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Ideally, an aeroelastically scaled model would be obtained by scaling all the parameters of the full-scale model. However, some aspects such as the architecture of the internal structure or the material properties cannot be scaled down directly. For example, the elastic modulus and the density of the material are not continuous variables, but values that depend on the discrete choice of the material of the scaled model. It is for this reason that we use an optimization approach, to find the design that best matches the scaled aeroelastic response, despite all the aspects that cannot be scaled directly. Design optimization is traditionally used to obtain the best performing design, but in this case we use it to determine the design of the scaled aircraft that best replicates aeroelastic wing displacements, and flutter speeds and modes. For illustration purposes, Figure 1.1 shows the static wing deflection on a real airliner (the reference aircraft) next to a scaled model with equivalent wing displacements.

To address the similarity problem, we divide the approach in three parts. In the first one we deal with the aeroelastic similarity problem when the aerodynamic flow scaling conditions can be completely preserved. In that situation, the problem is reduced to simply matching the scaled modal dynamic response of the wing through optimization of the structure and mass properties. In the second part, once the modal dynamic quantities have been matched, we focus on the wing planform design optimization to match the flutter response when the airflow scaling parameters cannot be achieved. In the third part, we address the similarity of the static aeroelastic deflections, also when the airflow similarity cannot be achieved, through the optimization of both the structure properties and the aerodynamic shape at the same time. In this thesis, we will see how to optimize the design of a scaled model to obtain an aircraft whose scaled aeroelastic behavior is the closest one to a given reference aircraft, which usually only exists as a conceptual design and whose in-flight experimental behavior is often unknown. The presented methods focus in three aspects of the aeroelastic behavior: modal dynamics, flutter similarity and static aeroelastic similarity.

One of the possible applications of aeroelastically scaled aircraft is for the in-flight evaluation of innovative aircraft configurations. Given the design of a new concept (other than the well-known wing and fuselage), this scaling methodology could be used to design and build a scaled unmanned vehicle that will behave similarly (from the aeroelastic point of view). This would avoid the cost, time, and risk of building and testing the actual full scale aircraft concept.

Another potential application is in the case of the next generations of existing aircraft types. One example is the redesign of existing models including new engines, such as the Airbus A320 neo or the Boeing 737 MAX. Since more fuel efficient engines require bigger fans, this implies a different mass distribution along the wing, which may have an impact on flutter characteristics. Using scaled models of these new aircraft types with equivalent mass and stiffness distributions could help to better determine their in-flight behavior before actually testing the real aircraft.

After introducing the subject of aeroelastically scaled aircraft, in the following section we present a brief bibliographical review on this topic.

Bibliographical Review

After introducing the subject of this thesis in the previous section, now we present a brief bibliographical review on aeroelastic scaling and more specifically to its application to the design of flying scaled models.

The fundamentals of classical aeroelastic scaling methods were described by Bisplinghoff et al. [Bis+96] in 1955. Scruton and Lambourne [START_REF] Scruton | Similarity Requirements for Flutter Model Testing[END_REF] extended the approach to include compressibility and heat transfer effects. French [START_REF] French | An application of structural optimization in wind tunnel model design[END_REF] proposed an optimization based approach for matching the static response of finite elements models for aeroelastic scaling purposes. To consider dynamic aeroelastic scaling, French and Eastep [START_REF] French | Aeroelastic model design using parameter identification[END_REF] introduced a two-step approach. First, the structure stiffness was matched through the minimization of the differences in static deflections. Then, the design of non-structural masses was determined via an optimization problem where the difference in mode shapes was minimized and the reduced modal frequencies were set as constraints. This modal optimization problem can be treated as a model updating problem in structural dynamics. The book by Friswell and Mottershead [START_REF] Friswell | Finite element model updating in structural dynamics[END_REF] represents a reference in this field.

In the field of modal optimization and stiffness matching, Pereira et al. [START_REF] Pereira | Aeroelastic scaling and optimization of a joined-wing aircraft concept[END_REF] described a technique based on the optimization of the natural frequencies applied to the design of a joined-wing wind tunnel model. Bond et al. [START_REF] Vanessa | Aeroelastic Scaling of a Joined Wing for Nonlinear Geometric Stiffness[END_REF] showed that matching mode shapes is also a requirement, apart from natural frequencies. Richards et al. [START_REF] Richards | Design of a scaled rpv for investigation of gust response of joined-wing sensorcraft[END_REF] compared a single-step direct modal matching to a decoupled approach. In the latter case, the stiffness is matched through static deflections and subsequently the modes and frequencies are matched by optimizing the nonstructural mass distribution. Several authors considered the nonlinearities in the static scaling, such as Bond et al. [START_REF] Vanessa | Aeroelastic Scaling of a Joined Wing for Nonlinear Geometric Stiffness[END_REF], that expanded the modern approach described by French and Eastep [START_REF] French | Aeroelastic model design using parameter identification[END_REF] to include geometrical nonlinearities in the aeroelastic scaling process by also matching the first buckling mode. According to Bond et al. [START_REF] Vanessa | Aeroelastic Scaling of a Joined Wing for Nonlinear Geometric Stiffness[END_REF], the purpose of matching the first buckling mode is to match the nonlinear response of the structure. Ricciardi et al. [START_REF] Ricciardi | Nonlinear Aeroelastic Scaling of a Joined Wing Aircraft[END_REF] modified the two-step approach proposed by Richards et al. [START_REF] Richards | Design of a scaled rpv for investigation of gust response of joined-wing sensorcraft[END_REF] to include matching of nonlinear static deflections in the first optimization loop. Both of these works ([Ric+09] and [START_REF] Ricciardi | Nonlinear Aeroelastic Scaling of a Joined Wing Aircraft[END_REF]) apply the proposed scaling methodology to the joined-wing SensorCraft model. Subsequently, Ricciardi et al. [START_REF] Ricciardi | Nonlinear Aeroelastic-Scaled-Model Optimization Using Equivalent Static Loads[END_REF] investigated the use of a single-step method where linear and nonlinear static responses were matched, while at the same time satisfying the natural frequency constraints. Wan and Cesnik [START_REF] Wan | Geometrically Nonlinear Aeroelastic Scaling for Very Flexible Aircraft[END_REF] presented a technique for the scaling of very flexible aircraft with geometrical nonlinearities. They extended the linear scaling factors and similarity rules to consider the case of aeroelastic scaling with geometrical nonlinearities. In a more recent work, Ricciardi et al. [START_REF] Ricciardi | Nonlinear Aeroelastic Scaled-Model Design[END_REF] presented a systematic approach for the design of aeroelastically scaled models. They used an optimization based method to match vibration and buckling modes and eigenvalues, as well as to match a linear static response. Also, they pointed out the problem of mode crossing during the optimization (i.e., when the frequencies of two different modes intersect in the design space). In previous works [START_REF] Mas Colomer | Similarity Maximization of a Scaled Aeroelastic Flight Demonstrator via Multidisciplinary Optimization[END_REF], we described the static aeroelastic scaling when flow similarity cannot be achieved. Also, and in the context of the modern aeroelastic scaling (i.e., with assumed flow similarity), we addressed the problem of mode crossing by implementing a mode tracking strategy. Cavallaro and Demasi [START_REF] Cavallaro | Challenges, Ideas, and Innovations of Joined-Wing Configurations: A Concept from the Past, an Opportunity for the Future[END_REF] present a detailed literature survey on the works done for the aeroelastic scaling of the joined-wing SensorCraft models. Also, Afonso et al. [START_REF] Afonso | A review on non-linear aeroelasticity of high aspect-ratio wings[END_REF] reviewed the state-of-the-art on nonlinear aeroelasticity of high aspect ratio wings. Regarding the recent developments and applications, the works by Spada et al. [START_REF] Spada | Nonlinear aeroelastic scaling of high aspect-ratio wings[END_REF] constitute an application example of the two-step method to high aspect ratio wings. More recently, Pontillo et al. [START_REF] Pontillo | Flexible High Aspect Ratio Wing: Low Cost Experimental Model and Computational Framework[END_REF] described a method to design a cantilevered wing model that reproduces the aeroelastic static and dynamic behavior of a conceptual full size aircraft.

All these publications constitute a reference and a starting point for the developments that are presented in this thesis.

Layout

This thesis is divided into four main chapters, in addition to the present introduction. The chapters are then further divided into sections. In Chapter 1, the introduction 1.1 starts by stating the problem and quickly describing the approach taken. A brief literature review on the subject of aeroelastic scaling of flying aircraft is presented, which also includes references to more generic disciplines that are used to solve the stated problem.

Chapter 2 describes the methods used for this work, and the choice of these methods is justified according to their application. The majority of the methods can be classified into two main categories: the analysis of the physics of flying aircraft (primarily aerodynamics and structures) and optimization methods. In this chapter we also describe the computational framework used for the multidisciplinary analyses and optimizations, as well as the tool used for their graphical representation.

In Chapter 3 we consider the case of aeroelastic scaling under complete airflow similarity, which can be treated as a structural dynamics problem only. We make a review on how this problem has been traditionally solved and we propose a formulation based on the finite element model updating (traditionally used with data from experimental sources), but here we apply it using the response of the reference aircraft instead of the experimental data.

In Chapter 4, we consider the case of dynamic aeroelastic similarity, but this time in situations where the airflow conditions (we focus particularly on the Mach number) cannot be matched. We start with the equations of linear elasticity, and we focus on the impact of the differences in airflow conditions on the aerodynamic force matrices and we propose a method to correct these discrepancies through optimization of the wing planform.

In Chapter 5, we also consider the situation where the scaled airflow conditions cannot be met, but this time we concentrate on static aeroelasticity and we use a more accurate analysis for statics than the linear equation of aeroelasticity. We propose an optimizationbased method to determine the design variables (both geometrical and structural) of the scaled wing that best matches the scaled in-flight shape of a given reference aircraft at the reference conditions.

The Python codes (based on OpenMDAO1 [Gra+10]; [START_REF] Gray | Automatic Evaluation of Multidisciplinary Derivatives Using a Graph-Based Problem Formulation in OpenMDAO[END_REF]) used for the works described in this thesis can be found at https://github.com/joanmasco/aerostructures Introduction L a recherche d'aéronefs plus efficaces mène les concepteurs à explorer de nouvelles configurations d'aéronefs tels que l'aile volante, l'aile haubanée ou l'aile jointive. Contrairement à la configuration classique aile-fuselage, qui est bien connue et étudiée, le comportement en vol de ces nouveaux concepts est peu connu. Dans ce contexte, la conception, la construction et les essais de modèles à échelle aéroélastiquement semblables se présentent comme un moyen peu risqué d'acquérir des connaissances expérimentales sur ces nouvelles configurations. Un modèle aéroélastiquement semblable présente le même comportement aéroélastique (mis à l'échelle) que l'avion de référence à échelle réelle. En général, le même comportement aéroélastique implique de reproduire, d'une part, le même comportement structurel pour des conditions de flux d'air données et, de l'autre part, les mêmes vitesses de flottement ou de divergence statique mises à l'échelle.

Idéalement, un modèle aéroélastiquement semblable s'obtiendrait en mettant à l'échelle tous les paramètres du modèle à l'échelle réelle. Cependant, certains aspects tels que l'architecture de la structure interne ou les propriétés du matériau ne peuvent pas être mises à l'échelle directement. Par exemple, le module élastique et la densité du matériau ne sont pas des variables continues, mais des valeurs qui dépendent du choix discret du matériau du modèle réduit. C'est pour cette raison qu'une approche basée sur l'optimisation est utilisée pour trouver le design qui correspond le mieux à la réponse aéroélastique mise à l'échelle, malgré tous les aspects qui ne peuvent pas être directement reproduits. L'optimisation est traditionnellement utilisée pour obtenir la conception la plus performante, mais dans ce cas, elle est utilisée pour déterminer le design de l'aéronef à l'échelle qui reproduit le mieux les déplacements aéroélastiques de l'aile, et les vitesses et modes de flottement.

Pour résoudre le problème de similitude, l'approche est divisée en trois parties. Dans le premier cas, nous traitons le problème de similitude aéroélastique lorsque les paramètres de similitude du flux aérodynamique peuvent être complètement préservés. Dans cette situation, le problème consiste simplement à reproduire la réponse dynamique modale de l'aile mise à l'échelle en optimisant les propriétés de la structure et de la masse. Dans la deuxième partie, une fois les quantités dynamiques modales reproduites, nous nous concentrons sur l'optimisation du design de la forme de l'aile pour reproduire la réponse du flottement lorsque les paramètres de remise à l'échelle du flux aérodynamique ne peuvent pas être atteints. Dans la troisième partie, nous abordons la similitude des déflexions aéroélastiques statiques, même lorsque la similitude du flux d'air ne peut pas être atteinte, grâce à l'optimisation simultanée des propriétés de la structure et de la forme aérodynamique.

Nous allons voir comment optimiser le design d'un modèle à échelle réduite pour obtenir un avion dont le comportement aéroélastique à l'échelle est le plus proche de celui d'un avion de référence donné, qui n'existe généralement que "sur papier" et dont le comportement expérimental en vol est souvent peu connu. Les méthodes présentées se concentrent sur trois aspects du comportement aéroélastique : la dynamique modale, la similitude du flottement et la similitude aéroélastique statique. 

Chapter 2

Methods and Tools

Résumé

lasticité se justifie par la prédominance des forces de portance par rapport à celles de traînée et par la grande rigidité des ailes suivant la direction de la traînée.

Après avoir décrit les méthodes d'analyse de structures et d'aérodynamique séparément, la méthode de couplage statique utilisée dans cette thèse est présentée. Cette méthode se base sur un itérateur de type Gauss-Seidel pour les problèmes couplés non-linéaires, déjà disponible dans OpenMDAO. L'échange de données (forces et déplacements) entre les maillages de l'aérodynamique et la structure se fait à travers une méthode d'interpolation basée sur les fonctions de base radiale (RBF) [START_REF] Rendall | Unified fluid-structure interpolation and mesh motion using radial basis functions[END_REF].

Après avoir présenté les principales méthodes d'analyse utilisées, nous rappelons la théorie qui permet d'établir la remise à l'échelle d'avions pour satisfaire la similitude aéroélastique, en reprenant la description et l'analyse faites par Ricciardi [START_REF] Ricciardi | Nonlinear Aeroelastic-Scaled-Model Optimization Using Equivalent Static Loads[END_REF]. La présentation de cette théorie nous permet d'introduire la notion des matrices des forces aérodynamiques. Ces matrices nous permettent ensuite de présenter la méthode choisie pour résoudre le problème de flottement de l'aile, aussi basée sur les éléments finis.

Finalement, les principales catégories d'optimiseurs disponibles sont présentées et leurs avantages et inconvénients vis-à-vis des applications menées dans cette thèse sont exposés. Finalement, un tableau comparatif de ces techniques est présenté afin de faciliter le choix de l'optimiseur selon chaque cas d'application.

Outline

In this chapter we present and describe the following points:

• A method to represent and visualize multidisciplinary analysis and optimization (MDAO) problems: XDSM

• A computational framework to assemble and run the analyses and optimizations: OpenMDAO

• Methods for static and dynamic structural analysis

• A method for steady aerodynamics analysis

• Methods for static and dynamic aeroelastic analysis

• Methods for constrained optimization problems

The XDSM diagram

In this section we briefly describe a type of graphical tool used to represent multidisciplinary analysis and optimization processes, known as XDSM (eXtended Design Structure Matrix), introduced by Lambe and Martins [START_REF] Lambe | Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes[END_REF]. This type of diagram derives from the classical DSM [START_REF] Steven | Design structure matrix methods and applications[END_REF] diagram, a tool that represents dependencies between activities or processes in complex systems. The XDSM diagram is used throughout this work to represent the multidisciplinary analysis and optimization processes.

The XDSM diagram allows to represent the analyses involved in a multidisciplinary analysis and optimization (MDAO) problem, as well as their connections to the other analyses through the state variables. Apart from the data dependencies of the state variables, the XDSM diagram gives information on how (i.e., which order) the analyses are executed. The basic rules for the elaboration of an XDSM diagram are the following:

• Rectangular green boxes represent analyses. The input variables of an analysis are on its vertical line, while the ouptputs are on its horizontal line.

• Variables in a grey box (internal or state variables) are variables that are exchanged by the analyses.

• Variables in a white box are inputs or outputs of the whole problem.

• Any variable on the vertical line of an analysis box is an input of that analysis.

• Any variable on the horizontal level of an analysis is an output of that analysis.

• The numbering indicates the order in which analyses are executed.

• Grey thick lines indicate input/output dependencies (in general, they give the same information as the horizontal or vertical placement of each analysis). They connect variables to the analyses and help make the visualization of data dependency easier.

• Black thin lines connect analysis in the order specified by the numbering. They connect analyses with the subsequent analyses to be executed (in general, they give the same information as the numbering). They are useful to better visualize the order expressed by the numbering.

A visual representation of each type of node on the XDSM diagram is given in Figure 2.1. To illustrate how an XDSM diagram works, we provide the example of a simple aeroelastic problem. This problem consists of a rigid wing attached with a torsional spring of stiffness K at the root, as seen on Figure 2.2. In its associated XDSM diagram on Figure 2.3, we see the structural and aerodynamic analyses. The structural analysis takes as inputs the structural properties, the stiffness, the offset angle of attack α, and the lift force L, which is a coupling variable. The aerodynamic analysis inputs are the airflow properties, geometry, offset angle of attack, and elastic deflection, which is the other coupling variable. The multidisciplinary analysis (MDA) loop starts with a guess of the lift force (denoted as L t ) and iterates until the specified convergence conditions on the state variables is reached. The global outputs of the problem are the two state variables at their converged state. In the next section we describe the computational tool that we use in this work to assemble all the analysis, state variables, and design variables to solve the multidisciplinary analysis (MDA) and multidisciplinary analysis and optimization (MDAO) problems for the aeroelastic similarity of scaled aircraft. 

Input or Output Variable

The OpenMDAO framework

This section quickly describes the computational framework we use to solve in practice the aerostructural problems and optimizations. The chosen framework is OpenMDAO [START_REF] Gray | OpenMDAO: An Open-Source Framework for Multidisciplinary Analysis and Optimization[END_REF]; [START_REF] Gray | Automatic Evaluation of Multidisciplinary Derivatives Using a Graph-Based Problem Formulation in OpenMDAO[END_REF], which is a Python-written open source project developed by the NASA Glenn Research Center 1 .

The main purpose of OpenMDAO is to link different analyses (known as components in the context of OpenMDAO) through the exchange of variables. A component may be constituted by a Python-written function or a wrapper that runs an external software from the input values, reads the output of the executable and then sets the value of the output variables, for example. Components belong into groups, according to the variables that they share. For illustration purposes, Figure 2.4 displays the groups, components, and variables of an aeroelastic coupling implemented under OpenMDAO. After having presented the computational framework for the assembly of the several analysis tools (be it external software or Python-written functions), in the following sections we describe the methods concerning the physical analysis of structures and aerodynamics.

Method for Static Structural Analysis

For all the static structural analyses in this work, we choose to use the linear static solution using the finite element method (FEM). A description of the fundamentals of FEM for structural analysis is given by Holland [START_REF] Holland | Fundamentals of the finite element method[END_REF].

In the FEM for structural analysis, the structure under consideration is discretized into several elements, which are characterized by some structural properties, which are representative of the structure. These elements have nodes (e.g., the simplest form of a shell element is a triangle with a node on each vertex). The elements are linked to the other elements of the structure through their common nodes. In general, either the displacements or the forces are known on each node of the structure. Typically, nodes whose displacements are known constitute the constrained set of nodes, whereas the nodes where the force is specified are known as free nodes. The constrained set of nodes defines the boundary conditions of the problem. The properties of the elements, as well as the topology and geometry of the mesh that they form, allow the creation of what is known as the stiffness matrix. The stiffness matrix, denoted as [K], expresses the forces {f } acting on the nodes as a function of the displacements of the structure {u}, leading to the linear relationship {f } = [K]{u}.

(2.1)

In the linear static analysis, this linear system enables to determine the displacements {u} as a function of the prescribed displacements on certain nodes and the applied loads. After the solution of this linear system, the displacement field allows to compute the deformation on the elements and their stresses σ. For example, Figure 2.6 shows the equivalent Von Mises stress distribution on the shell elements of a wingbox. 

Method for Modal Structural Analysis

For all the structural dynamics analysis in this work, we choose to use the modal analysis applied to linear dynamic systems. Reference [START_REF] Girard | Structural dynamics in industry[END_REF], by Girard and Roy, describes in detail the modal approach applied to the study of structural dynamics. As it was the case for the static analysis, we will use the FEM method to solve modal dynamics problems. In general, in a linear dynamics problem, we have the stiffness matrix [K], as defined in Section 2.3, as well as the mass matrix [M] which, in a similar manner to the stiffness matrix, is computed from the element properties, the geometry, and the topology of the FEM mesh. The mass matrix [M] expresses the forces applied to the structural nodes as a function of the accelerations ẍ on the nodes. Thus, we can write the linear dynamics equation for an undamped and unloaded structure as

[K]{x} + [M]{ẍ} = 0. (2.2)
If we assume a harmonic solution solution for the previous system, we know that the time derivative of the displacement is

{ ẋ} = iω{x}, (2.3)
where i is the imaginary unit and ω is the angular frequency. Then, by differentiating again with respect to time, we know that the acceleration is {ẍ} = -ω 2 {x}, (2.4) By using Eq. (2.4), we can rewrite Eq. (2.2) as

([K] -ω 2 [M]){x} = 0. (2.5)
As detailed in the MSC Nastran Dynamic Analysis User's Guide [START_REF] Msc Nastran | Dynamic Analysis User's Guide[END_REF], the non-trivial solution of Eq. (2.5) is when the determinant of the matrix multiplying {x} is zero,

det([K] -ω 2 [M]) = 0. (2.6)
The determinant is zero for particular values of ω = ω i . Each value ω i is called an eigenvalue.

For each eigenvalue, any vector φ i that satisfies Eq. (2.5) is known as an eigenvector. In general, any multiple of an eigenvector is also an eigenvector. Since each eigenvector is a particular vector of displacements, each one represents a specific deformed shape of the structure, which is associated to a particular angular frequency ω i . If no loads are applied, the structure vibrates according to these mode shapes at the natural frequencies. The eigenvectors can be normalized according to several criteria, but a common one is to normalize them so that the maximum displacement component equals one. In general, in dynamic analysis of structures, only a limited number of modes are computed, starting from the lowest frequencies and up to a range which is characteristic of the operational environment of the structure. Figure 2.7 shows an example of a vibration mode shape of a wingbox structure.

As it was the case for the static structural analysis, for the structural dynamics we also use NASA's Nastran [START_REF] Maccormick | The NASTRAN User's Manual:(level 15)[END_REF] as a FEM solver. 

Method for Static Aerodynamic Analysis

In this section, we describe the method use for the static aeroelastic analysis. Since for the aeroelasticity analysis the predominant force is the lift, we use the panel method for the aerodynamic analyses, which is a numerical method to solve the potential flow (inviscid, incompressible, and irrotational) around an arbitrary object. We choose to use such method because, even if more accurate computational fluid dynamics (CFD) methods exist to solve Euler's equations or the Navier-Stokes equations, which offer more realistic drag values, the panel method has several advantages for the particular case of aeroelastic analysis. In the first place, the lift-to-drag ratio of a typical aircraft (around 20 for a modern airliner), combined to the high rigidity of wings in the direction of the drag force with respect to the direction of lift, allows us to use the potential flow theory (which offers reasonable results for lift forces) for aeroelastic analysis. Katz and Plotkin [START_REF] Katz | Low-speed aerodynamics[END_REF] offer an in-depth explanation of panel methods. In this work, we use Panair [START_REF] Magnus | A Computer Program for Predicting Subsonic or Supersonic Linear Potential Flows About Arbitrary Configurations Using A Higher Order Panel Method[END_REF], a Fortran implementation of a panel code released by NASA4 . According to the potential flow theory, given a body immersed in a flow, whose external boundary is S B , the continuity equation is expressed as

∇ 2 Φ * = 0, (2.7)
where Φ * is the total potential. As explained by Katz and Plotkin [START_REF] Katz | Low-speed aerodynamics[END_REF], the solution of the continuity equation can be obtained through the combination of sources (σ) and doublets (µ), distributed across the external boundary S B of the body of interest. This is written as

Φ * (x, y, z) = -1 4π S B σ • 1 r -µn • ∇ 1 r dS + Φ ∞ , (2.8)
where n is the vector normal to S B positive when pointing outside the fluid domain V (as shown in Figure 2.8), r is the Euclidean distance, and Φ ∞ is the free-stream potential such that

∇Φ ∞ = - → V ( - →
V is the air velocity vector, not to be confused with the fluid domain V ). There exist multiple source and doublet distributions that satisfy Eq. 2.8. However, a particular solution that is physically representative must be chosen. Usually, the Kutta condition is enforced to choose a particular solution. This condition states that the rear stagnation point (i.e., with null velocity) is at the trailing edge.

In the panel method approach, Eq. (2.8) is discretized over the boundary S B , and the source and doublet strengths are determined on the discrete panels that approximate the surface S B . From the source and doublet distributions, the pressure coefficient C p can be computed. The pressure coefficient is defined as

C p = p -p ∞ 1 2 ρV 2 ,
(2.9)

where p is the local pressure, p ∞ is the free-stream pressure, ρ is the air density, and V ∞ is the free-stream speed. The pressure distribution can then be numerically integrated over the surface to determine the equivalent force acting on the aerodynamic grid points. These forces will be used for the coupled aeroelastic analysis, as detailed in sections 2.7 and 2.6.

Figure 2.9 -Discretization of the wing surface into panels (a total of 900) for aerodynamic analysis.

For example, Figure 2.9 shows the discretization into panels of a wing surface for an aerodynamic analysis. Figure 2.10 shows the Cp distribution over the same wing after using Panair.

Apart from the classical flow theory, Panair also includes compressibility corrections using the Prandtl-Glauert [Tru] rule. By using this rule, the geometry is scaled by a factor of √ 1 -M 2 in the direction where the compressibility effects are relevant (usually, the freestream direction). However, this rule must be used with caution as it is not valid in the transonic region (M ∼ 1). In Panair, a discretized wake is automatically generated extending from the trailing edge along the freestream if a mesh of the wake is not provided. Note that Panair does not provide the derivatives of the functions of interest. 

Static Aerodynamics and Structures Coupling

To solve the coupled static aeroelastic system we use the nonlinear Gauss-Seidel iterative method, implemented in OpenMDAO. In this coupled problem, the aerodynamic module computes the aerodynamic loads on the surface mesh points, given a deflected geometry, angle of attack, and air properties. The structure module computes modal displacements, given the geometry of the structure, its material properties, and the input nodal forces. As these two analysis modules do not share the same mesh topology, loads and displacements cannot be directly exchanged. To exchange loads and displacements, we use the method based on the radial basis functions (RBF) described in the following section. As a result, we have one module that interpolates the displacement field from the structural nodes to the aerodynamic points, and another one that transfers the aerodynamic loads to the structural nodes while preserving the total load and moment [START_REF] Rendall | Unified fluid-structure interpolation and mesh motion using radial basis functions[END_REF].

These four components (Panair, Load Transfer, Nastran, and Displacement Transfer, as shown on Figure 2.11) constitute the static aeroelastic multidisciplinary analysis sequence. Starting from an initial guess of the state variables, the nonlinear Gauss-Seidel executes the analysis iteratively until a certain relative tolerance on the state variables is reached. The nonlinear Gauss-Seidel is one possible method for solving nonlinear coupled systems. One advantage of the Gauss-Seidel method over other possibilities such as the Newton-Krylov method is that the former does not use the derivatives of the state variables, since in our case they are not provided by the two analysis codes used (Nastran and Panair). Figure 2.11 shows the XDSM diagram of the MDA described above. 

Method for Displacement and Load Transfer

In this section we present the method we selected for the exchange of forces and displacements between the aerodynamics and structures disciplines, which is needed for the multidisciplinary analysis described in the previous section.

The coupling variables of the MDA are: structural node displacements u s , aerodynamic grid displacements u a , aerodynamic forces on aerodynamic grid points f a , and aerodynamic forces on the structural nodes f s .

Since the structural and aerodynamic meshes are not coincident, the structural displacements, u s , must be interpolated onto the aerodynamic grid points. The displacement interpolation scheme is based on the work by Rendall and Allen [START_REF] Rendall | Unified fluid-structure interpolation and mesh motion using radial basis functions[END_REF]. In that method, each component of the displacement vector u is interpolated as follows (Eq. (2.10) is written for the x component, but the same holds for y and z):

u x = Ns i=1 α x i φ( x -x i ) + γ x 0 + γ x x x + γ x y y + γ x z z, (2.10)
where x is the vector of spatial coordinates, x i are the centers of the radial basis functions, and φ(r) is the form of function adopted. In that case, we choose φ(r) = r 2 ln r, known as the thin plate spline (TPS) function. According to Lombardi et al. [START_REF] Lombardi | Radial basis functions for intergrid interpolation and mesh motion in FSI problems[END_REF], who performed a comparison between several available functions, the use of TPS functions is the best and safest option in terms of accuracy of the interpolation. The terms α x i are the coefficients of the radial basis functions. Each structural node is the center of an RBF (x i ) and the γ terms are the coefficients of the linear polynomial part. By imposing the interpolating condition on these coefficients (the interpolation function evaluated at the structural nodes must be equal to their known displacements) and by evaluating this same function on the aerodynamic grid points, the transformation matrix between the displacements of the structural and aerodynamic points can be expressed as

u a = Hu s , (2.11)
where H is a matrix which depends only on the coordinates of the structural and aerodynamic grid points and the type of RBF chosen. Figure 2.12 shows the grid points in blue and the structural nodes in red, used to compute the interpolation matrix on Eq. (2.11). Figure 2.13 shows an example of how the aerodynamic grid is deformed according to the displacements of the structural mesh.

Figure 2.12 -Example of aerodynamic grid (blue) and structure nodes (red).

As detailed by Rendall and Allen [START_REF] Rendall | Unified fluid-structure interpolation and mesh motion using radial basis functions[END_REF], and by virtue of the principle of virtual work to ensure the conservation of energy, we can determine the transformation matrix between the aerodynamic forces on the aerodynamic (f a ) and structural (f s ) points. The virtual work can be written as

δW = δu T s f s = δu T a f a , (2.12)
where δu s and δu a are the virtual displacements of the structural and aerodynamic grids respectively. Through the displacement interpolation matrix H, we can express the virtual displacements of the aerodynamic grid,

δu a = Hδu s ,
(2.13) as a function of δu s . By substituting Eq. (2.13) into Eq. (2.12) we get that

f s = H T f a . (2.14) Y X Z Figure 2
.13 -Example of how the aerodynamic grid (green wireframe) is deformed according to the displacements of the structural mesh (orange wireframe).

In the case where gradient-based optimization techniques are used for optimization problems that involve the aerostructural coupling presented herein, it may be required to compute the partial derivatives of the coordinates of the deformed aerodynamic mesh X a with respect to the structural displacements u s , as well as the partial derivatives of the aerodynamic forces on the structural nodes f s with respect to the forces on the aerodynamic grid points f a . The deformed aerodynamic mesh is obtained by adding the interpolated displacements-given by Eq. (2.11)-to the jig shape aerodynamic mesh (X 0 a ):

X a = X 0 a + u a = X 0 a + Hu s . (2.15)
Therefore, by considering Eqs. (2.14) and (2.15), these partial derivatives can be expressed in terms of the interpolation matrix H as

∂X a ∂u s = H, (2.16) ∂f s ∂f a = H T .
(2.17)

The construction of the interpolation matrix for each geometry of the aerodynamic and structural meshes allows us to exchange displacements and forces through a simple matrixvector product. On the next section we recall the theory for the aeroelastic scaling of aircraft, based on the dimensional analysis of the linear aeroelastic equation.

Scaling Theory of Flying Models

After having seen the methods and tools for static aeroelastic analysis, as well as for dynamic structural analysis, in this section we will present and describe the requirements for a scaled demonstrator to match the aeroelastic response of a given aircraft. The analysis presented is based on the linear equation of aeroelasticity.

To determine the parameters that must be matched for the design of an aeroelastically scaled flight demonstrator, we nondimensionalize the equation of motion of aeroelasticity

[M]{ẍ} + [K]{x} = [A k ]{x} + [A c ]{ ẋ} + [A m ]{ẍ} + [M]{a g }, (2.18)
where {x} is the displacement vector, and [M] and [K] are the mass and stiffness matrices, respectively. The aerodynamic matrices [A k ], [A c ], and [A m ] relate the aerodynamic forces to the displacements {x}, speeds { ẋ}, and accelerations {ẍ}, respectively, and {a g } is the vector of gravitational acceleration for each component of the displacement vector.

The nondimensionalization process that we follow and the notation used are based on the procedure described by Ricciardi et al. [START_REF] Ricciardi | Nonlinear Aeroelastic-Scaled-Model Optimization Using Equivalent Static Loads[END_REF] and Pires [START_REF] Pires | LINEAR AEROELASTIC SCALING OF A JOINED WING AIR-CRAFT[END_REF]. We consider the general case where the vector of structural DOFs {x} contains both translations and rotations, and therefore is not uniform. As a consequence, the matrices of coefficients in Eq. (2.18) are not uniform either. By using a matrix [T] of dimensional transformation we nondimensionalize the displacement vector {x}. As an example, we consider the case where {x} consists of one translation u and one rotation θ, which yields

{x} = u θ . (2.19)
Then we express this in terms of a nondimensional displacement vector {x} and the dimensional transformation matrix as

{x} = [T]{x} = b 0 0 1 u/b θ = u θ , (2.20)
where b indicates a reference length. In a similar manner, we obtain coefficient matrices with uniform dimensions by pre-and post-multiplying by [T] T and [T] respectively. For instance, for the mass matrix, this yields

[ M] = [T] T [M][T], (2.21)
where [˘] indicates that all the elements of a matrix have uniform dimensions. The same transformation is applied to matrices and[A m ]. We uniformize all the terms in Eq. (2.18) by expressing {x} in terms of {x}, by making the gravitational acceleration vector uniform using

[K], [A k ], [A c ],
{a g } = [T]{ȃ g }, (2.22)
and by pre-multiplying by [T] T , i.e.,

[

M]{ ẍ} + [ K]{x} = [ Ȃk ]{x} + [ Ȃc ]{ ẋ} + [ Ȃm ]{ ẍ} + [ M]{ȃ g }.
(2.23) By using the dimensional transformation matrix and the mode shapes [Φ], we obtain the nondimensional mode shapes

[

Φ] = [T] -1 [Φ].
(2.24)

Now, we write the nondimensional displacements

{x} = [ Φ]{η} (2.25)
in terms of the dimensionless matrix of modal vectors [ Φ] and the modal coordinates {η}. Substituting Eq. (2.25) into Eq. (2.23) and left-multiplying by [ Φ] T we write

[ Φ] T [ M][ Φ]{η} + [ Φ] T [ K][ Φ]{η} = [ Φ] T [ Ȃk ][ Φ]{η} + [ Φ] T [ Ȃc ][ Φ]{ η} + [ Φ] T [ Ȃm ][ Φ]{η} + [ Φ] T [ M]{ȃ g }. (2.26)
Through the use of the bi-orthogonality property, we diagonalize the uniform matrices of mass and stiffness

m = [ Φ] T [ M][ Φ], (2.27) 
k = [ Φ] T [ K][ Φ] = mω 2 , (2.28)
where ω is a diagonal matrix containing the natural frequencies. We apply the same transformation to the aerodynamic matrices

[a k ] = [ Φ] T [ Ȃk ][ Φ],
(2.29) 

[a c ] = [ Φ] T [ Ȃc ][ Φ], (2.30) [a m ] = [ Φ] T [ Ȃm ][ Φ]. ( 2 
m {η} + mω 2 {η} = [a k ]{η} + [a c ]{ η} + [a m ]{η} + m [ Φ] -1 {ȃ g }.
(2.32)

We divide Eq. (2.32) by a reference quantity (m 1 , which has units of inertia, after the uniformization of the mass matrix), the modal mass of the first natural vibration mode-as proposed by Ricciardi et al. [START_REF] Ricciardi | Nonlinear Aeroelastic-Scaled-Model Optimization Using Equivalent Static Loads[END_REF]. Then we call m = m /m 1 the nondimensional diagonal mass matrix, which allows us to write

m {η} + mω 2 {η} = 1 m 1 ([a k ]{η} + [a c ]{ η} + [a m ]{η}) + m [ Φ] -1 {ȃ g }.
(2.33) Now, we divide Eq. (2.33) by ω 2 1 (ω 1 being the frequency of the first natural vibration mode), and we nondimensionalize time as τ = tω 1 , indicating as ( ) the derivative with respect to τ. By calling ω = ω /ω 1 the nondimensional matrix of natural frequencies, we write

m { η } + mω 2 {η} = 1 m 1 ω 2 1 [a k ]{η} + ω 1 [a c ]{ η} + ω 2 1 [a m ]{ η } + 1 ω 2 1 m [ Φ] -1 {ȃ g }.
(2.34) Given that the matrix [a k ] has units of force×length, [a c ] has units of force×length 2 /speed, and [a m ] has units of force×length 2 /acceleration (after being uniformized), we nondimensionalize them by using reference quantities, yielding the nondimensional aerodynamic matrices

[ā k ] = b 1 2 ρV 2 S(b 2 ) [a k ], (2.35) [ā c ] = V 1 2 ρV 2 S(b 2 ) [a c ], (2.36) 
[ā m ] = V 2 1 2 ρV 2 Sb(b 2 ) [a m ].
(2.37) At this step, we write Eq. (2.34) in terms of the nondimensional aerodynamic matrices-Eqs. ( 2.35-2.37). Also, we nondimensionalize the gravity term by setting {ȃ g } = g/b{ā g }, yielding

m { η }+ mω 2 {η} = 1 2 ρV 2 S(b 2 ) m 1 ω 2 1 1 b [ā k ]{η} + ω 1 V [ā c ]{ η} + ω 2 1 b V 2 [ā m ]{ η } + g bω 2 1 m [ Φ] -1 {ā g }.
(2.38) If we reorganize the factors of the aerodynamic terms in Eq. (2.38) and multiply the term including the gravity effects by bV 2 /(bV 2 ), we have

m { η } + mω 2 {η} = 1 2 ρSb(b 2 ) m 1 µ 1 V 2 ω 2 1 b 2 1/κ 2 1      [ā k ]{η} + ω 1 b V κ 1 [ā c ]{ η} + ω 2 1 b 2 V 2 κ 2 1 [ā m ]{ η }      (2.39) + V 2 b 2 ω 2 1 1/κ 2 1 gb V 2 1/F r 2 m [ Φ] -1 {ā g }.
(2.40)

In Eq. (2.39), we identify three nondimensional groups: the one formed by ρSb(b 2 )/m 1 is known as the inertia ratio µ 1 , the group ω 1 b/V constitutes the first vibration mode's reduced frequency κ 1 , and the last one V / √ bg is known as the Froude number F r.

Finally, we write the fully nondimensional equation of motion

m { η } + mω 2 {η} = 1 2 µ 1 κ 2 1 [ā k ]{η} + κ 1 [ā c ]{ η} + κ 2 1 [ā m ]{ η } + 1 κ 2 1 F r 2 m [ Φ] -1 {ā g }.
(2.41) If we wrote Eq. (2.41), the complete nondimensional equation of motion, for the reference aircraft (r) and the scaled model (m), we would see that the solution in terms of the nondimensional variables (η, η, η ) would be the same if both nondimensional equations were identical. For that purpose, all the nondimensional groups on Eq. (2.41) must be preserved between both scales.

The aerodynamic shape and the flow similarity (Mach and Reynolds) are required to guarantee the equality of the nondimensional aerodynamic matrices. Traditionally, as explained by Ricciardi et al. [START_REF] Ricciardi | Nonlinear Aeroelastic-Scaled-Model Optimization Using Equivalent Static Loads[END_REF] and Pires [START_REF] Pires | LINEAR AEROELASTIC SCALING OF A JOINED WING AIR-CRAFT[END_REF], compressibility and viscous effects are neglected in the design of scaled flight demonstrators. For the cases where the internal structure architecture of the scaled demonstrator is different from the reference aircraft, the nondimensional modal masses, frequencies, and shapes are usually obtained by optimizing the scaled model structural parameters.

We mentioned that the nondimensional aerodynamic matrices depend on the aerodynamic shape and the flow conditions. If we consider the compressibility effects in the case of flight demonstrators, the reference aircraft usually flies at near sonic Mach numbers (above M = 0.7) whereas the flight demonstrator flies at near-incompressible conditions (M ∼ 0.2). After seeing the required conditions for aeroelastic scaling, in Chapter 3 we will present the optimization problem to solve when flow similarity exists. In chapters 4 and 5 we will see the strategies that we can follow to minimize the errors in the scaled aeroelastic response when flow similarity cannot be achieved.

After having introduced the linear equation of the aeroelasticity at the beginning of this section, we will use its definition to describe the physical phenomenon of flutter and how the flutter speeds and modes can be computed.

Method for Flutter Analysis

In this section, we briefly describe how the flutter speed is determined from the linear aeroelastic equation. Flutter is a physical phenomenon that happens at a certain speed. When the flutter speed is reached, the coupling between the elasticity of the wing and the aerodynamic forces produce an undamped oscillation, which starts to diverge if the speed is increased. Approaching or reaching the flutter speed may have catastrophic consequences on the wing structure.

The explanation of the method for flutter analysis that we present is largely based on the description given in reference [START_REF] Wright | Introduction to aircraft aeroelasticity and loads[END_REF] and in the Nastran Aeroelastic Analysis User's Guide [START_REF] William | MSC/NASTRAN aeroelastic analysis: user's guide[END_REF]. To see how the flutter speeds and frequencies are obtained, let us first consider the linear equation of aeroelasticity (without considering the acceleration term ẍ and the gravitational term, for simplicity reasons, in comparison to Eq. (2.18))

[K]{x} + [M]{ẍ} = [A k ]{x} + [A c ]{ ẋ} (2.42) By setting [A k ] = -ρV 2 [C] and [A c ] = -ρV [B],
where ρ is the air density and V is the airspeed, we can write Eq. (2.42) as

([K] + ρV 2 [C]){x} + ρV [B]{ ẋ} + [M]{ẍ} = 0.
(2.43)

Now we suppose that Eq. (2.43) has a harmonic solution. Similarly as we did for the structural dynamics problem in Section 2.4, we rewrite Eq. (2.43) assuming a harmonic solution as

([K] + ρV 2 [C] + iωρV [B] -ω 2 [M]){x} = 0. (2.44)
Now, we introduce an artificial structural damping of the form ig [K]. As this damping is artificial, the new equation only has physical meaning whenever g is zero. This yields

(1 + ig)[K] + ρV 2 [C] + iωρV [B] -ω 2 [M] {x} = 0.
(2.45)

If we divide Eq. (2.45) by -ω 2 , and knowing that the reduced frequency is defined as κ = ωb/V , where b is a reference length, we have

-(1 + ig) ω 2 [K] -iρ b κ [B] -ρ b κ C + [M] {x} = 0. (2.46) By setting λ = (1 + ig) ω 2 , (2.47) and [F] = -iρ b κ [B] -ρ b κ C + [M], (2.48) 
we can write Eq. (2.46) in a more compact form as

([F] -λ[K]) {x} = 0, (2.49)
which has the form of a complex eigenvalue problem. The several values of λ = λ i that satisfy Eq. (2.49) are the eigenvalues of the problem, and in this case they are complex since [F] is a complex matrix. Each one of these eigenvalues corresponds to a flutter mode. As described in reference [START_REF] Wright | Introduction to aircraft aeroelasticity and loads[END_REF], the angular frequency ω, the artificial damping g and the airspeed V can be obtained from a particular eigenvalue λ i as

ω = 1 Re(λ i ) , (2.50) g = Im(λ i ) Re(λ i ) , (2.51) V = ωb 2κ . (2.52)
Since κ is a parameter of the flutter equation, we have a complex eigenvalue problem for every value of κ that we choose to analyze. However, the only solutions that have physical meaning are the ones for which g = 0, as the damping is artificial. In other words, for the values g < 0, it means that the oscillations are naturally damped, so the system would require the addition of negative damping for the response to be an undamped, harmonic oscillation. On the other hand, velocities for which g > 0 indicate that the natural oscillations diverge and that a positive damping would be required for the response to be undamped. Since the flutter is defined as the point where the oscillations (naturally damped before the flutter speed) start to diverge, the flutter point is identified when the damping plotted against the airspeed V turns from negative to positive values. These equations are only physically meaningful when g = 0 (when flutter actually happens), as g is an artificial quantity introduced with the purpose to find the flutter points. As an example, Figure 2.14 shows how the V g plot is used to determine the flutter speed. For the flutter analyses that we perform in this work, we use NASA's Nastran [START_REF] Maccormick | The NASTRAN User's Manual:(level 15)[END_REF] implementation of the flutter method. To determine the aerodynamic matrices, Nastran uses a formulation similar to the one described in Section 2.5, which is the double lattice method (DLM). This type of formulation, as opposed to the one used by Panair, can only represent thin surfaces (and not the complete boundary of the body volume). Therefore, only the mean surface of the wing is represented. More details on the DLM can be found on the Nastran Aeroelastic Analysis User's Guide [START_REF] William | MSC/NASTRAN aeroelastic analysis: user's guide[END_REF].

After having reviewed all the methods we use concerning the analysis of aerodynamics, structures, and their interactions, in the following section we present and discuss the optimization methods available.

Constrained Optimization Methods

In this section, we present and describe the four main categories of optimization algorithms that can be used in design optimization for engineering applications. Once described, we will also discuss their advantages and drawbacks regarding the optimization problems that need to be solved in this work. The descriptions of the optimization methods presented in this section are largely inspired from the course notes by Prof. Martins [START_REF] Joaquim | A Short Course on Multidisciplinary Design Optimization[END_REF].

A general, constrained optimization problem can be stated as

minimize f (x) w.r.t. x ∈ R n subject to: g i (x) ≤ 0, i = 1, . . . , m h j (x) = 0, j = 1, . . . , l, (2.53)
where f is the objective function, x ∈ R n is the vector of design variables, and g and h are the inequality and equality constraints, respectively. Next, we state the conditions that a local minimum x * must satisfy, which are known as the Karush-Kuhn-Tucker (KKT) [START_REF] Karush | Minima of Functions of Several Variables with Inequalities as Side Conditions[END_REF]; [START_REF] Kuhn | Nonlinear Programming[END_REF] conditions. These state that there exist constants µ i (i = 1, . . . , m) and λ j (j = 1, . . . , l) that satisfy

-∇f (x * ) = m i=1 µ i ∇g i (x * ) + l i=1 λ i ∇h j (x * ),
(2.54)

g i (x * ) ≤ 0, for i = 1, . . . , m, (2.55) h j (x * ) = 0, for j = 1, . . . , l,
(2.56)

λ j ∈ R, for j = 1, . . . , l,
(2.57) m, and (2.58)

µ i ≥ 0, for i = 1, . . . ,
µ i g i (x * ) = 0, for i = 1, . . . , m.
(2.59)

A geometrical interpretation of the KKT conditions can be found in Annex A. The first category of optimization methods for constrained problems that we review is the gradient based optimization.

Gradient Based Optimization Methods

One possible strategy to solve constrained optimization problems is to use sequential quadratic programming (SQP). Given a problem with equality constraints only, SQP is the equivalent of the application of Newton's method to the KKT conditions described previously [START_REF] Paul | Sequential quadratic programming[END_REF]. For the problem including inequality constraints, one common strategy is, for a given iteration, to consider active inequality constraints as equality constraints. However, this problem is more difficult because, in the general case, the inequality constraints that are active at the optimum are not known. If these active constraints were known beforehand, this problem could be solved by only considering the constraints that are active at the optimum.

Since the formulation described previously is valid to find local minima only, we are not guaranteed to find the global optimum (i.e., the point with the lowest objective function value within the entire domain of f ) if the space is not convex. Therefore, as the local minimum found using gradient-based methods (such as SQP) depends on the initial point of the algorithm, one possible strategy is to start the algorithm from different points in the domain and pick the one with the lowest value of f . This strategy is known as multi-start. One advantage of the gradient-based methods is that they follow a search direction towards the optimum, instead of exploring the design space in multiple directions. This directional search generally makes them faster (in terms of iterations), as well as independent of the size of the design space. However, as the gradients of the objective function and constraints are required, the method can become costly for a high number of design variables if the gradients are not provided and they have to be estimated using finite differences or the complex step, for example. Also, another disadvantage is that if the function is not convex, we are not guaranteed to find the global optimum.

In this work, we use the Sequential Least SQuares Programming (SLSQP) 5 [Kra88]; [START_REF] Kraft | Algorithm 733: TOMP-Fortran modules for optimal control calculations[END_REF] as a gradient-based optimizer.

Derivative-Free Optimization Methods

There are many factors, such as non-differentiable functions or constraints, non-convex space or multiple local optima that can make gradient based optimization not suitable for these types of problems. Also, if the gradients are not provided and they have to be estimated through costly methods such as finite differencing, it may not be the best performing option either. In these situations, one option is to use gradient-free optimizers [START_REF] Andrew R Conn | Introduction to derivativefree optimization[END_REF]; [START_REF] Audet | Derivative-free and blackbox optimization[END_REF]. In general, gradient-free methods are not guaranteed to find the global optimum, as the gradient based do in a convex space, but they can find a reasonably good solution which is satisfying from the engineering perspective.

A commonly used gradient-free optimization method for constrained optimization problems is COBYLA [START_REF] Michael | A direct search optimization method that models the objective and constraint functions by linear interpolation[END_REF]. COBYLA is a trust region optimization method. It works by creating an approximating linear interpolation model of the objective and constraint func-tions. By iterating, COBYLA finds a candidate for the optimal solution of an approximating linear programming problem. This candidate solution is then evaluated at each iteration, and its evaluation is used to improve the approximating linear programming problem. If the solution can no longer be improved, the step size is reduced until it is sufficiently small and it ends. Since COBYLA is a local optimizer, it may be necessary to use multi-start (as explained for the case of gradient based optimizers in Section 2.10.1) to find the global optimum if the design space is not convex.

Another example of a derivative-free optimization method is NOMAD [START_REF] Digabel | NOMAD: Nonlinear optimization with the MADS algorithm[END_REF], based on the algorithm mesh adaptive direct search (MADS) [START_REF] Audet | Mesh adaptive direct search algorithms for constrained optimization[END_REF]. In this method, the design space is discretized into meshes, which are adaptively refined to find better solutions of the problem.

Evolutionary Optimization Methods

Evolutionary algorithms are a family of optimization methods that are based on three principles applied to a given population of points: selection, crossover, and mutation. The principle of selection implies that only the points with the best objective function value survive. The crossover principle means that the points of a given generation combined are to produce new points, whereas the mutation refers to small (local) variations around a point to produce new points. One advantage of the evolutionary algorithms is that they are able to find the global optimum, but at the expense of a high number of evaluations.

Surrogate Based Optimization Methods

Surrogate based optimization methods constitute another category of methods to solve the general nonlinear optimization problem, as presented on Eq. (2.53). To solve this problem, surrogate models are used to describe the objective function and constraints. Before performing the search for the optimum, the objective function and constraints are evaluated on a set of points of the design space to create the first surrogate models. These sampling points constitute what is known as the design of experiment (DOE). A typical technique to select the points that form the DOE is to use the latin hypercube sampling (LHS). Surrogate models of the objective function and constraints are built with interpolating methods. One usual approach is to use the Kriging model, which uses a Gaussian process to model the interpolated values.

Before explaining how the constrained optimization is treated, we explain first the unconstrained optimization with surrogate models. In the case of the efficient global optimization (EGO) [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF], from the surrogate model created with all the existing samples of f , a criterion is defined that will determine the next point to compute, known as the enrichment criterion. To try to find the global optimum we can either minimize the surrogate or continue to explore the less known zones to try to find more promising points. Since some surrogate models such as Kriging offer information related to the uncertainty of the model between samples, it can be used in the enrichment criterion to quantify the less known zones. An enrichment criterion which is often used is the expected improvement (EI). High values of this criterion indicate either a high uncertainty of the region (far from any of the sampled points) or a promising value of the surrogate of the function, known as a balance between exploration and exploitation. Therefore, the most promising point is found by maximizing the EI, for instance.

Regarding the constrained problem using surrogate models, one possible algorithm is the super efficient global optimization (SEGO) [START_REF] James | Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations[END_REF]. In this case, the most promising points are found by solving the maximization problem of the enrichment criterion with the surrogates of the original constraints as the new constraints of this problem. For example, SQP (described in the previous section), which supports constrained optimization, could be used to solve this problem, or any other method that considers constrained optimization.

One of the advantages of surrogate-based optimization is that the gradients of the objective functions are not required, as the internal optimizations of the enrichment criterion use the surrogates of these functions instead. Also, one advantage is that there are no requisites on the smoothness and convexity of the functions. One possible drawback is the cost of building surrogate models with a large number of design variables. The Kriging with partial least squares (KPLS and KPLSK) [START_REF] Bouhlel | An improved approach for estimating the hyperparameters of the kriging model for high-dimensional problems through the partial least squares method[END_REF] is a method to address the creation of Kriging surrogate models with a large number of design variables.

In the simplest approach for surrogate based optimization, a single surrogate model is built to approximate each function. However, one significant improvement over this is to use what is known as mixture of experts (MOE) [START_REF] Bartoli | Improvement of efficient global optimization with application to aircraft wing design[END_REF]; [START_REF] Bartoli | An adaptive optimization strategy based on mixture of experts for wing aerodynamic design optimization[END_REF]. In this approach, the design space is divided into different regions, and several surrogate models are used to approximate the functions of interest in these regions. In particular, the surrogate models are automatically weighted to better represent the functions at a local level.

In Table 2.1, we summarize the advantages and drawbacks of the presented constrained optimization methods according to several criteria: local/global optimizer, required gradients, suitability for high dimension, suitability for high number of constraints, and the ability to deal with non-differentiable objective function and constraints. 

Recapitulation

In this chapter we have presented and discussed the following points:

• A method to represent and visualize MDAO problems: XDSM

• A framework to assemble and run the analyses and optimizations: OpenMDAO

• Methods for static and dynamic structural analysis

• A method for steady aerodynamics analysis

• Methods four static and dynamic aeroelastic analysis , ont utilisé des formulations d'optimisation qui consistent à minimiser les écarts entre les coordonnées des modes de référence et ceux de l'avion démonstrateur à échelle. Cependant, ce type de fonction objectif peut présenter des discontinuités selon la façon de normaliser les vecteurs des modes. Aussi, pour la comparaison des modes, ces méthodes utilisent l'ordre déterminé par les fréquences propres. En utilisant cet ordre-là, si le phénomène de croisement de modes se produit (quand les fréquences de deux modes se croisent dans l'espace des variables de conception), la fonction objectif peut présenter des discontinuités, et les fonctions des fréquences associées à ces modes peuvent ne plus être continues aux points de croisement.

Dans ce chapitre, une formulation pour le problème d'optimisation est proposée. Dans cette formulation, la ressemblance entre deux modes est évaluée à l'aide du «modal assurance criterion» (MAC), basé sur le produit scalaire et qui enlève donc la dépendance de la normalisation. Pour éviter les problèmes associés au croisement de modes, nous utilisons une stratégie pour apparier les modes avec les modes de référence qui est basée sur la valeur du MAC.

Afin d'évaluer cette méthodologie, elle est appliquée d'abord à un exemple où la solution est connue et où il n'y a pas d'effets d'échelle. Ceci permet d'évaluer la solution trouvée par la méthode proposée par rapport à la solution connue. Ensuite, la même méthode est appliquée au case de l'aile uCRM [START_REF] Brooks | Benchmark Aerostructural Models for the Study of Transonic Aircraft Wings[END_REF] avec une échelle géométrique de λ l = 1 : 5.

Outline

In this chapter we address the following points:

• Reduction of aeroelastic scaling to a modal optimization problem (under flow similarity hypothesis).

• Traditional methods for modal optimization applied to aeroelastic similarity of flying scale demonstrators.

• Objective functions for the modal optimization.

• Sources of discontinuities in the objective function and on the derivatives of the frequencies if mode swapping exists.

• Objective function based on the MAC to avoid the normalization problem.

• Mode tracking based on MAC as well to avoid the negative effects of mode swapping.

• Application of the method to a case whose solution is known as a blind test case.

• Application to a scaled geometry of the uCRM wing structure.

Definition of the Optimization Problem for Modal Similarity

In this section we will present and describe the optimization problem that we propose to solve the modal similarity. We will highlight the new aspects that we introduce with respect to the traditional method described by Ricciardi et al. [START_REF] Ricciardi | Nonlinear Aeroelastic-Scaled-Model Optimization Using Equivalent Static Loads[END_REF], such as the use of the modal assurance criterion (MAC) in the definition of the objective function and the introduction of a mode tracking strategy to avoid potential problems during the optimization process.

As seen on Section 2.8, where the scaling theory is described, under certain assumptions, the complete static and dynamic aeroelastic similarity can be reduced to having a structure whose nondimensional natural vibration modes, frequencies and mass match those of the reference aircraft. As described by Bisplinghoff [Bis+96] and Ricciardi et al. [START_REF] Ricciardi | Nonlinear Aeroelastic-Scaled-Model Optimization Using Equivalent Static Loads[END_REF], these assumptions include the preservation of the flow similarity and the external aerodynamic shape. The flow similarity requirement translates into keeping the same Mach number for compressibility effects, the Reynolds number for viscous effects, and the Froude number for gravitational effects. The same external aerodynamic shape condition is achieved by ensuring that the outer mold line (OML)-the manufacturing shape of the model aircraft's outer surface-is a scaled version of the reference aircraft one.

By looking at the general form of the nondimensional equation (we recall Eq. 2.41)

m { η } + mω 2 {η} = 1 2 µ 1 κ 2 1 [ā k ]{η} + κ 1 [ā c ]{ η} + κ 2 1 [ā m ]{ η } + 1 κ 2 1 F r 2 m [Φ] -1 {ā g }, ( 3 
.1) we see how satisfying all these conditions on the flow similarity and the aerodynamic shape guarantees the identity of the right-hand side of the equations of two aircraft of different scales. We then see that the left-hand side involves terms that are related to the structural analysis uniquely. Therefore, the aeroelastic scaling process reduces to matching the scaled natural mode shapes, frequencies, and modal effective masses.

In general, according to the traditional scaling theory [START_REF] French | Aeroelastic model design using parameter identification[END_REF], these modal responses are matched through an optimization problem where the parameters defining the structural model (e.g., plate thicknesses, beam sections, and point masses) are set as design variables and the idea of matching the scaled frequencies, shapes, and mass is implemented through equality constraints and by minimizing a certain function quantifying the error on the modal responses. On the literature ([Ric+14], [START_REF] Pires | LINEAR AEROELASTIC SCALING OF A JOINED WING AIR-CRAFT[END_REF]) we find different examples of the definition of this modal matching problem. The modal responses are always matched for a limited number of modes denoted by N .

For example, Ricciardi et al. [START_REF] Ricciardi | Nonlinear Aeroelastic-Scaled-Model Optimization Using Equivalent Static Loads[END_REF] describe a formulation for this problem where the objective function to be minimized is

f = N i=1 { φ} r,i -{ φ} m,i , (3.2)
where { φ} r,i and { φ} m,i are the N nondimensional modes of the reference aircraft and the scaled model, respectively. For the nondimensional matching, they set N equality constraints

ω ri b r V r = ω mi b m V m , i = 1, 2, . . . , N, (3.3) 
where ω ri and ω mi are the N natural frequencies of the reference aircraft and the scaled model respectively, b is the reference length of each scale, and V is the airspeed of each scale.

Another example of the modal optimization setup is proposed by Pires [START_REF] Pires | LINEAR AEROELASTIC SCALING OF A JOINED WING AIR-CRAFT[END_REF]. In his work, Pires defines an unconstrained minimization problem where the objective function includes both the error in mode shapes and in frequencies.

In general, the structural design variables of this problem can be divided into variables affecting the stiffness and mass properties simultaneously (such as plate thicknesses and beam sections), and variables affecting the mass distribution only (e.g., point masses). One possible approach, as described by Richards et al. [START_REF] Richards | Design of a scaled rpv for investigation of gust response of joined-wing sensorcraft[END_REF], is to treat this optimization problem by using a single-step approach where the structural element properties (e.g., thicknesses, sections) and mass-specific variables are optimized at once on a single optimization loop. Richards et al. [START_REF] Richards | Design of a scaled rpv for investigation of gust response of joined-wing sensorcraft[END_REF] also describe an alternative approach that aims to reduce the complexity of the original problem. This second approach consists in first matching the scaled stiffness of the reference aircraft by optimizing only the variables that affect stiffness (e.g., thicknesses and section) and then perform the modal matching (i.e., shapes and frequencies) through optimization of the mass-specific variables.

We will now present and discuss the choices adopted for the modal matching criteria (i.e., what quantities we set as the objective function and constraints), as well as the choices regarding the single-step approach for the optimization. Concerning the formulation of the optimization problem we choose to use the modal assurance criterion (MAC) to represent the closeness between two vibration modes. As described by Girard and Roy [START_REF] Girard | Structural dynamics in industry[END_REF], if {φ ri } is one of the reference eigenvectors, and {φ mj } is one of the eigenvectors from the current model, we define a matrix whose elements are

[MAC] ij ({φ ri }, {φ mj }) = {φ ri } T {φ mj } ({φ ri } T {φ ri })({φ mj } T {φ mj }) for i = 1, . . . , N, for j = 1, . . . , N, (3.4)
which is the normalized dot product between two vectors {φ ri } and {φ mj } representing two modes. Indeed, a MAC value of 1 indicates that the two vectors represent the same mode, whereas a MAC value of 0 indicates that the two modes are orthogonal. Given a set of N reference modes and N modes that we want to evaluate, we define this N × N matrix-Eq. (3.4)-containing the MAC value for each possible pair of modes between the reference ones and the ones being analyzed. Given the matrix [MAC] we define the objective function to be minimized as

f = N -tr([MAC]([Φ r ], [Φ m ])) N , ( 3.5) 
where tr() indicates the trace of a matrix, [Φ r ] is the matrix containing the reference modes and [Φ m ] contains the modes being analyzed. This objective function is equivalent to the one proposed by Giraldo [START_REF] Giraldo | A structural health monitoring framework for civil structures[END_REF], used in the field of two sets of N modes each. For the scaled frequency matching, we set an equality constraint for each scaled frequency

λ ω ω ir -ω im = 0, i = 1, 2, . . . , N, (3.6)
where λ ω is the frequency ratio, as described by Ricciardi et al. [START_REF] Ricciardi | Nonlinear Aeroelastic-Scaled-Model Optimization Using Equivalent Static Loads[END_REF] (Eq. (3.3)). Also, we set an equality constraint for the scaled mass

λ m M r -M m = 0, (3.7)
where λ m is the mass ratio. By doing so, we aim to avoid having a multiplicity of solutions that closely match the reference modal shapes and frequencies. By using the mass constraint we choose the solution that matches the scaled mass, in addition to mode shapes and frequencies.

Regarding the strategy for the solution of the optimization problem, we choose to adopt a single-step approach, where all the structural design variables are optimized at the same time. One reason to choose this approach over a two-step approach where a stiffness matching is performed before the modal optimization loop is that the latter could potentially lead to a suboptimal solution of the modal matching problem. To explain this, we consider a vector of design variables {s} that affect the stiffness (and that may or may not contribute to the mass of the structure). Also, we consider the design variables {m} that affect the mass only. Then, we denote as {s * } and {m * } the particular values of these vectors that are the solution to the modal matching problem. On the other hand, we denote as {s † } the vector of stiffness variables that satisfies the stiffness matching problem. Then, we denote as {m † } the mass-specific variables that satisfy the modal matching problem under the condition that {s} = {s † }. If the design space of the single-step approach-whose solution is ({s * }, {m * })includes the design space of the two-step approach, the modal matching corresponding to ({s * }, {m * }) will, in the general case, be better than the one corresponding to ({s † }, {m † }), by definition of the optimum. It is to say, the solution of the one-step approach will, in general, be better than the one found with the two-step approach since the design space of the latter is conditioned to satisfy the stiffness matching problem.

Going back to the choice of the MAC criterion for the objective function, one of the main reasons for it is that it can assess the resemblance between two modes independently on how they are normalized. The main advantage of the independence of the objective function on the normalization is to avoid potential discontinuities in its value with respect to slight changes on the design variables. To explain that, let us consider the behavior of a classical objective function, based on the subtraction between vectors, such as the one on Eq. (3.2), and the behavior of the MAC criterion. To illustrate that, we consider a nearly anti-symmetric mode, as shown in Figure 3.1a. We consider the reference mode and the mode that we are analyzing, defined by a vector of design variables {x}. We normalize the modes by making that the greatest displacement component in absolute value has a value of 1, for example. We suppose that the point with the greatest displacement is on the same side of the aircraft for the reference mode and the mode corresponding to {x}. As it is a nearly anti-symmetric mode, the normalized magnitude of the maximum displacement component on the opposite side will be close to 1. In this particular situation, the classical objective function would be close to zero, and the MAC criterion would be close to 1, both indicating a high degree of mode resemblance, which corresponds to the observed reality. Now, let us suppose that we introduce a small change {∆x} in the design variables {x}. We consider the case where this change produces a shift on the side with the maximum displacement component, as shown by Figure 3.1b. In that particular situation, the classical objective function would have a clearly positive value, far from zero, indicating a low degree of resemblance between modes. Instead, the MAC value would still be close to 1, showing high mode resemblance, which corresponds to the observed reality. Indeed, we observe that with an arbitrarily small variation {∆x} on the design variables we have a finite jump on the classical objective function, whereas the MAC criterion varies smoothly. This form of discontinuity could lead to problems when using gradient-based or other types of local optimizers and should be avoided. In the traditional approach, the modes {φ} mi being analyzed are ordered according to their eigenvalues (in ascending order). However, the use of this sequence can lead to the phenomenon of mode switching, also known as frequency crossing, as described by Eldred et al. [START_REF] Eldred | Mode tracking issues in structural optimization[END_REF]. The mode switching occurs when the order of two modes (according to their eigenvalues) is shifted when a variation in the structural parameters is produced. From the optimization perspective, this can be problematic as it can lead to discontinuities in the objective function, as well as non-smoothnesses in the frequencies. This situation can be problematic, especially when using gradient-based or other types of local optimizers.

To illustrate that, let us imagine the example of a beam with a bending mode and a torsion mode, whose frequencies depend on the structural parameters of the wing. If, for instance, the bending mode has the lowest frequency, it would be considered as the first mode. We now consider that the structural parameters evolve in such a way that the frequencies of those two modes intersect. Past that point, the torsion mode will be considered as the first mode. Therefore, the components of the vector φ m1 would suddenly change, giving place to a discontinuity. The non-differentiability of frequency functions (as a function of design parameters) at crossing points is illustrated in Figure 3.2. In order to avoid the drawbacks of mode switching, several authors (such as Eldred et al. [START_REF] Eldred | Mode tracking issues in structural optimization[END_REF] and Kim and Kim [START_REF] Soo | Mac-based mode-tracking in structural topology optimization[END_REF]) present the use of mode tracking strategies to overcome this problem. The use of mode tracking allows to order the modes according to their shape instead of their eigenvalues, thus avoiding the frequency crossing phenomenon. By avoiding the mode crossing we also avoid its associated problems concerning the potential discontinuities and non-smoothnesses of the quantities of interest for the optimization, as described previously. In the following section we present a mode tracking strategy that is based on the MAC for pairing them. For clarification, the MAC is used in two different occasions in this work. One is to pair modes for mode tracking and the other one is to assess the resemblance between modes for the evaluation of the objective function, as described earlier in this section.

Definition of a Mode Tracking Strategy

In the previous section we have seen the disadvantages of evaluating the quantities of interest according to the order of the eigenvalues and we have shown the need for a mode tracking strategy. In the present section, we will propose a mode tracking strategy based on the modal assurance criterion (MAC), whose mathematical definition was presented on Section 3.1. In the present work, we define a mode tracking strategy as a means of ordering the normal modes of a structure defined by a set of design variables {x} in a way that the evolution with respect to {x} of the shapes and frequencies of these modes is both continuous and smooth. The proposed mode tracking strategy presented in this section is inspired from the works by Kim and Kim [START_REF] Soo | Mac-based mode-tracking in structural topology optimization[END_REF].

The main idea of this mode tracking strategy is to order the modes of the design being analyzed in a way that, for each of the N reference modes, its associated mode is, among all the modes of the current design defined by {x}, the one that most closely resembles the reference one. As we use the MAC to define the resemblance between modes, each reference mode is associated to the mode of the current design whose MAC value with the given reference one is the highest (i.e., the closest to 1). Since the mode with the highest resemblance to a given reference mode could have a frequency that is not necessarily within the first N frequencies, this search should be extended to a sufficiently large number M of eigenvectors in order not to exclude the best matching mode. Therefore, the effectiveness of the described method is conditioned whether the best matching modes are included in the first M modes specified for the analysis of the current design defined by {x}. Ideally, M would be arbitrarily large, in order to make sure that none of the best matching modes is left out. However, in practice, increasing M increases the computational cost of each modal analysis. Therefore, there is a compromise between M and the computational cost. In consequence, M should be chosen as big as possible while keeping the computational time within reasonable limits.

Given the set of N reference vectors, in order to find the N best matching modes among the M modes of the current model, we define a N × M rectangular matrix, based on the definition on Eq. (3.4), which evaluates the resemblance between the reference modes and the unsorted modes of analysis as (3.8)

Then, for each row of the [MAC] N ×M matrix (i.e., for each of the reference modes), the mode with the highest MAC value is paired with the current reference mode. Once the modes of the model being analyzed are paired to the reference ones, we can redefine the order of the modal frequencies ω mi and the modal vectors {φ mi }. The order is such that the mode {φ mi } is the one that most closely matches the mode {φ ri }. The order of the natural frequencies is modified accordingly, so that ω mi is the natural frequency associated to the mode {φ mi }.

After having reordered the modal quantities according to the MAC, all the quantities of interest, namely the objective function on Eq. (3.5) and the frequencies on Eq. (3.3), can be evaluated. For the objective function, the square MAC matrix involved in its evaluation is now computed using the N modes that have been paired to the first N reference ones. In the case where the modes matched perfectly, the diagonal of the square MAC matrix used for the evaluation of f would be composed of ones. Consequently, with the objective function in Eq (3.5), we search to maximize the overall resemblance of the modes, by maximizing the trace, which is the sum of the elements of the diagonal.

In the following sections, we will see two examples of the application of the modal optimization tools described above. In the first example, we will perform a blind model update without scaling. In particular, given the modal response of a certain model, we will try to find the design that matches this response. As there are no scale effects, the match should be exact, which serves to validate the tools. In the second example, we will apply this methodology to a scaled wing.

Example of Application: Model Updating of the CRM wing

In this section we will show the implementation of the mode tracking strategy to a finite element model (FEM) of NASA's CRM wing. Once the modal quantities of interest of the model being optimized have been paired with the ones from the reference model, we can define the objective function and constraints of the optimization problem to solve.

For the definition of the objective function, we are going to make use of the Modal Assurance Criterion (MAC) again. Indeed, we will compute now the MAC matrix between the N reference modes and the N current model modes paired through the mode tracking. In the ideal case where the modes being optimized matched the reference ones perfectly, the trace of this MAC matrix would be N . Therefore, in order to maximize the similitude between all the modes, we can try to maximize that trace. For convention purposes only, we treat the problem as a minimization one and we write the objective function as

f = N -tr(MAC(Φ r , Φ * m )), (3.9) 
where Φ * m contains the subset of N eigenvectors of the current model that have been selected and paired through the use of mode tracking. Note that with respect to Eq. (3.5), now Eq. (3.9) does not include the division by N , but this does not change the nature of the optimization problem as N is a positive constant. where the characters in bold indicate vectors, whose dimension is N , in that case, and the subscript 2 stands for the L 2 norm. Also, we have the equality constraint on the total mass M r -M m = 0.

(3.12)

As an example of application, we will try to optimize the thickness of 10 structural panels of the wing in order to match the modal properties of a reference model, as shown on Figure 3.3. For that particular example, we will try to match the first N = 10 modes of the reference aircraft. Since this is a test case intended to evaluate the implemented optimization method, we know beforehand the design parameters that have produced the reference modal data. In that case, the reference model has a uniform thickness of 8.89 mm. Additionally, since the reference model thickness is uniform, the thickness distribution can be exactly reproduced by any parametrization of the skin thickness. Of course, these data concerning the construction of the model are not used during the optimization process, as they would not be know in the general case, and will only be used to evaluate the quality of the solution found. The baseline model has been provided by Timothée Achard and Christophe Blondeau from ONERA Châtillon [START_REF] Achard | An Uncoupled Approach to Compute Aero-Structure Gradients Using High-Fidelity CFD-CSM[END_REF]. Table 3.1 summarizes the objective function, constraints, and the bounds of the design variables. To solve this problem we have used SLSQP, a gradient-based optimizer from the SciPy library (see Section 2.10.1). The required gradients are computed using finite differences. The starting point for the optimization is extracted randomly from the design space, and in that particular case its value is 

[t 0 ] = [0.
ω r -ω m 2 = 0 1 Mass matching M r -M m = 0 1 Generalized masses matching m r -m m 2 = 0 1
Total constraints: 3

Table 3.1 -Modal optimization problem for model updating of the CRM wing.

Results and Discussion

Figure 3.4 shows the mode shapes and frequencies of the current model at the first optimization (denoted by Baseline), after the modes have been matched to the reference ones, which are concurrently displayed for comparison.

As we can see in Figure 3.5, the objective function and constraints tend to zero because, with the parametrization used, the reference design can be reproduced exactly by the model being optimized.

After the optimization has converged, as illustrated by Figure 3.6, we can see that the optimized mode shapes, once overlapped with the reference ones, are barely distinguishable, as well as the frequency values.

On Figure 3.5 we can see that the optimizer converges before reaching 40 iterations. On Figure 3.6 we can observe that the optimized modes (in orange) are barely distinguishable from the reference ones. The slight differences are a consequence of the optimization tolerance. The same thing happens with the frequency values.

The modal optimization is of special relevance to the following section, where the preservation of the modal quantities exposed here is required for the dynamic aeroelastic similarity. 

Example of Application to the Scaled uCRM Wing

In this section we will apply the modal optimization described at the beginning of this chapter to a scaled version of the uCRM wing [START_REF] Brooks | Benchmark Aerostructural Models for the Study of Transonic Aircraft Wings[END_REF]. We have chosen a scale of 1 : 5 (length ratio λ l = 1/5), since the initial estimations of the structural thickness-described next-suggest that using a smaller scale would lead to unfeasible gauge values of the aluminum plates constituting the structure. As explained by Pires [START_REF] Pires | LINEAR AEROELASTIC SCALING OF A JOINED WING AIR-CRAFT[END_REF], to determine the mass scaling ratio we first need to determine the air density ratio (λ ρ ). For that purpose, we establish the air conditions of each scale using the international standard atmosphere. The full-scale uCRM wing is considered to fly at altitude conditions of a typical airliner (35000 ft), whereas the scaled model is considered to fly at low altitude (2000 m 6562 ft). As explained by Pires [START_REF] Pires | LINEAR AEROELASTIC SCALING OF A JOINED WING AIR-CRAFT[END_REF], the natural frequency (λ ω ) and mass (λ m ) ratios are

λ ω = 1 √ λ l , (3.14) λ m = λ ρ λ 3 l , (3.15)
respectively.

Since for this problem we use the gradient-free optimizer COBYLA (see Section 2.10.2), which requires the user to provide a starting point, we will try to determine a starting design that is reasonably close to the optimum. For that purpose, we propose a simple method, based on the Euler beam theory and the properties of thin-walled structures, to obtain a factor to scale down the thicknesses and stringer sections of the full-scale model to be used as the initial design for the optimization. For that purpose, let us consider a beam of length L, bending inertia I, mass M , and elastic modulus E. Our first goal is to determine the bending inertia I of a geometrically scaled beam (whose geometrical ratio is λ l = L /L) knowing that the frequency and mass ratios are given by Eqs. (3.14), (3.15) and that the same material (E = E) is used for both beams, which are depicted in Figure 3 From the equation of the natural bending frequencies of a cantilevered beam

ω i = K i L 2 EIL M , ( 3.16) 
where K i is a constant that depends on the shape of the mode, we can establish the frequency ratio λ ω = ω i /ω i as

λ ω = ω i ω i = K i L 2 E I L M K i L 2 EIL M .
(3.17) By substituting Eqs. (3.14), (3.15) into Eq. (3.17), we establish that

λ I = I I = λ ρ λ 5 l . (3.18)
Once the bending inertia ratio λ I has been established, we will determine the thickness and stringer section ratios, λ t and λ s respectively, that satisfy the bending inertia ratio. By considering that the thicknesses (t) of the plates constituting the beam are much smaller than the distances (h) of the plates from the neutral axis, we can estimate the contribution of a plate of width w (as shown on Figure 3 By following the same procedure, we determine the contribution to the bending inertia of a stringer with section s at a distance h from the neutral axis (as depicted on Figure 3.9) as ∆I s = sh 2 .

(3.22) Thus, the bending inertia ratio is

λ I = s h 2 sh 2 = λ 2 l λ s . (3.23)
As we did for the case of the thickness ratio, we substitute Eq. (3.18) into Eq. (3.23), thus giving the cross-section ratio

λ s = λ ρ λ 3 l . (3.24)
This simple method allows us to have a first estimation of the thickness and cross-sections of the elements constituting the scaled structure, to be used as the starting point for the optimizer. This estimation is simply obtained by multiplying the thickness and cross-sections of the full-scale model by λ t and λ s , respectively. For the initial value of the point masses, these will be estimated by using the mass ratio λ m , defined on Eq. (3.15).

The formulation of the optimization problem for the scaled modal matching is the one presented on Section 3.1. The chosen formulation consists in the MAC-based objective function in Eq. (3.5), an equality constraint for each scaled natural frequency, and an equality constraint for the total scaled mass of the wing structure. For the evaluation of the objec- tive function and the frequency constraints, we use the mode tracking strategy described on Section 3.1, also based on the MAC criterion. For this case, we first choose to match the first N = 5 modes of the reference wing, and we choose to extract M = 20 for the modal analysis of each optimization iteration. Later, we consider the same optimization problem with N = 10 and M = 30. Table 3.2 summarizes the current optimization problem.

The design variables that we have chosen for this problem are 12 shell thicknesses {t}, 6 stringer section values {s}, and 4 point mass values {m}, giving a total of 22 design variables. As illustrated in Figure 3.10, the upper and lower skins of the wing are divided into 6 different thickness regions along its longitudinal axis. Each of these regions defines a single thickness value of the upper and lower skin, as well as the ribs within this section. The front and aft spars are also divided into 6 other regions. Each one of these regions defines a single thickness value of the spar caps and web comprised within each section. Another set of 6 design variables define 6 different stringer cross-section values. These regions of different stringer properties are depicted in Figure 3.11. There is a total of 20 point masses in the finite element of the wing structure, which are grouped in 4 different mass values, thus constituting the 4 mass design variables. As explained in Section 3.1, we perform a single-step approach where stiffness and mass related variables are optimized at once on a single optimization loop. For this problem we use the COBYLA optimizer, which is a gradient-free, local optimizer, as explained on Section 2.10. 

Results and Discussion

Case for N = 5

After running the previously described problem for the first N = 5 modes, we observe that the results in terms of the average MAC value (the trace of the MAC matrix divided by N ) are satisfactory: the average MAC value is greater than 0.99 (since f < 0.01, recall the definition in Eq. (3.5)), allowing us to say that the modal matching of the first 5 modes has a good quality. We can see the improvement of the optimized design (Figure 3.14) with respect to the initial design in Figure 3.13, especially for the shape of modes 4 and 5. We see that, after 500 iterations, the frequency constraints as well as the mass constraint present a good convergence to the required value of 0. Note that for the first iterations, some of them present better objective function values than the converged one, but these points are not feasible since for these iterations the constraints are not respected. 

Case for N = 10

After running the previously described problem for the first N = 10 reference modes using the COBYLA optimizer, we can see the evolution of the quantities of interest with the number of iterations, as shown in Figure 3.15. We see that, after 305 iterations, the frequency constraints converge to the required value of 0, with a maximum relative error of 0.83% for the scaled natural frequency of the 9th mode. The scaled total mass constraint converges with an error of -1.83%. The minimum of the objective function-characterizing the mode shape similaritythat satisfies the constraints within the mentioned errors is f min = 0.2, which implies that the average MAC value of the N = 10 modes considered for the comparison is 1 -f min = 0.8 (recall the definition in Eq. (3.5)). Therefore, in this case the results are less satisfactory than for N = 5 in all three aspects: mode shapes, frequencies and mass. As in the previous case, some points at the beginning of the search present better objective values than the converged one, but these do not satisfy the mas and frequency constraints. 
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.17 -Modal results of the best found design found overlapped with the reference ones for N = 10. Figure 3.16 shows the comparison between the scaled reference mode shapes and the mode shapes of the starting point design. Figure 3.17 shows the comparison of the reference modes and the ones of the best design found by COBYLA after 305 iterations. Note that, in both cases, several modes (such as 7 and 8) that are represented by vectors with an opposite sign but that represent the same physical mode are correctly paired.

As stated previously, the average MAC value for the first N = 10 reference modes is 0.8. According to Girard and Roy [START_REF] Girard | Structural dynamics in industry[END_REF], a MAC value of 0.9 is synonym of a good correlation, whereas a value smaller than 0.7 implies a rather poor correlation. Therefore, in the following section we reduce the number of modes to be matched to N = 5 in order to focus on a lower number of modes and get a better resemblance degree in terms of their mode shapes.

After seeing these results, we conclude that is preferable to concentrate on well matching a more limited number of nodes (usually only the frequencies of the first modes are involved in the aeroelastic phenomena such as flutter), rather than attempting to match a relatively large number of modes (e.g., N = 10) and obtain a poorer result on average.

For comparison, we show the vector of design variables of the optimized design for each one of the previous situations (N = 5 and N = 10). Tables 3.3, 3.4, and 3.5 show, respectively, the thickness, section and mass vectors for these two situations. After evaluating the results of the modal optimization, in the following chapter, we present and evaluate a methodology to design the planform of a scaled aircraft that tries to match a given reference flutter response when the Mach number cannot be preserved. In the following chapter we address the planform design alone, considering that the modal response is identical to the scaled reference one or that it has been matched using the methodology described in the present chapter. 

t * (N = 5) [mm] t * (N = 10) [mm] 0.

Résumé

Dans le chapitre précédent, nous nous sommes focalisés sur la mise à l'échelle d'un avion aéroélastiquement semblable lorsque les paramètres de similitude aérodynamique peuvent être entièrement respectés. En effet, dans les souffleries, par exemple, la température de l'air peut être contrôlée pour bien reproduire le nombre de Mach, mais ce n'est pas le cas pour les démonstrateurs volant dans l'atmosphère, où les conditions sont figées. Dans ce chapitre, nous considérons le cas où la similitude aérodynamique est incomplète, en étudiant les conséquences sur l'aéroélasticité linéaire, pour déterminer la vitesse de flottement.

Ensuite, une méthode d'optimisation de la forme en plan est proposée. Cette méthode vise à bien reproduire les efforts vus par la structure malgré une différence non-négligeable du nombre de Mach. Dans cette approche, il est supposé que la géométrie de la structure reste inchangée et que ses propriétés ont été obtenues via la méthode proposée dans le chapitre précédent (ou toute méthode équivalente) de façon à garantir la similarité des modes, masses et fréquences remis à l'échelle. Cette méthode se base sur la modification géométrique de la forme en plan pour minimiser l'écart quadratique entre les matrices aérodynamiques adimensionnelles de l'avion de référence et celles du démonstrateur à échelle.

Finalement, cette méthodologie est appliquée, pour la valider, à l'exemple de l'aile GO-LAND [START_REF] Beran | Numerical Analysis of Store-Induced Limit-Cycle Oscillation[END_REF], qui constitue une référence dans le domaine de l'analyse aéroélastique.

Nous avons choisi l'exemple de l'aile GOLAND car, malgré sa simplicité, nous pouvons, et ce de manière pédagogique, expliquer le comportement de la similitude aéroélastique.

Outline

In this chapter we address the following points:

• Matching of dynamic aeroelastic response when flow similarity cannot be achieved.

• Hypothesis: the modal characteristics of the wing structured are already equivalent and the scaled geometry of the structure remains constant between scales.

• Optimization of the wing planform to minimize the error between the aerodynamic matrices of the linear aeroelastic analysis.

• Application to the Goland wing as a pedagogical example.

Definition of the Optimization Problem for Flutter Similarity

In the Chapter 3, we proposed a method to match the modal response of a scaled flight demonstrator, which is a sufficient requirement for complete aeroelastic similarity if the flow nondimensional numbers are preserved. However, in the present chapter we will see that the modal matching condition is not sufficient if the flow similarity cannot be fulfilled. Also, an innovative method is proposed to match the scaled flutter response of the reference aircraft, by optimizing the wing planform. Throughout this chapter, we suppose that the modal response of the structure has been matched through the methodology of Chapter 3 or by any other equivalent method and we focus on the aerodynamic shape only.

To do so, we formulate an optimization problem that matches the dynamic aeroelastic response as closely as possible through the minimization of the squared error between the aerodynamic matrices of both models. To compare both matrices, they are computed at the same scale. Further in this section we will show that this is equivalent to compare their nondimensional matrices. The aeroelastic equations of motion are typically used to find the flutter modes, speeds and frequencies of an aircraft. The flutter points correspond to the airspeed values for which the aeroelastic oscillations are undamped. Below the flutter airspeed, these oscillations are damped, whereas they are divergent above the flutter airspeed. In those cases, the dynamic aeroelastic equation of motion,

[M]{ẍ} + [K]{x} = [A k ]{x} + [A c ]{ ẋ} + [A m ]{ẍ} + [M]{a g }, (4.1)
where all the matrices have been defined in Eq. (2.18), is solved for harmonic oscillatory solutions, and speeds are expressed as { ẋ} = iω{x}, and accelerations as {ẍ} = -ω 2 {x}. This allows writing the harmonic solution as a complex matrix that when multiplied by the displacements gives the aerodynamic forces due to displacements, speeds, and accelerations. This complex aerodynamic matrix is computed for each frequency ω, and depends on the Mach number M . Taking this into consideration, and considering that we have a reference aircraft (r) and the model we want to optimize to have the same aeroelastic behavior (m), we write the fully nondimensional equation of motion (presented and described on Section 2.8) for each aircraft as

mr { η } + mr ω2 r {η} = 1 2 µ 1r κ 2 1r [ā hr ](X ar , κ, M r ){η}, (4.2) and mm { η } + mm ω2 m {η} = 1 2 µ 1m κ 2 1m [ā hm ](X am , κ, M m ){η}, (4.3)
where [ā h ](X a , κ, M ) is a complex matrix that, for the harmonic solution case, yields the aerodynamic forces due to displacements, speeds, and accelerations when multiplied by the displacements. This complex matrix depends on the aerodynamic surface (X a ), the reduced frequency (κ), and the Mach number (M ).

As seen in Section 2.8, aeroelastic similarity between two aircraft requires each term in Eq. ( 4.3) to be equal to its counterpart in Eq. (4.2). The left-hand side is matched through modal optimization, as described in Chapter 3. The right-hand side is assumed to be equal under the hypothesis that aerodynamic flow similarity exists and that the aerodynamic shape is preserved. If flow similarity (same Mach number, for instance) cannot be achieved, we can try to find the model design parameters affecting the right-hand side of Eq. (4.3) that maximize the similitude with respect to the same term in Eq. (4.2). Throughout the rest of this chapter, the term "flow similarity" applies to equality in Mach number only, as it is the only flow parameter considered for the computation of the aerodynamic matrices.

Keeping this idea in mind, we define an optimization problem to minimize the squared error between these two terms. Thus, we define a new objective function

f = N i=1 [ā hr ](X ar , κ i , M r ) -[ā hm ](X am , κ i , M m ) 2 2 , (4.4)
which quantifies the error between the two aerodynamic models through the sum of the squared L 2 norms of the difference between the aerodynamic matrices for a set of reduced frequencies (κ i , ∀i ∈ 1 . . . N ). The design variables of this problem define the model wing planform X am .

Typically, the nondimensional generalized matrices [ā hr ] and [ā hm ] would be used to evaluate the objective function in Eq. (4.4). However, it may be difficult and error-prone from the user point of view to establish the dimensional transformation matrices for large Nastran models. Instead, we use the uniformized, generalized matrices, [ȃ h ], which are direct outputs from MSC Nastran (denoted as [Q hh ] in that context, see Appendix B for more details on how these matrices are computed), to define an optimization problem that is equivalent to the one expressed by the minimization of the objective function in Eq. (4.4).

If we were to compute [ā h ], then [ȃ h

] would be nondimensionalized using a factor K that is a function of the physical reference quantities of each aircraft (r or m). This process is the same for both the reference aircraft and the flight demonstrator, therefore it is only described once for a generic matrix [ȃ h ]. Then, matrix [ȃ h ] is nondimensionalized as

[ā h ] = 1 K [ȃ h ]. (4.5)
Instead of computing [ā hr ] and [ā hm ], we use [ȃ hr ] and [ȃ hm ]-both computed at the same physical scale-thus the same K, and using the same modal base [Φ], to define a new optimization problem. Subsequently, we prove that the solution of this newly defined problem is the same as the solution of the problem defined by minimizing the objective function in Eq. (4.4). The advantage of this approach is that we use matrices that are a direct Nastran output, without having to uniformize and nondimensionalize them.

For that purpose, we use the property

arg min(cf ) = arg min(f ) if c > 0. (4.6) 
We start by writing a new objective function f eq as

f eq = i [ȃ hr ] -[ȃ hm ] 2 2 . (4.7)
Now we write f eq as a function of the generalized matrices and K, by virtue of Eqs. (4.4), (4.5), and (4.7),

f eq = i K[ā hr ] -K[ā hm ] 2 2 = |K| 2 i [ā hr ] -[ā hm ] 2 2 . (4.8)
From Eqs. (4.6) and (4.8), we can state that min(f eq ) = min(|K| 2 f ), (4.9) and therefore arg min(f eq ) = arg min(f ). (4.10)

Consequently, we can solve the same optimization problem by using the generalized matrices [ȃ hr ] and [ȃ hm ] built at the same scale and using the same normal modes [Φ]. The only difference between the two models is the planform shape and the Mach number. Next, we describe the tools used to implement this novel strategy which is applied to the Goland wing example. 

Example of Application to the GOLAND wing

The model that we use as an example of application is based on the MSC Nastran model of the GOLAND wing described by Beran et al. [START_REF] Beran | Numerical Analysis of Store-Induced Limit-Cycle Oscillation[END_REF], and is available at the ECERTA project website1 . This model consists of a cantilevered wing with a rectangular planform and a rectangular wingbox. The wingbox is composed of an upper and lower skin panels, leading and trailing edge spars, a central spar, and ribs. Spar and rib caps are also included in the model. The mass of the wing is represented by a lumped mass on each of the grid points.

Although the GOLAND wing is not really representative of an actual aircraft concept (already existing or an innovative one), we choose it as a test case given its widespread use in the aeroelastic analysis literature and also for its simplicity. The structure presents simple, uncoupled structural modes that allow for a better understanding of the aeroelastic phenomena taking place. Also we mention that, even though the low level of discretization of the structural mesh in the Nastran model available is far from the one required to be physically representative, we keep the same mesh for the results to be comparable to the reference ones.

On the aerodynamics side, the wing is represented by its planform surface through the use of CAERO1 panels in MSC Nastran. This type of panels uses the doublet-lattice method (DLM) to compute the aerodynamic forces. Both structural and aerodynamic models are connected within MSC Nastran through surface splines [START_REF] William | MSC/NASTRAN aeroelastic analysis: user's guide[END_REF] that interpolate forces and displacements. 4.2a shows the dimensions of the baseline Goland half-wing. We use this baseline design as the reference wing flying at the reference Mach number for the optimization problem of the next section using the approach previously described.

In this section, we apply the optimization strategy described in Section 4.1 to the model presented at the beginning of the current section. In this case, the baseline Goland wing configuration, shown in Figure 4.2a, is taken as the reference aircraft, and its generalized aerodynamic matrix is computed at M = 0.7. For the wing being optimized, the design variables are the chord length and the leading edge position of both the root section and the wing tip, for a total of four design variables, as shown in Figure 4.2b. The Mach number for this wing is M = 0.2. The wingbox structure of the wing being optimized is the same as the reference one to keep the same modal base for the matrix generalization process. This situation corresponds to the case where the wing outer mold line (OML) changes between the two aircraft but the internal structure remains the same. The optimization problem consists in minimizing of the objective function defined by Eq. (4.7) without constraints. In that case, we choose to consider the objective function for one reduced frequency only, κ 1 = 0.122, which is the one corresponding to the first flutter mode of the baseline Goland wing at the reference conditions. By doing so, we aim to minimize the difference between the two aerodynamic models around the flutter point of the reference aircraft. Table 4.1 summarizes the objective function, design variables, and the problem parameters. To solve this optimization problem we use COBYLA [START_REF] Michael | A direct search optimization method that models the objective and constraint functions by linear interpolation[END_REF], a gradient-free optimizer presented in Section 2.10.2.

Objective Function Dimension Type

Quadratic error between aerodynamic matrices

i ( [ā hr ](X ar , κ i , M r ) -[ā hm ](X am , κ i , M m ) 2 2 )
1 Minimization

Design Variables Dimension Bounds

Leading edge position of the root section

x LE r 1 [-5, 5] ft
Leading edge position of the tip section 

x LE t 1 [-5,

Results and Discussion

In this section, we first present and discuss the optimization results. Next, we analyze the effects of the change in the Mach number on the baseline wing flutter behavior, and we finally analyze how the use of the optimized wing for the new Mach number reduces the error in flutter behavior.

After using the COBYLA optimizer to solve the optimization problem detailed in Section 4.2, we plot the objective function evolution with the number of iterations, as seen in Figure 4.3a.

Figure 4.3b shows the optimal design. We see that both the root and tip chords increase, but the increment is larger at the root. We also see that the leading edge of both sections moves forward. The increase of both chords results in a wing area increment, which is coherent with the fact that the flight demonstrator Mach number M m is lower, since a decrease in Mach number (in the subsonic regime) decreases the aerodynamic forces. Therefore, the optimizer increases the area to produce equivalent aerodynamic forces at a lower Mach number. Since our goal is to reduce the error in the flutter response of a wing when the Mach number changes, we first compare the baseline wing aeroelastic response at the reference conditions M r (which constitutes the reference case) to the baseline wing at the model Mach number M m . Then, we do the same comparison between the reference case and the optimized wing at the model Mach number M m . To do so, we compute the V -g and V -f plots for each case (Figures 4.4 and 4.5). This allows us to determine the flutter speed and the divergence speed for each case. The airspeed is nondimensionalized using a reference length b = 6 ft and the first mode frequency (ω 1 = 12.45 rad/s), and is the same as the inverse of the reduced first mode frequency κ 1 -i.e., 1/κ 1 = 2V /(bω 1 ). The first modal frequency is used to nondimensionalize the flutter frequency (ω/ω 1 ). In the typical case, the reference lengths used for the reference aircraft and the model would depend on the scale. However, and as explained in Section 4.1, we use the same physical dimensions for each case, except for the wing planform shape, since our goal is to analyze the effect of the planform with different Mach numbers on the flutter response, regardless of the scale.

From the flutter response shown in Figures 4.4 and 4.5, we observe an improvement with the optimized wing (Figures 4.5a and 4.5b) with respect to the baseline wing (Figures 4.4a and 4.4b) at three levels: flutter speed, divergence speed, and general evolution of the damping and frequency plots. From the flutter response, we quantify the errors in flutter and divergence speed both in absolute and relative terms for the baseline and optimized wing with respect to the same reference case. The errors are reported in Tables 4 4.2, we see that the error in the flutter speed when using the baseline wing is 9.48%, while it decreases to 3.18% when using the optimized wing for the model Mach number. For the divergence speed case, we see in Table 4.3 that the error in the divergence speed with the baseline wing is 10.89%, reducing to 0.90% with the optimized wing. Thus, we see an improvement on the error in both flutter and divergence speeds, as well as a better agreement in the V -g and V -f plots when considering the optimized design.

Traditional aeroelastic scaling of flying models considers that flow similarity exists or, at least, that its differences are negligible. However, that is not the case when the considering airliners that fly in the transonic regime. In this chapter, we presented a method that maximizes the similarity in the dynamic aeroelastic response between two wings-despite different Mach numbers-by optimizing the planform of one of them.

Using the Goland wing as a test case, we first evaluated the error when the same wing is used, at the flight demonstrator conditions (M m = 0.2), to reproduce the reference wing aeroelastic behavior at the reference aircraft Mach number (M r = 0.7). Then, we applied the proposed optimization method to that case, with the baseline design as a starting point. We reduced the error in flutter speed by a factor of 3 and decreased the error in divergence speed by a factor of 10. We also improved the agreement between the flutter plots for the reference wing at reference conditions. This method allows to design aeroelastically scaled models when the differences in the compressibility conditions cannot be neglected. However, since the greater the change in these conditions, the greater the changes in the planform, this method should only be considered when the resultant planform is still representative of the reference aircraft concept. This method only holds for the dynamic aeroelastic response expressed by the flutter model. Since we consider the cases where we try to match the response despite the lack of flow similarity, and the planform is modified, the angles of attack are no longer equivalent.

In the following chapter, we will focus on the static response only. As we did on this chapter, we will consider that the airflows of both scales are not similar and we will optimize the aerodynamic shape and structure properties simultaneously to match the static displacements. 

Résumé

Dans le chapitre précédent, nous nous sommes concentrés sur le recalage de la réponse aéroélastique dynamique dans le cas où le nombre de Mach ne peut pas être conservé.

Dans ce chapitre, nous considérons aussi le cas de la non-similitude des effets de compressibilité, mais cette fois-ci en considérant le recalage de la réponse aéroélastique statique. Ceci se traduit par reproduire le mieux possible les déplacements de l'aile et les forces aérodynamiques (remis à l'échelle) quand les nombres de Mach sont différents. D'abord, nous discutons des conséquences, sur les efforts aérodynamiques, de ne pas respecter le nombre de Mach.

Ensuite, une méthode de design de l'aile du démonstrateur, qui vise à bien reproduire les déplacements et les forces, est présentée. Cette méthode est basée sur l'optimisation combinée des variables géométriques de l'aile et des propriétés de la structure du caisson de la voilure. Le but est de minimiser l'erreur quadratique de la déformée en vol (par rapport à celle de l'avion de référence). Des contraintes d'égalité sont imposées pour respecter la similitude des charges aérodynamiques par rapport à l'incidence de l'aile. Une contrainte d'inégalité est ajoutée également pour respecter la faisabilité de la structure, tout en assurant que la contrainte maximale de von Mises ne dépasse pas l'admissible de l'aluminium utilisé.

Finalement, cette méthodologie est appliquée à une version à échelle de l'aile uCRM [START_REF] Brooks | Benchmark Aerostructural Models for the Study of Transonic Aircraft Wings[END_REF]. L'échelle géométrique est de λ l = 1 : 5, et les nombres de Mach sont M r = 0.85 pour l'avion de référence et M m = 0.34 pour le démonstrateur à échelle.

Outline

In this chapter we address the following points:

• Effects of non matching airflow nondimensional parameters on the wing deflection and loads.

• Proposal of a new method for scaled displacement and load matching through optimization of the wing design.

• Optimize both the geometry of the wing and structure properties.

• Minimize the error in the in-flight shape (with respect to the reference one).

• Ensure load similarity with respect to angle of attack through equality constraints.

• Ensure feasibility of the structure through inequality constraint on the maximum of the von Mises stress.

• Application to a scaled version of the uCRM wing.

Definition of the Optimization Problem for Static Aeroelastic Similarity

In the previous chapter, we showed the influence of the flow parameters (for instance, the Mach number) on the dynamic aeroelastic response. In the present chapter, we will focus on the static aeroelasticity scaling in the case where the flow similarity (i.e., reproducing the same aerodynamic nondimensional parameters, such as Mach or Reynolds numbers) cannot be achieved, primarily due to the limitations in altitude and speed of scaled flight demonstrators. As seen on Section 2.8, preserving both shape and flow parameters is a requirement for complete aeroelastic similarity. Therefore, if there is no flow similarity, the final deformed state cannot be matched if the nondimensional structural properties and the aerodynamic shape are kept constant. For the analysis and optimizations of the previous chapter, we used a linear model (Eq. (2.18)), where the aerodynamic forces are linear with respect to the structural displacements. The strategy of using a linear model for the dynamic analysis is useful if we use frequency domain methods. However, and if we focus on static aeroelasticity, we can get results closer to the real deflection and loads of the wing by not assuming that the aerodynamic forces depend linearly on the wing displacements.

Our main idea in this chapter is to define a method that, even in the presence of a non similar flow of the scaled model, we can design its wing in a way such that the overall deflection of the wing (while preserving the same angles of attack) is as close as possible to the scaled version of the reference aircraft. To achieve this purpose, we will relax some geometrical design variables (namely the chords that define the wing planform, as well as the sweep angle and the mounting angle of the wing). The geometrical design variables have an impact on the stiffness of the wing, as they determine the shape of the wingbox. Apart from these geometrical variables, we also set structure-specific variables for the properties of the wingbox (e.g., panel thicknesses and stringer sections).

Going back to the case where the flow parameters could exactly be matched, then, as we said, it would be sufficient to match the scaled external geometry of the wing (i.e., the OML) and the angle of attack, as well as the scaled stiffness of the wing structure. In that situation, the in-flight aeroelastic shape and the aerodynamic loads would be the same, except for a scaling factor as shown in Figure 5.1.

Effects of Flow Similarity on Static Aeroelastic Scaling

In the situation depicted by Figure 5.1, the one with full flow similarity, no aerodynamic analysis is required to ensure complete aeroelastic similarity between both scales, as the load equivalence is guaranteed through nondimensional analysis of the aerodynamic equations. Let us now focus on the case where the scaled OML and the angle of attack are matched exactly, and that the scaled stiffness is also matched, but that some nondimensional flow parameters (e.g., Mach number) cannot be matched (i.e., not enough airspeed of the scaled demonstrator with respect to the speed of sound). In that particular situation, if we performed a static aeroelastic analysis, we would observe that the final in-flight shape of the wing of the scaled demonstrator, as well as the load distribution, are not scaled versions of the ones on the reference wing at reference conditions. This is due to the fact that, for a given geometry exposed to an airflow, the aerodynamic loads are not equivalent unless the nondimensional parameters are the same. For example, for the case of the Mach number, in the subsonic regime (M < 1), the Prandtl-Glauert correction [Tru] gives an estimation of the influence of the Mach number on the lift coefficient C l (a nondimensional measure of the lift produced by the wing). The Prandtl-Glauert rule states that

C l = C l0 √ 1 -M 2 , ( 5.1) 
where C l0 (the lift coefficient of a bi-dimensional airfoil at incompressible conditions) is

C l0 = l 0 1 2 ρV 2 c , (5.2)
in which l 0 is the lift per unit span at incompressible conditions of a bi-dimensional airfoil. In that case, the wing deflection and loading are no longer similar.

If, for example, trying to reproduce the static aeroelastic behavior of a typical airliner (M ∼ 0.85) by using a model with scaled stiffness, shape, and angle of attack flying at a well lower Mach number (e.g., M ∼ 0.3), we would find that the aerodynamic loads, and hence the displacements, would be noticeably lower, according to Eq. (5.1). This fact is illustrated by Figure 5.2.

If we now consider the case where we want to optimize the wing geometry and structural properties at the same time to match the static aeroelastic deflections despite significant differences in the airflow nondimensional parameters, we cannot use the nondimensional analysis of the aerodynamic equations as in this case the scaled OML is not preserved. In that case, we will need the in-flight deflections of the reference aircraft (for a particular angle of attack), and to evaluate the fitness of a particular design we need to perform a complete static aeroelastic analysis for the given design variables and the flow parameters (i.e., the unmatched Mach number and the given angles of attack of the reference model for the different loading conditions) and then compare the in-flight shape to the scaled version of the reference one, as well as evaluating the lift and stress constraints. 

MDA Definition

In the present chapter, where we consider static aeroelasticity only and, since we require to perform an aeroelastic analysis to assess the quality of each design, we will consider a type of aeroelastic analysis that gives more realistic results in terms of the static aerodynamic loads with respect to the more simplified methods used in the previous chapter, which were more adapted to dynamic aeroelasticity. Instead, we use a panel aerodynamics code with compressibility corrections (Panair, described in Section 2.5) coupled to a finite element solver (Nastran, described in Section 2.3).

As opposed to the previous chapter, where we supposed that the aerodynamic forces depend linearly on the wing displacements (thus enabling to write a matrix that relates forces to the displacement vector), here we no longer make this assumption and an independent aerodynamic analysis is performed for each deformed configuration of the wing.

The static aeroelastic analysis (solved for each angle of attack) is the one described in Section 2.6. We recall the XDSM diagram corresponding to this analysis in Figure 5.3.

Optimization Formulation

Once we have established the MDA of this problem, we will present the formulation of the optimization problem. To solve the optimization problem, we choose to adopt the multidisciplinary feasible approach (MDF) [START_REF] Joaquim | Multidisciplinary design optimization: a survey of architectures[END_REF]. In the MDF, which is probably the most intuitive approach for multidisciplinary analysis and optimization (MDAO), the complete MDA is solved completely for each iteration of the design variables. The main reason for choosing it is its simplicity of implementation. Figure 5.4 illustrates the XDSM diagram of the present aeroelastic optimization. Note that, as each optimization loop includes an MDA for each angle of attack α i , they are represented in a stacked manner as they can be performed independently. The values of α i correspond to particular values of the angle of attack for which the lift force on the reference aircraft is known.

[t] 0 , [s] 0 , c 0 r , c 0 b , c 0 t , Λ 0 , θ 0 y t(0) α c , V, ρ a , S w , M E, ν, ρ s X ref a W, ρ a , V, S w σ y , F S Optimizer c 0 r , c 0 b , c 0 t Λ 0 , θ 0 [t], [s] Aeroelastic MDA α i u t a f a Aerodynamics f a C L f s Load Transfer f s u s Structures u s σ max V M u a Displacement Transfer X c a f Objective Function c 1 Lift Constraint c 2 Stress Constraint
With this optimization problem, our goal is to find the wing design parameters that minimize the error in the in-flight shape with respect to the scaled in-flight shape of the reference aircraft while keeping the similarity in the angles of attack. For that purpose, we require the scaled lift to be matched for two angles of attack. By doing so, we ensure that the slope of the aerodynamic load with respect to the angle of attack is preserved. Also, and since we want to ensure the structural feasibility of the most critical in-flight situation, we require the von Mises stress in any point of the wingbox structure to be lower than the allowable stress of the structural material for the +2.5g acceleration condition. Thus, the optimization problem formulation that we propose is

minimize f = {X c a } -λ l {X ref a } 2 2 w.r.t. x ∈ R n subject to: C c L -C 0,c L C 0,c L = 0 C 2.5g L -C 0,2.5g L C 0,2.5g L = 0 max(σ V M ) -σ y σ y ≤ 0, (5.3) 
where {X c a } are the shape coordinates of the scaled model wing during cruise flight, {X ref a } are their counterpart of the reference aircraft, and λ l is the overall geometrical scale factor (i.e., wing span ratio). In this problem we do not minimize the error between actual and reference displacements directly. Instead, and since we do not modify the vertical ( -→ z ) coordinates of the wing sections, the starting point from which to measure the vertical displacements (which are the predominating ones for a wing in flight) is the same. This allows us to compare the difference in coordinates rather than the difference in displacements to try to match the reference wing deflection.

The nondimensional lift is matched through the lift coefficients, which are already nondimensional. The cruise lift coefficient of the reference aircraft is

C 0,c L = W r g 1 2 ρ r V 2 r Sr , ( 5.4) 
where W r is the weight (in mass units) of the reference aircraft. For the case of the scaled model, the lift coefficient is

C c L = L α=αc 1 2 ρ m V 2 m λ 2 l Sr . ( 5.5) 
Note that on Eq. (5.5), the reference surface is λ 2 l S r and not the actual wing surface of the model wing. Indeed, we want to match the scaled lift of the reference aircraft (which is determined by λ l ) for the reference cruise angle of attack. For the case of the lift constraint at a load factor of 2.5, the definition of the lift coefficient is the same except that the apparent weight is now 2.5W , and the lift force is computed at the angle of attack that produces such lift on the reference aircraft (α = α 2.5g ). The last constraint on Eq. ( 5.3) expresses that the von Mises stress at any element on the structure is lower than the allowable stress, for the critical positive acceleration of 2.5g, as defined by the Civil Aviation Regulations FAR-25 [Far].

In the next section, we demonstrate the optimization formulation that we presented by applying it to a scaled version of the undeflected common research model (uCRM) wing [START_REF] Brooks | Benchmark Aerostructural Models for the Study of Transonic Aircraft Wings[END_REF].

Example of Application to the scaled uCRM wing

In the previous section, we defined the optimization problem formulation that we propose to match the static aeroelastic behavior of scaled demonstrators when flow similarity cannot be achieved. In this section, we apply the aforementioned methodology to a scaled version of the uCRM wing. The uCRM wing [START_REF] Brooks | Benchmark Aerostructural Models for the Study of Transonic Aircraft Wings[END_REF], is defined from the original CRM wing [START_REF] Vassberg | Development of a common research model for applied CFD validation studies[END_REF], and represents the jig shape of a wing such that when in flight, at some specified air conditions and angle of attack, its shape matches the CRM one.

Definition of the Scaling Factors

In this example problem, we consider, as the reference wing, the uCRM wing flying at 35, 000 ft and M = 0.85 with an aircraft weight of 500, 000 lbm (∼ 226796 kg), as specified by the reference document of the CRM wing structure [Crm] 1 . For the scaled model (whose design we will try to establish through optimization), we consider a reduced model scaled by an overall factor λ l = 1/5. For the flight conditions of the model, we consider an altitude of 2000 m (∼ 6562 ft). From the Froude number matching [START_REF] Pires | LINEAR AEROELASTIC SCALING OF A JOINED WING AIR-CRAFT[END_REF], the scaled airspeed is V m = √ λ l V r = 112.77 m/s. At the scaled model altitude, and using the international standard atmosphere model, this gives a Mach number of M = 0.34.

As described by Pires [START_REF] Pires | LINEAR AEROELASTIC SCALING OF A JOINED WING AIR-CRAFT[END_REF], the scaling factor and the air density ratio λ ρ = ρ m /ρ r determine the total mass of the scaled model

W m = λ ρ λ 3 l W r , ( 5.6) 
which will dictate the amount of lift that needs to be produced.

Design Variables

The geometrical design variables of this problem are the chord lengths at three span sections (root, break, and tip-c r , c b , and c t respectively), the sweep angle Λ, the wing mounting angle (i.e., the angle between the wing and the longitudinal axis of the fuselage), as well as the longitudinal position of the wing leading edge at the root. The thickness to chord ratio of the sections is obtained by multiplying the baseline distribution of relative thicknesses along the wing span by a scaling factor k. We also set k as a design variable, in order to control the flexibility of the wing structure through the height of the wingbox. We recall that, for the aerodynamic analysis, we define the angle of attack as the angle of the longitudinal axis of the fuselage with respect to the incoming airflow. The geometrical variables are illustrated by Figure 5.5.

The structural design variables are the plate thicknesses of the shell elements of the wingbox, as well as the stringer sections. For the definition of the shell thicknesses, the wingbox Regarding the stringer sections, there are a total of 6 variables that define the cross-section values of all the stringers in the model, which belong to 6 different groups. These regions of different stringer sections are displayed on Figure 5.7. Note that all the elements present in the finite element model of the wingbox that contribute to the stiffness of the wing are defined through design variables (either thicknesses or cross-sections). In other words, the properties of all the components of the structure can be controlled through the design variables. In that manner, we have control over all the element properties contributing to the stiffness, even though the amount of control we have is determined by the number of different regions. Indeed, the more regions the structure is divided into, the more the structure can be tailored to achieve better results, but at the expense of having more design variables. As opposed to a case where an optimization approach is used to improve an existing design, where we can imagine that a subset of structural components are to be redesigned, in our case we need all the components to be completely defined through design variables, as there is no a priori knowledge on the sizing of the components. In other words, we aim to find the whole design of the scaled wing, rather than improving the performance of an existing wing, where the properties of some components could remain unchanged. 

Geometry and Mesh Generation

For the generation of the OML from the planform design variables, we use the baseline geometrical definition of the uCRM wing (for the twist distribution and the vertical coordinates of the wing sections) and the definition of the original CRM wing (for the airfoil shape, relative thickness, relative camber, and spanwise position of the wing sections). This baseline geometrical definition defines the airfoil shape and twist at 8 sections from the root to the wingtip. The planform design variables determine the leading edge position and chord length, while the spanwise and vertical position of the sections, as well as their relative thickness and camber, are kept constant, and have the value of the scaled reference wing. From this definition of the wing through its section properties, we can define the jig OML of each vector of design variables. By using GMSH [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF], a software package for the creation of geometries and meshes, we create the OML and a structured surface mesh for the aerodynamics panel code. Note that for each vector of design variables, the topology of the structured surface mesh is kept constant.

For the creation of the geometry of the structural wingbox, which also depends on the geometrical variables, we use a morphing technique that is based on the same principle as the RBF-based method used for the interpolation of displacements [START_REF] Rendall | Unified fluid-structure interpolation and mesh motion using radial basis functions[END_REF], detailed in Section 2.7. In that case, we know the baseline geometry of both the OML and the wingbox, as well as the OML geometry of the current design. Therefore, we know the displacements from the baseline OML to the current OML, and we interpolate them on the baseline wingbox geometry to obtain the structure mesh of the current design iteration. Figure 5.8 illustrates how this method works. .8 -The structural mesh (orange) is initially known only in its baseline configuration (left). Through the new shape of the OML (in green) and using the RBF based method it is adapted to new shape on the right.

For the MDA that is performed within each optimization iteration, since the interpolation matrix H, defined in Section 2.7, depends on the coordinates of both aerodynamic and structural meshes, this matrix has to be recalculated for each optimization iteration before performing the MDA itself. This fact is illustrated in Figure 5.9. Its results are use to evaluate the objective function as well as the cruise lift constraint. The second MDA loop corresponds to the angle of attack of the limit load condition. Its results are use to evaluate the lift constraint at the limit load as well as the stress constraint. Both MDAs are independent from each other and can be executed separately.

X b a , X b s [t] 0 , [m] 0 , [s] 0 , c 0 r , c 0 b , c 0 t , Λ 0 , [θ] 0 ,

Definition of the Reference Quantities

According to the optimization problem formulation on Eq. ( 5.3), we need the coordinates of the in-flight reference wing. To obtain them, we performed an MDA loop with the baseline fullscale wing geometry and structure, at the reference air conditions, specified at the beginning of this section. To find the correct angle of attack, we performed several iterations until the generated lift matched the reference aircraft weight W r g. To determine the angle of attack of the limit load condition, we perform the same operation, this time until the generated lift matches 2.5 times the weight of the reference aircraft. This gives a cruise angle of attack of α c = 1.34 • and α 2.5 = 9.66 • for the limit load condition.

Since the allowable stress is not specified in the reference document of the CRM finite element model (we only know that it is an aluminum alloy with an Elastic modulus E = 68900 MPa, Poisson's ratio ν = 0.31, and density ρ s = 2795.67 kg/m 3 , which determine the elastic properties needed for the finite element analysis), and as it is required to evaluate the stress constraint on Eq. ( 5.3), we use the maximum von Mises stress found on the baseline wing at +2.5g as the allowable stress, as according to the CRM structure reference document [Crm], the wingbox structure is sized to withstand such loads. This gives an equivalent yield stress of about 600 MPa, which is a rather high value for an aluminum alloy. Some aluminum alloys, such as the 7068 can have tensile yield strengths up to and above 600 MPa. Therefore, even if extremely high, we consider that the used material can withstand up to 600 MPa. If we considered using a different aluminum alloy, with a lower allowable stress than the maximum observed on the reference wing at limit load condition, the target displacements could probably not be matched, since the flexibility of the scaled wing would be limited by the stress constraint. Indeed, the optimizer would need to increase the structural thicknesses to satisfy the stress constraint, thus reducing the required flexibility to match the in-flight shape.

Optimization Problem Setup

For each optimization iteration, and at the end of the MDA cycle, the objective function and all the constraints are evaluated. Figure 5.9 shows the detailed XDSM diagram of the optimization problem described in this section. The design variables (a total dimension of D = 24) and their bounds, as well as a summary of the objective function and constraints, are shown on Table 5.1. The values of [t 0 ] and [s 0 ] are estimations for the order of magnitude of the structural thicknesses and stringer cross-section variables, and are obtained in the same manner as for the modal scaling problem, in Section 3.5, as described by Eqs. (3.21) and (3.24). For the values c 0 r , c 0 b , and c 0 t , they are obtained by scaling the baseline section chords by the overall scaling factor λ l .

Concerning the optimization algorithm, in this case we use SEGOMOE, a global surrogatebased optimizer, described in Section 2.10.4. We choose to use this approach as we do not know a priori whether the search space is convex. Also, since we are not using any constraint aggregation function for the stresses on the elements, but the true maximum of all the stresses evaluated, as well as the chosen optimizer. In this section, we will present and discuss the results we obtained from running the optimization problem described above.

For this problem, we have set an initial DOE of 100 points for the SEGOMOE optimizer (refer to Section 2.10.4 for more details on the optimizer). The tolerance for the violation of the constraints was set to 0.01 for all of them. By looking at Eq. ( 5.3), this implies that the feasible points can have up to 1% in error in the lift force and in the allowable stress (in the case it is exceeded, as it is an inequality constraint). However, and after 500 iterations (including the initial DOE of 100 points), the feasible points found did not exhibit an in-flight shape that matched the target shape with acceptable accuracy. By progressively increasing the tolerance on the violation of the constraints we found that for a tolerance of 0.08 the results of the in-flight shape started being acceptable (f = 3.00). Figure 5.10 displays the evolution of the objective function with the number of iterations. The feasible points indicated in this plot are considered with a tolerance of 0.08 on all the constraints. We can note on Figure 5.10 that few initial points of the DOE (6 points out of 100) are valid points. In Figure 5.11, we see the in-flight shape of the best found point (with the specified tolerance) compared to the target in-flight shape scaled from the reference aircraft. The in-flight shape fits well overall along the wing. Note that the wing area increases. This is expected as the lower Mach number of the scaled wing reduces the effective lift coefficient (recall the Prandtl-Glauert rule in Section 2.5). Therefore, a greater surface is needed to generate the equivalent lift. Regarding the stress constraint, it is not active for the best found point. As we can see in Figure 5.12, the maximum von Mises stress on the structure for the limit load condition is 566 MPa, compared to the defined allowable of 600 MPa.

Although the in-flight shape of the point considered fits reasonably well with the target shape and that the stress constraint is satisfied, the 8% error on the lift force suggests that further investigations are required to improve the results. One option for that could be to reconsider the size of the design space for the optimizer to perform a more effective search, possibly by centering it around the best found design and extending it to find better design points that could exist outside the current design space.

After having presented the results of the last example of application, in the following section we will present the general conclusions of this thesis. 

Recapitulation

In this chapter we have presented and discussed the following points:

• Proposal of a method for scaled displacement and load matching through optimization of the wing design.

• Optimize both the geometry of the wing and structure properties.

• In-flight shape error minimization through optimization of both wing geometry and structure properties.

• Ensure load similarity with respect to angle of attack through equality constraints.

• Ensure feasibility of the structure through inequality constraint on the maximum of the von Mises stress.

• For the uCRM example: good in-flight shape matching, with 8% error on the lift of the limit load condition and a margin of 34 MPa on the von Mises criterion.

Conclusion and Perspectives

In this thesis we have reviewed and analyzed how the traditional design of flying scaled demonstrators is obtained and we have proposed several methodologies to improve the results of the traditional approach or to achieve scaled wings that behave similarly when some of the assumptions of the traditional methodology no longer hold.

The fact that we apply aeroelastic scaling methodologies when some of the airflow parameters cannot be matched (primarily due to limitations in speed and altitude of the scaled models) is justified by the fact that, as opposed to wind tunnel testing for example, our main goal is not to obtain data that we can extrapolate directly to a larger scale. Instead, in our case we focus on the overall behavior of a particular wing configuration.

The idea behind the proposed methodology is to be able to design flight demonstrators of innovative aircraft configurations, such as the blended wing body (BWB), the strut-braced wing, or the box wing in a manner that the flight loads viewed from the structure point of view are equivalent. In that manner, the in-flight behavior of these new configurations can be evaluated knowing that the total loads and the wing displacements along the span are equivalent.

Since the objective of this thesis was to propose and evaluate the methodology rather than applying it to a specific type of aircraft, in order to evaluate the developed tools we have used test cases that are well known and available in the literature, such as the GOLAND wing [START_REF] Beran | Numerical Analysis of Store-Induced Limit-Cycle Oscillation[END_REF] or the CRM [START_REF] Vassberg | Development of a common research model for applied CFD validation studies[END_REF] (and its undeflected version, the uCRM [START_REF] Brooks | Benchmark Aerostructural Models for the Study of Transonic Aircraft Wings[END_REF]).

On the first part, the modal optimization when the full flow similarity exists, we have proposed several improvements over the formulation in the traditional methodology on the literature related to flight demonstrator scaling. We used an objective function based on the MAC value (a widely used tool in the field of experimental structural dynamics) and we also used the MAC value to implement a mode tracking strategy to avoid mode crossing. We see, through a particular example of application, that it is preferable to match a reduced number of modes with a good agreement rather than trying to match a large number of modes with an average quality result. For that, the user of the method should carefully determine the modes that are the most influential on the aeroelastic response (through a flutter analysis of the reference aircraft, for example) and focus on these ones for the modal optimization problem.

Regarding the second part, we saw how it is possible to slightly modify the wing planform to achieve nearly equivalent results in the flutter behavior. Of course, introducing changes in the planform opens a crucial debate on whether the term "similarity" can still be applied. As we said at the beginning of this section, our aim is not to provide directly scalable data in all the disciplines, but to obtain a scaled aircraft whose aeroelastic response is equivalent to the scaled response of full size aircraft. By applying the proposed method, we establish the design of the planform that produces an equivalent aeroelastic behavior from the structure point of view despite non-similar flow conditions (Mach number, for instance).

In the last part, we also consider the case when flow similarity cannot be achieved, but this time we focus on the scaling of static loads and displacements. Here, we consider a more detailed, nonlinear coupling between aerodynamics and structures (compared to the linear equation of the previous case). Also, the geometry of the structure and the properties of its components are also set as design variables to increase the design possibilities. The results of the example of application of this part suggest that further investigation is required to well determine the design space and the optimizer settings to ensure that the result is the one that matches the displacements up to a satisfactory level while keeping the load equivalence within strict limits. The best point that we found that showed a good agreement in the displacements presented an error of almost 8% in the flight load. Therefore, it should be determined whether this is the best point in that particular design space or if the design space and the optimizer settings could be modified to find better points.

After concluding on the works accomplished in this thesis, we present some perspectives on the topic of aeroelastic scaling of flight demonstrators.

The first one, which is more related to the choice of tools rather than to the physical problem itself, is to include high fidelity CFD analysis in the statics part of the problem. Indeed, using high fidelity CFD would result in more accurate flight loads. During this thesis we developed an aeroelastic coupling between Nastran and ADflow [START_REF] Van Der Weide | Unsteady turbomachinery computations using massively parallel platforms[END_REF], a high fidelity CFD tool developed at the MDOlab (University of Michigan). More details on this coupling can be found in Appendix C. However, because of time constraints we could not run the same optimizations we ran with the coupling between Panair and Nastran. Apart from using a CFD tool itself, another option is to use it in combination (simultaneously) with a low-fidelity analysis tool. In that manner, the optimization tool can use high fidelity data only when necessary and rely on the low fidelity tool (with a lower cost) for a more extensive exploration of the design space. A recent example in the field of aeroelastic optimization using a multi-fidelity approach is the work by Bryson and Rumpfkeil [Bry+18].

Another axis of research is to include, in addition to the passive structural variables, such as structural thicknesses, other elements such as piezoelectric patches on the structure. These would allow for an active and better tailored design to control the applied forces during the operation of the scaled aircraft. For example, Heeg et al. [START_REF] Heeg | Piezoelectric aeroelastic response tailoring investigation: a status report[END_REF] report the use of piezoelectric actuators to modify the static divergence speed.

As we said in the conclusions, we applied the developed tools to known aircraft configurations to validate them. Once validated, these methods can be applied to more innovative aircraft configurations, such as the BWB, the strut-braced wing, or the box wing. For illustration of one of this concepts, an example of a BWB is displayed in Figure 5.13.

Another research focus is to use nonlinear structural mechanics in the static aeroelastic problem. There are examples of the use of this type of structural analysis [START_REF] Ricciardi | Nonlinear Aeroelastic-Scaled-Model Optimization Using Equivalent Static Loads[END_REF]; [START_REF] Wan | Geometrically Nonlinear Aeroelastic Scaling for Very Flexible Aircraft[END_REF] applied to scaled aircraft models, but in this case they consider structural optimization only to match the nonlinear response as they assume that aerodynamic similarity exists between the models. In the case where flow similarity does not exist but matching the static aeroelastic response is a requirement, we can use the same approach as in Chapter 5 of this thesis, but this time substituting the linear FEM by a non-linear static analysis, especially when dealing with highly flexible structures. For example, this is the case of high-altitude longendurance (HALE) wings, which exhibit high aspect ratio vales (which imply long wings). Some examples on the coupling of aerodynamic analysis with nonlinear structural analysis are the works by Wang et al. As it was mentioned in the introduction of this thesis, a possible application of this aeroelastic scaling methods is to assess the in-flight aeroelastic qualities of the next generations of existing aircraft (such as the Airbus A320 neo and the Boeing 737 MAX), for example in the redesign of the wing including new engines and pylons, which modify the mass and stiffness distributions. Figure 5.14 shows the increase in size and the pylon modifications in the A320 neo with respect to the original A320.

After this thesis on aeroelastic scaling, the main objective is to apply the developed methodologies of aeroelastic analysis and design optimization to the Aircraft Design discipline. The goal is to apply these methods to the design and optimization of a BWB concept, in the context of the Chair for Eco Design of Aircraft (CEDAR)3 , in collaboration with Airbus. In the perspectives we also include the consideration of aeroelastic effects earlier in the preliminary design phase. This would be achieved by incorporating the aeroelastic analysis tools developed during this thesis into the preliminary design tool developed by ONERA and ISAE: the Fixed-wing Aircraft Sizing Tool (FAST) [START_REF] Schmollgruber | Use of a Certification Constraints Module for Aircraft Design Activities[END_REF]. Since the optimum must satisfy both equality constraints, it must lie along the path formed by the intersection of both constraints. As the constraint surfaces are defined as constantvalued surfaces of the functions h 1 (x, y, z) and h 2 (x, y, z), their gradients ∇h 1 and ∇h 2 are perpendicular to h 1 (x, y, z) = 0 and h 2 (x, y, z) = 0 respectively. If {t} is a tangent vector to the intersection path of both constraints, then the gradient of the objective function ∇f must be perpendicular to {t} at the minimum x * . Indeed, this implies that the projection of ∇f onto the tangent vector at x * is zero, which means that the growth rate of f along the intersection of the constraints is zero. Since {t} is tangent to h 1 (x, y, z) = 0 and h 2 (x, y, z) = 0 at the same time, it is perpendicular to both ∇h 1 and ∇h 2 . Therefore, {t} is perpendicular to any vector belonging to the plane formed by vectors ∇h 1 and ∇h 2 . As we said, ∇f (x * ) must be perpendicular to {t}, therefore it must be a vector contained within this plane. As any vector of this plane can be expressed as a linear combination of ∇h 1 and ∇h 2 , the gradient ∇f is then

-∇f = λ 1 ∇h 1 + λ 2 ∇h 2 .
(A.8)

For the inequality constraints, they behave in the same way as the equality constraints if they are active at the optimum (if g(x * ) = 0). If the constraint is active (g i = 0), Eq. (A.6) indicates that, for a minimization problem, ∇f and ∇g i must be opposite. If ∇f and ∇g i were parallel and had the same sign at x * (where g i = 0), there would be a neighbor point in the direction of -∇f that has both a better objective function value and that satisfies g i < 0, therefore x * would not be the optimum. Therefore, for x * to be the optimum when g(x * ) = 0, ∇f and ∇g i must be opposite (µ i > 0). Eq. (A.7) means that if the inequality constraint is not active (g i = 0), then µ i = 0, and the problem behaves as an unconstrained one. Résumé -La recherche de configurations d'aéronefs plus efficaces mène les ingénieurs à explorer de nouveaux concepts tels que l'aile volante, l'aile haubanée ou l'aile en jointive. Contrairement à la configuration classique aile-fuselage, qui est bien connue et étudiée, le comportement en vol de ces nouveaux concepts d'avion est peu connu. Dans ce contexte, la conception, la construction et les essais de modèles à l'échelle aéroélastiquement semblables se présentent comme un moyen peu risqué d'acquérir des connaissances expérimentales sur ces nouveaux concepts. Un modèle aéroélastiquement semblable présente le même comportement aéroélastique (mis à l'échelle) que l'avion de référence à échelle réelle. En général, le même comportement aéroélastique implique de reproduire les mêmes déplacements pour des conditions du flux d'air données, ainsi que les mêmes vitesses de flottement ou de divergence statique mises à l'échelle. Pour résoudre le problème de similitude, l'approche est divisée en trois parties. Dans le premier cas, nous traitons le problème de similitude aéroélastique lorsque les paramètres de similitude du flux aérodynamique peuvent être complètement préservés. Dans cette situation, le problème consiste simplement à reproduire la réponse dynamique modale de l'aile mise à l'échelle en optimisant les propriétés de la structure et de la masse. Dans la deuxième partie, nous nous concentrons sur l'optimisation du design de la forme de l'aile pour reproduire la réponse du flottement lorsque les paramètres de remise à l'échelle du flux aérodynamique ne peuvent pas être atteints. Finalement, nous abordons la similitude des déflexions aéroélastiques statiques, même lorsque la similitude du flux d'air ne peut pas être atteinte, grâce à l'optimisation simultanée des propriétés de la structure et de la forme aérodynamique.

Mots clés : aéroélasticité, démonstrateur volant, optimisation multidisciplinaire

Abstract -The search for more efficient aircraft configurations leads designers to explore new concepts such as the blended wing body, the strut-braced wing, or the box wing. Unlike the classical wing-fuselage configuration, which is well known and understood, few is known about the in-flight behavior of these new aircraft concepts. In that context, the design, construction, and testing of unmanned aeroelastically scaled models presents itself as a low-risk means of acquiring experimental knowledge on these new concepts. An aeroelastically scaled model exhibits the same scaled aeroelastic behavior as the full-scale reference aircraft. Typically, the same aeroelastic behavior implies matching the displacements for some given scaled airflow conditions, as well as the scaled flutter or static divergence speeds. To address the similarity problem, we divide the approach in three parts. In the first one we deal with the aeroelastic similarity problem when the aerodynamic flow scaling conditions can be completely preserved. In that situation, the problem is reduced to simply matching the scaled modal dynamic response of the wing through optimization of the structure and mass properties. In the second part, we focus on the wing planform design optimization to match the flutter response when the airflow scaling parameters cannot be achieved. Last, we address the similarity of the static aeroelastic deflections, also when the airflow similarity cannot be achieved, through the optimization of both structural properties and aerodynamic shape at the same time.
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 1 Figure 1.1 -Static wing deflection on a full-size aircraft (left) [747a]. Equivalent wing displacements on a scaled model (right) [747b].

  Figure 1.2 shows an example of a reference mode and its scaled optimized counterpart from this work.
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 12 Figure 1.2 -Reference mode on the full-size SensorCraft (left). Optimized mode on the scaled aircraft (right) [Ric+09].
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 2 Figure 2.1 -Types of nodes on an XDSM diagram
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 22 Figure 2.2 -Illustration of a rigid wing with an elastic attachment at the root. The parameters defining the problem are the angle of attack α, airspeed V , Mach number M , air density ρ, wing dimensions (b, c), and torsional stiffness K. The state variables are the lift force L and elastic deflection θ.

Figure 2

 2 Figure 2.3 -XDSM diagram of the aeroelastic problem from Figure 2.2.

Figure 2

 2 Figure 2.4 -Groups (dashed lines), components (solid rectangles), and variables (letters) of an aeroelastic MDA implemented in OpenMDAO.

  Figure 2.5 shows an example of a FEM mesh formed by shell elements corresponding to a wingbox structure.
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 25 Figure 2.5 -Example of a FEM mesh (12475 shell elements) of a wingbox structure. The boundary conditions (in light blue) simulate the junction with the fuselage 2 .
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 27 Figure 2.7 -Example of the shape of an elastic vibration mode of the cantilevered uCRM wing.
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 28 Figure 2.8 -Fluid domain V and boundary S B of the body of interest [Kat+01]. Note that n is the outer normal vector of the fluid domain, not the body surface.
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 2 Figure 2.10 -Example of the C p distribution over a wing in cruise flight.
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 2 Figure 2.14 -The flutter speed is determined when the value of the damping parameter g goes from negative to positive [Ber+04].

Figure 3

 3 Figure 3.1 -Coincident vectors representing the same anti-symmetric mode (a). Opposite vectors representing the same anti-symmetric mode (b).

Figure 3

 3 Figure3.2 -Beam frequencies sorted according to eigenvalues (left) and according to their mode shape (right). On the right, ω 1 corresponds to the bending mode and ω 2 , to the torsion one. The variable x represents the structural design variables.
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  Regarding the constraints of the problem, we have the equality constraint on the frequencies ω r -ω m 2 = 0, (3.10) the equality constraint on generalized masses m r -m m 2 = 0, (3.11)
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 33 Figure 3.3 -Different thickness regions on the upper wing skin (left) and the lower one (right).

Figure 3 Figure 3 . 5 -

 335 Figure 3.4 -Modal results of the first optimization iteration overlapped with the reference ones.
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 3 Figure 3.6 -Modal results of the last optimization iteration overlapped with the reference ones. Once the optimization has converged, the reference and optimized mode shapes are barely distinguishable.

Figure 3

 3 Figure 3.7 -Full scale and scaled cantilever beams.

  Figure 3.8 -Plate thicknesses on different scale beams.
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 3 Figure 3.10 -Different thickness regions for modal optimization.

Figure 3

 3 Figure 3.11 -Different stringer property regions for modal optimization.

Figure 3

 3 Figure3.12 -Evolution of the best found design with the number of iterations using COBYLA for N = 5. The objective function and the three equality constraints are plotted as a function of the iterations.
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 33 Figure 3.13 -Modal results of the first optimization iteration overlapped with the reference ones for N = 5.

Figure 3

 3 Figure 3.15 -Evolution of the best found design with the number of iterations using COBYLA for N = 10. The objective function and the three equality constraints are plotted as a function of the iterations.
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 3 Figure 3.16 -Modal results of the first optimization iteration overlapped with the reference ones for N = 10.
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Figure 4

 4 Figure 4.1 -Finite element model of the wingbox structure (a). Aerodynamic surface of the doublet-lattice method (blue) along with the FEM model (red) (b).

Figure 4 .

 4 Figure 4.1a depicts the structural model only, whereas Figure 4.1b represents the structural model along with the wing planform surface used for the aerodynamic modeling. Note that, while the aerodynamic surface represents the complete wing planform, the structural model only represents the wingbox, which extends only from the leading edge spar to the trailing edge one.

Figure

  Figure4.2a shows the dimensions of the baseline Goland half-wing. We use this baseline design as the reference wing flying at the reference Mach number for the optimization problem of the next section using the approach previously described.

Figure 4

 4 Figure 4.2 -Dimensions of the baseline Goland wing planform (a). Wing planform design variables (b).

Figure 4

 4 Figure 4.3 -Evolution of the objective function (4.7) with the number of optimization iterations (a). Optimized planform (red) and baseline (blue) (b).

Figure 4

 4 Figure 4.4 -Baseline Goland wing flutter plots at M = 0.7 and M = 0.2; damping (a) and frequency (b).
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 45 Figure 4.5 -Flutter plots of the baseline Goland wing at M = 0.7 and the optimized wing at M = 0.2; damping (a) and frequency (b).
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 51 Figure 5.1 -Illustration of a reference wing deflection and load distribution (a) and its scaled counterpart when complete aeroelastic similarity exists (b).

Figure 5 . 2 -

 52 Figure 5.2 -Illustration of a reference wing deflection and load distribution (a) and its scaled counterpart when there is no flow similarity (b). In that case, the wing deflection and loading are no longer similar.

Figure 5 .

 5 Figure 5.3 -XDSM diagram for the static aeroelastic MDA (one MDA is solved for each angle of attack α).

Figure 5 .

 5 Figure 5.4 -XDSM diagram for the static aeroelastic MDAO. The orange box contains the MDA cycle. Several MDA cycles are stacked (one for each angle of attack) since they are performed independently one from another.

Figure 5 . 5 -

 55 Figure 5.5 -Planform variables for the static optimization problem: longitudinal position w.r.t. the fuselage x LE r , sweep angle Λ, root chord c r , break chord c b , and tip chord c t .

Figure 5 Figure 5 . 7 -

 557 Figure 5.6 -Different thickness regions for static optimization.

Figure 5

 5 Figure5.8 -The structural mesh (orange) is initially known only in its baseline configuration (left). Through the new shape of the OML (in green) and using the RBF based method it is adapted to new shape on the right.

Figure 5 .

 5 Figure 5.9 -Detailed XDSM diagram for the static aeroelastic MDAO. The first MDA loop corresponds to the cruise angle of attack.Its results are use to evaluate the objective function as well as the cruise lift constraint. The second MDA loop corresponds to the angle of attack of the limit load condition. Its results are use to evaluate the lift constraint at the limit load as well as the stress constraint. Both MDAs are independent from each other and can be executed separately.

Figure 5 .

 5 Figure 5.10 -Evolution of the objective function with the number of iterations for the static optimization problem.

Figure 5 .

 5 Figure 5.11 -In-flight aerodynamic surface of the optimized design (light blue) compared to the target shape (yellow). Front view (a), side view (b), and top view (c).

Figure 5 .

 5 Figure 5.12 -Stress distribution for the limit load condition of the best found design. Values in Pa.

Figure 5 .

 5 Figure 5.13 -Illustration of a blended wing body (BWB) concept [NASA/BOEING].

  [START_REF] Wang | Nonlinearaerodynamics/nonlinear-structure interaction methodology for a high-altitude long-endurance wing[END_REF] and Colas et al.[START_REF] Colas | HALE Multidisciplinary Design Optimization Part I: Solar-Powered Single and Multiple-Boom Aircraft[END_REF].

Figure 5 .

 5 Figure 5.14 -Modified engine and pylon on the A320 neo (left) compared to the original configuration on the A320 (right) 2 .

Figure 5 .

 5 Figure 5.15 -Hybrid propulsion concept [Sgu+18] obtained using FAST [Sch+17].

Figure 5 .

 5 15 shows an example of a hybrid propulsion concept [Sgu+18] using FAST.

  {u k } = [G ka ]{x a }, (B.5)where [G ka ] is the displacement interpolation matrix. By using the same interpolation matrix we get the forces on the structure points as{F a } = [G ka ] T {F k }. (B.6)By using Eqs. (B.4)-(B.6), we write the aerodynamic forces on the structure points as a function of the displacements on the structure points as{F a } = q[G ka ] T [S kj ][A jj ] -1 [D 1 jk + iκD 2 jk ][G ka ]{x a } = q[Q aa ]{x a }. (B.7)Nastran then computes the generalized aerodynamic matrix,[Q hh ] = [Φ] T [Q aa ][Φ]. (B.8)If we were to compute [ȃ h ], we would uniformize and generalize (in the sense of the normal modes) the aerodynamic matrix [Q aa ] as[ȃ h ] = [Φ] T ([T] T ) -1 [ Φ] T [T] T [Q aa ][T] [ Qaa] [T] -1 [Φ]
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 1 Figure C.1 -XDSM diagram for the static aeroelastic MDA with displacement and load transfer. In this case, ADflow is used for the aerodynamics analysis.

Figure

  Figure C.2 -Surface mesh for CFD analysis of the uCRM wing (a) and its corresponding FEM mesh (b).
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 3 Figure C.3 -Forces acting on the aerodynamic grid points of the aerodynamic surface (a) and forces transferred to the FEM mesh using the displacement transfer component (b).

Figure

  Figure C.4 -Convergence plot of the MDA of the uCRM wing using the classical Gauss-Seidel iteration (a) and adding the Aitken[Ait27] acceleration. (b).

  

  

  

  Throughout this work, as a FEM solver, we use NASA's Nastran[START_REF] Maccormick | The NASTRAN User's Manual:(level 15)[END_REF], made publicly available as an open-source project on December 2015 3 . Note that this version of Nastran does not provide the sensitivity analysis to obtain the derivatives of the functions of interest.
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	Figure 2.6 -Von Mises stress distribution on a wingbox. The displayed stress for each element
	is the maximum value between the upper and lower faces of the element. Values in Pa.
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 2 

.1 -Comparison of constrained optimization methods.
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.1 -Objective function, design variables, and parameters of the flutter optimization problem. Imperial units are used as the original Nastran model was defined using them.

Table 4

 4 .2 and 4.3.

					Flutter Speed Error	
			Flutter	Reduced (w.r.t. baseline at M r )	Reduction
							in
	Geometry	Mach	Speed	Speed	Absolute	Relative	Flutter
			(ft/s)		(ft/s)	(%)	Speed
							Error, %
	Baseline	M r = 0.7	353.19	9.46	-	-	-
	Baseline	M m = 0.2	386.67	10.35	33.48	9.48	-
	Optimized	M m = 0.2	364.41	9.76	11.23	3.18	66.46

.2 -Flutter speed error of the baseline and optimized configurations

http://openmdao.org/

Dans ce premier chapitre, les principales méthodes et outils utilisés dans cette thèse sont présentés, décrits et leur choix est justifié. Dans la première section, le diagramme XDSM (de l'anglais « eXtended Design Structure Matrix »)[START_REF] Lambe | Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes[END_REF] est présenté. Ce type de diagramme permet de représenter de façon graphique les processus d'analyse multidisciplinaire et d'optimisation. Ensuite, la plateforme de développement OpenMDAO, écrite en Python et développée par la NASA, est introduite. Cette plateforme est constituée d'un ensemble de classes Python qui permettent de coupler plusieurs analyses de disciplines différentes. Cet assemblage se fait à partir de l'échange des variables de couplage entre disciplines. Les composants constituant les analyses peuvent être des fonctions écrites en Python ou bien des exécutables externes. Cette plateforme permet d'exécuter des analyses multidisciplinaires et des optimisations à partir de ces composants.Concernant la modélisation aéroélastique, nous présentons d'abord la méthode de l'analyse statique linéaire par éléments finis. De façon similaire, nous présentons l'analyse dynamique linéaire pour obtenir les modes propres et les fréquences naturelles associées.En ce qui concerne l'aérodynamique, nous décrivons la méthode de panneaux pour résoudre le problème de l'écoulement potentiel. Le choix de cette méthode pour l'aéroé-

https://commonresearchmodel.larc.nasa.gov/fem-file/wingbox-fem-files/

https://github.com/nasa/NASTRAN-95

http://www.pdas.com/panair.html

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html

http://www.cfd4aircraft.com/4ecerta_testcases_goland.php

https://commonresearchmodel.larc.nasa.gov/files/2014/02/CRM_wingboxFEM_description_1.pdf

https://www.isae-supaero.fr/fr/isae-supaero/mecenat-relations-avec-la-fondation-isae-supaero/ chaire-cedar/
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Recapitulation

In this chapter we have presented and discussed the following points:

• In the case of airflow and aerodynamic shape similarity, the aeroelastic scaling problem reduces to a design problem where the scaled modal shapes and frequencies have to be matched.

• We reviewed the traditional methods for modal optimization applied to aeroelastic similarity of flying scale demonstrators.

• Objective functions based on the differences of coordinates of mode vectors can lead to discontinuities as they depend on how these vectors are normalized.

• Evaluating the mode shapes ordered according to eigenfrequencies can be another source of discontinuities in the objective function and on the derivatives of the frequencies if mode swapping exists.

• We use an objective function based on the modal assurance criterion (MAC) to avoid the normalization problem.

• We order the modes according to the MAC to avoid the negative effects of mode swapping.

• Application of the method to a case whose solution is known as a blind test case.

• For the example of the uCRM wing, much better results when using a low number of modes (N = 5) compared to the case of N = 10.

Related conference proceedings:

• J. Mas Colomer, N. 

Recapitulation

In this chapter we have presented and discussed the following points:

• Matching of dynamic aeroelastic response when flow similarity cannot be achieved.

• Hypothesis: modal characteristics of the wing structured are already equivalent.

• Optimization of the wing planform to minimize the error between the aerodynamic matrices of the linear aeroelastic analysis.

• GOLAND wing example results: reduction by a factor of 3 in the flutter speed error and by a factor of 10 in the divergence speed error (compared to using the original planform).

Related journal publication:

• (Under Review) J. Mas Colomer, N. Bartoli, T. Lefebvre, J. Martins, and J. Morlier.

Optimization Approach for Aeroelastic Scaling of Wings under Non-Similar Flow.

In AIAA Journal of Aircraft, 2018.

Related communication:

• J. Mas Colomer, N. Bartoli 

Objective Function Dimension Bounds

In-flight shape difference minimization

Total design variables:

25

Constraints

Cruise lift constraint on the elements, it is possible that the stress constraint function is not smooth, in particular when the maximum stress value switches from one element to another. For the initial design of experiment (DOE), we use a latin hypercube sampling (LHS) of 100 points (i.e., 4D, where D = 25).

In the following section we will show, analyze, and discuss the optimization results of the problem presented in the current section.

Results and Discussion

In the previous section we described the example of application of the proposed method for static aeroelastic scaling without flow similarity. We presented the design variables specific to this example, as well as the details on how the objective function and constraints are Appendix A

The Karush-Kuhn-Tucker Conditions

In this chapter we provide a geometrical interpretation of the Karush-Kuhn-Tucker (KKT) conditions, first described in Section 2.10. For that purpose, we recall the general formulation of a constrained optimization problem, which can be stated as

where f is the objective function, x ∈ R n is the vector of design variables, and g and h are the inequality and equality constraints, respectively. Next, we state the conditions that a local minimum x * must satisfy, which are known as the Karush-Kuhn-Tucker (KKT) [START_REF] Karush | Minima of Functions of Several Variables with Inequalities as Side Conditions[END_REF]; [START_REF] Kuhn | Nonlinear Programming[END_REF] conditions. These state that there exist constants µ i (i = 1, . . . , m) and λ j (j = 1, . . . , l) that satisfy

µ i ≥ 0, for i = 1, . . . , m, and (A.6)

The constants λ j associated to the equality constraints are known as the Lagrange multipliers. We will first explain the meaning of the Lagrange multipliers and then we will use their definition to explain the inequality constraint multipliers µ j . To illustrate the meaning of the Lagrange multipliers, we consider the case of three independent design variables x ∈ R and two equality constraints h 1 (x, y, z) = 0 and h 2 (x, y, z) = 0 which define one surface each.

Aerodynamic Matrices in Nastran

In this chapter, we describe how the aerodynamic matrices [ȃ h ], required to evaluate the objective function in Eq. (4.7) in Section 4.1, are computed by Nastran using the SOL 145 solution sequence. We first describe all the necessary elements to its construction and then we assemble them to build [ȃ h ].

According to the Nastran Aeroelastic Analysis User's Guide [START_REF] William | MSC/NASTRAN aeroelastic analysis: user's guide[END_REF], the dimensionless vertical (i.e., normal to the panel) velocity is

where [A jj ] is the aerodynamic influence coefficient matrix, p j is the lifting pressure on element j, and q is the flight dynamic pressure. In this section, subindices j and k refer to the aerodynamic panels and grid points respectively. For the dynamic case, we write the dimensionless normal velocity (or downwash) as

where D 1 jk and D 2 jk are the downwash matrices, κ is the reduced frequency, and {u k } is the vector of displacements at aerodynamic grid points. By integrating the pressure at the panels, {p j }, we get the forces on the aerodynamic grid points,

where [S kj ] is the integration matrix, which depends on the surface of the panels. 

ADflow and Nastran Coupling

In this chapter, we present some of the preliminary results for a multidisciplinary analysis (MDA) obtained by coupling ADflow [START_REF] Van Der Weide | Unsteady turbomachinery computations using massively parallel platforms[END_REF], a high fidelity computational fluid dynamics (CFD) code developed at the MDOlab (University of Michigan), to the structural FEM solver Nastran. The strategy that we follow is the same as for the coupling between Panair and Nastran, described in Section 2.6