to a point-to-point one if
and only if it preserves the functional algebra. I.e. the distributivity of the functional
map over point-wise product:

c(f1 � f2) = c(f1)� c(f2) ∀ f1, f2. (3.1)
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Intuitively, if a functional map corresponds to a point-to-point one, then product
preservation follows directly from the definition of composition. Conversely, if a functional
map preserves pointwise products, then c(f2) = c(f)� c(f), which implies that indicator
functions should be mapped to indicator functions.

Remark: It is interesting to measure how Eq. (3.1) changes when the functional
map deviates from a pointwise map. A simple computation shows that if c̃ = c+ δ, where
c satisfies Eq. (3.1), then:

c̃(f1 � f2) =c̃(f1)� c̃(f2) + δ(f1 � f2)− δ(f1)� δ(f2)
− δ(f1)� c̃(f2)− c̃(f1)� δ(f2)

Note that the result involves the cross-terms c̃(.)�δ(.). Therefore, to bound the deviation,
one needs not only a bound on the error δ but also potentially a bound on the functional
map itself. Some analysis of such bounds was presented in [40] (Condition 3.1 and
Proposition 3.3), and we leave the precise analysis of the failure of product preservation
as interesting future work.

Now, suppose that a functional map is expected to be of sufficiently “high-quality”
to satisfy the product preservation property. For example, the functional map should
approximate some unknown point-to-point map. Then, we can use Eq. (3.1) explicitly
without computing that point-to-point map. Namely, if we would like to transfer a given
real-valued function, we can decompose it into a linear combination of the basis functions
and of their pointwise products, and then transfer the coefficients by combining the
linearity of the map with Eq. (3.1) to compute the image of products of basis functions,
and thus of the given function.

Our main motivation for using this construction is that it allows us to extend the
space of functions that can be transferred by a given functional map C without changing
the basis and without converting it to a point-to-point map. For example, consider
the standard Fourier basis functions and their pairwise products shown in Figure 3.2.
Note that some products exhibit higher frequency behavior. As a result, they allow a
significantly more accurate function reconstruction, shown in Figure 3.3 for different
values of kM. Finally, since Eq. (3.1) allows us to transfer coefficients of products of
basis functions, given the knowledge of images of basis functions themselves, this enables
a more accurate function transfer, which can have a direct effect on all applications that
use this aspect of functional maps, e.g., [9, 10,104].

3.4 Method Description

More concretely, suppose that we are given a pair of discrete shapesM and N , represented
as triangle meshes containing nM and nN points respectively. Moreover, suppose both
shapes are endowed with a reduced functional basis, stored as columns of matrices ΦM,ΦN

of size nM × kM, nN × kN for some small kM, kN . In practice we use the eigenfunctions
of the Laplace-Beltrami operators to construct the basis, although the ideas presented
below are not tied to this choice.
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Figure 3.2 – The first 5 standard 1D Fourier basis functions (in blue) and their pairwise
products (in red) on a periodic domain. Above each function we report the product from
which it is generated. Note how the products exhibit higher frequencies compared to the
original functions. Note also some linear dependencies among some of these functions
(e.g.: ϕ2 � ϕ2 + ϕ3 � ϕ3 + λϕ1 = 0 for a scalar λ).

We also suppose that we are given a functional map, represented in the reduced basis
as a matrix C of size kN × kM, which is either induced by a point-to-point map or is
close to such a map. For example, if C comes from the optimization pipeline outlined in
Section 3.3, then we would expect it to be close to satisfying this property, as this pipeline
is intended to recover a point-to-point map. Such a functional map should therefore
satisfy the distributive relation of Eq. (3.1). Finally, we are also given a function f ,
stored simply as a vector f of size nM, that we would like to transfer fromM to N .

Our goal then is to use the distributive property of multiplication, to extend the
definition of our map to a space larger than that spanned by the original basis functions.

3.4.1 Function Representation

To achieve higher accuracy transfer, our approach will be to first represent a given
function f as a linear combination of the basis functions ϕ1, . . . , ϕk and of their pointwise
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Figure 3.3 – A 1D indicator function defined on the standard periodic domain (in black),
its reconstruction using the standard first five Laplacian basis functions (in blue) and
using all the products of the first five eigenfunctions (in red). With an increasing value
of k from left to right kM = 4, kM = 8 and kM = 12. The bases used are the ones from
Figure 3.2. Note the significant improvement in reconstruction error shown above for all
the different values of k.

products. I.e., we look for the best coefficients ai and bj to approximate f as

f ≈
k∑
i=1

aiϕi +
P∑
j=1

bj

rj∏
l=1

ϕijl , (3.2)

where ijl are indices drawn from {1, . . . , k} (possibly with repetitions) and rj is the
number of terms used in the jth product. Note that a single basis function can appear
multiple times in the same product, which allows representing higher order powers of
basis functions. Also note that, in principle, both the number of products P and the
number of terms rj in each product is arbitrary.

Once we find such an approximation, we can transfer f by using the given functional
map C and exploiting Eq. (3.1).

One difficulty with this approach is that if the functional map is approximate and
does not satisfy Eq. (3.1) exactly, then terms involving function products can amplify the
noise present in the map. In order to avoid this effect, we should look for a way to make
as few products as possible to approximate f . However, the following theorem (proved in
the next subsection) shows that this problem is NP-hard:

Theorem 3.4.1 We consider the following problem (APPROX):
INPUT: A positive integer nM, K basis functions ϕ1, . . . , ϕK : {1, . . . , nM} → R, a
“target” function f : {1, . . . , nM} → R, and ε > 0
OUTPUT: Minimum cost c ∈ N, g1,1, . . . , g1,r1 , . . . , gP,1, . . . , gP,rP ∈ {1, . . . , k}, α1, . . . , αP ∈
R such that:

• ‖f −∑P
i=1 αi ·Gi‖∞ < ε, where Gi =

∏ri
j=1 ϕgi,j

• ∑P
i=1(ri − 1) ≤ c
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original

0.23 0.10 0.06 0.04

standard basis

0.09 0.02 0.01 0.006

extended basis

Figure 3.4 – Surface reconstruction via approximation of the 3-coordinates functions. On
the left the original shape. On the right, for different values of k (9, 29, 49, 69), some
surface reconstruction results. On the top using the first k + 1 Laplacian eigenfunctions,
bottom adding also pairwise products. Under each shape is reported the error. The
colormap encodes reconstruction error, decreasing from dark red to white.

(APPROX) is NP-hard.

Proof See Appendix Section 3.7.3 of this chapter. �

Note that c corresponds to the cost that we would like to minimize, since it represents
the number of pointwise products used in the approximation. Intuitively, this theorem is
related to the optimal sparse (L0 norm) function approximation, which is also known to
be NP-hard [65]. However, due to the special structure of our problem, which involves
pointwise products of basis functions, our proof is independent and uses a reduction of
3-SAT directly.

3.4.2 Extended Functional Basis

Due to Theorem 3.4.1 and also because we have observed that using high order products
usually brings little improvement in practice, we focus on only using point-wise products
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20 MH 2nd order 3rd order 4th order

Figure 3.5 – Surface reconstruction via approximation of the 3-coordinates functions
using different orders of products. From left to right using 20 eigenfunctions, their second
order products, third order and finally fourth order products.

between pairs of basis functions ϕMi � ϕMj , where potentially i = j. Therefore, we look
for the best coefficients ai and bi,j to approximate f :

f ≈
∑
i

aiϕ
M
i +

∑
i,j

bijϕ
M
i � ϕMj . (3.3)

For this, we define an extended basis onM as BM = (ΦM, Φ̃M), where each column of
the matrix of Φ̃M is of the form ϕ̃i = ϕMl �ϕMm for some unique pair l,m ∈ {1, . . . , kM}.
Note that we exclude products with the constant function from Φ̃M, but include both
ordered pairs (l,m) and (m, l). We include both ordered pairs only for simplicity of the
computation and the formulas involved, although they carry the same information.

Given the extended basis, our goal then is to approximate a given function f by
computing a vector of coefficients a that would minimize ‖BMa − f‖. Note, however,
that the matrix BM is not full rank, and, therefore the best approximation of f may
involve a large amplification of noise.

To handle this issue, we use two solutions:

• Approach A: compute the optimal coefficients a by solving the Lasso-type problem:

arg min
a

‖BMa− f‖2 + ε‖a‖p, (3.4)

where we use p = 1 or p = 2, which respectively promote sparsity and penalize
large coefficients, and ε is a small regularizer. To solve Equation 3.4 with p = 1
we use a toolbox for non-smooth convex optimization [75] which implements the
FISTA method.

• Approach B: compute the singular value decomposition (SVD) of
√

AMBM as√
AMBM = UΣV>, where AM is the area matrix associated with the triangle
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Figure 3.6 – Reconstruction of an indicator function of a region, using the standard
and extended bases. On top we plot the original indicator function and its transfer
using standard basis (middle) and extended basis (right). The second row shows the
regions detected by thresholding the functions above using the same fixed value, the
corresponding error shown below each plot.

meshM. We then set all singular values in Σ that are below 0.1% of the maximal
value to zero and compute:

a = VΣ†U>
√

AMf , (3.5)

Note that this approach is nearly identical to using the pseudo-inverse of BM to
compute a = (BM)†f with the thresholding parameter 0.001σmax. However we use
the area matrix to properly scale the basis with respect to the area elements on the
mesh.

The first approach has the advantage of continuously depending on ε, while in the second
case computing the optimal coefficients can be done effectively once the matrix VΣ†U>

is pre-computed, which allows us to use it to transfer many functions. For these reasons,
unless specified, we adopt the Approach B below.

We show an example of the reconstruction quality of the coordinate functions using
the standard and extended basis in Figure 3.4 and the same for an indicator function of
a region in Figure 3.6. Note that the use of the extended basis allows to capture higher
frequency details even for the same size of the original basis. Therefore, intuitively, we
would expect that it would allow more accurate function transfer across shapes.
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3.4.3 Extended Function Transfer

Once the optimal coefficients a of the function f in the extended basis BM are computed,
we use the given functional map C to transfer f onto shape N . For this, we first construct
an extended basis BN using the same procedure as described in Section 3.4.2 above. We
then construct an extended transfer matrix:

C̃(C) =

[
C R(C)

0 C(1 : k, 1 : k)⊗C(1 : k, 1 : k)

]
with

R(C) =

 φ0C(0, 1 : k)⊗C(0 : k, 1 : k)

+φ0

[
0 . . . 0

C(1 : k, 1 : k)

]
⊗C(0, 1 : k)


where ⊗ is the Kronecker product of matrices, C(0, 1 : k) means that we consider the
row of index 0 and the columns of indices going from 1 to k, and φ0 = ΦN (0, 0) is the
constant value taken by the constant eigenfunction on any point.

The following result (proved in the Appendix Section 3.7.2) shows that C̃ allows us
to transfer functions expressed in the extended basis

Lemma 3.4.2 The image of a function f = BMa on shape N is given by BN C̃a

This lemma shows that transferring functions in the extended basis can simply be
done by matrix-vector multiplication, as is the case in the standard basis. Note that the
transfer is not linear in the original functional map C, since the construction of C̃ involves
Kronecker products. This implies that it is not straightforward to include the extended
basis in the pipeline for computing functional maps, since this would involve terms
with products of the unknown map, which could significantly increase the optimization
complexity. Nevertheless, once the map C is computed, using it for function transfer
with the extended basis can be done in closed form.

3.4.4 Function Comparison and Pointwise Map Recovery

We note that in some applications (e.g., converting a functional map to a point-to-point
one) it is important to compare functions by simply comparing their coefficients in a
reduced basis. When considering the extended basis BN for example, this can lead to
problems because the basis is not orthonormal, and furthermore not necessarily full-rank.
This means, in particular, that a single function can be represented using multiple different
coefficients in the extended basis. To alleviate this issue, similarly to the procedure
described in Section 3.4.2 we compute the SVD of

√
ANBN = UΣV>, and for every

function f with coefficients a in the extended basis, such that f = BNa we define its
canonical coefficients using ã = ΣV>a. Note that in this case

‖f‖2A = f>AN f = a>(BN )>ANBNa = a>VΣ2V>a> = ã>ã,
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where the second and third equations hold because f = BNa by assumption and because
the area matrix and the diagonal matrix Σ are symmetric, such that (BN )>

√
AN

>√
ANBN =

VΣ2V>.
It follows that given two functions f1, f2 with coefficients a1,a2 in the extended basis,

we can compute the norm of their difference as simply the L2-norm of the difference
‖ã1 − ã2‖2.

Pointwise map recovery With this procedure in place, we can exploit Eq. (3.1) and
the extended basis for recovering a point-to-point map from a given functional map C.
Note that the input functional map is always given in the original basis, and we only
use extended basis for more accurate function transfer. For converting C to a pointwise
map, we first compute the canonical coefficients of Dirac δ functions at each point y on
shape N in the extended basis. We then compute the image of each δ function of points
on shape M and compute its canonical coefficients. Finally, following the procedure
described in [69] we construct a point-to-point map by looking at the nearest neighbors in
the coefficient space. This procedure has the advantage of being efficient, since functions
are represented in the space of dimension at most k̃N = kN +

k2N+kN
2 , where the second

terms represents the number of distinct pairwise products of basis functions. For small
values of kN the value k̃N is still significantly lower than the number of vertices. In
practice we use (squared) heat kernel instead of Dirac δ functions for representing points,
as described in Section 3.5.3 below.

3.5 Results

In the following experiments we use two standard datasets: FAUST [13] an TOSCA [19].
The former consists of 100 shapes, with 10 subjects in 10 poses, represented as triangle
meshes with the same connectivity and with ground truth point-wise correspondences.
TOSCA high resolution dataset contains synthetic models in 7 different shape classes
with ground truth correspondences given in each class.

3.5.1 Function approximation and transfer

In our first application, we evaluate the utility of our function transfer procedure using
both ground truth (arising from known pointwise maps) and computed functional maps.
Namely, given a set of pairs of (source, target) shapes and a collection of different functions
on each source, we evaluate: i) the approximation of each function on the source shape,
and ii) the transfer of a function between the source and the target shape. Figure 3.7
shows a qualitative example of approximation and transfer of a real-valued function, with
the original function shown on the left. This function is generated as a combination of
an indicator function (on the left leg) a gaussian around a point (top of the right leg) a
sine function of the y coordinate (on the tail) and a continuously increasing function (on
the ears). We compare the standard approach (std) vs. our extended method (prod), for
both function approximation and transfer onto a different pose of the same shape. Note
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original

transfer

approximation

std 0.76 prod 0.32

std 0.76 prod 0.41
Figure 3.7 – Approximation (top) and transfer (bottom) of a real-valued function from a
source shape onto a target shape using a fixed functional map with the standard approach
(center) vs. our extended method (right).

the improvement with our approach (Approach B) as captured by the mean squared error
reported under each plot.

In our quantitative experiments we consider the following families of functions:

• hk k, hk K: the heat kernel functions ht(x, ·) between a random point x and the rest
of the shape approximated using kM + 1 eigenfunctions (for hk k) and using 200
eigenfunctions (for hk K). Note that in the former case, the function is contained
in the span of the original basis, while in the latter 200 > kM.

• HKS, WKS: the Heat and Wave Kernel Signatures [8,92] for 10 randomly time and
energy values respectively.

• Random: the function obtained as a linear combination of the extended basis using
a random set of coefficients.

• XYZ: the X, Y , Z, coordinates of vertices.

• Indicator: the binary indicator function of a random region.
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ground truth approx transfer
function std our l1 std our l1 our l2 our B
hk k 0.00 0.01 0.06 0.06 0.06 0.05
hk K 0.91 0.86 0.91 0.87 0.92 0.86
HKS 0.54 0.00 0.54 0.15 0.15 0.15
WKS 0.21 0.00 0.21 0.04 0.04 0.04
Random 0.38 0.03 0.38 0.07 0.06 0.06
XYZ 0.29 0.21 0.29 0.23 0.27 0.23
Indicator 0.36 0.28 0.37 0.28 0.32 0.28
SHOT 0.84 0.82 0.84 0.82 0.84 0.82
AWFT 0.31 0.26 0.31 0.27 0.30 0.27

Table 3.1 – Approximation and transfer quality results using a ground truth functional
map with kM = kN = 9 of various functions on 20 shape pairs from the FAUST dataset.
Note that for all functions except hk k, which lies in the span of the original basis, our
approach produces a significant improvement.

• SHOT, AWFT: the SHOT [97] and AWFT [59] descriptors for 10 randomly chosen
dimensions.

We compare the function approximation and transfer using the standard method
(std) with the two approaches described in Section 3.4.2. For Approach A we have
two different regularizations using the L1-norm and the L2-norm (our l1 and our l2).
We denote our Approach B with our B. For the L1 regularization we used the Sparse
Optimization Toolbox for Matlab [75].

Table 3.1 shows the results for function approximation and transfer using ground
truth functional maps on a set of shape pairs from the FAUST dataset [13]. Here and
below, the errors are computed as the normalized integral of the differrence between
the function f and the ground truth g as err =

√∫
M(f − g)2dx

/√∫
M(g)2dx, where,

dx is the area element induced by the metric. Note that all of our approaches result
in a significant improvement for approximation and transfer. Note also that although
the L1 regularization produces good results, it performs similarly to other approaches.
At the same time, as it is significantly more time-consuming, and requires solving a
convex optimization problem for every function to be transferred, we omit it from further
evaluation and rely on the L2 regularization for Approach A.

In Table 3.2 we show a similar evaluation but on a computed functional map, using a
recent approach of [68], which estimates a functional map by exploiting a set of descriptors
on each shape, where we use the WKS for some energy values. Here again, our approaches
show a significant improvement with respect to the baseline standard method for all
functions. Throughout our experiments we observed that when increasing the basis size
kM on the source, it is often beneficial to have kN > kM since this allows to better
represent the transfer of basis functions.
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computed approx transfer
function std our A our B std our A our B
hk k 0.00 0.03 0.01 0.13 0.13 0.13
hk K 0.82 0.54 0.49 0.82 0.57 0.58
HKS 0.55 0.14 0.00 0.55 0.22 0.22
WKS 0.14 0.03 0.00 0.14 0.07 0.06
Random 0.48 0.04 0.01 0.49 0.15 0.15
XYZ 0.12 0.09 0.06 0.13 0.11 0.11
Indicator 0.28 0.19 0.17 0.28 0.20 0.19
SHOT 0.81 0.76 0.74 0.81 0.77 0.78
AWFT 0.24 0.19 0.17 0.25 0.20 0.20

Table 3.2 – Approximation and transfer quality using a computed functional map with
kM = 29, kN = 39 using the method from [68] of various functions on 20 shape pairs from
the FAUST dataset. Note in particular that our transfer approach produces a significant
improvement.

computed kM = 6, kN = 7 kM = 27, kN = 35

function std our B std our B
hk k 0.77 0.60 0.08 0.06
hk K 0.92 0.87 0.79 0.58
HKS 0.66 0.61 0.55 0.17
WKS 0.47 0.25 0.17 0.04
Random 0.75 0.69 0.46 0.09
Coordinates 0.34 0.24 0.12 0.10
Indicator 0.58 0.34 0.28 0.19
SHOT 0.90 0.88 0.84 0.81
AWFT 0.35 0.29 0.25 0.21

Table 3.3 – Transfer quality comparison using a ground truth functional map with kM = 6
and kN = 7 and kM = 27 and kN = 35, average on 20 pairs from FAUST dataset. Note in
particular that our transfer approach produces a significant improvement as the number
of basis functions used increases.

Table 3.3 shows how the transfer using standard and our approach benefit from the
increase in the basis size. In the first two columns we use a ground truth functional
map represented by a matrix C with kM = 6 and kN = 7. In the last two columns we
use kM = 27 and kN = 35 non-constant basis functions. These dimensions are chosen
since e.g., starting with k basis functions, the number of different functions obtained
by adding the pairwise products is at most: k + k(k+1)

2 . The transferred functions that
depend on the basis dimension (e.g., the HKS) are computed using the larger value
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Figure 3.8 – Plots of the percentage of the surface area for which the function approxima-
tion and transfer is below some threshold for the HKS (left) and the indicator function
of a region (right), using computed functional maps on 20 pairs of shapes from the
FAUST dataset. Dashed and solid lines represent function approximation and transfer
respectively.

of kM in all cases. As can be seen in Table 3.3, both the standard and our approach
benefit from the increase in the basis size, while our approach is always better for a given
basis size. Observe that the results obtained with the standard approach using more
basis function are close to those obtained with our approach and fewer basis functions.
This is remarkable, given the optimality of the Laplacian eigenfunctions for representing
functions with bounded variation, as shown by Aflalo et al. [1]. Furthermore increasing
the number of basis functions in the standard approach requires solving an eigen-problem
and the estimation of new coefficients in the functional map. Conversely our approach
improves the representation and the transfer of functions without any new estimation of
coefficients. Please see the Appendix for results using functional maps of various sizes.
We also compared our method with first converting the functional map to a point-to-point
one and using the latter for function transfer. This approach produces even more error
than the standard method, as it introduces an additional source of noise.

In Figure 3.8 we show a different representation of the results from Table 3.2 for the
HKS and the indicator functions. Namely, we plot the fraction of the surface area for
which the difference between the approximated and the ground truth functions is below
a threshold γ ∈ [0, 1]. I.e., the x-axis represents the error threshold γ, whereas the y axis
shows the surface area of all points x such that (f(x)− g(x))2 < γ

√∫
g(x)2dx. Figure

3.9 shows some results on the stability of transfer between different meshes. Starting
from an original mesh and a function (left), we compare the transfer using the standard
basis and our extended basis. The two meshes on which we compare the transfer have a
different connectivity: a mesh with non uniform resampling (fewer vertices on the bottom
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original non uniform pathological

std 0.57 prod 0.27 std 0.60 prod 0.22

Figure 3.9 – An example of function transfer from a source shape with a regular mesh
(left), to two different meshes with different triangulations. From left to right: a non
uniform resampling (fewer vertices on the legs), a mesh with pathological triangles (around
the 60% are very thin triangles).

of the shape), a mesh with around 60% of pathological triangles (very thin triangles). As
can be seen, our approach gives better results and is stable with respect to changes in
mesh connectivity.

Approximation in other bases As mentioned above, our extended basis construction
is not tied to the Laplacian eigenfunctions. To illustrate this, in Figure 3.10 we show how
the pointwise products improve the functional space representation in a different basis.
Namely, we perform the same test that is in Figure 3.4, but using different basis manifold
harmonics (MH) and the recently proposed localized manifold harmonics (LMH) [60]. As
can be seen, for both of these bases pairwise products allow a more accurate representation
of the surface.

3.5.2 HKS and WKS approximation and transfer

One interesting observation related to our method is that both the Heat Kernel Signature
and the Wave Kernel Signature functions are of the form ht(x, x) =

∑kM
i=1 αiφ

2
i (x), for

some scalar coefficients αi. In other words, they are constructed explicitly using squares
of eigenfunctions and therefore it must be possible to represent and transfer them exactly
in our extended basis. Therefore, they provide a good test for the correctness of both our
extended function approximation and transfer methods. To demonstrate the difference
between the transfer of these functions using the standard and the extended basis we
show in Figure 3.11 the transfer error using the ground truth functional map of size
kN × kM for increasing kN . Note that for large values of kN we can approximate the
transfer of all kM basis functions from the source well, which means that we would
expect our extended transfer method to produce progressively better results. This can
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region 20 MH 70 LMH MH+ prod LMH+ prod

0.16 0.06 0.04 0.00

Figure 3.10 – Surface reconstruction via approximation of the 3-coordinates functions
using two different bases: the standard manifold harmonics (MH) and localized manifold
harmonics (LMH). On the left we show the original shape and the region (in red) in
which are localized the LMH. On the right of each shape we report the reconstruction
error. The colormap encodes reconstruction error, decreasing from dark red to white.

clearly be seen in Figure 3.11 where our method converges to a very small value while
the standard technique does not improve. This is because the functions φ2i cannot be
well-approximated in the basis of the source shape, which means that regardless of the
basis size on the target, we cannot achieve small error.

3.5.3 Point-to-point map recovery

We also demonstrate the utility of our approach for converting functional maps to point-
to-point ones. As mentioned in Section 3.4.4, our extended basis can also be used to
embed points in a coefficient space where function comparison can be done directly, which
can be useful for point-to-point map recovery. In particular, we represent each point on
the shape as the square of the heat kernel for a small time scale centered at that point.
We then convert a functional map to a point-to-point staring with a ground truth map
and also a computed one using the method of [68] on a set of pairs from the FAUST [13]
TOSCA high resolution datasets [19]. We plot the conversion results in Figures 3.12 and
3.13 using the ground truth and estimated functional maps respectively, both of size
40× 30. Note that as explained in Section 3.5.1 it is beneficial to rectangular matrices C
in order to take full advantage of the use of the products. As can be seen in Figures 3.12
and 3.13 the extended basis and our improved function transfer also contribute to better
point-to-point map recovery.

3.5.4 Joint quadrangulation

We also used our approach in the context of joint quadrangulation of triangle meshes by
adapting the recent technique presented in [10]. This method is based on using functional
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Figure 3.11 – Comparison on the transfer for HKS and WKS, average on 5 pairs from
FAUST dataset [13]. Starting with k + 1 = 10 basis functions on the source shape we
compute HKS and WKS for 1 scale, and their coefficients in the k + 1 fixed basis and
its products extension. Varying the basis dimension on the target shape from 10 to 100,
we define the C and the C̃ and compute the tranfer of HKS and WKS on the target
shape. Here we plot the transfer error (y-axis) for HKS (left) and WKS (right) varying
the basis dimension on the target shape (x-axis).As can be seen the error with products
is smaller and decreases with increasing basis dimension while without products error
stops decreasing.

maps for constructing consistent cross fields on a pair of surfaces, which are in turn used
for designing approximately consistent quad-meshes. Moreover, the pipeline presented
in [10] only relies on the ability of functional maps to transfer real-valued functions and
does not require point-wise correspondences. We adapted this method to take advantage
of the extended basis by simply enabling the transfer of pointwise products of basis
functions, without any other modification, using the code provided by the authors. Figure
3.14 presents a result on a pair of shapes using the standard Laplacian basis with k = 5
eigenfunctions and using our extended basis. Note that the presence of pointwise products
in the extended basis allows us to transfer higher frequency information which leads to a
more consistent result overall. In this application we used a functional map arising from
a ground truth pointwise correspondence. Although preliminary, this result suggests the
utility of our extended function transfer for joint quadrangulation, and we leave a more
in-depth exploration of this application as future work.

3.6 Conclusion, Limitations and Future Work

In this chapter, we presented a novel method for function transfer with functional maps,
by exploiting the algebraic structure of function spaces. We showed that by extending
the functional basis to include pointwise products of basis functions, we can significantly
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Figure 3.12 – Quality of correspondences obtained from a given ground truth functional
map of dimension 40× 30, between all the possible pairs of shapes for one subject from
FAUST dataset (left), and for all the pairs of shapes for the centaur from TOSCA high
resolution dataset (right).

improve both the reconstruction and the transfer quality of functions, while maintaining
the computational complexity of the original functional map. Our approach has direct
consequences on all applications of functional maps, and in particular shows how high-
frequency information can be transferred even in the presence of only low frequency basis
functions.

Our main limitation is that in the current formulation we only use products of pairs
of basis functions. Although we have observed that higher-order products do not often
bring significant improvement, a more in-depth analysis of the scenarios in which they can
be useful is necessary. In the future, we also plan to work on more scalable methods for
function approximation, by removing the need to explicitly compute the entire extended
basis, which can be prohibitive for large bases.

3.7 Appendix

3.7.1 Additional Results

Tables 3.4, 3.5 and 3.6 show approximation and transfer quality of different functions
using ground truth and computed functional maps of different sizes.
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Figure 3.13 – Quality of correspondences obtained from a computed functional map of
size 40× 30, between all the possible pairs of shapes for one subject from FAUST dataset
(left), and all pairs of shapes for the centaur from TOSCA high resolution dataset (right).

Figure 3.14 – Joint quadrangulation of two triangle meshes using the approach of [10] with
the standard Laplacian k = 5 eigenfunctions (left) and our extended (right) basis. Note
that the presence of products of basis functions allows us to transport higher frequency
information, which leads to a more consistent result.

3.7.2 Proof of Lemma 2:

The image of a function f = BMf on shape N is given by BN C̃f . where

C̃ =


C

φ0C(0, 1 : k)⊗C(0 : k, 1 : k)

+φ0

[
0 . . . 0

C(1 : k, 1 : k)

]
⊗C(0, 1 : k)

0 C(1 : k, 1 : k)⊗C(1 : k, 1 : k)


(3.6)

Proof Let KM = 1 + kM + kM
2 be the number of columns in BM. By linearity, it is
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computed approx transfer
function std our A our B std our A our B
hk k 0.00 0.01 0.01 0.05 0.05 0.05
hk K 0.88 0.75 0.78 0.88 0.82 0.79
HKS 0.54 0.00 0.00 0.54 0.11 0.11
WKS 0.22 0.00 0.01 0.22 0.04 0.04
Random 0.38 0.00 0.00 0.38 0.05 0.05
XYZ 0.28 0.18 0.20 0.28 0.25 0.23
Indicator 0.40 0.28 0.29 0.41 0.33 0.31
SHOT 0.84 0.80 0.81 0.84 0.83 0.82
AWFT 0.31 0.24 0.25 0.32 0.29 0.27

Table 3.4 – kM = 9 and kN = 9, average on 20 pairs from FAUST dataset. Computed
functional map

ground truth approx transfer
function std our A our B std our A our B
hk k 0.00 0.03 0.01 0.26 0.20 0.20
hk K 0.79 0.52 0.45 0.80 0.57 0.75
HKS 0.57 0.14 0.00 0.57 0.43 0.54
WKS 0.12 0.03 0.00 0.12 0.07 0.05
Random 0.47 0.04 0.01 0.48 0.17 0.18
XYZ 0.12 0.09 0.06 0.12 0.13 0.16
Indicator 0.27 0.18 0.17 0.27 0.20 0.25
SHOT 0.82 0.76 0.75 0.82 0.78 0.88
AWFT 0.24 0.19 0.17 0.25 0.22 0.27

Table 3.5 – kM = 29 and kN = 29, average on 20 pairs from FAUST dataset. Given a
ground truth functional map

sufficient to prove the statement for each e(KM)
i = (0, . . . , 0, 1, 0, . . . , 0) ∈ RKM (the 1 is

at position i).

• if 0 ≤ i ≤ kM: By definition of C̃, BN C̃f = ΦNCe
(kM+1)
i which is the image of

BMe
(kM+1)
i = f .

• if i > kM: we write i = kM + kM(i1 − 1) + i2, which represents the pair of indices
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ground truth approx transfer
function std our A our B std our A our B
hk k 0.00 0.03 0.01 0.09 0.09 0.08
hk K 0.79 0.54 0.49 0.79 0.57 0.61
HKS 0.55 0.14 0.00 0.56 0.18 0.14
WKS 0.13 0.03 0.00 0.13 0.05 0.04
Random 0.46 0.04 0.01 0.46 0.09 0.09
XYZ 0.12 0.09 0.06 0.12 0.10 0.09
Indicator 0.28 0.19 0.18 0.28 0.20 0.19
SHOT 0.82 0.76 0.75 0.82 0.77 0.78
AWFT 0.24 0.19 0.17 0.25 0.20 0.20

Table 3.6 – kM = 29 and kN = 39, average on 20 pairs from FAUST dataset. Given a
ground truth functional map

1 ≤ i1, i2 ≤ kM.

BN C̃f = ΦN (φ0(Ce
(kM+1)
i1

)0(Ce
(kM+1)
i2

))

+ φ0(Ce
(kM+1)
i2

)0(Ce
(kM+1)
i1

)1:kM)

+ (ΦN ⊗ ΦN )((Ce
(kM+1)
i1

)1:kM ⊗ (Ce
(kM+1)
i2

)1:kM)

= (ΦNCe
(kM+1)
i2

)� (ΦN (Ce
(kM+1)
i1

)0)

+ (ΦN (Ce
(kM+1)
i1

)1:k)� (ΦN (Ce
(kM+1)
i2

)0)

+ (ΦN (Ce
(kM+1)
i1

)1:k)� (ΦN (Ce
(kM+1)
i2

)1:k)

=(ΦNCe
(kM+1)
i2

)� (ΦN (Ce
(kM+1)
i1

)0)

+ (ΦN (Ce
(kM+1)
i1

)1:k)�
(
(ΦN (Ce

(kM+1)
i2

)0)

+ (ΦN (Ce
(kM+1)
i2

)1:k)
)

=(ΦNCe
(kM+1)
i2

)� (ΦN (Ce
(kM+1)
i1

)0)

+ (ΦN (Ce
(kM+1)
i1

)1:k)� (ΦNCe
(kM+1)
i2

)

=(ΦNCe
(kM+1)
i2

)� (ΦNCe
(kM+1)
i1

),

which is the point-wise product of the images of BMekM+1
i1

and BMe
(kM+1)
i2

, which
is, by Eq. (3.1), the image of BMe

(kM+1)
i1

�BMe(kM+1)
i2

= f .

�

3.7.3 Proof of Theorem 3.4.1

Note: To avoid heavy notations while proving Theorem 3.4.1, we will use specific notations
for this subsection.
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We consider the following problem:
(APPROX):
INPUT: N ∈ N, K "basis" functions ϕ1, . . . , ϕK : {1, . . . , N} → R, a "target" function
f : {1, . . . , N} → R, ε > 0, a cost c ∈ N
OUTPUT: g1,1, . . . , g1,r1 , · · ·, gP,1, . . . , gP,rP ∈ {1, . . . , k}, α1, . . . , αP ∈ R such that:

• ‖f −∑P
i=1 αi ·Gi‖∞ < ε, where Gi is defined as Gi =

∏ri
j=1 ϕgi,j

• ∑P
i=1(ri−1) ≤ c (ri−1 represents the number of multiplications that was necessary

to perform in order to obtain Gi)

and the boolean TRUE, if such a construction exists.
The boolean answer FALSE if no such construction exists.

We want to show this problem NP − hard. For this, we will make a polynomial
reduction from 3− SAT :
(3-SAT):
INPUT: X1, . . . , XQ boolean variables, (T1,1 ∨ T1,2 ∨ T1,3) ∧ . . . ∧ (TM,1 ∨ TM,2 ∨ TM,3)
a boolean formula, where each Tm,v is some Xi or some X̄i (negation of Xi).
OUTPUT: The boolean TRUE, a function g : {1, . . . , Q} → {FALSE, TRUE} such
that assigning each variable Xq to g(q) satisfies the above boolean formula described by
the Tm,js.
The boolean FALSE if no assignment of Xq to boolean values can satisfy the above
boolean formula.

Reduction from (3-SAT) to (APPROX):
We assume that we are given an initial instance of (3-SAT) given with the above no-
tations. We will construct an instance of (APPROX) whose solution will be proven
convertible into a solution of the initial problem.

Summary of the proof:
STEP 1:
We will define Q+M clusters of variables n ∈ {1, . . . , N} over which f and a cluster of
basis functions fk for some k ∈ {1, . . . ,K} will take a non-zero value.
STEP 2:
We will prove that each of the Q + M pairs of clusters (variables - functions) defined
incurs a cost ≥ 1, therefore the total cost is ≥ Q+M . In the reduction that we propose,
the initial instance of (3-SAT) will have a solution if and only if the total cost of the
corresponding (APPROX) that we built is equal to Q+M .
Therefore, we can deduce :
Lemma: any solution (APPROX) that we consider can be supposed to involve only 1
product for each pair of clusters.
STEP 3:
We show the first direction: if the initial instance of (3-SAT) has a solution then we
have a solution to our constructed instance of (APPROX).
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1 ≤ n ≤ N = 7Q+ 6M +M2

(1, 1, 1) . . . (1, 1, 7) . . . (1, Q, 1) . . . (1, Q, 7)

(2, 1, 1) . . . (2, 1, 6) . . . (2,M, 1) . . . (2,M, 6)

(3, 1, 1) . . . (3, 1,M) . . . (3,M, 1) . . . (3,M,M)

Figure 3.15 – Representation of the variable 1 ≤ n ≤ N

1 ≤ k ≤ K = 3Q+M2 + 3M

(4, 1, 1) (4, 1, 3) . . . (4, Q, 1) (4, Q, 3)

(5, 1, 1) . . . (5, 1,M) . . . (5,M, 1) . . . (5,M,M)

(4, 1, 2) (4, Q, 2)

(6, 1, 1) (6, 1, 3) . . . (6,M, 1) (6,M, 3)(6, 1, 2) (4, Q, 2)

Figure 3.16 – Representation of the variable 1 ≤ k ≤ K

The reader should then be able to guess from the structure of this solution how we can
prove the other direction.
STEP 4:
Using the Lemma, we prove the other direction.

STEP 1:

We fix ε very small, for example ε = 1
3M+6 will work. For our reduction, we

will independently define some basis functions over some n ∈ {1, . . . , N}, specifically
designed for encoding the initial instance of (3-SAT). Because we want to design these
functions over 3 independent set of values taken by n, we will change the notation: we
fix N = 7Q + 6M + M2 but for convenience of notation, instead of using an index
1 ≤ n ≤ N , we will use indices (1, q, j) with 1 ≤ q ≤ Q and 1 ≤ j ≤ 7, indices (2,m, j)
with 1 ≤ m ≤ M and 1 ≤ j ≤ 6 and (3,m,m′) with 1 ≤ m,m′ ≤ M , as in Figure 3.15.
Likewise, we fix K = 3Q + M2 + 3M but we will use indices (4, q, j) for 1 ≤ j ≤ 3,
(5,m,m′) and (6,m, j) for 1 ≤ j ≤ 3, as in Figure 3.16.
Now we want to define the values taken by the functions f and ϕ. over n ∈ {1, . . . , N} in
such a way that:

• f , ϕ(4,q,.) are essentially the only functions that may take a non-zero value at (1, q, .),
as shown on Figure 3.17

• f , ϕ(5,m,.), ϕ(6,m,.) are (exactly) the only functions that may take a non-zero value
at (2,m, .), as shown on Figure 3.18

In each of the previous cases, we will define the values taken in such a way that, in order
to approximate f , the only option will be to make a product of some kind.
Before explaining the behavior that our definitions will induce over a potential solution,
let’s define the values taken by each function so that the reader can refer to it (or refer
to Figures 3.17, 3.18) to follow the analysis:
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(1,q,1) (1,q,2) (1,q,3) (1,q,4) (1,q,5) (1,q,6) (1,q,7)

ϕ(4,q,1)

ϕ(4,q,2)

ϕ(4,q,3)

f 1 0 0 0 0 0 0

1

1

1

1 0 1 0 1 0

1 1 0 00 −1

1 1−1000

Figure 3.17 – functions defined over (1, q, j)

(2,m,1) (2,m,3) (2,m,4) (2,m,5) (2,m,6)(2,m,2)

f

ϕ(5,m,m′)

ϕ(6,m,1)

ϕ(6,m,2)

ϕ(6,m,3)

1 0 0 0 0 0

1 1

1 1 1

1 1 1

1 1 1

0 0 0 0

0 0 0

0 0 0

0 0 0

(3,m,m’)

0

M

0

0

0

Figure 3.18 – functions defined over (2,m, j)

• Target function:
f((1, q, j)) = 1 if j = 1, f((2,m, j)) = 1 if j = 1, f(.) = 0 in all other cases.

• Basis functions ϕ(4,q,.): ϕ(4,q,1)((1, q, j)) = 1 if j ∈ {1, 2, 4, 6}, ϕ(4,q,1)(.) = 0
everywhere else.
ϕ(4,q,2)((1, q, j)) = 1 if j ∈ {1, 3, 5}, −1 if j = 4, 0 for other cases.
ϕ(4,q,3)((1, q, j)) = 1 if j ∈ {1, 3, 7}, −1 if j = 6, 0 for other cases.

• Basis functions ϕ(5,m,m′):
ϕ(5,m,m′)((2,m, j)) = 1 if j ∈ {1, 2}, ϕ(5,m,m′)((3,m,m

′)) = M , ϕ(5,m,m′)((1, q, j)) =
1
m′ if ∃v : (Tm,v = Xq & j = 4) or (Tm,v = X̄q & j = 6), ϕ(5,m,m′)(.) = 0 for other
cases.

• Basis functions ϕ(6,m,.):
ϕ(6,m,j)((2,m, j

′)) = 1 if j′ ∈ {1, 3, 3 + j}, ϕ(6,m,j)((1, q, j
′)) = 1 if (Tm,j = Xq &

j′ = 4) or (Tm,j = X̄q & j′ = 6), 0 for other cases.
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STEP 2:

On Figure 3.17 we can see the values taken by f , ϕ(4,q,1), ϕ(4,q,2) and ϕ(4,q,3) over
(1, q, 1), (1, q, 2), . . . , (1, q, 7). Key step: Because no other function will take a non-zero
value at (1, q, j) for j 6= 4, 6, we will be able to deduce that in order to approximate f
there will be no other option than making at least 1 product. Intuitively we can see it
because if we try to approximate the value f((1, q, 1)) = 1, using ϕ(4,q,1) (resp. ϕ(4,q,2),
ϕ(4,q,3)) would poorly approximate f at (1, q, 2) (resp. (1, q, 5), (1, q, 7))

On Figure 3.18 we can see the values taken by f , ϕ(5,m,m′) and ϕ(6,m,j′) over (2,m, .).
Key step: As before, because no other function will take a non-zero value at (2,m, .),
we can deduce that in order to approximate f there will be no other option than making
at least 1 product.
We formally prove these two key steps below by evaluating some functions at values
1 ≤ n ≤ N .

For convenience of notation, we will write α(Gp) instead of αp, and we may also use
this notation for some functions Gp that are not constructed by the solution. In our
notation, this will be equivalent to α(Gp) = 0.

Let H(n) denote the property: |f(n) −∑P
i=1 αi · Gi(n)| < ε obtained from the

evaluation of ‖f −∑P
i=1 αi ·Gi‖∞ < ε at n.

Evaluation at n = (1, q, .) :

• H((1, q, 2)) ⇒ |α(ϕ(4,q,1))| < ε

• H((1, q, 5)) ⇒ |α(ϕ(4,q,2))| < ε

• H((1, q, 7)) ⇒ |α(ϕ(4,q,3))| < ε

• H((1, q, 1)) ⇒ Since ε ≤ 1
5 , at least one product is made among the functions

ϕ(4,q,1), ϕ(4,q,2), ϕ(4,q,3)

Evaluation at n = (2,m, .) and n = (3,m,m′):

• H((3,m,m′)) ⇒ |α(ϕ(5,m,m′))| < ε
M

• H((2,m, 3 + j)) ⇒ |α(ϕ(6,m,j))| < ε

• H((2,m, 1)) ⇒ Since ε ≤ 1
6 , at least one product is made among the functions

ϕ(5,m,.), ϕ(6,m,.)

We can deduce: Lemma: any solution (APPROX) that we consider can be supposed
to involve only 1 product for each pair of clusters.

STEP 3:
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We claim that if solving this created (APPROX) problem leads to a cost c = Q+M
then the corresponding (3-SAT) problem has a solution which can be reconstructed from
the g.,. s. Otherwise c will be > Q+M and there will be no solution to the corresponding
(3-SAT). This will prove that (APPROX) is NP-hard.

At this step, we only prove the first direction:
First direction:

We notice that if there is a solution to the given (3-SAT) problem, then there is a
solution to our constructed (APPROX) problem. For this, define for each q some Gp as
ϕ(4,q,1) × ϕ(4,q,2) or ϕ(4,q,1) × ϕ(4,q,3) depending on whether Xq is true or false. Define
also, for each m, some Gp as ϕ(5,m,m′) × ϕ(6,m,j) where j is any (let’s say the first) value
for which Tm,j is true, and m′ is the number of times when we use ϕ(6,m,j) in such
products. To approximate f , we add all the Gp constructed ; that is we take αp = 1 ∀p.

This construction also gives a hint to the reader for guessing the way to recover the
solution of (3-SAT) from the solution of (APPROX), by looking at which products
were computed to construct the Gp s.

STEP 4:

Other direction:

Intuitively we can see that the product made on Figure 3.17 should be ϕ(4,q,1)×ϕ(4,q,2)

or ϕ(4,q,1) × ϕ(4,q,3) because if we try to approximate the value f((1, q, 1)) = 1, using
ϕ(4,q,2)ϕ(4,q,3) would poorly approximate f at (1, q, 3).
We will use this option to encode whether the boolean variable Xq is set to true
(ϕ(4,q,1)ϕ(4,q,2) is computed) or to false (ϕ(4,q,1)ϕ(4,q,3) is computed).

Evaluations at (1, q, .) :

• H((1, q, 3)) ⇒ |α(ϕ(4,q,2) × ϕ(4,q,3))| < ε

• H((1, q, 1)) ⇒ Since ε ≤ 1
5 , thanks to the Lemma: α(ϕ(4,q,1) × ϕ(4,q,2)) 6= 0 xor

α(ϕ(4,q,1) × ϕ(4,q,3)) 6= 0

Evaluation at (2,m, .) and (3,m,m′):

• H((2,m, 2)) ⇒ |α(ϕ(5,m,m′) × ϕ(5,m,m′′))| < ε

• H((2,m, 1))⇒ Since ε ≤ 1
6 , thanks to the Lemma: ∃!m′, j : α(ϕ(5,m,m′)×ϕ(6,m,j)) 6=

0.

• H((1, q, 4)) (respectively (1, q, 6)) for Xq (resp. X̄q) matching Tm,j of the above
constraints ⇒ the product chosen in the previous analysis should match. That is,
α(ϕ(4,q,1)×ϕ(4,q,2)) 6= 0, for this case where Tm,j = Xq (resp. α(ϕ(4,q,1)×ϕ(4,q,3)) 6= 0,
case where Tm,j = X̄q).
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Therefore, fixing each Xq to true or false depending on whether α(ϕ(4,q,1)×ϕ(4,q,2)) 6=
0 or α(ϕ(4,q,1) × ϕ(4,q,3)) 6= 0 gives a solution to the initial (3-SAT) problem.

3.7.4 Future work

We have shown above that the image of the product of 2 functions can be defined
as the product of the image. This can be generalized to higher order products, for
example using 3 products. However, using more than 2 products tends to increase noise
and does not give better approximations in practice. On the other hand, the product
property can be generalized to applying any smooth function: If we already know the
images Ψ0, . . . ,Ψk−1 ∈ VN → R of some functions Φ0, . . . ,Φk−1 (for example the Laplace
basis functions in our case), then we can infer that the image of h ◦ (Φ0, . . . ,Φk−1)
should be h ◦ (Ψ0, . . . ,Ψk−1) for any smooth function h : Rk → R. This follows from
h ◦ (Ψ0, . . . ,Ψk−1) = h ◦ (Φ0 ◦ T, . . . ,Φk−1 ◦ T ) = (h ◦ (Φ0, . . . ,Φk−1)) ◦ T . The case of
the product of 2 functions corresponds to h(X0, . . . , Xk−1) = Xi ×Xj .

It would be interesting to see how this function h can be best chosen to fit to a
function f ∈ VM → R so that f ≈ h ◦ (Φ0, . . . ,Φk−1) allows us to transfer f .



Chapter 4

Deep learning for non linear
function approximation and

mapping

The approximation and transfer of functions between shapes is a widely studied
task in geometry processing due to its great importance in several applications. In
this chapter, starting from a given functional map between two shapes, we aim at
learning how to improve its approximation and transfer power without any additional
effort in the correspondence estimation, or increasing the basis in which the map is
expressed. We achieve this goal by demonstrating that it is possible to compute a
non-linear approximation of a function using a fixed size basis, which can then be
transferred directly using the given functional map. For this, we adopt a strategy
based on neural networks that gives rise to a non-linear representation, leading to
very accurate solutions. We exploit the power of our non-linear functional space
representation for improving the quality of functional transfer and point-to-point
map recovery with respect to existing methods. We show the improvement provided
by our framework in segmentation transfer.

4.1 Introduction

Over the last decades, the use of functional space representation and analysis has grown
significantly in the fields of geometry processing and shape analysis. A functional space
can be seen as an alternative characterization of the manifold over which it is defined.
This characterization is informative and independent from the discretization adopted to
describe the manifolds, making it particularly flexible. Functional representation owes
most of its strength to the functional maps framework, introduced in [69]. Based on
the functional shape representation of surfaces, this framework provides a particularly
simple and flexible approach for the estimation of correspondences between shapes. Since
the original work [69], a large number of applications and methods have utilized this
approach for geometry processing (see [70] for a recent overview).

Most of the works that adopt the functional maps framework are based on representing
the functional space on a shape by a small set of functions that, combined together, span
a sufficient subspace. The extension of the Fourier representation to curved surfaces,
based on a small number of eigenfunctions of the Laplace-Beltrami operator (LBO), is by
far the most commonly adopted functional space representation for many reasons. First,
it has been extensively studied in several areas, including differential geometry, signal
processing, and, more recently, computer science and geometry processing. Furthermore
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the Laplace-Beltrami operator is completely intrinsic, in other words it is independent
from the 3D embedding in which the manifold is represented, which provides robustness
to near-isometric shape deformations in practice. Moreover, several standard approaches
have been proposed for computing the LBO and its associated eigenfunctions. Finally,
using only a relatively small number of such eigenfunctions, it is possible to obtain a
very concise representation that still remains informative. Finally, the optimality of
the Fourier basis for the representation of smooth functions defined on surface has also
been recently proved in [1]. The main drawback of the Laplace-Beltrami eigenbasis is
that there is a trade-off between the dimensionality of the basis used and the range of
frequencies that can be represented, if the eigenfunctions are combined linearly. In other
words it is not possible to obtain at the same time a very compact basis, which can
represent a wide range of frequencies of functions. When considering only the first few
eigenfunctions, intuitively, this limitation is due to the low pass representation obtained
using such a basis. In many recent works, alternative functional space representations
have been proposed, [22, 46, 60, 66, 67]. All these methods tried to improve the functional
space description allowing the representation of higher frequency with respect to the ones
represented by the Laplace-Beltrami basis.

Despite the inherent limitations of representing functional spaces using a reduced
basis, it has nevertheless been observed that the functional maps pipeline can allow
to efficiently capture the low frequency information present in a map, which can then
potentially be extended to other frequencies as well. This fact has been shown in Chapter
3, where functions are represented not only as a linear combination of the standard LBO
eigenfunctions but also allowing elementwise products between pairs of basis functions.
Since a functional map corresponding to a point-to-point map must also preserve products
of functions [87] we showed in Chapter 3 that in many cases higher-frequency information
can be transferred without any additional effort in functional map estimation.

In this work we propose to extend this idea and to apply an arbitrary non-linear
transformation of the basis functions to approximate and transfer real-valued functions
using a given functional map. For this, we propose a deep learning based solution for non-
linear function approximation and mapping. Our formulation exploits the representation
power of neural networks to approximate non-linear transformations, and also uses strong
regularization that is adapted to the functional map setting, in which the basis can
undergo significant changes before and after the transfer. Once we learn an optimal non-
linear function approximation, applying it on the target shape is trivial, since functional
maps associated with point-to-point correspondences must preserve arbitrary non-linear
transformations of functions pointwise.

As we show in our experiments this non-linearity gives rise to substantial improvements.

4.2 Related Work

Shape comparison and matching is among the key problems in shape analysis. This
problem usually boils down to computing an accurate pointwise correspondence or map
between a pair of shapes. Following this point of view, a large number of methods have
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been proposed over the last decades, [18,28, 43, 48, 54, 61, 88,90], just to name a few. See
also [12,94,100] for recent overviews.

In this work, we are interested in a particular class of methods based on the functional
maps framework, which was first introduced in [69]. Functional maps model correspon-
dences via linear operators between functional spaces defined on manifolds. Following
the original approach, most works in this domain, including e.g. [46, 52, 68, 80] encode
functional maps as small-sized matrices that represent linear transformations between
spaces spanned by a fixed number of basis functions. Although often easy to compute,
this approach is also inherently limited in terms of its power to represent and transfer
functions that only lie in the span of the pre-computed basis.

Due to this strong dependence of functional maps on the basis in which they are
expressed, the choice of basis plays a crucial role in practice. On the one hand, the
size of the basis must be sufficiently small to allow the computation of the functional
maps efficiently in practice, but on the other hand it must be sufficiently large to
transfer sufficiently “interesting” functions accurately. The standard choice of basis in
the functional maps framework consists of the first few eigenfunctions of the Laplace
Beltrami operator. In the seminal work [95] Taubin has shown the similarity between
the Laplacian basis and the classical Fourier analysis, as well as its utility in geometry
processing applications. In [49] and [98] many useful properties of the Laplacian basis
were shown, while its optimality for representing smooth functions was demonstrated
in [1]. Although by choosing a small number of eigenfunctions, the resulting truncated
basis can be made really concise, its main drawback is that it then acts as a low-pass
filter by only allowing to represent sufficiently low-frequency functions.

Several alternatives to the Laplacian basis have also been proposed. For example,
Kovnatsky et al. [46] proposed a coupled basis obtained for a pair of shapes starting
from their Laplacian basis. This basis suffers from the same limitations as the original
Laplacian basis but it aligns the functional representations on the two shapes. In [22]
and [60], two localized versions of the Laplacian basis have been proposed. In [22] the
Laplacian operator is modified in order to distribute the energies of the eigenfunctions with
respect to a particular potential defined on the surface. In [60], a local and orthonormal
enhancement of a small Laplacian basis is obtained from another modified version of
the Laplace-Beltrami operator. Similarly in [66] the authors proposed an approach for
promoting sparsity in the computed basis, which also often results in more localized
bases. All of these works propose specialized functional bases, aimed at representing a
pre-defined (e.g. localized) class of functions more accurately. Instead, we propose to
apply a non-linear transformation on a given basis to be able to represent and transfer
arbitrary functions.

Since its introduction, the functional map framework has led to several follow-up
works and applications. We briefly mention some of them: [2], in which the Generalized
Multi-Dimensional Scaling is extended to the spectral domain, partial matching [53,80],
consistent vector field design [9] and joint quadrangulation between shapes [10] among
others. All of these works are based on the ability of functional maps to transfer
information, and can therefore directly benefit from the ability to extend their expressive
and transfer power. To achieve this, we focus on the representation of the functional space.
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Our main goal is to obtain an “ optimal” representation via a non-linear combination of
some given basis, for which we exploit a novel learning-based strategy.

Learning and, in particular, deep learning has been successfully applied in shape
correspondence in general [14, 15, 52] and in the functional maps framework in particular.
Most notably, in the latter category, in [24], the authors propose to learn a set of weights
over given descriptor functions that would result in the most accurate functional map
estimation. More closely related to this chapter, is the work of [51] in which the authors
use deep learning to non-linearly combine descriptors, with the goal of computing optimal
functional maps. Our work is fundamentally different in that rather than computing a
non-linear combination of descriptors, we optimize for a combination of basis functions
in order to approximate and transfer some function of interest. As we show below,
this allows to improve the accuracy of function transfer even when using ground truth
functional maps of a fixed size. In this way, the approach of [51] is complementary to
this chapter, since it focuses on computing optimal functional maps starting from some
fixed descriptors, while we focus on optimally using reduced-size functional maps to
approximate and transfer certain functions.

This chapter is very related to the approach for extending the representation of the
functional spaces, proposed in Chapter 3. In that part, we showed that by computing an
“extended basis” consisting of both the Laplacian eigenfunctions and of their pointwise
products it is possible to both represent a richer class of functions and also to transfer
them using a fixed functional map without any additional computational effort.

We propose to build on that work and show that other non-linear combinations of
basis functions can be used to extend the representation and transfer power of functional
maps even further, again without requiring to recompute the functional maps or increase
the size of the functional basis. This is due to the fact that in addition to products,
functional maps arising from point-to-point maps must preserve arbitrary non-linear
transformations of functions. To achieve this goal we use a formulation based on a neural
network architecture, which is well-adapted to approximate non-linear transformation
of input data. As we show below, this leads to significant improvement in terms of the
accuracy of function transfer compared both to the basic linear functional maps approach
and to the product-based method in Chapter 3.

To summarize, our main goal is to learn a new representation of functions defined
on surfaces, achieving better function approximation and transfer between shapes and
enhancing the performance of the functional maps framework. With this aim we show
how deep learning tools can be used to find an optimal representation.

4.3 Background

In this chapter, we propose an extension of the main idea presented in Chapter 3. We
start by observing that a generalization of equation 3.1 is that any pointwise operation
applied to a set of functions defined on the source shapeM should transfer as the same
pointwise operation applied to the image of this (ordered) set of functions.
This can be formalized as follows:
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Lemma:
for any smooth functions h : Rk → R, ϕ1, . . . , ϕk :M→ R, the image of h ◦ (ϕ1, . . . , ϕk)
(pointwise composition) on N is h ◦ (ψ1, . . . , ψk), where each ψi is the image of ϕi.

To see this, notice that

h ◦ (ψ1, . . . , ψk) = h ◦ (ϕ1 ◦ T, . . . , ϕk ◦ T ) = (h ◦ (ϕ1, . . . , ϕk)) ◦ T

Note that equation 3.1 is a particular case of this Lemma, for which we take as
function h the function that makes the product between 2 of its variables ϕi and ϕj for
some i, j.

4.4 Main Idea

Similarly to the method proposed in Chapter 3, we propose here to improve the accuracy
of the transfer of a function f :M→ R on N . This time we rely on the Lemma using
the basis functions of ΦM as (ϕ1, . . . , ϕk). Indeed, these are functions whose transfer on
N is given by the functional map, by definition.

Because we want to be as general as possible, we would like to allow any function
h. For this, we use a neural network that will optimize for the best possible way of
approximating f(x) from ΦM(x, :) (row x of ΦM). That is, the neural network h should
minimize

∑
x∈VM Ax (f(x)− h (ΦM(x, :)))2, where Ax is the area associated to the vertex

x:
hopt = arg min

h

∑
x∈VM

Ax (f(x)− h (ΦM(x, :)))2

We define the loss function of the neural network as:∑
x∈VM Ax (f(x)− h (ΦM(x, :)))2∑

x∈VM Axf(x)2

Then we apply our neural network to ΦNC in order to get the approximate transfer
g : N → R of f , output of our method. Thanks to the Lemma discussed in the previous
section, the output g is likely to be indeed a good approximation of the exact transfer
f ◦ T .

Similarly to the loss function, we define our test error as∑
y∈VN Ay ((f ◦ T )(y)− g(y))2∑

y∈VN Ay(f ◦ T )(y)2

where g(y) = h ((ΦNC)(y, :)) is our approximate transfer.
This is the error that we plot in Figure 4.2 of the section 4.7.

4.5 Description

We specifically design a neural network so that it should approximate any function f
at least as well as the standard projection, as shown on Figure 4.1. The input of our
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Figure 4.1 – Our neural network, example for kM = 3. It takes as input kM real numbers
that correspond to the spectral embedding of a vertex x ∈ VM, and gives as output an
approximated value f(x) of the function that we want to transfer

network always has size kM and the output has size 1, because we want our network
to act as a function h : RkM → R. Our network is made of 1 intermediate layer of size
kM, fully connected and activated with a rectified linear unit activation (“ReLu”). The
last layer, of size 1, is a linear combination of the intermediate layer (size kM) and of
the input layer (size kM). This design ensures that, if no better approximation is found,
our network can at least linearly combine the first kM inputs as in the basic projection
method. Therefore, after some optimization, we should expect our network to improve
over the standard projection method, at least for approximating the input function f .

Because our method is based on deriving the transfer of a given function from the
transfer of some source functions that we already know how to transfer (in our case the
eigenfunctions on the source shape) it it important that our transfer for these source
functions should be very accurate. Therefore, instead of using a square matrix C, we use
a rectangular matrix C, with a larger basis on the target shape N than on the source.
These additional frequencies on the target shape allow us to get a more accurate image
of the source functions (the basis functions on the source shape).

4.6 Parameters

We implemented the network described in Figure 4.1, in TensorFlow. We trained it using
the Adam optimizer with a learning rate of 0.001. We compute our average over our
functions, over 10 pairs of shapes from the Faust dataset ( [13]).

We use it for both the coordinate functions X, Y , Z, and for 10 indicator functions
of different segments, leading to 2 different plots shown on Figure 4.2.

All results are computed for kN = 10, 30, 50, 70, 90, 110, 130, 150, 170, 190, 210 (x axis),
the last value at position 230 corresponds to the approximation error∑

x∈VM Ax (f(x)− h (ΦM(x, :)))2∑
x∈VM Axf(x)2

(4.1)
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Figure 4.2 – Comparison of the average error made by 4 different methods as a function
of kN , for kM = 10 fixed. The last value on each curve represents the approximation
error made on the source shape. Left: coordinate functions (X, Y, Z). Right: segment
indicator functions, for 10 different segments.

The “p2p” method consists in first converting the map to a point-to-point map, its
approximation error is 0 by convention, because that method does not need to approximate
f before transferring it. For the same reason, on the column that corresponds to the “p2p”
method on the qualitative evaluation (Figures 4.4 and 4.3), the image that corresponds
to the approximation (at the top) is simply the exact function on the source.

In the experiments below we use the ground truth functional map Cgt, as a way of
showing that our method can be successful for a sufficiently good map. In practice the
interesting case should indeed use a computed map instead, some preliminary results that
are not included here show that our improvement can generalize to a computed map.

4.7 Results

On Figure 4.2, we can see a comparison of the approximation and transfer errors made
by different methods:

• standard method (std), that consists in simply projecting the function over the
space spanned by the basis, then transferring it using the functional map matrix C.

• point-to-point conversion (p2p), which first converts the functional map to a point
to point map using nearest neighbors, then use the obtained correspondence directly.

• product (prod) is the method of Chapter 3

• Our method (ours) described above

For each method, we plot a curve that shows the average transfer error made for the
3 coordinate functions X, Y, Z (left) or 10 segment indicator functions (right), over 10
pairs of shapes from the FAUST dataset [13]. The error is weighted by the area weights
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Figure 4.3 – Example comparison of different methods for transfering a coordinate function
from the source shape (top row) to the target shape (bottom row). kM = 10, kN = 90.
From left to right: exact function and transfer ; standard approximation and transfer
; method of Chapter 3 ; exact function transferred using a point-to-point conversion ;
approximation and transfer using our network

associated to each vertex, and rescaled by the squared norm of the ground truth image
of the function. For the functional map matrix C we use the ground truth map Cgt of
size kN × 10: 10 eigenfunctions on the source shape, kN on the target shape. kN goes
between 10 and 210, and is on the x-axis of our plot. Finally, the last value on each plot
represents the approximation error achieved by each method on the source shape.

As we can see, our network allows a better function transfer than all other methods.
We can see qualitative comparisons for a segment indicator function (Figure 4.4) and

a coordinate function (Figure 4.3), where colors represent values of functions. It appears
that our method outperforms previous methods.

4.8 Conclusion

The main contribution of this work is a novel, non-linear representation of the functional
space defined on a shape, that we produce by exploiting a deep learning strategy. This
non-linear representation allows us to significantly improve the quality of the function
approximation and can be used directly in the functional maps framework for function
transfer, even when given a fixed-size functional map. Importantly this improvement
is achieved without any additional effort in the estimation of the functional map and
is complementary to the accuracy achieved in the functional map estimation. In our
experiments we show how this non-linearity gives rise to results that outperform the state
of the art.
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Figure 4.4 – Example comparison of different methods for transfering an indicator function
from the source shape (top row) to the target shape (bottom row). kM = 10, kN = 90.
From left to right: exact function and transfer ; standard approximation and transfer
; method of Chapter 3 ; exact function transferred using a point-to-point conversion ;
approximation and transfer using our network

4.9 Future work

In the future, the most immediate task is to extend the approach described above to
computed, rather than ground truth functional maps. For this, we would like to improve
this method by training over known correspondences from a fixed source shape to various
target shapes. This would allow us to define a cost for both function approximation but
also for function transfer, to each target shape, and therefore should allow resilience to
the errors in the functional map matrix. Then we would expect a better network (i.e. a
better function h) that we could apply to an unseen shape.

An interesting direction is to use artificially created (synthetic) modified shapes, for
which we would know the exact correspondence. Using these shapes for training should
give results similar to real shape pairs with ground truth correspondences, but without
requiring any input knowledge. This would be a significant achievement, but requires to
carefully design an appropriate model for the artificial deformations.





Chapter 5

Miscellaneous

In addition to my work on functional maps, I also worked on other topics that have led
to some publications:
_ A new method for analysing the running time of evolutionary algorithms: [27]
_ A method to improve the number of operations required to compute a Schur polynomial,
while restricting to using only + and ×: [30]
_ Efficient algorithms for scheduling problems: [23]

5.1 A new analysis method for evolutionary optimization of
dynamic and noisy objective functions

Evolutionary algorithms, being problem-independent and randomized heuristics, are
generally believed to be robust to dynamic changes and noisy access to the problem
instance. We propose a new method to obtain rigorous runtime results for such settings.
In contrast to many previous works, our new approach mostly relies on general parameters
of the dynamics or the noise models, such as the expected change of the dynamic optimum
or the probability to have a dynamic change in one iteration. Consequently, we obtain
bounds which are valid for large varieties of such models. Despite this generality, for
almost all particular models regarded in the past our bounds are stronger than those
given in previous works. As one particular result, we prove that the (1 + λ) EA can
optimize the OneMax benchmark function efficiently despite a constant rate of 1-bit flip
noise. For this, a logarithmic size offspring population suffices (the previous-best result
required a super-linear value of λ). Our results suggest that the typical way to find the
optimum in such adverse settings is not via a steady approach of the optimum, but rather
via an exceptionally fast approach after waiting for a rare phase of low dynamic changes
or noise.

5.2 On semiring complexity of Schur polynomials

Semiring complexity is the version of arithmetic circuit complexity that allows only two
operations: addition and multiplication. We show that semiring complexity of a Schur
polynomial sλ(x1, . . . , xk) labeled by a partition λ = (λ1 ≥ λ2 ≥ · · · ) is bounded by
O(log(λ1)) provided the number of variables k is fixed.
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5.2.1 Schur polynomial

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ 0) be an integer partition. The Schur function (or Schur
polynomial)) sλ(x1, . . . , xk) is a symmetric polynomial of degree |λ| =

∑
i λi in the

variables x1, . . . , xk which can be defined in many different ways. One remarkable
feature of Schur polynomials that makes them an exciting object of study in algebraic
complexity theory is that the classical formulas defining them fall into two categories.
On the one hand, there are determinantal expressions (e.g., the Jacobi-Trudi formula
or the bialternant formula) which provide efficient ways to compute Schur functions in
an unrestricted setting, i.e., when all arithmetic operations are allowed. On the other
hand, Schur functions are generating functions for semistandard Young tableaux. This
description represents them as polynomials with manifestly positive coefficients; so they
can be computed using addition and multiplication only. We note however that the
naïve approach based on these monomial expansions yields algorithms whose (semiring)
complexity is very high, and indeed very far from the optimum.

5.2.2 Main result

Our main result is the following. (We use the notation λ′ = (λ′1 ≥ λ′2 ≥ · · · ) for the
partition conjugate to λ.)

Theorem 5.2.1 The semiring complexity of a Schur polynomial sλ(x1, . . . , xk) labeled
by partition λ=(λ1≥· · ·≥λ`) is at most O(log(λ1)k

52k``d) where d=max
j
λ′j(k−λ′j).

Since ` ≤ k (or else sλ(x1, . . . , xk) = 0) and d ≤ k2/4, we obtain:

Corollary 5.2.2 The semiring complexity of sλ(x1, . . . , xk) is bounded from above by
kk

2( 1
4
+o(1))O(log(λ1)). If the number of variables k is fixed, then this complexity is O(log(λ1)).

5.3 Scheduling with gaps: New models and algorithms

We initiate the study of scheduling problems where the number or size of the gaps in
the schedule is taken into consideration. We focus on the model with unit jobs. First
we examine scheduling problems with release times and deadlines, where we consider
variants of minimum-gap scheduling, including maximizing throughput with a budget for
gaps or minimizing the number of gaps with a throughput requirement. We then turn to
other objective functions. For example, in some scenarios, gaps in a schedule may be
actually desirable, leading to the problem of maximizing the number of gaps. The second
part of the paper examines the model without deadlines, where we focus on the tradeoff
between the number of gaps and flow time.

For all these problems we provide polynomial algorithms. The solutions involve a
spectrum of algorithmic techniques, including different dynamic programming formula-
tions, speed-up techniques based on searching Monge arrays, searching X + Y matrices,
or implicit binary search. Throughout the paper, we also draw a connection between
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our scheduling problems and their continuous analogues, namely hitting set problems for
intervals of real numbers.





Chapter 6

General Conclusion

6.1 Summary

We presented different lines of work in this thesis.
In Chapter 2 we presented a method that changes the way descriptor constraints

are expressed, and represents descriptors via the associated pointwise multiplication
operators that they define instead of simply using descriptor values. We saw that this
representation is likely to induce maps that are closer to being point-to-point maps, which
is a often a desirable property that one should expect from a good functional map. This
method remains in the linear framework of the standard functional maps pipeline, and
thus retains its computational efficiency.

In Chapter 3 we presented a method that uses a computed functional map and
extends the space of functions that can be transferred by it. Our method assumes that
the functional map is approximately induced by a point-to-point map. This property
can be assumed to hold on a good functional map given as input. The method uses the
pointwise product preservation property of point-to-point maps to define a way to transfer
products of basis functions, which enables a way to transfer a functional space richer than
the standard approach which is limited to linear combinations of basis functions only.

In Chapter 4 we introduced an extension of the previous method that uses composition
with any combination of basis functions, instead of only their pointwise products. We
use neural networks to generate such a combination, and show its improved accuracy in
a variety of settings.

Finally in Chapter 5 we presented different works, unrelated to the main PhD topic.

6.2 Future work

As future work, one interesting direction is to explore preservation rules different from
the product preservation used in Chapter 2. For example it could be a rule about the
preservation of second-order properties such as geodesic or diffusion distances. Preliminary
experiments on these two specific cases do not show any improvement over the product
preservation rule, but many other related ideas could be of interest.

We also plan to extend the ideas proposed in Chapters 3 and 4 by using the composition
with any smooth function. Trying to simulate a smooth function as general as possible
using neural networks is simply one option. It could be more appropriate to use other
kinds of composition operators, either more suited for an efficient approximation of a
target function or for a better smoothness that would improve the function transfer.
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We also plan to use the composition with a function h that can change across different
vertices. It could also apply to the neighborhood of the vertex, thus using the local
information that could allow, for example, to recognize a part of the body.

6.3 Position of the work in the community

The methods proposed in Chapters 2 and 3 are now considered as state-of-the-art, and
are used in the evaluation on functional maps as in [25,32] (method of Chapter 2) [82]
(method of Chapter 3). The method proposed in Chapter 2 specifically allows to better
extract and exploit the information contained in a given descriptor, which can then be
used for evaluating the quality of newly proposed descriptors as was done, for example
in [58]. The commutativity cost defined in Chapter 2 has also been adapted in several
follow-up works, as in [32,55].

Approaches similar to that proposed in Chapter 3 have been recently proposed. An
approach for preserving inner products between descriptors rather than descriptor values
themselves consists in lifting descriptors to higher dimensional vectors [105]. Another
approach uses unsupervised learning in order to compute a non-linear transformation of
descriptor functions, that will then lead to improved shape correspondences [82]. A recent
method for finding functional maps that are closer to arising from point-to-point maps
has also been proposed in [33] and consists in using user-prescribed corresponding curves
for finding maps between shapes that are semantically similar but geometrically very
different. Another approach relies on a genetic algorithm [83]. Finally, a method that uses
persistence diagrams to provide an optimization scheme that helps to promote functional
maps associated with continuous bijective point-to-point maps has been proposed in [78].

To summarize, the contributions of this thesis are not limited to the specific improve-
ments that have been shown, but have already inspired follow-up works and have been
used as building blocks in other research works in non-rigid shape matching.
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Title : Non-rigid correspondences between surfaces embedded in 3D
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Abstract :
Handling and processing the massive amount of 3D
data has become a challenge with countless appli-
cations, such as computer-aided design, biomedical
computing, interactive games, machine perception,
robotics, etc. Geometry Processing is an area of re-
search at the interface between algorithmics, applied
mathematics and computer science related to the
above applications, that exists since approximately 50
years. It is a large topic of research that includes sub-
areas.

In this thesis we focus on the problem of shape cor-
respondence, specifically using functional maps. The
overall goal of the thesis is to show how the functional
maps pipeline can be improved using functional alge-
bra. The main contribution is to improve both the ac-
curacy of the functional map matrix, computed using
the same set of descriptors, and the accuracy of the
function transfer, computed using the same functional
map matrix. These improvements remain compatible
with the classical linear formulation of the functional
maps framework.
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Résumé :
La manipulation et le traitement d’énormes quantités
de données en 3D est devenu un défi ayant d’innom-
brables applications, telles que la conception assistée
par ordinateur, le calcul biomédical, les jeux interac-
tifs, la perception des machines, la robotique, etc.
Le traitement de données géométrique est un sujet
de recherche à l’interface entre l’algorithmique, les
mathématiques appliquées et l’informatique en lien
avec les applications sus-mentionnées, qui existe de-
puis une cinquantaine d’années. C’est un domaine de
recherche vaste qui inclut des sous-domaines.

Dans cette thèse on se concentre sur le problème
de correspondance de forme, spécifiquement en uti-
lisant des correspondances fonctionnelles. L’objec-
tif général de la thèse est de montrer comment le
processus de calcul des correspondances fonction-
nelles peut être amélioré en utilisant l’algèbre de fonc-
tions. La contribution principale est l’amélioration de
la précision du calcul de la matrice des correspon-
dances fonctionnelles, calculée en utilisant le même
ensemble de descripteurs, et la précision du transfert
de fonctions, calculé en utilisant la même matrice de
correspondances fonctionnelles. Ces améliorations
restent compatibles avec la formulation linéaire clas-
sique des correspondances fonctionnelles.
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