
École doctorale MathSTIC

HABILITATION À DIRIGER DES RECHERCHES

Discipline: INFORMATIQUE

présentée devant l’École Normale Supérieure de Rennes sous le sceau de
l’Université Bretagne Loire

par

Alexandru Costan
préparée à IRISA

Institut de Recherche en Informatique et Systèmes Aléatoires

From Big Data
to Fast Data:
Efficient Stream
Data Management

Soutenue à Bruz, le 14 mars 2019,
devant le jury composé de:

Rosa Badia / rapporteuse
Directrice de recherche, Barcelona Supercomputing
Center, Espagne

Luc Bougé / examinateur
Professeur des universités, ENS Rennes, France

Valentin Cristea / examinateur
Professeur des universités, Université Politehnica de
Bucarest, Roumanie

Christian Pérez / rapporteur
Directeur de recherche, Inria, France

Michael Schöttner / rapporteur
Professeur des universités, Université de Düsseldorf,
Allemagne

Patrick Valduriez / examinateur
Directeur de recherche, Inria, France

3

Abstract

This manuscript provides a synthetic overview of my research journey since my PhD de-
fense. The document does not claim to present my work in its entirety, but focuses on the
contributions to data management in support of stream processing. These results address
all stages of the stream processing pipeline: data collection and in-transit processing at the
edge, transfer towards the cloud processing sites, ingestion and persistent storage.

I start by presenting the general context of stream data management in light of the recent
transition from Big to Fast Data. After highlighting the challenges at the data level associ-
ated with batch and real-time analytics, I introduce a subjective overview of my proposals
to address them. They bring solutions to the problems of in-transit stream storage and
processing, fast data transfers, distributed metadata management, dynamic ingestion and
transactional storage. The integration of these solutions into functional prototypes and the
results of the large-scale experimental evaluations on clusters, clouds and supercomputers
demonstrate their effectiveness for several real-life applications ranging from neuro-science
to LHC nuclear physics. Finally, these contributions are put into the perspective of the High
Performance Computing - Big Data convergence.

Keywords:

Big Data; stream processing; storage; data management; data analytics; transactions;
data transfers; metadata management; in-transit processing; workflow management; HPC.

i

Contents

Foreword 4

1 Introduction 5
1.1 The need for real-time processing . 6

1.1.1 Motivating use-case: autonomous cars 6
1.1.2 Solution: stream computing in real-time 7

1.2 The challenge of data management for streams 8
1.3 Mission statement . 9
1.4 Objectives . 9

Part I — Context: Stream Processing in the Clouds 13

2 Big Data Processing: Batch-based Analytics of Historical Data 15
2.1 Batch processing with MapReduce: the execution model for Big Data 16

2.1.1 MapReduce extensions . 17
2.2 Big Data processing frameworks . 18

2.2.1 From Hadoop to Yarn . 19
2.2.2 Workflow management systems . 20

2.3 Big Data management . 21
2.3.1 Data storage . 21
2.3.2 Data transfer . 26

2.4 Discussion: challenges . 27

3 The World Beyond Batch: Streaming Real-Time Fast Data 29
3.1 Stream computing . 30

3.1.1 Unbounded streaming vs. bounded batch 30
3.1.2 Windowing . 30
3.1.3 State management . 31
3.1.4 Correctness . 32

3.2 Fast Data processing frameworks . 33
3.2.1 Micro-batching with Apache Spark . 33
3.2.2 True streaming with Apache Flink . 34
3.2.3 Performance comparison of Spark and Flink 34
3.2.4 Other frameworks . 36

ii Contents

3.3 Fast Data management . 37
3.3.1 Data ingestion . 38
3.3.2 Data storage . 39

3.4 Discussion: challenges . 40

4 The Lambda Architecture: Unified Stream and Batch Processing 41
4.1 Unified processing model . 42

4.1.1 The case for batch-processing . 43
4.2 Limitations of the Lambda architecture . 43

4.2.1 High complexity of two separate computing paths 43
4.2.2 Lack of support for global transactions 44

4.3 Research agenda . 44

Part II — From Sensors to the Cloud: Stream Data Collection and Pre-
processing 47

5 DataSteward: Using Dedicated Nodes for In-Transit Storage and Processing 49
5.1 A storage service on dedicated compute nodes 50

5.1.1 Design principles . 51
5.1.2 Architectural overview . 51
5.1.3 Zoom on the dedicated nodes selection in the cloud 52

5.2 In-transit data processing . 55
5.2.1 Data services for scientific applications 55

5.3 Evaluation and perspectives . 56
5.3.1 Data storage evaluation . 56
5.3.2 Gains of in-transit processing for scientific applications 57
5.3.3 Going further . 58

6 JetStream: Fast Stream Transfer 61
6.1 Modelling the stream transfer in the context of clouds 62

6.1.1 Zoom on the event delivery latency . 63
6.1.2 Multi-route streaming . 64

6.2 The JetStream transfer middleware . 66
6.2.1 Adaptive batching for stream transfers 66
6.2.2 Architecture overview . 67

6.3 Experimental evaluation . 69
6.3.1 Individual vs. batch-based event transfers 69
6.3.2 Adapting to context changes . 70
6.3.3 Benefits of multi-route streaming . 70
6.3.4 JetStream in support of a real-life LHC application 71
6.3.5 Towards stream transfer "as a Service" 73

7 Small Files Metadata Support for Geo-Distributed Clouds 75
7.1 Strategies for multi-site metadata management 77

7.1.1 Centralized Metadata (Baseline) . 78
7.1.2 Replicated Metadata (on Each Site) . 79

Contents iii

7.1.3 Decentralized, Non-Replicated Metadata 80
7.1.4 Decentralized Metadata with Local Replication 80
7.1.5 Matching strategies to processing patterns 81

7.2 One step further: managing workflow hot metadata 82
7.2.1 Architecture . 84
7.2.2 Protocols for hot metadata . 85
7.2.3 Towards dynamic hot metadata . 86

7.3 Implementation and results . 87
7.3.1 Benefits of decentralized metadata management 88
7.3.2 Separate handling of hot and cold metadata 90

Part III — Scalable Stream Ingestion and Storage 93

8 KerA: Scalable Data Ingestion for Stream Processing 95
8.1 Impact of ingestion on stream processing . 96

8.1.1 Time domains . 96
8.1.2 Static vs. dynamic partitioning . 98
8.1.3 Record access . 99

8.2 KerA overview and architecture . 100
8.2.1 Models . 100
8.2.2 Favoring parallelism: consumer and producer protocols 103
8.2.3 Architecture and implementation . 103
8.2.4 Fast crash recovery for low-latency continuous processing 105

8.3 Experimental evaluation . 105
8.3.1 Setup and methodology . 105
8.3.2 Results . 106
8.3.3 Discussion . 108

9 Týr: Transactional, Scalable Storage for Streams 109
9.1 Blobs for stream storage . 110
9.2 Design principles and architecture . 111

9.2.1 Predictable data distribution . 111
9.2.2 Transparent multi-version concurrency control 112
9.2.3 ACID transactional semantics . 114
9.2.4 Atomic transform operations . 115

9.3 Protocols and implementation . 116
9.3.1 Lightweight transaction protocol . 116
9.3.2 Handling reads: direct, multi-chunk and transactional protocols 118
9.3.3 Handling writes: transactional protocol, atomic transforms 120
9.3.4 Implementation details . 120

9.4 Real-time, transactional data aggregation in support of system monitoring . . 121
9.4.1 Transactional read/write performance 123
9.4.2 Horizontal scalability . 126

iv Contents

Part IV — Perspectives 127

10 Stream Storage for HPC and Big Data Convergence 129
10.1 HPC and BDA: divergent stacks, convergent storage needs 131

10.1.1 Comparative overview of the HPC and BDA stacks 131
10.1.2 HPC and BDA storage . 132
10.1.3 Challenges of storage convergence between HPC and BDA 133

10.2 Blobs as a storage model for convergence . 134
10.2.1 General overview, intuition and methodology 134
10.2.2 Storage call distribution for HPC and BDA applications 135
10.2.3 Replacing file-based by blob-based storage 137
10.2.4 Which consistency model for converged storage? 139
10.2.5 Conclusion: blobs are the right candidate for storage convergence . . . 140

10.3 Týr for HPC and BDA convergence . 140
10.3.1 Týr as a storage backend for HPC applications 141
10.3.2 Týr as a storage backend for BDA applications 142
10.3.3 Discussion . 142

11 A Look Forward: Generalizing HPC and BDA Convergence 143
11.1 Going beyond storage convergence . 144
11.2 Converging on an architecture for hybrid analytics 145
11.3 Wider transactional semantics . 146
11.4 Concluding remarks . 147

1

Foreword

THE LAST SEVEN YEARS, SINCE MY PH.D. DEFENSE, HAVE BEEN INCREDIBLY RICH and
exciting. This manuscript does not claim to present all my research during this pe-
riod. It focuses on the challenges associated with the evolution from traditional Big

Data processing to the recent stream processing, from a data management perspective.
My interest for making sense out of huge sets of data was forged during my Ph.D., work-

ing on the MonALISA monitoring system for the LHC experiments at CERN. Then, my focus
was naturally steered on ways of effectively storing and handling these data during my
post-doctoral stay at Inria Rennes in 2011–2012. The work presented in this manuscript
mainly covers the period 2012–2018, both at Inria and at IRISA, since my recruitment at
INSA Rennes. However, it seems obvious that the evolution of my research themes is not
exempt from the strong influence of the various collaborators with whom I had the pleasure
of working and to whom I would like to thank. Since my arrival at Inria, my research has
been organized along two major axes, presented briefly in Figure 1.

Big Data processing optimizations. My initial focus was on enhancing the MapReduce
paradigm, the de-facto processing model for Big Data at that time. I studied the ex-
tension of this model with iterative support for reduce-intensive workloads, designed
a blob storage system able to expose the locality needed by MapReduce and even-
tually generalized the MapReduce processing from single clusters to geographically
distributed ones.

From Big Data to Fast Data. In parallel, I became more and more aware that processing per-
formance is highly determined by the efficiency of the underlying data management.
So, I started to focus on collecting data, processing them in-situ or in-transit, transfer-
ring them from their source to the cloud datacenters and eventually pushing them to
the processing engines and storing them for persistence. Initially, this was done in the
context of Big Data ("data at rest"), focusing on batch, a posteriori processing. But more
recently, given the explosion of sensors and applications needing immediate actions, I
shifted my interest towards Fast Data ("data in motion"), focusing on stream, real-time
processing.

I summarize below the context and the chronological evolution of my research along
these two axes.

2 Contents

Figure 1 – Thematic organization of my research during the 2011–2018 period.

Big Data processing optimizations

During my Ph.D., I was mainly interested by visualization and presentation of (monitoring)
data. In the following period, I became more attracted by the processing phase — making
sense out of these huge volumes of data.

After my arrival at Inria, I studied the limitations of the MapReduce processing model,
namely the lack of iterative support and the poor data management on clouds. Naturally,
I joined the ANR MapReduce project [175], which aimed to address precisely these chal-
lenges on clouds and desktop grids. In this context, I co-supervised the thesis of Radu Tu-
doran and contributed to several optimisations for MapReduce (i.e., iterative support and
geo-distributed processing) [19], and to a blob storage system, specifically designed to lever-
age the locality of MapReduce [1, 23, 22]. The project brought the opportunity to visit Kate
Keahey at Argonne National Laboratory. We validated together these approaches on the
Nimbus cloud and we also setup a new associated team between Inria and ANL. Moreover,
in collaboration with Gilles Fedak (Inria, ENS Lyon) we were able to show that these opti-
misations can also benefit desktop grids [2].

Seeking validation of the storage and processing optimisations with a real-life applica-
tion, I joined the A-Brain project [174] with the Microsoft Research Inria Joint Centre. The
project analyzed large masses of neuroimaging data through cloud computing. An impor-
tant breakthrough of this period was possible after meeting Bertrand Thirion (Inria Saclay).
Thanks to the geo-distributed version of MapReduce on the Azure cloud, his team was able
to prove for the first time the correlation between brain regions and genetic data [24]. This
enables early diagnostic of psychiatric illnesses [13].

Although my work on Big Data processing optimizations has played an important role in
shaping the results presented hereafter, I decided to leave it out of the scope of this document
for the sake of clarity and brevity.

Contents 3

From Big Data to Fast Data

My recruitment as an Associate Professor at INSA Rennes in 2012 coincided with the cre-
ation of the KerData team. This was an opportunity for me to contribute to the team’s vision
and research program. My initial focus was on Big Data processing models more general
than MapReduce. Workflows are such an example. They describe the relationship between
individual computational tasks (standalone binaries) and their input and output data in a
declarative way (e.g., directed acyclic graphs) and exchange data through files. Workflows
are typically processed in batches. More recently, my interest steered towards the emerging
trend of processing data in real-time, by means of streams. Streams are unbounded, un-
ordered, global-scale datasets, flowing from their production site to the datacenters. They
are often referred as Fast Data, due to their small item size and high processing rate. Work-
flows and streams come with specific data management challenges, which I addressed in-
crementally.

Workflows: Big Data management. A significant category of workflows typically handle
a large number of small files (in the order of kilobytes). In order to understand the im-
pact of this data access pattern on the processing performance, I joined the ZCloudFlow
project [180], with Microsoft Research. The project investigated the problem of advanced
data storage and processing for workflows on multi-site clouds. In this context, I supervised
the thesis of Luis Pineda and I came to collaborate with Patrick Valduriez (Inria Sophia
Antipolis) on geo-distributed metadata management for scientific workflows [15, 14]. Little
research has been devoted to accelerate the data movements for workflows. In order to fill
this gap, I started to work with Bogdan Nicolae (ANL) on several generalizations of the
Multipath TCP protocol to speed up workflow data transfers [3, 18, 21]. All these contribu-
tions were delivered in a seamless way to scientists, through a general, easy to use Workflow
Data Management as a Service [20, 26].

Streams: Fast Data management. From their production site (e.g., wireless sensors) to the
processing nodes, streams typically pass through a three-stage pipeline: collection, ingestion
and storage. In the absence of dedicated data management tools for each of these phases, I
proposed in 2015 a uniform approach for stream data management. This stayed at the core

of the ANR OverFlow project [176] that I was granted in 2015. In this context I co-advised
with Luc Bougé (ENS Rennes) the thesis of Paul Le Noac’h and started the collaboration
with Pedro Silva, postdoctoral researcher at KerData.

At the collection level, I contributed to the JetStream system [25, 28, 27] for fast delivery
of streams to the clouds, by co-advising the thesis of Radu Tudoran. JetStream was
integrated in the Microsoft Azure cloud for message transfers within the control plane.

At the ingestion level, state-of-the-art solutions partition streams statically which limits
elasticity. To alleviate from this, I took the technical lead of the HIRP project [178]
with Huawei Research, which focused on low-latency storage for streams. In this con-
text, I co-supervised the thesis of Ovidiu Marcu and collaborated with the team of
Goetz Brasche (Huawei) to design KerA [7, 5, 8, 16], a dynamic ingestion solution for
streams.

4 Contents

At the storage level, neither distributed file-systems nor key-value stores serve well the
needs of streams. The H2020 BigStorage project [177], focusing on HPC and cloud
storage, was the occasion to study the pathway towards an efficient stream stor-
age. This was the framework for a close collaboration with Maria S. Pérez (Uni-
versidad Politécnica de Madrid), which brought a fresh modelling and machine-
learning perspective to my storage vision. Together with Gabriel Antoniu (Inria
Rennes), we co-advised the thesis of Pierre Matri, which led to the first prototype of
a transactional blob storage system — Týr [10, 12, 9]. Týr gained a huge interest at the
SuperComputing conference where it was presented in 2016. I used this momentum to
strengthen our team’s collaboration with Rob Ross (ANL). We worked on TýrFS [11]
— a file-system atop Týr able to increase small file access performance up to one order
of magnitude compared to state-of-the-art file-systems. We also devised a set of design
principles for converged storage for HPC and Big Data.

The remainder of this manuscript focuses on my second line of research: From Big Data
to Fast Data. At a first glance, these contributions span on several distinct domains (i.e.,
workflow data management, file transfers, stream ingestion, blob storage etc.). However, an
original aspect brought by this manuscript is their presentation in a new, uniform perspec-
tive — from the angle of stream processing. Essentially, they can be considered as multiple
facets of a single more general problem: scaling-up in large distributed systems, both in
terms of latency (accessing data faster) and throughput (getting the results sooner). These
observations are both my inspiration and the foundation of my research contributions.

5

Chapter 1
Introduction

Contents
1.1 The need for real-time processing . 6

1.1.1 Motivating use-case: autonomous cars 6

1.1.2 Solution: stream computing in real-time 7

1.2 The challenge of data management for streams 8

1.3 Mission statement . 9

1.4 Objectives . 9

WE LIVE IN A DATA-DRIVEN WORLD. The amount of data generated in 2016 was 16.1
Zettabytes1 [109], while forecasts estimate that the world will create 163 Zettabytes
in 2025, a ten-fold increase in less than a decade. Interestingly, same studies an-

ticipate that by that time the global volume of data subject to analysis will be of "only" 3 %,
roughly 5.2 Zettabytes. Not only will this deluge of data raise issues in storing, managing
and analysing the 3 %, but it will also challenge the processing paradigms in order to filter
out on the fly the other 97 %.

To extract useful information from this huge amount of data, various frameworks and
data processing models have been proposed. Among them, the most notable, MapRe-
duce [79] and its open-source implementation Hadoop [42] quickly became an industry
standard for Big Data processing, mainly due to their simplicity and scalability. More re-
cently, new frameworks like Spark [192] were introduced in an attempt to abstract from the
very strict, functional model based on Map and Reduce steps. They generalize the process-
ing model to support iterative applications such as machine learning or graph processing.
These frameworks are usually deployed on clouds [100], and execute complex analytics on
batches of historical data.

1One Zettabyte is approximately equal to a thousand Exabytes or a billion Terabytes (1ZB = 1021bytes).

6 Chapter 1 – Introduction

1.1 The need for real-time processing

Figure 1.1 – Edge vs. cloud [54].

However, the most explosive proliferation
in data generation today is taking place
across the network from the cloud dat-
acenters, at its edge. Such new data
sources include major scientific experiments
(e.g., LHC at CERN) and instruments (e.g.,
Square Kilometre Array telescope), and a
deluge of distributed sensors from the Inter-
net of Things (IoT).

Figure 1.1 illustrates this change. The
edge environments in which these data
originate are currently lacking the process-
ing and storage resources to handle such
volumes. The highest concentrations of
computing power and storage remains at
the "center", in commercial clouds or High
Performance Computing (HPC) centers.

{{ The traditional approach of shipping all
data to the cloud for batch analytics is no
longer a viable option. ||

The traditional approach of shipping all
data to the cloud for batch analytics is no
longer a viable option due to the high la-
tency of the Wide Area Networks (WANs)
connecting the edge and the datacenters. This disruptive change makes the advance in many
different areas of research uncertain. At the core of this uncertainty lies the fact that the ex-
plosive growth of heterogeneous data torrents at the edge creates problems that are highly
dimensional. Let us illustrate them with an example from sensor data processing.

1.1.1 Motivating use-case: autonomous cars

We are currently witnessing the biggest and most exciting change to driving in the history
of the automobile: autonomous cars. The U.S. Department of Transport identified 5 levels of
autonomy when it began looking into legislation for self-driving cars. The Level 5 (highest)
stipulates that the vehicle will be able to drive itself with no human supervision or input
whatsoever, and function just as effectively as any human driver would, on any road and in
any condition. Full Level 5 autonomy is expected by 2021.

Sensors. Autonomous vehicles are outfitted with a myriad of sensors (radars, LIDARs,
cameras) to monitor things like their position, proximity to obstacles, traffic guides and
much more. At any given time, the cars are tirelessly analyzing their local surroundings,
looking for telltale signs that the brakes need to be applied or that they need to accelerate.

Autonomous connected cars will make Big Data even bigger. Currently, the data esti-
mated to be generated by an autonomous vehicle rises to 300TB per year [55]. This figure
is expected to shift with at least one order of magnitude since currently autonomous cars
comply (only) with Level 3 (L3) of autonomy. Drivers are still necessary in L3 cars, but are

1.1 – The need for real-time processing 7

Figure 1.2 – Big Data hits the road: the autonomous loop fueling the self-driving cars with
huge torrents of data. Data is first collected from the on-board sensors, analyzed for effective
control using machine-learning algorithms, and then acted upon.

able to completely delegate safety-critical functions to the vehicle, under certain conditions.
There is a popular view that the technology could move quickly beyond L3 autonomy, ef-
fectively leaping towards L5 (full autonomy). This L5 vehicle is thus likely to become the
most complex and the most data-rich platform in the whole IoT, creating huge challenges for
identifying critical risks and designing against them. By 2020, it is expected that more than
10 million self-driving cars will be on the road.

Real-time decisions. Most of the data from such sensors need to be measured, monitored
and alerted upon in real-time, following the autonomous loop depicted in Figure 1.2. The
key issue is how to process such massive amount of data very fast, detect anomalies or, even
better, predict a fault before it happens: accidents, abnormal driver or car behavior.

In such a case, it is easy to see why the traditional Big Data processing approaches based
on back hauling all data across WANs to the cloud for batch-based historical analytics are
not sufficient. The value of sensor data decreases drastically over time, and the ability to
make decisions based on that data is only useful if the analysis is done in near real-time.

1.1.2 Solution: stream computing in real-time

{{ Streams are unbounded, unordered,
global-scale datasets, flowing from their
production site to the datacenters. They
are often referred as Fast Data. ||

Under the pressure of increasing data ve-
locity, Big Data analytics has shifted to-
wards a new paradigm: stream computing.
Streams are unbounded, unordered, global-
scale datasets, flowing from their produc-
tion site to the datacenters. They are often referred as Fast Data, due to their small item size

8 Chapter 1 – Introduction

Figure 1.3 – The typical stream computing pipeline. In blue, the steps relevant for data
management (discussed in this manuscript).

and high processing rate. Stream computing applies a series of operations to each element in
the stream, typically in a pipeline fashion. Hence, stream computing is able to deliver in-
sights and results as soon as possible, with minimal latency and high throughput that keeps
up with the rate of new data. With streaming analytics, one can:

(i) Aggregate or filter data. Group variables or eliminate noise near the source and only
transmit the results. For the connected cars, this allows data reduction to be applied
locally before any data movement is attempted.

(ii) Spot meaningful trends, patterns and correlations. Get instant insights to react imme-
diately with no need to transmit and store status quo data. In the case of autonomous
cars, constantly analyzing events as they occur can detect patterns that are otherwise
lost through information lag.

(iii) Run complex analytical models for predictive behavior and proactive decisions. For
autonomous cars, one can forecast expected values just a few seconds into the future,
and compare actual to forecasted values to identify meaningful deviations that may
indicate a problem leading to abnormal behavior.

(iv) Make smart, real-time decisions. In the case of autonomous cars, this allows to avoid
obstacles and constantly adapt to the driving environment.

1.2 The challenge of data management for streams

The typical stream computing pipeline consists of four stages, depicted in Figure 1.3.

• Collection acquires data from sensors or other distributed sources and transfers them
to the cloud datacenters, using simple protocols like FTP or UDP.
• Ingestion serves to buffer, log and optionally pre-process data streams (e.g., filter) be-

fore they are consumed by the processing phase. Apache Kafka [44] is the most widely
used ingestion system.
• Processing executes complex analytics on streams. This stage is served by a

large family of Stream Processing Engines (SPEs). Examples include Flink [70],
Spark Streaming [193], Storm [51], Samza [148] and others.
• Storage enables data persistence. This typically involves either the archival of the

buffered data streams from the ingestion layer or the storage of the intermediate re-
sults of stream processing. Various backends are used today: from object stores (e.g.,

1.3 – Mission statement 9

Amazon S3 [38]) and distributed file-systems (e.g., HDFS [63]) to key-value stores (e.g.,
Cassandra [121], RAMCloud [151]).

The processing phase is served by a rich eco-system of scalable SPEs leveraging dedicated
abstractions for streams (i.e., DataStreams in Flink, RDDs in Spark). These allow to process
streams on the fly with low latency.

{{ The data management phases (i.e., col-
lection, ingestion and storage) are still sup-
ported by decade-old, general-purpose
solutions. ||

However, the data management phases
(i.e., collection, ingestion and storage) are
still supported by decade-old, general-
purpose solutions. For instance, streams
are typically transferred using the very ba-
sic UDP protocol and stored in distributed file-systems like HDFS. These solutions do not
leverage the specificities of streams: small size per item (in the order of bytes and kilobytes)
and high arrival rate (in the order of millions items per second). They were actually de-
signed with opposite principles in mind: for instance HDFS is optimized for storing huge
binary objects (in the order of gigabytes) for batch-based processing.

The lack of adequate systems, tailored to the specificities of streams, for collection,
ingestion and storage has a great impact on the processing performance. On the one hand,
the SPEs are not served at their full processing capacity, resulting in wasted resources, and
eventually delayed results. On the other hand, SPEs remain tributary to the old model of
collecting the stream data to a centralized datacenter for processing. Instead, with a ded-
icated collection system for instance, one could do some parts of the processing in-transit,
with faster results and less data movements.

1.3 Mission statement

We claim that dedicated stream data management could lead to substantial performance
improvements over the state-of-the-art, that was designed for batch processing of Big Data.

1.4 Objectives

In order to prove this hypothesis, this manuscript fulfils a series of sub-objectives covering
all three stages of stream data management — collection, ingestion and storage.

Evaluate existing software

We are interested in assessing whether the state-of-the-art solutions are ready to support
the next-generation models and architectures for stream computing. This translates into the
following sub-objective.

Investigate a series of existing data management and processing paradigms for dis-
tributed computing in order to understand their limitations with respect to stream pro-
cessing (Chapters 2, 3 and 4).

10 Chapter 1 – Introduction

Improving collection

Our goal is to enable parts of the computation to be executed close to the
data collection site, at the edge, in order to avoid routing large amounts
of data over the network. Even when this is impossible, we aim to min-
imize the data transfer time from the edge to the cloud. This leads to the
following sub-objectives.

Show that using dedicated nodes for in-transit stream data management at the edge or
in the cloud is not only possible, but also brings substantial benefits to both cloud
providers and users. We introduce DataSteward, an in-transit storage and processing
system for streams (chapter 5).

Reduce stream collection time from source to the processing clouds by means of fast
data transfers across geographically distributed sites. We propose JetStream, a high-
performance batch-based streaming middleware for efficient transfers of streams be-
tween cloud datacenters over WANs, despite latency and bandwidth variations (chap-
ter 6).

Improving ingestion

We aim to support most of the real-time processing applications with
delays of no more than a few seconds. Hence, we need to be able to
access and deliver high volumes of stream data with low latency. This
translates into the following sub-objectives.

Improve stream access performance through adaptive distributed metadata management.
Huge loads of metadata are required to keep track of each stream data unit and of
the whole execution state. We introduce the notion of hot metadata (for frequently ac-
cessed metadata), and show that a distributed architecture for accessing it can speed
up the stream processing, especially in multi-site clouds (chapter 7).

Speed-up stream delivery for processing. We propose KerA, a data ingestion framework
that accelerates stream buffering and logging prior to processing, thanks to a dynamic
partitioning scheme and to lightweight indexing (chapter 8).

Improving storage

We identify data consistency as a hard, unaddressed problem in the
context of highly concurrent streams. Our goal is to propose a storage
system natively offering data access coordination and ready to serve a
broader spectrum of applications (i.e., not only stream-based, but also
HPC ones, for instance). This motivates our final sub-objectives.

Introduce a transactional stream storage solution — Týr. In particular, we show that en-
forcing strong consistency at the storage level by means of transactions provides sup-
port for a variety of use-cases such as real-time data aggregation (chapter 9).

1.4 – Objectives 11

Define a series of design principles for converged storage for HPC and Big Data. We
show that despite important divergences, storage-based convergence between HPC
and Big Data is not only possible, but also leads to substantial performance improve-
ments over the state-of-the-art (chapter 10).

12 Chapter 1 – Introduction

13

Part I

Context: Stream Processing in the
Clouds

15

Chapter 2
Big Data Processing: Batch-based

Analytics of Historical Data

Contents
2.1 Batch processing with MapReduce: the execution model for Big Data . . . 16

2.1.1 MapReduce extensions . 17

2.2 Big Data processing frameworks . 18

2.2.1 From Hadoop to Yarn . 19

2.2.2 Workflow management systems . 20

2.3 Big Data management . 21

2.3.1 Data storage . 21

2.3.2 Data transfer . 26

2.4 Discussion: challenges . 27

DATA IS THE NEW NATURAL RESOURCE. Its processing is nowadays transformative in
all aspects of our world. However, unlike natural resources, whose value is pro-
portional to the scarcity, the value of data grows larger the more of it is available.

This trend is facilitated by Big Data Analytics (BDA): more data means more opportunities to
discover new correlations and patterns, which lead to valuable insight.

Data science is thus emerging as the fourth paradigm of science [107]. It allows researchers
to extract insights from (past) traces of both scientific instruments and computational sim-
ulations. This paradigm shift happened naturally. Centuries ago, science was mainly done
through empirical observations (first paradigm of science). The next step was to synthesize
those observations about the world in theoretical models (second paradigm). When those
models became too complex to be solved and interpreted analytically and when technology

16 Chapter 2 – Big Data Processing: Batch-based Analytics of Historical Data

allowed it, science moved towards a third, computational paradigm. It used computers to an-
alyze and simulate the theoretical models. However, this computation-driven science led to
a continuous growth of the scientific data sets. The techniques and technologies used for
"searching" for discoveries in these large data sets "distinguish this data-intensive science from
computational science as a new, fourth paradigm for scientific exploration" [59].

{{ Data-generation capabilities in most sci-
ence domains are growing more rapidly
than compute capabilities, causing these
domains to become data-intensive. ||

Broadly speaking, data-generation capa-
bilities in most science domains are grow-
ing more rapidly than compute capabili-
ties, causing these domains to become data-
intensive. Hence, a distinctive feature of
BDA compared to High Performance Computing (HPC), which mostly focuses on large com-
putational loads, is that it targets applications that handle very large and complex data sets
(i.e., typically of the order of multiple terabytes or exabytes in size). BDA applications are
thus very demanding in terms of storage while HPC is usually thought more in terms of
sheer computational needs.

Cloud platforms are on par with these high needs. They democratize science, by fa-
cilitating the access to large-scale resources (e.g., storage, compute, network) by means of
virtualization [53, 66, 111]. BDA on clouds (leveraging machine learning for instance) have
already yielded new insights into health risks and the spread of disease via analysis of social
networks, web-search queries, and hospital data [98]. It is also key to event identification
and correlation in domains as diverse as high-energy physics and molecular biology [29].

As with successive generations of other large-scale scientific instruments, each new gen-
eration of advanced computing brings new capabilities, along with technical design chal-
lenges and economic trade-offs. BDA make no exception. The rising cost of ever-larger
computing systems and the new challenges at massive scale are raising questions about the
BDA systems design. This chapter examines these technical challenges, our proposed solu-
tions to some of them (e.g., Map-IterativeReduce [19], GeoMapReduce [1], TomusBlobs [23]),
as well as the global collaboration and competition for leadership in BDA. We begin with a
primer on MapReduce, the de facto standard for BDA, and then follow the explosion of new
programming models targeting diverse computing workloads.

2.1 Batch processing with MapReduce: the execution model for
Big Data

At first, these programming models were relatively specialized, with new models developed
for new workloads. MapReduce [78] was introduced by Google to support batch processing.
It addressed the volume challenge by distributing partitions of input data across the cluster.
This allowed to deploy and scale a simple data-crawling, shared-nothing strategy, process-
ing locally, on each node, the data partitions. The solution was less powerful than the index
mechanisms from databases [155] in terms of data access and processing time, but became a
default BDA tool due to its massive scalability capabilities.

The MapReduce model is inspired from functional languages, as shown in Figure 2.1. It
consists of 2 functions: map and reduce, executed in 2 successive phases by worker processes.
The map function, written by the user, is applied in parallel, on all the partitions of the input

2.1 – Batch processing with MapReduce: the execution model for Big Data 17

Partition 1

Partition 2

Partition 3

Partition N

...

Input
Data Set

worker

worker

worker

worker

worker

Result 1

Result 2

Intermediate
Data

Figure 2.1 – The classical MapReduce scheme, as introduced in [78].

data and generates a set of key/value pairs. Example of Map functionality are: counting
items occurrences, ranking records, searching for patterns etc. The reduce function, also
provided by the user, merges all values associated with the same key to generate the final
output. The assignment of the keys to be processed by each reducer is done based on a
hashing function. Typical examples of Reduce operations are: sum, sort, filter, merge, etc.

The large success of this model is due to the fact that it effectively facilitates the execution
of many parallel tasks by elastically scaling the computation on virtualized commodity hard-
ware. Users only need to provide the 2 functions, which are then scaled with the number
of resources and applied on the partitioned input set. Additionally, since the computation is
performed on independent subsets, the model has a natural tolerance to failures.

2.1.1 MapReduce extensions

MapReduce enforces a clear hierarchy: the map and the reduce functions define the seman-
tics of the processing. The simplicity of this model limits the workloads on which it can
be applied. We developed several optimisations with the goal of extending this scheme to
accommodate new types of processing, while preserving its initial design properties.

Map-IterativeReduce [19]. Reduce-intensive workloads that compute a unique output
(e.g., min, max, select etc.) are not well served by MapReduce. The model lacks support for
full reduction of the results, as each reducer provides a partial output. Map-IterativeReduce
was our proposal to add support for iterative reduce processing to the initial MapReduce
model. This extension enables to schedule efficiently the reduce jobs in parallel, based on a
reduction tree, in order to compute a unique final result. Map-IterativeReduce further elim-
inates the synchronization barriers between the Map and the Reduce phases from the initial
model. Instead, the reducers start the computation as soon as some data is available (Figure
2.2). Also, considering that results are accumulated down the reduction tree, there is no need
for any (centralized) entity to control the iteration process, check the termination condition
or collect data from reducers, as in vanilla MapReduce.

GeoMapReduce [1]. MapReduce was designed for single-cluster or single-site processing.
However, BDA on the clouds requires many compute and data resources which are not al-
ways available in a single datacenter. To address this limitation and enable global scaling,

18 Chapter 2 – Big Data Processing: Batch-based Analytics of Historical Data

Figure 2.2 – The Map-IterativeReduce conceptual
model.

Figure 2.3 – GeoMapReduce com-
putation across multiple sites.

we proposed GeoMapReduce, a multi-site hierarchical MapReduce scheme for geographically
distributed computation. Data is partitioned, scattered and processed in parallel across sev-
eral datacenters. Conceptually, GeoMapReduce relies on a layered data access model built
on top of different storage systems in order to support both storage and transfers. The archi-
tecture is presented on Figure 2.3 and consists of two tiers:

• At the bottom level, distinct instances of Map-IterativeReduce are enabled within each
datacenter in order to reduce locally the number of MapReduce outputs and in this
way to minimize the inter-site data exchanges.
• In the top tier, the aggregation of the global result is computed by a new entity, called

MetaReducer. Its role is to implement a final Reduce step to aggregate the results from
all sites as soon as they become available.

Using these extensions, we were able to achieve high scalability for scientific applications
in public clouds, leveraging the processing power of 1000 cores across 3 geographically dis-
tributed datacenters. Performance-wise, we were able to reduce the data management time
by up to 60% compared with state-of-the-art solutions [1].

2.2 Big Data processing frameworks

A rich ecosystem of hardware and software environments has emerged for BDA. The com-
mon feature of these data analytics clusters is that they are typically based on commodity
Ethernet networks and local storage, with cost and capacity as the primary optimization cri-
teria. For instance, at Yahoo! the world’s largest MapReduce cluster [104] uses more than
100,000 CPUs in over 40,000 commodity machines. To go further, industry is now turning to
GPUs, FPGAs and improved network designs to optimize performance.

2.2 – Big Data processing frameworks 19

Figure 2.4 – The Hadoop architecture. The
Job Tracker is the master node. The Task
Trackers are the slave daemons running Map
and Reduce tasks [189].

Figure 2.5 – The Yarn architecture. The
Node Managers are generalized Task Track-
ers, handling any type of application — not
only MapReduce [189].

2.2.1 From Hadoop to Yarn

Hadoop [42] is the most notorious and used implementation of MapReduce. Its core design
principle is bringing the computation to the data. In a Hadoop cluster, each compute node
has its direct attached storage, which has to be large enough to store the data of any assigned
analytics job. One of the nodes in a Hadoop cluster, called the master node, is in charge of
coordinating all other nodes (Figure 2.4). It also maintains a large amount of metadata so
that it understands which data is where on the cluster and what node is the most available.
The master node assigns the analysis of an analytics request to a node within its cluster that
has the appropriate data on its internal storage. When the job is complete, the result is sent
back to the master node and given to the user. As in the original model, the Map and Reduce
phases are separated through a synchronization barrier.

Because of its success, the framework was adopted and used in diverse scenarios beyond
its initial designed goals. For example, high-level frameworks such as Pig [48] or Hive [43],
or full workflow descriptive languages such as Kepler [185], orchestrate complex and het-
erogeneous MapReduce execution plans. This extensive use, as well as a vast number of
research studies, revealed several limitations of the architecture. Examples include the tight
coupling of the processing model with the infrastructure or the scalability and the perfor-
mance bottlenecks due to the centralized scheduling. To address these limitations, a new
service-oriented architecture, called Yarn [183], was proposed.

Yarn splits the multiple responsibilities of the single master between several resource
managers and application masters (Figure 2.5). The former administrate entire clusters while
the latter schedule and coordinate the execution of the work per application. The compute
infrastructure is divided into discrete quotas called containers, which are managed by enti-
ties called node managers. In this way, Yarn provides better resource utilization, higher fault
tolerance and greater scalability.

20 Chapter 2 – Big Data Processing: Batch-based Analytics of Historical Data

In the open source Apache Hadoop stack, several systems like Drill [40] and Oozie [47]
propose some specialized engines for interactive analysis and complex task scheduling, re-
spectively. As the MapReduce model is not general enough, they move away from the
"one-size-fits-all" trend. Instead, they propose some dedicated solutions for very specific
processing needs (e.g., SQL queries, machine learning algorithms, columnar storage, etc.)

2.2.2 Workflow management systems

Unfortunately, most BDA applications cannot be implemented using only one such specific
engine. Instead, they need to combine several different ones. The very nature of Big Data is
that it is diverse and messy. A typical pipeline will need MapReduce-like code for data load-
ing and filtering, SQL-like queries, and iterative machine learning. Specialized engines can
thus create both complexity and inefficiency. Users must stitch together disparate systems,
and some applications simply cannot be executed efficiently in any engine.

Luckily, a large class of BDA applications can be expressed in a more general fashion, by
means of workflows. Workflows are complex directed acyclic graphs (DAGs) that describe
the relationship between individual computational tasks and their input and output data in
a declarative way. Typically, workflows feature many interrelated, loosely-coupled tasks (up
to thousands or even millions) with data in the order of petabytes. Unlike tightly-coupled
HPC applications (e.g., MPI-based) communicating directly via the network, workflow tasks
exchange data through files. This means that the end-to-end performance of such workflows
strongly depends on the data handling of large distributed datasets on limited resources.

Workflow management systems are software systems for setting up, executing, and moni-
toring of workflows. Their broad goals are reducing the workflow execution time and mini-
mizing the resource usage. Several workflow management systems were developed in order
to support efficient deployment of workflows on clouds. We briefly recall the most repre-
sentative ones, form both industry and academia:

Pegasus [82] optimizes the mapping of the workflow tasks on the resources, with the goal
of minimizing the data movements. However, when migrated to the cloud, its perfor-
mance is highly sensitive to the data management solution used. To a large extent, this
determines the scheduling optimizations that can be applied [30].

e-Science Central [83] was designed as a workflow platform accessible via web browsers.
It enables collaborative work, as well as data and computation sharing. Workflow
execution is performed as a sequence of service invocations. The scheduling and the
control of the execution are performed by a centralized coordinator which limits the
scalability and the performance.

Generic Worker [169] was specifically designed by Microsoft Research to run on clouds. It
uses a local infrastructure when available, and scales-out to a public or private cloud
when necessary. By default, Generic Worker relies on the cloud storage to perform all
data management operations such as tasks description or data uploading and sharing.
This choice translates into low I/O performance for data transfers between tasks.

Dryad [110] introduced embedded user-defined functions in general DAG-based work-
flows. It was enriched with a language and an SQL optimizer on top of it. Apache
Tez [52] can be seen as an open-source implementation of the principles in Dryad.

2.3 – Big Data management 21

Figure 2.6 – Storage taxonomy according to the levels of storage abstraction.

2.3 Big Data management

As seen in the previous section, the BDA analytics architectures have been built from the
bottom up to grind through enormous amounts of data with the highest possible perfor-
mance. This is clearly dependent on the efficiency of the underlying data management (i.e.,
storage, buffering, transfer). The data management issue is typically solved by bringing the
computation to the storage nodes rather than the opposite. This principle has driven the design
of the underlying storage and transfer stack, that we briefly survey in this section.

2.3.1 Data storage

Big Data stores are generally classified according to the different levels of storage abstrac-
tions (Figure 2.6). These levels are as follows:

• File-level is the most common form of data abstraction due to its ease of management
via simple APIs. It is typically provided by means of object storage that enable users to
store large binary objects.
• Database mode offers storage in the forms of relational data stores and NoSQL databases.

Relational stores exploiting the SQL standard do not scale easily to serve large appli-
cations but guarantee strong consistency (i.e., ACID properties: atomicity, consistency,
isolation, durability). In contrast, NoSQL provides horizontal scalability by means of
shared nothing, replicating, and partitioning data over many servers for simple oper-
ations. In fact, it preserves BASE (basically available, soft state, eventually consistent)
properties instead of ACID ones to achieve higher performance and scalability. For
these reasons, BDA applications typically use NoSQL.

According to how data is logically organized (i.e., structured or unstructured) and how
it is retrieved (i.e., using keys or queries) these storage abstractions optimize in different
dimensions. Intuitively, as the storage abstraction level increases, the applicability and the
performance reduce. We now discuss the differences between file systems, object storage
and NoSQL databases in order to understand their benefits and limitations for BDA.

22 Chapter 2 – Big Data Processing: Batch-based Analytics of Historical Data

Figure 2.7 – Parallel and distributed file systems [134].

File systems

File-based storage are arguably the de facto standard in the industry. Large-scale applications
use file systems aggregating several nodes, as shown in Figure 2.7. Parallel file systems are
often run on storage architectures that are physically separated from the compute systems.
They are designed for HPC applications and leverage fast networks to optimize for high
concurrency. Distributed file systems run on architectures where the storage is typically co-
located with the compute nodes. They are geared for BDA applications and enforce fault-
tolerance. Key differences between various file systems are in their caching, consistency
semantics, locking policies and support for the POSIX I/O standard, which has defined the
expected API and behavior of local file systems for decades.

Parallel file systems tend to interplay with consistency support according to their tar-
geted workload needs. PVFS [161] does not support POSIX I/O atomicity semantics.
Instead, it guarantees sequential consistency only when concurrent clients access non-
overlapping regions of a file (referred to as non-conflicting writes semantics). On the other
hand, Lustre [164] guarantees consistency in the presence of concurrent conflicting requests,
at a higher cost.

Distributed file systems hide from users the complexity of their distributed nature (i.e.,
data distribution, replication, load balancing, etc.) This transparency is largely due to them
implementing part or all of the POSIX I/O standard. While most distributed file systems
strictly adhere to the POSIX I/O API, the compliance to the associated semantics greatly
varies from system to system. We briefly recall some representative distributed file systems.

HDFS (Hadoop Distributed File System) [63] manages many large files, distributed (with
block replication) across the local storage of the cluster. It is integral part of the Hadoop
stack and was developed to serve as the storage backend for MapReduce compute
platforms. As such, HDFS only offers a subset of the POSIX I/O API: it does not need
random file update semantics. This significantly eases the design of the file system by
eliminating the synchronization required for handling potential conflicting write oper-
ations. Indeed, its design is very simplistic, following a master-workers architecture.

2.3 – Big Data management 23

A centralized control component manages all metadata within the system, and addi-
tionally splits and disseminates the data for storage. However, HDFS cannot sustain
a high throughput for concurrent reads [146]. Also, concurrent writes or appends are
not possible. HDFS can be seen as the BDA analog of Lustre for HPC, albeit optimized
for different hardware and access patterns.

BSFS/BlobSeer [146] is a concurrency-optimized distributed storage system for large bi-
nary objects, which can be used via a file system interface. Data striping and replica-
tion is performed transparently for applications. A version-oriented metadata scheme
for serialization and atomicity enables lock-free access to data, and thereby favors scal-
ability under heavy concurrency. The system is capable of delivering high throughput
performance, but requires meticulous configuration, which is not always straightfor-
ward for application designers.

While file systems exhibit strong benefits for managing and organizing data, these bene-
fits are usually shaded by significant performance and scalability limitations as the data size
grows. These limits are the result of their design:
• POSIX I/O is almost universally agreed to be one of the most significant limitations

standing in the way of I/O performance for large systems. This is due to various
constraints it poses relative to the behavior of the file system when shared by multi-
ple concurrent users. This includes its stateful nature, prescriptive metadata or its often-
unneeded strong consistency when facing concurrent, conflicting writes. While these
features are not problematic by themselves, they imply a substantial performance cost
that the users have to pay no matter their actual requirements. For that reason, several
file systems choose to relax parts of the POSIX I/O standard to offer increased per-
formance for specific use-cases where these features limit performance for no tangible
benefit [161]. Also, various extensions to the POSIX I/O standard have been proposed
in the literature to achieve similar results [35, 119, 184].
• The hierarchical nature, which is at the very root of their design, can be seen as the

most significant limitation with respect to performance. Indeed, when accessing any
piece of data, its associated metadata must also be fetched. In a hierarchical design,
accessing metadata implies fetching multiple layers of metadata. In file systems with
centralized metadata, accessing it tends to become a bottleneck at scale because of
the concentration of requests to a small number of machines. In file systems with
distributed metadata, this bottleneck effect is reduced at the cost of a higher access
latency due to the metadata distribution across the whole system, which only increases
with the size of the system and the hierarchical depth of the files that are accessed.

These factors inherently limit the scalability potential of distributed file systems. They
make them either unsustainable for exascale applications or requiring significant changes to
the very design of these systems. This ultimately negates the very reason they were initially
built for: providing a simple and efficient way for users to manage data.

Object-based storage

Distributed file systems are typically built as thin layers (adding file semantics) atop object
storage. These allow to store binary large objects (blobs). They combine flat namespaces and

24 Chapter 2 – Big Data Processing: Batch-based Analytics of Historical Data

Figure 2.8 – The architecture of TomusBlobs.

small APIs which represent an interesting alternative to the hierarchical nature and POSIX
semantics of the file systems. Hence, more and more BDA applications have started to use
object storage directly, especially when file semantics are not needed.

Typical examples of such blob storage systems include RADOS [188], or hosted services
available on cloud platforms such as Microsoft Azure Blobs [67] or Amazon S3 [38]. They
are optimized for high availability and data durability, under the assumption that data are
frequently read and only seldom updated. Therefore, achieving high throughput or enabling
optimizations for Big Data applications (e.g., by exposing the data layout) are auxiliary goals.
Moreover, there is a clear separation within the data center, between these systems and the
computation infrastructure.

To address these issues for managing data in the clouds, we proposed an architecture for
concurrency-optimized, cloud object storage leveraging virtual disks, called TomusBlobs.

TomusBlobs [23] federates the local disks of the application Virtual Machines (VMs) into a
globally-shared, object-based data store. Hence, applications directly use the local disk
of the VM instance to share input files and save the output files or intermediate data.
In order to balance the load and thus to enable scalability, data is stored in a striped
fashion, i.e. split into small chunks that are evenly distributed and replicated among
the local disks of the storage (Figure 2.8). Read and write access performance under
concurrency is greatly enhanced (up to 5x for writes and up to 3x for reads, compared
to Azure Blobs), as the global I/O workload is evenly distributed among the local
disks. This scheme reduces latency by enabling data locality and has a potential for
high scalability, as a growing number of VMs automatically leads to a larger storage
system. A file system atop TomusBlobs adds the hierarchical semantics need by some
applications and makes the files from the virtual disk of each compute node available
directly to all nodes within the deployment.

NoSQL databases

NoSQL (Not Only SQL) stores [123] were designed to cope with the scale and agility chal-
lenges that face modern applications. They address several issues that the relational model
is not designed to address: large volumes of rapidly changing structured, semi-structured,
and unstructured data; geographically distributed scale-out architecture atop of commodity

2.3 – Big Data management 25

storage instead of expensive, monolithic architecture. According to the data access model
and the stored data types, we distinguish two categories.

Key-value stores. They are the simplest NoSQL databases. At a high level, key-value
stores propose an associative array as the fundamental data model, in which each key is
associated with one and only one value in a collection. This relationship is referred to as a
key-value pair. In each key-value pair the key is represented by an arbitrary string. The value
can be any kind of data like an image or a document. The value is opaque to the key-value
store requiring no upfront data modelling or schema definition. Key-value stores supports
primitive operations and high scalability via keys distribution over servers. While the basic
set of operations is roughly similar across systems, no fixed standard exists that would con-
strain the exact set of features and semantics offered by each system. Consequently, a wide
variety of key-value stores exists, each exhibiting potentially a different set of features and
semantics suited to different ranges of applications (e.g., variable ACID guarantees enable
efficient storage of massive data collections).

Cassandra [121] was designed by Facebook for high scalability on commodity hardware
within or across datacenters. It resembles a relational database as it stores data in tables
with row index capabilities, but has no support for a full relational model. Cassandra
implements customizable consistency levels, by allowing to define the minimum num-
ber of nodes that must acknowledge a read or write operation before the operation can
be considered successful.

Dynamo [80] is the highly available internal storage for the Amazon web services, opti-
mized for writes and for low latencies. It is organized as a distributed hash table across
a ring of virtual nodes, which have a many-to-one mapping with the physical nodes.
Key-value pairs are asynchronously replicated and eventually reconciled based on ver-
sions. Riak [115] implements the principles of Dynamo in an open-source key-value
store, heavily influenced by the CAP theorem.

Azure Tables [96] is a structured key-value store offered by Microsoft as a cloud service. A
table contains entities similar to rows in classical relational databases. Properties of
the entities are used for load balancing across multiple storage nodes and to optimize
consecutive accesses for performance.

The main limitation of key-value stores is the result of their very simple API. Specifically,
modifying a key-value pair is only possible by replacing the key as a whole. In practice,
this limits key-value stores to two usage scenarios: small data pairs or static content. Most
key-value store are indeed designed to handle relatively small data objects, with a typical
size ranging from a few bytes to a few megabytes. This makes key-value stores unfit for a
wide range of use-cases, for instance those who frequently need to update potentially large
output files from event generators.

Document databases. They pair each key with a complex data structure known as a doc-
ument. Documents can contain many different key-value pairs, or key-array pairs, or even
nested documents. This is a shift from an opaque value to a structured value, understand-
able by the storage system. The latter is hence able to use this structure to extract metadata,

26 Chapter 2 – Big Data Processing: Batch-based Analytics of Historical Data

perform optimizations or provide the user with advanced query functionality. For instance,
this enables the organization of items in rows and columns, providing partial indexes with
respect to their scheme.

BigTable [74] was designed by Google to scale to Petabytes of data and thousands of ma-
chines. As for Cassandra, it does not support a full relational model, offering instead
dynamic control over layout and format of tuples and advanced locality management.
It features compression, in-memory operation, and Bloom filters on a per-column ba-
sis. HBase [95] is its open-source implementation, introduced by Yahoo.

MongoDB [75] supports field, range query, and regular expression searches. Fields in a
document can be indexed with primary and secondary indices. MongoDB provides
strong consistency, with tunable consistency for reads.

The main limitation of document databases lies in the very reason they are popular for
web application development: the data structure they expect makes them unfit for han-
dling large, unstructured data. These databases trade versatility for expressiveness to various
extents, which in practice limits their scope of application. For instance, optimizing for a cer-
tain consistency level or availability guarantee for the data, they do not always deliver the
highest performance. Moreover, properties such as data locality are not considered or not
applicable, specially considering that their initial goal is to scale over large (geographically)
distributed infrastructures.

Interestingly, these NoSQL databases can be implemented as thin layers over a simpler,
opaque storage layer. This is for example the case of HBase, which offers a wide column
store over HDFS or Titan [141] which is implemented as a layer above a pluggable backend
such as HBase or Cassandra.

2.3.2 Data transfer

Research on cloud-based BDA has focused so far on optimizing the performance and cost-
effectiveness of the computation and storage. It largely neglected an important aspect: data
transfers. These are needed to upload/download massive datasets to/from the cloud, to
replicate data or to distribute intermediate results between the computing nodes.

The handiest option for transferring data, even across cloud datacenters, is to rely on the
cloud storage service, which is shared by all application nodes. This approach allows to trans-
fer data between arbitrary endpoints by uploading it from the source to the cloud storage
and then downloading it at the destination. It is adopted by several workflow management
systems in order to manage data movements over wide-area networks [117, 143]. However,
this functionality arises only as a "side effect" of the initial storage goal. Therefore achiev-
ing high throughput or any other potential optimization, such as differentiated QoS or cost
effectiveness, is difficult. Trying to fill this utility gap, several alternatives were proposed.

GlobusOnline [91] emerged from the team of Ian Foster. It was for long the de-facto stan-
dard for file transfers over WAN, targeting primary data sharing between different sci-
entific infrastructures. GlobusOnline runs atop GridFTP [36], that was initially devel-
oped for grids. It remains unaware of the environment, therefore its transfer optimiza-
tions are mostly done statically. Several extensions brought to GridFTP allow users to

2.4 – Discussion: challenges 27

enhance transfer performance by tuning some key parameters: threading in [131] or
overlays in [114]. Still, these extensions leave the burden of applying the most appro-
priate settings to scientists, which are often unexperienced users.

StorkCloud [116] is one of the most significant efforts to improve data transfers at scale. It
integrates multi-protocols in order to optimize the end-to-end throughput based on a
set of parameters and policies (e.g., adapting the parallel transfers based on the cluster
link capacity, disk rate and CPU capacity). The communication between StorkCloud
components is done using textual data representation, which can artificially increase
the traffic for large transfers of unstructured data.

Multi-path TCP [158] is a recent standard designed to address the challenge of moving
large volumes of data by enabling parallel data transfers. The idea is to leverage multi-
ple independent routes to simultaneously transfer disjoint chunks of a file to its desti-
nation. The approach can incur additional costs such as higher per-packet latency due
to timeouts under heavy loads and larger receiving buffers. Nevertheless, this remains
an interesting solution for Big Data processing.

These efforts show that the need for efficient tools for transferring data (to/from and
across cloud datacenters) is well understood in the community and stands as an important
issue. Nevertheless, many aspects remain unaddressed, particularly finding solutions that
would provide high-performance for transfers between the running instances of applications
on the cloud.

2.4 Discussion: challenges

Porting BDA to the clouds brings forward many issues in exploiting the benefits of current
and upcoming infrastructures. We recall here the main challenges identified in this chapter.

Basic API of MapReduce. The very simple model of MapReduce comes with the impor-
tant caveat that it forces applications to be expressed in terms of map and reduce functions. How-
ever, most applications do not fit this model and require a more general data orchestration,
independent of any programming model. For instance, iterative algorithms used in graph
analytics and machine learning, which perform several rounds of computation on the same
data, are not well served by the original MapReduce model.

Object storage, the de-facto backend for BDA storage. This chapter has revealed that both
NoSQL databases and distributed file systems can be implemented as thin layers over simpler, opaque
storage layers, like object stores. This is consistent with one key observation that can be made
when examining the limitations of distributed file systems and key-value stores: these lim-
itations are relative to different aspects of the systems. Indeed, distributed file systems are
mostly limited by their hierarchical nature and semantics, that is, the way they manage meta-
data. In contrast, key-value stores limitations derive from the insufficient set of operations
permitted on the data. In this context, object-based storage solutions provide a middle-ground
approach, combining most of the advantages of both distributed file systems and key-value
stores. They leverage the flat namespace and small API that make key-value stores efficient

28 Chapter 2 – Big Data Processing: Batch-based Analytics of Historical Data

and highly-scalable, and the update operations that make distributed file systems adaptable
to a wide range of BDA use-cases.

Lack of data staging and efficient transfers. An important limitation of the original
MapReduce model is the constraint of having all data available before a job can be started.
This limitation can become a serious problem especially when the input data is massive
and needs to be uploaded from an external source, which involves large data transfers over
network links of limited capacity. Under such circumstances, even the best MapReduce im-
plementation cannot stop the overall time-to-solution from growing to unacceptable levels.
Regarding the support for managing data movements for the applications running on the
clouds, things are worse. There is a clear need for developing solutions that would enable
efficient data sharing across compute instances, in order to sustain the scalability required to
accommodate the Big Data processing

29

Chapter 3
The World Beyond Batch: Streaming

Real-Time Fast Data

Contents
3.1 Stream computing . 30

3.1.1 Unbounded streaming vs. bounded batch 30
3.1.2 Windowing . 30
3.1.3 State management . 31
3.1.4 Correctness . 32

3.2 Fast Data processing frameworks . 33
3.2.1 Micro-batching with Apache Spark 33
3.2.2 True streaming with Apache Flink . 34
3.2.3 Performance comparison of Spark and Flink 34
3.2.4 Other frameworks . 36

3.3 Fast Data management . 37
3.3.1 Data ingestion . 38
3.3.2 Data storage . 39

3.4 Discussion: challenges . 40

THE DEVELOPMENT OF THE INTERNET OF THINGS AND SOCIAL NETWORKS increases
the velocity of data generation. These new data sources are often referred as live
sources due to their real-time nature. They produce unbounded, unordered, global-scale

datasets, called streams. Items in a stream are referred to as events or tuples.
Streams require fast processing since they typically serve applications trying to solve

mission-critical problems. Examples include fraud detection, national security, stock market
management and customer service optimization. For instance, PayPal managed to save 710
million dollars in their first year thanks to the fast data processing for fraud detection [132].

30 Chapter 3 – The World Beyond Batch: Streaming Real-Time Fast Data

Monitoring or simulating natural events has the purpose of predicting and minimising dis-
asters (e.g., answering questions like "where will the hurricane strike?"). In all these contexts,
the results of the processing are needed as fast as possible.

Live data sources and streams are increasingly playing a critical role in BDA for two rea-
sons. First, they introduce an online dimension to data processing, improving the reactivity
and "freshness" of the results, which can potentially lead to better insights. Second, process-
ing live data sources can offer a potential solution to deal with the explosion of data sizes, as
the data is filtered and aggregated before it gets a chance to accumulate.

Traditional batch-based BDA cannot cope with this online dimension of the processing.
In order to keep up with the rate of new data, BDA has shifted towards a new paradigm
— stream computing. This is capable to deliver insights and results as soon as possible with
minimal latency and high throughput. An entire family of Stream Processing Engines (SPEs)
was designed and developed to enable this paradigm. In this chapter, we first characterize
stream computing and then survey the state-of-the-art SPEs and stream data management.

3.1 Stream computing

{{ Stream computing applies a series of op-
erations to each element in the stream. ||

Stream computing applies a series of oper-
ations to each element in the stream, typi-
cally in a pipeline fashion. Even if the anal-
ysis can vary in scope across domains, streaming patterns of data processing share several
features, that differentiate them from batch processing. Let us discuss them below.

3.1.1 Unbounded streaming vs. bounded batch

At its basis, a data stream is an infinite set of events or tuples that grows indefinitely in
time [133]. For years, the BDA community blindly associated the processing of unbounded
datasets with streaming engines and the bounded datasets with batch engines. In reality,
things are more subtle, since there is a constant inter-play between the two. Unbounded
streams have been initially processed using repeated runs with batch systems (e.g, using
micro-batches in Apache Spark [191]). At the same time, well-designed streaming systems
are perfectly capable of processing bounded data (e.g., Apache Flink [70]).

One trend that emerges in this context is to avoid transforming unbounded streams into
finite datasets that eventually become complete. Instead accept that we will never know if or
when we have seen all of our data, only that new data will arrive. This principle is the very essence
of stream computing and the main challenge making this paradigm non-trivial. The way to
turn it tractable is via principled abstractions that allow to choose the appropriate tradeoffs
along the axes of interest: correctness, latency, and cost [33].

3.1.2 Windowing

One such abstraction is windowing — dividing an infinite data stream into finite slices called
windows [126]. The division is done using event timestamps or other attributes. Windows
allow to process events as a group (e.g., aggregations, outer joins, time-bounded operations).

3.1 – Stream computing 31

Figure 3.1 – Windows patterns for several streams (one per key). Session are unaligned:
Window 2 applies to Key 1 only [33].

According to how the elements of a stream are divided into windows, the latter fall into
3 main categories, illustrated in Figure 3.1:

Fixed (tumbling) windows. Elements are assigned to fixed length, non-overlapping win-
dows of a specified size (e.g., hourly windows or daily windows). They are generally
aligned, i.e., every window applies across all of the data for the corresponding period of
time. Any element belongs to only one window.

Sliding windows. Elements are assigned to overlapping windows of fixed size with the size
of the overlap defined by the slide period (e.g., hourly windows starting every minute).
Sliding windows are also typically aligned. Even though the diagram is drawn to give
a sense of sliding motion, all five windows would be applied to all three keys in the
diagram. An element can belong to more than one sliding window. Fixed windows
are really a special case of sliding windows where size equals period.

Session windows. They are defined by features of the data themselves (e.g., per key) and
window boundaries are adjusting to incoming data. By definition, session windows
are unaligned, i.e., applied across only specific subsets of the data for a given timeout.

Let us note that windowing is not always necessary (i.e., for filtering, mapping, inner
joins, etc. one does not need to operate on finite chunks). Yet when it is needed, it has a
significant impact on performance as we will see in the following section.

3.1.3 State management

Any application that processes a stream of events and does not just perform trivial record-
at-a-time transformations needs to be stateful, i.e., have the ability to store and access input and
intermediate data for fault tolerance purposes. Not surprisingly, state and windowing are
closely linked. The functions that are applied over the window contents are quite generic
and range from mathematical functions (e.g., min, max, summations, aggregations, metrics

32 Chapter 3 – The World Beyond Batch: Streaming Real-Time Fast Data

over partitions) to extracting data features for machine learning (e.g., statistics, histograms).
They all require buffering the data (i.e., the state) over some periods of time. State is usually
stored as a list structure in heap memory or off-heap in an embedded key-value store. The
implementation can also be hybrid, with references (hash keys) of events stored in heap
memory and actual values stored in an external key-value store.

The state management becomes problematic in the often case of operators that need to
work in parallel on the same data. For instance, computing the top-K and bottom-K entries
observed during the last hour in a stream of integers. Current state-of-art approaches create
data copies that enable each operator to work in isolation. This leads to increased mem-
ory utilization. For instance, in several gaming specific scenarios [69] terabytes of state are
generated by billions of events processed in parallel. Thus, the problem of minimizing mem-
ory utilization without significant impact on the performance (typically measured as result
latency) is crucial.

Currently, SPEs that support state through an external storage system (e.g., Akka
Streams [34]) are generally slower than SPEs that internally embed and manage state (e.g.,
Apache Flink). This is due to the fact that the addition of another database system for state
management introduces significant overhead, since most operations in stream processing in-
volve reading or writing persistent data on a regular basis. Clearly, when designing efficient
storage for SPEs, state has to be taken into account.

3.1.4 Correctness

Correctness boils down to remaining consistent in light of machine failures. There are three
correctness semantics in stream processing:

At-most-once: an event is processed zero or one time, meaning it can be lost. This is accept-
able in many cases, especially in situations where the occasional lose of a message does
not leave the system in an inconsistent state.

At-least-once: potentially multiple attempts are made at processing an event, such that at
least one succeeds. This means that events may be duplicated but not lost.

Exactly-once: each incoming event affects the final results exactly once. Even in case of a
machine or software failure, there is no duplicate data and no data that goes unpro-
cessed.

At-most-one semantics is the cheapest — highest performance, least implementation
overhead — because it can be done in a fire-and-forget fashion without keeping state. At-
least-once correctness requires retries to counter transport losses, which means keeping
state at the sending end and having an acknowledgement mechanism at the receiving end.
Exactly-once semantics is most expensive because in addition to the second it requires state
to be kept at the receiving end in order to filter out duplicate deliveries. This is the most
desirable guarantee.

3.2 – Fast Data processing frameworks 33

3.2 Fast Data processing frameworks

SPEs were specifically designed to operate on continuous, unbounded data streams. All
engines implement a driver program that describes the high-level control flow of the appli-
cation by means of a directed acyclic graph. This relies on two main abstractions: (i) parallel
operations on the data (the nodes) and (ii) structures to describe the data flow (the directed
edges).

The main differentiator between these SPEs arises from the observation that one can
never fully optimize along all dimensions of correctness, latency, and cost. As a result, sev-
eral systems emerged, reconciling in different ways the tensions between these seemingly
competing axes. Among them, Apache Spark and Flink are the most notable examples.

3.2.1 Micro-batching with Apache Spark

Spark [191] is the first "post-MapReduce" framework for BDA, originally developed at the
University of California, Berkeley’s AMPLab, by the team of Ion Stoica. Central to Spark
is the principle of treating unbounded computation as micro-batches. The idea is very simple:
a continuous computation is broken down in a series of small, atomic batch jobs, called
micro-batches. The goal is to overcome the complexity and overhead of record-level synchro-
nization imposed by continuous operators. Each micro-batch may either succeed or fail. At
a failure, the latest micro-batch can be simply recomputed.

This model generated a lot of debates in the community on the true streaming nature of
the framework.

Critics argue that batching is artificially grouping records into static datasets (e.g., hourly,
daily, or monthly chunks) that are processed in a time-agnostic fashion. Detecting
missing data or data arriving out of time order becomes impossible or at best expen-
sive. Also, the batch length restricts window-based analytics.

Supporters of the model show that in practice this is not problem, because the batches are
as short as 0.5 seconds. In most applications, the latency to get the data in is much
higher (e.g., sensors sending in data every 10 seconds) or the targeted analysis is over
a longer window (e.g., track events over the past 10 minutes).

The true benefit of Spark’s micro-batch model is full fault-tolerance and "exactly-once"
processing for the entire computation, meaning it can recover all state and results even if
a node crashes. This is not the case for other "true streaming" engines like Storm, which
require application developers to worry about missing data or to treat the streaming results
as potentially incorrect.

Spark introduces a new abstraction, Resilient Distributed Datasets (RDDs), which repre-
sent the input data partitions that are distributed across the cluster. They are read-only and
can be rebuilt in case of failures by partial recomputation from ancestor RDDs. Two types
of RDD operations are transformations and actions. Transformation produce new RDDs
from the existing ones (e.g., map, filter) while actions return final results of RDD computa-
tions (e.g., reduce, collect) or persist data (e.g., save). Transformations are computed lazily,
meaning that Spark adds them to a DAG of computation and only when the driver program

34 Chapter 3 – The World Beyond Batch: Streaming Real-Time Fast Data

requests some data (i.e., an action is executed), does this DAG actually gets executed. This
enables Spark to make many optimization decisions by looking at the DAG in entirety.

As Hadoop, Spark relies on a distributed storage system (e.g., HDFS) to store the input
and output data of the jobs submitted by users. However, unlike Hadoop, Spark allows
RDDs to be cached in the memory and therefore intermediate data between different itera-
tions of a job can be reused efficiently. This reduces the number of costly disk I/O accesses
to the distributed storage system. This memory-resident feature of Spark is particularly es-
sential for some Big Data applications such as iterative machine learning algorithms which
intensively reuse the results across multiple iterations.

3.2.2 True streaming with Apache Flink

Flink [70] is the European counterpart of Spark, originally developed at TU Berlin, and ad-
vocated as the first true streaming processing engine (i.e., treating streams as streams, not
as batches). Every incoming record is processed as soon as it arrives, without waiting for
others. There are some continuous running operators which run for ever and every record
passes through them to get processed.

The state is managed consistently with "exactly-once" guarantees. This boils down to de-
termining what state the streaming computation currently is in, drawing a consistent snap-
shot of that state, storing it in durable storage, and doing this frequently. Flink’s snapshot
algorithm is based on a technique introduced in 1985 by Chandy and Lamport. Similar to
the micro-batching approach, all computations between two checkpoints either succeed or
fail atomically as a whole. However, one great feature of Chandy Lamport is that one never
has to press the "pause" button in stream processing to schedule the next micro batch (i.e.,
data processing keeps going, while checkpoints happen in the background).

Flink executes iterations as cyclic data flows. This means that a data flow program (and
all its operators) is scheduled just once and the data is fed back from the tail of an iteration to
its head. Basically, data is flowing in cycles around the operators within an iteration. Since
operators are just scheduled once, they can maintain a state over all iterations. There are
two types of iterations: (i) bulk iterations, which are conceptually similar to loop unrolling,
and (ii) delta iterations, a special case of incremental iterations in which the solution set is
modified by the step function instead of a full recomputation. In contrast, Spark implements
iterations as regular for-loops and executes them by loop unrolling. This means that for each
iteration a new set of tasks/operators is scheduled and executed. Each iteration operates on
the result of the previous iteration which is held in memory.

3.2.3 Performance comparison of Spark and Flink

We ran a series of experiments [5] to investigate the impact of these different architectural choices
and the parameter configurations on the perceived end-to-end performance. A bit surprisingly, at
the time of this evaluation, most of the studies assessing the performance of Spark or Flink
benchmarked them against Hadoop, as a baseline. This was a rather unfair comparison
considering the fundamentally different design principles (i.e., in-memory vs. on-disk pro-
cessing). The following evaluation aimed to bring some justice in this respect, by directly
comparing for the first time the performance of Spark and Flink.

3.2 – Fast Data processing frameworks 35

 0
 50

 100
 150
 200
 250

8 14 20 27

T
im

e
(s

e
c
)

Nodes

Spark
Flink

Figure 3.2 – Connected Components - Small
Graph (increasing cluster size).

 0

 100

 200

 300

 400

27 34 55

T
im

e
(s

e
c
)

Nodes

Spark
Flink

Figure 3.3 – Connected Components -
Medium Graph (increasing cluster size).

We devised a methodology for performance analysis by means of correlations between the
operators execution plan and the resource utilisation. We used this methodology to study the
performance (i.e., end-to-end execution time) of several representative benchmarks (word
count, grep, terasort, page rank, k-means, connected components) on up to 100 nodes. For
the sake of brevity, we recall here just a summary of the insights. We illustrate them with the
performance figures of the connected components benchmark (Figures 3.2, 3.3 and 3.4).

Our key finding is that there is not a single framework best suited for all data types, sizes and
job patterns. Spark is about 1.7x faster than Flink for large graph processing while the latter
outperforms Spark up to 1.5x for batch and small graph workloads using sensitively less re-
sources and being less tedious to configure. There are significant differences in configuring
Flink and Spark, in terms of ease of tuning and the control that is granted over the frame-
work and the underlying resources. We have identified a set of 4 most important parameters
having a major influence on the overall execution time, scalability and resource consump-
tion. They manage the task parallelism, the network behaviour during the shuffle phase, the memory
management and the data serialization.

Memory management plays a crucial role in the execution of any workload, particularly
for huge datasets. We noticed that, as opposed to Spark, Flink does not accumulate lots of
objects on the heap but stores them in a dedicated memory region, to avoid overallocation
and the garbage collection issues. All operators are implemented in such a way that they
can cope with very little memory and can spill to disk. Although Spark can serialize data
to disk, it requires that (significant) parts of the data to be on the JVM heap for several
operations. If the size of the heap is not sufficient, the job dies. Spark has started to catch up
on these memory issues with its Tungsten [157] project. It uses explicit memory management
to eliminate the overhead of the JVM object model and garbage collection.

The pipelined execution brings important benefits to Flink, compared to the staged one
in Spark. Especially for the batch workloads, reordering the operators enables more effi-
cient resource usage and drastically reduces the execution time. There are several issues
related to the pipeline fault tolerance, but Flink is currently working in this direction [89].
For more complex batch workflows (e.g., with multiple filter layers applied on the same
dataset), Spark can take more advantage of its persistence control over the RDDs (disk or
memory) and further reduce the execution times.

Optimizations are automatically built-in Flink. Spark batch and iterative jobs have to be
manually optimized and adapted to specific datasets through fine grain control of partition-
ing and caching. For SQL jobs however, SparkSQL [50] uses an optimizer that supports both
rule- and cost-based optimizations.

36 Chapter 3 – The World Beyond Batch: Streaming Real-Time Fast Data

Figure 3.4 – Connected Components resource usage of Flink and Spark for 27 nodes, 23
iterations, Medium Graph.

Parameter configuration proves tedious in Spark, with various mandatory settings re-
lated to the management of the RDDs (e.g., partitioning, persistence). Flink requires less
configuration for the memory thresholds, parallelism and network buffers, and none for its
serialization (as it handles its own type extraction and data representation). For workloads
consisting of one stage to prepare the graph (load edges) and another one to execute a num-
ber of iterations, an optimal performance can be obtained by configuring the parallelism
setting of the operators separately for each stage. In this case, Flink’s delta operator can
drastically improve performance over Spark.

Contrary to our expectations, we find that Flink performs better for each analyzed work-
load, except for the large graphs. We emphasize that we do not claim that Flink is faster than
Spark. Instead we show that for a number of reasonable workloads it is possible to achieve
comparable or better performance without the pain of tuning RDDs in order to control the
partitioning or persistence. However, we argue that general data analytics systems should
provide also the flexibility of a shared memory abstraction like RDDs, offering fine-grained
control over the data partitioning and persistence of intermediate data.

3.2.4 Other frameworks

Alternative approaches for stream processing tend to trade different performance dimen-
sions for the sake of some application specific optimisations (i.e., enabling horizontal scala-
bility with weaker state consistency guarantees). We discuss below the most notable exam-
ples and list in Table 3.1 a summary of their features.

3.3 – Fast Data management 37

Storm Spark Dataflow Flink
Guarantee At least once Exactly once Exactly once Exactly once

Latency Very Low High Low (delay of
transaction) Very Low

Throughput Low High

Medium to
High (Depends
on throughput
of distributed
transactional
store)

High

Computation
model Streaming Micro-batch Streaming Streaming

Overhead of fault
tolerance High Low

Depends on
throughput
of distributed
transactional
store

Low

Flow control Problematic Problematic Natural Natural
Separation of
application logic
from fault toler-
ance

Partially (time-
outs matter)

No (micro
batch size af-
fects semantics)

Yes Yes

Table 3.1 – Overview of Fasta Data processing engines [182].

Storm [51] from Twitter was perhaps the first widely used large-scale stream processing
framework in the open source world. The system leverages the "at-least-once" or "at-
most-once" processing semantic guarantees. It uses a mechanism of upstream backup
and record acknowledgements to guarantee that messages are re-processed after a fail-
ure. This approach does not guarantee state consistency, any mutable state handling
is delegated to the user. This may be acceptable for some applications, but is not for
many others. Also, Storm faces low throughput and problems with flow control, as the
acknowledgment mechanism often falsely classifies failures under backpressure (i.e.,
accumulation of data behind a buffer during slow processing).

Dataflow [33] from Google implements "exactly-once" low latency stream processing and
"out-of-order" processing, being actually very influential to the evolution of Flink. To
do so, Dataflow atomically logs record deliveries together with updates to the state.
Upon failure, state and record deliveries are repeated from the log. Thus, it supports
the unaligned, event-time-ordered windows modern applications require. Dataflow
also abstracts away the distinction of batch vs. micro-batch vs. streaming, allowing
pipeline builders a more fluid choice between them.

3.3 Fast Data management

In order to take advantage of the push-based nature of streaming, SPEs need dedicated so-
lutions for stream transport and storage. In this context, a typical state-of-art online BDA
stack is completed with two additional layers on top of the processing one:

38 Chapter 3 – The World Beyond Batch: Streaming Real-Time Fast Data

Ingestion: this layer serves to acquire, buffer and optionally pre-process data streams (e.g.,
filter) before they are consumed by the analytics application. The ingestion layer has
limited support for guaranteeing persistence. It buffers streams only temporarily (e.g.,
hours, days) and enables limited access semantics to them (e.g., it assumes a producer-
consumer streaming pattern that is not optimized for random access).

Storage: this layer is responsible for persistent storage of data (i.e., objects or files). This
typically involves either the archival of the buffered data streams from the ingestion
layer or the storage of the intermediate results of stream analytics, both of which are
crucial to enable fault tolerance or deeper, batch-oriented analytics that complement
the online analytics.

3.3.1 Data ingestion

Ingestion systems collect data from distributed sources, queue it, order it, optionally clean it
and route it to the processing sites as efficiently and correctly as possible. While time-series
order is naturally maintained with respect to each data source, global ordering can be much
trickier in the presence of thousands of streams.

This is typically achieved via publish-subscribe messaging frameworks that leverage bro-
kering solutions to decouple data sources from applications.

Apache Kafka [44] makes stream data available to multiple consumers through a publish/-
subscribe functionality. It is the de-facto standard for ingestion in pipelines with
streaming engines like Spark or Flink. A Kafka cluster comprises a set of broker nodes
that store streams of records in categories called topics. Each topic (stream) can be
split into multiple partitions, which enable parallel access. However, the static number
of partitions per stream (similar to the static number of mappers in Hadoop) and the
fact that each consumer is associated with one partition leads to overprovisioning [6]. This
prevents elasticity and scalability. Moreover, there is no support to search a record by its
key or other attributes, only by its offset, meaning this logic has to be pushed into the
application.

Apache Pulsar [49] is a publish/subscribe messaging system with a two-layer architecture
composed of a stateless serving layer and a stateful persistence layer. Reads and writes
cannot scale independently (first layer is shared by both readers and writers). Pulsar
unifies the queue and topic models, providing exclusive, shared and failover subscrip-
tions models to its clients.

Pravega [156] partitions a stream in a fixed number of partitions called segments with a
single layer of brokers providing access to data. It provides support for auto-scaling
the number of segments (partitions) in a stream and based on monitoring input load
(size or number of events) it can merge two segments or create new ones. Producers
can only partition a stream by a record’s key.

These systems do not offer support for fine-grained record access and employ a static
partitioning model with no support for data locality.

3.3 – Fast Data management 39

3.3.2 Data storage

Both data ingestion and processing layers need to maintain local storage for two main pur-
poses:

(i) temporary storage for staging of new data and handling intermediate results. For
example, a large number of streaming time-series from distributed sources may need
to be buffered by the ingestion phase to ensure their correct temporal ordering and
alignment.

(ii) long-term storage for persistent data. For instance, datasets that would be later used
for further batch processing.

State-of-the-art stream storage systems typically leverage log-based storage and databases
or a hybrid combination of these.

Redis [163] is an in-memory store that is used as a database, cache and message broker.
Redis supports many data structures such as strings, lists, hashes, sets, sorted sets,
bitmaps and geospatial indexes. Redis implements the pub-sub messaging paradigm
and groups messages into channels with subscribers expressing interest into one or
more channels. Redis implements persistence by taking snapshots of data on disk, but
it does not offer strong consistency.

RAMCloud[151] is an in-memory key-value store that aims for low-latency reads and
writes, by leveraging high performance Infiniband-like networks. Durability and
availability are guaranteed by replicating data to remote disks on servers relying on
batteries. Among its features we can name fast crash recovery, efficient memory usage
and strong consistency. Recently it was enhanced with multiple secondary indexes,
achieving high availability by distributing indexes independently from their objects
(independent partitioning).

DistributedLog [103] is a strictly ordered, geo-replicated log service, designed with a two-
layer architecture that allows reads and writes to be scaled independently. Distributed-
Log is used for building different messaging systems (e.g., Pulsar). A topic is split into
a fixed number of partitions, and each partition is backed by a log. A read proxy mech-
anism optimizes the reader path by caching log records for the case multiple consumer
groups are reading from the same stream.

Druid [190] is an open-source, distributed, columnar-oriented data store for real-time ex-
ploratory analytics. Druid’s data model is based on data items with timestamps (e.g.,
network event logs). As such, Druid requires a timestamp column in order to partition
data and supports low latency queries on particular ranges of time. Druid uses special-
ized nodes: real-time nodes (that maintain an in-memory index buffer for all incoming
events, regularly persisted to disk) and historical nodes (that handle immutable blocks
of data which are created by real-time nodes).

Apache Kudu [45] is a columnar data store with fast scans and low-latency random up-
dates. It is a good alternative to systems like Avro/Parquet over HDFS that cannot
handle mutable datasets, or to semi-structured stores like HBase or Cassandra, that
are not efficient for sequential reads needed in machine learning or SQL.

40 Chapter 3 – The World Beyond Batch: Streaming Real-Time Fast Data

S-Store [136] is a new streaming database system built explicitly to handle shared, mutable
state. Unlike traditional streaming systems, S-Store models the processing graphs as
a series of transactions, each of which ensure a consistent view of the modified state
upon commit. It provides ACID transactions and "exactly-once" processing.

Redis and RAMCloud primarly optimize for low-latency fine-grained record access, with
limited support for high throughput. Also, Redis does not offer strong consistency, which is
often required for stream processing. Druid and Kudu offer specialized support for query-
ing streams, but rely on static stream partitioning and do not offer support for objects (i.e.,
bounded streams). In particular, Druid’s choice to differentiate real-time and historical nodes
favors proliferation of data copies.

3.4 Discussion: challenges

The future of data processing is Fast (unbounded) Data. Big (bounded) Data will always
have an important role especially for retrospective analysis, yet it is semantically subsumed
by its unbounded counterpart. Eventually, processing engines will be able to analyse both
seamlessly and extract insights in a timely fashion while avoiding excessive data accumu-
lation by means of states. The models and systems that exist today serve as an excellent
foundation in this direction. At the same time, several axes remain problematic.

Storage and ingestion separation. Current streaming architectures are designed with dis-
tinct components for ingestion and storage of stream data. Unfortunately, this separation
prevents data locality and, worse, can become an overhead especially when data needs to be
archived for later analysis. In such cases, stream data has to be written twice to disk and may
pass twice over high latency networks: once persisted by the ingestion system and once by
the processing engine. Also, the lack of coordination between these two layers can lead to I/O
interference. The ingestion layer and the storage layer compete for the same I/O resources,
when collecting data streams and writing archival data simultaneously.

Increased memory utilization. In heavily concurrent scenarios, SPEs favor operators
working in isolation by creating data copies, at the expense of increased memory utiliza-
tion. Given the scarcity of memory due to increasing application complexity and decreasing
memory per core (a trend of modern multi-core architectures), the problem of optimizing
memory utilization for stream processing becomes critical. One idea would be to study the
feasibility of deduplicating the shared data across the operator states.

Fault tolerance at scale. As a general observation, SPEs that provide scalability and fault-
tolerance fall short on expressiveness or correctness vectors. Many lack the ability to pro-
vide "exactly-once" semantics (e.g., Storm, Samza, Pulsar). Others simply lack the temporal
primitives necessary for windowing, or provide windowing semantics that are limited to
tuple-based windows (e.g., Spark).

41

Chapter 4
The Lambda Architecture: Unified

Stream and Batch Processing

Contents
4.1 Unified processing model . 42

4.1.1 The case for batch-processing . 43

4.2 Limitations of the Lambda architecture . 43

4.2.1 High complexity of two separate computing paths 43

4.2.2 Lack of support for global transactions 44

4.3 Research agenda . 44

STREAM AND BATCH PROCESSING ARE TWO SEPARATE PARADIGMS. They are pro-
grammed using different models and APIs, executed by different systems and used
by different applications. Batch processing is typically used for analyzing huge

logs while stream processing enables monitoring and content delivery. The data that
accumulates for batch processing from different sources is denoted as historical (past) data or
data at rest. At the same time, an up-to-date vision of the actual status of those sources is the
real-time (present) data or data in motion, collected for stream processing.

This separation that was historically perpetuated brings partial and isolated insights,
that are not correlated. For instance, analyzing with stream processing real-time data from
a temperature sensor one might notice (too late) a threshold exceeded. This could have
been easily anticipated using batch processing on the recent history data from that sensor.
One alternative is to leverage past (historical) data to interpret present (real-time) data in order to
better and faster understand the status of the data source (i.e., a monitored system) and to
eventually predict its future evolution.

42 Chapter 4 – The Lambda Architecture: Unified Stream and Batch Processing

Figure 4.1 – The unified batch and stream computing paths in the Lambda architecture.

{{ The Lambda architecture is a recent
paradigm that enables this metaphor by
combining batch and stream processing . ||

The Lambda architecture is a recent
paradigm that enables this metaphor by
combining batch and stream processing to
implement multiple paths of computa-
tions [135]. A streaming fast path is used for timely, approximate results. Batch processing
is used to complement this online dimension with a machine/deep learning dimension and
gain more insights based on historical data (e.g., discover new correlations and patterns).
Ultimately, this approach enables the fast streaming path to detect what is happening with a
monitored object, while the batching path helps to understand why this is happening.

4.1 Unified processing model

The model proposed by the Lambda architectures attempts to balance latency, throughput,
and fault-tolerance of the two worlds in order to obtain new views of the data. Essentially,
the architecture relies on two computing layers, as depicted in Figure 4.1.

The stream (speed) layer deals with Fast (recent) data only. It uses real-time stream pro-
cessing to provide views of online data and timely results. These may be approximate
since they are computed on subsets of the whole data (i.e., the sensors from a sub-
region). Its secondary role is to compensate for the high latency of the adjacent batch
layer.

The batch (slow) layer manages the Big (historical) data, typically an immutable, append-
only set of raw data. It computes comprehensive, accurate but late results. Naturally,
batch processes occur on some interval and are long-lived. The scope of data is any-
where from hours to years. The goal of this layer is to complement the real-time re-
sults with some data-driven analytics that allow to understand the system’s behaviour
and its rationale from past data, using machine learning/deep learning techniques. In
some deployments, the batch layer is supported by a serving layer, which indexes batch
views so that they can be queried in a low-latency, ad-hoc way.

With this model, data analytics may get a complete picture by retrieving data from both

4.2 – Limitations of the Lambda architecture 43

historical and real-time views - the best of both worlds. As time goes on, real-time data are
moved to the historical dataset. This slow path is also useful to replay the same data and
produce new views when analytics are updated. On long term, the batch layer will only be
used for off-line back-end processing, mainly dealing with archival and further processing
that is not time-critical and fault tolerance.

Speaking of fault tolerance, such architectures require support for persistence in order to
ensure correctness and consistency. In general, one (or more) stream store(s) is (are) used to
capture a picture of the targeted system that is as accurate as possible. If correctness criteria
are not met, the contents of the analytics system can drift arbitrarily far from the true state
of the targeted system.

Currently, both Flink and Spark can implement Lambda architectures seamlessly. In
Spark, the unified API for batch and streaming (using the mini-batch model) allows to easily
translate batch jobs to streaming jobs or to join streaming data with historical data from
batch. In Flink, stream processing is the unifying model for real-time and batch analysis
both in the programming model and in the execution engine. Basically, there is no distinction
between processing the latest events in real-time, continuously aggregating data periodically
in large windows, or processing terabytes of historical data.

4.1.1 The case for batch-processing

With the advent of Lambda architectures, many rushed to call the end of the age of offline
only Big Data analytics. Still, the interplay between offline and online analytics put into light
by these very architecture proves there is, and will be, a need for dedicated batch processing
(dealing with static data sets).

Complex queries over static data are still a good match for a batch processing abstraction.
Furthermore, batch processing is still needed both for legacy implementations of streaming
use cases, and for analysis applications where no efficient algorithms are yet known to per-
form this kind of processing on streaming data. Batch programs can be seen as special cases
of streaming programs, where the stream is finite, and the order and time of records does
not matter (all records implicitly belong to one all-encompassing window).

Flink, for instance, supports batch use cases with competitive ease and performance
through a specialized API. It leverages static data sets, specialized data structures and al-
gorithms for the batch versions of operators like join or grouping, and dedicated scheduling
strategies.

4.2 Limitations of the Lambda architecture

Lambda architecture systems can achieve many of the desired requirements for Fast Data
processing (i.e., correctness, low-latency), but suffer from several limitations that we sum up
in this section.

4.2.1 High complexity of two separate computing paths

The biggest detraction to this architecture has been the need to maintain two distinct, com-
plex systems for the batch and speed layers. The model fails on the simplicity axis on account

44 Chapter 4 – The Lambda Architecture: Unified Stream and Batch Processing

of connecting and orchestrating several systems, and implementing processing logic twice.

Luckily with Spark and Flink one can abstract the underlying batch and streaming sys-
tems behind a single interface (as seen in the previous section), although the operational
burden still exists. Even so, at infrastructure level, one of the main challenges is to integrate
the different kinds of data (past and present), considering the differences in velocity, volume
and format as well as the heterogeneity.

Separate storage stacks for stream and batch. Although a single interface may be used
for processing purposes, currently, in the Lambda architecture, storage layers are still distinct
for stream and batch. This design has several drawbacks: data is often written or sent twice
to disk or over the network; there is a lack of coordination between the stream and batch lay-
ers, which can lead to I/O interference; increased overhead of the custom data management
tools leveraging the two storage stacks at the processing layer.

4.2.2 Lack of support for global transactions

The processes executed within Lambda systems are fundamentally concerned with the cre-
ation of state. Incoming tuples are potentially duplicated along the two layers. Thus, engines
process multiple streams at once or multiple copies of the same stream. Each processing in-
stance may try to make modifications to the same state simultaneously (i.e., state can be seen
as metadata for stream processing). In all of these cases, data isolation is necessary to ensure
that any changes do not conflict with one another. Transactions are crucial for maintaining
correctness of the state.

Absence of global synchronisation. Although transaction support exists within each
dimension (i.e., for streaming and batching), there is no global synchronisation between the
two layers. That is because the mechanisms implemented in SPEs for the two models are
distinct: distributed snapshotting for streaming and micro-batch replay for batching.

4.3 Research agenda

The challenges of Big and Fast data management identified in the chapters 2, 3 and 4 provide
a roadmap for what is expected from next-generation streaming architectures. We firmly
believe they will shift the overall mindset of reasoning about unbounded data. Conjointly,
these challenges also set the agenda for our contributions. The rest of this manuscript aims
to address some of them by combining ideas from existing approaches as well as proposing
novel data management techniques designed from scratch.

In-transit stream processing: bringing intelligence to storage. Historically, storage de-
vices have been performing the same basic functions: read and write. This means that stored
stream data (e.g., collected by the ingestion layer) needs to be further shipped to some pro-
cessing nodes. This greatly increases the time to results. We believe it is time to move be-
yond this prevailing mindset and generalize to stream processing the locality principle first
introduced in HDFS. Executing computations near the data minimizes network traffic and
increases the throughput. One way of achieving this is by executing some (simple) parts of
the computation in the storage nodes, anywhere in-transit from the stream collection sites to

4.3 – Research agenda 45

the processing nodes. Such "smart" storage just needs to leverage some dedicated nodes in
the deployment to dial in precisely the amount of latency and locality for a large spectrum
of computations, as we will show in chapter 5.

Efficient stream data transfer. We have noticed that a major shortcoming of all the models
and systems previously mentioned is that they focus only on optimizing the performance
and cost-effectiveness of the storage and computations. They largely neglect data transfers
to/from/between geographically distributed processing sites. Existing solutions remain ba-
sic, far behind the advance in processing, mainly tributary to the decade old multi-hop path
splitting, or, worse, direct TCP connections. JetStream is our proposal to alleviate from these
issues. It is the first system targeting fast transfer of unbounded data coping with the time-
liness demanded by new BDA systems (chapter 6).

Distributed metadata management. Since streaming deals with large volumes of small
data, the associated metadata can quickly reach huge sizes. Many storage systems presented
in the previous chapters are in the same situation as HDFS, relying on centralized metadata
management (e.g., Lustre, GoogleFS). An important challenge that arises in this context is
to find scalable ways of managing the metadata in largely distributed environements, as the
ones in which streams operate. Decentralization seems to promise a lot of potential in this
direction, but introduces metadata consistency issues, as we will see in chapter 7.

Unification of stream storage and ingestion enables data locality. Our proposal, KerA,
unifies ingestion and storage, in a stream ingestion solution that offers interfaces for both
bounded and unbounded data. Designed with data locality support in mind, it avoids re-
dundant data copies. KerA supports massively parallel stream processing, by "freeing" the
processing engine from the data housekeeping tasks and by allowing it to focus on compu-
tations only. KerA is described in chapter 8

Transactional access to stream storage. We have seen that in a concurrent streaming set-
ting, there is a need to support shared in-memory storage. When multiple clients access
this storage, transactions are needed to ensure consistent views of the most recent data for
real-time analytics. This transactional support is currently missing or comes at the cost of
performance. We have addressed this issue by introducing Týr, the first blob storage system
to provide built-in, multi-blob transactions, while retaining sequential consistency and high
throughput under heavy access concurrency (chapter 9).

Storage support for HPC and Big Data convergence. Our vision of future analytics com-
bines processing of past and real-time data from BDA with future (simulated) data from
HPC. The convergence of HPC and Big Data enables this vision. While the convergence has
already started at the infrastructure level (e.g., HPC clouds), little progress was achieved to
converge the processing stacks. We believe that a first step in this direction is by means of a
unified storage layer, based on Týr, as explained in chapter 10.

46 Chapter 4 – The Lambda Architecture: Unified Stream and Batch Processing

47

Part II

From Sensors to the Cloud: Stream
Data Collection and Pre-processing

49

Chapter 5
DataSteward: Using Dedicated Nodes
for In-Transit Storage and Processing

Contents
5.1 A storage service on dedicated compute nodes 50

5.1.1 Design principles . 51
5.1.2 Architectural overview . 51
5.1.3 Zoom on the dedicated nodes selection in the cloud 52

5.2 In-transit data processing . 55
5.2.1 Data services for scientific applications 55

5.3 Evaluation and perspectives . 56
5.3.1 Data storage evaluation . 56
5.3.2 Gains of in-transit processing for scientific applications 57
5.3.3 Going further . 58

THE HPC COMMUNITY INTRODUCED IN-SITU AND IN-TRANSIT PROCESSING [60] to al-
low data to be visualized and processed asynchronously in real-time as it is produced,
while the HPC application (e.g., a simulation) is running. Their difference lies in how

and where the computation is performed. In-situ processing typically shares the primary
simulation compute resources. In contrast, when (more complex) analytics are performed
in-transit, some or all of the data are transferred to different, dedicated machines, either on
the same infrastructure (e.g., a supercomputer) or on different computing resources all to-
gether. This brings the possibility to build early knowledge on the simulation results and
even react back and steer the simulation accordingly.

We think that a similar approach would greatly benefit to stream processing. In the
traditional streaming pipeline, data collected from thousands of sources is shipped to the

50 Chapter 5 – DataSteward: Using Dedicated Nodes for In-Transit Storage and Processing

Figure 5.1 – Stream in-transit processing takes place either in the fog or in the cloud.

processing platforms (i.e., cloud datacenters) for analysis. This transfer is very costly, and
no output is available till the end of the processing. In-transit processing would mean to
dedicate a set of nodes from the allocated deployment where to:

• compute fast some early results, although maybe inaccurate, by means of user-defined
functions. This computation would take place before or during the transfer of the data
(from the sensors, scientific applications etc.) to the processing site.
• store these results and incoming data for persistence and flow control.

{{ In-transit stream processing avoids rout-
ing large amounts of data over the net-
work (but only processed results) and
minimizes the time to solution. ||

This approach builds on the observation
that the highest concentrations of comput-
ing power and storage are in the "center"
of the networks (i.e., in clouds or HPC cen-
ters). However, most of the streams origi-
nate in edge environments (see Figure 1.1). In this context, in-transit stream processing
avoids routing large amounts of data over the network (but only processed results) and
minimizes the time to solution. As a side effect, it ensures all components along the data
path are utilized in a balanced way, by overlapping data processing with computation. In
this chapter we introduce DataSteward [18, 17], our approach for providing such in-transit
storage and processing on dedicated compute nodes.

5.1 A storage service on dedicated compute nodes

In the case of streams, there are two options for hosting in-transit storage and processing,
illustrated in Figure 5.1. The first is to exploit the computing infrastructure available close
to the edge of the network, where the data is produced. This is referred in the literature as
"fog computing". Examples include the computing and storage resources in the antennas,
routers or edge devices of the Internet providers. The second option is to use some nodes in
the cloud, close to where the SPEs are deployed.

5.1 – A storage service on dedicated compute nodes 51

In both cases, in order to enable in-transit processing, we first need a storage service to
buffer data and control the flow In a second phase, we will enhance this storage service with
data analytics capabilities by allowing users to push in-storage processing functions.

5.1.1 Design principles

The design of the fog and cloud storage service is guided by the following principles.

Dedicated nodes for storing data. We plan to isolate the storage from the computation in
order to avoid intrusiveness. Hence, we opt to use dedicated nodes, separated from
the ones used for computations (in the case of clouds) or for data collection (in the
case of fog). This approach preserves the data proximity within the deployment and
increases the application reliability through isolation. The goal is to have high data
access performance while freeing application nodes from managing data. Moreover,
keeping the management of data within the same compute infrastructures (i.e., same
racks, switches) optimizes the utilization of the cluster bandwidth by minimizing the
intermediate routing layers to the application nodes.

Topology estimation. Cloud and fog applications operate in a virtualized space which hides
the infrastructure details. However, our proposed solution needs some mechanism to
ensure that the dedicated storage servers are located as "close" as possible to the rest
of the computing nodes (in the case of clouds) or the sensors (in the case of fog). This
"closeness" is then defined in terms of bandwidth and latency and determines the com-
munication efficiency. As information about the topology is not available, our solution
estimates it, based on set of performance metrics, in order to perform an environment-
aware selection of nodes.

5.1.2 Architectural overview

DataSteward is designed as a multi-layered architecture, shown in Figure 5.2.

The Cloud Tracker selects the nodes to be dedicated for data management. The selection
process is done once, in 4 steps, at the starting of the deployment. First, a leader election
algorithm is run, based on the VM IDs. Second, the trackers within each VM collaboratively
evaluate the network links between all VMs and report the results back to the leader. Third,
the leader runs the clustering algorithm described in section 5.1.3 to select the most fitted,
throughput-wise, nodes for storage. Finally, the selection of the nodes is broadcast to all
compute nodes within the deployment. The Cloud Trackers evaluate the network capacities
of the links, by measuring their throughput, using the iperf tool [181].

The Distributed Storage is the data management system deployed on the dedicated
nodes, that federates their local disks. Users can select the distributed storage system of
their choice, for instance any distributed file system that can be deployed in a virtualized
environment. The local memory of the dedicated nodes is aggregated into an in-memory

52 Chapter 5 – DataSteward: Using Dedicated Nodes for In-Transit Storage and Processing

Figure 5.2 – DataSteward overview. Compute nodes are dedicated for data storage, on top
of which a set of data processing services are provided.

storage, used for storing, caching and buffering data. The Distributed Storage can dynami-
cally scale up and down, dedicating new nodes when faced with bursts or releasing some of
the existing ones.

The Data Processing Services are a set of advanced data handling operations, provided
by DataSteward and targeting scientific applications. They enable the processing capabilities
of DataSteward. The goal is to capitalize the computation power now available for data
management, in order to provide high-level data functions. These processing services are
further detailed in section 5.2.

5.1.3 Zoom on the dedicated nodes selection in the cloud

One of the key aspects that determines the performance of DataSteward is the selection
method for the dedicated nodes. The problem of choosing optimal cloud application de-
ployments is not new. The major approaches fall into three categories. Random methods
simply select nodes randomly and have been extensively employed in works like Boinc [39].
Ranking strategies rate the cloud nodes based on their QoS and select the best ones [37, 65].
Clustering methods like [88, 87], consider the communication between the selected nodes to
cluster the ones with good communication together.

We use a similar approach to cluster all the nodes within a deployment and then choose
"leaders" from each cluster. The leaders are the best connected with all nodes within the clus-
ter and will make up the global dedicated storage nodes. In contrast to existing clustering
solutions, we first discover the communication topology and the potential virtual network
bottlenecks by pre-executing a series of measurements. Next, we consider both the resource
and the topology properties of a node in a unified way, in order to select the most suited
ones. This is a key difference from existing works, which only take into consideration the
CPU and/or the bandwidth of a node.

5.1 – A storage service on dedicated compute nodes 53

Algorithm 1 Initialization of the clustering algorithm.

1: Input:
2: Nodes = {node1..nodeN} . the set of compute nodes
3: ClientClusters[] = {List1..ListNrOfDataServers} . the set clients grouped in clusters
4: Output:
5: Servers = {server1..serverNrOfDataServers} . the set of data servers - the cluster centroids
6: clients_per_server = N/NrOfDataServers
7:
8: for i← 0, NrOfDataServers do
9: Servers← node ∈ Nodes (random selected)

10: end for

Cluster creation. To get an intuition of the cloud topology and the physical placement of
the VMs, we rely on the fact that the cloud providers distribute the compute nodes in dif-
ferent fault domains (i.e., behind multiple rack switches). We aim to discover these clusters
based on the proximity between the nodes within a fault domain. Hence, we fitted the clus-
tering algorithm with adequate hypotheses for centroid selection and assignment of nodes
to clusters. Finally, the selection of the dedicated nodes is done based on the discovered clus-
ters, minimizing the overall data exchanges across switches and long-wires. The criteria that
we want to maximize is the aggregated throughput that the application nodes will get to the
dedicated storage nodes. Hence, the node assignment to a cluster is given in Equation 5.1:

cluster = arg max
i∈Servers

Max throughput[i, j︸︷︷︸
|Client[i]|<clients_per_server

] (5.1)

Centroids update. We select as a centroid the node towards which all other nodes in the
cluster have the highest aggregated throughput. This maximizes the overall throughput of
the application VMs within the cluster to the storage node:

maxserver = arg max
j∈Client[i]

∑
k∈Client[i]

throughput[j, k] (5.2)

Next, we present the cluster-based algorithm for selecting the dedicated nodes. Algo-
rithm 1 introduces the data structures used to represent the problem and the random ini-
tialization of the centroids. The advantage of starting with a random setup is that no extra
information is required. Algorithm 2 describes the 2 phases of the clustering algorithm. The
first phase corresponds to Equation 5.1. The compute nodes are assigned to the clusters
based on the throughput towards the dedicated nodes and by considering an upper-bound
for concurrency (i.e., the maximum number of clients allowed per server). This upper limit
for the load per storage allows the use of DataSteward even for cloud platforms which do
not guarantee a distribution of nodes across racks. The second step consists in updating
the centroids. We select the nodes which provide the highest aggregated throughput within
each cluster, according to Equation 5.2. At the same time, we filter the nodes with poor QoS
(i.e., low throughput or high I/O variability).

54 Chapter 5 – DataSteward: Using Dedicated Nodes for In-Transit Storage and Processing

Algorithm 2 Clustering-based dedicated nodes selection

1: procedure DEDICATENODES(NrO f DataServers, N)
2: repeat
3: changed← f alse
4:
5: . Phase 1: Assign nodes to cluster based on proximity within clients limit
6: for i← 0, N do
7: if i /∈ Servers then
8: max← 0
9: maxserver← 0

10: for j← 0, NrO f DataServers do
11: if throughput[Servers[j], i] > max && Client[j].Count <

clients_per_server then
12: max = throughput[Servers[j],i]
13: maxserver = j
14: end if
15: end for
16: Client[maxserver].Add(i)
17: end if
18: end for
19:
20: . Phase 2: Centroid Selection — reselect the data servers based the assignment of

nodes to clusters
21: for i← 0, NrOfDataServers do
22: maxserver← 0
23: max← 0
24: for all j ∈ Client[i] do
25: if j.std < ADMITTED_STD and j.thr > ADMITTED_THR then
26: server_thr← 0
27: for all k ∈ Client[i] do
28: server_thr + = throughput[j,k]
29: end for
30: if server_thr > max then
31: max← server_thr
32: maxserver← j
33: end if
34: end if
35: end for
36: if Servers[i] 6= maxserver then
37: Servers[i]←maxserver
38: changed← true
39: end if
40: end for
41: until changed == true
42: end procedure

5.2 – In-transit data processing 55

5.2 In-transit data processing

To capitalize on the separation between storage and computation, we introduce a set of data
processing services on top of the storage layer, that can overlap with the executing applications,
in order to obtain some early results.

Generally, users have to implement such high level functionality for handling data. This
translates in stalling the computation for executing these operations. Our approach offloads
this overhead to the dedicated nodes and provides a data processing toolkit with an easily
extensible API. At the same time, such a functionality exposed directly at the storage level
allows to efficiently leverage some low-level data abstractions (e.g., layouts, partitions).

The Data Processing Services are exposed to applications through an API, currently avail-
able in C#, independent of the distributed storage chosen by the user. The API keeps the
handling of data transparent to applications. In this way, the system remains generic and is
able to accommodate future requirements. The processing services are loaded dynamically,
from the default modules or from libraries provided by the users.

5.2.1 Data services for scientific applications

We provide three implementations of such services, targeting scientific applications.

Geographical replication. This is useful in the context of fog and federated clouds to enable
fault tolerance, interoperability with other services and to disseminate the applications
results. As the involved data movements are time and resource consuming, it is in-
efficient for applications to stall their executions in order to perform such transfers.
DataSteward provides an alternative, as the applications can simply check-out their
results to the dedicated nodes, which act as brokers. This operation is fast, consisting
in a low-latency data transfer within the deployment. Then, DataSteward performs
asynchronosulsy the time consuming geographical replication, while the application
continues the main computation.

Data compression. Typically, the separation of scientific applications in multiple tasks leads
to multiple results. Before storing them persistently, one can decrease the costs of per-
sistent (long-term) storage through compression. By grouping together these results
on the dedicated nodes, we are able to achieve higher compression rates, than if the
results were compressed independently on their source node. In fact, many scientific
applications have been shown to have high spatial or time correlation between the out-
puts of the computing sub-processes [99, 147]. DataSteward exploits these data sim-
ilarities and minimizes the compression overhead of multiple files/objects, reaching
compression rates that could not be achieved otherwise at the process or node level.

Scientific toolkit. Scientific applications typically require additional processing of their in-
put/output data, in order to make the results exploitable. For large data sets, these
manipulations are time and resource consuming. Moreover, an aspect which typically
tends to be neglected, but impacts the overall data handling time as well, is the num-
ber of objects in the data set (e.g., I/O files, log files). Due to the simplicity of the
default cloud storage API, these objects need to be managed independently as there
are no operations which can be applied on multiple files. Additionally, they need to

56 Chapter 5 – DataSteward: Using Dedicated Nodes for In-Transit Storage and Processing

be downloaded at the client side most of the time, even for simple operations such as
searching or checking the file exists. By using the dedicated nodes, such processing on
multiple files can be provided directly at the data management layer and can be over-
lapped with the main computation. Therefore, DataSteward provides an integrated set
of tools applicable on groups of files. These operations support file set transformations
such as filter, grep, select, search or property check.

5.3 Evaluation and perspectives

We perform an evaluation of DataSteward both in synthetic settings and in the context of
scientific applications. The experiments are carried out on the Azure cloud in the North
Europe and West US datacenters. The experimental setup consists of up to 100 Medium Size
VMs, each having 2 virtual CPU which are mapped to physical CPUs, 3.5 GB of memory
and a local storage of 340 GB.

5.3.1 Data storage evaluation

First, we compare DataSteward performance with TomusBlobs. The goal is to evaluate the
benefits of dedicating compute nodes for storage against collocating storage with the compu-
tation. To ensure a fair comparison, each system is deployed on 50 compute nodes and both
use the BlobSeer [146] backend. Next, we compare against the local cloud storage service
(Local AzureBlobs) and a geographically remote storage instance from another data cen-
ter (Geo AzureBlobs). The goal of this second comparison is to demonstrate that, although
DataSteward is not collocating data with computation, the delivered I/O throughput is su-
perior to a typical cloud remote storage.

Multiple reads / writes. We consider 50 concurrent clients that read and write, from mem-
ory, increasing amounts of data, ranging between 16 to 512 MB. When using TomusBlobs,
the clients are collocated on the compute nodes. For DataSteward the clients run on dis-
tinct machines. We report the cumulative throughput of the storage system for the read and
write operations in Figures 5.3 and 5.4, respectively. Unsurprisingly, both approaches con-
siderably outperform (between 3x and 4x) the cloud storage, whether located on-site or on
a geographically distant site. This comes as a result of keeping data within the deployment.
This minimizes the number of infrastructure hops (e.g., switches, racks) between application
nodes and storage nodes, thanks to our topology-aware strategy for allocating resources.

Let’s focus on the performance of DataSteward and TomusBlobs. One might expect that,
due to data locality, the collocated storage option delivers better performance than manag-
ing data in dedicated nodes. However, the measurements reported in Figures 5.3 and 5.4
show differently. While for small data volumes they perform similarly, for larger data sizes
DataSteward outperforms the collocated storage with more than 15 %. This has 2 reasons.
First, for both approaches, the underlying BlobSeer backend splits data into chunks scattered
across the federated virtual disks. So even with the collocated storage not all data accessed
by a client is always entirely present on the local VM. Moreover, the throughput is deter-
mined both by the network bandwidth, which is the same in both setups, and by the CPU’s
capability to handle the incoming data. The latter is better leveraged by DataSteward which

5.3 – Evaluation and perspectives 57

16 32 64 128 256 512

Size of Data MB

0

1000

2000

3000

4000

T
h
ro

u
g

h
p

u
t

M
B

/s

Collocated Storage (TomusBlobs) Dedicated Nodes (DataSteward)
Local AzureBlobs Geo AzureBlobs

Figure 5.3 – The cumulative read through-
put with 50 concurrent clients.

16 32 64 128 256 512

Size of Data MB

0

500

1000

1500

2000

2500

3000

T
h
ro

u
g

h
p

u
t

M
B

/s

Collocated Storage (TomusBlobs) Dedicated Nodes (DataSteward)
Local AzureBlobs Geo AzureBlobs

Figure 5.4 – The cumulative write through-
put with 50 concurrent clients.

50.00% 60.00% 70.00% 80.00% 100.00%

Percentage of VM's Memory

0

20

40

60

80

100

120

140

160

Ti
m

e
 (

s)

Collocated Dedicated

Figure 5.5 – The execution time of the
Kabsch-based application. The percentage
of the VM memory used by the application
is increased, when using the collocated stor-
age. The final bar represents the applica-
tion execution time when all VM memory is
used for the computation and the storage is
moved to dedicated nodes

Collocated Dedicated
0

50

100

150

200

250

Ti
m

e
 (

s)

GeoReplication Compressing
Read Write

Data
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

C
o
m

p
re

ss
io

n
 r

a
te

Dedicated
Collocated

Figure 5.6 – Left, the total time spent to com-
press and geographically replicate 100 MB
of data from the Kabsch-based application,
when these operations are performed on the
application nodes and with DataSteward.
On right, we show the gains in compression
rate obtained when data is aggregated first
from multiple nodes, before compressing it.

separates computation from communication. Second, with increasing sizes of data operated
by a client, a poor management of the network links between the VMs leads to a faster satu-
ration of the network. This can be observed for sizes beyond 200 MB, for which TomusBlobs
reaches its upper bound of performance faster. It is not the case for DataSteward. Thanks
to the topology-aware distribution strategy of data nodes, it manages the network better,
resulting in a higher upper bound for I/O throughput.

5.3.2 Gains of in-transit processing for scientific applications

Impact of the processing collocation vs. in-transit processing. We first compare the exe-
cution times when the memory is split between the computation and the collocated storage
handling against dedicating the full memory to computation (as with DataSteward). To
perform this analysis, we used a bio-informatics application which enables a configurable
execution in terms of memory usage. The application performs the Kabsch algorithm [112],

58 Chapter 5 – DataSteward: Using Dedicated Nodes for In-Transit Storage and Processing

which computes the optional rotation matrix that minimizes the root mean squared devi-
ation between two sets of data. This algorithm is used in many scientific computations
from fields like statistical analysis for molecular structures comparison. The experimental
methodology consisted in running the application with increasing amounts of memory used
for the actual computation. The remaining memory is assigned to the collocated storage, for
which we used the TomusBlobs approach as before. The execution times of this scenario
were compared with the case in which all the memory of the VMs is used for computa-
tion and the storage is handled by DataSteward, located on dedicated nodes. The results in
Figure 5.5 show that DataSteward reduces the execution timespan (computation and data
handling time) for such scenarios to half compared to a collocation strategy.

Next, we evaluate the data processing services provided by the DataSteward. For this
analysis we consider two sets of data. First we use the data computed by the Kabsch-based
application, having a size of approximately 100 MB, which is compressed and geographi-
cally replicated from the European to the United States data center. The second data set is
the 28,000 log files, each file having a size less than 10 KB, used by A-Brain [174], a bio-
informatics application.

Data compression. We compare the DataSteward in-transit approach with the default op-
tion in which each users implement the compression on the application nodes (i.e., colloca-
tion). The evaluation considers the total times, shown on the left in Figure 5.6, to write the
data to the storage system, compress it and transfer it to the remote datacenters. Addition-
ally, we present on the right side the levels of compression achieved when the operation is
applied independently on each file, as in the case where the functionality is provided on each
node (i.e., collocated), or collectively on the entire data set (i.e., in-transit). The price paid by
DataSteward to execute these operations non-intrusively is an extra transfer from the appli-
cation nodes to the dedicates storage nodes. Such a transfer is not required when each node
handles its own data locally, therefore the missing "read" label for the collocated option in
Figure 5.6. Nevertheless, the overall execution time is reduced by 15 % with DataSteward.
This is because it is more efficient to transfer locally and then compress all the aggregated
data at one place than to do it independently on small chunks in the application nodes.
Building on this grouping of data, DataSteward is also able to obtain up to 20 % higher com-
pression rates.

Handling large number of files. Figure 5.7 presents the execution times for several oper-
ations commonly observed during long-running experiments on large groups of files. We
compare DataSteward to their implementation on top of the cloud storage. We use 28,000
monitoring files from the A-Brain experiment. The time to manage the files, regardless of
the operation performed, is reduced with one order of magnitude.

5.3.3 Going further

The idea of in-transit processing on dedicated nodes opens numerous options for the
data services to be executed on such deployments, besides the 3 already implemented in
DataSteward. We briefly discuss here a few interesting (yet not exhaustive) directions.

5.3 – Evaluation and perspectives 59

Aggregate AzureBlob-File by File
0

100

200

300

400

500

600

Ti
m

e
 (

se
c)

Download

Select AzureBlob-List&Select
0

2

4

6

8

10

Ti
m

e
 (

se
c)

Select

Check Exist AzureBlob-Download
0

0.005

0.01

0.015

0.02

0.025

Ti
m

e
 (

se
c)

Check Exist

Grep AzureBlob-Download&Grep
0

100

200

300

400

500

600

Ti
m

e
 (

se
c)

Grep

Figure 5.7 – The execution time of recurrent operations from scientific experiments on
28,000 monitoring files, when the operations are supported and executed by the in-transit
service or implemented at client side.

Cache for the persistent storage. Its role would be to periodically backup the data from the
dedicated storage nodes into the cloud persistent storage. As a result, DataSteward
would be enhanced with persistence, following closely the structure of the physical
storage hierarchy: machine memory, local and network disks, persistent storage. For
critical systems, this service could be coupled with the (already provided) geographi-
cally replication one. As a result, data could be backed-up across geographical-distinct
cloud storage instances, to guarantee availability against disasters or outages. The
client applications would access any storage only through the dedicated nodes. If the
data is not available within the deployment (e.g., in case of a crash that affects all repli-
cas of a data object), then the object is copied from the persistent storage, cached locally
and made available to applications.

Edge analytics. With edge devices becoming more and more powerful and energy-efficient,
they could be used to host DataSteward and perform an important part of the analysis
at the collection site, in-situ. This allows to filter and aggregate data locally, before it
gets a chance to accumulate, and to further take local decisions improving the reactiv-
ity of the analytics.

Cloud introspection as a service. The cloud model, as it is defined today, hides from ap-
plications all infrastructure aspects: load, topology, connection routes, performance
metrics, etc. On the one hand, this simplifies the task of building and deploying ap-
plications, but on the other hand it prevents them to optimize the usage of the leased
resources. Building on the clustering scheme presented in section 5.1, one could de-
sign an introspection service that could reveal information about the cloud internals.
In a geographically distributed setting, this would allow applications to gain an intu-
ition of the number of datacenters, their location (i.e., latency) or interconnecting links.
Within a datacenter, applications could learn the type of topology used, the available
bandwidth or the number of physical machines and racks.

61

Chapter 6
JetStream: Fast Stream Transfer

Contents
6.1 Modelling the stream transfer in the context of clouds 62

6.1.1 Zoom on the event delivery latency 63
6.1.2 Multi-route streaming . 64

6.2 The JetStream transfer middleware . 66
6.2.1 Adaptive batching for stream transfers 66
6.2.2 Architecture overview . 67

6.3 Experimental evaluation . 69
6.3.1 Individual vs. batch-based event transfers 69
6.3.2 Adapting to context changes . 70
6.3.3 Benefits of multi-route streaming . 70
6.3.4 JetStream in support of a real-life LHC application 71
6.3.5 Towards stream transfer "as a Service" 73

STREAM PROCESSING REQUIRES FREQUENT DATA MOVEMENTS across widely dis-
tributed sites. These occur either from the data production places (i.e., the edge)
to the data processing ones (i.e., the cloud sites), or between the cloud sites when

the processing is geographically distributed. Typically, these sites are connected through
high-latency, low-throughput wide-area networks. They make inter-site data transfers up to
an order of magnitude slower than intra-site data transfers. However, despite the growth in
volumes of stream data, the research in this domain has neglected the support for efficient
stream transfers.

In fact, this functionality tends to be delegated to the event source [64, 194]. As a result,
the typical way to transfer events is individually (i.e., event by event), as they are produced by
the data source. This is highly inefficient, especially in geographically distributed scenarios,
due to the latencies and overheads at various levels (e.g., application, technology encoding
tools, virtualization, network).

62 Chapter 6 – JetStream: Fast Stream Transfer

1 10 100 250 500 1000

Batch Size (#Events)

0

500

1000

1500

2000

2500

E
v
e
n
ts

/s
e
c

a) Transfer Rate (throughput)

1 10 100 250 500 1000

Batch Size (#Events)

0

0.005

0.01

0.015

0.02

0.025

0.03

Ti
m

e
(s

e
c)

b) Average Latency of an Event

Figure 6.1 – a) Transfer rate and b) average event latency for transferring events in batches
between North Europe and North US Azure datacenters.

{{ The key challenge is the selection of an
optimal batch size and the decision on
when to trigger the batch sending. ||

A better option is to transfer events in
batches. While this improves the transfer
rate, it also introduces a new problem, re-
lated to the selection of the proper batch size
(i.e., how many events to batch?). Figure 6.1 presents the impact of the batch size on the trans-
fer rate, and transfer latency per event, respectively. We notice that the key challenge is the
selection of an optimal batch size and the decision on when to trigger the batch sending.
This choice strongly relies on the streaming scenario, the resource usage and on the context
(i.e., the cloud environment).

To address these issues, we propose a set of strategies for efficient transfers of events be-
tween cloud datacenters. We implement them in JetStream [28, 25, 27], a high-performance,
batch-based streaming middleware. JetStream is able to self-adapt to the streaming condi-
tions by modelling and monitoring a set of context parameters. The size of the batches and
the decision on when to stream the events are controlled dynamically, based on the context
model. JetStream leverages multi-route streaming across cloud nodes, aggregating inter-
site bandwidth. The approach was validated on the Microsoft Azure cloud using synthetic
benchmarks and a real-life scenario based on the MonALISA [4] monitoring system of the
CERN LHC experiment [29].

6.1 Modelling the stream transfer in the context of clouds

The main objectives of an efficient transfer system are: to dynamically adapt to the environ-
ment and to minimize the latency. In our case, this translates to correlating the transfer param-
eters (i.e., batch size, triggering moment) with the cloud context (i.e., variability of resources,
fluctuating event generation rates, nodes and datacenters routes). Ideally, this correlation
would sustain a high transfer rate while delivering a small average latency per event. Find-
ing the right correlation requires an appropriate model for streaming in the cloud.

To achieve this, we argue for decoupling the event transfer from the processing. Designing
the transfer module as a stand-alone component allows seamless integration with any SPE
running in the cloud. At the same time, it provides sustainable performance independent on
the usage setup or specific architectures.

6.1 – Modelling the stream transfer in the context of clouds 63

Time between events

Batch

Serializer

Event
Source

Network

Destination - Site 2

Sender - Site 1

Stream
Processing
EngineDe-Serializer

LatencyBatching LatencyTransfer

LatencyDecodingLatencyEncoding

MTBE= 1
RateAcquisition

Figure 6.2 – Breaking down the latency to deliver an event from source to stream processing
engine across cloud nodes.

6.1.1 Zoom on the event delivery latency

The model we propose expresses the latency of the events based on a set of cotext parameters
which can be monitored. This allows to correlate the batch size corresponding to the minimal
event latency both with the stream context and the environment information. The set of
parameters describing the stream context are:
• the average acquisition rate (RateAcquisition) or mean time between events (MTBE);
• the event size (EventSizeMB);
• the serialization/de-serialization technique;
• the throughput (thr);
• the batch size (batchSize).
The goal is to dynamically determine the batch size that minimizes the latency defined using

these parameters. The latency between the source and the destination of an event has four
components, depicted on Figure 6.2. These are: batch creation, encoding (e.g., serializing,
compression, etc.), transfer and decoding.

The batching latency corresponds to the delay added when an event is waiting in the batch
for other events to arrive, before they are all sent together. The parameters which
describe this latency are the average acquisition rate of the events and the number of
events in the batch. As the delay depends on the position of the event in the batch (i.e.,
position× 1

RateAcquisition
, we choose to express it as the average latency of an event. This

can be computed by averaging the sum of the delays of all events in the batch:

Latencybatching =
batchSize

2
× 1

RateAcquisition

Intuitively, this corresponds to the latency of the event in the middle of the sequence.

The transformation latency gathers the times to encode and to decode the batch. This ap-
plies to any serialization library/technology. The latency depends on the used format

64 Chapter 6 – JetStream: Fast Stream Transfer

������
�����	��

����������

�����
���

������

���

������

�������������������
������������������

Figure 6.3 – The proposed schema for multi-route streaming across cloud nodes.

(e.g., binary, JSON, etc.), the number of bytes to convert and the number of events in
the batch. To express this, we represent the transformation operation as an affine func-
tion (i.e., f (x) = ax + b) where a corresponds to the conversion rate (i.e., amount of
bytes converted per second - time for data encoding tDe), while the b constant gives
the time to write the metadata (time for header encoding tHe). The latency per event
can be expressed as:

Latencytransformation =
tHe + tDe× batchSizeMB

batchSize

which holds both for the encoding and decoding operations.

The transfer latency models the time required to transfer an event between cloud nodes
across datacenters. To express it, we consider both the amount of data in the batch
as well as the overheads introduced by the transfer protocol (e.g., HTTP, TCP) — size
overhead for transport sOt and the encoding technique — size overhead for encoding
sOe. Due to the potentially small size of data transferred at a given time, the through-
put between geographically distant nodes cannot be expressed as a constant value. It
is rather a function of the total batch size (SizeTotal = batchSizeMB × batchSize), since the
impact of the high latency between datacenters depends on the batch size. The cloud
inter-site throughput - thr(Size) is discussed in more detail in the following section.
The average latency for transferring an event can then be expressed as:

Latencytransfer =
sOt + sOe + batchSizeMB

thr(SizeTotal)

6.1.2 Multi-route streaming

In order to address the issue of low inter-data center throughput, we leverage DataSteward
to dedicate a set of compute nodes within the source datacenter to coordinate the transfer as
follows. The idea is to aggregate additional bandwidth by sending batches of events from the
sender nodes to intermediate nodes within the same deployment. They will then forward
them towards the destination. The dedicated nodes are used for fast local replication with
the purpose of transferring data in parallel streams. Multiple parallel paths are then used

6.1 – Modelling the stream transfer in the context of clouds 65

0.0012
0.0254

0.25
2.54

12.7 50 101

Size (MB)

0

10

20

30

40

50

60

70

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Number of channels

1 2 3
4 5 6

a) Throughput

0.0012
0.0254

0.25
2.54

12.7 50 101

Size (MB)

0

20

40

60

80

100

Pe
rc

e
n
ta

g
e
 (

%
)

Number of channels
1 2
3 4
5 6
Approximation

b) Approximating the Throughput

Figure 6.4 – a) The throughput with respect to the number of routes across cloud Small VMs
for increasing size of the data. b) Approximating the cloud throughput, independent of the
number of routes, based on the averages of the normalized throughput functions for each
number of routes.

originated from these points, leveraging the fact that the cloud routes packages through
different switches, racks and network links. In this way, the wide-area transfers will use
multiple routes aggregating the inter-site throughput. This scheme is shown in Figure 6.3.

To integrate this approach within our model, we extend the set of parameters that are
used to characterize the stream context with the number of channels. This parameter gives
the parallelism degree of the multi-route schema deployed for streaming, i.e., the number of
nodes used on the sender site for streaming.

Multi-route throughput. Independent of the number of routes used for streaming, the
value of the throughput function needs to be known to model the latency. Considering
the potentially small sizes of the data to be transferred, one needs to study the function of
the throughput with respect to the size, not just to measure its peak stable value. In order
to limit the number of network samples that need to be performed by a monitoring ser-
vice, we approximate the throughput function. In Figure 6.4 a) we present measurements
of the throughput for a number of routes between North-Central US and North EU Azure
data centers. In Figure 6.4 b) we normalize these values (i.e., % of the corresponding stable
throughput) and approximate them using a polynomial function. This was determined em-
pirically to give a good approximation, with an error introduced due to the cloud variability
of less than 15 % with respect to the approximation based on measuring the stable value.
Using this approximation, the entire function can be extrapolated by measuring only the
asymptotic stable throughput. This will be used as the amplitude, which multiplied with
the normalized estimation, will give the throughput for any size.

Batch reordering. The downside of using multiple routes for sending batches is that the
ordering guarantees offered by the communication protocol for one route do not hold any-

66 Chapter 6 – JetStream: Fast Stream Transfer

more. This translates into batches arriving out of order due to changing conditions on the
physical communication routes (e.g., packet drops, congestion, etc.). Hence, batches need to
be reordered at the destination and the corresponding delay (i.e., latency for reordering) needs
to be accounted for within the model. The reordering is done by buffering the batches at the
destination until their turn to be delivered to the streaming engine arrives. We model this
additional latency by using the Poisson distribution (Poisson(k, λ) = λk×e−λ

k!) to estimate the
probability of having k number of batches arriving before the expected batch. As we take as
reference the transfer of the next expected batch, λ parameter becomes 1. This probability
can then be correlated with a penalty assigned to each unordered batch. We use as penalty
the latency (i.e., Latency×batch) incurred by having a number of batches (j) arriving out of or-
der. This gives Poisson(j, 1)× j× Latency×batch, over which we sum in order to account for
all potential number of batches arriving out of order. We denote L the maximum number of
batches (e.g., 10) potentially arriving before the reference one through a channel, giving the
upper limit for the summation. Finally, we sum these penalties over the number of channels,
as each channel can incur its own number of unordered batches, and normalizing based on
the events, as our model expresses everything as latency per event. The final equation that
models the unordered batches arriving through all channels is:

Latencyreordering =
∑channels

i=2 ∑L
j Poisson(j, 1)× j× Latency×batch

batchsize × L

6.2 The JetStream transfer middleware

In this section we show how the previous model is applied to select the optimal number of
routes and events to batch, as well as the architecture of the JetStream middleware which
implements this approach.

6.2.1 Adaptive batching for stream transfers

In Algorithm 3, we present the decision mechanism for selecting the number of events to
batch and the parallelism degree (i.e., channels/routes) to use. The algorithm successively
estimates the average latency per event, using the formulas presented in section 6.1, for a
range of batch sizes and channels, retaining the best one. Instead of exhaustively searching
in the whole space we apply a simulating annealing technique, by probing the space with
large steps and performing exhaustive searches only around local optima. Depending on
the value of the optimal batch size, the maximal end-to-end event latency introduced by
batching can be unsatisfactory for some applications, even if the system operates at optimal
transfer rates. Hence, the users can set a maximum acceptable delay for an event, which will
be converted in a maximum size for the batch (Line 3).

The selection of the number of channels is done by estimating how many batches can
be formed while one is being transferred (Lines 6-8). Beyond this point, adding new chan-
nels leads to idle resources and therefore decreases the cost efficiency. The condition on
Line 10 prevents the system from creating such idle channels. Finally, the CPU usage needs
to be accounted in the decision process: sending frequent small batches will increase the
CPU consumption and artificially decrease the overall performance of the cloud node. We
therefore assign a penalty for the CPU usage, based on the ratio between the time to form a

6.2 – The JetStream transfer middleware 67

Algorithm 3 The selection of the optimal batch size and the number of channels to be used

1: procedure BATCHANDCHANNELSSELECTION
2: getMonitoredContextParameters()
3: ESTIMATE MaxBatched from [MaxTimeConstraint]
4: while channels < MaxNodesConsidered do
5: while batchsize < MaxBatched do
6: ESTIMATE latencybatching from [RateAcquisition, batchsize]
7: ESTIMATE latencyencoding from [overheads, batchsizeMB]

. Estimate the transfer latency for 1 channel
8: ESTIMATE latencytransfer1 from [batchsizeMB, thrRef, 1channel]
9: COMPUTE RatioCPU from [latencyencoding, latencybatching, VM_Cores]

. Prevents idle channels
10: if RatioCPU ∗ latencybatching × channels < latencytransfer1 + latencyencoding then
11: ESTIMATE latencydecoding from [overheads, batchsizeMB]
12: ESTIMATE latencytransfer from [batchsizeMB, thrRef, channels]
13: ESTIMATE latencyreordering from [channels, latencytransfer]
14: latencyperEvent = ∑ latency∗
15: if latencyperEvent < bestLatency then
16: UPDATE [bestLatency, Obatch, Ochannels]
17: end if
18: end if
19: end while
20: end while
21: end procedure

batch (a period with a low CPU footprint) and the time used by the CPU to encode it (a CPU
intensive operation), according to the formula:

RatioCPU =
latencyencoding

(latencybatching + latencyencoding)×VM_Cores

When computing the ratio of intense CPU usage, we account also for the number of cores
available per VM. Having a higher number of cores prevents CPU interference from over-
lapping computation and I/O and therefore does not require to prevent small batches.

6.2.2 Architecture overview

We implemented this approach into a high-performance cloud streaming middleware, called
JetStream, as a proof of concept. The system does not require changes in application seman-
tics nor modifications or elevated privileges to the cloud hypervisor or stream processing
engines. Its conceptual scheme is presented in Figure 7.2. The events are fed into the system
at the sender side, as soon as they are produced, and they are then delivered to the stream
processing engine at the destination. Hence, the adaptive-batch approach remains transpar-
ent to the system and users. The implementation of this architecture is done in C# using the
.NET 4.5 framework and consists of several modules described below.

The Buffer is used as an event input and as an output endpoint. The source simply adds
the events to be transferred, as they are produced, while the receiver application (i.e.,

68 Chapter 6 – JetStream: Fast Stream Transfer

����

�����	
���	�

����	

������	�

�����	

������	�

�����	

��	��

�	�	��	�

���������

���	�

�	�	��	�

���	

�	��	�

���	

�	������	� �	��	������	�

�����

�����	

���������
��� ���	!�����!���	�
	�

"		��

#$!����
��	!�������!���	!

���!
	���	!���	

%$!�	����	!������ ��

&$!'�(���	!��	�!��!�	��
%&

)��

��*	�
������	�

�����	

��	��

�	��	�
��*	�

Figure 6.5 – The architecture and the usage setup of the adaptive batch streamer.

the stream processing engine) pops (synchronously) the events or is notified (asyn-
chronously) when they are available. The Buffer entity at the sender side is also in
charge of monitoring the input stream in order to assess the acquisition rate of the events
and their sizes in real-time.

The Batch Oracle enforces the environment-aware decision mechanism for adaptively se-
lecting the batch size and the amount of channels to use. It implements Algorithm 3
and collects the monitoring information from the Buffer and the Transfer Module. It
further controls the monitoring intrusiveness by adjusting the frequency of samples.

The Transfer Module performs the multi-route streaming. Batches are sent in a round-
robin manner through the channels assigned for the transfer. On the intermediate
nodes, the role of this component is to forward the batches towards the destination.
Currently, the system offers several implementations on top of TCP: synchronous and
asynchronous, single- or multi-threaded.

The Event Sender coordinates the event transfers by managing the interaction between
modules. It queries the Batch Oracle about when to start the transfer of the batch. Next,
it setups the batch by getting the events from the Buffer and adding the metadata (e.g.,
batch ID, streams IDs and the acknowledgments needed for multi-route transfers). The
batch is then serialized by the Serialization module and the data are transferred across
datacenters by the Transfer Module.

The Event Receiver de-serializes, buffers, reorders, and delivers the arriving batches to the
application as a stream of events, in a transparent fashion for the stream processing
engine. The module issues acknowledgments to the sender or makes requests for re-
sending lost or delayed batches. Alternatively, based on users policies, it can decide to
drop late batches, supporting the progress of the stream processing despite potential
cloud-related failures.

Serialization/De-Serialization has the role of converting the batch to raw data, which are
afterwards sent over the network. We integrate in our prototype several libraries: Bi-
nary (native), JSON (scientific) or Avro (Microsoft HDInsight), but others can be easily
integrated. Moreover, this module can be extended to host additional functionality:
data compression, deduplication, etc.

6.3 – Experimental evaluation 69

6.3 Experimental evaluation

We validate JetStream in a real cloud setup and discuss the main aspects that impact its
performance. The experiments were run in the Microsoft’s Azure cloud in the North-Central
US and the North EU data centers, using Small Web Role VMs (1 CPU, 1.75 GB of memory,
225 GB local storage). For multi-route streaming, up to 5 additional nodes were used within
the sender deployment. Each experiment sends between 100,000 and 3.5 million events,
which, depending on the size of the event to be used, translates into a total amount of data
ranging from tens of MBs to 3.5 GB. Each sample is computed as the average of at least ten
independent runs of the experiment performed at various moments of the day (morning,
afternoon and night).

The performance metrics considered are the transfer rate and the average latency of an event.
The transfer rate is computed as the ratio between a number of events and the time it takes
to transfer them. More specifically, we measured at the destination the time to transfer a
fixed set of events. For the average latency of an event, we measured the number of events
in the sender buffer, the transfer time, and reported the normalized average per event based
on the latency formulas described in section 6.1. The generation rates are varied between
hundreds of events per second and tens of thousands of events per second, as indicated by
the scale of the transfer rates.

6.3.1 Individual vs. batch-based event transfers

The goal of this set of experiments is to analyze the performance of individual event stream-
ing compared to batch-based streaming between cloud datacenters. We consider both static
batch sizes as well as the adaptive batch selection of JetStream. The experiments were re-
peated for 1, 3 and 5 parallel routes for streaming. We measured the transfer rates (top) and
average latency per event (bottom).

The experiments presented on Figure 6.6 use an event of size 224 bytes and evaluate the
transfer strategies considering low (left) and high (right) event generation rates. The first ob-
servation is that batch-based transfers clearly outperform individual event transfers for all
the configurations considered. The results confirm the impact of the streaming overheads on
small chunk sizes and the resulting low throughput achieved for inter-site transfers. Group-
ing the events increases the transfer rate tens to hundreds of times (up to 250 times for Jet-
Stream) while decreasing the average latency per event.

Two aspects determine the performance: the size of the batch with respect to the stream
context and the performance variations of the cloud resources (e.g., nodes, network links).
Static batches cannot provide the solution, as certain batch sizes are good in one context
and bad in others. For example batches of size 10 deliver poor performance for 1 route and
high event acquisition rate and good performance for 5 routes and low acquisition rates.
Selecting the correct size at runtime brings an additional gain between 25 % and 50 % for the
event transfer rate over static batch configurations (for good batch sizes not for values far
off the optimal). To confirm the results, we repeated the same set of experiments for larger
event sizes. Figure 6.7 illustrates the measurements obtained for event sizes of 800 bytes,
showing that JetStream is able to increase the performance with up to 2 orders of magnitude
over current streaming strategies.

70 Chapter 6 – JetStream: Fast Stream Transfer

1 Route 3 Routes 5 Routes
0

200

400

600

800

1000

1200

E
v
e
n
ts

/s
e
c

Low Events Arrival Rate
Transfer Rate

1 Route 3 Routes 5 Routes
0

0.0004

0.0008

0.0012

0.0016

0.002

Ti
m

e
 (

se
c)

Batch Size
1 10 100
1000 5000 JetStream

Average Latency per Event

1 Route 3 Routes 5 Routes
0

4000

8000

12000

16000

E
v
e
n
ts

/s
e
c

High Events Arrival Rate
Transfer Rate

1 Route 3 Routes 5 Routes
0

4E−05

8E−05

0.00012

0.00016

0.0002

Ti
m

e
 (

se
c)

Batch Size
1 10 100
1000 5000 JetStream

Average Latency per Event

Figure 6.6 – Comparing the performance (transfer
rate - top and average latency per event - bottom)
of individual event streaming and static batches with
JetStream for different acquisition rates, while keep-
ing the size of an event fixed (224 bytes). The per-
formance of individual event streaming (i.e., batch of
size 1) are between 50 and 250 times worse than the
ones of JetStream.

1 Route 3 Routes 5 Routes
0

2000

4000

6000

8000

10000

12000

Ev
en

ts
/s

ec

Batch Size
1 10 100
1000 5000 JetStream

Transfer Rate

1 Route 3 Routes 5 Routes
0

4E−05

8E−05

0.00012

0.00016

0.0002

Ti
m

e
(s

ec
)

Batch Size
1 10 100
1000 5000 JetStream

Average Latency per Event

Figure 6.7 – The performance
(transfer rate - top and average la-
tency per event - bottom) of in-
dividual event streaming, static
batches and JetStream for events of
size 800 bytes. The performance
of individual event streaming (i.e.,
batch of size 1) are from 40 to
150 times worse than JetStream.

6.3.2 Adapting to context changes

The event acquisition process in streaming scenarios is not necessarily uniform. Fluctuations
in the event rates of an application running in the cloud can appear. They are due to the
nature of the data source, the virtualized infrastructure or the cloud performance variabil-
ity [90]. To analyze the behavior of JetStream in such scenarios, we performed an experiment
in which the event generation rate randomly changes in time. For the sake of understanding,
we present in Figure 6.8 a snapshot of the evolution of the transfer rate in which we use fine
grain intervals (10 seconds) containing substantial rate changes.

JetStream is able to handle these fluctuations by appropriately adapting the batch size
and number of routes. In contrast, static batch transfers are introducing huge latencies from
waiting for too many events, especially when the event acquisition rate is low (e.g., batches
of size 1000 or 5000 at time moment 9). They are also falling behind the acquisition rate
which leads to increasing the amount of memory used to buffer the events not transferred
yet (e.g., batch of size 100 at moment 5). Reacting fast to such changes is crucial for delivering
high-performance.

6.3.3 Benefits of multi-route streaming

Figure 6.9 shows the gains obtained in transfer rate with respect to the number of routes used
for streaming, for JetStream and for a static batch of a relatively small size (i.e., 100 events).

6.3 – Experimental evaluation 71

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time interval (10 seconds)Time interval (10 seconds)

0

5000

10000

15000

20000

25000

30000

35000

E
v
e
n
ts
/s
e
c

Batch Size
5000
1000
100
JetStream
Event Arrival Rate

Transfer Rate

5 6 7

Time interval (10 seconds)

0

5000

10000

15000

20000

25000

30000

E
v
e
n
ts
/s
e
c

Batch Size
5000 1000 100 JetStream

7 8 9

Time interval (10 seconds)

0
1000
2000
3000
4000
5000
6000
7000

E
v
e
n
ts
/s
e
c

Batch Size
5000 1000 100 JetStream

Figure 6.8 – The evolution of the transfer rate in time for variable event rates with JetStream
and static batches transfer strategies

When increasing the amount of data to be sent, multi-route streaming pays off for both
strategies. By aggregating extra bandwidth from the intermediate nodes, we are able to
decrease the impact of the overhead on smaller batches: batch metadata, communication
and serialization headers. More precisely, a larger bandwidth allows to send more data, and
implicitly, the additional data carried with each batch does not throttle the inter-site network
anymore. This brings the transfer rate of smaller, and consequently more frequent, batches
closer to the maximum potential event throughput. This can be observed for the static batch
of size 100 on Figure 6.9, which delivers a throughput close to JetStream for a high number
of routes.

With higher throughput and a lower overhead impact, the optimal batch size can be
decreased. In fact this is leveraged by JetStream, which is able to decrease the end-to-end
latency by selecting lower batch sizes. Hence, we conclude that sustaining high transfer rates
under fixed time constraints is possible by imposing upper bounds for the batch sizes and
compensating with additional streaming routes. This enables JetStream to integrate users
constraints for the maximal delay, which are integrated in the streaming decision shown in
Algorithm 3 by considering a limit on the batch size.

6.3.4 JetStream in support of a real-life LHC application

ALICE (A Large Ion Collider Experiment) [29] is one of the four LHC (Large Hadron Col-
lider) experiments at CERN, with a scale, volume and geographical distribution of data re-
quiring appropriate tools for efficient processing. Indeed, the ALICE collaboration, consists
of more than 1,000 members from 29 countries, 86 institutes and more than 80 computing

72 Chapter 6 – JetStream: Fast Stream Transfer

1 3 5

Number of streaming routes

0

10000

20000

30000

40000

E
v
e
n
ts

/s
e
c

100 Batch Size JetStream

Transfer Rate

Figure 6.9 – The transfer rate for an
increasing number of routes used
for streaming, when the batch size
is fixed or adaptively chosen using
JetStream.

10
100

1000

10000

JetS
tre

am

Batch Size (#Events)

0

500

1000

1500

2000

2500

Ti
m

e
 (

se
c)

a) Latency

1 10
100

1000

10000

JetS
tre

am

Batch Size (#Events)

0

200

400

600

800

1000

1200

1400

1600

E
v
e
n
ts

/s
e
c

b) Transfer Rate

Figure 6.10 – The total latency (a) and the transfer rate
(b) measured when transferring 1.1 million events
from MonALISA. The latency for independent event
transfer (batch of size 1) in a) is not represented be-
cause it would modify the scale, having a value of
30900 seconds as opposed to 80 seconds for JetStream.

centers worldwide. It is strongly dependent on a distributed computing environment to per-
form its physics program. The experiment collects data at a rate of up to four petabytes per
year. Our focus, in these series of experiments, is on the monitoring information collected
in real-time about all ALICE resources. We used the MonALISA [4] service to instrument
and replay the huge amount of monitoring data issued from this experiment. More than
350 MonALISA services are running at sites around the world, collecting information about
ALICE computing facilities, local and wide-area network traffic, and many thousands of
concurrently running jobs. This yields more than 2 million parameters published in Mon-
ALISA, each with an update frequency of one minute. The MonALISA framework and its
high-frequency updates for large volumes of monitoring data match closely with JetStream’s
purposes.

Based on the monitoring data collected by MonALISA as of December 2013, we have
replayed a sequence of 1.1 million events considering their creation times at the rate they
were generated by ALICE. The measurements were performed using 2 intermediate nodes
located at the sender side (i.e., resulting in 3 streaming routes).

Figure 6.10 a) shows the total latency of the events at the sender and Figure 6.10 b)
presents the transfer rate, when comparing JetStream with static configurations for various
batch sizes. The transfer performance of static batches with more than 100 events is similar
JetStream. Considering that the generation rate of the events varies from low to high, these
sub-optimal batch sizes will in fact lead to an accumulation of the events in the sender queue
during the peak rates. These buffered events will artificially increase the performance, at the
expense of extra memory, during the periods when the acquisition rate of events is low. All
in all, this behavior will produce a stable transfer performance over a wide range of static
batch sizes, as it can be observed in Figure 6.10 b). But on the other hand, it will increase
the latency of the events as depicted in Figure 6.10 a). As our approach selects the appropri-
ate batch size at each moment, it consequently reduces the amount of events waiting in the
sender queue and decreases the overall latency of the events. Compared to the static batch
strategies, the latency obtained with JetStream is reduced between 2.2 (100-event batches)
down to 17 times (10,000-event batches).

6.3 – Experimental evaluation 73

6.3.5 Towards stream transfer "as a Service"

This evaluation highlights the inefficiency of today’s streaming strategies and the need for
new tools able to deliver fast and efficient data transfers. JetStream aims to be such a tool,
deployed in the user space and allowing them to optimize transfers by monitoring the cloud
environment for insights on the underlying infrastructure.

An interesting direction to investigate is how such a tool can be "democratized" and
transparently offered by the cloud provider, using a transfer "as a Service" paradigm. This
shift of perspective arises naturally. Instead of letting users optimize their transfers by mak-
ing deductions about the underlying network topology and performance through intrusive
monitoring, the idea would be to delegate this task to the cloud provider. Indeed, the cloud
owner has extensive knowledge about the network resources, which can be leveraged within
the proposed system to optimize (e.g., by grouping) user transfers.

Our working hypothesis is that such a service will offer slightly lower performance than
a highly-optimized dedicated user-based setup (e.g., based on multi-routing through ex-
tensive use of network parallelism as we proposed with JetStream), but substantial higher
performance than today’s state-of- the-art transfer solutions (e.g., using the cloud-provided
storage service or GridFTP). Moreover, this approach has the advantage of freeing users
from setting own systems, while providing the same availability guarantees as for any cloud
managed service.

75

Chapter 7
Small Files Metadata Support for

Geo-Distributed Clouds

Contents
7.1 Strategies for multi-site metadata management 77

7.1.1 Centralized Metadata (Baseline) . 78
7.1.2 Replicated Metadata (on Each Site) . 79
7.1.3 Decentralized, Non-Replicated Metadata 80
7.1.4 Decentralized Metadata with Local Replication 80
7.1.5 Matching strategies to processing patterns 81

7.2 One step further: managing workflow hot metadata 82
7.2.1 Architecture . 84
7.2.2 Protocols for hot metadata . 85
7.2.3 Towards dynamic hot metadata . 86

7.3 Implementation and results . 87
7.3.1 Benefits of decentralized metadata management 88
7.3.2 Separate handling of hot and cold metadata 90

STREAMING GENERATES METADATA ACROSS ALL THE PHASES of the pipeline: at the
event generation to annotate with provenance information, at transfer to order batches,
at storage to identify replicas and partitions, and finally at processing to keep track of

the whole execution state. Hence, the size of the metadata can be proportionally large for
streaming data. Worse, most files storing such metadata are typically small, with median file
sizes in the orders of kilo- or megabytes, yet generated in large numbers. This means that meta-
data access has a high impact (sometimes being dominant) on the overall processing I/O.
Such metadata overload can easily saturate state-of-the-art file systems, in which metadata
are typically managed by a centralized server (see section 2.3.1).

76 Chapter 7 – Small Files Metadata Support for Geo-Distributed Clouds

 0

 200

 400

 600

 800

 1000

 100 500 1000 5000

T
im

e
 (

s
e
c
)

Published files

West Europe (same site)
North Europe (same area)

North US (distant region)

Figure 7.1 – Average time for file-posting metadata operations performed from a node the
West Europe datacenter. The metadata server is respectively located within the same data-
center, the same geographical area and a remote region (log scale).

The scenario gets more complex considering that stream processing often leverages
multi-site distribution. This is enabled either through deployment across several cloud dat-
acenters or by combining edge and cloud processing as seen in section 1.1.2. Such multi-site
deployments allow to aggregate resources beyond the limit of a single datacenter, replicate
data on multiple geographically distributed locations or simply to deliver faster results, close
to where the data is generated. The major issue with these deployments is the high latency
between sites.

Problem: Huge latency for remote metadata access. The numerous metadata requests
have to traverse the slow WANs connecting the datacenters (which in most cases are the
property of the ISPs, so out of the control of the cloud providers). This limits drastically
the achieved throughput of the streaming pipeline. A simple experiment conducted on the
Azure cloud and isolating the metadata access times for up to 5,000 files (Figure 7.1) confirms
that remote metadata operations take orders of magnitude longer than local ones. Clearly,
multi-site stream processing calls for appropriate metadata management tools, that build on
a consistent, global view of the entire distributed datacenter environment.

Solution: Adaptive decentralized metadata handling. Metadata management is not a
new problem. It was actively studied in the context of parallel file systems and workflow
management. In particular, streams and workflows share the same execution model (i.e.,
directed acyclic graphs) and the underlying infrastructures (i.e., multi-site clouds) where
these graphs are deployed. It is then natural to take inspiration from the workflow metadata
management and adapt it to the streaming context. In geographically-distributed environ-
ments, decentralized metadata management has proven a good option to keep up with the
processing [14].

In this chapter we introduce strategies that leverage stream and workflow semantics in
a 2-level metadata partitioning hierarchy that combines distribution and replication. We
analyze stream metadata by their frequency of access and denote hot metadata to the most
frequently required (conversely, cold metadata) [15]. We develop an approach that enables
timely propagation of hot metadata while delaying cold metadata operations. This action

7.1 – Strategies for multi-site metadata management 77

reduces network congestion by limiting the number of operations sent through high latency
networks, thereby improving the overall execution time. We are able to obtain as much as
30 % gain in execution time for a parallel, geo-distributed real-world application across 4
cloud datacenters and up to 50 % for a metadata-intensive synthetic benchmark, compared
to a baseline centralized configuration.

7.1 Strategies for multi-site metadata management

{{ We propose to evaluate different meta-
data handling strategies, that result from
exercising distribution and replication
techniques across the available datacen-
ters. ||

Stream processing contains a variety of re-
lations, that can be as simple as a sequence
of data dependencies between operators, or
as complex as a mixture of multiple in-
puts, parallel operators and multiple out-
puts. However, some common data access
patterns can be identified from these graphs: pipeline, gather, scatter, and parallel; the
stream graphs deployed by SPEs are typically a combination of them, as seen in section 3.2.

Given the unlimited possible combinations of data access patterns, a single approach to
mitigate the potential metadata bottleneck in multisite environments will certainly not fit
all. Therefore, we propose to evaluate different metadata handling strategies, that result
from exercising distribution and replication techniques across the available datacenters. We
opt to keep all metadata in memory (in a uniform DHT based cache), which we make practical
by reducing the per file metadata. That is we only store the information necessary to locate
files and we don’t keep additional POSIX type metadata, like permissions, since they are
normally not used by the SPEs. Metadata are distributed across cloud datacenters following a
2-level hierarchy: they are first partitioned to the datacenters where they are likely to be used
(leveraging information from the SPE) and then replicated to other datacenters. With this ap-
proach, updates can be applied by only updating shares in one datacenter and propagating
them to other datacenters.

Eventual consistency for geo-distributed metadata. Unfortunately, in a multisite cloud,
this propagation and even simple metadata operations might take long time, particularly
when the datacenters are geographically distant. In order to maintain a fully consistent state
of the system, all nodes would have to wait until the newest operations are acknowledged
by every member of the network. This is evidently inefficient considering the potentially
long (physical and logical) distance between instances and the large number of metadata
operations generally performed. Therefore we argue for a system where every metadata up-
date is guaranteed to be eventually successful, but clearly not in real-time. That is, rather than
using file-level eager metadata updates across datacenters, we favor the creation of batches
of updates for multiple files. We denote this approach lazy metadata updates: it achieves low
user-perceived response latency and high scalability in a widely distributed environment
by asynchronously propagating metadata updates to all replicas after the updates are per-
formed on one replica.

This lazy approach only guarantees eventual consistency. However, this is perfectly in line
with the the typical data access patterns in multi-site stream processing: write once/read

78 Chapter 7 – Small Files Metadata Support for Geo-Distributed Clouds

many times, with readings occurring in two situations. For intermediate results, data are
used as input for the next operator(s) in the stream graph, but in these cases the engine
scheduler takes care to schedule the task close to the data production nodes (i.e., in the same
datacenter) so the metadata updates are instantly visible here. For final results, data might
be accessed from remote locations, but typically this a posteriori analysis takes places long
after the execution has finished, leaving enough time for the lazy updates of the metadata
to propagate. So, in both cases, the eventual consistency is not affecting the application
performance or coherence.

In the remainder of this chapter we identify as metadata registry the instance or set of
distributed instances in charge of managing metadata entries (shown as red diamonds in
Figure 7.2). Every metadata registry instance is reachable by every node in the network.
For the sake of practicality, we denote as a read the action of querying the metadata registry
for an entry, and as a write the publishing of a new entry. Note that since a metadata entry
can be created by one node and subsequently updated by others, a write operation actually
consists of a look-up read operation to verify whether the entry already exists, followed by
the actual write. File metadata entries are stored following a key-value approach, where the
key is determined by a unique name of a file and the value indicates the node(s) where it is
located.

We analyze the impact of high latencies as a consequence of the physical distance be-
tween an execution node and the corresponding metadata registry instance to/from where
it will write/read an entry. The choice of an instance will depend on the management ap-
proach that we select; such approaches are described later in this section. Independently of
the approach, in the remainder of this chapter we use the following terms to qualify physical
distance between a node and a metadata registry:

Local: the node and the metadata registry are in the same datacenter;

Same area: the node and the registry are in different datacenters of the same geographic
area (i.e., both datacenters are located in Europe);

Geo-distant: the datacenters are in different geographic areas (i.e., one in Europe, the other
one in the US).

The last two situations can also be referred to as remote. Our design accounts for several
datacenters in various geographic regions in order to cover all these scenarios. We have fo-
cused on four metadata management strategies, detailed below and depicted in Figure 7.2.
In all cases, each datacenter is represented by a gray box, which contains a number of exe-
cution nodes (orange circles) and may contain an instance of the metadata registry as well
(red diamonds). Solid lines connecting nodes and metadata registries denote metadata op-
erations (reads or writes). The dashed lines represent a very large physical distance between
datacenters; the ones on the "same side" of the line fit the same area scenario, whereas data-
centers on "different sides" are geo-distant.

7.1.1 Centralized Metadata (Baseline)

Following the HDFS architecture, we first consider a single-site, single-instance metadata
registry, independent of the execution nodes, arbitrarily placed in any of the datacenters

7.1 – Strategies for multi-site metadata management 79

(a) Centralized (b) Centralized

�
�

�

�

�

�

�

�

(c) Decentralized Non-Replicated

�

�

�

�

(d) Decentralized Replicated

����������

�	�
����	��

����������������

����������

��������	������	�

�	��������������������

Figure 7.2 – Strategies for geographically distributed metadata management.

(Figure 7.2a), which will serve as a state-of-the-art baseline. In this setup, the application pro-
cesses are run on nodes which are distributed both locally and remotely with respect to the
site of the metadata registry. In the case of non-local accesses to the centralized metadata,
high-latency operations may occur. While a centralized server guarantees a higher level of
metadata consistency, it can quickly turn into a bottleneck as the workload increases. The
purpose of this approach is to establish the (low) threshold at which these bottlenecks de-
velop.

7.1.2 Replicated Metadata (on Each Site)

Our second strategy builds on the observation that local metadata operations are naturally
faster than remote ones. Given a set of distributed datacenters, we place a local metadata
registry instance in each of them, so that every node can locally perform its metadata opera-
tions. At this point, metadata information is processed quickly, but it would only be known
at local level. Then, we propose to use a synchronization agent, a worker node whose sole task
is to replicate across the network the content of the local metadata registries.

The synchronization agent systematically queries all registry instances for updates, and
leverages non-metadata-intensive periods to perform batch synchronizations in all meta-
data registries. In this way, neither the execution nodes nor individual metadata registries
are concerned with remote operations. The strategy is depicted in Figure 7.2b: the synchro-
nization agent is presented as a blue triangle and can be placed in any site. The dotted lines
between the agent and the registry instances represent the synchronization communication.

80 Chapter 7 – Small Files Metadata Support for Geo-Distributed Clouds

7.1.3 Decentralized, Non-Replicated Metadata

In our previous replicated approach, we took advantage of non-metadata-intensive computa-
tion time to maintain a synchronized distributed metadata registry. Even if a metadata reg-
istry instance is locally deployed in each datacenter, this strategy is still centralized in that it
relies on a single synchronization agent, which can become a potential bottleneck, particu-
larly in the case of a metadata-intensive workload. Even a multi-threaded synchronization
agent might not provide a sufficiently fast synchronization to keep resource-waiting idle
time at its lowest. Taking this into consideration, our third strategy favors decentralization,
based on a distributed hash table (DHT). We maintain an instance of the metadata registry in
each of the active sites. Every time a new entry is written to the metadata registry, we apply
a hash function to a distinctive attribute of the entry (e.g., the file name). This determines
the site where the entry should be stored by computing a simple modulo operation between
the obtained hash value and the number of available sites; the hashing is indicated by an h
in Figure 7.2c. A similar procedure applies for read operations to identify the metadata reg-
istry instance in charge of a given entry. Note that in this case the metadata are partitioned
across the registry instances, so the contents of these instances are no longer identical in this
strategy: each instance stores a share of the global set of metadata entries.

This approach involves remote operations: on average only 1/n of the operations would
be local, where n is the number of sites. However, we notice two main improvements with
respect to a centralized approach. First, as the registry is now distributed, metadata manage-
ment is done in parallel by several instances, dividing the number of operations per instance
and reducing the metadata-related idle time per node. Second, hash functions guarantee
that identical input strings will always produce identical hash values. Hence, we can con-
sistently determine the location of an entry from the hash value of its distinctive attribute.
In this way, read operations require a single, direct lookup in a specific site, thus metadata
operations remain of linear order, even when the registry is distributed.

7.1.4 Decentralized Metadata with Local Replication

Our last proposal aims at further leveraging the distributed setting of the metadata registry
described above. As observed in Figure 7.1, local metadata operations take negligible time
in comparison with remote ones, especially when the total number of operations becomes
large, which is the case of data-intensive applications. Keeping this in mind, we propose to
enhance the DHT-like approach with a local replica for each entry (Figure 7.2d).

Every time a new metadata entry is created, it is first stored in the local registry instance.
Then, its hash value h is computed and the entry is stored in its corresponding remote site.
When h corresponds to the local site, the metadata are not further replicated to another
site but will only stay at that single location. For read operations we propose a two-step
hierarchical procedure. When a node performs a read, we first look for the entry in the
local metadata registry instance. With local replication, assuming uniform metadata creation
across the sites, we have twice the probability to find it locally than with the non-replicated
approach. Only if the entry is not available locally, it is then searched for in its remote
location, determined by its hash value. We expect that the gain (in terms of latency and
bandwidth) due to an enhanced probability to successfully look up metadata locally will be
higher than the extra overhead added by local replication to the previous scheme.

7.1 – Strategies for multi-site metadata management 81

�

�

�
�

�
�

�
�

�
�

(a) Without local replication

�
�
�

�
�

�
�

�
�

(b) With local replication

Figure 7.3 – Decentralized metadata: local replicas avoid costly remote read operations.

To illustrate the benefits of local replication, we take the following interaction example
involving two nodes n1 and n2 running in the same site s1: n1 writes an entry to the metadata
registry, read by n2, the location of the entry being determined by a hash function. Assume
that the hash value places the entry in a geo-distant site s2. Two situations may occur:

• In the non-replicated approach, both read and write operations would be remote and
take up to 50x longer than a local operation (Figure 7.3a).
• With local replication, the write operation keeps a local copy and the subsequent read

is performed locally, saving one costly remote operation and making reads up to
50x faster (Figure 7.3b).

7.1.5 Matching strategies to processing patterns

In this section, we address a question that arises from applying our strategies to different
multisite stream processing: which of the proposed strategies works better for each type of applica-
tion?

Following the previous design considerations and the various existing stream processing
patterns, it is expected that no single hybrid strategy will outperform the rest. For instance,
we have witnessed from our preliminary tests (as shown in Figure 7.1) that a centralized
approach performs just as well as decentralization when a stream processing operates at
small scale (i.e., using few nodes, managing at most 500 files each, running in a single site).
Low latencies of intra-datacenter transfers coupled with the proximity of metadata servers
enable a high throughput and reduce the access time. In such a scenario, the effort of putting
in place a distributed metadata handling mechanism is likely not worth it. Therefore, we
pose the question of what strategy would best match what type of stream processing graph? To
answer it, we reason about the common stream processing characteristics and hypothesize
the following situations, that are experimentally validated in section 7.3.

First, we believe that the replicated metadata registry with a centralized synchronization
would perform at its best in a scenario where metadata operations are not so frequent. For
instance, a stream processing which deals with few, very large files. In this case, the agent
would have sufficient time to synchronize the registry instances and to provide consistency
guarantees that enable easy reasoning on concurrency at application level.

Then, the decentralized strategies are expected to perform at their best with workloads
managing a large number of small files. These strategies are of our particular interest, since
this kind of workloads occur more frequently in large-scale applications. The non-replicated
approach is foreseen to target applications with high degree of parallelism (i.e., following a
scatter/gather pattern), where operators and data are distributed across datacenters. As we

82 Chapter 7 – Small Files Metadata Support for Geo-Distributed Clouds

mentioned, access to metadata remains linear across sites. Thus, we anticipate that the scala-
bility and the throughput of the application will be preserved even for increased workloads.

Finally, we envisage that the locally replicated will fit better for stream graphs with a
larger proportion of sequential jobs (e.g., with pipeline patterns). SPEs schedule sequential
jobs with tight data dependencies in the same site as to prevent unnecessary data move-
ments [129]. With this approach, we ensure that when two consecutive tasks are scheduled
in the same datacenter the metadata are available locally. Even when a task is scheduled in
a remote site, it will still be able to access metadata in linear time via the hash value.

7.2 One step further: managing workflow hot metadata

As a next step we want to build on top of our previous ideas and not only distribute the
metadata managing effort, but also give priority to relevant metadata in order to process
it earlier. To this end, our focus is to explore the metadata access frequency, and identify
fractions of metadata that do not require multiple updates. The goal is to enable a more
efficient decentralized metadata management, reducing the number of (particularly inter-
site) metadata operations by favoring the operations on frequently accessed metadata, which
we call hot metadata.

{{ We define hot metadata as the metadata
that are frequently accessed during the
execution of a workflow, which should
be promptly available to the metadata
server(s) of the system. ||

What is "hot" metadata? The term hot data
refers to data that need to be frequently ac-
cessed. They are usually critical for the ap-
plication and must be placed in a fast and
easy-to-query storage [97]. A typical ap-
proach is to keep these data in main mem-
ory while moving infrequently accessed (cold) records to a secondary storage, like flash [125].
In an analogous way, we transfer this concept to the context of workflow metadata, and we
define hot metadata as the metadata that are frequently accessed during the execution of a
workflow, which should be promptly available to the metadata server(s) of the system. Con-
versely, less frequently accessed metadata will be denoted cold metadata and will be given
a lower priority over the network as we explain later in this section. The term "hot meta-
data" has been previously used with similar semantics for flash file systems [153], but it had
not been applied to scientific workflows. In a multisite stream processing environment, we
distinguish two types of metadata as hot: task and file metadata.

Task Metadata are the metadata corresponding to the execution of tasks, these metadata
include the specific operator for each task and its possible arguments, start time, end
time, current status and execution location (site/node). Task hot metadata enable the
workflow engine to search and generate executable tasks. During the execution, the
status and site of the tasks are queried often in order to search for new tasks ready
to execute and to determine if a job is finished. Accordingly, a task’s status has to
be updated several times along the execution. Therefore, it is important to propagate
these metadata quickly to each site.

7.2 – One step further: managing workflow hot metadata 83

�������

��	���

�������

���
�����

���
����

(a) Centralized

�������

���	
���

�������

����
���

�����

(b) Distributed

Figure 7.4 – Relative frequency of metadata operations in Montage.

File Metadata that we consider as "hot" are those relative to the size, location and possible
replicas of a given piece of data, which can be a file, or a block of a file, depending on
the data size and the workflow engine data partitioning mechanism. Knowledge of file
hot metadata allows the engine to place the data close to the corresponding execution
task, or vice-versa. This is especially relevant in multisite settings: timely availability of
file metadata would permit to move data before it is needed, hence reducing the impact
of low-speed inter-site networks. In general, other metadata such as file ownership or
permissions are not critical for the execution and thus regarded as cold metadata.

Separate management of hot and cold metadata. We studied sample executions of a typi-
cal scientific workflow, i.e., Montage [81], running 820 jobs and 57,000 metadata operations.
They reveal that in a centralized execution, 32.6 % of them are file metadata operations (store-
File, getFile) and 32.4 % are task metadata operations (loadTask, storeTask), as shown in Fig-
ure 7.4a. In contrast, in a distributed run, up to 67 % are file operations, and task operations
represent 11% (Figure 7.4b). These simple runs make evident that a significant percentage
correspond to metadata that will not be needed right away or that is used for statistical
purposes (mostly monitoring and node/site related operations); yet, in modern engines all
metadata are handled in the same way. We therefore require a model that ensures that:

a) hot metadata operations are managed with high priority over the network, and
b) cold metadata updates are propagated only during periods of low network congestion.

For this purpose, the metadata servers should include a component which discriminates
operations as cold or hot before propagating them through the network.

Adaptive storage for hot metadata. Job dependencies in a workflow graph form common
structures, e.g., pipeline, data distribution and data aggregation [61]. Workflow engines usu-
ally take into account these dependencies to schedule the job execution in a convenient way
to minimize data movements (e.g., job co-location). Consequently, different workflows will
yield different scheduling patterns. In order to take advantage of these scheduling optimiza-
tions, we must also dynamically adapt the workflow’s metadata storage scheme. However,
maintaining an updated version of all metadata across a multisite environment consumes

84 Chapter 7 – Small Files Metadata Support for Geo-Distributed Clouds

Site 3Site 2

MS

Metadata Store

Shared File System

M Master Node

S Slave Node

SFS

…

M M

Site 1
S

SFS

S

SFS…

S

SFS …

S

S

Figure 7.5 – Multisite execution architecture with decentralized metadata management. Dot-
ted lines represent inter-site interactions.

a significant amount of communication time, incurring also monetary costs. In order to re-
duce this impact, we will apply adaptive storage strategies to our hot metadata handlers
during the workflow processing, while keeping cold metadata stored locally and synchro-
nizing such cold metadata only during the execution of the job. These strategies are based
on those presented in section 7.1.

7.2.1 Architecture

The basis for our approach is a 2-level multisite architecture, depicted in Figure 7.5. Each
level follows a master/slave model, as described below.

At the inter-site level all communication, data transfer and synchronization is handled
through a set of master nodes (M), one per site. One site acts as a global coordina-
tor (master site) and is in charge of scheduling jobs/tasks to each site. Every master
node holds a metadata store which is part of the global metadata storage (shown in a
grey dotted circle) that implements one of our distributed strategies and is directly
accessible to all other master nodes.

At the intra-site level our system preserves the typical master/slave scheme widely-used
today on single-site workflow management systems: the master node schedules and
coordinates a group of slave nodes which execute the workflow tasks. All nodes within
a site are connected to a shared file system to access data resources. At this level, all
metadata updates are propagated to other sites through the master node, which classifies
hot and cold metadata as we explain next.

Cold metadata operations must be identified before they are propagated to other sites
through potentially slower networks. Therefore, we propose to add a filtering component,
located in the master node of each site (Figure 7.6). When a master node receives a new
metadata operation from a slave, the filter separates hot from cold metadata according to the

7.2 – One step further: managing workflow hot metadata 85

������
�

�

��	��

������

��	����

�����

�

�����
�����

�

� �
��������

���
�

�����

����

�	���

����

Figure 7.6 – The hot metadata filtering component.

criteria defined before, favoring the propagation of hot metadata and thus alleviates conges-
tion during metadata-intensive periods. The cold metadata are kept locally in the meantime
and transferred later to the master site (dotted line), which holds monitoring and statisti-
cal metadata. The storage location of the hot metadata is selected based on one metadata
management strategy, as we develop in the coming section.

7.2.2 Protocols for hot metadata

We consider the three alternatives for decentralized metadata management explored in the
previous section. In the following lines, we address their application to hot metadata. As
exposed in Figure 7.2, all three scenarios include a metadata server in each of the datacen-
ters where execution nodes are deployed. Unlike the former design, where the metadata
registries where isolated entities, in this new 2-level architecture such metadata stores are
now located in the master node of each site (Figure 7.5). The strategies differ in the way hot
metadata are stored and replicated. We shortly recall their specificities below and explain
how hot metadata entries are processed.

Local without replication (LOC). Every new hot metadata entry is stored at the site where
it has been created. For read operations, metadata are queried at each site and the site
that stores the data will give the response. If no reply is received within a time thresh-
old, the request is resent. This strategy will typically benefit pipeline-like workflow
structures, where consecutive tasks are usually co-located at the same site.

Hashed without replication (DHT). Hot metadata are queried and updated following the
principle of a distributed hash table (DHT). The site location of a metadata entry will
be determined by a simple hash function applied to its key attribute, file-name in case
of file metadata, and task-id for task metadata. We expect that the impact of inter-site
updates will be compensated by the linear complexity of read operations.

Hashed with local replication (REP). We combine the two previous strategies by keeping
both a local record of the hot metadata and a hashed copy. Intuitively, this would
reduce the number of inter-site reading requests. We expect this hybrid approach to
highlight the trade-offs between metadata locality and DHT linear operations.

86 Chapter 7 – Small Files Metadata Support for Geo-Distributed Clouds

MasterSlave Metadata

Store(1) write

(2) filter

(3a) hot

(3b) cold

(a) Write

Metadata StoreSlave Master

(1) read

(2) request

1 2 3

(3) response

(b) Read

Figure 7.7 – Metadata Protocols.

The following protocols illustrate our system’s metadata operations. As we mentioned,
metadata operations are triggered by the slave nodes at each site, which are the actual ex-
ecutors of the tasks.

Metadata Write. The process is depicted in Figure 7.7a: a metadata record is passed on from
the slave to the master node at each site (1). Upon reception, the master node will filter
the record to determine if it corresponds to hot or cold metadata (2). Hot metadata are
assigned by the master node to the metadata storage pool at the corresponding site(s)
according to different metadata strategies presented above (3a). On the other hand,
cold metadata are kept locally and propagated asynchronously to the coordinator site
during the execution of the job (3b).

Metadata Read. Each master node has access to the entire pool of metadata stores so it can
retrieve hot metadata from any site. The read process (shown in Figure 7.7b) is as fol-
lows: First, a slave issues a read request (1). When a read operation takes place in a
remote location, a master node sends a request to each metadata store (2) and it pro-
cesses the response that comes first (3), provided such response is not an empty set
(which would mean that such store does not keep a copy of the record). This mecha-
nism ensures that the master node gets the required metadata in the shortest time.

7.2.3 Towards dynamic hot metadata

Applications evolve over their execution. This means that at a given point, some data might
no longer be as relevant as they were initially; in other words, hot data become cold, or
vice-versa. In the case of hot to cold data, file systems might remove them from the fast-
access storage or even delete them; conversely, data that become relevant can be promoted
to fast storage. Some frameworks assess the data "temperature" offline, i.e., they perform
a later analysis on a frequency-of-access log to avoid overhead during the operation [125],
however, this method is only useful when there are subsequent runs. More interestingly
for us, online approaches maintain a rank on the frequency of access to the data alongside
the execution, for example in adaptive replacement cache [137]. This phenomenon certainly
occurs also at the metadata level; so, how could we handle these "temperature" changes in a
multisite workflow engine? We look into the two situations.

7.3 – Implementation and results 87

Promoting cold to hot metadata. The idea would be to integrate an online ranking: given
a workflow graph, a list of metadata attributes annotating the graph could be passed to the
workflow engine in the same file. Then, the engine would monitor the access frequency of
each of such attributes and periodically produce a ranking to verify whether an attribute is
required more often, and thus promote it to hot metadata. The maximum number of attributes
allowed as hot metadata could be also dynamically calculated according to the aggregated
size of the metadata stores.

Downgrading hot to cold metadata. Less frequently accessed metadata could also be iden-
tified using the same attribute ranking approach as above. Upon identification, degrading
some metadata to cold would also require a collection mechanism that ensures that meta-
data previously considered hot are removed from fast-access storage. Moreover, this action
should take place during not-congested periods, or at the end of the execution so that it
does not incur overhead. Taking one step further, we can consider an algorithm that deter-
mines the probability that metadata could become hot again later in the execution based on
historical data; such metadata could be left in the storage, preventing I/O congestion.

7.3 Implementation and results

Our metadata management strategies are designed as a general purpose multisite meta-
data handling paradigm and not aimed to a specific cloud platform. The execution nodes
can be mapped to regular virtual machines, and the metadata registries require in memory
key-value store, which can be a generic, open solution such as Redis [163]. For validation
purposes, in this implementation we use the Microsoft Azure Cloud [67] as a concrete exam-
ple to demonstrate how to implement them in practice at Platform-as-a-Service (PaaS) level.
We rely on the Azure SDK v2.5 for .NET which provides the necessary libraries for accessing
and manipulating Azure features.

The Metadata Registry stays at the core of our implementation, as it serves as communica-
tion channel and distributed synchronization manager between all nodes in the network. We
opted to implement the registry on top of the Azure Managed Cache1 service [138]. Azure
Cache provides a secure dedicated key-value cache that can be accessed remotely by means
of a URI. Azure Cache allows to store any serializable object in the value field of an item. In
order to guarantee the durability of our records, least-recently-used eviction and object ex-
piration time properties were disabled. To allow concurrent access to the registry we chose
the optimistic concurrency model of Azure Cache, which does not pose locks on the registry
object during a metadata operation, leveraging the workflow’s characteristic that data are
written only once. The metadata registry has been implemented in C# and is composed
of dedicated modules for caching, entries management, controlling and switching between
strategies, and synchronization.

We used the Azure Cloud for our experiments. A significantly large amount of resources
was made available to us thanks to our partnership with Microsoft Research through the

1By the time this manuscript was produced, Azure Managed Cache has been replaced by Azure Redis Cache
as the recommended Azure Cache service.

88 Chapter 7 – Small Files Metadata Support for Geo-Distributed Clouds

 0

 500

 1000

 1500

 2000

 2500

 5
00

 1
000

 5
000

 1
0000

50

100

150

200

250

300

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

A
g
g
re

g
a
te

 o
p
e
ra

ti
o
n
s
 (

x
1
0
0
0
)

Metadata operations per node

Centralized
Replicated

Decentralized non-replicated
Decentralized replicated

Figure 7.8 – Average execution time for a node performing write metadata operations.

ZCloudFlow project [180] We used small to mid-sized virtual machines, with a maximum
of 8 cores per node. Azure Table key-value storage [96] was chosen for logging, since it
handles concurrent writes from several nodes in a transparent way. Additionally, we lever-
aged Azure’s PaaS solutions for several purposes, as we will detail later: Azure Managed
Cache [138] for the metadata registries, Azure Cloud Services [140] for workflow manage-
ment, and Azure Bus [139] for control messages.

7.3.1 Benefits of decentralized metadata management

This first set of experiments compares our three strategies: replicated, decentralized non-
replicated, and decentralized replicated (section 7.1), to the centralized solution. Our testbed
consisted of nodes distributed in four Azure datacenters: two in Europe and two in the US,
using up to 128 Standard_A1 virtual machines, each with 1 core and 1.75 GB of memory. For
the Metadata Registry we deployed one Basic 512 MB instance of Azure Managed Cache per
datacenter. To hinder other factors such as caching effects and disk contention, the metadata
entries posted to the registry (e.g., create, update or remove) correspond to empty files.

Impact of metadata decentralization on makespan. We claim that the efficiency of our
decentralized strategies becomes more evident in large-scale settings. The goal of the first
experiment is to compare the performance of our implementation to the baseline centralized
data management as the number of files to be processed increases. For this purpose, we
keep a constant number of 32 nodes evenly distributed in our datacenters (i.e., 8 nodes per
datacenter), while varying the number of entries to be written/read to/from the registry. To
simulate concurrent operations on the metadata registry, half of the nodes act as writers and
half as readers (i.e., 4 readers and 4 writers per datacenter). Writers post a set of consecutive
entries to the registry (e.g., file1, file2, etc.) whereas readers get a random set of files (e.g.,
file13, file201, etc.) from it.

We measure the time required for a node to complete its execution, and obtain the aver-
age time for completion of all the nodes for each strategy. Figure 7.8 shows the results. We

7.3 – Implementation and results 89

 0

 200

 400

 600

 800

 1000

 1200

8 16 32 64 128

T
h

ro
u

g
h

p
u

t
(o

p
e

ra
ti
o

n
s
/s

e
c
)

Number of execution nodes

Centralized
Replicated

Decentralized Non-replicated
Decentralized Replicated

Figure 7.9 – Metadata throughput as the
number of nodes grows.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 8 16 32 64 128

C
o

m
p

le
ti
o

n
 t

im
e

 (
s
e

c
)

Number of execution nodes

Centralized
Replicated

Decentralized non-replicated
Decentralized replicated

Figure 7.10 – Completion of 32,000 opera-
tions as the set size grows.

observe that for a rather small number of processed entries, none of our strategies signifi-
cantly outperforms the centralized baseline in terms of overall execution time. They repre-
sent a gain of slightly more than 1 minute in the best case, which is rather low in our context.
We infer that for small settings — up to 500 operations per node — a centralized approach
remains an acceptable choice, since the effort of implementing a distributed solution would
not be compensated by a meaningful gain.

However, as the number of operations grows, the improvement achieved by our strate-
gies becomes more evident. Full metadata replication brings an average gain of 15 %; we
attribute this simply to the fact that the metadata management duty is now distributed. In
particular, the decentralized strategies (with and without replication) yield up to 50 % time
gain compared to the centralized version. In the figure, the grey bars (linked to the right
y-axis) indicate the aggregated number of operations in one execution. At the largest scale,
a 50 % gain represents 18.5 minutes in a test with 320,000 metadata operations.

Scalability and concurrency sensitivity. In our next experiment, we evaluate the perfor-
mance of our strategies when the number of nodes increases. Note that since each node acts
also as a metadata client, this scaling translates into an increased concurrency as well. First,
we measure the metadata throughput when increasing the number of nodes from 8 up to 128,
with a constant workload of 5,000 operations per node. In Figure 7.9 we observe that the de-
centralized implementations clearly win: they yield a linearly growing throughput (given in
operations per second), proportional to the number of active nodes. We only notice a perfor-
mance degradation in the replicated scenario, intensified beyond 32 nodes. We assert that as
the number of nodes grows, the single replication agent becomes a performance bottleneck;
however, in smaller settings of up to 32 nodes, it still behaves efficiently.

To get a clearer perspective on the concurrency performance, we measured the time taken
by each approach to complete a constant number of 32,000 metadata operations. Our results
(Figure 7.10) were consistent with the previous experiment, showing a linear time gain for
the centralized and decentralized approaches and only a degradation at larger scale for the
replicated strategy.

90 Chapter 7 – Small Files Metadata Support for Geo-Distributed Clouds

 0

 200

 400

 600

 800

 1000

 1200

 1400

SS CI MI ’ SS CI MI

BuzzFlow Montage

M
a
k
e
s
p
a
n
 (

s
e
c
)

Scenario

Centralized
Replicated

Dec. non-replicated
Dec. replicated

Figure 7.11 – Makespan for two real-life workflows. SS — Small Scale, CI — Computation
Intensive, MI — Metadata Intensive.

7.3.2 Separate handling of hot and cold metadata

The second set of experiments relates to the implementation of hot metadata filtering, which
we implemented within a the DMM-Chiron multi-site workflow engine [149]. DMM-Chiron
was deployed on Azure cloud, using a total of 27 nodes of standard_A4 virtual machines
(8 cores, 14 GB memory). The VMs were evenly distributed among three datacenters: West
Europe (WEU), North Europe (NEU), and Central US (CUS). Control messages between
master nodes are delivered through the Azure Bus.

Hot metadata for different workflow structures. Our hypothesis is that no single decen-
tralized strategy can fit all workflow structures: a highly parallel task would exhibit differ-
ent metadata access patterns than a concurrent data gathering task. Thus, the improvements
brought to one type of workflow by either of the strategies might turn to be detrimental for
another. To evaluate this hypothesis, we ran several combinations of our strategies (local
without replication - LOC, hashed without replication - DHT, hashed with local replication
- REP, and a centralized baseline - CEN) with the featured workflows. Figure 7.12 shows the
average execution time for the Montage workflow generating 0.5-, 1-, and 2-degree mosaics
of the sky, using in all the cases a 5.5 GB image database distributed across the three data-
centers. With a larger number of degrees, a larger volume of intermediate data is handled
and a mosaic of higher resolution is produced.

In the chart we note in the first place a clear time gain of up to 28 % by using a local
distribution strategy instead of a centralized one, for all the degrees. This result was expected
since the hot metadata is now managed in parallel by three instances instead of one, and it
is only the cold metadata that is forwarded to the coordinator site for scheduling purposes
(and used at most one time).

We observe that for 1-degree mosaics and smaller ones, the use of distributed hashed
storage also outperforms the centralized version. However, we note a performance degra-
dation in the hashed strategies, starting at 1 degree and getting more evident at 2 degrees.

7.3 – Implementation and results 91

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0.5 (1.4 GB) 1 (4.9 GB) 2 (16.6 GB)

C
o

m
p

le
ti
o

n
 t

im
e

 (
m

in
)

Degree of Montage workflow

Centralized
Local
DHT

Replicated

Figure 7.12 – Montage workflow execution
time for the different strategies and num-
ber of degrees. Average intermediate data
shown in parenthesis.

 0

 100

 200

 300

 400

 500

 600

 700

60MB 1.2GB

C
o

m
p

le
ti
o

n
 t

im
e

 (
m

in
)

DBLP input size

Centralized
Local
DHT

Replicated

Figure 7.13 – Buzz workflow execution time.
Left Y-axis scale corresponds to 60 MB exe-
cution, right Y-axis to 1.2 GB.

We attribute this to the fact that there is a larger number of long-distance hot metadata op-
erations compared to the centralized approach: with hashed strategies, 1 out of 3 operations
are carried out on average between CUS and NEU. In the centralized approach, NEU only
performs operations in the WEU site, thus such long latency operations are reduced. We also
associate this performance drop with the size of intermediate data being handled by the sys-
tem. We try to minimize inter-site data transfers; however, with larger volumes of data such
transfers affect the execution time up to a certain degree and independently of the metadata
management scheme. We conclude that while the DHT method might seem efficient due to
linear read and write operations, it is not well suited for geo-distributed executions, which
favor locality and penalize remote operations.

In a similar experiment, we validated DMM-Chiron using the Buzz workflow, which is
rather data intensive, with two DBLP database dumps of 60 MB and 1.2 GB. The results are
shown in Figure 7.13; note that the left and right Y-axes differ by one order of magnitude.
We observe again that DMM-Chiron brings a general improvement in the completion time
with respect to the centralized implementation: 10 % for LOC in the 60 MB dataset and 6 %
for 1.2 GB, while for DHT and REP the time improvement was less than 5 %.

Albeit the time gains perceived in the experiments might not seem significant at first
glance, two important aspects must be taken into consideration.

Optimization at no cost. Our proposed solutions are implemented using exactly the same
number of resources as their counterpart centralized approaches: the decentralized
metadata stores are deployed within the master nodes of each site and the control
messages are sent through the same existing channels. This means that such gains (if
small) come at no additional cost for the user.

Actual monetary savings. Our longest experiment (Buzz 1.2 GB) runs in the order of hun-
dreds of minutes. With today’s scientific experiments running at this scale and beyond,
a gain of 10 % actually implies savings of hours of cloud computing resources.

Our focus in this chapter was on handling metadata in a smart distributed way so that
this improves job/task execution time when processing a large number of data pieces. While

92 Chapter 7 – Small Files Metadata Support for Geo-Distributed Clouds

our techniques show an improvement with respect to a centralized management, we also
notice that when the scale of the processing and the size of data become larger, there is a
performance degradation (see Figure 7.12) due to the increase of intermediate data transfers.
To mitigate this degradation and allow for larger datasets, a data location awareness module
should be added to the interface between the engine and our metadata manager.

Overall, we proved that a hybrid distributed/replicated solution can reduce, almost by
half, the time to process inter-site metadata operations. We also showed that these solu-
tions scale to hundreds of nodes. Then, we found a best-match between our decentralized
strategies and metadata-intensive, large-scale workflows and streams. At the same time, we
acknowledged the prevailing effectiveness of centralized metadata servers for single-site or
smaller-scale workflows and streams.

93

Part III

Scalable Stream Ingestion and Storage

95

Chapter 8
KerA: Scalable Data Ingestion for

Stream Processing

Contents
8.1 Impact of ingestion on stream processing 96

8.1.1 Time domains . 96
8.1.2 Static vs. dynamic partitioning . 98
8.1.3 Record access . 99

8.2 KerA overview and architecture . 100
8.2.1 Models . 100
8.2.2 Favoring parallelism: consumer and producer protocols 103
8.2.3 Architecture and implementation . 103
8.2.4 Fast crash recovery for low-latency continuous processing 105

8.3 Experimental evaluation . 105
8.3.1 Setup and methodology . 105
8.3.2 Results . 106
8.3.3 Discussion . 108

DATA INGESTION IS AN ESSENTIAL PART OF THE STREAM COMPUTING PIPELINE. Its
role is to collect data from various sources (sensors, NoSQL stores, filesystems, etc.)
and to deliver them for processing or storage. Ingestion acts as a broker between

those numerous distributed data sources (called producers) and the SPEs (called consumers).
Hence, the overall performance of the whole stream computing pipeline is limited by that
of the ingestion phase However, as seen in section 3.3.1, state-of-art data ingestion systems
trade performance for design simplicity. For instance, Apache Kafka uses static stream parti-
tioning, which prevents elasticity and high throughput, and enables only offset-based record
access, which limits usability.

96 Chapter 8 – KerA: Scalable Data Ingestion for Stream Processing

Figure 8.1 – Time domains on the stream processing pipeline: records are collected at event
time and made available to consumers earliest at ingestion time, after the events are acknowl-
edged by producers. Processing engines continuously pull these records and buffer them at
buffer time, and then deliver them to the processing operators at processing time.

In this chapter we introduce KerA [6, 7, 8], a data ingestion framework that alleviates
these limitations by means of dynamic partitioning and lightweight indexing. Experimental
evaluations show that KerA outperforms Kafka up to 4x for ingestion throughput and up to
5x for the overall stream processing throughput. Furthermore, they show that KerA is capa-
ble to scale up and to deliver data fast enough to saturate the SPE acting as the consumer.

8.1 Impact of ingestion on stream processing

{{ The weak link of the three stage pipeline
(collection, ingestion, processing) is the
ingestion phase. ||

SPEs rely on message brokers to decouple
data sources from applications in order to
hide the stream variability. For instance,
events may arrive late, out of order, or sim-
ply too fast with respect to the processing capabilities of the engine. Thus, the weak link of
the three stage pipeline (collection, ingestion, processing) is the ingestion phase. It needs to
acquire records with a high throughput from the producers, serve the consumers with a high
throughput, scale to a large number of producers and consumers, and minimize the write
latency of the producers and, respectively, the read latency of the consumers to facilitate low
end-to-end latency.

Achieving all these objectives simultaneously is challenging, which is why applications
rely on specialized ingestion runtimes to implement this phase. Several design dimensions
of these frameworks are worth a closer look in order to identify the potential bottlenecks.

8.1.1 Time domains

Let us start with a vocabulary disambiguation. When processing streams of unbounded
events, the notion of time plays an important role as it is associated with all the phases of the

8.1 – Impact of ingestion on stream processing 97

Figure 8.2 – Time-domain mapping. In reality, processing-time lag and event-time skew at
any given point in time are identical [33].

events lifecycle, with distinct semantics for each. More particularly, there are four inherent
domains of time to consider, illustrated in Figure 8.1 and explained below:

Event time is the time at which the event itself actually occurred, i.e., a record of system
clock time (for whatever system generated the event). It is typically encoded by a
timestamp attached to the data record that the source emits.

Ingestion time is the moment when the ingestion framework finished handling the collec-
tion process and makes the event available to registered consumers.

Buffer time is the time at which the SPEs pull the records from the brokers (i.e., ingestion
frameworks) and are ready to process them.

Processing time is the time when the event arrives in the message queue for processing,
measured by the clock of the node that processes it.

Problem: Variable lag between the event time and the processing time. In most setups,
the event time for a given event essentially never changes. However, the processing time
changes constantly for each event as it flows through the pipeline and time marches ever
forward. The reasons for that are manyfold: data production spikes, volatile event pro-
ducers, communication delays of different network paths, scheduling algorithms, pipeline
serialization, queuing and backpressure effects from the stream consumers, etc. The end
effect is a dynamically changing difference between the two time domains, which is often
referred to as event time skew and is defined as processing time - event time.

In an ideal world, this skew would always be zero, with events being processed immedi-
ately as they occur. Reality is however much more mundane, and often what we end up with
is more like Figure 8.2. In this example, the system lags a bit at the beginning of processing
time, veers closer toward the ideal in the middle, and then lags again a bit toward the end.
So, the skew between event time and processing time is not only nonzero, but often a highly
variable function of the characteristics of the input sources, SPEs, and hardware.

98 Chapter 8 – KerA: Scalable Data Ingestion for Stream Processing

Solution: Ingestion awareness of the correlation between the two domains. This dy-
namic variance in skew is very common in distributed data processing systems, and plays
a big role in defining the functionalities and the objectives of an efficient ingestion layer. In
particular, it tells that one cannot analyze data solely within the context of when they are
observed by the processing pipeline but also considering when the events actually occurred.
Unfortunately, the notion of windowing introduced by many historical systems did exactly
that: they chopped the stream into finite datasets along temporal boundaries defined only
by the processing time (i.e., processing-time windowing). This leads to out-of-order data
and events ending up in the wrong processing-time windows. Instead, what we aim for is to
maintain a consistent correlation between processing time and event time all along the ingestion
phase in order to guarantee correctness.

8.1.2 Static vs. dynamic partitioning

Problem: Static partitioning leads to over-provisioning. State-of-art stream ingestion sys-
tems (e.g., [118, 49, 103]) employ a static partitioning scheme where the stream is split among
a fixed number of partitions. Each partition is an unbounded, ordered, immutable sequence
of records that are continuously appended. Producers accumulate records in fixed-sized
batches, each of which is appended to one partition. Each consumer is assigned to one or
more partitions and each partition is assigned to a single consumer. This eliminates the need
for complex synchronization mechanisms but has an important drawback: the application
needs apriori knowledge about the optimal number of partitions.

However, in real-life situations it is difficult to predict the optimal number of partitions,
because this depends on a large number of factors (number of brokers, number of consumers
and producers, network size, estimated ingestion and processing throughput target, etc.) In
addition, the producers and the consumers exhibit dynamic behavior that can generate large
variance between the optimal number of partitions needed at different moments during the
runtime. Therefore, users tend to over-provision the number of partitions to cover the worst
case scenario where a large number of producers and consumers need to access the records
simultaneously. However, if the worst case scenario is not a norm but an exception, this can
lead to significant unnecessary overhead. Furthermore, a fixed number of partitions can also
become a source of imbalance: since each partition is assigned to a single consumer, it can
happen that one partition accumulates or releases records faster than the other partitions if
it is assigned to a consumer that is slower or faster than the other consumers.

For instance, in Kafka, a stream is created with a fixed number of partitions that are man-
aged by Kafka’s brokers, as depicted in Figure 8.3. Each partition is represented by an index
file for offset positioning and a set of segment files, initially one, for holding stream records.
Producers and consumers query Zookeeper for partition metadata (i.e., on which broker a
stream partition leader is stored). Producers append to the partition’s leader (e.g., broker 1
is assigned partition 1 leader), while exclusively one consumer pulls records from it starting
at a given offset, initially 0. Records are appended to the last segment of a partition with an
offset being associated to each record. Each partition has 2 other copies (i.e., partition’s fol-
lowers) assigned to other brokers that are responsible to pull data from the partition’s leader
in order to remain in sync. Kafka leverages the operating system cache to serve partition’s
data to its clients. Due to this design it is not advised to collocate streaming applications on
the same Kafka nodes, which does not allow to leverage data locality optimizations [145].

8.1 – Impact of ingestion on stream processing 99

Figure 8.3 – Kafka’s architecture illustrated with 3 partitions, 3 replicas and 5 brokers.

Solution: Dynamic partitioning using semantic grouping and sub-partitions. In a
streaming application, users need to be able to control partitioning at the highest level in or-
der to define how records can be grouped together in a meaningful way. Therefore, it is not
possible to eliminate partitioning altogether (e.g., by assigning individual records directly
to consumers). However, we argue that users should not be concerned about performance
issues when designing the partitioning strategy, but rather by the semantics of the group-
ing. Since state-of-art approaches assign a single producer and consumer to each partition,
the users need to be aware of both semantics and performance issues when using static par-
titioning. Therefore, we propose a dynamic partitioning scheme where users fix the high
level partitioning criteria from the semantic perspective, while the ingestion system makes
each partition elastic by allowing multiple producers and consumers to access it simultane-
ously. To this end, we propose to split each partition into sub-partitions, each of which is
independently managed and attached to a potentially different producer and consumer.

8.1.3 Record access

Problem: Offset-based record access creates unnecessary overhead. In Kafka, the brokers
assign to each record of a partition a monotonically increasing identifier called the partition
offset. This allows applications to get random access within partitions. However, streaming
applications normally access the records in sequential order, so they don’t actually need offset
support. The rationale of providing random access is to enable failure recovery. Specifically,
a consumer that failed can go back to a previous checkpoint and replay the records start-
ing from the last offset at which its state was checkpointed. Furthermore, using offsets when
accessing records enables the broker to remain stateless with respect to the consumers. How-
ever, support for efficient random access is not free: assigning an offset to each record at such
fine granularity degrades the access performance and occupies more memory. Furthermore,
since the records are requested in batches, each batch will be larger due to the offsets, which
generates additional network overhead.

100 Chapter 8 – KerA: Scalable Data Ingestion for Stream Processing

Solution: Lightweight offset indexing optimized for sequential record access. Since ran-
dom access to the records is not the norm but an exception, we argue that ingestion systems
should primarily optimize sequential access to records at the expense of random access. To
this end, we propose a lightweight offset indexing that assigns offsets at coarse granularity at
sub-partition level rather than fine granularity at record level. Additionally, this offset keeps
track (on client side) of the last accessed record’s physical position within the sub-partition,
which enables the consumer to ask for the next records. Moreover, random access can be
easily achieved when needed by finding the sub-partition that covers the offset of the record
and then seeking into the sub-partition forward or backward as needed.

8.2 KerA overview and architecture

In this section we introduce KerA, a prototype stream ingestion system that illustrates the
design principles introduced in the previous section.

8.2.1 Models

We start by presenting the data model used for record and stream representations, followed
by the description of the dynamic partitioning model introduced by KerA.

Unified data model for streams

Stream records. A stream is an unbounded sequence of records that are not necessary corre-
lated with each other. Each record of a stream is represented by an entry header which
has a checksum covering everything but this field; the record is defined by a number of
keys (possibly none) and its value, similar to the multi-key-value data format used in
RAMCloud [151]. The record’s entry header contains an attribute to optionally define
a version and a timestamp necessary to efficiently enable key-value interfaces.

Chunks. Record entries are further grouped by producers into chunks (a chunk has a fixed
size of up to 8-16 MB). The chunk aggregation is useful for two reasons. First, it gives
clients the chance to efficiently (for metadata purposes) batch more records in a request
in order to trade-off latency and throughput. Second, since each chunk is tagged with
the producer identifier and with a dynamically assigned partition offset identifier (we
explore offset details in the next section), this helps ensuring exactly once semantics
and ordering semantics necessary for consistent ingestion and processing.

Segments. A producer client prepares and writes a request containing a set of chunks. Each
chunk is acquired by the ingestion system and appended into a segment representing
a pointer to a buffer managed by the system. A segment has a customizable fixed size
(8-16 MB) necessary for efficiently moving data from memory to disk and backwards
(segments have the same structure on both disk/flash and memory). A stream is com-
posed of a set of uniform segments containing chunks of records of the same stream.

Groups of segments. In order to reduce the metadata necessary to describe the set of seg-
ments of a stream, we logically assemble a fixed number of segments into a group.
Each stream is thus represented by a smaller, unbounded set of groups of segments.

8.2 – KerA overview and architecture 101

Figure 8.4 – A stream is logically composed of a set of streamlets.

Objects. KerA will also provide a storage layer for persistence. We have seen in section 2.3.1
that object-based storage is a versatile and efficient backend for both distributed file
systems and databases. To this end, we model objects as bounded streams. They are
represented by a fixed number of groups. For instance, we can think about the group
as a similar concept to HDFS file’s block. In order to reduce the metadata overhead for
large unstructured objects (i.e., they do not benefit from the fine-grained record model),
clients could create chunks having a single record with a large value (8-16MB). Since
groups are split into small segments, this can help batch analytics load balance the
processing of the group’s segments in order to solve the straggler issues common in Big
Data analytics. We think that our fine-grained representation of an object is a fair trade-
off (due to small metadata overhead represented by chunks and segments) required to
enable the management of streams and object by the same ingestion/storage system.

Dynamic partitioning model and offset indexing

KerA implements dynamic partitioning based on the concept of streamlet (Figure 8.4), which
corresponds to the semantic high-level partition that groups records together. A streamlet is
a container for fixed-size sub-partitions (groups of segments), with each group created dy-
namically. A stream has up to M streamlets that are initially created on a set of N, N ≤ M,
brokers (a broker is the entity offering pub/sub interfaces for handling streams). M repre-
sents the maximum number of nodes that can ingest and store a stream’s records (ensuring
horizontal scalability through migration of streamlets to new brokers).

Each streamlet is dynamically split into groups, which correspond to the sub-partitions
assigned to a single producer and consumer. A streamlet can have an arbitrary number of
groups created as needed, each of which can grow up to a maximum predefined size. To
facilitate the management of groups and offsets, each group is further split into fixed-sized
segments. The maximum size of a group is a multiple of segment size P ≥ 1. To control the
level of parallelism on each broker, only Q ≥ 1 groups can be active at a given moment.

102 Chapter 8 – KerA: Scalable Data Ingestion for Stream Processing

Figure 8.5 – Stream creation illustrated with 3 streamlets and 5 brokers.

Elasticity is achieved by assigning an initial number of brokers N ≥ 1 to hold the stream-
lets M, M ≥ N, as illustrated in Figure 8.5. Streamlet groups and their segments are dynami-
cally discovered by consumers querying brokers for the next available groups of a streamlet
and for new segments of a group. As more producers and consumers access the streamlets,
more brokers can be added up to M. The streamlet configuration allows the user to reason
about the maximum number of nodes on which to partition a stream, each streamlet pro-
viding an unbounded number of fixed-size groups (sub-partitions) to process. Replication
in KerA can leverage its fine-grained partitioning model (streamlet-groups- segments) by
replicating each group (i.e., its segments) on distinct brokers or by fully replicating a stream-
let’s groups on another broker.

In order to ensure ordering semantics, each streamlet dynamically creates groups (and
their segments, initially one) that have unique, monotonically increasing identifiers. Brokers
expose this information to consumers through RPCs that dynamically create an application
offset defined as [streamId, streamletId, groupId, segmentId, position] based on which they issue
RPCs to pull data. The position is the physical offset at which a record can be found in
a segment. The consumer initializes it to 0 (broker understands to iterate to first record
available in that segment) and the broker responds with the last record position for each new
request, so the consumer can update its latest offset to start a future request with. Using this
dynamic approach we enable lightweight offset indexing optimized for sequential record
access. In contrast, the static approach with explicit offsets per partition forces clients to
query brokers to discover groups.

Stream records (grouped in batches at the client side) are appended in order to the seg-
ments of a group, without associating an offset, which reduces the storage and processing
overhead. Each consumer exclusively processes one group of segments. Once the segments
of a group are filled (the number of segments per group is configurable), a new one is created
and the old group is closed (i.e., no longer enables appends). A group can also be closed after
a timeout if it was not appended in this time.

8.2 – KerA overview and architecture 103

8.2.2 Favoring parallelism: consumer and producer protocols

Producers only need to know about streamlets when interacting with KerA. The input
batch is always ingested to the active group computed deterministically on brokers based
on the producer identifier and parameter Q of given streamlet (each producer request has a
header with the producer identifier with each batch tagged with the streamlet id). Producers
writing to the same streamlet synchronize using a lock on the streamlet in order to obtain the
active group (or create one if needed) corresponding to the Qth entry based on their producer
identifier. The lock is then released and a second-level lock is used to synchronize producers
accessing the same active group. Thus, two producers appending to the same streamlet, but
different groups, may proceed in parallel for data ingestion. In contrast, in Kafka producers
writing to the same partition block each other, with no opportunity for parallelism.

Consumers issue RPCs to brokers in order to first discover streamlets new groups and their
segments. Only after the application offset is defined, consumers can issue RPCs to pull data
from a group’s segments. Initially each consumer is associated (non-exclusively) to one or
many streamlets from which to pull data from. Consumers process groups of a streamlet in
the order of their identifiers, pulling data from segments also in the order of their respective
identifiers. A group is configured with a fixed number of segments to allow fine-grained
consumption with many consumers per streamlet in order to better load balance groups to
consumers. As such, each consumer has a fair access chance since the group is limited in size
by the segment size and the number of segments. A consumer pulls data from one group of
a streamlet exclusively, which means that multiple consumers can read in parallel from different
groups of the same streamlet. In Kafka, a consumer pulls data from one partition exclusively.

8.2.3 Architecture and implementation

KerA’s architecture (presented in Figure 8.6) is similar to Kafka’s: a single layer of brokers
(nodes) serve producers and consumers. However, in KerA brokers are used to discover
stream sub-partitions. Kera builds atop RAMCloud’s [151] framework in order to leverage
its network abstraction that enables the use of other network transports (e.g., UDP, DPDK,
Infiniband), whereas Kafka only supports TCP. This allows KerA to benefit from a set of
design choices like polling and request dispatching [120] that help boost performance (kernel
bypass and zero-copy networking are possible with DPDK and Infiniband). Kera consists of
about 5K lines of C++ code for client and server side implementations.

Brokers manage the main memory of a server and handle multiple streams by ingesting
stream batches into the active segment of the streamlet’s active group (if one exists, otherwise
a new group/segments is created). The Broker handles requests (for data and metadata)
from both producers and consumers through RPCs. Each streamlet provides a number of
active (open) groups (up to Q) and their corresponding active segments (i.e., pointers to
memory buffers) into which the next writes are appended. Once a segment is closed (it
suffers no more appends), a segment manager is responsible for providing a new segment.

Each Broker has an ingestion component offering pub/sub interfaces to stream clients
and an optional backup component that can store stream replicas. This allows for separation

104 Chapter 8 – KerA: Scalable Data Ingestion for Stream Processing

Figure 8.6 – KerA architecture: the Coordinator manages storage nodes on which live Bro-
kers and Backups. Clients mainly interact with Brokers while Backups are simply used for
storing stream’s replicas.

of nodes serving clients from nodes serving as Backups. Another important difference com-
pared to Kafka is that Brokers directly manage stream data instead of leveraging the kernel
virtual cache. KerA’s segments are buffers of data controlled by the stream storage. Since
each segment contains the [stream, streamlet, group] metadata, a streamlet’s groups can be
durably stored independently on multiple disks, while in Kafka a partition’s segments are
stored on a single disk.

The Coordinator is a single service that handles the configuration of the cluster (e.g.,
adding or removing nodes, management of live or crashed brokers/backups) and the
stream-streamlet-broker metadata (i.e., which broker is responsible for each streamlet of a
stream). Clients first query the Coordinator in order to obtain and cache the association
of Brokers and streamlets for a given stream. To avoid being a single point of failure, the
Coordinator can be built using a fault-tolerant distributed consensus protocol similar to the
implementation of the master processes of Hadoop, Spark, Flink or RAMCloud. The Co-
ordinator is also responsible for the recovery of failed broker/backup services and for the
migration of streamlets to other Brokers when necessary to respond to higher or lower in-
gestion load.

Backups store stream replicas. A Backup is configured with a limited number of in-
memory segments (e.g., 256 segments of 8MB each) in order to acknowledge as fast as
possible the replication RPCs. It is installed on servers backed by batteries in order to sur-
vive power failures. A Backup manages the storage provided by multiple disks in order
to store segments (in a log-structured fashion) in multiple log files, one log for each device
(disk/flash). The Backup maintains in memory the association of replicated streams with
local segments; this metadata is useful for the recovery or migration of a stream’s segments.

Since the number of in-memory segments managed by a Backup is limited, this setting
pushes a restriction on the number of streams that can be efficiently and durably created
and replicated. Moreover, the dynamic partitioning of a stream (up to the number of active
groups multiplied by the number of streamlets) puts further pressure on this limitation. To
maximize the number of active streams that can be created at a given time, we associate with
each stream a set of virtual logs managing replicated virtual segments. Each virtual segment

8.3 – Experimental evaluation 105

contains pointers to chunks of a stream’s partitions (that were acquired consecutively) and
is replicated into a Backup’s in-memory segment. The Backup eventually writes the seg-
ment on storage to ensure durability. As such, the Backup’s segments contain chunks from
possibly various groups of different streamlets of a stream. At recovery time, Backups read
segments from disk and issue writes to the new brokers responsible to recover the lost data
of a crashed broker. Each of these requests is handled as a normal producer request (i.e.,
chunks are ingested into their respective groups) while metadata is safely reconstructed.

8.2.4 Fast crash recovery for low-latency continuous processing

To support durability, replication, and fast crash recovery we rely on the techniques [150]
introduced in RAMCloud, by leveraging the aggregated disk bandwidth in order to recover
the data of a lost node in seconds. KerA’s fine-grained partitioning model favors this recov-
ery technique. However it cannot be used as such: producers should continuously append
records and not suffer from Broker crashes, while consumers should not have to wait for all
data to be recovered (thus incurring high latencies). Instead, recovery can be achieved by
leveraging consumers application offsets.

In case of Broker crashes we immediately recover the streamlet metadata (based on
Backup’s metadata) and re-enable producers to push the next stream batches. In parallel
we proceed with the recovery of data as follows. Based on the last consumer offsets (e.g.,
every minute, for each consumer group, we store the last offsets used in read requests), we
first recover the unprocessed groups. Then we proceed with the recovery of the other pro-
cessed groups. In this way, readers continue to pull data for processing (although limited by
recovery speed).

8.3 Experimental evaluation

We evaluate KerA compared to Kafka using a set of synthetic benchmarks to assess how
partitioning and the application defined offset based access model impact performance.

8.3.1 Setup and methodology

We ran all our experiments on Grid5000 Grisou cluster [101]. Each node has 16 cores and
128 GB of memory. In each experiment the source thread of each producer creates 50 million
non-keyed records of 100 bytes, and partitions them round-robin in batches of configurable
size. The source waits no more than 1ms (parameter named linger.ms in Kafka) for a batch to
be filled, after this timeout the batch is sent to the broker. Another producer thread groups
batches in requests and sends them to the node responsible of the request’s partitions (multi
TCP synchronous requests). Similarly, each consumer pulls batches of records with one
thread and simply iterates over records on another thread.

In the client’s main thread we measure ingestion and processing throughput and log
it after each second. Producers and consumers run on different nodes. We plot average
ingestion throughput per client (producers are represented with KeraProd and KafkaProd,

106 Chapter 8 – KerA: Scalable Data Ingestion for Stream Processing

0.0*10
0

1.0*10
5

2.0*10
5

3.0*10
5

4.0*10
5

5.0*10
5

6.0*10
5

7.0*10
5

8.0*10
5

9.0*10
5

1.0*10
6

1.1*10
6

1 2 4 8 16 32 64

C
li
e

n
t

T
h

r
o

u
g

h
p

u
t

Batch Size (KB)

KeraProd
KeraCons
KafkaProd
KafkaCons

Figure 8.7 – Increasing the batch size (request
size). Parameters: 4 brokers; 16 produc-
ers and 16 consumers; number of partition-
s/streamlets is 16; request.size = batch.size×
4 (number of partitions per node). On X
we plot producer batch.size in KB, for con-
sumers we configure a value 16x higher.

0.0*10
0

1.0*10
5

2.0*10
5

3.0*10
5

4.0*10
5

5.0*10
5

6.0*10
5

7.0*10
5

8.0*10
5

9.0*10
5

1.0*10
6

1.1*10
6

4 8 16 32

C
li
e

n
t

T
h

r
o

u
g

h
p

u
t

Number Clients

KeraProd
KeraCons
KafkaProd
KafkaCons

Figure 8.8 – Adding clients. Parameters:
4 brokers; 32 partitions/streamlets, 1 ac-
tive group per streamlet; batch.size = 16KB;
request.size = 128KB.

respectively consumers with KeraCons and KafkaCons), with 50 and 95 percentiles com-
puted over all clients measurements taken when concurrently running all producers and
consumers (without considering the first and last ten seconds measurements of each client).

Each broker is configured with 16 network threads that corresponds to the number of
cores of a node and holds one copy of the streamlet’s groups. In each experiment we run an
equal number of producers and consumers. The number of partitions/streamlets is config-
ured to be a multiple of the number of clients, at least one for each client. Unless specified,
we configure in KerA the number of active groups to 1 and the number of segments to 16.
A request is characterized by its size (i.e., request.size, in bytes) and contains a set of batches,
one for each partition, each batch having a batch.size in bytes. We use Kafka 0.10.2.1 since it
has a similar data model with KerA (newest release introduces batch entries for exactly once
processing, a feature that could be efficiently enabled also in KerA [7]). A Kafka segment is
512 MB, while in KerA it is 8MB. This means that rolling to a new segment happens more of-
ten and may impact performance (since KerA’s clients need to discover new segments before
pulling data from them).

8.3.2 Results

While Kafka provides a static offset-based access by maintaining and indexing record offsets,
KerA proposes dynamic access through application defined offsets that leverage streamlet-
group-segment metadata (thus, avoiding the overhead of offset indexing on brokers). In
order to understand the application offset overhead in Kafka and KerA, we evaluate differ-
ent scenarios, as follows.

Impact of the batch/request size. By increasing the batch size we observe smaller gains in
Kafka than KerA (Figure 8.7). KerA provides up to 5x higher throughput when increasing
the batch size from 1KB to 4KB, after which throughput is limited by that of the producer’s
source. For each producer request, before appending a batch to a partition, Kafka iterates

8.3 – Experimental evaluation 107

0.0*10
0

1.0*10
5

2.0*10
5

3.0*10
5

4.0*10
5

5.0*10
5

6.0*10
5

7.0*10
5

8.0*10
5

9.0*10
5

1.0*10
6

1.1*10
6

4 8 12 16

C
li
e

n
t

T
h

r
o

u
g

h
p

u
t

Number Nodes

KeraProd
KeraCons
KafkaProd
KafkaCons

Figure 8.9 – Adding nodes (brokers): 32
producers, 32 consumers, 256 partitions, 32
streamlets, 8 active groups per streamlet;
batch.size = 16KB; request.size = batch.size×
partitions number/active groups per node.

0.0*10
0

1.0*10
5

2.0*10
5

3.0*10
5

4.0*10
5

5.0*10
5

6.0*10
5

7.0*10
5

8.0*10
5

9.0*10
5

1.0*10
6

1.1*10
6

16 32 64 128 256 512 1024

C
li
e

n
t

T
h

r
o

u
g

h
p

u
t

Number Partitions

KeraProd
KeraCons
KafkaProd
KafkaCons

Figure 8.10 – Increasing the number of par-
titions and respectively streamlets. Param-
eters: 4 brokers; 16 producers and 16 con-
sumers; request.size = 1MB; batch.size =
request.size/partitions number.

at runtime over batch’s records in order to update their offset, while Kera simply appends
the batch to the group’s segment. To build the application offset, KerA’s consumers query
brokers (issuing RPCs that compete with writes and reads) in order to discover new groups
and their segments. This could be optimized by implementing a smarter read request that
discovers new groups or segments automatically, reducing the number of RPCs.

Adding clients (vertical scalability). Having more concurrent clients (producers and con-
sumers) means possibly reduced throughput due to more competition on partitions and less
worker threads available to process the requests. As presented in Figure 8.8, when running
up to 64 clients on 4 brokers (full parallelism), KerA is more efficient in front of higher num-
ber of clients due to its more efficient application offset indexing.

Adding nodes (horizontal scalability). Since clients can leverage multi-TCP, distributing
partitions on more nodes helps increasing throughput. As presented in Figure 8.9, even
when Kafka uses 4 times more nodes, it only delivers half of the performance of KerA. Cur-
rent KerA implementation prepares a set of requests from available batches (those that are
filled or those with the timeout expired) and then submits them to brokers, polling them for
answers. Only after all requests are executed, a new set of requests is built. This implementa-
tion can be further optimized and the network client can be asynchronously decoupled, like
in Kafka, in order to allow for submissions of new requests when older ones are processed.

Increasing the number of partitions/streamlets. Finally, we seek to assess the impact of
increasing the number of partitions on the ingestion throughput. When the number of par-
titions is increased we also reduce the batch.size while keeping the request.size fixed in order
to maintain the target maximum latency an application needs. We configure KerA similarly
to Kafka: the number of active groups is 1 so the number of streamlets gives a number of
active groups equal to the number of partitions in Kafka (one active group for each streamlet
to pull data from in each consumer request). We observe in Figure 8.10 that when increasing
the number of partitions the average throughput per client decreases. We suspect Kafka’s
drop in performance (20x less than KerA for 1,024 partitions) is due to its offset-based im-
plementation, having to manage one index file for each partition.

108 Chapter 8 – KerA: Scalable Data Ingestion for Stream Processing

8.3.3 Discussion

With KerA one can leverage the streamlet-group abstractions in order to provide applica-
tions an unlimited number of sub-partitions (fixed-size groups of segments). To show this
benefit, we run an additional experiment with KerA configured with 64 streamlets and 16
active groups. The achieved throughput is almost 850K records per second per client pro-
viding consumers 1,024 active groups (fixed-size sub-partitions) compared to less than 50K
records per second with Kafka providing the same number of partitions. KerA provides
higher parallelism to producers and consumers resulting in higher ingestion/processing
client throughput than Kafka.

The core ideas proposed by KerA revolve around: (1) dynamic partitioning based on se-
mantic grouping and sub-partitioning, which enables more flexible and elastic management
of partitions; (2) lightweight offset indexing optimized for sequential record access using
streamlet metadata exposed by the broker. Encouraged by these initial results, we plan to
integrate KerA with streaming engines and to explore in future work several topics: data lo-
cality optimizations through shared buffers, durability as well as state management features
for streaming applications.

109

Chapter 9
Týr: Transactional, Scalable Storage

for Streams

Contents
9.1 Blobs for stream storage . 110

9.2 Design principles and architecture . 111

9.2.1 Predictable data distribution . 111

9.2.2 Transparent multi-version concurrency control 112

9.2.3 ACID transactional semantics . 114

9.2.4 Atomic transform operations . 115

9.3 Protocols and implementation . 116

9.3.1 Lightweight transaction protocol . 116

9.3.2 Handling reads: direct, multi-chunk and transactional protocols . . . 118

9.3.3 Handling writes: transactional protocol, atomic transforms 120

9.3.4 Implementation details . 120

9.4 Real-time, transactional data aggregation in support of system monitoring 121

9.4.1 Transactional read/write performance 123

9.4.2 Horizontal scalability . 126

STREAM STORAGE LAGS BEHIND PROCESSING in terms of number of solutions and their
delivered throughput and I/O access performance. We have seen in Part 1 of this
manuscript that:

a) state-of-the-art stream storage systems that leverage distributed file systems, log-based
storage or databases introduce processing skews and significant memory, disk and network
overheads (sections 2.3.1 and 3.3.2);

110 Chapter 9 – Týr: Transactional, Scalable Storage for Streams

b) transactional support is required by real-time analytics but it is currently missing from
stream storage solutions or comes at the cost of performance (section 4.2).

Concerning the first observation, we have noticed that the vast majority of the studied
distributed file systems, log-based storage and databases are built as thin layers atop object
storage. In order to reduce their overheads, one idea would be to use the object storage
directly, bypassing the file, log or key-value semantics.

As for the second remark, consistency is a common requirement for all storage systems,
not only for those dedicated to streams. Providing consistency has always posed hard chal-
lenges to system developers because of the wide range of conditions that can potentially
result in data corruption. Besides system and network failures common to all systems, con-
current, conflicting storage requests can also yield incorrect results. This is the case when the
storage system purposely relaxes these guarantees, such as Ceph [187] for writes operations
crossing a chunk boundary [73]. Solutions to ensure consistency either rely on applicative
locks or leverage synchronization primitives provided by a layer down the storage stack.
Defining at which layer to implement consistency management is a hard question. How-
ever, in case of streams, the only viable option is the storage-based consistency. Implementing
it at the application level would mean to burden the online processing pipeline with heavy
synchronisation constructs that would render obsolete the real-time promise of the results.

In this chapter, we propose the design of Týr [10, 11], a blob storage system designed
from the ground up to support multi-object synchronization with transactional semantics.
Týr notably combines predictable data distribution that is central for low-latency with multi-
version concurrency control that is key to high-performance under high write contention
scenarios.

9.1 Blobs for stream storage

Problem: Stream storage is not well served by distributed file systems and databases.
Most SPEs today still rely on distributed file systems (e.g., HDFS in Spark and Flink), which
used to provide a good balance between performance and versatility. However, the fast
growth of the data volumes and throughput requirements of data-instensive applications
running on a new generation of extreme scale platforms pushes this storage paradigm to its
limits. Also, looking at the stream data model, its unbounded nature better fits an unstructured
storage (able to store any byte sequence of data). As per the data access patterns, the vast
majority of the storage calls are simple reads and writes. Finally, most streaming applications
simply do not require the complex directory hierarchies and the heavyweight POSIX functionalities.
As such, there is a clear trend in the streaming community to move away from distributed
file systems altogether.

While key-value or other NoSQL data stores provide a highly efficient data model able
to cope with more than a billion I/O operations per second on a single server [128], they do
lack support for the large, mutable data objects storing huge streams, that are required by a wide
range of extreme scale stream processing applications.

9.2 – Design principles and architecture 111

{{ Support for large objects with a flat
namespace and a simple API is precisely
the main target of blob storage systems. ||

Solution: Blob storage. Such support for
large objects with a flat namespace and
a simple API is precisely the main target
of blob storage systems. They provide a
middle-ground approach combining the horizontal scalability on par with that of key-value
stores and a virtually infinite capacity as distributed file systems. More interestingly, they fit
to the data access model required by streaming applications: reads and writes are easily cov-
ered by object storage systems, while the rest of the storage calls can be mapped atop them.
Overall, their flat namespaces are friendly to applications by offering low data-management
overhead. Furthermore, the deployment of blob storage does not conflict with legacy stream-
ing applications due to their capability to serve as a building block for highly efficient file
system interfaces. As such, blob storage systems are a strong candidate for scalable stream storage.

Limitations of state-of-the-art blob storage call for dedicated solutions for streams.
However, despite being a very promising alternative to distributed file systems, blob stor-
age systems are not exempt for limitations. Specifically, significant challenges lie in their
consistency guarantees when faced with concurrent, conflicting writes. While some systems
choose not to provide any such guarantees, some do so at the expense of a substantial stor-
age operation latency increase compared to key-value stores. Rados performance is excellent
under low write contention, but its lock-based concurrency control limits its throughput in
highly-concurrent use-cases. On the contrary, the multi-version concurrency control of Blob-
Seer supports its performance under high concurrency, but the distributed metadata tree that
is core to its design induces a significant read latency that hinders application performance.
For blob storage systems to be proposed as an alternative to file systems for streaming, we
believe that a middle-ground approach is here also required: providing configurable consis-
tency guarantees while only exhibiting minimal overhead when no such guarantees are required.

Strong consistency required by real-life use-cases. In addition, while these blob systems
answer the needs of legacy applications, a range of advanced use-cases require stronger
consistency semantics, ensuring the correctness of multi-objects operations. This is notably
the case of the concurrent updates of the shared state in Lambda architectures (section 4.2.2) or
data indexing and aggregation (section 9.4). These use-cases are illustrated by the design of the
Warp Transactional Filesystem (WTF) [84] relying on transactions for metadata operations,
or the reliance of HBase [95] on ZooKeeper [108] for synchronization purposes.

9.2 Design principles and architecture

In this section, we summarize the key design principles that lay the foundation of Týr.

9.2.1 Predictable data distribution

Similarly with Rados [188] as well as a number of key-value stores [80, 170, 115], Týr enables
clients to access any piece of data without any prior communication with any metadata
node. The data are distributed in the cluster using a combination of consistent hashing and
data striping techniques.

112 Chapter 9 – Týr: Transactional, Scalable Storage for Streams

Consistent hashing [113] is a well known technique to distribute data in a cluster. The
unique key associated with each object is hashed with a function that is common to
all nodes in the cluster. The hashed value is used to determine the server which is
responsible for the data with this key. Each node in the cluster is responsible for a part
of the whole hash value range. The benefit of this technique is twofold. First, it dis-
tributes the loads across the whole cluster and helps alleviate potential hot spots when
the number of objects is high enough. Second, it obviates the need for a centralized
metadata server. Indeed, any node in the cluster is able to locate any piece of data with
only knowledge of the mapping between nodes and hash value ranges. Furthermore,
when this mapping is shared with the clients, they are able to send requests directly to
the nodes holding the value they seek to read or write. This consequently eliminates
unnecessary hops for pinpointing the location of data in the cluster. Such feature is key
to the low-latency of key-value stores such as Chord [171], Dynamo [80] or Riak [115].

Data striping complements this data distribution. Each blob in the system is split into
chunks of fixed size, that are distributed over all nodes of the system using consistent
hashing. Thereby, the I/O is distributed over a larger number of nodes, supporting the
scalability and performance of the system. This principle also enables storing objects
with a size greater than the capacity of a single machine. With a chunk size s, the first
chunk c1 of a blob will contain the bytes in the range [0, s), the second chunk c2, possi-
bly stored on another node, will contain the bytes in the range [s, 2s), and the chunk cn
will contain the bytes in the range [(n− 1) ∗ s, n ∗ s). The chunks being distributed in
the cluster using consistent hashing, their size must be fixed.

Chunks are distributed in the cluster as follows. Given a hash function h(x), the output
range [hmin, hmax] of the function is treated as a circular space, or ring (hmin sticking around
to hmax). Each node is assigned a different random value within this range, which represents
its position on the ring. For any given chunk n of a blob k, a position on the ring is calculated
by hashing the concatenation of k and n using h(k : n). The primary node holding the data for
a chunk is the first one encountered while walking the ring passed this position. Additional
replicas are stored on servers determined by continuing walking the ring until the proper
number of nodes is found.

9.2.2 Transparent multi-version concurrency control

Versioning is the core principle we use for data management; a new data version is gener-
ated each time a blob is written to. Multi-version concurrency control isolates readers from
concurrent writers. Essentially, it enables writers to modify a copy of the original data while
enabling concurrent readers to access the most recent version. Týr does not expose multiple
versions to the reader, keeping this complexity hidden from the clients. This principle yields
the following advantages:

High throughput under heavy access concurrency. Compared to systems where locks are
used to synchronize concurrent access to a given piece of data, versioning offers sig-
nificant performance advantages. Once written, a data version is considered immutable.
As such, the data is never overwritten; instead, writes operate on a copy of the current
version instead of overwriting it. The main benefit of such approach is that readers are

9.2 – Design principles and architecture 113

(k, v1)
c1
v1

c2
v1

c3
v1

(k, v2)
c1
v1

c2
v2

c3
v1

Write v2
v2 only affects c2

Figure 9.1 – Týr versioning model. When a
version v2 of the blob is written, which only
affects chunk c2, only the version of both the
blob and c2 is changed. The version id for
both c1 and c3 remains unchanged. Sequen-
tial version numbers are used for simplicity.

c1

c2

c3

v1 v2 v3 v4 v5 v6

Figure 9.2 – Version management example.
The version v1 of this blob only affected the
chunk c1, v2 affected both c1 and c2. In this
example, v6 is composed of the chunk ver-
sions (v4, v3, v6). This versioning information
is stored on the blob’s metadata nodes. Se-
quential version numbers are used for sim-
plicity.

not impacted by concurrent writers, and do not need to wait for conflicting write oper-
ations to finish. This contrasts with lock-based storage systems such as Rados, which
typically offer degraded read throughput under heavy access concurrency because of
lock contention.

Enhanced fault tolerance. A significant challenge when data is not versioned is the data
recovery in the presence of failures. Indeed, should a fault occur during a write, the
data could be left in an unconsistent state, hence rendering data recovery difficult. In
contrast, since versioning ensures that writes only operate on a copy of the data, the
previous version can be restored and the incomplete write discarded.

We propose to handle versioning at the chunk level, in contrast with traditional imple-
mentations of multi-version concurrency control. This obviates the need for centrally gen-
erating sequential version numbers, which are normally used to determine the ordering of
successive versions. Generating such successive version numbers in a distributed context
is a difficult problem. The common solutions either rely on a heavyweight consensus algo-
rithm such as Paxos [122] or come at the cost of fault tolerance when a single sequencer is
used as in BlobSeer.

In contrast, we propose to use non-sequential numbers for versioning. The ordering
of successive versions of any given chunk is retained at each node storing a replica of this
chunk. The blob version identifier is the same as the most recent version identifier of its
chunks, as illustrated in Figure 9.1.

For any given write operation, only the nodes holding affected data chunks will receive
information regarding this new version. Consequently, the latest version of a blob is com-
posed of a set of chunks with possibly different version identifiers, as illustrated by Fig-
ure 9.2. To be able to read a consistent version of any given blob, information regarding

114 Chapter 9 – Týr: Transactional, Scalable Storage for Streams

every successive versions of all chunks composing a blob is stored on the same nodes hold-
ing replicas of the first data chunk of the blob. These nodes are called version managers for the
blob. Co-locating the first chunk of a blob and its version managers enables faster writes to
the beginning of blobs. It also avoids using any metadata registry for version management.

9.2.3 ACID transactional semantics

ACID transaction support is the key feature driving the design of Týr. Transactions provide
the user with an expressive way to indicate the relation between a set of queries. They en-
sure the correctness of the resulting multi-object operation that is either fully applied, either
rejected as a complete unit. The lightweight transactional protocol is core to the internals of
Týr. It notably ensures Týr linearizability, and supports its replication-based fault-tolerance
as well as the internal version garbage collection. We argue that co-designing a storage
system with its transaction processing provides the following features without requiring ad-
ditional protocols.

Consistent data replication. Replicating an object for fault-tolerance is a significant chal-
lenge for distributed systems not relying on a centralized metadata management ser-
vice. Indeed, all the replicas must agree on an ordering between the successive writes.
A common method for doing so is to rely on logical clocks or on arbitrary ordering
based, for example, on the local time the write has been applied on the server receiv-
ing the operation from the client. Transactions inherently enable the nodes holding the
replicas of any given chunk to agree on a serializable order. From the point of view of
the storage system, multiple replicas of a chunk are considered as different objects to
which the same operation is applied in the context of a transaction.

Version bookkeeping. A significant challenge in versioned systems is to determine when
it is safe to prune old versions of a chunk that are not used anymore. We propose to
rely on the transaction algorithm so that all metadata nodes for a blob are able to agree
on the older version of the blob to keep, and piggyback that information to the nodes
storing chunk replicas of this blob.

Yet, designing an efficient transaction commit protocol in a distributed environment is
hard. Traditional approaches used by relational database systems typically rely on central-
ized transaction managers aimed at coordinating transaction execution in a cluster. How-
ever, this approach has three main drawbacks. First, it creates a single point of failure in
the system as well as a potential hotspot, hence defeating the distributed metadata mana-
genent benefits for write scalability. Second, the cost of such transaction ordering is to be
paid even when transactions are not conflicting with each other, hence hindering the write
performance of the cluster. Finally, some form of complex, heavyweight static analysis is
usually required to ensure that no long-running transaction is prioritized over and hence
blocking small ones from committing.

The Warp [86] transaction chain protocol introduced in the HyperDex [85] key-value
store completely decentralizes transaction processing, so that no transaction manager or de-
fined consensus groups are required. It enables transactions to be ordered on-the-fly, delay-
ing the synchronization until a conflict is detected. This significantly reduces the transaction

9.2 – Design principles and architecture 115

processing costs in cases where applications are specifically designed to prevent such con-
flicts from happening. Furthermore, this protocol allows for lock-free reads which, combined
with the predictable data distribution, ensure a very low latency for read operations in most
cases.

Besides their low overhead, transaction chains also ensure the scalability of the system.
Indeed, Warp enables transactions to only involve the servers that are impacted by the trans-
action (that is, holding chunks that are read-from or written-to in the context of that transac-
tion). This eliminates hot spots in the system, in addition to reducing communication costs.

9.2.4 Atomic transform operations

Transaction based coordination provides the user with a simple way to express interdepen-
dency between related storage operations. However, for simple common patterns, their cost
can be further reduced. This is notably the case for read-modify-write operations that re-
quire two round-trips between the client and the server: one for reading the current value of
the data, and a second to optimistically apply the modifications to the storage. There are two
main issues with this. First, the two round-trips intuitively hinder the operation latency. Sec-
ond, the transaction would abort should a conflicting transaction commit between the read
and write operations, further increasing latency in addition to leaving up to the developer
to handle retries when required.

This problem is well known and was studied extensively in the database and shared
memory literature [160, 56, 173]. Two common alternatives to transaction processing for
simple read-modify-write use-cases exist.

Conditional primitives such as compare-and-swap (CAS) provide a solid building block
for higher-level operations. Yet, while they effectively decouple the read and write op-
eration from the point of view of the storage system, they yield little to no performance
gains when compared to transactions. This is because they still require a query to read
the current value of the data, and because a failing CAS operation also requires the de-
veloper to manually handle failure scenarios. Nevertheless, they proved to be a solid
alternative to lock-based synchronization in HPC systems [72].

Atomic transform primitives provide a way for developers to transfer the responsibility
of the data modifications to the storage system. This is particularly interesting when
the transform operation is simple, such as binary additions, multiplications or bitwise
operations. These operations are key to efficient data aggregation (section 9.4). With
this scheme, the client does not communicate to the storage cluster the new data to be
written, but instead the modification to be applied to the current data. This scheme
significantly cuts communication costs by enabling such operations to be performed
with a single round-trip.

We advocate that the transactional foundation of the storage system we propose provides
an ideal base for these operations to be supported. Indeed, transaction protocols already in-
clude such conditional checks. They can be extended to support both CAS and atomic trans-
form primitives without additional overhead, ensuring the consistency of such operations
during the commit phase.

116 Chapter 9 – Týr: Transactional, Scalable Storage for Streams

9.3 Protocols and implementation

Designing the protocols enabling Týr users to read and write data is a difficult task. In-
deed, the core design principles of data chunking and multi-version concurrency control
raise additional challenges compared to other transactional storage systems. A key reason
explaining this difficulty lies in the size of the objects being stored. Transactional key-value
stores typically only support values of up to a few megabytes, that can be entirely stored on
a single node. In transactional file systems such as the Warp Transactional Filesystem, which
do not propose direct read access to the data, the scope of transactions is limited to metadata
operations in which the objects are small.

A naive approach consists of considering the multiple chunks that compose a single blob
as independent objects, and to apply existing transactional protocols to coordinate write
operations. Yet, such implementation would cause significant problems for read operations
spanning multiple chunks, which would contradict the following two requirements:

Consistent multi-chunk reads: When serving reads spanning multiple chunks, it is impor-
tant to ensure that the versions of all chunks that are returned together form a consis-
tent version of the blob. This must be guaranteed even while processing concurrent,
conflicting write operations. As such, the versions of each chunk cannot be considered
independently from one another.

Repeatable reads: This isolation level is particularly desirable for large objects, whose po-
tentially large size prevents them from being read entirely with a single read operation.
Essentially, repeatable reads guarantees that, in the context of a transaction, all read
operations to the same object will return data from the same consistent blob version.
This is particularly challenging in presence of conflicting write operations, as the lat-
est version of the blob can change between two read operations. While multi-version
concurrency control solves part of the issue by ensuring that older versions are never
overwritten, it does not bring a solution to all problems. In particular, the storage sys-
tem should ensure that an older chunk version is only deleted when it is safe to do so,
i.e. when no running transaction could potentially require that version of the chunk.

We solve these challenges by carefully designing the read and write protocols of Týr,
which ensure that these two requirements are met.

9.3.1 Lightweight transaction protocol

Write coordination in Týr leverages the Warp optimistic transaction protocol, whose correct-
ness and performance has been proven in [86]. This section provides an overview of Warp,
upon which Týr is built.

In order to commit a transaction, the client constructs a chain of servers which will be
affected by it. These nodes are all the ones storing the written data chunks, and one node
holding the data for each chunk read during the transaction (if any). This set of servers is
sorted in a predictable order, such as a bitwise ordering on the IP / port pair. The ordering
ensures that conflicting transactions pass through their shared set of servers in the exact
same order.

9.3 – Protocols and implementation 117

t1

t2

t3

s1 s2 s3 s4 s5 s6

(a) Propagation graph

t1 t2
t3

(b) Dependency graph

Figure 9.3 – Warp lightweight transaction protocol overview. In this example, the direction-
ality of the edge (t1, t2) will be decided by s4, last common server in the transaction chains,
during the backwards pass. Similarly, the directionality of (t2, t3) will be decided by s4.

The client addresses the request to the first node of the chain, designated as the coordinator
for that request. This node will validate the chain and ensure that it is up-to-date according
to the latest ring status. If not, that node will construct a new chain and forward the request
to the coordinator of the new chain.

Commit protocol. A linear transactions commit protocol guarantees that all transactions
are either successful and serializable, or abort with no effect. This protocol consists of one
forward pass to optimistically validate the values read by the client and ensure that they
remained unchanged by concurrent transactions, followed by a backward pass to propa-
gate the result of the transaction (either success or failure) and actually commit the changes
to memory. Dependency information is embedded by the nodes in the chain during both
forward and backward passes to enforce a serializable order across all transactions. A back-
ground garbage collection process limits this number of dependencies by removing those
that have completed both passes.

Transaction validation. The coordinator node does not necessarily own a copy of all the
chunks being read by every transaction, which are distributed across the cluster. As such,
one node responsible for a chunk being read in any given transaction must validate it by
ensuring that this transaction does not conflict nor invalidates previously validated transac-
tions, for which the backward pass is not complete. Every node in the commit chain ensures
that the transactions do not read values written by, or write values read by previously val-
idated transactions. Nodes also check each value against the latest one stored in their local
memory to verify that the data was not changed by a previously committed transaction. The
validation step fails if transactions fail either of these tests. A transaction is aborted by send-
ing an abort message backwards through the chain members that previously validated the
transaction. As soon as the forward pass is completed, the transaction may commit on all
servers. The last server of the chain commits the transaction immediately after validating it,
and sends the commit message backwards to the chain.

Transaction serialization. Enforcing a serializable order across all transactions requires
that the transaction commit order does not create any dependency cycles. To this end, a
local dependency graph across transactions is maintained at each node, with the vertices
being transactions and each directed edge specifying a conflicting pair of transactions. A
conflicting pair is a pair of transactions where one transaction writes at least one data chunk
read or written by the other. Whenever a transaction validates or commits after another one

118 Chapter 9 – Týr: Transactional, Scalable Storage for Streams

at a node, this information is added to the transaction message sent through the chain: the
second transaction will be recorded as a dependency of the first. This determines the direc-
tionality of the edges in the dependency graph. A transaction is only persisted in memory
after all of its dependencies have committed, and is delayed at the node until this condition
is met.

Figure 9.3 illustrates this protocol with an example set of conflicting transaction chains
and the associated dependency graph. This example shows three transaction chains execut-
ing. Figure 9.3a shows the individual chains with the server on which they execute. The
black dot represents the coordinating server for each transaction, the plain lines the forward
pass, and the dashed lines the backwards pass. Because they overlap at some servers, they
form conflicting pairs as shown on the dependency graph in Figure 9.3b. The directionality
of the edges will be decided by the protocol, as the chain is executed.

9.3.2 Handling reads: direct, multi-chunk and transactional protocols

As per our requirements, the read protocol of Týr needs to ensure the correctness of consis-
tent reads spanning multiple chunks while providing repeated reads isolation in the context
of the transaction or direct reads whenever possible. Three cases need to be considered.

Direct reads

Direct reads is a desirable feature that stays at the core of the performance of key-value
stores. It enables the client to address a read request directly to a node of the storage system
that holds this information, without any prior communication with any metadata server. The
client leverages the information it holds about the distribution of the data in the cluster to
first locate a node holding the desired data, by hashing its key and chunk number (calculated
from the data offset). The read request is sent directly to that node. The node responds with
the data from the latest committed version of the chunk as per its internal dependency graph.

This protocol is the most efficient Týr implements, only involving a single node of the
storage system. However, it is not applicable to multi-chunk reads as none of the servers
involved do have information about the set of chunk versions that form a consistent view
of the blob. For the same reason, inside a transaction, it cannot offer repeatable reads. As
such, the Týr client only uses this protocol for reads spanning exactly one chunk performed
outside the context of a transaction.

Multi-chunk reads

When reading a portion of a blob which overlaps multiple chunks, it is necessary to ob-
tain the version identifiers of each of those chunks forming a consistent version of the blob.
Only the version manager nodes for the blob to be read holds complete information about
the chunk versions that form a consistent blob version. As such, the protocol used for
served multi-chunk reads leverages these nodes to determine which versions of each ac-
cessed chunk to read from.

To perform a multi-chunk read, the client directs its request to any of the version manager
nodes for the blob. Similarily to the direct read protocol, these nodes are determined using

9.3 – Protocols and implementation 119

Client Version manager Chunks

c1 c2 c3

r([c1, c2])

r(c1, v1)

r(c2, v2)

(c1)

(c2)

Figure 9.4 – Týr read protocol for a read span-
ning multiple chunks. The client sends a
read query for chunks c1 and c2 to the ver-
sion manager, which relays the query to the
servers holding the chunks with the correct
version information.

Client Version manager Chunks

c1 c2 c3

r([c1, c2])

r(c1, v1)

r(c2, v2)

(c1)

(c2)

[v1, .., vn]

r(c3, v3)

(c3)

First read

Second read

Figure 9.5 – Týr read protocol inside a trans-
action. The client sends a read query for
chunks c1 and c2 to the version manager,
which relays the query to the servers holding
the chunks with the correct version informa-
tion, and responds to the client with a snap-
shot of the latest chunk versions. Subsequent
read on c3 is addressed directly to the server
holding the chunk data.

the client knowledge about the token ring, the version managers being the same servers
holding data for the first chunk of the blob. From the version information it holds about
the blob, the version manager determines, for the most recent committed version of the
blob, the versions of each of the chunks accessed by the read operation. It also uses its own
knowledge of the token ring to locate the servers holding the data for these chunks, selecting
one at random. The read request is forwarded in parallel to each of these servers, including
in the request the exact version identifier to read from. Each server replies directly to the
client with the requested data. The client reconstructs the data in memory as it receives
responses for each chunk. The protocol is illustrated by Figure 9.4.

Transactional, repeatable reads. In the context of a transaction, a further modification of
the multi-chunk read protocol is required to provide repeatable reads. The transactional
read algorithm is essentially a combination of the multi-chunk and direct read protocols. It
combines the correctness of the former for the first read request with the simplicity and ve-
locity of the latter for subsequent requests. A key difference enabling for repeatable reads
is that the version manager node returns to the client the whole set of version identifiers for
each chunk that together form the last committed blob version. This version information is
cached by the client in the context of the transaction. Upon executing subsequent read re-
quests for the same blob, the client extracts from that cached version information the version
identifiers for each chunk to be accessed. The data is requested directly from the servers
holding the chunk data as in the direct read protocol. It includes in the request message the
version identifier to read from. The whole process is illustrated by Figure 9.5.

120 Chapter 9 – Týr: Transactional, Scalable Storage for Streams

9.3.3 Handling writes: transactional protocol, atomic transforms

The complexity of version management is taken care of by the read protocol. As such, the
basic write protocol of Týr is largely based on the unmodified Warp protocol. We introduce
two modifications that are necessary for keeping the metadata managers up-to-date, and
supporting in-place, atomic transform operations.

Atomic transforms

Atomic transforms provide a convenient way to express simple binary operations, such as
arithmetic or bitwise operations. They operate on a binary value of fixed size located at a
specific offset of the blob. The size of the binary value depends on the operation applied, but
typically does not exceed 64 bits. We modify the write protocol to support atomic operations.
Two cases are possible:

The binary value to be modified is contained in a single chunk. Handling of this case
leverages the consistent ordering natively provided by Týr transaction protocol. During the
forward pass, an atomic update operation is handled as any write operation. During the
backwards pass, all servers holding a replica of the binary value to be modified atomically
apply the atomic operation.

The binary value to be modified spans multiple chunks. Applying the operation in this
context is challenging, as the value to be modified is not fully contained on a single machine.
When such case is detected, Týr internally transforms the operation into a two-step read-
update-write operation that is performed by the storage server on user’s behalf.

Bookkeeping: purging expired versions

Týr uses multiversion concurrency control as part of its base architecture in order to handle
lock-free read / write concurrency. Týr also uses versioning in support of the read protocol,
specifically to achieve write isolation and ensure that a consistent version of any blob can be
read even in the presence of concurrent writes. A background process called version garbage
collector is responsible for continuously removing unused chunk versions on every node of
the cluster. A chunk version is defined as unused if it is not part of the latest blob version,
and if no version of the blob it belongs to is currently being read as part of a transaction.

How to determine the unused chunk versions? The transaction protocol defines a serializ-
able order between transactions. It is then trivial for every node to know which is the last
version of any given chunk it holds, by keeping ordering information between versions. De-
termining whether a chunk version is part of a blob version being read inside a transaction
is however not trivial. Intuitively, one way to address this challenge is to make the version
managers of the blob responsible for ordering chunk version deletion.

9.3.4 Implementation details

We implement the design principles of Týr in a software prototype. This includes the Týr
server, an asynchronous C client library, as well as partial C++ and Java bindings. The server
itself is approximately 25,000 lines of Rust and GNU C code.

9.4 – Real-time, transactional data aggregation in support of system monitoring 121

Client

Query router

Cluster manager Query processor

Storage agent

(1) (10)

(2)
(3) (4)

(9)

(5)

(6)
(7)

(8)

Figure 9.6 – High-level internal architecture of Týr server.

Týr is designed following a distributed, modular and loosely coupled architecture. Each
node runs a set of different modules, executed on different threads. Figure 9.6 shows the
interaction between these modules:

The Cluster Manager maintains the ring state between cluster nodes using a weakly consis-
tent gossip protocol [77] to propagate information around the cluster (i.e. ring position
allocations) and a φ accrual failure detector [105] to detect and confirm node failures.

The Query Processor coordinates the requests and handles the transaction protocol using
cluster information from the cluster manager (5, 6). It acts as the interface to the storage
agent (7, 8).

The Query Router is the main communication interface between a server and both the rest
of cluster and the clients. It receives incoming client requests (1), parses, validates
and, if necessary, forwards them to the appropriate server according to cluster state
information (2, 3). It then forwards them to the query processor (4, 9), and responds to
the client (10).

The Storage Agent is responsible for the persistent storage and retrieval of both data and
version information.

9.4 Real-time, transactional data aggregation in support of system
monitoring

In this section, we seek to prove the relevance of transactional blobs as a storage model for
purpose-built application. In particular, we demonstrate the performance benefits of the
two key features of Týr: transactions and atomic operations. We base these experiments
on the ALICE (A Large Ion Collider Experiment) [29] real-world application from CERN
(European Organization for Nuclear Research) [124]. In particular, we consider the needs of

122 Chapter 9 – Týr: Transactional, Scalable Storage for Streams

g1 g2 g3 g4 g5Generators

e1 e2 e3 e4 e5Per-generator blobs

e1 e2 e3 e4 e5Generator aggregates

c1 c2Cluster aggregates

allGlobal aggregate

Cluster 1 Cluster 2

Figure 9.7 – Simplified MonALISA data storage layout, showing five generators on two dif-
ferent clusters, and three levels of aggregation. Solid arrows indicate events written, dotted
arrows represent event aggregation. Each rectangle indicates a different blob. Dotted rect-
angles denotes aggregate blobs.

the monitoring system collecting and aggregating in real-time telemetry events from more
than 80 datacenters around the world: MonALISA [4], that we introduced in section 6.3

We use Týr to process and aggregate real data from MonALISA, and compare its perfor-
mance with other state-of-the-art systems on the Microsoft Azure cloud platform. We prove
that Týr throughput outperforms its competitors by up to 75 % when faced with transac-
tional operations while providing significantly higher consistency guarantees. We scale the
storage system to up to 256 nodes to demonstrate the scalability of such transactional oper-
ations.

Managing monitoring data: what could be improved. The current implementation
of ALICE is based on a PostgreSQL database [142]. Aggregation is performed by a back-
ground worker task at regular intervals. With the constant increase in volume of the col-
lected metrics, this storage architecture becomes inefficient. Time-series databases such
as OpenTSDB [168] or KairosDB [144] were considered to replace the current architecture.
However, storing each event individually, along with the related metadata such as tags, leads
to a significant overhead. In the context of MonALISA, the queries are known at the time
measurements and stored by the system. This opens the way to a highly-customized storage
backend using a data layout that would at the same time dramatically increase throughput,
reduce metadata overhead, and ultimately lower both the computing and storage require-
ments for the cluster. We use Týr to develop such a backend.

The need for transactions. The blob-based storage layout for the MonALISA system is as
follows. All measurements (timestamp, measurement) are appended to a per-generator blob.
Measurements are then averaged over a one-minute window with different granularity lev-
els (machine, cluster, site, region, and job). This layout is explained in Figure 9.7. Updating
an aggregate is a three-step operation: read old value, update it with the new data, and write
the new value (read-update-write). In order to guarantee the correctness of such operations,
all writes must be atomic. This atomicity also enables hot snapshotting of the data. As an
optimization for aggregate computation, it is desirable for the read-update-write operations
to be performed in-place, using Týr’s atomic transform operations.

9.4 – Real-time, transactional data aggregation in support of system monitoring 123

Experimental setup. We deploy Týr on the Microsoft Azure Compute [76] platform on
up to 256 nodes. For all experiments, we used D2 v2 general-purpose instances, located
in the East US region (Virginia). Each virtual machine has access to 2 CPU cores, 7 GB
RAM and 60 GB SSD storage. The host server is based on 2.4 GHz Intel Xeon E5-2673 v3
processors and is equipped with 10 Gigabit Ethernet connectivity. We compare Týr with Ra-
dos [188] and BlobSeer [146]. We also plot the results obtained with Microsoft Azure Storage
Blobs [68], a managed blob storage system available on the Microsoft Azure platform. It
comes in three flavors: append blobs, block blobs and page blobs. Append blobs are optimized
for append operations, block blobs are optimized for large uploads, and page blobs are opti-
mized for random reads and writes. We use a dump of real data obtained from MonALISA.
This data set is composed of ∼ 4.5 million individual measurement events, each one being
associated to a specific monitored site.

Ensuring write consistency on non-transactional systems. Because of the lack of
native transaction support in Týr competitors, we use ZooKeeper 3.4.8 [108] (ZK), an
industry-standard, high-performance distributed synchronization service, which is part of
the Hadoop [167] stack. Zookeeper allows us to synchronize writes to the data stores with
a set of distributed locks. ZooKeeper locks are handled at the lowest-possible granularity:
one lock is used for each aggregate offset (8-byte granularity), except for Azure in which
we have to use coarse-grained locks (512-byte granularity). Throughout our experiments,
we measure the relative impact of the choice of ZooKeeper as a distributed lock provider.
Overall, the results show that ZooKeeper accounts for less than 5 % of the total request la-
tency for write storage operations. Although faster, more optimized distributed locks such
as Redis [71] may be available, this would not significantly impact the results.

9.4.1 Transactional read/write performance

We first provide a baseline performance under a transactional workload. We measure the
transactional write performance of Týr, Rados, BlobSeer and Microsoft Azure Blobs with
the MonALISA workload. We perform data aggregation in Týr using atomic transforms as
well as with transactional read-update-write operations. This is to provide a fair baseline for
comparison with other systems. Týr transactions are used to synchronize the storage of the
events and their indexing in the context of a concurrent setup. All systems are deployed on
a 32-node cluster, except for Azure Storage which does not offer the possibility to tune the
number of machines in the cluster.

Write performance. We first evaluate writes comparing with lock-based transactions. The
results, depicted in Figure 9.8, show that the Týr peak throughput outperforms its competi-
tors by 78 % while supporting higher concurrency levels. Atomic updates allowed Týr to
further increase performance by saving the cost of read operations for simple updates. The
significant drop of performance in the case of Rados, Azure Storage and BlobSeer at higher
concurrency levels is due to the increasing lock contention. This issue appears most fre-
quently on the global aggregate blob, which is written to for each event indexed. In contrast,
our measurements show that Týr’s performance drop is due to CPU exhaustion, mainly be-
cause of the additional resources required for handling incoming network requests. Under
lower concurrency, however, we can see that the transaction protocol incurs a slight process-
ing overhead, resulting in a comparable performance for Týr and Rados when the update

124 Chapter 9 – Týr: Transactional, Scalable Storage for Streams

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

Number of concurrent writers

A
gg

.p
er

f.
(m

il.
op

s
/

s)

Týr (Atomic) Týr (RUW)
RADOS + ZK BlobSeer + ZK
Azure + ZK

Figure 9.8 – Synchronized write performance
of Týr, Rados, BlobSeer and Azure Storage,
varying the number of clients, with 95 % con-
fidence intervals.

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

Number of concurrent readers

A
gg

.p
er

f.
(m

il.
op

s
/

s)

Týr RADOS
BlobSeer Azure

Figure 9.9 – Read performance of Týr, Ra-
dos, BlobSeer and Azure Storage, varying the
number of clients, with 95 % confidence in-
tervals.

concurrency is low. BlobSeer is penalized by its tree-based metadata management which in-
curs a non-negligible overhead compared to Týr and Rados. Overall, Azure shows a lower
performance and higher variability than all systems. At higher concurrency levels however,
Azure performs better than both Rados and BlobSeer. This could be explained by a higher
number of nodes in the Azure cluster, although the lack of visibility into its internals doesn’t
allow us to draw any conclusive explanation. We note the added value of atomic transform
operations, which enable Týr to increase its performance by 33 % by cutting the cost of read
operations for simple aggregate updates and reducing the transaction failure rate.

Read performance. We evaluate the read performance of a 32-node Týr cluster and com-
pare it with the results obtained with Rados and BlobSeer on a similar setup. As a baseline,
we measure the performance of the same workload on the Azure Storage platform. We
preload in each of these systems the whole MonALISA dataset, for a total of ∼ 100 Giga-
bytes of uncompressed data. We then performed random reads of 800 byte each from both
the raw data and the aggregates, following a power-law distribution to increase read con-
currency. This read size corresponds to a 100-minute average of aggregated data. We throttle
the number of concurrent requests in the system to a maximum of 1,000.

We plot the results in Figure 9.9. The lightweight read protocol of both Týr and Rados al-
lows them to process reads at near-wire speed and to outperform both BlobSeer and Azure
Storage peak throughput by 44 %. On the other hand, BlobSeer requires multiple hops to
fetch the data in the distributed metadata tree. This incurs an additional networking cost
that limits the total performance of the cluster. Under higher concurrency, we observe a
slow drop in throughput for all the compared systems except for Azure Storage due to the
involved CPU in the cluster getting overloaded. Once again, linear scalability properties of
Azure could be explained by the higher number of nodes in the cluster, although this can’t be
verified because of the lack of visibility into Azure internals. Týr and Rados show a similar

9.4 – Real-time, transactional data aggregation in support of system monitoring 125

95 / 5 65 / 35 50 / 50 35 / 65 5 / 95
0

10

20

30

40

50

Workload (Read % / Write %)

A
vg

.p
er

f.
/

re
ad

er
(t

h.
op

s
/

s) Týr (Atomic) Týr (RUW)
RADOS BlobSeer
Azure

Figure 9.10 – Read throughput of Týr, Ra-
dos, BlobSeer and Azure Storage for work-
loads with varying read to write ratio. Each
bar represents the average read throughput
of 200 concurrent clients averaged over one
minute.

4 32 64 96 128 160 192 224 256
0

8

16

24

32

Number of nodes

A
gg

r.
pe

rf
.(

m
il.

op
s

/
s)

100 clients 200 clients
400 clients 800 clients
1600 clients

Figure 9.11 – Týr horizontal scalability. Each
point shows the average throughput of the
cluster over a one-minute window with a
65 % read / 35 % write workload, and 95 %
confidence intervals.

performance pattern. Measurements show Rados outperforming Týr by a margin of approx-
imately 7 %. This performance penalty can partly be explained by the slight overhead of the
multi-version concurrency control in Týr, enabling it to support transactional operations.

Reader / writer isolation. A key, known advantage of multi-version concurrency control
is the isolation it provides between readers and writers. We demonstrate this in Týr by
simultaneously performing reads and writes in a 32-node cluster, using the same setup and
methodology as with the two previous experiments. To that end, we preload half of the
MonALISA dataset in the cluster and measure read performance while concurrently writing
the remaining half of the data. We run the experiments using 200 concurrent clients. With
this configuration, all three systems proved to perform above 85 % of their peak performance
for both reads and writes, thus giving comparable results and a fair comparison between the
systems. Among these clients, we vary the ratio of readers to writers in order to measure the
performance impact of different usage scenarios. For each of these experiments, we monitor
the average throughput per reader.

The results, depicted in Figure 9.10, clearly illustrate the added value of multi-version
concurrency control on which both Týr and BlobSeer are based. For these two systems,
we observe a near-stable average read performance per client despite the varying number
of concurrent writers. In contrast, Rados, which outperforms Týr for a 95/5 read-to-write
ratio, shows a clear performance drop as this ratio decreases. Azure performance decreases
in a similar fashion as the number of writers increases.

126 Chapter 9 – Týr: Transactional, Scalable Storage for Streams

9.4.2 Horizontal scalability

We test the performance of Týr when increasing the cluster size up to 256 nodes. This results
in an increased throughput as the load is distributed over a larger number of nodes. We
use the same setup as for the previous experiment, varying the number of nodes and the
number of clients, and plotting the achieved aggregated throughput among all clients over
a one-minute time window. We use the same 35 % write / 65 % read workload (with atomic
transforms) as in the previous experiment. Figure 9.11 shows the impact of the number of
nodes in the cluster on system performance. We see that the maximum average throughput
of the system scales near-linearly as new servers are added to the cluster. With this setup, a
256-node Týr cluster peaks at 26.4 million operations per second.

Using Týr as a storage backend for MonALISA leverages write coordination, enabling us
to prove the performance and scalability of both transactional operations and atomic trans-
forms. In particular, we highlight the performance of Týr’s lightweight transaction protocol
which provides very high velocity compared to lock-based solutions while incurring only
a small overhead compared to non-transactional systems. We finally note the relevance of
the multi-version concurrency control, which enables the readers not to be impacted by a
concurrent, conflicting write workload.

127

Part IV

Perspectives

129

Chapter 10
Stream Storage for HPC and Big Data

Convergence

Contents
10.1 HPC and BDA: divergent stacks, convergent storage needs 131

10.1.1 Comparative overview of the HPC and BDA stacks 131
10.1.2 HPC and BDA storage . 132
10.1.3 Challenges of storage convergence between HPC and BDA 133

10.2 Blobs as a storage model for convergence 134
10.2.1 General overview, intuition and methodology 134
10.2.2 Storage call distribution for HPC and BDA applications 135
10.2.3 Replacing file-based by blob-based storage 137
10.2.4 Which consistency model for converged storage? 139
10.2.5 Conclusion: blobs are the right candidate for storage convergence . . 140

10.3 Týr for HPC and BDA convergence . 140
10.3.1 Týr as a storage backend for HPC applications 141
10.3.2 Týr as a storage backend for BDA applications 142
10.3.3 Discussion . 142

BIG AND FAST DATA APPLICATIONS ARE EXPECTED TO MOVE TOWARDS more compute
intensive algorithms to get deeper insights for descriptive, predictive and prescriptive
analytics [58, 152]. This fuels a recent trend towards the convergence of HPC and

Big Data, which is currently greatly influencing the two worlds. Both communities have
diverged significantly over the past in terms of proposed solutions and research orientation.
As a result, HPC and BDA stacks remain mostly separated today. Interestingly however, their
challenges at the data management layer are similar: trading versatility for performance.

130 Chapter 10 – Stream Storage for HPC and Big Data Convergence

Figure 10.1 – From Fast and Big Data to Extreme Data by integrating the simulation data
(about the predicted behavior of the targeted systems) into the analytics.

As such, we advocate that storage offers a high potential for convergence despite current
divergences.

HPC and BDA convergence fuels new data processing models. As a result of this ex-
pected convergence, new data processing paradigms emerge, leveraging the best practices
of the two worlds. For instance, hybrid analytics [106] are expected to combine HPC-inspired
data processing techniques (i.e., in-situ, in-transit) with more traditional Big and Fast Data
processing techniques (i.e., stream-based, batch-based). The goal is to enable joint analysis
of past (historical), present (real-time) and future (hypothetical, simulated) data, allowing
to predict with better accuracy how the targeted system or phenomenon would behave in
critical situations.

Problem: Hybrid analytics call for adequate storage backends. To fully design and im-
plement such processing paradigms, it is necessary to fill several technical gaps beyond the
current status of the state-of-the-art. In particular, combining HPC and BDA techniques
leads to high challenges related to the extreme scale of data management in terms of veloc-
ity, variety and volume, as shown in Figure 10.1. First, the number of hypothetical scenarios
and the possibility to simulate them with a virtually unlimited combination of parameters
increases the data variety and velocity. Moreover, the possibility to run joint analysis correlating
such hypothetical data with past and real-time data may produce immense amounts of data
to process (hence, the extreme volume). This requires a scalable data storage backend, able to
cope with such huge volumes under operational constraints.

Solution: Blobs in general (and Týr in particular) address the needs of hybrid analytics.
In this context, we witness in the last years a trend to apply strikingly similar techniques in
support of the divergent HPC and BDA orientations. In particular, object storage has proven
to be a well-suited storage model for both. In the former, it serves as support for Lustre [164]
or DeltaFS [195] while in the latter it is the base building block for the Ceph [187] file system,
or is exposed directly to the user in the form of key-value or document stores [80, 121, 170,
75].

10.1 – HPC and BDA: divergent stacks, convergent storage needs 131

Figure 10.2 – Typical BDA (on the left) and HPC (on the right) software stacks [54].

{{ Despite important divergences, storage-
based convergence between HPC and
BDA is not only possible, but also leads to
substantial performance improvements. ||

In this chapter, we hypothesize that de-
spite important divergences, storage-based
convergence between HPC and BDA is not
only possible, but also leads to substantial
performance improvements over the state-
of-the-art. Considering the common trends in both HPC and BDA communities, we assert
through an empirical proof that at the data management layer such convergence can be
achieved through object-based storage, and that Týr is the first such system able to cope
with the challenges of the new hybrid analytics.

10.1 HPC and BDA: divergent stacks, convergent storage needs

The key difference between BDA and HPC is the type of data they are dealing with. While
the focus of HPC is mainly on structured data, BDA often needs to handle new types of data
originating from a wide variety of sources, with very diverse structures, if any. Hence the
challenges associated with the processing of data is mainly a software challenge.

10.1.1 Comparative overview of the HPC and BDA stacks

Significant differences exist between HPC and BDA platforms. While HPC mostly focuses
on large computational loads, BDA targets applications that need to handle very large and
complex data sets. These data sets are typically of the order of multiple petabytes or exabytes
in size. BDA applications are thus very demanding in terms of storage, to accommodate such
a massive amount of data. HPC is usually thought more in terms of sheer computational
needs. Figure 10.2 highlights the typical stacks for BDA and HPC applications.

132 Chapter 10 – Stream Storage for HPC and Big Data Convergence

The key differences between those two paradigms result in very different sets of key
requirements. A traditional cloud-based BDA platform offers features that are attractive to
the general public. These services comprise single, loosely coupled instances (an instance
of an OS running in a virtual environment) and storage systems backed by service-level
agreements (SLAs) that provide the end user with guaranteed levels of service. These clouds
are generally designed to offer the following features.

Instant availability: Cloud offers almost instant availability of resources.
Large capacity: Users can instantly scale the number of applications within the cloud.
Software choice: Users can design instances to suit their needs from the OS up.
Virtualized environments: Instances can be easily moved to and from similar clouds.
Service-level performance: Users are guaranteed a minimal level of performance.

Although these features serve much of the market, HPC users generally have a different
set of requirements.

Close to the hardware: HPC libraries and applications are often designed to work closely
with the hardware, requiring specific OS drivers and hardware support.

Tuned hardware: HPC hardware is often selected on the basis of communication, memory,
and processor speed for a given application set.

Tuned storage: Storage is often designed for a specific application set and user base.
Userspace communication: HPC user applications often need to bypass the OS kernel and

communicate directly with remote user processes.
Batch scheduling: All HPC systems use a batch scheduler to share limited resources.

These different sets of requirements have a significant impact on the data-storage layer,
which is largely divergent both in terms of architecture and design principles. Many reasons
explain storage divergence between HPC and BDA. These include the different software
development models, virtualization, scheduling, resource allocation, stateful networks vs.
stateful services. Another key difference is the specifics of the data, which has a significant
impact in the underlying software and hardware infrastructure, or stack. A stack can be
seen as a set of different components, including operating system, execution framework,
provisioning, remote console or power management, cluster monitoring, parallel file system
and scheduling, development and performance monitoring tools enabling the final users to
interact with the cluster, as well as the underlying hardware parts such as CPU, memory and
networking.

Let us zoom on the key differences between the HPC and BDA storage stacks.

10.1.2 HPC and BDA storage

HPC: Centralized, file-based sorage. The need to process large volumes of data quickly
has huge repercussions for HPC storage, given that storage I/O capabilities are typically
much lower than those of processors. An HPC storage system needs large capacity accessible
at high speed and to be highly expandable, while offering a single global namespace acces-
sible to all users involved in the project. State-of-the-art storage systems for HPC are mainly
the parallel file systems deployed on remote storage servers. This architecture is explained

10.1 – HPC and BDA: divergent stacks, convergent storage needs 133

by two main factors. First, many legacy scientific applications are compute-intensive, and
hardly interact with the persistent storage except for initial input, occasional checkpointing,
and final output. Second, a parallel file system proves to be highly effective for the concur-
rent I/O workload commonly seen in scientific computing.

While large-scale applications are becoming more data-intensive, moving very large
amounts of data in and out of the remote file system is becoming a significant performance
bottleneck, greatly hindering time to results. Hence researchers spend significant efforts
on improving the I/O throughput of the aforementioned architecture by means of various
techniques, such as burst buffers [130].

BDA: Modular, application-purpose storage. On the other hand, BDA architectures bring
the computation to the storage nodes, rather than the opposite, as in HPC. This principle
has driven the design of the underlying storage stack. Hadoop is the most notable example
(presented in section 2.2). It abstracts the storage layer access by proposing an extendable
set of data access strategies that essentially separate the computation from the storage. This
brings various benefits such as transparent application portability across platforms and in-
dependence of the underlying storage system.

File-based storage are arguably the de facto standard in the industry. The Hadoop Dis-
tributed File System (HDFS) [167], for example, is an integral part of the Hadoop stack.
However, most data warehousing solutions today tend to also offer connectors enabling
users to analyze vast amounts of data originating from a wide range of storage systems
and paradigms. These systems include key-value and columnar stores (Riak [115], Cas-
sandra [121], Aerospike [170]), object stores (Amazon S3 [38], Ceph [187]) or time series
databases (OpenTSDB [31]).

10.1.3 Challenges of storage convergence between HPC and BDA

While designing a common storage solution for HPC and BDA could improve portability
of application between platforms, the challenges of fitting the requirements of both commu-
nities are hard [159]. Indeed, the broad variety of storage systems available for HPC and
BDA exhibit different characteristics or deployment models targeted at a specific range of
applications. Defining a storage solution able to combine the requirements of both HPC and
BDA applications is challenging. For example, it is unclear which storage paradigm is a
natural fit to handle data in a broad range of scientific application codes, nor the extent of
code modification required to do so. In particular, there is a tension between the colocation
of data and computation that is embraced by cloud platforms, and the contradictory dy-
namic task scheduling and execution that is the core to HPC storage architectures [94]. Also,
while file-based storage is common between HPC and BDA stacks, many differences exist in
their design principles and implementation. Additionally, BDA embraces a wider variety of
storage options such as key-value stores or object stores.

Consequently, in order to achieve storage-based convergence between HPC and BDA, it
is critical to evaluate which storage paradigm is better suited to answer the precise require-
ments of both communities and applications.

134 Chapter 10 – Stream Storage for HPC and Big Data Convergence

10.2 Blobs as a storage model for convergence

State-of-the-art storage systems for both HPC and BDA show a common trend towards re-
laxing many of the concurrent file access semantics, trading such strong guarantees for in-
creased performance. Nevertheless, some differences remain. Specifically, while the BDA
community increasingly relies on systems dropping the POSIX I/O API altogether, the HPC
community tends to provide this relaxed set of semantics behind the same API. Although
this choice increases backwards compatibility with legacy applications, it also has signifi-
cant performance implications due to the design constraints imposed by this standard, i.e.,
hierarchical namespace or permission management.

In this section, we propose and discuss blobs as an alternative to traditional distributed
file systems. Inspired by the API similarity with distributed file systems, allowing for ran-
dom reads and writes in binary objects, we analyze the benefits and limitations of blobs as a
storage model for HPC and BDA convergence.

10.2.1 General overview, intuition and methodology

Our goal is to provide experimental evidence that blobs can indeed substitute traditional file
systems for both HPC and BDA workloads. We demonstrate that the hierarchical nature of
distributed file systems is only provided for convenience to the end-user, and is only seldom
exploited by the applications, if ever. The consequence would be the majority of storage
operations to be file operations (open, close, read, write, create, delete). These operations are
very close to the ones proposed by blob storage systems. Directory-level operations (ope-
dir, mkdir, rmdir) do not have their blob counterpart because of the flat nature of the blob
namespace. Should applications really need them (e.g., legacy applications), such operations
can be emulated using a full database scan. This implementation would intuitively not be
optimized compared to its counterpart on current file systems. Yet, since we expect these
calls to be vastly outnumbered by blob-level operations, this performance penalty is likely
to be compensated by the gains permitted by using a flat namespace and simpler semantics.

Applications. One of the emerging ideas from the discussions on convergence [62] is that
the applications cannot be considered separately from the underlying software stack. The
fuel for convergence could be a wide variety of HPC and BDA applications leveraging con-
verged services and underlying infrastructure. We therefore base our discussion on a num-
ber of I/O-intensive applications extracted from the literature [92, 186, 127] that cover the
diversity of I/O workloads commonly encountered on both HPC and BDA platforms. The
HPC applications we use are based on MPI. They all leverage large input or output datasets
associated with large-scale computations atop centralized storage usually provided by a dis-
tributed, POSIX-IO-compliant file system such as Lustre [165]. The BDA applications are ex-
tracted from SparkBench [127, 32], a widely-recognized, industry-standard benchmarking
suite for Spark. It includes a representative set of workloads belonging to four application
types: machine learning, graph processing, streaming, and SQL queries. In Table 10.1 we
make a summary of these applications.

10.2 – Blobs as a storage model for convergence 135

Table 10.1 – HPC and BDA application summary

Application Usage Reads Writes Profile
mpiBLAST (BLAST) Protein docking 27.7 GB 12.8 MB Read-intensive
MOM Oceanic model 19.5 GB 3.2 GB Read-intensive
ECOHAM (EH) Oceanic model 0.4 GB 9.7 GB Write-intensiveHPC

Ray Tracing (RT) Video processing 67.4 GB 71.2 GB Balanced

Sort Text Processing 5.8 GB 5.8 GB Balanced
Connected Component (CC) Graph Processing 13.1 GB 71.2 MB Read-intensive
Grep Text Processing 55.8 GB 863.8 MB Read-intensive
Decision Tree (DT) Machine Learning 59.1 GB 4.7 GB Read-intensive

BDA

Tokenizer Text Processing 55.8 GB 235.7 GB Write-intensive

BLAST MOM EH EH (MPI) RT

0

20

40

60

80

100

Application

St
or

ag
e

ca
ll

ra
ti

o
(%

)

File read File write Directory Other

Figure 10.3 – Measured relative amount of
different storage calls to the persistent file
system for HPC applications.

Sort Grep DT CC Tokenizer

0

20

40

60

80

100

Application

St
or

ag
e

ca
ll

ra
ti

o
(%

)

File read File write Directory Other

Figure 10.4 – Measured relative amount of
different storage calls to the persistent file
system for BDA applications.

Experimental platform. We run experiments on the Grid’5000 [57] experimental testbed.
Each node embeds 2 x 12-core 1.7 Ghz, 48 GB of RAM, and 250 GB HDD. Network connec-
tivity is supported either with Gigabit Ethernet connectivity (MTU = 1500 B) or by 4 x 20G
DDR InfiniBand. We use the former for BDA and the latter for HPC applications in order to
fit with the usual configuration of each domain. HPC applications run atop Lustre 2.9.0 and
MPICH 3.2 [102], on a 32-node cluster configured with multiple ratios of storage-to-compute
nodes. BDA application run atop Spark 2.1.0, Hadoop / HDFS 2.7.3 and Ceph Kraken on
the same 32 nodes.

10.2.2 Storage call distribution for HPC and BDA applications

First, we demonstrate that the actual I/O calls made by both HPC and BDA applications are
not incompatible with the set of features provided by state-of-the-art blob storage systems.
Our intuition is that read and write calls are vastly predominant in the workloads of those
applications and that other features of distributed file systems such as directory listings are
rarely used, if at all.

136 Chapter 10 – Stream Storage for HPC and Big Data Convergence

Operation Action Count
mkdir Create directory 43
rmdir Remove directory 43

opendir (Input directory) Open / List
directory 5

opendir (Other directories) Open / List
directory 0

Table 10.2 – Spark directory operation breakdown. For comparison, all applications per-
formed over 10 million total individual storage operations during this benchmark.

Tracing HPC applications. Figure 10.3 summarizes the relative count of storage calls per-
formed by our set of HPC applications. The most important observation for all four applica-
tions is the predominance of reads and writes. Except for EH, no application performed any
other call to the storage system than reads or writes, confirming our first intuition. This was
expected because the MPI-IO standard does not permit any other operation. The few storage
calls other than read and write (mainly extended attributes reads and directory listings) are
due to the script necessary to prepare the computation and collect the results. These steps
can be offlined from the I/O-heavy MPI part of the application, i.e., EH(MPI). This results
in only reads and writes being performed in EH(MPI). We conclude that the only operations
performed by our set of HPC applications, namely, file I/O, can be mapped to blob I/O on a
blob storage system. Consequently, these applications appear to be suited to run unmodified
atop blob storage.

Tracing BDA applications. Figure 10.4 shows the relative count of storage calls performed
by our set of BDA applications to HDFS. Similar to what we observed with HPC appli-
cations, the storage calls are vastly dominated by reads and writes to files. In contrast with
HPC, however, all applications also cause Spark to perform a handful of directory operations
(91 in total across all our applications out of over 10 million individual storage operations
in total). These directory operations are not related to the data processing because input/
output files are accessed directly by using read and write calls.

Analyzing these directory operations, we note that they are related solely to (i) creating
the directories necessary to maintain the logs of the application execution, (ii) listing the
input files before each application runs if the input data is set as a directory, and (iii) main-
taining the .sparkStaging directory. This directory is internally used by Spark to share
information related to the application between nodes and it is filled during the application
submission. It contains application files such as the Spark and application archives, as well
as distributed cache files [162].

We analyze in detail the directory operations performed by BDA applications. Table 10.2
shows the breakdown of all such directory operations across all applications by storage call.
We note that only the input data directories are listed, meaning that Spark accesses directly
all the other files it needs with their path. Consequently, a flat namespace such as the one
provided by blob storage systems could probably be used.

10.2 – Blobs as a storage model for convergence 137

POSIX Call Translated Call
create(/foo/bar) create(/foo__bar)
open(/foo/bar) open(/foo__bar)

read(fd) read(bd)
write(fd) write(bd)

mkdir(/foo) Unsupported operation
opendir(/foo) Unsupported operation
rmdir(/foo) Unsupported operation

Table 10.3 – HPC storage call translation rules on a flat namespace.

10.2.3 Replacing file-based by blob-based storage

We now demonstrate the potential of blob-based storage to suit the storage needs of both
HPC and Big Data applications. To do so, we deploy each aforementioned application atop
two state-of-the-art blob storage systems: BlobSeer [146] and Rados [188]. We show that
the performance of these applications running atop converged blob-based storage matches
or exceeds that of the same applications running atop Lustre [165] for HPC, as well as
Ceph [187] and HDFS [167] for Big Data. We assess the performance impact of replacing
file-based with blob-based storage by observing three metrics: the job completion time is the
total execution time of the application, from submission to completion; the read bandwidth
and write bandwidth respectively represent the average data transferred per unit of time for
read and write requests.

Replacing Lustre with blob-based storage on HPC

We first show how blob-based storage can be used to transparently support HPC applica-
tions while matching or exceeding Lustre I/O performance by replacing the latter with both
BlobSeer and Rados. We experiment using three storage-to-compute node configurations in
order to ensure that our results are independent of the cluster configuration. We run the
same experiments respectively with 28 compute/4 storage nodes, 24/8 and 20/12.

On each node, we deploy a small interceptor to redirect POSIX storage calls to the blob
storage system. It is based on FUSE [172], which is supported on most Linux kernels today.
This adapter translates file operations to blob operations according to Table 10.3. Directory
operations are not supported as we showed previously that they are unnecessary for HPC
applications. The APIs of the blob storage systems we consider allow for a direct mapping
between file-based and blob-based storage operations.

In Figure 10.5 we plot the average aggregate read and write bandwidth for all appli-
cations while varying the compute-to-storage node ratio. We note that for our configura-
tion the 24 compute node/8 storage node setup results in the highest bandwidth for all
storage systems. Hence, the following experiments are performed with that configuration.
This ratio is much lower than on common HPC platforms (3:1 vs. ∼ 70:1 at ORNL, for
instance [166]) mainly because the jobs we run are significantly more data-intensive than
compute-intensive. We note from these results that blob storage systems constantly outper-
form Lustre in all configurations for both reads and writes. We will detail these results in the
following experiments. For read-intensive applications such as BLAST and MOM, this per-
formance increase allows blob storage systems with 4 storage nodes to achieve a bandwidth

138 Chapter 10 – Stream Storage for HPC and Big Data Convergence

28 / 4 24 / 8 20 / 12
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Compute nodes / Storage nodes

A
vg

.t
hr

ou
gh

pu
t(

G
B

/
s)

Lustre BlobSeer Rados

Figure 10.5 – Average agreggate through-
put across all HPC applications varying the
compute-to-storage ratio, with 95 % confi-
dence intervals.

BLAST MOM EH / MPI RT
80

85

90

95

100

105

Application

A
vg

.r
el

.c
om

pl
et

io
n

ti
m

e
(%

)

Lustre BlobSeer Rados

Figure 10.6 – Average performance improve-
ment relative to Lustre for HPC applications
using blob-based storage, with 95 % confi-
dence.

comparable to Lustre’s with 8 storage nodes.

In Figure 10.6 we plot the average application completion time improvement. The I/O
performance gains are here diluted in compute operations. As expected considering the
previous results, read-intensive applications exhibit the greatest decrease. BLAST and MOM
show a completion time reduction of nearly 8 % with both blob storage systems. In contrast,
write-intensive applications such as Ray Tracing show a lower 3 % completion time decrease
with BlobSeer or Rados as the underlying storage when compared with Lustre.

Running BDA applications atop blob storage

We now run the same set of experiments for the set of Big Data applications. We demonstrate
that BlobSeer and Rados significantly outperform HDFS for all applications. In order to pro-
vide an additional baseline of the performance of file systems, we also run these applications
atop the Ceph [187] file system, itself based on Rados.

We integrate the storage adapter for blob storage directly inside HDFS. The Hadoop in-
stallation has been modified to redirect storage calls to blob storage systems. The translation
between POSIX-like calls and flat-namespace blob operations is done using the translation
rules defined in Table 10.4. We map all file operations directly to their blob counterpart. Di-
rectory operations are simulated using namespace scans. Despite being very costly, the low
number of such calls relative to file operations should not significantly impact the applica-
tion performance when the number of files is low.

In Figure 10.7 we plot the average read bandwidth achieved for SparkBench. While
Rados significantly outperforms all systems for all applications, we note an overall perfor-
mance tie between BlobSeer and Ceph. This is because of the heavy metadata management
in all cases, which greatly impacts access latency and consequently read bandwidth. The
performance cost of file-based storage is highlighted by the performance difference between

10.2 – Blobs as a storage model for convergence 139

Original operation Rewritten operation
create(/foo/bar) create(/foo__bar)
open(/foo/bar) open(/foo__bar)

read(fd) read(bd)
write(fd) write(bd)

mkdir(/foo) Dropped operation
opendir(/foo) scan(), return all like /foo__*
rmdir(/foo) scan(), remove all like /foo__*

Table 10.4 – BDA storage call translation rules on a flat namespace.

Sort Grep DT CC Tokenizer
0.6

0.8

1

1.2

1.4

1.6

Application

A
vg

.r
ea

d
th

ro
ug

hp
ut

(G
B

/
s)

HDFS BlobSeer Rados Ceph

Figure 10.7 – Comparison of read through-
put for each Big Data application with HDFS,
BlobSeer, Rados and CephFS, with 95% con-
fidence intervals.

Sort Grep DT CC Tokenizer
60

70

80

90

100

110

Application

A
vg

.r
el

.c
om

pl
et

io
n

ti
m

e
(%

)

HDFS BlobSeer Rados Ceph

Figure 10.8 – Average performance improve-
ment relative to HDFS for Big Data appli-
cations using blob-based storage, with 95%
confidence intervals.

Ceph and Rados, upon which it is based. As with HDFS, this is mostly due to the additional
communication with metadata servers in the critical path for read requests.

In Figure 10.8 we plot the relative improvement in the total application completion time,
diluted in computation. Running Big Data applications atop blobs improves application
completion time, up to 22 % compared to HDFS and 7 % compared to Ceph. For Big Data, the
highest gains are obtained with read-intensive applications such as Grep and Decision Tree.
In comparison, write-intensive applications such as Tokenizer also benefit from improved
performance, although relatively smaller due to the globally greater complexity of the write
protocols for each storage system.

10.2.4 Which consistency model for converged storage?

As in any storage stack, ensuring data consistency in a convergent HPC and BDA storage
system is critical. Integrating consistency management however is not an easy task. HPC
and BDA rely on opposite principles with respect to data consistency. The former will typ-
ically leverage a storage system offering POSIX I/O strong consistency while leaving up to

140 Chapter 10 – Stream Storage for HPC and Big Data Convergence

the user high-level synchronization tools to be defined directly inside the application when
required. The latter usually relies on a wide variety of storage systems offering low-level
consistency depending on the application requirements.

We can observe that the storage systems used for HPC tend to offer strong consistency. In
contrast, BDA relies on a variety of systems targeted at different use-cases, each offering dif-
ferent consistency models ranging from BASE to full ACID. While both application-specific
and transactional concurrency management each have advantages of their own, it is clear
that an application that does not require transactions can be executed on a transactional sys-
tem, while the opposite is not possible or would require significant amount of work. In the
end, transactional systems offer a versatile and generic solution to handling consistency in
a wide range of application. Indeed, it can at the same time meet the needs of legacy HPC
and BDA applications expecting strong consistency and those of BDA applications accepting
either strong consistency level or lesser guarantees.

10.2.5 Conclusion: blobs are the right candidate for storage convergence

Results confirm the applicability of blobs for HPC and BDA convergence. First, the set of ap-
plications from both HPC and BDA communities almost exclusively perform file-level oper-
ations. These operations are very close to those provided by blob storage. Second, replacing
file-based with blob-based storage does not hinder the performance of the applications. On
the contrary, a performance gain of up to 32 % is observed compared to file systems, which
is mostly explained by the optimized read path enabled by the flat namespace. In particu-
lar, the direct read capability and simple, decentralized metadata management scheme that Rados
provides excels for read performance, while the multi-version concurrency control of BlobSeer
supports high write velocity for highly concurrent workloads.

These results demonstrate that blobs are able to support legacy applications at high ve-
locity for both HPC and BDA use-cases. This make them ideal candidates for storage-based
convergence between HPC and BDA.

10.3 Týr for HPC and BDA convergence

We now demonstrate the effectiveness of Týr’s key design principles in support of legacy
HPC and BDA applications. This evaluation leverages the same experimental platform and
configuration as in section 10.2, adding Týr as a competitor for BlobSeer, Rados and CephFS.
We focus on non-transactional performance, and seek to demonstrate that the performance
of Týr is competitive with, or even exceeds that of other state-of-the-art storage systems,
even when such transactional semantics are not needed. This is the case for the set of legacy
applications we introduced in section 10.2.

In particular, using exactly the same experiments as in section 10.2, we seek to under-
stand how Týr behaves compared with its blob-based storage competitors. For HPC appli-
cations, we also provide an overview of the horizontal scalability of Týr. We replicate the
above experiments on up to 2,048 storage cores and 6,144 application ranks, on a high-end,
leadership-class supercomputer hosted at Argonne National Laboratory.

10.3 – Týr for HPC and BDA convergence 141

BLAST MOM EH / MPI RT
80

85

90

95

100

105

Application

A
vg

.r
el

.c
om

pl
et

io
n

ti
m

e
(%

)

Lustre Rados Týr

Figure 10.9 – Average performance improve-
ment relative to Lustre for HPC applications
using blob storage, with 95 % confidence on
Theta.

24 / 8 48 / 16 72 / 24 96 / 32
0

20

40

60

80

100

120

140

Computation / Storage nodes

A
gg

.r
el

.c
om

pl
et

io
n

ti
m

e
(%

) BLAST MOM
EH / MPI RT

Figure 10.10 – Average performance im-
provement at scale relative to 32 nodes setup
for HPC applications using blob-based stor-
age on Theta.

10.3.1 Týr as a storage backend for HPC applications

In this section we add Týr as a backend storage system for BLAST, MOM, EH(MPI) and Ray
Tracing applications, and compare its performance with that of Lustre, BlobSeer and Rados
on a high-end supercomputer. To do so, we leverage the Theta supercomputer hosted at
Argonne National Laboratory, and run the same experiments as in the previous section. We
deploy the applications on 32 nodes (totalling 2,048 cores), using 24 nodes for computation
and 8 nodes for storage, and measure the completion time for each application. Experiments
with Lustre use the file system available to the computer, totalling 170 storage nodes shared
across all users.

We plot the results on Figure 10.9. It is seen that the performance improvement is sig-
nificantly higher than on our testbed. The reason for this performance increase is to be
found in the technical characteristics of Theta, which offers significantly more RAM than
SSD space. As such, for the most part, the storage systems deployed on these nodes behave
as in-memory storage systems. We acknowledge that the setup of this platform is particular
in this respect, and by consequence that the results are not representative of those of another
platform with a different setup. Yet, we claim that the results demonstrate that deploying
blob-based storage systems on high-end HPC platforms is possible without requiring any
application modification. We observe a higher variance in the results compared to Grid’5000,
which we attribute to the shared nature of the centralized storage.

In Figure 10.10 we scale all four applications on up to 128 nodes of Theta, or 8,192 cores.
We notice a near-linear decrease of computation time as the size of the cluster increases.
With applications such as EH(MPI) or Ray Tracing, the performance improvement is slightly
lower than with purely read-intensive applications, because of the significantly higher cost
of write operations compared to read operations.

142 Chapter 10 – Stream Storage for HPC and Big Data Convergence

Sort Grep DT CC Tokenizer
0.6

0.8

1

1.2

1.4

1.6

Application

A
vg

.r
ea

d
th

ro
ug

hp
ut

(G
B

/
s)

HDFS BlobSeer Rados Ceph Týr

Figure 10.11 – Read throughput for each Big
Data application with 95 % confidence inter-
vals.

Sort Grep DT CC Tokenizer
60

70

80

90

100

110

Application

A
vg

.r
el

.c
om

pl
et

io
n

ti
m

e
(%

)

HDFS BlobSeer Rados Ceph Týr

Figure 10.12 – Average performance im-
provement relative to HDFS using blob stor-
age, with 95 % confidence intervals.

10.3.2 Týr as a storage backend for BDA applications

Figure 10.11 shows the average read bandwidth for these applications. Týr constantly out-
performs both Ceph and BlobSeer in all cases, because of the direct read capability it shares
with Rados. The experiments also demonstrate that over 98 % of the read operations per-
formed by Spark could be served by the direct read protocol. The remaining 2 % were served
by the multi-chunk read protocol. Yet, similarily to what we could observe with HPC, Týr
performance is slightly lower than Rados performance due to the cost of the additional con-
sistency guarantees it provides.

In Figure 10.12 we plot the relative improvement in the total application completion time,
diluted in computation. As a result of the previous observations with read and write per-
formance, Týr globally enables significantly lower application completion time compared to
Ceph and BlobSeer for all applications. Due to its globally higher write performance with
highly concurrent workloads, Týr brings substantial application completion time reduction
for write-intensive applications such as Tokenizer, while causing a very slight completion
time increase when reads are frequent.

10.3.3 Discussion

In this chapter, we have demonstrated Týr’s performance using legacy applications, initially
designed for file-based storage. Overall, we show that the design of Týr enables it to signif-
icantly outperform both BlobSeer and traditional file systems in all cases, for both HPC and
BDA applicative use-cases. This is due to its design, leveraging non-blocking writes thanks
to multi-version concurrency control and direct writes using consistent hashing techniques.

Týr performance shows a small penalty compared to that of Rados, except for write-
intensive applications for which multi-version concurrency control is particularly efficient.
This lower performance is the result of the higher consistency guarantees of Týr, enabled
by its fully transactional API. Legacy applications such as the ones used in this test are not
designed to take advantage of these features.

143

Chapter 11
A Look Forward: Generalizing HPC

and BDA Convergence

Contents
11.1 Going beyond storage convergence . 144
11.2 Converging on an architecture for hybrid analytics 145
11.3 Wider transactional semantics . 146
11.4 Concluding remarks . 147

THIS MANUSCRIPT SUMMARIZES A SIGNIFICANT PART OF MY RESEARCH activities over
the last years. Clearly, during this period, the domains of Big Data Analytics (BDA)
and stream processing have evolved. The pace of change in the data analytics ecosys-

tem is extraordinary, already rendering obsolete some of the elements in Figure 10.2.
Arguably, as noted by the BDEC 1 community [54], the main shift that is currently taking

place is to adapt or replace the legacy BDA paradigm (i.e., the software stack in Figure 10.2,
typically executed on clouds) with a new type of distributed services platform. This would
combine computing, communication, and buffer/storage resources in a data processing network that
is far more integrated than anything available. At the same time, this new platform should be
capable to execute on edge, fog and cloud environments. An example of a recent system enabling
this metaphor at the processing level is Apache NiFi [46]. It automates the flow of data
between software systems, allowing for instance to control in a unified fashion a workflow
combing edge analytics with Apache Edgent [41] and cloud analytics with Apache Flink [70].

The direction of this recent change is in line with the HPC and BDA convergence. More
precisely, this emerging distributed services platform stays at the core of future processing com-
bining both models. In this context, the choices we made during the development of this

1Big Data and Extreme-scale Computing, https://www.exascale.org/bdec/ .

https://www.exascale.org/bdec/

144 Chapter 11 – A Look Forward: Generalizing HPC and BDA Convergence

work favored some research lines over others. For instance, KerA was designed from the
beginning with the goal of unifying storage and ingestion, as advocated now by the BDEC
community; Týr already enables convergence at the storage level. At the same time, there are
certainly many directions that were left unexplored. In this chapter, we discuss the potential
research areas that address new challenges related to HPC and BDA convergence.

11.1 Going beyond storage convergence

The challenges of achieving convergence between HPC and BDA platforms are stagger-
ing. While the literature tackling those hard problems for data processing is rich, very few
works have studied this convergence from the perspective of storage. In the last part of
this manuscript we focused on that layer and experimentally demonstrated the usefulness
of Týr in a variety of applicative contexts.The future work associated with HPC and BDA
convergence spans far beyond storage.

Emerging convergence in large-scale scientific applications. Many science domains are
already combining HPC and BDA methods in large-scale workflows. They orchestrate sim-
ulations or incorporate them into the stages of large-scale analysis pipelines for data gener-
ated by simulations, experiments, or observations. Examples of such domains include: as-
tronomy and cosmology, aerospace, autonomous vehicles, weather and climate prediction,
smart cities and biomedicine [54]. Hence, application-level convergence is already achieved
by means of wide-area, multistage workflows. Their DAG-based model is general enough to
describe complex (and changing) configurations of software, hardware, and data flows from
both HPC and BDA. Application-level convergence was recently formalized by the team of
Geoffrey Fox [93]. They noted that the comparison of simulation and Big Data problems can
be made more precise by distinguishing data and models for each use-case. To this end, they
introduced a common set of properties used to characterize and compare applications from
HPC and BDA.

Processing-level convergence. There are two conflicting views on how to achieve conver-
gence at this level. On the one hand, Big Data processing systems could be adapted to the
specifics of HPC platforms. For instance, stream processing in cloud computing was not
designed with HPC in mind, and there is a need to examine the high-performance aspects
of the runtimes used in this environment. On the other hand, one could imagine HPC-like
programming tools and techniques made to fit BDA. There seem to be several non-exclusive
alternatives for interfacing HPC with BDA: data streaming, in-transit processing, process-
ing at the edge of the distributed system (i.e., as close as possible to the data sources), and
logically centered, cloud-like processing [62].

We advocate that a convergent storage platform such as the one Týr provides is a solid base
for supporting both application-level and processing-level convergence. Týr enables portability and
reduces the scope of the challenges of data processing by proposing a single storage model
for a wide variety of upcoming applications and use-cases designed from the ground up
with convergence in mind.

11.2 – Converging on an architecture for hybrid analytics 145

Figure 11.1 – An architecture enabling hybrid analytics.

11.2 Converging on an architecture for hybrid analytics

Hybrid analytics (see chapter 10) combine past (historical) and present (real-time) data
jointly with future (hypothetical, simulated) data. The past and present data account for
the data-driven model of the targeted system or phenomenon, while the future data is the re-
sult of the simulation-based model. Hybrid analytics are challenging since the two perspectives
(data-driven and simulation-based) model the real-world system from two different view-
points, ignorant of each other. For the simulation model, it is typically a physics perspective,
while for the data-driven model it refers to a purely behavioral viewpoint. For example, in
the case of autonomous cars (see section 1.1.1), the data-driven model is the ensemble of past
and real-time data collected from all the sensors, while the simulation model is the physical
model of the vehicle used by a simulation to anticipate its behavior. In the industry, these
two models are often referred as "digital twins" [154].

Hybrid analytics correlate the two models in order to provide a deeper interpretation of
measured data, enabling more reliable, transparent and innovative decision making. How-
ever, leveraging simulations as generators of future data pushes the challenges related to
data processing to extreme scales in terms of both volume and velocity. Defining the under-
lying architectures for such hybrid analytics is thus a complex problem.

An HPC-inspired extension of the Lambda architecture. We propose to combine batch-
based and stream-based Big Data processing techniques (i.e., the Lambda architecture intro-
duced in chapter 4) with in-situ/in-transit data processing techniques inspired by the HPC.
We illustrate this new, unified architecture for hybrid analytics in Figure 11.1. It enables col-
lecting, managing and processing of extreme volumes of past, real-time and simulated data.

146 Chapter 11 – A Look Forward: Generalizing HPC and BDA Convergence

With this architecture, hybrid analytics would enable two things: (i) to update the simulation
model dynamically using the past and real-time data through a continuous learning loop; (ii)
to proactively control in real-time the targeted systems. This reduces uncertainty in prediction
and thereby improves decision making.

Extending DataSteward and KerA to enable hybrid analytics. Towards this goal we plan
to leverage:
• The scalability of the DataSteward framework (already demonstrated on hundreds of

cores, see section 5.3.1) for extreme-scale in-situ/in-transit data processing.
• The KerA approach to low-latency, high-throughput stream ingestion (see section 8.3).
Since KerA currently handles only the ingestion phase of stream processing, we plan to

extend it to make it able to support all the data management needs (i.e., storage and transfer).
As such, we will add support for low-latency stream storage (in-memory) and persistence
(on disk). For batch and stream processing, we will rely on an existing framework — Apache
Flink, which we will extend with elasticity and fault-tolerance support in the presence of
very large state. On the simulation side, we will extend the DataSteward in-situ processing
framework with programmatic support for Big Data analytics (i.e., adding plugins for batch-
based, stream-based and hybrid batch-stream processing).

11.3 Wider transactional semantics

In this manuscript we demonstrated how the semantics and the set of guarantees offered by
Týr’s transactional architecture could prove beneficial for the design of high-level storage
abstractions. In this context, we believe that two directions deserve further investigation.
The first one is to extend the benefits of storage-level synchronisation from BDA to HPC
environments. This is non-trivial since, historically, HPC leverages application-level syn-
chronisation. The second direction aims to build a richer eco-system of storage systems atop
our transactional blob model.

Leveraging transactional operations in HPC contexts. Indeed, series of potential use-cases
exist for explicit, storage-level coordination on HPC systems. We are convinced that trans-
actions have a case in HPC applications to collaboratively maintain complex data structures.
However, the lack of such semantics on current platforms makes it very hard to formally
demonstrate the effectiveness of transactions when leveraged directly at the storage level.
Thus, a promising research direction is to study the impact of transactional operations and
optimistic write coordination in the design of large-scale applications for next-generation
HPC platforms. Such progress would obviate application-level write coordination in most
cases, while at the same time greatly simplifying the design of various I/O framework op-
erations, among which MPI Collective I/O.

Exploring a wider variety of transactional storage abstractions over transactional blobs.
Transactional blobs have the capacity to serve as low-level distributed storage layer for a
variety of storage abstractions, besides distributed file systems [11]. These include transac-
tional key-value stores, transactional wide-column databases or graph databases. A great

11.4 – Concluding remarks 147

Figure 11.2 – Summary of software contributions.

deal of work certainly exists in the domain, but we believe the persrpective of convergence
is yet to be considered. Indeed, such abstractions could be deployed in a wide variety of
applicative contexts, from HPC and BDA communities. One could imagine proposing Týr
as a base storage layer on both cloud and HPC platforms, letting the users choose the ex-
act interface and semantics they need without investing time and effort on low-level data
management or portability across platforms.

11.4 Concluding remarks

I have presented in this manuscript the state-of-the-art of my research domains, introduced
several original results and discussed different points of view with respect to them. The con-
tributions address data-management challenges at all stages of the stream processing pipeline, as
illustrated in Figure 11.2: data collection and in-transit processing at the edge (DataSteward),
transfer towards the processing sites (JetStream), ingestion (KerA) and storage (Týr).

Chapters 2, 3 and 4 introduce the challenges of the Big and Fast Data processing today,
paving the pathway towards the contributions presented in this manuscript. In chapter 5 we
present DataSteward, an approach to perform analysis of stream data in-transit on dedicated
computed nodes, in order to build early knowledge on the results. Stream data is sent fast
and reliably towards the processing sites with JetStream, presented in chapter 6. In chapter 7
we address the issue of metadata centralization, which has a significant impact for streams
processed across geographically distributed sites. Chapter 8 is dedicated to KerA, our ap-
proach for efficient and scalable stream ingestion. Chapter 9 introduces Týr, a transactional
blob storage system able to gracefully support streams with high velocity and horizontal
scalability. In chapter 10, by carefully studying the state of the practice in the field of large-
scale storage for HPC and BDA platforms, we propose blobs as a relevant storage model
for convergence and show how Týr successfully proves relevant in this context with several
applicative scenarios.

Acknowledgements

This work was carried out in the context of several collaborative projects, funded by the
Agence Nationale pour la Recherche (i.e., ANR MapReduce [175], ANR OverFlow [176]), the
European Commission (i.e., H2020 BigStorage [177], EIT Digital Big Data Analytics [179]) or
by the joint Inria - Microsoft Research Centre (i.e., ABrain [174], ZCloudFlow [180]) as well
as in the context of industrial collaborations like the HIRP project [178], funded by Huawei
Research.

148 Chapter 11 – A Look Forward: Generalizing HPC and BDA Convergence

149

Personal Publications

[1] Alexandru Costan, Radu Tudoran, Gabriel Antoniu, and Goetz Brasche. “Tomus-
Blobs: Scalable Data-intensive Processing on Azure Clouds”. In: Concurrency and
Computation: Practice and Experience 28.4 (2016), pp. 950–976.

[2] Gabriel Antoniu, Julien Bigot, Luc Bougé, François Briant, Franck Cappello, Alexan-
dru Costan, Frédéric Desprez, Gilles Fedak, Sylvain Gault, Kate Keahey, Bogdan
Nicolae, and Christian Pérez et al. “Scalable Data Management for Map-Reduce-
based Data-Intensive Applications: a View for Cloud and Hybrid Infrastructures”.
In: International Journal of Cloud Computing 2.2 (2013), pp. 150–170.

[3] Stefan Ene, Bogdan Nicolae, Alexandru Costan, and Gabriel Antoniu. “To Overlap or
Not to Overlap: Optimizing Incremental MapReduce Computations for On-Demand
Data Upload”. In: 5th International Workshop on Data-Intensive Computing in the Clouds
(in conjunction with IEEE/ACM SC 2014). New Orleans, LA, USA, 2014, pp. 9–16.

[4] Iosif Legrand, Ramiro Voicu, Catalin Cirstoiu, Costin Grigoras, Latchezar Betev, and
Alexandru Costan. “Monitoring and Control of Large Systems with MonALISA”. In:
Communications of the ACM 52.9 (2009), pp. 49–55.

[5] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, and Maria S. Pérez.
“Spark Versus Flink: Understanding Performance in Big Data Analytics Frame-
works”. In: IEEE International Conference on Cluster Computing (CLUSTER 2016).
Taipei, Taiwan, 2016, pp. 433–442.

[6] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, Maria S. Pérez, Bog-
dan Nicolae, Radu Tudoran, and Stefano Bortoli. “KerA: Scalable Data Ingestion for
Stream Processing”. In: 38th IEEE International Conference on Distributed Computing
Systems (ICDCS 2018). Vienna, Austria, 2018, pp. 1480–1485.

[7] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, Maria S. Pérez, Radu
Tudoran, Stefano Bortoli, and Bogdan Nicolae. “Towards a Unified Storage and In-
gestion Architecture for Stream Processing”. In: IEEE International Conference on Big
Data (BIGDATA 2017). Boston, MA, USA, 2017, pp. 2402–2407.

[8] Ovidiu-Cristian Marcu, Radu Tudoran, Bogdan Nicolae, Alexandru Costan, Gabriel
Antoniu, and Maria S. Pérez. “Exploring Shared State in Key-Value Store for
Window-Based Multi-pattern Streaming Analytics”. In: 1st Workshop on the Integra-
tion of Extreme Scale Computing and Big Data Management and Analytics (in conjunction
with IEEE/ACM CCGRID 2017). Madrid, Spain, 2017, pp. 1044–1052.

150 PERSONAL PUBLICATIONS

[9] Pierre Matri, Alexandru Costan, Gabriel Antoniu, Jésus Montes, and Maria S. Pérez.
“Towards Efficient Location and Placement of Dynamic Replicas for Geo-Distributed
Data Stores”. In: 7th Workshop on Scientific Cloud Computing - ScienceCloud (in conjunc-
tion with ACM HPDC 2016). Kyoto, Japan, 2016, pp. 3–9.

[10] Pierre Matri, Alexandru Costan, Gabriel Antoniu, Jésus Montes, and Maria S. Pérez.
“Týr: Blob Storage Meets Built-In Transactions”. In: IEEE/ACM: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC 2016). Salt
Lake City, UT, USA, 2016, pp. 573–584.

[11] Pierre Matri, Maria S. Pérez, Alexandru Costan, and Gabriel Antoniu. “TýrFS : In-
creasing Small Files Access Performance with Dynamic Metadata Replication”. In:
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID 2018). Washington, DC, USA, 2018, pp. 452–461.

[12] Pierre Matri, Maria S. Pérez, Alexandru Costan, Luc Bougé, and Gabriel Antoniu.
“Keeping Up With Storage: Decentralized, Write-enabled Dynamic Geo-Replication”.
In: Future Generation Computer Systems 86 (2018), pp. 1093–1105.

[13] Benoît Da Mota, Radu Tudoran, Alexandru Costan, Goetz Brasche, Gabriel Antoniu,
and Betrand Thirion. “Machine Learning Patterns for Neuroimaging-Genetic Studies
in the Cloud”. In: Frontiers in Neuroinformatics 8.31 (2014), pp. 1–28.

[14] Luis Pineda-Morales, Alexandru Costan, and Gabriel Antoniu. “Towards Multi-site
Metadata Management for Geographically Distributed Cloud Workflows”. In: IEEE
International Conference on Cluster Computing (CLUSTER 2015). Chicago, IL, USA,
2015, pp. 294–303.

[15] Luis Pineda-Morales, Ji Liu, Alexandru Costan, Esther Pacitti, Gabriel Antoniu,
Patrick Valduriez, and Marta Mattoso. “Managing Hot Metadata for Scientific Work-
flows on Multisite Clouds”. In: IEEE International Conference on Big Data (BIGDATA
2016). Washington, DC, USA, 2016, pp. 390–397.

[16] Roxana-Ioana Roman, Bogdan Nicolae, Alexandru Costan, and Gabriel Antoniu.
“Understanding Spark Performance in Hybrid and Multi-Site Clouds”. In: 6th In-
ternational Workshop on Big Data Analytics: Challenges and Opportunities (in conjunction
with IEEE/ACM SC15). Austin, TX, USA, 2015, pp. 10–16.

[17] Radu Tudoran, Alexandru Costan, and Gabriel Antoniu. “Big Data Storage and Pro-
cessing on Azure Clouds: Experiments at Scale and Lessons Learned”. In: Cloud Com-
puting for Data-Intensive Applications. Springer, 2015, pp. 331–355.

[18] Radu Tudoran, Alexandru Costan, and Gabriel Antoniu. “DataSteward: Using Ded-
icated Compute Nodes for Scalable Data Management on Public Clouds”. In: 12th
IEEE International Conference on Trust, Security and Privacy in Computing and Communi-
cations (TRUSTCOM 2013). Melbourne, Australia, 2013, pp. 1057–1064.

[19] Radu Tudoran, Alexandru Costan, and Gabriel Antoniu. “MapIterativeReduce: A
Framework for Reduction-Intensive Data Processing on Azure Clouds”. In: 3rd Inter-
national Workshop on MapReduce and its Applications (in conjunction with ACM HPDC
2012). Delft, Netherlands, June 2012, pp. 9–16.

[20] Radu Tudoran, Alexandru Costan, and Gabriel Antoniu. “OverFlow: Multi-Site
Aware Big Data Management for Scientific Workflows on Clouds”. In: IEEE Trans-
actions on Cloud Computing 4.1 (2016), pp. 76–89.

PERSONAL PUBLICATIONS 151

[21] Radu Tudoran, Alexandru Costan, and Gabriel Antoniu. “Transfer as a Service: To-
wards a Cost-Effective Model for Multi-site Cloud Data Management”. In: 33rd IEEE
Symposium on Reliable Distributed Systems (SRDS 2014). Nara, Japan, 2014, pp. 51–56.

[22] Radu Tudoran, Alexandru Costan, Gabriel Antoniu, and Luc Bougé. “A Performance
Evaluation of Azure and Nimbus Clouds for Scientific Applications”. In: 2nd Inter-
national Workshop on Cloud Computing Platforms - CloudCP (in conjunction with ACM
SIGOPS EuroSys 2012). Bern, Switzerland, 2012, pp. 10–16.

[23] Radu Tudoran, Alexandru Costan, Gabriel Antoniu, and Hakan Soncu. “Tomus-
blobs: Towards Communication-Efficient Storage for MapReduce Applications in
Azure”. In: 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID 2012). Ottawa, Canada, 2012, pp. 427–434.

[24] Radu Tudoran, Alexandru Costan, Benoît Da Mota, Gabriel Antoniu, and Bertrand
Thirion. “A-Brain: Using the Cloud to Understand the Impact of Genetic Variability
on the Brain”. In: International Workshop on CloudFutures. Berkley, CA, USA, 2012.

[25] Radu Tudoran, Alexandru Costan, Olivier Nano, Ivo Santos, Hakan Soncu, and
Gabriel Antoniu. “JetStream: Enabling High Throughput Live Event Streaming on
Multi-site Clouds”. In: Future Generation Computer Systems 54 (2016), pp. 274–291.

[26] Radu Tudoran, Alexandru Costan, Ramin Rezai Rad, Goetz Brasche, and Gabriel
Antoniu. “Adaptive File Management for Scientific Workflows on the Azure Cloud”.
In: IEEE International Conference on Big Data (BIGDATA 2013). Silicon Valley, CA, USA,
2013, pp. 273–281.

[27] Radu Tudoran, Alexandru Costan, Rui Wang, Luc Bougé, and Gabriel Antoniu.
“Bridging Data in the Clouds: An Environment-Aware System for Geographically
Distributed Data Transfers.” In: 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID 2014). Chicago, IL, USA, 2014, pp. 92–101.

[28] Radu Tudoran, Olivier Nano, Ivo Santos, Alexandru Costan, Hakan Soncu, Luc
Bougé, and Gabriel Antoniu. “JetStream: Enabling High Performance Event Stream-
ing Across Cloud Data-Centers.” In: 8th ACM International Conference on Distributed
Event-Based Systems (DEBS 2014). Mumbai, India, 2014, pp. 23–34.

152 PERSONAL PUBLICATIONS

153

Other References

[29] Kenneth Aamodt, Abrahantes Quintana, Achenbach Acounis, and Adamová Adler.
“The ALICE experiment at the CERN LHC”. In: Journal of Instrumentation 3.8 (2008),
pp. 8–20.

[30] Rohit Agarwal, Gideon Juve, and Ewa Deelman. “Peer-to-Peer Data Sharing for Sci-
entific Workflows on Amazon EC2”. In: Proceedings of the 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis. SCC ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 82–89.

[31] Bikash Agrawal, Antorweep Chakravorty, Chunming Rong, and Tomasz Wiktor Wlo-
darczyk. “R2Time: a framework to analyse open TSDB time-series data in HBase”. In:
6th IEEE International Conference on Cloud Computing Technology and Science (CloudCom
2014). IEEE. 2014, pp. 970–975.

[32] Dakshi Agrawal, Ali Butt, Kshitij Doshi, Josep-L Larriba-Pey, Min Li, Frederick
R Reiss, Francois Raab, Berni Schiefer, Toyotaro Suzumura, and Yinglong Xia.
“SparkBench–a spark performance testing suite”. In: Technology Conference on Perfor-
mance Evaluation and Benchmarking. Springer. 2015, pp. 26–44.

[33] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric
Schmidt, and Sam Whittle. “The Dataflow Model: A Practical Approach to Balanc-
ing Correctness, Latency, and Cost in Massive-scale, Unbounded, Out-of-order Data
Processing”. In: Proc. VLDB Endow. 8.12 (Aug. 2015), pp. 1792–1803.

[34] Akka Streams. https://akka.io/. (Visited on 12/05/2018).

[35] Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimpe, Samuel Lang, Robert Latham,
Robert Ross, Lee Ward, and Ponnuswamy Sadayappan. “Scalable I/O forwarding
framework for high-performance computing systems”. In: Cluster Computing and
Workshops, 2009. CLUSTER’09. IEEE International Conference on. IEEE. 2009, pp. 1–10.

[36] William Allcock. “GridFTP: Protocol Extensions to FTP for the Grid.” In: Global Grid
ForumGFD-RP, 20 (2003).

[37] Beulah Kurian Alunkal. “Grid Eigen Trust a Framework for Computing Reputation
in Grids”. PhD thesis. Illinois Institute of Technology, 2003.

[38] Amazon S3. https://aws.amazon.com/s3/. (Visited on 12/05/2018).

https://akka.io/
https://aws.amazon.com/s3/

154 OTHER REFERENCES

[39] David. P. Anderson and Gilles Fedak. “The Computational and Storage Potential of
Volunteer Computing”. In: 6th IEEE International Symposium on Cluster Computing and
the Grid (CCGRID’06). Vol. 1. May 2006, pp. 73–80.

[40] Apache Drill. https://drill.apache.org. (Visited on 12/05/2018).

[41] Apache Edgent. http://edgent.apache.org. (Visited on 12/05/2018).

[42] Apache Hadoop. http://hadoop.apache.org/. (Visited on 06/26/2017).

[43] Apache Hive. http://hive.apache.org/. (Visited on 12/05/2018).

[44] Apache Kafka. https://kafka.apache.org/. (Visited on 08/08/2017).

[45] Apache Kudu. https://kudu.apache.org. (Visited on 12/05/2018).

[46] Apache Nifi. https://nifi.apache.org. (Visited on 12/05/2018).

[47] Apache Oozie. http://oozie.apache.org. (Visited on 12/05/2018).

[48] Apache Pig. http://pig.apache.org/. (Visited on 12/05/2018).

[49] Apache Pulsar. https://pulsar.incubator.apache.org. (Visited on 12/05/2018).

[50] Apache Spark SQL. https://spark.apache.org/sql/. (Visited on 12/05/2018).

[51] Apache Storm. https://storm.apache.org/. (Visited on 06/27/2017).

[52] Apache Tez. http://tez.apache.org. (Visited on 12/05/2018).

[53] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. “A
view of cloud computing”. In: Communications of the ACM 53.4 (2010), pp. 50–58.

[54] Mark Asch and Terry Moore. Pathways to Convergence. Tech. rep. BDEC, 2017.

[55] Automotive Council UK. https : / / www . automotivecouncil . co . uk. 2018. (Visited on
01/01/2018).

[56] Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein, and
Ion Stoica. “Coordination avoidance in database systems”. In: Proceedings of the VLDB
Endowment 8.3 (2014), pp. 185–196.

[57] Daniel Balouek et al. “Adding Virtualization Capabilities to the Grid’5000 Testbed”.
In: Cloud Computing and Services Science. Ed. by IvanI. Ivanov, Marten Sinderen, Frank
Leymann, and Tony Shan. Vol. 367. Communications in Computer and Information
Science. Springer International Publishing, 2013, pp. 3–20.

[58] BDVA. European Big Data Value Strategic Research and Innovation Agenda. Tech. rep.
BDVA, 2017.

[59] Gordon Bell, Tony Hey, and Alex Szalay. “Beyond the Data Deluge”. In: Science
323.5919 (Mar. 2009), pp. 1297–1298.

[60] Janie Bennett et al. “Combining in-situ and in-transit processing to enable extreme-
scale scientific analysis”. In: SC ’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. 2012, pp. 1–9.

[61] Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-Hui Su, and
Karan Vahi. “Characterization of scientific workflows”. In: 3rd Workshop on Workflows
in Support of Large-Scale Science. 2008, pp. 1–10.

https://drill.apache.org
http://edgent.apache.org
http://hadoop.apache.org/
http://hive.apache.org/
https://kafka.apache.org/
https://kudu.apache.org
https://nifi.apache.org
http://oozie.apache.org
http://pig.apache.org/
https://pulsar.incubator.apache.org
https://spark.apache.org/sql/
https://storm.apache.org/
http://tez.apache.org
https://www.automotivecouncil.co.uk

OTHER REFERENCES 155

[62] Big Data and Extreme-scale Computing Workshop. http://www.exascale.org/bdec/. 2013.
(Visited on 07/30/2017).

[63] Dhruba Borthakur. “HDFS architecture guide”. In: Hadoop Apache Project 53 (2008).

[64] Irina Botan, Gustavo Alonso, Peter M. Fischer, Donald Kossmann, and Nesime Tat-
bul. “Flexible and Scalable Storage Management for Data-intensive Stream Process-
ing”. In: Proceedings of the 12th International Conference on Extending Database Technol-
ogy: Advances in Database Technology. EDBT ’09. Saint Petersburg, Russia: ACM, 2009,
pp. 934–945.

[65] Krishnaveni Budati, Jason Sonnek, Abhishek Chandra, and Jon Weissman. “Ridge:
Combining Reliability and Performance in Open Grid Platforms”. In: Proceedings of
the 16th International Symposium on High Performance Distributed Computing. HPDC ’07.
Monterey, California, USA: ACM, 2007, pp. 55–64. ISBN: 978-1-59593-673-8.

[66] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. “Cloud computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility”. In: Future Generation Computer Systems 25.6
(2009), pp. 599–616.

[67] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam
McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, et al. “Win-
dows Azure Storage: a highly available cloud storage service with strong consis-
tency”. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Prin-
ciples. ACM. 2011, pp. 143–157.

[68] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam
McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, et al. “Win-
dows Azure Storage: a highly available cloud storage service with strong consis-
tency”. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Prin-
ciples. ACM. 2011, pp. 143–157.

[69] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. “State Management in Apache Flink: Consistent Stateful Distributed
Stream Processing”. In: Proc. VLDB Endow. 10.12 (Aug. 2017), pp. 1718–1729.

[70] Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos, Volker Markl, and
Kostas Tzoumas. “Apache Flink: Stream and Batch Processing in a Single Engine”.
In: Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 38.4
(Dec. 2015), pp. 1–11.

[71] Josiah L Carlson. Redis in action. Manning Publications Co., 2013.

[72] Philip Carns, Kevin Harms, Dries Kimpe, Robert Ross, Justin Wozniak, Lee Ward,
Matthew Curry, Ruth Klundt, Geoff Danielson, Cengiz Karakoyunlu, et al. “A case
for optimistic coordination in hpc storage systems”. In: High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion: IEEE. 2012, pp. 48–53.

[73] Ceph: differences from POSIX. http://docs.ceph.com/docs/kraken/cephfs/posix/. 2018.
(Visited on 12/05/2018).

http://www.exascale.org/bdec/
http://docs.ceph.com/docs/kraken/cephfs/posix/

156 OTHER REFERENCES

[74] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. “Bigtable: A
distributed storage system for structured data”. In: ACM Transactions on Computer
Systems (TOCS) 26.2 (2008), pp. 4–30.

[75] Kristina Chodorow. MongoDB: The Definitive Guide: Powerful and Scalable Data Storage.
O’Reilly Media, Inc., 2013.

[76] Marshall Copeland, Julian Soh, Anthony Puca, Mike Manning, and David Gollob.
“Microsoft azure and cloud computing”. In: Microsoft Azure. Springer, 2015, pp. 3–26.

[77] Abhinandan Das, Indranil Gupta, and Ashish Motivala. “Swim: Scalable weakly-
consistent infection-style process group membership protocol”. In: Dependable Sys-
tems and Networks, 2002. DSN 2002. Proceedings. International Conference on. IEEE. 2002,
pp. 303–312.

[78] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”. In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113.

[79] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on
large clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[80] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. “Dynamo: Amazon’s highly available key-value store”. In: ACM
SIGOPS operating systems review 41.6 (2007), pp. 205–220.

[81] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good. “The
Cost of Doing Science on the Cloud: The Montage Example”. In: Proceedings of the
2008 ACM/IEEE Conference on Supercomputing. SC ’08. Austin, Texas: IEEE Press, 2008,
pp. 501–512.

[82] Ewa Deelman et al. “Pegasus: A Framework for Mapping Complex Scientific Work-
flows Onto Distributed Systems”. In: Sci. Program. 13.3 (July 2005), pp. 219–237.

[83] “Developing Cloud Applications using the e-Science Central Platform.” In: Proceed-
ings of Royal Society A. Vol. 371. 1983. Dec. 2012.

[84] Robert Escriva and Emin Gün Sirer. “The design and implementation of the warp
transactional filesystem”. In: 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16). USENIX Association. 2016.

[85] Robert Escriva, Bernard Wong, and Emin Gün Sirer. “HyperDex: A distributed,
searchable key-value store”. In: Proceedings of the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols for computer communication. ACM.
2012, pp. 25–36.

[86] Robert Escriva, Bernard Wong, and Emin Gün Sirer. “Warp: Lightweight multi-key
transactions for key-value stores”. In: arXiv preprint arXiv:1509.07815 (2015).

[87] Pei Fan, Zhenbang Chen, Ji Wang, Zibin Zheng, and Michael R. Lyu. “Topology-
Aware Deployment of Scientific Applications in Cloud Computing”. In: IEEE
CLOUD. 2012.

[88] Pei Fan, Zhenbang Chen, Ji Wang1, Zibin Zheng, and Michael R. Lyu. “Scientific ap-
plication deployment on Cloud: A Topology-Aware Method”. In: Concurrency and
Computattion: Practice and Experience (2012).

OTHER REFERENCES 157

[89] Flink Fault Tolerance. https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/
state/. 2018. (Visited on 12/05/2018).

[90] Ian Foster, Ann Chervenak, Dan Gunter, Kate Keahey, Ravi Madduri, and Raj Ket-
timuthu. “Enabling PETASCALE Data Movement and Analysis”. In: Scidac Review
(Winter 2009). (Visited on 12/05/2018).

[91] Ian Foster, Rajkumar Kettimuthu, Stuart Martin, Steve Tuecke, Daniel Milroy, Brock
Palen, Thomas Hauser, and Jazcek Braden. “Campus Bridging Made Easy via Globus
Services”. In: Proceedings of the 1st Conference of the Extreme Science and Engineering
Discovery Environment: Bridging from the eXtreme to the Campus and Beyond. XSEDE ’12.
Chicago, Illinois: ACM, 2012, 50:1–50:8.

[92] Geoffrey C. Fox, Jha Shantenu, Qiu Judy, Ekanayake Saliya, and Luckow Andre. “To-
wards a Comprehensive Set of Big Data Benchmarks”. In: Advances in Parallel Com-
puting 26 (2015), pp. 47–66.

[93] Geoffrey Fox, Judy Qiu, Shantenu Jha, Saliya Ekanayake, and Supun Kamburuga-
muve. Big Data, Simulations and HPC Convergence. Tech. rep. Indiana University, 2016.

[94] Geoffrey Fox, Judy Qiu, Shantenu Jha, Saliya Ekanayake, and Supun Kamburuga-
muve. “Big data, simulations and hpc convergence”. In: Big Data Benchmarking.
Springer, 2015, pp. 3–17.

[95] Lars George. HBase: the definitive guide: random access to your planet-size data. O’Reilly
Media, Inc., 2011.

[96] John Giardino, Jim Haridas, and Ben Calder. How to get most out of Windows Azure
Tables. 2013.

[97] Dan Gibson. Is Your Big Data Hot, Warm, or Cold? 2012. (Visited on 03/11/2017).

[98] Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S.
Smolinski, and Larry Brilliant. “Detecting influenza epidemics using search engine
query data”. In: Nature 457 (2009), pp. 1012–1014.

[99] Leonardo B. Gomez and Frack Cappello. “Improving floating point compression
through binary masks”. In: 2013 IEEE International Conference on Big Data. Oct. 2013,
pp. 326–331.

[100] Google Cloud Platform. https : / / cloud . google . com / compute/. Google. (Visited on
06/26/2017).

[101] Grid’5000 Nancy hardware. https : / /www . grid5000 . fr /mediawiki / index . php /Nancy :
Hardware. 2017. (Visited on 12/05/2018).

[102] William Gropp and Ewing Lusk. Users guide for MPICH, a portable Implementation of
MPI. Tech. rep. Argonne National Lab., IL (United States), 1996.

[103] Sijie Guo, Robin Dhamankar, and Leigh Stewart. “DistributedLog: A High Perfor-
mance Replicated Log Service”. In: 2017 IEEE 33rd International Conference on Data
Engineering (ICDE). Apr. 2017, pp. 1183–1194.

[104] Yahoo. Powered By Hadoop. http://wiki.apache.org/hadoop/PoweredBy/. 2017. (Visited
on 03/24/2017).

https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/state/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/state/
https://cloud.google.com/compute/
https://www.grid5000.fr/mediawiki/index.php/Nancy:Hardware
https://www.grid5000.fr/mediawiki/index.php/Nancy:Hardware
http://wiki.apache.org/hadoop/PoweredBy/

158 OTHER REFERENCES

[105] Naohiro Hayashibara, Xavier Defago, Rami Yared, and Takuya Katayama. “The φ
accrual failure detector”. In: Reliable Distributed Systems, 2004. Proceedings of the 23rd
IEEE International Symposium on. IEEE. 2004, pp. 66–78.

[106] Nicole Hemsoth. “HPC and Big Data: A "Best of Both Worlds" Approach”. In: HPC
Wire 1 (2014).

[107] Tony Hey, Stewart Tansley, and Kristin M. Tolle, eds. The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft Research, 2009.

[108] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed.
“ZooKeeper: Wait-free Coordination for Internet-scale Systems.” In: USENIX annual
technical conference. Vol. 8. 9. Boston, MA, USA. 2010.

[109] IDC. IDC’s Data Age 2025 study. http://www.seagate.com/www-content/our- story/
trends/files/Seagate-WP-DataAge2025-March-2017.pdf. International Data Corpora-
tion, 2017. (Visited on 06/25/2017).

[110] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. “Dryad:
distributed data-parallel programs from sequential building blocks”. In: Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007. Eu-
roSys ’07. Lisbon, Portugal: ACM, 2007, pp. 59–72.

[111] Hai Jin, Shadi Ibrahim, Tim Bell, Wei Gao, Dachuan Huang, and Song Wu. “Cloud
types and services”. In: Handbook of Cloud Computing. Springer, 2010, pp. 335–355.

[112] William Kabsch. “A solution for the best rotation to relate two sets of vectors”. In:
Acta Crystallographica Section A 32.5 (), pp. 922–923.

[113] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. “Consistent hashing and random trees: Distributed caching protocols
for relieving hot spots on the World Wide Web”. In: Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing. ACM. 1997, pp. 654–663.

[114] Gaurav Khanna, Umit Catalyurek, Tahsin Kurc, Rajkumar Kettimuthu, P. Sadayap-
pan, Ian Foster, and Joel Saltz. “Using overlays for efficient data transfer over shared
wide-area networks”. In: Proceedings of the 2008 ACM/IEEE conference on Supercomput-
ing. SC ’08. Austin, Texas: IEEE Press, 2008, 47:1–47:12.

[115] Rusty Klophaus. “Riak core: building distributed applications without shared state”.
In: ACM SIGPLAN Commercial Users of Functional Programming. ACM. 2010, p. 14.

[116] Tevfik Kosar, Engin Arslan, Brandon Ross, and Bing Zhang. “StorkCloud: Data Trans-
fer Scheduling and Optimization As a Service”. In: Proceedings of the 4th ACM Work-
shop on Scientific Cloud Computing. Science Cloud ’13. New York, New York, USA:
ACM, 2013, pp. 29–36.

[117] Tevfik Kosar and Miron Livny. “A Framework for Reliable and Efficient Data Place-
ment in Distributed Computing Systems”. In: J. Parallel Distrib. Comput. 65.10 (Oct.
2005), pp. 1146–1157.

[118] Jay Kreps, Neha Narkhede, and Jun Rao. “Kafka : a Distributed Messaging System
for Log Processing”. In: NetDB Conference. Athens, Greece, 2011.

[119] Michael Kuhn. “A semantics-aware I/O interface for high performance computing”.
In: International Supercomputing Conference. Springer. 2013, pp. 408–421.

http://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
http://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf

OTHER REFERENCES 159

[120] Chinmay Kulkarni, Aniraj Kesavan, Robert Ricci, and Ryan Stutsman. “Beyond Sim-
ple Request Processing with RAMCloud”. In: IEEE Data Eng. Bull. 40 (2017), pp. 62–
69.

[121] Avinash Lakshman and Prashant Malik. “Cassandra: a decentralized structured stor-
age system”. In: ACM SIGOPS Operating Systems Review 44.2 (2010), pp. 35–40.

[122] Leslie Lamport et al. “Paxos made simple”. In: ACM Sigact News 32.4 (2001), pp. 18–
25.

[123] Neal Leavitt. “Will NoSQL databases live up to their promise?” In: Computer 43.2
(2010).

[124] Christiane Lefevre. The CERN accelerator complex. Tech. rep. 2008.

[125] Justin J Levandoski, Per-Ake Larson, and Radu Stoica. “Identifying hot and cold data
in main-memory databases”. In: Data Engineering (ICDE), 2013 IEEE 29th International
Conference on. IEEE. 2013, pp. 26–37.

[126] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. “Seman-
tics and Evaluation Techniques for Window Aggregates in Data Streams”. In: Pro-
ceedings of the 2005 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’05. Baltimore, Maryland: ACM, 2005, pp. 311–322.

[127] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. “Sparkbench:
a comprehensive benchmarking suite for in memory data analytic platform spark”.
In: Proceedings of the 12th ACM International Conference on Computing Frontiers. ACM.
2015, pp. 53–63.

[128] Sheng Li, Hyeontaek Lim, Victor W Lee, Jung Ho Ahn, Anuj Kalia, Michael Kamin-
sky, and David Andersen. “Architecting to achieve a billion requests per second
throughput on a single key-value store server platform”. In: ACM SIGARCH Com-
puter Architecture News. Vol. 43. 3. ACM. 2015, pp. 476–488.

[129] Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. “Scientific workflow
scheduling with provenance support in multisite cloud”. In: 12th International Meet-
ing on High-Performance Computing for Computational Science (VECPAR). 2016, pp. 1–
8.

[130] Ning Liu, Jason Cope, Philip Carns, Christopher Carothers, Robert Ross, Gary Grider,
Adam Crume, and Carlos Maltzahn. “On the role of burst buffers in leadership-class
storage systems”. In: International Symposium on Mass Storage Systems and Technologies.
IEEE. 2012, pp. 1–11.

[131] Wantao Liu, Brian Tieman, Rajkumar Kettimuthu, and Ian Foster. “A data transfer
framework for large-scale science experiments”. In: Proceedings of the 19th ACM In-
ternational Symposium on High Performance Distributed Computing. HPDC ’10. Chicago,
Illinois: ACM, 2010, pp. 717–724. ISBN: 978-1-60558-942-8.

[132] Isaac Lopez. IDC Talks Convergence in High Performance Data Analysis. https://www.
datanami .com/2013/06/19/idc_talks_convergence_in_high_performance_data_
analysis/. 2013. (Visited on 06/15/2017).

[133] David Maier, Jin Li, Peter Tucker, Kristin Tufte, and Vassilis Papadimos. “Semantics
of Data Streams and Operators”. In: Proceedings of the 10th International Conference on
Database Theory. ICDT’05. Edinburgh, UK: Springer-Verlag, 2005, pp. 37–52.

https://www.datanami.com/2013/06/19/idc_talks_convergence_in_high_performance_data_analysis/
https://www.datanami.com/2013/06/19/idc_talks_convergence_in_high_performance_data_analysis/
https://www.datanami.com/2013/06/19/idc_talks_convergence_in_high_performance_data_analysis/

160 OTHER REFERENCES

[134] Michael Malak. Parallel vs. Distributed file systems: Time for RAID on Hadoop? Tech. rep.
Data Science Association, 2014.

[135] Nathan Marz and James Warren. Big Data: Principles and Best Practices of Scalable Real-
time Data Systems. Greenwich, CT, USA: Manning Publications Co., 2015.

[136] John Meehan et al. “S-Store: Streaming Meets Transaction Processing”. In: Proc. VLDB
Endow. 8.13 (Sept. 2015), pp. 2134–2145.

[137] Nimrod Megiddo and Dharmendra S Modha. “ARC: A Self-Tuning, Low Overhead
Replacement Cache.” In: FAST. Vol. 3. 2003, pp. 115–130.

[138] Microsoft Azure Managed Cache Service. (Visited on 03/11/2017).

[139] Microsoft Azure Service Bus - Cloud Messaging Service. (Visited on 03/11/2017).

[140] Microsoft Cloud Services - Deploy web apps and APIs. (Visited on 03/14/2017).

[141] Vivek Mishra. “Titan graph databases with cassandra”. In: Beginning Apache Cassan-
dra Development. Springer, 2014, pp. 123–151.

[142] Bruce Momjian. PostgreSQL: introduction and concepts. Vol. 192. Addison-Wesley New
York, 2001.

[143] Henry M. Monti, Ali R. Butt, and Sudharshan S. Vazhkudai. “CATCH: A Cloud-
Based Adaptive Data Transfer Service for HPC”. In: Proceedings of the 2011 IEEE In-
ternational Parallel & Distributed Processing Symposium. IPDPS ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 1242–1253.

[144] Dmitry Namiot. “Time Series Databases.” In: DAMDID/RCDL. 2015, pp. 132–137.

[145] Gábor Németh, Dániel Géhberger, and Péter Mátray. “DAL: A Locality-optimizing
Distributed Shared Memory System”. In: Proceedings of the 9th USENIX Conference on
Hot Topics in Cloud Computing. HotCloud’17. Santa Clara, CA: USENIX Association,
2017, pp. 12–12.

[146] Bogdan Nicolae, Gabriel Antoniu, Luc Bougé, Diana Moise, and Alexandra Carpen-
Amarie. “BlobSeer: Next-generation data management for large scale infrastruc-
tures”. In: Journal of Parallel and Distributed Computing 71.2 (2011), pp. 169–184.

[147] Bogdan Nicolae, Pierre Riteau, and Kate Keahey. “Bursting the Cloud Data Bubble:
Towards Transparent Storage Elasticity in IaaS Clouds”. In: 2014 IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium. May 2014, pp. 135–144.

[148] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst, In-
dranil Gupta, and Roy H. Campbell. “Samza: Stateful Scalable Stream Processing at
LinkedIn”. In: Proc. VLDB Endow. 10.12 (Aug. 2017), pp. 1634–1645.

[149] Eduardo Ogasawara, Jonas Dias, Fabio Porto, Patrick Valduriez, and Marta Mattoso.
“An algebraic approach for data-centric scientific workflows”. In: Proceedings of VLDB
Endowment 4.12 (2011), pp. 1328–1339.

[150] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel
Rosenblum. “Fast Crash Recovery in RAMCloud”. In: Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles. SOSP ’11. Cascais, Portugal: ACM,
2011, pp. 29–41.

[151] John Ousterhout et al. “The Case for RAMClouds: Scalable High-performance Stor-
age Entirely in DRAM”. In: SIGOPS Oper. Syst. Rev. 43.4 (Jan. 2010), pp. 92–105.

OTHER REFERENCES 161

[152] Jean-Pierre Panziera. ETP4HPC Strategic Research Agenda. Tech. rep. ETP4HPC, 2017.

[153] Youngwoo Park, Seung-Ho Lim, Chul Lee, and Kyu Ho Park. “PFFS: a scalable flash
memory file system for the hybrid architecture of phase-change RAM and NAND
flash”. In: Proceedings of the 2008 ACM symposium on Applied computing. ACM. 2008,
pp. 1498–1503.

[154] Aaron Parrott and Lane Warshaw. Industry 4.0 and the digital twin. Tech. rep. Deloitte
University Press, 2018.

[155] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,
Samuel Madden, and Michael Stonebraker. “A Comparison of Approaches to Large-
scale Data Analysis”. In: Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’09. Providence, Rhode Island, USA: ACM, 2009,
pp. 165–178.

[156] Pravega. http://www.pravega.io. (Visited on 12/05/2018).

[157] Project Tungsten. https : / / databricks . com / blog / 2015 / 04 / 28/. 2018. (Visited on
12/05/2018).

[158] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda, Fabien
Duchene, Olivier Bonaventure, and Mark Handley. “How Hard Can It Be? Designing
and Implementing a Deployable Multipath TCP”. In: Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation. NSDI’12. San Jose, CA:
USENIX Association, 2012, pp. 29–29.

[159] Daniel A Reed and Jack Dongarra. “Exascale computing and big data”. In: Communi-
cations of the ACM 58.7 (2015), pp. 56–68.

[160] David P Reed. “Implementing atomic actions on decentralized data”. In: ACM Trans-
actions on Computer Systems (TOCS) 1.1 (1983), pp. 3–23.

[161] Robert B Ross, Rajeev Thakur, et al. “PVFS: A parallel file system for Linux clusters”.
In: Proceedings of the 4th annual Linux showcase and conference. 2000, pp. 391–430.

[162] Running Spark on YARN. https://spark.apache.org/docs/latest/running-on-yarn.html.
2017. (Visited on 12/05/2018).

[163] Salvatore Sanfilippo. Redis Cache. (Visited on 03/11/2017).

[164] Philip Schwan et al. “Lustre: Building a file system for 1000-node clusters”. In: Pro-
ceedings of the 2003 Linux symposium. Vol. 2003. 2003, pp. 380–386.

[165] Philip Schwan et al. “Lustre: Building a file system for 1000-node clusters”. In: Annual
Linux Symposium. Vol. 2003. 2003, pp. 380–386.

[166] Galen M Shipman, David A Dillow, H Sarp Oral, and Feiyi Wang. The Spider center
wide file system; from concept to reality. Tech. rep. Oak Ridge National Lab.(ORNL), Oak
Ridge, TN (United States); Center for Computational Sciences, 2009.

[167] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. “The
hadoop distributed file system”. In: Mass storage systems and technologies (MSST), 2010
IEEE 26th symposium on. Ieee. 2010, pp. 1–10.

[168] Benoit Sigoure. “OpenTSDB: The distributed, scalable time series database”. In: Proc.
OSCON 11 (2010).

http://www.pravega.io
https://databricks.com/blog/2015/04/28/
https://spark.apache.org/docs/latest/running-on-yarn.html

162 OTHER REFERENCES

[169] Yogesh Simmhan, Catharine van Ingen, Girish Subramanian, and Jie Li. “Bridging the
Gap between Desktop and the Cloud for eScience Applications”. In: Proceedings of the
2010 IEEE 3rd International Conference on Cloud Computing. CLOUD ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 474–481.

[170] Victor Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil Sayyaparaju, Andrew
Gooding, Rajkumar Iyer, Ashish Shinde, and Thomas Lopatic. “Aerospike: architec-
ture of a real-time operational DBMS”. In: Proceedings of the VLDB Endowment 9.13
(2016), pp. 1389–1400.

[171] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan. “Chord: a scalable peer-to-peer lookup protocol
for internet applications”. In: IEEE/ACM Transactions on Networking (TON) 11.1 (2003),
pp. 17–32.

[172] Miklos Szeredi. FUSE: Filesystem in userspace. http://fuse.sourceforge.net/. 2010. (Vis-
ited on 12/05/2018).

[173] Douglas B Terry, Marvin M Theimer, Karin Petersen, Alan J Demers, Mike J Spreitzer,
and Carl H Hauser. Managing update conflicts in Bayou, a weakly connected replicated
storage system. Vol. 29. 5. ACM, 1995.

[174] The ABrain Project. https://www.msr-inria.fr/projects/a-brain/. (Visited on 01/01/2018).

[175] The ANR MapReduce Project. http://mapreduce.inria.fr/. (Visited on 01/01/2018).

[176] The ANR OverFlow project. https://sites.google.com/view/anroverflow/home. (Visited
on 01/01/2018).

[177] The BigStorage Project. http://bigstorage-project.eu. 2018. (Visited on 01/01/2018).

[178] The HIRP Project on Low Latency for Stream Storage. http://innovationresearch.huawei.
com/IPD/hirp/portal/. (Visited on 01/01/2018).

[179] The Stratosphere Project. http://stratosphere.eu. (Visited on 01/01/2018).

[180] The ZCloudFlow Project. https://www.msr-inria.fr/projects/z-cloudflow-data-workflows-
in-the-cloud/. (Visited on 01/01/2018).

[181] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. “iPerf:
TCP/UDP bandwidth measurement tool”. In: Networks (Jan. 2005).

[182] Kostas Tzoumas. High-throughput, low-latency, and exactly-once stream processing with
Apache Flink. Tech. rep. Data Artisans, 2015.

[183] Vinod Kumar Vavilapalli et al. “Apache Hadoop YARN: Yet Another Resource Ne-
gotiator”. In: Proceedings of the 4th Annual Symposium on Cloud Computing. SOCC ’13.
Santa Clara, California: ACM, 2013, 5:1–5:16.

[184] Murali Vilayannur, Samuel Lang, Robert Ross, Ruth Klundt, Lee Ward, et al. Extend-
ing the POSIX I/O interface: a parallel file system perspective. Tech. rep. Argonne National
Laboratory (ANL), 2008.

[185] Jianwu Wang, Daniel Crawl, and Ilkay Altintas. “Kepler + Hadoop: a general ar-
chitecture facilitating data-intensive applications in scientific workflow systems”.
In: Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science.
WORKS’09. Portland, Oregon, 2009, pp. 1–8.

http://fuse.sourceforge.net/
https://www.msr-inria.fr/projects/a-brain/
http://mapreduce.inria.fr/
https://sites.google.com/view/anroverflow/home
http://bigstorage-project.eu
http://innovationresearch.huawei.com/IPD/hirp/portal/
http://innovationresearch.huawei.com/IPD/hirp/portal/
http://stratosphere.eu
https://www.msr-inria.fr/projects/z-cloudflow-data-workflows-in-the-cloud/
https://www.msr-inria.fr/projects/z-cloudflow-data-workflows-in-the-cloud/

OTHER REFERENCES 163

[186] Lei Wang et al. “BigDataBench: A big data benchmark suite from Internet services”.
In: 2014 IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). IEEE, Feb. 2014.

[187] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn.
“Ceph: A scalable, high-performance distributed file system”. In: Proceedings of the 7th
symposium on Operating systems design and implementation. USENIX Association. 2006,
pp. 307–320.

[188] Sage A Weil, Andrew W Leung, Scott A Brandt, and Carlos Maltzahn. “Rados: a scal-
able, reliable storage service for petabyte-scale storage clusters”. In: Proceedings of the
2nd international workshop on Petascale data storage: held in conjunction with Supercom-
puting’07. ACM. 2007, pp. 35–44.

[189] What is Hadoop Yarn. Tech. rep. COSO IT, 2017.

[190] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and Deep
Ganguli. “Druid: A Real-time Analytical Data Store”. In: Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’14. Snowbird,
Utah, USA: ACM, 2014, pp. 157–168.

[191] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. “Spark: Cluster Computing with Working Sets”. In: Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing. HotCloud’10. Boston, MA:
USENIX Association, 2010, pp. 10–10.

[192] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Sto-
ica. “Spark: Cluster Computing with Working Sets”. In: International Workshop on Hot
Topics in Cloud Computing. Vol. 10. USENIX. 2010, pp. 1–7.

[193] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion
Stoica. “Discretized Streams: Fault-tolerant Streaming Computation at Scale”. In: Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. SOSP
’13. ACM, 2013, pp. 423–438.

[194] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion
Stoica. “Discretized Streams: Fault-tolerant Streaming Computation at Scale”. In: Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. SOSP
’13. Farminton, Pennsylvania: ACM, 2013, pp. 423–438.

[195] Qing Zheng, Kai Ren, Garth Gibson, Bradley W Settlemyer, and Gary Grider.
“DeltaFS: Exascale file systems scale better without dedicated servers”. In: Proceed-
ings of the 10th Parallel Data Storage Workshop. ACM. 2015, pp. 1–6.

164 OTHER REFERENCES

	Foreword
	Introduction
	The need for real-time processing
	Motivating use-case: autonomous cars
	Solution: stream computing in real-time

	The challenge of data management for streams
	Mission statement
	Objectives

	Part I — Context: Stream Processing in the Clouds
	Big Data Processing: Batch-based Analytics of Historical Data
	Batch processing with MapReduce: the execution model for Big Data
	MapReduce extensions

	Big Data processing frameworks
	From Hadoop to Yarn
	Workflow management systems

	Big Data management
	Data storage
	Data transfer

	Discussion: challenges

	The World Beyond Batch: Streaming Real-Time Fast Data
	Stream computing
	Unbounded streaming vs. bounded batch
	Windowing
	State management
	Correctness

	Fast Data processing frameworks
	Micro-batching with Apache Spark
	True streaming with Apache Flink
	Performance comparison of Spark and Flink
	Other frameworks

	Fast Data management
	Data ingestion
	Data storage

	Discussion: challenges

	The Lambda Architecture: Unified Stream and Batch Processing
	Unified processing model
	The case for batch-processing

	Limitations of the Lambda architecture
	High complexity of two separate computing paths
	Lack of support for global transactions

	Research agenda

	Part II — From Sensors to the Cloud: Stream Data Collection and Pre-processing
	DataSteward: Using Dedicated Nodes for In-Transit Storage and Processing
	A storage service on dedicated compute nodes
	Design principles
	Architectural overview
	Zoom on the dedicated nodes selection in the cloud

	In-transit data processing
	Data services for scientific applications

	Evaluation and perspectives
	Data storage evaluation
	Gains of in-transit processing for scientific applications
	Going further

	JetStream: Fast Stream Transfer
	Modelling the stream transfer in the context of clouds
	Zoom on the event delivery latency
	Multi-route streaming

	The JetStream transfer middleware
	Adaptive batching for stream transfers
	Architecture overview

	Experimental evaluation
	Individual vs. batch-based event transfers
	Adapting to context changes
	Benefits of multi-route streaming
	JetStream in support of a real-life LHC application
	Towards stream transfer "as a Service"

	Small Files Metadata Support for Geo-Distributed Clouds
	Strategies for multi-site metadata management
	Centralized Metadata (Baseline)
	Replicated Metadata (on Each Site)
	Decentralized, Non-Replicated Metadata
	Decentralized Metadata with Local Replication
	Matching strategies to processing patterns

	One step further: managing workflow hot metadata
	Architecture
	Protocols for hot metadata
	Towards dynamic hot metadata

	Implementation and results
	Benefits of decentralized metadata management
	Separate handling of hot and cold metadata

	Part III — Scalable Stream Ingestion and Storage
	KerA: Scalable Data Ingestion for Stream Processing
	Impact of ingestion on stream processing
	Time domains
	Static vs. dynamic partitioning
	Record access

	KerA overview and architecture
	Models
	Favoring parallelism: consumer and producer protocols
	Architecture and implementation
	Fast crash recovery for low-latency continuous processing

	Experimental evaluation
	Setup and methodology
	Results
	Discussion

	Týr: Transactional, Scalable Storage for Streams
	Blobs for stream storage
	Design principles and architecture
	Predictable data distribution
	Transparent multi-version concurrency control
	ACID transactional semantics
	Atomic transform operations

	Protocols and implementation
	Lightweight transaction protocol
	Handling reads: direct, multi-chunk and transactional protocols
	Handling writes: transactional protocol, atomic transforms
	Implementation details

	Real-time, transactional data aggregation in support of system monitoring
	Transactional read/write performance
	Horizontal scalability

	Part IV — Perspectives
	Stream Storage for HPC and Big Data Convergence
	HPC and BDA: divergent stacks, convergent storage needs
	Comparative overview of the HPC and BDA stacks
	HPC and BDA storage
	Challenges of storage convergence between HPC and BDA

	Blobs as a storage model for convergence
	General overview, intuition and methodology
	Storage call distribution for HPC and BDA applications
	Replacing file-based by blob-based storage
	Which consistency model for converged storage?
	Conclusion: blobs are the right candidate for storage convergence

	Týr for HPC and BDA convergence
	Týr as a storage backend for HPC applications
	Týr as a storage backend for BDA applications
	Discussion

	A Look Forward: Generalizing HPC and BDA Convergence
	Going beyond storage convergence
	Converging on an architecture for hybrid analytics
	Wider transactional semantics
	Concluding remarks

