
From Big Data to Fast Data:  
Efficient Stream Data Management

Alexandru Costan

HDR Defense, ENS Rennes, March 14, 2019

Big Data

2011 2017 2018 2

Velocity

Data in motion

Fluid
Dynamic

Volume

Data at rest

Stationary
Static

 3

From Big Data to Fast Data

LIDAR sensors

Cameras

Radar sensorsUltrasonic
sensors

GPS

LSST

IoT and Smart City

SKA

LHC

Cars

Devices

Fast
DataSM

AL
L

an
d

M
AN

Y

 6

Streams: the model for Fast Data

• Continuous, unbounded, unordered, global-scale datasets made up of events
• Small size per event (i.e., bytes and kilobytes)
• High arrival rate (i.e., million items per second) 7

Streams: the model for Fast Data

Events arrive with unknown delays

8:00 9:00 10:00 11:00 12:00 13:00 Arrival
time

8:00

8:00

8:00

 8

Aggregating time-based windows

8:00 9:00 10:00 11:00 12:00 13:00 Arrival
time

How to deal with this unboundedness ?

 9

Aggregating event-based windows

8:00 9:00 10:00 11:00 12:00 13:00

How to deal with this unboundedness ?

8:00 9:00 10:00 11:00 12:00 13:00Arrival
time

Input

Output

Event
production

time

 10

Aggregating session-based windows

8:00 9:00 10:00 11:00 12:00 13:00Event
production

time

How to deal with this unboundedness ?

8:00 9:00 10:00 11:00 12:00 13:00Arrival
time

Input

Output

 11

Correctness Latency Cost

Batch vs. streaming

 12

Correctness Exact results Approximate results
Latency High-latency Low-latency
Cost Stateless Stateful

 Batch Streaming

 13

State of the art until recently: 
Lambda Architectures

Historical
events

Real-time
events

Exact
historical

model

Approximate
real-time

model

Periodic
queries

Continuous
updates

Batch processing

Stream processing

Results
&

Actions

 14

State of the art until recently: 
Lambda Architectures

Historical
events

Real-time
events

Exact
historical

model

Approximate
real-time

model

Periodic
queries

Continuous
updates

Batch processing

Stream processing

Results
&

Actions

What?

Why?

 14

The streaming pipeline: latency happens

?

Unified batch and stream processing

DATA
TRANSFER

Edge Cloud

 15

The streaming pipeline: latency happens

?

Unified batch and stream processing

DATA
TRANSFER

Edge Cloud

 15

The streaming pipeline: latency happens

?

Unified batch and stream processing

Ingest delay
(write latency)

Throughput
(read latency)

Network delay
or unavailable Backlog

Poor storage
design

Starved
resources

Hardware
failureDATA

TRANSFER

Edge Cloud

 15

The streaming pipeline: latency happens

?

Unified batch and stream processing

Ingest delay
(write latency)

Throughput
(read latency)

Network delay
or unavailable Backlog

Poor storage
design

Starved
resources

Hardware
failureDATA

TRANSFER

Edge Cloud

 15

Objective

Event production time

Pr
oc

es
sin

g
tim

e

Ideal

Reality

Skew

 16

Edge Cloud

Objective

Event production time

Pr
oc

es
sin

g
tim

e

Ideal

Reality

Skew

Reduce the processing
time skew by means of
dedicated stream data

management
across Edge and Cloud

 16

Edge Cloud

Edge

Today: centralized Tomorrow: decentralized

Edge

Cloud Cloud

Objective

My research
path

Bucharest,
Romania

Munich,
Germany

Rennes, France
Geneva,
Suisse

Madrid, Spain

Chicago, USA

Pasadena, USA

Mexico City, Mexico

Projects and collaborations

2011

2012

2013

2014

2015

2017

2018

Ph.D.

Postdoc

Associate
Professor

MonALISA Data processing and visualization

ANR MapReduce, ABrain Big Data processing

ZCloudFlow Workflow data management

Associate Teams with ANL, UPB
Exascale

storage and I/O

ETN BigStorage Storage for
HPC and Cloud

ANR OverFlow Service based
data management

HIRP Stream storage

IPN Stream
modeling

Today

Projects and collaborations

From Big Data
processing

to
Fast Data

management

2011

2012

2013

2014

2015

2017

2018

Ph.D.

Postdoc

Associate
Professor

MonALISA Data processing and visualization

ANR MapReduce, ABrain Big Data processing

ZCloudFlow

Data@Exascale, DataCloud@Work
Associate Teams with ANL, UPB

ETN BigStorage Storage for
HPC and Cloud

ANR OverFlow Service based
data management

HIRP Stream storage

IPN Stream
modeling

Today

Exascale
storage and I/O

Workflow data management

The
Future

Research topics and PhD co-supervision
2011 2012 2013 2014 2015 2016 2017 2018

Iterative MapReduce

Geo-distributed processing

Blob storage

Workflow data management

Stream data management

Transactional storage

HPC and Big Data convergence

Bi
g

Da
ta

pr

oc
es

sin
g

Fa
st

 D
at

a
m

an
ag

em
en

t

Radu Tudoran

Luis Pineda

Ovidiu Marcu

Pierre Matri

Inspiration
 21

My contributions

IEEE TRUSTCOM’13

IEEE SRDS’14

IEEE Transactions on Cloud
Computing, 2016

DATA
TRANSFER

DataSteward
In-transit

stream data
management

 22

My contributions

JetStream
Fast geographically
distributed stream

data transfers

IEEE TRUSTCOM’13

IEEE SRDS’14

IEEE Transactions on Cloud
Computing, 2016

IEEE BIGDATA’13

ACM DEBS’14

IEEE/ACM CCGRID’14

Future Generation of Computer
Systems, 2014

DATA
TRANSFER

DataSteward
In-transit

stream data
management

 22

My contributions

JetStream
Fast geographically
distributed stream

data transfers

KerA
Scalable
stream

ingestion

IEEE TRUSTCOM’13

IEEE SRDS’14

IEEE Transactions on Cloud
Computing, 2016

IEEE BIGDATA’13

ACM DEBS’14

IEEE/ACM CCGRID’14

Future Generation of Computer
Systems, 2014

IEEE BIGDATA’17

EBDMA 2017 workshop (with
IEEE/ACM CCGRID’17)

IEEE ICDCS’18

DATA
TRANSFER

DataSteward
In-transit

stream data
management

 22

My contributions

JetStream
Fast geographically
distributed stream

data transfers

KerA
Scalable
stream

ingestion

ZCloudFlow
Adaptive distributed

metadata
management

IEEE TRUSTCOM’13

IEEE SRDS’14

IEEE Transactions on Cloud
Computing, 2016

IEEE BIGDATA’13

ACM DEBS’14

IEEE/ACM CCGRID’14

Future Generation of Computer
Systems, 2014

IEEE BIGDATA’17

EBDMA 2017 workshop (with
IEEE/ACM CCGRID’17)

IEEE ICDCS’18

IEEE CLUSTER’15

IEEE BIGDATA’16

IEEE Transactions on Knowledge and
Data Engineering, 2018

DATA
TRANSFER

DataSteward
In-transit

stream data
management

 22

My contributions

JetStream
Fast geographically
distributed stream

data transfers

KerA
Scalable
stream

ingestion

ZCloudFlow
Adaptive distributed

metadata
management

Týr
Transactional

blob
storage

IEEE TRUSTCOM’13

IEEE SRDS’14

IEEE Transactions on Cloud
Computing, 2016

IEEE BIGDATA’13

ACM DEBS’14

IEEE/ACM CCGRID’14

Future Generation of Computer
Systems, 2014

IEEE BIGDATA’17

EBDMA 2017 workshop (with
IEEE/ACM CCGRID’17)

IEEE ICDCS’18

IEEE CLUSTER’15

IEEE BIGDATA’16

IEEE Transactions on Knowledge and
Data Engineering, 2018

IEEE/ACM SC’16

IEEE/ACM CCGRID’18

Future Generation Computer
Systems, 2018

DATA
TRANSFER

DataSteward
In-transit

stream data
management

 22

KerA:
Scalable Stream Ingestion

What is ingestion ?

•Collect data from various sources
→ producers

•Deliver them for processing / storage
→ consumers
•Optionally: buffer, log, pre-process

Ingestion determines the processing performance
 24

State of the art: Apache Kafka

 Limitations
• Scalability
•Data duplication

400 nodes, peak 3.2M events/s50 nodes, average 200K events/s

 25

The KerA approach to ingestion
• Scalability → Dynamic partitioning
• Enables seamless elasticity

•Data duplication → Unified ingestion and storage
• Support for both

• Streams (unbounded data)

• Objects (bounded data)

 26

Issue: scalability

Each partition is statically associated with one consumer: limited
scalability

Producers Brokers Consumers

Partitions

Partitions

Partitions

 27

Streamlet Streamlet Streamlet

KerA: dynamic partitioning
Br

ok
er

s

Group

• Streamlets: logical stream containers; #streamlets > #brokers
• Groups: created and processed dynamically; up to a maximum number per broker
• Segments: stream partitions of fixed size; configurable #segments per group

 28

Streamlet Streamlet Streamlet

Streamlet Streamlet Streamlet

Group

Segments

Segments

Increased network and storage overheads 29

Issue: data duplication

KerA: unified ingestion and storage

KerA

INGESTION
Brokers

Acquire Push/Pull
data access

Streams

Objects

Common data model for streams and objects

STORAGE
Backups

Move less data, process them faster

 30

Evaluating scalability

64 clients, 32 partitions,
1MB request size, 100B records

Brokers

2x better throughput
with 75% less resources

Vertical Horizontal

8x
10x

Clients

4 brokers, 32 partitions,
128KB request size, 100B records

21*105

19*105
17*105

15*105
13*105
11*105
9*105
7*105

5*105

3*105

1*105

Th
ro

ug
hp

ut

21*105

19*105
17*105

15*105
13*105
11*105
9*105
7*105

5*105

3*105

1*105

 31

Týr:
Transactional Blob Storage

Motivating use-case: MonALISA
A large-scale monitoring and analytics service
for the CERN LHC ALICE experiment

Ingests and stores telemetry events at 13 GB/s
Computes 35,000+ aggregates of events in real-time

MonALISA RDBMS platform does not scale

Multiple storage requirements

Atomic, lock-free writes
High-performance reads
Horizontal scalability

Write atomicity for aggregate updates

 33

Write atomicity for aggregate updates

Aggregate update is a two-step operation
Read current value remotely from
storage
Write the updated value remotely to
storage

Aggregate update needs to be atomic
Concurrent writers!

Synchronization is mandatory

re
ad

(a
gg

re
ga

te
)

5

wr
it

e(
ag

gr
eg

at
e,

6)

acksync()

MonALISA

Storage
 34

Storage

At application level?
Fine-grained synchronization
Application-specific optimization

…but increases app complexity, error-prone
Common on HPC (e.g., explicit locking)

Synchronization layer

Thread 1 Thread 2 Thread 3

At which level to handle synchronization?

 35

Storage

At application level?
Fine-grained synchronization
Application-specific optimization

…but increases app complexity, error-prone
Common on HPC (e.g., explicit locking)

Synchronization layer

Thread 1 Thread 2 Thread 3

At middleware level?
Eases application design

…but typically substantial performance overhead
Also common on HPC (e.g., MPI collective I/O)

At which level to handle synchronization?

 35

Storage

At application level?
Fine-grained synchronization
Application-specific optimization

…but increases app complexity, error-prone
Common on HPC (e.g., explicit locking)

Synchronization layer

Thread 1 Thread 2 Thread 3

Transactional
Object Storage

At middleware level?
Eases application design

…but typically substantial performance overhead
Also common on HPC (e.g., MPI collective I/O)

At storage level?
Also eases application design
Storage-specific optimization

…but less customizable than app-level synchronization
Common on BDA (e.g., transactional systems)

At which level to handle synchronization?

Transactional API
> begin()
> current = read(aggregate, …)
> write(aggregate, current+1, …)
> commit() 35

Týr read protocols

The developer can select an algorithm offering lesser guarantees
Results in a substantial performance increase
Useful for example for append logs, in which multi-chunk operations are not needed

Direct read

1 RTT

Similar to key-value stores

Low latency
No multi-chunk consistency
guarantees

> read(blob, 0, 10kb)

Multi-chunk read

1 RTT + 1 Additional cost

Multi-chunk consistency
No repeatable reads

i.e. no consistency
guarantees between
successive reads

> read(blob, 0, 100mb)

Transactional read

First read
1 RTT + 1 Additional cost

Subsequent reads
1 RTT

Multi-chunk consistency
Repeatable reads

> begin()
> read(blob, 0, 10kb)
> read(blob, 100mb, 10kb)
> commit()

 36

Týr atomic writes

MonALISA: aggregate updates could be
performed atomically and efficiently

Týr enables these writes to be
performed with one round-trip instead of
two

Atomic operations: in-place data
modification

Integrated with the transaction protocol

re
ad

(c
ou

nt
)

5

wr
it

e(
co

un
t,

6)

ack

MonALISA

Transactional
Storage

 37

Týr atomic writes

MonALISA: aggregate updates could be
performed atomically and efficiently

Týr enables these writes to be
performed with one round-trip instead of
two

Atomic operations: in-place data
modification

Integrated with the transaction protocol

MonALISA

Transactional
Storage

ack(6)

in
cr

(c
ou

nt
,1

)

 37

Read / Write performance
Transactional write throughput Read throughput

Only Týr is transactional
Other systems with fine-grained locking

Clear performance gain for transactions
Less network overhead, +23% vs. Rados

Atomic operations are very effective
One RTT instead of two, +25% throughput

Only Týr provides multi-chunk reads
Slightly lower performance than Rados
Cost of read protocols, -5% vs. Rados

BlobSeer: metadata management cost
No direct reads

Azure: internals are not documented 38

Atomic aggregates

Perspectives:
HPC and Big Data Convergence

 40

LSST

IoT / Smart City

LHC

Cars

Devices

SM
AL

L
an

d
M

AN
Y

BI
G

 a
nd

 F
EW

LHC

LSST

SKA

Fast
DataBig

Data
Multidisciplinary

Data Fusion

HPC / Big Data convergence

Application Application

PFSDFSLogsKV

Framework
Hadoop, Spark, Flink

Framework
MPI

HPCBig Data

 41

HPC / Big Data convergence

Application Application

PFSDFSLogsKV

Framework
Hadoop, Spark, Flink

Framework
MPI

HPCBig Data

Converged Storage Layer

 42

HPC / Big Data convergence

Application Application

PFSDFSLogsKV

Framework
Hadoop, Spark, Flink

Framework
MPI

HPCBig Data

Converged Storage Layer

 42Internet

HPC / Big Data convergence

Application Application

PFSDFSLogsKV

Framework
Hadoop, Spark, Flink

Framework
MPI

HPCBig Data

Converged Storage Layer

Logs

 42Internet

HPC / Big Data convergence

Application Application

LogsKV

Framework
Hadoop, Spark, Flink

Framework
MPI

HPCBig Data

Converged Storage Layer

LogsUnified DFS

 43Internet

HPC / Big Data convergence

Application Application

LogsKV

Framework
Hadoop, Spark, Flink

Framework
MPI

HPCBig Data

Converged Storage Layer

LogsUnified DFS

Tý́r

SLog SLogTýrFS

 44Internet

HPC / Big Data convergence

Application Application

LogsKV

HPCBig Data

Converged Storage Layer

LogsUnified DFS

Týr

SLog SLogTýrFS

Converged Processing

 45Internet

Converged Processing

My Research Project:

… or how Past, Present and Future data could jointly
enable disruptive analytics on Extreme-scale infrastructures

Scenario: digital twins

Real World
Entities

 47

Scenario: digital twins

Real World
Entities Digital Twins

 47

Scenario: digital twins

Real World
Entities Digital Twins

 47

Scenario: digital twins

Real World
Entities Digital Twins

Car

Edge

Cloud

HPC

Driving tasks

Aggregated cars
data processing

Big Data
analytics

Simulations

Telemetry
streams

Model input

Data driven model

Computational model

Today

 47

Scenario: digital twins

Real World
Entities Digital Twins

Car

Edge

Cloud

HPC

Driving tasks

Aggregated cars
data processing

Big Data
analytics

Simulations

Telemetry
streams Data driven model

Computational model

Tomorrow

Feedback and
control

Model update

Model input

 48

Our vision: hybrid analytics architecture

Present
data

Stream processing

Past
data

Historical
model

Real-time
model

Computational
Model

Batch processing

Future
modelSimulation

Control

Update

In situ processing

In transit processing

 49

Hybrid
Analytics

Hybrid analytics architecture

DATA
from the

Real World

DATA
from the

Hypothetical
World …

Simulation (e.g., digital twin)

Computation

In situ pre-processing
of simulation data

Sensor

In situ stream
pre-processing
of sensor data

…

Hybrid (stream + batch)
in transit processing

(data in-motion + data at-rest)

Historical
data

Better
DecisionLearning

 50

Data processing

 51

DataSteward++
+ Edge analytics (e.g.,

data aggregations)
+ uniform Edge/Cloud

processing

Hybrid analytics architecture

DATA
from the

Real World

DATA
from the

Hypothetical
World …

Simulation (e.g., digital twin)

Computation

In situ pre-processing
of simulation data

Sensor

In situ stream
pre-processing
of sensor data

…

Better
DecisionLearning

Hybrid (stream + batch)
in transit processing

(data in-motion + data at-rest)

Historical
data

Postdoc (ANR OverFlow project)
• Investigating Edge vs. Cloud

computing trade-offs for stream
processing

• Methodology for benchmarking Edge
processing frameworks

Ph.D. (co-supervised with UPB)
• Uniform Cloud and Edge stream

processing for fast Big Data
analytics

Pedro Silva

Hybrid analytics architecture

DATA
from the

Real World

DATA
from the

Hypothetical
World …

Simulation (e.g., digital twin)

Computation

In situ pre-processing
of simulation data

Sensor

In situ stream
pre-processing
of sensor data

…

Historical
data

Better
DecisionLearning

Hybrid (stream + batch)
in transit processing

(data in-motion + data at-rest)

DataSteward++
+ Edge analytics (e.g.,

data aggregations)
+ uniform Edge/Cloud

processing

Research Engineer (ADT project)
• Enable support for in situ Big Data

analytics
• Elastic allocation of dedicated

resources (cores/nodes)
Ovidiu Marcu

Hybrid analytics architecture

DATA
from the

Real World

DATA
from the

Hypothetical
World …

Simulation (e.g., digital twin)

Computation

In situ pre-processing
of simulation data

Sensor

In situ stream
pre-processing
of sensor data

…

Better
DecisionLearning

Hybrid (stream + batch)
in transit processing

(data in-motion + data at-rest)

KerA++
+seamless integration
with in situ/in transit

+large state
management

Historical
data

DataSteward++
+ Edge analytics (e.g.,

data aggregations)
+ uniform Edge/Cloud

processing

Ovidiu Marcu

Startup (ZettaFlow)
• Low and consistent latency

(lightweight offset indexing,
independent memory management)

• Model applications not partitioning/
stream storage

Ph.D. (IPL project)
• HPC – BigData processing

convergence
• Bridge in situ/in transit and stream/

batch processing

H2020 project submission
IPN Associate Team

• Analyze trends and state of the art

• Intuition

• Identify realistic use cases

• Define research questions

• Develop a real piece of software

• Evaluate research questions with synthetic benchmarks

• Evaluate research questions with real-life use cases

My scientific methodology

 54

• Academic testbeds and supercomputers

Platforms
• Public clouds

 55

Impact: interdisciplinarity
Contributions to healthcare

• DataSteward and JetStream used to prove
for the first time the correlation between brain
regions and genetic data

• Enables early diagnostic of psychiatric
illnesses

Formal dialogue with the HPC community
• Member of the Big Data Value Association

(BDVA)
• Contributions to the joint white paper with the

European Association for HPC (ETP4HPC)

 56

Transfer
• JetStream integrated in Microsoft Azure for control message

transfers
• Azure SignalR provides real-time functionality using several

dedicated connections – inspired by DataSteward
• Huawei studies KerA for potential integration in the stream

layer of the Huawei Cloud

Startup: ZettaFlow
• Fast Big Data stream ingestion to power real-time applications

No one else is creating software services specifically for science
Otherwise, we must adapt/adopt other solutions

Impact: industry

 57

Thank You!

Pierre Matri
Maria S.

Perez

Rob
Ross

Bogdan
Nicolae

Kate
Keahey

Radu
Tudoran

Stefano
Bortoli

Goetz
Brasche

Luc Bougé Gabriel
Antoniu Luis Pineda Ovidiu

MarcuPedro Silva

