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Abstract

Building intelligent systems out of computers has been a continuous challenge for many computer scientists and developers.
Among different paths to that goal, one that has been largely studied involves the explicit representation of knowledge, and the
processing of those representations by generic reasoning engines. The advent of the Web, and then of mobile computing, has
however dramatically changed the way we use computers, and with it our expectations of what such intelligent systems should
be. It has also changed the means available to build them. The goal of this dissertation is to show how, in my work in the last
ten years, I have been aiming at novel approaches to knowledge engineering, intending to tackle the new challenges and op‐
portunities brought by the Web.

Knowledge-based AI has mostly developed on the premise that knowledge was rare, and as such should be made as stable as
possible. A large part of our work has been trying to leverage the problems faced by any knowledge-based system when its
context changes. Indeed, is not adaptability a core aspect of intelligence? But adaptive reasoning mechanisms must take into
account, from the ground up, the dynamics of their knowledge base. It requires to embrace the fact that information is inher‐
ently ambivalent, that it acquires meaning (and hence becomes knowledge) only in the context of a particular problem or task.
We have been pursuing a user-centered approach, where data collection and reasoning processes are as transparent as possible,
and where meaning is not a pre-defined property of information, but negotiated and co-constructed with users.

I first present the theoretical framework that we have proposed to build knowledge-based systems exploiting activity traces.
By capturing the inherent complexitiy of the user’s task, this kind of knowledge allows for multiple interpretations, and hence
requires a special kind of reasoning as well. Then I present a number of our works focusing on assisting a users in her task.
One way is to simply present her with her traces in order to help her remembering them and sharing them with others. Another
way is to use traces to detect failures and errors, and make helpful proposals for completing the task. The next chapter de‐
scribes our activity related to Web technologies and Web standards. I show how the foundations of the Web accommodates and
even encourages ambivalent information. As such, it allows to bridge the gap between documents, data and knowledge repre‐
sentations. In the next chapter, I focus on a specific class of Web documents, namely hypervideos. I present the models and
tools we have proposed to process hypervideos, centered on the notion of annotation, and flexible enough to allow the emer‐
gence of new usages.

Finally, in the last chapter, to synthesize all the presented works, I propose the groundwork of a theoretical framework for
knowledge representation, aimed to cope with, and account for multiple interpretations. In other words, it is an attempt to for‐
malize ambivalent information and the dynamic reasoning processes that use them, allowing to build systems to adapt to the
users, rather than forcing the users to adapt to them.

http://champin.net/2017/hdr

2 of 63



Résumé

La  construction  de  systèmes  intelligents  a  toujours  été  un  défi  important  pour  les  chercheurs  en  informatique  et  les
développeurs. Parmi les différentes voies envisagées pour atteindre ce but, celle de l’ingénierie des connaissances a été large‐
ment explorée, visant à représenter explicitement en machine les connaissances humaines, afin de pouvoir les traiter automa‐
tiquement à l’aide de moteurs de raisonnement génériques. Avec l’essor du Web, puis de l’informatique mobile, notre manière
d’utiliser l’outil  informatique a radicalement changé, et  avec elle nos attentes à l’égard de ces systèmes intelligents.  Les
moyens disponibles pour construire de tels systèmes ont, eux aussi, largement évolué. L’objectif de ce mémoire est de montrer
comment, au cours des dix dernières années, mon travail a visé à proposer des approches innovantes d’ingénierie des connais‐
sances, afin de répondre aux nouveaux défis et opportunités amenés par le Web.

Les approches orientées connaissances en IA se sont principalement développées sous l’hypothèse que les connaissances sont
rares, et que pour cette raison elles doivent être rendues aussi stables que possible. Une grande partie de nos travaux a consisté
à répondre aux problèmes rencontrés par les systèmes à base de connaissances dont le contexte évolue. En effet, l’adaptabilité
n’est-elle pas un aspect fondamental de l’intelligence ? Mais les mécanismes de raisonnement adaptatifs doivent, dès leur con‐
ception, prendre en compte la dynamique des bases de connaissances. Ceci suppose d’accepter le fait que toute information est
intrinsèquement ambivalente, qu’elle n’acquiert de signification précise (et donc ne devient connaissance) que dans le contexte
d’un problème ou d’une tâche spécifique. Nous avons suivi une approche centrée utilisateur, où la collecte des données et les
processus de raisonnement sont aussi transparents que possible, et où la signification n’est pas une propriété pré-définie de
l’information, mais au contraire négociée et co-construite avec les utilisateurs.

Je présente tout d’abord le cadre théorique que nous avons proposé pour construire des systèmes à base de connaissances ex‐
ploitant les traces d’activité. En capturant la complexité inhérente aux tâches de l’utilisateur, ce type de connaissances se prête
à de multiple interprétations, et nécessite donc de nouveaux types de raisonnement. Je présente ensuite un certain nombre de
nos travaux visant à assister un utilisateur dans sa tâche. Une manière de le faire consiste à simplement lui présenter ses traces,
afin de l’aider à se les remémorer ou à les partager avec d’autres. Une autre manière consiste à utiliser les traces pour détecter
les échecs et les erreurs, afin de lui suggérer comment mener la tâche à bien. Le chapitre suivant décrit nos activités autour des
technologies et des standards du Web. Je montre comment les fondations du Web supportent, voire même favorisent, l’ambiva‐
lence de l’information. À ce titre, elles permettent de créer un continuum entre documents, données, et représentations des
connaissances. Dans le chapitre suivant, je m’attache à une classe particulière de documents Web, à savoir les hypervidéos. Je
présente les modèles et outils que nous avons proposés pour traiter les hypervidéos, centrés sur la notion d’annotation, et suff‐
isamment flexibles pour permettre l’émergence de nouveaux usages.

Pour finir, en vue de synthétiser tous les travaux présentés, le dernier chapitre propose les fondations d’un cadre théorique pour
la représentation des connaissances, permettant de prendre en compte et de gérer de multiples interprétations. En d’autres ter‐
mes, cette proposition tente de formaliser les informations ambivalentes et les processus de raisonnement dynamiques qui les
utilisent,  afin  de  permettre  la  construction de systèmes s’adaptant  aux utilisateurs,  plutôt  que de forcer  les  utilisateurs  à
s’adapter à eux.
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A

1. Introduction

rtificial intelligence (AI) can be argued to be as old (if not older) as computer science itself. Indeed, the question of intel‐
ligent machines was one of the motivations of Alan Turing (1950) for stating the principles of the Turing Machine,

which remains until this day the abstract model of computers. Building intelligent systems out of computers has hence been a
continuous challenge for many computer scientists and developers. Among different paths to that goal, one that has been
largely studied involves the explicit representation of knowledge, and the processing of those representations by generic rea‐
soning engines[1] (Schreiber et al. 2000).

The advent of the Web, and then of mobile computing, has however dramatically changed the way we use computers, and with
it our expectations of what such intelligent systems should be. Of course, it has also changed the means available to build
them. One could argue that the Web changes the fundamental assumptions on which AI was traditionally built, raising a num‐
ber of new challenges, but also providing new opportunities. The goal of this dissertation is to show how, in my work in the
last ten years, I have been aiming at novel approaches to knowledge engineering, intending to tackle those challenges and
leverage those opportunities.

1.1. Dynamics and ambivalence

Since the first attempts to build knowledge-based computer systems, the process of acquiring and formalizing knowledge has
been recognized as a major bottleneck in the building of such systems. With expert systems, knowledge was first acquired by
knowledge engineers through interviews with domain experts. Such interviews are very time consuming, as the parties have
different skills (respectively in formal models and in the application domain) and must learn enough from each other in order
to reach an agreement on how to represent the experts’ knowledge. Furthermore, a large part of the expert’s knowledge is
tacit (Nonaka and Takeuchi 1995) and eliciting it can be challenging. Finally, experts can be reluctant to disclose their knowl‐
edge if they have the feeling that the system is meant to replace them.

In order to tackle those difficulties, alternative approaches have been proposed, such as applying natural language processing
(NLP) to a corpus of texts related to the application domain (Delannoy et al. 1993; Mooney and Bunescu 2005). The goal is to
automatically or semi-automatically discover the domain terminology, and extract relevant knowledge in the desired formalism
(rules, description logics, etc.). While less time-consuming than interviewing experts, such approaches produce knowledge
representations that, most of the time, still require human validation. This is related to the fact that traditional AI is strongly
rooted in formal logic, which leaves no room for approximate or relative truths[2]. Hence, whatever piece of knowledge that
could be collected had to be scrutinized for validity and consistency. Not only does this make the building of the knowledge
base costly, but also any evolution that this knowledge base might undergo. Knowledge-based AI has therefore mostly devel‐
oped on the premise that knowledge was rare, and as such should be made as stable as possible, despite a few efforts to tem‐
per this tendency by applying agile methodologies (Auer and Herre 2007; Canals et al. 2013),

Another  popular  alternative  approach is  case-based reasoning (CBR),  founded on a  memory-model  proposed by Schank
(1982) and formalized by Aamodt and Plaza (1994). Schank points out that many reasoning tasks are not performed from first
principles, but instead by reproducing or adapting the solution of a past similar problem. In CBR, problem solving knowledge
is then captured by a set of cases, that are examples of previous problems with their solution. Reasoning is achieved by com‐
paring the problem at hand with the ones previously solved, retrieved from the case base, and adapting the solution of the clos‐
est case. If successful, that adapted solution is in turn recorded as a new case[3]. One benefit of CBR over other approaches is
that it does not require domain knowledge to be fully formalized. Instead, a representative set of prototypical cases is enough
to get it started. Those may be significantly easier to acquire than more general knowledge, as they are not expected to hold a
general or universal truth, but only a local solution in the context of the given problem. Another benefit is that a CBR system
learns new cases as it is being used, which makes it able to improve over time.

Still, those benefits must not hide inherent difficulties. While the case base may be relatively easy to gather, it is only one of

http://champin.net/2017/hdr

5 of 63



the knowledge containers required by the CBR system (Richter 2003; Cordier 2008). Other knowledge containers include: the
structural representation of cases, the similarity measure used to compare cases to the problem at hand, and the adaptation
knowledge used to adapt its solution. Furthermore, an ever-growing case base requires continuous maintenance (Lopez De
Mantaras et al. 2005, section 5; Cummins and Bridge 2011) in order to prevent pollution (from bad quality cases) or bloating
(from an excessive quantity of cases). Maintenance becomes even more challenging when changes occur in the context in
which the CBR system operates, and old cases become obsolete. Replacing obsolete cases by new ones is often not enough to
take changes into account: all the knowledge containers mentioned above may have to evolve as well. The very structure of the
cases (a problem and its solution) may have to be revised as the nature of the problem, or its understanding, may change over
time. This of course may have a huge impact on the whole system, as all knowledge containers are strongly dependent on that
structure.

A large part of our work has been inspired by CBR, and trying to leverage the problems faced by any knowledge-based system
when its context changes. Indeed, is not adaptability a core aspect of intelligence? But evolving implies the continuous acqui‐
sition of knowledge. In other words, adaptive reasoning mechanisms must take into account, from the ground up, the dynam‐
ics of their knowledge base. It does not just mean being able to integrate new knowledge as it is being acquired; it does not
even limit to being able to revoke old knowledge obsoleted by new information. It requires to embrace the fact that informa‐
tion is inherently ambivalent, that it acquires meaning (and hence becomes knowledge) only in the context of a particular
problem or task[4]. Note that ambivalence must not be confused with ambiguity; effective ambivalence means that enough con‐
textual information is available to disambiguate knowledge, to decide on a particular interpretation.

This is where the Web offers an unprecedented opportunity, as it has become the hub of most of our digital activities, even
more, a large part of our personal and social lives. Its network structure naturally relates our actions to a vast amount of infor‐
mation, either text material (Wikipedia[5], various blogs or forums), structured databases (such as Freebase[6] or Musicrainz[7]),
or interactive services (weather forecast, route planning, etc.). Of course, this is not new, and major Web companies have a
long (and controversial[8]) history of studying and using this wealth of information, to gain deeper knowledge about their users
and provide more targeted services. Their approach is however mostly one-way: users have few (if any) insight or control over
the information that services have about them, or how it is used. And even if they did, that information is buried into machine-
generated statistical models, that produce results mostly in a black-box fashion.

In contrast to this service-centered approach, we have been pursuing a user-centered approach, much in the line of Hsieh et al.
(2013), where data collection and reasoning processes are as transparent as possible. It is important that every result can be ex‐
plained and traced back to its premises, and that the interpretation choices about ambivalent information can be elicited. In‐
deed, the ultimate judge of the relevance of a reasoning process is the human on behalf of whom the system is working. It is
therefore important that users have all the means to understand the results of the system, that they can comment on them, and
that their feedback be collected as additional knowledge for future reasoning tasks. That way, meaning is not a pre-defined
property of information, but negotiated and co-constructed with users. More generally, user feedback does not have to be ex‐
plicit or direct: any interaction of the users with the system can be considered as a clue and participate to this negotiation.

1.2. Structure of the dissertation

The rest of this dissertation is structured as follows.

In Chapter 2, I will first present our work on building knowledge-based systems exploiting a special kind of knowledge,
namely activity traces. More precisely, those systems keep track of how users have interacted with them in the past, in order to
gather experience and, from this, to learn both about the users and from them. By capturing the inherent complexitiy of the
user’s task, this kind of knowledge allows for multiple interpretations, and hence requires a special kind of reasoning as well. I
will describe the theoretical framework that we have proposed to build such trace-based systems, as well as the generic imple‐
mentation of that framework which we have used in order to validate our proposals in various contexts.

One particular domain where experiential knowledge can prove useful is doubtlessly user assistance. In Chapter 3,  I  will
present a number of our works focusing on that topic. The most straightforward use of traces to help users is simply to present
them with their traces, in order to help them remember their activity or explain it to others. Of course, one’s activity is not al‐
ways a flawless and straight path, and it may be useful to detect failures and errors in the collected traces in order to make
them more useful. Finally, observing the user’s interactions with the system, and detecting unsuccessful or abnormal patterns,
can help detect problems and make helpful proposals.

Chapter 4 will then describe our activity related to Web technologies and Web standards. The Web was initially designed as a
document space, and documents are the traditional means for humans to represent their knowledge. Thus, digital documents,
such as those used on the Web, can be designed in such a way that the knowledge they represent be equally usable by humans
and machines. This is the starting idea that lead to the concept of the Semantic Web (Berners-Lee et al. 2001; Shadbolt, Hall,
and Berners-Lee 2006). I will show how the REST architectural style, which is one of the foundations of the Web, accommo‐
dates and even encourages ambivalent information. As such, it allows to bridge the gap between documents, data and knowl‐
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edge representations.

In Chapter 5, I will focus on a specific class of documents, namely hypervideos. Indeed, while hypertext can build on centuries
of practice around textual documents[9], video as a document form is hardly older than hypervideo itself, and lacks well estab‐
lished usages when it comes to active reading or annotation. Documentary structures for hypervideos must therefore be flexi‐
ble enough to allow the emergence of new usages. Here again, ambivalence is a key to this flexibility. We have proposed mod‐
els and tools to represent and process hypervideo, centered on the concept of annotation. Interestingly, video annotations share
a lot of commonalities with the activity traces presented in Chapter 2: they both relate to something that is hard to grasp by
computers (resp. the multimedia signal and the user’s activity), which has an inherent temporal dimension to which both anno‐
tations and traces are anchored. Furthermore, video annotations are used, among other scenarios, to manually build traces of a
recorded activity.

Finally, in the last chapter, to synthesize all the presented works, I will propose the groundwork of a theoretical framework for
knowledge representation, aimed to cope with and account for multiple interpretations. In other words, it is an attempt to for‐
malize ambivalent information and the dynamic reasoning processes that use them.

Notes

[1] In contrast, machine learning approaches aim at producing models from instance data. While those models can be used
to make predictions or decisions, they arguably capture some knowledge about the domain. But they are usually very
hard to interpret by humans, hence do not qualify as explicit knowledge representations.

[2] Alternative formalisms, such as modal logics (Chellas 1980) or fuzzy logics (Zadeh 1965) have been proposed, but
with no real breakthrough in knowledge engineering.

[3] Actually, even a failed adaptation can be recorded in the case base, in order to prevent the system from making the
same mistake again.

[4] CBR does not really meet this requirement, as all the knowledge containers, especially the structure of the cases
themselves, are usually designed for a predefined class of problem.

[5] http://www.wikipedia.org/
[6] http://freebase.com/
[7] http://musicbrainz.org/
[8] See for example the controversy, reported by Arthur (2014), raised by Facebook’s study (Kramer 2012) on users’

emotions. More recently, Google’s study on user’s security questions (Bonneau et al. 2015) has also raised a few
eyebrows.

[9] Note that this can be both an advantage and a hindrance, as old habits may impede the emergence of new practices.
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T

2. Experiential knowledge and
trace-based systems

his chapter is mostly based on the papers by Champin, Mille, and Prié (2013) and Cordier et al. (2013), and presents a
synthesis of our work on modeling experiential knowledge and reasoning with it.

2.1. Motivation

By design, computers continuously produce and use traces. Every computational process works with data stored in more or
less volatile memories, and produces new data that is in turn stored in those memories. Every digital inscription is therefore by
definition a trace of the processes that allowed it to be produced. Those digital inscriptions account for computational pro‐
cesses, insofar as they result from the execution of programs (Deransart, Ducassé, and Langevine 2002), but they also account
for the interactive processes between the human and the machine, insofar as they pertain to computer applications that are used
by humans, in the context of their activity which is mediated by the computer (Kaptelinin 1996).

A computer-mediated activity produces traces linked to every computational process taking part in that activity. For example, a
typical workday on a computer connected to the World Wide Web would produce different kinds of traces both on that com‐
puter and on other involved machines. Should we consider the resulting traces at the end of that day, we would have all docu‐
ments, created or received, e-mail and instant messages, browsing history, to name only those inscriptions handled by the user.
But we would also have the log files of all involved applications and servers. Should we be interested in the traces related to
the proceeding of the activity, we would add different data structures handled by those applications: messages being written,
open windows, load indicators for CPU, memory or network, etc.

Those traces are digital traces in the broad sense (Laflaquiere et al. 2006), that can be of any kind: document, data structure,
log file, etc. We can make two remarks about them. First, their status of trace is only marginally taken into account by com‐
puter systems, and the interpretation of such inscriptions as traces is usually performed outside the system that produced them.
Consider for example a contact in an address book, interpreted as a trace of the activity resulting in its recording. The trace sta‐
tus of those inscription is nevertheless acknowledged through the recording of temporal information regarding the processes
producing and altering these inscriptions, e.g. the creation and modification dates of a file, or the timestamp of each entry in a
log file. Second, each application handling traces as such has its own dedicated models and formats for representing traces, for
example Learning Management Systems (George, Michel, and Ollagnier-Beldame 2013) or browser history. Despite some re‐
cents efforts to unify digital traces in some domains, such as social applications (Snell and Prodromou 2016), health (Hsieh et
al. 2013), or data provenance (Moreau and Missier 2013), there is not yet a general model that would allow a cross-application
and cross-domain use of digital traces, and provide generic processes for manipulating them.

Our goal, as ambitious as it may seem, is however to make traces a first-class citizen of computer systems. That way, we aim
at capturing an important, and often overlooked, kind of knowledge: the experience that result from remembering and reusing
past activities. We need to define a new digital trace object, which includes all the features (especially temporal ones) allowing
it to be explicitly treated as a trace by applications, while remaining generic enough to be usable across various application do‐
mains.

In this chapter, we present the knowledge-engineering approach to digital traces that we have been developing for a number of
years. This approach aims at building modeled-trace based systems (MTBS). Modeled-traces (or m-traces for short) are made
of timestamped elements named obsels (contraction of “observed element”) and are associated with a trace-model. The trace-
model provides a guideline for building and interpreting the m-trace. Computations on m-traces are most of the time transfor‐
mations into new m-traces, that can be seen as a form of automated interpretation of the source m-trace.
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2.2. A knowledge based approach for modeling and transforming digital
traces

Ad-hoc uses of digital traces for observing

Observing an activity in order to understand it consists in collecting observable elements related to that activity, in order to
build evidences guiding an interpretation. The sequence of evidences forming a trace can therefore be used to support, justify
and explain interpretations. When the activity is computer-mediated, it is relatively easy to instrument the computer environ‐
ment so that it collects digital traces made of potentially meaningful elements.

Digital traces were first used to ease the debugging of computer programs, with the idea that a knowledgeable observer (usu‐
ally the programmer) could analyze the collected observations and interpret those traces, in order to understand the program’s
behavior and fix it if needed. Computer systems have long been able to produce a memory dump whenever an exception[1] is
raised during the execution of a program. The produced trace can be completely standard or customized by analysts, who can
set up tracing tools in order to follow only the elements that they deem relevant (Deransart, Ducassé, and Langevine 2002).

Like programmers,  who can analyze the behavior of  a  computational  process they designed,  one can observe computer-
mediated processes or activity as soon as the environment is instrumented in order to leave persistent traces. Such an analyst
can be a professional one, or simply somebody willing to review or understand that activity—possibly the very person having
performed that activity.

Then they need an interpretable representation of the collected traces. Such representations are always the result of a computa‐
tion, either elementary (e.g. the hexadecimal representation of a memory dump) or more complex (e.g. a histogram of the time
spent on that activity per day). A statistical processing of those elements can also be performed, using heuristics that depend
on the purposed interpretation. A notable example is digital trace mining, which seeks to detect structural recurring patterns, in
order to identify relevant behaviors or processes (Song, Günther, and Van der Aalst 2009; Van der Aalst et al. 2003; Cook and
Wolf 1998). An important and well established use case of those techniques is to provide recommendations and personaliza‐
tion to the users of the traced system. This is applied in various contexts, such as Learning Management Systems (Marty, Car‐
ron, and Heraud 2009) or web sites[2] (Sachan et al. 2012).

While trace mining is usually associated with big-data, and the analysis of trends among a large population of users, digital
traces may prove valuable at a much smaller scale, namely that of the individual traced user. Deborah Estrin (2014) captures
this idea with the concept of “small data, where n=me”, advocating for the extensive use of personal traces for providing in‐
sight on one’s behaviour (implying, among other things, the right for users to access their traces collected by third-party appli‐
cations).

Whatever the techniques or the scale of trace analysis, the analyst has a fundamental role to play in the process of knowledge
discovery. The use of sequential interaction traces has been studied by Fisher and Sanderson (1996) who showed that the cru‐
cial task for the analyst is to find which transformations to apply to the raw observations in order to discover useful descrip‐
tions for explaining the observed process. More recently, Amer-Yahia et al. (2014) have proposed a formal algebra to describe
those transformations, for preparing data produced by social applications before applying data mining techniques. Indeed, raw
observations are piecemeal and expressed from the perspective of collecting devices, i.e. in a low level register. Knowledge, on
the other hand, is expressed in the register of the activity. Hence the need, to interpret traces, for a transformation carrying the
skills and knowledge of the analyst, so as to rephrase sequences of raw observations into sequences of meaningful activity ele‐
ments.

The research works and practices described above suggest that collecting, modeling, transforming, rephrasing and interactively
exploring are necessary steps whenever the observation requires multiple interpretations. We have proposed a unifying ap‐
proach in order to integrate those steps with a rich representation structure dedicated to observation traces.

Modeling digital traces: associating an interpretation model to observed elements

In numerous applications processing traces and sequential data, the semantics of those data is mostly implicit. Even when doc‐
umented, it is often loosely defined, reducing developers and analysts to a hazardous guesswork based on data labels and sam‐
ple values. The outcome of knowledge discovery processes could be used to improve this situation, but it can not in general be
reliably attached to the original traces, as their format is not designed to allow such linking[3].

We propose a new perspective on traces, considering them as knowledge inscriptions meant to carry not only the collected in‐
formation, but also the elements allowing their interpretation by humans as well as computers. This brings traces into the do‐
main of knowledge engineering, thus significantly widening the range of available tools for processing, transforming, sharing
and reusing them, thanks to an explicit and operational semantics. We choose to express this semantics as a trace-model asso‐
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ciated to the set of observed elements, and playing three roles. First, it plays the role of a vocabulary used to describe the ob‐
served elements, unambiguously relating them to the model. Second, it plays the role of a schema, constraining the structure of
the observed elements. As such, it can be used to distinguish valid (or consistent) observations from invalid ones. Third, it
plays the role of an ontology (Bachimont 2004, p.160-), allowing to infer new information from what has been actually ob‐
served.

But obviously, a unique model can not be sufficient to describe all computer-mediated activities, not to mention the multiplic‐
ity of perspectives on a given activity. We therefore propose a generic meta-model specifying how trace-models can be de‐
scribed, which will be described in Section 2.3.

We consider the interpretation of a trace, expressed using an initial trace-model, as a “rephrasing” of that trace into another
model, working at a different level of abstraction. For example, it would seem natural to interpret the sequence [click
icon foo], [word processor starting], [foo loading], [window displayed]  as the user opening a
document named “foo”. Hence, that sequence could be rephrased into a single observarion [open document foo]. The
observed element in this new trace belongs to a new trace-model, which has a higher level of abstraction than the one of the
initial sequence.

2.3. Modeled-trace based systems

I now present the meta-model that we have proposed for representing and processing m-traces in dedicated knowledge-based
systems, MTBSs.

Example: In the rest of this chapter, I will illustrate the presented notions with the following running example: Alice uses
an e-mail application to communicate and exchange documents with her colleagues.

Modeled-trace

The central notion of our meta-model is that of modeled-trace (m-trace), but we first need to define the notions of obsel and
trace-model.

Every traced activity is represented by a list of observed elements or obsels. This neologism is inspired by the word “pixel”
(picture element), and was coined to insist on the fact that the content of any trace is the result of an observation, hence un‐
avoidably biased[4]. Every obsel has:

a begin time-stamp and an end time-stamp, anchoring the obsel in the time of the activity; both time-stamps can be
equal, in the case of an instantaneous observation;
a type, associating this particular obsel to an explicit category from the trace-model;
a set of attributes, of the form <attribute-type, value>.

Let us note that the components of an obsel are, on purpose, only loosely specified by the meta-model. They are highly depen‐
dent on the represented activity, which should therefore be described by a trace-model. That model must specify:

how time is to be represented (simply a time unit, as discussed in the next subsection “Representing time”);
the obsel types that can be used to describe the activity;
for each obsel type, which attribute types can be used, and what type of value they may have;
a set of binary relation types that may exist between obsels;
a set of integrity constraints that an m-trace and its obsels must satisfy to comply with this trace-model.

Example: In Alice’s “e-mail” activity, we decide to measure time to the second.

There are three obsel types: the receiving of a message (RecvMsg), the sending of a message (SendMsg) and the saving of
an attachment (SaveAtt). Obsels of types RecvMsg  and SendMsg  have two attributes in common: the content of the
message, and the content of their attachment if any. Moreover, obsels of type RecvMsg  have an extra attribute holding the
e-mail address of the sender, while obsels of type SendMsg  have an attribute holding the e-mail address(es) of the recipi‐
ent(s) of the message, and one holding the path of the attached file, if any. Finally, obsels of type SaveAtt  have an at‐
tribute holding the name under which the attachment was saved.

The trace-model also defines three relation types. The first two, RepliesTo  and Forwards, both link an obsel of type
SendMsg  to one of type RecvMsg, to indicate that the sent message was, respectively, a response to the received message,
or its forwarding to another recipient.  The third relation type, From,  links an obsel of type SaveAtt  to one of type
RecvMsg to indicate which message the saved attachment came from.
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Fig. 2.1 An example trace-model (Champin, Mille, and Prié
2013).

This trace-model constrains all obsels to be instantaneous, i.e. to have the same begin and end times-stamps. Furthermore,
the second member of a From  relation must have an attachment, i.e. the corresponding attribute must not be empty. Finally,
in a SendMsg  obsel, the two attributes holding the attachment content and its file-name must be either both empty or both
non-empty.

An obsel type in a trace-model can also be associated to one or more parent type(s). This relationship has the standard subclass
semantics (also called “a kind of”), and is interesting at several levels. At the syntax level, it allows the children types to in‐
herit attribute definitions from their parent types, and encourages modularity in the design of the trace-model. At the semantic
level, it implies that all obsels of the children types will also belong to the parent types, enabling more reasoning (and hence
transformations) on the m-traces. Relation types can also have parent relation types.

Example: In our trace-model above, the common attributes of RecvMsg and SendMsg can be moved up in a parent type,
which we can call Message. The resulting trace-model is represented in Fig. 2.1.

Finally, a trace-model can be linked to a number of parent
trace-models, provided that they all share the same repre‐
sentation of time. In that case, the child trace-model will in‐
herit all obsel types, attribute types, relation types and in‐
tegrity constraints of all its parents. This is valuable from a
knowledge engineering perspective, as it encourages the re‐
use of previously defined trace-models, together with the
reasoning  processes  and  transformations  associated  with
them.

Example: The  “e-mail”  trace-model  described  above
could be inherited by a broader trace-model, also inherit‐
ing  a  trace-model  for  “word  processing”,  providing  a
more holistic view on Alice’s (or any office worker’s) ac‐
tivity. Another trace-model, dedicated to a specific e-mail
application, could also inherit our example trace-model,
and extend it with functionalities that are specific to this
application (e.g. contact management, message folders...).

We are now ready to precisely define a modeled-trace. It is
specified by:

a reference to a trace-model,
a time interval called the temporal extension of the
trace,
a set of obsels,
a set of typed binary relations between those obsels.

The temporal extension is the period of time during which
the traced activity was recorded. While the obsels of the
m-trace must all be between the bounds of the temporal ex‐
tension, the time-stamp of the first and last obsel may not match exactly these bounds. Indeed, the absence of obsels, in some
parts of the temporal extension, may be relevant for interpreting the trace.

The temporal extension is described using the time representation specified by the trace-model. Of course, the obsels and their
relations are also described accordingly to the trace-model.

Example: Fig. 2.2 shows an m-trace representing Alice’s e-mail activity. It refers to the “e-mail” trace-model described
above. Its temporal extension spans from Monday 9:00 AM to 11:00 AM.

It is composed of four obsels. To keep it simple, we have not represented the end time-stamps (as they are always equal to
the begin time-stamp). At 9:15, Alice receives an e-mail from Bob. At 9:31, she saves the attached file as report.docx,
then replies to Bob at 9:32. At 9:47, she sends a message to Charlie, attaching a file named report-summary.docx.
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Fig. 2.3 The example from Fig. 2.2, with a unified representation of time (Champin, Mille, and Prié 2013).

Representing time

The goal of our meta-model is to represent a wide range of activities, requiring different ways of representing time. In our run‐
ning example, a granularity of one second seemed appropriate; but in other domains, such as traces of car driving or eye track‐
ing, one might want more precise time-stamps. On the contrary, other activities may only require a granularity of one hour or
one day, and in some cases, more precise timing information is not even available.

Besides, in some contexts, one may only have a relative mesure of time for the collected obsels. For example, the m-trace de‐
picted in Fig. 2.2 spans from Monday 9:00 to 11:00, but there is no indication on which Monday it is. This information may be
unavailable for several reasons: either it was not recorded (some log files do not store a complete date), or it was removed on
purpose, for example for privacy reasons.  In other contexts,  the temporal information may be even scanter,  obsels being
merely ordered in a sequence.

To account for all those situations, our meta-model requires that:

per its definition, a trace-model specifies a time unit ;
every m-trace has an origin  (see below);
every time-stamps in an m-trace (its temporal extension and its obsels) is an integer , representing the instant .

The origin is a character string. If it is a standard representation of an instant, e.g. using the RFC 3339 format (Klyne and
Newman 2002), at least as precise as the unit of the trace-model, then the temporal extension and the obsels can be absolutely
dated. Their time-stamps can be converted to other time formats, and compared with any other absolute time-stamp[5]. On the
other hand, an origin not complying with a standard format is called an opaque origin. The time-stamps of the corresponding
trace can be compared with each other, but not with any arbitrary other time-stamp. Note however that an opaque origin is as‐
sumed to always identify the same instant, so if two m-traces have the same opaque origin, their time-stamps are assumed to
be comparable[6]. As most transformations do not alter time-stamps, they usually preserve the origin of the m-trace, making the
source and the transformed trace comparable with each other.

Example: The trace from Fig. 2.2 must be represented with an opaque origin, as we do not know on which Monday it was
recorded. We chose to keep “Monday” in the origin to provide a hint to users. The temporal extension spans from 32400
(i.e. 9 hours) to 39600 (i.e. 11 hours). All time-stamps of the obsels are converted accordingly. The resulting m-trace is de‐
picted in Fig. 2.3.

Finally, to represent a sheer ordered sequence of obsels without any quantifiable temporal information, we define the special
time unit sequence. This unit imposes the following constraints:

the origin of the m-trace must be opaque;
every obsel must have equal begin and end time-stamps, and all obsels of the m-trace must have different time-stamps;
only the order of the time-stamps is significant; their absolute value gives no information of duration. One can not as‐
sume, for example, that the duration between time-stamps 1 and 2 is the same as between 2 and 3.

This allows to handle cases where the only information about the obsels is a total ordering. Other special units could be pro‐
posed to handle other kinds of limited temporal information.

Architecture of an MTBS

u
o

t o + tu
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Fig. 2.4 General architecture of a MTBS built around a
MTMS (Champin, Mille, and Prié 2013)

We are now ready to describe the overall architecture of an MTBS, illustrated in Fig. 2.4.

The core component of such a system is the modeled-trace
management system  (MTMS). It  plays a similar role to
that of a the database management system in a standard ap‐
plication, but manages instead m-traces complying with the
meta-model presented above. It must be flexible enough to
allow several trace-models to coexist (and evolve). It must
also  support  the  intrinsic  dynamics  of  traces.  Finally,  it
must be able to handle modeled-trace transformations (that
will be discussed in more detail in Section 2.4).

The MTMS is fed by a number of collectors, whose role is
to gather the information required to build one or several
m-traces. That information can be gathered synchronously,
by observing the traced activity while it is taking place, or
a posteriori, for example by examining log files. The trace-
model of the collected m-trace determines which part of the
available information is  kept,  and how it  is  organized to
constitute  the  obsels  of  the  m-trace[7].  Any  m-trace  pro‐
duced by a collector is called a primary trace, as opposed
to the transformed traces that are computed by the MTMS
from other m-traces (either primary or transformed).

Finally, all m-traces can be used by application modules.
Some of them can be used to display m-traces to the user in different ways, either very generic (a table listing all the obsels) or
specific to a given trace-model, or even to a specific task. Other modules will process the m-traces in order to alter their own
behavior, such as assistance system reusing past experiences of the user.

2.4. Trace based reasoning

Transformed m-traces

Most of the time, primary traces are not directly (or easily) usable by application modules; it is necessary to pre-process and
transform them. One of the key roles of the MTMS is to perform those transformations, in order to support multiple interpreta‐
tions and reasoning with m-traces.

A transformed trace is specified by:

one or more source m-traces (which can be either primary or transformed),
a reference to a transformation method,
optionally one or more parameters influencing the execution of the transformation method.

All the properties of the transformed trace (its model, its temporal extension, its obsels and their relations) are deterministically
computed by the transformation method, provided with the source traces and the parameters. Also, note that transformations
can be chained (as the sources of a transformed trace can be transformed traces themselves), in order to produce complex
workflows.

While the range of possible transformation methods is very large, we can distinguish three main classes of elementary meth‐
ods.

Selection methods keep only a subset of the obsels of a unique source trace, with respect to a given criterion. The model
of the transformed trace is usually the same as the source trace, as well as the temporal extension (unless the criterion is
about time-stamps).

Example: In the “e-mail” trace-model of our running example, the following selections can be considered: keep
only obsels between 9:30 and 9:40 (temporal criterion), keep only obsels of type SendMsg (typology criterion), keep
only obsels with an non-empty attachment (attribute criterion), keep only obsels that have been replied to (relation
criterion).

Fusion methods gather in the transformed trace all obsels from several source m-traces. If the sources have different
trace-models, the model of the transformed trace should inherit all their model (which implies that they have the same
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representation of time).

Example: We could combine the trace of our running example with another of Alice’s traces, also complying with
the “e-mail” trace-model, but covering the period between 11:00 and 13:00 that same day, to analyze a longer part of
her activity. We could also merge her trace with the “e-mail” trace from Bob at the same time, in order to study more
precisely how the two of them communicate. Finally, we could combine that trace with Alice’s “word processing”
trace, to analyse her office activity in a larger context. That larger context could in particular provide insight on the
“e-mail”  part  of  the  activity,  for  example  by  showing that  report-summary.docx  is  a  modified  version  of
report.docx.

Rewriting methods populate the transformed trace with new obsels, that are derived from the obsels of a unique source
trace. It may consist in copying those obsels with less information (removing or altering some of their attributes) or
more (inferring new attributes or relations from the content of the source trace or from external knowledge). But rewrit‐
ing is not necessarily injective; obsels in the transformed trace may be derived from several source obsels, collectively
satisfying a number of constraints.

Example: A trace complying with the “e-mail” trace-model can be anonymized by removing all sender and recipi‐
ent attributes[8]. On the other hand, we could imagine to enrich the source trace by tagging obsels with an emotion de‐
tection algorithm (which would require to extend the original trace-model). Another rewriting could consist in sum‐
marizing e-mail activity, by generating one obsel per day, its attributes indicating the number of sent and received
messages (this would of course require a dedicated trace-model, different from the one presented earlier). Finally, we
can imagine a more elaborate kind of summary, where a sequence of messages replying to each other would be
rewritten into a single obsel of type Conversation, while a sequence of sent messages with the same content to
different recipients would be rewritten into a single obsel of type Broadcast.

Note that rewriting transformations may apply not only to obsel attributes, but also to their time-stamps, as well as those of the
m-trace. Reducing their precision or changing an absolute origin to an opaque one may be necessary to efficiently anonymise
the m-trace. It could also be used to align two m-traces originally captured at different times, in order to compare them. For ex‐
ample, one may want to compare the execution of the same task in two different contexts.

Fig. 2.5 illustrates those notions. It also points out that not only are transformed traces linked to their source trace, but every
obsel in a transformed trace can keep track of its corresponding source obsels. Thus, any obsel at any level can be explained by
the process (transformation methods) and the data (source obsels) from which it was produced.

Reasoning with transformations

A transformation chain, such as the one depicted in Fig. 2.5, can arguably be considered as a reasoning process. It involves dif‐
ferent knowledge containers: the factual knowledge contained in the primary traces, the structural knowledge contained in the
various trace-models, and the inferential knowledge contained in the different transformation methods. Moreover, that particu‐
lar arrangement of transformations (with the parameters of each transformed trace) also carries some knowledge which can be
either general (e.g. SaveAtt  obsels are not relevant for rewriting to an “e-mail summary”, so they can be filtered out) or
specific to a given context (e.g. those two primary traces are related to each other, so they should be merged).

We have proposed (Cordier et al. 2013) that trace based reasoning (TBR) can be structured as an interactive cycle of three
steps – inspired by the CBR cycle described by Aamodt and Plaza (1994).

The elaboration step consists in setting up the transformation chain that is relevant to solve the problem at hand. This
usually amounts to identifying in m-traces reusable episodes, i.e. sets of obsels that meet a number of criteria; those
episodes  will  typically  appear  as  aggregate  obsels  in  a  transformed  trace  (such  as  the  Conversation  and
Broadcast  obsels in Fig. 2.5). For the classes of problems anticipated by the MTBS designers, the appropriate trans‐
formations will be provided with the system. However, nothing prevents users to add their own transformation to an‐
swer unanticipated questions. Indeed, MTMSs can handle multiple concurrent transformations of the same m-trace, in
order to support multiple (and sometimes contradictory) interpretations of the primary traces.
In the retrieval steps, the MTMS executes the transformations specified before. Depending on the kind of transforma‐
tion, it can be submitted by the user to a number of constraints: on the number of episodes to retrieve, on the search al‐
gorithm to use, on the minimum certainty degree to apply... Note that, contrarily to the cases in traditional CBR, the
episodes in TBR are never isolated as self-sufficient structures, but remain linked to the original obsels. They are always
part of a “bigger picture”, and their context of occurrence can always be tapped whenever their content itself is not
enough to decide on the most relevant episode(s) to retrieve.
The reuse step is when the retrieved episodes are effectively used (possibly with some adaptation) to solve the problem
at hand. This can be done in various different ways, typically outside the MTMS itself (in the application modules of
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Fig. 2.5 Transformed traces.

This figure shows how the three kinds of transformations can be applied in our running example. The first (from the bottom)
transformed trace is a fusion of the two primary traces, which represent the same “e-mail” activity at different periods of time.
The second transformed trace is a selection, keeping only obsels of type Message  (recall that RecvMsg  and SendMsg  both
inherit that obsel type). The third transformed trace is a rewriting into a more synthetic trace-model, classifying sequences of
obsels into different communication patterns. Note how each transformed obsel is linked to one or more source obsels (dotted
arrows).

Fig. 2.4). Whatever the functions of those application modules are, they are integrated in the user’s traced activity, and
therefore fed back to the MTMS. This is what closes the cycle, even if we do not have an explicit “retain” phase as in
the CBR cycle. Indeed, Ollagnier-Beldame (2011) and Terrat (2015) have shown that even the simple fact of displaying
the m-trace to the user can help improve their appropriation of the system, an effect called reflexivity. Of course, knowl‐
edge extraction can also be the explicit goal of that step, either for an external analyst or as an advanced form of reflex‐
ivity. This has been studied by Mathern et al. (2012) and Barazzutti, Cordier, and Fuchs (2015).

The  user  is  therefore  at  the  center  of  the  cycle,  being  strongly  involved  in  each  step.  Knowledge  is  dynamically  co-
constructed, the system sustaining pre-defined interpretations and providing reflexivity, and the user assessing those interpre‐
tations in context, and testing new ones when the former are not satisfactory. As such, the system can be continuously adapting
to changes.

Of course, to support this level of interactivity, MTBSs must be equipped with intelligible user interfaces, both for presenting
m-traces and for designing new transformation. Studying such interfaces, in order to determine which features make them effi‐
cient, is still an open question and probably one of the key points in the future development of MTBSs, which we have started
to investigate (Besnaci, Guin, and Champin 2015; Kong Win Chang et al. 2015).

An open-source reference implementation

The meta-model presented in this chapter is the result of many discussions and iterations. Since 2009, we have been working
on a reference implementation, whose first goal was to help stabilize the meta-model (as many problems only appear with a
concrete use cases). Its second goal was to ease and speed up the development of experiments aiming at validating and/or ex‐
tending the meta-model. This implementation is named kTBS (a kernel for trace based systems), and is available at http://tbs-
platform.org/ktbs.

kTBS is open-source, in order to foster its reuse both in and outside our research group. It is designed as a RESTful Web ser‐
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vice (Fielding 2000), in order to be easily integrated with other systems, regardless of their own architecture or programming
language[9]. Internally, it stores all its data using the RDF data model (Schreiber and Raimond 2014), which meets the require‐
ments of flexibility of our meta-model. RDF also comes with a powerful query language (Harris and Seaborne 2013), and ex‐
pressive  ontology  languages  (Hitzler  et  al.  2009).  Externally,  kTBS  exposes  and  consumes  data  in  the  JSON-LD  for‐
mat (Sporny, Kellogg, and Lanthaler 2014). As stated above, the next step is to provide kTBS with intuitive and intelligible
user interfaces, as TBR heavily relies on the user interacting with the MTMS.

The meta-model presented in this chapter, as well as the notion of Trace-Based Reasoning (TBR), are underlying a number of
the works presented in the following chapters. Those will further demonstrate how this meta-model supports the user-centric
co-construction of knowledge, taking into account the various contexts of use of that knowledge, and allowing multiple inter‐
pretations to coexist.

Notes

[1] An exception is a case that the computer can not handle, such as a division by zero or an access to a non-existing
memory address. When an exception is raised by a program, that program is suspended and an exception handler is
started, provided with the context in which the exception occurred. The term “error” is sometimes used instead of
“exception”, but the very notion of error relates to an interpretation, even an appraisal.

[2] For example, services such as Google Analytics offer tools to precisely analyze the visits on a web site:
http://www.google.com/intl/en/analytics/

[3] This assessment is based on legacy data, such as log files. Recent efforts proposing generic trace formats (Moreau and
Missier 2013; Snell and Prodromou 2016) build on semantic web technologies and linked data principles, and are much
more similar to our proposal.

[4] In this respect, let us point out how misleading the term “data” can be. It originally means “given”, which gives it an
aura of neutrality or objectivity. In fact the data we get are not so much given as they are taken (observed, measured,
extracted, captured, selected...) and therefore never independent of the processes set up to obtain them.

[5] Note that time-stamps in most operating systems are represented that way: as a number of time units (usually the
second) since a give origin or “epoch” (typically 1970-01-01 on UNIX systems).

[6] There is another consequence: while it might seem trivial to convert time-stamps from a fine-grained unit to a coarser-
grained unit, it is actually not always possible when using an opaque origin. For example, converting days to months
can not be done accurately if we don’t have an absolute origin, as we do not know after how many days to change
month. Less obviously, converting from hours (or minutes, or seconds) to days can not be done either: because of
Daylight Saving Time, some days have 23 hours, and some have 25.

[7] Most collectors will be dedicated to one specific trace-model, with the constraints of that model hard-coded in them.
However, one could imagine more generic collectors, able to inspect richly described trace-models in order to comply
to them dynamically. Another perspective would be collectors able to dynamically edit trace-models, whenever they
encounter a situation that the model can not represent.

[8] An efficient anonymization would actually require a more complex processing, as also the message bodies and
attachments may contain information allowing to identify the persons involved. Still, those complex processes would
still qualify as a rewriting transformation, according to our definition.

[9] The rationale of this choice is of course not to suggest that kTBS, or any MTMS, should in general be offshored to an
external providers. Traces typically contain privacy-sensible information, and should obviously be kept in trustworthy
locations. In a typical setup, the kTBS service would be deployed on the same server as the application.
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T

Fig. 3.1 The redocumentation process (Yahiaoui et al. 2011)

3. Trace based user assistance

his chapter focuses on the use of digital traces such as the ones formalized in the previous chapter, with an emphasis on
uses that aim at assisting users in their task. I will present on the works described in three papers (Yahiaoui et al. 2011;

Champin et al. 2010; Ginon et al. 2014). While they address the question in different fields and with various degrees of auto‐
mation, they all demonstrate how traces can support the interpretation (and re-interpretation) of the user’s activity.

3.1. Trace based redocumentation

In the work of Yahiaoui et al. (2011), the user’s task is the documentation of a given activity, i.e. the production of a document
reporting on that activity. The user may or may not be the same person who performed that activity (for example, a teacher can
report on their student’s activity). The target audience of the document might be the user themselves (in order to keep track of
their analysis of the activity), a limited community (e.g. someone can document their use of an application to serve as a tutorial
for colleagues or peers), or it can be publicly published.

In the case of computer-mediated activity, digital traces are
usually available and can be considered as a form of docu‐
mentation, although at a very low level of abstraction. We
therefore  proposed  a  redocumentation  process  illustrated
in  Fig.  3.1,  and a  tool  named ActRedoc  supporting  that
process. The available trace of the activity is assumed to
comply with our meta-model (see Section 2.3) and is mod‐
eled in RDF. The “automated redocumentation” phase pro‐
duces a transcription in English of all  the information in
trace,  using  NaturalOWL  (Ganalis  and  Androutsopoulos
2007). While this new document is easier to read that the
raw data from the m-trace, it is still verbose and mostly fac‐
tual. Through the “interactive redocumentation” phase, the
user can manually improve the produced document, remov‐
ing or rephrasing existing segments, and adding new ones
to enrich the document  with analysis  and opinions.  This
phase is repeated iteratively until the user is satisfied with
the state of the document, and exports it to a standard format. Fig. 3.2 shows a screenshot of ActRedoc, displaying (from right
to left) the available operations on the document, the individual segments constituting the structure of the document, and a pre‐
view of the resulting document.

The underlying structure of the document is strongly inspired by the Rhetorical Structure Theory (RST) by Taboada and Mann
(2006), which describes the different kinds of relations that can link documents segments. The benefit of RST is twofold. First,
it provides users with guidelines in the redocumentation process, by eliciting the roles of the new segments they may want to
add, and encouraging them to create a narrative above the factual sequence of events represented in the m-trace[1].  Second,
those structural relations are kept in the final (HTML) form of the document, using RDFa (Adida and Birbeck 2008) for em‐
bedding semantic data, and the OntoReST ontology (Naja-Jazzar et al. 2009) to represent RST relations. Note that RDFa also
allows us to link the segments of the final document to the related elements of the m-trace (which is represented by the dotted
arrow on Fig. 3.1). The final document is therefore an improvement over the initial trace, not only for human users but also for
machines (a perfect example of co-construction of knowledge as described in Section 2.4). Indeed, the rhetorical structure cre‐
ates relations between obsels that could not be inferred without help from the user, all the more that it represents only one of
many possible subjective interpretations of the activity (and so different users, or the same user in different contexts, would
end up with different final documents).
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This work has investigated a use of m-traces where most of the “processing” is performed by the human, except for the initial
step of “automatic redocumentation”. Still, even that very basic step was perceived by ActRedoc users as an improvement over
a basic spreadsheet-like presentation of the m-trace. As we have discussed in the previous chapter the importance of efficient
user interfaces for supporting reflexivity and more generally TBR, this makes natural language a good candidate for designing
such interfaces (see our work with Kong Win Chang et al. (2015) for more recent investigations on that topic). Another inter‐
esting insight offered by this work is on the notion of transformation. The redocumentation process, although it does not pro‐
duce m-traces stricto sensu, can be thought of as a manual transformation, rephrasing the initial m-trace into a more abstract
form. In fact, the document structure used by ActRedoc could easily have fit the trace meta-model, obsels playing the role of
document segments, and ordered according to the document sequence rather than the original chronology. While in the current
process,  only  the  first  step  is  automated,  then  at  every  step  the  user  could  choose  between  interactively  altering  the
document/m-trace, or applying a pre-defined automated transformation (e.g. for filtering out all obsels meeting a given crite‐
rion, deemed irrelevant for the redocumentation task at hand). Of course, building a toolbox of useful transformations for re‐
documentation is an open challenge. But this could be done iteratively by tracing the activity of ActRedoc users, and learning
from how they proceed interactively. For example, a user manually deleting several similar obsels could ask the system to try
and generalize that task, and save it as a reusable transformation. This approach of building transformations by example has
been studied in Mehdi Saydi’s master’s thesis (supervised by Amélie Cordier) and implemented in a prototype named Trans‐
mute[2] (Fuchs and Cordier 2016).

3.2. Curating noisy experience

The work presented by Champin et al. (2010) focused on Heystaks[3], a social bookmarking system integrating with search en‐
gines. Heystaks users rate the most relevant results they get for a given search, so that those results would later be promoted
(moved up or even added) in the result list for similar searches. Relevance however depends on the context: a user searching
for “Dublin” will not be interested in the same results if they are planning their vacations or if they are interested in studying
there. Heystaks allows users to store their ratings in different containers, named staks, in order to distinguish between different
search contexts. Staks can also be shared between like-minded users, so that the ratings of one of them can benefit all the sub‐
scribers of a given stak.

Heystaks is designed to accommodate user’s practices as smoothly as possible; this is why it has been integrated in the result
pages of main search engines, rather than providing a separate search interface. For the same reason, Heystaks does not force
users to explicitly rate search results (although such an explicit rating is possible), but will also consider that visiting a link
from the result page is a positive assessment of that result (although not as strong as an explicit rating). While this implicit rat‐
ing is important to quickly populate staks, and hence perform better recommendations, it may cause a problem when users for‐
get to select the appropriate stak when searching the web. In that case, the results visited by the user are wrongly recorded as
relevant to the current stak, which will have a negative impact on future recommendations made by this stak.

Preventing this kind of mistake was not a solution, as there are more subtle ways irrelevant pages can be added to a stak: peo‐
ple may change their mind, and a page that did seem relevant once could be deemed irrelevant later. This is all the more true in
social applications, where stak users may have divergent opinions. Instead, we wanted to provide stak owners with a tool for
curating staks, by removing irrelevant ratings and possibly transferring them to a more appropriate stak, in order to fix mis‐
takes and arbitrate disagreements, thus keeping the staks consistent and their recommendations efficient. To achieve this, we
have proposed a meta-recommender system[4], recommending the three best staks for a every rated page. The main challenge
was to build this system with the data we had, which already contained the kind of noise that we wanted to eliminate; in partic‐
ular, we had no gold standard against which to evaluate our proposal.

We have first proposed a popularity measure to try and predict the relevance of a page to a stak. Intuitively, the popularity of a
page  in a stak  increases with (1) the number of times  was rated in , and (2) the frequency in  of every term used to
search  (i.e. the number of other pages in  described with the same term). A preliminary user study has shown that pages
with a high popularity are very likely to be relevant, while nothing can be told of pages with a low popularity (roughly 50% of
them are relevant). So this popularity measure could be used to weight the evaluated accuracy of our meta-recommender sys‐
tem: “correct” recommendations (i.e. in accordance with the training data) should be sought for popular pages, but not neces‐
sarily for unpopular ones (as the training data is more likely to be wrong).

A natural idea was therefore to weight training instances based on their popularity, as we trust popular pages more. Surpris‐
ingly, classifiers trained that way did not improve significantly on classifiers trained with no popularity-weighting. This sug‐
gests that the relevance of popular pages could be learned from the raw data, which in a sense was encouraging. Furthermore,
we noticed that weighted accuracy is better for popular pages, and that it does not vary linearly, as described in Fig. 3.3. It sug‐
gests that there are phases in the popularity spectrum, and that the upper third of that spectrum represents a stable subset of rel‐
evant pages. We call this subset the stak kernel. Pursuing our idea that popularity could be used to reduce the noise in training
data, and thus improving meta-recommendation, we have trained classifiers with only pages from the kernel, and have shown
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Fig. 3.3 The accuracy of J48 and Naive Bayes increases non
linearly (Champin et al. 2010).

This plot shows how the weighted accuracy of our classifiers (trained
with  non-weighted  instances)  varies  when  classifying  only  pages
above  a  certain  popularity.  This  is  not  a  bias  in  the  data,  as  the
majority classifier does not share this property.

Fig. 3.4 The generic architecture implemented in SEPIA
(Ginon et al. 2014)

that it improves the accuracy of the Naive Bayes classifiers.

The  standard  way  to  build  and  evaluate  a  recommender
systems is to use a gold standard, i.e. a set of data known to
be exact, or at least reasonably good. It is very often built
by having a small set of experts annotate the data. a long
and costly process. That can be somehow alleviated by re‐
sorting on crowdsourcing platforms such as Amazon Me‐
chanical  Turk[5].  Still,  in  Web applications such as  social
bookmarking, it remains very hard to build a gold standard
that covers the diversity of the actual data. The work pre‐
sented in this subsection demonstrates the feasibility of an
alternative  approach:  using  the  full  amount  of  available
data, even if it is known to be noisy. While the presented
study is  quite  specific to Heystaks,  we are confident  the
lessons learned and the proposed notion of kernel could ap‐
ply to other contexts.

Although this work did not rely on our meta-model, it is
based on the same premises that digital traces (in the broad‐
est sense) can be harnessed to produce knowledge and help
assist users in their task. The traces available in Heystaks
are however very synthetic, every page being described by
a term vector, a compression of every individual rating of
that page. This can be seen as a transformed trace of a possible primary trace where each rating would be stored as an obsel.
Should we have access to that primary trace, we could examine alternative perspectives on staks. We could obviously filter out
old ratings (or lower their weight) in order to forget all pages that were once relevant but are not anymore. But maybe more
subtle temporal patterns could be used instead, that would represent more accurately opinion drift: for example, some pages
are used only once in a while but remain relevant over time, while others “buzz” very intensely for a while, and are quickly
forgotten. More generally, that primary trace would give access to the past evolution of a stak, possibly allowing to measure its
stability (in terms of topic) or agreement (among its different users), some potentially useful indicators for the stak owners.
Furthermore, that primary trace would provide the ability to trace back a page (or even an individual rating) to the user(s) who
contributed it. This could help detect sub-communities in the users of a stak, a particular case being a malicious users trying to
promote irrelevant pages for their own benefit.

3.3. Pro-active user assistance

In her PhD, Blandine Ginon (2014) proposed a generic ar‐
chitecture for setting up epiphytic  assistance systems, and
implemented it in a suite of tools called SEPIA. A biologi‐
cal  metaphor,  “epiphytic”  means  that  such  systems  are
added to a target application, without requiring any alter‐
ation of this application. Epiphytic assistance systems are
motivated by the observation that, very often, the users of
an application require assistance that the application itself
does not provide. This can be due to their lack of practice,
to the application being inherently complex, or simply to a
bad design of its user interface. Still, modifying the appli‐
cation to include that assistance is not always feasible or
practical.

In the first step of our approach (upper part of Fig. 3.4), the
assistance system is first defined by the assistance designer,
an expert user of the application, who needs not have ac‐
cess to the application source code, nor any advanced pro‐
gramming skill. Their task is mostly to state a number of
rules  of  the  form  “whenever  X  happens,  provide  assis‐
tance Y”.

In the second step (lower part of Fig. 3.4), epiphytic detectors (or epi-detectors) are monitoring the user’s interactions with the
target application, in order to trigger any assistance rule matching those interactions. Since rules can be more or less specific in
describing the assistance to be provided, the assistance effectively enacted can be adapted and personalized, based on contex‐
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Fig. 3.5 Two assistance rules illustrating the use of aLDEAS
(Ginon et al. 2014)

Green triangles represent events (observed by epi-detectors).
Yellow diamonds represent active information seeking by the
assistance engine.
Orange squares represent assistance actions.

tual information (state of the application, user profile, traces of previous interactions).

As observing the user’s activity is key to our approach, we have built a number of epi-detectors able to observe a large class of
applications (Ginon, Champin, and Jean-Daubias 2013). Those epi-detectors gain access to the targer application thanks to ac‐
cessibility APIs[6]. They communicate with the SEPIA assistance engine in the same protocol as used by kTBS, our reference
MTMS implementation, which makes them reusable to build other trace-based applications. In fact, SEPIA uses kTBS to store
the traces collected by the epi-detectors, as past interactions are one of the many parameters of personalization.

In order for assistance designers to easily define assistance
rules,  we have proposed aLDEAS (Ginon et al.  2014),  a
graphical  language  for  expressing  those  rules.  Fig.  3.5
shows two examples of rules described in aLDEAS (it is
merely  provided as  an  illustration here,  the  reader  inter‐
ested in a full description of the language should refer to
the original paper). In addition to the language itself, we
have provided a number of patterns, guiding the assistance
designer  in  the  definition of  rules  for  the  most  common
types  of  assistance.  For  example,  we  have  a  pattern  for
“guided tours” (a common assistance typically launched on
the first execution of an application) and for step-by-step
wizards (to assist the user in a complex task).

We have performed a number of experiments and user stud‐
ies in order to assess the good properties of SEPIA and its
generic architecture.

First the aLDEAS language is expressive enough to repre‐
sent a large variety of assistance systems encountered in existing applications. It fails to represent a few specific assistance sys‐
tems, such as recommender systems (as used in e-commerce or social applications). This can be seen as an inevitable draw‐
back of our epiphytic approach, as those systems are intimately linked to the data handled by the application. We also had po‐
tential assistance designers use aLDEAS to specify assistance systems of their own, and they have been satisfied with its ex‐
pressive power (Ginon et al. 2014).

We have also shown that assistance systems operated by SEPIA are generally well accepted by users, and that they are actually
helpful. In particular, we conducted an experiment in the context of an advanced programming course (Ginon, Champin, and
Jean-Daubias 2013). All students had a background in programming, but some of them were not familiar with the Netbeans
IDE[7], used in this course. SEPIA was used to assist them getting their bearings, leaving the teacher more time to answer ques‐
tions related to the content of the course. After the course, the students answered a questionnaire, demonstrating an overall sat‐
isfaction with the assistance. Furthermore, the students passed a short test before and after the experiment, which showed that
the assistance did indeed improve their knowledge of Netbeans. The teachers did also appreciate the assistance provided to
their students, and express an interest in using the assistance again in the following semesters.

SEPIA provides a nice example of effective TBR (as presented in Section 2.4): with aLDEAS, assistance designers elaborate
episode signatures that are further retrieved in real-time by the assistance engine, in order to trigger the epi-assistants. Further‐
more, its epiphytic design allows several assistance systems to be defined for the same application. Each of them can address
different kinds of users, different kinds of tasks, or simply provide a different perspectives of how to use the application.

SEPIA’s main limitation with respect to TBR is that it does not use transformations: the only events currently taken into ac‐
count in assistance rules are those of the primary trace, the raw events collected by the epi-detectors (e.g. mouse click on inter‐
face components, individual keystrokes). This limitation could easily be lifted, though, as aLDEAS is generic enough to sup‐
port more abstract kinds of events, which could be sought in transformed traces rather than directly from the epi-detectors. In
fact, aLDEAS itself could be used to specify transformation rules[8]; while assistance rules result in assistance actions, transfor‐
mation rules would result in the creation of new (more abstract) obsels (e.g. copy-paste, send an e-mail to a colleague) which
could in turn participate in triggering other rules. This would make the task of assistance designers more modular, decoupling
the interpretation of low-level activity from the decision of performing an assistance action.

The works presented above demonstrate how interaction traces (in various forms) can be tapped as knowledge about the user’s
activity. They also emphasize the value of combining deterministic automated processings with subjective human interpreta‐
tions, in a virtuous cycle that reveals the richness of those traces.
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Notes

[1] Similar approaches have been use by Kim et al. (2002) and Mulholland, Wolff, and Collins (2012) in the context of
digital heritage.

[2] http://tbs-platform.org/tbs/doku.php?id=tools:transmute
[3] http://heystaks.com/. Note that Heystaks has evolved a lot since this work was published, and that description may not

match exactly the current state of the system.
[4] It is a meta-recommender system in the sense that it recommends a stak, which is itself a recommender

system (Schafer, Konstan, and Riedl 2002).
[5] https://www.mturk.com/
[6] Those APIs are originally aimed at people with disabilities. They allow tools such as screen readers or Braille displays

to access (and even interact with) other applications. Note that such tools are epiphytic systems, according to our
definition above, hence our interest for accessibility technologies. Nevertheless, those APIs are not largely standardized
(they vary with operating systems, graphical toolkits, etc.), so we had to use several of them to cover a wide range of
applications.

[7] https://netbeans.org/
[8] Champalle et al. (2011) have already proposed to express a transformation as a set of rules, each rule being responsible

of producing obsels of a given type. In that work, though, rules were expressed in SPARQL (Harris and Seaborne
2013).
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S

4. Web and Semantic Web

ince the Web was invented some 25 years ago, its pervasiveness has grown to the point of becoming trite. The Web has
become a primary means of communication between colleagues, family members and friends; it is being used for work,

leisure, shopping, paying taxes, finding a restaurant, a job, or a date... It connects our computers, our phones, our TV-sets, and
a growing number of other (and sometimes unexpected) items, such as fridges, cars, electricity-meters or flowerpots.

Not only has it changed the amount of information available to us, it has changed dramatically how we acquire, handle and use
this information, and turn it into knowledge. Therefore, it brings both a challenge and an opportunity, to better understand and
to assist these new practices (Berners-Lee et al. 2006, chap.5). Since these are computer-mediated, using digital traces seems a
natural way to achieve those goals. And since the Web is so pervasive, the available information is bound to be interpreted dif‐
ferently by different agents, or even by the same agent in different contexts, hence a need to take ambivalence into account.

This chapter gathers a variety of works that we have done in a research context, but also in the context of standardization
groups, more precisely groups in the W3C, of which Université de Lyon is a member since 2012. Those works are presented
along three dimensions: the use of activity traces on the Web, the acknowledgment of ambivalence in Web technologies and
Web standards, and how those aspects may lead to new paradigms to design Web applications.

4.1. Putting Web traces to good use

As stated above, our activity on the web accounts so much for our lives that the traces of that activity can provide a huge
amount of knowledge about us. Indeed Web companies such as Facebook (Kramer 2012) or Google (Bonneau et al. 2015)
have a long history of tapping the traces of their users to provide better targetted services (and advertisements). Some of them,
as Netflix[1] or Yahoo[2], have even opened some of their data to a wider research community, in order to find better ways to
capture the collective knowledge of a large number of users.

However, as stated in Section 2.2, our approach is more focused on capturing the individual experience of each traced user. In
her presentation of the “small data” approach, Estrin (2014) explains how health problems could be detected earlier through
changes in individual behavioral patterns. While of primary importance for the users themselves, those changes may be less
relevant for the companies currently holding and exploiting the users’ traces. Furthermore, many users would have concerns
about those companies monitoring their health status.

Another effect of our traces being exploited out of our control is what Pariser (2011) calls the “filter bubble”: the fact that the
content provided to us by search engines and social networks are tailored to meet our preferences, as computed from our activ‐
ity traces. Of course it can be seen as a benefit, helping us find what we are looking for in an overwhelming amount of infor‐
mation. But on the other hand, those social tools paradoxically isolate us from whole parts of the Web, and this is all the more
pernicious that they keep an aura of exhaustivity and objectivity (after all, they have access to the whole Web).

Querying the Web

Pariser advocates a way to disable the personalization mechanisms, in order to be able to access the Web more objectively.
This has been supported by some search engines such as DuckDuckGo[3] or Qwant[4]. An alternative, and a way to compensate
the lack of that feature in other systems, is to provide users with access to their traces and tools to analyze them. While this
would not suppress the filter bubble, at least it would allow users to know what bubble they are in, and how their behavior al‐
ters that bubble.

The work about Heystaks presented in Chapter 2 provides such an alternative: by choosing a given stak as the context of their
Web searches, users consciously select their filter bubble. Furthermore, they can register to as many staks as they like, allow‐
ing them to chose the bias on each of their search results[5]. Finally, the stak curation tools give users access to the full history
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(a) Full explanation (b) Summarized explanation

Fig. 4.1 Examples of a full explanation and a summarized explanation (Hasan 2014b)

of searches performed in a given stak, providing insight on which parts of one’s behavior participates to stak recommenda‐
tions.

In the PhD work of Rakebul Hasan (2014b), we focused on analyzing and synthesizing the information of traces, to help users
understand and predict the outcome of querying linked data on the Web. First, machine learning techniques have been used on
a set of SPARQL query evaluations, in order to identify which features of a query are predictive of its execution time. This dif‐
fers from other approaches, which rather rely on the structure of the queried data. Second, by tracing the execution of the
query engine itself, explanations in the form of why-provenance are generated and provided to users, in order to help them un‐
derstand the query results, especially when inferences are involved (see Fig. 4.1-a). Such explanations can in turn be published
as linked data, using RQ4 (Hasan 2014a), an extension of the PROV-O vocabulary (Lebo, Satya Sahoo, and McGuinness
2013). Finally, as those explanations can become quite verbose for complex queries, a summarization process for explanation
(illustrated in Fig. 4.1-b) has been proposed and evaluated.

Traces for learning on the Web

We have also proposed a number of innovative uses of Web traces in the context of COAT[6], an exploratory project aimed at
studying the research opportunities of e-learning, more specifically of Massive Open Online Courses (MOOCs). In those sys‐
tems, learners are so many and so heterogeneous that standard indicators and monitoring tools can not be used (Buffat, Mille,
and Picasso 2015); more flexible and scalable ones must be proposed. Furthermore, with MOOCs, the learning activity is no
more confined to the hosting platform, as the learners are often pointed to external contents. Meaningful indicators can there‐
fore only be computed by monitoring the learners’ activity inside and outside the MOOC platform.

TraceMe[7] is a browser extension designed to trace the whole browsing activity of a user. Since it runs on the client-side, it is
not restricted to tracing the activity on a given server. In addition, it can trace interactions that would be otherwise invisible to
the server (such as navigation through internal links inside a page, interactions with an embedded video or audio player, etc.).
But most importantly, TraceMe has to be installed voluntarily by the user, who may enable or disable the tracing at any mo‐
ment. TraceMe can also be configured with several MTMSs, and the user can choose on which of them the traces should be
collected. For example, a user may collect her traces on the MTMS provided by the MOOC when she is browsing content in
relation with the course, and on a personal MTMS when she is browsing for other purposes. This kind of practice is actually
encouraged in the emerging standard Tin Can (also known as the Experience API[8]), in which the notion of Learning Record
Store (LRS) closely resembles our notion of MTMS. We are currently working on making TraceMe and kTBS (our MTMS
reference implementation) interoperable with Tin Can[9].

SamoTraceMe[10] is a Web application aimed as a companion application to TraceMe. As illustrated by Fig. 4.2, it provides var‐
ious ways to visualize one’s trace, as well as tools to customize those visualizations. In order to help learners and teachers to
analyze traces, SamoTraceMe also provides tools to build, execute and share indicators, i.e. synthetic representation of the in‐
formation conveyed by the trace. More precisely, the “Indicator Back-Office” provides user-friendly tools to transform traces
(as described in Chapter 2), and query them using the natural-language interface proposed by Kong Win Chang et al. (2015).
That way, users can explore and design new indicators, better suited to MOOCs than those available in the litterature, as em‐
phasized above. For the same reason, SamoTraceMe not only encourages the building of new indicators, but also their sharing
with others (in the last tab “Indicator Store”). In that sense, it is a tool for learners and teachers as much as for researchers in
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Fig. 4.2 The main screen of SamoTraceMe (Buffat, Mille, and Picasso 2015)

It contains (from top to bottom): tabs providing access to the various functionalities; a graphical timeline representing the
whole trace; a graphical timeline zooming on the time-window selected in the above timeline; a hyper-textual representation
of the selected time window, as a list of events (obsels).
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Fig. 4.3 PROV Core Structure (Lebo, Satya Sahoo, and
McGuinness 2013)

education sciences, making all of them actors of that research.

Recently, we have started working on Taaabs[11], a set of reusable components for visualizing and interacting with traces, aimed
at capitalizing on the experience acquired with SamoTraceMe and other works (Barazzutti, Cordier, and Fuchs 2015; Kong
Win Chang et al. 2015). Taaabs relies on Web Components, a coming W3C standard (Glazkov 2016), so that each component
is available as a custom HTML element. The goal is to make it as easy as possible for developers to add trace-based function‐
alities to their applications. A longer term goal is to allow end-users to interactively build their customized dashboard by drag-
and-dropping visual components.

Interoperability

We also aim to improve the integration of our trace meta-
model (as described in Chapter 2) with other models gain‐
ing momentum on the Web. One of them is PROV (Moreau
and  Missier  2013;  Lebo,  Satya  Sahoo,  and  McGuinness
2013), a standard data-model for representing provenance
information on the Web, hence concerned with traceability.
A central element of this data-model (depicted in Fig. 4.3)
is  the  notion of  Activity,  during  which  the  object  of  the
provenance information (the  Entity)  was produced or  al‐
tered. This notion of Activity has an obvious kinship with
our notion of obsel. PROV also defines interesting relations
between entities. An entity specializes another entity “if it
shares  all  aspects  of  the  latter,  and  additionally  presents
more specific aspects”; for example, the second edition of a
book  is  a  specialization  of  that  book  (as  a  work);  P-A.
Champin  as  a  researcher  is  a  specialization  of  P-A.
Champin as a person; P-A. Champin as mentioned in this document is a specialization of P-A. Champin as a researcher. While
the specialized entity inherits the properties of the general one, the opposite is not true. This allows to make assertions with a
limited scope, hence to have different interpretations coexist in the same knowledge base. PROV has its own data model, but
defines a mapping with RDF.

Another model for representing traces on the Web is Activity Streams, an independent format (J. M. Snell et al. 2011) recently
endorsed by the W3C Social Web Working Group (J. Snell and Prodromou 2016). This format is intended to represent actions
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performed by a user, typically in the context of a social network application. It is extensible, and the most recent version is
based on JSON-LD (Sporny, Kellogg, and Lanthaler 2014), making it interoperable with RDF and other Semantic Web tech‐
nologies.

As mentioned above, Tin Can[8] is another format for capturing traces, focused on the domain of e-learning. Originally based
on Activity Streams, it has then slightly diverged from it. In particular it is not based on the RDF data model, but De Nies et al.
(2015) have proposed an approach to bridge this gap, by mapping it to PROV. Tin Can is currently being considered in the
Hubble project[12] as an interoperability layer between the different platforms of the partners (including our own).

In his master’s thesis, Cazenave-Lévêque (2016) has compared those emerging standards (and others) to our meta-model.
While the latter focuses exclusively on time-anchored elements (obsels), the others allow to describe a number of objects that
are not (or at least not explicitly) related to time. We have therefore proposed an extension of our meta-model, where addi‐
tional information can be attached to a trace, or to an obsel. The first case is useful for representing background knowledge,
that is assumed to hold for the whole duration of the trace (such as names and addresses of the persons involved in the activ‐
ity). The second case is useful for representing contextual information captured at the same time as the obsel, and that is only
assumed to hold for the duration of that obsel (such as the heart rate or mood of the person performing an observed action). We
have shown that those extensions allow us to capture the semantics of PROV and Tin Can in our meta-model, and hence to in‐
tegrate existing Web traces in an MTBS.

4.2. Ambivalence on the Web

Ambivalent documents

The distinction, in a document, between its physical structure and its logical structure, has long been identified and theorized.
This is, in particular, why the original HTML (mixing concerns about both structures) was later split into CSS (addressing the
physical structure, i.e. presentation) and the cleaner HTML 4 (restricted to the logical structure). But this dichotomy, however
useful, is not always sufficient to capture the different overlapping structures of more complex documents, such as acrostics[13],
multimedia or hypermedia documents. In such cases, the multiple structures can lead to multiple interpretations.

In 2003, a working group funded by the Rhône-Alpes region was formed in Lyon to investigate that topic. We proposed a for‐
mal model and an XML-based syntax for representing documents with an arbitrary number of structures (Abascal et al. 2003,
2004). This model allowed us to represent not only a multi-structured document, but also a curated corpus of such documents,
where the corpus is considered itself as a document, with its own additional structures spanning the documents it contains (for
example, a thematic index). It was also a way to capture altogether the original structures of a document, and the annotations
added afterwards by a community of reader. This last point was further explored in the works described in the next chapter.

But the evolution of the Web has also forced ambivalence into HTML itself. The growing importance of the mobile Web, and
the diversity of the devices used to display HTML content, have made responsiveness an unavoidable part of web design (Mar‐
cotte 2010). The goal is to design HTML contents such that they can be equally easy to read and use on devices with different
screen sizes, but also with different interaction modalities (mouse and keyboard, touchscreen, remote control...). One could ar‐
gue that, in responsive design, only presentation (managed by CSS) and interactions (managed by Javascript) are changed, but
the logical structure conveyed by HTML is the same, and therefore there is no ambivalence here. However, responsive design
can not be reduced to adding clever CSS and Javascript to any HTML document; the document structure has to be designed
accordingly: unresponsive HTML is strongly coupled to one particular presentation, responsive HTML is abstract enough to
be presented, hence interpreted [14], in various ways, so we argue that it has a form of ambivalence.

Weaving documents and data

HTML has also been used in various ways to convey other information that the document structures it was initially meant for.
This provides another nice example of the need to support ambivalence in an open context as the Web, and how this has actu‐
ally been achieved.

SHOE (Heflin, Hendler, and Luke 1999), the Simple HTML Ontology Extensions, is an early attempt at realizing the Semantic
Web by embedding machine-readable knowledge into human-targetted HTML documents. It allows any Web page to define its
own ontology (as a set concepts and relations) or reuse an existing one, then to describe its content using this ontology (see the
example in Listing 4.1). The formal semantics of SHOE is purposefully lightweight, to ensure the scalability of the corre‐
sponding reasoning algorithms.

Let us note that, although SHOE uses HTML to “host” machine-readable data, this data is still quite separate from the human-
readable content (it is enclosed in specialized HTML tags). Extending HTML in that case is mostly a way to ease the publica‐
tion of ontologies, and to keep a link between human-readable and machine-readable information, although at a relatively
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coarse granularity (that of the page).

RDFa (Adida and Birbeck 2008), on the other hand, proposes to use HTML attributes to represent fine-grained annotation of
the human-readable content, which can in turn be interpreted as RDF data (see the example in Listing 4.2). This strongly re‐
duces redundancy compared to SHOE (or other approaches where RDF is published in a completely separate file), making it
more space-efficient and, more importantly, easier to author and maintain. Styles, Shabir, and Tennison (2009) have even pro‐
posed a system where, through editing an RDFa-annotated document with a WYSIWYG interface, users not only update the
visible human-readable content, but also the underlying machine-readable data, even without being aware of the latter.

In parallel to RDFa, the Microformats community[15] has been pursuing a similar goal (fine-grain annotations of HTML content
to provide machine-readable information) but without willing to commit to RDF for their data model. Later, Schema.org[16] was
announced by a consortium of search engines (Goel and Gupta 2011), confirming the trend to use HTML to address both ma‐
chines and humans, by weaving two complementary kinds of information.

Listing 4.1 SHOE example (from http://www.cs.umd.edu/projects/plus/SHOE/)

<P> Hi, this is my web page.
    I am a graduate student and a research assistant.
<P> Also, I'm 52 years old.
<P> My name is George Stephanopolous.

<INSTANCE KEY="http://www.cs.umd.edu/users/george/">

<USE-ONTOLOGY
ID="cs-dept-ontology"
URL="http://www.cs.umd.edu/projects/plus/SHOE/onts/cs.html"
VERSION="1.0"
PREFIX="cs">

<CATEGORY NAME="cs.GraduateStudent">
<CATEGORY NAME="cs.ResearchAssistant">

<RELATION NAME="cs.name">
<ARG POS=TO VALUE="George Stephanopolous">

</RELATION>
<RELATION NAME="cs.age">

<ARG POS=TO VALUE="52">
</RELATION>

</INSTANCE>

Listing 4.2 RDFa example (adapted from the SHOE example above)

<div prefix="cs: http://www.cs.umd.edu/projects/plus/SHOE/onts/cs.html#"
about="http://www.cs.umd.edu/users/george/">

<p> Hi, this is my web page.
    I am a

<span rel="rdf:type" resource="cs:GraduateStudent">
          graduate student</span>
    and a

<span rel="rdf:type" resource="cs:ResearchAssistant">
          research assistant</span>.
<p> Also, I'm <span property="cs:age">52</span> years old.
<p> My name is <span property="cs:name">George Stephanopolous</span>.
</div>

Ambivalent data

Of course, data on the Web is not only embedded in HTML, but also available under many other formats, and working with
heterogeneous data often requires to reinterpret them. For example, in order to ease the composition of heterogeneous data-
providing services, we have proposed to interpret their output as the result of SPARQL queries (Barhamgi et al. 2007). More
precisely, we considered all the available data as a virtual global RDF graph; then we attached to each service the parameter‐
ized SPARQL query on that graph that would return the same data as the service. Our system was able to solve a SPARQL
query by decomposing it into sub-queries corresponding to the available services, effectively computing the appropriate ser‐
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Fig. 4.4 Class model excerpt of the Ontology for Media
Resource 1.0 (Stegmaier et al. 2013)

vice composition.

Data heterogeneity is also a critical problem in the field of
multimedia documents. While this obviously applies to the
multimedia data itself, this causes even more acute prob‐
lems with the meta-data describing the media object (title,
author, date of creation, etc.). Indeed, meta-data formats are
not differing in their syntax only, but also in their termi‐
nologies,  the  granularity  of  the  represented  information,
and more generally, the underlying concepts.

The  W3C  Multimedia  Annotation  Working  Group
(MAWG) was created to address the problem of meta-data
heterogeneity, among a list of widespread formats. We pro‐
posed  an  ontology  (Lee  et  al.  2012)  capturing  the  core
meta-data concepts identified in those formats (illustrated
in Fig. 4.4), as well as mappings from each format to this ontology. This mapping allows to re-interpret legacy meta-data into
the common frame of reference provided by the MAWG ontology.

I was also a member of the RDF 1.1 Working Group, who was chartered in 2011 to update the 2004 version of that standard,
based on feedback from the community. An important action of that group was to endorse JSON-LD (Sporny, Kellogg, and
Lanthaler 2014) as a concrete syntax for RDF based on the popular format JSON. JSON-LD allows to attach a context to any
JSON data, either in the data itself, or via out-of-band information. The role of a JSON-LD context is to disambiguate and
elicit the semantics of the data, by allowing to convert it to an RDF dataset. Legacy JSON can therefore be kept as is, and still
be processed by ad hoc programs ignoring the context; however it can also be processed by more generic programs, with no
prior knowledge of the data structure, but able discover it and possibly make inferences with the corresponding RDF data. As
such, JSON-LD is more than just another RDF serialization: it makes RDF data easier to consume for the average Web devel‐
oper, and it makes legacy JSON data easily (and often quite directly) interoperable with the rest of the Web of data. In fact,
JSON-LD is an ambivalent data format, designed to be equally suiting two communities with different expectations.

In another work (Steiner et al. 2014), we have proposed to apply a similar approach to another format, WebVTT (Pieters
2016). WebVTT is the proposed standard to represent text tracks for HTML5 videos. The most common use of those text
tracks is to encode subtitles or captions, but they allow other uses, such as describing chapters or time-anchored other meta-
data. To make that information usable outside Web browsers, we therefore suggest that WebVTT should and can be inter‐
pretable as Linked Data. We have proposed an RDF vocabulary capturing the concepts of WebVTT, and implemented a proto‐
type converting any WebVTT into a standard RDF concrete syntax. This was made possible by leveraging Media Fragment
URIs (Troncy et al. 2012), a standard way to identify fragments of a multimedia resource with a URI. A future development of
this work would be map our vocabulary to the emerging Web Annotation Data Model (Sanderson, Ciccarese, and Young
2016).

4.3. Rethinking Web application design

The efforts described above to make the Web a machine-friendly data space, in addition to being a human-friendly document
space, have mostly focused on helping machines read and understand those data. But the Web is not “read-only”, users are not
merely consuming information. They are as well  producing it,  either directly through posting, commenting, rating (using
HTML forms or Javascript applications) or indirectly in the interaction traces they leave on the sites they visit.

The Web Services community has striven to enable machines to interact with Web applications, in a way similar to what hu‐
man users do. There is indeed an ever-growing number of Web APIs[17], but the semantics of each API has to be hard-coded
into software clients, making them unable, unlike humans, to adapt to changes or discover and use similar services. So while
the Web was initially designed as a unified and loosely coupled environment, where any client could connect to any server, the
Web of services has become a siloed and strongly coupled environment, where an ad hoc client is required for every new ser‐
vice. Although this problem should be mitigated by following the REST architectural style (Fielding 2000), Baker (2008) no‐
tices that many self-proclaimeds RESTful services are lacking an important feature of that style: Hypermedia controls. Field‐
ing defines Hypermedia as “the presence of application control information embedded within (...) the presentation of informa‐
tion”. In other terms, in order to interact with a service, a client should require almost no out-of-band static knowledge about
that service, and mostly rely on the information dynamically retrieved from it.

In order to solve that problem, the W3C Linked Data Platform (LDP) working group was chartered to propose a standard
RESTful way to interact with linked data. I was part of that group, who published the LDP recommendation (Speicher, Arwe,
and Malhotra 2015). That recommendation specifies the operations that a compliant service must support, and how such a ser‐
vice can advertise to clients that it complies with LDP. It also defines a notion of container, allowing clients to dynamically
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Fig. 4.5 The SOLID platform compared to the “silo” model

discover or create new resources. As such, LDP meets the Hypermedia requirements stated above: any LDP-aware client can
readily interact with any LDP-compliant server, using only the information provided by that server. However, those interac‐
tions are somehow limited. For example, LDP provides no standard way for the server to declare the types of resources it may
contain, what properties are allowed or required, etc.

That limitation is not a problem if LDP servers are only ex‐
pected to passively store resource representations, leaving
client applications to deal with specific resource semantics
(i.e.  application  logic).  This  is  the  approach  chosen  by
Mansour et al. (2016) for the SOLID platform. In this plat‐
form,  applications  do  not  host  user’s  data  on  their  own
server (as is currently the case in most Web applications);
instead, data storage is delegated to an LDP server owned
and controlled by the user (see Fig. 4.5). Beyond the obvi‐
ous benefit  in  terms of  privacy,  this  provides  users  with
more control over their data: they can chose which part of
those data each application will be authorized to use. They
can even chose to grant an application with access the data
produced by another one, while currently, this choice is ul‐
timately made by the application providers[18]. On the other
hand, while applications can communicate asynchronously
through the data they store in the personal LDP server, this
approach leaves entirely open the question of a more direct
composition of services.

In parallel to LDP, the W3C community group Hydra has
chosen  to  tackle  that  problem differently  (Lanthaler  and
Gütl  2013).  Like  LDP,  Hydra  advocates  the  RDF  data-
model, by encouraging the use of JSON-LD. Unlike LDP,
Hydra does not aim to define a unique interaction model
with resources, but instead provides an RDF vocabulary for describing the particular Hypermedia controls of each service.
More precisely, a Hydra service publishes an API documentation describing (1) the types of resources that compose the ser‐
vice, with their properties, and (2) which operations are available on different resources and property values, and how they can
be performed in terms of HTTP requests. Hydra provides abstraction for the most common operations (resource creation, mod‐
ification and deletion, search, pagination). More specific semantics can either be interpreted by the end-user (for interactive
Hydra clients), built-in into specialized clients, or discovered dynamically using Linked Data principles (dereferencing un‐
known terms to retrieve their definition). One success story of Hydra is the Triple Pattern Fragment (TPF) interface, a scalable
protocol for accessing and querying RDF data on the Web (Verborgh et al. 2016). The flexibility of Hydra makes it possible for
servers to implement and/or extend that interface in many various ways, without breaking existing clients. What’s more, Ver‐
borgh (2016) demonstrated that, to some extent, some server extensions can even benefit old clients that are not aware of these
extensions.

Our MTMS kTBS is designed as a RESTful service using RDF as its internal data-model, so we had to deal with problems
very similar to those that would later be addressed by LDP and Hydra (which then encouraged me to join both groups). To ad‐
dress those problems, we proposed the RDF-REST framework (Champin 2013; Médini et al. 2014). In RDF-REST, all re‐
sources (local or remote) are handled the same way, through a uniform interface (which translates seamlessly to HTTP verbs in
the case of remote resources). Resource representations are mapped to RDF graphs, regardless of their original format, thanks
to an extensible library of parsers and serializers; this feature allows RDF-REST applications to inter-operate with third-party
services. Note that RDF-REST takes into account ambivalence, as different RDF-REST applications could have different inter‐
pretations of the data published by third-party services. This would only require them use a different set of parsers/serializers.

This framework could easily be used to implement LDP servers, even if it does not enforce LDP compliance (it allows to im‐
plement different interaction models). It would even more easily inter-operate with other LDP servers, as they already provide
RDF representations. It is equally easy to publish a Hydra API documentation for an RDF-REST service, although currently
this documentation has to be manually edited, independently from the code. In a future version of RDF-REST, we plan to re‐
verse this workflow, by requiring service developers to write an API documentation, and using it to drive the behavior the ser‐
vice (at least the part captured by the Hydra vocabulary – for more specific behaviors, the developer will still have to code).
This will prevent duplication of code and guarantee the compliance of the API documentation with the actual implementation
of the service.
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Throughout the works (ours and others) presented in this chapter, it can be seen how support for ambivalence and multiple in‐
terpretations is a recurring concern in Web based applications. It can not be otherwise given the large scale and the inherent
openness of the Web. Moreover, this challenge is constantly renewed by the fast evolution of Web technologies, as much as
that of the uses of the Web.

Notes

[1] http://www.netflixprize.com/
[2] http://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=75
[3] https://duckduckgo.com/privacy
[4] https://www.qwant.com/privacy
[5] To choose, quoting Pariser’s metaphor, between “information vegetable” and “information dessert”.
[6] http://liris.cnrs.fr/coatcnrs/wiki/doku.php
[7] http://tbs-platform.org/tbs/doku.php/tools:traceme
[8] (1, 2) https://github.com/adlnet/xAPI-Spec/
[9] In fact, the RESTful protocol defined by the Tin Can API is very similar to the one used by kTBS, so we are confident

that this integration should not be too hard to achieve.
[10] http://tbs-platform.org/tbs/doku.php/tools:samotraceme
[11] http://tbs-platform.org/tbs/doku.php/tools:taaabs
[12] http://hubblelearn.imag.fr/
[13] An acrostic is a poem (or other form of writing) in which the first letter (or syllabe or word) of each line (or

paragraph, or other recurring feature in the text) spells out a word or a message. (from Wikipedia)
[14] This kinship between presentation and interpretation will be further discusses in Chapter 6.
[15] http://microformats.org/
[16] http://schema.org/
[17] http://programmableweb.com/
[18] It is true that, in many cases, the user is asked for permission before an application shares their data with another one.

However, users can only have this choice if both application providers have a prior agreement, and furthermore,
nothing prevents them (technically, at least) to share this information without the user’s consent.
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C

5. Multimedia annotation and
hypervideo

onsider a book critic; while reading a book, she can annotate it by writing comments in the margins, dog-earing pages
and/or using colored post-it notes as bookmarks. If the book is a digital file (e.g. a PDF document), her reading software

provides similar functionalities, as well as additional ones, such as a dynamic table of contents reminding her at every moment
of the overall structure of the book, showing which part she is currently reading, and allowing her to quickly navigate to an‐
other part. She can search the whole text of the book as well as her own annotations, jump to the corresponding location imme‐
diately, and just as easily jump back to the previous visited locations. Finally, she can easily copy-paste parts of the text in or‐
der to include them in her review.

Now consider a film critic; not so long ago, she still had to rely on a tape or DVD to watch the movie, with little possible inter‐
action besides pause, rewind and fast-forward (and jumping to a specific chapter, in the case of DVDs). Nowadays, files and
streaming have largely replaced tapes and DVDs, but software video players hardly provide more functionalities than their me‐
chanical counterparts. Why has digitization not allowed audiovisual documents to evolve the way text has?

The main reason is probably that practices around audiovisual are much less mature than practices around text. Indeed, the
technical means to capture and render videos are very recent (when compared to written text or still images), and even more so
their availability to a large public. Furthermore, video is inherently more complex, as it has its own temporality, to which the
reader must yield in order to access the audiovisual material. While it is possible to skim a text or glance at a photo, such
things are not immediately possible with a video. Interestingly, when Nelson (1965) coined the term “hypertext”, he also pro‐
posed the notion of “hyperfilm”, described as “a browsable or vari-sequenced movie”, noticing that video and sound docu‐
ments were currently restricted to linear strings mostly for mechanical reasons. Obviously, although hypertext (and more gen‐
erally text-centered hypermedia) has become common place, Nelson’s vision of hyperfilms is not so widespread yet.

In this chapter, I will present our contributions in the topic of hypervideo based on video annotations. The first part will focus
on our seminal work on Advene and the Cinelab data model. Then I will describe how video annotations often relate to traces,
and how hypervideos can be used as a modality of MTBS. Finally, in the last section, I will show how various standards are
converging to bring hypervideos to the Web.

5.1. Advene and the Cinelab Data Model

The Advene project[1] was born in 2002 out of this assessment that, although it was technically possible to improve the way an
active reader may interact with videos, only basic tools were actually available, mostly because no well-established practice
(such as bookmarking, annotation, etc.) existed yet for audiovisual documents, that could have set off the creation of better
tools. To be fair, a few such tools did exist at the time (for example Anvil[2]), but those were generally very focused on a partic‐
ular field and a particular task (for example behavior analysis in human sciences).

Our goal was therefore to build a generic and extensible platform, that would allow the exploration and stabilization of new
practices for video active reading. Since such a platform would allow new forms of interactions with audiovisual material, it
would also inevitably foster new documentary forms, so Advene is both a tool for active reading, and a hypermedia authoring
platform.

In order to support the emergence of new active reading practices, Advene had to provide a versatile data model. This data
model was refined over time, resulting to the Cinelab data model (Aubert, Champin, and Prié 2012).

http://champin.net/2017/hdr

36 of 63



Anatomy of a Cinelab package

The central element in Cinelab is the annotation, which can be any piece of information attached to a temporal interval of an
audiovisual document. An annotation is therefore specified by a reference to the annotated video, a pair of timestamps, and an
arbitrary content. Note that we impose no a priori constraint on annotations, neither on the type of their content (which can be
text, images, sound...) nor on their temporal structure (they can annotate any interval, from a single instant to the whole video,
they can overlap with each other...). It is also possible for the annotator to define relations between annotations. A relation is
specified by an arbitrary number of member annotations, and optionally a content.

With annotations and relations, users can mark and relate interesting fragments of the videos, and attach additional information
to them. But they also need a way to further organize this information. For this purpose, the Cinelab data model provides two
constructs: tags and lists, which allow to define, respectively, unordered or ordered groups of related elements. Tags and lists
may contain any kind of Cinelab elements, including other tags or lists, and an element may belong to any number of tags or
lists.

Tags and lists are simple and flexible enough to allow many organization structures. However it is often useful to group anno‐
tations and relations into distinct categories, called annotation types and relation types. Cinelab defines those as two special‐
ized kinds of tags, with the constraint that any annotation (resp. relation) belong to exactly one annotation type (resp. relation
type). Furthermore, a group of related annotation types and relations types can be defined as a specialized kind of list, called a
description schema. For example, a description schema focusing on photography would contain the annotation types “long
shot”,  “medium shot”  and  “close-up”,  while  another  schema focusing  on  the  sound would  contain  the  annotation  types
“voice”, “noise” and “music”.

It is important to understand that the information carried by annotations (and relations) is not bound a priori to any particular
rendering. For example, consider annotations of type “voice” that contain the transcription of what is said in the annotated
fragment of the video. They could obviously be displayed as subtitles (for the hearing impaired) but could also be displayed
beside the video as an interactive and searchable transcript (as in the right side of Fig. 5.1); or they could be used indirectly by
a hypervideo playing additional sounds (e.g. director’s comments or audio-descriptions for the visually impaired) to avoid
overlapping with the characters speaking in the video. In this respect, annotations are analogous to HTML tags: they convey
structure and semantics, and are orthogonal to presentation concerns.

Therefore, users also need to be able to specify and customize how they want their annotations to be presented, both during
their activity, and afterwards to present the result of their work. In the Cinelab data model, a view is the specification of how to
render a subset of the annotations. An application may support different kinds of views; in Advene, we distinguish

ad-hoc views, which are specific configurations of the GUI components available in the application (for example, the
graphical time-line at the left-bottom of Fig. 5.1),
static views, which are XML or HTML documents generated through a dedicated template language (one of them illus‐
trated on the right side of Fig. 5.1), and
dynamic views, which are described by a list of Event-Condition-Action (ECA) rules, triggered while the video is play‐
ing (in order, for example, to overlay annotation content on the video, or automatically pause at the end of a given anno‐
tation).

All the elements described above[3] are grouped in a file called a package, which can be serialized in different formats (we have
defined an XML-based and a JSON-based format). As packages do not contain the annotated audiovisual material, but only
references to it, they are generally small enough to be easily shared (on the Web, via e-mail or USB sticks). This was also
meant to avoid issues related to copyrighted videos; it is the responsibility of each user of a package to gain legitimate access
to the videos referenced in it. Note also that any package can import elements from other packages, in order to build upon
somebody else’s work.

Active reading with Advene

Our experience with Advene suggests that video active reading can be decomposed into a number of processes, enumerated in
Fig. 5.2. We also propose to group those processes in four intertwined phases: inscription of marks, (re-)organization, brows‐
ing and publishing. We have shown (Aubert et al. 2008) how those processes are supported by Advene and the Cinelab model,
and how they can be mapped to the canonical processes identified by Hardman et al. (2008).

As an example, let us consider Mr Jones, teacher in humanities, who wants to give a course about the expression of mood in
movies. He bases his work on the movie Nosferatu (Murnau 1929), and more specifically on how the movie’s nightmarish
mood is built[4]. He starts from scratch, having seen the movie only once and read some articles about it.

http://champin.net/2017/hdr

37 of 63



Fig. 5.3 An actual analysis of Nosferatu in Advene (Aubert et
al. 2008)

Using the  note-taking  editor  of  Advene,  Mr Jones  types
timestamped notes in a textual form, that he will later con‐
vert to annotations (Create annotations). He also uses an external tool that generates a shot segmentation of the movie, and im‐
ports the resulting data in Advene, generating one annotation for each shot (Import annotations).

Now that the teacher has created a first set of annotations, and thought of some ideas while watching the movie, he organizes
the annotations in order to emphasize the information that he considers relevant. From the shot annotations and his own notes,
Mr Jones identifies the shots containing nightmarish elements (Visualize/Navigate), creates a new annotation type Nightmare
(Create schema), copies the relevant annotations into it and adds to them a textual content describing their nightmarish features
(Create/Restructure annotations). As he has gained a better understanding of the story, he also creates annotations dividing the
movie in chapters, each of them containing a title and a short textual description, and he creates a new annotation type Chapter
for those annotations.

In order to ease the navigation in the movie, Mr Jones defines a table of contents as a static-view (Create view), generated
from the annotations of type Chapter, illustrated by screenshots extracted from the movie, with hyperlinks allowing to play the
corresponding part of the movie. He also creates a dynamic view that displays the title of the current chapter as a caption over
the video, in order to always know which part of the movie is playing when he navigates through the annotations.

Taking advantage of all those annotations and the newly created views, the teacher wants to dig into some ideas about the oc‐
currence of specific characters or animals in the movie. He can select the corresponding annotations manually by identifying
them in a view (Visualize/Navigate), or use Advene’s search functionalities to automatically retrieve a set of annotations meet‐
ing a given criterion (Query). Doing so, he identifies a number of shots featuring animals (spiders, hyenas...) that contribute to
the dark mood of the movie.

While browsing the movie, he also creates new annotations (Create annotations) and new types (Create and modify schemas)
as he notices other relevant recurring features. In the active-reading analysis, we find here a quick succession of browsing-
inscription-organisation activities, when users decide to enrich the annotations while watching the movie. Inscription occur‐
rences may last a couple of seconds, and should not be obtrusive to the browsing process.

This continuous cycle also brings Mr Jones to create more
specific  views,  dedicated to the message/analysis  that  he
wishes to carry: in order to have an overview of the night‐
marish elements, he decides to create a view that generates
a dynamic montage (Create view),  chaining all  the frag‐
ments annotated by the Nightmare type. This allows him to
more precisely feel and analyze their relevance and rela‐
tionships: watching his new montage (Select view/Visual‐
ize/Navigate) corroborates the ideas that he wishes to con‐
vey, and allows him to have a clearer view of how he will
present them to his students.

Now that Mr Jones has identified the relevant items and re‐
fined his analysis, he can write it down as a critique, in a
static view illustrated by screenshots of the movie linked to
the corresponding video fragments (Create view). He prints
the  rendition  of  this  static  view  from  a  standard  web
browser,  in  order  to  distribute  it  to  his  students  in  class
(Publish view renditions). He also cleans up the package
containing his annotations and views, removing intermedi‐
ate remarks and notes, in order to keep only the final set of annotations, description schemas and views. He uploads that pack‐
age to his homepage on a web-server (Publish package), so that his students can download it and use it to navigate in the
movie. This second option is more constraining for the students, requiring them to use Advene or a compatible tool[5]. But on
the other hand it allows them to pursue the analysis through the same active reading cycle as described above, without having
to start from scratch.

From this use-case, it appears that Cinelab packages are very similar to the multi-structured documents presented in Sec‐
tion 4.2: the complex relations between the linear temporality of the video and the elements of a package allow multiple read‐
ings and interpretations. A subset of those interpretations is “materialized” by the views provided in the package, but it is not
closed as long as the package is distributed as is, reusable and augmentable by others.

Finally, Mr Jones publishes a copy of his package after removing all annotations, leaving only the description schema he has
defined and the associated generic views. As an assignment, he asks his student to analyze with Advene another horror movie,
reusing the annotation structure provided in this “template” package (that they can import in their own package). This empha‐
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Fig. 5.4 The virtual classroom of Visu

sizes another important feature of the Cinelab data model: not only does it allow the exploration of innovative annotation prac‐
tices, it also encourages their stabilization and their sharing as explicit and reusable organization structures.

5.2. Videos and annotations as traces

There is an obvious similarity between the Cinelab model presented above and the Trace meta-model presented in Chapter 2.
Indeed, videos are often used to record a situation, hence as a kind of raw traces. Video annotations, on the other hand, are a
mean to describe the content of a video in a structured way, easier to handle and process that the audiovisual signal itself. As
they provide a machine-readable description of the filmed situation, such annotations can therefore be considered as obsels, all
the more that they have the same basic structural features: they are anchored to a time interval, typed, and potentially carrying
additional information.

Conversely, any obsel about an activity that has been filmed can be synchronized with the corresponding video, hence consid‐
ered as annotating that video. Following the principles explored with Advene and Cinelab, those obsels and the video can be
used together to generate a hypervideo, which can in turn be used as a mean to visualize and interact with the trace. The trace
model, defining the different types of obels that he trace may contain, plays a role very similar to the description schemas in
Cinelab.

Video-assisted retrospection

In the Ithaca project[6] (2008-2011), we have studied the use of traces to support synchronous collaborative activities, as well as
the duality of traces and video annotations. For this, we have developed a proptotype called Visu.

Visu is an online application with two parts. The first part is a virtual classroom (see Fig. 5.4) for a teacher and a group of stu‐
dents, offering a video-conferencing and chat platform as well as more specific functionalities with educational purposes: the
teacher can define in advance a course outline and a set of documents (left side of the figure), that he/she can push in the chat
during the session. The second part of Visu is called the retrospection room; it allows the teacher to play back the video of a
past session. In Ithaca, the teachers using Visu were actually in training, and the retrospection room was used to help them un‐
derstand and overcome the difficulties they may have encountered during the class.

During the session, every interaction of the users with the application (typing in the chat, pushing a document, opening a docu‐
ment, etc.) is traced and displayed on a graphical time-line (lower-part of Fig. 5.4). It provides the teacher and the students
with a sense of reflexivity on the group’s activity. Information in the time-line can also be used by the teacher at the end of the
session to do a short debriefing with the students. In the retrospection room, the time-line is synchronized with the video play-
back, and gives the teacher a more complete view of what happened during the session.

In addition to those automatically collected annotations, Visu allows the teacher and the students to manually add markers in
the time-line, containing short messages. Unlike chat messages, which are public and used to communicate synchronously
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Fig. 5.5 Three steps in the theater rehearsal process for Cat
on a hot tin roof: table readings, early rehearsals in a studio,

late rehearsals on stage.

with the group, markers are generally only visible by the teacher, and used to come back later (i.e. during the debriefing or the
retrospection) to the moments of the session when they were created.

In the retrospection room, the teacher can further annotate the video with a third kind of annotation called “comments”. Con‐
trarily to the annotations created during the session, comments are not restricted to annotate a single instant of the video, but
may span a time interval. They are used to synthesize the hindsight gained by the training teacher in the retrospection room. It
is also possible to produce a report by reorganizing the comments, adding more text and screenshots from the video. This func‐
tionality can be compared to the trace-based redocumentation process (Yahiaoui et al. 2011) presented in the third chapter.

Visu has been used in different settings, and an analysis of our first experiments was presented by Betrancourt, Guichon, and
Prié (2011). Although the application may first be cognitively challenging, the teachers got used to it after the first session, and
did use its specific functionalities (especially markers). Moreover, it has been observed that different teachers had developed
different practices with markers, which confirms the flexibility of that functionality. Finally, the teachers used less markers
during the last session, which tends to indicate that one motivation for using markers was to prepare for future sessions, using
the retrospection room.

Archiving and heritage

Video traces are not limited to short-term usage, they can be archived to serve as cultural heritage, in which case it is critical to
index them effectively, to ensure their usability in the long run. One of the goals of Spectacle en ligne(s) project[7], presented in
our paper by Ronfard et al. (2015), was to propose such effective indexing structures, based on the Cinelab model.

More precisely, this project aimed at creating a richly in‐
dexed corpus of filmed performing arts, and exploring in‐
novative uses for the performers themselves, other profes‐
sionals, and the larger public. Two shows were covered by
that project: Cat on a hot tin roof by Tenessee Williams, di‐
rected  by  Claudia  Stavisky  at  the  Théatre  des  Célestins
(Lyon), and the baroque opera Elena by Francesco Cavalli,
directed  by  Jean-Yves  Ruf  and  conducted  by  Leonardo
García Alarcón at the Aix-en-Provence Festival. The origi‐
nality of the created corpus was that we didn’t capture the
public performances, instead we recorded all the rehearsals.

As  rehearsals  are  typically  private  moments,  sometimes
even qualified as “sacred”, the setting for capturing them
was designed to be as unintrusive as possible. A dedicated
operator had the responsibility of recording each rehearsal,
using a fixed full-HD camera controlled by a PC laptop,
that also allowed them to annotate the video while it was
being captured. More precisely, the embedded application
was designed around a predefined description schema that
had been created specifically for that project. The role of
those annotations was to provide a first level of indexation:
a rehearsal is segmented with annotations of two different
types, Performance  and Discussion.  Each chapter is  then
described with a number of properties: which part of the
play/opera  was  being  rehearsed,  which  actors  where
presents, was it with or without costumes, with or without
sets, etc.  A third annotation type, Moment of interest,  al‐
lowed to further describe specific instants of the rehearsals
with a free-text comment and some categories, defined on
the fly by the operator. In the end, 419 hours of video were
captured, and 10,498 annotations were created.

But the annotation process didn’t stop at the end of the rehearsal. First, the annotations created during the session required
some off-line manual cleansing (correcting misspellings, harmonizing categories...). Then, some partners in the project have
proposed automatic annotation processes, based on the audiovisual signal and the cues provided by the manual annotations.
For example, using machine learning techniques to recognize the voice and appearance of each actor, it was possible to create
fine-grained annotations aligning the video with individual lines of the script, and annotations spatially locating each actor in
each frame of the video. This is computationally very expensive, so we could only process a subset of the corpus in the time‐
frame of the project, but the results were very encouraging (Gandhi and Ronfard 2013).
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Fig. 5.6 The Spectacle en ligne(s) platform

To demonstrate  the  benefit  of  this  annotated  corpus,  we
have developed a number of prototypes. The whole corpus
can be searched online[7], with a faceted browser (based on
the features describing each chapter, and the categories of
the moments of interest). Each video can be watched, aug‐
mented with a time-line displaying the annotations (similar
to the one of Advene), and a synchronized script, automati‐
cally scrolling to the part being rehearsed (Fig. 5.6).  This
allows critics, teachers and other professionals to study the
creative process in an unprecedented way. On the scenes
where we have computed line-level annotations, each line
is highlighted in the script when it is delivered, and it is
possible to navigate directly to the same line in any other
rehearsal.  Using  the  spatial  location  of  the  actors  in  the
video we have simulated multiple cameras, each of them
following one character (by simply zooming on the corre‐
sponding area of the original video). This was made possi‐
ble by the high resolution of the original video. Then, using the line annotations, we have proposed a virtual montage by auto‐
matically switching to the character currently speaking, making the video less monotonous to watch. We have also considered
alternative ways to generate such a virtual montage, like framing two characters instead of one during fast paced dialogues.

Interestingly, during the production of the archive, the creative crew reacted quite positively to the experiment and expressed
interest in getting immediate feedback. While this had not been planned, we started designing mobile applications that they
could tentatively use for (i) viewing on their smartphones the live feed being recorded and (ii) adding their own (signed) anno‐
tations and comments collaboratively. While not fully implemented, this feature was presented to the directors and their collab‐
orators as mock-ups. These mock-ups were generally well received and are likely candidates as an addition to the existing sys‐
tem for future experiments.

Beyond Spectacle en ligne(s), we are involved in another project concerned with video archives and cultural heritage. The for‐
mer prison of Montluc, in Lyon, has been turned into a memorial in 2010. This memorial focuses on the period when this
prison was used by the Nazis during World War II. A research group in sociology has conducted an inquiry to analyze and doc‐
ument this heritage process, shedding light on other memorable periods where that prison was used. From this inquiry, they
produced a corpus of video interviews and additional materials (photos, documents). Their goal was to publish it in order to
sustain the continuous emergence of multiple memories related to Montluc, beyond the one highlighted by the memorial itself.
Therefore, their challenge was to make this multiplicity of histories and memories legible, to allow multiple interpretations of
the place by people with different experiences and pasts, and to encourage novel uses of the venue. In collaboration with them,
we have designed a Web application[8] providing access to this corpus (Michel et al. 2016), but also allowing users to add their
own annotations, keeping the heritage process in constant momentum. In the future, we plan to study the interaction traces of
the users, as well as the annotations they contributed, to evaluate and improve the design of the Web application with respect
to those goals.

5.3. Hypervideos on the Web

When we started working on Advene (in 2002), hypervideo in general, and video integration with the Web in particular were
still in their infancy. At that time, the main way to integrate a video player in a HTML page was to use a proprietary browser
plugin (very much frowned upon), and none of the popular video sharing websites, that are now an integral part of the Web
ecosystem, existed yet.

Still, from the very beginning, we aimed to integrate Advene with Web technologies as much as possible. As explained in Sec‐
tion 5.1, static views in Advene produce XML or HTML documents, which can be exported and published on any Web server,
but also delivered dynamically by a HTTP server embedded in the application. The benefit of that embedded server is that it
has access to the annotated video. It can for example extract content on the fly (such as snapshots) that will be included in the
static view, but most importantly, it can control the video player included in the Advene GUI. Advene thus exposes a number
of URLs that can be used to drive its video player from any HTML page. For example, in Fig. 5.1, the HTML transcript on the
right side is dynamic: every sentence is a link that will start the video player at that point of the talk. Although this is not a full-
Web solution (it requires Advene to run on the client’s machine) it allowed us to experiment very early-on with the interactions
between video and HTML-based hypermedia.

In 2009, we started the ACAV project in partnership with Eurecom[9] and Dailymotion[10]. The goal was to improve the accessi‐
bility of videos for people with visual and hearing disabilities, using annotations to enrich videos in various ways, adapted to
the viewers’ impairment and to their preferences. For example, the descriptions for visually impaired people may be rendered
on a braille display or as an audio-description (using a speech synthesizer), it may be more or less detailed, etc. The flexibility
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Fig. 5.7 The ACAV workflow for producing accessible hypervideos (Champin et al. 2010)

offered by the Cinelab data model could be leveraged to achieve this goal. We have defined a description schema, specifying
the different types of annotations required to enrich the video in the various ways required by impaired users, and we have pro‐
totyped a number of views using those annotations. The intended workflow is described in Fig. 5.7: signal-processing algo‐
rithms automatically produce a first set of annotations, which is then manually corrected and augmented. Two kinds of users
were expected to contribute to those annotations: associations and enthusiasts concerned with disabilities and accessibility, and
institutional video contributors, bound by legal obligations to make their videos accessible. Unfortunately, despite encouraging
results with our prototypes (Champin et al. 2010; Villamizar et al. 2011), Dailymotion didn’t go as far as put the system in pro‐
duction.

As video was increasingly becoming a first-class citizen of the Web, it also became possible to refine the notion of view in
Cinelab, in order to align it with emerging technologies such as the HTML5 video  tag. CHM (Sadallah, Aubert, and Prié
2011, 2014) is a generic component-based architecture for specifying Cinelab views, with an open-source implementation
based on HTML5. Compared to Advene’s templates and ECA-rules, CHM provides a more declarative way to describe hyper‐
videos, and incorporate high-level constructs for the most common patterns, such as subtitles, interactive table of contents or
interactive transcripts. Then, we have put those ideas one step further (Steiner et al. 2015)[11] by relying on the emerging Web
Components standard (Glazkov 2016). With this new specification, it becomes possible to extend HTML with new tags, mak‐
ing hypervideo components even more integrated with Web standards, and easier to use by Web developers.

Finally, after video, annotations themselves are in the process of being standardized. With Media Fragment URIs (Troncy et al.
2012) we have a standard way to identify and address fragments of any video with its own URI, and a few proposals already
exist to extend this recommendation[12][13] in a possible reactivation of the working group. Besides, the candidate recommenda‐
tion by Sanderson, Ciccarese, and Young (2016) proposes a Web Annotation Data Model, which allows to annotate any Web
resource or fragment thereof with arbitrary data (and possibly other resources), and to serialize those annotations as Linked
Data (using JSON-LD). Our own work follows the same line as those standards. Our re-interpretation of WebVTT as Linked
Data (Steiner et al. 2014) presented in Section 4.2 made use of Media Fragment URIs; although we defined a specific data-
model (based on the structure of WebVTT), adapting it to Web Annotation should be relatively straightforward. Later, in the
Spectacle en ligne(s) project presented above, we published the whole corpus of annotations as Linked Data (Steiner et al.
2015), after proposing an RDF vocabulary capturing the Cinelab data model. At the time, we aligned that vocabulary with
some terms of the Web Annotation Data Model, but as the latter is about to become a recommendation, it would be interesting
to update and refine this alignment.

In the longer term, we will probably redefine the Cinelab data model itself as an extension of the Web Annotation data model.
Indeed, the overlapping concepts are close enough, so Cinelab annotations can ambivalently be re-interpreted as a special case
of Web annotations. Both models would benefit from this unification, as Cinelab-aware tools (such as Advene) would become
usable to publish standard-compliant annotations, and hence attractive to a larger audience.

Probably more than any other type of information, multimedia content lends itself to multiple interpretations. This is why the
languages and tools used to handle this kind of content must be flexible enough. The works presented in this chapter describe
our efforts to propose such languages and tools, not only by enabling subjective analyses to be expressed, but also by allowing
to stabilize interpretative frameworks as sharable schemas.

Notes
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[1] http://advene.org/
[2] http://www.anvil-software.org/
[3] Actually, the Cinelab model defines a few other categories of elements, which are not described here for the sake of

conciseness and clarity. The interested reader can refer to the complete documentation (Aubert, Champin, and Prié
2012) for full details.

[4] Although this example is fictional, an actual Advene package corresponding to what Mr Jones would have produced
can be downloaded at http://advene.org/examples.html, and is illustrated in Fig. 5.3.

[5] For example, the Institut de Recherche et d’Innovation (IRI) has adopted Cinelab for their own video annotation tools:
http://www.iri.centrepompidou.fr/.

[6] https://liris.cnrs.fr/ithaca/
[7] (1, 2) http://spectacleenlignes.fr
[8] http://patrimonum.fr/montluc/
[9] http://eurecom.fr/
[10] http://dailymotion.com/
[11] https://github.com/tomayac/hyper-video
[12] http://olivieraubert.net/dynamic-media-fragments/
[13] http://tkurz.github.io/media-fragment-uris-ideas/
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E

6. A proposal for ambivalent
semantics

very piece of information (document, knowledge base, etc.) can be interpreted in various ways. The works presented in
this dissertation aim at taking into account, or even take advantage of this ambivalence. In contrast, many works in com‐

puter science, especially in the field of knowledge representation, consider that a formal description must have only one valid
interpretation. This constraint is meant to guarantee the consistency of how that description is processed, and interoperability
of the tools processing it. This view seems to conflate ambiguity with ambivalence, the former being obviously to avoid, but
not at the cost of the latter.

In this chapter, I propose an alternative point of view on the notion of semantics, in an attempt to formalize ambivalence rather
than exclude it.

6.1. Terminology

Language and sentences

We set this proposal in the context of language theory. We define a language as a set of sentences. The sentences of a lan‐
guage are not atomic elements, but can be described as a combination of terms, taken from a set called the vocabulary of that
language. Unlike classical language theory, we are not limiting the structure of sentence to sequences of terms: we include for
example in our proposal tree grammars (Nivat and Podelski 1992) and graph grammars (Rozenberg 1997). This inclusive defi‐
nition of languages allows us to capture data actually processed by machines (sequences of discrete symbols) as well as more
abstract structures represented by these data.

Here are a few examples of languages:

Every set of terms can be considered as a trivial language (where each sentence is made of a single term); for example,
the language of boolean values or the language of all integers.
The language of all unicode strings: its vocabulary is the set of all unicode characters (The Unicode Consortium 2016),
its sentences are finite sequences of those characters.
The language of XML trees: its vocabulary is the set of unicode strings, its sentences are partially ordered trees, whose
nodes are typed (element, attribute, text or comment) and labelled with terms of the vocabulary – with constraints on the
strings labeling certain types of nodes (Cowan and Tobin 2004).
The language of RDF graphs: its vocabulary is the set of all IRIs, literals a blank node identifiers; its sentences are
graphs whose nodes are labelled by terms, and whose arcs are labelled with IRIs (Schreiber and Raimond 2014).

Note also that a language can be defined as a subset of another language. For example:

the Python programming language is a subset of the language of unicode strings;
the language XHTML (Pemberton 2000) is a subset of the language of XML trees.

Meaning and interpretation

To talk about the semantics of languages, we first define the notions of meaning and interpretation.

The meaning of a sentence is a non-formal property that is ascribed to that sentence by an external (human) observer. Such an
extrinsic meaning can therefore not be unique for a given sentence: it depends on the observer, on their situation, etc. We no‐
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tice incidentally that the term “meaning” itself carries a notion of intention (as in “I didn’t mean to do that”), and that this
proximity can also be found it its french translation vouloir dire (literally “to want to say”).

We call interpretation of a language  a partial function from  to another language . The inverse relation of an interpre‐
tation is sometimes called a representation: if  is an interpretation function, and  is a sentence of , then

 is the interpretation of  under , and  is a representation[1] of  under . This definition is extremely general, and
as any generalization, it is only interesting withing certain limits: although in principle any partial function could be considered
an interpretation, we will use this term only for those functions that aim at capturing some meaning of the sentences to which it
applies.

Although related, those notions have important differences. An interpretation function is by definition unambiguous: it asso‐
ciates at most a single interpretation to each sentence of its domain language (or none at all for some sentences, as it may be a
partial function). On the other hand, we have seen that an sentence can have several meanings, depending on the agent inter‐
preting it and their context, and many of those meanings can only be reached through multiple levels of interpretations. Those
differences account for the ambiguity of the term “semantics”, used to denote meaning or interpretation depending on the con‐
text.

6.2. Syntax and semantics

Since the seminal works of Chomsky (1957), it is customary to define a formal language through its syntax and its semantics.
Syntax is meant to discriminate, among a set of possible sentences, those that belong to the language being defined. Those
valid sentences will then be interpreted thanks to the semantics. In other words, syntax focuses on the form, while semantics
focuses on the content. Therefore it seems that syntax and semantics, while being intimately linked, are orthogonal to each
other. But things are not as clean-cut.

Languages with no semantics?

XML (Bray et al. 1998, 2008) is a recommendation aiming to provide an interoperable syntax for exchanging digital docu‐
ments, without presuming of the meaning ascribed to these documents, nor of their internal representation in the programs ex‐
changing them. This intended agnosticism is the reason why the specification only addresses syntactic aspects (i.e. how to de‐
cide whether an XML document is well-formed[2] or not). This has lead many people to consider that XML was purely a syn‐
tax, with no semantics.

This is however an over-simplification. The syntactic constraints imposed by XML would be pointless if they didn’t allow a
common interpretation of XML documents. That confusion can be attributed to two facts. First, this common interpretation ex‐
ists but it is described in a separate recommendation, namely the Document Object Model (DOM) (Lauren Wood 1998), giving
the impression that it is not an essential part of XML. Second, the DOM recommendation describes only indirectly the stan‐
dard interpretation of XML documents: with the aim to stay neutral with respect to implementations, it does not describe the
content of an XML document as a data structure, but as an abstract API allowing to programmatically interact with the docu‐
ment and its components.

However respectable that goal of neutrality, this choice was not suitable for many further specifications based on XML, which
required more declarative descriptions of the structure of XML documents. Different such descriptions were therefore pro‐
posed (Clark and DeRose 1999; Cowan and Tobin 2004; Fernández et al. 2007), each of them based on a reading “between the
lines” of the XML and DOM specifications, but each resulting to a formal model slightly different from the others.

We can see here how the ambiguity of the term “semantics” lead to some confusion. It would have been better to acknowledge
from the start that XML does have a syntax and a semantics, and describe the latter (the DOM tree) more explicitly. Still, it
could have been emphasized that this first level of interpretation didn’t impose any in-memory representation, nor did it pre‐
clude any further interpretation of the DOM tree itself. It may also have prevented this confusion to happen again, as has been
the case with JSON (Crockford 2006), successor of XML in some respects. JSON is said now and then to have no semantics,
for the same reasons that motivated that claim about XML. Conversely, languages with an explicit formal semantics (typically
knowledge representation languages, such as RDF) are expected by some to have some inherent advantage over so-called
semantic-less languages, that would allow them to “magically” capture the whole meaning intended by an author.

Syntax and interpretation

Furthermore, syntax and semantics are not always as orthogonal as it seems.

First, for languages based on character strings, syntactic analysis is often split in two phases. The first one (lexical analysis)
consists in grouping the characters into bigger units (tokens) that can be identified with simple rules (e.g. a sequence of letters

L L L′

I : L → L′ x L
y = I(x) x I x y I
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and digits), and dropping other irrelevant characters (e.g.
spaces and punctuation marks). It is therefore a first inter‐
pretation, transforming a character string into a sequence of tokens.

In the second phase, a generative grammar (Chomsky 1957; Crocker and Overell 2008) is used to hierarchically decompose
that sequence, according to a number of rules. If this process fails, the sequence is considered syntactically invalid. It it suc‐
ceeds, the result is a parse tree (as the one in Fig. 6.1). Hence that phase is also an interpretation, transforming a sequence of
tokens into a labelled tree, whose structure will be used by further interpretations (starting with those defined by the language
semantics).

Some grammars go even further in interpreting the data. XML-Schema (Fallside and Walmsley 2004) and Relax-NG (Clark
2002) are two standards for specifying grammars of XML-based languages. Both allow to specify a default value for at‐
tributes. This means that, in the end of the syntactic analysis, if the attribute was missing from the input XML tree, it will be
considered as present and holding the default value. In other word, the syntactic analysis transforms a possibly incomplete sen‐
tence into a complete one.

With those examples, we see that what is called syntax is often much more than a simple binary criterion for distinguishing
valid sentences from invalid ones. It is instead a first chain of interpretations. Conversely, any interpretation  on a language
straightforwardly induces a sub-language, namely the set of sentences interpretable under  (its domain of definition).

Relation with model theory

Model theory (Hodges 2013) is the mathematical foundation on which the semantics of many knowledge representation lan‐
guages, including first-order logic, is defined. It is based on a notion called “interpretation”, which is different from the notion
of the same name we have defined above. To avoid confusion, we name MT-interpretations the interpretations defined by
model theory.

More precisely, an MT-interpretation of a language  is a function  that maps the terms of  to the elements of a set , and
assigns a truth value to the sentences of . We say that satisfies a sentence , or that  is a model of , if and only if  is
considered true under .

The  semantics  of  a  language  is  not  defined  by  a  specific  interpretation,  but  by  a  set  of  rules  constraining  which  MT-
interpretations are relevant for that language. The semantic properties of a sentence  are therefore defined by the set of all its
models:  is satisfiable if it has at least one model;  is a tautology if it is true under every possible interpretation;  is a con‐
sequence of another sentence  if every model of  is also a model of .

Example: Let us consider a language where terms are lower case letters, upper case letters, and the character =. Sentences
are sequences of those characters.

Every MT-interpretation of that language maps:

to each lower case letter, an integer,
to each upper case letter, one of the operators +, -, × and /,

and satisfies a sentence if and only if, by replacing the letters with their interpretations, one gets an arithmetic expression
which is both correct and true.

For example, the sentence :  has an infinite number of models, among which:

The sentence :  is satisfied by all models of  above, it is therefore a consequence of . Note that the op‐
posite is not true, since

is a model of  but not of .

NB: for the sake of simplicity, we have only considered MT-interpretation whose domain was the set of integers. A more re‐
alistic  example would have allowed MT-interpretations to  have any domain .  In  that  case,  the constraints  on MT-
interpretation would have been to map

I
I

L I L ΔI

L I s I s s
I

s
s s s

s′ s′ s

s1 xAy = yAx = xBx

{x → 3, y → 2, A → ×, B → +}
{x → 3, y → 0, A → ×, B → −}
{x → 1, y → 0, A → +, B → ×}

s2 xAy = xBx s1 s1

{x → 1, y → 0, A → −, B → ×}

s2 s1
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Fig. 6.3 Interpretation graph (nodes represent languages, edges represent interpretations)

(1)

to each lower case letter, an element of ,
to each upper case letter, a function ,

and the condition for satisfying a sentence would have to be rephrased in a more general fashion.

In a way, model theory acknowledges ambivalence, as it allows multiple MT-interpretations of the same language to coexist.
This makes languages defined that way very versatile, as they are not restricted to a single interpretation, not even to a single
interpretation domain. The drawback is that, by refusing to favor one particular model over the others, model theory can only
recognized what is true in all of them. Somehow, it conflates all the models into a single interpretation, which can be seen as
their “greatest common divisor”. As a consequence, model theory is very likely to lose a part of the intended meaning of a lan‐
guage, and therefore should not be considered as the ultimate step in the interpretation process.

Summary

We have seen that the opposition between syntax and semantics is not a fruitful one, and that our notion of interpretation may
provide a unified way to consider them. The multiple interpretations / representations of a sentence are linked together by in‐
terpretation functions defined at different levels. As an illustration, Fig. 6.2 shows the different languages and interpretation
functions involved in interpreting an OWL ontology. Recall also that the meaning of a sentence is never unique, and that most
language have several possible interpretations, which only the context allows us to chose. Fig. 6.3 gives an overview of this
multiplicity through a few examples.

6.3. Congruence

As mentioned above, although any partial function from one language to another satisfies our definition of interpretation, this
notion is only relevant for some of those functions. We propose that a function can be considered as an interpretation on a lan‐
guage as soon as it accounts for some transformation or processing performed on the sentences of this language, by relating it
to a transformation or processing on the interpreted sentences. In order to capture this intuition, we need a formal description
on how those transformations are effectively related by interpretations.

Notations

As we are considering partial functions , we need notations for denoting the domain of definition and the range
of such functions:

Definition

Let us consider two interpretation functions  et . The languages  and  constitute the

realm of representations, whereas the languages  and  constitute the realm of interpretations. The notion of congruence

ΔI

f : × →ΔI ΔI ΔI

f : L → L′

In(f) ≝ {x ∈ L| ∃y ∈ , f(x) = y}L′

Out(f) ≝ {y ∈ | ∃x ∈ L, f(x) = y}L′

: →I1 L1 L′
1 : →I2 L2 L′

2 L1 L2

L′
1 L′

2
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Fig. 6.4 Visual representation of congruence relations

aims at  capturing  the  fact  that  a  function   transforms representations  in  accordance  with  how a  function
 transforms their interpretations.

For this, we define the notions of soundness and completeness[3]. Intuitively,  is sound with respect to  under  if
every interpretable sentence computed by  corresponds to a sentence computed by . Conversely,  is complete with respect
to  under  if for every sentence (whose interpretation is) transformed by ,  computes the corresponding sentence.
Formally:

Soundness and completeness are two forms of congruence, which we qualify as weak. When  is both sound and complete
with respect to  under , we say that  is strongly congruent to  under . This conveys the idea that apply‐
ing  to a representation amounts to apply  to the corresponding interpretation. Fig. 6.4 proposes visual representations for
soundness, completeness, strong congruence and unspecified congruence.

Illustration

We illustrate here on an example the notions of congruence defined above. Let us consider the following languages and func‐
tions:

 is the language of unicode strings of 10 characters or less ;
 is the set of natural numbers ;

 is the language of all sequences of natural numbers ;

 interprets strings containing only digits as decimal representations of integers (e.g. ), even those
containing spurious zeros (e.g. );

 interprets strings containing only digits and spaces as sequences of integers, where spaces separate the
items of the sequence, and digits are interpreted as in ;

 is the function transforming any positive natural number into the ordered sequence of its prime divisors
(without repetition). For example,  and .

Notice that the definitions of congruence makes no hypothesis about the four functions  and . In particular, the
functions defined above are

not total (i.e. partial):  has no interpretation under  or , 0 has no image under ;
not injective:  and  have the same images under  and , ;

not surjective:  has no representation under  as strings in  are limited to 10 characters, 
has no representation under  for the same reason,  is not an image of  since  produces ordered sequences.

We will now study what it means for a function  to be congruent with  under .

In order for  to be sound, every interpretable sentence it computes must correspond to a sentence computed by . So we
could not have, for example,  or  else  would not be sound; instead we must have

. By definition, the sentences for which  produces no output have no impact on soundness, so it is accept‐
able, for example, if  is undefined[4], even though  exists. Still by definition, the sen‐
tences for which  produces a non-interpretable output have no impact either on soundness, so it is equally acceptable, for ex‐
ample, if . It follows that  could also be defined on non-interpretable sentences (for which

f : →L1 L2
: →f ′ L′

1 L′
2

f f ′ ( , )I1 I2
f f ′ f

f ′ ( , )I1 I2 f ′ f

soun (f, ) ⟺d ,I1 I2 f ′ In( ∘ f) ⊆ In( ∘ ) ∧I2 f ′ I1

∀x ∈ In( ∘ f), (f(x)) = ( (x))I2 I2 f ′ I1

complet (f, ) ⟺e ,I1 I2 f ′ In( ∘ ) ⊆ In( ∘ f) ∧f ′ I1 I2
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f
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(4)

(5)

(6)

 can not possibly have a corresponding output), as long as its output is also non-interpretable. For example, it is acceptable if
 is undefined or returns , but not if it returns . Intuitively, this is because, in the latter case, the pro‐

duced output could be mistaken for (the representation of) an output of .

In order for  to be complete, for every interpretable sentence transformed by ,  must compute the corresponding sentence.
Therefore it is not acceptable anymore for  to be undefined, it should return the correct value ( ). Note
that, on the other hand, it is now acceptable if  returns an interpretable sentence, such as , as completeness is

only concerned with interpretable inputs. For the same reason, the fact that  is not reflected
by , even though the result is representable, does not prevent  from being complete (nor sound). Intuitively, the notions of
congruence are relative to the interpretations, and the fact that some inputs of  have no representation under those interpreta‐
tions should not be “held against”  for assessing its congruence.

Now, let us consider the case of . The input sentence is representable, but the output is not
(its representation would not fit the 10 characters limit). In order to be sound,  must be undefined on , or return a

non-interpretable sentence (e.g. ). On the other hand, this case prevents any function  to be com‐
plete with respect to  under . Completeness could however be achieved by extending  to accept longer strings.

Congruent predicates and relations

The notions of congruence we have just defined for functions can easily be extended to unary predicates and relations.

Considering two languages  and , an interpretation function , and two predicates  et , we
define congruence relations as :

Those definitions are of course closely related to definitions (2) et (3). In fact, we can replace predicate  with a function
 mapping  to all sentences of  verifying , an only to them (and respectievely for  and ). The con‐

gruence of  to  under  is then equivalent to the congruence of  to  under , where  is the identity function
on .

Extending this to binary or n-ary relations is straightforward, as  and  could be defined as the cartesian product of several
sub-languages  and  respectively, and  as the combination of several interpretation functions .

In the special case where  and where the interpretation is the identity function, then those definitions can be simplified
to:

Properties

We present here a number of notable properties of congruence relations.

In the following, we consider languages , and functions

Symmetry

If  is sound with respect to  under , then  is complete with respect to  under , and conversely.

In this equivalence, the transformation functions and the interpretation functions switch roles. As noted earlier, this may be rel‐
evant only with certain functions  and  and in certain contexts.

f ′
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f ′

f f ′ f
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(8)

Transivitivy

Congruence properties are transitive through composition, either “horizontal” (i.e. applied to the congruent functions) or “ver‐
tical” (i.e. applied to the interpretation functions).

The “vertical” version of that property is of particular interest when considering interpretation chains (such as the one repre‐
sented in Fig. 6.2).

Associativity

When one of the four functions involved in a congruence relation can be expressed as a function composition, it can be decom‐
posed and recomposed with its “adjacent” function, while preserving the congruence properties.

soun (f, ) ∧ soun (g, )d ,I1 I2 f ′ d ,I2 I3 g′

complet (f, ) ∧ complet (g, )e ,I1 I2 f ′ e ,I2 I3 g′

soun (f, ) ∧ soun ( , )d ,I1 I2 f ′ d ,I ′
1 I ′

2
f ′ f ′′

complet (f, ) ∧ complet ( , )e ,I1 I2 f ′ e ,I ′
1 I ′

2
f ′ f ′′

→ soun (g ∘ f, ∘ )d ,I1 I3 g′ f ′

→ complet (g ∘ f, ∘ )e ,I1 I3 g′ f ′

→ soun (f, )d ∘ , ∘I ′
1 I1 I ′

2 I2
f ′′
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1 I1 I ′

2 I2
f ′′
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(9)

(10)

(11)

(12)

As with the property of symmetry above, one of the function (  and  in the definitions above) changes role, from transfor‐
mation to interpretation or conversely. This demonstrates how this distinction is relative, and depends on the point of view.

Let us examine a special case where this property applies: when one of the four function is the identity function . Indeed,
any function can be seen as the composition of itself with the identity function: . The equations above
can, in that case, be rewritten as:

Inverse interpretations

If  and  are invertible, then we might wonder how congruence under  affects congruence under . This

happens only if  and  have certain properties on the domains of  and , respectively:

In particular, those properties are verified if  (respectively ) is a bijection between  and  (respectively between 

and ).

Equivalence relations

Here we consider two relations  et . We want to determine how congruence of  with respect

to  propagates the properties of an equivalence relation between  and .

It can be shown that, if  is strongly congruent to  under , then  is reflexive (respectively symmetric, transitive)
on  if and only if  is reflexive (respectively symmetric, transitive) on [5].

Note that for every function , we can define the relation  on  as :

By definition, this relation is strongly congruent with equality under , which satisfies the intuition between the notion of
“equivalence relation”:  and  are equivalent as they can be interpreted as equal (according to ).

Connection with mathematical logic

It has probably not eluded the logically inclined reader that the terms “sound” and “complete” are borrowed from mathemati‐
cal logic. This is because the notions of soundness and completeness in this field are a special case of the notions proposed
here: consider  the set of valid formulae of a formal system ,  the predicate  indicating that a sentence is derivable in ,
and  the predicate  indicating that a sentence is a tautology. Then the equations (5) above coincide with the classical no‐
tions of soundness and completeness, becoming:

Following the steps of Hofstadter (1979), we can also rephrase Gödel’s first incompleteness theorem in our framework[6]. For
any (sufficiently expressive) formal system  on a language , there exist:

an unambiguous (invertible) representation of every sentence  of  by a natural number  – or conversely, an in‐
terpretation function ;
a certain computation  such that, for any sentence ,  verifies that  is derivable in  – in other words, 
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(considered as a predicate on ) is strongly congruent with  under ;
a number  such that the sentence  is represented by  itself through .

The last point is the cornerstone of Gödel’s proof: the sentence  states “ɣ does not satisfy ”, which can also be inter‐
preted as “  can not be derived”. Unless the system was inconsistent, neither the sentence or its negation can be derived
in that formal system (Raatikainen 2015), it is undecidable.

The ambivalence is key in this famous result: it uses the fact that the sentence , known as the Gödel sentence of the sys‐
tem , can be read at two different levels (a statement about the number , and a statement about itself). But, as Hofstadter
points out, it would be naive to think of any of these statements as the correct or final interpretation of that sentence. Although
one may be tempted to get rid of the undecidability by adding the Gödel sentence as an axiom, there will still be infinitely
many interpretations on , and only one of them would be “cured” in the process. In other words, there would still be another
sentence in  which, according to another interpretation, would be a Gödel sentence for the new system.

6.4. Ambivalence

This notion of congruence provides us with a theoretical and formal framework for apprehending ambivalence. Considering
that any functionality of a computer system can be reduced to a function transforming data, then any interpretation of those
data allowing to justify or explain that transformation (in terms of congruence to another transformation) can be deemed rele‐
vant, even if it differs from the original intent of the system.

Software development

In it simplest form, developing (a functionality of) a software application amounts to implement a function  (the program)
that is congruent to a function  (the specification). The program works on digital representations, while the specification can
be defined at an arbitrary level of abstraction. The interpretation functions allowing to cross those abstraction levels, and there‐
fore to establish the congruence of  to , depend on the development and execution environments. Ultimately, the computer
handles bits, which are interpreted by the machine language as integers or floating point numbers. In C, those can be further
interpreted as ASCII characters, or composed into more complex structures (arrays, structured types). Additional libraries may
provide further interpretation layers: a geometry library may consider arrays as points or vectors; an XML library may con‐
sider character strings as DOM trees.

Note that the example interpretations listed above are of two kinds. Some of them are purely conventional, where the same
data in memory is considered differently (e.g. bits, number, character) by different parts of the code. Others involve an actual
rewriting of the data to support the interpretation: this is usually the case for XML libraries, where the DOM tree is “material‐
ized” into a dedicated data structure through a parsing process. This latter example illustrates again how the distinction be‐
tween transformation and interpretation is contextual.

It follows that, as soon as the specification is expressed beyond the abstraction level provided by the environment, the devel‐
oper’s work is not anymore reduced to implementing . It also consists in inventing new interpretation functions justifying the
desired congruence, either as new conventions, or as new data structures with their associated parsing functions. Those consid‐
erations are of course not new: software engineering methodologies have long identified the need to iteratively decompose an
abstract specification in order to implement it. The object-oriented paradigm (Meyer 1997), in particular, emphasizes this ap‐
proach. Furthermore, the most useful and reusable abstractions have been identified and formalized as design patterns (Gamma
et al. 1995), or even integrated to programming languages (such as strongly object-oriented programming languages).

As valuable as this trend may have been, helping developers to reuse proven and largely understood abstractions, it also lead to
a rigidification of practices, to which agile development methods can be seen as a reaction. Those methods endorse the fact
that applications provide unplanned affordances, and end up being misused, adapted or diverted, in other words interpreted in
multiple ways, different from the originally intended interpretation. By insisting on continuous delivery, they allow develop‐
ment teams to identify those alternative interpretations early on, and to adjust to them. Refactoring, another important compo‐
nent of agile development, can be seen as the process of changing data and program structures (as a result of altering interpre‐
tations) while preserving the congruence of the program with the intended specification.

Program and data

We have proposed above a point of view on refactoring where the program is consider as a function. Another way to look at it
is to consider the program as a sentence (in a programming language) interpretable according to a given interpretation func‐
tion: the standard semantics of the programming language, specifying the behaviour that each program must have. With this
point of view, refactoring can be seen as a transformation of program-sentences, which has to be congruent with identity under
the standard semantics (i.e. to preserve the behaviour).
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ɣ ¬C(ɣ) ɣ G
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Fig. 6.7 Presentation of a 3D model through several
projections (source: Blender Manual[9])

This duality between program and data has long been recognized, even though the distinction is often posed as a working hy‐
pothesis for practical reasons. For example, in a Turing machine, the program (i.e. the set of rules specifying the behaviour of
the machine) is “embedded” in the machine and static, while the data stored on the tape are modifiable. This distinction is also
present in classical computer architecture, where the memory used by a process is divided into a code segment, usually read-
only, containing the executable machine code of the program, and a writable data segment, containing the data handled by that
program.

Still, the boundary between the two is relative. Turing (1936) proved the existence of a universal machine, able to simulate any
other Turing machine described on its tape. Similarly, many programming languages nowadays are interpreted[7].  In  those
cases, the program segment only contains the interpreter’s code (a kind of universal machine) while the application program it‐
self is stored in the data segment with its own data, suggesting a threefold partition (interpreter-program-data) instead of the
initial  twofold  partition.  Then  some  libraries  also  make  use  of  so-called  domain-specific  languages,  or  mini-
languages (Raymond 2003, chap. 8), promoting a part of the data to yet another level of “program-ness”[8].

In Artificial Intelligence, the classical program-data distinction has also been largely questioned, in search of better alterna‐
tives. Knowledge Based Systems can be seen as such an alternative, distinguishing a generic reasoning engine from a domain-
specific knowledge-base. Further partitions of the knowledge base itself have also been proposed: rules and facts in Prolog,
T-box and A-box in description logics (Baader et al. 2003)... We see that different users (e.g. system administrator, developer,
knowledge engineer, end user) will have different points of view on which part of the information in the computer’s memory is
being executed, and which part is being merely processed by the former.

Self-rewriting programs, and other kinds of meta-programming, muddy the waters a little more regarding the program-data
distinction. Arsac (1988) testifies to such practices as soon as 1965. It is interesting to notice that he calls them “instruction
computation”, which highlights the different abstraction levels at work: the semantics of the program (instructions with an in‐
tended behaviour) and its representation in memory (numbers produced by computation). It is even more interesting that, ac‐
cording to Arsac, some people contested that designation, arguing that not all computations were relevant for instructions –
which could be restated in our framework: not all computations are congruent to a meaningful transformation of instructions.

Representations and intelligibility

The user of a computer system apprehends the underlying data through their perceivable representation(s) offered by the sys‐
tem. More precisely, the system internally processes sentences of a language , and transforms them into a language  per‐
ceivable by the user (e.g. textual, graphical, audible). Both languages aim to represent conceptual structures targeted by the
system, sentences of a language . Therefore, there are interpretation functions  and , and the
presentation function  must be strongly congruent to the identity function on .

The requirement for  to be congruent to the identity, rather
than to some kind of projection, may seem too strong. In‐
deed,  complex  structures  are  often  better  apprehended
through several partial but complementary representations
than through a single exhaustive one, as can be seen in the
interface of Advene (see Fig. 5.1) or of 3D modelling ap‐
plications  (see  Fig.  6.7).  Furthermore,  in  many  applica‐
tions, the user is never presented with the whole informa‐
tion at once, but has access to it by browsing from one par‐
tial representation to another. We can however justify that
constraint as follows. First,  we consider a function  re‐
turning the whole set of partial representations available to
the user (rather than those effectively rendered at a given
time). Second, we consider that if any information was to‐
tally invisible to the user, including through their interac‐
tions with the system, then we can as well assume that this
information is absent from the system.

We can then remark that the user may interpret the representations available to them differently from the interpretation , in‐
tended by the system designers, which we may call the canonical interpretation, as a reference to Prié (2011). Some social
codes (typographical conventions, standard GUI patterns, etc.) may limit this divergence, but can rarely prevent it entirely. Prié
also notices that presentation can induce in the user’s interpretation some structures that do not exist in the underlying data.
For example, in a word processing application, the fact that two characters are vertically aligned in a paragraph is an effect of
presentation, without any counterpart in the data. However, the user may integrate this in their interpretation, and exploit it in
their practice (in order, for example, to create a graphical effect in the text). Similarly, the user apprehends the functionalities
of the system through presentation. Every operation on the data reflects on their presentation, and if the perceived change is
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congruent with the functionality assumed by the user, this will confirm their interpretation. On the other hand, a mismatch will
lead them to revise their interpretation – or to consider that the system is not working properly[10].  Following our example
above, the user may be frustrated that a copying and pasting a the paragraph on a page with a different width does not preserve
the vertical alignment of its characters.

Therefore, there is a tension in the design of a presentation. Specific presentations help the user conceive an appropriate inter‐
pretation (i.e. close enough to the canonical interpretation), and provide meaningful affordances to the system’s functionalities.
Generic presentations, on the other hand, are less helpful at first, but allow the user to adapt the system to their own interpreta‐
tions and use cases, even if these diverge slightly from the ones originally intended by the system designers.

The aim of this chapter was to try and elicit a number of intuitions that drove most of the works presented in this dissertation.
The proposed formal framework offers an alternative approach to traditional notions of semantics. In this framework, interpre‐
tations are not considered only as a prerequisite to standard processings (although they can still be used that way), but can also
become retrospective justification of ad-hoc processings. Semantics is therefore open-ended, potential interpretations being
never exhausted. Work remains to be done, however, to make this framework operational, and provide effective guidelines to
build ambivalence-aware systems.

Notes

[1] NB: if  is not injective, then the inverse relation is not itself a function, and  can have several representations under
.

[2] Actually, XML distinguishes two levels of compliance, well-formedness and validity, but both are syntactic criteria.
[3] Those terms are borrowed from mathematical logic; we will show in the end of this section that the definitions we give

here are a generalization of their usual definitions.
[4] This could be the case if  was a computer program using 32-bits integers.
[5] In fact, it is enough if  (respectively ) has those properties on  (respectively ). They do not have

to be verified on the whole of  or .

[6] Note that this incompleteness is not the opposite of , but of a subtly different notion of completeness.
Namely, a formal system  on a language  is complete if every sentence of  or its negation can be derived in . In
other words, if  is incomplete in that sense, some sentences do not have the same truth value in all possible models.

[7] This includes languages such as Java and C#. Although those languages require a compilation phase, they are not
compiled into native machine code, but to a lower-level language (bytecode) that still needs an external native program
to be executed. So strictly speaking, this lower-level language is an interpreted language.

[8] This is humourously summarized by Greenspun’s Tenth Rule of Programming: “Any sufficiently complicated C or
Fortran program contains an ad-hoc, informally-specified bug-ridden slow implementation of half of Common Lisp”
(http://philip.greenspun.com/research/). Greenspun’s intent here is cleary to encourage to use high-level languages
(such as Common Lisp) instead of re-implementing their functionalities in C or Fortran. But this aphorism also
suggests that one could consider a part of the low-level program as an interpreter, and the other part as a higher-level
program interpreted by the former.

[9] https://www.blender.org/manual/editors/3dview/navigate/3d_view.html
[10] In which case they might be opposed the famous meme “it is not a bug, it is a feature”, which we could rephrase: “if

the system is not congruent under your interpretation, then your interpretation is wrong, not the system”.
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7. Perspectives and conclusion

o conclude this dissertation, I will propose a number of directions in which the works presented therein can be improved,
continued and extended.

7.1. Convergences

Several of the works presented in this dissertations have pioneered the use of Web technologies in fields were they were not
considered at the time. The modelling of interaction traces with RDF allowed us to elicit the semantics of the constituents of
the traces, and to share reusable trace models and transformations. As for video annotations, we experimented with HTML-
based hypervideos before video became a first-class citizen of the Web. In the meantime, those use-cases have gained traction,
and W3C standards have emerged to support them. It is therefore necessary to re-evaluate our original proposals in the light of
those standards, the evolution of technologies, and the evolution of uses.

As mentioned in the end of Section 4.1, we have already started this critical work (Cazenave-Lévêque 2016) comparing our
modelled-trace meta-model in particular to PROV (Lebo, Satya Sahoo, and McGuinness 2013) and Activity Streams (Snell
and Prodromou 2016). While each has its own focus, they both address the problem of representing some agents’ activity.
More work is required to align our meta-model with those standards, especially when it comes to capturing the context of the
activity. However, once this is done, we could leverage PROV traces and Activity Streams using Trace Based Reasoning (see
Section 2.4). Since both formats are being increasingly adopted for representing traces in in various domains, but provide no
standard mean for processing or tapping these traces, this will create a number of stimulating opportunities for applying and
refining TBR.

The same goes for video annotations: the Web Annotation Data Model (Sanderson, Ciccarese, and Young 2016), combined
with Media Fragment URIs (Troncy et al. 2012), now provides a standard replacement for Cinelab annotations (Section 5.1).
However, the Cinelab model goes beyond the scope of Web Annotations, proposing to describe and share reusable annotation
structures (annotation models), as well as hypervideos based on those annotations (views). We plan to adapt those concepts to
the Web Annotation standard. In particular, although a number of popular Javascript toolkits have been proposed to produce
rich HTML5-based hypervideos, a more declarative approach would ease the authoring and reuse of hypervideo designs. Our
proposals in that direction based on Cinelab (Sadallah, Aubert, and Prié 2014; Steiner et al. 2015) ought to be adapted to the
new Web Annotation model.

7.2. Towards ambivalence-aware intelligent applications

Winograd (2006) suggests that the perceived opposition between AI and Human Computer Interaction (HCI) is actually a
deeper opposition between what he calls the rationalistic approach (putting emphasis on data and knowledge processing) and
the design approach (putting emphasis on interactions). He argues that a balance must be found between those two trends, both
in AI and in HCI, and that both fields may not differ so much once the right balance is found.

I believe that the proposal in Chapter 6 may be helpful in finding that balance. In the end of of Section 6.4, we have empha‐
sized the tight relationship between semantics and interactions, and proposed that the notion of congruence can help design in‐
terfaces and visualizations supporting multiple interpretations. This will of course require to investigate more deeply the impli‐
cations of the proposed framework. At a theoretical level, we must precisely define the desirable formal properties that the no‐
tion of congruence can bring into a system. This will then allow us, at a practical level, to provide guidelines for designing
ambivalence-aware systems and user interfaces, and experimentally assess their added-value compared to more traditional sys‐
tems.

More recently, another opposition has been dividing AI, which we could label top-down versus bottom-up. The former ap‐
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proach focuses on knowledge engineering, and interpreting data through carefully designed models, while the latter focuses on
data mining and machine learning, leaving semantics to emerge from the data. Elated by the spectacular successes of deep-
learning techniques (Johnson 2016; Williams 2016), some people have pronounced the definitive victory of the bootom-up ap‐
proach. Wu (2013) claims that “having more data allows the ‘data to speak for itself’, instead of relying on unproven assump‐
tions and weak correlations”. This extreme position is neglecting the biases introduced by how data is collected, represented,
visualized and more generally, made to “speak”. Surely, both approaches are valuable and can complement each other as long
as they leave room for ambivalence, rather than aiming for an illusory unique objective meaning.

Existing approaches have been successful for big organizations and companies, having access to massive amounts of data gen‐
erated by their users, and to the pertaining computing power required to process them. Novel approaches are still required,
however, to help individuals make sense of their own personal data. These data are often too sparse for pure bottom-up ap‐
proaches, and too heterogeneous for pure top-down approaches. They are too complex for manual processing (even with effi‐
cient user interfaces), but also too complex for fully automated reasoning. Again, the proposal in Chapter 6 can provide the ba‐
sis of a unifying framework for such hybrid approaches.

7.3. Re-decentralizing the Web

Regardless of the approach, users willing to analyze their personal data face another problem: a large part of these data is
locked in the databases of the services they use, and they only have a limited access to them, if any. What is worse, users have
very little control or knowledge on who has access to their personal data.

As stressed by Hall, Hendler, and Staab (2016), the Web has become so influent in our societies that it can no more be consid‐
ered only as a technical system. “Code becomes law, but the law should not be imposed by the few without the control, or at
least the knowledge, of the many.” Any technical decision must be considered with its social and ethical implications. We must
therefore favor architectures empowering users. In Chapter 4, we have shown how the principles of Linked Data can help
achieve this goal. Projects such as SOLID (Mansour et al. 2016) and Hydra (Lanthaler and Gütl 2013) allow to create Web ser‐
vices which do not deprive users from control over their personal data, and which can connect with each other on the basis of
users needs and intents, rather than on a pre-defined application-driven basis. All the future works identified in this conclusion
must keep in line with this trend, and contribute to it.

7.4. Conclusion

When starting to write a habilitation dissertation, it is at first difficult to find a consistent way to present one’s work. It looks
very much as a patchwork, each project involving different people, happening in different contexts, and led much more by op‐
portunities and serendipity than by a continuous attempt to hold one’s course. Is there any consistency there to find anyway?
One then has to adopt a different perspective on the work done, focusing on the only common trait in all this diversity: oneself.
Then one can try and describe not only what they have done, but why they did it that way, and what remains to be done.

Writing this dissertation has been a long undertaking. It was nevertheless a rewarding experience: first by helping me realize
that I was indeed following a more consistent research direction that I would have thought; and second by giving me an oppor‐
tunity to rediscover my own works (and others’) in the light of this research direction. I hope that the reader will have found as
much interest in reading these pages that I have found in writing them.

As I tried to demonstrate along those chapters, what relates our works on interaction traces, on video annotations and on the
Web of linked data, is the ambition to build intelligent systems leaving the field of possible interpretations as open as possible.
That way, the system can adapt to the user, rather than forcing the user to adapt to it. The ability for users to define their own
transformations in MTMSs, or their own description schemas and views in Advene, enables them to elicit and leverage their
own interpretations.

It does not mean, however, that all possible interpretations are equally valid; meaning can not be arbitrarily decreed (despite
Humpty Dumpty’s attempt, see the excerpt opposite), it has to be co-constructed, negotiated. The notion of congruence, pro‐
posed in the last chapter, aims to provide a formal framework to account for this negotiation: an interpretation is acceptable to
the extent that it explains the operations that are performed (or can be performed) with the system.

Semantics is therefore anchored in interactions, which brings us back to the importance of traces and TBR, of course, but also
to the importance of design. In order to be acknowledged as intelligent, a system must first be intelligible. In Section 6.4, we
have explored the potential impact of the proposed framework on different aspects of software design, including intelligibility
of information presentation. By describing a formal link between interpretations, on the one hand, and presentations and trans‐
formations, on the other hand, (in other words, between what the system means, and what it does), we may contribute to find a
balance in the “rationalistic/design” opposition identified by Winograd (2006).

Finally, the role of the Web in the design of modern intelligent systems can not be neglected. The Web is not a separate appli‐
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The question of meaning

`I don’t know what you mean by “glory,”’ Alice said.

Humpty Dumpty smiled contemptuously. `Of course you don’t
– till I tell you. I meant “there’s a nice knock-down argument
for you!”’

`But  “glory”  doesn’t  mean “a  nice  knock-down argument,”’
Alice objected.

`When I use a word,’ Humpty Dumpty said in rather a scornful
tone, `it means just what I choose it to mean – neither more nor
less.’

`The question is,’  said Alice,  `whether you can make words
mean so many different things.’

`The question is,’ said Humpty Dumpty, `which is to be master
– that’s all.’

– Lewis Carroll (1871)

cation domain, it is the backdrop to all user’s interactions
with  any  system  or  artefact,  even  non-connected  ones,
even non-digital ones: people will search forums for help
about an application, they will google an unknown word
from a  book,  they  will  not  be  surprised  to  see  a  URL
printed on the side of a bus, even if this “link” is not di‐
rectly actionable. It can be argued that, nowadays, there is
no such thing as a non-connected object.

The value of the Web is not only in the amount of informa‐
tion available to us, but also (and mostly) in the numerous
links that interconnect this information. Every link puts a
piece of information in the context of many others, allow‐
ing as many interpretations and re-interpretations, provided
that we have the right tools to take advantage of this am‐
bivalence. This is the kind of tools that Bush (1945) had in
mind when he imagined the  Memex.  Instead,  as  Pariser
(2011) warns us,  many current tools collapse this multi‐
plicity, providing each of us with a comfortable, personal‐
ized and unique perspective,  each to  his  own.  We must
therefore make sure that the Web’s ambivalence is not re‐
duced to a juxtaposition of idiosyncrasies, but remains an empowering network of intertwined trails.
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responsabilité du module.

Discipline Années Niveau Établissement
Heures /
an

Introduction aux technologies du Web 2011 – L1 IUT Lyon 1 30h~

Algorithmique 2003 – L1 IUT Lyon 1 40h~

Structures de données avancées 2003 – 2011 L1 IUT Lyon 1 40h~

Introduction à l’Intelligence Artificielle 2014 – L2 IUT Lyon 1 13h

Programmation Web client riche 2014 – L2 IUT Lyon 1 26h

Système d’exploitation 2003 – L2 IUT Lyon 1 30h~

Programmation Système 2003 – 2011 L2 IUT Lyon 1 20h~

Introduction au Web de données 2012 – M1 ENS Lyon (Master Archinfo) 12h

Programmation Web 2016 – M2 FST Lyon 1 (Master Bio-
Info)

30h

Dynamique des connaissances 2011 – M2 FST Lyon 1 (Master IA) 30h~

Ingénierie des systèmes intelligents 2011 – 2016 M2 FST Lyon 1 (Master IADE) 12h

Pour plus d’information sur mes activités d’enseignement : http://champin.net/enseignement

Encadrement

Encadrements effectué

Étudiant Formation Encadrants et % d’encaftement Dates

Rakebul Hasan Doctorat Fabien Gandon (80%)
P-A Champin (20%)

2011 – 2014

Blandine Ginon Doctorat S. Jean-Daubias (50%)
P-A Champin (50%)

2011 – 2014

Raphaël Cazenave-Lévêque M2R TIW P-A Champin (34%)
Lionel Médini (33%)
Amélie Cordier (33%)

2016

Raul Leaño-Martinet M2R TIW P-A Champin (50%)
Lionel Médini (50%)

2015

Laetitia Pot M2 ArchInfo Christine Michel (34%)
M-T Têtu (33%)
P-A Champin (33%)

2014

Encadrements en cours

Étudiant Formation Encadrants et % d’encaftement Dates

Fatma Derbel Doctorat P-A Champin (50%)
Amélie Cordier (50%)

2016 –

http://champin.net/2017/hdr
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Étudiant Formation Encadrants et % d’encaftement Dates
Maxime Chabert Doctorat Christine Solnon (34%)

P-A Champin (33%)
Amélie Cordier (33%)

2015 –

Contrats de recherche

Nom du projet Dates Financement Informations

Épistémè 2014 – 2017 ANR Coordinateur LIRIS pour le projet
https://projet-episteme.org/

Hubble 2014 – 2017 ANR Responsable du lot 3
http://hubblelearn.imag.fr/

Learning Café 2013 – 2016 FUI Coordinateur LIRIS pour le projet
http://extranet.learningcafe.fr/

Spectacle en lignes(s) 2013 – 2014 ANR Coordinateur LIRIS pour le projet
http://spectacleenlignes.fr/

eGonomy 2012 – 2014 Ministère de
l’industrie

http://egonomy.iri-research.org/

Kolflow 2011 – 2014 ANR http://kolflow.univ-nantes.fr/

Cinécast 2010 – 2012 FUI http://cinecast.fr/

ACAV 2009 – 2011 Ministère de
l’industrie

http://blog.dailymotion.com/acav/

Ithaca 2008 – 2011 ANR http://kolflow.univ-nantes.fr/

Cinélab 2007 – 2008 ANR http://advene.org/cinelab/

http://champin.net/2017/hdr
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