From Big Data to Fast Data:
Efficient Stream Data Management

Alexandru Costan

HDR Defense, ENS Rennes, March 14, 2019

TTTTTTTTTTTTTTTT ecole
‘ EEEEEEEEEEE

APPLIQUEES

EEEEEE rennes | Y

|
y 4
nnnnn © zca— (©:|IRISA
inventors for the digital world

0Obama the warrior

Th (& Misgoverning Argentina

Economist The economic shift from West to East

Genetically modified crops blossom
. The right to eat cats and dogs

TEMUARE 27T SARCH S T4 2000 2 o

AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT

Big Data

2011

Theresa May v Brussels
The Ten years on: banking after the crisis
JSLL0) 100 8 4 DEA M outh Kores's nfinished revolution
‘ Biology, but without the cells

m'lile world's most
valuable resource

Data and the new rules :
of competition

2016

The
Economist

What machines can tell from yoml face

2018

From Big Data to Fast Data

Data at rest

Stationary
Static

Velocity

—— Q90 —0—=0
@ =0 =0=0
o =0=0 —®

— 00 —@ -':.

Data in motion

Fluid
Dynamic

LIDAR sensors

Cameras

Ultrasonic
sensors

Sensor type

Radar
LIDAR
Camera
Ultrasonic

Vehicle motion, GNSS, IMU

Data generated

0.1-15 Mbit/s
20-100 Mbit/s
500-3,500 Mbit/s
<0.01 Mbit/s
<0.1 Mbit/s

Devices
R

loT and Smart City

e

>_
Z
<
=
O
-
©
—
—
<
=
0P

S g

\

|

Fast
Data

Streams: the model for Fast Data

]
2 m_"m_ "% g m_ 8 g mm_ s
]

] u] []] = L] o] u]
EE g EER gl mpE- g EBE" u EE-g BE
DID.D.D..DID.D.DIID.D.D.D
5 _ g = el E S g = ".m m g = .Fll

« Continuous, unbounded, unordered, global-scale datasets made up of
- Small size per event (i.e., bytes and kilobytes)
« High arrival rate (i.e., million items per second)

Timestamp
Key
Value 7

Streams: the model for Fast Data

Arrival
time

Events arrive with unknown delays

How to deal with this unboundedness ?

|D. O ID. H mgO 0 .D HE B g H H 0 llE

| m -.D B g® Oy Dl.D Dl..D IDI.D . Dl..
]] []] []

R g U n oF O - ol |\ g = -
1= . mg ©° _mm| | B_ m|_"

Up| (m m| | W [u N m | E B g
L] []] L] [] L] [] [[

: 0 g [= 0 g] - N L m-

= S = = B O H m b

[B O g B g E B B opg 9 Oom ®

9:00

°
10:00

11:00

12:00

Aggregating arrival time-based windows

13:00

Arrival
time

How to deal with this unboundedness ?

By § ml, m Eg, E; B0, = Egy \
Input D.

Op gl og Oy, OCm gl og Oy O0m Bg

ol E g B E[Ng Em g §| gm
. ¢ ° o 7~ ° e e
Sl 8:00 9:00 ym/ 11:00 12:00 13:00
| [IIDQ/II EECCEE | | EECONE| | EEDCORE | | EECC
Output |EECOEE| EECOES| EEOCOEE| | EEO0EE| |ESOOSE| | EEOC
BE[EE| EN[MNEE EEOOFE) EEO0EE| EEffesE| | Eecc

Event
yroduction
time

o
8:00

o
9:00

10:00

11:00

Aggregating event-based windows

12:00

13:00

10

Batch vs. streaming

| +]=2

Correctness Latency

11

fite

Correctness Exact results Approximate results
Latency High-latency Low-latency

Stateless Stateful

12

State of the art until recently:
Lambda Architectures

Exact
historical
model

Historical Per'o.d'c >
queries
events

Batch processing

Results
&
Actions

Stream processing

Continuous
queries

Real-time

Approximate
events

real-time
model

State of the art until recently:
Lambda Architectures

Exact
historical
model

Historical Per'o.d'c >
queries
events

AAAAAA J\Z Batch processing @ Results
Spark I Flink L
ctions

Stream processing

Continuous
queries

Real-time

Approximate
events

real-time
model

13

The streaming pipeline: latency happens
Cloud

.
DATA
VIZUALISATION
o’

.D-D.D.-. .D... a
O m O O m [.- O m [] -.)))f =

B pe¥ gm HE m N
oFlink
DATA

PROCESSING Unified batch and stream processing

The streaming pipeline: latency happens
Edge

[STREAM

Cloud

m— | DATA
— | STORAGE & QUERY

2 DATA
VIZUALISATION

=
a iF R -y

SEEK
DATA

PROCESSING Unified batch and stream processing

The streaming pipeline: latency hap

INGESTION
Throughput
N— (read latency)
STREAM

S S—

Network Fielay Sedder
or unavailable

DATA
INPUT
]
LDATA Ingest delay = g o Hardware
RANSFER (write latency) == | STORAGE& QUERY failure
<

pens

Starved
resources

Poor storage
design

‘ DATA
VIZUALISATION
- <-

DATA . _
PROCESSING Unified batch and stream processmg

Objective

Reality

//
+ ldeal

Reduce the processing
time skew by means of
dedicated stream data
management
across Edge and Cloud

Processing time

Event production time

15

My research
path

Projects and collaborations =X

W\TEHN,
<° %

@ IPN Stregm
modeling

INSA . Save
\ icago, .)-,. <7 -\ HUAWEI

Tsadena, USA Argonne ', wwﬁ%ﬁ'ﬁ%gamh e lMunich, o@'}
P \J
NATIONAL LABORATORY ﬁ F‘! z : z \. Germany ' HlRP Stream Storagf
inventors for the digital world Rennes, France Bucharest
Geneva, Romania St f
; o Suisse o), . orage 1o
ETN BigStorage
(EIt: =l Madrid, Spain '@ J 9] HPC and Clou
2015

RN , s < Service basec
Yl ANR OverFlow data managemen

2014
_ , Exascale
@ Associate Teams with ANL, UPB storage and I/C

2013 A
ssociate [« < Workflow dat:
\". ZCloudFlow, EIT Digital 1
015 Professor ¥ ° managemen
ﬁ Postdoc '@nﬂji} ANR MapReduce, ABrain Big Data processing

2011

w Ph.D. '@i} MonALISA Data processing and visualization

Projects and collaborations

From Big Data

processing
to
Fast Data

management

@ Ass ’ Workflow data
\r '@ ZCloudFlow, EIT Digital
Professor CIERT . management
ﬁ Postdoc I i@ ANR MapReduce, ABrainl Big Data processing

o
!U Ph.D. '@ MMMMMM SA Data processing and visualization

Big Data

Fast Data

Research topics and PhD co-supervision

2011
[4

'g{lterative MapReduce
g Geo-distributed processing
o
~
Workflow data management
E; Stream data management
§7< Blob storage
é Transactional storage
(_HPC and Big Data convergence

2012
)4

2013
.

Radu Tudoran

==

2014 2015
* *

2016
.

-~
S~

2017 2018
. ~—

Ovidiu Marcu

-
=~

b

Pierre Matri

T==-» Inspiration

~~

19

Contributions

DataSteward

In-transit
stream data
management

| DATA
TRANSFER

DATA
INGESTION

e’

STREAM

I

s | DATA
s | STORAGE & QUERY

>

. IEEE TRUSTCOM’13

IEEE SRDS’14

IEEE Transactions on Cloud
Computing, 2016

20

Contributions

DataSteward

In-transit
stream data
management

DATA
TRANSFER

JetStream

Fast
stream
transfers

DATA
INGESTION

(

STREAM

| DATA
s | STORAGE & QUERY

>

IEEE BIGDATA'13

ACM DEBS’14
— I
IEEE/ACM CCGRID’14

Future Generation of Computer
Systems, 2014

20

Contributions

DataSteward

In-transit

stream data
management -
m— | DATA
DATA — e | STORAGE & QUERY
TRANSFER —
JetStream >
eSO Fast @
stream
— transfers
STREAM V4 .. |EEE BIGDATA17
A
v a— — EBDMA 2017 workshop (with
I IEEE/ACM CCGRID’17)
]

i IEEE ICDCS’18

Scalable

stream @
ingestion

Contributions

DataSteward

In-transit Distributed
stream data metadata
management management

s | DATA
—— | STORAGE & QUERY

>

DATA
TRANSFER

JetStream

DATA

INGESTION Fast

‘@

stream
transfers

474 STREAM //{ IEEE CLUSTER’15

e = o IEEE BIGDATA'16
I
— IEEE Transactions on Knowledge and
— Data Engineering, 2018

Scalable

stream @
ingestion

Contributions

DataSteward

In-transit Distributed Transactional
stream data metadata / blob
management management o storage

DATA —_ E ‘s’#ﬁﬁmuum
TRANSFER —_
JetStream >,
eSO Fast @
stream
— transfers
11 STREAM / _ IEEE/ACM SC'16 (Best Student Paper
A | Finalist)
;] I
I IEEE/ACM CCGRID’18
|
. Future Generation Computer Systems,
Scalable 2018
stream G
ingestion J

20

KerA:
Scalable Stream Ingestion

INGESTION

What is ingestion ?

* Collect data from various sources
— producers

* Deliver them for processing / storage
— consumers

* Optionally: buffer, log, pre-process

i N e

Ingestion determines the processing performance

22

State of the art: Apache Kafka

Linked m

50 nodes, average 200K events/s 400 nodes, peak 3.2M events/s
Limitations
 Scalability

» Data duplication

23

The KerA approach to ingestion

 Scalability = Dynamic partitioning
* Enables seamless elasticity

 Data duplication — Unified ingestion and storage

» Support for both
« Streams (unbounded data)

Bpy B m0y, m gy Eg B0, m Epog
D 0pOgiog Oy OmOgBog0Oy OmOg

* Objects (bounded data) " pm ssm WOEg Bm g " pum

24

Issue: scalability

— ENEEE | <
artitions

T @ |-

|:|.|:|. |:|.|:| P -
B g " om 000 «—(), =

Partitions

a0, m §g, EEEE <—>Q/'.»

O g O [Om0O PROCESSING
O B pm
. > [«—

Partitions
@ |-

Producers Brokers Consumers

Each partition is statically associated with one consumer: limited
scalability

KerA: dynamic partitioning

Streamlets ||Streamlets

El, m Epy

E g ¥ mpn O\»v

Streamlets || Streamlets

el m By O/.))

O g O [Om0O PROCESSING
B g " mnm

Streamlets ||Streamlets

« Streamlets: logical stream containers; #streamlets > #brokers

KerA: dynamic partitioning

El, m Epy
ODg0Oyg Om @0
B g " gnm

i, m Epgy
Om Oy Og O
I g § pgm

[Groups]

[Groups]

Streamlets

v

[Groups]

Streamlets

[Groups]

[Groups]

Streamlets

O—-,
O/"»

o

« Streamlets: logical stream containers; #streamlets > #brokers
« Groups: created and processed dynamically; maximum #active groups per broker

'

)

DATA

PROCESSING

26

KerA: dynamic partitioning

([mm_) —
Streamlets /
10, m Wg, ([(mmm]
ODg0Oyg Om @0 pad = -
E g " pnm g —
[EED] Streamlets |«))
i, m Epgy
O m [0 O m U K/ PROCESSING
I g 8§ pmpn
[[m)
Streamlets
[[ooz]

« Streamlets: logical stream containers; #streamlets > #brokers
« Groups: created and processed dynamically; maximum #active groups per broker
* Segments: fixed size partitions; configurable #segments per group %

El, m Epy
Og 0, Om O
B g 0 pgm

i, m Epgy
ODg O, Opg O
I g § pgm

KerA: dynamic partitioning

.

Streaml/eM

=D)—
= = Q\ =

DATA
PROCESSING

O
N

~———

N

00

)l

-

|

—p

« Streamlets: logical stream containers; #streamlets > #brokers
« Groups: created and processed dynamically; maximum #active groups per broker
* Segments: fixed size partitions; configurable #segments per group %

Issue: data duplication

m— | DATA
e | STORAGE & QUERY

ﬁ
-
STREAM

9 =))

DATA
PROCESSING

Increased network and storage overheads

27

KerA: unified ingestion and storage

Streams v
m0y m Epy INGESTION —
PR . >” - Brokers W -
—'
Acquire STORAGE Push/Pull -
Backu ps data access PROCESSING

Move less data, process them faster

Common data model for streams and objects

28

-Throughput -

Evaluating scalability

Vertical ‘ Horizontal

21*105 21*105 — &eragrod
19*105 19*105 m— KafhaProc
17*105 1 Ox 17*105 8x ; ﬁgﬁgﬁ
15108 15*105
13*108 13*105
117105 11*105
9*105 9*105
7*108 7*105
5*105 5*105 '
3*105 3*105 ‘ ‘
1%105 1*105 =] H _
8 16 32 8 12 (16 Nodes Number
Clients . # Brokers
4 brokers, 32 partitions, 64 clients, 32 partitions,
128KB request size, 100B records 1MB request size, 100B records
2X better throughput

with 75% less resources 29

Tyr:
Transactional Blob Storage

A large-scale monitoring and analytics service
for the CERN LHC ALICE experiment

Ingests and stores telemetry events at 13 GB/s

Computes 35,000+ aggregates of events in real-time)

<
A .
~ ~ £
"o 9 <
v P A0 TREAN N
File View Discovery Groups Securiy Hep
_— ~ © Normat view 7
_________ Nodes: o of users o
30 Map e a speed

cccccc

(((((((

uuuuuuuu

Multiple storage requirements

Write atomicity for aggregate updates
Atomic, lock-free writes
High-performance reads

Horizontal scalability N RIAALS

Write atomicity for aggregate updates

Aggregate update is a two-step operation

Read current value remotely from A A
storage R ~
Write the updated value remotely to = 9
o1V] 4]
storage & o

sync(8l|v g||%)
Aggregate update needs to be atomic 5 :E
© (]
Concurrent writers! z v
=
v v

Synchronization is mandatory
32

At which level to handle synchronization?

At application level?

Fine-grained synchronization
Application-specific optimization

...but increases app complexity, error-prone throad 1 | hread 2 | Thread 3

Common on HPC (e.g., explicit locking)
Synchronization layer

Storage

33

At which level to handle synchronization?

At application level?

Fine-grained synchronization
Application-specific optimization
...but increases app complexity, error-prone

Common on HPC (e.g., explicit locking)

At middleware level?

Eases application design
...but typically substantial performance overhead

Also common on HPC (e.g., MPI collective 1/0)

Thread 1 Thread 2 § Thread 3

Synchronization layer

Storage

33

At which level to handle synchronization?

At application level?

Fine-grained synchronization
Application-specific optimization
...but increases app complexity, error-prone

Common on HPC (e.g., explicit locking)

Thread 1 Thread 2 § Thread 3

At middleware level?

Eases application design
...but typically substantial performance overhead

Also common on HPC (e.g., MPI collective 1/0)

Transactional

At storage level? Object Storage

Also eases application design
Storage-specific optimization
...but less customizable than app-level synchronization
Common on BDA (e.g., transactional systems)

Transactional API

begin()

current = read(aggregate, ..)
write(aggregate, current+l, ..)
commit() 33

vV V V V

Tyr read protocols

Direct read Multi-chunk read Transactional reads
> read(blob, 0, 10kb) > read(blob, 0, 100mb) > begin()
> read(blob, 0, 10kb)
> read(blob, 100mb, 10kb)
> commit()

34

Tyr atomic writes

MonALISA: aggregate updates could be
performed atomically and efficiently

Tyr enables these writes to be performed with
one round-trip instead of two

Atomic operations: in-place data modification

Integrated with the transaction protocol

read(count)
q
write(count,6)
Moe

\ 4 \{

Transactional
Storage ;

Tyr atomic writes

MonALISA: aggregate updates could be
performed atomically and efficiently

Tyr enables these writes to be performed with 4
one round-trip instead of two ~
Atomic operations: in-place data modification % f‘%
Integrated with the transaction protocol é -
ncesron | B |

() 1)))

STORAGE Push/Pull

Backups data access PRoLESIG

Transactional
Storage
35

Read / Write performance with MonALISA

Transactional write throughput
7

—O—Tyr (Atomic) —O— Tyr (RUW)
—o— RADOS + ZK —&— BlobSeer + ZK
51 | —o— Azure + ZKZK = ZooKeper (Locks)

4 : Atomic aggregates

Agg. perf. (mil. ops / s)

-

0 - -
0 50 100 150 200 250 300 350 400 450 500
Number of concurrent writers

Only Tyr is transactional
Other systems with fine-grained locking

Clear performance gain for transactions
Less network overhead, +23% vs. Rados

Atomic operations are very effective
One RTT instead of two, +25% throughput

[
Bo

Agg. perf. (mil. ops / s)

Read throughput

10 | | —a— BlobSeer —o— Azure

4

»
O X O
B 5 A=Y
A A=

-0

0
0 50 100 150 200 250 300 350 400 450 500
Number of concurrent readers

Only Tyr provides multi-chunk reads
Slightly lower performance than Rados

Cost of read protocols, -5% vs. Rados

BlobSeer: metadata management cost

No direct reads

Azure: internals are not documented

36

Perspectives:
HPC and Big Data Convergence

Simulations

>

= E z

Devices > LL

- Multidisciplinary -8

f ‘ < Data Fusion S

j ©

ol / Smart City < "
’ l\\ \ 0 2
N

HPC / Big Data convergence

Big Data

Application

Framework
Hadoop, Spark, Flink

Logs

HPC

Application

Framework
MPI

39

HPC / Big Data convergence

Big Data

Application

Framework
Hadoop, Spark, Flink

HPC

Application

Framework
MPI

Converged Storage Layer

39

HPC / Big Data convergence

Big Data HPC

Application Application

Framework Framework
Hadoop, Spark, Flink MPI

H

Converged Storage Layer

Internet

40

HPC / Big Data convergence

Big Data

Application

Framework
Hadoop, Spark, Flink

HPC

Application

Framework
MPI

Converged Storage Layer

Internet

41

HPC / Big Data convergence

Big Data

Application

Framework
Hadoop, Spark, Flink

HPC

Application

Framework

MPI

Unified DFS

Converged Storage Layer

Internet

42

HPC / Big Data convergence

Big Data HPC

Application

Framework Framework
Hadoop, Spark, Flink MPI

Application

SLog

42

HPC / Big Data convergence

Big Data HPC

Application Application

Converged Processing

43

My Research Project:

Converged Processing

... or how Past, Present and Future data could jointly
enable disruptive analytics on Extreme-scale infrastructures

Scenario: digital twins

< Model input
Hee BHEE { Simulations J I
- 7
hicalviord \ Computational model Digital Twins

Entities

Today

data processing

Driving tasks

))/ [Aggregated cars]

Big Data
analytics

Data driven model 45

Telemetry
streams

Feedback and DCeNario: dlgltal twins Jodel nou

B
""”7'/"4'"'
“"Real World -

Computational model Digital Twins

3 EtitieS

" Tomorrow &

Model update

Big Data
analytics

Data driven model 46

) | Aggregated cars
data processing

Driving tasks

Telemetry
streams

Our vision: hybrid analytics architecture

Proactive

> control
Past Batch processmg> Hlstorlcal
ata model
model

Hybrid
Analytics
In situ processmg>
Simulation m @
model
In transit processmg

Continuous

update

Hybrid analytics architecture

In situ pre-processing Better In situ stream
of simulation data Learning Decision pre-processing
/\ / of sensor data
Computation v
Hybrid (stream + batch) Sensor
i Q00! @ in transit processing
000! @ (data in-motion + data at-rest)
@
DATA 0@ DATA
from the ONOXONNI _ @00 ®|<@ fromthe
Hypothetical ooo|lel ™~ e0@ / Real World (
World
00 .
coolle eee N
CQOO0O| @

Historical ® D
: . . : ta processin
Simulation (e.g., digital twin) data ata processing

48

Hybrid analytics architecture

Postdoc (ANR OverFlow project)

* Investigating Edge vs. Cloud
computing trade-offs for stream
processing

* Methodology for benchmarking Edge
processing frameworks

Ph.D. (co-supervised with UPB)
» Uniform Cloud and Edge stream
processing for Fast Data analytics

Pedro Silva

In situ stream
pre-processing
of sensor data

DataSteward++

+ Edge analytics (e.g.,
data aggregations)
+ uniform Edge/Cloud
processing

Hybrid analytics architecture

In situ pre-processing
of simulation data

8 8 8 : Research Engineer (Inria ADT project) |
- Enable support for in situ Big Data |
analytics
000! | @ * Elastic allocation of dedicated resources b é
00| @ (cores/nodes) Ovidiu Marcu
. Q00 T
Ny 00O0||® L
/\\\g 000||®
’ Historical
é] data

Damnaris

Hybrid analytics architecture

Hybrid (stream + batch)

in transit processing
ata in-motion + data at-rest)

Startup (ZettaFlow)

* Low and consistent latency Ol O
(lightweight offset indexing,
independent memory management)
* Model applications not partitioning/ | ® e O| O
stream storage e C N)
. . Ovidiu Marcu ® 0 I
Ph.D. (Inria IPL project) o0
« HPC - Big Data processing o0 @ 0
convergence

* Bridge in situ/in transit and stream/
batch processing

Historical +seamless integration

, . i with in situ/in transit
H2020 project submission +large state

IPN Associate Team management

My scientific methodology

* Analyze trends and state of the art

* Intuition

* Identify realistic use cases

 Define research questions

* Develop a real piece of software

» Evaluate research questions with synthetic benchmarks

» Evaluate research questions with real-life use cases

52

Platforms

Academic testbeds and supercomputers

Public clouds

BE Microsoft Azure

j L
LT altpazon

ay ervices

53

Impact: interdisciplinarity

Contributions to healthcare

- DataSteward and JetStream used to Subject 1 [§
prove for the first time the correlation
between brain regions and genetic data supject 2

« Enables early diagnostic of psychiatric
illnesses

f W Correlations ?
] , H SNP data

1' frontiers
INn Neuroscience

Formal dialogue with the HPC community
* Member of the Big Data Value Association

' 'THE'TEGHN'UL'UGY STAGKS OF HIGH PERFORMANGE

(BDVA) GOMPUTING AND BIG DATA COMPUTING:

» Contributions to the joint white paper with What 't,ﬁe& can learn from each other
the European Association for HPC S M
(ETP4HPC) SN

.

EUROPEAN TECHNOLOGY
it PLATFORM FOR g \= BDV

PERFORMANGE COMPUTING / ‘ 54

Impact: industry

Transfer

- JetStream integrated in Microsoft Azure for il \icrosoft
control message transfers .. Azure

* Azure SignalR provides real-time functionality
using several dedicated connections — inspired by Signal R
DataSteward

* Huawei studies KerA for potential integration in \")
the stream layer of the Huawei Cloud e HUAWEI

Project for startup creation: ZettaFlow
« Stream ingestion to power real-time applications

w7,
]

TN Maria S.
i N Perez
~ Luc Bougé Gabrl_el Pedro Silva Luis Pineda
Antoniu

v d

lrezia —

inventors for the digital world

& POLITECNICA |

Bogdan Kate
Ross Nicolae Keahey

Radu Stefano Goetz
Tudoran Bortoli Brasche

Ve

HUAWEI

Argonne‘) /

NATIONAL LABORATORY,

