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EXTENDED ABSTRACT

The Unit Commitment Problem (UCP) is a central power management problem at EDF. The core

problem of the UCP, called the Min-up/min-down Unit Commitment Problem (MUCP), is to find

a minimum-cost production plan on a discrete time horizon for a set of units producing electric

power. At each time period, the total production has to meet a forecast demand. Each unit must

satisfy minimum up-time and down-time constraints besides featuring production and start-up

costs. We analyze how the MUCP complexity evolves with respect to the number n of units and

T of time periods. A classical reduction from the knapsack problem shows that the MUCP is

NP-hard in the ordinary sense even for T = 1. When either a unitary cost or amount of power is

considered, the MUCP is polynomial for T = 1 and is shown to be strongly NP-hard for arbitrary

T.

Some polyhedral aspects of the MUCP are investigated and extend literature results that

were limited to one production unit. We define up-set inequalities as the MUCP equivalent

of extended cover inequalities from the 0-1 knapsack polytope. We introduce interval up-set

inequalities, a new class of valid inequalities, generalizing both up-set inequalities and min-up

constraints. Characterization of validity and facet defining cases are given. An efficient Branch &

Cut algorithm is devised.

Symmetries arising in the solution set of a given integer linear program can impair the

solution process. We define sub-symmetries, as symmetries arising from a solution subset. We

focus on integer linear programs whose solutions are binary matrices and whose (sub-)symmetry

groups are symmetric groups acting on (sub-)columns. We propose a general framework to handle

sub-symmetries in such problems, first by showing how to select one representative for each class

of symmetrical solutions, given that several sub-symmetry groups are simultaneously considered.

Second, we propose two symmetry-breaking techniques removing all non-representative solutions.

The first technique is an orbitopal fixing algorithm for the full orbitope, defined as the convex hull

of binary matrices with lexicographically nonincreasing columns. The idea is to determine all the

variables whose values are fixed in the intersection of an hypercube face with the full orbitope.

We introduce a dynamic variant of this orbitopal fixing algorithm, where the lexicographical order

follows the branching decisions occurring along the B&B search. The second proposed technique

is based on sub-symmetry breaking inequalities, by introducing one additional variable per sub-

symmetry group considered. In the MUCP case, no additional variable is needed to derive such
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symmetry-breaking inequalities, which can also be further lifted. Experimental results on MUCP

instances show that the proposed techniques outperform state-of-the-art symmetry-breaking

techniques.

Finally, we compare the dual bounds obtained with various Dantzig-Wolfe decomposition

structures for the MUCP. In particular, we show that the dual bound obtained by dualization of

the time-coupling constraints is better than the bound provided by Cplex’s own cuts. This bound

is further improved by interval up-set inequalities. The resulting Branch & Price & Cut features

promising exact and heuristic performances.
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INTRODUCTION

The Unit Commitment Problem (UCP) commonly identifies the real-world daily power generation

problem for electric companies. EDF (Électricité de France), one of the world’s largest producer of

electricity, manages a mix of heterogeneous production units (nuclear power plants, hydropower

plants, fuel oil and gas turbines, gas combined cycle power plants, ...). The problem is then to

fulfill an hourly power demand on a two-day time horizon, deciding when each production unit

is up and which quantity of power it produces. Each unit possesses its own hard-to-manage

technical constraints, for example, when the unit is up, its production must be above some

minimal production limit.

Various aspects of the UCP have been extensively studied in the literature. Historically, the

problem has been solved using methods arising from continuous optimization, such as Lagrangian

relaxation of the demand constraint. Such a technique often leads to solutions far from feasibility.

Therefore an alternative is to use integer linear programming (ILP) to solve the problem. The

efficiency of these techniques highly relies on the problem’s structure, thus the combinatorial

aspects of the problem must be taken into account when handling difficult UCP instances.

In this thesis, we study some combinatorial aspects of the UCP by focusing on the Min-up/Min-

down Unit Commitment Problem (MUCP), which is the core structure of the thermal UCP, i.e.,

the UCP featuring nuclear, fuel oil, coal and gas units. Besides the production limits, an MUCP

unit has to satisfy the min-up/min-down constraints, i.e., it must remain up (resp. down) long

enough after start-up (resp. shut-down). In Chapter 1, we precise the definition and review the

combinatorial aspects of the MUCP together with some additional technical constraints.

The UCP is known to be NP-hard even for a single-time-period horizon, by a direct reduction

from the 0-1 knapsack problem. Proving that the arbitrary-size horizon UCP is strongly NP-hard,

the complexity analysis in Chapter 2 highlights that the combinatorial difficulty of the MUCP

lies also in the dynamic coupling of power demand constraints.

As the polyhedral analyses conducted in the literature only concern the single production unit

UCP, they do not deal with this difficulty arising from the time coupling of multiple production

units.
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In Part I (Chapters 3 and 4), we study the polytope of the MUCP involving multiple units.

We show that several classical MUCP formulations have the same relaxation value, thus our

polyhedral analysis is based on the formulation featuring variables corresponding to natural

decisions for the MUCP. We derive new valid inequalities, namely interval up-set inequalities,

precisely capturing both dynamic and knapsack features of the MUCP. We characterize the cases

in which these inequalities define facets of the associated polytope, in order to get theoretical

conditions specifying when an interval up-set inequality is the strongest possible. The derived

Branch & Cut algorithm appears to improve the classical MUCP formulation.

Symmetries arising from combinatorial aspects of the UCP dramatically impair its resolution

by ILP techniques. Symmetry-related issues in ILP featuring all-(sub-)column permutation

symmetries are addressed in Part II (Chapters 5, 6 and 7).

We review existing symmetry-breaking techniques in Chapter 5. We refer to symmetries

arising in solution subsets of a given integer program as sub-symmetries. Sub-symmetries may

not arise in the full solution set. However, this observation is not exploited in practice by existing

symmetry-breaking techniques, as this would imply to compute the problem’s sub-symmetries at

each node of the Branch & Bound tree, which is computationally prohibitive. In many applications,

sub-symmetries can be easily obtained from the problem’s structure, and therefore do not need

to be computed at each node. We propose in Chapter 5 a theoretical framework to handle such

sub-symmetries. In particular, we consider how to select one representative of each class of

symmetrical solutions, when multiple symmetry groups are considered.

If some of the existing symmetry-breaking techniques rely on the addition of inequalities

removing symmetrical solutions from the feasible set, others are based on pruning actions in the

Branch & Bound tree. In the latter case, the size of the linear program solved at each node does

not increase.

We consider integer linear programs whose solutions are binary matrices and whose symmetry

groups are symmetric groups acting on columns. Existing symmetry-breaking techniques for such

problems remove all symmetrical solutions from the feasible set only at the expense of not being

flexible, i.e., imposing restrictions on the branching disjunctions. Orbitopal fixing, as introduced

in the literature, is a flexible pruning technique designed to break all all-column-permutation

symmetries in the special case of partitioning (resp. packing) problems whose solution matrices

feature exactly (resp. at most) one 1-entry in each row.

Such all-column permutation symmetries arise in the UCP. However, no particular restriction

on the number of 1-entries in each solution row applies in this case. In Chapter 6, we propose an

orbitopal fixing algorithm to break all-column-permutation symmetries in any integer program

whose solutions feature an arbitrary number of 1-entries in each row. This technique is flexible

and also removes all symmetrical solutions from the feasible set. We show that this orbitopal

fixing algorithm can be used to break both symmetries and sub-symmetries, in all integer linear
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programs whose (sub-)symmetry groups are symmetric groups acting on (sub-)columns of the

solution matrix.

Symmetries and sub-symmetries in such programs can also be tackled by the sub-symmetry-

breaking inequalities we introduce in Chapter 7. These inequalities feature at most one additional

variable per sub-symmetry group considered. In the special case of the MUCP, even stronger

alternate inequalities can be derived with no additional variable.

The two proposed symmetry-breaking techniques apply not only to the MUCP but also to all

problems whose (sub-)symmetry groups are symmetric groups acting on (sub-)columns. Experi-

mental results carried out on MUCP instances show the efficiency of each proposed symmetry-

breaking technique, namely orbitopal fixing for the full sub-orbitope and sub-symmetry-breaking

inequalities. Interestingly, on ramp-constrained MUCP instances, sub-symmetry-breaking in-

equalities outperform all state-of-the-art symmetry-breaking formulations.

The UCP features several structures which can be exploited in a decomposition framework.

The question is then on which structure should the decomposition be based, and which techniques

should be used, in order to best handle the combinatorial aspects of the problem. This would

suggest an alternative approach to the classical Lagrangian relaxation of the demand constraint.

In Part III (Chapter 8), we analyze various decomposition structures for the IMUCP, an MUCP

variant featuring more coupling constraints. Valid inequalities and (sub-)symmetry-breaking

techniques are useful to handle some combinatorial aspects of the UCP. These techniques can be

applied in many contexts, from Branch & Bound to Branch & Price frameworks. We study how the

combinatorial techniques presented in Parts I and II, in particular interval up-set inequalities,

integrate into these decomposition contexts in order to obtain more efficient tools to solve the

real-world UCP.

As a conclusion we provide some perspectives on the theoretical contributions alongside with

their experimental impact.
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1
DEFINITIONS AND STATE-OF-THE-ART

1.1 Combinatorial optimization

In this section, we introduce only a few definitions and properties related to combinatorial

optimization. For more details, one can refer to [69].

An optimization problem consists of finding an optimal solution from a given set of solutions.

In order to exactly solve optimization problems arising in operational research contexts, a

large literature of theoretical frameworks and practical methods have been developed, such as

combinatorial algorithms based on dominances or on dynamic programming schemes.

An optimization problem can also be expressed as an integer linear program (ILP) as follows:

(P) v =min
x∈Rn

cx

s. t. Ax ≤ b
xi ∈Z ∀i ∈ I

where I ⊆ {1, ...,n}, A ∈Qm×n, b ∈Qm and c ∈Rn, n, m ∈N.

Such a problem is NP-hard [28] in general. When index set I =∅, then problem (P) is a linear

program, as the solution set is described by linear inequalities only. Linear programs can be

solved in polynomial time [46], for example by interior points methods [44]. There also exist other

efficient resolution techniques, such as the simplex algorithm [15].

1.1.1 Polyhedral combinatorics

A polyhedron P ⊆Rn is the solution set of a finite system of linear inequalities, i.e.,

P = {x ∈Rn |M x ≤α}
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where M ∈Qm×n, α ∈Qm, and n, m ∈N. A polytope is a bounded polyhedron.

A solution x ∈P is an extreme point of P if there exist no solutions x1, x2 ∈P , x1 6= x2 such

that x = 1
2 x1 + 1

2 x2. The dimension dim(P ) of P is d−1, where d is the maximum number of

affinely independent points in P . If dim(P )= n then P is full-dimensional.

An inequality ax ≤β is valid for P if it is satisfied by all points of P . The face F of P defined

by a valid inequality ax ≤β is F = {x ∈P |ax =β}. If dim(F)= dim(P )−1 then F is a facet of P .

An inequality ax ≤β is said to be redundant with respect to a linear system M x ≤α if it can be

obtained from a linear combination of inequalities M x ≤α.

If P is a polytope, a minimal description of P is given by a set of inequalities which are in

one to one correspondence with facets of P .

The solution set of any linear program is a polyhedron P . Following from the simplex

algorithm, the set of extreme points of P always contains at least one optimal solution. Therefore,

(P) can be reformulated as (LP) min
{
cx | x ∈ conv(S)

}
, where conv(S) is the convex hull of the

solution set S = {
x |Ax ≤ b, xi ∈Z, ∀i ∈ I

}
of (P).

As conv(S) is a polyhedron [63], it follows that (LP) is a linear program.

The idea of polyhedral combinatorics is to study polyhedron conv(S), in order to get insights

into the combinatorial structure of problem (P) and derive efficient algorithms to solve it.

For a given set S = {
x ∈Zn |Ax ≤ b}, if conv(S)= {

x ∈Rn |Ax ≤ b}=PS then polyhedron PS

is said to be integral.

Theorem 1.1 ([19]). A polyhedron P is integral if and only if for any c ∈Zn, if z is finite, then z is

an integer, where z =max{cx |Ax ≤ b}.

A matrix A is totally unimodular if for any square submatrix AC of A, the determinant of AC

is in {−1,0,1}.

Theorem 1.2 ([37]). If A is totally unimodular, then the polyhedron {x |Ax ≤ b} is integral for

any integer vector b.

Consider system of inequalities Ax ≤ b, where A ∈ Z(m,n), b ∈ Zm. System Ax ≤ b has the

integer decomposition property if, for any integer k, and x ∈Zn such that Ax ≤ kb, there exist x1,

..., xk ∈Zn such that Axk′ ≤ b, k′ ∈ {1, ...,k}, and x = x1 + ...+ xk.

Theorem 1.3 ([7]).
A is totally unimodular ⇐⇒ ∀b ∈Zm, Ax ≤ b has the integer decomposition property.

In general, if a complete description of conv(S) by a system of linear inequalities M x ≤ b is

found, the solving time of the associated linear program will depend on the separation algorithm

for inequalities M x ≤ b. The separation problem for M x ≤ b is to find, for any point x ∈Rn, an

inequality in the system M x ≤ b which is not satisfied by x. If no such inequality is found, then

x satisfies the whole system M x ≤ b. An algorithm solving the separation problem is called
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1.1. COMBINATORIAL OPTIMIZATION

separation algorithm. The cutting plane based method is to iterate a separation algorithm until a

solution x satisfying M x ≤ b is found.

Grötschel, Lovász and Schrijver [34] have shown that the (arbitrary large) linear program

M x ≤ b can be solved in polynomial time (in the input size of the original problem (P)) by a

cutting plane based method if and only if the associated separation algorithm for M x ≤ b is

polynomial.

When the underlying optimization problem (P) is NP-hard, a complete description of conv(S)

by a system of linear inequalities is unlikely to be reached [45]. However, a partial description of

conv(S) can still be useful, in the context of a Branch & Bound algorithm, to obtain good lower

bounds on the optimal solution value of (P) and of its subproblems.

1.1.2 Branch & Bound, Branch & Cut

A Branch & Bound (B&B) algorithm is to enumerate candidate solutions to (P) by means of a

rooted tree, the root corresponding to the full solution set S. The principle of the algorithm is to

split recursively the search space in smaller spaces. The algorithm explores branches of this tree,

each node representing a subset of the solution set. At each node, a lower and an upper bound on

the corresponding subproblem solution value is computed, and if no better solution than the one

found by the algorithm so far can be produced, the node is discarded.

The linear relaxation of (P) is the linear program (LR) vLR =min{x ∈Rn |Ax ≤ b}, where the

integrality constraints of (P) have been relaxed. The optimal value vLR of (LR) is a lower bound

on the optimal value of (P). Classically, at each node of the B&B tree, the lower bound on the

solution value is computed by linear relaxation of the corresponding subproblem.

Note that value vLR depends on the inequalities Ax ≤ b used to describe solution set S. In

order to get a lower bound vLR as close as possible to the optimal integer solution value, one

must not only use inequalities Ax ≤ b, but also valid inequalities A′x ≤ b′, so that polyhedorn

{x ∈ Rn |Ax ≤ b, A′x ≤ b′} is as "close" as possible to conv(S). If such valid inequalities are in

exponential number, they cannot be handled in a linear program all at a time. The Branch & Cut

algorithm is a Branch & Bound where, at each node, once the linear relaxation (LR) is solved,

a cutting plane based method finds inequalities in system A′x ≤ b′ which are not satisfied by

solution x of (LR). Such inequalities are added to (LR).

For efficiency purpose, valid inequalities A′x ≤ b′ must be non-redundant. As inequalities

defining facets of conv(S) are never redundant, the Branch & Cut algorithm will be more efficient

when inequalities A′x ≤ b′ define facets of conv(S). Moreover the polytopes associated to the

B&B nodes are more likely to be integral.
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1.1.3 Lagrangian and Dantzig-Wolfe decompositions

Consider an ILP (P ′) v = min
x∈Rn

{
cx | Ax ≥ d, x ∈ X

}
, where A ∈ Qm×n, d ∈ Qm, c ∈ Rn and

X ⊆Nn1 ×Rn2 , n = n1 +n2, is a mixed integer set.

The associated Lagrangian function θ is defined as follows.

∀µ ∈Rm
+ , θ(µ)=min

x∈X
L(x,µ) where L(x,µ)= cx+µ(d−Ax)

Note that for each µ ∈Rm+ , θ(µ) is a lower bound of v. The bound vD obtained by maximizing θ

over µ ∈Rm+ is called Lagrangian relaxation or dual bound:

vD =max
µ∈Rm+

θ(µ).

The corresponding LP is called Lagrangian dual. As θ is a concave function, there exist efficient

algorithms for its maximization, such as subgradient methods [91].

Another approach to maximize θ is to consider {xπ, π ∈ {1, ...,Π}}, the set of extreme points of

conv(X ), and rewrite vD as

vD =max
µ∈Rm+

min
π∈{1,...,Π}

(c−µA)xπ+µd = max
σ∈R,µ∈Rm+

{
σ+µd |σ≤ (c−µA)xπ, π ∈ {1, ...,Π}

}
(1.1)

Taking the linear programming dual of the latter problem, the LP obtained is called the Dantzig-

Wolfe master problem:

(MP) vD = min
λπ∈Rm+

Π∑
π=1

(cxπ)λπ

s. t.
Π∑
π=1

(Axπ)λπ ≥d
Π∑
π=1

λπ = 1

Note that from equation (1.1), the bound given by vD corresponds exactly to the optimal value of

the problem min{cx |Ax ≥ d, x ∈ conv(X )}:

Theorem 1.4 ([32]). vD =min{cx |Ax ≥ d, x ∈ conv(X )}

Corollary 1.1. vD ≥ vLR , where vLR is the linear relaxation value of (P ′).

If integrality enforcement constraint
∑Π
π=1λπxπ ∈ Nn1 ×Rn2 is added to the Dantzig-Wolfe

master LP, then the resulting ILP is a Dantzig-Wolfe reformulation of (P ′). If n2 = 0 then the

integrality enforcement constraints can be stated as λπ ∈N, for each π ∈ {1, ...,Π}.

Dantzig-Wolfe master problem (MP) has a large number of variables, and is classically

solved by a column generation algorithm. The idea is to find the optimal solution to (MP) by

considering only a subset of variables and iteratively adding useful variables to construct the

optimal solution. The column generation algorithm is as follows. Consider the restricted master

problem (RMP) which features only a subset Λ⊂ {λ1, ...,λΠ} of the variables. Let µ∗ be an optimal
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dual solution of (RMP). Solve the pricing problem, often called column generation subproblem,

(PP) vPP =min{(cxπ)−µ∗aπ | 1≤π≤Π}, where aπ is the πth column of the constraint matrix of

(DW). Quantity (cxπ)−µ∗aπ is called the reduced-cost of plan π. If vPP < 0, variable λπ, where π

minimizes (PP), is added to (RMP) with its objective and constraint coefficients (cxπ,aπ), and

the process iterates until no improving variable is found. Finiteness and correctness of column

generation follows from the principles of the simplex algorithm. Although when Π is large, the

pricing problem (PP) may seem difficult to handle, in many applications (PP) can be reformulated

into a well-structured optimization problem. More thorough introductions to column generation

can be found in [16, 58].

A Branch & Price algorithm for an integer linear program is a Branch & Bound where at

each node, the lower bound on the optimal value of the associated subproblem is obtained via

column generation [17].

1.2 The Unit Commitment Problem

Consider a discrete time horizon T = {1, ...,T}, a demand for electric power Dt, t ∈T , a set N of

n production units providing power. A production plan determines at which time each production

unit is up and which quantity of power it produces. The demand is satisfied if at each time t,

the total production is greater than or equal to the demand Dt. The Unit Commitment Problem

(UCP) is to find a production plan satisfying the demand constraints as well as some operational

constraints, while minimizing the total operating cost of each unit.

Note that in the literature, the demand constraint also appears as an equality constraint

between the total production and the demand Dt.

1.2.1 Operational constraints and costs of the UCP

Costs The total operating cost is the sum of the operating cost C i(π) of each unit i, where π

is the production plan followed by i. In the literature, C i(π) is decomposed as follows: C i(π) =
C i

0(π)+C i
p(π). The start-up cost C i

0(p), incurred each time the unit starts up, is an exponential

function of the unit down time, and the production cost C i
p(π) is a quadratic function of the

quantity of power produced at each time period.

Main operating constraints At each time period, unit i ∈N must be either down or up, and

in the latter case, its production is within production limits [P i
min, P i

max].

Each unit must satisfy min-up (resp. min-down) constraints, i.e. each unit i must remain up

(resp. down) during at least Li (resp. `i) periods after start up (resp. shut down). Without loss of

generality, we consider that Li, `i ≤ T −1.
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Operating constraints of each unit Each units i must satisfy ramp-up (resp. ramp-down)

constraints, i.e., the maximum increase (resp. decrease) in generated power from time period t to

time period t+1 is RU i (resp. RD i). Moreover, start-up (resp. shut down) ramp constraints must

be satisfied, i.e., if unit i starts up at time t (resp. shuts down at time t+1), its production level

at time t must be less than or equal to SU i (resp. SD i).

Some units feature start-up (resp. shut-down) trajectories. In such a case, the start-up (resp.

shut-down) of unit i does not take only one time period but ti
u (resp. ti

d) time periods, during

which the unit follows a specific power trajectory PU ,i
1 , ..., PU ,i

ti
u

(resp. PD,i
1 , ..., PD,i

ti
d

).

At EDF, in addition to the previous constraints, the number of start-ups of the unit can be

limited over given time spans. Moreover, the set P i of feasible power outputs of unit i, i ∈N , is

finite [18, 80]. Unit i is then said to have finite-power-outputs. In this case, once unit i reaches

a stable production level, it must satisfy a minimum operation time constraint, i.e., the unit’s

production must be constant or within a restricted range for a given time. A modulation is a

change of stable production level. The maximum number of modulations of one unit over given

time spans may be limited, typically for nuclear units.

Initial conditions At the beginning of the time horizon considered, each unit i is either up or

down, and if the last start-up (resp. shut-down) occurred during the Li (resp. `i) previous periods,

then unit i still has to remain up (resp. down) until the min-up (resp. down) is satisfied.

Intra-site constraints Units located on the same production site share resources and must

satisfy intra-site constraints [18]. Indeed, the unit set N is partitioned into K sites Σ1, ..., ΣK .

The intra-site constraints are satisfied if at most one unit per site Σk, k ∈ {1, ...,K}, starts up at

each time period t.

Reserve requirements The European power system is a large interconnected system oper-

ating at uniform frequency. The system frequency must be maintained at its nominal level (50

Hz) in order to ensure a safe and optimal use of electrical equipment. To this end, the trade-off

between power production and demand must be ensured in real-time, due to stochastic variations

of the power demand (following unexpected weather conditions for example) and of the power

production (following unexpected failure of a production unit for example). Therefore, electricity

generation company must include power reserves in their production plan to be able to adjust the

production to the demand at all times. Three reserve types, corresponding to distinct needs, must

be provided: primary, secondary and tertiary reserves [81].

• Primary reserve, provided by the speed regulators of production units, quickly (within

seconds) restores the demand/production equilibrium after a perturbation, if the available

primary reserve is sufficient.
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• Readjusting power production to the demand does not always restore the frequency to

its nominal value. Secondary reserve allows the system to recover this nominal frequency.

As each generation company provides primary reserve (even if not responsible for the

perturbation), primary reserve supply unbalanced power exchanges between companies.

Secondary reserve brings exchanges back to their contractual values.

• Tertiary reserve helps rebuild low secondary reserves, in order to anticipate any new

perturbation. It is decomposed with respect to activation times.

At EDF, primary and secondary reserves are treated as demand constraints, while tertiary

reserve is not included in UCP formulations. Other definitions of power reserves can be found in

the literature.

1.2.2 Resolution of the UCP by Lagrangian relaxation

Even though the UCP has been subject to a large research activity (see survey [82], its update

[74] and more recently [84, 88]), it still cannot be regarded as a well-solved problem.

Historically, the UCP has been solved by Lagrangian relaxation, in the literature [68] as well

as in the industry.

EDF (Électricité de France) manages a mix of production units composed of nearly 60 nuclear

power plants, 20 fossil-fuel power plants (3 coal-fired power plants, 13 fuel oil or gas turbines and

4 gas combined cycle power plants), and 500 hydropower plants dispatched in 50 valleys.

Fuel oil and gas turbines are highly manoeuvrable, with small min-up/down times, and

thus play a security role in the power system. Nuclear units have higher min-up/down times,

but their production costs are competitive. Therefore they provide an important share of the

total production when available. On this basis, units such as hydropower plants as well as gas

combined cycle or coal power plants can be used to fit exactly the total production to the demand.

Given the large number and variety of units, the daily production planning problem is

solved at EDF [18, 80] using a Lagrangian relaxation [22] – commonly referred to as price

decomposition – where the coupling demand constraints are dualized and the prices are updated

using a subgradient method. Each nuclear or fossil-fuel unit (resp. each valley) is treated as a

subproblem and is solved using dynamic programming (resp. linear programming). A classical

Lagrangian decomposition is performed at a first stage, where the subproblems must be solved

exactly in order to ensure the convergence of the decomposition scheme. Thus, some constraints

of these subproblems are relaxed in practice. For example, integrality constraints in subproblems

corresponding to hydro valleys are dropped. Similarly, intra-site constraints for fossil-fuel units

are not modeled. This Lagrangian relaxation does not systematically produce feasible solutions,

therefore an augmented Lagrangian relaxation [18] is considered at a second stage in order to

improve feasibility recovery.
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Several techniques have been proposed in the literature to solve the UCP (see surveys [84, 88]).

A large part of the literature [5, 68] deals with decomposition schemes whose subproblems

featuring non-linearity and non-concavity are solved using dynamic programming. When no ramp

constraints are considered, subproblems corresponding to one unit can be polynomially solved

using classical dynamic programming schemes where a state (s,d) indicates that the unit has

been in up/down state s for d time periods [5]. Polynomial dynamic programming schemes have

also been proposed for the UCP with one production unit featuring min-up/min-down and ramp

constraints alongside with down time dependent start-up costs [20, 24, 36]. The state space in

[20] is represented as a network where state (d, s, k) indicates that the unit switches to up/down

status s for the kth time, and the unit remains in status s for a duration d. The transition cost

is obtained by solving an optimal production dispatch problem including ramp constraints. In

[24], a similar scheme is proposed, alongside with an algorithm to solve the production dispatch

problem with arbitrary convex cost functions. Variants are studied in [36].

1.2.3 The Min-up/min-down Unit Commitment Problem

The Min-up/min-down Unit Commitment Problem (MUCP) is to find a production plan minimiz-

ing the total operating cost while satisfying production limits, demand and min-up/down time

constraints. The total operating cost is the sum of the operating cost C i(π) of each unit i, defined

as

C i(π)=
T∑

t=1
ci

p p(π, i, t)+ ci
f up(π, i, t)+ ci

0 startup(π, i, t)

where ci
p, ci

f , ci
0 ∈R, p(π, i, t) is the quantity of power produced by unit i at time t in production

plan π, up(π, i, t) equals 1 if unit i is up at time t in production plan π, and 0 otherwise, and

startup(π, i, t) equals 1 if unit i is starts up at time t in production plan π, and 0 otherwise.

Example 1.1. Consider an illustrative instance of the MUCP with T = 3, D = [20, 10, 25] and

three units having the characteristics given in Table 1.1.

P i
min P i

max `i Li ci
f ci

0 ci
p

Unit 1 5 15 2 2 10 10 2
Unit 2 5 5 2 2 5 5 10
Unit 3 5 5 2 2 5 5 10

Table 1.1: Characteristics of the units of Example 1.1

Figure 1.1 represents the demand with dotted lines, and illustrates the solution in which unit

1 and 2 are up at all times, and unit 3 is down at times 1 and 2 and up at time 3. This solution

has a total cost of 255. Note that unit 1 alone can produce enough to satisfy the demand at time 2.

It would cost less to shut down unit 2 at time 2 and start it up again at time 2, but doing so would

not respect the min-down time `2 = 2 of unit 2.
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Figure 1.1: Demand values and production plan relative to Example 1.1

From a combinatorial point of view, the Min-up/min-down Unit Commitment Problem (MUCP)

is the core structure of the thermal UCP solved daily at EDF.

In order to study the combinatorial aspects of the UCP, this thesis will focus on the MUCP

with possibly additional constraints coming from the UCP, such as ramp or intra-site constraints.

In perspective of a decomposition scheme for the UCP, a Lagrangian relaxation is commonly

used. Classically, the only dualized coupling inequalities are the demand and reserve constraints.

The other coupling constraints are then either left in the subproblems, as ramp-constraints, or

unmodeled, as the intra-site constraints.

The Intra-site Min-up/min-down Unit Commitment Problem (IMUCP) is a generalization of

the MUCP where the intra-site constraints must be satisfied. In a decomposition scheme for the

IMUCP, the demand constraint is still dualized while the intra-site constraints can remain in

the pricing problem. The pricing problem is then divided into k subproblems, one for each site.

Each subproblem contains all the IMUCP constraints, but the demand satisfaction. To take into

account the demand constraint, the fixed and proportional production costs are modified, leading

to the so-called reduced costs. For each unit i and time t, the reduced cost related to the fixed

cost of unit i is denoted by πi,t and that of proportional production cost by ρ i,t. In this case, these

two costs can be negative and depend on t and i. The pricing subproblem of the IMUCP is called

P-IMUCP. Note that this problem also arises as the pricing subproblem in a column generation

setting.

The MUCP variants considered in this thesis are thus the following
• the MUCP,
• the ramp-constrained MUCP,
• the intra-site MUCP (IMUCP)
• the pricing subproblem of the IMUCP (P-IMUCP).
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1.2.4 Instances

In order to account for the diversity of combinatorial issues arising in the MUCP and its variants,

we consider multiple types of instances.

Preliminary experimental results indicate that the tightness of the production range

[P i
min,P i

max] deeply impacts the difficulty of MUCP instances. In the dataset presented in [13],

P i
min is around 25 % of P i

max for each unit i. On the opposite, for realistic units at EDF, the

tightness, i.e., the ratio
P i

min
P i

max
, varies from to 25 to 70% depending on the unit’s type. Moreover, our

preliminary results show that when P i
min is close to P i

max (by 75% or more), then MUCP instances

become very difficult. Therefore we consider three classes of instances, namely literature, realistic

and tight-production-range) taking these differences into account.

Moreover, it is well known that symmetries in the MUCP also strongly affect the computation

time. Thus, we consider instances with symmetries, by duplicating production units, and instances

without symmetries.

In the case of the IMUCP, it is likely that the demand profile over the time horizon changes

the impact of intra-site constraints, as huge demand variations may require to start-up multiple

units at the same time. Therefore, we consider two possible demand profiles: the classical 2-peak-

per-day profile, and a random demand profile.

The instances used for computational experiments are generated as follows.

Instance classes We consider the following classes of instances:

• R: The realistic (R) instances are generated using data for real EDF units. We partition

the units into three types, depending on their fuel: coal, gas and fuel oil. For each fuel type,

we consider the characteristics (Pmin, Pmax, L, `, c f , c0, cp) of each real EDF unit, and we

draw a correlation matrix between their characteristics. Moreover there is a typical range

for each characteristic depending on the fuel. Thus, for each instance, we generate n
3 units

with the characteristics based on the correlations and ranges of each fuel.

• L: The literature (L) instances are similarly generated, using the unit characteristics from

the dataset presented in [13]. Note that in this class only one type of unit is considered, as

the units characteristics appear to be similar to each other in the dataset from [13].

The tightness of the production range [P i
min,P i

max] for each unit i deeply affects the computa-

tion time of the MUCP. This observation leads us to generate another instance class.

• TPR: The tight-production-range (TPR) instances are generated as literature instances in

which, for each unit i, we set P i
min as a percent of P i

max, namely 50 %, 75 % and 100 %.

These classes are respectively denoted by TPR-50, TPR-75 and TPR-100. In these instances,

Pmin is closer to Pmax than in the first two classes. As a basis for comparison, in the

literature class, Pmin is around 25 % of Pmax, and varies from to 25 to 70% in the realistic

class. Note that operating rules applying to the practical UCP lead to restrict the unit
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production range considered in the MUCP. Recall from Section 1.2.1 that thermal units

must satisfy ramp constraints restricting the power output variation at each time period.

Moreover, some EDF units have finite-power-outputs (see Section 1.2.1). Ramp-constrained

units could be approximated by MUCP units with a tight (for example 75%) production

range. Similarly, finite-power-outputs units could be approximated by MUCP units with a

100% tight production range. Therefore, TPR instances are designed to give us an insight

into the potential effectiveness of our algorithms for the real-world UCP.

Symmetries In the dataset from [13], symmetries are introduced by duplicating production

units. We thus generate instances with symmetries (S) and instances without symmetries (NS)

for each class R, L, TPR-50, TPR-75 and TPR-100. Units of NS instances are randomly generated

according to the procedures previously described. Units of S instances are generated as follows:

some units are randomly generated and then are duplicated d times, where d is randomly

selected in [1, n
F ] for each unit, in order to obtain a total of n units. Parameter F ∈N is called the

symmetry factor.

Demand constraints We consider two demand profiles:

• 2-peak-demand instances: we generate a "2-peak per day" type demand with a large

variation between peak and off-peak values: during one day, the typical demand in energy

during one day has two peak periods, one in the morning and one in the evening. The

amplitudes between peak and off-peak periods have similar characteristics to those in the

dataset from [13].

• Random-demand instances: at each time t, the demand is randomly generated, according

to a uniform distribution from 0 to
∑

i∈N P i
max.

Intra-site constraints In order to define unit sites, we first select a site size s at random in

[1,6]. Then s units are randomly generated to form a site. This process is repeated until n units

are obtained.

Ramp constraints The ramp-constrained MUCP instances considered are the same as in

the non-ramp-constrained case, with additional ramp characteristics RU j = P j
max−P j

min
3 , RD j =

P j
max−P j

min
2 and SU j = SD j = P j

min.

1.2.5 ILP formulations of the Min-up/min-down Unit Commitment Problem

Various ILP formulations for the MUCP are given in this section. Each of these formulations

induce an integral polytope when n = 1, i.e., when only one production unit is considered. When

additional technical constraints are taken into account (see Section 1.2.1), the integrality property

may not hold anymore depending on the formulation considered.
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• (x,u) formulation (Fn
x,u) This formulation is based on the work of Rajan and Takriti [79].

For each unit i ∈N and time period t ∈T , variable xi
t ∈ {0,1} equals 1 if and only if unit i is

up at time t, and variable pi
t ∈R represents the quantity of power produced by unit i at time t.

For each unit i ∈N and time period t ∈ {2, ...,T}, variable ui
t ∈ {0,1} equals 1 if and only if unit i

starts up at time t. Formulation (Fn
x,u) for the MUCP is as follows:

(Fn
x,u) min

x,u,p

n∑
i=1

T∑
t=1

ci
f xi

t + ci
p pi

t + ci
0ui

t

s. t.
t∑

t′=t−Li+1
ui

t′ ≤ xi
t ∀i ∈N , ∀t ∈ {Li +1, ...,T} (1.2)

t∑
t′=t−`i+1

ui
t′ ≤ 1− xi

t−`i ∀i ∈N , ∀t ∈ {`i +1, ...,T} (1.3)

ui
t ≥ xi

t − xi
t−1 ∀i ∈N , ∀t ∈ {2, ...,T} (1.4)

n∑
i=1

pi
t ≥ Dt ∀t ∈T (1.5)

P i
minxi

t ≤ pi
t ≤ P i

maxxi
t ∀i ∈N , ∀t ∈T (1.6)

xi
t ∈ {0,1} ∀i ∈N , ∀t ∈T (1.7)

ui
t ∈ {0,1} ∀i ∈N , ∀t ∈ {2, ...,T} (1.8)

The set of all feasible x = (xi
t)t∈T ,i∈N is denoted by XMUCP .

Inequalities (1.2), (1.3) and (1.4), are introduced in [79]. Inequality (1.2) is the minimum

up-time constraint: it states that if unit i is down at time t, then it cannot have started up

during the Li previous periods. Inequality (1.3) is the minimum down-time constraint, which is

symmetric to the minimum up-time constraint. Inequality (1.4) ensures that if unit i starts up at

time t (i.e. xi
t − xi

t−1 = 1) then start-up variable ui
t must equal 1. Inequality (1.6) sets bounds to

the quantity of power produced by each unit, and inequality (1.5) ensures that the demand is

satisfied at each time period.

Theorem 1.5, relative to the 1-unit case, is proved in [79].

Theorem 1.5 ([59, 79]). The following polytope is integral

P1
x,u =

{
x1

t , u1
t ∈ [0,1] | t ∈ {1, ...,T}, (1.2), (1.3), (1.4)

}
.

This result has been proved independently by Malkin [59], who shows that the corresponding

constraint matrix is totally unimodular.

When ramp-constraints are taken into account, variables ρ replace variables p where ρ i
t is

defined for each i ∈N and t ∈T as

ρ i
t = pi

t −P i
min if xi

t = 1

ρ i
t = 0 otherwise
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Constraints (1.6) and (1.5) become

0≤ ρ i
t ≤ (P i

max −P i
min)xi

t ∀i ∈N , ∀t ∈ {1, ...T} (1.9)
n∑

i=1

(
P i

minxi
t +ρ i

t

)
≥ Dt ∀t ∈ {1, ...T} (1.10)

Using x, u and ρ variables, ramp constraints can be formulated as follows:

ρ i
t −ρ i

t−1 ≤ RU ixi
t−1 + (SU i −P i

min)ui
t ∀i ∈N , ∀t ∈ {2, ...T} (1.11)

ρ i
t−1 −ρ i

t ≤ RD ixi
t + (SD i −P i

min)wi
t ∀i ∈N , ∀t ∈ {2, ...T} (1.12)

Using x, u and p variables, ramp constraints would be formulated as follows:

pi
t − pi

t−1 ≤ RU ixi
t−1 +SU iui

t ∀i ∈N , ∀t ∈ {2, ...T} (1.13)

pi
t−1 − pi

t ≤ RD ixi
t +SD iwi

t ∀i ∈N , ∀t ∈ {2, ...T} (1.14)

Note that inequalities (1.11) and (1.12) are tighter than inequalities (1.13) and (1.14) in the

sense that some fractional solutions (x,u, p) would not exist in the (x,u,ρ) space. For example,

suppose n = 1, T = 2, SU1 = P1
min and x1 = [0.5, 1]. Then the production plan p1 = [ P1

max
2 , P1

max
2 +

RU1

2 + P1
min
2 ] is feasible for the (x,u) formulation featuring variables p. On the opposite, any

solution (x,u,ρ) is such that ρ1
2 ≤

P1
max
2 + RU1

2 , by ramp-up constraint (1.11).

In the non-ramp-constrained MUCP case, using p or ρ variables does not change the linear

relaxation value.

• Flow formulation (Fn-Flow) A flow formulation for the sequences of start-ups and shut-

downs of each unit is introduced in [78]. Consider a unit i ∈ N and two time periods t, t′ ∈
{1, ...,T+1}. Basically, variable f i(t, t′) (resp. gi(t, t′)) equals 1 if unit i starts up (resp. shuts down)

at time t, remains up (resp. down) from t to t′−1 and shuts down (resp. starts up) at time t,

satisfying min-up (resp. min-down) times. More formally,

• For t ∈ {2, ...,T} and t′ ≥ t+Li (resp. t′ ≥ t+`i), variable f i(t, t′) (resp. gi(t, t′)) ∈ {0,1} equals

1 if and only if unit i starts up (resp. shuts down) at time t, remains up (resp. down) until

time t′−1 and shuts down (resp. starts up) at time t′.

• For t ∈ {2, ...,T} and t′ = T +1, variable f i(t, t′) (resp. gi(t, t′)) ∈ {0,1} equals 1 if and only if

unit i starts up (resp. shuts down) at time t and remains up (resp. down) from time t to

time T.

• For t = 1 and t′ ∈ {2, ...,T}, variable f i(t, t′) (resp. gi(t, t′)) ∈ {0,1} equals 1 if and only if unit

i is up (resp. down) from time 1 to time t′−1 and shuts down (resp. starts) up at time t′.

• For t = 1 and t′ = T+1, variable f i(t, t′) (resp. gi(t, t′)) ∈ {0,1} equals 1 if and only if unit i is

up (resp. down) from time 1 to time T.
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All other variables f i(t, t′) and gi(t, t′) are 0. Flow formulation (Fn-Flow) is as follows.

(Fn-Flow) min
f ,g,p

n∑
i=1

(
T∑

t=1

T+1∑
t′=2

ci
t,t′ f

i(t, t′)+
T∑

t=1
ci

p pi
t

)

s. c.
t−1∑
t′=1

gi(t′, t)−
T+1∑

t′=t+1
f i(t, t′)= 0 ∀i ∈N , ∀t ∈ {1, ...,T} (1.15)

t−1∑
t′=1

f i(t′, t)−
T+1∑

t′=t+1
gi(t, t′)= 0 ∀i ∈N , ∀t ∈ {1, ...,T} (1.16)

T+1∑
t′=2

f i(1, t′)+ gi(1, t′)= 1 ∀i ∈N (1.17)

P i
min

(
t∑

t′=1

T+1∑
t′′=t+1

f i(t′, t′′)

)
≤ pi

t ∀i ∈N , t ∈ {1, ...T} (1.18)

pi
t ≤ P i

max

(
t∑

t′=1

T+1∑
t′′=t+1

f i(t′, t′′)

)
∀i ∈N , ∀t ∈ {1, ...T} (1.19)

n∑
i=1

pi
t ≥ Dt ∀t ∈ {1, ...T}

f i(t, t′), gi(t, t′) ∈ {0,1} ∀i ∈N , ∀t, t′ ∈ {1, ...,T +1}

where the cost associated to f i(1, t′) is ci
1,t′ = (t′−1)ci

f , and for t ≥ 2, the cost associated to f i(t, t′)
is ci

t,t′ = (t′− t)ci
f + c0.

For a given unit i, consider a bipartite graph G with vertices V = VU ∪V D ∪ {p}, where for

each t ∈T , vu
t ∈VU corresponds to a start-up of unit i at time t, vd

t ∈V D corresponds to a shut

down at time t and p is a sink node. For each t, t′ ∈ T , the arc associated with flow variable

f i(t, t′) (resp. gi(t, t′)) connects the start-up (resp. shut down) at time t to the shut-down (resp.

start-up) at time t′. If t′ ≥ t+Li (resp. t′ ≥ t+`i) this sequence is feasible. The arc associated with

flow variable f i(t,T+1) (resp. gi(t,T+1)) connects the start-up (resp. shut down) at time t to the

sink node.

In the one-unit case, i.e., n = 1, and when Dt = 0 for each t ∈ T , formulation Fn(-Flow)

minimizes the cost of a unitary flow in graph G. This unitary flow corresponds to a feasible

up/down plan for unit i. In this case the constraint matrix is the arc-vertex incidence matrix of G.

As the incidence matrix of an oriented graph is totally unimodular [64], the following polytope is

integral

P1
f low =

{
f 1(t, t′), g1(t, t′)≥ 0 | t, t′ ∈ {1, ...,T +1}, (1.15), (1.16), (1.17)

}
.

Example 1.2. Consider an MUCP instance with T = 4 and n = 1 unit, with min-up time L1 = 2

and min-down time `1 = 3. Figure 1.2 presents a solution to formulation (F1-Flow). The bold arcs

in bipartite graph G represent a feasible up/down plan for the unit: the unit is down at time 1,

starts up at time 2, remains up at time 3 and shuts down at time 4.
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Figure 1.2: A solution to formulation (Fn-Flow) with n = 1 and T = 4

• Interval formulation (Fn-Int) A variant of the flow formulation is the interval formulation

introduced in [49]. For each unit i ∈N , for each interval {t0, ..., t1 −1} of size t1 − t0 ≥ L j, variable

yi(t0, t1) equals 1 if and only if unit i starts up at time t0, remains up on interval {t0, ..., t1 −1}

and shuts down at time t1. For each time period t ∈T , variable pi
t(t0, t1) represents the quantity

of power produced by unit i at time t if yi(t0, t1)= 1, and pi
t(t0, t1)= 0 otherwise. The formulation

is as follows.

(Fn-Int) min
y,p

n∑
j=1

∑
{t0,...,t1−1}∈Y j

ci(t0, t1)yi(t0, t1)+ c j
p

t1−1∑
t=t0

pt0,t1
t, j

s. t. A i(t0, t1)pi
t(t0, t1)≤ bi(t0, t1)yi(t0, t1) ∀i ∈N , ∀{t0, ..., t1 −1} ∈Yi (1.20)∑

{t0, ..., t1 −1} ∈Yi

s.t. t ∈ {t0, ..., t1 +`i}

yi(t0, t1)≤ 1 ∀i ∈N , ∀t ∈T (1.21)

∑
j∈N

∑
{t0,...,t1−1}∈Y j

pi
t(t0, t1)≥ Dt ∀t ∈T (1.22)

yi
t (t0, t1) ∈ {0,1} ∀ j ∈N , ∀{t0, ..., t1 −1} ∈Yi (1.23)

where Yi = {{t0, ..., t1 −1} ∈ T ×T | t1 − t0 ≥ Li} and where

P i(t0, t1)= {pi(t0, t1) ∈RT
+ | A i(t0, t1)pi(t0, t1) j ≤ bi(t0, t1)}

is the feasible production polytope of unit i, if unit i starts up at time t0, remains up on interval

{t0, ..., t1−1} and shuts down at time t1. In the MUCP case, this polytope is defined by production
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limits (1.24).

P i
min ≤ pi

t(t0, t1)≤ P i
max (1.24)

In the one-unit case, i.e., n = 1, and when Dt = 0 for each t ∈T , formulation (Fn-Int) optimizes

over stable sets in an interval graph G. Graph G is such that where each vertex corresponds

to a feasible interval {t0, ..., t1 +`i −1} such that the unit is up on {t0, ..., t1 −1} and down on

{t1, ...t1 +`i −1}. Thus a stable set in G corresponds to a feasible up/down plan for the unit. As

the convex hull of the stable set problem is completely described by clique and nonnegativity

inequalities for interval graphs [34], the following polytope is integral

P1
Int =

{
y1(t0, t1)≥ 0 | {t0, ..., t1 −1} ∈Yi, (1.21)

}
.

• Aggregated demand-coupling formulations Consider a demand-coupling formulation

for the n-unit MUCP, i.e., a formulation such that the only coupling inequalities are demand

constraints:

(Fn
dc) min

z,p
czz+cpp

s. t. (zi, pi) ∈Πi
F ∀i ∈N

n∑
i=1

pi
t ≥ Dt ∀t ∈T

zi ∈Zm, pi ∈R(n,T) ∀i ∈N

where (cz, cp) is the cost vector and Πi
F = {A i zi +Bi pi ≤ d i} is a polyhedron such that Πi

F ∩
(Zm ×R(n,T)) is a set of feasible plans for unit i, expressed with arbitrary variables zi ∈Zm and

production variables pi
t.

Suppose the units can be partitioned into H sets N = N1 ∪ ...∪NH such that for each

h ∈ {1, ...,H}, for all i, j ∈ Nh, A i = A j = A h, Bi = B j = Bh, d i = d j = d
h
, ci

z = cz
j = ch

z and

ci
p = cp

j = ch
p.

Linear inequality system A hz +Bh p ≤ d
h

has the integer decomposition property (see

Theorem 1.3) if for any integer k and (z, p) ∈Zn ×R(n,T) such that A hz+Bh p ≤ kd
h
, there exist

z1, ..., zk ∈Zn, p1, ..., pk ∈ R(n,T) such that A hzk′ +Bh pk′ ≤ d
h
, k′ ∈ {1, ...,k}, and z = z1 + ...+ zk,

p = p1 + ...+ pk.

If this property holds, then variables (zi, pi), i ∈Nh can be aggregated into variables (zh, ph)=∑
i∈Nh (zi, pi), h ∈ {1, ...,H}, resulting in the following aggregated formulation

(A−Fn
dc) min

z,p
chzz+chpp

s. t. A
h

zh +B
h

ph ≤ |Nh|dh ∀h ∈ {1, ...,H}
H∑

h=1
ph

t ≥ Dt ∀t ∈T

zh ∈Zm ∀h ∈ {1, ...,H}
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The integer decomposition property ensures that an integer aggregated solution (zh, ph),

h ∈ {1, ...,H}, can be disaggregate into |Nh| integer solutions (zi, pi) ∈Πi
F ∩ (Zm ×R).

Aggregated (x,u) and interval formulations, introduced in [50], are detailed in Section 5.4.

Note that formulations (Fn
x,u), (Fn-Flow) and (Fn-Int) are demand-coupling formulations.

• Dantzig-Wolfe reformulations Consider an MILP formulation of the MUCP:

(F) min
v

cv+dp
s. t. Av+Bp ≤ b

p ∈Rq
+

v ∈ X

where c ∈Rm, d ∈Rq, A and B are matrices and X ⊆Zm1 ×Rm2 is a bounded mixed integer set.

Let P be the set of extreme points of X . Then for each v ∈ X , there exists λπ ≥ 0, π ∈ P, such

that
∑
π∈P λπ = 1 and v =∑

π∈P λππ.

Then the Dantzig-Wolfe reformulation of (F) is

(DW) min
v

∑
π∈P

cπλπ+dp

s. t.
∑
π∈P

aπλπ+Bp ≤ b∑
π∈P

λπ = 1

p ∈Rq
+

λπ ≥ 0 ∀π ∈ P∑
π∈P

λππ ∈Zm1 ×Rm2

where aπ = Aπ and cπ = cπ, for each π ∈ P.

Referring to the framework presented in Section 1.1.3, Av+Bp ≤ b are the dualized con-

straints, and the constraints of the column generation subproblem are satisfied by each v ∈ X .

Note that if X ⊆Zm1 is an integer set, then integrality enforcement constraint
∑
π∈P λππ ∈Zm1

can be replaced by λπ ∈ {0,1}, for each π ∈ P.
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1.2.6 Polyhedral studies of the 1-unit UCP

Several articles propose polyhedral studies for UCP variants with only one production unit. The

min-up/min-down polytope P i(Li,`i) is introduced in [51]:

P i(Li,`i)=
{

x ∈ {0,1}T s.t. ∀t ∈ {2, ...,T}

xi
t − xi

t−1 ≤ xτ ∀τ ∈ {t+1, ...,min(t+Li,T)} (1.25)

xi
t−1 − xi

t ≤ 1− xi
τ ∀τ ∈ {t+1, ...,min(t+`i,T)} (1.26)}

Inequalities (1.25) and (1.26), introduced in [85], enforce the minimum up and down time

constraints of a single unit i ∈ N . The authors of [51] give a complete linear description of

conv(P i(Li,`i)). Consider an integer k ≥ 0 and integers φ(1), ..., φ(k+1), ψ(1), ..., ψ(k) ∈ {1, ...,T},

such that

φ(1)<ψ(1)<φ(2)<ψ(2)< ...<φ(k)<ψ(k)<φ(k+1)

If φ(k+1)−φ(1)≤ L, the alternating-up inequality, introduced in [51], is defined as follows

−
k+1∑
j=1

xφ( j) +
k∑

j=1
xψ( j) ≤ 0. (1.27)

Similarly, if φ(k+1)−φ(1)≤ `, the alternating-down inequality is as follows

k+1∑
j=1

xφ( j) −
k∑

j=1
xψ( j) ≤ 1. (1.28)

It is shown in [51] that these inequalities completely describe Conv(P i(Li,`i)). An exact

polynomial-time separation algorithm is also devised. It follows that the corresponding problem

can be solved in polynomial time for any cost values.

In case the unit has a start-up cost, additional binary variables ut are needed to indicate

whether the unit starts up at time t. In [79], the authors study the 1-unit polytope associated to

the min-up and min-down constraints in the (x, u) variable space. They prove that inequalities

(1.2), (1.3) and (1.4) completely describe this polytope. The authors of [31] extend this result,

as they completely describe the polytope of the 1-unit problem with min-up/down constraints,

production limits and start-up/shut-down ramp constraints. The polytope of the same problem

with additional start-up and shut-down trajectories is completely described in [65].

When only production limits and ramp constraints are considered (note that there is no

min-up/down times), the corresponding 1-unit polytope in (x,u, p) space is completely described

for T = 2 in [14]. The linear inequalities of the description are valid for any T, and exponential

classes of inequalities involving more than two time periods are introduced, with polynomial time

separation. Facet conditions are also given.
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When production limits, min-up/down and ramp constraints are considered, no complete

description of the 1-unit polytope P 1
ramp in the (x,u, p) or (x,u,ρ) space is known. A tighter

reformulation of production limits (1.6) in the (x,u, p) space taking advantage of ramp constraints

(1.13) (1.14) is proposed in [71]

pi
t ≤ P i

maxxi
t+K(t) +

K i(t)∑
k=1

(
SD i + (k−1)RD i

)
wi

t+k −
K i(t)∑
k=1

Pmaxui
t+k, ∀t ∈T , ∀i ∈N

where K i(t)=max
{
k ∈ {1, ...,Li} s.t. SD i + (k−1)RD i ≤ P i

max and k+ t ≤ |T|
}
.

Indeed, if unit i is up at time t, either it remains up on the interval {t, ...,K i(t)}, and then

pi
t ≤ Pmax, or it shuts down at time t+ t′, t′ ≤ K(t), and then pt ≤ SD i + (t′−1)RD i is order to

satisfy ramp constraints. If unit i is down at t then pi
t = 0. In this case, if unit i starts up at time

k ∈ {t+1, ...,K(t)}, unit i is still up at time t+K i(t) due to min-up constraints, thus the inequality

is valid.

In the (x,u,ρ) space, inequalities enforcing upper bounds on ρ i
t are proposed in [66]

ρ i
t ≤ (P i

max −P i
min)xi

t − (P i
max −SU i)ui

t, ∀i ∈N ∀t ∈T

ρ i
t ≤ (P i

max −P i
min)xi

t − (P i
max −SD i)wi

t+1, ∀i ∈N , ∀t ∈T

If Li > 1 the following inequality holds as well

ρ i
t ≤ (P i

max −P i
min)xi

t − (P i
max −SU i)ui

t − (P i
max −SD i)wi

t+1, ∀i ∈N , Li > 1, ∀t ∈T

The authors of [71] introduce a polynomial class of valid inequalities strengthening ramp

constraints for each unit i such that Li > 1 and RD i > (SU i−P i
min). In [76], the authors introduce

valid inequalities for each unit i with ramp rates greater than the minimum production limit, i.e.,

RU i, RD i ≥ P i
min. In [75], P 1

ramp is completely described for T = 3. New classes of inequalities,

valid for any T, are introduced. A polynomial size extended formulation, based on the interval

formulation for the MUCP, is proposed independently in [25] and in [49]. The authors of [49]

show that this extended formulation can be used to generate cuts in the (x,u, p) or (x,u,ρ) space.

1.2.7 ILP formulations of the UCP

Various ILP formulations for the UCP have also been proposed in the literature (see references

in surveys [1, 88]).

The authors of [3] propose an ILP model for the MUCP with ramp constraints and start-

up and shut-down trajectories (as defined in Section 1.2.1). A distinction is drawn between

power and energy, thus providing a more accurate description of the actual operating process

of production units. The authors of [67] propose another model featuring up/down variables

x as well as online/offline variables indicating that the unit is following a start-up/shut-down

trajectory. This model takes into account the power provided by a unit i during its start-up and

shut-down periods, even though the power output is less than P i
min.
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Some articles consider non-linear production cost. A linear piecewise approximation of non-

convex and non-differentiable production costs, are proposed in [2]. Quadratic production costs

are approximated in [13] by a piecewise linear function. Variable pi
t is then decomposed in

several variables. The authors of [26] compare the classical linear piecewise approximation for

quadratic production costs to the use of perspective cuts [23]. These cuts rely on the introduction

of a new variable zi
t for each quadratic term of the form f i

t (xi
t, pi

t) in the objective function. The

epigraph of the convex envelope of f i
t is described by an infinite system of linear inequalities

called perspective cuts.

The authors of [2] give a stairwise formulation of the start-up cost, depending on how much

time a unit has been down. In [57], a model for hot and cold start-ups is presented. The authors

of [48] compare various UCP formulations for one unit with s possible start-up costs, depending

on the unit’s down time. Start-up cost (SC) formulations featuring only up/down variables x yield

a weaker relaxation value than the (x,u) SC formulation featuring both up/down and start-up

variables x and u, called SC(x,u). Variables δ(s′, i, t) are introduced, indicating whether unit i can

incur start-up cost s′ at time t. The resulting STI formulation has a better relaxation value than

3-bin. Flow formulation (Fn-Flow) is still integral when time-dependent start-up costs are added,

as the start-up cost incurred at each time period can be directly deduced from state transitions in

the network. Finally, formulation Match is introduced in [48], where flow variables are adjoined

to SC(x,u) formulation. The linear relaxation obtained is better than that of formulation STI.

Many articles [13, 65–67, 71] include primary and secondary reserves in their UCP model (see

survey [88]). At each time period t, the available power of unit i is P i
maxxi

t−pi
t. The total available

power at a given time t must be greater than the primary or secondary reserve requirement Rt.

To the best of our knowledge, tertiary reserve is not modeled in the literature.
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2
ON THE COMPLEXITY OF THE UNIT

COMMITMENT PROBLEM

It is common knowledge that the UCP is hard to solve in practice. However, the only complexity

result available is a reduction from the knapsack problem [86]. The latter is weakly NP-hard and

most of its very large instances can be solved efficiently using commercial solvers. An interesting

question is why is the UCP so hard compared to the knapsack problem. There are some trivial

cases such as `i = Li = 1, where the UCP reduces to T independent knapsack problems. When `i

and Li are arbitrary, the min-up and min-down constraints and the demand variation over time

introduce a dynamic coupling between each of these knapsack problems. If this dynamic coupling

were negligible, an efficient algorithm based on the knapsack problem could be derived. The

aim is to provide answers on this issue by analyzing instances capturing this dynamic coupling.

We propose several results. The UCP is strongly NP-hard by reduction from the 3-partition

problem, thus precluding any pseudo-polynomial dynamic programming scheme in the general

case. A real-world UCP instance may not feature the characteristics of the instances used in the

3-partition reduction since such instances have distinct numerical values of power outputs and

costs. We then focus on instances where the power outputs and costs are unitary. It is worth

noting that in this case, the underlying knapsack instances are trivially polynomial. The MUCP

is proved to be still strongly NP-hard in this context. This confirms that the dynamic coupling is

by itself a major source of difficulty when solving the UCP.

Numerical experiments show that the practical difficulty to solve the MUCP increases much

faster with the number of units n than with the number of time periods T. In this context, it

is interesting to note that our strong NP-hardness proof of the MUCP relies on instances with

n three times larger than T. Moreover, when n is fixed, we prove that a polynomial dynamic
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programming scheme exists for arbitrary T. This shows that another key ingredient in the

difficulty of the MUCP is the number n of dynamically coupled units. Finally, we prove that the

P-IMUCP, the subproblem arising from decomposition schemes, is strongly NP-hard.

In this chapter, the MUCP is proved to be strongly NP-hard in the general case (Section 2.1).

A polynomial algorithm is proposed for the IMUCP with arbitrary T whenever n is fixed (Section

2.3). The case involving a unitary cost (Section 2.4.1) and/or a unitary amount of production per

unit (Section 2.4.2) remains strongly NP-hard. For each case the relative impact of parameters

n and T on the complexity is discussed. Finally the P-IMUCP is shown to be strongly NP-hard

(Section 2.5).

The results presented in this chapter have been published in [9].

2.1 The UCP is strongly NP-hard

In this section, we prove the following result by reduction from the 3-partition problem, proved

NP-complete in [28].

Theorem 2.1. The MUCP is strongly NP-hard for T = n
3 −1.

Proof. Let us consider an instance of the 3-partition problem, with a set A of 3m integers a1, ...,

a3m, a bound B ∈N such that B
4 < a < B

2 for all a ∈ A, and such that
∑

a∈A a = mB. The question

is whether A can be partitioned into m triplets A1, ..., Am, such that
∑

a∈A i a = B. Note that if

a such partition of A into m subsets A1, ..., Am with sum B exists, then each subset A i must

contain exactly three elements.

Consider now the following instance of the MUCP. Let T = m+1, with Dt = (m− t+1)B,

∀t ∈ {1, ...,T}. Note that at each time period the demand decreases by B. Let n = 3m the number

of units. For each i ∈ {1, ...,3m}, P i
min = P i

max = ai; `i = T; Li = 1; ci
f = ai, ci

0 = ci
p = 0.

Let us suppose there exists a solution to the latter instance, with cost less or equal to∑m
i=1 iB = B m(m+1)

2 .

Since
∑T

t=1 Dt = B m(m+1)
2 and the unit cost is equal to the production, the cost of any solution

will be at least B m(m+1)
2 . If at a given time t the production is greater than the demand Dt =

(m−t+1)B then the solution cost will be greater than B m(m+1)
2 . So for any solution of cost B m(m+1)

2 ,

at each time period t, the units produce exactly Dt.

Let At be the subset of units which shut down at time t. Since every unit is up at time 1

and `i = T, for each unit i, each unit can shut down just once so subsets At are disjoint. Since

at each time period the units produce exactly the demand Dt, it follows
∑

i∈At P i
max =

∑
i∈At ai =

Dt−1 −Dt = B. Hence, the partition A1, ..., AT directly gives a solution to the instance of the

3-partition problem.

Conversely, from a solution to the 3-partition problem instance, a solution to this MUCP

instance can be constructed with cost equal to B m(m+1)
2 . �
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This result shows that the MUCP is strongly NP-hard even when each unit production cost

matches its production, i.e., ci
f = P i

min = P i
max, ci

0 = ci
p = 0, ∀i ∈N . As the MUCP is a particular

case of the UCP, the UCP is thus strongly NP-hard as well.

2.2 The 1-period MUCP is weakly NP-hard

For T = 1, the MUCP is proved NP-hard from the weakly NP-hard knapsack problem. As the

T = 1 MUCP is a knapsack problem with continuous ranges [P i
min,P i

max], the question is whether

this problem is also weakly NP-hard.

In this section we give a pseudo-polynomial algorithm for the T = 1 MUCP with D1 ∈N, thus

showing this problem is weakly NP-hard. We first see that given a feasible MUCP instance, there

exists an optimal solution such that at most one unit i is producing neither at P i
min nor at P i

max.

Note that the feasibility of the instance can be trivially checked.

Lemma 2.1. For any feasible T = 1 MUCP instance, there exists an optimal solution p̃ to the

T = 1 MUCP, where p̃i is the power produced by unit i, such that there exists at most one unit i

such that P i
min < p̃i < P i

max.

Proof. Let p be an optimal solution to the T = 1 MUCP, where pi is the power produced by

unit i. Suppose there are two units i and j, with ci
p ≤ c j

p, such that P i
min < pi < P i

max and

P j
min < p j < P j

max. Let δ=min(p j −P j
min, P i

max − pi). Consider solution p̃ such that
p̃i = pi −δ
p̃ j = p j +δ
p̃k = pk for k 6= i, j

By feasibility of p, solution p̃ is feasible. Moreover, as ci
p ≤ c j

p, solution p̃ has cost less than or

equal to p. As p is optimal, p̃ is also optimal. Let np be the number of units k in solution p such

that Pk
min < pk < Pk

max. This number decreases to mnp −1 in solution p̃. The proof is concluded

with an induction argument. �

From this property, a pseudo-polynomial dynamic programming algorithm, similar to those

already existing for the knapsack problem, can be derived. For each unit i, consider the following

ordering π of the units:

(π(1), π(2), π(3), ....,π(i),π(i+1), ..., π(n))= (i, 1, 2, ..., i−1, i+1, ..., n)

Let V i(m,d) be the optimal value of the T = 1 MUCP instance featuring only the m first units

(with respect to this ordering), with a demand d to satisfy. Moreover, for any unit j 6= i, the power
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output p j of j is in {0, P j
min, P j

max}. Then the following induction relation holds:

∀m ∈ {2, ...,n}, V i(m,d) =min


V i(m−1,d)

V i(m−1,d−Pπ(m)
min )+ cπ(m)

f + cπ(m)
p Pπ(m)

min

V i(m−1,d−Pπ(m)
max )+ cπ(m)

f + cπ(m)
p Pπ(m)

max

V i(1,d) =


0 if d ≤ 0

ci
f +P i

minci
p if d < P i

min

ci
f +dci

p if P i
min ≤ d ≤ P i

max

+∞ otherwise

The optimal value v∗ of the T = 1 MUCP is obtained as follows

v∗ =min
i∈N

V i(n,D1), where D1 is the demand value at time 1.

It follows that the T = 1 MUCP can be solved with an n2D1 states dynamic programming

scheme. As there also exists a reduction from the knapsack problem to the T = 1 MUCP, the

following holds.

Theorem 2.2. The T = 1 MUCP is weakly NP-hard.

2.3 The IMUCP is polynomial when n is fixed

In the following, we consider the IMUCP where the number of units n is fixed, which is equivalent

to say that n is not considered as a parameter of the problem. Note that the IMUCP is a

generalization of the MUCP.

Various dynamic programming schemes exist for the UCP with only one production unit

[5, 20, 24, 76]. We propose a dynamic programming algorithm for the multi-unit case, where

both demand and intra-site constraints must be satisfied. The number of states is shown to be

bounded by a degree n polynomial. It follows that the fixed-n IMUCP is polynomial.

For each unit i ∈N and time period t ∈T , the possible states for unit i at time t are given by

the unit-state set E i
t = {−`i, ...,−1,1, ...,Li}:

- either unit i is up at time t and must remain up for at least εi
t time periods (including t),

which corresponds to the unit-state εi
t ∈ {1, ...,Li},

- or unit i is down at t and must remain down for at least |εi
t| time periods (including t), which

corresponds to the unit-state εi
t ∈ {−`i, ...,−1}.

Given εi
t ∈ E i

t, the set of the next possible unit-states for i are given by Γ(εi):

Γ(εi
t)=


{εi −1} if εi

t > 1

{−`i,1} if εi
t = 1

{−1,Li} if εi
t =−1

{εi +1} if εi
t <−1
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For instance, if εi
t = 1, unit i is up at time t and can at time t+1 either stay up or shut down

for at least `i time periods.

We introduce a graph G = (V , A), whose vertices are possible states of the whole n-unit system

for a given time period t. An arc will be drawn between a possible state at time t and a reachable

state at time t+1. The length of this arc will be given by the cost of the state at time t+1. We

will show that an optimal solution to the MUCP can be obtained by finding a shortest path in

this graph.

Let us define the state of the n-unit system at time t as a tuple vt = (ε1
t ,ε2

t , ...,εn
t ) where εi

t ∈ E i
t.

If demand Dt is met when all units which are up in vt produce at Pmax, then tuple vt is said

to fulfill the demand. Moreover, if for each site Σ, there is at most one unit i in Σ such that

εi
t = Li, then vt fulfills intra-site constraints. Let Vt be the set of all tuples vt which correspond to

possible states, i.e., states that both fulfill the demand and intra-site constraints. We then set

V =∪T
t=1Vt ∪ {v0,vT+1} where v0 is a source vertex and vT+1 is a sink vertex.

For any t ∈ {0, ...,T −1}, there is an arc between a state vt = (ε1
t ,ε2

t , ...,εn
t ) ∈ Vt and vt+1 =

(ε1
t+1,ε2

t+1, ...,εn
t+1) ∈ Vt+1 if and only if for all i ∈ N , εi

t+1 ∈ Γ(εi
t). Moreover, A contains an arc

(vT ,vT+1) for any vT ∈VT .

The length of an arc is given by λ : A →R+. For each ε ∈V , λ(ε,vT+1)= 0. For each arc (vt,vt+1),

{0, ...,T −1}, the length is given by:

λ(vt,vt+1)= ∑
i up in vt+1

ci
f +

∑
i starts up in vt+1

ci
0 +

∑
i up in vt+1

ci
p pi

t+1

where for each t, (pi
t)i up in vt is the optimal solution to the following production dispatch LP:

min
pi

t∈R

∑
i∈X t

ci
p pi

t

s. t.
∑

i∈X t

pi
t ≥ Dt

P i
min ≤ pi

t ≤ P i
max ∀i up in vt

This problem can be solved in linear time, provided that the units are sorted in non-decreasing or-

der of ci
p. Indeed, the optimal solution can be constructed by generating the maximum quantity of

power possible with the lowest cost units, until the demand is met. Note that, by the construction

of vt, this production dispatch LP is always feasible.

Considering graph G = (V , A) and length λ, a solution to the fixed-n MUCP is exactly a

solution to the shortest path problem from v0 to vT+1 in graph G. This leads to the following

theorem.

Theorem 2.3. The fixed-n IMUCP can be polynomially solved in O(T2
n∏

i=1
(Li +`i)2).
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Proof. For each unit i and t, |E i
t| ≤ Li +`i. Thus, |Vt| ≤Πn

i=1(Li +`i). It follows that the number

of vertices in G is bounded by 2+TΠn
i=1(Li +`i). As n is fixed, this corresponds to a polynomial

number of vertices. Since graph G is acyclic, a shortest path can be computed using Bellman

algorithm. �

Note that Theorem 2.3 is proved for units with no ramp constraints. Depending on the power

outputs nature, the result is twofold. If for each unit i, the feasible power outputs are in a compact

bounded set P i, this dynamic programming scheme cannot be extended to take ramp constraints

into account. Other approaches must be considered in order to find out whether the corresponding

fixed-n problem is polynomial. If for each unit i, the feasible power outputs are in a finite set P i,

the proof of Theorem 2.3 can be extended to show that this problem is also polynomial when n is

fixed. The UCP solved daily at EDF [18, 80] corresponds to the latter case, which features the

following constraints:

(RF)

{
Ramp constraints

Finite set P i of feasible power outputs, for each unit i.

Theorem 2.4. The fixed-n IMUCP with constraints (RF) can be polynomially solved

in O(T2
n∏

i=1
(Li|P i|+`i)2).

Indeed, the set of possible states for a unit at time t is then a subset of E i
t ×P i. The ramp

constraints are taken into account by allowing arcs between two states s1 and s2 only if the ramp

constraints are satisfied when the n-unit system switches from s1 to s2. In this case, the number

of vertices in graph G is bounded by 2+TΠn
i=1(Li|P i|+`i). It follows that the problem can be

solved in O(T2
n∏

i=1
(Li|P i|+`i)2) time. Note that this bound is not reached in practice since many

states are not attainable due to the ramp constraints.

2.4 NP-hard special cases of the MUCP

When T = 1, the MUCP is weakly NP-hard by reduction from the knapsack problem [86]. However

the knapsack problem becomes polynomial if either the item cost or the item weight is unitary.

Interestingly, it is shown in this section the corresponding MUCP cases are NP-hard. This

highlights that the difficulty of the MUCP does not only lie in the knapsack reduction at T = 1,

but also in the combinatorial aspects introduced by the min-up/min-down time constraints for

more general time horizons. Contrary to the general case of Theorem 2.1, we have only proved

that these easier cases are strongly NP-hard for T much greater than n.

2.4.1 The unit-cost MUCP is NP-hard

We define the unit-cost MUCP, as a particular case of the MUCP where ci
0 = ci

p = 0 and ci
f = 1, for

each unit i. This problem can be solved in polynomial time when T = 1, by sorting the units in
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decreasing order w.r.t. their P i
max.

Theorem 2.5. The unit-cost MUCP is NP-hard for T = n+1 and strongly NP-hard for T = 1
3 n2.

Proof. Let us consider an instance of the partition problem, with a set A of n positive integers

a1, ...,an. The question is whether A can be partitioned into two subsets A1 and A2 such that∑
i∈A1 ai = ∑

i∈A2 ai. Note that if such a partition exists, then
∑

i∈A1 ai = ∑
i∈A2 ai = B where

B = 1
2
∑

i∈A ai.

Consider now the following instance of the unit-cost MUCP: let T = n+1 with D1 = DT = B

and Dt = 0, for all t ∈ [2,T −1]. Let us define n units such that P i
max = P i

min = ai, `i = T, Li = 1,

i ∈ {1, ...,n}. Assume there exists a solution to the latter instance with cost less than or equal to n.

In such a solution, each unit up at time 1 must be down at time T. Indeed, `i = T so when a unit

shuts down it can never start up again. However, if a unit i remains up from time 1 to time T,

then the cost of solution S is at least n+1, which is a contradiction. Thus, let A1 be the set of units

up at time 1, and A2 be the set of units up at time T. The claim is that (A1, A2) gives a solution

to the instance of the partition problem. Indeed, A1 and A2 are disjoint, as all units up at time

1 are down at time T. Moreover, the units in A1 satisfy the demand at time 1, so
∑

i∈A1 ai ≥ B.

Similarly,
∑

i∈A2 ai ≥ B. As A1 and A2 are disjoint, 2B ≤∑
i∈A1 ai +∑

i∈A2 ai ≤∑
i∈A ai = 2B, we get∑

i∈A1 ai = B,
∑

i∈A2 ai = B and A1 ∪ A2 = A.

Conversely, any solution to the instance of the partition problem can similarly be used to

construct a solution to this unit-cost MUCP instance with cost n.

This transformation can be slightly modified to show that the unit-cost MUCP is strongly NP-

hard, by reduction from the 3-partition problem. Let us consider a 3-partition problem instance

with a set A of 3m integers a1, ..., a3m, a bound B ∈ N such that B/4 < a < B/2 for all a ∈ A,

and such that
∑

a∈A a = mB. We consider an instance of the unit-cost MUCP with n = 3m units,

time horizon T = mn+1 and demand Dkn+1 = B for each k ∈ {0, ...,m} and Dt = 0 otherwise. The

units have the same characteristics as those of the reduction from the partition problem. We can

similarly prove that there is a solution to the 3-partition problem if and only if there is a solution

to this instance of the unit-cost MUCP. �

2.4.2 The unit-power MUCP is strongly NP-hard

We define the unit-power MUCP as a particular case of the MUCP where all units which are up

produce the same amount of power P such that P i
min = P i

max = P, i ∈N . The unit-power MUCP

can be solved in polynomial time when T = 1, by sorting the units in increasing order w.r.t. their

costs.

The unit-power MUCP is shown to be strongly NP-hard for arbitrary T, by reduction from

the single machine Flow-Shop Problem with minimum delays and unit-time operations (FSP).

This problem, proved strongly NP-hard in [92], is defined as follows.
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unit 1

unit 2

unit 3

t1 2 3 4 5 6 7 8

(a) Solution to the unit-power MUCP instance corre-
sponding to Iex

t2 3 4 5 6 7 8

3 2 1 2 1 3

(b) Solution to the FSP instance Iex

Figure 2.1: Instance Iex of the FSP: |J| = 3, p = [3,3,6] and ∆= 7

INSTANCE: Consider a set of jobs J, such that each job consists of two unit-time operations.

The two operations of a given job j must be scheduled with an intermediate delay p j. Let ∆ be an

integer.

QUESTION: A schedule (σ1,σ2) is defined by function σ1 : J → Z+
0 (resp. σ2 : J → Z+

0 ) that

gives the schedule of operation 1 (resp. 2) for each job. For all t ≥ 1, there is at most one job j ∈ J

such that ∃i ∈ {1,2}, σi( j)= t. Moreover, σ1( j)+ p j ≤σ2( j) for all j ∈ J. Is there a schedule (σ1,σ2)

with a makespan less than or equal to ∆, i.e. σ2( j)≤∆, for all j ∈ J?

Figure 2.1b shows a solution to the following FSP instance, denoted by Iex: |J| = 3, p = [3,3,6]

and ∆= 7. The first operation of job 3 is executed at time 1, and the second operation of job 3 at

time 7. The intermediate delay p3 = 6 is thus respected. Similarly, first and second operations of

jobs 1 and 2 are executed before the deadline while satisfying their intermediate delays.

We first give a technical lemma discussing properties of an FSP solution.

Lemma 2.2. From any solution to a given FSP instance, another solution can be constructed such

that all first operations are executed at times {1, ..., |J|}, and all second operations are executed at

times {∆−|J|+1, ...,∆}.

Proof. If there was a first operation executed after a second operation, then the two operations

could be permuted without reducing the delay between the first and second operations of any job.

Now suppose the first (resp. second) operation of a given job j is executed after time |J| (resp.

before time ∆−|J|+1). Since all first operations precede all second operations then there is an

idle time period t ∈ {1, ..., |J|} (resp. {∆−|J|+1, ...,∆}) at which no operation is executed. Thus the

execution of the first (resp. second) operation of j can be scheduled at time t without increasing

the delay between the first and the second operation of job j. �

We now prove the unit-power MUCP is strongly NP-hard by reduction from the FSP. This

reduction holds in the case where both power and cost are unitary. This proves that the cor-

responding problem, denoted by unit-(power+cost) MUCP, is strongly NP-hard. Contrary to

Theorem 2.5 for the unit-cost MUCP, this result does not provide a real measure of the respective

role of parameters n and T toward the problem’s complexity.
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Theorem 2.6. The unit-power MUCP is strongly NP-hard.

Proof. Let consider an instance IFSP of the FSP problem. We construct an instance I of the

unit-power MUCP as follows: let n = |J| units and a time horizon T =∆+1. For each unit j ∈ J,

let L j = T and ` j = p j; c j
0 = c j

p = 0 and c j
f = 1. Note that since there is a single machine, and two

unit-time operations per job, if ∆< 2n then there is no solution to IFSP. We thus suppose ∆≥ 2n.

The demand Dt is given by:

Dt =


n− t+1 if t ∈ {1, ...,n}

0 if t ∈ {n+1, ...,T −n}

t− (T −n) if t ∈ {T −n+1, ...,T}

The claim is that if we can find a solution S of cost at most n(n+1) for instance I then we can

find a schedule for instance IFSP. Let us consider a solution S with cost at most n(n+1). First

note that
∑T

t=1 Dt = n(n+1) and then any solution to I is with cost at least n(n+1), since each up

unit costs 1 per time period.

In solution S, exactly Dt units are then up at time t, for each t ∈ {1, ...,T}. As L j = T for each

j ∈ {1, ...,n}, each unit shuts down at most once on the time horizon T. As D1 = n and Dn+1 = 0,

each unit must shut down exactly once on the time horizon. Similarly, as the demand at time T

is n, each unit starts up exactly once. For a unit j, let σ1( j) (resp. σ2( j)) be the shut-down (resp.

start-up) time period of unit j in solution S.

For a solution S to instance I, we construct a solution SFSP to instance IFSP in which the first

operation of job j is processed at time σ1( j) and the second operation of job j is processed at time

σ2( j).

Figure 2.1 depicts a reduction from the FSP instance Iex to a unit-power MUCP instance.

Figure 2.1b shows the solution to the FSP instance Iex, while Figure 2.1a shows the solution to

the corresponding MUCP instance.

Since unit j has minimum down-time p j, for all j ∈ J, σ1( j)+ p j ≤σ2( j) holds. Moreover, as

DT = n, σ2( j) ≤∆ holds. The claim is there is at most one shut-down (resp. start-up) per time

period. Indeed, since Dn+1 = 0 (resp. DT−n = 0) and each unit shuts down (resp. starts up) exactly

once, all the shut-downs (resp. start-ups) happen between times 2 and n+1 (resp. T−n+1 and T).

If there were two units shutting-down (resp. starting-up) at the same time period t ∈ {2, ...,n+1}

(resp. {T −n+1, ...,T}), then, as Dt = Dt−1 −1 (resp. Dt = Dt−1 +1), either the demand would not

be satisfied at time t (resp. t−1), or there would be more than Dt−1 (resp. Dt) units up at time

t−1 (resp. t), which would be a contradiction. Consequently, at most one operation is executed

per time period.

Conversely, if there is a solution SFSP to instance IFSP, a solution S to instance I of cost at

most n(n+1) can be constructed. Let SFSP be a solution of the FSP instance. From Lemma 2.2,

we can suppose that in SFSP all first operations are executed at times {2, ...,n+1}, and all second

operations are executed at times {T −n+1, ...,T}. From this solution SFSP, we compute a solution

of MUCP instance S, by shutting-down (resp. starting-up) unit j at time σ1( j) (resp. σ2( j)).
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This shows that the FSP problem can be polynomially transformed to the unit-power MUCP.

�

2.5 The P-IMUCP is strongly NP-hard

In this section, the P-IMUCP is considered. Recall the demand is no longer to be satisfied, while

the fixed production cost πi,t and the proportional production cost ρ i,t can be negative and depend

on the time period. For a given value K ∈R, the P-IMUCP is to decide whether there is a plan

satisfying minimum up and down time constraints, with cost at most K and such that there is

at most one start-up per time t. We show this problem is strongly NP-hard by reduction from

a restricted version of the Satisfiability problem, denoted by R3-SAT. Problem R3-SAT is such

that there are at most three variables per clause, and each variable is restricted to appear once

negatively and once or twice positively overall in the set of clauses C. This problem has been

proved to be strongly NP-hard [77].

Theorem 2.7. The P-IMUCP is strongly NP-hard.

Proof. Consider an instance of R3-SAT with clauses c1, ..., cq and variables x1, ..., xp. Consider

the following instance of the P-IMUCP, with time horizon T = 6p and n units where n = p+ q.

Each unit i ∈ {1, ..., p} is associated to variable xi while each unit p+k, k ∈ {1, ..., q}, is associated

to clause ck. For each unit i ∈ {1, ..., p+ q}, Li = 1 and ci
0 = ρ i,t = 0.

For each unit i ∈ {1, ..., p}, `i = 2p and

πi,t =


−1

2 if t = 2i−1 or t = 4p+2i−1

−1 if t = 2p+2i−1

2 otherwise.

For each unit p+k, k ∈ {1, ..., q}, `p+k = T. Recall that a given variable xs, s ∈ {1, ..., p} appears once

or twice (resp. once) positively (resp. negatively) from c1 to cq. To compute πp+k,t, we construct

an auxiliary time value µq(X ) associated to every literal X ∈ ck:

µq(X )=



2s−1 if X = xs appearing positively

for the first time

4p+2s−1 if X = xs appearing positively

for the second time

2p+2s−1 if X = xs.

πp+k,t =
{

−1 if ∃ X ∈ ck such that µq(X )= t

3 otherwise.

To illustrate, consider an R3-SAT instance IR with p = 3, q = 2, c1 = x1∨x2∨x3, c2 = x1∨x2∨x3.

Figure 2.2 shows costs πi,t in the corresponding instance of the P-IMUCP.
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unit x1

unit x2

unit x3

unit c2

unit c1

1 3 5 7 9 11 13 15 17

-1/2 -1 -1/2

-1/2 -1 -1/2

-1/2 -1 -1/2

-1 -1 -1

-1 -1 -1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Figure 2.2: Cost πi,t for the P-IMUCP instance corresponding to R3-SAT instance IR

We will prove that there is a solution to R3-SAT if and only if there is a solution with cost

at most −n to this instance of the P-IMUCP. First, consider solution S with cost at most −n to

this P-IMUCP. The claim is the total cost of a unit i ∈ {1, ..., p} is at least -1. Indeed, each unit

i ∈ {1, ..., p} has a negative cost at times 2i−1, 2p+2i−1 and 4p+2i−1, and a positive cost of 2 at

any other time. If unit i were up only at times where its cost is negative, unit i would contribute

−1/2−1−1/2=−2 to the solution cost. If unit i is up at any time where the cost is positive, its

contribution to the solution cost is at least 0. Because of the minimum down time `i = 2p, unit i

cannot start up at time 2i−1, shut down at time 2i, and start up again at 2p+2i−1. Therefore

unit i contributes at least -1 to the solution cost, and contributes exactly −1 in one of the following

two cases:

(i) Unit i is up at times 2i−1 and 4p+2i−1, and down at all other times

(ii) Unit i is up at time 2p+2i−1 and down at all other times.

Similarly, the claim is the total cost of a unit p+ k, k ∈ {1, ..., q}, is at least -1. Indeed, each

unit p+k, k ∈ {1, ..., q}, has cost -1 at times µk(X ), for each literal X in ck. Since there are at most

three variables per clause, there are at most three time periods where the cost of unit p+k is -1.

Since at all other times, the cost of unit p+k is 3, if unit p+k is up at one given time where its

cost is positive, its contribution to the cost would be 0 at least. Moreover, unit p+k can start up

just once on the time horizon because of the minimum down time `p+k = T. Since all times µk(X ),

X ∈ ck, are odd, if unit p+k is up only at times µk(X ) it has to be up at one given time µk(X ) and

down at all other times. In this case its cost contribution is -1.

Since solution S has cost at most −n, each unit contributes exactly −1 to the solution total

cost. We construct a solution to the R3-SAT instance such that variable xi has truth value “false"

in case (i), and truth value “true" in case (ii). Each unit p+ k ∈ {p+1, ..., p+ q} starts up once,

meaning there is at least one true literal X in clause ck. Otherwise the unit associated to X

would have started up at the same time, contradicting the intra-site constraints.

Conversely, any solution to R3-SAT can be transformed to a solution to this P-IMUCP with

cost −n. �
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Polynomial NP-hard Strongly NP-hard
MUCP with T = 1 (fixed n, T = 1)

(n, T = 1)

∅
MUCP
IMUCP (fixed n, T) (n, T = 1

3 n)
IMUCP with (RF)
unit-cost MUCP (n,T = 1) (n, T = n+1) (n, T = 1

3 n2 +1)
unit-(power+cost) MUCP (n = |J|, T =∆)◦

P-IMUCP (fixed n, T) (n = p+k, T = 6p)♦

Table 2.1:
Summary of the complexity results

◦: where |J| is the number of jobs and ∆ the deadline of the FSP
♦: where p is the number of variables and k the number of clauses of R3-SAT.

Conclusion

The UCP is NP-hard in the strong sense. This explains better than the classical knapsack

reduction the computational challenge to solve the UCP in practice. In particular, it shows that

the knapsack aspects in the UCP are not the only source of difficulty. On the contrary, this result

confirms a common finding that the so-called dynamic coupling has a large impact on the UCP

complexity. By studying special cases of the UCP which do not feature any knapsack-related

difficulty, we proved that the coupling of unitary demands with minimum up and down time

constraints represents one major source of difficulty. This implies that the combinatorial aspects

introduced by these constraints should be specifically tackled when solving the UCP. Interestingly,

the IMUCP (with or without constraints (RF)) can be solved in polynomial time whenever n

is fixed, regardless of parameters T, L, `. This highlights the major impact of parameter n,

compared to other parameters, with respect to the problem’s complexity. Finally we have shown

that the P-IMUCP – the subproblem arising in practice when the UCP is solved through a

decomposition method – is strongly NP-hard for a subset of units.

The complexity results are summarized in Table 2.1. Each entry row-wise is associated to one

of the problem studied. In the first entry column-wise, some polynomial cases of the problem are

listed, the second (resp. third) entry column-wise lists cases in which the problem is NP-hard in

the ordinary (resp. strong) sense.

Note that the unit-cost MUCP becomes NP-hard as soon as T = n+1. It even becomes strongly

NP-hard as soon as T = 1
3 n2 +1, meaning that one cannot expect to find a polynomial time

algorithm that could be applied in practice when the units considered have similar costs. In

particular, the result holds even when each unit has a single feasible power output level (implying

that its cost depends only on its up/down status). The same remark goes for the unit-power

MUCP: even if the units considered have similar power outputs, solving the UCP will anyway be

computationally challenging.

Given these complexity results, some perspectives for future work would be to determine

which instances will be hard to solve in practice. For example, it would be useful to determine
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for which instances the dynamic programming scheme provided for the fixed-n IMUCP remains

tractable. With an increasing competition on electricity markets, another perspective would be to

consider the complexity of the P-IMUCP when revenues come from trading the site’s production.

The problem (also referred to as self-UCP) is then to find a production plan for each unit, and

a subset of so-called power products to trade with delivery patterns. It would be interesting to

analyze the complexity of this problem even in the 1-unit case, as the difficulty will come from

the structure of the power products considered.
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THE MIN-UP/MIN-DOWN UNIT COMMITMENT

POLYTOPE

From the complexity results in Chapter 2, it appears that the difficulty of the MUCP arises

in particular from the dynamic coupling of a large number n of units. Indeed, the MUCP is

polynomial when n is fixed and T arbitrary, but is already NP-hard when T = 1 and n is arbitrary.

Several polyhedral studies for the 1-unit UCP can be found in the literature (see Section

1.2.6). When n-unit are considered, the demand constraints intersect the 1-unit polytopes with

T knapsack polytopes, thus making the polyhedral structure more intricate. To the best of our

knowledge, no polyhedral study for the n-unit case is proposed in the literature.

In this chapter, we investigate some polyhedral aspects of the MUCP with n production

units. As a preliminary, we show in Section 3.1 that all demand-coupling formulations for the

n-unit MUCP, i.e., formulations such that the only coupling inequalities are demand constraints,

have same linear relaxation value. We thus choose to focus our study on the polytope defined by

formulation Fn
x,u, which features the most natural decision variables of the problem. In Section

3.2, some facial properties of inequalities (1.2), (1.3) and (1.4) are given. In Section 3.3, the

rank of a subset C ⊂ N at time t ∈ T is defined as the minimum number of units of C up at

time t. This rank accounts for the satisfaction of the demand constraint at time t alongside

with min-up and min-down time constraints. On this basis, we describe in Section 3.4 a large

family of valid inequalities generalizing both min-up/min down inequalities and extended cover

inequalities from the knapsack polytope. Among them, up-set inequalities are directly translated

from the knapsack polytope. Interval up-set inequalities, relying on the rank of a given C, are

more dedicated to the UCP as they capture the coupling of demand and min-up/min-down time

constraints. Facet defining cases are studied in Section 3.5.
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The results presented from Section 3.2 to 3.5 have been published in [8].

3.1 Comparison of demand-coupling formulations

In the 1-unit case, formulations (F1
x,u), (F1-Flow) and (F1-Int) define integral polytopes. The

integrality of formulation (F1
x,u) (see Theorem 1.5) has been proven in [79]. In Section 3.1.2, we

give another proof of this result by showing that the linear relaxation value of F1
x,u is equal to the

linear relaxation value of (F1-Flow). As (F1-Flow) is integral in the 1-unit case, the result will

follow directly from Theorem 1.1.

In the n-unit case, the integrality property is lost, due to demand the constraints coupling

the units. Recall from Section 1.2.5 that a demand-coupling formulation is an MUCP formulation

such that the only coupling inequalities are demand constraints:

(Fn
dc) min

z,p
czz+cpp

s. t. (zi, pi) ∈Πi
F ∀i ∈N

n∑
i=1

pi
t ≥ Dt ∀t ∈T

zi ∈Zm, pi ∈Rp ∀i ∈N

where (cz, cp) is the cost vector andΠi
F = {A i zi+Bi pi ≤ d i} is a polyhedron such thatΠi

F∩(Zm×Rp)

is a set of feasible plans for unit i, expressed with arbitrary variables zi ∈Zm and production

variables pi
t. In particular, flow and interval formulations (Fn-Flow) and (Fn-Int) are demand-

coupling formulations.

In the following, for a given formulation (F), the linear relaxation value of (F) is denoted

by v(F). We show in Section 3.1.1 that any demand-coupling formulation (Fn
dc) for the n-unit

MUCP has no better linear relaxation than formulation (Fn
x,u), i.e., v(Fn

x,u)≥ v(Fn
dc). In the case

of flow and interval formulations (Fn-Flow) and (Fn-Int), the relaxation values are equal, i.e.,

v(Fn
x,u)= v(Fn-Flow)= v(Fn-Int).

Note that in this section, for any n ∈ N, the cost vector of formulation (Fn
x,u) is completely

arbitrary, i.e. cost coefficient of xi
t (resp. ui

t) is ci
t ∈R (resp. ci

0,t ∈R), i ∈N , t ∈T . The cost vectors

of formulations (Fn-Flow) and (F1-Int) are modified accordingly.

3.1.1 Comparison of demand-coupling formulations for the n-unit MUCP

Now consider a demand-coupling formulation (Fn
dc) for the n-unit MUCP.

We will prove that the relaxation value of (Fn
dc) is always less than or equal to the relaxation

value of (Fn
x,u).

First consider the 1-unit min-up/min-down and production limit polytope

P1
x,u,p =

{
(x1,u1, p1) | x1

t ,u1
t ∈ [0,1], s.t. (1.2), (1.3), (1.4), (1.6)

}
.
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Lemma 3.1. Any extreme point (x,u, p) of P1
x,u,p is such that x ∈ZT , u ∈ZT−1.

Proof. If x and u had fractional components, as (x,u) ∈ P1
x,u, vector (x,u) could be written as a

combination of extreme points (x(1),u(1)), ..., (x(k),u(k)) of P1
x,u, i.e.,

(x,u)=
k∑

k′=1
λk′(x(k′),u(k′)), where

k∑
k′=1

λk′ = 1 and λk′ 6= 1, ∀k′ ∈ {1, ...,k}

By Theorem 1.5, (x(1),u(1)), ..., (x(k),u(k)) are integer points. For k′ ∈ {1, ...,k}, consider point

(x(k′),u(k′), p(k′)) ∈ P1
x,u,p where for each t ∈T

p(k′)t =
{ pt

xt
if x(k′)t = 1

0 otherwise

Note that due to production limits, pt
xt

∈ [P1
min,P1

max]. Then

(x,u, p)=
k∑

k′=1
λk(x(k′),u(k′), p(k′))

As
∑k

q=1λ
k = 1 and λ′

k 6= 1, ∀k′ ∈ {1, ...,k}, (x,u, p) is not an extreme point of P1
x,u,p. �

Now we prove the following result.

Theorem 3.1. v(Fn
x,u)≥ v(Fn

dc)

Proof. Consider a solution (x,u, p) of Fn
x,u. For each i ∈N , (xi,ui, pi) belongs to polytope P1

x,u,p

defined with characteristics (Li, `i, P i
min, P i

max) from unit i. Denoting by P the extreme point set

of P i
x,u,p,

(xi,ui, pi)= ∑
q∈P

λqq

where
∑

q∈P λ
q = 1. By Lemma 3.1, points q ∈ P have integer x and u components, and thus

represent feasible plans for unit i. Therefore, for each q ∈ P, there exists a solution φ(q) ∈
Πi

F ∩ (Zm ×R) representing the same feasible plan for unit i. In particular, the solution cost is the

same, as well as the quantity of power produced by unit i at each time period t.

We then define φ(xi,ui, pi)

φ(xi,ui, pi)= ∑
q∈P

λqφ(q)

As Πi
F is convex, φ(xi,ui, pi) ∈Πi

F . Moreover, since
∑

q∈P λ
q = 1, the cost of φ(xi,ui, pi) is equal to

the cost of (xi,ui, pi), and the quantity of power produced by unit i at each time period is the

same in both solutions. Therefore, (φ(xi,ui, pi))i∈N is a solution to the linear relaxation of (Fn
dc)

with same cost as (x,u, p). This concludes the proof. �
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This shows that no MUCP formulation of the form (Fn
dc) can have a better linear relaxation

value that (Fn
x,u). In particular, this shows that neither formulation (Fn-Int) nor (Fn-Flow)

improves the relaxation value of (Fn
x,u).

Note that for any solution ( f , g, p) of the linear relaxation of (Fn-Flow), a solution (x,u, p) of

(Fn
x,u) with same cost can be defined as follows. For each i ∈N , t ∈T

xi
t =

t∑
t′=1

T+1∑
t′′=t+1

f i(t′, t′′)

ui
t =

T+1∑
t′′=t+1

f i(t, t′′)

Similarly, for any solution (y, p) of the linear relaxation of (Fn-int), a solution (x,u, p) of (Fn
x,u)

with same cost be constructed as follows. For each i ∈N , t ∈T

xi
t =

∑
{t0,...,t1−1}∈Yi | t∈{t0,...,t1−1}

yi(t0, t1)

ui
t =

∑
{t,...,t1−1}∈Yi

yi(t0, t1)

Corollary 3.1.
v(Fn

x,u)= v(Fn-Flow)= v(Fn-Int)

All demand-coupling formulations proposed in Section 1.2.5 (i.e., formulations (Fn
x,u), (Fn-Flow)

and (Fn-Int)) are equivalent from a linear relaxation point of view. However, formulations

(Fn-Flow) and (Fn-int) may be harder to manage as they feature θ(nT2) binary variables, while

(Fn
x,u) features 2nT binary variables. In the rest of the chapter, we will thus focus our polyhedral

study on the polytope defined by formulation (Fn
x,u).

3.1.2 Integrality of (F1-Flow)

In this section, we prove that v(F1
x,u)= v(F1-Flow). First, it can be readily checked that

Theorem 3.2. v(F1
x,u)≤ v(F1-Flow)

Proof. Let ( f
1
, g1) be a solution of F1-Flow. Then consider solution (x1,u1) such that

x1
t = ∑t

t′=1
∑T+1

t′′=t+1 f 1(t′, t′′) ∀t ∈T

u1
t = ∑T+1

t′′=t+1 f 1(t, t′′) ∀t ≥ 2

As f
1

and g1 are nonnegative, x1 and u1 are nonnegative too. Let t ≤ L1 +1. We check that the

min-up constraint at t is satisfied by (x1,u1).

t∑
t−L1+1

u1
t =

t∑
t−L1+1

T+1∑
t′′=t′+1

f 1(t′, t′′)
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As variables f 1(t′, t′′)= 0 if t′′ < t′+L1, it yields

t∑
t′=t−L1+1

u1
t =

t∑
t−L1+1

T+1∑
t′′=t+1

f 1(t′, t′′)≤ x1
t

The min-down constraint can be checked similarly. Note that inequality (1.4) is also satisfied:

x1
t − x1

t−1 =
T+1∑

t′′=t+1
f 1(t, t′′)−

t−1∑
t′=1

f 1(t′, t)≤ u1
t

The cost of solution (x1,u1) is(
T∑

t=1
c1

f

t∑
t′=1

T+1∑
t′′=t+1

f 1(t′, t′′)

)
+

(
T∑

t=2
c1

0

T+1∑
t′′=t+1

f 1(t, t′′)

)

which, by reindexing, is equal to(
T∑

t′=1

T+1∑
t′′=2

t′′−1∑
t′=t′

c1
f f 1(t′, t′′)

)
+

(
T∑

t=2
c1

0

T+1∑
t′′=t+1

f 1(t, t′′)

)

This is exactly the cost of ( f
1
, g1), therefore ( f

1
, g1) and (x1,u1) have same cost. This concludes

the proof. �

Now we prove the reverse inequality v(F1
x,u)≥ v(F1-Flow). Consider a solution (x,u) ∈ P1

x,u and

an arbitrary cost vector cx,u. We use Algorithm 1 to construct a solution ( f , g) ∈ P1
f low with same

cost as (x,u). Recall bipartite graph G with vertices V =VU ∪V D , where vu
t ∈VU corresponds to a

start-up of unit 1 at time t and vd
t ∈V D corresponds to a shut down at time t. The arc associated

with flow variable f 1(t, t′) (resp. g1(t, t′)) connects the start-up (resp. shut down) at time t to the

shut-down (resp. start-up) at time t′.
Algorithm 1 will construct a solution ( f , g) such that d(vu

t ) is the quantity of flow that must

enter node vu
t , and d(vd

t ) is the quantity of flow that must exit node vd
t , where:

d(vu
t ) = ut

d(vd
t ) = ut − (xt − xt−1)

At each iteration of the algorithm, In(v) and Out(v) are updated, where In(v) (resp. Out(v)) is

the current quantity of flow entering (resp. exiting) node v. Algorithm 1 constructs solution ( f , g)

from (x,u).

Note that at any iteration t of the first loop of Algorithm 1, for any k < t the following holds:∑k
t′=1 In(vd

t′ )−Out(vd
t′ ) = 1− xk∑k

t′=1 In(vu
t′)−Out(vu

t′) = xk

In particular,
∑t−1

t′=1 In(vd
t′ )−Out(vd

t′ )= 1−xt−1. As ut ≤ 1−xt−1 by min-down constraint (1.3), there

is always enough incoming flow in nodes vd
1 , ..., vd

t−1 to convey ut units of flow to vu
t . Similarly,
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Algorithm 1 Construction of solution ( f , g)

In(v)=Out(v)= 0, for each node v, ( f , g)= 0
In(vu

1 )= x1, In(vd
1 )= 1− x1

for t = 2, ..., T do
for t′ = 1, ..., t−1 do

if In(vd
t′ )−Out(vd

t′ )> 0 and In(vu
t )< d(vu

t ) then
flow = min

(
d(vu

t )− In(vu
t ), In(vd

t′ )−Out(vd
t′ )

)
g(t′, t)← g(t′, t)+flow
Out(vd

t′ )←Out(vd
t′ )+flow

In(vu
t )← In(vu

t )+flow
end if
if In(vu

t′)−Out(vu
t′)> 0 and In(vd

t )< d(vd
t ) then

flow = min
(

d(vd
t )− In(vd

t ), In(vu
t′)−Out(vu

t′)
)

f (t′, t)← f (t′, t)+flow
Out(vu

t′)←Out(vu
t′)+flow

In(vd
t )← In(vd

t )+flow
end if

end for
end for
for t = 1, ..., T do

f (t,T +1)= In(vu
t )−Out(vu

t ), g(t,T +1)= In(vd
t )−Out(vd

t )
end for

∑t−1
t′=1 In(vu

t′)−Out(vu
t′) = xt−1, and ut − (xt − xt−1) ≤ xt, as xt − xt−1 is positive only if ut = 0. Thus,

there is always enough incoming flow in nodes vu
1 , ..., vu

t−1 to convey ut − (xt − xt−1) units of flow

to vd
t .

Therefore, at any iteration t of the first loop of Algorithm 1, for any k < t:

In(vd
k ) = d(vd

k )

In(vu
k ) = d(vu

k )

Thus, when Algorithm 1 terminates,

xt = ∑t
t′=1

∑T+1
t′′=t+1 f (t′, t′′) ∀t ∈T

ut = ∑T+1
t′′=t+1 f (t, t′′) ∀t ≥ 2

As in the proof of Theorem 3.2, this proves that (x,u) and ( f , g) have same cost.

As by construction, constraints (1.15), (1.16) and (1.17) are satisfied, there only remains to

prove that the min-up and min-down time constraints are satisfied, i.e., the flow from a node vd
t

to vu
t′ (resp. vu

t to vd
t′ ) is zero if t′ < t+`1 (resp. t′ < t+L1).

Lemma 3.2. Given solution ( f , g) constructed by Algorithm 1, the following holds:

(i) g(t, t′) = 0 ∀t ≥ 2, ∀t′ ∈ {t+1, ..., t+`1 −1}

(ii) f (t, t′) = 0 ∀t ≥ 2, ∀t′ ∈ {t+1, ..., t+L1 −1}
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Proof. We prove (i) by contradiction; (ii) can be proved similarly.

Suppose there exist t0 > 0 and k0 > 0 such that g(t0,k0)> 0 and k0 < t0 +`1.

We will prove that xt0−1 > 1−∑k0
k=t0

uk. Let

α= 1− xt0−1 =
t0−1∑
t=1

T∑
k=t0

g(t,k)

By construction, for each t ≤ t0 −1, k > k0, g(t,k)= 0, otherwise Algorithm 1 would not have

assigned a positive flow g(t0,k0) from vd
t0

to vu
k0

. Therefore

α=
t0−1∑
t=1

k0∑
k=t0

g(t,k)=
(

k0−1∑
k=t0

t0−1∑
t=1

g(t,k)

)
+

t0−1∑
t=1

g(t,k0)

As for each k, uk =
∑T+1

t′′=k+1 f (t, t′′)=∑k
t′=1 g(t′, t′),

∑t0−1
t=1 g(t,k)≤ uk ∀k ∈ {t0, ...,k0 −1}∑t0−1
t=1 g(t,k0)≤ uk0 − g(t0,k0)

Therefore α≤∑k0
k=t0

uk − g(t0,k0), thus xt0−1 > 1−∑k0
k=t0

uk.

It follows that inequality (1.3) is not satisfied by (x,u) at time t = t0 + `− 1,which is a

contradiction. �

Finally, we have proved the following.

Theorem 3.3. v(F1
x,u)≥ v(F1-Flow)

As this result holds for any cost vector c, the integrality of F1
x,u is obtained from the integrality

of (F1-Flow) by Theorem 1.1. It thus gives another proof of Theorem 1.5.

3.2 Polyhedral study

The MUCP polytope is denoted by Pn
UCP :

Pn
UCP = conv

{
(x,u, p) satisfying (1.2) - (1.8)

}
In this section, we give some first polyhedral results on polytope Pn

UCP , for any number n

of units. In order to study the combinatorial structure of Pn
UCP , its projection Pn

x,u on binary

variables x and u is considered in the following lemma.

Lemma 3.3. The projection of polytope Pn
UCP on variables (x,u) is

Pn
x,u = Conv

{
(x,u) ∈ {0,1}N ×T × {0,1}N ×T \{1} s. t. (1.2), (1.3), (1.4) and

n∑
i=1

P i
maxxi

t ≥ Dt ∀t ∈T
}
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Proof. Let Pro jx,u(Pn
UCP ) be the projection of polytope Pn

UCP on variables (x,u). Given (x̃, ũ) ∈
Pn

x,u, set p̃i
t = P i

max x̃i
t, ∀i ∈N , ∀t ∈T , then (x̃, ũ, p̃) ∈ Pn

UCP . Conversely, consider (x,u) ∈ Pro jx,u(Pn
UCP ).

There exists p such that (x,u, p) ∈ Pn
UCP . Thus

∑n
i=1 pi

t ≥ Dt ∀t ∈ T and pi
t ≤ P i

maxxi
t. It follows

that
∑n

i=1 P i
maxxi

t ≥ Dt, and thus (x,u) ∈ Pn
x,u. �

We first introduce some vectors that will be useful in the polyhedral proofs. Note that a

solution of Pn
x,u is a couple (x,u) ∈ {0,1}N ×T × {0,1}N ×T \{1} resulting in n(2T −1) coordinates.

Given a unit i ∈N and a time period t ∈T , let χu
i,t (resp. χd

i,t) be the vector such that unit i is

down (resp. up) on [1, t−1], starts up (resp. shuts down) at time t and remains up (resp. down) on

[t,T], and such that unit j is up at all times, for all j 6= i. Moreover, let χ0 ∈ Pn
x,u be the vector in

which all units are up at all times. To illustrate, the coordinates of vector χu
i,t0

are the following:

1 · · · t0 · · · T( )
xi = 0, ..., 0, 1, 1, ..., 1 and x j = (1, ..., 1) j 6= i( )
ui = 0, ..., 0, 1, 0, ..., 0 and u j = (0, ..., 0) j 6= i

A simple way to present the x coordinates of vector χu
i,t0

, t0 ∈T \{1}, is the diagram of Figure

3.1.

xi
t

t

1

0
1 t0 T

(a) Coordinates xi

x j
t

t

1

0
1 t0 T

(b) Coordinates x j, for j 6= i

Figure 3.1: Coordinates x of vector χu
i,t0

The proofs of the two following theorems are extensions of results for the 1-unit polytope from

[79].

Theorem 3.4. The polytope Pn
x,u is full-dimensional if and only if for all i ∈N ,

∑
j∈N \{i} P j

max ≥
maxt∈T Dt.

Proof. First if there is a unit i such that
∑

j∈N \{i} P j
max < maxt∈T Dt, then there exists a time

t such that
∑

j∈N \{i} P j
max < Dt. There is no solution (x,u) such that xi

t = 0, thus Pn
x,u is not

full-dimensional.

Now suppose the hypothesis holds, i.e. at each time t, the units of N \{i} are sufficient to cover

the demand, ∀i ∈N . Thus, given a unit i ∈N , vectors (χd
i,t, t ∈T ) and vectors (χu

i,t, t ∈T \{1}) are

2T−1 incident vectors of solutions in Pn
UCP (x,u). Hence, vectors χu

i,t, χ
d
i,t and vectors χ0 constitute
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a set of n(2T −1)+1 affinely independent vectors of Pn
x,u. It follows that Pn

x,u is full-dimensional.

�

In the following, we will consider the full-dimensionality condition is satisfied, i.e. n−1

units or less are always sufficient to meet the demand at any time. Note that this assumption is

required to come up with a reliable production plan.

Theorem 3.5. Inequalities (1.3), (1.4) and trivial inequalities ui
t ≥ 0, i ∈N , ∀t ∈T \{1}, describe

facets of Pn
x,u.

Proof. Let i0 ∈N and t0 ∈T \{1}.

Vectors (χu
i,t, (i, t) ∈ (N ×T \{1}) \ {(i0, t0)}) , vectors (χd

i,t, (i, t) ∈ N ×T ), and vector χ0 are

n(2T −1) affinely independent vectors of Pn
x,u satisfying ui0

t0
= 0. So the trivial inequality defines

a facet of Pn
x,u.

Vectors (χu
i,t, (i, t) ∈N ×T \{1}), vectors (χd

i,t, (i, t) ∈ (N ×T )\{(i0, t0)}) and vector χ0 are n(2T−
1) affinely independent vectors of Pn

x,u satisfying ui0
t0
= xi0

t0
− xi0

t0−1. So (1.4) defines a facet of Pn
x,u.

As inequality (1.3) has been proven to be facet defining for the 1-unit polytope P1
x,u (see [79]),

there exist 2T−1 affinely independent vectors (xi,ui) ∈ P1
x,u satisfying

∑t0

t=t0−`i0+1
ui0

t = 1− xi0

t0−`i0
.

From each vector (xi0 ,ui0 ) we construct a vector (x,u) ∈ Pn
x,u satisfying

∑t0

t=t0−`i0+1
ui0

t = 1−xi0

t0−`i0
,

by setting coordinates as follows: (x j
t = 1, j 6= i, t ∈T ), (u j

t = 0, j 6= i, t ∈T \{1}), and xi
t = xi

t, ui
t = ui

t,

∀t. These 2T −1 vectors of Pn
x,u alongside with the (n−1)(2T −1) vectors (χu

j,t, j 6= i, t ∈T \{1}),

(χd
j,t, j 6= i, t ∈ T ), constitute a set of n(2T −1) affinely independent vectors of Pn

x,u satisfying

inequality (1.3) with equality, which proves that (1.3) defines a facet of Pn
x,u. �

Property Πi,t Given a face F of Pn
x,u, a unit i and a time period t, Property Πi,t is as follows:

Solution (x,u) ∈ F satisfies Πi,t ⇐⇒ Unit i is down on [t, t+`i] i.e. xi
t′ = 0, ∀t′ ∈ [t, t+`i].

Let us consider the transformationΨi
t0,t1

such that for any vector ρ ∈ {0,1}N ×T ×{0,1}N ×T \{1},

Ψi
t0,t1

(ρ) is equal to vector ρ except for unit i which is down over [t0, t1] and up the rest of the

time.

We give a generic technical lemma.

Lemma 3.4. Let
∑

j∈N a jx j+∑
j∈N b ju j ≤ γ be a valid inequality for Pn

x,u, different from inequality

(1.3). Let F be the associated face.

(i) If F is a facet, then for all i ∈N and t ∈T , there exists (x,u) ∈ F satisfying property Πi,t.

(ii) For a given i ∈ N , if for all t ∈ T there exists (x,u)t ∈ F satisfying property Πi,t, and if

neither variables xi nor ui appear in
∑

j∈N a jx j +∑
j∈N b ju j (i.e. ai = bi = 0), then for all

t ∈T , F contains the following solutions:
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– Solution Ψi
t,t+`i ((x,u)t), where unit i is up on [1, t−1], down on [t, t+`i] and up on

[t+`i +1,T].

– Solution Ψi
t+1,t+`i ((x,u)t), where unit i is up on [1, t], down on [t+1, t+`i] and up on

[t+`i +1,T].

– Solution Ψi
t,t+`i−1((x,u)t), where unit i is up on [1, t−1], down on [t, t+`i −1] and up

on [t+`i,T].

– Solution Ψi
1,t0

((x,u)1), for any t0 ∈ [1,`i −1], where unit i is down on [1, t0] and up on

[t0 +1,T].

Proof. (i): Suppose Πi,t does not hold for given i0 ∈N and t0 ∈T . Thus, for any given solution

(x̃, ũ) ∈ F, if unit i0 is down at time t0, it must start up before time t0 +`i0 (if t0 > T −`i0 we can

consider t0 = T −`i0 w.l.o.g.). Then (x̃, ũ) satisfies
∑t0+`i0

t=t0+1 ui0
t ≥ 1− xi0

t0
. As inequality (1.3) holds

too, it follows that
∑t0+`i0

t=t0+1 ũi0
t = 1− x̃i0

t0
. Thus F is included in the face of inequality (1.3), which

contradicts the fact that F is different from the face defined by (1.3).

(ii): For each t ∈T , from Property Πi,t, ∃(x,u)t ∈ F such that xi
t′ = 0∀t′ ∈ [t, t+`i]. Then vector

Ψi
t,t+`i ((x,u)t) is still a solution as unit i remains down for `i +1 periods, thus satisfying the

min-down constraints. Moreover, the demand is satisfied since unit i is up in vector Ψi
t,t+`i ((x,u)t)

at least as often as in solution (x,u). As ai = bi = 0, solution Ψi
t,t+`i ((x,u)t) is a solution of F.

Similarly, vectors Ψi
t+1,t+`i ((x,u)t), Ψi

t,t+`i−1((x,u)t) and Ψi
1,t0

((x,u)1), for any t0 ∈ [1,`i −1] are

solutions of F. �

We now prove that min-up inequalities (1.2) are facet defining under a mild condition.

Theorem 3.6 (Facet defining min-up inequalities). For i ∈N , for t1 ∈ {Li +1, ...,T}, let F be the

face defined by the min-up inequality (1.2)
∑t1

t=t1−Li+1 ui
t ≤ xi

t1
. F is a facet of Pn

x,u if and only if for

any unit j ∈N \{i} and time t ∈T , there exists a solution (x,u) ∈ F satisfying Πi,t.

Proof. The necessity (=⇒ ) follows from Lemma 3.4 (i).

We prove the sufficiency (⇐= ). Suppose that F is included in the face of an inequality∑
j∈N

(∑
t∈T a j

t x j
t +

∑
t∈T \{1} b j

t u j
t

)
≤ γ. The claim is that:

F = {(x,u) ∈ Pn
x,u |∑ j∈N

(∑
t∈T a j

t x j
t +

∑
t∈T \{1} b j

t u j
t

)
= γ}, which proves that F is a facet of Pn

x,u.

For any j ∈N \{i}, there are no x j nor u j variables appearing in inequality
∑t1

t=t1−Li+1 ui
t ≤ xi

t1
.

Since there exists (x,u)t ∈ F satisfying Π j,t for any t ∈ T , it follows from Lemma 3.4 (ii) that

for any t ∈ T , Ψi
t,t+` j ((x,u)t) ∈ F and Ψi

t+1,t+` j ((x,u)t) ∈ F. As these solutions differ only over

variable xi
t, we can conclude a j

t = 0, ∀ j ∈N \{i}, ∀t ∈T . Moreover, Lemma 3.4 (ii) implies that

Ψi
T−`i ,T ((x,u)t) ∈ F, which differs from Ψi

T−`i ,T−1((x,u)t) ∈ F only over xi
T and ui

T variables. As

ai
T = 0, it follows that bi

T = 0. Similarly we can see that b j
t = b j

t−1, ∀ j ∈N \{i}, ∀t ∈T \{1,2}, by

comparing vector Ψi
t,t+`i−1((x,u)t) ∈ F, ∀t ∈ T to vector Ψi

t,t+`i ((x,u)t) ∈ F, ∀t ∈ T , and vector
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Ψi
1,t′((x,u)1) ∈ F, t′ ∈ [1,` j −1], to vector Ψi

1,1+`i ((x,u)1) ∈ F. It follows that b j
t = 0, ∀ j ∈ N \{i},

∀t ∈T \{1}.

Vectors χd
i,t1

∈ F and χd
i,t1−1 ∈ F differ only over variable xi

t1−1. Thus ai
t1−1 = 0. Then, from

vectors χd
i,t ∈ F, t ∈ [1, ..., t1], we can iteratively see that ai

t = 0 for all t ≤ t1 −1. We introduce

vectors Θi
t,t′ ∈ Pn

x,u such that i starts up at time t, stays up until t′ and shuts down at time t′+1

(all other units are up at all times). As Pn
x,u is full-dimensional, note that n−1 units are always

sufficient to meet the demand at any time, thus for any t > t1, vectors Θi
t1−Li+1,t ∈ F. Moreover,

vectors Θi
t1−Li+1,t−1 and Θi

t1−Li+1,t differ only over variable xi
t, which implies ai

t = 0 for any t > t1.

Moreover, vector χd
i,1 ∈ F and for any t ≥ t1 −Li +1, vector χu

i,t ∈ F. Since vector χu
i,t differs from

vector χd
i,1 only over variables xi

t′ , t′ ≥ t and variable ui
t, bi

t =−ai
t1

for any t ∈ [t1 −Li +1, t1], and

bi
t = 0 for any t > t1. Finally, for any t ≤ t1 −Li, vectors Θi

t,t1−1 ∈ F, and Θi
t,t1−1 differs from χd

i,1

only over variables xi
t′ , t′ ∈ [t, t1 −1] and variable ui

t, it follows that for any t ≤ t1 −Li, bi
t = 0.

The remaining inequality is then:

−ai
t1

xi
t1
+

t1∑
t=t1−Li+1

ai
t1

ui
t = γ.

Since χd
i,1 ∈ F, γ= 0, which proves that F is a facet of Pn

x,u. �

3.3 Rank of unit subsets

In order to introduce new valid inequalities for the MUCP polytope, we define the rank of a unit

subset, which captures both dynamic and knapsack aspects of the MUCP.

Rank For each subset of units M ⊂ N , its rank αt(M) is the smallest number of units that

must be up in M at time t in a feasible solution.

Since this rank is hard to compute, a static version is also considered as it will be useful in

practice.

Static rank For each subset of units M ⊂N , its static rank is the smallest number of units

that must be up in M at time t in order to satisfy the residual demand Dt −∑
j 6∈M P j

max.

As all feasible solutions meet the demand at time t, it is clear that:

αt(M)≥αt(M) ∀t ∈T ∀M ⊂N .

Example 3.1. Recall the illustrative instance of the MUCP from Example 1.1, with T = 3,

D = [20, 10, 25] and three units such that P1
max = 15, P2

max = 5, , P3
max = 5 and `1 = `2 = `3 = 2,

L1 = L2 = L3 = 2.

Let M = {1,3}. Even if unit 2 is up, its production alone is not sufficient to satisfy the demand at

time 1. Subtracting production of unit 2, the residual demand to be satisfied is D1 = D1−P2
max = 15.

One unit in M must then be up to cover the demand. Thus α1(M)≥ 1. Since only one unit of M is
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enough to cover the residual demand D1 (here unit 1 is enough), α1(M)= 1. Then α1(M)= 1, as

there exists a feasible solution in which only one unit of M is up at time 1, for example the solution,

illustrated by Figure 3.2a, in which unit 1 and 2 are up at all times and unit 3 is down at times 1

and 2 and up at time 3. The demand is represented with dotted lines.

Let us now consider M′ = {1,2,3}. The static rank of M′ at time 2 is equal to 1: α2(M′)= 1, since

one unit of M′ is necessary and sufficient to satisfy the residual demand D2 = D2 = 5. Indeed, if

there were no min-up/min-down constraints, the solution given by Figure 3.2b would be feasible.

However, in this example, min-down constraints hold and therefore α2(M′) 6=α2(M′). Solution

in Figure 3.2b does not satisfy min-down constraint, and there is actually no feasible solution in

which only one unit of M′ is up at time 2. First note α1(M′) = 2 and α1(M′) = 3, i.e., as at least

two (resp. three) units of M′ must be up up at times 1 (resp. 3). Let us now assume there exists a

feasible solution in which only one unit of M′ is up at time 2. Therefore, one unit of M′ must shut

down at time 2 and start up at time 3. Since the minimum down time of each unit of M′ is 2, this

leads to a contradiction. Therefore α2(M′)> 1. As Figure 3.2a gives a feasible solution with two

units of M′ up at time 2, α2(M′)= 2.

1
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Figure 3.2

Note that computing the rank of a unit subset is an optimization problem. It is to find the

smallest number of units that must be up in M at time t in a feasible solution. In order to state

the problem’s complexity, let us consider its decision version: given an instance of the MUCP, a

time period t0, a unit subset M and an integer K , the question is whether there exists a feasible

solution in which at most K units of M are up at time t0, i.e. αt0(M)≤ K .

Theorem 3.7. Computing the rank of a unit subset is NP-hard for T ≥ 3.

Proof. Let us consider an instance of the partition problem, with a set of n positive integers

a1, ...,an. The question is whether S = {1, ...,n} can be partitioned into two subsets S1 and S2

such that
∑

i∈S1 ai =∑
i∈S2 ai.

First note that if such a partition exists, then
∑

i∈S1 ai = ∑
i∈S2 ai = A where A = 1

2
∑

i∈S ai.

Consider now the following instance of the rank decision problem: let T = 3 with D = [A, 0, A],

60



3.3. RANK OF UNIT SUBSETS

and n units such that P i
max = P i

min = ai and `i = 2, i ∈ {1, ...,n}. The other characteristics are

fixed arbitrarily. Set t0 = 2, M = {1, ...,n} and K = 0. Let us suppose there exists a solution to

the latter instance. Let S1 be the set of units up at time 1, and S2 be the set of units up at

time 3. The claim is that (S1, S2) is a solution to the partition problem. Indeed, S1 and S2

are disjoint, as all units up at time 1 shut down at time 2, and stay down for a minimum of

two time periods. Thus, all units up at time 1 are down at time 3. Moreover, the units in S1

satisfy the demand at time 1, so
∑

i∈S1 ai ≥ A. Similarly,
∑

i∈S2 ai ≥ A. As S1 and S2 are disjoint,

2A ≤∑
i∈S1 ai +∑

i∈S2 ai ≤∑
i∈S ai = 2A, it follows

∑
i∈S1 ai = A,

∑
i∈S2 ai = A and S1 ∪S2 = S.

Conversely, any solution to the partition problem can similarly be used to construct a solution

to this instance of the rank computation problem. �

Given this complexity result, the static rank will be used in practice instead of the rank.

Indeed, the static rank can be computed in linear time (provided the units are sorted by decreasing

order according to P j
max) using Algorithm 2.

Algorithm 2 Computation of the static rank of set M at time t

Compute the residual demand at time t: D t = Dt −∑
j 6∈M P j

max
Sort units in M by decreasing order according to Pmax
ρ = 0 and α= 0
while ρ < D t do
ρ← ρ+M[α]
α←α+1

end while
return α

For a given subset of units M, the definition of the rank at a given time t is extended to

a given interval I = {t0, ..., t1}. The maximum rank of M over I is denoted by αI (M), i.e.

αI (M)=maxt∈I αt(M). Similarly, the definition of the static rank at a given time t is extended

to I . The maximum static rank of M over I is denoted by αI (M).

Let tmax be the time period at which the demand is maximum on I .

Lemma 3.5. αtmax (M)=αI (M).

Proof. By definition of the rank of M at time tmax, there exists a solution (x,u) ∈ Pn
x,u such that

exactly αtmax (M) units in M are up at time tmax. Let Mmax be the set of units in M which are up

at time tmax in solution (x,u). Using (x,u), a solution (x̃, ũ) is iteratively constructed such that

any unit in M\Mmax is down on the whole interval I and any unit in Mmax is up on the whole

interval I . We first set (x̃, ũ) equal to (x,u), and we slightly modify the behavior of the units in

M as follows.

• For any j ∈ Mmax, ∀t ∈T , we set x̃ j
t = 1.
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• For any j ∈ M\Mmax, if j starts up at t ∈I in solution (x,u), we update coordinates (x̃ j, ũ j)

of (x̃, ũ) such that j is down from time t to t1, starts up at time t1 +1 and remains up until

time T. Indeed, as the units in subset Mmax meet the maximum demand Dtmax on I , for

any t ∈I , the demand at time t is also met by units in Mmax. For any t 6∈I , the units up at

time t in (x̃, ũ) are exactly the units up at time t in solution (x,u). Thus, in solution (x̃, ũ),

the demand is indeed satisfied at time t. Furthermore, by delaying the start-up of unit j, its

minimum down time is satisfied, and since j remains up until the end of the time horizon,

its minimum up time is satisfied as well.

• Similarly, for any j ∈ M\Mmax such that j shuts down at time t ∈I , we set (x̃ j, ũ j) such

that j is up from time 1 to t0 −1 and shuts down at time t0. Similar arguments can prove

that (x̃, ũ) remains feasible.

Consequently, (x̃, ũ) is a solution such that any unit in M\Mmax is down on the whole interval

I and any unit in Cmax is up on the whole interval I .

It follows that αt(M)≤αtmax (M),∀t ∈I . �

Let, for any i ∈ M, the static i-rank αi
t(M) be the smallest number of units that must be up in

M at time t in order to satisfy the residual demand Dt −∑
j 6∈M P j

max, given that unit i is down at

t. By Theorem 3.4, if Pn
UCP (x,u) is full dimensional then the definition of αi

t(M) makes sense, as

there exists a solution in which unit i is down at time t.

For example, by referring to the instance previously presented in this section, recall unit

subset M′ = {1,2,3}. The residual demand at time 2 is D2 = D2. Unit 1 is sufficient to cover the

residual demand, thus α2(M′)= 1. However, if unit 1 is down at time 2, there must be at least

two units of M′ up at time 2 to satisfy the residual demand. It follows that α1
2(M′)= 2.

3.4 Valid inequalities

In this section, we first define the up-set inequalities, which account for some of the combinatorial

aspects induced by the knapsack structure of the MUCP. We will then introduce the interval

up-set inequalities, as a generalization of the up-set inequalities. As they capture both knapsack

constraints and minimum up and down times, they are more dedicated to the MUCP.

3.4.1 Up-set inequalities

By definition of the rank, for any subset M ⊂N and time t ∈T , the up-set inequality, defined as

follows, is valid:

∑
j∈M

x j
t ≥αt(M). (3.1)
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This inequality is difficult to produce given that the rank αt(M) is hard to compute. Thus, a

weaker version of inequality (3.1) is also defined as the following static up-set inequality:

∑
j∈M

x j
t ≥αt(M). (3.2)

In practice, if a lower bound α of αt(M) such that α ≤ αt(M) is known, the corresponding

inequality
∑

j∈M x j
t ≥α can be used instead of (3.2).

These static up-set inequalities directly correspond to the extended cover inequalities for the

knapsack polytope [4].

Facet-defining cases In [4], a characterization of the cases when these inequalities are facet-

defining is given. These results are transposed to the MUCP. We first give a few definitions.

Let P n = Conv{xt ∈ {0,1}n,
∑

j∈N P j
maxx j

t ≥ Dt} be the polytope of the MUCP considered at

time period t only.

Let N and all of its subsets to be considered below be ordered so that P j
max ≥ P j+1

max, j ∈
{1, ...,n−1}. As we place ourselves here at a given time period t ∈T , for simplicity, we drop the

index t from all variables and quantities.

For a given t ∈ T , a subset C of N is called an up-set if αt(C) ≥ 1. In other words, C is an

up-set if and only if the units in N \C are not sufficient to meet the demand at time t.

An up-set C is called minimal if for all subset Q (C, αt(Q)= 0. For any minimal up-set C, we

define E(C)= C∪C′ as the extension of C to N , where

C′ = { j ∈N \C,P j
max ≥ P j1

max} where j1 = argmax
j∈C

P j
max.

A minimal up-set C is called strong if for any minimal up-set A such that |A| = |C| and

A 6= C, E(C) 6⊂ E(A). For example, by referring to the MUCP instance defined in Section 3.3, if we

consider the time period t = 2, subset M = {1,3} is a minimal up-set as neither {1} nor {3} is an

up-set. Since M contains the most powerful unit of N (unit 1), E(M)= M. However, subset M is

not strong. Indeed, subset A = {2,3} is a minimal up-set such that |A| = |M|, and E(A)= {1,2,3}

implying that E(M)⊂ E(A).

A up-set M is said to be a strong up-set extension if there exists a strong up-set C such that:

(i) M = E(C)

(ii) |C| = |M|−αt(M)+1

(iii) αt(A)= 0 where A = C\{ j1, j2}∪ {1} and j2 = argmax j∈C\{ j1} P j
max.

For any subset M ⊂N , we denote by Up-Set(M) the corresponding inequality (3.2).

Before characterizing facet-defining cases, we give a few technical lemmas. These are trans-

posed from [4].
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Lemma 3.6. For any up-set C ∈N :

α(E(C))≥ |E(C)\C|+1.

Furthermore, if C is minimal, then α(E(C))= |E(C)\C|+1.

Proof. Consider a vector x such that
∑

j∈E(C) x j ≤ |E(C)\C| = p. In order to maximize the power

production in solution x, we need the p most powerful units in E(C) to be up. The other units

in E(C) will be down, as
∑

j∈E(C) x j ≤ p. Thus, the units up in E(C) are exactly those in |E(C)\C|.
But as C is an up-set, the demand will not be met. So there is no vector x such that

∑
j∈E(C) x j ≤

|E(C)\C| in P n. �

Lemma 3.7. A minimal up-set C is strong if and only if the set R = C\{ j1}∪ {i1} is not an up-set,

where i1 is the most powerful unit of N \E(C).

Proof. (⇒) If R is an up-set, then, following from the minimality of C, R is also minimal.

Furthermore, |R| = |C|, R 6= C and E(C)⊂ E(R) since i1 ≥ j1. So C is not strong.

(⇐) If C is not strong, there exists a minimal up-set A such that |A| = |C|, A 6= C and

E(C) ⊂ E(A). We can write A = (C\CA)∪ AC, where CA = C\A and AC = A\C. It follows from

|A| = |C| and E(C)⊂ E(A) that |CA| = |AC| and j1 ∈ CA.

A is an up-set so A = C∪CA\AC does not suffice to meet the demand by itself. As every unit

in CA is more powerful than each unit in AC (or else we would not have E(C) ⊂ E(A)), we can

deduce that C∪ { j1}\{i1} does not suffice either to meet the demand. So R is an up-set. �

For any up-set M ⊂N , we define E−1(M) the set of the |M|−α(M)+1 less powerful units of

M.

Lemma 3.8. For any up-set M ⊂ N , M is a strong up-set extension if and only if E−1(M) is a

strong up-set which satisfies (iii) and such that E(E−1(M))= M.

Proof. The set of the |M|−α(M)+1 less powerful units of M is the only set that can possibly

satisfy (i), (ii) and (iii). Hence the direct implication. The return implication follows from the

definition of a strong up-set extension. �

Lemma 3.9. Let M ⊂N be an up-set. If E−1(M) is an up-set, then either M = E(E−1(M)) (and

in that case
∑

j∈M x j ≥ α(M) is exactly Up-Set(E(E−1(M)))) or the inequality
∑

j∈M x j ≥ α(M) is

dominated by Up-Set(E(E−1(M))).

Proof. First it is clear that M ⊆ E(E−1(M)). Indeed, if there were j ∈ M such that j 6∈ E(E−1(M)),

we would have j < j1, otherwise j ∈ E(E−1(M)). But j < j1 contradicts the definition of E−1(M).

Up-Set(E(E−1(M))) gives:∑
j∈E(E−1(M))\M

x j + ∑
j∈M

x j ≥ |E(E−1(M))\M|+ |M|− |E−1(M)|+1.
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Summed up to the trivial inequality

|E(E−1(M))\M| ≥ ∑
j∈E(E−1(M))\M

x j

we directly obtain
∑

j∈M x j ≥α(M). �

Theorem 3.8. For any M ⊂N , the static up-set inequality (3.2) is facet defining for P n if and

only if M is a strong up-set extension.

Proof. (⇒) Let suppose M is not a strong up-set extension, i.e. M is not an up-set, or E−1(M) is

not a strong up-set, or does not satisfy the condition E(E−1(M))= M, or does not satisfy condition

(iii).

If M is not an up-set then the corresponding static up-set inequality is clearly not a facet.

Let suppose E−1(M) is not an up-set. Then E−1(M) is sufficient to cover the demand, and

|M∩E−1(M)| =α(M)−1 so
∑

j∈M x j ≥α(M) is not valid.

Let now suppose E−1(M) is an up-set, but is not minimal. There exists a unit i such

that E−1(M)\{i} is still an up-set. Then, either E(E−1(M)\{i}) = E(E−1(M)) or E(E−1(M)\{i}) =
E(E−1(M))\{i}. In both cases, Up-Set(E(E−1(M){i})) dominates Up-Set(E(E−1(M))). By Lemma

3.9, we can conclude that (3.1) is not a facet of P n.

Let suppose now that E−1(M) is not strong. By Proposition 3.7, R = E−1(M)\{ j1}∪ {i1} is an

up-set. As i1 ≤ j1, E(E−1(M))∪ {i1}⊂ E(R). It can be easily checked that Up-Set(E(R)) dominates

Up-Set(E(E−1(M))). By Lemma 3.9, we can conclude that (3.1) is not a facet of P n.

Let now suppose that M 6= E(E−1(M)). By Lemma 3.9, we can conclude that (3.1) is not a facet

of P n.

Let now suppose E−1(M) does not satisfy condition (iii), which is to say T = E−1(M)\{ j1, j2}∪
{1} is an up-set. If j1 = 1 then it means that T = E−1(M)\{ j2} is an up-set so E−1(M) is not

minimal. We have seen that in this case, (3.1) cannot be a facet of P n. Otherwise, j1 6= 1. Then

we have:

T = (N \M)∪ {2,3, ...,α(M)−1, j1, j2}.

We consider a vector x satisfying (3.1) to equality:
∑

j∈M x j =α(M). We show that if x1 = 0 then x

is not feasible. Indeed, if the α(M) units of M which are up in x are the α(M) most powerful units

of M\{1}, i.e. {2,3, ...,α(M)−1, j1, j2}, then, even if all units in N \M are up, the demand cannot

be met, as T is an up-set. So each vector x ∈ P satisfying
∑

j∈M x j =α(M) is such that x1 = 1, so

there are less than n linearly independant vertices satisfying
∑

j∈M x j =α(M). Thus, (3.1) is not a

facet of P n.

(⇐) Let suppose M is a strong up-set extension. We will prove constructively that the

hyperplane defined by (3.1) contains n linearly independant vertices of P n. Let c = |E−1(M)| and

m = |M|.
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Consider the n×n matrix:

X =


U B1 Cn−m

U Ic U

Cm−c B2 U


where B1 and B2 are (n−m)× c and (m− c)× c respectively, each of them having identical

rows of the form

b1 = (1,0,0, ...,0), b2 = (1,1,0, ...,0).

Ic is the identity matrix of order c, U stands for matrices of ones of appropriate dimension. Cp is

the p× p matrix such that C contains zeros on the diagonal, and ones everywhere else.

Each row of X corresponds to a vertex of P. The first m− c columns of X correspond to the

units in M\E−1(M), the following c columns correspond to the units in E−1(M) and the last n−m

columns correspond to the units in N \M. Each row satisfies (3.1) to equality: among its first m

entries, each row has exactly α(M) entries equal to 1.

We now prove that each row is a feasible solution, i.e. it belongs to P n.

As E−1(M) is strong, E−1(M)\{ j1}∪ {i1} is not an up-set, so the units in E−1(M)∪ { j1}\{i1}

suffice to meet the demand. In particular, for any i ∈N \M, the units in E−1(M)∪ { j1}\{i} suffice

to meet the demand. Hence the feasibility of the first n−m rows.

As E−1(M) is minimal, for all i ∈ E−1(M), E−1(M)\{i} is not an up-set, so the units in E−1(M)∪
{i} suffice to cover the demand. Hence the feasibility of the following c rows.

By condition (iii), A = E−1(M)\{ j1, j2}∪ {1} is not an up-set. Thus A = E−1(M)∪ { j1, j2}\{1} is

enough to cover the demand by itself. In particular, for all i ∈ M\E−1(M), the units in E−1(M)∪
{ j1, j2}\{i} suffice to meet the demand. Hence the feasibility of the last m− c rows. �

3.4.2 Interval Up-Set inequalities

Let C ⊂N be a subset of units, with i ∈ C, and let I = {t0, ..., t1}⊂T be a time interval of length

less than or equal to Li, i.e. t1 − t0 ≤ Li. The interval up-set inequality is defined as follows:

αI (C)+
t1∑

t=t0+1
ui

t ≤ xi
t1
+ ∑

j∈C\{i}

(
x j

t0
+

t1∑
t′=t0+1

u j
t

)
(3.3)

Example 3.2. Recall the illustrative instance of the MUCP from Example 1.1. Consider C = {1,2}

and interval I = {1,2}. Recall from Example 3.1 that the maximum rank of C on interval I is

αI (C)= 1. For i = 1, Li = 2, and the corresponding interval up-set is

1+u1
2 ≤ x1

2 + x2
1 +u2

2 (3.4)

We now give a technical lemma:

Lemma 3.10. For all C ⊂N , I = {t0, ..., t1}⊂T and k ∈I , the following holds:

∑
j∈C

x j
k ≤

∑
j∈C

(
x j

t0
+

t1∑
t=t0+1

u j
t

)

66



3.4. VALID INEQUALITIES

Proof. For all j ∈ C, the sum of inequalities (1.4) x j
t − x j

t−1 ≤ u j
t from t0 +1 to k yields x j

k ≤
x j

t0
+∑k

t=t0+1 u j
t .

Hence, summing over all j ∈ C and using u j
t ≥ 0 ∀t ∈T , we obtain the proposed inequality. �

The following result provides a characterization of validity for the interval up-set inequality.

For any interval I = {t0, ..., t1}⊂T and for any i ∈N , we define the subdivision Y i
I
= (yt, t ≥ 1) of

interval I as follows:

{
y0 = t0

yt+1 = argmaxt′∈{yt+1,..., min(yt+`i , t1)} Dt′ ∀t ≥ 0

Recall that for each subset of units C ⊂N , for each time period t ∈T and for each unit i ∈ C,

the static i-rank αi
t(C) is the smallest number of units that must be up in M at time t in order to

satisfy the residual demand Dt −∑
j 6∈M P j

max, given that unit i is down at t.

Theorem 3.9 (Validity characterization). Let C ⊂ N , for any i ∈ C, for any interval I =
{t0, ..., t1}⊂T such that t1− t0 ≤ Li, the interval up-set inequality (3.3) is valid for Pn

x,u if and only

if:

∀y ∈Y i
I

, if αi
y(C)<αI (C), then each solution (x,u) ∈ Pn

x,u is such that


xi

y = 1

or∑
j∈C\{i}

(
x j

t0
+∑t1

t=t0+1 u j
t

)
≥αI (C)

(3.5)

Proof. Suppose there exists y ∈Y i
I

such that there is a solution (x,u) not satisfying (3.5), i.e.
xi

y = 0

and∑
j∈C\{i}

(
x j

t0
+∑t1

t=t0+1 u j
t

)
<αI (C)

Then, we have
∑t1

t=t0+1 ui
t = xi

t1
. Indeed, as unit i is down at time y, if xi

t1
= 1 then

∑t1
t=t0+1 ui

t = 1=
xi

t1
. Otherwise, if xi

t1
= 0 then by the min-up inequality

∑t1
t=t0+1 ui

t = 0= xi
t1

. Thus the interval up-

set inequality turns into αI (C)≤∑
j∈C\{i}

(
x j

t0
+∑t1

t=t0+1 u j
t

)
. As

∑
j∈C\{i}

(
x j

t0
+∑t1

t=t0+1 u j
t

)
<αI (C),

the interval up-set inequality is violated by solution (x,u).

Now suppose for all y ∈Y i
I

such that αi
y(C)<αI (C), each solution satisfies (3.5).

Let (x,u) be a solution.

• Case 1: there exists y ∈Y i
I

such that αi
y(C)<αI (C) and xi

y = 0.

In this case we have
∑

j∈C\{i}

(
x j

t0
+∑t1

t=t0+1 u j
t

)
≥αI (C) so the interval up-set inequality is

satisfied by (x,u).
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• Case 2: there exists y ∈Y i
I

such that αi
y(C)≥αI (C) and xi

y = 0. By definition of αi
y(C), we

know there are at least αi
y(C) units up in C at time y since unit i is down. Thus by Lemma

3.10, we get:

αi
y(C)≤ ∑

j∈C\{i}
x j

y ≤
∑

j∈C\{i}

(
x j

t0
+

t1∑
t=t0+1

u j
t

)

Since αI (C)≤αi
y(C) we can conclude that the interval up-set inequality is also valid in this

case.

• Case 3: unit i is up on the whole interval I . By definition, there are at least αI (C) units

in C up at time tmax. Thus there are at least αI (C)−1 units in C\{i} up at time tmax. By

Lemma 3.10,

αI (C)−1≤ ∑
j∈C\{i}

x j
tmax

≤ ∑
j∈C\{i}

(
x j

t0
+

t1∑
t=t0+1

u j
t

)

As unit i is up on I , xi
t1
= 1 and

∑t1
t=t0+1 ui

t = 0 so the interval up-set inequality is also valid

in this case.

• Note that there are no cases left. Indeed, if xi
y = 1 for all y ∈Y i

I
then i is up on the whole

interval I . If i shuts down at some time t ∈I , it remains down at least for `i time periods.

But the difference between two elements y of Y i
I

is at most `i, by construction of the

subdivision Y i
I

.

�

Example 3.3. Recall interval up-set inequality (3.4) from Example 3.2, with I = {1,2}, C = {1,2}

and i = 1. In this case, Y 1
I
= (y1, y2), where y1 = 1 and y2 = 2. Then, for each y ∈ Y 1

I
, α1

y(C)= 1=
αI (C). Therefore inequality (3.4) is valid.

Note that the validity condition for the whole polytope from Theorem 3.9 may be hard to check.

Let us consider the supporting instance restricted to interval I , denoted by Inst(I ). Contrary to

the general case, where αI (C) is hard to compute, the computation of the maximum rank over

interval I for instance Inst(I ) is easy. Indeed, αI (C) = αI (C), as the solution such that the

αI (C) most powerful units of C are up on I , alongside with all units in N \C, is a solution to

Inst(I ).

Let us define Pn
x,u(I ) the polytope associated to Inst(I ). If αI (C\{i})<αI (C), and if there

exists yt ∈Y i
I

such that αi
yt

(C)<αI (C), then we can easily construct a solution (x,u) ∈ Pn
x,u(I )

not satisfying inequalities (3.5). It suffices to set unit i down on interval [yt−1 +1, yt−1 +`i] and

up at all other times, and to set the αI (C)−1 most powerful units of C\{i} up on I , alongside

with all units in N \C. Consequently, the following result holds, thus providing the necessary

and sufficient validity condition for the interval up-set inequality in polytope Pn
x,u(I ).
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Theorem 3.10 (Validity characterization in Pn
x,u(I )). Let C ⊂N , for any i ∈ C, for any interval

I = {t0, ..., t1}⊂T such that t1 − t0 ≤ Li and αI (C\{i})<αI (C), the interval up-set inequality is

valid for Pn
x,u(I ) if and only if ∀y ∈Y i

I
, αi

y(C)≥αI (C).

We will see in Theorem 3.15 that in the particular case αI (C\{i})=αI (C), the interval up-set

inequality (3.3) is dominated by inequalities (1.4) and up-set inequalities (3.1).

A question is whether, for ∆ ∈N, there exist other valid inequalities of the following form:

∆+
t1∑

t=t0+1
ui

t ≤ xi
t1
+ ∑

j∈C\{i}

(
x j

t0
+

t1∑
t′=t0+1

u j
t

)
. (3.6)

Interestingly it can be shown that if ∆>αI (C) then inequality (3.6) is not valid. On the opposite

in the case ∆≤αI (C)−1, inequality (3.6) is valid, but is also dominated by up-set inequalities

(3.1), min-up inequalities (1.2) and inequalities (1.4). Thus, the only relevant case is ∆=αI (C).

Theorem 3.11. For all C ⊂N , i ∈ C, I = {t0, ..., t1} such that t1 − t0 ≤ Li,

(i) If ∆≤αI (C)−1, then inequality ∆+∑t1
t=t0+1 ui

t ≤ xi
t1
+∑

j∈C\{i}

(
x j

t0
+∑t1

t′=t0+1 u j
t

)
is valid for

Pn
x,u,

(ii) If ∆>αI (C), then inequality ∆+∑t1
t=t0+1 ui

t ≤ xi
t1
+∑

j∈C\{i}

(
x j

t0
+∑t1

t′=t0+1 u j
t

)
is not valid for

Pn
x,u.

Proof. Recall tmax denotes the time period at which the demand is maximum on I , and by

Lemma 3.5, αtmax (C)=αI (C).

(i): As the length of I is less than or equal to Li, from the min-up inequality (1.2) we have

t1∑
t=t0+1

ui
t ≤

t1∑
t=t1−Li+1

ui
t ≤ xi

t1
.

The up-set inequality for C\{i} at time tmax, alongside with Lemma 3.10 applied to C\{i} and

k = tmax, yields:

αI (C)−1=αtmax (C)−1≤αtmax (C\{i})≤ ∑
j∈C\{i}

x j
tmax

≤ ∑
j∈C\{i}

(
x j

t0
+

t1∑
t=t0+1

u j
t

)

Thus, summing up these two inequalities, we directly obtain the desired inequality with ∆ ≤
αI (C)−1.

(ii): By definition of the rank of C at time tmax, note that there exists a solution (x,u) ∈ Pn
x,u

such that exactly αtmax (C) units in C are up at time tmax. Let Cmax be the set of units in C

which are up at time tmax in solution (x,u). As in the proof of Lemma 3.5, a solution (x̃, ũ) can

be constructed from (x,u): solution (x̃, ũ) is such that any unit in C\Cmax is down on the whole

interval I and any unit in Cmax is up on the whole interval I .
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Thus, there exists a solution (x̃, ũ) such that any unit in C\Cmax is down on the whole interval

I and any unit in Cmax is up on the whole interval I . So the following holds:

αI (C)+
t1∑

t=t0+1
ũi

t = x̃i
t1
+ ∑

j∈C\{i}

(
x̃ j

t0
+

t1∑
t=t0+1

ũ j
t

)
.

So if ∆>αI (C), the inequality is violated by (x̃, ũ). �

3.4.3 Generalized interval up-set inequalities

This section introduces valid inequalities, which are generalizations of the interval up-set in-

equality (3.3). These inequalities will become useful in Section 3.5 to obtain necessary facet

conditions for the interval up-set inequality.

Theorem 3.12. If conditions (3.5) hold, then for each y ∈Y i
I

the following inequality is valid:

αI (C)+ (αi
y(C)−αI (C))(1− xi

y)+
t1∑

t=t0+1
ui

t ≤ xi
t1
+ ∑

j∈C\{i}

(
x j

t0
+

t1∑
t=t0+1

u j
t

)
. (3.7)

Proof. If xi
y = 1 then inequality (3.7) translates into the interval up-set inequality, so it is valid

as conditions (3.5) hold. If xi
y = 0, i.e. unit i is down at time y, there are at least αi

y(C) units up in

C\{i} at time y, i.e. αi
y(C)≤∑

j∈C\{i} x j
y. Using Lemma 3.10, we get:

αi
y(C)≤ ∑

j∈C\{i}
x j

y ≤
∑

j∈C\{i}

(
x j

t0
+

t1∑
t=t0+1

u j
t

)
.

It follows that inequality (3.7) is valid. �

Note that if for a given y ∈Y i
I
αi

y(C)=αI (C), then corresponding inequality (3.7) is exactly

the interval up-set inequality (3.3).

From inequalities (3.7), another family of valid inequalities generalizing interval up-set

inequalities can be derived.

Theorem 3.13. Let βi
y = maxt∈[max(y−`i ,t0),y−1](αi

t(C)−αI (C)) for all y ∈ Y i
I

. If conditions (3.5)

hold, then the following inequality is valid:

αI (C)+ (αi
t1
−αI (C))(1− xi

t1
)+

t1∑
t=t0+1

(1+βi
t)u

i
t ≤ xi

t1
+ ∑

j∈C\{i}

(
x j

t0
+

t1∑
t=t0+1

u j
t

)
(3.8)

Proof. The proof can be derived similarly as for Theorem 3.12. �

Note that if βi
y ≤ 0 for all y ∈Y i

I
, then inequality (3.8) is exactly the interval up-set inequality

(3.3).
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For any j ∈ C\{i}, let C i, j
α−1 be the set of the αI (C)−1 most powerful units of C\{i, j}. The

following theorem shows that another valid inequality exists if conditions (3.5) hold and if there

exists j ∈ C\{i} such that unit i, units in C i, j
α−1 and units in N \C are not sufficient to cover the

demand at time t1.

Theorem 3.14. If conditions (3.5) hold and if there exists j ∈ C\{i} such that:

P i
max +

∑
k∈C i, j

α−1

Pk
max +

∑
k∈N \C

Pk
max < Dt1 , (3.9)

the following inequality is valid:

αI (C)+
t1∑

t=t0+1
ui

t ≤ xi
t1
+ x j

t1
+ ∑

k∈C\{i, j}

(
xk

t0
+

t1∑
t=t0+1

uk
t

)
. (3.10)

Proof. Consider solution (x,u) ∈ Pn
x,u.

• Case 1: x j
t1
= 1

Inequality (3.10) translates into

αI (C)−1+
t1∑

t=t0+1
ui

t ≤ xi
t1
+ ∑

k∈C\{i, j}

(
xk

t0
+

t1∑
t=t0+1

uk
t

)
. (3.11)

Unit j is up at time t1 in solution (x,u) but may be down at another time of I . Thus we

define solution (x,u) as equal to solution (x,u), except unit j is up at all times in solution

(x,u). Solution (x,u) remains feasible, and since (3.11) does not depend on j, if (x,u) violates

inequality (3.11), so does (x,u).

However j is up at all times in (x,u) so x j
t0
+∑t1

t=t0+1 u j
t = 1. It follows:

αI (C)+
t1∑

t=t0+1
ui

t > xi
t1
+ ∑

k∈C\{i}

(
xk

t0
+

t1∑
t=t0+1

uk
t

)

which is a contradiction, as the interval up-set inequality was supposed to be valid.

• Case 2: x j
t1
= 0

As unit j is down at time t1, there are at least αI (C) units up in C\{i, j} since we assumed

that the αI (C)−1 most powerful units of C\{i, j} are not sufficient to cover the demand

at t1, even if unit i and units in N \C are up. So αI (C)≤∑
k∈C\{i, j}

(
xk

t0
+∑t1

t=t0+1 uk
t

)
. With

the min-up inequality (1) we can conclude that (3.10) is valid.

�
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Note that inequality (3.10) will dominate interval up-set inequality (3.3) under very particular

conditions, while inequalities (3.7) and (3.8) present two large classes of inequalities containing

interval up-set inequalities.

As a perspective, it seems that other generalizations of interval up-set inequalities could lead

to other facet defining inequalities. In particular, it is possible to replace unit i ∈ C in interval

up-set inequalities by a whole subset S of C which plays a role similar to i, as in inequalities of

the form

Γ+ ∑
j∈S

t1∑
t=t0+1

u j
t ≤

∑
j∈S

x j
t1
+ ∑

j∈C\S

(
x j

t0
+

t1−1∑
t=t0+1

u j
t

)
and of the form

Γ′+ ∑
j∈S

t1∑
t=t0+1

u j
t1
≤ ∑

j∈S
x j

t1
+ ∑

j∈C\S

(
x j

t0
+

t1−1∑
t=t0+1

u j
t

)
+

(
x j

t0+1 +
t1∑

t=t0+2
u j

t

)
where Γ and Γ′ are constants.

3.5 Facial study for interval up-set inequalities

We now explore the cases in which interval up-set inequalities are facet defining for Pn
x,u. In

the following, for given C ⊂ N , i ∈ C and I = {t0, ..., t1} ⊂ T such that t1 − t0 ≤ Li and validity

conditions from Theorem 3.9 are satisfied, we denote by F the face defined by the interval up-set

inequality (3.3):

F =
{
(x,u) ∈ Pn

x,u |αI (C)+
t1∑

t=t0+1
ui

t = xi
t1
+ ∑

j∈C\{i}

(
x j

t0
+

t1∑
t=t0+1

u j
t

)}

3.5.1 Necessary facet conditions in Pn
x,u

The following theorem presents necessary conditions for the interval up-set inequality to define a

facet. Recall that for any j ∈ C\{i}, C i, j
α−1 is the set of the αI (C)−1 most powerful units of C\{i, j}.

Theorem 3.15. If the interval up-set inequality (3.3) defines a facet of Pn
x,u, then the following

conditions hold:

• ∀k ∈N \{i}, ∀t ∈T \{1} ,


∃(x,u) ∈ F such that uk

t = 1 (3.12a)

∃(x,u) ∈ F such that xk
t−1 − xk

t = 1 (3.12b)

∃(x,u) ∈ F such that xk
t′ = 0, ∀t′ ∈ [t−1, t+`k −1] (3.12c)

• ∀y ∈Y i
I , αi

y(C)≤αI (C) (3.13)

• ∀ j ∈ C\{i}, P i
max +

∑
k∈C i, j

α−1

Pk
max +

∑
k∈N \C

Pk
max ≥ Dt1 (3.14)

• αI (C\{i})<αI (C) (3.15)
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Proof. Conditions (3.12a) – (3.12c) are trivially necessary facet conditions.

Note that if F is a facet of Pn
x,u, conditions (3.5) hold as the interval up-set is valid.

If (3.13) does not hold, then by Theorem 3.12, inequality (3.7) is valid and dominates the

interval up-set inequality.

If (3.14) does not hold, then by Theorem 3.14, inequality (3.10) is valid. Recall that summing

up inequalities (1.4) x j
t − x j

t−1 ≤ u j
t from t0 +1 to t1 yields x j

t1
≤ x j

t0
+∑t1

t=t0+1 u j
t . It follows that

inequality (3.10) dominates the interval up-set inequality.

If (3.15) does not hold, i.e. if αI (C\{i})=αI (C) then by summing up inequalities (1.4) and

up-set inequalities (3.1) and using Lemma 3.10, we get the following inequality:

αI (C)=αI (C\{i})≤ ∑
j∈C\{i}

(
x j

t0
+

t1∑
t=t0+1

u j
t

)
.

By summing this inequality with the min-up inequality
∑t1

t=t0+1 ui
t ≤ xi

t1
we get the interval up-set

inequality. The interval up-set inequality is then dominated by up-set inequalities (3.1), min-up

inequalities (1.2) and inequalities (1.4). �

If one of the conditions (3.13) – (3.15) does not hold, a valid inequality dominating the interval

up-set inequality can be derived. Conditions (3.13) – (3.15) are easy to check, while deciding

whether (3.12a) – (3.12c) hold is more difficult. Note that condition (3.12b) (resp. (3.12a)) means

that unit k shuts down (resp. starts up) at time t in solution (x,u), and that condition (3.12c)

states that for any k ∈ N \{i} and ∀t ∈ T , there exists a solution (x,u) ∈ F satisfying property

Πk,t.

3.5.2 Facet characterization in Pn
x,u(I )

Theorem 3.15 provides necessary conditions for F to define a facet. We now discuss in which

cases these conditions are necessary and sufficient. First we give a technical lemma stating that,

in any solution (x,u) ∈ F, each unit j ∈ C\{i} starts up at most once on interval I .

Lemma 3.11. Let (x,u) ∈ F. For all j ∈ C\{i}, x j
t0
+∑t1

t=t0+1 u j
t ≤ 1.

Proof. Suppose there exists j0 ∈ C\{i} such that x j
t0
+∑t1

t=t0+1 u j
t ≥ 2. We define solution (x,u) to

be equal to (x,u), except that unit j0 is up at all times in (x,u). Obviously (x,u) ∈ Pn
x,u. However,

the following holds:

αI (C)+
t1∑

t=t0+1
ui

t − xi
t1
− ∑

j∈C\{i, j0}

(
x j

t0
+

t1∑
t=t0+1

u j
t

)
≥ 2. (3.16)

As (x,u) is equal to (x,u) except on (x j,u j) coordinates, we can replace (x,u) by (x,u) in

inequality (3.16). Moreover, as j0 is up at all times in (x,u), we have x j
t0
+∑t1

t=t0+1 u j
t = 1. Adding

this equality to inequality (3.16) we get:
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αI (C)+
t1∑

t=t0+1
ui

t > xi
t1
+ ∑

j∈C\{i}

(
x j

t0
+

t1∑
t=t0+1

u j
t

)
which means (x,u) violates the interval up-set inequality. As it was assumed to be valid for

Pn
x,u, we have here a contradiction. �

Now recall Pn
x,u(I ), the polytope associated to the supporting instance Inst(I ) of interval I

and FI the face of Pn
x,u(I ) associated to the interval up-set inequality.

Theorem 3.16. The interval up-set inequality (3.3) defines a facet of Pn
x,u(I ) if and only if

conditions (3.11)-(3.15) hold.

Proof. The direct implication has been proven in Theorem 3.15. We now prove the return

implication.

First for any subset Cup ⊂ C\{i} and t, t′ ∈I , let v(Cup, [t, t′]) be the vector such that units in

subset Cup are up at all times of I , units in C\(Cup ∪ {i}) are down at all times of I , unit i is up

on interval [t, t′] and down at all other times, and units in N \C are up at all times.

Now suppose

FI ⊂ {(x,u) ∈ Pn
x,u(I ) | ∑

j∈N

( ∑
t∈I

a j
t x j

t +
∑

t∈I\{t0}
b j

t u j
t

)
= γ (?)}

where γ ∈R, and ∀ j ∈N , ∀t ∈I , a j
t ∈R, b j

t ∈R.

We claim that FI = {(x,u) ∈ Pn
x,u(I ) |∑ j∈N

(∑
t∈I a j

t x j
t +

∑
t∈I\{1} b j

t u j
t

)
= γ}, which proves that

F is a facet of Pn
x,u.

Let k ∈N \C. There are neither xk nor uk variables appearing in the interval up-set inequality,

and by condition (3.12c), for all t ∈T , there exists a solution (x,u) ∈ F such that Πk,t is satisfied.

So by Lemma 3.4 (ii), vectors Ψk
t,t+` j (x,u) and Ψk

t+1,t+` j (x,u) are solutions of FI . It follows that

ak
t = 0, t ≥ 1. Furthermore, by condition (3.12a), for any t ≥ t0 there is a solution χu

k,t(FI ) ∈ FI

such that unit k starts up at time t. We define χ̃u
k,t(FI ) to be equal to χu

k,t(FI ) except that unit k

is up at all times. As χ̃u
k,t(FI ) ∈ FI , it follows that bk

t = 0, t ≥ t0.

By construction of the subdivision Y i
I

, we must have tmax ∈ Y i
I

. Thus, by condition (3.13),

αi
tmax

(C) ≤ αI (C). So, if we denote by C i
α the set of the αI (C) most powerful units of C\{i},

the units in C i
α are sufficient to satisfy the demand at time tmax (provided that units in N \C

are all up), thus, they are sufficient to satisfy the demand at any time t ∈I . Therefore vector

v(C i
α,∅) ∈ FI . Moreover, for any t < t1, v(C i

α, [t0, t]) ∈ FI . It follows that ai
t = 0, t ∈ [t0, t1 −1]. For

any t > t0, we also have v(C i
α, [t, t1]) ∈ FI . We thus get bi

t = bi
t1
=−ai

t1
, t ∈ [t0 +1, t1].

Let j ∈ C\{i}. By condition (3.12b), there exists a solution χd
j,t0+1(FI ) ∈ FI such that unit

j shuts down at time t0 +1. By Lemma 3.11, if j shuts down at time t0 +1, it remains down

on [t0 +1, t1] (otherwise we would have x j
t0
+∑t1

t=t0+1 u j
t > 1). Thus we can define χd

j,t(FI ) ∈ FI ,

t ∈ [t0 +1, t1 +1], as equal to χd
j,t0+1(F) except that j shuts down at time t instead of time t0 +1
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(if t = t1 +1 then j is up at all times). Thus we get a j
t = 0, t > t0. Similarly, by condition (3.12a),

there exists a solution χu
j,t1

(FI ) ∈ FI such that unit j starts up at time t1. By Lemma 3.11, unit

j is down on interval [t0, t1 −1] in solution χu
j,t1

(F). So we can define solutions χu
j,t(FI ) ∈ FI ,

t ∈ [t0 +1, t1], as equal to χu
j,t1

(F) ∈ F except that j starts up earlier (at time t instead of time t1).

With these vectors we get a j
t0
= b j

t1
= b j

t , t > t0 +1.

Now equality (?) is proven to be of the form

γ+ai
t1∑

t=t0+1
ui

t = aixi
t1
+ ∑

j∈C\{i}
a j

(
x j

t0
+

t1∑
t=t0+1

u j
t

)
.

We prove that ai = a j, j ∈ C.

Let j ∈ C i
α and t ≥ t0 +1. By condition (3.12a), there exists a solution in F such that unit j

starts up at time t. Thus, in this solution, j is down at time t−1, and there cannot be more than

αI (C)−1 units of C\{i, j} up at time t−1 (otherwise the interval up-set inequality would not be

satisfied at equality). This means that at time t−1, the demand can be satisfied by units of C i, j
α−1,

unit i and units of N \C. Moreover, if t = t1, the demand at time t1 can also be satisfied by those

units, as condition (3.14) holds. So v(C i, j
α−1, [t0, t1]) ∈ FI . Considering vector v(C i

α,∅) ∈ FI , we get

a j = ai.

Let j ∈ C\(C i
α∪ {i}). Recall vector χd

j,t1+1(FI ) ∈ FI , in which unit j is up at all times. In the

solution defined by χd
j,t1+1(FI ), there are at most αI (C)−1 units of C\{i, j} up on I (otherwise

χd
j,t1+1(FI ) 6∈ FI ). So there exists a unit k ∈ C i

α which is down at all times of I in solution

χd
j,t1+1(FI ). We define solution χ̃d

j,t1+1(FI ) ∈ F as equal to χd
j,t1+1(FI ) except that unit j is down

at all times, and unit k is up at all times. It follows that a j = ak. Since ak = ai, this concludes the

proof. �

Theorem 3.16 states that the interval up-set inequality is facet defining for Pn
x,u(I ), provided

that necessary facet conditions (3.12a) – (3.15) hold.

An interesting problem is to extend the result of Theorem 3.16 to the whole polytope Pn
x,u. The

difficulty is induced by some side effects happening at the outer edges of interval I . However, we

can provide some insights into how the result of Theorem 3.16 could be extended to Pn
x,u. Indeed,

in most cases, any vector (x,u) ∈ FI introduced in the proof of Theorem 3.16 can be extended to a

vector of F. By defining Cdown as the set of units in C which are down over interval I in solution

(x,u), we can extend vector (x,u) to the whole time horizon T by gradually shutting down the

units in Cdown before time t0, and then gradually start them up after t1, so that their minimum

down time is satisfied and the demand is met. If such a kind of extension is possible for all the

vectors introduced, then it proves that the considered interval up-set inequality defines also a

facet of Pn
x,u, provided that additional vectors of F can be found, using conditions (3.12a) – (3.12c),

to show that there are no variables xt or ut outside I defining F.

For example, let us consider T = 4, with D = [20, 10, 10, 20], and three units such that

P i
max = 10, Li = 1, `i = 2, i ∈ {1,2,3}. The interval up-set inequality corresponding to C = {1,2,3},
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i = 1 and I = {2,3} defines a facet of Pn
x,u(I ), from Theorem 3.16. This inequality also defines a

facet of Pn
x,u, as the vectors introduced in Theorem 3.16 can be extended to vectors of Pn

x,u(I ).

However, in some particular cases, there may be no way to satisfy the demand outside interval

I while satisfying the minimum-down times of units in Cdown. In these cases, it is likely that

interval up-set inequalities are dominated by some stronger inequalities taking into account the

demand outside I which is higher than the demand inside I .
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4
BRANCH & CUT FOR THE MUCP

In this chapter, we study the separation of up-set and interval up-set inequalities, in order to

come up with a cutting plane generation procedure to be used in a Branch & Cut algorithm.

The results presented in this chapter have been published in [8].

4.1 Separation

As the rank is already NP-hard to compute, we propose to separate static versions of up-set and

interval up-set inequalities, where the rank is replaced by the static rank. We prove that these

static inequalities are still NP-hard to separate. We devise a heuristic separation procedure for

static up-set inequalities, which takes advantage of facet-defining conditions given in Section

3.4.1. We extend this procedure to separate interval up-set inequalities.

4.1.1 Separation of up-set inequalities

We first consider the separation problem of static up-set inequalities for a given set of units

N with maximum power output P j
max, j ∈ N , a time horizon T , a demand Dt, t ∈ T , and a

fractional solution (x,u): test whether there exists a set C ⊂N and a time period t ∈T such that∑
j∈C x j

t <αt(C), and if yes, then exhibit at least one set C and time period t inducing a violated

up-set inequality.

The static up-set inequalities where αt(C)= 1 correspond, in the context of the 0-1 knapsack

problem, to the cover inequalities, which are known to be NP-complete to separate. The general

static up-set inequalities correspond to the extended cover inequalities, whose separation prob-

lem’s complexity is an open question (see [43]). The following theorem states that the separation

problem of static up-set inequalities is NP-complete.
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Theorem 4.1. The separation problem of static up-set inequalities is NP-complete.

Proof. The separation problem of up-set inequalities is obviously in NP. We prove that the

knapsack problem reduces to the separation problem of static up-set inequalities.

Consider a variant of the knapsack problem with n objects associated with weights wi and

values 0< ai ≤ 1, i ∈ {1, ...,n}. Let K be the capacity of the knapsack and let W <∑
i∈{1,...,n} ai. The

question is whether there exists a subset S of objects such that
∑

i∈S ai >W and
∑

i∈S wi < K . Note

that this variant can easily be shown to be NP-hard by reduction from the classical knapsack

problem.

Let us consider the following instance of the separation problem, where A =∑
i∈{1,...,n} ai,

a =mini∈{1,...,n} ai, a =maxi∈{1,...,n} ai and λ= a
a(A−W) :

N = {1, ...,n+1}

T = 1 and D1 = K

∀i ∈ {1, ...,n}, P i
max = wi and Pn+1

max = D1

∀i ∈ {1, ...,n}, xi
1 =λai and xn+1

1 = 1−a/a.

Note that xi
1 ∈ [0,1] for any i because it can be supposed w.l.o.g. that W ≤ A−a (otherwise the

only possible solution to the knapsack instance would be to include all objects in the knapsack).

Any subset C ∈N of this instance has rank α1(C) at most 1: indeed, if unit n+1 is in C then the

demand is satisfied with one unit in C (unit n+1), and thus the corresponding rank is at most

1. If unit n+1 is not in C then the rank of C is zero since no unit in C is needed to cover the

demand.

Here, the separation problem of static up-set inequalities is to find a subset C (containing unit

n+1) such that α1(C) = 1 and
∑

j∈C x j
1 < 1. This is the same as finding a subset C =N \C such

that
∑

i∈C P i
max < D1 and

∑
j∈C x j

1 >
(∑

j∈N x j
1

)
−1, i.e. λ

∑
j∈C a j > λA+ xn+1

1 −1, i.e
∑

j∈C a j > W.

A solution to this separation problem is a solution to the knapsack instance, where the elements

chosen in the knapsack are exactly the elements in C. Conversely a solution to the above knapsack

instance is a solution to this separation problem. �

The same proof could be done to show that the separation of extended cover inequalities for

the knapsack polytope is NP-complete, thus answering the question raised in [43]. Indeed, any

instance of the knapsack problem can be transformed into an extended cover separation problem

for instances with n objects, such that objects {2, ...,n} fit in the knapsack. Thus any cover C will

contain object 1, and it follows that E(C)= C.

We will see in Section 4.2 that, in practice, these inequalities are very effective. Classically,

static up-set inequalities, or extended cover inequalities, are generated by a procedure that

searches for cover inequalities and lifts them to stronger inequalities ([4]). Note that [43] propose

a heuristic for which the search is based on the construction of a cover set.
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4.2. EXPERIMENTATION

We propose an alternate separation algorithm for static up-set inequalities, taking advantage

of the facet defining conditions we presented in Section 3.4.1.

Separation algorithm for static up-set inequalities Given a fractionnal solution (x,u), for

a given time period t, we first sort the units in non-decreasing order of x j
t

P j
max

and store them in

a list L. We then construct a set C by iteratively appending units of L, until the corresponding

up-set inequality is violated. Hence, we first define the set S which contains the |C|−αt(C)+1

less powerful units of C, i.e. units with smallest Pmax. Finally we remove units from S one by

one until obtaining a minimal up-set, and then we swap elements in and out of S to obtain a

strong set. Finally, the separation procedure returns the extension of S.

4.1.2 Separation of interval up-set inequalities

In our Branch & Cut algorithm, we consider the following static interval up-set inequalities:

αI (C)+
t1∑

t=t0+1
ui

t ≤ xi
t1
+ ∑

j∈C\{i}

(
x j

t0
+

t1∑
t′=t0+1

u j
t

)
.

From Theorem 3.9, if validity condition y ∈Y i
I

, αi
y(C)≥αI (C) holds, these inequalities are

valid for Pn
x,u. Note that by Theorem 3.10, these inequalities correspond exactly to every valid

interval up-set inequality for restricted polytope Pn
x,u(I ).

When T = 1, the static interval up-set inequalities are exactly the static up-set inequalities.

Since from Theorem 4.1 the separation of static up-set inequalities is an NP-hard problem, we

have the following result.

Theorem 4.2. The separation of static interval up-set inequalities is an NP-hard problem.

We propose the following separation algorithm for static interval up-set inequality, which is an

extension of our algorithm to separate up-set inequalities.

Separation algorithm for static interval up-set inequalities Given a fractionnal solution

(x,u), a time interval [t0, t1] and a unit i such that Li ≥ t0 − t1, we first sort the units in non-

decreasing order of
x j

t0
+∑t1

t=t0+1 u j
t

P j
max

and store them in a list L. We then construct a set C by iteratively

adding units of L in it, until the corresponding interval up-set inequality is violated. In this case,

the separation procedure returns the corresponding set C.

4.2 Experimentation

In this section, some computational results relative to formulation (1.2)–(1.4), (1.7) – (1.10) are

presented. To evaluate the effectiveness of up-set and interval up-set inequalities, we separate
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them throughout a Branch & Cut tree, using Cplex 12.6.1 with default settings. All the exper-

iments were performed using one thread of a PC with a 64 bits Intel(R) Core(TM) i7-2600K

processor running at 3.4GHz, and 16 GB of RAM memory. The problems are solved until optimal-

ity (defined within 10−6 of relative optimality tolerance) or until the time limit of 3600 seconds is

reached.

We compare three methods to solve the (x,u)-formulation (1.2)–(1.4), (1.7)–(1.10) of the MUCP:

• Cplex: Cplex used by its C++ API.

• UP: Branch & Cut algorithm using only up-set cuts, separated with the algorithm given in

Section 4.1.1. The cut generation is stopped whenever 300 inequalities have been produced.

• UP+IUP: Branch & Cut algorithm using up-set inequalities as described previously, and

interval up-set inequalities. Interval up-set inequalities are separated with the algorithm

given in Section 4.1.2 only at the root node when both Cplex and UP algorithm produce no

more cuts.

For methods UP and UP+IUP, we also use Cplex C++ API. The separation algorithms are

included in Cplex by using the so-called UserCut Callbacks. Note that such a callback deactivates

some Cplex features designed to improve the efficiency of the overall algorithm. This may induce

a bias when comparing results obtained with and without the use of a UserCut Callback. In order

to obtain a non-biased comparison between all the methods, we include in our implementation

of Cplex a UserCut Callback which does not separate anything. Note that preliminary results

indicate that even if for each MUCP instance considered, the empty UserCut Callback has an

impact on the CPU time and the number of nodes, this impact can be positive as well as negative,

depending on the instance. Globally, on the MUCP instances considered, there is no significant

efficiency loss when using an empty UserCut callback. Therefore, we did not run a comparison

with default Cplex, i.e. Cplex with no empty callback.

Many parameters are required to define an MUCP instance. Therefore, preliminary experi-

ments were performed to emphasize which parameters affect the performances the most. The

time horizon T has low impact on the computation time, as opposed to the number of units n.

A fixed time horizon is thus considered for each instance while the number of units n varies

depending on the instance class. We set the time horizon to T = 96 as it corresponds to the

standard value of T in the short term UCP solved at EDF.

The result are presented with respect to instances partitioned into categories defined as the

triplets (class, symmetries, size): classes R, L, TPR-50, TPR-75 or TPR-100; symmetry type NS or

S; and size n = 10, n = 20 or n = 50.

2-peak-demand instances are generated following the procedure given in Section 1.2.4. For

each class and size considered, we generate 50 instances with symmetries (S) (with a factor

F = 10) and 50 instances without symmetries (NS). For each class, we generate instances of

various sizes: R and L classes of size n = 20 and n = 50 and TPR classes of size n = 10 and n = 20.
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4.2. EXPERIMENTATION

Note that for n = 10, a symmetry factor F = 10 means that there is no symmetry. We therefore

only consider (NS) instances when n = 10. As all R and L (resp. TPR-100) instances with n = 20

are already very well solved (resp. intractable) with Cplex, we generate instances with n = 50

(resp. n = 10). Note that size n = 20 has been considered for all instance classes.

As some instances are already very quickly solved by Cplex, adding new cuts for this kind

of instances cannot compensate for the separation time it takes. Thus we want to discriminate

between easy instances and hard instances. Then, inside a given instance category, an instance

is said to be hard if it belongs to the 50% most difficult instances of its category with respect to

Cplex computation time, whenever this time exceeds 10 seconds.

The experimental results are presented in two tables as follows.

Table 4.1 displays a comparison between Cplex and UP+IUP for each category of instances.

For this purpose, Table 4.1 indicates #H, the number of hard instances, and for each method:

Nodes (N): number of nodes in the Branch & Cut tree.
Av.: average number

Min: minimum number

Max: maximum number

CPU: CPU time (in seconds)
Avall : average value for all the instances

AvH : average value for the hard instances

Min: minimum value

MinH : minimum value for the hard instances

Max: maximum value

User cuts (only for UP+IUP): number of user cuts, totalizing up-set and interval up-set cuts
Av.: average number

Min: minimum number

Max: maximum number.

Note that the R and L instances of size n = 20 were all solved in less than 10 seconds, with

an average CPU time less than 1 second. Similarly, the R and L instances of size n = 50 without

symmetries are easy instances, with an average CPU time of 5 seconds, a maximum CPU time

of 41 seconds, and only eight instances with a CPU time exceeding 10 seconds. Another class of

instances which can be solved easily is TPR-50, with very few hard instances and a maximum

CPU time of 30 seconds.
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4.2. EXPERIMENTATION

Table 4.2: Average improvement scores corresponding to comparative experimental results for a
selection of instance categories

UP UP+IUP
IN ILR ICPU ICPU (h) IN ILR ICPU ICPU (h)

R n = 50 (S) 62.3% 8.3% 34.1% 44.5% 61.8% 8.4% 19.0% 42.4%

L n = 50 (S) 42.3% 5.5% 18.9% 25.7% 40.4% 5.6% 9.5% 22.9%

TPR-75 n = 10 (NS) 25.1% -0.9% 6.4% 9.3% 44.6% 6.6% 14.9% 30.5%

TPR-75 (NS) 16.2% -0.8% 5.1% 6.7% 27.6% -1.9% 7.0% 9.9%
n = 20 (S) 25.0% 0.2% 8.3% 6.3% 27.7% 2.4% 6.4% 14.6%

TPR-100 n = 10 (NS) 9.7% 0.07% -3.7 % -6.2 % 29% 2.0% -1.2% 0.6%

When the tightness of the production range increases to 75%, the corresponding instances

are much harder than instances with a larger production range (like the instances of classes R

and L), but they remain tractable for n = 20. The TPR-100 instances appear to be very difficult to

solve. For each instance of size n = 20, Cplex reaches the time limit of one hour. The instances of

size n = 10 are already very hard, as the average CPU time is around 1000 seconds. For n = 20,

and even more for n = 50, symmetries deeply affect the computation time.

Table 4.2 provides more details for the comparison of the three methods. As shown in Table

4.1, there is an important variability in the computation time within a given instance category.

We then introduce the improvement score, which is a performance ratio comparing Cplex to

one of our methods (UP or UP+IUP) denoted by B&C. The improvement scores relative to the

number of nodes (N), the CPU time (CPU) and the linear relaxation value at the root (LR) are

defined as follows.

IN = 2 N(Cplex)−N(B&C)
N(Cplex)+N(B&C) ICPU = 2 CPU(Cplex)−CPU(B&C)

CPU(Cplex)+CPU(B&C) ILR = 2 LR(B&C)−LR(Cplex)
LR(Cplex)+LR(B&C)

For any indicator ind and any two methods m1 and m2, the considered improvement score

I ind(m1,m2) provides a symmetric comparison between the two methods m1 and m2. Indeed, the

improvement score is a performance ratio, where the reference used is the average between the

value from Cplex performance and the value from UP or UP+IUP performance. Using this average

value as reference yields the following key property: I ind(m1,m2)=−I ind(m2,m1). In particular,

I ind(m1,m2) ∈ [−2,2], while the standard relative error calculated as ind(m1)−ind(m2)
ind(m1) ∈ [−∞,1]

would be non-symmetric and unbounded.

As we consider a minimization problem, the higher the linear relaxation, the better the lower

bound on the optimal solution. Hence for any indicator (N, CPU or LR), the improvement score is

positive whenever our method B&C outperforms Cplex with respect to the considered indicator

(number of nodes, CPU time or linear relaxation).
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CHAPTER 4. BRANCH & CUT FOR THE MUCP

Tables 4.2 presents, for both UP and UP+IUP and for a selection of instance categories, the

average improvement scores:

IN : average improvement score relative to the number of nodes in the Branch & Cut tree.

ILR : average improvement score relative to the linear relaxation at the root.

ICPU : average improvement score relative to the CPU time, for all the instances.

ICPU (h) : average improvement score relative to the CPU time, for the hard instances.

This table only displays values for the instance categories on which a comparison makes

sense, i.e. instances which are not easily solved, but still tractable within the time limit.

Observe that both UP and UP+IUP perform very well on the L and R instances.Contrary to the

TPR instances where interval up-set inequalities significantly improves the performance of UP,

the improvement for L and R instances appears to come from the separation of up-set inequalities.

This may seem weird as Cplex and our UP algorithm can produce similar inequalities. This shows

that even though the cut generation integrated in Cplex is supposed to be able to produce up-set

cuts, our heuristic clearly outperforms Cplex as it finds useful cuts Cplex does not.

Finally note that our methods, UP and UP+IUP, globally outperfom Cplex on the hard

instance categories. One objective is to solve TPR-75 and TPR-100 instances, as these instances,

close in their structure to ramp-constrained or discrete production units, give us an insight into

the potential effectiveness of interval up-set inequalities for the real-world UCP. Interestingly, the

TPR-75 instances are solved more efficiently with UP, and even more with UP+IUP. This remark

is also true for TPR-100 instances with respect to the relaxation value and the number of nodes,

even though it does not show on the CPU time. There may be too many user cuts generated for

the hard TPR-100 instances of size n = 10: a more dedicated implementation of our Branch&Cut

method for this category would be useful.

Table 4.3 compares UP and UP+IUP to Cplex, with respect to the number of instances solved

to optimality. For instances on which the time limit is reached, the average optimality gap and

best feasible solution value improvement scores are given. The comparison is made on categories

where the optimum was not reached on every instance. We do not include (TRP-75, n = 10, NS)

because there was only one instance over fifty which was not solved to optimality, and all methods

have produced the same best feasible solution with similar optimality gaps.

Table 4.3 indicates:

#solved: the number of instances solved to optimality by Cplex

δ: difference in terms of the number of instances solved to optimality by UP (resp. UP+IUP) and

by Cplex.

Ibest: average “best feasible solution value" improvement score, computed for each instance on

which neither Cplex nor UP (resp. UP+IUP) reaches optimality.
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4.2. EXPERIMENTATION

Table 4.3: Number of instances solved, average gap improvement score and average best feasible
solution improvement score

Instances Cplex UP UP+IUP
#solved δ Ibest Igap δ Ibest Igap

R n = 50 (S) 42 2 0% 594% 2 0% 649%
L n = 50 (S) 39 1 0% 251% 1 0% 295%

TPR-75 n = 20 (S) 48 0 0% -29.8% 0 0% 14.7%
TPR-100 n = 10 (NS) 38 -1 0.87% -34.5% -1 0.983% 13%
TPR-100 n = 20 (NS) 0 0 0.0155% 0.468% 0 0.0442% 4.86%
TPR-100 n = 20 (S) 0 0 -0.0129% -1.75% 0 0.00167% -0.0287%

Igap: average gap improvement score, computed for each instance on which neither Cplex nor

UP (resp. UP+IUP) reaches optimality.

The optimality gap and best feasible solution value improvement scores are computed the

same way the CPU time or the node improvement scores are.

Note that there is not much difference between Cplex and UP (resp. UP+IUP) with respect to

the number of instances solved to optimality. Indeed, the very difficult instances are not solved

to optimality by any method. Interestingly the best feasible solution values are slightly better

with UP+IUP, and to a lesser extent with UP. There is a huge improvement in the optimality gap

using UP+IUP, especially on L and R instances.
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CONCLUDING REMARKS AND PERSPECTIVES

We propose a polyhedral study of the MUCP with n production units. We first show that the

linear relaxation value of the classical formulation (Fn
x,u) is greater than or equal to that of any

demand-coupling formulation. Therefore, we choose to study the polytope defined by (Fn
x,u), as

this formulation involves natural decision variables of the MUCP. We define up-set inequalities,

as the translation of the classical extended cover inequalities from the 0-1 knapsack polytope

to the MUCP polytope. Interval up-set inequalities are introduced as a generalization of up-set

inequalities. This new class of valid inequalities captures both knapsack-like demand constraints

and dynamic min-up/min-down constraints, thus are more dedicated to the MUCP.

We completely describe the cases in which these inequalities are valid, and we also charac-

terize the facet defining cases in a restricted polytope. A Branch & Cut algorithm is devised.

Compared to Cplex, up-set and interval up-set inequalities used as cuts are particularly efficient

for the difficult categories of instances, in particular on the instances where the production range

is tighter (TPR75% instances).

From the proof of Lemma 3.10, a part of interval up-set validity is obtained by summation

of formulation inequalities. But the proof is not obtained by the Chvátal-Gomory process. An

interesting question is then what is the Chvátal-Gomory rank of the interval up-set inequalities.

As pointed out in Section 3.4.3, multiple generalizations of interval up-set inequalities could

lead to other facet defining inequalities. More generally, new classes of valid inequalities would

be helpful, in particular to solve the TPR-100 instances.

From an experimental point of view, it would be useful to exploit the facet conditions of

Theorem 3.15, in order to derive separation algorithms lifting the interval up-set inequalities to

the dominating inequality in case condition (3.13) or (3.14) is not satisfied.

Another future work would be to study the ramp-constrained MUCP polytope. It may be

particularly useful to lift interval up-set inequalities to the ramp-constrained case, as the ramp-

constrained MUCP is close, in its structure, to the TPR75 instances of the MUCP on which

interval up-set inequalities are particularly effective.
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SYMMETRIES AND SUB-SYMMETRIES

5.1 Definitions

We consider an Integer Linear Program (ILP) of the form

(ILP) min
{

cx | x ∈X
}
, with X ⊂ {0,1}n and c ∈R(m,n)

A symmetry is defined as a permutation π of the indices {1, ...,n} such that for any solution

x ∈X , vector π(x) is also solution and has same cost, i.e., π(x) ∈X and c(x)= c(π(x)). The symmetry

group G of (ILP) is the set of all such permutations.

For instance, consider the problem presented as Example 5.1:

Example 5.1.

min
{

x1 + x2 +2(x3 + x4 + x5) s. t. 3(x1 + x2)+ (x3 + x4)+3x5 = 4 and x ∈ {0,1}5
}

(Ex1)

The symmetry group G1 of this problem contains {id, π1,2, π3,4}, where id is the identity

permutation, πi, j is the transposition of variables i and j.

Note that subset S ⊂ {1, ...,n} and its characteristic vector x ∈ {0,1}n will be used interchange-

ably in the following.

The orbit of vector x ∈ {0,1}n under G is defined as the set of all vectors x′ symmetric to x

under G :

orb(x,G )= {x′ ∈ {0,1}n | x′ =π(x), π ∈G }

Example 5.2. Referring to Example 5.1, let x = [1, 1, 1, 0, 0]. Then orb(x,G1) contains [1, 1, 1, 0, 0]

and [1, 1, 0, 1, 0], since π3,4(x)= [1, 1, 0, 1, 0] and π1,2(x)= x.
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CHAPTER 5. SYMMETRIES AND SUB-SYMMETRIES

Vector y ∈ {0,1}n is said to be lexicographically greater than vector z ∈ {0,1}n if there exists

i ∈ {1, ...,m−1} such that

• ∀i′ ≤ i, yi′ = zi′

• yi+1 > zi+1, i.e., yi+1 = 1 and zi+1 = 0.

We write yÂ z (resp. yº z) if y is lexicographically greater than z (resp. greater than or equal to

z).

Note that y is lexicographically greater than or equal to z if the binary number encoded by y

(with the most significant bit on the left) is greater than or equal to the binary number encoded

by z, which can be written as:
n∑

i=1
2n−i yi ≥

n∑
i=1

2n−i zi.

Vector y ∈ orb(S,G ) is said to be a representative among orb(x,G ) if y is lexicographically

maximum among the vectors in the orbit of x under G , i.e., yº g(x), ∀g ∈G .

Example 5.3. For instance, referring to Example 5.1, x = [1, 1, 1, 0, 0] is lexicographically

maximal among its orbit, thus x is a representative.

Classically, (ILP) is solved by Branch & Bound. Whichever branching strategy is chosen, at

some point in the branching tree, there will be variables whose values are fixed as a result of the

preceding branching decisions taken from the root to the current node. For a given node a of the

enumeration tree, Fa
1 (resp. Fa

0 ) is defined as the set of indices of variables fixed to 1 (resp. 0) at

node a. Fa is the set of indices of free variables at node a.

Symmetry group at a node a As the branching process fixes variables, the symmetry group

G (a) of the subproblem associated to node a evolves and differs from symmetry group G .

Example 5.4. Indeed, suppose at a given node a of the enumeration tree relative to problem (Ex1),

variable x1 is fixed to 1 and variable x2 is fixed to 0. Then for any feasible solution x at node a,

π1,2(x)= [0, 1, x3, x4, x5] which is not a feasible solution of the subproblem associated to node a.

Thus, although π1,2 is in symmetry group G1 of the problem, it is no longer in the symmetry group

G (a) associated to a.

However, as reported in [73], it may be computationally prohibitive to compute the symmetry

group for every node of the enumeration tree, since all known algorithms have exponential

running time. Thus, an alternative possibility is to consider a subgroup, called G a of symmetry

group G , defined as follows:

G a = {g ∈G | g(Fa
1 )= Fa

1 }.

Example 5.5 proves that at node a, subgroup G a of G may be different from the symmetry

group of the subproblem G (a).
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5.2. STATE-OF-THE-ART OF GENERIC SYMMETRY-BREAKING TECHNIQUES

Example 5.5. Consider problem min{cx | Ax ≤ b, x ∈ {0,1}3} whose solution set is

{[0, 1, 1], [1, 0, 1], [1, 1, 0], [0, 1, 0]}.

Then G = {id, π1,3}. Consider a node a of the enumeration such that Fa
1 = {3} and Fa

0 =∅.

Then G a = stab(Fa
1 ,G )= id. However, the solution set of subproblem a is {[0, 1, 1], [1, 0, 1]}, with

symmetry group {id, π1,2}.

This example shows how fixed variables in the Branch & Bound enumeration tree can

introduce new symmetries in the solution set of the subproblem considered at each node.

Symmetry-breaking techniques If standard Branch & Bound is applied, for each solution x,

all elements in orb(x,G ) are enumerated in the tree, whereas the optimal value obtained would

be the same if only one representative of orb(x,G ) were enumerated.

Example 5.6. Referring to Example 5.1, a Branch & Bound algorithm would produce solutions

x = [1,1,1,0,0] and x′ = [1,1,0,1,0]. Both are elements of orb(x,G1) and have value 4. Solution x′

could have been obtained by applying permutation π3,4 to the representative solution x.

Various techniques, so called symmetry-breaking techniques, are available to handle sym-

metries in (ILP). A classical idea is, in each orbit of G , to pick one solution, defined as the

representative, and then restrict the solution set to the set of all representatives.

A technique is said to be full symmetry-breaking (resp. partial symmetry-breaking) if the

solution set is exactly (resp. partially) restricted to the representative set. Moreover, such a

technique may introduce some specific branching rules that interfere with the B&B search. This

can forbid exploiting a user-defined branching rule or, even, the default branching settings of a

state-of-the-art solver. A symmetry-breaking technique is said to be flexible if at any node of the

B&B tree, the branching rule can be derived from any linear inequality on the variables.

A state-of-the-art of existing symmetry-breaking techniques for arbitrary symmetry group

G is given in Section 5.2. When feasible set X is a subset of binary matrices of size m× n,

and when the symmetry group is the symmetric group Sn acting on the columns of solution

matrices, i.e. the set of all-column permutations, specific symmetry-breaking techniques can

be devised. A corresponding state-of-the-art is given in Section 5.3. Applications of symmetry-

breaking techniques to the UCP are described in Section 5.4. Finally, in Section 5.5, we introduce

sub-symmetries in order to account for symmetries arising from various solution subsets.

5.2 State-of-the-art of generic symmetry-breaking techniques

Many symmetry-breaking techniques rely on the restriction of the feasible set to representatives

only. This can be achieved via symmetry-breaking inequalities [27, 53, 54] possibly derived from
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the study of the symmetry-breaking polytope [38, 42]. Another option is to use specific branching,

pruning or fixing rules during the B&B search [41, 61, 73].

Some symmetry-breaking techniques consist in reformulating the problem so that the new

solution set does not feature symmetries. Note that this does not operate a restriction of the

feasible set, but propose a symmetry-free reformulation of the problem. This is the case of variable

aggregation techniques [50] or decomposition methods such as Branch & Price [6].

5.2.1 Symmetry-breaking inequalities

An inequality αx ≤β is said to be a symmetry-breaking inequality if for any solution orbit O , there

exists at least one element x ∈O which satisfies αx ≤β. The idea is that many other elements of

O will be cut by inequality αx ≤β.

A general description of symmetry-breaking inequalities is given in [62], which is a general-

ization of the framework described in [27]. A closed set F ⊂R is said to be a fundamental region

for a symmetry group G if:

(i) g(int(F))∩ int(F)=∅, ∀g ∈G , g 6= id

(ii) ∪g∈G g(F)=Rn

where int(F) denotes the interior of F.

If F is a fundamental region for the symmetry group G of problem (ILP), then the following

holds:

min
{

cx | x ∈ P
}
= min

{
cx | x ∈ P ∩F

}
Indeed, for any optimal solution x∗, point (ii) guarantees that there exists g ∈ G such that

g−1(x∗) ∈ F. Point (i) guarantees that region F is not too large.

In [35], a linear description of a fundamental region is proposed:

F = {x ∈Rn | (g(x)− x) · x ≤ 0,∀g ∈G } (5.1)

where x ∈R is such that g(x) 6= x for all g ∈G , g 6= id.

Thus, any inequality from linear description (5.1) can be added to (ILP). In [62], it is shown

that these inequalities can be used even if the condition g(x) 6= x for all g ∈G does not hold.

Particular case. Suppose G contains all permutations of In. In order to enforce a lexicographical

ordering, one can use inequalities

x j ≥ x j+1, ∀ j ∈ {1, ...,n−1}

obtained, for each j ∈ {1, ...,n−1}, from description (5.1) by setting x j = n− j for all j ∈ In and

g =π j, j+1, the transposition of entries j and j+1.

Techniques based on symmetry-breaking inequalities are flexible, since they do not rely on a

particular B&B search.
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5.2.2 Symmetry-breaking polytopes

For a symmetry group G , the authors of [38] define the symmetry-breaking polytope PS(G ), called

symretope, as the convex hull of the lexicographically maximal binary points w.r.t. G :

PS(G )= conv
{
x ∈ {0,1}n | x º g(x), ∀g ∈G

}
The binary points in PS(G ) are exactly those in fundamental region F with xi = 2n−i.

As proved in [38], optimization over binary points in symretopes is NP-hard, thus a complete

linear description is not available in general. It is still useful to have an IP formulation for binary

points in those polytopes in order to handle the symmetries defined by G . Inequalities defined

in (5.1) provide such a formulation, but it has exponentially large coefficients and may not be

computationally tractable. The authors of [38] consider symresacks, a special case of symretopes,

where the symmetry group G contains a unique non-trivial permutation. These polytopes can be

seen as knapsack polytopes, where the knapsack constraint has exponential coefficients. This

constraint can be replaced by an exponential number of minimal cover inequalities with {−1,0,1}

coefficients. It is proved in [38] that the separation problem of these minimal cover inequalities

for the symresack can be solved in O(n2) time.

As an arbitrary symretope PS(G ) can be written as the intersection of the symresacks PS(g)

for each g ∈G , the authors derive IP formulations with small coefficients for symretopes, with

separation in O(|G |n2) time.

5.2.3 Pruning by isomorphism in Branch & Bound

A pruning strategy called isomorphism pruning (ISP) is defined in [60], such that at any node a,

if Fa
1 is not a representative then node a is pruned.

The branching strategy called minimum index branching (MIB) is defined as branching on

the minimum index free variable xi at each node, with disjunction:

xi = 0 ∨ xi = 1

Minimum index branching used alongside with isomorphism pruning can ensure that only

representative solutions are explored in the tree, making isomorphism pruning full symmetry-

breaking. It can be shown that the optimal value remains the same. For any set S ⊂ In repre-

sentative under G , subset S′ = S\{v} with v = max{w ∈ S} is also a representative. Hence, at a

given node a of the Branch & Bound enumeration tree, if Fa
1 is not a representative, then any

solution S such that Fa
1 ⊂ S is not a representative neither, provided that rule MIB was used in

the enumeration tree.

Margot introduces another operation called 0-setting, which sets to 0 free variables that would

induce a non-lexicographically maximum solution.

The 0-setting algorithm consists in the two following operations:
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(i) Let b be a node in the enumeration tree and let x f be the branching variable at b. If a is

the son of b where x f is fixed to 0 then set to 0 all free variables in orb({ f },G a).

(ii) Let f = min{r ∈ Fa}. If Fa
1 ∪ { f } is not a representative then set to 0 all free variables in

orb({ f },G a).

For example, given a variable x f fixed to 0 by branching at a node a. Suppose some free

variable x f ′ ∈ orb({ f },G a) is fixed to 1 at a descendant node a′. Note that f ′ > f , provided that

rule MIB is used. Then for g ∈G a such that g({ f ′}) = { f }, we would have g(Fa′
1 ) > Fa′

1 , thus Fa′
1

would not be a representative. Thus, variable x f ′ has value 0 in any representative solution S

such that Fa
1 ⊂ S.

Margot proves that the use of 0-setting alongside with minimum index branching and

isomorphism pruning does not change the optimal value returned by the Branch & Bound.

Example 5.7. Referring to Example 5.1, consider the enumeration tree of a Branch & Bound

algorithm using MIB and ISP. Let node a be such that Fa
0 = {1} and Fa

1 = {2}. Then Fa
1 is not a

representative, because π1,2({2})= {1} which is lexicographically greater. Thus node a is eliminated

by isomorphism pruning.

Example 5.8. Referring again to Example 5.1, consider the enumeration tree of a Branch &

Bound algorithm using MIB, ISP and 0-setting. Let b be the node such that Fb
0 = {1} and Fb

1 =∅.

Then G b = G and orb({1},G b) = {2}. By rule (i) of 0-setting, variable x2 is set to 0 at node b.

Therefore, if 0-setting is used, node a will not be explored by the enumeration tree. It indicates that

the use of 0-setting enables early detection and pruning of non-representative solutions in the tree.

Isomorphism pruning must be used with minimum index branching in order to be valid.

Consequently, isomorphism pruning is not flexible.

In practice, the symmetry group G is represented using the Schreier-Sims representation [83].

A backtracking algorithm is proposed to compute orb({ f },G a).

In [61], a more flexible branching rule for isomorphism pruning is defined, alongside with

more general 0- and 1-setting operations.

5.2.4 Orbital branching

In [73], Ostrowski et al. introduce a symmetry-branching strategy called orbital branching.

The notion of orbit is extended to variables. We say that {xi1 , xi2 , ..., xik } is a variable orbit if

orb({i1},G )= {{i1}, {i2}, ..., {ik}}

96



5.2. STATE-OF-THE-ART OF GENERIC SYMMETRY-BREAKING TECHNIQUES

Let a be a node in the Branch & Bound tree. For a given variable orbit O = {xi1 , xi2 , ..., xik } of

G a, orbital branching is to branch on the disjunction:

xi1 = 1 ∨
k∑

`=1
xi` = 0 (5.2)

In [72], the authors extend orbital branching so that the branching disjunction can be based

on an arbitrary constraint.

Note that orbital branching is partial symmetry-breaking.

5.2.5 Variable fixing in symmetry-breaking polytopes

At a given node a of the Branch & Bound tree, some variables are set to 0, i.e. variables in Fa
0 ,

and some to 1, i.e. variables in Fa
1 . Based on these variables already fixed by previous branching

decisions, some fixings of the remaining free variables can be performed. The idea of variable

fixing is to restrict the solution space at each node a to be in a given symmetry-breaking polytope

P. This is done by fixing to 0 (resp. 1) variables that would yield a solution outside P if fixed to 1

(resp. 0).

This full symmetry-breaking technique is introduced by Kaibel and Pfetsch [41].

Let Cd be the d-dimensional 0/1-cube. A face F of Cd is given by sets I0, I1 ⊂ Id as follows:

F = {x ∈ Cd | xi = 0∀i ∈ I0 and xi = 1∀i ∈ I1}

For a polytope P ⊂ Cd and a face F of Cd defined by (I0, I1), the smallest face of Cd that

contains P ∩F ∩ {0,1}d is denoted by FixF (P), i.e. FixF (P) is the intersection of all faces of Cd

that contain P ∩F ∩ {0,1}d.

Example 5.9. Referring to Example 5.5, consider C3 = {x ∈R3, 0≤ xi ≤ 1 for all i ∈ {1, ...,3}}, and

polytope Pex ⊂ C3:

Pex = conv{[0, 1, 1], [1, 0, 1], [1, 1, 0], [0, 1, 0]}.

Let F be the face defined by I0 = {2} and I1 =∅. Namely, F = {x ∈ C3 | x2 = 0}. Then Pex ∩F ∩
{0,1}3 = [1, 0, 1] thus FixF (P) is defined by I?0 = {2} and I?1 = {1,3}

Lemma 5.1. If FixF (P) is a non-empty face, then FixF (P) is given by sets I?0 and I?1 such that

I?0 =
{
(i, j) | xi, j = 0 ∀x ∈ P ∩F ∩ {0,1}(m,n)

}
I?1 =

{
(i, j) | xi, j = 1 ∀x ∈ P ∩F ∩ {0,1}(m,n)

}
From an optimization perspective, P can be seen as the polytope defining the solution space

P ∩ {0,1}d. Then, when optimizing over P ∩ {0,1}d, to each node a of the Branch & Bound tree

corresponds a face F(a) defined by Fa
0 and Fa

1 . The aim is thus to compute sets I?0 and I?1 defining

FixF(a)(P), at each node a. Then, if FixF (P)=∅ then the node can be pruned. If FixF (P) 6=∅, by
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Lemma 5.1, any free variable in I?0 (resp. I?1 ) can be set to 0 (resp. 1) (otherwise it would yield a

solution outside P ∩F(a)∩ {0,1}d).

In general, the problem of computing FixF (P) is NP-hard. However, if one can optimize a

linear function over P ∩ {0,1}d in polynomial time, the fixing (I?0 , I?1 ) at (I0, I1) can be computed

in polynomial time by solving 2(d−|I0|− |I1|) many linear optimization problems over P ∩ {0,1}d

[41].

If sets I?0 and I?1 relative to P cannot be computed efficiently, some relaxations of P can be

considered. Instead of computing FixF (P), one may only compute FixF (P ′) where P ⊂ P ′.
Note that two categories of variable fixing are distinguished in [41]. The process of computing

the sets I?0 and I?1 and fixing the corresponding variables is called simultaneous fixing. The

second category, called sequential fixing, corresponds to the iterated process of searching for

additional fixings. Simultaneous fixing is at least as strong as sequential fixing.

5.2.6 Variable aggregation

In [21], Fischetti et al. introduce orbital shrinking. The idea is to consider only one aggregated

variable zω ∈Z per variable orbit ω. Each variable xi ∈ω= orb({i},G ) is thus replaced by zω
|ω| =

1
|ω|

∑
j∈ω x j, thus reducing the number of variables. The aggregated program, denoted by (OSR) is

a relaxation of the original program (ILP).

For some particular applications, authors [50] have taken advantage of the integer decom-

position property (see Theorem 1.3) to prove that the optimal solution of aggregated program

(OSR) can be disaggregated into a solution of the original program (ILP).

5.3 State-of-the-art for the symmetric group case

In general, the symmetry group G acting on the variables is arbitrary. In this section, we consider

the symmetric group case, i.e., the variable set can be represented as a matrix x = (xi, j)i≤m, j≤p.

and the symmetry group G is the symmetric group Sn acting on the columns of matrix x. This

kind of symmetries arise naturally in many scheduling problems.

The ILP considered has the form

min
{

cx | x ∈X
}
, with X ⊆P (m,n) and c ∈Rn (5.3)

where P (m,n) is the set of m×n binary matrices.

Note that in this case, the symmetry group G a at a given node a of the Branch & Bound tree

can be easily computed: permutations that act on columns j1, ..., jk are in G (a) if and only if for

each i ∈ {1, ...,m}, either variables xi, j1 ,..., xi, jk are fixed to the same value or are all free.

For example, this type of symmetry can be found in graph coloring, where symmetry arises in

particular from the permutation of colors. If entry xi, j of the solution matrix x corresponds to

assigning color j to vertex i, then permuting colors corresponds to permuting columns of matrix

x.
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5.3.1 Symmetry-breaking inequalities

For the symmetric group case, Margot describes some symmetry-breaking inequalities in [62],

obtained from linear description (5.1) for specific values of x.

The first family of inequalities, usually referred to as Friedman inequalities, enforces a

lexicographic order on the columns of x, therefore is full symmetry-breaking:

m∑
i=1

2m−ixi, j ≥
m∑

i=1
2m−ixi, j+1, ∀ j ∈ {1, ...,n−1}. (5.4)

These inequalities state that the binary number encoded by the jth column is greater than or

equal to the binary number encoded by the j+1th column.

As the 2m−i term might cause numerical intractability, alternative inequalities featuring

binary coefficients can be used, at the expense of losing the full symmetry-breaking property. An

option is to use column inequalities introduced in [42]:

i∑
k=1

xk, j ≥ xi, j+1, ∀ j ∈ {1, ...,n−1} (5.5)

Another option is to use a partial symmetry-breaking form of Friedman inequalities, as in

[39, 55, 62]:
m∑

i=1
xi, j ≥

m∑
i=1

xi, j+1, ∀ j ∈ {1, ...,n−1} (5.6)

The latter inequalities enforce that the total number of ones in each column is non-increasing.

Note that this does not enforce lexicographically non increasing columns for the representatives.

This ordering is weaker than lexicographic ordering since two different columns can have the

same number of ones.

Similarly, the following inequalities, with βi = i or i2, can be used [62]:

m∑
i=1

βixi, j ≥
m∑

i=1
βixi, j+1, ∀ j ∈ {1, ...,n−1}.

5.3.2 Modified orbital branching

Modified orbital branching, introduced by Ostrowski et al. [70], is an extension of orbital branch-

ing.

By fixing either one or k variables, orbital branching disjunction often leads to an unbalanced

branching tree. In the symmetric group case, it is possible to create a more balanced tree by

considering an alternate branching strategy called modified orbital branching (MOB).

For a given variable orbit O = {xi1 , xi2 , ..., xik } of G (a) at node a, suppose the symmetric group

S|O| acting on the elements of O is a subset of G (a). Note that this is always the case when G is

the symmetric group Sn acting on the columns of matrix x.
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For any α ∈N, the following disjunction can be considered:

k∑
`=1

xi` ≥α ∨
k∑

`=1
xi` ≤α−1

For any solution x such that
∑k
`=1 xi` ≥ α, there exists a permutation π ∈ S|O| such that

[π(x)]i` = 1, ∀` ∈ {1, ...,α}, where [π(x)]i` is the i` th component of vector π(x).

As S|O| is a subset of G (a), G (a) contains π in particular.

Therefore, the disjunction can be strengthened to:

xi` = 1, ∀` ∈ {1, ...,α} ∨ xi` = 0, ∀` ∈ {α, ..., |O|}

Example 5.10. For example, consider a problem with orbit O = {x1, x2, x3}. Suppose one uses MOB

in the Branch & Bound tree and branches on orbit O at the root node. Then, for α = 2, the left

child is created by fixing x1 = x2 = 1 and the right child is created by fixing x2 = x3 = 0.

A natural choice for α is α= d∑k
k′=1 xik′ e, where x is the solution to the linear relaxation at

node a.

Even though modified orbital branching removes a significant proportion of symmetries, it is

only partial symmetry-breaking.

In the symmetric group case, Ostrowski et al. [70] show the Branch & Bound search with

modified orbital branching can be restricted to only representative solutions, making MOB full

symmetry-breaking, at the expense of losing the flexibility property. The key idea is to enforce

an additional branching rule restricting the variable orbits which can be branched on at each

node. Namely, they define the minimum row-index (MI) branching rule which states that variable

xi, j is eligible for branching if and only if for all rows i′ < i, variables x(i′, j) have already been

fixed. They prove that modified orbital branching alongside with MI branching rule is sufficient

to ensure the full symmetry-breaking property. As the MI rule may seem highly restrictive, they

also propose some relaxations for which the same property holds, the most flexible branching

rule being what is called relaxed minimum-rank index (RMRI).

5.3.3 Orbitopes and orbitopal fixing

The convex hull of all m×n binary matrices with lexicographically non-increasing columns is

called a full orbitope and is denoted by P0(m,n). Special cases of full orbitopes are packing,

partitioning and covering orbitopes, which are restrictions to matrices with at most (resp. exactly,

at least) one 1-entry in each row.

The key idea is to restrict to P0(m,n) the search space of ILP (5.3) in order to explore only

lexicographically non-increasing solutions in the Branch & Bound tree.

If matrices in feasible set X feature exactly (resp. at most, at least) one "1" entry per row,

then the search can be restricted to a partitioning (resp. packing, covering) orbitope.
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Full orbitopes Full orbitopes can be seen as a special case of symretopes.

The authors of [38] specifically address this particular case, defining orbisacks as the convex

hull of all m×2 binary matrices whose first column is lexicographically greater than or equal

to the second column. It is shown that only n−1 orbisacks need to be considered to obtain an

IP-formulation with small coefficients for the full orbitope P0(m,n). Furthermore, they prove

these inequalities can be separated in O(mn) time.

No complete description of the full orbitope P0(mn) is known, and computer experiments

conducted in [40] indicate that its facet defining inequalities are extremely complicated. However,

exploiting the general framework of polyhedral branching systems defined in [40], a compact

O(mn3) extended formulation is constructed by combining extended formulations of simpler

polyhedra. To the best of our knowledge, it has never been used in practice to handle symmetries.

For the full orbitope restricted to 2-column matrices, a complete linear description in the x space

is available [56].

Packing and partitioning orbitopes In [42], shifted columns inequalities are introduced.

The authors prove that these inequalities, together with non-negativity constraints and row-sum

inequalities, completely describe both packing and partitioning orbitopes. A polynomial time

separation algorithm for the exponentially large class of shifted columns inequalities is also given.

Note that these inequalities are full symmetry-breaking.

Orbitopal fixing Orbitopal fixing is variable fixing (see Section 5.2.5) when the symmetry-

breaking polytope P is an orbitope.

In [41], the authors take advantage of the shifted columns inequalities for partitioning and

packing orbitopes in order to characterize the sets I?0 and I?1 defining FixF (P) where P is the

partitioning (or packing) orbitope and F is defined by (Fa
0 ,Fa

1 ), at a given node a of the Branch

& Bound tree. A linear time orbitopal fixing algorithm is derived for packing and partitioning

orbitopes.

It is proved in [41] that for a covering orbitope P, computing the fixing FixF (P) is NP-hard.

5.4 State-of-the-art of symmetry-breaking for the UCP

Symmetries in the UCP arise from the existence of groups of identical units, i.e., units with

identical characteristics (Pmin, Pmax, L, `, c f , c0, cp). The instance is partitioned into types

h ∈ {1, ...,H} of nh identical units. The unit set of type h is denoted by Nh = { jh
1 , ..., jh

nh
}.

The solutions of the MUCP can be expressed as a series of binary matrices. For a given type

h, we introduce matrix xh ∈P (T,nh) such that entry xh
t,k corresponds to variable x

jh
k

t , where jh
k

is the index of the kth unit of type h, k ∈ {1, ...,nh}. Column j of matrix xh corresponds to the

up/down plan relative to the jth unit of type h. Similarly, we introduce matrices uh and ph.

101



CHAPTER 5. SYMMETRIES AND SUB-SYMMETRIES

Note that any solution matrix x (resp. u, p) can be partitioned in H matrices xh (resp. uh, ph).

Since all units of type h are identical, their production plans can be permuted, provided that the

same permutation is applied to matrices xh, uh and ph. Thus, the symmetry group G contains

the symmetric group Snh acting on the columns of xh, for each unit type h. Consequently, for

each type h, feasible solutions xh can be restricted to be in the T ×nh full orbitope. As binary

variables u are uniquely determined by variables x, breaking the symmetry on x variables will

break the symmetry on u variables.

Various types of symmetry-breaking techniques have been applied to the UCP: pruning

techniques (such as modified orbital branching), symmetry-breaking inequalities and variable

aggregation.

Modified orbital branching for the UCP The authors in [70] apply MOB alongside with

several complementary branching rules to break symmetries of the MUCP with ramp and

reserve contraints, and down-time dependent start-up costs. Different approaches are compared

experimentally: Default Cplex, Callback Cplex, OB (orbital branching), MOB with no branching

rules enforced (Cplex is free to choose the next branching variable), and MOB with RMRI (the

most flexible branching rule ensuring full symmetry-breaking).

Because advanced Cplex features are turned off when callbacks are used, there is still a huge

performance gap between Callback Cplex and Default Cplex. It is shown in [70] that MOB with

RMRI is more efficient than MOB, OB and Callback Cplex in terms of CPU time. The difference

between using MOB with RMRI and MOB alone is however not as significant as the difference

between MOB and simple orbital branching. In particular, referring to the experimental results

obtained in [70], the (geometric) average CPU time speed-up between MOB and MOB+RMRI is

1.098.

Symmetry-breaking inequalities As shown in [70], neither Friedman inequalities (5.4) nor

column inequalities (5.5) are competitive with respect to the classical UCP formulation when

solved by Cplex.

In [55], the partial symmetry-breaking form of Friedman inequalities (5.6) is applied to the

UCP. It is shown that on UCP instances similar to those of [70], using these inequalities enables

to close the optimality gap much faster than Cplex or Gurobi alone.

Variable aggregation In [50], the authors propose to break symmetries of the UCP by aggre-

gating variables corresponding to identical units. This method is shown to outperform existing

symmetry-breaking inequalities.

In the case of the MUCP, variables x, u of formulation (1.2)–(1.8) are aggregated into variables

x̃h
t =∑

i∈Nh xi
t ∈ {0, ...,nh} (resp. ũh

t =∑
i∈Nh ui

t ∈ {0, ...,nh}) indicating how many units of type h are

up (resp. start up) at time t. Variables p̃h
t =∑

i∈Nh pi
t ∈R is the total amount of power produced at
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time t by units of type h. Formulation (1.2)–(1.8) becomes

A-(x̃, ũ) min
x̃,ũ, p̃

H∑
h=1

T∑
t=1

ch
f x̃h

t + c j
p p̃h

t + c j
0ũh

t

s. t.
t∑

t′=t−Lh+1
ũh

t′ ≤ x̃h
t ∀h ∈Nh, ∀t ∈ {Lh, ...,T} (5.7)

t∑
t′=t−`h+1

ũh
t′ ≤ nh − x̃h

t−`h ∀h ∈Nh, ∀t ∈ {`h, ...,T} (5.8)

ũh
t ≥ x̃h

t − x̃h
t−1 ∀h ∈Nh, ∀t ∈ {2, ...,T} (5.9)

Ph
min x̃h

t ≤ p̃h
t ≤ Ph

max x̃h
t ∀h ∈Nh, ∀t ∈T (5.10)

H∑
h=1

p̃h
t ≥ Dt ∀t ∈T (5.11)

x̃h
t , ũh

t ∈ {0, ...,nh} ∀h ∈Nh, ∀t ∈T (5.12)

When aggregating variables corresponding to h identical units, one must ensure that the

aggregated production plan, satisfing (5.7)–(5.10), can be disaggregated into h feasible production

plans satisfying (1.2)–(1.6). Inequalities (1.2)–(1.6) have the integer decomposition property [7],

i.e., any integer solution (x̃, ũ, p̃) of formulation (5.7)–(5.12) can be disaggregated into an integer

solution (x,u, p) of formulation (1.2)–(1.8). A disaggregation algorithm for the MUCP is proposed

in [50].

When ramp constraints are considered in formulation (1.2)–(1.8), the integer decomposition

property is lost. Examples of aggregated solutions which cannot be disaggregated are given in

[50].

As the integer decomposition property depends on the formulation considered, an interval

formulation is introduced in [50] for the ramp-constrained MUCP. It corresponds to the interval

formulation presented in Section 1.2.5, where inequalities (1.20) defining the feasible production

polytope of each unit i include both production limits (5.13) and ramp constraints (5.14)-(5.17):

P j
min ≤ pi

t(t0, t1)≤ P i
max (5.13)

pi
t(t0, t1)− pi

t−1(t0, t1)≤ RU i ∀t ∈ {t0 +1, ..., t1 −1} (5.14)

pi
t−1(t0, t1)− pi

t(t0, t1)≤ RD i ∀t ∈ {t0 +1, ..., t1 −1} (5.15)

pi
t0

(t0, t1)≤ SU i (5.16)

pi
t1−1(t0, t1)≤ SD j (5.17)

Inequalities (1.20)–(1.21) have the integer decomposition property, thus variables yi(t0, t1)

(resp. pi
t(t0, t1)) can be aggregated into variables ỹh(t0, t1) = ∑

i∈Nh yi(t0, t1) and p̃i
t(t0, t1) =∑

i∈Nh pi
t(t0, t1), leading to aggregated formulation Int( ỹ):
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Int( ỹ) min
ỹ, p̃

H∑
h=1

∑
{t0,...,t1−1}∈Yh

ch
t0,t1

ỹh(t0, t1)+ ch
p

t1−1∑
t=t0

p̃h
t (t0, t1)

s. t. Ah(t0, t1)p̃h(t0, t1)≤ bh(t0, t1) ỹh(t0, t1) ∀h, ∀{t0, ..., t1 −1} ∈Yh (5.18)∑
{t0, ..., t1 −1} ∈Yh

s.t. t ∈ {t0, ..., t1 +`h}

ỹh(t0, t1)≤ nh ∀h, ∀t ∈T (5.19)

H∑
h=1

∑
{t0,...,t1−1}∈Yh

p̃h
t (t0, t1)≥ Dt ∀t ∈T (5.20)

ỹh(t0, t1) ∈ {0, ...,nh} ∀h, ∀{t0, ..., t1 −1} ∈Yh (5.21)

where Yh = {{t0, ..., t1 −1} ∈ T ×T | t1 − t0 ≥ Lh}, and Lh (resp. `h) is the minimum up time of

units of type h.

5.5 Sub-symmetries and sub-orbitopes

As stated in Section 5.1, at a given subproblem a of the branching tree, the symmetry group

G (a) is different from G and may contain symmetries undetected in G . While some generic

symmetry-breaking techniques (as isomorphism pruning or orbital branching) are suited to take

into account such symmetries arising at a given node, in practice it is too expensive to recompute

the symmetry group at each node of the branching tree. Therefore, only a subgroup G a of G (a) is

usually considered (see Section 5.1). Subgroup G a contains only the symmetries already detected

in the symmetry group G of the original problem. However for many problems, symmetries of G

can be deduced from the problem’s structure, and so can symmetries of G (a), for some particular

subproblems a. In this case, symmetries of G (a) do not need to be computed during the Branch &

Bound procedure, and may be handled together with symmetries of G .

In Section 5.5.1, we generalize symmetries to take into account known symmetries arising in

a given set of subproblems. A similar notion has been introduced in the context of Constraint

Satisfaction Programming [29, 30]. Symmetries corresponding to such subproblems can be tackled

with symmetry-breaking inequalities, or during the B&B search. In Section 5.5.2, we generalize

the concept of full orbitope to take into account subproblems featuring symmetric groups as

symmetry group.

5.5.1 Sub-symmetries

Consider a subset Q ⊂X of solutions of ILP (5.3). The sub-symmetry group GQ relative to subset

Q is defined as the symmetry group of subproblem min{cx | x ∈ Q}. For instance, such subset
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Q ⊂X can correspond to a B&B node, defined as solutions satisfying branching inequalities.

Permutations in sub-symmetry group GQ are referred to as sub-symmetries. The main moti-

vation to look at sub-symmetries in GQ is that they remain undetected in the symmetry group G

of the problem. This is illustrated in the following example.

Example 5.11. Consider an ILP whose solution set is X = {X1, X2, Y }⊂ {0,1}(1,3), where

X1 = [1, 0, 1], X2 = [1, 1, 0], Y = [0, 1, 0].

Suppose also solutions X1 and X2 have same cost, i.e., c(X1)= c(X2). Consider solution subset

Q ⊂ X such that Q = {X ∈ X | X (1,1)+ X (1,2)+ X (1,3) = 2}, then Q = {X1, X2}. Now consider

transposition π132 such that π132(X )= [X (1,1), X (1,3), X (1,2)]. Obviously, π132 is in sub-symmetry

group GQ , but not in symmetry group G , as π132(Y )= [0, 0, 1] 6∈X .

Property 5.1. Two solutions in the same orbit with respect to a sub-symmetry group GQ may not

be in the same orbit with respect to the symmetry group G .

Referring to Example 5.11, solutions X1 and X2 are in the same orbit with respect to GQ

since π132 ∈GQ . To see that solutions X1 and X2 are not in the same orbit with respect to G , it is

sufficient to show that there is no permutation π ∈G such that π(X1)= X2. Suppose there was

such a permutation π. First note that π132 6∈G thus π 6=π132. Since both X1 and X2 have exactly

one entry to 0, π must be such that π(e2) = e3, where, for i ∈ {1, ...,3} e i ∈ {0,1}(1,3) is such that

e i(1, i) = 1 and e i(1, j) = 0, ∀ j 6= i. Since Y = e2, π(Y ) = e3 6∈ X , which is a contradiction. Thus,

X1 and X2 are not in the same orbit with respect to the symmetry group G , which shows the

symmetry acting between these two solutions is not detected in G .

We now generalize to sub-symmetries the concepts introduced for symmetries.

Let {Q i ⊂ X , i ∈ {1, ..., s}} be a set of matrix subsets. To each Q i, i ∈ {1, ..., s}, corresponds a

sub-symmetry group GQ i containing sub-symmetries that may not be detected in the symmetry

group G . Let Oi
k, k ∈ {1, ..., oi}, be the orbits defined by GQ i on subset Q i, i ∈ {1, ..., s}.

When considering only the symmetry group G , the orbits of the solutions form a partition

of the solution set X . However, the set O = {Oi
k, k ∈ {1, ..., oi}, i ∈ {1, ..., s}} of orbits defined by

sub-symmetry groups GQ i , i ∈ {1, ..., s}, does not form a partition of X anymore. Indeed, for given

i, j ∈ {1, ..., s}, if Q i ∩Q j 6=∅, then any x ∈ Q i ∩Q j will appear in both the orbits of GQ i and the

orbits of GQ j . In order to break such sub-symmetries, removing all non-representatives of an orbit

of GQ i may remove the representative of an orbit of GQ j , thus leaving the latter unrepresented.

We thus generalize the concept of orbit in order to define a new partition of X taking

sub-symmetries into account. First, for given X ∈ P (m,n), let us define G (X ), the set of all

permutations π in
⋃s

i=1 GQ i such that π can be applied to X :

G (X )= ⋃
Q i3X

GQ i
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We now define a relation R over the solution set X . Matrix X ′ is said to be in relation with

X , written X ′ R X , if

∃r ∈N, ∃π1, ...,πr |πk ∈G (πk−1...π1(X )),∀k ∈ {1, ..., r}, and X ′ =π1π2...πr(X ).

The generalized orbit O of X with respect to {Q i, i ∈ {1, ..., s}} is thus the set of all X ′ such

that X ′ R X . Roughly speaking, orbits that intersect one another are collected into generalized

orbits. Matrix X ′ is in the generalized orbit of X if X ′ can be obtained from X by composing

permutations of groups GQ i , ensuring that each permutation π ∈GQ i is applied to an element of

Q i. Note that R is an equivalence relation, thus the set of all generalized orbits with respect to

{Q i, i ∈ {1, ..., s}} is a partition of X . Moreover, for a given X ∈X , each X ′ in the generalized orbit

of X is such that X ′ ∈X and c(X ′)= c(X ). Note that the generalized orbit may not be an orbit of

any of the symmetry groups GQ i , i ∈ {1, ..., s}.

Remark 5.1. By definition, for any generalized orbit O, there exist orbits σ1, ..., σp ∈O such that

O=∪p
i=1σi.

Note that the union O=∪p
i=1σi may contain several orbits relative to the same subset Q i.

Example 5.12. Consider an ILP having the following feasible solutions:

X1 = [1, 1, 0, 0], X2 = [1, 0, 0, 1], X3 = [0, 0, 1, 1], X4 = [0, 1, 1, 0], X5 = [0, 1, 0, 1]

Y1 = [1, 0, 0, 0], Y2 = [0, 0, 0, 1].

with c(X1)= c(X2)= c(X3)= c(X4)= c(X5) and c(Y1)= c(Y2).

Let Q1 = {X1, X2, X3, X4}, Q2 = {X1, X5}, Q3 = {X4, X5} and Q4 = {Y1, Y2}. The permutation

sending X to [X (1, j1), X (1, j2), X (1, j3), X (1, j4)] is denoted by π j1 j2 j3 j4 . Note that π2341 ∈ GQ1 ,

π4231 ∈ GQ2 , π1243 ∈ GQ3 and π4231 ∈ GQ4 . Thus, the generalized orbit of X1 with respect to

{Q1,Q2,Q3,Q4} is {X1, X2, X3, X4, X5}, as X2 = π2341(X1), X3 = π2341(X2), X4 = π2341(X3) and

X5 = π1243(X4). Similarly, the generalized orbit of Y2 with respect to {Q1,Q2,Q3,Q4} is {Y1,Y2}.

All in all there are two generalized orbits O = {X1, X2, X3, X4, X5} and O′ = {Y1,Y2}. Note that O′

corresponds to the single orbit Q4.

While simple orbits σ ∈O may sometimes be easily determined, the generalized orbits may

anyway be difficult to compute. In this case, one may want to choose a representative r(σ) ∈σ
for each orbit σ ∈ O , and then use a sub-symmetry-breaking technique to remove all elements

σ\r(σ) from the search, for each orbit σ ∈O . As for given orbit σ, the set σ\r(σ) may contain the

representative of another orbit σ′, we need to ensure that there remains at least one element per

generalized orbit after the removal of all elements ∪σ∈O (σ\r(σ)). To this end the choice of the

representatives r(σ) must satisfy the following compatibility property.
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Definition 5.1. The set of representatives {r(σ),σ ∈O } is said to be orbit-compatible if for any gen-

eralized orbitO=∪p
i=1σi, σ1, ..., σp ∈O , there exists j such that r(σ j)= r(σi) for all i such that r(σ j) ∈

σi. Such a solution r(σ j) is said to be a generalized representative of O.

Note that there always exists a set of orbit-compatible representatives: start by choosing a

representative r(σ) for a given σ ∈O , and then choose r(σ) as the representative of each orbit σ′

in which r(σ) is contained. Representatives of orbits not containing r(σ) can be chosen arbitrarily.

There may exist several generalized representatives of a given generalized orbit. If {r(σ),σ ∈O }

is orbit-compatible then for each generalized orbit O=∪p
i=1σi there exists i ∈ {1, ..., p} such that

either r(σi) is not contained in any other orbit σ j ∈O , j 6= i, or r(σi) is the representative of any

orbit to which it belongs. The next lemma states that when representatives are orbit-compatible,

there remains at least one element per generalized orbit even if all elements ∪σ∈O (σ\r(σ)) have

been removed.

Lemma 5.2. For given orbit-compatible representatives r(σ), σ ∈ O , for any generalized orbit

O=∪p
i=1σi, σ1, ..., σp ∈O , ∃ j ∈ {1, ..., p} such that r(σ j) 6∈ ∪p

i=1(σi\r(σi)).

Note that even if the set of representatives is orbit-compatible, it may happen that an entire

orbit σ ∈O is removed by a sub-symmetry-breaking technique. However, if orbit-compatibility is

satisfied, there will always remain at least one element in the corresponding generalized orbit,

with same cost as any solution in orbit σ.

Referring to Example 5.12, we focus on generalized orbit O. In Figure 5.1a, X1 (resp. X4, X5)

is chosen to be the representative of orbit Q1 (resp. Q3, Q2). The set of chosen representatives

is not orbit-compatible. Indeed, there is no generalized representative as each representative

belongs also to another orbit, of which it is not representative. Thus the set of removed elements

∪p
i=1(σi\r(σi)) contains all elements of the generalized orbit. In Figure 5.1b, X3 (resp. X5) is

chosen to be representative of Q1 (resp. orbits Q3 and Q2). In this case, the set of chosen rep-

resentatives is orbit-compatible, since solutions X3 and X5 are generalized representatives of

O. Indeed, X3 is representative of Q1 and does not belong to any other orbit, so it remains after

removal removal of ∪p
i=1(σi\r(σi)). Solution X5 is representative of Q2 and Q3, and belongs to

these two orbits only, so it remains after removal as well. In Figure 5.1c, X1 (resp. X5) is chosen to

be representative of Q1 (resp. orbits Q3 and Q2). In this case, the set of chosen representatives is

orbit-compatible, since solution X5 is a generalized representative of O. Indeed, X5 is representa-

tive of Q2 and Q3 and does not belong to any other orbit. This choice of representatives is certainly

the best as there is exactly one generalized representative of O. Indeed, X1 is representative of

Q1, but also belongs to orbit Q2 which has another representative. Therefore, X1 is in the set of

removed elements ∪p
i=1(σi\r(σi)).
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X1 = r(Q1)

X2 X3

X4 = r(Q3)

X5 = r(Q2)

Q1

Q3Q2

(a) No element remaining.

X1

X2 X3 = r(Q1)

X4

X5 = r(Q2)= r(Q3)

Q1

Q3Q2

(b) X3 and X5 remain

X1 = r(Q1)

X2 X3

X4

X5 = r(Q2)= r(Q3)

Q1

Q3Q2

(c) X5 remains

Figure 5.1: Orbits in the generalized orbit {X1, X2, X3, X4, X5} with various choices of representa-
tives

5.5.2 Full sub-orbitopes

Given X ∈X and sets R ⊂ {1, ...,m} and C ⊂ {1, ...,n}, we consider sub-matrix (R,C) of X , denoted

by X (R,C), obtained by considering columns C of X on rows R only. A symmetry group is the

sub-symmetric group with respect to (R,C) if it is the set of all permutations of the columns

of X (R,C). If GQ is the sub-symmetric group with respect to (R,C) then subset Q is said to be

sub-symmetric with respect to (R,C).

In this section, we generalize the notion of full orbitope in order to account for sub-symmetries

arising in sub-symmetric solution subsets of ILP (5.3).

Consider a set S of solution subsets Q i, i ∈ {1, ..., s}, such that for each i ∈ {1, ..., s}, Q i is

sub-symmetric with respect to (Ri,Ci).

For each orbit Oi
k, k ∈ {1, ..., oi}, let its representative X i

k ∈ Oi
k be such that sub-matrix

X i
k(Ri,Ci) is lexicographically maximal, i.e., its columns are lexicographically non-increasing.

Such X i
k is said to be the lex-max of orbit Oi

k with respect to (Ri,Ci).

Lemma 5.3. The set of representatives {X i
k, k ∈ {1, ..., oi}, i ∈ {1, ..., s}} is orbit-compatible.

Proof. In order to prove that this set of representatives is orbit-compatible, we prove that there

exists a generalized representative of each generalized orbit.

First consider the following row-wise ordering of matrix entries: (1,1), (1,2), ..., (1,n), (2,1),

(2,2), ..., (2,n), ..., (m,n). We define an ordering ÂM of the matrices such that for two matrices A
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and B, A ÂM B if A(i, j)> B(i, j), with (i, j) the first position, with respect to the given ordering of

matrix entries, where A and B differ.

For a given solution matrix X ∈X , we propose an algorithm computing a generalized represen-

tative of the generalized orbit of X . First set X0 = X . At iteration k of the algorithm, there are two

cases. In the first case, there exists i ∈ {1, ..., s} such that X k ∈Q i and sub-matrix X k(Ri,Ci) is not

lexicographically maximal, i.e., there exists a column j ∈ Ci such that X k(Ri, { j})≺ X k(Ri, { j+1}).

In this case, X k+1 is set to X k, except that columns j and j +1 of sub-matrix X k(Ri,Ci) are

transposed. Otherwise in the second case, the algorithm stops. The claim is that this algorithm

stops at some iteration K , and corresponding matrix X K is a generalized representative of the

generalized orbit of X . Note that at each iteration k, X k ÂM X k−1. As matrices X k take values in

a finite set, there exists an iteration K at which the algorithm stops. By construction, matrix X K

is in the generalized orbit of X , and for each i ∈ {1, ..., s} such that X ∈Q i, sub-matrix (Ri,Ci) of

X is lexicographically maximal. It is thus a generalized representative of the generalized orbit of

X . �

The full sub-orbitope P sub(S) associated to S is the convex hull of binary matrices X such that

for each i ∈ {1, ..., s}, if X ∈Q i then the columns of X (Ri,Ci) are lexicographically non-increasing.

In particular, P sub(S) contains the generalized representatives of each generalized orbit O .Note

that the full sub-orbitope generalizes the full orbitope, in the sense that for s = 1, S = {Q1},

Q1 =X , GQ1 =Sn and (R1,C1)= ({1, ...,m}, {1, ...,n}), P0(m,n)∩X =P sub(S)∩X .

5.5.3 Sub-symmetries in the MUCP

In the MUCP, there are also other sources of symmetry, arising from the possibility of permuting

some sub-columns of matrices xh. For example, consider two identical units. Suppose at some

time period t, these two units are down and ready to start up. Then their plans after t can be

permuted, even if they do not have the same up/down plan before t.

More precisely, a unit j ∈ N is ready to start up at time t ∈ {1, ...,T} if and only if ∀t′ ∈
{t−` j, ..., t−1}, xt′, j = 0. Similarly, a unit j ∈N k is ready to shut down at time t ∈ {1, ...,T} if and

only if ∀t′ ∈ {t−L j, ..., t−1}, xt′, j = 1.

Note that sub-symmetries, defined in Section 5.5, appear in the symmetry groups of the

subproblems associated to the B&B nodes. In practice, this is not exploited in [70], where the

symmetries considered at each node are all contained in the symmetry group G of the original

problem.

Conclusion

We introduce a framework to deal with symmetries arising from multiple (sub-)symmetry group.

We show that all-column-permutation symmetries and sub-symmetries can be handled by re-

stricting the feasible set to the set of lex-max representatives. As a perspective, it would be
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interesting to prove that this set of representatives contains a unique generalized representative

for each generalized orbit.

In the two following chapters, we devise symmetry-breaking techniques suited to account for

sub-symmetries. Chapter 6 introduces an orbitopal fixing algorithm for the full (sub-)orbitope.

A general framework to build sub-symmetry-breaking inequalities for sub-symmetric solution

subsets is given in Chapter 7.
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6
ORBITOPAL FIXING FOR THE FULL

(SUB-)ORBITOPE

Orbitopal fixing introduced in [41] is particularly interesting to break symmetries as it is both

flexible and full symmetry-breaking. Moreover, no additional inequalities need to be appended to

the formulation, thus it does not increase the size of the LP solved at each node. The authors of [41]

have proved that for any face F of Cd, the sets I?0 and I?1 defining FixF (P) can be characterized

when P is a partitioning or a packing orbitope.

There are many problems whose symmetry group G is the set of all column permutations

among given subsets of columns of the x matrix, but whose search space cannot be restricted to a

partitioning or a packing orbitope. For example, the UCP with identical units is such that the

plans of the units, i.e., the columns, can be permuted in any solution, but there is no general

restriction on the number of ones on each row t of matrix X h, corresponding to the number of

type h units up at time t.

As detailed in Sections 5.2.4 and 5.3.2, the authors in [70] propose to break these all-column-

permutation symmetries using MOB, i.e., by branching on a disjunction that fixes a larger

number of variables than the classical disjunction xi, j = 0 ∨ xi, j = 1. If the use of MOB removes a

large number of symmetries, it is only partial symmetry-breaking. The only way to ensure that

MOB will remove all non-representative solutions is to use it alongside with a branching rule

that restricts the choice of the variables to be branched on.

We explore a different approach, where, at each node, orbitopal fixing for the full orbitope is

used to fix some of the remaining variables left free by branching. At a given node a, once some

variables have been fixed by branching, we restrict the solution at node a to be in the full orbitope

by setting to 0 (resp. to 1) variables that would yield a non-lexicographically ordered solution if
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set to 1 (resp. to 0). This approach preserves flexibility as the choice of the branching disjunctions

and variables remains totally free.

In this chapter, we propose an orbitopal fixing algorithm for the full orbitope, by characterizing

sets I?0 and I?1 corresponding to the fixing of the full orbitope at (I0, I1). We introduce a dynamic

variant of this algorithm where the lexicographical order follows the branching decisions occurring

along the B&B search.

For each sub-symmetry group containing a symmetric group acting on the columns of a given

submatrix, we show that our orbitopal fixing algorithm can be performed to fix variables in the

corresponding full (sub-)orbitope. Experimental results on MUCP instances are presented.

The results proposed in this chapter have been published in [10].

6.1 Intersection with the full orbitope

For convenience, the full orbitope P0(m,n) is denoted by PO in this section. Given a face F

of [0,1](m,n) defined by sets (I0, I1), we will characterize the sets I?0 and I?1 defining the fixing

FixF (PO) of the full orbitope at F. Note that face F can be chosen arbitrarily.

We first define F(PO)-minimality and F(PO)-maximality, which are key properties for matrices.

Namely we will see that each column j of an F(PO)-minimal (resp. F(PO)-maximal) matrix

is the lexicographically lowest (resp. greatest) possible jth column of any binary matrix X ∈
PO ∩F ∩ {0,1}(m,n).

For any matrix X , the jth column of X is denoted by X ( j) and the entry at row i, column j by

X (i, j) .

Definition 6.1. For a given face F of [0,1](m,n), a matrix X is said to be F(PO)-minimal (resp.

F(PO)-maximal) if X ∈ PO ∩ F ∩ {0,1}(m,n) and for any matrix Y ∈ PO ∩ F ∩ {0,1}(m,n), X ( j) is

lexicographically less (resp. greater) than or equal to Y ( j), ∀ j ∈ {1, ...,n}, i.e., X ( j) ¹ Y ( j) (resp.

X ( j)ºY ( j)) ∀ j ∈ {1, ...,n}.

The section is organized as follows.

1. Two sequences of matrices (M j) j∈{1,...,n} and (M
j
) j∈{1,...,n} are introduced, such that

matrices M1 and M
n

will respectively be F(PO)-minimal and F(PO)-maximal.

2. Sets I?1 and I?0 are determined from M1 and M
n
.

We now introduce some definitions. Some matrices considered in this section are partial

matrices in the sense that their entries can take values in the set {0,1,×}, where × represents a

free variable. A given partial matrix M of size (m,n) is fully given by the pair (S0,S1) of index

subsets such that the indices corresponding to a 0-entry in M are in subset S0 and the indices

corresponding to a 1-entry in M are in subset S1. The remaining indices {1, ...,m}×{1, ....,n}\(S0∪
S1) correspond to free variables in M.
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For a given column j ∈ {1, ...,n−1}, the following definitions are useful to compare columns j

and j+1 of matrix M.

Definition 6.2. b

• A row i ∈ {1, ...,m} is said to be j-fixed, for a given j < n, if M(i, j) 6= × and M(i, j+1) 6= × and

M(i, j) 6= M(i, j+1).

Let i f (M, j) be the smallest j-fixed row in {1, ...,m}, if such a row exists, and m+1 otherwise.

• A row i is said to be j-discriminating, for a given j < n, if M(i, j) 6= 0 and M(i, j+1) 6= 1.

Let id(M, j) be the largest j-discriminating row in {1, ..., i f (M, j)} if such a row exists, and 0

otherwise.

Example 6.1. To illustrate, consider matrix M′ defined by pair (S′
0,S′

1), with S′
0 = {(4,1), (3,2), (5,2)}

and S′
1 = {(2,1), (5,1), (4,2), (1,3), (2,3)}:

M′ =



× × 1

1 × 1

× 0 ×
0 1 ×
1 0 ×


Only rows 4 and 5 are 1-fixed. Hence i f (M′,1)= 4. There is no 2-fixed row, so i f (M′,2)= 6. Rows

1, 2, 3 and 5 are 1-discriminating, hence id(M′,1) = 3. Only row 4 is 2-discriminating then

id(M′,2)= 4.

6.1.1 Two matrix sequences

We propose an algorithm constructing a sequence of matrices (M j) j∈{1,...,n} (resp. (M
j
) j∈{1,...,n}) of

size (m,n). For each j, matrix M j (resp. M
j
) will be derived from pair (S j

0,S j
1) (resp. (S

j
0,S

j
1)).

Matrices M1 and M
n

will respectively be F(PO)-minimal and F(PO)-maximal if FixF (PO) is

non-empty. Otherwise, they will be arbitrarily defined by the sets S∅
0 = {(1,1)}, S∅

1 = {1, ....,m}×
{1, ...,n}\S∅

0 .

The key idea for the construction of matrix sequence (M j) j∈{1,...,n} is the following. For j = n,

matrix Mn is defined by pair (I0, I1), except that each free variable in column n is set to 0. For

each j < n, matrix M j is defined to be equal to matrix M j+1, except that free variables in column

M j+1( j) are set to 0 or 1 in matrix M j. This is done by propagating values from column j+1, so

that column j is minimum among all columns greater than or equal to column j+1. Note that in

matrix M j, there are no remaining free variables in columns { j, ...,n}.

The construction of sequence (M j) j∈{1,...,n} is given in Algorithm 3. For j = n, matrix Mn is

defined by pair (I0 ∪ {(i,n) 6∈ I1}, I1). For j < n, if i f (M j+1, j) = m+1 then each free variable in
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Algorithm 3 Construction of sequence (M j) j∈{1,...,n} defined by pair (S j
0,S j

1) j∈{1,...,n}

j ← n.
Sn

1 ← I1
Sn

0 ← {(i,n) 6∈ I1}∪ I0
for j = n−1 to 1 do

i f ← i f (M j+1, j)
if i f = m+1 then

S j
1 ← S j+1

1 ∪
{
(i, j) 6∈ S j+1

0 | (i, j+1) ∈ S j+1
1

}
S j

0 ← S j+1
0 ∪

{
(i, j) 6∈ S j+1

1 | (i, j+1) ∈ S j+1
0

}
else if there is no j-discriminating row i ∈ {1, ..., i f } in matrix M j+1 then

(S j′
0 ,S j′

1 )← (S∅
0 ,S∅

1 ), ∀ j′ ≤ j
else

id ← id(M j+1, j)

S j
1 ← S j+1

1 ∪ {(i ld, j)}∪
{
(i, j) 6∈ S j+1

0 | (i, j+1) ∈ S j+1
1 and i < i ld

}
S j

0 ← S j+1
0 ∪

{
(i, j) 6∈ S j

1

}
.

end if
end for

column M j( j) is set such that columns j and j+1 are equal. Otherwise, there are two cases. In

the first case, i f (M j+1, j)≤ m and there is no j-discriminating row i ∈ {1, ..., i f } in matrix M j+1.

Then for all j′ ≤ j, (S j′
0 ,S j′

1 ) is set to (S∅
0 ,S∅

1 ). In the second case, i f (M j+1, j)≤ m and there exists

a j-discriminating row i ∈ {1, ..., i f } in matrix M j+1. Let row id = id(M j+1, j). Free variables in

column M j( j) are set such that columns j and j+1 are equal from row 1 to row id −1, and such

that row id has the form [1, 0] on columns j and j+1. Every other free variable in column j is

set to 0.

As the definition of sequence (M
j
) j∈{1,...,n} is very similar, the corresponding algorithm is

omitted. For j = 1, matrix M
1

is defined by pair (I0, I1 ∪ {(i,1) 6∈ I0}). For j > 1, free variables in

column M
j−1

( j) are set to 0 or 1 in matrix M
j

by propagating values from column j−1, so that

column j is maximum among all columns less than or equal to column j−1.

Referring to (S′
0,S′

1) defined in Example 6.1 alongside with matrix M′, corresponding matrix

sequence (Mk)k∈{1,2,3} is as follows.

M3 =



× × 1

1 × 1

× 0 0

0 1 0

1 0 0

, M2 =



× 1 1

1 1 1

× 0 0

0 1 0

1 0 0

, M1 =



1 1 1

1 1 1

1 0 0

0 1 0

1 0 0

.

The first 2-fixed row in matrix M3 is row 4. Row 4 is also the last 2-discriminating row in

matrix M3 before row 4. Thus i f (M′,2)= 4, id(M′,2)= 4 and variables (1,2) and (2,2) in matrix
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M2 are set to be equal the corresponding values in column M3(2). The first 1-fixed row in matrix

M2 is row 4. The last 1-discriminating row before row 4 in matrix M2 is row id(M2,1)= 3. Since

id(M2,1) = 3, entries (1,1) and (3,1) are set to 1 in matrix M1. Matrix sequence (M
k
)k∈{1,2,3} is

obtained similarly. Finally, for any matrix X in the face defined by (S′
0,S′

1), Theorem 6.1 shows

that the following inequalities hold column-wise:

M1 =



1 1 1

1 1 1

1 0 0

0 1 0

1 0 0

 ¹ X ¹ M
3 =



1 1 1

1 1 1

1 0 0

0 1 1

1 0 0


Theorem 6.1. If (S1

0,S1
1)= (S∅

0 ,S∅
1 ) or (S

n
0 ,S

n
1 )= (S∅

0 ,S∅
1 ) then FixF (PO)=∅. Otherwise matrix

M1 is F(PO)-minimal and matrix M
n

is F(PO)-maximal.

Proof. We will prove that if (S j
0,S j

1) 6= (S∅
0 ,S∅

1 ), then, ∀X ∈FixF (PO), ∀ j ∈ {1, ...,n}, M j( j)¹ X ( j),

and otherwise FixF (PO)=∅. A similar proof can be done to obtain the corresponding result for

(S
n
0 ,S

n
1 ) and M

j
. The property is proved by induction on decreasing index value j ∈ {1, ...,n}.

For j = n, by construction (Sn
0 ,Sn

1 ) 6= (S∅
0 ,S∅

1 ). Since all (i,n) 6∈ I1 are set to 0 in matrix Mn,

necessarily ∀X ∈ PO ∩F ∩ {0,1}(m,n), Mn(n)¹ X (n).

Suppose the induction hypothesis holds for j +1, with j < n. There are two cases: either

(S j
0,S j

1) 6= (S∅
0 ,S∅

1 ) or not.

On the one hand, suppose (S j
0,S j

1) 6= (S∅
0 ,S∅

1 ). Suppose also there exists X ∈ PO∩F∩ {0,1}(m,n)

such that M j( j)Â X ( j). Consider the first row i such that columns X ( j) and M j( j) are different.

As M j( j) Â X ( j), we have X (i, j) = 0 and M j(i, j) = 1. By construction, since (i, j) 6∈ I0 ∪ I1 and

M j(i, j)= 1, for all i′ < i, M j(i′, j)= M j(i′, j+1). If M j(i, j+1)= 1, then since M j( j+1)= M j+1( j+
1), M j+1( j+1) Â X ( j). By the induction hypothesis, X ( j+1) º M j+1( j+1) thus X ( j+1) Â X ( j),

which contradicts X ∈ PO. Let now suppose M j(i, j+1)= 0, then, from the construction of M j, row

i f = i f (M j+1, j) in matrix M j+1 has the form [0, 1] on columns j and j+1 (otherwise M j(i, j) would

have been set to 0). In this case, row i corresponds to the last j-discriminating row of matrix M j+1

before row i f . Thus, for each i′ ∈ {i+1, i f −1} such that (i′, j) 6∈ I0 ∪ I1, we have M j(i′, j+1)= 1. If

for such an i′, X (i′, j)= 0 then since M j( j+1)= M j+1( j+1), M j+1( j+1)Â X ( j). Otherwise, as row

i f in matrix M j+1 has the form [0, 1] on columns j and j+1, it follows (i f , j) ∈ I0, thus X (i f , j)= 0.

Consequently M j+1( j+1) Â X ( j) holds too. By the induction hypothesis, X ( j+1) º M j+1( j+1)

thus we reach the same contradiction.

On the other hand, suppose (S j
0,S j

1)= (S∅
0 ,S∅

1 ), consider the following two cases: If (S j+1
0 ,S j+1

1 )=
(S∅

0 ,S∅
1 ) then by the induction hypothesis, FixF (PO)=∅. Otherwise, (S j+1

0 ,S j+1
1 ) 6= (S∅

0 ,S∅
1 ). Re-

call i f = i f (M j+1, j). Then, by construction of matrix M j, row i f of matrix M j+1 has the form

[0, 1] on columns j and j +1 and there is no row i ∈ {1, ..., i f −1} in matrix M j+1 which is j-

discriminating. As column j+1 is completely fixed in matrix M j+1, each row i ∈ {1, ..., i f −1} of
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matrix M j+1 has one the following forms on columns j and j+1: [1, 1] or [0, 0] or [×, 1]. Therefore,

if FixF (PO) were not empty, then PO ∩F ∩ {0,1}(m,n) 6=∅ and for any X ∈ PO ∩F ∩ {0,1}(m,n), even

if X (i, j) = 1 for each (i, j) 6∈ I0 ∪ I1, M j+1( j+1) Â X ( j) would hold. By the induction hypothesis,

X ( j+1)º M j+1( j+1) thus X ( j+1)Â X ( j), which contradicts X ∈ PO. �

6.1.2 Determining I?0 and I?1

In case FixF (PO) 6= ∅, sets I?0 and I?1 can be characterized using F(PO)-minimal and F(PO)-

maximal matrices M1 and M
n

as follows. For each j ∈ {1, ...,m}, consider row i j, the first row at

which columns M1( j) and M
n
( j) differs, defined as:

i j =min
{

i ∈ {1, ...,m} | M1(i, j) 6= M
n
(i, j)

}
If columns M1( j) and M

n
( j) are equal, then i j is arbitrarily set to m+1. By definition of F(PO)-

minimal and F(PO)-maximal matrices, M1(i j, j)< M
n
(i j, j). Note that since for all (i, j) ∈ I0 (resp.

I1), M1(i, j)= M
n
(i, j)= 0 (resp. 1), it follows that (i j, j) is a free variable i.e., (i j, j) 6∈ I0 ∪ I1 .

Theorem 6.2. FixF (PO), if non-empty, is given by sets I?0 = I0 ∪ I+0 and I?1 = I1 ∪ I+1 , where

I+0 =
{
(i, j) 6∈ I0 ∪ I1 | i < i j and M

n
(i, j)= 0

}
, I+1 =

{
(i, j) 6∈ I0 ∪ I1 | i < i j and M1(i, j)= 1

}
.

Proof. ( =⇒ ) We prove that I+0 ⊂ I?0 and I+1 ⊂ I?1 . Let us suppose the opposite: I+0 6⊂ I?0 or

I+1 6⊂ I?1 . Let (i, j) ∈ (I+0 \I?0 )∪ (I+1 \I?1 ). Consider i0 = min{i′ | (i′, j) ∈ (I+0 \I?0 )∪ (I+1 \I?1 )}. Suppose

(i0, j) ∈ I+0 \I?0 . The proof is similar if we suppose (i0, j) ∈ I+1 \I?1 . As (i0, j) 6∈ I?0 , there exists

X ∈ PO∩F∩ {0,1}(m,n) such that X (i0, j)= 1. As (i0, j) ∈ I+0 , M
n
(i0, j)= 0. If for all i′ < i0, X (i′, j)≥

M
n
(i′, j) then the following would hold: X ( j) Â M

n
( j), contradicting the fact that M

n
is F(PO)-

maximal. Thus, there exists a row i1 < i0 such that M
n
(i1, j) = 1 and X (i1, j) = 0. Note that

as (i0, j) ∈ I+0 , i0 < i j, and thus i1 < i j, which implies M1(i1, j) = 1. Thus (i1, j) ∈ I+1 . However,

(i1, j) 6∈ I?1 because X ∈ PO ∩F ∩ {0,1}(m,n) and X (i1, j) = 0. The contradiction comes from the

fact that i1 < i0 and i1 ∈ {i′ | (i′, j) ∈ (I+0 \I?0 )∪ (I+1 \I?1 )}. This proves I+0 ⊂ I?0 and I+1 ⊂ I?1 , thus

I0 ∪ I+0 ⊂ I?0 and I1 ∪ I+1 ⊂ I?1 .

(⇐= ) We prove I?0 ⊂ I0∪I+0 and I?1 ⊂ I1∪I+1 . It suffices to show that given (i, j) 6∈ I?0 ∪I?1 , there

exists a solution X0 ∈ PO∩F∩{0,1}(m,n) such that X0(i, j)= 0 and a solution X1 ∈ PO∩F∩{0,1}(m,n)

such that X1(i, j)= 1. Consider index (i j, j) 6∈ I0 ∪ I1. Solution M1 is such that M1(i j, j)= 0 and

solution M
n

is such that M
n
(i j, j)= 1. So if i = i j, the result is proved. Now suppose i 6= i j. Note

that for all i′ < i j, M1(i′, j) = M
n
(i′, j), therefore (i′, j) ∈ I?0 ∪ I?1 . Thus i > i j. Consider solutions

X0 and X1 defined as follows. For each i′ ∈ {1, ...,m} and j′ ∈ {1, ...,n},

X0(i′, j′)=



M
n
(i′, j′) if j′ < j

M1(i′, j′) if j′ > j

M1(i′, j′) if j′ = j and i′ < i j

1 if j′ = j and i′ = i j

0 otherwise.

X1(i′, j′)=



M
n
(i′, j′) if j′ < j

M1(i′, j′) if j′ > j

M1(i′, j′) if j′ = j and i′ < i j

0 if j′ = j and i′ = i j

1 otherwise.
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Recall that M
n
(i j, j)= 1 and M1(i j, j)= 0, therefore M

n
( j)º X0( j)Â X1( j)Â M1( j). As M

n
and

M1 ∈ PO, M
n
( j−1)º M

n
( j) and M1( j)º M1( j+1). Thus X1 and X0 are also in PO ∩F ∩ {0,1}(m,n)

and are such that X1(i, j)= 1 and X0(i, j)= 0. This concludes the proof. �

To illustrate, consider matrices M1 and M
3

from Example 6.1. Here the rows i j are re-

spectively i1 = 6, since M1(1) = M
3
(1), i2 = 6 and i3 = 4. The corresponding sets I+0 and I+1 are

I+0 = {(3,3)} and I+1 = {(1,1), (3,1), (1,2), (2,2)}. Note that indices (4,3) and (5,3) are neither in

I+0 nor in I+1 because they belong to rows greater than or equal i3 = 4. The associated variables

cannot be fixed, even though variable x(5,3) is set to 0 in M1 and M
3

.

Matrices M1 and M
n

can be computed in O(mn) time, since at each iteration j ∈ {1, ...,n} of

Algorithm 3, i f and i ld can be computed in O(m) time. Once matrices M1 and M
n

are known,

sets I?0 and I?1 can be computed in O(mn) time as well. It follows:

Theorem 6.3. FixF (PO) can be computed in linear time O(mn).

6.2 Static and dynamic orbitopal fixing

So far, the considered lexicographical order on the columns was defined with respect to order

1, ....,m on the rows. In this section, we define a static orbitopal fixing algorithm for the full

orbitope, which relies on this lexicographical order. We also define a dynamic orbitopal fixing

algorithm for the full orbitope, where the lexicographical order is defined with respect to an order

on the rows determined by the branching decisions in the B&B tree. Interestingly these static

and dynamic variants of the orbitopal fixing algorithm can be used also for the full sub-orbitope

case. It is worth noting that this orbitopal fixing algorithm based on our intersection result from

Section 6.1 performs all possible variable fixings (with respect to the full (sub-)orbitope) as early

as possible in the B&B tree.

6.2.1 Static orbitopal fixing

When solving ILP (5.3) with B&B, static orbitopal fixing can be performed at the beginning of

each node processing in the B&B tree, in order to ensure that any enumerated solution x in the

B&B tree is such that x ∈P0(m,n), assuming the lexicographical order is a priori given.

The static orbitopal fixing algorithm at node a is the following:

- Set I0 = Ba
0 , I1 = Ba

1 , where Ba
0 (resp. Ba

1) is the index set of variables previously fixed to 0

(resp. 1).

- Compute matrices M1 and M
n

using Algorithm 1.

- If M1 or M
n

is defined by pair (S∅
0 ,S∅

1 ), prune node a. Otherwise determine I+0 and I+1
using Th. 6.2.
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- Fix variable xi, j to 0, for each (i, j) ∈ I+0 .

- Fix variable xi, j to 1, for each (i, j) ∈ I+1 .

From Theorem 6.2, the pair (I?0 , I?1 ) = (I0 ∪ I+0 , I1 ∪ I+1 ) defines FixF(a)(P0(m,n)), where F(a)

is the hypercube face given by (Ba
0 ,Ba

1) at each node a of a B&B tree. Thus the following result

can be directly derived.

Theorem 6.4. Let τ be a B&B tree of ILP (5.3), in which static orbitopal fixing is performed, and

the branching rule is arbitrary. For each solution orbit O of ILP (5.3), there is exactly one solution

of O enumerated in B&B tree τ.

From Theorem 6.3, the static orbitopal fixing algorithm is in O(mn) time at each node of the

B&B tree.

6.2.2 Dynamic orbitopal fixing

In the previous sections, the lexicographical order on the columns of an m× n binary matrix

was defined with respect to the order 1, ...,m on the rows. Note that this order is arbitrary, and

thus the definition of the lexicographical order can be extended for any ordering of the m rows.

Namely, considering a bijection φ : {1, ...,m}→ {1, ...,m}, column c is lexicographically greater than

or equal to a column c′, with respect to ordering φ, if there exists i ∈ {1, ....,m−1} such that ∀i′ ≤ i,

yφ(i′) = zφ(i′) and yφ(i)+1 > zφ(i)+1.

Dynamic fixing is to perform, at any node a of the B&B tree, orbitopal fixing with respect

to reorderings φa of the row indices, defined by the branching decisions leading to node a. The

idea of pruning the B&B tree with respect to an order defined by the branching process has been

introduced by Margot [62].

As a first step, suppose at each node a of the B&B tree, the branching disjunction has the

form

xia, ja = 0 ∨ xia, ja = 1. (6.1)

Dynamic orbitopal fixing is to perform orbitopal fixing on row set Ia = { φa(1), φa(2), ..., φa(|Ia|)
} at each node a, where lexicographical ordering φa and Ia are defined recursively as follows.

If a is the root, then

{
Ia = {ia}

φa(1)= ia
, otherwise


Ia = Ib ∪ {ia}

φa(i)=φb(i) ∀i ∈ {1, ..., |Ib|}.
φa(|Ib|+1)= ia if ia 6∈ Ib,

where b is the father of a.

Note that an arbitrary branching rule used alongside with an arbitrary ordering may lead to

the removal of every optimal solution from the B&B tree. The following theorem shows that the

use of branching rule (6.1) and ordering φa preserves an optimal solution in the B&B tree.
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Theorem 6.5. Let τ be a B&B tree of ILP (5.3), in which dynamic orbitopal fixing is performed

and branching disjunctions have the form (6.1). For each solution orbit O of ILP (5.3), there is

exactly one solution of O enumerated in B&B tree τ.

Proof. The sketch of the proof is to produce a solution X ∈ O and prove that X is the only

solution of O which is enumerated in τ.

First consider the branching disjunction at the root node ar: (xi0, j0 = 0 ∨ xi0, j0 = 1). Then

φar (1) = i0. Let ni0 be the number of 1-entries on row i0 of any matrix X ∈ O . Since dynamic

orbitopal fixing is enforced in τ, any solution enumerated by τ must be lexicographically non-

increasing with respect to φar . Then, as row i0 is the first row with respect to the lexicographical

order φar , any X ∈O enumerated by the B&B tree will be such that:

X (i0, j)= 1, ∀ j ∈ {1, ...,ni0} and X (i0, j)= 0, ∀ j ∈ {ni0 +1, ...,n}

Note that if j0 ≤ ni0 (resp. j0 > ni0) then any X ∈O enumerated by τ is such that X (i0, j0)= 1

(resp. X (i0, j0)= 0). Thus there is no solution of O in the branch xi0, j0 = 0 (resp. xi0, j0 = 1).

Suppose w.l.o.g. that j0 ≤ ni0 , so the node considered is b1, the son of ar such that xi0, j0 = 1.

Consider the branching disjunction at node b1: (xi1, j1 = 0 ∨ xi1, j1 = 1). If i1 = i0 then, by

the same arguments as at the root node, there is exactly one branch in which all elements of

O are enumerated, and this branch can be easily determined. Otherwise, since i1 6= i0, then

by construction, φb1(1) = i0 and φb1(2) = i1. Let n1
i1

(resp. n0
i1

) be the number of columns j

such that X (i0, j) = 1 (resp. X (i0, j) = 0) and X (i1, j) = 1. Since row i1 is second with respect to

lexicographical order φb1 , any X ∈O enumerated by the B&B tree will be such that:{
X (i1, j)= 1 ∀ j ∈ {1, ...,n1

i1
}∪ {ni0 +1, ...,ni0 +n0

i1
}

X (i1, j)= 0 ∀ j ∈ {n1
i1
+1, ...,ni0}∪ {ni0 +n0

i1
+1, ...,n}

Thus, all X ∈ O enumerated by τ have the same value v in entry (i1, j1), and this value

can be determined, as previously, by finding to which of the sets {1, ...,n1
i1

}, {n1
i1
+ 1, ...,ni0},

{ni0 + 1, ...,ni0 + n0
i1

}, {ni0 + n0
i1
+ 1, ...,n} does index j1 belong. Therefore, since for all X ∈ O

enumerated by τ, X (i1, j1) = v, there is exactly one branch (xi1, j1 = v) in which any X ∈ O is

enumerated. This process can be repeated until a leaf node al is reached. At that point, all entries

of X are determined. By construction, X is the only element of O enumerated by τ, since at each

node we considered, there was always a unique branch leading to all elements of O . �

Now suppose the branching disjunction at each node a is arbritrary. The latter result can be

extended to show that dynamic orbitopal fixing can also be used in this case. For each node a,

consider a branching disjunction of the form:

∑
i∈Ra

p∑
j=1

λi
axi, j ≤ k ∨ ∑

i∈Ra

p∑
j=1

λi
axi, j > k. (6.2)

where Ra = {ra,1, ..., ra,p}⊂ {1, ...,m}.
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A new lexicographical ordering φ̃a taking into account every row involved in disjunction (6.2)

must be defined at each node a. Namely, row subset Ĩa ⊂ {1, ...,m} and bijection φ̃a : {1, ..., |Ĩa|}→ Ĩa

are as follows.

If a is the root, then

{
Ĩa =Ra

φ̃a(k)= ra,k, k ∈ {1, ..., p}
, otherwise



Ĩa = Ĩb ∪Ra

φ̃a(i)= φ̃b(i),∀i ∈ {1, ..., |Ĩb|}
φ̃a(|Ĩb|+k)= r′a,k,∀k ∈ {1, ..., p′}
where b is the father of a

and {r′a,1, ..., r′a,p′}=Ra\Ĩb.

6.2.3 Orbitopal fixing in the full sub-orbitope

Consider a collection S of sub-symmetric solution subsets Q i ⊂ X , i ∈ {1, ..., s} with respect to

(Ri,Ci). Static (resp. dynamic) orbitopal fixing can be performed for P sub(S) at each node a of

the B&B tree as follows. Consider Ia ⊂ {1, ..., s} such that for each i ∈ Ia, each solution x to the

sub-problem at node a is in Q i. The idea is to apply static (resp. dynamic) orbitopal fixing to the

submatrix X (Ri,Ci), for each i ∈ Ia.

By Lemma 5.3 the representatives associated with the natural lexicographical order are

orbit-compatible. Consequently, static orbitopal fixing for P sub(S) does not change the optimal

value returned by the B&B process. Lemma 5.3 can directly be adapted to the case when the

representatives are associated to a lexicographical order defined by arbitrary row-order φ, and the

proof of Theorem 6.5 can be slightly modified to show that dynamic orbitopal fixing for P sub(S) is

also valid.

Referring to the vocabulary of Section 5.2.5, the orbitopal fixing algorithm we devised for the

full orbitope is simultaneous. In the full sub-orbitope case, the fixing process is iterated over

all the submatrices associated to the sub-symmetric groups, and therefore it corresponds to

sequential fixing.

6.3 Orbitopal fixing for the MUCP

For each time period t ∈ {1, ...,T } and subset N⊂Nh, h ∈ {1, ...,H} of identical units, consider set

SMUCP containing the following subsets of XMUCP :

Q
t
N = {

X ∈XMUCP | X (t′, j)= 0, ∀t′ ∈ {t−` j, ..., t−1}, ∀ j ∈N}
Q t

N
= {

X ∈XMUCP | X (t′, j)= 1, ∀t′ ∈ {t−L j, ..., t−1}, ∀ j ∈N}
Note that at each node a of the tree, it is easy to find the sets Q

t
N and Q t

N
, t ∈ {1, ...,T },

N ⊂ Nh, h ∈ {1, ...,H}, to which any solution of the subproblem associated to node a belongs.
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Indeed, for each time period t and for each unit i down (resp. up) at time t, it is possible to know

how long unit i has been down (resp. up), and thus whether unit i is ready to start up (resp. shut

down) or not. If we denote by Nu
t,h (resp. Nd

t,h) the set of type h units which are ready to start up

(resp. shut down) at time t, then all solutions at node a are in sets Q
t
Nu

t,h
and Q t

Nd
t,h

.

Let G
Q

t
N

and GQ t
N

be the sub-symmetry groups associated to Q
t
N and Q t

N
, t ∈ {1, ...,T }, N⊂

Nh, h ∈ {1, ...,H}. Note that groups G
Q

t
N

and GQ t
N

contain the sub-symmetric group associated to

the submatrix defined by rows and columns ({t, ...,T},N). The corresponding full sub-orbitope is

denoted by P sub(SMUCP ).

As the production plans of identical units can be permuted, each variable matrix X h can be

restricted to be in the full orbitope P0(T,nh). More generally we have seen in Section 5.5.3 that

variable matrix X can be restricted to be in the full sub-orbitope P sub(MUCP)

The fixing strategies developed in Sections 6.2.1 and 6.2.2 can thus be applied to fix variables

in each matrix X h, in order to enumerate only solutions with lexicographically maximal X h. These

strategies can also be applied to restrict the feasible set to the full sub-orbitope P sub(MUCP).

The possible approaches are the following:

- Static orbitopal fixing (SOF) for the full orbitopes P0(T,nh), h ∈ {1, ...,H}, where the order

on the rows is decided before the branching process.

- Dynamic orbitopal fixing (DOF) for the full orbitopes P0(T,nh), h ∈ {1, ...,H}, where the

order on the rows φ̃ is decided during the branching process, as described in Section 6.2.2.

- Static orbitopal fixing for the full orbitopes P0(T,nh), h ∈ {1, ...,H} and for the full sub-

orbitope P sub(MUCP).

- Dynamic orbitopal fixing for the full orbitopes P0(T,nh), h ∈ {1, ...,H} and for the full

sub-orbitope P sub(MUCP).

In the static case, the branching decisions are completely free. As stated in Section 6.2.2, the

branching decisions remain free in the dynamic case, provided that the corresponding rows are

ordered accordingly. In our experiments, we only consider the branching disjunctions of the form

(xt, j = 0 ∨ xt, j = 1), or (xt, j − xt−1, j ≤ 0 ∨ xt, j − xt−1, j = 1), i.e., (ut, j = 0 ∨ ut, j = 1).

6.4 Experimental results for the MUCP

All experiments were performed using one thread of a PC with a 64 bit Intel Core i7-6700

processor running at 3.4GHz, and 32 GB of RAM memory. The MUCP instances are solved until

optimality (defined within 10−7 of relative optimality tolerance) or until the time limit of 3600

seconds is reached.

In the following experiments, we compare MUCP resolution methods pairwise using a speed-

up indicator. For given approaches m1 and m2, the speed-up achieved by m1 with respect to m2
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on a given instance is the ratio CPU(m2)
CPU(m1) . The average speed-up, computed on a set I of p instances,

is the geometric mean (Πp
i=1si)

1
p of the speed-ups s1,..., sp.

We compare the following methods to solve the (x,u)-formulation (1.2)–(1.4), (1.7) – (1.10) of

the MUCP:
- Default Cplex: Default implementation of Cplex used by its C++ API,

- Callback Cplex: Cplex with empty Branch and LazyConstraint Callbacks,

- MOB: modified orbital branching with no branching rules enforced (Cplex

is free to choose the next branching variable),

- SOF: Static orbitopal fixing for the full-orbitope,

- DOF Dynamic orbitopal fixing for the full orbitope,

- SOF-S: Static orbitopal fixing for the full orbitope and sub-orbitope,

- DOF-S: Dynamic orbitopal fixing for the full orbitope and sub-orbitope.
For methods MOB, SOF, DOF, SOF-S and DOF-S, we also use Cplex C++ API. The fixing (or

branching) algorithms are included in Cplex using the so-called Branch Callback, alongside with

an empty LazyConstraint Callback to warn Cplex that our methods will remove solutions from

the feasible set. Note that such callbacks deactivate some Cplex features designed to improve the

efficiency of the overall algorithm. This may induce a bias when comparing results obtained with

and without the use of a callback. This is why we compare our methods to Callback Cplex.

Note that in Chapter 3 we only compared our methods to Callback Cplex. Indeed, the presence

of the UserCut callback impacted the results instance by instance, but did not seem to incur a

loss on average. As opposed to the empty UserCut callback, the LazyConstraint Callback deeply

affects the performance of Cplex on the MUCP instances we consider here. This is why we include

Default Cplex in our comparison as well.

Note that as shown in Section 5.4, even though MOB+RMRI is slightly better than MOB with

no branching rules on UCP instances, we choose to compare our methods to MOB. The rationale

behind is that its implementation is straightforward, thus leaving no room to interpretation.

6.4.1 Instances

In order to determine which symmetry-breaking technique performs best with respect to the

number of rows and columns of matrix X , we consider various instance sizes (n,T). Namely, we

generate instances with T = 96 and smaller n : (30, 96), (60,96) and instances with T = 48 and

larger n: (60, 48), (80,48).

For each pair (n,T), we generate a set of 2-peak-demand MUCP instances with F = 2,3,4 as

described in Section 1.2.4.

Table 6.1 provides some statistics on the instances characteristics. For each instance, a group

is a set of two or more units with same characteristics. Each unit which has not been duplicated

is a singleton. The first and second entries column-wise are the number of singletons and groups.

The third entry is the mean group size and the fourth entry is the maximum group size. Each
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entry row-wise corresponds to the average value obtained over 20 instances with same size (n,T)

and same symmetry factor F.

(n,T) Sym. factor Nb. singletons Nb. groups Group mean size Group max size
(30,96) F = 4 1.3 6.5 4.5 6.7

F = 3 0.4 5.3 6.0 8.7
F = 2 0.6 4.1 7.6 11.4

(60,96) F = 4 0.6 7.9 7.8 13.3
F = 3 0.3 6.0 10.5 16.7
F = 2 0.2 4.4 14.8 24.9

(60,48) F = 4 0.8 7.7 7.9 13.1
F = 3 0.6 5.8 10.9 17.8
F = 2 0.2 4.8 13.9 23.8

(80,48) F = 4 0.4 8.0 10.6 18.5
F = 3 0.5 6.7 12.5 22.2
F = 2 0.1 4.5 18.9 31.4

Table 6.1: Instance characteristics

Note that the most symmetrical instances are the ones with the highest n
F ratio. Indeed,

these instances feature large groups of identical units, and the size of solution orbits grows

exponentially with the size of these groups. It is well-known that symmetries dramatically impair

the B&B solution process. The highly symmetrical instances are thus expected to be the hardest

ones. We also expect that symmetry-breaking techniques will prove useful specifically on these

instances.

6.4.2 Static and dynamic orbitopal fixing

The average speed-up achieved by DOF over SOF is given in Table 6.2. The average is computed

for each group of 20 instances with same size and symmetry factor.

(30, 96) (60, 48)
F = 4 F = 3 F = 2 F = 4 F = 3 F = 2
14.5 3.6 2.6 4.6 11.7 6.7

Table 6.2: Speed-up of DOF with respect to SOF

It is clear that DOF outperforms SOF on each group, by a factor ranging from 2.6 to 14.

Thus, we do not consider SOF nor SOF-S in the following experiments. This behavior can be

explained as DOF allows for more variable fixings earlier in the B&B tree. Indeed, the orbitopal

fixing algorithm propagates a branching decision occurring at rth row (with respect to the

lexicographical order) only if there are enough variables already fixed in 1st to r−1th rows. As

DOF defines the lexicographical order with respect to the branching decisions, chances are that
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many variables are already fixed in each row with rank less than r. Thus, DOF often propagates

branching decisions in the B&B tree earlier than SOF does.

Note that MOB also follows the branching decisions, as it branches on a whole variable orbit,

i.e., a set of symmetrical variables on a given row. Contrary to DOF, MOB does not account for

variables outside the orbit, whereas these variables could be fixed as well.

Instances Method #opt #nodes #fixings CPU time
(30,96) F = 4 DC 20 34742 - 34

CC 12 1669334 - 1506
MOB 14 794522 49529 1212
DOF 19 325977 135984 339

DOF-S 20 96416 74281 129

F = 3 DC 16 823455 - 877
CC 8 1977613 - 2296

MOB 12 733875 197964 1578
DOF 13 831504 667733 1338

DOF-S 16 484930 564660 899

F = 2 DC 17 367672 - 606
CC 11 1244729 - 1727

MOB 12 960300 660193 1525
DOF 14 575483 698740 1089

DOF-S 17 496889 736485 1026

(60,96) F = 4 DC 9 1971737 - 1994
CC 3 1899968 - 3072

MOB 9 730306 1037813 2082
DOF 8 932314 3992329 2224

DOF-S 10 678260 3410927 1828

F = 3 DC 10 1679013 - 2134
CC 0 1890180 - 3600

MOB 3 649769 381602 3064
DOF 5 952878 1813052 2957

DOF-S 7 633231 2193599 2465

F = 2 DC 9 1669806 - 2128
CC 0 1295402 - 3600

MOB 7 562942 281326 2490
DOF 8 496424 967275 2379

DOF-S 8 525966 1322964 2199

Table 6.3: Performance indicators relative to the comparison of five methods to solve MUCP
instances with symmetries
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Instances Method #opt #nodes #fixings CPU time
(60,48) F = 4 DC 17 1059290 - 830

CC 8 2664489 - 2252
MOB 17 348881 205477 639
DOF 16 665100 702066 764

DOF-S 17 431652 694538 558

F = 3 DC 13 1322111 - 1283
CC 7 2224234 - 2374

MOB 13 932987 778563 1317
DOF 15 486352 972444 922

DOF-S 15 443246 1083904 935

F = 2 DC 17 701617 - 645
CC 10 1448065 - 1804

MOB 18 190009 54377 417
DOF 18 150486 407031 382

DOF-S 19 135906 449141 325

(80,48) F = 4 DC 8 2423226 - 2168
CC 1 2653960 - 3420

MOB 5 1134716 1047231 2798
DOF 6 1185164 2246156 2607

DOF-S 9 861262 2476840 2160

F = 3 DC 10 1404892 - 2015
CC 1 1553426 - 3447

MOB 2 744775 262750 3247
DOF 2 936007 1062502 3248

DOF-S 3 865991 1285128 3169

F = 2 DC 8 2715484 - 2217
CC 0 3628624 - 3600

MOB 6 1145092 1150613 2552
DOF 6 1594025 3597266 2591

DOF-S 8 1328985 2662087 2269

Table 6.4: Performance indicators relative to the comparison of five methods to solve MUCP
instances with symmetries
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Instance m2= Default Cplex m2 = Callback Cplex
(n,T) Sym m1 #opt opt∆ SCPU opt∆ Scpu

(30,96) F = 4 MOB 14 -6 0.0902 2 1.57
DOF 19 -1 0.659 7 11.4

DOF-S 20 0 0.725 8 12.6
F = 3 MOB 12 -4 0.371 4 3.78

DOF 13 -3 0.507 5 5.17
DOF-S 16 0 1.05 8 10.7

F = 2 MOB 12 -5 0.197 1 2.1
DOF 14 -3 0.564 3 6

DOF-S 17 0 0.716 6 7.62

(60,96) F = 4 MOB 2 -8 0.218 1 1.36
DOF 2 -8 0.214 1 1.33

DOF-S 3 -7 0.218 2 1.36
F = 3 MOB 3 -7 0.314 3 2.33

DOF 5 -5 0.244 5 1.81
DOF-S 7 -3 0.555 7 4.11

F = 2 MOB 7 -2 0.358 7 3.92
DOF 8 -1 0.493 8 5.39

DOF-S 8 -1 0.669 8 7.32

(60,48) F = 4 MOB 17 0 0.978 9 13.5
DOF 16 -1 1.45 8 20.1

DOF-S 17 0 1.92 9 26.5
F = 3 MOB 13 0 0.94 6 8.6

DOF 15 2 2.07 8 18.9
DOF-S 15 2 2.25 8 20.6

F = 2 MOB 18 1 1.84 8 11.7
DOF 18 1 2.58 8 16.4

DOF-S 19 2 2.6 9 16.5

(80,48) F = 4 MOB 5 -3 0.316 4 2.88
DOF 6 -2 0.462 5 4.21

DOF-S 9 1 0.75 8 6.83
F = 3 MOB 6 -2 0.637 6 4.97

DOF 6 -2 0.422 6 3.29
DOF-S 8 0 0.792 8 6.18

F = 2 MOB 9 0 0.701 6 5.22
DOF 8 -1 0.632 5 4.7

DOF-S 10 1 1.1 7 8.14

Table 6.5: MOB and dynamic orbitopal fixing (DOF and DOF-S) - average speed-up for various
instances compared to Default Cplex and Callback Cplex
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6.4.3 Comparison of Cplex, MOB, DOF and DOF-S

We compare five different resolution methods for the MUCP: Default Cplex, Callback Cplex,

MOB, DOF and DOF-S. As shown in Table 6.2, dynamic orbitopal fixing outperforms the static

variant, thus SOF and SOF-S are not considered.

Tables 6.3 and 6.4 provide, for each method and each group of 20 instances:
#opt: Number of instances solved to optimality,

#nodes: Average number of nodes,

#fixings: Average number of fixings (for MOB, it is the total number of variables

fixed during the branching process)

CPU time: Average CPU time in seconds.

Note that the best feasible solution value is not reported, as all methods are able to find the

same best feasible solution value within the time limit.

First note that instances of size (80,48) and, to a lesser extent, of size (60, 96), are the hardest

ones: Default Cplex only solves to optimality half of them, and Callback Cplex solves nearly none

of them. Further increases in the number n of units or in the number T of time steps would then

not be of particular interest, if the corresponding instances are intractable.

Interestingly, increasing the number n of units seems to have more impact on the CPU time

than increasing the number T of time steps. Indeed, from instances of size (60,48) to instances of

size (80,48), n is only multiplied by a factor 1.3, but the computation time increases by a factor 2.

A similar increase in computation time is obtained from instances of size (60,48) to instances of

size (60,96), but in this case the number T of time periods has increased by a factor 2. Similarly,

from instances of size (30,96) to instances of size (60,48), n increases but T decreases, and both

the CPU time and the number of nodes increase. This strong computational impact of parameter

n illustrates the polynomiality of the MUCP when n is fixed and T is arbitrary (see Section 2.3).

Note that on average, MOB explores more nodes in comparison with DOF and DOF-S. Even

though MOB has more opportunities to fix variables due to the large number of nodes visited,

the number of fixings performed by DOF or DOF-S is always much larger (often by at least one

order of magnitude). Thus, DOF and DOF-S solve MUCP instances faster, since they branch less

thanks to the fixing procedure.

Table 6.5 compares each method m1, among MOB, DOF and DOF-S, with respect to method m2,

among Default Cplex and Callback Cplex, in terms of average speed-up. The average speed-up is

computed on groups of 20 instances of same size (n,T) and same symmetry factor F, as described

in Section 6.4.1.

Table 6.5 shows:
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(n,T): Instance size,

F: Symmetry factor,

m1: Method m1, namely MOB, DOF or DOF-S,

m2: Method m2, namely Default Cplex or Callback Cplex,

#opt: Number of instances solved to optimality by m1,

opt∆: Difference in terms of the number of instances solved to optimality by m1 and

by m2,

SCPU : Average speed-up by method m1 with respect to m2, computed on a group of 20

instances.

In terms of CPU time, MOB, DOF and DOF-S greatly outperform Callback Cplex, but the

improvement is larger with DOF and even more significant with DOF-S. Indeed, even on the less

symmetrical instances ((n,T)= (30,96) and F = 4), MOB outruns Callback Cplex by a factor 1.57

and DOF increases this factor to 11.4. Similarly, on more symmetrical instances (n,T)= (60,48),

F = 4 (resp. F = 3, F = 2), MOB outperforms Callback Cplex by a factor 13.5 (resp. 8.6, 11.7) while

DOF increases this factor to 20.1 (resp. 18.9, 16.4).

When both symmetries and sub-symmetries are accounted for, the performance is significantly

improved. For example, on some of the less symmetrical instances ((n,T) = (30,96) and F = 3),

DOF outruns Callback Cplex by a factor 5.17 and this factor increases to 10.7 with DOF-S.

Similarly, on more symmetrical instances (n,T)= (60,96), F = 3 (resp. F = 2), DOF outperforms

Callback Cplex by a factor 1.81 (resp. 5.39) while DOF-S increases this factor to 4.11 (resp. 7.32).

On instances (n,T)= (60,48), F = 4, DOF-S is even faster than Callback Cplex by a factor 26.5.

As observed in [70], there is a huge performance gap between Callback Cplex and Default

Cplex. Thus, even if MOB, DOF and DOF-S substantially outperforms Callback Cplex in each

instance group, it is sometimes not enough to close the performance gap between Default and

Callback Cplex, especially for instances with small n. On the opposite, for large n instances

where symmetries are a major source of difficulty, DOF and DOF-S clearly outperforms Default

Cplex.

Typically, when T is large compared to n (i.e., on instances of size (60,96) and (30,96)) it

seems that non symmetry-related difficulties arise, and none of the compared methods catch up

with Default Cplex. In this context, the cost of applying symmetry-breaking techniques (including

the performance loss induced by the use of a Callback) seems too important compared to the

impact of symmetries. The performance loss is less important with DOF and DOF-S than it is

with MOB. DOF-S is the method that is the closest to catch up with Default Cplex. Indeed, for

(n,T) = (30,96) instances, it solves to optimality as many instances as Default Cplex, and on

F = 3 instances of size (30,96) DOF-S even slightly improves Default Cplex, while MOB is slower

than Default Cplex by a factor 3.

On the opposite, when n is large compared to T (i.e., on instances of size (80,48) and (60,48)),
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symmetry seems to be a major factor of computational difficulty. Indeed, DOF-S performs quite

well in this context and solves to optimality some instances Default Cplex cannot. For example,

on instances (n,T)= (60,48), F = 2 (resp. F = 3), DOF-S solves two more instances to optimality

than Default Cplex. DOF and MOB do not perform as well as DOF-S in this respect. On instances

of size (60,48), DOF and DOF-S outrun Default Cplex by a factor 2, while MOB is closer to a

factor 1. When n increases to 80, DOF-S achieves a speed-up of 1.1 compared to Default Cplex

on the most symmetrical instances (F = 2), while MOB and DOF stay behind with a speed-up

around 0.7 relatively to Default Cplex. Moreover, DOF-S solves more instances to optimality

than Default Cplex. For less symmetrical instances with n = 80, i.e., F = 3 and F = 4 groups,

none of the compared methods are able to outrun Default Cplex in terms of CPU time. It seems

that non-symmetry related difficulties inherent to the MUCP arise in these instances featuring

a large number of distinct units. In this context, DOF-S is the method closest to catch up with

Default Cplex. Indeed, on both groups of instances, the speed-up provided by DOF is around

0.8, whereas this factor ranges from 0.3 to 0.6 for MOB and DOF. While Callback Cplex solves

to optimality only one instance out of forty, DOF-S proves its efficiency by solving even more

instances to optimality than Default Cplex.

Concluding remarks and perspectives

We define a linear time orbitopal fixing algorithm for the full orbitope. This algorithm is optimal,

in the sense that at any node a in the B&B tree, any variable that can be fixed, with respect

to the lexicographical order, is fixed by the algorithm. We propose a dynamic version of the

orbitopal fixing algorithm, where the lexicographical order at node a is defined with respect to

the branching decisions leading to a. We show that the proposed orbitopal fixing algorithm can

be also applied to handle sub-symmetries related to sub-orbitopes.

For MUCP instances, experimental results show that the dynamic variant of our algorithm

performs much better than the static variant. Moreover, it is clear that sub-symmetries greatly

impair the solution process for MUCP instances, since dynamic orbitopal fixing for both full

orbitope and full sub-orbitope (DOF-S) performs even better than dynamic orbitopal fixing for

the full orbitope (DOF). Finally, our experiments show that our approach is competitive with

commercial solvers like Cplex and state-of-the-art techniques like modified orbital branching

(MOB). Even if MOB already improves Callback Cplex, the improvement is even more significant

with our methods DOF and DOF-S. Furthermore, even if there is a huge performance gap between

Callback Cplex and Default Cplex, DOF-S is able to outrun Default Cplex by a factor 2 on some

of the most symmetrical instances.

An option to improve the efficiency of the orbitopal fixing algorithm, implemented within

Cplex’s framework, would be to store the variables already fixed and their bounds in our own

data structure, in order to avoid the costly calls to Cplex’s getters at each node.
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As a perspective, it would be interesting to extend orbitopal fixing to full orbitopes under

other group actions, for example the cyclic group. Another approach to handle symmetries related

to the symmetric or the cyclic group would be to find a new set of representatives whose convex

hull would be easier to describe than the full orbitope.

Finally, there is a wide range of problems featuring all column permutation symmetries and

sub-symmetries, in particular many variants of the UCP, on which our approach could be applied.

Other examples of such problems can be found among covering problems, whose solution matrix

has at least one 1-entry per row, like bin-packing variants. Even though computing the exact

fixing has been shown NP-hard in this case, our orbitopal fixing algorithm, designed for full

orbitopes, can be used to compute valid variable fixings in a covering orbitope as well. In this case,

there is no guarantee that fixings are done as early as possible in the tree, because the special

structure of covering orbitopes may induce possible fixings that would not be correct in a full

orbitope. Nevertheless, this fixing algorithm breaks all column-permutation related symmetries

at some point in the B&B tree, which may be sufficient to overcome the computational difficulties

arising from the highly symmetrical nature of these problems.
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7
SUB-SYMMETRY BREAKING INEQUALITIES

We propose a general framework to build full symmetry-breaking inequalities in order to handle

sub-symmetries arising from solution subsets whose symmetry groups contain the symmetric

group acting on some sub-columns. One additional variable per subset Q considered may be

needed in these inequalities, depending whether variables x are sufficient to indicate that “x

belongs to subset Q". The proposed framework is applied to derive such inequalities when

the symmetry group is the symmetric group Sn acting on the columns. It is also applied to

derive inequalities breaking both symmetries and sub-symmetries in the MUCP. We present

experimental results comparing these sub-symmetry-breaking inequalities to state-of-the-art

symmetry-breaking formulations, such as the MUCP formulation featuring inequality (5.6) [55]

(see Section 5.3.1), aggregated (x,u) or aggregated interval MUCP formulations [50] (see Section

5.4). When the MUCP is considered, the integer decomposition property holds for the (x,u)

formulation and thus efficient aggregation techniques apply [50]. When the ramp-constrained

MUCP is considered, the integer decomposition property (see Theorem 1.3) does not hold anymore

for the (x,u) MUCP formulation, then the corresponding aggregated solutions can no longer be

disaggregated. We show that our inequalities outperform all above mentioned formulations in

the ramp-constrained case.

For a given solution subset Q, the symmetry group GQ of the corresponding subproblem is

different from G and may contain symmetries undetected in G . In practice it is too expansive to

compute the symmetry group for every subset Q ⊂X . However for many problems, symmetries of

G can be deduced from the problem’s structure, and so can symmetries of GQ , for some particular

solution subsets Q. In this case, symmetries of GQ are a priori known, and thus do not need to be

computed. Such symmetries may be handled together with symmetries of G . In this section, we

introduce sub-symmetry-breaking inequalities designed to simultaneously handle symmetries

131



CHAPTER 7. SUB-SYMMETRY BREAKING INEQUALITIES

and sub-symmetries in symmetric groups.

In Sections 7.1 and 7.2, we describe the framework. In Section 7.3, an application to the sym-

metric group case is presented. In Section 7.4, the framework is applied to derive sub-symmetry-

breaking inequalities dedicated to the MUCP. Experimental results on MUCP instances (with or

without ramp constraints) are presented in Section 7.5.

The results presented in this chapter have been published in [11].

7.1 Definition and validity

Consider a set S of solution subsets Qs, s ∈ {1, ..., q}, such that each subset Qs, s ∈ {1, ..., q}, is

sub-symmetric with respect to (Rs,Cs). Consider integer variable zs, s ∈ {1, ..., q}, such that zs = 0

if variable x ∈Qs, and such that zs ≥ 1 if x 6∈Qs. For any x ∈X , function Z associates x to a vector

Z(x) such that zs, s ∈ {1, ..., q}, is the sth component of Z(x) denoted by Zs(x)

Note that in many cases, function Z is linear, i.e., each integer variable zs is a linear ex-

pression of variables x. In such cases, no additional variable zs is needed. In some cases where

function Z is not linear, variable zs can be linearly expressed from variables x using only a few

additional inequalities or integer variables.

Given c, c′ ∈ Cs such that c < c′, the sub-symmetry-breaking inequality, denoted by (Qs(c, c′)),
is defined as follows.

xr1,c′ ≤ zs + xr1,c where r1 =min(Rs) (7.1)

For each orbit Os
k, k ∈ {1, ..., os}, of GQs , s ∈ {1, ..., q}, the chosen representative is the lex-

max of orbit Os
k with respect to (Rs,Cs). Then by Property 5.3, this set of representatives is

orbit-compatible. In particular, solution set X can be restricted to the set of representatives by

considering its intersection with the full sub-orbitope P sub(S). If x ∈ Qs, inequality (Qs(c, c′))
enforces that the first row of submatrix x(Rs,Cs) is lexicographically non-increasing, hence the

following result.

Lemma 7.1 (Validity). If x ∈ P sub(S), then (x, Z(x)) satisfies inequality (Qs(c, c′)) for each s ∈
{1, ..., q} and c, c′ ∈ Cs such that c < c′.

Note that an inequality similar to (7.1) applied to a row of Rs distinct from r1 may not be

valid when used alongside with (7.1), as shown in Example 7.1.

Example 7.1. Let S= {Q1}, q = 1, where subset Q1 is as follows.

Q1 =
{

x ∈P (4,3)∩X |
3∑

c=1
x2,c = 3

}
Let us suppose the symmetry group of Q1 is the sub-symmetric group with respect to submatrix

({3,4}, {1,2,3}). Variable z1 can be defined using equality z1 = 3−∑3
c=1 x2,c. Note that z1 = Z1(x)= 0
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when
∑3

c=1 x2,c = 3, i.e., x ∈Q1, and is positive otherwise. Here the first row in R1 is r1 =min(R1)=
3, thus given c, c′ ∈ {1,2,3}, c < c′, inequality (Q1(c, c′)) is as follows

x3,c′ ≤
(
3−

3∑
j=1

x2, j

)
+ x3,c (7.2)

Inequality (Q1(c, c′)) enforces that row 3 of a solution matrix x is lexicographically ordered,

i.e., x3,1 ≥ x3,2 ≥ x3,3, whenever
∑3

c=1 x2,c = 3.

Now consider solutions x1, x2 ∈Q1:

x1 =


1 0 0

1 1 1

1 0 0

0 1 1

 and x2 =


1 0 0

1 1 1

0 0 1

1 1 0


Inequality (7.2) cuts off solution x2 from the feasible set. Inequality (7.3) corresponds to

inequality (7.1) applied to row 4:

x4,c′ ≤
(
3−

3∑
j=1

x2, j

)
+ x4,c (7.3)

Inequality (7.3) would cut off x1. This shows that inequalities (7.2) and (7.3) cannot be used

simultaneously.

Note that in the general case, inequalities (7.1) may only be partial symmetry-breaking.

Indeed, for given s ∈ {1, ..., q} and c, c′ ∈ Cs such that c < c′, inequality (Qs(c, c′)) only enforces

that the first row of submatrix x(Rs,Cs) is lexicographically non-increasing when x ∈Qs. In the

case when xr1,c′ < xr1,c, then sub-columns x(Rs, {c′}) ≺ x(Rs, {c}). Otherwise, when xr1,c′ = xr1,c,

inequality (7.1) is not sufficient to select the lexmax representatives.

To enforce a lexicographical order, subsequent rows of submatrix x(Rs,Cs) should be consid-

ered until a tie-break row is found. It is shown in the next section that inequalities (Qs(c, c′)) for

all s ∈ {1, ..., q} and c < c′ ∈ Cs enforce that x ∈P sub(S) provided a tie-break condition on set S is

fulfilled.

7.2 Full symmetry-breaking sufficient condition

In this section, we introduce a condition for inequalities (7.1) to be full symmetry-breaking.

For each s ∈ {1, ..., q}, consider Rs = {rs
1, ..., rs

|Rs|} and Cs = {cs
1, ..., cs

|Cs|}, where rs
1 < ...< rs

|Rs| and

cs
1 < ...< cs

|Cs|. For given s ∈ {1, ..., q} and any two columns cs
l−1, cs

l ∈ Cs, if there is a solution x ∈Qs

such that columns cs
l−1 and cs

l are equal from row rs
1 to row rs

k−1, it must be ensured that row

rs
k is lexicographically non increasing, i.e., xrs

k,cs
l−1

≤ xrs
k,cs

l
. The key idea is to exhibit another

set Qp ∈S for quartet (Qs,k, l, x), such that Qp contains x and is sub-symmetric with respect to

133



CHAPTER 7. SUB-SYMMETRY BREAKING INEQUALITIES

(Rp,Cp), where the first row of Rp is rs
k and Cp contains columns cs

l−1 and cs
l . Then inequality

(Qp(cs
l−1, cs

l )) will ensure that xrs
k,cs

l−1
≥ xrs

k,cs
l
. For each quartet (Qs,k, l, x), the existence of such a

subset Qp in S will be ensured by tie-break condition (C ), defined as follows:

(C )


∀s ∈ {1, ..., q}, ∀k ∈ {2, ..., |Rs|}, ∀l ∈ {2, ..., |Cs|}
If x ∈Qs such that xrs

k′ ,c
s
l−1

= xrs
k′ ,c

s
l
, ∀k′ ∈ {1, ...,k−1},

then there exists p ∈ {1, ..., q} such that x ∈Qp, Cp ⊇ {cs
l−1, cs

l } and rs
k =min(Rp)

If condition (C ) holds, inequalities (Qs(cs
l−1, cs

l )), ∀s ∈ {1, ..., q}, ∀l ∈ {2, ..., |Cs|} exactly restrict

the solution set to the representative set X ∩P sub(S). They are therefore full symmetry breaking,

with respect to the sub-symmetries defined by S. This gives the idea of the proof for the following

theorem.

Theorem 7.1. If condition (C ) holds, then:

(i) (x, Z(x)) satisfies (Qs(cs
l−1, cs

l )), ∀s ∈ {1, ..., q}, ∀l ∈ {2, ..., |Cs|}

(ii) x ∈P sub(S)

are equivalent.

For general set S, condition (C ) may not hold. Fortunately, it will be shown that we can

construct from S another set S̃ satisfying (C ) and such that P sub(S̃)=P sub(S).

The idea is to divide each Qs, s ∈ {1, ..., q} in smaller subsets such that for each row rs
k ∈ Rs

and each column cs
l ∈ Cs, there is a subset Q, which is sub-symmetric with respect to (R,C) =

({rs
k, ..., rs

|Rs|}, {c
s
l−1, cs

l }).

Set S̃ is defined as follows.

S̃=
{

Q̃s(k, l) | s ∈ {1, ..., q}, k ∈ {1, ..., |Rs|}, l ∈ {2, ..., |Cs|}
}

where for each s ∈ {1, ..., q}, for each l ∈ {2, ..., |Cs|}, for each k ∈ {1, ..., |Rs|},

Q̃s(k, l)=
{

x ∈Qs | xr,cs
l−1

= xr,cs
l
, ∀r ∈ {rs

1, ..., rs
k−1}

}
Note that for solution x ∈Qs such that columns cs

l−1 and cs
l are equal from row rs

1 to row rs
k−1,

the set exhibited for quartet (Qs,k, l, x) is Q̃s(k, l). Note also that Q̃s(1, l)=Qs, l ∈ {2, ..., |Cs|}.
We thus have the following result:

Lemma 7.2. Set S̃ satisfies (C ) and is such that P sub(S̃)=P sub(S).

Proof. The symmetry group of Q̃s(k, l) is the sub-symmetric group with respect to (R,C) =
({rs

k, ..., rs
|Rs|}, {c

s
l−1, cs

l }). Thus if some solution x ∈Qs is such that columns cs
l−1 and cs

l are equal

from row rs
1 to row rs

k−1, then subset Q̃s(k, l) contains x and is such that C ⊇ {cs
l−1, cs

l } and min(R)=
rs

k. Condition (C ) is therefore satisfied by S̃. It can be readily checked that the full sub-orbitopes

defined by S̃ and S are the same. �
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It follows, from Theorem 7.1, that inequalities (Q(c, c′)), c < c′ ∈ C, Q ∈ S̃ are full symmetry-

breaking with respect to the sub-symmetries defined by S.

Corollary 7.1. If for each Q ∈ S̃, (x, Z(x)) satisfies inequality (Q(c, c′)), ∀c < c′ ∈ C, then x ∈
P sub(S).

We can then consider S̃ instead of S. This implies to add one inequality at least (resp. one

variable at most), per subset Q ∈ S̃, i.e., O(qmn) inequalities at least (resp. variables at most).

Example 7.2. Referring to Example 7.1, S̃ = {
Q̃1(1, l), Q̃1(2, l), l ∈ {2,3}

}
. For each l ∈ {2,3},

Q̃1(1, l) = Q1 as for any s, Q̃s(k, l) = Qs whenever k = 1. We also have Q̃1(2, l) = {
x ∈ Q1 | x3,l−1 =

x3,l
}
. For each l ∈ {2,3}, z̃l associated to subset Q̃1(2, l) can be expressed as follows: z̃l = 2z1 +

(x3,l−1− x3,l). Indeed, when z1 = 0, inequality (7.2) becomes x3,l−1 ≤ x3,l . Thus, z̃l = 0 if x3,l−1 = x3,l

and zl ≥ 1 otherwise. When z1 = 1, z̃l ≥ 1. Hence the following inequalities are full symmetry-

breaking:
x3,l−1 ≤

(
3−∑3

j=1 x2, j

)
+ x3,l ∀l ∈ {2,3}

x4,l−1 ≤
(
6+ x3,l−1 − x3,l −2

∑3
j=1 x2, j

)
+ x4,l ∀l ∈ {2,3}

In Sections 7.3 and 7.4, inequalities (7.1) are built in a more straightforward way, in the sense

that set S already satisfies condition (C) in the two applications studied.

7.3 Application to the symmetric group case

In this section, we apply the framework of Sections 7.1 and 7.2 to any problem whose symmetry

group G is the symmetric group Sn acting on the columns. The collection SS of subsets considered

will lead to inequalities restricting any solution x ∈X to be in the full orbitope. These inequalities

feature variables z which can be explicitly expressed from x with O(mn) linear inequalities. Here,

the sub-symmetries considered are restrictions of symmetries’ actions to solution subsets.

A complete linear description of the 2-column full orbitope, featuring additional integer

variables, is proposed in [56]. In the general n-column case, we show that these inequalities can

also be derived using the framework described in Sections 7.1 and 7.2, and can be used as full

symmetry-breaking inequalities.

We consider SS = {
Q i, j, i ∈ {0}∪ {1, ...,m−1}, j ∈ {2, ...,n}

}
, where

Q i, j =
{

x ∈X | xi′, j−1 = xi′, j ∀i′ ∈ {1, ..., i}
}
.

Subset Q i, j is the set of feasible solutions such that columns j−1 and j are equal from row

1 to row i. Note that Q0, j = X . The symmetry group of Q i, j is then the sub-symmetric group

with respect to (Ri, { j−1, j}) where Ri = {i+1, ...,m}. It can be readily checked that in this case, S

already satisfies condition (C ).

Let variable zi, j be such that zi, j = 0 if x ∈Q i, j and 1 otherwise. Note that for all j ∈ {2, ...,n},

Q0, j =X , thus z0, j = 0, ∀x ∈X . Note also that X ∩P sub(SS) is a subset of the full orbitope.
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Thus, given that the columns of any x ∈X ∩P sub(SS) are in a non-increasing lexicographical

order, function Z is such that Z(x)= z, where z satisfies the following linear inequalities.



z1, j−1 = x1, j−1 − x1, j ∀ j ∈ {2, ...,n} (7.4a)

zi, j−1 ≤ zi−1, j−1 + xi, j−1 ∀i ∈ {2, ...,m}, j ∈ {2, ...,n} (7.4b)

zi, j−1 + xi, j ≤ 1+ zi−1, j−1 ∀i ∈ {2, ...,m}, j ∈ {2, ...,n} (7.4c)

xi, j−1 ≤ zi, j−1 + xi, j ∀i ∈ {2, ...,m}, j ∈ {2, ...,n} (7.4d)

zi−1, j−1 ≤ zi, j−1 ∀i ∈ {2, ...,m}, j ∈ {2, ...,n} (7.4e)

Constraint (7.4a) sets variable z1, j−1 to 1 whenever columns j−1 and j are different and in

a non-increasing lexicographical order on row 1, and to 0 when they are equal. Constraints

(7.4b) and (7.4c) set variable zi, j−1 to 0 when zi−1, j−1 = 0 and columns j−1 and j are equal on

row i. Constraint (7.4d) sets variable zi, j−1 to 1 if columns j−1 and j are different and in a

non-increasing lexicographical order on row i. Constraint (7.4e) sets zi, j−1 to 1 when variable

zi−1, j−1 = 1, i.e., when columns j−1 and j are different before row i.

For each i ∈ {0, ...,m−1} and j ∈ {2, ...,n} inequality (7.1) is inequality (Q i, j( j−1, j)) as follows:

xi+1, j ≤ zi, j−1 + xi+1, j−1 ∀i ∈ {1, ...,m}, ∀ j ∈ {2, ...,n}

It ensures that if columns j −1 and j of x are equal from row 1 to i, then row i +1 is in a

non-increasing lexicographical order.

Note that if zi−1, j−1 − zi, j−1 =−1 then necessarily xi, j = 0. Thus inequality ((Q i, j( j−1, j))) can

be lifted to

xi, j ≤ (2zi−1, j−1 − zi, j−1)+ xi, j−1 (7.5)

In the special case when n = 2, by replacing variable zi, j by yi, j where zi, j = 1−∑i
i′=1 yi, j, for

each i ∈ {1, ...,m}, j ∈ {1,2}, inequalities (7.4a)–(7.5) yield the complete linear description of the

2-column full orbitope proposed in [56].

In the general n-column case, inequalities (7.4a)-(7.5) are still full symmetry-breaking (by

Theorem 7.1), and then can be used in practice to restrict the feasible set to any full orbitope. In

this case, O(mn) additional variables and constraints are needed.

7.4 Application to the Unit Commitment Problem

The framework of Sections 7.1 and 7.2 is now applied to the MUCP, which features many

sub-symmetries non detected by the symmetry group G .
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7.4.1 Sub-symmetry-breaking inequalities for the MUCP

For each time period t ∈ {1, ...,T } and any two consecutive units jh
k , jh

k+1 of type h, k ∈ {1, ...,nh−1},

consider the following subsets of XMUCP :

Q
t
k,h = {

x ∈XMUCP | xt′
j = 0, ∀t′ ∈ {t−`h, ..., t−1}, ∀ j ∈ { jh

k , jh
k+1}

}
Q t

k,h
= {

x ∈XMUCP | xt′
j = 1, ∀t′ ∈ {t−Lh, ..., t−1}, ∀ j ∈ { jh

k , jh
k+1}

}
where `h (resp. Lh) is the minimum down (resp. up) time of units of type h.

Note that Q
t
k,h and Q t

k,h
are different from subsets Q i, j defined in Section 7.3. Actually,

Qt, jh
k+1

⊂Q
t
k,h and Qt, jh

k+1
⊂Q t

k,h
.

Let G
Q

t
k,h

and GQ t
k,h

be the sub-symmetry groups associated to Q
t
k,h and Q t

k,h
, t ∈ {1, ...,T },

h ∈ {1, ...,H}, k ∈ {1, ...,nh −1}. The sub-symmetries in G
Q

t
k,h

(resp. GQ t
k,h

) are called start-up sub-

symmetries (resp. shut-down sub-symmetries). Most of these sub-symmetries are not detected in

the symmetry group of the MUCP.

Groups G
Q

t
k,h

and GQ t
k,h

contain the sub-symmetric group associated to the submatrix defined

by rows and columns ({t, ...,T}, { jh
k , jh

k+1}).

Applying results from Section 7.1, variables zt
k,h and zt

k,h, indicating whether x ∈Q
t
k,h and

x ∈Q t
k,h

respectively, can be directly derived from variables x and u:

zt
k,h = x j′

t−`h +
t−1∑

t′=t−`h+1
u j′

t′ + x j
t−`h +

t−1∑
t′=t−`h+1

u j
t′

zt
k,h = 1− x j′

t−Lh +
t−1∑

t′=t−Lh+1
w j′

t′ +1− x j
t−Lh +

t−1∑
t′=t−Lh+1

w j
t′

where j = jh
k and j′ = jh

k+1 for sake of clarity.

Consider SMUCP = {
Q

t
k,h, Q t

k,h
, t ∈ {1, ...,T }, h ∈ {1, ...,H}, k ∈ {1, ...,nh −1}

}
. In this case, set S

directly satisfies condition C .

For each h ∈ {1, ...,H}, k ∈ {1, ...,nh−1} and t ∈ {1, ...,T }, inequalities (Q
t
k,h( j, j′)) and (Q t

k,h
( j, j′)),

where j = jh
k and j′ = jh

k+1, are as follows.

x j′
t ≤

[
x j′

t−`h +
t−1∑

t′=t−`h+1
u j′

t′

]
+

[
x j

t−`h +
t−1∑

t′=t−`h+1
u j

t′

]
+ x j

t

x j′
t ≤

[
1− x j′

t−Lh +
t−1∑

t′=t−Lh+1
w j′

t′

]
+

[
1− x j

t−Lh +
t−1∑

t′=t−Lh+1
w j

t′

]
+ x j

t

Strengthening symmetry-breaking inequalities Inequalities (Q
t
k,h( j, j′)) and (Q t

k,h
( j, j′))

can be further strengthened, using the relationship between variables x and u.
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First note that by definition of variables w:

x j′
t −

[
x j′

t−`h +
t−1∑

t′=t−`h+1
u j′

t′

]
= u j′

t −
t∑

t′=t−`h+1
w j′

t′

x j
t +

[
1− x j

t−Lh +
t−1∑

t′=t−Lh+1
w j

t′

]
=−w j

t +1+
t∑

t′=t−Lh+1
u j

t′

As if u j′
t = 1 (resp. w j

t = 1), then
∑t

t′=t−`h+1 w j′
t′ = 0 (resp.

∑t
t′=t−Lh+1 u j

t′ = 0), the following

Start-Up-Ready and Shut-Down-Ready inequalities are valid and stronger than inequalities

(Q
t
k,h( j, j′)) and (Q t

k,h
( j, j′)).

u j′
t ≤

[
x j

t−`h +
t−1∑

t′=t−`h+1
u j

t′

]
+ x j

t (7.6)

w j
t ≤

[
1− x j′

t−Lh +
t−1∑

t′=t−Lh+1
w j′

t′

]
+1− x j′

t (7.7)

Note that for any h ∈ {1, ...,H} and k ∈ {1, ...,nh −1}, Q
1
k,h = Q1

k,h
= XMUCP . As condition (C) is

satisfied by SMUCP , any x = (x1, ..., xH) satisfying inequalities (7.6) and (7.7) is such that xh is in

the T ×nh full orbitope, h ∈ {1, ...,H}. Hence inequalities (7.6) and (7.7) ensure in particular that

any solution xh is in the full orbitope.

7.4.2 Sub-symmetry-breaking inequalities for the ramp-constrained MUCP

The MUCP formulation including ramp constraints can be further strengthened with valid

inequalities as proposed in [71, 75]. As the aim of this chapter is to compare symmetry-breaking

techniques, we will only consider the classical MUCP formulation (1.2)–(1.4), (1.7) – (1.10) with

ramp-constraints (1.11) – (1.12), as done in [49, 70].

When ramp-constraints are considered, the symmetry group of set Q
t
k,h still contains the sub-

symmetric group associated to the submatrix defined by rows and columns ({t, ...,T}, { jh
k , jh

k+1}).

Therefore, inequalities (7.6) can still be used.

However the symmetry group of set Q t
k,h

no longer contains the sub-symmetric group associ-

ated to the submatrix defined by rows and columns ({t, ...,T}, { jh
k , jh

k+1}). Indeed, if two identical

units have been up for at least Lh time periods at time t−1, they may produce distinct power

values at time t−1 and thus, because of ramp constraints, their up/down trajectories from time t

to T cannot be permuted. Therefore, inequalities (7.7) can no longer be used.

Note that when two identical ramp-constrained units are ready to shut down, there still exist

some sub-symmetries that could be exploited. These sub-symmetries are more intricate because

they depend, for example, on the quantity of power produced by both units, or on the time of their

last start-up.
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7.5 Experimental results

In this section, we compare various formulations for the MUCP with or without ramp constraints.

Some symmetry-breaking techniques need to interfere with the branching process. These are

typically implemented using a callback instruction which deeply affects the performance of

commercial solvers like Cplex. Consequently in our computational comparison, we only consider

symmetry-breaking techniques that do not require the use of a callback.

7.5.1 Experimental settings

In this section, we compare various symmetry-breaking formulations for the MUCP with or

without ramp-constraints.

As shown in [70], neither Friedman inequalities (5.4) nor column inequalities (5.5) are

competitive with respect to the classical UCP formulation when solved by Cplex.

On the opposite, the weaker form of Friedman inequality (5.6) has been shown in [55] to

outperform Default Cplex.

In [50], the authors propose to break symmetries of the UCP by aggregating variables

corresponding to identical units.

Hence the following formulations for the MUCP are compared:

- F(x,u): (x,u)-formulation (1.2)–(1.4), (1.7) – (1.10)

- A-(x̃, ũ): Aggregated (x̃, ũ)-formulation (5.7)–(5.12) (only when disaggregation ap-

plies)

- Int( ỹ): Aggregated interval formulation (5.18)–(5.21)

- W(x,u): (x,u)-formulation (1.2)–(1.4), (1.7) – (1.10) with weaker Friedman inequal-

ities (5.6)

- F(x,u, z): (x,u)-formulation (1.2)–(1.4), (1.7) – (1.10) with variables z, inequalities

(7.4a)–(7.4e) and sub-symmetry-breaking inequalities (7.5)

- LF(x,u): (x,u)-formulation (1.2)–(1.4), (1.7) – (1.10) with sub-symmetry-breaking

inequalities (7.6)-(7.7).
Formulation F(x,u, z) is obtained from the classical MUCP formulation F(x,u) by a direct use

of the inequalities given in Section 7.3. As seen in Section 7.4, taking into account sub-symmetries

in the MUCP leads to formulation LF(x,u) featuring lifted symmetry breaking-inequalities (7.6)

and (7.7), namely Start-up-ready and Shut-down-ready inequalities, in place of inequalities

(7.4a)–(7.5). Note that the start-up and shut-down sub-symmetries of the MUCP are not handled

by formulations F(x,u), W(x,u) and F(x,u, z).

Formulations F(x,u), W(x,u), F(x,u, z) and LF(x,u) feature O(nT) variables while formula-

tion A-(x̃, ũ) (resp. Int( ỹ)) features O(HT) (resp. O(T2H)) variables, where H is the number of

groups of identical units.
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For the ramp-constrained MUCP, inequalities (1.11)–(1.12) enforcing ramp-constraints are

added to formulations F(x,u), W(x,u), F(x,u, y) and LF(x,u). Aggregated formulation A-(x̃, ũ)

can no longer be used, as its solutions cannot be disaggregated [50]. Note also that in this context,

Start-up-ready inequalities are adjoined to LF(x,u), but Shut-down-ready inequalities cannot.

In formulation Int( ỹ), the production limit constraint (5.13) is always included in inequalities

(5.18) defining feasible productions. In the ramp-constrained case, the ramp constraints (5.14)–

(5.17) are also included.

All experiments are performed using Cplex 12.8 C++ API on 8 threads of a PC with a 64 bit

Intel Core i7-6700 processor running at 3.4GHz, and 32 GB of RAM memory. The UCP instances

are solved until optimality (defined within 10−7 of relative optimality tolerance) or until the time

limit of 3600 seconds is reached.

7.5.2 Instances

We generate 2-peak-demand MUCP instances as described in Section 1.2.4. The ramp-constrained

MUCP instances considered are the same as in the non-ramp-constrained case, with additional

ramp characteristics RU j = P j
max−P j

min
3 , RD j = P j

max−P j
min

2 and SU j = SD j = P j
min.

In order to determine which symmetry-breaking technique performs best with respect to the

number of rows and columns of matrices in feasible set X , we consider various instance sizes

n ∈ {20,30,60} and T ∈ {48,60}, and various symmetry factors F ∈ {2,3,4}. For each size (n,T) and

symmetry factor F ∈ {2,3,4}, we generate a set of 20 instances. Symmetry factor F = 4 is not

considered for instances with a small number n of units (n = 20 or 30), as it leads to very small

sets of identical units.

Table 7.1 provides some statistics on the instances characteristics. For each instance, a

group is a set of two or more units with the same characteristics. Each unit which has not been

duplicated is a singleton. The first and second entries column-wise are the number of singletons

and groups. The third entry is the average group size and the fourth entry is the maximum group

size. Each entry row-wise corresponds to the average value obtained over 20 instances with same

size (n,T) and same symmetry factor F.

7.5.3 Results for the MUCP

Tables 7.2, 7.3 and 7.4 provide, for each formulation and each group of 20 instances:

#opt: Number of instances solved to optimality,

#nodes: Average number of nodes,

gap: Average optimality gap,

CPU time: Average CPU time in seconds.
Note that a sign “-" in the column entry corresponding to the CPU time means that no

instance could be solved within the time limit.
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Size (n,T) Sym. factor Nb singl. Nb groups Av. group size Group max. size
(20,48) F = 3 1.25 4.90 3.96 5.75

F = 2 0.75 3.20 6.45 8.75

(20,96) F = 3 0.90 4.75 4.08 5.60
F = 2 0.75 3.45 5.93 8.65

(30,48) F = 3 1.10 5.35 5.51 9.45
F = 2 0.25 3.85 8.30 12.60

(30,96) F = 3 0.40 5.25 5.97 8.65
F = 2 0.55 4.05 7.59 11.40

(60,48) F = 4 0.80 7.70 7.86 13.20
F = 3 0.55 5.80 10.90 17.80
F = 2 0.20 4.75 13.90 23.80

(60,96) F = 4 0.60 7.90 7.79 13.20
F = 3 0.30 5.95 10.50 16.60
F = 2 0.20 4.35 14.80 24.90

Table 7.1: Instance characteristics

It is clear that aggregated (x,u) formulation A-(x̃, ũ) outperforms by far all the other formula-

tions. This could be explained by the reduced size of aggregated formulation A-(x̃, ũ), but also

by the good performance of Cplex on ILP featuring integer variables (with bounds greater than

1). This efficiency will certainly be preserved any time the integer decomposition property holds

for an (x,u) formulation of the UCP. Aggregated interval formulation Int( ỹ) is on average one or

even two order of magnitude slower than F(x,u), F(x,u, z) and LF(x,u). Formulations F(x,u, z)

and W(x,u) are always outperformed by F(x,u) and LF(x,u). Formulations F(x,u) and LF(x,u)

are quite comparable on (n,T) = (20,48) instances. Interestingly, on (n,T) = (20,96) instances,

LF(x,u) is better than F(x,u). Otherwise, when n is larger (i.e., n ≥ 30), and when T = 96 or when

F = 2, F(x,u) outperforms LF(x,u). On the opposite, when the horizon size is smaller (i.e., T=48)

and when F ∈ {3,4}, formulation LF(x,u) outperforms F(x,u) for n = 30 and n = 60. These two

results may be due to Cplex’s internal symmetry-detection and symmetry-breaking techniques,

as in previous versions of Cplex (namely version 12.6.1), LF(x,u) always outperformed F(x,u).

7.5.4 Results for the ramp-constrained MUCP

Recall that aggregated formulation A-(x̃, ũ) can no longer be used in this context.

Tables 7.5 and 7.6 provide, for each formulation and each group of 20 instances, the exact

same column entries as those in Tables 7.2, 7.3 and 7.4.

First note that the ramp constraints make the MUCP instances much harder to solve by

Cplex in general, as the CPU times in Tables 7.5 and 7.6 are much larger than those in Tables 7.2,

7.3 and 7.4. For example, the integrality gap is on average 10 times larger for ramp-constrained

problems on (n,T)= (60,48) and F = 2 instances.
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Instances Formulation #opt #nodes gap (%) CPU time
(20,48) F = 2 F(x,u) 20 1271 0 2.6

A-(x̃, ũ) 20 0 0 0.2
Int( ỹ) 16 205667 0.00502 781.6

W(x,u) 20 4809 0 13.7
F(x,u, z) 20 3838 0 23.2
LF(x,u) 20 1915 0 6.6

F = 3 F(x,u) 20 806 0 2.6
A-(x̃, ũ) 20 0 0 0.3
Int( ỹ) 18 152948 0.00157 572.1

W(x,u) 20 1600 0 4.4
F(x,u, z) 20 683 0 6.7
LF(x,u) 20 271 0 3.5

(20,96) F = 2 F(x,u) 20 148942 0 267.3
A-(x̃, ũ) 20 0 0 0.7
Int( ỹ) 6 13180 9.36857 2977.5

W(x,u) 18 110644 0.00015 459.6
F(x,u, z) 18 118877 0.00018 497.8
LF(x,u) 19 52881 0.00013 215.1

F = 3 F(x,u) 18 29418 0.03271 376.7
A-(x̃, ũ) 20 2360 0 8.2
Int( ỹ) 7 32859 0.16855 2574.8

W(x,u) 19 79864 0.00061 357.1
F(x,u, z) 18 39694 0.00092 458.3
LF(x,u) 19 19831 0.00085 229.1

Table 7.2: Performance indicators relative to the comparison of six formulations for MUCP
instances with symmetries and n = 20

Formulation Int( ỹ) is still the less efficient formulation. It does not solve to optimality any

instance with n > 20 but one. Moreover, on n = 30 instances, and on (n,T)= (60,96) instances, the

root node cannot be processed at all within the time limit for formulation Int( ỹ); the number of

nodes explored is 0 and the optimality gap is 100%.

Formulation LF(x,u) is more efficient than all considered formulations. Formulation LF(x,u)

is able to solve a larger number of instances to optimality than all considered formulations, on all

instances classes but (n,T)= (20,96) F = 2 instance class. In particular, LF(x,u) manages to solve

to optimality two of the large-size instances (i.e., (n,T)= (60,96)), while other formulations do not

reach optimality on any of these instances. Moreover, formulation LF(x,u) solves 52 instances

to optimality among the 80 instances with n = 30, while F(x,u, z) or F(x,u) (resp. W(x,u)) only

manages to solve to optimality 18 (resp. 24) of them. Among the 80 instances with n = 20,

formulation LF(x,u) solves 57 instances to optimality, while F(x,u, z) (resp. W(x,u), F(x,u)) only

manage to solve to optimality 49 (resp. 42, 34) of them. Formulation Int( ỹ) solves to optimality
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Instances Formulation #opt #nodes gap (%) CPU time
(30,48) F = 2 F(x,u) 20 3207 0 5.5

A-(x̃, ũ) 20 0 0 0.2
Int( ỹ) 13 615979 0.00211 1483.4

W(x,u) 18 67553 0.00018 370.7
F(x,u, z) 18 41669 0.00021 391.5
LF(x,u) 20 3894 0 19.4

F = 3 F(x,u) 19 157903 0.00001 189.1
A-(x̃, ũ) 20 6 0 0.4
Int( ỹ) 13 267844 0.00772 1548.7

W(x,u) 19 108689 0.00002 283.9
F(x,u, z) 19 30450 0 249.5
LF(x,u) 20 6044 0 18.5

(30,96) F = 2 F(x,u) 20 39633 0 131.2
A-(x̃, ũ) 20 21 0 0.5
Int( ỹ) 0 21783 2.00212 -

W(x,u) 18 54860 0.00029 679.8
F(x,u, z) 18 20062 0.00083 758.5
LF(x,u) 19 17040 0 299.5

F = 3 F(x,u) 20 15653 0 53.5
A-(x̃, ũ) 20 215 0 0.6
Int( ỹ) 0 30267 4.38968 -

W(x,u) 13 324913 0.00009 1400.7
F(x,u, z) 17 123943 0.00003 907.1
LF(x,u) 19 146639 0.00003 299.6

Table 7.3: Performance indicators relative to the comparison of six formulations for MUCP
instances with symmetries and n = 30

only 20 of them. Formulation LF(x,u) also globally improves the solving time. For example, on

instances of size (n,T) = (60,48) and F = 3, the average CPU time of formulation LF(x,u) is

1450 seconds, while this number increases to 3422 (resp. 2527, 2689) for F(x,u) (resp. F(x,u, z),

W(x,u)).

As there is an important variability in the computation time for instances with same size

(n,T) and same F, we introduce the improvement score. For given formulations F1 and F2, the

improvement score I of F1 with respect to F2 is as follows.

I = 2
CPU(F2)−CPU(F1)
CPU(F2)+CPU(F1)

The improvement score I is a performance ratio comparing formulation CPU times pairwise.

Table 7.7 provides, for each formulation F ∈ { F(x,u, z), LF(x,u) }, the average improvement

score of F with respect to F(x,u) on each group of 20 instances. Formulation Int( ỹ) is not included

as on most instance groups, it solves no instance to optimality.
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Instances Formulation #opt #nodes gap (%) CPU time
(60,48) F = 2 F(x,u) 19 60498 0 317.3

A-(x̃, ũ) 20 69 0 0.2
Int( ỹ) 8 231718 0.00547 2345.3

W(x,u) 17 43468 0.00008 825.5
F(x,u, z) 19 6886 0 1234.4
LF(x,u) 18 20969 0.00007 727.6

F = 3 F(x,u) 19 154845 0.00005 308.2
A-(x̃, ũ) 20 17 0 0.4
Int( ỹ) 2 432040 0.01018 3287.8

W(x,u) 17 82309 0.00007 602.5
F(x,u, z) 19 20455 0.00005 674.7
LF(x,u) 20 2362 0 87.3

F = 4 F(x,u) 17 326005 0.00022 587.4
A-(x̃, ũ) 20 79 0 0.3
Int( ỹ) 9 298344 0.00672 2188.4

W(x,u) 20 107657 0 349.9
F(x,u, z) 18 52481 0.00008 893.3
LF(x,u) 20 1222 0 32.0

(60,96) F = 2 F(x,u) 17 186561 0.00013 732.7
A-(x̃, ũ) 20 0 0 0.3
Int( ỹ) 2 52352 0.08025 3421.5

W(x,u) 8 202197 0.00064 2443.1
F(x,u, z) 7 25805 0.00056 2875.7
LF(x,u) 13 147301 0.00027 1850.6

F = 3 F(x,u) 12 831214 0.00044 1765.1
A-(x̃, ũ) 20 98 0 0.6
Int( ỹ) 1 6201 17.59109 3586.3

W(x,u) 6 287697 0.00092 2603.2
F(x,u, z) 5 86252 0.00264 3051.5
LF(x,u) 9 457416 0.00066 2190.5

F = 4 F(x,u) 16 297595 0.00020 906.0
A-(x̃, ũ) 20 39 0 0.9
Int( ỹ) 1 6093 44.51052 3426.2

W(x,u) 7 417944 0.00044 2566.1
F(x,u, z) 9 59442 0.00084 2498.6
LF(x,u) 10 386902 0.00026 1902.3

Table 7.4: Performance indicators relative to the comparison of six formulations for MUCP
instances with symmetries and n = 60
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Instances Formulation #opt #nodes gap (%) CPU time
(20,48) F = 2 F(x,u) 9 667974 0.00916 2061.6

Int( ỹ) 9 22583 0.04910 2426.1
W(x,u) 10 232589 0.01115 1965.2

F(x,u, z) 11 139493 0.00991 1840.4
LF(x,u) 16 242096 0.00189 980.4

F = 3 F(x,u) 13 634436 0.00296 1424.7
Int( ỹ) 3 7239 5.07207 3243.3

W(x,u) 16 314447 0.00440 1295.9
F(x,u, z) 18 102717 0.00226 998.0
LF(x,u) 20 30014 0 132.8

(20,96) F = 2 F(x,u) 5 702415 0.00776 2781.9
Int( ỹ) 3 10148 0.02754 3188.6

W(x,u) 4 233582 0.02584 3058.1
F(x,u, z) 8 61384 0.00681 2556.5
LF(x,u) 6 160150 0.00718 2675.6

F = 3 F(x,u) 7 989738 0.00644 2470.2
Int( ỹ) 5 16776 10.06768 3109.4

W(x,u) 5 198137 0.01466 2725.6
F(x,u, z) 12 87375 0.00424 1819.7
LF(x,u) 15 186018 0.00565 1794.7

(30,48) F = 2 F(x,u) 4 354029 0.01803 2924.7
Int( ỹ) 0 0 100 -

W(x,u) 7 210032 0.01100 2535.4
F(x,u, z) 4 71467 0.02547 2969.0
LF(x,u) 15 219655 0.00204 1341.8

F = 3 F(x,u) 6 379482 0.01213 2676.9
Int( ỹ) 0 0 100 -

W(x,u) 10 240767 0.00698 1931.4
F(x,u, z) 5 107609 0.01623 2736.1
LF(x,u) 16 191113 0.00219 965.7

(30,96) F = 2 F(x,u) 3 390666 0.00463 3069.8
Int( ỹ) 0 0 100 -

W(x,u) 4 121205 0.00755 3130.1
F(x,u, z) 5 46869 0.00918 3107.7
LF(x,u) 9 315503 0.00238 2263.5

F = 3 F(x,u) 5 460304 0.00324 2927.0
Int( ỹ) 0 0 100 -

W(x,u) 3 211303 0.00465 3130.5
F(x,u, z) 4 61994 0.00455 3059.7
LF(x,u) 12 183633 0.00077 1852.9

Table 7.5: Performance indicators relative to the comparison of five formulations for
ramp-constrained MUCP instances with symmetries and n = 20, 30
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Instances Formulation #opt #nodes gap (%) CPU time
(60,48) F = 2 F(x,u) 1 757017 0.00309 3437.6

Int( ỹ) 0 7919 0.03078 -
W(x,u) 4 203485 0.00285 3046.2

F(x,u, z) 6 66272 0.03746 2839.8
LF(x,u) 5 569546 0.00126 2710.6

F = 3 F(x,u) 1 850192 0.00268 3422.5
Int( ỹ) 1 8300 5.18195 3523.9

W(x,u) 6 192656 0.00245 2689.3
F(x,u, z) 9 40680 0.00397 2527.5
LF(x,u) 14 493254 0.00040 1450.2

F = 4 F(x,u) 7 870666 0.00243 2582.4
Int( ỹ) 0 1236 25.95157 -

W(x,u) 10 295149 0.00095 1971.9
F(x,u, z) 14 33574 0.00053 1623.1
LF(x,u) 15 459142 0.00027 1043.8

(60,96) F = 2 F(x,u) 0 120125 0.01262 -
Int( ỹ) 0 0 100 -

W(x,u) 0 23851 0.05190 -
F(x,u, z) 0 3813 0.52855 -
LF(x,u) 0 52226 0.01125 -

F = 3 F(x,u) 0 144265 0.01490 -
Int( ỹ) 0 0 100 -

W(x,u) 0 50841 0.01815 -
F(x,u, z) 0 6404 0.03476 -
LF(x,u) 0 83335 0.01311 -

F = 4 F(x,u) 0 230935 0.00956 -
Int( ỹ) 0 0 100 -

W(x,u) 0 92298 0.01063 -
F(x,u, z) 0 9616 0.01589 -
LF(x,u) 2 150692 0.00656 3467.7

Table 7.6: Performance indicators relative to the comparison of five formulations for
ramp-constrained MUCP instances with symmetries and n = 60

146



7.5. EXPERIMENTAL RESULTS

Formulation LF(x,u) outperforms all other formulations. In particular, even if on (20,96) and

F = 2 instances the average CPU time of LF(x,u) is slightly higher than F(x,u, z), the average

improvement score of LF(x,u) is more important. This reveals that LF(x,u) has a larger CPU

time than F(x,u, z) on instances for which the difference in CPU time is not very significant with

respect to Cplex’s CPU time. On the opposite, LF(x,u) has small CPU time on instances on which

this difference in CPU time represents an important improvement. Note that formulation W(x,u)

appears to perform better than F(x,u, z) on T = 48 instances. Recall that W(x,u) is only partial

symmetry-breaking. Thus, when T is smaller, the number of feasible columns featuring a given

number of 1-entries is also smaller. On the opposite, when T = 96, the number of one-entries is

not a very discriminating indicator among symmetric columns. Therefore W(x,u) is not able to

break as much symmetries, and F(x,u, z) globally performs better.

For example, on (n,T)= (60,48), F = 4 instances, the improvement score of LF(x,u) is 109%,

while it is 45.8% for F(x,u, z) and 27.9% for W(x,u). On (n,T) = (30,48), F = 3 instances, the

improvement score of LF(x,u) is 114%, while it is −19.3% for F(x,u, z) and 25.3% for W(x,u).

On (n,T)= (20,96), F = 3 instances, this number increases to 47.6% for LF(x,u) (resp. 22.9% for

F(x,u, z), -11.9% for W(x,u)).

Instances Improvement score w.r.t. F(x,u)
W(x,u) F(x,u, z) LF(x,u)

(20,48) F = 2 -6.61% -14.2% 83.7%
F = 3 -11.3% -12.2% 111%

(20,96) F = 2 -13% 9.05% 23.9%
F = 3 -11.3% 22.9% 47.6%

(30,48) F = 2 20.8% -17.8% 89.4%
F = 3 25.3% -19.3% 114%

(30,96) F = 2 -15.8% -19.4% 40.4%
F = 3 -11.8% -7.63% 76.4%

(60,48) F = 2 26.5% 26.2% 47.8%
F = 3 35.5% 30.9% 104%
F = 4 27.9% 45.8% 109%

(60,96) F = 2 0% 0% 0%
F = 3 0% 0% 0%
F = 4 0% 0% 4.72%

Table 7.7: Improvement scores of formulations W(x,u), F(x,u, z) and LF(x,u) w.r.t formulation
F(x,u) for ramp-constrained MUCP instances with symmetries

Conclusion

We propose a framework to build sub-symmetry-breaking inequalities, in order to handle the

symmetries arising from a collection of sub-symmetric solution subsets. For each solution subset
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Q considered, one additional variable z indicating "solution x belongs to Q" may be needed.

Depending on the subset structure, variable z may only be a linear expression of variables x,

and therefore does not need to be added to the model as an additional variable. The derived

sub-symmetry-breaking inequalities are full symmetry-breaking under a mild condition. If this

condition is not satisfied, a new collection of sub-symmetric subsets can be constructed such that

the derived inequalities are full symmetry-breaking.

Our experimental results for the MUCP show that aggregation of the classical formulation is

a very efficient technique to handle symmetries and sub-symmetries arising in the MUCP. When

ramp constraints are taken into account in the MUCP, disaggregation is no longer possible. Our

sub-symmetry-breaking inequalities can still be used and outperform all other formulations.

Sub-symmetry-breaking inequalities are always applicable as the solution subsets considered

can capture the specific conditions under which the symmetries hold. On the opposite, aggregated

formulations require specific conditions to be applicable.

One perspective is to use the proposed framework to derive new sub-symmetry-breaking

inequalities for “ready to shut down" sub-symmetries in the ramp-constrained case. Another

perspective is to apply the proposed framework to other problems featuring sub-symmetric

solution subsets such as covering problems, or bin packing variants where one item can be placed

in multiple bins. It would also be useful to study how the presented framework could be auto-

mated, so that sub-symmetric subsets are automatically detected and variables z automatically

constructed.
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DECOMPOSITION STRUCTURE

In this chapter, we study various Dantzig-Wolfe decomposition structures for the MUCP and the

intra-site MUCP (IMUCP).

8.1 Motivations

There exist many variants of the UCP, depending on the constraint and cost structures considered.

Although existing MILP solvers can efficiently handle large instances of difficult problems, some

UCP variants still remain hard to solve for commercial solvers like Cplex 12.8. In particular, it

has been shown in Chapter 4 that MUCP instances with P i
min = P i

max, i ∈N , are hard to solve

even for small values of n (n = 10). The difficulty to solve these instances prefigures the difficulty

to solve the UCP variant considered at EDF where the units have finite power outputs.

Moreover, many variants of the UCP feature non-linearities that impair the resolution process.

Decomposition frameworks are particularly useful to account for non-linearities as the non-linear

aspects of the problem can be moved to the subproblems. Then the Lagrangian function can be

maximized via linear programming techniques, while the subproblems are solved with dedicated

algorithms such as dynamic programming. This modularity can be further exploited, for example

to devise efficient parallel implementations of the decomposition. The lower bound on the optimal

value obtained from the dual bound is greater than or equal to the linear relaxation value, and

can be used in a Branch & Bound framework [68] for an exact resolution. Otherwise primal

and dual information obtained from the resolution of the Lagrangian dual can be exploited to

design efficient heuristics [5, 18], such as primal-proximal heuristics, augmented Lagrangian

based approaches or Price & Branch heuristics where columns are generated at the root node

only. A question would be to compare the various heuristics and to measure the impact of these
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relaxations on the optimal value.

The UCP features various structures which have been exploited to devise Lagrangian decom-

position schemes. The literature on the subject [12, 52] is large and cannot be reviewed here.

Classically, Lagrangian decomposition is performed for the UCP so that the demand and reserve

constraints are dualized, and each unit (or subset of units) is treated as a subproblem which can

be solved independently [5, 68].

The resolution of the UCP at EDF relies on such a decomposition, where each thermal unit

is treated as a single subproblem. Recall that the intra-site constraints are satisfied if at most

one unit per site Σk, k ∈ {1, ...,K}, starts up at each time period t, i.e.,
∑

i∈Σk ui
t ≤ 1, for each

k ∈ {1, ...,K} and t ∈ {1, ...,T}. Coupling constraints such as intra-site constraints are currently not

taken into account in the Lagragian decomposition performed at EDF. As demand and reserve

constraints, intra-site constraints could be dualized, potentially hindering the resolution of the

Lagrangian dual. To overcome this issue, and also to obtain a better Lagrangian bound, another

possibility could be to adapt the decomposition structure to take such constraints into account,

by treating each site as a subproblem. Given the results of Chapter 2, the resolution of such site

subproblems, called P-IMUCP, will probably be more involved than the resolution of single unit

subproblems.

Other decomposition approaches [47] consist in dualizing time coupling constraints such as

min-up/down constraints so that the time horizon {1, ...,T} can be partitioned into several subsets

of time periods treated as independent subproblems.

In Section 8.2, we study various decomposition structures such that the demand constraint is

dualized and subsets of units are treated as subproblems. In Section 8.3, we describe another

structure where the time coupling constraints are dualized, which amounts to treat each time

period as a subproblem. Column generation algorithms are implemented to solve these various

Dantzig-Wolfe master problems, and experimental results are compared in Section 8.4. Branch &

Price (resp. Price & Branch) results are discussed in Section 8.5 (resp. 8.6). In Section 8.7, we

give some perspectives about handling symmetries in the proposed decompositions. Note that all

experimental details are given in Section 8.9 at the end of the chapter.

8.2 Unit subset decomposition of the IMUCP

In this section, the IMUCP is decomposed so that the demand constraint is dualized. The

subproblems correspond to subsets of units coupled by intra-site constraints, or by other coupling

inequalities.

When demand constraints and production limits are dualized in the IMUCP, the corresponding
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master problem MDP is the following:

min
λπ,pi

t

∑
S∈S

( ∑
π∈P S

(cπλπ)+ ∑
t∈T

∑
i∈S

ci
p pi

t + ci
pP i

min(
∑
π∈P s

aπ,i
t λπ)

)
s. t.

∑
S∈S

∑
i∈S

pi
t + (P i

min

∑
π∈P S

aπ,i
t λπ)≥ Dt ∀t ∈T (µt)

pi
t ≤ (P i

max −P i
min)(

∑
π∈P s

aπ,i
t λπ) ∀i ∈N , ∀t ∈T (νi

t)∑
π∈P S

λπ = 1 ∀S ∈Σ (σS)

λπ ≥ 0, pi
t ≥ 0 ∀i ∈N , ∀t ∈T

where aπ,i
t equals 1 if unit i is up at time t in up/down plan π and P S is the set of up/down plans

for site S. An up/down plan π for a site S indicates, for each unit i and each time step t, whether

unit i is up or down at time t. The cost of plan π is denoted by cπ. Variable λπ equals 1 if plan π

is used. The constraint associated to dual variable µt is the demand constraint at time t. The

constraint associated to νi
t is the production limit, bounding the power generated by unit i at

time t between P i
min and P i

max. The constraint associated to σS ensures that a single plan π is

chosen for each site S.

For each site S, the corresponding column generation subproblem is to find a minimum

reduced-cost plan. It can be written as the following ILP:

min
x,u

−σS + ∑
i∈S

T∑
t=1

(
ci

f + (ci
p −µt)P i

min − (P i
max −P i

min)νi
t

)
xi

t + c0ui
t

s. t.
t∑

t′=t−Li+1
ui

t′ ≤ xi
t ∀i ∈ S, ∀t ∈ {L+1, ...,T} (8.1)

t∑
t′=t−`i+1

ui
t′ ≤ 1− xi

t−` ∀i ∈ S, ∀t ∈ {`+1, ...,T} (8.2)

ui
t ≥ xi

t − xi
t−1 ∀i ∈ S, ∀t ∈T (8.3)∑

i∈S
ui

t ≤ 1 ∀t ∈ {2, ...,T}

xi
t,u

i
t ∈ {0,1} ∀i ∈ S, ∀t ∈T

Recall that min-up, min-down and up/start-up relationship inequalities (8.1), (8.2) and (8.3) are

inequalities (1.2) – (1.4) introduced in [79].

8.2.1 Dualization of production constraints

We refer to constraints involving production variables as production constraints. Production

limits or ramp constraints are examples of production constraints. If all production constraints

are dualized, then the column generation subproblem only features variables x and u. Thus the

plans generated in the subproblems are only up/down plans, and the production decisions are
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taken in the Dantzig-Wolfe master problem. On the opposite, if some production constraints are

not dualized, production decisions are also taken in the subproblems, potentially dramatically

increasing the number of feasible solutions to the subproblem.

Therefore the question is whether dualizing production constraints alongside with demand

constraint has an impact on the dual bound.

• Non-ramp-constrained IMUCP In the non-ramp-constrained case, it can easily be seen

that it does not change the dual bound. Recall that MDP is the Dantzig-Wolfe master problem

where both the demand and production limits are dualized. Let MD be the column generation

master problem where only the demand is dualized.

Lemma 8.1. The optimal value of MD is equal to the optimal value of MDP .

Proof. Consider a solution (x,u, p) to MDP . Then, by definition, (x,u)=∑s
k=1λk(x(k),u(k)) where∑s

k=1λk = 1 and for each k ∈ {1, ..., s}, (x(k),u(k)) is a binary solution satisfying min-up/down and

intra-site constraints. For each k, let

p(k)i
t =


pi

t

xi
t

if x(k)i
t = 1

0 otherwise

Then (x(k),u(k), p(k)) is a solution with binary x(k) and u(k) satisfying min-up/down constraints,

production limits and intra-site constraints. Moreover, (x,u, p)=∑s
k=1λk(x(k),u(k), p(k)). There-

fore from any solution (x,u, p) to MDP a same-cost solution to MD can be constructed. The reverse

is trivially true. �

• Ramp-constrained IMUCP In the ramp-constrained case, the result does not hold anymore.

Let MDPR be the Dantzig-Wolfe master problem where demand, production limits and ramp-

constraints are dualized. Then the optimal value of MDPR is less than or equal to the optimal

value of MD . In the following example, the optimal value of MDPR is strictly less than that of

MD .

Example 8.1. Consider the following ramp-constrained MUCP instance with a single unit (n = 1)

and T = 3, where `1 = L1 = 1, P1
min = 10, P1

max = 30, RU1 = 5 and SU1 = 20. Then solution

x = [0.5,1,1], ρ = [10,15,20] satisfies ramp-up constraint (1.11):

ρ1
t −ρ1

t−1 ≤ RU ix1
t−1 + (SU i −P1

min)u1
t

Solution (x,ρ) is therefore a solution to MDPR . However, (x,ρ) is not feasible for MD . Indeed, x is a

convex combination of two integer solutions x1 and x2:

x = 1
2

x1 + 1
2

x2, where x1 = [0,1,1] and x2 = [1,1,1]
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If the production limit is not dualized, then any solution (x1,ρ1) (resp. (x2,ρ2)) generated by the

subproblem is such that

ρ1 ≤ [0,10,15] and ρ2 ≤ [20,20,20]

As ρ > 1
2ρ1 + 1

2ρ2, solution (x,ρ) is thus not feasible for MD .

This shows that in the ramp-constrained case, leaving production constraints in the subprob-

lems may improve the dual bound, at the expense of increasing the subproblems combinatorics.

The problems considered in the following do not feature ramp-constraints, therefore production

constraints will always be dualized.

8.2.2 Granularity of the unit-subset decomposition

Depending on which coupling constraints are dualized, the unit subsets corresponding to sub-

problems may contain a single unit or several units.

Unit decomposition If intra-site constraints are dualized alongside with demand constraints,

the subproblem decomposes into n subproblems, i.e., one subproblem per single unit. Then only

min-up/min-down constraints remain in each subproblem. Therefore, the unit decomposition is a

demand-coupling formulation (see Section 3.1), and by Theorem 3.1, the dual bound is less than

or equal to the linear relaxation value of formulation Fn(x,u). By Corollary 1.1, the dual bound is

greater than or equal to the linear relaxation value. It follows that the dual bound is equal to the

linear relaxation value.

In this particular case, the use of Lagrangian decomposition does not lie in the quality of the

bound it provides but in its modularity. Non-linear start-up costs can for example be handled by

dynamic programming through such a unit decomposition.

Site decomposition If intra-site constraints are not dualized, then the subproblem decom-

poses into K subproblems, i.e., one subproblem per site. Then the site decomposition is not a

demand-coupling formulation, as each subproblem features min-up/down and intra-site con-

straints. No complete linear description of this polytope is known, therefore, by Theorem 1.4, the

dual bound is potentially a better bound than the linear relaxation value.

Residual demand decomposition Additional inequalities can be considered, in order to

improve the dual bound, as well as to provide more information to the subproblems. For a given

partition of the unit set into subsets S1, ..., Sr, the units of each subset Sk must cover at least

the residual demand Dt −∑
j 6∈Sk P j

max (as defined in Section 3.3). The corresponding inequality is

the residual demand constraint:∑
i∈Sk

P i
maxxi

t ≥ Dt −
∑

j 6∈Sk

P j
max, ∀k ∈ {1, ..., s}
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This inequality is redundant in (Fn
x,u) formulation of the (I)MUCP. However, in a decomposition

framework where only demand constraints and production limits are dualized, residual demand

constraints remain in the subproblems. If for any site Σ, there exists k such that Σ ⊆ Sk, the

subproblem decomposes into s subproblems, one per unit subset Sk. Each subproblem features

min-up/down, residual demand and possibly intra-site constraints. If subsets Sk, k ∈ {1, ..., s} are

chosen so that Dt−∑
j 6∈Sk P j

max > 0, then the residual demand is a knapsack constraint. Therefore

the residual demand decomposition is not a demand-coupling formulation and the dual bound is

potentially a better bound than the linear relaxation value.

8.2.3 Start-up decomposition

Reducing the combinatorics of the subproblems is commonly known to have a positive impact on

the convergence of the column generation algorithm. One option is to restrict the subproblem’s

solution set to a particular solution subset, and at the same time use exchange vectors, as

defined in [90]. Exchange vectors are additional variables in the master problem. The resulting

formulation remains valid, as all solutions can be obtained using the combination of exchange

vectors with columns coming from restricted subproblems.

Note that in the LP dual of the master problem, the exchange vectors can be seen as additional

cuts coupling dual variables and reducing the feasible dual domain. This corresponds to the

stabilization technique pointed out in [87].

In the case of the unit-subset decomposition of the IMUCP, the idea is that only start-up

decisions are taken in the subproblems, i.e., the subproblems solutions are restricted to start-up

plans. In order to obtain up/down plans we artificially decide to complete each start-up plan so

that each unit is down during exactly `i time periods before each start-up. More formally, the

up/down plans generated will be such that when a unit i starts up at time t1, it remains up until

time t2 −`i, where t2 is the next start-up of unit i after t1.

Exchange vectors are defined as variables zi
t indicating that unit i is down at time t, while

the chosen plan π indicated that unit i was up at time t. In other words, if unit i can be shut

down before the artificial shut-down decision in plan π, the new shut-down decision will be taken

in the master problem using variables zi
t.

The corresponding Dantzig-Wolfe master problem is as follows:

min
λπ

∑
S∈Σ

( ∑
π∈P S

(cπλπ)+ ∑
t∈T

∑
i∈S

(ci
p pi

t + ci
pP i

min(−zi
t +

∑
π∈P s

aπ,i
t λπ)− ci

f zi
t)

)
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s. t.
∑
S∈Σ

∑
i∈S

(
pi

t +P i
min(−zi

t +
∑

π∈P S

aπ,i
t λπ)

)
≥ Dt ∀t ∈T (µt)

pi
t ≤ (P i

max −P i
min)(−zi

t +
∑

π∈P S

aπ,i
t λπ) ∀i ∈N , ∀t ∈T (νi

t)∑
π∈P S

λπ = 1 ∀S ∈Σ (σS)

zi
t +

t∑
t′=t−Li+1

∑
π∈P S

bπ,i
t′ λ

π ≤ ∑
π∈P S

aπ,i
t λπ ∀S ∈Σ, ∀i ∈ S, ∀t ∈ {Li +1, ...,T} (ζi

t)∑
π∈P S

(aπ,i
t −aπ,i

t−1 −bπ,i
t )λπ+ zi

t−1 − zi
t ≤ 0 ∀S ∈Σ, ∀i ∈ S, ∀t ∈ {Li +1, ...,T} (θi

t)

zi
t ≤

∑
π∈P S

aπ,i
t λπ ∀S ∈Σ, ∀i ∈ S, ∀t ∈T (ξi

t)

λπ ≥ 0, zi
t ≥ 0, pi

t ≥ 0 ∀S ∈Σ, ∀i ∈ S, ∀t ∈T

where bπ,i
t equals 1 if unit i starts up at time t in up/down plan π. The constraint associated

to dual variable ζi
t corresponds to the min-up constraint and the constraint associated to θi

t

corresponds to constraint (1.4) linking start-up to up/down decisions. The constraint associated

to ξi
t ensures that zi

t is greater than zero only if unit i is up at time t in the chosen plan π.

For each site S, the subproblem is to find a minimum reduced-cost start-up plan. A start-up

plan corresponds to an up/down plan where the down time between two up periods of unit i is

always equal to `i. The corresponding subproblem is as follows.

min
x,u

−σS+∑
i∈S

T∑
t=1

(
(ci

f + (ci
p −µt)P i

min − (P i
max −P i

min)νi
t −ξi

t −θi
t +θi

t+1 +ζi
t)x

i
t + (c0 +θi

t +
t+Li−1∑

t′=t
ζi

t′)u
i
t

)

s. t.
t∑

t′=t−Li+1
ui

t′ ≤ xi
t ∀i ∈ S, ∀t ∈ {L+1, ...,T}

t∑
t′=t−`i+1

ui
t′ = 1− xi

t−` ∀i ∈ S, ∀t ∈ {`+1, ...,T}

ui
t ≥ xi

t − xi
t−1 ∀i ∈ S, ∀t ∈T∑

i∈S
ui

t ≤ 1 ∀t ∈ {2, ...,T}

xi
t,u

i
t ∈ {0,1} ∀i ∈ S, ∀t ∈T

8.2.4 Resolution of the subproblems

In the unit decomposition case, each subproblem is a 1-unit MUCP, and thus can be polynomially

solved (see Section 1.2.6), by linear or dynamic programming techniques.

In the site (resp. residual demand) decomposition case, each subproblem is a P-IMUCP (resp.

IMUCP), which has been shown NP-hard in the strong sense in Chapter 2, Section 2.5 (resp.

Section 2.1). However, for a fixed number n of units, a polynomial dynamic programming scheme

is proposed in Chapter 2, Section 2.3.
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8.3 Time decomposition of the IMUCP

In this section, the IMUCP is decomposed so that the time coupling constraints (i.e., min-up/min-

down constraints) are dualized. Each subproblem corresponds to one given time period t where

all units are coupled via the demand constraint at time t.

The corresponding master problem is the following:

min
λπ,ui

t,p
i
t

∑
t∈T

( ∑
π∈P t

cπλπ+ ∑
i∈N

ci
0ui

t

)
s. t. ui

t ≥
∑
π∈P t

aπ,iλπ− ∑
π∈P t−1

aπ,iλπ ∀i ∈N , ∀t ∈ {2, ...,T} (µi
t)

t∑
t′=t−Li+1

ui
t′ ≤

∑
π∈P t

aπ,iλπ ∀i ∈N , ∀t ∈ {Li +1, ...,T} (νi
t)

t∑
t′=t−`i+1

ui
t′ ≤ 1− ∑

π∈P t−`i

aπ,iλπ ∀i ∈N , ∀t ∈ {`i +1, ...,T} (ξi
t)∑

i∈S
ui

t ≤ 1 ∀S ∈Σ, ∀t ∈ {2, ...,T} (ηS
t )∑

π∈P t
λπ = 1 ∀t ∈T (σt)

λπ ≥ 0,ui
t ≥ 0 ∀i ∈N , ∀t ∈T ,∀π ∈P t

where aπ,i is equal to 1 if unit i is up in plan π, and P t is the set of up/down plans for the n units

at time t. Note that P t differs from P S defined in Section 8.2. Variable λπ equals 1 if plan π is

used. The constraint associated to dual variable µi
t corresponds to constraint (1.4) linking start-up

to up/down decisions. The constraint associated to νi
t (resp. ξi

t) is the min-up (resp. min-down)

constraint.

For each t ∈ T , the subproblem is to find an up/down plan at time t satisfying Dt. The

corresponding ILP is the following:

min
x

−σt +
∑

i∈N

ci
p pi

t + (ci
f + ci

pP i
min +µi

t −µi
t+1 +ξi

t+`i −νi
t)x

i
t

s. t. P i
minxi

t ≤ pi
t ≤ P i

maxxi
t ∀i ∈N∑

i∈N

pi
t ≥ Dt

xi
t ∈ {0,1}, pi

t ∈R ∀i ∈N

where if t+`i > T, then ξi
t+`i = 0 and if t ≤ Li, then νi

t = 0.

Note that the time decomposition is not a demand-coupling formulation, therefore the dual

bound is potentially a better bound than the linear relaxation value.

Drawback In the presence of heterogeneous units featuring intricate technical constraints,

the master problem of the time decomposition may be hard to manage. If some of these difficult
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constraints are relaxed, the dual bound obtained from the time decomposition is still a valid

lower bound on the optimal solution.

8.3.1 Dualization of production constraints

Note that all production constraints are dualized in the time decomposition of the IMUCP, thus

production variables appear exclusively in the subproblems. Therefore, only the up/down decisions

taken in the subproblem are transmitted to the master problem. The associated production

decisions can be directly deduced from the up/down decisions.

In the case of the ramp-constrained IMUCP, the ramp-constraints must be dualized, as

they induce a dynamic coupling between two time steps. Then, there are two possible time

decomposition structures. One option is to generate only up/down plans from the subproblems.

Then the demand constraint must appear in both the subproblem and in the master problem. Note

that in this case, the demand constraint impacts the discrete decisions (x,u) in the subproblem,

while it impacts the continuous decisions p in the master problem. Another possible structure is

to generate up/down and production plans in the subproblem. In this case, the demand constraint

appears only in the subproblem.

8.3.2 Time decomposition with interval up-set inequalities

In order to improve the dual bound provided by the time decomposition, interval up-set inequali-

ties, written as a function of λ variables, can be added to the master problem. Let C ⊂N be a

subset of units, with i ∈ C, and let I = {t0, ..., t1} ⊂ T be a time interval of length less than or

equal to Li, i.e., t1 − t0 ≤ Li. The interval up-set inequality can be written with λ variables as

follows.

αI (C)+
t1∑

t=t0+1
ui

t ≤
∑

π∈P t1

aπ,iλπ+ ∑
j∈C\{i}

( ∑
π∈P t0

aπ, jλπ+
t1∑

t′=t0+1
u j

t

)
(8.4)

Since the demand constraint is not dualized, note that for each time t ∈ {1, ...,T} solutions

to the master problem satisfy all inequalities arising from the knapsack polytope at time t. In

particular static up-set inequalities (see Chapter 3, Section 3.4.1) are automatically satisfied.

8.3.3 Resolution of the subproblem

We consider the classical case with integer demands Dt ∈N, t ∈ {1, ...,T}.

When P i
min = P i

max, i ∈N , the subproblem can be identified to a 0-1 knapsack problem with

constraint
n∑

i=1
P i

max(1− xi)≤−Dt +
n∑

i=1
P i

max

where the decision (1− xi) amounts to not committing unit i. The classical O(n(−Dt +∑n
i=1 P i

max))

dynamic programming algorithm for the knapsack problem can therefore be used. Preliminary
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numerical experiments show that on average, this algorithm is 1000 times faster than Cplex 12.8

used as with default settings.

When P i
min 6= P i

max, i ∈N , the subproblem can be solved by the pseudo-polynomial dynamic

programming scheme described in Section 2.2. For the sake of brevity, we will only consider

instances with P i
min = P i

max, i ∈N in the next sections.

8.4 Experimental results relative to dual bounds

In this section, we compare, in terms of dual bounds and convergence, the resolution by column

generation of the Dantzig-Wolfe master problems presented in Sections 8.2 and 8.3.

Due to the various structures to compare, we explicit the content of this section to ease

the reading. In Section 8.4.1, we give experimental details alongside with a summary table

relative to the results of Unit, Site, ResD and Time decomposition. In Section 8.4.3, we compare

decompositions Unit, Site and ResD in order to determine the most appropriate granularity for

the unit subset decomposition. On this basis, we assess the impact of the start-up decomposition

in Section 8.4.4. In Section 8.4.5, we analyze the results of the column generation algorithm for

the time decomposition. In Section 8.4.5, we study the impact of interval up-set inequalities in

the time decomposition.

Note that all details are given in Tables 8.7 to 8.14 in Section 8.9 at the end of the chapter.

8.4.1 Experimental settings

Column generation algorithms are implemented within the SCIP 5.0.1 [33] framework, on 8

threads of a PC with a 64 bit Intel Xeon(R) E3-1240 processor running at 3.5GHz, and 32 GB of

RAM memory. The instances are solved until optimality (defined within 10−7 of relative optimality

tolerance) or until the time limit of 3600 seconds is reached.

Decomposition structures compared We will present experimental results comparing the

column generation algorithm for the following decomposition structures:

Unit unit decomposition,

Unit-SU start-up decomposition, where each subproblem corresponds to a single unit,

Site site decomposition,

Site-SU start-up decomposition, where each subproblem corresponds to a site,

ResD residual demand decomposition,

Time, time decomposition.

Time+I time decomposition with separation of interval up-set inequalities.

The site decomposition is performed only for IMUCP instances, as it relies on the presence of

intra-site constraints.
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Instances In Chapter 4, TPR-100 instances featuring a 2-peak per day demand have proved

to be very hard to solve. Moreover, preliminary experiments indicate that intra-site constraints

have only little impact on the optimal value on instances featuring 2-peak per day demands. The

impact of intra-site constraints seems to be more important on instances with random demand

values. Therefore, for both the MUCP and the IMUCP, column generation algorithms are run on

six sets of ten TPR-100 instances, featuring

• 2-peak per day demand, (n,T) = (20,24), (20,48)

• Random valued demand, (n,T) = (20,24), (20,48)

Note that size (n,T)= (20,48) instances are difficult instances, as Cplex 12.8 is not able to solve

them to optimality within a time limit of one hour.

MUCP and IMUCP instances with same size and same demand type are identical. The only

difference is that intra-site constraints are enforced only for IMUCP instances. The unit subsets

considered in residual demand decomposition correspond to sites, for both MUCP and IMUCP,

even though for the MUCP intra-site constraints are not taken into account.

Note that we did not consider symmetrical instances in these experiments. Handling symme-

tries is left for future work (see Section 8.7 for some insights).

Resolution of the subproblems For practical reasons we choose to use:

• Cplex 12.8 with default settings to solve the subproblems of Unit, Site and ResD decompo-

sitions,

• the classical dynamic programming scheme for the 0-1 knapsack problem to solve the time

decomposition subproblem (as described in Section 8.3.3).

Unit and Site subproblems could be solved by dynamic programming. As here we are mainly

interested in the quality of the dual bound, and the number of iterations to reach it, the imple-

mentation of an efficient dynamic programming algorithm for these problems is out of the scope

of this work.

Comparison of Unit, Site, ResD and Time We compare column generation algorithms for

Unit, Site, ResD and Time decompositions.

Table 8.1 presents, for each set of 10 instances with same size and demand type:

Opt. val. the average optimal value,

and for each decomposition structure,
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#iter the average number of iterations,

CPU the average CPU time (in seconds),

Dual b. the average dual bound,

Dual b. ∆ LR the average difference between the dual bound and the linear relaxation

value

Dual b. ∆ Cplex b. the average difference between the dual bound and the bound obtained

with Cplex’s cuts.

Note that the linear relaxation value of the (x,u) formulation is not given, as it is exactly the

dual bound obtained with the unit decomposition.

The average dual bounds are of the order of 105 while the average differences "Dual b. ∆ LR"

or "Dual b. ∆ Cplex b." are from the order of 10 to the order of 104. In order to preserve numerical

precision, we consider absolute values in the tables instead of ratios.

The average optimal values for (20,48) 2-peak-demand instances are not given, because only

2 out of 10 (for both the MUCP and the IMUCP) can be obtained by Cplex within a time limit of

one hour.

Discussions on Table 8.1 are dispatched in Subsection 8.4.2, 8.2.2 and 8.4.5. Each subsection

focuses on a particular point.

Note that instance-wise results are given in Tables 8.7 to 8.14, in Section 8.9 at the end of the

chapter.

8.4.2 Impact of intra-site constraints

Recall that MUCP and IMUCP instances are the same. The only difference is that intra-site

constraints are enforced in the IMUCP case. Therefore, by comparing same size and same demand

profile MUCP and IMUCP instances, we can assess the impact of intra-site constraints over the

linear relaxation and the optimal values.

2-peak-demand instances Comparing the results for MUCP and IMUCP instances in Table

8.1, the intra-site constraints have only a marginal impact on the optimal value, as well as on

the linear relaxation value. Referring to Tables 8.7 to 8.10, on 8 instances over 20, the bound

obtained by Cplex’s cut even decreases when intra-site constraints are added. It proves that

when intra-site constraints come into play, Cplex does not recognize the problem’s structure as

efficiently.

Random-demand instances The intra-site constraints have more impact in the random-

demand context. Indeed, as shown in Table 8.1, the average difference between optimal values of

IMUCP and MUCP instances is in the order of 5000 on (20,24) instances, while this difference is

in the order of 100 in the 2-peak case.
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2-peak-demand Random-demand
MUCP IMUCP MUCP IMUCP

(20, 24) (20,48) (20, 24) (20,48) (20, 24) (20,48) (20, 24) (20,48)
Opt. val. 297540 × 297802 × 418297 816537 423792 828320

#iter Unit 393 1517 465 1936 192 489 343 1190
Site - - 846 2960 - - 275 746
ResD 866 3258 812 2917 255 663 227 578
Time 12345 30674 12035 31534 92062 183835 80157 196622

CPU Unit 1 4 1 4 1 2 1 3
Site - - 3 15 - - 2 7
ResD 4 17 3 17 2 9 2 9
Time 2 11 2 12 36 117 26 143

Dual b. Unit 288828 615519 288948 615718 409435 800343 415024 813037
Site - - 288948 615719 - - 415035 813085
ResD 288828 615519 288948 615719 411850 804748 417147 816793
Time 295645 627619 295705 627711 417367 814395 422572 825684

Dual b. Unit 0 0 0 0 0 0 0 0
∆ Site - - 0 1 - - 10 48

LR ResD 0 0 0 1 2415 4406 2123 3756
Time 6817 12100 6757 11993 7931 14053 7548 12647

Dual b. Unit -6468 -11325 -6377 -11240 -7733 -14124 -7792 -12674
∆ Site - - -6377 -11240 - - -7782 -12626

Cplex b. ResD -6468 -11325 -6377 -11240 -5318 -9718 -5670 -8918
Time 348 775 380 752 199 -71 -244 -27

* Note that the CPU time of Time decomposition is not to be compared with that obtained with other decompositions (see paragraph

"Resolution of the subproblems" in Section 8.4.1)

"-" indicates that the corresponding decomposition structure was not used on the corresponding instance set

"×" indicates that instances could not be solved to integer optimality by Cplex within time limit

Table 8.1: Summary table relative to column generation results of Tables 8.7 to 8.14

Indeed, when the demand is random, the variation of the demand from time t to t+1 can

be much more important than in the 2-peak case. Therefore, if the demand increases from t to

t+1, it is likely that several units must start up at time t+1. If these units are located on the

same site, then intra-site constraints will prevent the simultaneous start-ups, thus modifying the

optimal value.

8.4.3 Granularity of the unit subset decomposition

In this section, we compare the dual bounds obtained and the number of column generation

iterations in order to define the appropriate granularity for the unit subset decomposition,

depending on the demand profile.
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2-peak-demand instances As shown in Table 8.1, the unit decomposition has in general the

lowest CPU time (less than one second on (n,T) = (20,24) instances, and around 3 seconds on

(n,T) = (20,48) instances). Site and ResD decompositions have higher CPU times (around 3

seconds on (n,T)= (20,24) instances, and around 15 seconds on (n,T)= (20,48) instances). Unit,

Site and ResD decompositions spend most of their time in the pricing problem solved by Cplex.

The difference between Unit and the other unit-subset decompositions (namely Site and ResD) is

that the subproblems of the latter decompositions (respectively the P-IMUCP and the IMUCP)

are more difficult to solve by Cplex than Unit’s subproblem.

As shown in Table 8.1, Site and ResD decompositions have similar number of column gener-

ation iterations, while the unit decomposition is the quickest (in terms of iteration number) to

converge, by a factor 2 on average. Note that the number of iterations increases by a factor 2 to 4

when T increases from 24 to 48.

Referring to Tables 8.7 to 8.10, the number of priced variables follows a similar pattern.

As shown in Table 8.1, the dual bound obtained by the site decomposition is almost equal to

the linear relaxation value. The dual bound obtained by ResD decomposition is not better than

the one obtained by site decomposition.

Random-demand instances Interestingly, while the Unit decomposition has the smallest

column generation iteration number in the 2-peak case, when the demand is random the picture

is different. On MUCP instances, Table 8.1 shows that ResD decomposition requires slightly

more iterations than Unit to converge. On the opposite, on IMUCP instances, Site and ResD

decompositions converge significantly faster than Unit (by a factor 2 on average).

On (n,T)= (20,24), Site and ResD require a similar number of iterations to reach convergence,

but on larger instances (i.e., (n,T)= (20,48)), ResD converges faster (in terms of iterations) than

Site.

While in the 2-peak-demand case the ResD decomposition did not provide better bounds

than Unit or Site formulations, when the demand is random, the dual bounds obtained by ResD

decomposition are better for both the MUCP and the IMUCP.

For example, as shown in Table 8.1, the ResD bound improves the linear relaxation value by

an additive term of 4000 on average, on (n,T)= (20,48) instances random demand.

These bounds are however not as good as the ones obtained with Cplex’s cuts or with the time

decomposition.

Conclusion It appears that for 2-peak-demand (I)MUCP instances, the appropriate granularity

for a unit subset decomposition structure is the unit decomposition. Indeed, the column generation

algorithm converges faster in this case, while the dual bound obtained is not worst than in other

unit subset decompositions. For random-demand IMUCP instances, the site decomposition is

better than the Unit decomposition, and the ResD decomposition is the best, in terms of dual

bound and convergence. For random-demand MUCP instances, the unit decomposition converges
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slightly faster, but the dual bound obtained by the ResD decomposition is better. Therefore, it

appears that ResD is also the most appropriate decomposition structure for the random-demand

MUCP.

8.4.4 Start-up decomposition

Various unit subset decompositions have been compared in Section 8.4.3. The question is whether

the start-up decomposition could improve the convergence of the column generation algorithms

for these decomposition structures.

We implement the start-up decomposition structure with the most appropriate granularity

according to the instances’ demand profile. For 2-peak-demand instances, we compare Unit-SU,

the start-up decomposition (implemented within a unit decomposition structure) to the unit

decomposition. For random-demand instances, the site decomposition converges faster, and

provides a better dual bound on the optimal value, than the unit decomposition. Therefore we

compare Site-SU, the start-up decomposition (implemented within a site decomposition structure)

to the site decomposition on these instances. Note that only start-up decisions are taken in the

subproblems, and the residual demand constraints relies on the up/down decisions. Thus we did

not consider implementing the start-up decomposition with ResD granularity.

As the presence of intra-site constraints did not impact much the column generation algo-

rithms, we only considered IMUCP instances for both 2-peak and random demand instances.

Table 8.2 presents the corresponding results, for each set of 10 IMUCP instances with same

demand type, and for each decomposition structure. The column entries are the following

#iter the average number of iterations,

CPU the average CPU time (in seconds),

Dual b. the average dual bound,

Instance-wise results are presented in Tables 8.15 and 8.16, in Section 8.9 at the end of the

chapter.

2-peak-demand
(20,24) (20,48)

#iter Unit 465 1936
Unit-SU 2708 8045

CPU Unit 1 4
Unit-SU 1 5

Dual b. Unit 288948 615718
Unit-SU 288948 615718

(a)

Random-demand
(20,24) (20,48)

#iter Time 275 746
Time-SU 1883 5047

CPU Time 2 7
Time-SU 2 10

Dual b. Time 415035 813085
Time-SU 415024 813045

(b)

Table 8.2: Summary table relative to column generation results for Start-up decompositions
presented in Tables 8.15 and 8.16.
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The hope was that by reducing the combinatorics of the subproblem, the start-up decomposi-

tion would help to converge faster. Even though, as shown in Tables 8.15 and 8.16, the number

of variables is slightly reduced in the Unit-SU (resp. Site-SU) decomposition compared to the

Unit (resp. Site) decomposition, it appears that the number of iterations increases by a factor of

4 on average on (n,T)= (20,24) and on (n,T)= (20,48) instances (see Table 8.2). Therefore the

start-up decompositions do not appear to be of interest within these unit subset decomposition

structures.

8.4.5 Time decomposition

The results of the column generation algorithm for the time decomposition can be found in Tables

8.7 to 8.14. Table 8.1 summaries the results.

First note that as shown in Tables 8.7 to 8.14, for the time decomposition, most of the CPU

time is spent in solving the master problem. Indeed, the pricing problem is solved very efficiently

by dynamic programming (recall from Paragraph "Resolution of the subproblems" that this cannot

be compared to unit-subset decomposition cases).

2-peak-demand instances The time decomposition has a lower CPU time than Site and ResD

decomposition, with a CPU time in the order of 2 seconds on (n,T)= (20,24) instances, and in the

order of 10 seconds on (n,T)= (20,48) instances (see Table 8.1).

As shown in Table 8.1, the number of column generation iterations performed in the time

decomposition is always higher (by a factor from 10 to 100) than in other decompositions. As for

unit subset decompositions, the number of iterations increases by a factor of 2 at least when T

increases from 24 to 48. Referring to Tables 8.7 to 8.10, the number of priced variables follows a

similar pattern.

The best dual bound is obtained with the time decomposition. This bound is always far better

than the one obtained with the other decompositions.

Indeed, as shown in Table 8.1, the time decomposition bound improves the linear relaxation

value by an additive term greater than 10000 (resp. 7000) on each MUCP and IMUCP (n,T)=
(20,48) (resp. (20,24)) instance.

Interestingly, the bounds obtained are even better than the lower bounds computed via

Cplex’s own cuts, on each instance (except instance 10 of size (20,48), see Tables 8.7 to 8.10). As

the demand constraint is not dualized, the bound obtained from this decomposition is the same

as the bound obtained when all facets of the knapsack polytopes at time t, t ∈T , are added to

the linear relaxation. We pointed out in Chapter 4 that many useful static up-set (i.e., extended

cover) inequalities were not automatically added by Cplex 12.8. The present results confirm this

observation.
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Random-demand instances Random demand values tend to give much more importance to

dynamic constraints, i.e., min-up/down constraints. Therefore, as shown in Table 8.1, for a given

size (n,T), the number of column generation iterations of the time decomposition is multiplied

by a factor of 10 on average when random demands are considered instead of 2-peak demands.

Correspondingly, the CPU time of the time decomposition is also higher than in the 2-peak case,

as it is in the order of 30 (resp. 100) seconds for (n,T)= (20,24) (resp. (20,48)) instances.

The dual bounds obtained by the time decomposition are always better than the bounds

obtained by other decomposition structures. As in the 2-peak case, the time decomposition bound

improves the linear relaxation value by an additive term greater than 10000 on each MUCP and

IMUCP (n,T)= (20,48) instance.

The time decomposition bounds are often better than Cplex’s bound, but it is not always

the case. Referring to Tables 8.11 to 8.14, the time decomposition provides a better bound than

Cplex’s cuts on 12 MUCP instances (resp. on 8 IMUCP instances) over the 20 considered. Dynamic

constraints having now more importance, the relative impact of static up-set inequalities appears

to be reduced.

Conclusion On random-demand instances, time decomposition provides a good bound, some-

times better than the one obtained with Cplex’s cuts. On 2-peak-demand instances, the time

decomposition provides a much better dual bound than Cplex’s cuts or any other decomposition

structure does. In both cases, the bound’s quality comes at the expense of an increase in the

number of iterations.

8.4.6 Time decomposition with interval up-set inequalities

The time decomposition is the decomposition structure providing the best lower bound on the

optimal value. The dual bound obtained is even better than the linear relaxation value obtained

with the cuts generated by Cplex. In this section, static interval up-set inequalities are separated

in the master problem in order to further improve this dual bound.

We perform column generation iterations until no column is found. Then we apply separation

algorithms until no violated interval up-set inequalities can be found. The process is iterated

until no improving columns nor inequality is found. The separation algorithm used is the one

described in Chapter 4. Recall that since interval up-set inequalities can be expressed in original

(x,u) variables, adding these inequalities only modifies the cost structure in the subproblem.

For MUCP and IMUCP instances, we compare Time and Time+I, the time decomposition with

separation of interval up-set inequalities. For the record, very few interval up-set inequalities are

found on (n,T)= (20,24) instances. Therefore we focus here on (n,T)= (20,48) instances.

Table 8.3 presents, for each set of 10 instances with same demand type,
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∆(Time+I,Time) the average difference between the dual bounds of Time+I and Time

∆(Time+I,Cplex) the average difference between the dual bounds of Time+I and the

bound obtained with Cplex’s cuts

and for each decomposition structure,

#iter the average number of iterations,

Dual b. the average dual bound,

2-peak-demand Random-demand
MUCP IMUCP MUCP IMUCP

#iter Time 30674 31534 183835 196622
Time+I 30765 31604 184188 197120

Dual b. Time 627619 627711 814395 825684
Time+I 627628 627719 814430 825795

∆(Time+I,Time) 8.96 8.59 35.31 111.08
∆(Time+I,Cplex) 783.84 760.98 -36.18 83.92

Table 8.3: Summary table relative to column generation results for time decomposition with
interval up-set inequalities presented in Tables 8.17 and 8.18.

Instance-wise results can be found in Tables 8.17 and 8.18.

2-peak-demand instances For MUCP and IMUCP instances with 2-peak demands, few in-

terval up-set inequalities are found (from 0 to 6 per instance, see Table 8.17). This is enough

to increase the dual bound by an additive term of order 8 on average, as shown in Table 8.3.

Note also that the number of column generation iterations does not increase significantly when

interval up-set inequalities are separated. As the inequalities are separated once the column

generation algorithm has converged, the number of iterations cannot decrease from Time to

Time+I.

Random-demand instances As was the case with 2-peak-demand instances, the convergence

of the column generation is not impacted by the separation of interval up-set inequalities.

For MUCP instances, only few interval up-set inequalities are found (5 in total for the ten

instances, see Table 8.18). Interestingly, many more inequalities are found for IMUCP instances

(25 in total). Violated interval up-set inequalities are found in only 3 instances out of 10, for

both MUCP and IMUCP instance sets. However, the resulting dual bound is much improved by

these inequalities, as it is increased by an additive term of order 30 to 100. On (20,48) IMUCP

instances, while the average dual bound provided by Time was not as good as the bound provided

by Cplex’s cuts (see Table 8.1), when interval up-set are added the average bound obtained with

Time+I is better than Cplex’s, as shown in Table 8.3.
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Conclusion On instances with larger horizon size (i.e., T = 48), interval up-set inequalities

enable to improve even further the dual bound obtained with the time decomposition, at no

additional cost as the number of iterations remains quite similar.

8.5 Experimental results relative to Branch & Price & Cut

As for 2-peak-demand instances, the most appropriate granularity for the unit subset decomposi-

tion is the unit decomposition, we compare Branch & Price (& Cut) algorithms on 2-peak-demand

instances for Unit, Time and Time+I decomposition structures.

For random-demand instances, the most appropriate granularity for the unit subset decom-

position is the residual demand decomposition, thus on these instances we compare Time and

Time+I decompositions to ResD.

Table 8.4 presents the results of default Cplex on each set of 10 instances with same size and

demand profile. It provides:

#solved the number (out of 10) of instances solved to optimality,

Nodes the average number of nodes,

CPU the average CPU time (in seconds),

2-peak-demand Random-demand
MUCP IMUCP MUCP IMUCP

(20, 24) (20,48) (20, 24) (20,48) (20, 24) (20,48) (20, 24) (20,48)

Cplex #solved 10 2 10 2 10 10 10 10
Nodes 10210 159400 7500 161600 1217 2427 1094 2903
CPU 93 3232 83 3444 6 18 7 29

Table 8.4: Summary of Default Cplex results on the instances considered

As the scope of this chapter is to compare various decomposition structures, the goal is not

yet to implement Branch & Price algorithms that could be competitive with commercial solvers

like Cplex. Our implementation could be hugely improved for example by finely-tuned branching

rules, stabilization techniques, or fast dynamic programming algorithms for the subproblems.

This is why in the following we will not compare our Branch & Price statistics to Cplex.

Branch & Price algorithms are implemented in the same experimental settings as described

in Section 8.4. At the root node, the column generation algorithms are initialized with columns

obtained using Cplex’s primal heuristics (corresponding to the best solution Cplex obtains at the

root node of the B&B).

The branching is performed on up/down decisions, i.e, the branching disjunction has the form∑
π∈P

aπ,i
t λπ = 1 ∨ ∑

π∈P

aπ,i
t λπ = 0

At each node, the most fractional
∑
π∈P aπ,i

t λπ is chosen for branching.
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A time limit of 3600 seconds is set.

8.5.1 First results on small-size instances

First, preliminary experiments are run on small-size, i.e., (n,T)= (10,24), MUCP and IMUCP

instances featuring 2-peak or random demand profiles.

Tables 8.19 to 8.22 provide Branch & Price results on these small-size instances. They present,

for each instance and each decomposition structure:

id the instance number,

#nodes the number of nodes,

IUP the number of interval up-set inequalities separated

#col the number of columns generated,

CPU the CPU time (in seconds) of the Branch & Price,

Gap the optimality gap

Primal b. the best integer solution found within time limit.

The main result is that time decompositions (Time and Time+I) outperform by far unit subset

decompositions, i.e., unit decomposition for 2-peak-demand instances and ResD decomposition for

random demand instances. Indeed, the unit subset decompositions manage to solve to optimality

only 2 instances out of the 40 small-size instances, even though the number of nodes explored is

100 to 10000 times larger than that of the time decompositions.

Therefore in the following, only Time and Time+I are performed on instances of size (20,24)

and (20,48).

8.5.2 Results on larger instances

Table 8.5 presents the Branch & Price results for Time and Time+I for each set of 10 instances.

The column entries are the same as in Table 8.4, with additional entries:

#IUP the average number of interval up-set found

IN the average node improvement score of Time+I w.r.t. Time

ICPU the average CPU time improvement score of Time+I w.r.t. Time

The improvement scores are defined in Section 4.2. For each instance set, the node (resp.

CPU) improvement score in computed for the subset of instances where both (resp. at least one of

the) decompositions reach optimality.

Instance-wise results can be found in Tables 8.23 to 8.26.

None of the size (20,48) 2-peak-demand instances can be solved to optimality (within time

limit) using time decompositions, as shown in Table 8.5. Cplex only manages to solve to optimality

2 of them, as shown in Table 8.4.
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2-peak-demand Random-demand
MUCP IMUCP MUCP IMUCP

(20, 24) (20,48) (20, 24) (20,48) (20, 24) (20,48) (20, 24) (20,48)

#solved Time 10 0 9 0 8 5 9 5
Time+I 10 0 8 0 8 5 9 4

Nodes Time 7402 5831 11294 4825 528 622 386 453
Time+I 6538 5204 9837 4518 531 525 408 413

CPU Time 827 3600 1431 3600 890 2805 818 2645
Time+I 855 3600 1463 3600 882 2398 890 2513

#IUP 33 81 47 77 1 5 1 7
IN 16.82 % - 3.16 % - 0.50 % 16.76 % 5.2 % 9.04 %

ICPU 4.90 % - -3.98 % - 2.26 % 20.60 % -1.4 % 8.36 %
"-" indicates that none of the instances has been solved to optimality

Table 8.5: Summary of the Branch & Price results presented in Tables 8.23 to 8.26

Interestingly, Table 8.5 shows that interval up-set inequalities improve the number of nodes,

on all sets of instances where optimality can be reached. While this improvement in the number

of nodes does not show on the CPU time on the small (i.e., (n,T) = (20,24)) instances, when T

increases, the cost of solving a large LP at each node is well compensated by the better bounds

obtained with interval up-set inequalities.

For random-demand instances, fewer interval up-set are found, but the improvement they

induce is still significant, for example the CPU time is improved by 20.6% on average on (20,48)

random-demand MUCP instances.

8.6 Experimental results relative to Price & Branch heuristic

In this section, we take advantage of the Branch & Price framework to derive a Price & Branch

heuristic. The Price & Branch algorithm is such that columns are generated at the root node only,

and Branch & Bound is applied on the resulting formulation.

Price & Branch algorithms are implemented in the same experimental settings as described

in Section 8.5. Once the columns are generated within SCIP framework, the resulting LP is given

to Cplex to solve.

Preliminary results indicate that Price & Branch algorithms based on unit-subset decomposi-

tions are not competitive, at least without further improvement. Indeed, the branching process

converges very slowly, and intermediate solutions are not as good as the one obtained with Cplex

in a shorter time. Thus we compare

CplexHeur Cplex with a short time limit,

TimeP&B, Price & Branch in the time decomposition framework

The idea is to assess the quality of the solution obtained within a very short time, therefore
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a global time limit is set to 180 seconds (resp. 30 seconds) for both methods on (20,48) (resp.

(20,96)) instances.

Table 8.6 presents the result for 2-peak-demand IMUCP instances of size (n,T)= (20,96) as

well as (20,48). It provides

id the instance number,

#col the number of columns generated,

Dual b. the best lower bound found within the time limit.

Primal b. the best integer solution found within the time limit.

CPU-Price the CPU time of the column generation algorithm at the root

CPU the total CPU time (in seconds)

Note that we do not present the results for random instances, as on such instances the column

generation algorithm converges too slowly to enable Price & Branch to run fast enough to be

competitive with CplexHeur.

As shown in Table 8.6 for the Time Price & Branch heuristic, the most CPU consuming step is

the column generation at the root node. In terms of solutions quality, Price & Branch sometimes

finds much better solutions than Cplex, especially on large instances. For example, on instances

2, 8 and 10 (resp. 3 and 5), Price & Branch finds a solution which costs at least 2000 (resp. 1000)

less than Cplex’s solution.

8.7 Perspectives on symmetry-breaking in Dantzig-Wolfe
reformulations

In practice, identical units are often located on the same site, inducing symmetries in the master

problem or in the subproblems, depending on the decomposition considered. Symmetries arising

in the master problem impair the Branch & Price process, as they do for Branch & Bound

algorithms in general. Breaking them would therefore be helpful towards the integer resolution

of the Dantzig-Wolfe reformulation.

Handling symmetries arising in the subproblems would accelerate the resolution of the

subproblem, and could play a role towards the convergence of the column generation algorithm,

by reducing the number of solutions generated by the subproblem.

8.7.1 Handling symmetries in unit-subset decompositions

To handle symmetries arising in the master problem of Dantzig-Wolfe reformulations, it is shown

in [89] that master variables corresponding to identical subproblems can be aggregated, in the

case of pure integer programs. As our problem features continuous variables, this aggregation

result does not apply.
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id #col Dual b. Primal b. CPU-Price CPU
(n,T)= (20,48)

CplexHeur 1 - 670021 682979 - 30.12
TimeP&B 1 1395 670940.8 682257 22.11 22.72
CplexHeur 2 - 666681.6 682456.2 - 30.13
TimeP&B 2 1857 668217.4 681454 28.92 30.78
CplexHeur 3 - 517789.7 524282.8 - 30.15
TimeP&B 3 1978 516953.5 526660 26.46 27.91
CplexHeur 4 - 664033 680069.9 - 30.09
TimeP&B 4 1750 665131.6 680941 26.65 28.98
CplexHeur 5 - 698243.9 704227.3 - 30.12
TimeP&B 5 1459 698809.5 706069 22.9 23.3
CplexHeur 6 - 553488.1 565152.1 - 30.15
TimeP&B 6 1900 553409.6 564081 26.75 27.96
CplexHeur 7 - 641659.3 653270.5 - 30.09
TimeP&B 7 1790 642197.1 652197 29.03 29.73
CplexHeur 8 - 642417.5 650893.6 - 30.14
TimeP&B 8 1549 642386.8 650479 24.31 25.54
CplexHeur 9 - 657908 662109 - 30.12
TimeP&B 9 1587 658045.9 661964 24.27 24.79
CplexHeur 10 - 560957.7 569067.5 - 30.21
TimeP&B 10 1717 560099.7 570260 22.93 24.71

(n,T)= (20,96)
CplexHeur 1 - 975936 988753.4 - 181.2
TimeP&B 1 4097 975212.1 989776 93.93 104.2
CplexHeur 2 - 1511353 1540946 - 181.1
TimeP&B 2 4578 1512152 1538980 147.6 166.8
CplexHeur 3 - 1367876 1393661 - 181.1
TimeP&B 3 3580 1369440 1392510 94.28 101.6
CplexHeur 4 - 1215102 1238913 - 181.7
TimeP&B 4 3152 1215950 1239410 79.85 110.2
CplexHeur 5 - 1195142 1218029 - 180.8
TimeP&B 5 4377 1196509 1216800 140.4 174.6
CplexHeur 6 - 1399552 1432186 - 180.9
TimeP&B 6 3930 1400784 1431370 112 120.6
CplexHeur 7 - 1374570 1404107 - 181
TimeP&B 7 3480 1375282 1404220 91.31 96.55
CplexHeur 8 - 1283919 1312527 - 180.9
TimeP&B 8 4101 1285344 1310270 151.5 168.9
CplexHeur 9 - 1189979 1205344 - 181.1
TimeP&B 9 4074 1189686 1206330 99.11 118.6
CplexHeur 10 - 1175454 1198234 - 180.7
TimeP&B 10 3147 1176128 1196250 91.93 95.65

Table 8.6: Price and Branch – IMUCP instances – 2-peak demand
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For the unit decomposition of the (I)MUCP, it is still possible to aggregate master variables

λ and p corresponding to identical units. Aggregated solutions (λ, p) with integer λ can be

disaggregated into solutions (λ, p) with integer λ as shown in [50].

For the unit decomposition of the ramp-constrained (I)MUCP, if production constraints are

not dualized, then only variables λ appear in reformulation (DW). In this case, each variable λ

corresponds to a feasible up/down and production plan π= (x, p) ∈ {0,1}(n,T) ×R(n,T) for a given

unit. An interesting question is whether master variables λ can be aggregated in this context.

In any case, the aggregation of master variables λ prevents from branching on non-aggregated

decisions (otherwise symmetries would be reintroduced).

When aggregation is not possible, or when flexibility with respect to the branching decisions

must be preserved, sub-symmetry-breaking inequalities or orbitopal fixing for the full sub-

orbitope can be used to handle symmetries arising in the master problem of the Dantzig-Wolfe

reformulation.

When the decomposition is made along unit subsets (containing more than just one unit), sym-

metries arise in the subproblems featuring identical units. The question is how these symmetries

can be exploited to solve the subproblems more efficiently, while avoiding generating symmetrical

plans from the subproblems.

In the non-ramp-constrained case, aggregation of subproblems variables is possible. As

previously, it will prevent from branching on non-aggregated decisions.

When aggregation of the subproblems’ variables is not possible, as in the ramp-constrained

case, an interesting perspective is to handle symmetries within the subproblem’s dedicated

resolution technique.

8.7.2 Handling symmetries in time decomposition

In the presence of identical units, the Dantzig-Wolfe reformulation obtained by time decomposition

also features symmetric solutions.

For example, consider a solution λ. Then for any symmetry σ, permuting identical units,

solution λσ is obtained from λ as follows:

λπσ =λσ−1(π), ∀π ∈P t, ∀t ∈T

i.e., for each time t, for π ∈P t such that λπ = 1, the plan selected at time t in solution λσ is the

permutation of plan σ(π). Therefore λσ is feasible and has same cost than λ.

Sub-symmetry-breaking inequalities (7.6) and (7.7) can be used to handle such symmetries,

replacing variables xi
t by

∑
π∈P t aπ,iλπ. Orbitopal fixing for the full orbitope can also be used,

where instead of fixing variables directly to 0 or 1, sums of variables
∑
π∈P t aπ,iλπ would be equal
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to 0 or 1. Such equalities can be used as cuts to the master problem. Instead, these equalities can

also be propagated in order to fix some λ variables to 0 or 1.

8.8 Conclusion

We compare various decomposition structures for the (I)MUCP. The column generation algorithm

converges quite fast on unit-subset decompositions, but the dual bound obtained is of poor quality.

The time-based decomposition needs much more iterations to converge, but the dual bound it

provides is better than that of the bound obtained with Cplex’s cuts on many instances. Without

further improvement of the lower bound, implemented Branch & Price algorithms based on

unit-subset decompositions are completely outperformed by time decomposition Branch & Price.

The latter features promising CPU times, which are significantly enhanced by interval up-set

inequalities. The Price & Branch algorithm based on the time decomposition is a quick (less than

3 minutes) heuristic, providing good quality solutions compared to Cplex used with a 3-minute

time limit.

A first perspective would be to study how to include ramp constraints in the studied decompo-

sition structures. In particular, when production constraints are not dualized, the combinatorics

of the subproblem highly increases in the ramp-constrained case, which may lead to convergence

issues. If the production constraints are dualized, then the dual bound may be lower. However

this may be compensated for by adding valid inequalities to the Dantzig-Wolfe master problem.

Another related perspective would be to define the appropriate granularity for time-based

decompositions, so that each subproblem would correspond to an appropriate subset of time steps.

It would also be useful to improve unit-subset-based decompositions by the addition of valid

inequalities. The goal would be to catch up with the bounds obtained with time-based decompo-

sitions. For the latter decompositions, the column generation algorithm could be enhanced as

well, in particular with stabilization techniques in order to reduce the number of iterations. More

dedicated branching rules would improve the corresponding Branch & Price algorithm.

Another crucial question for the time decomposition framework is how to account for hetero-

geneous units featuring various technical constraints. In particular, the question is whether the

time decomposition master problem can still be solved efficiently by LP solvers. If not, then the

follow-up question is to what extent some technical constraints can be relaxed without impacting

the quality of the dual bound provided.

Finally, even though no experimental results have been carried out for symmetrical instances,

the symmetry-breaking techniques proposed in this thesis can be used in all studied decomposi-

tion structures.
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8.9 Experimental tables

Column generation for Unit, Site, ResD and Time decompositions Column generation

algorithms are compared for Unit, Site, ResD and Time decomposition. Results for 2-peak-demand

instances are presented in Table 8.7 (resp. Table 8.9) for (n,T)= (20,24) (resp. (n,T)= (20,48))

instances of the MUCP, and in Table 8.8 (resp. Table 8.10) for (n,T) = (20,24) (resp. (n,T) =
(20,48)) instances of the IMUCP.

Results for random-demand instances are presented in Table 8.11 (resp. Table 8.13) for

(n,T)= (20,24) (resp. (n,T)= (20,48)) instances of the MUCP, and in Table 8.12 (resp. Table 8.14)

for (n,T)= (20,24) (resp. (n,T)= (20,48)) instances of the IMUCP.

Tables 8.7 to 8.14 present, for each instance:

id instance number,

#iter number of column generation iterations,

#col number of columns generated,

CPU CPU time (in seconds) of the column generation,

M-CPU CPU time (in seconds) spent in solving the master problem,

Dual b. optimal value of the column generation master problem

CplexCuts linear relaxation value of the IMUCP formulation without decomposition,

once Cplex has added its own cuts,

Opt, optimal value of the IMUCP, if computed in less than 3600 seconds by Cplex

Note that the linear relaxation value of the (x,u) formulation is not given, as it is exactly the

dual bound obtained with the unit decomposition.
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id #iter #col CPU M-CPU Dual b. CplexCuts Opt
Unit 1 306 247 0.77 0.01 321686.6
ResD 1 760 229 3.57 0.09 321686.6 329026.5 332471.5
Time 1 18684 1194 4.18 4 329201.5
Unit 2 454 309 1.11 0.01 308326.5
ResD 2 1046 256 4.26 0.04 308326.5 314346.3 316585.4
Time 2 11057 715 1.53 1.36 315075.1
Unit 3 355 268 0.79 0.01 231689.2
ResD 3 765 212 2.55 0.03 231689.2 239899.1 242467.1
Time 3 15937 911 2.69 2.59 240191.5
Unit 4 382 285 0.88 0 301511
ResD 4 800 248 4.16 0.08 301511 308751.9 311586.1
Time 4 11089 892 1.93 1.82 309164.7
Unit 5 404 315 0.93 0.02 247945.9
ResD 5 976 271 6.44 0.06 247945.9 252727.3 254636
Time 5 6808 598 1.02 0.94 253171.3
Unit 6 381 291 0.86 0.03 302242.6
ResD 6 781 243 3.45 0.06 302242.6 308680.3 309777.4
Time 6 19261 975 3.48 3.22 308911.1
Unit 7 387 258 0.85 0.03 273102.7
ResD 7 878 272 3.81 0.04 273102.7 277760.9 280374.3
Time 7 8307 671 1.29 1.2 278176.1
Unit 8 481 292 0.95 0.03 311345.7
ResD 8 1042 275 4.34 0.13 311345.7 317900.1 319807.6
Time 8 8952 729 1.44 1.29 318158.6
Unit 9 382 265 0.8 0.05 254416.8
ResD 9 901 248 3.24 0.09 254416.8 261867.5 263334.5
Time 9 12419 830 2.16 2.01 262004.8
Unit 10 397 293 1.01 0.04 336012.4
ResD 10 708 233 2.4 0.05 336012.4 342002.5 344357.9
Time 10 10938 754 1.78 1.63 342391.2

Table 8.7: Column generation – MUCP instances – (n,T) = (20,24), 2-peak per day demand
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id #iter #col CPU M-CPU Dual b. CplexCuts Opt
Unit 1 341 256 0.86 0.08 321704.4
Site 1 830 247 3.7 0.08 321704.4 329020.2 332471.5
ResD 1 829 247 5.79 0.05 321704.4
Time 1 20879 1237 5.09 4.84 329201.5
Unit 2 459 295 0.91 0.04 308326.5
Site 2 1029 243 4.22 0.08 308326.5 314377.2 316859.1
ResD 2 850 238 3.71 0.09 308326.5
Time 2 10962 748 1.6 1.47 315076.5
Unit 3 440 257 0.66 0.02 231853.3
Site 3 764 201 2.06 0.06 231853.3 239929.8 242612.1
ResD 3 654 197 2.24 0.03 231853.3
Time 3 12531 831 2 1.85 240191.5
Unit 4 443 269 0.94 0.05 301511
Site 4 747 234 2.58 0.09 301511 308712.2 312081.8
ResD 4 740 225 3.56 0.06 301511
Time 4 10263 870 2.01 1.9 309167.1
Unit 5 557 324 0.94 0.06 247949.3
Site 5 1037 253 2.53 0.07 247949.3 252704.2 254675.6
ResD 5 1059 258 3.34 0.06 247949.3
Time 5 8260 645 1.21 1.14 253171.9
Unit 6 480 286 0.93 0.06 302446
Site 6 640 217 2.44 0.06 302446 308982.2 310647.6
ResD 6 669 219 2.95 0.06 302446
Time 6 14815 970 2.74 2.56 309331.2
Unit 7 417 255 0.72 0.04 273110.7
Site 7 787 242 2.42 0.06 273110.7 277855.9 280374.3
ResD 7 735 229 2.98 0.07 273110.7
Time 7 9111 703 1.46 1.36 278176.9
Unit 8 514 298 0.98 0.05 311345.7
Site 8 991 267 3.2 0.1 311345.7 317802.4 320128.2
ResD 8 998 251 4.45 0.03 311345.7
Time 8 8814 728 1.46 1.3 318158.6
Unit 9 469 273 0.78 0.03 255163.7
Site 9 887 255 3.26 0.06 255163.7 262028.6 263334.5
ResD 9 850 262 3.72 0.04 255163.7
Time 9 13577 766 2.13 1.97 262162.9
Unit 10 528 287 0.85 0.03 336067
Site 10 748 233 1.97 0.07 336067 341838.3 344836.8
ResD 10 736 215 2.08 0.04 336067
Time 10 11139 753 1.92 1.8 342412.2

Table 8.8: Column generation – IMUCP instances – (n,T) = (20,24), 2-peak per day demand
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id #iter #col CPU M-CPU Dual b. CplexCuts Opt
Unit 1 2067 719 4.99 0.21 656370.1
ResD 1 3586 662 16.04 0.44 656370.1 669861.6 -
Time 1 24375 1569 7.8 7.61 670940.8
Unit 2 1770 670 4.25 0.14 656409.3
ResD 2 2738 577 14.54 0.27 656409.3 666597.9 -
Time 2 30053 1801 12.54 12.22 668217.4
Unit 3 942 452 2.35 0.07 503744.9
ResD 3 2294 505 16.67 0.31 503744.9 516337.5 522116.9
Time 3 34952 2120 14.43 13.98 516953.5
Unit 4 1424 619 3.63 0.16 652443.2
ResD 4 3508 627 17.02 0.47 652443.2 664117.2 -
Time 4 33468 1834 11.64 11.33 665131.6
Unit 5 1706 610 3.48 0.21 687042.8
ResD 5 4678 677 33.08 0.68 687042.8 697968.4 -
Time 5 29300 1649 8.99 8.79 698809.5
Unit 6 1280 517 3.01 0.12 542302.5
ResD 6 1868 495 10.51 0.17 542302.5 552529.6 -
Time 6 38587 2188 15.18 14.79 553409.6
Unit 7 1455 590 3.67 0.15 632669.9
ResD 7 2857 563 10.6 0.3 632669.9 641500.1 -
Time 7 33713 1863 12.88 12.63 642197.1
Unit 8 1499 562 2.82 0.13 629820.6
ResD 8 3169 563 13.83 0.39 629820.6 641662.7 -
Time 8 26037 1735 8.94 8.66 642386.8
Unit 9 1582 608 3.65 0.18 646706.9
ResD 9 4479 666 26.17 0.67 646706.9 657462.2 660572.5
Time 9 27796 1770 9.93 9.54 658045.9
Unit 10 1447 577 3.18 0.11 547678.8
ResD 10 3402 597 15.06 0.44 547678.8 560405.9 -
Time 10 28462 1827 9.92 9.58 560099.7

Table 8.9: Column generation – MUCP instances – (n,T) = (20,48), 2-peak per day demand
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id #iter #col CPU M-CPU Dual b. CplexCuts Opt
Unit 1 2584 708 4.79 0.39 656378.2
Site 1 3581 639 17.78 0.56 656378.3 670197 -
ResD 1 3178 618 19.06 0.35 656378.3
Time 1 25315 1601 8.52 8.33 671006
Unit 2 2333 666 3.72 0.26 656652.1
Site 2 2438 554 11.51 0.38 656652.1 666635.6 -
ResD 2 2654 579 15.24 0.3 656652.1
Time 2 29039 1796 12.22 11.91 668268.9
Unit 3 1295 489 2.78 0.18 504012.6
Site 3 2261 468 11.14 0.25 504012.6 516629 523523.7
ResD 3 1860 431 12.28 0.22 504012.6
Time 3 38720 2160 15.38 15.04 517075.2
Unit 4 1712 592 3.79 0.23 652805.5
Site 4 2680 584 15.53 0.36 652805.5 664403.9 -
ResD 4 2746 557 15.87 0.39 652805.5
Time 4 34122 1986 13.09 12.83 665189
Unit 5 2083 622 3.68 0.24 687085
Site 5 5184 734 27.8 0.68 687091.7 697794.4 -
ResD 5 4675 688 37.75 0.68 687091.7
Time 5 25184 1644 8.6 8.3 698827.5
Unit 6 1351 524 3.14 0.23 542302.5
Site 6 2115 495 9.87 0.25 542302.5 552669.8 -
ResD 6 1870 445 9.86 0.26 542302.5
Time 6 41948 2222 17.66 17.27 553417.1
Unit 7 1979 611 3.56 0.26 632707.7
Site 7 2559 515 9.24 0.27 632707.7 641479.5 -
ResD 7 2661 523 10.96 0.26 632707.7
Time 7 35564 1845 13.06 12.69 642214.3
Unit 8 1792 564 3.2 0.19 629944.8
Site 8 2508 542 11.14 0.29 629944.8 641912.2 -
ResD 8 2741 562 14.48 0.29 629944.8
Time 8 32853 1692 12.27 11.9 642586.2
Unit 9 2353 627 3.91 0.31 646767.6
Site 9 3662 629 19.81 0.51 646767.6 657268.7 660572.5
ResD 9 3930 608 23.82 0.57 646767.6
Time 9 26900 1737 10.54 10.21 658088.8
Unit 10 1878 560 2.93 0.18 548523.6
Site 10 2610 506 11.46 0.4 548523.6 560593 -
ResD 10 2856 536 12.52 0.33 548523.6
Time 10 25690 1786 9.84 9.52 560434

Table 8.10: Column generation – IMUCP instances – (n,T) = (20,48), 2-peak per day demand
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id #iter #col CPU M-CPU Dual b. CplexCuts Opt
Unit 1 223 245 0.76 0.02 392323.4
ResD 1 368 178 2.07 0.03 393063 397350.2 398921.9
Time 1 18620 1229 5.29 5.03 397665
Unit 2 215 241 0.74 0.02 332477.1
ResD 2 276 128 3.32 0.02 332488.8 335765.1 337379.4
Time 2 24380 1601 8.29 8.03 336216.4
Unit 3 181 237 0.97 0.02 482514.6
ResD 3 89 58 0.66 0.03 491217.3 498993.6 498993.6
Time 3 46275 2486 13.07 12.46 498993.6
Unit 4 214 196 0.56 0.05 236583.8
ResD 4 296 134 3.18 0.02 236583.8 239499 241334.5
Time 4 19710 1486 6.62 6.32 239852
Unit 5 160 226 0.95 0.02 469952.5
ResD 5 341 147 2.35 0.02 470236.3 475751.5 477291
Time 5 43185 2659 19.26 18.5 476367.5
Unit 6 165 206 0.81 0.04 461897.4
ResD 6 205 112 1.75 0.04 461900.5 467454.2 469694.5
Time 6 32749 2149 16.4 15.86 468159.4
Unit 7 154 209 0.54 0.02 421607.9
ResD 7 180 104 0.91 0.02 425131.4 430967.6 430967.6
Time 7 604942 6369 250.32 243.84 430967.6
Unit 8 200 219 0.58 0.05 480003.5
ResD 8 245 109 2.55 0.01 482066 488776.3 488810.2
Time 8 22115 1731 7.44 7.11 488420.5
Unit 9 247 206 0.84 0.02 344502.1
ResD 9 414 168 2.64 0.02 346989.5 350689.9 353102.3
Time 9 21556 1649 8.05 7.71 351042.5
Unit 10 158 252 0.63 0.03 472490.1
ResD 10 131 88 0.66 0.02 478822 486431.6 486470.2
Time 10 87091 3537 27.67 26.79 485981.5

Table 8.11: Column generation – MUCP instances – (n,T) = (20,24), random demand
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id #iter #col CPU M-CPU Dual b. CplexCuts Opt
Unit 1 436 278 1.26 0.03 393972.3
Site 1 427 199 2.35 0.07 393973.1 399348.6 399380.3
ResD 1 364 156 2.34 0.01 394139.9
Time 1 19763 1284 5.9 5.74 398924.7
Unit 2 412 276 0.88 0.04 337706.4
Site 2 265 136 1.01 0.01 337706.4 340218.9 342396.8
ResD 2 237 111 1.9 0.02 337724.7
Time 2 23497 1487 7.7 7.42 340423.7
Unit 3 259 241 1.16 0.04 494664.3
Site 3 183 108 0.98 0.01 494664.3 508412.1 508412.1
ResD 3 80 51 0.73 0.02 500577.4
Time 3 39815 2504 13.54 13.03 507850.9
Unit 4 399 227 0.64 0.02 239504
Site 4 235 123 1.23 0.02 239504 242010.4 244191.5
ResD 4 225 123 1.7 0.02 239504
Time 4 21471 1486 6.94 6.75 242438.5
Unit 5 278 240 0.98 0.02 471883.5
Site 5 282 149 1.97 0.04 471883.5 478634.8 480528.4
ResD 5 277 105 1.46 0.03 472236.7
Time 5 34095 2146 11.88 11.46 478931.6
Unit 6 249 248 0.94 0.04 468353.4
Site 6 208 127 1.77 0.03 468353.4 475162.8 475770.3
ResD 6 187 114 1.89 0.01 468412.7
Time 6 28364 1887 13.13 12.68 474241.1
Unit 7 289 225 0.72 0.06 426422.4
Site 7 275 151 1 0.03 426423.2 437726.4 437749.5
ResD 7 167 92 1.17 0.02 430134.7
Time 7 535048 4362 162.67 159.24 436987.4
Unit 8 414 243 0.98 0.02 491547.2
Site 8 297 137 2.8 0.02 491648.9 500418.3 500451.7
ResD 8 240 106 2.64 0.02 492927.5
Time 8 19517 1826 7.66 7.32 499999.2
Unit 9 405 213 0.88 0.03 345786.2
Site 9 380 156 2.39 0.04 345786.2 351411.9 354172.7
ResD 9 368 153 1.81 0.03 348252.5
Time 9 18698 1503 6.02 5.72 352026.1
Unit 10 291 227 0.8 0.02 480402.5
Site 10 193 149 0.92 0.03 480402.5 494819.7 494865.6
ResD 10 120 85 1.18 0.01 487557.7
Time 10 61304 3032 21.55 20.9 493896.3

Table 8.12: Column generation – IMUCP instances – (n,T) = (20,24), random demand
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id #iter #col CPU M-CPU Dual b. CplexCuts Opt
Unit 1 487 405 2.78 0.06 920857.1
ResD 1 564 195 5.53 0.08 930400 939303.7 943533.2
Time 1 177900 5812 121.81 119.62 939571.1
Unit 2 495 468 1.97 0.06 686193.5
ResD 2 828 265 10.63 0.08 687232.5 697399.1 698487.1
Time 2 56254 3544 45.27 44.04 697771.7
Unit 3 500 439 3.06 0.06 800431.5
ResD 3 566 207 3.13 0.1 804487.1 812477.8 815818
Time 3 140210 5700 74.99 73.12 812821.1
Unit 4 634 463 3.72 0.09 780467.7
ResD 4 991 317 14.44 0.13 782872.9 789211 792735.8
Time 4 44040 2911 29 28.47 790206.1
Unit 5 420 410 2 0.05 740714.2
ResD 5 624 187 11.18 0.1 748378.8 758597.2 760119.8
Time 5 72217 4064 61.39 59.63 758032.1
Unit 6 417 383 1.97 0.1 782174.7
ResD 6 631 243 5.98 0.16 785400.1 795273.5 796467.4
Time 6 380025 7861 229.24 223.59 795130.6
Unit 7 441 392 2.39 0.07 823020.2
ResD 7 568 207 8.95 0.1 824901.3 835744.8 838005
Time 7 67300 3929 44.14 43.13 836434.7
Unit 8 440 417 2.03 0.08 844069.1
ResD 8 464 185 9.92 0.1 848825.8 858709.1 858989.9
Time 8 136659 5939 85.04 82.9 857575.4
Unit 9 513 444 2.01 0.05 867092.7
ResD 9 633 212 10.2 0.06 870737.9 883881.8 886175.7
Time 9 64903 3966 50.9 49.73 883507.3
Unit 10 539 403 1.97 0.07 758405.7
ResD 10 759 257 11.46 0.1 764246.9 774068.4 775035.8
Time 10 698841 8854 431.9 426.21 772901.4

Table 8.13: Column generation – MUCP instances – (n,T) = (20,48), random demand
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id #iter #col CPU M-CPU Dual b. CplexCuts Opt
Unit 1 1001 483 4.5 0.18 925700.6
Site 1 650 267 6.53 0.21 925700.6 943238.1 947499.3
ResD 1 473 168 4.64 0.05 934913.9
Time 1 171006 5329 125.46 123.28 943918.5
Unit 2 1479 562 3.22 0.19 695401.1
Site 2 665 300 7.38 0.12 695527.4 705573.9 707006.7
ResD 2 657 258 11.9 0.07 695808.2
Time 2 50759 3469 48.46 47.38 705621.5
Unit 3 1101 479 3.96 0.14 806978.7
Site 3 638 325 6.97 0.11 807203.1 820524.3 823628.3
ResD 3 491 222 3.69 0.1 811269.6
Time 3 161271 5398 87.62 85.66 819637.3
Unit 4 1511 527 4.66 0.15 783981.4
Site 4 1053 352 8.68 0.09 783981.4 792312.7 796652.9
ResD 4 978 320 14.44 0.16 785978.5
Time 4 46782 2919 33.3 32.69 793075.6
Unit 5 1318 536 3.6 0.12 761059
Site 5 772 256 6.37 0.09 761075.1 775091.7 776601
ResD 5 587 203 11.09 0.07 765707.9
Time 5 61708 3772 47.92 46.83 774724.1
Unit 6 708 413 2.03 0.1 786073.7
Site 6 747 313 4.46 0.11 786073.7 799731.7 801678.7
ResD 6 564 244 5.93 0.07 790482.9
Time 6 344097 8685 276.9 270.05 799759.4
Unit 7 1011 470 2.95 0.13 838014
Site 7 689 317 7.56 0.09 838054.2 848575.8 850659.3
ResD 7 479 196 9.38 0.07 839828.8
Time 7 57993 3787 41.3 40.45 849302.1
Unit 8 1199 486 2.8 0.13 866885.7
Site 8 658 251 7.08 0.14 866898.1 880311.4 882188.9
ResD 8 447 189 13.24 0.1 871522.5
Time 8 122579 5314 96.04 93.53 880744.1
Unit 9 1331 537 3.82 0.22 891460.1
Site 9 858 314 8.05 0.07 891517.1 901564.1 907044.6
ResD 9 533 206 10.43 0.09 892802.8
Time 9 58913 3645 41.36 40.6 900954.5
Unit 10 1244 495 2.42 0.13 774815.2
Site 10 732 297 4.26 0.11 774815.2 790185.1 790241.9
ResD 10 572 216 9.88 0.1 779617.2
Time 10 891113 9547 634.47 625.65 789100.1

Table 8.14: Column generation – IMUCP instances – (n,T) = (20,48), random demand
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Column generation results for start-up decompositions Table 8.15 presents the results

of Unit-SU, the start-up decomposition (implemented within a unit decomposition structure),

compared to Unit on 2-peak-demand instances.

Table 8.16 presents the results of Site-SU, the start-up decomposition (implemented within a

site decomposition structure) compared to Site for random-demand instances.

For both tables, the column entries are the same as in Tables 8.7 to 8.14.
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#iter #col CPU M-CPU Dual b.
Unit 341 256 0.87 0.03 321704.4
Unit-SU 2410 248 1.29 0.13 321704.4
Unit 459 295 0.94 0.04 308326.5
Unit-SU 2911 224 1.24 0.16 308326.5
Unit 440 257 0.73 0.01 231853.3
Unit-SU 2632 250 1.38 0.16 231853.3
Unit 443 269 0.91 0.04 301511
Unit-SU 2594 256 1.41 0.17 301511
Unit 557 324 0.96 0.04 247949.3

T = 24 Unit-SU 3120 265 1.3 0.15 247949.3
Unit 480 286 0.85 0.04 302446
Unit-SU 2642 226 1.19 0.11 302446
Unit 417 255 0.74 0.03 273110.7
Unit-SU 2704 238 1.22 0.18 273110.7
Unit 514 298 1.02 0.04 311345.7
Unit-SU 2590 247 1.28 0.15 311345.7
Unit 469 273 0.8 0.05 255163.7
Unit-SU 2456 233 1.24 0.16 255163.7
Unit 528 287 0.92 0.07 336067
Unit-SU 3017 247 1.4 0.22 336067

Unit 2584 708 5.01 0.37 656378.2
Unit-SU 8789 493 5.6 1.43 656378.2
Unit 2333 666 3.82 0.31 656652.1
Unit-SU 8393 445 4.41 1.3 656652.1
Unit 1295 489 2.63 0.14 504012.6
Unit-SU 6876 390 4.13 1.05 504012.6
Unit 1712 592 3.8 0.24 652805.5
Unit-SU 7709 411 4.51 1.23 652805.5
Unit 2083 622 3.66 0.29 687085

T = 48 Unit-SU 8540 459 5.02 1.45 687085
Unit 1351 524 3.21 0.2 542302.5
Unit-SU 6782 427 4.63 1.07 542302.5
Unit 1979 611 3.62 0.25 632707.7
Unit-SU 8049 414 4.74 1.28 632707.7
Unit 1792 564 3.28 0.29 629944.8
Unit-SU 8454 427 4.5 1.18 629944.8
Unit 2353 627 4.01 0.34 646767.6
Unit-SU 8443 492 5.45 1.47 646767.6
Unit 1878 560 2.96 0.22 548523.6
Unit-SU 8418 458 4.48 1.34 548523.6

Table 8.15: Column generation for start-up decomposition – IMUCP instances with 2-peak per
day demand
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#iter #col CPU M-CPU Dual b.
Site 427 199 2.48 0.03 393973.1
Site-SU 2075 136 2.67 0.18 393972.3
Site 265 136 1.13 0.03 337706.4
Site-SU 2133 98 1.74 0.15 337706.4
Site 183 108 1.06 0.03 494664.3
Site-SU 1370 77 0.86 0.1 494664.3
Site 235 123 1.3 0.02 239504
Site-SU 2109 77 0.99 0.15 239504
Site 282 149 2.07 0.04 471883.5

T = 24 Site-SU 1547 99 1.16 0.12 471883.5
Site 208 127 1.84 0.01 468353.4
Site-SU 2077 104 1.36 0.16 468353.4
Site 275 151 1.77 0.03 426423.2
Site-SU 2266 152 3.84 0.12 426422.4
Site 297 137 3.86 0.01 491648.9
Site-SU 1550 93 2.48 0.16 491547.2
Site 380 156 2.53 0.05 345786.2
Site-SU 2308 119 1.99 0.23 345786.2
Site 193 149 1.29 0.03 480402.5
Site-SU 1393 110 1.9 0.15 480402.5

Site 650 267 6.85 0.11 925700.6
Site-SU 3940 195 5.72 0.65 925700.6
Site 665 300 7.03 0.09 695527.4
Site-SU 4728 187 9.2 0.56 695401.1
Site 638 325 6.73 0.15 807203.1
Site-SU 4899 254 7.8 0.68 807029.3
Site 1053 352 8.94 0.15 783981.4
Site-SU 6059 227 7.09 1.01 783981.4
Site 772 256 6.64 0.08 761075.1

T = 48 Site-SU 5148 197 7.01 0.82 761075.1
Site 747 313 4.48 0.07 786073.7
Site-SU 4945 207 4.54 0.63 786073.7
Site 689 317 7.54 0.15 838054.2
Site-SU 4739 199 8.15 0.71 838014
Site 658 251 6.24 0.13 866898.1
Site-SU 5991 303 21.26 1.95 866898.1
Site 858 314 9.1 0.16 891517.1
Site-SU 5421 291 26.03 1.73 891462.6
Site 732 297 4.41 0.15 774815.2
Site-SU 4601 183 5.71 0.69 774815.2

Table 8.16: Column generation for start-up decomposition – IMUCP instances with random
demand
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Column generation results for time decomposition with interval up-set inequalities
For MUCP and IMUCP instances, we compare Time and Time+I, the time decomposition with

separation of interval up-set inequalities.

Table 8.17 (resp. 8.18) presents the results for (n,T)= (20,48) MUCP and IMUCP instances

featuring 2-peak-per-day (resp. random) demand. The column entries are the same as in Table

8.7, with additional entry

#IUP the total number of interval up-set inequalities added.
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id #IUP #iter #col CPU M-CPU Dual b.
MUCP

Time 1 - 24375 1569 8.55 8.32 670940.8
Time+I 1 2 24378 1569 8.33 8.13 670940.9
Time 2 - 30053 1801 13.47 13.13 668217.4
Time+I 2 0 30053 1801 13.19 12.87 668217.4
Time 3 - 34952 2120 15.04 14.61 516953.5
Time+I 3 1 35044 2123 15.29 14.94 516957.3
Time 4 - 33468 1834 12.25 11.94 665131.6
Time+I 4 3 33595 1839 12.88 12.49 665140.4
Time 5 - 29300 1649 9.21 9.03 698809.5
Time+I 5 3 29399 1654 9.69 9.5 698828.3
Time 6 - 38587 2188 16.6 16.18 553409.6
Time+I 6 6 38784 2202 16.7 16.19 553430.3
Time 7 - 33713 1863 13.54 13.2 642197.1
Time+I 7 5 34081 1891 15.08 14.65 642231.3
Time 8 - 26037 1735 9.64 9.28 642386.8
Time+I 8 2 26039 1735 9.5 9.16 642386.8
Time 9 - 27796 1770 10.38 10.17 658045.9
Time+I 9 0 27796 1770 10.57 10.22 658045.9
Time 10 - 28462 1827 10.7 10.31 560099.7
Time+I 10 1 28476 1830 11.04 10.63 560102.9

IMUCP
Time 1 - 25315 1601 8.72 8.57 671006
Time+I 1 0 25315 1601 8.69 8.47 671006
Time 2 - 29039 1796 12.32 12.02 668268.9
Time+I 2 0 29039 1796 12.31 12.07 668268.9
Time 3 - 38720 2160 15.86 15.5 517075.2
Time+I 3 1 38765 2164 16.45 16.04 517086.5
Time 4 - 34122 1986 13.38 13.14 665189
Time+I 4 3 34190 1988 13.62 13.29 665195.1
Time 5 - 25184 1644 8.99 8.77 698827.5
Time+I 5 1 25311 1646 9.1 8.83 698839.5
Time 6 - 41948 2222 17.99 17.58 553417.1
Time+I 6 5 42081 2225 18.26 17.83 553436.3
Time 7 - 35564 1845 13.42 13.13 642214.3
Time+I 7 5 35843 1858 14.56 14.15 642247
Time 8 - 32853 1692 12.53 12.23 642586.2
Time+I 8 0 32853 1692 12.56 12.22 642586.2
Time 9 - 26900 1737 10.78 10.48 658088.8
Time+I 9 0 26900 1737 10.91 10.67 658088.8
Time 10 - 25690 1786 10.31 10.1 560434
Time+I 10 1 25746 1787 10.31 10.08 560438.6

Table 8.17: Column generation for time decomposition with interval up-set inequalities – (I)MUCP
instances – (n,T)= (20,48) and 2-peak per day demand
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id #IUP #iter #col CPU M-CPU Dual b.
MUCP

Time 1 - 177900 5812 129.54 127.47 939571.1
Time+I 1 0 177900 5812 128.28 126.25 939571.1
Time 2 - 56254 3544 43.96 42.8 697771.7
Time+I 2 0 56254 3544 43.78 42.7 697771.7
Time 3 - 140210 5700 76.89 75.27 812821.1
Time+I 3 0 140210 5700 76.71 74.99 812821.1
Time 4 - 44040 2911 28.84 28.37 790206.1
Time+I 4 0 44040 2911 29.13 28.52 790206.1
Time 5 - 72217 4064 62.29 60.41 758032.1
Time+I 5 1 74248 4227 71.27 69.1 758229.1
Time 6 - 380025 7861 235.6 229.71 795130.6
Time+I 6 2 381449 7904 237.2 231.68 795252
Time 7 - 67300 3929 46.42 45.45 836434.7
Time+I 7 0 67300 3929 47.17 46.16 836434.7
Time 8 - 136659 5939 91.12 88.97 857575.4
Time+I 8 0 136659 5939 92.14 89.69 857575.4
Time 9 - 64903 3966 51.82 50.67 883507.3
Time+I 9 0 64903 3966 51.52 50.57 883507.3
Time 10 - 698841 8854 451.88 446.13 772901.4
Time+I 10 2 698918 8855 450.43 445.08 772936.1

IMUCP
Time 1 - 171006 5329 128.34 126.19 943918.5
Time+I 1 0 171006 5329 126.81 124.69 943918.5
Time 2 - 50759 3469 49.72 48.54 705621.5
Time+I 2 6 52097 3639 60.51 58.88 705670
Time 3 - 161271 5398 88.51 86.81 819637.3
Time+I 3 0 161271 5398 88.08 86.29 819637.3
Time 4 - 46782 2919 31.14 30.66 793075.6
Time+I 4 0 46782 2919 31.67 31.14 793075.6
Time 5 - 61708 3772 48.98 47.96 774724.1
Time+I 5 15 64325 3955 74.31 72.62 775196.7
Time 6 - 344097 8685 278.68 272.14 799759.4
Time+I 6 4 345117 8959 330.82 322.88 800349.1
Time 7 - 57993 3787 41.58 40.74 849302.1
Time+I 7 0 57993 3787 41.22 40.33 849302.1
Time 8 - 122579 5314 99.1 96.71 880744.1
Time+I 8 0 122579 5314 98.33 95.93 880744.1
Time 9 - 58913 3645 42.58 41.72 900954.5
Time+I 9 0 58913 3645 42.7 41.84 900954.5
Time 10 - 891113 9547 654.57 646.34 789100.1
Time+I 10 0 891113 9547 668.26 659.85 789100.1

Table 8.18: Column generation for time decomposition with interval up-set inequalities – (I)MUCP
instances – (n,T)= (20,48) and random demand
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8.9. EXPERIMENTAL TABLES

Branch & Price results on small instances Tables 8.19 to 8.22 Branch & Price results on

small-size, i.e., (n,T)= (20,24) instances. They present, for each instance and each decomposition

structure:
id the instance number,

#nodes the number of nodes,

IUP the number of interval up-set inequalities separated

#col the number of columns generated,

CPU the CPU time (in seconds) of the Branch & Price,

Gap the optimality gap

Primal b. the best integer solution found within the time limit
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id nodes IUP #iter #col CPU Gap Primal b.
Unit 1 103338 - 1867177 46540717 3600 0.06917833 197355.2
Time 1 1821 - 272294 68994 41.06 0 195336.8
Time+I 1 1088 107 194857 38609 28.49 0 195336.8
Unit 2 99747 - 1771135 25385147 3600 0.05655635 157597.9
Time 2 15 - 3594 375 0.37 0 157498.7
Time+I 2 13 5 3942 465 0.43 0 157498.7
Unit 3 106391 - 1586302 29267900 3600 0.06795943 160891.5
Time 3 189 - 29003 5857 3.3 0 159635
Time+I 3 177 32 31489 4910 3.68 0 159635
Unit 4 117955 - 1689559 14017540 3600.01 0.04041181 183335
Time 4 9 - 3195 458 0.38 0 183335
Time+I 4 11 15 4323 481 0.54 0 183335
Unit 5 104485 - 1621957 14398496 3600.01 0.07047237 158036.4
Time 5 412 - 45626 11637 7.5 0 156820.5
Time+I 5 349 45 50945 9423 8.1 0 156820.5
Unit 6 118568 - 1807875 35046798 3600 0.05146701 182644.4
Time 6 23 - 4469 523 0.56 0 181659.2
Time+I 6 17 7 4088 529 0.53 0 181659.2
Unit 7 116043 - 1724905 19366839 3600.01 0.04716928 114095.3
Time 7 63 - 10556 1047 1 0 114095.3
Time+I 7 31 16 5796 593 0.55 0 114095.3
Unit 8 99145 - 2051269 32343718 3600 0.04937396 161224.6
Time 8 143 - 18603 2493 2.06 0 161224.6
Time+I 8 135 14 17397 1915 2.07 0 161224.6
Unit 9 116138 - 1678076 6044792 3600 0.05723049 153050
Time 9 97 - 25363 3778 2.9 0 152396.6
Time+I 9 67 20 19286 2241 2.76 0 152396.6
Unit 10 117788 - 1640528 5188730 3600.01 0.03963 151060.9
Time 10 9 - 3016 413 0.31 0 151060.9
Time+I 10 9 0 3016 413 0.32 0 151060.9

Table 8.19: Branch & Price – MUCP instances – (n,T)= (10,24) and 2-peak demand
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id nodes IUP #iter #col CPU Gap Primal b.
Unit 1 102980 - 2045862 41462167 3600 0.06472579 196441.5
Time 1 1334 - 214586 45416 30.89 0 195336.8
Time+I 1 900 83 163043 31847 23.51 0 195336.8
Unit 2 96012 - 1893608 35042602 3600 0.06229561 158665
Time 2 15 - 4497 435 0.44 0 157498.7
Time+I 2 13 5 3596 405 0.39 0 157498.7
Unit 3 105177 - 1802987 38027145 3600 0.0788929 162469.1
Time 3 214 - 32230 8341 3.88 0 159635
Time+I 3 204 30 35288 6554 4.74 0 159635
Unit 4 116954 - 1751754 13479810 3600.01 0.04058776 183335
Time 4 9 - 2962 448 0.37 0 183335
Time+I 4 11 15 3839 470 0.51 0 183335
Unit 5 104105 - 1762066 15057665 3600.01 0.07176651 158338.9
Time 5 343 - 47055 10388 7.21 0 156820.5
Time+I 5 427 39 66825 13873 10.03 0 156820.5
Unit 6 116725 - 2011594 31678699 3600 0.05233168 182506.6
Time 6 21 - 6584 752 0.76 0 181659.2
Time+I 6 17 8 4800 601 0.7 0 181659.2
Unit 7 118535 - 1786025 14589643 3600 0.06087007 115124.6
Time 7 62 - 11330 1000 1.07 0 114095.3
Time+I 7 37 17 7062 1239 0.8 0 114095.3
Unit 8 94953 - 2393061 28427989 3600.02 0.06103055 162797.5
Time 8 130 - 19359 2575 2.1 0 161224.6
Time+I 8 101 23 17114 1536 1.96 0 161224.6
Unit 9 115248 - 1687646 5305873 3600.01 0.06136625 153653.7
Time 9 79 - 21585 3148 2.58 0 152396.6
Time+I 9 51 13 18761 2201 2.26 0 152396.6
Unit 10 115824 - 1738714 5690337 3600.01 0.03906384 151060.9
Time 10 7 - 2515 375 0.36 0 151060.9
Time+I 10 7 0 2515 375 0.31 0 151060.9

Table 8.20: Branch & Price – IMUCP instances – (n,T)= (10,24) and 2-peak-per-day demand
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ResD 1 21686 - 407848 41391250 3600.03 0.02943064 164351.4
Time 1 11 - 8655 1488 1.39 0 164351.4
Time+I 1 21 2 10960 1931 2.09 0 164351.4
ResD 2 31210 - 432225 120651200 3600.09 0.009958067 215933.8
Time 2 5 - 7411 691 0.9 0 215933.8
Time+I 2 5 0 7411 691 0.92 0 215933.8
ResD 3 11659 - 112253 48459698 2484.92 0 193044.1
Time 3 1 - 3097 438 0.24 0 193044.1
Time+I 3 1 0 3097 438 0.23 0 193044.1
ResD 4 70567 - 778175 240561029 3600 0.01017191 206617.5
Time 4 19 - 3104 812 0.62 0 206617.5
Time+I 4 17 1 2953 766 0.61 0 206617.5
ResD 5 72871 - 725049 153101235 3600 0.01656212 238019
Time 5 39 - 14128 3372 2.53 0 238019
Time+I 5 27 7 10618 1936 1.87 0 238019
ResD 6 30058 - 333446 248178355 3600 0.01918268 194335.9
Time 6 3 - 4495 471 0.34 0 194335.9
Time+I 6 3 0 4495 471 0.34 0 194335.9
ResD 7 25587 - 399593 117784312 3600 0.007877554 229356.4
Time 7 3 - 10350 709 0.95 0 229356.4
Time+I 7 3 0 10350 709 0.94 0 229356.4
ResD 8 28627 - 267520 53247723 3600.01 0.0006243973 235930.3
Time 8 1 - 4411 472 0.35 0 235930.3
Time+I 8 1 0 4411 472 0.36 0 235930.3
ResD 9 48454 - 899413 100087292 3600 0.02120061 201594.4
Time 9 1 - 4559 519 0.45 0 201594.4
Time+I 9 1 0 4559 519 0.46 0 201594.4
ResD 10 24470 - 396810 85814320 3600.01 0.01258229 207772.7
Time 10 9 - 8675 685 1.13 0 207772.7
Time+I 10 9 1 10025 736 1.28 0 207772.7

Table 8.21: Branch & Price – MUCP instances – (n,T)= (10,24) and random demand
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id nodes IUP #iter #col CPU Gap Primal b.
ResD 1 25843 - 445347 44692611 3600.01 0.02055399 166475.7
Time 1 13 - 7430 922 1.1 0 166475.7
Time+I 1 9 2 6722 704 0.85 0 166475.7
ResD 2 35596 - 497482 94044926 3600.06 0.008248965 215933.8
Time 2 3 - 6658 578 0.67 0 215933.8
Time+I 2 3 0 6658 578 0.67 0 215933.8
ResD 3 9221 - 83008 27240446 1505.35 0 193909
Time 3 1 - 4417 532 0.45 0 193909
Time+I 3 1 0 4417 532 0.49 0 193909
ResD 4 47581 - 561335 90289194 3600.01 0.01350733 208933.9
Time 4 11 - 3596 562 0.55 0 208933.9
Time+I 4 11 0 3596 562 0.57 0 208933.9
ResD 5 73285 - 785562 115731273 3600 0.01792698 239791.8
Time 5 55 - 13651 2892 2.54 0 239791.8
Time+I 5 31 3 10751 1685 2.18 0 239791.8
ResD 6 29935 - 355242 168136986 3600 0.0094393 195989.4
Time 6 1 - 3268 446 0.26 0 195989.4
Time+I 6 1 0 3268 446 0.27 0 195989.4
ResD 7 21975 - 263282 61069768 2902.24 0 230614.8
Time 7 3 - 9099 617 0.92 0 230614.8
Time+I 7 3 0 9099 617 0.91 0 230614.8
ResD 8 33051 - 323716 62452293 2594.71 0 237541.9
Time 8 1 - 4043 473 0.32 0 237541.9
Time+I 8 1 0 4043 473 0.33 0 237541.9
ResD 9 42726 - 795751 74541598 3600.08 0.02259438 202446.1
Time 9 3 - 5655 558 0.65 0 202446.1
Time+I 9 3 0 5655 558 0.63 0 202446.1
ResD 10 21025 - 410812 71084450 3600.01 0.01042285 212188.9
Time 10 9 - 10016 1121 1.78 0 212188.9
Time+I 10 11 2 9348 1068 1.84 0 212188.9

Table 8.22: Branch & Price – IMUCP instances – (n,T)= (10,24) and random demand
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Branch & Price results on large instances Tables 8.23 (resp. 8.24) present the results for

(20,24) and (20,48) 2-peak-demand MUCP (resp. IMUCP) instances. Tables 8.25 (resp. 8.26)

present the results for (20,24) and (20,48) random-demand MUCP (resp. IMUCP) instances. The

column entries are the same as Table 8.19.
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8.9. EXPERIMENTAL TABLES

id nodes IUP #iter #col CPU Gap Primal b.
(n,T)= (20,24)

Time 1 3511 - 1955295 1419867 1372 0 % 332471.5
Time+I 1 4649 19 2660287 1920532 1854 0 % 332471.5
Time 2 1854 - 770417 186761 274 0 % 316585.4
Time+I 2 2143 13 897501 219175 334 0 % 316585.4
Time 3 3841 - 1086638 466607 486 0 % 242467.1
Time+I 3 1644 18 528000 164381 246 0 % 242467.1
Time 4 9665 - 3566367 1550248 1472 0 % 311586.1
Time+I 4 3501 88 1404115 559602 740 0 % 311586.1
Time 5 34354 - 6459551 2381886 2399 0 % 254636
Time+I 5 33417 68 6439876 2428150 2908 0 % 254636
Time 6 103 - 79345 8735 31 0 % 309777.4
Time+I 6 104 3 86315 7865 33 0 % 309777.4
Time 7 11680 - 3328242 1123932 1182 0 % 280374.3
Time+I 7 12129 78 3597963 1253193 1441 0 % 280374.3
Time 8 3464 - 1067308 266283 389 0 % 319807.6
Time+I 8 2411 23 749304 191788 312 0 % 319807.6
Time 9 666 - 186764 47428 71 0 % 263334.5
Time+I 9 669 7 206035 48318 78 0 % 263334.5
Time 10 4879 - 1607504 546965 591 0 % 344357.9
Time+I 10 4716 8 1527203 520075 605 0 % 344357.9

(n,T)= (20,48)
Time 1 6395 - 3066051 658694 3600 2.4 % 688233.5
Time+I 1 6066 86 2916982 624524 3600 2.4 % 688233.5
Time 2 3121 - 2422588 564995 3600 1.8 % 681553.9
Time+I 2 2986 37 2303078 535149 3600 1.8 % 681553.9
Time 3 5622 - 2821403 1203629 3600 1.1 % 524859.4
Time+I 3 4516 111 2661982 941533 3600 1.1 % 524859.4
Time 4 3690 - 2606505 559369 3600 1.5 % 676863
Time+I 4 3291 102 2293518 494279 3600 1.5 % 676863
Time 5 6810 - 3147406 1011539 3600 0.7 % 704615.5
Time+I 5 5657 57 2890395 847174 3600 0.6 % 704615.5
Time 6 3526 - 2682858 851744 3600 1.6 % 564739.3
Time+I 6 3146 140 2344402 739096 3600 1.6 % 564739.3
Time 7 3309 - 2460602 659801 3600 1.6 % 653771
Time+I 7 3067 78 2379993 586708 3600 1.6 % 653771
Time 8 9029 - 3216025 815769 3600 1.5 % 653702.4
Time+I 8 8091 74 2931292 696495 3600 1.5 % 653702.4
Time 9 6276 - 3162322 729402 3600 0.8 % 664261.3
Time+I 9 5716 85 3085675 666247 3600 0.8 % 664261.3
Time 10 10530 - 3315132 1024260 3600 1.6 % 570713.8
Time+I 10 9504 37 3067064 905015 3600 1.7 % 570713.8

Table 8.23: Branch & Price – MUCP instances – 2-peak demand

197



CHAPTER 8. DECOMPOSITION STRUCTURE

id nodes IUP #iter #col CPU Gap Primal b.
(n,T)= (20,24)

Time 1 2696 - 1570582 943438 1135 0 % 332471.5
Time+I 1 3146 16 1792827 1096515 1334 0 % 332471.5
Time 2 2556 - 985660 262211 428 0 % 316859.1
Time+I 2 2633 18 1027781 277425 469 0 % 316859.1
Time 3 6437 - 2064878 840889 861 0 % 242612.1
Time+I 3 4013 33 1276283 578423 628 0 % 242612.1
Time 4 21290 - 8312914 3965216 3600 0 % 312102.7
Time+I 4 15158 209 6639811 2866182 3600 0.2 % 312346.6
Time 5 41127 - 8573229 3237565 3375 0 % 254675.6
Time+I 5 37231 68 8150422 2928347 3600 0 % 254675.6
Time 6 189 - 167065 24298 72 0 % 310647.6
Time+I 6 193 1 179127 24664 73 0 % 310647.6
Time 7 13195 - 3803894 1296179 1408 0 % 280374.3
Time+I 7 13629 72 4155665 1423896 1730 0 % 280374.3
Time 8 5919 - 1730164 549754 706 0 % 320128.2
Time+I 8 6305 36 1932071 588933 827 0 % 320128.2
Time 9 407 - 130778 24489 47 0 % 263334.5
Time+I 9 427 1 142294 28133 55 0 % 263334.5
Time 10 19120 - 6487588 2862315 2678 0 % 344836.8
Time+I 10 15630 12 5193516 2361722 2319 0 % 344836.8

(n,T)= (20,48)
Time 1 6063 - 2686959 612565 3600 1.8 % 684241.3
Time+I 1 5540 87 2545088 545832 3600 1.8 % 684241.3
Time 2 2518 - 2023700 501599 3600 1.8 % 681634.4
Time+I 2 2453 43 2013081 481023 3600 1.8 % 681634.4
Time 3 4244 - 2464889 1027028 3600 1.6 % 527943.3
Time+I 3 4025 81 2535658 987966 3600 1.7 % 527943.3
Time 4 3397 - 2338676 493010 3600 2.4 % 682719.5
Time+I 4 3158 106 2217522 410209 3600 2.4 % 682719.5
Time 5 5773 - 2828086 846908 3600 1.1 % 707981.8
Time+I 5 5542 59 2719539 801179 3600 1.1 % 707981.8
Time 6 3341 - 2521538 824539 3600 1.4 % 563795.5
Time+I 6 3004 131 2307480 764993 3600 1.4 % 563795.5
Time 7 3022 - 2329888 627233 3600 1.7 % 654653.4
Time+I 7 2799 91 2174960 529566 3600 1.7 % 654653.4
Time 8 7507 - 3004539 703356 3600 1.5 % 653846.6
Time+I 8 6845 73 2718031 604058 3600 1.5 % 653846.6
Time 9 5189 - 2935061 611446 3600 0.8 % 664867.4
Time+I 9 4891 63 2855547 585821 3600 0.8 % 664867.4
Time 10 7191 - 2807633 837124 3600 1.6 % 571197.8
Time+I 10 6925 39 2607432 765795 3600 1.7 % 571197.8

Table 8.24: Branch & Price – IMUCP instances – 2-peak demand
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id nodes IUP #iter #col CPU Gap Primal b.
(n,T)= (20,24)

Time 1 969 - 604505 475183 363 0 % 398921.9
Time+I 1 1110 6 645269 453130 372 0 % 398921.9
Time 2 299 - 480640 231719 420 0 % 337379.4
Time+I 2 248 1 389450 184857 332 0 % 337379.4
Time 3 1 - 163893 3161 35 0 % 498993.6
Time+I 3 1 0 163893 3161 35 0 % 498993.6
Time 4 2131 - 2296661 2069115 3600 0.9 % 243302.5
Time+I 4 2121 0 2287509 2056965 3600 0.9 % 243302.5
Time 5 78 - 382448 56310 252 0 % 477291
Time+I 5 78 0 382448 56310 252 0 % 477291
Time 6 45 - 237523 43528 238 0 % 469694.5
Time+I 6 45 0 237523 43528 237 0 % 469694.5
Time 7 1 - 453216 6653 170 0 % 430967.6
Time+I 7 1 0 453216 6653 169 0 % 430967.6
Time 8 39 - 121256 11499 56 0 % 488810.2
Time+I 8 39 0 121256 11499 56 0 % 488810.2
Time 9 1647 - 2304244 2774871 3600 0.4 % 353960.7
Time+I 9 1589 5 2197528 2668511 3600 0.4 % 353960.7
Time 10 73 - 304199 45230 169 0 % 486470.2
Time+I 10 73 0 304199 45230 167 0 % 486470.2

(n,T)= (20,48)
Time 1 406 - 3062852 329817 3600 0.7 % 947820.5
Time+I 1 406 0 3062453 325817 3600 0.7 % 947820.5
Time 2 242 - 1406302 316025 2394 0 % 698487.1
Time+I 2 171 12 441535 165538 947 0 % 698487.1
Time 3 1828 - 3386715 1035624 3600 0.2 % 816339.6
Time+I 3 1818 0 3367073 1027348 3600 0.2 % 816339.6
Time 4 1164 - 2283850 589557 3600 0.6 % 796033.9
Time+I 4 1098 2 2290894 580610 3600 0.6 % 796033.9
Time 5 69 - 395369 49032 470 0 % 760119.8
Time+I 5 137 22 620142 173259 990 0 % 760119.8
Time 6 421 - 1256729 552525 1742 0 % 796467.4
Time+I 6 91 2 521217 50236 463 0 % 796467.4
Time 7 272 - 1513241 349405 2193 0 % 838005
Time+I 7 265 1 1596381 320535 2245 0 % 838005
Time 8 411 - 3082869 522321 3600 0 % 858989.9
Time+I 8 375 12 3250347 435375 3600 0 % 858989.9
Time 9 373 - 3340336 358237 3600 0.5 % 889321.9
Time+I 9 373 0 3334005 358219 3600 0.5 % 889321.9
Time 10 1035 - 2595946 1404299 3250 0 % 775035.8
Time+I 10 511 2 872663 537575 1335 0 % 775035.8

Table 8.25: Branch & Price – MUCP instances – random demand
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id nodes IUP #iter #col CPU Gap Primal b.
(n,T)= (20,24)

Time 1 17 - 83385 3049 31 0 % 399380.3
Time+I 1 17 0 83385 3049 31 0 % 399380.3
Time 2 1025 - 1234416 1074272 1435 0 % 342396.8
Time+I 2 1031 5 1246388 1147520 1478 0 % 342396.8
Time 3 7 - 257588 5620 80 0 % 508412.1
Time+I 3 3 2 225191 4109 63 0 % 508412.1
Time 4 704 - 1066934 863417 1631 0 % 244191.5
Time+I 4 927 1 1391121 1135242 2328 0 % 244191.5
Time 5 213 - 569803 336861 667 0 % 480528.4
Time+I 5 213 0 569803 336861 667 0 % 480528.4
Time 6 69 - 334540 70180 313 0 % 475770.3
Time+I 6 69 0 334540 70180 312 0 % 475770.3
Time 7 7 - 420483 5734 163 0 % 437749.5
Time+I 7 7 0 420483 5734 163 0 % 437749.5
Time 8 47 - 142919 9053 54 0 % 500451.7
Time+I 8 47 0 142919 9053 54 0 % 500451.7
Time 9 1645 - 2330848 2298658 3600 0.1 % 354206.7
Time+I 9 1641 0 2324956 2285068 3600 0.1 % 354206.7
Time 10 123 - 336277 39084 205 0 % 494865.6
Time+I 10 123 0 336277 39084 205 0 % 494865.6

(n,T)= (20,48)
Time 1 581 - 2551492 641958 3600 0.1 % 947499.3
Time+I 1 578 1 2540837 629737 3600 0.2 % 947499.3
Time 2 174 - 574718 265476 1585 0 % 707006.7
Time+I 2 143 17 628829 145212 1116 0 % 707006.7
Time 3 935 - 3519801 647550 3600 0.5 % 825066.5
Time+I 3 934 0 3510872 647242 3600 0.5 % 825066.5
Time 4 735 - 2036308 445857 3600 0.9 % 801509.4
Time+I 4 735 0 2034990 445791 3600 0.9 % 801509.4
Time 5 492 - 1956086 843576 3600 0 % 776601
Time+I 5 475 36 2261644 752790 3600 0 % 776601
Time 6 789 - 2053892 961514 2819 0 % 801678.7
Time+I 6 329 5 850754 254945 1234 0 % 801678.7
Time 7 240 - 2014025 511107 2901 0 % 850659.3
Time+I 7 317 7 2480122 681301 3600 0 % 850659.3
Time 8 61 - 572546 62402 746 0 % 882188.9
Time+I 8 61 0 572546 62402 745 0 % 882188.9
Time 9 476 - 2938952 325017 3600 0.9 % 910640.8
Time+I 9 501 1 2817490 351344 3600 0.9 % 910640.8
Time 10 49 - 526254 21204 403 0 % 790241.9
Time+I 10 55 1 543818 25985 437 0 % 790241.9

Table 8.26: Branch & Price – IMUCP instances – random demand
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EXPERIMENTAL SUMMARY

Even if the UCP has been extensively studied from an experimental point of view, it remains

hard to solve. This is due to the instance sizes, to the problem’s compound structure featuring

several hard combinatorial problems, and to symmetry issues. In this thesis, we choose to focus

on the MUCP, which is the core structure of the real-world UCP and is already hard to solve by

commercial solvers.

We propose several combinatorial techniques to solve difficult instances of the MUCP and

its variants, namely the IMUCP, the MUCP with identical production units featuring ramp-

constraints or not, and the MUCP with tight-production-range units. This experimental summary

selects the most promising techniques for the resolution of the MUCP, depending on instance

characteristics and on the features of the ILP solver used.

Intra-site constraints Intra-site constraints introduce a coupling between units located on

the same production site. When added to the (x,u) formulation, they do not make MUCP instances

harder to solve by Cplex. However, these constraints may interfere with classical decomposition

schemes, where demand constraints are dualized and each subproblem correspond to a single

thermal unit. It is shown in Chapter 8 that intra-site constraints have a very limited impact

on the optimal value, and can be dualized alongside demand constraints without hindering the

convergence of the decomposition scheme.

Symmetries Experimentations in Chapters 4, 6 and 7 show that symmetrical MUCP instances,

with or without ramp-constraints, can barely be handled by Cplex. In the non-ramp-constrained

case, the MUCP featuring identical units can be efficiently solved by aggregation of (x,u) variables.

In the ramp-constrained case, the problem becomes much harder to solve. In this case, as

aggregation is not possible anymore, symmetries and sub-symmetries can be handled with sub-

symmetry-breaking inequalities, or with orbitopal fixing for the full sub-orbitope, up to sizes

(n,T) = (30,96) and (60,48). If the problem is to be solved by default Cplex, i.e., without any

callback deactivating Cplex’s features, the adjunction of sub-symmetry-breaking inequalities

is recommended. Note that orbitopal fixing outperforms default Cplex on very symmetrical

non-ramp-constrained instances such as (n,T)= (60,48). This suggests that orbitopal fixing, even

203



though impeded by callbacks, could outperform sub-symmetry-breaking inequalities on very

symmetrical ramp-constrained instances.

When the problem is solved by Callback Cplex, or with a solver not penalized (as much

as Cplex) by callbacks, orbitopal fixing incurs almost no additional computational cost. In all

these cases, it may prove more efficient to use orbitopal fixing instead of sub-symmetry-breaking

inequalities.

Tight-production-range units Experimental results in Chapter 4 demonstrate that tight-

production-range (TPR) instances are already very hard to solve, even in the non-symmetrical

case. This is the case of TPR75 instances, such that P i
min = 75% P i

max for each unit i. These

instances are quite similar in their structure to ramp constrained MUCP instances, where at

each time t the possible power output is in a restricted interval. TPR100 instances, such that

P i
min = P i

max for each unit i, are also extremely difficult. These instances are close in their

structure to MUCP instances featuring finite-power-output units. The main difficulty of TPR75

and TPR100 instances lies in the dynamic coupling of T knapsack problems, and can be alleviated

using interval up-set inequalities.

It is shown in Chapter 4 that these inequalities used as cuts are particularly efficient on

TPR75 instances. Therefore, a natural perspective would be to perform a polyhedral analysis of the

ramp-constrained MUCP, in particular to lift interval up-set inequalities to the ramp-constrained

case, and then to assess the experimental impact on ramp-constrained MUCP instances.

TPR100 instances remain very hard to solve, as (n,T)= (10,96) or (10,48) TPR100 instances

cannot be handled by Cplex within the time limit of one hour. We observed in Chapter 8 that the

time decomposition formulation with interval up-set inequalities provides the best lower bounds

for TPR100 (I)MUCP instances. Improvement of the underlying column generation algorithm,

as well as more dedicated branching rules, may be the ingredients of an efficient resolution

algorithm for these particular instances. As the time decomposition formulation already includes

every knapsack inequality, the integrality gap could be tightened by valid inequalities relying

on the time coupling of T demand constraints. A TPR100-dedicated separation algorithm for

interval up-set inequalities, as well as further analysis of the MUCP polytope, would therefore be

useful to handle these difficult instances.

Solving the real-world UCP While the MUCP is already hard to solve, the real-world UCP

is an even more challenging problem, due to its heterogeneous nature involving various combina-

torial structures. Furthermore, many variants of the UCP feature non-linearities that impair the

resolution process. It appears in the literature that the start-up cost is an exponential function

of the unit’s down time, and the production cost a quadratic function of the power produced. A

question would be whether these non-linearities can be efficiently handled by non-linear solvers,

and to what extent approximating the non-linearities impacts the optimal value. Dedicated

techniques are likely to be needed.
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As for combinatorial issues arising in the UCP, this thesis proposes several techniques to

cope with symmetries, as well as to handle dynamically coupled knapsack constraints. In the

perspective of solving large-scale real-world UCP instances, the latter techniques, used within a

time decomposition structure, and in combination with appropriate techniques to handle non-

linear aspects, could lay the bases of an efficient solver. One key challenge will be to cope with

heterogeneous units featuring various technical constraints. As it is, the time-based decomposition

could still provide a lower bound. The unit-subset-based decomposition could also be useful to

handle heterogeneous units, as the corresponding column generation algorithm converges very

fast. Valid inequalities would then be needed to improve the dual bound.
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CONCLUSION AND PERSPECTIVES

Due to its practical relevance, the UCP has been constantly studied from both a research and

practical point of view. In its core structure, the UCP reduces to the particular structure – we refer

to as MUCP – induced by the coupling of demand and min-up/down constraints. Its complexity

lies not so much in the knapsack embedded constraints as in the dynamics introduced by min-

up/down constraints. As shown in Chapter 2, the UCP is a strongly (resp. weakly) NP-hard

problem when relaxing the former (resp. latter) constraints. This result emphasizes that the

combinatorial issues introduced by the min-up/down constraints should be specifically tackled

when solving the UCP.

We propose a polyhedral study of the MUCP with n production units. We first compare

various formulations for the MUCP, showing that the linear relaxation of any demand-coupling

formulation is less than or equal to that of the classical formulation (Fn
x,u). In our subsequent

study of the polytope associated to this formulation, we translate the classical extended cover

inequalities of the knapsack polytope to obtain the up-set inequalities for the MUCP polytope. We

generalize these up-set inequalities to obtain the interval up-set inequalities. This new class of

valid inequalities is more dedicated to the MUCP as it captures the coupling between knapsack-

like demand constraints and dynamic min-up/min-down constraints. We completely describe the

cases in which these inequalities are valid, and we also characterize the facet defining cases in a

restricted polytope. We devise an efficient Branch & Cut algorithm in which up-set and interval

up-set inequalities are used as cuts.

Further theoretical questions about interval up-set inequalities would be to find their Chvátal-

Gomory rank, and to characterize the cases in which they define facets of the dominant MUCP

polytope. As pointed out in Section 3.4.3, multiple generalizations of interval up-set inequalities

could lead to other facet defining inequalities. More generally, other classes of facets could

be introduced for the n-unit MUCP polytope. An interesting question would be whether the

inequalities defining these facets could be expressed more easily in a disaggregated variable

space, as flow or interval variable space from formulations (Fn-Flow) and (Fn-Int). Another

future work would be to study polyhedral aspects of the ramp-constrained MUCP. The ramp-

constrained MUCP is close, in its structure, to the TPR75 instances of the MUCP on which

interval up-set inequalities are particularly effective. Therefore, it may be useful to lift interval
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up-set inequalities to the ramp-constrained case. As ramp constraints can be seen as big-M

constraints, techniques to reformulate such constraints could also be applied to obtain a tight

description of the ramp-constrained MUCP polytope.

Symmetries arise in the MUCP from the presence of identical unit. It is well known that

symmetries in integer programs deeply impair their resolution by Branch & Bound.

We introduce a theoretical framework to simultaneously account for both the problem’s

symmetries and the symmetries arising in solutions subsets, defined as sub-symmetries. In

particular, a condition to select a valid set of representatives in the presence of multiple sub-

symmetry groups is given. We propose two flexible full symmetry-breaking techniques to handle

symmetries and sub-symmetries in any integer program whose (sub-)symmetry groups are

symmetric groups acting on (sub-)columns of the solution matrix.

The first proposed technique is a linear time orbitopal fixing algorithm for the full orbitope.

This algorithm is proven to be optimal, in the sense that at any node in the B&B tree, the

algorithm fixes all variables that can be fixed with respect to the lexicographical order.

This orbitopal fixing algorithm can be applied to both orbitope and sub-orbitope structures.

Experimental results on MUCP instances show that this technique is competitive with commercial

solvers like Cplex and state-of-the-art techniques like modified orbital branching (MOB).

This suggests as a perspective that a simultaneous orbitopal fixing algorithm for the full

sub-orbitope could be found from the proposed sequential algorithm. Another perspective is to

extend orbitopal fixing to full orbitopes under other group actions, for example the cyclic group.

An extension to a full orbitope featuring integer entries can also be possible. An alternative

approach to handle symmetries related to the symmetric or the cyclic group would be to find a

new set of representatives whose convex hull would be easier to describe than the full orbitope.

The second technique we introduce corresponds to sub-symmetry-breaking inequalities,

handling the symmetries arising from a collection of sub-symmetric solution subsets. These

inequalities may require to introduce one additional variable per solution subset considered. The

corresponding sub-symmetry-breaking inequalities are full symmetry-breaking. Experimental

results for the ramp-constrained MUCP show that these sub-symmetry-breaking inequalities

outperform all state-of-the-art symmetry-breaking formulations.

One perspective is to study how the framework presented could be automated, so that sub-

symmetric subsets are automatically detected and additional variables automatically constructed.

For the ramp-constrained MUCP, another perspective is to use the proposed framework to derive

new sub-symmetry-breaking inequalities for ready-to-shut-down sub-symmetries.

There is a wide range of problems featuring all-column-permutation symmetries or sub-

symmetries, on which it would be desirable to analyze the effectiveness of the symmetry-breaking

techniques presented in this thesis. Among such problems are many variants of the UCP, covering

problems, as well as some bin packing variants where one item can be placed in multiple bins.

The question will be to determine which of the two techniques, orbitopal fixing or sub-symmetry-
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breaking inequalities, will be the most efficient on each problem. Sub-symmetries-inequalities

can easily be implemented in an ILP model, at the expense of adding some variables and some

related inequalities to the formulation. While orbitopal fixing requires the use of a Callback,

potentially hindering the performance of the ILP solver, its main advantage is that no additional

variable nor inequality must be added to the formulation. Especially when the inequalities that

must be added are difficult to manage, or even difficult to derive from the original variables,

orbitopal fixing could come in handy and outperform sub-symmetry-breaking inequalities.

Classically, the UCP is solved via a unit-based decomposition where the demand constraint

is dualized. A time-based decomposition could represent an alternative to this classical scheme.

Indeed, from the study of various decomposition structures for the MUCP, it appears that the

time decomposition, from the good quality bound it provides, is the most efficient structure within

a Branch & Price framework.

Assessing the pertinence of time decomposition in the presence of heterogeneous units

featuring specific technical constraints is left for further research. In any case, using a Branch

& Price framework appears to be an attractive perspective. The separation of interval up-set

inequalities proves to be useful in this context. In the presence of identical units, the time

decomposition formulation naturally features symmetries which, as a perspective, could be

handled using orbitopal fixing for the full (sub-)orbitope.
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