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Streams: the model for Fast Data

• Continuous, unbounded, unordered, global-scale datasets made up of events
• Small size per event (i.e., bytes and kilobytes) 
• High arrival rate (i.e., million items per second)  7



Streams: the model for Fast Data
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Aggregating time-based windows
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Aggregating event-based windows
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Aggregating session-based windows
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Correctness  Latency  Cost  

Batch vs. streaming
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Correctness Exact results Approximate results
Latency High-latency Low-latency
Cost Stateless Stateful

               Batch            Streaming
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State of the art until recently: 
Lambda Architectures
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The streaming pipeline: latency happens

?

Unified batch and stream processing
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Research topics and PhD co-supervision
2011 2012 2013 2014 2015 2016 2017 2018
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KerA: 
Scalable Stream Ingestion 



What is ingestion ? 

•Collect data from various sources 
→ producers

•Deliver them for processing / storage 
→ consumers
•Optionally: buffer, log, pre-process

Ingestion determines the processing performance
 24



State of the art: Apache Kafka

  Limitations
• Scalability
•Data duplication 

400 nodes, peak 3.2M events/s50 nodes, average 200K events/s
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The KerA approach to ingestion 
• Scalability → Dynamic partitioning
• Enables seamless elasticity

•Data duplication → Unified ingestion and storage 
• Support for both

• Streams (unbounded data)

• Objects (bounded data)
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Issue: scalability

Each partition is statically associated with one consumer: limited 
scalability

Producers Brokers Consumers

Partitions

Partitions

Partitions
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Streamlet Streamlet Streamlet

KerA: dynamic partitioning 
Br

ok
er

s

Group

• Streamlets: logical stream containers; #streamlets > #brokers
• Groups: created and processed dynamically; up to a maximum number per broker
• Segments: stream partitions of fixed size; configurable #segments per group 
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Increased network and storage overheads  29

Issue: data duplication



KerA: unified ingestion and storage

KerA

INGESTION
Brokers

Acquire Push/Pull
data access

Streams

Objects

Common data model for streams and objects

STORAGE
Backups

Move less data, process them faster
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Evaluating scalability

64 clients, 32 partitions, 
1MB request size, 100B records

# Brokers

2x better throughput
with 75% less resources

Vertical Horizontal
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Týr: 
Transactional Blob Storage 



Motivating use-case: MonALISA
A large-scale monitoring and analytics service
for the CERN LHC ALICE experiment

Ingests and stores telemetry events at 13 GB/s
Computes 35,000+ aggregates of events in real-time

MonALISA RDBMS platform does not scale

Multiple storage requirements

Atomic, lock-free writes
High-performance reads
Horizontal scalability

Write atomicity for aggregate updates

 33



Write atomicity for aggregate updates

Aggregate update is a two-step operation
Read current value remotely from 
storage
Write the updated value remotely to 
storage

Aggregate update needs to be atomic
Concurrent writers!

Synchronization is mandatory
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Storage

At application level?  
Fine-grained synchronization
Application-specific optimization

…but increases app complexity, error-prone 
Common on HPC (e.g., explicit locking)

Synchronization layer

Thread 1 Thread 2 Thread 3

At which level to handle synchronization?

 35



Storage

At application level?  
Fine-grained synchronization
Application-specific optimization

…but increases app complexity, error-prone 
Common on HPC (e.g., explicit locking)

Synchronization layer

Thread 1 Thread 2 Thread 3

At middleware level?   
Eases application design

…but typically substantial performance overhead
Also common on HPC (e.g., MPI collective I/O)

At which level to handle synchronization?

 35



Storage

At application level?  
Fine-grained synchronization
Application-specific optimization

…but increases app complexity, error-prone 
Common on HPC (e.g., explicit locking)

Synchronization layer

Thread 1 Thread 2 Thread 3

Transactional
Object Storage

At middleware level?   
Eases application design

…but typically substantial performance overhead
Also common on HPC (e.g., MPI collective I/O)

At storage level?  
Also eases application design
Storage-specific optimization

…but less customizable than app-level synchronization
Common on BDA (e.g., transactional systems)

At which level to handle synchronization?

Transactional API
> begin() 
> current = read(aggregate, …) 
> write(aggregate, current+1, …) 
> commit()  35



Týr read protocols

The developer can select an algorithm offering lesser guarantees 
Results in a substantial performance increase
Useful for example for append logs, in which multi-chunk operations are not needed

Direct read 
  
1 RTT

Similar to key-value stores

Low latency
No multi-chunk consistency
guarantees

> read(blob, 0, 10kb)

Multi-chunk read 
  
1 RTT + 1 Additional cost

Multi-chunk consistency
No repeatable reads

i.e. no consistency 
guarantees between 
successive reads

> read(blob, 0, 100mb)

Transactional read 
  
First read
1 RTT + 1 Additional cost

Subsequent reads
1 RTT

Multi-chunk consistency
Repeatable reads

> begin() 
> read(blob, 0, 10kb) 
> read(blob, 100mb, 10kb) 
> commit()

 36



Týr atomic writes

MonALISA: aggregate updates could be 
performed atomically and efficiently

Týr enables these writes to be 
performed with one round-trip instead of 
two

Atomic operations: in-place data 
modification

Integrated with the transaction protocol
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Read / Write performance
Transactional write throughput Read throughput

Only Týr is transactional
Other systems with fine-grained locking

Clear performance gain for transactions
Less network overhead, +23% vs. Rados

Atomic operations are very effective
One RTT instead of two, +25% throughput

Only Týr provides multi-chunk reads
Slightly lower performance than Rados
Cost of read protocols, -5% vs. Rados

BlobSeer: metadata management cost
No direct reads

Azure: internals are not documented  38

Atomic aggregates



Perspectives:  
HPC and Big Data Convergence 
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HPC / Big Data convergence

Application Application

PFSDFSLogsKV

Framework
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Framework
MPI

HPCBig Data
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HPC / Big Data convergence

Application Application
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HPCBig Data

Converged Storage Layer

LogsUnified DFS

Týr

SLog SLogTýrFS

Converged Processing
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Converged Processing

My Research Project: 

… or how Past, Present and Future data could jointly 
enable disruptive analytics on Extreme-scale infrastructures



Scenario: digital twins

Real World 
Entities
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Scenario: digital twins
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Our vision: hybrid analytics architecture

Present 
data
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Hybrid analytics architecture
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Data processing
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DataSteward++
+ Edge analytics (e.g., 

data aggregations)
+ uniform Edge/Cloud 

processing 

Hybrid analytics architecture

DATA
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Simulation (e.g., digital twin)

Computation

In situ pre-processing
of simulation data 

Sensor

In situ stream  
pre-processing
of sensor data 

…

Better 
DecisionLearning

Hybrid (stream + batch) 
in transit processing

(data in-motion + data at-rest) 

Historical 
data

Postdoc (ANR OverFlow project)
• Investigating Edge vs. Cloud 

computing trade-offs for stream 
processing

• Methodology for benchmarking Edge 
processing frameworks

Ph.D. (co-supervised with UPB)
• Uniform Cloud and Edge stream 

processing for fast Big Data 
analytics

Pedro Silva



Hybrid analytics architecture
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Research Engineer (ADT project)
• Enable support for in situ Big Data 
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• Elastic allocation of dedicated 

resources (cores/nodes)
Ovidiu Marcu



Hybrid analytics architecture
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+large state 
management
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Ovidiu Marcu

Startup (ZettaFlow)
• Low and consistent latency 

(lightweight offset indexing, 
independent memory management) 

• Model applications not partitioning/
stream storage

Ph.D. (IPL project)
• HPC – BigData processing 

convergence
• Bridge in situ/in transit and stream/

batch processing

H2020 project submission
IPN Associate Team



• Analyze trends and state of the art

• Intuition 

• Identify realistic use cases

• Define research questions

• Develop a real piece of software

• Evaluate research questions with synthetic benchmarks

• Evaluate research questions with real-life use cases

My scientific methodology
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• Academic testbeds and supercomputers

Platforms
• Public clouds
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Impact: interdisciplinarity 
Contributions to healthcare

• DataSteward and JetStream used to prove 
for the first time the correlation between brain 
regions and genetic data

• Enables early diagnostic of psychiatric 
illnesses

Formal dialogue with the HPC community
• Member of the Big Data Value Association 

(BDVA)
• Contributions to the joint white paper with the 

European Association for HPC (ETP4HPC)
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Transfer
• JetStream integrated in Microsoft Azure for control message 

transfers
• Azure SignalR provides real-time functionality using several 

dedicated connections – inspired by DataSteward
• Huawei studies KerA for potential integration in the stream 

layer of the Huawei Cloud

Startup: ZettaFlow
• Fast Big Data stream ingestion to power real-time applications

No one else is creating software services specifically for science 
Otherwise, we must adapt/adopt other solutions

Impact: industry 

 57



Thank You!

Pierre Matri
Maria S. 

Perez

Rob 
Ross

Bogdan 
Nicolae

Kate 
Keahey

Radu 
Tudoran

Stefano 
Bortoli

Goetz 
Brasche

Luc Bougé Gabriel 
Antoniu Luis Pineda Ovidiu 

MarcuPedro Silva


