N

N

Realistic simulation of the execution of applications
deployed on large distributed systems with a focus on
improving file management
Anchen Chai

» To cite this version:

Anchen Chai. Realistic simulation of the execution of applications deployed on large distributed
systems with a focus on improving file management. Computer Science [cs]. INSA de Lyon (France),
2019. English. NNT: . tel-02048762v1

HAL Id: tel-02048762
https://hal.science/tel-02048762v1
Submitted on 25 Feb 2019 (v1), last revised 23 May 2019 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/tel-02048762v1
https://hal.archives-ouvertes.fr

UNIVERSITE

ElR;

N°d’ordre NNT :

INSA

THESE de DOCTORAT DE LUNIVERSITE DE LYON
opérée au sein de
(INSA LYON)

) Ecole Doctorale N° ED160
(Electronique, Electrotechnique, Automatique)

Spécialité/ discipline de doctorat:
Informatique

Soutenue publiguement le 14/01/2019, par:

Anchen CHAI

Titre de la these

Simulation réaliste de I'exécution des
applications déployées sur des systemes

distribués avec un focus sur

I'amélioration de la gestion des fichiers

Devant le jury composé de :

Prodan, Radu Professeur
Breton, Vincent DR
Genaud, Stéphane Professeur
Marangozova-Martin, Vania MCF, HDR
Benoit-cattin, Hugues Professeur
Suter, Frédéric CR, HDR

Pop, Sorina IR, docteur

University of Klagenfurt
CNRS IN2P2

Université de Strasbourg
Université de Grenoble
INSA-LYON

CC-IN2P3

CNRS

Rapporteur
Rapporteur
Examinateur
Examinatrice
Directeur de these
Co-directeur
Co-directrice

Département FEDORA — INSA Lyon - Ecoles Doctorales

— Quinquennal 2016-2020

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE
CHIMIE CHIMIE DE LYON M. Stéphane DANIELE
- Institut de recherches sur la catalyse et I'envissnent de Lyon
http://www.edchimie-lyon.fr IRCELYON-UMR 5256
Sec. : Renée EL MELHEM Equipe CDFA
Bat. Blaise PASCAL, 3e étage > Avenue Albert EINSTEIN
secretariat@edchimie-lyon.fr 69 626 Villeurbanne CEDEX
INSA : R. GOURDON directeur@edchimie-lyon.fr
E.E.A. ELECTRONIQUE, M. Gérard SCORLETTI
ELECTROTECHNIQUE, Ecole Centrale de Lyon
AUTOMATIQUE 36 Avenue Guy DE COLLONGUE
http://edeea.ec-lyon.fr 69 134 Ecully
" e : Tél: 04.72.18.60.97 Fax 04.78.43.37.17
Sec. : M.C. HAVGOUDOUKIAN gerard.scorletti@ec-lyon.fr
ecole-doctorale.eea@ec-lyon.fr
E2M2 [EVOLUTION, ECOSYSTEME, M. Philippe NORMAND
MICROBIOLOGIE, MODELISATION UMR 5557 Lab. d’Ecologie Microbienne
. . Université Claude Bernard Lyon 1
http://e2m2.universite-lyon.fr Batiment Mendel
ggf.AtS.ylweURC(:)BBII_ERJOl'I' 43, boulevard du 11 Novembre 1918
T"f‘l : £|L;r2n,4 . %’0” 69 622 Villeurbanne CEDEX
€l :04.72.44.83.6 philippe.normand@univ-lyonl.fr
INSA : H. CHARLES
secretariat.e2m2@univ-lyon1.fr
EDISS INTERDISCIPLINAIRE Mme Emmanuelle CANET-SOULAS
SCIENCES-SANTE INSERM U1060, CarMeN lab, Univ. Lyon 1
http://www.ediss-lyon.fr Batiment IMBL
' : - : 11 Avenue Jean CAPELLE INSA de Lyon
S?C' . S_ylwe ROBERJOT 69 621 Villeurbanne g
_'?‘"f‘lt', Ag“;g‘ﬁCB '-%’0” 1 Tél : 04.72.68.49.09 Fax : 04.72.68.49.16
€l:04.72.44.83.6 emmanuelle.canet@univ-lyon1.fr
INSA : M. LAGARDE
secretariat.ediss@univ-lyonZ1.fr
INFOMATHS [NFORMATIQUE ET M. Luca ZAMBONI
MATHEMATIQUES Bat. Braconnier
. . . 43 Boulevard du 11 novembre 1918
http://edinfomaths.universite-lyon.fr 69 622 Villeurbanne CEDEX
Sec. : Renée EL MELHEM Tél - 04.26.23.45.52
Bat. Blaise PASCAL, 3e étage lzamboni@maths.univ-lyon1.fr
Tél: 04.72.43.80.46 Fax : 04.72.43.16.87
infomaths@univ-lyonl.fr
MATERIAUX DE LYON M. Jean-Yves BUFFIERE
Matériaux - INSA de Lyon
http://ed34.universite-lyon.fr MATEIS -)Igét Saint-Exupéry
'??IC : (:)2/| 32(213(;?'\7/'(')3 E . 04.72.43.87.1% venue Jean CAPELLE
B‘? Do ax: 04.72.43.57.1469 621 Villeurbanne CEDEX
at. Direction Tél : 04.72.43.71.70 Fax : 04.72.43.85.28
ed.materiaux@insa-lyon.fr jean-yves.buffiere@insa-lyon.fr
MEGA |MECANIQUE, ENERGETIQUE, M. Jocelyn BONJOUR
GENIE CIVIL, ACOUSTIQUE INSA de Lyon
. . Laboratoire CETHIL
http://edmega.universite-lyon.fr Batiment Sadi-Carnot
$¢|c: GEA?SZ%C?(BI\?A(?E . 04.72.43.87.14; Ue de 1a Physique
Bgt.Dir.ecti.on. D Fax: 08.12.83.87. 1489 621 Villeurbanne CEDEX
mega@insa-lyon.fr ocelyn.bonjour@insa-lyon.fr
ScSo ScSd M. Christian MONTES

http://ed483.univ-lyon2.fr

Sec. : Viviane POLSINELLI
Brigitte DUBOIS

INSA : J.Y. TOUSSAINT

Tél: 04.78.69.72.76
\viviane.polsinelli@univ-lyon2.fr

Université Lyon 2

86 Rue Pasteur

69 365 Lyon CEDEX 07
christian.montes@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbaej#rchéologie, Science politique, Sociologie, Anfivlogie

Acknowledgements

I would like to emphasize my acknowledgment to all the advisors, Prof. Hugues Benoit-
cattin, Dr. Frédéric Suter, and Dr. Sorina Pop for guiding me during the preparation
of this thesis. And I am particularly grateful for their countless hours devoted to proof-
reading and correction of this thesis, as well as the previously published articles. They have
made great efforts to point out my flaws all the time and encourage me to systematically
pursue perfection.

Also, I want to thank Dr. Tristan Glatard for always giving me brilliant suggestions
to my work and my articles during the last three years. Even though I never met him in
person, I still learned enormously from all his articles, our email exchanges, and the video
conferences.

Furthermore, I owe many appreciations to Prof. Radu Prodan and Prof. Vincent
Breton for their willingness to be my reporters. Your precious time spent on reviewing
my Ph.d manuscript and giving me valuable recommendations are deeply respected and
admired.

And I feel fairly happy to have known these dear friends from CREATIS: Pierre-Antoine
Ganaye, Sarah Leclerc, Noelie Debs, Fei GE, Yunyun SUN, and Hoai-Thu Nguyen. Thanks
for your inspirations and help for my research, the Monday and Friday cake, the "soirée",
especially for all the moments that we shared together.

Finally, I would like to thank my girlfriend Xiaoyi TIAN for her continuous support

and priceless encourage throughout my thesis.

iii

Abstract

Simulation is a powerful tool to study distributed systems. It allows researchers to
evaluate different scenarios in a reproducible manner, which is hardly possible in real
experiments. However, the realism of simulations is rarely investigated in the literature,
leading to a questionable accuracy of the simulated metrics. In this context, the main
aim of our work is to improve the realism of simulations with a focus on file transfer in
a large distributed production system (i.e., the EGI federated e-Infrastructure (EGI)).
Then, based on the findings obtained from realistic simulations, we can propose reliable
recommendations to improve file management in the Virtual Imaging Platform (VIP).

In order to realistically reproduce certain behaviors of the real system in simulation,
we need to obtain an inside view of it. Therefore, we collect and analyze a set of execution
traces of one particular application executed on EGI via VIP. The realism of simulations
is investigated with respect to two main aspects in this thesis: the simulator and the
platform model.

Based on the knowledge obtained from traces, we design and implement a simulator
to provide a simulated environment as close as possible to the real execution conditions
for file transfers on EGI. A complete description of a realistic platform model is also built
by leveraging the information registered in traces. The accuracy of our platform model
is evaluated by confronting the simulation results with the ground truth of real transfers.
Our proposed model is shown to largely outperform the state-of-the-art model to reproduce
the real-life variability of file transfers on EGI.

Finally, we cross-evaluate different file replication strategies by simulations using an
enhanced state-of-the-art model and our platform model built from traces. Simulation
results highlight that the instantiation of the two models leads to different qualitative
decisions of replication, even though they reflect a similar hierarchical network topology.
Last but not least, we find that selecting sites hosting a large number of executed jobs to
replicate files is a reliable recommendation to improve file management of VIP. In addition,
adopting our proposed dynamic replication strategy can further reduce the duration of file
transfers except for extreme cases (very poorly connected sites) that only our proposed

platform model is able to capture.

iv Anchen CHAI

Contents

Abstract
Contents
Acronyms
Introduction

1 State-of-the-art
1.1 Imtroduction
1.2 Distributed computing infrastructures
1.2.1 Gridcomputing L
1.2.2 Cloud computing e
1.3 Application deployment in distributed systems
1.3.1 Science gatewayso e
1.3.2 Scientific workflows Lo
1.3.3 Traces of workflow executions
1.3.4 Optimization of workflow execution
1.4 Filereplication L
1.4.1 Classification for file replication
1.4.2 Requirements for file replication in production
1.4.3 Existing replication management in production systems
1.5 Simulation
1.5.1 Simulation tools
1.5.2 Platform models for file replication

1.6 Conclusion s

2 Analyzing execution traces of one application deployed on a large dis-

tributed system
2.1 Introduction L
2.2 GATE application

iv

xiii

xiv

CONTENTS

2.3 Execution traces L e 25
2.4 Characteristics of file transfers oL 27
2.4.1 Coarse-grain analysis 28
2.4.2 Fine-grain analysis 0oL 32
2.5 Characteristics of workflow and job executions 35
2.5.1 Queuing time durations Lo 35
2.5.2 Distribution of jobso o 36
2.5.3 Cumulative downloads for SEs 38
2.6 Conclusion 39

3 Realistic simulation of file transfers for applications deployed on dis-
tributed infrastructures 42
3.1 Introduction L 42
3.2 Execution of the GATE workflow on EGI 43
3.2.1 GATE workflow in VIP 43
3.2.2 Data management services in EGL 44
3.2.3 Summary of the characteristics of the real system 46
3.3 The SimGrid toolkit Lo 47
3.4 Simulator design 48
3.4.1 Simulated services for data management on EGI 49
3.4.2 Communication cost for file transfers 50
3.4.3 Parameter injection Lo 51
3.5 Conclusion L 52
4 Realistic platform models for replaying real workflow executions 53
4.1 Introduction L 53
4.2 Build partial platform model from execution traces 54
4.2.1 Baselinemodel 54
4.2.2 Improvements based on execution traces 55
4.3 Overall evaluation of our model oL 65
4.3.1 Analysis of simulated transfer durations 65
4.3.2 Analysisoferrors 67
4.3.3 Analysis of the root causes of large simulation errors 68
4.4 Conclusion 70
5 Towards a complete and realistic description of the Biomed VO platform 71
5.1 Introduction 71
5.2 Aggregating network information from multiple traces 73
5.3 Filling-in missing links in the merged platform 76
vi Anchen CHAI

CONTENTS

5.3.1 Empirical model o oL 7

5.3.2 Machine learning model 78

5.3.3 Evaluation e 80

5.4 Conclusion and discussion L L L 84

6 Evaluation of file replication strategies through realistic simulations 85
6.1 Introduction 85
6.2 Replication strategies.o L L L 86
6.2.1 Dynamic replication strategy 86

6.3 Simulation studies Lo 88
6.3.1 Platform Models L 88

6.3.2 Simulation scenarios Lo 88

6.4 Performance evaluation 89
6.4.1 Impact of dynamic replication. 89

6.4.2 Impact of different prestaging lists on static replication 92

6.4.3 Impact of platform model on replication decisions 93

6.5 Recommendations for file replication in VIP on EGI 95
6.6 Conclusion 97

7 Conclusions and perspectives 98
7.1 Contributions 98
7.2 Perspectives 100
7.2.1 Improving the realism of file transfer simulations 100

7.2.2 Improving the realism of the platform description of EGI 101

7.2.3 Extending the current capacities of our simulator 102
Bibliography 115

Anchen CHAI vii

List of Figures

1.1
1.2

1.3
1.4
1.5

1.6
1.7

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

The complete life cycle for an application executed via VIP.
Common components in scientific workflows. Figure extracted
from [Bharathi et al. (2008)]. Lo
Grid model in OptorSim, illustrated from [Bell et al. (2003)].
Multi-tier platform model. L
Hybrid platform model. Lo
General graph model. Figure 1.4, 1.5, 1.6 are from [Tos et al. (2015)].

A 3-level network hierarchical model.

GATE workflow including a computing phase, a merging phase, and asso-
ciated file transfers.
Gantt chart view of 10 transfers from "srm-biomed.gridpp.rl.ac.uk" to
"CIEMAT-LCG2". e e
Gantt chart view of 409 transfers to "CIEMAT-LCG2", including uploads
and downloads in one workflow execution. Small points correspond to very
short transfer duration. oo
Distributions of the experienced bandwidth by 11,033 release transfers ac-
cording to different link categories.
Small local bandwidth for different SEs. Each bar corresponds to the band-
widths experienced by local transfers from a specific SE.
Distribution of release file transfer durations for a given SE
(marsedpm.in2p3.fr) in a given workflow. oL
Gantt chart view of 18 release file transfer durations from the SE
"sbgsel.in2p3.fr" to the site "INFN-PISA". Transfers belong to different
clusters are in different colors. oL
Gantt chart view of 5 release file transfer durations for a given SE, a given
site, and a given cluster. L L
Gantt chart view of release file transfer durations for a given SE, a given

site, and a given cluster. L oL

31

LIST OF FIGURES

2.11 Distribution of executed jobs by site in studied workflows. 37
2.12 Cumulative downloads by SEs in studied workflows. 38

2.13 Cumulative number of downloads for SEs versus the number of jobs in the

corresponding sites.o 39

3.1 The complete life-cycle of the execution of the GATE application on EGI. . 43

3.2 Data management on EGI. Figure extracted from [Loschen and Miiller-

Pfefferkorn] 44
3.3 The process for file download on EGL. 45
3.4 Graphical representation of hierarchical platform in SimGrid, illustrated

from [Bobelin et al. (2012)]. 48
3.5 Example of a file catalog. L L 50
3.6 Three parts of a simulated file transfer in our simulator. 51

4.4 Measured and simulated (with global or grouped average bandwidth for

each SE) durations for the download of the release file by each job in the

fNUfzs workflow instance. L L oL 59
4.5 Measured and simulated durations for the downloads of the release file from

the marsedpm.in2p3.fr SE in the £NUfzs workflow instance (top). Simu-

lated times are obtained with a single average bandwidth (SE) and distinct

average bandwidths (SE-Site) for each site (bottom). 60
4.7 Measured and simulated durations for the downloads of the release file from

the marsedpm. in2p3.fr SE in the fNUfzs workflow instance (top). Sim-

ulated times are obtained with a single maximum bandwidth (SE) and

distinct maximum bandwidths (SE-Site) for each site (bottom). 61
4.8 Gantt chart view of the transfers of the release file from the

marsedpm.in2p3.fr SE to worker nodes in the INFN-PISA site. 62
4.9 Measured and simulated durations for the downloads of the release file from

the marsedpm.in2p3.fr SE in the £NUfzs workflow instance with and with-

out correction of the maximum observed bandwidth. 63
4.10 Measured and simulated durations for the downloads of the release file from

the sbgsel.in2p3.fr SE to the INFN-PISA site in the LQz3XJ workflow

instance with and without distinction of the clusters. 64
4.12 Graphical summary of measured and simulated (with the 10G-SotA, Aver-

age, and Maximum models) file transfer durations (in seconds). 66
4.13 Cumulative Distributed Functions of the absolute logarithmic error achieved

by the three platform models over the whole set of transfers of the release

Ales. . . . s, 67

Anchen CHAI ix

LIST OF FIGURES

4.14 Gantt chart view of 5 release file transfer durations for a given SE, a given

site, and a given cluster. 69

4.15 Gantt chart view of release file transfer durations for a given SE, a given

site, and a given cluster.o Lo 69

5.1 Three partial platform descriptions generated from execution traces of work-
flow 1 (WF1), workflow 2 (WF2), and workflow 3 (WF3). Each line corre-

sponds to the network link between a site and a SE. 72

5.2 The merged platform description from the execution traces of workflow 1
(WF1), workflow 2 (WF2), and workflow 3 (WF3). Red line corresponds

to the network link without any information from these traces. 72

5.3 Graphical summary of measured and simulated (with the Average_Merged,
and Maximum__ Merged models) release file transfer durations (in seconds).

Each point corresponds to the duration of one simulated transfer. 75

5.4 Graphical summary of the Mean Absolute Error (MAE) for 20 validation

tests of empirical, linear regression, and neural network model. 81

5.5 The validation test which gives us the largest error (0.26) for the neural
network model. The solid line corresponds to the ideal case where the
predicted bandwidth value is equal to the merged bandwidth for a given link.
From top to bottom, panels correspond to the predictions by the empirical

model (emp_pred) and the neural network model (nn_ pred), respectively. . 82

5.6 The validation test which gives us the smallest error (0.034) for the neural
network model. The solid line corresponds to the ideal case where the
predicted bandwidth value is equal to the merged bandwidth for a given link.
From top to bottom, panels correspond to the predictions by the empirical

model (emp_ pred) and the neural network model (nn_ pred), respectively. . 83

6.1 Cumulative distribution of simulated file transfer durations with and with-
out dynamic replication. Each line corresponds to a list of 3 SEs used for
file pre-staging. The same 50 random prestaging lists are used in all four

SCENATIOS. « + v v v v v e e e e e e e 90

6.2 Cumulative number of downloads for SEs versus the number of jobs in the

corresponding sites with and without dynamic replication. 91

6.3 Comparison of random, predefined, and the current production prestaging

list without dynamic replication for two platform models 92

6.4 Cumulative distribution of simulated file transfer durations with dynamic

replication for two platform models 94

X Anchen CHAI

LIST OF FIGURES

6.5 Cumulative distribution of simulated file transfer durations without dy-

namic replication for two platform models. Best performance achieved by

predefined or randomly selected lists is highlighted. 95

6.6 Comparison of the best and the worst prestaging with the current produc-
tion prestaging for trace-based model with or without dynamic replication. 95
Anchen CHAI xi

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9
2.10
2.11

3.1

4.1

5.1

5.2
5.3
5.4

6.1

6.2

Summary of information recorded in traces.
Summary of the number of jobs for 60 workflows.
Statistics on the size of different files in 60 workflows.
Statistics of real transfer durations for different files (in seconds).
Statistics of queuing time for GATE jobs in collected traces.
Statistics of intra-site delay for GATE jobs in collected traces.
Statistics for the number of jobs per site.
Cumulative number of executed jobs in different countries in Biomed VO
of EGI in 2017. Statistics extracted from traces and from the Dirac server.
Summary of findings or hypothesis from the analysis of file transfers.
Summary of characteristics extracted from the executions of workflows.

Summary of characteristics extracted from the executions of workflows.
Strategy for different parameters in simulator.

Statistics of measured and simulated (with the 10G-SotA, Average, and
Maximum models) durations (in seconds) of the transfer of the GATE re-
lease files (> 121 MB).

Statistics of measured and simulated (with the 10G-SotA, Merged average,
and merged maximum models) durations (in seconds) of the transfer of the
GATE release files (> 121 MB).

Example of a data set with 4 numerical and 1 categorical variables.

The new data set after transforming categorical variable into dummy variables.

Statistic of MAE for 10 validation tests of neural network and linear regres-

sion model.

Cumulative number of different type of transfers with and without dynamic
replication for 15 simulated workflows with 50 random prestaging lists. . . .
95%-confidence interval for the statistics of the simulated release transfers

durations of 55 prestaging lists with and without dynamic replication

xii

26

37
40
41
41

52

66

75
79
79

81

92

96

LIST OF TABLES

Anchen CHAI Xiii

Acronyms

DAG Directed Acyclic Graph.

DCI Distributed computing infrastructure.

EGI EGI federated e-Infrastructure.

LFC Logical File Catalog.

SE Storage Element.

VIP Virtual Imaging Platform.

VO Virtual Organization.

Xiv

Introduction

Distributed computing infrastructures (DCIs) such as grids and clouds are popular in-
struments for conducting scientific research nowadays. Computing resources from multiple
administrative domains are coordinated to be used as a single coherent system. They thus
enable scientists to achieve large computing tasks, which could not be executed only by us-
ing local resources. Many recent scientific experiments produce large amounts of data that
need to be made accessible to large groups of geographically dispersed researchers. For
instance, more than 150 Peta bytes of data generated by the ATLAS [Aad et al. (2008)]
experiment on the Large Hadron Collider (LHC) [Fernandez et al. (2012)] are currently
stored, distributed, and analyzed in World Wide LHC Computing Grid (WLCG) [Bona-
corsi and Ferrari (2007)]. In the last decade, several projects have already demonstrated
the ability of DCIs to support heavy scientific computations with a high throughput [Laure
and Jones (2009), Romanus et al. (2012)].

To facilitate the utilization of the resources in DCIs, high-level interfaces, such as
science gateways [Zhao et al. (2010)a, Glatard et al. (2013), Miller et al. (2015)], have
emerged to hide the complexity of managing underlying resources and executing applica-
tions. Science gateways combine a set of services (e.g., authentication, data management,
application deployment, etc) to deliver the computing and storage resources as transpar-
ently as possible for researchers to conduct large scientific experiments.

Meanwhile, different optimization strategies [Da Silva et al. (2013), Camarasu-Pop
et al. (2013)c, Amoon (2013), Calheiros and Buyya (2014), Chettaoui and Charrada
(2014),Poola et al. (2016)] have also been widely investigated for applications deployed
on large DCIs to improve their performance and to consolidate their reliability. However,
validating the impacts of optimizations for applications deployed on such infrastructures is
a complex and challenging task, especially for production infrastructures which are oper-
ating platforms providing various services to support scientific research twenty four hours

a day. Difficulties come from several aspects:

o real experiments of application execution are extremely time-consuming and costly;

o application executions are almost impossible to be reproduced in production systems

due to uncontrollable conditions, e.g., network traffic, background workload;

e large number of validation experiments may harm the utilization of other users.

Acronyms

These aspects bring extra obstacles for researchers or developers to study and investi-
gate the optimization of applications deployments on DCIs.

To cope with these obstacles, simulation has become a widely used method to study ap-
plications deployed on large DCIs. Simulation enables researchers to study the execution of
applications in a variety of conditions with a complete control for factors which are uncon-
trollable in real systems. Simulation scenarios are also reproducible and much faster com-
pared to real experiments. Numerous aspects concerning applications executed on DCIs are
studied and evaluated by simulation in the literature [Camarasu-Pop et al. (2013)a,Man-
souri and Dastghaibyfard (2013)a,Dayyani and Khayyambashi (2015),Camarasu-Pop et al.
(2016), Glatard and Evans (2015), Barisits et al. (2016)].

Various simulation toolkits exist [Ostermann et al. (2010), Calheiros et al. (2011)a,
Desprez and Rouzaud-Cornabas (2013),Kliazovich et al. (2012),Chen and Deelman (2012),
Casanova et al. (2014)]. They provide basic functionalities and resource sharing models
allowing users to build their own simulators based on these services. Despite the different
implementations adopted by each toolkit, they all require an abstraction of several common

components to simulate application executions:

e the hardware platform, e.g., the network topology, the space of storage elements,

and the computing power of processors, etc.;
« the software services deployed on the platform, e.g., schedulers, file transfer service;

« the application itself, e.g., the workload characteristics.

Each component will have a serious impact on the simulation performance and the
realism of simulation behavior for these components will directly decide the reliability of
simulation results.

However, the accuracy of these simulation toolkits has rarely been evaluated and the
configurations of simulations are often oversimplified in the literature. It may critically
question the findings derived from simulation results. Even more badly, studies such
as [Velho et al. (2013)] have shown that basic predefined models in widely-used simulation
toolkits are flawed, which may lead to a false estimation of the simulated metrics.

In this context, the main challenge addressed by this thesis is to improve the realism
of simulations targeting the execution of applications with a focus on file transfers on
EGI. EGI is one of the largest production DCIs worldwide providing more than 850,000
logical CPUs and 650 PB of disk space in 2018. We evaluate the realism of our simulations
based on the ground truth provided by the execution traces offered by VIP, which is a
scientific gateway hosting more than 20 medical imaging applications with more than 1,000
registered users.

One possible usage of these simulations is to evaluate file management strategies for

applications deployed on large DCIs. In this work, for example, we will use them to

2 Anchen CHAI

Acronyms

propose reliable recommendations for data placement in VIP. The rest of the manuscript
is organized as follows:

Chapter 1 presents the related work and current status in the field of distributed
computing, including the existing infrastructures, the deployment of applications on dis-
tributed production infrastructures, the simulation tools for studying applications in dis-
tributed environments, and the optimization techniques for these applications. Among
the numerous optimization strategies for applications in distributed environments, we will
focus on file replication which is a widely used technique to optimize the file management.

Chapter 2 presents a thorough analysis of real execution traces of one particular
application deployed on EGI. It helps us to derive the network characteristics of the un-
derlying infrastructure and the information on file transfers during the executions of the
application. Several issues related to the performance of file transfers are also identified,
which allows us to propose relevant optimization to improve file management.

Chapter 3 presents our work to build a realistic simulator to provide a simulated
environment as close as possible to the real execution conditions for file transfers during
the execution of application deployed on large DCIs. We first identify several fundamental
components for file transfers from the real system. Then the choice of simulation tools
and the implementation design of the simulator are driven by our concern for the realism
in simulated file transfers. This simulator is used to validate our proposed platform model
in Chapter 4 and to evaluate file management strategies in Chapter 6.

Chapter 4. In this chapter, we build realistic ad-hoc platform models to replay the
executions of the Geant4 Application for Tomographic Emission (GATE) on EGI. Starting
from a simplified but widely used platform model, we propose incremental improvements
to increase the accuracy of our file transfer simulations thanks to a thorough analysis of
trace contents in Chapter 2. The overall improvement of these ad-hoc models is evaluated
by confronting simulation results to the ground truth of actual executions registered in
the execution traces. The work presented in this chapter were presented in the CCGrid
conference [Chai et al. (2017)].

Chapter 5 presents our method to construct a complete platform description beyond
the ad-hoc models proposed in Chapter 4 by aggregating multiple execution traces. Three
predictive models are also proposed and evaluated to fill-in the bandwidth of missing links
in the platform after the trace aggregation.

Chapter 6. In this chapter, we cross-evaluate different file management strategies for
applications executed in a large DCI by simulations using an enhanced state-of-the-art
platform description and the complete platform description built in Chapter 5. Reliable
recommendations for improving file management are also derived from simulation results.
Results presented in this chapter were presented at HeteroPar workshop in the Euro-Par

conference [Chai et al. (2018)]. An extension of this work is in preparation for a journal.

Anchen CHAI 3

Chapter 1

State-of-the-art

Abstract This chapter presents the state-of-the art in the field of distributed comput-
ing, including the underlying infrastructures, the deployment of applications on distributed
production infrastructures, the simulation tools for studying applications in distributed en-
vironments, and the optimization techniques for these applications. Among the numerous
optimization strategies for applications in distributed environments, we focus on file repli-

cation which is a widely used technique to optimize data management.

1.1 Introduction

Large distributed computing infrastructures have been successfully used to support
heavy scientific experiments [Fernandez et al. (2012), Bird et al. (2014), Barisits et al.
(2017)] over the last decade. Different infrastructures are presented in Section 1.2, includ-
ing a specific classification for these large distributed infrastructures. In Section 1.3, we
discuss different aspects of applications deployed on such infrastructures, including science
gateways, scientific workflows, execution traces, and optimization strategies.

In section 1.4, we focus on file replication, which is a widely used technique to opti-
mize data management in large distributed environments. We first present two common
classification strategies for numerous file replication methods in the literature. Then we
summarize several requirements for applying file replication in production systems. Fi-
nally, we investigate several replication strategies implemented for production usages.

Different simulation toolkits and platform models for evaluating file replication are

discussed in section 1.5.

1.2 Distributed computing infrastructures

A distributed system is defined as a collection of heterogeneous networked comput-

ers which are combined and coordinated to achieve a common goal. Based on different

1.2. DISTRIBUTED COMPUTING INFRASTRUCTURES

concepts, models, and technologies, distributed systems can be divided into different cat-
egories. Here, the infrastructures of two popular distributed systems are presented: Grid

computing and Cloud computing.

1.2.1 Grid computing

Grid computing [Foster et al. (2001)] originated in academia in the mid 1990s with the
popularity of the Internet and the availability of powerful computers and high-speed net-
work technologies. It aimed at facilitating users to remotely utilize idle computing power
within other computing centers when the local one is busy. One of the main strategies of
grid computing is to use middleware to divide and apportion pieces of a program among
several computers. The size of a grid may vary from computer workstations coordinated by
network to large collaborations across many computing sites and data centers in different
continents.

We can categorize grids into research and production infrastructures. Research infras-
tructures are experimental testbeds designed to conduct controllable experiments, usually
in academia. Examples of such infrastructures are Emulab [Siaterlis et al. (2013)], Planet-
Lab [Kim et al. (2011)], Grid’5000 [Balouek et al. (2012)], and Future Grid [Von Laszewski
et al. (2010)]. Production infrastructures, on the other hand, are operating platforms pro-
viding various services to support computing and data sharing for production purposes
twenty four hours a day.

Grids can be further classified into High Performance Computing (HPC) and High
Throughput Computing (HTC) infrastructures. HPC systems focus on the efficient exe-
cution of tightly-coupled tasks, while HTC systems focus on the efficient execution of a
large number of independent tasks.

The Extreme Science and Engineering Digital Environment (XSEDE) [Towns et al.
(2014)] and the Partnership for Advanced Computing in Europe (PRACE) [prace project]
are the main HPC infrastructures in production. XSEDE is a single virtual system that
scientists can use to interactively share computing resources, data, and expertise. A wide
range of software is available on various XSEDE resources supporting diverse fields of
study. PRACE aims at developing a distributed HPC infrastructure based on the national
supercomputing centers in Europe.

The Open Science Grid (OSG) [Juve et al. (2013)] is a production grid used in the
United States. It consists of computing and storage elements at over 100 individual sites
spanning the United States. In Europe, one of the largest HT'C production infrastructures
is the EGI e-infrastructure [Kranzlmuller (2009)], which provides advanced computing
services for research and innovation. EGI coordinates computing, storage, and network
resources over 350 resource centers across more than 50 countries. In EGI, a set of comput-

ing resources (e.g., clusters, workstations, etc.) localized at a site is defined as a Computing

Anchen CHAI 5

CHAPTER 1. STATE-OF-THE-ART

Element (CE) while a Storage Element (SE) provides uniform access to a set of data stor-
age resources grouped together. In general, each CE defines a local SE which is either
within or very close to the site. EGI currently hosts more than 200 Virtual Organiza-
tions (VOs) for communities with interests as diverse as Earth Science, Computer Science,
Mathematics, Life Sciences, or High-Energy Physics. It provides more than 850,000 logical
CPUs and 650 PB of disk space in 2018.

1.2.2 Cloud computing

In the last decade, cloud computing has become a buzzword. However, cloud computing
is not a completely new concept. It is a specialized distributed computing paradigm and
has intricate connections to grid computing. One definition for cloud computing can be
found in [Foster et al. (2008)]:

A large-scale distributed computing paradigm that is driven by economies of
scale, in which a pool of abstracted, virtualized, dynamically-scalable, managed
computing power, storage, platforms, and services are delivered on demand to

external customers over the Internet.

A more detailed comparison between cloud and grid computing can be found in [Foster
et al. (2008),Sadashiv and Kumar (2011)].

Similar to grid computing, cloud computing systems can be also categorized into pro-
duction and research infrastructures. The Amazon Elastic Compute Cloud (EC2) [amazon
ec2| is currently the most used cloud computing infrastructure. It provides Infrastructure
as a Service (IaaS) at a scale that can accommodate different distributed production in-
frastructures. It also enables users to increase or reduce the number of virtual machines
needed and charges them according to the size of the instances and the capacity used.
Other commercial cloud computing infrastructures in production can be found in indus-
try, e.g., Windows Azure cloud computing platform [windows azure] and Google Cloud
platform [google cloud].

Cloud testbeds are also constructed for research purposes. A few examples of such
infrastructures are the Virtual Computing Lab (VCL) [Averitt et al. (2007)], the Open
Cloud testbed [Grossman et al. (2009)], the OpenCirrus [Avetisyan et al. (2010)], and the
Chameleon cloud testbed [Mambretti et al. (2015)]. They enable researchers to test or

validate new designs for cloud computing in controllable environments.

1.3 Application deployment in distributed systems

Although distributed computing infrastructures provide large amounts of computing

and storage capacities, using them can sometimes be a complex work for scientists and

6 Anchen CHAI

1.3. APPLICATION DEPLOYMENT IN DISTRIBUTED SYSTEMS

researchers. In this context, science gateways are emerging as high-level interfaces for
users to facilitate the access to distributed infrastructures. One of their main features is
allowing users to describe applications as abstract workflows. In this section, we present

the state-of-the-art of existing science gateways and different widely used workflow models.

1.3.1 Science gateways

The concept of a science gateway is a community-specific set of tools, applications, and
data collections that are integrated together via a web portal or a suite of applications,
providing access to the computing and storage resources of different infrastructures. It
combines a set of services, e.g., authentication, file transfer, and workload management
tools, to deliver computing power as transparently as possible. Its responsibilities con-
sist in monitoring the status of running experiments, killing misbehaving executions, and
taking decisions to optimize the performance of applications on behalf of users. Science-
gateways can be found in various scientific domains, such as climate, life-science, and
medical imaging.

The Community Climate System Model (CCSM) portal [Zhao et al. (2010)a] provides
a one-stop shop for creating, configuring, and running CCSM simulations as well as man-
aging jobs and processing output data by using TeraGrid high performance computing
resources. CIPRES [Miller et al. (2015)] is a web portal designed to provide researchers
with transparent access to the fastest available community codes for inference of phyloge-
netic relationships. It allows more than 1,800 unique users to run jobs that required 2.5
million CPU hours. In the life-science field, WeNMR [Wassenaar et al. (2012)] is devel-
oped for bio-informatics applications. With over 450 registered users, WeNMR is one of
the largest VO in the life-science community officially recognized by EGI.

VIP [Glatard et al. (2013)] is a widely used science gateway in the field of medical
imaging. It currently hosts more than 20 medical imaging applications with more than
1,000 registered users. VIP is supported by the Biomed VO of EGI, which has access
to about 65 computing sites world-wide, including more than 130 computing clusters
and 5PB of storage distributed across 50 different SEs. The complete life cycle for the
execution of an application in VIP is depicted in Figure 1.1. From the web portal, users are
authenticated by their login and password (step 0). They can easily upload their input data
onto the storage resources in the Biomed VO via VIP (step 1) and select the application
that they want to execute (step 3). Each application integrated into VIP is described
as a workflow. The workflow description is interpreted by the MOTEUR, [Glatard et al.
(2008)] workflow engine to generate jobs (step 4) that are submitted and scheduled to
EGI by the DIRAC [Tsaregorodtsev et al. (2010)] workload management system (step
5-7). When the required resources are allocated, jobs will first download input files for

the application and then execute the computing workload (step 8-9). After the execution,

Anchen CHAI 7

CHAPTER 1. STATE-OF-THE-ART

results are automatically stored on a storage resource (step 10) and made available to VIP

users through the web portal.

—_— ‘-ﬂ s = _— ',lj.f.’
0. Login = s o = h 3 ’A - o~
1. Send input data = 3. Launc et
User = workflow .
Web portal Workflow engine
2. Transfer (Moteur + GASW)
input files
& 4. Generate and
submit task
St(;rage : 8\ ﬁ
system =) (=
' _— e
8. Get files 7. Get task w.dx.\w.
9. Execute \E/SVS‘/S “’5

10. Upload results

-~ 5. Submit and Pilot Manager
Computing sites 6. Schedule pilot jobs (DIRAC)

Figure 1.1: The complete life cycle for an application executed via VIP.

1.3.2 Scientific workflows

Applications deployed on large distributed infrastructures via science gateways are
usually expressed as workflows. Scientific workflows are often abstracted as a Directed
Acyclic Graph (DAG) to combine a series of phases, including data movement, analysis,
computation, and final result combination. In DAG-based workflows, nodes represent
computational jobs and edges represent data or logical dependencies between jobs.

For scientific workflows, different models exist depending on the design concept and
the purposes of applications. Some basic structures or common components of them are
illustrated in Figure 1.2. The simplest process for a workflow is a job analyzing input data
and producing a result. This process can then be used as a basic component to construct
a pipeline model, where each job requires the output data of its previous job to obtain the
final result. Then depending on whether the workflow scatters or gathers data, we can
distinguish three more basic models: data distribution model, data aggregation model,
and data redistribution model.

In VIP, several workflows correspond to simple processes. This is the case for cer-
tain neuroimaging tools based on FSL [Smith et al] and Freesurfer [Fischl (2012)], as
well as for some tools developed at the CREATIS research lab, such as "RF Coil Char-
acterization' 1 or "Super Resolution" [Van Reeth et al. (2015)]. Nevertheless, some VIP

Thttps://vip.creatis.insa-lyon.fr/documentation/mri_ charact.html

8 Anchen CHAI

1.3. APPLICATION DEPLOYMENT IN DISTRIBUTED SYSTEMS

Process Pipeline Data Distribution Data Aggregation Data Redistribution

> > 5 amm a=p

l | AN l AN
& &5 saw & o i

Job . Data

.

Figure 1.2: Common components in scientific workflows. Figure extracted from [Bharathi
et al. (2008)].

applications are described with complex workflow models, allowing to manage data dis-
tribution, aggregation, loops and conditions. This is the case for the workflow describing
the GATE application [Jan et al. (2004)]. GATE is a Geant4-based open-source software
to perform nuclear medicine simulations, especially for TEP and SPECT imaging, as well
for radiation therapy. As a Monte-Carlo simulator, one GATE execution can be easily
split into multiple jobs. Each job produces a partial result, which is then merged into
a final output. Therefore, the GATE workflow is a combination of the process and the
data aggregation model. The GATE workflow can be deployed on EGI by two possible
approaches: static and dynamic partitioning. The number of jobs for each execution will
adapt to the computing duration estimated by users.

In this thesis, we will focus on the workflow of the GATE application, which is one of
the most successful applications in VIP. More detail of the deployment of GATE workflow
on EGI will be presented in Chapter 2.

1.3.3 Traces of workflow executions

During the execution of scientific workflows, diverse real-time metrics are monitored
and registered by science gateways. These metrics are then generated and stored as ex-
ecution traces. Such execution traces are important data sources for conducting off-line
research work. They provide researchers rich information on the executed jobs to identify
the characteristics of workflows, the computing and network resources to model the un-
derlying platforms, and the resource utilization to investigate failure causes or predict the
performance of workflow executions.

Numerous research works in distributed environments were based on trace analysis.
For instance, authors in [Barisits et al. (2016)] proposed a hybrid simulation model for
data grids based on the statistical analysis of traces. [Ferreira da Silva et al. (2015)]
presented a practical machine learning method to predict job characteristics by conducting

an analysis on workload traces. Authors in [Reiss et al. (2012)] studied the heterogeneity

Anchen CHAI 9

CHAPTER 1. STATE-OF-THE-ART

and the dynamicity of the resource usage of Cloud by analyzing publicly available Google
trace data. These traces consists of the monitored execution of applications over a month
executed in ~12,000 machine clusters. In [Iosup et al. (2011)], authors analyzed long-term
performance traces from the two largest commercial clouds: Amazon cloud and Google
cloud. They found that yearly and daily patterns were followed by half of the cloud
services and the impact of the observed variability was assessed by trace-based simulation.
In [Javadi et al. (2013)], a failure trace archive was created and a comparative analysis
of failures in various distributed systems was presented. Authors also emphasized that
different interpretations of the meaning of failure data can lead to different conclusions for
failure modeling and job scheduling in distributed systems.

In this thesis, we also adopt the trace-analyzing method. The execution traces gener-
ated by VIP are collected to study the GATE application executed on EGI. By analyzing
these traces, we are able to characterize file transfers, to model the hardware platform for
the Biomed VO in EGI, and to identify the current issues for the application performance
or the resource usages in VIP. The analysis of execution traces of the GATE application

will be presented in Chapter 2.

1.3.4 Optimization of workflow execution

Large production distributed infrastructures, which coordinate large amounts of ge-
ographically distributed resources, can be more prone to errors than traditional HPC
clusters or experimental testbeds [Montagnat et al. (2010), Alsoghayer and Djemame
(2014), Carrién et al. (2015)]. In [Kondo et al. (2010)], authors report that Grids have
a yearly resource availability of 70% or less. In [Ma et al. (2013)], authors mention that
EGI has an average availability and reliability ranging from 84% to 96% for resources.
It implies that improving the reliability of applications is as important as improving the
performance and that the reliability is directly relevant to the performance of applications
executed in production grids [losup et al. (2006)].

Different aspects of applications deployed on distributed environments can be opti-
mized to improve the performance, to consolidate the reliability of workflow executions,
or both. At application level, optimizations often concern two aspects: jobs and data.

Numerous strategies were proposed to provide fault tolerance for jobs, for instance, job
checkpointing [Nazir et al. (2009),Chtepen et al. (2009),Cao et al. (2010), Amoon (2013)]
and job replication [Ben-Yehuda et al. (2012), Calheiros and Buyya (2014), Poola et al.
(2016)]. Checkpointing is a mechanism allowing to save the state of a running job so that
the job can be resumed from the registered state in case of any fault. It prevents restarting
the execution of applications from the very beginning and therefore can reduce the whole
execution time of applications. Job replication consists in dispatching multiple replicas of

a job across different resources and using the result from the first instance to complete.

10 Anchen CHAI

1.4. FILE REPLICATION

Job replication is based on the assumption that the probability of a single resource failure
is much higher than that of a simultaneous failure of multiple resources in distributed
systems. It can thus achieve good performance even in the absence of information on
computing resources.

Meanwhile, file replication [Vrbsky et al. (2010), Yang et al. (2010), Bsoul et al.
(2011), Andronikou et al. (2012), Chettaoui and Charrada (2014)] is the most widely used
technique to optimize data management in distributed systems. It consists in replicating
the same file on different storage resources. This allows to avoid one-point failure of data,
thereby increasing data availability and fault tolerance. It can also ease the file transfer
burden on the network between one computing site and one storage resource, therefore
reducing data access latency and file transfer duration.

The optimization of jobs for applications deployed on EGI via VIP has already been
studied and investigated. Authors proposed a self-healing mechanism to handle operational
incidents through job replication in [Da Silva et al. (2013)]. The added value of adopting
checkpointing in workflow executions has been evaluated by conducting real experiments
on EGI in [Camarasu-Pop et al. (2013)c]. Following these works, we focus in this thesis

on improving the data management for applications in VIP by file replication.

1.4 File replication

File management is a key component in large distributed environments. Efficient file
transfers are critical to the performance of data-intensive applications, since a long file
transfer may badly delay a given job during the execution of a workflow, change the
schedule of subsequent jobs, and therefore impact the whole application execution time.
Numerous file replication strategies were proposed to optimize file management in dis-
tributed systems and their implementations vastly vary depending on their optimizing

metrics.

1.4.1 Classification for file replication

While replication strategies can be quite different, they have common features with
respect to certain aspects. Different classification schemes for replication strategies were

proposed in the literature.

Static vs. dynamic replication

The most general classification is static versus dynamic replication. In static replica-
tion [Ranganathan and Foster (2003), Loukopoulos and Ahmad (2004), Chervenak et al.
(2007),Xiong et al. (2013)], decisions regarding to the replication strategy are made before

launching the application and do not change during the execution. Static replication will

Anchen CHAI 11

CHAPTER 1. STATE-OF-THE-ART

not add any decision and management overhead during the execution of applications and
it can be a good choice for non-changing environments as static replication strategies are
usually simple to implement. However, they are often inefficient in a dynamic environment
such as large production grids.

On the other hand, decisions in dynamic replication [Chang and Chang (2008), Hanan-
deh et al. (2012), Mansouri and Dastghaibyfard (2013)b, Vashisht et al. (2014)] would
adapt to changes of systems, e.g., storage capacity or network bandwidth. Replicas can be
created on new nodes during the execution of an application and can be deleted when they
are no longer required. Dynamic replication strategies often rely on information obtained

at runtime, hence adding an extra overhead to the application execution time.

Centralized vs. decentralized replication

Another classification scheme for replication strategies is centralized versus decen-
tralized. For centralized strategies [Wu et al. (2008), Pérez et al. (2010), Zhao et al.
(2010)b, Sashi and Thanamani (2011), Andronikou et al. (2012)], a central authority is
implemented to control all the aspects of data replication. It collects global metrics on the
underlying systems and then propagates these information to different nodes. However,
this central authority can easily become a single point of failure and a bottleneck when
systems scale up.

In decentralized replication strategies [Abdullah et al. (2008), Mansouri and Dast-
ghaibyfard (2012), Mansouri and Dastghaibyfard (2013)a,Chettaoui and Charrada (2014)],
there is no central control mechanism. Hence, no single node can possess a complete view
about the entirety of systems. Nodes need to take their own decisions regarding to repli-
cation. Decentralized replication is good for reliability and scalability as there is no single
point of failure in the system but it may lead to excessive replications as no global infor-

mation about the systems is monitored.

1.4.2 Requirements for file replication in production

Although numerous file replication strategies were proposed in the literature, they are
rarely applied and implemented in real production infrastructures. Authors have already
highlighted the gap between theoretical research and the implementation of replication
strategies in production in [Ma et al. (2013)]. We summarize several restrictions hampering
the integration of replication strategies, especially the automated and dynamic replication
strategies, in large distributed production infrastructures.

Diverse requirements. Large production distributed infrastructures often support
the execution of applications from diverse scientific fields. For instance, EGI distinguishes

more than 200 VOs for communities with interests as diverse as Earth Science, Computer

12 Anchen CHAI

1.4. FILE REPLICATION

Science, Mathematics, Life Sciences, or High-Energy Physics. Each community has its
different applications with different characteristics and file access patterns. It is thus very
difficult to provide a general and efficient file replication method to meet the requirements
of all applications or users at the middleware level. Hence, most of the replication man-
agement is delegated to applications and most decisions are made by administrators or
applications with an application-oriented strategy.

Non-clairvoyance. The information about where jobs will be executed, what is
the current usage of storage resources, or the network throughput cannot (or are very
hard to) be foreseen before execution time in production infrastructures. However, most
theoretical works assume a complete clairvoyance about compute, storage, and network
resources in the proposed strategies. At the application/user level, the middleware is
considered as a black-box and only services at application-level are available to users. Even
though certain services allow users to collect and monitor the resource usages in production
infrastructures, it will add large extra overhead to the execution time of applications if
the replication decisions strongly depend on such real-time information. Therefore, an
applicable file replication strategy for production infrastructures should rely on as few
information as possible about the system (e.g., network throughput, job queuing time, job
execution time, etc.).

Replication cost. In large production infrastructures, storage resources are often
shared by different groups of users and the available space is limited for each group. The
number of replicas is thus limited for a given file [Ramakrishnan et al. (2007)]. However,
most theoretical works only focus on reducing the file access time in order to increase the
performance of file transfers. As a consequence, many theoretical studies favor strategies
that always replicate [Ranganathan et al. (2002),Dogan (2009)] or create as many replicas
as possible [Park et al. (2003),Sashi and Thanamani (2011)]. It badly questions the appli-
cability of these strategies in production. Another cost related to increasing the number of
replicas is the potential risk of increasing uncertainty and inability for the execution of an
application, since large distributed production systems are prone to failures. A brittleness
entropy metric was introduced in [Ma et al. (2015)] to describe the risk associated to file
replication on unreliable SEs. Results show that limiting the number of storage elements
involved in the execution of an application improves the execution reliability on EGI.
Therefore, an applicable replication strategy should also take into account the replication

costs by limiting the number of replicas.

1.4.3 Existing replication management in production systems

In this section, in addition to the replication management implemented in VIP, we
investigate two other replication strategies that are adopted for production usage in large

distributed infrastructures.

Anchen CHAI 13

CHAPTER 1. STATE-OF-THE-ART

Replication in Pegasus

Pegasus [Deelman et al. (2015)] is a workflow management system, which enables user
to map abstract workflow descriptions onto large distributed computing infrastructures.
It also offers data management and job monitoring subsystems for workflow executions. In
Pegasus, different data management services are proposed depending on the target cyber-
infrastructures on which to execute workflows. Here, we only focus on the replication
services provided by the data management system in Pegasus for computing grids.

Pegasus assumes that the datasets required by workflows have already been distributed
across the infrastructure and the replica locations are registered in a Replica Catalog.
Hence, no additional services related to replica creation are provided. Before the execution
of a workflow, each job is explicitly mapped to the candidate execution sites specified by
the user. This process is called Site Selection in Pegasus. Several site selection strategies
are supported in Pegasus, for instance, random, round-robin, or Heterogeneous Earliest
Finish Time (HEFT) [Topcuoglu et al. (2002)]. After this site selection process, Pegasus
will have the complete information about where jobs will be mapped before the execution.
It thus enables a special job (called stage-in job) to transfer the datasets required by the
workflow from the locations specified in the Replica Catalog to storage resources close
to the execution sites. If multiple locations are available for the same dataset, a variety
of replica selection strategies are offered by Pegasus such as preferring the location that
has a good bandwidth to the execution site, randomly selecting a replica, or using a user
provided ranking. Due to site selection and data stage-in, jobs do not need to download
the required files from remote sites during the execution, which can reduce the execution

time of workflows.

Replication in Rucio

Rucio [Garonne et al. (2014)] is a distributed data management system implemented to
support the ATLAS experiment [Aad et al. (2008)] which is one of the largest experiments
at the Large Hadron Collider (LHC) at the European Organization for Nuclear Research
(CERN). It manages the data produced by ATLAS with more than 150 Petabytes spread
worldwide across 130 sites and provides users with the functionalities for data placement,
data replication, and data deletion.

Replica creation in Rucio is based on user-defined replication rules for files. A repli-
cation rule may define the minimum number of replicas to be available on a list of SEs.
It allows users to express their intention behind the replication request instead of defining
a specific destination for replicating data. For instance, a user can replicate a file two
times in France by defining a rule such as "copies=2&country=fr". Rucio will then select

the appropriate two SEs in France depending on the current resource usages, such as the

14 Anchen CHAI

1.4. FILE REPLICATION

available storage spaces or network bandwidth. Users can also associate a weight to SEs so
the replica selection algorithm will choose the SE with respect to this value. Rucio offers
various functionalities to ease the creation of file replicas. However, the decision of where
to replicate is still the responsibility of users.

This rule-based replica creation strategy enables to spread data over the system to make
them available for users. Besides this static strategy, a dynamic data placement strategy
has recently been proposed and tested in a pre-production mode for ATLAS [Beermann
et al. (2017)]. In this strategy, information from different sources are collected to decide if
and where to create a new replica, e.g., the current available replicas for a given file from
the Rucio database, bandwidth information from perfSonar [Tierney et al. (2009)], and
file popularity (i.e., the daily access numbers for a file). This dynamic strategy consists
in two main phases: deciding whether to create a new replica and where to create. The

decision process for whether creating a new replica for a given file is described below:

e Check if a replica has already been created for this file in the past 24 hours. If yes,

no new replica will be created; otherwise, continue.

e Check how many replicas already exist. If more than 4, no new replica; otherwise,

continue.

o Check the popularity of the file in the last 7 days. If it has not been popular (i.e., the
number of accesses is lower than a configurable threshold), no new replica; otherwise,

create a new replica.

If all the requirements are met by the target file, a new replica will be created. The

decision about where to replicate is based on site ranking:

e Check the network bandwidth for links between sites having existing replica and

other sites.

e The possible destination sites are ranked based on available storage space, band-

width, and the number of queuing transfer requests.

e Sites are down-ranked if a replica has been recently created there.

Then a new replica will be created for the site with highest rank if it has enough storage
space for the target file. Recent results [Maier et al. (2018)] have shown that adopting
this dynamic strategy can improve the data availability and lead to a better usage of the
available disk space. Moreover, the completion time of a fraction of jobs is reduced after

adopting this dynamic strategy.

Anchen CHAI 15

CHAPTER 1. STATE-OF-THE-ART

Replication in VIP

On EGI, the Unified Middleware Distribution (UMD) [David et al. (2014)] is an
integrated set of software components packaged for deployment as production services.
Among them, the data management services allow users to upload files onto a SE, then
replicate and register them in a File Catalog. However, the decisions about where to
replicate files and how many replicas to create are left to the applications (users). During
the execution of an application, jobs can use the replica selection service offered by the
UMD to select file replicas according to their distance to the computing site, of which the
algorithm will be detailed in Chapter 3.

The replica creation strategy currently implemented in VIP adopts a static strategy.
The required data for a given application are asynchronously replicated to several remote
sites before the application execution. This process is named file prestaging, which have
been demonstrated to significantly reduce the execution time of applications deployed
on large distributed infrastructures [Ranganathan and Foster (2003), Chervenak et al.
(2007)]. However, the decision of where to prestage files relies on the experience and
a priori knowledge of its administrators. For most of applications hosted by VIP, input
files are automatically replicated to a static predefined list of 3 to 5 SEs chosen among
the ones considered as stable, with a general good network connectivity, and sufficiently
large amounts of available storage space (generally at least 500 GB). This list is updated
when one of the SEs needs to be replaced, is in downtime, is full, or faces any other issue
preventing its usage. The number of replicas also varies depending on the type and size

of the files. Files larger than 500MB are usually replicated on the most available SEs.

1.5 Simulation

Large distributed infrastructures, such as Grids and Clouds, are complex, dynamic,
and heterogeneous environments. Therefore, it is difficult to evaluate new prototypes or
new strategies (e.g., scheduling algorithms or data management strategies) in a repeatable
and controlled manner. Besides, a full-scale evaluation by real experiences implies inter-
ference with on-going executions, which is not encouraged in a production environment.
Simulation is thus mandatory to test and evaluate complex scenarios for large distributed

production infrastructures.

1.5.1 Simulation tools

Many simulators have been developed in the era of Grids construction. They helped
researchers to test the performance of the design of middleware services, evaluate job

scheduling algorithms, or assess new data management strategies. For instance, Optor-

16 Anchen CHAI

1.5. SIMULATION

Sim [Bell et al. (2003)] and ChicSim [Ranganathan and Foster (2002)] were designed to
study file replication. In ChicSim, a grid model with 30 sites and two theoretical band-
width values were used, while a model of The European DataGrid Testbed was adopted
in OptorSim, which is shown in Figure 1.3. However, the development of both projects

has been discontinued.

RAL
i

[]

1550 35
E G NorduGrid

FZ] Testbed site
M Router

- |Bologna

Torino

Catania
Figure 1.3: Grid model in OptorSim, illustrated from [Bell et al. (2003)].

SimGrid [Casanova et al. (2014)] and GridSim [Buyya et al. (2011)] are two simulation
toolkits widely used in grid computing research. GridSim is a Java-based discrete-event
simulation toolkit based on SimJava [Howell and McNab (1998)]. It offers the modeling of
heterogeneous computational resources, different policies for job scheduling (e.g., time or
space shared policy), and different network services. A variable size packet-level model is
used for network communications. However, this packet-level model in GridSim has been
shown to be false and inaccurate [Velho et al. (2013)].

The SimGrid toolkit provides various core functionalities for simulating distributed
applications in heterogeneous distributed environments. It is based on fast and accurate
fluid models for simulating network communication. This toolkit has been continuously
developed for about 20 years. Storage simulation capacities [Lebre et al. (2015)] have

been recently integrated into SimGrid. Besides, the validity of its analytical models was

Anchen CHAI 17

CHAPTER 1. STATE-OF-THE-ART

widely investigated in [Velho and Legrand (2009), Velho et al. (2013)]. SimGrid can thus
be conceived as a scientific instrument, which can be used as a reliable tool to simulate
applications in distributed environments.

With the growth of popularity for cloud computing paradigm, numerous simulators
have been proposed for cloud systems and applications. Many of cloud simulators are
based on existing simulation toolkits. For instance, the Amazon Cloud simulator [Desprez
and Rouzaud-Cornabas (2013)] is implemented on top of SimGrid. The APIs of AWS
cloud (EC2 and S3) are replicated in this simulator. It allows users to evaluate executions
of applications and resource provisioning algorithms. CloudSim [Calheiros et al. (2011)a]
is a simulation tool built on the core engine of GridSim. It provides features to model
data center, various instance types of virtual machines, different brokering policies, and
the pay-as-you-go model. GreenCloud [Kliazovich et al. (2012)] is a simulator designed
for energy-aware cloud computing systems. It is a packet-level simulator based on the
network simulator ns-2 [Issariyakul and Hossain (2012)]. The energy consumption for
each component of a data center (e.g., link, switch, gateway) and the consumption of

network communications can be calculated in GreenCloud.

1.5.2 Platform models for file replication

Almost all the work done in the field of file replication for large distributed infrastruc-
tures has been evaluated and validated through simulation. OptorSim has been used for
file replication studies in numerous works [Tu et al. (2008),REN et al. (2010),Challal and
Bouabana-Tebibel (2010), Zhong et al. (2010), Mansouri and Dastghaibyfard (2012), Bai
et al. (2013),Cui et al. (2015)] and these simulations are usually based on the platform
model of the European DataGrid Testbed, which is shown in Figure 1.3. However, [Grace
and Manimegalai (2014)] mention that it is very difficult to write configuration files and
modify the parameters adapted to the requirements of users in OptorSim.

Besides the work done with OptorSim, three more platform models are widely used in

the literature. The first one is multi-tier model, which is shown in Figure 1.4.

Figure 1.4: Multi-tier platform model.

18 Anchen CHAI

1.5. SIMULATION

This model was proposed in the GriPhyN project [Ranganathan and Foster (2001)].
The problem in this tree-like-structure is that a child node can only communicate with its
immediate parent but not with other nodes, which is an invalid assumption for real grids.

The second one is called hybrid or sibling tree model [Lamehamedi et al. (2002)],
which is shown in Figure 1.5. It extends the multi-tier model, allowing the communication
among nodes in the same tier (siblings). Although this model can address some limitations
of the multi-tier model, it still can hardly represent real production grids, in which there
is no central node designated as a root node, and any node can be connected with any

other node.

Figure 1.5: Hybrid platform model.

The last model is the general graph model, which is shown in Figure 1.6. A general
graph model represents a complete network model, in which any node can be connected

to any other node without any restriction as other models.

Figure 1.6: General graph model. Figure 1.4, 1.5, 1.6 are from [Tos et al. (2015)].

A 3-level network hierarchical model is the most used general graph model, in which the
bandwidth connectivity increases from inter-region links to inter-LAN links, and to intra-
LAN links [Park et al. (2003),Horri et al. (2008),Shorfuzzaman et al. (2010),Mansouri and
Dastghaibyfard (2013)a,Dayyani and Khayyambashi (2015)]. As illustrated in Figure 1.7,

nodes in local area are connected by intra-LAN links and then local areas are connected

Anchen CHAI 19

CHAPTER 1. STATE-OF-THE-ART

by inter-LAN links. Finally, all nodes inside a network region are connected to another

regions by inter-region links.

Figure 1.7: A 3-level network hierarchical model.

However, the configurations of platforms are often oversimplified. Almost all the sim-
ulation evaluations for replication strategies based on the 3-level model use a unique the-
oretical bandwidth for each link category. For instance, the configuration for bandwidth
is 1GB/s for intra-LAN links, 100MB/s for inter-LAN links, and 10MB/s for inter-region
links in [Horri et al. (2008)]; 1Gb/s for intra-LAN link, 100Mb/s for inter-LAN, and
10Mb/s for inter-region links in [Dayyani and Khayyambashi (2015)]. Although this 3-level
network hierarchical model addresses the limitations of the multi-tier and hybrid models
by adopting a general graph representation, we feel that the oversimplified configurations
used in the literature can hardly capture the characteristics of heterogeneous production
distributed infrastructures such as EGI. To the best of our knowledge, there exists no full
and faithful description of EGI that has been built for simulation purposes. This is mainly
due to the lack of detailed information on the configuration (number and performance of
processing units, intra-site bandwidth, etc.) of its more than 350 distributed sites across

50 countries and on the inter-site network connections.

1.6 Conclusion

In this chapter, we presented the related work on applications deployed on large dis-
tributed systems, from the underlying infrastructures to the high-level optimization as-
pects. File management is one critical component influencing not only the performance
but also the reliability of application executions in such large distributed environments.
File replication is thus widely studied to optimize data management in the literature. Due
to numerous restrictions and drawbacks of real experiences, the evaluation and validation
of file replication strategies are usually done with the help of simulation. However, the plat-
form models used in simulation are often oversimplified, which may lead to a questionable

applicability for real production systems. Besides, we also identified the gap between the

20 Anchen CHAI

1.6. CONCLUSION

theoretical research and the implementation in production of replication strategies, espe-
cially for dynamic replication strategies. Two replication strategies adopted in production

systems have also been investigated.

Anchen CHAI 21

Chapter 2

Analyzing execution traces of one
application deployed on a large

distributed system

Abstract This chapter presents a thorough analysis of the execution traces of one par-
ticular application deployed on EGI, the largest Furopean distributed infrastructure. It
helps us to derive the metwork characteristics of the underlying infrastructure and infor-
mation on file transfers during the execution of the application. Several issues related to
the performance of file transfers are also identified, which allows us to propose relevant

optimizations to improve file management for a real system such as VIP.

2.1 Introduction

Trace analysis is a common approach in research on distributed systems. Fine-grained
information can be found in execution traces, e.g., execution time line of jobs, resource
utilization, or distribution of jobs. They can be used to identify workflow characteris-
tics [Ostermann et al. (2008)a,Ostermann et al. (2008)b,losup and Epema (2011)], model
the underlying platforms [Calheiros et al. (2011)b,Barisits et al. (2016)], predict job char-
acteristics [Ferreira da Silva et al. (2015)], analyze performance variability [losup et al.
(2011)], and investigate failure issues [Kondo et al. (2010),Javadi et al. (2013)].

As we focus on file management in this thesis, it is fundamental to understand the
characteristics of file transfers and to identify the current issues concerning their perfor-
mance on a production platform. In this chapter, we present our work on the analysis of
the execution traces of one application deployed on EGI via VIP.

From the collected traces, we extract the characteristics of file transfers by analyzing

the distribution of their duration. Understanding why there exits a large variability in

22

2.2. GATE APPLICATION

transfer durations allows us to derive the characteristics of the network topology of EGI.
Besides, we also investigate other characteristics of workflow executions (i.e., queuing time,
distribution of jobs, and the number of downloads of SEs.). These aspects have indeed a
direct or indirect impact on file transfers.

Then in this chapter, the questions we want to address are:

¢ What knowledge of the network topology of EGI can be extracted from traces?

What are the reasons for the observed large variability in file transfer durations?
e What knowledge can we extract from the information on job executions?
e What are the current issues that we can improve regarding file management in VIP?

The rest of the chapter is organized as follows. In Section 2.2, we first present the
detail of the GATE application and its deployment on EGI. In Section 2.3, we present the
collected execution traces of the GATE workflow and do a first analysis of the workflows,
e.g., the size of downloaded files, the number of jobs, etc. File transfer durations are
analyzed in Section 2.4 and different aspects of workflow executions influencing file transfer

are studied in Section 2.5.

2.2 GATE application

The Geantd Application for Tomographic Emission (GATE) is an advanced open-
source software dedicated to Monte-Carlo simulations which plays an increasing role in
medical imaging and radiotherapy research. GATE! currently supports simulations of
Positron Emission Tomography (PET), Computed Tomography (CT), Optical Imaging,
and Radiotherapy experiments. For these experiments, GATE can be used to help design
and assess new imaging devices, and to optimize the acquisition and data processing
protocols.

The simulation in a particle tracking Monte-Carlo application consists in the successive
stochastic tracking through matter of a large set of individual particles and each particle
has an initial set of properties (type, location, direction, energy, etc.). The simulation
accuracy of Monte-Carlo approaches such as GATE depends on the number of simulated
particles. However, more simulated particles means longer computing time. Therefore,
typical radiotherapy simulations would take days or even weeks to complete using personal
computers. Figure 2.1 illustrates a 3D whole-body F18-FDG PET scan simulated with
GATE. This simulation requires approximately 4,000 CPU hours, which means that it will

take about 5.3 months to finish by using one single CPU in a personal computer.

"http://www.opengatecollaboration.org/home

Anchen CHAI 23

CHAPTER 2. ANALYZING EXECUTION TRACES OF ONE APPLICATION DEPLOYED ON A LARGE
DISTRIBUTED SYSTEM

Figure 2.1: 3D whole-body F18-FDG PET scan simulated with GATE, representing ap-
proximately 4,000 CPU hours (5.3 months). Credits: IMNC-IN2P3 (CNRS UMR 8165)

In this context, different parallelization methods for Monte-Carlo simulations have
been proposed to be executed on distributed environments. Authors presented their work
of implementing a distributed version of GATE deployed on EGI in [Camarasu-Pop et al.
(2010)]. They studied two approaches: static and dynamic partitioning of the simulation
workload. The number of jobs for a GATE workflow instance can vary from 1 to 500,
depending on the estimation of the execution time of simulation made by users. With a
static partitioning, each job will compute a fix number of particles, which is predefined
depending on the number of submitted jobs. Jobs will be resubmitted if any execution
failure occurs. With the dynamic partitioning, each job keeps computing the tracking of
particles until the desired total number is reached. Hence, the number of executed jobs
may be less than the original submitted number if all particles are already computed by
early or faster jobs.

Figure 2.2 shows the abstracted workflow of GATE deployed and executed on EGI via
VIP. The GATE workflow is expressed using the GWENDIA language [Montagnat et al.
(2009)] and managed by MOTEUR engine [Glatard et al. (2008)]. It consists of two main
phases: computing and merging.

During the computing phase, a set of independent GATE jobs: (1) download the
required input files; (2) execute a part of the computational workload; and (3) upload
partial results on a SE upon completion. Once all the particles have been computed,
the workflow enters a merging phase, where all the partial results are downloaded from
different SEs by one or several Merge job(s) (4) and aggregated (5). The final result is
then copied back to a SE (6). The data exchanges between jobs of the GATE workflow
are file-based and require transfers over the network and through SEs, since the jobs may

be executed in different nodes that do not share a common file system.

24 Anchen CHAI

2.3. EXECUTION TRACES

1. Transfer input files
2. Compute

3. Transfer partial
output files

N sk
-

4. Transfer partial output
files for merge

5. Merge outputs

6. Transfer final output

Figure 2.2: GATE workflow including a computing phase, a merging phase, and associated
file transfers.

In step (1), GATE jobs need to download three files to enter the computing phase:

1. a wrapper script file automatically created by VIP;

2. a tarball file containing the GATE executable release along with all the required

libraries needed for execution;

3. a tarball file containing the user-defined inputs, e.g., macro files describing the sim-
ulation, images, or ROOT files. The size can be quite different depending on each

execution varying from several kB to hundreds of MB.

Merge jobs need to download an executable release file and the same user-defined input

file as GATE jobs to merge all the partial results produced by the GATE jobs.

2.3 Execution traces

A very little set of traces may not represent the overall characteristics of the executions
of applications and the underlying platform, while analyzing long-term execution traces
in a fine-grained way can be an extremely time-consumming task. We thus decided to
make a trade-off by collecting 60 execution traces of GATE workflows submitted by 14
distinct VIP users over a period of one month from September 8, 2015 to October 8, 2015.

Anchen CHAI 25

CHAPTER 2. ANALYZING EXECUTION TRACES OF ONE APPLICATION DEPLOYED ON A LARGE
DISTRIBUTED SYSTEM

These workflows are different in terms of software release, input files, number of jobs, and
execution times.

These collected traces correspond to the execution of 11,033 GATE jobs and 60 Merge
jobs by compute nodes across 41 different computing sites, which represents 60% of the
computing sites in Biomed VO. These jobs performed 54,777 file transfers using 65 different
SEs, including 33,095 downloads and 11,033 uploads by GATE jobs; 10,589 downloads and
60 uploads by Merge jobs.

During the execution of a workflow, two main sources of information are produced by

the jobs and recorded by the VIP server. They are summarized in Table 2.1.

Source Information

Log files e Log creation time, workflow name, job id
o File transfers: source, destination, duration, etc.

o Hardware: name, number of cores, processing speed
Database o Timestamps for each phase of job execution

Table 2.1: Summary of information recorded in traces.

The first source is the structured log file produced by each job (GATE or Merge).
It starts with a header that comprises a timestamp of the log creation, the name of the
workflow and the job id. User information, including the name of the user and which
VO the user belongs to, can also be found in this header. Information on the hardware
on which the job is executed is gathered from different sources, for instance, the name of
the compute node, the information on the network card, the number of cores and their
processing speed (expressed in BogoMIPS), and information on memory capacity. For each
transfer, jobs log its source, destination, file size, and duration. It is important to note
that the duration value is given by the time lag between the moment when the job starts to
download the file and the moment when the job finishes the download. It is a single value
that includes the latency of a transfer request from middleware services, the I/O latency
from storage systems, and the data transfer time spent in the network. In production
systems, file transfers do not always succeed because of the network connectivity or issues
related to the SE (e.g., maintenance shutdown or no more available space). For jobs with
several retries before achieving a successful transfer, the logged durations even include
the duration of the different attempts. However, we do not have detailed information to
distinguish the exact time spent in these different phases (i.e., middleware latency, I/0O
latency, and network transfer time) for a file transfer.

The second source is a database filled with various information on each job. While some
information is redundant with the contents of the log files (e.g., job id and status, workflow,

worker node, and grid site names), it also contains a timestamp for each milestone on the

26 Anchen CHAI

2.4. CHARACTERISTICS OF FILE TRANSFERS

job execution time line (i.e., job creation, entering the queue, starting the download,
computation, uploading results, and termination).

We developed the log2sim framework [Suter et al. (2016)] to parse the log files and
the database produced by jobs in the GATE workflow. We produce three CSV files for

each workflow, which facilitate us to conduct analysis in the rest of this chapter.

For all workflows in the collected traces, their sizes are summarized in Table 2.2. There
are 5 small workflows composed of less than 10 jobs, 13 workflows have more than 10 but
less than 25 jobs. 42 workflows consist of more than 100 jobs and the largest workflow is

composed of 500 jobs.

number of jobs <10 | 10 ~ 25 | 100 | >100
number of workflows 5 13 25 17

Table 2.2: Summary of the number of jobs for 60 workflows.

In the collected traces, four different software releases are used by GATE jobs. Their
sizes are 121.5MB, 376.9MB, 463.7MB, and 501.8MB. The size of the wrapper file for
GATE jobs is always around 73kB. A single 90MB release file is used by all Merge jobs.
The size of the partial results produced by each GATE job and the user-defined inputs

varies a lot from one workflow execution to another.
Table 2.3 summarizes the size of input files and partial results for GATE and Merge

jobs. Input files vary from 4.9kB to 29MB with a median size of 20.8kB while partial
results vary from 0.5kB to 90.1MB with a median size of 186kB.

Min | Ist Qu. | Median | Mean | 3rd Qu. Max

input file for gate/merge jobs | 4.9kB | 10.7kB | 20.8kB | 547kB | 88.1kB | 29MB
partial results for merge jobs | 0.5kB | 38.1kB | 186kB | 3.3MB | 2.7MB | 90.1MB

Table 2.3: Statistics on the size of different files in 60 workflows.

2.4 Characteristics of file transfers

After having presented the number of jobs and the size of downloaded files in the stud-
ied workflows, we conduct a more detailed analysis in this section. First, we investigate
the global distribution of transfer durations for different file sizes. It allows us to obtain
an overview of the file transfer durations in a production system. Then different charac-
teristics of file transfers extracted from individual workflows will be illustrated. 80% of
transfers are done by the GATE jobs and their durations will directly decide when jobs

can enter the computing phase, we thus focus on the file transfers initiated by GATE jobs.

Anchen CHAI 27

CHAPTER 2. ANALYZING EXECUTION TRACES OF ONE APPLICATION DEPLOYED ON A LARGE
DISTRIBUTED SYSTEM

2.4.1 Coarse-grain analysis

Table 2.4 summarizes the statistics of transfer durations for different file transfers of

all the GATE jobs in 60 execution traces.

Min | 1st Qu. | Median | Mean | 3rd Qu. | Max

12-byte upload test | 1.0 1.0 1.01 2.59 1.01 579.8

input file transfer 1.0 1.02 1.03 1.715 1.07 122.0
release file transfer 1.0 4.05 5.01 34.8 14.13 2423.1
wrapper file transfer | 1.0 1.02 1.03 3.08 1.04 523.5

Table 2.4: Statistics of real transfer durations for different files (in seconds).

Before starting to download the required input files, GATE jobs first test whether they
can reach their default SEs by doing a 12-byte upload test. As shown in the first line of
Table 2.4, these 12-byte transfers required at least 1s and 75% of them are completed in less
than 1.01s, with an average value of 2.59s. The durations of such small file transfers give
us an idea of the minimal time required to perform data transfers, i.e., the minimal latency
experienced by each file transfer in EGI is around one second. It allows us to estimate
the latency of a transfer request, which will be used to instantiate the communication
costs between application jobs and middleware service of EGI to reflect this latency in our
simulator described in Chapter 3.

The maximum duration of a 12-byte upload test observed in the collected traces is
579.8s, which is abnormally long. By checking the corresponding execution log, we find
this large value is given by a job that made two attempts to complete its upload test.
This job first conducted a test to its local SE but it failed. Then it succeeded in testing
a backup SE pre-defined by the VIP administrator. Several upload-retries might have
been triggered while contacting the local SE before starting to use the backup SE. The
total duration of all these retries is included in the 579.8 seconds. As explained before,
we can not distinguish the exact time spent in retries from the actual data transfer over
the network because of the lack of detailed information in the execution traces. But this
additional overhead because of one transfer failure is still remarkable, which implies that
the reliability of the SEs is a very important aspect that needs to be considered for file
management in large production systems such as EGI.

For input file transfers, 75% of them complete in less than 1.07s with a average value of
1.71s (see the second line in Table 2.4). The maximum value (122s) is given by a download
of the maximum size of input file (29MB) between a compute site and a SE that are both
located in UK. Another download of this particular input file (29MB) between the same
site and SE pair (there are only two such downloads among all traces) in the same workflow
took 94.03s. No transfer failures were recorded for these downloads in the logs. We thus
consider that these long transfers are due to a poor network connectivity between the site

and the SE.

28 Anchen CHAI

2.4. CHARACTERISTICS OF FILE TRANSFERS

With a larger size for release file transfers, the variability in durations increases a lot.
75% of them complete in less than 14.13s with an average value of 34.8s (see the third line
in Table 2.4). The maximum observed duration is 2423.1 seconds given by a download of
a 501.8MB release file with no transfer failure recorded for this download in the log.

To understand whether this long duration is related to a poor network or related to
other issues, we looked at 27 downloads of the 501.8MB release file between the same SE
("srm-biomed.gridpp.rl.ac.uk") and the same site ("CIEMAT-LCG2") as for the longest
transfer in the same workflow. We find the minimum duration is only of 95.81s which
is 25 times faster. Figure 2.3 depicts the potential concurrent downloads to the longest

transfer.

75

Jobs

25

79000 80000 81000
Execution timeline (in seconds)

Figure 2.3: Gantt chart view of 10 transfers from "srm-biomed.gridpp.rl.ac.uk" to
"CIEMAT-LCG2".

It shows that this large difference is neither due to concurrent transfers within the work-
flow execution, nor because of the external concurrent transfers from other applications
since one download started just after the longest one but was much faster.

We then investigate 409 transfers from/to the site "CIEMAT-LCG2" in the workflow
where the longest download is observed, which is presented in Figure 2.4.

We observe that there are a large number of transfers from/to this site before the
longest download. We thus assume that this large number of concurrent transfers at the
level of the compute site might have badly delayed the completion time of this particular
transfer. Such a phenomenon should be reflected in a realistic model of EGI.

Regarding the wrapper file transfers, the maximum duration is 523.5 seconds (see the
fourth line in Table 2.4). It is much longer than the average duration for a 73kB file
transfer. In order to understand where these pathologically long downloads come from,
we analyze the sources of wrapper transfers accomplished in more than 60s. There are
196 such transfers in total. We note that 195 among these transfers are from a specific SE
("cesrm02.in2p3.fr"). The administrators of this SE confirmed that there was a scheduled
maintenance shutdown of this SE during the period in which we collected traces. It might

have led to plenty of pending transfer requests from/to this SE before or just after the

Anchen CHAI 29

CHAPTER 2. ANALYZING EXECUTION TRACES OF ONE APPLICATION DEPLOYED ON A LARGE
DISTRIBUTED SYSTEM

4004

3004

Jobs

100

79000 80000 81000 82000
Execution timeline (in seconds)

Figure 2.4: Gantt chart view of 409 transfers to "CIEMAT-LCG2", including uploads
and downloads in one workflow execution. Small points correspond to very short transfer
duration.

maintenance, which might have badly delayed the transfers. This problem that SEs can get
more data than they can handle due to the changes in the systems, such as the downtime
of storage, is also mentioned in [Barisits et al. (2017)].

By comparing the source and destination of each transfer, we distinguish three different
categories for transfers/links to investigate the potential network hierarchy in EGI. Inspired

by the three-level hierarchical network model in the literature, we consider:

e local transfer: the download source is the defined local SE for the computing site

where the job is executed;

e intra-country transfer: the download source and computing site where job is executed

are in the same country;

e inter-country transfer: the download source and computing site are not in the same

country.

In order to compare transfers for all files, regardless of their sizes, we transform the
transfer durations into bandwidth, i.e., the file size is divided by the transfer duration
minus the latency (i.e., one second). The bandwidths derived from local transfers corre-

spond to the intra-LAN links. If we consider each country as a region, then the bandwidths

30 Anchen CHAI

2.4. CHARACTERISTICS OF FILE TRANSFERS

derived from intra-country and inter-country transfers correspond to the inter-LAN and

inter-region links in a three-level hierarchical model, respectively.

The distribution of bandwidth experienced by the 11,033 release file transfers according
to transfer categories is shown in Figure 2.5, including 7,902 local transfers, 672 intra-

country transfers, and 2,459 inter-country transfers.

1000/
£
o
=
£
£
z
©°
&
10

inter country intra country local transfer

Figure 2.5: Distributions of the experienced bandwidth by 11,033 release transfers accord-
ing to different link categories.

We observe that the overall bandwidths experienced by transfers significantly increase
from inter-country link to local link. It confirms that the network hierarchy exists in EGI
at some level. However, we can not conclude that the connectivity of local links is always
better than others, which is shown by the observed outliers for local transfers. These
observations imply that a three-level hierarchical model with limited bandwidths could be
a good approximation for EGI only at a coarse level. The real production systems are

more heterogeneous and complex than what a simplified hierarchical model can capture.

To understand where the long local transfers come from, we look at 247 local transfers
with experienced bandwidths lower than 48.5 Mb/s (i.e., the first Quartile value of band-
width for intra-country transfers). Figure 2.6 depicts these bandwidths according to the

SEs from where the download is made.

We observe a large variability for the derived bandwidths even for a given SE. Note
that we mix the downloads from different workflows in Figure 2.6, each workflow might
thus experience different background network traffic conditions during its execution. It is
thus difficult to determine whether the reason for this large variability is due to external
network traffic or some other issues. In the next section, we focus on the analysis of
transfers from an individual workflow execution, which can also guarantee that the size of

release file is unique.

Anchen CHAI 31

CHAPTER 2. ANALYZING EXECUTION TRACES OF ONE APPLICATION DEPLOYED ON A LARGE

DISTRIBUTED SYSTEM

50+

40+

—

Bandwidth in Mb/s

10+

Figure 2.6: Small local bandwidth for different SEs. Each bar corresponds to the band-
widths experienced by local transfers from a specific SE.

2.4.2 Fine-grain analysis

During the analysis of the file transfers from all workflows, we identified several aspects

that could explain the variability of transfer durations. They may be related to the network

topology of the underlying system or only correspond to a transient issue on one specific

SE. In what follows, we attempt to identify more characteristics of file transfers by focusing

on individual workflow executions.

Figure 2.7 depicts the distribution of release transfer durations for a given SE

(marsedpm.in2p3.fr) in one workflow execution. Each panel contains the downloads to

a specific computing site.

INFN-BARI INFN-PISA UKI-LT2-IC-HEP UKI-LT2-QMUL UKI-LT2-RHUL
2004
1504
8 *
?
é 1004
o
o
8
p=3
o 504 L}
—
01 T
marsedpm.in2p3.fr
Figure 2.7: Distribution of release file transfer durations for

(marsedpm.in2p3.fr) in a given workflow.

a given SE

32

Anchen CHAI

2.4. CHARACTERISTICS OF FILE TRANSFERS

Clearly, we observe that download durations are quite different to different computing
sites from a given SE and the variability decreases for a given computing site. It shows
that the connectivity to different computing sites from a given SE is very heterogeneous
in EGI.

In order to further investigate the characteristics of transfer durations for a given
computing site, we zoom in on the downloads from a given SE ("sbgsel.in2p3.fr") to a
given site ("INFN-PISA") in one workflow execution. Figure 2.8 presents the Gantt chart

of the transfer durations to three different clusters inside this particular site.

154

Jobs
5

54 nelwn-32cores
=== slwn-32cores

solwn-4cores

1300 1500 1700
Execution timeline (in seconds)

Figure 2.8: Gantt chart view of 18 release file transfer durations from the SE
"sbgsel.in2p3.fr" to the site "INFN-PISA". Transfers belong to different clusters are in
different colors.

We notice a large variability of download durations among different clusters. Even
though the first two downloads for the "slwn" cluster are concurrent to the downloads for
the "solwn" cluster in the execution time line, their durations are very different: around
200 seconds for the "solwn" cluster but only 4 seconds for the "slwn" cluster. It implies
that compute nodes in different clusters do not share one common link inside a computing
site.

Even when we group transfers by SE, computing site, and cluster for one file size, large
difference of transfer durations can still be observed. Figure 2.9 presents the Gantt chart
of the transfer durations for 5 jobs executed in the same cluster in a given computing site
with a given SE in one workflow execution.

We can see that the first four files are transferred much faster (from 14s to 45s) than
the fifth one (172s). The first four transfers are all finished before 200s while the fifth
one begins after 400s. During the workflow execution, transfer 5 is neither impacted by
other transfers from the same SE or to the same computing site. We thus assume that the
reason for this particularly long transfer is the influence of external network load, which,

however, is not observable in our execution traces.

Anchen CHAI 33

CHAPTER 2. ANALYZING EXECUTION TRACES OF ONE APPLICATION DEPLOYED ON A LARGE
DISTRIBUTED SYSTEM

Transfers
= N w N (2]

200 400 600
Time (in seconds)

Figure 2.9: Gantt chart view of 5 release file transfer durations for a given SE, a given
site, and a given cluster.

Another identified issue is shown in Figure 2.10. It presents the Gantt chart of the
transfer durations for 5 jobs executed in the same cluster in a given computing site with

a given SE in one workflow execution.

Jobs
w

5630 5640 5650 5660
Execution timeline (in seconds)

Figure 2.10: Gantt chart view of release file transfer durations for a given SE, a given site,
and a given cluster.

We observe that these 5 transfers are simultaneous but their durations exponentially
increase, from 2s to 35s. It is therefore not caused by external load. This phenomenon
can be due to the local configurations of the SE that limit the maximum number of
concurrent transfer and trigger some "timeout and retry" mechanisms. This variability is
then considered as a special configuration of SEs, but not as a characteristic of file transfer.
It should thus be captured by the simulated services of SE in simulator, but not in the
platform model. Such information obtained by analyzing file transfers from individual
workflows allows us to derive more detailed characteristics of the network topology, which
will be used to build a fine-grain platform model for the Biomed VO in EGI presented in
Chapter 4.

34 Anchen CHAI

2.5. CHARACTERISTICS OF WORKFLOW AND JOB EXECUTIONS

2.5 Characteristics of workflow and job executions

In this section, we analyze the characteristics of workflow executions, such as the
queuing time of jobs, the distribution of jobs in sites and in countries, and the number of

downloads by SEs. They can have a non-negligible impact on file transfers.

2.5.1 Queuing time durations

In large distributed systems, application jobs often suffer a delay between their sub-
missions and their executions. This delay is called queuing time and includes the resource
allocation time, job scheduling time, and other overheads introduced by different middle-
ware services. Queuing time determines when jobs can start to download their required
files and thus impact the network sharing for a given link. As a consequence, the global
performance of file transfer for applications is indirectly influenced by this delay. The

statistics of queuing time durations for all GATE jobs are summarized by Table 2.5.

Min | 1st Qu. | Median | Mean | 3rd Qu. | Max
queuing time (in sec) | 0 814 2315 6293 6490 | 62295

Table 2.5: Statistics of queuing time for GATE jobs in collected traces.

It shows that half of the jobs suffer a delay of more than 30 minutes with an average
of 104 minutes. Such a large variability in queuing time has also been observed in other
EGI VOs [Moécicki et al. (2011)]. The maximum queuing duration (17 hours) is observed
for a workflow composed of 5 jobs executed in a single site. Although these jobs suffered
a large queuing time, the delay between the first job and the last job in this site was
not that large, i.e., 130 seconds. This observation shows that jobs may suffer a very long
queuing time but the intra-site delay could be much smaller. The execution delay inside
a site for a given workflow is a more meaningful metric than the general queuing duration
to characterize the workflow execution on EGI.

Therefore we introduce another parameter to quantify the execution delay inside a site,
i.e., the time delay between the first and subsequent jobs starting to execute in a given
computing site for a given workflow. This delay is computed as: (Df — D{), where D{ is
the time of the first job starting to execute in a given site j, Dlj is the starting time of
the i*" job in site j during one workflow execution. As shown in Table 2.6, 75% of the
jobs start to execute more than 91 seconds later compared to the first job in a given site.
50% of the jobs have a time delay of more than 569 seconds. The maximum intra-site
delay is 78,312 seconds (21.7 hours) due to a failed job that was resubmitted 21 hours
after the workflow execution. This particular job badly delayed the completion time of
the workflow execution, which emphasizes the importance of the resource reliability for

application performance in large distributed systems.

Anchen CHAI 35

CHAPTER 2. ANALYZING EXECUTION TRACES OF ONE APPLICATION DEPLOYED ON A LARGE
DISTRIBUTED SYSTEM

Min | 1st Qu. | Median | Mean | 3rd Qu. | Max
intra-site delay (in sec) | 0 91 569 2924 2312 | 78312

Table 2.6: Statistics of intra-site delay for GATE jobs in collected traces.

Based on these observations, we find that jobs suffer less intra-site execution delay
than general queuing time delay. But still, this intra-site delay is not negligible. Given
the characteristics of GATE workflows, i.e., all GATE jobs require the same input files, we
believe that we can effectively use this intra-site delay to improve file management. For
instance, we could make the first job to copy the required files onto its local SE. If this
copy finishes in less time than the intra-site delay, all subsequent jobs will then be able to

directly benefit of local transfers.
2.5.2 Distribution of jobs

The distribution of jobs can also have an impact on file transfer during the execution.
For instance, if jobs are uniformly distributed over different computing sites or countries,
the network resources from different domains might be equally exploited. Conversely, if the
distribution of jobs is badly imbalanced, then some network resources may be overloaded
leading to severe congestion.

Table 2.7 presents the statistics of the number of jobs per site in a given workflow
execution. We distinguish small (< 100 jobs) and large (> 100 jobs) workflows. 75% of
the sites executed more than 3 jobs and half of the sites executed more than 9 jobs during
one execution for large workflows while half of the sites executed more than 3 jobs for
small workflows. In general more than one job will be executed in a computing site during

one execution, especially for large workflows.

Min | 1st Qu. | Median | Mean | 3rd Qu. | Max

large workflow 1 3 9 27 26 493
small workflow 1 1 3 4 5 24

Table 2.7: Statistics for the number of jobs per site.

Figure 2.11 depicts the cumulative number of jobs by computing site. Each bar is
colored by the country to which the computing site belongs and all countries are sorted
in descending order of their cumulative number of jobs. We observe that jobs are not
uniformly distributed over both computing sites and countries. One computing site in UK
executed 2,214 jobs while other sites may only execute one job. Almost 90% of jobs were
executed in four countries: the UK (32.5%), Netherlands (24.5%), France (20.8%), and
Italy (11.1%). To be more statistically significant, we collected more recent information
from the DIRAC [Tsaregorodtsev et al. (2010)] server which is the job scheduler used by
VIP. The cumulative number of executed jobs within the Biomed VO for three months,

six months, and one year in 2017 are summarized in Table 2.8.

36 Anchen CHAI

2.5. CHARACTERISTICS OF WORKFLOW AND JOB EXECUTIONS

UKI-NORTHGRID-MAN-HEP -
SARA-MATRIX 4
NIKHEF-ELPROD -
CIEMAT-LCG2
UKI-LT2-IC-HEP 4
CREATIS-INSA-LYON -
INFN-PISA -

IN2P3-LPC

INFN-T1 4

M3PEC A

IN2P3-CC +

INFN-ROMA3 -
IN2P3-IRES -
IN2P3-CPPM A

GRIF

UKI-LT2-RHUL ~
UKI-LT2-QMUL A
UKI-NORTHGRID-LIV-HEP -
AUVERGRID 4

RUG-CIT 4

INFN-TRIESTE A
IN2P3-LPSC A
CIEMAT-TIC
NCG-INGRID-PT H
TR-03-METU -

INFN-BARI 4

HG-02-1ASA A
TR-10-ULAKBIM A
BEIJING-LCG2 -
HG-08-OKEANOS A
UKI-NORTHGRID-SHEF-HEP -
UKI-SOUTHGRID-BHAM-HEP -
UKI-SOUTHGRID-RALPP 4
INFN-FERRARA -
GR-04-FORTH-ICS
RAL-LCG2 4

OBSPM A

LIP-LISBON 4

UPORTO A

LIP-COIMBRA -
HG-03-AUTH -

I uk
inl
M
Bt
Mles
Mt
or
~pt
en

Figure 2.11: Distribution of executed jobs by site in studied workflows.

500

1000

1500

2000

Cumulative number of executed jobs

Netherlands UK France Italy Others
In studied workflows | 2,705(24%) 3,584(32%) 2,301(20%) 1,230(11%) | 1,213(11%)
17/10 - 17/12 50,788(35%) | 38,199(26%) | 30,017(20%) | 12,204(8.4%) | 13,818(9.5%)
17/07 - 17/12 101,400(30%) | 87,900(26%) | 85,100(25%) | 28,900(8.5%) | 33,700(10%)
17/01 - 17/12 231,200(27%) | 217,400(25%) | 227,400(27%) | 72,300(8.6%) | 92,700(11%)

Table 2.8: Cumulative number of executed jobs in different countries in Biomed VO of
EGI in 2017. Statistics extracted from traces and from the Dirac server.

We note that the distribution of the executed jobs monitored by DIRAC is coherent

with the observation made from our collected workflows. About 80% of the jobs were

executed in UK, Netherlands, and France. This large heterogeneity in the distribution of

jobs allows for an optimization of file transfer by improving the placement of the required

files. For instance, we could copy the targeted files onto SEs in or near to the countries

where the most jobs are executed.

Anchen CHAI

37

CHAPTER 2. ANALYZING EXECUTION TRACES OF ONE APPLICATION DEPLOYED ON A LARGE
DISTRIBUTED SYSTEM

2.5.3 Cumulative downloads for SEs

Finally, we investigate the number of downloads per SE in the collected traces, which
can help us to identify potential performance issues related to file transfers that come from
the utilization of network resources.

Figure 2.12 depicts the cumulative number of downloads per SE. We can ob-
serve that the downloads are not equally distributed across SEs. The most used SE
("marsedpm.in2p3.fr") contributed to 7,548 downloads for jobs, while several SEs were
rarely used. This large imbalance implies an inefficient network usage, which may penalize

the performance of workflow executions.

marsedpm.in2p3.fr -
dc2-grid—64.brunel.ac.uk 4
ccsrm02.in2p3.frq
tbn18.nikhef.nl4
ophelia.zih.tu-dresden.de 4
bohr3226.tier2.hep.manchester.ac.uk
shgsel.in2p3.fr
srm.ciemat.es 4
gfe02.grid.hep.ph.ic.ac.uk 4
storm-se-01.ba.infn.it4
clrlcgse01.in2p3.fr
stormfel.pi.infn.it+

se0.m3pec.u-bordeaux1.fr4

nodel2.datagrid.cea.fr
srm-biomed.gridpp.rl.ac.uk 4
storm-01.roma3.infn.it -
se03.esc.qmul.ac.uk 4
hepgrid11.ph.liv.ac.uk 4
se0.bordeaux.inra.fr 4
gridsrm.ts.infn.it 4
se01-tic.ciemat.es 4
cirigridse01.univ—bpclermont.fr 4

se0l.marie.hellasgrid.gr -

lcgse0.shef.ac.uk

2000 4000 6000
Cumulative number of downloads

o

Figure 2.12: Cumulative downloads by SEs in studied workflows.

Another remarkable issue is the imbalanced usage between the storage and the compute
resources for a site, which is shown in Figure 2.13. We compared the number of downloads
for a SE and the number of jobs executed in the computing site associating this SE as the
local one. We notice that there is a large difference between the number of downloads and
the number of jobs for most SEs. Even badly, there were only 179 jobs executed in the
site associating "marsedpm.in2p3.fr" as local SE despite the 7,548 downloads from this SE,
which means that most of these downloads are either national or inter-country transfers.

From an global point of view, 21.7% (11,901) of the transfers are local, while 33.6%
(18,438) are intra-country transfers, and 44.6% (24,438) are inter-country transfers. This

38 Anchen CHAI

2.6. CONCLUSION

marsedpm.in2p3.fr -
dc2-grid—64.brunel.ac.uk 4
ccsrm02.in2p3.frq

tbn18.nikhef.nl4
ophelia.zih.tu-dresden.de 4

bohr3226.tier2.hep.manchester.ac.uk

shgsel.in2p3.fr
srm.ciemat.es 4
gfe02.grid.hep.ph.ic.ac.uk 4
storm-se-01.ba.infn.it4
clrlcgse01.in2p3.fr 4
stormfel.pi.infn.it4
se0.m3pec.u-bordeaux1.fr4
nodel2.datagrid.cea.fr
srm—biomed.gridpp.rl.ac.uk 4
storm-01.roma3.infn.it
M bownload
¥ Jobs

se03.esc.qmul.ac.uk q
hepgrid11.ph.liv.ac.uk
se0.bordeaux.inra.fr 4
gridsrm.ts.infn.itq
se01-tic.ciemat.es 4
cirigridse01.univ-bpclermont.fr 4
se01.marie.hellasgrid.gr 4

lcgse0.shef.ac.uk -

2000 4000 6000 8000

o

Figure 2.13: Cumulative number of downloads for SEs versus the number of jobs in the
corresponding sites.

large number of distant (i.e., intra-country or inter-country) downloads not only badly
influences the global performance of file transfers, but also implies an imbalanced usage
between storage and compute resources in a site. These issues can be improved by adopting
a more efficient file management strategy at the application level, which further emphasizes

the necessity of the work proposed in this thesis.

2.6 Conclusion

In this chapter, we presented an analysis of execution traces collected from a production
platform at a fine-grain level. This analysis has been done from two different angles:
file transfer durations and characteristics of workflow executions. By investigating the
durations of file transfers at a coarse and fine-grain way, we identified several aspects that
could explain the large variability in file transfer durations observed in these traces. They
may relate to the network topology of the underlying system or only to a transient issue
on a specific SE. These findings are summarized in Table 2.9.

By studying the workflow executions, we extracted some characteristics which may
have an impact on file transfers and also identified several improvable aspects related to

file management. They are summarized in Table 2.10.

Anchen CHAI 39

CHAPTER 2. ANALYZING EXECUTION TRACES OF ONE APPLICATION DEPLOYED ON A LARGE

DISTRIBUTED SYSTEM

The non-negligible intra-site execution delay could be used to optimize the file place-

ment during workflow execution, while the large heterogeneity of the distribution of jobs

by site or by country enables the optimization of the file placement before executing

workflows. Regarding the utilization of SEs, the collected traces show a suboptimal file

management. The possible optimizations for these issues are shown in Table 2.11.

All the knowledge obtained in this chapter will help us to:

o feed the simulator presented in Chapter 3;

e model the targeted platform in Chapter 4;

e predict the bandwidth of missing links in Chapter 5;

e propose a dynamic replication method to optimize the performance of file transfers

in Chapter 6.

Source

Findings/Hypothesis

File transfer durations

latency for transfers in EGI is one second

the maximum number of concurrent transfers for
SEs is limited

possible causes for extremely long durations:
transfer failures, SEs shutdown, external network
charge, etc.

Network topology

network hierarchy exists, but more complex than
a 3-level model

connectivity to different computing sites from a
given SE is very heterogeneous

compute nodes in different clusters may not share
one common link inside a computing site

Table 2.9: Summary of findings or hypothesis from the analysis of file transfers.

40

Anchen CHAI

2.6. CONCLUSION

Source

Characteristics

Queuing time

large wvariability of queuing time for jobs in
Biomed VO

less intra-site delay but still non-negligible

Distribution of jobs

The distribution is different not only among com-
puting sites, but also at the level of countries

UK, Netherlands, and France are the 3 top coun-
tries with most executed jobs in Biomed VO

Utilization of SEs

The utilization of SEs is not balanced

Most transfers are either intra-country or inter-
country transfers for the overcharged SEs

Table 2.10: Summary of characteristics extracted from the executions of workflows.

Observation

Possible optimization

Intra-site execution delay

Copy required files onto the local SE by the first
job executed in a computing site

Heterogeneity of the distribu-
tion of jobs

Choose SEs in the top 3 countries to host files

Heterogeneity of the utiliza-
tion of SEs

Choose the local SE of the computing site with
most executed jobs to host files

Table 2.11: Summary of characteristics extracted from the executions of workflows.

Anchen CHAI

41

Chapter 3

Realistic simulation of file
transfers for applications deployed

on distributed infrastructures

Abstract This chapter presents our work to build a realistic simulator*. Our aim is to
provide a simulated environment as close as possible to the real execution conditions for file
transfers during the execution of applications deployed on large distributed infrastructures.
We first identify several fundamental components for file transfers from real systems. Then
the choice of simulation tools and the implementation design of the simulator are driven

by our concern for the realism of simulated file transfers.

3.1 Introduction

Simulation has been widely used in the research on distributed systems. It allows
researchers not only to evaluate new prototypes or new strategies in a repeatable and
controlled manner, but also enables full-scale evaluations in an acceptable time range.
Simulation also provides access to variables that could hardly be monitored in real systems,
such as network congestion.

Numerous simulation toolkits exist in the literature [Calheiros et al. (2011)a, Klia-
zovich et al. (2012),Casanova et al. (2014),Cai et al. (2017)]. They often offer core func-
tionalities to simulate applications executed in distributed environments. Based on these
core functionalities, users can develop their own simulators for general utilization [Chen
and Deelman (2012), Desprez and Rouzaud-Cornabas (2013)] or only for studying one spe-
cific application [Camarasu-Pop et al. (2013)b, Camarasu-Pop et al. (2016)]. A simulator
usually builds on models of the hardware platform, the software services deployed on the

platform, and a mapping of these services on the hardware resources.

'The code of simulator is available at: "http://github.com/frs69wq/VIPSimulator"

42

3.2. EXECUTION OF THE GATE WORKFLOW ON EGI

Our aim in this chapter is to build a realistic simulator allowing us to accurately
simulate file transfers during the execution of medical imaging workflows deployed on EGI.
To reach this goal, we first investigate the execution of the GATE workflow to identify
the relevant components (e.g., services related to transfers and algorithms used to select
file replica) used in production systems. Then we can abstract them as close as possible
to the reality and implement them in our simulator.

We choose to build our simulator upon the SimGrid toolkit [Casanova et al. (2014)],
which is a scientific project with a 20-year development and that offers accurate network
and computing resource models [Velho and Legrand (2009)]. SimGrid allows researchers
to conduct large scale simulations in a reasonable time without losing the accuracy of
simulation results.

The rest of the chapter is organized as follows. We investigate the real execution
of the GATE workflow on EGI in Section 3.2. It allows us to identify the fundamental
components to realistically simulate file transfers. More details on the SimGrid toolkit
will be given in Section 3.3. The design and the implementation of our simulator will be

presented in Section 3.4.

3.2 Execution of the GATE workflow on EGI

3.2.1 GATE workflow in VIP

Figure 3.1 presents the complete life-cycle of the execution of the GATE application
on EGI. The MOTEUR [Glatard et al. (2008)] workflow engine, which is hosted on the
VIP server, works as a central authority to control the executions of GATE or Merge jobs

based on message exchanges.

VIPServer

GATE jobs Merge job
Download < launch GATE jobs Download<1:+‘
| l |
Aggregate
ComDUte P Check number reached l
[
Upload | — Upload

launch Merge job. H

-« Stop simulation

Data transfer V Data_transfer

Request file_info Request _file_info|
L= > -«

- — » Shared LFC = - —
Register _file_info Register file_info

Figure 3.1: The complete life-cycle of the execution of the GATE application on EGI.

Anchen CHAI 43

CHAPTER 3. REALISTIC SIMULATION OF FILE TRANSFERS FOR APPLICATIONS DEPLOYED ON
DISTRIBUTED INFRASTRUCTURES

Once the compute resources have been acquired, the submitted GATE jobs will begin
to execute the three phases, i.e., download the required files, compute the workload, and
upload their partial results. When the total number of particles has been reached, MO-
TEUR will launch the execution of the Merge job which first downloads all the partial
results uploaded by GATE jobs and then aggregates them. The final result is uploaded
onto a SE on EGI after the aggregation. Finally, MOTEUR stops all the GATE jobs and
the execution of workflow is accomplished.

The downloading of input files and uploading of partial results require transfers over the
network and through different SEs on EGI. Several high-level data management clients are
provided by the EGI middleware, which hide the complexity of the underlying distributed
infrastructure. For instance, VIP leverages the lcg-util client which provides simple com-
mands for users to download or upload files on EGI. In order to realistically simulate the
behavior of these services, we need to take a deeper look at the complete process of a file

transfer on EGI.

3.2.2 Data management services in EGI

Figure 3.2 shows the general data management on EGI. Files are stored on disks
or tapes at different sites. Storage resources are managed by Storage Resource Man-
agers (SRM) [Donno et al. (2008)], which provides a homogeneous interface and allows
to list all files stored in a given SE. SRM is also in charge of translating Storage URLs
(SURL) to the actual file location on disks or tapes and to Transfer URLs (TURL). These
TURLs will finally be used to physically access a file on EGI. At the top level, a Logical
File Catalog (LFC), which may have several distributed copies in the production system,
contains the logical filenames (LFN) of physical files that may have one or multiple replicas

stored on several SEs and are registered by SURLs.

Catalog

LFN
SURL
*~—p

TURL

Figure 3.2: Data management on EGI. Figure extracted from [Loschen and Miiller-
Pfefferkorn]

44 Anchen CHAI

3.2. EXECUTION OF THE GATE WORKFLOW ON EGI

As shown in Figure 3.3, four communications are done among the Worker Node (WN),
which is the computing node inside a site where the jobs are finally executed at, and
middleware services before a file is actually transferred over the network. When a job
executed in a WN attempts to download a file by the using corresponding service from the
leg-util client, the client first requests the LFC to retrieve all the SURLs for the replicas
of the target file. It automatically selects a SURL if multiple replicas are available for the
given file. Then the client contacts the SRM of the selected SE to get the TURL of the
requested file. Finally, the client downloads the file by its TURL. Conversely, to upload a
file, the client sends the file to a SE and then notifies the LFC to register the LFN if it

does not exist or to add the SURL of this SE as a new available replica for existing files.

e " =

: —— |
. IDownload F .
' Ask logical file

3>
>

Send SURLs
: . Request TURL _:

i i File transfer |

4

Figure 3.3: The process for file download on EGI.

The algorithm to automatically choose a replica (i.e., the SURL of a SE) for a file
download used by the lcg-util on EGI is composed of two steps. First, a sorted list for all
available replicas is constructed by lfc_fillsurls (described in Algorithm 1). The order is
set according to the distance to the computing site where jobs execute, that is, first the
SE local to the computing site (line 3 in Algorithm 1), then the same country as the job
execution (line 5 in Algorithm 1), and in last resort, randomly among all remaining replicas
((line 7 in Algorithm 1)). This order allows jobs to benefit of the higher bandwidths from

a closer SE, which was also observed and verified from the execution traces in Chapter 2.

Replicas in this sorted list are then selected by testing their availabilities ((line 6 in
Algorithm 2)). If the first replica is not available, the client will continue to test the next
replica in a round-robin manner until an available replica is found to download the file ((line
7-11 in Algorithm 2)). Several possible reasons may cause the unavailability of a replica in
the real system. For instance, the SRM may fail to list the files in the corresponding SE,
the file status maybe NULL in the SE, or the SRM may fail to transform a SURL into a
TURL, etc.

Anchen CHAI 45

CHAPTER 3. REALISTIC SIMULATION OF FILE TRANSFERS FOR APPLICATIONS DEPLOYED ON
DISTRIBUTED INFRASTRUCTURES

Algorithm 1: lfc__fillsurls
Input: list of available replicas: L
Output: sorted list of replicas: SL
1 for each replica v in L do
2 if 7 is local SE of the job then
3 ‘ add r in the first place of SL;
4 else r is from same country of this job
5 ‘ randomly add r after the local SE in SL;
6
7
8
9

else
‘ randomly add r after all replicas from the same country in SL
end

end

Algorithm 2: The algorithm of replica selection implemented in lcg-util.

1 rep_list = get_replica_list_ from_ LFC();

2 sortedirepilist = lfC_ﬁllSUI‘lS(); #get a sorted list of replicas based on Algorithm 1
3 bool flag = false;

4 while !flag do

5 current_ replica = sorted__rep_ list.current_ replica();
6 flag = Test_ availability(current_ replica);

7 if flag then

8 ‘ copy__file(current_ replica);

9 else

10 ‘ current_ replica = sorted_rep_ list.next_ replica();
11 end

12 end

3.2.3 Summary of the characteristics of the real system

From the middleware services for a file transfer described above, we can identify several

fundamental components to enable the simulation of file transfers on EGI :

e the workflow engine hosted on VIP server, which is a central authority to launch

jobs, monitor the computed particles, and stop the simulation;

o the middleware services for data management (i.e., the functionalities of SEs and

LFC) to enable the interaction processes of a file transfer;

e the jobs executed at different sites to request file transfers.

The implementation of these fundamental components is a mandatory step towards
the simulation of file transfers on EGI. However, to ensure the realism, several aspects
need to be taken into account.

The first aspect is the communication among jobs, SEs, and LFC. In the production
system, these communications are not costless and they determine the minimum duration

of a file transfer occurring on EGI.

46 Anchen CHAI

3.3. THE SIMGRID TOOLKIT

The second aspect is the replica selection service. It decides the source for each down-
load if no explicit SE is imposed. This decision directly impacts the sharing of network
links within one workflow execution. Replicating the exact algorithm in simulation enables
us to better reproduce the distribution of network traffic over links. It can also allow us
to replay the simulation scenario corresponding to the current production conditions.

The last aspect is the life-cycle of jobs. It is another key part for simulating file
transfers. For instance, the queuing time determines when jobs can start to download
the input files and the compute duration will decide when jobs begin to upload their
partial results. Similar queuing time for jobs in a same site will probably cause more
concurrent transfer requests to/from a given SE, while large variable queuing time may
lead to sequential transfer requests. The simulated transfer durations can be quite different
with different patterns of transfer requests. It is thus important to correctly simulate the
complete life-cycle of jobs, especially the starting point of each phase.

Besides all aspects above, we also needs an accurate network model, which enables
us to correctly simulate the duration of each transfer given a precise description for the

network of the underlying system (i.e., EGI).

3.3 The SimGrid toolkit

The SimGrid tookit is our best choice to accurately simulate file transfers. It provides
core functionalities for simulating distributed applications in heterogeneous distributed
environments. This tool is based on fast and accurate fluid models for network, which
allows for large-scale simulations with thousands of file transfers and gives a certain con-
fidence in the realism of the simulated communication time [Velho and Legrand (2009)].
The fluid network model abstracts the individual packets of an end-to-end communication
into a flow, which is characterized by a bandwidth value or data transfer rate. It also takes
into account network contention when multiple communication flows are present. Further
(in)validation studies were conducted to ensure the accuracy of this network modeling in
SimGrid [Velho et al. (2013)], which have been rarely done for other simulation toolkits.

Several programming interfaces are offered in SimGrid, for instance, S4U as the core
API for simulations with Concurrent Sequential Processes (CSP) that interact by ex-
changing messages, SMPI for MPI simulations, and SimDag for DAGs of parallel tasks.
A SimGrid task is composed by an amount of computing load and an amount of bytes
to transfer over network. The total duration of a task consists in the transfer duration
decided by the bandwidth of the route between its sender and receiver and the processing
time of a computing load determined by the computing speed of the worker node.

A platform model is another important component for simulating distributed appli-

cations. It usually describes the characteristics of the compute resources and network

Anchen CHAI 47

CHAPTER 3. REALISTIC SIMULATION OF FILE TRANSFERS FOR APPLICATIONS DEPLOYED ON
DISTRIBUTED INFRASTRUCTURES

resources. It also describes how resources are grouped (e.g., in clusters, data centers, etc.)
and interconnected through a network topology. SimGrid allows users to decouple the
platform from the applications and exploits a hierarchical representation [Bobelin et al.
(2012)] to describe a platform by decomposing it into networking zones. A zone can con-
tain several other zones allowing to have more than one topology model in the platform.

In a SimGrid zone, we can define:
e host: a single hardware resource, with a computing speed and a number of cores;
e cluster: a certain number of hosts interconnected by a local network;

e link: the network connection between hosts or zones with a bandwidth and a latency.

Different bandwidth sharing models can be given for each link;
e router: an entity to declare which link is connected to this point;

e route: the explicit path between two hosts, clusters, or zones.

An example of hierarchical platform in SimGrid is illustrated in Figure 3.4. Circles
represent hosts and squares represent network routers. Bold lines represent communication
links. The zone "AS2" models the core of a national network interconnecting a small flat
cluster (AS4) and a larger hierarchical cluster (AS5), a subset of a LAN (AS6), and a set
of peers scattered around the world (AS7).

AS1 ¢

®) | T £ ™
Full Dikstra @~ Emply (&1 (@
® o/\/o +ooords- .
\/ l/. (R
—= —_—nm) r-

_ e ASS | o_-/ ’I—o)
—_— (o—m) ['-—o)
AS2 - Floyd / —/; g —

1|1

/ \0"" lasz (o] (o)

3 / \ B ,_ -

\ g—"8 ASs Blassg [@0 - 0000
0—-w\. Full) ‘I 11 1111
T) e W | T e

\ __4s5-38 based

Rule- m AS4 Rule- mAS5-1| [AS5-2m Rule-

based | based | | based

1 11l 1l 11 11 1

0000 _ ee00 oo 00 - 0000

Figure 3.4: Graphical representation of hierarchical platform in SimGrid, illustrated from
[Bobelin et al. (2012)].

3.4 Simulator design

A first simulator of the execution of GATE has been designed and used in [Camarasu-

Pop et al. (2013)a]. However, the simulation of file transfers was simplified because the

48 Anchen CHAI

3.4. SIMULATOR DESIGN

focus was on the compute and merge phases of the GATE application. Authors chose a
single file size of 15MB, which had a simulated median transfer time similar to the real
transfers. Moreover, only one replica per file was simulated.

In our simulator, we attempt to replay all file transfers during the execution of GATE
workflow on EGI. These transfers may have different file sizes and multiple file replicas
scattered onto different SEs with respect to the execution instances. The middleware
services related to data management are designed as close as possible to the actual behavior
in the production system. As our final aim is to improve the file management at the
application level, dynamically and correctly simulating the behavior of job scheduling and
resource allocation in real system is not our focus in this work. We thus assume that the
jobs composing the workflow have already been submitted and that the compute resources
have already been acquired. Besides, we only consider the normal situations where all the
partial results files produced by GATE jobs are downloaded by the Merge job and no
particular failure happens (file transfer or job execution).

Similar to previous work, the VIP server is abstracted as a centralized point to control
the execution of jobs. It determines when to launch the execution of simulated jobs (GATE
or Merge) and when to stop them. We choose to simulate the interactions between VIP
server and jobs by message exchanges with the same cost as the communication between
jobs and middleware services, which will be explained in section 3.4.2. The main messages
handled by the simulated VIP server are job connection, the number of computed particles
by GATE jobs, and job disconnection. Based on this control-message mechanism, the
complete logical life-cycle of the GATE application, as shown in Figure 3.1, is implemented
and simulated. Hereafter, we will detail our additional efforts to improve the realism of

the simulation of file transfers.

3.4.1 Simulated services for data management on EGI

SEs are designed to process two types of transfer requests from jobs: download request
and upload request (with or without timeout). To reflect the fact that SEs can receive
and process multiple simultaneous requests from jobs, each simulated SE is implemented
with a parameter defining the maximum number of simultaneous requests it can receive.
This value is currently set to 500, which corresponds to the maximum number of jobs
in a GATE workflow. This value ensures that no unwanted contention is introduced by
the simulator. However, it gives us the opportunity to simulate one of the phenomena
highlighted in Section 2.4.2.

We can effectively further improve the realism for simulated SEs by investigating the
configurations of different SEs to find out the general number of parallel requests accepted
by each SE on EGI. Simulated SEs are assumed to have a large number of cores (48) to

ensure that several simultaneous requests can be processed at same speed.

Anchen CHAI 49

CHAPTER 3. REALISTIC SIMULATION OF FILE TRANSFERS FOR APPLICATIONS DEPLOYED ON
DISTRIBUTED INFRASTRUCTURES

The Simulated LFC allows jobs to register files, list all registered files, and list all
replicas for a given file. It also enables users to specify the replica locations for files
registered in LFC before simulation. This information is stored in a file which is at-
tached as an argument of the simulated LFC service, following the format: file name, size,
<se_l:se_2:....se_n>. Such file is generated from the execution trace for each work-
flow. An example of the replica locations for a GATE workflow on EGI is illustrated in

Figure 3.5.

inputs/gate/gate.sh.tar.gz,73039, tbnl8.nikhef.nl:ccsrm02.in2p3. fr:marsedpm.in2p3. fr
inputs/gate/release_Gate7.1_all.tar.gz,501843312,bohr3226.tier2.hep.manchester.ac.uk:srm-
biomed.gridpp.rl.ac.uk:shgsel.in2p3.fr:ccsrm@2.1in2p3.fr:marsedpm.in2p3. fr

inputs/gate/file-27434930370786.zip,6901,dc2-grid-64.brunel.ac.uk
inputs/merge/merge.sh.tar.gz, 90104427, marsedpm.in2p3. fr
inputs/merge/file-27434930370786.zip,6901,dc2-grid-64.brunel.ac.uk

Figure 3.5: Example of a file catalog.

Each line corresponds to one file registered in LEC. The first line, for example, points to
the "gate.sh.tar.gz" file, whose logical path is "inputs/gate/". This file has a size of 73,039
bytes and has been replicated on three SEs on EGI: "tbn18.nikhef.nl", "ccsrm02.in2p3.fr",
and "marsedpm.in2p3.fr'.

At the beginning of the simulation, the simulated LFC parses this predefined file catalog
to retrieve the replica locations for each file. The file information (e.g., file name, the size)
will also be stored at the simulated SEs which host a replica for the file. When SEs receive
a download request for a file from jobs, they will generate a "SimGrid task" with the
amount of bytes corresponding to the size of requesting file.

The replica selection service is implemented according to the exact algorithm shown
in Algorithm 2. The SURL of each SE is represented by the SE name. Since we do not
simulate any transfer failures, the first replica in the head of the sorted list is always
available (line 6 in Algorithm 2) and it is always selected as the source to download the
corresponding file. However, if a timeout is imposed and the simulated transfer is not
accomplished before the timeout value, it will be systematically killed and the next replica

in the sorted list will be attempted (line 10 in Algorithm 2).

3.4.2 Communication cost for file transfers

In Chapter 2, we found that the minimum duration of transfers on EGI was one second
based on the analysis of the real transfer durations. We decided to reflect this minimum
duration in our simulator by decomposing it into 900 milliseconds as communication cost
and 100 milliseconds as network latency.

We equally decompose the 900 milliseconds into four messages, corresponding to Fig-
ure 3.3, and each message thus costs 225 milliseconds. These communication messages

are simulated by "SimGrid tasks'. As the computing speed for service nodes (i.e., SEs

50 Anchen CHAI

3.4. SIMULATOR DESIGN

and LFC) is defined as 5GFlop/s according to what we found in execution logs for the
compute nodes, we therefore instantiated these "SimGrid tasks" with a computing load of
1.125GFlop (5GFlop/s x 0.225s) and a negligible amount of bytes to transfer.

The remaining 100 milliseconds are divided into four times 25 milliseconds representing
the network latency for each of the messages. Indeed, each message goes through four links:
two private links, the common backbone interconnecting worker nodes in a site, and the
link that connects a site to a given SE. We decide to instantiate 5 milliseconds as latency

for private links and 7.5 milliseconds for the two other links.

Simulated File transfer

Communication Network latency File transfer duration

900ms (fixed) 100ms (fixed) Simulated based on FileSize
Figure 3.6: Three parts of a simulated file transfer in our simulator.

Finally, as shown in Figure 3.6, the duration of a simulated file transfer in our sim-
ulator consists of: (i) the simulated communication costs (i.e., 900 ms), (ii) the network
latency across the routes (i.e., 100 ms), and (iii) the processing time of the "SimGrid task"
generated by the SE. If a timeout is used, the total duration is the cumulative time of all

transfer attempts.

3.4.3 Parameter injection

Given the complexity of the whole real system, it is difficult to correctly simulate all
parameters since it would require to establish accurate models for all of them and also to
validate them, which can be even more challenging. To better estimate the starting point
of each phase in the life-cycle of jobs, we distinguish two strategies to decide the values of
parameters in our simulator: inject or estimate.

Injecting a parameter for simulating the execution of a workflow means that the value of
this parameter is directly extracted from the execution traces for the given workflow, while
estimating a parameter means that the value is computed by a predefined model during
the simulation execution. This distinction gives us more flexibility to design simulation
scenarios focusing on the parameters that we want to investigate without losing realism
for the other parameters.

The simulation strategy chosen for the different parameters related to file transfers are
summarized in Table 3.1. The queuing time, compute durations, and upload file size for
GATE or Merge jobs are always injected in our simulator. These are the parameters that
we do not plan to investigate in the current study. We want these values to be as precise

as possible in order to avoid additional bias for studying file transfers. The durations of

Anchen CHAI 51

CHAPTER 3. REALISTIC SIMULATION OF FILE TRANSFERS FOR APPLICATIONS DEPLOYED ON
DISTRIBUTED INFRASTRUCTURES

file transfer are simulated by using the different network sharing models defined in the
SimGrid toolkit. The download sources for jobs are either imposed to match the same
SEs in real execution or decided by the simulated replica selection service, according to

the purpose of the simulation scenarios.

Parameter Strategy
queuing time o always injected
compute durations e always injected
upload file size for jobs o always injected
file transfer durations o always estimated by network models in SimGrid
file replica for each transfer o injected (the same as in real transfer)
o estimated by the replica selection service

Table 3.1: Strategy for different parameters in simulator.

Our long-term aim is to construct a realistic simulator which can capture the actual
behavior of the real production systems (i.e., VIP and EGI), instead of a theoretical
simulator. Therefore, each time we change the simulation strategy of a parameter from
inject to estimate, it requires to build an appropriate model and more importantly, to

validate its performance by comparing the obtained results with the contents of real traces.
3.5 Conclusion

In this chapter, we presented our simulator built upon the SimGrid toolkit to study
file management scenarios for applications deployed on EGI via VIP. We considered the
specific workflow of GATE, which is representative of the deployment process of many other
applications managed by VIP. We simulated the relevant components and the complete
life-cycle of workflow executions by assuming that the jobs composing the workflow have
already been created and that the compute resources have been acquired.

In order to improve the accuracy of the simulation of file transfers, we designed and

abstracted the actual behavior of the simulated services as follows:

Abstracting a file transfer into four messages among different components;

o Instantiating the cost of control messages based on the transfer latency derived from

execution traces;
e Implementing the same replica selection algorithm as in the EGI middleware;

e Injecting the exact value of important parameters related to workflow executions.

In the next chapter, we will present how to construct realistic models of EGI to replay
the executions of GATE workflow with a focus on file transfers by using our simulator.
These ad-hoc models will be evaluated by comparing the simulated file transfers to the

measured file transfers registered in the execution traces of GATE workflow.

52 Anchen CHAI

Chapter 4

Realistic platform models for

replaying real workflow executions

Abstract. In this chapter', we build realistic ad-hoc platform models to replay the
executions of the GATE workflow on EGI. Starting from a simplified but widely used
platform model, we propose incremental improvements to increase the accuracy of file
transfer simulation thanks to a thorough analysis of both trace contents and simulation
results. The overall improvement of these ad-hoc models is evaluated by confronting the
simulation results to the ground truth of the actual executions registered in the execution
traces. Results show that our proposed model largely outperforms the state-of-the art model

to reproduce the real-life variability of file transfer durations.

4.1 Introduction

A platform model is a critical component for the simulation of applications deployed on
distributed infrastructures. The realism of the platform model strongly impacts the level
of confidence one can have in simulation results, especially if the evaluation metrics are
directly influenced by the platform model, such as file transfer durations which depend on
the network topology and network bandwidths. The accuracy of the platform model is also
key to the applicability of simulation findings to real production systems since different
platform models may lead to different qualitative assessment for the same optimization
strategy.

As we have pointed out in Chapter 1, the configurations of the platform models used
to conduct simulations are often simplified in the literature. For instance, the network

topology of Grids is simplified by a multi-tier [Ranganathan and Foster (2001), Rasool

'Results described in this chapter have been published in [Chai et al. (2017)]: Chai, Anchen, et al.
"Modeling Distributed Platforms from Application Traces for Realistic File Transfer Simulation." Proceed-
ings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE
Press, 2017.

53

CHAPTER 4. REALISTIC PLATFORM MODELS FOR REPLAYING REAL WORKFLOW EXECUTIONS

et al. (2009),Lee et al. (2012)] or a sibling tree model [Lamehamedi et al. (2002),Fadaie
and Rahmani (2012)]. Moreover, the network bandwidths are usually instantiated by a
limited number of theoretical values [Shorfuzzaman et al. (2010), Camarasu-Pop et al.
(2013)b, Dayyani and Khayyambashi (2015), Gupta et al. (2017)].

In this context, we propose a realistic network topology and an accurate bandwidth
instantiation methods for modeling our target platform (i.e., the Biomed VO of EGI).
Based on the information found in each individual execution trace, we generate ad-hoc
platform models to replay the execution of each workflow. The realism of our platform
models will be evaluated by confronting the simulation results to the ground truth of the
actual executions registered in the traces. To ensure that the simulated file transfers occur
between the same hosts as in the real execution, we inject the file replica involved in the
corresponding real transfers as parameters for jobs in our simulator.

The rest of the chapter is organized as follows. In Section 4.2, we detail all the improve-
ments based on observations from execution traces for constructing the realistic network
topology and accurate bandwidth instantiation methods. The overall evaluation of our

proposed model will be presented in Section 4.3.

4.2 Build partial platform model from execution traces

In this section, we detail incremental improvements to the platform model to increase
the accuracy of file transfer simulation thanks to a thorough analysis of both trace contents
and simulation results. In order to evaluate the impact of our proposed improvements, we
first introduce a widely used model in literature which is considered as a baseline model
for our work. Then the impact of each improvement for the accuracy of simulated file
transfers are illustrated on a particular case extracted from the execution traces collected

in Chapter 2.

4.2.1 Baseline model

The quality of file transfer simulation is mainly impacted by two main features of
a platform model: the interconnection topology and the instantiation of network link
bandwidth. To define a baseline for our study, we consider a first platform model that only
minimally relies on the execution traces for two important features, i.e., the characteristics
of the computing nodes (e.g., name or processing speed) extracted from the execution
traces and their hierarchical organization in clusters and sites.

Without information on the interconnection topology coming from the traces, we have
to assume a simple and uniform connectivity among the compute and storage nodes that
compose the distributed platform. A way to model such a platform is to connect each SE

to all the computing entities through a single backbone as shown in Figure 4.1.

54 Anchen CHAI

4.2. BUILD PARTIAL PLATFORM MODEL FROM EXECUTION TRACES

Figure 4.1: Graphical representation of the network topology for baseline model.

To instantiate different types of network links, we use the nominal bandwidth value of
the network card for the compute nodes, which is typically of 1 Gb/s. This information is
extracted from the traces, but does not depend on a specific run. For the storage elements,
we consider an interconnection bandwidth of 10 Gb/s. The rationale is that SEs usually
are large disk bays, hence with a better connectivity than simple compute nodes to ensure
a good throughput. The latency for links is set according to the instantiation explained in
Section 3.4.2 of Chapter 3 (i.e., 5 milliseconds for private links and 7.5 milliseconds for the
external links). Such a model can be considered as state-of-the-art as it has been used for
the simulation of similar workflows running on the same distributed platform [Camarasu-
Pop et al. (2013)b, Camarasu-Pop et al. (2016)], but in a context where the focus was not
on file transfers.

Figure 4.2 presents the file transfer durations (in seconds) of two of the input files
downloaded by each of the hundred jobs composing one specific workflow instance, as
logged in the traces and simulated with the aforementioned model. The respective sizes of
these two files are 73 kB (wrapper file) and 121.5 MB (GATE release file). These transfers
are representative of all the other file transfers for this workflow, but also of all the other
studied workflows.

This figure illustrates two major drawbacks of relying on a "theoretical" bandwidth of
10 Gb/s to instantiate the platform model. First, the duration of the file transfers are
globally and severely underestimated. For the release file, the simulated durations are in
the [1.186s; 2.437s| range, while the measured transfer times are in the [2s; 223.5s] range.
Similar differences occur for the wrapper file. Second, and more importantly, this model
fails to reproduce the variability because it does not properly capture the competition for

resources between certain transfers due to inaccurate transfer time estimations.

4.2.2 Improvements based on execution traces

To address the two issues raised by a uniform bandwidth instantiation of the link that

connects a SE to the rest of the platform to a nominal value of 10 Gb/s, we exploit the

Anchen CHAI 55

CHAPTER 4. REALISTIC PLATFORM MODELS FOR REPLAYING REAL WORKFLOW EXECUTIONS

Wrapper Release

5 -
- Measured 2001
0
g 4 Simulated
g 41
&) 150 A
D
(7]
£
= 3 100-
©
@
8 2 - 50 A

1 aoomasudtn om0 M st A A 0- s YT

0 25 50 75 100 0 25 50 75 100
Jobs

Figure 4.2: Measured? and simulated (with a 10 Gb/s link per SE) transfer durations for
two input files downloaded by each job in the £NUfzs workflow instance.

contents of the execution traces. Our aim is at using values that are more representative
of the actual execution conditions. We thus incrementally improve the baseline model by

leveraging the traces.

Aggregation methods for instantiate links

We consider two common-sense instantiation methods, which have their respective pros
and cons, to decide the bandwidth of each link. First, we compute the inter-quartile
average (i.e., only data between the first and third quartiles is used) value over all the
observed transfers to/from a given SE. Using average values is likely to be more realistic
when it comes to reproduce the behavior of a single workflow execution. It reflects the
network connectivity as experienced by the application. Inter-quartile average also allows
to reduce the bias caused by outliers (abnormally long transfers). The sharing of network
resources by concurrent transfers is thus directly captured in the model and not handled by
the simulation kernel. The drawback of this average-based approach is that the resulting
instantiation is limited to replay the file transfers in the workflows used to produce the
average value and it will be less significant to simulate other workflow executions since
they may experience different network connectivity due to different external traffic.

Second, we determine the observed maximum value over all these transfers. This
allows us to get an approximation of the nominal capacity of the network link. In that
case, we let the simulation kernel determine how the network resources are shared among

concurrent transfers. The main advantage of such an instantiation of the platform model

2 For the sake of readability, a data point corresponding to a transfer of the wrapper file that lasts for
65 seconds is not displayed.

56 Anchen CHAI

4.2. BUILD PARTIAL PLATFORM MODEL FROM EXECUTION TRACES

is that it can be reused beyond the simulated replay of the execution that led to its
generation. It can also be aggregated, both spatially and temporally, with information
obtained from other traces.

Figure 4.3 presents the same type of results as Figure 4.2, but here the simulation
results obtained with a uniform 10 Gb/s instantiation have been replaced by those obtained
with an average or maximum bandwidth value for each storage element. We use the same

interconnection topology.

Wrapper Release
5-
- Measured 200+
0
2 A Simulated (Average)
S : - 150 -
8 = Simulated (Maximum)
7
E 34
E 1009 saaca A A AAMNM A AN MA A AM A
o
§ 2
S 27 -
a 07 ., ey L A% A A
A G A AL AL S Ak M.
R SRR, T
0 25 50 75 100 0 25 50 75 100
Jobs

Figure 4.3: Measured? and simulated (with average or maximum bandwidth for each SE)
transfer durations for two input files downloaded by each job in the £NUfzs workflow
instance.

Using trace contents to instantiate the bandwidth values of the network links partially
addresses the capture of the variability of file transfer duration, especially for the large
release file. However, both the aggregation methods fail to be accurate. Averaging the
observations tends to overestimate the transfer times (by a factor of 2 in average with a
median of 1.5, and a maximum of 14.5), while using the maximum leads to an underesti-
mation of at least a factor of 2 for half of the transfers. This denotes biases that require

further investigation for the derived bandwidth for links.

Distinguishing transfer type and file size

We then looked at the distribution of the individual bandwidths derived from the file
transfers that involve a given SE in a given workflow trace. We notice great difference
in some cases, sometimes of more than two orders of magnitude. We identified three

root causes to this variability. First, the transfer latency, which is one second (identified

2 For the sake of readibility, a data point corresponding to a transfer of the wrapper file that lasts for
65 seconds is not displayed.

Anchen CHAI 57

CHAPTER 4. REALISTIC PLATFORM MODELS FOR REPLAYING REAL WORKFLOW EXECUTIONS

in Chapter 2), is negligible with regard to the total transfer time. However, for upload
tests (i.e., 12-byte file transfers), this leads to unrealistically low bandwidth values, i.e., of
less than a kilobit per second. Second, the limited precision of the timings logged in the
traces leads to almost instantaneous transfer times for files of a few kilobytes. Then the
derived bandwidth is unrealistically high, i.e., greater than 10 Gb/s. Third, we observed
a sometimes large difference between the upload and download of the partial result files
produced by the jobs. Each job uploads such a file to its local SE which is then downloaded
by the merge job from the same SE. However, the concurrency conditions in which these
transfers occur are different and impact the transfer times. The merge job downloads all
the partial results in sequence while several worker nodes can upload their files to the same
SE simultaneously. Consequently, depending on the direction of the transfer, i.e., to or

from a given SE, the derived bandwidth may greatly differ.

All these observations are likely to negatively impact the computation of the average or

maximum bandwidth of the link connecting a storage element to the rest of the platform.

To address these issues, we propose to group the transfers by type (i.e., upload test,
each of the three input files, and both upload and download of partial result files) and
direction (i.e., to or from a SE) before computing the average and maximum bandwidth
values. Bandwidth estimations are then performed based on specific types for which the
measured file transfer durations are assumed to be more reliable. For transfers from a
SE, we favor that of the release file, whose larger size prevents to be hit by the timing
precision. Similarly, for transfers to a SE, the upload of partial results is preferred over

the more sensitive initial upload tests.

Figure 4.4 shows the impact of the average bandwidth computation method on the
simulation of the transfer of the release file by jobs in the £NUfzs workflow instance. The
transfer of this particular file is the one for which this improvement is the most noticeable,
hence our focus on these results. The Average (all) data are the same as in Figure 4.3,
while the Average (grouped) data refer to the distinction of transfer type and file size. In
that case, the average bandwidth from a given SE to any compute site is computed based
only on the transfers of the release file found in the traces. We also distinguish the SE

from which the file has been downloaded in this figure.

The proposed improvement reduces the overestimation of the transfer duration. Simu-
lated transfers, whose durations were twice as long in average (and up to 14.5 times longer)
than the actual transfers and are now 1.2 times shorter in average (with a maximum over-
estimation by a factor 7.5). However, we can clearly see in Figure 4.4 that, for a given SE,
the model still fails to capture the variability in transfer durations. To further polish our

platform model, we focus on a specific SE in the next improvement.

58 Anchen CHAI

4.2. BUILD PARTIAL PLATFORM MODEL FROM EXECUTION TRACES

Measured 4 Average (All) Average (Grouped)
ccsrm02.in2p3.r marsedpm.in2p3.fr sbgsel.in2p3.fr

200 -
m
©
c
8 150-
@
)
A=
\C/ 100+ AMAA AAAMMMA MMAAAAM A
i)
<
> 50+
a) A A A A AA

A AN A AMML AMIAL A MMM
0-

0 25 50 75 100 O 25 50 75 100 0 25 50 75 100
Jobs

Figure 4.4: Measured and simulated (with global or grouped average bandwidth for each
SE) durations for the download of the release file by each job in the £NUfzs workflow
instance.

Distinguishing computing sites

From the fine-grained analysis of transfer durations in Chapter 2, we found that the
connectivity to different computing sites from a given SE was very heterogeneous on EGI.
Consequently, using one single backbone to connect each SE to all computing sites leads
to an uniform transfer time to all the computing sites, even though the bandwidth of the

backbone is computed by leveraging the trace contents (as in Figure 4.4).

The bottom part of Figure 4.5 shows an important variability in the average bandwidth
when we distinguish the downloads of the release file from the marsedpm.in2p3.fr storage
element in the £NUfzs workflow instance by computing site. The global average bandwidth
for the SE, as computed in the previous section and depicted by a dashed line, is of
33.52 Mb/s. This value is a good approximation for the INFN-BARI and UKI-LT2-RHUL
sites but an overestimation by a factor of around 5 for the INFN-PISA and UKI-LT2-IC-
HEP sites and a clear underestimation for the UKI-LT2-QMUL site.

This large deviation to the global average requires to modify the network topology by
separating the single backbone into distinguished links between a SE and the computing
sites, which is depicted in Figure 4.6.

Simulation results with this new topology are presented in the top part of Figure 4.5.
The "By SE" data corresponds to the middle panel of Figure 4.4 while the "By SE-Site"

data relies on the distinct average value computed for each computing site. To improve

Anchen CHAI 59

CHAPTER 4. REALISTIC PLATFORM MODELS FOR REPLAYING REAL WORKFLOW EXECUTIONS

200 A
— . Measured = ‘mEm = =
) o o
'8 1504 A BySE
(@] . " EE iy |
3 = By SE-Site
7]
= 100 A
c
i)
‘C_U' A A A AA A A A A A A.AA. A AA A A
= 504 .
8 ™ . g NN mc

[1]
0- T T T T T

Q
_§ 250 .
= 200 A
= 150
T 1004
T e S
c 2 ~
] 0- T .I .I T T
aa] INFN-BARI INFN-PISA UKI-LT2-IC-HEP UKI-LT2-QMUL UKI-LT2-RHUL

Computing Sites

Figure 4.5: Measured and simulated durations for the downloads of the release file from
the marsedpm.in2p3.fr SE in the £NUfzs workflow instance (top). Simulated times are
obtained with a single average bandwidth (SE) and distinct average bandwidths (SE-
Site) for each site (bottom).

Figure 4.6: Graphical representation of the network topology after separating the single
backbone. Red boxes represent the limiter links.

the readability of the figure, we introduce a horizontal jitter to separate data points cor-
responding to similar durations. We can observe that this improvement can significantly
improve the accuracy of simulated transfer durations for the average-based model.

Now we make a similar analysis for the alternate approach based on the determination
of the maximum observed bandwidth. As for the average, we see in Figure 4.7 (bottom)
an important deviation from the global maximum value of 321 Mb/s for most of the
computing sites. We also see in Figure 4.7 (top) that the use of a single value for all the
sites also leads to similar simulated durations for all the transfers.

In this version of the model, it should be noted that distinguishing the links between a

SE and the computing sites may bias the way the simulation kernel handles the sharing of

60 Anchen CHAI

4.2. BUILD PARTIAL PLATFORM MODEL FROM EXECUTION TRACES

Measured

20001 & gysE
By SE-Site

1000

Duration (in seconds)

o
%
>
>
4
4
>
>
>
>
4
S
3
|3
»
| 4
>
>
4

w

o

o
f

N

o

o
f

=

o

o
f

Bandwidth (in Mb/s)

o
o
L]

INFN-BARI INFN-PISA UKI-LT2-IC-HEP UKI-LT2-QMUL UKI-LT2-RHUL
Computing Sites

Figure 4.7: Measured and simulated durations for the downloads of the release file from
the marsedpm.in2p3.fr SE in the £NUfzs workflow instance (top). Simulated times are
obtained with a single maximum bandwidth (SE) and distinct maximum bandwidths
(SE-Site) for each site (bottom).

the network resources. Indeed, separated links mean independent traffic and this can lead
to a cumulative simulated bandwidth greater than what is observed from both the SE and
computing site point of views. To prevent such a bias, we introduce the notion of limiter
links whose bandwidths are determined by taking the maximum value observed over all
the transfers to/from a SE or a given site (represented by red boxes in Figure 4.6).

Unlike the improvement observed for the average-based model, we see here that de-
termining a distinct maximum bandwidth for each site dramatically degrades the quality
of the simulation. This suggests that our estimation of the maximum value is biased
and returns underestimations of the nominal bandwidths of the links between the storage
element and the different computing sites.

More precisely, the modification of the model improves the simulation accuracy when
there are only a few transfers from the SE to a computing site (i.e., for the INFN-BARI
and UKI-LT2-QMUL sites). When there are more transfers from the SE to a computing
site, the durations become, sometimes largely, overestimated. We thus assume that our
model fails to capture an important phenomenon, that we identify and take into account

in the next section.

Correcting the maximum bandwidth

Figure 4.8 presents the part of the Gantt chart of the execution of the fNUfzs workflow
instance, when the nine downloads of the release file by worker nodes in the INFN-PISA
site from the marsedpm.in2p3.fr SE take place.

Anchen CHAI 61

CHAPTER 4. REALISTIC PLATFORM MODELS FOR REPLAYING REAL WORKFLOW EXECUTIONS

1 -
2 -
3 -
44
5 -
6 -
7 -
8 -
9- T T T T
4200 4300 4400 4500
Time (in seconds)

Transfers

Figure 4.8: Gantt chart view of the transfers of the release file from the
marsedpm. in2p3.fr SE to worker nodes in the INFN-PISA site.

We can see that almost all these transfers are simultaneous and of durations in the
same range (from 154.4 to 193.4 seconds). As a consequence, the derived bandwidth of
each individual transfer is impacted by the competition with the other transfers for a
single shared network resource. In other words, the observed bandwidths correspond to
the shares of the link capacity that are respectively allocated to each transfer, but they
do not reflect the total capacity of the link itself.

To get a better estimate of the nominal capacity of the link, we thus have to first
compute a correcting factor to the bandwidth derived from each transfer. The computation
of this factor, during the generation of the platform model, somehow corresponds to the
inverse of the computation made by the simulation kernel to assign a share of the network
resource to a given transfer. We proceed as follows. First we sample the duration of the
transfer in at most 50 uniform intervals. For instance, in Figure 4.8, we split the first
transfer (in blue) in 20 intervals. For each of them, we estimate the number of concurrent
transfers, hence how the network resource is shared. The first transfer will thus have only
one ninth of the capacity of the link for the seven first interval but one third of it during

the last interval. Then we compute the correcting factor as:

f==T (4.1)
=1 ci
where n is the number of intervals, and ¢; the number of concurrent transfers in the "
interval. In our example, we obtain a correcting factor of 20/(7/8410/74+1/6+1/441/2)
= 6.21 for the first transfer.

For each transfer, we compute three different correcting factors by estimating the
concurrency for each SE, each site and each (SE, Site) couple. This allows us to correct
the instantiation of the link between a SE and a site and of the limiter links.

Figure 4.9 shows the impact of this correction of the maximum observed bandwidth
on the results presented in Figure 4.7. We can see that the important overestimation

of the transfer durations disappears and the simulation accuracy is globally improved.

62 Anchen CHAI

4.2. BUILD PARTIAL PLATFORM MODEL FROM EXECUTION TRACES

However, this model now leads to a moderate underestimation of the durations for two
sites (INFN-PISA and UKI-LT2-RHUL), which is caused by different phenomena.

A AA A AA
A
Measured
o7 . .
% 2000 - 4 Maximum (w/o correction)
c
3 Maximum (w/ correction)
7}
»n
k=
=
c -
S 1000
©
o
8 A A A
A M A MAAAAAY
0- A oA
INFN-BARI INFN-PISA UKI-LT2-IC-HEP UKI-LT2-QMUL UKI-LT2-RHUL

Computing Sites

Figure 4.9: Measured and simulated durations for the downloads of the release file from
the marsedpm.in2p3.fr SE in the £NUfzs workflow instance with and without correction
of the maximum observed bandwidth.

For the INFN-PISA site, two transfers (second and fourth from top in Figure 4.8) start
before a bulk of seven transfers. While these two transfers last for roughly the same time
as the others in the real execution, they will experience less concurrency in simulation and
will then be faster to complete (in around 20 seconds). More importantly they will end
before the other transfers start, which in turn impacts the concurrency they experience
and their simulated duration. This phenomenon corresponds to the external network load
which has been identified in Chapter 2 and that our model currently fails to capture.

For the UKI-LT2-RHUL site, we observed that the transfer durations differ depend-
ing on which cluster in the site is involved. We propose to illustrate and address this

phenomenon in the next section using a more glaring example.

Distinguishing clusters in sites

As we have found in Chapter 2 that compute nodes in different clusters might not
share one common link inside a computing site, using a single bandwidth value for the
site, be it the average or the maximum, still fails to capture that cluster-related difference
in performance, and leads to inaccurate simulations (as shown by "By Site" in Figure 4.10).

To improve our models, we propose to differentiate the links that connect the different
clusters in a site to the rest of the platform (see Figure 4.11). Note that the clustering
of worker nodes is based only on information available in the trace, i.e., name, number of
cores, and processing speed, and do not leverage information by the sites themselves. As
for the previous improvements, we modify the way we aggregate the individual bandwidth
values to take this distinction into account. We also compute specific correction factors

for the model based on the maximum bandwidth.

Anchen CHAI 63

CHAPTER 4. REALISTIC PLATFORM MODELS FOR REPLAYING REAL WORKFLOW EXECUTIONS

Average Maximum
400 n am
EEE N
[|
n | Measured
n
'g 300 4 A By Site
(8] . By Cluster .
% . . o o
c 2004 u A pa— A * ke in atdlgt - -+ By (Cluster-SE) 6 %e .
1= + +H
e} T
© +
5 100
[|
&) .+ +tm . o '
++
. . -
0- o+ A ER At AN A AMA A
T T T T T T
nelwn-32cores slwn-32cores solwn-4cores nelwn-32cores slwn-32cores solwn-4cores
Clusters

Figure 4.10: Measured and simulated durations for the downloads of the release file from
the sbgsel.in2p3.fr SE to the INFN-PISA site in the LQz3XJ workflow instance with
and without distinction of the clusters.

Figure 4.11: Graphical representation of the network topology by differentiating the links
within a computing site. Red boxes represent the limiter links.

Unfortunately, this modification improves the accuracy of the simulations only par-
tially. Figure 4.10 highlights two limitations with different causes but a common solu-
tion. For the average-based model, we observe an overestimation of the durations for the
slwn-32cores cluster. This is because the link between the SE and the site becomes a
bottleneck. Indeed, the average bandwidth we compute for this link is hindered by the bad
performance obtained for the solwn-4cores cluster. Conversely, in the maximum-based
model, we see an underestimation of the durations for the solwn-4cores cluster. In this
case it is the better bandwidth from another SE (not displayed in Figure 4.10) that defines
the maximum observed bandwidth for this cluster. These two situations advocate for a
common improvement that consists in differentiating the links not between a site and a

SE, but between each individual cluster and a SE.

The results obtained with this final improvement are labeled as "By Cluster-SE" in

Figure 4.10. We can see that, as expected, it completely solves the inaccuracy issue

64 Anchen CHAI

4.3. OVERALL EVALUATION OF OUR MODEL

for the average-based model. For the maximum-based model, the proposed distinction
improves the accuracy only partially. This can be explained by some abnormally long
transfers, whose causes have been summarized in Chapter 2, in the real execution that
have a shorter simulated duration which in turn modifies the level of concurrency on the

network resource. We can see three such transfers in Figure 4.10.

4.3 Overall evaluation of our model

After illustrating the improvement of each proposed modification on a particular case,
we then evaluate our improved platform models by confronting simulation results obtained
using these models to other simulation results using the baseline model and to the reference
given by the real transfer durations extracted from traces. We consider 24 workflow
instances, which match the current capabilities of our simulator presented in Chapter 3,
out of the 60 collected workflows. We discard 31 workflows in which there exist particular
failures (job or file transfer) and 5 workflows that have been severely impacted by the
scheduled maintenance shutdown of a specific SE ("ccsrm02.in2p3.fr"), which was identified

in Chapter 2.

4.3.1 Analysis of simulated transfer durations

We evaluate the simulated transfers obtained from three platform models: the baseline
(named 10G-SotA), Average and Mazimum model (our final proposed topology shown in
Figure 4.11 by using different instantiation method). For each model, we simulate 5,316
download transfers. Among these, 1,772 files (one third) correspond to the GATE release
file and are larger than 121 MB. The other files correspond to the GATE inputs and
wrappers and are smaller than 130 kB. Figure 4.12 shows a summary of the measured and
simulated transfer durations for these two sets of files.

For the GATE inputs and wrappers files, 80% of these 3,544 small file transfers last
for less than 1.3 seconds in the real execution. The minimal incompressible delay imposed
by control and network latency being of one second, there is no possible discrimination
between the models and very few mis-estimations. We also observe 26 transfers (of the
73 kB wrapper file) whose durations are close to 64.5 seconds. The only common point to
all these transfers is the storage element use to download this wrapper file. This highlights
an issue with this specific SE rather than a modeling problem. However, it is interesting
to note that both the Average and Mazimum models are able to correctly reproduce one of
this longer transfers. The proposed models are also able to partially capture the variability

of 15% to 19% of the remaining transfers, while the 10G-SotA model cannot.

Anchen CHAI 65

CHAPTER 4. REALISTIC PLATFORM MODELS FOR REPLAYING REAL WORKFLOW EXECUTIONS

Input and Wrapper Files (< 130 kB) Release Files (> 121 MB)

o
oo

60 -
750 1

40+

500

Durations (in seconds)

20+ 2501

onam
o
I—q..o e @ e e oo 3 .

P e I

Measured 10G-SotA Average Maximum Measured 10G-SotA Average Maximum

Figure 4.12: Graphical summary of measured and simulated (with the 10G-SotA, Average,
and Maximum models) file transfer durations (in seconds).

In the remaining of this section, we focus our analysis on the transfers of the larger
GATE release file. The longer durations allow us to get a better insight on the respective

strengths and limitations of the different models.

We complete Figure 4.12 with Table 4.1 that gives the corresponding statistics for
the transfers of the release file. The poor quality of the 10G-SotA model is blatant: it
largely underestimates all the transfer durations and cannot capture the variability that
characterizes the real executions. The proposed Average and Mazimum models, however,
are able to reproduce that variability and correctly simulate the longest transfers. We also
note a tendency of the Mazimum platform model to underestimate the transfer durations,
which can be explained by the fact that this models relies on estimations of the nominal
bandwidths of the links that are less accurate than the average of the bandwidths as

perceived by the application.

Table 4.1: Statistics of measured and simulated (with the 10G-SotA, Average, and Maxi-
mum models) durations (in seconds) of the transfer of the GATE release files (> 121 MB).

Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max.
Measured | 2.00 5.01 17.42 | 49.91 77.31 | 888.80
10G-SotA | 1.19 2.02 2.03 2.55 2.15 11.52
Average 2.00 5.13 13.12 | 48.19 | 76.11 | 873.80
Maximum | 1.98 3.21 7.44 31.72 | 35.09 | 873.80

66 Anchen CHAI

4.3. OVERALL EVALUATION OF OUR MODEL

4.3.2 Analysis of errors

Another way to assess the respective quality of the different platform models and to
measure the benefits of the proposed trace-based approach in terms of simulation accuracy
is to compare errors with respect to the real transfer times. The relative difference between
simulation results and the reference of a real execution can be computed in many ways. For
instance, the relative error is a standard error measure which gives a good indication on the
precision of a simulation and whether it under- or overestimates the reality. However, this
method has a certain number of disadvantages such as the fact that it is not symmetrical
(the error lies in the interval |-oo, 1]) or the fact that the relative difference of bandwidths
is different of the relative difference of transfer times, while there is a priori no reason
to favor one over the other. As explained in [Velho and Legrand (2009)], an absolute
logarithmic error solves these two issues and allows us to compare the different models

more easily. We define the absolute logarithmic error as follows:
LogErr = |log(R) — log(S)], (4.2)

where R is the real time and S the simulated time.

The absolute logarithmic error also allow us to apply additive aggregation operators
such as the maximum or the mean, hence easing the comparison of the different models.

Figure 4.13 shows the Cumulative Distribution Functions of the absolute logarithmic
errors obtained for each model. The maximum errors respectively are 6.09 for the 10G-

SotA model, 3.99 for the Maximum model, and 2.83 for the Average model.

100% A

75% A

50% +

10G-SotA

25% A)
’ — Maximum

Percentage of file transfers

Average

0% A

0 1 2 3 4 5 6
Absolute Logarithmic Error

Figure 4.13: Cumulative Distributed Functions of the absolute logarithmic error achieved
by the three platform models over the whole set of transfers of the release files.

This figure confirms the poor accuracy of the 10G-SotA platform model that shows
errors greater than two (i.e., relative error greater than 639%) for nearly half of the trans-

fers. This corresponds to the systematic and large underestimations of the file transfer

Anchen CHAI 67

CHAPTER 4. REALISTIC PLATFORM MODELS FOR REPLAYING REAL WORKFLOW EXECUTIONS

durations made by this model that was illustrated by Figure 4.12.

As expected, the Average platform model leads to best results as the sharing of network
resources by concurrent transfers is directly captured in the model which reflects the
network connectivity as experienced by the application. This model is thus able to simulate
75% of the transfers with a logarithmic error smaller than 0.29 (relative error: 33.8%) and
92.9% of the transfers with an error smaller than 1. Finally, the mean logarithmic error is
0.23 (relative error: 25%).

The Mazimum platform model also clearly outperforms the 10G-SotA model but leads
to greater errors than the Average model. The mean logarithmic error is 0.62 (relative
error: 85%) and 75% of the transfers are simulated with a logarithmic error under 0.97
(relative error: 164%). This loss of accuracy is the cost of the higher potential for further
studies of this model that offers a better reusability beyond the simulated replay of the
execution that led to its generation. It also confirms the tendency of this model to be
too optimistic in its determination of the bandwidth values, and thus to underestimates
the transfer durations. A deeper analysis of the individual simulation results would be
needed to determine whether the way to compute the bandwidth correction factor can be
improved.

To summarize, our analysis of the distribution of the simulated transfer durations
and of the logarithmic errors demonstrates that a correct modeling of the interconnection
topology and a good instantiation of the characteristics of the network resources are key
to the quality of simulations of file transfers on a large-scale distributed infrastructure.
It also shows that leveraging the contents of execution traces is a sound approach that
enables a pretty accurate simulated replay of a given execution with the Average model

or even beyond with the Mazimum model, with an affordable accuracy loss.

4.3.3 Analysis of the root causes of large simulation errors

While the obtained results are promising and greatly outperform the state-of-the-art
model, they also include some large errors. In this section, we analyze such errors to
determine whether they correspond to a modeling flaw or to phenomena that we cannot,
or do not even want to, model. For instance, the cause behind the outlying durations
for small file transfers does not have to be part of the platform model, but rather to
be injected into the simulation as an additional parameter. After carefully analyzing
the obtained simulation results from our platform model, we identify two source of high
inaccuracy.

The first one is the external network load. As identified in Chapter 2, external load
may lead to abnormally long transfers. We illustrate the identified case in Figure 4.14.

In the Maximum model, the bandwidth derives from transfer 2 and is, after correction,

of 968 Mb/s. However, the actual bandwidth for transfer 5 is only of 23.5 Mb/s. This

68 Anchen CHAI

4.3. OVERALL EVALUATION OF OUR MODEL

Transfers
= N w » (6]

200 400 600
Time (in seconds)

Figure 4.14: Gantt chart view of 5 release file transfer durations for a given SE, a given
site, and a given cluster.

difference leads to a dramatic underestimation of the simulated duration (only 5.15s)
and one of the largest errors. With the Average model, this also impacts the simulation
accuracy by lowering the computed average (at 163 Mb/s). Again the great deviation from

the actual bandwidth leads to an important error.

The second identified source of large errors corresponds to the observation of
"staircase" phenomenon, i.e., the durations of simultaneous transfers exponentially in-

crease (as shown in Figure 4.15).

Jobs
w

5630 5640 5650 5660
Execution timeline (in seconds)

Figure 4.15: Gantt chart view of release file transfer durations for a given SE, a given site,
and a given cluster.

In current simulations, with Maximum or Average model, simultaneous transfers from
a given SE to jobs in a given cluster will have similar simulated durations, which therefore
causes large errors compared to real transfer durations. However, both of these identified
sources of high inaccuracy are not related to our platform model. The first one can be
addressed by introducing a certain level of background network traffic for simulating the
workflow execution, while the second one is related to the configuration of simulated SE

in simulator which was explained in Chapter 3.

Anchen CHAI 69

CHAPTER 4. REALISTIC PLATFORM MODELS FOR REPLAYING REAL WORKFLOW EXECUTIONS

4.4 Conclusion

In this chapter, we presented our strategy to build realistic platform models to replay
the execution of each individual workflow with a focus on file transfers on EGI. In order to
minimize the bias for the simulated file transfers, we generate ad-hoc platform models for
each workflow and inject the file replica involved in real transfers as parameters for jobs
in our simulator built in Chapter 3.

We evaluated these platform models are evaluated by comparing the simulated and
real transfer durations. Simulation results show that our proposed network topology and
bandwidth instantiation methods are able to correctly reproduce real-life variability of
file transfers on EGI, as opposed to the state-of-the-art platform model. Indeed, both
the Maximum and Average models manage to correctly capture the distribution of the
transfer durations. The analysis of the absolute logarithmic errors also shows that the
proposed platform models clearly outperform the state-of-the-art model, which largely
underestimates a vast majority of the transfer durations.

In the next chapter, we will present our method to build a more general and complete
platform description based on the proposed network topology and bandwidth instantiation

methods.

70 Anchen CHAI

Chapter 5

Towards a complete and realistic
description of the Biomed VO

platform

Abstract. This chapter presents our method to construct a complete platform descrip-
tion beyond the ad-hoc models proposed in Chapter 4 by aggregating multiple execution
traces. We also propose a model to fill-in the bandwidth of missing links after the trace
aggregation. Predicted bandwidths of missing links follow the network hierarchy and het-
erogeneity presented by known links. The complete platform description generated in this
chapter will allow us to evaluate different "what-if" scenarios for file management of ap-

plications in Chapter 6.

5.1 Introduction

In Chapter 4, we proposed and evaluated different network topologies and bandwidth
instantiation methods for building realistic platform models for each individual workflow.
These ad-hoc platform descriptions are very useful for replaying existing scenarios of file
transfers. However, in order to evaluate different "what-if" scenarios for improving the
data management of VIP, we need a more general and complete description in which
any computing node can communicate with any SE. Therefore, our aim in this chapter is
to build a complete description of the platform by leveraging information from multiple
traces.

To better explain the problem, we illustrate it with an example. Let us take the traces
from three workflows. As shown in Figure 5.1, we have three partial descriptions of the
Biomed VO platform independently generated from the execution traces of workflow 1

(WF1), workflow 2 (WF2), and workflow 3 (WF3). Each description only contains partial

71

CHAPTER 5. TOWARDS A COMPLETE AND REALISTIC DESCRIPTION OF THE BIOMED VO
PLATFORM

information about the network links. For instance, in workflow 1, jobs are executed in
two computing sites (i.e., CE1 and CE2) and they use two storage elements (i.e., SE1 and
SE2) to download the required files. It is to note that all jobs in CE1 only use SE1 while
jobs in CE2 only use SE2. As a consequence, the partial description generated from WF1
only contains network information for links (CE1, SE1) and (CE2, SE2).

?WF% WF WF3

Figure 5.1: Three partial platform descriptions generated from execution traces of workflow
1 (WF1), workflow 2 (WF2), and workflow 3 (WF3). Each line corresponds to the network
link between a site and a SE.

In order to obtain a larger description of the platform than those produced from each
execution trace, we first merge these three partial descriptions. The merged platform from
WF1, WF2, and WF3 is illustrated in Figure 5.2. In this merged platform, all distinct
computing sites and SEs concerned by file transfers from all workflows are described. This
aggregation of multiple traces allows us to fully exploit the information about network
links. For instance, we can find information on the (CE1, SE2) link from WF3, which was

not available in WF'1.

Figure 5.2: The merged platform description from the execution traces of workflow 1
(WF1), workflow 2 (WF2), and workflow 3 (WF3). Red line corresponds to the network
link without any information from these traces.

72 Anchen CHAI

5.2. AGGREGATING NETWORK INFORMATION FROM MULTIPLE TRACES

However, two problems need to be addressed for this merged platform. First, we may
find different information about the same network link in different traces. For instance,
we have information for the (CE1, SE1) link in both WF1 and WF3. Hence, we need to
determine how to instantiate the bandwidth for this link based on the information from
two traces (wfl and wf3). Second, even when aggregating multiple traces, we cannot
guarantee that we will have sufficient information to generate a complete platform, with
all possible link combinations. For instance, the information on the (CE2, SE1) link is not
provided by any of these traces. As our aim is to generate a complete platform description,
in which any computing node can communicate with any described SE, we need to fill-in
all missing information in the merged platform.

In last chapter, we proposed to distinguish the network links of different clusters within
a site and also the links of these clusters to the same SE. However, when we attempt to
generate a complete platform description, the second distinction generates many missing
links as we need to connect each cluster to all described SEs. Therefore, in this chapter,
we decide to no longer distinguish the links of different clusters in the same site to the
same SE. We focus on describing the network links for each pair of (CE, SE).

So in the rest of this chapter, we first address the problem of how to determine band-
width instantiation for links with information from multiple traces in Section 5.2. Then

different methods to fill-in missing links will be presented and evaluated in Section 5.3.
5.2 Aggregating network information from multiple traces

Trace aggregation enables us to combine multiple pieces of information from both a
spatial and a temporal perspective in order to generate the description of a larger platform.
Spatial aggregation allows us to describe more hardware resources (e.g., computing clus-
ter, computing site, SE, etc.) and network links from all transfers with different sources
and destinations. On the other hand, the temporal aggregation of traces helps us to de-
termine the variability of several parameters (e.g., the bandwidth of links, the available
storage space of SE, etc.) by leveraging time-related information. Here, in addition to
spatially aggregate more information about hardware resources, we focus on determining
the bandwidth instantiation for links with information from multiple traces. Integrating
the temporal variability for bandwidths of network links is considered as a perspective.

Based on the proposed instantiation methods for bandwidths (i.e., inter-quartile av-
erage and maximum) in Chapter 4, we also consider two aggregation methods to exploit
the information of the same network links from different traces: Average_merged and
Maximum_ merged. In the Average merged method, we consider the aggregation of
network information at the level of bandwidths that are already derived by inter-quartile
average for each link in the partial descriptions generated in Chapter 4. We compute the

average value for each network link by favoring the bandwidths derived from the transfer of

Anchen CHAI 73

CHAPTER 5. TOWARDS A COMPLETE AND REALISTIC DESCRIPTION OF THE BIOMED VO
PLATFORM

release file. If no bandwidth is derived from the release file transfer, we take the average of
bandwidths derived from any other files. For instance, to determine the bandwidth of the
(CEL, SE1) network link in Figure 5.2, we take the derived bandwidths of this link from
WEF1 and WF3. If these two bandwidths are all derived from release files, we compute

their average value.

On the other hand, we aggregate network information at the level of file transfers
in the Maximum__merged method. We assume that the maximum bandwidth observed
from multiple traces for a given network link corresponds to a better approximation of its
nominal capacity. Based on the numerous information recorded in the execution traces,
we are able to retrieve the time stamp, which represents the global starting point of
jobs, and the start time, which represents the relative starting point of jobs within the
workflow execution. By combining these two pieces of information and the registered
transfer durations, we are able to deduce the global starting time of each transfer. Then
based on the bandwidth correcting method presented in Section 4.2.2 of Chapter 4, we
compute a correcting factor for each transfer by taking into account all the measured
transfers from either the same or different workflows. The bandwidth for a given link in
the merged platform is thus the maximum derived value from all transfers going through

this link.

By using these two methods, we generate the Average Merged and Maximum__Merged
platforms based on the 24 execution traces. Then we use these two merged platforms to
reproduce the real file transfers as we did in Chapter 4. As we are always in the reproducing
phase, we inject the file replica involved in the corresponding real transfers as parameters

for jobs in our simulator to prevent from using missing links during the simulations.

Figure 5.3 shows a summary of the measured and simulated transfer durations of release
files in 24 workflows with the two merged platforms. We observe that the Average Merged
model can correctly reproduce the overall distribution of the measured release file transfer
durations, except for some large transfer durations. However, most of release file transfers
are underestimated by the Mazimum__Merged model. As our collected traces are over a
period of one month, the external network traffic for file transfers occurring at different
hours and days could be highly variable. The Maximum__merged method looks for the
maximum bandwidth experienced by file transfers across multiple traces for a given link.
We can thus easily derive a large bandwidth from one specific file transfer experiencing less
network traffic for a given link, which will underestimate most of other file transfers without
integrating the temporal variability of bandwidths. In the Average_merged method, we
first compute the inter-quartile average of bandwidth for a given link in one workflow. This
average value can reduce the impact of outliers (i.e., extremely short and long transfers).
Then we take the average value of these inter-quartile bandwidths from each workflow for

a given link. It is the simplest way to implicitly take into account the temporal network

74 Anchen CHAI

5.2. AGGREGATING NETWORK INFORMATION FROM MULTIPLE TRACES

information across different traces. The instantiations in the Average Merged model can
be considered as coarse estimations for the average available bandwidths of network links
over a month experienced by all workflows. Therefore, this model can still reproduce the

overall distribution of the measured file transfer durations.

Release Files (> 121 MB)

7504

500+ :

Durations (in seconds)

250+ H 3

. e

Meaéured Bastleline /-\vg_l\/llerged Max_Merged

Figure 5.3: Graphical summary of measured and simulated (with the Average Merged,
and Maximum_ Merged models) release file transfer durations (in seconds). Each point
corresponds to the duration of one simulated transfer.

Table 5.1 gives the statistics for the transfer durations of the release file with merged
platforms. We notice that the Average Merged model tends to slightly overestimate most
of the transfers, with a median value of 18.88s and a third quartile value of 88.14s compared
to 17.42s and 77.31s for the actual measures, respectively. With the Maximum__Merged
model, the third quartile value drops to 16.86s, which is 4.6 times shorter than what was
measured. The impact of trace aggregation is thus much stronger for the mazimum based

model than average based model.

Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max.
Measured 2.00 5.01 17.42 | 49.91 77.31 | 888.80
Average Merged 2.05 7.26 18.88 | 54.98 | 88.14 | 594.18
Maximum_ Merged | 1.97 3.35 5.96 13.44 16.86 | 594.18
10G-SotA 1.19 2.02 2.03 2.55 2.15 11.52

Table 5.1: Statistics of measured and simulated (with the 10G-SotA, Merged average, and
merged maximum models) durations (in seconds) of the transfer of the GATE release files
(> 121 MB).

Anchen CHAI 75

CHAPTER 5. TOWARDS A COMPLETE AND REALISTIC DESCRIPTION OF THE BIOMED VO
PLATFORM

Another remarkable aspect is that both merged models fail to reproduce the
longest transfer (888.8s) which corresponds to a 121.5 MB release transfer between the
"marsedpm.in2p3.fr" SE and a computing site in UK in the Njp5KF workflow instance. In
the partial description built for this workflow, the derived bandwidth for the corresponding
link was 1.3 Mb/s and 3.2 Mb/s in Average and Mazimum model, respectively. However,
after the aggregation of multiple traces, the bandwidth of this link is now 8.9 Mb/s and
331.4 Mb/s in AverageMerged and Mazimum__Merged model, respectively. It shows that
without integrating the temporal variability of bandwidths, the merged models will lose
the information on extreme cases.

To summarize, the Average Merged model can correctly reproduce the overall distri-
bution of the measured release file transfer durations with a slight overestimation. The
Mazximum__ Merged model allows for a better estimation of the nominal capacity of links
by taking into account the network sharing across multiple workflow executions. How-
ever, without integrating the information of temporal variability of bandwidths, the Maz-
tmum__Merged model is likely to largely underestimate transfer durations. Moreover,
extremely long transfers are not properly reproduced by both models. But still, these
two merged platforms outperforms the state-of-the-art model (10G-SotA) to reproduce

the real-life variability of transfer durations.

5.3 Filling-in missing links in the merged platform

Aggregation of multiple execution traces enables us to merge partial descriptions de-
rived from each individual workflow. However, as illustrated in Figure 5.2, it does not
allow us to generate a complete description due to two main reasons. First, each execu-
tion trace only contains partial network information and we can hardly find two traces
holding completely complementary information. Therefore, aggregating traces will pro-
duce new network links for which no information can be found. Second, some links may
never be used for a given computing site. As presented in Chapter 3, jobs favor file replica
in local SE, then in the same country, and lastly in foreign countries according to the
replica selection service of EGI. If a file replica is available in the same country as the
computing site, jobs in this site will never download file from a replica in foreign country.
Therefore, we can only extract very limited information of the inter-country links for the
site even from multiple traces. Because of these two problems, we can not envisage to
obtain a complete platform descriptions by simply collecting more traces.

So in this section, we will exploit the existing bandwidths of known links in the merged
platform to estimate the missing bandwidths of the newly created links. Three predictive
models are proposed. In order to study the prediction accuracy of each model, we first use

each model to estimate the bandwidths of some known links based on existing information.

76 Anchen CHAI

5.3. FILLING-IN MISSING LINKS IN THE MERGED PLATFORM

Then we compare these estimated bandwidths with the bandwidths obtained from the
previous section for known links. The difference between the estimated and obtained
bandwidths of known links is used as a metric to evaluate the prediction accuracy of each

model.

5.3.1 Empirical model

On EGI, each site declares a SE as its local storage, which is usually in the same network
domain as the computing site. If a site does not contribute with any storage resources
to the Biomed VO, it will choose the closest SE with a general connectivity as good as
the local one. Hence, our assumption is that the network connectivity of a computing site
is similar to the connectivity of its local SE to other sites. Besides, there exists at least
one measured bandwidth for each computing site because sites described in the merged
platform executed at least one job and therefore we have at least one file transfer to each
site. Based on these assumptions, we first attempt to predict the bandwidth of missing
links at the level of each computing site. An empirical model is proposed to meet the

following requirements:

o The measured bandwidth of links to/from a given site S; should reflect its general

network connectivity;

e For a given site 5;, its connectivity to different SEs should follow the network hi-
erarchy observed in Chapter 2, i.e., a clear variation of bandwidths from local to

national and inter-country links;

e The reliability for the estimation of bandwidth for site .S; should depend on the

number of known links.

To determine the bandwidth of each missing link for a site S;, we first classify all
known links of this site into three categories (i.e., local, national, and inter-country). For
each category ¢, we estimate the connectivity of a site .5; as the ratio between the median
bandwidth of the known links to/from S; and the median bandwidth of all the links in
merged platform: Rf = gf / Be. Using the median value can reduce the impact of extremely
good or bad bandwidths in a site and R represents the relative connectivity of S; among
all links for the category c. As we assume that the measured bandwidth of links can reflect
the general network connectivity of one site, we then use these ratios R to predict the
bandwidths of the missing links.

However, not all the sites have known links for each of the three categories. In order
to be comparable among all sites, we need to combine the category ratios of each site into
one metric. As we consider that if there are more known links for a category c in S, its

ratio R{ will be more meaningful and reliable to represent the general connectivity of S;,

Anchen CHAI 77

CHAPTER 5. TOWARDS A COMPLETE AND REALISTIC DESCRIPTION OF THE BIOMED VO
PLATFORM

we thus decide to weight each ratio by |L¢|/|L;|, where |L§| is the number of known links
for category c of site S; and |L;| is the total number of known links of site S;. The overall
connectivity of S; with regard to the rest of the platform is then estimated by the following

weighted sum:

(1] B
CZ_;<Li|.J,3VC : (5.1)

Finally, the bandwidth of a missing link of category ¢ to/from S; is computed as the
median bandwidth of all the links in this category in the merged platform times the overall
connectivity: Bex C;. As we independently predict the missing links for each link category,

the estimated bandwidths will follow the network hierarchy observed in Chapter 2.

5.3.2 Machine learning model

The empirical model has been designed to reflect the hierarchical topology of the
platform and the overall connectivity of a site concerned by missing link(s). However, it
has several limitations because of its strong hypotheses: (i) it is a simple linear model,
(ii) the linearity depends on the number of known links in each category, and (iii) it does
not take the connectivity of SEs into account. To address these issues, we decide to use
machine learning techniques to construct more accurate models to predict the bandwidths

of missing links based on the empirical model.

One consequence for not taking information on SEs into account in the empirical model
is that the predicted bandwidths for the missing links of a given computing site will always
be the same within a given link category. To address this problem, we need to integrate the
network information of the corresponding SE for each link. However, as we have already
distinguished the three link categories at the level of the computing site, we should not
make the same distinction at the SE level as it may create redundant information. For
instance, each site has only one local SE and therefore there exists only one local link for
each site and each SE. We will obtain exactly the same information about this local link
at the site and SE level. This situation can also happen for national and inter-country
links when the network information is symmetric between a site and a SE, e.g., a site
has only one foreign SE and this SE has only one inter-country link to this site. In order
to avoid such redundant information, which may lead to over-fitting of machine learning
models, we decide to consider one more attribute for each link: the general connectivity of
the corresponding SE, which is represented by the median value of all bandwidth to/from
this SE. Then we assume that the bandwidth B;; of a link between Site; and SE; can be
expressed by:

Bi; = f(link__category, Sitei,l?f,l?j) (5.2)

78 Anchen CHAI

5.3. FILLING-IN MISSING LINKS IN THE MERGED PLATFORM

where ¢ represents the categories of network links (i.e., local, national, and inter-
country), BNf represents the median value of known links to/from Site; for category c.
E is the median value of known links to/from SEj;. link category and Site; are two
categorical variables, which represent the category and the site name of the target link,
respectively. This time, instead of assuming a simple linearity depending on the number
of known links among the attributes, we consider two models to fit our desired f: a linear
regression model, which assumes a linear proportion among the attributes in f and a
neural network model, which can capture more complex and non-linear relationship
among these attributes.

However, categorical variables (i.e., link category and site name) cannot be directly
used to tune parameters in either of these models. Hence, we need to first code these
two variables as a set of dummy variables, which is a widely used coding technique in
order to build a regression model for data sets containing categorical variables [Long et al.
(2006),Iacobucci (2012)]. The idea of this coding technique is to use J —1 numerical values
to present a categorical variable with J categories. For instance, as shown in Table 5.2,
each link has five attributes, including four numerical variables and one categorical variable
(i.e., the category for this link).

V1 V2 V3 V4 Category
linkl | value | value | value | value local

link2 | value | value | value | value national
link3 | value | value | value | value | inter-country

Table 5.2: Example of a data set with 4 numerical and 1 categorical variables.

After transforming the categorical variable into dummy variables, the new data set is
shown in Table 5.3. Two extra attributes (i.e., local and national) are generated for links
representing their link categories. The third category (i.e., inter-country) can be deduced
from these two extra attributes, i.e., (local=0 & national=0) represents the category is

inter-country for the link3.

V1 V2 V3 V4 | local | national
linkl | value | value | value | value 1 0
link2 | value | value | value | value 0 1
link3 | value | value | value | value 0 0

Table 5.3: The new data set after transforming categorical variable into dummy variables.

Based on this coding technique, our final data set contains the following 37 attributes
for each link. Three median values represents the measured bandwidths of different link
categories of the computing site and the median bandwidth of the corresponding SE, two
attributes represent the three link categories and 31 attributes present the 32 different

computing sites defined in our merged platform. If no measured bandwidth exists for a

Anchen CHAI 79

CHAPTER 5. TOWARDS A COMPLETE AND REALISTIC DESCRIPTION OF THE BIOMED VO
PLATFORM

given link category of a site, we use the overall median values from all known links in this
category to represent the overall connectivity represented in the merged platform.
Finally, for neural network, we consider a simple model of three layers, which is the
minimum number of layers allowing to capture non-linear problems: (i) an input layer
with 37 neurons which corresponds to the number of attributes for each link; (ii) one
single hidden layer; and (iii) an output layer with one neuron. As there is no standard and
general rules for choosing the optimal number of neurons in the hidden layer of a neural
network model, we use the empirically-derived rules, i.e., the optimal size of the hidden
layer is the mean of the number of neurons in the input and output layers. The number

of neurons is thus set to 19 in the hidden layer of our neural network model.

5.3.3 Evaluation

In order to understand the prediction accuracy of each model, we compare the band-
widths estimated by each model with the bandwidths obtained in the merged platform. If
a model can correctly estimate the existing bandwidths in the merged platform, we then
consider it as a good predictive model to estimate the bandwidths of the missing links.
Here, our evaluation is based upon the merged bandwidth values in the Average Merged
model (i.e., 420 known links) since it has been shown to give the best accuracy to repro-
duce file transfer durations.

For the empirical model, we can directly estimate the bandwidth of each known link
by using Equation 5.1. However, for the linear regression and neural network models, we
need to first train each model to find the proper values for parameters. Therefore, we
split the 420 known links, each one consisting of the 37 attributes described above, into
85% (357) as training data and 15% (63) as testing data. We randomly split all links 20
times to investigate the prediction ability and the robustness of each model. We use the
Mean Absolute Error (MAE) as an evaluation metric to quantitatively assess the overall
predictions:

MAE — Yo |pred_value — merged__value]

- (5.3)

where pred__value and merged_ value are the bandwidth predicted by proposed models and
the merged bandwidth for a given known link in the Average Merged platform description,
respectively.

Figure 5.4 shows the summary of the MAE for 20 validation tests of three models. We
observe that the linear regression model can reduce the maximum prediction error given
by the empirical model but the overall MAE is only slightly decreased. The neural network
model has the lowest overall prediction errors among the three models, which means that

it has the best prediction accuracy.

80 Anchen CHAI

5.3. FILLING-IN MISSING LINKS IN THE MERGED PLATFORM

0.31

0.24

Mean absolute error

0.14

empirical linear regression neural network

Figure 5.4: Graphical summary of the Mean Absolute Error (MAE) for 20 validation tests
of empirical, linear regression, and neural network model.

Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max.
FEmpirical model | 0.12 0.18 0.23 0.24 0.29 0.34
Linear regression | 0.16 0.19 0.21 0.22 0.27 0.29
Neural network | 0.034 | 0.074 0.11 0.12 0.16 0.26

Table 5.4: Statistic of MAE for 10 validation tests of neural network and linear regression
model.

As summarized in Table 5.4, the average MAE among 20 validation tests for the neural
network model is 0.12 and the third quartile value is 0.16, which are significantly smaller

than the other two models.

From these observations, we find that a neural network model globally fits f much
better than a linear regression model. It means that the relationship among the attributes
described in Equation 5.2 cannot be simply expressed by a linear formula. Therefore, the

analysis hereafter will focus on the results provided by the neural network model.

Although the neural network model gives us the best overall prediction accuracy, the
prediction error still varies a lot depending on the data splitting for training and testing.
To understand where this difference comes from , we investigate the two validation tests
which correspond to the worst and the best prediction errors of the neural network model.

Figure 5.5 depicts the comparison between the predicted bandwidths and the merged
bandwidths of one validation test which gives us the largest error (0.26) for the neural net-
work model. The solid line corresponds to the ideal case where the predicted bandwidth
value is equal to the merged bandwidth for a given link.

Clearly, we observe in Figure 5.5 that this large prediction error mainly comes from
the bad predictions for local links. As each site has only one local link, there is much less

information for local links than national or inter-country links in the merged platform. Due

Anchen CHAI 81

CHAPTER 5. TOWARDS A COMPLETE AND REALISTIC DESCRIPTION OF THE BIOMED VO
PLATFORM

local link * national link -« inter—country

EN
f

paid dwa

Predicted bandwidths (in Gbp/s)
o

[}
f

EN
f

paid uu

000 025 050 075 1.00000 025 050 075 100000 025 050 0.75 1.00
Merged bandwidths (in Gbp/s)

Figure 5.5: The validation test which gives us the largest error (0.26) for the neural network
model. The solid line corresponds to the ideal case where the predicted bandwidth value
is equal to the merged bandwidth for a given link. From top to bottom, panels correspond
to the predictions by the empirical model (emp pred) and the neural network model
(nn__pred), respectively.

to this lack of comparable information for local links, almost all the large prediction errors
come from local links for both models. It means that none of these models can correctly
capture the relationship f for local links because of their unique value for each computing
site. For national and inter-country links, the neural network model outperforms the
empirical model to better predict the bandwidths for known links. It means that the
neural network model can be a good candidate to predict the missing bandwidths of

national and inter-country links in the merged platform.

The validation test corresponding to the smallest error (0.034) for the neural network
model is shown in Figure 5.6. As we envisaged, this validation test corresponds to the case
in which no local link is selected into the testing set and therefore gives the best prediction

accuracy for the neural network model.

However, the bandwidths of several links are still predicted to negative values in this
"best" validation test (i.e., red points below zero of the national link in the neural network
model in Figure 5.6). Based on the analysis of the negative predictions in different tests, we
find that this issue is due to the insufficient information for a given site. For instance, two

computing sites in France (OBSPM and IN2P3-CC) do not have any measured bandwidths

82 Anchen CHAI

5.3. FILLING-IN MISSING LINKS IN THE MERGED PLATFORM

national link -« inter—country

1.5
10 g
o 2
2 |
¢ =
= D
So0s S
(2]
£
5
£ 00
o
©
e}
©
2
S 151
3
a
4 5
1.0 3
o
D
0.51 oy
0.0
0.0 05 1.0 15 00 05 1.0 15

Merged bandwidths (in Gbp/s)

Figure 5.6: The validation test which gives us the smallest error (0.034) for the neural
network model. The solid line corresponds to the ideal case where the predicted band-
width value is equal to the merged bandwidth for a given link. From top to bottom, panels
correspond to the predictions by the empirical model (emp_ pred) and the neural network
model (nn_ pred), respectively.

for inter-country links. As explained before, input files are replicated onto a limited number
of SEs on EGI. For the GATE workflow, whose execution traces are used, its input files are
always replicated at least once on a SE in France. According to the replica selection rules
described in Chapter 3, the replica in France is favored by these two French computing
sites. Hence, only limited information for inter-country links of these two sites can be
retrieved, even from multiple traces. Since no available information can be used to train
our models, the predicted values for the inter-country links of these two sites are usually
very small (close to 0) or even negative in the neural network model. This issue is not
considered as a problem related to the training model but to the training data. It can be
mitigated by aggregating traces from different workflows to find more available bandwidths

for the sites with insufficient information.

Finally, we train the neural network model by all 420 known links to predict the band-
widths of 572 missing links in the Average Merged platform. Among these 572 predictions,
27 are negative values and they all correspond to the case where the computing sites have
insufficient information. 25 negative values are from the prediction of inter-country links

for the computing site "OBSPM" in France. The remaining 2 negative predictions corre-

Anchen CHAI 83

CHAPTER 5. TOWARDS A COMPLETE AND REALISTIC DESCRIPTION OF THE BIOMED VO
PLATFORM

spond to national links for site "CIEMAT-LCG2" which has no measured national link and
in "HG-08-OKEANOS" having only one measured national link. These negative predic-
tions not only imply that the existing information in current Average Merged platform is
too sparse to train a perfect model for correctly predicting all missing links, but also harm

the confidence for other positive predictions.

5.4 Conclusion and discussion

In this chapter, we have presented our method to build a complete platform model
for our target infrastructure by leveraging information from multiple execution traces.
By spatially aggregating the information from multiple traces, we are able to construct a
merged platform with a broader set of hardware resources. We also proposed two methods
to exploit the network information for the same links from multiple traces. Simulation
results show that the Average_ Merged platform can still reproduce the overall distribution
of the real transfer durations while the Maximum_ Merged platform underestimates most
of file transfer durations. Although both models cannot properly capture the extremely
long transfers, they still outperform the state-of-the-art model to reproduce the real-life
variability of transfer durations.

To fill-in the bandwidths of remaining missing links in the merged platform, we pro-
posed three predictive models based on the existing information. Then we evaluated the
prediction accuracy of each model by comparing the predicted bandwidth values with the
merged values of known links in the Average Merged platform.

Machine learning is an interesting approach to construct a more accurate predictive
model. The neural network model has the lowest prediction errors compared to the linear
regression and empirical models. It can correctly predict most of the national and inter-
country links. However, with a small data set (i.e., 420 known links), we can hardly train
a perfect model to predict the bandwidths of all missing links in the Average Merged
platform. For several sites with a limited number of known links, the predicted bandwidths
are even negative. We believe that this model can be further improved by adding more
available information in the training data set.

Therefore, we decide to use the Average Merged platform filled-in using the empirical
model, which allows us to predict bandwidths respecting the overall network hierarchy, to

investigate and evaluate different "what-if" simulation scenarios in the next chapter.

84 Anchen CHAI

Chapter 6

Evaluation of file replication
strategies through realistic

simulations

Abstract. In this chapter', we propose a practical dynamic replication method to im-
prove data management for applications executed on EGI via VIP. We cross-evaluate the
impact of this strategy by simulation using two different platform models: an enhanced
state-of-the-art platform description and the complete platform description built in Chap-
ter 5. Simulation results show that the realism of the platform model is key to the evalua-
tion process. They allow us to propose reliable recommendations to reduce the file transfer

durations for applications hosted by VIP.

6.1 Introduction

File replication to multiple storage resources is a common technique to optimize data
management in large distributed systems. It reduces file transfer bottlenecks and increases
file availability, with a great impact on the application execution time [Lamehamedi et al.
(2002)]. Numerous file replication strategies were proposed and evaluated using simula-
tions [Elghirani et al. (2008),Lei et al. (2008),Sato et al. (2008),Vrbsky et al. (2010),Yang
et al. (2010),Bsoul et al. (2016)], focusing mostly on optimizing file transfer durations (av-
erage or total duration by job). However, as pointed out in Chapter 1, the used platform
descriptions are often oversimplified, leading to a questionable accuracy of the simulated

transfer durations.

'Results described in this chapter have been published in [Chai et al. (2018)]: Chai, Anchen, et al. "Eval-
uation through Realistic Simulations of File Replication Strategies for Large Heterogeneous Distributed
Systems." Europar 2018-24th International Furopean Conference on Parallel and Distributed Computing;
Workshop HeteroPar 2018.

85

CHAPTER 6. EVALUATION OF FILE REPLICATION STRATEGIES THROUGH REALISTIC
SIMULATIONS

In this chapter, we propose a practical dynamic file replication method to improve
the performance of file transfers and to address the issue of imbalanced resource usage
identified in Chapter 2. We use two different platform models to evaluate the proposed
file replication strategies: a three-level hierarchical model, representing the state-of-the-
art platform and the model built from real execution traces in Chapter 5. As we focus
on the file management for applications deployed on EGI by VIP and based on different

simulation scenarios, we aim at answering the following questions:

e What is the impact of different replication strategies on file transfer durations and

resource usages?
e Does the answer to the above question depend on the platform model?

e What would be reliable recommendations for data placement in VIP?

The rest of the chapter is organized as follows. In Section 6.2, we present the proposed
dynamic file replication method. Different components of simulation scenarios are detailed
in Section 6.3. Section 6.4 presents the evaluation and the analysis of the simulation results.

Recommendations for the applications deployed on EGI via VIP are given in Section 6.5.

6.2 Replication strategies

6.2.1 Dynamic replication strategy

As presented in Chapter 1, the current replica creation strategy implemented in VIP is a
static method, which chooses 3 to 5 stable SEs with sufficiently large amounts of available
storage space. Dynamic replica creation is not adopted by VIP for the applications in
production.

Given the large scale of distributed systems such as EGI, allowing thousands of in-
dependent jobs to be executed in parallel, we propose a dynamic replication strategy to
further improve file placement during the execution of an application in addition to the
current replica management strategy adopted by VIP (i.e., static replica creation and
replica selection according to geographical distance).

Our idea is inspired by the "cache hit" mechanism. The first job executed in a comput-
ing site downloads the file, then copies and registers it onto the local SE associated to this
site. Then, the subsequent jobs scheduled in the same site can directly benefit of a local
file transfer, hence optimizing the overall file transfer duration. This strategy is motivated
by two observations extracted from execution traces on EGI in Chapter 2. First, when the
workflow of an application consists of a large number of jobs, a given site will execute more
than one job in general. Second, the intra-site delay between the first job and subsequent

jobs in one computing site is highly variable. It means that if subsequent jobs have a

86 Anchen CHAI

6.2. REPLICATION STRATEGIES

much longer intra-site delay compared to the duration of file uploading and registration
by the first job, they can directly benefit of the local transfer without any extra delay. This
method is implemented as a dynamic replica creation service in our simulator presented

in Chapter 3. The detail is described in Algorithm 3.

Algorithm 3: Dynamic replication method

Input: S: local SE, F': target file, T: Timeout, H: Threshold
1 Patient_ Time = 0, Nb_ retry = 3, Retry_ freq = 2s;
2 bool Lock = False, status = False;
3 bool F__exist_in_S = Check_F _exist_in_S();
4 if F_exist_in_ S then

dOWDlO&d(F, S), # download file from local SE
else

5
6
7 if Lock then
8 while (Patient_Time < H) do
9 sleep(Retry__freq) ;
10 F_exist_in_S = Check_F_exist_in_S() ;
11 Patient__Time+ = Retry__freq ;
12 end
13 if \F_exist_in_ S then
14 ‘ dOWIﬂO&d(F, lcg—util); # download file using replica selection service on EGI
15 else
16 ‘ download(F, S);
17 end
18 else
19 Lock = True;
20 Locked: # Begin of critical section
21 i=0;
22 SOI‘ted_liSt = lfC_ﬁHSllI'lS(); # sort replicas using the same rule as in the middleware
23 while (i < Nb_retry and status == Fail) do
24 # download F from Sorted_list[i] with timeout T
25 status = download(F, Sorted_list[i], T);
26 i++;
27 end
28 if status == Success then
29 ‘ upload(F, S), # upload F onto S
30 else
31 ‘ download(F, leg-util);
32 end
33 Unlock # End of critical section
34 end
35 end

In the implementation of this dynamic replication method, two parameters need to be
configured. To reduce the impact of extremely long transfers [Glatard et al. (2007)], a

timeout (i.e., T') is imposed for the first job in a site to download file from remote SE (line

Anchen CHAI 87

CHAPTER 6. EVALUATION OF FILE REPLICATION STRATEGIES THROUGH REALISTIC
SIMULATIONS

25 in Algorithm 3). The second parameter is a threshold (i.e., H) on the maximum waiting
time for subsequent jobs in a site (line 8 in Algorithm 3). It determines the maximum
patient time of subsequent jobs to wait for the availability of required file in local SE. We
choose to configure this parameter to the same value as the timeout for the first job in a
site. It means that subsequent jobs will lose their patience if the first attempt of transfer
is failed by the first job in their site.

The value of timeout and threshold is currently set to 110 seconds which corresponds
to the third quartile of distant transfer (i.e., national or inter-country) durations of 121MB
release file in collected execution traces. If the timeout expires, the transfer is canceled
and a new attempt is made with another SE (line 23 to 27 in Algorithm 3). The maximum
number of retries is currently configured to 3. If the transfer still fails after three retries,

a fourth file transfer will be launched without timeout (line 28 to 32 in Algorithm 3)

6.3 Simulation studies

The long-term objective of this study is to optimize data placement for science gateways
such as VIP using large scale distributed heterogeneous infrastructures such as EGI. To
this end, we propose to evaluate different simulation scenarios fed with realistic information
coming from execution traces using the simulator developed in Chapter 3. Hereafter we

detail the different components of our designed simulations.

6.3.1 Platform Models

We consider two platform models. First, the trace-based complete platform descrip-
tion generated in Chapter 5. We choose the Awverage merged model since it has been
shown to give the best accuracy when simulating file transfers.

While this traced-based model is accurate, it is also complex to build. Therefore, we
also consider a simpler model inspired from the state-of-the-art model: a three-level
hierarchical network model. To better reflect the connectivity of the production sys-
tem, we enhance it by using average bandwidth values derived from traces instead of the
theoretical values proposed in the literature. We use 1.3 Gb/s for local links, 255Mb/s
for national links, and 100 Mb/s for inter-country links. If simulation results are consis-
tent between the two models, then the building simplicity of this three-level hierarchical

platform makes it a good candidate for further studies.

6.3.2 Simulation scenarios

We evaluate two file replication strategies: file prestaging and the proposed dynamic
replication strategy, which also includes file prestaging. In the file prestaging strategy,

files are copied on three preselected SEs before the execution of the application. This

88 Anchen CHAI

6.4. PERFORMANCE EVALUATION

corresponds to the current replication strategy used by VIP. We will evaluate the impact
of different prestaging lists on the performance of file transfers, with or without a priori
information on the sites where jobs are executed.

We simulate the execution of 15 GATE workflows, each consisting of 100 jobs and
downloading 121MB release file, to study the performance of file transfers with different
replication strategies. Realistic information are extracted from execution traces and in-
jected as parameters in our simulator (i.e., the queuing time and the execution site of
jobs). The simulated replica selection service on EGI is used to determine the download
source of files for each job during the simulation.

To determine the impact of SE selection for each platform model, we study three

categories of prestaging lists:

e the current production setting, which corresponds to three SEs located in France;
e 50 randomly selected lists;

o four prestaging lists selected based on statistical information on the sites where the

jobs of the 15 workflows were executed.

These four lists contain the local SEs of the three sites hosting the largest number of
jobs located in one or different countries or three sites hosting no jobs at all located in one
or different countries, respectively. We always fix the number of SEs used to prestage files
to three to match the number of replicas currently used in production. The impact of the
number of SEs is let out of the scope of the current study.

In total, we simulate 220 scenarios (2 strategies x 2 platform models x 55 prestaging
lists) for each of the 15 workflows. They generate 330,000 (220 scenarios x 15 workflows

x 100 jobs) simulated release file transfers which will be evaluated.

6.4 Performance evaluation

6.4.1 Impact of dynamic replication

We begin our evaluation by studying the cumulative distribution of the simulated
durations of file transfers with and without dynamic replication. Each line in Fig. 6.1
corresponds to one list of 3 SEs used for file prestaging, using either the 3-level (top) or
the trace-based (bottom) platform model. The same 50 random prestaging lists are used
in all four scenarios.

For the 3-level model, we see that dynamic replication significantly decreases file trans-
fer durations, as more jobs can download files from a local SE. Moreover, the performance
does not depend on the SEs used for prestaging with a median duration of 5.1s and a

maximum value of 32.3s. Without dynamic replication, the choice of the prestaging list

Anchen CHAI 89

CHAPTER 6. EVALUATION OF FILE REPLICATION STRATEGIES THROUGH REALISTIC
SIMULATIONS

100%

3-level model

75%4

50%1

25%+

0%

100%

75%4

Percentage of completed file transfers

50%1

25%+

— with Dyn. Rep.
—|without Dyn. Rep.

0% =

1 5 10 50 100 500 1000
Transfer duration (in seconds)

Figure 6.1: Cumulative distribution of simulated file transfer durations with and without
dynamic replication. Each line corresponds to a list of 3 SEs used for file pre-staging. The
same 50 random prestaging lists are used in all four scenarios.

has a stronger impact, leading to longer and more variable transfer durations. The median
varies from 13s to 21s when utilizing different lists while the maximum varies from 123s
to 290s.

For the trace-based model, we also see a reduction of file transfer durations when using
dynamic replication, but the gap is less clear. Contrary to the 3-level model, the perfor-
mance with dynamic replication varies more significantly depending on the prestaging list.
As for the 3-level model, the choice of the prestaging list always has a strong impact on
performance when there is no dynamic replication. The median duration varies from 20s
to 44s while the longest duration is always 975s even with different prestaging lists. It
is due to a special site, which has a poor connectivity (i.e., 1Mb/s) to most SEs, in the
trace-based model. Therefore, the longest simulated transfer is always given by jobs in

this site.

Besides the impact on the durations of file transfers, we are also interested in the impact
on the resource usages brought by dynamic replication. Figure 6.2 compares the cumulative
number of downloads for a SE and the number of jobs executed in the computing site
associating this SE as the local one with and without dynamic replication. We study the
resource usages during the executions of the 15 workflows with the 50 random prestaging
lists. Here, we present the comparison from the simulation results with the trace-based

model. The 3-level model gives us the similar comparison.

90 Anchen CHAI

6.4. PERFORMANCE EVALUATION

without Dyn. Rep. | with Dyn. Rep.

ophelia.zih.tu-dresden.de
marsedpm.in2p3.fr
dc2-grid—64.brunel.ac.uk
se0.m3pec.u-bordeaux1.fr
se—dpm-server—grid.obspm.fr
gridsrm.ts.infn.it
grid002.ics.forth.gr
ccsrm.ihep.ac.cn
clrlcgse01.in2p3.fr
torik1.ulakbim.gov.tr
se03.esc.gmul.ac.uk
se01.marie.hellasgrid.gr
se01-tic.ciemat.es
se01.athena.hellasgrid.gr
srm.target.rug.nl
hepgrid11.ph.liv.ac.uk
cirigridse01.univ-bpclermont.fr
srm.ciemat.es
Ipsc-se-dpm-server.in2p3.fr
storm-se-01.ba.infn.it
storm-01.roma3.infn.it
shgsel.in2p3.fr
bohr3226.tier2.hep.manchester.ac.uk
gridsrm.pi.infn.it
se2.ppgridl.rhul.ac.uk
ccsrm02.in2p3.fr
tbn18.nikhef.nl
gfe02.grid.hep.ph.ic.ac.uk

[Download

M Jobs

10000 20000 30000 10000 20000 30000

o
o

Figure 6.2: Cumulative number of downloads for SEs versus the number of jobs in the
corresponding sites with and without dynamic replication.

We observe that without dynamic replication, the usage between the storage resources
and the compute resources for a site is very imbalanced. It is consistent with the analysis of
the execution traces presented in Chapter 2 since the scenarios without dynamic replication
actually corresponds to the current replication management in VIP, i.e., three SEs to
replicate files before the application execution. Without a priori information on where
jobs will be executed, this issue can hardly be solved by selecting different SEs for file
prestaging. By adopting dynamic replication, we can obtain a better balance between
the number of downloads and the number of jobs for each site. Moreover, with dynamic
replication, the number of downloads from computing sites with no jobs are much less

than without dynamic replication, decreasing from 8,690 to 567.

Overall, as shown in Table 6.1, without dynamic replication, only 11% (8,452) of
simulated transfers are local while 89% are distant transfers (i.e., intra-country and inter-
country). With dynamic replication, the ratio of local transfer increases to 91% (68,395)
due to the "cache-hit" mechanism. The remaining 9% are distant transfers: 6.6% (4,918)
are from the first job executed in a computing site and 2.3% (1,687) are subsequent jobs
which have reached the maximum threshold value before the completion of file registra-
tion by the first job. This comparison shows that our proposed dynamic replication can
effectively address the issue of imbalanced usage between the storage resources and the
compute resources for a site and also the inefficient network usages, which were identified

from the analysis of execution traces in Chapter 2.

Anchen CHAI 91

CHAPTER 6. EVALUATION OF FILE REPLICATION STRATEGIES THROUGH REALISTIC
SIMULATIONS

local transfer | intra-country | inter-country

without Dynamic Replication 8,452 26,078 40,470
with Dynamic Replication 68,395 3,152 3,453

Table 6.1: Cumulative number of different type of transfers with and without dynamic
replication for 15 simulated workflows with 50 random prestaging lists.

6.4.2 Impact of different prestaging lists on static replication

We saw that, globally, the choice of SEs used for prestaging mainly matters when
there is no dynamic replication. To measure the impact of SE choice on file prestaging, we
compare the 50 random prestaging lists, the 4 predefined lists and the current prestaging

list used in production.

We identify the best and the worst prestaging among these 55 lists based on the
median simulated file transfers duration. The performance corresponding to the current
production prestaging list is also identified (named "prod prestaging"). It utilizes 3 SEs
in France, chosen according to the criteria described in Chapter 1. Note that we only
evaluate the impact of the prestaging list w.r.t. the file transfer duration. Other aspects
taken into account by VIP administrators (e.g., reliability, availability and storage space
of each SE) are left as future work. The comparisons for the 3-level hierarchical (top) and

trace based-model (bottom) are shown in Fig. 6.3.

100% -
’ 3-level model FEURN

without Dyn. Rep.

75% -

50% -

25% -

0% -

100% - i — ————
’ trace—based model i

without Dyn. Rep.

75% -

50% - /_jrr

Percentage of completed file transfers

Best prestaging

— Worst prestaging
25% -

J_/r_,ﬁ —F — Prod. prestaging
L Random prestagings
T
ol —F sl g

5 10 50 100 500 1000

Transfer duration (in seconds)

Figure 6.3: Comparison of random, predefined, and the current production prestaging list
without dynamic replication for two platform models

92 Anchen CHAI

6.4. PERFORMANCE EVALUATION

For the 3-level model, the "best prestaging" corresponds to one of the predefined lists:
three SEs associated to the sites hosting the largest number of jobs located in three different
countries, i.e., UK, Netherlands, and France. By selecting the most used sites, most of the
jobs can directly download files from their local SEs. Moreover, scattering file replicas in
different countries can efficiently reduce the number of downloads from a foreign country.
Conversely, the "worst prestaging’ for the 3-level model is given by three SEs associated
to sites that do not execute any job and are located in different countries. Thus, most of
the jobs download files from a foreign country, which leads to the worst performance.

For the trace-based model, we find the exact same "best prestaging" and "worst prestag-
ing" as for the 3-level model. It further validates the findings from the 3-level model. In
Chapter 2, we saw that the distribution of jobs was very heterogeneous at the country
level. Moreover, from both the information in collected traces and the historical informa-
tion from the DIRAC [Tsaregorodtsev et al. (2010)] server, we found that UK, Netherlands,
and France were the countries hosting the largest number of executed jobs (~80%) in the
Biomed VO. Prestaging files at these three countries allows to maximumly reduce the
number of downloads from a SE located in foreign countries. Therefore, we believe that
the best performance without dynamic replication is likely to be obtained by selecting the
SEs in different countries hosting the largest cumulative number of executed jobs for both
models.

It is also interesting to note in Fig. 6.3 that the performance of the prestaging currently
used in production is quite different between the 3-level and trace-based models. In the
former, SEs are equivalent in the sense that a single bandwidth value is used for all the
links in each category (i.e., local, inter-country, and intra-country). Performance will then
be better for lists with SEs close to the sites executing most of the jobs. In the latter, each
link is unique and the use of close SEs alone cannot ensure the best performance. The
"prod prestaging" list illustrates this. It corresponds to three SEs in France, close to sites
that execute more than 16% (which is more than the average sites) of the total number
of jobs. However, the general connectivity for these three SEs is worse than the average.
This explains why the performance of the "prod prestaging" list is better than most of the
randomly selected prestaging lists in the 3-level model and worse in the trace-based model.
It also shows that different platform models can lead to different qualitative assessments

for scenarios even with similar configurations.

6.4.3 Impact of platform model on replication decisions

Figure 6.4 compares the duration of file transfers when using dynamic replication for
both models. We observe that dynamic replication leads to much more stable results in

the 3-level model than in the trace-based model.

Anchen CHAI 93

CHAPTER 6. EVALUATION OF FILE REPLICATION STRATEGIES THROUGH REALISTIC
SIMULATIONS

100%

With Dyn. Rep.

75%+

50% 4

3-level model

25% — trace—based model

Percentage of completed file transfers

0% 1 —
1 5 10 50 100 500 1000
Transfer duration (in seconds)

Figure 6.4: Cumulative distribution of simulated file transfer durations with dynamic
replication for two platform models

In other words, in the 3-level model, a random selection of SEs to prestage files is
enough. No improved SE selection strategy is required. However, for the trace-based
model, we observe a greater variability which can be explained by the important hetero-
geneity in terms of network connectivity that is better captured by this model. With
dynamic replication, the file transfer duration of the first job in a site will directly decide
how many subsequent jobs can benefit from the local transfer. A very long duration may
let more subsequent jobs reach the maximum patient time. Depending on where files are
prestaged, the transfer duration of the first job in a site can be highly variable in the
trace-based model. Therefore, even with dynamic replication, the performances still has
a large variability in the trace-based model. In the 3-level model, as we only have one
bandwidth value for each link category, the choice of the SEs in the prestaging list only
have limited impact on the transfer duration of the first job in a site. The performances
are hence much more stable.

Figure 6.5 compares the best performance achieved by predefined or randomly selected
lists without dynamic replication for each model. As in simulation we have the complete
a priori information (e.g., the distribution of executed jobs on computing sites or in
countries) about the sites on which jobs are going to be executed, the best predefined
prestaging list is always better than the best random list. Interestingly, we see that the
gain is much larger in trace-based model. The more heterogeneous the platform is, the

more important a priori information is to optimize file transfers.

94 Anchen CHAI

6.5. RECOMMENDATIONS FOR FILE REPLICATION IN VIP ON EGI

100%

without Dyn.

75% 4

50% -

25%

Percentage of completed file transfers

0% 4

C

Rep. ==

— Best predefined — TB

— - Best random - TB
Best predefined — 3L
Best random - 3L

10 50 100 500 1000

Transfer duration (in seconds)

Figure 6.5: Cumulative distribution of simulated file transfer durations without dynamic
replication for two platform models. Best performance achieved by predefined or randomly

selected lists is highlighted.

6.5 Recommendations for file replication in VIP on EGI

As we have seen above, simulation results are not always consistent between the two

models. We find that a larger variability exists in the trace-based model even with dynamic

replication. The relative performance of the current production configuration also differs

from a model to another. Consequently, recommendations for VIP need to be based on

the results obtained with the trace-based model.

Figure 6.6 compares the best and worst performance (with or without dynamic repli-

cation) to the current product

ion setting.

100% 4

75%4

50% 4

25% 4

Percentage of completed file transfers

0% —A

trace—based model

p—_ L

Best — with Dyn. Rep.
Worst - with Dyn. Rep.
— Best — without Dyn. Rep.
— - Worst — without Dyn. Rep.

— Prod. prestaging

10 50 100 500 1000
Transfer duration (in seconds)

Figure 6.6: Comparison of the best and the worst prestaging with the current production
prestaging for trace-based model with or without dynamic replication.

Anchen CHAI

95

CHAPTER 6. EVALUATION OF FILE REPLICATION STRATEGIES THROUGH REALISTIC
SIMULATIONS

Without dynamic replication, a careful selection of the SEs used for file prestaging
reduces file transfer times. Based on statistical information from the DIRAC server, we
can decide which countries hosted largest cumulative number of jobs in a long-term point
of view. However, it still requires a priori information on where jobs are going to be
executed to reach the best performance without dynamic replication. For jobs submitted
independently in large distributed systems such as EGI, we cannot know in advance where
they will be executed. However, we could attempt to predict it by leveraging historical

data on where the jobs have been running over a given period of time.

Dynamic replication always outperforms the current production configuration. To
better quantify its gain, we computed in Table 6.2 the 95%-confidence interval for the
statistics on the simulated transfer durations over the 55 studied prestaging lists. We
conclude that with dynamic replication, there is a 95% chance that 75% of file transfers

will be 2.5 times shorther than without, regardless of the selected prestaging list.

1st Qu. Median Mean 3rd Qu. Max
without Dyn. Rep. | [8.3;11.2] | [22.9;28.23] | [60.5;71.2] | [57.8;66.9] | [974.4;974.8]
with Dyn. Rep. [2.6;2.7] [3.5;4.3] [25.6;30.7] | [19.8;24.7] | [1192.1;1301.4]

Table 6.2: 95%-confidence interval for the statistics of the simulated release transfers
durations of 55 prestaging lists with and without dynamic replication

However, the longest transfer duration seems to be worse with dynamic replication,
which is due to the timeout mechanism. As we have identified, the longest simulated
transfer corresponds to a job executed on a site with poor connectivity to/from most
SEs in the trace-based model. When using the dynamic replication, the timeout expires
3 times, hence adding an overhead of three times the timeout value (i.e., 110s). The
total transfer time corresponds to the cumulative time of all transfer attempts (failed and
successful). This effect could be mitigated with a timeout value that makes a trade-off
between the longest acceptable transfer duration and this extra overhead caused by retries.
It is important to note that such an extreme case cannot be evaluated with the 3-level

model that does not reflect the heterogeneity of the actual infrastructure.

To summarize, we can conclude from our observations that dynamic replication can
globally reduce the duration of file transfers except for extreme cases where multiple trans-
fer timeouts are hit successively. Such cases are only captured by the trace-based platform
model. As the benefits of dynamic replication come from the number of jobs that transfer
files from a local SE thanks to the copy made by the first job, it may not be interesting
for small workflows. Finally, implementing such a dynamic replication strategy in the pro-
duction environment would require non-negligible development effort to ensure the correct

handling of concurrent file access synchronization.

96 Anchen CHAI

6.6. CONCLUSION

6.6 Conclusion

In this chapter, we presented an evaluation of file replication strategies by studying two
platform models: a 3-level hierarchical model and a model built out of execution traces.
The originality of our work consists in evaluating both the impact of the platform models
and the impact of the replication strategies thanks to realistic simulations.

Results show that the estimated impact of a strategy can be quite different when the
platform model changes. In other words, the conclusion drawn from one model cannot be
automatically transferred to another. We show that the instantiation of the two models
leads to different qualitative decisions, even though they reflect a similar hierarchical
topology. It emphasizes the fact that the realism of the platform model is key to the
evaluation process.

By comparing the results obtained with each model, we found that selecting the sites
hosting a large number of executed jobs to prestage files is a safe recommendation to
optimize data management in the production system. In addition, adopting dynamic
replication can further reduce the duration of file transfers except for extreme cases (very

poorly connected sites) that our realistic simulations were able to capture.

Anchen CHAI 97

Chapter 7
Conclusions and perspectives

Simulation has often been considered as "literally costless" for research in distributed
systems. However, the realism of simulation has rarely been investigated in the literature,
as it requires serious scientific efforts which can be very costly.

In this thesis, we addressed the challenge of conducting realistic simulations of file
transfers for applications executed in a large distributed production system. The realism
of simulations has been investigated in two main aspects: the simulator and the platform
model. To have an inside view of our target infrastructure EGI, we collected and analyzed
a set of execution traces of the GATE application hosted by science gateway VIP. Based on
the knowledge derived from traces, we designed and implemented a simulator allowing us to
accurately simulate file transfers during GATE executions. Then we built realistic and fully
connected platforms in order to replay the execution of GATE workflows and to evaluate
different "what-if" scenarios for improving file management in science gateways such as
VIP. Finally, we cross-evaluated different file replication strategies by simulations using
two platform models and proposed reliable recommendations for applications deployed and
executed on EGI via VIP.

In the remainder of this chapter, we first summarize the contributions of each chapter
and then present particular perspectives identified along the development of this thesis.
Some perspectives present the limitations of our work in this thesis, and some others open

new research directions for future work.

7.1 Contributions

Chapter 2: Analysis of the execution traces of the GATE workflow. Based on
the analysis of the file transfer durations, we found that the minimum latency of file trans-
fers on EGI was around 1 second. It allows us to instantiate the cost of communications
among simulated components (i.e., SE, LFC, etc.) in our simulator. We also confirmed

that network hierarchy did exist in EGI, but was much more heterogeneous than a simple

98

7.1. CONTRIBUTIONS

three-level model. The characteristics of workflow executions (e.g., intra-site delay, imbal-
anced distribution of jobs, etc.) and the identified issues (e.g., imbalanced usage between
compute and storage resources of a site) allowed us to propose potential improvements for
file management in VIP.

Chapter 3: An ad-hoc realistic simulator of the GATE workflow. We imple-
mented a simulator based upon the SimGrid toolkit to simulate file transfers during the
executions of the GATE workflow. To improve the accuracy of the simulated durations of

file transfers, we

abstracted a file transfer into 4 messages among different components;

« instantiated the cost of control messages based on the transfer latency derived from

execution traces;

e implemented the same algorithm of replica selection service as in the EGI middle-

ware;
« injected the exact values of important parameters related to workflow executions.

This simulator was then used to conduct simulations in Chapters 4, 5, and 6.

Chapter 4: Replaying the execution of GATE workflow. We built realistic
ad-hoc platform models to replay the executions of the GATE workflow with a focus on
file transfers. The accuracy of our proposed network topology and bandwidth instantia-
tion methods have been evaluated by comparing the simulation results with the ground
truth of real transfers registered in the traces. Simulation results showed that our proposed
models largely outperformed the widely used state-of-the-art model to capture the real-life
variability of file transfers on EGI. This work was presented at the 17th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid) conference [Chai
et al. (2017)].

Chapter 5: Towards a complete description of the Biomed VO. In this chapter,
we aggregate multiple traces to construct a more general and complete description of the
Biomed VO platform based on the ad-hoc models built in Chapter 4. We also propose
three predictive models to fill-in the bandwidth of missing links. The accuracy of models
is evaluated by comparing the estimated bandwidths with the merged bandwidths for all
known links. A complete description is generated with one predictive model, which is used
as a realistic platform model of EGI to evaluate file replication strategies in [Chai et al.
(2018)].

Chapter 6: Evaluating file replication strategies by realistic simulations.
We cross-evaluate different file replication strategies using an enhanced three-level network
hierarchical model and the trace-based platform description built in Chapter 5. Simulation

results have shown that the estimated impact of a strategy can be quite different while

Anchen CHAI 99

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES

the two platform models reflect a similar hierarchical network topology. It emphasizes
the importance of our work to build a realistic platform model of EGI in this thesis. By
comparing the results obtained with each model, we found that selecting the sites hosting
a large number of executed jobs to prestage files is a safe recommendation for VIP. In
addition, adopting dynamic replication can further reduce the duration of file transfers
except for extreme cases (very poorly connected sites). This work was presented at the
HeteroPar 2018 workshop of the 24th International European Conference on Parallel and
Distributed Computing (Euro-Par) conference [Chai et al. (2018)], and was awarded the

"Best workshop paper on heterogeneous systems".

7.2 Perspectives

7.2.1 Improving the realism of file transfer simulations

To provide a more realistic simulation environment to simulate file transfers on large
distributed systems, additional aspects need to be considered in our simulator proposed
in Chapter 3. When taking into account each new aspect in our simulator, the difficulty
remains to validate its simulation behavior against the real production system. Hereafter,

we list some aspects that could be investigated in future work.

Transfer failures are quite common in large production distributed systems which
are prone to errors. They may have a strong impact on the completion time of a file
transfer in real executions of applications, as observed in Chapter 2. The SimGrid toolkit
offers the "ON/OFF" attribute for simulated SEs, which allows us to define the availability

of SEs along time to simulate transfer failures.

I/0O latency is also an important aspect deciding the duration of file transfers in
distributed systems, especially for transferring large files which may be split and stored
on different disks or tapes. Storage APIs have been recently added in SimGrid toolkit.
Models for different disks have been proposed and studied in [Lebre et al. (2015)]. These
APIs will allow us to simulate the I/O latency of a file transfer on EGI.

Maximum number of concurrent transfers supported by each SE. This config-
urable parameter is not always the same in real systems, depending on the protocal used by
SEs (e.g., dCache or DPM) and their local configurations on EGI. With the current design
and implementation of our simulator, we can easily adjust this parameter by calibrat-
ing the maximum number of simultaneous requests that each simulated SE can process.

However, it would require to collect more information about the general configuration of

SEs.

100 Anchen CHAI

7.2. PERSPECTIVES

7.2.2 Improving the realism of the platform description of EGI

Concurrency estimation for network links. In Chapter 4, a method was pro-
posed to correct the estimation of the nominal capacity of network links, which depends on
the starting points of transfers to estimate the number of concurrent transfers. However,
only one single value is registered for the duration of file transfers in traces. This single
value does not allow us to distinguish the real network transfer duration from other laten-
cies. Therefore, the number of concurrent transfers could be mis-estimated with respect
to the actual network usage, which can lead to a wrong estimation of the nominal capac-
ity of bandwidths. In future work, we can effectively improve this method by leveraging
more detailed information on transfer durations in traces or imposing more constraints in
our definition of concurrent transfers to minimize the impact of inaccurate estimation of
starting time-stamp. For example, we could define "concurrent transfers" as transfers with

similar starting time-stamp or at least 80% of their durations are overlapped.

Temporal variability for bandwidths of network links. Building a fully con-
nected platform description was mandatory to evaluate different file replication scenarios.
In Chapter 5, we evaluated two methods to instantiate the bandwidths of network links
with information from multiple traces. Simulation results have shown that the average-
merged platform still reproduces the overall distribution of real transfer durations. How-
ever, this average-based approach is only valid to evaluate these specific workflows. In
order to reach a more general description beyond average bandwidths, we need to take
into account temporal information of bandwidth variability for network links. It consists
in modeling either the distribution of the available bandwidth of links or the network
traffic on EGI. However, it is challenging to find the best compromise between the realism
and the level of abstraction. For instance, the most realistic way is to model the net-
work traffic of each network link and then define the bandwidth availability along time in
an "availability file" which is one potential attribute for links in SimGrid. This solution
would offer us more realism to reflect the network traffic on EGI. However, it requires to
study the bandwidth distribution and then produce an "availability file" for each network
link. Another solution is to model the network traffic in a more coarse-grained level, for
instance, by link categories (i.e., local, national, inter-country). In this case, we only need
to generate three "availability files" no matter how many links will be finally defined in our
platform. In [Glatard and Evans (2015)], authors proposed a site classification algorithm
to address the numerical variability among computing sites in large distributed production
systems. A similar approach could also be applied to investigate bandwidth variability of
links in EGI and it will help us to decide the best abstraction level for modeling the band-
width distribution of links. The idea is to use a classification method to group together

network links with similar variability so that we can model their bandwidth distributions

Anchen CHAI 101

CHAPTER 7. CONCLUSIONS AND PERSPECTIVES

and generate the "availability file" for each group.

Fill-in missing links. In Chapter 5, we used machine learning techniques to train
models to capture the relationship between the bandwidth of network links and attributes
extracted from the computing sites and SEs. Our cross validation has shown that the
neural network approach can be used as a promising method to predict the bandwidths of
national and inter-national links by leveraging known information in the merged platform.
However, with currently a small set of known links (i.e., 420) in the merged platform, we
cannot perfectly train a neural network model to correctly predict the bandwidths of all
missing links. In future work, we would further improve the neural network model by
aggregating more execution traces from different applications to obtain more measured
bandwidths for the sites on EGI. Besides, additional efforts are also needed to find the
optimal values for classical hyper-parameters (e.g., learning rate, number of neural in
hidden layer, etc.) in a neural network model.

Another direction to find the information of bandwidth for missing links is to use
network monitoring systems such as the perfSONAR [Campana et al. (2014)]. One long-
term perfSONAR archive! allows us to retrieve numerous information about the network
(e.g., the bandwidth, delay, packet loss, and packet traces) between perfSONAR hosts
installed at different sites on EGI. However, several drawbacks have prevented us to use
perfSONAR in this thesis:

e Not all computing sites in the Biomed VO of EGI currently support perfSONAR.

We cannot find all necessary information for our platform.

e Available information in the perfSONAR archive are site-based. No detailed infor-

mation is available for local links if the local SE belongs to the computing site.

After a large deployment of perfSONAR hosts on the sites in the Biomed VO, such
a tool would be helpful to investigate the distribution of links and to model the network

traffic in future work.

7.2.3 Extending the current capacities of our simulator

Simulation results in Chapter 6 have shown that a priori information of the distribu-
tion of jobs is very important to improve the performance of file transfers in heterogeneous
platforms. A bad decision for the prestaging list will lead to a worse performance than
with the current production setting. Although our proposed dynamic replication method
has been shown to be able to improve the performance with no need to have the a pri-
ori information, implementing such a dynamic strategy in the production environment

would require a non-negligible development effort for the correct handling of concurrent

! psds.grid.iu.edu/esmond /perfsonar/archive

102 Anchen CHAI

7.2. PERSPECTIVES

file access synchronization and human maintenance. One alternative is to do dynamic
planning for applications, which is similar to the site selection process in Pegasus [Deel-
man et al. (2015)]. The idea is to explicitly select different computing sites for workflows
before their executions. It allows us to obtain the complete information about where jobs
will be executed and therefore to decide the best prestaging list. The replica creation
problem is therefore transformed into estimating where will be the available computing
resources. Dynamic planning will be beneficial if the latency waiting for available resources
is much smaller than file transfers from remote SEs. The evaluation of such dynamic plan-
ning mechanism requires to extend our current simulator by correctly simulating more
middleware services of EGI, e.g., resource allocation and job scheduling.

Finally, with more parameters and services taken into account in our simulator and
a more complete platform description of EGI, we would offer a general and realistic tool
for researchers and developers to test different optimization or deployment strategies for
applications executed on large distributed production systems, which is our long-term aim

for future work.

Anchen CHAI 103

Bibliography

[Aad et al. (2008)] Aad, G., Butterworth, J., Thion, J., Bratzler, U., Ratoff, P., Nickerson,
R., Seixas, J., Grabowska-Bold, I., Meisel, F., Lokwitz, S., et al. (2008). The atlas
experiment at the cern large hadron collider. Jinst, 3:508003.

[Abdullah et al. (2008)] Abdullah, A., Othman, M., Ibrahim, H., Sulaiman, M. N.; and
Othman, A. T. (2008). Decentralized replication strategies for p2p based scientific
data grid. In Information Technology, 2008. ITSim 2008. International Symposium on,
volume 3, pages 1-8. IEEE.

[Alsoghayer and Djemame (2014)] Alsoghayer, R. and Djemame, K. (2014). Resource fail-
ures risk assessment modelling in distributed environments. Journal of Systems and
Software, 88:42-53.

[Amoon (2013)] Amoon, M. (2013). A job checkpointing system for computational grids.
Open Computer Science, 3(1):17-26.

[Andronikou et al. (2012)] Andronikou, V., Mamouras, K., Tserpes, K., Kyriazis, D., and
Varvarigou, T. (2012). Dynamic qos-aware data replication in grid environments based
on data “importance”. Future Generation Computer Systems, 28(3):544-553.

[Averitt et al. (2007)] Averitt, S., Bugaev, M., Peeler, A., Shaffer, H., Sills, E., Stein, S.,
Thompson, J., and Vouk, M. (2007). Virtual computing laboratory (vcl). In Proceedings
of the International Conference on the Virtual Computing Initiative, pages 1-6.

[Avetisyan et al. (2010)] Avetisyan, A. I., Campbell, R., Gupta, I., Heath, M. T., Ko,
S. Y., Ganger, G. R., Kozuch, M. A., O’Hallaron, D., Kunze, M., Kwan, T. T., et al.
(2010). Open cirrus: A global cloud computing testbed. Computer, 43(4):35-43.

[Bai et al. (2013)] Bai, X., Jin, H., Liao, X., Shi, X., and Shao, Z. (2013). Rtrm: a response
time-based replica management strategy for cloud storage system. In International
Conference on Grid and Pervasive Computing, pages 124-133. Springer.

[Balouek et al. (2012)] Balouek, D., Amarie, A. C., Charrier, G., Desprez, F., Jeannot,
E., Jeanvoine, E., Lebre, A., Margery, D., Niclausse, N., Nussbaum, L., et al. (2012).
Adding virtualization capabilities to the grid’5000 testbed. In International Conference
on Cloud Computing and Services Science, pages 3—20. Springer.

[Barisits et al. (2016)] Barisits, M., Kiihn, E., and Lassnig, M. (2016). A Hybrid Simula-
tion Model for Data Grids. In Proc. of 16th IEEE/ACM Intl. Symp. on Cluster, Cloud
and Grid Computing, pages 255—260.

[Barisits et al. (2017)] Barisits, M.-S., Lassnig, M., Beermann, T., Garonne, V., Javurek,
T., and Serfon, C. (2017). Automatic rebalancing of data in atlas distributed data
management. Technical report, ATL-COM-SOFT-2016-143.

104

BIBLIOGRAPHY

[Beermann et al. (2017)] Beermann, T., Lassnig, M., Barisits, M., Serfon, C., Garonne,
V., Collaboration, A., et al. (2017). C3po-a dynamic data placement agent for atlas
distributed data management. In Journal of Physics: Conference Series, volume 898,
page 062012. IOP Publishing.

[Bell et al. (2003)] Bell, W. H., Cameron, D. G., Millar, A. P., Capozza, L., Stockinger,
K., and Zini, F. (2003). OptorSim - A Grid Simulator for Studying Dynamic Data
Replication Strategies. IJHPCA, 17(4):403-416.

[Ben-Yehuda et al. (2012)] Ben-Yehuda, O. A., Schuster, A., Sharov, A., Silberstein, M.,
and Tosup, A. (2012). Expert: Pareto-efficient task replication on grids and a cloud. In
Parallel € Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International,
pages 167-178. IEEE.

[Bharathi et al. (2008)] Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.-H.,
and Vahi, K. (2008). Characterization of scientific workflows. In Workflows in Support
of Large-Scale Science, 2008. WORKS 2008. Third Workshop on, pages 1-10. IEEE.

[Bird et al. (2014)] Bird, I., Carminati, F., Mount, R., Panzer-Steindel, B., Harvey, J.,
Fisk, I., Kersevan, B., Clarke, P., Girone, M., Buncic, P., et al. (2014). Update of the
computing models of the wlcg and the lhc experiments. Technical report.

[Bobelin et al. (2012)] Bobelin, L., Legrand, A., Marquez, D. A. G., Navarro, P., Quinson,
M., Suter, F., and Thiéry, C. (2012). Scalable multi-purpose network representation for
large scale distributed system simulation. In Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pages
220-227. IEEE Computer Society.

[Bonacorsi and Ferrari (2007)] Bonacorsi, D. and Ferrari, T. (2007). Wlcg service chal-
lenges and tiered architecture in the lhc era. In IFAE 2006, pages 365—368. Springer.

[Bsoul et al. (2011)] Bsoul, M., Al-Khasawneh, A., Abdallah, E. E., and Kilani, Y. (2011).
Enhanced fast spread replication strategy for data grid. Journal of Network and Com-
puter Applications, 34(2):575-580.

[Bsoul et al. (2016)] Bsoul, M., Abdallah, A., Almakadmeh, K., and Tahat, N. (2016). A
Round-Based Data Replication Strategy. IEEE TPDS, 27(1):31-39.

[Buyya et al. (2011)] Buyya, R., Ranjan, R., Broberg, J., and Dias de Assuncao, M.
(2011). Gridsim: A grid simulation toolkit for resource modelling and application
scheduling for parallel and distributed computing.

[Cai et al. (2017)] Cai, Z., Li, Q., and Li, X. (2017). Elasticsim: A toolkit for simulating
workflows with cloud resource runtime auto-scaling and stochastic task execution times.
Journal of Grid Computing, 15(2):257-272.

[Calheiros et al. (2011)a] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F.,
and Buyya, R. (2011a). CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning Algorithms. SPE,
41(1):23-50.

[Calheiros et al. (2011)b] Calheiros, R. N., Ranjan, R., and Buyya, R. (2011b). Virtual
machine provisioning based on analytical performance and qos in cloud computing en-
vironments. In Parallel processing (ICPP), 2011 international conference on, pages
295-304. IEEE.

Anchen CHAI 105

BIBLIOGRAPHY

[Calheiros and Buyya (2014)] Calheiros, R. N. and Buyya, R. (2014). Meeting deadlines
of scientific workflows in public clouds with tasks replication. IEFEE Transactions on
Parallel and Distributed Systems, 25(7):1787-1796.

[Camarasu-Pop et al. (2010)] Camarasu-Pop, S., Glatard, T., Moscicki, J. T., Benoit-
Cattin, H., and Sarrut, D. (2010). Dynamic partitioning of gate monte-carlo simulations
on egee. Journal of Grid Computing, 8(2):241-259.

[Camarasu-Pop et al. (2013)a] Camarasu-Pop, S., Glatard, T., and Benoit-Cattin, H.
(2013a). Simulating application workflows and services deployed on the european grid
infrastructure. In Cluster, Cloud and Grid Computing (CCGrid), 2018 13th IEEE/ACM
International Symposium on, pages 18-25. IEEE.

[Camarasu-Pop et al. (2013)b] Camarasu-Pop, S., Glatard, T., and Benoit-Cattin, H.
(2013b). Simulating Application Workflows and Services Deployed on the European
Grid Infrastructure. In Proceedings of the 13th IEEE/ACM International. Symposium
on Cluster, Cloud, and Grid Computing, pages 18-25.

[Camarasu-Pop et al. (2013)c] Camarasu-Pop, S., Glatard, T., Da Silva, R. F., Gueth, P.,
Sarrut, D., and Benoit-Cattin, H. (2013c). Monte carlo simulation on heterogeneous
distributed systems: A computing framework with parallel merging and checkpointing
strategies. Future Generation Computer Systems, 29(3):728-738.

[Camarasu-Pop et al. (2016)] Camarasu-Pop, S., Glatard, T., and Benoit-Cattin, H.
(2016). Combining Analytical Modeling, Realistic Simulation and Real Experimentation
for the Optimization of Monte-Carlo Applications on the European Grid Infrastructure.
FGCS, 57:13-23.

[Campana et al. (2014)] Campana, S., Brown, A., Bonacorsi, D., Capone, V., De Giro-
lamo, D., Casani, A. F., Flix, J., Forti, A., Gable, 1., Gutsche, O., Hesnaux, A., Liu,
S., Lopez Munoz, F., Magini, N., McKee, S., Mohammed, K., Rand, D., Reale, M.,
Roiser, S., Zielinski, M., and Zurawski, J. (2014). Deployment of a WLCG Network
Monitoring Infrastructure Based on the perfSONAR-PS Technology. In Proceedings of
the 20th International Conference on Computing in High Energy and Nuclear Physics,
volume 513 of Journal of Physics: Conference Series, page 062008.

[Cao et al. (2010)] Cao, H., Jin, H., Wu, X., Wu, S., and Shi, X. (2010). Dagmap: efficient
and dependable scheduling of dag workflow job in grid. The Journal of supercomputing,
51(2):201-223.

[Carrion et al. (2015)] Carrién, I. M., Huedo, E., and Llorente, I. M. (2015). Interoperat-
ing grid infrastructures with the gridway metascheduler. Concurrency and Computation:
Practice and Ezperience, 27(9):2278-2290.

[Casanova et al. (2014)] Casanova, H., Giersch, A., Legrand, A., Quinson, M., and Suter,
F. (2014). Versatile, Scalable, and Accurate Simulation of Distributed Applications and
Platforms. Journal of Parallel and Distributed Computing, 74(10):2899-2917.

[Chai et al. (2017)] Chai, A., Bazm, M.-M., Camarasu-Pop, S., Glatard, T., Benoit-
Cattin, H., and Suter, F. (2017). Modeling Distributed Platforms from Application
Traces for Realistic File Transfer Simulation. In Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pages 54—63.

106 Anchen CHAI

BIBLIOGRAPHY

[Chai et al. (2018)] Chai, A., Camarasu-Pop, S., Glatard, T., Benoit-Cattin, H., and
Suter, F. (2018). Evaluation through realistic simulations of file replication strategies for
large heterogeneous distributed systems. In Furopar 2018-24th International European
Conference on Parallel and Distributed Computing; Workshop HeteroPar 2018, pages
in—press.

[Challal and Bouabana-Tebibel (2010)] Challal, Z. and Bouabana-Tebibel, T. (2010). A
priori replica placement strategy in data grid. In Machine and Web Intelligence
(ICMWI), 2010 International Conference on, pages 402-406. IEEE.

[Chang and Chang (2008)] Chang, R.-S. and Chang, H.-P. (2008). A dynamic data repli-
cation strategy using access-weights in data grids. The Journal of Supercomputing,
45(3):277-295.

[Chen and Deelman (2012)] Chen, W. and Deelman, E. (2012). Workflowsim: A toolkit
for simulating scientific workflows in distributed environments. In E-science (e-science),
2012 IEEE 8th International Conference on, pages 1-8. IEEE.

[Chervenak et al. (2007)] Chervenak, A. et al. (2007). Data placement for scientific appli-
cations in distributed environments. In Proceedings of the 8th IEEE/ACM International
Conference on Grid Computing, pages 267-274.

[Chettaoui and Charrada (2014)] Chettaoui, H. and Charrada, F. B. (2014). A new de-
centralized periodic replication strategy for dynamic data grids. Scalable Computing:
Practice and Ezperience, 15(1):101-119.

[Chtepen et al. (2009)] Chtepen, M., Dhoedt, B., De Turck, F., Demeester, P., Claeys,
F. H., and Vanrolleghem, P. A. (2009). Adaptive checkpointing in dynamic grids for un-
certain job durations. In Information Technology Interfaces, 2009. ITI’09. Proceedings
of the ITI 2009 31st International Conference on, pages 585—-590. IEEE.

[Cui et al. (2015)] Cui, Z., Zhang, Z., et al. (2015). Based on the correlation of the file
dynamic replication strategy in multi-tier data grid. International Journal of Database
Theory and Application, 8(1):75-86.

[David et al. (2014)] David, M. et al. (2014). Validation of Grid Middleware for the Eu-
ropean Grid Infrastructure. Journal of Grid Computing, 12(3):543-558.

[Dayyani and Khayyambashi (2015)] Dayyani, S. and Khayyambashi, M. (2015). RDT: A
New Data Replication Algorithm for Hierarchical Data Grid. International Journal of
Computer Science and Engineering, 3(7):186-197.

[Da Silva et al. (2013)] Da Silva, R. F., Glatard, T, and Desprez, F. (2013). Self-healing of
workflow activity incidents on distributed computing infrastructures. Future Generation
Computer Systems, 29(8):2284-2294.

[Deelman et al. (2015)] Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maech-
ling, P. J., Mayani, R., Chen, W., da Silva, R. F., Livny, M., et al. (2015). Pegasus,
a workflow management system for science automation. Future Generation Computer
Systems, 46:17-35.

[Desprez and Rouzaud-Cornabas (2013)] Desprez, F. and Rouzaud-Cornabas, J. (2013).
SimGrid Cloud Broker: Simulating the Amazon AWS Cloud. PhD thesis, INRIA.

Anchen CHAI 107

BIBLIOGRAPHY

[Donno et al. (2008)] Donno, F., Abadie, L., Badino, P., Baud, J., Corso, E., Witt, S.,
Fuhrmann, P., Gu, J., Koblitz, B., Lemaitre, S., et al. (2008). Storage resource manager
version 2.2: design, implementation, and testing experience. In Journal of Physics:
Conference Series, volume 119, page 062028. IOP Publishing.

[Dogan (2009)] Dogan, A. (2009). A study on performance of dynamic file replication
algorithms for real-time file access in data grids. Future Generation Computer Systems,
25(8):829-839.

[Elghirani et al. (2008)] Elghirani, A., Subrata, R., and Zomaya, A. (2008). A Proactive
Non-Cooperative Game-Theoretic Framework for Data Replication in Data Grids. In
Proceedings of the 8th IEEFE International Symposium on Cluster Computing and the
Grid, pages 433-440.

[Fadaie and Rahmani (2012)] Fadaie, Z. and Rahmani, A. M. (2012). A new replica place-
ment algorithm in data grid. International Journal of Computer Science Issues (IJCSI),
9(2):491.

[Fernandez et al. (2012)] Fernandez, J. A., Adolphsen, C., Akay, A., Aksakal, H., Al-
bacete, J., Alekhin, S., Allport, P., Andreev, V., Appleby, R., Arikan, E., et al. (2012).
A large hadron electron collider at cernreport on the physics and design concepts for ma-
chine and detector. Journal of Physics G: Nuclear and Particle Physics, 39(7):075001.

[Ferreira da Silva et al. (2015)] Ferreira da Silva, R., Rynge, M., Juve, G., Sfiligoi, I.,
Deelman, E., Letts, J., Wiirthwein, F., and Livny, M. (2015). Characterizing a High
Throughput Computing Workload: The Compact Muon Solenoid (CMS) Experiment
at LHC. Procedia Computer Science, 51:39-48.

[Fischl (2012)] Fischl, B. (2012). Freesurfer. Neuroimage, 62(2):774-781.

[Foster et al. (2001)] Foster, I., Kesselman, C., and Tuecke, S. (2001). The anatomy of
the grid: Enabling scalable virtual organizations. The International Journal of High
Performance Computing Applications, 15(3):200—222.

[Foster et al. (2008)] Foster, 1., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud computing
and grid computing 360-degree compared. In Grid Computing Environments Workshop,
2008. GCE’08, pages 1-10. Ieee.

[Garonne et al. (2014)] Garonne, V., Vigne, R., Stewart, G., Barisits, M., Lassnig, M.,
Serfon, C., Goossens, L., Nairz, A., Collaboration, A., et al. (2014). Rucio-the next
generation of large scale distributed system for atlas data management. In Journal of
Physics: Conference Series, volume 513, page 042021. IOP Publishing.

[Glatard et al. (2007)] Glatard, T., Montagnat, J., and Pennec, X. (2007). Optimizing
Jobs Timeouts on Clusters and Production Grids. In Proceedings of the 7th IEEE
International Symposium on Cluster Computing and the Grid, pages 100-107.

[Glatard et al. (2008)] Glatard, T., Montagnat, J., Lingrand, D., and Pennec, X. (2008).
Flexible and Efficient Workflow Deployment of Data-Intensive Applications On Grids
With MOTEUR. IJHPCA, 22(3):347-360.

[Glatard et al. (2013)] Glatard, T., Lartizien, C., et al. (2013). A Virtual Imaging Plat-
form for Multi-Modality Medical Image Simulation. IEEE Trans. on Medical Imaging,
32(1):110-118.

108 Anchen CHAI

BIBLIOGRAPHY

[Glatard and Evans (2015)] Glatard, T. and Evans, A. C. (2015). Classifications of com-
puting sites to handle numerical variability. In 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 863-870. IEEE.

[Grace and Manimegalai (2014)] Grace, R. K. and Manimegalai, R. (2014). Dynamic
replica placement and selection strategies in data grids—a comprehensive survey. Jour-
nal of Parallel and Distributed Computing, 74(2):2099-2108.

[Grossman et al. (2009)] Grossman, R., Gu, Y., Sabala, M., Bennet, C., Seidman, J., and
Mambratti, J. (2009). The open cloud testbed: A wide area testbed for cloud computing
utilizing high performance network services. arXiv preprint arXiv:0907.4810.

[Gupta et al. (2017)] Gupta, H. et al. (2017). iFogSim: A Toolkit for Modeling and Sim-
ulation of Resource Management Techniques in The Internet of Things, Edge and Fog
Computing Environments. Software: Practice and Experience, 47(9):1275-1296.

[Hanandeh et al. (2012)] Hanandeh, F., Khazaaleh, M., Ibrahim, H., and Latip, R. (2012).
Cfs: a new dynamic replication strategy for data grids. Int. Arab J. Inf. Technol.,
9(1):94-99.

[Horri et al. (2008)] Horri, A., Sepahvand, R., and Dastghaibyfard, G. (2008). A hierar-
chical scheduling and replication strategy. Int J Comput Sci Netw Secur, 8(8):30-35.

[Howell and McNab (1998)] Howell, F. and McNab, R. (1998). Simjava: A discrete event
simulation library for java. Simulation Series, 30:51-56.

[Tacobucci (2012)] Iacobucci, D. (2012). Mediation analysis and categorical variables: The
final frontier. Journal of Consumer Psychology, 22(4):582-594.

[Tosup et al. (2006)] Iosup, A., Jan, M., Sonmez, O., and Epema, D. (2006). On the
dynamic resources availability in grids. PhD thesis, INRIA.

[losup et al. (2011)] Iosup, A., Yigitbasi, N., and Epema, D. (2011). On the performance
variability of production cloud services. In Cluster, Cloud and Grid Computing (CC-
Grid), 2011 11th IEEE/ACM International Symposium on, pages 104-113. IEEE.

[Iosup and Epema (2011)] Iosup, A. and Epema, D. (2011). Grid computing workloads.
IEEE Internet Computing, 15(2):19-26.

[Issariyakul and Hossain (2012)] Issariyakul, T. and Hossain, E. (2012). Introduction to
network simulator 2 (ns2). In Introduction to Network Simulator NS2, pages 21-40.
Springer.

[Jan et al. (2004)] Jan, S. et al. (2004). GATE: a Simulation Toolkit for PET and SPECT.
Physics in Medicine and Biology, 49(19):4543.

[Javadi et al. (2013)] Javadi, B., Kondo, D., Iosup, A., and Epema, D. (2013). The fail-
ure trace archive: Enabling the comparison of failure measurements and models of
distributed systems. Journal of Parallel and Distributed Computing, 73(8):1208-1223.

[Juve et al. (2013)] Juve, G., Rynge, M., Deelman, E., Vockler, J.-S., and Berriman, G. B.
(2013). Comparing futuregrid, amazon ec2, and open science grid for scientific workflows.
Computing in Science € Engineering, 15(4):20-29.

Anchen CHAI 109

BIBLIOGRAPHY

[Kim et al. (2011)] Kim, W., Roopakalu, A., Li, K. Y., and Pai, V. S. (2011). Under-
standing and characterizing planetlab resource usage for federated network testbeds. In
Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement confer-
ence, pages 515-532. ACM.

[Kliazovich et al. (2012)] Kliazovich, D., Bouvry, P., and Khan, S. U. (2012). Greencloud:
a packet-level simulator of energy-aware cloud computing data centers. The Journal of
Supercomputing, 62(3):1263-1283.

[Kondo et al. (2010)] Kondo, D., Javadi, B., Iosup, A., and Epema, D. (2010). The failure
trace archive: Enabling comparative analysis of failures in diverse distributed systems.
In Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International
Conference on, pages 398-407. IEEE.

[Kranzlmuller (2009)] Kranzlmuller, D. (2009). The future european grid infrastruc-
ture—roadmap and challenges. In Information Technology Interfaces, 2009. ITI’09.
Proceedings of the ITI 2009 31st International Conference on, pages 17-20. IEEE.

[Lamehamedi et al. (2002)] Lamehamedi, H. et al. (2002). Data Replication Strategies in
Grid Environments. In Proceedings of the 5th International Conference on Algorithms
and Architectures for Parallel Processing, pages 378-383.

[Laure and Jones (2009)] Laure, E. and Jones, B. (2009). Enabling grids for e-science:
The egee project. Grid computing: infrastructure, service, and applications, page b5.

[Lebre et al. (2015)] Lebre, A., Legrand, A., Suter, F., and Veyre, P. (2015). Adding
storage simulation capacities to the simgrid toolkit: Concepts, models, and api. In
Cluster, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM International
Symposium on, pages 251-260. IEEE.

[Lee et al. (2012)] Lee, M.-C., Leu, F.-Y., and Chen, Y.-p. (2012). Pfrf: An adaptive data
replication algorithm based on star-topology data grids. Future Generation Computer
Systems, 28(7):1045-1057.

[Lei et al. (2008)] Lei, M., Vrbsky, S., and Hong, X. (2008). An On-Line Replication
Strategy to Increase Availability in Data Grids. Future Generation Computing Systems,
24(2):85-98.

[Long et al. (2006)] Long, S. J., Long, J. S., and Freese, J. (2006). Regression models for
categorical dependent variables using Stata. Stata press.

[Loukopoulos and Ahmad (2004)] Loukopoulos, T. and Ahmad, I. (2004). Static and
adaptive distributed data replication using genetic algorithms. Journal of Parallel and
Distributed Computing, 64(11):1270-1285.

[Loschen and Miiller-Pfefferkorn] Loschen, C. and Miiller-Pfefferkorn, R. Providing grid
data access on srm and lfc to unicore. Schriften des Forschungszentrums Jilich IAS
Series Volume 15, page 95.

[Ma et al. (2013)] Ma, J., Liu, W., and Glatard, T. (2013). A classification of file
placement and replication methods on grids. Future Generation Computer Systems,
29(6):1395-1406.

110 Anchen CHAI

BIBLIOGRAPHY

[Ma et al. (2015)] Ma, J., Liu, W., and Glatard, T. (2015). A stateful storage availability
and entropy model to control storage distribution on grids. Concurrency and Compu-
tation: Practice and Ezperience, 27(1):164-171.

[Maier et al. (2018)] Maier, T., Beermann, T. A., Duckeck, G., Lassnig, M., Vukotic, I.,
and Legger, F. (2018). Performance and impact of dynamic data placement in atlas.
Technical report, ATL-COM-SOFT-2018-047.

[Mambretti et al. (2015)] Mambretti, J., Chen, J., and Yeh, F. (2015). Next generation
clouds, the chameleon cloud testbed, and software defined networking (sdn). In 2015 In-
ternational Conference on Cloud Computing Research and Innovation (ICCCRI), pages
73-79. IEEE.

[Mansouri and Dastghaibyfard (2012)] Mansouri, N. and Dastghaibyfard, G. H. (2012). A
dynamic replica management strategy in data grid. Journal of network and computer
applications, 35(4):1297-1303.

[Mansouri and Dastghaibyfard (2013)a] Mansouri, N. and Dastghaibyfard, G. H. (2013a).
Enhanced dynamic hierarchical replication and weighted scheduling strategy in data
grid. Journal of parallel and distributed computing, 73(4):534-543.

[Mansouri and Dastghaibyfard (2013)b] Mansouri, N. and Dastghaibyfard, G. H. (2013b).
Job scheduling and dynamic data replication in data grid environment. The Journal of
Supercomputing, 64(1):204-225.

[Miller et al. (2015)] Miller, M. A., Schwartz, T., Pickett, B. E., He, S., Klem, E. B.,
Scheuermann, R. H., Passarotti, M., Kaufman, S., and O’Leary, M. A. (2015). A
restful api for access to phylogenetic tools via the cipres science gateway. Fvolutionary
Bioinformatics, 11:EBO-521501.

[Montagnat et al. (2009)] Montagnat, J., Isnard, B., Glatard, T., Maheshwari, K., and
Fornarino, M. B. (2009). A data-driven workflow language for grids based on array
programming principles. In Proceedings of the 4th Workshop on Workflows in Support
of Large-Scale Science, page 7. ACM.

[Montagnat et al. (2010)] Montagnat, J., Glatard, T., Reimert, D., Maheshwari, K.,
Caron, E., and Desprez, F. (2010). Workflow-based comparison of two distributed
computing infrastructures. In Workflows in Support of Large-Scale Science (WORKS),
2010 5th Workshop on, pages 1-10. IEEE.

[Moscicki et al. (2011)] Moscicki, J., Lamanna, M., Bubak, M., and Sloot, P. M. (2011).
Processing moldable tasks on the grid: Late job binding with lightweight user-level
overlay. Future Generation Computer Systems, 27(6):725-736.

[Nazir et al. (2009)] Nazir, B., Qureshi, K., and Manuel, P. (2009). Adaptive checkpoint-
ing strategy to tolerate faults in economy based grid. The Journal of Supercomputing,
50(1):1-18.

[Ostermann et al. (2008)a] Ostermann, S., Prodan, R., Fahringer, T., Tosup, A., and
Epema, D. (2008a). A trace-based investigation of the characteristics of grid workflows.
In From Grids to Service and Pervasive Computing, pages 191-203. Springer.

Anchen CHAI 111

BIBLIOGRAPHY

[Ostermann et al. (2008)b] Ostermann, S., Prodan, R., Fahringer, T., Iosup, R., and
Epema, D. (2008b). On the characteristics of grid workflows. In CoreGRID Symposium-
FEuro-Par, volume 2008, pages 1-12.

[Ostermann et al. (2010)] Ostermann, S., Prodan, R., and Fahringer, T. (2010). Dynamic
Cloud Provisioning for Scientific Grid Workflows. In Proc. of the 11th ACM/IEEFE
International Conference on Grid Computing, pages 97-104.

[Park et al. (2003)] Park, S.-M., Kim, J.-H., Ko, Y.-B., and Yoon, W.-S. (2003). Dynamic
data grid replication strategy based on internet hierarchy. In International Conference
on Grid and Cooperative Computing, pages 838—846. Springer.

[Poola et al. (2016)] Poola, D., Ramamohanarao, K., and Buyya, R. (2016). Enhancing
reliability of workflow execution using task replication and spot instances. ACM Trans-
actions on Autonomous and Adaptive Systems (TAAS), 10(4):30.

[Pérez et al. (2010)] Pérez, J. M., Garcia-Carballeira, F., Carretero, J., Calderén, A., and
Fernandez, J. (2010). Branch replication scheme: A new model for data replication in
large scale data grids. Future Generation Computer Systems, 26(1):12-20.

[REN et al. (2010)] REN, X.-y., WANG, R.-c., and Qiang, K. (2010). Using optorsim to
efficiently simulate replica placement strategies. The Journal of China Universities of
Posts and Telecommunications, 17(1):111-119.

[Ramakrishnan et al. (2007)] Ramakrishnan, A., Singh, G., et al. (2007). Scheduling data-
intensive workflows onto storage-constrained distributed resources. In Cluster Comput-
ing and the Grid, 2007. CCGRID 2007. Seventh IEEE International Symposium on,
pages 401-409. IEEE.

[Ranganathan et al. (2002)] Ranganathan, K., Tamnitchi, A., and Foster, I. (2002). Im-
proving data availability through dynamic model-driven replication in large peer-to-peer
communities. In Cluster Computing and the Grid, 2002. 2nd IEEE/ACM International
Symposium on, pages 376-376. IEEE.

[Ranganathan and Foster (2001)] Ranganathan, K. and Foster, I. (2001). Identifying dy-
namic replication strategies for a high-performance data grid. In International Workshop
on Grid Computing, pages 75-86. Springer.

[Ranganathan and Foster (2002)] Ranganathan, K. and Foster, I. (2002). Decoupling
Computation and Data Scheduling in Distributed Data-Intensive Applications. In Proc.
of the 11th IEEFE Intl. Symp. on High Performance Distributed Computing, pages 352—
358.

[Ranganathan and Foster (2003)] Ranganathan, K. and Foster, I. (2003). Simulation stud-
ies of computation and data scheduling algorithms for data grids. Journal of Grid
computing, 1(1):53-62.

[Rasool et al. (2009)] Rasool, Q., Li, J., and Zhang, S. (2009). Replica placement in
multi-tier data grid. In Dependable, Autonomic and Secure Computing, 2009. DASC"09.
Eighth IEEFE International Conference on, pages 103-108. IEEE.

[Reiss et al. (2012)] Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., and Kozuch,
M. A. (2012). Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In Proceedings of the Third ACM Symposium on Cloud Computing, page 7. ACM.

112 Anchen CHAI

BIBLIOGRAPHY

[Romanus et al. (2012)] Romanus, M., Mantha, P. K., McKenzie, M., Bishop, T. C., Gal-
lichio, E., Merzky, A., El Khamra, Y., and Jha, S. (2012). The anatomy of successful ecss
projects: lessons of supporting high-throughput high-performance ensembles on xsede.
In Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery
Environment: Bridging from the eXtreme to the campus and beyond, page 46. ACM.

[Sadashiv and Kumar (2011)] Sadashiv, N. and Kumar, S. D. (2011). Cluster, grid and
cloud computing: A detailed comparison. In Computer Science & Education (ICCSE),
2011 6th International Conference on, pages 477-482. IEEE.

[Sashi and Thanamani (2011)] Sashi, K. and Thanamani, A. S. (2011). Dynamic repli-
cation in a data grid using a modified bhr region based algorithm. Future Generation
Computer Systems, 27(2):202-210.

[Sato et al. (2008)] Sato, H., Matsuoka, S., Endo, T., and Maruyama, N. (2008). Access-
Pattern and Bandwidth Aware File Replication Algorithm in a Grid Environment. In
Proceedings of the 9th IEEE/ACM International Conference on Grid Computing, pages
250-257.

[Shorfuzzaman et al. (2010)] Shorfuzzaman, M., Graham, P., and Eskicioglu, R. (2010).
Adaptive Popularity-Driven Replica Placement in Hierarchical Data Grids. The Journal
of Supercomputing, 51(3):374-392.

[Siaterlis et al. (2013)] Siaterlis, C., Garcia, A. P., and Genge, B. (2013). On the use of
emulab testbeds for scientifically rigorous experiments. IEEE Communications Surveys
€ Tutorials, 15(2):929-942.

[Smith et al.] Smith, S., Woolrich, M., Behrens, T., Beckmann, C., Flitney, D., Jenkinson,
M., Bannister, P., Clare, S., De Luca, M., Hansen, P., et al. Fmrib software library.

[Suter et al. (2016)] Suter, F., Chai, A., and Bazm, M. (2016). The Log2sim Framework.
Available at: http://github.com/frs69wq/log2sim.

[Tierney et al. (2009)] Tierney, B., Metzger, J., Boote, J., Boyd, E., Brown, A., Carlson,
R., Zekauskas, M., Zurawski, J., Swany, M., and Grigoriev, M. (2009). perfsonar:
Instantiating a global network measurement framework. SOSP Wksp. Real Owverlays
and Distrib. Sys.

[Topcuoglu et al. (2002)] Topcuoglu, H., Hariri, S., and Wu, M.-y. (2002). Performance-
effective and low-complexity task scheduling for heterogeneous computing. IFEFE trans-
actions on parallel and distributed systems, 13(3):260-274.

[Tos et al. (2015)] Tos, U., Mokadem, R., Hameurlain, A., Ayav, T., and Bora, S. (2015).
Dynamic replication strategies in data grid systems: a survey. The Journal of Super-
computing, 71(11):4116-4140.

[Towns et al. (2014)] Towns, J., Cockerill, T., Dahan, M., Foster, 1., Gaither, K.,
Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G. D., et al. (2014).
Xsede: accelerating scientific discovery. Computing in Science € Engineering, 16(5):62—
74.

[Tsaregorodtsev et al. (2010)] Tsaregorodtsev, A. et al. (2010). DIRAC3 — the New Gener-
ation of the LHCb Grid Software. Journal of Physics: Conference Series, 219(6):062029.

Anchen CHAI 113

http://github.com/frs69wq/log2sim

BIBLIOGRAPHY

[Tu et al. (2008)] Tu, M., Li, P., Yen, L.-L., Thuraisingham, B., and Khan, L. (2008).
Secure data objects replication in data grid. IEFEE Transactions on dependable and
secure computing, (1):50-64.

[Van Reeth et al. (2015)] Van Reeth, E., Soujanya, G., Sdika, M., Cervenansky, F., and
Poh, C. (2015). Misosr: Medical image isotropic super-resolution reconstruction. Midas
Journal.

[Vashisht et al. (2014)] Vashisht, P., Kumar, R., and Sharma, A. (2014). Efficient dynamic
replication algorithm using agent for data grid. The Scientific World Journal, 2014.

[Velho et al. (2013)] Velho, P., Schnorr, L. M., Casanova, H., and Legrand, A. (2013). On
the Validity of Flow-Level TCP Network Models for Grid and Cloud Simulations. ACM
TOMACS, 23(4):23.

[Velho and Legrand (2009)] Velho, P. and Legrand, A. (2009). Accuracy Study and Im-
provement of Network Simulation in the SimGrid Framework. In Proc. of the 2nd Intl.
Conf. on Simulation Tools and Techniques for Communications, Networks and Systems.

[Von Laszewski et al. (2010)] Von Laszewski, G., Fox, G. C., Wang, F., Younge, A. J.,
Kulshrestha, A., Pike, G. G., Smith, W., Voeckler, J., Figueiredo, R. J., Fortes, J.,
et al. (2010). Design of the futuregrid experiment management framework. In Gateway
Computing Environments Workshop (GCE), 2010, pages 1-10. IEEE.

[Vrbsky et al. (2010)] Vrbsky, S., Lei, M., Smith, K., and Byrd, J. (2010). Data Replica-
tion and Power Consumption in Data Grids. In Proceedings of the 2nd IEEE Interna-
tional Conference on Cloud Computing Technology and Science, pages 288—295.

[Wassenaar et al. (2012)] Wassenaar, T. A., Van Dijk, M., Loureiro-Ferreira, N., Van
Der Schot, G., De Vries, S. J., Schmitz, C., Van Der Zwan, J., Boelens, R., Giachetti,
A., Ferella, L., et al. (2012). Wenmr: structural biology on the grid. Journal of Grid
Computing, 10(4):743-767.

[Wu et al. (2008)] Wu, J.-J., Lin, Y.-F., and Liu, P. (2008). Optimal replica placement
in hierarchical data grids with locality assurance. Journal of Parallel and Distributed
Computing, 68(12):1517-1538.

[Xiong et al. (2013)] Xiong, F., ZHU, X.-x., HAN, J.-y., and WANG, R.-c. (2013). Qos-
aware replica placement for data intensive applications. The Journal of China Univer-
sities of Posts and Telecommunications, 20(3):43-47.

[Yang et al. (2010)] Yang, C.-T., Fu, C.-P., and Hsu, C.-H. (2010). File Replication, Main-
tenance, and Consistency Management Services in Data Grids. The Journal of Super-
computing, 53(3):411-439.

[Zhao et al. (2010)a] Zhao, L., Lee, W., Song, C. X., Huber, M., and Goldner, A. (2010a).
Bringing high performance climate modeling into the classroom. In Proceedings of the
2010 TeraGrid Conference, page 24. ACM.

[Zhao et al. (2010)b] Zhao, W., Xu, X., Wang, Z., Zhang, Y., and He, S. (2010b). A
dynamic optimal replication strategy in data grid environment. In Internet Technology
and Applications, 2010 International Conference on, pages 1-4. IEEE.

114 Anchen CHAI

BIBLIOGRAPHY

[Zhong et al. (2010)] Zhong, H., Zhang, Z., and Zhang, X. (2010). A dynamic replica
management strategy based on data grid. In Grid and Cooperative Computing (GCC),
2010 9th International Conference on, pages 18-23. IEEE.

[amazon ec2] amazon ec2. https://aws.amazon.com/ec2.
[google cloud] google cloud. https://cloud.google.com/.
[prace project] prace project. http://www.prace-project.eu.

[windows azure] windows azure. https://azure.microsoft.com/en-us/.

Anchen CHAI 115

	Abstract
	Contents
	Acronyms
	Introduction
	State-of-the-art
	Introduction
	Distributed computing infrastructures
	Grid computing
	Cloud computing

	Application deployment in distributed systems
	Science gateways
	Scientific workflows
	Traces of workflow executions
	Optimization of workflow execution

	File replication
	Classification for file replication
	Requirements for file replication in production
	Existing replication management in production systems

	Simulation
	Simulation tools
	Platform models for file replication

	Conclusion

	Analyzing execution traces of one application deployed on a large distributed system
	Introduction
	GATE application
	Execution traces
	Characteristics of file transfers
	Coarse-grain analysis
	Fine-grain analysis

	Characteristics of workflow and job executions
	Queuing time durations
	Distribution of jobs
	Cumulative downloads for SEs

	Conclusion

	Realistic simulation of file transfers for applications deployed on distributed infrastructures
	Introduction
	Execution of the GATE workflow on EGI
	GATE workflow in VIP
	Data management services in EGI
	Summary of the characteristics of the real system

	The SimGrid toolkit
	Simulator design
	Simulated services for data management on EGI
	Communication cost for file transfers
	Parameter injection

	Conclusion

	Realistic platform models for replaying real workflow executions
	Introduction
	Build partial platform model from execution traces
	Baseline model
	Improvements based on execution traces

	Overall evaluation of our model
	Analysis of simulated transfer durations
	Analysis of errors
	Analysis of the root causes of large simulation errors

	Conclusion

	Towards a complete and realistic description of the Biomed VO platform
	Introduction
	Aggregating network information from multiple traces
	Filling-in missing links in the merged platform
	Empirical model
	Machine learning model
	Evaluation

	Conclusion and discussion

	Evaluation of file replication strategies through realistic simulations
	Introduction
	Replication strategies
	Dynamic replication strategy

	Simulation studies
	Platform Models
	Simulation scenarios

	Performance evaluation
	Impact of dynamic replication
	Impact of different prestaging lists on static replication
	Impact of platform model on replication decisions

	Recommendations for file replication in VIP on EGI
	Conclusion

	Conclusions and perspectives
	Contributions
	Perspectives
	Improving the realism of file transfer simulations
	Improving the realism of the platform description of EGI
	Extending the current capacities of our simulator

	Bibliography

