From Big Data to Fast Data: Efficient Stream Data Management

Alexandru Costan

HDR Defense, ENS Rennes, March 14, 2019

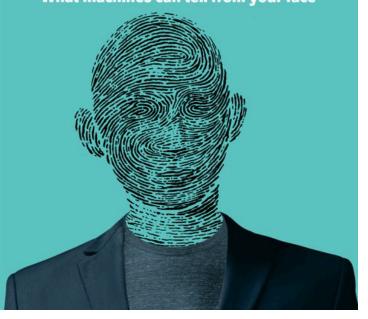
Big Data

Theresa May v Brussels The Ten years on: banking after the crisis Economist South Korea's unfinished revolution Biology, but without the cells PAY 419-1219 2017 The world's most valuable resource Data and the new rules of competition

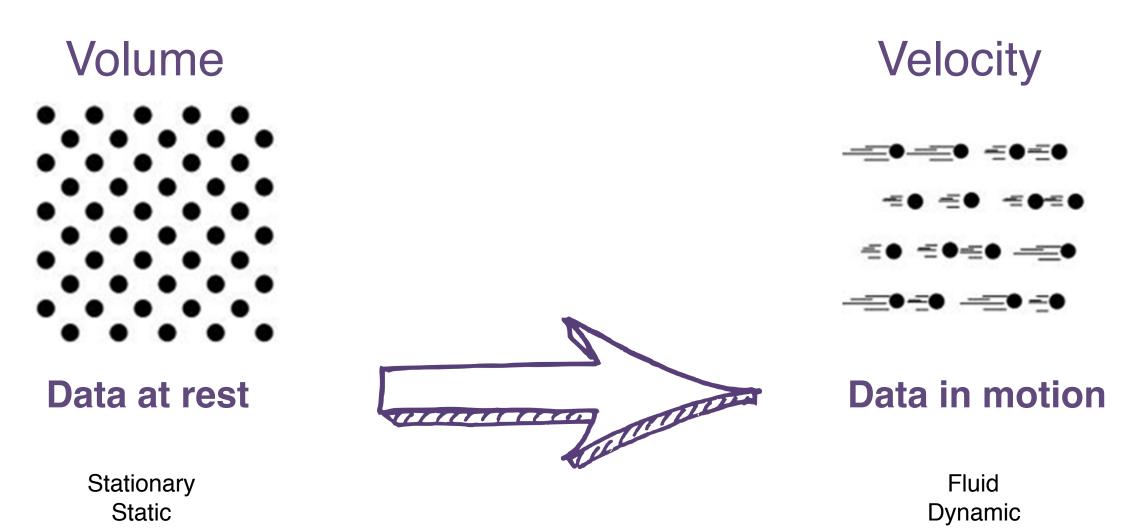
The Economist

Merkel's unfinished business Spy-fi: a peculiarly British genre Making sense of China's capacity cuts The Dreamers' nightmare

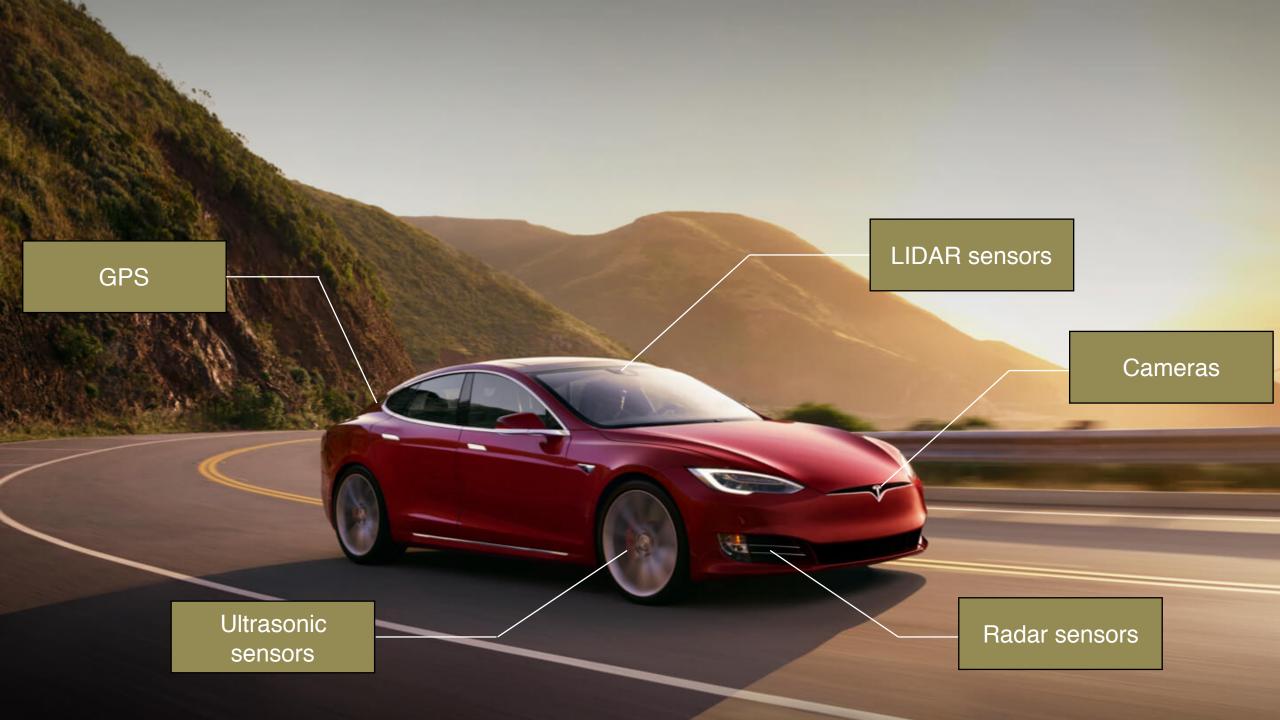
Nowhere to hide What machines can tell from your face



From Big Data to Fast Data



3



Sensor type	Quantity	Data generated
Radar	4-6	0.1-15 Mbit/s
LIDAR	1-5	20-100 Mbit/s
Camera	6-12	500-3,500 Mbit/s
Ultrasonic	8-16	<0.01 Mbit/s
Vehicle motion, GNSS, IMU	-	<0.1 Mbit/s

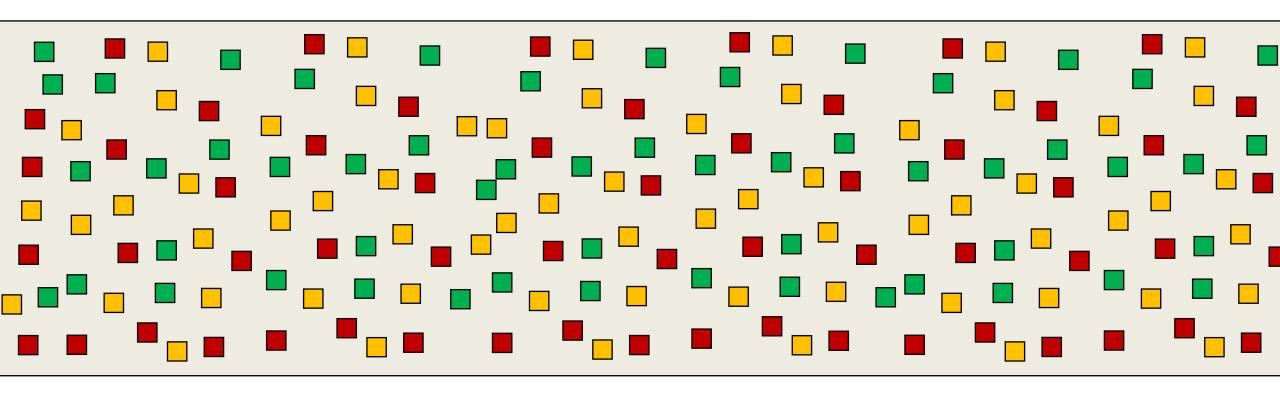
Cruise

TOTAL ESTIMATED BANDWIDTH

3 Gbit/s (~1.4TB/h) to 40 Gbit/s (~19 TB/h)

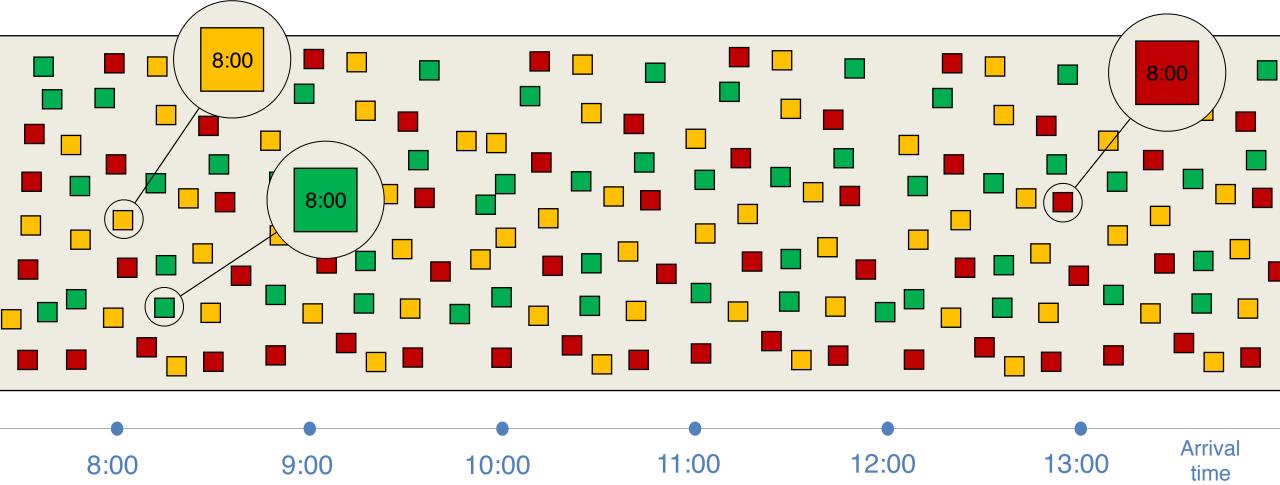
Devices

Streams: the model for Fast Data



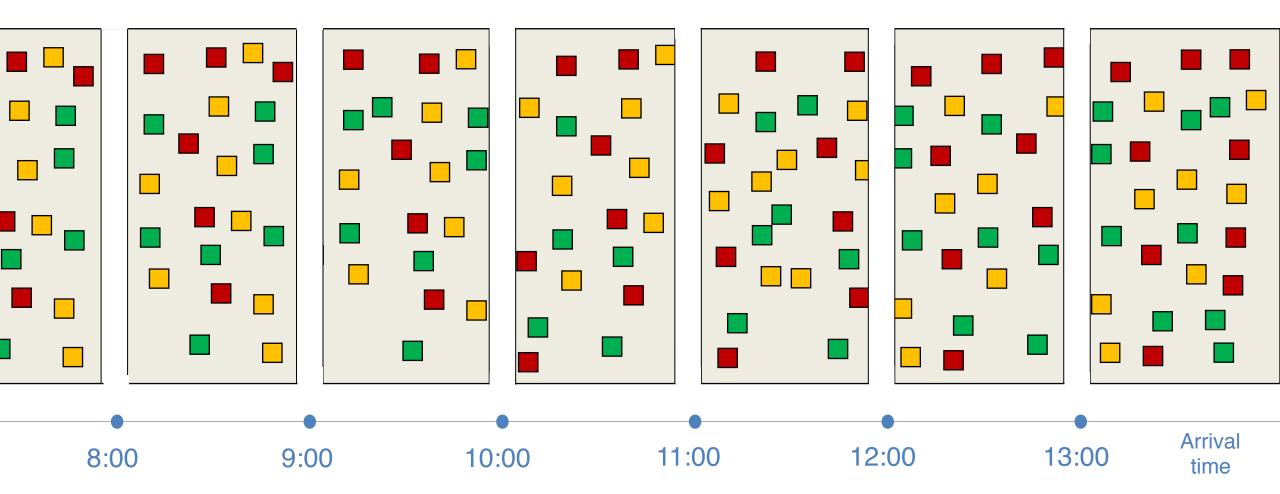
- Continuous, unbounded, unordered, global-scale datasets made up of events
- Small size per event (*i.e.*, bytes and kilobytes)
- High arrival rate (*i.e.*, million items per second)

Streams: the model for Fast Data



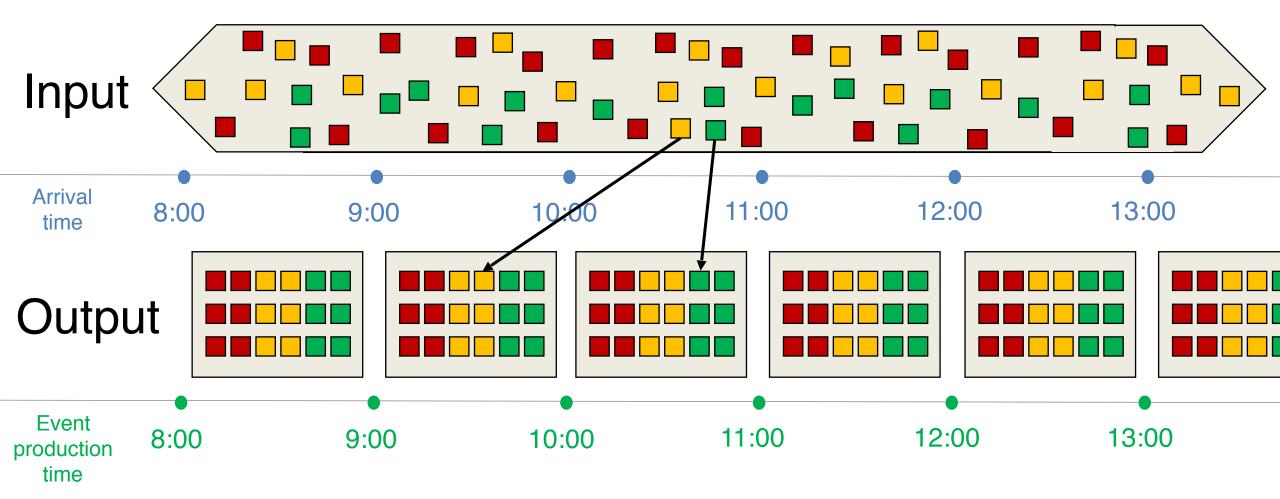
Events arrive with unknown delays

How to deal with this unboundedness ?



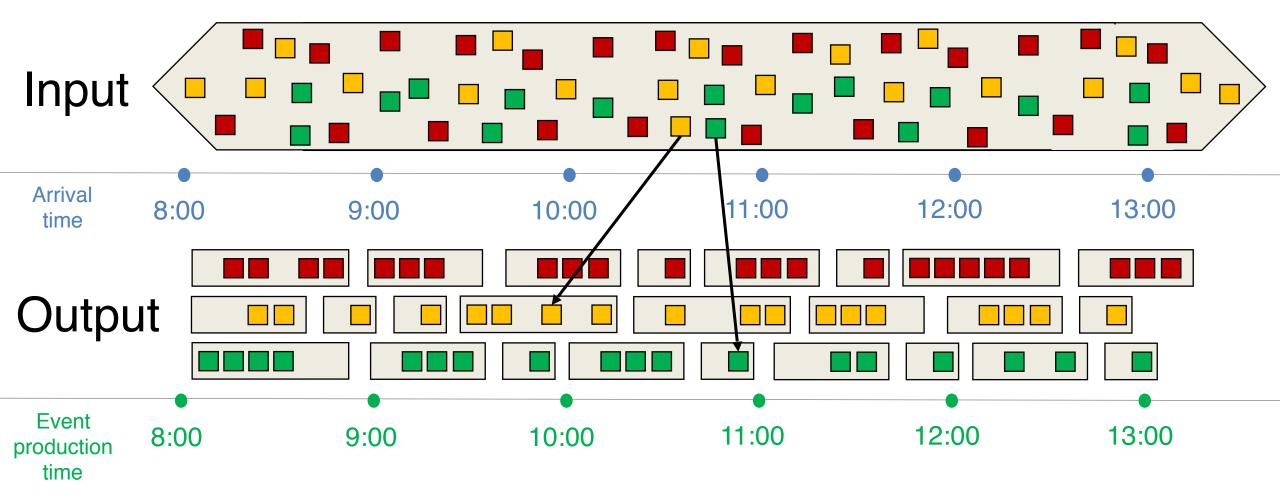
Aggregating time-based windows

How to deal with this unboundedness ?



Aggregating event-based windows

How to deal with this unboundedness ?



Aggregating session-based windows

Batch vs. streaming

Streaming

Correctness

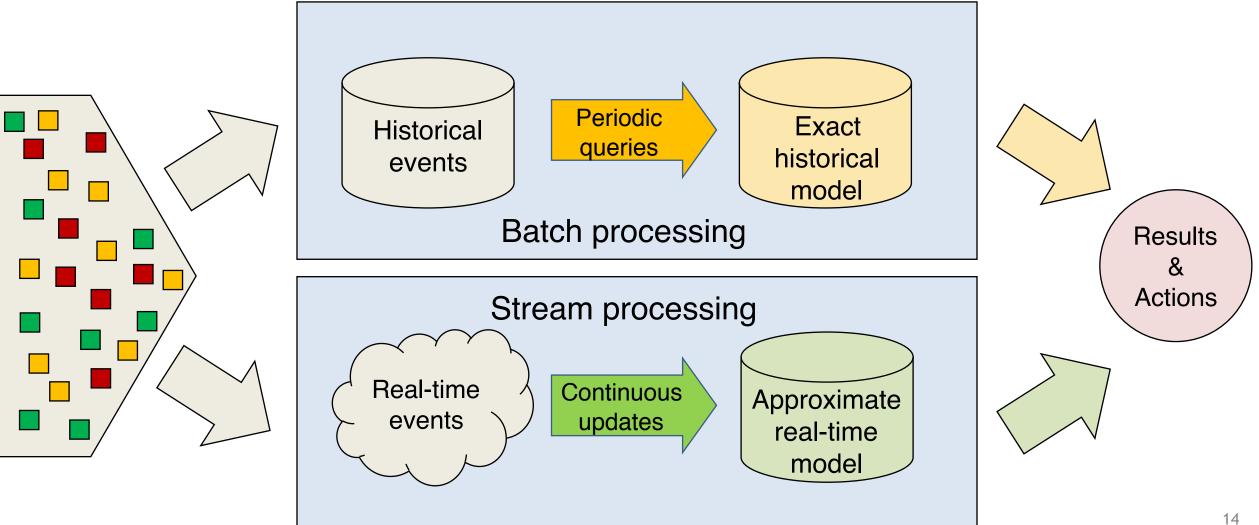
Latency

Cost

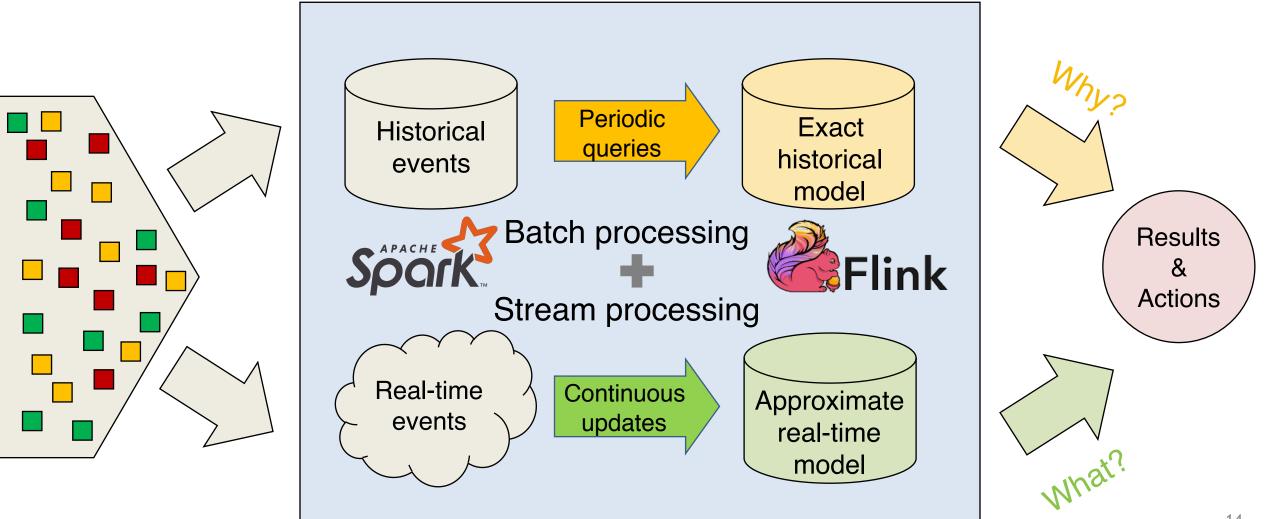
Exact results High-latency Stateless

Approximate results Low-latency Stateful

State of the art until recently: Lambda Architectures

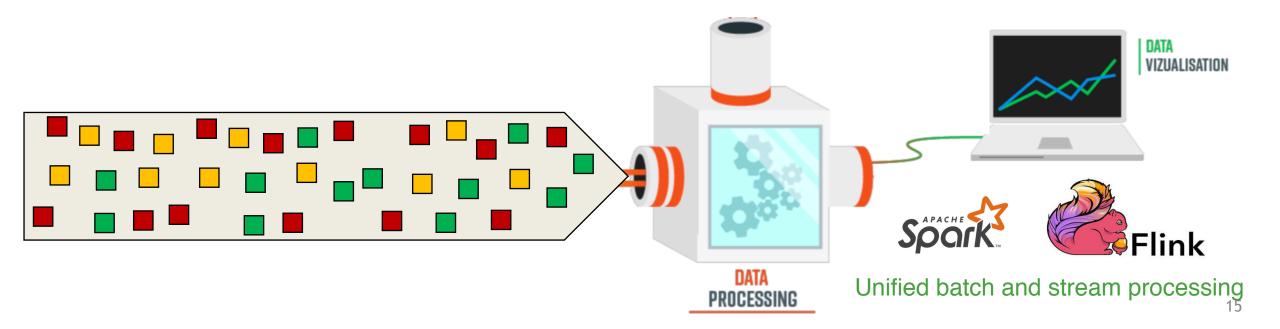


State of the art until recently: Lambda Architectures

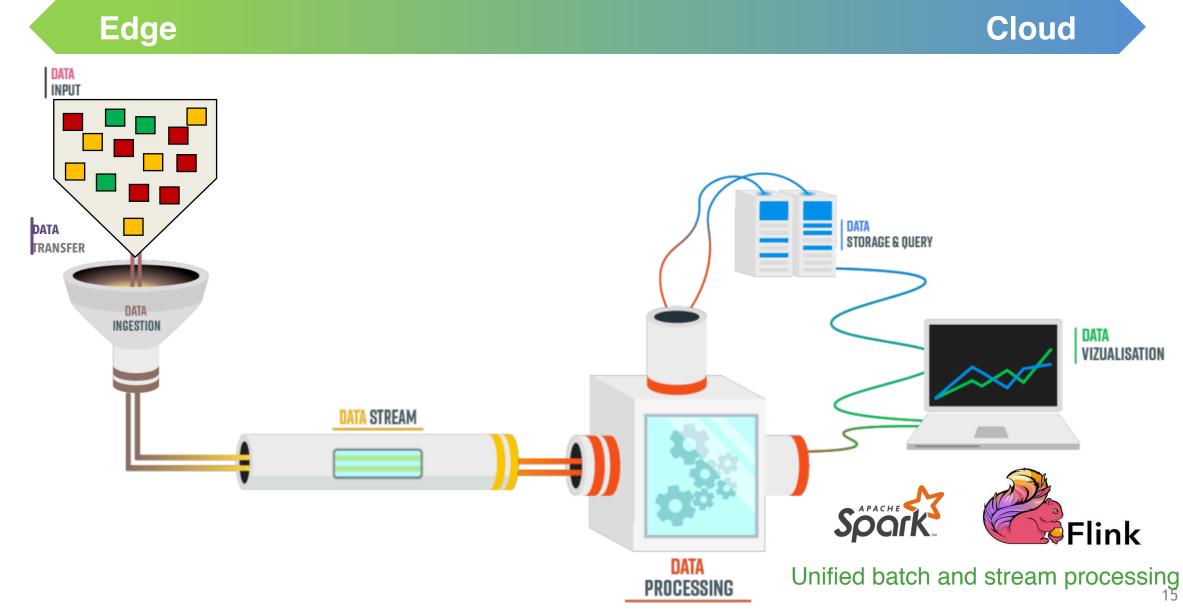


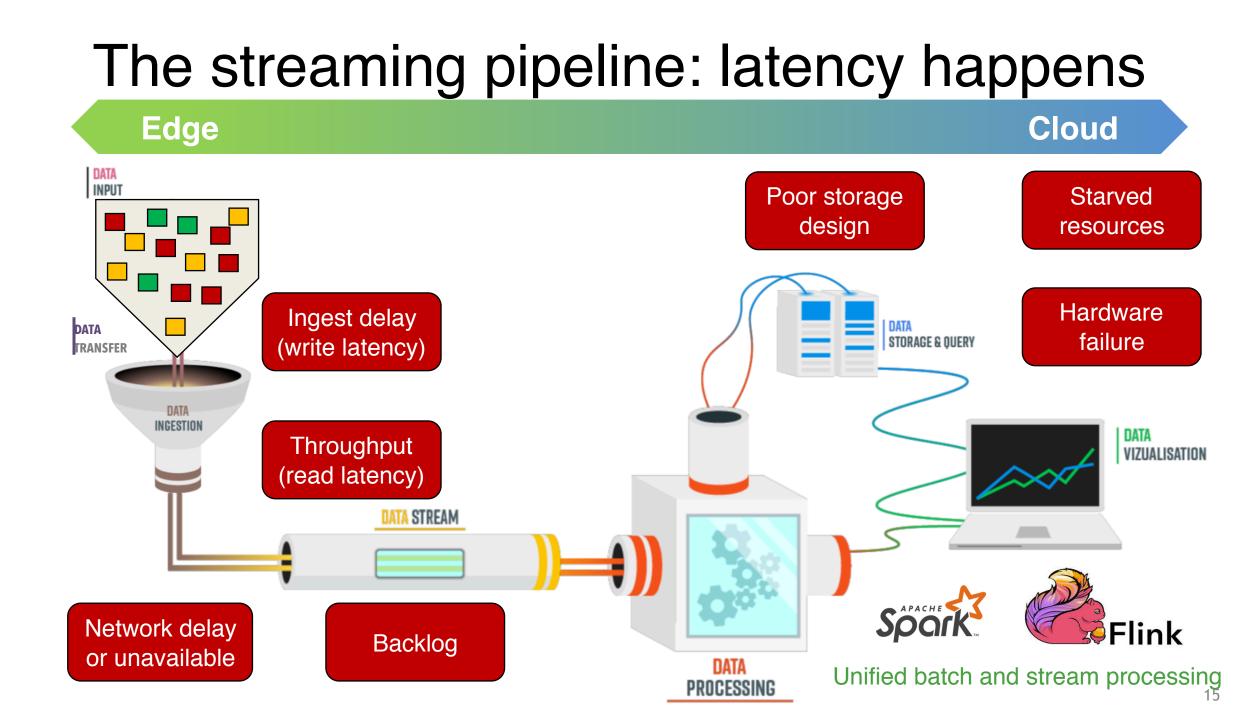
The streaming pipeline: latency happens

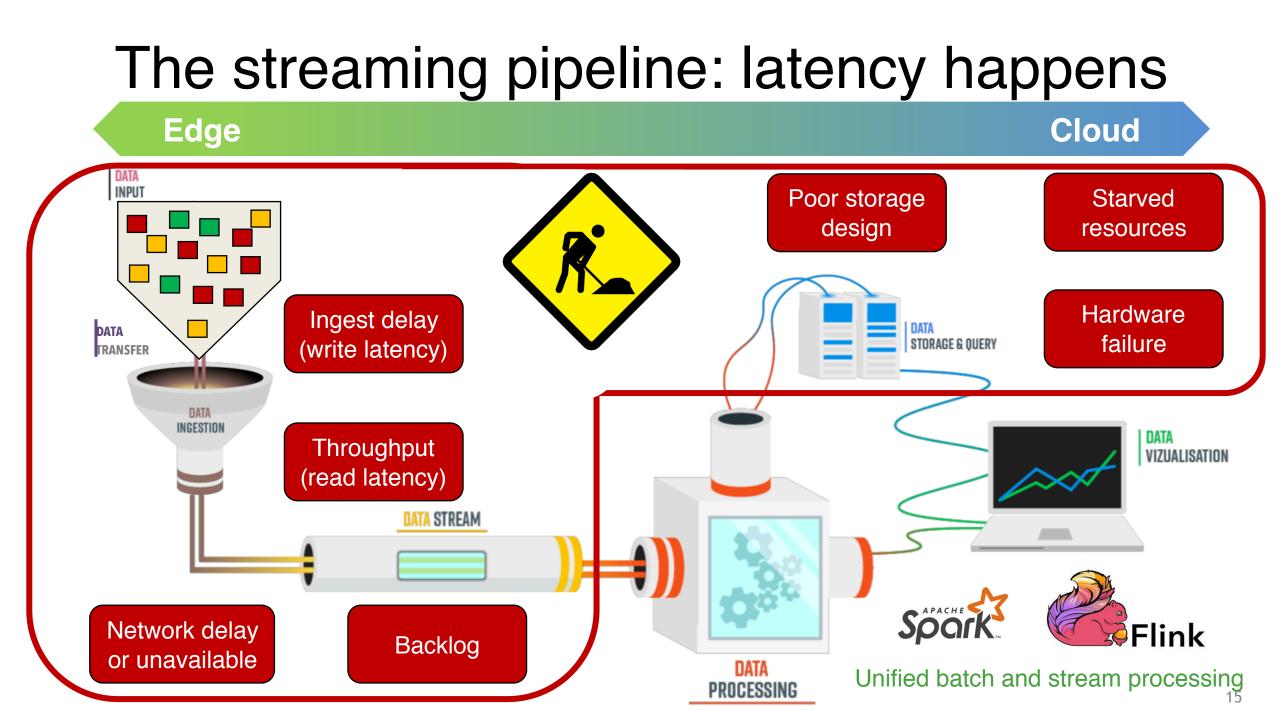
Cloud



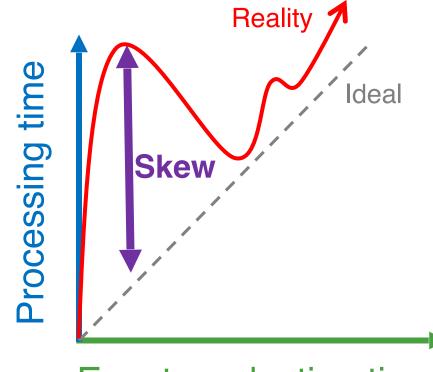
The streaming pipeline: latency happens







Objective

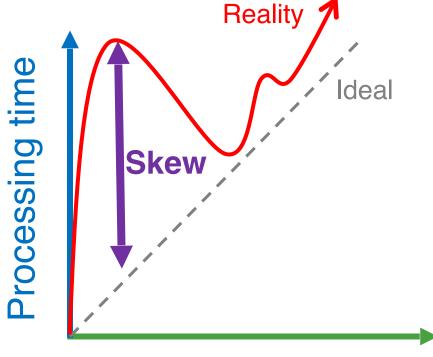


Event production time

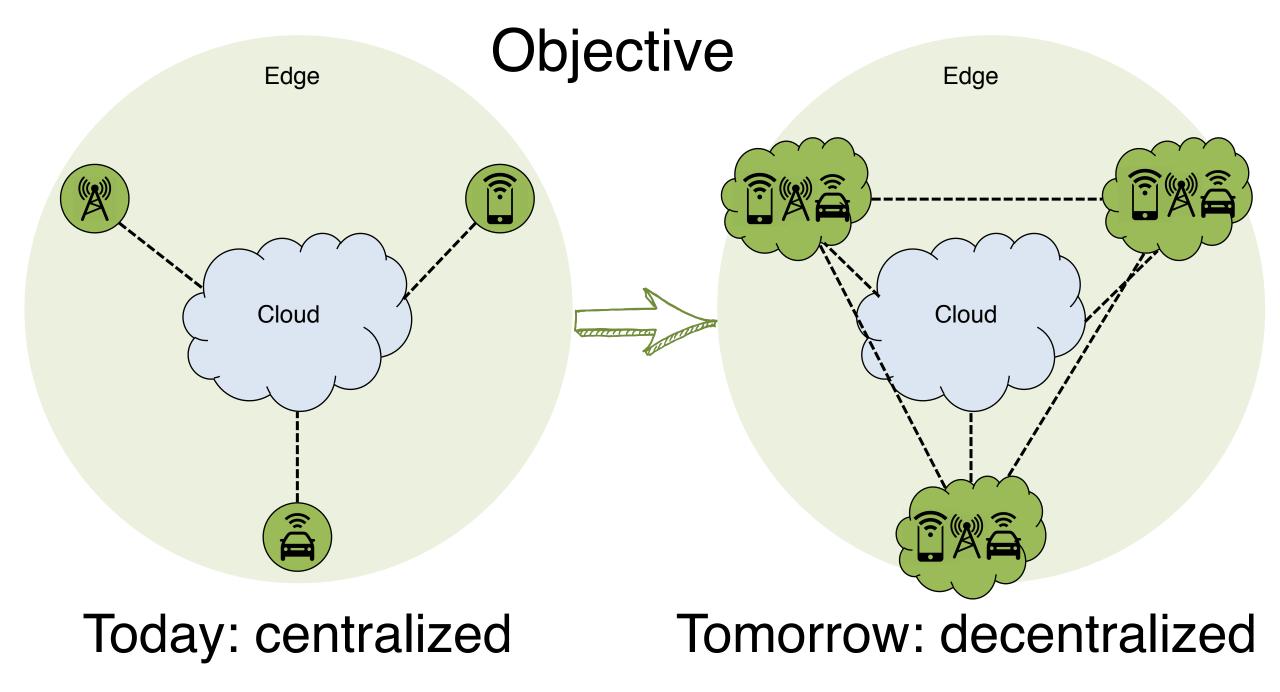
Objective

Cloud

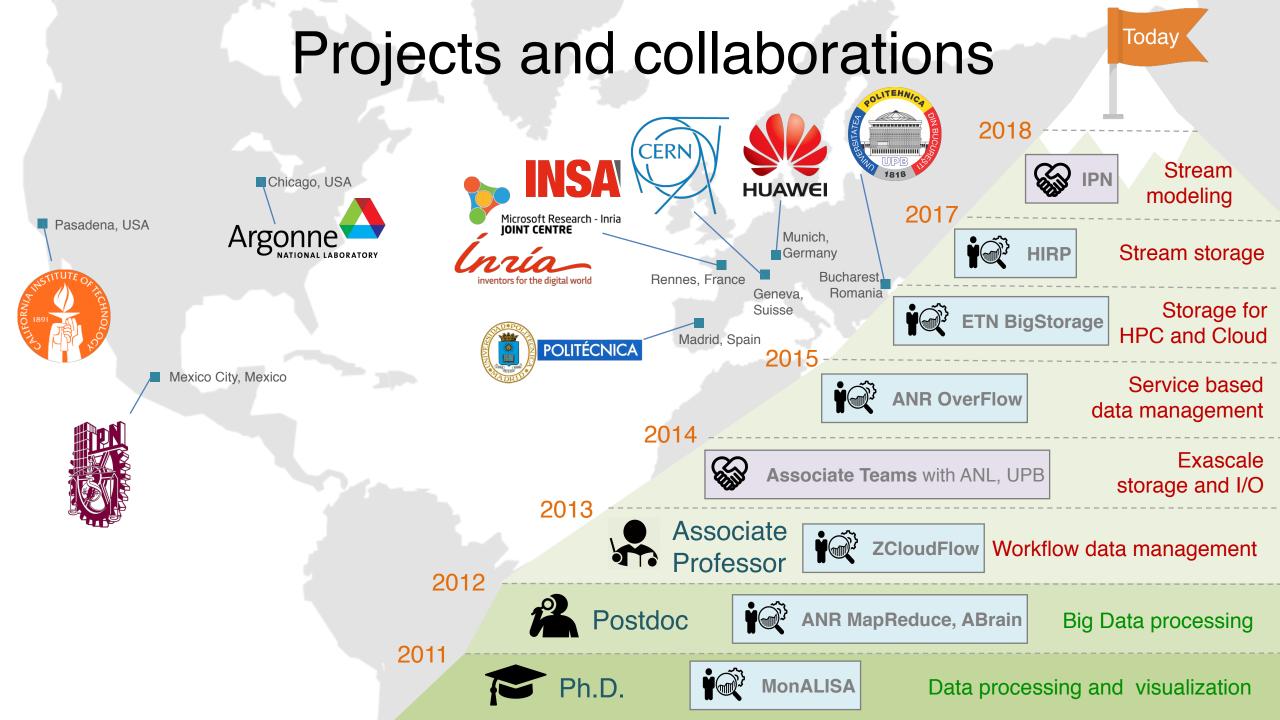
Reduce the processing time skew by means of dedicated stream data management across Edge and Cloud

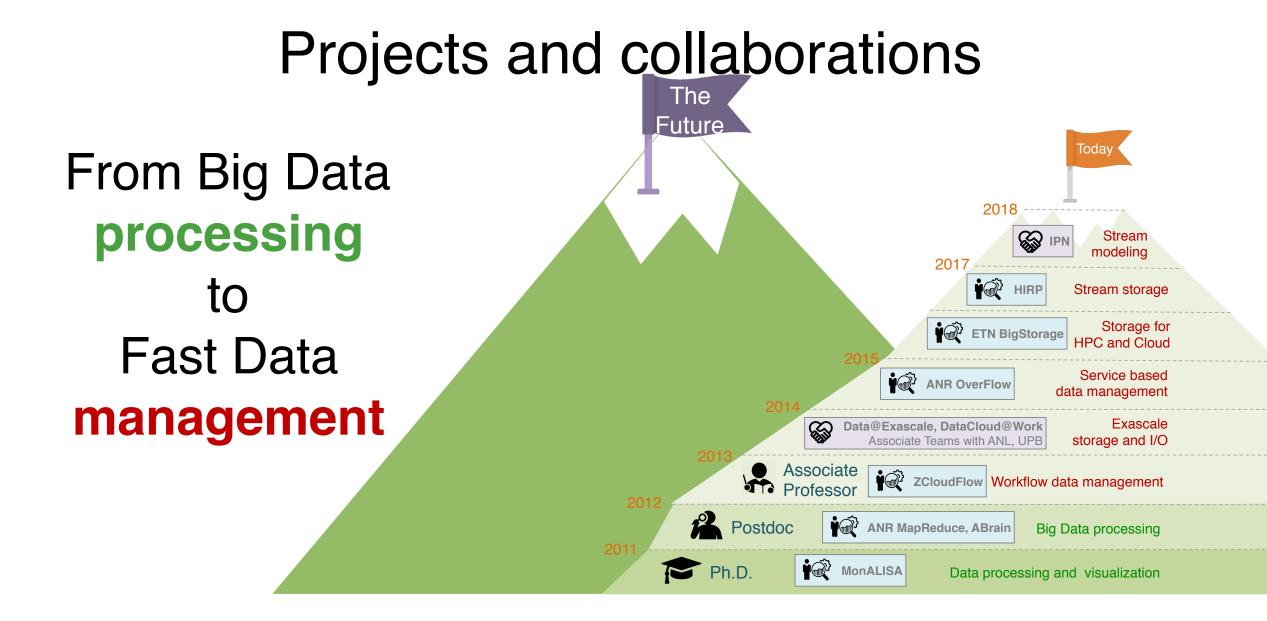


Event production time



My research path





Research topics and PhD co-supervision

 Iterative MapReduce

 Geo-distributed processing

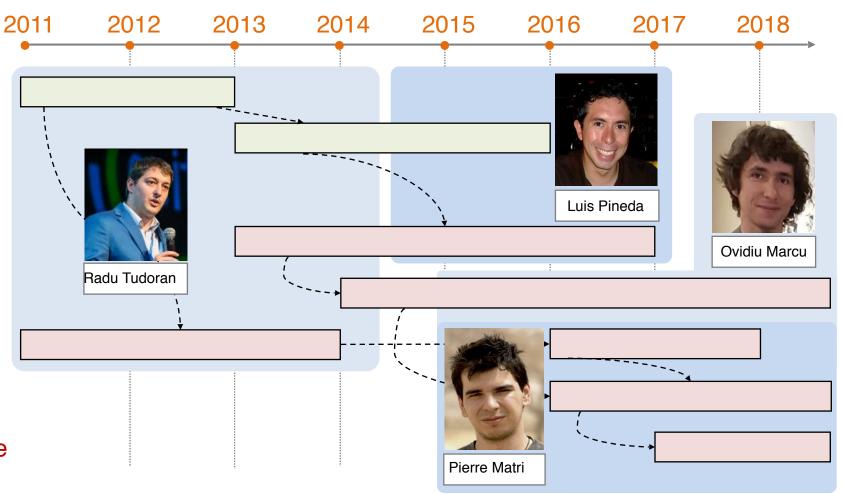
⁻ast Data management

Big Data

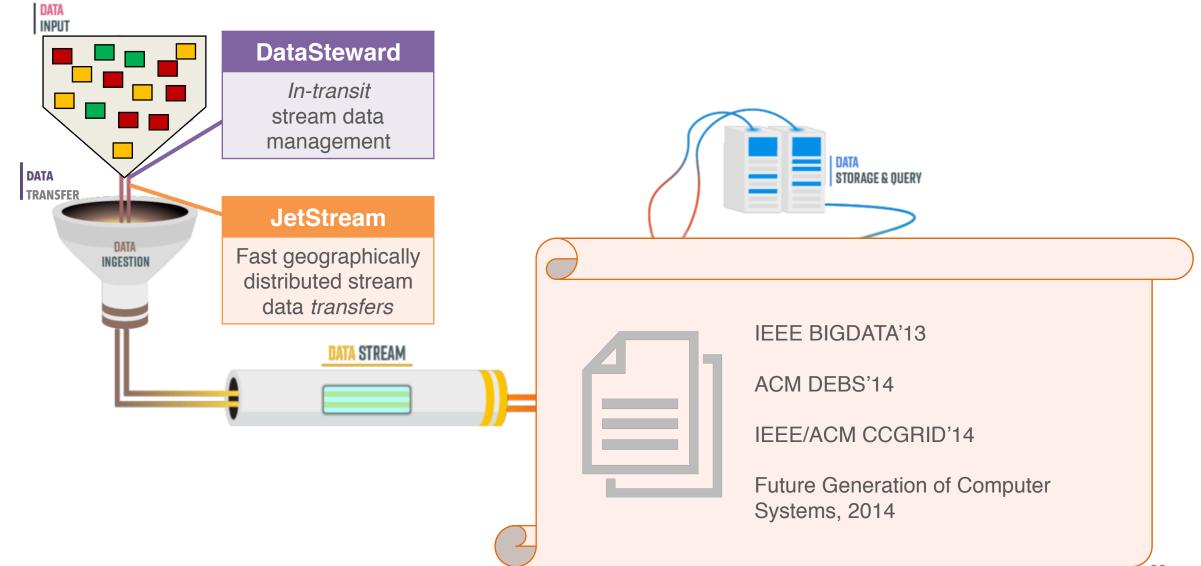
Workflow data management Stream data management Blob storage

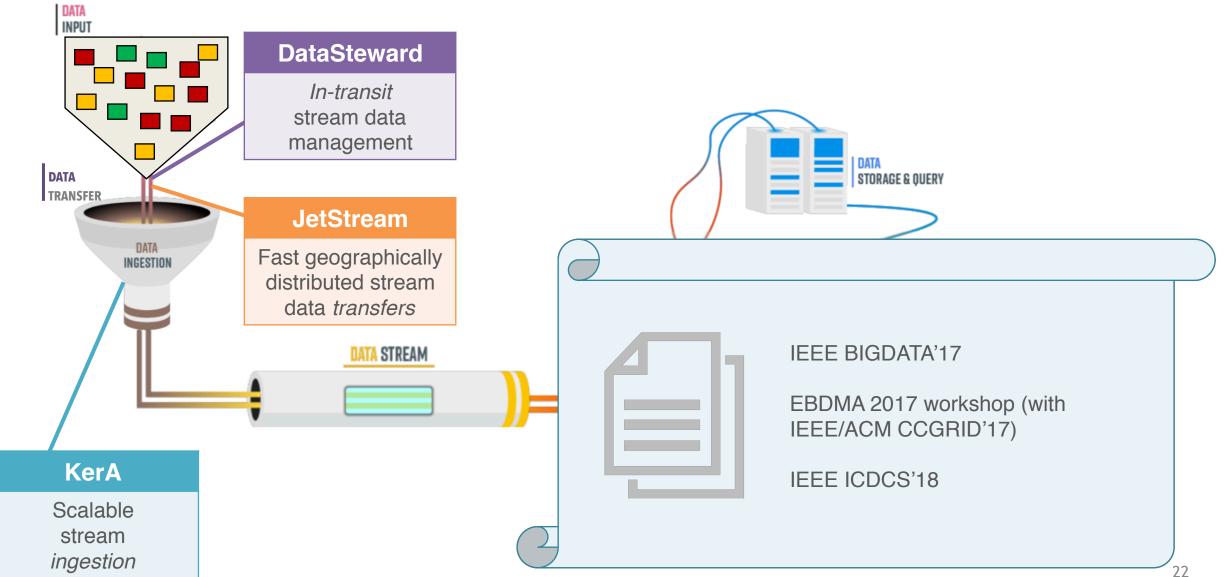
Transactional storage

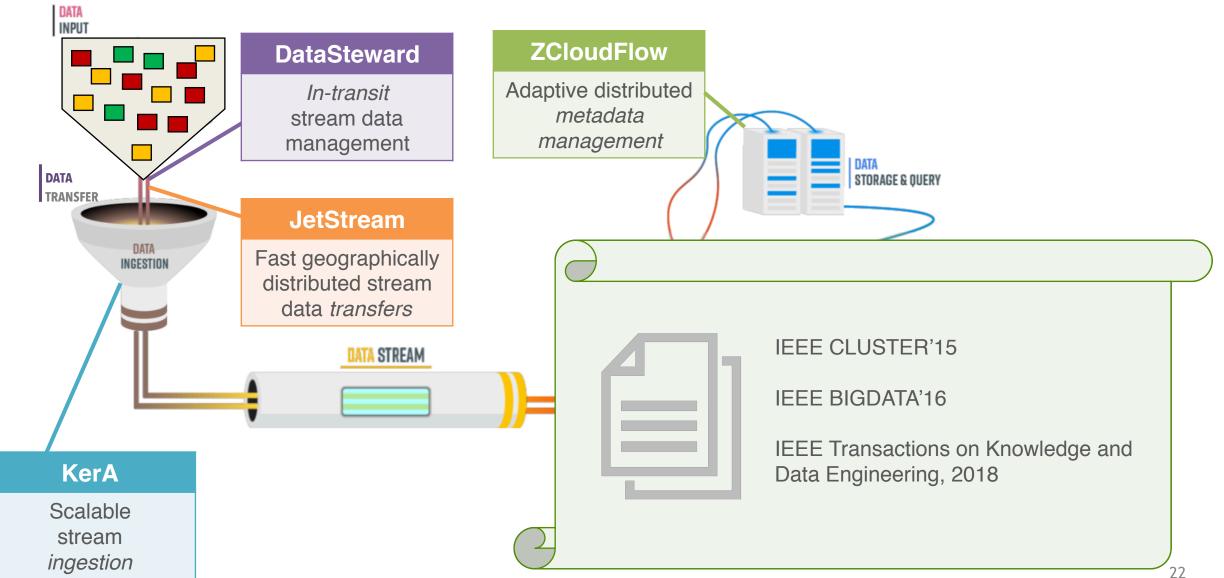
HPC and Big Data convergence

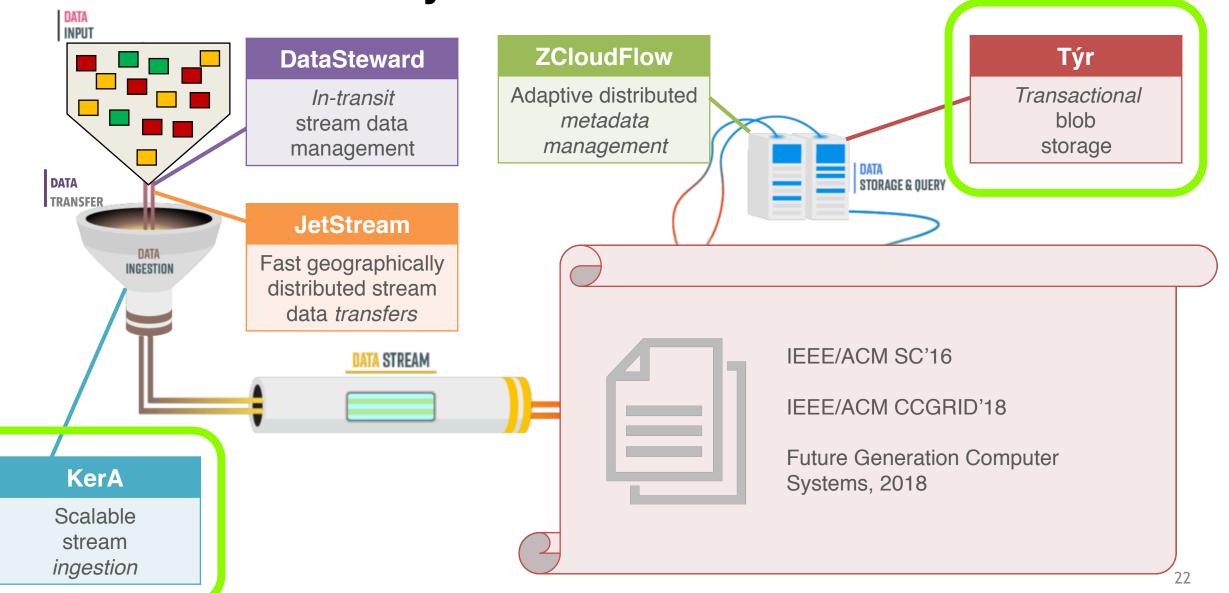


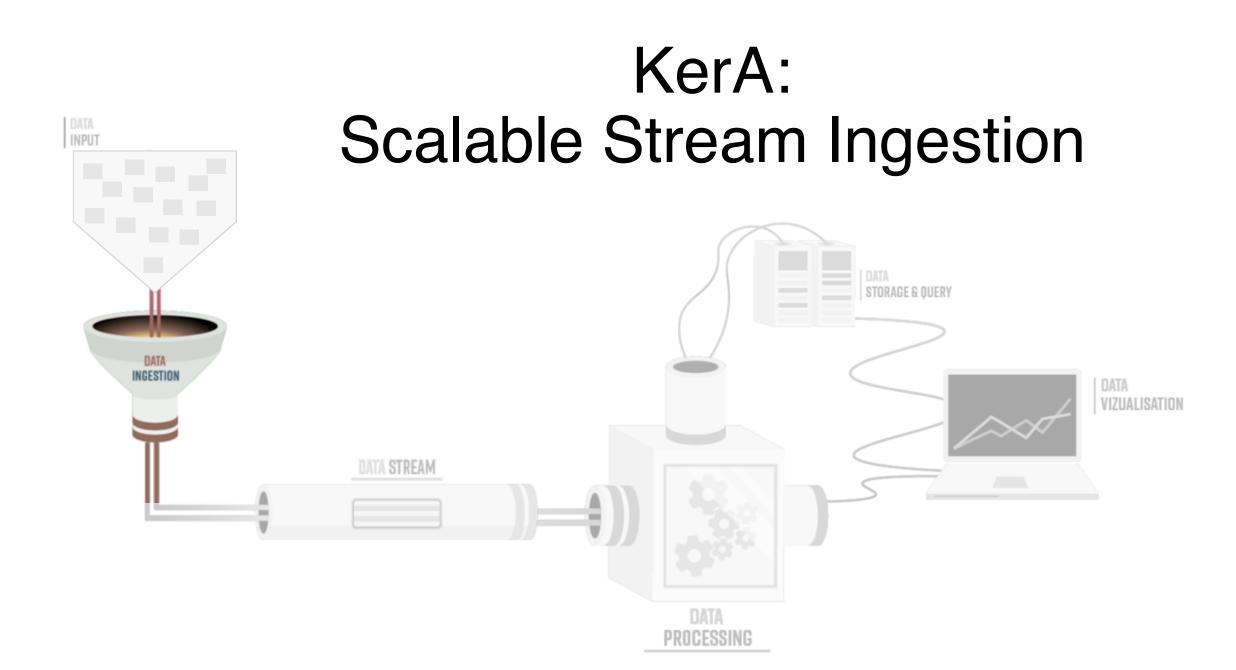












What is ingestion ?

- Collect data from various sources
 → producers
- Deliver them for processing / storage
 → consumers
- Optionally: buffer, log, pre-process

Ingestion determines the processing performance

State of the art: Apache Kafka

50 nodes, average 200K events/s

400 nodes, peak 3.2M events/s

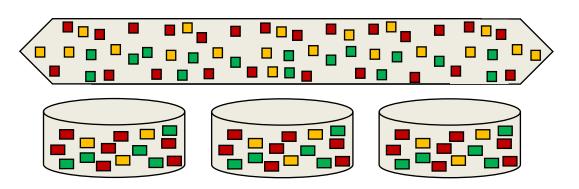
Limitations

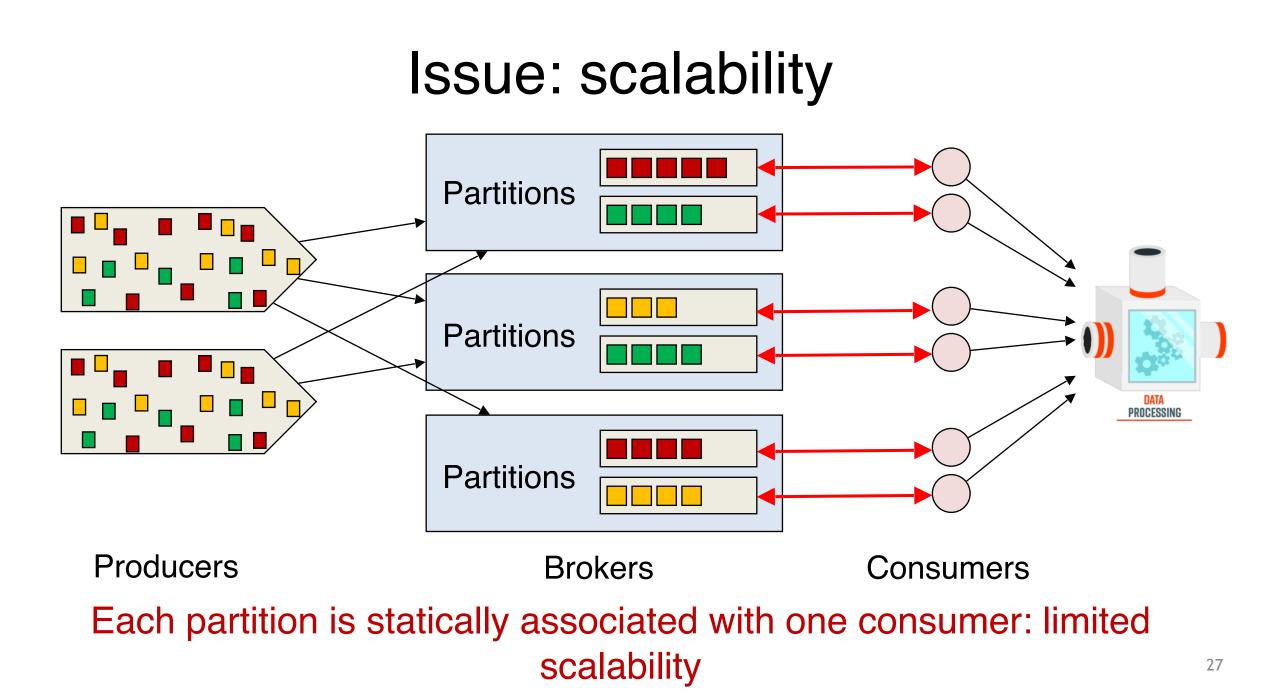
- Scalability
- Data duplication

The KerA approach to ingestion

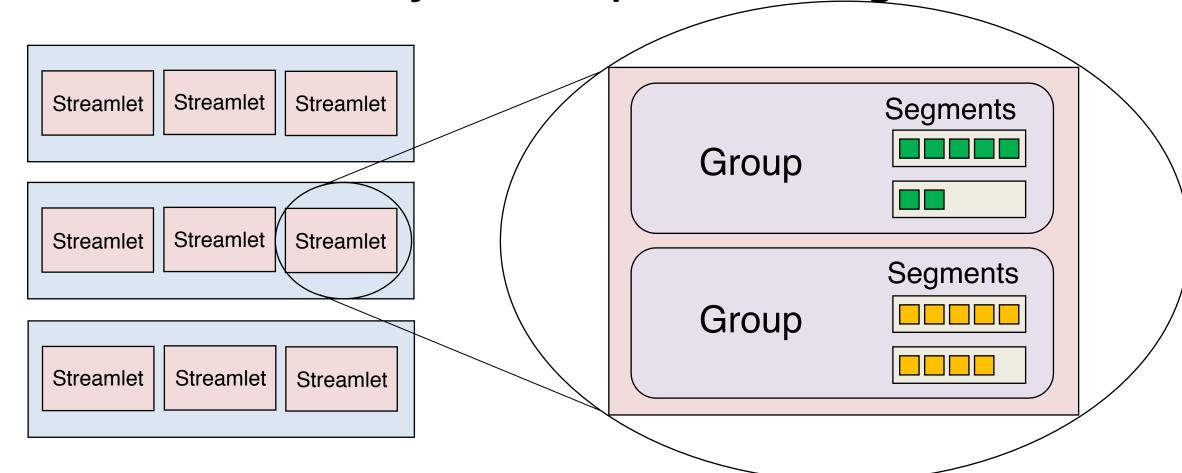
- Scalability → Dynamic partitioning
 - Enables seamless elasticity

- Data duplication → Unified ingestion and storage
 - Support for both
 - Streams (unbounded data)
 - Objects (bounded data)





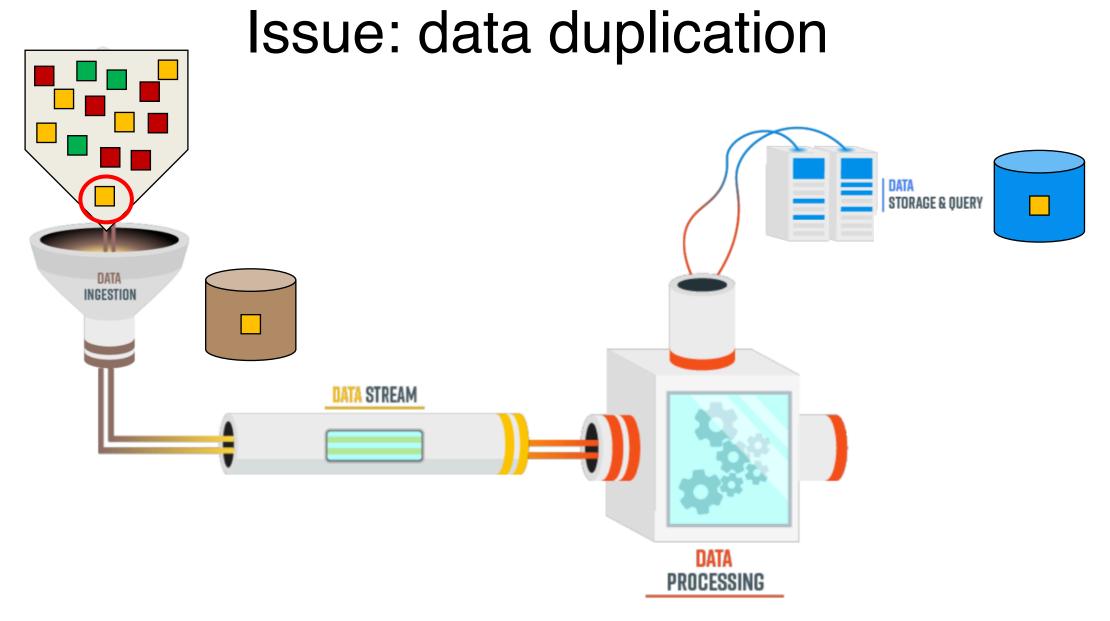
KerA: dynamic partitioning



Streamlets: logical stream containers; #streamlets > #brokers

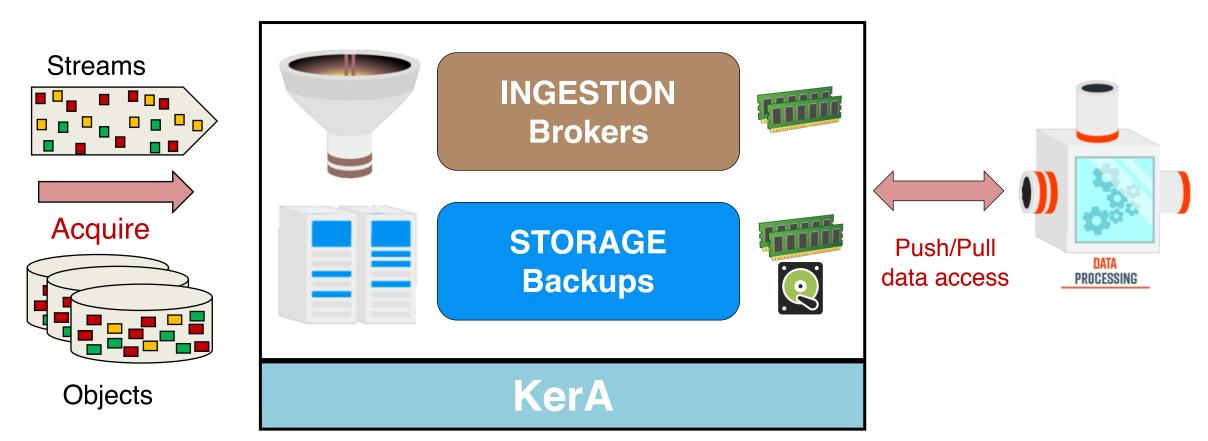
Brokers

- Groups: created and processed dynamically; up to a maximum number per broker
- Segments: stream partitions of fixed size; configurable #segments per group



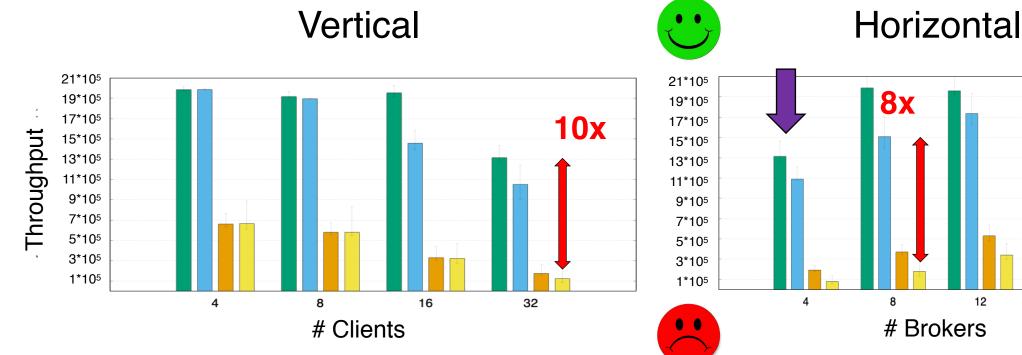
Increased network and storage overheads

KerA: unified ingestion and storage



Move less data, process them faster Common data model for streams and objects

Evaluating scalability



4 brokers, 32 partitions, 128KB request size, 100B records

64 clients, 32 partitions, 1MB request size, 100B records

12

16

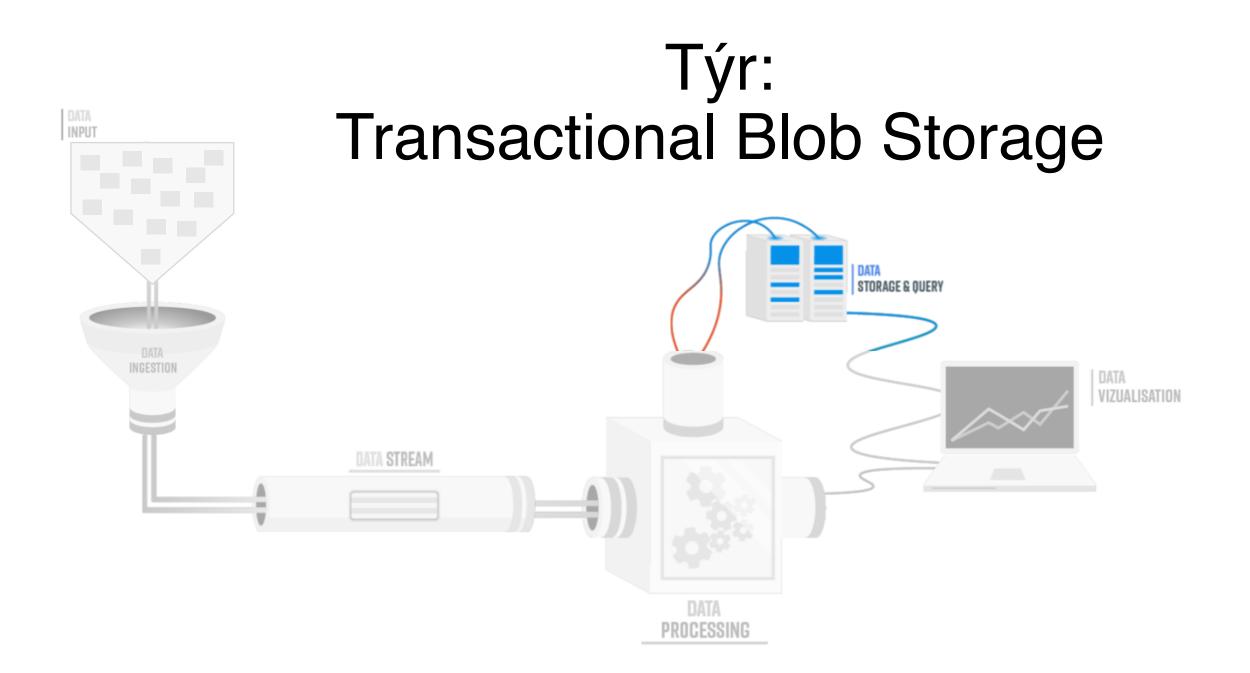
2x better throughput with 75% less resources Nodes Number

KeraProd

KeraCons

KafkaProd

KafkaCons



Motivating use-case: MonALISA

Load

A large-scale monitoring and analytics service for the CERN LHC ALICE experiment

Ingests and stores telemetry events at 13 GB/s

Computes 35,000+ aggregates of events in real-time



MonALISA RDBMS platform does not scale

Multiple storage requirements

Write atomicity for aggregate updates

Atomic, lock-free writes

High-performance reads

Horizontal scalability

Write atomicity for aggregate updates

Aggregate update is a two-step operation

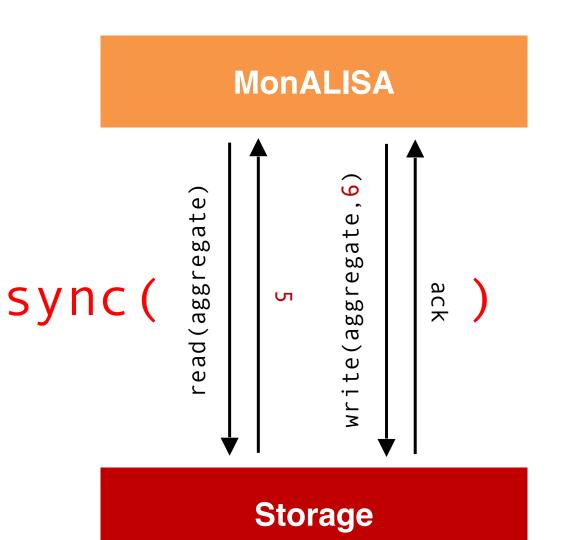
Read current value remotely from storage

Write the updated value remotely to storage

Aggregate update needs to be atomic

Concurrent writers!

Synchronization is mandatory



At which level to handle synchronization?

At application level?

Fine-grained synchronization Application-specific optimization ...but increases app complexity, error-prone *Common on HPC (e.g., explicit locking)*

Thread 1Thread 2Thread 3Synchronization LayerStorage

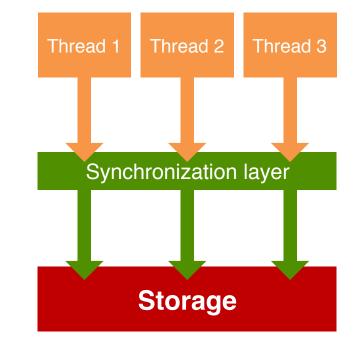
At which level to handle synchronization?

At application level?

Fine-grained synchronization Application-specific optimization ...but increases app complexity, error-prone *Common on HPC (e.g., explicit locking)*

At middleware level?

Eases application design ...but typically substantial performance overhead Also common on HPC (e.g., MPI collective I/O)



At which level to handle synchronization?

At application level?

Fine-grained synchronization Application-specific optimization ...but increases app complexity, error-prone

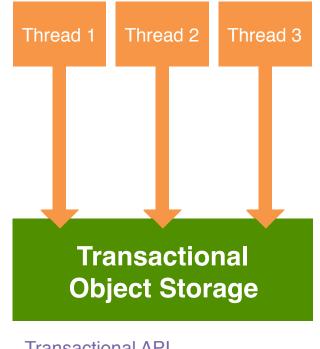
Common on HPC (e.g., explicit locking)

At middleware level?

Eases application design ...but typically substantial performance overhead Also common on HPC (e.g., MPI collective I/O)

At storage level?

Also eases application design Storage-specific optimization ...but less customizable than app-level synchronization *Common on BDA (e.g., transactional systems)*



Transactional API
> begin()
> current = read(aggregate, ...)
> write(aggregate, current+1, ...)
> commit()

Týr read protocols

Direct read	Multi-chunk read	Transactional read
1 RTT	1 RTT + 1 Additional cost	First read 1 RTT + 1 Additional cost
Similar to key-value stores	Multi-chunk consistency	
Low latency No multi-chunk consistency	No repeatable reads <i>i.e.</i> no consistency guarantees between	Subsequent reads 1 RTT
guarantees	successive reads	Multi-chunk consistency Repeatable reads
<pre>> read(blob, 0, 10kb)</pre>	<pre>> read(blob, 0, 100mb)</pre>	<pre>> begin() > read(blob, 0, 10kb) > read(blob, 100mb, 10kb) > commit()</pre>

The developer can select an algorithm offering lesser guarantees

Results in a substantial performance increase

Useful for example for append logs, in which multi-chunk operations are not needed

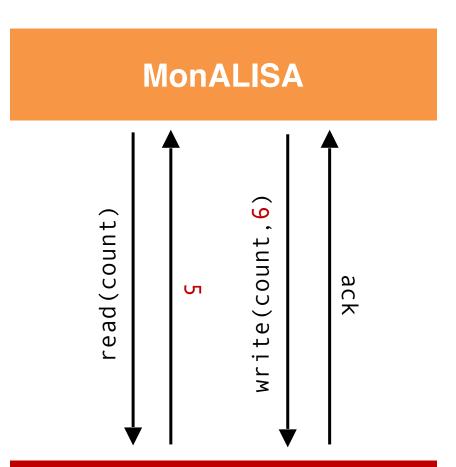
Týr atomic writes

MonALISA: aggregate updates could be performed atomically and efficiently

Týr enables these writes to be performed with one round-trip instead of two

Atomic operations: in-place data modification

Integrated with the transaction protocol



Transactional Storage

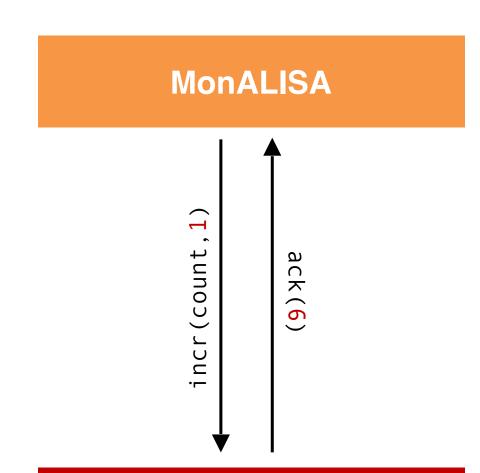
Týr atomic writes

MonALISA: aggregate updates could be performed atomically and efficiently

Týr enables these writes to be performed with one round-trip instead of two

Atomic operations: in-place data modification

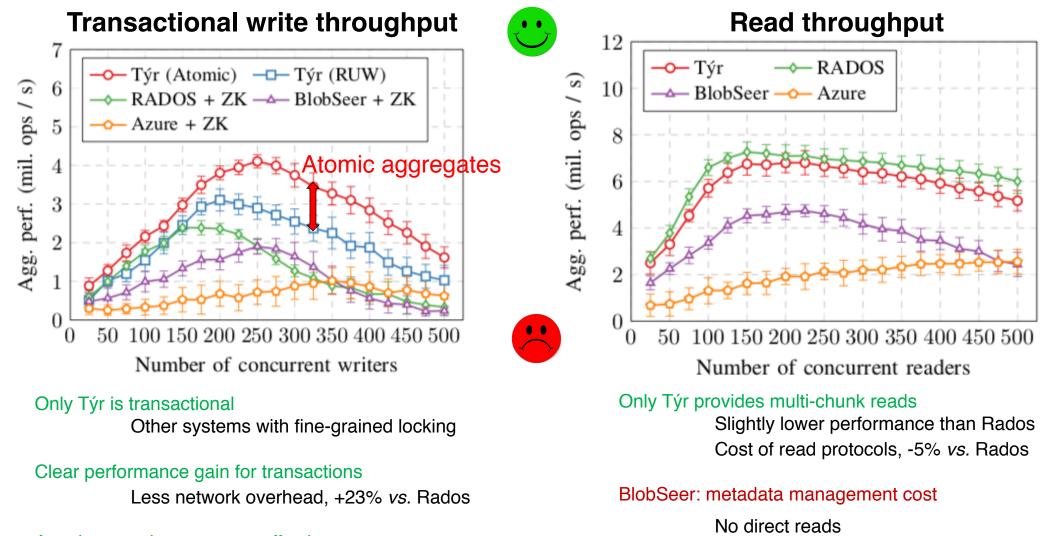
Integrated with the transaction protocol



Transactional

Storage

Read / Write performance

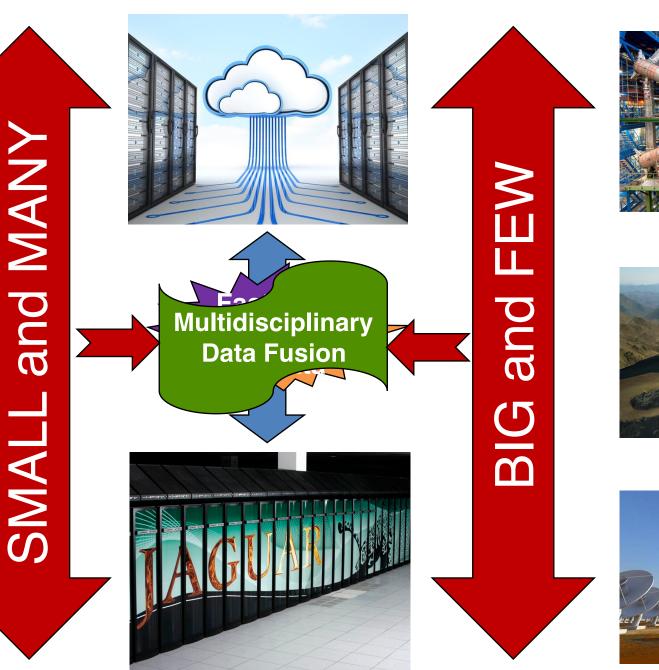


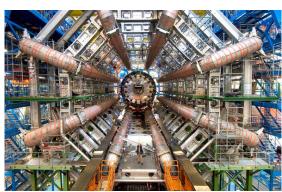
Atomic operations are very effective

One RTT instead of two, +25% throughput

Perspectives: HPC and Big Data Convergence Cars

IoT / Smart City

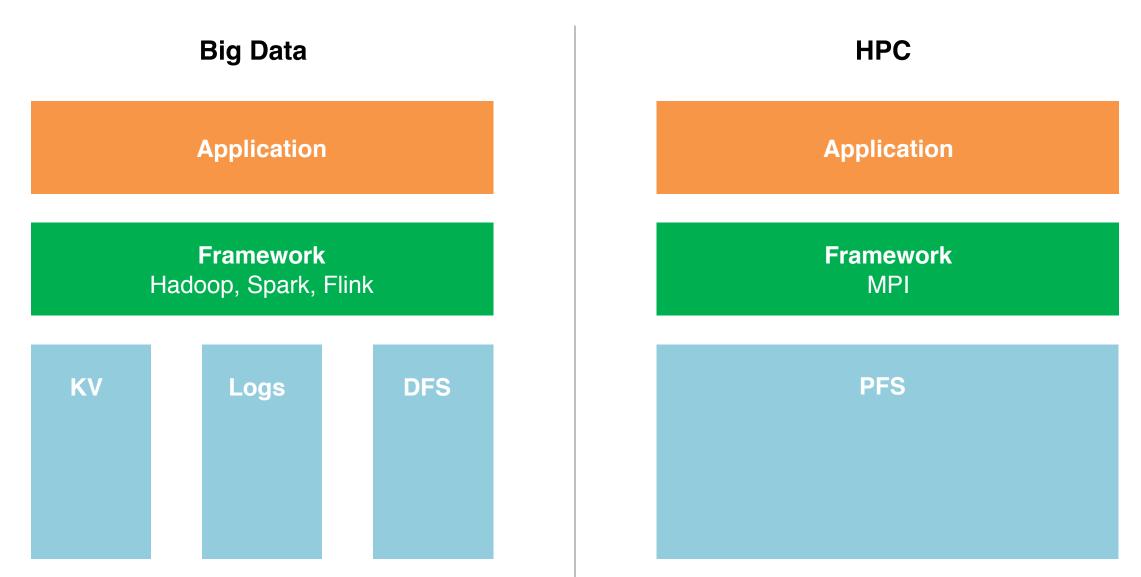


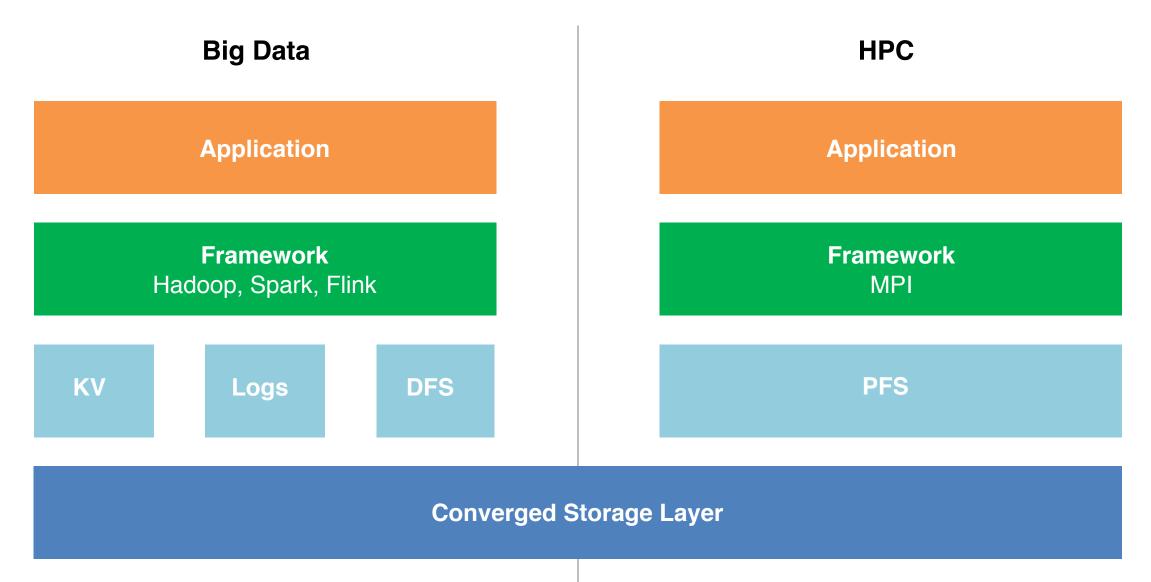


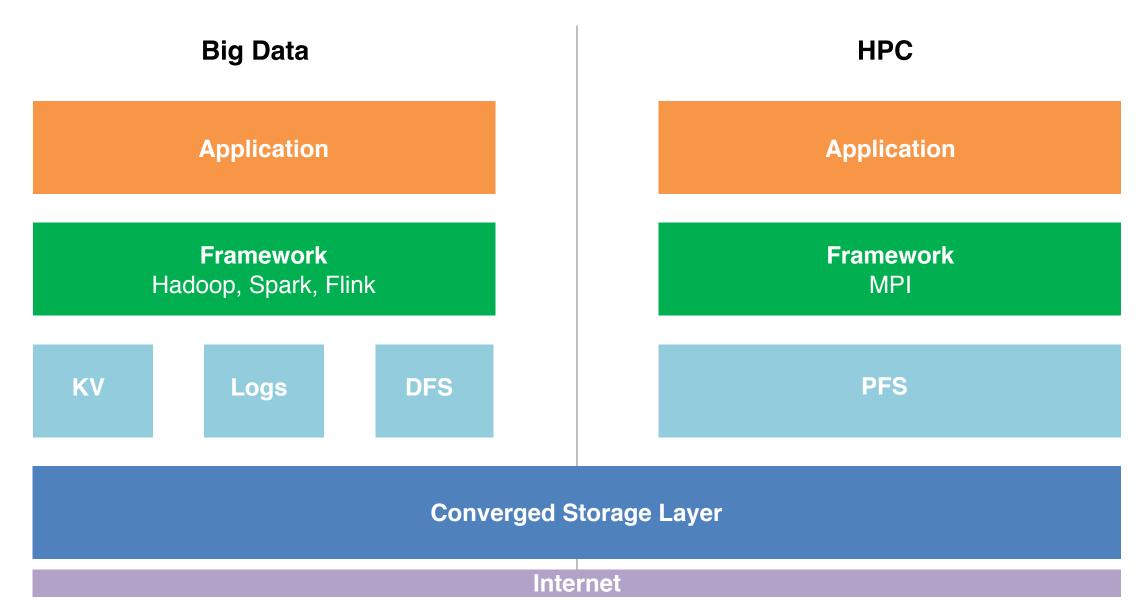
LHC

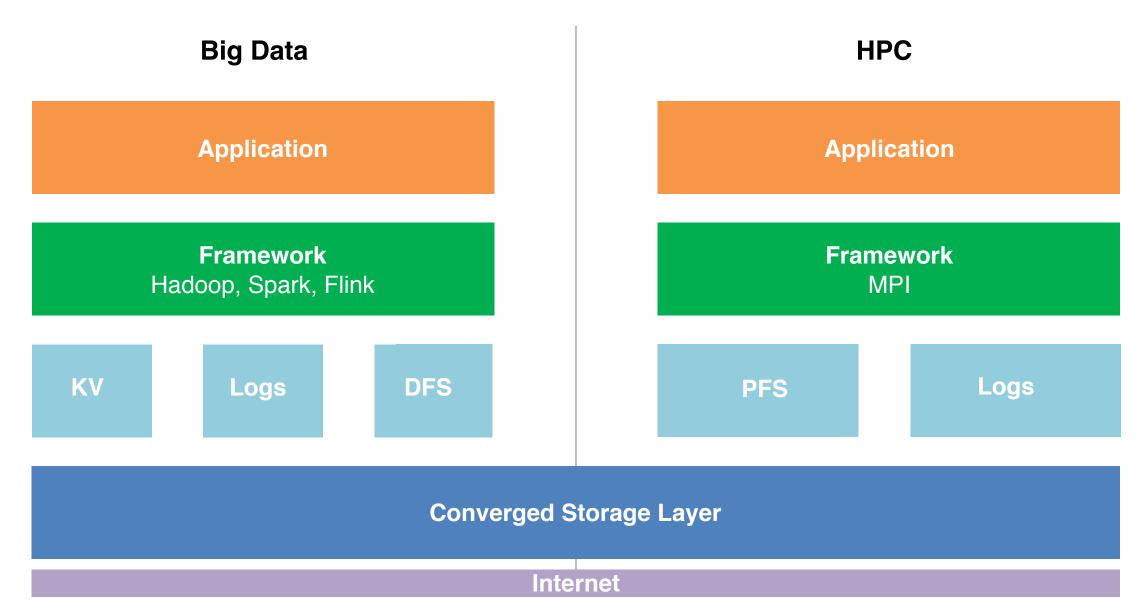
LSST

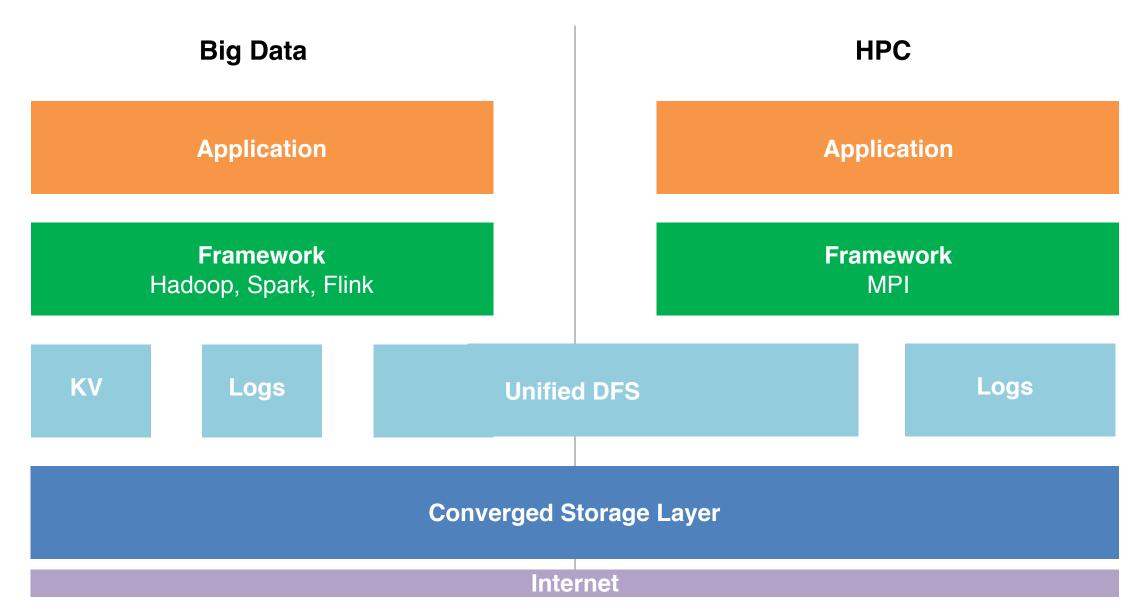
SKA

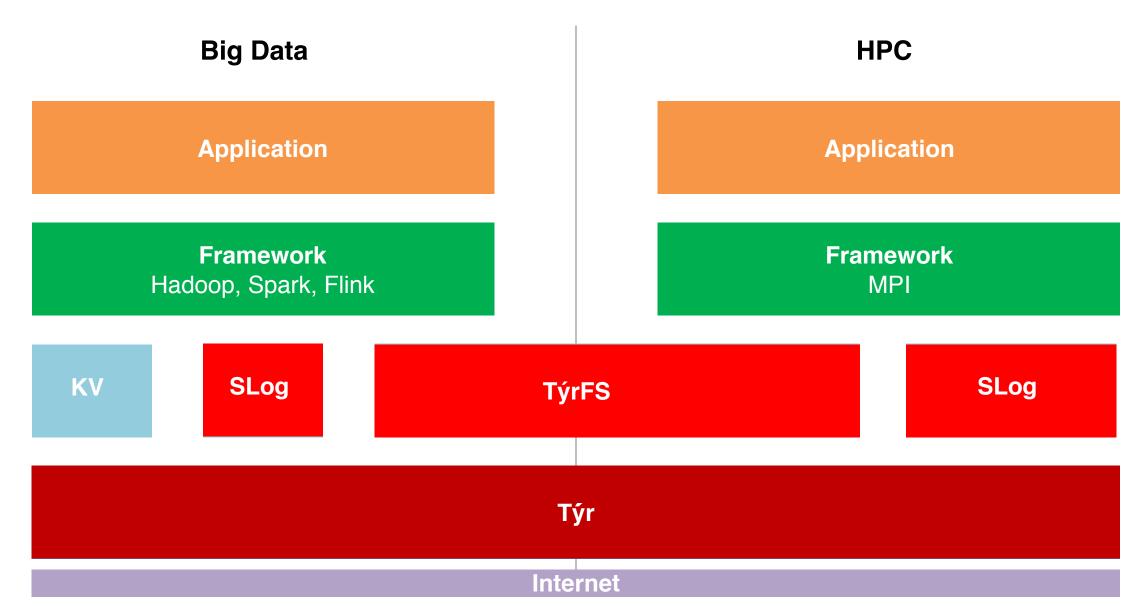


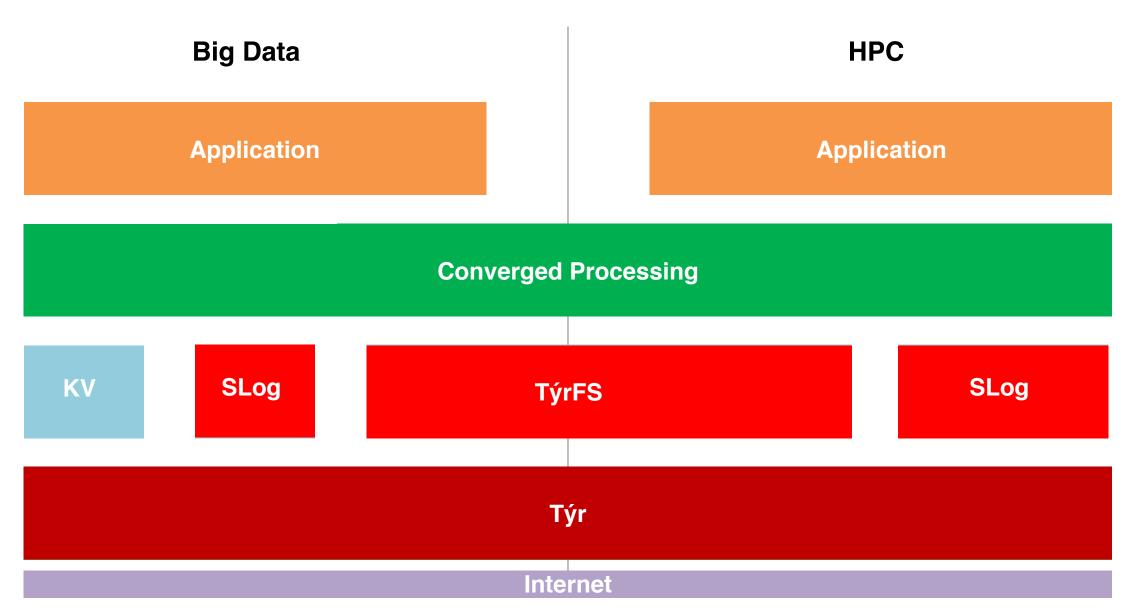










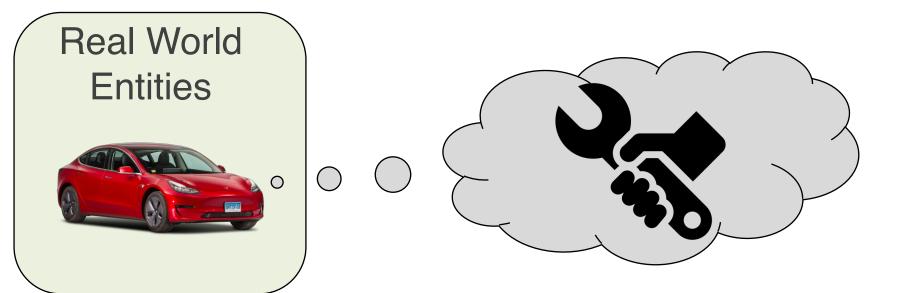


My Research Project:

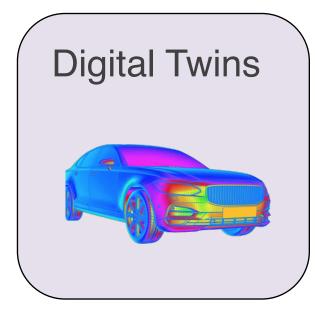
Converged Processing

... or how *Past, Present* and *Future* data could jointly enable disruptive analytics on Extreme-scale infrastructures

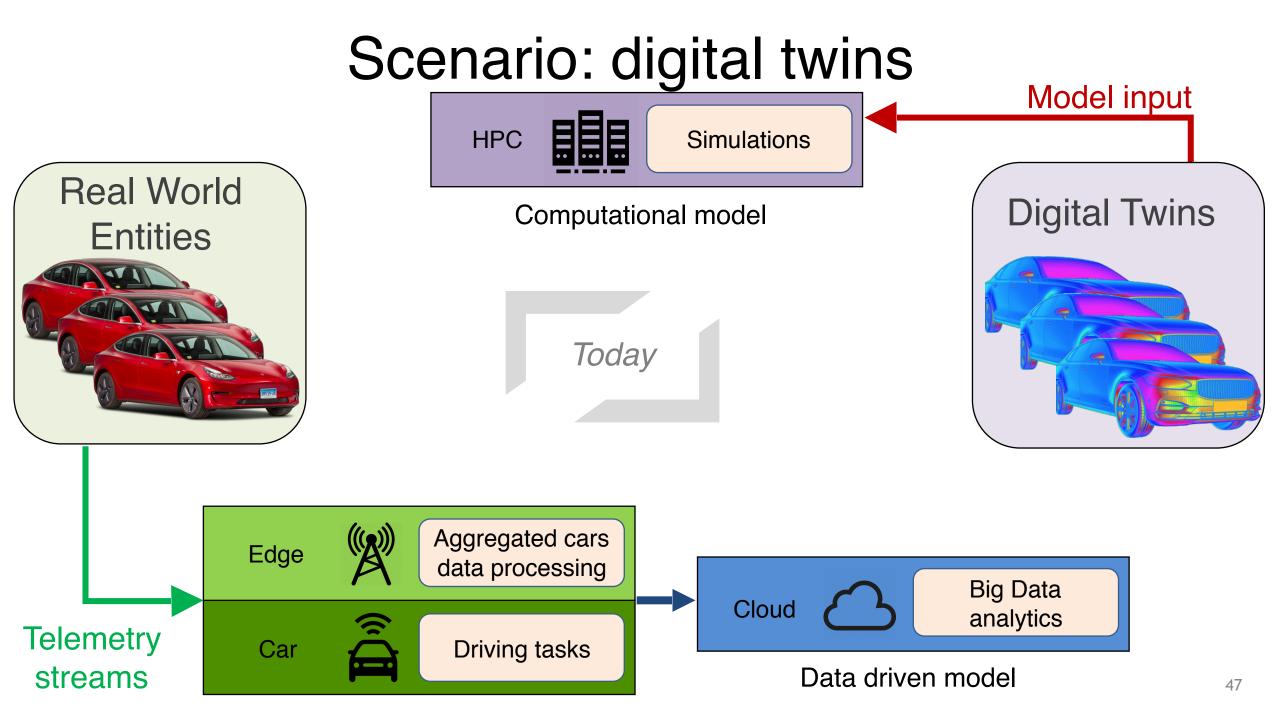
Scenario: digital twins

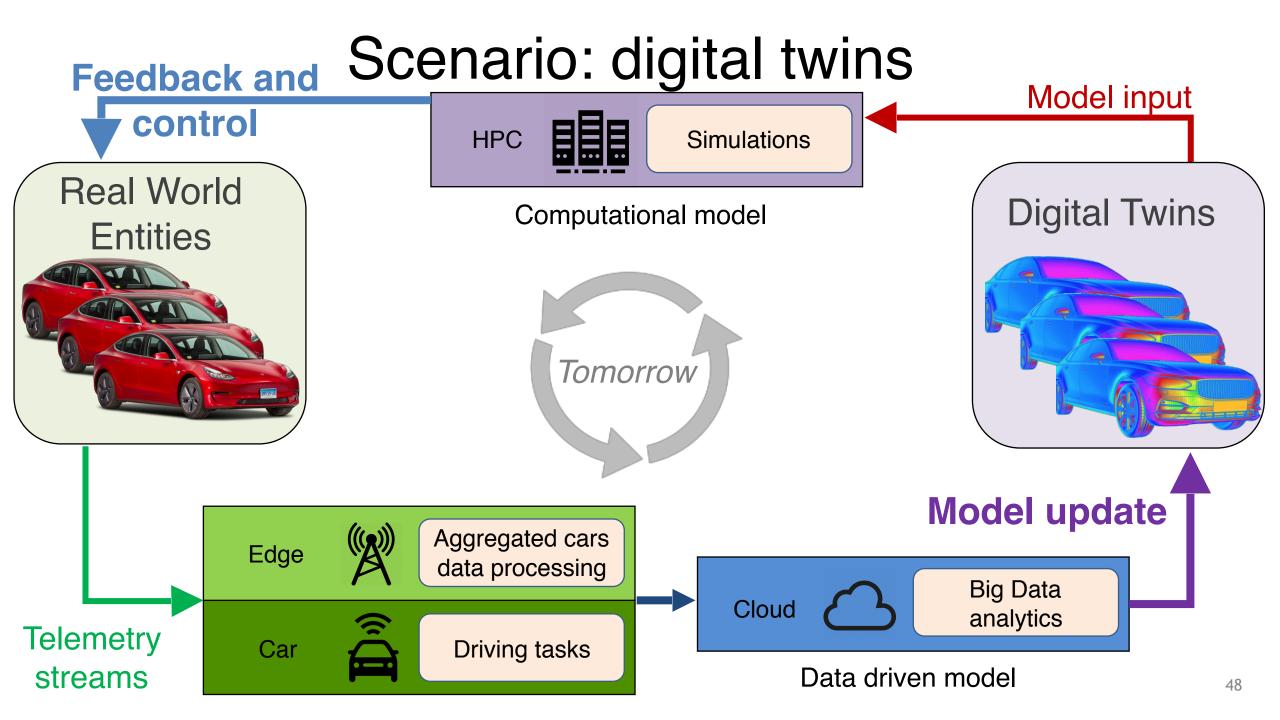


Scenario: digital twins

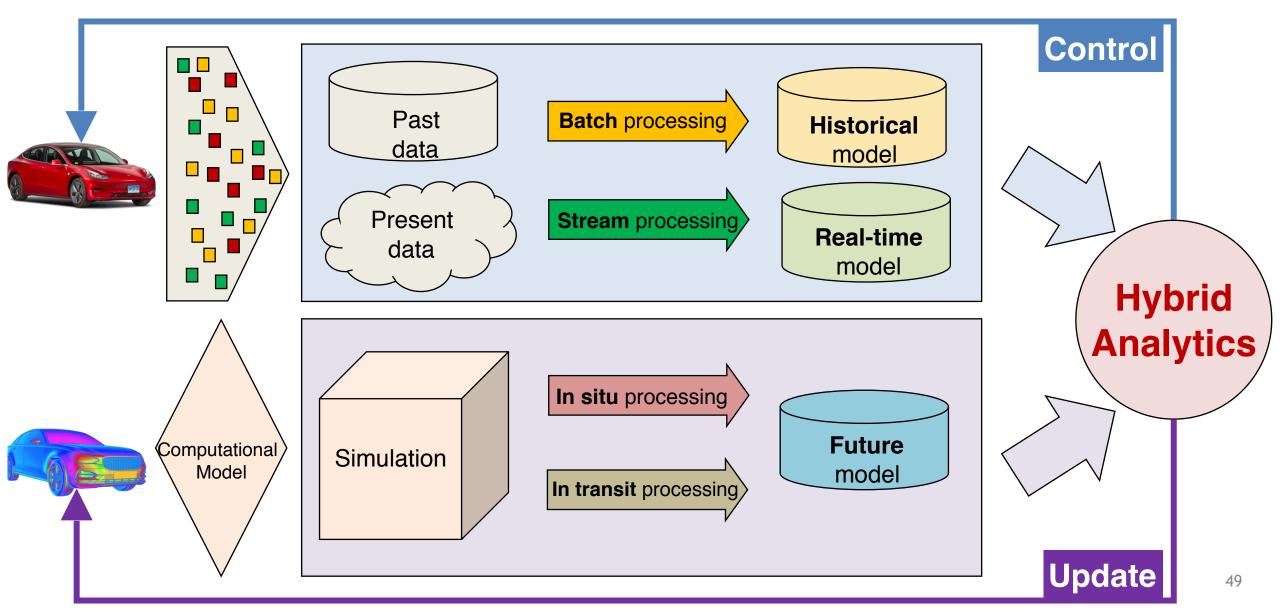


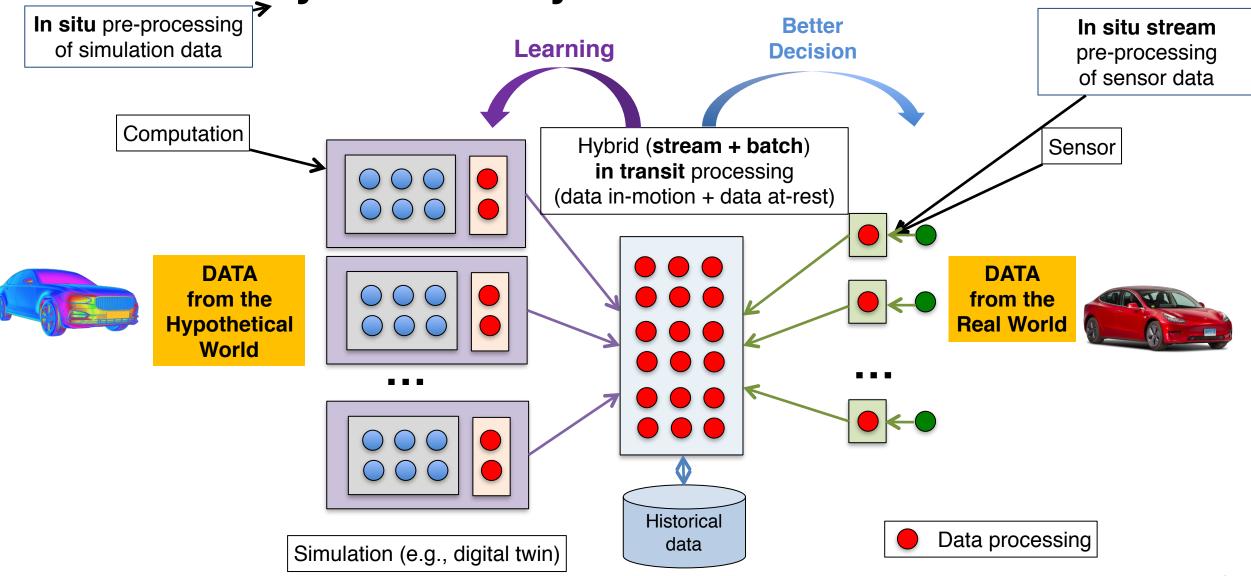
Scenario: digital twins

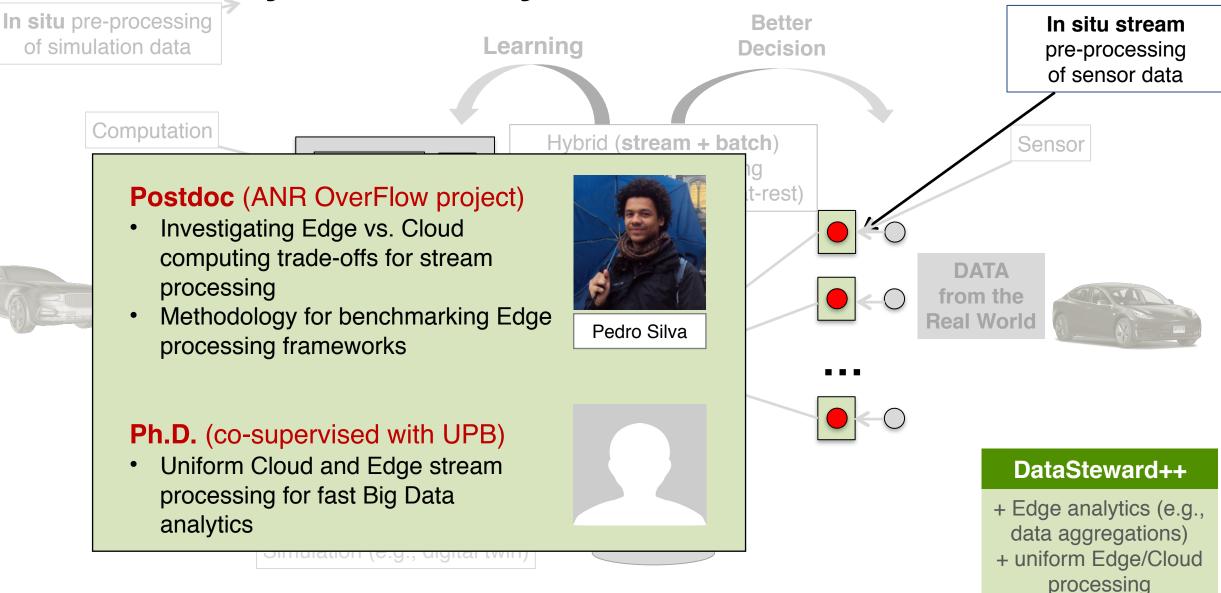


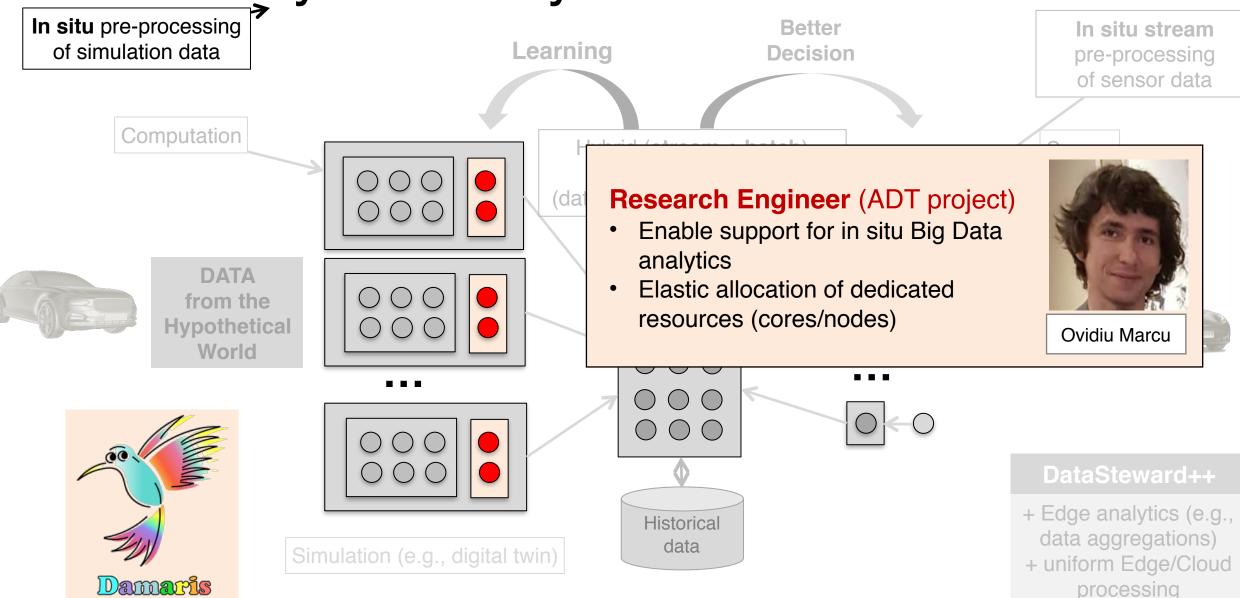


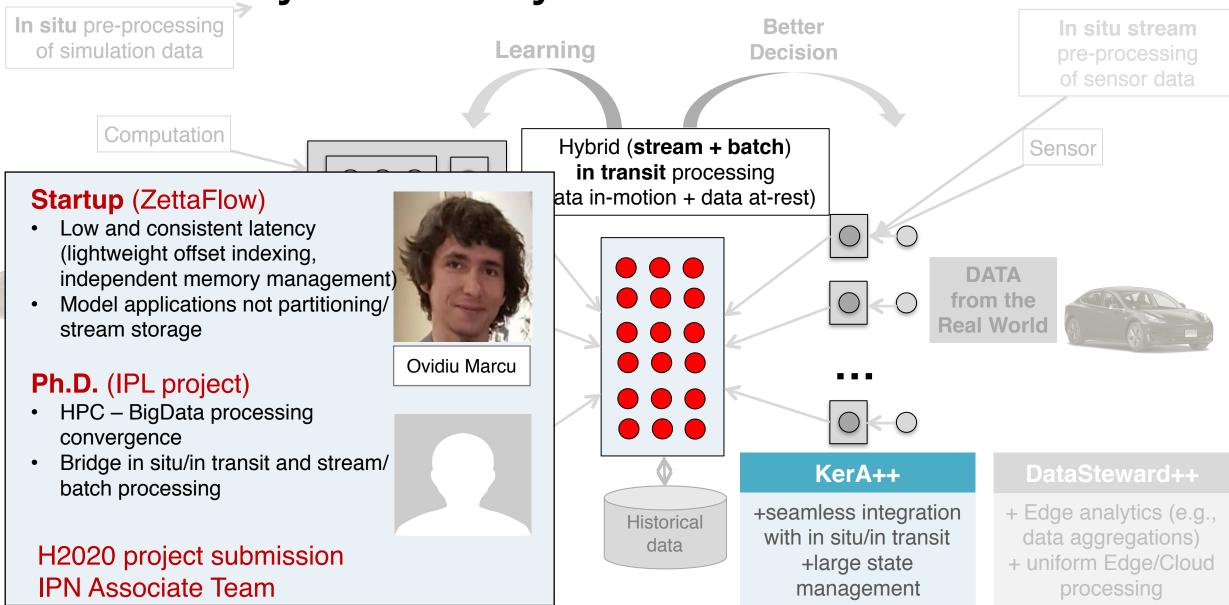
Our vision: hybrid analytics architecture











My scientific methodology

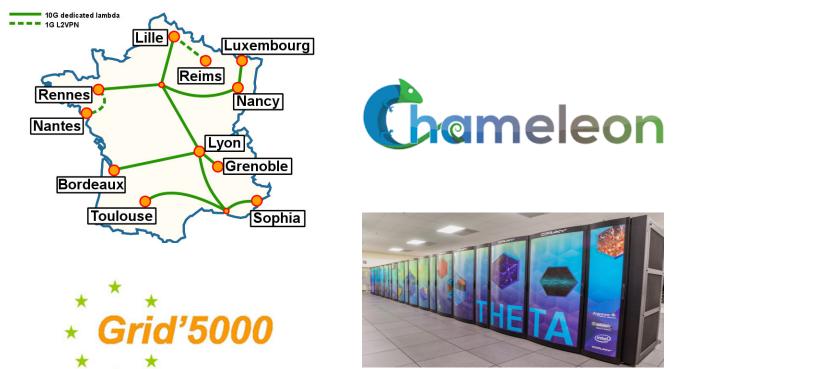
- Analyze trends and state of the art
- Intuition
- Identify realistic use cases
- Define research questions
- Develop a real piece of software
- Evaluate research questions with synthetic benchmarks
- Evaluate research questions with real-life use cases

Platforms

Academic testbeds and supercomputers

•

Public clouds



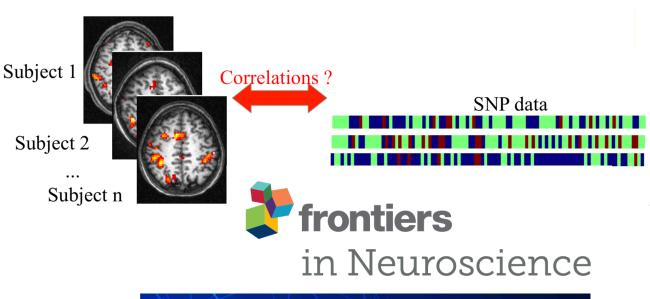
Impact: interdisciplinarity

Contributions to healthcare

- DataSteward and JetStream used to prove for the first time the correlation between brain regions and genetic data
- Enables early diagnostic of psychiatric illnesses

Formal dialogue with the HPC community

- Member of the Big Data Value Association (BDVA)
- Contributions to the joint white paper with the European Association for HPC (ETP4HPC)



Impact: industry

Transfer

- JetStream integrated in Microsoft Azure for control message transfers
- Azure SignalR provides real-time functionality using several dedicated connections – inspired by DataSteward
- Huawei studies KerA for potential integration in the stream layer of the Huawei Cloud

Startup: ZettaFlow

• Fast Big Data stream ingestion to power real-time applications

No one else is creating software services specifically for science Otherwise, we must adapt/adopt other solutions

