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From Big Data to Fast Data
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LIDAR sensors

Cameras

Ultrasonic
sensors




Sensor type

Radar
LIDAR
Camera
Ultrasonic

Vehicle motion, GNSS, IMU

Data generated

0.1-15 Mbit/s
20-100 Mbit/s
500-3,500 Mbit/s
<0.01 Mbit/s
<0.1 Mbit/s
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Streams: the model for Fast Data
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« Continuous, unbounded, unordered, global-scale datasets made up of
- Small size per event (i.e., bytes and kilobytes)
« High arrival rate (i.e., million items per second)

Timestamp
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Value 7




Streams: the model for Fast Data

Arrival
time

Events arrive with unknown delays



How to deal with this unboundedness ?
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How to deal with this unboundedness ?
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Batch vs. streaming
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Correctness Latency
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fite

Correctness Exact results Approximate results
Latency High-latency Low-latency

Stateless Stateful
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State of the art until recently:
Lambda Architectures

Exact
historical
model

Historical Per'o.d'c >
queries
events

Batch processing

Results
&
Actions

Stream processing

Continuous
queries

Real-time

Approximate
events

real-time
model




State of the art until recently:
Lambda Architectures
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The streaming pipeline: latency happens
Cloud
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The streaming pipeline: latency happens
Edge

[ STREAM

Cloud
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The streaming pipeline: latency hap

INGESTION
Throughput
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Objective

Reality
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Reduce the processing
time skew by means of
dedicated stream data
management
across Edge and Cloud

Processing time

Event production time
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My research
path
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Projects and collaborations

From Big Data

processing
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Fast Data

management

@ Ass ’ Workflow data
\r '@ ZCloudFlow, EIT Digital
Professor CIERT . management
ﬁ Postdoc I i@ ANR MapReduce, ABrainl Big Data processing

o
!U Ph.D. '@ MMMMMM SA Data processing and visualization




Big Data

Fast Data

Research topics and PhD co-supervision
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Contributions

DataSteward

In-transit
stream data
management
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Contributions

DataSteward

In-transit
stream data
management
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Contributions

DataSteward
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Contributions

DataSteward

In-transit Distributed
stream data metadata
management management

s | DATA
—— | STORAGE & QUERY

>

DATA
TRANSFER

JetStream

DATA

INGESTION Fast

‘@

stream
transfers

474 STREAM //{ IEEE CLUSTER’15

e = o IEEE BIGDATA'16
I
— IEEE Transactions on Knowledge and
— Data Engineering, 2018

Scalable

stream @
ingestion




Contributions

DataSteward
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KerA:
Scalable Stream Ingestion

INGESTION



What is ingestion ?

* Collect data from various sources
— producers

* Deliver them for processing / storage
— consumers

* Optionally: buffer, log, pre-process

i N e

Ingestion determines the processing performance

22



State of the art: Apache Kafka

Linked m

50 nodes, average 200K events/s 400 nodes, peak 3.2M events/s
Limitations
 Scalability

» Data duplication

23



The KerA approach to ingestion

 Scalability = Dynamic partitioning
* Enables seamless elasticity

 Data duplication — Unified ingestion and storage

» Support for both
« Streams (unbounded data)
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Issue: scalability
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KerA: dynamic partitioning
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« Streamlets: logical stream containers; #streamlets > #brokers



KerA: dynamic partitioning
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KerA: dynamic partitioning

([mm_ ) —
Streamlets /
10, m Wg, ([(mmm ]
ODg0Oyg Om @0 pad = -
E g " pnm g —
[EED ] Streamlets |« ) )
i, m Epgy
O m [ 0 O m U K/ PROCESSING
I g 8§ pmpn
[ [m )
Streamlets
[ [ooz ]

« Streamlets: logical stream containers; #streamlets > #brokers
« Groups: created and processed dynamically; maximum #active groups per broker
* Segments: fixed size partitions; configurable #segments per group %
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« Streamlets: logical stream containers; #streamlets > #brokers
« Groups: created and processed dynamically; maximum #active groups per broker
* Segments: fixed size partitions; configurable #segments per group %



Issue: data duplication
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Increased network and storage overheads
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KerA: unified ingestion and storage

Streams v
m0y m Epy INGESTION —
PR . >” - Brokers W -
—'
Acquire STORAGE Push/Pull -
Backu ps data access PROCESSING

Move less data, process them faster

Common data model for streams and objects
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-Throughput -

Evaluating scalability

Vertical ‘ Horizontal
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4 brokers, 32 partitions, 64 clients, 32 partitions,
128KB request size, 100B records 1MB request size, 100B records
2X better throughput

with 75% less resources 29



Tyr:
Transactional Blob Storage



A large-scale monitoring and analytics service
for the CERN LHC ALICE experiment

Ingests and stores telemetry events at 13 GB/s

Computes 35,000+ aggregates of events in real-time )
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Multiple storage requirements

Write atomicity for aggregate updates
Atomic, lock-free writes
High-performance reads

Horizontal scalability N RIAALS



Write atomicity for aggregate updates

Aggregate update is a two-step operation

Read current value remotely from A A
storage R ~
Write the updated value remotely to = 9
o1V] 4]
storage & o

sync( 8l|v g||%)
Aggregate update needs to be atomic 5 :E
© (]
Concurrent writers! z v
=
v v

Synchronization is mandatory
32



At which level to handle synchronization?

At application level?

Fine-grained synchronization
Application-specific optimization

...but increases app complexity, error-prone throad 1 | hread 2 | Thread 3

Common on HPC (e.g., explicit locking)
Synchronization layer

Storage

33



At which level to handle synchronization?

At application level?

Fine-grained synchronization
Application-specific optimization
...but increases app complexity, error-prone

Common on HPC (e.g., explicit locking)

At middleware level?

Eases application design
...but typically substantial performance overhead

Also common on HPC (e.g., MPI collective 1/0)

Thread 1 Thread 2 § Thread 3

Synchronization layer

Storage
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At which level to handle synchronization?

At application level?

Fine-grained synchronization
Application-specific optimization
...but increases app complexity, error-prone

Common on HPC (e.g., explicit locking)

Thread 1 Thread 2 § Thread 3

At middleware level?

Eases application design
...but typically substantial performance overhead

Also common on HPC (e.g., MPI collective 1/0)

Transactional

At storage level? Object Storage

Also eases application design
Storage-specific optimization
...but less customizable than app-level synchronization
Common on BDA (e.g., transactional systems)

Transactional API

begin()

current = read(aggregate, ..)
write(aggregate, current+l, ..)
commit() 33
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Tyr read protocols

Direct read Multi-chunk read Transactional reads
> read(blob, 0, 10kb) > read(blob, 0, 100mb) > begin()
> read(blob, 0, 10kb)
> read(blob, 100mb, 10kb)
> commit()
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Tyr atomic writes

MonALISA: aggregate updates could be
performed atomically and efficiently

Tyr enables these writes to be performed with
one round-trip instead of two

Atomic operations: in-place data modification

Integrated with the transaction protocol

read(count)
q
write(count,6)
Moe

\ 4 \{

Transactional
Storage ;




Tyr atomic writes

MonALISA: aggregate updates could be
performed atomically and efficiently

Tyr enables these writes to be performed with 4
one round-trip instead of two ~
Atomic operations: in-place data modification % f‘%
Integrated with the transaction protocol é -
ncesron | B |

() 1)) )

STORAGE Push/Pull

Backups data access PRoLESIG

Transactional
Storage
35




Read / Write performance with MonALISA

Transactional write throughput
7

—O—Tyr (Atomic) —O— Tyr (RUW)
—o— RADOS + ZK —&— BlobSeer + ZK
51 | —o— Azure + ZKZK = ZooKeper (Locks)

4 : Atomic aggregates

Agg. perf. (mil. ops / s)

-

0 - -
0 50 100 150 200 250 300 350 400 450 500
Number of concurrent writers

Only Tyr is transactional
Other systems with fine-grained locking

Clear performance gain for transactions
Less network overhead, +23% vs. Rados

Atomic operations are very effective
One RTT instead of two, +25% throughput

[
Bo

Agg. perf. (mil. ops / s)

Read throughput

10 | | —a— BlobSeer —o— Azure

4

»
O X O
B 5 A=Y
A A=

-0

0
0 50 100 150 200 250 300 350 400 450 500
Number of concurrent readers

Only Tyr provides multi-chunk reads
Slightly lower performance than Rados

Cost of read protocols, -5% vs. Rados

BlobSeer: metadata management cost

No direct reads

Azure: internals are not documented
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Perspectives:
HPC and Big Data Convergence
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HPC / Big Data convergence

Big Data

Application

Framework
Hadoop, Spark, Flink

Logs

HPC

Application

Framework
MPI
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HPC / Big Data convergence

Big Data

Application

Framework
Hadoop, Spark, Flink

HPC

Application

Framework
MPI

Converged Storage Layer
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HPC / Big Data convergence

Big Data HPC

Application Application

Framework Framework
Hadoop, Spark, Flink MPI

H

Converged Storage Layer

Internet
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HPC / Big Data convergence

Big Data

Application

Framework
Hadoop, Spark, Flink

HPC

Application

Framework
MPI

Converged Storage Layer

Internet
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HPC / Big Data convergence

Big Data

Application

Framework
Hadoop, Spark, Flink

HPC

Application

Framework

MPI

Unified DFS

Converged Storage Layer

Internet
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HPC / Big Data convergence

Big Data HPC

Application

Framework Framework
Hadoop, Spark, Flink MPI

Application

SLog
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HPC / Big Data convergence

Big Data HPC

Application Application

Converged Processing
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My Research Project:

Converged Processing

... or how Past, Present and Future data could jointly
enable disruptive analytics on Extreme-scale infrastructures



Scenario: digital twins

< Model input
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Big Data
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Feedback and DCeNario: dlgltal twins Jodel nou
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Our vision: hybrid analytics architecture

Proactive

> control
Past Batch processmg> Hlstorlcal
ata model
model

Hybrid
Analytics
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Hybrid analytics architecture

In situ pre-processing Better In situ stream
of simulation data Learning Decision pre-processing
/\ / of sensor data
Computation v
Hybrid (stream + batch) Sensor
i Q00! @ in transit processing
000! @ (data in-motion + data at-rest)
@
DATA 0@ DATA
from the ONOXONNI _ @00 ®|<@ fromthe
Hypothetical ooo|lel ™~ e0@ / Real World (
World
00 .
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Historical ® D
: . . : ta processin
Simulation (e.g., digital twin) data ata processing
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Hybrid analytics architecture

Postdoc (ANR OverFlow project)

* Investigating Edge vs. Cloud
computing trade-offs for stream
processing

* Methodology for benchmarking Edge
processing frameworks

Ph.D. (co-supervised with UPB)
» Uniform Cloud and Edge stream
processing for Fast Data analytics

Pedro Silva

In situ stream
pre-processing
of sensor data

DataSteward++

+ Edge analytics (e.g.,
data aggregations)
+ uniform Edge/Cloud
processing



Hybrid analytics architecture

In situ pre-processing
of simulation data

8 8 8 : Research Engineer (Inria ADT project) |
- Enable support for in situ Big Data |
analytics
000! | @ * Elastic allocation of dedicated resources b é
00| @ (cores/nodes) Ovidiu Marcu
. Q00 T
Ny 00O0||® L
/\\\g 000||®
’ Historical
é] data
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Hybrid analytics architecture

Hybrid (stream + batch)

in transit processing
ata in-motion + data at-rest)

Startup (ZettaFlow)

* Low and consistent latency Ol O
(lightweight offset indexing,
independent memory management)
* Model applications not partitioning/ | ® e O| O
stream storage e C N )
. . Ovidiu Marcu ® 0 I
Ph.D. (Inria IPL project) o0
« HPC - Big Data processing o0 @ 0
convergence

* Bridge in situ/in transit and stream/
batch processing

Historical +seamless integration

, . i with in situ/in transit
H2020 project submission +large state

IPN Associate Team management




My scientific methodology

* Analyze trends and state of the art

* Intuition

* Identify realistic use cases

 Define research questions

* Develop a real piece of software

» Evaluate research questions with synthetic benchmarks

» Evaluate research questions with real-life use cases
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Platforms

Academic testbeds and supercomputers

Public clouds

BE Microsoft Azure

j L
LT altpazon

ay ervices
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Impact: interdisciplinarity

Contributions to healthcare

- DataSteward and JetStream used to Subject 1 [§
prove for the first time the correlation
between brain regions and genetic data  supject 2

« Enables early diagnostic of psychiatric
illnesses

f W Correlations ?
] , H SNP data

1' frontiers
INn Neuroscience

Formal dialogue with the HPC community
* Member of the Big Data Value Association

' 'THE'TEGHN'UL'UGY STAGKS OF HIGH PERFORMANGE

(BDVA) GOMPUTING AND BIG DATA COMPUTING:

» Contributions to the joint white paper with What 't,ﬁe& can learn from each other
the European Association for HPC S M
(ETP4HPC) SN

.

EUROPEAN TECHNOLOGY
it PLATFORM FOR g \= BDV

PERFORMANGE COMPUTING / ‘ 54




Impact: industry

Transfer

- JetStream integrated in Microsoft Azure for il \icrosoft
control message transfers .. Azure

* Azure SignalR provides real-time functionality
using several dedicated connections — inspired by Signal R
DataSteward

* Huawei studies KerA for potential integration in \")
the stream layer of the Huawei Cloud e HUAWEI

Project for startup creation: ZettaFlow
« Stream ingestion to power real-time applications
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