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Résumé

L’équipe géodésique du GRGS, du Centre National d’Etudes Spatiales, a saisi I’importance
des systémes GNSS sur la détermination du systeéme international de référence terrestre et la
détermination des parametres des mouvements du Pdle via le projet pilote des Centres de
Recherche et des Combinaisons (CRC) de I'ITERS.

L’observation des déformations surfaciques de la crolite Terrestre mesurée par des
stations permanentes GNSS est un sujet que le CNES/GRGS voulait investiguer. L’ impact
de tels types de déformations sur les applications scientifiques de la géodésie de trés haute
précision ne peut plus étre négligé comme c’est déja mentionné dans les conventions de
I’'IERS pour 2003. En parallele les besoins en océanographie et en altimétrie pour des
mesures indépendantes de variations du niveau des océans, ainsi que leurs validations et
comparaisons croisées a partir des traceurs flottants sur des bouées et des bateaux ou des
marégraphes co-localisées avec des stations permanents GPS, ont imposé I'utilisation des
récepteurs du systeme GNSS.

Dans une premiere partie de la theése, je présente une recherche bibliographique sur
les caractéristiques principales de quatre systemes du positionnement global par satellites et
qui constitueront le futur systéme global des systémes de navigation. Les bénéfices et les
complexités des futures combinaisons des multiples observables de phase et de code sont
appréhendés.

Dans une deuxieme partie de la these, je me concentre sur la définition des
composantes géodésiques utilisées pour le positionnement par GNSS. Les modeles
observationnels et les plus récentes évolutions en matiére de précision et d’exactitude des
GNSS qui ont occupé mes recherches pendant mon projet, sont simultanément présentés.
Les erreurs dues a des effets systématiques qui perturbent la précision sur la détermination
des positions des stations sont estimées. Ces effets se trouvent soit au niveau du
prétraitement des mesures, soit en provenance des délais exercés sur la propagation des
signaux, soit dues aux déplacements de la crofite terrestre sur laquelle se positionnent les
stations.

Dans une troisieme partie de la thése, je présente tout d’abord le logiciel scientifique
GINS qui a constitué I’outil principal de mes études ainsi que les modifications que j’ai

apportées. Je présente ensuite, les différents tests de validations que j’ai effectuées pour
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évaluer les modifications tells que : les comparaisons sur les positions des stations a des
séries temporelles de haute fréquence avec des résultats en provenance des logiciels
globalement connus dans la communauté géodésique ; les comparaisons d’orbite GINS
GNSS par rapport aux orbites précises de 1I’IGS pour valider des nouveaux modeles de
radiation de pression solaire implémentés pour les satellites GPS comme le modéle « Box-
and-Wing » ; puis pour préparer les premiers pas vers 1’exploitation scientifique de Galileo,
I’évaluation sur la précision de l'orbite du premier satellite du systétme de navigation
européen GIOVE-A.

Dans une quatriéme partie, [’étude principale sur les parameétres de la surcharge
océanique dans des régions coticres complexes, comme en Bretagne, est présentée. Les
modifications récentes et validées dans la troisieme partie pour le positionnement par GNSS
dans GINS, sont utilisées. La méthode implémentée a pour but d’utiliser une campagne
GPS destinée a évaluer/valider les modeles de marées dans la région. L’impact des
déplacements verticaux non modélisés des stations géodésiques sur les parameétres
troposphériques est quantifié. D’ailleurs, la stabilité¢ du datum (systéme de référence) utilisé
pour I’alignement des solutions GNSS sur le systeme de référence terrestre et ses influences
sur les séries temporelles finales des coordonnées des stations sont examinées. Les effets du
repliement du spectre sur des séries temporelles des stations dues aux mouvements verticaux
mal or non modélisés sont démontrés. Finalement, les performances de sept modéles
globaux et régionaux de marées et les différences des deux logiciels utilisés pour les
prédictions des mouvements dus a la surcharge océanique, dans la région, sont quantifiées.

Dans la cinquiéme partie j’analyse les observations des données cinématique d’une
campagne GPS dans I’océan Antarctique abord des bouées et un bateau de recherche
pendant le passage du DRAKE au sud de Chili. La campagne DRAKE a été dédiée a
comparer et valider les observations altimétriques et océanographiques pour I’étude du
courant circumpolaire Antarctique. Les résultats sont préliminaires et se concentrent plutot
sur la définition de la ligne de flottaison du bateau par I'utilisation combiné GPS — bateau —
bouées. Les perspectives et la planification pour la continuation du projet en Post-Doc sont

présentées.
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Summary

The impact of GNSS in the realization of the International Terrestrial Reference Frame
(ITRF) and the determination of the Earth’s Pole motion was seized by the geodetic team of
GRGS of the French Space Agency (CNES) throughout the Centres de Recherche et des
Combinaisons (CRC) IERS project.

The measurement of surface deformations sensed by permanent GNSS stations is a
subject that the CNES/GRGS team wanted to investigate thoroughly. As already noted in the
IERS 2003 conventions, the impact of these deformations in today’s scientific applications
of geodesy of high precision cannot any longer be neglected. In parallel the needs of
oceanography and altimetry for independent measurements of the sea level variations by
validation and cross comparison, have made the use of GNSS receivers on floating tracers
(buoys, ships) or permanent GPS stations collocated with tide gauge sites, more than
necessary.

In the first part of this PhD I present a bibliographic research on the main
characteristics and differences of four global positioning systems that will constitute the
future Global Navigation Satellite System of Systems. The benefits and complexities of
future combinations from a multiple of carrier phases and code observables are presented.

In the second part, I concentrate in the definition of the basic geodetic components of
GNSS used in positioning. Observational models and the most recent issues of GNSS
accuracy and precision and which have occupied my research during the last time are
simultaneously presented for real cases. An updated error budget of the systematic effects
perturbing the accuracy and precision of the determination of position of the geodetic
stations at the pre-processing level, from signal delay’s and stations’ displacements due to
the movements of the Earth’s crust are examined.

In the third part, the GINS’ scientific software package the basic tool used in this
PhD study is presented. Updated modifications implemented for the needs of my research
are overseen. Then, validations through inter-comparisons with other well-known in the
geodetic community software and through comparisons to the precise IGS sp3 orbits on the
level of precise orbit determination for the GPS constellation are presented. Furthermore, a
first-step implementation for the integration of the future Galileo GNSS system is evaluated.

In the fourth part, the main study of ocean loading parameters in a complex coastal

area that of Brittany, in France is presented. The recently validated modifications in matters
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of positioning inside GINS GNSS software are used. The implemented method aims to use a
dedicated GPS campaign in the area in order to evaluate/validate the performances of ocean
tide models. The impact of un-modeled vertical displacements of the geodetic stations on
tropospheric parameters is quantified. Moreover, the datum stability used to align the GNSS
solution to a terrestrial reference system and its impacts on the final coordinate times-series
are examined. Low frequency aliasing affects in the campaign stations’ time-series of
unmodeled vertical displacement due to ocean tide loading are demonstrated. Finally, the
performances of seven global and regional tide models and the differences between two
algorithms for ocean tide loading predictions are quantified.

Finally, in the fifth and last part of my PhD dissertation, I analyze GPS kinematic
data sets from a dedicated campaign (buoy and ship) in the DRAKE passage south of Chile
designated to cross compare and validate altimetric and oceanographic observations and
their products for the observation of the Antarctic Circumpolar Current. The results are
preliminary and concern only two calibration periods for the definition of the vessel’s
floating line through the use of GPS-buoys. The perspectives and the planning for the future

continuation on this project are presented.
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Introduction

a) The Problem

According to Euclid, the geometrical distance of a point with respect to another reference

point is:

o3 =[x (1)-x* ()] [* (1) -x* (1) Eq.1

Where: x°(7) is the 3D coordinate vector of the point S at the time #;  x”*(¢)is the 3D

coordinate vector of the reference point R at the time z. The observed distance between these
points will help us determine the coordinates of the one with respect to the other in time and
in space. The exact and precise knowledge of their coordinates at the mm and sub-mm level
is mandatory in today’s scientific applications of space geodesy.

For example, in the International Earth Rotation Service (IERS) standards it is
mentioned that the coordinates of geodetic points attached to the solid surface are used for
the realization of a Terrestrial Reference System (TRS) and the determination of the Earth
Orientation Parameters (EOPs). This system is a spatial reference system co-rotating with
the Earth in its diurnal motion in space. A Terrestrial Reference Frame (TRF) is a set of
physical points with precisely determined coordinates in a specific coordinate system (IERS
2003). The connection of the TRS to the Celestial Reference System (CRS) is accomplished
through the EOPs. The EOPs are a by-product of the positioning of a set of reference points
on the Earth’s surface that participate in its daily rotation, polar motion and annual
revolution around the sun.

Precise point positions are also important in interdisciplinary oceanographic-
geodetic-geophysical applications such as: altimeter in-situ calibration methods,
determination of the dynamic topography of the sea, ocean tide model validations, tectonics,
volcanology etc.

In all cases, the exact determination of the position state parameters is a problem of
determining the 3D coordinates of a geodetic point on the surface of the Earth, which is
subject to several types of displacements due to:

e QOcean loading (tidal and non-tidal part) ;
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e Atmospheric Loading (tidal and non-tidal part) ;
e Loading caused from surface and sub-surface hydrological variations ;
e Post Glacial Rebound ;
e Effects of the Solid Earth Tides (permanent and time dependent) ;
e Rotational deformation due to Polar Motion (Pole tides) ;
e monument deformations (thermal expansions etc.).
In practice the methods used for determining the 3D positions of geodetic points, vary
significantly in function with:
e the physical environment (atmospheric conditions, multi-path etc. );
e the positioning mode : static/kinematic, real-time/post-processed ;
e the method and the techniques used (SLR, GPS, DORIS, VLBI) ;

e the observational models ;
b) The context

The definition of the position of a moving target or a stable geodetic point on the
surface of the Earth has been troubling geodesists since the very beginning of the Greek
civilization. One of the classical methods used was the measurements of angles and
distances combined with astronomical observations. The first of these measurements was
done by Eratosthenes in 230 BC. He introduced the first estimation of the Earth’s radius by
simultaneously comparing the time of the sun’s zenith during the summer solstice at local
noon in the town of Syene on the Tropic of Cancer, and the time where the angle of
elevation of the Sun would be 1/50 of a full circle (7°12") south of the zenith at his
hometown of Alexandria. Assuming that Alexandria was due north of Syene he concluded
that the distance from Alexandria to Syene must be 1/50 of the total circumference of the
Earth. His estimated distance between the cities was 5000 stadia (1 stadio = 185.2 m). He
rounded the result to a final value of 700 stadia per degree, which implies a circumference of
252,000 stadia. The estimated Earth’s radius was calculated at 7427824.8 m 16 % too large.
If Eratosthenes has used as a unit the Alexandia’s stadion (158.3 m) the estimation of the
Earth’s radius comes to 6348945 m 0.3 % smaller. Albeit their long age and history, part of
these methods are still being used nowadays.

In the early 60’s with the apparition of the first radio technique such as the
Transit/NNSS (Navy Navigation Satellite System) we have entered the era of a new
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revolution in positioning applications. The principal of this system was based on measuring
the Doppler effect of a moving target with respect to a stable station in order to measure the
relative velocity. The Doppler technique was also developed in the 80’s by the Centre
National des Etudes Spatiales (CNES, FR) with the DORIS (Doppler Orbitography by
Radio-positioning Integrated on Satellite) system (Fig. 1-1).

location beacon
Qrbltography
beacon

Fig. 1-1 : DORIS: the French space geodesy system. How does it work? Courtesy CLS (available at
http://www.cls.fr/html/doris/principe_fr.html)

Measuring distances and determining coordinates has also been possible by the use
of laser technology. One of the first ranging measurements has been made to the satellites
BE-B (October 10 1964) of the Goddard Space Flight Centre (GSFC) with a precision of
30m, DIAPASON D-1A (February 17 1966) and DIADEM-1C and 1D (February 8 and 15
1967) of the French National Space Centre CNES, (Biancale 1997). This was the beginning
of the so called Satellite Laser Ranging (SLR) technique. Lunar Laser Ranging (LLR) from
powerful telescopes on the surface of the Earth became also possible, by the use of laser
retro reflectors placed on the moon’s surface during the first Apollo (July 11 1969, February
14 1971 and August 15 1971, USA) and Luna (November 17 1970, January 21 1973, USSR)
missions. Today SLR technique is widely used for the determination of the TRF’s scale, the
motion of the centre of mass of the Earth system and in the Precise Orbit Determination
(POD) of Medium and Low Earth Orbiters (MEO and LEO) such as:

e the STELLA, Starlette and LAGEOS satellites used for the measure of the secular
perturbations of J; ;
e the altimetric satellites like Topex/Poseidon, Jason, Envisat, ERS, GFO etc. ;

e the GRACE satellites used for the determination of the gravity field ;
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e the GPS 35 and GPS 36 satellites of the Global Positioning System (GPS);

e the first Galileo In Orbit Validation Element (GIOVE-A).

In 1978 the Department of Defense (DoD) of the United States of America has
launched GPS the first Global radio-positioning system in order to replace the old and
limited in coverage Transit system. Its principle is based on calculating the distances
between MEO satellites, and a receiver on the Earth’s surface by comparing the departure
and arrival time of a radio signal. Nowadays GPS is vastly used for the determination of 3-
dimentional coordinates of geodetic stations. Together with GPS the Russian Global
Navigation Satellite System (GLONASS) is also operating. The later is based on the same
principle as GPS. On the other hand, the European Community is developing its own global
positioning system, Galileo, which will be fully operational by 2012. Recently the Chinese
government has decided to enter the game of “public” global positioning by building its own
navigation satellite system Compass/Beidou. Together all four systems form of what we call
as the Global Navigation Satellite System, commonly GNSS.

The impact of GNSS on the way we determine coordinates on the Earth’s surface is
considerable compared to other techniques.

Inside these recent evolutions in matters of high precision positioning, the GRGS
team of CNES is developing over 30 years the scientific software GINS (Géodésie par
Integrations Numériques Simultanées). The main functions of this software are designated to
problems of the adjustment and combination of data sets coming from all techniques of
space geodesy like GPS, DORIS, SLR, VLBI, SLR, LLR, altimetry etc.

GNSS have gained large popularity in the domain of geodetic sciences. The
exploitation and use of their data sets offers significant advantages with respect to the other
space geodesy techniques such as:

e high density of observations (every receiver can simultaneously observe up to 10
satellites from a single GNSS, and even more satellites in the case of Galileo,
GLONASS and Compass) ;

e continuous tracking measurements for LEO satellites ;

e extreme precision, rapidity, and low cost ;

e casytosetup;

The scientific “GNSS activity” of the CNES/GRGS team is regrouped around three

axes:
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1. POD of LEO satellites (TOPEX/POSEIDON, JASON-1, ENVISAT etc.) and the
determination of the gravity field from CHAMP, GRACE and GOCE ;

2. POD of MEO satellites (GPS, GIOVE-A, Galileo) and global Earth kinematic study.
GRGS participates in a pilot project coordinated by the IERS called Centres de
Recherche et de Combinaison (CRC) ;

3. Deformations of local geodetic networks observed by GNSS and kinematic
positioning of floating tracers (this Thesis);

These directions are coherent with the motivations of GRGS to propose the use of GINS
at laboratories around the world as an alternative to already well established scientific
software such as:

e Bernese GPS software (Astronomical Institute and University of Berne, Switzerland) ;

e GAMIT/GLOBK (Massachusetts Institute of Technology/ USA) ;

e GIPSY/OASIS (Jet Propulsion Laboratory / USA) ;

c) The subject

Since the beginning of its GNSS activities the team of GRGS/CNES had invested in
the research and algorithmic/software development concepts designated to problems of POD
and determination of the gravity field modeling (GRIM and EIGEN gravity models series).
In parallel the impact of GNSS in the realization of the International Terrestrial Reference
Frame (ITRF) and the determination of the Earth’s Pole motion was seized by GRGS
through the CRC project (Biancale et al. 2007).

The geodetic software package GINS used by GRGS and unique in France, initially
was not adapted for the studies of positioning and the deformations of dense geodetic
networks by GNSS. The measurement of surface deformations sensed by GNSS stations is a
subject that the GRGS team wants to investigate thoroughly. As already noted in the IERS
2003 conventions (McCarthy and Petit 2004), the impact of these deformations in today’s
geodetic applications of high precision cannot be neglected any longer. The physical causes
of these crustal deformations are numerous and their time scale varies considerably. In
parallel the needs of oceanography and altimetry for independent measurements of the sea
surface topography by validation and cross comparison, have made the use of GNSS

receivers on floating tracers (buoys, ships) more than necessary.
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So, under these conditions, and for the preparation of the future European GNSS
positioning system Galileo, as well, one of my missions during my PhD, was to introduce all
the necessary modifications in the software and then perform high precision millimeter
positioning of geodetic terrestrial and maritime GNSS networks designated to the study of
geophysical deformations and the observations of the mean sea-level.

I have organized the development of this PhD project around 4 axes: 1) Initially, I
had to adjust myself in the logic and the complex treatment of GPS data by the use of other
scientific GPS software. For that I firstly used the GAMIT/GLOBK software package of
MIT. Then for reasons of comprehension and acquisition of experience with GPS processing
I studied the long term motion of GPS stations in tectonically active (Crete) and non-active
regions (S-W France) and the impact on the final coordinate time-series from different
strategies combinations.

2) Secondly, I concentrated in problems of POD and notably that of the impact of
solar radiation pressure parameters on the GPS satellites orbits and the use of SLR for the
POD of the first GIOVE-A satellite including the implementation of a box-and-wing solar
radiation pressure model.

3) Thirdly, I dealt with the study of ocean tide loading parameters and the validation
of tide models by the use of a dedicated GNSS campaign, in a complex coastal area, that of
Brittany, in France. This part was divided into three steps. The first was dedicated to the
GINS’ software modifications:

e Ambiguity resolution;

e Troposphere modeling;

e Algorithmic modifications;

e New processing strategies.

The second, was the validation of GINS’ results through comparisons to other software and
notably GAMIT 10.21 (King and Bock 2005), GIPSY/OASIS II (Zumberge et al. 1997) and
Bernese 5.0 (Dach et al. 2007) and which was treated together with the participation of
several French research teams. The last part was assigned to the scientific evaluation and
tide models’ validation by comparisons to the estimated GPS ocean tide loading constituents
in the diurnal, semi-diurnal, third, fourth, fifth and sixth-diurnal spectral bands.

4) And finally, I have processed the GPS kinematic data from a dedicated campaign
(buoy and Ship) in the DRAKE passage south of Chile for the cross comparison and
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calibration of altimetric and oceanographic parameters in the area. Part of this work is still in

progress and the continuation should be assured hopefully by a Post-Doc grant.

d) This Thesis

A technical and historical description of all existing and future GNSS systems is
given in the first chapter of this manuscript.

In the second part the geodetic components of GNSS are sub-divided into four
categories: a) The terrestrial reference frame, b) the geodetic GNSS networks, ¢) the GNSS
observational models and errors, d) the GNSS station displacements.

In the third part a general presentation of the GNSS capacities inside GINS software
together with the recent modifications are presented. Validation tests of these new
functionalities, through intra-software differences on the estimated time-series of geodetic
stations and through POD of the GPS satellites compared to external references, are
presented in the same chapter.

In the fourth part, the study of observed and predicted ocean tide loading
displacements and their validations through a new dedicated GPS campaign in Brittany and
Contentin at the northwestern part of France, is presented.

The fifth chapter is dedicated to the preliminary results of a GPS kinematic campaign
applied to the study of the Antarctic Circumpolar Current.

Last but not least, the conclusions of my studies during this PhD and the perspectives

for further research continuation are given in the sixth chapter.
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« Tov &vtpa tov moAVvTpayo tparyovdncé pov, ® Movoa, mov meplosd mlovnOnke, cov
Kovpoeye ™G Tpoiog 10 1epd khoTpo, Kot TOADV avlpdTeV £ide ydpeg KL Epade YVOLES,

Kot ToAAG ot TEAaa Bprike mabuwo, Yo pio (oM ToALHOVTAG KOl YUPIGHO GUVIPOQ®V »

Homeére

1 The GNSS System of Systems

If Ulysses had a GNSS receiver in his disposal would have he found an easier way to Ithaca?

In this chapter a description of the characteristics of GPS, Galileo, GLONASS and
Compass-Beidou systems is given. GPS is currently fully developed. Galileo is at its first
steps of implementation. In 2006 the first test-bed satellite of the constellation, GIOVE-A,
has been launched. GLONASS is under a modernization phase. Compass, which will be the
future Chinese global positioning system, is also under way and a first satellite has been
placed in a MEO in April 2007. Problems, related to the interoperability and compatibility

between GNSS systems, are also presented.
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1.1 The GNSSes of today

Today, Russia hopes to return GLONASS to Full Operation Capability (FOC) with a
completed constellation by 2009, and Galileo’s FOC is expected now for 2012 (Hein et al.
2007). Compass-Beidou is already on the move with its successful launch on April, 14,
2007. A scenario of four global coverage satellite systems seems to be very likely in the near
future.

With this increasing number of GNSS matters of interoperability come to the surface.
For example, Galileo has managed to deal with problems of interoperability with its
predecessor GPS, in a more successful way than GLONASS. That is because the latest
system had and still has substantial differences from GPS. Nevertheless the working groups
of GPS/GLONASS are working intensively towards a future interoperability of the two
systems. The addition of Code Division Multiple Access (CDMA) signals on the third
frequency and at L1 of the modernized GLONASS system will set the steps towards an
easier interoperability with the other GNSS. At its present state, the Russian system employs
Frequency Division Multiple Access (FDMA) technology in which a common code is
broadcast on different Reference Frequency (RF) bands, unlike GPS and Galileo that use the
CDMA signals that transmit different codes on the same frequency. The Compass system

will be using CDMA signals thus rendering the interoperability easier with other GNSS.

1.1.1 The interoperability and compatibility of GNSSes

The new U. S. Space-Based Positioning, Navigation and Timing (PNT) Policy signed in
December 2004, addresses the global compatibility and interoperability of future systems
with GPS.

But what does the word interoperability and compatibility of GNSS mean? According to
the new PNT policy (available at http://pnt.gov/policy/ ):

e Compatibility refers to the ability of U.S. and foreign space-based PNT services to be
used separately or together without interfering with each other service or signals and
without adversely affecting navigation warfare.

e [Interoperability refers to the ability of civil U.S. and foreign space-based PNT
services to be used together to provide better capabilities at the user level than would

be achieved by relying solely on one service or signal.
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The previously mentioned model to compute the level of interference is set up in the 2004
EU-US agreement.

The general term of interoperability splits into : system interoperability — where
different GNSS provide the same answer, within the specified accuracy of each individual
system, and signal interoperability — in which different GNSS transmit signals allowing

their successful combination inside a receiver or a combined solution.

1.1.1.1 Interoperability of GPS, Galileo and GLONASS

The present signal interoperability between GPS and Galileo is unique with respect to the
other two GNSS (GLONASS and Compass). In order to ensure combined use of the two
systems with the highest performance possible at the user level the following requirements
were considered:

o Signals-in-Space (SIS). Different frequencies may introduce frequency biases.
Common center frequencies are needed for combined processing of observations.

o Coordinate reference system. Today the GPS coordinate reference system is the
WGS84 and is realized by the coordinates of the GPS control stations. Differences
between GPS and ITRF amount to less than two centimeters. The present goal for
Galileo is to realize within less than three centimeters with respect to ITRF a Galileo
Terrestrial Reference Frame (GTRF). This ensures independence of both GPS and
Galileo systems. For the GLONASS more information is given in § 1.1.4.5.

o Time reference frame. The Galileo System Time (GST), the GPS time and the
GLONASS time will be different real-time realizations of the Universal Time
Coordinated (UTC) / Atomic Time (TAI). The GPS — Galileo time offset will be
easily determined and received at the user’s level.

Moreover GLONASS is not signal interoperable with GPS and Galileo but mostly is

system interoperable. More description on GST and GTRF is presented in § 1.1.3.4 and

§1.1.3.5.
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1.1.2 The Global Positioning System, GPS

GPS is based on a network of initially 24 active satellites placed into orbit by the US
Department of Defense (DoD). The GPS baseline constellation of 24 satellites consists of six
quasi-circular MEO planes at a nominal average orbit semi-major axis of 26559.7 km with

an inclination of the orbital plane of 55 degrees with reference to the equatorial plane.

1.1.2.1 The development phase

GPS is an active program over 30 years. The history of its development phase till full
operational capability is summarized in the following synopsis (Hothem 2006):

e In 1973 started the development which is an underway of separate programs;

e In 1978 the first satellites were developed and launched;

e The first operational satellites went into orbit in 1989;

e The system reached /nitial Operational Capability (I0C) in 1993;

e And obtained FOC in 1995.
The system actually exceeds the baseline constellation with 31 orbiting satellites after the

last successful launch on November 17 2006.

1.1.2.2 The modernization Plan

The current constellation of GPS satellites consists of:

e 16 II/IIA operational satellites;

e 12 IIR satellites, modernizing up to 8 Block IIR satellites ;

e 3 IIR-M satellites launched on September 25 2005, September 14 2006 and

November 17 2006.

Before December 2005 the Standard Positioning Service (SPS) was provided by the C/A
code on the L1 frequency and the Precise Positioning Service (PPS) provided by the P(Y)-
code on L1 and L2 (Fig. 1-1).
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Fig. 1-1 : The GPS Signal Spectrum, present and future. (Source CNES)

1.1.2.2.1 Block lIR-M

Since the launch of the first [IR-M satellites, a second civil signal was introduced with

improved services (L2C). This generation is about to reach the 24-satellite FOC around

2012 (Hein et al. 2007). For military purposes a modernized M-code will be placed on both

L1 and L2.

The second civil signal L2C may enable higher civilian accuracy when

combined with the existing civil GPS signal L1 (C/A). L2C overcomes some limitations of

L1(C/A) such as:
e Higher effective power ;

e Improved data structure ;

e It will have reduced interference and it will enable indoor use.
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1.1.2.2.2 Block IIF

The third civil signal L5 (Fig. 1-1) will be present in the future IIF satellites. The FOC with
24 satellites is expected to be complete around 2015. The first launch of this generation is
scheduled for 2008. The third civil signal LS will have:
e New enhanced performance with higher power (higher than other GPS civil signals);
e Wider bandwidth (1176.45 MHz +/- 10 MHz) which enables more accurate tracking
ability ;
e Improved resistance to narrow bandwidth interference ;
e A frequency located in an Aeronautical Radio Navigation Service (ARNS) band. An
ARNS band has the advantage of limiting the in-band interference environment

because it is regulated by stringent aviation requirements.

1.1.2.2.3 Block IlI

The GPS Block III phase is still under design stage. It includes significant improvements
both in the ground and space segment. This will most likely include:
e Assured and improved level of integrity;
e Improved availability of accuracy with integrity;
e Backward compatibility with existing receivers;
e Support for new signals in combination with [IR-M & IIF satellites
o L2C, L5, M-code;
o L1C and future options for new navigation messages, flexible power levels;
The first launch is previewed for around 2013 (Hothem 2006). The new improved
LI1C civil signal will exist in addition to the C/A code in order to ensure backward
compatibility with older receivers. During the 2006 and 2004 joint statement agreement
between EU & US in matters of GNSS cooperation, L1 band was optimized as the common
baseline open service signal for GPS & Galileo. The FOC of the Block III phase is expected
around 2020.
The L1C will have a pilot carrier, which, as in the case of Galileo’s L1 band, helps

for better code and carrier tracking.

A preview of the four GPS satellites generations is shown in the following Fig. 1-2.
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Block 1A, 1990

Block IIF, 2008 Block lll, 2013

Fig. 1-2 : The GPS satellite generation, past, present and future. (Source US Department of State, DoS)

1.1.2.3 The GPS Control Segment

Currently the operational capability of the GPS control segment counts a total of 14 globally
distributed stations. During the improvement plan a total of 4 more control sites is envisaged

(Fig. 1-3). The modernization of the Operational Control Segment (OCS) has as goals:

e Each Satellite Vehicle (SV) will be tracked at least by three or more monitor

stations over 99% of the time;

e The User Range Error (URE) will be around 1.0 m;
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Fig. 1-3 : The GPS Operational Control Segment. (Source US DoS)

1.1.3 Galileo, the European Global Positioning System

In March 2002 the European Union decided to build Europe’s future GNSS system Galileo.
Nevertheless the vision of a European GNSS existed long before, since 1992. Benefits for
Europe in a level of social and economic growth will be considerable. Galileo is not only
another technological project but it is a key component to tomorrow’s civil, commercial,
scientific, industrial and defense strategic tasks of the EU and its 27 nations.

Galileo 1s designed to provide a highly accurate, global positioning service.
According to Galileo’s Signal-In-Space Interface Control Document (Galileo SIS-ICD) the
system will be signal interoperable with GPS and, at least to some extent — excluding the
real-time high-precision services of the systems — with GLONASS.

The fully deployed Galileo systems will consist of 30 Satellites (27 operational and 3
non-active spares). The system’s orbit will be a quasi-circular MEO orbit of 29601.297 km
semi-major axis and an inclination of the orbital planes of 56 degrees with reference to the

Earth’s equatorial plane.
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1.1.3.1 The development phase

In December 1992, Galileo was just a glimmer in a few visionaries’ eyes. That was the

month that two European Commission (EC) directorates-general — those for transport and

science, research and development — decided to fund a modest study of satellite navigation

options for Europe. Since that epoch Galileo went through many seas and storms. Some of

the past, present and future steps in its rather “wild” coarse are exposed:

The EU Transport Council resolution on March 23 2002 puts the Galileo project in
action;

In the same year comes the creation of the Galileo Joint Undertaking (GJU)
enterprise. The role of GJU was to coordinate and manage the /n Orbit Validation
phase (IOV) up to the selection of the system’s operator during the launch of the
FOC phase;

Starting of the IOV phase beginning of 2004;

During the final conclusions’ policy of the EU Transport Council of the 10/12/2004
the 5 services of the Galileo system were defined as well as the beginning of the
deployment and exploitation phase;

Beginning of the European Geostationary Navigation Overlay Service (EGNOS);

On October 28 2005 the first Galileo In Orbit Validation Element GIOVE-A was
launched from Baikonur space center;

On December 5 2005 the EU Transport Council has decided that the 2 Galileo
Control Centers (constellation and mission) will be situated in Germany
(Oberpfaffenhofen DLR) and in Italy (Fucino) and Galileo’s headquarters in France
(Toulouse, CNES);

On January 12 2006 GIOVE-A started transmitting the first navigation signals near
17:30 UTC (Montenbruck et al. 2006). The signals were received with the first
Galileo TEst Receiver (GTER, Simsky et. al 2005) and closely monitored by radio
telescopes in Redu (Belgium), Chibolton (UK), Toulouse — CNES (France);

On May 23 2006 the Galileo SIS-ICD was released on the GJU website

(www.Galileoju.com);

A technical glitch in GIOVE-B technical components has delayed Galileo’s second
test bed satellite to fly till late 2007;
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In February 2007 the GJU has seized to exist and the European GNSS Supervisory
Agency (EGSA, formerly stated as Galileo Supervising Authority) has taken
responsibility of the further development of the Galileo project. EGSA will extend
the concession contract, own and oversee Galileo infrastructure and operations on
behalf of the public interest. Furthermore, a variety of high-level tasks such as signal
certification and system security will be duties of the EGSA.

On March 2 2007 ESA released the GIOVE-A SIS ICD;

On May 2007 the EU Transport council revises the Public Private Partnership
(PPPp) in order to further finance the Galileo project;

Launch of the first four Galileo IOV satellites is scheduled for beginning of 2009 as
well as 3 more experimental spacecraft;

FOC with the complete constellation is projected for 2012 (Fig. 1-4).

On July 26 2007, the US and the EU announced their agreement to jointly adopt and
provide an improved design for the respective GNSS signals. These will be
implemented on the Galileo Open Service (L1F) and the GPS IIIA (L1C) new civil

signals.

Fig. 1-4 : The Galileo constellation. Artistic view. (Source ESA)
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1.1.3.2 The modernization plan

Galileo is not yet in operation but already the evolution program for the second generation

Galileo 1II is planned to start by the middle of 2007. Galileo II could arrive somewhere

around 2020 and is expected to introduce new modernization elements analogous to the

steps made by its counterparts GPS and GLONASS. Inter-satellite links could be introduced

at that time and aeronautical certification could be of relevance.

1.1.3.3 The Galileo services and signals

1.1.3.3.1 Services

The Galileo positioning services will be divided in 5 categories according to Galileo’s SIS-

ICD (D.0) edited on May 23 2006:

An Open Service (OS), providing positioning, navigation and timing services, free of
charge for mass market navigation applications;

A Safety-of-Life Service (SoL) compliant to standards in the aeronautical, maritime
and rail domain. The SoL includes integrity and authentication capability, although
the activation of these possibilities will depend on the user communities;

A Commercial Service (CS) whose existence according to the recent evolutions
might be compromised. This service generates commercial revenue by providing
added value over the OS, such as by determination of encrypted navigation related
data ranging and timing for professional use — with services guarantees;

A Public Regulated Service (PRS) for applications devoted to European and
Member States National Security, regulated or critical applications and activities of
strategic importance;

A Search and Rescue Support Service (SAR) which provides assistance by detecting
Emergency Beacons and forwarding Return Link Messages to the Emergency

Beacons.

Page 49 of 253



« Positionnement Géodésique a Haute Fréquence de Réseaux Terrestres et Marins »

1.1.3.3.2 Signals

The Galileo navigation signals are transmitted in three frequency bands. These are: The ES,
E6 and the E2-L1-El band. The frequency bands have been selected in the allocated
spectrum for Radio Navigation Satellite Services (RNSS) and in addition the E5a, E5b and
L1 signals are included in the allocated spectrum for ARNS. All Galileo transmitting
satellites share the same frequency bands (CDMA). Spread spectrum signals will be
transmitted including different ranging codes per signal, per frequency and per Galileo
satellite.

Two of these carrier phases will be in common with GPS, the E5a and L1. In Fig.

1-5 are illustrated the Galileo signals mapped onto the services.

0S/SolL CS/PRS OS /8oL /PRS

A

E5a  £g 4.102 GHFOD E6 1.278 GHz

B2 | 11575 6HE!

Fig. 1-5 : Galileo signals mapped onto services. (Source CNES)

Many of the signals will contain a pilot (no-data) signal for better carrier phase tracking. A
summary of the main characteristics of the signals is provided in Table 1-1
Briefly:
e The L1 band consists of :
o The LIF signal, which is an OS signal comprising a data channel (L1-B) and
a pilot channel (L1-C). It contains integrity and encrypted commercial data;
o The L1P signal which is a restricted access signal transmitted in L1-A signal
channel. Its ranging codes and navigation data are encrypted using a
governmental encryption algorithm.
e The E6 band consist of :
o The E6C signal, which is a commercial access signal, transmitted in E6 that

includes a data channel (E6-B) and a pilot channel (E6-C);
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o The E6P signal, which is a restricted access signal transmitted in E6-A signal
channel. Its ranging codes and navigation data are encrypted using a
governmental encryption algorithm.

e The ES5 band consists of :

o The E5a signal which is an OS signal transmitted in the E5 band that includes
data (ESa-I) and pilot (E5a-Q) channels;

o The ES5Sb signal, which is an OS signal transmitted in the E5 band and
includes data (E5b-I) and pilot (E5b-Q) channels;

o Finally the ESa and E5b signals are modulated onto a single ES carrier using

a modulation technique known as Alt-BOC.

Frequency band Signal Components Comments, data
and channels |(Data, Pilots, modulations, combinations) encryption
ESa I+Q (data +pilot) = GPS L5, OS/CS/SoL
E5b [+Q (data +pilot) GIOVE-A OS/CS/SoL
ES5a+b Alt-BOC (15,10) Low multipath
ES5a + E5b and tracking noise
E6-A Data PRS
E6-BC B+C (data + pilot) GIOVE-A CS
E2 (L1-A) Data, C1A, L1A PRS
L1-E1 (L1-BC) B+C (data +pilot) GIOVE-A e
OS/CS/SoL, PRS

Table 1-1 : The Galileo’s signal caracteristics, modulations, channels, ranging codes and data encryption

1.1.3.4 The Galileo Terrestrial Reference Frame (GTRF)

A Terrestrial Reference Frame (TRF) is the realization of terrestrial reference systems of
different observations techniques (SLR, DORIS, GNSS, and VLBI) of a set of stations’
coordinates and velocities (see § 2.1). The TRF of Galileo is the frame provided by the
control segment of the system. The realization of the GTRF is based on a dedicated global
set of geodetic stations (Fig. 1-6) and is one of the important keys in the realization of the

Galileo system as well as in its interoperability with the other GNSS.
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The GTRF implementation is part of the duties of the Galileo Geodetic Service
Provider (GGSP) as the latest one was appointed by the 2420 call of the 6™ Framework
program of the European Commission (EC) on June 2004. The GGSP contract covers the
specification, design, implementation, testing and operation of the prototype Galileo
Reference Service Provider (GRSP) to support the Galileo IOV phase. The prototype of the
Galileo Reference Service Provider is responsible for establishing the GTRF and its relation
with the International Terrestrial Reference Frame (ITRF) (see § 2.1.1) within tight

specifications (http://ec.europa.eu/transport/gsa/rd/rdggsp.html). The head of the consortium

1s the GeoForschungsZentrum (GFZ) Institute at Potsdam. The kick off phase started on
2005. The main tasks and actions of the GGSP are (Sohne et al 2007):

e Definition and realisation of the GTRF ;

e Maintenance of the GTRF until the IOV phase ;

e Recommendations for the permanent service ;

e Delivery to the GRSP ;

e GTRF definition, realisation, maintenance, link to the IERS and to the International

Laser Ranging Service (ILRS).

A stable and precise GTRF will serve as the basis for all Galileo-related services and
Galileo orbits. It will be an independent reference frame made by Galileo’s own
observations, at least after the completion of the FOC phase. Until then the GTRF will be
materialised by observations of both GPS+Galileo. One of the quality specifications is that
the GTRF shall be compatible with the ITRF at 3cm (20). That means that the relative
accuracy of the GTRF solution (station positions) with respect to the solutions of ITRF or
those of the International GNSS Service (I1GS) core stations expressed in ITRF shouldn’t be
more than 3cm at a 95 % confidence level (Gendt et al. 2007). The coordinates and
velocities necessary for the GTRF realisation will be provided by a core network of 18
Galileo Sensor Stations (GSS) during the IOV phase and a total of 50 GSS including 5
Galileo Uplink Stations (ULS) after the kick off of the FOC phase (Schne et al 2007). In the
total number of GSS are included also stations with at-least 2 collocated techniques such as
SLR and VLBI and optionally GLONASS and DORIS (Mandatory GPS) (Schne et al 2007).
Fig. 1-6 describes the GTRF network of the GSS stations.

The realisation of the GTRF will be established by a free network adjustment
(Grafarend and Schaffrin 1973, Heflin et al. 1992) in order to avoid errors in fixing the ITRF

reference stations and to simultaneously determine:
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e Station positions and velocities ;
e [Earth Orientation Parameters (EOPs) ;
e Orbit and Clocks.

The necessary alignment to ITRF will be accomplished via an IGS core network
expressed in ITRF collocated to GSS and non co-located stations. As none of the space
geodesy techniques is able to provide all the necessary parameters for the TRF datum
definition, SLR and VLBI stations co-located to GSS will provide independent quality check
and connection to geocentre, scale and the inertial frame (earth rotation) (Sohne et al. 2007).

Local and intra-technique ties must be determined with an extreme precision.
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® additional IGS station
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& GsTBV2 station

Rio de Janeiro
°

Santiago de Chile gC0rdoba
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Fig. 1-6 : Initial GTRF network at the beginning of IOV, ~100 locations, (Source GGSP)

Preliminary observations from around 10 GSS stations in combination with IGS
stations have been collected during the IOV phase for the determination and characterisation

of GIOVE-A orbits and clocks (see § 3.2.2.2).

1.1.3.5 The Galileo System Time (GST)
As stated in § 1.1.1.1, an important element in combining different GNSS, apart from a
geodetic reference frame, is the implementation of a reference system time (GST for

Galileo). Galileo will establish a reference time scale, GST, to support system’s operations.

The GPS time and GST will be in general independent.
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The metrological function (the accuracy in the dissemination of the Temps Universel
Coordonnée, UTC) of the GST is the responsibility of the Galileo Time Service Provider
(GTSP) which will cover matters related to design, implementation testing and operations
during the IOV phase.

The key element in the GST architecture will be the Precision Timing Facility (PTF)
(Hahn and Powers 2005). This element is in charge of the navigation timekeeping and will:
e Maintain a stable ensemble of clocks (2 Active Hydrogen Maser AHM, 4 Cesium
clocks) in a well controlled environment;
e Measure the time offsets of all the clocks compared to the master clock through a
local measurement system;
e Compute GST;
e Steer GST towards the Temps Atomic International (TAI), modulo one second,
through the external correction provided by GTSP;
e Provide GST to the orbit determination and time synchronization process.
The PTF facility is located within the Galileo Control Centers (GCC).

The offset between TAI representations derived from GPS and Galileo broadcast can
be expected to be around 33 ns (95%) (Moudrak et al. 2005). As of January 2006, TAI is
ahead of UTC by 33 (UTC-TAI = - 33 sec) leap seconds (Bulletin C 30,
http://hpiers.obspm.fr/eoppc/bul/bulc). GPS time is synchronized to UTC and is not adjusted

for leap seconds (www.iers.org).

The GTSP is responsible for keeping GST aligned (steered) to TAI within tight
specification and predict the time offset from UTC (leap seconds).This is achieved by
conducting time transfer measurements between the Galileo PTF master clocks and the
timescales within the core UTC laboratories. These UTC core laboratories are the National
Metrological Institutes of France, Germany, Italy, and UK. GTSP will provide its
corrections to the Galileo Mission Segment (GMS) which will be responsible for all ground
functions related to Galileo mission implementation. Among them is the generation of the
GST. GTSP, after the end of the IOV phase and beginning of FOC phase, will constitute and
provide support to the full 7ime Service Provider (TSP).
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Some of the essential differences and similarities between the GPS time and GST are

summarized in Table 1-2.

GPS Time GST

Source of time One-way One-way

Implicit mean of atomic clocks .
PTF active H-maser steered to

Type of time scale |within the GPS system steered to N

UTC

Physically The GPS Master Control Station | At the Galileo Precision Timing
implemented at (MCS) Facility (PTF)

_ Either through direct time
Access outside the | Through broadcasted corrections
transfer or broadcasted

system to satellite clocks
corrections to satellite clocks
Steering to Through the US Naval Through the GTSP combinations
TAI/UTC Observatory of several institutes

Stability over 1- ~2.8x10" (requirement, 2c)

2x107"* (Ray and Senior 2005
A%

day (sec) source GJU
Offset (Accuracy) ~4.3x107 (rms in 30/5/2007) 50x10™ (requirement, 20)
from TAI (sec) Source USNO source GJU

Table 1-2 : GPS Time vs GST

GST will be available as a physical signal and will be fed to the Orbit Determination and
Synchronization Facility (OSPF) which will compute the orbits of Galileo satellites and
predict their clocks versus GST.
The satellite clocks which will be installed on-board of the Galileo satellites are of
two kinds:
e Rubidium atomic clocks ;
e Space Passive Hydrogen Maser clocks.

The estimated offset of GST from TAI will be broadcast in the Galileo navigation message.
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1.1.3.5.1 The Galileo-GPS Time Offset (GGTO)

The residual offset between GST and GPS Time, GGTO, can be expected to be about 57 ns
(95%) considering today’s performance of GPS Time and the required performance of
Galileo.

A schematic representation of the GGTO is in Fig. 1-7.

GPS Time
t GGTO ‘l‘
GST y GPS SV I
Galileo SV .
: clock correction  clock correction|
Galileo SV - .
fime A GPS SV
time
GPS
Galileo pseudorange
pseudorange
User time

Fig. 1-7 : GPS time versus GST and the GGTO bias in the navigation solution. (Source DLR)

The GGTO will represent an important issue for GPS-Galileo interoperability, since it will

cause bias between measurements in combined GPS/Galileo receivers.

1.1.3.6 Galileo Integrity

Whereas many Galileo user services benefit uniquely from the system’s positioning
accuracy, a rather large number of navigation applications will require the navigation
information provided by the system with the highest confidence level possible. This is the
case for SoL applications such as earth or air transportations. The integrity functions will be
managed and executed from the Integrity Processing Facility (IPF) which is a real time
processing of the GMS that provides the broadcast satellite navigation data based on the
GSS. In this case, with known positions of the GSS the actual position of the SV and with
this the maximum error on the range (Signal-in-Space-Error, SISE) can be estimated

(Hernandez et al. 2006, Oelher et al. 2004).
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Fig. 1-8 : SISMA estimations (m) of all potential satellite positions for nominal SoL-FOC. The GSS stations
are in white circles (Hernandez et al. 2006)

If the SISE is larger than a certain threshold the satellite will be flagged “Don’t Use”. Next,
and after certain False Alarm (FA) verifications, the following information is disseminated
to the user:

o Navigation Message: SISA values for the satellites updated every 30 sec;

o Integrity Message: the sigma of the difference of the estimated SISE and an
unbiased one (Signal-in-Space-Monitoring-Accuracy, SISMA, Fig. 1-8) together
with the integrity flags (IF) updated every 30 sec;

o Alerts and connectivity status : each alert is coded with 4-bits and 16 different
states can be accessible to the user (Don’t use, Not Monitored, 14 states OK with
corresponding SISMA ranging from 30 cm to 520 cm).

For more details on the whole integrity concepts the reader is suggested to look into

Hernandez et al. (2006), Oelher et al. (2004) and Paimblanc et al. (2006).

1.1.3.7 Galileo In Orbit Validation Element (GIOVE)

In preparation for the development of the Galileo system, the European Space Agency
(ESA) launched in 2002 the Galileo System Test Bed Version 1 (GSTB-V1). Within the
GTSB-V1 project were developed (Piriz et al 2006):

e The Galileo orbit determination, integrity and time synchronization algorithms;

e An experimental ground segment consisting of a worldwide network of sensor

stations;
e An experimental PTF providing the reference GST steered to TAI/UTC;
e A processing center located at the ESA headquarters in the Netherlands (ESTEC).
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Within the GSTB-V2 one experimental Galileo satellite, GIOVE-A (Fig. 1-9), was launched

on December 28 2005 from Baikonur cosmodrome.

1.1.3.7.1 GIOVE-A

Fig. 1-9 : The GIOVE-A satellite. (Source ESA)

GIOVE-A is currently placed into MEO with a semi major axis of 29600 km, an inclination
of 56° and an eccentricity of 0.002. The main objective of GIOVE-A satellite is : to secure
the use of the frequencies allocated to the Galileo system; to verify the most critical
technologies of the operational Galileo system, including the on-board atomic clocks and the
navigation signals generators; to characterize the novel features of the Galileo signal design,
including the verification of the user receivers and their resistance to multipath. The first
navigation signals where broadcasted on January 12 2006.

From May 17 2006 till today GIOVE-A has been transmitting the signals illustrated
in Table 1-3:
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Frequency | Frequency | Pilot/ | Pseudo | Carrier
Band [MHZ) Datz | Range | phase
Datz | C14A L14
L1 1575.420 | Dats | C1B L1B
Pilor | C1C L1C
Datz | C5l L51
E5a 1176.450 -
Pilot | C50Q LS50
E5h 1207.140 | Pilot ciQ L7Q
ESa+b " .
(alt200) 1191.,795 Filot | CBQ LBO

Table 1-3 : The GIOVE-A signal mode, (source GMV)

Sites Code Autority Country
Kiruna GKIR ESOC Sweden
New Norcia GNNO ESOC Australia
Kourou GKOU ESOC French Guyana
Mizusawa GMIZ GFZ Japan
Dunedin GOUS GFZ New Zeland
La Plata GLPG GFZ Argentina
Papeete GTHT ESOC French Polynesia
Wuhan GWUH GFZ China
Malindi GMAL ESOC Kenya
ESTEC
(Noordwijlo) GNOR ESA/GAIN The Netherlands
Torino GIEN [EN Italy
USNO GUSN USNO USA
Vesleskarvet GVES ESOC Antarctica

Table 1-4 : GIOVE Mission Sensor Stations List (Crisci et al. 2006, Piriz et al. 20006)

The main characteristics of the GIOVE-A are (ESA bulletin 127):

Mass: 614 kg;

Size: 1.904 x 1.394 x 1.670 m (stowed envelope);

Solar array: 2 wings of 2 panels each (0.98 x 1.74 m);

3-axis stabilized: nadir-pointing + yaw steering;
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*  Power: 633 W used / 744 W avail;

* 3 Payload chains (A,B,C);

* 2 Rb Clocks (FM4 & FM5);

» Laser Retro Reflector array of 76 corner cubes with a diameter of 27 mm each;

e Lifetime until March 2008.

The current 13 GSS used for the GIOVE-A Mission segment (GIOVE-M)
experimentations are listed in Table 1-4. Immediately after the deployment of the ground
stations and as soon as they were fully operational, several experimentations were performed
in order to:

e Confirm the feasibility of Galileo signal tracking in real environment with real SIS
for different receiver environments and user types ;

e Confirm signal design performance assumptions in terms of: C/N0, tracking noise,
static and dynamic multipath;

e (Characterise the on-board clock performances.
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Fig. 1-10 : C/No ratio for GIOVE-A code observables compared to GPS's C/A code (Navaro-Reyes 2007).
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The dimensionless signal to noise ratio or carrier-to-noise power density ratio (C/No)
has been used by a number of authors as a quality indicator of GPS observables. For
instance Comp and Axelrad (1998) investigated the use of SNR observable in an attempt to
reduce the effect of carrier phase mutlipath. Some of the first experimentation results in
matters of C/No ration were presented during the EGU 2007 general assembly and can be
seen in Fig. 1-10. Galileo signals present lower tracking noise than GPS and the observed
values are in absolute agreement with the theoretical ones.

The static analysis at the GESS sites (in Fig. 1-11) shows that mutlipath remains at

relatively low levels for a cut-off angle of 10°.
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Fig. 1-11 : Code multipath estimation on static environement in GIOVE's infrastracture. SIRD is the required
performance for Galileo as it is described in the SIS-ICD (Navaro-Reyes 2007)

The clock’s characterisation took place from October 28 2006 to March 21 2007. As
previously noted, GIOVE-A has on-board two Rubidium Atomic Frequency Standards
(RAFS) clocks. For the evaluation of their performances an Active Hydrogen Maser (AHM)
connected to the GIEN station, in Torino, (Table 1-4) was used as the reference clock for
the whole experimentation. The AHM was continuously monitored versus the INRiM’s

(Istituto Nazionale di Ricerca Metrologica) ensemble of atomic clocks and compared to
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external time reference scales such as the UTC realised by the BIPM in France. During the
analysis period the GIOVE-A was configured to transmit the L1 and ES signals (Fig. 1-5)
using the nominal payload chain, driven by the RAFS Flight Model 4 (FM4) and Flight
Model 5 (FM5) — the two on-board clocks. The CIC-C7Q and L1C-L7Q (Table 1-3)
ionosphere-free code and phase combinations were selected for clock characterisation, and
were used together with the P1-P2 and L1-L2 ionosphere-free code and phase combinations

from the GPS constellation.
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Fig. 1-12 : Frequency stability of one of the RAFS clock of GIOVE-A (Rochat et al. 2007). Notice the very
good comparison between ground tests, specifications and the INRiM's Hmaser stability

The characterization of the on-board clock was also supported by the use of SLR, a
high precision technique for precise orbit determination that is independent of the navigation
signal generation. The SLR data where provided by the ILRS network. The technique used
for clock characterization is called Orbit Determination & Time Synchronization (ODTS).
The ODTS solved for orbits, clocks, tropospheric delay, Inter-System Bias (ISB), which is
the differential delay between the GPS and Galileo signal paths within the station. The ISB
is the equivalent of GGTO in § 1.1.3.5.1. The estimated phase-offsets, with respect to the

¢ |

reference AHM, are not the pure clock as tested on the ground but rather an “apparent
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clock as seen through the complete on-board signal generation, the space propagation and
the receiver network. The Allan deviations expressing the frequency stability of the atomic
clocks which are derived from the ODTS technique are illustrated in Fig. 1-12.

Apart from the excellent performances of the two RAFS clocks, many frequency
jumps occurred during the testing period especially after a payload switch-off. According to
Rochat et al. (2007) these frequency jumps of the apparent clock are not unusual for young

clocks. It is a common effect also observed in GPS clocks.

1.1.3.7.2 GIOVE Follow-on

The ESA’s follow-on plans for GIOVE-A include a GIOVE-B and a GIOVE-A2 satellite
vehicles. GIOVE-B is bound to fly by the end of 2007. GIOVE-A2 whose fate will depend
from the performances of both GIOVE-A and B will probably be launched inside 2008.

On-board the GIOVE-B s/c one AHM clock will be placed together with a RAFS
clock. It will be the first time that an AHM clock is tested in cavity.
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1.1.4 GLONASS

The GLObal NAvigation Satellite System (GLONASS) is the dual-use Russian navigation
satellite system. Its nominal constellation is composed of 24 satellites in three orbital planes
with ascending nodes of 120 degrees apart. 8 satellites are equally spaced in each plane. The
satellites operate in circular 25440-km orbits at an inclination 64.8° and an orbital period of

11h and 15min. The orbital planes have 15°-argument of latitude displacement relative to

each other (GLONASS-ICD).

1.1.4.1 The development phase

The first satellite of the Russian navigation system GLONASS was launched in October 12
1982 and the system was introduced into operation in 1993, being deployed to the complete
constellation of 24 satellites in 1995. At that epoch the system was ensuring a signal of
standard accuracy for civil users and a high-accuracy for military users. During the 90’s
Russia faced new economical conditions and the financing of the Russian space industry
was significantly reduced leading to the orbital GLONASS constellation reduction and

decrease of its effectiveness.
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Fig. 1-13 : The GLONASS development program update. (Source Russian Federal Space Agency)

On August 20 2001 the government of the Russian Federation ratified the policy
directives setting out the intent to conclusively preserve and develop this navigation system

(Fig. 1-13). This program is expected to be completed by the end of 2011. Today the
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GLONASS orbital constellation consists of 16 satellites, of which 9 satellites are GLONASS
series and 7 satellites are GLONASS-M series. From these only 9 are currently operational,

3 in implementation stage and 4 at shutdown stage.

1.1.4.2 The modernization Plan

On December 25 2006 from Baikonour launch site, three modernized satellites, GLONASS-
M (Fig. 1-14) were placed into orbit by a single launch vehicle. The 10 year modernisation
plan covers the development of GLONASS-M satellites at a first stage and the proposed
GLONASS-K satellites at the second stage.

Fig. 1-14 : A GLONASS-M spacecraft

The GLONASS system is being modernised based on the following main characteristics:
e (Qualitative improvement of radio navigation signals. Introduction of the third
frequency;
e [mprovement in the stability and reliability of timing signals;

e Implementation of inter satellite links.
In the next generation GLONASS-K satellites a third civil signal at the L3 band (1194.45 to
1208.97 MHz) as well as integrity information will be added.
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In matters of signal interoperability with GPS and Galileo things become more
complicated since GLONASS uses FDMA and not CDMA as the previous two GNSS (see §
1.1.1). Some statements made by Russians officials are suggesting that maybe the CDMA
protocol will be applied in the new GLONASS-K satellites at the third civil signal.

1.1.4.3 GLONASS signals

GLONASS uses FDMA technique in both L1 and L2 sub-bands. This means that each
satellite transmits navigation signal on its own carrier frequency in the L1 and L2 bands.
Two GLONASS satellites may transmit navigation signals on the same carrier frequency if
they are located in antipodal slots of a single orbital plane (GLONASS SIS-ICD). The

nominal values for L1 and L2 carrier frequencies are defined by:

le :fm +KAf1
Jx2 = Joo + KA, Eq. 1-1

Where: K is the frequency channel of the signals transmitted by GLONASS satellites in the
L1 and L2.; f,, =1062 MHz; Af, =562.5 kHz; f,, =1246 MHz; Af, =437.5 kHz

The nominal values for carrier frequencies in L1 and L2 are given in Table 1-5. The
channel number K for any particular satellite is provided in almanac (for more information
see the GLONASS ICD available at www.glonass-ianc.rsa.ru/i/glonass/ICD02 e.pdf).
Before 2005 all GLONASS satellites are using the frequency channels (K) 0 through 12 and
after 2005 -7 through +6.
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N Nominal value | Nominal value
of freq. in L1 of freq. in L2

© sub-band, MHz | sub-band, MHz
13 1609.3125 1251.6875
12 1608.75 1251.25

11 1608.1875 1251.8125
10 1607.625 1250.375
09 1607.0625 1249.9375
08 1606.5 1249.5

07 1605.9375 1249.0625
06 1605.375 1248.625
05 1604.8125 1248.1875
04 1604.25 1247.75
03 1603.6875 1247.3125
02 1603.125 1246.875
01 1602.5625 1246.4375
00 1602.0 1246.0
-01 1601.4375 1245.5625
-02 1600.8750 1245.1250
-03 1600.3125 1244.6875
-04 1599.7500 1244.2500
-05 1599.1875 1243.8125
-06 1598.6250 1243.3750
-07 1598.0625 1242.9375

Table 1-5 : GLONASS carrier frequencies in L1 and L2 sub-bands for each channel K. (Source GLONASS

ICD)
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1.1.4.4 GLONASS System Time

GPS and Galileo, GLONASS are designed to operate on the basis of the principle of one
way Time Of Arrival (TOA) ranging. Each satellite emits its ranging signals together with a
navigation message that tells the user’s receiver from which satellite, from which orbital
position, and what time it was broadcast. By comparing the time of a signal’s arrival with
the time of its transmission, a pseudo-range can be calculated.

This method assumes that all satellite clocks are synchronized with each other and
with a common time scale.

GLONASS time is generated on the basis of a Central Synchroniser (CS) time.
Satellite atomic clocks have a daily stability which is not worse than 5x10™"° sec for the
GLONASS-M satellites. The CS is a set of hydrogen clocks with a daily stability of 107
sec.

The time scales of the GLONASS satellites are periodically compared with the CS
time scale and are steered to UTC. Corrections to each on-board time scale relative to
GLONASS time and UTC are computed by the control segment and uploaded to the users
through the broadcasted ephemeris. The GLONASS time scale is periodically corrected for
the integer number of leap seconds simultaneously with UTC corrections (see § 1.1.3.5).
This happens by changing enumeration of second pulses of on-board clocks of all
GLONASS satellites.

Between GLONASS time scale and UTC there is a constant 3 hours difference.

1.1.4.5 GLONASS Coordinate system

The GLONASS broadcast ephemeris describes a position of transmitting antenna phase
center of a given SV in the PZ-90 Earth-Centered Earth-Fixed reference frame. The PZ-90
system is a global system developed by Russia, similar to WGS 84 of GPS. It was realized
by positioning 26 ground stations established from observations of the Geo-IK geodetic

satellite (http://www.fas.org/spp/guide/russia/nav/geo.htm), including : photographing it

against a star background; Doppler measurements; laser ranging; and satellite altimetry
(Boucher and Altamimi 2001). It also included electronic and laser measurement of
GLONASS and Etalon satellites.

The first substantial efforts to create ties in between the reference frames of GPS and

GLONASS have been realized through the International GLONASS Experiment (IGEX-98)
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(Willis 1998). This effort continued by the International GLONASS Service — Pilot Project
(IGLOS — PP), which is a pilot project of IGS, in order to track and analyze data from the
Russian GLONASS satellite constellation. The project operated for a period of four years
from 2000-2003 (Reigber 2000). The goals where to establish and maintain a global
GLONASS tracking network collocated with dual-frequency combined GPS/GLONASS
receivers, produce service (orbits, satellite clock estimates, station coordinates, earth
orientation parameters), monitor and assess GLONASS system performances, fully integrate
GLONASS into IGS products (Slater 2000). Since June 8 2003 (GPS Week 1222), the
CODE Analysis Center at the University of Bern has been computing rapid and final orbit
products for the GLONASS satellites. CODE generates these GLONASS orbits at the same
time as the GPS rapid and final orbits (Slater 2003).

The combination for the GLONASS final products is performed since GPS Week
1300 at the IGS Analysis Coordinator (Gendt 2005). The combined GPS/GLONASS IGLOS
network is illustrated in Fig. 1-15.

Fig. 1-15 : The IGLOS GPS/GLONASS network on Sept. 04 2007 (Courtesy of IGS).
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1.1.5 Compass and Beidou

Compass is the GNSS developed by China. Like GPS, Galileo and GLONASS, the system
will provide two navigation services: an open service for commercial users and an
“authorised” positioning service. This system has actually started its IOC phase with the
launch of the first Compass MEO on April 13 of 2007.

Beidou (North Dipper, referring to the seven stars in the constellation Ursa Major) is
the local satellite navigation and positioning system operational since May 2003. It includes
three satellites in geostationary earth orbits (GEO).

The whole system will consist of thirty MEO satellites in six orbital planes and five
GEO Compass-Beidou satellites. The completion of the system is envisaged for 2010 with a
FOC by the same year according to China’s Aerospace Science and Technology
Corporation (CASTC).

The main orbital characteristics for Compass satellites are: a semi major axis of
27800 km, an inclination of 55° and a circular orbit.

A preliminary measurement campaign made by Grelier et al. (2007) using the CNES
tracking and recording system, has revealed Compass’ signals spectrum in E2/L1
(Galileo/GPS), ES (Galileo), and E5b (Galileo) bands. Fig. 1-16 illustrates the spectrum of
the future Compass system.

Fig. 1-16 : The Compass/Beidou frequency plan, which overlay GPS/Galileo signals (Grelier et al. 2007).

The total broadcast signals of the Compass-Beidou system will be in four frequency
bands according to the International Telecommunications Union (ITU): 1561 MHz (E2),
1589 MHz (E1), 1268 MHz (E6), 1207 MHz (E5b).
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1.1.6 Augmented GNSS

In addition to the global GNSS systems other regional augmentation systems of precision
are on the way. These systems are called Space-Based Augmentation Systems (SBAS) and
are used to improve integrity, reliability, accuracy and continuity of GNSS positioning and
navigation. The main characteristic of these systems is that they are designated to provide a
GNSS user with differential corrections for strengthening the precision in an absolute
positioning mode. Apart from SBAS, also terrestrial nationwide differential correction
systems exist, which usually consist of dense GNSS networks with continuous service
capability.
Some of the main SBAS already in operational capability or under development are:

e The Wide Area Augmentation System (WAAS) constructed by the US. It increases
the real-time pseudo-range accuracy from typical 10-12 m with GPS alone to 1-2 m;

e The EGNOS system is the equivalent European SBAS system. It is designed to
broadcast GPS, Galileo and GLONASS corrections (Traveset-Ventura et al. 2005).
EGNOS provides additional pseudorange measurements from the geostationary
satellites. It consists of three geostationary satellites;

e The Beidou system which is the equivalent SBAS of china (§ 1.1.5);

e The Quasi-Zenith Satellite System (QZSS) is Japan’s SBAS which is a constellation
of three satellites inclined by 45°, in elliptic orbits, with different orbital planes in
order to pass over the same ground track. The first satellite launch is planned for the
year 2009 (Kogure et al. 2006);

e The Indian GPS and GEO Augmented Navigation (GAGAN) system is an
independent seven satellite constellation that will seek to maintain compatibility
with the other GNSS and augmentation systems of the region (QZSS, Beidou). Of
the seven satellites three will be geostationary and the other four geosynchronous.

The first payload in expected for 2007.
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1.2 Summary

In this chapter we went through the most important characteristics of present and future
GNSS positioning systems.

At the advent of the 21* century the total number of GNSS satellites is augmenting
significantly. Up-to-day only one GNSS system is fully operational (GPS), one more is
under modernisation (GLONASS) and another two are in their first implementation stages
(Galileo and Compass). Together with these global positioning systems other regional
complementary segments have been developed or are under development like: EGNOS in
Europe; WAAS in the US; Beidou in China; QZSS in Japan; GAGAN in India. Currently
the number of functional GNSS satellite vehicles raises up to 41 plus ~9 regional. In the near
future, with the completion of Galileo - GLONASS — Compass this number will include
more than a hundred satellite vehicles. As such, the future for ultra-high precision
positioning in geosciences (Geodesy, Oceanography, Geophysics, Volcanology etc.) and in
societal applications (Navigation in urban areas, fleet management, security of life,
agriculture, automation etc.) becomes very promising.

For example, in mutli-GNSS combinations of the future triple-frequency geometry-
free/ionosphere-free linear combinations of ranging measurements from the same satellite
shall become available. These linear combinations will contain superposition of multipath
and tracking signals in three or even more frequencies so information on phase multipath
shall become available through observations in an absolute mode (single-satellite single-
station). Multiple frequencies combinations can be translated to multi-carrier phase
ambiguities which can be used as constraints to ambiguity resolutions schemes. Fast
ambiguity fixing will be possible over longer distances using signals and a rather elevated
number of satellites. For instance, this will be very beneficial to GNSS kinematic
applications in geosciences, as the determination of coordinates, under rough conditions, of
floating tracers in the open ocean, for the validation and comparison of sea-level parameters.

Nonetheless, more frequencies and systems do not always mean “easier life”. On the
contrary, the amount of work, for those concerned, combined with the complexity of the
situation will grow tremendously. For example: conventional differencing techniques may
not be possible due to different signals tracked by different receivers and channels or each
signal component will have its individual bias induced by the satellite hardware and receiver

hardware (Wiibenna 2007).
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GALILEO GPS GLONASS COMPASS
MEG S planes, || poplanes, | MBOIplates, |hn ot smiall
9723 nomindl, || 2o pommal | 2143 nemmals s 06,
Constellation @8/120005) | (17/11/2006) (25/12/2006) iy
1 (GIOVE-A) 16 I/IIA, 12 | 9 GLONASS +7 et
IIR, 3 IIR-M M-series
FDMA
A (with possibility for
Signal Access CDMA CDMA CDMA in the K- CDMA
series)
(after 2005)
At each SV

ESa (1176.45)
L1 (1609.375- El (1589.742)

ESb (1207.14) | L5(1176.45) | 1602.0-1598.062),
E2 (1561.10)

Frequencies ES (1192) L2(1227.6) | L2 (1248.187-
(MHz) 1246.0-1242.937) | E6 (1268.52)

E6 (1278.75) L1 (1575.42)
With GLONASS-K | ESb (1207.14)

E2-L1-El (1575.42)

L3 (1194.45-
1201.5-1208.97)
Orbit semi-major| ;) .o, 26559.7 25440 27840
axis (km)
Inclination 56° 55° 64.8° 55°
Cant 08, SoL, CS, PRS, |SPS,PPS,0Sin |y o . | OS, military
gUVACES SAR, integrity Block I11) ’ y service
Intergl.‘lt.y Yes Yes in Block III (integrity in the K- 9
Transmision series)
Satellite .Laser GIOVE-A, Yes to all GPS 35,?36 all 9
Ranging (future?)
Coordinate GTRF WGS84 PZ-90 ?
system
Time scale GST(TAI)  |GPS time (UTC) GLO(I;IJ/}SCS) i ?

Table 1-6 : The tomorrow’s and today’s GNSS characteristics

Finally, interoperability and compatibility will be the two driving mechanisms by
which we will achieve a Unified Global Satellite Navigation System of Systems. The
independence of each of the aforementioned systems provides greater reliability and
integrity for the users and leads to a certain competition among the systems.

Having all these in mind the most important parameters of the existing GNSS

systems are summarised in Table 1-6.
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2 Geodetic components of GNSS

GNSS have been serving the geodetic community since the early beginnings of the GPS
system, during the 80’s. Apart from a technological achievement, the GNSS is also a
scientific achievement for Geodesy.

GNSS can provide geodesists with accurate and precise positions by a measurement
of the time-travel of an electromagnetic wave between a satellite in space and a GNSS
receiver stationed on the surface of the Earth’s crust. In order to achieve this goal the
geodetic components of GNSS have to be taken into consideration such as:

e The global Terrestrial Reference System (TRF) to which the geodetic points will be
referenced together with the derived products from GNSS such as orbits and clocks,

EOPs, station positions and velocities ;

e The geodetic GNSS network of stations ;
e The observational model errors degrading the precision of GNSS observations ;
e The prediction of the physical processes that provoke displacements and

deformations of the geodetic network of stations.
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All these elements are being combined together, in order to accurately and precisely
estimate, in a least squares sense, the coordinates of geodetic stations.

For instance, when two sets of coordinates of the same network corresponding to two
different epochs are compared for the derivation of deformational parameters (e.g. ocean
tide loading constituents) the results depend on the terrestrial reference frames used at both
epochs.

In the next parts of this chapter we will see step-by-step the main parts that enter
inside the duty tasks of a GNSS analyst and the scientific tasks of the present report.

A synopsis of the functional models applied and the systematic errors acting on the
GNSS observables is given. Troposphere and ionosphere delays are some of the most
important factors of distortion in the accuracy and precision of estimated coordinates by
GNSS; the unknown integer number of cycles of the carrier phases is an important source of
biases; receiver clock errors such as clock jumps and derivations from the GPS time and
cycle slips during a measurement period can introduce important artifacts to the final
positions estimates; variations of the center of phase of the GNSS antennas aboard the
satellites and the receivers on the ground can significantly influence the scale of the system;
rotations of the antennas can introduce biases; multi-path effects add noise to the final series
of stations etc.

All these geodetic components of GNSS are taken into account simultaneously for
the scientific investigations of this Thesis which are:

e The determination of accurate and precise deformation parameters of regional
and local GNSS geodetic networks provoked by Ocean Tide Loading (OTL)
displacements and the validation of predicted constituents ;

e The combined use of marine and terrestrial GNSS networks in order to
observe water height variations of the Antarctic Circumpolar Current through

the combined use of floating GNSS tracers (Buoys), tide gauge and altimetry.
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2.1 Global Terrestrial Reference Frames

The physical establishment of a global Terrestrial Reference System (TRS) is accomplished
through a global geodetic network based on the analysis of various geodetic techniques
(Dermanis 2001a). Its aim is to provide unified means for describing position by means of
coordinates of discrete points on the Earth’s surface. Alternatively, the TRS will be the
mathematical object satisfying an ideal definition in which point positions will be expressed
and a Terrestrial Reference Frame (TRF) will become its materialization (Altamimi et al.
2002).

On the other hand there is a need in geophysics for an Earth reference frame, i.e. a
frame that refers to the behavior of the deforming earth as a whole involving all its mass
points and not just a set of discrete points confined on its surface. Such frames are
indispensable in theories of earth rotation (Munk and MacDonald 1960) where the
conversion schemes of a TRF to a geophysically meaningful Earth reference frame, such as
the Tisserand axes frame, require having a straightforward comparison of the observed
rotation of the terrestrial frame with respect to an inertial celestial frame. The geodetically
produced TRF is generally different from the frame of Tisserand axes of the Earth’s rotation
theory where the relative angular momentum of its axes vanishes (Dermanis 2001a).

The optimal choice of the reference frame requires the introduction of an optimality
criterion such that the apparent motion of the network points, as seen with respect to the
reference system, is minimized. This condition introduces the origin and axes in a purely
mathematical way by minimizing the apparent motion of the ITRF network points with
respect to the reference system (Dermanis 2006):

o The origin is constant and defined by the barycenter of the N network points X, (?)

(treated as unit mass points), 7 is the time (Eq. 2-1). In the case of TRS the origin is
defined by the center of mass of the whole Earth including oceans and the

atmosphere (Altamimi et al. 2002).

1 & .
—in(t) =m = constant, Vit s
i=1

° The axes give the orientation of the system where its evolution in time should be

ensured by the Tisserand axes principal: all relative angular momentum % (Eq. 2-2)
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with regard to the horizontal tectonic motions over the whole Earth should vanish

(No-Net-Rotation).

215 (’)X]%(t) =0, V¢ Eq. 2-2

i=1

The conversion of the geodetic TRF to a Tisserand frame strongly depends on the adopted
hypotheses about Earth deformation.

Some of the relative mass motions on the surface of the Earth that contribute to the
displacement of points of the geodetic networks are: plate tectonics, seismic events,

atmospheric and oceanic tidal and non tidal loading, hydrological loading etc.

2.1.1 The International Terrestrial Reference Frame, ITRF

The history of the ITRF goes back to 1984. The first realisation of ITRS was the ITRF88
and since then nine versions were established and published: ITRF89, ITRF91, ITRF92,
ITRF93, ITRF94, ITRF96, ITRF97, ITRF2000 and the most recent one ITRF2005
(Altamimi et al. 2007). For more details regarding the history and description of ITRF the
reader may refer to the list of ITRF papers given in the references of this Thesis (Boucher et
al. 1996, Sillard et al. 1998, Boucher et al. 1998, Boucher et al. 1999, Altamimi et al. 2002).

According to IERS the basic idea of ITRF is to combine station positions computed
by various analyses centers which process observations of space geodesy techniques, such as
VLBI, SLR and LLR, GPS and DORIS (Fig. 2-1). Each of these techniques and each

analysis center materialises a different TRF.

o 1 Technique g2 Techniques ¢ 3 Techniques 4 Techniques

Fig. 2-1 : Co-location sites embedded in the implementation of ITRF (Altamimi et al. 2007)
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The access of a simple user to the ITRF is accomplished through the use of the
coordinates and velocities of the stations of each space geodesy technique.
The transition between two different reference frames consists of the transformation

of the Cartesian coordinates of TRF1,X, to TRF2,X, characterized by a 7 parameter

Euclidian similarity transformation:
X,=X,+T+D-X, +R-X, Eq. 2-3

Where: T is the three dimensional vector of the origin translation T, T, T3; R is the
orthogonal matrix of rotation that contains the set of the three Euler angles R, Ry, R3; D=
scale - 1. The number of transformation parameters becomes 14 when we consider as well

their evolution in time.

2.1.2 The TRF network combination model

As previously stated, the final ITRF frame will be the product of global combinations of the
time-series of stations from all the space geodesy techniques. The combination model
consists of transforming each individual TRF of each technique to a given TRF. This is the
same procedure in the case where a classical type of GNSS network is set up and the
network’s coordinates will be transformed to the desired TRF. These coordinates at some
reference epoch are used as unknown parameters and their variation with time gives rise to
displacements which are functions of time.

The combination model is based on Eq. 2-3 and a more expanded form for an

individual solution s, and each point i is:

X =X+ -t,)X.+T,+ DX +RX.
+(t! —tk)[Tk +D, X! +RkXi:|

X, =X_+T, +DX, +R X, Eq. 2-4
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Where: X! is the position of each individual solution (e.g. a weekly GPS solution) at epoch
£ X; the velocity expressed in a given TRF k; D, is the scale factor; T, the translation
vector ; R, the rotation matrix.

The combination (for the TRF) consists in: estimating positions X' at a given epoch
f,; velocities Xi expressed in the combined frame c; transformation parameters T,, D,,

R, at an epoch ¢, and their rates T,, D, , R, from the combined TRF to each individual frame
k.
In addition to the above equation, EOPs can be added in the combination process

such as the pole coordinatesx”,y”, the universal time UT, as well as their daily time

derivatives x”, y? and LOD, provided by the IERS (Gambis 2004, Altamimi et al. 2005):

P _ P

X, —xc+R2k
P — 3,P

Ys =X +le

UT, =UT, —%Rh

: Eq. 2-5
X =xf +R2k
ysp :J."f+R1k

LOD. =LOD +ﬁR
s c f 3%

where [ =1.0027379093507951s the conversion factor from UT into sidereal time.

Considering LOD =-A, ddﬂ,A0 is homogeneous to time difference, so that A, =1day in
t

time unit. The link between TRF and EOP is ensured through the 3 Euler rotation angles of

R, Rz, R3 plus their time derivatives.
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21.21 The Datum problem or Zero order Design

According to Dermanis (1985) , coordinates of the points of a geodetic network define the
position of the network with respect to the reference frame, or the position of a reference
frame with respect to the network.

The normal equation system of weekly solutions, which is referring to Eq. 2-3, has a
rank deficiency of 7 corresponding to the number of transformation parameters needed to
define the reference frame while the normal equation of the global combination process into
a long-term solution of Eq. 2-4 has a deficiency rank of 14.

In the case of coordinate’s transformations, the number of degrees of freedom leaves
the observations invariant (Dermanis 1985). The datum defect or Zero order design problem
(Dermanis 1985) due to the rank deficiency can be overcome by means of a number of
constraints on the parameters (coordinates or transformation parameters). Such constraints
that define the reference frame without distorting the shape and size of the network are
called minimal constraints. When added to the normal equations they reduce the number of
independent parameters and allow for one unique solution.

The simplest way, of defining the reference frame or aligning a solution to the TRF
in question, is by fixing the coordinates (at least 6, three for rotation and three for translation
of the network) of a set of stations to their TRF values or by applying the minimal
constraints to the parameters of the transformation in Eq. 2-3 and 2-4. For more details on
minimal constraints the reader is suggested to look in Dermanis (1985), Sillard and Boucher
(2001), Altamimi et al. (2007).

Nevertheless, it is known that geodetic observations are not, in general, insensitive to
all degrees of freedom of a similarity transformation. For example, a technique such as
VLBI is sensitive to orientation and not to the origin of the coordinate system. GPS is
sensitive, to a certain degree, to geocentre but not to orientation. The above properties are of
course dependent on the distribution of the network, and a continental network has, in any
case, a low sensitivity to geocentre especially when relative positioning is performed. So in
the case of a GPS continental network which is viewed as a plan from the satellite height the
geometrical problem is equivalent to defining a 2-D reference frame associated to a plan
while we have to define a 3-D reference frame. Therefore, 7 — 4 = 3 degrees of freedom

have to be defined.
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2.1.2.2 Geocenter variations

Up to now the current time evolution of the ITRF is defined as linear to account
mainly for tectonic plate motion while no deformation model or geocentre variations are

taken into consideration (Altamimi et al. 2005, Dermanis 2006).
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Fig. 2-2 : 12 years of weekly geocenter time-series wrt ITREF2000 from SLR (Coulot et al. 2005)

The geocentre variations are estimated either by dynamic or geometric methods. The
dynamic method is based on the estimation of the degree one terms of the gravitational field
while the geometric method is based on the estimation of the three translation parameters (in
Eq. 2-3) with respect to an assumed geocentric ITRF (Fig. 2-2). The geocentre motion
undergoes annual, semi-annual, diurnal and semi-diurnal variations due to mass distributions
(atmosphere and oceans) of the solid Earth (including the interior) as seen in Fig. 2-2
(Watkins and Eanes 1997, Dong et al. 1997, Bouillé at al. 2000, Moore and Wang 2003,
Dong et al. 2003, Blewitt 2003, Coulot et al. 2005, Lavallée D. et al. 2006).
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2.1.3 The Combination Research Center (CRC) project

Up-to-date two types of TRS realisations exist inside the IERS. The one is official and the
other is a pilot project.

The first is formed by using the final reference frame products (station time-series,
positions and velocities) of each Technique Centre (TC) and by stacking them into a global
combination process. This is the today’s procedure in creating the ITRF. For that purpose
the IERS relies on each TC themselves organized in International Services (IGS,
International VLBI Service; 1VS, ILRS, and International Doris Service; IDS) whose first
role is to promote the appropriate use of the geodetic technique. These services gather EOPs
and reference frames inputs from the different analysis Centres and generate combined
products or normal equation files in a commonly adopted format (Software Independent
Exchange, SINEX). Usually these products are achieved independently per technique by
each TC without having the necessary consistency (for instance due to different a-priori
models and software). Then these products are gathered by IERS in order to be combined in
the global combination process that will form the final ITRF.

The second approach enables the pilot project named Combination Research Centers
(CRC), which is under development by the IERS (Biancale et al. 2007). The leader of this
project in France is the GRGS.The IERS CRC have the task to study a homogeneous way
for insuring consistency in the creation of an ITRF. This is succeeded by:

* combining all techniques first at the level of each Analysis Centers;
» using if possible a unique software, or at least the same a priori models for analyzing
different techniques;
» generating simultaneously EOPs and TRF;
» evaluating the gain of the method.
The role of the CRC is to become, in a certain meaning, an analysis centers for all
techniques and products (Biancale et al. 2007). In Fig. 2-3 we can see the basic difference of

the first versus the second way of creating an ITRF.
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Analysis Centers CRC
VLBI GPS SLR DORIS 4 techniques

O . O
6 @
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Product Centers
Weekly EOP and 1RF normals 0
Combination Center GRGS,

(kx.: 1TRI"2005)
Fig. 2-3 : The two ways of creating an ITRF

The CRC approach has the advantage that any inconsistencies created in the today’s
ITRF process by the use of different ad-hoc models and software by each analysis center, for

each space geodesy technique, will be extremely minimised.

2.1.4 GRGS as CRC/IERS (Combination Research Centre)

The GRGS has been a pioneer in studying the combination of geodetic techniques at the
observation level (that means merging full normal equations with all parameters from the

different space techniques) since the year 2000. It participates to the IERS Combination

Pilot Project (http://www.iers.org) since the beginning of 2004 and is organizing itself
through different national geodetic entities of France such as:
e OCA (Grasse) provides the SLR combinations;
e C(CNES (Toulouse), processes the Laser Lunar Ranging (LLR) combinations
with contribution from the Paris Observatory;
e (CNES/Collecte Localisation Satellites (CLS) (Toulouse), creates the GPS and
DORIS combinations ;
e Bordeaux Observatory provides the VLBI combinations ;

e and Paris Observatory performs combinations with contribution from IGN

(Marne-la-Vallée)
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The structure of the GRGS CRC current tasks is illustrated in Fig. 2-4.

VLBI GPS SLR LIR DORIS
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\ A ¢ s 3 J
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-

Fig. 2-4 : The GRGS CRC structure scheme (Biancale et al. 2007)

GRGS delivers routinely weekly SINEX files (inter-technique products) to IERS since 2005
in parallel with the intra-technique products from IGS, ILRS, IVS, and IDS.

The big advantage of the GRGS CRC approach is that it uses a unique geodetic
software GINS (Géodésie par Intégrations Numériques Simultanées) for all the space
geodesy techniques illustrated in Fig. 2-4 developed and maintained by the CNES GRGS
team. This software is being used for: orbit computations around any planetary body (Earth,
Sun, other planets or small bodies); for gravity field modeling of the Earth (EIGENGL04s)
and planets; other dynamical parameters such as solid or oceanic tides; EOPs
determinations; observations of the deformations of local or global geodetic networks etc. It
has the unique capability, compared to other well established geodetic software, to process
all types of geodetic measurement homogeneously with the same ad-hoc models for SLR,
LLR, DORIS, GNSS, VLBI, DSN, Altimetry (direct and crossover). The final ITRF by the
GRGS CRC pilot project is extremely consistent due to its homogeneous approach (Biancale

etal. 2007).

Page 85 of 253



« Positionnement Géodeésique a Haute Fréquence de Réseaux Terrestres et Marins »

2.2 Geodetic GNSS network of stations

Like any other geodetic technique, GNSS, needs to have a reference network of

stations for its definition and alignment to a given ITRF. Several categories of GNSS

networks exist. In function with the type of use these networks are categorised in:

Global GNSS networks. They are expanded over the whole globe and are mostly
used for: reference frame definitions; orbit and clocks, station positions and
velocities, EOP parameters products; global deformation studies; global models
validations like troposphere, ionosphere etc. A type of this network is the IGS global
GNSS network (in Fig. 2-8). Their baselines can vary in between 100 km and some
thousand km.

Regional GNSS networks. They are expanded over a continent (Europe, Asia, North
or South America, Antarctic etc.) and are mostly used for: deformation studies like
tectonic plate motion determination; serving as ties to the global network and
reference frame; studies of the troposphere and ionosphere etc. Some examples of
these networks are: the European Permanent Network (EPN) which defines the
European Reference Frame (EUREF) (http://www.epncb.oma.be) (in Fig. 2-5); the

US Continuous Operating Reference Stations (CORS) network (in Fig. 2-6) ; the
Australian Regional GPS Network (ARGN); the Asian Pacific Regional Geodetic
Project (APRGP) network etc.
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s
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N

Fig. 2-5 : The EPN/EUREF GPS permanent network

Fig. 2-6 : CORS national stations (source National Geodetic Survey, NGS)

National and local GNSS networks. They are mostly expanded inside the frontiers of
a national entity. Their use is concentrated to the needs for : professional uses in
topography and cartography, study of the water content in the atmosphere,
tomography of the ionosphere, local deformations due to ocean loading or tectonic
activities, determination of fault slips, natural hazards risk etc. Examples of these
types of networks can be found in many countries like: the French Permanent GPS
network (Reseau GPS Permanent, RGP (in Fig. 2-7) of the Institute Géographique
National (IGN), the REGAL GPS permanent network a collaboration of Alpine
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observatories in order to study the deformations the Alps (in Fig. 2-7), the Japanese
GEONET, the Swedish SWEPOS, the Swiss AGNES, the German ASCOS and
SAPOS, the Austrian APOS, the Hellenic HEPOS etc.

Fig. 2-7 : The Réseau GPS Permanent (RGP) of the French Institute Géographique National
(IGN) (left) and the REGAL permanent GPS network for the tectonic surveillance of the Alpes
(right).

e Dedicated campaign GPS networks: are all types of local GPS networks which are
not permanent. Usually, the data-set of these networks expands from a few days to a
few weeks and are used in studies like: the positioning of floating tracers for the
calibration of tide gauges or altimetry; the validation of ocean tide models around a
specific geographical area; the study of plate tectonics by dedicated campaigns

forming a long GPS time-series etc.

2.21 The mission of the International GNSS service (IGS)

The official start of the IGS (formerly International GPS Service) took place on the 1% of
January 1994. Usually the International Association of Geodesy (IAG) General Meeting in
August 1989 in Edinburgh, UK, is considered as the starting point for the IGS.

The current infrastructure of IGS consists of: a global network of permanent GNSS

tracking stations (see Fig. 2-8), regional data centres, global data centres, Analysis Centres
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(ACs), Associate Analysis Centres (AACs), Analysis Center Coordinator (ACC), Central

Bureau (CB), Governing Board (GB) and working groups.

Fig. 2-8 : The IGS tracking stations network at Sept. 4 2007 (Courtesy of IGS)

The primary objective of the IGS is to provide the reference system for a wide variety of

scientific and practical applications involving GNSS. To fulfil its role the IGS produces a

number of “fundamental” products used in the current Thesis which are:

Data from a global network of over 380 permanent, geodetic GNSS stations operated
by more than 100 worldwide agencies (Dow and Neilan 2006);

Reference frame products like station time-series, positions and velocities ;

GPS and GLONASS satellite orbits and clocks and receiver clocks ;

EOPs;

Station specific Tropospheric Zenith Delay (TZD) parameters

Global ionosphere maps.

The most principal ACs that participate in the production of the IGS reference products are:

The Center for Orbit Determination in Europe, AIUB, Switzerland (CODE)
The European Space Operations Center, ESA, Germany (ESA)

The GeoForschungsZentrum, Germany (GFZ)

The Jet Propulsion Laboratory, USA (JPL)
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e The National Oceanic and Atmospheric Administration | National Geodetic Survey,

USA (NOAA/NGS)

e The Natural Resources Canada, Canada (NRC)

e The Scripps Institution of Oceanography, USA (SIO)

e The U.S. Naval Observatory, USA (USNO)

e The Massachusetts Institute of Technology, USA (MIT)

According to the IGS’s strategic plan (Blewitt et al. 2006) its mission statement
currently reads as follows: “The International GPS Service is committed to providing the
highest quality data and products as the standard for global navigation systems (GNSS) in
support of earth sciences research, multi-disciplinary applications, and education. These
activities aim to advance scientific understanding of the Earth system components and their

interactions, as well as to facilitate other operational applications benefiting society.”

2.2.2 GRGS as an analysis center of the IGS

Since the 10™ of July 2007 GRGS has entered an evaluation test period in order to become a
future IGS AC. GRGS has been producing its own GNSS and reference frame products
since 2005: orbits and clocks for GPS satellites, stations positions and velocities. The GNSS
products are based on a global sub-network of ~70 GPS IGS stations. For a homogeneous
and high quality processing, GINS GNSS software is being used. The today’s overall quality
of GRGS GPS orbits in terms of agreement when compared to the final IGS sp3 products, is
being evaluated and could be better than 5 cm (3D-RMS).
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2.3 The GNSS Observations: models and errors

The most important aspects of the observation equations for GPS are reviewed. For more
information the reader is referred to, e.g. Xu (2003), Springer (2000), Brockmann (1997),

Rothacher (1992). In the mathematical models of this section the following notation is used:

Ve index of a particular receiver;

S index of a particular satellite;

S signal reception time (GPS time);

T Signal travelling time between satellite and receiver;

> error of the receiver clock at time # with respect to GPS time;
. error of the satellite clock at time #- t with respect to GPS time;
B eeeeeeeeeeeneenn reading of the receiver clock at signal reception time; #,=t+ 6,(¢);
L reading of the satellite clock at signal emission time; £'=¢+ 6°(7);
X (t=7)...... position of satellite s at signal emission time - 7 ;

X, (¢) position of receiver r at signal reception time  ;

p; (1—7,t)___geometrical distance between satellite s (at the signal emission time #- 7 )

and receiver r (at signal reception time #) which will contain all errors related

to the satellite POD and station displacements

2.3.1 The Code and Phase Observation Equation

Using the known codes p,and p,and the two phases L and L,of GPS the observation

equations can be written as follows:

n@)=p (t=1,t)+co,(t)—co’(t—)+ [ (t—7,0)+ T (t—7,0)+
d@)+d’ (t—7)+m (t—1,t)+V, (2)
D, ) =pi(t—-1,0)+co,(t)—co’(t—1)+al (t—7,0)+T (t—7,0)+

Eq. 2-6
d@)+d'(t-o)+m (t—1,t)+v, (1)
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LO=p@-1,0)+co,(t)-co’(t-7)-L(t—7,0)+ T (t—71,1)+
d)+d*(t-1)+m (t—7,0)— AN, (t—7,t)+V,.(?)

L.)=p (t—1,0)+cO,(t)—cd’(t—7)—al (t—7,0)+ T (t—7,0)+

. Eq. 2-7
d@®)+d’(t-7)+m (t—1,t)-,N, (t—1,t)+v, ()

Where:

cis the light speed; co,(¢) and c¢d°(t—7) are the receiver’s and satellites’ clock errors (in

meters) respectively ; /(¢ —7,¢)is the signal delay and respectively the phase advance due

to the free electrons in the Earth’s atmosphere and as a dispersive medium the refractive

. . . . 72 (1541
index of the GPS signals is frequency dependent with o=+~ —="| =1.647;
% 120 £,

T’ (t—r,t)is the tropospheric refraction and the effect is the same for both code and phase
(does not depend on the frequency) ; d (f) and d°(1—7)are instrumental internal time
delays in the receiver and the satellite; ) (¢ —7,¢) is the multipath effect; v/, (¢) are random
errors in the code and phase ; Ny, (¢ —7,t) is the unknown integer number of cycles or else

called the integer phase ambiguity.

2.3.2 Linear combinations of phases and codes

In order to eliminate some of the effects in Eq. 2-6 and 2-7 we may form differences or

combinations of the original observations equations.

2.3.2.1 Single (SD) and Double differences (DD)

The Single Differences (SD) is the linear combination that eliminates: the satellites clock

error if the combination is between two stations 7, , 7, and one satellite s; the receiver’s clock

error if the combination is between two satellite and one stations; the carrier phase

ambiguity if the combination is at two different epochs between a satellite and one station.
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L, 0O=L (H)-L (1) Eq. 2-8

The Double Differences (DD) is a linear combination of simultaneous measurements
or the linear combination of two single difference measurements at the same epoch (Fig.

2-9).

' = —Ft Eq. 2-9

ralp Talp Yy

In this linear DD observation both the satellite and receiver clocks effects are

eliminated or extremely minimised.

Lt

Tals

FiiY 41N

T4 rp

Fig. 2-9 : The Double Differences of Single Differences

The synthetic observations such as the SD and DD are correlated and their variance-

covariance matrix and weight matrix will not be diagonals. According, to the error

propagation law if b are the linearized model of observations with C, = oI their variance-

covariance matrix, the synthetic observations »'will have C, =DC,D"as a variance-

covariance matrix.
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For the case of two SD we will have:

L]

N R e S SN | oA O [
ol | L0 0 -1 1][Lr@| T Eq. 2-10

L3 (0) |

C,, =D,,C, Di, =20,

And for the case of two DD of the same epoch with one satellite in common it will be:

S4

L Lo

el I S S O | G

b2 = e = Lf'gr =D2 b1
DD Lf:f; -1 0 1 LS4 B pD  'sp

Eq. 2-11

B T A2 2 1
Cb _DZDDCbls[)DZDD =20 |:1 2:|

2pD

2.3.2.2 The ionosphere-free combination (L3)

From Eq. 2-6 and 2-7 ionosphere-free (iono-free) combinations can be formed

2 2 2 2
/ s
LﬁﬁﬂfﬁL“ﬂ;ﬁﬁLz:fZ—'sz‘_fZ—zfz
2 1 2 1 2
2 2
A
17-137 17-137
—2.5457L, ~1.5457 L,

Eq. 2-12

The wavelength of this combination is A, = 6.3 mm. The same relations are valid for the

ionosphere-free ambiguity N, . The ionospheric path delay is practically eliminated. It is the

main combination used in the un-differenced and DD level.

2.3.2.3 The wide-lane combination (L)

The wide-lane combination has the advantage to create a synthesized observable with a very

o
big wavelength of 4, =86.19 cm which favourizes small errors —%— in the estimation of
L
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the integer ambiguity cycles N,, from this combination. It is often used for ambiguity

resolution on the DD level.

L :——— )= 77L —60L
=g hh—AL)= ( ,—60L,) e

Ny, =N, - N,

2.3.2.4 The narrow-lane combination (Ly.)

The narrow-lane combination is:

L —#(17 + AL, )——(77L +60L,) Eq. 2-14
A+
The wavelength (4,, = ¢ AL =10.71cm) of this combination is useful when we
(h+1) A+

want to estimate the ambiguities of the DD iono-free combination.

2.3.2.5 The ionospheric geometry-free combination (L;o)

This combination is independent of receiver or satellite clocks and geometry (orbits, station
coordinates). It only contains the ionosphere delay and the initial phase ambiguities. It is
very well suited for the estimation of ionospheric models and for cleaning un-differenced
data (Springer 2000). It is used in geophysical studies for the detection of disturbances in the
ionosphere. Furthermore, it can be very useful for the detection of cycle slips in high state
dynamics situations; for instance when we want to determine the positions of a moving

vessel and a floating tracer in the open ocean.

247, 2.60-77
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