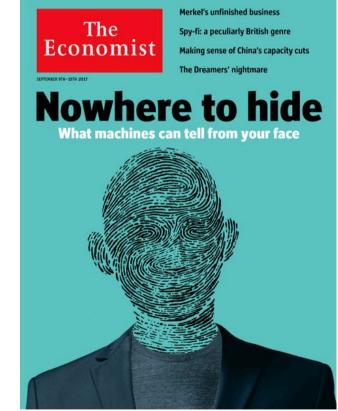
From Big Data to Fast Data: Efficient Stream Data Management

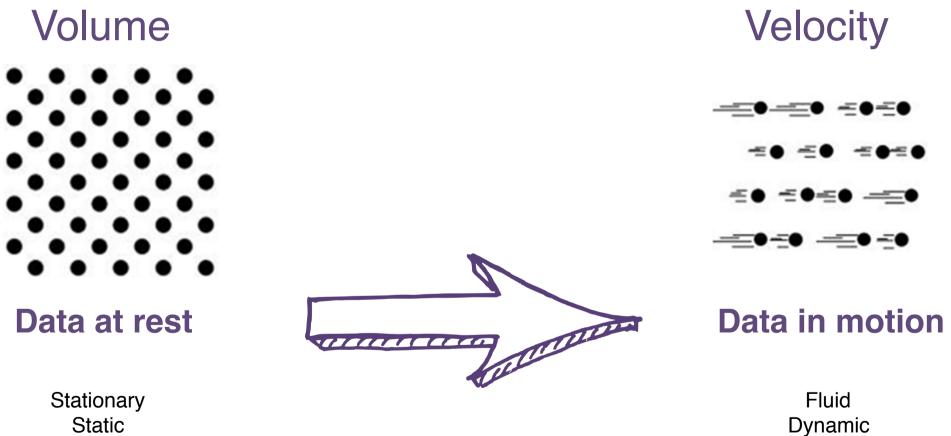
Alexandru Costan

HDR Defense, ENS Rennes, March 14, 2019

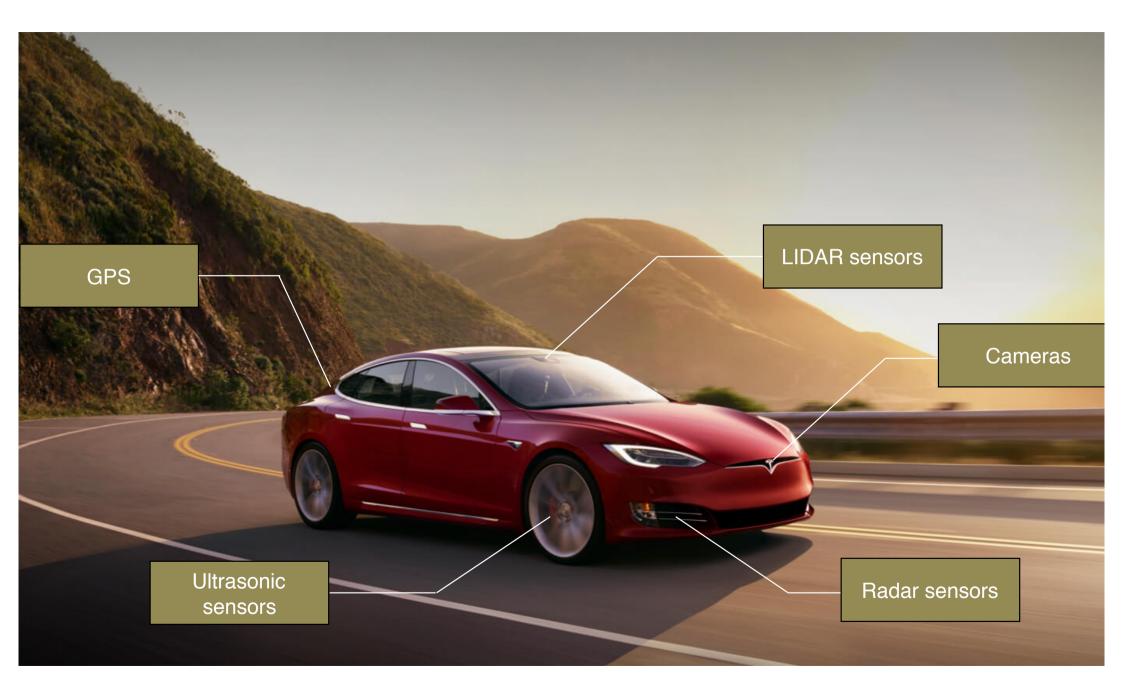
Big Data

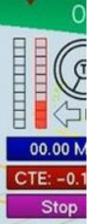


From Big Data to Fast Data



Static





Sensor type	Quantity	Data generated
Radar	4-6	0.1-15 Mbit/s
LIDAR	1-5	20-100 Mbit/s
Camera	6-12	500-3,500 Mbit/s
Ultrasonic	8-16	<0.01 Mbit/s
Vehicle motion, GNSS, IMU	-	<0.1 Mbit/s

ruise

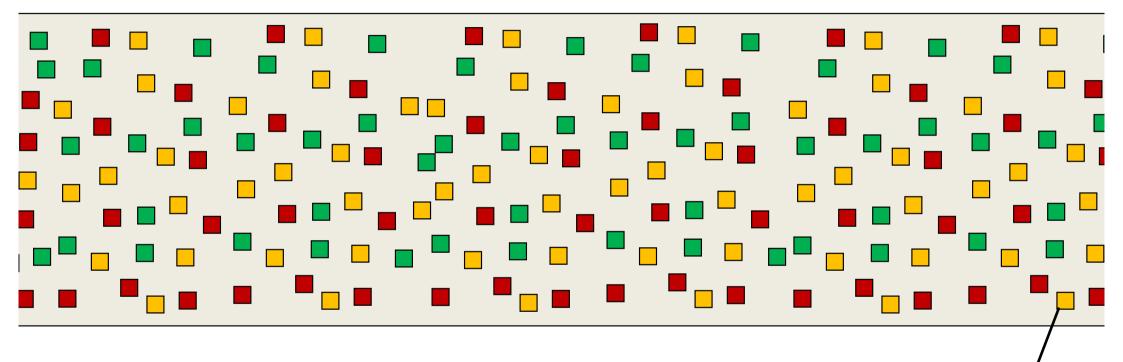
TOTAL ESTIMATED BANDWIDTH

3 Gbit/s (~1.4TB/h) to 40 Gbit/s (~19 TB/h)

SMALL and MANY

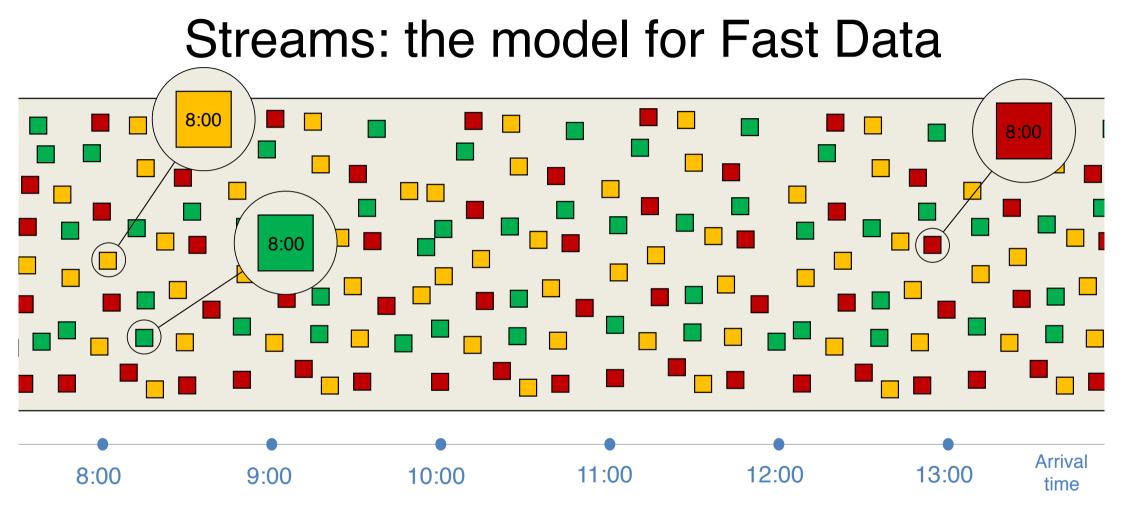
IoT and Smart City

Streams: the model for Fast Data



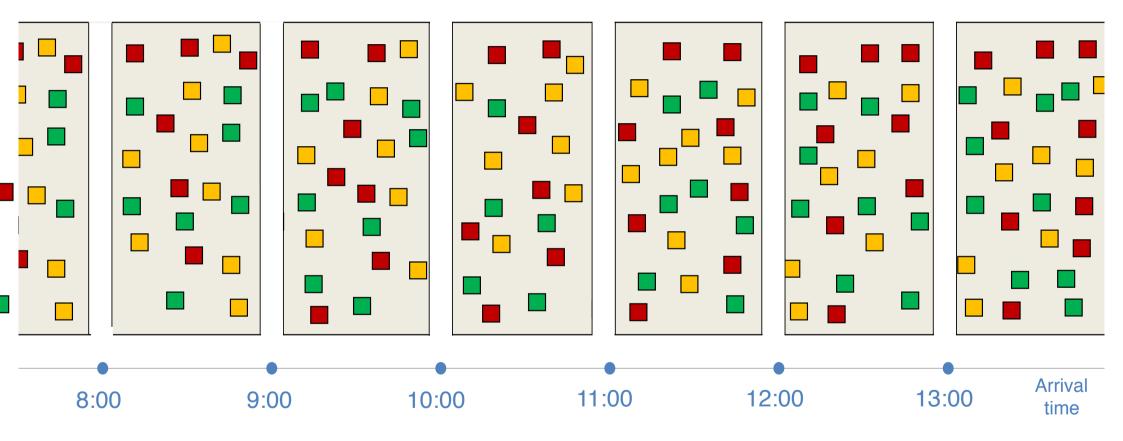
- Continuous, unbounded, unordered, global-scale datasets made up of events
- Small size per event (*i.e.*, bytes and kilobytes)
- High arrival rate (*i.e.*, million items per second)

Timestamp Key Value



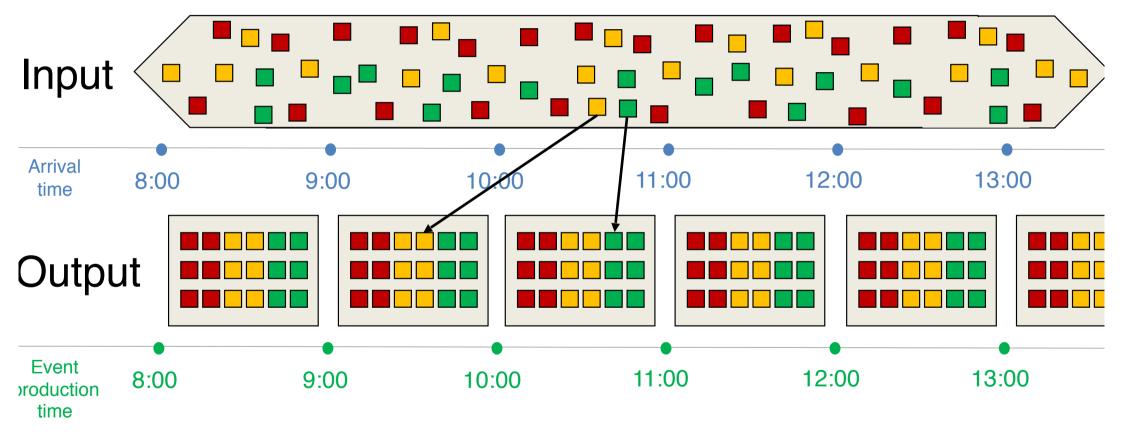
Events arrive with unknown delays

How to deal with this unboundedness ?



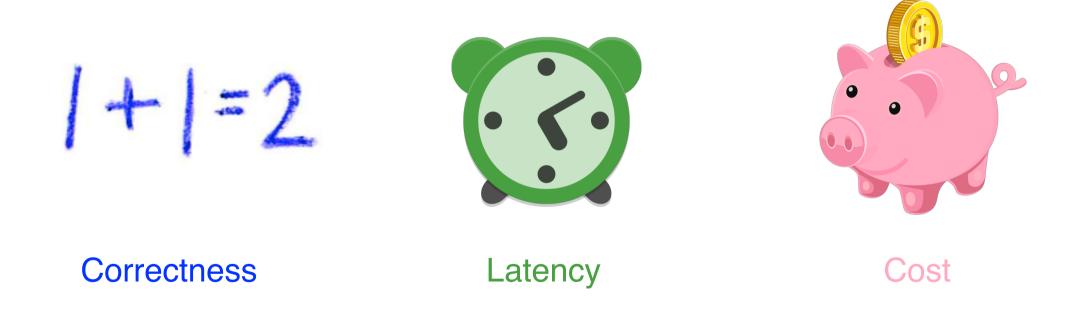
Aggregating arrival time-based windows

How to deal with this unboundedness ?



Aggregating event-based windows

Batch vs. streaming



Batch

Streaming

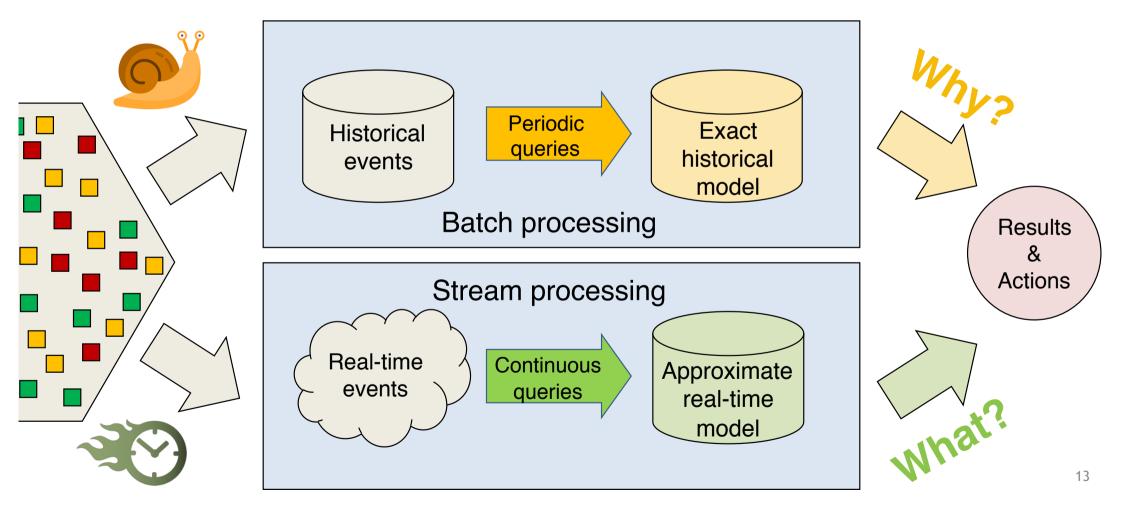
Correctness Latency

Cost

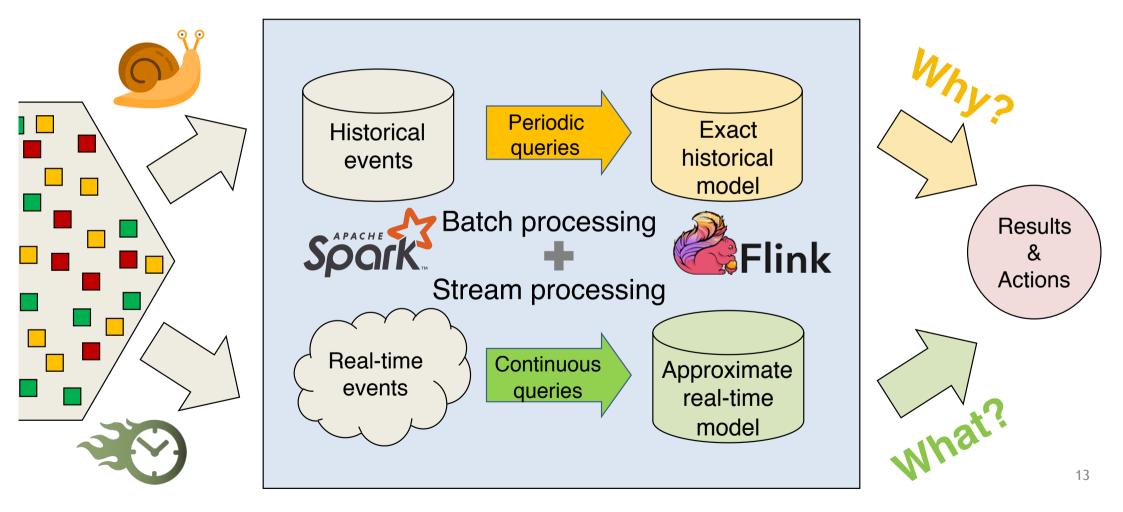
Exact results High-latency Stateless

Approximate results Low-latency Stateful

State of the art until recently: Lambda Architectures

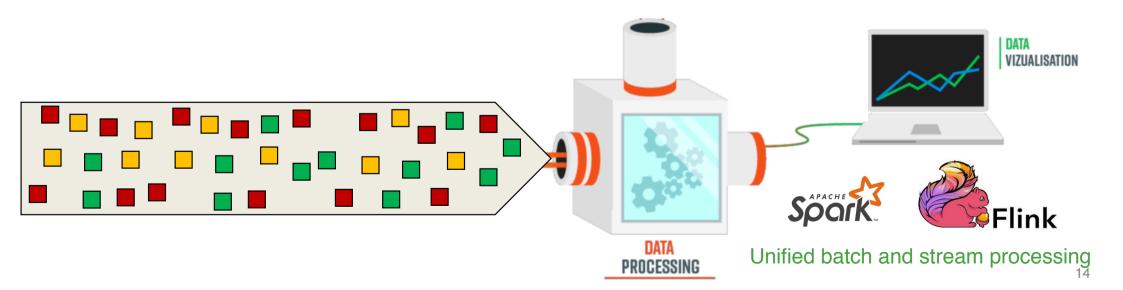


State of the art until recently: Lambda Architectures

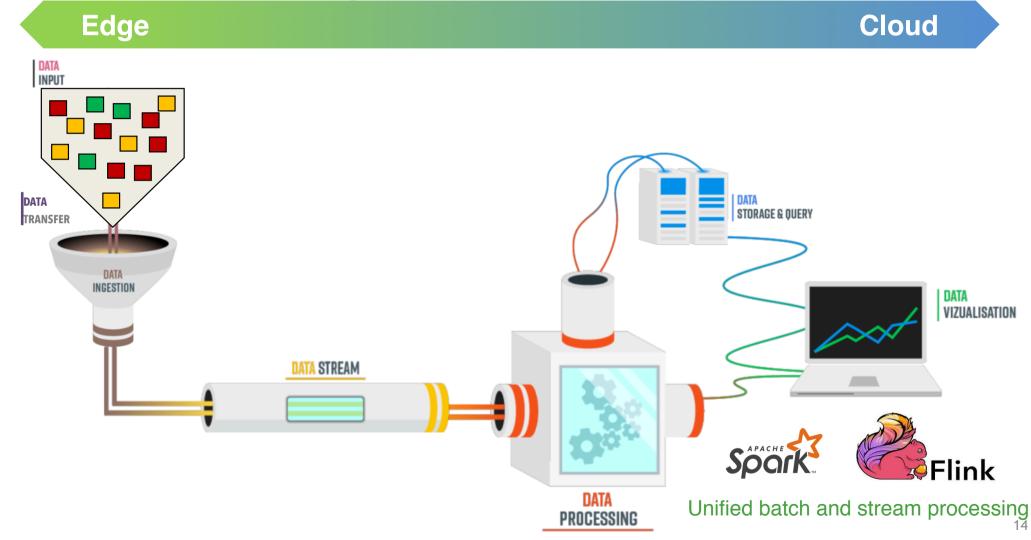


The streaming pipeline: latency happens

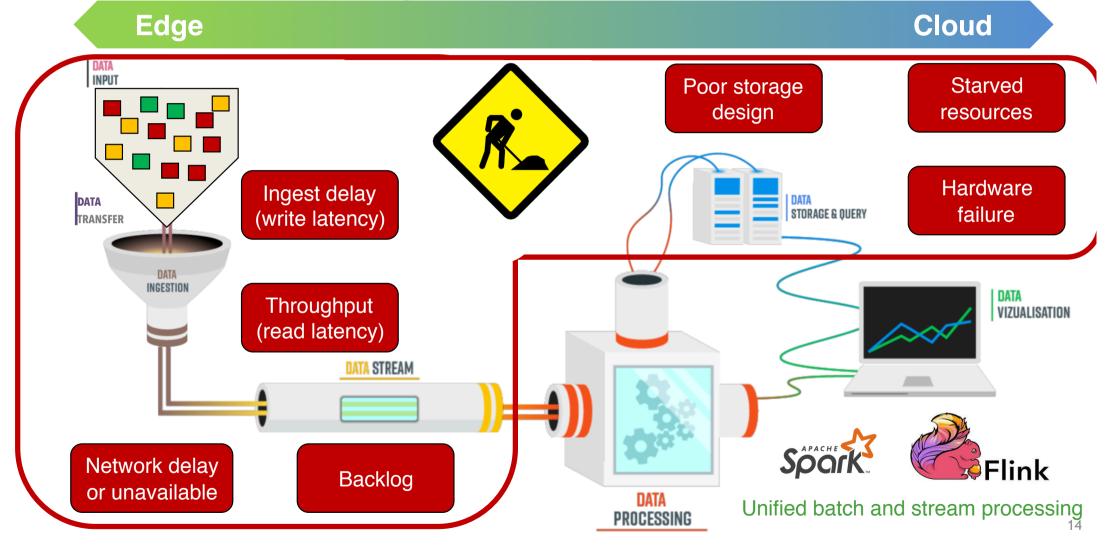
Cloud



The streaming pipeline: latency happens



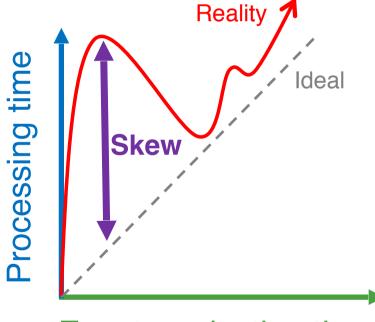
The streaming pipeline: latency happens



Objective

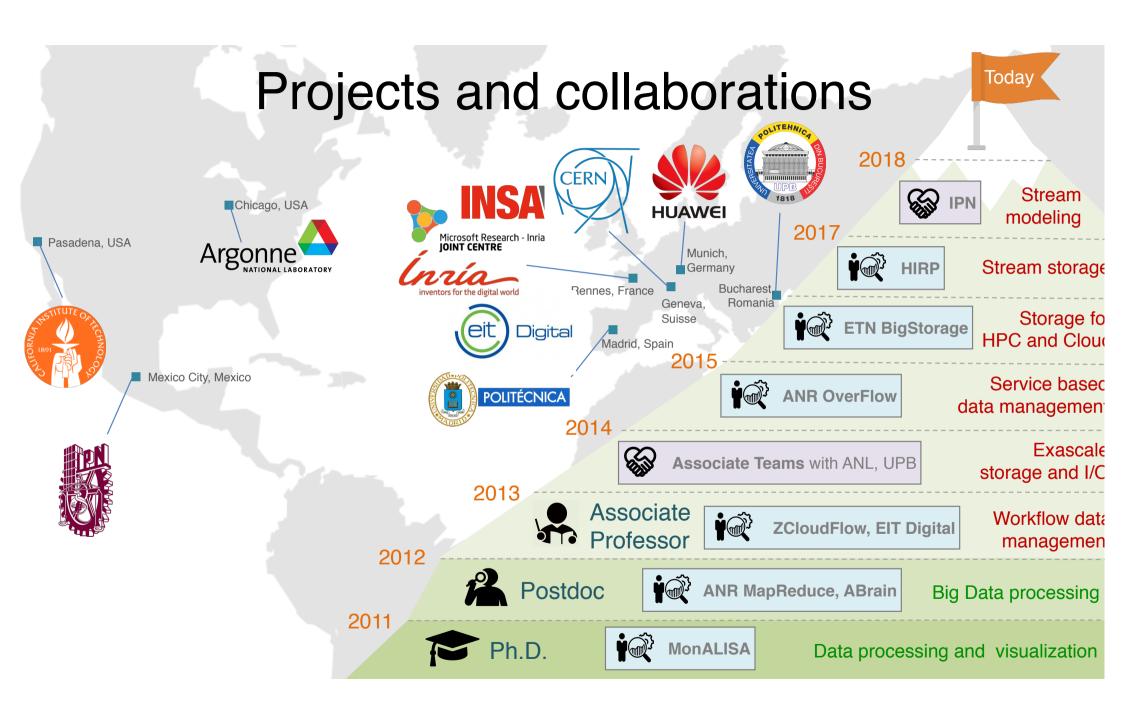
Cloud

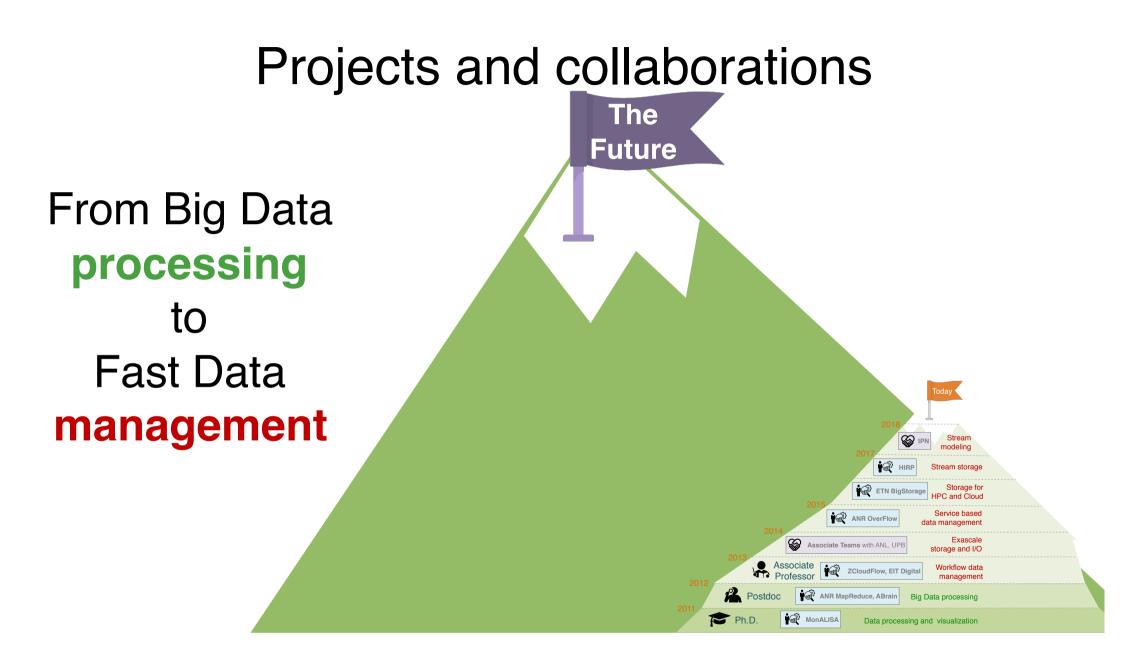
Reduce the processing time skew by means of dedicated stream data management across Edge and Cloud



Event production time

My research path





Research topics and PhD co-supervision

management

Fast Data

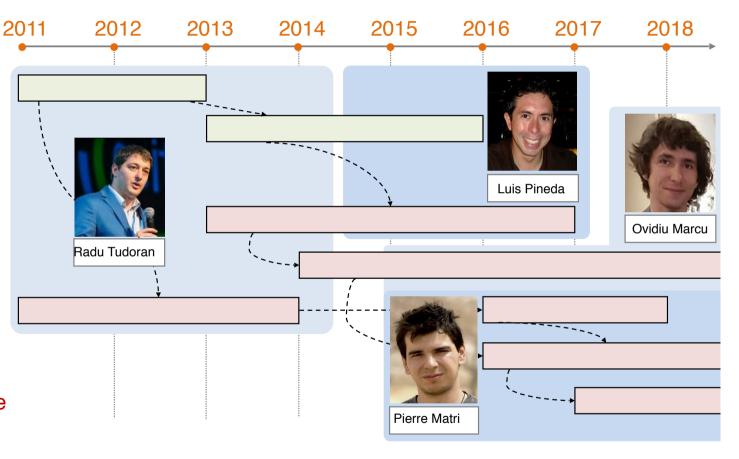
Iterative MapReduce Geo-distributed processing

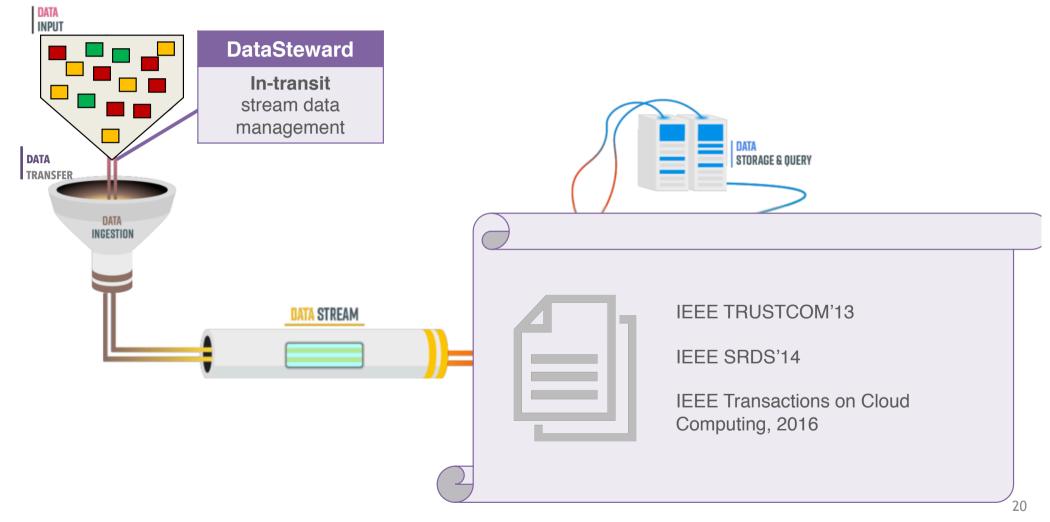
Workflow data management

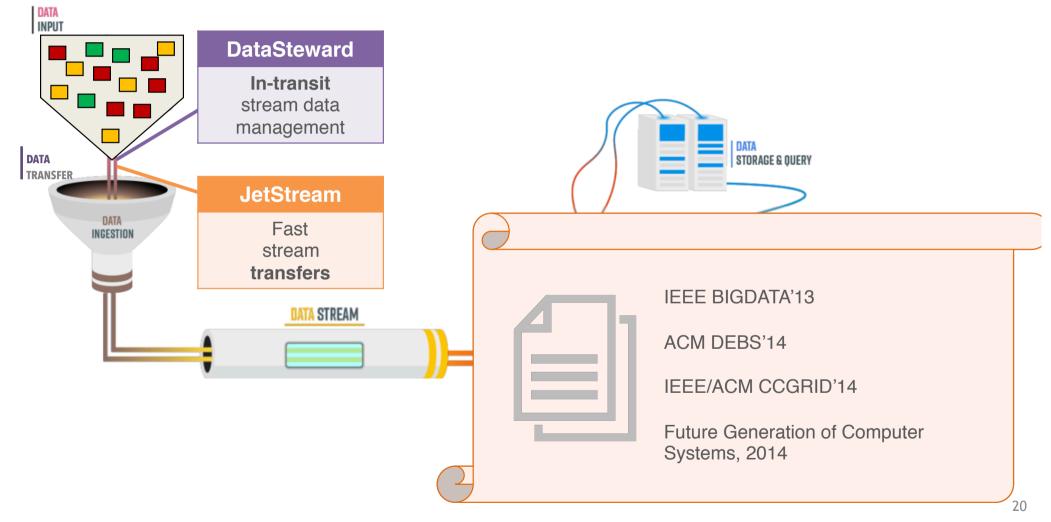
Stream data management

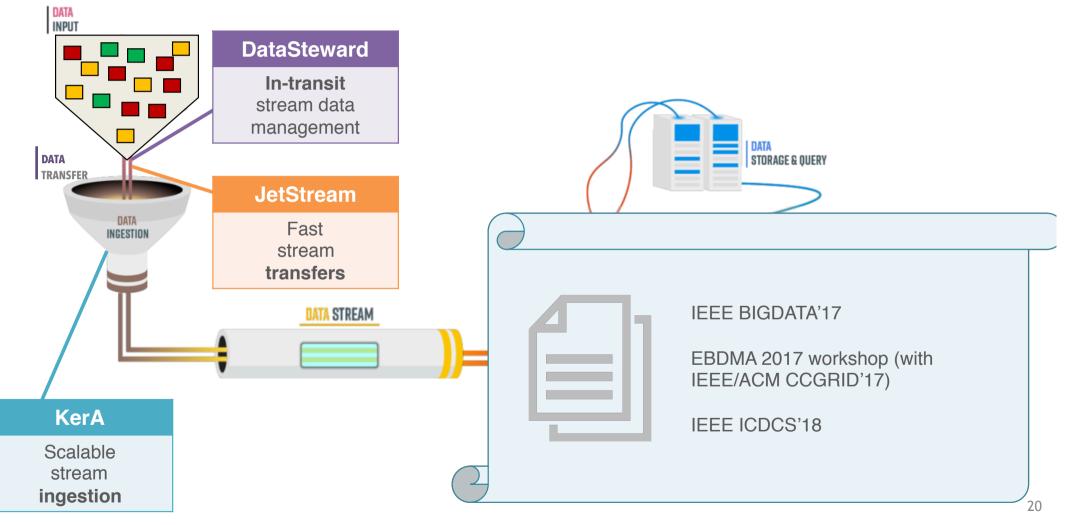
Blob storage

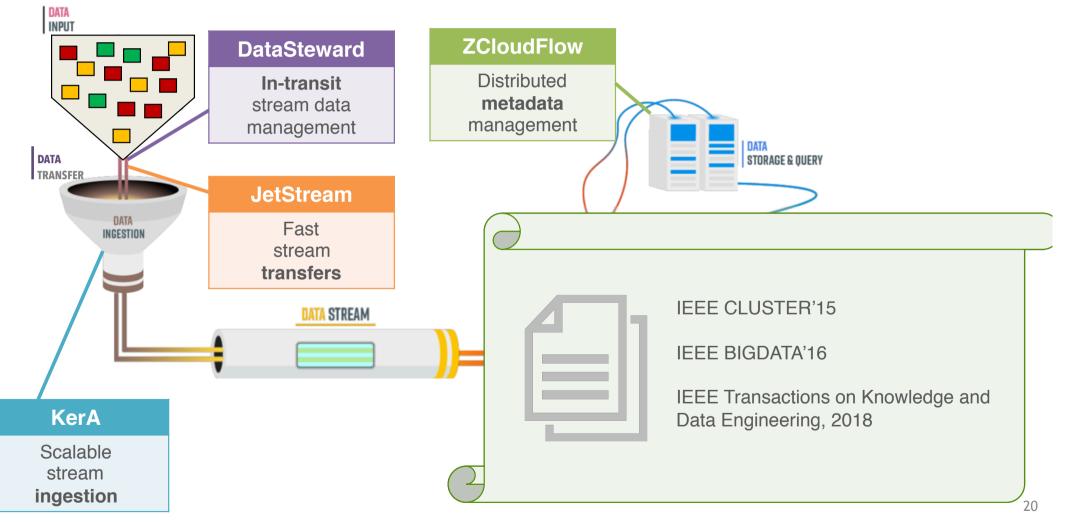
- Transactional storage
- HPC and Big Data convergence

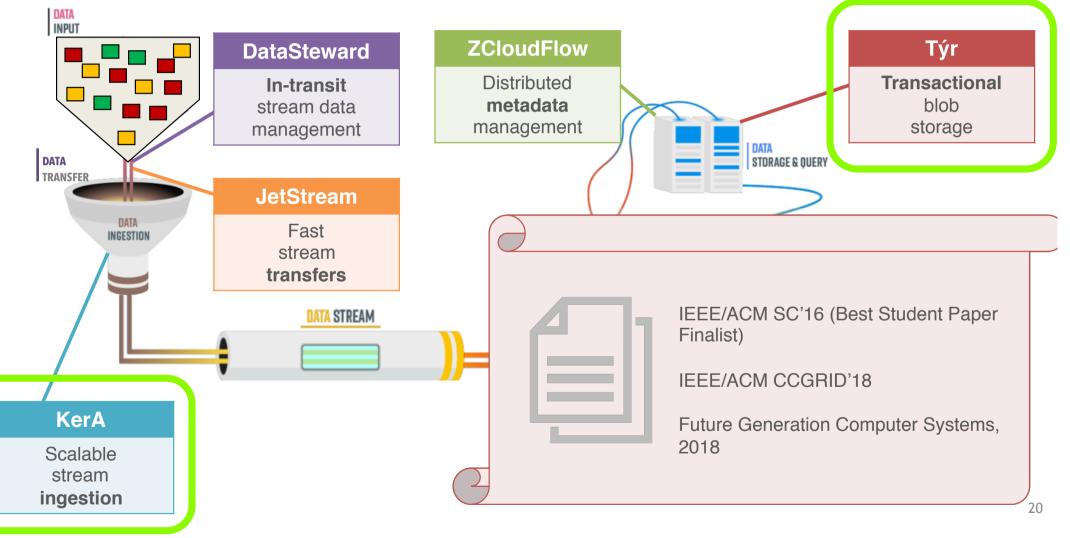


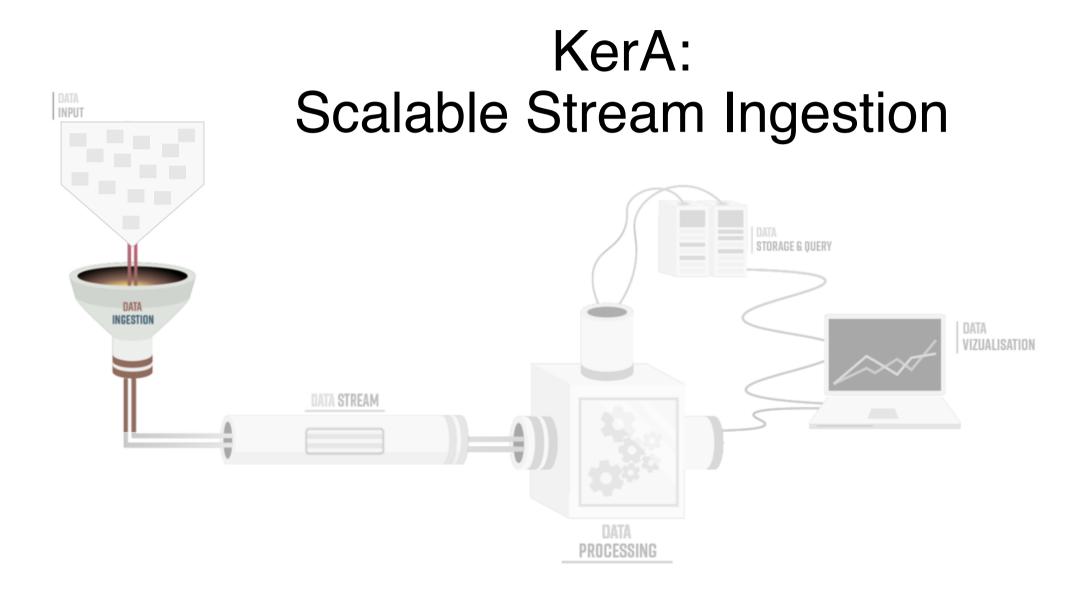












What is ingestion ?

- Collect data from various sources
 → producers
- Deliver them for processing / storage
 → consumers
- Optionally: buffer, log, pre-process

Ingestion determines the processing performance

State of the art: Apache Kafka

50 nodes, average 200K events/s

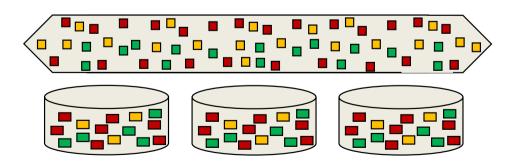
400 nodes, peak 3.2M events/s

Limitations

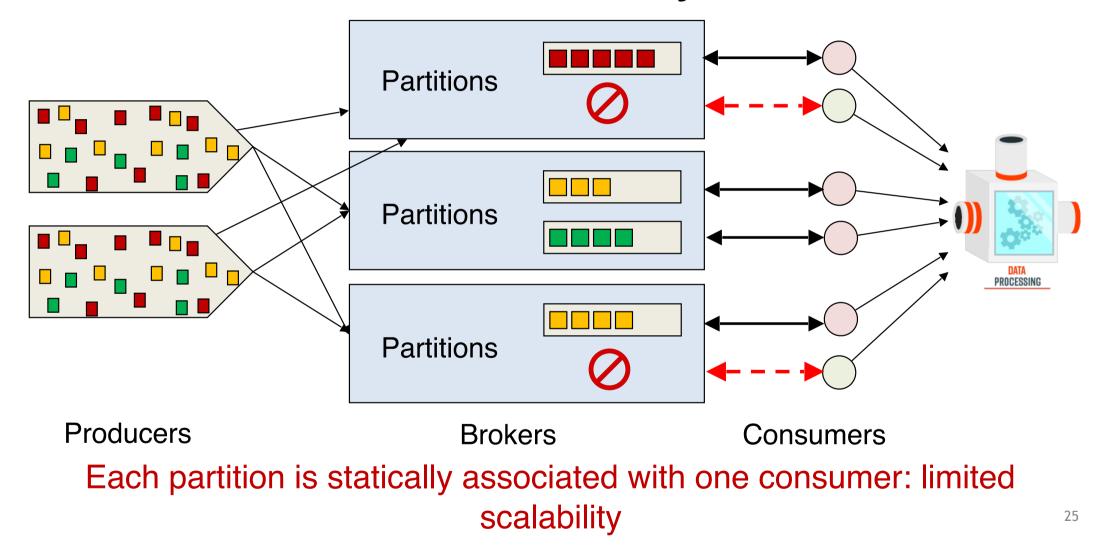
- Scalability
- Data duplication

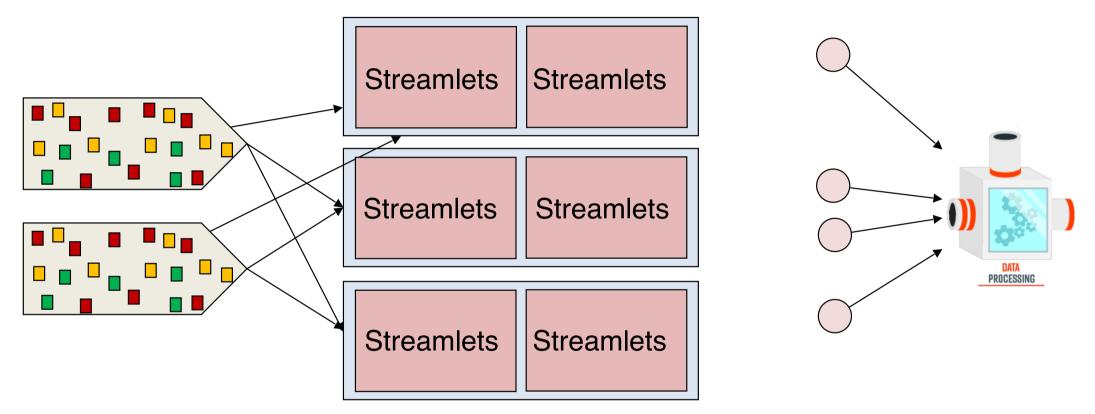
The KerA approach to ingestion

- Scalability → Dynamic partitioning
 - Enables seamless elasticity
- Data duplication → Unified ingestion and storage
 - Support for both
 - Streams (unbounded data)
 - Objects (bounded data)

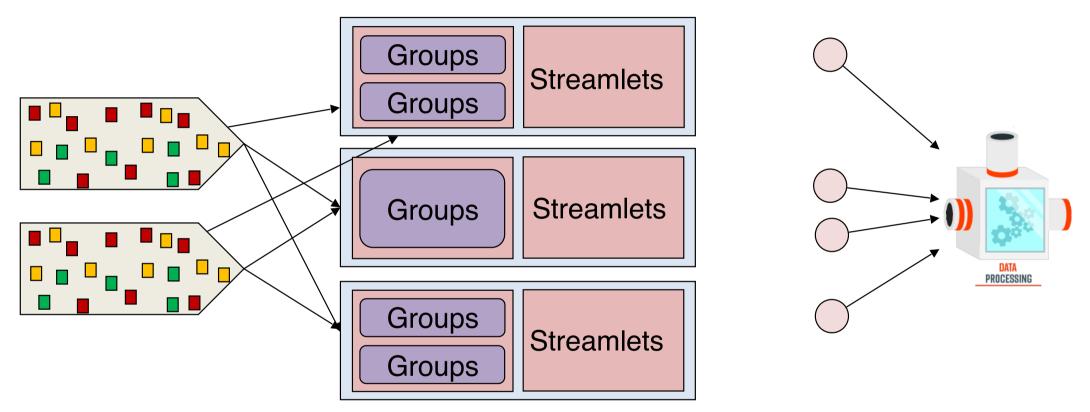


Issue: scalability

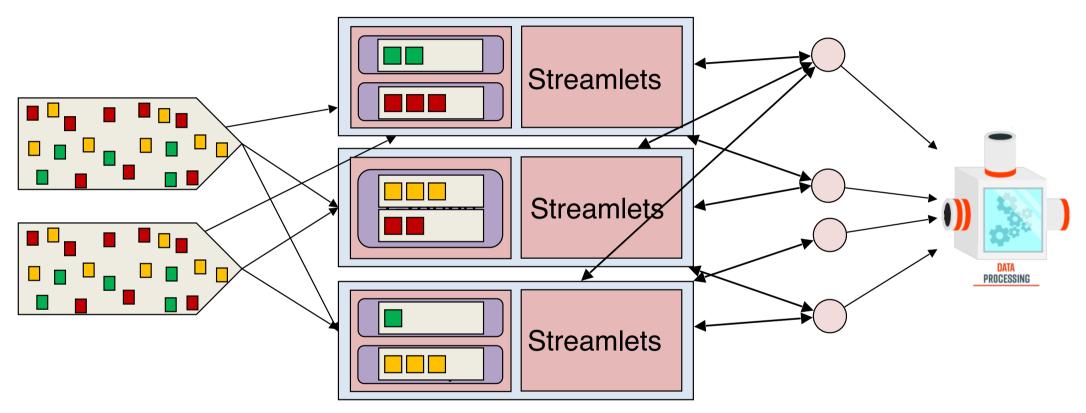




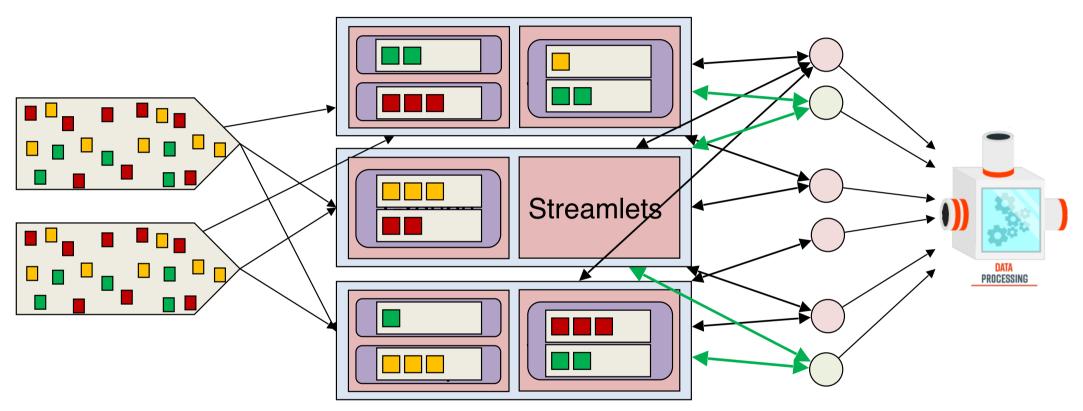
• **Streamlets:** logical stream containers; **#streamlets > #brokers**



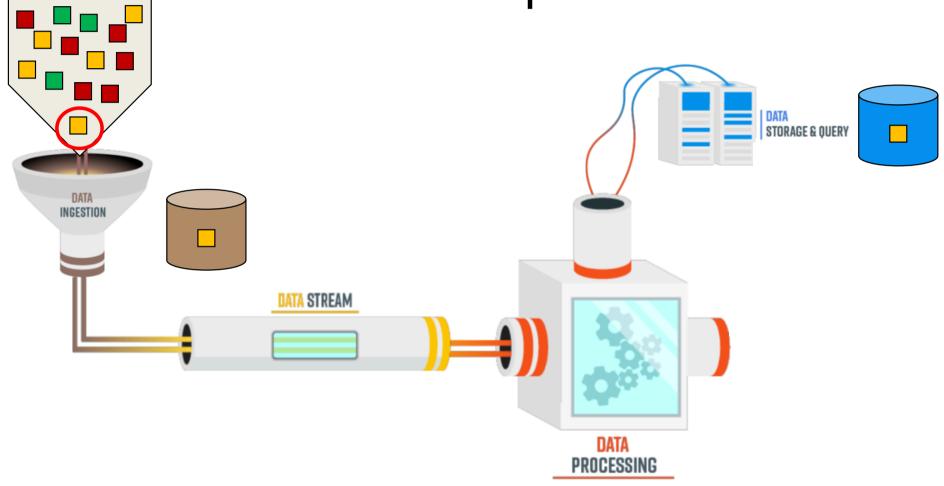
- **Streamlets:** logical stream containers; **#streamlets > #brokers**
- **Groups:** created and processed dynamically; maximum #active groups per broker



- **Streamlets:** logical stream containers; **#streamlets > #brokers**
- **Groups:** created and processed dynamically; maximum #active groups per broker
- **Segments:** fixed size partitions; configurable #segments per group



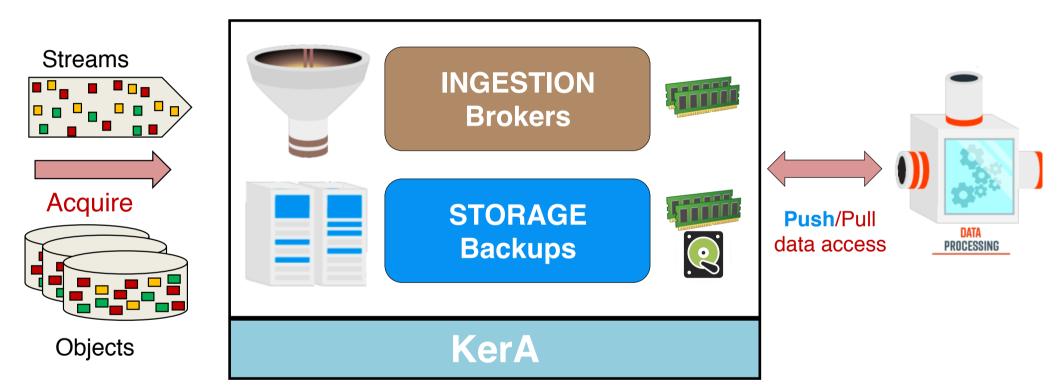
- **Streamlets:** logical stream containers; **#streamlets > #brokers**
- **Groups:** created and processed dynamically; maximum #active groups per broker
- **Segments:** fixed size partitions; configurable #segments per group



Issue: data duplication

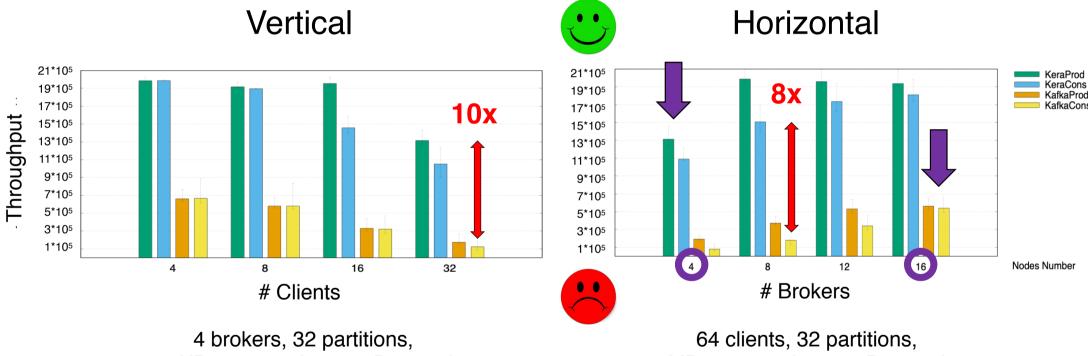
Increased network and storage overheads

KerA: unified ingestion and storage



Move less data, process them faster Common data model for streams and objects

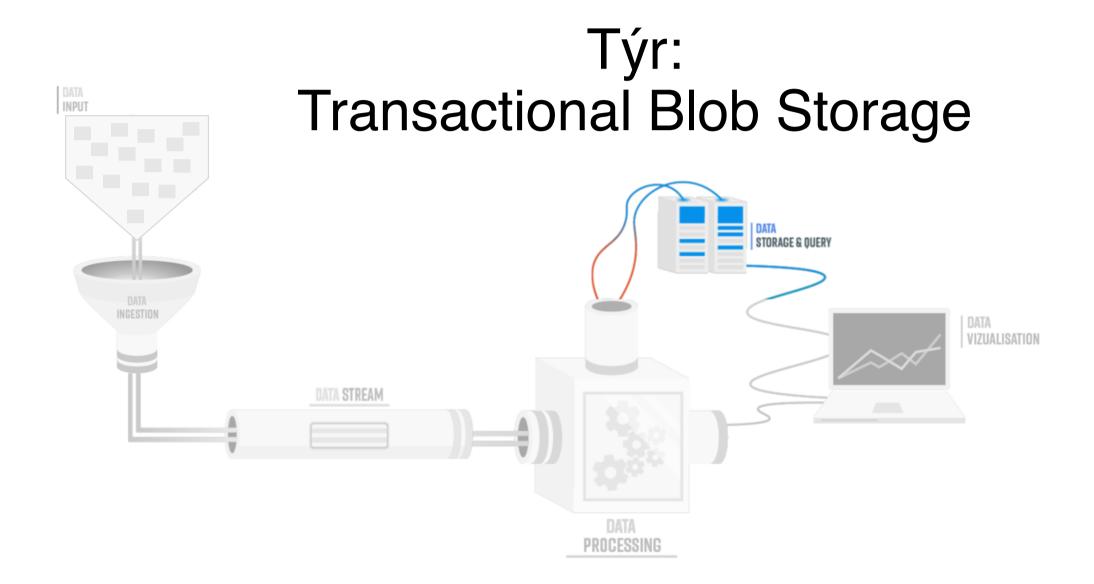
Evaluating scalability



128KB request size, 100B records

1MB request size, 100B records 2x better throughput

with 75% less resources

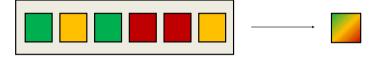


Motivating use-case: MonALISA

A large-scale monitoring and analytics service for the CERN LHC ALICE experiment

Ingests and stores telemetry events at 13 GB/s

Computes 35,000+ aggregates of events in real-time



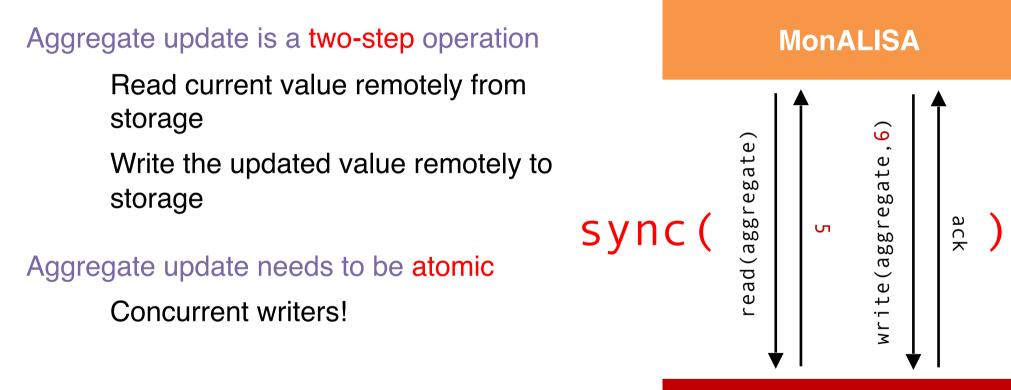
Multiple storage requirements

Write atomicity for aggregate updates

Atomic, lock-free writes High-performance reads

Horizontal scalability

Write atomicity for aggregate updates



Synchronization is mandatory

32

Storage

At which level to handle synchronization?

At application level?

Fine-grained synchronization Application-specific optimization ...but increases app complexity, error-prone *Common on HPC (e.g., explicit locking)*

Thread 1Thread 2Thread 3Synchronization layerSynchronization layerStorage

At which level to handle synchronization?

At application level?

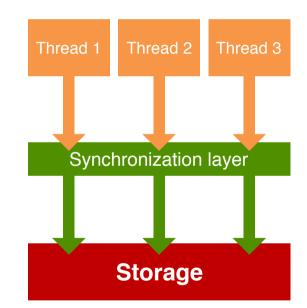
Fine-grained synchronization Application-specific optimization ...but increases app complexity, error-prone

Common on HPC (e.g., explicit locking)

At middleware level?

Eases application design ...but typically substantial performance overhead

Also common on HPC (e.g., MPI collective I/O)



At which level to handle synchronization?

At application level?

Fine-grained synchronization Application-specific optimization ...but increases app complexity, error-prone

Common on HPC (e.g., explicit locking)

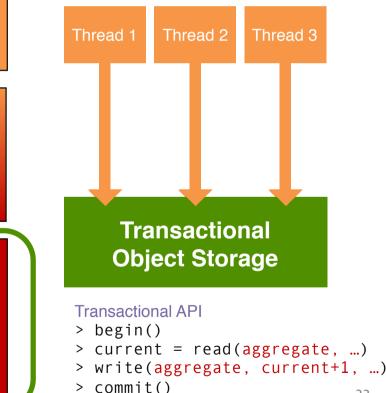
At middleware level?

Eases application design ...but typically substantial performance overhead

Also common on HPC (e.g., MPI collective I/O)

At storage level?

Also eases application design Storage-specific optimization ...but less customizable than app-level synchronization *Common on BDA (e.g., transactional systems)*



33

Týr read protocols

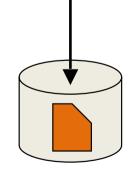
Direct read

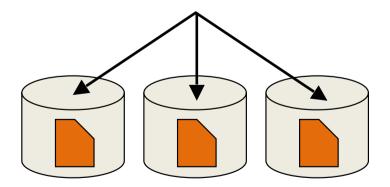
Multi-chunk read

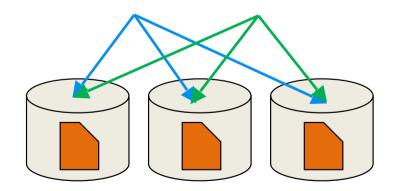
> read(blob, 0, 10kb) > read(blob, 0, 100mb)

Transactional reads

> begin() > read(blob, 0, 10kb) > read(blob, 100mb, 10kb) > commit()







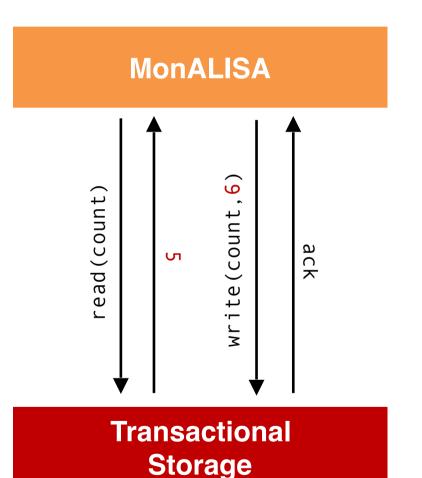
Týr atomic writes

MonALISA: aggregate updates could be performed atomically and efficiently

Týr enables these writes to be performed with one round-trip instead of two

Atomic operations: in-place data modification

Integrated with the transaction protocol



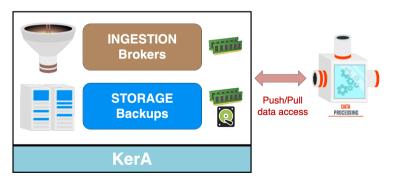
Týr atomic writes

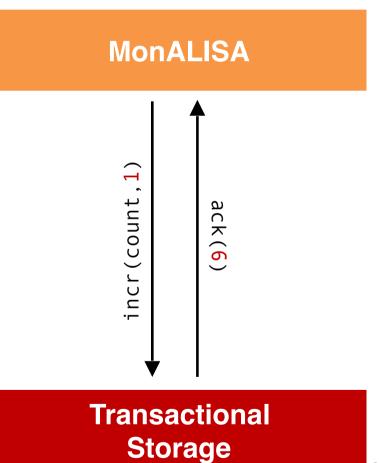
MonALISA: aggregate updates could be performed atomically and efficiently

Týr enables these writes to be performed with one round-trip instead of two

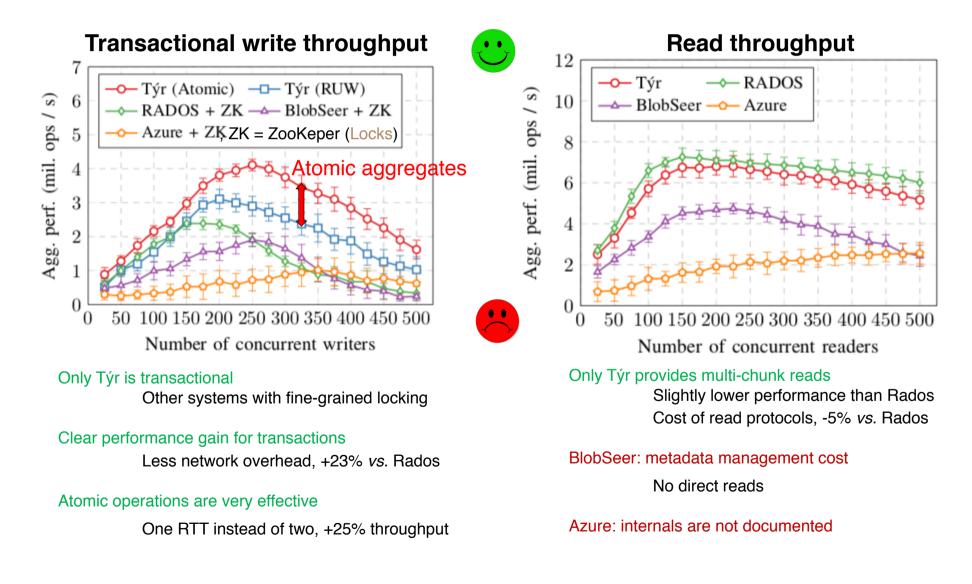
Atomic operations: in-place data modification

Integrated with the transaction protocol

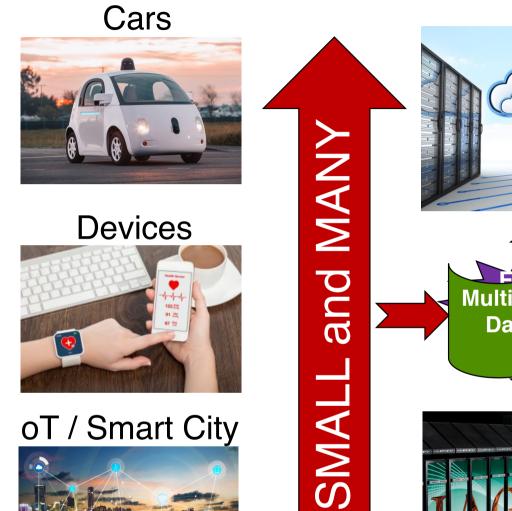


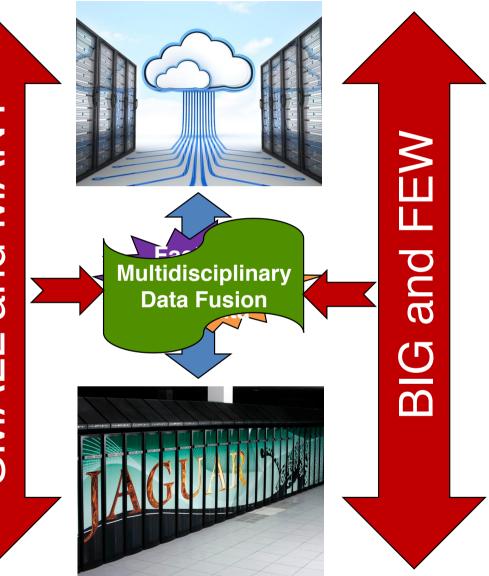


Read / Write performance with MonALISA

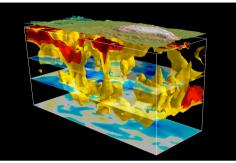


Perspectives: HPC and Big Data Convergence



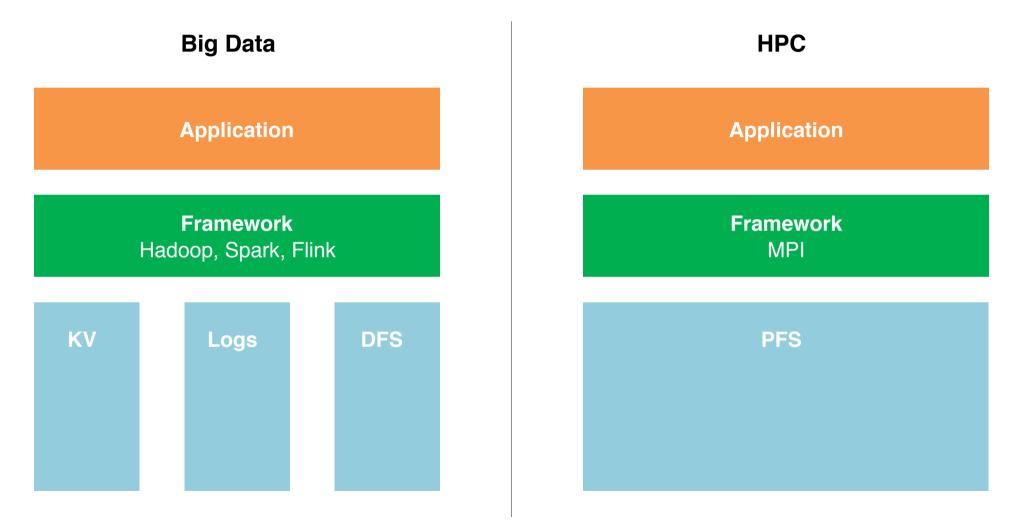


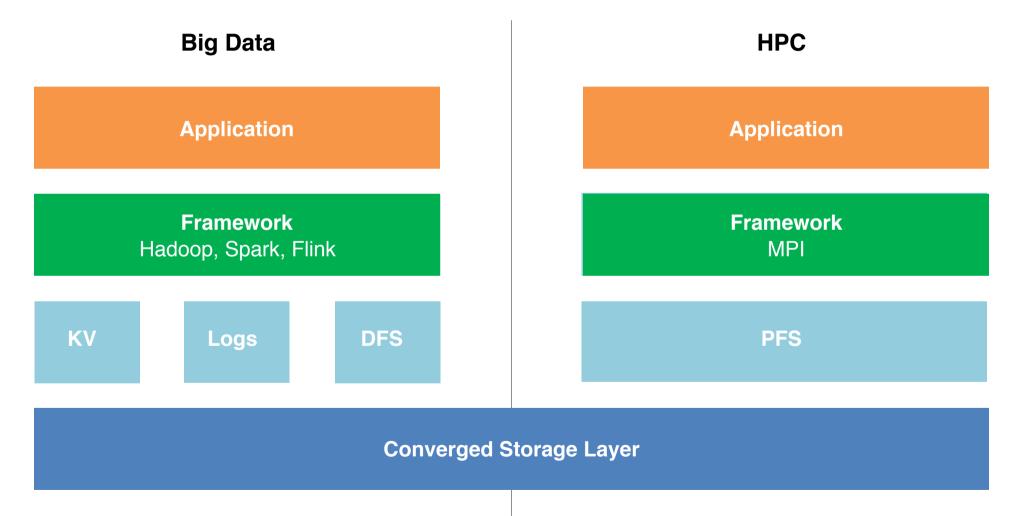
Simulations

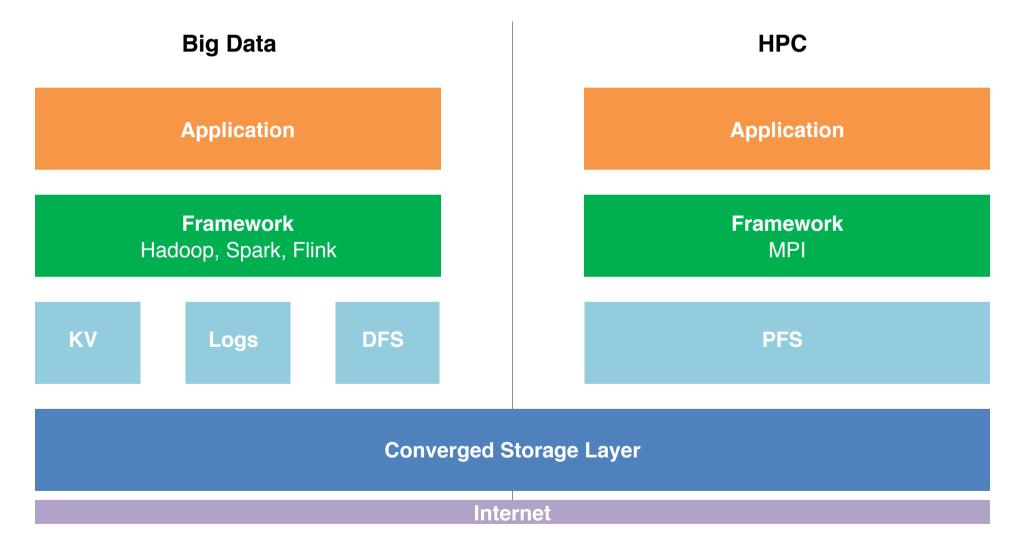


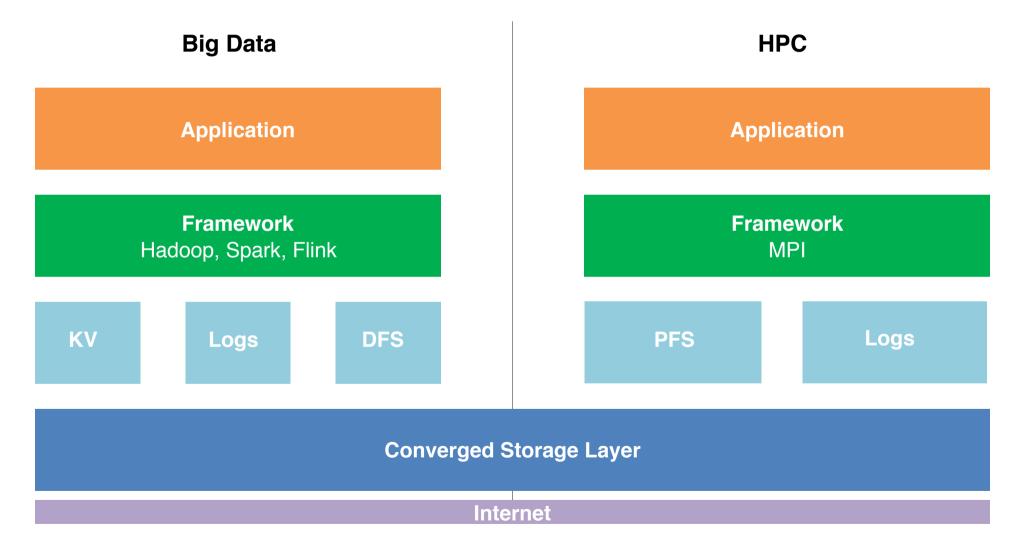
LSST

SKA

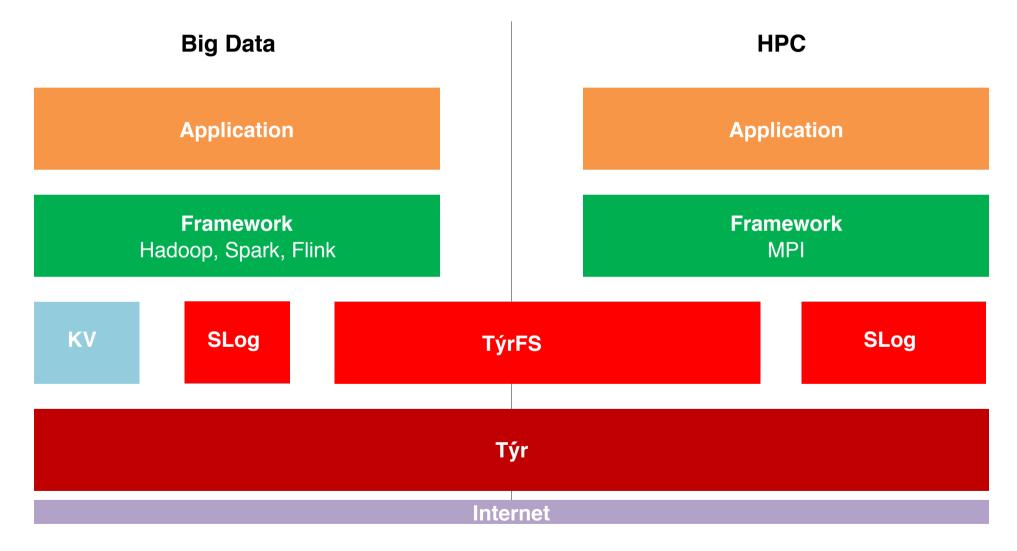


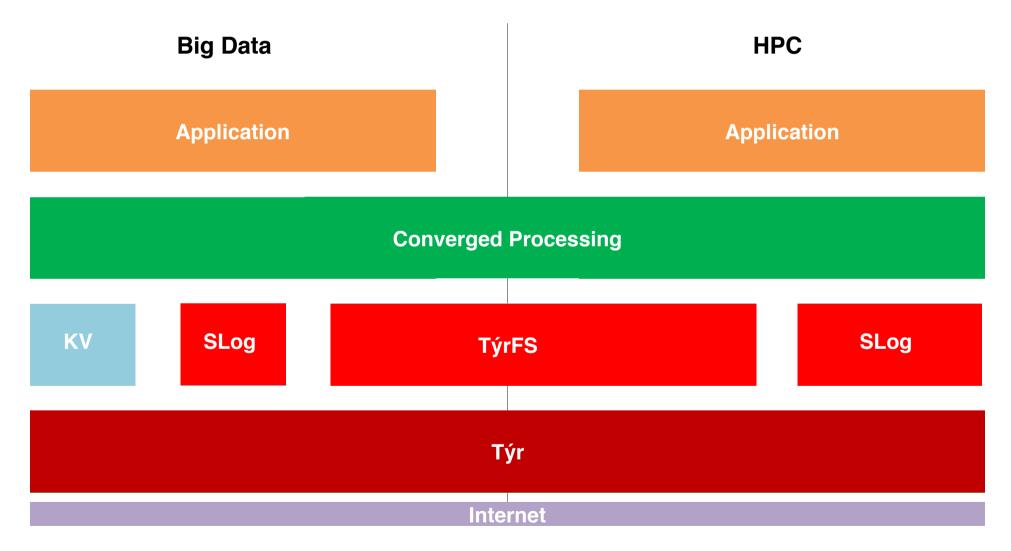








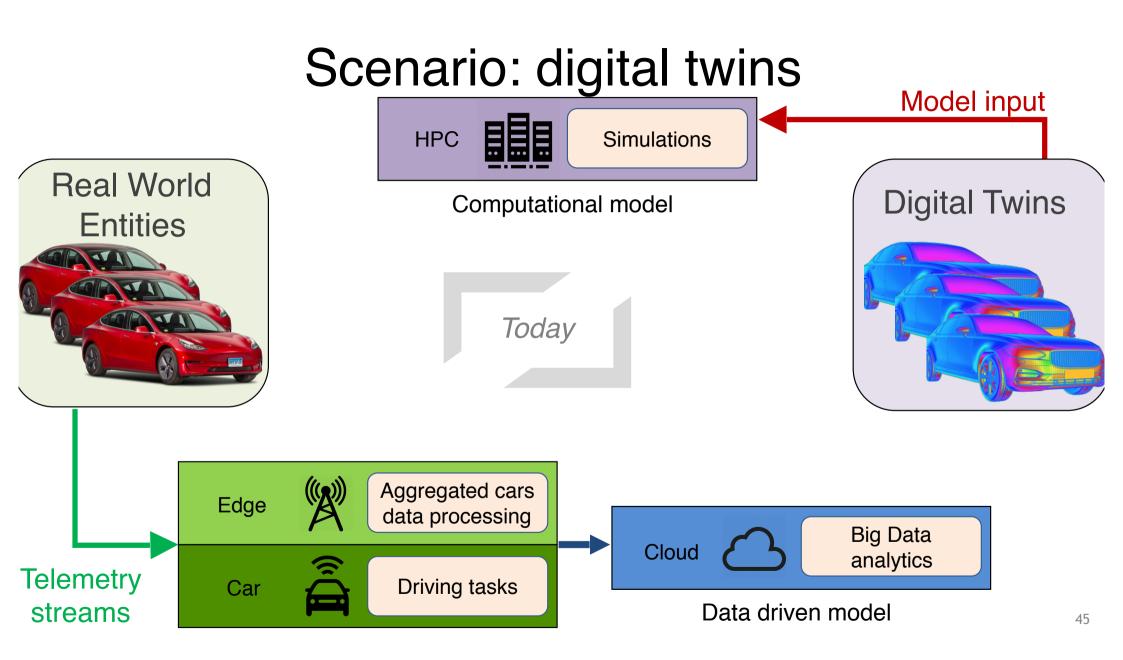


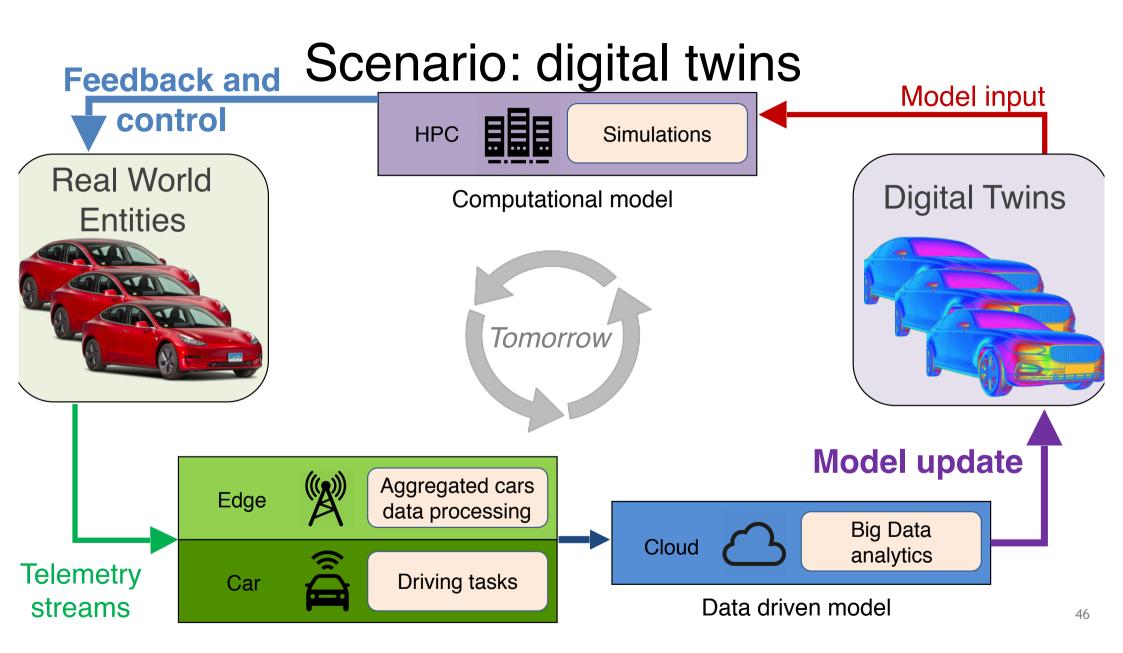


My Research Project:

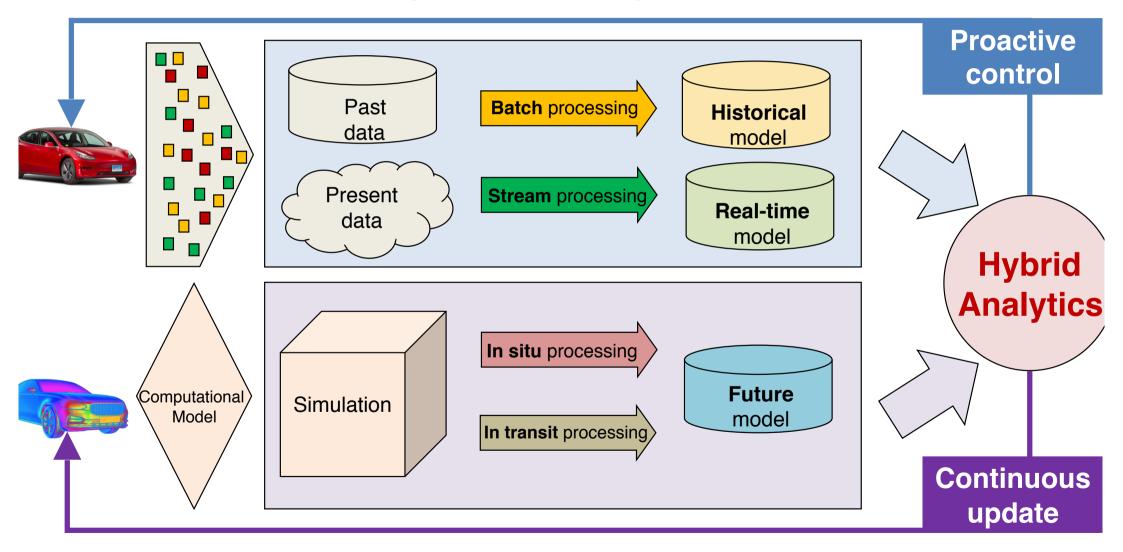
Converged Processing

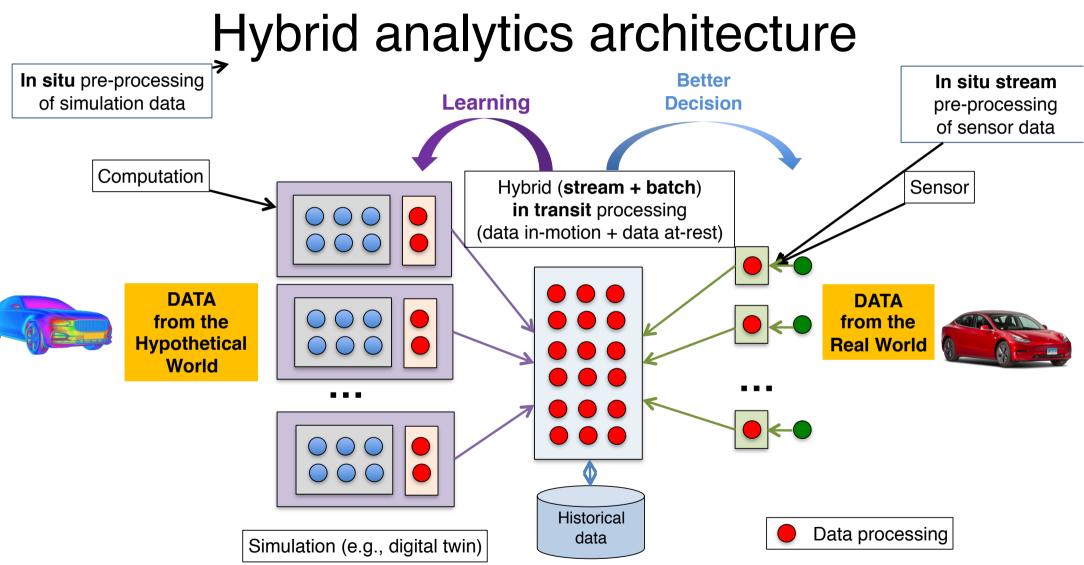
... or how *Past, Present* and *Future* data could jointly enable disruptive analytics on Extreme-scale infrastructures



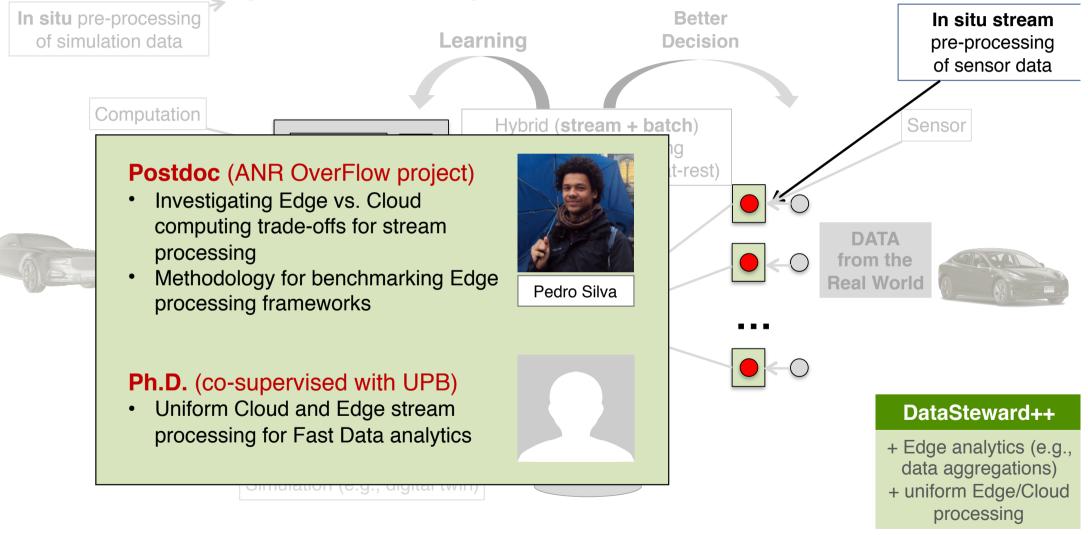


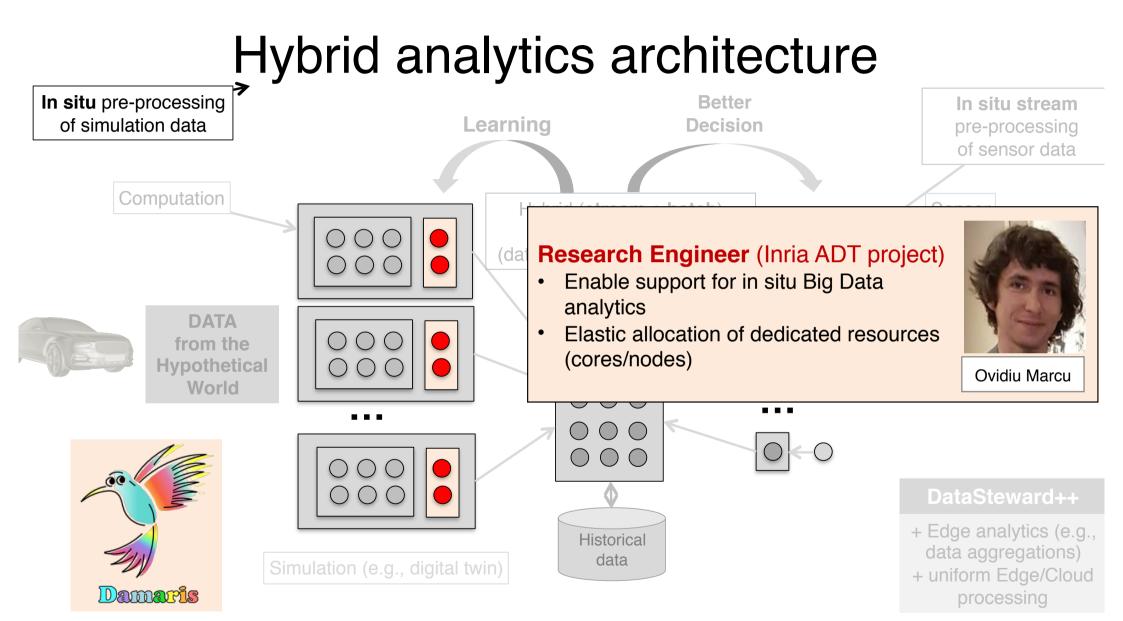
Our vision: hybrid analytics architecture



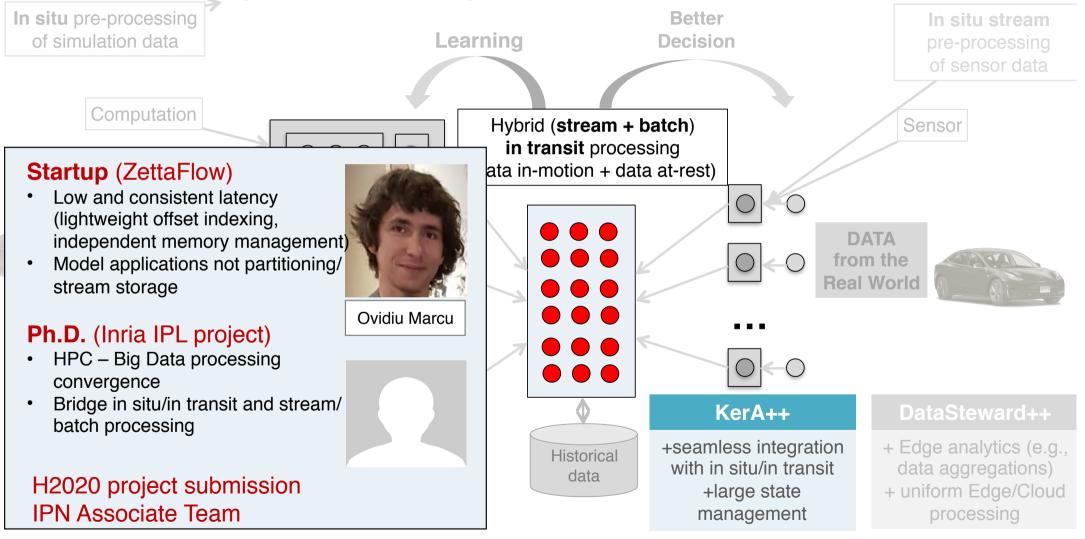


Hybrid analytics architecture





Hybrid analytics architecture



My scientific methodology

- Analyze trends and state of the art
- Intuition
- Identify realistic use cases
- Define research questions
- Develop a real piece of software
- Evaluate research questions with synthetic benchmarks
- Evaluate research questions with real-life use cases

Platforms

Academic testbeds and supercomputers •

Public clouds

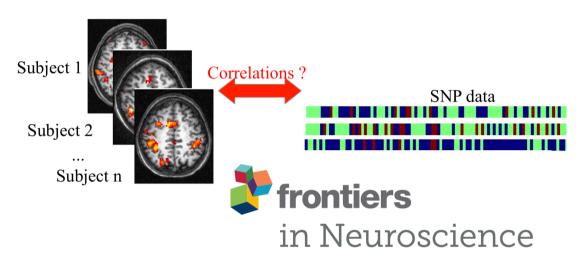
Impact: interdisciplinarity

Contributions to healthcare

- DataSteward and JetStream used to prove for the first time the correlation between brain regions and genetic data
- Enables early diagnostic of psychiatric illnesses

Formal dialogue with the HPC community

- Member of the Big Data Value Association (BDVA)
- Contributions to the joint white paper with the European Association for HPC (ETP4HPC)



54

Impact: industry

Transfer

- JetStream integrated in Microsoft Azure for control message transfers
- Azure SignalR provides real-time functionality using several dedicated connections – inspired by DataSteward
- Huawei studies KerA for potential integration in the stream layer of the Huawei Cloud

Project for startup creation: ZettaFlow

Stream ingestion to power real-time applications

