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IDENTITY MANAGEMENT IN KNOWLEDGE GRAPHS
ABSTRACT

In the absence of a central naming authority in the Web of data, it is common for
different knowledge graphs to refer to the same thing by different names (IRIs).
Whenever multiple names are used to denote the same thing, owl:sameAs
statements are needed in order to link the data and foster reuse. Such identity
statements have strict logical semantics, indicating that every property asserted
to one name, will also be inferred to the other, and vice versa. While such
inferences can be extremely useful in enabling and enhancing knowledge-based
systems such as search engines and recommendation systems, incorrect use of
identity can have wide-ranging effects in a global knowledge space like the
Web of data. With several studies showing that owl:sameAs is indeed misused
for several reasons, a proper approach towards the handling of identity links is
required in order to make the Web of data succeed as an integrated knowledge
space.

This thesis investigates the identity problem at hand, and provides different,
yet complementary solutions. Firstly, it presents the largest dataset of iden-
tity statements that has been gathered from the LOD Cloud to date, and a web
service from which the data and its equivalence closure can be queried. Such
resource has both practical impacts (it helps data users and providers to find
different names for the same entity), as well as analytical value (it reveals im-
portant aspects of the connectivity of the LOD Cloud). In addition, by relying
on this collection of 558 million identity statements, we show how network met-
rics such as the community structure of the owl:sameAs graph can be used in
order to detect possibly erroneous identity assertions. For this, we assign an
error degree for each owl:sameAs based on the density of the community(ies)
in which they occur, and their symmetrical characteristics. One benefit of this
approach is that it does not rely on any additional knowledge. Finally, as a
way to limit the excessive and incorrect use of owl:sameAs, we define a new
relation for asserting the identity of two ontology instances in a specific context
(a sub-ontology). This identity relation is accompanied with an approach for
automatically detecting these links, with the ability of using certain expert con-
straints for filtering irrelevant contexts. As a first experiment, the detection and
exploitation of the detected contextual identity links are conducted on a knowl-
edge graph for life sciences, constructed in a mutual effort with domain experts
from the French National Institute of Agricultural Research (INRA).
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CHAPTER 1
INTRODUCTION

Since its adoption by Google in 2012, the term Knowledge Graph has rapidly
evolved. Previously referring to a single project for semantically enhancing
Google’s search results [Singhal, 2012], this term currently refers to a wide range
of graphs surging from academic research, community-driven efforts, and in-
dustrial projects, such as DBpedia1, Wikidata2, and the Facebook Social Graph3.
Although Google have reaped the credits for its ever increasing popularity,
the term knowledge graph has been around for years, making an appearance
in Bakker’s PhD dissertation [Bakker, 1987] as part of a Dutch project aiming
at integrating and structuring scientific knowledge [Nurdiati and Hoede, 2008].
From a broad perspective, any graph-based representation of some knowledge
in a machine-readable format, can be described as knowledge graph. However,
many argue that knowledge graphs should fulfil certain requirements, neces-
sary for enabling and enhancing various knowledge-based applications, such
as semantic searches, intelligent chatbots, fraud detections, and recommenda-
tion systems. For instance, [Huang et al., 2017] mention size as a characteristic
of knowledge graphs, while [Paulheim, 2017] requires the coverage of a major
portion of domains, and [Färber et al., 2016] have restricted the use of this term
to RDF4 graphs. Adopting some of these proposed, more restrictive, definitions
will affect the status of several existing knowledge graphs, since not all knowl-
edge graphs are RDF graphs, or domain independent.

With the lack of a formal and standardized definition, a number of guiding
principles have emerged for helping data publishers create high quality data
and knowledge graphs. While some of the proposed principles, such as FAIR
[Wilkinson et al., 2016], have provided a set of goals to ensure that published
data are findable, accessible, interoperable, and reusable, independently of the
technology used, other principles have acted as a set of methods and steps for
publishing open and reusable data on the Web. The most known set of prin-
ciples were laid out by Tim Berners-Lee in 2006, with the goal of encouraging
people to use HTTP5 IRIs6 for naming things, and using W3C7 standards for de-
scribing these IRIs (e.g. RDF(S) and OWL8), and linking them to other IRIs for
providing context. This set of widely adopted principles, known as the Linked
Data principles, refers to a set of best practices for publishing structured data on
the Web so it can be easily interlinked and managed using semantic queries. The

1https://wiki.dbpedia.org
2https://www.wikidata.org
3https://developers.facebook.com/docs/graph-api
4Resource Description Framework
5Hypertext Transfer Protocol
6Internationalized Resource Identifiers
7World Wide Web Consortium
8Web Ontology Language
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idea is by providing simple principles, for creating and publishing structured
data, publishers can also enrich, access, and benefit from a larger decentralized
knowledge graph, known as the Web of Data.

Despite the adoption of the Linked Data principles, achieving the FAIR goals
still poses a number of significant practical and research challenges, particu-
larly in terms of the interoperability and re-usability of the published data.
Firstly, adopting standard knowledge representation languages for express-
ing, explicit and implicit, domain knowledge still poses particular challenges.
Specifically, when dealing with complex domains such as medical and life sci-
ences data, there is a need to express certain types of axioms and relations, that
can not be intuitively expressed in even some of the most expressive standard-
ized languages, such as OWL 2 DL. These limitations in the language prompt
various research questions discussed in [Krisnadhi et al., 2015], and pose sev-
eral challenges for modellers to express the necessary knowledge using cur-
rent standards and best practices. In addition, and while adopting such stan-
dardized knowledge representation languages guarantees interoperability at
a syntactic level, one of the important challenges consists in achieving inter-
operability at the semantic level [d’Aquin and Noy, 2012]. Semantic interop-
erability is the ability to meaningfully and accurately exchange and interpret
information produced by different sources. Creating semantically interopera-
ble knowledge graphs requires considerable efforts, and poses several practi-
cal challenges for modellers in finding, evaluating and reusing existing well-
established models to describe their data. Finally, achieving semantically in-
teroperable knowledge graphs requires making links to other people’s data.
Such semantic interlinking is typically performed by asserting that two names
(IRIs) denote the same real world entity. For this purpose, the Web Ontology
Language OWL have introduced the owl:sameAs identity predicate. For in-
stance, the triple 〈President Barack Obama,owl:sameAs, 44th US president〉 as-
serts that both names actually refer to the same person. Such identity statements
indicate that every property asserted to one name will be also inferred to the
other, allowing both names to be substituted in all contexts. While such in-
ferences can be extremely useful in enabling and enhancing knowledge-based
systems, incorrect use of identity can have wide-ranging effects in a global
knowledge space like the Web of Data. With studies dating back to the early
Linked Data days showing that owl:sameAs is indeed misused in the Web
[Jaffri et al., 2008, Ding et al., 2010a, Halpin et al., 2010], one can trace back their
presence to several factors. Firstly, most owl:sameAs links are generated by
heuristic entity resolution techniques, that employs practical strategies which
are not guaranteed to be accurate. For instance, an algorithm matching books
based on the similarity of their titles and authors is not always accurate, as two
different editions of the same book can also share both these traits without be-
ing the same, since they do not share the same number of pages. In addition,
identity does not hold across all contexts, as things can be considered identical
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for some people in certain contexts, while being different in other contexts. For
instance, drugs sharing the same chemical structure, but produced by different
companies, are considered identical in a scientific context, but are different in a
commercial one.

Since suitable alternatives to owl:sameAs have yet to exist, or are rarely
used in practice, a given Linked Data application is forced to make a choice with
respect to each owl:sameAs assertion it encounters. This problem of incorrect
use of identity is not specific to the Web of Data, and is present in all Knowl-
edge Representation systems [Grant and Subrahmanian, 1995, Nguyen, 2007].
However, the problem is specifically alerting in the Web of Data due to its un-
precedented size, the heterogeneity of its users and contents, and the lack of a
central naming authority. By now, the problem of the identity use in the Seman-
tic Web is widely recognized, and has been referred to as the “Identity Crisis”
[Bouquet et al., 2007], and the “sameAs problem” [Halpin et al., 2010]. As such,
a proper approach towards the handling of identity links is required in order to
make the Web of Data succeed as an integrated knowledge space.

1.1 Objectives & Contributions

Identity management in knowledge graphs is the main objective of this the-
sis. Despite its ambitious title, this thesis is a modest attempt to address one
particular issue of the identity problem: the excessive and incorrect use of iden-
tity links in knowledge graphs. It does not cover related but distinct research
topics such as entity resolution and ontology alignment, that focus on tech-
niques [Ferrara et al., 2013] and frameworks [Nentwig et al., 2017] for establish-
ing owl:sameAs links. In addition, this thesis does not address the historically
significant distinction between locating an electronic document with a URL and
denoting an RDF resource with an IRI, known as the problem of Sense and Ref-
erence [Halpin, 2010]. This thesis investigates the use of owl:sameAs links in
the Web of Data, and provides different, yet complementary solutions for this
identity problem:

• Identity Management Service [Beek et al., 2018]. In order to uncover dif-
ferent aspects of the use of identity in the Semantic Web, and to facilitate
access to a large number of identity statements, we propose sameas.cc: a
web service and a dataset containing the largest number of identity state-
ments that has been gathered from the Web of Data to date. This service
provides public access (query and download) to over 558 million distinct
owl:sameAs statements extracted from the Web of Data. It also provides
access to these links’ equivalence closure, and the resulting identity sets.
For this, we propose an efficient approach for computing and storing the
equivalence closure, that exploits the owl:sameAs transitive semantics.
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The extracted identity statements, and their equivalence closure are acces-
sible at our identity management service: http://sameas.cc.

• Approach for detecting erroneous identity links [Raad et al., 2018a,
Raad et al., 2018b]. With many previous studies showing that identity
links are incorrectly used in the Web of Data, there is an ever increasing
need to detect these links to ensure the quality of knowledge graphs. For
this, we propose an approach for automatically detecting potentially erro-
neous identity links, by making use of the owl:sameAs network topol-
ogy, and more specifically the network’s community structure. Based on
the detected communities, an error degree is calculated for each identity
link which is subsequently used for ranking these links, allowing poten-
tially erroneous ones to be flagged, and potentially correct ones to be
validated. Since the here presented approach is specifically developed
in order to be applied to real-world data, the evaluation is run on the
sameas.cc dataset. The implementation of this approach is available at
https://github.com/raadjoe/LOD-Community-Detection.

• A contextual identity relation [Raad et al., 2017a, Raad et al., 2017b]. In
many instances the classical interpretation of identity is too strong for
particular purposes, and is not always required, as the notion of identity
might change depending on the context. For instance, in some applica-
tions, the fact that drugs share the same chemical structure is sufficient to
consider them as equivalent, while in other applications it is also neces-
sary that these drugs share the same name. Unfortunately, modelling the
specific contexts in which an identity relation holds is cumbersome and,
due to arbitrary reuse, and the Open World Assumption, it is impossible to
anticipate all contexts in which an entity will be used. For this, we define
a new contextual identity relation. This relation expresses an identity be-
tween two class instances, that is valid in a context defined regarding a do-
main ontology. For automatically generating these contextual identity as-
sertions, we propose an algorithm named DECIDE (DEtecting Contextual
IDEntity). This algorithm detects the most specific contexts in which a pair
of instances are identical. In addition, and since not all contexts may be rel-
evant (e.g. a context considering a value without its unit of measure), this
algorithm can be guided by different sets of semantic constraints provided
by experts for enhancing the detected contexts. The implementation of this
approach is available at https://github.com/raadjoe/DECIDE_v2.

• Contextually linked knowledge graphs for life sciences
[Ibanescu et al., 2016, Raad et al., 2018c]. Cases in which objects can
not be declared the same are quite common in scientific data, where
experiments are mostly conducted by several scientists, in various
circumstances, using similar but different products. This incapacity
of semantically linking slightly different experiments has been a se-
rious barrier for knowledge-based systems to fully exploit scientific
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data, as they are either weakly connected with little semantics (e.g.
using skos:closeMatch), or are incorrectly declared the same (using
owl:sameAs). In addition, the classic problems of the heterogeneity of
the formats in which scientific data are published, and the terminological
variations encountered across the multiple scientific datasets also remain
serious barriers in fully exploiting the large amount of data produced
everyday. As a way for limiting these syntactic, semantic and identity
problems, we introduce a new knowledge graph for life sciences. This
graph is constructed in a mutual effort with domain experts from the
French National Institute of Agricultural Research (INRA), describing
two different domains: the mechanisms leading to the release of flavour
compounds during food consumption, and the process of stabilisation
of micro-organisms. As a way for semantically linking the different
conducted experiments and their participants, we apply our approach
for detecting contextual identity links. In addition, we exploit the mil-
lions of detected contextual identity links in this graph for discovering
certain rules. These rules, when validated by the experts, can be used
to predict with a certain degree of confidence, unobserved measures
in the experiments, and consequently deployed for completing the
constructed knowledge graph. This knowledge graph can be queried and
downloaded at http://sonorus.agroparistech.fr:7200.

1.2 Thesis Outline

This classic identity problem, recently amplified in the context of the Web of
Data, has led to several analysis, discussions, and proposals for limiting its ef-
fects. Chapter 2 gives an overview on the proposed solutions, and reflects on
the current state of this “sameAs problem”. Chapter 3 presents our first con-
tribution for limiting this problem, by introducing the sameas.cc dataset and
web service, which we deploy for performing several analyses on the use of
identity in the Web of Data. Chapter 4 presents our approach of detecting erro-
neous identity links using network metrics, and the experiments conducted on
a large subset of the Web of the Data. Chapter 5 introduces our new contextual
identity relation, and presents our approach for automatically detecting these
links in an RDF knowledge graph. Chapter 6 presents a new knowledge graph
for life sciences, and presents a first use case of exploiting these detected con-
textual identity links for discovering certain rules, that can help completing the
knowledge graph. Chapter 7 summarizes the results of the research presented
in this thesis, and discusses its limitations, and some lines for future work.
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CHAPTER 2
STATE OF THE ART

Identity is an old and thorny topic. Classically speaking, resources that are
identical are considered to share the same properties. With Ψ denoting the set
of all properties, this ‘Indiscernibility of Identicals’ (a = b→ (∀ψ∈Ψ)(ψ(a) = ψ(b)))
is attributed to Leibniz [Forrest, 2008] and its converse, the ‘Identity of Indis-
cernibles’ ((∀ψ∈Ψ)(ψ(a) = ψ(b)) → a = b), states that resources that share the
same properties are identical. Identity statements play an important role in de-
duction. Firstly, objects that are known to not share some property, in a closed
world assumption setting, are also known to not be identical. Secondly, from
the premises ψ(a) and a = b it follows that ψ(b) is also the case. In fact, this latter
deduction is central to the Semantic Web notion of Linked Data. Specifically, it
allows complementary descriptions of the same resource to be maintained lo-
cally, yet interchanged globally, merely by interlinking the names that are used
in those respective descriptions. Hence, it becomes clear why the classical no-
tion of identity is used to establish the Linked Data paradigm, and is standard-
ized/formalized as part of the Web Ontology Language (OWL). However, there
are also problems with it, and – consequently – criticisms have been levelled
against it. We briefly present some of the well-known issues.

Firstly, although this classical notion provides necessary and sufficient con-
ditions for identity, it does not provide an effective procedure for enumerating
the extension of the identity relation. In fact, no finite number of facts about
a and b can lead us to conclude that they denote the same resource, except
for the identity assertion (a = b) itself. As such, identity statements can by
definition not be deduced from other facts. Secondly, identity over time can
pose problems, as a ship1 may still be considered the same ship, even though
some, or even all, of its original components have been replaced by new ones
[Lewis, 1986]. In addition, identity does not hold across modal context, allowing
Lois Lane to believe that Superman saved her without requiring her to believe
that Clark Kent saved her. Finally, identity is context-dependent [Geach, 1967],
allowing two medicines, having the same chemical structure, to be considered
the same in a medical context, but to be considered different in other contexts
(e.g. because they are produced by different companies). These issues in the
classical identity definition have led to various philosophical theories, such as
the distinction between accidental properties (traits that could be taken away
from an object without making it a different thing), and essential properties
(core elements needed for a thing to be the thing that it is) [Kripke, 1972]. How-
ever, it can be difficult to find an object’s essential properties, since a tree can
lose all its leaves and still be considered a tree, but a tree cut down and made
into a notebook is not considered a tree. Hence, finding out at which point did a
tree loses its identity (i.e. lost its essential properties) depends on each context.

1Reference to the ship of Theseus or Theseus’s paradox

6



Given that this highly problematic notion of identity is also standardized
as part of the Web Ontology Language (OWL), it is normal to encounter the
same issues in Semantic Web applications. In fact, and due to the Open World
Assumption and the continuous increase of Ψ, identity assertions in the Seman-
tic Web are even more controversial. Firstly, unless two things are explicitly
said to be different (e.g. using owl:differentFrom), the absence of an iden-
tity statement between them does not mean that they are not identical. Com-
pared to the 558M owl:sameAs assertions in the 2015’s copy of the LOD Cloud
[Fernández et al., 2017], this type of assertions is barely present in the Web of
Data, with only 3.6K owl:differentFrom assertions existing at that time in
this same dataset. Secondly, stating that two IRIs are owl:sameAs, implies that
both these IRIs unambiguously refer to the same real world entity (e.g. the 44th
US president Barack Obama). However, some existing identity links do not
carefully consider the difference between the IRI referring to a non-information
resource (in that case the person Barack Obama), and its corresponding informa-
tion resource (which is the URL referring to his Web page), leading to the long
discussion of “Sense and Reference” [Halpin and Presutti, 2009, Halpin, 2010]
which is beyond the scope of this thesis. Finally, studies have shown that mod-
ellers have different opinions about whether two objects are the same or not.
For instance, in a 2010 analysis [Halpin et al., 2010], three semantic web experts
were asked to judge 250 owl:sameAs links collected from the Web. This eval-
uation shows high disagreements, with one judge confirming the correctness
of only 73 owl:sameAs statements, whilst the two other experts judging up
to 132 and 181 links as true owl:sameAs assertions. A follow up study in
2015 [Halpin et al., 2015], shows that even more disagreements were encoun-
tered when authors evaluate owl:sameAs links resulted from inference. While
in some cases this may be due to differences in modelling competence, there is
also the problem that two modellers may consider different parts of the same
knowledge graph within different contexts.

This classic identity problem, recently amplified in the context of the Web
of Data, has led to several analyses, discussions, and proposals for limiting its
effects. This chapter presents an overview on existing empirical analyses of the
owl:sameAs use (section 2.1), services designed for managing identity in the
Semantic Web (section 2.2), solutions for detecting erroneous identity assertions
(section 2.3), and possible alternatives for owl:sameAs (section 2.4). Finally,
this chapter reflects on the current state of the “sameAs problem” (section 2.5).

2.1 Identity Analysis

The special status of owl:sameAs links has motivated several studies into in-
vestigating the use of these links in the Web of Data, with each study focusing
on specific aspects of identity.

7



Some studies have focused on the use of identity at the aggregated level of
datasets, in order to better understand the common interests between different
Linked Data publishers. In such studies, graph nodes represent the datasets,
and the weighted edges represent the number of owl:sameAs linking the
dataset resources. For grouping the retrieved resources into datasets, these stud-
ies assume that all data originating from one pay-level domain (PLD) belongs to
a single dataset. In an early study, the authors of [Ding et al., 2010b] extracted
8.7M owl:sameAs triples from the 2010 Billion Triple Challenge dataset2. By
visualizing the largest connected component, this study shows that densely
connected clusters usually represent datasets that cover similar topics (e.g. a
cluster of datasets that publish data related to scientific publications, and a clus-
ter of bioinformatics datasets). A later analysis [Schmachtenberg et al., 2014]
crawled 1,014 datasets containing 8M terms. The entire graph of datasets was
found to consist of 9 weakly connected components with the largest one con-
taining 297 datasets. This study shows that dbpedia.org has the largest in-
degree (89 datasets asserting owl:sameAs links to DBpedia entities), and that
bibsonomy.org has the largest out-degree (Bibsonomy entities are linked to
91 different datasets). The authors have also analysed the use of other link-
ing predicates, within different categories (e.g. life sciences, geography, pub-
lications). This study shows that owl:sameAs is the most used predicate for
linking within most categories, followed by rdfs:seeAlso for life sciences
datasets and foaf:knows for social networking datasets.

Other studies have focused on analysing the graph structure of the
owl:sameAs network. In such networks, nodes represent the RDF terms oc-
curring in a certain owl:sameAs triple, and edges represent the owl:sameAs
triples. In an early analysis [Ding et al., 2010b], the transitive closure of 8.7M
owl:sameAs triples have resulted in a graph of 2.9M connected components
(i.e. equivalence classes). Most of these classes are small (average size of 2.4
terms), with only 41 classes with hundreds of terms, and only two classes
with thousands of terms. This study shows that owl:sameAs networks are
not as large and complex as foaf:knows networks, with the vast majority
having a star-like structure consisting of single central resource connected to
a number of peripheral resources. In a later analysis, [Hogan et al., 2011] ex-
tracted 3.7M distinct owl:sameAs from a corpus of 947M distinct RDF triples,
crawled from 3.9M RDF/XML web-documents in 2010. After transitive clo-
sure, the data formed 2.16M equivalence classes (average size of 2.65 terms).
The largest equivalence class contains 8,481 terms, with 74% of the equivalence
classes containing only two terms. Finally, in a 2014 analysis based on the 2011
Billion Triple Challenge dataset, [Wang et al., 2014] observed that the number of
owl:sameAs statements per term approximates a power-law distribution with
coefficient -2.528.

2Dataset crawled during March/April 2010 based on datasets provided by Falcon-S, Sindice,
Swoogle, SWSE, and Watson using the MultiCrawler/SWSE framework
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Finally, other type of analyses have focused on the quality of existing
owl:sameAs links in the Web of Data. In such evaluations, Semantic Web
experts were asked to manually judge if two IRIs, linked by an owl:sameAs
link, actually refer to the same real-world entity, whilst carefully considering the
difference between non-information resources and information resources. This
type of study was firstly conducted by [Jaffri et al., 2008], in which the authors
assessed the quality of authors linkage with DBpedia in the 2006 DBLP dataset.
By looking at the 49 most common author names, the results shows that 92%
of these authors have incorrect publications affiliated to them, due to erroneous
owl:sameAs assertions. In 2010, the authors of [Halpin et al., 2010] manually
evaluated a sample of 250 owl:sameAs statements from a collection of 58.6M
owl:sameAs links. This study shows that around 21% of the owl:sameAs
assertions are incorrect, and should be replaced by a similarity or ‘related to’ re-
lationships. In a follow up study [Halpin et al., 2015], the authors have showed
that owl:sameAs assertions resulting from inference are more likely to be erro-
neous than randomly selected ones without inference. In another owl:sameAs
quality analysis, the authors of [Hogan et al., 2012] manually evaluated 1K pairs
occurring in the same equivalence classes, following the transitive closure of
3.7M distinct owl:sameAs triples. This evaluation shows that 2.8% of the pairs
are different, and should not belong to the same equivalence class.

Discussion

These different and complementary studies have investigated several aspects
of the identity use in the Web of Data. Firstly, they show that not all datasets
are transitively linked by owl:sameAs assertions [Schmachtenberg et al., 2014],
with each connected component consisting of clusters of densely connected
datasets that cover similar topics [Ding et al., 2010b]. In addition, these stud-
ies show that owl:sameAs networks have a particular structure, often consist-
ing of central IRIs connected to other peripheral ones [Ding et al., 2010b]. Stud-
ies that computed the owl:sameAs transitive closure shows that, on average,
each real-world entity is represented by less than three IRIs in the Web of Data
[Ding et al., 2010b, Hogan et al., 2011]. Finally, and in terms of the quality of
these interlinks, these studies have confirmed the presence of a number of in-
correct identity links in the Web of Data, with [Hogan et al., 2012] estimating
the number of erroneous links to 2.8%, whilst [Halpin et al., 2010]’s evaluation
suggests that around one out of five owl:sameAs links in the Web of Data is
erroneous. However, and in comparison to the size of the Web of Data which
contains dozens of billions of triples and hundreds of millions of owl:sameAs
links, these studies are not representative enough. This absence of large scale
and representative analyses is possibly due to the difficulty in finding and ac-
cessing identity links in the Web of Data. This issue has motivated several ap-
proaches to harvest the Web, and provide efficient access to these identity links
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and/or their transitive closure. In the next section, we present these approaches,
and investigate their importance in limiting the presence of incorrect identity
links, and facilitating access to existing ones.

2.2 Identity Management Services

Identity management services share the common goal of helping users or appli-
cations to identify IRIs referring to the same real world entity, and distinguish
similar labels referring to different real world entities. For instance, in order
to avoid using a resource referring to the river of Niger, while intending in us-
ing one referring to the country Niger, one could benefit from such services for
re-using an existing universal identifier that unambiguously refers to a certain
real-world entity (e.g. the river of Niger). Such type of services have a more
centralized vision for identity management in the Web of Data, in which each
real-world entity is referenced by a single centralized IRI. On the other hand,
one can make use of other types of identity management services to find all
identifiers referring to the river of Niger, and discover additional descriptions.
Such services can play an important role in enabling large scale identity analysis
in the Web, implementing and optimising linked data queries in the presence of
co-reference [Schlegel et al., 2014], and detecting erroneous identity assertions
[de Melo, 2013, Cuzzola et al., 2015, Valdestilhas et al., 2017].

In the early days of the Web, it was originally conceived that resource iden-
tifiers would fall into two classes: locators (URLs) to identify resources by their
locations in the context of a particular access protocol such as HTTP or FTP, and
names (URNs). URNs [Mealling and Daniel, 1999], were supposed to be the
standard for assigning location-independent, globally unique, and persistent
identifiers to arbitrary subjects. Each identifier has a defined namespace that is
registered with the Internet Assigned Numbers Authority (IANA). For instance,
‘ISBN’ is a registered namespace that unambiguously identifies any edition of a
text-based monographic publication that is available to the public. For instance,
urn:isbn:0451450523 is a URN that identifies the book “The Last Unicorn”, using
the ISBN namespace. Because of the lack of a well-defined resolution mecha-
nism, and the organizational hurdle of requiring registration with IANA, URNs
are hardly used (a total of 47K URNs in the 2015 copy of the LOD, with only 73
registered3 URN namespaces with IANA at the time of writing). Since 2005, the
use of the terms URNs and URLs has been deprecated in technical standards in
favour of the term Uniform Resource Identifier (URI), which encompasses both,
and the term Internationalized Resource Identifier (IRI) which extends the URI
character set that only supports ASCI encoding.

3https://www.iana.org/assignments/urn-namespaces/urn-namespaces.xhtml
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A more recent proposal for a centrally managed naming service was pro-
posed by [Bouquet et al., 2007]. This public entity name service (ENS), named
Okkam4, intends to establish a global digital space for publishing and managing
information about entities. Every entity is uniquely identified with an unam-
biguous universal URI known as an OKKAM ID, with the idea of encouraging
people to reuse these identifiers instead of creating new ones. Each OKKAM ID
is matched to a set of existing identifiers (e.g. DBpedia and Wikidata IRIs), us-
ing several data linking algorithms that are available in the public entity name
service hosted at http://okkam.org. For instance, the company ‘Apple’ has
a profile with an Okkam ID5, which is linked to other non-centrally managed
IDs (e.g. dbpedia/resource/Apple Inc). For each OKKAM entity, a set of
attributes are collected and stored in the service for the purpose of finding and
distinguishing entities from another. However, the public entity name service is
no longer maintained, with no information on the number of existing entities,
links, and the covered datasets.

Finally, [Glaser et al., 2009] introduced the Consistent Reference Service
(CRS), that finds for a given IRI, the list of identifiers that belong to the same
identity bundle. These identity bundles are the result of the transitive clo-
sure of a mix of identity and similarity relationships (such as owl:sameAs,
umbel:isLike, skos:closeMatch, and vocab:similarTo). This service
is based on 346M triples harvested from multiple RDF dumps and SPARQL
endpoints, and hosted at http://sameas.org. This large collection of triples
linking over 203M IRIs, and resulting in 62.6M identity bundles, has been the ba-
sis for many subsequent approaches that aim to detect erroneous identity links
(e.g. [de Melo, 2013, Cuzzola et al., 2015, Valdestilhas et al., 2017]).

Discussion

Identity management services play an important role in facilitating the under-
standing and re-use of IRIs. However we believe that centralized naming au-
thorities such as OKKAM, although they might be adopted within some ded-
icated domains and applications, they will be of limited use in the context of
the Web. As acknowledged by its authors [Bouquet et al., 2007], encouraging
people to adopt and accept such Entity Naming Systems would be challenging,
as the idea of having to go through an authority in order to use a new name
somewhat goes against the philosophy of the ad-hoc, and scale-free nature of
the Web, where “anybody is able to say anything about anything”. In addi-
tion, such systems can only be truly successful once sufficient added value over
the use of non-centrally managed identifiers is provided, specifically in pro-
viding efficient and high-quality search results, and offering high coverage of

4As a variation of Occam’s razor: “entities are not to be multiplied without necessity”
5eid-9bc2b9fd-cb41-4401-8204-6c8933010acf
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real-world entities. Finally, centralizing all names into one system would raise
many privacy and security concerns, in a time where the paradigm is shifting
towards more decentralization of the Web [Verborgh et al., 2017].

The Consistent Reference Service proposed by [Glaser et al., 2009], is
more adopted in Linked Data applications [de Melo, 2013, Cuzzola et al., 2015,
Valdestilhas et al., 2017]. However, in its current architecture and status, it
faces some limitations. Firstly, identity bundles in the sameAs.org service are
the result of the transitive closure of a mix of identity and similarity relation-
ships (such as umbel:isLike and skos:exactMatch). The system does not
keep the original predicates, meaning that a user cannot identify if two terms
in the same bundle are actually the same, similar or just closely related (e.g.
skos:closeMatch). The presence of several identity and similarity relations,
with different semantics, means that the overall closure is not semantically in-
terpretable (e.g. can not be used by a DL reasoner for inferring new facts). In
addition, since no service can guarantee the coverage of all the triples in the
Web of Data, one way of ensuring better transparency would be by listing the
exploited data sources. This would allow users to evaluate the pertinence of this
data in their applications and contexts. The Consistent Reference Service does
not provide such information.

2.3 Detection of Erroneous Identity Links

An important aspect of managing identity in the Web of Data is the detection
of incorrectly asserted identity links. In order to detect such erroneous links,
different kinds of information may be exploited: RDF triples related to the
linked resources, domain knowledge that is described in the ontology or that
is obtained from experts, or owl:sameAs network metrics. In this section, we
present existing approaches that detect erroneous identity links, based on three
–eventually overlapping– categories of approaches: inconsistency-based (2.3.2),
content-based (2.3.3), and network-based approaches (2.3.4). Table 2.1 provides
a summary of these approaches, stating their characteristics, requirements, and
the data in which the experiments were conducted.

2.3.1 Evaluation Measures

An approach of erroneous link detection can be evaluated using the classic eval-
uation measures of precision, recall, and accuracy. In Table 2.1 we present these
measures as reported in each paper, when available. These evaluation measures
can be defined for the problem of detection of erroneous links as follows:
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Precision. Represents the number of links classified by the approach as incor-
rect, and are indeed incorrect identity links (True Positives), over the total
number of links classified as incorrect by the approach (True Positives +
False Positives).

Recall. Represents the number of links classified by the approach as incorrect,
and are indeed incorrect identity links (True Positives), over the total num-
ber of incorrect identity links existing in the dataset (True Positives + False
Negatives).

Accuracy. Represents the number of links classified by the approach as incor-
rect, and are indeed incorrect identity links (True Positives), and the num-
ber of validated and actually correct identity links (True Negatives), over
the total number of identity links classified as incorrect by the approach
(True Positives + False Positives), and the total number of identity links
validated as correct by the approach (True Negatives + False Negatives).

precision =
T P

T P + FP
recall =

T P
T P + FN

accuracy =
T P + T N

T P + FP + T N + FN

2.3.2 Inconsistency-based Detection Approaches

These approaches hypothesize that owl:sameAs links that lead to logical in-
consistencies have higher chances of erroneousness than logically consistent
owl:sameAs.

Conflicting owl:sameAs and owl:differentFrom

The first approach for detecting erroneous identity assertions in the Web of
Data was introduced by [CudreMauroux et al., 2009], who presented idMesh: a
probabilistic and decentralized framework for entity disambiguation. This ap-
proach hypothesizes that owl:sameAs and owl:differentFrom links pub-
lished by trusted sources, are more likely to be correct than links published by
untrustworthy ones. For initialising the sources’ trust values, the approach re-
lies on a reputation-based trust mechanisms from P2P networks, on online com-
munities trust metrics, or on the used domains (e.g. closed domains such as
http://www.agroparistech.fr get higher trust values). In case no infor-
mation is available, a default 0.5 value is initialized for the source. The approach
detects conflicting owl:sameAs and owl:differentFrom statements based
on a graph-based constraint satisfaction problem that exploits the owl:sameAs
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symmetry and transitivity. They resolve the detected conflicts based on the iter-
atively refined trustworthiness of the sources declaring the statements (i.e. cre-
ating an autocatalytic process where constraint-satisfaction helps discovering
untrustworthy sources, and where trust management delivers in return more
reasonable prior values for the links). The approach shows high accuracy (75
to 90%) in discovering the equivalence and non-equivalence relations between
entities even when 90% of the sources are actually spammers feeding erroneous
information. However, this type of approach requires the presence of a large
number of owl:differentFrom statements, which is not the case in the Web
of Data. In addition, scalability evaluation, only conducted on synthetic data,
demonstrate a maximum scale involving 8,000 entities and 24,000 links, over 400
machines, focusing solely on network traffic and message exchange as opposed
to time. The precision and recall are not reported.

Ontology Axioms Violation

[Hogan et al., 2012] introduced a scalable entity disambiguation approach
based on detecting inconsistencies in the equality sets that result from the
owl:sameAs equivalence closure. This approach detects inconsistent equality
sets, by exploiting ten OWL 2 RL/RDF rules expressing the semantics of axioms
such as differentFrom, AsymmetricProperty, complementOf. When resources caus-
ing inconsistencies are detected, they are separated into different seed equiva-
lence classes, in which the approach assigns the remaining resources into one
of the seed equivalence classes based on their minimum distance in the non-
transitive equivalence class, or using in a case of tie, a concurrence score that
is based on the pairs’ shared inter- and intra- links. The authors have evalu-
ated their approach on a set of 3.7M unique owl:sameAs triples derived from a
corpus of 947M unique triples, crawled from 3.9M RDF/XML web-documents
in 2010. From the resulting 2.8M equivalence classes, the approach detects
only three types of inconsistencies in a total of 280 classes: 185 inconsistencies
through disjoint classes, 94 through distinct literal values for inverse-functional
properties, and one through owl:differentFrom assertions. On average, repairing
an equivalence class requires its partition into 3.23 consistent partitions. Af-
ter manually evaluating 503 pairs randomly chosen from the 280 inconsistent
classes, the results show that 85% of the pairs that were separated from the same
equivalence class are indeed different (i.e. precision), leading to the separation
of 40% of the pairs evaluated as wrong by the judges (i.e. recall). This result
shows that consistency does not imply correctness, with 60% of the pairs eval-
uated as different still belong to the same (now consistent) equivalence classes.
Hence suggesting that the recall could be much lower than 40%, as the approach
is not capable of detecting different pairs from the other 2.8M consistent equiv-
alence classes. The total runtime of this approach is 2.35 hours.
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[Papaleo et al., 2014] introduced another inconsistency-based approach to
invalidate identity statements. This approach firstly builds a contextual graph
of a specified depth that describes each of the involved resources in a certain
identity link. This contextual graph considers only the subpart of RDF descrip-
tions that can be involved in conflicting statements: class disjointness, (inverse)
functional properties and local complete properties. When the two concerned
resources belong to heterogeneous sources, the approach requires the mapping
of their properties. After building the contextual graphs, the Unit-resolution
inference rule is applied until saturation to detect inconsistencies within these
graphs. The evaluation of the approach was not based on a sample of exist-
ing owl:sameAs links in the LOD. The authors opted for three owl:sameAs
datasets produced by three different linking tools in the context of the 2010 On-
tology Alignment Evaluation Initiative (OAEI)6, with a total of 344 links. The
results show low precision in two datasets (37 and 42.3%) and high precision in
the third one (88%), with a recall varying between 75 and 100%, depending on
the dataset. Finally, the authors show that when applied after a linking tool, this
invalidation approach can increase the tool’s precision (from 3 to 25 percentage
points). However, this approach requires expert knowledge, ontology axioms,
ontology alignments and its scalability has not been evaluated.

Unique Name Assumption Violation

These approaches hypothesize that individual datasets preserve the Unique
Name Assumption (UNA), and that violations of the UNA are indicative of er-
roneous identity links [de Melo, 2013, Valdestilhas et al., 2017]. The UNA indi-
cates that two terms, with distinct IRIs in the same dataset, do not refer to the
same real world entity.

[de Melo, 2013] creates undirected graphs from existing owl:sameAs links,
then applies a linear program relaxation algorithm, that aims at deleting the
minimal number of edges in order to ensure that the unique name constraint
is no longer violated. This algorithm is applied separately on each connected
component. For the evaluation of the approach, they have firstly considered
the 2011 Billion Triple Challenge dataset containing 3.4M owl:sameAs links,
that resulted into 1.3M equivalence classes (i.e. connected components). Then
a 2011 dump of the sameas.org dataset that contains 22.4M owl:sameAs, re-
sulting in 11.8M equivalence classes. Finally, a third graph consisting of the
combination of both data collections, containing 34.4M owl:sameAs, that have
resulted in 12.7M equivalence classes. On the latter graph, the approach have
detected 519K distinct pairs that occur in the same equivalence class, and at
the same time belong to the same dataset (UNA violation). For satisfying the
UNA constraint, the approach removed 280K links, that represent in that con-

6http://oaei.ontologymatching.org/2010/
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text the erroneous owl:sameAs statements. Meaning that on average each
deleted link have caused 1.85 violations in this graph, while every deleted link
in the BTC2011 and sameas.org dataset have caused 4.24 and 1.53 violations
on average, respectively. The total runtime of the approach is not stated.

[Valdestilhas et al., 2017] generate the equivalence classes based on an algo-
rithm called Union Find. After generating the equivalence classes, and akin to
[de Melo, 2013], this approach detects the IRIs which share the same equiva-
lence class and at the same time share the same dataset. However, instead of
deleting triples to ensure the non-violation of the unique name constraint, this
approach ranks the erroneous candidates based on the number of detected re-
sources with errors. It was applied to check which link discovery framework
from the LinkLion linkset repository, containing 19.2M owl:sameAs links, has
a better score. The results show that at least 13% of the owl:sameAs links are
“erroneous”, with sameas.org having the worst consistency, if we consider that
the UNA is respected in the LOD. The approach is scalable, with a total runtime
of 4.6 minutes.

The precision, recall and accuracy of both approaches have not been eval-
uated. Interestingly, [de Melo, 2013] claims that most of the unique name as-
sumption violations stem from incorrect identity links, not from inadvertent
duplicates (e.g. very few DBpedia IRIs with different names exist that describe
exactly the same real world entity). Whilst in [Valdestilhas et al., 2017]’s man-
ual analysis of a random sample of 100 errors, they show that 90% of the errors
stem from duplications within the dataset, instead of referring to two differ-
ent real world entities. These contradicting results leave many uncertainties on
the effectiveness of the UNA assumption, within each dataset, for the task of
detecting erroneous links.

2.3.3 Content-based Approaches

These approaches exploit the resources descriptions to identify incor-
rect owl:sameAs links, relying on the resources’ type (i.e. rdf:type)
and/or the presence of some properties (i.e. the list of instantiated
properties) [Paulheim, 2014], or the property values [Acosta et al., 2013,
Papaleo et al., 2014, Cuzzola et al., 2015].

[Acosta et al., 2013] looked into the use of crowdsourcing as a mean to
handle data quality problems in DBpedia. The paper focuses on three cat-
egories of quality issues: (i) objects incorrectly or incompletely extracted,
(ii) data types incorrectly extracted, and most importantly for this topic (iii)
interlinking (e.g. owl:sameAs for linking to external data sources and
dbr:wikiPageExternalLinks for linking to external Web sites). The
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adopted methodology consists of firstly involving domain experts for finding
and classifying incorrect triples, and verifying these classifications using the
Amazon Mechanical Turk (MTurk). The experts have evaluated 24K triples,
describing 521 distinct DBpedia resources. They flagged as incorrect a total
of 1.5K triples, whilst stating each type of detected error. These triples were
also evaluated by the paper’s authors as a way to create a gold standard, and
were sent to the MTurk crowd for verification. Surprisingly, and according
to the gold standard, Linked Data experts showed a 15% precision in evalu-
ating interlinks. More specifically, the experts have incorrectly invalidated all
owl:sameAs statements (95 owl:sameAs in total, indicating a 0% precision).
Checking the types of error signalled by the experts in this evaluation7, one can
see that all these owl:sameAs links were signalled by the same expert, stating
the same error type as “Links to Freebase”. The MTurk workers have correctly
judged 62% of the interlinking statements using a ‘first answer’ approach, and
94% of them using a ‘majority voting’ approach. These results show that MTurk
workers are more efficient in evaluting interlinks, in particularily using a ‘ma-
jority voting’ approach. In addition, these results show that finding and classi-
fying incorrect interlinks is more complex than other types of errors (71% and
82% precision for object and datatypes values extraction errors, respectively).
However, with the whole process taking around 25 days8, this adapted crowd-
sourcing methodology shows little feasibility in the Web of Data.

[Paulheim, 2014] presented a multi-dimensional and scalable outlier detec-
tion approach for finding erroneous identity links. This work hypothesizes that
identity links follow certain patterns, hence links that violate those patterns are
erroneous. This approach represents each identity link as a feature vector us-
ing direct types, using all ingoing and outgoing properties, or a combination of
both. For detecting outliers, 6 different methods were tested (e.g. k-NN global
anomaly score, one-class support vector machines), using different parameters
(10 different runs in total). Each method assign a score to each owl:sameAs
indicating the likeliness of being an outlier. These methods were tested on
two link sets: Peel Session-DBpedia (2,087 links) and DBTropes-DBpedia (4,229
links). The experiments show much better results on the first dataset in terms
of AUC9, and show that using only the type features works best. The maximum
F1-measure obtained is 54%, which the authors state that it is mainly due to
flagging up to 3/4 of all links as outliers (high recall value). The precision and
recall are not reported. The approach is fast in most cases, depending on which
outlier detection method is applied, with a runtime varying between seconds to
15 minutes.

7https://docs.google.com/spreadsheets/d/15u3NjomX3nYF6OuMNU3w76yd5IW
AcRcsTlHbCBLw6l8/edit#gid=0

8three predefined weeks for the contest and 4 days for the MTurk workers
9area under the ROC curve: the probability of wrong links to get lower scores than correct

ones
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[Cuzzola et al., 2015] proposed the SCID approach, that hypothesizes that
an owl:sameAs link between two resources that do not have similar textual
descriptions is erroneous. This approach firstly calculates a similarity score be-
tween the IRIs involved in a given owl:sameAs link using the textual descrip-
tion associated to them (e.g., through the rdfs:comment property). For calcu-
lating the similarity score, the approach relies on the position and the relevance
of each resource with respect to the associated DBpedia categories and then it
employs this score to determine whether the identity link is valid or needs to
be flagged for removal. The approach was tested on 411 owl:sameAs links,
resulting from a data cleansing of an original 7,690 link dataset extracted from
sameas.org. The experimental results show that this approach can correctly flag
questionable identity assertions, attaining precisions as high as 100% with a 56%
recall when the threshold is set at 0.2. For a reasonable precision versus recall
trade-off, the authors suggest a 0.5 or 0.6 threshold where the precision is be-
tween 86 and 93% and the recall between 75 and 79%. However, this approach
requires the presence of textual description in both resources, which explains
the high number of discarded links from the original dataset. The evaluation
was restricted on the qualitative part, without any mention on the method’s
scalability or the total runtime of the experiments.

2.3.4 Network-based Approaches

Some approaches have looked into the use of network metrics for evaluating
the quality of owl:sameAs links.

[Guéret et al., 2012] introduced LINK-QA: an extensible framework for per-
forming quality assessment on the Web of Data. This approach, hypothesizes
that the quality of a owl:sameAs link can be determined by its impact on the
network structure. This impact is measured using three classic network met-
rics (clustering coefficient, betweenness centrality, and degree) and two Linked
Data-specific ones (owl:sameAs chains, and description richness). For in-
stance, the measure of betweenness centrality is based on the idea that networks
dominated by highly central nodes are more prone to critical failure in case
those central nodes cease to operate or are renamed. Hence, a link’s quality is
calculated with respect to its impact in reducing the overall discrepancy among
the centrality values of the nodes. The two Linked Data-specific measures hy-
pothesize that the quality of an owl:sameAs statement is measured based on
its impact in closing an open owl:sameAs chain, and its contribution in adding
complementary descriptions to the identity statement subject from the target
resource. The experiments were conducted on 100 known good and bad qual-
ity links created using the Silk mapping tool. These experiments demonstrated
that the classic network metrics are insufficient for detecting the quality of a
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link, while the two Linked Data specific ones proved more successful in dis-
tinguishing between correct and incorrect links. According to the authors, the
demonstrated result of 50% precision and 68% recall is mainly due the small
network sample that was chosen for the experiments. The authors claim that
the approach is scalable and can be distributed, without stating the runtime of
the experiments.

Finally, for evaluating an identity link’s quality, [Sarasua et al., 2017] have
extended the notion of description enrichment proposed by the previous ap-
proach. The approach hypothesizes that an inter-dataset link that extends the
description of the entities is of higher quality. The authors propose a set of
measures for analysing a link based on the resulted extension in classification,
description, entity connectivity, data set connectivity and the increase in the
number of vocabularies. The experiments were conducted on around 1 mil-
lion links connecting 35 datasets from the 2014 LOD crawl. These links include
65K owl:sameAs statements, with the rest corresponding to classification and
relationship links such as rdf:type and rdfs:seeAlso, respectively. The ex-
periments solely show which types of links add the highest gain to the source
entity, without evaluating the precision, recall, and accuracy of this approach in
detecting incorrect links, neither stating the total runtime.

Discussion

It has now been broadly acknowledged that erroneous identity links are present
in the Linked Open Data, and that additional efforts are needed in order to
detect them. In this section we discuss the advantages and drawbacks of the
presented approaches, according to the three following criteria:

Efficiency. An efficient approach is able to detect a large number of erroneous
identity statements (i.e. high recall), without incorrectly classifying correct
identity ones as erroneous (i.e. high precision).

Transparency. It is necessary to have approaches offering transparency to the
community, by making their tools, experimental data, and their results
publicly accessible. This will allow users to directly benefit from such ap-
proaches by discarding the links that were evaluated as incorrect during
this approach, or only consider the ones that were validated as correct.
In addition, and since probably no approach would single handedly re-
solve the identity links problem in the LOD, it is important to provide
transparency for allowing other approaches to compare, and hopefully
improve, their results. Table 2.2 presents the resources that were made
available by each approach.

Feasibility on the LOD. According to the 4th Linked Data principle, the main
importance of identity links is to link resources in the context of the Web of
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Data, and allow applications to use these links and discover new things10.
Hence, an important criteria is the feasibility of an approach in the context
of the Linked Open Data, where approaches are expected to scale to hun-
dreds of millions of triples, and where certain assumptions on the data can
not be presumed.

Half of the here presented approaches have looked into inconsistency de-
tection as a mean to detect erroneous identity links. Some of these approaches
are based on axioms that can be declared in the ontology, mappings that can be
detected between schemas, or conflicting statements (i.e. owl:sameAs with
owl:differentFrom). However, [Hogan et al., 2012]’s evaluation suggests
that consistency does not necessarily indicate correctness, showing that a large
number of incorrect identity statements occur in consistent equivalence classes.
In addition, these experiments show that such inconsistencies are not frequent
in the LOD Cloud, with only 280 inconsistent classes detected from 2.8M equiv-
alence classes (0.01%). This fact might have prompted other inconsistency-
based approaches such as [CudreMauroux et al., 2009] and [Papaleo et al., 2014]
to conduct their experiments on synthetic data and linksets, respectively. Nev-
ertheless, and despite the low feasibility on the LOD, these approaches have
showed promising results on the respective datasets in terms of accuracy and
precision, with [CudreMauroux et al., 2009] reporting accuracy as high as 90%,
[Hogan et al., 2012] reporting an 85% precision, and [Papaleo et al., 2014] re-
porting an 88% precision in one linkset. However, and as presented in Table
2.2, these approaches offer very little transparency, as we are solely able to ac-
cess the public linkset used in [Papaleo et al., 2014]’s experiments.

Other types of approaches have looked into detecting inconsisten-
cies by presuming the unique name assumption (UNA) [de Melo, 2013,
Valdestilhas et al., 2017]. The experiments show contradicting results on
whether the UNA is presumed in each dataset or not (with [de Melo, 2013]
claiming that most UNA violations stem from incorrect identity links, whilst
[Valdestilhas et al., 2017]’s analysis showing that 90% of UNA violations stem
from duplications). With no evaluation of the precision, recall and accuracy of
both approaches, these experiments leave many uncertainties on the effective-
ness of the UNA for detecting erroneous identity links in the LOD.

Content-based approaches such as [Acosta et al., 2013] have looked into the
use of crowdsourcing for handling data quality problems in the Web, including
wrong interlinks. This approach shows good efficiency in terms of precision,
and offers full transparency by testing their methodology on a public dataset,
and providing access to their tool, results, and gold standard. However, and as
expected, crowdsourcing approaches are not scalable, requiring around 25 days
for inspecting a total of 521 distinct DBpedia resources. On the other hand, au-

10https://www.w3.org/DesignIssues/LinkedData.html
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tomated content-based approaches such as [Cuzzola et al., 2015] have showed
promising results by associating resources’ textual descriptions with DBpedia
categories for understanding the linked resources’ meaning. Despite report-
ing recall numbers as high as 90%, the experiments suggest that recall is much
lower in the context of the Web, as they were able to evaluate only 411 out of
7,690 owl:sameAs (due to a preliminary data cleansing that primarily discards
resources with no textual descriptions). In addition, and since there is no men-
tion of the total runtime of this approach, the feasibility of this approach on bil-
lions of RDF triples (since they also require additional triples than owl:sameAs
links) has not been demonstrated. Other content-based approaches such as
[Paulheim, 2014] have showed that resources’ types can be exploited for de-
tecting outlier identity links, with AUC as high as 80%, and an F1-measure of
50%. However, the experiments suggest low precisions, with the reported re-
sults showing that in certain cases, up to 3/4 of all links are flagged as outliers.
In addition, the experiments show large differences between the reported re-
sults in each dataset (AUC dropping from 80% to 58% in the DPTropes dataset),
indicating that such methods are highly dependant on how data are modelled.
Finally, with the approach being tested on around 6K links, its feasibility in the
LOD has not been demonstrated.

Finally, [Guéret et al., 2012] and [Sarasua et al., 2017] have looked into the
use of network metrics for evaluating the quality of owl:sameAs links, with-
out requiring any assumptions on the data. [Guéret et al., 2012]’s experiments
on a sample of 100 links, show that classic network metrics are not efficient for
evaluating the quality of an owl:sameAs link. The Linked Data-specific net-
work metrics that are based on closing owl:sameAs chains, and enriching the
target entity’s descriptions have been proven to be slightly more effective. How-
ever, we believe that the latter measure, also adapted by [Sarasua et al., 2017],
hypothesizing that owl:sameAs links which add more information to an en-
tity are more useful, can not be successfully adapted to detect incorrect identity
links in the LOD. For instance, an erroneous owl:sameAs linking an IRI refer-
ring to the river Niger to an IRI referring to the country Niger, will massively
enrich the description of the former, whilst a true owl:sameAs assertion might
barely enrich the object’s description. With [Guéret et al., 2012]’s experiments
conducted on 100 owl:sameAs links, and [Sarasua et al., 2017]’s precision, re-
call and accuracy not been evaluated, the feasibility of these measures in the
LOD remain untested. However, by making their codes publicly available on
the Web, these approaches enable further testing of these measures.

11http://swse.deri.org/entity/
12https://github.com/cgueret/LinkedData-QA
13http://bit.ly/Linked-QA
14https://github.com/cgueret/LinkedData-QA/tree/master/reports
15https://km.aifb.kit.edu/projects/btc-2011/
16http://nl.dbpedia.org:8080/TripleCheckMate/
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Table 2.2: Transparency overview of each erroneous identity link detection ap-
proach.

Approach Dataset Tool Results Gold Standard

[CudreMauroux et al., 2009] - - - -

[Hogan et al., 2012] - - - Link not Working11

[Guéret et al., 2012] File Dumps12 Source Code13 HTML Reports14 -

[de Melo, 2013] BTC 201115 - - -

[Acosta et al., 2013] DBpedia16 Source Code17 - Campaign Results18

- MTurk Results19 Authors Evaluation20

[Papaleo et al., 2014] PR OAEI 201021 - - -

[Paulheim, 2014] - Peel Sessions22

- DBTropes23 Workflow24 - -

[Cuzzola et al., 2015] - One Function but
Link not Working25 - -

[Valdestilhas et al., 2017] Link not Working26 Source Code27 - 100 Output Samples28

[Sarasua et al., 2017] LOD crawl29 Source Code30 Box Plots31 -

2.4 Alternative Identity Links

Some approaches have proposed to represent and/or find alternative identity
relations. In this section we present existing alternatives, which either come in
the form of simple predicates representing weaker types of identity or similarity,
or approaches introducing techniques for representing and detecting contextual
identity.

17https://github.com/AKSW/TripleCheckMate/releases/tag/
DBpediaCampaign

18http://nl.dbpedia.org:8080/TripleCheckMate/
19http://people.aifb.kit.edu/mac/DBpediaQualityAssessment/

experiments.html
20http://people.aifb.kit.edu/mac/DBpediaQualityAssessment/

experiments.html
21http://oaei.ontologymatching.org/2010/im/
22http://dbtune.org/bbc/peel/
23http://skipforward.opendfki.de/wiki/DBTropes
24https://dws.informatik.uni-mannheim.de/en/research/

rapidminerlodextension/
25http://ls3.rnet.ryerson.ca/predicatefinder/category/
26https://www.dropbox.com/s/m24xoxzm0h60ywl/correct.tar.gz?dl=1
27https://github.com/firmao/CEDAL
28https://github.com/dice-group/CEDAL/blob/master/100Sample.tsv
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2.4.1 Weak-Identity and Similarity Predicates

Some vocabularies acknowledged the abusive use of owl:sameAs and pro-
vided alternative similarity and identity links. We present in the following some
alternative interlinking predicates:

rdfs:seeAlso: this property is not used to denote any identity relation,
but is used to indicate a resource that might provide additional information
about the subject resource. This relationship was heavily used in linking Friend
of a Friend (FOAF) data alongside the property foaf:knows, prior to the rise
of owl:sameAs [Ding et al., 2010a]. Despite not having well-defined semantics,
this property could still be useful in linking closely related entities and datasets.

SKOS predicates: The Simple Knowledge Organization System (SKOS)
[Miles and Bechhofer, 2009] is a common data model for sharing and linking
knowledge organization systems via the Semantic Web. SKOS introduces three
mapping properties that correspond to different types of owl:sameAs usage.
Firstly, skos:relatedMatch is used to state an associative mapping link be-
tween two concepts. skos:closeMatch indicates that “two concepts are suf-
ficiently similar that they can be used interchangeably in some applications”.
Finally skos:exactMatch indicates “a high degree of confidence that the con-
cepts can be used interchangeably across a wide range of applications”. Whilst
the misuse of these mapping properties can have much less implications than
the misuse of owl:sameAs, their use for linking concepts is limited due to their
lack for well-defined contexts of use. For instance, skos:relatedMatch is
highly ambiguous and could probably relate most the concepts of the Semantic
Web (since everything is related to everything in some way). In addition, the ap-
plications (i.e. the contexts) where the concepts related by skos:closeMatch
or skos:exactMatch can interchange are not defined, and are eventually sub-
jective. However, their main limitation relies in the fact that these predicates can
only be used for IRIs of type SKOS concept.

In addition, the UMBEL32 vocabulary introduced predicates such as the
symmetrical property umbel:isLike which is used ”to assert an asso-
ciative link between similar individuals who may or may not be iden-
tical, but are believed to be so”. Vocab.org33 introduced the property
vocab:similarTo to be used when having two things that are not the
owl:sameAs but are similar to a certain extent. [de Melo, 2013] introduced
lvont:nearlySameAs and lvont:somewhatSameAs, two predicates for ex-
pressing near-identity in the Lexvo.org34 vocabulary, with definitions explic-
itly left vague, “simply because similarity is a very vague notion”. He also
introduced lvont:strictlySameAs, a predicate which is declared formally

32http://umbel.org
33http://vocab.org
34http://lexvo.org
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equivalent to owl:sameAs, but just introduced for the purpose of distin-
guishing strict identity use from the erroneous use of the latter. Finally, the
schema.org vocabulary35 includes the schema:sameAs property. However, the
semantics of this property is substantially different from that of owl:sameAs.
It states that two terms “are two pages with the same primary topic” and does
not express equality.

Finally, [Halpin et al., 2010] proposed the Similarity Ontology (SO) in which
they hierarchically represent 13 different similarity and identity predicates. This
ontology includes owl:sameAs, rdfs:seeAlso, and the three previously de-
scribed SKOS predicates. For formally defining their semantics, the authors
have characterized the eight newly introduced predicates by reflexivity, tran-
sitivity and symmetry properties. The most specific predicate in this ontol-
ogy is owl:sameAs, and the most general ones are so:claimsRelated and
so:claimsSimilar. The predicates prefixed with the word claims express
a subjective identity or similarity relation in which their validity depends on
the (contextual) interpretation of the user. The most specific newly-introduced
predicate is so:identical. This predicate follows the same definition as
owl:sameAs in the sense that two IRIs linked by this predicate do refer to the
same real world entity. However, and contrary to owl:sameAs, this predicate
is referentially opaque and does not follow Leibniz’s law. Meaning that prop-
erties ascribed to one IRI are not necessarily appropriate for the other, and can
not be substituted. As an example of referential opacity, the authors state the
case of social inappropriateness in using certain names, referring to the same
real world entity, in certain contexts. However, and despite proposing several
alternative semantics for the strict identity relationship, this approach does not
tackle the problem on how the contexts, in which an identity link is valid, can
be explicitly represented. Hence, no indications on which properties ascribed to
one IRI, will be also inferred to its identical (or similar) IRI.

2.4.2 Contextual Identity

The standardized semantics of owl:sameAs can be thought of as instigating
an implicit context that is characterized by all (possible) properties to have the
same values for the linked resources. Weaker kinds of identity can be expressed
by considering a subset of properties with respect to which two resources can be
considered to be the same. At the moment, the way of encoding contexts on the
Web is largely ad hoc, as contexts are often embedded in application programs,
or implied by community agreement. The issue of deploying contexts in KR
systems has been extensively studied in AI. For the introduction of contexts as
formal objects, see [Loyola, 2007] for a survey. In the Semantic Web, explicit rep-

35https://schema.org
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resentation of context has been a topic of discussion since its early days, where
the variety and volume of the web poses a new set of challenges than the ones
encountered in previous AI systems [Bouquet et al., 2003].

The earliest standardized approach for explicitly encoding contexts in RDF
is called reification36. This standardized data structure allows assertions to be
made about RDF triples. Such assertions are encoded as resources of type
rdf:Statement, to which metadata (i.e. a context) can be annotated, but even-
tually requiring 4 triples to represent an RDF statement. Another technique to
represent a context in the Semantic Web is the use of N-ary relations37. This
model which was proposed to represent statements between more than two in-
dividuals, can also be used to annotate the statements themselves, hence adding
contexts to relationships. In addition, named graphs [Carroll et al., 2005] which
are mostly used for representing provenance, can also be used to assert the con-
text in which a triple or a set of triples hold. [Nguyen et al., 2014] propose the
creation of a special instance for every triple predicate for which we want to pro-
vide the context. This instance will be related to its more generic property using
the singletonPropertyOf predicate. For instance, the singleton property
MarriedTo#1 for which you can specify the context (e.g. provenance, date,
etc.) is rdf:singletonPropertyOf of the generic property MarriedTo. Fi-
nally, [Giménez-Garcı́a et al., 2017] proposed NdFluents, a multi-dimension an-
notation ontology that provides temporal parts to the subject and object of the
triple, that can be used for representing a context.

With several approaches focusing on representing contexts in the Seman-
tic Web, a recent approach have focused on the specific issue of detecting and
representing contextual identity. [Beek et al., 2016] propose an approach that al-
lows the characterization of the context in which a owl:sameAs link is valid. A
context is represented by a subset of properties for which two individuals must
have the same values, with all the possible subsets of properties organized in
a lattice using the set inclusion relation. For instance, two drugs having the
same chemical structure, but produced by different companies, are identical in
the context where the commercial supplier of the drugs is discarded (i.e. the
context considers solely the property chemicalStructure).

Discussion

In this section, we have presented several alternative predicates that may
replace the use of owl:sameAs in some situations. A big downside of
most of these approaches is the lack of formal semantics. For example,
skos:exactMatch indicates a high degree of confidence that the concepts can

36https://www.w3.org/TR/rdf11-mt/
37https://www.w3.org/TR/swbp-n-aryRelations
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Table 2.3: Overview of the usage of alternative identity links in the LOD.

Property Triples

owl:sameAs 558,943,116

rdfs:seeAlso 169,172,965

skos:exactMatch 566,137

skos:closeMatch 371,011

umbel:isLike 461,054

vocab:similarTo 283

lvont:nearlySameAs 3,067

lvont:somewhatSameAs 1

lvont:strictlySameAs 0

be used interchangeably across a wide range of information retrieval applica-
tions. Whether a degree of confidence is high (enough) is subjective, and the
meaning of this relation even changes over time, because information is always
evolving over time. Also, some proposed alternative properties do not denote
equivalence relations, which means that they are of limited use in linking and
reasoning. In addition, most of these approaches require data publishers to
change their modelling practice, needing a lot of momentum in order to create
new datasets, or to change existing ones in order to make use of these alternative
properties. As a result, and as presented in Table 2.3, most of these proposals
lack uptake and are only used in a handful of datasets.

The approach proposed by [Beek et al., 2016], that come up with a new
context-dependent semantics for the owl:sameAs property have the benefit
that it does not require existing modelling practices to be changed. However,
this approach only considers properties describing an instance locally in the
RDF graph (i.e. a path of length 1). Moreover, this representation of the con-
texts does not consider the classes of the ontology, and consequently does not
allow to consider properties differently, according to each class of the ontology.
In addition, given the large number of possible contexts in which two entities
can be identical, this approach does not provide means for users to set certain
constraints on the contexts for filtering irrelevant contexts. An example of such
constraints can be indicating the necessary properties that should be present
in a context, and indicating irrelevant properties that can be discarded in such
identity contexts. This filtering process can massively reduce the complexity of
calculating the identity contexts, and can facilitate the finding and use of the
relevant ones. Finally, no practical approach was proposed for representing the
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identity contexts using Semantic Web standards.

2.5 Conclusion

In this section, we have presented several efforts that aim at solving, or at
least limiting, the “sameAs problem” at hand. We will now give a generalized
overview of the current situation.

Identity management services play an important role in facilitating the un-
derstanding and re-use of IRIs, and enabling large-scale analysis of the iden-
tity usage in the Web. We believe that identity management services such as
sameas.org will see more uptake over time, as they make it possible to use
some of the benefits of linking to other datasets, while at the same time giving
the user some control as to which datasets to link to (and which datasets not
to link to). However, in their current status, these services are not able to pro-
vide a definite reliable solution in terms of resource coverage, and up-to-date
support for acting as true enablers for identity analysis and query answering
services. Given the importance of such identity management services, and the
drawbacks of existing ones, we propose in Chapter 3 a new identity manage-
ment service that considers the identified issues. This proposed identity service
has enabled us to conduct several types of identity analysis, which are an order
of magnitude larger than the ones presented in Section 2.1.

In complementary of facilitating access to the identity links asserted in the
Web, there is an important need to evaluate their correctness. By validating cor-
rect identity links, and detecting erroneous ones, linked data applications can
make use of the owl:sameAs semantics for inferring new facts and making
more connections, with higher levels of certitude. This has led to the emergence
of several approaches for detecting erroneous identity links, with a rate of al-
most one approach per year since the emergence of Linked Data. While there
exist approaches that have high recall, ones that have high accuracy, ones that
are scalable, ones with no assumptions on the data, ones that are applied to
real-world datasets, and ones that could be efficiently used as complementary
to linking tools, there is currently no approach that exhibits all these features.
The discussion in Section 2.3.4 shows that an approach of detecting erroneous
identity links that can be efficiently applied on the whole LOD Cloud has yet
to emerge, with many of the existing ones either lacking scalability, or requir-
ing assumptions that are not valid in the context of the Web. In addition to the
feasibility issue, we believe that the lack of transparency by most approaches is
another important drawback in this area. As a result, we find ourselves with
many interesting techniques, with very little materialized results for other ap-
proaches to build on, or for users to deploy in real world applications. Given
the necessity of such approaches, and considering their current drawbacks, we
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propose in Chapter 4 a novel approach for detecting erroneous identity links in
the Web, based solely on the owl:sameAs network’s community structure.

Finally, and given the highly problematic notion of identity standardized
in owl:sameAs, and the necessity in expressing weaker notions of identity
in certain cases, many approaches have proposed alternative identity predi-
cates. However, with the contexts in which two entities are identical being not
explicitly defined, these proposed predicates have limited semantics. In ad-
dition, and as discussed in Section 2.4.2, [Beek et al., 2016]’s proposition for a
contextualised semantics for owl:sameAs have several limits, mainly in terms
of the contexts’ expressiveness and relevance. Hence, given the current pre-
sented limitations, we propose in Chapter 5 a new contextual identity relation.
This approach extends the notion of contexts proposed by [Beek et al., 2016],
by defining contexts as sub-ontologies and not uniquely as a set of properties.
This allows contexts in which the identity of two class instances holds to be
globally represented (i.e. not only in terms of properties of path 1), and to be
parametrized according to the different ontology classes. In addition, we pro-
pose an algorithm that automatically detects the contexts in which two class
instances are identical, and can be guided by a set of semantic constraints pro-
vided by experts, for filtering irrelevant identity contexts.
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CHAPTER 3
IDENTITY ANALYSIS AND MANAGEMENT SERVICE

This chapter is based on the following publication:

• Wouter Beek, Joe Raad, Jan Wielemaker, and Frank van Harmelen.
“sameAs.cc: The Closure of 500M owl:sameAs statements”. In Extended
Semantic Web Conference, pages 65–80, 2018 (best resource paper award).

Identity management services represent an important aspect in solving the
“sameAs problem”, as they can facilitate the re-use and understanding of IRIs.
For instance, one can use such services to clarify the meaning of a resource
and prevent unwanted inferences by verifying its identical resources. Although
such services can become big factors in limiting the problem at hand, in their
current status, no service is able to provide a definite reliable solution in terms of
semantic interpretability, data coverage, and up-to-date support. Even though
applications of a LOD Cloud-wide identity service are beyond the scope of this
chapter, there are many use-cases for such services:

Findability of backlinks. Since the Semantic Web does not allow backlinks to
be followed (an architectural property it shares with the World Wide Web),
it is only possible to follow outgoing owl:sameAs links but not incom-
ing ones. An identity service retrieves all IRIs that are linked through
owl:sameAs links, and thereby allows the full set of assertions about a
given resource to be retrieved from across the LOD Cloud.

Query answering. A special case of the findability of links arises in distributed
query answering over the LOD Cloud, which requires an overview of ex-
isting alignments between concepts and individuals [Joshi et al., 2012].

Query answering under entailment. When a SPARQL query is evaluated un-
der OWL entailment, the query engine must follow a large number of
owl:sameAs links in order to retrieve the full result set. With an iden-
tity service, a query engine can translate the terms in the query to an IRI
that represents the set of identical terms under entailment, which allows a
SPARQL query to be executed using solely a single identifier.

Ontology alignment. Some algorithms rely on the identity of the class individ-
uals in order to automatically compute alignments at the conceptual level
(i.e. class and properties equivalence and subsumption relationships). For
instance, if two classes share the same set of individuals, or a set of individ-
uals that are declared owl:sameAs, then there can be a strong presump-
tion that these classes are equivalent [Euzenat et al., 2007]. The availability
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of a large dataset of real-world identity links can help quantify the utility
of existing alignment algorithms such as [Correndo et al., 2012].

This chapter introduces a new identity management service, and makes the
following three contributions:

1. It presents the largest downloadable dataset of identity statements that
have been gathered from the LOD Cloud to date, and its equivalence
closure. The dataset and its closure are also exposed through a web
service. Even though the dataset and closure are quite large, they can be
stored on a USB stick and queried from a regular laptop.

2. It gives an in-depth analysis of this dataset, its closure, and its aggregation
into datasets.

3. It presents an efficient approach for extracting and storing the identity
statements, and calculating their equivalence closure.

The rest of this chapter is structured as follows. Section 3.1 describes the
approach for calculating and storing the explicit and implicit identity relations,
and the requirements it must satisfy. Section 3.2 presents the implementation
and the experiments. Section 3.3 gives an analysis of some of the key proper-
ties of our dataset, and the use of identity links in the LOD Cloud. Section 3.4
describes the sameas.cc dataset and web service, and Section 3.5 concludes.

3.1 Approach

In this section we describe our approach for extracting, calculating, and storing
the identity relations and their transitive closure. Our approach is composed of
three main steps: (1) extracting the explicit owl:sameAs statements, (2) remov-
ing the unnecessary owl:sameAs statements for calculating the closure, and
finally (3) calculating the closure by partitioning the owl:sameAs network into
several identity sets. In this chapter, we refer to the calculation of the closure
as the partitioning into identity sets, since the materialization of the closure will
not be stored. The problem of calculating the equivalence closure can be defined
as follows:

Let N denote the set of RDF nodes: the RDF terms (IRIs, literals, and blank
nodes) that appear in the subject or object position of at least one, non-reflexive,
owl:sameAs triple. A partitioning of N is a collection of non-empty and mu-
tually disjoint subsets Nk ⊆ N (called partition members) that together cover N.
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In a network solely composed of N with their owl:sameAs statements, these
partition members are called equality sets, and the terms belonging to the same
equality set are called identity sets. According to the owl:sameAs semantics,
all RDF terms belonging to the same identity set denotes the same real world
entity: ∀x, y with x ∈ Nk, y ∈ Nk → x = y. In this work, we do not consider sin-
gleton identity sets, which are the result of terms that solely appear in reflexive
owl:sameAs statements, and the result of terms which do not appear in any
owl:sameAs statement.

In order to calculate the closure, each identity set should be closed under
equivalence, while taking in consideration multiple dimensions of complexity:

The closure can be too large to store. In Section 3.3, we will see that the LOD
Cloud contains identity sets with cardinality well over 100K. It is not fea-
sible to store the materialization of each identity set since the space con-
sumption of that approach is quadratic in the size of the identity set (e.g.,
the closure of an identity set of 100K terms contains 10B identity state-
ments).

For this, we do not store the materialization of the closure, but store the
identity sets themselves, which is only linear in terms of the size of the
universe of discourse (i.e. the set N of RDF nodes).

|Nk| can be too large to store. Even the number of elements within one identity
set can be too large to store in memory. Since our calculation of the closure
must have a low hardware footprint and must be future proof, we do not
assume that every individual identity set is always small enough to fit in
memory.

Datasets changes over time. We calculate the identity closure for a large snap-
shot of the LOD Cloud. Since datasets in the LOD cloud are constantly
changing, and datasets are constantly added, our approach supports in-
cremental updates of the closure, allowing for both additions and dele-
tions, without having to recompute the entire closure.

3.1.1 Explicit Identity Network: Extraction

Given as input a data graph consisting of different directed relations between
entities, the first step of our approach consists of extracting all the identity links
existing in this graph.

Definition 1 (Data Graph) A data graph is a directed and labelled graph G =

(V, E,ΣE, lE). V is the set of nodes1. E is the set of node pairs or edges. ΣE is the
1In RDF, nodes are terms that appear in the subject and/or object position of at least one

triple (IRIs, literals, and blank nodes).
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set of edge labels. lE : E → 2ΣE is a function that assigns to each edge ∈ E a set of
labels belonging to ΣE (with lE(e) representing the labels denoted to e).

From a given data graph G, we can extract the explicit identity network Gex

(definition 2), which is a directed labelled graph that only includes those edges
whose labels include owl:sameAs.

Definition 2 (Explicit Identity Network) Given a graph G = (V, E,ΣE, lE), the
related explicit identity network Gex = (N, Eex) is the edge-induced subgraph
G[{e ∈ E | {owl:sameAs} ⊆ lE(e)}]. N is the set of terms that appear in the subject
and/or object position of at least one owl:sameAs statement (N ⊆ V). Eex is the
set of node pairs or edges for which a statement 〈x,owl:sameAs, y〉 has been
asserted in G (Eex ⊆ E).

3.1.2 Explicit Identity Network: Compaction

Since owl:sameAs is reflexive, symmetric and transitive, the size of the input
data can be significantly reduced prior to calculating the identity closure. We
call this preparation step compaction. Assuming an alphabetic order < on RDF
terms, we can reduce the input for the closure algorithm to a more concise set of
pairs: {(x, y) | ex,y ∧ x < y}. In this step, reflexive and duplicate symmetric edges
in the explicit identity network Gex are discarded.

3.1.3 Implicit Identity Network: Closure

In this step, we partition the remaining terms N′ after compaction into different
identity sets. We will not store the materialization of the closure Gim (Definition
3), but only the identity sets themselves.

Definition 3 (Implicit Identity Network) Given the set of sorted pairs of the
explicit identity network Gex, the implicit identity network Gim = (N′, Eim) is
the closure under equivalence (reflexivity, symmetry and transitivity) of each
equality set. N′ denotes the set of RDF terms that appear in the subject and/or
object position of at least one non-reflexive owl:sameAs statement.

The partition of N′ into different identity sets consists of a map2 from nodes to
identity sets (N′ 7→ P(N)). We present in the following our desired mapping
design, and the proposed algorithm for partitioning N′ into identity sets.

2Note that each term in N does indeed belong to a unique non-singleton identity set.

33



Mapping Design

In order to optimize for space, we do not want to store the same identity set
multiple times. We illustrate this for the identity set {x1, x2, . . . , xn}, where 7→
denotes a functional mapping from keys to values:

x1 7→ {x1, x2, . . . , xn}

x2 7→ {x1, x2, . . . , xn}

. . .

xn 7→ {x1, x2, . . . , xn}

According to this design an identity set S is stored |S | times. Instead, we
want a design that uses natural numbers (N) as (arbitrary) identifiers denoting
identity sets, as follows:

x1 7→ 1
x2 7→ 1
. . .

xn 7→ 1
1 7→ {x1, x2 . . . , xn}

For this design we need two key/value indexes:

1. A mapping from each RDF term to the key (ID) of the unique identity set
that it belongs to. val : N 7→v ID.

2. A mapping from an identity set key (ID) to its corresponding identity set.
key : ID 7→k P(N).

Hence, val(x) gives us the identity set ID of an RDF term x, and the composi-
tion key(val(x)) gives us the identity set of x.

Algorithm

For partitioning N′ into different identity sets, we have designed an incremental
algorithm that parses each sorted identity pair (x, y), representing the output of
the explicit identity network compaction. The algorithm distinguishes between
four cases:
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Case 1. Neither x nor y occurs in any identity set. A new identity set identifier
id is generated and assigned to both x and y:

x 7→v id
y 7→v id
id 7→k {x, y}

Case 2. Only x already occurs in an identity set. In this case, the existing iden-
tity set of x is extended to contain y as well:

y 7→v val(x)
val(x) 7→k key(val(x)) ∪ {y}

Case 3. Only y already occurs in an identity set. Similar to the previous case.

Case 4. x and y already occur, but in different identity sets. In this case one of
the two keys is chosen and assigned to represent the union of the two
identity sets:

val(x) 7→k key(val(x)) ∪ key(val(y))
(∀y′ ∈ key(val(y)))(y′ 7→v val(x))

This is the most costly step, especially when both identity sets are large,
but it is also relatively rare, since the input pairs are sorted during the
compacting stage. A further speedup is obtained by choosing to merge
the smaller of the two sets into the larger one.

3.2 Implementation & Experiments

In this section, we describe the implementation and experiments of our ap-
proach on a large copy of the LOD Cloud. We firstly describe the dataset in
which our experiments are based on (section 3.2.1). Then, we present the imple-
mentation and experiments of extracting (section 3.2.2), and compacting (sec-
tion 3.2.3) the explicit identity network. Finally, we present the computation of
the transitive closure of this large collection of extracted identity links (section
3.2.4). The overall workflow of the identity network extraction, compaction and
closure is given in Figure 3.1.
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Figure 3.1: Workflow of the identity network extraction, compaction and clo-
sure. A& D indicates that the resource is freely accessible and downloadable at
the sameAs.cc web service hosted at http://sameas.cc.

3.2.1 Data Graph

Our datasets and web service are based on the LOD-a-lot3 dataset
[Fernández et al., 2017]. LOD-a-lot proposes an effective way of packaging a
standards compliant subset of the LOD Cloud into a ready-to-use file compris-
ing data from the LOD Laundromat4. This dataset is exposed in a single HDT
file that is 524 GB in size, and is publicly accessible (via an LDF interface) and
downloadable (as HDT Dump). We briefly present its main components.

The LOD Laundromat [Beek et al., 2014] is a service that (i) crawls LOD
datasets from Datahub5 and other manually collected seeds; (ii) cleans
the data by recovering syntax errors, removing duplicates, and replacing
blank nodes with well-known IRIs6; and finally (iii) converts and repub-
lishes the datasets in the form of Gzipped N-Triples/N-Quads files. The
current version (May 2015) is composed of 657,902 datasets and contains
more than 38 billion triples (including between-dataset duplicates). Each

3http://lod-a-lot.lod.labs.vu.nl
4http://lodlaundromat.org
5https://datahub.io
6https://www.w3.org/TR/rdf11-concepts/#section-skolemization
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dataset is serialized in Header-Dictionary Triples (HDT)7 for download,
and is also published as an Linked Data Fragment (LDF)8 endpoint.

Header-Dictionary-Triples (HDT) [Fernández et al., 2013] is a binary com-
pression format of RDF data. HDT keeps big datasets compressed for
RDF preservation and sharing, and –at the same time– provides basic
query functionality without prior decompression. An HDT-encoded
dataset is composed by three logical components: (i) the header, which
holds the datasets’ metadata using plain RDF, allowing consumers to
have an initial idea of key properties of the content before retrieving the
whole dataset; (ii) the dictionary, which represents a catalog that assigns
a mapping between resources and unique IDs; and finally (iii) the triples,
which represents the RDF triples of the dataset as a set of tuples of three
IDs.

Linked Data Fragments (LDF) [Verborgh et al., 2016] is a conceptual frame-
work that provides a uniform view on all possible interfaces to RDF, by
observing that each interface partitions a dataset into its own specific kind
of fragments. It is aimed at improving the scalability and availability of
SPARQL endpoints by minimizing server resource usage, and moving in-
telligence to the client. This allows the querying of simple triple patterns,
in which its results are retrieved incrementally through pagination. As
such, server load is minimized and large data collections can be exposed
with high availability. Given that HDT provides fast, low-cost triple pat-
tern resolution, LDF has been traditionally used in combination with HDT.

The resultant LOD-a-lot dataset, which represents our data graph (definition
1), contains more than 28.3 billion unique triples that represent a large copy of
the LOD Cloud. This dataset contains more than 5 billion unique terms, related
by more than 1.1 billion predicates.

3.2.2 Explicit Identity Network: Extraction

We use the LOD-a-lot HDT Dump to extract the explicit identity network (Gex),
and the HDT C++ library9 to stream the result set of the following SPARQL
query to a file. This process takes ∼27 minutes:

s e l e c t d i s t i n c t ? s ?p ?o {
bind ( owl : sameAs ?p )

7http://rdfhdt.org/
8http://linkeddatafragments.org/
9https://github.com/rdfhdt/hdt-cpp
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? s ?p ?o }

The results of this query are unique (keyword distinct) and the projection
(?s ?p ?o) returns triples instead of pairs, so that regular RDF tools for storage
and querying can be used. The explicit identity assertions are stored in the order
in which they are asserted by the original data publishers.

558.9 million triples that connect 179.73 million terms, are the result of this
SPARQL query. These owl:sameAs triples are written to an N-Triples file,
which is subsequently converted to an HDT file. The HDT creation process
takes almost four hours using a single CPU core. The resulting HDT file is 4.5
GB in size, plus an additional 2.2 GB for the index file that is automatically gen-
erated upon first use.

3.2.3 Explicit Identity Network: Compaction

Since owl:sameAs is reflexive, symmetric and transitive, the size of the input
data can be significantly reduced prior to calculating the identity closure, by dis-
carding reflexive and duplicate symmetric edges in the explicit identity network
Gex. For this we use GNU sort unique.

GNU sort is faster when it is assigned multiple threads (--parallel=4),
but this is not required. It also uses less memory when assigned a direc-
tory where it can create temporary files containing intermediate results (-T
$(tmp-dir)). Since the exact order in which we sort is not required to fol-
low natural language conventions, we explicitly disable lexicographic sorting
of Unicode characters (setting environment variable LC ALL to C, where sorting
is done according to the byte values). We use process substitution to read from
(<(...)) and write to (>...) a compressed GNU zip stream.

Figure 3.2 shows the significant impact of the compaction step, where the
top node represents the full set of identity statements (Gex), and the three bot-
tom nodes represent the partition of Gex into the following sub-relations: the
reflexive pairs, the duplicate symmetric pairs, and the compacted explicit iden-
tity network that discards the two previous ones. The explicit identity network
(Gex) containing 558.9M edges and 179.73M nodes is reduced to a set of 331M
sorted pairs and 179.67M nodes. As a result, we leave out ∼2.8M reflexive edges
and ∼225M duplicate symmetric edges. We also leave out 67,261 nodes that only
appear in such removed edges. The input size for the identity closure algorithm
has been reduced by over 40%, taking 35 minutes on an SSD disk.
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Explicit Identity Network (Gex)

558,943,166 pairs

179,739,567 nodes

4.5 GB

Reflexive

2,790,712 pairs

67,261 nodes

Gex compacted

331,058,373 pairs

179,672,306 nodes

3.3 GB

Duplicate Symmetric

225,094,081 pairs

Figure 3.2: Overview of the explicit identity network compaction.

3.2.4 Implicit Identity Network: Closure

Now that we have a compacted version of Gex, we calculate the identity closure
that consists of a map from nodes to identity sets. In order to build an efficient
implementation of this key-value scheme, we need a solution that (i) uses almost
no memory and scales over an (SSD) disk, (ii) is able to store billions of key-
value pairs, and (iii) allows such pairs to be added/removed dynamically over
time. For this we use the RocksDB10 persistent key-value store through a SWI
Prolog API11 that was designed for this purpose, allowing to simultaneously
read from and write to the database. Since changes to the identity relation can
be applied incrementally, the initial creation step only needs to be performed
once.

The calculation of the identity closure takes just under 5 hours using 2 CPU
cores on a regular laptop. The result is a 9.3GB on-disk RocksDB database:
2.7GB for mapping each term to an identity set ID (N 7→v ID), and 6.6GB for
mapping each identity set ID to its corresponding identity set (ID 7→k P(N)).

10https://rocksdb.org
11https://github.com/JanWielemaker/rocksdb.
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3.3 Data analytics

In this section we perform several analyses over the dataset created in the ex-
periments described in the previous section. In what follows, we will use the
following RDF prefixes for brevity:

owl: http://www.w3.org/2002/07/owl#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

xsd: http://www.w3.org/2001/XMLSchema#

dbr: http://dbpedia.org/resource/

3.3.1 Explicit Identity Network Analysis

Firstly, we provide some analysis over the size of the explicit identity net-
work, and specifically over the number and type of terms that occur in
owl:sameAs statements. Then, we analyse the number of outgoing and in-
coming owl:sameAs statements that occur by term. Finally, we analyse how
the number of owl:sameAs statements are distributed over datasets, giving a
high level impression on datasets that act as domain-specific naming authori-
ties.

Terms in the Explicit Identity Network (Gex)

The explicit identity network contains 179,739,567 unique terms, representing
the total number of terms that occur in owl:sameAs assertions in the LOD-a-
lot dataset. As to be expected, the vast majority of these are IRIs (175,078,015
or 97.41%). Only a few literals are involved in the identity relation (3,583,673
or 1.99%), and even fewer blank nodes (1,077,847 or 0.60%). The majority of
IRIs contain the HTTP(S) scheme (174,995,686 or 97.36.). Figure 3.3 gives an
overview of the terms involved in the explicit identity network.

Statements in the Explicit Identity Network (Gex)

The LOD Laundromat corpus contains a total of 558,943,116 owl:sameAs state-
ments. Based on the 2011 Billion Triple Challenge dataset, the authors of
[Wang et al., 2014] observed that the number of owl:sameAs statements per
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Terms

179,739,567

Blank nodes

1,077,847

IRIs

175,078,015

Literals

3,583,673

HTTP

174,995,485

URN

47,126

info

34,718

HTTPS

201

other schemes

485

Figure 3.3: Overview of the terms involved in the explicit identity network.
Blank nodes, IRIs and literals do not sum to the number of terms exactly, be-
cause there are 32 terms that are neither (they are syntactically malformed IRIs).

term approximated a power-law distribution12 with coefficient -2.528. In con-
trast to this, we find that in the 2015 LOD Laundromat corpus, although most
terms do appear in a small number of statements, this distribution does not dis-
play a power-law distribution. The patterns for the distribution of incoming
arcs (identity statements where the term appears in the object position) and the
distribution of outgoing arcs, (identity statement where the term appears in the
subject position) all follow a similar distribution pattern (Figure 3.4).

Dataset Relations in the Explicit Identity Network (Gex)

Because owl:sameAs is the most frequently used predicate to link between
datasets [Schmachtenberg et al., 2014], we also analysed Gex at the aggregation
level of links13 between datasets. Unfortunately, there is no formal definition
of what a dataset is. Since most of the terms involved in owl:sameAs asser-
tions are HTTP(S) IRIs (Section 3.3.1), the notion of a namespace is a good proxy.
According to the RDF 1.1 standard, IRIs belong to the same namespace if they
have “a common substring”. Obviously not every common substring counts
as a namespace, otherwise all IRIs would be in the same namespace. A good
pragmatic choice for a namespace-denoting substring is to take the prefix of
HTTP(S) IRIs that ends with the host name. The host name is part of every syn-
tactically valid HTTP(S) IRI, and denotes a physical machine that is located on
the Internet.

Using this interpretation, Figure 3.5 shows that the number of terms occur-

12 p(x) = αx−β where β = 2.528
13In this section, a link is an owl:sameAs statement between terms that belong to different

datasets
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Figure 3.4: The distribution of owl:sameAs statements per term.

ing in owl:sameAs links is very unevenly distributed over namespaces (which
we use as proxies of datasets).

For each namespace we calculated the number of incoming and outgoing links
(statements whose subject, respectively object, term is in a different namespace.)
The remaining statements are internal edges (they either have two HTTP(S) IRIs
that belong to the same namespace, or they have at least one node that is not an
HTTP(S) IRI (i.e., either a blank node or a literal). Figure 3.6 shows the distri-
bution of internal edges, incoming links, and outgoing links over namespaces.
While the majority of namespaces have incoming links, far fewer namespaces
have outgoing links. This means that a relatively small number of namespaces
is linking to a relatively large number of them. These namespaces are respon-
sible for interlinking in the LOD Cloud. Finally, an even smaller number of
namespaces have internal owl:sameAs edges. This means that most names-
paces only use identity statements for linking to other datasets, but not for
equating dataset-internal resources, suggesting that most datasets enforce the
Unique Name Assumption internally.
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Figure 3.5: The number of terms in identity links by namespace.

To give a high level impression, we have visualised the entire identity-graph
at namespace level in Figure 3.7. This graph contains 2,618 host-based names-
paces/datasets, that are connected through 10,791 edges, and consists of 142
components. The large black cluster at the bottom of the figure is the densely
interconnected set of multilingual variants of dbpedia.org, with the two
high centrality nodes for dbpedia.org and freebase.com clearly visible just
above the black cluster. The figure shows that there exist high-centrality nodes
that act as domain-specific naming authorities/hubs. For example, the central
node in the large top cluster is www.bibsonomy.org, which links to a large
number of bibliographic datasets. A similar role is fulfilled by geonames.org,
for interlinking geographic datasets; bio2rdf.org, for interlinking biochem-
istry datasets; and revyu.com (appearing at the right hand-side of the fig-
ure), for interlinking datasets that contain online reviews. A high-resolution
version of this figure, together with textual namespace labels, is available at
https://sameas.cc/explicit/img.

3.3.2 Implicit Identity Network Analysis

We provide some analysis over the size of the implicit identity network. Specifi-
cally, we analyse the terms that occurs in non-reflexive owl:sameAs statements
and the resulting identity sets. Then we calculate the number of necessary
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Figure 3.6: The distribution of internal edges, incoming links, and outgoing
links by namespace.

owl:sameAs that would be needed in order to express the full materialization
of Gim, and the minimal number of identity statements that would result in the
same closure.

Terms in the Implicit Identity Network (Gim)

The number of unique terms in Gim is 179,672,306. This is less than the number of
unique terms in Gex (179,739,567), because 67,261 terms (or 0.037%) only appear
in reflexive owl:sameAs assertions.

Identity sets of the Implicit Identity Network (Gim)

The number of identity sets is 48,999,148. Since reflexive statements were dis-
carded during the compaction phase, all these identity sets are non-singleton.
The LOD-a-lot file, from which we extract Gex, contains 5,093,948,017 unique
terms. This means that there are 5,044,948,869 singleton identity sets in the LOD.
Figure 3.8 shows that the distribution of identity set size is very uneven and fits
a power law with exponent 3.3 ±0.04. The majority of non-singleton identity
sets (31,337,556 sets; 63.96%) contain only two terms. There are relatively few
large identity sets, with the largest one having a cardinality of 177,794.
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Figure 3.7: All inter-dataset links in the LOD Cloud. Thicker edges repre-
sent more identity links. The full diagram is available at https://sameas.cc/
explicit/img.

Edges in the Implicit Identity Network (Gim)

We want to calculate the number of necessary owl:sameAs that would be
needed in order to express the full materialization of Gim. This calculation re-
quires us to query and stream through the full RocksDB closure index, and
therefore gives a good indication of the processing time required for running
large-scale jobs over the sameas.cc dataset. The calculation (i) retrieves all
identity sets, (ii) calculates their cardinality, and (iii) sums the squares of the
cardinalities. This operation takes only 55.6 seconds and shows that the mate-
rialization consists of 35,201,120,188 owl:sameAs statements. Meaning that in
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Figure 3.8: The distribution of identity set cardinality in Gim. The x-axis lists all
48,999,148 non-singleton identity sets.

case a full materialization of Gim is required, this would at least double the num-
ber of triples of the LOD-a-lot dataset. Notice that almost 90% (or 31,610,706,436
statements) of the materialization is contributed by the single largest identity set
(i.e. with a cardinality of 177,794).

For further analysis, we want to calculate the minimal number of identity
statements that would result in the same closure. We call such a minimal iden-
tity relation a kernel, and calculate it as the number of terms whose equivalence
set is not a singleton set, minus the number of non-singleton identity sets. The
kernel identity relation for Gim consists of 130,673,158 statements (or 0.37% of
Gim). This also means that 76.6% of the explicit identity statements (Gex) can be
removed from the LOD-a-lot dataset, without any implication on the closure.
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3.3.3 Schema Assertions About Identity

In this section we observe assertions in which the IRI owl:sameAs is in the sub-
ject or object position. There are 2,773 assertions about owl:sameAs that extend
the schema as defined in the OWL vocabulary in interesting ways. The dataset
is available at https://sameas.cc/schema. We observe the following kinds
of schema extensions:

Super-properties of owl:sameAs As indicated in [Halpin et al., 2010], there is
a need for properties that are weaker than owl:sameAs that express dif-
ferent shades of similarity and relatedness:

s : owl : sameAs
p : r d f s : subPropertyOf
o : <http :// lexvo . org/ontology #nearlySameAs> .

However, some super-property assertions introduce semantic incoher-
ences. For instance, since identity is the strongest equivalence relation,
it does not make sense to assert new and specific identity relations that are
super-properties of it. The following statement introduces the semantic
incoherence that everything is an individual:

s : owl : sameAs
p : r d f s : subPropertyOf
o : owl : sameIndividualAs .

Sub-properties of owl:sameAs Several datasets introduce sub-properties of
owl:sameAs, i.e., strengthening of the identity relation, without a clear
use case. Our hypothesis is that these datasets intend to weaken the
owl:sameAs property instead, since there are many use cases for weaker
forms of similarity, relatedness, and context-dependent identity. For ex-
ample:

s : <http ://www. bbc . co . uk/ o n t o l o g i e s/coreconcepts/sameAs>
p : r d f s : subPropertyOf
o : owl : sameAs .

Domain/range declarations As observed earlier by [Hogan et al., 2010], the
intersection-based semantics of rdfs:domain and rdfs:range is of-
ten not followed. The following classes are asserted as the domain of
owl:sameAs, effectively stating that all resources are both legal entities,
anniversaries, strings, etc.

s : owl : sameAs
p : r d f s : domain

o : <http :// govwild . org /0.6/GWOntology . rdf # LegalEnt i ty> ,
o : <http :// s . openca la i s . com/1/type/em/e/Anniversary> ;
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p : r d f s : range
o : xsd : s t r i n g .

Properties identical to owl:sameAs Several datasets mint alternative names
for owl:sameAs, e.g.:

s : <http ://rhm . cdepot . net/xml/# is>
p : owl : sameAs
o : owl : sameAs .

s : <http ://sw . opencyc . org/concept/Mx4robv6phbFQdiM86Z2jmH52g>
p : owl : sameAs
o : owl : sameAs .

3.4 Dataset & Web Service

In this section, we present both the sameas.cc dataset and Web service.

3.4.1 Dataset

The sameas.cc dataset is available at https://sameas.cc and consists of
the following components:

Figure 3.9: Screenshot of the sameas.cc Triple Pattern API. The screenshot
shows 4 out of the 558,943,116 owl:sameAs statements existing in the dataset.

The Explicit Identity Dataset (Gex) can be browsed online, queried for Triple
Patterns, and downloaded as N-Triples and HDT.
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Figure 3.10: Screenshot of the sameas.cc Identity Sets API. The screenshot
shows the little known fact that tumulus is a synonym for burial mound.

The Implicit Identity Dataset (Gim) is published as a downloadable snapshot
of the RocksDB index (instead of a materialized RDF file). When RocksDB
is installed, this snapshot can be queried locally.

The Identity Schema can be browsed online, queried for Triple Patterns, and
downloaded in N-Triples, and HDT.

3.4.2 Web Service

The sameas.cc web service14 consists of the following components:

Triple Pattern API. The explicit identity relation web service (https:
//sameas.cc/explicit/tp) allows all owl:sameAs assertions to
be queried with Triple Patterns. Queries are expressed through (com-
binations of) the HTTP query parameters subject, predicate, and
object. Figure 3.9 presents 4 out of the 558,943,116 owl:sameAs
statements existing in the dataset.

Closure API. The implicit identity relation can be queried through the follow-
ing URI paths:

https://sameas.cc/id Enumerates all identity set IDs. Each member
of the identity closure is assigned such a unique ID.

14code is available at https://github.com/wouterbeek/SameAs-Server.
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https://sameas.cc/id?term=dbr:Albert_Einstein Returns
the ID of the identity set to which the given RDF term belongs.

https://sameas.cc/term Enumerates all RDF terms that appear in
the identity relation.

https://sameas.cc/term?id=44000247 Enumerates only the RDF
terms that appear in the identity set with ID 44000247 as key. Figure
3.10 presents the results of this request.

We deliberately expose the internal key-value mechanism explained in
Section 3.2.4 to the users of the sameas.cc Closure API. The typical use
case that we envision is one in which (i) terms are replaced by identity
set identifiers, (ii) efficient computation is performed with the much more
compact identifiers, and (iii) only when computation is done and end re-
sults need to be displayed are identifiers translated back to the potentially
many terms that make up the respective identity sets.

3.5 Conclusion

In this chapter we have presented sameas.cc, the largest and most versatile
dataset and web service of semantic identity links to date. The resource that
we provide includes the largest collection of owl:sameAs assertions and the
closure calculated over it. Even though the datasets are large, the algorithms
and data-structures we deployed ensure that the resources can be stored on and
queried from a regular laptop. In addition to the dataset and web services them-
selves, we have also presented several analytics over the data, including calcu-
lations of the size of the identity relation, its closure and its kernel, and various
distributions. The analyses we presented in this chapter is an order of magni-
tude larger than previous conducted identity analyses. Finally, these presented
resources can be freely downloaded and queried from our identity management
service hosted at http://sameas.cc, and can be used by other researchers in
order to uncover aspects of identity that have not been studied before.

In contrary to this work’s main predecessor [Glaser et al., 2009], by solely
considering owl:sameAs statements, we have provided –in theory– semanti-
cally interpretable identity sets that can be used for instance by a DL reasoner in
order to infer new facts. In addition, and since the explicit identity statements
are extracted from the LOD-a-lot dataset, we can provide users with provenance
information on which dataset is covered in sameas.cc, through the LOD Laun-
dromat service. Table 3.1 shows an overview of the two datasets.

Looking at some of our resulting identity sets and their IRIs descriptions,
it is clear that some of these sets contain IRIs that do not refer to the same real
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Table 3.1: Overview of sameas.org and sameas.cc.

sameas.org sameas.cc

#Terms 203,953,936 179,739,567

#Statements 346,425,685 558,943,116

#owl:sameAs Unknown 558,943,116

#Partitions 62,591,808 48,999,148

#Identity Sets Unknown 48,999,148

world entity. Since these identity sets are solely based on the transitive closure of
owl:sameAs links, this interpretation indicates that identity is indeed misused
in the Web [Jaffri et al., 2008, Ding et al., 2010a, Halpin et al., 2010]. In the next
chapter, we analyse some of the resulted identity sets, and present an approach
for detecting the erroneous owl:sameAs assertions causing this equivalence
mash-up.
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CHAPTER 4
ERRONEOUS IDENTITY LINK DETECTION

This chapter is based on the following publications:

• Joe Raad, Wouter Beek, Nathalie Pernelle, Fatiha Saı̈s and Frank van
Harmelen. “Détection de liens d’identité erronés en utilisant la détection
de communautés dans les graphes d’identité”. In Revue des Sciences et Tech-
nologies de l’Information-Série ISI: Ingénierie des Systèmes d’Information, 23(3-
4):95–118, 2018.

• Joe Raad, Wouter Beek, Frank van Harmelen, Nathalie Pernelle, and
Fatiha Saı̈s. “Detecting Erroneous Identity Links on the Web using Net-
work Metrics”. In International Semantic Web Conference, pages 391–407,
2018.

It has now been broadly acknowledged that erroneous identity links are
present in the Semantic Web. The presence of such links poses an important
threat on the quality of the data on the web, specifically when reasoning is in-
tended. This issue has led to the emergence of several approaches over the re-
cent years that aim at detecting these links that violate the strict logical seman-
tics of owl:sameAs. As presented in Section 2.3.4, while there are approaches
that have high recall, ones that have high accuracy, ones that are scalable, ones
that are applied to real-world datasets, and ones that do not presume any as-
sumptions on the data, there is currently no approach that exhibits all these
features.

This chapter presents a novel approach for the automatic detection of poten-
tially erroneous owl:sameAs statements. The approach consists of applying an
existing community detection algorithm to an RDF graph that contains solely
owl:sameAs statements. Based on the communities that are detected, an error
degree is calculated for each identity link in the graph. The error degree of
an owl:sameAs link depends on the density of the community(ies) in which
the two terms exist, and whether the identity link is symmetrical or not. It is
subsequently used to rank identity links, allowing potentially erroneous links
to be identified, and potentially true owl:sameAs to be validated. Since the
here presented approach is specifically developed in order to be applied to
real-world data, the experiment is run on the largest collection of identity links
to date.

This chapter makes the following contributions:
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1. It presents an approach that detects potential erroneous owl:sameAs
links, and validates potential correct ones based on the topology of the
identity network itself. Not requiring access to resource descriptions,
property mappings, vocabulary alignments, or additional assumptions
like the UNA, constitute the main strong points of this approach with
comparison to the state of the art.

2. It calculates and publishes the error degree of over 558 million
owl:sameAs statements in the LOD Cloud with a total runtime of
11 hours. Showing that an error degree of every identity link can be
calculated in practice.

3. It reveals that the network structure of the owl:sameAs links, and
eventually our proposed error degree, can indeed be used to distinguish
between correct and incorrect owl:sameAs statements in many cases.

4. It presents an analysis on some of the incorrect identity links’ sources and
types, and the network effect that some of these links can cause.

The rest of this chapter is structured as follows. Section 4.1 introduces the
notion of a community structure in a network and some of the community de-
tection algorithms. Section 4.2 describes our approach for detecting erroneous
identity links. Section 4.3 describes the experiments and the implementation.
Section 4.4 gives an analysis and an evaluation of the efficiency of the presented
approach. Section 4.5 concludes.

4.1 Community Structure

This chapter presents an approach for detecting erroneous identity links on the
Web, by introducing a measure that is based on the community structure of the
identity network. We believe community detection to be a particularly good fit
for identity error detection, since it can be applied to the network structure of the
owl:sameAs graph itself. In fact, we suppose that the quality of an identity link
can be evaluated based on the density of the community(ies) in which this link
belongs. Before presenting our approach, we introduce in this section what is a
community structure in a network, and some of the most effective approaches
in detecting such structure.
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4.1.1 Overview

The modern science of networks has brought significant advances to our under-
standing of complex systems. One of the most relevant features of graphs rep-
resenting real systems is community structure. Community detection is a form
of data analysis that seeks to automatically determine the community structure
of a complex network. Importantly, it only requires information that is already
encoded in the network topology. Despite the absence of a universally agreed
upon definition, communities are typically thought of as groups that have dense
connections among their members, but sparse connections with the rest of the
network. Figure 4.1 illustrates an example of a community structure, with three
groups of nodes with dense internal connections and sparser connections be-
tween the groups. The three communities are non-overlapping, as there does
not exist a node which belongs to multiple communities.

Detecting a network’s community structure is of great importance in many
concrete applications and disciplines such as computer science, biology, and so-
ciology, disciplines where systems are often represented as graphs. This has led
to the emergence of several community detection algorithms, mostly making
use of techniques from physics (e.g. spin model, optimization, random walks),
as well as making use of computer science concepts and methods (e.g. non-
linear dynamics, discrete mathematics) [Fortunato, 2010]. All such techniques
aims at identifying group of nodes which are connected “more densely” to each
other than to nodes in other groups. Hence, the differences between such meth-
ods ultimately come down to the precise definition of “more densely” and the
algorithmic heuristic followed to identify such groups [Porter et al., 2009]. Ac-
cording to [Plantié and Crampes, 2013], community detection algorithms have
three types of outputs:

Graph Partition. Most community detection algorithms returns a graph
partition, where each node is associated with solely one group of nodes,
without any overlap between these groups (e.g. Figure 4.1).

Hypergraph. The hypergraph model, where communities can overlap, is
known to be specially relevant in social networks, where persons have
connections to several social groups like family, friends, and colleagues.
See [Xie et al., 2013] for a survey on such type of algorithms.

Concept graphs or Galois lattices. The first use of Galois lattices for represent-
ing network data is owed to [Freeman and White, 1993]. In Galois lattices,
a community (called concept) is defined as individuals (called objects)
who share a subset of properties. The result of a Galois lattice based algo-
rithm is a unique and complete lattice of overlapping concepts (i.e. objects
can appear in multiple, and even all, concepts).
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Figure 4.1: A simple graph with three non-overlapping communities.

Many methods have been proposed to extract non-overlapping commu-
nities. This availability of methods is certainly due to the ease of describ-
ing this type of problem and drawing a partition in comparison with hyper-
graphs or Galois lattices. Overlapping communities have gained popularity
since [Palla et al., 2005]. However, it is still unclear how to characterize vertices
who are shared by multiple communities, and particularly the shared vertices
who lies in central positions of the communities (as opposed to expecting com-
munities to share vertices lying at their borders). In addition, the membership
of vertices in different communities enormously increases the number of possi-
ble covers with respect to standard partitions, resulting in much more compu-
tationally demanding algorithms [Fortunato, 2010]. Similarly to hypergraphs,
computing a Galois hierarchy from a graph is much more computationally de-
manding with respect to standard partitions, and requires an input graph with
a set of different properties for returning multiple lattice concepts.

As we aim to detect the community structure of the owl:sameAs network,
we find that graph partitioning algorithms are more suitable in comparison with
hypergraphs and Galois lattices for the following reasons:

Scalability constraint. As discussed in the previous chapter, the owl:sameAs
network is a graph containing hundreds of millions of owl:sameAs state-
ments. Hence a low computationally demanding algorithms for calculat-
ing its community structure is a necessary requirement.

Identity network properties. The owl:sameAs network is a graph uniquely
composed of owl:sameAs links. Since the Galois hierarchy requires a
number of different properties, it is not suitable for detecting the commu-
nity structure in this case.

Identity constraint. Communities that can overlap are interesting in social net-
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works, where the network properties have weak semantics (e.g. knows,
related to, has friend). Since identity is binary and transitive, overlapping
communities are more difficult to interpret.

In the next section, we present some of the graph partitioning algorithms.

4.1.2 Graph Partitioning Algorithms

In this section, we focus on graph partitioning algorithms that are more suitable
in detecting the community structure of the owl:sameAs network. Even by
restricting our choice to such type of algorithms, there still exist a great number
of algorithms that partitions the graph into a set of densely related group of
nodes. For instance, in one of the most exhaustive surveys with respect to the
number of tackled methods, [Fortunato, 2010] classifies the graph partitioning
algorithms into seven families:

Traditional methods representing the traditional clustering algorithms, such as
the popular k-means algorithm [MacQueen et al., 1967] that partitions the
graph into a k number of clusters given as input.

Divisive algorithms which rely on calculating the betweenness centrality of the
graph vertices, such as [Newman and Girvan, 2004].

Spectral algorithms which rely on the use of spectral properties of graph matri-
ces for finding partitions, such as [Donetti and Munoz, 2004].

Dynamic algorithms which consist of methods employing pro-
cesses running on the graph, such as spin-spin in-
teractions [Reichardt and Bornholdt, 2004], random walks
[Zhou and Lipowsky, 2004], and synchronization [Boccaletti et al., 2007].

Statistical inference-based methods which aim at deducing properties of
graphs starting from a set of observations and hypotheses on how vertices
are connected to each other, such as methods adopting Bayesian inference
[Newman and Leicht, 2007].

Multi-resolution and hierarchical methods which aim at detecting communi-
ties at different scales, resulting in more than one graph partition, such as
[Arenas et al., 2008].

Modularity-based algorithms which aim on optimising the modularity
quality function. Modularity is a measure firstly introduced by
[Newman and Girvan, 2004] to measure the quality of community
detection algorithms, and since then, it has rapidly become the most used
and best known quality function [Fortunato, 2010].
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Having a great number of clustering techniques, we have relied on ex-
isting surveys for choosing the best performing community detection algo-
rithm for our task. In their 2009 survey, [Lancichinetti and Fortunato, 2009b]
carried out a comparative analysis of the performances of 12 community
detection algorithms1, that exploit some of the most interesting ideas and
techniques that have been developed over the last years. The tests were
performed against a class of benchmark graphs, with heterogeneous dis-
tributions of degree and community size, including the GN benchmark
[Girvan and Newman, 2002], the LFR benchmark [Lancichinetti et al., 2008,
Lancichinetti and Fortunato, 2009a], and some random graphs. This study con-
cludes that the modularity-based method by [Blondel et al., 2008], the statis-
tical inference-based method by [Rosvall and Bergstrom, 2008], and the multi-
resolution method by [Ronhovde and Nussinov, 2009] all have an excellent per-
formance, with the additional advantage of low computational complexity.

In a more recent study, [Yang et al., 2016] compare the results of 8 state-of-
the-art community detection algorithms in terms of accuracy and computing
time. Interestingly, only half of these algorithms were considered in the previ-
ous survey, with the tests also being conducted on the LFR benchmark. This
study concludes that by taking both accuracy and computing time into account,
the modularity-based method by [Blondel et al., 2008] outperforms all the other
algorithms.

Given that the method proposed by [Blondel et al., 2008] outperforms the
other 15 algorithms in two different studies, with an additional advantage of
low computational complexity, we will deploy this algorithm for detecting the
community structure in the owl:sameAs network. Next section presents an
overview of this algorithm.

4.1.3 Louvain Algorithm

The Louvain algorithm is a method for detecting communities in large net-
works, created by [Blondel et al., 2008] from the University Catholique de Lou-
vain (the affiliation of authors has given the method its name). It is a greedy
non-deterministic method, introduced for the general case of weighted graphs,
for the purpose of optimising the modularity of the partitions. The modular-
ity of a partition is a scalar value between -1 and 1 that measures the density
of links inside communities as compared to links between communities. In the
case of weighted networks, modularity is defined as follows:

1Admitting that it is impossible to consider all existing algorithms, as their number is huge.
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Q =
1

2m

∑
i, j

[
Ai j −

kik j

2m

]
δ(ci, c j) (4.1)

where:

Ai j represents the weight of the edge between the nodes i and j

ki and k j represent the sum of the weights of the edges attached to the nodes i
and j, respectively

ci and c j represent the community to which to the nodes i and j are assigned,
respectively

2m = 1
2

∑
i, j Ai j and representing the sum of all of the edge weights in the graph

δ(u, v) is 1 if u = v and 0 otherwise

Modularity has been used to compare the quality of the partitions ob-
tained by different methods, but also as an objective function to optimize
[Newman and Girvan, 2004]. Networks with high modularity have dense con-
nections between the nodes within communities but sparse connections be-
tween nodes in different communities. This is the intuition of the Louvain algo-
rithm, which is divided in two phases:

Firstly, it starts out by assigning a different community to each node of a given
network. Hence, in this initial partition, there as many communities as
there are nodes. Then, given a node u, the algorithm computes the gain
in weighted modularity resulting from putting u in the community of its
neighbour v. The node u is then placed in the community of the neighbour
that yields the highest gain to the modularity score, but only if this gain is
positive. If no positive gain is possible, u stays in its original community.
This process is applied repeatedly and sequentially for all nodes until no
further improvement can be achieved (i.e. when modularity cannot be
improved by any node move). At the end of the first phase, one obtains
the first level partition.

In the second phase, each community from the previous phase is regarded as
a single node. To do so, the weights of the links between the new nodes
are given by the sum of the weight of the links between nodes in the cor-
responding two communities. Links between nodes of the same commu-
nity lead to self-loops for this community in the new network. Once this
second phase is completed, the same procedure is repeated until the mod-
ularity (which is always computed with respect to the original graph) no
longer increases.
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Although the exact computational complexity of the Louvain algorithm is
not known, the method seems to run in time O(N log N), with N representing the
number of nodes in the graph [Blondel et al., 2008]. The exact modularity op-
timization is known to be NP-hard (non-deterministic polynomial-time hard),
with most of the computational effort spent on the optimization at the first level.

4.2 Approach

We believe community detection to be a particularly good fit for identity error
detection, since it can be applied to the network structure of the owl:sameAs
graph itself. In fact, we suppose that the quality of an identity link can be
evaluated based on the density of the community(ies) in which this link be-
longs. Since the Louvain algorithm has already been successfully used in other
domains, we believe that it can also perform well on the task of detecting
owl:sameAs-based communities. The approach that we suggest does not re-
quire access to resource descriptions, property mappings, or vocabulary align-
ments. Also, it does not rely on additional assumptions like the UNA that
could be false for some dataset (e.g., datasets that are constructed over a longer
period of time and/or by a large group of contributors). Finally, current ap-
proaches for identity error detection have not always been applied to real-world
owl:sameAs links, and no current approach has been evaluated at Web scale
(i.e. applied to hundreds of millions of links) due to multiple dimensions of
complexity. In the following, we identify the desired requirements for our algo-
rithm:

Low memory footprint. The calculation of erroneous identity links must not
have a large memory footprint, since it must be able to scale to very large
identity networks, and preferably to all identity statements that appear in
the LOD Cloud.

Parallel computing. It must be possible to perform computation in parallel, to
allow errors to be detected relatively quickly, preferably directly after the
publication of the potential error into the LOD Cloud.

Dynamic. Calculation must be resilient against incremental updates. Since
triples are added to and removed from the LOD Cloud constantly, adding
or removing an owl:sameAs link must only require a re-ranking of the
concerned links.

This section presents our approach for detecting erroneous identity links by
exploiting the community structure of the identity network itself. This section
describes the two main steps that our approach is composed of: the construc-
tion of the identity network (section 4.2.1), and the ranking of each identity link
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based on the community structure (section 4.2.2). This chapter uses the termi-
nology and symbolism introduced in the previous chapter.

4.2.1 Identity Network Construction

Constructing the identity network consists of two phases: extracting the explicit
identity network (definition 2), and transforming it into a more compacted and
weighted identity network.

Explicit Identity Network Extraction

The first phase consists of extracting the explicit identity network Gex from a
data graph G (definition 1). This phase is described in the previous chapter
(section 3.1.1).

Identity Network Construction

In this second phase, we can reduce the size of the explicit identity network
Gex into a more concisely represented undirected and weighted identity net-
work I (definition 4), without losing any significant information. Since reflexive
owl:sameAs statements are implied by the semantics of identity, there is no
need to represent them explicitly. In addition, since the symmetric statements
ei j and e ji make the same assertion: that vi and v j refer to the same thing, we
can represent this more efficiently, by including only one undirected edge with
a weight of 2. A weight of 1 is assigned for edges which either ei j or e ji, but not
both, are present in N.

Definition 4 (Identity Network) Given an explicit identity network Gex =

(N, Eex), the identity network is an undirected labeled graph I = (VI , EI , {1, 2},w),
where VI is the set of nodes (VI ∈ N), and EI is the set of edges. {1, 2} are the edges
labels, and w : EI → {1, 2} is the labeling function that assigns a weight wi j to
each edge ei j. For an explicit identity network Gex = (N, Eex), the corresponding
identity network I is derived as follows:

• EI := {ei j ∈ Eex | i < j}

• VI := N[EI], i.e., the vertex-induced subgraph

• w(ei j) :=

2, if ei j ∈ Eex and e ji ∈ Eex

1, if not
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4.2.2 Links Ranking

Our approach of detecting erroneous identity links consists of ranking each
owl:sameAs link in the data graph. For ranking the identity links, we partition
the identity network into several connected components. After partitioning, we
aim to detect, in a separate manner in each of these networks, the owl:sameAs
links that are incorrect by assigning an error degree for each link. Partitioning
the graph is more logically sound, since there is no identity links between two
connected components. In addition, partitioning the graph is beneficial for im-
plementing an algorithm that achieves the requirements cited in the beginning
of the chapter (low memory footprint, parallel computing, and dynamic).

Graph Partitioning

Given I = (VI , EI ,ΣEI ,w), a partitioning of VI is a collection of non-empty and
mutually disjoint subsets Vk ⊆ VI that together cover VI . Since the closure of EI

forms an equivalence set (the semantics of the owl:sameAs property states that
it is reflexive, symmetric, and transitive), it also induces a unique partitioning.
We call members of this partition identity sets. These partition members corre-
spond to the connected components of I that we call equality sets (definition 5).
For partitioning the graph, we apply the technique that we used for the identity
links closure in the previous chapter (section 3.2.4).

Definition 5 (Equality Set) Given an identity network I = (VI , EI , {1, 2},w), an
equality set Qk is a connected component of I. The identity set Vk represents the
set of members of this equality set.

Links Ranking

After partitioning the identity network into several equality sets, we detect a
set of non-overlapping communities by applying the Louvain algorithm (section
4.1.3) for each equality set. Given an equality set Qk, the Louvain algorithm
returns a set of non-overlapping communities C(Qk) = {C1,C2, . . . ,Cn}where:

• a community C of size |C| (i.e. the number of nodes) is a subgraph of Qk

such that the nodes of C are densely connected (i.e. the modularity of the
Qk is maximized).

•
⋃

1≤i≤n Ci = Qk and ∀Ci,C j ∈ C(Qk) s.t. i , j,Ci ∩C j = ∅.

We then evaluate each identity link by relying on its weight and the structure
of the community(ies) it occurs in. We hypothesise that an identity link which is
reciprocally asserted has higher chances of correctness that a non-symmetrically
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asserted identity link. In addition, we hypothesise that not all detected com-
munities have similar qualities. For this, and by relying on the community’s
density, we assign higher chances of correctness for owl:sameAs links connect-
ing two IRIs in a densely connected community, or connecting two IRIs in two
heavily interlinked communities. More precisely, to compute an erroneous de-
gree of each owl:sameAs, we distinguish between two types of possible links:
the intra-community links and the inter-community links.

Definition 6 (Intra-Community Link) Given a community C, an intra-
community link in C noted by eC is a weighted edge ei j where vi and v j ∈ C. We
denote by EC the set of intra-community links in C.

Definition 7 (Inter-Community Link) Given two non overlapping communi-
ties Ci and C j, an inter-community link between Ci and C j noted by eCi j is an
edge ei j where vi ∈ Ci and v j ∈ C j. We denote by ECi j the set of inter-community
links between Ci and C j.

For evaluating an intra-community link, we rely both on the density of the
community containing the edge, and the weight of this edge. The lower the
density of this community and the weight of an edge are, the higher the error
degree will be.

Definition 8 (Intra-Community Link Error Degree) . Let eC be an intra-
community link of the community C, the intra-community error degree of ec de-
noted by err(eC) is defined as follows:

err(eC) =
1

w(eC)
×

(
1 −

WC

|C| × (|C| − 1)
)

(4.2)

where WC =
∑

eC∈EC
w(e)

For evaluating an inter-community link, we rely both on the density of the
inter-community connections, and the weight of this edge. The less the two
communities are connected to each other and the lower the weight of an edge
is, the higher the error degree will be.

Definition 9 (Inter-Community Link Error Degree) . Let eCi j be an inter-
community link of the communities Ci and C j, the inter-community error degree
of eCi j denoted by err(eCi j) is defined as follows:

err(eCi j) =
1

w(eCi j)
×

(
1 −

WCi j

2 × |Ci| × |C j|

)
(4.3)

where WCi j =
∑

eCi j∈ECi j
w(e)
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Algorithm 1 provides a summary of the necessary steps for ranking iden-
tity links, taking a data graph as input, and returning an error degree for each
owl:sameAs link in the identity network.

Algorithm 1: Identity Links Ranking
Input: G: a Data graph
Output: Eerr: a set of pairs in the from {(e1, err(e1)), . . . ,(em, err(em))}with

m is the number of edges in the identity network extracted from
G

1 Iex ← ExtractS ameAsEdges(G); // the explicit identity network
2 I ← empty graph; // the identity network
3 foreach (e(v1, v2) ∈ Iex and v1 , v2) do
4 if (I.containsEdge(e(v2, v1, 1))) then
5 I.updateWeight(e(v2, v1, 2); // set the weight of this edge to 2
6 else
7 I.addEdge(e(v1, v2, 1)); // add this edge to I with a weight = 1

8 P← I.partition(); // partitioning the graph into equality sets
9 foreach (Q ∈ P) do

10 Cset ← LouvainCommunityDetectionAlgorithm(Q);
11 foreach (e ∈ Cset) do
12 if (e is intra-community-edge(ci) then
13 err(e)← intraCommunityErroneousness(ci);
14 else
15 // e is an inter-community edge, c j is the other community to

which e is belonging to;
16 err(e)← interCommunityErroneousness(ci, c j);
17 Eerr.add(e, err(e));

18 return Eerr;

4.3 Implementation & Experiments

In this section we describe our implementation and experiments of the previ-
ously presented approach on a large copy of the LOD Cloud.

4.3.1 Data Graph

We use the same data graph described in the previous chapter (section 3.2.1).
The LOD-a-lot dataset [Fernández et al., 2017], which represents our data graph
(definition 1), contains more than 28.3 billion unique triples that represent a
large copy of the LOD Cloud. This dataset contains more than 5 billion unique
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terms, related by more than 1.1 billion predicates. This data is exposed in a sin-
gle HDT file that is 524 GB in size, and publicly accessible (via an LDF interface)
and downloadable (as HDT Dump).

4.3.2 Explicit Identity Network Extraction

In order to extract the explicit identity network we use the method described
in the previous chapter (section 3.2.2). It consists in performing a Triple Pattern
query of the form 〈?,owl:sameAs, ?〉 with the HDT C++ library2. This extrac-
tion process takes around four hours using 1 CPU core, resulting in an explicit
identity network of 558.9M edges and 179.73M nodes. The explicit identity net-
work is publicly available at https://sameas.cc/triple.

4.3.3 Identity Network Construction

From the explicit identity network described above, we build the identity net-
work (definition 4) containing ∼331M weighted edges and 179.67M terms. We
leave out ∼2.8M reflexive edges and ∼225M duplicate symmetric edges. As a
result, we also leave out 67,261 nodes that only appear in such removed edges.
This indicates that 68% of the identity network edges are redundantly asserted,
with a weight = 2.

4.3.4 Graph Partitioning

The next step consists of partitioning the identity network into several equality
sets (definition 5). We have deployed the algorithm described in the previous
chapter (section 3.2.4) that partitions the identity network into ∼49M identity
sets, in just under 5 hours using 2 CPU cores. The equality sets were easily
constructed using the explicit identity network and the resulted identity sets
which are publicly available at http://sameas.cc/id.

4.3.5 Links Ranking

Once the identity network has been partitioned, we apply the Louvain algo-
rithm to detect communities in each equality set. As discussed in section

2https://github.com/rdfhdt/hdt-cpp
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4.1.3, the Louvain method is a greedy and non-deterministic algorithm. Mean-
ing that in different runs, the algorithm might produce different communities,
with no insurance that the global maximum of modularity will be attained.
For this, we have run Louvain 10 times on each equality set, and finally con-
sidered the community structure with the highest modularity. After detect-
ing the communities, we assign an error degree to all edges of each equality
set. This process takes 80 minutes3, resulting an error degree to each irreflex-
ive4 owl:sameAs statement (∼556M statements) in the explicit identity net-
work. The error degree distribution of these statements is presented in Fig-
ure 4.2. This figure shows that around 73% of the statements have an error
degree below 0.4, whilst around 5% of the owl:sameAs statements have an
error degree higher than 0.8. Whilst this distribution is mainly caused by the
high number of symmetrical identity statements in the LOD, it also indicates
that most equality sets have a rather dense structure. The 179.67M terms of
the identity network were assigned into a total of 55.6M communities, with the
communities size varying between 2 and 4,934 terms (averaging ∼3 terms per
community). The Java implementation of the link ranking process is available
at http://github.com/raadjoe/LOD-Community-Detection. The er-
roneous degree of all the owl:sameAs statements are available in our identity
Web service (https://sameAs.cc).

4.4 Analysis & Evaluation

4.4.1 Community Structure Analysis

In this section we provide a first analysis of the community structure obtained
from two equality sets (the largest equality set and the one about Barack Obama)
based on the IRIs contained in the communities. In a 2016 study conducted
on the same data collection, [de Rooij et al., 2016] have shown that the social
meaning encoded in IRI names significantly coincides with the formal meaning
of IRI-denoted resources. Hence, indicating that IRIs can give an idea on the
quality of the detected communities.

Community Structure in the Largest Equality Set

The largest equality set Qmax contains 177,794 terms connected by 2,849,650
undirected and weighted edges. This equality set is the result of the compaction

3on an 8GB RAM Windows 10 machine, using 2 CPU cores
4reflexive statements were discarded in I, and symmetrical ones have the same error degree
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Figure 4.2: Error degree distribution of 556M owl:sameAs statements
.

of 5,547,463 distinct owl:sameAs statements (∼ 1% of the owl:sameAs in
the LOD-a-lot dataset). This identity set is available at https://sameas.cc/
term?id=4073. By looking at the IRIs of this equality set, we can observe that
it contains a large number of terms denoting different countries, cities, things
and persons (e.g. Bolivia, Dublin, Coca-Cola, Albert Einstein, an empty string,
and so on). This observation clearly shows that this equality set contains a large
number of erroneous owl:sameAs statements .

Applying the Louvain algorithm on Qmax resulted in 930 non-overlapping
communities, with a size varying from 32 to 2,320 terms per community. As
a first interpretation on the community structure, we have solely looked at
the IRIs. Despite a few exceptions, we can see that this algorithm is able to
group related (and possibly identical) terms in the same community, while
keeping out unrelated terms in other communities. For instance, the community
C258, illustrated in Figure 4.3 contains 242 terms. We can see from this excerpt
that most of these terms come from the DBpedia dataset and refer to descrip-
tions of Dublin expressed in different languages and ways: City of Dublin,
Capital of Ireland, Baile Atha Cliath (Dublin in Irish), Dyflin (the
old Norse name for The Kingdom of Dublin), etc. However, we can also see
that this community contains terms that do not refer to the city of Dublin, but
actually refer to the weather in Dublin or visitor information for Dublin.
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Figure 4.3: Excerpt of the 242 terms included in the community containing the
IRI http://dbpedia.org/resource/dublin

.

With this excerpt of the Dublin community, we can see that an owl:sameAs
statement between two terms in the same community is not necessarily correct,
and requires evaluation as well.

Community Structure in the ‘Barack Obama’ Equality Set

We present here an analysis of the community structure detected on the equality
set Qobama which has a reasonable size and thus easier to analyse. The equality set
containing the term http://dbpedia.org/resource/Barack_Obama is
composed of 440 terms connected by 7,615 undirected and weighted edges. This
equality set, illustrated in Figure 4.4, is based on 14,917 explicit owl:sameAs
statements, and its identity set is available at (https://sameas.cc/term?
id=5723).
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Figure 4.4: The equality set containing the term http://dbpedia.org/
resource/Barack_Obama. It is composed of 440 terms and 7,615 undirected
weighted edges, compacted from 14,917 owl:sameAs statements

Applying the Louvain algorithm on Qobama resulted in 4 non-overlapping
communities, with a size varying from 34 to 166 terms per community. The
resulting community structure of Qobama is presented in Figure 4.5, and can be
interpreted as follows:

C0 (purple) includes 166 terms, with 98% of the links of this community
representing cross-language symmetrical links between DBpedia IRIs
(e.g. http://fr.dbpedia.org/resource/Barack_Obama) referring
to the person Barack Obama.

C1 (green) includes 162 terms, mostly DBpedia IRIs of the per-
son Obama in his different roles and political functions (e.g.
http://dbpedia.org/resource/President_barack_obama,
http://dbpedia.org/resource/senator_obama).

C2 (orange) includes 78 terms, mostly referring to the presidency and admin-
istration of Barack Obama (e.g. http://dbpedia.org/resource/
Obama_cabinet, http://dbpedia.org/resource/Barack_
Hussein_Obama_administration)

C3 (blue) includes 34 terms from different datasets denoting various
entities such as: Barack Obama the person, his senate career,
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and a misused literal (|"http://dbpedia.org/resource/
United_States_Senate_career_of_Barack_Obama, "http:
//dbpedia.org/resource/Barack_Obama"ˆxsd:string).

Figure 4.5: The communities detected from the equality set containing the term
http://dbpedia.org/resource/Barack_Obama using the Louvain algo-
rithm. The 4 detected communities are distinguished by their nodes’ color. The
full figure is available at https://sameas.cc/img/obama-large.svg.

4.4.2 Links Ranking Evaluation

In order to evaluate the accuracy of our ranking approach, we have conducted
several manual evaluations. The judges relied on the descriptions5 associated
to the terms in the LOD-a-lot dataset [Fernández et al., 2017], and did not have

5judges were asked to not consider the owl:sameAs assertions associated to a term
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any prior knowledge about each link’s error degree (i.e. whether they are eval-
uating a well-ranked link or not). In order to avoid any incoherence between
the evaluations, the judges were asked to justify all their evaluations, and were
given the following instructions: (a) the same: if two terms denote the same en-
tity (e.g. Obama and the First Black US President), (b) related: not intended to
refer to the same entity but closely related (e.g. Obama and the Obama Admin-
istration, or Obama and the Wikipedia article of Obama), (c) unrelated: not the
same nor closely related (e.g. Obama and the Indian Ocean), (d) can’t tell: in
case there are no sufficient descriptions available for determining the meaning
of both terms (i.e. non-dereferenced IRIs and IRIs appearing solely as subjects
or objects of owl:sameAs statements in the LOD).

A. Error degree interpretation in the ‘Barack Obama’ Equality Set

Firstly, we have relied on the previous observations, made on the community
structure presented in Figure 4.5, to interpret the error degree distribution:

• an owl:sameAs statement in C0 has an average error rate of 0.24. A man-
ual evaluation of 30 random owl:sameAs statements in this community
shows that they are all true identity links.

• the low density of C1 has led to several correct owl:sameAs statements
to have a high error degree (0.9). This is due to the fact that there is only
one term linking to all the 161 other terms in this community, with most
of these edges being non-symmetrical links.

• the only two owl:sameAs statements in this equality set with an error
value ' 1 (0.999) are the edges in the graph connecting the IRI http:
//rdf.freebase.com/ns/m.05b6w1g from C2 to both IRIs http:
//dbpedia.org/resource/President_Barack_Obama and http:
//dbpedia.org/resource/President_Obama from C1. Relying on
their descriptions in the LOD-a-lot dataset, we can see that the Freebase
IRI refers to the presidency of Obama, while the two other IRIs refer to the
person Obama, indicating that both statements are incorrect. These two
detected incorrect identity statements have led to the false equivalence of
the 78 terms of C2 with the rest of the network’s terms.

B. Accuracy Evaluation on a Subset of the Identity Network

In this evaluation, we aim at defining a threshold x of the error degree, in which
owl:sameAs links that have an error degree ≤ x will have high probability of
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correctness, and links which have an error degree > x have high probability
of being erroneous. In order to determine this threshold, four semantic web
experts were asked to evaluate a subset of the identity network. Based on the
judges’ evaluations we can deploy the following terms:

True Positives (TP) referring to owl:sameAs links which have an error degree
> x and were evaluated by the judges as incorrect (related or unrelated)
identity links.

False Positives (FP) referring to owl:sameAs links which have an error degree
> x and were evaluated by the judges as true identity links.

True Negatives (TN) referring to owl:sameAs links which have an error de-
gree ≤ x and were evaluated by the judges as true identity links.

False Negatives (FN) referring to owl:sameAs links which have an error de-
gree ≤ x and were evaluated by the judges as incorrect (related or unre-
lated) identity links.

By definition, accuracy indicates the percentage of links correctly evaluated
by our approach:

accuracy =
T P + T N

T P + T N + FP + FN
(4.4)

The judges were asked to evaluate 200 owl:sameAs links (50 links each),
representing a sample of each bin of the error degree distribution presented in
Figure 4.2. We consider that when a human expert is not able to confirm the
correctness of a certain identity link due to the absence of necessary descrip-
tions for one of the two involved IRIs, no automated approach can. With this
assumption, we will not consider links judged by the experts as “can’t tell” in
the accuracy evaluation.

From the results presented in Table 4.1, we can observe that:

• the higher an error degree is, the more likely that the link is erroneous.

• 100% of the evaluated links with an error degree ≤ 0.4. are correct.

• when the error degree is between 0.4 and 0.8, 83.3% of the owl:sameAs
links are correct. However, in 13.3% of the cases, such links might have
been used to refer to two different, but related terms.

• an owl:sameAs with an error degree > 0.8 is a less reliable identity state-
ment, referring in 31.8% of the cases to two different, and most of times
unrelated terms.
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Table 4.1: Evaluation of 200 owl:sameAs links, with each 40 links randomly
chosen from a certain range of error degree. The percentages between paren-
theses are calculated without considering the links evaluated as “can’t tell”.

error degree range 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1 total

same
35

(100%)

22

(100%)

18

(85.7%)

7

(77.8%)

15

(68.2%)

97

(89%)

related 0 0 2 2 2 6

unrelated 0 0 1 0 5 6

related + unrelated
0

(0%)

0

(0%)

3

(14.3%)

2

(22.2%)

7

(31.8%)

12

(11%)

can’t tell 5 18 19 31 18 91

total 40 40 40 40 40 200

We have further investigated the 22 evaluated identity links with an er-
ror degree over 0.8. Two features were observed from the 7 incorrect iden-
tity statements: (i) their error degree is most of the times higher than the true
owl:sameAs links, and (ii) they all belong to equality sets with a higher num-
ber of terms than the true ones. To further investigate these observations, we
have evaluated 60 additional links with an error degree > 0.9. The first set of
links (S1) represents 20 random identity links from the largest equality set. The
second set of links (S2) represents 20 random identity links with an error de-
gree '1 (> 0.99). The third set of links (S3) represents 20 random links from the
largest equality set with an error degree '1.

The results presented in Table 4.2, suggest that our approach is accurate in
detecting erroneous identity links when the threshold is fixed at 0.99, and when
only equality sets with a high number of terms are considered. However, since
it is difficult to determine the equality sets’ size range in which our approach
would maintain such high accuracy, we fix the threshold at 0.99 without consid-
ering the equality set size.

In order to calculate an approximative accuracy of our approach based on
this threshold, we rely on the set of links evaluated during these experiments.
More specifically we consider the links evaluated in Table 4.1, Table 4.2, and
links previously evaluated in the ‘Obama’ Equality Set. Table 4.3 presents the
True Negatives (TN) which are the correct owl:sameAs with an error degree ≤
0.99, the True Positives (TP) which are the erroneous ones with an error degree
> 0.99, the False Positives (FP), and the False Negatives (FN).

Links with err ≤ 0.99: Table 4.1 includes 109 owl:sameAs links with an error
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Table 4.2: Evaluation of 60 owl:sameAs links with an error degree > 0.9, with
the first set of 20 owl:sameAs links (S1) randomly chosen from the largest
equality set, (S2) randomly chosen from all links with an error degree '1, (S3)
randomly chosen from the largest equality set with an error degree '1

Largest equality set(S1) err '1 (S2) Largest & err '1 (S3)

same
6

(50%)

6

(60%)

2

(11.7%)

related 1 1 2

unrelated 5 3 13

related+unrelated
6

(50%)

4

(40%)

15

(88.2%)

can’t tell 8 10 3

Total 20 20 20

degree ≤ 0.99 (i.e. no evaluated link from the [0.8-1] bin have an error
degree > 0.99), with 97 out of these 109 judged as correct identity links.
Table 4.2 includes 11 owl:sameAs with an error degree ≤ 0.99 (i.e. 1 out
of the 12 links in the (S1) set has an error degree > 0.99), with 6 out of
these 11 links evaluated as correct links. We have manually evaluated 30
owl:sameAs from the C0 in the ‘Obama’ Equality Set with an error de-
gree ≤ 0.99, with all of these links being judged as true owl:sameAs, rep-
resenting cross-language identity links. Hence, 133 links (TN) out of the
150 links (TN+FN) with an error degree ≤ 0.99 are correct identity links,
suggesting a precision of 88.6% in validating owl:sameAs links.

Links with err > 0.99: Table 4.2 includes 28 owl:sameAs with an error degree
> 0.99, with 20 out of these 28 links evaluated as erroneous links. We have
also manually evaluated the only 2 owl:sameAs links in the ‘Obama’
equality set with an error degree > 0.99, connecting the Freebase resource
from C2 to DBpedia resources in C1, with both of these links judged as er-
roneous. Hence, 22 (TP) out of the 30 evaluated links with an error degree
> 0.99 (TP+FP) are erroneous, suggesting a precision of 73.3% in detecting
erroneous identity links. However, we admit that in practice, in random
equality sets, the precision might be closer to 40% as the (S2) evaluation
suggests.

Our manual evaluation of 180 owl:sameAs statements6 suggests that our
approach is able to correctly classify an owl:sameAs link (as correct or erro-

6Discarding the statements judged by the experts as “can’t tell”
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Table 4.3: Correctness of the manually evaluated links, based on a threshold
of 0.99. Specifically it presents the True Negatives (TN) which are the correct
owl:sameAs with an error degree ≤ 0.99, the True Positives (TP) which are
the erroneous ones with an error degree > 0.99, the False Negatives (FN), and
the False Positives (FP) from the links evaluated in Table 4.1, Table 4.2, and the
‘Obama’ Equality Set.

TN TP FN FP Total

Table 4.1 97 0 12 0 109

Table 4.2 6 20 5 8 39

‘Obama’ EqSet 30 2 0 0 32

Total 133 22 17 8 180

neous) with an 86% accuracy. If we discard the non-randomly chosen links
(i.e. discard the links manually evaluated from the ‘Obama’ equality set and
the largest equality set), the accuracy of our approach would almost remain the
same (85%), due to the high number of true negatives.

C. Accuracy Evaluation according to a State-of-the-Art Gold Standard

We have tested the accuracy of our approach on the only state-of-the-art ap-
proach [Acosta et al., 2013] that publishes7 its manually evaluated links. This
content-based approach, presented in Section 2.3, uses crowdsourcing for eval-
uating the quality of the links in the LOD. During their evaluation, the authors
have manually evaluated 95 owl:sameAs links, corresponding all to correct
DBpedia-Freebase identity interlinks. Out of these 95 gold standard links, we
found 78 in our dataset (82%). Verifying their error degrees8, we found that
only 1 out of these 78 links was assigned an error degree higher than 0.99 (FP),
with the rest having an error degree between 0.52 and 0.94 (TN), suggesting an
accuracy of 98.7% according to this gold standard.

D. Recall Evaluation

In order to evaluate the recall of our approach, we have verified how our ap-
proach can rank newly introduced erroneous owl:sameAs statements. Firstly,
we have chosen 40 random terms9 in the explicit identity network, making

7http://people.aifb.kit.edu/mac/DBpediaQualityAssessment/
experiments.html

8https://github.com/raadjoe/LOD-Community-Detection/blob/master/
resources/interlinking_GS_err.csv

9we also made sure to include 5 terms that belong to the same equality set
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sure that all these terms are different and not explicitly owl:sameAs (e.g.
dbr:Paris, dbr:Strawberry, dbr:Facebook). From the 40 selected terms,
we have generated all the possible 780 undirected edges between them. We
added separately, each edge ei j to the identity network with w(ei j)=1, calculated
its error degree, and removed it from the identity network before adding the
next one. The resulted error degrees of the newly introduced erroneous identity
links range from 0.87 to 0.9999. When the threshold is fixed at 0.99, the recall
of detecting erroneous identity links is 93%, with 725 (TP) out of the 780 added
links (TP+FN) having an error degree > 0.99.

E. Evaluation of the Symmetry Impact in the Erroneous Degree

In this final evaluation, we want to verify the hypothesis we consider in our
error degree measure, that a symmetrical identity link have a higher chance of
correctness than a non-symmetrical one. We have evaluated in these experi-
ments, including the 78 gold standard links, a total of 370 owl:sameAs links.
The judges were able to classify 258 of these links, in which 39 were judged as
erroneous identity statements: 12 links in Table 4.1, 25 links in Table 4.2, and
2 links from the Barack Obama equality set that connect the communities C1
and C2. As Table 4.4 shows, from the 258 evaluated owl:sameAs links, 94 cor-
respond to symmetrically duplicate links (i.e. they have a weight of 2 in the
identity network). Only 2 out of these 94 symmetrical links were judged as
related by the judges, with the rest being judged as correct identity links (98%
chance of correctness). On the other hand, 37 out of the 164 non-symmetrical
owl:sameAs links were judged as erroneous (10 related and 27 unrelated), in-
dicating a 77% chance of correctness. These number suggests that a symmetrical
identity link has more chances of correctness than a non-symmetrical one.

For further investigation, we have discarded the weight from the error
degree measure (i.e. the error degree is now solely dependent on the density
of the communities), and ranked all the owl:sameAs links all over again.
To evaluate the impact of the weight on the accuracy of detecting erroneous
links, we have randomly evaluated 30 owl:sameAs links that have the same
characteristics as the links from the (S3) set (i.e. error degree > 0.99 and belong
to the largest equality set). Out of the 30 links, the judges have evaluated that
17 owl:sameAs relate two resources referring to the same real world entity,
2 owl:sameAs relates two unrelated resources, and were not able to judge
the remaining 11 links due to insufficient descriptions. This evaluation shows
that when discarding the weight from the error degree, the precision of the
approach in detecting erroneous owl:sameAs links drops from 88% to 11% (in
the largest equality set and when the threshold is fixed at 0.99). This is due to
the addition of ∼ 20K duplicate symmetrical links, with a value > 0.99, in the
largest equality set.
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Table 4.4: Analysis of the 370 evaluated links according to their symmetrical
property

Symmetrical Non-symmetrical Total

same
92

(98%)

127

(77%)

219

(85%)

related 2 10 12

unrelated 0 27 27

related + unrelated
2

(2%)

37

(23%)

39

(15%)

can’t tell 36 76 112

Total 130 240 370

This result falls in line with Bernard Vatant’s suggestion (see
[Ding et al., 2010a]) that an owl:sameAs is not symmetric, and that
owl:sameAs assertions should be supported reciprocally by both owners
of the resources connected by an owl:sameAs link, in order to be considered
strongly equivalent.

Results Interpretation.

The experiments conducted in this paper, on a subset of 28 billion unique triples
of the LOD Cloud, shows that there exist several incorrect owl:sameAs state-
ments in the Web of Data. These erroneous identity statements have led to the
false equivalence of many unrelated terms (e.g. Dublin, Coca-Cola, and Albert
Einstein), and many related terms (e.g. Barack Obama the person, and his ad-
ministration). With a total runtime of 11 hours, these experiments show that an
error degree of every existing identity link in the LOD Cloud can be computed
in practice. Our manual evaluation of these error degrees suggests that:

1. our error degree can validate a large number of identity links in the
LOD Cloud. Around 555 million owl:sameAs (99.7%) have an error
degree ≤ 0.99. With a precision of 88.6% in validating owl:sameAs
links, our results suggest that our approach can correctly validate a large
number of owl:sameAs links in the LOD. When higher precision is
required over the recall, one could consider identity links with an error
degree below 0.4 (manual evaluation suggest 100% precision), which refer
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to 73% of the owl:sameAs links in the LOD Cloud (∼ 405M).

2. our error degree can detect numerous erroneous identity links in the
LOD Cloud. Around 1.2 million owl:sameAs links have an error degree
> 0.99. With a precision varying between 40 and 73.3% depending on the
the equality set’s size, our results suggest that by discarding links with
an error degree > 0.99, our approach can remove between 480K to 880K
incorrect identity statements in the LOD.

3. our approach can give an approximation on the quality of identity links
in the LOD Cloud. Around 450M owl:sameAs in the LOD are sym-
metrical (225M edges in the identity network with a weight of 2). With
a 98% probability of correctness, the results suggest that (i) around 10M
owl:sameAs statements are erroneous. From the remaining 106M non-
symmetrical statements, there exist around 105M owl:sameAs with an
error degree ≤ 0.99, and with a 88.6% probability of correctness, the re-
sults suggest that (ii) an additional 12M owl:sameAs are probably erro-
neous. With an erroneous probability varying between 40 and 88% de-
pending on the equality set size, the results finally suggest that (iii) 480
to 880K additional statements with an error degree > 0.99 are probably
erroneous. Therefore, relying on the error degree and the symmetry of
the owl:sameAs statements in the LOD, we estimate that there could
be around 22.5M erroneous owl:sameAs, representing around 4% of the
total owl:sameAs statements in the LOD. This number is quite close
to [Hogan et al., 2012]’s estimation10 that 2.8% of owl:sameAs links are
erroneous, and much more optimistic than [Halpin et al., 2010]’s estima-
tion that around 21% of owl:sameAs links on the Web are incorrect, and
[Cuzzola et al., 2015]’s estimation of 61% where they found 251 incorrect
links out of 411 owl:sameAs.

We are aware that these numbers are just an estimation suggested by the
error degree distribution and the symmetry of the existing owl:sameAs links
in the LOD Cloud, and the manual evaluation of around 300 owl:sameAs links
in total (from a total of 558.9M statements).

4.5 Conclusion

In this chapter, we have presented an approach for detecting erroneous
owl:sameAs statements in RDF graphs. Our approach is uniquely based on the

10based on the manual evaluation of 1000 pairs from the same equivalence class (i.e. not
necessarily explicitly owl:sameAs)
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topology of the identity network itself, with no other assumption on the graph.
In order to illustrate its ability to scale, we have evaluated our approach on a
subset crawled from the LOD containing 28 billion triples, with over 558 million
owl:sameAs statements. With an accuracy of 86%, the manual evaluation of
around 300 owl:sameAs links shows that the here introduced error degree can
indeed be used for distinguishing between correct and incorrect owl:sameAs
statements. The experiments also show that an error degree for each identity
link in the LOD Cloud can be computed in practice, with a total runtime of
11 hours on an a regular laptop. The error degree of all the owl:sameAs state-
ments are available on our identity Web service (https://sameAs.cc), which
will allow others to replicate, check, and hopefully improve upon the here pre-
sented results.

In the following, we describe how the here presented approach can be eval-
uated in comparison with the approaches presented in Section 2.3, in terms of
accuracy, precision, recall, transparency and feasibility in the LOD:

Accuracy. The manual evaluation of around 300 owl:sameAs links suggest
that our approach can correctly classify an identity link with an 86% accu-
racy. These results are in line with some of the best presented approaches
in terms of accuracy [CudreMauroux et al., 2009, Acosta et al., 2013], with
an accuracy of 90%, 94% respectively. However, these approaches were
tested on a synthetic graph of 24K links, a set of 95 links, respectively,
with all of these approaches also requiring some assumptions on the data
(source trustworthiness or some descriptions for each resource).

Precision. Out of the 30 manually evaluated links with an error degree > 0.99,
22 links were judged as erroneous. This evaluation suggests an average
precision of 73% in detecting erroneous identity links, ranging from 40%
to 88% depending on the equality sets’ size. The here reported precision
is lower on average compared to [Hogan et al., 2012, Cuzzola et al., 2015,
Papaleo et al., 2014], who respectively report precisions of 85%, 93% and
88% (on one out of 3 linksets). However, these approaches respectively
require the presence of logical inconsistencies, textual descriptions, or on-
tology mappings.

Recall. Based on the identified threshold of 0.99, the detection of 725 out of
the 780 erroneous links we injected in the LOD shows a recall of (93%).
These results suggest some of the highest recalls with regards to existing
approaches, with the exception of [Papaleo et al., 2014] who have obtained
a recall of 100% on a particular linkset of 112 owl:sameAs links, while
requiring ontology mappings and the presence of specific types of proper-
ties.

Transparency. In addition to the crowdsourcing approach proposed by
[Acosta et al., 2013], we are the second approach that allows the replica-
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tion of the experiments, by using a public dataset, publishing the links
score with our gold standard, and making our tool publicly available.

Feasibility in the LOD. In contrary to existing approaches, the here pre-
sented experiments have indeed proven the feasibility of our approach
in the LOD. In terms of scalability, we have improved the state of
the art by an order of magnitude (compared to [de Melo, 2013] and
[Valdestilhas et al., 2017], with datasets of 25M and 19M respectively). In
addition, the here present approach relies only on the community struc-
ture of the owl:sameAs links, and requires no additional assumptions on
the data, which makes it highly applicable in the context of the Web.

Now that the replications of misusing owl:sameAs are clear and alarming
in the here computed equivalence closure, we can see the necessity of having
new types of identity relations that can accurately interpret the semantics of
identity intended by the user, without suffering from the identified problems
discussed in Chapter 2. In the next chapter, we introduce a new contextual
identity relation, with an approach for automatically detecting these contex-
tual identity links, allowing to replace in certain cases the erroneous use of
owl:sameAs.
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CHAPTER 5
CONTEXTUAL IDENTITY RELATION

This chapter is based on the following publications:

• Joe Raad, Nathalie Pernelle, and Fatiha Saı̈s. “Detection of Contextual
Identity Links in a Knowledge Base”. In Proceedings of the Knowledge Cap-
ture Conference, p. 8. ACM, 2017.

• Joe Raad, Nathalie Pernelle, and Fatiha Saı̈s. “Détection de liens d’identité
contextuels dans une base de connaissances”. In IC 2017-28es Journées
francophones d’Ingénierie des Connaissances, pages 56–67, 2017 (best paper
award).

In the previous chapter, we have seen that there exist several erroneous iden-
tity links in the Web, estimating that around 4% of the owl:sameAs statements
in the LOD Cloud are incorrect. While some of the detected owl:sameAs are
fundamentally erroneous, linking two completely unrelated terms such as the
country Bolivia and the scientist Albert Einstein, some of the links we investi-
gated relate two different, but closely related terms that are considered the same
in some contexts but not in others. Such cases are quite common in datasets that
describe scientific experiments, where data are collected by different scientists,
and the experiments’ circumstances and participants (e.g. products, materials,
etc.) tend to change, even slightly, from one experiment to another. Therefore,
individuals can rarely be declared the same in all contexts, as the notion of iden-
tity might vary depending on the context. For instance, in some applications,
the fact that two drugs share the the same chemical structure is sufficient to con-
sider them as equivalent (in a scientific context), while in other commercial ap-
plications, it is also necessary that these drugs share the same name. Likewise,
two lemonades with different quantity but equal proportions of lemon, water
and sugar can be considered the same in a gustatory context, and different in the
context of an energetic and nutritional study. The standing practice for linking
such terms is the use of weaker notions of relatedness, such as rdfs:seeAlso
and skos:exactMatch, with more than 169M and 566K triples respectively
asserted in the LOD Cloud (see section 2.4 for a list of weaker identity predi-
cates). However, these relations have limited semantics, and do not explicit the
contexts in which the related terms can be substituted, thereby limiting reason-
ers in drawing inferences.

Given that the classical notion of identity, standardized in the owl:sameAs
predicate, is highly problematic (see chapter 2), and given the limit of existing
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properties in offering alternative semantics for identity with respect to a given
context (see section 2.4), we propose in this chapter a novel approach for rep-
resenting and detecting contextual identity links. More specifically this chapter
makes the following contributions:

1. It introduces a new relation for expressing contextual identity between
two class instances. In this alternative notion, the contexts in which the
identity holds are defined and explicit to the user with regard to a do-
main ontology. For defining the contextual identity, this chapter defines
the notion of global context, their order relations, and the conditions that
should be fulfilled for declaring an identity between two given instances
in a certain (global) context.

2. It presents an algorithm for detecting the most specific global contexts in
which a pair of instances are identical. This algorithm can also be guided
by a set of semantic constraints provided by experts, in order to filter ir-
relevant identity contexts.

The rest of this chapter is structured as follows. Section 5.1 presents the con-
textual identity relation and defines the criteria for identity. Section 5.2 presents
our approach for automatically detecting the contextual identity links in an RDF
knowledge graph, and Section 5.3 concludes.

5.1 Contextual Identity Definition

In this chapter we present a new approach for discovering contextual iden-
tity relationships in RDF knowledge graphs. The approach aims at detecting
identity links that are valid in certain contexts, defined as sub-ontologies of the
domain ontology. In this section, we present the considered RDF knowledge
graphs, the problem statement, and introduce the contextual identity relation
and the necessary notions for defining it.

5.1.1 RDF Knowledge Graph

In this approach, we consider knowledge graphs where the ontology is repre-
sented in RDFS (Resource Description Framework Schema), and the data repre-
sented in RDF1.

Definition 10 (RDF Knowledge Graph) A knowledge graph B is defined by a
couple (O,F ) where:

1https://www.w3.org/RDF/
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– O = (C,P,A) represents the conceptual model of the knowledge graph, de-
fined by a set of classes C, a set of properties P, and a set of axioms A
such as the subsumption relations between classes, and the domains and
ranges axioms. We use the following notation for expressing subsumption
relations: c2 v c1 for expressing that the class c2 is subsumed by the class
c1 (i.e. c2 is more specific than c1).

– F = {(s, p, o)} is a collection of triples consisting of the resource being de-
scribed (subject s), a relationship (predicate p), and a relationship value
(object o). Identifiers for p, s and o are IRIs, except for the object o which
can also be a literal2 (e.g. a string or any other XML-sanctioned datatype).
We note Ic the set of instances i of a class c.

5.1.2 Problem statement

The problem of detecting contextual identity links can be defined as follows:
given a knowledge graph B = (O,F ) and a set Itc of instances of a target class
tc of the ontology O, find for the set of all instance pairs (i1, i2) ∈ (Itc × Itc) the
most specific contexts in which (i1, i2) are identical. A context is defined as a
sub-ontology of O, which represents the vocabulary (i.e. a set of classes and
properties) in which two instances are considered as identical.

For instance, in the example depicted in Figure 5.1, the two instances pr3 and
pr4 of the target class Process can be seen as identical when all the ontology’s
properties and classes are considered. On the other hand, the two instances pr1
and pr2 can be considered as identical in two distinct contexts. In a first context,
we can consider all the devices composing the drugs and for every device we
consider its volume. However, in this context, the description of a volume is
reduced to the measure unit (i.e. we do not consider the property hasValue). A
second context in which these two processes are identical is the context where
we take into account the volume of the Bioreactor described by its value and its
measure unit, but we only consider the presence of the Pump in the processes
without considering its volume.

We note that the properties taken into account for comparing the instances
of the class Volume should not vary according to whether we are comparing the
volume of the Bioreactor or that of the Pump. Hence, it is not a task of calculat-
ing the most specific graph shared by two instances of the class Process, where
the classes’ descriptions could vary according to the considered instances. In
addition, and in order to guarantee a certain semantic uniformity, we want to
guarantee that if a property p of a class c appears in a context, then it must be
instantiated and has identical values (up to a renaming of the instance’s IRI).

2We do not consider blank nodes in this work.
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In order to improve the efficiency of our approach and the relevance of the
contexts, we propose to take into account certain experts’ knowledge during the
detection of the contexts. Contextual identity links are not necessarily of interest
for all classes (e.g. instances of the class Volume), but for only one or more tar-
get classes whose identity links are of interest to the considered application (e.g.
processes involved in an experiment). We thus consider knowledge that a prop-
erty or a class can be ignored, that two properties must appear together (e.g.
hasValue with hasUnit) or that a property must necessarily appear in a context.

Figure 5.1: An extract of ontology O, with four instances of the target class
Process.

5.1.3 Identity Contexts

For formally defining the notion of identity contexts, we firstly introduce the
set of classes DepC that can be involved in the identity contexts. Then, we for-
mally define the notion of global context and the contextual identity relation
that expresses that two instances are identical in a given global context.

A. Descriptive Classes

The set of descriptive classes, noted DepC, represents the set of classes that may
appear in the identity contexts. It is a subset of the ontology classes that are
instantiated in the knowledge graph. Specifically, DepC is composed of the most
general classes (in the sense of the subsumption relationship) of the ontology O
among the explicitly instantiated classes in F (i.e. the rdf:type is not inferred). In
the following, we note directType(i,c) the class c explicitly stated as the rdf:type of
the instance i in F .
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Definition 11 (Descriptive Classes) A subset of instantiated classes ci ofB such
that:

DepC = {ci ∈ C | @c j ∈ C s.t. ∃x, directType(x, c j) and ci v c j}

Example (Descriptive Classes). In Figure 5.1, DepC contains all the classes of the
graph except of the class Device which is not instantiated. Therefore, the in-
stances re1 and pu1 will be uniquely considered as of type Bioreactor and Pump,
respectively.

B. Global Context

A global context is a connected sub-ontology of O. It is composed of a set of
classes and properties ofO, and a set of axioms. In a global context, these axioms
are limited to a set of constraints on the properties’ domains and ranges.

Definition 12 (Global Context) A global context is a sub-ontology
GCu=(Cu, Pu, Au) of O such that Cu ⊆ DepC, Pu ⊆ P, and Au is a set of do-
main and range constraints that are more specific than those described in A:
∀p ∈ Pu, domainu(p) v domainO(p) and rangeu(p) v rangeO(p).

Example (Global Context). In Figure 5.1, there exist many possible global contexts.
We present one:
GC1=(C = {Process, Bioreactor, Pump,Volume},
P = {hasDevice, hasVolume, hasUnit},
A = {domain(hasDevice) = Process, range(hasDevice) = Bioreactor t Pump,
domain(hasVolume) = Bioreactor t Pump, range(hasVolume) = Volume,
domain(hasUnit) = Volume, range(hasUnit) = xsd : string})

C. Order Relation between Global Contexts

We define here the order relation between the global contexts, by relying on the
inclusion of the sets of properties and classes. Thanks to this order relation, the
set of all global contexts of a target class tc can be represented as a lattice of
contexts.

Definition 13 (Order Relation between Global Contexts) Let GCu =

(Cu, Pu, Au) and GCv = (Cv, Pv, Av) be two global contexts. The context GCu

is more specific than GCv, noted GCu ≤ GCv, if Cv ⊆ Cu, Pv ⊆ Pu, and ∀p ∈ Pv,
domainv(p) v domainu(p) and rangev(p) v rangeu(p).

Example (Order Relation between Global Contexts). GC1 ≤ GC2, with GC2 =

GC2=(C = {Process, Bioreactor}, P = {hasDevice},
A = {domain(hasDevice) = Process, range(hasDevice) = Bioreactor})
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D. Contextual Description of Instances according to a Global Context

In our approach, two instances are considered as identical in a given global
context, when all the properties described in this context are instantiated for
both instances, and when theses descriptions are the same. Before defining the
contextual identity relationship, we firstly define the notion of contextual de-
scription of a target class instance.

Definition 14 (Contextual Description according to a Global Context) Given
a set of RDF triples F , a global context GCu = (Cu, Pu, Au) and an instance i of
a target class tc, a contextual description Gi of i in GCu is the maximal set of
triples that describe i in F such that:

– Gi forms a connected graph that contains at least one triple where i is a subject
or an object

– ∀ t = (s, p, o) ∈ Gi, p ∈ Pu, directType(s) v domainu(p) and directType(o)
v rangeu(p)

– ∀ j a class instance of Gi, and ∀p ∈ Pu such as directType(j) v domainu(p), then
∃ ta = ( j, p, k) ∈ Gi, with directType(k) v rangeu(p)

Example (Contextual Description according to a Global Context). Figure 5.2
presents an extract of the ontology O, the global context GC1, and the contex-
tual descriptions Gpr1 and Gpr2 of pr1 and pr2 respectively in GC1.

5.1.4 Contextual Identity

From two contextual descriptions of two class instances, we want to define in
which conditions (i.e. contexts) these two instances are considered identical.
In this work, we consider that properties are local complete: if a property p is
instantiated for a given class instance i, we consider that all its property values
are declared for this instance in the knowledge graph.

Since a local completeness is assumed, two instances can be considered as
identical when the contextual graphs, formed by the contextual descriptions,
are isomorphic up to a renaming of the instance’s IRI. Note that since some
classes can be removed from the global context, this constraint can in fact be
considered class by class.

Definition 15 (Identity in a Global Context) Given a global context GCu, a pair
of instances i1 and i2 are identical in GCu, noted identiConTo<GCu>(i1, i2), only if
the two graphs Gi1 and Gi2 , that represent the contextual descriptions of i1 and
i2 respectively, are isomorphic up to a rewriting of the IRI of the class instances,
and considering equality for literals.
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Figure 5.2: An extract of the ontology O, the global context GC1, and the contex-
tual descriptions Gpr1 and Gpr2 of pr1 and pr2 respectively in GC1.

Example (Identity in a Global Context). Given the following global context GC3:
GC3=(C = {Process, Bioreactor, Pump,Volume},
P = {hasDevice, hasVolume, hasValuee, hasUnit},
A = {domain(hasDevice) = Process, range(hasDevice) = Bioreactor t Pump,
domain(hasVolume) = Bioreactor, range(hasVolume) = Volume,
domain(hasValue) = Volume, range(hasValue) = xsd : f loat,
domain(hasUnit) = Volume, range(hasUnit) = xsd : string})

The identity link expressing that pr1 and pr2 are identical in the global con-
text GC3 is noted identiConTo<GC3>(pr1, pr2). This identity relation takes into
account the volume of the Bioreactor described by its value and its measure
unit, but only considers the presence of the Pump in the processes without con-
sidering its volume. In addition, pr1 and pr2 are also identical in the context
GC1 (example from Definition 12), where we consider all the devices compos-
ing the drugs and for every device we consider its volume, but reduce the
description of a volume to its measure unit. This identity relation is noted
identiConTo<GC1>(pr1, pr2).

These two contexts are not the only contexts where pr1 and pr2 are identi-
cal, as they are also identical in GC2 (example from Definition 13). However,
GC1 and GC3 are the most specific contexts in which these two instances are
identical. Since more general identity links such as identiConTo<GC2>(pr1, pr2)
can be inferred using the order relation between global contexts, the contextual
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identity relations will only be specified for the most specific global context(s):

Given GCu and GCv two global contexts, with GCu 6 GCv, then
identiConTo<GCu>(i1, i2)⇒ identiConTo<GCv>(i1, i2).

5.2 Detection of Contextual Identity Links

Now that the contextual identity relation is defined, the goal of our approach is
to determine for each pair of instances, the contexts in which they are identical.
We propose an algorithm named DECIDE (DEtection of Contextual IDEntity),
that takes as input a target class tc, and determines for each pair of instances (i1,
i2) ∈ Itc × Itc, the set of the most specific global contexts in which the identity
relation is true. This algorithm is composed of three main steps: (i) selecting
the set of descriptive classes DepC (Definition 11), (ii) constructing similarity
graph(s), and finally (iii) calculating the most specific global context(s). This
section presents the algorithm DECIDE, and the necessary notions.

Our approach for detecting contextual identity links relies on the notion of
local context that composes the global contexts.

Definition 16 (Local Context) A local context of a class c is a global context that
is limited to the properties in which c is the domain or range.

We distinguish between the outgoing local contexts LCout
k (c) that captures the

properties in which c is the domain, and the incoming local contexts LCin
k (c) that

captures the properties in which c is the range:

– LCout
k (c) = (Cout

k , Pout
k , Aout

k ), a local context where ∀p ∈ Pout
k , domain(p) = c.

– LCin
k (c) = (Cin

k , P
in
k , A

in
k ), a local context where ∀p ∈ Pin

k , range(p) = c.

5.2.1 Experts Knowledge

In order to filter out some irrelevant contexts, this algorithm takes in considera-
tion certain expert knowledge when it is available. This knowledge, given as a
set of constraints, concerns the presence or the co-occurrence of certain classes,
properties and/or axioms. More precisely, an expert can specify three types of
constraints:

Unwanted Properties (UP). Refer to properties that experts want to discard in
the identity contexts (i.e. global contexts). Such constraints can be used
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when property values correspond to unstructured text, known to be par-
ticularly heterogeneous, or when the property subjects or objects are evo-
lutive or insignificant to compare two instances for a given task. In such
cases, an expert can declare that a property p is unwanted for a given
domain ci (or a particular range c j) by adding a constraint up = (ci, p, ∗)
(respectively up = (∗, p, c j)) in UP. When a property is unwanted in all do-
mains and ranges, the constraint (∗, p, ∗) can be used. In such cases, p < P
in all contexts.

Necessary Properties (NP). A necessary property is a constraint noted np =
(ci, p, ∗) or (∗, p, c j). When such constraints are added to NP, only global
contexts where the property p ∈ P, with ci ∈ domain(p) (respectively
c j ∈ range(p)) are considered.

Co-occurring Properties (CP). A co-occurrence constraint cp = {(ci, p1, ∗), ...,
(ci, pn, ∗)} can be declared to guarantee that a certain class ci will be
either declared as the domain (or range) of all the properties indi-
cated in the constraint, or will be declared for none of them. For in-
stance, to declare that the volume’s value has no meaning without its
measure unit (and vice versa), an expert can add the constraint cp1 =

{(Volume, hasValue, ∗), (Volume, hasUnit, ∗)}. Meaning that no context will
contain the axiom (domain(hasValue) = Volume) without also containing
the axiom (domain(hasUnit) = Volume), and vice-versa.

5.2.2 Contextual Identity in RDF

A global context is represented as a named graph [Carroll et al., 2005], with each
named graph containing the considered axioms of the ontology and the iden-
tity statements valid in this context. A contextual identity assertion between
two instances i1 and i2 in a named graph, indicates that this context represents
the most specific global context in which these two instances are identical (Def-
inition 15). Since equality is used for literals identity, the here presented con-
textual identity links are symmetric, transitive, and reflexive. The order rela-
tion between the global contexts is represented in the original graph using the
Named Graphs Vocabulary3, with the relation rdfg:subGraphOf. An exam-
ple of the output of DECIDE on the Figure 5.1 knowledge graph is available at
https://github.com/raadjoe/DECIDE_v2/tree/master/Example.

3http://www.w3.org/2004/03/trix/rdfg-1/
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Figure 5.3: The two possible similarity graphs for the pair (pr3, pr4). For simplic-
ity reasons, C, and P are not represented in this Figure for all the local contexts.

5.2.3 DECIDE - Algorithm for Detecting Contextual Identity

The goal of the algorithm DECIDE is to determine for each pair of instances (i1,
i2) ∈ Itc × Itc of a target class tc given by the user, the set of the most specific
global contexts in which the identity relation is valid. DECIDE requires to have
the knowledge graph B and the target class tc as input. In addition, the set of
constraints UP, NP, CP can also be given as input, when available. Algorithm
2 details the approach of detecting contextual identity links, composed of the
three following main steps:

i. Collect the set of Descriptive Classes. The set DepC (see Definition 11) is
collected for indicating the abstraction level (in the sense of the subsump-
tion relationship) of the classes that should be considered while construct-
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Algorithm 2: DECIDE: DEtection of Contextual IDEntity
Input:
– B: the RDF knowledge graph
– tc: the target class
– K(NP, UP, CP): the expert constraints
Output: MS Contexts: set of most specific global contexts for each pair of

instances
1 DepC ← getDepC(B) ;
2 Itc ← list of instances of directType(tc) ;
3 foreach ( (i1, i2) ∈ Itc × Itc with i1 , i2) do
4 GCset ← ∅;
5 S Gset ← constructS imilarityGraphs(i1, i2,DepC,K,B) ;
6 foreach (S G ∈ S Gset) do
7 n0 ← S G.getNode(i1, i2) ;
8 N ← ∅; a← ∅; GC ← ∅; LCset ← ∅;
9 GC ← generateGC(n0, a,GC, LCset,N, S G,K) ;

10 if (@ GC1 ∈ GCset, such that GC1 ≤ GC) then
11 GCset.add(GC) ;
12 if (∃ GC2 ∈ GCset, such that GC ≤ GC2) then
13 GCset.remove(GC2) ;
14 foreach (LC ∈ LCset) do
15 GC ← ∅; GC.add(LC) ;
16 GC ← generateGC(n0, a,GC, LCset,N, S G,K);
17 if (@ GC1 ∈ GCset, such that GC1 ≤ GC) then
18 GCset.add(GC) ;
19 if (∃ GC2 ∈ GCset, such that GC ≤ GC2) then
20 GCset.remove(GC2) ;

21 MS Contexts.add(GCset, (i1, i2));
22 return MS Contexts;

ing the similarity graphs, and consequently generating the global contexts.

For instance, the set DepC of the knowledge graph presented in Figure 5.1
will contain the following classes: {Process, Bioreactor, Pump,Volume}. The
class Device is not considered in the global contexts, since it is not directly
instantiated.

ii. Construct the Similarity Graph(s). For each pair of instances of the target
class tc, one or more similarity graphs are constructed. A similarity graph
represents a set of possible mappings of the class instances for each prop-
erty appearing in their RDF descriptions. A node ni of the similarity graph
represents a set of mapped pair of instances of a class c in Ic × Ic. In addi-
tion, each node of the similarity graph contains the most specific outgoing
local context LCout(c) and the most specific incoming local context LCin(c),
in which they are identical (according to Definition 15). These local con-
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texts verify the set of constraints K given by the experts. The construction
of each similarity graph is directed by the source node representing the
pair of instances of the target class. The direction of the arcs indicates the
domains and ranges of the considered properties in the axioms of the cor-
responding local contexts.

For instance, the similarity graphs corresponding to the pair of instances
(pr3, pr4) of the target class Process are presented in Figure 5.3. In this ex-
ample, the property hasDevice, having multiple values for the same class
(Bioreactor), has led to the construction of two similarity graphs. S G1 con-
siders the mapping of the instance re3 with re5, and the instance re4 with
re6, while the similarity graph S G2 considers the mapping of re3 with re6,
and re4 with re5. The nodes corresponding to the volumes of the Biore-
actors are associated with different outgoing local contexts, depending on
the considered mapping.

iii. Generate the Most Specific Global Context(s). Relying on the constructed
similarity graphs, a global context GC is generated using the set of the
local contexts, insuring the presence of no more than one local context
per class in the same global context. The most specific global contexts are
generated using the function generateGC, which traverses the similarity
graph S G using a depth-first search algorithm. This function, described
in Algorithm 3, aims to add for each node its most specific outgoing local
context LCout(c), already calculated in S G, to the current global context GC
(i.e. the most specific global context). Let n be the current node during the
algorithm’s traversal of the similarity graph, looking at its outgoing local
context we distinguish between three cases:

1. If GC does not contain a local context LCex(c) for the class c, or if GC
contains LCex(c) with LCex(c) equal to the local context LCn(c) of n,
then LCn(c) is added to GC. The function generateGC is then recur-
sively recalled for each node ndst in S G, such as there is an edge be-
tween n and ndst.

2. If GC contains a local context LCex(c) for the class c, and LCn(c) is
more specific than LCex(c), then the function generateGC is recursively
recalled for each destination node ndst in S G, such as there is an edge
between n and ndst labelled p, and exists an axiom a in GC with a =

{domain(p) = c and directType(ndst) v range(p)} or a = {range(p) = c and
directType(ndst) v domain(p)}.

3. If GC contains a local context LCex(c) for the class c, and LCn(c) is not
more specific than LCex(c), then the function generateGC is not recalled
for this graph node. Moreover, the domain representing the type of
the node source and the range representing the class c of the property
p that led to this graph element will be removed from the current
global context. Finally, GC is updated, verifying that the axioms of
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the graph still forms a connected component, and verifying that the
expert constraints are all still respected.

In both cases (2) and (3), LCn(c) and the most specific local context that gen-
eralizes LCn(c) and LCex(n) will be added to a list LCset, in order to guaran-
tee the presence of these local contexts in other global contexts. Therefore,
resulting in several most specific global contexts for the same pair.

5.2.4 Contextual Identity Links Examples

This section presents some examples explaining the output of DECIDE in several
cases (e.g. case where the domains and the ranges of a property are the same).
These examples will help clarify some aspects of the algorithm, and discuss the
benefits and limits of the here proposed identity relation. For this, we rely on
the ontology extracts and instances of the ‘Processes’ example in Figure 5.1 and
the ‘Drugs’ example in Figure 5.4.

Target Class Process (Figure 5.1)

(pr1, pr2). When applied on the pair (pr1, pr2), DECIDE would result in a sin-
gle similarity graph, since there is only one possible mapping of the class
instances. This similarity graph results in two global contexts GC1 (see Ex-
ample of Definition 12) and GC3 (see Example of Definition 15), represent-
ing the most specific contexts in which these two processes are identical.

(pr3, pr4). When applied on the pair (pr3, pr4), DECIDE would result in two
similarity graphs, both presented in Figure 5.3. Since the global context
resulting from S G1 is more specific than the one generated from S G2, the
output of DECIDE is one global context, in which all the ontology axioms
are considered.

(pr1, pr3) and (pr1, pr4). When applied on the pair (pr1, pr3) and the pair
(pr1, pr4), DECIDE would result in a single similarity graph, and even-
tually one most specific global context for each pair. Since a local com-
pleteness is assumed, the class Bioreactor is not considered for both pairs
in the following resulting identity context:

GC4=(C = {Process, Pump,Volume},
P = {hasDevice, hasVolume, hasValue, hasUnit},
A = {domain(hasDevice) = Process, range(hasDevice) = Pump,
domain(hasVolume) = Pump, range(hasVolume) = Volume,
domain(hasValue) = Volume, range(hasValue) = xsd : f loat,
domain(hasUnit) = Volume, range(hasUnit) = xsd : string})
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Algorithm 3: Generate GC: Global Contexts Generation
Input:
– n: an similarity graph node
– as: axiom indicating the type of the node source with the property
source
– GC: the current global context
– LCset: set of unused local contexts
– N: list of visited nodes
– S G: the similarity graph
– K(NP, UP, CP): the expert constraints
Output: GC: the current most specific global context

1 if (n < N) then
2 N.add(n) ;
3 LCn(c)← getOutgoingLocalContext(n) ;
4 LCex(c)← GC.getExistingLocalContext(c) ;
5 if (LCex(c) == null or LCex(c) == LCn(c)) then
6 GC.add(LCn(c)) ; // if it does not exist
7 En ← S G.getEdges(n) ;
8 foreach (eout ∈ En such that eout = p(n, ndst)) do
9 a← {domain(p) = c, range(p) = type(ndst)} ;

10 GC ← generateGC(ndst, a,GC, LCset,N, S G,K) ;
11 foreach (ein ∈ En such that ein = p(ndst, n)) do
12 a← {domain(p) = type(ndst), range(p) = c} ;
13 GC ← generateGC(ndst, a,GC, LCset,N, S G,K) ;

14 else
15 if (LCn(c) 6 LCex(c)) then
16 En ← S G.getEdges(n) ;
17 foreach (eout ∈ En such that eout = p(n, ndst)) do
18 a← {domain(p) = c, range(p) = type(ndst)} ;
19 if (a ∈ GC) then
20 GC ← generateGC(ndst, a,GC, LCset,N, S G,K);

21 foreach (ein ∈ En such that ein = p(ndst, n)) do
22 a← {domain(p) = type(ndst), range(p) = c} ;
23 if (a ∈ GC) then
24 GC ← generateGC(ndst, a,GC, LCset,N, S G,K);

25 else
26 GC.remove(as); // remove the source axiom from GC
27 GC ← updateGC(K, S G); // verify if GC is connected and the

experts constraints are satisfied
28 LCset.add(LCn(c)) ; //if it does not already exist
29 LCset.add(intersect(LCn(c), LCex(c))) ; //if it does not already exist

30 return GC;
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(pr2, pr3) and (pr2, pr4). Similarly to the previous case, when applied on the
pair (pr2, pr3) and the pair (pr2, pr4), DECIDEwould result in a single sim-
ilarity graph, and eventually one most specific global context for each pair.
Since the volume of pu2 is different than the one of pu3 and pu4, the value
of the class Volume is not considered, resulting in the following resulting
identity context:

GC5=(C = {Process, Pump,Volume},
P = {hasDevice, hasVolume, hasUnit},
A = {domain(hasDevice) = Process, range(hasDevice) = Pump,
domain(hasVolume) = Pump, range(hasVolume) = Volume,
domain(hasUnit) = Volume, range(hasUnit) = xsd : string})

Target Class Drug (Figure 5.4)

In order to better investigate the output and the limitations of DECIDE, we
present in Figure 5.4, a case where two properties have similar domains and
ranges, and the case where a property has the same class as domain and range.
This example shows the contexts in which two drugs with different names, but
with the same chemical structure are considered identical. Figure 5.5 presents
the similarity graph of each pair of instances of the target class Drug.

Figure 5.4: An extract of ontology O, with three instances of the target class
Drug.

(dr1, dr2). When applied on the pair (dr1, dr2), DECIDE would result in a single
similarity graph, resulting in the following most specific global context:
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GC6=(C = {Drug,Company},
P = {produced, chemicalS tructure},
A = {domain(produced) = Company, range(produced) = Drug,
domain(chemicalS tructure) = Drug, range(chemicalS tructure) = xsd : string})

The interpretation of the contextual identity identiConTo<GC6>(dr1, dr2) in-
dicates that these two instances have the same chemical structure, and are
both produced by companies that produce drugs with the same chemical
structure. Meaning that in a scientific context where the name of the drug
is irrelevant, and only the chemical structure matters, these two drugs
are considered identical and these IRIs can be used interchangeably. The
property sold is not considered in this identity context, due to the local
completeness we assume in the identity definition (dr1 is sold by one com-
pany co1, while dr2 is sold by two companies co1 and co2). In addition, the
property hasParentCompany is not considered in this global context, due to
the instance co3 not having the property produced. An additional (most
specific) global context where the former property is considered without
the latter cannot exist, since the contextual descriptions Gdr1 and Gdr2 (Def-
inition 14) do not form a connected graph in that case.

(dr1, dr3). When applied on the pair (dr1, dr3), DECIDE would result in a single
similarity graph, resulting in the following most specific global context:

GC7=(C = {Drug,Company},
P = {sold, name},
A = {domain(sold) = Company, range(sold) = Drug,
domain(name) = Drug, range(name) = xsd : string})

The interpretation of the contextual identity identiConTo<GC7>(dr1, dr3) in-
dicates that these two instances have the same name, and are both sold by
companies that have sold drugs with the same name.

(dr2, dr3). Other than the fact that both dr2 and dr3 are of type Drug, there is no
context in which these two instances can be used interchangeably.

Benefits & Limitations

An advantage of the here presented contextual identity relation is that contexts
in which the identity of two instances of a target class holds are explicit. Mean-
ing that the contexts in which these two instances can be used interchange-
ably are known and specified to the modeller. These contexts are not just a
set of properties, as a given property can be included in a context for a sub-
set of classes, and not be considered for other classes. For instance, the property
foaf:name which is used for designating both the names of a Drug and a Company,
is considered in GC7 for the former and not for the latter. In addition, the speci-
ficity level of the resulting identity contexts is directly related to the required
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Figure 5.5: The similarity graphs for the pairs (dr1, dr2), (dr1, dr3) and (dr2, dr3).
For simplicity reasons, C and P are not represented in this Figure for all the local
contexts.

modelling choices and requirements deployed by the modeller. For instance, if
the modeller is more interested in the geographic location of the companies and
have modelled the data accordingly, the identity contexts would have been able
to provide more specific contextual identity links. For example, declaring that
(dr1, dr2) are both produced by European countries, hence inferring that every
EMA4 rule considered for dr1 should also be considered for dr2.

A limitation of our proposed contextual identity relation, as the isomor-
phism of the instances’ contextual descriptions (Definition 15), that it does not
necessarily represent the most common graph in which two instances are identi-
cal. But, it represents the most specific vocabulary in which these two instances
are considered identical. For instance, in the case of the pair (dr1, dr2), the prop-
erty hasParentCompany cannot be considered in the identity context despite the
fact that both companies have indeed the same parent company (i.e. same IRI).
Meaning that in a context where the parent company of the dr1 producer is
causing some controversies over the production of this type of drugs (i.e. with
chemical structure of S1), we lack the information that the dr2 producer shares
the same parent company, and is identical to dr1 in this particular context.

4European Medicines Agency
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5.3 Conclusion

In this chapter, we have introduced a new contextual identity relation, and
proposed an approach (DECIDE) for automatically detecting these contextual
identity links in an RDF knowledge graph. The approach is based on the no-
tion of global contexts representing sub-ontologies, in which two instances are
identical. The algorithm detects for each pair of instances of a target class given
by the user, the most specific contexts in which this pair of instances are identi-
cal. More general contexts can be inferred from the most specific ones, thanks to
the order relation that hierarchizes all the global contexts. Furthermore, this ap-
proach can take into account some experts’ constraints, which can be in the form
of a list of necessary properties for the identity link, list of unwanted properties,
and list of properties that must occur together.

In comparison with [Beek et al., 2016], the main predecessor of this work,
the contextual identity relation we propose in this chapter is more precise and
expressive. Firstly, instead of solely considering the local properties describ-
ing the concerned instances (i.e. path of length 1), we consider in our contexts
all the properties in the knowledge graph. This is done by propagating in the
graph and considering also properties describing instances related to the con-
cerned instances, and so on. In addition, our approach does not solely rely on
the notion of properties, but also on the ontology classes and axioms. This al-
lows us to consider a property for certain classes, and not consider it for other
classes, in the same identity context. Finally, we propose an algorithm to de-
tect, and explicitly represent in RDF, these identity contexts. This allows users
to directly test and use these proposed identity links, using the code available
at https://github.com/raadjoe/DECIDE_v2.

To evaluate the applicability and relevance of the here proposed contextual
identity relation, we present in the next chapter an application of DECIDE on
the complex case of scientific knowledge graphs. In addition, we present how
the detected contextual identity links can be exploited to predict, with a certain
degree of confidence, certain missing values in these knowledge graphs.
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CHAPTER 6
CONTEXTUAL IDENTITY FOR LIFE SCIENCES KNOWLEDGE GRAPHS

This chapter is based on the following publications:

• Joe Raad, Nathalie Pernelle, Fatiha Saı̈s, Juliette Dibie, Liliana Ibanescu,
and Stéphane Dervaux. “Comment représenter et découvrir des liens
d’identités contextuels dans une base de connaissances : applications à
des données expérimentales en science du vivant”. In Revue d’Intelligence
Artificielle, 32(3):345–372, 2018.

• Liliana Ibanescu, Juliette Dibie, Stéphane Dervaux, Elisabeth Guichard,
Joe Raad. “PO2 - A Process and Observation Ontology in Food Science.
Application to Dairy Gels”. In Research Conference on Metadata and Seman-
tics Research, pages 155–165, 2016.

In the previous chapter, we presented a new approach for defining the iden-
tity relation. Instead of checking indiscernibility with respect to all properties,
as currently adapted in the owl:sameAs construct, we explicitly parametrize
the identity relation over certain parts of the ontology. This allows the cre-
ation of semantic links between entities that can not be declared as identical
in the strict sense of identity, since they do not share all their properties, and
can not be used interchangeably in all contexts. Such cases are quite common
in scientific data, where experiments can rarely be declared the same, as they
are mostly conducted by different scientists, in various circumstances, using
similar products. This incapacity of semantically linking slightly different ex-
periments has been a serious barrier for knowledge-based systems to fully ex-
ploit scientific data, as they are either weakly connected with little semantics
(e.g. using skos:closeMatch), or are incorrectly declared the same (using
owl:sameAs). In addition, the classic problems of the heterogeneity of the for-
mats in which scientific data are published (e.g. scientific publications, Excel
files, lab reports), and the terminological variations encountered across the mul-
tiple scientific datasets (e.g. synonyms, aliases, multilingualism) still remain se-
rious barriers in fully exploiting the large amount of data produced everyday.
As a way for limiting these syntactic and semantic problems, life sciences pub-
lishers became one of the most frequent adopters of Semantic Web technologies
and Linked Data principles for publishing their data and encoding their knowl-
edge. This adoption is starkly obvious in the Linked Open Data Cloud diagram,
in which the life sciences knowledge graphs make up a significant portion of the
cloud, with 339 out of the 1,184 knowledge graphs available in April 2018, de-
scribing life sciences data [Polleres et al., 2018].
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With such significant resources already been invested in publishing life sci-
ences data in RDF, there is an obvious and increasing interest to make use of
this wealth of data for generating new insights, and discovering novel implicit
associations. Working closely with experts of the French National Institute of
Agricultural Research (INRA) in the context of the LIONES interdisciplinary
project1, we aim at providing them with such possibilities by making their data
‘five star’. This five stars rating system, outlined by Tim Berners-Lee in 2010,
provide a set of goals and incremental steps for creating high quality and freely
accessible data sources:

? Publish data on the Web in any format, with an open licence (e.g. PDF file)

?? Use structured data formats (e.g. Excel file)

? ? ? Use non-proprietary formats (e.g. CSV file instead of Excel)

? ? ?? Use open standards from W3C to represent data (e.g. RDF and OWL)

? ? ? ? ? Link your data to other data sets on the Web for providing context

The first four stars are relatively easy to reach, and enable some data reuse.
However, users still have to handle all the semantic issues related to its inte-
gration. In order to have data that is easily discoverable, interoperable, and ex-
ploitable in knowledge-based systems, it is necessary to reach the fifth star. This
final step is achieved by favouring the reuse of existing vocabularies, and ex-
pressing links with well-known semantic predicates (e.g. rdfs:subClassOf
for subsumption relations, and owl:sameAs for identity relations). However,
since strict identity links such as owl:sameAs are rarely deployable in scientific
datasets, we apply our approach for detecting and expressing identity links that
are semantically interpretable.

In this chapter, we introduce a new ‘five star’ knowledge graph for life sci-
ences, based on scientific experiments conducted and collected from two INRA
research groups. This knowledge graph firstly provide domain experts with
various semantic connections between the different participants of each scien-
tific experiment (e.g. this sensor is used to collect a measure of this product,
as part of an observation conducted in a certain experiment). In addition, and
by applying our contextual identity link detection approach, this knowledge
graph can provide experts with different levels of identity connections between
the experiments and their participants. More specifically, this chapter makes the
following contributions:

1. It presents a new conceptual model that allows to model complex scientific
data from different life sciences applications. This OWL ontology strikes

1Project funded by the Center for Data Science of the University of Paris-Saclay
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a balance between the expressiveness of the underlying description logic,
the reasoning efficiency, and the practicality of use by domain experts.
Aiming for semantic interoperability, this ontology is designed mostly by
reusing parts of existing well-established ontologies.

2. It presents a new knowledge graph for life sciences describing two differ-
ent domains: the mechanisms leading to the release of flavour compounds
during dairy gel consumption and their impact on global sensory percep-
tion, and the process of stabilisation of micro-organisms. This knowledge
graph is constructed with a methodology that requires mutual efforts with
domain experts, enriching the core conceptual model with domain specific
knowledge.

3. It presents an experimental evaluation of contextual identity link detection
applied on a scientific knowledge graph.

4. It presents a first use case for exploiting the detected contextual identity
links for discovering certain types of rules. After the experts validation,
these rules can be used to predict, with a certain degree of confidence, un-
observed measures in a scientific experiment and consequently complete
the knowledge graph with implicit assertions.

The rest of this chapter is structured as follows. Section 6.1 presents the five-
star knowledge graph for life sciences, and describes the construction process.
Section 6.2 presents the first use case of detecting contextual identity links for
life sciences. In Section 6.3, we exploit the detected contextual identity links
for detecting rules that can help complete the constructed knowledge graph.
Section 6.4 summarizes the experiments’ results, and Section 6.5 concludes.

6.1 Five Star Knowledge Graph for Life Sciences

In this section, we describe a new knowledge graph constructed in collaboration
with domain experts from two INRA research groups: the BioMiP2 team (Bio-
products, Food, Micro-organisms and Processes) and the FFOPP3 team (Flaveur,
Food Oral Processing et Perception) of the GMPA and CSGA research units, re-
spectively. In what follows, we present the application domain and the work-
flow of the knowledge graph construction from Excel files.

2https://www6.versailles-grignon.inra.fr/gmpa_eng/Research-teams/
BioMiP

3https://www2.dijon.inra.fr/csga/site_engl/equipe_1.php
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6.1.1 Application Domain

The aim of our ongoing collaboration with the domain experts is to model se-
mantic links between the different objects participating in, and generated by
the experimental transformation processes. Once these semantic links are mod-
elled and made explicit, this knowledge can be interrogated, analysed, and ex-
ploited in various knowledge-based tasks that can help improve the quality of
the products, and limit the environmental impact caused by these processes. In
this project, we deal with experimental processes from two domains:

Stabilisation of Micro-organisms. Micro-organisms are biological agents
which present a large scale of applications in food domains (e.g. fer-
ments) or in medical domains (e.g. probiotiques). With the need of
concentrated micro-organisms stabilized and in ready-to-use form con-
tinuously increasing, the control of their production process has become
an important issue. This production process relies on a complex system,
involving several unit operations: fermentation, cooling, concentration,
formulation, freezing or lyophilisation and the storage of the stabilized
micro-organism. Many data have been generated from experiments on
micro-organisms at different scales (from the microbial cell components
to the target functionality at the population level), and at different stages
of the production process by the researchers of the BioMiP team. This
data are mainly collected for two specific purposes: (i) describing and
archiving the conducted experimental processes, and (ii) studying the
micro-organisms quality evolution, and the environmental impacts
caused by these processes [Pénicaud et al., 2014]. This data is collected as
part of the CellExtraDry project.

Release of Flavour Compounds during Dairy Gel Consumption. These
experiments aim at exploring the mechanisms at the origin of and influ-
encing food mental representation in human. More specifically the data
collected by the FFOPP team study three different mechanisms: (i) the
production process of French hard cheeses, where different parameters
were measured (e.g. the product’s pH) during each step of the production
(e.g. cooling, moulding); (ii) the sensory perception during in-mouth
food breakdown, with a focus on the product’s texture (e.g. firmness,
granularity) and taste (e.g. intensity, saltness); and finally (iii) the study
of the cheese’s rheological properties (e.g. the Young’s modulus which
measures the stiffness of the cheese) [Guichard et al., 2017]. This data is
collected as part of the Caredas project.
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6.1.2 Conceptual Model

The ontology conceptualization process follows an iterative approach, as the
data model was continuously influenced by several factors, mainly the experts’
different backgrounds and types of data. For instance, whilst in the cheese pro-
duction process a certain observation solely results in one measure (e.g. an
observation measures the pH of the studied cheese), in the micro-organism’s
stabilization process an observation can result in a series of measurements that
are not interpretable when separated. After enumerating the important terms
that should be considered in the model, and analysing a number of related on-
tologies, we have reached a consensus about a structure, in which the ontology
concepts are grouped into the five following parts. Figure 6.1 presents the rela-
tionship between these five parts.

Processes. This part of the ontology concerns the main experimental process,
the itineraries, and the different steps composing each itinerary. For in-
stance, the process of cheese production can be conducted according to
several itineraries (i.e. recipes), with each itinerary representing a specific
execution of a set of interrelated steps.

Participants. This part represents the objects that participate and are deployed
in a certain process (e.g. the cheese, its ingredients, the materials deployed
for handling it, and the set of instructions that are followed in each step).

Observations. This part represents the observations conducted in the experi-
mental process and the sensors deployed for performing these observa-
tions. An observation can be conducted on different scales (e.g. cellu-
lar, molecular), and can observe a product, material, step, or the whole
itinerary (e.g. in the case of measuring the environmental impact).

Attributes. This part of the ontology describes the participants input character-
istics (e.g. this step uses 20 grams of salt), and the observation measures
(e.g. the measured pH of this cheese is 5.5).

Temporal Relations. This part focuses on the temporal aspect of the experi-
ments, describing the dates of the experiments and the time relation be-
tween the different steps.

Aiming for semantic interoperability when designing each part of the on-
tology, we have reused and extended several well-established ontologies and
concepts. Modelling decisions for the first three parts of the ontology were
influenced by the structure of the Sensor, Observation, Sample, and Actuator
(SOSA) ontology [Janowicz et al., 2018]. This ontology, developed by a joint
working group of the Open Geospatial Consortium (OGC) and the W3C on

102



Figure 6.1: The five main ontology parts and their relations.

Spatial Data on the Web, provides a general-purpose specification for mod-
elling the interaction between entities involved in the acts of observation, ac-
tuation, and sampling. It represents a lightweight replacement for the Semantic
Sensor Network (SSN) ontology, which is harder to deploy due to its strong
ontological commitments resulting from its alignment with the Dolce Ultra-
Light ontology (DUL). With SOSA not recommending any particular way for
modelling results, we have used external vocabularies specifically designed for
modelling quantity values, and the ‘Attributes’ part of the ontology. For this we
have used the Quantities, Units, Dimensions and Data Types (QUDT) ontolo-
gies [Hodgson et al., 2014] designed by NASA, with the goal of standardizing
data structures and facilitate data integration and its interoperability4. Finally,
for representing the ontology’s temporal concepts, we have used the Time on-
tology in OWL (OWL-Time) [Cox and Little, 2017]. This ontology provides a
vocabulary for expressing facts about topological relations among instants and
intervals, together with information about durations, and temporal positions.
Finally, and for the goal of increasing semantic interoperability, particularly in
the life sciences domain, the model was fully integrated with the Basic Formal
Ontology (BFO) [Arp et al., 2015]. BFO is a small, and genuine upper level on-
tology. It does not contain physical, chemical, biological or other terms which
would properly fall within the coverage domains of the special sciences, and
complexify its integration process. An important factor for adopting BFO in
our model is its popularity5 amongst life sciences domain. This would facilitate
the interoperability of our model, and increase its visibility with respect to this
domain’s users.

Figure 6.2 presents an overview of the core concepts of the resulting model
PO2 (Process and Observation Ontology). The core ontology created in a top-
down approach with BFO, is expressed in OWL, and is composed of 67 classes,

4Following NASA’s metric confusion that caused the loss of a $125 million Mars orbiter.
5List of users: http://basic-formal-ontology.org/users.html
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Figure 6.2: Core Concepts of the PO2 Ontology

61 object properties, and 12 data properties. Most of the core ontology classes
belong to different namespaces, where concepts preceded by sosa:, ssn:,
qudt:, and time:, respectively belong to the SOSA6, SSN7, QUDT8, and OWL-
TIME9 namespaces. PO2 is published as part of the AgroPortal ontology library
[Jonquet et al., 2018], and is available at http://agroportal.lirmm.fr/
ontologies/PO2. This portal, based on the BioPortal technology, provides
several state-of-the-art features [d’Aquin and Noy, 2012] that are dedicated for
increasing the visibility and facilitating access to agronomic and life sciences
data (e.g. ontology search, versioning, and visualization; semantic annotation;
storage and exploitation of ontology alignments).

6.1.3 Knowledge Graph Construction

For creating a ‘five star’ knowledge graph, a conversion needs to take place from
the data provided by the experts into RDF. Several mutual efforts have taken
place for organizing the experts data to enable, with high precision, the auto-
matic conversion into RDF. These efforts have mainly focused on restructuring
large parts of the experts textual data into more concise tabular formats, using a

6http://www.w3.org/ns/sosa/
7http://www.w3.org/ns/ssn/
8http://qudt.org/schema/qudt/
9http://www.w3.org/2006/time#
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common vocabulary. Respecting the experts wishes to continue collecting and
archiving their data in Excel spreadsheets, we have created a set of guidelines
for helping domain experts to provide us with machine-processable data, whilst
still using Microsoft Excel as an archiving tool. These guidelines structure the
expert data into several categories of Excel spreadsheets (e.g. files describing
the process and its steps, files for describing the materials and methods, obser-
vation files). Figure 6.3 presents an excerpt of an Excel spreadsheet describing a
certain observation conducted in the ‘Cultivability’ step, as part of the ‘Fermen-
tation’ step. This spreadsheet describe the date and scale of the observation,
and refers to other Excel files for describing the material and method used for
this observation. This observation results in several raw measures (described in
the ontology by the observationResult property), that are used for obtaining the
computing measures (described by the computedResult property).

In order to manage and uniformize the vocabulary adopted by the experts,
we have used and extended parts of the AgroVoc10 multilingual thesaurus
[Caracciolo et al., 2013]. This thesaurus is managed by the Food and Agricul-
ture Organization of the United Nations (FAO), and serves as a controlled vo-
cabulary for the indexing of publications in agricultural science and technology.
Agrovoc is modelled in SKOS-XL11, and contains over 35K concepts, described
in over 20 languages (including French, in which the expert data are described).

Now that the Excel files are structured, and the vocabulary is uniformized,
the last step consists of ‘semantisizing’ the experts’ data. For this, we have
developed a JAVA tool that processes the different categories of Excel files,
and convert the experts data into RDF. In order to migrate from a semi-formal
thesaurus-like structure to a formal ontology, we have transformed12 the SKOS
concepts, adapted in Agrovoc, to OWL classes. However, such mapping could
be problematic, since a skos:concept might sometimes represent an instance,
and the skos:broader relation can refer to an rdf:type relation instead of
an rdfs:subClassOf. After manual verifications, such cases do not occur in
the parts adopted from the Agrovoc thesaurus. An example of a SKOS concept
we use is the leaf node of Agrovoc glucose13. In our model, glucose does indeed
represent an OWL class, as a rdfs:subClassOf po2:Component, and instan-
tiated for representing specific measures of glucose in a certain experiment.

The knowledge graph for life sciences resulting from the conversion of 2,845
Excel files contains 2,738,203 triples, divided into 21 named graphs. Each named
graph represents a certain project in which several transformation processes
were conducted. On average, a project describes 21 transformation processes

10http://agrovoc.uniroma2.it/agrovoc/agrovoc/en/
11https://www.w3.org/TR/skos-reference/skos-xl.html
12https://www.w3.org/2006/07/SWD/SKOS/skos-and-owl/master.html#

Transform
13http://aims.fao.org/aos/agrovoc/c_3287
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Figure 6.3: Excerpt of an Excel spreadsheet describing an observation conducted
in the ‘Cultivability’ step, as part of the ‘Fermentation’ step.

(total of 453 transformation process), with each process containing around 4
steps (total of 1830 steps), and each step containing two mixtures (one in-
put, one output). In these projects, a total of 4315 observations were con-
ducted at 6 different scales, measuring 623 different properties (e.g. temper-
ature, pH). This knowledge graph can be queried and downloaded at http:
//sonorus.agroparistech.fr:7200.

6.2 Detection of Contextual Identity in Scientific Experiments

Now that the knowledge graph composed of hundreds of different experimen-
tal processes is created, the next goal is to semantically link these experiments.
Since owl:sameAs can not be deployed for asserting such connections as the
experimental conditions tend to vary, even slightly, between each experiment,
and since alternative identity predicates have limited semantics (as discussed
in section 2.4.2), we want to link these experiments using our proposed notion
of contextual identity. For this, we have applied the DECIDE algorithm on the
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resulting knowledge graph. At the time of conducting these experiments, only
11 out of the currently available 21 projects (i.e. named graphs) were created,
with all these projects related to the release of flavour compounds during dairy
gel consumption.

As presented in the ontology’s five main parts (Figure 6.1), and implemented
in the knowledge graph’s conceptual model (Figure 6.2), a distinction is made
between the actual experiments that include the processes (e.g. cheese pro-
ductions) with their participants (e.g. products and devices), and between the
observations conducted at the end of each step (e.g. observing the pH of the
cheese). These observations contain a large number of missing information,
since not every measure is consistently observed in each experiment’s step.
Therefore, we have discarded these observations by adding the properties that
relate the experiments to the observations to the Unwanted Properties (UP) set of
constraints (described in section 5.2.1).

6.2.1 DECIDE Results

Table 6.1 presents the results of DECIDE applied on 11 projects of this knowledge
graph, and when the Mixture class and the Step class are considered separately
as target classes. A mixture is a component which is composed of at least one
other component (e.g. the processed cheese which is composed of 20g of salt).
There are 1,187 instances of type Mixture in these projects, and 581 of type Step,
forming respectively 703,891 and 168,490 pairs of instances to consider. The al-
gorithm takes around 22 hours14 for detecting the most specific global contexts,
in which each of these pair of instances are identical.

Out of the 950 classes in the ontology, only the 784 most general instanti-
ated classes, representing the descriptive classes, are used for determining the
contexts (see section 5.1.3). On average, only one similarity graph per pair of in-
stances is necessary for detecting contextual identity links. This is due to the few
multivalued properties, that have values of the same directType, that can lead to
the construction of several similarity graphs (as in the case of the property has-
Device linking the pr3 and pr4 processes to two Bioreactors each, as presented
in Figure 5.1). A similarity graph is composed on average of 5.26 nodes for
the Mixture class, and composed of 8.25 nodes for the Step class. These similar-
ity graphs allowed to generate 1,279,376 identity links valid in 2,232 different
global contexts for the pair of instances of the class Mixture and 348,017 iden-
tity links valid in 718 contexts for the instances of the class Step. These results
show that two instances of these target classes, may be identical in more than
one more specific global context (1.81 for Mixture and 2.06 for S tep). Finally,

14Executed on an 8GB RAM Windows 10 machine, with an Intel Core 4 × 2.6 GHz process.
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Table 6.1: Results of DECIDE on the two target classes Mixture and Step

Mixture Step

# Individuals of target class 1,187 581

# Possible Pairs 703,891 168,490

# Descriptive Classes (Total Classes) 784 (950) 784 (950)

# Similarity Graphs per Node 1.004 1.085

# Nodes per Similarity Graph 5.26 8.25

# Different Global Contexts 2,232 718

# Identity Links 1,279,376 348,017

# Identity Links per pair 1.81 2.06

these detected global contexts, represented as named graphs, largely vary in
their specificity, with a number of axioms varying between 2 (a general context
containing one property, with a single domain and range) and 88 axioms.

6.2.2 Use of Experts Constraints

We have also studied how the addition of expert constraints could impact the
results of the approach. For this, we have used a sample of the data, repre-
senting a single project, and containing 153 pairs of the Mixture target class.
Without the expert constraints, DECIDE detects 502 identity links valid in 37
different global contexts (3.28 links per pair). A first expert constraint imposes
that the value of an attribute (instance of the class Attribute) can not exist with-
out its unit of measurement. By adding this co-occurrence constraint, DECIDE
then discovers 377 identity links valid in 24 different global contexts (2.46 links
per couple), leading to the removal of 125 irrelevant contextual identity links.
The experts have also informed us that if the presence of water in the mix-
tures is considered, it is also necessary to consider the quantity of water in or-
der for the context to be relevant. By adding this co-occurrence constraint cp2

= {(Mixture, isComposedO f ,Water), (Water, hasAttribute,Weight)}, the number of
global contexts decreases from 37 to 35.

This evaluation indicates that the addition of constraints can significantly
reduce the number of contexts and therefore the number of irrelevant contextual
identity links. Of course, not all constraints have the same impact on the results.
For instance, if the expert indicates that the property isComposedOf, connecting
the Mixtures to its components is an irrelevant property, this would result in a
total of 4 different global contexts, and 198 contextual identity links (1.29 links
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per couple), as the removal of such property heavily reduces the size of the
graphs describing the instances to be compared.

6.3 Contextual Identity Links for Rule Detection

The purpose of this experiment is to evaluate whether contextual identity links
can be used to discover rules. More precisely, and since we have not considered
the observations in the identity contexts, we seek to determine the probability
of two experiments, being identical in a certain context, to have the same ob-
servation values. Eventually, it might then be possible to predict, with a certain
degree of confidence, unobserved measures in an experiment.

According to Leibniz’s “Indiscernibility of Identicals” principle
[Forrest, 2008], a genuine identity between two objects (e.g. experiments),
indicates that every property (e.g. an observed measure) asserted to one is
asserted to the other: x = y ∧ pi(x, z) → pi(y, z) with pi ∈ P. In this prediction
task, we aim to detect for each context GCi, the set Ψ of properties {p1, ..., pn},
where identiConTo<GCi>(x, y) ∧ pi(x, z1) → pi(y, z2) with z1 ' z2 and Ψ ∩ PGCi = ∅.
Such rules can be written as:

r = identiConTo<GCi>(x, y)→ same(m)

with m representing a certain observatory measure ∈ Ψ (e.g. pH measure). Since
the detected contextual identity links are only stated for the most specific con-
texts of each pair, we have exploited the global contexts’ order relation (Defi-
nition 13) to obtain the complete set of contextual identity links for each global
context. In order to evaluate the quality of a rule r, we calculate the following
measures:

Error rate. For each pair of instances identical in GCi, where a measure is ob-
served for both instances, we calculate an error rate. The error rate er for
a measure m between two instances x and y is calculated as follows:

erm(x, y) =
|m(x) − m(y)| × 100
|m(max) − m(min)|

where m(max) and m(min) represent respectively the maximal and minimal
value taken for the measure m in the dataset. The error rate of a rule for a
global context GCi is the average of the error rates for each pair of instances
identical in this context.

Support. Representing the number of pair of instances identical in GCi, and
having the measure m.
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Table 6.2: Evaluation of 20 rules by the experts

Impossible Unlikely Don’t Know Why Not Very Plausible

3 5 4 5 3

Based on the output of the DECIDE algorithm for the class Mixture, we have
generated 38,844 rules. The number of rules varies between one and 313 rules
per context. On average, the support of a rule varies between 1 (e.g. only a sin-
gle pair of instances having the measure Bitter in a certain context) and 15,075.
The rules’ error rate varies between 0 and 100%, with 1,005 rules having an error
rate < 1%. On average, the error rate of a rule is around 35%.

In addition, we have tested if the rule’s error rate varies depending on the
specificity of the context. The experiments show that on average, the error rate
of a rule decreases by 12 p.p15 when a global context is replaced by a more
specific global context. For instance given the following rules:

r1 = identiConTo<GCi>(x, y)→ same(m1)

r2 = identiConTo<GC j>(x, y)→ same(m1)

with GC j 6 GCi.

On average, r2 has an error rate lower by 12 p.p than r1. Indicating that the
more a rule’s context is specific, the more precise a rule is. Also indicating that
contextual identity links can be exploited for predicting missing measures, with
different confidence levels.

We have asked domain experts to evaluate the best 20 generated rules, cho-
sen based on the error rate and support. More specifically, we have chosen the
rules that can be easily understood by experts (i.e. with the fewest axioms)
such that the error rate is less than 15% and has the highest support. The plau-
sibility of the 20 rules given to the experts was evaluated using a scale of 5
appreciations: ”impossible”, ”unlikely”, ”don’t know”, ”why not”, and ”very
plausible”. Table 6.2, which presents the evaluation of the experts, shows that
among these 20 rules, 3 are very plausible. These 3 rules are presented in the
table 6.3, representing the rules in which the experts are aware of the impact
of the properties considered in the contexts on the value of the observed mea-
sure. For example, the expert found that it is very plausible that two mixtures
with the same citric acid weight, would have the same observed pH value (first
rule). These “very plausible” detected rules, represent implicit experts knowl-
edge, which we can use to complete unobserved measures and consequently the
knowledge graph. In addition to these known rules, we were able to provide
experts with 14 rules that could be the subject of further studies. These are the

15percentage point
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Table 6.3: Error rate and support of the most plausible rules

Rule Error Rate Support

identiConTo<GC1>(x, y)→ same(pH) 6.19 % 57

identiConTo<GC3>(x, y)→ same(Hardness) 1.86 % 66

identiConTo<GC2>(x, y)→ same(Friability) 4.52 % 647

rules that have been evaluated as ”plausible”, ”don’t know”, and ”unlikely”.
For example, the expert considered that it is possible that when two mixtures
have the same amount of water, they will also share the same observed viscosity
measure (rule considered as plausible). On the other hand, three of the provided
rules seem impossible to the experts, based on their knowledge that there is no
dependence between the properties considered in the identity context and the
measures observed.

We have also exploited the contextual identity links and the generated rules
to answer competency questions provided by experts. For instance, experts are
interested whether there is a dependency between having the same amount of
lipid in the mixtures and the observed rheology notes, corresponding to three
types of measures (MD, W f , and σ f ). For answering this question we have
selected, using a SPARQL query, all the global contexts (i.e. named graphs)
containing at least the following axioms:

domain(isComposedOf) = Mixture , range(isComposedOf) = Lipid
domain(hasWeight) = Lipid , range(hasWeight) = Weight ,
domain(hasValue) = Weight , range(hasValue) = xsd:float ,
domain(hasUnit) = Weight , range(hasUnit) = xsd:string

Since there is no global context which contains solely these axioms, we have
selected the least specific ones resulting from this SPARQL query. This way,
we can reduce the effect of the additional axioms, also included in this context,
might have on the rheology notes. From the remaining five least specific global
contexts GCres that contain these axioms, we have provided experts with the
average of all rules of the following type, for each measure (MD, W f , and σ f ):

r = identiConTo<GCi>(x, y)→ same(m)

with GCi ∈ GCres, and m representing either MD, W f , or σ f .

The average error rate for the measure ‘σ f ’ is 5.2%, while the average er-
ror rate for ‘MD’ and ‘W f ’ is 13.8% and 11.5% respectively. This experiment
suggests that there exist indeed a high dependency between having the same
amount of lipid in the mixtures and the observed rheology notes, especially for the
σ f measure.
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6.4 Results Summary

Our collaboration with the domain experts, and the here presented experi-
ments conducted on this knowledge graph describing scientific experiments
have shown that:

• The use of genuine identity links such as the owl:sameAs link is rarely re-
quired in scientific datasets, since the experiments’ environment tend to
change, even slightly from one experiment to another, resulting in a prop-
agation of incorrect observational measures.

• Asking domain experts to specify the contexts in which two instances are
considered identical is not an intuitive task, since the identity contexts are
task dependent and differ between each expert. Instead, specifying some
constraints on these contexts in a form of necessary, unwanted, and co-
occurring properties is a more effective way to benefit from the experts
knowledge.

• Contextual identity links, detected for each pair of instances of a target
class, allow to store the similarities of these instances and facilitate their
querying.

• Contextual identity links can be used for generating rules that can help
predict some of the missing observation measures. Since generated rules
in more specific contexts have better error rates than rules detected in less
specific ones, the specificity of a context can serve as a confidence indicator
of the rule.

• The relevance of a certain context can vary depending on the conducted
observations. For instance, the identity of the mixtures’ composition is
required in tasks that study the mixtures’ acidity, while the identity of
the steps in which the mixtures appear, is required in tasks studying the
experiments’ environmental impact.

6.5 Conclusion

In this chapter, we introduced a new knowledge graph describing two specific
domains: the mechanisms leading to the release of flavour compounds during
dairy gel consumption, and the stabilisation of micro-organisms. This graph is
based on scientific experiments conducted and collected from the BioMiP and
FFOPP teams of the French National Institute of Agricultural Research (INRA).
This continuously growing knowledge graph provide experts with homoge-
nized data, both in terms of its published format and in terms of the used termi-
nologies, allowing the expert data and knowledge to be easily interrogated and
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consumed. In addition, by favouring the reuse of concepts in the graphs’ core
model, and the deployed vocabulary, this data is also semantically interoperable
and can be consumed by a large number of knowledge-based applications.

This knowledge graph provides experts with various explicit and implicit se-
mantic connections between the experiments’ participants. In order to provide
experts with various semantic connections between the different conducted
experiments, we have applied our approach for detecting contextual identity
links. By applying DECIDE separately on the experiments’ main classes Mixture
and Step, we have detected more than 1.5M contextual identity link between the
different experiments. These links were later deployed for discovering certain
types of rules that have exploited the global contexts’ order relation. With rules
in more specific contexts having better error rates than rules detected in less
specific ones, the specificity of a context can serve as a confidence indicator.
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CHAPTER 7
CONCLUSION & PERSPECTIVES

This chapter discusses the results of the research presented in this thesis, as well
as its limitations, lessons learned during the process of conducting it, and some
lines for future work.

7.1 Summary of Results

This thesis have investigated one specific research question: how to limit the ex-
cessive and incorrect use of identity links in knowledge graphs. In order to address
this identity problem, we have proposed different, yet complementary solu-
tions. In the following, we highlight the main results of this thesis.

In Chapter 2, we have investigated existing approaches that have con-
tributed to this research question by studying the use of identity in the Web
of Data, and proposing possible solutions. This survey has focused on four cat-
egories of approaches: (i) studies that have analysed the use of identity links in
the Web of Data; (ii) solutions that help users or applications to identify IRIs re-
ferring to the same real world entity, and distinguish similar labels referring to
different real world entities; (iii) approaches that aimed at detecting erroneous
identity links and/or validate correct ones; and finally (iv) approaches that pro-
posed alternative identity relations as a way for limiting the incorrect use of
owl:sameAs. This survey shows the following:

Existing identity analyses are not representative enough. All identity analy-
ses were conducted on a relatively small number of identity links, com-
pared to the size of the Web of Data. This drawback shows the need
of having identity management services that can help harvest, filter, and
store large collections of identity links, and consequently enable discover-
ing important aspects of the identity use in the Web of Data.

Existing identity management services have many limitations. In their cur-
rent status and architecture, existing identity management services are
not able to provide reliable solutions in terms of semantic interpretabil-
ity, terms coverage, and up-to-date support. The current situation shows
that easily finding, understanding, and reusing identical terms is still a
difficult task for users and applications. Hence the risk of misusing, and
erroneously linking terms in the Web of Data is still present.

Existing identity link invalidation approaches are not feasible in the Web.
Approaches that can be efficiently applied on the whole Web of Data has
yet to emerge. Existing approaches are either not developed to be applied
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to a large number of links, or require assumptions on the data that are not
valid in the context of the Web.

Alternative identity links lack semantics. Existing alternatives consist of ei-
ther simple predicates that do not explicitly state the contexts in which
two terms are identical, or approaches that expresses the identity relation
by relying solely on the local properties. The current situation shows that
the lack of well-defined alternatives risk maintaining this excessive and
incorrect use of owl:sameAs.

In Chapter 3, we have showed that the presence of an identity observa-
tory service that collects and hosts a large set of identity statements can help
uncover different aspects of identity. The here presented sameas.cc dataset
and Web service provides easy access and download to the largest collection
of owl:sameAs statements collected to date, and the resulting identity sets. In
addition, we have presented an efficient approach for extracting and storing
the identity statements, and calculating their transitive closure. These resources
have enabled us to conduct several analyses over the identity use in the Web of
Data, including the number of explicit and implicit owl:sameAs statements, its
kernel, and analyses on the aggregated level of datasets. The analyses we pre-
sented in this chapter is an order of magnitude larger than previous conducted
identity analyses. In addition of enabling large-scale identity analyses, the here
presented resources can help users and applications in finding and reusing iden-
tical terms, and consequently enabling many identity-based services, such as
question answering and ontology alignment services.

In Chapter 4, we have showed that ranking each identity link in the Web
of Data is feasible in practice. We have presented an approach that relies on
the community structure of the owl:sameAs network, and their symmetrical
characteristic, for assigning an error degree fo each owl:sameAs link. This ap-
proach does not require any assumptions on the data, and have been applied on
the whole sameas.cc dataset, containing over 558M owl:sameAs statements.
With an accuracy of 86%, the manual evaluation of around 300 owl:sameAs
shows that the here introduced error degree can indeed be used for distin-
guishing correct owl:sameAs from erroneous ones. In addition, the evaluation
shows that a symmetrical identity link has more chances of correctness than a
non-symmetrical one, hence suggesting that a mutual agreement on linksets can
have a measurable impact on the quality of identity assertions.

In Chapter 5, we have showed that the classical identity relation standard-
ized in OWL is problematic, and there is a need for new context-dependent
identity relations. We have introduced a new identity relation that expresses
identity between two class instances, that holds in a context defined with re-
gard to a domain ontology. We have proposed an approach for automatically
detecting, and representing the most specific contexts in which two instances
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are identical. This approach, can consider certain expert constraints that should
be respected by all detected contexts, and given in the form of necessary, un-
wanted, and co-occurring properties.

In Chapter 6, we have showed that the proposed contextual identity relation
is applicable and beneficial in scientific knowledge graphs, where the classi-
cal notion of identity can not be applied. We have constructed a knowledge
graph for life sciences composed of several distinct projects, from two different
domains: the mechanisms leading to the release of flavour compounds during
dairy gel consumption and their impact on global sensory perception, and the
process of stabilisation of micro-organisms. We have showed that despite the
rather large number of highly connected classes of the here constructed graph,
thousands of contextual identity links can be detected for semantically linking
the experiments’ participants. The experiments show that the use of expert con-
straints can have a massive impact in reducing the runtime and the number
of irrelevant identity contexts. In addition, we have exploited these contex-
tual identity links to generate thousands of rules, which were calculated using
the global contexts’ order relation. The experiments show that the contexts’
specificity can serve as a rule’s confidence indicator, with rules in more specific
contexts having better error rate in average than rules detected in less specific
contexts. After the experts validation, these rules can be used to predict, with
a certain degree of confidence, unobserved measures in a scientific experiment
and consequently complete the knowledge graph with implicit assertions.

7.2 Discussion and Future Work

In this final section, we outline various avenues for future work, motivated by
certain limitations in the contributions presented in this thesis.

A. Identity Management Service

Identity management services represent an important aspect in solving the pre-
sented identity problem, as they can facilitate the re-use of IRIs, and enable large
scale identity analyses. As an essential way for maintaining and improving our
identity management, several directions can be implemented and investigated.

Links’ Provenance Inclusion. Despite relying on a collection of freely accessi-
ble datasets from the LOD Laundromat, tracking the provenance of each
identity statement is still a difficult task for the user, as it requires search-
ing in the LOD Laundromat (Wardrobe), for identifying the dataset(s) re-
sponsible for each identity assertion. In the next update of this service, we
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plan to provide the provenance of each explicit identity statement. This
will help users to discard unwanted or untrusted sources when using the
sameas.cc dataset, and enable analyses at the level of the links’ datasets,
not only according to the IRIs’ namespaces as presented in this thesis.

Identity Observation over Time. Since the 2015’s LOD Laundromat crawl in
which our dataset is based on, a large number of identity statements might
have been deprecated or added by now. And due to the identity’s transi-
tive trait, even few changes in the explicit identity network can massively
reshape the resulted identity sets, and change the here presented analyses.
As a way to observe changes on how identity is used in the Web of Data,
we will update sameas.cc as soon as a new crawl of the LOD Laundro-
mat is performed.

B. Detection of Erroneous Identity Links

Detecting existing erroneous identity links represents a necessary aspect for
controlling the quality of the Web, and dealing with the identity problem at
hand. Having an efficient approach that can be applied on the whole Web of
Data is an important research direction, that was investigated in this thesis.
However, in order to improve several aspects of the here presented approach,
several directions can be implemented and investigated. In the following, we
outline these possible directions, starting from short-term works to longer-term
ones.

Additional Evaluation. An important limitation of the here presented experi-
ments is the number of manually evaluated links in which we base our
results on, compared to the number of links in the Web of Data. In the
short term, we will look into the use of crowdsourcing for evaluating a
larger number of owl:sameAs links. In fact, the experiments conducted
by [Acosta et al., 2013] shows that using a majority voting strategy, paid
microtask workers can evaluate interlinks with an accuracy as high as
94%. This will allow us to have more representative precision and recall
evaluation, and more importantly allow us to understand the conditions
in which our approach can be applied.

Inclusion of Duplicate Identity Links. We have tested our approach on the
LOD-a-lot dataset which discards millions of duplicate statements from the
LOD Laundromat 2015 crawl. Since our approach is based on the topol-
ogy of the network, and the number of owl:sameAs assertions between
its terms, we can also consider including duplicate owl:sameAs asser-
tions in our data graph. This indicates that an owl:sameAs statement
between two terms can have a weight much higher than two, when the
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same statement is declared by different datasets. For this, we will investi-
gate how these duplicate identity links can be included in the error degree,
and study whether the redundancy of owl:sameAs links have a similar
impact on its quality, as demonstrated for symmetry.

Equality Set’s Size Impact. Our experiments suggest that the precision of our
approach is highly dependent on the number of terms in an equality set
(precision dropping from 88% in the largest equality set to 40% in random
ones, for a threshold of 0.99). As a way of reducing the number of false
positives in our approach, we will investigate the impact of including the
equality sets’ size in the link’s error degree. More specifically, we will
study which aspect of the equality set’s size (number of terms, number of
links, or number of communities) has the most impact on the precision of
our approach, and how it can be included in the error degree.

Combining Community Detection Techniques. An important limitation of
the here presented experiments, is its dependency on a single com-
munity detection technique. With the Louvain algorithm relying on
modularity optimization for detecting densely connected nodes, we
can consider other state-of-the-art methods such as the statistical
inference-based method by [Rosvall and Bergstrom, 2008] and the multi-
resolution method by [Ronhovde and Nussinov, 2009] which have also
proven their efficiency in terms of accuracy and scalability according to
[Lancichinetti and Fortunato, 2009b]’s analysis. As a first step, we can con-
duct the same experiments for each of these other techniques, and com-
pare their resulting community structure using precision, recall, and accu-
racy. As a longer-term direction, we will investigate combining the results
from these different techniques. For combining the several techniques, dif-
ferent strategies could be considered. Firstly, despite its use of modularity
as an objective function for detecting the community structure, Louvain
does not guarantee achieving a maximum modularity. Hence, as a first di-
rection we can consider applying the different community detection meth-
ods separately on each equality set, and choose the community structure
with the highest modularity measure. Another direction considers apply-
ing these techniques on each equality set, but also calculating the links’
error degrees separately for each technique. Then several directions can
be considered for combining the resulting error degrees such as voting, or
defining aggregation functions. Finally, we can consider choosing a differ-
ent community detection technique for each equality set. In this strategy,
we can investigate for each type of network structure, the community de-
tection technique that can be applied more efficiently. This will allow us
to combine the different techniques, whilst consuming minimal resources.

Combining with state-of-the-art Approaches. A significant limitation of
the here presented approach is its inability in detecting erroneous
owl:sameAs links belonging to equality sets of cardinality 2. In fact, such
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links can only have two possible error degrees: 0.5 for non-symmetrical
statements, and 0 for symmetrical ones. This limitation impacts around
55M owl:sameAs statements that belong to equality sets with a car-
dinality of 2 (around 10% of all owl:sameAs statements). Hence, as
a longer term direction, we will investigate combining our approach
with other types of approaches. A first strategy can consider using other
techniques for detecting erroneous links in smaller equality sets. For
instance, when the terms’ textual description is available, we can consider
comparing the similarity of the terms’ textual descriptions. This type
of approach has proven its efficiency by [Cuzzola et al., 2015], reporting
high precision when the terms’ textual description is available. When it is
not the case, we can consider applying consistency checking techniques
such as [Papaleo et al., 2014, Hogan et al., 2012]. In addition, since our
approach can be applied on the whole data with no requirements, and
suggests higher recall than precision, another strategy can be defined
for improving the precision of our approach. This strategy can consider
applying our approach first on the whole dataset, and then deploy other
types of approaches on links with high error degree.

C. Contextual Identity Relation

Having different weaker types of identity can massively limit the excessive and
incorrect use of owl:sameAs. Representing the contexts in which identity holds
is a necessary aspect for limiting the owl:sameAs use, as it formally informs
users about the contexts in which these two instances can be used interchange-
ably. This direction of defining and detecting the identity contexts has been
investigated in this thesis, and can be extended in several ways.

Identity of Literals. Since literals appear in one out of three Semantic Web
statements in the Web of Data [Ilievski et al., 2015], a future direction
can consider a more adapted definition for measuring identity of liter-
als. Instead of the lexical expression equality currently adopted in our
approach, we can investigate whether identity between different Seman-
tic Web datatypes should be authorized, and whether a more lenient ap-
proach for the identity of literals can be considered. For instance, the two
lexical expressions 0.1 and 0.10000000009 map to the same value accord-
ing to datatype xsd:float (32 bit), but map to different values according
to datatypes xsd:double (64 bit) and xsd:decimal (128 bit), where the
digits of precision is different [Beek, 2018]. With the adoption of a more
relaxed identity of literals, a study on its impact in inference is required.

Adaptation Strategies. The requirement of having the same conceptual model
represents a significant limitation of our proposed identity relation. This
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requirement limits the use of this identity relation in the context of the
Web, and restricts its use to specific knowledge graphs. In addition, since
computing the identity relation for each pair of instances could result in
the propagation in the whole knowledge graph, the applicability of the
here proposed algorithm is limited to smaller knowledge graphs. A fu-
ture direction can investigate several strategies, for adapting our identity
relation to certain ontology mappings and relaxing the algorithm’s con-
straints (e.g. limiting the graph search to a lower depth). These more
relaxed measures would allow our approach to complement the detection
of erroneous links, and replace the incorrect owl:sameAs in the Web with
a more adapted contextual identity relation.

Contexts of Difference. In addition of detecting and representing contexts in
which two instances are identical, we can also explore defining contexts in
which two instances are explicitly different. Such contexts can be useful
for experts, as it informs them in which applications two class instances
can not be used interchangeably. This notion of difference can not be de-
ducted from the identity contexts, as they do not distinguish between the
absence of a property, for one or both instances, and the difference of the
property values.

Knowledge Discovery. By combining the detected contextual identity links,
with the contexts where instances are explicitly different, we can exploit
our approach in other tasks. In particular, we aim at discovering causal
rules, in which the contextual identity links and the contexts of difference
can allow us to compare experiments, and use the instances temporal as-
pects, for identifying the causes of variations in the observation measures.

As a longer term direction, we will investigate the possibility of imple-
menting certain changes of practice, in terms of how identity is asserted in
the LOD Cloud. This practice encourages Linked Data publishers to vali-
date the ‘correctness’ of an owl:sameAs statement, with respect to its cor-
responding identity set, and prior to its assertion. Such notion of cor-
rectness can be defined and parametrized according to several hypothe-
sises, such as logical consistency [CudreMauroux et al., 2009, Hogan et al., 2012,
Papaleo et al., 2014], UNA validation [de Melo, 2013, Valdestilhas et al., 2017],
terms’ descriptions similarity [Paulheim, 2014, Cuzzola et al., 2015], and/or
the identity statement’s impact on the network structure [Guéret et al., 2012,
Sarasua et al., 2017, Raad et al., 2018b]. By providing users and applications the
possibility of validating an identity statement’s correctness according to differ-
ent hypothesises, such practice can limit the “sameAs problem” from the source.
For implementing such tool, several necessary directions can be investigated,
such as large scale inconsistency detection, and ontology mappings. We note
that this direction does not intend to force users to go through an authority in
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order to link their data, but intends to serve as a way of labelling incorrect iden-
tity assertions or re-qualifying these links into a more parametrized identity re-
lation. The goal is by preventing the publication of incorrect owl:sameAs, and
detecting the incorrect existing ones, we envision to construct a parallel and a
higher quality subset(s) of the LOD Cloud.
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Résumé : En l'absence d'une autorité de nommage 

centrale sur le Web de données, il est fréquent que 

différents graphes de connaissances utilisent des 

noms (IRI) différents pour référer à la même entité. 

Chaque fois que plusieurs noms sont utilisés pour 

désigner la même entité, les faits owl:sameAs sont 

nécessaires pour déclarer des liens d’identité et 

améliorer l’exploitation des données disponibles. De 

telles déclarations d'identité ont une sémantique 

logique stricte, indiquant que chaque propriété 

affirmée à un nom sera également déduite à l'autre et 

vice versa. Bien que ces inférences puissent être 

extrêmement utiles pour améliorer les systèmes 

fondés sur les connaissances tels que les moteurs de 

recherche et les systèmes de recommandation, 

l'utilisation incorrecte de l'identité peut avoir des 

effets négatifs importants dans un espace de 

connaissances global comme le Web de données. En 

effet, plusieurs études ont montré que owl:sameAs  

 

est parfois incorrectement utilisé sur le Web des 

données. En s'appuyant sur une collection de 558 

millions liens d'identité, cette thèse montre comment 

des mesures de réseau telles que la structure de 

communauté du réseau owl:sameAs peuvent être 

utilisées afin de détecter des liens d’identité 

éventuellement erronées. En outre, afin de limiter 

l'utilisation excessive et incorrecte du owl:sameAs, 

nous définissons une nouvelle relation pour 

représenter l'identité de deux instances d’une classe 

dans un contexte spécifique. Cette relation d'identité 

s'accompagne d'une approche permettant de détecter 

automatiquement ces liens, avec la possibilité 

d'utiliser certaines contraintes expertes pour filtrer 

des contextes non pertinents. La détection et 

l’exploitation de ces liens d’identité contextuels sont 

effectuées sur un graphe de connaissances pour les 

sciences de la vie, construits en collaboration avec 

des experts de l’INRA.  
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Abstract: In the absence of a central naming 

authority in the Web of Data, it is common for 

different knowledge graphs to refer to the same 

thing by different names (IRIs). Whenever multiple 

names are used to denote the same thing, 

owl:sameAs statements are needed in order to link 

the data and foster reuse. Such identity statements 
have strict logical semantics, indicating that every 

property asserted to one name, will also be inferred 

to the other, and vice versa. While such inferences 

can be extremely useful in enabling and enhancing 

knowledge-based systems such as search engines 

and recommendation systems, incorrect use of 

identity can have wide-ranging effects in a global 

knowledge space like the Web of Data. With several 

studies showing that owl:sameAs is indeed misused 

for different reasons, a proper approach towards the 

handling of identity links is required in order to 

make the Web of Data succeed as an integrated   

 

knowledge space. By relying on a collection of 558 

million identity statements, this thesis shows how 

network metrics such as the community structure of 

the owl:sameAs graph can be used in order to detect 

possibly erroneous identity assertions. In addition, as 

a way to limit the excessive and incorrect use of 

owl:sameAs, we define a new relation for asserting 
the identity of two class instances in a specific 

context. This identity relation is accompanied by an 

approach for automatically detecting these links, 

with the ability of using certain expert constraints 

for filtering irrelevant contexts. As a first 

experiment, the detection and exploitation of the 

detected contextual identity links are conducted on a 

knowledge graph for life sciences, constructed in the 

context of this thesis in a collaboration with experts 

from the French National Institute of Agricultural 

Research (INRA). 
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