From Big Data to Fast Data:
Efficient Stream Data Management

Alexandru Costan

HDR Defense, ENS Rennes, March 14, 2019

yV 4
y 4
ﬂﬂﬂﬂﬂ | lreica~ @:IRISA
inventors for the digital world

TTTTTTTTTTTTTTTT école

‘ EEEEEEE NCES e
PPPPPPPPPP sy érleure
““““““ rennes

Obama the warrior
Th € Misgoverning Argentina

ECO nomist The economic shift from West to East

Genetically modified crops blossom
Ecsmo it e The right to eat cats and dogs

data deluge

AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT

Big Data

2011

Theresa May v Brussels
The Ten years on: banking after the crisis
 SEL0) 4000 § 4B EF M South Korea's unfinished revolution
— Biology, but without the cells

The world’'s most
valuable resource

Data and the new rules
of competition

2017

The :
Economist

b

{ |
: W'
\|
i I |
T 1 A

What machines can tell from your face

2018

From Big Data to Fast Data

Volume Velocity
.0.0‘0.0.0
....‘....‘ =90 =0=0
...“.‘.‘. @9 =0 =0=0
..‘....'.. e =0=@0 =0
® ®© o o o ——0—0 —0—-0

® ¢ & o o

Data at rest I ? Data in motion

Stationary Fluid

Static Dynamic

00.00 MP}
CTE: -0.111
Stop

Sensor type Data generated

Radar 0.1-15 Mbit/s
LIDAR 20-100 Mbit/s
Camera 500-3,500 Mbit/s
Ultrasonic <0.01 Mbit/s
Vehicle motion, GNSS, IMU <0.1 Mbit/s

TOTAL ESTIMATED BANDWIDTH >
‘- 3 Gbit/s (~1.4TB/h) to 40 Gbit/s (~19 TB/h) >

-~

4
"\\?': T |

Devices

i <
I P

1 R

i

T A

i

loT and Smart City

2

>_
Z
<C
=
O
2 .
©
—
—
<
=
P

.......

Streams: the model for Fast Data

] O m] O m e
0 O 0
O] OO L]
g ® g"u_" iy 8 gy 8 B, @
Om ~ , Om JD Om Om 'D O m
o © - o - o _ O m
mE ..ll 0 mHE ..ll E EE- g
o Bpg "pRlog¥gEg "o ®oepfEgeg
E ",pg 8 g g _ g mn i,y

* Continuous, unbounded, unordered, global-scale datasets made up of

- Small size per event (i.e., bytes and kilobytes)
* High arrival rate (i.e., million items per second)

Streams: the model for Fast Data

Arrival
time

8:00 9:00 10:00 11:00 12:00 13:00

Events arrive with unknown delays

How to deal with this unboundedness ?

B0 | |m 80, m pO| | g B | m ® |, = E , = lD
= O [B O 0 m N u

o o O 0 O m “||jo F 5 O oY o

m

0y g "Og| |m WO || g "0 | 4" B o g B _Em
= - . o ® | m_E B e R
O [U g] g -
- E O m g U = " om ¥ |Om =
o 0 o ¢ ¢ y Arrival

8:00 9:00 10:00 11:00 12:00 13:00 tme

Aggregating time-based windows

How to deal with this unboundedness ?

oy § ml, m Egg E EO, m Epgy
Input D.DID..D.D. Om UgE om0y Om Ha

mE E R EH[ng Em g 9§ gm
Arrival o ® —@ e O O ®
rriva
el 800 9:00 }46(11:00 12:00 13:00
EECCEE| | ER0dEE| | EEoodE | |EEooEE | |EEOoEE | | BROCE
Output |EECOES| | EECONE| | EECONS| (ESOC0EE| | ESCONE | | EE00)
EECCEE | | EECOEE| | EECOEE| | EECOEE| | EEOOEE| | BEOOE

Event
production
time

O
8:00

O
9:00

‘.
10:00

11:00

Aggregating event-based windows

12:00

13:00

10

How to deal with this unboundedness ?

.D. B

m [

B Ny, B .D. mE Ny,

O
O O
|nput€ﬂ. .lD.IZI. D.D.ID.D. O []

B g mE p E E[DBg Em g ¥ gm

_ o O —9 / 0 ° °
Amval 800 9:00 10:00 / 11:00 12:00 13:00
EE BN EEE EpE| | m| \mEE|| B EEEEE EEE

Output oo][o[0o & g @ |og [ooo EEEllE

EEEE EEE|| B EEE EE|| B B m|| B

o
Event

production
time

8:00

Aggregating

9:00

‘.
10:00

11:00

'Y
12:00

13:00

11

Batch vs. streaming

[+ =2

Correctness Latency

Streaming

> /
7

Correctness Exact results Approximate results
Latency High-latency Low-latency

Stateless Stateful

13

State of the art until recently:
Lambda Architectures

N N
Historical Periodic Exact
events queries historical
~_ ~_model _~

Batch processing Results

&
Actions

Stream processing
N

. w
Continuous Approximate
updates real-time

00l

Real-time
events

State of the art until recently:
Lambda Architectures

TN N
Historical Per'o.d'c
queries

Exact
historical
w wel/

events

AAAAAA J\Z Batch processing @ Results
Spark I Flink &
ctions

Stream processing
N

. w
Continuous Approximate
updates real-time

e oel g

Real-time
events

14

The streaming pipeline: latency happens
Cloud

DATA

.
VIZUALISATION
'

B0gp S ggeH ID.ll.
Om0O O g O .. O g 0O 0)) 3y

JFlink
DATA Unified batch and stream processin
PROCESSING g 1?

The streaming pipeline: latency happens
Cloud

STREAM

DATA
STORAGE & QUERY

Z DATA
VIZUALISATION

=)

PR[l[l]:%TsASINc Unified batch and stream processm

The streaming pipeline: latency happens
Cloud

Poor storage Starved
design resources

- Hardware
‘ STORAGE & QUERY failure

Ingest delay
(write latency)

t)ATA
RANSFER

DATA
INGESTION

DATA
VIZUALISATION

Throughput i
(read latency) '

STREAM

)

L
) B wos
DATA Unified batch and stream processing

PROCESSING

The streaming pipeline: latency happens
Cloud

Starved

resources

H - Hardware
| STORAGE & UERY failure

rRANSFER

DATA
INGESTION

Throughput
(read latency)
STREAM

- 3

L
Network _delay Backlog . ~
or unavailable DATA 5 _
Unified batch and stream processmg

PROCESSING

Objective

Processing time

Event production time

16

Objective

Reduce the processing
time skew by means of
dedicated stream data
management
across Edge and Cloud

Processing time

Event production time

16

Edge

\\
N
\\
S

Today: centralized

Objective

Edge

Tomorrow: decentralized

My research
path

Projects and collaborations =X

\\TEHN,
<° %

CERN

Stream
Chicago, USA INSN \ .
\ | %;0 - HUAWEI modeling
I\Pasadena, USA Ar Onne‘ b O) E,llchqrscéférfﬁgarch-lnna lMuniCh
g NATIONAL LABORATORY h 7 \. Germar,my Stream Storage
la—
inventors for the digital world Rennes, France Bucharest
Geneva, Romania
Sui) .
ST, - | s '@nﬂi} ETN BigStorage Hp CSatﬁzjagleoLo(;
Madrld, Spaln 201 5
Mexico City, Mexico " .
S ANR . Service based
/. '@\ bkl data management
2014

Exascale

@ Associate Teams with ANL, UPB storage and 110

2013

@ Associate [=
\f?‘ ZCloudFlow | Workflow data management
A'Te Professor Yl <

- \ . . .
'@3 ANR MapReduce, ABrain| Big Data processing

> N - - - -
'@3 MonALISA Data processing and visualization

Projects and collaborations

From Big Data
processing
to
Fast Data

management

@ IPN Stregm
modeling

Storage for
HPC and Cloud
. < Service based
'@ ANR OverFlow data management

Data@Exascale, DataCloud @Work Exascale
Associate Teams with ANL, UPB storage and 1/0

Associate <
‘f?\ Professor i@? ZCloudFlow | Workflow data management

i@;} ETN BigStorage

s < . : :
¥« ANR MapReduce, ABrain| Big Data processing

J N
'@3 MonALISA Data processing and visualization

Research topics and PhD co-supervision

2011 2012 2013 2014 2015 2016 2017 2018
. . ’ . . . ’ *

»
»

-
-
-
-~
=h

{Iterative MapReduce

Geo-distributed processing

=
-
~o

Big Data
processing

* Luis Pineda
\
L A i

/
Workflow data management Ovidiu Marcu

Radu Tudoran S

Stream data management y]

A 4

< Blob storage

==
-~
~

Transactional storage

Fast Data management

_HPC and Big Data convergence

Pierre Matri

"= == Inspiration

21

My contributions

DataSteward

In-transit
stream data
management

| DATA
TRANSFER

DATA
INGESTION

'

STREAM

I

m— | DATA
s | STORAGE & QUERY

>

IEEE TRUSTCOM’13

- IEEE SRDS’14

IEEE Transactions on Cloud
- Computing, 2016

22

My contributions

DataSteward

In-transit
stream data
management

| DATA
TRANSFER

JetStream

DATA

INGESTION Fast geographically
distributed stream

data transfers

(

LATA STREAM.

m— | DATA
—— | STORAGE & QUERY

>

@

M— IEEE BIGDATA’'13
ACM DEBS’14
— ——
I

IEEE/ACM CCGRID’14

Future Generation of Computer
Systems, 2014

22

| DATA
TRANSFER

DATA
INGESTION

Scalable

stream
ingestion

My contributions

DataSteward

In-transit
stream data
management

JetStream

Fast geographically

distributed stream
data transfers

STREAM

=
m— | DATA
me— e | STORAGE & QUERY
@
y 4 . IEEE BIGDATA'17
e I EBDMA 2017 workshop (with
— IEEE/ACM CCGRID’17)
[

B IEEE ICDCS’18

22

My contributions

DataSteward

In-transit Adaptive distributed
stream data metadata
management management

m— | DATA
s | STORAGE & QUERY

>

| DATA
TRANSFER

JetStream

DATA
INGESTION

Fast geographically

distributed stream

R data transfers
y ’
T2 STREAM /////1 . IEEE CLUSTER’15
- = B IEEE BIGDATA'16
v I
— IEEE Transactions on Knowledge and

- Data Engineering, 2018

Scalable
stream (j
ingestion o

My contributions

DataSteward

In-transit Adaptive distributed Transactional
stream data metadata / blob
management management - storage

s | DATA
|DATA mem= | STORAGE & QUERY

TRANSFER

JetStream

>

DATA
INGESTION

Fast geographically

@

distributed stream

e data transfers
STREAM /. IEEE/ACMSC'16
A
- =] — IEEE/ACM CCGRID"18
I
I

Future Generation Computer
= Systems, 2018

Scalable
stream
ingestion () J

22

KerA:
Scalable Stream Ingestion

INGESTION

What is ingestion ?

* Collect data from various sources
— producers

* Deliver them for processing / storage
— consumers

* Optionally: buffer, log, pre-process

g

Ingestion determines the processing performance

24

State of the art: Apache Kafka

50 nodes, average 200K events/s 400 nodes, peak 3.2M events/s

Limitations

* Scalability
* Data duplication

25

The KerA approach to ingestion

 Scalability =& Dynamic partitioning
* Enables seamless elasticity

* Data duplication — Unified ingestion and storage

* Support for both
« Streams (unbounded data)

Egg B mO B By Ep E0O, m Hpoyg
éD.DIID.D.D.D.ID.D.DI§
* Objects (bounded data) “ sm _So§ ROAm RE g ¥ mm

26

Issue: scalability

/%

?

'

>

1))

DATA

— EEEEE

artitions

ID. O l|:|. S EE

ODgOy Om @ Y

H m i pn 00
Partitions

a0, § o, EEEE

O m D. OmH ™~

B g " mm EEEE
Partitions 0000

Producers Brokers

Ay

Consumers

Each partition is statically associated with one consumer: limited
scalability

PROCESSING

)

27

KerA: dynamic partitionin

Brokers

Streamlet | | Streamlet || Streamlet 4 Segments)
Group [[[= =

AN L])

Streamlet | | Streamlet || Streamlet - ~
Segments
Group LI

Streamlet || Streamlet || Streamlet _ H|m[m]m)

- Streamlets: logical stream containers; #streamlets > #brokers
- Groups: created and processed dynamically; up to a maximum number per broker
« Segments: stream partitions of fixed size; configurable #segments per group

DATA
INGESTION

L

Issue: data duplication

| DATA
s | STORAGE & QUERY

=))

DATA
PROCESSING

STREAM

I

Increased network and storage overheads

29

KerA: unified ingestion and storage

Streams s
§0, = Wgog INGESTION -
D_-.D._D:_”> - Brokers o —

—
I (=) |)))
Acquire

Push/Pull s
data access PROCESSING

STORAGE !
Backups (o)

Move less data, process them faster

Objects

Common data model for streams and objects

30

-Throughput -

21*105

19*105 |

17*105
15*105
13*105
11108

9*105 |

7105

5*105 |

3*105
1*105

Evaluating scalability

Vertical ‘

Horizontal

21*105
19*108
17*105
15*108
13*108
11*105
9*108
7*105
5*105
3*108
1*108

4 8 16 32

Clients

4 brokers, 32 partitions,
128KB request size, 100B records

=== KeraProd

mmmm KeraCons
i;)(me== KafkaProd

——1 KafkaCons

8 12 16 Nodes Number

Brokers

64 clients, 32 partitions,
1MB request size, 100B records

2X better throughput
with 75% less resources 31

Tyr:
Transactional Blob Storage

A large-scale monitoring and analytics service
for the CERN LHC ALICE experiment

Ingests and stores telemetry events at 13 GB/s

O] | (I

MonALISA RDBMS platform does not scale

cccccc

°
nnnnn

nnnnnnn

Multiple storage requirements

Write atomicity for aggregate updates
Atomic, lock-free writes
High-performance reads

Horizontal scalability

ssssssssss

AYAAAS

Write atomicity for aggregate updates

Aggregate update is a two-step operation

Read current value remotely from A A
storage _ ~
Write the updated value remotely to *:#;D s
storage v oo

oY) - Q)
| sync(|| x||2)
Aggregate update needs to be atomic =] N
Concurrent writers! 2 =
<
v \ 4

Synchronization is mandatory
34

At which level to handle synchronization?

At application level?

Fine-grained synchronization
Application-specific optimization

...but increases app complexity, error-prone
Thread 1 § Thread 2 § Thread 3

Common on HPC (e.g., explicit locking)
Synchronization layer

Storage

35

At which level to handle synchronization?

At application level?
Fine-grained synchronization
Application-specific optimization

...but increases app complexity, error-prone
Thread 1 § Thread 2 § Thread 3

Common on HPC (e.g., explicit locking)

At middleware level?
Eases application design Synchronization layer

...but typically substantial performance overhead
Also common on HPC (e.g., MPI collective I/0O)

Storage

35

At which level to handle synchronization?

At application level?
Fine-grained synchronization
Application-specific optimization
...but increases app complexity, error-prone

- : Thread 1 § Thread 2 § Thread 3
Common on HPC (e.g., explicit locking)

At middleware level?

Eases application design
...but typically substantial performance overhead

Also common on HPC (e.g., MPI collective I/0)

Transactional

At storage level? Object Storage

Also eases application design

St i T Transactional API
orage-specific optimization . > begin()
...but less customizable than app-level synchronization > current = read(aggregate, ..)

> write(aggregate, current+1, ..)

Common on BDA (e.g., transactional systems) > commit () .

Tyr read protocols

Direct read Multi-chunk read Transactional read

1RTT 1 RTT + 1 Additional cost First read
1 RTT + 1 Additional cost

Similar to key-value stores Multi-chunk consistency

No repeatable reads Subsequent reads

Low latency I.e. no consistency 1 RTT

No multi-chunk consistency guarantees between

guarantees successive reads Multi-chunk consistency
Repeatable reads

> read(blob, 0, 10kb) > read(blob, 0, 100mb) begin()

read(blob, 0, 10kb)
read(blob, 100mb, 10kb)
commit()

V V V V

The developer can select an algorithm offering lesser guarantees

Results in a substantial performance increase

Useful for example for append logs, in which multi-chunk operations are not needed

36

Tyr atomic writes

MonALISA: aggregate updates could be
performed atomically and efficiently

Tyr enables these writes to be
performed with one round-trip instead of
two

Atomic operations: in-place data
modification

Integrated with the transaction protocol

read(count)
S
write(count,6)
Moe

v v

Transactional
Storage N

Tyr atomic writes

MonALISA: aggregate updates could be

performed atomically and efficiently A
Tyr enables these writes to be -
performed with one round-trip instead of = o
two o A
Atomic operations: in-place data =
modification

v
Integrated with the transaction protocol Transactional

Storage

Read / Write performance

Transactional write throughput

7
6

—O0— Tyr (Atomic) —— Tyr (RUW)
—o—RADOS + ZK —&— BlobSeer + ZK
—Oo— Azure + ZK

g |

tes

Agg. perf. (mil. ops / s)

0 ==
0 50 100 150 200 250 300 350 400 450 500
Number of concurrent writers

Only Tyr is transactional
Other systems with fine-grained locking

Clear performance gain for transactions
Less network overhead, +23% vs. Rados

Atomic operations are very effective

One RTT instead of two, +25% throughput

[
)

Agg. perf. (mil. ops / s)

Read throughput

—O0—Tyr —o— RADOS
—&— BlobSeer —o— Azure

—_—
—_—
S

o0

6

0
0 50 100 150 200 250 300 350 400 450 500
Number of concurrent readers

Only Tyr provides multi-chunk reads
Slightly lower performance than Rados

Cost of read protocols, -5% vs. Rados

BlobSeer: metadata management cost

No direct reads

Azure: internals are not documented 38

Perspectives:
HPC and Big Data Convergence

Multidisciplinary
Data Fusin

BIG and FEW

(:' } \ 4

>_
Z
<C
=
O
-
©
—
—
<C
=
P

HPC / Big Data convergence

Big Data

Application

Framework
Hadoop, Spark, Flink

Logs

HPC

Application

Framework
MPI

41

HPC / Big Data convergence

Big Data HPC

Application Application

Framework Framework
Hadoop, Spark, Flink MPI

ﬂ

Converged Storage Layer

42

HPC / Big Data convergence

Big Data HPC

Application Application

Framework Framework
Hadoop, Spark, Flink MPI

Converged Storage Layer

Internet

42

HPC / Big Data convergence

Big Data HPC

Application Application

Framework Framework
Hadoop, Spark, Flink MPI

Converged Storage Layer

Internet

42

HPC / Big Data convergence

Big Data HPC

Application Application

Framework Framework
Hadoop, Spark, Flink MPI

Unified DFS

Converged Storage Layer

Internet

43

HPC / Big Data convergence

Big Data

Framework
Hadoop, Spark, Flink

HPC

Framework
\Y I

44

HPC / Big Data convergence

Big Data HPC

Converged Processing

45

My Research Project:

Converged Processing

... or how Past, Present and Future data could jointly
enable disruptive analytics on Extreme-scale infrastructures

/" Real World

Entities

Scenario: digital twins

47

/ Real World \

Entities

Scenario: digital twins

Digital Twins

47

/ Real World \
Entities

Scenario: digital twins

Digital Twins

47

ScenariO' digital twins

// < Model input
Simulations J

Computational model Digital Twins

/” Real World "\
Enhhes

Today

Edge ((gz) [Aggregated cars]

data processing

Driving tasks

Big Data
analytics

Data driven model 47

Telemetry
streams

Feedback and OCENArio: dlgltal twins

= Model input
v control ',5'," = [Simulations] <

/" Real _Wc’”d A Computational model Digital Twins
Enhhes

Tomorrow

Aggregated cars
data processing

Telemetry

streams Data driven model 48

Past
data

Batch processmg> H|stor|ca|
model
data

Real-time
model

Simulation

In situ processmg>

In transit processmg

Future
model

Our vision: hybrid analytics architecture

Control

=] |

Hybrid
Analytics

Update 49

Hybrid analytics architecture

In situ pre-processing _ Better In situ stream
of simulation data Learning Decision pre-processing
/\ / of sensor data
Computation v
Hybrid (stream + batch) Sensor
B 000! |le® in transit processing
000! @ (data in-motion + data at-rest)
@
DATA N N DATA
from the QOO @ @0 e @« @ fromthe @i
Hypothetical Q00| @ \ 'YX X / Real World §
World
0@ .
coolle eoe e
CO0O|| @

Historical . 5 .
Simulation (e.g., digital twin) data ata processing

50

Hybrid analytics architecture

Postdoc (ANR OverFlow project)

* Investigating Edge vs. Cloud
computing trade-offs for stream
processing

* Methodology for benchmarking Edge
processing frameworks

Ph.D. (co-supervised with UPB)

* Uniform Cloud and Edge stream
processing for fast Big Data
analytics

In situ stream
pre-processing
of sensor data

Pedro Silva

@ ~“O
@ O
@ O

DataSteward++

+ Edge analytics (e.g.,
data aggregations)
+ uniform Edge/Cloud
processing

Hybrid analytics architecture

In situ pre-processing
of simulation data

OO
OO
OO
o0

Research Engineer (ADT project)

* Enable support for in situ Big Data
analytics

000! |@ * Elastic allocation of dedicated 4 :
000! @ resources (cores/nodes) Ovidi Ma'rcu
© OO B o
Ny coo|[e 000
/\\\g 000||®
» %) Historical
/) data

Damaris

Hybrid analytics architecture

Hybrid (stream + batch)

Startup (ZettaFlow)

» Low and consistent latency

(lightweight offset indexing,
independent memory management
Model applications not partitioning/
stream storage

Ph.D. (IPL project)

HPC — BigData processing
convergence

Bridge in situ/in transit and stream/
batch processing

H2020 project submission
IPN Associate Team

A f

in transit processing
ata in-motion + data at-rest)

Ovidiu Marcu

o O
@00
@00 ol O
@00
@00 e
@00
‘XX O O
Historical +seamless integration

data with in situ/in transit
+large state
management

My scientific methodology

* Analyze trends and state of the art

* Intuition

* |ldentify realistic use cases

 Define research questions

* Develop a real piece of software

» Evaluate research questions with synthetic benchmarks

« Evaluate research questions with real-life use cases

54

Platforms

Academic testbeds and supercomputers

*

Public clouds

BR Microsoft Azure

e e

~ NI
I:jl amazon

¥ webservices

55

Impact: interdisciplinarity

Contributions to healthcare

* DataSteward and JetStream used to prove
for the first time the correlation between brain
regions and genetic data Subject 2

* Enables early diagnostic of psychiatric
ilinesses

Subject 1

SNP data
HENE INIIEI DN RIENmia
Bl NI/ M Inpmnmia
A Rl g L L imial

l\' frontiers

iIn Neuroscience
Formal dialogue with the HPC community

* Member of the Big Data Value Association
(BDVA)

« Contributions to the joint white paper with the
European Association for HPC (ETP4HPC)

THETECHNOLOGY STAGKS OF HIGH PERFORMANCE
GOMPUTING AND BIG DATA COMPUTINE:

What they can learn from each other

.. - .

EUROPEAN TECHNOLOGY
,‘,},’l’:‘ PLATFORM FOR HIGH \= BDV

PERFORMANCE COMPUTING ' o 56

Impact: industry

Transfer

- JetStream integrated in Microsoft Azure for control message -- MiCcrosoft
transfers .- Azure

« Azure SignalR provides real-time functionality using several i
dedicated connections — inspired by DataSteward Slgnal R

* Huawei studies KerA for potential integration in the stream .
layer of the Huawei Cloud su HUAWEI

w W

Startup: ZettaFlow
» Fast Big Data stream ingestion to power real-time applications

No one else is creating software services specifically for science

Otherwise, we must adapt/adopt other solutions

57

B

7
LT " Maria S.
. Gabriel . o Ovidiu Perez
~ Luc Bougé Antoniu Pedro Silva Luis Pineda Marcu ~
) & POLITECNICA

v 4

lrezia —

\ inventors for the digital world

N

Radu Stefano Goetz \

Rob Bogdan Kate
Ross Nicolae Keahey

,A\\rgonne3 /

NATIONAL LABORATORY,

Tudoran Bortoli Brasche

HUAWEI

