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Abstract

Epilepsy affects around 50 million people worldwide, a third of those diag-
nosed with medically refractory epilepsy where seizures cannot be controlled
by pharmacotherapy. For such patients, surgical resection of the epileptogenic
zone may offer a seizure-free life. The success of such surgeries largely depends
on the accuracy of the epileptogenic zone localization. Neuroimaging, including
magnetic resonance imaging (MRI) and positron emission tomography (PET),
has been increasingly considered in the pre-surgical examination routine.
This work represents one attempt to develop a computer aided diagnosis sys-
tem for epileptogenic lesion detection based on neuroimaging data, in particular
T1-weighted and FLAIR MR sequences. Given the complexity of the task and
the lack of a representative voxel-level labeled data set, the adopted approach,
first introduced in [El Azami et al., 2016], consists in casting the lesion de-
tection task as a per-voxel outlier detection problem. The system is based on
training a one-class SVM model for each voxel in the brain on a set of healthy
controls, so as to model the normality of the voxel. For an unseen patient, each
voxel is assessed against the corresponding one-class SVM model which yields
a signed score of its anomalousness. Anomalous lesions can hence be found as
local neighborhoods of voxels with low scores.
The main focus of this work is to design representation learning mechanisms,
capturing the most discriminant information from multimodality imaging. Man-
ual features, designed to mimic the characteristics of certain epilepsy lesions,
such as focal cortical dysplasia (FCD), on neuroimaging data, are tailored to
individual pathologies and cannot discriminate a large range of epilepsy lesions.
Such features reflect the known characteristics of lesion appearance; however,
they might not be the most optimal ones for the task at hand. Our first con-
tribution consists in proposing various unsupervised neural architectures as
potential feature extracting mechanisms and, eventually, introducing a novel
configuration of siamese networks, to be plugged into the outlier detection con-
text. The proposed system, evaluated on a set of T1-weighted MRI of epilepsy
patients, showed a promising performance but a room for improvement as well.
To this end, we considered extending the CAD system so as to accommodate
multimodality data which offers complementary information on the problem at
hand. Our second contribution, therefore, consists in proposing strategies to
combine representations of different imaging modalities into a single framework
for anomaly detection. The extended system showed a significant improvement
on the task of epilepsy lesion detection on T1-weighted and FLAIR images.
Our last contribution focuses on the integration of PET data into the system.
An obstacle encountered often in medical applications is the small number of
subjects with the full set of imaging modalities. This limits the performance
of a system when the subjects with missing data are discarded. We therefore
delve into strategies of synthesizing PET data from the corresponding MRI ac-
quisitions and show an improved performance of the system when synthesized
images are used in addition to the real ones.
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Résumé étendu

Environ 50 million personnes souffrent d’une épilepsie partielle, dont un tiers
atteint d’une épilepsie réfractaire à tous les médicaments. La chirurgie, qui con-
stitue aujourd’hui le meilleur recours therapeutique, nécessite un bilan préopéra-
toire complexe. L’analyse de données d’imagerie telles que l’imagerie par réso-
nance magnétique (IRM) anatomique et la tomographie d’émission de positons
(TEP) au FDG (fluorodésoxyglucose) tend à prendre une place croissante dans
ce protocole, et pourrait à terme limiter les recours à l’électroencéphalographie
intracérébrale (SEEG), procédure très invasive mais qui constitue encore la
technique de référence.
Cette étude vise à développer un système d’aide au diagnostic (CAD) pour le
détection de lésions épileptogènes, reposant sur l’analyse de données de neu-
roimagerie, notamment, l’IRM T1 et FLAIR. Etant donné la complexité du
problème et le manque d’une base de données, annotée à l’échelle de voxel,
représentative de la pathologie, l’approche adoptée, introduite précédemment
par [El Azami et al., 2016], consiste à placer la tâche de détection dans le cadre
de la détection du changement à l’échelle du voxel. Le système est basé sur
l’apprentissage d’un modèle one-class SVM pour chaque voxel dans le cerveau,
en utilisant un ensemble de sujets sains, dont le but est de modéliser la nor-
malité du voxel. Pour un patient donné, chaque voxel est évalué par le modèle
oc-SVM, correspondant à sa localization spatiale, et ce dernier produit une
valeur numérique signée, représentant l’anormalité du voxel. Les lésions anor-
males peuvent ensuite s’identifier comme des voisinages de voxels, ayant des
valeurs très négatives.
L’objectif principal de ce travail est de développer des mécanismes d’apprentissage
de représentations, qui capturent les informations les plus discriminantes à par-
tir de l’imagerie multimodale. Les caractéristiques manuelles, conçues pour
imiter les caractéristiques de certaines lésions épileptogènes sur la neuroim-
agerie, notamment les dysplasies corticales focales (FCD), sont spécifiques aux
pathologies individuelles et n’ont pas la capacité de discriminer un ensemble
varié de lésions épileptogènes. Ce type de caractéristiques reflète la connais-
sance existante sur l’apparence de lésions. Par contre, elles ne sont pas for-
cément les plus pertinentes pour la tâche visée. Notre première contribution
porte sur l’intégration de différents réseaux profonds non-supervisés, en tant
que mécanismes d’extraction de caractéristiques, dans le cadre du probleme
de detection de changement. Eventuellement, nous introduisons une nouvelle
configuration des réseaux siamois, mieux adapté à ce contexte. Le système
CAD proposé a été évalué sur l’ensemble d’images T1 IRM des patients at-
teint d’épilepsie. Nous avons démontré une performance importante qui reste,
tout de même, à améliorer. Pour cela, nous avons considéré d’étendre le sys-
tème pour intégrer des données multimodales qui possèdent des informations
complémentaires sur la pathologie en question. Notre deuxième contribution,
donc, consiste à proposer des stratégies de combinaison des différentes modal-
ités d’imagerie dans un système pour la détection des changements. Ce système
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multimodal a montré une amélioration importante sur la tâche de détection de
lésions épileptogènes sur les IRM T1 et FLAIR.
Notre dernière contribution se focalise sur l’intégration des données PET dans
le système proposé. Très souvent, dans les applications médicales, le nombre
de sujets ayant les acquisitions de toutes les modalités envisagées, est assez
limité. La performance des systèmes, où l’on ne considère que les sujets ayant
toutes les acquisitions, est souvent faible. Pour cette raison, nous envisageons
de synthétiser les données manquantes à partir des images des autres modalités
présentes. Nous essayons, donc, de générer des images TEP en se servant des
images IRM disponibles. Nous démontrons que le système entraîné sur les don-
nées réelles et synthétiques présente une amélioration importante par rapport
au système entraîné sur les images réelles uniquement.
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General introduction

Epilepsy is a common neurological disorder affecting around 50 million people worldwide

according to the World Health Organization (WHO). It is characterized by an enduring

predisposition to generate unprovoked brain seizures [Fisher et al., 2014]. Epilepsy treat-

ment involves consistent intake of antiepileptic drugs on a long-term basis which allows to

control the seizures in up to 70% of focal epilepsy patients. The remaining 30% are referred

to as intractable epilepsy patients [Kwan and Brodie, 2000]. For such patients, surgical

resection of the epileptogenic zone may offer a seizure-free life. The success of such surg-

eries largely depends on the accuracy of the epileptogenic zone localization. Neuroimaging,

including magnetic resonance imaging (MRI) and positron emission tomography (PET),

has been increasingly considered in the pre-surgical examination routine. On neuroimaging

data, epilepsy lesions, however, have very subtle characteristics and highly variable profiles

which results in clinicians frequently considering the scans normal (MRI-negative patients).

For such patients with visually unconfirmed lesions, the success rate of surgery is 2-3 times

lower than when the lesion is detected over a routine visual examination [Téllez-Zenteno

et al., 2010]. Neurologists would greatly benefit from a computer aided diagnosis (CAD)

system automatically processing the data so as to provide probability maps highlighting

abnormal regions in the image. The clinical benefit of such an automated image analysis

tool during the pre-surgical planning is to optimally select candidates for the epilepsy lesion

resection surgery and to guide the placement depth of EEG electrodes when an invasive

EEG is required for an accurate delineation of the epileptogenic zone.

Over the recent years, many attempts have been made in order to propose automated

solutions for epilepsy detection on neuroimaging data. Most of those studies are based on

the extraction of different descriptors from the images, reflecting the clinical knowledge

on the appearance of specific epilepsy lesions. The descriptors are then exploited either in

statistical analysis based approaches [Chen et al., 2008, Focke et al., 2008, Riney et al.,

2012], or, more recently, in machine learning based frameworks [El Azami et al., 2016, Hong

et al., 2014, Ahmed et al., 2015, Ahmed et al., 2016].
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This work represents one attempt to develop a computer aided diagnosis system for epilep-

togenic lesion detection based on neuroimaging data, in particular T1-weighted and FLAIR

MR sequences. Given the complexity of the task and the lack of a representative voxel-

level labeled data set (the annotations are much more difficult to obtain for MRI negative

patients), the adopted approach, first introduced in [El Azami et al., 2016], consists in

casting the lesion detection task as a per-voxel outlier detection problem. The system is

based on training a one-class SVM model for each voxel in the brain on a set of healthy

controls, so as to model the normality of the voxel. For an unseen patient, each voxel is

assessed against the corresponding one-class SVM model which yields a signed score of its

anomalousness. Anomalous lesions can hence be found as local neighborhoods of voxels

with low scores. This approach bypasses the need of labeled training data set and there-

fore, offers an alternative to supervised learning.

The main focus of this work is to design representation learning mechanisms, capturing the

most discriminant information from multimodality imaging. Manual features, designed to

mimic the characteristics of certain epilepsy lesions, such as focal cortical dysplasia (FCD),

on neuroimaging data, are tailored to individual pathologies and cannot discriminate a

large range of epilepsy lesions. Such features reflect the known characteristics of lesion

appearance; however, they might not be the optimal ones for the task at hand.

Our first contribution consists in proposing various unsupervised neural architectures as

potential feature extracting mechanisms and, eventually, introducing a novel configura-

tion of siamese networks, to be plugged into the outlier detection context. The proposed

system, evaluated on a set of T1-weighted MRI of epilepsy patients, showed a promising

performance but a room for improvement as well.

To this end, we considered extending the CAD system so as to accommodate multimodality

data which offers complementary information on the problem at hand. Our second contri-

bution, therefore, consists in proposing strategies to combine representations of different

imaging modalities into a single framework for anomaly detection. The extended system

showed a significant improvement on the task of epilepsy lesion detection on T1-weighted

and FLAIR images. Our last contribution focuses on the integration of PET data into

the system. An obstacle encountered often in medical applications is the small number of

subjects with the full set of imaging modalities. This limits the performance of a system

when the subjects with missing data are discarded. We therefore delve into strategies of

synthesizing PET data from the corresponding MRI acquisitions and show an improved

performance of the system when synthesized images are used in addition to the real ones.

This work is divided into three main parts. Part I starts with a detailed description of

modern CAD systems in chapter 1. Chapter 2 presents an overview of currently popu-

lar applications of deep learning methods in medical imaging. In chapter 3, we describe

and review the existing methods for epilepsy lesion detection on neuroimaging. Chapter 4
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presents our analysis of the challenges and constraints of the problem at hand and formal-

izes our approach.

In part II, we introduce the main contribution of this work, by first giving an overview of

the proposed CAD system and a detailed description of the available data set in chapter

5. Chapter 6 presents the existing unsupervised deep architectures and concludes with a

novel configuration tailored to the task of outlier detection. Chapter 7 presents the per-

formance obtained with the proposed system, using the representations learnt with deep

architectures, on the detection of epilepsy lesions on T1-weighted MRI.

Part III comprises a review on the possible strategies of multimodality data fusion and

our own choices in chapter 8. Chapter 9 presents the results obtained with the proposed

CAD system on the combination of T1-weighted and FLAIR MRI data with two data

fusion strategies. In chapter 10, we review the current approaches of cross-modality image

generation, and apply one for MRI to PET synthesis. Finally, we present the performance

of the CAD system using the synthesized PET images as well as the real acquisitions. The

manuscript ends with our overall conclusion and perspectives on the future work.
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Chapter 1

Image-based computer aided
diagnosis systems

The clinical environment often encounters emerging challenges or the existing ones turn-

ing more complicated with the growing amount of information and limited resources to

exploit. In particular, the amount of data generated through various medical protocols,

including different medical imaging techniques, becomes overwhelming and difficult to an-

alyze with no automated solutions. As such, computer aided diagnosis (CAD) systems are

tools designed to make the analysis of medical data more efficient and less time-consuming,

in order to eventually assist clinicians in their tasks. Many image-based CAD systems have

been investigated for various tasks, ranging from organ / tissue segmentation to detection

of various cardiac, brain or cancerous pathologies in patients.

Over the recent years, CAD systems have been enriched with all the more powerful ma-

chine learning algorithms as the core decision making mechanism, outputting relevant

information to a clinician. In many applications such systems have achieved impressive

performance rates, sometimes higher than those of humans. Such CAD systems are typ-

ically trained on the characteristics relevant for the problem at hand (observed in the

clinical practice) that are formalized and computed using mathematical expressions. Re-

cently, the explicit translation of clinical characteristics to computable features has been

replaced with deep learning architectures, operating directly on the raw medical data (such

as images). Deep learning based CAD systems have shown outstanding results in many

problems which has turned them into the method of choice in research on many medical

problems.

In this chapter we introduce and describe the main components of image-based CAD sys-

tems. We present the methods frequently used in CADs, their advantages and limitations.

Eventually, we present the common performance evaluation strategies allowing to assess

the quality of a CAD system.
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CHAPTER 1. IMAGE-BASED COMPUTER AIDED DIAGNOSIS SYSTEMS

1.1 General CAD description

Various medical imaging modalities such as magnetic resonance imaging (MRI), com-

puted tomography (CT) and positron emission tomography (PET), have played a major

role in medical diagnosis as they provide an internal view on the anatomical and functional

state of a patient and, hence, guide the radiologists’ medical decisions. With the ubiqui-

tous use of such imaging techniques, the past two decades have marked a fast evolution

of computer-aided diagnosis (CAD) systems. Image-based computer-aided diagnosis sys-

tems are tools that assist clinicians in the interpretation and analysis of medical images for

various tasks. Some typical applications of CAD systems include organ and lesion segmen-

tation, abnormality detection and many others (an example is shown on fig. 1.2). Over

the recent years many CAD systems have been proposed for breast [Dheeba et al., 2014],

lung [Hua et al., 2015] and prostate cancer detection [Niaf et al., 2014, Litjens et al., 2014];

for brain pathologies, various CAD systems tackled such problems as Alzheimer’s disease

diagnosis, Multiple Sclerosis lesion segmentation, detection of enlarged perivascular spaces

in the basal ganglia, etc. An efficient CAD system can improve the decisions of radiologists

who, due to various reasons, may miss or overlook a piece of information in the high load

of data [Doi, 2007].

Figure 1.1: A typical image-based CAD system pipeline.

Image-based CAD systems are designed to apply an automated model on the given in-

put images, so as to produce an output corresponding to the problem [van Ginneken et al.,

2011]. As illustrated on fig. 1.1, a typical CAD system entails the following steps - image

pre-processing, feature extraction/selection and inference model learning (typically using

a machine learning algorithm). Fig. 1.2 illustrates a CAD system taking at input mul-

timodality neuroimaging data and outputting a probabilistic map highlighting suspicious

areas found by the system.
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1.1. GENERAL CAD DESCRIPTION

Figure 1.2: A CAD system for neuroimaging. Input: multimodality neuroimaging data.
Output: Probabilistic map highlighting suspicious areas detected by the CAD system.

Input-output granularity

In a CAD system, the input may correspond to an image voxel, an image patch, a

region of interest (ROI) or the entire image. The first three cases have the advantage

of a smaller data size in comparison to the full image approach. The output of a

CAD system may be at voxel-level, ROI-level or image (subject) level. For voxel-

level CAD systems, each voxel is assigned a value produced by the system, eventually

constituting an output map. For subject-level CAD systems, the output corresponds

to the given image as a whole.

Image pre-processing

Typically, the CAD input images are first processed in order to enhance their quality.

Common pre-processing steps include reduction of artifacts, noise reduction, image

normalization, etc.

Feature extraction/selection

This step associates the input images with a set of characteristics (features) measured

on the image following some definition/formula, relevant to the task at hand. For

example, clinical knowledge on the pathology in question may be translated to a set

of mathematical formulae and produce a set of descriptors of the pathology. Feature

selection can further be performed in order to select the most relevant descriptors

and discard the redundant ones. The features may also be learnt in an automatic

data-driven fashion. In many recent applications this step is incorporated into deep

architectures tailored to the task.

Inference model learning

In this step an inference model is built either based on the explicit descriptors ac-

quired in the previous step or on the raw data. The choice of the model depends on

the particularity of the task: it can be supervised (labels are available), unsupervised

(labels are not available) and semi-supervised (labels are somewhat available).

Below we present some more details on these steps.
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CHAPTER 1. IMAGE-BASED COMPUTER AIDED DIAGNOSIS SYSTEMS

1.1.1 Input-output granularity

The granularity of the system depends on the desired outcome and the clinical need.

CAD systems may be broadly categorized in two types. CADe systems seek to identify

abnormal regions of a given image with respect to the pathology of interest. CADx systems

aim at characterizing the pathology, its type/category, stage and severity [Petrick et al.,

2013]. Image voxels, patches, ROIs and entire images may serve as input to CADs. The

main categories of CADs with respect to the output granularity are:

Subject-level CADs

In this case the desired outcome of the CAD is usually to classify an image of a given subject

into some category. Commonly such CADs perform binary classification by discriminating

healthy versus pathological cases. The output may be expressed as a probability or a

label. While it is possible to locate approximately the abnormal zone resulting in the

binary output, its detection is not the main objective and usually is not performed. Some

CADs are used to classify a given image into one of the categories of the pathology.

ROI-level CADs

In this case the model is based on a part of the input image corresponding to the region

of interest (ROI), delineated by a radiologist; the remaining part is either irrelevant to

the task at hand or is not significant and, hence, is not considered by the CAD system.

Especially when the feature extraction step is applied explicitly, reducing the focus to a

ROI instead of the full image allows acquiring relevant features over the ROI and reduce

the dimensionality of the input data. The output of ROI-level CADs is a ROI-level score

or label.

Voxel-level CADs

Some very popular CADs are designed to discriminate each voxel and produce either a

probabilistic score map or a binary/n-ary map where each voxel is assigned a probability

of being pathological or a binary/n-ary label representing the category it has been classified

into.

1.1.2 Feature extraction and selection

An explicit extraction of features from the raw data has been a common choice for a very

long time. In some medical applications there may be an accumulated clinical knowledge

on the characteristics of the pathology of interest which can be translated into features

by using appropriate formulae (table 3.1 lists such characteristics and their corresponding

features for epilepsy). This certainly helps the discrimination of the pathology. However,

in many contexts such knowledge is either not available or is insufficient and, hence, other
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1.1. GENERAL CAD DESCRIPTION

methods are exploited to extract features. For instance, one common approach is to extract

generic image descriptors including

1. textural features describing textural patterns, frequently represented by statistical

measures computed over a neighborhood (mean, standard deviation, etc) or derived

from the grey-level co-occurrence matrix as described in [Haralick et al., 1973] (con-

trast, entropy, energy, etc). The latter matrix models the joint probability density

of the occurrence of grey levels for two pixels with a spatial relationship defined by

the chosen relative direction and the distance between the two pixels.

2. local descriptors (filters) to detect edges and shapes such as Gabor filters [Manjunath

and Ma, 1996] that can be viewed as a sinusoidal plane of particular frequency and

orientation, modulated by a Gaussian envelope.

3. robust image descriptors such as HOG [Dalal and Triggs, 2005], SIFT [Lowe, 1999]

and SURF [Bay et al., 2006]. SIFT (scale invariant feature transform) combines

a scale invariant region (key point) detector and a descriptor represented by the

histogram of the gradient distribution in the detected regions.

By varying the parameters of such image descriptors (such as the relative direction and

the voxel distance in Haralick features) a very large number of features can be obtained.

Typically, such a choice of features is accompanied by a feature selection strategy which

consists in keeping only the most relevant feature subset and discard the rest. Since it

is computationally exhaustive to evaluate all possible subsets and keep the most discrim-

inative one, other practical strategies have been proposed for feature selection. As such,

forward-stepwise (backward-stepwise) feature selection consists in greedily adding (elimi-

nating) the most (least) informative feature starting from the empty (full) set of features.

The informativeness of the candidate features in each step is measured by some quantity,

for instance Akaike Information Criterion (AIC) [Akaike, 1974]. Recursive feature elimina-

tion [Guyon et al., 2002] is another feature selection method that starts by fitting a model,

that assigns weights to features (such as the coefficients of a linear model), to the entire

feature set and later eliminates the features with the smallest weights. The procedure is

performed recursively on the current feature subset. Feature selection may improve the

performance of the system by eliminating irrelevant or redundant features and enhance the

interpretability of the system, especially when the number of features is greater than the

number of examples [Guyon and Elisseeff, 2003].

Features obtained in such way are referred to as handcrafted/manual features. The major

disadvantage of such descriptors is their limited capacity in modeling complex phenomena

as they are constrained with the kind of transformation they are designed to perform.

Moreover, these features are not data-dependent and, hence, do not leverage the particular

patterns that may be present in the data. Mainly for this reason there has been a major
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CHAPTER 1. IMAGE-BASED COMPUTER AIDED DIAGNOSIS SYSTEMS

shift over the last years from handcrafted features to data-driven features automatically

learnt from the data [Litjens et al., 2017]. Neural networks are one way of accomplishing

data-driven feature learning (more details will follow in chapter 2).

1.1.3 Inference model learning

The vast majority of the state-of-the-art CAD systems for various applications employ

machine learning algorithms in order to build automated models that perform the task at

hand. Such models take into account the nature of the application, the available data and

the particularity of the problem.

A typical learning problem has the following setup. Given a data set of n observations

X = {xi|i = 1, ..., n} generated by a fixed but unknown distribution P (x), a machine

learning algorithm seeks to model a function f(x) that, depending on the nature of the

algorithm, outputs a relevant value for a (previously unseen) observation. Machine learn-

ing algorithms can be broadly categorized into two major groups - supervised learning

methods and unsupervised learning methods.

In supervised learning, a set of output values Y = {yi|i = 1, ..., n}, associated with the

examples in X, following a fixed but unknown conditional distribution P (y|x), is available.

The learning algorithm seeks to find a function f(x; θ), characterized by a set of parame-

ters θ, that approximates Y as accurately as possible. When Y is composed of continuous

numerical values, the problem is referred to as regression problem; when Y takes values

from a finite set of discrete values (labels), the problem is called classification problem.

The classification problems may further be divided into binary (K = 2) and multiclass

(K > 2) classification.

In unsupervised learning, no labels are associated with the observations and an unsuper-

vised learning algorithm seeks to discover the properties of the data set, usually based on

the distribution P (x).

Below we present the most common supervised and unsupervised methods used in mod-

ern CAD systems. Since most CAD systems are designed to solve classification tasks, we

will not detail on the regression methods. A particular case of the classification problems

relates to the contexts where all observations have the same label (one-class classification)

and will be presented separately due to its specificity.

I Supervised learning

As stated above, supervised learning methods seek to model a function f(x; θ), character-

ized by a set of parameters θ, that predicts Y as accurately as possible. In order to pick

the best function f from a set of candidate functions F parameterized with θ, a loss func-

tion L(f(x; θ), y) quantifying the discrepancy between the predicted value and the actual

output is necessary. Finally, the function f(x; θ∗) corresponding to the optimal parameter

12 Z. Alaverdyan
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI005/these.pdf 
© [Z. Alaverdyan], [2019], INSA Lyon, tous droits réservés



1.1. GENERAL CAD DESCRIPTION

set θ∗ is the one that minimizes the expectation of the loss function, referred to as true error

θ∗ = argmin
θ

R(θ)

where R(θ) is

R(θ) = E [L(f(x, θ), y)] =

∫
L(f(x, θ), y)dP (x, y)

As P (x, y) is unknown, R(θ) is replaced by the empirical error Remp(θ) estimated on the

given training data set X

Remp(θ) =
1

n

n∑
i=1

L(f(xi, θ), yi)

Typically, the evaluation of a model is performed on a set of observations not seen by the

algorithm during training (referred to as test set) but generated by the same distribution

as the training set. The algorithm is expected to perform well on the unseen data. In this

case the model will be said to generalize well; otherwise it overfits the training set. The

generalization ability of a model depends largely on the assumptions and choices made

during the training. In particular,

1. The success of the model depends on how representative the training set is for the

data distribution of the given task. If the training data set represents adequately the

distribution generating it, it will be reasonable to expect the algorithm to perform

well on previously unseen data. When the training data set is not a representative

subset of all possible observations, the model trained on it will learn to approximate

the given observations, only to perform poorly on observations different from the

training set i.e. it overfits.

2. Different families of candidate functions may be selected when designing an algo-

rithm. Each family provides functions with different properties. The choice of the

candidate functions should therefore be in line with the known properties of the data

set at hand.

3. Most families of functions come with hyper-parameters that need to be tuned to

achieve the best performance. The hyperparameters are usually chosen among a wide

range of values by optimizing the performance on a set of observations, different from

both training and test sets, called validation set. Improper hyperparameter values

may lead to overfitting.

It is common to constraint the considered family of functions by adding a regularization

term constraining its structure in order to improve the generalization properties of the

learning method. In this case, the empirical error is enhanced with an additional term:

Remp(θ) =
1

n

n∑
i=1

L(f(xi, θ), yi) + γ · Ω(f, θ) (1.1)
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CHAPTER 1. IMAGE-BASED COMPUTER AIDED DIAGNOSIS SYSTEMS

Figure 1.3: (a) A decision tree for a data set of 4 features - X, Y, Z and W, and 4 classes
- A, B, C and D. (b) An illustration of Naive Bayes DAG for the variables A1, ..., Am and
class variable Y .

Below we briefly present some common supervised classification methods. A more complete

description of the methods is included in the review by [Kotsiantis et al., 2007].

• Decision trees

Decision trees [Murthy, 1998] are structures that classify instances by consecutively check-

ing the value of each of their features. Each node in a decision tree corresponds to a feature

and each outgoing branch represents a possible value the feature can take on. The leaves

of the tree correspond to the classes an instance is supposed to be categorized into. An

optimal decision tree would contain the most discriminative feature at its root and each

consecutive node would be assigned the most discriminative feature given its parent nodes.

Building an optimal decision tree is a NP-complete problem and therefore heuristics are

used in practice. An important component of building a decision tree is the choice of the

metric with respect to which the features are chosen at each node. The most common of

such metrics are information gain [Kent, 1983] and gini index [Breiman, 2017]. In order to

prevent overfitting in decision trees, a strategy called pruning may be used that consists

in disregarding the bottommost sub-trees in the built decision tree. Another practice is to

employ an ensemble learning method, random forest, composed of multiple decision trees,

that outputs a decision based on the outputs of all the trees in the forest e.g. with the

majority voting. An example of a decision tree is shown on fig. 1.3a.

• Bayesian networks

A Bayesian network [Jensen, 1996] is a graphical model describing the relationships be-

tween the features/variables. The structure of a Bayesian network is given by a directed

acyclic graph (DAG) where each node corresponds to a variable in the given data set. The

(conditional) dependence/independence relationships between the variables are modeled

with particular structures in the graph. The second component of a Bayesian network
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1.1. GENERAL CAD DESCRIPTION

is the conditional probability tables quantifying the relationships between each node and

its parents. Learning a Bayesian network assumes learning the structure of the DAG and

estimating the conditional probabilities (parameters). Learning the exact DAG structure

requires an exhaustive search among a number of candidates, exponential to the number of

variables. Methods based on greedy search have been proposed for practical uses [Chick-

ering, 2002, Tsamardinos et al., 2006]. When the DAG structure is known (usually given

by the experts), only the parameter estimation is necessary. The latter is usually achieved

by maximizing the joint probability of the network. Naive Bayes is the simplest Bayesian

network with a very primitive DAG composed of a single root (the class variable to predict)

and its child nodes, conditionally independent of each other given the class variable, as

illustrated on fig. 1.3b. This simple structure makes very strong assumptions on the rela-

tionships between the variables which is almost never true; however, it results in a simple

expression of the joint probability and the estimation of the parameters becomes straight-

forward with Maximum Likelihood Estimation. The joint probability in Naive Bayes is

given by

p(Y,A1, A2, ..., Am) = p(Y )
m∏
i=1

p(Ai|Y )

where Y is the class variable, Ai is the i-th variable. The decision ŷ for an example x is

then given by

ŷ = argmax
k∈{1,..,K}

p(Y = k)
m∏
i=1

p(xi|Y = k)

• Instance-based methods

Instance-based methods are a category of approaches that delay the model inference to

the point of classification of the test data. This means that the heavy computation phase

is performed not during the training (like for other approaches above) but over the test

time. k-Nearest Neighbour algorithm [Cover and Hart, 1967] is the most popular method

of this category. The main assumption is that data points located in close vicinity have

common properties, such as belonging to the same class to predict. Therefore, the class of

a test point can be determined by the known classes of the points surrounding it (typically

with a majority voting). It is necessary to provide the number of points to consult for the

decision - the parameter k of the model (hence, the name). It is also necessary to choose a

proper distance metric in order to determine the k-nearest neighborhood of an observation

(Euclidean instance being a common choice). The fact that to classify an instance it is

necessary to evaluate its distance to all the other points (which should be stored for testing)

makes the method less practical for large-scale problems.
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Figure 1.4: An illustration of SVM. The examples of the two classes are marked with
black/white circles.

• Support Vector Machines

Support Vector Machines (SVM) are a very common supervised learning method intro-

duced in [Vapnik, 1995]. SVMs seek to find a hyperplane separating the points of the two

classes (yi ∈ {1,−1}) in a way that maximizes the distance between the hyperplane and

the closest point at either side of it (the distance is referred to as margin), as shown on fig.

1.4. The decision for an unseen example depends only on the linear combination of the

points lying on the margin, called support vectors. To avoid the problem of misclassified

training examples present in the data which do not allow the algorithm to find an optimal

hyperplane, a soft margin formulation allows the misclassification of some examples, at a

cost added to the term maximizing the margin. In this case using SVMs boils down to

minimizing the following cost

argmin
w,b

1

n

n∑
i=1

max(0, 1− yi(w · xi − b)) + λ||w||2

where xi is the i-th example, yi is its corresponding class label, n is the number of examples,

w and b define the hyperplane and λ is the tradeoff coefficient controlling the number of

misclassified examples. The first term is the hinge loss and one can recognize the explicit

form of the empirical error Remp given in 1.1.

As the points may not be linearly separable in the original feature space, it is common to

use the so called kernel trick to project the points to a higher dimensional space where

the points are better separated. To use the kernel trick it is necessary to select the kernel

function, the most common being radial basis function (RBF) kernel and polynomial kernel,

each coming with hyperparameters to tune (more details on the kernel trick will be given

in section 5.1.3). The SVM optimization problem eventually reaches a global minimum

which has made it a very popular method. Some strategies have been proposed to extend

the binary SVM for a multiclass classification, for example, through building SVMs for

each class versus all the rest combined.
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(a) A neuron, the computational unit in neural
networks. w and b are the weights and bias
associated with it, a is the input and g is a
(usually non-linear) activation function.

(b) A simple artificial neural network with 2
hidden layers.

Figure 1.5: Artificial neural networks.

• Artificial neural networks

Artificial neural networks (ANN) are a category of methods vaguely resembling the neural

network of animal brains. ANNs [Rosenblatt, 1958, LeCun et al., 1989] consist of compu-

tational units called neurons that together form a layer. A neuron is shown on fig. 1.5a.

Layers may be stacked to form more complex structures as shown on fig. 1.5b. The neurons

of one layer are connected to the neurons of the previous layer. The last layer in a typical

neural network corresponds to the classification (less frequently, regression) task at hand.

The structure particular to ANNs allows learning representations describing the input at

different levels. So, the first layers usually capture more primitive patterns present in the

input while the topmost layers model abstract representations. The main advantage of

ANNs is that there is no need to gather relevant feature vectors to perform training; the

relevant features are being learnt while training the network for the task at hand. Formally

speaking, the connections between the units in the network are modeled with a (usually)

non-linear function on top of a linear transformation of the incoming neurons. ANNs are

the core of the so-called deep learning methods which will be presented in more details in

the next chapters.

I Unsupervised learning

The setup for unsupervised machine learning problems is similar to the one for super-

vised methods, the difference being that there is no output vector Y associated with the

training examples. Unsupervised methods aim at learning some hidden structure in the

data set that can be useful to discover and describe the tendencies and patterns for the

given task and the data. It is more difficult to evaluate the quality of an unsupervised

method, unlike in the supervised setting, where the true output is given and comparing

it to the predictions is straightforward. The most common application of unsupervised

learning is clustering.
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Clustering

Clustering or cluster analysis algorithms seek to partition the given data points into cohe-

sive groups of points similar or close to each other with respect to some measure, so called

clusters. Clustering, therefore, may reveal interesting information on the structure of the

data set. The most common clustering methods are listed below. A detailed review of

clustering methods has been done in [Jain et al., 1999] and [Xu and C. Wunsch II, 2005].

1. Hierarchical clustering

Hierarchical clustering methods aim at partitioning the data points based on their

distance by building a dendrogram, a hierarchy of levels, each level yielding a set of

clusters. The advantage of such methods is that cutting a dendrogram at different

levels allows obtaining a certain number of clusters, without retraining the model.

The construction of a dendrogram can proceed in either agglomerative or divisive

approach. The former starts by considering each data point as a cluster and further

recursively merges the current clusters by combining the closest pairs. The divisive

approach starts with a single cluster containing all data points and recursively splits

the current clusters into smaller ones by separating the farthest points. In either

case a measure of distance between entities is necessary. Most common distance

choices are implemented in single linkage clustering, complete linkage clustering,

average linkage clustering and Ward’s clustering [Ward Jr, 1963]. More hierarchical

clustering methods are discussed in [Murtagh and Contreras, 2011].

2. k-means clustering

k-means clustering [MacQueen et al., 1967] seeks to partition the data points into a

set S of k clusters by minimizing the sum of squared error (SSE) criterion quantifying

the within-cluster variance (the sum of the distances of the points to their cluster

center) given by

argmin
S

k∑
i=1

∑
x∈Si

||x− ci||2

where ci is the centroid of cluster Si. It proceeds by randomly selecting k points as

cluster centroids and further alternates between two steps - 1. assigning each data

point to the cluster with the closest centroid and 2. updating the current cluster

centers with the centroids of the newly found clusters. k-means is sensitive towards

the initialization of the method, though multiple initialization approaches have been

proposed as discussed in [Celebi et al., 2013]. The choice of the optimal cluster

number k can be made by monitoring the changes in the SSE as the number k is

varied through some range and pick the value resulting in minimal SSE or 1 standard

deviation away from it (elbow method).
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3. Mixture model clustering

Mixture model based clustering assumes the cluster to be a random variable z of K

possible values whose prior distribution p(z) and the conditional probability function

of an example x given the cluster variable p(x|z) are known. Gaussian mixture

models (GMM) is the most common configuration of such approaches where p(z)

is categorical/multinoulli distribution i.e. p(z = k) = πk,
∑K

k=1 πk = 1 and p(x|z)
is a Gaussian distribution with a mean vector µk and covariance matrix Σk i.e.

p(x|z = k) ∼ N (µk,Σk). The GMM training consists in estimating the parameters

of those distributions which is usually done with maximum likelihood estimation,

yielding the parameters that maximize the joint probability over the entire data set,

given by

L(θ1, ..., θK ;π1, ..., πK |X) =
n∏
i=1

K∑
k=1

πkN (xi; θk)

where θk = (µk,Σk). The most commonly exploited method to do so is the Expecta-

tion - Maximization (EM) algorithm [McLachlan and Krishnan, 2007]. The algorithm

proceeds in repeating two alternating steps - 1. e-step: compute the expectation of

the complete data log-likelihood, 2. m-step: select new parameter estimates max-

imizing the previously computed function (k-means is a particular case of the EM

algorithm). The posterior probability p(z|x) of a cluster given an observation is then

calculated with the Bayes’ theorem using the estimated parameters.

For most clustering methods, it is required to decide upon the desired number of clusters

K. The choice may be intuitive for some small-scale and relatively simple tasks but in the

vast majority of real life problems, the choice of K is not trivial: small Ks may give little

information on the structure of the data while greater values may reduce the interpretabil-

ity. Several approaches exist to select an optimal K. In some cases a simple 2-dimensional

visualization of the data points can give an idea of the order of K. For GMM, the num-

ber of clusters can be chosen among a range of values as the one minimizing the Akaike’s

information criterion (AIC) [Akaike, 1974] or maximizing the Bayesian inference criterion

(BIC) [Schwarz et al., 1978]. The Gap statistic [Tibshirani et al., 2001], that compares

the total within-cluster sum of squares for different values of K with their expected values

under a null reference data distribution, can also be used, especially for k-means clustering.

I Outlier detection

One-class classification problems are a particular case of classification problems where the

training set contains examples of only one class and the aim is to later identify the repre-

sentatives of that class. An important application of one-class classification problems is the

so called outlier detection. Outlier detection methods, also known as anomaly detection,

novelty detection, seek to distinguish outliers from the normal examples constituting the

given data set. All the examples of the given training data set are normal/positive and
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hence have the same label; the label however is not informative and does not appear any-

where in the problem formulation, which is why outlier detection problems are usually seen

as unsupervised problems. The definition of an outlier may vary across different domain

applications and data sets. Essentially, outliers are examples that do not quite fit to the

characteristics of the normal/inlier observations. More precise definitions may apply. So,

[Hawkins, 1980] defines an outlier as an observation that deviates so much from other ob-

servations as to arouse suspicion that it was generated by a different mechanism. [Johnson

and Wichern, 1992] defines an outlier as an observation in a data set which appears to be

inconsistent with the remainder of that set of data. A more thorough overview is presented

in [Ben-Gal, 2005].

Over the recent years the topic of outlier detection has been studied extensively in different

application domains and many algorithms have been proposed for outlier detection depend-

ing on the nature of the data and the type of anomalies [Hodge and Austin, 2004, Chandola

et al., 2009, Pimentel et al., 2014, Kiran et al., 2018]. Outlier detection methods have

been applied in various domains and applications, including credit card fraud detection

[Aleskerov et al., 1997], mobile phone fraud detection [Barson et al., 1996], network intru-

sion [Lazarevic et al., 2003], fault identification [Diaz and Hollmén, 2002], etc. We identify

5 major categories of the existing outlier detection methods: (1) probabilistic, (2) distance-

based, (3) reconstruction-based, (4) domain-based and (5) information-theoretic. Below

we present a brief summary of the assumptions and main characteristics of these meth-

ods. More comprehensive reviews have been conducted in [Pimentel et al., 2014, Chandola

et al., 2009].

1. Probabilistic methods

Probabilistic outlier detection methods aim at estimating the underlying probability

density function generating the data and declaring outliers as data points largely

deviating from the estimated density function. The main assumption of such meth-

ods is that outliers correspond to low density areas whereas inliers are concentrated

in the high density areas of the underlying distribution. Two major categories of

probabilistic methods exist: parametric and non-parametric.

Parametric methods assume that the data has been generated by a parametric distri-

bution with a parameter set Θ; Θ is estimated using the available data. Naively, the

inverse of the probability function for a test point can be interpreted as a measure of

its anomalousness. Other approaches are based on statistical hypothesis tests that

consider the null hypothesis as the event that a given point has been drawn from

the estimated distribution. When the null hypothesis is rejected, the point is consid-

ered an outlier. For example, Grubb’s test [Grubbs, 1969] assumes the training set

was generated by a Gaussian distribution and treats the points whose distance from

the estimated mean is larger than a certain threshold as outliers. It was designed
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for univariate analysis; its alternative versions were proposed in [Laurikkala et al.,

2000, Aggarwal and Yu, 2001]. A more sophisticated approach chooses to model the

underlying data distribution as a mixture of parametric distributions. For example,

Gaussian Mixture Models (GMM) are a very popular method based on modeling a

mixture of Gaussians and declaring a test point an outlier when it does not seem to be

generated by any of them. The most common technique to estimate the parameters

for this approach is maximum likelihood estimation, in particular, the EM algorithm.

The successful application of this category of methods depends on how well the basic

assumptions on the underlying distribution correspond to the data at hand and how

much data is available to approximate well the distribution in question.

Non-parametric methods do not assume any a priori form for the underlying density

function; it is determined from the training set. One simple non-parametric approach

is the histogram-based method that "learns" the shape of the density function by

constructing a histogram. It is done by defining bins and counting the number of data

points falling into each of them for a particular feature. Once the histogram is built,

a test point is considered an outlier if it is not included in any of the bins. The key

point here is to choose the bin size. The main drawback is that the histograms are

built for each individual feature; discriminating outliers by taking into account the

(possibly) complex interactions between the features may not be achieved. Kernel

density estimator, also known as Parzen window method [Parzen, 1962], is another

common method of density estimation. It places a Gaussian distribution centered

at each of the training examples and computes their linear combination. The only

free parameter of this technique is the kernel width which controls the smoothness

of the learnt distribution. The outliers are then detected as the points located in the

low-density areas of the estimated distribution.

2. Distance-based methods

Distance-based outlier detection methods adopt the assumption that outliers are

rather isolated data points and, therefore, their distance to their neighbors should

be indicative of their anomalousness. k-nearest neighbor [Altman, 1992] is one of the

approaches that considers a data point an outlier if its distance to its k-th neighbor

is larger than a chosen threshold. A different category of methods consider the local

density in the neighborhood of a point as an indicator of anomalousness. For instance,

[Breunig et al., 2000] proposed a metric called Local Outlier Factor (LOF) defined

as the ratio of the average density of the areas around the k nearest neighbors of a

given point and the local density of the area around the point itself. In the LOF

method, the local density, more precisely, the local reachability density, of a point

is defined as the inverse of the average reachability distance of the point from its

neighbors. Another approach called Local Outlier Probabilities (LoOP) combines the
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main idea behind LOF with a probabilistic component to model the anomalousness

of an example [Kriegel et al., 2009]. Unlike the nearest neighbor based methods that

make assumptions on the distance of a given point from its neighbors, cluster-based

outlier detection methods make assumptions about the distance of the point to its

closest cluster center. Basically, such an approach involves clustering the training

data using any clustering method (k-means, for example) and declare outliers based

on their distance to the found clusters. This method would not suit to the cases

where outliers themselves are numerous and close enough to form a cluster of their

own.

3. Reconstruction-based methods

Reconstruction-based outlier detection methods assume a model able to reconstruct

a given input after having it transformed to some intermediate representation. The

deviation between the reconstruction and the original input is then considered in-

dicative for the detection of outliers. Two major categories of such methods are

subspace-based and neural network based algorithms. Principal Component Analy-

sis (PCA) is a popular subspace-based method [Jolliffe, 2011] that seeks to project

the original observations of correlated variables to a space defined by uncorrelated

variables (principal components) that maximize the variance of the data. It has been

widely used as a dimensionality reduction technique (convenient as the method seeks

to project the original data points to a space where the desired amount of the infor-

mation can be preserved by keeping a certain number of principal components). The

transformation applied to the original input may be interpreted as encoding and may

be used to obtain a reconstruction of the input: the deviation of the reconstruction

from the input can be used to indicate outliers. Kernel PCA [Schölkopf et al., 1997]

extends the original formulation by first performing a mapping through a non-linear

kernel into a higher-dimensional space and then applying the PCA. PCA-based out-

lier detection was applied in [Huang et al., 2007, Brauckhoff et al., 2009, Choi et al.,

2005]. Neural-network based anomaly detection methods will be reviewed in chapter

6.

4. Domain-based methods

Domain-based methods, unlike those that try to estimate the density of the given

normal data points, seek to find their boundary. In this case the decision on the

anomalousness of a given point depends on which side of the boundary the point is

located. One class SVM (oc-SVM) [Schölkopf et al., 2001], a particular case of SVMs,

is one of the most common methods of the category. It seeks to find a hyperplane

with maximum margin separating the normal points from the origin. The kernel

trick is usually applied and the separation is performed in a higher-dimensional space.
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Support Vector Data Description (SVDD) method [Tax and Duin, 2004] is formulated

similarly to the oc-SVM method and aims at finding the hypersphere with minimum

volume containing the normal points. A point laying outside of it is considered an

outlier. The oc-SVM algorithm will be described in details in section 5.1.3.

5. Information-theoretic methods

Information-theoretic methods are based on the idea of quantifying the information

content of a data set as measured with entropy, conditional entropy, relative con-

ditional entropy, information gain, information cost or other similar measures. The

main assumption of these methods is that the presence of outliers changes dramat-

ically the information content of a data set. Therefore, removing the outliers will

have a significant impact on the measure of choice (e.g. entropy). Information theory-

based methods seek to identify outliers as a subset of data points whose removal from

the data set results in the largest change of the chosen measure as compared to the

removal of the rest of the data points. [He et al., 2006] proposed a greedy algorithm

(Local Search Algorithm) that iteratively labels the point with the largest entropy

decrease among the points currently labeled as normal, as outlier, until the number

of outliers reaches k, a preselected value. Choosing the value for the parameter k

may not be intuitive in many applications and is a disadvantage of such an approach.

1.2 Performance evaluation of CAD systems

One crucial step of any CAD system is the performance evaluation. Evaluating a CAD

system means assessing its generalization ability i.e. the capacity to perform the task of

interest on previously unseen data. This amounts to estimating the expected prediction

error (test or generalization error) at some new point. While annotated data may or may

not be used during the model training phase, a typical CAD system evaluation involves

comparing the output of the system to a reference. We will therefore focus on the evalua-

tion protocol where the reference or ground-truth annotations are given for the evaluation.

Formally, for a given training data set D = {(xi, ti)} for i = 1, .., N , a trained model pre-

dicts an output y via a function f i.e. y = f(x). Assuming the optimal prediction is given

by y∗ and L(t, y) is a loss measuring the discrepancy between t and y, the expected predic-

tion error can be shown to have the following decomposition for some learning algorithms

[Domingos, 2000]

E[L(t, y)] = c1E[L(t, y∗)] + L(y∗, ym) + c2E[L(ym, y)]

where ym is some central tendency of the learnt model. The test error decomposition was

first derived for regression, with L being the squared loss and c1 = c2 = 1 (full derivation in

[Hastie et al., 2009]). For a binary classification task, when L is the 0-1 loss, the expression

above holds for certain values of c1 and c2. A closed-form expression exists in particular
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for k-nearest neighbor algorithm. The main objective of the decomposition above is to

separate the three terms:

1. the first term is the irreducible error, independent of the learning algorithm and

hence beyond our control

2. the second term is the bias of the learning algorithm, the difference of its predictions

and the optimal predictions. The bias is 0 for a model always making optimal

predictions

3. the third term is the variance of the learning algorithm quantifying the differences

around the central tendency. A high difference between the average predictions on

the training and test sets is indicative of high variance.

Good learning algorithms therefore are characterized with low bias and low variance. Find-

ing the bias-variance tradeoff is an important aspect of selecting a model.

In the clinical settings, estimating the generalization error usually amounts to testing the

CAD system on a new set of patients, not used for the training of the CAD system. The

first aspect to consider is therefore a strategy to split the data into sets that would be used

for training and later for evaluation. Eventually, an appropriate metric should be chosen

to quantify the performance on the unseen data set. Below we discuss these two aspects

in details.

1.2.1 Data splitting strategies

An essential part of building an automated system is to decide upon the training set,

validation set and test set. The training set, as the name suggests, is composed of the

observations which are used for the training. The validation set comprises the observa-

tions not used for training but essential for the so-called model selection. Model selection

consists in retaining a configuration, among a set of possibilities, that gives an acceptable

performance on the validation set when trained on the training set. Frequently model

selection boils down to selecting hyperparameters for an algorithm. Moreover, evaluating

the system on the validation set creates a feedback that can be used to improve the current

settings. Once the model is chosen and trained, it can be evaluated on a previously unused

test set. The evaluation should be final and should not be used to modify the model after-

wards. There exist several strategies of splitting the given data set into training, validation

and test sets, depending on the availability of the data. When the overall data set contains

a substantial number of observations, the most straightforward approach is a basic split

into three distinct subsets, the training set typically being the largest. In many problems,

especially in the medical domain and therefore in CAD development, the available data

sets are scarce in the number of examples. For such cases, alternative strategies have been

developed.
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Cross validation is a common approach, especially applied when the data set is small.

The data set is divided into k disjoint subsets of (roughly) equal size, hence the name

of the strategy - k-fold cross validation. For each of the fold, the remaining k − 1 folds

together are used as a training set while the current fold itself is used as a test set. The

overall performance of the model is estimated as the average across all the folds. It is also

common to tune model parameters by computing the average cross validation error for all

the parameter configurations and pick the one with the minimum error (or the one at a

certain distance from the minimum). The extreme case of k-fold cross validation is N -

fold cross validation (also known as Leave-One-Out LOO validation) which will naturally

result in the best trained model (as a maximum amount of data is assigned for training)

with approximately unbiased estimation of the test error. It is, however, the slowest of all

and has a large variance [Hastie et al., 2009] because of the significant overlap between

the training sets in each fold. k = 5 and k = 10 are the most common choices [Breiman

and Spector, 1992]. In CAD evaluations, it is common to perform Leave-One-Patient-Out

LOPO evaluation i.e. testing on a single subject using the model trained on all the re-

maining subjects. Nested cross validation [Varma and Simon, 2006] is a more advanced

cross-validation strategy. It consists of performing two loops - an outer and an inner. In

the outer loop the data is split into a model selection set and a test set while the inner

loop further splits the model selection set into training and validation sets.

Bootstrap [Efron and Tibshirani, 1997] is another method for estimating the error of

a model. For a data set of N examples, the bootstrap method constructs B data sets

each of which is built by randomly drawing the original examples from the data set with

replacement. Models trained on each of B bootstrapped data sets can later be evaluated

on the original data set and their average error could be used as an estimate of the model

performance. The estimate would not be accurate since the test set and the training set

are not disjoint and may have a significant overlap. Another option is to evaluate the

performance of a bootstrapped data set Bi on the examples of the original data set, not

included in Bi. This modification provides a more accurate estimate.

The performance of a CAD system can be measured with different metrics depending on

the problem it is designed for. Below we consider the appropriate measures for CADs for

classification.

1.2.2 Performance metrics

The most typical method of quantifying the results of a CAD system for binary classi-

fication, distinguishing positive examples (P) from negatives (N), is the confusion matrix.

A confusion matrix is shown in 1.1. The diagonal of the matrix corresponds to the number

of positive and negative examples classified as positive and negative, respectively. FN is

the number of examples of class P (positive examples) classified as N (negative examples)
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and FP is the number of examples of class N classified as P . A confusion matrix can be

constructed for an arbitrary number of classes in a similar fashion. Various performance

metrics can be computed on a confusion matrix. Below we present the most common ones.

Predicted class

P N

True class P
True Positives

(TP)

False Negatives

(FN)

N
False Positives

(FP)

True Negatives

(TN)

Table 1.1: A confusion matrix for a classification system for two classes P and N .

1. Accuracy: The proportion of the observations correctly classified by the classifier.

Accuracy is not always indicative of the quality of the classifier since it is influenced

significantly by the majority class when the classes are largely imbalanced.

Acc =
TP+TN

TP+TN+FP+FN

2. Sensitivity or True positive rate or Recall: The proportion of the positive ex-

amples correctly labeled positive.

TPR =
TP

TP+FN

3. Specificity or True negative rate: The proportion of negatives classified correctly.

TNR =
TN

TN+FP

4. Precision: The proportion of examples labeled positive, actually being positive.

Precision =
TP

TP+FP

5. F1-score or Dice similarity coefficient (DSC): The harmonic mean of precision

and recall. Provides a more balanced performance metric than the accuracy.

F1 =
2

1
Precision + 1

Recall

As mentioned above, when the problem at hand is characterized by a large class imbal-

ance (common in the medical classification problems where healthy examples outnumber

pathological cases), accuracy may not be an informative measure of performance. Alter-

natively, a tradeoff between the sensitivity and specificity is sought as a more appropriate
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1.2. PERFORMANCE EVALUATION OF CAD SYSTEMS

(a) Examples of ROC curves. Each point on
the curve corresponds to a pair (sensitivity, 1-
specificity). The curves A and D showcase the
best and the worst possible performance, re-
spectively. The CAD system corresponding to
the curve B outperforms that of C.

(b) An example of fROC curve. Each point on
the curve corresponds to a pair (sensitivity, av-
erage number of false positive detections per im-
age).

indicator of the model performance. Such tradeoff is frequently found through the so-called

receiver operating characteristic (ROC) curve [Metz, 1986]. Assuming the classifier

outputs a numerical value before converting it to a label, a ROC curve can be obtained

by varying the threshold upon which the prediction labels would be assigned, and tracing

the sensitivity-specificity curves for all the thresholds. Each point on a ROC curve corre-

sponds to a couple (Sensitivity, 1-Specificity) obtained for a given threshold and is called

an operating point of the system. A ROC curve is illustrated on fig. 1.6a. The curve A

corresponds to the perfect scenario where both sensitivity and specificity are optimal. D

is the worst case as it has approximately the same performance as a classifier assigning

random labels to observations. The 2 other curves show reasonable performance levels.

ROC curves are usually quantified with a single value - the Area Under the Curve (AUC)

which gives an indication of how good of a curve a system has. Two curves, however,

may have identical AUCs but different sensitivity/specificity values. Comparing different

systems based solely on their AUC values may be misleading and it is therefore important

to analyze properly the ROC curves themselves [Park et al., 2004].

In medical applications, in particular those seeking to detect lesions in given images and

considering a subject pathological when at least one lesion is found, it is common to use

another characteristic curve quantifying the performance of the method. Free receiver op-

erating curve (fROC) illustrates the relationship between the sensitivity of the method and

the number of false positive findings per image [Bunch et al., 1978]. Fig. 1.6b shows an

example of a fROC curve where a given point on the curve stands for the sensitivity of the

y-axis for the corresponding average number of false positive detections per image on the

x-axis. Such analysis is especially useful when, for one reason or another, the specificity

of the method cannot be measured. One disadvantage of fROCs is that the x-axis does
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CHAPTER 1. IMAGE-BASED COMPUTER AIDED DIAGNOSIS SYSTEMS

not have an explicit upper bound which makes it impossible to compute such quantities

as AUC for ROCs.

In order to calculate the performance metrics mentioned above, it is necessary to define the

notion of TPs and FPs. The definition may vary between applications, depending on the

choices made by the CAD developers and the problem at hand. For instance, one may de-

fine TPs and FPs at voxel level, when voxels correctly labeled by the system are considered

TPs while the misclassified voxels constitute the FPs. This definition is more suitable for

segmentation problems. On the other hand, in detection problems it is common to define

TPs/FPs at detection/cluster level (clusters refer to neighborhoods of voxels identified by

the system with respect to the problem). In this case, when a detected cluster coincides

with the ground truth following some rule [Petrick et al., 2013], it is considered a TP and a

FP otherwise. The choice of such a rule, naturally, affects the CAD performance measure

and should be done accordingly. For patient-level CADs, the TPs and FPs may refer to

patients / healthy controls identified by the system as pathological, respectively.
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Chapter 2

Deep learning in medical
applications

The concept of artificial neural networks, briefly introduced in section 1.1.3, can be

traced back to the 40s and 50s when the first learning algorithms for rather shallow networks

were proposed [Rosenblatt, 1958]. Inspired by an earlier idea of [Fukushima and Miyake,

1982], [LeCun et al., 1989] developed the first convolutional neural networks (CNN). These

networks, however, remained rather unpopular over the next decade. The various tech-

niques developed over the next years for the training of deep architectures [Vincent et al.,

2010, Nair and Hinton, 2010, Srivastava et al., 2014, Ioffe and Szegedy, 2015], together with

the advances in computing power, including the exploitation of graphics processing units

(GPUs), paved the way for the successful application of deep architectures in large-scale

real-life problems. AlexNet in [Krizhevsky et al., 2012] was a milestone contribution that

allowed for deep architectures to rapidly make their way into the computer vision domain

and later, the medical imaging domain. AlexNet outperformed the rest of the approaches

(using handcrafted features) of the ImageNet challenge by a very large margin. Recently,

more advanced architectures have been proposed for the same challenge [Simonyan and

Zisserman, 2014, Russakovsky et al., 2015, Szegedy et al., 2015, Szegedy et al., 2017],

making the Convolutional Neural Networks the method of choice in the computer vision

community. The latter architectures and their derivatives have been applied in various

applications (not necessarily aligned with the one they were originally designed for), in-

cluding object-detection [Girshick et al., 2014], semantic segmentation [Long et al., 2015],

video classification [Karpathy et al., 2014] and super-resolution [Dong et al., 2014].

The success of the neural networks therefore increasingly ignited an interest in the medical

imaging community where many problems leveraged the potential of deep architectures.

An important advantage of deep learning methods lays in the fact that the model training
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CHAPTER 2. DEEP LEARNING IN MEDICAL APPLICATIONS

Figure 2.1: Left: Overlook on the publications in medical imaging using deep learning
up to 2017. Right: The most common medical applications of deep learning methods.
Illustrations from [Litjens et al., 2017].

is accompanied with an implicit representation learning in a data-driven manner. This

means that the features learnt from the data are immediately relevant to the task the

architecture is designed for. This offers an effective alternative to the feature extraction

routine described in section 1.1.2. [Shen et al., 2017] and [Litjens et al., 2017] presented

comprehensive reviews of deep learning in the medical domain.

In this chapter we review the medical applications that have benefited from the introduc-

tion of deep learning methods. We further focus on the deep approaches developed for

neuroimaging data which is the main focus of this work.

2.1 Deep learning in general medical applications

As reviewed by [Litjens et al., 2017] and shown on fig. 2.1, the number of publications

in the medical imaging domain exploiting different types of deep learning architectures

has grown significantly over the last few years. Fig. 2.1 also shows the various medical

application contexts where deep learning methods have been integrated successfully. In

most scenarios, such methods outperformed the conventional ones used previously and for

many medical tasks, they have become the main method of choice.

The medical problems tackled with deep architectures include various pathologies and

tasks. For instance, lung nodule detection is one of the problems where the methodologi-

cal shift towards deep architectures is remarkable. [Kumar et al., 2015] first learned features

with an autoencoder and then applied a binary decision tree on the feature vectors for lung

nodule classification on CT scans. [Hua et al., 2015] used both Deep Belief Networks and

CNNs for the same task. [Shen et al., 2015] performed lung nodule classification on CT

scans by combining the features output by three CNNs with patches of different scales at

input. [Dou et al., 2017] proposed a multiscale 3D convolutional network enhanced with

contextual information that is especially designed to reduce the false positive rate in pul-

monary nodule classification.

Breast cancer diagnosis is another important application where deep learning based meth-

ods have been used recently. [Wang et al., 2016] exploited several pretrained architectures
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2.2. DEEP LEARNING FOR PATHOLOGY DETECTION ON NEUROIMAGING

on breast images to classify patches as normal versus cancerous. [Kooi et al., 2017] ap-

plied a CNN enhanced with various additional features for the same problem. Similarly

to other works for the same medical task [Fotin et al., 2016], the method first performs a

candidate patch selection and then proceeds to the architecture training. [Kisilev et al.,

2016] proposed a CNN-based architecture trained to generate regions of interests (ROI)

surrounding suspicious areas which where then passed to the next layers, by so avoiding

the explicit candidate selection step.

Several recently proposed approaches targeted cardiac segmentation. So, [Poudel et al.,

2016] proposed a U-Net-like recurrent fully-convolutional network on 2D slices, that lever-

ages inter-slice spatial dependencies through internal memory units, to segment the left

ventricle. [Kong et al., 2016] combined a 2D CNN and an LSTM to perform temporal

regression in order to identify specific frames and a cardiac sequence.

[Zhu et al., 2017b] proposed an elaborate version of the U-Net architecture [Ronneberger

et al., 2015] for prostate segmentation. Another method based on a modified version of

U-Net enhanced with residual connections was proposed for prostate segmentation in [Yu

et al., 2017].

Organ detection and landmark localization are yet another area where substantial efforts

have been made with deep networks. For organ localization, [de Vos et al., 2016] used

the pretrained AlexNet to classify 3 regions of interests (ROI), i.e. heart, aortic arch and

descending arch, on three axes separately and predicted the 3D rectangular boxes contain-

ing the ROIs. [Cai et al., 2016] employed Convolutional Restricted Boltzmann Machines

on multiple modalities for vertebrae recognition. [Payer et al., 2016] proposed to regress

heatmaps for landmarks instead of their absolute coordinates with an end-to-end training

of a CNN on hand radiographs.

All the applications above showcase the potential of deep learning in various medical con-

texts. Below we will focus on one of the most popular set of medical tasks consisting of

the detection of various brain pathologies.

2.2 Deep learning for pathology detection on neuroimaging

In neuroimaging, many different medical problems, targeted with deep learning meth-

ods, can be identified. The most common of those include registration, segmentation and

detection tasks. In brain segmentation problems, the objective is to classify the voxels into

a number of categories for which, typically, a voxel-level annotated data set is available

for training. As such, the brain tumor segmentation has become especially popular with

the MICCAI Brain Tumor Segmentation (BRATS) challenge [Menze et al., 2015]. In the

scope of this challenge the clear tendency of exploiting convolutional neural networks has

emerged by outperforming the previous successful methods such as random forests as in
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CHAPTER 2. DEEP LEARNING IN MEDICAL APPLICATIONS

[Goetz et al., 2014, Kleesiek et al., 2014]. The rather first attempts of using fully convo-

lutional networks for brain tumor segmentation by [Zikic et al., 2014, Pereira et al., 2015]

have gradually evolved into more elaborate models such as cascaded multi-path convolu-

tional networks in [Havaei et al., 2017] and dual pathway deep 3D convolutional network

in [Kamnitsas et al., 2017] with Dice similarity coefficient reaching 89.8%.

This work, however, is focused on detection problems in neuroimaging. While segmen-

tation tasks operate in contexts where precise discrimination of tissue types is sought,

detection problems emerge in scenarios where pathologies are usually subtle and may not

be easily identified and contoured by a human expert. Therefore, the evaluation metrics

for segmentation and detection problems are different. While segmentation methods may

leverage a large range of metrics suitable for classification, as described in section 1.2,

evaluating a detection system depends on the difficulty of the task and the desired level

of granularity (voxel-level detections, subject-level detections, etc). Below we review some

important detection problems in neuroimaging.

2.2.1 Supervised brain pathology detection

A number of studies tackled the detection of brain pathologies as a segmentation task.

In this case, a voxel-level annotated training data set is available and the problem is cast to

a classification problem with an appropriate performance evaluation. Several neurological

pathologies are characterized by small lesions of various shapes, localizations and spatial

patterns. Small vessel disease (SVD), for instance, usually is a result of small vessel abnor-

malities and has various imaging biomarkers such as lacunes, white matter hyperintensities,

microbleeds, perivascular spaces and brain atrophy [Wardlaw, 2008]. Such abnormal le-

sions, having a diameter inferior to 2mm for the smallest perivascular space lesions and

up to 20mm for the largest observed lacunes, may lead to stroke, cognitive impairment or

dementia [Wardlaw et al., 2013]. Intracranial carotid artery calcification (ICAC) is another

example of small entities that can be identified on plain head computed tomography (CT).

ICAC is a marker of Intracranial arteriosclerosis which represents a major cause of stroke

[Bos et al., 2014] and might contribute to the risk of cognitive impairment and dementia

[Bos et al., 2012]. Multiple sclerosis (MS) lesions constitute another type of brain lesions

of varying size and time evolutive pattern. The characterization of lesion profiles, includ-

ing brain lesion load, as well as the temporal detection of appearance of new lesions are

crucial to perform an early diagnostic, define and monitor the optimal therapeutic strategy

[Filippi et al., 2016].

Recently, many automated detection methods for such pathologies have been proposed.

For MS lesion segmentation, [Valverde et al., 2017] proposed a cascaded 3D convolutional

neural network approach that consists in producing an intermediary lesion probability

map with a convolutional neural network (CNN) and then feeding it into a second net-

work that reduces the number of false positive detections. When T2-w, T1-w and FLAIR
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were combined at input, the approach was ranked first among 60 candidate methods on

the MICCAI2008 challenge, including the 3D convolutional encoder network with shortcut

connections and two interconnected pathways proposed by [Brosch et al., 2016]. [Havaei

et al., 2016] applied a CNN-based framework compensating the effect of missing modalities

to the MS segmentation context. [Ghafoorian et al., 2017a] proposed a CAD system for the

detection of lacunes of presumed vascular origin, consisting of two components - a first fully

convolutional network detecting candidates and a second 3D convolutional network trained

to discriminate true detections versus false positives. The CAD system achieves a sensitiv-

ity of 0.974 with 0.13 false positives per slice. [Dou et al., 2016] applied a 3D convolutional

network for cerebral microbleed detection. Several approaches exist for white matter hy-

perintensity segmentation. For example, [Ghafoorian et al., 2016] proposed a framework

where patches are selected in a non-uniform manner and later compared three convolu-

tional architectures - 1. single-scaled, 2. multi-scaled with early fusion and 3. multi-scaled

with late fusion. In [Ghafoorian et al., 2017b] this work has been extended to incorporate

location information which resulted in a substantial performance gain. [Bortsova et al.,

2017] proposed a deeply supervised dropout network for the segmentation of ICAC lesions

and achieved a DICE score of 76.2% between the predicted ICAC lesions and the manual

annotations (the FPR was not reported).

2.2.2 Unsupervised brain pathology detection methods

Although the deep architectures described above achieve impressive results compared

to the state-of-the art methods, they require annotated data sets for training and do not

necessarily solve the problem of false positive detections. The nature of brain pathologies,

however, is highly variable and well-annotated data sets with an adequate representation

of different cases are not always available.

In order to bypass the need of voxel-level annotated data sets, some authors recently pro-

posed to formulate subtle lesion detection tasks in semi-supervised or entirely unsupervised

settings. The number of such works, in general, and for brain pathologies, in particular, is

by far inferior to that of supervised methods. However, the interest towards this category

of methods has been growing over the recent years and the first works show significant

potential. [Baur et al., 2017] introduced a framework accounting for both labeled and

unlabeled data in a deep architecture for MS lesion segmentation. In [Dubost et al., 2017]

the authors exploit weak labels (the number of lesions in a scan) in an architecture called

GP-Unet to detect enlarged perivascular spaces in the basal ganglia. The network solves a

regression problem and outputs a number of detected lesions via a U-Net-like convolutional

pathway, as shown on fig. 2.2. [Shah et al., 2018] proposed to exploit a deep autoencoder

whose middle layer representation is plugged into a supervised extension that discriminates

inliers vs. outliers using a small amount of annotated data. The method was evaluated,
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Figure 2.2: GP-Unet, a deep architecture with weak labels (the number of lesions in a
scan) to detect enlarged perivascular spaces in the basal ganglia. Illustration from [Dubost
et al., 2017].

among others, on three biomedical data sets, including the BRATS17 data set.

Some works go even further and propose to treat lesion detection tasks as outlier detection

problems in fully unsupervised contexts. [Chen and Konukoglu, 2018] recently proposed

a constrained adversarial autoencoder trained on a set of non-pathological brain images.

The approach extends the original formulation of the Adversarial Autoencoders (AAE)

with an additional term imposing consistency in the learnt representation space. The eval-

uation, however, was performed on some test cases from the BRATS data set, which is not

a typical detection problem.

The deep learning architectures have become common methods in various medical applica-

tions and, particularly, in neuroimaging, as can be seen from the studies mentioned above.

A significant number of the existing works tackle segmentation problems with the majority

of the approaches developed in supervised settings on voxel-level annotated data sets. The

limited access to such labeled data sets, with a sufficient number of representative exam-

ples, has motivated an increasing interest in weakly-supervised and unsupervised methods.

The studies developed in such settings present interesting methodological solutions and

show a promising performance.
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Chapter 3

CAD systems for epilepsy detection
in neuroimaging

3.1 Epilepsy description

Epilepsy is one of the most common neurological disorders affecting around 50 million

people worldwide according to the World Health Organization (WHO). It is character-

ized by an enduring predisposition to generate unprovoked brain seizures [Fisher et al.,

2014]. Epilepsy treatment involves consistent intake of antiepileptic drugs on a long-term

basis which allows to control the seizures for up to 70% of focal epilepsy patients; the

remaining 30%, however, do not respond to pharmacotherapy and are referred to as medi-

cally refractory/drug-resistant/intractable epilepsy patients [Kwan and Brodie, 2000]. The

two most common medically refractory epilepsy types are temporal lobe epilepsy and fo-

cal cortical dysplasia (FCD) [Lerner et al., 2009]. In both cases, surgical removal of the

epileptogenic lesions is the most effective treatment that may offer a seizure-free life.

Temporal Lobe Epilepsy

TLE is the most common form of epilepsy with focal seizures originating in the temporal

lobe. TLE is commonly a result of mesial temporal sclerosis (MTS). Temporal lobectomy

is one of the main surgical approaches for TLE. Hippocampal sclerosis (HS) is a common

pathology encountered in mesial temporal lobe epilepsy, characterized with severe neuronal

cell loss and gliosis in hippocampus. According to a recent consensus classification system

[Blümcke et al., 2013], 3 types of HS are distinguished, further categorizing types 2 and 3

as atypical and type 1 as classical HS. The new classification is based on the patterns of

neuronal loss and gliosis as measures of sclerosis.
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Malformations of cortical development

Medically refractory epilepsy is often associated with malformations of cortical develop-

ment (MCD), a variety of structural and metabolic abnormalities of brain arising during

gestation, present in up to 40% of drug resistant epilepsy patients [Guerrini et al., 2003].

Focal cortical dysplasia (FCD) is one of the most common MCDs in epilepsy patients.

It is the first/third most frequent cause of epilepsy in children and adults, respectively

[Lerner et al., 2009]. ILEA (International League Against Epilepsy) consensus classifica-

tion differentiates three types of FCDs [Blümcke and Spreafico, 2011]. Type I refers to

FCDs with abnormal cortical lamination, further divided into subtypes Ia (radial cortical

lamination, mostly located in temporal lobes), Ib (tangential 6-layer cortical lamination)

and Ic (radial and tangential cortical lamination) [Blümcke et al., 2011]. Type II FCDs are

characterized with a presence of dysmorphic neurons, with or without balloon cells (sub-

types IIb and IIa, respectively), commonly found in frontal lobe. Type III FCDs represent

architectural distortions of cortical layer adjacent to hippocampal atrophy (subtype IIIa),

glial or glioneuronal tumor (subtype IIIb), vascular malformation (subtype IIIc) and other

lesions acquired in early childhood (subtype IIId).

On MRI, the FCD lesions may be characterized with [Kabat and Król, 2012]

1. increased thickness of the cortical gray matter

2. blurring of the gray-white matter junction

3. increased T2 and fluid attenuated inversion recovery (FLAIR) signal intensity in the

subcortical white and gray matter

4. abnormal sulcal or gyral pattern

However, these findings may be very subtle and not easy to detect when visually inspect-

ing MR images which eventually results in a high rate of normal MRI screenings among

epilepsy patients [Lerner et al., 2009]. The three FCD types have different extent of visibil-

ity on MRI scans. Type II FCDs are significantly more visible on MR imaging than type

I FCDs [Lerner et al., 2009]. Moreover, FCDs IIb are detected visually more frequently

than FCD IIa [Colombo et al., 2012]. Fig. 3.1 gives an example of a subtle FCD lesion.

Heterotopia is another category of MCDs characterized by cortical cells (grey matter)

encountered in inappropriate locations in the brain, as a result of interruption in their

migration to the correct location in the cerebral cortex. Grey matter heterotopia may be

unilateral or bilateral. Its most common form is bilateral periventricular nodular hetero-

topia (grey matter heterotopia lining the lateral ventricles). It can also occur in subcortical

white matter (subcortical nodular heterotopia).
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3.2. PRE-SURGICAL EVALUATION OF INTRACTABLE EPILEPSY

Figure 3.1: T1-weighted and T2-weighted axial MR images of an epilepsy patient. The
focal cortical dysplasia (red arrows) present as loss of gray-white contrast on T1-weighted
imaging and a hyperintensity on T2-weighted imaging. Illustration from [Kini et al., 2016].

3.2 Pre-surgical evaluation of intractable epilepsy

For patients diagnosed with medically refractory epilepsy the surgical removal of the

lesions may offer a seizure-free life. The success rate of surgery, however, is only around

70% [Wiebe et al., 2001, Keller et al., 2007, Bien et al., 2012]. Moreover, the success rate

of surgery in patients with normal MRI have been shown to be significantly lower than

for MRI positive patients [Alarcon et al., 2006, Bell et al., 2009, Bien et al., 2009]. The

resective epilepsy surgery consists of a complete disconnection of the epileptogenic zone

while preserving the ’eloquent’ cortex. Such a surgical intervention, therefore, depends

heavily on the localization of the epileptogenic zone.

3.2.1 Clinical protocol for epileptogenic zone localization

The epileptogenic zone is the area of cortex indispensable for the generation of seizures.

In practice, various techniques and tools are used to define the location and the extent

of the epileptogenic zone, each of them having its proper definition and approximation of

the zone in question. During the first stage of epilepsy diagnosis, neuroimaging techniques

are used to infer the location of an epilepsy lesion, the cause of the seizures seen from the

radiographic perspective. Since not all lesions found on neuroimaging data are actually

responsible for the generation of seizures, electroencephalography (EEG) and video EEG

are performed to target the most relevant. When a lesion found on neuroimaging data is

coherent with the results of scalp video EEG telemetry, the patient can be recommended

for surgery. Consequent techniques are considered to optimize the surgical procedures as

well as to assess and minimize the related risks. When the neuroimaging data carries no

visible relevant abnormality detected, more steps are required before a patient would be
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referred to a possible surgery. In particular, the irritative zone (the region of cortex gen-

erating interictal electrographic spikes) and the seizure-onset zone (the area of the cortex

where clinical seizures are actually generated) are inferred through EEG (scalp or inva-

sive intracranial), magnetoencephalography (MEG) or functional MRI (fMRI) triggered

by interictal spikes for the former and EEG (scalp or invasive intracranial) or ictal single

photon emission computed tomography (SPECT) for the latter [Koepp and Woermann,

2005, Duncan et al., 2016]. These additional techniques provide necessary information on

whether or not the surgery should be performed and if so, which zone should be targeted.

The epileptogenic and seizure-onset zones may not coincide; one of them being larger than

the other may lead to a surgical success or failure depending on if the sufficient part of the

actual cause of seizures has been removed or not [Rosenow and Lüders, 2001].

This protocol of epileptogenic zone localization, however, is not carried out routinely at

large scale. The reasons vary; some analysis techniques are not always available in med-

ical centers (such as MEG or fMRI), others are skipped due to lack of skills to interpret

them (e.g. PET) and in many cases, eventually, invasive exams (e.g. intracranial EEG)

are performed without consulting less troublesome methods. Analyzing the information

present on neuroimaging, therefore, may offer a chance to infer epileptogenic lesion local-

ization with less discomfort for the patient or, when inconclusive, may guide the electrode

placement depth in invasive exams, when they are an absolute necessity.

3.2.2 MRI and PET imaging in the lesion localization protocol

Neuroimaging has gradually become the technique of choice to gain a perspective on the

structure and the functionality of the brain. High quality neuroimaging data has been ex-

ploited in the non-invasive diagnosis and therapeutic follow-up of various neuropathologies.

Neuroimaging techniques, especially those based on multiparametric magnetic resonance

imaging (MRI) and positron emission tomography (PET), have been exploited to detect

epileptogenic lesions in a non-invasive manner.

The International League Against Epilepsy (ILAE) suggests an optimal protocol including

T1-weighted, T2-weighted and FLAIR MRI sequences. Certain features, observed in differ-

ent types of intractable epilepsy, can emerge in those MRI sequences. As such, volumetry,

T2 relaxometry and FLAIR hyperintense signal are used to asses mesial temporal lobe

epilepsies [Huppertz et al., 2011]. FCDs may appear on T1-w images as cortical thickening

(50–90% of cases), abnormally deep sulci and blurring of the GM/WM interface (60–80%

of cases), and may be associated with abnormalities of gyration [Barkovich and Kuzniecky,

1996, Besson et al., 2008]. FLAIR hypersignal is also often present (71-100% of cases)

[Bernasconi and Bernasconi, 2015].

Diffusion tensor imaging (DTI) is another MRI sequence applied for intractable epilepsy

detection [Lee et al., 2004, Thivard et al., 2006, Chen et al., 2008, Fonseca et al., 2012]. The

sequence measures the diffusion of water molecules to create an anisotropy map. Using the
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3.2. PRE-SURGICAL EVALUATION OF INTRACTABLE EPILEPSY

index of fractional anisotropy allows finding the orientation of the white matter tracts. In

TLE, fractional anisotropy is consistently decreased and for FCD lesions, abnormalities in

diffusion indices are present in the subcortical white matter, adjacent to the lesion [Fonseca

et al., 2012, Bernasconi and Bernasconi, 2015]. Evidence also suggests that the appear-

ance of DTI tracts can predict the surgical outcome, with displaced tracts recovering more

favourably than those infiltrated by the target lesion [Bagadia et al., 2011].

The detection of small lesions, however, remains challenging. Subtle lesions are easily

missed during standard visual inspections of the images. Recent retrospective studies in-

volving surgical epilepsy patients indicate that up to 33% with typical FCD type II lesions

and 87% with FCD type I (i.e. intracortical) lesions go undetected during routine MRI

exams [Bernasconi and Bernasconi, 2015]. Similarly, subtle heterotopia may only become

apparent after MRI post-processing [Huppertz et al., 2005]. The success rate for the sur-

gical resection when the lesion is visually detected (MRI positive) is 2-3 times higher than

for the visually undetected lesions [Téllez-Zenteno et al., 2010]. Patients with lesions un-

detected during visual examination are referred to as MRI negative or cryptogenic epilepsy

patients [Bernasconi et al., 2011]. Developing techniques capable of identifying subtle

epileptogenic lesions on MRI data is therefore of a great importance for a possible surgery.

PET imaging, a nuclear medicine technique used to observe physiological processes in the

body such as metabolism, has been receiving an increasing attention in the scope epilepsy

lesion localization. Acquiring a PET scan involves injecting a tracer, labelled with a

positron-emitting radionuclide, into a patient. For drug resistant epilepsy, the most widely

available and clinically used PET tracer is 18F fluoro-deoxyglucose (18F-FDG) [Hammers,

2015]. This tracer allows assessing regional glucose metabolism. Areas of focal glucose

hypometabolism are often larger than a lesion or the epileptogenic zone, but are gen-

erally correlated with seizure onset zones and/or areas of seizure spread [Juhász et al.,

2000, Rathore et al., 2014].

The positive contribution of PET imaging was emphasized in a number of studies [Kim

et al., 2011, Lamusuo et al., 2001, Rathore et al., 2014]. In [Kim et al., 2011], the diag-

nostic sensitivity reaches 83% while MRI results in 62%. Similar findings were reported

in [Lamusuo et al., 2001], showing the significant hypometabolism in TLE patients with

hippocampal damage, and in [Carne et al., 2004] where correct lateralization, coherent

with the ictal EEG findings, was achieved for 26 out of 30 patients whose hippocampal

sclerosis went undetected on MRI. The authors in [Salamon et al., 2008] went further by

proposing to include PET images co-registered with MR scans in the presurgical evaluation

of epilepsy patients which resulted in detecting one third of the lesions, not detected on

MRI. Fig. 3.2 shows two examples of patients with normal MRIs while the correspond-

ing PET images show significant hypometabolism in the concerned area. A meta-analysis

of the studies evaluating the impact of PET imaging was carried out in [Willmann et al.,
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CHAPTER 3. CAD SYSTEMS FOR EPILEPSY DETECTION IN NEUROIMAGING

2007] which reports the hypometabolism shown on PET imaging to have a predictive value

of 80% in patients with normal MRI.

These works motivate an interest in PET imaging as a source of important complementary

information in pre-surgical evaluation of epilepsy patients.

Figure 3.2: Examples of two patients with FCD type I. Both patients (shown row-wise) had
normal MRI reading (left column). Right column corresponds to the MRI transverse slices
overlaid with coregistered PET slices. For the first patient, FDG-PET/MRI coregistration
indicates hypometabolism in the right superior temporal gyrus (B, arrow). For the second
patient, FDG-PET/MRI coregistration indicated a focal area of hypometabolism in the
left superior parietal region just behind the sensory cortex (D, arrow). Illustration from
[Salamon et al., 2008]

3.3 State-of-the-art CAD systems for epilepsy

Over the recent years automated epilepsy detection has become the focus of many com-

puter aided diagnosis systems. Some of them are based on EEG monitoring data. Those

methods seek to identify epilepsy seizures on the EEG signals and more commonly perform

a classification of normal versus abnormal signals, linked to epilepsy. This constitutes to

patient-level systems as described in section 1.1.1. So, in [Subasi et al., 2005] the au-

thors proposed to extract characterization of EEG signal with fast Fourier transform or

autoregressive models and feed it into a neural network classifying a patient as epileptic or

normal. A classification rate of 92.3% was achieved with this approach. Neural networks

i.e. radial basis network and recurrent Elman Network, coupled with such features as

spectral entropy, sample entropy and wavelet entropy, were used in [Kumar et al., 2010] to
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classify healthy and unhealthy signals. Wavelet-based methods have been used in several

studies including [Huafu and Hai, 2004, Zandi et al., 2010]. A comprehensive overview of

the methods developed for the detection of epilepsy in EEG data is performed in [Saini

and Dutta, 2017] and [Orosco et al., 2013].

The majority of works, however, develop CAD systems based on neuroimaging data.

Among those, several contexts can be pinpointed. Some of them proposed subject-level

CAD systems to discriminate healthy controls versus epilepsy patients. More commonly,

the proposed CADs perform voxel-level analysis with explicit localization of the found le-

sion. Another common approach is based on surface-based morphometry [Dale et al., 1999],

a method of constructing the surfaces of structural boundaries in the brain. Those bound-

aries (e.g. between white matter and gray matter) are established through a brain seg-

mentation stage, and later the surface is reconstructed with a meshing algorithm. Within

this category of approaches, the decisions are usually made at vertex-level where a vertex

is where the corners of the triangles, constituting the mesh, meet.

3.3.1 Ground truth

Ground truth annotations provide the true labels for the observations in the data set.

Depending on the granularity of a system, the nature of the ground truth annotations may

vary. For subject-level CAD systems, subject-level labels are required i.e. each example is

labeled as healthy control or epilepsy patient. For CADs aiming at localizing the lesion,

as opposed to simply discriminating epilepsy patients versus healthy controls, more high-

level labels are necessary. As such, the ground truth may be given by roughly outlined

regions where the true zone of interest is located, or by its meticulous delineation at voxel-

level. Naturally, the last case is the most time and resource consuming while image-level

labels are relatively easy to obtain. Many epilepsy patients, as stated in section 3.2, have

normal MRIs (MRI-negative). While it is possible to obtain voxel-level annotations for

MRI-positive cases over a visual analysis, outlining a lesion in an MRI-negative patient

requires external justification including post-surgical examination of the resected zone,

histopathology or intracranial EEG analysis. For those patients, the most common refer-

ence is provided by a rough delineation of the supposed epilepsy lesion.

Evaluation of a CAD system, with respect to the available ground truth, may take place

in several manners. For CADx systems discriminating healthy controls versus epilepsy pa-

tients the evaluation is rather straightforward; any metric described in 1.2.2 could be used

to quantify the number of correct/incorrect decisions by the CAD. For CADe systems, the

typical approach is to treat the detections overlapping with the true lesion delineation as

true positives and those outside of it, as false positives. Naturally, when precise lesion

contours are available, true positives/false positives may be defined as the detected voxels

located inside/outside the ground truth.
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CHAPTER 3. CAD SYSTEMS FOR EPILEPSY DETECTION IN NEUROIMAGING

3.3.2 Features in CAD systems for epilepsy detection

The current CAD systems for medically refractory epilepsy have considered almost all

characteristics discovered by radiologists in search for markers of epilepsy on neuroimag-

ing. Substantial efforts have then been invested in translating those clinical findings into

automatically computable features. Commonly, the features are computed at voxel-level

or at the level of vertices of the triangle mesh modeling the cortical surface (Surface Based

Morphometry). The most frequent of those features associated with the appearance of

FCDs on MRI data are:

• The distance between the gray/white matter boundary and the outermost surface of

the gray matter quantifying the cortical thickness. Increased cortical thickness has

been associated with FCDs [Blümcke and Spreafico, 2011].

• Gray-white matter junction computed by a convolution of the binarized image, quan-

tifies the gray-white matter blurring. Gray-white matter extension, computed by

applying a Gaussian smoothing filter over the segmented gray matter image, is a

measure quantifying the extension of the gray matter into the white matter. Both

characteristics are frequently used to identify FCDs [Huppertz et al., 2005].

• Sulcal depth is estimated by calculating the dot product of the movement vectors

with the surface normal.

• Curvature is quantified as the inverse of the radius of an inscribed circle and mean

curvature represents the average of two principal curvatures.

Table 3.1 lists the features (mostly relevant for FCDs) used frequently in the development

of epilepsy CAD systems. Combinations of those features have been used in various works

[Huppertz et al., 2005, Ahmed et al., 2016, Thesen et al., 2011, Hong et al., 2014].

3.3.3 Methods in CAD systems for epilepsy detection

As explained in the previous chapters, obtaining ground-truth annotations for epilepsy

patients is a difficult and time consuming task for a number of reasons, more so for theMRI-

negative patients. A significant number of the state-of-the-art epilepsy detection methods,

however, perform supervised classification, mostly on data sets containing MRI-positive

epilepsy patients. A few studies acknowledged the difficulty of ground truth annotations

of epilepsy lesions and proposed semi-supervised or unsupervised approaches. It is impor-

tant to mention that most of the works, exploiting the methods below for epilepsy CADs,

targeted FCD lesions solely, using the features corresponding to the clinical knowledge on

the appearance of FCD lesions on neuroimaging data.
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Feature Computed with

Image intensity Voxel-based morphometry ([Ashburner and
Friston, 2000]), difference maps, Laplacian
intensity gradient, statistical measures (mean,
median, variance, skewness, kurtosis, energy,
entropy)

Cortical thickness Diffeomorphic registration based cortical
thickness, distance between gray/white and pial
isocontour surfaces

Gray-white junction blurring Gradient map using Gaussian smoothing,
identify areas with highest cortical thickness,
MAP, iterated local searches on neighborhood

Sulcal reconstruction Graph matching, gyrification index, spherical
wavelets

Lobar or volume
atrophy/enlargement

Deformation based morphometry, Jacobian of
heat equation vector field applied to spherical
harmonics with a point distribution model

Curvature Gaussian intrinsic curvature, integral measures of
curvature, orientation fields from gradient
structure tensors, area-minimizing flows to
spherical registration

Asymmetry analysis Asymmetry index, asymmetry analysis on
cortical folding

Other cortical measures Fractal analysis of the cortex, metric distortions
on spherical registration

Texture Analysis

3D Texture analysis Drectional Riesz wavelets

Gray-level co-occurrence (contrast,
homogeneity, inverse difference,
energy, entropy)

Haralick et al algorithm [Haralick et al., 1973]

Gray-level run-length (short/long
run emphasis, gray level
distribution, run-length
distribution)

Haralick et al algorithm [Haralick et al., 1973]

Table 3.1: Overview of features commonly used in CADs for epilepsy detection. Differ-
ent combinations of these features were used to isolate and identify lesions (usually focal
cortical dysplasias). Table from [Kini et al., 2016].
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GLM-based statistical analysis is a common approach in neuroimaging based on a

mass univariate analysis that fits a General(ised) Linear Model [McCullagh and Nelder,

1989] for each voxel. General Linear Models include a number of methods such as linear

regression. Once the model for each voxel is fitted and its parameters are estimated, the

latter are used to produce a statistic (e.g. t-statistic, F -statistic) allowing to accept or

reject a corresponding hypothesis for each voxel. This statistical analysis, also known as

voxel-based morphometry (VBM) in the neuroimaging community [Ashburner and Friston,

2000], has been used frequently in epilepsy studies as a tool to compare a patient with a

cohort of healthy controls. The approach allows to assess the hypothesis of significant

differences between a subject and a cohort of healthy controls and eventually yields a map

of clusters where each cluster corresponds to a set of voxels where the differences are re-

markable. Those clusters are reported as the localizations of the predicted epilepsy lesions.

GLM-based analysis with various choices of statistics and GLM has been used in [Riney

et al., 2012, Chassoux et al., 2010, Chen et al., 2008, Focke et al., 2008, Bruggemann et al.,

2007, Thivard et al., 2006, Srivastava et al., 2005]. The features considered in those works

include gray/white matter probability maps, cortical thickness, FLAIR intensities etc. A

comprehensive GLM-based method is implemented in the Statistical Parametric Mapping

(SPM) software, a common choice in many epilepsy studies.

Supervised learning methods have also been explored in CAD systems for epilepsy

detection. Since it is extremely difficult to obtain accurate lesion delineations in MRI-

negative patients, most supervised approaches consider mainly MRI-positive cases.

Voxel-based detection has been performed in several studies. So, [Antel et al., 2003] first

trained a Bayesian classifier on different intensity features, including cortical thickness,

relative intensity and intensity gradient magnitude, to classify voxels as lesional or normal.

As a next step, Fisher’s discriminant ratio using textural features, derived from gray-level

co-occurrence matrices, was used to reclassify voxels classified as lesional in the first step.

The method achieved 83% sensitivity for 100% specificity on a data set containing 7 MRI-

negative cases. [Yang et al., 2011] used a Naive Bayes classifier to discriminate healthy

versus lesional voxel cubes using statistical measures on cortical thickness and gradient vec-

tors. Vertex-based approaches have been explored as well. [Besson et al., 2008] proposed

a two-step system consisting of a neural network classifying vertices as lesional/normal

based on several surface-based features (cortical thickness, curvature, sulcal depth, etc)

and a false positive reduction step discriminating the previously found true detections and

false positive clusters with fuzzy k-Nearest Neighbour classifier. The first step allowed to

detect 18/19 lesions while the second step, after reducing significantly the number of false

positives, reached 13/19 detection rate. More recent approaches such as [Hong et al., 2014]

and [Ahmed et al., 2015] applied Linear Discriminant Analysis and Stratified Logistic re-

gression on the vertices of the cortical surface and evaluated the methods on data sets,
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containing among others, 19 and 24 MRI-negative patients, respectively. In [Ahmed et al.,

2015] the authors showed that manually reducing the resection masks for MRI-negative

patients to correct the label noise resulted in a detection rate of 58% while more "generous"

annotations achieved only 12%. In [Hong et al., 2014], however, the lesions of the patients

initially considered MRI-negative were later visually detected on MRI. [Adler et al., 2017]

applied a simple neural network to classify healthy versus pathological vertices on 28 cor-

tical features and each of them individually, achieving up to AUC = 0.87, depending on

the feature. A similar approach was proposed in [Jin et al., 2018]. In [Gill et al., 2017],

the authors first proposed to use vertex-level and cluster-level RUSBoost on 30 cortical

features, achieving 83% (4 ± 5 FPs) sensitivity and 92% (0.08 ± 0.27 FPs) specificity. To

the best of our knowledge, the only work on automated epilepsy lesion detection on data-

driven features was proposed in [Gill et al., 2018], where 2 convolutional neural networks

were trained to classify raw image voxels, reaching 91% (3 ± 2 FPs) sensitivity and 92%

(1 ± 0 FPs) specificity.

Unsupervised or semi-supervised methods have also been explored in the devel-

opment of CADs for epilepsy detection. So, a simple approach based on univariate z-score

thresholding was proposed by [Thesen et al., 2011]. The considered features were cortical

thickness, gray-white matter contrast, curvature, sulcal depth and Jacobian-distortion and

the thresholding was done for each feature individually. Eventually, the method achieved at

best 100% specificity for 84% sensitivity on thickness and 84% specificity for 61% sensitiv-

ity using gray-white matter contrast. Another simple approach was proposed in [Strumia

et al., 2012] where a number of intensity, texture and form based features were used to

model the normality of each voxel with a Gaussian distribution. Later, the voxels with

low probability with respect to the estimated Gaussians of all features were identified as

epileptogenic voxels. [Ahmed et al., 2014] formulated a semi-supervised extension of hi-

erarchical conditional random fields (HCRF) and used it on cortical thickness to classify

vertices as abnormal and eventually discriminate epileptogenic vertices. The supervision

is added to compute node (patches at different scales) potentials in HCRF, with labels

computed to represent if the node is different from the corresponding nodes of the healthy

control population. In [Ahmed et al., 2016] the authors extend the previous study by

adding more relevant features for the detection of FCD such as gray/white-matter con-

trast, sulcal depth and curvature. Moreover, the abnormality of each vertex was measured

by the probabilistic output of the LoOP outlier detection method [Kriegel et al., 2009].

An important contribution of the latter study was that the evaluation was performed on

a group of MRI-negative patients and achieved at best a detection rate of 70% for 9 false

positive detections per patient.

Another approach that has initiated the scope of this work was proposed by a former PhD
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student in [El Azami et al., 2016]. It consists in a CAD system using an entirely unsu-

pervised method. For each voxel in the brain, a oc-SVM model was trained on gray-white

matter junction and extension values and possible epilepsy lesions were predicted as the

clusters of voxels that were classified as outliers by the corresponding oc-SVM models. The

main advantage of this method is that no annotated training data is required. The CAD

system achieved a detection rate of 77% for a false positive rate of 3.2 per patient on a

data set composed of 13 epilepsy patients with 10 MRI-negatives.

3.3.4 CAD systems for TLE and FCD

The current CAD systems for TLE are summarized in table 3.2. The main objective

of these works is the TLE diagnosis, therefore precise detection of lesions is not sought.

Obtaining labeled data set being easier in this context, supervised methods have been ap-

plied frequently. Moreover, two main directions can be pointed out.

1. Patient-level discrimination of epilepsy patients consists in discriminating TLE pa-

tients from healthy controls. Several studies have focused on this task for TLE such as

[Focke et al., 2012, Cantor-Rivera et al., 2015]. Hippocampal sclerosis (HS) seems to play

an important role in the discrimination of TLE patients from healthy controls. So, when

HS is present, the classification accuracy reaches 89-96%, as opposed to 86% when it is

not.

2. Lateralization of the epileptogenic lesions is the problem of discriminating the side of

the brain (left versus right, typically) where the epileptogenic zone is located. Several stud-

ies have tackled this problem for TLE. Among those [Duchesne et al., 2006a, Keihaninejad

et al., 2012] developed a system on MRI T1 data while [Focke et al., 2012, Pustina et al.,

2015] considered multimodality data such as MRI, DTI and PET. Similarly to the previous

case, the presence of HS is important. [Duchesne et al., 2006a, Keihaninejad et al., 2012]

both achieved 100% accuracy in patients with HS.

Tables 3.3-3.5 summarize the current methods for FCD detection. Unlike for TLE, these

systems aim to actually detect the epileptogenic lesions in patients, which is a more chal-

lenging problem. As it can be seen from the tables, most such studies consider only T1w

MRI, although DTI and FLAIR were included in some of them [Thivard et al., 2006, Focke

et al., 2008, Chen et al., 2008]. Many of these methods are based on GLM-analysis, compar-

ing potential patients to a cohort of healthy controls [Srivastava et al., 2005, Bruggemann

et al., 2007, Focke et al., 2008, Riney et al., 2012]. A significant number of approaches

is developed in supervised contexts [Antel et al., 2003, Besson et al., 2008, Yang et al.,

2011, Hong et al., 2014, Ahmed et al., 2015, Adler et al., 2017, Gill et al., 2017]. The

used features are all hand-crafted and coincide with those presented in table 3.1. The

lack of studies using data-driven features becomes immediately obvious. Indeed, only in
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[Gill et al., 2018] the relevant features are learnt with neural networks. Another important

consideration is the different metrics used for evaluation, including detection rate, AUC,

accuracy, precision, recall, etc. Those metrics may be calculated differently depending

on the convention adopted by the authors. So, in some studies the sensitivity may be

computed at voxel level while calculated at subject level in others. Moreover, there is no

benchmark data set to evaluate the methods which makes the comparison very difficult.

Even more so when considering that some approaches were evaluated on MRI-negative pa-

tients as in [Ahmed et al., 2016] while others focused on ’easier’ cases. For MRI-negative

patients, the achieved sensitivity varies between 52 and 70% [Ahmed et al., 2015, El Azami

et al., 2016, Ahmed et al., 2016]. Depending on the adopted method, some studies report

specificity as to quantify the false detections in healthy controls while others skip this eval-

uation and report false positive detections per patient.

PET imaging is rarely exploited in the existing CAD systems. Among the few mentioned

studies, [Chassoux et al., 2010] leveraged the PET imaging in an automated lesion detection

system, based on GLM analysis on PET image intensity values. The statistical analysis

performed in this study, however, was less efficient than a simple visual analysis of patients’

PET images which greatly improved the epileptogenic lesion localization in patients whose

T1-w MR images were considered normal in 13 out of 23 cases. A recent method proposed

in [Tan et al., 2018] considers handcrafted features extracted from MRI and PET imaging

and combines them in a 2-step approach based on SVM in order to identify FCD lesions.

This is the only study leveraging MRI and PET data in a single system, using, however,

handcrafted features. The results report an increase in maximum sensitivity from 82% to

93% and in the sensitivity, corresponding to the maximum specificity, from 61% to 64%,

when PET imaging is considered alongside MRI data. The accompanying FP rate in FCD

patients, however, increases as well.

We have presented a detailed description on epilepsy and the current features and ap-

proaches for automated epilepsy detection on neuroimaging. The main drawbacks of the

current systems for epilepsy detection can be summed up in the following aspects. First,

the proposed systems chiefly target a particular cause of epilepsy (such as FCD) and do

not generalize for other epilepsy categories. Therefore, the handcrafted features considered

in the current systems are relevant for the particular pathology. A wider range of features,

however, may be more beneficial. The second aspect is the fact that the combination of

several imaging modalities (such as T1w and FLAIR MRI and PET imaging) is rarely

explored. As mentioned in a survey on computational analysis in epilepsy by [Kini et al.,

2016], considering multimodal data may provide important complementary information,

otherwise ignored in monomodal settings. The third aspect is that comparing different

methods is not trivial in the absence of a unified protocol for performance evaluation.
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Eventually, most studies are evaluated on MRI-positive cases where the lesions are visible

(though subtle) on MR scans. The real challenge, however, are the MRI-negative patients.1

1Abbreviations in the tables below. MTL: medial temporal lobe; L: left; R: right; NC: normal control;
HS: hippocampal sclerosis; nHS: without hippocampal sclerosis; CV: cross-validation; LOO: leave-one-out;
LOPO: leave-one-patient-out.
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Chapter 4

Problem formulation

In the previous chapters we covered various aspects of the modern CAD systems. We

started by a general introduction on the main components of such systems, detailing the

existing approaches. Chapter 2 delved into an overview of the most popular category

of methods used in the state-of-the-art CAD systems for various medical applications,

namely deep learning based methods. Eventually, we presented the current CAD systems

designed for epilepsy lesion detection on neuroimaging data. We summarized the main

methodological choices implemented in those systems and outlined their particularities. In

this chapter we present our considerations for the problem at hand and state the choices

we have made when proposing our solution.

4.1 Motivation and strategy

The objective of this work is to propose a conceptual framework aimed at subtle anomaly

detection on brain imaging. The clinical application of such a CAD system consists in au-

tomated epilepsy lesion detection in MRI-negative patients. In chapter 3 we discussed the

specific characteristics of epilepsy lesions and the challenges associated with their detection

on neuroimaging. We further presented the state-of-the-art methods for epilepsy detection.

Several limitations can be observed in the existing CAD systems for epilepsy lesion detec-

tion. First, most of them are specifically designed for FCD detection and do not present

a unified system for other epilepsy causes. The second aspect concerns the methods cho-

sen as the core decision-making mechanisms. Supervised learning methods, despite having

impressive results in other medical applications, are less adapted to this context. The

main reason, as explained in the previous chapter, is the high heterogeneity of epilepsy

lesions in terms of size, shape and localization, and the lack of labeled training data sets,

adequately representing this variability. Moreover, while it is possible to gather a huge
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CHAPTER 4. PROBLEM FORMULATION

data set of epilepsy patients with voxel-level lesion annotations when the latter are visible

on MRI, it is unclear what protocol should be followed to obtain such meticulous anno-

tations for MRI-negative patients, which are the main challenge of the CADs for epilepsy

detection. Assuming that a careful analysis of post-surgical exams, histopathology and/or

invasive EEG findings could provide some sort of lesion delineation, the annotated zone

is very likely to contain healthy tissue which means introducing label noise to the chosen

supervised learning algorithm. This case have been argued in [Ahmed et al., 2015] where

replacing the initial ’generous’ annotations (based on resection masks) for MRI-negative

patients with tighter boundaries resulted in improving the detection rate from 12% to 58%.

In our case, the considered data set contains too few patients to cover the complexity of

epilepsy lesions. Moreover, the concerned patients are chiefly MRI-negative patients. Su-

pervised learning in these circumstances does not seem realistic.

The next category of the existing methods is based on GLM-analysis. The main strategy

of these methods is to perform mass statistical analysis so as to compare a given subject

to a group of normal healthy controls. Originally, the method has been developed in the

univariate setting. When extending it to the multivariate setting, so as to account for

multiple features (effects), the performance obtained with individual features is not always

improved or even preserved. [Bruggemann et al., 2007] performed a GLM-based analysis in

4 settings - 1. GM-only, 2. GM-WM aggregate, 3. GM or WM and 4. GM and WM (GM:

gray matter, WM: white matter). The corresponding detection rates were 10/16, 14/16,

11/16 and 3/16, respectively. It is not clear what method should be adapted to account for

multiple effects; the conjunction null hypothesis (both effects should be significant) may

clearly underperform.

We therefore adapt an unsupervised strategy for the difficult task of epilepsy lesion detec-

tion. In such a setting, we seek to identify abnormalities (including epilepsy lesions) on

brain imaging through learning the normality of the brain on healthy examples. There-

fore, we employ the outlier detection approach. Identifying epilepsy patients by detecting

outliers at image-level is not realistic; the lesions are too subtle and are not likely to discrim-

inate themselves more than other healthy anatomical variations in the brain. We therefore

adopted the approach proposed in [El Azami et al., 2016] which consists in learning the

normality of each voxel and detecting abnormalities as local neighborhoods of voxels with

high abnormality scores. The general structure of the CAD system is shown on fig. 4.1.

This approach allows to bypass the need for a large voxel-level labeled training data set,

representing the heterogeneity of epilepsy lesions.

4.2 Challenges and objectives

The system proposed in [El Azami et al., 2016] was trained on two handcrafted features

relevant for FCD lesions - gray/white matter junction and extension, and evaluated on a

54 Z. Alaverdyan
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI005/these.pdf 
© [Z. Alaverdyan], [2019], INSA Lyon, tous droits réservés
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Figure 4.1: General representation of the CAD system by [El Azami et al., 2016]. The
framework consists of three major steps - 1. Image normalization to a common template,
2. Extraction of handcrafted feature maps i.e. gray-white matter junction and extension
maps and 3. oc-SVM model learning per voxel in the brain. For a new test image, each
oc-SVM yields a score corresponding to the anomalousness of the voxel.

small set of 3 MRI positive and 10 MRI negative patients. These clinically guided FCD

characteristics are limited to the current knowledge on the appearance of such lesions on

MRI. However, they might not be the optimal ones to identify the lesions. While the

reported performance is adequate (10/13 detection rate), the evaluation on a larger MRI

negative patient set is yet to be conducted. Moreover, the CAD was designed on features

computed on T1w MRI. A multimodal analysis was not conducted.

In this work we attempt to address both issues. We first hypothesize that representa-

tions learnt in a data-driven fashion may capture information left out when computing

handcrafted features and, therefore, may lead to a better performance. As representation

learning mechanisms, we consider deep learning architectures. Our objective, therefore,

consists in proposing and developing deep learning architectures suitable for extracting

representations to perform outlier detection per voxel. We thus define the objectives of

this work as follows.

1. We will propose and develop unsupervised deep architectures to extract voxel-level

representations to be used to train a oc-SVM model for each voxel in the brain.

2. We will evaluate the performance of the overall system on a group of 21 epilepsy

patients with 18 MRI negative/cryptogenic cases and compare the results with those

obtained with the handcrafted features in [El Azami et al., 2016].
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CHAPTER 4. PROBLEM FORMULATION

3. We will next explore strategies to integrate multiple imaging modalities into a single

framework, in order to leverage the complementary information present in different

modalities of neuroimaging data.

Eventually, the strategies implemented in this work are summed up in the following con-

tributions.

4.3 Contributions

Chapter II starts by presenting the general framework of the proposed CAD system

and introducing the data set of healthy controls and epilepsy patients that will be explored

throughout this work. We then move to the core of this study and introduce our first

contribution which is to propose and exploit various unsupervised deep architectures as

potential feature extraction mechanisms for outlier detection. We then identify the limita-

tions of the existing architectures and propose a new configuration of siamese networks to

better fit the context of subtle outlier detection on neuroimaging. We compare the learnt

features with their handcrafted alternatives within the same framework and, further, with

the currently popular SPM analysis. To our knowledge, data-driven representations have

only been used in one recent study by [Gill et al., 2018] and, therefore, deserve to be looked

at.

Chapter III addresses the issue of integration of multiple modalities for outlier detection.

The choice of a strategy of integrating the information from different modalities is not a

trivial one. A decision should be made on what is the optimal level of integration within

the framework and what methods can be used to achieve it. As such, we propose and

compare two strategies. The first strategy consists in training multichannel deep architec-

tures, i.e. networks that combine the images of different modalities as input channels and,

therefore, learn representations on their combination. The second approach represents an

intermediate level fusion strategy. In this case the representations are learnt with deep net-

works for each modality individually and later combined through a multiple kernel learning

paradigm. We compare the two approaches and eventually report the best performance

achieved in multimodal outlier detection on T1-w and FLAIR MRI. Multimodal epilepsy

lesion detection has been addressed only in a few works as shown in chapter 3.

The final chapters present our exploratory efforts to leverage the PET imaging as a po-

tential source for epilepsy lesion detection. This imaging modality has not received the

same attention as, for example, T1-w MRI, as can be seen from the summary on the

state-of-the-art methods (tables 3.3 - 3.5). In our context, the available PET images are

fewer in number than the corresponding T1-w and FLAIR MRIs. Hypothesizing that the

insufficient number of training examples would not allow us to leverage the PET images at

best, we explore strategies of their indirect integration. As such, we make an attempt of
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PET image synthesis from MRI and evaluate the performance of the system with synthe-

sized images substituting the missing ones. We show the improved sensitivity of the CAD

system when both real and synthetic PET images are considered.

Eventually, the manuscript concludes with a general conclusion and our considerations for

perspective work.
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II Unsupervised representation
learning for anomaly detection
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Chapter 5

CAD pipeline and data description

In the previous chapters we described the principles of CAD systems for medical image

analysis and further reviewed deep learning based methods for various medical applica-

tions, neuropathologies in particular. Further, we presented a detailed overview of the

state of the art approaches for epilepsy lesion detection on neuroimaging. Eventually, the

constraints and the specifics of the difficult task of epilepsy lesion detection were discussed

in chapter 4 where we explained and formalized our approach to the problem at hand.

Our aim in the scope of this project is to adapt and develop unsupervised deep archi-

tectures as representation learning mechanisms, tailored to the task of per-voxel anomaly

detection on brain MR images. Among others, such a system should capture such subtle

abnormalities as epilepsy lesions. This chapter presents the general pipeline of the proposed

approach and introduces the methods used in its implementation. The chapter concludes

with a detailed description of the data set considered in this study, composed of a set of

healthy controls and patients with confirmed epilepsy lesions.

5.1 General framework

The general framework of the CAD system is shown on fig. 5.1. The main components

of the system represent the two main stages of the approach i.e.

1. representation learning

2. per voxel outlier detection model learning

Both components are trained on a data set composed of healthy examples only. First,

a neural network is trained on patches of MR images extracted from healthy patients.

Once the training is completed, a oc-SVM model is built for every voxel taking at input

the representations corresponding to the patches of healthy images centered at the voxel.
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CHAPTER 5. CAD PIPELINE AND DATA DESCRIPTION

Figure 5.1: General representation of the CAD system.

When the oc-SVM models are built for all the voxels in brain, a given test image can be

run through the system. As an immediate output, the system produces a score map of

the same size as the input image, where each voxel value is the signed score, output by

the corresponding oc-SVM model for the representation corresponding to the test image

patch, centered at the voxel. Below we present the components of the CAD system.

5.1.1 Data pre-processing

The first step of the CAD pipeline is the data pre-processing module. At this step, all

the available acquisitions are first aligned to a common template which establishes a voxel-

to-voxel correspondence between all the subjects. The detailed pre-processing routine is

described in section 5.2.4. Next, the images are processed according to the format required

in the second step of feature extraction. Typically, the images are turned into a stack of

fixed size patches to be fed as input to the representation learning architectures. Moreover,

depending on the type of architecture, the extracted patches may be fed to the network in a

standalone fashion (monomodal architecture) or stacked in channels representing different

modalities (multichannel architecture). Once the format of the input is decided upon, the

corresponding data are introduced to the second component of the CAD system.

5.1.2 Feature extraction

The next component consists in learning representations for the provided input. This

step is the main interest and focus of this work and therefore will be described in details

in chapter 6, comprising the existing approaches and our contribution.
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.

Figure 5.2: The principle behind the oc-SVM method. The points in the original space are
projected into a higher dimensional space where their separation from the point of origin is
sought through maximizing the margin. Illustration from [Mourão-Miranda et al., 2011]

5.1.3 Per-voxel outlier detection: oc-SVM

Principle

The one-class SVM (oc-SVM) introduced in [Schölkopf et al., 2001] is a particular case of

the binary SVM which seeks to find a hyperplane separating the examples of the data set

with different labels. In oc-SVM all the examples of the given data set X = {xi}i=1,..,n

where xi ∈ Rd are normal/positive and therefore a hyperplane is sought to separate all

the data points from the origin. Since most real-life data sets are not linearly separable

in the original data space, the points are first mapped into a higher dimensional space

through a mapping φ(x) with a corresponding kernel K(xi,xj) = 〈φ(xi), φ(xj)〉 where
〈·, ·〉 denotes the inner product. Kernels satisfying the Mercer’s conditions [Vapnik, 1999]

are guaranteed to have a corresponding mapping φ(x). Though different kernels may be

chosen for the problem at hand, the most common choice is the RBF kernel due to its

locality preserving properties. On the other hand, polynomial and sigmoid kernels seem

to fail systematically in the scope of outlier detection [Bounsiar and Madden, 2014]. An

illustration of the oc-SVM principle is shown on fig. 5.2.

Primal formulation

Let X be a set of n observations X = {xi}i=1,..,n where xi ∈ X and φ be a feature map

X → F from the original space to a dot product space F , corresponding to some kernel

K(xi,xj) = 〈φ(xi), φ(xj)〉

The oc-SVM algorithm seeks to project the data points into a new feature space corre-

sponding to the kernel K and to separate them from the origin with maximum margin.

To that end, the following problem is solved:
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min
w,ρ,ξi

1

2
||w||2 − ρ+

1

νn

n∑
i=1

ξi

subject to w · φ(xi) ≥ ρ− ξi i ∈ [1, n]

ξi ≥ 0 i ∈ [1, n]

(5.1)

where n is the number of training examples, xi is the i-th example in the training data

set X, ξi-s are slack variables relaxing the inequality constraints, w and ρ define the

separating hyperplane, ν ∈ (0, 1) is a parameter that sets a boundary to the fraction of

outliers allowed. When the optimal solution w∗, ρ∗ is found, the decision for an example

x depends on the side of the hyperplane it falls in and is expressed with

f(x) = sgn(w∗ · φ(x)− ρ∗)

The penalization of the slack parameters in the objective function assures that the decision

function will yield 1 for most of the points in the training set with a reasonably small ||w||.
The parameter ν controls the number of misclassified points.

Dual formulation

Often the optimal solution of the problem in 5.1 is found through its dual formulation.

To arrive at the dual formulation, Lagrangian multipliers α, β ≥ 0 are introduced for each

constraint. The Lagrangian form therefore is:

L(w, ξ, ρ, α, β) =
1

2
||w||2 − ρ+

1

νn

n∑
i=1

ξi −
n∑
i=1

αi(w · φ(xi)− ρ+ ξi)−
n∑
i=1

βiξi (5.2)

Setting the derivatives of the Lagrangian with respect to the primal variables w, ξ and ρ

to 0 yields the following:

∇wL = 0 ⇒ w =
n∑
i=1

αiφ(xi)

∇ξL = 0 ⇒ αi =
1

νn
− βi

∂L
∂ρ

= 0 ⇒
n∑
i=1

αi = 1

(5.3)

Introducing 5.3 into the Lagrangian 5.2, the dual formulation becomes

min
α

1

2

n∑
i,j=1

αiαjK(xi,xj)

subject to
n∑
i=1

αi = 1

0 ≤ αi ≤
1

νn
i ∈ [1, n]

(5.4)

The last inequality constraint stems from βi = 1
νn − αi ≥ 0.

The solution of the dual problem yields an optimal α∗ which can be used to recover the

64 Z. Alaverdyan
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI005/these.pdf 
© [Z. Alaverdyan], [2019], INSA Lyon, tous droits réservés



5.1. GENERAL FRAMEWORK

optimal values of the primal variables. The simplest is the computation of w∗ from the

expression in 5.3.

We classify the training observations into 3 categories depending on the corresponding

values of the Lagrangian multipliers. So,

1. αi = 0, hence βi = 1
νn . For these points w · φ(xi) > ρ and ξi = 0 in the primal

formulation. These are the points that were correctly considered inliers (the slack

variables are 0) and are referred to as normal.

2. 0 < αi, βi <
1
νn . These are the points lying on the decision boundary. Their primal

variable values are w · φ(xi) = ρ and ξi = 0. These points are called (essential)

support vectors (SV).

3. αi = 1
νn . These are the points that were misclassified i.e. left outside of the decision

boundary (the corresponding slack variables are positive ξi > 0). They are called

errors (non-essential support vectors).

It should be noted that the data points where α∗i = 0 do not contribute to the decision

boundary and later to the decision function f(x) for a new point x, as can be seen from

the first equation of 5.3. Moreover, for a support vector xi, ρ∗ = w∗ · φ(xi) and can be

computed as

ρ∗ = w∗ · φ(xi) =
n∑
j=1

α∗jK(xi,xj)

and the decision function for an example x therefore becomes

f(x) = sgn(w∗ · φ(x)− ρ∗) = sgn(
n∑
i=1

α∗iK(xi,x)− ρ∗)

Solving the dual problem amounts to solving a quadratic programming (QP) problem. The

main difficulty is to store the kernel matrix when its dimensionality is large. The most

common tool for solving SVM problems is the LIBSVM library introduced in [Chang and

Lin, 2011]. LIBSVM solves the dual QP problem in 5.4 using a decomposition method

that relies on updating a subset of α coefficients in each iteration [Fan et al., 2005].

On the ν coefficient As it was shown in [Schölkopf et al., 2001], the ν coefficient in the

formulation of oc-SVM is also an upper bound on the fraction of permitted errors and a

lower bound on the fraction of support vectors. In other words, by setting ν = 0.01 we

allow around 1% of the training examples to be misclassified as outliers.

|errors|
n

≤ ν ≤ |errors|+ |SV s|
n
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oc-SVM design

In the proposed pipeline each voxel is associated with a oc-SVM model. Applying the oc-

SVM algorithm implies several design choices. First, the kernel function should be chosen.

As such, we used the RBF kernel throughout this study, which is the most common kernel

function used in oc-SVM problems. The kernel choice assumes appropriate values for

its parameters. For the RBF kernel, the kernel width must be chosen. The details of

the adopted heuristics for this parameter value are given in section 7.3.2. Eventually, the

parameter ν, controlling the ratio of allowed outliers in the oc-SVM formulation 5.1, should

be chosen. Our experimental choice for this parameter is given in section 7.3.2 as well.

For a new test image, each voxel is assigned the signed score output by the corresponding

oc-SVM, computed as w∗ · φ(x)− ρ∗.

5.2 Data description

The proposed CAD system was evaluated on a set of patients with confirmed epilepsy

lesions. The study was approved by our institutional review board with approval numbers

2012-A00516-37 and 2014-019 B and a written consent was obtained for all participants.

In this study we had access to patient data coming from the Neurological Hospital in

Lyon, through our collaboration with Dr. J. Jung, in the scope of an ongoing research

program PHRC (programme hospitalier de recherche clinique) initiated by Pr. F. Maugière

and Dr. J. Jung. This research program is aimed at evaluating the diagnostic value of

multimodal neuroimaging data in the pre-surgical evaluation of intractable epilepsy. The

healthy control data was accessed through our collaboration in the scope of the same

project.

5.2.1 Study group

The data set considered in this study consists in a training set of healthy subjects and

a test set of epilepsy patients. The details of the data set are summarized in table 5.1.

Patient group: The test group consists of 21 patients who had been admitted to the

Neurological Hospital of Lyon and diagnosed with medically intractable epilepsy. The age

of the patients varies between 17 and 47 years, with a median of 29. As a part of the

pre-surgical evaluation, they all had T1-weighted and FLAIR MRI sequences. All but two

had a PET exam as well. Additionally, the patients underwent intracranial EEG exam in

order to localize the origin of seizures.

Healthy control group: The training data set consists of 75 healthy individuals aged

between 20 and 66 years. All the subjects had T1-weighted and FLAIR MRI sequences.

35 of them had PET exams as well.
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5.2.2 Imaging protocol

All the healthy controls and patients had 3D anatomical T1-weighted brain MRI se-

quences (TR/TE 2400/3.55; 160 sagittal slices of 192 x 192 1.2mm cubic voxels) and

FLAIR MRI sequences (176 slices of 196 x 256 1.2mm cubic voxels) on a 1.5 T Sonata

scanner (Siemens Healthcare, Erlangen, Germany).

PET scans were conducted on a Biograph mCT PET-CT tomograph (Siemens). Subjects

were positioned in the scanner such that the acquired planes would be parallel to the

orbital-meatal line. Head movement was minimized with an airbag. A camera allowed a

visual control over the head position during the acquisition. Measures for tissue and head

support attenuation were performed with a 1min low-dose CT scan acquired before emis-

sion data acquisition. A dynamic emission scan was acquired in list mode during 60 min

after the injection. Static 18F-FDG uptake images were reconstructed for 50 to 60 min post

injection using 3D-ordinary Poisson-ordered subset expectation maximization iterative al-

gorithm (12 iteration, 21 subsets) incorporating point spread function and time of flight

(with a Gaussian filter of 4mm) after correction for scatter and attenuation. Reconstructed

volumes consisted of 109 contiguous slices (2.03mm thickness) of 200 x 200 voxels (2.036 x

2.036mm2). Actual resolutions for reconstructed images were approximately 2.6mm in full

width at half maximum in the axial direction and 3.1mm in full width at half maximum in

the transaxial direction measured for a source located 1cm from the field of view [Jakoby

et al., 2011].

# of controls # of patients
T1
(1.5T Siemens Sonata)

FLAIR
(1.5T Siemens Sonata)

PET
(mCT PET-CT Siemens tomograph)

DB1 35 19 160 x 192 x 192
1.2mm cubic voxels

176 x 196 x 256
1.2mm cubic voxels

109 x 200 x 200
2.036mm cubic voxels

DB2 40 2 160 x 192 x 192
1.2mm cubic voxels

176 x 196 x 256
1.2mm cubic voxels

–

Total 75 21

Table 5.1: Summary of the data set obtained through our collaboration with Dr. J. Jung.

5.2.3 Patient lesion location reference

The information on the patients’ epileptogenic lesions is summarized in table 5.2. The

table details the clinical justification on the true lesion localization. As it can be seen,

all patients had an intracranial EEG exam while most of them had a resective surgery

and became seizure free at most 6 months after the surgery. A few patients had thermo-

coagulation instead, which happened to be successful and therefore confirmed the EEG

results. For most patients, the encountered lesions did not fall under any common epilepsy
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Figure 5.3: The ground truth annotations shown in purple circles overlaid onto the trans-
verse slices of patients’ T1-weighted MRI.
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Figure 5.4: A slice of the maximum probability atlas (left) and the resulting volume of
interest (right).

cause/category, as introduced in section 3.1. Typically, histopathological analysis of cryp-

togenic epilepsy patients is informative with respect to the lesion category in only 30-50%

cases [Bernasconi et al., 2011]. Therefore, their lesion type is marked as unknown.

Of the 21 patients, 3 had epilepsy lesions visually detectable on the pre-surgical MR scans

(MRI+). However, only one (patient D+) was detected on T1-w MRI. The MR images

of the remaining 18 patients were considered normal on multiple examinations i.e. no le-

sion was detected visually (pure MRI−). For the visually remarkable lesions, the manual

annotations were obtained by contouring the visible lesions on the raw images. For the

MRI− patients, the ground truth references were traced by an expert neurologist after

carefully verifying the corresponding intracranial EEG results as well as the post-surgical

report and MR scans following surgery or thermocoagulation. The obtained ground truth

annotations, projected onto the corresponding T1-w MR transverse slices, are illustrated

on fig. 5.3. Localizing the true lesion in such manner naturally comes with a lack of

precision as the precise delineation of the lesion is still impossible. Instead, the surgically

resected area is considered a slightly "generous" expansion of the lesion localization. In

both cases the evaluation of the CAD system proceeds as follows: if a detected lesion is

largely located in the defined "reference" zones, the detected lesion is considered a true

positive (TP ). Otherwise it is considered a false positive (FP ).

5.2.4 Data pre-processing

For the proposed CAD system approach to be advantageous, certain pre-processing

steps are necessary. All the pre-processing steps have been done using the SPM8 software

[Ashburner, 2009], a common tool in the neuroimaging community. The volumes were

first spatially normalized with the unified segmentation algorithm (UniSeg) [Ashburner

and Friston, 2005] implemented in SPM that performs tissue segmentation (white/grey

matter, cerebrospinal fluid), correction for magnetic field inhomogeneities and spatial nor-

malization. All the 3D MR volumes were normalized to the standard brain template of

the Montreal Neurological Institute (MNI) [Mazziotta et al., 2001] with a voxel size of 1 x
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Patient Lesion location Lesion location confirmed with Lesion type Age

Patient A− Insula R Intracranial EEG & successful thermocoagluation Unknown 17

Patient B− Temporal Lobe L Intracranial EEG & surgical success Unknown 32

Patient C− Hippocampus R Intracranial EEG & surgical success Histopathology: FCD
type III with HS

41

Patient D+ Superior frontal gyrus R Intracranial EEG & surgical success FCD type II 21

Patient E−
Inferiolateral

remainder of parietal lobe R
Intracranial EEG & surgical success Unknown 25

Patient F−
Hippocampus L,

parahippocampus L
Intracranial EEG & surgical success Unknown 28

Patient G+ Middle frontal gyrus L Intracranial EEG & successful thermocoagluation FCD type II 43

Patient H− Superior frontal gyrus R Intracranial EEG & surgical success Unknown 29

Patient I−
Hippocampus L,

parahippocampus L
Intracranial EEG & surgical success Unknown 41

Patient J− Precentral gyrus R Intracranial EEG & surgical success Unknown 19

Patient K− Superior temporal gyrus R Intracranial EEG & surgical success Unknown 44

Patient L− Middle frontal gyrus R Intracranial EEG & surgical success Unknown 25

Patient M− Anterior temporal lobe R Intracranial EEG & surgical success Unknown 25

Patient N−
Anterior temporal lobe R

Hippocampus R
Intracranial EEG & surgical success Unknown 26

Patient O− Middle frontal gyrus L Intracranial EEG & surgical success Unknown 33

Patient P− Hippocampus R Intracranial EEG & surgical success Histopathology: FCD
type III with HS

41

Patient Q−
Lateral

remainder of occipital lobe L
Intracranial EEG & surgical success FCD type II 29

Patient R+ Orbital gyrus R Intracranial EEG & surgical success Ganglioglioma 47

Patient S−
Anterior temporal lobe R

Hippocampus R
Intracranial EEG & surgical success Histopathology: FCD

type IIIa
31

Patient T− Posterior temporal lobe R Intracranial EEG & surgical success Unknown 36

Patient U− Posterior temporal lobe L Intracranial EEG & surgical success Unknown 18

Table 5.2: Summary of the epileptogenic lesions found in the patient group.

1 x 1 mm and the default parameter values. This step assures the voxel-level correspon-

dence between all the subjects. Further, the other imaging modalities, namely FLAIR and

PET sequences, were rigidly co-registered to the individual T1-w MR images. Next, the

transformation from the subjects’ native space to the MNI space, produced by the UniSeg

algorithm, was applied on the co-registered FLAIR and PET images in order to normalize

them to the MNI space as well.

70 Z. Alaverdyan
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI005/these.pdf 
© [Z. Alaverdyan], [2019], INSA Lyon, tous droits réservés



5.2. DATA DESCRIPTION

We excluded the brain regions (the cerebellum and brain stem) that are not susceptible to

epilepsy using a masking image in the MNI space derived from the Hammersmith maximum

probability atlas described in [Hammers et al., 2003]. A slice of the maximum probability

atlas is shown on fig. 5.4. After the elimination of the corresponding voxels, the number

of remaining voxels adds up to around 1.5 million per volume.
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Chapter 6

Unsupervised representation learning
for anomaly detection

This chapter introduces the considered unsupervised architectures that could be applied

in the CAD pipeline developed in chapter 5. We start by reviewing the existing and

commonly used deep models. Moreover, we present the most relevant state-of-the-art

studies where those architectures and their variations were exploited. In particular, we

review the recent works where various unsupervised deep architectures were used for the

problem of outlier detection, the context of this work. Eventually, we present a novel

configuration of a siamese network, better suited for the context of anomaly detection

when solely healthy / positive examples are available for training.

6.1 Unsupervised deep learning architectures

6.1.1 Autoencoders

A basic autoencoder is a one-hidden-layer neural network composed of two essential

parts - an encoder and a decoder [Hinton and Zemel, 1994]. The encoder is a mapping

that is applied on an input x ∈ Rd in order to transform it to a hidden representation

h ∈ Rd′ (typically, d′ < d). Usually it is modeled with a non linear function applied to the

affine transformation of the input i.e.

h = f(Wx + b)

whereW is a d′×d weight matrix and b ∈ Rd′ is a bias vector associated with the mapping.

f is the (non)-linear function of choice.

The decoder is the inverse mapping from the hidden representation space to the original
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CHAPTER 6. UNSUPERVISED REPRESENTATION LEARNING FOR ANOMALY DETECTION

Figure 6.1: Autoencoder with a single hidden layer.

space with a similarly configured transformation i.e.

x̂ = f ′(W ′h + b′)

Frequently the weight matrices W and W ′ are chosen to be tied i.e. W ′ = W T in order

to reduce the number of parameters. The parameter set Θ = {W,b,W ′,b′} is optimized

so as to minimize the reconstruction error - a measure of deviation of x̂ from the original

input x (e.g. the mean squared error or cross-entropy) - across all the instances of a given

data set D composed of N examples

L(D; Θ) =
1

N

N∑
i=1

c(xi, x̂i)

where xi is the i-th example, x̂i is its reconstruction and c is the chosen measure of the

reconstruction error. An autoencoder is illustrated on fig. 6.1.

Under some configurations it is possible for an autoencoder to learn the identity mapping.

The latter is not an interesting objective as it means the network does not learn any

meaningful/useful representation of the input. Therefore, employing such constraints as

setting d′ < d, tied weights and non-linear functions in the encoder-decoder mappings (e.g.

sigmoid, ReLU, etc) has become the typical scenario.

Autoencoders can be stacked in a layer-wise manner where a sequence of layers performs

the encoding and another sequence decodes the middle-layer representation. Precisely, the

latent representation of one layer serves as input of the next one

hk = f(W khk−1 + bk)

Stacked autoencoders allow to learn more complex mappings and, hence, more abstract

representations in the middle layer.

6.1.1.1 Denoising autoencoders

A denoising autoencoder [Vincent et al., 2008] is a variation of autoencoders whose task

is to recover the clean input from its corrupted version. Precisely, at input it is fed a
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corrupted version x̃ of x and its loss function measures the deviation of the reconstruction

from the corresponding uncorrupted example

L(D; Θ) =
1

N

N∑
i=1

c(xi, ˆ̃xi)

where xi is the i-th example and ˆ̃xi is the reconstruction obtained for the corrupted input

x̃.

The common choices of input ’corruption’ are salt and pepper noise (randomly setting a

certain number of elements in the input vector to their possible minimum or maximum

value), masking noise (randomly setting a certain number of elements in the input vector

to 0) and adding Gaussian noise to the input. The reconstruction error may be designed in

a way as to weigh separately the contribution made by the corrupted and uncorrupted el-

ements of the examples. Such an autoencoder is called emphasized denoising autoencoder.

A well-trained denoising autoencoder is capable of recovering the corrupted part of the

input as it is trained to recognize structures inherent to the input and their relationships

[Vincent et al., 2010]. This fact makes denoising autoencoders a good candidate for repre-

sentation learning for various tasks.

6.1.1.2 Convolutional autoencoders

The main disadvantage of simple autoencoders is that they ignore the spatial relation-

ships present in 2D or 3D images and are prone to learning redundant features. On the

other hand, convolutional neural networks exploit the convolution operator and the shared

weights so as to learn features that are common in various locations of the image. Con-

volutional autoencoders, hence, are built upon the same idea of shared weights that are

applied to all the locations in the image. More precisely, the input image x is mapped to

a number of feature maps where each feature map hk is computed as

hk = f(x ∗W k + bk)

where W k is the shared weight matrix, bk is the shared bias, f is a chosen activation

function and ∗ denotes the convolution operation. The reverse mapping to the input

space is done similarly. The parameters are tuned to optimize, as in the case of basic

autoencoders, a chosen loss function. Naturally, convolutional autoencoders too can be

stacked to form more complex architectures.

6.1.1.3 Variational autoencoders

A variational autoencoder (VAE) introduced in [Kingma and Welling, 2013] is a di-

rected probabilistic graphical model of two variables - an observed x and an unobserved z.

The variable z is generated from some prior distribution pθ(z) while x is generated from
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some conditional pθ(x|z). The posterior pθ(z|x) is intractable; therefore qφ(z|x) is intro-

duced as its approximation. Ideally, the objective of the graphical model is to maximize

the log likelihood of a given data set X = ({x1, ...,xn}) composed of n observations i.e.∑n
i=1 log pθ(xi) where log pθ(xi) can be written as

log pθ(xi) = DKL(qφ(z|xi)||pθ(z|xi)) + Eqφ(z|xi)[log pθ(xi|z)]−DKL(qφ(z|xi)||pθ(z))︸ ︷︷ ︸
L(θ,φ;xi)

where DKL is the Kullback-Leibler divergence [Kullback and Leibler, 1951]. Due to the

intractability of the first term, the framework instead optimizes L(θ, φ;xi) which is the

lower bound of the overall likelihood (as KL-divergence is non-negative).

The second term of L(θ, φ;xi) imposes the similarity of the approximate posterior qφ(z|x)

and the prior on z while the first term can be interpreted as the reconstruction of x through

the posterior distribution qφ(z|x) and pθ(x|z).

In variational autoencoders, the approximate posterior qφ(z|x) is modeled through a neural

network. In order to update the parameters through backpropagation, the reparameteriza-

tion trick is applied which allows to replace the expectation over z|x with an expectation

over a noise variable (which is used in a transformation producing the reparameterized ran-

dom variable z). As opposed to regular autoencoders, the encoder component in a VAE

produces an estimate of the parameters of the distribution over z and not the distribution

itself. The produced parameter estimates, together with the introduced noise variable, are

used to sample from z (which is why the VAE encoder and decoder are called probabilistic).

For example, a common setting is to consider that z is drawn from a multivariate Gaussian

and have the VAE encoder output its mean µ and standard deviation σ which are then

used to draw a sample z = µ + σ · ε, with ε is the noise variable drawn from a normal

distribution. Moreover, in this setting the KL-divergence has the following closed form

−DKL(qφ(z)||pθ(z)) = 0.5

M∑
m=1

[1 + log(σ2m)− µ2m − σ2m]

where M is the dimensionality of the vector z. A VAE corresponding to this setting is

shown on fig. 6.2.

The advantage of VAEs is that they can be used to generate examples, acting as a typical

generative model. Moreover, when trained properly, the latent representation can reveal

novel information on the data and be used in other auxiliary tasks.

6.1.1.4 Recent applications

Autoencoders and their variations have been used in various contexts and applications.

Various studies, such as [Vincent et al., 2010, Masci et al., 2011] proposed to use autoen-

coders to pre-train deep architectures, otherwise said, to initialize the weights of the layers

of the architecture at hand. This technique, however, has recently lost its widespread use.
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6.1. UNSUPERVISED DEEP LEARNING ARCHITECTURES

Figure 6.2: VAE framework when z is drawn from a multivariate Gaussian distribution.
E denotes the encoder, G - decoder, µ and σ are the parameters of q(z) output by the
encoder.

In [Gehring et al., 2013], the authors used stacked autoencoders, that were first pretrained

and later combined with additional layers, to train a classification system on speech data.

Stacked denoising autoencoders were considered for noise reduction and speech enhance-

ment in [Lu et al., 2013]. In another study [Deng et al., 2010], binary codings of speech

spectrograms are learnt with deep autoencoders. Super-resolution problems, recovering a

high resolution image from its low resolution version, are another application where au-

toencoders have been used frequently. For super-resolution problems, approaches, mainly

involving autoencoder-based complex architectures, were proposed in [Cui et al., 2014, Zeng

et al., 2017]. Denoising autoencoders were used in [Xie et al., 2012] for image denoising and

inpainting while convolutional autoencoders were applied to the image restoration problem

in [Mao et al., 2016].

In many tasks, autoencoders have been used as feature extracting modules, further to be

combined with various classification models. So, in [Xing et al., 2016], the authors evalu-

ate the potential of features learnt with stacked denoising autoencoders on hyperspectral

imaging data, by feeding the produced representations into a SVM classifier. In several

studies autoencoders are explored for anomaly detection. Such studies will be presented

in section 6.2.

6.1.2 Generative adversarial networks

Generative Adversarial Networks (GAN) were first introduced in [Goodfellow et al.,

2014] and have since seen a variety of extensions. A GAN is composed of two components

(neural networks) - a generator G and a discriminator D. The generator’s objective is

to produce examples as realistic as the authentic ones in the training data set. Those

generated examples, together with the real ones, are the input of the discriminator which

aims at distinguishing perfectly the generated and the real images. Training a GAN implies

improving the generator, so that the discriminator does not succeed at distinguishing the

generated input from the observations in the data set, and at the same time improving

the discriminator’s performance. This corresponds to a typical two-player minimax game

with a unique solution G∗ reproducing the underlying data distribution and D∗ equal to
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1/2 everywhere. The objective of the game therefore is:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz [log (1−D(G(z)))]

where D(x) can be interpreted as the probability of x being real. Eventually, minimizing

the value function amounts to minimizing the Jensen-Shannon divergence between the real

distribution pdata and the distribution pg modeled by the generator.

A GAN can be trained with a stochastic gradient and backpropagation, by updating the

parameters of G and D. The GAN training, however, is not trivial because of its in-

stability; frequently GANs do not converge or generator collapses into a single mode or

generates unrealistic outputs. For one, the loss change over iterations does not necessarily

correlate with the model convergence; the loss oscillates frequently, unlike in other deep

architectures. An important contribution was the introduction of the DCGAN by [Radford

et al., 2015], a reasonably stable architecture which gave a first glimpse on the potential of

GANs. It should be noted that while it is straightforward to sample an example x given

some z, the reverse mapping is not achieved within GANs.

Further works proposed different versions/extensions of the basic GAN to overcome the

instability issues, have a more informative loss and a reverse mapping to obtain a z given

x. So, Wasserstein GAN (WGAN) in [Arjovsky et al., 2017] revolves around the Wasser-

stein distance between the real distribution pdata and pg and its properties. Exploiting

the Kantorovich-Rubinstein duality [Villani, 2008], which can be expressed as an adver-

sarial objective, it follows that if the discriminators were designed to model K-Lipschitz

functions, the optimal Wasserstein distance between the real and generated distributions

could be attained (up to a multiplicative factor). In [Arjovsky et al., 2017] weight-clipping

was performed to assure the K-Lipschitz constraint on the discriminator. It did not solve

the instability issues so other approaches were proposed. In [Gulrajani et al., 2017], the

authors proposed to penalize the norm of the gradient of the discriminator with respect

to its input and in [Salimans et al., 2016], the discriminator is enhanced with a minibatch

layer measuring the closeness of the discriminator’s representations of the examples in

a minibatch. [Dumoulin et al., 2016] presented another framework, ALI (Adversarially

Learnt Inference), where the discriminator aims at distinguishing jointly an input x and

its encoded representation z. One advantage is that the inverse mapping from z to x in

this framework is explicit.

6.1.2.1 Wasserstein autoencoder

Despite the promising potential of GANs, the complicated training puts a halt on their

widespread use, especially in the medical domain. Much effort was therefore invested in

the development of related frameworks allowing to leverage the generative potential of

GANs while ensuring a stable training. One such approach is Wasserstein autoencoder

[Tolstikhin et al., 2017]. Wasserstein autoencoder (WAE) is a regularized autoencoder
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Figure 6.3: Wasserstein autoencoder (WAE) composed of an encoder E, a decoder G and
a (adversary) module D to estimate the discrepancy between PZ and QZ .

with a cost function similar to that of VAEs and a generative power resembling that of

GANs. As illustrated on fig. 6.3, a WAE is composed of three components: an encoder

E mapping an input from the data space X to the latent space Z, a decoder G mapping

a latent code from the latent space Z to the data space X , and a module D that tries

to minimize the discrepancy between the prior distribution of the latent code PZ and

the latent distribution QZ produced by the encoder. The resulting loss function can be

expressed as

L(X; ΘWAE) =
1

N

N∑
i=1

c(xi, x̂i) + β ·DZ(Pz, Qz) (6.1)

whereDZ measures the discrepancy between a given distribution Pz and Qz for the data set

X = {xi}1,..,N and c measures the reconstruction error. β is a coefficient that controls the

tradeoff between the two terms and ΘWAE denotes the parameter set. The generic form of

the WAE loss allows different reconstruction error functions and regularizers. When c is the

squared error c(xi, x̂i) = ||x− x̂i||22 and DZ is the GAN objective, the WAE matches the

Adversarial Autoencoders introduced in [Makhzani et al., 2015]. WAE is advantageous in

practice as it comes with a built-in encoder-decoder architecture allowing the bidirectional

mapping X ↔ Z. Moreover, examples can be generated by sampling from Pz and feeding

it into the decoder.

6.1.2.2 Recent applications

GANs are rarely used as feature extraction modules in practical applications. First,

the reverse mapping from the input space to the representation space is not explicitly

present. To perform this mapping, two options are possible. The first one is to find a

representation for a given input x through an iterative search of z that minimizes the

deviation of a generated x̂ given z and the input x. This requires iterating through the

latent representation space until the optimal point is reached, for each given input, and is

not practical to use. The second option is to train another network performing the inverse

mapping of the generator. This requires the training of an additional network, but once

done, extracting the corresponding representation of a given input is straightforward and
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Figure 6.4: Siamese network.

efficient. On the other hand, the representations learnt in the discriminator layers were

occasionally used to demonstrate the advantages of GANs as in [Wu et al., 2016].

GANs, however, have been applied in other applications for their generative capability.

So, GANs were used for super-resolution image synthesis in [Ledig et al., 2017] where the

discriminator aims to distinguish between real high resolution images and those generated

from the low resolution images through the generator. Another work aims at text-to-image

generation where textual information is introduced in the generator and the discriminator

so as to generate/discriminate images conditioned to their textual content [Reed et al.,

2016]. In medical imaging, recent works explored cross-modality synthesis which will be

addressed in more details in section 10.2. Another important application is the outlier

detection context using adversarial training. Such studies will be presented in section 6.2.

6.1.3 Siamese neural networks

Siamese neural networks were first introduced in [Bromley et al., 1993] for the problem of

signature verification. A siamese network is composed of two sub-networks, with identical

architecture and a shared parameter set, and a cost module, as illustrated on figure 6.4. It

receives at input a pair of examples and propagates each of them through the corresponding

sub-network that represents a function GW parameterized withW . The sub-networks yield

representations that are passed to the cost module. The main objective of such a system

is to find a function GW that maps examples in the original space to a space where their

distance is small if they are ’close’ in the input space and large otherwise. The ’close’ input

examples are referred to as similar and ’far’ examples are referred to as dissimilar. With

a well chosen loss function, the system learns to map similar inputs close to each other

with respect to some simple measure and pulls apart the dissimilar examples. Moreover,

no explicit distance measure in the input space is required.
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Formally, a data set D is composed of pairs of examples and a label standing for their

similarity/dissimilarity D = {(xi1, xi2, li)}i=1,..,N where li is equal to 0 when the pair is

composed of similar inputs and 1 otherwise. A typical loss function in such a network is

L(D;W ) =
1

N

N∑
i=1

[(1− li) · LS(Di
W ) + li · LD(Di

W )] (6.2)

where LS is the loss function for similar examples and LD is the loss function for dissim-

ilar examples. DW is a distance function between the representations learnt by the sub-

networks for inputs andDi
W designates its value for the i-th pairDi

W = DW (GW (xi1), GW (xi2)).

[Chopra et al., 2005] introduces a contrastive energy function composed of two terms de-

creasing the energy of similar pairs and increasing the energy of the dissimilar pairs for

face verification. [Hadsell et al., 2006] proposes the following loss function:

L(D;W ) =
1

N

N∑
i=1

[(1− li) ·
1

2
(Di

W )2 + li ·
1

2
max{0, (m−Di

W )}2]

where Di
W = ||GW (xi1)−GW (xi2)||2.

[Simo-Serra et al., 2015] used a similar loss in the task of patch correspondence, with the

sub-networks being convolutional networks. [Zagoruyko and Komodakis, 2015] explored

siamese and pseudo-siamese (the sub-network weights are not shared) networks for the

same problem, with a hinge-loss based objective function while [Han et al., 2015] minimized

the cross-entropy error between the similarity label ({0, 1}) and the softmax activation

computed on the values output by the sub-networks i.e.

L(D,W ) = − 1

N

N∑
i=1

[li · log(l̂i) + (1− li) · (1− log(l̂i))]

where l̂i = eGW (xi2)

eGW (xi1)+eGW (xi2)
.

[Bertinetto et al., 2016] exploited a fully convolutional siamese neural network for ob-

ject tracking. In this case, each sub-network is a fully convolutional network producing a

real-valued score. This score is later matched against the similarity label ({+1, -1}) in a

logistic loss.

[Taigman et al., 2014] used siamese networks for face verification, by defining DW distance

as a weighted sum of unit-wise absolute differences of yielded representations for the pair

(the coefficients being trainable parameters). [Zheng et al., 2016] defined a triangular simi-

larity metric (closely related to the cosine similarity) in a siamese network with multi-layer

perceptron sub-networks. Siamese networks have also been exploited in the context of

one-shot learning by [Koch et al., 2015]. Other applications of this network include ges-

ture classification [Zheng et al., 2016], text classification [Yih et al., 2011], speaker-specific

information learning from speech [Chen and Salman, 2011], question retrieval [Das et al.,
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2016] and sketch-based shape retrieval [Wang et al., 2015].

[Zeghidour et al., 2016] extended the classical setup of siamese networks to accommo-

date two similarity labels - speaker and phonetic similarities - and further used triamese

networks that receive at input triplets composed of an example, its similar pair and its dis-

similar pair at once. In the scope of face verification problems, some authors [Parkhi et al.,

2015, Schroff et al., 2015] proposed the so called triplet networks analogous to triamese

networks. The input to this network is a triplet (a, p, n) containing an anchor image, a

positive image p of the same person, different from a and a negative image n belonging to

a different person. The triplet loss hence is designed to bring closer the anchors and their

positives and pull apart the former and their negatives. Though the underlying principle

is shared between siamese and triplet/triamese networks, their difference lays in that the

notion of similarity/dissimilarity coded with labels is replaced with direct triplet input

examples.

It should be noted that while siamese networks do not require labels per example, similar-

ity labels for input pairs are expected. Those similarity labels can be obtained by using

specific labels of individual examples when available or by a sort of self-supervision by

defining similar/dissimilar pairs as those whose distance in the input space is below/above

some threshold.

6.2 Unsupervised deep learning and anomaly detection

Deep learning architectures have recently been exploited in many studies for anomaly

detection. Two main strategies could be distinguished among the current methods.

The first group consists of reconstruction-based anomaly detection methods (introduced in

1.1.3). In such methods, the anomaly detection is based on some metrics quantifying the

discrepancy between the original input and the reconstruction obtained with the chosen

network. The examples with large deviations are considered outliers. In particular, varia-

tional autoencoders (VAE) have been used in a number of studies for anomaly detection.

[An and Cho, 2015] used the reconstruction probability produced by a VAE trained on

normal examples. [Xu et al., 2018] used a similar VAE-based approach to detect anomalies

in web applications. [Munawar et al., 2017a] used the autoencoder reconstruction error

to detect anomalies by training the network not only to minimize the reconstruction error

of normal examples but also to maximize the same error for outliers. [Munawar et al.,

2017b] used long short-term memory networks (LSTM) to predict a frame in a video given

the previous frames and revealed anomalies based on the difference between the predicted

and the actual frames. A more recent tendency exploits adversarially trained generative

networks. An important contribution was the approach proposed in [Schlegl et al., 2017]

where the authors defined a score function that measures how anomalous a given sample is

based on the reconstruction and discrimination losses estimated with a GAN architecture

82 Z. Alaverdyan
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI005/these.pdf 
© [Z. Alaverdyan], [2019], INSA Lyon, tous droits réservés



6.2. UNSUPERVISED DEEP LEARNING AND ANOMALY DETECTION

trained on normal samples only. Further works attempted to improve this approach. For

example, [Hirose et al., 2017] used the same approach for robot navigation enhanced with

an inverse generator that maps images to the representation space the generator produces

images from (GAN architecture lacks such an explicit mapping, therefore the original work

used an additional optimization step to approximate it). [Zenati et al., 2018] went further

and replaced the proposed GAN architecture with a Bidirectional Generative Adversarial

Network (BiGAN, [Donahue et al., 2016]) with the same score function for some general

outlier detection tasks.

The advantage of such approaches is that the networks are trained in end-to-end fashion.

The methods, however, suit well to the contexts where a network, trained on normal ex-

amples only, would fail to reconstruct outliers due to the significant differences between

them. When it comes to subtle brain lesions, such an approach would not be realistic.

First, the images containing lesions, especially when they were considered normal over a

visual analysis, do not differ significantly from the healthy ones. It is not plausible, there-

fore, to assume that the reconstruction error of a lesionous area will be larger than that

of any other anatomical difference between subjects. Moreover, if the network is trained

on patches of images, the assumption would fail to account for the abnormalities resulting

in normal patterns occurring in wrong parts of the brain (e.g. heterotopia, where normal

looking gray matter cells end up within the white matter). Since the patterns would have

been ’seen’ and therefore learnt by the network, the reconstruction may be close to per-

fect.

In this work we consider another strategy employed in recent studies which consists in

learning representations with a deep network and couple them with some outlier detec-

tion algorithm. So, [Erfani et al., 2016] builds on this approach, by first learning latent

representations of normal samples with deep belief networks and then feeding the learnt

representations to a one-class SVM model in order to estimate the boundaries of the nor-

mal examples. [Xu et al., 2015] proposed a framework for anomaly detection on image

and video-based surveillance data by combining the decisions of three oc-SVMs trained

on representations learnt with stacked denoising autoencoders on images and videos in-

dividually and the two data sources combined. Similarly, [Huang et al., 2018] trained a

single oc-SVM on the concatenated representations of three convolutional restricted Boltz-

mann machines for energy, visual and motion data modalities. In [Seeböck et al., 2016] a

deep convolutional autoencoeder is coupled with oc-SVM for anomaly detection in retinal

imaging. The usefulness of the learnt features is additionally verified through classifying

intraretinal cystoid fluid, subretinal fluid and the remaining part of the retina.

Among the studies mentioned above only a small number was developed for medical ap-

plications [Seeböck et al., 2016, Schlegl et al., 2017].
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6.3 Contribution: Regularized siamese network with deep
convolutional autoencoders

From the review of the architectures and their applications above, it seems that autoen-

coders are well-adapted for feature extraction, later to be coupled with additional models,

specific to the task. On the other hand, siamese networks offer to learn a mapping to a

representation space where the similarity of the data points is imposed. We will therefore

make an attempt to leverage both autoencoder and siamese network structures in a unified

framework by adapting them to the outlier detection problem.

Figure 6.5: Regularized siamese network.

Given a data set X = {xi}i=1,..,n,xi ∈ Rd composed of n normal points, we seek to find

a mapping Gθ : X → Z to project the original points to a representation space where the

given examples form a close neighborhood. Such a mapping will be modeled with a neural

network. The main task is therefore to assure the similarity of the representations.

To this end we propose to employ the underlying idea of siamese networks. Having a

similar pair at input, the siamese subnetworks map them to a representation space where

their proximity is imposed by the cost module. This coincides with our objective. How-

ever, the data set X is composed of normal examples only. While it is only natural to pair

random couples of normal examples and label them similar, the notion of dissimilar pairs

would not be defined. We will therefore introduce a regularizing term which will impose

a certain structure on the representations produced by the mapping Gθ so that they do

not collapse to a single point. We will refer to the proposed framework as a Regularized

Siamese Network. It is important to note that the major difference with the classical

siamese networks lays in the absence of dissimilar pairs and therefore the contrastive term

typical to siamese cost modules (as in the expression 6.2). Moreover, while classical siamese

networks require some level of supervision in order to provide the cost module with pair

similarity labels, in our context of outlier detection all points are similar and no additional

supervision is needed. Below we give a formal specification of the proposed model.

Fig. 6.5 shows the proposed framework. It receives at input a pair of normal points

(x1,x2) which are then propagated through two subnetworks - convolutional autoencoders

(any other autoencoder could be considered; convolutional autoencoders suit better for
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AUTOENCODERS

imaging data). The convolutional autoencoder-subnetworks have identically parameter-

ized components - an encoder E and a decoder G. E performs the encoding to the space

Z with a series of convolutional and downsampling operations while G performs the in-

verse mapping to the original space X through a series of deconvolutional and upsampling

operations. The subnetworks output the reconstruction x̂i of the corresponding input xi.

For a single input pair, the cost function associated with the framework is:

L(x1,x2; Θ) =

2∑
t=1

||xt − x̂t||22 − α · cos(z1, z2) (6.3)

The objective consists of two terms: the first one imposes the subnetworks to produce high

quality reconstructions by minimizing the squared error between the subnetwork input and

output; the second term imposes the similarity in the representation space by maximizing

the cosine similarity of the middle layer feature vectors. α is the trade-off coefficient con-

trolling the extent of similarity. Eventually, the representation z can be used for various

tasks. In the scope of this work we will be considering the problem of outlier detection.

A regularized version of classical siamese networks was proposed in [Chen and Salman,

2011] for speech data. The network, composed of multilayer perceptrons, aims at learning

similar representations for speech fragments of the same speaker while imposing the recon-

struction error of the overall speech as a regularizing term in the loss function.

We reviewed several unsupervised deep architectures as potential representation learning

mechanisms that can be coupled with an outlier detection algorithm. We proposed a novel

configuration of siamese networks, regularized with the reconstruction error of the subnet-

works - convolutional autoencoders. Such a regularized siamese network may be beneficial

in the context of outlier detection. Precisely, the middle-layer representations may be cou-

pled with an outlier detection algorithm which may model better the normality of the data

points since they have been driven to be close when training the proposed framework. This

aspect will be showcased in the next chapter.
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Chapter 7

Epilepsy lesion detection on
T1-weighted MR images

In this section we implement the CAD architecture proposed in chapter 5, with the

regularized siamese architecture, developed in chapter 6, as the feature representation

learning module. The architecture is applied to the automated detection of subtle epilepsy

lesion detection on T1-weighted magnetic resonance images. To this end, we will consider

the T1-w MR images of the data set presented in section 5.2. This amounts to 75 MR

images of healthy controls and 21 images of patients with confirmed epilepsy lesions. The

proposed framework is trained in an entirely unsupervised manner, using the images of

the healthy controls. The evaluation is performed on the epileptogenic lesions found in

patient scans. The following sections start by presenting the detailed pipeline of the CAD

system. Next, we introduce our approaches of representation learning in the context of

outlier detection. Eventually, we present the results obtained with the proposed framework

on the task of epilepsy lesion detection.

7.1 Detailed CAD pipeline

The general pipeline of the CAD system is illustrated on fig. 7.1. It consists of two

major steps - patch-level representation learning and voxel-level outlier detection model

learning. In the first step, we propose to extract image patches of all the available volumes

of the healthy controls and learn representations with deep learning architectures described

in chapter 6. Once this step is performed, each voxel of a brain volume will be associated

to a representation yielded by the deep network for the patch centered at the voxel. The

second stage consists in building a oc-SVM model per voxel. Each voxel is associated with

a classifier, hence the number of classifiers is equal to the number of voxels in the volume of
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CHAPTER 7. EPILEPSY LESION DETECTION ON T1-WEIGHTED MR IMAGES

Algorithm 1: Algorithm to train oc-SVMs with the learnt representations per voxel.
Input : train set of registered images X,

deep model M ,
number of voxels nbv

Output: set of oc-SVMs C = {Ci}i=1,nbv

1 init C
2 for i← 1 to nbv do
3 patches← getPatchesCentereadAt(X, i)
4 tr_matrix← getRepresentations(patches,M)
5 C[i]← train_oc_SVM(tr_matrix)

6 end
7 return C

Algorithm 2: Algorithm to output the oc-SVM scores per voxel.
Input : test image Ip,

deep model M ,
number of voxels nbv,
set of oc-SVMs C = {Ci}i=1,nbv

Output: score map Dp

1 init Dp

2 for i← 1 to nbv do
3 patch← getPatchesCentereadAt(Ip, i)
4 test_example← getRepresentations(patch,M)
5 Dp[i]← output_score(C[i], test_example)
6 end
7 return Dp

interest (around 1.5 million voxels). For a given voxel vi, the associated oc-SVM classifier

Ci is trained on the matrix composed of the representations of the patches of all the normal

subjects centered at vi.

For a new patient p, each voxel vi is matched against the corresponding classifier Ci and

is assigned the signed score output by the classifier. This yields a distance map/score map

Dp for the given patient. The entire system is summarized in the pseudocode 1-2.

Implementation details The entire development of the CAD system was done in Python,

using Theano and Keras libraries for the architecture training and feature extraction. The

oc-SVM training was achieved by dividing all the voxels into distinct subsets, each sub-

set being assigned to a separate thread. The oc-SVMs in each subset/thread were then

trained sequentially. Testing was done in the same way. We used the oc-SVM implemen-

tation available in the Scikit-learn library [Pedregosa et al., 2011] which provides a Python

wrapper to the LIBSVM library for Support Vector Machines [Chang and Lin, 2011]. De-

pending on the number of threads possible, the oc-SVM training takes between half an

hour and 3 hours. Obtaining the cluster map for a given patient takes between 1 and 3

minutes.
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7.2. DATA DESCRIPTION

Figure 7.1: CAD general pipeline. The training is shown in a gray path, testing - in a
green path.

7.2 Data description

The data set is composed of the healthy controls and patients introduced in chapter

5.2. In the scope of the experiments below, we will use the T1-weighted MRI sequences of

the 75 healthy controls and 21 patients with confirmed epilepsy lesions. The detailed pre-

processing steps are given in section 5.2.4. We recall the main aspects of the pre-processing

routine. The T1-w MR images were normalized to the MNI space. Eventually, a voxel-level

correspondence was established between the T1-w MRI acquisitions of different subjects.

We excluded the brain regions (the cerebellum and brain stem) that are not susceptible

to epilepsy using a masking image in the MNI space derived from the Hammersmith max-

imum probability atlas described in [Hammers et al., 2003]. After the elimination of the

corresponding voxels the number of remaining voxels adds up to around 1.5 million. Be-

fore feeding the volumes to the representation learning architectures, we removed top 1%

intensities and scaled the images between 0 and 1 individually.

7.3 Experiments

In this section we describe and summarize the experiments done in the scope of the

pipeline illustrated on fig. 7.1. More precisely, we have coupled the representations learnt

with different networks, presented in chapter 6, with a oc-SVM model, on a per voxel basis.

We have considered 4 such architectures

- stacked convolutional autoencoder (CAE)

- stacked denoising autoencoder (DAE)
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CHAPTER 7. EPILEPSY LESION DETECTION ON T1-WEIGHTED MR IMAGES

Figure 7.2: Stacked denoising autoencoder architecture (DAE).

- Wasserstein autoencoder (WAE)

- the proposed regularized siamese network (rSN)

In order to evaluate these architectures in comparable configurations, we chose the CAE,

WAE and rSN architectures to have the same encoder E and decoder G structure. The

dimension of the representations extracted from all the architectures is the same. Below

we give the details of all 4 architectures.

7.3.1 Deep unsupervised architectures for representation learning

For all the architectures below, the training data set X = {x1,x2, ...,xN} consists of 15
x 15 patches extracted from all the volumes of healthy individuals with a fixed overlap of 8.

This resulted in around N = 3.5 million patches. The choice of the input patch size is not

arbitrary. It corresponds well to the sizes of subtle abnormalities linked to epilepsy. When

considering larger patch sizes, the CAD system would detect abnormalities at a larger scale

whereas epilepsy related abnormalities require features over local contexts. An illustration

of this observation is included in appendix A.

Stacked denoising autoencoder architecture (DAE)

Fig. 7.2 shows the considered architecture. The square patches were flattened at input.

The encoding path consists of 2 fully connected layers, later decoded by another fully

connected layer. ReLU activation function was used everywhere except for the last one

where sigmoid is used. The loss function to optimize is the mean squared error of the input

patches and the corresponding ’reconstructions’ output by the network

LDAE(X; Θ) =
1

N

N∑
1

||xi − x̂i||2

The masking noise was used on all the images with the masking probability Pmask (which

was varied among the values 0.1, 0.3 and 0.5). The network is optimized with Adam

optimization algorithm with learning rate=0.001 and momentum=0.5. Fig. 7.3 shows 10

randomly selected patches along with their reconstructions.

Stacked convolutional autoencoder architecture (CAE)

Fig. 7.4 shows the considered architecture. The encoding path consists of 3 hidden layers
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Figure 7.3: First row: 10 randomly selected patches. Second row: the corresponding
patches reconstructed with the stacked denoising autoencoder (DAE).

Figure 7.4: Stacked convolutional autoencoder architecture (CAE).

with kernel size 3x3 where only the first layer is followed by a max pooling layer. The

decoding path is designed in a similar fashion. We used ReLU activation function in all

the layers except for the last one where sigmoid is used. The loss function to optimize

is the mean squared error of the input patches and the corresponding ’reconstructions’

output by the network

LCAE(X; Θ) =
1

N

N∑
i=1

||xi − x̂i||2

The network is optimized with Adam optimization algorithm with learning rate=0.001 and

momentum=0.5. Fig. 7.5 shows 10 randomly selected patches along with their reconstruc-

tions below. The model manages to preserve the main structures, with a slight blurring

effect however.

Wasserstein autoencoder architecture

Fig. 7.6 shows the architecture for the encoder E, decoder (generator) G and discriminator

D composing the proposed Wasserstein autoencoder shown on the right of the fig. 7.7.

Similarly to the architectures above, the input patches are mapped to vectors z ∈ R64 via

the encoder and then mapped back to the original space through the generator. The loss

function in this configuration is:

Figure 7.5: First row: 10 randomly selected patches. Second row: the corresponding
patches reconstructed with the stacked convolutional autoencoder (CAE).
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CHAPTER 7. EPILEPSY LESION DETECTION ON T1-WEIGHTED MR IMAGES

Figure 7.6: The architectures of the encoder E, generator G and discriminator D used in
the Wasserstein autoencoder (WAE). Same E and G were used in the regularized siamese
network (rSN).

Figure 7.7: Global representation of the regularized siamese network (left) and Wasserstein
autoencoder (right). The components E, G and D are shown on fig. 7.6.

LWAE(X; ΘWAE) =
1

N

N∑
i=1

||xi − x̂i||2 + β ·DJS(Pz, Qz) (7.1)

where DJS is the Jensen-Shannon divergence, Pz is a multivariate Gaussian distribution

and Qz is explained in section 6.1.2.1. In this setting, DJS(Pz, Qz) is estimated with

the discriminator D that aims to distinguish the z produced with the encoder and the

samples from the apriori distribution Pz. LeakyReLU was used as activation in the WAE

discriminator with a scale of 0.02 for negative values. ReLU was used in the generator

and the encoder, except for the last layer of G where sigmoid was applied. We varied the

parameter β in the LWAE expression 7.1 among the following values - 1,5,10 and 20.
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Figure 7.8: First row: 10 randomly selected patches. Second row: the corresponding
patches reconstructed with the Wasserstein autoencoder (WAE).

Figure 7.9: First row: 10 randomly selected patches. Second row: the corresponding
patches reconstructed with the regularized siamese network (rSN).

Regularized siamese network architecture (rSN)

The proposed regularized siamese network (rSN) has the same encoder-decoder components

as the CAE and WAE architectures described above. Fig. 7.7 illustrates a general scheme

of the network while the details are shown on fig. 7.6. The input of the network consists

of similar pairs of patches, defined as patches of different subjects centered around the

same spatial voxel. The pairs were composed in the following way. First, patches were

extracted from all the healthy subjects with a stride 8. Next, for each patch of a subject,

a pair was composed by randomly selecting its similar patch among those belonging to

the remaining subjects. The number of pairs is again around 3.5 million. The tradeoff

coefficient α was varied during the training in the following way. It was set to 0 for 10

epochs, then grew linearly up to some pre-chosen value αmax and plateaued for another

5 epochs. In our experiments, αmax was varied among the values 0.25, 0.5, 0.75 and 1.

The network is optimized with Adam optimization algorithm with learning rate=0.001 and

momentum=0.5.

Alternative 3D architecture

In the scope of the proposed CAD we have also evaluated a limited number of architectures

on 3D patches. Our intuition is that 3D patches may provide a richer context for the rep-

resentation learning component in the CAD system and, hence, improve its performance.

The encoder and decoder components considered for an alternative 3D architecture are

illustrated on fig. 7.10. We have combined them into a regularized siamese network, as

it is depicted on fig. 7.7. The structures of the encoder and the decoder follow those

presented earlier for 2D patches. We considered 15 x 15 x 5 patches since most epilepsy

lesions take up around 5 consecutive transverse slices. We therefore aimed at having a

comparable view on the possible abnormalities.
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Figure 7.10: Alternative 3D encoder and decoder to be used in an experimental 3D rSN.

7.3.2 oc-SVM classifier design

Each voxel vi is associated with a oc-SVM classifier Ci which is trained on the matrix

Mi = [zi1, ..., zin] where zij is the representation vector corresponding to the patch centered

at vi of subject j and n is the number of subjects.

Each classifier Ci was used with a RBF kernel defined as

KRBF (zik, zij) = e−γ||zik−zij ||
2

where γ = 1
σ2 is the inverse of the kernel width σ.

For large values of γ, KRBF (zi, zj) gets close to 0 for any distinct i and j and therefore

all the data points turn into support vectors. The opposite extreme case results in a small

number of support vectors which leads to tighter boundaries. We adopted the heuristic

described in [Caputo et al., 2002], proposing to choose γ within the range between the

10th and the 90th percentiles of the pairwise distances in the data set. For each oc-

SVM individually, we chose to set γ to the median of the standardized euclidean pairwise

distances of the corresponding matrix Mi. The parameter ν, the upper bound of the

fraction of allowed outliers in the oc-SVM formulation 5.1, was set to 0.03. Varying this

parameter had no effect on the performance of the CAD. Indeed, the fraction of outliers is

actually controlled in the post-processing stage, described in section 7.3.3.

For each voxel vi, the corresponding oc-SVM model Ci outputs the score for the voxel, i.e.

the distance to the found optimal hyperplane, corresponding to

score(vi)← w∗ · φ(zi)− ρ∗

where w∗ and ρ∗ define the optimal hyperplane, as explained in section 5.1.3. Eventually,

all voxel distance scores combined together yield the distance map Dp for the given patient

p.
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Figure 7.11: Normalizing maps NS derived from the distance score maps of the healthy
population, obtained with features learnt with denoising autoencoder (DAE), stacked con-
volutional autoencoder (CAE), Wasserstein autoencoder (WAE) and regularized siamese
network (rSN), from left to right. The distance score maps of healthy subjects were com-
puted with a 10-fold validation. Darker shades correspond to zones with low standard
deviation.

7.3.3 Post-processing

For a given patient, the output of the previous step, the distance map Dp, is then post-

processed to obtain the final detections. A 3-step post-processing is proposed as follows.

The first step consists in normalizing the distance maps to account for the intra-subject

spatial variability. For that purpose, the distance maps of the control subjects are com-

puted by performing a 10-fold evaluation of the controls in the training set. For each fold

of normal subjects, the distance maps are obtained based on the oc-SVM models trained

on the remaining subjects. These distance maps, estimated on the healthy subjects consti-

tuting the training data set X, are used to estimate the standard deviation of the normal

subjects’ distance distribution at voxel-level. In other words, a normalizing map NS is

computed where

NS(vi)← std({Ds(vi)}s∈X)

where Ds is the distance score map for the healthy subject s, X is the training data set.

Examples of such maps are shown on fig. 7.11. For a given patient p, a new map D́p

is computed by a voxel-wise division of the output distance map Dp over the estimated

standard deviation map NS .

The final distance map Fp is then derived by averaging Dp and D́p i.e.

Fp =
1

2
(

Dp

max(abs(Dp))
+

D́p

max(abs(D́p)
))

The reason behind the additional term is that some zones in the brain have more intra-

subject variability than others and therefore are more likely to be considered as anomalies.

By weighing them by the standard deviation, the score maps take into account this effect.

The second step consists in thresholding the Fp map to produce a cluster map. To

this end, all the voxel score values of Fp are pooled together into a histogram which

was then approximated by a non-parametric distribution using a kernel density estimator

[Bowman and Azzalini, 1997]. The approximated patient distance score distribution is then
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Figure 7.12: An example of post-processing on a patient. The first column shows the
original slice centered at the lesion, the second column corresponds to the normalized
distance map Fp and the last three columns are obtained by thresholding Fp at three
different p-values and identifying the connected components as detections.

thresholded at some pre-chosen p-value and a 26-connectivity rule is applied to identify

the connected components. These components are referred to as clusters. By varying the

p-value the number of clusters can be controlled according to a clinician’s needs. Fig.

7.12 shows an example of post-processing by varying the threshold with a p-value. We

empirically set the p-value to the value that results in at most 15 clusters. We noticed that

larger p-values resulting in more clusters typically produce a number of very large ones,

as observed among the normal population whose output maps were obtained through the

10-fold validation done in the previous step. The voxel clusters smaller than a fixed size

are discarded. In this study, the minimal cluster size was set to 82 voxels corresponding

to the expected cluster size calculated with the SPM analysis of the T1 MRI data. This

allows quick elimination of small and very negative clusters which usually represent isolated

intensity peaks. The size of the majority of the detected clusters varies between 500 and

3000, this threshold therefore does not affect the performance in any significant way. The

clusters are what we refer to as detections by the proposed method.

The third step consists in ranking the detected clusters to help the analysis of the

detections. We use the following ranking criterion to assign a rank to a cluster ci, inspired

from [Ahmed et al., 2016]

rank(ci) ∼ ω ∗
score(ci)

minjscore(cj)
+ (1− ω) ∗ size(ci)

maxjsize(cj)
(7.2)

where score(ci) is the average of the voxel scores in the cluster ci and size(ci) is the number

of voxels in the cluster. Since the scores are thresholded at some p-value, score(cj) are, in

turn, bounded by that value. In our experiments we rank the clusters on both cluster size

and average score, therefore we set ω to 0.5. Using this ranking, we keep at most the top

10 detections and discard the rest. Eventually, keeping at most 10 clusters has a practical

consideration from the medical perspective. Allowing more false positives may complicate

the lesion screening by clinicians.
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7.3.4 Evaluation protocol

In order to evaluate the described CAD system with different representation learning

architectures, the produced final cluster maps are matched against the defined ground

truth annotations. Each of the patients in our data set has only one lesion. A given cluster

map is compared to the ground truth image and the overlap between the found clusters

and the ground truth cluster is computed. When such an overlap exists for one or several

detected clusters, we refer to it (them) as a true positive detection. The remaining clusters,

falling outside the true lesion zone, are counted as false positive detections. Eventually, we

report

1. the sensitivity as the proportion of the patients where there is at least one true

positive detection by the system

2. the average number of false positive detections per patient.

We did not measure the number of detections in healthy patients since the framework

seeks to find a wide range of anomalies and a certain number of anomalies (resulting from

healthy anatomical variability of brains) would be found among healthy controls as well.

It should not be indicative of CAD performance.

Since the post-processing described in the previous section produces cluster maps with

ranked clusters, our main interest is also to evaluate how many true detections are found

among top n clusters in all the patients.

From the clinical perspective, the number n of detected clusters would be rather limited

to 10 since a larger number may limit the capacity of a clinician to focus on the true

predictions. For this reason, we will evaluate the performance of the CAD system by

varying the number of top n clusters from 3 to 10, hence tolerating at most 9 false positives

per patient.

7.4 Results

7.4.1 Comparison of deep feature-based CADs

The first comparison involves evaluating the performance of the proposed CAD system

using the representations learnt with various unsupervised deep architectures as described

in section 7.3.1. Fig. 7.13 illustrates the performances of the architectures mentioned above

in various configurations. More precisely, the figure depicts the sensitivity of the system

as a function of the number of false positive detections. In other words, the performance

is quantified as the proportion of patients whose lesions were detected among the top n

clusters, where n varies across the horizontal axis. Ideally, the performance should behave

as a straight line i.e. the maximum sensitivity should be achieved with the smallest number

of false positives.
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We varied the masking probability Pmask of the DAE among 3 values - 0.1, 0.3 and 0.5.

The tradeoff coefficient β of WAE was set to 4 values - 1, 5, 10 and 20. We considered

4 values for the coefficient α in rSN - 0.25, 0.5, 0.75 and 11. The best performance with

DAE was achieved for Pmask = 0.1. For WAE, the different values of β resulted in rather

similar sensitivities. Among the considered values of the α coefficient in the rSN model,

0.25 resulted in the best sensitivity. Eventually, the best configurations for DAE, WAE and

rSN architectures were compared with each other and CAE on the bottom right plot on

fig. 7.13. The latter clearly illustrates that both WAE and rSN features outperform CAE

features which supports our initial intuition that the reconstruction loss alone does not fully

seize the potential of unsupervised feature learning for outlier detection. Eventually, the

rSN architecture with α = 0.25 gives the best performance achieving 43% detection rate for

8-9 false positive clusters, followed by rSN with α = 0.5 and WAE with β = 1 resulting in

38% sensitivity for 8-9 FPs. Larger values of the α coefficient probably impose too strong

a similarity constraint among the normal points which smears out the contribution of the

subnetwork reconstructions (therefore, ignoring the necessary variability) and degrade the

overall performance. These results show that the CAD system with automatically learnt

features, in particular, those obtained with WAE and rSN, allows a sensitivity by far

superior to the human performance (1MRI+ out 21 patients on T1-weighted MRI).

7.4.2 2D versus 3D representations

We compare the 2D and 3D patch-based approaches by evaluating the described 2D and

3D regularized siamese networks. The proposed 3D architecture is an early experimental

one. We only seek to demonstrate the possible advantages of 3D representations over their

2D alternatives.

Fig. 7.14 illustrates the difference in the performances of 2D and 3D CAD systems for two

values of the coefficient α - 0.25 and 0.5. As it can be seen, the performance is significantly

improved with respect to the sensitivity. It can also be noted that the different α values

seem to offer less performance variability in 3D than in 2D. Starting from 5 FPs, the two

α values result in identical sensitivities. Eventually, the 3D architectures allow to detect

around 48% of epilepsy lesions for 6-9 false positives.

7.4.3 Comparison with handcrafted features and GLM

We compared our approach of automated feature learning coupled with per voxel oc-

SVM learning with two current approaches. The first is the approach described in [El Azami

et al., 2016] which consists in associating each voxel with two clinically guided features and

learning a oc-SVM per voxel. Two feature maps were thus computed for all subjects from

the probabilistic tissue maps modeling
1Hereafter, rSN with α = t actually refers to αmax = t. We use this shorthand for practical reasons.
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Figure 7.13: Comparative performance of the CAD system based on features learnt with 4
unsupervised architectures. Top left: denoising autoencoder (DAE) with 3 choices of mask-
ing probability; Top right: Wasserstein autoencoder (WAE) with 4 values of the tradeoff
coefficient β = 1, 5, 10, 20; Bottom Left: regularized siamese network (rSN) with 4 values
of the tradeoff coefficient α = 0.25, 0.5, 0.75, 1; Bottom Right: the best configurations of
the DAE, WAE, rSN and CAE (convolutional autoencoder).

1. the extension of the gray matter into the white matter (extension map)

2. the junction between the gray and white matters (junction map)

The extension map was obtained from the segmented gray matter image, smoothed with a

6 mm Gaussian kernel. To compute the junction map, the T1-weighted intensity corrected

MR image was transformed into a binary image by selecting the voxels with a gray value

between meanGM + 1
2stdGM and meanWM − 1

2stdWM where GM/WM refers to gray mat-

ter/white matter, mean and SD values correspond to the mean and standard deviation

of the gray values in the respective tissue class, with meanWM > meanGM . A smoothing

with a 6mm Gaussian kernel was then applied to the binary image. These features were

shown to be discriminant for FCD and heterotopia [Huppertz et al., 2005, Wagner et al.,

2011].

The oc-SVM classifiers were designed in the same way as descried in section 7.3.2. The

same post processing routine was applied, with the exception of the distance map nor-

malization step described in 7.3.3. This comparison should reveal the advantages and the
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Figure 7.14: Comparative performance of the CAD system based on features learnt with
2D and 3D regularized siamese networks with different tradeoff coefficients α = 0.25 and
α = 0.5. Starting from 5FPs, the curves for both 3D architectures overlap.

drawbacks of automatically learnt versus handcrafted features, coupled with per-voxel oc-

SVMs.

As shown on fig. 7.15a, the CAD system based on handcrafted features reaches 38% of

detection rate for 5-9 false positive detections. The sensitivity of the CAD as the number

of FPs varies is rather steady; these handcrafted features, being chosen to capture common

FCD characteristics on T1-w MRI, detect the relevant lesions early with less false positives

as opposed to automatically learnt features that do not target a specific lesion type. The

drawback of the handcrafted features can be deduced right away - when a lesion does not

meet the typical characteristics, it is easily missed by the system. The comparative results

show that the features learnt with 2D rSN are comparable to the handcrafted features,

moreover, outperforming them when allowing 8-9 FPs. As for the 3D rSN features, they

clearly outperform the handcrafted ones with around 48% sensitivity for 6 FPs versus only

38%.

The second comparison we performed was against the mass univariate statistical analysis

implemented in the statistical parametric mapping software SPM. Within this method,

a general linear model (GLM) is first fitted to each voxel based on the chosen factors of

interest. As such factors, similarly to [El Azami et al., 2016], we considered the same

junction and extension maps that were used to train the oc-SVM models. Later the esti-

mated parameters of the fitted models are used to produce statistical t-value maps. Local

neighborhoods of voxels, where the statistic is above a certain threshold, form clusters.

The statistical significance of those clusters is assessed with the Gaussian random fields

(GRF) theory which accounts for the correlation among the neighboring voxels. In our

experiment, one-way ANOVA was performed based on four factors of interest: patient

junction map, control junction maps, patient extension map and control extension maps.

Two contrasts - [1,-1,0,0] and [0,0,1,-1] - were used to test the significant differences in the

patient junction and extension maps compared to those of the controls. We also performed
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(a) Comparative performance of the oc-SVM
based CAD systems with rSN features versus
handcrafted features (gray-white matter junc-
tion/extension).

(b) Comparative performance of the CAD sys-
tem with rSN features versus SPM analysis on
junction, extension and conjunction of junction
and extension.

Figure 7.15: fROC curves of the CAD system. x-axis: number of false positives per patient,
y-axis: sensitivity.

a conjunction analysis to test the global null hypothesis that the chosen factors - junction

and extension maps - are consistently and jointly significant. In all three cases, the ob-

tained t-score maps were thresholded at the value corresponding to p-value = 0.001 where

higher t-scores indicate a higher level of anomalousness. These maps were post-processed

in the same way as described in section 7.3.3 (with the exception of the normalization step

which otherwise degraded the corresponding results).

Fig. 7.15b illustrates the comparison of our CAD system with rSN features with the SPM

analysis performed in three settings

1. SPM analysis on gray-white matter junction

2. SPM analysis on gray matter extension into the white matter

3. SPM conjunction analysis on junction/extension

As it can be seen, the SPM analysis on the extension maps yields the best results among the

three settings. Indeed, for 9 FPs SPM analysis on extension achieves around 43% sensitiv-

ity while the same analysis on junction and the conjunction analysis on junction/extension

result in only 28% and 24% sensitivity, respectively. The rSN features coupled with oc-

SVMs, however, outperform the statistical analysis approach, for both 2D and 3D contexts.

Moreover, the difference is even more significant with 3D rSN features. These results show

that the quantitative performance of the proposed CAD system is superior to the statisti-

cal approach with SPM.

Table 7.1 summarizes the performance of the best model with automatically learnt fea-

tures with oc-SVM (in both 2D and 3D settings), handcrafted features with oc-SVM and
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handcrafted features with GLM analysis. The table shows which patients’ lesions were

detected among the top 10 clusters and, hence, 9 FPs. The rank of each correct detection

among the top 10 clusters is given inside parentheses in each cell.

As can be deduced from these results, GLM on the extension maps reaches 9 out of 21

detections while GLM on junction detects 6 out of 21 lesions. A drawback can be seen im-

mediately in the joint analysis of these features which degrades the results to 5 detections

out of 21. Indeed, it seems to us it is not trivial to extend the SPM analysis to consider

multiple factors. On the other hand, some patients (I, J and T), while occasionally de-

tected with some of the SPM analysis settings, are never detected with oc-SVM CAD.

The comparison between oc-SVM based CAD system with handcrafted features and deep

representations reveals that for a few patients’, the lesions are detected with the former

and not with the latter and vice versa. So, patients A−, G− and N− are detected with

2D rSN features but missed with the handcrafted features. Conversely, patients E− and

P− are detected with the handcrafted features. When comparing the handcrafted features

with 3D rSN, all the detections found with the former, except patient P−, are found as

well with the latter.

7.4.4 Qualitative results

Below we present the visual results obtained with the CAD system trained on the

features learnt with the architectures presented in section 7.3.1. Fig. 7.16 shows the nor-

malized score maps (centered at the slice of interest) output by the CAD systems based

on the representations of different architectures. The columns correspond to DAE with

Pmask = 0.1, CAE, WAE with β = 1 and rSN with α = 0.25. Darker shades indicate

more negative values which, in turn, means higher anomalousness. As it can be seen, the

different architectures allow to identify the lesions to different extent. The most striking

difference is noticed for patient G− where the lesion contrast is the most visible with the

rSN representations.

Fig. 7.17 illustrates the maximum intensity projections of the clusters found by the CAD

system onto a transverse slice centered at the presumed lesion. Similarly, each column

corresponds to a particular architecture. In each case, the illustrated cluster map shows

the minimal number of FPs allowing to achieve the detection of the epilepsy lesion. In

other words, the number of shown clusters for each patient corresponds to the rank of the

true detection by the CAD. When a patient’s lesion is not detected by the system, top 10

clusters are shown. It should be noted that the maximum intensity projections may result

in overlapping clusters, therefore their number may be visually underestimated.

The figure shows the differences in the detection quality and the FPs accompanying the

true detection. Patient G− is detected with only 3 FPs with rSN while with many more for

other architectures. The same is true for patient D+, though with less variation between

the number of FPs across different architectures. It should be noted that we employ the
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Patient Lesion location
oc-SVM

junction-extension

GLM on

junction

GLM on

extension

GLM on

conjunction

oc-SVM

2D rSN

α = 0.25

oc-SVM

3D rSN

α = 0.5

Patient A− Insula R 7 7 7 7 3(8) 7

Patient B− Temporal Lobe L 3(1) 7 3(3) 7 3(1) 3(1)

Patient C− Hippocampus R 7 3(3) 3(4) 7 7 7

Patient D+ Superior frontal gyrus R 3(1) 3(4) 3(1) 3(1) 3(2) 3(3)

Patient E−
Inferiolateral

remainder of parietal lobe R
3(5) 7 3(8) 7 7 3(7)

Patient F−
Hippocampus L,

parahippocampus L
7 7 7 7 7 7

Patient G− Middle frontal gyrus L 7 7 7 3(4) 3(4) 3(5)

Patient H− Superior frontal gyrus R 3(3) 7 7 7 3(1) 3(1)

Patient I−
Hippocampus L,

parahippocampus L
7 7 3(10) 7 7 7

Patient J− Precentral gyrus R 7 7 3(2) 3(1) 7 7

Patient K− Superior temporal gyrus R 7 7 7 7 7 7

Patient L− Middle frontal gyrus R 7 7 7 7 7 7

Patient M− Anterior temporal lobe R 7 7 7 7 7 7

Patient N− Anterior temporal lobe R 7 3(1) 3(4) 3(1) 3(9) 3(3)

Patient O− Middle frontal gyrus L 3(1) 3(1) 3(6) 3(1) 3(1) 3(1)

Patient P− Hippocampus R 3(6) 7 7 7 7 7

Patient Q−
Lateral

remainder of occipital lobe L
3(4) 7 3(1) 7 3(2) 3(7)

Patient R− Orbital gyrus R 7 7 7 7 7 7

Patient S− Hippocampus R 7 3(3) 7 7 7 3(7)

Patient T− Posterior temporal lobe R 7 3(1) 7 7 7 7

Patient U− Posterior temporal lobe L 3(1) 7 7 7 3(1) 3(1)

Overall # of detections 8 6 9 5 9 10

Table 7.1: Comparative results of the CAD systems with oc-SVM on junction and exten-
sion, GLM on junction, extension and junction-extension conjunction and oc-SVM with
2D and 3D rSN features. 3 denotes a detected lesion while 7 denotes no true detection.
The rank of each true detection is given inside parentheses.
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term false negatives in a rather generous context. Some of the ’false’ detections may be

identified as anatomical abnormalities captured by the system and, hence, from the ab-

normality detection perspective are not actually false. Other false detections are likely to

emerge from the registration step. For example, patient N− seems to have several narrow

clusters on the scalp borderline. Such patterns may be a result of the registration step

that were not corrected through the normalization step during postprocessing.

Fig. 7.18 demonstrates the differences between the CAD system based on 2D rSN and 3D

rSN representations. The two middle columns show the normalized output of each system

while the two rightmost columns demonstrate the eventual detected clusters. Similarly as

before, the difference between the two models can be seen in the number of FPs accom-

panying the true detection. So, for patient N− this number is significantly reduced with

3D features. For patients D+ and G− the number of FPs is augmented by one in the 3D

context as compared to the 2D context. Overall, it seems to us that the 3D context has

certain advantages to offer, including the size and clarity of the true detections, particularly

observed for patients D+, N− and G−, and should be studied more extensively.
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Figure 7.16: Normalized output maps obtained with features of various architectures.
First column: The original image slice centered at the lesion, highlighted in a purple
circle; Second column: DAE (Pmask = 0.1); Third column: CAE; Third column: WAE
(β = 1); Fourth column; rSN (α = 0.25). Darker shades on the output maps indicate higher
suspicion of anomalousness. Notice the differences in the contrast between non-pathological
areas and epilepsy lesions for various architectures. The most obvious difference is seen for
patient G− with high anomalousness found with rSN features and not with others.
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Figure 7.17: Maximum intensity projections of the cluster maps obtained with features
of various architectures. The maps show the minimum number of false positive clusters
allowing to detect the lesion, when it is detected, and top 10 clusters, when it is not.
Some clusters’ projections may overlap so visually their number might be underestimated.
In reality, the clusters are distributed across the 3D brain volume, so the projections
may sometimes seem to appear outside the scalp. First column: The original image slice
centered at the lesion, highlighted in a purple circle; Second column: DAE (Pmask = 0.1);
Third column: CAE; Fourth column: WAE (β = 1); Fifth column; rSN (α = 0.25). Notice
the variation in the number of clusters (hence, FPs) where the true detections are found.
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Figure 7.18: Visual comparison of normalized output maps and maximum intensity projec-
tions of the cluster maps obtained with features learnt with 2D/3D rSN architectures. The
cluster maps show the minimum number of false positive clusters allowing to detect the
lesion, when it is detected, and top 10 clusters, when it is not. Some clusters’ projections
may overlap so visually their number might be underestimated. In reality, the clusters are
distributed across the 3D brain volume, so the projections may sometimes seem to appear
outside the scalp. First column: The original image slice centered at the lesion, highlighted
in a purple circle; Second column: 2D rSN (α = 0.25) output maps; Third column: 3D rSN
(α = 0.5) output maps; Fourth column; 2D rSN (α = 0.25) cluster maps; Fifth column;
3D rSN (α = 0.5) cluster maps. Notice the variation in the number of clusters (hence,
FPs) where the true detections are found.
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7.5 Conclusion

In this chapter we presented a CAD framework for subtle anomaly detection on brain

MR images. Such a system does not target any particular pathology but helps identify

brain regions deviating from the population of healthy controls used for training. Such

a CAD system can be easily integrated into the clinical routine and serve as a tool for

preliminary screenings.

The proposed framework is based on learning feature representations with various unsu-

pervised deep architectures and coupling them with a voxelwise outlier detection algorithm

(oc-SVM). Our main contribution consists in

1. formulation of a regularized siamese network suitable for feature extraction for anomaly

detection tasks

2. evaluation of the proposed CAD framework with various unsupervised deep archi-

tectures on a data set of epilepsy patients

3. comparison with clinically guided handcrafted features within the same framework

as well as a statistical mass univariate analysis as implemented in the SPM software,

for the task of epilepsy lesion detection.

The epilepsy lesion detection task on brain MRI is known to be extremely challenging as the

lesions are subtle and do not have striking biomarkers. Moreover, in many cases patients’

MRI are considered normal over routine visual examinations (MRI-negative patients). Our

data set comprised mostly difficult cases (20 MRI-negative out 21 patients). We showed

that with features learnt with deep architectures it is reasonable to achieve between 38 and

42 % of sensitivity for at most 9 FP detections. When evaluating different unsupervised

architectures, we showed the advantageous performance of the features learnt with the

proposed regularized siamese network. Moreover, when considering an experimental 3D

rSN architecture, the CAD system achieved around 48% sensitivity for only 6 FPs.

When comparing our approach of data driven representations with the handcrafted fea-

tures used in [El Azami et al., 2016], we established at least similar (and rather superior)

performance, in particular, with 2D and 3D rSN features. This shows the potential of the

considered approach which, despite not being tailored to any specific pathology, including

epilepsy, can be successfully used to detect subtle pathological lesions. It should be noted,

however, that in [El Azami et al., 2016], the reported sensitivity of 10/13 with 3-4 FPs

corresponds to a slightly different configuration of the CAD system. First, the training

and evaluation was done per data set, while in our system we pulled all the available sub-

jects into a single one. We found this to be more coherent with real-life scenarios where

the training subjects do not constitute a perfectly homogeneous set. Second, unlike our

approach for tuning the RBF kernel parameter for each voxel individually, [El Azami et al.,
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2016] chose a common parameter value for all the voxels, found through a cross validation

procedure minimizing the number of FPs in healthy controls. These choices may have

driven the reported performance in [El Azami et al., 2016] to be higher than the one re-

vealed in our comparison.

When comparing the CAD system with the currently used SPM analysis we have shown

that the proposed system is at least as good if not better when considering certain factors

and their combination. An obvious bottleneck of this kind of approaches is the not trivial

fashion the combination of multiple factors are treated in. So, extension alone in the SPM

analysis results in 9 correct detections while the conjunction of extension and junction - in

only 5. Our framework is more flexible towards the consideration of different characteris-

tics.

One aspect of our CAD system that should be acknowledged is the interpretation of the so

called false positives. When evaluating our system on the task of epilepsy lesion detection,

we considered the detections not coinciding with the ground truth, false positives. Some of

these false positives, however, correspond to anatomical abnormalities with respect to the

healthy population used for training. From the abnormality detection perspective, those

are not actual false positives. Some abnormalities detected by the proposed system could

also be relevant to epilepsy, even though they do not overlap with the ground truth. The

reason behind this is the fact that many epilepsy patients, especially those with normal

MRIs, have other brain abnormalities that may be linked to the epilepsy seizures. It is

not a trivial task to confirm these false detections as potentially epilepsy-relevant since

their connection to epilepsy may not be validated clinically. Another set of false positives

corresponds to imaging artifacts and registration discrepancies which end up detected as

abnormalities. Such false positives are clearly a drawback and should be addressed in the

future work.

The next chapter aims at extending the proposed CAD system to accommodate multiple

imaging modalities. The motivation behind this stems from the fact that the visual con-

firmation of subtle abnormalities is rarely fully achieved with a single imaging modality.

Typically, in the clinical practice neuroimaging data from different sources is extensively

reviewed in order to capture the complementary information present in each of them. Thus,

we aim at improving the diagnostic performance of the proposed CAD system through the

integration of FLAIR MRI data.
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Chapter 8

Modality fusion methods

For most phenomena and applications, it is not uncommon to have multiple sources

of information providing different perspectives on the problem at hand. Those sources

could include various measurements, experiments, multiple sensors, etc., depending on

the application. In medical imaging, different types of images of the same subjects can be

acquired, either from different modalities such as MRI and PET or from different protocols

of the same modality such as various MRI sequences (FLAIR, diffusion, etc). Each such

source results in a data modality or view. Since different modalities highlight different

aspects of a subject, combining the information present in all of them has the advantage of

giving a more comprehensive overview of the problem. This notion has built the foundation

of the so called multiview learning, a category of algorithms that seek to learn a model per

view and jointly optimize them in order to boost the generalization performance.

In a clinical routine, analyzing the medical images obtained with a number of distinct

techniques is a standard practice as it gives a fuller picture on the state of the patient. It

is therefore only natural for machine learning based automated diagnosis systems to seek

to integrate multimodality data into a single framework.

Combining multimodality data involves adopting a multimodal data fusion strategy. The

main aspects to consider for data fusion are

1. when in the pipeline the fusion should be introduced

2. the optimal method to perform the fusion for the task at hand
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CHAPTER 8. MODALITY FUSION METHODS

8.1 Fusion level

The current methods of multimodal data fusion fall into three major categories illus-

trated on fig. 8.1.

Early fusion consists in merging the modalities at the earliest level so that the input to

the learning algorithm consists of their combined representations. The input per modality

may be the raw imaging data or features relevant for each modality. The most straightfor-

ward option is to concatenate the input from different modalities. The advantage of the

early fusion strategy is that the learning algorithm may leverage the correlation between

the modalities. This is a natural approach especially when the multimodal inputs are

homogeneous. Moreover, in an early fusion strategy, only one learning model is trained

as opposed to training individual models per modality. However, when the modalities are

significantly heterogeneous, a single learning model may not be able to capture the most

relevant information. Moreover, the nature of the extracted features may be quite different

(as is the case for textual, speech and visual features ) and combining them in a unified

representation may be challenging [Poria et al., 2016].

Early fusion has been used in various medical applications. [Niaf et al., 2012] combined var-

ious features from T2-weighted, diffusion-weighted and dynamic contrast-enhanced MRI

modalities to discriminate prostate cancer from healthy tissue. [Kabir et al., 2007] com-

bined gray level intensity values of different MRI sequences before feeding them into a

Markov random field for ischemic stroke lesion segmentation. Recent state-of-the-art deep

architectures for many pathologies are designed to perform a sort of early fusion by com-

bining raw image modality data as channels. So, T1-weighted, contrast enhanced T1c,

T2-weighted and FLAIR MR images were joint as channels in the architectures proposed

in [Havaei et al., 2017, Kamnitsas et al., 2016] for brain tumor segmentation. The same

strategy was implemented, among others, in [Brosch et al., 2016] for MS lesion segmenta-

tion.

Late fusion, also referred to as decision fusion, methods aim at combining the decisions

output by the models trained individually for each modality. In this case the individual

potential of each modality is exploited maximally, however, at the cost of training mul-

tiple learning models, one per modality. Combining the decisions in a meaningful way is

another aspect to consider, depending on the type of the decision output by the chosen

models (probabilistic score, numerical score, etc).

Late fusion was applied to combine the decisions of audio and video speech recognition

models through adaptive weighting in [Lee and Park, 2008] or using a genetic algorithm op-

timisation technique in [Rajavel and Sathidevi, 2015]. In medical imaging, late fusion has

been frequently performed in segmentation [Wang et al., 2013, Sabuncu et al., 2010, As-

man and Landman, 2013]. [Isgum et al., 2009] applied late fusion on multi-atlas cardiac
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8.2. FUSION METHODS

segmentation while [Heckemann et al., 2006] performed late fusion on brain MR image

segmentations obtained with label propagation.

Intermediate fusion methods, considered a separate fusion level in [Noble et al., 2004],

are an intermediate strategy between early and late fusion. In this case, the modalities

are combined after some transformation (e.g. kernel computation) has been applied to the

individual modality data and the decision is made based on the computed combination.

A representative example of intermediate fusion is multiple kernel learning (MKL) [Bach

et al., 2004, Sonnenburg et al., 2006a, Sonnenburg et al., 2006b]. This category of meth-

ods is often acknowledged in the literature on multiview learning [Sun, 2013, Xu et al.,

2013, Zhao et al., 2017]. The advantage of this fusion level is that only a single learning

model is trained while the difficulty of combining heterogeneous inputs is alleviated with

the kernel computation which can yield a common representation for all the modalities.

Intermediate fusion has been applied in many medical contexts. [Zhang et al., 2011] pro-

posed a framework where multiple kernels are associated with three modalities, namely

MRI (measuring brain atrophy), PET (measuring hypometabolism) and CSF (quantifying

specific proteins), while an SVM-like formulation combines them into a single model. The

method was used to classify healthy subjects versus AD (Alzheimer’s disease) patients and

healthy subjects versus MCI (Mild Cognitive Impairment) patients. An MKL SVM on

image-based markers was proposed again in [Hinrichs et al., 2011] for the same medical

application. Another approach for the same task was proposed in [Suk and Shen, 2013]

that applied the MKL paradigm coupled with representations learnt with stacked autoen-

coders. [Suk et al., 2014] proposed a deep architecture consisting of two subnetworks for

MRI and PET data, joined only at the topmost layers to discriminate AD patients.

[Pavlidis et al., 2002] compared early fusion (concatenation of the vectors), intermediate

fusion (kernels are computed separately and added later) and late fusion (individual SVMs

are trained with their scores added later) for the problem of gene classification from a

heterogeneous data set consisting of DNA microarray expression measurements and phylo-

genetic profiles from whole-genome sequence. Intermediate fusion showed the best results,

probably since it provides a reasonable tradeoff between the assumptions made in early

and late fusion strategies. Such comparisons, of course, depend on the application and the

data.

8.2 Fusion methods

Depending on the fusion level, different combination strategies may apply. For early

fusion the simplest approach is the vector concatenation or joining the raw images as

channels (for neural networks mostly). Eventually, linear combination of multiple inputs

is possible.
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CHAPTER 8. MODALITY FUSION METHODS

Figure 8.1: Comparative visualization of fusion levels. X1 and X2 are the inputs of the
two modalities, K denotes a kernel, M denotes a learning model, decision is the output
of M . + denotes the combination method.

Late fusion usually combines the decisions provided by the learning models built per modal-

ity. Common combination methods are majority voting, min/max operations, linear com-

bination and/or logical operations. Another option is to train an additional model on the

decisions of the trained models for each modality, having as output the final decision. This,

however, involves training a supplementary model which comes with additional challenges.

Multiple kernel learning is the most representative intermediate fusion strategy which will

be explained in the next section. A more comprehensive review can be found in [Gönen

and Alpaydın, 2011].

8.3 Multiple kernel learning for intermediate data fusion

In section 5.1.3 we presented the formulation of the oc-SVM algorithm. The primal

formulation is the following problem

min
w,ρ,ξi

1

2
||w||2 − ρ+

1

νn

n∑
i=1

ξi

subject to w · φ(xi) ≥ ρ− ξi i ∈ [1, n]

ξi ≥ 0 i ∈ [1, n]

(8.1)

where n is the number of training examples, xi is the i-th example in the training data

set X, ξi-s are slack variables relaxing the inequality constraints as to account for the

non-separable classes, w and ρ define the separating hyperplane, ν ∈ (0, 1) is a parameter

that sets a boundary to the fraction of allowed outliers. φ is the feature map X → F from

the original space to a dot product space F , corresponding to some kernel

K(xi,xj) = 〈φ(xi), φ(xj)〉

In this formulation, as is the case for the binary SVM, a single kernel is used to project

the data points into a new space. The choice of the kernel and its parameters requires a
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8.3. MULTIPLE KERNEL LEARNING FOR INTERMEDIATE DATA FUSION

tuning of its own and is one of the challenges of the algorithm.

In multiple kernel learning (MKL), the single kernel is replaced with a combination of

several kernels, each parameterized accordingly [Bach et al., 2004, Sonnenburg et al., 2006a,

Sonnenburg et al., 2006b]. A combined kernel can be written as:

KMKL(xi,xj) = fθ({Km(xi,xj)}Mm=1|θ)

where xi is the i-th observation, Km is the m-th kernel, M is the number of modalities.

fθ is the kernel combination function parameterized with θ. θ may refer to the parameters

injected into the individual kernel functions, optimized when solving the problem. Most

common scenario, however, is to predefine the kernels per modality by setting their pa-

rameters while θ refers solely to their combination. The most common choice for fθ is the

linear combination

KMKL(xi,xj) = fθ({Km(xi,xj)}Mm=1|θ) =
M∑
m=1

dmKm(xi,xj)

This setting of multiple kernel learning can be injected into several kernel-based methods

such as Kernel Fisher discriminant analysis, regularized kernel discriminant analysis and

kernel ridge regression. The MKL formulation for one-class SVM can be written as

min
w,ρ,ξi,d

1

2
||w||2 − ρ+

1

νn

n∑
i=1

ξi

subject to w ·
M∑
m=1

dmφm(xi) ≥ ρ− ξi i ∈ [1, n]

ξi ≥ 0 i ∈ [1, n]

dm ≥ 0 m ∈ [1,M ]

M∑
m=1

dm = 1

(8.2)

where dm is the weighing coefficient of the m-th kernel, M is the total number of kernels,

n is the number of observations. The Lagrangian of the problem is:

L(w, ξ, ρ, d, α, β) =
1

2
||w||2 − ρ+

1

νn

n∑
i=1

ξi

−
n∑
i=1

αi(w ·
M∑
m=1

dmφm(xi)− ρ+ ξi)

−
n∑
i=1

βiξi −
M∑
m=1

γmdm − µ(
M∑
m=1

dm − 1)

(8.3)

Z. Alaverdyan 117
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI005/these.pdf 
© [Z. Alaverdyan], [2019], INSA Lyon, tous droits réservés



CHAPTER 8. MODALITY FUSION METHODS

Setting the derivatives of the Lagrangian with respect to the primal variables w, ξ, ρ and

d to 0 yields the following:

∇wL = 0 ⇒ w =

n∑
i=1

αi

M∑
m=1

dmφm(xi)

∇ξL = 0 ⇒ αi =
1

νn
− βi

∂L
∂ρ

= 0 ⇒
n∑
i=1

αi = 1

∇dmL = 0 ⇒
n∑
i=1

αi(w ·
M∑
m=1

φm(xi))− γm − µ = 0

(8.4)

Introducing 8.4 into the Lagrangian 8.3 the dual formulation becomes

max
µ,d,α

µ

subject to
n∑
i=1

αi = 1

0 ≤ αi ≤
1

νn
i ∈ [1, n]

M∑
m=1

dm
1

2

N∑
i,j=1

αiαjKm(xi,xj) ≥ µ

dm ≥ 0 m ∈ [1,M ]

M∑
m=1

dm = 1

(8.5)

[Rakotomamonjy et al., 2008] proposed an algorithm (SimpleMKL) to solve the MKL

problem for SVMs. More precisely, the algorithm solves problems that can be put in the

following form

min
d

J(d)

subject to dm ≥ 0 m ∈ [1,M ]

M∑
m=1

dm = 1

where the form J(d) takes is rather flexible and therefore, can accommodate various SVM

formulations. For oc-SVM

J(d) =

min
w,ρ,ξi

1

2
||w||2 − ρ+

1

νn

n∑
i=1

ξi

subject to w ·
M∑
m=1

dmφm(xi) ≥ ρ− ξi i ∈ [1, n]

ξi ≥ 0 i ∈ [1, n]

(8.6)
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8.3. MULTIPLE KERNEL LEARNING FOR INTERMEDIATE DATA FUSION

[Loosli and Aboubacar, 2017] proposed an extension to the SimpleMKL paradigm (slim-

SimpleMKL) for oc-SVM which aims at building tight boundaries around the normal class

by controlling the number of support vectors. This is achieved through the following for-

mulation:
min
d

J(d)− λ card(α)

subject to dm ≥ 0 m ∈ [1,M ]

M∑
m=1

dm = 1

(8.7)

where card(α) is the number of support vectors, λ is a tradeoff parameter and J(d) is as in

8.6. By controlling the number of support vectors, tight normality bounds can be achieved

which in turn can lead to an improved performance of the outlier detection. Note that

λ = 0 amounts to the original formulation of SimpleMKL.

Multiple kernel learning was initially proposed to achieve better generalization performance

by considering multiple kernels instead of restricting the kernel space to a single one. Ever

since, however, MKL methods have been widely considered in multiview learning problems.

The reason behind this is that the different kernels in MKL can be interpreted as different

views on the data and combining them, therefore, is analogous to multiview learning.

Formally, MKL may be used to capture different similarity notions on the same observations

or to combine the observations of different modalities, each encoded with a separate kernel.

In the first scenario, all the kernels are computed on the same data set at hand, as described

so far. In the second scenario, different kernels are associated with different modalities of

the given set of observations. This means that the combination of kernels is computed

with

KMKL(xi,xj) =
M∑
m=1

dmKm(xmi ,x
m
j )

where xmi is the i-th observation of m-th modality, Km is the kernel corresponding to the

m-th modality. Each modality may be associated with multiple kernels, without any major

change in the formulations above.

The application we are concerned with is the optimal fusion of neuroimaging data modali-

ties in the context of outlier detection. We are interested in comparing two fusion strategies.

The first is the early combination of the imaging modalities as channels in a deep architec-

tures, in order to learn common representations, later to be coupled with a oc-SVM model

per voxel. We will then consider an intermediate fusion strategy, in particular, apply-

ing MKL oc-SVM on the features learnt with networks trained on each imaging modality

separately. More precisely, the kernels will be computed individually on the features cor-

responding to the given modalities. In this case, an optimal combination of such kernels

is sought in order to provide the best separation of the data points from the origin.
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CHAPTER 8. MODALITY FUSION METHODS

8.4 Multiview learning with incomplete data

So far, we have considered the scenario where the data of all modalities are available.

In many applications, however, this is not the case. Some observations may not have the

information from all of the views, but from some of them. A simple approach would be

to train learning models on the examples with no missing entries. This, however, leaves

out the available useful information. Eventually, this limits the number of training exam-

ples to consider. Classical strategies of missing data imputation, based on the estimation

of missing entries from the observed ones, could be applied such as k-nearest neighbor,

expectation-maximization, low-rank matrix completion [Hastie et al., 1999, Troyanskaya

et al., 2001, Schneider, 2001, Candès and Recht, 2009]. However, such methods are better

suited for problems where values are missing at random. In multiview learning on medical

imaging, the information is missing in blocks (entire modalities are missing).

In the scope of multiview learning, several methods have been proposed to account for

the missing data in the multimodal learning framework. One recent approach is based

on multi-task learning where several learning models are trained simultaneously within

a single framework. [Thung et al., 2017] leveraged the multi-task learning paradigm by

dividing the given data set of incomplete observations into subsets of complete ones and

associating a classification task to each subset. The approach is implemented through a

deep learning architecture that is composed of one subnetwork per subset, each subnetwork

having its own final classification layer, corresponding to multi-stage Alzheimer’s disease

diagnosis. There are, however, common intermediate layers, shared between the subnet-

works, which means that the available data is fully exploited in all the classification tasks

simultaneously. A similar multi-task learning framework was proposed previously in [Yuan

et al., 2012] where, additionally, a constraint is imposed that results in all the tasks using

a particular modality to select a common subset of the modality features.

A multiple kernel learning based approach, dealing with incomplete data, was proposed

in [Zhu et al., 2017c]. The method relies on a multiple kernel learning problem formu-

lation, enhanced with two additional terms. The first term is based on maximum mean

discrepancy criterion, forcing the different data modalities to have a similar distribution in

a common space, to which a mapping is performed via a kernel function. The second term

involves a consistency criterion, assuring that the different modalities of the same subject

are similar in the kernel space. The approach allows to leverage the full set of observations

within each modality. The clinical application, again, is the Alzheimer’s disease diagnosis.

Another approach consists in explicit generation (synthesis) of one modality given the

examples of another one. The synthesized examples are then used in a hybrid data set

combining real and generated examples and any further learning model, depending on

the task, can be applied. Recent cross-modality synthesis methods, chiefly based on deep

learning, will be further reviewed in section 10.2.
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8.4. MULTIVIEW LEARNING WITH INCOMPLETE DATA

We presented an overview of the existing methods for multimodality data fusion, mention-

ing the problem of incomplete data as well. We are interested in applying the discussed

options, more precisely, the early fusion and the intermediate fusion with MKL paradigm,

in the context of anomaly detection. We will, therefore, evaluate the chosen strategies on

the task of epilepsy lesion detection on T1-weighted and FLAIR MRI, in the scope of the

proposed CAD system. As a next step, we will make an exploratory effort to integrate the

PET imaging as well. In this case, the multimodal learning will take place on incomplete

data. To overcome this problem, we will present our strategy of PET image synthesis from

the corresponding MRI acquisitions.
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Chapter 9

Epilepsy lesion detection on
T1-w/FLAIR MR images

In chapter 4 we formulated the problem of subtle lesion detection on brain imaging

as a per voxel outlier detection problem. In chapter 6 we presented our strategy of rep-

resentation learning using various unsupervised neural architectures, namely denoising,

convolutional and Wasserstein autoencoders and our own variation of siamese networks.

Further, in chapter 7 we exploited these architectures as feature extraction mechanisms,

coupled with per voxel oc-SVM learning, in the task of epilepsy lesion detection on T1-

weighted MRI. The best performance of the proposed CAD system for epilepsy detection

was achieved with regularized siamese networks as the representation learning component,

reaching 42% sensitivity for 8-9 false positive detections.

In this chapter we explore strategies for multimodal outlier detection in order to integrate

FLAIR MR images into the proposed framework. As explained in chapter 8, two fusion

strategies will be considered i.e. early fusion and intermediate fusion. The early fusion

strategy consists in proposing relevant unsupervised architectures that combine the given

imaging modalities as input channels, with the rest of the pipeline remaining as described

in chapter 5. The intermediate fusion consists in training individual networks for each

modality and combining the learnt representations in a MKL paradigm. We will next

evaluate the performance obtained with each strategy and eventually compare them.

9.1 Data description

The data set is composed of the same healthy controls and patients introduced in chapter

5.2. In the scope of the experiments below, we will use the T1-weighted and FLAIR MRI

sequences of the 75 healthy controls and 21 patients with confirmed epilepsy lesions. The
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CHAPTER 9. EPILEPSY LESION DETECTION ON T1-W/FLAIR MR IMAGES

T1-w MR images were normalized to the MNI space. The FLAIR sequences were first

rigidly co-registered with the corresponding T1-w volumes and further normalized to the

MNI space as well. Eventually, a voxel-level correspondence was established between the

T1-w and FLAIR acquisitions of the same subject in addition to the correspondence of

the acquisitions of different subjects. As in chapter 7, we excluded the brain regions (the

cerebellum and brain stem) that are not susceptible to epilepsy using a masking image

in the MNI space derived from the Hammersmith maximum probability atlas described

in [Hammers et al., 2003]. After the elimination of the corresponding voxels the number

of remaining voxels adds up to around 1.5 million. Before feeding the volumes to the

representation learning architectures, we removed top 1% intensities and scaled the images

between 0 and 1 individually.

9.2 Experiments

In the experiments below, we extend the original framework proposed in chapter 5,

combining features learnt with various unsupervised architectures with voxelwise one-class

SVM (oc-SVM), to the multimodal setting. In the first set of experiments, we consider

a number of architectures allowing the integration of multiple imaging modalities as in-

put channels and compare their performance on the task of epilepsy detection on T1-w

and FLAIR MRI. In the second part we pick the best architectures for each modality

individually and couple the learnt features via the multiple kernel learning paradigm.

9.2.1 Early fusion with multichannel architectures

As an early fusion strategy, we first consider the architectures presented in chapter 7.3.1

for their ability to accommodate multiple modalities as input channels. In particular, we

focused on stacked convolutional autoencoders, Wasserstein autoencoders and regularized

siamese network, adapted to the multichannel setting. Similarly as in chapter 7.3.1, for

all the architectures, the training data set X = {x1,x2, ...,xN} consists of 15x15 patches

extracted from all the volumes of the healthy individuals with a fixed overlap of 8 which

resulted in around N = 3.5 million patches.

The three considered models are shown on fig. 9.1b with the architectures of their compo-

nents shown on fig. 9.1a. The encoder and decoder components have identical structures

in all three architectures. In all cases the representations extracted with the architectures

are 64 dimensional vectors when flattened.

Stacked convolutional autoencoder was trained with a batch size of 128 using the

mean square error as loss function. ReLU activation was applied in every layer, except the

last layer of the generator where the sigmoid was applied. Adam optimizer with a learning

rate 0.001 was used for 25 epochs.
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Wasserstein autoencoder was trained with the Jenssen-Shanon divergence as the dis-

crepancy measure between Qz and Pz distributions, estimated with a discriminator. Pz
was modeled with a multivariate Gaussian distribution. LeakyReLU was used as activation

in the WAE discriminator with scale 0.02 for negative input values. ReLU was used in the

generator and the encoder, except for the last layer of G where sigmoid was applied. The

parameter β in the LWAE loss (7.1) was varied among the following values - 1,5,10 and 20.

Regularized siamese network was trained in a similar manner as in the monochannel

case. In all layers, except the last one in G, ReLU activation was used. The last layer was

followed by the sigmoid function. The input of the network consists of pairs of patches that

were composed in the following way. First, patches were extracted from all the healthy

subjects with a stride of 8. Next, for each patch of a subject, a pair was composed by ran-

domly selecting its similar patch among those belonging to the remaining subjects. The

number of pairs is again around 3.5 million. The α coefficient of the loss function was

set to 0 for 10 iterations, then grew linearly to some αmax value for 15 more epochs and

remained at αmax for 5 more epochs. Adam optimizer with a learning rate 0.001 was used.

The batch size was set to 128. We considered two values for αmax - 0.25 and 0.5.

Experimental 3D regularized siamese network

In the scope of the early fusion strategy for the proposed CAD we have also evaluated

an experimental rSN on 3D patches. Combining the two modalities in the 3D context

may improve the performance obtained with 2D early fusion. The encoder and decoder

components considered for an alternative 3D architecture are illustrated on fig. 9.1c. The

structure of the encoder and the decoder follows those presented earlier for 2D patches.

We considered 15 x 15 x 5 patches since most epilepsy cases take up around 5 consecutive

transverse slices. The network was trained identically to its 2D analogue with the same

strategy of pair constitution.

Outlier detection

The per voxel outlier detection step is identical to the setup described in section 7.3.2. In

fact, the only difference in the pipeline introduced earlier is the representation learning

stage which now comprises both modalities. Therefore, each voxel vi is associated with

a oc-SVM classifier Ci which is trained on the matrix Mi = [zi1, ..., zin] where zij is the

representation vector corresponding to the multimodal patches centered at vi of subject j

and n is the number of subjects.

The RBF kernel was chosen for each classifier Ci. For each oc-SVM individually, we chose

to set γ to the median of the standardized euclidean pairwise distances of the correspond-

ing matrix Mi. The parameter ν, the upper bound of the fraction of allowed outliers in

the oc-SVM formulation 5.1, was set to 0.03.

For each voxel vi, the corresponding oc-SVM model Ci outputs the score for the voxel, i.e.
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the distance to the found optimal hyperplane, corresponding to

score(vi)← w∗ · φ(zi)− ρ∗

where w∗ and ρ∗ define the optimal hyperplane, as explained in section 5.1.3. Eventually,

all voxel distance scores combined together yield the distance map Dp for the given patient

p.

9.2.2 Intermediate fusion with multiple kernel learning

In order to apply the multiple kernel learning paradigm as an intermediate fusion

method, we first need to extract representations with networks trained on each modal-

ity individually. In chapter 7 we considered several architectures for the T1-weighted MRI

modality and showed the superior performance achieved with regularized siamese networks

for epilepsy detection. We carried out the same series of experiments on the FLAIR modal-

ity and found that the regularized siamese network performed the best on this modality as

well. We therefore chose regularized siamese networks as feature extraction components for

both T1-weighted and FLAIR data. In both cases the maximal value αmax of the tradeoff

coefficient α was set to 0.25, corresponding to the best configuration for both modalities.

Outlier detection

With the individual networks trained, we employ multiple kernel learning on the features

extracted per modality. Each voxel vi is associated with a slimSimpleMKL model Ci, as

described in section 8.3, which is trained on the matrices Mi,m = [zi1,m, ..., zin,m] where

Mi,m is the matrix of representations for voxel vi of modality m, zij,m is the representation

vector corresponding to the patch centered at vi of subject j for modality m and n is the

number of subjects. A kernel is computed on each view i.e. each matrix Mi,m, and their

optimal combination is sought so as to separate the points from the origin. The RBF

kernel was used with the same method of γ choice as described in 7.3.2. More precisely,

for each voxel vi and each modality m, the corresponding γi,m was set to the median of the

standardized euclidean pairwise distances of the corresponding matrixMi,m. We employed

slimSimpleMKL by varying the parameter λ among the values - 0, 0.05, 0.1 and 0.5. We

used a Matlab implementation of the method provided by [Loosli and Aboubacar, 2017].

Similarly to the oc-SVM employed in chapter 7, the slimSimpleMKL models yield a signed

score for each voxel which eventually amounts to a distance score map for a given patient.

9.2.3 Post-processing and performance evaluation

For both early and intermediate fusion based CAD systems the raw output of the system

is a signed distance score map where negative scores denote voxels found anomalous by

the outlier detection module. Following the strategy described in details in section 7.3.3,

we first normalize the raw output maps with a voxel-level score standard deviation map
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(a) Encoder E, generator G and discriminator D used in the convolutional
autoencoder, Wasserstein autoencoder and regularized siamese network multi-
channel architectures.

(b) Global representation of the regularized siamese network (left), Wasserstein
autoencoeder (right) and convolutional autoencoder (center). The components
E and G have the same structure and are shown in fig. 9.1a.

(c) Alternative 3D encoder and decoder architectures to be used in an experi-
mental 3D multichannel rSN.

Figure 9.1: Multichannel architectures considered for early fusion.
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to obtain normalized score maps. The eventual distance map is obtained by averaging the

original raw and normalized maps.

Next, all the voxel score values of the distance map are pooled together into a histogram

which was then approximated by a non-parametric distribution using a kernel density

estimator. The approximated patient’s distance score distribution is then thresholded at

some pre-chosen p-value and a 26-connectivity rule is applied to identify the connected

components. These components are referred to as clusters. For each patient individually,

the distance map is thresholded at the p-value that produces at most 15 clusters.

Finally, we rank the detected clusters according to a ranking criterion that privileges large

clusters with low average score values. Eventually, the topmost 10 detections are kept.

The evaluation protocol is identical to the one described in section 7.3.4. A given cluster is

considered a true positive when an overlap exists between the cluster and the ground truth

lesion. Otherwise it is considered a false positive. A patient is considered detected when

at least one true positive cluster is found. Eventually, we calculate the sensitivity (the

proportion of the detected patients) and the average number of false positive detections

per patient, represented through a fROC curve in the following results.

9.3 Results

9.3.1 Comparison of multichannel architectures for early fusion

We have implemented the CAD system using the features learnt with the multichannel

architectures described above. The results are illustrated on fig. 9.2a. The baseline ar-

chitecture, that is the convolutional autoencoder, is, as was the case in the mono-modal

setting, the least successful. The 2 choices for the coefficient α1 in the rSN showed the best

results, especially given that the number of parameters is the same for both CAE and rSN.

This only emphasizes the advantage of the proposed regularized siamese architecture in the

context of anomaly detection. Eventually, with α = 0.5 the CAD system detects around

62% of epilepsy lesions for 8-9 false positive detections. As it can be seen, the performance

achieved with WAE features varies significantly for different choices of β. The maximum

sensitivity is around 53% for 8-9 false positive detections, obtained with β = 1.

The performance gain obtained with the additional FLAIR channel at input becomes evi-

dent. Indeed, the maximum sensitivity achieved with rSN on T1-w/FLAIR data is 62% for

8-9 FPs while being 42% for the same number of false positives in the T1-w CAD system.

Same is true for the WAE architecture as well, increasing from 38% to 53%. The compara-

tive performances of monochannel versus multichannel architectures are illustrated on fig.

9.2c.

1Hereafter, rSN α = ∗ actually refers to αmax = ∗. We use this shorthand for practical reasons.
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We have also evaluated the performance obtained with an experimental 3D multichannel

regularized siamese network as a feature extractor component for the proposed CAD. This

should give us an insight on the importance of the 3D view for the problem at hand.

Fig. 9.2e shows the fROC curves with for the 3D rSN for 3 different values of α = 0.25,

α = 0.5 and α = 0.75. When comparing the results to the best performance achieved in

the 2D setting, as shown on fig. 9.2f, it can be seen that the maximum sensitivity achieved

remains at 62%. However, the 3D architecture seems to outperform the 2D alternative for

the sensitivities at earlier fROC curve points, in other words, for less FPs. So, for 2FPs

the 3D network achieves around 48% sensitivity while the 2D rSN achieves only 38%.

9.3.2 Intermediate fusion strategy with MKL

As an intermediate fusion strategy, we considered the multiple kernel learning paradigm

and its implementation with (slim) SimpleMKL algorithm. This implies varying the param-

eter λ in the formulation 8.7. We have tried the following values - 0 (original SimpleMKL

formulation), 00.5, 0.1, 0.25 and 0.5. Fig. 9.2b illustrates the performances in the scope

of this experiment. The λ = 0.1, 0.25, 0.5 all resulted in an identical performance and,

therefore, the corresponding curves overlap and are seen as a single one. Apparently, there

is a limit on how many support vectors are kept eventually when solving the problem 8.7

which in our case happened to be bound to the value λ = 0.1. From this comparison, it is

apparent that even a slight regularization of the number of support vectors with λ = 0.05

offers a significant improvement over the original SimpleMKL problem. The sensitivity

jumps from 32% for 9 false positives to 52%.

9.3.3 Comparison of fusion levels

Despite the promising performance obtained with intermediate fusion, the results are

still inferior to those obtained with multichannel rSNs as shown on fig. 9.2d. This may be

due to the fact that certain properties based on the combination of raw image modalities

are learnt during the multichannel network training while the intermediate fusion operates

on the already learnt features which may skip those properties. Additionally, multichannel

fusion has an advantage in terms of efficiency of implementation. Indeed, only one network

is trained and the eventual outlier detection algorithm (oc-SVM) is computationally lighter

than the multiple kernel learning alternative. We do find multiple kernel learning an

interesting approach which deserves to be explored more thoroughly in the future.

Table 9.1 summarizes the results obtained for each patient in the scope of our comparison

of early and intermediate fusion strategies. Several observations could be made. First,

multimodal CAD system, with both early and intermediate fusion strategies, offers an

improvement over the T1-only CAD. The early fusion with multichannel networks allows

to detect almost all the patients detected with at least one modality independently. The
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(a) fROC curves of the CAD system with
multichannel architectures for early fusion.
The architectures correspond to convolu-
tional autoencoder (CAE), Wasserstein au-
toencoder (WAE) with β = 1, 5, 10, 20 and
regularized siamese network (rSN) with α =
0.25 and α = 0.5.

(b) fROC curves of the CAD system with
multiple kernel learning for intermediate fu-
sion. The curves correspond to the perfor-
mance obtained with slim SimpleMKL for
different values of λ = 0, 0.05, 0.1, 0.25, 0.5.
The λ values above 0.1 give identical per-
formances and therefore overlap.

(c) fROC curves of the CAD system with
monochannel and multichannel regularized
siamese networks (rSN) on T1-w, FLAIR
and T1-w/FLAIR MRI.

(d) fROC curves of the CAD system with
early and intermediate fusion. The best
performance obtained with intermediate fu-
sion is compared to the 2 best multichannel
architectures for early fusion.

(e) fROC curves of the CAD system with
3D multichannel regularized siamese net-
works (rSN) on T1-w/FLAIRMRI for 3 val-
ues of α.

(f) fROC curves of the CAD system with
the best 2D and 3D multichannel reg-
ularized siamese networks (rSN) on T1-
w/FLAIR MRI.

Figure 9.2: The proposed CAD system performance with early and intermediate fusion.
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only two exceptions are patients A− and R+. The former was detected with the T1-based

CAD, however, with a low rank of 8. It is likely for lesions, ranked at the bottom half of the

allowed top 10 clusters, to be smeared out when an even more normal looking imaging of the

second modality is added. Patient R+ had an extremely subtle lesion which was visually

identified on FLAIR imaging. It consists of a very small hypersignal which is ranked 6

by the FLAIR-only CAD. It seems to us that the normality of its T1-w MRI smeared

out the contribution of the FLAIR data in the multichannel setting. Another interesting

observation is that two patients (L− andM−) were detected with the multichannel network

while not being detected with either of monomodal CADs. This supports our intuition that

there is complementary information present in different imaging data that, when considered

jointly, allows a more coherent detection on some patients. It should also be stated that

despite the quantitative advantage shown by the early fusion strategy, the intermediate

fusion yielded some plausible results as well. So, patients A− and C− were detected with

MKL while being missed with the multichannel network. We do find the MKL approach

an interesting method of coupling multiple views on the problem, that should be looked

into in the future work.

Eventually, some remarks should be made on the 2D early fusion versus 3D early fusion.

The 3D context seems to significantly improve the detection ranks of two patients - F−

and Q−. This speaks of the potential advantage of exploiting the 3D information, even

though the maximum sensitivity achieved with both 2D and 3D multichannel architectures

is the same. We should also mention that, though some patients (A− and C−) were missed

by the 2D rSN and detected by the 3D alternative, the contrary is also true. Patients F−

and M− were detected by the system based on 2D rSN and not with the 3D one. These

discrepancies should be considered in a further analysis. It is likely that improving the 3D

network structure will resolve the detection of such cases.

9.3.4 Visual analysis

We have implemented two fusion strategies of imaging modalities within our CAD

pipeline and have shown that early raw image combination in a multichannel regularized

siamese network achieves promising performance. We will next visualize the detection

maps of both strategies and compare them with each other, as well as with those obtained

with the maps of the T1-w only CAD system.

Fig. 9.3 illustrates the normalized output maps obtained with intermediate fusion with

MKL, early fusion with 2D rSN and early fusion on 3D rSN. The last column shows the

outputs of the system with 2D rSN on T1-w MRI. As it can be seen, the MKL output

maps demonstrate a very mild contrast between the scores around the lesion and elsewhere

on the image. Conversely, the output maps corresponding to the early fusion strategies

exhibit significantly negative scores in the areas around the lesions. The abnormalities are

more striking on the multimodal CAD output (3rd column) than on the monomodal one
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Patient Lesion location
T1 rSN

α = 0.25

FLAIR rSN

α = 0.25

T1/FLAIR rSN

α = 0.5

slimSimpleMKL

λ = 0.1

T1/FLAIR 3D rSN

α = 0.75

Patient A− Insula R 3(8) 7 7 3(7) 3(2)

Patient B− Temporal Lobe L 3(1) 3(2) 3(1) 3(1) 3(1)

Patient C− Hippocampus R 7 7 7 3(10) 3(7)

Patient D+ Superior frontal gyrus R 3(2) 3(3) 3(1) 3(4) 3(1)

Patient E−
Inferiolateral

remainder of parietal lobe R
7 3(10) 3(8) 3(5) 3(6)

Patient F−
Hippocampus L,

parahippocampus L
7 3(3) 3(9) 7 7

Patient G+ Middle frontal gyrus L 3(4) 3(1) 3(1) 3(10) 3(1)

Patient H− Superior frontal gyrus R 3(1) 3(8) 3(3) 3(1) 3(2)

Patient I−
Hippocampus L,

parahippocampus L
7 7 7 7 7

Patient J− Precentral gyrus R 7 7 7 7 7

Patient K− Superior temporal gyrus R 7 7 7 7 7

Patient L− Middle frontal gyrus R 7 7 3(1) 7 3(1)

Patient M− Anterior temporal lobe R 7 7 3(4) 7 7

Patient N− Anterior temporal lobe R 3(9) 3(1) 3(1) 3(7) 3(1)

Patient O− Middle frontal gyrus L 3(1) 3(6) 3(2) 3(1) 3(1)

Patient P− Hippocampus R 7 7 7 7 7

Patient Q−
Lateral

remainder of occipital lobe L
3(2) 3(3) 3(7) 3(6) 3(2)

Patient R+ Orbital gyrus R 7 3(6) 7 7 7

Patient S− Hippocampus R 7 3(8) 3(6) 7 3(8)

Patient T− Posterior temporal lobe R 7 7 7 7 7

Patient U− Posterior temporal lobe L 3(1) 3(4) 3(3) 3(1) 3(2)

Overall # of detections 9 12 13 11 13

Table 9.1: Comparative results of different configurations of the CAD system at patient
level. For each patient, column 2 reports the lesion location while columns 3 to 7 indicate,
for each CAD setting, if the lesion was detected (3) or missed (7), as well as the rank of
the true detection inside parentheses.
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(last column). This seems to justify the contribution of the FLAIR modality.

Fig. 9.4 depicts the output cluster maps obtained with the early and intermediate fusion

strategies. The number of clusters in each image correspond to the smallest number of

FPs allowing to detect the true lesion, when it is detected, and the top 10 clusters, when

not. The differences in the number of FPs allows to compare which models rank the

true epilepsy abnormalities higher than others. The most significant qualitative differences

between the two fusion strategies are seen for patients D+, N− and G−. For the former,

the detection with MKL is very slight while for the latter two patients the number of FPs

is much higher than those obtained with early fusion.

Comparing the multichannel and monochannel architectures in the middle and rightmost

columns, the advantage of considering both T1-w and FLAIR MRI becomes clear. The

patient E− illustrates one example when the T1-weighted MRI alone is unable to detect

the subtle lesion. On the other hand, the early fusion strategy with 3D and 2D rSNs seems

to result in quite similar cluster maps.

9.4 Conclusion

In this chapter we presented possible scenarios for the integration of multimodal imaging

data into the proposed CAD system. We focused on two fusion strategies - early fusion

and intermediate fusion. Our main contributions consist in

1. formulating and proposing multichannel unsupervised architectures as an early fusion

strategy

2. proposing a multiple kernel learning approach as an intermediate fusion strategy

3. evaluating both strategies on problem of epilepsy lesion detection on T1-weighted/FLAIR

multimodality imaging data.

The early fusion strategy consists in learning joint representations of multimodality data

fed at input to a multichannel architecture. The intermediate fusion approach learns the

boundary of normal training points by assigning kernels and combining the representations

learnt with each modality separately. We evaluated both methods on the combination of

T1-weighted and FLAIR MRI data and offered a comparison of the achieved performances.

Overall, several remarks could be deduced from the described experiments. First, the per-

formance gain achieved with the integration of the additional FLAIR modality improved

the performance obtained with T1-weighted MRI only. Second, the early fusion method of

learning joint representations with multichannel networks results in the best performance

when regularized siamese networks are used. The performance is further improved when

such an architecture is based on 3D patches. The MKL approach, even though showing

promising results, was rather inferior to the results obtained with early fusion.

As it can be seen from tables 3.2, 3.3-3.5, summarizing the state-of-the-art methods for
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Figure 9.3: Visualization of the CAD detections. First column: original slice centered at
the lesion highlighted in a purple circle. From second to the fifth column: the normalized
output maps obtained with intermediate fusion; multichannel 2D rSN with α = 0.5; multi-
channel 3D rSN with α = 0.75; mono-modal rSN on T1w MRI. Darker shades correspond
to more negative score and, hence, the detected anomalies. Note the differences in the
contrast in different settings. Intermediate fusion results in a rather low contrast between
the lesions and the rest of the images.

134 Z. Alaverdyan
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI005/these.pdf 
© [Z. Alaverdyan], [2019], INSA Lyon, tous droits réservés
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Figure 9.4: Visualization of the CAD detections. The cluster maps show the minimum
number of FP clusters allowing to detect the lesion, when it is detected, and top 10 clusters,
when it is not. Some clusters’ projections may overlap (so visually their number might
be underestimated). First column: original slice centered at the lesion highlighted in a
purple circle; second to fifth column: the cluster maps obtained with intermediate fusion;
multichannel 2D rSN with α = 0.5; multichannel 3D rSN with α = 0.75; mono-modal rSN
on T1w MRI. Note the difference in the number of FP clusters needed before the true
detection emerges. This corresponds to the rank of a true detection.
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epilepsy detection, current studies do not commonly employ multimodality data. Those

that do, do not necessarily combine multimodality features but rather do individual anal-

ysis per feature. Moreover, the existing CAD systems do not integrate raw multimodality

data but the features extracted from different modalities. The only exception to the ob-

served pattern is the approach proposed in [Gill et al., 2018] (that combined raw T1-w and

FLAIR MRI data in a supervised convolutional neural network based framework). The

improvement established in our CAD system, when considering both T1-weighted and

FLAIR MRI data, only shows that the integration of multiple imaging modalities should

be an important aspect of dedicated CAD systems.

Eventually, we turn into placing the performance achieved with the proposed CAD system

into the grid of the existing works. Some of these studies use manually designed features

characterizing cortical malformations based on surface based morphometry (SBM) [Thesen

et al., 2011, Hong et al., 2014, Ahmed et al., 2016]. Others associate these morphomet-

ric features to the intensity anomalies in T1w MRI mainly caused by heterotopia lesions

[El Azami et al., 2016, Gill et al., 2017]. Our method seeks to find more complex features in

an unsupervised manner in order to identify lesions with unknown signatures. Naturally,

such an approach, when applied to a specific pathology, is likely to produce more false

positive detections.

Although a fair comparison with published results is difficult because of the differences

in the patient groups, results reported in table 9.1 (62% sensitivity for 8-9 false positives

per scan) are of the same order as those reported in recent studies for the difficult task of

automated detection in MRI negative patients. Indeed, the system proposed in [Ahmed

et al., 2016] based on SBM features coupled with semi-supervised hierarchical conditional

random fields achieves between 52% and 70% sensitivity (depending on the feature) on a

sample of 20 T1 weighted MRI negative patients among the top 10 detections per scan.

In [El Azami et al., 2016], a CAD system based on morphometric and intensity features

coupled with a oc-SVM classifier allows achieving the same 70% sensitivity with an average

of 4 false positives per scan when evaluated on a small cohort of 10 T1w MRI negative

patients. The recent supervised approach in [Gill et al., 2018], that combines raw T1-w and

FLAIR MRI data in a supervised convolutional neural network, achieves between 83-91%

sensitivity; the system, however, was trained on a significantly higher number of cases.

The most important difference, however, lays in a common pattern among all the existing

methods - targeting a specific cause of epilepsy. Most frequently, the pathology of interest

is FCD, and particularly FCD type II. This category of the epilepsy causes is the most

likely one to have recognizable markers on neuroimaging. The data set, considered in our

study and described in section 5.2, mainly consists of challenging, purely MRI negative

cases where the patients were considered normal over multiple visual examinations and

retrospective studies. For most of them, the histopathological analysis did not reveal any
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clear characteristics (e.g. FCD). Since these are the true challenges among patients diag-

nosed with epilepsy, we find that the proposed CAD system meets the expectations and

achieves reasonable results. The performance, however, could be improved further.

Our CAD system fails to identify the lesions of 8 patients. A visual analysis of the system’s

output for those cases seems to reveal two major reasons. For some of those patients the

raw output of the system highlighted some anomaly; however, after all the post-processing

steps, those clusters have not appeared among top 10 detections. This is likely to mean

that other anomalies present in the original images are considered ’anomalous’ to a greater

extent than the subtle epileptogenic lesion. The second category involves patients whose

output score maps came out without any indication of anomaly in the zone of interest. Our

future work will be aimed at analyzing more thoroughly the cases when the system fails

and investigate the reasons which may lay in the approach or the input images carrying

no distinct marker for the lesion at all.
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Chapter 10

Epilepsy lesion detection on
PET/MR images

In the previous chapters we explored CAD systems for automated epilepsy lesion detec-

tion on MR images. In chapter 3 we presented and discussed the existing approaches for

such systems. Chapter 4 presented our approach to the problem of epilepsy lesion detection

on MRI. In chapter 6, we introduced various unsupervised deep architectures, including

our own configuration of siamese networks, to be used as representation learning mecha-

nisms in a framework that casts subtle brain abnormality localization task as a voxel-level

outlier detection problem. We performed an evaluation of the proposed framework trained

on T1-weighted MR images on a set of patients with confirmed epilepsy lesions. In chapter

9 we extended the proposed framework to integrate both T1-weighted and FLAIR MRI

modalities.

In this chapter, we make an attempt to explore the potential of PET imaging, as a com-

plementary modality to MRI, for an automated detection of subtle epilepsy lesions. PET

imaging is not a routine clinical exam for the evaluation of drug resistant epilepsy patients.

The PHRC (programme hospitalier de recherche clinique) research project initiated by our

main collaborator J. Jung, thus, aims to evaluate the impact of this modality on epilepsy

detection. The patients selected in the scope of this project had therefore multiparametric

MRI and PET exams. It is, however, more difficult to set up a data set of healthy subjects

with PET acquisitions, as described in section 5.2. As a consequence, the healthy controls

who had PET exams are less in number than those who had T1-weighted and FLAIR

imaging in our data set.

In this chapter, we propose to handle the problem of incomplete data through synthesizing

PET images from the corresponding MRI acquisitions. The synthetic PET images and
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the real ones are later exploited in the CAD system described in chapter 5 and the contri-

bution of the generated PET data is shown via the quantitative evaluation of the system

performance.

10.1 Number of training examples: limitation

As described in section 5.2, the number of healthy subjects whose PET acquisitions

are available for the problem is only 35. One of the key points, therefore, becomes the

question of how much the small number of data points would limit the performance of the

proposed framework. To this end, we evaluate the CAD system trained on the available

PET images on 2 post-surgical images of patients, not included in our data set, shown on

fig. 10.1. The post-surgical PET scans carry large evident abnormalities in the resected

zones which are clearly visible by bare eye and should be easily identified by the proposed

system. The representations are learnt with the simplest architecture so far - a convolu-

tional autoencoder, with the same architecture and training routine that was presented

in section 7.3.1 for T1-weighted MRI. The oc-SVM design is as described in section 7.3.2.

Fig. 10.1 illustrates the generated raw score maps for the post-surgical scans. As it can

be seen, the distribution of the oc-SVM output scores across all the voxels assigns anoma-

lousness to almost everywhere. There is no striking difference in the resected zone which

constitutes to a failure of the system, trained on 35 data points per voxel, to recognize

the large abnormalities present in the images. The impact of the small number of subjects

on the representation learning component is an aspect that should be investigated. We,

however, hypothesize that such a behaviour is due to the insufficient number of data points

to learn the normality of each voxel, taking place in the second step of the CAD system i.e.

oc-SVM model learning per voxel. It is, therefore, our objective to explore strategies to

increase the number of PET training samples. Our strategy is to synthesize PET data from

the corresponding MRI acquisitions and leverage the synthetic PET data in the oc-SVM

learning.

10.2 Cross-modality synthesis in medical imaging

In many medical applications, it is common to have missing data. In particular, in

multimodal imaging studies, for one reason or another, some subjects may happen to have

an impartial set of multimodal data acquisitions. Discarding these subjects, especially

given that the overall number of participants in medical problems is low, may result in

underperforming models, as showcased above. One modern approach to account for the

missing data is the synthesis of missing modalities from those that are present. This

problem has been tackled in many recent studies.

[Nie et al., 2017] developed a method for synthesizing CT images from MRI, for brain and

pelvic data sets. The method uses GANs to generate CT patches from MR image patches
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Figure 10.1: CAD system output on post-surgical scans of two patients, showcasing evident
anomalies in the resected zones. Each row corresponds to a patient, from left to right -
transverse slice centered at the resected area, transverse slice of the system output, coronal
slice centered at the resected zone and a coronal slice of the system output. The resected
areas are contoured in green. Darker colors on the output maps correspond to more
negative values. From the almost uniform distribution of oc-SVM scores among the voxels,
it is clear that most voxels were seen as anomalous. There is no striking difference in the
anomalousness of the resected zone. These cases showcase the failure of the system to
recognize obvious anomalies.

and further integrates the GANs into an auto-context model (ACM) in order to refine

the generated images. This method, however, requires an access to a sufficient amount of

paired CT and MRI training data. In [Wolterink et al., 2017], CT image synthesis from

MRI is performed on unpaired data, using a cycleGAN [Zhu et al., 2017a]. CycleGAN is

a variation of GANs enhanced with a bidirectional generation of images from one domain

to the other and a constraint on the consistency between an image and its reconstruction

through the cycle of two generators. CycleGAN is again modified in the MRI to CT

image synthesis task in [Xiang et al., 2018] and in [Yang et al., 2018] where a constraint

on the structural consistency between the synthetic and real images is integrated into the

framework.

Several studies performed synthetic image generation while evaluating the synthesized

images in an auxiliary supervised task. In [Li et al., 2014], PET image patches were

generated from MRI patches with a 3D convolutional neural network in the first step

and later used for 3 classification settings, discriminating Alzheimer’s disease patients

and patients with mild cognitive impairment from healthy controls. [Ben-Cohen et al.,

2018] proposed a conditional GAN, where liver PET images are generated from CT input

images through a convolutional network while the discriminator seeks to distinguish real

CT-PET pairs from CT-generated PET pairs. Additionally, the reconstruction error of the

generated PET images is added to the global loss. The synthesized images were further
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evaluated in a lesion detection task, showing an improvement in the average false positive

rate. [Chartsias et al., 2017] performed cardiac MRI synthesis from CT images using a

cycleGAN and then evaluated the advantage of the synthesized images in a U-Net like

segmentation network. [Zhang et al., 2018] proposed a framework based on the cycleGAN

where the complementary modalities, i.e. CT and MRI, are used to synthesize examples

of one another and are evaluated on a cardiac image segmentation task. In addition to the

cycleGAN loss, the method imposes a term assuring the consistency of the segmentation

of the imputed images and the ground truth label map for cardio-vascular diseases. This

variation imposes a certain consistency between the synthesized and real images. Similarly,

[Pan et al., 2018] used a 3D cycleGAN to synthesize PET images from MRI and later used

them in a supervised method classifying Alzheimer patients versus healthy controls. [Jiang

et al., 2018] proposed a cycleGAN based framework modified in order to generate MR

images from CT scans by preserving the tumors of lung cancer patients. The synthesize

MR images are later used in a U-Net for lung tumor segmentation.

The mentioned studies treat image synthesis problem rather as a pre-processing step,

either for standalone image generation or to be used later in an independent medical

task. Some recent studies have proposed methods that perform modality imputation, at

the same accounting for the eventual task at hand, such as segmentation. Employing a

similar strategy, [Orbes-Arteaga et al., 2018] developed a method that combines a module

generating FLAIR images from T1-weighted brain MRI and another module that aims

at segmenting white matter hypointensities. In [Huo et al., 2018], the authors propose a

cycleGAN based abdomen CT to MRI synthesis component, together with a segmentation

component on the real and generated CT. To employ such a strategy, labeled ground

truth references are required which makes it difficult to use the approach in unsupervised

settings.

Among the works mentioned above, many solely aim to produce realistic looking synthetic

images, evaluating the quality of the approaches through a quantitative analysis of the

results (with such metrics as mean absolute error and peak-signal-to-noise-ratio), with no

particular medical task at hand. The second group of methods either evaluates the quality

of the generated images on an auxiliary task, or develops a method, explicitly accounting

for the eventual medical application.

We are interested in the second category of approaches that couple an image synthesis

component to a specific task. As it can be seen from the recent studies above, the impact

of the synthesized data is usually evaluated in supervised contexts. Eventually, we are

interested in evaluating the influence of synthetic images in the task of anomaly detection.
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10.3 Data description

10.3.1 Original PET-MRI data set

The experiments below are based on the data set described in details in section 5.2.

In particular, the T1-weighted MRI and PET acquisitions of 35 healthy controls and 19

patients (patients T− and U− did not have PET exams) with confirmed epilepsy lesions

are considered. Additionally, 40 T1-weighted MR images of healthy controls are available.

The T1-weighted and PET images were co-registered and normalized to the MNI space,

as described in section 5.2.4.

10.3.2 MRI to PET synthesis with U-Net

U-Net architecture introduced in [Ronneberger et al., 2015] has made a major contri-

bution in the application of deep architectures on various medical problems. Originally,

the network was proposed for a segmentation problem, yielding an impressive performance

even when very few training examples are available. [Çiçek et al., 2016] proposed a 3D

version of the original U-Net. The main characteristic of the U-Net architecture is the

contracting path, a sequence of convolutional and max pooling layers, typical to modern

convolutional networks, and an expansive path, a series of up-sampling and up-convolution

layers. There are skip connections introduced between the layers of the two paths which

results in the layers of the expansive paths receiving at input not only the output of the

previous layer but also the output of the symmetrically located layer in the contracting

path. The advantage of such connections is that the spatial information lost during consec-

utive maxpooling operations is eventually recovered. Additionally, there are two dropout

layers at the end of the contracting path.

We consider exploiting a U-Net-like architecture in order to generate PET images from

MR images fed as input to the network. In other words, an architecture will be given a

set of MR images and its weights will be optimized so as to produce PET images as close

as possible to the corresponding PET scans of the input images. Naturally, this approach

requires a set of paired MRI-PET images.

The architecture applied for MRI to PET synthesis is shown on fig. 10.2. The 2D trans-

verse slices of all the MRI-PET pairs of healthy controls were gathered from all 35 healthy

controls. The slices were cropped to 160 x 160, normalized to 0-1 interval at image level

and fed into the network. The input to the network, thus, consists in MRI images slices,

with the ground truth for the output being the corresponding PET slices. The network was

optimized with the Adam optimizer with a learning rate of 0.0001, using the mean square

error between the output of the network and the corresponding ground truth PET slice as

the loss function. The network was trained for at least 25 epochs and, then, early stopping

was implemented based on the performance of 3 healthy controls left out as a validation

set. We performed data augmentation by generating transformations by vertically flipping
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Figure 10.2: The U-Net architecture exploited to synthesize PET images from MRI scans.

and rotating the images within a range of 15 degrees. We did not explore more complex

data augmentation strategies. Examples of PET images generated with the network are

illustrated on fig. 10.3. As it can be seen, the synthesized images look realistic; however,

they do not reproduce the original PET slices with a high fidelity. Since this experiment

is only at its preliminary stage, we have not tested other approaches that could result in

images of a better quality.

10.3.3 Hybrid PET-MRI data set

After performing MRI to PET synthesis, we are left with a hybrid data set consisting of

real MRI data and real and synthesized PET data. Precisely, 35 healthy controls have real

MRI and PET acquisitions while the remaining 40 controls have real MRIs and synthetic

PET images, generated from the real MRI acquisitions via the U-Net-like architecture

described in the previous section. We will leverage this mixed data set to evaluate the

potential of the synthesized PET images in the CAD system developed in this work.

10.4 Experiments

The experiments below explore the potential of synthesized data for the problem of

outlier detection. To this extent, we leverage the hybrid data set obtained through pulling

together the real MRI and real/synthetic PET images. The CAD system is identical to its

description given in chapter 5. The representation learning component, implemented with

an unsupervised deep architecture, is trained on real inputs only i.e. the patches extracted

from the 35 healthy subjects with both MRI and PET acquisitions. The introduction

of the synthetic PET data takes place within the second component of the system - per
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Figure 10.3: Examples of PET images synthesized with U-Net. Top row: original MRI
transverse slices, middle row: original PET transverse slices, bottom row: synthetic PET
transverse slices.

voxel outlier detection with oc-SVM models. The main motivation behind this setup is to

evaluate the synthetic data in the context of outlier detection. In the future, the analysis

should be extended to the representation learning component as well.

Eventually, the following configurations of the CAD system are evaluated and compared.

1. PET-only CAD system with

• per voxel oc-SVMs trained on the real PET data of 35 healthy controls

• per voxel oc-SVMs trained on the real PET data of 35 healthy controls and 40

synthetic volumes

2. MRI-PET CAD system with

• per voxel oc-SVMs trained on the real MRI-PET data of 35 healthy controls

• per voxel oc-SVMs trained on the real MRI of 75 healthy controls and real PET

data of 35 healthy controls and 40 synthetic PET volumes

In both settings, we aim at exploring the difference in performance when the synthetic

data is introduced.

10.4.1 Baseline architecture for representation learning

As the representation learning component of the CAD system, we will reuse the baseline

architecture introduced in the proposed CAD system for epilepsy detection on T1-weighted

MRI in section 7.3.1. Namely, we will consider a convolutional autoencoder shown on fig.

10.4. In chapter 7 and, further, in chapter 9, we have shown that the regularized siamese
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network and Wasserstein autoencoder outperform the simple convolutional autoencoder.

This experiment, however, is only at its preliminary stage and, thus, we consider the

simplest suitable choice, expecting to choose better architectures in the future work.

The input to the CAE network consists in 15 x 15 patches extracted from the images

with a stride of 8. This architecture is exploited in two settings - PET-only monochannel

and T1-weighted MRI/PET multichannel scenarios. In both cases, only the real image

acquisitions were given to the network at input. In the first case the number of channels

at input is equal to 1 and to 2 in the second case. The encoding path consists of 3 hidden

layers with kernel size 3x3 where only the first layer is followed by a max pooling layer.

The decoding path is designed in a similar fashion. We used ReLU activation function in

all the layers except for the last one where sigmoid is used. Similarly to the setup in section

7.3.1, this network was trained to optimize the mean squared error of the input patches

and the corresponding reconstructions output by the network, using Adam optimization

algorithm with learning rate=0.001 and momentum=0.5.

Figure 10.4: Stacked convolutional autoencoder architecture (CAE). nc at input denotes
the number of channels that depends on the setting. For the monomodal scenario, nc = 1
and for the multimodal scenario nc = 2.

10.4.2 Outlier detection and post-processing

The per voxel outlier detection step is identical to the setup described in section 7.3.2.

Each voxel vi is associated with a oc-SVM classifier Ci which is trained on the matrix

Mi = [zi1, ..., zin] where zij is the representation vector corresponding to the (multimodal)

patch(es) centered at vi of subject j and n is the number of subjects.

The RBF kernel was chosen for each classifier Ci. For each oc-SVM individually, we chose

to set γ to the median of the standardized Euclidean pairwise distances of the corresponding

matrix Mi. The parameter ν, the upper bound of the fraction of allowed outliers in the

oc-SVM formulation 5.1, was set to 0.03.

For each voxel vi, the corresponding oc-SVM model Ci outputs the score for the voxel, i.e.

the distance to the found optimal hyperplane, corresponding to

score(vi)← w∗ · φ(zi)− ρ∗

where w∗ and ρ∗ define the optimal hyperplane, as explained in section 5.1.3. Eventually,

all voxel distance scores combined together yield the distance map Dp for the given patient
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p.

The post-processing of the output Dp maps for the patients was carried out as described in

section 7.3.3. For a given patient, the raw output map is first normalized with a voxel-level

score standard deviation map. The eventual distance map is obtained by averaging the

original raw and normalized maps.

Next, all the voxel score values of the distance map are pooled together into a histogram

which was then approximated by a non-parametric distribution using a kernel density

estimator. The approximated patient’s distance score distribution is then thresholded at

some pre-chosen p-value and a 26-connectivity rule is applied to identify the connected

components. These components are referred to as clusters. For each patient individually,

the distance map is thresholded at the p-value that produces at most 15 clusters.

Finally, we rank the detected clusters according to a ranking criterion that privileges large

clusters with low average score values. Eventually, the topmost 10 detections are kept.

10.5 Results

In order to estimate the contribution of synthesized PET data, we evaluated the de-

scribed CAD system on real data on and on real and synthesized data.

Fig. 10.5 illustrates the performance of the CAD system in monomodal and multimodal

settings with and without synthesized PET data. The synthesized PET data were only

introduced in the oc-SVM learning stage. This allows us to evaluate to contribution of

the synthesized data in the outlier detection context alone. As can be deduced from figure

10.5, in both monomodal and multimodal CAD systems the synthesized PET data have

improved the sensitivity.

Table 10.1 summarizes the performance of the CAD system corresponding to the maximum

sensitivity for the experiments above. The positive contribution of the synthesized PET

images is evident in both monomodal and multimodal settings. For PET-only CAD sys-

tem, the maximum sensitivity increases from 2/19 to 8/19 while for multimodal T1/PET

CAD system, the sensitivity changes from 4/19 to 7/19, when synthetic PET data is in-

cluded into the system.

However, in the PET-only CAD setting, the lesions detected with and without synthetic

PET data do not coincide. The only 2 patients (J− and L−) detected with the system

trained on the real data only, are missed when the synthetic data is introduced. This

means that the outlier detection models built around a few data points may occasionally

do better, by learning tighter boundaries and isolating outliers. When more data points are

available, the normality boundary would tend to expand and accommodate more points,

occasionally including some outliers. The quantitative results, however, suggest that more

representative points result in a more realistic boundary and, thus, more outliers are rec-

ognized.

Z. Alaverdyan 147
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI005/these.pdf 
© [Z. Alaverdyan], [2019], INSA Lyon, tous droits réservés



CHAPTER 10. EPILEPSY LESION DETECTION ON PET/MR IMAGES

In the scope of this experiment, evaluating the impact of synthetic PET data, we could

also compare the monomal PET-only CAD system with the multimodal T1/PET system.

Table 10.1 also gives an idea on this aspect. When trained on real data, considering the T1

MRI modality increases the performance from 2/19 to 4/19 maximum sensitivity. How-

ever, there is not a single lesion detected in both settings. Same comparison including

synthetic PET data actually reveals a slight decrease in sensitivity when T1-weighted MRi

is considered as well, by going from 8/19 to 7/19. These results may indicate that the

combination of T1-weighted MRI and PET images in a multichannel architecture may not

be the best fusion strategy for these two modalities. Indeed, T1-w MRI and PET images

have quite different structures. A better fusion strategy should be considered in the future

work.

Fig. 10.6 illustrates the obtained normalized score maps output by the corresponding oc-

SVM models trained on 1) real PET data, 2) real and synthetic PET data, 3) real T1-w

MRI / real PET data and 4) real T1-w MRI / real + synthetic PET data. As it can be

seen the real PET-only CAD system results in rather uniformly anomalous output map.

This only supports the intuition that a small number of training data points results in

a restricted model of normality. When adding synthetic data and, thus, augmenting the

number of training points, the output maps change drastically (middle column). Same

observation takes place in the multimodal setting (last two columns). Post-processing the

maps by applying the routine described in 10.4.2, results in cluster maps illustrated on fig.

10.7. The figure depicts the maximum intensity projections of the found detections onto

a transverse slice centered at the lesion. When a lesion is detected, FPs, corresponding to

its rank, are shown. When a lesion is not detected, top 10 clusters are shown.

10.6 Conclusion

In the recent works, many strategies have been proposed for cross-modality data synthe-

sis in medical imaging. When coupled with a particular medical task, the recent approaches

showed an improvement observed in the systems when synthesized data is exploited versus

when it is not. The exploitation of synthesized data in the task of outlier detection remains,

however, rather unexplored. In this chapter we made an attempt to leverage a straight-

forward strategy to generate PET images from T1-weighted MRI. Further, we evaluated

the performance of the proposed CAD system when real versus real and synthesized data

were used in the outlier detection stage.

The results obtained in this experiment show a convincing improvement of the CAD sys-

tem performance when the training data set in the outlier detection stage is enhanced with

synthetic data points. This takes place in both PET-only and multimodal T1w / PET

CAD systems. Indeed, when adding generated PET data in the PET-only CAD system,
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Patient Lesion location real PET real + syn. PET real T1/PET real T1/ real + syn. PET

Patient A− Insula R 7 3(9) 7 7

Patient B− Temporal Lobe L 7 3(2) 3(5) 7

Patient C− Hippocampus R 7 7 7 7

Patient D+ Superior frontal gyrus R 7 3(2) 7 7

Patient E−
Inferiolateral

remainder of parietal lobe R
7 7 7 7

Patient F−
Hippocampus L,

parahippocampus L
7 7 7 7

Patient G− Middle frontal gyrus L 7 3(6) 7 3(1)

Patient H− Superior frontal gyrus R 7 3(1) 7 7

Patient I−
Hippocampus L,

parahippocampus L
7 7 7 7

Patient J− Precentral gyrus R 3(1) 7 7 3(1)

Patient K− Superior temporal gyrus R 7 7 7 7

Patient L− Middle frontal gyrus R 3(7) 7 7 7

Patient M− Anterior temporal lobe R 7 7 3(9) 3(5)

Patient N− Anterior temporal lobe R 7 3(9) 7 7

Patient O− Middle frontal gyrus L 7 3(2) 3(2) 3(1)

Patient P− Hippocampus R 7 7 7 7

Patient Q−
Lateral

remainder of occipital lobe L
7 3(2) 3(4) 3(1)

Patient R− Orbital gyrus R 7 7 7 3(2)

Patient S− Hippocampus R 7 7 7 3(10)

Overall # of detections 2 8 4 7

Table 10.1: Comparative results of different configurations of the CAD system at patient
level. For each patient, column 2 reports the lesion location while columns 3 to 6 indicate,
for each CAD setting, if the lesion was detected (3) or missed (7), as well as the rank of
the true detection inside parentheses.
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(a) fROC curve of the CAD system in the
monomodal setting where the oc-SVM models
for outlier detection were trained on real PET
data (red) versus real and synthesized PET data
(green). The number of data points for each oc-
SVM is 35 and 75, without and with synthesized
data, respectively.

(b) fROC curve of the CAD system in the mul-
timodal setting where the oc-SVM models for
outlier detection were trained on real PET data
(red) versus real and synthesized PET data
(green). The T1-weighted data is always real.
The number of data points for each oc-SVM is
35 and 75, without and with synthesized data,
respectively.

Figure 10.5: The contribution of the synthesized PET data in monomodal and multimodal
CAD systems. In both cases, the integration of the synthesized PET data improves the
sensitivity of the system.

the maximum sensitivity increases from 2/19 to 8/19. This indicates the potential of syn-

thetic data in the considered context of outlier detection. In our experiment, we made only

a preliminary attempt to synthesize PET images from MRI. The obtained synthetic PET

images, though realistic, could be improved further in terms of quality. To this end, other

methods should be considered, such as the CycleGAN architecture which showed promising

performance in the state-of-the-art studies on image imputation. Synthetic data of a supe-

rior quality could largely improve the performance of our CAD system. Our experiment,

however, gives a preliminary idea on the future exploitation of PET data in automated

epilepsy lesion detection systems. As we have seen in chapter 3, PET imaging is only

occasionally explored in the existing CAD systems.

Another aspect in this experiment is the combination of T1-weighted MRI and PET images

into a single framework. As the main objective of the experiments in this chapter was to

evaluate the contribution of synthetic PET data for outlier detection, we have made only a

limited attempt to combine the modalities as input channels, similarly to the early fusion

performed for T1-weighted and FLAIR MRI data in chapter 9. It may not be the optimal

strategy for T1-weighted and PET modalities due to significant differences in the informa-

tion contained in those acquisitions. Further strategies should be explored in the future.

Moreover, additional architectures should be considered so as to find a better one serving

as a representation learning component. Among the considered choices, Wasserstein au-

toencoder and the regularized siamese network should be included, following their superior
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Figure 10.6: Visualization of the CAD detections. First column: original slice centered
at the lesion highlighted in a purple circle. From second to last column: the normalized
output maps obtained with a CAD system based on real PET data; real + synthetic PET
data; real T1 / real PET data; real T1 / real + synthetic PET data. Darker shades
correspond to more negative scores, and thus, anomalous regions.
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Figure 10.7: Visualization of the CAD detections. The cluster maps show the minimum
number of false positive clusters allowing to detect the lesion (in other words, its rank),
when it is detected, and top 10 clusters, when it is not. Some clusters’ projections may
overlap so visually their number might be underestimated. In reality, the clusters are
distributed across the 3D brain volume, so the projections may sometimes seem to appear
outside the scalp. First column: original slice centered at the lesion highlighted in a purple
circle; From second to last column: the cluster maps obtained with a CAD system based
on real PET data; real + synthetic PET data; real T1 / real PET data; real T1 / real +
synthetic PET data. Note the difference in the number of clusters needed before the true
detection emerges.
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performance established in the experiments in chapters 7 and 9, corresponding to the T1-w

MRI CAD system and the multimodal T1-w/FLAIR MRI CAD system, respectively.
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This work made an attempt to develop a computer aided diagnosis (CAD) system for

automated detection of subtle abnormalities on brain imaging. The clinical application

of the proposed CAD system consists in the detection of epilepsy lesions, particularly, in

patients considered normal over routine visual examination of the MRI scans.

We started by presenting a comprehensive overview of the existing CAD systems for

epilepsy detection, pointing out the main limitations. We gave our considerations and

constraints on the problem at hand, with respect to the limited number of data and the

lack of accurately annotated lesions available for training, and formalized an entirely unsu-

pervised CAD system. Such a system is based on the concept of per voxel outlier detection,

by learning the normality model of each voxel in the brain. The previous strategy pro-

posed by [El Azami et al., 2016] in the scope of this project, followed the tendency of

the current CAD systems for epilepsy detection and employed clinically guided features.

The main disadvantage of such approaches is that they operate upon handcrafted features,

mimicking the current clinical intuition on the appearance of epilepsy lesions. Moreover,

such features typically limit the systems to a single epilepsy cause or category (FCD).

Our first contribution in this work was to propose various unsupervised deep architectures

that could produce relevant representations, so as to replace the narrow range of hand-

crafted features with a more optimal and generic one. Eventually, we proposed a novel

configuration of siamese networks that seem to be particularly adapted to the context of

outlier detection, exploited throughout this work. We evaluated the proposed unsupervised

representation learning strategy within the adopted unsupervised CAD system on epilepsy

lesion detection on T1-weighted MRI. The considered data set consists of 21 epilepsy pa-

tients, with 18 MRI-negatives. We showed the superior performance, achieved with the

features learnt with the proposed deep architecture, compared to the same CAD system

employing handcrafted features. Moreover, we compared the overall CAD system against

the currently common SPM analysis approach, based on per-voxel mass univariate GLM

analysis. The comparison revealed the advantages of the proposed CAD system.

The evaluation of the CAD system on T1-weighted MRI resulted in maximum sensitivity

between 42-48%, depending on the representation learning model. This gives a room for

improvement. It could be achieved by considering additional imaging modalities which

offer complementary information on the pathology at hand. Indeed, in pre-surgical eval-

uation it is common to consult various medical imaging modalities in order to have a

comprehensive understanding of the pathology. In the current CAD systems, however,

multimodality data has not been explored extensively. Our second contribution, there-

fore, consists in extending the considered CAD system to accommodate multimodality

imaging data, by proposing relevant data fusion strategies. As such, we considered two

options. The first one consists in early fusion by combining the available modalities as

input channels to the representation learning models. This approach amounts to learning

common representations for all input modalities. The second strategy consists in learning
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representations per modality individually and later combine the learnt modality-specific

representations through the multiple kernel learning paradigm. In this case, a combination

of the representations is sough to separate better the normal data points. When comparing

these two strategies within the CAD system on T1-weighted / FLAIR MRI, we showed

the promising performance of the multiple kernel learning strategy and emphasized the

superior sensitivity achieved with the early fusion approach. Eventually, on T1-weighted

and FLAIR multimodal analysis, the CAD system achieved around 62% sensitivity.

Our last contribution presents our exploratory efforts towards the integration of PET data

for epilepsy detection. PET data has been considered only occasionally in the current

epilepsy detection CADs. The clinical studies, however, show that PET imaging improves

the epilepsy lesion detection rate over visual inspection. In order to exploit the available

PET data within the proposed CAD system, we implemented the CAD system on PET-

only data and a combination of T1-weighted MRI and PET imaging. However, the number

of healthy subjects who had PET exams is only 35. The proposed CAD system built on

such a small number of cases would not perform at its best. We therefore considered first

synthesizing PET images from the T1-weighted MRI and then integrating the generated

PET data in the outlier detection stage of the CAD. The results, obtained in the scope

of this preliminary experiment, clearly show that the synthetic data improves the perfor-

mance of the CAD system in both PET-only and combined T1-w/PET settings.

Future work

Our main contribution in this work was to propose representation learning strategies,

to be coupled with per voxel oc-SVM models within the adopted CAD system frame-

work. The CAD system itself may be improved in the future work with respect to various

aspects. The concept of learning a oc-SVM model per voxel may be optimized by con-

sidering groups of homogeneous voxels together and building a oc-SVM model per group.

This would imply proposing a relevant method of parcelizing homogeneous voxels together.

Following this intuition, we have conducted a number of experiments, by employing a few

clustering algorithms. We have noticed that the overall sensitivity of the system rather

degrades which is likely to be a result of an inappropriate choice of the number of clusters.

An exhaustive search over a possible number should be considered which will require an

appropriate criterion to be introduced so as to choose the most beneficial parcelization of

the voxels. This, eventually, demands additional effort.

The second aspect in the CAD design that could be improved in the post-processing rou-

tine. As we have stated throughout this work, the unsupervised representation learning

stage produces representations that are not specific or discriminating to any particular

pathology. The system, therefore, detects all the abnormalities identified with respect to
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the healthy control population used for training. This tends to result in a rather elevated

number of false positive detections, when the CAD system is applied to detect a particular

pathology. To this end, the post-processing stage could be designed to eliminate the false

positives with respect to the particular problem at hand. This will amount to deciding

upon relevant criteria to retain some detections and eliminate others. Such rules could also

be designed to eliminate false detections stemming from imaging artifacts or registration

discrepancies. These rules could be implemented through an additional neural architecture

trained to discriminate true and false detections. Eventually, problem-specific supervised

data, if available, could be introduced in order to drive an efficient discrimination of true

and false positive detections.

The third aspect is the integration of spatial information into the representation learning

component. This amounts to incorporating a vector, encoding the spatial localization of

patches, into the input to the considered architectures. Following this idea, we have tested

a number of possibilities which occasionally resulted in a slightly superior performance.

The gain, however, was not significant. It is our understanding that such a strategy re-

quires a careful choice of representation of the spatial information that would actually

improve the learnt representations.

Finally, we considered training the CAD system in an end-to-end fashion. One possible

strategy we have explored was to integrate the spatial information into the representation

learning system and identify outliers as those examples whose representations, conditioned

on their spatial localization, differ largely from those of the healthy controls. To this

end, for each patch, we considered introducing a vector of its distance to a number of

fixed points in the brain volume. This approach, however, resulted in a low sensitivity,

by producing patient-control group deviation maps, practically constant everywhere. It

is our understanding that such a spatial representation is not an effective information to

condition the learnt representations on. For one, the vector is continuous, it depends on

the number of fixed reference points, and the number of different conditional vectors is

quite large. A different strategy, resulting in conditional vectors with different properties,

perhaps, might be more appropriate.

Regarding the multimodality representation learning, implemented through a multichannel

neural network in this work, could be performed through a better optimized architecture.

We have shown the gain in sensitivity when both T1-weighted and FLAIR MRI modalities

were combined. However, in a few cases, the lesions detected with one of the modali-

ties, were missed by their combination. This suggests that a superior sensitivity can be

achieved, perhaps with a more appropriate architecture combining the two data sources.

Our last chapter explored the PET imaging in the context of epilepsy detection. We fo-

cused on the synthesis of missing PET acquisitions from the corresponding MR images and

performed a preliminary evaluation of the CAD performance, with and without synthetic
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data. Naturally, other cross-modality image synthesis methods could be applied as pre-

sented in section 10.2. In particular, the cycleGAN architecture seems to be a promising

option and should be considered in the future.

The next aspect in the scope of this experiment is that, when evaluating the CAD system

on the combination of T1-weighted MRI and PET images, we have not considered other

combination strategies, including MKL or a deep network, combining the modality-specific

information at some later stage. MRI and PET acquisitions, having different appearances,

might benefit from a different strategy, taking into account the specifics of both modali-

ties. Eventually, a multimodal MRI-PET CAD system is yet to be studied. Moreover, an

optimal combination of T1-weighted, FLAIR MRI and PET imaging should be considered

in a CAD system, for a more comprehensive analysis.

Our final observation concerns the application of the overall CAD system in medical ap-

plications. As stated when presenting the CAD system, the proposed framework is not

tailored to any pathology in particular. It is, therefore, of a great practical interest to apply

the proposed CAD to a number of neuropathologies in order to evaluate its potential and

limitations. Eventually, introducing the system into an early pre-surgical evaluation phase

may prove to be useful to the clinicians. In the scope of our collaboration with J. Jung,

we have started to implement the entire pipeline through the VIP platform, and shortly

in the future the CAD system will be available in the clinical setting.
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Chapter A

Alternative input patch size

In section 7.3.1 we discussed the architectures designed as feature extracting compo-

nents in the proposed CAD for subtle anomaly detection on brain images. We argued that

the choice of the input patch size to those architectures should not be very large since

representations learnt on large patches may not capture the necessary local characteristics

distinguishing subtle abnormalities. To illustrate this point we consider an alternative ar-

chitecture with a patch size of 31 x 31 at input, illustrated on fig. A.1. The dimension of

the representations in the middle layer, when flattened, is the same as before (64). ran-

domly chosen patches, together with their reconstructions obtained with this network, are

shown on fig. A.2. As it can be seen the quality of the reconstruction is rather convincing.

When exploiting this architecture as a feature extraction mechanism for the pipeline de-

scribed in chapter 7.1, following the same design choices as in chapter 7, the patient output

score maps clearly missed even the most obvious lesions. Fig. A.3 presents a comparison

of typical output maps obtained with the system trained on the patch size 31. As it can

be noticed, the CAD system with representations learnt on large patches does not succeed

at capturing sufficiently well the abnormalities around the true lesion. The scores around

the lesion are only slightly, if at all, different from the rest of the image. The showcased

example carries a visually remarkable, though subtle, lesion. Other patients in our data

set, mostly being MRI-negative, have even more subtle lesions which were not recognized

by the system trained on large patches. The proposed CAD system with representations

learnt on larger patches might be relevant to the contexts where more obvious and large

anomalies are sought. Eventually, more elaborate networks may be designed to preserve the

local characteristics of the normal subjects. Future work might explore such alternatives.
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APPENDIX A. ALTERNATIVE INPUT PATCH SIZE

Figure A.1: An experimental architecture for 31 x 31 patches at input.

Figure A.2: 10 random 31 x 31 patches (top row) together with their corresponding recon-
structions obtained with a convolutional autoencoder with input size 31 x 31.

Figure A.3: Comparison of the output maps obtained with the proposed CAD with con-
volutional autoencoders of different input patch sizes. Left: Original image slice centered
at a typical visually remarkable lesion, highlighted in purple. Center: The output map
obtained with the system on patch size 31. Right: The output map obtained with the
system on patch size 15. Notice the complete failure of the system trained on large patches
to capture any anomalousness around the lesion.
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