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From Big Data to Fast Data
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Sensor type Data generated

Radar 0.1-15 Mbit/s
LIDAR 20-100 Mbit/s
Camera 500-3,500 Mbit/s
Ultrasonic <0.01 Mbit/s
Vehicle motion, GNSS, IMU <0.1 Mbit/s

TOTAL ESTIMATED BANDWIDTH >
‘- 3 Gbit/s (~1.4TB/h) to 40 Gbit/s (~19 TB/h) >
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Streams: the model for Fast Data
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* Continuous, unbounded, unordered, global-scale datasets made up of

- Small size per event (i.e., bytes and kilobytes)
* High arrival rate (i.e., million items per second)



Streams: the model for Fast Data

Arrival
time

8:00 9:00 10:00 11:00 12:00 13:00

Events arrive with unknown delays



How to deal with this unboundedness ?
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How to deal with this unboundedness ?
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How to deal with this unboundedness ?
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Batch vs. streaming
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Streaming
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Correctness Exact results Approximate results
Latency High-latency Low-latency

Stateless Stateful
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State of the art until recently:
Lambda Architectures
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State of the art until recently:
Lambda Architectures
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The streaming pipeline: latency happens
Cloud
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The streaming pipeline: latency happens
Cloud
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The streaming pipeline: latency happens
Cloud
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The streaming pipeline: latency happens
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Objective

Processing time

Event production time
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Objective

Reduce the processing
time skew by means of
dedicated stream data
management
across Edge and Cloud

Processing time

Event production time
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Edge
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Today: centralized

Objective

Edge

Tomorrow: decentralized



My research
path
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Projects and collaborations

From Big Data
processing
to
Fast Data

management
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Research topics and PhD co-supervision
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_HPC and Big Data convergence
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My contributions

DataSteward

In-transit
stream data
management
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My contributions

DataSteward

In-transit
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My contributions

DataSteward

In-transit Adaptive distributed
stream data metadata
management management
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My contributions

DataSteward

In-transit Adaptive distributed Transactional
stream data metadata / blob
management management - storage
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KerA:
Scalable Stream Ingestion

INGESTION



What is ingestion ?

* Collect data from various sources
— producers

* Deliver them for processing / storage
— consumers

* Optionally: buffer, log, pre-process

g

Ingestion determines the processing performance

24



State of the art: Apache Kafka

50 nodes, average 200K events/s 400 nodes, peak 3.2M events/s

Limitations

* Scalability
* Data duplication

25



The KerA approach to ingestion

 Scalability =& Dynamic partitioning
* Enables seamless elasticity

* Data duplication — Unified ingestion and storage

* Support for both
« Streams (unbounded data)

Egg B mO B By Ep E0O, m Hpoyg
éD.DIID.D.D.D.ID.D.DI§
* Objects (bounded data) “ sm _So§ ROAm RE g ¥ mm
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Issue: scalability
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KerA: dynamic partitionin

Brokers

Streamlet | | Streamlet || Streamlet 4 Segments )
Group [ [ [ = =

AN L ] )

Streamlet | | Streamlet || Streamlet - ~
Segments
Group LI
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- Streamlets: logical stream containers; #streamlets > #brokers
- Groups: created and processed dynamically; up to a maximum number per broker
« Segments: stream partitions of fixed size; configurable #segments per group
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Issue: data duplication
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Increased network and storage overheads
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KerA: unified ingestion and storage

Streams s
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data access PROCESSING
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Backups (o)

Move less data, process them faster

Objects

Common data model for streams and objects
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-Throughput -
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# Clients

4 brokers, 32 partitions,
128KB request size, 100B records

=== KeraProd

mmmm KeraCons
i;)( me== KafkaProd

——1 KafkaCons

8 12 16 Nodes Number

# Brokers

64 clients, 32 partitions,
1MB request size, 100B records

2X better throughput
with 75% less resources 31



Tyr:
Transactional Blob Storage



A large-scale monitoring and analytics service
for the CERN LHC ALICE experiment

Ingests and stores telemetry events at 13 GB/s
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MonALISA RDBMS platform does not scale

cccccc

°
nnnnn

nnnnnnn

Multiple storage requirements

Write atomicity for aggregate updates
Atomic, lock-free writes
High-performance reads

Horizontal scalability
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Write atomicity for aggregate updates

Aggregate update is a two-step operation

Read current value remotely from A A
storage _ ~
Write the updated value remotely to *:#;D s
storage v oo

oY) - Q)
| sync( || x||2)
Aggregate update needs to be atomic =] N
Concurrent writers! 2 =
<
v \ 4

Synchronization is mandatory
34



At which level to handle synchronization?

At application level?

Fine-grained synchronization
Application-specific optimization

...but increases app complexity, error-prone
Thread 1 § Thread 2 § Thread 3

Common on HPC (e.g., explicit locking)
Synchronization layer

Storage
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At which level to handle synchronization?

At application level?
Fine-grained synchronization
Application-specific optimization

...but increases app complexity, error-prone
Thread 1 § Thread 2 § Thread 3

Common on HPC (e.g., explicit locking)

At middleware level?
Eases application design Synchronization layer

...but typically substantial performance overhead
Also common on HPC (e.g., MPI collective I/0O)

Storage
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At which level to handle synchronization?

At application level?
Fine-grained synchronization
Application-specific optimization
...but increases app complexity, error-prone

- : Thread 1 § Thread 2 § Thread 3
Common on HPC (e.g., explicit locking)

At middleware level?

Eases application design
...but typically substantial performance overhead

Also common on HPC (e.g., MPI collective I/0)

Transactional

At storage level? Object Storage

Also eases application design

St i T Transactional API
orage-specific optimization . > begin()
...but less customizable than app-level synchronization > current = read(aggregate, ..)

> write(aggregate, current+1, ..)

Common on BDA (e.g., transactional systems) > commit () .




Tyr read protocols

Direct read Multi-chunk read Transactional read

1RTT 1 RTT + 1 Additional cost First read
1 RTT + 1 Additional cost

Similar to key-value stores Multi-chunk consistency

No repeatable reads Subsequent reads

Low latency I.e. no consistency 1 RTT

No multi-chunk consistency guarantees between

guarantees successive reads Multi-chunk consistency
Repeatable reads

> read(blob, 0, 10kb) > read(blob, 0, 100mb) begin()

read(blob, 0, 10kb)
read(blob, 100mb, 10kb)
commit()

V V V V

The developer can select an algorithm offering lesser guarantees

Results in a substantial performance increase

Useful for example for append logs, in which multi-chunk operations are not needed

36



Tyr atomic writes

MonALISA: aggregate updates could be
performed atomically and efficiently

Tyr enables these writes to be
performed with one round-trip instead of
two

Atomic operations: in-place data
modification

Integrated with the transaction protocol

read(count)
S
write(count,6)
Moe

v v

Transactional
Storage N



Tyr atomic writes

MonALISA: aggregate updates could be

performed atomically and efficiently A
Tyr enables these writes to be -
performed with one round-trip instead of = o
two o A
Atomic operations: in-place data =
modification

v
Integrated with the transaction protocol Transactional

Storage



Read / Write performance

Transactional write throughput

7
6

—O0— Tyr (Atomic) —— Tyr (RUW)
—o—RADOS + ZK —&— BlobSeer + ZK
—Oo— Azure + ZK

g |

tes

Agg. perf. (mil. ops / s)

0 ==
0 50 100 150 200 250 300 350 400 450 500
Number of concurrent writers

Only Tyr is transactional
Other systems with fine-grained locking

Clear performance gain for transactions
Less network overhead, +23% vs. Rados

Atomic operations are very effective

One RTT instead of two, +25% throughput

[
)

Agg. perf. (mil. ops / s)

Read throughput

—O0—Tyr —o— RADOS
—&— BlobSeer —o— Azure

—_—
—_—
S

o0

6

0
0 50 100 150 200 250 300 350 400 450 500
Number of concurrent readers

Only Tyr provides multi-chunk reads
Slightly lower performance than Rados

Cost of read protocols, -5% vs. Rados

BlobSeer: metadata management cost

No direct reads

Azure: internals are not documented 38



Perspectives:
HPC and Big Data Convergence
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HPC / Big Data convergence

Big Data

Application

Framework
Hadoop, Spark, Flink

Logs

HPC

Application

Framework
MPI
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HPC / Big Data convergence

Big Data HPC

Application Application

Framework Framework
Hadoop, Spark, Flink MPI

ﬂ

Converged Storage Layer
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HPC / Big Data convergence

Big Data HPC

Application Application

Framework Framework
Hadoop, Spark, Flink MPI

Converged Storage Layer

Internet
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HPC / Big Data convergence

Big Data HPC

Application Application

Framework Framework
Hadoop, Spark, Flink MPI

Converged Storage Layer

Internet
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HPC / Big Data convergence

Big Data HPC

Application Application

Framework Framework
Hadoop, Spark, Flink MPI

Unified DFS

Converged Storage Layer

Internet
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HPC / Big Data convergence

Big Data

Framework
Hadoop, Spark, Flink

HPC

Framework
\Y I
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HPC / Big Data convergence

Big Data HPC

Converged Processing
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My Research Project:

Converged Processing

... or how Past, Present and Future data could jointly
enable disruptive analytics on Extreme-scale infrastructures



/" Real World

Entities

Scenario: digital twins
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/ Real World \

Entities

Scenario: digital twins

Digital Twins
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/ Real World \
Entities

Scenario: digital twins

Digital Twins
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ScenariO' digital twins

// < Model input
Simulations J

Computational model Digital Twins

/” Real World "\
Enhhes

Today

Edge ((gz) [Aggregated cars ]

data processing

Driving tasks

Big Data
analytics

Data driven model 47

Telemetry
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Feedback and OCENArio: dlgltal twins

= Model input
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/" Real _Wc’”d A Computational model Digital Twins
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Tomorrow

Aggregated cars
data processing

Telemetry

streams Data driven model 48



Past
data

Batch processmg> H|stor|ca|
model
data

Real-time
model

Simulation

In situ processmg>

In transit processmg

Future
model

Our vision: hybrid analytics architecture

Control

=] |

Hybrid
Analytics

Update 49




Hybrid analytics architecture

In situ pre-processing _ Better In situ stream
of simulation data Learning Decision pre-processing
/\ / of sensor data
Computation v
Hybrid (stream + batch) Sensor
B 000! |le® in transit processing
000! @ (data in-motion + data at-rest)
@
DATA N N DATA
from the QOO @ @0 e @« @ fromthe @i
Hypothetical Q00| @ \ 'YX X / Real World §
World
0@ .
coolle eoe e
CO0O|| @

Historical . 5 .
Simulation (e.g., digital twin) data ata processing
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Hybrid analytics architecture

Postdoc (ANR OverFlow project)

* Investigating Edge vs. Cloud
computing trade-offs for stream
processing

* Methodology for benchmarking Edge
processing frameworks

Ph.D. (co-supervised with UPB)

* Uniform Cloud and Edge stream
processing for fast Big Data
analytics

In situ stream
pre-processing
of sensor data

Pedro Silva

@ ~“O
@ O
@ O

DataSteward++

+ Edge analytics (e.g.,
data aggregations)
+ uniform Edge/Cloud
processing



Hybrid analytics architecture

In situ pre-processing
of simulation data

OO
OO
OO
o0

Research Engineer (ADT project)

* Enable support for in situ Big Data
analytics

000! |@ * Elastic allocation of dedicated 4 :
000! @ resources (cores/nodes) Ovidi Ma'rcu
© OO B o
Ny coo|[e 000
/\\\g 000||®
» % ) Historical
/) data

Damaris



Hybrid analytics architecture

Hybrid (stream + batch)

Startup (ZettaFlow)

» Low and consistent latency

(lightweight offset indexing,
independent memory management
Model applications not partitioning/
stream storage

Ph.D. (IPL project)

HPC — BigData processing
convergence

Bridge in situ/in transit and stream/
batch processing

H2020 project submission
IPN Associate Team

A f

in transit processing
ata in-motion + data at-rest)

Ovidiu Marcu

o O
@00
@00 ol O
@00
@00 e
@00
‘XX O O
Historical +seamless integration

data with in situ/in transit
+large state
management




My scientific methodology

* Analyze trends and state of the art

* Intuition

* |ldentify realistic use cases

 Define research questions

* Develop a real piece of software

» Evaluate research questions with synthetic benchmarks

« Evaluate research questions with real-life use cases
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Platforms

Academic testbeds and supercomputers

*

Public clouds

BR Microsoft Azure

e e

~ NI
I:jl amazon

¥ webservices
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Impact: interdisciplinarity

Contributions to healthcare

* DataSteward and JetStream used to prove
for the first time the correlation between brain
regions and genetic data Subject 2

* Enables early diagnostic of psychiatric
ilinesses

Subject 1

SNP data
HENE INIIEI DN RIENmia
Bl NI/ M Inpmnmia
A Rl g L L imial

l\' frontiers

iIn Neuroscience
Formal dialogue with the HPC community

* Member of the Big Data Value Association
(BDVA)

« Contributions to the joint white paper with the
European Association for HPC (ETP4HPC)

THETECHNOLOGY STAGKS OF HIGH PERFORMANCE
GOMPUTING AND BIG DATA COMPUTINE:

What they can learn from each other

.. - .

EUROPEAN TECHNOLOGY
,‘,},’l’:‘ PLATFORM FOR HIGH \= BDV

PERFORMANCE COMPUTING ' o 56




Impact: industry

Transfer

- JetStream integrated in Microsoft Azure for control message -- MiCcrosoft
transfers .- Azure

« Azure SignalR provides real-time functionality using several i
dedicated connections — inspired by DataSteward Slgnal R

* Huawei studies KerA for potential integration in the stream .
layer of the Huawei Cloud su HUAWEI

w W

Startup: ZettaFlow
» Fast Big Data stream ingestion to power real-time applications

No one else is creating software services specifically for science

Otherwise, we must adapt/adopt other solutions

57
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