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Chapter 1

Introduction

1.1 Préamble (version francaise)

Pour paraphraser Adrien Douady [Dou66], le but de ce travail est de munir son auteur du titre
de docteur en mathématiques et plusieurs différents espaces de structures d’algebres de Lie a
homotopie prés. Nous en étudierons les propriétés et nous les appliquerons a la théorie de la
déformation et a '’homotopie rationnelle.

1.1.1 Opérades

Notre outil de travail principal sont les opérades algébriques. Une opérade est une structure
algébrique qui code un “type d’algebres”. Par exemple, il y a une opérade qui code les algebres
associatives, une autre les algébres commutatives, une troisieme les algebres de Lie, etc. Un
point de vue intuitif sur ces objets est le suivant. La plupart des types d’algebres qu’on rencontre
sont définis comme un espace vectoriel muni d’opérations avec un certain nombre d’entrées —
leur arité — et une sortie, qui satisfont certaines relations entre elles. Par exemple, une algebre
associative est un espace vectoriel A avec une opération binaire

m:ARQA— A

qui est associative :
m(m(a,b),c) = m(a,m(b,c))

pour tout a,b,c € A. La relation d’associtivité peut étre exprimée sans faire référence aux
éléments de 'espace vectoriel sous-jacent comme

mim®1ls)=m(la®@m).

L’idée des opérades est d’oublier 1’espace vectoriel sous-jacent et de se concentrer sur les opé-
rations. Une opérade & est une collection d’espaces vectoriels & (n), pour n > 0, qui codent
les opérations d’arité n, munie d’'une regle pour composer de telles opérations. Dans I’example
précédent on a m € Z(2), et une régle de composition qui nous dit comme on peut composer
deux copies de m de deux fagons différentes pour obtenir au final la méme opération en Z(3).
Les opérades nous permettent de donner des énoncés généraux sur le types possibles d’algebres
ainsi que sur les relations entre algebres de types différents de fagon propre et catégorique.
Dualement, il y a une notion de coopérade, qui code les cogebres.

1



2 CHAPTER 1. INTRODUCTION

1.1.2 Algébre homotopique

La théorie des opérades est profondément liée a 1’algebre homotopique, c’est-a-dire 1’étude des
structures algébriques o1 I’on n’identifie pas deux algebres seulement si elles sont isomorphes,
mais aussi quand elles sont reliées que par un quasi-isomorphisme, c’est-a-dire un morphisme
qui induit un isomorphisme en homologie. Cette construction peut étre formalisée comme une
structure de modeles sur la catégorie des algebres. Faire de 1’algebre homotopique nous permet
d’utiliser certains outils puissants. Ceux que l'on va manipuler le plus souvent sont les oco-
morphismes d’algebres et le théoreme de transfert homotopique. Les premiers sont une version
relachée de la notion de morphisme d’algebres qui peut étre interprétée comme des applications
qui sont des morphismes d’algebres “a homotopie pres”. Le deuxieme est un théoréme qui
dit que si l'on a deux complexes de chaines homotopiquement équivalents et une structure
algébrique sur un des deux, alors on peut mettre une structure algébrique “a homotopie pres”
sur le second complexe de chaines de fagon telle que les deux algebres soient homotopiquement
équivalentes.

1.1.3 Algébres de convolution

Donnons-nous un certain type d’algebres, codé par une opérade &, un type de cogebres, codé
par une coopérade ¢ et une relation entre ¢ et &7, donnée par ce qui est appelé un morphisme
tordant o : € — £2. Dans cette situation, on peut mettre une structure naturelle d’algebre de Lie
a homotopie prés sur l'espace des applications linéaires entre ¢-cogebres et &?-algebres. Plus
précisement, si C' est une ¢-cogebre et A est une #-algebre alors on a un complexe de chaines
d’applications linéaires hom(C, A). En ayant fixé un morphisme tordant «, on a une structure
naturelle d’algebre de Lie a homotopie pres sur hom(C, A). On note hom®(C, A) 'algebre que
I'on obtient de cette fagon et on l’appelle 'algebre de convolution de C et A (relative a o). Le
premier objectif de cette thése est de développer la théorie des algebres de convolution et de
comprendre comment elles se comportent par rapport aux outils de ’algebre homotopique. Au
cours de cette thése, nous allons montrer les résultats suivants.

1. Les algebres de convolution sont partiellement compatibles avec les co-morphismes. Plus
précisement, la notion d’algébre de convolution définit un bifoncteur des ¢-cogebres et
des Z-algebres vers les algebres de Lie a homotopie pres. Il est possible d’étendre ce
bifoncteur soit en un bifoncteur qui accepte les co-morphismes de ¢-cogebres dans sa
premiére entrée ou en un bifoncteur qui accepte les co-morphismes de S7-algebres dans
sa seconde entrée. Par contre il n’est pas possible de 1'étendre ultérieurement en un bi-
foncteur qui accepte des co-morphismes dans ses deux entrées en méme temps.

2. Si l'on fait des suppositions ultérieures sur le morphisme tordant & — notamment, en
demandant que « soit de Koszul — alors on peut étendre le bifoncteur des algebres de
convolution de facon a ce qu’il accepte des co-morphismes dans ses deux entrées en méme
temps, mais le bifoncteur qu’on obtient de cette fagon n’est défini qu’a homotopie pres.

3. Les algebres de convolution sont complétement compatibles avec le théoreme de transfert
homotopique.

Par la suite, on va appliquer la théorie des algebres de convolution a la théorie de la déformation
dérivée et a la théorie de '’homotopie rationnelle.
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1.1.4 Théorie de la déformation

Un probleme de déformation est donné en fixant un objet sous-jacent, comme un espace vec-
toriel, et un type de structure qu’on aimerait comprendre mieux sur cet objet, par exemple les
structures d’algebre associative sur I'espace vectoriel. Une fois donnée une telle structure, on
veut la perturber de fagon a obtenir une autre structure du méme type. Ce processus peut
nous donner des informations utiles sur la structure que l'on était en train d’étudier. Il y a une
myriade d’exemples de problemes de déformation : on peut considérer les déformations des
structures d’algebre d’un certain type sur un espace vectoriel, mais aussi les déformations de
structures complexes analytiques sur une variété fixée, les déformations de points ou de sous-
schémas fermés dans un schéma sous-jacent, les déformations de connexions plates sur un fibré
vectoriel, et beaucoup d’autres encore. L'exemple le plus célébre d’un résultat provenant de la
théorie de la déformation est probablement la quantification par déformation des variétés de
Poisson, due a Konstevich.

Un principe heuristique énoncé par Deligne affirme que chaque probléme de déformation (en
charactéristique zéro) est équivalent a I’étude de 1'espace des éléments de Maurer—Cartan d"une
algebre de Lie différentielle graduée ou plus généralement d’une algebre de Lie a homotopie
pres. Cet espace d’éléments de Maurer—Cartan a été exprimé par Hinich comme un ensemble
simplicial MC,(g) qui peut étre fonctoriellement associé a chaque algebre de Lie a homotopie
pres g. Récemment ce dernier a été étudié en détail par Getzler. La premiere application qu’on
donnera des algebres de convolution est la construction explicite d"une algebre de Lie & homo-
topie pres cosimpliciale meg® qui représente I'espace de Maurer—Cartan a homotopie pres. Plus
précisément, pour chaque algebre de Lie a homotopie prés g qui satisfait certaines conditions
de complétude, on a une équivalence homotopique naturelle d’ensembles simpliciaux

MC.(g) ~ homyg,_ alg(mes®, g) .

On étudiera cette algebre mcg° et on 'utilisera pour comprendre certaines propriétés de MC,(g)
et d’autres ensembles simpliciaux associés.

1.1.5 Homotopie rationnelle

En homotopie rationnelle on s’intéresse a un invariant des espaces simplement connexes qui
est plus faible que leur type d’homotopie mais qui a I’avantage d’étre calculable dans beaucoup
de cas intéressants. Soit X un espace simplement connexe. Ses groupes d’homotopie sont tous
abéliens et donc on peut définir ses groupes d’homotopie rationnelle par

e (X, 7) ®2 Q,

oll € X est un point base. On dit qu'un morphisme est une équivalence rationnelle s’il in-
duit un isomorphisme entre les groupes d’homotopie rationnelle. Par un résultat du travail
fondateur de Quillen, I’étude de 'homotopie rationnelle, c’est-a-dire 1'étude de la catégorie
des espaces simplement connexes modulo les équivalences rationnelles, est la méme chose
que l'étude de la catégorie des algebres de Lie différentielles graduées concentrées en degré
supérieur ou égal a 1 modulo les quasi-isomorphismes, qui est elle-méme équivalente a I'étude
de la catégorie des cogebres cocommutatives concentrées en degré supérieur ou égal a 2 modulo
les quasi-isomorphismes. Ceci nous dit qu’on peut modéliser les espaces par des algebres de
Lie ou des cogebres cocommutatives pour avoir des outils calculatoires explicites qui nous per-
mettent de calculer le type d’homotopie rationnelle d"un espace. Les travaux de Sullivan nous
donnent une autre approche encore, en modélisant les espaces par des algébres commutatives
différentielles graduées.
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On peut aussi considérer des types de modeles plus généraux, comme des modeéles en algebres
de Lie a homotopie pres et des modeles en cogebres cocommutatives a homotopie pres. Un
théoreme de Berglund nous dit comment construire un modéle en algebres de Lie a homo-
topie prés pour 'espaces des morphismes entre deux espaces en partant d'un modele com-
mutatif de 'espace de départ et d'un modele Lie a homotopie prés de I'espace d’arrivée. On
généralise légerement ce résultat en démontrant qu’on peut prendre des modeéles cocommutat-
ifs a homotopie pres pour 'espace de départ et on exprime le modele résultant pour 1’espaces
d’applications entre les deux espaces comme une algebre de convolution.

1.1.6 Invariance homotopique des espaces de Maurer—Cartan

Le dernier chapitre de cette these est dédié a des résultats seulement partiellement reliés aux
algebres de convolution. Deux résultats importants sur les espaces de Maurer—Cartan sont le
théoreme de Goldman-Millson et sa généralisation plus récente, le théoreme de Dolgushev-
Rogers. Ces résultats nous disent que certains morphismes entre algebres de Lie a homotopie
pres — les oo-quasi-isomorphismes filtrés — induisent des équivalences en homotopie entre
les espaces de Maurer-Cartan respectifs. Ce résultat a un parfum homotopique : il nous dit
qu’une certaine classe de morphismes d’algebres de Lie a homotopie prés est envoyée sur les
équivalences faibles d’ensembles simpliciaux par un certain foncteur. Par contre sa preuve n’est
pas faite en n'utilisant que de la théorie de I’'homotopie et se base sur une démonstration par
récurrence sur certaines filtrations, en travaillant directement sur les algebres de Lie a homo-
topie pres en jeu. On donne une nouvelle approche a la preuve de ce théoreme qui nutilise
que de la théorie de 'homotopie. Méme si I'on ne récupere pas complétement le théoreme de
Dolgushev-Rogers, on réussit tout de méme & en obtenir une version plus faible et I'on croise
des constructions intéressantes le long du chemin. Par exemple cette approche nous fait redé-
couvrir 'algebre de Lie cosimpliciale qui représente les espaces de Maurer—Cartan.

1.1.7 Résultats ultérieurs

Cachées dans les rappels, il y a deux résultats originaux supplémentaires dans cette these. Le
premier est une charactérisation complete des équivalences faibles dans la structure de modeles
construite sur la catégorie des cogebres sur une coopérade par Vallette. Le degré d’originalité
de ce résultat n’est pas énorme, car tous les ingrédients dont on a besoin pour sa démonstration
étaient déja présents dans les travaux de Vallette. Le second est une démonstration du fait que le
dual d’un modele cocommutatif pour un espace simplement connexe est un modele commutatif
pour le méme espaces et vice versa, sous certaines hypothéses peu contraignantes de finitude.
Ce dernier résultat était certainement bien connu par les experts, mais nous n’avons pas su en
trouver une démonstration dans la litterature.

1.1.8 Remarques d’ordre général

Cette these veut étre le plus autonome possible. Pour cette raison, on consacre une impor-
tante premiere partie a ’exposition de plusieurs notions préliminaires dont on a besoin dans
le reste du texte : la théorie de opérades, les catégories de modeles, I'homotopie simpliciale,
I’homotopie rationnelle, les espaces de Maurer—Cartan et la théorie de la déformation. On sup-
pose que le lecteur posseéde des notions de base d’algebre homologique, de théorie des caté-
gories et de topologie algébrique.

Les résultats nouveaux contenus dans cette thése sont extraits des articles [RN17a], [RN17b],
[RNW17], [RNW], [RN18] et de I'esquisse [RNV].
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1.2 Preamble

To paraphrase Adrien Douady [Dou66], the goal of this work is to endow the author with the
degree of Doctor in Mathematics, and many different spaces with structures of homotopy Lie
algebras, as well as studying their properties and apply the developed theory to various fields,
such as deformation theory and rational homotopy theory.

1.2.1 Operads

Our main working tool is algebraic operads. An operad is an algebraic structure that codes
a “type of algebra”. For example, there is an operad coding associative algebras, one coding
commutative algebras, one for Lie algebras, and so on. One possible intuitive point of view is
the following one. Most types of algebras are defined as a vector space endowed with certain
operations with a certain number of entries — their arity — and one exit, which satisfy certain
relations between them. For example, an associative algebra is a vector space A together with a
binary multiplication

m:ARQA — A

which is associative:

m(m(a,b),c) = m(a,m(b,c))

for all a,b,c € A. The associativity relation can be expressed without referring to elements of
the underlying vector space as

mme1la)=m(la®@m).

The idea of operads is to forget the vector spaces and concentrate on the operations. An operad
Z is a sequence of vector spaces &(n), for n > 0, encoding the operations of arity n, together
with a rule for composing such operations. In the example above, we have m € £(2), and a
composition rule telling us how composing two copies of m in two different ways gives us the
same operation in Z?(3). Operads allow us to give general statements about types of algebras
and relations between algebras of different types in a clean and elegant way. Dually, one also
has cooperads, which are a similar object encoding coalgebras.

1.2.2 Homotopical algebra

Operad theory is closely linked to homotopical algebra, i.e. the study of algebraic structures
where one does not identify two algebras only if they are isomorphic, but also when they are
related in a more flexible way. Namely, in homotopical algebra one studies algebras up to quasi-
isomorphisms, that is up to morphisms inducing isomorphisms in homology. This construction
can be formalized as a model category of algebras. Doing homotopical algebra allows us to use
some powerful instruments. The ones we will manipulate the most are co-morphisms of alge-
bras and the homotopy transfer theorem. The former are a “relaxed” version of morphisms of
algebras, which can be interpreted as maps that are morphisms of algebras, but only “up to ho-
motopy”. The latter is a theorem that essentially says that if we have two chain complexes that
are homotopically the same, and some algebraic structure on one of the two, then we can put an
algebraic structure on the other chain complex so that the resulting algebras are homotopically
the same.
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1.2.3 Convolution algebras

Given a certain type of algebra, encoded by an operad 7, a certain type of coalgebras, encoded
by a cooperad ¥, and a relation between ¢ and & given by what is called a twisting mor-
phisms « : € — &2, then one can give natural homotopy Lie algebra structures on the spaces
of linear maps between ¢-coalgebras and &7-algebras. Namely, if C' is a ¢-coalgebra, and A
is a #-algebra, then we have the chain complex of linear maps hom(C, A). Given the twisting
morphism «, there is a natural homotopy Lie algebra on hom(C, A). We denote the resulting
algebra by hom®(C, A), and call it the convolution algebra of C' and A (relative to «). The first
goal of the present work is to develop the theory of convolution algebras, and to understand
how they behave with respect to the tools of homotopical algebra. We will show what follows.

1. Convolution algebras are partially compatible with co-morphisms. Namely, taking con-
volution algebras defines a bifunctor from %-coalgebras and &7-algebras to homotopy Lie
algebras. It is possible to extend this bifunctor either to a bifunctor also accepting oo-
morphisms of ¢’-coalgebras in the first slot, or accepting co-morphisms of #?-algebras in
the second slot. However, it is not possible to further extend it into a bifunctor accepting
oco-morphisms in both slots simultaneously.

2. If one makes further assumptions about the twisting morphism o — namely if one asks
that a is Koszul — then one can extend the convolution algebra bifunctor to a bifunctor
accepting oo-morphisms in both slots at the same time, but the resulting bifunctor is only
defined up to homotopy.

3. Convolution algebras are completely compatible with the homotopy transfer theorem.

We will then apply the theory of convolution algebras to derived deformation theory and ratio-
nal homotopy theory.

1.2.4 Deformation theory

A deformation problem is given by a fixed underlying object, such as a vector space, and a type
of structure on that object one wants to understand, for example the possible associative algebra
structures on the vector space. Given one structure, one wants to perturb it in such a way as
to obtain another structure of the same type. This process can yield useful information on the
structure one is studying. Examples of deformation problems are legion: one can consider
deformations of algebraic structures of a certain type on a vector space, but also deformations
of complex analytic structures on a fixed underlying manifold, deformations of points or closed
sub-schemes in an underlying scheme, deformations of flat connections on a vector bundle,
and many others. Perhaps one of the most celebrated results of deformation theoretical nature
is Kontsevich’s deformation quantization of Poisson manifolds.

It is a heuristic principle due to Deligne that any deformation problem (in characteristic zero)
is equivalent to the study of the space of Maurer—Cartan elements of a differential graded Lie
algebra, or more generally of a homotopy Lie algebra. This space of Maurer—-Cartan elements
was expressed by Hinich as a simplicial set MC,(g) functorially associated to any homotopy
Lie algebra g, and then studied in depth by Getzler in more recent years. The first application
of convolution algebras we will give is the explicit construction of a universal cosimplicial ho-
motopy Lie algebra mc® representing the Maurer—-Cartan space up to homotopy. To be more
precise, for any homotopy Lie algebra g satisfying some completeness condition, we have a
natural homotopy equivalence of simplicial sets

MC.(g) ~ homoyw-alg(mcfoyg) .
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We will study the cosimplicial homotopy Lie algebra mcg°, and use it to derive some properties
of MC,(g) and other related simplicial sets.

1.2.5 Rational homotopy theory

In rational homotopy theory, one is interested in an invariant of simply connected spaces that is
weaker than their homotopy type, but which has the advantage of being computable in many
interesting cases: its rational homotopy type. Let X be a simply connected space. Then its
homotopy groups are all abelian, so that one defines its rational homotopy groups as

W.(X,x) ®ZQa

where z € X is a basepoint. One says that a morphism of spaces is a rational homotopy
equivalence if it induces isomorphisms on the rational homotopy groups. It is a result of
the seminal work of Quillen that rational homotopy theory, i.e. the study of the category of
simply connected spaces modulo rational equivalences, is the same as the study of the cate-
gory of differential graded Lie algebra concentrated in degree greater or equal than 1 mod-
ulo quasi-isomorphisms, which is itself equivalent to the study of the category of differential
graded cocommutative coalgebras concentrated in degree greater or equal than 2 modulo quasi-
isomorphisms. This tells us that we can model spaces by Lie algebras or cocommutative coal-
gebras in order to have explicit computational tools to find the rational homotopy type of a
space. Sullivan took another approach, modeling spaces with differential graded commutative
algebras.

One can also consider more general models, such as homotopy Lie algebra models, and homo-
topy cocommutative coalgebra models. A theorem of Berglund tells us how one can construct a
homotopy Lie algebra rational model for the mapping space of two spaces starting from a com-
mutative model of the source space and a homotopy Lie model of the target space. We slightly
generalize this result by proving that one can in fact allow homotopy cocommutative models
for the source space, and express the resulting model for the mapping space as a convolution
algebra.

1.2.6 Homotopy invariance of Maurer—Cartan spaces

The last chapter of this thesis is dedicated to some material only tangentially related to con-
volution algebras. Two important result on Maurer-Cartan spaces are the Goldman-Millson
theorem, and its modern generalization, the Dolgushev—-Rogers theorem. They tell us that cer-
tain maps between homotopy Lie algebras, namely filtered co-quasi-isomorphisms, induce ho-
motopy equivalences between the respective Maurer-Cartan spaces. This result has a strong
homotopy theoretical flavor: it tells us that a certain class of maps of homotopy Lie algebras is
sent to weak equivalences of simplicial sets under a certain functor. However, its proof is not
completely homotopy theoretical, and relies on a proof by induction on certain filtrations, work-
ing directly with the homotopy Lie algebras in play. We give a new approach to the proof of
this theorem, relying purely on homotopy theory. Although we do not recover the full strength
of the Dolgushev-Rogers theorem, we are still able to obtain a weaker version, and incur in
interesting constructions along the way. For example, this approach allows us to recover the
cosimplicial Lie algebra representing Maurer—Cartan spaces.
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1.2.7 Other results

There are two further original results in the present work, hiding in the recollections. The first
result is a complete characterization of the weak equivalences in the model structure put on
coalgebras over a cooperad by Vallette. The degree of originality of this result is not enormous,
as all the ingredients needed in the proof were already present in Vallette’s work. The second
one is a proof of the fact that the dual of a cocommutative rational model for a simply connected
space is a commutative model for the same space, and vice versa, under some slight finiteness
assumptions the dual of a commutative rational model is a cocommutative rational model. This
last result was folklore and certainly well-known to experts. However, we were not able to find
a proof in the existing literature.

1.2.8 General remarks

Our goal is to be as self-contained as possible. For this reason, we indulge in a lengthy exposi-
tion of preliminary notions in the first part of the thesis, explaining the necessary notions of op-
erad theory, model categories, simplicial homotopy theory, rational homotopy theory, Maurer—
Cartan spaces, and deformation theory. Still, we assume that the reader is acquainted with the
basic notions of homological algebra, category theory, and algebraic topology.

All the original material contained in this thesis is extracted from the articles [RN17a], [RN17b],
[RNW17], [RNW], [RN18], and from the draft [RNV].

1.3 Acknowledgements

First and foremost, I am immensely grateful to my family for their constant support. Whatever
I chose to do, you were always there.

A close second is my advisor, Bruno Vallette. This thesis would not have been possible without
you, and I want to thank you for all the time you spent explaining things to me, discussing
ideas, proofreading my work, and offering comments, critiques and support.

Another person who is really important to me mathematically speaking, and as a friend as well,
is my collaborator Felix Wierstra. A big thanks goes also to his advisor Alexander Berglund.

From my life before Paris, I am grateful to all the teachers, mentors, and professors who pushed
me to give my best in what I do and helped me along the way. Starting from Raffaella and
Gianluigi in primary school, to Alvaro Zorzi and Gianmarco Zenoni in secondary school, to
Fabio Lucchinetti, Fausta Leonardi and Matthias Venzi in high school. Franchino Sonzogni,
who teached me to play checks. Christian Pezzatti and Loris Galbusera, who were always an
example of dedication and motivation. And finally, Damien Calaque, Giovanni Felder, and
Dietmar Salamon, who taught me to do maths.

From my time in Paris, the people I would like to thank are legion. I will list them in no par-
ticular order, and I am sorry if I forgot anyone. A lot of friends made my period in Paris, and
these three years spent doing my PhD in general, a nice experience. The colleagues in the alge-
braic topology group in Paris 13, and the many other PhD students of the university provided
a nice atmosphere in which to work — despite the décor of Paris 13 itself. The secretaries, Is-
abelle and Yolande, were always a helpful, smiling presence in the department. I had a lot of fun
with other PhD students in various conferences around Europe, in particular with Elise, Jérémy,
Adélie, Sylvain, Lyne, Brice, Damien, and others still. I also had the occasion of meeting many



1.4. STRUCTURE OF THIS WORK 9

people outside of the world of mathematics. I spent a lot of time in my first year exploring the
city with Angelina, and I hold dear memories of that period of time. I had countless enjoyable
moments with the tango dancers: Amrei, Enrique, Auréa, Dominique, Florence, Susan, Viviane,
Miguel, Adelaida, and many others. Another group of people I loved to spend time with are
the climbers: Vincent, Lou, Bilal, Chakib, Zak, Hugo, Guillaume, Maeva, Lauréne, Juju, Elise,
and so on. There are also my judo and jujitsu club — Jannick, Marcel, Steve, Félix, Tom, and so
on — and the salsa dancers at Paris 13.

Finally, some miscellaneous people I absolutely don’t want to leave out are Matteo, Devis, Si-
mone, Andrea, Davide, Daniele, Federico, Marco, Kai, Sabrina, Solvéne, Charlotte, Karine, and
Elise. All of you played an important role in this journey, and I am happy and grateful of having
met you.

Last, but certainly not least, I would like to thank the Region Ile de France and the ANR-14-
CE25-0008-01 project SAT for the financial support.

1.4 Structure of this work

This thesis is divided in two parts. The first part is an overview of prerequisites for the second
part, which is composed of the original results of this work.

The recollections begin in Chapter 2 with an overview of operad theory. We recall all of the
necessary notions of operads, cooperads, algebras and coalgebras over them, Koszul duality,
twisting morphisms, bar and cobar constructions for (co)operads and (co)algebras, and homo-
topy theory of algebras up to homotopy. In Chapter 3, we recall the basic notions of model
categories, which is the framework we will use to do homotopy theory. We give various exam-
ples of model categories in Section 3.3. This chapter contains an original result, Theorem 3.3.15,
which gives a complete characterization of the weak equivalences in the Vallette model struc-
ture on conilpotent coalgebras over a cooperad. Chapter 4 is a review of simplicial homotopy
theory. Chapter 5 is a recollection on rational homotopy theory. It contains an original result,
Theorem 5.3.10, stating that one can dualize cocommutative rational models to obtain com-
mutative rational models, and vice versa. Chapter 6 covers in detail the notions of differential
graded Lie algebras, their Maurer—Cartan elements and the equivalence relations between them,
the analogous notions for homotopy Lie algebras, and some modern results: the Dolgushev—
Rogers theorem and the formal Kuranishi theorem. We conclude the first part of the thesis with
a review of deformation theory in Chapter 7. This chapter is mostly a motivation of why one is
interested in studying the space of Maurer-Cartan elements on homotopy Lie algebras.

The second part starts with the introduction and the study of basic properties of co-morphisms
of algebras and coalgebras relative to a twisting morphism, in Chapter 8. We continue with
Chapter 9, where we introduce convolution homotopy algebras and study them in depth. They
are a central object in this thesis, and we give applications of their theory in the subsequent two
chapters. In Chapter 10, we apply it to construct a universal cosimplicial (homotopy) Lie algebra
representing the Maurer-Cartan space functor. In Chapter 11, we apply it to rational homotopy
theory and use it to generalize a theorem due to Berglund. The last chapter of this part is
Chapter 12. There, we give a completely homotopical approach to the proof of the Goldman-
Millson theorem and of the Dolgushev—Rogers theorem.

Finally, there are three appendices containing auxiliary notions we need here and there. In
Appendix A, we give the definitions and notations we use for trees (rooted and planar). In Ap-
pendix B, we explain the notions of filtered chain complexes and filtered algebras over operads.
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In Appendix C, we define formal fixed-point equations and formal differential equations, and
prove some existence and uniqueness results for their solutions.

1.5 Notations and conventions

Before really starting with the main body of this work, we fix some notations and conventions
we will use throughout the text.

1.5.1 General conventions

We work over a field of characteristic 0 unless stated otherwise. The symbol S,, is reserved for
the symmetric group on n elements.

All operads, cooperads, algebras and coalgebras are always differential graded, unless explicitly
stated otherwise. We usually work over chain complexes, with some exceptions where it is more
natural to use cochain complexes, for example in Chapter 7.

We reserve the symbol o for the composite product of S-modules and related concepts, see
Definition 2.1.8, and omit compositions whenever talking about functions, writing fg for the
composition of two functions f and g.

1.5.2 Categories into play

Here are the notations we will use for some of the most frequently appearing categories.

A The ordinal number category.

Ch The category of chain complexes and chain maps.

¢-cog The category of conilpotent coalgebras over a cooperad %'
coOp The category of (conilpotent) cooperads.

32 -alg The category of shifted homotopy Lie algebras.

S-mod The category of S-modules.

Op The category of differential graded operads.

P-alg The category of algebras over an operad Z.

P-alg The category of proper complete algebras over an operad .

sSets The category of simplicial sets.

Top The category of topological spaces.
Moreover, we will denote by either C(x, y) or by homc(z, y) the set of morphisms in the category
C with source 2 € Cand target y € C.

1.5.3 Chain complexes

We will mainly work over the category Ch of chain complexes over some field K. We fix from
the start the notations and conventions we will use in what follows. We assume that the reader
is already familiar with the notion of chain complex.

We reserve the letter s to denote a formal element of degree 1. If V' is a chain complex, the chain
complex sV is the suspension of V, that is the chain complex with (sV),, = V,,_; and differential

dsy (sv) = —sdyv

for v € V, coherently with the Koszul sign rule of Subsection 1.5.4. We denote by s~! the dual
of s.
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Let V and W be two chain complexes. We denote by V' ® W the tensor product of V and W. Its
element of degree n are those in

VeaW),= @ V,eW,,
p+q=n
and its differential is given by
dvgw(v@w) =dyv@w+ (-1)"v Q@ dyw ,
which, once again, is coherent with the Koszul sign rule.

Let V and W be two chain complexes. By hom(V, W) we will always mean the inner hom of
V and W, i.e. the chain complex having in degree n the linear maps V' — W of degree n, or
equivalently the degree zero linear maps s"V — W. Its differential is given by

A(f) =dwf — (-1 fdv

on f € hom(V,W). Notice that the closed elements of degree 0 are exactly the chain maps, while
the exact elements of degree 0 are chain maps that are homotopic to the zero map.

Let V be a chain complex. We denote by V'V := hom(V,K) its dual chain complex, where K is
seen as a chain complex concentrated in degree 0.

A chain complex V is said to be of finite type if V,, is finite dimensional for all n € Z.

1.5.4 The Koszul sign rule

The Koszul sign rule is a sign convention that is put on the switching maps in the (symmetric
monoidal) category of graded vector spaces. Namely, if V, W are two graded vector spaces, then
the isomorphism

VoW —WeV

is given by

vew— (=)l @

on homogeneous elements. This gives an automatic way of obtaining the correct signs in com-
putations. An example of application of the Koszul sign rule is the following. Let V1, Vo, Wy, Ws
be graded vector spaces, and let f; : V; — W, be linear maps of homogeneous degree. Then the
map f1 ® f is given by

(f1 @ fo) (1 ®v2) = (=1) 211y (01) @ fo(va) -

In particular, notice that the dualto s” ==s® --- ® s is

n(n—1) n(n—1)
—2 g1

S ®"‘®8717

(=1

sTi=(-1)

and not simply s~™ as one might naively expect.
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1.5.5 Shuffles

Shulffles are a special type of permutation of a finite set. One can think of them as taking a
deck of cards, cutting it into two, and then shuffling the two parts once — hence the name. The
order of both parts remains unchanged, while the order of the whole deck is not the original
one anymore. The formal definition is as follows.

Definition 1.5.1. Let p,q > 0, and let n := p + q. A (p, q)-shuffle is a permutation o € S,, such that
o)< ---<o(p) and o(p+1)<---<o(n).

Equivalently, it is a partition I U J = {1,...,n} such that |I| = p and |J| = q. The set of all (p, q)-

shuffles is denoted by LU(p, q). A shuffle is trivial if either p = 0 or ¢ = 0.

1.5.6 Invariants and coinvariants
Let V be a vector space with a left action by a finite group G. The invariants of V are
Ve ={veV|VgeG:g-v=0v}CV.

The coinvariants of V are

Ve =V/(v—g-v)vev,gea -
It is well know and easy to check that the coinvariants of V' are the dual space to the invariants
of V. Moreover, in characteristic 0, we have an isomorphism

Ve =V

given by sending an invariant element of V to its equivalence class. The inverse is given by
sending a class [v] € V; with representative v € V to

1
@ZQ'UEVG.
geG

We will sometimes implicitly use this identification in the main body of the text.
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Chapter 2

Operad theory

The main tool used throughout the present thesis is algebraic operads. These objects give us
an effective way to encode "types of algebras" and to study their properties. They were first
introduced in the context of algebraic topology in the works of J. M. Boardman and R. M. Vogt
[BV73] and ]J. P. May [May06] — the name “operad"” is due to J. P. May himself, coming from
the two words “operation” and “monad" — but have since then found many applications in
various domains of mathematics, in the works of many authors. It would be impossible to give
a complete survey of the history and applications of operads throughout mathematics, and
besides, it would be outside the scope of this thesis, so we will leave it at that.

In this chapter, we give a short overview on the subject of operads — more precisely, algebraic
operads, meaning operads in the symmetric monoidal category of chain complexes — and re-
view the notions we will need in subsequent chapters. Our main reference is the book [LV12].
We will try to stay as close as possible to the notations and conventions used there, and to stress
whenever we choose to do things differently.

Here and throughout the whole thesis, unless otherwise explicitly stated, we will always work
in the differential graded context. We work in the category Ch of chain complexes over a field K
of characteristic 0. The symbol S, is reserved to denote the symmetric groups. All operads and
cooperads we will consider are reduced, meaning that they are trivial in arity 0, and that their
arity 1 component is spanned by the identity operation.

2.1 (Co)operads and (co)algebras over them

In this first section, we introduce the basic objects of operad theory: S-modules, operads, coop-
erads, algebras and coalgebras over operads and cooperads respectively.

2.1.1 S-modules

The underlying object of all operads and cooperads is the S-module. For further details on the
material presented here, see [LV12, Sect. 5.1].

Definition 2.1.1. An S-module M is a sequence of chain complexes
M = (M(0), M(1), M(2),...) .

15
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where for each n > 0, the chain complex M (n) — called the component of M of arity n — is a right
K[S,]-module. A morphism of S-modules f : M — N is a collection of S,,-equivariant chain maps
f(n) : M(n) — N(n). The category of S-modules and their morphisms is denoted by S-mod.

Example 2.1.2. The following two S-modules play a central role in the theory of operads and algebras
over them.

1. The unit S-module is
I:=(0,K,0,0,...)
with the trivial S-action. It is the unit for the composite product of S-modules described below in
Definition 2.1.8.

2. To any chain complex V we can associate a canonical S-module Endy, the endomorphism S-
module, defined by
Endy (n) == hom(V®" V)

with the S,,-action given by permuting the n starting copies of V.

Example 2.1.3. Given a chain complex V, one can see it as an S-module concentrated in arity 0, i.e.
(V,0,0, . ..) with trivial S-action.

There are various natural operations that one would like do be able to do on S-modules, such
as direct sums and tensor products. There is a good way to define such operations, which we
review here.

Definition 2.1.4. Let M and N be two S-modules.The direct sum M & N of M and N is the S-module
given by
(M ® N)(k) = M(k)® N(k)

for k > 0, with the obvious Sy-action.

Definition 2.1.5. Let M and N be two S-modules. The (Hadamard) tensor product M @ N of M
and N is the S-module
(M ® N)(k) = M(k)® N(k)

for k > 0, with the diagonal Sy-action.

Remark 2.1.6. In the literature, one sometimes finds specific symbols for the Hadamard tensor product,
in order to distinguish it from other notions of tensor product. Since in this thesis a tensor product
between S-modules or (co)operads is always meant as a Hadamard tensor product, no confusion is possible
and we will simply use the symbol Q.

Definition 2.1.7. Let M and N be two S-modules. The inner hom hom(M, N) of M and N is the
S-module
hom(M, N)(k) := hom(M (k), N (k))

for k >0, and the Sy, action given by (f7)(x) = f(x”_l)".
Definition 2.1.8. Let M and N be two S-modules. The composite M o N of M and N is the S-module

(Mo N)(k) = €D M(i) ®s, &b Indggl woxs;, V(1) ® - @ N(ji))
i>0 Jitdi=k
for k > 0, and the Si-action induced by the S-actions on M and N. The S;-action on
Indg* s, (N(L) ® - @ N(jy))

is given by permutations of the tuple (j1, ..., j;).
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The spaces (M o N)(k) are spanned by the equivalence classes of the elements

(/1,;1/1,...,]/1';0')
under the action of S;, where u € M (i), v, € N(j,), and o € Sh(ji,...,J;) is a shuffle. If o is the
identity permutation, then we will denote the element simply by
(1,0, v) = po (v, 1) .
Iff: M — M andg: N — N’ are two morphisms of S-modules, then there is an obvious
induced morphism of S-modules
fog:MoN — M oN’
given by
(feog) (v, ovi) = (f(n);g(n), - g(i)) -
Notice that the (arity-wise) homology of an S-module is again an S-module in a natural way.

There is the following important result relating the homology of the composite of two S-modu-
les with the composite of the homologies.

Theorem 2.1.9 (Operadic Kiinneth formula). Suppose M is an S-module and assume that the base
field K has characteristic 0. Then we have
Ho(MoN) X Hy(M)o He(N) .
One can also consider the following version of the composite product.
Definition 2.1.10. Let M and N be two S-modules. We define
Si
(MoN) (k) =P (M@ e | @ Ind .. NGO - ©NG))
120 Jitedi=k

Remark 2.1.11. When working over a field K of characteristic 0, one has an identification between
invariants and coinvariants, as explained in Section 1.5.6, so that there is a natural isomorphism MoN =
MGoN. Since we sill never work in positive characteristic when using symmetric (co)operads, we will
implicitly use this identification throughout the rest of the present work.

As it is often the case, one desires a nice monoidal structure on the category of S-modules.
Almost surprisingly, the correct monoidal product one is led to consider if one wants to use S-
modules to encode algebraic structures is not the Hadamard tensor product, but the composite
product.

Proposition 2.1.12. The category of S-modules (S-mod, o, I') endowed with the composite product of
S-modules and the unit S-module is a monoidal category. The same is true by replacing o by o.

Given an S-module, one can associate an endofunctor of chain complexes to it.
Definition 2.1.13. Let M be an S-module. The Schur functor
M : Ch — Ch

associated to M is defined by
M(V) =@ M(n) @s, V",
n>0
with S, acting on V™ by permuting the n copies of V.
Notice that the notation is coherent: the Schur functor associated to the composite of two S-

modules is the composite of the two Schur functors. Also, morphisms of S-modules induce
natural transformations between the associated Schur functors.
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2.1.2 Operads and cooperads

We go on by defining the central objects of this chapter — and indeed the central objects of this
whole thesis: operads and cooperads. A possible point of view to interpret and understand op-
erads is the following. A type of algebra — such as associative algebras, commutative algebras,
Lie algebras, and so on — is usually defined as a vector space endowed with some operations
respecting some relations. For example, a commutative algebra is a vector space A together
with a commutative binary operation

A% 5 A

which is associative, i.e. pu(p®14) = p(1a @ p). An operad is an object encoding the operations
of a type of algebra, as well as the relations between them. This gives us a way to speak and
to prove theorems about all algebras of the same type at once, and to prove general relations
between different types of algebras. Cooperads are the analogue notion for coalgebras, and are
almost dual to operads. For more details, see e.g. [LV12, Sect. 5.2-8].

We begin with the definition of an operad.
Definition 2.1.14. An operad &7 is an S-module & endowed with two morphisms of S-modules
Yo : PoP — P,
called the composition map of &, and
ne I — 7,
the unit map of &, making & into a monoid. Explicitly, that means that we have natural isomorphisms

Yo(v2olz) Zyzp(le ove), YoMz olep) Zver =Zym(lpong) .

A morphism f : & — 2 of operads is a morphism commuting with the compositions and the unit maps
of the source and of the target. Explicitly, one asks that

fro=v2(fof),  fnr=ne
on & o P and I respectively. The category of operads and their morphisms is denoted by Op.

This means that for any £ > 0 and n4,...,n; > 0 we can compose
P(k)®s, Pn1) @@ P(ng) — P(ny+---+nk),

which can be seen as taking an operation of arity k of an algebra, and %k other operations of
arity nq,...,ny, and putting the latter operations in the £ slots of the former operation, thus
obtaining an operation of arity n; + - -- 4+ ng. The original definition by P. May [May06] was
given in term of these composition maps.

Another equivalent way to define an operad is to give just the partial composition maps
0j : k)@ P(n) — Pk+n-1)

for 1 < j < k, corresponding to composing an arity n operation in the jth slot of an arity
k operation, without touching the other slots. Those maps must satisfy certain "associativity"
axioms, see e.g. [LV12, Sect. 5.3.4].
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An operad is augmented if there is a morphism ¢ : & — I such that eane = 1;. If Zis
augmented, the kernel ker(e ) of € » is called the augmentation ideal of &7 and is denoted by .

An operad is reduced* if 2(0) = 0 and #(1) = K. Notice that if & is reduced, then the unit
map 74 is invertible, and its inverse gives a canonical augmentation € 5 of .

Example 2.1.15. We look back at the S-modules of Example 2.1.2. Both can be made into an operad with
very natural composition and unit map.

1. The unit S-module I becomes an operad with both maps

Nrilol=T2571 1251
given by the identity map.

2. Given a chain complex V, the endomorphism S-module Endy becomes an operad — the endo-
morphism operad of V — by defining

YEndy (5 V15« Vi3 0) = (v, .oy k)7
given by composing the operations vy, . .., vy, into the k slots of ju : VEF — V, and
Nendy (1) = 1v
given by sending 1 € K to the identity map of V.

Given two operads &2 and £ one can endow the tensor product of the underlying S-modules
with an operad structure, thus constructing the (Hadamard) tensor product &2 @ 2. Details are
given e.g. in [LV12, Sect. 5.3.2].

A very important construction is the free operad over a given S-module. We give an explicit
construction and some properties of this object, but omit all of the proofs. See [LV12, Sect. 5.5]
for a complete treatment.

Definition 2.1.16. Let M be an S-module. The tree module I (M) over M is defined by the recursion
JoM =1, Tpi1M =1 (MoJ,M)
and by setting I (M) := colim,, I, M.

Elements of I (M) can be visualized as rooted trees with vertices of arity n labeled by an element
of M(n). Then one defines the composition map

Yoy 2 T (M) o T (M) — T (M)
simply as grafting of trees, and the unit map

by sending 1 € K = I(1) to the trivial tree of arity one without any vertex. Moreover, there is a
natural inclusion of S-modules
M — (M)

given by sending an element x € M (n) to the n-corolla with its single vertex labeled by .

IThis convention differs slightly from the one of [LV12], where a reduced operad is only required to satisfy Z2(0) = 0.
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Theorem 2.1.17. The triple T (M) = (T (M), v (ar), N (ar)) forms an operad, called the free operad
over M. It satisfies the following universal property. For any morphism of S-modules M — &, where

& is an operad, there exists a unique morphism of operads f : I (M) — & making the diagram

M—— I (M)

\ Lf
P
commute in S-mod.

Notice that all operads satisfying the universal property in the Theorem above are isomorphic.
Moreover, the universal property gives a bijection

homo, (T (M), &) = homgs.med(M, Z) ,

that is to say that the free operad functor is left adjoint to the forgetful functor from operads to
S-modules.

Almost dual to the notion of operad is the notion of cooperad.

Definition 2.1.18. A cooperad ¢ is an S-module € together with two morphisms of S-modules
Ag : € — €06 ,
called the decomposition map of €, and
e € — 1,

the counit map of €, making € into a comonoid. A morphism of cooperads is a morphism commut-
ing with the decomposition maps and the counit maps of the source and of the target. The category of
cooperads and their morphisms is denoted by coOp.

Warning 2.1.19. The notion defined above is often called conilpotent cooperad in the literature, e.g.
in [LV12]. We will never use non-conilpotent cooperads.

A cooperad % is coaugmented if there is a morphism 1y : I — € such that e¢ny = 1;. The image
of 1 € K = I(1) under n¢ is denoted by id € €'(1) and is called the identity cooperation.

A cooperad € is reduced if € (0) = 0 and %'(1) = K. Again, a reduced cooperad is automatically
coaugmented.

Similarly to what happens with operads, given an S-module M one can build a cofree cooperad
by taking once again the tree module I (M) as underlying S-module, defining the decomposi-
tion map

by sending a tree to the sum of all its possible decompositions in 2-leveled trees by cutting the
edges of the original tree, and defining the counit

gy T (M) — 1
as the projection. Moreover, we consider the natural projection of S-modules
I(M)— M
More details are found in [LV12, Sect. 5.8.6-7].
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Theorem 2.1.20. The triple T(M) = (T (M), Ag(am), e () forms a cooperad, called the cofree
cooperad over M. It satisfies the following universal property, dual to the one of the free operad. For
any morphism of S-modules f : € — M, where € is a cooperad, there exists a unique morphism of
cooperads making the diagram

commute in S-mod.

Observe that all cooperads satisfying the universal property in the Theorem above are isomor-
phic. Moreover, the universal property gives a natural bijection

homeo0p (€, T ¢(M)) = homg med (6, M) ,

that is to say that the cofree cooperad functor is right adjoint to the forgetful functor from coop-
erads to S-modules.

Given a cooperad %, one can iterate the decomposition map A¢ in order to obtain a monadic
decomposition map - -

AZ" 1 C — T(6)
sending an element of % to all of its possible decompositions not including the identity element
id € €'(1). Formally, we define the reduced decomposition map Ay of € as

Ag(c) = Ag —idoc — coid®"

for ¢ € €' (n). Now we define iteratively

81 = 1(g Z?—)?,
and _ - . _
An = 1<@p —+ (1% o An_l)ACg 16— Ge]’n('{g)
for n > 2. Then, we set . _
AR" == colim A, : € — T (¥) .

One can always dualize a cooperad to obtain an operad, while the converse is not always true.
This works as follows. Let ¢ be a cooperad, then for n > 0 the chain complex ¢ (n)" is a left
Sn,-module. We make it into a right S,,-module by ¢ := o - ¢ for ¢ € € (n)". The dual of the
decomposition map A« gives the composition map v¢v, and the dual of the counit map gives
the unit. The problem when trying to do the same thing with an operad &7 is that the dual of
the composition map 74 could give us infinite sums, and thus not land in &V o 22V. However,
if we assume that & is reduced and that either

e for all n > 2, the degrees in which &(n) is non-zero are bounded below, and &7(n) is
finite-dimensional in every degree, or that

e for all n > 2, the degrees in which #(n) is non-zero are bounded above, and Z?(n) is
finite-dimensional in every degree,

then everything works out and the dual of an operad gives a cooperad. Notice that The con-
ditions we gave in order to be able to dualize an operad and obtain a cooperad are sufficient,
but not necessary. In particular, if an operad is finite dimensional in every arity, then it can be
dualized to obtain a cooperad.
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2.1.3 (Co)algebras over (co)operads
As already mentioned, the principal use of (co)operads is to encode (co)algebras.

Definition 2.1.21. Let & be an operad. A &-algebra A is a chain complex A together with a compo-
sition map
va: P(A) — A

satisfying the relations
Ya(lz 0 va) =ya(yz 0 1a)

on P(P(A)), and
ya(mz ola) =va

on I(A) =2 A. A morphism of #-algebras f : A — B is a chain map commuting with the respective
composition maps, that is to say

fra=v8(lzpof)
on P (A). The category of &-algebras with their morphisms is denoted by 7-alg.

The elements of the operad can be interpreted as operations on the algebra, as is made evident
by the following result.

Proposition 2.1.22. The structure of a &?-algebra on a chain complex A is equivalent to a map of operads
pa: P — Endy .
Proof. Given 4, one obtains p4 by
pa(p)(ar,...,an) =yA(p® a1 @+ R an),
and vice versa. The details are left to the reader. O
Proposition 2.1.23. Let & be an operad and V be a chain complex. Then the map
Vo) =m0 ly : P(P(V)) = (P o P)V) — P(V)

makes (V') into a P-algebra. It is called the free &7-algebra over V, and it satisfied the following
universal property. For any morphism of chain complexes f : V- — A, where A is a &-algebra, there

exists a unique morphism of &-algebras f : (V') — A making the diagram

Vv 2(V)

e

commute in Ch, where V. — (V) is the canonical inclusion.

A

Once again, the free &?-algebra functor is left adjoint to the forgetful functor from &-algebras
to chain complexes.

Lemma 2.1.24. Let A, B be two &-algebras, and let f : A — B be a morphism of &?-algebras. Suppose
that f is an isomorphism of chain complexes. Then f is an isomorphism of &?-algebras as well.
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Proof. Write g : B — A for the inverse of f in chain complexes. We prove that g is a morphism
of #-algebras. We have

gv8 =978(1 o fg)
=g9fvB(lzoyg)
=v(lz 0g)

as maps #(B) — A, where in the second line we used the fact that f is a morphism of &-
algebras. O

Suppose we have a morphism of operads f : 2 — &. Then it is obvious from Proposition 2.1.22
that every &-algebra A is also a 2-algebra, which we denote by f*A, by py-a = f*pa = paf.
This defines a functor from Z7-algebras to 2-algebras, called restriction of structure. This functor
is right adjoint to a functor fi, called extension of structure, i.e.

fi: Q-alg =— P-alg : f*.

The Z-algebra fiA associated to a 2-algebra A can be described as a reflexive coequalizer,
see [Fre09a, Sect. 3.3.5] for details. These functors define a Quillen adjunction between the
respective categories of algebras. For these model categorical aspects, we invite the interested
reader to consult [Fre09a, Sect. 16].

Almost dually to the notion of algebra over an operad is the notion of coalgebra over a cooperad.

Definition 2.1.25. Let € be a cooperad. A €-coalgebra C is a chain complex C together with a
decomposition map

Ac:C— () =[] (¢(n)® C®")*

n>0

such that
(Ag ole)Ac = (1g 0o Acg)Ag, (e¢ o le)Ac = Ac

on C. A morphism of €-coalgebras f : C — D is a chain map commuting with the respective decompo-
sition maps, that is

(g o f)Ac =Apf
onC.

There is no analogue to Proposition 2.1.22 since it is not possible to define an "endomorphism
cooperad" playing the dual role of Endy .

Let & be a reduced, coaugmented cooperad, and let C be a ¢-coalgebra. We denote the image
of x € C under the decomposition map A¢ by

Ac(x) Il,l‘g,.. S H O®n

n>1

There is a canonical ascending filtration on C given by
FoC =0, and FLC:={xcC|x,=0forallk>n}

for n > 1. It is called the coradical filtration of the coalgebra.
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Remark 2.1.26. If one works more in general with connected weight graded cooperads instead of reduced
cooperads, then one must be a little more careful when defining the coradical filtration, see e.g. [Vall4,
Def. 2.2]. What one desires in the end, is that the coproduct Ac is a morphism of connected weighted
cooperads from C to € (C') endowed with the induced connected weight grading.

Definition 2.1.27. A €-coalgebra C is conilpotent if the canonical filtration is exhaustive, that is
C = colimFZC
n

as €-coalgebras. Conilpotent €-coalgebras form a full subcategory of the category of €-coalgebras and
their morphisms, which we will denote by € -cog.

Remark 2.1.28. In the rest of this work, we will always work with conilpotent coalgebras, and never
with non-conilpotent ones. For this reason, we will sometimes omit the adjective conilpotent when talking
about coalgebras, and simply say €-coalgebras when we really mean conilpotent €-coalgebras.

The coradical filtration is well-behaved with respect to the coproduct.

Lemma 2.1.29. Let C be a conilpotent €-coalgebra. For each n > 0, we have

AcFpC)C P (FrR)eFNCo--oFLC)" .
n1+~{€-§11k:n

Proof. The fact that we land in invariants is automatic, so that we can work in the non-symmetric
case without loss of generality. The case n = 0 is trivial. Let n > 1 and « € FZC. The relation
(Ag o 1c)Ac = (1¢ o Ac)Ac implies that, for every m > n, we have

0=(Agole)Ag(x)
= Y (leo(Al,...,A)AE(2) .
k>1

ni4-Ffng=m

Since C'is conilpotent, the last sum is finite. Every term has a different underlying tree, so that
we must have
(g o (A, ..., A)AL(z) =0 (2.1)

foreach k > 1and n; + - - - + ny = m. Now fix £ > 1 and suppose that A(kj(az) has a term which
is not in the correct space. Since C is conilpotent, that term lives in

CE)RFIC® - @FC
for some 1 + - - - + ng > n, which contradicts relation (2.1). O
Proposition 2.1.30. Let € be an operad and V' be a chain complex. Then the map
Agivy =Agoly :C(V) — (€o@)(V)=E(E(V))

makes € (V') into a conilpotent €-coalgebra. It is called the cofree conilpotent @-coalgebra over V,
and it satisfies the following universal property. For any morphism of chain complexes g : C — V, where
C'is a conilpotent € -coalgebra, there exists a unique morphism of €-coalgebras g : C — €(V') making
the diagram
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c

f\

e

\%4

commute in Ch, where the map € (V') — V is the canonical projection.

Lemma 2.1.31. Let C, D be two conilpotent ¢-coalgebras, and let f : C — D be a morphism of
€-coalgebras. Suppose that f is an isomorphism of chain complexes. Then f is an isomorphism of
¢ -coalgebras as well.

Proof. The proof is dual to the proof of Lemma 2.1.24 and left to the reader. O

Remark 2.1.32. One can also define coalgebras over an operad — see [LV12, Sect. 5.2.15] — and
algebras over a cooperad. For a modern treatment of these notions and the study of their homotopical
behavior, see e.g. [LGL18].

2.1.4 Limits and colimits of (co)algebras

The categories of algebras over operads and conilpotent coalgebras over cooperads are com-
plete and cocomplete.

Theorem 2.1.33 ([G]94, Sect. 1.6-7]). Let & be an operad, and let € be a cooperad.
1. The category SP-alg of ¥-algebras admits all limits and colimits.
2. The category €-cog of conilpotent €-coalgebras admits all limits and colimits.

Remark 2.1.34. The category of &?-algebras is always complete and cocomplete, even when working over
a field of positive characteristic. For conilpotent €-coalgebras, one gets all limits and colimits provided
one supposes that the cooperad € satisfies some additional properties.

Here are some easily described limits and colimits of (co)algebras.
Proposition 2.1.23 tells us that we have a natural bijection
homcp,(V, A#) = hom g -alg(2(V), A) ,

where (—)# is the forgetful functor from Z?-algebras to chain complexes. In other words, we
have an adjunction
P: Ch = P-alg :(—)* .

In particular, the forgetful functor preserves limits, since it is right adjoint.

Proposition 2.1.35. Let A, B be &-algebras. The product A x B of A and B has the product of the
chain complexes A and B as underlying chain complex, which we identify with the direct sum A © B,
and the &?-algebra structure is given by the composite

axp = (P4 B) ZAEEI, p(4) 6 () L2 46 B).

Here proj 4 : Z(A® B) — H(A) is the canonical projection, and similarly for projg.
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In other words, the product of A and B is given by A @ B with the ?-algebra structures of A
and B on the two factors, and nothing mixing them, i.e. if we put some elements of A and some
elements of B in some operation, we get 0.

The description of coproducts is only slightly more complicated.
Proposition 2.1.36. Let A, B be &-algebras. The coproduct AU B of A and B is
AUB=2A®B)/ ~,
where the equivalence relation ~ is generated by
P®s, (1@ ®an) ~ya(p®s, (01 @ Qan)),
p®s, (1@ @bp) ~ (P &s, (1 ®@--- @bn))
foranyp € #(n), a; € A,and b; € B.

In other words, the coproduct of A and B is given by a copy of A, one copy of B, plus all the
elements generated freely by mixing elements of A and B and acting with operations from the
operad &. Another useful way to express the coproduct of two algebras is as the coequalizer
in chain complexes
Y2 °lagn
(@O(l) Z)(A® B) PA®B)— AUB
1o o) (va+8B)

where
Yo+ : P(A®B) — A®B

is given by v4 on #(A), by v on #(B), and by zero on anything containing mixed terms. The
P-algebra structure is the one induced by the &-algebra structure of (A & B).

The situation for cooperads is essentially dual. By Proposition 2.1.30, we have the adjunction
(—)#: ¢-cog =— Ch: %

between the forgetful functor (—)# and the cofree conilpotent coalgebra functor . In particular,

the forgetful functor preserves colimits.

Proposition 2.1.37. Let C, D be conilpotent €¢-coalgebras. The coproduct C' U D of C and D is the
conilpotent € -coalgebra
CuD=CasD

with structure map
Acup = (c ® D 2920, 2(C) 9 €(D) — C(C @ D)) .
The product of two conilpotent %-coalgebras C' and D is a sub-coalgebra of ¥ (C & D), which

we can express as an equalizer.

Proposition 2.1.38. Let C, D be conilpotent €¢-coalgebras. The product C' x D of C and D is the
conilpotent €-coalgebra given by the equalizer
A(l) 9} 1C€9D

¢(Ce D) (¢ oq)€)(C®D)
lg o (Ac + Ap)

CxD

where
Ac+Ap:Ca D 2222, @(0) g ¢ (D) — €(C & D),

with the €-coalgebra structure induced by the €-coalgebra structure of € (C & D).
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2.1.5 Quadratic (co)operads

Many classically arising operads and cooperads can be presented by generators and relations
in the way we expose now. More details can be found in [LV12, Sect. 7.1].

Definition 2.1.39. An operadic quadratic data (E, R) is a graded S-module E (i.e. an S-module
where all the differentials are trivial) together with a graded sub-S-module R C T (E)?) of the graded
sub-S-module T (E)?) of the tree module T (F) given by trees with 2 vertices. The elements of E are
called the generating operations, and the elements of R the relations. A morphism of quadratic data

f : (EvR) — (FaS)
is a morphism f : E — F of S-modules such that I (f)(R) C S.

One can associate an operad &?(E, R) to an operadic quadratic data (E, R) by
Z(E,R) =9 (E)/(R),

where (R) is the smallest operadic ideal of ' (F) containing R. Equivalently, &(FE, R) is uni-
versal among the quotient operads & of J (E) such that the composite

(R) incl. g(E) proj. P
is zero. An operad obtained in this way is called a quadratic operad. If moreover E is concentrated
in arity 2, one speaks of a binary quadratic operad.

Dually, one can associate a cooperad ¢’ (£, R) to an operadic quadratic data (£, R). It is defined
through an universal property dual to the one given above, but it doesn’t have a nice presen-
tation such as Z(E, R). Explicitly, €(E, R) is such that for any sub-cooperad ¢ of J¢(E) such
that the composite

@ B TE) P T0(E))/(R)

is zero, there exists a unique morphism of cooperads ¢ — ¢ (E, R) such that
¢ — €(E,R) 2 go(B) = ¢ 24 go(EB) .

Any morphism of quadratic data induces a morphism between the associated operads, respec-
tively cooperads.

2.1.6 Some classical (co)operads and (co)algebras over them

We will now give some examples of operads and cooperads encoding some classical types of
algebras and coalgebras. All of them are induced by quadratic data. We begin by the three
graces, the operads Com, Ass, and Lie.

To define the operad Com, we take the S-module FE with E(2) = Ky and E(n) = 0 for all n # 2,
with |u| = 0 and the trivial action of Sy on y, and the relations R spanned by p o (id ®u) — p o
(u ®id). We set

Com := Z(E,R) .

Notice that, because of the relations, we have Com(n) = Ku,, for n > 2, where p,, is any com-
position of copies of i giving an operation of arity n. All such compositions are equal in Com
because of the relations. The algebras over Com are exactly the commutative (not necessarily
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unital) algebras, i.e. vector spaces A together with a commutative, associative multiplication.
Commutativity is encoded in the fact that the S,-action on p is trivial, while associativity is
given by R.

For the operad Ass, we take I with E(2) = K[Sy] = Ka. © Ka(i2) with |a.| = |a2)| = 0 and

S-action given by aéu) = a(12), and R spanned by a. o (id ®a.) — ac o (a. ® id) and the elements
of 7 (E)(?) that can be obtained by it by Sz-action. We set

Ass = Z(E,R) .

The operad Ass is spanned by operations {a, | o € S, } in arity n > 2, corresponding to the
multiplication
(:1:1, e ,CL‘n) = To(1) " To(n)

in an associative (not necessarily unital) algebra.

There is a non-symmetric version of Ass, which is denoted by As. It is also a binary quadratic
ns operad. It is generated by a single binary operation y, in arity 2 and has only one relation,
given by mo (m ®id) —mo (id ®m). The resulting operad is 1-dimensional in every arity n > 1,
where it is spanned by the operation p,, multiplying n elements in the order they are given. We
recover Ass from As by tensoring by the regular representation K[S] of the symmetric groups.

The last one of the three graces is the operad Lie. In order to define it, we define E by E(2) = Kb
with |b| = 0 and the sign representation of Sy, and R spanned by bo (b ® id) + bo (b®id)(1?3) +
bo (b ®id)21) and the other elements obtained from this one by Ss-action. An algebra over
Lie is the usual notion of (differential graded) Lie algebra: the operation b gives the Lie bracket,
which is antisymmetric since b carries the sign representation, and R gives the Jacobi rule.

The three graces are related by morphisms of operads
Lie -5 Ass — Com ,

all of them coming from morphisms of operadic quadratic data. The morphism a : Lie — Ass
is the antisymmetrization morphism, and it is given by sending b € Lie(2) to a. — a(12y € Ass(2).
This corresponds to the fact that if A is an associative algebra, then we can see it as a Lie algebra
by [z,y] = zy — (—1)"Yyx. The morphism u : Ass — Com is induced by sending both a. and
a(12) to u, and correspond to the fact that every commutative algebra is trivially an associative
algebra.

One can also define operads uCom and uAss encoding unital commutative, respectively asso-
ciative algebras simply by setting £/(0) = Ku with |u| = 0 in both cases, and adding the relations
po (u®id) = id, respectively a. o (u ® id) and a(12) o (u ® id) to R. Notice that those relations
are now contained in 7 (E)) @ T (E)®), so we are not in the quadratic case anymore.

On the coalgebra side, we give the example of conilpotent coassociative coalgebras in the non-

symmetric setting. These coalgebras are encoded by the cooperad coAs which is dual to As. In
other words, take F = F(2) = Ka",and R =a" o (id®a") — a" o (a¥ ® id). We set

coAs =% (E,R) .

A conilpotent coalgebra over this cooperad is a vector space” C together with a decomposition
map
A:C—F2C,

20r graded vector space, or chain complex. Here we work over vector spaces to avoid signs.
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corresponding to the binary part of the whole coproduct A¢, such that
(A@1c)A(r) = (e ® A)A(z)

and such that any iteration of A on any element eventually terminates (which corresponds to
the fact of being conilpotent).

2.1.7 Non-symmetric (co)algebras and (co)operads

There is a version of (co)operads which codes (co)algebras without symmetries (such as com-
mutativity of a multiplication, and so on). It is called non-symmetric, or ns (co)operads. It is given
by replacing S-modules by sequences of chain complexes without any group action — also
called arity graded chain complexes — and by forgetting all of the group actions in the definitions.
For example the composite product of M and N in this context becomes

(MoN)(k):= @ M@H@NG)-@N3),
P
and similarly for all the rest. More details are given in [LV12, Sect. 5.9].

One can always pass from the symmetric world to the ns world by forgetting the S-actions, and
go the other way around by tensoring by the regular representation of the symmetric groups.
This gives a pair of adjoint functors.

It is often true that results holding in the symmetric world are also true in the ns world, while
results that are true in the ns world hold in the symmetric world in characteristic 0. This is
because e.g. when making operads and cooperads (or algebras and coalgebras) interact, in the
symmetric world one has to identify invariants and coinvariants, which one can only do in
characteristic 0. One possible way to go around this restriction is to work with operads with
divided powers [LV12, Sect. 5.2.9].

2.2 Operadic homological algebra

In order to go on, we have to introduce the constructions and notations allowing us to do homo-
logical algebra in the operadic context, such as the correct notion of suspension, the infinitesimal
composites corresponding in some sense to "derivatives" of the composite product, and so on.

2.2.1 Operadic suspension

Notice that, given an operad &, there is no natural way to put an operad structure on s&.
However, there is a good way to suspend and desuspend (co)operads. We present it here,
following [LV12, Sect. 7.2.2].

Let . := End,k be the endomorphism operad of the chain complex sK, which is of dimension
1 and concentrated in degree 1. We have

S (n) =KSA, ,

where .7, is the linear map of degree 1 — n sending s" to s and carries the sign representation.
We have
LSﬂnolfgﬁm:fjﬂn+mfl
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and thus _
T 05 S = (_1)(3—1)(1—m)yn+m_1 )

This determines most of the signs in operad theory, for example in minimal models for Koszul
operads, see Section 2.3.

Definition 2.2.1. Let & be an operad. The (operadic) suspension of & is the operad . @ 2.

In order to desuspend operads, we consider instead . ! := End,-1x. It behaves similarly to
#, and we have an isomorphism of operads

1 ®.7 =~ Endg (2.2)

with the unit for the Hadamard tensor product given by

n(n—1)

%;1 ® S —> (*1) 2 My,

where m,, € Endg(n) is the map sending 13" to 1x. The sign can be found by

(=1

n(n—1)
2

with the additional sign appearing in the third line comes from the Koszul sign rule. Explicitly,
the composition in . ! is given by

yn_l Oj yrr_zl = (_1)(j_1)(1_m)%:+1m—1 .
A straightforward computation shows that this is compatible with the isomorphism (2.2).

Definition 2.2.2. Let & be an operad. The (operadic) desuspension of & is the operad . ~' ® 2.

Proposition 2.2.3. The structure of a &-algebra on a chain complex A is equivalent to the structure of
a . ® P-algebra on s A, respectively to the structure of a .~ @ P-algebra on s~ A.

Proof. The structure on sA is given by

Yo (LD @ sa1 @ sa,) = (—1)sy4(pR a1 @ --- @ ay)

with
n i—1
S
i=1 j=1
coming from the Koszul sign rule. We leave the rest of the proof to the reader. O

For cooperads, one can endow the S-module Endx with the cooperad structure dual to the op-
erad structure of End, -1k to obtain a cooperad .#¢, and similarly a cooperad (. ~')¢, defining
cooperadic suspension and desuspension.

Definition 2.2.4. The cooperads . and (. ~1)¢ are defined by
() =7, and (S 7He =7V,
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One can explicitly describe the decomposition map by finding the signs in

Ag-ne(S )= Y (phmemgilg gte. ]

k>1
N1+ Fng=n

by computing

() (8 (5, 6 S0 )
= (I A (T @ Ty @ Fn)) -

2.2.2 Connected weight gradings

Sometimes, in order to make certain homological arguments, one needs an additional grading
on (co)operads. This is encoded in the notion of connected weight graded (co)operads, see e.g.
[Vall4, Sect. 1.7]. When working with reduced (co)operads, one can usually consider the grad-
ing given by putting in weight w the elements of arity w + 1. We will always implicitly consider
this canonical additional grading on reduced (co)operads. Many results presented in this thesis
for reduced (co)operads also hold in the context of connected weight graded (co)operads.

2.2.3 Infinitesimal composites

The composite product of S-modules is linear in the first slot, i.e.
(Ml@MQ)ONg (MloN)@(MQON)

for S-modules M;, M> and N, but not in the second one. In order to do homological algebra, we
need a version of the composite product which is linear also on the right. This is the material of
[LV12, Sect. 6.1].

Let M, N; and N> be three S-modules. Then we can consider the sub-module M o (N1; N3) of
M o (N1 & N2) where N, appears exactly once in each summand. This construction is linear in
both M and N». Notice that M o (N; N) is not isomorphic to M o N, because in M o (N1; N2) we
always remember the position of the copy of IV,. However, we have an obvious forgetful map
Mo(N;N)— MoN.

Definition 2.2.5. Let f : My — My and g : Ny — Na be two morphisms of S-modules. The infinites-
imal composite of morphisms is defined as

fO/gIM10N1—>M20(N1;N2)

by

n

(f of g)(ﬂ; Vlv"'v’/n) = Z(f(u);l/l,...,g(l/i),...,V")

i=1

f01’ (,LL, Viyeony V’I’L) € (Ml o Nl)(n)

Example 2.2.6. Let M and N be two S-modules, then the differential of M o N can be seen as
dyon =dpoly + 10 dy

after applying the canonical forgetful map M o (N; N) — M o N to the last term.
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Definition 2.2.7. Let M and N be two S-modules. The infinitesimal composite of M and N is the
S-module
MO(l) N =Mo (I,N) .

If f: My — Myand g : Nv — N» are two morphisms of S-modules, we define
f o) g M, O(1) N1 — My o(1) Ny

is defined by
(foay9)(usid, ... v, .. id) = (f(p);id,...,g(v),...,id)
for € My and v € Ny.

Notice that we always have
Moy M =g (M),

Lemma 2.2.8. The infinitesimal composite product o,y is linear in both variables.
If & is an operad, we define the infinitesimal composition map
Ya) - 90(1) P — P

as the composite

Popy P=Po(;P)— Po(lep) 22022, 5o p 12, 5
It is simply the composition map v restricted to the composition of two operations in &.
Dually, if ¢ is a cooperad we define its infinitesimal decomposition map
Aqy: € —Con) €
by
¢ 25 g ow 1N g o (g,) T2 o (1,4) = C o) 6

It can be seen as the decomposition of elements of ¢’ into two parts.

2.24 Convolution operads

Given a cooperad ¢ and an operad 2, one can give a natural operad structure to hom(%, &7).
This was first proven in [BMO03, p. 3] and is detailed in [LV12, Sect. 6.4.1].

The composition map on hom(%, &) is defined as follows. Let f € hom(%(k), #(k)), and let
gi € hom(%'(n;), Z(n;)) for 1 < i < k. Then ynom#,2)(f; 91, - - -, gr) is given by the composite

% (n) 2% (€5€)(n) 225 € (k) @ € (n1) @ - - @ € (ng) @ K[Sn]

T8 EnBlen, p(k) o P(m)®--- © P(n) O KIS,

s (P o P)(n) 22 P(n),

where n = ny +- - - +ny. The projection map sends an element of (¢5%)(n) to all its components
that live in €(k) ® €' (n1) ® - - - ® € (ng), with possibly a permutation of the arguments encoded
by an (n4, ..., ny)-shuffle. Moreover, the composite

¢ 5112y p

defines. the unit map 7yom(%, 2)-
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Theorem 2.2.9. Let € be a cooperad, and let &7 be an operad. With the maps described above, the
S-module hom(€', &) becomes an operad, which is called the convolution operad of ¢ and Z.

Proof. By inspection and left to the reader. O

Notice that if & is reduced, then so is hom(%’, 2).

Now suppose that C' is a conilpotent ¢-coalgebra, and that A is a &?-algebra. Then we can
endow the chain complex hom(C, A) with a hom(%’, &?)-algebra structure as follows. Let ¢ €
hom (%, #)(n), and let f1,..., f, € hom(C, A), then Yom(c,4)(¢ ®s, (f1 ®--- @ fp)) is given by
the composite

& ves, (DR fo1y® B fo(n
C i) (%(n) ®O®")S" SN %(n) ® oen Yoes, (71 (1) (n)

—» P(n) ®s, A% 125 A

P(n) @ A®"

where ¢ is the Koszul sign appearing from the permutation of the f;.

Theorem 2.2.10. Let € be a cooperad, let &7 be an operad, let C' be a conilpotent €-coalgebra, and let A
be a &-algebra. With the structure described above, hom(C, A) is a hom (¥, &?)-algebra, which we call
the convolution algebra of C and A.

Proof. By inspection and left to the reader. O

2.2.,5 Twisting morphisms

A central notion for the theory of operads is that of twisting morphisms. More details on the
subject can be found in [LV12, Sect. 6.4].

To any reduced operad & it is possible to associate a (pre-)Lie algebra structure on the chain
complex [[,,5, #(n), see [LV12, Sect. 5.4.3]. If the operad is a convolution operad hom(%’, &)

with ¢ and & reduced?®, then the pre-Lie product is simply given by the composite

foyg

Frg= (€20 @ ony @ 0% 2oy 2 10 )

for f,g € [[,,~o hom(%, &2)(n), and it preserves the subspace of S-equivariant maps, i.e. (possi-
bly graded) morphisms of S-modules.

Definition 2.2.11. Let € be a reduced cooperad, and let &7 be a reduced operad. An (operadic) twisting
morphism « : € — & from € to & is a morphism of S-modules of degree —1 satisfying the Maurer—
Cartan equation

da)+axa=0.
We denote the set of twisting morphisms from € to & by Tw(€, &).

Given a morphism of S-modules o : ¢ — & of degree —1, we can consider the unique deriva-
tion dj, on ¢ o & extending

Ay leomy

€ Fon b —LL G on P —CoP,

cf. [LV12, Prop. 6.3.9]. Explicitly, it is given by d, = (1¢ o v2)(((1¢ © a)A(1)) 0 15). Define
dp = dgoz + d, on € o 2. Dually, on & o ¢ we consider the unique derivation d’, extending

¢ 2 Gow 2 poy
and define d,, := dgo¢ + d’..

35S0 that hom (%, &) is also reduced.
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Lemma 2.2.12. On € 0% we have d? = () +axar
in both cases we have that o« € Tw(€¢, ) if, and only if d2 = 0.

and on P o€ we have d2, = d,

D(a)+axar Therefore,

Thus, given a twisting morphism o € Tw(%’, &), one can define two chain complexes
Coq P = (Co0P,dy) and P o€ = (P0C,ds),

called the left and right twisted composite product of € and & respectively. These constructions
are functorial in the sense that if we have a commutative square

ak Ja/
g
P ———

where «, o’ are twisting morphisms and f, g are a morphism of cooperads and a morphism of
operad respectively, then
fog:Con P — € op P

is a chain map, and similarly for g o f.

Theorem 2.2.13 (Comparison lemma for twisted composite products). Suppose that we are in the
situation above.

1. Iftwoamong f,gand fog: € oq & — €' 0o P’ are quasi-isomorphisms, then so is the third.

2. Dually, if two among f,gand go f : & 0 € — P’ o, €' are quasi-isomorphisms, then so is
the third.

The proof of this theorem uses a spectral sequence argument. It is found in [LV12, Sect. 6.7] and
it is based on [Fre04, Sect. 2].

Remark 2.2.14. This result also holds for (co)operads that are not reduced, but in that case it is crucial
to assume that everything is connected weight graded.

2.2.6 Operadic bar and cobar construction

It is natural ask whether the functors Tw(%, —) and Tw(—, &) are representable or not, and
whether one can find canonical resolutions of operads and cooperads in general or not. Both
questions are answered in the positive by the two constructions we present here, following
[LV12, Sect. 6.5]. The argument will be completed in Sections 2.2.7 and 2.2.8.

We start by defining the operadic bar construction, which is a functor
B : aug. Op — coaug. coOp .
Let & be an augmented operad. The functor B associates to &7 the quasi-free cooperad
BZ = (T(sP),d :=dy +ds),

where d; is the natural differential induced on T¢(s%) by the differential dg of &, and ds is
defined as the unique coderivation extending the composite

T (sP) 20, 7o(s 7)) = (Ks @ D) o) (Ks @ P)
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F2@7(1)
— S

=~ (Ks @ Ks) ® (Z o) 2) P .

Here we see .% as the operation sending s to s. It is straightforward to prove that d, squares
to zero and anticommutes with d;, so that also d; + dz squares to zero.

Proposition 2.2.15. Suppose the characteristic of the base field K is 0. The operadic bar construction B
preserves quasi-isomorphisms.

Dually, the operadic cobar construction is the functor
Q : coaug. coOp —» aug. Op

defined as -
Q¢ = (T(s7'%),d=d + do) ,

where again d; is induced by d«, and ds is the unique derivation extending the composite

5_1? %} (Ks—l ® Ks—l) ® (?0(1) ?)
= (stl ®F) °(1) (K$71 RF) = 9(3*1?)(2) incl., Oj(s*l?) .

Here, A -1 is the dual of .%%, and is given by sending s~' to —s~! ® s~!. Once again, one

easily proves that d squares to zero and anticommutes with d;, so that d; + dz also squares to
zero. We also have a compatibility with quasi-isomorphisms, but with rather more stringent
assumptions.

Proposition 2.2.16. The operadic cobar construction Q) preserves quasi-isomorphisms between cooper-
ads that are non-negatively graded, I in degree 0, and 0 in degree 1.

The operadic bar and cobar constructions form a pair of adjoint functors.

Theorem 2.2.17. Let & be an augmented operad, and let € be a coaugmented cooperad. There are
natural isomorphisms

homo, (%, Z) = Tw(¥, ) = homeo0p(¢,BZ) .
In particular, the functors B and Q) form an adjoint pair.

The unit and the counit of the adjunction give rise to canonical twisting morphisms. Namely,
let € be a cooperad, then the unit of the adjunction is a map

¢ — BQ¥
of cooperads and as such it corresponds to a canonical twisting morphism
L:C — QF .

It is given by the composite
L= (%i51%%9%>

Dually, for & an operad, the counit of the adjunction is a map

OBY — &
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of operads, and gives us a canonical twisting morphism
T:BY — P
given by the composite
= (Bﬁ%ﬂi@).
These two twisting morphisms are universal, in the sense that every twisting morphism splits
through them.

Theorem 2.2.18. Let o : € — & be a twisting morphism. There exist a unique morphism of cooperads
fo 1 € = BZ and a unique morphism of operads g., : Q€ — & such that the diagram

commutes.

Notation 2.2.19. From now on, we reserve the Greek letters . and w for the canonical twisting morphisms
we just described.

2.2.7 Koszul twisting morphisms

Certain twisting morphisms behave especially well with respect to the homotopy theory of
(co)operads and (co)algebras over them. The archetype for such twisting morphisms are the
universal twisting morphisms ¢ and 7.

Lemma 2.2.20. Let € be a coaugmented cooperad and let & be an augmented operad. The chain com-
plexes
Co, 06, QC€o14, HPo,BY and BP o, P

are acyclic.

Proof. This is [LV12, Lemma 6.5.9]. O

Using this fact, one can prove the following important fact [LV12, Thm. 6.6.1].

Theorem 2.2.21. Let € be a connected weight graded cooperad, let & be a connected weight graded
operad, and let o : € — & be a twisting morphism. The following are equivalent.

1. The right twisted composite product € o, & is acyclic.

2. The left twisted composite product & o, € is acyclic.

3. The morphism of cooperads fo : € — B of Theorem 2.2.18 is a quasi-isomorphism.
4. The morphism of operads g, : B — € of Theorem 2.2.18 is a quasi-isomorphism.

Definition 2.2.22. Let ¢ be a connected weight graded cooperad and let &2 be a connected weight
graded operad. A twisting morphism o : € — £ is Koszul if any of the equivalent conditions of
Theorem 2.2.21 is satisfied.

Example 2.2.23. By Lemma 2.2.20, the universal twisting morphisms m and . are Koszul.
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2.2.8 Bar-cobar resolution

Finally, we can prove that the bar-cobar adjunction gives a canonical resolution of operads and
cooperads, following [LV12, Thm. 6.6.3].

Theorem 2.2.24. Let € be a cooperad. The unit
¢ — BQ¥

of the bar-cobar adjunction is a quasi-isomorphism of cooperads. Dually, let & be an operad. The counit
(B — &

of the bar-cobar adjunction is a quasi-isomorphism of operads.

Proof. This is a direct corollary of Theorem 2.2.21 and Lemma 2.2.20 in the connected weight
graded case. The more general case can be found in [Fre04]. O

Remark 2.2.25. In particular, QB & provides a functorial cofibrant resolution of &, see Corollary 3.3.6.
One should notice that if € is a cooperad, then in general Q€ is not cofibrant. However, this is the case
if one has a connected weight graded cooperad, and in particular Q€ is always cofibrant if € is a reduced
cooperad.

2.3 Minimal models and Koszul duality

The bar-cobar resolution of operads is very useful, but almost always really big. Fortunately, in
some cases it is possible to find smaller resolutions for operads, such as minimal models. One
way to do that is Koszul duality, which recall briefly in this section. It is a theory originally
developed by V. Ginzburg and M. Kapranov [GK94] for operads. Koszul duality for associative
and Lie algebras existed prior to it, and other versions for related concepts have been developed
since, for example in [Val07] for props.

2.3.1 Minimal models

Let & be an operad. A model for & is an operad 2 together with a surjective quasi-isomorphism
of operads 2 — Z.

An operad 2 is minimal if it is quasi-free, i.e. of the form 2 = (I (M), d) for some graded S-
module M (that is, for each n > 0 the object M (n) is just a graded vector space, not a chain
complex), and such that the differential satisfies the following two conditions.

1. The differential d of 2 is decomposable, that is d(E) C T (E)(Z?).

2. The graded S-module £ admits a decomposition

E=EW

k>1

such that i
d(E(k+1)) cT <@ E(l’))
i=1

for any k£ > 0.
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Definition 2.3.1. A minimal model for an operad & is a model 2 — & such that 2 is a minimal
operad.

Theorem 2.3.2 ([DCV13, Prop. 3.7]). If an operad & admits a minimal model, then the model is
unique up to (non-unique) isomorphism.

2.3.2 Koszul duality

For the rest of this section, we work with quadratic (co)operads. We refer the reader to [LV12,
Sect. 7.2 and 7.4] for more details.

Definition 2.3.3. Let & = Z(E, R) be a quadratic operad. The Koszul dual cooperad of & is the
quadratic cooperad '
P =€ (sE,s’R) .

The Koszul dual operad op & is the operad
P = (F0 PV,

The Koszul dual cooperad of an operad is of greater theoretical importance than the Koszul
dual operad. However, the latter has the advantage of being often easy to describe explicitly, as
the following result explains.

Proposition 2.3.4. Let & = P (E, R) be a quadratic operad generated by an S-module E which is
reduced and finite dimensional in every arity. Then the Koszul dual operad of & is quadratic with
presentation

P =2(s Ly 9 EY,RY),

where R+ is the subspace of T (s =17~ @ EV)?) obtained by taking the subspace orthogonal to s> R in
T (sE)?) and desuspending its elements in the obvious way. Moreover, we have

(2 =2 .
Proof. This is [LV12, Prop. 7.2.1 and 7.2.2]. O

Let (E, R) be a quadratic data. Then both #(E, R)(Y) and % (E, R)") are given by E, and thus
we can define the map

—1

K C(sE,s2R) 2% sp 2 B 2 2(ER).
Lemma 2.3.5. The map r described above is a twisting morphism.
Proof. This is [LV12, Lemma 7.4.1]. O

Notation 2.3.6. From now on, we reserve the Greek letter « as notation for the canonical twisting
morphism defined above.

Definition 2.3.7. A quadratic operad & is Koszul if the canonical twisting morphism
kP — P

is Koszul.
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Consider the canonical inclusion
i=f.: P — BP

and the canonical projection '
p=gx: QP — P

given by applying Theorem 2.2.18 to x. We have the following version of Theorem 2.2.21 for x.
Notice that we don’t need a connected weight grading for it to hold. In particular, it also works
without restrictions even if the quadratic data is not reduced.

Theorem 2.3.8. Let & = Z(E, R) a quadratic operad. The following are equivalent.
1. The right Koszul complex &' o,, & is acyclic.
2. The left Koszul complex & o, &' is acyclic.
3. The canonical inclusion i : &' — B is a quasi-isomorphism.
4. The canonical projection p : Q' — P is a quasi-isomorphism.
Proof. This is [LV12, Thm. 7.4.2]. O

Corollary 2.3.9. Suppose & is a Koszul operad. Then the operad Q%' is the minimal model of 2. It
will often be denoted by P .

Therefore, we have a minimal model for any Koszul operad. Checking that an operad is Koszul
looks like a difficult problem, but one has various methods of doing it which do not involve
checking if the right or left Koszul complex are acyclic. This is the topic of [LV12, Ch. 8]. It is
outside the scope of the present work, and we will not mention this problematic again.

2.3.3 Homotopy algebras and homotopy morphisms

Given an arbitrary operad &, often the category of #-algebras does not have very good ho-
motopical properties. However, whenever & is Koszul there is a notion of &7-algebra up to
homotopy which is much better behaved. The material presented here is contained in [LV12,
Ch. 10].

For this section, we fix a Koszul operad &.

Definition 2.3.10. A homotopy Z?-algebra is an algebra over the operad P, = Q.. We also use
the name & -algebras for homotopy ?-algebras.

Notice that every & algebra is also a &-algebra via restriction of structure along the projection
P — Z. The following point of view on & -algebras is often useful.

Proposition 2.3.11. A structure of &-algebra on a chain complex A is equivalent to a twisting mor-
phism ¢4 € Tw(2',Endy).

Proof. This is an immediate consequence of Proposition 2.1.22 and Theorem 2.2.17. O

Proposition 2.3.12. A P.-algebra A is a P-algebra if, and only if the twisting morphism @4 is
concentrated in weight 1.

Proof. This is [LV12, Prop. 10.1.4]. O
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Proposition 2.3.13. Let A be a graded vector space. A structure of & -algebra on A is equivalent to a

square-zero coderivation on the (non-differential) graded cofree &'-coalgebra 2’ (A).

Proof. This is [LV12, Prop. 10.1.11] O

One can of course consider the category of & -algebras with the morphisms of &2 -algebras
between them. However, there is a notion of morphism of & -algebras "relaxed up to homo-
topy" which has better homotopical properties.

Definition 2.3.14. Let A and A’ be two & -algebras. An oo-morphism ¥ of & .-algebras from A to
A', denoted by U : A ~~ B, is a morphism of &'-coalgebras

U P(A) — P(A)

between the 27'-coalgebras associated to A and A’ through Proposition 2.3.13. The composition of oo-
morphisms is induced by the usual composition of morphisms of &' -coalgebras. The category of P oc-
algebras with co-morphisms as morphisms is denoted by co-P.-alg.

Since an co-morphism W of & -algebras is a morphism between cofree coalgebras, it is com-
pletely determined by its projection

PA) — PI(A) 2 4,

which we will again denote by ¥, abusing notation. Therefore, such an co-morphism is equiv-
alent to a collection of maps

Yt P'(n) @, A" — A
satisfying certain relations.

From now on, we suppose that the quadratic data (E, R) describing 7 is such that F(0) =
E(1) = 0. Then the cooperad ' is reduced, and 1/, is a chain map

1 A— A

There is an analogous point of view for general Koszul operads treated in [LV12, p.373], where
the map 1; above corresponds to 1 (g, but we will not use it.

Notice that every morphism of #,,-algebras ¢ : A — A’ is an co-morphism by ¥ := £/(¢)). For
the converse direction, we have the following.

Proposition 2.3.15. An oo-morphism U : A ~» A’ of Poo-algebras is a strict morphism of Po.-
algebras if, and only if 1, = 0 for all n > 2.

Proof. This is [LV12, Prop. 10.2.5]. O

Finally, we introduce the important notion of co-quasi-isomorphism.

Definition 2.3.16. An oo-morphism of P-algebras ¥ : A ~ A’ is an oco-quasi-isomorphism if
yn : A — A’ is a quasi-isomorphism.

The notions of co-morphisms in general and co-quasi-isomorphisms in particular will be stud-
ied some more later, in Section 2.5, as well as in Chapter 8.
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2.3.4 The homotopy transfer theorem

The homotopy transfer theorem is an important result on the homotopical behavior of algebras
over (cofibrant) operads. It tells us that if we have a homotopy retraction between two chain
complexes — which in particular implies being homotopically the same — and an algebra struc-
ture over one of them, then we can produce in a very natural way an algebra structure on the
other one which has the same homotopical information.

The first notions we need is those of homotopy retractions and contractions of chain complexes.

Definition 2.3.17. Let V, W be two chain complexes. A homotopy retraction of V' into W is three
maps

P

hCV

such that pi = 1y and 1 — ip = dyh + hdy. It is a contraction if the side conditions

w

i

=0, ph =0, and  hi=0
are satisfied.

Remark 2.3.18. It is possible to construct a sensible category whose objects are the homotopy retractions,
cf. Section 6.5.1.

Let & be a Koszul operad, let A be a &-algebra, and suppose that we have a contraction of
chain complexes

hCAiB

i

The transfer problem asks under what conditions it is possible to produce a #.,-algebra structure
on B such that i extends to an co-morphism of &2 -algebras. It turns out that this is always true.
This result is known as the homotopy transfer theorem, and has been developed throughout the
years by many authors. It has been known for a long time for o.-algebras — see [Kad80, Thm.
1], and e.g. [KS00, Sect. 6.4] for an explicit formula in terms of trees — and Z..-algebras. It was
proven for Z..-algebras — and more generally for algebras over Q% for ¢ a reduced cooperad*
— in [Berl4a, Thm. 1.5] with explicit formulee, but the existence part was already known by
[BMO03] and [Fre09b]. Another approach using pre-Lie deformation theory was recently given
in [DSV16, Sect. 8]. For a more extensive review of the literature on this result, we refer the
reader to the introduction of [LV12, Sect. 10.3] and to the survey [Stal0], which also provides
a nice historical perspective, as well as links with theoretical physics. The formule we will
present here are found in [LV12, Sect. 10.3].

The main tool we need to give explicit formulee for the transfered structure and the induced oo-
morphisms is the van der Laan morphism [VAL03] associated to the contraction. It is a morphism
of cooperads

VdLB : B(EHdA) — B(EHdB)

defined as follows. An element of B(End4) = 9°(sEndy) is given by a rooted tree 7 € RT with
vertices labeled by elements of sEnd4. Using the notations of Appendix A, we write 7(f) for
such a tree, where f : V — sEnd, is a function from the set of vertices of 7 to sEnd 4. Given

4This slightly more general case will be explained later, in Section 9.3.1.
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such a tree 7(f) with 7 # (), we denote by 7"(f) the element of End 4 defined as follows. If
T = ¢, is the n-corolla, then

Cn(f) = f(*) .

Else, we write 7 = ¢ o (71, ..., 7x), where 7; € RT,,, are possibly empty, and define

Th(f) = YEnda (f(*) © (h’silTlh(f|V1)v R hsilT/?(f|Vk)) )

where * is the unique vertex of ¢, V; is the set of vertices of 7;, and where we formally set
¢h = h~1. Then we define

VALg(7(f)) = s(pr"(f)i®")

to obtain a map
VdLg : B(Ends) — sEndp .

The drawing in [LV12, p. 378] might prove illuminating to the reader confused by the exposition
above. By universal property of the bar construction, this map extends to give a morphism

B(Ends) — B(Endp)
of cooperads in graded vector spaces, which we denote again by VdL gz, abusing notation.

Theorem 2.3.19 ([VAL03, Thm. 5.2]). The map
VdLp : B(End,) — B(Endg)
described above is a morphism of cooperads.

A proof of this result can also be found in [LV12, Prop. 10.3.2]. The transfered structure on B can
now be expressed as follows. The & -algebra structure on A is given by a twisting morphism
pa € Tw(Z',Enda). This is equivalent to a morphism of cooperads

fA : @i — B(EndA)
by Theorem 2.2.17. We compose this with VdL g to get a morphism of cooperads
VdLgfa: 2" — B(Endp) ,

which again is equivalent to a twisting morphism ¢ € Tw(Z', Endp) defining a &.-algebra
structure on B. Of course, this is nothing else than ¢ = VdLp fa. Explicitly, the structure is
given by

monadic

o5 = (@i Sz ge(zr) 2024 pipng ) Yibe, End3> :

This explicit formulation for the transferred structure first appeared in [GCTV12].

Next, one defines a map _
oo : P'(B) — A

amenadicgy

oo 1= (ﬁioB”—>

VdLyolp
Ty

g (27 oBMB(EndA)oB EndfoB—>A>,

where End% is the S-module given by End% (n) := homc,(B®", A), the map

VALY, : B(End,) — End%
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is given on an element of B(End 4)(n) by
VdLp(7(f)) = hr" (£)i",
and where the last arrow is the obvious evaluation map.

Theorem 2.3.20 (Homotopy transfer theorem). The map i, defines an co-quasi-isomorphism from
B with the & -algebra structure defined above to A.

Proof. E.g. [LV12, Thm. 10.3.6]. O
The following fact is also important and will prove useful later on.

Proposition 2.3.21. Themap p : A — B can also be extended to an co-quasi isomorphism ps, : A ~~ B.
Moreover, it can be take such that the composite

Dooloo = 1B
is the identity on B.

An explicit formula for p, together with a proof of this result, can be found in [LV12, Prop.
10.3.9] and [DSV16, Thm. 5].

We will now give some examples of algebras up to homotopy and their homotopy transfer
theorems.

2.3.5 Homotopy associative algebras

Our first example is that of homotopy associative algebras, i.e. 9d-algebras. This kind of alge-
bra has a long history in the literature. For example, they appear naturally when one considers
the Massey products of topological spaces, cf. Section 2.3.9. For this subsection, we work in the
non-symmetric setting, so that by associative algebra we mean an algebra over the operad As,
cf. Section 2.1.6.

A straightforward computation using Proposition 2.3.4 shows that As' = As. Then, we have
ASi ~ (y—l)c ® (@!)V _ (y—l)c ® ASV.

This cooperad is spanned in arity n > 2 by ., 'Y, The operad As is Koszul, see e.g. [LV12,
Thm. 9.15], and thus, the operad s, := QAs' is a minimal model for As. It is freely generated
by the operations

M =57

The only thing left to determine in order to understand ¢ ..-algebras is the differential of the
operad 9. As defined in Section 2.2.6, this is given on m,, by

dgqoc (mn) = dl(mn) + dz(mn) s

where d; = 0 since the differential on As is trivial, and where d2(m,,) is obtained by

my, — — (571 ® 871) ® Z (71)(j71)(17ng)+(n271)(17n1){yn711‘ux1 ®j y;;:“;;

ni+nz=n+1
1<j<m

= Z (_1)(1—n2)(j+m)+(1—m)((),—15;"—11/1%l ®; s LI

ni+ns=n+1
1<j<m
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—7)+j+1
— E : (_1)n2(n1 J+it+ My @ My -
ni+ns=n+1
1<j<n

where the signs come from the Koszul sign rule’. Summarizing, an ¢l..-algebra is defined as
follows.

Definition 2.3.22. An dl-algebra A is a chain complex together with operations

My, A% — A forn > 2

satisfying
A(my,) = Z (—1)m2m=DHitly, @om,,
ni+neo=n+1
1<j<m
foralln > 2.

If we write explicitly what that means for n = 2, 3, we get that
d(ma) =0,
ie. dama(z,y) = ma(daz,y) + (=1)"ma(x,day), and
d(m3) = ma2 ®1 Mo — My @2 Ma ,

which tells us that the binary operation m is not associative, but it is up to a homotopy given
by the ternary operation mg. The relations for n > 4 are higher compatibilities between the
operations.

If A and B are d.-algebras, an co-morphism ¥ : A ~» B between them is a collection
P, A®" — B

of linear maps of degrees |¢,,| = n — 1 which put together form a coherent morphism of As'-
coalgebras

U As'(A) — AS'(B) ,
where the differential of As'(A) and As'(B) is the one given by Proposition 2.3.13. Explicitly, let
n>2and ay,...,a, € A, and for brevity write ¢ :== a1 ® - - - ® a,,. Then

\I’(ynilﬂx(@a): Z iyk_lﬂz(gwml(ala"waml)®"'®wmk(amk+la"'aan)»

k>2
mi+-+mrp=n

where the sign comes both from the decomposition of .#,!, and from a Koszul sign coming
from the fact that we have to switch the maps v,,,, which have degree 1 — m,, and some of the

elements of A. The differential of As'(A) is explicitly given by

dagi(a) (St ®a) =

51n particular, to compute the sign associated to the decomposition of .%;; *, one knows that the part with underlying
tree cny 0 Cn, is of the form (—1)6y,fll ®; 5’{21. To find €, one computes on one side <A(1>(Y{1), Ty Qf Fng) =
()Tt @) Fng's Fny @ Fnp) = (=1)t(2=DA=71) and on the other side (A(l)(Yn_l),y’nl ®j Fna) =
(St (~1)E-DA=n2) gy — (1) -1 (1-n2),
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= (=1)"' Iy © daen (a)+
+ Z iyn_11”7\i1®a’1®”'aj*1®m'r?2(aj""7aj+n2)®a’j+n2+1®"'®a’n>

ni+ns=n+1
1<j<ny

where again the sign comes both from the decomposition of .7, 1, and from the Koszul rule.
Imposing
dAS'(B)\I’ == \I/dASA(A)

and projecting on A, we obtain the relations

5‘(?/1n)+ Z :l:kaO(’l)Z)ml,...,’l)[)mk) = Z :l:wnl Oj mﬁ2 .

k>2 ni+ng=n+1
mi+--+mp=n 1<j<n:
The homotopy transfer theorem is given as follows. Let

WCA——0p

k3

be a contraction, and suppose that A is an s..-algebra with operations m: for n > 2. The
monadic decomposition map in As" is given by

R () = Yt ppy)
tePT,

and thus the transfered structure on B is given by

mB = Z + pt" (v mﬁ|)i®”,
tePT,

where the signs come from the monadic decomposition of .7, *.

2.3.6 Homotopy commutative algebras

Another type of algebra up to homotopy which we will encounter later, e.g. in Section 10.3, are
commutative algebras up to homotopy, often called ¢.-algebras. These also appeared in the
literature long before the theory of Koszul duality for operads, see [Kad88].

An easy computation shows that we have
Com' = Lie and Lie' = Com,

see e.g. [LV12, Sect. 7.6.4], while the methods of [LV12, Ch. 8] show that both operads Com and
Lie are Koszul. Therefore, its minimal model is given by

ro = QCom'

where _
Com' = (1) ® Lie".

However, the operad Lie is complicated and difficult to treat, due to the Jacobi relation. Thus,
one has to go another way in order to understand %x-algebras a bit better.
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Let A be a chain complex, and let p,q > 1. A non-trivial (p, q)-shuffle of elements of A is an
element of A®(P+9) of the form

Z (=1)%o(1) © -+ ® Ao (pig)

o€L(p,q)

for ay,...,ap+q € A, where € is the Koszul sign. In other words, it is the sum over all the ways
of shuffling a1 ® --- ® ap and ap+1 @ -+ - @ ptq.

Proposition 2.3.23 ([LV12, Prop. 13.1.6]). A €x-algebra is an d.-algebra such that each one of the
generating operations m,, vanishes on all non-trivial (p, q)-shuffle of elements of A, for p+ q = n.

The co-morphisms of € -algebras are similarly characterized.

Proposition 2.3.24. Let A, B be two 6..-algebras. An oo-morphism ¥ : A ~» B of €-algebras is an
oo-morphism of A .-algebras such that each of its components

Y, A" — B
vanishes over all non-trivial (p, q)-shuffle of elements of A, for p+ g = n.

One may also wonder if the homotopy transfer theorem for %..-algebra structures can be re-
covered from the one for s -algebras. The answer is positive.

Theorem 2.3.25 ([CGO08, Thm. 12]). Suppose we obtain an s .-algebra structure on a chain complex
B by homotopy transfer from an d.-algebra A. If A were a €.-algebra, then so is B with the transfered
A o-algebra structure, and this structure corresponds with the one obtained by homotopy transfer for
Coo-algebras.

2.3.7 Homotopy algebras over the dual numbers and spectral sequences

One can recover the spectral sequence associated to a bicomplex via an application of the ho-
motopy transfer theorem. This example is extracted from [DSV15, Sect. 1].

The operad of dual numbers — which we will denote by Z in this section, but which will not
make any other appearances in the rest of the present work — is the quadratic operad

2= P(KA, Ao A),

where A is an arity 1 element of degree 1. An algebra over & is a chain complex A together
with an operation
A:A— A

such that A? = 0 and dA+Ad = 0. In other words, a Z-algebra is nothing else than a bicomplex.

It can be shown that the operad Z is Koszul. Thanks to Proposition 2.3.4, one sees that its
Koszul dual operad is

P'=2(sIAY),
with no relations, and thus its Koszul dual cooperad is concentrated in arity 1, where it is given
by

7'(1) = P Ko,

n>1
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with §,, corresponding to the dual of (s'AY)™. We have |4,,| = 2n and

A(1)(571) = Z Ony © 0ny -

ni+ne=n

It follows that the minimal model for & is the operad Z, freely generated by Ay, A,, ..., where
A, corresponds to s716,, in Q2" and has degree 2n — 1. These operators satisfy

dAn + And - — Z Anl o Ang I
ni1+n2=n
or, writing Ay :=d,
Z Ay oA, =0.

ni+ne=n
A 9 .-algebra is also known as a multicomplex.

Let A be a bicomplex. Since we work over a field, one can always choose a contraction

p

hCA<7H(A)

i

from A to its homology H(A). The homotopy transfer theorem endows H(A) with a multicom-
plex structure, where
A, =pAhAh---hAji.
_—

n copies of A

The operator A, is essentially the differential of the nth page of the spectral sequence associated
to the bicomplex A.

2.3.8 Homotopy Lie algebras

This last example is the most important for the original results of this work. Homotopy Lie alge-
bras — also known as strong homotopy Lie algebras, or £..-algebras — have a long history in
the literature, where they appeared in a multitude of subjects. For example, they arise naturally
in Kontsevich’s proof of deformation quantization of Poisson manifolds [Kon03], in string field
theory [Zwi93], in derived deformation theory [Pril0], [SS512] and others, as algebras of sym-
metries for conformal field theories [BFT17], in symplectic topology [Kon95], [Sei08], [FOOO09]
and others, as rational models for mapping spaces [Ber15], and in many other places.

As already stated before, we have
Lie' = Com ,

and the usual methods prove that Lie is Koszul. Therefore, its minimal model is given by
P = QLie' |

and .
Lie' 2 (1) ® Com".

Since Com is 1-dimensional in every arity, Z. is freely generated by the operations

by =51 € Loo(n), n>2,
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which have degree |¢,,| = n — 2. The only thing left to study is the differential, which is given
by
e (ln) = d1(ly) + da2(ln)

where d; = 0 since the differential of Com is trivial. The d2(¥,,) is given by

by —(s'@sTHe Y (=)merhOmmdte (gl @) S ey, )

ni+ne=n+1
oew(ni,na—1)

= Z (_1)n2(n171)+a+1(€n1 @1 €n2)o.

ni+ns=n+1
oc€w(ny,ne—1)

In summary, an £..-algebra is defined as follows.

Definition 2.3.26. An £..-algebra g is a chain complex together with graded antisymmetric operations
(also called brackets)

by, :g®" — g forn>2
satisfying
8(€n) _ Z (—1)“2(n1_1)+g+1(€n1 ®1 €n2)0
ni+ngs=n+1
cew(ni—1,n2)
foralln > 2.

Proceeding as we did in Section 2.3.5, we obtain that an co-morphism of £-algebras ¥ : g ~~ |
is a collection of linear maps
Y g% — b

of degree |1),,| = n — 1 that are antisymmetric and satisfy

W)+ D B oWy ) = D (W, 01 )

k>2 ni+ns=n+1
mit-tme=n fcwi(ni,na—1)
ocew(ma,...,mg)

Finally, for the homotopy transfer theorem, if

nCo——%

is a contraction and g is an £-algebra, then the transferred &..-algebra structure on § is given
by
h .
0= Z +pr" (v — Elgv‘)z(g".
T€RT,,

As usual, the signs come from the decomposition map of (. ~1)c.

2.3.9 Operadic Massey products

Given a chain complex V/, one can always obtain a (non-canonical) contraction

WCV e/ ")

i
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from V to its homology H (V). It can be done as follows. For each n € Z, choose a complement
of the subspace of cycles Z,, (V') and notice that it is isomorphic to the boundaries %,,_1 (V') via
the differential. Thus,

Now choose a complement of %&,,(V') in Z,,(V') and notice that it is isomorphic to H, (V). There-
fore, we have
Vo 2B, (V)e H (V) ®Bp_1(V) .

Define i by sending H (V') to the chosen copy of H(V) in V, p by projecting onto the copy of
H(V)inV, and h on V,, by first projecting onto %,,(V') and then identifying it with the copy of
B, (V) contained in V,, .

Lemma 2.3.27. The three maps described above form a contraction from V to H(V').
Proof. By inspection. O

Let A be an ¢l .-algebra. For example, one can take the the singular cochain complex® of a
topological space X with coefficients in the field K together with the cup product — an asso-
ciative algebra. Then the choice of a contraction as above gives an ,-algebra structure on the
homology H(A) of A.

There is a well known classical construction of higher products — the Massey products — on
the homology of an o .. -algebra due to Massey [Mas58] and May [May69]. As one might expect,
the induced 9 .-algebra structures on H (A) are strictly related to the Massey product. The exact
relationship has been studied in [MF17].

2.4 Bar and cobar construction for (co)algebras

Given an operadic twisting morphism a : ¥ — &2, it is possible to define a bar-cobar adjunction
relating the category of conilpotent ¥-coalgebras and the category of #?-algebras. This helps
for example to give a cleaner definition of the notion of co-morphisms, and will be the base for
a generalization of the notion which will be exposed in Chapter 8. One also has a notion of
twisting morphism relative to a giving a result analogous to Theorem 2.2.17 for (co)algebras.
The material presented here comes from [LV12, Sect. 11.1-3].

2.4.1 Bar and cobar construction relative to a twisting morphism

We begin with the definition of the bar and cobar construction relative to a twisting morphism.
For the rest of this section, fix a twisting morphism o : ¢ — Z.

Let Abe a & algebra, then we define a conilpotent ¢’-coalgebra by
BoA = (F(A),dp 4 =d1 + d2),
where d; == dg 014 + 14 o' da, and ds is the unique coderivation extending the composite
C(A) 2214 p(Aa) 22 4
That is to say, the full expression for d, is given by the composite

E(A) 2O (¢ oy €)(A) LD (@ o) P)(A) 2 o (4 P(A)) A0, 4y

The theory works exactly the same if we exchange chain and cochain complexes, of course.
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The coderivation dp_ 4 squares to zero by [LV12, Lemma 11.2.1]. Given a morphism f : A — A’
of &-algebras, we obtain a morphism of conilpotent ¢-coalgebras by

Bof =%(f) : BaAd — B, A",
and this assignment is functorial.

Definition 2.4.1. The functor
B 1 P-alg — conil. €-cog

defined above is called the bar construction (relative to ).

Dually, let C be a conilpotent ¢-coalgebra. We define a 7-algebra by
0,C = (2(C),da,c =di +d2),

where d; :=dg o 1p + 15 o dp and —ds is the unique derivation extending the composite
C 2% ¢ (0) 2 2(0).

Similarly to the previous case, the full expression for —d, is given by the composite

@(C) M} P o (C;%(C))
12200, g0 (C; 2(C)) = (2 oy P)(C)

Ymyole
S

P2(0).

Once again, the derivation dq_ ¢ squares to zero, see [LV12, Lemma 11.2.4]. Given a morphism
g : C" — C of ¢-coalgebras, we obtain a morphism of Z7-algebras by

Qag = 2(9) : QC’ — Q,C,
and this assignment is functorial.

Definition 2.4.2. The functor
Qg : conil. €-cog — H-alg
defined above is called the cobar construction (relative to ).

The relative bar construction gives us a cleaner way to define & -algebras for & a Koszul
operad and co-morphisms of & -algebras.

Proposition 2.4.3 ([LV12, Prop. 11.4.1]). Let & be a Koszul operad. The bar construction B, associ-
ated to the twisting morphism v : 2" — Q' extends to an isomorphism of categories

B, : 00-P.-alg —> quasi-free 2'-cog

from the category of Pw-algebras with their oo-morphisms to the full subcategory of the conilpotent
P'-coalgebras given by the quasi-free coalgebras, i.e. the ones whose underlying &'-coalgebra in graded
vector spaces is of the form Z' (V).

In other words, if A is a &-algebra, then B, A is the Wi-coalgebra given by Proposition 2.3.13,
and an co-morphism of &-algebras is a morphism of coalgebras between the bar construc-
tions.
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2.4.2 Relative bar and cobar constructions and quasi-isomorphisms

Quasi-isomorphisms behave really well with respect to the bar construction.

Proposition 2.4.4 ([LV12, Prop. 11.2.3]). Let o : € — 22 be a twisting morphism, and let f : A — A’
be a quasi-isomorphism of &?-algebras. Then

Bof:BaA — B, A’
is a quasi-isomorphism.
They behave a bit worse with respect to the cobar construction.

Proposition 2.4.5 ([LV12, Prop. 11.2.6]). Let o : € — & be a twisting morphism, and let g : C' — C
be a quasi-isomorphism between connected conilpotent ¢ -coalgebras, i.e. €-coalgebras that are 0 in
degrees smaller or equal to 0. Then

Qog = P(g) : Q0" — Q,C
is a quasi-isomorphism.
There are quasi-isomorphisms between conilpotent ¢-coalgebras that are not sent to quasi-iso-

morphisms by the cobar construction §2,, see e.g. [LV12, Prop. 2.4.3].

2.4.3 Relative twisting morphisms

Let C be a conilpotent ¢-coalgebra, and let A be a &7-algebra. We consider the operator *, of
degree —1 acting on the chain complex hom(C, A) given by the composite

*4@::@%ﬁ%%003%%@oAlﬁA)

for ¢ € hom(C, A).

Definition 2.4.6. A twisting morphism relative to « is an element ¢ € hom(C, A) of degree 0
satisfying the Maurer—Cartan equation

I(p) +*xalp) =0. (2.3)

We denote the set of all such relative twisting morphisms by Tw,(C, A).

2.4.4 Bar-cobar adjunction for (co)algebras

Similarly to the operadic case, the bar and cobar functors form an adjoint pair, cf. Theo-
rem 2.2.17.

Theorem 2.4.7. Let o : € — & be an operadic twisting morphism, let C be a conilpotent €-coalgebra,
and let A be a &-algebra. There are bijections

hom #7415 (Q2aC, A) = Two (C, A) = homeg.cog (C, BoA) ,

natural both in C and A. In particular, Q. and B,, form an adjoint pair.
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Proof. We prove the first bijection, the second one being dual. A morphism of #-algebras f :
Q,C — Aisin particular a morphism of algebras in graded vector spaces from Z#?(C) — A, and
is therefore completely determined by its restriction ¢ := f|¢c to C. In the other direction, given
 we recover f as

f=74(1p0p).
We only need to show that f commuting with the differentials is equivalent to ¢ satisfying the
Maurer—Cartan equation (2.3). The restriction to C' of the relation

daf = fda,c
gives
dap = —@dc — flaole)Ac
= —pdoc —va4(lz o p)(aole)Ac
= —pdc —yalaop)Ac
= —pdc — *(X(QO) .

Therefore, if f commutes with the differentials, then ¢ satisfies the Maurer-Cartan equation.
The other direction also follows from this computation and from the fact that the restriction to
C determines the whole morphism. O

2.4.5 Bar-cobar resolutions of (co)algebras

Now we would like to use the bar-cobar adjunction for (co)algebras to give (functorial) resolu-
tions of the same, as we did for operads in Section 2.2.8. This is indeed possible, but we have to
further require that « is Koszul.

Theorem 2.4.8. Let a : € — & be a twisting morphism. The following are equivalent.
1. o is a Koszul morphism.

2. The counit
€a:NoBsA— A

of the bar-cobar adjunction is a quasi-isomorphism for any &-algebra A.

Remark 2.4.9. In particular, the bar-cobar adjunction provides a cofibrant resolution for &-algebras,
cf. Section 3.3.6.

Proof. Thisis [LV12, Thm. 11.3.3]. O

Remark 2.4.10. This is true as stated because we supposed that all of our (co)operads are reduced, and
thus are canonically connected weight graded by the arity. In more generality, one has to assume that €
and & are connected weight graded, and that o preserves this additional grading.

A similar statement is true for coalgebras.
Theorem 2.4.11. Let o : € — & be a twisting morphism. The following are equivalent.
1. o is a Koszul morphism.

2. The unit
ne : C — B,Q,C

is a quasi-isomorphism for any conilpotent € -coalgebra C.
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Remark 2.4.12. A refinement version of the implication (1) = (2) has been given in [Val14, Thm.
2.6(2)I". We will present it in more details in Section 3.3.7, see Corollary 3.3.19.

Proof. This is [LV12, Thm. 11.3.4]. O

2.5 Homotopy theory of homotopy algebras

In this section, we give some results on the homotopy theory of & -algebras, for & a Koszul
operad. The homotopy theory of homotopy algebras, and more generally of (co)algebras related
by an operadic Koszul morphisms will be studied again in more detail in Section 3.3.7 and
Section 8.2. The material presented here is extracted from [LV12, Sect. 11.4]. For this section,
fix a Koszul operad &, and as usual let x : ' — & be the Koszul morphism given by Koszul
duality, and let ¢ : &' — 2. be the canonical twisting morphism, which is also Koszul.

2.5.1 Rectification of & -algebras

Every &7-algebra is in particular a & -algebra. This can be done as follows. Let g,, : Poc = &
be the morphism of operads given by Theorem 2.2.18 applied to & = x. Notice that it is a
quasi-isomorphism by Theorem 2.2.21. Then the restriction of structure g gives the desired
functor

g P-alg — Po-alg.

Denote by
i: P-alg — co-P-alg

the composite of g’ with the inclusion of &-alg into co-P;-alg. On the other hand, we have
the functor
Q.B, : 00-P o-alg — H-alg

where B, is the extension of the bar construction of Proposition 2.4.3.
Proposition 2.5.1. The functors described above form an adjoint pair
Q.B,: co-P-alg = H-alg :i.
Proof. This is [LV12, Prop. 11.4.3]. O

Theorem 2.5.2. Let A be a & -algebra, then there is an co-quasi-isomorphism
A% QBA,

natural in A. Moreover, the &2-algebra ,,B, A is unique, up to isomorphism, with respect to the uni-
versal property that any oco-morphism with A as domain and a &-algebra as target factors into the
oo-quasi-isomorphism above followed by a strict morphism of &?-algebras.

Proof. This resultis [LV12, Thm. 11.4.4, and Prop. 11.4.5 and 11.4.6]. O

The functor Q,.B, is called the rectification functor for Z.-algebras. In fact, it gives an equiva-
lence between the homotopy categories of co-Z;-alg and #?-alg, where in co- P, -alg the weak
equivalences are the co-quasi-isomorphism. See [LV12, Sect. 11.4] for details.

"It is stated there only for the twisting morphism x given by Koszul duality, but the result holds in general for
twisting morphisms between connected weight graded (co)operads. In particular, it always hold in our setting.
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2.5.2 Relation between quasi-isomorphisms and co-quasi-isomorphisms

Quasi-isomorphisms and oco-quasi-isomorphisms are closely related. The following result is
of fundamental importance, for example in interpreting certain classical definitions in rational
homotopy theory, cf. Chapter 5.

Theorem 2.5.3. Let A and B be two & -algebras. The following are equivalent.

1. There is a zig-zag of quasi-isomorphisms of &..-algebras
A 00 oo 5B
2. There are two quasi-isomorphisms of & .-algebras
A e B.
3. There exists an co-quasi-isomorphism of &.-algebras
AS B,
Proof. The case where A and B are #-algebras is proven in [LV12, Thm. 11.4.9]. The more

general case of P,-algebras is done similarly, but in order to prove (1) = (3) one has to use
a model categorical argument, cf. the case for coalgebras of Theorem 8.2.6. O

An immediate consequence of this result is the following one.

Corollary 2.5.4. Let A and B be two &P -algebras. If there is an co-quasi-isomorphism
A% B,

then there exists an co-quasi-isomorphism in the other direction

BX AL



Chapter 3

Model categories

Model categories were introduced by Quillen in [Qui67] in order to do “non-linear homological
algebra”, also known as homotopical algebra. They give a generalized framework in which to
study homotopy theory in some category, which consists into taking a category and formally
inverting some morphisms that one would like to consider as equivalences. Two motivating
examples are:

1. One considers the category of topological spaces and wants to study their homotopy
groups. Therefore, one wants to formally invert continuous maps that induce isomor-
phisms on all homotopy groups, so that the isomorphisms classes of the new category
correspond to the existing homotopy types of topological spaces.

2. One considers the category of chain complexes and wants to study their homology. There-
fore, one wants to invert quasi-isomorphisms, i.e. the chain maps inducing isomorphisms
in homology. Trying to do this, one essentially recovers classical homological algebra.

In this chapter, we will give a fast introduction to model categories and the concepts surround-
ing them, and then give examples, some for motivation, and some because we will need them
later on. Our main references are the books [Hov99], and [G]09, Ch. II], but the reader should
be aware that there are many good items on this subject in the literature, such as the already
mentioned seminal work [Qui67], and [DS95]. One should also mention that model categories
have been somewhat superseded by co-categories! in the recent years. The topic is outside the
scope of this work, but the interested reader should have no problems finding references on the
subject, e.g. starting with [Lur(09].

3.1 Model categories

We begin by giving the basic definitions of model categories and explaining the notion of a
homotopy between morphisms in a model category.

3.1.1 Definitions

Without further ado, we give the definition of a model category.

Definition 3.1.1. A model category? is a category C, together with three classes of arrows W, F and

IMore precisely, (co, 1)-categories, of which one model are quasicategories.
2Sometimes, this is called a closed model category.

55



56 CHAPTER 3. MODEL CATEGORIES

C — called respectively weak equivalences, fibrations, and cofibrations — satisfying the following
properties.

M1 The category C has all finite limits and colimits.

M2 Given two arrows f, g in C such that the target of f is the domain of g, if any two of f, g and gf
are weak equivalences, then so is the third. We say that W satisfies the 2-out-of-3 property.

M3 The classes of weak equivalences, fibrations, and cofibrations are all closed under retracts.

M4 Suppose we are given the following solid arrow diagram

where i is a cofibration, and p is a fibration. If either one of i or p is also a weak equivalence, then
there exist a diagonal filler (the dashed arrow in the diagram).

M5 Every arrow f in C can be factored both as f = pi with i a cofibration which is also a weak
equivalence and p a fibration, and as f = qj with j a cofibration, and q a fibration that is also a
weak equivalence.

We often abuse of notation and just talk of the model category C when no confusion is possible about the
three classes of maps.

Remark 3.1.2. There are many slight variations on the definition of a model category in the literature.
For example, [Qui67] asks that all limits and colimits exist in C, and [Hov99] moreover requires that the
factorizations of (M5) be functorial. As a rule of thumb, essentially all results that can be proven with
one version of the definition of a model category hold for all other sensible versions of the definition, with
at most minor changes if needed.

We will often emphasize the fact that an arrow is a cofibration by adding a tail to it, that it is a
fibration by giving it a double head, and that it is a weak equivalence by writing a ~ next to it.

It is usual to call trivial fibrations, respectively trivial cofibrations, the fibration, resp. cofibrations,
that are also weak equivalences. One often rephrases the axiom (M4) by saying that trivial
cofibrations have the left lifting property with respect to fibrations, or dually, that fibrations have
the right lifting property with respect to trivial cofibrations, and the same for the relation between
cofibrations and trivial fibrations.

Given a model category, one can characterize the fibrations and cofibrations.
Lemma 3.1.3. Let C be a model category.

1. A morphism if C is a fibration if, and only if it has the right lifting property with respect to all
trivial cofibrations.

2. A morphism if C is a trivial fibration if, and only if it has the right lifting property with respect to
all cofibrations.

3. A morphism if C is a cofibration if, and only if it has the left lifting property with respect to all
trivial fibrations.
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4. A morphism if C is a trivial cofibration if, and only if it has the left lifting property with respect to
all fibrations.

Corollary 3.1.4. Let C be a model category.

1. Cofibrations and trivial cofibrations are closed under pushouts and compositions, and all isomor-
phisms are cofibrations.

2. Fibrations and trivial fibrations are closed under pullbacks and compositions, and all isomorphisms
are fibrations.

One can also say something about weak equivalences.
Lemma 3.1.5. Let C be a model category. All isomorphisms are weak equivalences.
There are two sets of objects that play special roles in model categories.
Definition 3.1.6. Let C be a model category.
1. Anobject X € Cis cofibrant if the unique map
) — X
from the initial object to X is a cofibration.
2. Anobject X € Cis fibrant if the unique map
X — x

from X to the final object is a fibration.
We call an object bifibrant if it is both fibrant and cofibrant.

Notice that using (M5), for any object X € C one can find another object X which is cofibrant
and weakly equivalent to X, or fibrant and weakly equivalent to X. These new objects are
called cofibrant, resp. fibrant, replacements of X.

A very useful result about model categories is Ken Brown’s lemma.

Lemma 3.1.7 (Ken Brown's lemma). Let C be a model category, and let C' be a category with a class
of weak equivalences which satisfies (M2). Let F' : C — C' be a functor.

1. If F takes trivial cofibrations between cofibrant objects to weak equivalences, then F takes all weak
equivalences between cofibrant objects to weak equivalences.

2. Dually, if F takes trivial fibrations between fibrant objects to weak equivalences, then F takes all
weak equivalences between fibrant objects to weak equivalences.

3.1.2 Duality

Fibrations and cofibrations of a model category play dual roles, in a way which is made precise
by the following result.

Proposition 3.1.8. Suppose that C is a model category. Then the opposite category C°P is also a model
category with the same weak equivalences, the fibrations of C as cofibrations, and the cofibrations of C as
fibrations.

Therefore, it is usually only necessary to prove a result for fibrations in order to have a dual
result for cofibrations, and vice versa.
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3.1.3 Path objects, cylinder objects, and homotopies

Let C category with finite limits and colimits. If X € Cis an object, then the identity induces
two canonical maps. The fold map
V:XUX — X,

and the diagonal map
A: X —XxX.

Using these maps, one can define two notions of homotopy between morphisms in a model
category.

Definition 3.1.9. Let C be a model category, let X,Y € C be two objects, and let f,g : X — Y be two
morphisms.

1. A cylinder object for X is a commutative diagram

\Y

— T

XUXTC}II(X)+>X

with i a cofibration, and w a weak equivalence. We often abuse of notation and speak of the cylinder
object Cyl(X).

2. The two morphisms f and g are left homotopic if there exists a cylinder object Cyl(X) for X and
a morphism H : Cyl(X) — Y, called a left homotopy between f and g, such that

fug

XUuX

Y

]

We write f ~y g.

3. A path object for Y is a commutative diagram
A

Y S Path(Y) ———— ¥ x Y

with p a fibration, and w a weak equivalence. We often abuse of notation and speak of the path
object Path(X).

4. The two morphisms f and g are right homotopic if there exists a path object Path(Y') for Y and
a morphism H : X — Path(Y'), called a right homotopy between f and g, such that

fxg

T
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We write f ~,. g.

Remark 3.1.10. The notions of cylinder and path objects are inspired by topology. Indeed, there is a
model structure on the category of topological spaces for which a choice of cylinder and path objects for a
space X are the usual ones, namely X x I gives a cylinder object, and X' a path object, cf. Section 3.3.1.
This way, one recovers the usual notions of homotopy between continuous maps.

The following result tells us that the notions of left and right homotopy given above are well
defined and independent from the choice of cylinder, resp. path object.

Lemma 3.1.11. Let C be a model category, and let X € C be an object.

1. A cylinder object for X always exists. Any two cylinder objects for X are weakly equivalent. If
two morphisms are left homotopic with respect to a cylinder object, then they are for all cylinder
objects.

2. A path object for X always exists. Any two path objects for X are weakly equivalent. If two
morphisms are right homotopic for a path object, then they are for all path objects.

Proof. We will only prove the first result, the second one being dual. Existence of a cylinder
object is guaranteed by (M5). Applying it to the fold map, we factor it into

\Y

/—X)\

XI_IXTCyl( 4;»X

with w being not only a weak equivalence, but a trivial fibration. Suppose we are given a second
cylinder object

\%
XuXmX
(3 w

Then we have the following commutative diagram.

X UX ——— Cyl(X)

7' /SJ/ w |2
g N
D) ——— X

The dashed arrow exists by (M4), and it is a weak equivalence by (M2). So any two cylinder
objects are weakly equivalent. The last statement follows in a straightforward manner. O

If the domain of the arrows we consider is cofibrant, and if the target is fibrant, then the homo-
topy relations are very well behaved.

Proposition 3.1.12. Let C be a model category, and let X,Y € C be two objects.

1. If X is cofibrant, then being left homotopic is an equivalence relation on homc(X,Y).
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2. IfY is fibrant, then being right homotopic is an equivalence relation on homc(X,Y).

3. If X is cofibrant, and Y is fibrant, then two maps X — Y in C are left homotopic if, and only if
they are right homotopic. In this case, we simply say that the two maps are homotopic.

One can now give an analogue of the Whitehead theorem in the general context of model cate-
gories.

Definition 3.1.13. Let C be a model category, and let X,Y & C be two bifibrant objects. We say that
f X — Y is a homotopy equivalence if there exists a morphism g : Y — X such that fg ~ 1y and

gf ~1x.

Theorem 3.1.14 (Whitehead). Let C be a model category, and let X, Y € C be two bifibrant objects. If
f X — Y is a weak equivalence, then it is a homotopy equivalence.

3.2 Homotopy categories

As explained at the beginning of the chapter, one wants to formally invert some class of maps
to obtain the “homotopy category” of the original category. We explain the naive way to do
that and the problems in which one might incur, and then expose how one can do the desired
process if one wants to invert the class of weak equivalences in a model category.

3.2.1 Localization at a class of maps

Suppose that C is a category, and that W is a class of morphisms in C that one wishes to formally
invert.

Definition 3.2.1. The localization of C at W, if it exists, is a category C[W 1] together with a functor
F : C — C[W 1] satisfying the following universal property. If C' is another category, and G : C — C'
is a functor, then G factors through F' if, and only if every morphism in W is sent into an isomorphism
by G.

Remark 3.2.2. This is very closely related with localizations in rings and modules over rings.

One can try to construct the localized category C[W '] by taking the category with the same
objects as C, and as morphisms the words formed by composable morphisms of C and formal
inverses of morphisms in W, and then identifying the word fg with the composite of f and g
whenever f, g are in C, the words ww~! and w~!w with the identity whenever w € W and w™!
is its formal inverse, and the letter w~! with the inverse of w whenever w € W is invertible.
The problem with this process is that it adds a potentially huge amount of morphisms to C. So
many, in fact, that one easily incurs in set theoretical issues that make it so that the structure
C[W 1] defined this way is no longer a category.

3.2.2 The homotopy category of a model category

Now suppose that C is a model category. Then one can localize C at the weak equivalences, and
moreover one can give a relatively small equivalent model for the resulting category.

Definition 3.2.3. The homotopy category of C is the category Ho(C) which has as objects the bifibrant
objects of C, and if X, Y € Care two such objects, then

homye(c)(X,Y) = homc(X,Y)/ ~
is the quotient of the set of morphisms from X to'Y by the homotopy relation.
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Theorem 3.2.4. Suppose that C is a model category. Then the localization C[W ~1] of C at the class of
weak equivalences exists, and moreover there is an equivalence of categories

Ho(C) — C[W ]
between the homotopy category of C and this localization.
In particular, we have the following result.

Lemma 3.2.5. Suppose X1, X2,Y € Care bifibrant, and let ¢ : X1 — X be a weak equivalence. Then
the maps

(b* : hOHlHO(C) (XQ, Y) — homHO(C) (Xl, Y) and qb* : homHO(c) (Y, Xl) — homHo(c) (Y, XQ)
are bijections.

Proof. This looks trivial with the statement to Theorem 3.2.4, but it is in fact a step of the proof
of that result. See [Hov99, Prop. 1.2.5(iv)] for a proof. O

3.2.3 Quillen functors and Quillen equivalences

One is now interested in understanding under what conditions a functor between two model
categories induces a functor on the homotopy categories, and in particular when two categories
have equivalent homotopy categories®. The correct notions giving an answer to these questions
are Quillen functors, Quillen adjunctions, and Quillen equivalences. We will not use these concepts
a lot, and so we refer the reader to [Hov99, Sect. 1.3] for details.

3.3 Examples

Examples of model categories abound. In this section, we give a few ones. Some of them are
standard and we write them down for completeness, while others are less well known. The
model structures on chain complexes, operads, cooperads, algebras over operads, and coalge-
bras over cooperads will be of interest in the rest of the present work.

3.3.1 Topological spaces

The first example we give, which is the one on which model categories themselves are modeled
upon, is the category of topological spaces.

Theorem 3.3.1 (Quillen). The following three classes of continuous maps make Top into a model cate-

gory.

1. A continuous map f : X — Y is a weak equivalence if all of the induced maps on the homotopy
groups

7T(](f) : 7"—0()() — 71—0(}/) and Wn(fv .’b) : 71—n(AXv SL’) — Wn(Y7f(l'))

are isomorphisms, for all x € X and all n > 1.

3This can happen even when the two model categories are not equivalent themselves.
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2. A continuous map is a fibration® if it has the right lifting property with respect to all the inclusions
D™ — D" x I of the n-disk into the product of the n-disk with an interval given by sending x € D™
to (z,0) € D™ x I.

3. A continuous map is a cofibration if it has the left lifting property with respect to all trivial
fibrations.

As already mentioned in Remark 3.1.10, a cylinder object for a topological space X is given by
X x I,and a path object is given by X 7.

3.3.2 Simplicial sets

Simplicial sets are certain combinatorial objects whose homotopy theory is equivalent to the one
of topological spaces. Namely, the category sSets of simplicial sets admits a model structure’
and a Quillen equivalence with the model category of topological spaces. This will be discussed
in more detail in Chapter 4.

3.3.3 Chain complexes

Since model categories give us “non-linear homological algebra®”, one would like to recover
the usual homological algebra when treating chain complexes. This is indeed possible, by con-
sidering the following model structure on Ch.

Theorem 3.3.2. The following three classes of chain maps make the category Ch of chain complexes” into
a model category.

1. Achainmap f : V — W is a weak equivalence if it is a quasi-isomorphism, i.e. if all the induced
maps
H,(f): H,(V) = H,(W)

are isomorphisms, for all n € Z.

2. A chain map is a fibration if it is surjective in every degree.

3. A chain map is a cofibration if it has the left lifting property with respect to all trivial fibrations.
In particular, all chain complexes are fibrant.
Since we are working over a field, we have even more.
Proposition 3.3.3. All chain complexes are cofibrant.
Proof. For n € Z, denote by

D(n) =Kz, ® Kyp_1 and S(n) =Kz,

the chain complexes with |z,,| = |z,| = n, |yn| = n, and dx,, = y,_1. Since K is a field, every
chain complex can be written as a colimit of copies of D(n) and S(n), with varying n. Since the
colimit of cofibrant objects is cofibrant, it is enough to show that D(n) and S(n) are cofibrant.
Fix any trivial fibration f : V' — W, i.e. a surjective chain map which induces an isomorphism
in homology. Given

4 Also known as a Serre fibration in the literature.

5In fact, it admits more than one. Here, we mean the classical — or Quillen — model structure, as opposed to the
Joyal model structure, which is very important in the world of co-categories.

6See the very beginning of the introduction to [Qui67].

7Chain complexes do not have any boundedness assumption throughout this work, unless explicitly stated.
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g

we have the existence of the dashed lift 4. Indeed, g(z,,) represents a class in the homology of W.
Since f is bijective in homology, there exists a closed element v € V such that f(v) = g(z,) +dw,
for some w € Wy,41. Let w € V;,11 be any preimage of w under f, whose existence is guaranteed
by the fact that f is surjective. Then h(z,) = v — dw is a well-defined chain map lifting g.

Similarly, given

v
hoo
fR

D(n) 7 W

the dashed lift h exists. To see this, simply take any preimage v of g(x,) under f, and set
h(zy) = v, and h(y,) == dv. O

For details about this model structure, as well as references to the original literature, we invite
the reader to take a look at [Hov99, Sect. 2.3].

3.3.4 Operads

In his article [Hin97b, Sect. 6], Hinich introduced a model structure on the category of operads
in chain complexes. It is given as follows.

Theorem 3.3.4 ([Hin97b, Thm. 6.1.1]). There is a closed model structure on the category Op of operads
with

o the arity-wise quasi-isomorphisms as weak equivalences, and
o the arity-wise surjections as fibrations.

The cofibrations are the morphisms that have the left lifting property with respect to the class of trivial
fibrations. In particular, all operads are fibrant in this model structure.

We call this model structure the Hinich model structure on operads.

Proposition 3.3.5 ((MV09, Prop. 38%]). The cofibrant objects in the category of operads are the retracts
of quasi-free operads® whose generating S-module M admits an exhaustive filtration

My ={0} CF'M CF*MC--- C M = colimF"M

such that d(F*M) C T (F*~1M) and such that the inclusions F'M — F*T1M are split monomor-
phisms whose cokernel is isomorphic to a free S-module.

8This is Proposition 95 in the arXiv version of the article.
9Recall that a quasi-free operad is an operad of the form F (M) for some S-module M, endowed with some differ-
ential.
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The following corollary motivates various constructions seen in Chapter 2.

Corollary 3.3.6. Let & be an operad. The bar-cobar resolution QB &7 is a functorial cofibrant resolution
of &. Moreover, if & is Koszul, then the minimal resolution & of & also is a cofibrant resolution of
2.

3.3.5 Cooperads

There are various model structures one can put on the category of cooperads. A good example,
in the same spirit as the Vallette model structure that we will see in Section 3.3.7, can be found
in [LG17, Sect. 3].

3.3.6 Algebras over operads

A model structure on algebras over an operad was also given by Hinich in [Hin97b, Sect. 4].
Notice that, since our base field K has characteristic 0, every operad is S-split. Fix an operad .

Theorem 3.3.7 ([Hin97b, Thm. 4.1.1]). There is a closed model structure on the category &-alg of
P-algebras with

e the quasi-isomorphisms of &7-algebras as weak equivalences, and
o the surjective morphisms of &7-algebras as fibrations.

The cofibrations are the morphisms that have the left lifting property with respect to the class of trivial
fibrations. In particular, all &-algebras are fibrant in this model structure.

We call this model structure the Hinich model structure on &-algebras.

Lemma 3.3.8. Let o : € — & be a Koszul twisting morphism. Then every ?-algebra of the form
Q,C, where C'is a conilpotent ¢-coalgebra, is cofibrant.

Proof. This follows immediately from Theorem 3.3.9. O

3.3.7 The Vallette model structure for coalgebras over a cooperad

Let a : € — & be an operadic twisting morphism. The Hinich model structure on &-algebra
can be transfered along the relative cobar functor Q, to give a closed model structure on ¢-
coalgebras. This was done by Vallette [Val14] in the case where & is a Koszul operad and o = &
is the twisting morphism given by Koszul duality, and then generalized by Drummond-Cole-
Hirsch [DCH16] and Le Grignou [LG16].

The main results are the following ones.
Theorem 3.3.9. Let a : € — & be an operadic twisting morphism.

1. [Val14, Thm. 2.1(1)] and [LG16, Thm. 10 and Prop. 26] There is a closed model structure on
the category conil. €-cog of conilpotent €-coalgebras with

o the morphisms g : C — D of €-coalgebras such that Qg is a quasi-isomorphism as weak
equivalences, and

o the injective morphisms of €-coalgebras as cofibrations.
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The fibrations are the morphisms that have the right lifting property with respect to the class of
trivial cofibrations. In particular, all ‘€-coalgebras are cofibrant in this model structure.

2. [LG16, Prop. 32] If o/ = fa with f : &2 — P’ a quasi-isomorphism of operads, then the model
structure induced by o coincides with the model structure induced by «.

3. [Vall4, Thm. 2.1(2)] and [LG16, Thm. 14] Let ¢ : € — Q% be the canonical twisting morphism.
If o is Koszul, then the fibrant objects are exactly the conilpotent €-coalgebras isomorphic to a € -
coalgebra of the form B, A for some Q€ -algebra A.

4. Every €¢-coalgebra of the form B, A for A any &-algebra is fibrant.
5. [Vall4, Thm. 2.1(3)] and [LG16, Thm. 13] The bar-cobar adjunction relative to v : € — Q€
Q,: conil. €-cog =— Q%-alg : B,
is a Quillen equivalence.

Proof. The only point which might not be immediately clear from the references given above is
the point (4). By Theorem 2.2.21, the twisting morphism « splits into & = g,¢. Then one has

B,A =B,(g.A)
by Lemma 8.1.3, and we conclude by point (3). O

We call this model structure the Vallette model structure on conilpotent ¢-coalgebras. When « is
Koszul'?, we can also completely characterize the class of weak equivalences. All the accessory
results we need were proven!! in [Vall4], but the conclusion is original work.

Definition 3.3.10. Let C be a conilpotent ¢-coalgebra. A cofiltration on C' is a sequence of sub-chain
complexes
0=FCCcFlccFCcC...CcC

satisfying [Val14, Prop. 2.2]. Namely, we require that

1. it respects the coproduct, that is

AcFC)C P EheFCo - aF0)",
ma-Frgc=n
where Ac(c) == Ac(c) — ¢, and

2. it is preserved by the differential: dc(F™C) C F"C.
Moreover, if

3. the cofiltration is exhaustive: colim,, ¥"C = C,

then we say that C' is a cocomplete coalgebra.

Remark 3.3.11. This is also called a filtered coalgebra in the literature. To attempt to have more clarity,
we decided to call filtrations the descending filtrations and cofiltrations the ascending filtrations.

10n which case, by Theorem 2.2.21 and Theorem 3.3.9(2), reduces to studying the model structure induced by the
Koszul morphism ¢ : ¢ — Q7.

For & a Koszul morphism and o = & : ' — P, but the proofs readily generalize to the slightly more general
case we desire.
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Example 3.3.12. A cofiltration that exists for any conilpotent &' -coalgebra C'is the coradical filtration
introduced in Section 2.1.3.

Definition 3.3.13. Let Cy, Cy be two conilpotent €¢-coalgebras, and let ¢ : C1 — Cy be a morphism of
¢ -coalgebras.

1. Let F*Cy and F°*C, be filtrations. The morphism ¢ is cofiltered with respect to the cofiltrations
if for each n > 0 we have ¢(F"C1) C F"Ch.

2. The morphism ¢ is a cofiltered quasi-isomorphism if it is a quasi-isomorphism and if there are
cocomplete cofiltrations F*Cy and F*Cy such that ¢ is cofiltered with respect to the cofiltrations,
and such that for each n. > 0, the morphism ¢ induces a quasi-isomorphism

FrC/F IO — FC/F IO,
Remark 3.3.14. Notice that the coradical filtration is final, in the sense that if we put the coradical
filtration on Cy and any cofiltration on Cy then any morphism of € -coalgebras will be cofiltered.

The following result was proven in [RN18], even though all the ingredient of the proof were
already present in [Val14].

Theorem 3.3.15 ([RN18, Thm. 4.9]). The class W of weak equivalence is the smallest class of arrows
of conil. €-cog containing all cofiltered quasi-isomorphisms and which is closed under the 2-out-of-3

property.

The proof of this theorem is similar to what found in [Pos11, Sect. 9.3]. Before going on, we
need a couple of preliminary results, all of which come from [Val14].

Lemma 3.3.16. Let f be a cofiltered quasi-isomorphism of conilpotent ¢-coalgebras. Then the morphism
of Y€ -algebras U, f is a quasi-isomorphism.

Proof. This follows from the proof of [Vall4, Prop. 2.3]. O

Lemma 3.3.17. Let f be a quasi-isomorphism of Q€ -algebras. Then B, f is a cofiltered quasi-isomor-
phism of conilpotent €-coalgebras.

Proof. This is [Vall4, Prop. 2.4]. O
Lemma 3.3.18. Let C be a conilpotent €-coalgebra. Then the unit map
ne : B.QC — C
is a cofiltered quasi-isomorphism.
Proof. This is a consequence of the proof of [Val14, Thm. 2.6]. O

Proof of Theorem 3.3.15. We denote by Fqi the smallest class of arrows in conil. ¢"-cog which con-
tains all cofiltered quasi-isomorphisms and which is closed under the 2-out-of-3 property.

Lemma 3.3.16 implies that that Fqi C W. To prove the other inclusion, let
f:C—D

be a morphism of conilpotent ¢-coalgebras such that 2, f is a quasi-isomorphism, that is to say
f € W. We consider the diagram
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B,Q,
B,Q.C f

B,Q,D

Ule; D
/

C—D

where by Lemma 3.3.17 the arrow B,(2, f is a filtered quasi-isomorphism, and by Lemma 3.3.18
both vertical arrows are also cofiltered quasi-isomorphisms. A double application of the 2-out-
of-3 property proves that f € Fqi, concluding the proof. O

The following result is a refinement of one direction of Theorem 2.4.11, and provides the "good"
dual version to Theorem 2.4.8.

Corollary 3.3.19. Let o : € — & be a Koszul morphism. Then the unit
ne : C — BoQ,C

of the bar-cobar adjunction relative to « is a weak equivalence in the Vallette model structure, for any
conilpotent ¢-coalgebra C. In particular, the bar-cobar adjunction provides a fibrant resolution for
conilpotent €-coalgebras.

Proof. The proof of [Vall4, Thm. 2.6] works in this case and shows that the unit 7 is a cofiltered
quasi-isomorphism. Theorem 3.3.15 concludes the proof. O

3.3.8 Algebras with co-morphisms

Let & be a Koszul operad, and let &, be its minimal model. The category of &,,-algebra and
their co-morphisms can be identified as the full subcategory of the category of conilpotent 7'
coalgebras given by quasi-free #'-coalgebras via the bar functor B,, cf. Proposition 2.4.3. This
way, one immediately sees that the category of &,-algebra and their co-morphisms cannot be
a model category: it is not complete since for example products of quasi-free Z'-coalgebras
are not necessarily quasi-free, cf. Proposition 2.1.38. However, one can use the Vallette model
structure on coalgebras to speak of the homotopy theory of co-morphisms of #..-algebras.
One simply defines two co-morphisms to be homotopic if they are when seen as morphisms of
P'-coalgebras. More details of this theory are given in [Val14, Sect. 3].

3.4 Framings

The idea of framings is to give a simplicial or cosimplicial resolution of an object in a category,
i.e. a “nice” simplicial, resp. cosimplicial, object in that category whose 0-simplices are given
by the original object we wanted to study. We present here the theory of simplicial framings,
as it is what we will need later. Cosimplicial framings are the dual concept. We assume some
knowledge about simplicial sets, see also Chapter 4. The material presented here is extracted
from [Hov99, Ch. 5].
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3.4.1 The model structures on simplicial objects
Let C be a category. Recall that a simplicial object is a functor
Xe : A — C

from the ordinal number category to C. Cosimplicial objects in C form a category sC, whose
morphisms are given by the natural transformations.

Definition 3.4.1. Let C be a category with all finite limits and colimits. Let Xo € sC be a simplicial
object in C, and let n > 0 be an integer.

1. The nth latching object L, X. € C of X, is the union of all the degenerate n-cells of Xo. In
particular, Lo X o is the initial object, and L1 X4 = K.

2. The nth matching object M, X, € C of X, is M, X, = K?A["], ie. the limit of X, over
the diagram of all simplices of OA[n]. In particular, My X, is the terminal object, and L1 X, =
Xo X Xo.

For each n > 0, we have natural maps L, X — X,, = M, X,. Moreover, any morphism of simplicial
objects induces natural morphisms between the latching and matching objects.

One can use latching and matching objects to define a model structure on the category of sim-
plicial objects in a model category.

Theorem 3.4.2. Let C be a model category. The following classes of maps define a model structure —
the Reedy model structure — on the category sC of simplicial objects in C.

o The weak equivalences are the level-wise weak equivalences. That is to say that a morphism f, :
Xo — Y, is a weak equivalence if f,, : X, — Y, is a weak equivalence in C for every n > 0.

o The (trivial) cofibrations are the morphisms fo : Xo — Y, such that the induced morphisms
XiUr,x, LiYe — Y;
are (trivial) cofibrations for all n > 0.
o The (trivial) fibrations are the morphisms fo : Xo — Yo such that the induced morphisms
Xi — Y Xuv, MiXe

are (trivial) fibrations for all n > 0.

3.4.2 Simplicial framings

Let C be a model category. Suppose we are given an object x € C, which we would like to see
as Xy for a simplicial object X, € sC. There are two natural choices for the whole object X,.

1. One defines ¢,z € sC by

box =
for all n, with the identity map for all boundary and degeneracy maps.

2. One defines oz € sC by
TpT =T X -+ X T,

the product of n + 1 copies of x. The face maps are given by the projections forgetting one
of the factors, and the degeneracy maps are induced by the diagonal map » — z x «.
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Definition 3.4.3. A simplicial frame X, for x € Cis a factorization

lox s X TeT

of the natural map lyx — rex into a weak equivalence followed by a fibration.

Notice that simplicial frames always exist by (M5). We will need the following result in Chap-
ter 12.

Proposition 3.4.4. Suppose x is a fibrant object in C and let X, be a simplicial frame on x. Then the
functor
home(—, Xo) : C°P — sSets

preserves fibrations, trivial fibrations, and weak equivalences between fibrant objects.

Proof. The fact that the functor preserves fibrations and trivial fibrations is proven in [Hov99,
Cor. 5.4.4(2)]. The fact that it preserves weak equivalences between fibrant objects then follows
by Ken Brown’s lemma, Lemma 3.1.7. O
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Chapter 4

Simplicial homotopy theory

Simplicial sets are combinatorial objects that can be used to study the homotopy theory of topo-
logical spaces. In fact, they carry a model structure with which they are Quillen equivalent to
topological spaces. Therefore, in modern algebraic topology they are often used as models for
spaces instead of topological spaces themselves.

In this chapter, we begin by giving a rapid definition of the category of simplicial sets. Then we
present the model structure on simplicial sets and the Quillen equivalence between simplicial
sets and topological spaces. Finally, we give a rapid overview of the Dold-Kan correspondence.

The material of this chapter is extracted from [G]09], and in particular Chapters I and III in op.
cit.

4.1 Simplicial sets

We begin by giving an introduction to simplicial sets as the category of presheaves of sets, i.e.
the category of contravariant functors from the ordinal number category A to the category Sets
of sets.

4.1.1 The ordinal number category

The most basic object encoding all of the combinatorial information of simplicial sets is the
following category.

Definition 4.1.1. The ordinal number category A is the category whose objects are the ordered sets
[n]={0<1<---<n},

for n € N, and whose morphisms are the order preserving' maps.

There are two classes of special morphisms in the ordinal number category.

Definition 4.1.2. Let n > 1. The ith coface map, 0 < i < n, is the unique morphism

d:[n—1] — [n]

Not strictly, meaning that if i < j, then we only require that such a map ¢ satisfies (i) < ¢(5).
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which is injective and skips i. The jth codegeneracy map, 0 < j < n, is the unique morphism
s [n] — [n+1]
which is surjective and takes the value j twice.

The cofaces and codegeneracies generate all morphisms in A, in the sense that any morphism
in A can be written in terms of compositions of cofaces and codegeneracies. They satisfy certain
relations between them, commonly called the cosimplicial identities, see [G]09, p. 4].

4.1.2 Simplicial objects in a category and simplicial sets

Functors from the ordinal number category A and its opposite category to any category have a
nice combinatorial structure.

Definition 4.1.3. Let C be a category. A simplicial object in C is a functor
AP — C.

The category sC of simplicial objects in C is the category whose objects are simplicial objects in C, and
whose morphisms are the natural transformations between simplicial objects.

Definition 4.1.4. Dually, a cosimplicial object in C is a functor
A—C.

The case of interest to us for the moment is when we take C = Sets.

Definition 4.1.5. The category sSets of simplicial sets is the category of simplicial objects in the cate-
gory of sets.

Let K, € sSets be a simplicial set. We denote by
K, = K.([n])

the set of n-simplices of K,. The cofaces and codegeneracies of the category A naturally induce
maps between the various sets of simplices of a simplicial set, called the face maps d; and de-
generacy maps s; respectively. A simplex in K, is degenerate if it is in the image of a degeneracy
map.

4.1.3 Limits and colimits

Limits and colimits are well behaved in the category of simplicial sets.

Proposition 4.1.6. The category sSets of simplicial sets is complete and cocomplete, and limits and
colimits are taken level-wise.

In other words, if I is an index category, and L : I — sSets is a functor, then
i€l iel

(HmL(i))n = lim L(7),, ,

and similarly for colimits. In particular, the initial object in the category of simplicial sets is the
empty simplicial set (), and the final object is the point * := A[0].
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414 The Yoneda embedding, boundaries and horns

The Yoneda embedding embeds A as a subcategory of sSets.

Definition 4.1.7. We define a functor

A[—]: A — sSets

by
A[n] == homa (—,[n]) .

The simplicial sets A[n] are the “building blocks" of all simplicial sets.

Lemma 4.1.8. Let K, be a simplicial set. Then
K, = homgses(Aln], Ko) -
Proof. This follows immediately from the Yoneda lemma, e.g. [ML70, p. 61]. O

There are some other very important simplicial sets that can be built from the A[n].

Definition 4.1.9. The boundary 0A[n] of the simplicial set A[n)] is the simplicial set obtained by gluing
all of the non-degenerate (n — 1)-simplices of A[n] along of their faces, whenever the faces of two such
(n — 1)-simplices coincide. In other words, it is given as the coequalizer

] Am-2= || ARr-1-—0AMN].

[n—2]—[n] inj. [n—1]—[n] inj.

Definition 4.1.10. The ith horn A’[n] of A[n] is the simplicial set defined the same way as OA[n] but
without the (n — 1)-simplex opposite to the ith 0-simplex of A[n]. In other words, it is given as the
coequalizer

|| Am-21= || ARr-1-— A
[n—2]—[n] inj. [”f 1]—[n] inj.
i in the image 4 in the image

4.2 The model structure on simplicial sets

In this section, we present the model structure on simplicial sets. The main theorem (which we
will not prove here) is the following.

Theorem 4.2.1. The classes of cofibrations, fibrations, and weak equivalences that will be defined in
Definitions 4.2.2, 4.2.3 and 4.2.7 define a closed model structure on the category sSets of simplicial sets.
421 Cofibrations

Cofibrations are easy.

Definition 4.2.2. A morphism f : K, — L, of simplicial sets is a cofibration if it is level-wise injective,
i.e. if all of the maps of sets f, : K, — L, are injective.

In particular, all simplicial sets are cofibrant.
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4.2.2 Fibrations and Kan complexes

Fibrations are defined by right lifting property with respect to a certain set of generating cofi-
brations, namely the inclusions of horns.

Definition 4.2.3. A morphism f : K — L of simplicial sets is a fibration if it satisfies the right lifting
property with respect to all the natural inclusions A*[n] < Aln] for 0 <i < nandall n > 2.

Definition 4.2.4. Fibrant simplicial sets are called Kan complexes.

Many naturally arising simplicial sets are Kan. Examples are the nerve of a group, the underly-
ing simplicial set of a simplicial abelian group, and the singular complex of a topological space
— which we will see in more detail later. This last fact motivates the heuristic that Kan complex
correspond to “spaces".

4.2.3 Realization and weak equivalences

Let CGHaus be the category of compactly generated Hausdorff> topological spaces. Homotopi-
cally speaking, the category CGHaus is essentially the same as the whole category Top of topo-
logical spaces, since CW-complexes are in CGHaus. However, notice that for example products
in CGHaus are not the same as products in Top.

Definition 4.2.5. For n > 0, the geometric n-simplex is the topological space

=0

A" = {(:vo, cey Xp)

Zmizland:viZOvogign} c R,

Notice that A™ € CGHaus. The topological space A" is the geometric analogue of the simplicial
set A[n], and since all simplicial sets can be constructed by gluing spaces of the form A[n]
together, we try to recover topological spaces by gluing geometric simplices together.

Definition 4.2.6. The geometric realization is the functor
| — | : sSets — CGHaus
given by sending a simplicial set K € sSets to the topological space

|K|:= colim A™.
Aln]—K

In other words, given K € sSets we take one copy of A™ for each n-simplex in K, and then glue
all those geometric simplices together according to the face maps in K.

Definition 4.2.7. A morphism f : K — L of simplicial sets is a weak equivalence if its geometric
realization

I+ K] — | L]

is a weak equivalence of simplicial sets, i.e. if it induces an isomorphism on all homotopy groups.

2 Also known as Th.
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4.2.4 Quillen equivalence between simplicial sets and topological spaces
The geometric realization functor has a right adjoint, the singular set functor
Se : CGHaus — sSets

which is defined as
Se(X) == homrep(A®, X) ,

the simplicial set of singular simplices of a topological space X € CGHaus.
Proposition 4.2.8. Let K & sSets and X € CGHaus. There is a natural isomorphism
homep (| K|, X)) = homgsets (K, Se (X)) .

There is more. This adjunction induces an equivalence of categories between the homotopy
categories of simplicial sets and compactly generated, Hausdorff space, showing that their ho-
motopy theory is “the same”.

Theorem 4.2.9. The adjunction given by the geometric realization and the singular set functor is a
Quillen equivalence.

Proof. See e.g. [Hov99, Thm. 3.6.7]. O

This motivates the fact that one can usually replace topological spaces by simplicial sets when
doing homotopy theory, in order to work with objects that have a nicer combinatorial behavior.

4.2.5 Homotopy groups of simplicial sets

Let K be a Kan complex, i.e. a fibrant simplicial set. Define m(K) to be the set of homotopy
classes of vertices of K. Let x € Ky be a vertex of K. For n > 1, we define ,, (K, z) to be the set
of homotopy classes rel 0A[n] of maps « : A[n] — K fitting into the diagram

dAIn] A0
Aln] K

«

In other words, a must map the boundary dA[n] of A[n] to the basepoint x. The sets 7, (K, x),
n > 1, are endowed with a group structure as follows. Let o, 8 : A[n] — K be as above. Then
one constructs a morphism of simplicial sets

(a,8) : A"n+1] — K

by setting it to be constant with value « on all faces, except the (n — 1)th face, where it has value
«, and the (n + 1)th, where it has value . Since K is Kan, we have a lift

A"[n + 1]
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It is straightforward to check that d,w, the “missing” n-face of A"[n + 1] recovered by filling,
is constant on its boundary with value x, and thus defines an element of 7, (K, z), which we
will denote by a * 3. The following lemma tells us that a x 3 is well defined as an element of
(K, ).

Lemma 4.2.10. The homotopy class of o * [3 is independent of the choice of the lift w.
We also define e € 7, (K, x) to be the constant map with value .

Theorem 4.2.11. Taking x as multiplication, and e as identity element, the w,, (K, x) are groups for all
n > 1, and m, (K, z) are abelian for every n > 2. We call m,, (K, z) the nth homotopy group of K
with basepoint x.

We have the following very useful fact.
Theorem 4.2.12. There is a canonical isomorphism
mo(K) = mo([K]),  and (K, x) = 7m0 (| K|, 2)

foralln > 1. In other words, the homotopy groups of a Kan complex are the same as the homotopy groups
of its geometric realization.

4.2.6 The long exact sequence associated to a fibration

It is possible to associate a long exact sequence of homotopy groups to a fibration of simplicial
sets.

Definition 4.2.13. Let p : K — L be a fibration of simplicial sets. The fibre of p over a point x € Lg is
i : F' — K defined by the pullback

Suppose that p : K — L is a fibration with fibre i : F' — K over « € L. Fix a point y € Fj, and
by abuse of notation denote i(y) € K, also by y. Let o : A[n] — L represent a homotopy class
[a] € 7, (L, ), and define an n-horn A°[n] — L by sending everything to y. We have a lift

Afp] ——— K

L

and one can check that the element 9(«) := [dof] € 7,1 (F, y) does not depend on the choice of
the particular lift. Thus, we obtain a map

0:mp(Lyx = f(y) — mno1(Fy),

called the boundary map.
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Theorem 4.2.14. Forall n > 1, the maps
a : ﬂ_n(La $> — ﬂ-’n—l(Fﬂ y)

are group homomorphisms. They fit in a long sequence

3) 7Tn('Fay) i> ﬂ—n(Kay) £>7Tn(L7x) 2>7-f_'rL71('F7y) i>

B a) D wo(Fy) 5 mo(K,y) B mo(L, @)

which is exact in the sense that kernel equals image everywhere. Furthermore, w1 (L, x) acts on mo(F),
and two elements of wo(F') have the same image under i if, and only if they are in the same orbit of the
71 (L, x)-action.

4.3 The Dold-Kan correspondence

The celebrated Dold-Kan correspondence gives an equivalence of categories between simplicial
abelian groups and non-negatively graded chain complexes. In this section, we give a rapid
overview of this very important result.

4.3.1 The normalized chain complex and the Moore complex of a simplicial
abelian group

We start by reminding an important fact about simplicial groups, due to [Moo55, Thm. 3].

Theorem 4.3.1 (Moore). Let G be a simplicial group. Then the underlying simplicial set of G is a Kan
complex.

For the rest this section, A will always denote a simplicial abelian group.

Definition 4.3.2. The normalized chain complex N A of a simplicial abelian group A is the non-
negatively graded chain complex which is given in degree n > 0 by

n—1
NA, = () ker(di : Ay = Ap_1) € Ay,
1=0

and whose differential is given by d,,.

Remark 4.3.3. For this section only, “chain complex” means chain complex of Z-modules. Later, we
will apply these constructions to simplicial K-vector spaces instead of just simplicial abelian groups,
thus obtaining non-negatively graded K-chain complexes.

It is straightforward to check that IV A is a chain complex, i.e. that its differential squares to zero.
This assignment is functorial, giving

N :sAb —» Ch,

from simplicial abelian groups to non-negatively graded chain complexes.

Another closely related construction is the Moore chain complex.
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Definition 4.3.4. The Moore complex Jl(A) of a simplicial abelian group A is the non-negatively
graded chain complex given in degree n > 0 by

M(A), = A, ,
and whose differential is given by Y (—1)'d;.
The relation between these constructions is given by the following result.
Theorem 4.3.5. The natural inclusion
i: NA— M(A)
is a chain homotopy equivalence.

Therefore, the normalized chain complex and the Moore complex can be used interchangeably
when doing homotopy theory. Moreover, these constructions allow one to readily compute the
homotopy groups of A.

Theorem 4.3.6. Let A be a simplicial abelian group. There are natural isomorphisms of groups
mo(A) = Ho(JM(A)) , and  w,(A,0) = H, (M(A))

foralln > 1.

4.3.2 The Dold-Kan correspondence

This chapter would not be complete without at least mentioning the Dold-Kan correspondence.

There is a functor

I': Chy — sAb
defined by
r.(C)= P
[n]—[k] surj.

and endowed with certain natural simplicial structure maps.

The following celebrated result is due to A. Dold and D. Kan, and is widely known as the
Dold-Kan correspondence.

Theorem 4.3.7 (Dold—Kan). The functors
N :sAb — Chy and I': Chy — sAb

form an equivalence of categories.



Chapter 5

Rational homotopy theory

Studying the homotopy type of topological spaces is a very difficult problem — even for well-
behaved ones: suffices to say that at the present time we don’t know all the homotopy groups
of spheres. The idea of rational homotopy theory is to simplify the problem by studying the
rational homotopy groups of (nice) spaces. If X is a simply connected space, then all of its
homotopy groups are abelian (since the fundamental group is trivial), so one considers

T(X)®zQ for n>2.

These groups are much easier to compute and to study than the homotopy groups m,,(X). They
are closely related to the rational homotopy groups H,,(X; Q) of the space, the relation being
stricter than the one between the usual homotopy groups and integer homology, and it is pos-
sible to give algebraic models for the spaces that completely encode their rational homotopy
theory.

In other words, rational homotopy theory is “the study of the rational homotopy category, that
is the category obtained from the category of 1-connected pointed spaces by localizing with
respect to the family of those maps which are isomorphisms modulo the class in the sense of
Serre of torsion abelian groups" — [Qui69, p. 205].

The author does not make any claims of being an expert on the domain of rational homotopy
theory. This section is a naive introduction to the subject, based on the reference books [Qui69]
and [FHTO1].

5.1 Conventions and basic definitions

For the rest of this chapter, the base field will be the field of rational numbers K = Q. All vector
spaces, chain complexes, algebras, etc. will always be over this field.

5.1.1 The rational homotopy category

We place ourselves in the category Top, ; of simply-connected, pointed topological spaces and
continuous pointed maps'.

IThis category is denoted by Top, in [Qui69], for “spaces beginning in dimension 2".
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Definition 5.1.1. Let X € Top, ;. The rational homotopy of X is the graded Q-vector space me (X )®7,
Q starting in degree 2. The rational homology of X is the graded Q-vector space’> Ho(X; Q).

In this category, maps inducing isomorphisms in rational homotopy and maps inducing iso-
morphisms in rational homology are the same, as proven by Serre in [Ser53, Thm. 3].

Theorem 5.1.2 (Serre). Let f : X — Y bea map in Top, ;. The following are equivalent.

1. The map f induces an isomorphism
To(f) @2 Q : me(X) ®2 Q — 7o (Y) ®2 Q
in rational homotopy.

2. The map f induces an isomorphism
in rational homology.

Definition 5.1.3. A map f in Top, ; inducing an isomorphism in rational homotopy or, equivalently,
in rational homology is called a rational equivalence. We denote by RH — the rational homotopy
category — the localization of Top, ; at the rational equivalences.

The category Top, ; cannot be made into a model category for a trivial reason: it is not complete.
However, if one takes the set of rational equivalences as “weak equivalences" and define appro-
priate sets of “fibrations" and “cofibrations”, then the resulting category behaves very similarly
to a model category, see [Qui69, Thm. I1.6.1(a)]. In particular, RH is a well defined category.

One similarly defines a category sSets; given by the full subcategory of sSets spanned by 2-
reduced simplicial sets, i.e. the simplicial sets that have a single 0-simplex and a single 1-
simplex. This category admits a model structure where the weak equivalences are the rational
equivalences, making it into a model category, see [Qui69, Thm. 11.2.2]. The homotopy theory
of this model category is then equivalent to the homotopy theory of Top, ;, with one of the
equivalences being given by geometric realization of simplicial sets, see [Qui69, Thm. I1.6.1(b)].

Remark 5.1.4. Because of this equivalence, we will often speak of “spaces” without specifying if we mean
topological spaces or simplicial sets.

The category RH has the same objects as Top,, ;, but morphisms behave a bit differently. For
example, if two morphisms f,g : X — Y are homotopic in Top, ;, then they are the same
morphism in RH. However, it is not true that two maps f,g : X — Y in Top, ; inducing the
same maps in rational homotopy or rational homology are identified in RH.

5.1.2 Conventions on cocommutative coalgebras and Lie algebras

We will mainly be dealing with algebras and coalgebras representing the singular chain com-
plexes of topological spaces. Therefore, we consider the category Ch>( of chain complexes
concentrated in degree greater or equal than 0 instead of the category Ch.

For Lie algebras and cocommutative coalgebras, we consider

e the category dglie.; of Lie algebras concentrated in degrees greater or equal than 1, and

2 Also starting in degree 2 by the Hurewicz theorem.
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o the category coComs>s of cocommutative coalgebras concentrated in degrees greater or
equal than 2.

Remark 5.1.5. In [Qui69], one considers counital, coaugmented cocommutative coalgebras, but di-
rectly looking at non-counital cocommutative coalgebras is equivalent.

By the Kiinneth formula, the homology of an object in dglie;, respectively coCom>», is again
in dglies,, respectively coComxs, albeit with trivial differential. A morphism in dglies; or
coComs» is a weak equivalence if it is a quasi-isomorphism. One can also define classes of fibra-

tions and cofibrations, making both categories into model categories, cf. [Qui69, Thm. 5.1 and
5.2].

Remark 5.1.6. Notice that this is perfectly coherent with the model structures on algebras and coalgebras
we looked at in Chapter 3. The quasi-isomorphisms are exactly the weak equivalences in the category
algebras over an operad, as seen in Section 3.3.6, and while they are not the same as the weak equivalences
for coalgebras in general, cf. Section 3.3.7, they are indeed for coalgebras concentrated in degree > 2 by
Proposition 2.4.5.

5.1.3 Quillen’s main theorem

Let X € Top, ;, then the rational homotopy of X can be made into a graded® Lie algebra 7 (X) €
grLies; by
T(X)n = mn1(X) @2 Q,

ie. m(X) = s 1me(X) ®z Q as a chain complex, and using the Whitehead product to define the
Lie bracket. This yields a functor

m: Top,, — grlies, .
By the definition of RH, the functors X ~ 7(X) and X — H,(X;Q) from Top, ; to graded Lie
algebras and graded cocommutative algebras extend uniquely to functors with RH as domain.
The main theorem of [Qui69], Theorem I.1 in loc. cit., is the following.

Theorem 5.1.7 (Quillen). There are equivalences of categories

RH 2 Ho(dgLies ;) RLLN Ho(coCom>3) ,
where the second functor is the suspension of the usual bar construction with respect to the twisting
morphism ‘
k1 ' ®Com" = Lie' — Lie.
Moreover, there are isomorphisms of functors
T(X) — Ho(MX)) and He(X) — He(sBA(X))
from RH to graded Lie algebras and graded cocommutative coalgebras respectively.

The functor A : RH — Ho(dglLie ) comes from a sequence of adjunctions leading from Top, ; to
dglies, see [Qui69, p. 211]. A full description of this functor is out of the scope of the present
work.

Corollary 5.1.8. If g is a graded Lie algebra concentrated in degrees > 1, then g ~ w(X) for some
X € Top, ;. If € is a graded cocommutative coalgebra concentrated in degrees > 2, then C' ~ Ho(X; Q)
for some X € Top, ;.

This is a first hint to the fact that, in rational homotopy theory, one should be able to model
spaces by Lie algebras and cocommutative coalgebras.

3By which we mean differential graded with trivial differential.
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5.1.4 Rationalization
This part is based on [FHTO01, Ch. 9].

Definition 5.1.9. An abelian group G is called rational if multiplication by k is an automorphism for
each k € Z\{0}.

A rational abelian group is therefore canonically a Q-vector space. Notice that for any abelian
group G, the abelian group G ®z Q is rational. It is called the rationalization of G. If G was
rational to start with, then

GezQ=G

canonically via the obvious map induced by g @ 1 — g.

Something analogous can be done with spaces.

Theorem 5.1.10 ([FHTO01, Thm. 9.3]). Let X € Top, ;. The following are equivalent.
1. me(X) is rational.
2. Ho(X,pt;Z) is rational.

Definition 5.1.11. A space X € Top, ; is rational if me (X) is rational, or equivalently if He (X, pt; Z)
is rational.

Let f : X — Y be a morphism in Top, ;, and suppose that Y is rational. Then the morphism
me(f) of abelian groups canonically extends to a morphism

7TQ<X) Xz Q — W.(Y)
of Q-vector spaces.

Definition 5.1.12. A rationalization of a space X € Top, ; is a morphism f : X — Xq to a rational
space Xq such that the induced map

7e(X) @2 Q — me(Xq)
is an isomorphism.

Theorem 5.1.13 ([FHTO01, Thm. 9.7]). For every X € Top, ; there exists a relative CW complex
(Xq, X) with no 0-cells and no 1-cells such that the inclusion

X — XQ
is a rationalization. This rationalization is unique up to homotopy equivalence rel X.

In particular, the weak homotopy type of Xg is the rational homotopy type of X.

5.2 Sullivan’s approach and the rational de Rham theorem

Sullivan’s [Sul77] approach to rational homotopy theory focuses on rational cohomology rather
than rational homotopy or homology. This way, one can use commutative algebras as models
for spaces, instead of cocommutative algebras or Lie algebras.

In this section, we work with cochain complexes instead of chain complexes, as it is more con-
ventional to work with differentials of degree 1 on differential forms.

Most of the material present in this section works over an arbitrary field K of characteristic 0.
In particular, PL differential forms and Dupont’s contraction do not need the base field to be Q.
What we present here is extracted from [FHTO01, Sect. 10] and [Dup76].
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5.2.1 PL differential forms and rational cohomology

Instead of focusing on rational homotopy or rational homology, one can look at rational coho-
mology. The fact that this approach gives the same information as the other ones follows from
the following result.

Proposition 5.2.1. Amap f : X — Y in Top, ; is a rational equivalence if, and only if it induces an
isomorphism
H*(f;Q): H*(Y;Q) — H*(X;Q)

in rational cohomology.
Proof. This is an immediate consequence of Theorem 5.1.2 and of the fact that
H™(X;Q) = Ha(X;Q),
since Q is a field. O

One now tries to approach cohomology in an algebraic way, using commutative algebras*. We
want to work combinatorially, so we will use simplicial sets rather than topological spaces.
One defines a good commutative algebra of polynomial differential forms — more commonly,
PL differential forms — on the basic simplices, before extending this construction to arbitrary
simplicial sets.

Definition 5.2.2. Let n > 0. One defines a commutative algebra

K[to,...,tn,dto,...,dtn}
(Z:‘L:o ti — 1, Z?:o dti) ’

where |t;| = 0 and |dt;| = 1, with differential d(t;) = dt;. The collection of the Apr,(A[n]) forms a
simplicial commutative algebra Q1q by

APL(A[’I’L]) =

Q, = ApL(A[n])

with face maps

tr ifk <i,
di - ApL(Aln+ 1)) — App(An]),  t;— <0 ifk=1i, for 0<i<n,
tk—1 ?fk >,
and degeneracy maps
th ifk<j,
S5 APL(A[TI]) —>APL(A[TL+1D, t; — T + kg1 Z'fk:j, fOT’ OSJSTL
Trt1 ifk>j,

The simplicial commutative algebra (2, is called the Sullivan algebra.

4One should notice that singular cochains C'* (X ; Q) are not a commutative algebra, but only an Eoc-algebra. How-
ever, since the characteristic of the base field is 0, the category of E..-algebras is equivalent to the category of commu-
tative algebras, so that we can look for an equivalent strictly commutative model for the cochain algebra.
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One now extends this assignment to a functor
Apr, : sSets — Com

from simplicial sets to commutative algebras by

In other words, we take a copy of Ap(A[n]) for every n-simplex of K, and then glue them
together according to the face maps of K. Notice that this is very similar to the construction of
the geometric realization functor.

We will not see how Apy, gives the same cohomology as the usual one.

5.2.2 Dupont’s contraction and the PL de Rham theorem

In [Dup76], Dupont describes a contraction

from the Sullivan algebra to a subcomplex C,. A consequence of the existence of such a contrac-
tion is the “de Rham theorem" telling us that the cohomology of Apy, is the same as the usual
cohomology. We will now describe in detail the elements appearing in this contraction, and
state the theorem.

P

. C.

ie

Other good reference for Dupont’s contraction are [Get09] and [CGO08].

Fixn > 0,letk > 1,and let 0 < 4p,..., % < n be pairwise different. One defines a differential
form

k
Wig...ip, = k! Z(_l)jtij dtio s dtij s dtzk e, s
j=0
where the hat means that we omit the term. Then C,, is defined as the span of all forms appear-
ing this way, that is
Cp = spang{w;,.i, |k >1and 0 <ig <iy < -+ < i <n}.

The fact that C,, C (2, is a subcomplex is implied by the following lemma, while the fact that it
gives rise to a simplicial cochain complex C, is straightforward.

Lemma 5.2.3. Let k > 1, and let 0 < ig, ..., i, < n be pairwise different. Then
A(Wiy. i) = Y Wiig._iy,
i=0

where wy;, . i, = 0 whenever i = i; for some 0 < j < k.

The easiest map of the contraction is the morphism ¢y : Co — €,. It is simply given by the
inclusion of C, into Q,.
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Next in line is the morphism p, : 2¢ — C,, which is given by integration. Namely, if w € €, is
a polynomial differential form, one defines

)= % (/A [p]f*w>wio,,,ik.

0<ip<--<ip<n
Filiose i} [n]

Finally, the contracting homotopy h, : Q¢ — €2, is defined as follows. Let
i [0,1] x A" — A"
be defined by
iU, to, ..oy tn) = (1 —witg, ..., (1 —w)t; +u,...(1—u)ty) .

Geometrically, it is the map contracting the standard geometric n-simplex to its ith vertex. For
0 <1 < n, define
h(i) : Qn — Qn

as the map taking a form in ,,, pulling it back by ¢;, and then integrating the resulting form
along the fiber of ¢,. Then the map h,, is defined by

hy = E Wig..ix M(in) = Pig) -
0<k<n-—1
0<ig<-—<ip<n

Proposition 5.2.4. The maps defined above are all simplicial, and they form a contraction from Qq to
C..

Similarly to what done for Apy,, one extends the assignment A[n] — C,, to a functor
Cpr, : sSets — coCh

from simplicial sets to cochain complexes.

To conclude, we have the following theorem.

Theorem 5.2.5. Let X € sSets. There is a natural quasi-isomorphism of cochain complexes
Apr(X) = Cpr(X),
where the first map is induced by p.. In particular,

H*(ApL(X)) = H*(X;K) .

5.3 Algebraic models for spaces

Given a space X, one models its rational homotopy, homology and cohomology by the Lie
algebra A\(X), the cocommutative coalgebra sB,A(X), and the commutative algebra Apr,(X)
respectively. However, one could also consider other algebraic models for a space, by taking
(co)algebras having the same properties as the previous three. Such objects are called rational
models for the space X. We review their definitions and some basic existence results in this
section.

The material of this section is extracted from [FHTO01] and [Maj00, Ch. 4], with the exception of
Section 5.3.4, which is original work.
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5.3.1 Commutative models

We begin with commutative models. The idea is that Apr,(X) for a space X is huge, and has a
relatively complicated algebraic structure, so one tries to replace it by a smaller, simpler com-
mutative algebra.

Definition 5.3.1. Let X € sSets; be a 1-reduced simplicial set. A commutative rational model for X
is an augmented unital® commutative algebra A linked to Apy,(X) by a zig-zag of quasi-isomorphisms
of commutative algebras

A< o = App(X).

Equivalently, it is a commutative algebra A together with an oo-morphism® from A to Apr(X), cf.
Theorem 2.5.3.

There is a particular kind of commutative models that are of special interest in rational homo-
topy, namely Sullivan models, and more specifically minimal Sullivan models.

Definition 5.3.2. A Sullivan model for a space X is a rational commutative model which is a quasi-free
commutative algebra (Com(V'), d), where V is a graded vector space, such that

where V(0) C V(1) C --- is an increasing sequence of graded subspaces of V', and the differential
satisfies
d(V(0)) =0, and d(V(k))C Com(V(k—1)) for k>1.

A Sullivan model is minimal if moreover we have

Im(d) C Com(V) - Com(V) .
Minimal Sullivan models for spaces exist under some not too restrictive assumptions.

Definition 5.3.3. A simply connected topological space X € Top, ; is of finite type if H;(X;Q) is
finite dimensional for all i.

Theorem 5.3.4 ([FHTO1, p. 146]). Let X € Top, ; be of finite type. Then X admits a minimal Sullivan
model
Mx = (Com(V),d) = App(X)

such that V is concentrated in degree > 2 and finite dimensional in every degree. It is unique up to
(non-canonical) isomorphism.

5.3.2 Lie models

A similar idea comes into play for Lie algebras. Quillen’s theorem gives us a canonical candidate
for a Lie algebra modeling a simply connected space X € Top, ;, namely the Lie algebra A\(X) €
dglies ;.

5As already mentioned previously, because of the augmentation hypothesis, one can equivalently work with non-
unital commutative algebras.
5By which we mean an co-morphism or % -algebras, cf. Section 2.3.6.
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Definition 5.3.5. A Lie algebra g € dglies, is a Lie rational model for X if there is a zig-zag of
quasi-isomorphisms of Lie algebras

g e 5 A(X).
Equivalently, it is a Lie algebra g together with an co-morphism from g to A(X).

Lie models have many nice properties. We invite the interested reader to consult [FHTO01, Part
1V] for them.

Remark 5.3.6. In [FHTO1, p. 322], Lie models are defined as those Lie algebras g € dglie, such that
the commutative algebra (sBy(g))Y is a commutative rational model. By Theorem 5.3.10, this definition
is equivalent to the one we gave in this section.

A very important property is the following result, due to Berglund.
Theorem 5.3.7 ([Ber15, Prop. 6.1]). Let X € Top, ;, and let g be a Lie model for X. Then
MC,(g) ~ Xo.

In other words, the Maurer—Cartan space of g is rationally homotopic to X.

5.3.3 Cocommutative models

Once again with the same ideas in mind, the definition of a cocommutative rational model for
a space is as follows.

Definition 5.3.8. Let X € Top, ; be a simply connected topological space. A cocommutative coalgebra
C € coComs is a cocommutative rational model for X if there is a zig-zag of weak equivalences (in
the Vallette model structure on coalgebras)

C = o <= sBoA(X).

We will see in Theorem 8.2.6 that this condition is also equivalent to the existence of an oco-
morphism of coalgebras from C to sB,A(X).

5.3.4 Dualizing (co)commutative models

Commutative and cocommutative models are strictly related, as one would expect. We will now
provide a proof of the fact that the dual of a cocommutative model is a commutative model, and
vice versa that the dual of a commutative model of finite type is a cocommutative model. This
result is certainly well-known to experts and part of the folklore, but we haven’t been able to
find a proof in the literature.

We begin by recalling the following theorem, due to Majewski, which relates commutative and
Lie models.

Theorem 5.3.9 ([Maj00, Thm. 4.90]). Let X € sSets; be a simply-connected space. Let
Ox: Mx — App(X)
be a simply-connected commutative model of finite type for X, and let
fix s gx — A(X)

be a free suspended Lie model for X. There exists a canonical homotopy class of quasi-isomorphisms of
Lie algebras
ax i gx — Qu(My) .
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Using this, we can prove the result we wished.
Theorem 5.3.10. Let X be a simply-connected space of finite Q-type.

1. Let A be a commutative model of finite type for X. Then its dual A" is a cocommutative model for
X.

2. Dually, let C be a cocommutative model for X. Then its linear dual C" is a commutative model
for X.

Notice that we do not have any finiteness assumption on our cocommutative models.

Proof. We begin by proving (1). Let A be a simply-connected commutative model of finite type
for X. Every simply-connected space X of finite Q-type admits a minimal commutative model
Mx, which in particular is simply-connected and of finite type, see Theorem 5.3.4. It follows
that we have a zig-zag of quasi-isomorphisms

A<—.%MX

by Theorem 2.5.3. Inspecting the proof in loc. cit. we notice that we can take 2,B,Mx as
intermediate algebra, which is again simply-connected and of finite type. Dualizing linearly,
we obtain a zig-zag of quasi-isomorphisms

AV — e +— MY, (5.1)

where all terms are well-defined coalgebras thanks to the fact that they are of finite type. Finally,
we obtain a zig-zag

AY — By AY — B Qy(e) «— B Q, My < B AX),

where the first arrow is the unit of the bar-cobar adjunction and is a weak equivalence by [Val14,
Thm. 2.6(2)], the second and third arrows are obtained by the arrows of the zig-zag (5.1) by
applying B2, and are also weak equivalences. The last arrow is obtained as follows. The Lie
algebra A\(X) is a Lie model for X. Therefore, by Theorem 5.3.9 there is a quasi-isomorphism

ax : AMX) = Q(MY) .
Applying the bar construction we obtain the desired weak equivalence
Brax : BoA(X) — BrQ,(My),

concluding the first part of the proof.

For point (2), let C' be a cocommutative model for X. By point (1), we have in particular that the
dual My, of the minimal commutative model M is a cocommutative model for X. Therefore,
we have a zig-zag of weak equivalences

C— e+— My,

which in particular are quasi-isomorphisms. Dualizing linearly, we obtain a zig-zag of quasi-
isomorphisms
CY +— o — My = My,

where the last isomorphism holds because Mx is of finite type. Therefore, the commutative
algebra C'V is a commutative model for X. O



Chapter 6

Maurer—-Cartan spaces

Maurer—Cartan elements of Lie algebras, and more generally homotopy Lie algebras, appear
naturally throughout the whole of mathematics. The reason of this fact comes from deformation
theory, and we will try to explain it later, namely in Chapter 7. Since the study of the spaces of
Maurer—Cartan elements will be one of the central topics of the present thesis, we dedicate this
chapter to the definition of these objects and of all the notions surrounding them, as well as the
statement and the study of some central theorems in this area.

6.1 Lie algebras: the Deligne groupoid and the Goldman-Mill-
son theorem

In this section, we introduce the Maurer-Cartan set of a Lie algebra and some of its proper-
ties. We look at the Baker-Campbell-Hausdorff formula, which makes it into a groupoid — the
Deligne groupoid. This leads us naturally to consider complete Lie algebras in the sense of
Appendix B.2. Finally, we present the Goldman—Millson theorem, which is the precursor of the
Dolgushev-Rogers theorem.

6.1.1 The Maurer—Cartan set of a Lie algebra

Let g be a Lie algebra, that is a chain complex together with a bracket
[—-]:g®g—0
of degree 0 which

e is antisymmetric, i.e.
[1’77}} = (_1)|rHy|+1[y7'T} )

and
o satisfies the Jacobi rule, that is
(=D)F= iz, [y, 2] + (=)W y, [z, 2]] + (=)W1, 2, y]] = 0.

89
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Definition 6.1.1. A Maurer-Cartan element of a Lie algebra g is an element x € g_; of degree —1
satisfying the Maurer-Cartan equation

1
dr + §[x,x] =0. (6.1)

The set of all Maurer—Cartan elements of g will be denoted by MC(g).
Example 6.1.2. In any Lie algebra g, the element 0 is always a Maurer—Cartan element.

Notice that whenever g is finite dimensional, then MC(g) is an algebraic variety. More specifi-
cally, it is an intersection of quadrics in g_;.

6.1.2 Gauges between Maurer-Cartan elements

Let g be a Lie algebra, and let A € gg be a degree 0 element. One can consider the “vector field"
given by

reEg—di+ [z, A\ €g.
In the finite dimensional case, it makes sense to identify the target copy of g with T',g, and to

take the flow of such a vector field, but in general we have to proceed formally. One considers
the differential equation in g[[t]] := g ® K][t]] given by

d
%x( ) =dX+ [x(t),\], (6.2)

where \ € gg is seen as a constant element in g[[¢]].

Lemma 6.1.3. Let z¢ € g, then the unique solution of equation (6.2) with initial value x(0) = xq is
given by
etadx _id

z(t) = T(d)\) + et ad (o) ,

where ady (x) := [z, A], and the exponential has to be understood as a formal power series.

A conceptual way to derive the formula above is presented in [DSV16, Sect. 1], cf. also the
differential trick exposed in Section 6.1.4. Another way is provided by Proposition C.2.5, cf.
Section 6.2.4.

Proof. Obviously, we have that 2(0) = zy. Differentiating formally, we have

d d n- 1

nZl n>0
:Z ady 1 (d)) +Z ad,\ (z0)
n>1 ( )
=dA+[z(t),A],

where ady = ad) ad’;*1 forn > 1,and ad9 = id. O
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We would like to evaluate this formula at a ¢ € K, in order that the solution of (6.1) makes sense
in g, and not just formally in g[[t]]. However, the formula contains infinite sums, which do not
make sense in a mere chain complex. Therefore, one has to ask that the Lie algebra is proper
complete!, so that A € F;g and the iterated brackets with \ live in increasing degrees of the
filtration, and the infinite sums make sense.

Lemma 6.1.4. Suppose g is a proper complete Lie algebra, and let zo € MC(g) be a Maurer—Cartan
element. Then the evaluation of the solution to equation (6.2) always exists for any time t € K, and it
remains in MC(g).

Proof. Existence is trivial. To see that the solution remains in the Maurer—Cartan set, we differ-
entiate the Maurer-Cartan equation applied to the solution:

& (4004 51200.2(01]) = (0 + 515002 (0] + (<00 500
=d(d\+ [z(t),\]) + %([d)\ + [z(t), A, 2(t)] + [2(t), d\ + [x(¢), A])
=0,

where one has to use the Jacobi rule to conclude. O

Definition 6.1.5. Let g be a proper complete Lie algebra. Two Maurer—Cartan elements xq, z; € MC(g)
of g are gauge equivalent if there exists A € go such that the solution x(t) of equation (6.1) with initial
value x(0) = xq satisfies x(1) = x1. We write x ~g x1, and say that X is a gauge between o and x;.

Remark 6.1.6. Since the gauge equation (6.2) is autonomous, any two Maurer—Cartan elements on a
solution of the equation are gauge equivalent.

By taking A = 0, one sees that for any x € MC(g) we have z ~, z, and if X is a gauge from z,
to 21, then —\ is a gauge from z; to zg. Next, we will show that the gauge relation is transitive,
effectively making it into an equivalence relation.

6.1.3 The Lawrence-Sullivan algebra
In [LS14], R. Lawrence and D. Sullivan defined a Lie algebra representing the interval.

Definition 6.1.7. The Lawrence—Sullivan algebra is the free complete Lie algebra on elements x, x1 of
degree —1 and X of degree 0 with

1
d.’Ei = — *[l’i,fl,'i] y
2
B, ..
d\ = Z g ady (z1 — xo) — ady(zg) ,
n>0
where B,, is the nth Bernoulli number.

This Lie algebra is the free complete Lie algebra over two Maurer—Cartan elements x4 and z,
representing the endpoints of the interval, and a gauge A from z( to =, which corresponds to
the interval itself. It is easily derived from Lemma 6.1.3. Indeed, we want

e*dr —id

ad)\

e*dx —id

(d\) + €23 (zq) = ad,

T = (d)\—l—ad,\(:vo)) + 29 .

10ne can also drop the properness assumption and only consider those Maurer—Cartan elements and ) that are in
(F19)0.
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Thus, we have

eadr g\
d\ = (ad)\) (:L‘l — xo) — ad)\(.%‘o) s

and using the formal power series

' Bn .,
s D D= AR
n>0

we find that we must have

Bn n
d =Y —rad}(a1 — ) —ad(xo)
n>0
6.1.4 The Baker—-Campbell-Hausdorff formula
Let g be a Lie algebra. The Baker-Campbell-Hausdorff formula
BCH : gy X go — 8o

is a formula making g, into a group, and the gauge action into a group action. It has a long
history, going back to F. Schur [Sch90], with the first explicit formula is attributed to E. Dynkin.

It can be approached with what is called the differential trick, which we learned from [DSV16,
Sect. 2]. We extend the Lie algebra g by an element § of degree —1, defining

gt =g®KS§,
with the original differential and bracket on g, and imposing
d(9) =0, [0,6] =0, and [0, 2] = dx

for any = € g. Then we can look at the Maurer-Cartan elements x € MC(g) of g as

T=0+zegt,
with the Maurer—Cartan equation becoming just

[z,7] =0.

If we have A € gg, then the differential equation (6.2) defining the gauge action simply becomes

z(t) = ada(z(t)) ,

which is solved by
Z(t) = e' I (7).

This immediately recovers Lemma 6.1.3. Moreover, we can derive the Baker-Campbell-Haus-
dorff formula from it. Let A\, u € go. We want an element BCH(\, 1) € go such that

edBCH( ) (f) = eada (ead” (E)) :

It is not obvious that such an element BCH(A, i) exists. However, one can then proceed as in
[Hall5, Sect. 5.3-6] to obtain that

1
BCH(A, i) = A +/ g(ea‘“etad“)(ﬂ)dt ’
0
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where
log z
g(Z) = 1_1

is a holomorphic function on the disk (and thus we consider its formal power series to perform
the integration). If one performs the integration, one obtains for the first terms

+ 2 (0] s T A + -+

With this definition for BCH, we immediately have the following result.

1

Proposition 6.1.8. Let g be a proper complete Lie algebra, and let xq, x1, z2 € MC(g) be three Maurer—
Cartan elements. If A € g is a gauge from o to x1, and p € go is a gauge from 1 to xo, then BCH(A, p)
is a gauge from xg to xo. In particular, being gauge equivalent is an equivalence relation.

Definition 6.1.9. Let g be a Lie algebra. The Deligne groupoid Del(g) of g is the groupoid with the
Maurer—Cartan elements MC(g) as objects and the gauges as morphisms.

Remark 6.1.10. The Deligne groupoid admits an extension to a 2-groupoid. This was first done in a
letter [Del94] sent by P. Deligne to L. Breen in 1994. See [Yek12, Sect. 6] or [BGNT15, Sect. 3.3] for a
clean definition.

An object of interest in deformation theory is the quotient of the set of Maurer-Cartan elements
by the gauge equivalence relation.

Definition 6.1.11. The moduli space of Maurer-Cartan elements MC(g) of g is the quotient
MC(g) := MC(g)/ ~g

of the set of Maurer—Cartan elements of g by the gauge equivalence relation.

6.1.5 The Goldman-Millson theorem

The Goldman-Millson theorem? [GM88] tells us that, under some conditions, quasi-isomorphic
Lie algebras give rise to equivalent Deligne groupoids.

The original statement of the result is as follows.
Theorem 6.1.12 (Goldman-Millson). Let (A, m) be an Artinian local K-algebra with maximal ideal
m. Let g and b be two Lie algebras, and let ¢ : g — b be a morphism of Lie algebras such that
Hi(¢) : Hi(g) — Hi(h)

is an isomorphism for i = 0,1, and is injective for i = 2. Then the map

Del(¢ ® 1) : Del(g ® m) — Del(h ® m)
is an equivalence of categories. In particular, it induces a bijection between the respective moduli spaces
of Maurer—Cartan elements.

The tensorization by the maximal ideal of an Artinian local K-algebra corresponds to some
kind of localization. This result has been generalized in various ways during the years, e.g.
by Yekutieli [Yek12], the most general version being given by the Dolgushev-Rogers theorem,
which we will treat in detail in Section 6.4. The proof is done by “Artinian induction". We
will not treat it here, but we will see similar ideas appear in the proof of the Dolgushev—Robers
theorem, and then again in Chapter 10.

2Which W. M. Goldman and J. J. Millson attribute to Deligne and Schlessinger-Stasheff, see [GM88, p.46].
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6.2 Homotopy Lie algebras: the deformation co-groupoid

Since £.-algebras are a natural generalization of Lie algebras, it is natural to wonder what is
the correct generalization of the theory treated above in this context. The answer was given by
V. Hinich [Hin97a] with the introduction of the deformation oo-groupoid®, which was further
studied by various authors, such as E. Getzler [Get09], and V. A. Dolgushev and C. L. Rogers
[DR15].

6.2.1 Maurer—Cartan elements in a homotopy Lie algebras

Recall from Section 2.3.8 that an £.-algebra g is a chain complex equipped with graded anti-
symmetric operations

Zn : g®n — g
of degree n — 2, for all n > 2, satisfying the relations
> (=T, 00 4,,)7 =0 (6.3)

ni+ns=n+1
ocew(ni—1,n2)

for all n > 1, where we use the short-hand notation ¢; = d.
Let’s explore these relations a bit. For n = 1, equation (6.3) becomes
=0,

which is the same as to say that dg squares to zero, i.e. that g is a chain complex. For n = 2, we
have
dlx(@,y) = ba(dw,y) + (=1) " x(, dy)

i.e. d is a derivation with respect to £5. For n = 3, we obtain
0(ls)(x,y, 2) = —la(la(w,y), 2) — (=) DL, (g (2, ), y) — (1)W1 (05 (y, 2), )
= (_1)‘m||2|+1 ((_1)|T“Z‘£2(€2(I7y)a Z) + (_1)‘2Hy|£2(€2(zax)7y) + (_1)|yHT|Z2(€2(y7 Z)a .’I})) )

which tells us that the Jacobi rule is satisfied up to a homotopy given by the ternary bracket ¢.
For n > 4, we have higher compatibility relations between the brackets.

Definition 6.2.1. A Maurer-Cartan element of a proper complete £.-algebra is an element x € g_,
of degree —1 satisfying the Maurer—Cartan equation

1
dw—i—zmﬁn(aﬁ,...w)zo. (6.4)
n>2
The set of all Maurer—Cartan elements of g will be denoted by MC(g).

Remark 6.2.2. If g is a Lie algebra, then the Maurer—Cartan equation (6.4) reduces to the Maurer—
Cartan equation for Lie algebras (6.1).

Remark 6.2.3. While in the case of Lie algebras we only needed the algebras to be proper complete in
order for the gauge relation to be well-defined, in the case of L.-algebras we already need this condition
for the Maurer—Cartan equation to make sense.

3Called the contents of an Poc-algebra in op. cit.
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6.2.2 The deformation co-groupoid

One now would like a notion of gauge equivalence between Maurer-Cartan elements of an Z.-
algebra. As a matter of fact, one obtains a whole hierarchy of relations thanks to the following
object defined by V. Hinich [Hin97a, Def. 2.1.1].

Definition 6.2.4. Let g be a proper complete L-algebra. The deformation co-groupoid of g — also
known as its Maurer—Cartan space, or its Deligne-Hinich-Getzler co-groupoid — is the simplicial
set

MC.,(g) == limMC(g/F,g ® Q) € sSets,

where Q4 is the Sullivan algebra, cf. Definition 5.2.2, with inverted degrees (so that it is a chain complex
instead of a cochain complex).

The elements of MC;(g) are the analogue of the gauges between Maurer-Cartan elements in
this context. We will look at them in more detail in Section 6.2.3.

The simplicial set MC,(g) has a lot of nice properties. It is extends to a functor
MC, : oo—@oo—alg — sSets

from proper complete £ -algebras with filtered co-morphisms to simplicial sets. Its action on
filtered co-morphisms is induced by the following fact.

Lemma 6.2.5. If ® : g ~» b is a filtered co-morphism between proper complete £.-algebras, and
x € MC(g) is a Maurer—Cartan element of g, then

1
MC(®)(z) = W)n(x, )
n>1
is a Maurer—Cartan element of ). Moreover, if ® : g1 — go and U : go — g3 are two such filtered
oo-morphisms, then
MC(¥)MC(®) = MC(¥®) .

Proof. This is just developing the Maurer—Cartan equation for MC(®)(z) and using the explicit
relations satisfied by the components of an co-morphism that we wrote down in Section 2.3.8
to recover the Maurer—Cartan equation for x. Proving that MC(—) respects compositions is also
straightforward. O

We have the following result, motivating the name “oo-groupoid" and “space”.
Theorem 6.2.6. Let either:

o [Get09, Prop. 4.71: g, be nilpotent Lo,-algebras and ® : g — b be a surjective strict morphism
of Lo-algebras, or

o [Rog16, Thm. 2]: g,4 be proper complete L-algebras and ® : g ~» 4 be a filtered co-morphism
that induces a surjection at every level of the filtrations.

Then
MC, (@) : MCa(g) — MCa(h)

is a fibration of simplicial sets. In particular, for any proper complete Lo.-algebra g, the simplicial set
MC,(g) is a Kan complex.

This result was originally proven by Hinich [Hin97a, Th. 2.2.3] for strict surjections between
nilpotent Lie algebras concentrated in positive degrees, and then generalized by E. Getzler and
by C. L. Rogers to the versions stated above. A precursor to the version of [Rogl6] is [Yall6,
Prop. 3.1].
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6.2.3 Homotopies and gauges

There are two possible — and equivalent, as we will see — definitions of equivalence between
Maurer—Cartan elements of an £ -algebra.

Definition 6.2.7. Let g be a proper complete Lo.-algebra. Two Maurer—Cartan elements xg,x1 €
MC(g) = MCy(g) are homotopy equivalent if there is an element o« € MCy(g) such that

d()(O[) = Zo, lli’ld d1 (0[) = .

Let’s write down explicitly what it means for two Maurer—Cartan elements to be homotopy
equivalent. For simplicity, assume that the £ -algebra g is nilpotent. The general case works
similarly.

Under the isomorphism ©; = K[¢, dt] of unital commutative algebras given by sending ¢; to ¢,
a generic element of (g ® 21)_1 is given by

a = x(t) + A(t)dt ,
where z(t) € g_1[t], and A(¢) € go[t]. The Maurer—Cartan equation (6.4) becomes
1
0=da+ Z aén(a,...,a)

n>2

= d(x(t) + Mt)dt) + Y (:L!én(x(t), ()

n>2

+
3
I
=
’ —3\
3
8
~
~
8
—
=
>~
—
N
N———

To do this computation, we used the following facts:

e Since |dt| = —1, we have that (dt)? = 0. In particular, if the term \(¢)dt appears twice in a
bracket, then the bracket gives 0.

e For1 < i <n,wehave

n(@(t), - (O NO)dE 2(), - () = Lo (@(0), - .. (), A(£)d)
i n—(i+1)

= gn(x(t)a s ,I(t), )‘(t))dt :
e Letx € g_;andletk > 0. Then

d(zt®) = dg()t* — kat*1dt .

Therefore, « is a Maurer-Cartan element if, and only if we have:

1. z(t) € MC(g) for all times ¢ € K, and
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2. z(t) satisfies the differential equation

d
Z(t) = dgA(t) + >

The two boundaries are given by evaluation of x(¢) att = 0 and ¢ = 1, that is
do(a) =2(0) and 0O(a) =z(1).

Lemma 6.2.8. Being homotopy equivalent is an equivalence relation on the set of Maurer—Cartan ele-
ments of a proper complete £Lo.-algebra.

Proof. This is an immediate consequence of the fact that MC, (g) is a Kan complex for any proper
complete £ .-algebra. O

By taking the quotient of the set of Maurer-Cartan elements by the homotopy equivalence rela-
tion, we obtain the zeroth homotopy group moMC,(g) of the deformation co-groupoid of g.

By keeping A(t) constant, we get a second notion of equivalence of Maurer—Cartan elements.

Definition 6.2.9. Let g be a proper complete Loo-algebra. Two Maurer—Cartan elements xo,x1 €
MC(g) are gauge equivalent if there exists a A € go such that the solution z(t) € g[[t]] of the formal
differential equation

d 1
() = dA+§2mén(x(t),...,a;(t),A) (6.5)

with initial value x(0) = ¢ is such that x(1) = x1. The element X € gy is called a gauge from xg to x;.

If A € go is a gauge from z( to x;, then one immediately obtains a homotopy equivalence
between the two Maurer-Cartan elements by taking

a = x(t) + Adt ,

where z(t) is the solution of the gauge equation (6.5). Therefore, if two elements are gauge
equivalent, then they are homotopy equivalent. The other direction is also known in the liter-
ature, see e.g. [DP16, Prop. 9]. In particular, gauge equivalence is an equivalence relation. We
will give a new proof of this fact and explicit formulae to obtain a gauge equivalence from a
homotopy equivalence in Section 10.2.1.

6.2.4 An explicit formula for gauges

We can use Proposition C.2.5 to give an explicit formula for the action of a gauge A on a Maurer—
Cartan element zy. For each n > 1, we fix

1
fn,l(ylv e 7yn) = ﬁgnJrl(ylv cee 7yn7)‘) )

and fo1(1) == d\. We set f,,, = 0 for all £ > 2. Then equation (C.2) becomes equation (6.5),
and Proposition C.2.5 gives us what we wanted. A similar formula is already present in [Get09,
Prop. 5.7].

The combinatorics of planar trees is rather complicated, especially since we allow vertices of
valence 0 and 1. Therefore, we do not know of any way to express the resulting formula in a
simpler way than the formula already given. However, if we work with a Lie algebra instead of
an £.-algebra, then things simplify a lot, and we recover the formula we gave in Lemma 6.1.3.
This gives an alternative proof of that result.
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Proof of Lemma 6.1.3 (alternative version). The only non-vanishing operators are fp1 = dX, and
fi,1 = ady. Therefore, we are only have to work with trees that are a composition of 0-corollas
and 1-corollas, and which have the weight 1 at each vertex. They all fall in the following two
categories.

1. A linear composition of 1-corollas. We denote such trees by a,,, with
ao:=0, and a,:=cioan_1
forn > 1.

2. A linear composition of 1-corollas with a 0-corolla instead of the free leaf. We denote such
trees by b,,, with
bl = Cp, and bn =2<C1 0 bn,1

forn > 2.
One easily computes the coefficients of those trees to be
F(an) = F(b,) =n!,
and
an(z0) = t"ad¥ (o) , bn(z) = t"ad} ' (dN) .
Thus, the solution of the gauge equation is given by

x(t) = Z ﬁan(m) + §>:1 ﬁbn(%)

n>0

o o

= — ad (o) + > —adj L(dN)
n>0 n>1

etadx _id

= eh*h (zo) + ad ),

(dX),

concluding the proof. O

6.2.5 Getzler’s functor

In his article [Get09], E. Getzler introduced an object which is smaller, but homotopically equal
to the Maurer—Cartan space of an & .-algebra.

Recall Dupont’s contraction

P

. C.

ie

from Section 5.2.2.

Definition 6.2.10. Getzler’s functor is the functor
Yo : Loo-alg —> sSets
given by sending an £.-algebra g to the simplicial set

7e(9) = MCa(g) Nker(ly @ he)
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where ho comes from the Dupont contraction, cf. Section 5.2.2. The action on morphisms* is given by

for ¢ - g — b amorphism of Lo.-algebras.

Theorem 6.2.11 ([Get09, Thm. 5.8]). Let g, b be proper complete £.-algebras, and let ¢ : g — bh be a
filtered morphism that induces surjections at every level of the filtration. Then the morphism

Yo (®) : Ve(g) — 7e(h)

is a fibration of simplicial sets. In particular, the simplicial set v, (g) is a Kan complex for any L. -algebra
g.

Remark 6.2.12. This was originally stated for surjections between nilpotent Lo.-algebras. The more
general statement above follows from a straightforward limit argument.

Theorem 6.2.13 ([Get09, Thm. 5.9]). Let g be a proper complete L-algebra. The inclusion

Yo(g) — MC,(g)

is a homotopy equivalence of simplicial sets.

In fact, the simplicial set 4 (g) has a property which is stronger than simply being a Kan com-
plex.

Definition 6.2.14. An n-simplex x € 7, (g) is thin if

/ r=0,
Aln]

where integration acts on the part of x living in §2,.

Theorem 6.2.15 ([Get09, Thm. 5.4]). Let g be a nilpotent L.-algebra. Then ~4(g) has the following
properties.

1. Every degenerate simplex is thin.
2. Every horn has a unique thin simplex filling it.

Remark 6.2.16. In [Get09], an co-groupoid is a Kan complex which moreover has a set of thin simplices
which satisfies Theorem 6.2.15. We adopt a more oo-categorical point of view and use the terms Kan
complex and co-groupoid interchangeably.

6.3 Paradigm change: shifted homotopy Lie algebras

The operadic suspension functor
S ®—:0p— Op

is an automorphism of categories. Moreover, for any chain complex V' there is a canonical
isomorphism
< @ Endy = End,y ,

4Here, only strict morphisms are considered. An extension to an action of co-morphisms is possible using the results
of Section 9.2 and Section 10.2.
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which implies that if & is an operad, then a . ® Z-algebra is equivalent to a #?-algebra via a
suspension, and vice versa.

Relying on these facts, we will often work with 3 -algebras — shifted homotopy Lie algebras
— instead of £..-algebras in what follows. This gives the same exact theory, but has the great
advantage to substantially reduce the amount of signs appearing.

Here are some basic, useful facts. A & ,-algebra is an algebra over
23Loo =7 @ Lo = QCom" .

The operations on it are generated by graded symmetric arity n brackets

o1,V
ETL =S )

for all n > 2, all of which have degree —1. They satisfy the relations

> (tnyo1tn,)” =0.

ni+ne=n+1
ocew(ni,ne—1)

A Maurer—Cartan element of a proper complete & .-algebra g is a degree 0 element = € go
satisfying the equation

1
dx—|—zaﬂn(x,...,x):0.

n>2

6.4 The Dolgushev—Rogers theorem

In this section, we will present the Dolgushev-Rogers theorem [DR15, Thm. 2.2] in some detail.
The ideas of the proof will return in some applications, most notably in Chapter 10. The proof
we present here is very close to the original one, with some slight variations in the presenta-
tion, namely by putting more stress on the obstruction theoretical aspects of one step of the
demonstration, see Section 6.4.4.

The main theorem of this section is the following one.
Theorem 6.4.1 (Dolgushev—Rogers). Let g, b be two complete proper 3£ -algebras, and let
P:g~b
be a filtered quasi-isomorphism of 3£ «-algebras. Then the induced map
MC,(®) : MCq(g) — MC,(h)
is a weak equivalence of simplicial sets.

This generalizes the Goldman-Millson in the following sense. Suppose that g, h are any two Lie
algebras, and let (A, m) be an Artinian local K-algebra with maximal ideal m. Then g ® m has a
natural filtration given by

Fn(g@m) =gem",
making it into a proper complete Lie algebra®. The same thing holds for h. If ¢ : g — his a
quasi-isomorphism of Lie algebras, then the induced morphism

PR 1In:g®mM —bhRm

5Since A is Artinian, there is an N such that m" = 0. Therefore, g ® m is in fact nilpotent, and the filtration only has
finitely many levels.



6.4. THE DOLGUSHEV-ROGERS THEOREM 101

is a filtered (strict) quasi-isomorphism. By applying Theorem 6.4.1 to this situation and looking
at the Oth homotopy group of the spaces of Maurer—Cartan elements, we get the natural bijection

MC(¢) : MC(g) — MC(b)

between the moduli spaces of Maurer—Cartan elements of g and b.

The strategy of the proof of Theorem 6.4.1 is the following. First one proves that the statement
holds for abelian < ,-algebras with a certain trivial filtration and strict quasi-isomorphisms,
and the statement holds in full generality at the level of the Oth homotopy groups. The follow-
ing step is to prove that we can always twist the & -algebras into play to set the basepoint
of the higher homotopy groups at 0. Then one uses these statements as the base case for an
induction proving that the theorem holds in full generality for complete proper s<£ -algebras
whose filtration terminates at a finite filtration degree — and which are therefore necessarily
nilpotent. Finally, a limit argument concludes the proof.

6.4.1 The case of abelian s& , -algebras

The first step is to prove that the theorem holds in the case of abelian 3 -algebras, i.e. 3& .-
algebras in which all brackets are constantly zero. Let g be such an 4% ,-algebra, and equip it
with the filtration

Flg=g 2 Fg=Fg=...=0 (6.6)

making it into a proper complete 3% ,-algebra. A Maurer-Cartan element is nothing else than
a 0-cycle:
MCn(g) = Zo(g ® Q) ,

and in particular it follows that MC,(g) is a simplicial vector space.

Proposition 6.4.2 ([DR15, Prop. 2.4]). Let g, b be two abelian < . -algebras endowed with filtrations
as in (6.6), and let ¢ : g — b be a quasi-isomorphism. Then the induced map

MC.(9) : MC4(g) — MCa(h)

is a weak equivalence of simplicial sets.

Proof. By Theorem 4.3.6, we know that the homotopy groups of a simplicial vector space V, are
given by the homology of the Moore complex:

mo(Va) = Ho(ML(V)) and i (Va,0) = Hy(M(Va))

for k > 1. It follows that a map f : V, — W, of simplicial vector spaces is a weak equivalence
if, and only if the induced map

M(f) : M(Ve) — M(Ws)

is a quasi-isomorphism of chain complexes.

Recall Dupont’s contraction from Section 5.2.2

he C Q.

P

) O.

ie

We extend it to a contraction
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1g @ pe
1g ® he Cg@QuiE@C

1g ® ie

We claim that the following sequence is exact:

g Rpe

00— d(lg®he)(g®N)o — Fo(g ® ) — (g @ Co) — 0

where d denotes the differential of g ® €2;. The only thing that is not immediately obvious is the
fact that
ker(lg @ pe)lz,(gea,) = d(1g @ he)(g @ Qe)o - (6.7)

We have

ker(1g @ pe)|zy(gea.) = ker(l —d(1g @ he) — (15 ® he)d)|%,(gu0.)
= ker(1 — d(14 ® he))lz,(g00.)
= {r €Zo(g® Q) | d(1g ® he)(x) =z} .

An easy algebraic manipulation using the fact that we are working with a contraction shows
that (d(14 ® he))? = d(14 ® he) on g @ Q. Together with the fact that d(1, ® he) takes image in
Fo(g ® ), this implies (6.7).

Now we show that the first space of the short exact sequence is acyclic. Recall [Get09, Lemma
3.2], which states that the simplicial set (£, ) is contractible for all k. If follows that (g ® €, ), is
also contractible for all &, and in particular for £ = 0. Since

d(1g®@he) : (§® Qe)o — d(1g ® he)(g @ Qe )o
is a retraction, it follows that d(1,® he ) (g®@£2 )o is contractible, and thus that the Moore complex
M(d(1g @ he)(g @ $2e)o)

is acyclic. By applying the Moore complex to the short exact sequence defined above, we obtain
that

M(Lg @ pa) : M(Eo(g ® ) — M(Zo(g @ Ca))
is a quasi-isomorphism.

To conclude, consider the commutative square

M(Fo(g 2 00) — 0 EP) e o)
M(MC,q(9)) M(p®1c,)
M(Eo(h @ Q) ALy ©2e) M(Eo(h ® Cy))

We already know that the horizontal arrows are quasi-isomorphisms. The right vertical arrow
is also a quasi-isomorphisms. Indeed, the simplicial vector space £y(g ® C,) is the result of
applying the Dold—Kan functor I' of Section 4.3.2 to the truncation

d d d
= g2 — g1 — Folg) -
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By the Dold-Kan correspondence — Theorem 4.3.7 — we have natural isomorphisms

Since ¢ is a quasi-isomorphism, it induces a quasi-isomorphism between the respective trunca-
tions of g and h. It follows that /(¢ ® 1¢,) is a quasi-isomorphism. Therefore, the morphism
JM(MC,(¢)) must also be a quasi-isomorphism, which implies that the morphism MC,(¢) itself
is a weak equivalence by Theorem 4.3.6. O

6.4.2 The theorem holds for the zeroth homotopy group

One now proves that the statement holds for the Oth homotopy group, without any further
assumption on the algebras or on the morphism than the ones of the theorem.

Theorem 6.4.3 ([DR15, Sect. 3]). Let g, and @ : g ~ b be as in the statement of Theorem 6.4.1. The
induced map

mo(MCo(®)) : mo(MCa(g)) — mo(MCa(h))
is bijective.

The proof of this result is technical and not so important for the rest of the present work, and
will therefore be omitted.

Remark 6.4.4. Proposition 10.2.3 provides a clean alternative to the proof of [DR15, Lemma B.2], a
technical lemma of fundamental importance for the proof of Theorem 6.4.3, partially simplifying the
proof of this result. Notice that the proof of Proposition 10.2.3 is independent of Theorem 6.4.3.

6.4.3 Setting the basepoint to zero

In order to avoid having to worry about the basepoints, one shows that these can always be set
to be 0. This step can probably be avoided, but it has the advantage of making the rest of the
proof much cleaner.

Lemma 6.4.5. Let o € MC(g), and let g* be the & o-algebra obtained by twisting g by «, that is the
0Z oo-algebra with the same underlying graded vector space, but with differential

and brackets

Let
Shift,, : MCq(g®) — MC,(g)

be the isomorphism of simplicial sets induced by the morphism of & «-algebras given by
fegi—atpeg.

Then the following diagram commutes
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Shift,,
MC,4 (g%) ————*—— MC.(g)
(O3 d
ShiftMc(.:p)(a)

MC,(h*) MC,(h)

where
MC, () (8) = > o7 (B%)
E>1

and

Pr(brL®- @ Pr) = Z %Qﬁkﬂ'(a@j ®RBR...Q Bk

7>0
is the twist of ® by the Maurer—Cartan element o. Here, we identified « € gwitha ® 1 € g @ Q..

The proof is a straightforward unwinding of definitions, and will be omitted here. A conceptual
approach to this kind of twisting procedures is given in [DSV18]. Given 3 -algebras g, h with
basepoints o« € MC(g) and MC(®)(a) € MC(h), then the shifts in the lemma above change the
basepoints to 0 € gand 0 € b.

6.4.4 The induction step

We are now set to do the induction step. Let n > 2, then we denote

g™ = g/Fng,

and similarly for b, and also
™ ; gl s ()

the induced map, which is well defined because  is filtered.

Proposition 6.4.6. For each n > 2, the filtered quasi-isomorphism ® induces a weak equivalence of
simplicial sets
MC.o (@) : MC,(g™) — MCa(h™) .

Proof. The statement is true for n = 2 by Proposition 6.4.2, because the S Loo-algebras g and
h(?) are abelian. Now suppose that the statement is true up to some n. We will prove that then
it also holds for n + 1.

Consider the commutative diagram

0 ——— Fn0/Fni10 gn+h) g™ 0
P(n+1) o)
0 Fnb/Fni1b {)(nﬂ) h(n) 0
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where the horizontal maps are the natural inclusions and projections, and the vertical ones are
all induced by ®. Notice that the leftmost vertical arrow is in fact a strict morphism, induced by
the linear part ¢; of ®. In particular, it is a quasi-isomorphism between abelian 3 -algebras,
and thus induces a weak equivalence of simplicial sets between the respective Maurer—Cartan
spaces by Proposition 6.4.2. The co-morphism ®(™) also induces a weak equivalence between
Maurer—Cartan spaces by induction hypothesis. Therefore, applying the Maurer-Cartan func-
tor we have

1wc'(('E/an/('E/Fn-i-19) I hﬁc%(g(n+l))‘44444—————ﬁ h{c%(g(”n
2 MC, (D +1)) 2| MC, (™)

MCo(Fnh/Fpni1h) ——— MC,(h* D) ———— MC.(h(n))

Since the canonical projection g"*!) — g¢(" is surjective, the induced map on the Maurer—
Cartan spaces is a fibration of simplicial sets by Theorem 6.2.6, and the term on the left in the
diagram above is easily checked to be the fibre above 0. The same thing holds for ). We pass to
the long exact sequences of homotopy groups — which is in fact exact everywhere except at m
— and using the 5-lemma conclude that MC, (®("*1)) induces bijections between the respective
kth homotopy groups, for all £ > 2. The case k = 0 was covered by Theorem 6.4.3. We are left
to check the case k = 1. The relevant part of the long sequence is

L 1 MCo (;jng )

Fn4+19

m2MCa(g") T mMCa () —— mMC () — mMC. (57225

Fn+10

I Il IR IR

0 F 0 .
7aMCa (677) — 2 mMC (52225 ) — mMCu(5+) —— 7 MCa (67)) —2s moMC ( 52225 )

We need to prove that the central map is an isomorphism, but we cannot directly use the 5-
lemma to do it as the rightmost terms are just sets, not groups, and the map between them is
only a bijection of sets. The proof, however, is an obstruction theoretical argument similar to
the proof of the 5-lemma.

The map is surjective. Let y € mMCq(h(*+1)). Denote by 7 its image in wlMC.(b("“)). Since
the relevant vertical map is an isomorphism, there exists an 7 € m MC,(g(™) mapping tog.

Moreover, since y maps to 0 € 1oMC, (m> then z maps to 0 € moMC, ( . By “exact-

+1Q
ness" of the sequence, there exists an = € 1 MC,(g(" 1)) mapping to 7. Denote by ¢’ the image
of z in 1 MC,(h(™*1). It is not necessarily equal to y. However, we have that 4y~ maps to

F, +1B
first the vertical arrow, and then the horizontal arrow. Denote by 2’ € 7;MC,(g(" ") the image
of z under the horizontal arrow. Then (z’) 'z maps to y, proving that the middle vertical map
is surjective.

0 € 1 MC,(h™), and thus there exists an element z € 7 MC, ( pond ) mapping to it by doing

The map is injective. Suppose z € 1 MCq(g(" ™)) maps to 0 € m MC,(h*+1)). Then, since the
map m MC,(g(™) — 7, MC4(h(™) is an isomorphism, it follows that 2 maps to 0 € m, MC,(g(™),
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and thus that there exists y € 7 MC, ( Fng ) mapping to z. Lety € mMC, ( Fng ) be the

Frnt10 Fnt10
image of y. Then 7 maps to 0 € 71 MC,(h(**1), and it follows that there exists Z € moMC,(h(™))
mapping to it. Let z € moMC,(g(™) be the preimage of z. Then » maps to y, and by exactness of
the long sequence, it follows that « = 0, concluding the proof. O

6.4.5 Conclusion of the proof

The only step missing for the proof of Theorem 6.4.1 is a passage to the limit.

Proposition 6.4.6, together with all we have said before, shows that MC, (®(™)) is a weak equiv-
alence for all n > 2. Therefore, we have the following commutative diagram:

MC,(gW) ——— MC,(h®)

MC,(g®) ——— MC4(h®)

MC,(g®) ——— MC,(h®)

where all objects are Kan complexes, all horizontal arrows are weak equivalences, and all ver-
tical arrows are fibrations of simplicial sets by Theorem 6.2.6. It follows that the collection of
horizontal arrows defines a weak equivalence between fibrant objects in the model category of
tower of simplicial sets, see [G]J09, Sect. VI.1]. The functor from towers of simplicial sets to sim-
plicial sets given by taking the limit is right adjoint to the constant tower functor, which trivially
preserves cofibrations and weak equivalences. Thus, the constant tower functor is a left Quillen
functor, and it follows that the limit functor is a right Quillen functor. In particular, it preserves
weak equivalences between fibrant objects. Applying this to the diagram above proves that
MC,(®) is a weak equivalence.

6.5 The formal Kuranishi theorem

In this section, we present some results of Bandiera [Ban14], [Ban17], which in particular give
another construction of Getzler’s co-groupoid v,(g) for a 3£ .-algebra g. In particular, the
results presented here will give a very important link between the results of Chapter 10 and the
theory developed in the present chapter.

6.5.1 Complete contractions and the homotopy transfer theorem

The first results of [Ban17] we present give a categorical point of view on the homotopy transfer
theorem. They were originally stated for £..-algebras, but we give a slightly more general



6.5. THE FORMAL KURANISHI THEOREM 107

version, using the generalized homotopy transfer theorem, see Theorem 9.3.1.

We place ourselves in the context of proper complete chain complexes and algebras, cf. Ap-
pendix B.

Definition 6.5.1. A complete contraction is a contraction of chain complexes

nCV

p

w

such that (V, %, V) is a proper complete chain complex, and the chain maps h and ip are filtered.
Given such a complete contraction, one defines the filtration

F W =i YF,V)
on V.

Lemma 6.5.2. The filtration F,W is unique with respect to the property that both p and i are filtered
morphisms. The filtered chain complex (W, F,W) is proper complete.

Proof. The fact that i, p are bot continuous with respect to %, W is obvious. Conversely, let
F. W be any filtration of W such that ¢, p are filtered. Then for every x € %,W we must have
i(z) € F,V. Conversely, if z € i1 (F,V), theni(z) € F,V, and thus

x = pi(z) € F,W .

The first statement follows.

To show that W is complete, notice that since they are filtered, the maps 7 and p induce chain
maps
i W/FW —V/FV and p:V/FV — W/FW

at every level of the filtration, which still satisfy pi = 1y, w. In particular, p is surjective at all
levels of the filtration. Then

W=p(V)=p (liin V/%V) = lim W/, W,

where in the last identification we used the fact that p is filtered to switch it over the limit. [

Definition 6.5.3. A morphism ¢ between complete contractions is

hCV
¢

P

w

i

/
P

n C V/ 4’1}[]/

such that ¢ : V. — V' is filtered, and such that h'¢ = ¢h. The composite of two such morphisms
is simply given by composing the vertical maps of the diagram above. This notion of morphism makes
complete contractions into a category, which we denote by cCtr.
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There are two obvious “projection” functors
pry o : cCtr —> cCh

giving back V' and W respectively. Their action on morphisms of complete contractions are
given by
pri(¢) =¢:V — V', and pry(¢) =p'¢i: W - W’

respectively. The fact that pr, commutes with compositions follows from the fact that in a
contraction we have pi = 1y .

The homotopy transfer theorem is well behaved with respect to complete contractions.

Theorem 6.5.4. Let € be a cooperad, and suppose we have a complete contraction

r

CAT——nB

where A is a proper complete Q€ -algebra with respect to the given filtration on A. Then the transfered
structure makes B in a proper complete Q€ -algebra, and the induced oco-quasi-isomorphisms i, and
Doo are filtered co-quasi-isomorphisms. Moreover, if we have two such contractions and a morphism ¢ of
complete contractions which is a strict morphism of Q€ -algebras, then pry(¢) also is a strict morphism
of QY€ -algebras.

A couple further compatibility results can be found in [Ban17, Sect. 1]. These imply the follow-
ing result. Consider the filtered product Q% -alg xcch cCtr given by

@—alg Xech cCtr ———— cCtr

pry

O%-alg cCh
Proposition 6.5.5. The homotopy transfer theorem gives a functor

K/Z%—alg X cch cCtr — ﬁ%—alg .

6.5.2 The formal Kuranishi theorem

We specialize now to & ,,-algebras. Suppose we have a complete contraction

hcg%h

i

with g a s . -algebra, and consider the induced 3<% . -algebra structure on h.
Theorem 6.5.6 ([Ban17, Thm. 1.13]). The map of sets
MC(g) — MC(h) x h(go)

given by
@ — (MC(peo) (@), h(x))

is bijective.
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The proof is done by considering and solving recursively certain fixed point equations in nilpo-
tent 3£ .-algebras, and then concluding by passing to the limit. We will not do do it here, and
we refer the reader to the original references [Ban17, Thm. 1.13] and [Ban14, Thm. 2.3.3].

Remark 6.5.7. The reason behind the name of this theorem is the fact that it generalizes a result by
Kuranishi [Kur62]. See [Get18, p. 3] for a nice exposition.

We are mostly interested by the following consequence. Consider the contraction

1g ® pe
1g @ he C9®Q°4<7>9®C°

lg Qie

induced by Dupont’s contraction. Theorem 6.5.6 implies the following.

Corollary 6.5.8. The map
7e(g) — MC(g @ Ch)

given by
z — MC((14 @ p)oo) ()

is an isomorphism of simplicial sets.

Proof. The result is a direct consequence of applying Theorem 6.5.6 to the contraction above,
and considering the restriction of the bijection to 74 (g) = MC,(g) Nker(14 ® ha). O
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Chapter 7

Deformation theory

The goal of this chapter is to motivate the interest in the space of Maurer—Cartan elements of
Lie and homotopy Lie algebras. The archetypal deformation problem goes like this. One is
given some fixed object, say a vector space V, or a manifold M, and a structure on this object,
such as an associative algebra structure on V, or a complex structure on M. Then the goal is
to understand how one can “deform” the given structure in such a way as to obtain another
structure of the same kind on the same base object, and to understand which deformations give
us structures that are isomorphic to the original one, and which ones don’t. This way, one can
obtain information about the original structure.

Lie algebras, their Maurer—Cartan elements, and gauge equivalences appear naturally in defor-
mation theory, and provide a generalized framework to study deformation problems. In fact,
it is a “philosophical principle” attributed to Deligne [Del87] that, in characteristic zero, every
deformation problem corresponds to the study of Maurer—Cartan elements and the gauges be-
tween them in a (possibly homotopy) Lie algebra. This principle has been formalized in recent
years by Pridham [Pril0] and Lurie [Lur11] to give a theorem in the context of co-categories.

Deformation theory is a deep and beautiful subject with a long history and plenty of applica-
tions. Its study goes back to the works of Grothendieck, Artin, Quillen and many others, up
until the more recent works of Kontsevich in deformation quantization and mirror symmetry,
and the already mentioned formalization of Deligne’s principle by Pridham and Lurie.

We will introduce deformation theory by the means of an algebraic example: deformations of
associative algebra structures on a vector space. We will begin by talking about infinitesimal
deformations, before passing to general deformations, introducing the deformation complex,
and state the fundamental principle of deformation theory. We will then conclude the section
by presenting various other examples of deformation problems, both algebraic and geometrical,
and the Lie algebras governing them.

In this section, we work in cochain complexes. Some good introductory references for deforma-
tion theory are e.g. the notes of Kontsevich [Kon94] and [Sze99].

7.1 Deformation theory through an example

In this section, we attempt to give an overview of deformation theory through the archetypal

example of deformations of associative algebra structures on a vector space. We begin by ex-
plaining what an infinitesimal deformation is, before passing to more general deformations, and
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then presenting the differential graded Lie algebra governing this specific deformation problem.
We conclude the section by presenting the fundamental principle of deformation theory, due to
P. Deligne, which relates deformation problems in characteristic 0 to Maurer—Cartan elements
of (homotopy) Lie algebras.

The exposition given here is heavily based on the introductory note to deformation theory
[Sze99] by B. Szendrbi.

7.1.1 Infinitesimal deformations

Let A be an associative algebra, not differential graded. In other words, A is a finite dimensional
vector space together with a linear map

m:ARA— A
satisfying the associativity condition
m(m(a,b),c) = m(a,m(b,c))

for all a, b, c € A.

One wants now to “infinitesimally deform” m in order to obtain another associative algebra
structure on A. In order to do this, one considers structures of the form m := m + ¢f with
f € hom(A® A, A) and € a formal parameter satisfying 2 = 0. This can be formalized by saying
that we are looking at elements of

hom(A @ A, A) @ K[e]/(¢?) ,

which corresponds to look at the “tangent space” of our space of structures'. The associativity
condition now reads

m(a, m(b, c))
b), C) m(a7 (bv C)) ( ( (a’ b)7 C) - f(a7 m(b7 C)) + m(f(a> b)’ c) - m(av f(b’ C))
= €(f(m(a’> b)’ C) - f(a’ (b’ C)) (f(a’ b)’ C) - m(a" f(ba C))

where in the second line we used the fact that ¢ = 0, and in the third line the fact that m was
associative to begin with. Thus, m being associative is equivalent to

f(m(avb)v C) - f(avm(bv C)) + m(f(a‘v b)a C) - m(av f(ba C) =0.

One also wants to understand when a deformed structure is isomorphic to the original one. In
order to do this, one considers automorphisms of A of the form 7" := 14 + €g for g € hom(A4, A).
Notice that such a morphism is indeed invertible, with its inverse being given by T~ = 14 —eg.
Then one looks at the pullback of the multiplication m by T

Tm(T ™'z, T~ y) = m(z,y) + €( g(m(z,y)) — m(g(z),y) — m(z,g(y))) -
fr=

I
L
£

This tells us that a deformed multiplication m = m + €f is isomorphic to the original multipli-
cation m if, and only if

f=gm(z,y)) —m(g(x),y) —m(z,g(y))

1From an algebro-geometrical point of view, K[e]/(€?) models tangent vectors.
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for some g € hom(A4, A).

This can be wrapped up together nicely as the first levels of a homology theory. Indeed, one
considers the Hochschild cochain complex

Hoch(A, m) = (hom(K, 4) -4 hom(A4, A) % hom(A%2, 4) - hom(A%2, A) -4 .. ) ,

where we see hom(A®", A) as living in degree n — 1, with the differential being given by

d(f)(a1,...,an+1) =
=mlar, floz,. @) + Z(_l)kf(ah oAk A1), -y Angr)F
k=1

+ (=D""'m(f(ar, ..., an), ng1) -

This complex was introduced by G. Hochschild in [Hoc45]. It is an easy exercise to check that
this differential squares to zero. Then the infinitesimally deformed associative structures are
exactly the cycles in Hoch; (A4, m), and two such structures are isomorphic if, and only if the
respective cycles are cohomologous. Thus, we have

{essentially distinct infinitesimal deformations of m} = H"'(Hoch(A,m)) .

This is what normally happens in general when one tries to deform infinitesimally some kind
of structure. One is led to some cochain complex where the cycles at some level correspond to
the deformed structures, and which are cohomologous if, and only if the deformed structures
are equivalent. This happens because working infinitesimally — i.e. over the ring Kle]/(e?)
— correspond to linearizing the higher structure hiding behind more general deformations:
the structure of a Lie algebra, where the cycle equation will be replaced by the Maurer—Cartan
equation. One can already see this happening when trying to understand deformations to a
higher order, working over Kle]/(e"), or over an artinian ring in general, and also with formal
deformations, i.e. working over the ring of formal power series K[[¢]].

7.1.2 Deformations in general

Now one wants to understand deformations in general. A deformation of the original associa-
tive structure m is just
m:=m+f

with f € hom(A ® A, A). The associativity condition now reads
f(m(a’ b),C) - f(avm(b? C)) + m(f(aab)v C) - m(a’7 f(b7 C)) + f(f(a’ b),C) - f(a’7 f(b’ C)) =0 ’

where now the lat two terms of the left-hand side — which are quadratic in f — do not neces-
sarily vanish. If one writes

[f1, fl(a, b, ¢) = fi(f2(a,b),¢) — fila, f2(b,¢)) + fa(fi(a,b),c) — fa(a, f1(b,c)),

then [—, —] is graded antisymmetric (if one considers fi, f> as elements of degree 1) and satisfies
the Jacobi rule. With this in mind, we can write the associativity condition as

&+ 515 71=0,
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where d is the differential of the Hochschild complex defined in Section 7.1.1, which can also be
written as d := [m, —]. Thus, assuming that we can extend this bracket to define a Lie bracket
on the whole Hochschild complex, deformations of m correspond to Maurer—Cartan elements
of Hoche (A, m).

To understand what deformations are equivalent, suppose that A is finite dimensional. To any
linear map hom(A, A) we associate an automorphism of A by

1
e =Y —¢" €hom(4, 4),
n>0
whose inverse is given by e 9. We consider the path ¢ — €'9 and the algebra structure
me(x,y) = eIm(e ¥r, e y) .

This can be written as
my =m+ f;,

for fi = my; —m € hom(A ® A, A). Then

%ft(x, y) = gm(z,y) + m(g(x),y) + m(z, g(y)) + gfe(z,y) + fi(g(x),y) + fe(z,9(y)) -

Defining
9, 1, 9) = g(f(x,9)) + f9(2),9) + f(2,9(y))
for f € hom(A® A, A) and g € hom(A, A), we can rewrite this as

d
%ft =dfy + g, f1]

which one recognizes as the differential equation saying that ¢ is a gauge from m to the pullback
eIm(e9,e79) of m by ef.

7.1.3 The deformation complex

Consider the following intrinsic version of the Hochschild complex, corresponding to the trivial
algebra structure m = 0 on A. The cochain complex is given by

Hoch,,(A) := hom(A®(+D 4)

for n > —1, with trivial differential®. One defines a Lie bracket on this complex by

n

[fv g](ala s 7an+m—1) = Z(_l)imf(ala e ,g(au e 7ai+m—1), ceey an+m—1)+
1=1

+ Z(—l)j"g(al, v 9(ag, Q=) Gppm—1)
j=1
for f € hom(A®™, A) and g € hom(A®™, A). This bracket was introduced by M. Gerstenhaber

[Ger63], and is therefore usually called the Gerstenhaber bracket. Notice that this recovers the
bracket given in Section 7.1.2. The Maurer-Cartan elements of Hoch(A) are the elements

m € hom(A® A, A) = Hoch; (A)

2If A is itself a cochain complex, then one takes the differential induced by the differential of A.
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such that the Maurer—Cartan equation

1 1
0= §[m,m] = §(m(m ®14)—m(lsg® A))
is satisfied, i.e. the associative algebra structures on A. Moreover, by what we have seen before,
two such algebraic structures are isomorphic if, and only if the corresponding Maurer—Cartan
elements are gauge equivalent. Therefore, we have

{isomorphism classes of associative algebra structures on A} = MC(Hoch(A)) .

If one wants to look at deformations of a given associative algebra structure m, i.e. study the ele-
ments f € hom(A®A, A) such that m+ f is again an associative algebra structure on A, then one
can do so by means of a twist. Namely, one considers the Lie algebra Hoch(A, m) := Hoch(A)™
which has the same underlying graded vector space, the same Lie bracket, but differential

4™ = [m,—] .

Since m is a Maurer-Cartan element, this is again a Lie algebra, and f is a Maurer—Cartan
element in Hoch(A4, m) if, and only if m + f is a Maurer—Cartan element in Hoch(A). Cf. also
Lemma 6.4.5.

Finally, if one wants to recover infinitesimal deformations, it suffices to consider the Lie algebra
Hoch(A) ® K[e]/(€?) .

If m is a Maurer—Cartan element of Hoch(A), i.e. an associative algebra structure on A, then
m + ef is a Maurer—Cartan element of Hoch(A) ® K[e]/(€?) if, and only if it is an infinitesimal
deformation of m.

7.1.4 The fundamental principle of deformation theory

One might think that the situation above is specific to the case of associative algebras, or maybe
of some specific algebraic situations. This is not the case, and a plethora of examples have
been found during the years, both in the algebraic setting, in geometrical problems, and even
in situations strictly linked with physics. We will expose some of those in Section 7.2. In fact,
this situation is so ubiquitous that it led P. Deligne [Del87] to formulate the following heuristic
principle, often referred to as the fundamental principle of deformation theory:

“When working over a field of characteristic zero, all deforma-
tion problems can be formulated as the study of the Maurer—
Cartan elements in a differential graded Lie algebra.”

More generally, one might want to consider homotopy Lie algebras instead of strict Lie algebras.
To be more precise, the principle above means that for every deformation problem there exists
a (homotopy) Lie algebra g such that one can establish the following dictionary:

Deformation problem Homotopy Lie algebra g
Structures of the desired type | Maurer—Cartan elements MC(g)
Equivalences between structures Gauges
Infinitesimal deformations Study of g ® K[e]/(€?)
Formal deformations Study of g ® K[[t]
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And so on. One can also identify the space of infinitesimal deformation of a fixed Maurer—
Cartan element o with the (formal) tangent space of MC(g®), and thus deduce e.g. that the
dimension of the moduli space of the structures of the desired type at « is the same as the
dimension of the cohomology H*(g®).

To conclude this section, we should mention that while the principle exposed above is just a
heuristic, it has in fact been made into a formal result in the context of co-categories by Pridham
[Pri10] and Lurie [Lurll]. There, a sensible oo-category of deformation problems is defined,
and it is shown that it is equivalent to the category of differential graded Lie algebras as an
oo-category through what is essentially the Maurer—Cartan functor.

7.2 Other examples and applications

In order to demonstrate the importance of deformation theory in mathematics, we sketch vari-
ous classical examples and applications.

7.2.1 Lie algebras and commutative algebras

If one is interested in deforming a fixed Lie algebra structure on a vector space g, then proceed-
ing as for associative algebras one is led to consider the Chevalley—Eilenberg complex

CE,(g) = hom(A" 1A, A)

for n > —1, where A" A denotes the nth exterior power of A, with differential given by

d(f) (o, .- xn) = > (=1 f([2i, 2], 20, By, By oy )+
i<j
n+1

+ 3 (D, f(@o, - T )]
k=1

where the hat denotes omission. This cochain complex was introduced by C. Chevalley and S.
Eilenberg in [CE48]. One puts the following bracket on the Chevalley-Eilenberg complex. For
f € hom(A™A, A) and g € hom(A™A, A), one defines

[f»g](xla"~amn+m—1) = Z (71)0.]0(9(‘%0(1);'"axa(m))axa(m-‘rl)a"'7wa(n+m—1))

ocew(m,n—1)

+ Z (*1)Ug(f(f£a(1), e ,xg(n)), Ia(n+1), e ,:Cg(n+m_1)> .

ocu(n,m—1)

This bracket makes the Chevalley-Eilenberg complex into a differential graded Lie algebra,
providing the deformation complex for Lie algebra structures on g.

For commutative algebra structures, the situation is similar. The cochain complex one considers
is the Harrison complex, which was defined in [Har62] by D. K. Harrison. Its explicit description
is more complicated, and we will not carry it out here.
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7.2.2 Algebras over an operad

More generally, let & := Q% be a cofibrant operad, where ¥ is a reduced cooperad. Fix a chain
complex A. Then the deformation complex of &-algebra structures on A is the Lie algebra

Def »(A) := hom(%,Endy,) ,
where the Lie bracket is given by
[fvg] ::f*gig*fv

with  the pre-Lie product described in Section 2.2.5. One can in fact directly work in the pre-
Lie setting to obtain powerful results, see [DSV16]. The fact that this is the correct deformation
complex is given by the following result, which follows from Theorem 2.2.17 and [DSV16, Thm.
3].

Theorem 7.2.1. The Maurer-Cartan elements of Def »(A) are in bijective correspondence with the
possible &7-algebra structures on A. Moreover, two Maurer—Cartan elements are gauge equivalent if,
and only if the respective &?-algebra structures are co-isotopic, i.e. if they are linked by an co-morphism
whose first component is the identity.

One can recover the Hochschild, Chevalley-Eilenberg, and Harrison complex as subcomplexes
of Def »(A) if one takes &7 = As, Lie, and Com respectively.

7.2.3 Complex analytic structures on a manifold

All the examples we have given until now are algebraic in nature, but deformation theory also
works in geometrical situations. One such example is the deformation of complex analytic
structures on manifolds, due to K. Kodaira and D. C. Spencer [KS58a], [KS58b]. The deforma-
tion complex in this case is given in degree n > 0 by the cochain complex of holomorphic vector
fields tensor (0, n)-forms.

A first intuition on this problem goes back to Riemann, who in 1857 famously calculated that
the “number of independent parameters” on which the deformations of a complex structure
on a closed Riemann surface of genus g, i.e. the dimension of the moduli space of complex
structures, is 3g — 3.

7.2.4 Deformation quantization

A last famous example is due to M. Kontsevich [Kon03], and is closely related to mathematical
physics, more precisely to the quantization procedure.

The physical motivation is as follows. One encodes physics via a “space of states” given by
a manifold M and “observables”, the smooth functions on M. Physics is then given by how
the observables interact. If one wants to describe classical mechanics, then one must ask for a
Poisson structure on C'*°(M). For quantum mechanics, one must give a star product on C*° (M),
which is a deformation of the usual pointwise product of functions as a formal power series in
a parameter i. One can recover a Poisson bracket in the first order of the expansion of a star
product, which is interpreted as the procedure of getting back classical physics from quantum
mechanics. The question is how to go the other way: given a Poisson structure on M, is it
possible to find a star product recovering the Poisson bracket? In other words, is it always
possible to quantize classical mechanics?
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To give some details, a star product on C*°(M) is an associative, R[[A]]-linear product on the
space C>°(M)[[R]] of formal power series of smooth functions in % of the form

fxg=Ffg+> Bu(f,9)h",

n>1

where the B,, are bidifferential operators on C'*°(M). One obtains a Poisson bracket from a star
product by

{fag} = Bl(fvg) 7Bl<gaf) :

Two star product are said to be equivalent if they are related by a certain type of gauge relation.
Kontsevich associated a deformation complex to star products, and to Poisson brackets, and
then proved that the two complexes are linked by a zig-zag of co-quasi-isomorphisms. This
implies that equivalence classes of Poisson structures are in bijection with equivalence classes
of star products, answering the quantization question in the positive.
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Chapter 8

oco-morphisms relative to twisting
morphisms

In Section 2.3.3, a notion of co-morphisms between &7 -algebras was introduced, where & is a
Koszul operad. Namely, such an co-morphism is the same thing as a morphism of conilpotent
P'-coalgebras between the bar constructions of the algebras relative to the canonical twisting
morphism

P — P

cf. Notation 2.2.19. There is a natural, useful generalization of this notion. Namely, one can
consider morphisms of coalgebras between the bar construction with respect to any twisting
morphism

a:6 — Z.

Dually, this gives us a notion of co-morphism between conilpotent coalgebras by considering
morphisms of algebras between their cobar constructions relative to a twisting morphism. Ver-
sions of this idea have already been used more or less explicitly in the literature e.g. in [Mar04],
[Berl4a], and [Berl4b], at least for algebras. In this section, we give a precise definition of this
generalized notion of co-morphisms, and then study some of their properties. In particular, we
look in detail at their homotopical behavior.

We expect the theory presented here to work without great changes for morphisms between
connected weight graded (co)operads. We give here the case of reduced (co)operads for ease
of presentation, and because all the cases of more immediate interest (e.g. associative, com-
mutative, and Lie algebras, as well as their up to homotopy counterparts) are included in this
framework.

Most of the material of this chapter is extracted from the article [RNW17].

8.1 Basic definitions and rectifications

In this section, we define the notion of co-morphisms of algebras and coalgebras relative to a
twisting morphism, and study some of their basic properties.

121
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8.1.1 Basic definitions

The definition of co-morphisms of algebras and coalgebras relative to an arbitrary twisting mor-
phism is the following one.

Definition 8.1.1. Let € be a cooperad, let & be an operad, and let o : € — &2 be a twisting morphism.

1. An oo-morphism of &-algebras relative to «, or an co,-morphism of #-algebras, between
two P-algebras A and A’ is a morphism U of €-coalgebras

U:B,A— B,A'.

Composition of co,-morphisms of &P-algebras is given by the standard composition of morphisms
of €-coalgebras between the bar constructions. We denote the category of &-algebras with coq-
morphisms by co,-S-alg.

2. An oo-morphism of conilpotent ¢’-coalgebras relative to o, or an co,-morphism of conilpo-
tent ¢’-algebras, between two conilpotent ¢-algebras D' and D is a morphism ® of &7-algebras

®:0,D — QD .

Composition of co-morphisms of € -coalgebras is given by the standard composition of morphisms
of &-algebras between the cobar constructions. We denote the category of conilpotent € -coalgebras
with co-morphisms by co,-%€-cog.

Remark 8.1.2. If & is a Koszul operad and
1P P

is the canonical twisting morphism, then the notion of co,-morphisms of P.-algebras coincides with
the classical one, cf. Proposition 2.4.3.

When confronted with such a definition, it is natural to wonder what happens to the notion of
00q-morphism under changes in the twisting morphism «. Here is a first result in that direction.

Lemma 8.1.3. Let €', % be two cooperads and let &7 be an operad. Let o« € Tw(€, P),let f : €' — €
be a morphism of cooperads, and let D be a conilpotent ¢’-coalgebra. Then

Qu(f.C) = Qp-0C.

In particular, oo g« o-morphisms between conilpotent 6'-coalgebras are the same as co,-morphisms be-
tween the same coalgebras seen as €-coalgebras by pushforward of the structure along f.

Dually, let € be a cooperad and let &7, P’ be two operads. Let « € Tw(E,P),letg: P — P bea
morphism of operads, and let A be a &'-algebra. Then

Ba(9"A) =Bg.aA.

In particular, co4, o-morphisms between '-algebras are the same as con-morphisms between the same
algebras seen as &-algebras by pullback of the structure along g.

Proof. We only prove the first of the two facts, the proof of the second one being dual. As
algebras over graded vector spaces, it is clear that we have

Qo C=2(C) = Q(fC),
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so that we only have to check that the differentials agree. We have
do;.,c =dgpc) + dj

with d} o given by the composite

Yole
—_

P(C) 1222, g6 (0567 o) 222U 20N (0 o) 2 (P oy 2)(C) 2(C).

The part d » (¢ is independent of the twisting morphism, and thus of no interest to us. For the
other part, we notice that

(lpo(lesfrfaole))(ly o' Ac) = (1p o (lesaf o lo)) (1w o' Ac)
=(1lgpo(lg;aole))(le o fAC)
=(lpo(lesarole))(lp o Ayc),

which implies the result. O

8.1.2 Rectifications

Suppose we have a commutative diagram

(g/
JARN
€ P

(67

where « is a twisting morphism, and where f is a morphism of cooperads. Then Lemma 8.1.3
tells us that whenever we are given two conilpotent ¢”-coalgebras, the oo« ,-morphisms be-
tween them are exactly the same thing as the oo,-morphisms between the same coalgebras
seen as ¢-coalgebras by pushing forward their structure along f. Suppose instead that we are
given two conilpotent ¢-coalgebras. Is it possible to go the other way around and understand
the co,-morphisms between them in terms of 0o +,-morphisms? The dual question is asked for
oo-morphisms of algebras. The answer is not so immediate this time, and goes through what
we call rectification functors, in analogy to Section 2.5.1.

Let ¢ and ¢’ be two cooperads, let & be an operad, let a : € — & be a twisting morphism,
and let f : ¥' — € be a morphism of cooperads. We define the rectification functor

R f 1 004-%-cog — 004-6-cOg

by

on conilpotent ¢-coalgebras, and
R, 5 (®) == fiBfa®

on oco,-morphisms of ¢-coalgebras. The counit of the bar-cobar adjunction relative to f*« in-
duces a natural transformation

Ec i QaRa f(C) = QfeaBrafaC 2% 0,0,
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where C is a conilpotent ¢-coalgebra, and where the equality is given by Lemma 8.1.3. There-
fore, we have a natural co,-morphism of conilpotent ¢-coalgebras

EC : Ra7f(0) ~ C
from the rectification functor to the identity functor.

Remark 8.1.4. If f is the identity of €, then E is a strict morphism, namely the counit of the bar-cobar
adjunction.

Dually, let ¢ be a cooperad, let &7, %' be operads, let a : € — & be a twisting morphism, and
take g : # — &’ a morphism of operads. We define the rectification functor

RIY : 00o-P-alg — 00,-P-alg
by
R9Y(A) = g"Qy.aBo A

for a #-algebra A, and
RY*(W) := g"Qy. o ¥

on co,-morphisms. There is a natural transformation N from R?® to the identity of co,-#-alg
given by
Ny :BoA 2% B, 0Q, oBad = BRI(A)

where 7 is the unit of the bar-cobar adjunction relative to g.a. Therefore, we have a natural
00o-morphism of #-algebras
NA c A Rg’a(A)

from the identity to the rectification functor.

Remark 8.1.5. If g is the identity of &2, then N is a strict morphism, namely the unit of the bar-cobar
adjunction.

Next, we will see that the rectification functors are homotopically well behaved.

8.2 Homotopy theory of co-morphisms of coalgebras

The homotopy theory for classical co-morphisms is quite well known, cf. Section 2.5 and Sec-
tion 3.3.8. Notice that the theory developed there passes without problems to co,-morphisms of
algebras when « is a Koszul morphism!. In this section, we will develop the analogous results
for coalgebras. For this section, we a Koszul morphism o : ¢ — £.

We begin with the following definition.
Definition 8.2.1. Let € be a cooperad, let & be an operad, and let o : € — & be a twisting morphism.
1. An oo,-morphism of P-algebras U : A ~~ A’ is an a-weak equivalence if the morphism
U :B,A — B A

is a weak equivalence of coalgebras in the category of conilpotent €-coalgebras with the Vallette
model structure [Val14], i.e. if

Qu¥: QBoA — QB A’

is a quasi-isomorphism.

Here, as usual, we take Koszul morphisms between reduced (co)operads. We expect the theory presented in this
chapter to work more generally for Koszul morphisms between connected weight graded (co)operads.
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2. An co,-morphism of P-algebras ¥ : A ~» A’ is an 0o,-quasi-isomorphism if the chain map
P A— A
is a quasi-isomorphism.
3. An ooq-morphism of €-coalgebras ® : C' ~» C'is an a-weak equivalence if the morphism
®:0,0 — Q,C

is a quasi-isomorphism, i.e. if it is a weak equivalence in the classical Hinich model structure on
the category of #-algebras.

4. An ooq-morphism of €-coalgebras ® : C' ~» C'is an co,-quasi-isomorphism if the chain map
o1 - ' —C
is a quasi-isomorphism.

We will now try to understand how these four notions are related to each other. We begin with
a classical fact. It was originally stated for & a Koszul operad and the classical co-morphisms
of homotopy Z7-algebras, but the proof readily generalizes to our setting. See also [LG16, Prop.
32].

Theorem 8.2.2 ([LV12, Prop. 11.4.7]). An ocoq-morphism of &?-algebras is an a-weak equivalence if,
and only if it is an co,-quasi-isomorphism.

Thanks to this result, we see that the rectification functors for algebras are naturally co,-quasi-
isomorphic to the identity functor.

Lemma 8.2.3. Let o : € — & be a Koszul morphism, and let g : &7 — &' be a quasi-isomorphism of
operads. Then the natural co,-morphism

Ny : A~ RIC(A)
is an oo, -quasi-isomorphism for any P-algebra A.

Proof. Since «is Koszul and g is a quasi-isomorphism, it follows that g.« is also Koszul by Theo-
rem 2.2.21. This is equivalent to np_ 4 being a quasi-isomorphism by Theorem 2.4.11. Therefore,

Ny :B,A 1Pety By.aQg.aBaA =B,R9(A)

is an a-weak equivalence of &-algebras, and thus an oo, quasi-isomorphism by Theorem 8.2.2.
O

For coalgebras, we can proceed similarly to prove a slightly weaker statement.

Proposition 8.2.4. Let o : € — & be a Koszul morphism, and let f : €' — € be a quasi-isomorphism
of cooperads. The a-weak equivalence

Ec: Ry (C)~C

is an oo, -quasi-isomorphism for any conilpotent €-coalgebra C.
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Proof. Denote o/ := af. We have to prove that the first component
e1:Raf(C) —C

of E¢ is a quasi-isomorphism. We will do this by a spectral sequence argument analogous to
the one of [LV12, Thm. 11.3.3 and 11.4.4]. We start by noticing that

e1: (€' o P)(C)— C

is given by the projection onto C. We filter the left-hand side by the number of times that C
appears, i.e. by
Fp = @D(¢" 0 2)(k) @5, C=F .

k<p

This filtration is increasing, bounded below and exhaustive. The page E° of the associated
spectral sequence equals (¢” o &?)(C), since the only parts of the differential that preserve the
weight (that is, the arity) are the internal differential of C' and the part coming from the twisting
morphism «’. The page E' of the spectral sequence is

Ho((€' 00 P)(C)) = Ho(€' 00r P) 0 Hy(C) = Hy(C)

by the operadic Kiinneth formula, Theorem 2.1.9, and the fact that ¢’ is a Koszul morphism. On
the other side, we filter C by F},C = C for p > 0 and F,C' = 0 otherwise. This filtration is also
increasing, bounded below and exhaustive. The map e; is a map of spectral sequences, and so
the induced map at the page E' is Ho(e1), which induces an isomorphism. Therefore, the chain
map e; is a quasi-isomorphism. O

Notice that if f = 1¢, then the rectification becomes the functor B,2,, and the natural oco,-
morphism E¢ is given by the counit € of the bar-cobar adjunction (seen as an co,-morphism).
As a consequence of this result, we have the following.

Theorem 8.2.5. If an oo, -morphism of €-coalgebras is an a-weak equivalence, then it is an coq-quasi-
isomorphism.

Notice that the inverse implication is not true: it is known that there are (strict) quasi-isomor-
phisms of ¥-coalgebras that are not sent to quasi-isomorphisms under the cobar construction,
cf. [LV12, Prop. 2.4.3].

Proof. The proof is similar to the one of [LV12, Prop. 11.4.7]. Suppose ® : C’ ~» C'is an a-weak
equivalence of €-coalgebras. We have the commutative diagram

B,®
BQQQO/ = BQQQC

EC/§ é’:‘c
d

c’ C

where the vertical arrows are oo,-quasi-isomorphisms by Proposition 8.2.4 and the top arrow
is a quasi-isomorphism by Proposition 2.4.4. Restriction to the first component gives us the
diagram
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BaQaC" Bi BoQ,C
o J 2 ZJ Ec
c’ kd C
from which the statement follows. O

Finally, we can show that a-weak equivalences of coalgebras are equivalent to zig-zags of weak
equivalences of coalgebras, which is analogous to Theorem 2.5.3.

Theorem 8.2.6. Let C and D be two €-coalgebras. The following are equivalent.
1. There is a zig-zag of weak equivalences
C—e+—e—.-.+—D
of €-coalgebras in the Vallette model structure.
2. There are two weak equivalences of €-coalgebras forming a zig-zag

C—e+—D.

3. There is an a-weak equivalence
C~D.

Proof. The fact that (2) implies (1) is obvious.

We prove that (3) implies (2). Suppose we have an a-weak equivalence
®:C~D.

Then B, ® is a weak equivalence, and thus we have the zig-zag

C 2% B,0.C 222 B,Q.D L2 D,

where the units of the bar-cobar adjunction are weak equivalences by Corollary 3.3.19.

Finally, we show that (1) implies (3). Every weak equivalence of coalgebras is in particular an a-
weak equivalence. Therefore, it is enough to prove that whenever we have a weak equivalence

c«D
of coalgebras, then we have an a-weak equivalence going the other way round. Since ¢ is a
weak equivalence, we have that
2,0 22 QD
is a quasi-isomorphism. Moreover, every Z-algebra is fibrant and 2, lands in the cofibrant

P-algebras by [Vall4, Thm. 2.9(1)]. Therefore, we can apply [DS95, Lemma 4.24] to obtain a
homotopy inverse

0.0 L QD ,

which is again a quasi-isomorphism, and thus defines an a-weak equivalence from C to D, as
we desired. O
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Chapter 9

Convolution homotopy Lie algebras

Independently in [Wiel6] and [RN17a], and then jointly in [RNW17] and [RNW], the author
and Felix Wierstra showed that operadic twisting morphisms from a cooperad ¥ to an operad
& are equivalent to morphisms from the operad %, to the convolution operad hom(%¢, &). It
follows that the chain complex of linear maps from a conilpotent ¢-coalgebra to a &-algebra
is an P,-algebra in a functorial way, by restriction of the structure. The £..-algebra structures
obtained this way are really well behaved with respect to the tools of homotopical operadic
algebra: the homotopy transfer theorem and co-morphisms.

The results presented here were developed and generalized progressively during the last few
years. We present only the current state of the art in this chapter. In the whole chapter, we
work with shifted £..-algebras. This greatly reduces the signs appearing in the proofs, improv-
ing readability. One can pass to usual Z-algebras simply by desuspending everything, see
Section 6.3.

9.1 Convolution homotopy Lie algebras

We begin by showing how operadic twisting morphisms are equivalent to morphisms from
4Z ~ to the convolution operad. We proceed by studying the Maurer-Cartan elements of the
sZ -algebras obtained that way, and take a look at what happens in other settings, such as
non-symmetric operads.

9.1.1 Definitions

We begin with the following remark.

Lemma 9.1.1. Let & be an operad. Then we have
hom(Com", &) = &

as operads.

Proof. The statement is straightforwardly true at the level of S-modules, the isomorphism being
given by
¢ € hom(Com", 2)(n) — ¢(n)) € P(n) .

129
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We only have to prove that the composition maps coincide. Let ¢ € hom(Com", 2)(k), and
¥; € hom(Com", 2)(n;) forall 1 <i < k. Fix 6 € W(ny, ..., ny). Then we have

'Yhom(Comv,@)((bo (wlv v 7¢k)6)(1U‘X) =
=S (@0 W )Y 0 (B 1))

cew(ny,...,nk)

=y (d(u) o (Wi (peyl,)s - ey, ))?)

concluding the proof. O

Thanks to this, we can give a clean proof of the following theorem, on which relies all of the
theory of convolution Z..-algebras.

Theorem 9.1.2 ([Wiel6, Sect. 7] and [RN17a, Thm. 3.1]). Let € be a cooperad, and let & be an
operad. There is a bijection

Tw(¢, Z) = homop ($Z o, hom(¥, &) ,
given by sending o € Tw(€, ) to the morphism W,, sending €,, .= s~ Y € 3% (n) to
Wo(s7')) = a(n) € hom(%(n), 2(n)) .

It is natural in both € and & in the following sense. Let o € Tw(¥, ), then for any morphism
f € — € of cooperads, we have

Wf*Ot = (f*)INO( 9

and for any morphism g : & — &’ of operads, we have
Wg*a = (g*)wa .
Proof. The bijection is given by

Tw(¥, ) = MC(hom(%, &))
=~ MC(hom(Com", hom(¥¢, 2)))
= Tw(Com", hom(%, 2))
=~ homg,(2Com", hom(%’, 2))
= homop (3L o0, hom(%, 22)) ,

where in the first line, hom(%’, &) denotes the Lie algebra associated to the convolution operad.
The other properties are straightforward to check, and left as an exercise to the reader. O

Remark 9.1.3. If one wants to work with L.-algebras, instead of shifted ones, then one needs to desus-
pend everything, obtaining a bijection

Tw (€, 2) = homop(Loo, ¥+ @ hom(%, 2)) .

Remark 9.1.4. Some special cases of this result and ideas hinting to it have appeared in the existing
literature, for example already in Ginzburg—Kapranov [GK94, Prop. 3.2.18], and then more recently in
[BL15, Appendix C], [DHR15], [DP16].
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Remark 9.1.5. Given a morphism U : 2 — & of operads, then one gets a twisting morphism
b= (BQLQL@),
and thus a morphism of operads
Wy : 6£o — hom(BL2, &) .
This is the special case originally treated in [RN17a].

Suppose now that we have a cooperad %, and operad &, and a twisting morphism o €
Tw(¢, ). Then, given a conilpotent €-coalgebra C' and a #-algebra A, we know by Theo-
rem 2.2.10 that hom(C, A) is a hom(%’, &?)-algebra. We can therefore apply restriction of struc-
ture by N,, to obtain a 3% -algebra structure on hom(C, A). We denote the 3<% ,-algebra ob-
tained this way by hom®(C, A).

Definition 9.1.6. The algebra hom®(C, A) is called the convolution 3% .-algebra of C' and A.

Given a morphism of &-coalgebras, resp. of &-algebras, then we get a morphism of & -
algebras by pullback, resp. pushforward. Therefore, the assignment hom® defines a bifunctor

hom® : ¥-cog®® x P-alg — sL -alg . 9.1)

The rest of this chapter will be dedicated to the study of some of the properties of this bifunctor.
Here is a first, straightforward fact. It is a direct consequence of the functoriality of .

Lemma 9.1.7. Let o € Tw(%€, &) be a twisting morphism, and suppose f : €' — € is a morphism of
cooperads, and that g : & — &' is a morphism of operads.

1. Let A be a &-algebra, let D be a conilpotent €”'-coalgebra. We have
hom? *(D, A) = hom®(f, D, A)
as s o -algebras.
2. Dually, let D be a €-coalgebra, let A be a &?'-algebra. We have
hom?*“(D, A) = hom® (D, g* A)
as 8& o -algebras.

Proof. We only prove (1), the other case being dual. Let f1,..., f,, € hom(D, A), and denote by
F=fi® - ®f, Wehave

Vnom?*=(D.4) (5 1y @5, F) = Ymom(p,4) (Wr-al(s™ 1) © F)
= Ynom(D,4) (F*IWa (s ) ® F)
= Yom(f. 0,4) (Wa (s~ ) @ F)
= 'Yhom“(f*D,A)(571N>L/ ®s, ),

where hom(D, A) is seen as a hom(%”, #?)-algebra and similarly for hom(f.D, A). O
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9.1.2 Maurer—Cartan elements of convolution £ -algebras

Whenever one has a 3£ -algebra, it is a very natural question to ask what the Maurer—Cartan
elements are. We answer this question for convolution homotopy Lie algebras.

Fix a cooperad %, an operad 2, and a twisting morphism o € Tw(%, Z7).

Lemma 9.1.8. Let C be a conilpotent ¢-coalgebra, and let A be a P-algebra. Then the ascending
filtration

Fp hom™(C, A) == {f € hom*(C, A) | F2C C ker(f)}
makes hom® (C, A) into a proper complete 3£ . -algebra.

Proof. Let f € F, hom®(C, A). Letz € F2C, then

A(f)(x) = daf(x) — (1)) f(dex) =0
since do(F4C) C F2C.
Let f; € %, hom™(C, A) fori =1,...,k, and let x € F2C, where n := ny + - - - + ng. Then

gn(fl,afk)(x) :’VA(()‘@F)ACCE) = 07

since
AcFgC)C P “heFiCe - FC.
k>0

’ ’
ni+--+nj=n

Finally, there is a natural identification

hom®(C, A)

) 2 hom®(FRC, A
g:n homa(c’ A) — hom (ch07 )a

given by taking any representative of an equivalence class of morphisms on the right hand side,
and restricting it to 2 C. It is injective, because if a morphism from C' to A restricts to zero on
F2C, then it is in %, hom”(C, A), and thus it is zero in the quotient. To see that it is surjective,
choose a complement V' of ¥2C in C — as graded vector spaces, the differential plays no role
here. Aninverse to the map described above is then given by sending a linear map f : #2C — A
to its extension by 0 on V/, and then taking the equivalence class in the quotient. Notice that this
is independent of the choice of V. It is straighrforward to check that this isomorphism holds at
the level of 32 -algebras, and not only as chain complexes. Therefore, we have

: homa(c7 A) ~ 12 xrcrmn
hTan %}mm—w = 117511 hom (J‘%C, A)

=~ hom“(colim FZC, A)
=~ hom®(C, A),
concluding the proof. O

Therefore, it makes sense to speak about Maurer—Cartan elements in hom®(C, A).

Theorem 9.1.9 ([Wiel6, Thm. 7.1] and [RN17a, Thm. 6.3]). Let C be a conilpotent ¢-coalgebra, and
let A be a &-algebra. We have

MC(hom®(C, A)) = Tw,(C, A) ,

where the set Tw,(C, A) of twisting morphisms relative to o was given in Definition 2.4.6.
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Proof. Let ¢ € hom(C, A). Denote by *((f)(ga) the part of *,(p) passing through €' (n) ® C®".
With this notation, we have

1

1
Egn(S% ey 90) = a’yhom(C,A)(Wa(gn) ® 90®n)

=va(WNa(ln) o )AL
= (0o P)AR
=+ (9)

where the factor -; is eliminated by the fact that we sum over all permutations when applying
the hom(%’, &?)-algebra structure Ypom(c,a), cf. Theorem 2.2.10. Since

*a() = D+ ()

n>2

we have that
1
Ap) +¥a(p) = 0(p) + Y —lnlpy- )

n>2

Thus, the two Maurer—Cartan equations coincide!, concluding the proof. O
Remark 9.1.10. The result above was already known in the case where & is a Koszul operad and o is
given by k : P — P, the twisting morphism provided by Koszul duality. In this case, hom"™(C, A) is

a Lie algebra, since r is non-zero only on the binary part of &', cf. its definition in Section 2.3.2. See
[LV12, Sect. 11.1.2].

Corollary 9.1.11. Let C be a conilpotent €¢-coalgebra, and let A be a &-algebra.

1. We have a natural isomorphism
MC(hom*(C, A)) = hom g,g(2.C, A) .
In particular, if A = Q,C" for some conilpotent €-coalgebra C’, then
MC(hom®(C, 4)) = home,-%-cog(C,C") .
2. We have a natural isomorphism
MC(hom®(C, A)) = homey-cog(C, Bo A) .
In particular, if C = B, A’ for some &-algebra A’, then
MC(hom®(C, A)) = homeu,-w-aig(4', A) .
Proof. This is a direct consequence of Theorem 9.1.9 and Theorem 2.4.7. O

9.1.3 Other settings: tensor products, non-symmetric (co)operads

There are some other contexts where it is natural to try to apply the theory developed above.

TMotivating a posteriori the name “Maurer-Cartan equation” for the equation 9() + xa () = 0.
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Tensor products

First of all, if ¢ is a cooperad which is finite dimensional in every arity, then for any operad &2
we have
hom(¢, 2) 2 ¢Y ©@ P

with the obvious isomorphism, so that all results pass to tensor products. In order to have
everything to pass through without having to do the proofs all over again, one should then
only consider dualizable ¢¥-algebras. However, if one is willing to do the effort, then one can
prove that the result.

Theorem 9.1.12. Let € be a cooperad which is finite dimensional in every arity, and let & be an operad.
There is a bijection
Tw(€, P) = homop(3L oo, P @€") ,

given by sending o € Tw(€, P) to the morphism W,, sending s~ i) € 3% (n) to
Ma(s™ ) = Za(0i> ®c¢,

where {c; }; is a basis of € (n), and where {c}}; is the dual basis. It is natural in both € and & in the
following sense. Let o« € Tw(€, &), then for any morphism f : €' — € of cooperads, we have

Mf"Oé = (1 ® fv)Ma ,
and for any morphism g : & — &’ of operads, we have
Mg.o = (9@ 1)M, .

Given a Z-algebra A and a ¢¥-algebra D, then one obtains an 3% .-algebra A ®* D by pulling
back the natural & ® ¢V-algebra structure of A® D by M,,. This assignment is compatible with
morphisms of algebras in both slots, and thus defines a bifunctor

— ®Y —: P-alg x €V-alg — sL-alg .

This is compatible with hom”(—, —), in the sense thatif A is a &7-algebra and C'is a ¥-coalgebra,
then the natural morphism
A®CY — hom(C, A)

is a morphism of 3& -algebras
A®* CY — hom*(C, A) ,
which is an isomorphism if C is dualizable.
Theorem 9.1.13. Let D be a dualizable €V -algebra, and let A be a P-algebra. We have
MC(A ®% D) = Tw (D", A) .

Non-symmetric (co)operads

If we consider non-symmetric (co)operads, then everything goes through with exactly the same
proofs? simply by changing the operad %, with the ns operad ... Moreover, since we don’t
need to identify invariants and coinvariants, we can work over any field, without restrictions
on the characteristic.

2Removing all symmetric group actions, of course.
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Theorem 9.1.14. Let € be an ns cooperad, and let & be an ns operad. There is a bijection
Tw (%, ) = homop (8, hom(%, 2)) ,

given by sending o € Tw (€, ) to the morphism W, sending s~ 1y € 350 (n) to
Wa(s™'41Y) = aln) € hom(€ (), 2(n)).

It is natural in both € and & in the following sense. Let o € Tw(€, ), then for any morphism
f €' — € of cooperads, we have

Wi-a = (f)Wa ,

and for any morphism g : & — &' of operads, we have
Wy.a = (g:)Wa -
Theorem 9.1.15. Let C be a conilpotent €-coalgebra, and let A be a &7-algebra. We have
MC(hom®(C, A)) = Tw,(C, A) .

Here, the Maurer—Cartan elements of an 39l -algebra A are the elements x € A, of degree 0
satisfying the non-symmetric Maurer—Cartan equation

dm—i—Zmn(m,...,m):O.

n>2

The results of the rest of the present chapter all have versions for tensor products and non-
symmetric operads. We will only mention those that we will need in the rest of this work.

9.1.4 The binary quadratic case and Manin products

Here, we restrict to the binary quadratic case, and study convolution tensor products in this
context. We start by recalling the notion of what we call the Manin morphisms, which are
morphisms arising from maps between operads via the adjunction between the black and white
Manin products. We go on to prove that convolution tensor products directly generalize Manin
morphisms.

In the category of operads given by binary quadratic data and morphisms induced by mor-
phisms of quadratic data, one can define two operations, called the white and black Manin prod-
ucts and denoted by O and @ respectively, both taking two binary quadratic operads and
giving back another one. These objects first appeared in the context of algebras in [Man87] and
[Man88], and then in [GK94] in relation to operads. For a more conceptual treatment, see [Val08]
or [LV12, Sect. 8.8].

Proposition 9.1.16. Fix a binary quadratic operad 2. Then there is a natural isomorphism
hornbin. quad. op. (%.Q, <@) = hornbin. quad. op. (%7 @OQ,) .

That is to say, the functors — @2 and —O 2' are adjoint. Moreover, the operad Lie is a unit for the
black product.
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Therefore, any morphism
V:Llie@2=22 — &

coming from a quadratic data is equivalent to a morphism
Lie — 202" .

As explained in [Val08, Sect. 3.2], the white product is the best binary quadratic approximation
of the Hadamard product, and there is a canonical morphism

209 — 222"
Definition 9.1.17. We call the composite
my = (Lie — 202 — 7 ® 2"
the Manin morphism associated to W.

The Manin morphism mg has the following explicit description. Assume & = Z(E, R) and
2= P(F,S), fixabasis fi1,..., fr of F,and let ey, ..., e, € E be the images of the f; under V.
Then my is the unique morphism of operads extending

k
m\p(b) = Z e; X S_1y271 i\/7
i=1

where b € Lie(2) is the Lie bracket.

For any quadratic binary operad 2, there is a canonical Manin morphism, namely the one
associated to the identity of 2, giving

Mg = Mid, :Lie — 2® 2.
It is easy to see that
my =(PY®1)mg,
so that it is only necessary to know m g to compute my.

We fix two binary quadratic data (E, R) and (F,S) and denote by & = Z(E,R) and £ =
P (F, S) the two associated operads. Furthermore, we assume that F' is finite dimensional. We

fix a morphism
vV:92 —

in the category of binary quadratic operads, and we consider the associated twisting morphism
b= (BQLQL@).
The morphism of operads associated to this twisting morphism by Theorem 9.1.12 is
My : Lo — P Q e@;o ,
after a suspension. Here, we used the fact that

(#®B2)' = (7 e 2) 2a((2)) = 2

oo !

because, since F' is finite dimensional, 2(n) is finite dimensional for all n > 0. The following
proposition shows that My gives a direct generalization of my.
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Proposition 9.1.18. The following square

M
L 209,
J. My J ,
Lie PRY

where the vertical maps are the canonical ones coming from the resolutions, is commutative.

Proof. The left vertical arrow sends ¢3 to b and ¢, to 0 for all n > 3. Therefore, the south-west

composite is the map sends
k

by— Y e @s Iy Y
i=1
and all the higher /,, to zero. On the other hand, the right vertical arrow is given by tensoring
the identity of & with the canonical resolution map

2 — 2,

which is defined on the generators s71(2") = s71(#71)¢ ® 2V as being the identity on arity
2 and zero on all higher arities, this because 2 is quadratic. By definition, the morphism Wy
sends /,, to an element of #(n) ® s~1(2')!(n). Therefore, the north—east composite gives zero

on ¢,, for n > 3 and sends
k

[2 — Zei X S_lyzilfiv

=1

just like the other map. O

9.1.5 Non-conilpotent coalgebras

In some applications, such as the one we will see in Chapter 10, we are naturally lead to consider
non-conilpotent coalgebras. This can be done, but in order to have the results that we desire we
need to take proper complete algebras on the other side.

For the rest of this section, fix a cooperad %, an operad & and a twisting morphism «. Given a
%-coalgebra® C, one defines a #-algebra by

QaC = | 2(0) =[] 2(n) ®s, C%",dg == di +dz | ,
n>0

where d; and dy are defined exactly as for the usual cobar construction relative to «, but this
time dy passes through ¢oC, instead of % o C, cf. Section 2.4.1. The filtration

F. = || 2(k) ®s, C®*

k>n

makes it into a proper complete &7-algebra.

3Remember: non-conilpotent!
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Definition 9.1.19. The proper complete P-algebra (Q,C, F,) is called the complete cobar construc-
tion relative to o

Lemma 9.1.20. Let V be a chain complex, seen as a proper complete chain complex by imposing the
filtration 1V =V and F,V = 0 for all n > 2. Let A be a proper complete &-algebra. We have a
natural bijection

hOmeh (V, A) = homﬁ_alg(ﬁ(V), A) .
Proof. Notice that the left hand side is also equal to the set of all morphisms of chain complexes
from V to A, forgetting the filtrations. Given such a chain map ¢ : V — A, we get a map of
algebras by
) 29 Za) 24 A
It is straightforward to check that it is well-defined and that it respects the filtrations. The other

o~

direction is given by restricting a morphism of algebras (V) — Ato V. O

Remark 9.1.21. For the result above, it is important that &7 is reduced, else we might get infinite sums
at every level of the filtration, resulting in the morphisms in the proof not being defined.

Proposition 9.1.22. Let o € Tw(%, P) be a twisting morphism, let C' be a €-coalgebra, and let A be
a proper complete &P-algebra. There is a natural bijection

hom 5, (0 C, A) = Tw, (C, A) .

Proof. The proof is analogous to the one for the similar bijection in Theorem 2.4.7. One uses
Lemma 9.1.20. O

9.1.6 Examples

We give some examples of £,-algebra structures arising through Theorem 9.1.2. We put our-
selves in the situation of Remark 9.1.5 and in the tensor product setting. These examples are all
extracted from [RN17a, Sect. 8].

We will study the Z-algebra structures obtained from Theorem 9.1.12 for some canonical mor-
phisms between the three most often appearing operads: the three graces Com, Lie and Ass.
Namely, we will study the identities of these operads and the sequence of morphisms

Lie —%5 Ass — Com

where the first morphism corresponds to the antisymmetrization of the multiplication of an
associative algebra, and where the second one corresponds to forgetting that the multiplication
of a commutative algebra is commutative to get an associative algebra.

Many more examples of less common, but still very interesting operads, both in the symmetric
and in the ns case, as well as various morphisms relating them, can be found in [LV12, Sect. 13].

Notations

We will denote by b € Lie(2) the generating operation of Lie, i.e. the Lie bracket. The operad
Ass is the symmetric version the non-symmetric operad As coding associative algebras. It is
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given by Ass(n) = KJ[S,]. We denote the canonical basis of Ass(n) by {m, }scs,. The element
me € Ass(n) corresponds to the operation

(al, .. .,an) > Q5-1(1) """ Qg—1(p)

at the level of associative algebras. The action of the symmetric group is of course given by
(my)™ = my,. As before, we denote by u,, € Com(n) the canonical element. The morphism
a : Lie — Ass is given by sending b to mjq — m12), and corresponds to antisymmetrization
at the level of algebras. The morphism u : Ass — Com is given by sending both m;q and
m(12) to pz. For the homotopy counterparts of the operads mentioned above: as before we
denote by £, € Z..(n) the element of £, (n) corresponding to the n-ary bracket. We have
Ass' 2 (/~1)° @ Ass”, thus in each arity n > 2 the operad Ass., has n! generators

My = s_lyn_lm;f € Assy , cES,.

The action of the symmetric group on these generators is given by (7m,)” = (—1) M. Finally,
the operad %, coding homotopy commutative algebras the same thing as an 9.-algebra that
vanishes on the sum of all non-trivial shuffles, see Section 2.3.6.

The identity Com — Com
This is the simplest example. The identity of Com induces the morphism
Mcom : Loo — Com @ £
which sends the element ¢,, to
fin @ 8™ S ppy = pin @ Ly, .
Therefore, it is the canonical isomorphism
Foo = Com ® Lo -

If A is a commutative algebra and C'is an £-algebra, then the operations on A ® C are given
by

bo(a1 ®cty.oyan ®cy) = (=) pnlar, ... an) @ Ly(cr, ... cn),
where (—1)¢ is the sign obtained by commuting the a;’s and the ¢;’s.

The identity Ass — Ass
Since the operad Ass satisfies Ass' = Ass, the induced morphism is
Mags : Lo —> Ass ® Asss -

It sends 4, to

Z me @ s LS m) = Z My @ My = Z (—1)7 (miq @ Miq) -

ocES, oc€S, €S,
If A is an associative algebra and C is an Ass..-algebra, then the £, operations on A @ C are
given by

bo(ay ®c1y. . an ®cy) = Z (—I)J“me(agfl(l), e O=1(n)) @ Me(Co1(1); -+ Co=1(n)) 5
o€S,

where ¢ is the sign obtained by switching the a;’s and the ¢;’s, and correspond therefore to a
kind of antisymmetrization of Ass..
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The identity Lie — Lie

The last identity we have to look at is the identity of the operad Lie. It gives rise to a morphism
of operads
Mpie : Loo — Lle®cgoc .

It is of more complicated description, but comparing formulee we see that it is the same structure
that is used in a fundamental way in the article [TW15, pp.19-20] on Hochschild-Pirashvili
homology.

The forgetful morphism v : Ass — Com
This morphism is given by sending
Mg — [in
for all o € S,,. The corresponding morphism
My : Lo — Com ® ASSso = Asso
is given by
Mu(én) = Z fn & Silynm?r/ = Z Hn @ Mo = fin & Z (71)0(m6)g'
oES, oSy oSy

Therefore, under the canonical identification Com ® Ass, = Asse, it is the standard antisym-
metrization of an Ass..-algebra structure giving an Z-algebra structure.

The antisymmetrization morphism ¢ : Lie — Ass

The induced morphism is a morphism of dg operads
My : Loo — AsS Q@ Cno -

It can be interpreted as follows: a €.-algebra can be seen as an Ass.-algebra vanishing on the
sum of all non-trivial shuffles, that is, we have a natural morphism of operads

1:ASSc0 — G
which is in fact given by Q((.#71)¢ ® aV). Now Theorem 9.1.12 tells us that
Mo =Mi, o =(1®i)My, .

Therefore, the £.,-algebra structure on the tensor product of an associative and a ¢c-algebra
is given by first looking at the ¥,-algebra as an Ass..-algebra, and then antisymmetrizing the
resulting (Ass ® Ass.)-algebra as already done above.

The non-symmetric case

The analogues to the three graces in the non-symmetric setting are the operad As encoding as-
sociative algebras, which we already know well, the operad Dend of dendriform algebras ([LV12,
Sect. 13.6.5]), and the operad Dias encoding diassociative algebras ([LV12, Sect. 13.6.7]). They fit
into a sequence of morphisms

Dias — As — Dend .

We get induced morphisms from ¢, to
Dias ® Dend,,, o, Dend® Dias,,, Dend,, and Dend® o, .

We leave their explicit computation to the interested reader.
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9.1.7 Compatibility with (co)limits of (co)algebras

To complete this section, we prove a first compatibility result between (co)algebras and the
induced convolution homotopy algebras. As before, let 4" be a cooperad, let & be an operad,
and let o : ¥ — & be a twisting morphism.

Proposition 9.1.23. Let I be a small category.

1. Let A : I — ZP-alg be a functor, suppose lim;c; A(i) exists, and let C' be a conilpotent -
coalgebra. Then

lim hom®(C, A(%)) = hom® (C7 llirrll A(z))
1€

el

as 8L ~-algebras through the canonical morphism.

2. Dually, let C : I — €-cog be a functor, suppose colim;er C(4) exists, and let A be a &-algebra.
Then

ll_len}hom (C(i),A) = hom (C?i_l}nC(l),A)

as 8 -algebras through the canonical morphism.

Proof. The isomorphisms hold at the level of chain complexes, and the canonical maps are mor-
phisms of & ,-algebras. One concludes by Lemma 2.1.24, resp. Lemma 2.1.31. O

We also have a “linear maps-tensor products” duality analogue to what happens for chain com-
plexes.

Proposition 9.1.24. Let o : € — & be a twisting morphism, and suppose that € is finite dimensional
in every arity. Let C be a finite-dimensional, conilpotent €-coalgebra, and let A be a &-algebra. Then

hom®(C, A) =2 A > CV
as 8< ~-algebras via the canonical isomorphism of chain complexes

N
fehom(C,A) — > flaj) @ x|

j=1
0 .
where {x;}"_, is a basis C.

Proof. In this proof, we will avoid writing down any explicit signs, and work in the non-
symmetric setting. The symmetric case works in exactly the same way, but one has to write
down the correct permutations occurring in the formulee.

Since the described morphism is an isomorphism of chain complexes, by Lemma 2.1.24 it is
enough to show that it is a morphism of s&£ -algebras. In order to do this, let fi,..., f, €
hom(C, A), and write F := f; ® - - - ® f,. Fix a basis {cy }1. of €(n). In hom®(C, A), we have

£ (F) =va(a ® F)A¢ € hom(C, A) .

This is sent to the element of A ® CV given by

> (vala® F)AY(z)) @ ) =

J
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= Y H oo o), Ac;)) (yalele) ® fi(z,) @ @ folws,)) @ z)

Kodyitseein
= > (ralaler) ® (@) @ @ fu(®i,)) @ Yty (e @), ®@ -+ @y ),x5)x)]
Kyityesin ;
= Y (alaler) ® fi(wi,) @ @ fulw:,)) @Y Fyev (e @), @ - @)
Kyit,eosin j
=4{p (Z fl(‘rh) ®x;/17 .o '7an(xin) ®x;/”> )
which concludes the proof. O

9.2 Compatibility with co-morphisms

In this section, we study the compatibility between convolution homotopy Lie algebras and
oo-morphisms of algebras and coalgebras. More precisely, we will show that the bifunctor
hom®(—, —) can be extended two natural ways to take either co,-morphisms in the first slot,
or in the second one. We prove that those two extension do not admit a further common exten-
sion to a bifunctor accepting co,-morphisms in both slots. We conclude the section by proving
that however, this last extension is possible if one accepts to work up to homotopy.

9.2.1 The fundamental theorem of convolution homotopy algebras

Fix a cooperad %, an operad &, and a twisting morphism o : ¢ — Z. Let C be a conilpotent
¢ -coalgebra, and let A, A’ be two Z-algebras. Given an element

x € hom®(B,A4, 4")
we define an element
hom“(1,z) € hom*(B, hom®(C, A), hom®(C, A")

as follows. Let fi,..., f, € hom(C, A) and denote F := f; ® --- ® f,, then z.,(p,, ® F) is given
by the composite

Ay
C % (n) ®s, CO™
hom® (1, z)(1Y ® F) ! F
A & “(A)

where F acts on ¢'(n) ®s, C®" by

F(C® Y1 & -- yn) = Z (_1)€C® fa(l)(yl) XD fa(n)(yn) € (g(n) ®S" A®n .
o€S,

Dually, let C, C’ be two conilpotent ¢-coalgebras, and let A be a Z7-algebra. Given
z € hom®(C’,Q,0) ,
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we define an element
hom®(x,1) € hom‘(B, hom®(C, A), hom®(C’, A))
as follows. Let f1,..., f, € hom(C, A), then 2*(u,, ® F') is given by the composite

X

o 2(0)
projy,

hom®(z,1) (1Y ® F) i P(n) ®s, CO™
; ,
R TR

with the action of I similar to the one defined above.

Theorem 9.2.1 ([RNW, Thm. 3.1]). Let € be a cooperad, let &7 be an operad, and let o : € — & be a
twisting morphism. Let C, C" be two conilpotent €-coalgebras, and let A, A’ be two &7-algebras.

1. The map
hom®(1, —) : hom®(B,A, A’) — hom*(B, hom®(C, A),hom®(C, A"))
defined above is a morphism of 3% «-algebras.

2. The map
hom®(—,1) : hom®(C", Q,C) — hom‘(B, hom“(C, A), hom*(C’, A))
defined above is a morphism of 3% «-algebras.

This theorem can reasonably be considered one of the fundamental results about convolution
homotopy algebras — at least as of the time of writing of this thesis. It should be considered a
refinement of [RN17a, Prop. 4.4] and [RNW17, Thm. 5.1], and indeed we will see these results
appear as corollaries of the statement above later on.

For the proof, we begin with two technical lemmas.
Lemma 9.2.2. Let k,nq,...,ng > 0, let M be an S-module, let V, W be two chain complex. Denote

n==k +---+nglet f1,..., fn € hom(V,W), and as usual denote F := f1 ® --- ® f,,. Then, under
the isomorphism

k k
<M<k> ® ®M<nz->> BV 2 M) © Q) (M) © V™).

i=1 i=1

we have
F= Y dyo(F9 @ -@F%),

Sll_l-ul_ISk:[n]

where F5 == ® jes, 1i, with the elements of S; in ascending order.
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Proof. This is a straightforward computation — if messy at the level of signs. It is left to the
reader. O

Lemma 9.2.3. Let € be a cooperad, and let C be a conilpotent €-coalgebra. Then

Apole)At= 3 (leo(12 VAR 015" )An .
ni+ns=n+1
1<i<n,
Moreover, let f1,..., fn € hom(C, V) for V a chain complex. Under the canonical inclusion

B ) o (VB ) ® C5™) & O ) —— (€ 0 F)(n) @ C"

ni+ns=n+1
1<i<ng

we have
F(Agyole)A = > ((FYAY) @ F9)AR
S1|JSQ:[’I’L]

where ny = |S1| and ny = |Se| + 1.
Proof. For the first identity, one considers the equality
(Ag olc)Ac = (1g o Ac)Ac
and then projects on the subspace
(€ 0n)€)(C)=%o(C;€(C)) .

We leave the details to the reader. The second statement then follows in a straightforward
way. O

Proof of Theorem 9.2.1. We prove the first case, the second one being dual. Let z1,...,z; €
hom® (B, A, A’). Then we have

Ek(xl,...,xk) = ’yA/(Oz®X)(A’%O 1A) R
and thus for f1,..., f,, € hom®(C, A)

hom® (L, £(X)) (4 © F) =

=0 (X)FAE

=ya(a® X) (AL o 14)FAL,

=y (0 ® X)F(Af 0 10) A%

= Z 'YA’(O(@X)F(lch(Agl®...®Agk))Alccj
nit-tne=n

= Z (_1)617A’(Q®X)(1<go(FSIAZ,I ®...®FSkAgk))Alé
Siu---USk=[n]

= Z (D)2 yu (a0 la)(lg o (Toy FOAY @ -+ @ oy PO AY)) AL

Sll_l“-l_lSk:[’rL]
oESE
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where the fourth line follows from (A¢ o C)A¢ = (1% o A¢)A¢, and in the fifth line we used
Lemma 9.2.2 and denoted n; := |S;|. The Koszul signs are

k

A=Y S 1Al

i=1 s€S; j<i peSj st p>s
obtained by shuffling the f;s, and ey, which is similarly obtained by permuting the ;s and

making them jump over the f;s.

On the other hand, we have

£y (hom® (1, X)) (u,, ® F) =

= (’yhom”‘ (C,A’)(” Y homa(L X))(Aléomv Y 1h0m(C,A))) (/’L’r\i ® F)
k

= o an(e@bom® (L XD) | D ()il @ @, @ F%)
SiU...USk=[n] =1
k
= Yhom® (C, A7) > (=netes Tl @ @ hom® (1 2o (1, @ F9)
Siu...USk=[n] i=1
oESy

k
S (F) ety <a ® @ hom® (1, z,(;)) (1), @ FS")> Ak,

Sll_l...l_lSk:[n] =1
€Sy,

k
Z (—1)61+627A/ (OZ ® ®£L’U(1)FS‘A21> Alév .

SiU...USk=[n] i=1
oESy

The reader might have the impression that a sum over permutations coming from Vyome (¢, )
has been forgotten in the fourth line. This is not the case, because the term

k
S s o @ hom® (L), & FS)
Slu..‘uSk:[n] =1
oESE

in the third line naturally lives in invariants, not coinvariants.

In conclusion, we have
hom® (1, £x(X)) = ¢ (hom®(1, X)) .

We are left to prove that the morphism commutes with the differentials. Let x € hom® (B, A, A’),
and let f1,..., f, € hom®(C, A). On one hand, we have

d(z) =dyx— (—1)1*lzdg_4
= daw — (=) wdgon — (=1)"2(1g 0 (14;74)) (1 01y @) 0 14)(Aqry 0 1a)
and thus

hom® (1, d(x))(u,, ® F) = d(x) FAZ
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=daxFAL — (—1)*lzdg, s FAL
— (=D)Flz(1g 0 (1a374)) (1 01y @) 0 La) (A1) 0 1) FAL .
The second term in the second line equals
TdgoaFAL = x(dg 0 14)FAYL + (1 o' da)FAL

= (~)/FlzF(dg 0 10)AL + 20(F)AL + (1) FIFa (¢ o do) AL

= (-D)/FlzFARde 4+ z0(F)AL, (T1)
while the term in the last line gives

z(lg o (1a;74)) (g 0oy a) 0 14)(Ay 0 14)FAL =
= 2(lg o (1a;74)) (1w o1) @) 0 14) F(Aqy 0 10) AL

= Z (=1)z(lg o (14;74))((1g o1y @) © LA)(F5T AL @ FS2)A% | (T2)
S1US>=[n]

where in the third line we used Lemma 9.2.3. On the other hand,
d(hom®(1,2)) = dpome (¢4 hom® (1, z) — (1) P A2 hom™ (1, 2)dg, home (0,4) -

We notice that (—1)/Pem*(1L#)l = (—1)l#l. We apply this to 4/ ® F and obtain

d(hom®(1,z)) (1Y ® F) = dg hom®(1, z) — (=D hom® (1, 2) (1Y @ F)de

— (=1)" hom® (1, 2)(dp, nome (c.4) (1, © F)) -

The first term equals d 4 ®F AP and cancels with the first term of hom®(1,d(®))(p,, ® F), and
the second term equals the first term of (T1). For the third term, we have

hom® (1, ®)(dp, home (c,) (1, @ F)) =

— hom® (L, ®) (), ® A(F))

—|—homa(1,<1>)( > ux2®(em(F51)®F52)).

S1|JSQ:[TL]

The first term of this expression cancels the remaining term of (T1). Therefore, we are left to
show that the second term equals (T2). We have

1US2=[n]

hom? (1, z) ( Y (b, ®(€n1(F51)®F52)) =
S

= Y (D), (FS) @ F5)AL
SluSQ:[n]

= Y (“Da((rala® FS)AR) © F5)Ap
S1US>=[n]

= Y (Da(leo(alaoln) @15 ) (g o (FSAL @ F52))A%
SlUSQ:[TL]

=(T2),

where n; = |S1], and ny = |Sz| + 1. This concludes the proof. O
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9.2.2 Compatibility with co-morphisms

The first application of Theorem 9.2.1 is the fact that convolution Z..-algebras are compatible
with co-morphisms (relative to the twisting morphism « under consideration).

Let € be a cooperad, let & be an operad, and let a : € — & be a twisting morphism. Take
two Z-algebras A, A’, as well as a conilpotent ¢-coalgebra C. By Theorem 9.2.1, we have a
morphism of & . -algebras

hom®(1,—) : hom®(B,A, A’) — hom*(B, hom®(C, A), hom®(C, 4")) .

Let’s look at what happens to Maurer-Cartan elements. By Theorem 9.1.9, the Maurer—Cartan
elements of hom® (B, A, A’) are exactly the co,-morphisms A ~» A’. Now, since hom®(1, —) is
a morphism of 4% .-algebras, it preserves Maurer—Cartan elements. Thus, an co,-morphism
U : A~ Ais sent to a Maurer—Cartan element of hom' (B, hom®(C, A), hom“(C, A’)). But again
by Theorem 9.1.9, these are exactly the co-morphisms hom®(C, A) ~» hom®(C, A"). The same
thing is true for the dual case. In conclusion, we have the following.

Corollary 9.2.4 ([RNW17, Thm. 5.1]). We place ourselves in the setting of Theorem 9.2.1.
1. Suppose W : A ~» A’ is an co,-morphism of &7-algebras. Then
hom®(1, ¥) : hom®(C, A) ~» hom®(C, A")
is an oo-morphism of 3£ «-algebras.
2. Dually, suppose that ® : C' ~ C'is an co,-morphism of €-coalgebras. Then
hom®(®, 1) : hom®(C, A) ~» hom®(C’, A)
is an oo-morphism of 3£ -algebras.

But now, in the situation above, hom“(1, ¥) also preserves Maurer—Cartan elements. Therefore,
it sends morphisms C' — B, A of ¥-coalgebras to morphisms C' — B, A’ of ¥-coalgebras.

Lemma 9.2.5. We place ourselves in the situation of Theorem 9.2.1 and Corollary 9.2.4.

1. Suppose U : A ~ A’ is an co-morphism of &-algebras, and let f : C' — B, A be a morphism of
¢-coalgebras. Then

MC(hom® (1, 0))(f) = U f = (c L Baa L BaA’) .

2. Suppose @ : C" ~ C'is an ocoq-morphism of €-coalgebras, and let g : Q,C — A be a morphism
of P-algebras. Then

MC(hom®(®,1))(g) = g = (QQC’ 2 0.0 % A) .

Proof. In order to give a clear proof, we will write f € MC(hom®(C, A)) for the element f seen

as a linear map C' — A, and f for the equivalent map of ¢’-coalgebras C' — B, A. We pass from
the former to the latter by

f=0zof)Ac.



148 CHAPTER 9. CONVOLUTION HOMOTOPY LIE ALGEBRAS

When writing ¥, we will mean the map of %-coalgebras B,A — B,A’, and the associated
Maurer—Cartan element is

U = proj ., ¥ € MC(hom®(B,A, A")) .
With this notation, we have

MC(hom® (1, 9))() = 3 - hom (1, 8) (s, @ 7°")

n>1

1 ~
— ®
= UL

n>1

= proju U(ly o f)AL

n>1
= proju ¥(lg o f)Ac
= pI'OjA/ \I/f )
where py = id. The other case is similar, and left to the reader. O

Remark 9.2.6. If U is a strict morphism of &7-algebras, then the oo-morphism MC(hom® (1, ¥)) is
actually a strict morphism, and it is just given by hom® (1, V), the action of the bifunctor (9.1) on
morphisms.

Another powerful corollary of Theorem 9.2.1 is the following.
Corollary 9.2.7. We place ourselves in the setting of Theorem 9.2.1.

1. Suppose U, V' : A ~» A’ are two con-morphisms of &-algebras. If ¥ and V' are homotopic as
Maurer—Cartan elements, then so are hom® (1, ) and hom® (1, ¥').

2. Dually, suppose @, 9’ : C" ~ C are two co,-morphisms of €-coalgebras. If ® and @' are homo-
topic as Maurer—Cartan elements, then so are hom®(®, 1) and hom®(®’, 1).

This is especially important when combined with the following result.
Theorem 9.2.8. We place ourselves in the setting of Theorem 9.2.1.

1. Two con-morphisms A ~~ A’ of P-algebras are homotopic if, and only if they are gauge equivalent
when seen as Maurer—Cartan elements of hom® (B, A, A”).

2. Two co,-morphisms C' ~ C' of €-coalgebras are homotopic if, and only if they are gauge equiva-
lent when seen as Maurer—Cartan elements of hom® (C’, Q,C).

Proof. We only give a sketch of the proof. The reader can find a detailed version in [RNW, Thm.
2.4].

The proof relies on the fact that there is a natural homotopy equivalence
MC,(hom®(C, A)) ~ MC(hom*(C, A ® Q,))

induced by the inclusion of hom®(C, A) ® €, into hom®(C, A ® Q,). Assuming that this is true
for a second, the statement follows by looking at the Oth homotopy groups of the two simplicial
sets — corresponding to Maurer-Cartan elements modulo gauges — and noticing that a good
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path object for the @-coalgebra B, A’ is given by B, (A’ ® ©4), and a good path object for the
Z-algebra Q,C is given by Q,(C) ® Q.

To prove that we have the aforementioned homotopy equivalence, one proceeds as in Sec-
tion 10.1 on both hom®(C, 4) ® 2, and hom®(C, A ® Q,), showing that their Maurer-Cartan
spaces are homotopically equivalent to the Maurer-Cartan spaces of hom”(C, A) ® C, and
hom(C, A ® C,), both with the 3% ,-algebra structures obtained by homotopy transfer theo-
rem applied on the contraction induced by Dupont’s contraction. These two last algebras are
easily checked to be isomorphic, concluding the proof. O

9.2.3 Two bifunctors
The results of Section 9.2.2 give us two natural ways to extend the bifunctor
hom® : @-cog®® x H-alg — 3L -alg
to categories of (co)algebras with co-morphisms. Namely, we define
homy' : 00,-€-cog®P x P-alg — 003 -alg

by
homy (®, f) := MC(hom®(®, 1)) hom“(1, f)

for a morphism f of &-algebras and an co,-morphism ® of ¢-coalgebras. Dually, we define
hom; : €-cog®P x 00,-P-alg — 00-3F -alg

by
hom{ (g, ¥) := hom® (g, 1)MC(hom® (1, ¥))
for a morphism g of ¢’-coalgebras and an oo,-morphism ¥ of &7-algebras.

Theorem 9.2.9 ([RNW17, Cor. 5.4]). The two assignments homy and hom; defined above are bifunc-
tors.

Proof. This follows immediately from Lemma 9.2.5. O

After such a statement, it is very natural to ask if one can extend the original bifunctor hom* to
take co,-morphisms in both slots, and not just one, in such a way as to agree with homjy and
hom; in the obvious subcategories. In Section 9.2.4, we will show that this is in fact not possible.
However, it is possible to do this up to homotopy, as will be shown in Section 9.2.6.

9.2.4 Failure of the extension of the two bifunctors

We will work over a field of characteristic 0 and in the non-symmetric setting (see Section 9.1.3).
If there were such a bifunctor, then we would necessarily have

homy (®,1) hom{ (1, ¥) = hom®(®, ¥) = hom{ (1, ¥) homy (P, 1)

for any couple of co,-morphisms. We will give an explicit example where this is not the case.
For reference, notice that the two composites are given by the diagrams
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2 o) 22 sy

Jprojn
hom{ (@, 1) hom (1, ¥) (s} @ F)| (# 0)(n) @5, D"

3 ¥

Ay LY gay)

and

22 ey T o)

i Jprojn
hom! (1, %) hom{ (@, 1)(uy @ F)| (¢ 0 2)(n) &5, D"

| ¥

e ) Y )

respectively, when applied to u,) ® F € B, (hom(D, A)).

We will work with non-symmetric associative algebras and (suspended) coassociative coalge-
bras. Since As(n) = K for each n > 1, for any associative algebra A we will implicitly identify
As(n) @ A®™ with A®" in some places, and similarly for coassociative coalgebras.

The families A™ and H"

We define A" for n > 1 as the commutative algebra

A" = Klz,y]

seen as an associative algebra. The overline means that we take the augmentation ideal of
K[z, y], i.e. that we only consider polynomials with no constant term. The degrees are |z| = 0
and |y| = 1 and the differential is given by dy = 2. Notice that y> = 0. We have

d(z*) =0, d(z%y) = z*t"

It follows that, as a chain complex,
n—1
H" := H(A") = (P Kz, ,
a=1

where z, = [z?] is the class of . We have three maps

h C An;Hn

i

given by
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1. i(zq) = 2.

2. p(x®) = y, for a < n and zero on all other monomials.
3. h(z®) = x* ™y for a > n and zero on all other monomials.
Lemma 9.2.10. The maps described above form a contraction.

Proof. This is a straightforward computation. O

Now we apply the homotopy transfer theorem to obtain an As.-algebra structure on H™ and
oo-morphisms between the two algebras.

Lemma 9.2.11. The algebra A™ is formal, and

as associative (and As-) algebras.

Proof. The arity 2 operation in H™ is given by

ma(za» z5) = p(i(2a)i(2p)) = p(

) = Zatb ifa+b<mn,
0 otherwise.

Therefore, the underlying associative algebra is indeed

(keeping in mind that d = 0 on H", so that associativity is indeed satisfied). For the higher
operations, we notice that

2ty ifa4+b>n,
0 otherwise.

(i(za)i(2)) = {

it follows that if we multiply by any element of A4,, and then apply either & or p, we always get
0. Therefore, all higher operations are 0, concluding the proof. O

Lemma 9.2.12. The co-quasi-isomorphism i, of Ass-algebras extending i is given by i; = 1,

a by = 2oty ifa4+b>n,
0 otherwise,

and i, = 0 for all n > 3.

Proof. This is proven with computations analogous to the ones in the proof of Lemma 9.2.11. O

Notice that the co-morphism i, is in fact an co,-morphism of associative algebras.
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A coalgebra and an co,.-morphism

A structure of conilpotent dg As'-coalgebra, that is a shifted coassociative coalgebra, on a graded
vector space V is the same thing as a square zero differential d on As(V') such that

dV)CVave

Let

V= @ Kl}i

i>1

with |v;| = i. We define
d:As(V) — As(V)

of degree —1 by
d(’Ul) = Z (—l)jvj X Vg -

JHk=i—1
Lemma 9.2.13. The map d squares to 0.

Proof. This is a straightforward routine computation. O

Thus, we have an Asi—coalgebra V. Notice that, since d(V) C V®2, the underlying chain complex
V of the As'-coalgebra has the zero differential. We define

®:As(V) — As(V)

by

o) =) D vy ® @,

k>1i14+ir=n

Lemma 9.2.14. The map ® commutes with the differential, and therefore defines an oo,-morphism
O:V V.

Proof. We have to show that ® : V' — Q,V satisfies the Maurer—Cartan equation
(D) +x,(®)=0.
We have

(®)(vn) = da,v (Z > vy ®"'®Uik>

k>1 i1+ tig=n

k—1
Z Z Z(_l)i1+<..+ijvil Q- Qui; ® ( Z (—l)ava@)vg) ® Vi ® - @ Vs,

k>141+-+ip=n j=0 atpB=ij11—1

Yo ()T, @ @, ®vy, ® - ®y,

a,b>1 1+ FxTa+
+y1+-+yp=n—1

where in the first line we used the fact that dyy = 0, and in the last line we substituted a =
j+Lb=k—j+1,z,=d.fors <a z, =0,y = f,and y; = i;4s for s > 2. At the same time,
we have

*x(®)(vn) = (yas 0 1) (K 0 @) Ay (vn)
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== > (—1)'(v) ® B(vy)

i+j=n—1

_ Z Z (_1)x1+~.+xavm QR Uy, DUy @ @ Uy,

a,b>1 1+ +To+
+yit+-Fyp=n—1

Notice the sign in the second line: it comes from the signs in the definition of the differential ds
in the cobar construction. This concludes the proof. O
The counterexample

We now prove what claimed at the beginning of the present section by considering ¢ = As/,
& = As, the canonical twisting morphism

ki Ast — As,

the associative algebras A = A%, A" = H?, the Asi—coalgebras D' = D = V, and the oo-
morphisms ¥ = i,, and ¢ described above. We take the linear maps fi, fo, f3 : V. — H?
such that f;(v1) = z fori = 1,2,3, f1(v2) = 2, and fa(ve) = f3(v2) = 0. Notice that f; and f3
have degree —1, while f; decomposes as the sum of a degree —1 map and a degree —2 map.

We start by computing how homy (®,1) hom! (1,ix)(uy ® F) acts on vy € V. We have

P(vyg) =id @vg + p2 @ (v1 @ V3 + V2 ® V2 + V3 @ V1)
+ 13 ® (V1 @V @V + 01 @V @V +v2 @ V1 @ V1) + g @V @V @V @ vy

Since we will project on the part with only three copies of V, we don’t care about the last term
and will omit it in the following step. Notice that the coproduct of V' is explicitly given by

Ay (vn) = 1d Qun + Z (—1) s @viy @iy — Z (=1)2.75 " 1wy @ujy ®vj, QUjg+-- -,

i14ig=n—1 Jitjz2+iz=n—2

where the dots indicate terms with at least 4 copies of V. Applying this to the above, and then
using proj;, we get

projsAs(Ay)®(vy) =
= 2 ® ((id ®01) ® (F 'py @ v @) + (L 'y ® v @ i) ® (id®111))
+s® ((id @v1) ® (id®vy) ® (id ®vs) + (id @) ® (id ®v) ® (id ®vy )

+ (id ®v2) ® (id ®@vy) ® (id ®U1))

Applying F gives
FprojsAs(Ay)®(vs) =
=2 ® ((id ®R2) @ (S5 tuy @2®2) — (L5 tuy ®2@2) @ (id ®z)>
— 3 ® (([d®2) ® (id ®2) ® (id®z)) ,
and thus

AS(ioo) Fprojs As(Ay)®(vs) = o @ (2 QY —y®2) — i3 @rQr Q.



154 CHAPTER 9. CONVOLUTION HOMOTOPY LIE ALGEBRAS

Finally, we have
homy (@, 1) hom/ (1,400 ) (11 ® F)(v4) = Ya,As(ioe ) FprojsAs(Ay) = —a3.
Now we look at the action of hom] (1, i) homj (®,1)(uy ® F) on vy. We have
Ay (vg) = id @y + .75y @ (—v1 @ va +v2 @ v1)
and thus

projzAs' (®) Ay (vy) =
= id®us ® (v @ V1 ® V2 + V1 ® V2 @ V1 + v @ V1 @ V1)
+ S5y @ (— (1d®v1) @ (2 ®v1 @ v1) + (ke ® v1 ®v1) ® (Id®v1)) .

Applying I’ we obtain

FprojSAsi(CI))Av(m) =
= —id®u3®z®z®z+<7{1u¥®(—(id®z)®(u2®z®z)+(u2®z®z)®(id®z)),

and thus
As'(y12) FprojzAs' (®) Ay (vs) = 0
since 22 = 0 in H? and by Lemma 9.2.11. Therefore,
hom? (1, o) hom (&, 1) (1 @ F)(03) = 0,

showing that
hom; (1, i) homy (@, 1) # homy (P, 1) hom, (1, i)

as claimed. This implies the result we wanted.
Theorem 9.2.15. There is no bifunctor
hom® : co,-%-cog® X 0o,-P-alg — c0-sFL .
that restricts to the functors
homy' : 00,-€-cog®® x P-alg — 00-3L

and
hom{’ : ¥-cog® X 00,-P-alg — 00-3L o

defined above in the respective subcategories.

Remark 9.2.16. The result is true in any characteristic in the non-symmetric case by the same coun-
terexample as above, and in the symmetric case as well, by considering the same counterexample and
tensoring the operads by the reqular representation of the symmetric groups.
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9.2.5 Compatibility with filtrations and quasi-isomorphisms

We will show that convolution homotopy algebras are compatible with filtrations and quasi-
isomorphisms. This is a very useful fact, because it will make it easy to apply the Dolgushev—
Rogers theorem to obtain informations about the homotopy type of the homotopy Lie algebras
obtained by convolution.

Fix a cooperad %, an operad &, and a twisting morphism o : € — &. We begin with proving
that the convolution homotopy algebra functor hom® is compatible with (co)filtrations.

Proposition 9.2.17. Let C be a €-coalgebra, and let A be a &-algebra.

1. Suppose that C is cofiltered with cofiltration F°*C, in the sense of Definition 3.3.10. Then the
sequence of subspaces
F, = {f € hom“(C, A) | F"C C ker f}

makes the convolution homotopy algebra hom™(C, A) into a complete 3£ -algebra, which is
proper if F1C = 0.

2. Dually, suppose that (A, F,A) is a complete ZP-algebra. Then the sequence
Fp, = hom“(C, F, A)

makes the convolution homotopy algebra hom™(C, A) into a complete 3£ -algebra, which is
proper if A is.

Proof. The first statement was proven in Lemma 9.1.8. The second one is similar. O

Next, we prove that convolution homotopy algebras behave well with respect to oo,-quasi-
isomorphisms of (co)algebras.

Proposition 9.2.18. Let C, C’ be two conilpotent ¢-coalgebras, and let A, A" be two &-algebras.

1. Suppose ® : C' ~~ C'is an 0o, -quasi-isomorphism of ¢-coalgebras. Then
hom®(®, 1) : hom®(C, A) ~ hom®(C’, A)

is an oo-quasi-isomorphism of 3% w-algebras. If C,C’ are cofiltered €-coalgebras, and ® is a
cofiltered oo ,-quasi-isomorphism, in the sense that the restriction of its linear component to every
level of the filtration is a quasi-isomorphism, then hom®(®, 1) is a filtered oo-quasi-isomorphism
with respect to the induced filtration on the convolution & . -algebras.

2. Suppose ¥ : A ~~ A’ is an oon-quasi-isomorphism of &-algebras. Then
hom®(1, ¥) : hom®(C, A) ~ hom®(C, A")

is an oo-quasi-isomorphism of »& ..-algebras. If U is a filtered oo,-quasi-isomorphism, then
hom®(1, W) is a filtered co-quasi-isomorphism with respect to the induced filtration on the convo-
lution »& «-algebras.

Proof. We only prove the first statement, and leave the second one to the reader. We have that
the first component
homa((bv 1)1 = ¢T

is given by the pullback by ¢,. Since ¢, is a quasi-isomorphism, and we are working over a
field, this is also a quasi-isomorphism, proving that hom®(®,1) is an co-quasi-isomorphism.
The same argument applies in the case @ is a cofiltered co,-quasi-isomorphism to obtain a
filtered co-morphism of & . -algebras. O
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Corollary 9.2.19. Let C,C’ be two conilpotent €-coalgebras, and let A, A’ be two F7-algebras.
1. Let @ : C" ~~ C be an oo,-morphism of €-coalgebras, and suppose either

o C',C are cofiltered €-coalgebras, we endow the convolution homotopy algebras with the
induced filtrations, and ® is a cofiltered co-quasi-isomorphism, or
o Ais q filtered &-algebra, and we endow the convolution homotopy algebras with the filtra-
tions induced by the filtration on A.
Then
MC,(hom®(®,1)) : MCq(hom®(C, A)) — MC,(hom®(C’, A))
is a weak equivalence of simplicial sets.
2. Dually, let U : A ~» A’ be an con-morphism of &-algebras, and suppose either
o A, A arefiltered Z-algebras, we endow the convolution homotopy algebras with the induced
filtrations, and WV is a filtered co-quasi-isomorphism, or
o C is a cofiltered €-coalgebra, and we endow the convolution homotopy algebras with the
filtrations induced by the cofiltration on C.
Then
MC,(hom®(1,¥)) : MC4(hom®(C, A)) — MCq(hom*(C, A"))

is a weak equivalence of simplicial sets.

Proof. This follows immediately from Proposition 9.2.18 and the Dolgushev—Rogers theorem.
O

9.2.6 Extension of the bifunctor up to homotopy

To conclude the section, we prove that there exists an extension of the convolution homotopy
algebra functor accepting oco-morphisms in both slots, provided we accept to work only up to
homotopy.

Theorem 9.2.20 ([RNW]). Let o : € — & be a Koszul twisting morphism, let & : C' ~ C be
an coq-morphism of €-coalgebras, and let ¥ : A ~~ A’ be an oo,-morphism of &P-algebras. The two
compositions

hom®(®,1) hom®(1, ¥) ~ hom®(1, ¥) hom™(®, 1)

are homotopic.

Proof. Denote by R(A) := Q,B.A the bar-cobar resolution of A, and similarly for A’. Since a is
Koszul, the counit of the adjunction

€a:R(A) — A

is a quasi-isomorphism by Theorem 2.4.8. The rectification of the co,-morphism ¥ is given by
the strict morphism

R(T): Q,BA 22% QB A’

The proof is outlined by the following commutative diagram.
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(¢, 4)

=
S
B

1b pareyy
(V> 1) pwoy

hom®(1,€4)

hom®(C, A) hom“(C, R(4)) hom

filtered qi
j
§
5

(€, A)

hom® (1, € 4/)
filtered qi

Q

hom

The innermost square is commutative since R(¥) is a strict morphism of Z7-algebras, and the
maps passing from the outer rim to the inner one are filtered quasi-isomorphisms. Notice
that all squares are commutative, except for the outer one, which fails to be commutative at
hom®(C, A).

Now consider the morphism of 3% .,-algebras

hom" (B, hom®(C, A), hom® (¢, A')) 222 Brbom® L) Dy it (B, hom® (C, R(A)), hom™(C”, A)) .

Itis a filtered quasi-isomorphism, and it is given on Maurer—Cartan elements by precomposition
with hom®(1, €4). The two compositions

hom®(®,1) hom*(1,¥) and hom®(1,¥)hom®(®,1)

are naturally elements of hom‘(B, hom®(C, A), hom®(C’, A")) and are mapped to the same ele-
ments, and thus, by the Dolgushev-Rogers theorem, they are homotopic. O

Remark 9.2.21. The proof above supposes that we are filtering our convolution homotopy algebras with
the filtration induced by a filtration on the €-coalgebras — usually the coradical filtration. If one filters
them by a filtration induced by filtrations on the &7-algebras, then the exact same proof goes through with
the sole difference that one has to rectify the co,-morphism ® instead of V.
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Remark 9.2.22. The assumption that the twisting morphism is Koszul is necessary for the proof of The-
orem 9.2.20. If one removes this assumption, then it is possible to find a counterexample to the conclusion
of the result by taking e.g. the zero twisting morphism As" — As and some explicit (co)algebras. For
one such example, the reader is invited to consult [RNW, Appendix A].

9.3 Compatibility with the homotopy transfer theorem

Another very powerful tool of homotopical algebra is given by the homotopy transfer theorem,
of which we have seen a case in Section 2.3.4. In this section, we will start by giving a more
general case of this theorem, where one does homotopy transfer for algebras over an operad
of the form 2%, and not only for minimal models of a Koszul operad. Then we will explain
and prove how the convolution £ -algebra functor is compatible with the homotopy transfer
theorem.

9.3.1 A generalized homotopy transfer theorem for algebras

The homotopy transfer theorem holds in a slightly more general situation than the one pre-
sented in Section 2.3.4 with the same exact formulee, as was proven in [Berl4a, Thm. 1.5].

Let & be an operad of the form & = Q% for some reduced cooperad . In particular, & is
a cofibrant operad. Let A be a #-algebra, and suppose that we have a contraction of chain
complexes

p

nCAT——8B

The structure of Z7-algebra on A is equivalent to a twisting morphism ¢4 € Tw(%,Endy).
Define

Amonadic — (s
op = (% 28 ge(7) 289, BEnd,) YAz, End3> ,

and

A%ionadic olp

T (spa)olp VdLzolp
EEE— _—

oo = (%OB T°(%)oB B(End) o B End} o B — A) :

The same proof as for the case presented in Section 2.3.4 gives the following result.

Theorem 9.3.1 (Homotopy transfer theorem). The map pp : € — Endp is a twisting morphism in
Tw(%¢,Endg), and therefore defines a &-algebra structure on B. The map i, defines an co,-quasi-iso-
morphism B ~~ A of &-algebras, and the map p can also be extended to an oo,-quasi-isomorphism p,
such that peice = 1.

Let €,%" be two cooperads, and let f : €/ — % be a morphism of cooperads. Let A be a
¢ -algebra, and suppose we have a contraction

p

nCAT——8B

We have two ways of putting a Q2%”-algebra structure on B:
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1. The homotopy transfer theorem applied to the (2¢™-algebra A gives a (2¢™-algebra structure
on B. We obtain a Q2%”-algebra structure on B by pullback by the morphism of operads
Qf : Q¢ — QF.

2. We obtain a 2¢”-algebra structure on A by pullback by the morphism of operads Qf :
Q¢ — QF. Then the homotopy transfer theorem applied to this algebra gives us a Q%”-
algebra structure on B.

Proposition 9.3.2. The two Q%"-algebra structures thus obtained on B are the same.

Proof. The proof is given by the following diagram. The two algebra structures on B are the
two extremal paths.

o 2 e O A gy VI g,
f T
. Amonadic a#) Te(s4)
The diagram is obviously commutative, concluding the proof. O

9.3.2 Compatibility between convolution algebras and homotopy transfer

We can now prove that taking convolution algebras is compatible with the homotopy transfer
theorem.

Let ¢ be a cooperad, and denote by ¢ : € — Q% the canonical twisting morphism. Let A be a
()¢-algebra, let B be a chain complex and suppose we have a contraction

hCAiB

Let C be a ¢-coalgebra. Then, we have two ways to endow the chain complex hom(C, B) with
a 3 -algebra structure.

1. We consider the s& . -algebra hom’(C, A) . The contraction above induces a contraction

ChomL(C’, A) = hom(C, B)

and thus the homotopy transfer theorem gives a 3% . -algebra structure on hom(C, B). We
will denote this algebra by hom™* ™ (C, B).

2. The generalized homotopy transfer theorem gives a (2¢’-algebra structure on B. Then we
take the convolution & .,-algebra hom‘(C, B).

Theorem 9.3.3. The two s «-algebra structures on hom(C, B) are the same. Moreover, we have that

(ix)oo = hom,.(1,70), and (Ps)oo = hom!.(1,peo) -
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The proof of this result is postponed to later in this section.

Corollary 9.3.4. Let f : & — € be a morphism of cooperads, let
a=ri=(2-15¢50%),

and now suppose that C' is a conilpotent P-coalgebra. Then the same constructions as for Theorem 9.3.3
can be done to obtain two 3£ -algebra structures on hom(C, B). Once again, the two structures are
the same.

Proof. By Lemma 9.1.7(1) and Theorem 9.3.3, we have
hom®(C, B) = hom"(f.C, B) = hom"” "™ (f,C, B) .

Then for s~ 'Y ® F € s7'Com" ®g, hom(C, B)®™ we notice that

thomHTT(f*D,B) (571HX ® F) = VdLhom(D,B @homL(f*D,A))Agggl%/dic(uX)
= VdLyom(p,B

= ’YhomHTT(D,B)(S_lﬂx ®F),

)T (
)T (Phome (D, 4)) AGoRANE (1))

where in the second line we used Lemma 9.1.7 once again. Therefore, we have
hom®(C, B) = hom™*"(C, B) ,
concluding the proof. O

We will now prove Theorem 9.3.3. Let’s introduce some notation. Let ¢ be a cooperad, and let
C be a conilpotent ¢-coalgebra. For every reduced rooted tree 7 € rRT we define

AL:C—T(€)oC
recursively as follows. If 7 = ¢, is the n-corolla, with n > 2, then
AL = AG .

Else, we have 7 = ¢ o (11,...,7%), where k > 2, the 7; are allowed to be the empty tree, and we
define
AL = (lg o (AZ,...,AD))AL,

where A = 1. Notice that id € (1) will never appear in the image of such an operator.
Lemma 9.3.5. For any n > 2, we have
(AR olo)AL = Y AL,
TERT,,
where the monadic decomposition map AZ°™ was defined at page 21.

Proof. The proof is done by induction on n. For n = 2, the statement is trivial, since the cooperad
is supposed to be reduced, so that we have that A°nadic jg the identity on €'(2). For n > 2, we

have
Z AT, — Z ACC’«CO(TI"MTIC)

TERT,, k>2, ni4--+nr=n
Ti€RTy, V1<i<lk
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T T k

= § (lg o (AZ,...,AD)) AL
k>2, ni+---+np=n
T €RTy,; Y1<i<k

T Tk k
S g0 Y an,..., Y az||ak
k>2 T1ERTy,, TRERTn,
ni+-t+ng=n )

S (o (AT 0 1) AL (AR 010) A)) A
E>2
ny4dng=n

= (lgoAp™icols) > (Lgo(A,...,A%))AL
nﬁ—ﬁ;-?mc:n

_ (1%0 o A@onadic o 1C) (Z(g o ]-C)Ag

— (A%mladic ° 1C)A7CL' ,

where we consider the empty tree as a rooted tree in order for the first equality to hold, and
where in the third line we used the induction hypothesis. O

Recall that the Van der Laan map
VdLg : 9 (sEnd4) — Endp

is given by
VALg(r(f)) = pr" (£i®",
cf. Section 2.3.4, and similarly for the contraction from hom(C, A) to hom(C, B).

Every chain complex V is an Endy-algebra in a canonical way, we will denote by
A’yiv :Endy oV —V
its composition map.

Proof of Theorem 9.3.3. We will prove our claims by explicitly comparing the two 3% .-algebra
structures on hom(C, B). We will denote by

va € Tw(%,Endy) , pa: Q% — Endy , and Y4 :QEo0A— A

the (2¢-algebra structure of A, seen in three equivalent ways, and similarly for the other alge-
bras. Notice that we have
pa=par, and  ya=7a(pacla),

as well as
Y4 =7a(T (spa)o1a),
where we used Q% = T (s71%).
Fixn >2and f1,..., fn € hom(C, B). Asusual, denote F := f; ® - -+ ® fy.

We begin by making explicit the structure obtained by taking the convolution algebra between
C and B with the Q%-algebra structure given by the homotopy transfer theorem. The algebraic
structure of B is given by the twisting morphism

vp = VALBT (spa4)AZ",
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and thus
5 =7 (T (sVALET (sp.) AE) 0 13 .

For the structure on hom(C, B), we have
Phom (c.B) (1) (F) = 18(t ® F)AL
=5 (T (sVALET (sp4) A%™) 0 15 ) (1 @ F)A
. (SVdLBOJ(wA)A@OH o 13) (t® F)AL .
In the third line, we used the fact that the image of ¢ : 4 — Q¢ is s~!%. Using that ¢ is
essentially just given by desuspension, we have
mong, — Amon
and thus
Prome 2 (1) (F) =75 (VALBT (s9.4) 0 15 ) (L © F)(AL™ 0 1¢) A

= 3 An(VALsT (sa) 0 15 ) (15 @ F)AL
T€RT,

= Y As(pr(ea)i® 0 15) (1 @ F)AG
TERT,

= 3 Pal(pa) ®iF)AL (A)
TERT,

where in the second line we used Lemma 9.3.5.

The next step is to make as explicit as possible the other 3£ . -algebra structure on hom(C, B),
obtained by homotopy transfer theorem between the two hom spaces. We have

SﬁhomHTT(C’B) = VdLhom(C,B)g(Scphom"(C,A))Aglgg]V .

Therefore, we compute

(\/vdLhorn(C,B)g(S(phom‘(C',A))Arélgrrrllv (MX)) (F)

= <VdLhom(C,B)9-(s@hom"(C,A)) Z T(’U — /1‘\2)|)> (F)
T€RT,

PhomHTT(C,B) (Mrvz) (F)

= > (VdLhom(C,B)T (v = sya(t ® —)A‘%’l)) (F)
TE€RT,

= Z (p*Th* (U — ’}/A(L ® —)A¥I> Z§n) (F)

T7€RT,,

= Z P (Th* (v =74t ® —)Al;‘)) (iF)

T€RT,

= X (™ (v Aaeanay)) 6, ®)

T€RT,

where in the last line we used

va(tola) =Fa(paola)(tola) =7Fa(paola).



9.3. COMPATIBILITY WITH THE HOMOTOPY TRANSFER THEOREM 163

The last step is proving that (A) = (B). We will use induction to prove that, for any n > 2 and
7 € RT,,, we have

Ta(r"(pa) @ iF)AL = (7 (v Falpa © )AL ) (F), ©2)

which implies the claim. If n = 2, the only possible tree is the 2-corolla, and one immediately
sees that both sides of (9.2) are equal to pya(pa ® iF)AZ. Similarly, for all the corollas it is
straightforward to see that the identity holds. If 7 € RT), is a composite tree, we can write it as

T=cro(T1,. ., k).

Then we have

(Th* (v —Ya(pa @ —)A¥)> (iF) =

= Z 'VA PA©

Siu---USp= J

A ©
Siu-- uSk 7

=4 1EndAoyA( > <pAo®h "(pa ®zF))(1<go(Ag),...,Agc)Ag
JAG

X~

Il
_

B(7p (v Falpa @ )AL ) (P )) Al

®w

hya(r] (pa) @ iF)AZ )Ac

Il
—

SiU---USk= [n

=94 A) ®iF

as desired.

The fact that
(ix)oo = hom,.(1,is)

is proven in a completely analogous way, and then we have
hom:”(lapoo) hOIIl:(L 7’00) = hom;(l,pooloo) = 1hom(C’,B) ;

which shows that we can take (p.«)oo = hom; (1, pso ). O

9.3.3 Compatibility on the coalgebra side

We want to do the same thing as in Section 9.3.2, but this time on the coalgebra side. While
we believe that one should be able to write down a sensible version of the homotopy transfer
theorem for coalgebras — probably by working on coalgebras over operads, see [LV12, Sect.
5.2.15] — for simplicity we will only prove the dual version of the result we think to be true,
working with tensor products of algebras.

Let & be an operad which is finite dimensional in every arity, and as always let 7 : B# — &
be the canonical twisting morphism. Denote by ¢ = 2 the dual cooperad of &. Suppose
that we are given a &-algebra X, a (0¢™-algebra A, and a contraction

CA——B

k3
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from A to B. There are two ways to endow the chain complex X ® B with an 3% -algebra
structure.

1. We consider the & ,.-algebra A ®" X . The contraction above induces a contraction

1x ®@p
1x®hCX®’TA X®B

1x ®d

and thus the homotopy transfer theorem gives a 3£ -algebra structure on B ® X.

2. The generalized homotopy transfer theorem gives a 2¢-algebra structure on B. Then we
take B @™ X.

Theorem 9.3.6. The two s& o,-algebra structures on X @ B are equal. Moreover,
(1®i)oo =1®" (i) and (1®p)oc =1@" (Pec) -

Remark 9.3.7. This result of course looks very similar to Theorem 9.3.3, being its version for the “coal-
gebra side”. One should think of the proof as a dual version of Theorem 9.3.3. The above theorem is a
direct generalization of [RN17a, Thm. 5.1].

Proof. We compare the two structures explicitly. In order to do so, let
My : 3L — P Q0NE

be the map defined in Theorem 9.1.12. Explicitly, it is given by
Mr(s™ ) = Y (1) pi@se;,
i€l(n)
where {p;};cr(n) is a basis of #(n), and ¢; := p;’ is the dual basis. Notice that (—1)%s'¢; =
(sp;)¥. We encode the &7-algebra structure of X by the morphism of operads

px P — Endy ,

and the Q%-algebra structures of A, B (obtained by homotopy transfer theorem), and X ® A by
the twisting morphisms
YA ¢ — End A,

and similarly for the other algebras. Given two S-modules M and N, the map
:IT(MN) —IT(M)®I(N)

is given by sending a tree with vertices indexed by pure tensors in M ® N to the tensor product
of two copies of the underlying tree, the first one with node indexed by the respective elements
of M, the second one by the respective elements of N, all multiplied by the appropriate Koszul
sign.

The first 3£ -algebra structure on X ® B is given by
ln = VdLxepT (spxea) Atomv (1)
- ('7Endx & VdLB) Cbg(sng@)A) 831?1\/ (:u’\n/)
= (yEnax ® VdLp) ®F ((px @ s0a)sMas™") Mg (1)
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= (VEndx ® VALB) (T (px) @ T (spa)) PT (sMrs™ ) ABIEY (1)
= (px ® VALET (s¢a)) (v @ lg(4)) BT (sMs™ ) ABE (1))

where in the third line we see sM,s~! as a map Com" — & ® ¢, given by

M) = Y psen
i€l(n)

and in the last line we used the fact that
Yendx T (px) = pxV2 -

For the second structure, we have

b= (px @ ) sMxs™ " (1)
= (px @ VALBT (s0) AZ") sMrs™" ()
= (px ® VALET (spa)) (1 @ AZ™) sMrs™ (1)) -

Therefore, to conclude we need to show that
(Vo @ lg()) @T (sMrs™ )ABDY (1) = (1 ® AZ) sMs™ (117) .

Using the notation introduced at the end of Appendix A.1, we have that

Bomv () = > 7w py) -
T7€RT,
Therefore, the left-hand side above is equal to
DT Y elep))erwee,),

TERT,, iy €I(|v]) forveV,

where ¢ is the Koszul sign coming from ®. At the same time, the right-hand side is given by
Y Pi®ARR(e).
i€l(n)

Both are expression for the map
VYo : T(P) — &P

seen as an element of & ® 7 ()", and thus they are equal.

Once again, the statement on the co-morphisms is proven in an analogous way. O
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Chapter 10

Representation of the deformation
oco-groupoid

We present here a first important application of the theory developed in Chapter 9. It was done
in [RN17b], and it was the main goal of the author when developing the material of [RN17a]. In
a sense, it should be considered the central result of the present work. Some of the results given
here are newer, and are extracted from [RNV].

The idea is the following. A very important object in various areas of mathematics, e.g. defor-
mation theory and rational homotopy theory, is given by the Maurer—Cartan space MC,(g) of a
homotopy Lie algebra. However, since the Sullivan algebra €2, is infinite dimensional, this ob-
ject is always “really big". One has Getzler’s co-groupoid v, (g), which is much smaller, but this
object is somewhat complicated — at least in its original presentation — as Dupont’s contrac-
tion map h, is. The new idea to obtain a “nice" model for the space of Maurer-Cartan elements’
is the following. Start with Dupont’s contraction

he C Qe p—.>C.

ie

and transfer the simplicial commutative algebra structure on €, to a simplicial €-algebra
structure on C,. Since C, is finite dimensional at every simplicial degree, we can take its dual,
which is a cosimplicial BLie-coalgebra (up to a suspension). Then we take the complete cobar
construction with respect to the canonical twisting morphism BLie — Lie to obtain a cosimpli-
cial Lie algebra

meq = Qr (sCY) .
Intuitively, this should be a model for Maurer—Cartan elements at cosimplicial degree 0, for
gauges at cosimplicial degree 1, and so on. One of the main results of this chapter formalizes
this in the form of a natural homotopy equivalence of simplicial sets

homdgue (mc., g) ~ MC.(g)

when g is a Lie algebra. The proof of this result is made in two steps.

INamely, we want Kan complex which is homotopically equivalent to MC, (g) in a natural way.

167
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1. First, we prove that
MC,(g) = MC(g @ Co) ,

where g® C, is given a homotopy Lie algebra structure by the homotopy transfer theorem
applied to the contraction induced by Dupont’s contraction. The proof is similar to the
demonstration of the Dolgushev-Rogers theorem, and mainly uses methods of simplicial
homotopy theory.

2. Then, we prove that
homggyie(meo, g) = MC(g ® C,) .

This fact will be a straightforward consequence of the results of Chapter 9.

As a nice, immediate conference, we have that taking the space of Maurer—Cartan elements
commutes with limits — only up to homotopy, if we take the functor MC,(—). We will also
study some properties of MC(g ® C,) and of mc,. As a corollary, we will obtain an explicit way
of “rectifying" homotopy equivalences between Maurer—Cartan elements to gauges between
the same elements. We will also present an extension of these results to the case where g is a
3 -algebra. This was not present in [RN17b], but will be contained in [RNV].

It should be remarked that the author was not aware of Bandiera’s results — see Section 6.5
— at the time of publication of [RN17b]. They give another way of proving that MC,(g) ~
MC(g ® C,), using very different methods. We believe that the two ways of proceeding are
complementary, completing each other to yield a picture of the various relations between the
three known models of the space of Maurer—-Cartan elements of an £, -algebra.

Contrarily to what we did in most of the rest of this thesis, in this chapter we will work exclu-
sively over cochain complexes. We will also work over shifted Lie and homotopy Lie algebras,
but as usual the theory behaves in exactly the same way in the unshifted setting. In particular,
Maurer—Cartan elements are in degree 0, and gauges are in degree —1.

10.1 An alternative model for the space of Maurer—Cartan ele-
ments
We begin by giving a simplicial set which is smaller, but homotopically equivalent to the space

of Maurer—Cartan elements MC,(g). It is given by the Maurer-Cartan elements of the tensoriza-
tion of the s . -algebra into consideration with the cellular cochains of the geometric simplices.

10.1.1 Statement of the main theorem

Let g be a complete 3£ -algebra. Dupont’s contraction induces a contraction

1Q® pe
1®he gR0e ——— " g®C,

1®ie

of g ® Qs onto g ® C,. Applying the homotopy transfer theorem to this contraction, we obtain a
simplicial 3 -algebra structure on g ® C,. We also know that we can extend the maps 1 ® p,
and 1 ® i, to simplicial co-morphisms of simplicial 4& o.-algebras (1 ® pe)oo and (1 @ ie)oc. We
denote P, and I, the induced maps on Maurer-Cartan elements. We will also use the notation

(1®7¢)oo = (1 ®ie)oo(l ® Pe)oo

and we dub Rect, the map induced by (1 ® 7). on Maurer—Cartan elements.
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Theorem 10.1.1. Let g be a filtered & o-algebra. The maps P, and 1, are inverse one to the other in
homotopy, and thus provide a weak equivalence

MC,(g) ~ MC(g ® C,)

of simplicial sets which is natural in g.

10.1.2 Proof of the main theorem

The rest of this section is dedicated to the proof of this result. We begin with the following
lemma.

Lemma 10.1.2. We have
Pyl = idycgec,) -

Proof. This is because (1 ® pa)oc(l ® is)oo is the identity, see e.g. [DSV16, Theorem 5], and the
functoriality of the Maurer-Cartan functor MC. O

Therefore, it is enough to prove that the map
Rect = I, Py : MC,o(g) — MC,(g)

is a weak equivalence. The idea is to use the same methods as for the proof of the Dolgushev—
Rogers theorem, cf. Section 6.4. The situation is however slightly different, as the map Rect,
is not of the form ® ® 1q,, and thus the Dolgushev-Rogers theorem itself cannot be directly
applied. The first, easy step is to understand what happens at the level of the zeroth homotopy
group.

Lemma 10.1.3. The map
mo(Rect) : mpMCq(g) — moMCa(g)

is a bijection.

Proof. We have Qy = Cy = K, and the maps ¢ and pg both are the identity of K. Therefore, the
map Ry is the identity of MCy(g), and thus obviously induces a bijection on 7. O

For the higher homotopy groups, we start with a simplified version of Proposition 6.4.2, which
gives in some sense the base for an inductive argument. If the % .. -algebra g is abelian, i.e. all of
its brackets vanish, then so do the brackets at all levels of g®¢2,. In this case, the Maurer—Cartan
elements are exactly the cocycles of the underlying cochain complex, and therefore MC, (g) is a
simplicial vector space.

Lemma 10.1.4. If the & -algebra g is abelian, then Rect, is a weak equivalence of simplicial vector
spaces.

Proof. Recall that the Moore complex of a simplicial vector space V, is defined by
M(Ve)y = 5"V,

endowed with the differential
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where the maps d; are the face maps of the simplicial set V. It is a standard result that
mo(Ve) = Ho(M(Ve)),  mi(Ve,v) = mi(Ve, 0) = Hi(M(V4))

foralli > 1 and v € Vj, and that a map of simplicial vector spaces is a weak equivalence if and
only if it induces a quasi-isomorphism between the respective Moore complexes [G]09, Cor. 2.5,
Sect. II1.2].
In our case,

Ve :=MC,(g) = Z' (g ® Q)

is the simplicial vector space of 1-cocycles of g ® (2,. As in the proof of Proposition 6.4.2, it can
be proven that the map

(1 @ pe) : M(E (g © QW) — M(E' (g2 Co))
is a quasi-isomorphism. But as the bracket vanishes, this is exactly P,. Now
./”(1 ®p.)M(1 ® l.) = 1‘%(?1(9@9.)) ,

which implies that /(1 ® i) also is a quasi-isomorphism. It follows that Rect, is a weak equiv-
alence, concluding the proof. O

Now we basically follow the structure of the proof of Theorem 6.4.1. We define a filtration of
g ® (e by
Fi(8 © Q) = (Frg) @ Qo .

We denote by
(022" =g2Q,/Fr@g® %) =g 2Q. .

The composite (1 @ iq)(1 ® pe) induces an endomorphism (1 ® i,)*) (1 ® pe)* of (g @ Qe)*).
All the co-morphisms coming into play obviously respect this filtration, and moreover 1 ® h,
passes to the quotients, so that we have

1L gmaa)® — (1® i.)(k)(l ®p.)(k) =d(1® h_)(k) +(1® h,)(’f)d

for all k£, which shows that (1 ® r, )« is a filtered co-quasi isomorphism.

The next step is to reduce the study of the homotopy groups with arbitrary basepoint to the
study of the homotopy groups with basepoint 0 € MCy(g).

Lemma 10.1.5. Let o € MC(g), and let g* be the £.-algebra obtained by twisting g by «, that is the
< o-algebra with the same underlying graded vector space, but with differential

1
da(aj) =dzx + g mﬁn(a, .. .,Oé,I)
n>2

and brackets
0@y, X)) = Z mﬁn(a7...,a73§1,...,xm).

Let
Shift, : MC,o(g®) — MC,(g)

be the isomorphism of simplicial sets induced by the map given by
Beg—a+pBecg”.

Then the following diagram commutes
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Shift,,
MC,(g®) MC,(g)
Recty Rect,
Shift,,
MC,(g*) —— MC,(9)
where
Rect®(8) =Y (1@ 1s)7(B%)
k>1
and

(1 ®ro)g(61 Q- ®Bk> = Z %(1 ®7“.)k+j(0é®j RBLR ... ®Bk>
§>07"

is the twist of (1® 14 )oc by the Maurer—Cartan element o. Here, we identified o € gwith a®1 € gRQ,.
Proof. The proof of [DR17, Lemma 4.3] goes through mutatis mutandis. O

Remark 10.1.6. The £L..-algebra g* in Lemma 10.1.5 is endowed with the same filtration as g.

Now we proceed by induction to show that Rect*) is a weak equivalence from MC,(g*)) to
itself for all k& > 2. As the Z..-algebra (g ® ) is abelian, the base step of the induction is
given by Lemma 10.1.4.

Lemma 10.1.7. Let m > 2. Suppose that

Rect® : MC(g®)) — MC(g™)

t(m+1)

is a weak equivalence for all 2 < k < m. Then Rec is also a weak equivalence.

Proof. The zeroth homotopy set 7y has already been taken care of in Lemma 10.1.3. Thanks to
Lemma 10.1.5, it is enough to prove that Rect™*!) induces isomorphisms of homotopy groups
m; based at 0, for all 7 > 1.

Consider the following commutative diagram

o (g0 —— (o)
(1@ 7)) (1®re)™
0 T tent (9@ Q)"+ ——— (g® Q)™ ———— 0

where the leftmost vertical arrow is given by the linear term (1 ® 74)(1 ® pa) Of (1 ® 4o since
all higher terms vanish, as can be seen by the explicit formule for the co-quasi isomorphisms
induced by the homotopy transfer theorem given in [LV12, Sect. 10.3.5-6]. Therefore, it is a
weak equivalence as the & .-algebras in question are abelian. The first term in each row is
the fibre of the next map, which is surjective. By Theorem 6.2.6, we know that applying the
MC, functor makes the horizontal maps on the right into fibrations of simplicial sets, while
the objects we obtain on the left are easily seen to be the fibres. Taking the long sequence in
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homotopy and using the five-lemma, we see that all we are left to do is to prove that Rect{™ "

induces an isomorphism on ;. Notice that it is necessary to prove this, as the long sequence is
exact everywhere except on the level of 7.

The long exact sequence of homotopy groups (truncated on both sides) reads

o] o
WQMC.(g(m)) — mMC, (Ff::?g) — ﬂlMC.(g(m—H)) — WlMC.(g(m)) — moMC, (FZT1?Q> s

where in the higher homotopy groups we left the basepoint implicit (as it is always 0). The map

Fmg Fm 19
9 : mMC,(g'™) — mMC, ;e
o <g ) o (Fm+lg> Fmg

encodes the obstruction to lifting an element of 71 MC,(g(™) to an element of ; MC,(g(™*1)
(see e.g. Section 4.2.6).

The map 7, (Rect™*Y) is surjective: Let y € mMC,(g(™ 1) be any element, and denote by 7

its image in m; MC,(g("™). By the induction hypothesis, there exists a unique € 7, MC,(g(™))
which is mapped to 7 under Rect{™. As 7 is the image of y, we have 9(7) = 0, and this implies
that O(Z) = 0, too. Therefore, there exists 2 € 7;MC, (g™ 1)) mapping to Z. Denote by ¢/’ the

image of 2 under Rect{™*. Then 3y~ is in the kernel of the map

7T1MC.(g(m+1)) — WlMC.(g(m)) .

By exactness of the long sequence, and the fact that Rect, induces an automorphism of

F,
7T1MC. <;‘+;g> .

1

there exists an element z € 7 (MCq(Fp419/Frng)) mapping to y'y~" under the composite

F , F
771MC. ( F+;g> —>Rect. 7T1MC. ( F+;g) —>7r1MC.(g(m+1)).

Let 2’ be the image of z in 7, MC, (g™*+1)), then (2’) "'z maps to y under Rect(™*1). This proves
the surjectivity of the map ; (Rect™ ).

The map 71 (Rect{™ V) is injective: Assume x,z' € mMC,(g™*)) map to the same element
under Rect™ Y. Then z(z/)! maps to the neutral element 0 under Rect ™Y It follows that

there is a
F,
z € mMC, < F,:;g>

mapping to z(z')~1, which must be such that its image w is itself the image of some element
w € mMC,(g™) under the map . But by the induction hypothesis and the exactness of the
long sequence, this implies that z is in the kernel of the next map, and thus that z(z’) ! is the
identity element. Therefore, the map m; (Rect{™*Y) is injective.

This ends the proof of the lemma. O

Finally, we can conclude the proof of Theorem 10.1.1.

Proof of Theorem 10.1.1. Lemma 10.1.7, together with all we have said before, shows that Rect{™
is a weak equivalence for all m > 2. Therefore, we have the following commutative diagram:
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MC, (g®) —————— MC.(s¥)
Rect£4)

MC,(g®) o MCu(a®)
Rect,

MC.(g®) - MC.(g®)
Rects)

where all objects are Kan complexes, all horizontal arrows are weak equivalences, and all ver-
tical arrows are (Kan) fibrations by Theorem 6.2.6. It follows that the collection of horizontal
arrows defines a weak equivalence between fibrant objects in the model category of tower of
simplicial sets, see [G]J09, Sect. VI.1]. The functor from towers of simplicial sets to simplicial sets
given by taking the limit is right adjoint to the constant tower functor, which trivially preserves
cofibrations and weak equivalences. Thus, the constant tower functor is a left Quillen functor,
and it follows that the limit functor is a right Quillen functor. In particular, it preserves weak
equivalences between fibrant objects. Applying this to the diagram above proves that Rect, is
a weak equivalence. O

10.2 Properties and comparison with Getzler’s functor

Theorem 10.1.1 shows that the simplicial set MC(g ® C,) is a new model for the deformation
oo-groupoid. This section is dedicated to the study of some properties of this object. We start by
showing that it is a Kan complex, then we give some conditions on the differential forms repre-
senting its simplices. We show how we can use it to rectify cells of the deformation co-groupoid,
which provides an alternative, simpler proof of [DR15, Lemma B.2]. Finally we compare it with
Getzler’s functor 7,, proving that our model is contained in Getzler’s. Independent results by
Bandiera [Ban14], [Ban17] imply that the two models are actually isomorphic.

10.2.1 Properties of MC,(g ® C,)

The following proposition is the analogue to Theorem 6.2.6 for our model.

Proposition 10.2.1. Let g,h be two complete proper 3£ -algebras, and suppose that ® : g ~» b is
an oo-morphism of Loo-algebras inducing a fibration of simplicial sets under the functor MC,, see for
example Theorem 6.2.6 for possible sufficient conditions. Then the induced morphism

MC(¢ ®ide,) : MC(g ® Cy) — MC(h @ C,)

is also a fibration of simplicial sets. In particular, for any complete proper 3<% -algebra g, the simplicial
set MC(g ® Cl) is a Kan complex.
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Proof. By assumption, the morphism
MCa(¢) : MCo(g) —> MC,(h)

is a fibration of simplicial set, and by Lemma 10.1.2 the following diagram exhibits MC(¢®idc, )
as a retract of MC,(¢).

MC.(g) L MC(g® C,)

MC(g ® C.)
MC(¢ ® idc, ) MC, (o) MC(¢ ® idg, )
MC(g ® C.) MC,(g) MC(g ® Cs)

As the class of fibrations of a model category is closed under retracts, this concludes the proof.
O

We also consider the composite Rect, := I, P,, which is not the identity in general.
Definition 10.2.2. We call the morphism

Recte : MCq(g) — MC,(g)
the rectification map.

The following result is a wide generalization of [DR15, Lemma B.2], as well as a motivation for
the name “rectification map” for Rect,.

Proposition 10.2.3. We consider an element
o= O[l(to,...,tn) +--- € MCn(g) s

where the dots indicate terms in g1 =% ® QF with 1 < k < n. Then 8 = Rect,(a) € MC,(g) is of the
form

B=pP(to, .- tn) +- - +EQwom,
where the dots indicate terms in g' % ® QfL with 1 < k < n — 1, where £ is an element of g' ", and
where aq and (51 agree on the vertices of A™. In particular, if « € MCy(g), then § = F(a) € MCq(g)
is of the form

B =P1(t) + \dt

for some X € g°, and satisfies

Bl(O) = 041(0) and Bl(l) = 041(1) .

Remark 10.2.4. As Rect, is a projector, this proposition in fact gives information on the form of all the
elements of MC(g @ C,).

Proof. First notice that the map Rect, commutes with the face maps and is the identity on 0-
simplices, thus evaluation of the part of 8 in g' ® QY at the vertices gives the same result as
evaluation at the vertices of «;. Next, we notice that S is in the image of I,. We use the explicit
formula for (1 ® i, ) of Section 2.3.4: the operator acting on arity k£ > 2 is given, up to signs, by
the sum over all rooted trees with 1 ® i,, put at the leaves, the brackets /,, of the corresponding
arity at all vertices, and 1 ® h at the inner edges and at the root. But the 1 ® h at the root lowers
the degree of the part of the form in €2, by 1, and thus we cannot get something in g'~" ® Q"
from these terms. The only surviving term is therefore the one coming from (1 ® i,)(P(w)),
given by £ ® wp__,, for some £ € g'=". O
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In particular, take n = 1. Then a gauge between two Maurer—Cartan elements is exactly the
same as an element § € MCj(g) of the form

B = By(t) + Adt

such that 3 (t) evaluates to the two Maurer—Cartan elements at ¢ = 0, 1, cf. Section 6.2.3. With
this in our minds, we notice that Proposition 10.2.3 above immediately implies the following
two facts.

1. The set MC(g® (1) is included into MC, (g) as the subset consisting of gauge equivalences
via the map I,.

2. The rectification map Rect; gives us an explicit formula to rectify a homotopy between
two Maurer—Cartan elements to a gauge between the same elements.

Analogously, Proposition 10.2.3 also tells us that the higher maps Rect,, “rectify” higher rela-
tions, making the term of lowest degree in g become constant.

10.2.2 Comparison with Getzler’s co-groupoid

Finally, we compare the simplicial set MC(g ® C,) with Getzler’s Kan complex 7,(g). We start
with an easy result that follows directly from our approach, before using Bandiera’s results —
see Section 6.5.2 — to prove that these two simplicial sets are actually isomorphic.

Lemma 10.2.5. We have
IMC(g® C,) € 7e(9) -

Proof. We have heie = 0. Therefore, by the explicit formula formula for (is). given in Sec-
tion 2.3.4, we have he(3) = 0 for any § € g ® §, in the image of I,. Thus

he(MC(g ® Cs)) = helse Po(MCa(g)) =0,
which proves the claim. O
An immediate consequence of the formal Kuranishi theorem is the following proposition.
Theorem 10.2.6 ([Ban17, Prop. 2.5]). The map
(Po,1® he) : MCa(g) — MC(g® Cs) x (Im(1® he) N (g ® Q)')

is bijective. In particular, its restriction to ve(g) = ker(l ® he) N MC,(g) gives a isomorphism of
simplicial sets
P, : ve(g) — MC(g® Cl) .

Proof. The first statement is obtained by applying Theorem 6.5.6 to the contraction

1Q® pe
1®h.Cg®Q.4’g®C.

1®ie

The second statement is a straightforward consequence of the first one, obtained by restricting
the map to ve(g) = MC,(g) Nker(1 ® h,). O

Remark 10.2.7. Thanks to our approach, we immediately have an inverse for the map P,: it is of course
the map I,.
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As a consequence of Bandiera’s result and of Proposition 10.2.3, we can partially characterize
the thin elements of v (g).

Lemma 10.2.8. For each n > 1, the thin elements contained in ~,,(g) are those with no term in g =" ®
Qn.

Proof. By Proposition 10.2.3 and Theorem 10.2.6, we know that if o € 7,(g), then « is of the
form

for some ¢ € g'~", where the dots indicate terms in g % ® QF for 0 < k < n — 1, which will
give zero after integration. Integrating, we get

[a=eo [ wa-gor.

Therefore, « is thin if, and only if £ = 0. O

10.3 A model for Maurer—Cartan elements of Lie algebras

Our next goal is to represent the Maurer—Cartan functor MC(g ® C,) by a cosimplicial object.
We begin by doing this in the case of Lie algebras, as it was originally done in [RN17b]. The
case of 3 -algebras will be treated in Section 10.4.

Since we are in the shifted setting, we consider shifted Lie algebras, that is algebras over the
operad . ® Lie.
10.3.1 Representing MC(g ® C,)

Using the Dupont contraction, the homotopy transfer theorem gives the structure of a simplicial
¢o-algebra to C,. As the underlying cochain complex C), is finite dimensional for each n, it
follows that its dual is a cosimplicial B(.” ® Lie)-coalgebra. Therefore, we can take its complete
cobar construction relative to the canonical twisting morphism

m: B( ® Lie) — . ® Lie
to obtain a shifted Lie algebra.
Definition 10.3.1. We denote the cosimplicial shifted Lie algebra obtained this way by mc, = Q. (CY).
Theorem 10.3.2. Let g be a proper complete shifted Lie algebra. There is a canonical isomorphism
MC(g ® C,) = homggiie(mc,, g) -
It is natural in g.

Proof. By Theorem 9.3.6, the & ,-algebra structure we have on g ® C, is the same as the struc-
ture that we obtain on the tensor product of the shifted Lie algebra g with the simplicial €-
algebra C, by using Theorem 9.1.12 the twisting morphism 7. Therefore, we can apply Propo-
sition 9.1.22 and Theorem 9.1.13 to obtain the desired isomorphism.

With this form for MC(g ® C,), Theorem 10.1.1 reads as follows.
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Corollary 10.3.3. Let g be a proper complete dg Lie algebra. There is a weak equivalence of simplicial
sets
MC.(g) ~ hOIIldgLie(T’l'lt.7 g) s

natural in g.
Remark 10.3.4. This result was proven independently and simultaneously in [BFMT17, Thm. 0.1].

We can completely characterize the first levels of the cosimplicial Lie algebra mc,. Recall from
the Lawrence-Sullivan algebra from Section 6.1.3: it is the unique free complete dg Lie algebra
generated by two Maurer—Cartan elements in degree 1 and a single element in degree 0 such
that the element in degree 0 is a gauge between the two generating Maurer—Cartan elements.

Proposition 10.3.5. The first two levels of the cosimplicial dg Lie algebra me, are as follows.

1. The dg Lie algebra mc is isomorphic to the free dg Lie algebra with a single Maurer—Cartan element
as the only generator.

2. The dg Lie algebra mc, is isomorphic to the Lawrence—Sullivan algebra, shifted by 1.

Proof. For (1), we have Qy = K = Cy, both py and i, are the identity, and h¢ = 0. It follows that,
as a complete graded free Lie algebra, mcg is given by

mey = I/Ii\e(sK) .

We denote the generator by « := s1V. It has degree 1. Let g be any complete dg Lie algebra,
then a morphism
¢:mcg — g

is equivalent to the Maurer—Cartan element
pla)®1 € MC(g® Co) = MC(g) .

Conversely, through Py every Maurer—Cartan element of g induces a morphism m¢y — g. As
this is true for any dg Lie algebra g, it follows that « is a Maurer—Cartan element.

To prove (2), we start by noticing that
C1 = Kwy & Kw; & Kwp;
with wo,w; of degree 0 and wy; of degree 1. Denoting by «; := sw;’ and by X := swg;, we have
me; = Iji\e(ao,al, A)
as a graded Lie algebra. Let g be any dg Lie algebra, then a morphism
¢:mc;p — g
is equivalent to a Maurer—Cartan element
d(ap) @ wo + d(a1) @ w1 + d(N) ®wper € MC(g® C1) ,
see [RN17a, Sect. 6.3-4]. Applying I, as in the proof of Proposition 10.2.3 we obtain

Li(p(ao) ® wo + d(ar) @ wi + d(A) @ wor) = alto, t1) + d(A) @ wor € MCy(g)
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with a(1,0) = ¢(ap) and a(0,1) = ¢(a1). The Maurer—Cartan equation for a(to, t1) + ¢(A) ® w1
then shows that ¢()) is a gauge from ¢(ayp) to ¢(a). Conversely, if we are given the data of
two Maurer—Cartan elements of g and a gauge equivalence between them, then this data gives
us a Maurer-Cartan element of g ® €};. Applying P, then gives back a non-trivial morphism
me; — g. As this is true for any g, it follows that mc; is isomorphic to the Lawrence-Sullivan
algebra. O

Remark 10.3.6. Alternatively, one could write down explicitly the differentials for both wcy (which is
straightforward) and wey (with the help of [CGO08, Prop. 19]). An explicit description of mc, is made
difficult by the fact that one needs to know the whole €.-algebra structure on C, in order to write down
a formula for the differential.

10.3.2 Relations to rational homotopy theory

The cosimplicial dg Lie algebra mc, has already made its appearance in the literature not long
ago, in the paper [BFMT15], in the context of rational homotopy theory, where it plays the role
of a Lie model for the geometric n-simplex. With the goal of simplifying comparison and inter-
action between our work and theirs, we provide here a short review and a dictionary between
our vocabulary and the notations used in [BFMT15].

Notation in the present work | Notation of [BFMT15]
mc, Lo Or Lo

Qe Apr(A®)

B, Quillen functor €
homdgLie(mcn 7) <7>

homdgCom(_»Qo) <_>S

The following theorem has non-empty intersection with our results. We say a shifted Lie algebra
is of finite type if it is finite dimensional in every degree and if its degrees are bounded either
above or below.

Theorem 10.3.7 ([BFMT15, Th. 8.1]). Let g be a dg Lie algebra of finite type with H" (g, d) = 0 for all
n > 0. Then there is a homotopy equivalence of simplicial sets

homdgue(mc., g) ~ homdgCom (BL(SQ)V, Q.) .

We can easily recover an analogous result, which works on complete proper shifted Lie algebras
of finite type such that g=! = 0, but without restrictions on the cohomology, using our main
theorem and some results of [RN17a].

Proposition 10.3.8. Let g be a complete dg Lie algebra of finite type such that g=' = 0. Then there is a
weak equivalence of simplicial sets

homdgLie(mcu g) = hOIndgCom (BL (Sg)\/, Qo) .
Proof. The proof is given by the sequence of equivalences

homdgCom (BL(sg)vv QO) = hOIndgCom (ﬁﬂ' (Silgv)a Qo)

=~ MC(g ® Q)
~ homggyic(Mmca, g).
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In the first line we used the natural isomorphism
B.(sg)" = Qr(s'g") .

Notice that the assumptions on g make it so that gV is a Lie"-coalgebra. In the second line
we used a slight generalization of [RN17a, Cor. 6.6] for £ = & = Com and ¥ the identity

morphism of Com. Notice that here the assumption that g~! = 0 makes it so that

homggcom (ﬁﬂ(sflgv),ﬂ.) & hom(silgV,Q.)O

even though (), is not complete. Finally, in the third line we used our Corollary 10.3.3. O

10.4 A model for Maurer—Cartan elements of homotopy Lie al-
gebras

One would like to do the same as in Section 10.3 for 3<% -algebras. It is possible to do so, but

one critically has to use the generalized homotopy transfer theorem — Theorem 9.3.1 — and

consider the operad QBCom instead of € as cofibrant resolution of the operad Com. Doing
this, we obtain a new cosimplicial 3& -algebra mcg°® such that

MC. (g) ~ homdil’oo—alg (mCEC, g)
for any complete proper & ,.-algebra g. There is a natural morphism
pmey’ —> mc,

through which every morphism of 3 -algebras from mcg® to a strict Lie algebra splits in a
canonical way, showing coherence with the results of Section 10.3. We will explicit mc¢$°, which
is a higher analogue of the Lawrence-Sullivan algebra in the context of homotopy Lie algebras.
The work presented in this section is extracted from [RNV].

10.4.1 Representing MC(g ® C,)

Let g be an 3% -algebra. If one writes down the first operations for g® Ce with the 3% .-algebra
structure obtained through homotopy transfer along the contraction

1® pe
1Q he g®9.4)g®co

1®ie

and compares it with the the structure of the operations when g is a strict (shifted) Lie algebra,
one immediately realizes that there are many more trees appearing in the former case than in
the latter. This hints to the fact that we need a finer algebraic structure on C, than the one of a
¢ o-algebra we obtained by homotopy transfer in Section 10.3.1.

In order to obtain a good model, we consider the resolution of the operad Com given by QBCom,
and denote by
7 B0L ) — 3L

the canonical twisting morphism. Notice that B(3Z% ) = (2BCom)". In this section, we reserve
the letter 7 for the canonical twisting morphism

7 : B(. ® Lie) — ¥ ® Lie,



180 CHAPTER 10. REPRESENTATION OF THE DEFORMATION oco-GROUPOID

which played the same role in Section 10.3 as 7> will in this section.

In Dupont’s contraction

he C Q.P;’C.

ie

we see the simplicial commutative algebra (2, as a simplicial 2BCom-algebra. Then the gener-
alized homotopy transfer theorem gives us a BCom-algebra structure on C,. We will denote
the chain complex C, endowed with this QBCom-algebra structure by C,. Since — as already
mentioned above — we have

B(3%) = (QBCom)",

we can take the cobar construction of C) relative to the twisting morphism 7> to obtain a
cosimplicial 3< . -algebra.

Definition 10.4.1. We denote the cosimplicial shifted homotopy Lie algebra obtained this way by mcg® =
ﬁﬂx (5:/)

We immediately recover similar results as in Section 10.3.1.

Theorem 10.4.2. Let g be a proper complete 3£ -algebra. There is a canonical isomorphism of simpli-
cial sets
MC(g ® C,) = homyg,_-alg(meg®, g) .

It is natural in g.
Proof. Analogous to the proof of Theorem 10.3.2, using 7 instead of 7. O

Corollary 10.4.3. Let g be a proper complete & .-algebra. There is a weak equivalence of simplicial
sets
MCa(g) =~ homyg,_ alg(me®, g) .

It is natural in g.

10.4.2 Compatibility with the strict case

Since Maurer-Cartan elements, gauges and so on for strict shifted Lie algebras are the same as
the respective notions as for the same algebras seen as 3 -algebras, one expects some com-
patibility between the cosimplicial algebras mc, and mecg®.

There is a canonical morphism of operads
g 1 3L oo — S ® Lie,
obtained by applying Theorem 2.2.18 to the canonical twisting morphism
K (7 @ Lie)' 2 .7°® Lie' — . ® Lie
given by Koszul duality. It induces a map

olc;/

p 3P0 CY L% (7 @ Lie) o OY

of chain complexes.
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Lemma 10.4.4. The map described above is a filtered morphism
prme’ — grme,
of cosimplicial 3% ~-algebras.
Proof. The fact that the map commutes with the algebraic structure is trivial, as well as the fact
that it preserves the filtration, and that it respects the cosimplicial structure. In order to see that

it also commutes with differentials, we begin by noticing that by Proposition 9.3.2 we have an
equality of €..-algebras

Co = (2f.)*Ch,

where
f.e : Com' —s BCom

is the canonical map. The dual of f is the map of operads
Gk 1 3L — S ® Lie

mentioned above. Therefore, we have the diagram

A

- cy - 51 -
cy B(3%.) 0 CY e 3P o0 0 CY
Bgrol grol
Acy mol
cy B( @ Lie) o CY ( ® Lie) o CY

which proves that p commutes with the differentials of mc¢, and mcg® (which are completely
determined by the horizontal lines of the diagram above). O

Remark 10.4.5. One would like to show that p is a filtered quasi-isomorphism, so that mcg® would be a
resolution of mco. We do not have a proof of this fact for the moment.

Proposition 10.4.6. Let g be a shifted Lie algebra. Every morphism of $& oo-algebras me3® — gt g splits
in a unique way through p. In other words, the pullback

P* : homdgLie(mco; E) = homdifoo—alg (g:mcng:g) — homdifoo—alg (mcc.x:’ g:g)

is an isomorphism of simplicial sets (the first isomorphism being given by the fact that shifted Lie algebras
form a full subcategory of 3 «-algebras).

Proof. First, one notice that
g ®7T Co = (g:g) ®7r°° Co

by the compatibility with morphisms expressed in Theorem 9.1.12. The proof is then given by
the following commutative diagram.
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homdgLie(mcl7g) _ Mc(g ®7r C.)
P ¢
homyg__-alg(Me3°, g g) === MC((g:g) @~ C.)

The horizontal arrows are given by Theorem 10.3.2 and Theorem 10.4.2 respectively, while prov-
ing that the vertical arrow is given by pullback by p is just a matter of unwinding definitions. [

10.4.3 A higher version of the Lawrence-Sullivan algebra

We want now to give explicit formulee for the first two levels of mc3°. The same arguments as
for Proposition 10.3.5 apply, and thus we immediately have the following.

Lemma 10.4.7. We have -
mey” = 3% 5 (Ka)
with |a| = 0 and

1
do = —Zmﬁn(a,...,a) .
n>2

In other words, mc§° is the free 3<£ o -algebra generated by a single Maurer—Cartan element.
We also know that mc{® is the free 3£ -algebra generated by two Maurer-Cartan elements

ap, o in degree 0, and a gauge A from ¢y to o in degree 1. In order to translate this into explicit
formulee we will need to do some work. Our starting point is Section 6.2.4. From there, we can

deduce the formula )
oy = Z mr(ao)
T7€PT

using Proposition C.2.5 to the formal differential equation with

1
fn,l(ylwuayn) = Egnqu(ylv“'vynv)‘)

forn > 1, fo,1 = dX, and no other operators. Notice that the only weight appearing in the trees
is 1, so that we simply work over PT. Rearranging terms, we obtain the fixed-point equation

d\ = ] — Qg — Z ﬁT(aO) 9

TEPT\{@,C()}

where one should notice that d) appears in the right-hand side whenever a tree contains a 0-
corolla. The existence and uniqueness of a solution is thus guaranteed by Theorem C.1.3. We
can however give an explicit formula for this solution in this case.

We will denote by PT the following set of trees. An element of PT is a non-empty” planar
rooted tree T' such that

1. every vertex of 1" has arity at least 1,

2Meaning that their set of vertices is non-empty.
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2. every leaf of T is labeled by either “black” or “white", and

3. every vertex v of T, say of arity k, is labeled by a planar tree 7, of arity ¥ and whose
vertices all have arity at least 1.

Here are some examples of such trees:
i g 0 T
and some non-examples:

The trees given by a single black or white leaf — which we will denote by ® and ? respectively

— are not in PT, since they don’t have any vertex.

Let T € PT, and let v be a vertex of T of arity n with associated planar tree 7,. Then we denote
by 7, the planar tree obtained by taking 7, and composing a 0-corolla at every leaf that is linked
to either another vertex of T or to a black leaf of T'. For example,

0
Tor =
U3
(%) 77-1}3 —
V2 J— Y

We define a function

G:PT —K
by ,
¢ =11 ~5a
veVr

To a tree T € PT we also associate a function
T:gxg—9g

recursively by
T(x,y) =7(Th(z,9),. .., Te(z,y))
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whenever T' = 7, o (T1,...,T), and by setting ?(x,y) = z, and ®(x,y) = y, even though the

trees given by a single white or black leaf are not in PT, strictly speaking.

Proposition 10.4.8. The ZL.-algebra mc$® is the free complete Lo.-algebra generated by two degree 1
elements o and o and a single degree 0 element A satisfying

d\ = a1 — g + Z G(T) T(Oéo,O[l — 0[0) .
TePT

This 3£ . -algebra is a higher analogue of the Lawrence-Sulliven algebra [LS14], which is a Lie
model for the 1-simplex, cf. also Proposition 10.3.5.

Proof. We have to prove that this dA is the unique solution to the fixed-point equation

d)\ = a1 — Qg — Z %T(ao) 3

TEPT\{0,co}
obtained above. Notice that d\ appears in the right-hand side whenever there is a 0-corolla in a
tree. The fact that the solution exists and is unique is given by Theorem C.1.3.
We have
dA=0a1—ag+ »_ G(T)T(ao, o1 — ao)

TePT

1

=1 —ao— > ) <HG(Ti)> 7r(T1 (a0, 01 — o), . .., Ti (a0, 01 — a0))
k>1, 7. €PT} reduced
Ty,..., T, EPTU{? 1}

=1

=] —oapg—
1
_ Z F(?)Tr ( Z G(T1) Th (a0, a1 — ag), - - -y Z G(Ty) T (v, ax —Olo))
Tre];ZTi’ red. ' T1EPTU{?,7} T, ePTU{?, 1}
1
=a1— o — Z F(ﬁ)Tr(ao+d/\,...,ao+d)\)

k>1,
7 €PT}, reduced

=1 — Qo — E

TePT\{0,c0}

1
F) )

where a tree is reduced if it is non-empty and has no arity 0 vertices, in the second line we have
T=m.0(T1,...,Tx),and G(7) = G(") = L. O
10.4.4 Homotopies between co-morphisms of & -algebras

We sketch how, in principle, one can use the formulee for mc§° given above to describe an ex-
plicit notion of homotopy between co-morphisms of & .-algebras. More details will appear in
[RNV].

Let g be a 3% -algebra, and consider the contraction

1®th®Ql ZZT:

g Ch
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induced by Dupont’s contraction. Endow g ® C with the & ,-algebra structure obtained via
the homotopy transfer theorem.

Proposition 10.4.9 ([Val14, Prop. 3.3]). The 3&£ -algebra g ® C\ is a cylinder for g in the category of
0 wo-algebras with their co-morphisms. In other words, the cocommutative coalgebra B,(g @ C1) is a
cylinder for B, g.

But by Theorem 9.3.6, g ® C} is the same thing as g QT 51, where 51 is C; the 2BCom-algebra
structure obtained as in Section 10.4.1. Therefore, if ®, ¥ : g ~» h are two co-morphisms, then a
homotopy between them is an co-morphism

H:g®ﬂwélwba

which translates into a certain collection of morphisms g®™ — b, of which two extremal subcol-
lections give back ® and V¥, and which must respect certain compatibilities encoded by the al-

gebraic structure of C;. Moreover, one can give an explicit description of the algebraic structure
of C1, which is essentially dual to the & . -algebra structure of mc{°, using Proposition 10.4.8.
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Chapter 11

Rational models for mapping spaces

In this chapter, we present an application of the theory developed in Chapter 9 to rational homo-
topy theory, using it to generalize a result of Berglund [Ber15]. Most of the material presented
here is extracted from [RNW17].

Another application of the methods of Chapter 9 to rational homotopy theory, but which is
outside of the scope of the present work, is given in [Wiel6] and [Wiel7], where F. Wierstra uses
them to construct a complete invariant of th real or rational homotopy classes of maps between
simply connected manifolds.

In this chapter, we work exclusively over the field Q of rational numbers.

11.1 Homotopy Lie and homotopy cocommutative models

In this section, we define homotopy Lie and homotopy commutative models for spaces, and
define certain additional conditions we will impose on the homotopy Lie models.

11.1.1 Conditions on 3Z  -algebras

Later, we will consider complete proper s% .-algebras satisfying some additional finiteness
conditions, which we introduce here.

Definition 11.1.1. A proper complete 3<% -algebra (g, Feg) is locally finite if all of the quotients
g™ = g/Fng, forn>2,
are finite dimensional.

Being locally finite is a good generalization of being finite dimensional, as the following result
shows.

Lemma 11.1.2. Let (g, Feg) be a proper complete £o-algebra, and let C be a cocommutative coalgebra.
Suppose that either

1. the cocommutative coalgebra C is finite dimensional, or

2. the proper complete 3£ .-algebra (g, Feg) is locally finite.

187
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Then we have an isomorphism

g®C" = hom'(C, g)
0of 3L o -algebras, where 1 : Com" — 3%, is the canonical twisting morphism.

Here, we use the notation
g®CY = lim (g/F,g® CY) .

It can be seen as a tensor product between filtered algebras, where we have endowed C" with
the constant filtration %,,CY = CV.

Proof. The first case is straightforward, so we only give some details for the second one. First
begin by considering the case where g is finite dimensional. If we fix a homogeneous basis {;};
of g, then we obtain an isomorphism

hom*(C, g) — g®" CV
by sending

It is a straightforward exercise to check that this is independent of the chosen basis, and to see
that the isomorphism holds true at the level of s&£ -algebras.

Now if g is not necessarily finite dimensional, but only locally finite, we have
hom*(C, g) = hom*(C, 1i7an 9/Fn9)
= liTILn hom‘(C, g/%Fn9)
= lim (g/Fng ® C)
=g®C"
where the fact that the second isomorphism holds at the level of 4& . -algebras is straightfor-

ward to check, and in the third line we used the fact that g(") is finite dimensional for all n in
order to apply what said above. O

There is another condition we will impose on some of our s& . -algebras. It was first introduced
in [Ber15].

Definition 11.1.3. Let (g, Feg) be a proper complete 3£ -algebra. We say that (g, Feg) is degree-
wise nilpotent if for any n € Z there is a k > 1 such that (Fyg), = 0.

The functor MC, acts in a very straightforward manner on degree-wise nilpotent filtered £.-
algebras satisfying a boundedness condition with respect to the homological degree, as the
following result demonstrates.

Proposition 11.1.4. Let (g, F.g) be a degree-wise nilpotent proper complete 3< o, -algebra, and suppose
that the degrees in which g is non-zero are bounded below. Then

MC. (g, Fg) = MC(g @ Q) .

In particular, MC, (g, Fe9) is independent of the filtration Fog, as long as (g, Feg) is degree-wise nilpo-
tent.
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Proof. Suppose that (g, F.g) satisfies the assumptions above. Fix n > 0, then there exists ko > 1
such that (%, g)., = 0 for all m < n, since the degrees of g are bounded below. It follows that

(Frg®Q)o=0 and (Fro®Q,)-1=0
for all £ > ko, as €2, is concentrated in degrees from —n up to 0. The projection
g® Q, — 9/%99 ®

has kernel F,g ® €, and is therefore an isomorphism in degrees 0 and —1. Therefore, the set
of Maurer—Cartan elements MC(g/%,g ® €2,,) is constant in k for k& > ko, which implies the
statement. O

For any s< ,-algebra g, one can consider the filtration %“*"g which at level n is given by the
elements that can be obtained by bracketing at least n elements of g.

Lemma 11.1.5. Let g be a simply-connected, proper complete s& o-algebra. Then (g, F°*"g) is degree-
wise nilpotent.

Proof. Suppose we take k elements and we bracket them together. We can use at most & — 1
brackets (taking only binary brackets), and every element has degree at least 2. It follows that
the resulting element has degree at least

(1—k)+2k=k+1.
Thus,
F"g C g>ky1

and the statement follows. O

11.1.2 Homotopy Lie models

One possible generalization of the Lie rational models for spaces of Section 5.3.2 is to use ho-
motopy Lie algebras. For coherence, we work in the shifted setting.

Definition 11.1.6. Let K € sSets; be a 1-reduced simplicial set. A proper complete 3% -algebra
(9, Feg) is a rational model for K if there is a homotopy equivalence

MC.(g, Fog) ~ Kg ,
where K is the rationalization of K, cf. Theorem 5.1.13.

We will require that our 3& .-models are locally finite and degree-wise nilpotent. This assump-
tion is needed e.g. for Theorem 11.2.1 to hold. This condition is not that strong, as we can model
many spaces of interest to us through such algebras.

Proposition 11.1.7. Every 1-reduced simplicial set K with only finitely many non-degenerate simplices
admits a locally finite, degree-wise nilpotent s< .-model.

Proof. According to [FHTO1, Sect. 24.(e)], every such simplicial set K admits a free Lie model
— in the sense of the Definition found at [FHTO01, p.322] — of the form g = Lie(C4(X)), where
C.(X) is the complex of simplicial chains of K. Since we supposed that K is finite, g is a finitely
generated Lie algebra, and thus it satisfies the assumptions of [Ber15, Prop. 6.1]. It follows that
we have

MCa(g® Q) ~ Ky .
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An apparent problem is the fact that g is not complete. However, we can replace g by
§ = Lie(C4 (X)) = [ Lie(n) ®s, Co(X)*" .
n>1
Then Proposition 11.1.4 and Lemma 11.1.5 give
MC,(g® Q) = MC,(g, ") ,

so that we may use (g, F°"g) as a Lo.-model. This is obviously locally finite, since the op-
erad Lie is finite dimensional in every arity and C,(X) is finite dimensional, and degree-wise
nilpotent e.g. by Lemma 11.1.5. Now suspend g to obtain an 3 .-model satisfying the desired
properties. O

11.1.3 Homotopy cocommutative models

By a cocommutative coalgebra up to homotopy, we mean a conilpotent coalgebra over the co-
operad BQCom". Other resolutions of the cooperad Com" are possible, but the chosen one has
the advantage to provide the canonical commuting diagram

Com" L
q \
T

BQComV 2oc

where the quasi-isomorphism f, is obtained by Theorem 2.2.18 — it is in fact the unit of the
bar-cobar adjunction — and where all twisting morphisms are Koszul.

Definition 11.1.8. Let X be a simply-connected, pointed topological space. A homotopy cocommuta-
tive coalgebra C' is a rational model for X if there exists a zig-zag of weak equivalences of homotopy
cocommutative algebras

(f)esBA(X) —r 04— — 0 c— (',

or equivalently (by Theorem 8.2.6) if there exists a w-weak equivalence (f,)+«sBA(X) ~» C.

11.2 Rational models for mapping spaces

Given two spaces K and L, a natural question is the following one. Suppose we are given
rational models for both K and L. Is it possible to use them to construct a rational model of the
mapping space Map(K, L)? A possible answer to this question was given by Berglund [Ber15]
in the case when we have a strictly commutative model for the first space, and an & ,-model
for the second one.

Theorem 11.2.1 ([Ber15] Theorem 6.3). Let K be a simply-connected simplicial set, let L be a nilpotent
space (e.g. a simply-connected space) of finite Q-type and Lg the rationalization of L. Let A be a
commutative model for K and (g, F.g) a degree-wise nilpotent, locally finite 3£ o-model of finite type
for L. There is a homotopy equivalence of simplicial sets

Map(K, Lg) ~ MC,(A®g),

i.e. the & oo-algebra ARg is a 5% o-model for the mapping space.
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Remark 11.2.2. In [Ber15], this theorem is stated in terms of the Getzler co-groupoid ~e(g). However,
the co-groupoid ~e(g) is homotopy equivalent to MC,(g) by Theorem 6.2.13, and thus the statement
above is equivalent to the original one. Also notice that we supposed that (g, Feg) is locally finite, and
completed the tensor product with respect to the filtration Feg and not with the degree filtration, as in
[Ber15]. An inspection of the original proof reveals that the result still holds in this slightly more general
context.

We will now improve Berglund’s Theorem in two ways: we will show that we can take homo-
topy cocommutative coalgebra models for K instead of just cocommutative ones, and that this
model is natural with respect to co,-quasi-isomorphisms of 3£ -algebras, respectively m-weak
equivalences of homotopy cocommutative coalgebras. We will also show that, under certain
restrictions on C and g, this model only depends on the homotopy types of C' and g, i.e. differ-
ent choices for C' and g will give homotopy equivalent models for the mapping space. The first
result is the following one.

Lemma 11.2.3. Let K be a simply-connected simplicial set, let L be a nilpotent space (e.g. a simply-
connected space) of finite Q-type and Lq the Q-localization of L. Let C' be a cocommutative model for K
and (g, Fe9) a degree-wise nilpotent, locally finite 3% --model of finite type for L. There is a homotopy
equivalence of simplicial sets

Map.(K, Lg) = MCo(hom™((f,).C.g)),
i.e. the convolution 3% o-algebra hom™ ((f,).C, g) is an Loo-model for the mapping space.

Proof. By Theorem 5.3.10 and Theorem 11.2.1, we know that g ® CV is an £.-model for the
mapping space. Further, by Lemma 11.1.2 we know that

g&C" = hom*(C, g) = hom™((f,).C, g) ,
where the second equality is Lemma 9.1.7. O
Proposition 11.2.4. Let C be a homotopy cocommutative coalgebra, and let
Wz (b, Fob) ~ (9, Feg) -
be a filtered co-morphism of s& ~-algebras. Then there is a weak equivalence of simplicial sets
MC,(hom™(C, b)) >~ MCq(hom™(C, g)) .

Proof. This looks very similar to Corollary 9.2.19 — and indeed, that result is a fundamental
ingredient of the proof — but notice that here we have co-morphisms of 3& -algebras, i.e.
oo,-morphisms, instead of co,-morphisms.

The proof is schematized by the following diagram.

hom™(C, b) hom™(C, g)
hom” (Ep,1) hom™ (Ep,1)
hom™ (R, 1, (C),H) hom™ (R 1, (C), 9)
hom*(1, V)

hom*(B,2,:C, h)

hom*(B,2,.C, g)
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The vertical equalities are given by Lemma 9.1.7 and the definition of the rectification R ;,. We
apply the functor MC, on the whole diagram, and all the squiggly arrows become homotopy
equivalences of simplicial sets by Corollary 9.2.19 and Proposition 8.2.4. The result follows. [

Our generalization of Theorem 11.2.1 is a direct consequence of this result.

Theorem 11.2.5. Let K be a simply-connected simplicial set, let L be a nilpotent space (e.g. a simply-
connected space) of finite Q-type and Lq the Q-localization of L. Let C' be a homotopy cocommutative
model for K, let (g, Feg) be a degree-wise nilpotent, locally finite 3<% -model of finite type for L, and let
(b, Feh) be an 3% . -algebra such that there exists a filtered co-quasi-isomorphism

Uz (b, Fob) ~ (9, Feg) -
There is a homotopy equivalence of simplicial sets
Map(K’, Lg) = MC,(hom™(C, b)),
i.e. the convolution & o-algebra hom™ (C, ) is an s& o-model for the mapping space.

An example of an application of this theorem is an alternative proof of [BG16, Thm. 3.2], see
[Wiel6, Cor. 11.1].



Chapter 12

A model structure for the
Goldman—Millson theorem

The Goldman-Millson and the Dolgushev-Rogers theorem, Theorems 6.1.12 and 6.4.1, have a
distinct homotopical flavor. After all, they state that some class of morphisms, namely filtered
(co-)quasi-isomorphisms, is sent to weak equivalences of simplicial sets under the Maurer—
Cartan space functor. However, the proofs of these theorems are not done by purely homotopi-
cal methods, but rather by working explicitly with the algebras and performing some induction
using the filtrations, as we have seen in Section 6.4. There is a reason behind this: the filtered
quasi-isomorphisms are not very well behaved and do not form the class of weak equivalences
of any model structure on the category of differential graded Lie algebras that we know of, even
after closing them by the 2-out-of-3 property.

The goal of this chapter is to provide a fully homotopical and self-contained approach to the
proof of the Goldman-Millson theorem and to the Dolgushev-Rogers theorem. The idea is to
consider the Vallette model structure on conilpotent Lie coalgebras. Linear dualization is un-
fortunately not an equivalence of categories with Lie algebras, but we can work around this
fact by using some results of [LG16] to prove that the category of conilpotent Lie coalgebras is
equivalent to the category of pro-objects in finite dimensional, nilpotent Lie algebras. This way,
we obtain a model structure on this last category. An interplay between this model category
and the limit functor allows us to see the gauge relation for Maurer-Cartan elements in a Lie
algebra as a homotopy relation between certain morphisms representing the Maurer—Cartan
elements. A model categorical argument then immediately gives us a version of the Goldman-
Millson theorem. Further, using simplicial framings, we extend the argument to prove a version
of the Dolgushev—-Rogers theorem for strict morphisms. These results are weaker than the orig-
inal ones, as they only work on morphisms that are obtained via linear dualization from weak
equivalences of conilpotent Lie coalgebras, i.e. essentially duals of filtered quasi-isomorphisms
of Lie coalgebras.

The results presented here are those of [RN18]. They have close links with recent works by other
authors, which we will try to explain throughout the text. The model structure we produce on
the category of pro-objects in finite dimensional, nilpotent Lie algebras starting from the Val-
lette model structure on conilpotent Lie coalgebras is the same as the model structure described
directly on this category of pro-objects by A. Lazarev and M. Markl in [LM15]. The idea of a ho-
motopical approach to the proof of the Goldman-Millson and the Dolgushev-Rogers theorems
is already present in the work of U. Buijs, Y. Félix, A. Murillo, and D. Tanré — more specifically

193
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in [BFMT16], where they obtain a result which is strictly stronger than our Theorems 12.2.13
and 12.3.2. However, they need to use a version of the Dolgushev—Rogers theorem in their
proof, while our approach is more self-contained, if not as powerful. Moreover, the techniques
we present in Section 12.3 can be applied to the results of Buijs-Félix-Murillo-Tanré to give a
modest generalization.

In this chapter, we will work over cochain complexes instead of chain complexes, as we did in
Chapter 10.

12.1 Some notions of category theory
In this section, we give a reminder of the basic categorical notions we will need later, such as

some basic results on equivalences of categories, and ind- and pro-objects in a category (i.e.
categories formal colimits and limits).

12.1.1 Equivalences of categories

Given two categories C and D, an isomorphism of categories between them is a functor ' : C — D
such that there exists another functor F~! : D — C satisfying F~'F = 1c and FF~! = 1p. This
notion is far too strict to be really useful. A more sensible notion to compare categories is the
following one.

Definition 12.1.1. An equivalence of categories between C and D is a functor F' : C — D such
that there exists a functor G : D — C and two natural isomorphisms GF' = 1c and FG = 1p. An
anti-equivalence of categories between C and D is an equivalence of categories between C°P and D.

There is another notion of equivalence of categories which is at first sight stronger than the
previous one.

Definition 12.1.2. An adjoint equivalence of categories between C and D is an adjoint pair
F.:C=D:G
such that the unit and counit maps are natural isomorphisms.
In fact, the two notions of equivalence of categories are the same.
Theorem 12.1.3. Let F' : C — D be a functor. The following statements are equivalent.
1. The functor F is an equivalence of categories.
2. The functor F is part of an adjoint equivalence of categories.

3. The functor F' is fully faithful and essentially surjective, i.e. for every object d € D there exists
¢ € Csuch that d = F(c).

For details on these notions, see for example the book [ML70, pp. 92-95].
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12.1.2 Categories of ind-objects and categories of pro-objects

Let C be a category. One can then consider the category of “formal colimits” in C (e.g. [AGV72,
Sect. 8]).

Definition 12.1.4. A (non-empty) small category C is filtered if
1. for every two objects x,y € C, there exists an object z € C and two arrows z — x and z — y, and
2. for every two arrows f,g : b — ain C, there exists an arrow h : ¢ — b such that fh = gh.

The category C is cofiltered if it satisfies the dual properties.

Definition 12.1.5. The category ind(C) of ind-objects in C is the category that has as objects all the
diagrams F' : @ — C with @ a small filtered category. If F' : & — Cand G : € — C are two objects in
ind(C), the set of morphisms between them is

homjg(c) (F, G) = (gierg colime € €homc(F(d),G(e)) ,

where the limit and the colimit are taken in Sets.

Dually, one can also consider the category of “formal limits” in C (e.g. [Gro60, Sect. A.2] and
[AGV72, Sect. 8]).

Definition 12.1.6. The category pro(C) of pro-objects in C is the category that has as objects all the
diagrams F : @ — C with D a small cofiltered category. If ' : @ — Cand ,G : € — C are two objects
in pro(C), the set of morphisms between them is

homgoc) (F, G) = lier% colimd € @ homc(F(d),G(e)) ,

where the limit and the colimit are taken in Sets.

Lemma 12.1.7. Let C’ and C" be two equivalent or anti-equivalent categories. Then ind(C') is equivalent
to ind(C"), respectively anti-equivalent to pro(C").

Proof. This is straightforward. O
We recall the definition of a compact object in a category.

Definition 12.1.8. Let C be a category that admits filtered colimits. An object ¢ € C is said to be
compact if the functor
homc(e, —) : C — Sets

preserves filtered colimits.
Proposition 12.1.9. Let C be a category and let C' be a full subcategory of C. Further, assume that
1. the category C is cocomplete,

2. there exists a functor
§:C—ind(C')

such that the composite colim ¢ is naturally isomorphic to the identity functor of C, where colim
is (a choice for) the functor
colim : ind(C") — C

given by taking the colimit in C, and
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3. every object in C' is compact in C.
Then the functors ¢ and colim exhibit an equivalence of categories between C and ind(C").
Proof. Assumption (1) guarantees the existence of a colimit functor. The natural isomorphism
colim ¢ = idc
is given by assumption (2). We are left to prove that there exists a natural isomorphism
0 colim = idjpg(cry -
Let F: 9 — C"and G : € — C’ be two objects in ind(C’). Then we have
homing(c) (F, G) = iier% colime € €home (F(d),G(e))

= ilergj colime € €homc(F(d),G(e))

= ileng% homc (F'(d), colim G)

>~

homc/(colim F, colim G) .

In the second line we used the fact that C’ is a full subcategory of C, and in the third one the fact
that F(d) € C’ is always a compact object by assumption (3). It follows that for any F' € ind(C’)
we have

homing(c/y (6 colim F, ') = homc(colim § colim F,colim F)

2 homc(colim F,colim F') ,

where we used the fact that colim § = id¢. Then, the identity morphism of colim F provides a
natural isomorphism § colim £ idj,g(c’) as we wanted. O

Example 12.1.10. The easiest example of application of Proposition 12.1.9 is the following one. Let
C = Sets be the category of (small) sets and let C' := fSets be the full subcategory of finite sets. Every
set is the colimit of its finite subsets, so taking the diagram of all finite subsets gives a functor

d : Sets — ind(fSets) .

As Sets is cocomplete and finite sets are compact objects in Sets, Proposition 12.1.9 tells us that Sets is
equivalent to ind(fSets).

Example 12.1.11. Another classical example is as follows. Let C := Vect be the category of vector spaces
and let C' = C" = fdVect be the full subcategory of finite dimensional vector spaces. As every vector
space is naturally isomorphic to the colimit of all its finite dimensional subspaces, taking the diagram of
all the finite dimensional subspaces of a vector space gives a functor

d : Vect — ind(fdVect) .

It is well-known that Vect is cocomplete and that the finite dimensional vector spaces are compact ob-
jects in Vect. Moreover, linear duality gives an anti-equivalence of fdVect with itself. Therefore, by
Proposition 12.1.9 and Lemma 12.1.7 we have that Vect is anti-equivalent to pro(fdVect).

Example 12.1.12. The following example is a result of [GG99]. Let C := Cog be the category of coas-
sociative counital coalgebras, let C' := fCog be the full subcategory of finite dimensional coassociative
counital coalgebras, and let C"" = fAlg be the category of finite dimensional unital associative algebras.
One can prove that every coassociative counital coalgebra is the colimit of its finite dimensional sub-
coalgebras By the same arguments as in the previous two examples, Proposition 12.1.9 gives an equiva-
lence of categories between Cog and ind(fCog). Linear duality induces an anti-equivalence of categories
between fCog and fAlg. Therefore, by Lemma 12.1.7 we have that Cog is anti-equivalent to pro(fAlg).
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12.2 A model structure for the Goldman-Millson theorem

In this section, we show that a version of the Goldman-Millson theorem [GMS88] can be obtained
by a purely homotopical argument in the model category of Lie coalgebras.

12.2.1 The model structure on conilpotent Lie coalgebras

We are interested in the study of certain dg Lie algebras, namely the ones obtained dualizing
conilpotent Lie coalgebras.

Definition 12.2.1. A conilpotent Lie coalgebra is a conilpotent coalgebra over the cooperad coLie =
Lie", the linear dual of the operad Lie encoding Lie algebras.

Notice that the cooperad coLie is Koszul and that its Koszul dual operad is the operad . ® Com.
Both are connected, and we endow them with the canonical weight grading. By what exposed
in Section 3.3.7, we obtain a model structure on the category of conilpotent Lie coalgebras
by pulling back the Hinich model structure on (suspended) commutative algebras along the
Koszul twisting morphism

k : coLie — . ® Com .

We fix the canonical weight grading on coLie. It is given by
coLie™) == coLie(w 4 1) .

Therefore, we can change our conventions a bit and we define a filtration on a conilpotent Lie
coalgebra C' to be a sequence of sub-chain complexes

0OCHCCKhCOCHKRCC---CC
such that
1. the filtration is exhaustive: colim,, F;,C == C,

2. it respects the coproduct, that is
Ro(FC) S @ (coLie(k) ® F,C® - @ F,, O)™,
k>1
niteFng=n
and

3. itis preserved by the differential: d¢(F,,C) C F,,C.

Notice that this is equivalent to the notion of cofiltration of Definition 3.3.10 by shifting the
indices by 1.

Explicitly, the model structure on the category coLie of conilpotent Lie coalgebras has

e the closure of the class of filtered quasi-isomorphisms under the 2-out-of-3 property as
weak equivalences,

o the monomorphisms as cofibrations, and

o the class of morphisms with the right lifting property with respect to trivial cofibrations
as fibrations.
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Every conilpotent Lie coalgebra is cofibrant, and the fibrant objects are the quasi-free conilpo-
tent Lie coalgebras.

Dualizing a filtered conilpotent Lie coalgebra we obtain a complete Lie algebra.

Lemma 12.2.2. Let (C, F,C') be a filtered conilpotent Lie coalgebra. Then the filtration on g == CV
defined by
Fog = (F,C)*

makes g into a complete Lie algebra. Moreover, the dual of a filtered quasi-isomorphism of conilpotent Lie
coalgebras is a filtered quasi-isomorphism of Lie algebras.

Remark 12.2.3. Not all filtered quasi-isomorphisms of Lie algebras can be obtained by linear dualization.
For example, consider abelian (co)Lie (co)algebras, i.e. cochain complexes. For simplicity, take K = Q.

Let
V= @ Q

nez

be concentrated in degree 0, seen as an abelian Lie coalgebra. A quasi-isomorphism from V to itself is just
an isomorphism, and we have

| Aut(V)| < |End(V)| = (dim V)V = |N|IN,

At the same time, we have dim(V'"') = |R|. Notice that if we fix a basis of V', then bijections from the
basis to itself are automorphisms. Therefore, we have

| Aut(VY)] > [ Sym(R)| = [R|® > N[,

It follows that there must exist automorphisms of V'V that are not given as the dual of an automorphism
of V.

There is another twisting morphism we can consider to construct a model structure on conilpo-
tent Lie coalgebras, namely the canonical twisting morphism

¢ : coLie 2 .7° ® Com' — Q¢ ® Com') 2 .% @ Cro - (12.1)

Lemma 12.2.4. The model structure obtained on conilpotent Lie coalgebras by pulling back the Hinich
model structure on suspended €-algebras along Q, is equal to the one obtained by pulling back along
Q.

Proof. This is an immediate corollary of [LG16, Prop. 32]. O

This fact will be of fundamental importance later on.

12.2.2 Dualization of conilpotent Lie coalgebras

We start by giving the correct framework in which to dualize conilpotent Lie coalgebras.

In the article [LG16], the following result is proven, generalizing what can be found in [GG99,
Sect. 1] for coassociative counital coalgebras. See also Example 12.1.12.

Proposition 12.2.5 ([LG16, Lemma 4 and 5 and Prop. 12]). Let ¢ be a cooperad. The category
€-cog of conilpotent €-coalgebras is cocomplete, every conilpotent €-coalgebra is the colimit of the
diagram of all its finite-dimensional sub-coalgebras with the relative inclusions, and all finite-dimensional
conilpotent € -coalgebras are compact objects in €-cog. In particular, the category € -cog is presentable.
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Denote by fd coLie the full subcategory of colie of finite dimensional conilpotent Lie coalgebras.
As a direct consequence of these facts and of Proposition 12.1.9 in the case where C = colie, we
have the following.

Corollary 12.2.6. The categories colLie and ind(fd colie) are equivalent. The equivalence is given by the
functors
colim : ind(fd coLie) — colie

given by taking a functorial choice of colimit of diagrams and
0 : coLie — ind(fd coLie)

given by associating to a conilpotent Lie coalgebra the diagram of all its finite-dimensional sub-coalgebras
with the relative inclusions.

It is always true that the linear dual of a conilpotent Lie coalgebra is a Lie algebra, while the
converse holds in the finite dimensional case. Denote by fd nil. Lie the category of finite dimen-
sional nilpotent Lie algebras. As a direct consequence of this fact and of Lemma 12.1.7, we have
the following.

Lemma 12.2.7. Linear duality between finite dimensional Lie coalgebras and finite dimensional Lie
algebras induces an anti-equivalence of categories between ind(fd conil. coLie) and pro(fd nil. Lie).

In summary, we have the following commutative diagram, where pronil. Lie is the subcategory
of Lie algebras which is the image of linear dualization from conilpotent Lie coalgebras, called
the category of pronilpotent Lie algebras.

ind(fd colLie) pro(fd nil. Lie)
colim lim
colie pronil. Lie

where the horizontal arrows are given by linear dualization and the upper horizontal and left
vertical arrows are an anti-equivalence of categories and an equivalence of categories respec-
tively. Notice that all pronilpotent Lie algebras are complete: one can always write them as the
dual of a conilpotent Lie coalgebras an take the orthogonal of the coradical filtration.

Remark 12.2.8. What stated above works in greater generality for conilpotent coalgebras over a coop-
erad. In a sense, this is the correct framework in which to dualize a conilpotent coalgebra, obtaining not
an algebra, but a diagram of finite dimensional algebras.

We endow the category pro(fd nil. Lie) with the model structure obtained by transporting the
Vallette model structure on Lie coalgebras along the two (anti-)equivalences of categories. The
two model structures are Quillen equivalent. Notice that fibrations and cofibrations change
roles as we pass through an anti-equivalence.

Remark 12.2.9. One can check that the model structure thus obtained is exactly the one of [LM15, Def.
9.9]. The main difference between our approach and theirs is the fact that we work directly with Lie
coalgebras, while they only ever work with pronilpotent Lie algebras. We hope that the point of view we
used in the present paper will appear more natural to some readers, as it avoids dualizing every coalgebra
in order to only work with algebras.
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12.2.3 The Goldman-Millson theorem

The idea is now to use the model structure given above to obtain statements about pronilpotent
Lie algebras. By what we have seen in Section 10.2, we have that the set of Maurer-Cartan
elements of a Lie algebra g is in natural bijection with the set of morphisms

mey — ¢

of dg Lie algebras, where mc is the free Lie algebra on a Maurer—Cartan element. Similarly,
gauge equivalences between Maurer-Cartan elements are coded by morphisms

me — ¢

Intuitively, mc; behaves like a cylinder object for mcy, so that the gauge relation looks very
similar to a left homotopy between Maurer-Cartan elements seen as maps. However, we do not
have a good model structure on complete Lie algebras, and that’s why we have to lift everything
to the category of diagrams.

In order to push down the results we will obtain for diagrams to actual algebras, we will need
the following technical lemma.

Lemma 12.2.10. Let g be a Lie algebra which is complete with respect to its canonical filtration, and
such that g™ := g/ FS*g is finite dimensional for all n > 2. Let g € pro(fd nil. Lie) be the diagram

Let H : D — fd nil. Lie be any object of pro(fd nil. Lie). Then we have a natural isomorphism
homo(fd nil. Lie) (8, H) = homgglie(g, lim H) .

Proof. We have
homggie(g, lim H) = lliinl:l) homggie(g, H(d))
€

with all H(d) finite dimensional. Fix d € D, then we have the linear diagram
-+ — homggtie(g, H(d)) +— homggrie(8"¥), H(d)) +— homggrie(g'®, H(d)) «— 0.

Since all the maps in the diagram g were surjective, all the maps in this diagram are injective.
Let N be the nilpotency degree of H(d). Then every map g — H(d) splits through g™ for all
n > N, so that we have

homagtie(g, H (d)) = homagie(g"™), H (d))
for all n > N. It follows that
homygiie (g, H(d)) = colimnhomdgue(g("), H(d)),
which concludes the proof. O

In particular, this is true for any g of the form g := I:i\e(V), for V a finite dimensional graded
vector space, with any differential. The examples of main interest to us will be the pronilpotent
Lie algebras

me, = Qr(sCY)

introduced in Definition 10.3.1.
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Lemma 12.2.11. Let n > 0. We have
colim nAfc;/L =B,(s71C) .
In particular, mc,, is cofibrant.

Proof. The dual of the quotient
me® = me, /F* me,

of mc,, by the kth space of the canonical filtration is exactly the kth space of the coradical filtra-
tion of B,(s71C,,), and the projections

mc(kJrl)

n

— mc{P)

become the inclusions of the various spaces of the coradical filtration of B,(s~'C,,). From this,
the result follows. O

Lemma 12.2.12. The diagram mc, is a cylinder object for mcq. After passing to the limit, the splitting
of the codiagonal map becomes
mco LI meg LN meq L> mco

where the two maps are as follows. The first Lie algebra is the free complete Lie algebra generated by two
Maurer—Cartan elements g and o, while the second one is the free complete Lie algebra generated by
two Maurer—Cartan elements [31, S and a gauge X from [y to Ba, and the last algebra mcy is the free Lie
algebra on a single Maurer—Cartan element o The first map is determined by i(a;) = f; for j = 1,2,
the second map is determined by t(5;) = a.for j = 1,2 and t()\) = 0.

Proof. By Lemma 12.2.11, we know that the diagram mc,, corresponds to the conilpotent Lie
coalgebra B,(s71C,,). Since B, is right adjoint, we have
BL(S_lco) X BL(S_lco) = BL(S_lco X S_ICO)

with the obvious differential in the category of conilpotent Lie coalgebras. The diagonal map

CQA>C()XCQ

in the category of ¢.-algebras splits into

Cy L0y L 0y x Cp

where T'(1) = wo + w1, I(wg) = (1,0), I(w1) = (0,1), and I(wp1) = (0,0). The map T is a
quasi-isomorphism as it is induced by the homotopy equivalence A — A°. Therefore, by a
result analogous to Lemma 3.3.17, it is sent to a filtered quasi-isomorphism B,(T") by the bar
construction. The map I is clearly surjective, and thus B,(I) is a fibration by [Vall4, Thm.
2.9(2)]. Notice that the mentioned theorem is stated for the twisting morphism &, but it also
holds for ¢ by repeating the same proof and using Lemma 12.2.4. It follows that B,(s~*C}) is a
path object for B,(s~!Cy), which is equivalent to the statement we wanted to prove. Recovering
the exact structure of the maps after passing to the limit is straightforward. O

We are now set for the proof of the Goldman-Millson theorem for pronilpotent Lie algebras.

Theorem 12.2.13. Let g, b be two pronilpotent dg Lie algebras, and let ¢ : g — b be the dual of a weak
equivalence of conilpotent Lie coalgebras. Then ¢ induces a bijection
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Proof. Let G, H € pro(fd nil. Lie) and
S hOrnpro(fd nil. Lie)(Ga H)

be a weak equivalence such that lim G = g, lim H = b, and such that ¢ corresponds to ¢ after
passing to the limits. By definition, the moduli space of Maurer-Cartan elements of a Lie algebra
g is the quotient o

MC(g) = MC(g)/ ~gauge

of the space of Maurer-Cartan elements of g by the gauge relation. As explained above, we can
see Maurer—Cartan elements in g as morphisms me¢y — g and gauge equivalences are coded by
morphisms me¢; — g. That is to say, two Maurer—Cartan elements xg,z; € MC(g) are gauge
equivalent if, and only if there exists a morphism mc¢; — g making the following diagram
commute.

mco

Lo

But by Lemma 12.2.10 and Lemma 12.2.12, this is exactly the left homotopy relation on mor-
phisms mcy — G. Therefore,

m(g) = hOInpro(\‘d nil. Lie)(n/TcOa G)/ ~e= homHo(pro(fd nil. Lie))(anOv G) y

where the last equality is given by the fact that all elements of pro(fd nil. Lie) are fibrant, as well
as the fact that mcy is cofibrant by Lemma 12.2.11. The same thing is of course true for b, and
since ¢ : g — b comes from a weak equivalence, it naturally induces a bijection

MC(g) = MC(b)
by Lemma 3.2.5, as desired. O

Although this result is slightly weaker than the full Goldman—Millson theorem (it works only
on some algebras, and we don’t have all the morphisms we would like, cf. Remark 12.2.3), it has
the advantage of having a fully homotopical proof, which is good considering the homotopical
flavor of the statement.

12.3 Framings and the Dolgushev-Rogers theorem

The last section can be seen as the Oth level of the Dolgushev-Rogers theorem — it is in fact a
statement at the level of the Oth homotopy group of the Maurer—Cartan spaces. Here, we will
apply the simplicial framings introduced in Section 3.4 to our model category, showing how
the whole cosimplicial Lie algebra mc, appears naturally in this context. We are then able to
recover the Dolgushev—Rogers theorem in this context by arguments similar to the ones used
for the Goldman-Millson theorem in the last section. We conclude by comparing the results of
this chapter with the recent literature.
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12.3.1 Using framings to recover the Dolgushev—Rogers theorem

We take for C the category of conilpotent Lie coalgebras and we consider the Lie coalgebra
BL(S_lco).

Lemma 12.3.1. The simplicial conilpotent Lie coalgebra B, (s~'C,) is a simplicial frame on B, (s~ Cy).

Proof. At level 0, both maps are the identity. For n > 0 the maps are induced by the maps of
Go-algebras

Co -5 C, 25 Cyx -+ x Cp

explicitly given by
w(l) =wo+ -+ wp

and
plw;) =(0,...,0, 1 ,0,...,0), and plwr) =0 V|I|>2.

The map w is the pullback by the unique map A" — A, which is a homotopy equivalence.
Thus, w is a quasi-isomorphism and we obtain a weak equivalence when we apply the bar
construction to it by an analogue to Lemma 3.3.17. Similarly, the map p is surjective, and thus
is sent to a fibration by the bar construction, again by [Vall4, Thm. 2.9(2)] as in the proof of
Lemma 12.2.12. O

This simple fact is enough to recover all the most important results about homggy e (mc,, g).
Theorem 12.3.2. The functor
homggie(mco, —) : pronil. Lie — sSets

sends duals of injections of conilpotent Lie coalgebras to fibrations and duals of weak equivalences of
conilpotent Lie coalgebras to weak equivalences. In particular, it has image in the full subcategory of Kan
complexes.

Proof. Let g be a pronilpotent dg Lie algebra. Then g = lim G for some G € pro(fd nil. Lie). Let
C := colim GV, so that CV = g. Then

homgtie(Meq, @) = hoMpeo(fd nil. Lie) (Mee, G)
2 homeonil. coLie(Ca BL(Silco)) s

where the first isomorphism is given by Lemma 12.2.11, and the second one by the equiva-
lence of categories of Corollary 12.2.6. By Theorem 3.3.9, we know that C' is always cofibrant
(and thus fibrant in the opposite category), and that B, (s~ C)) is fibrant, since it is quasi-free.
Proposition 3.4.4 concludes the proof. O

The statement that the functor sends duals of injections to fibrations should be seen analogous
to Theorem 6.2.11, while the assertion that duals of weak equivalences of coalgebras are sent to
weak equivalences is a weaker version of Theorem 6.4.1, in the same way that Theorem 12.2.13
is a weaker version of Theorem 6.1.12.
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12.3.2 Relations with the BFMT model structure on Lie algebras

In the article [BFMT16], Buijs—Félix-Murillo-Tanré introduced a model structure on a slightly
larger category: the category of all complete Lie algebras and filtered morphisms. They have
the declared goal of developing a way to do rational homotopy theory for all spaces using Lie
algebra models. We summarize their results and compare them with the present work.

Let g be a complete Lie algebra, and let z € MC(g). Then one can use z to twist the differential
to get
d® =d+ad, .

This new operator d” is such that (g, d”) is once again a Lie algebra.

Definition 12.3.3. The component of g at « is the Lie algebra obtained by truncating (g, d*) in positive
degree and taking only ker d” in degree 0, i.e. it is the cochain complex

d—m>g_2 d—x>g_1 2 kerd® — 0
endowed with the Lie algebra structure inherited from g.
One defines the following three classes of maps:
o A filtered morphism is a fibration if it is surjective in non-negative degrees.

e A filtered morphism ¢ : g — b is a weak equivalence if MC(¢) is a bijection and ¢ : g% —
h*(@) is a quasi-isomorphism for all z € MC(g).

o A filtered morphism is a cofibration if it has the left lifting property with respect to all trivial
cofibrations.

Theorem 12.3.4 ([BFMT16, Thm. 3.1]). These three classes of maps define a model structure on the
category of complete Lie algebras and filtered morphisms. We call this model structure the BEMT model
structure on complete Lie algebras.

The weak equivalences and fibrations of the model structure considered in the present paper
are contained in the weak equivalences and fibrations of the BEMT model structure, as is proven
in [BFMT16, Sect. 6].

One also has a Quillen pair
£: sSets = cdgLie :homggyic(mcs, —) ,

where the functor £ is obtained by sending the standard n-simplex A™ to mc,, and then applying
the Yoneda lemma to extend it to all simplicial sets. This is proven in [BFEMT16, Cor. 3.6]. In
particular, both functors preserve weak equivalences. Then one proves:

Proposition 12.3.5 ([BFMT16, Prop. 3.8]). The class of filtered quasi-isomorphisms is contained in the
class of weak equivalences.

Thus, we can give the following alternative proof of the Dolgushev—Rogers theorem.

Proof of Theorem 6.4.1. This is a direct consequence of the two results above and the fact that if g
is a complete Lie algebra, then there is a canonical homotopy equivalence of simplicial sets

MC.(Q) = homdgLie(mcu 9)
as was proven in [RN17b, Cor. 5.3] (see also [BFMT17]). O



12.3. FRAMINGS AND THE DOLGUSHEV-ROGERS THEOREM 205

In fact, our argument using framings holds in this model category, too. Indeed, the natural
sequence of maps
meo L/ ... LUmeg — mc,, — mco

which is dual to the one showing that B, (s71C,)isa simplicial frame on B, (s71Cy), exhibits mc,
as a cosimplicial frame on mc, in the category of complete Lie algebras with the BEMT model
structure: the second map is a weak equivalence, since it comes from a weak equivalence in the
Vallette model structure, while the first one is a cofibration by [BFMT16, Thm. 4.2]. This gives
yet another alternative proof of Theorem 6.4.1. However, one should remark that the proof of
Proposition 12.3.5 in op. cit. relies on the Dolgushev-Rogers theorem itself, and thus their proof
of Theorem 6.4.1 is — in a sense — not self-contained. On the other hand, Theorem 12.2.13 and
Theorem 12.3.2 are proved using only our homotopical approach, but they do not recover the
full strength of the Dolgushev—Rogers theorem.
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Appendix A

Trees

It is very natural to use trees to express operadic concepts, and those objects appear — implic-
itly and explicitly — throughout the whole text of the present work. Here, we give the basic
definitions and the notations that we need.

A.1 Rooted trees

We begin with the! basic definition of a rooted tree.

Definition A.1.1. A rooted tree 7 is a tuple (V, E,n, N) where
1. V is a (possibly empty) finite set, called the set of vertices of T,
2. Eis a partial order such that

o forevery vi,vs € V, there exists aw € V such that w < vy and w < vy, and

o cvery v € V has at most one parent, i.e. an element w € V such that w < v and there exists
now' € V such that w < w' < v,

3. nis an integer, and

4. N is a function
N:{l,...,n} —V

from the set {1,...,n} to the set of vertices.

These conditions imply that there is a unique minimal element of V', which is called the root of 7. The set
of inner edges of T — which equivalent to E, and thus will also be denoted by E — is the set of couples
(w,v) € V x V such that w is a parent of v, and the set of leaves of T is the set

{(v,9) | v € Vinaxand i € N~'(v) }.

For v € V, the arity |v| of v is the number of elements of V of which v is the parent plus [N~ (v)|. The
natural number n is called the arity of the tree T.

IBetter: one. There are many different definitions of the notion of a tree in the literature, most of which are equiva-
lent.

209



210 APPENDIX A. TREES

The graphical interpretation we have in mind when working with this definition is illustrated
by the following example. Let V' := {a, b, c}, take the partial order generated by a < band a < ¢,
letn = 6, and take N : {1,...,6} — {b, ¢} be given by sending {1, 3,4} to a, 5 to ¢, and the rest
to b. Then we draw the associated tree as

A

In this example, the arity of the vertex a is 5, and for the other vertices we have |b| = 2 and
le| = 1.

Definition A.1.2. The n-corolla c,, is the tree given by
cn = (x,0,n, N : k> x).
Graphically, the corollas are given by

n leaves

R

Let v1,ve € V, then the first common ancestor FCA (v, v2) of v; and vs is defined by
FCA(v1,v2) =max{v eV |v<wv;and v <ws}.

Definition A.1.3. Let 1y = (Vi, E1,n1,Ny) and 7o = (Va, E2,na, N3) be two rooted trees. A mor-
phism of rooted trees ¢ : 1 — T is the data of two maps

ov Vi — Vs and ON : {1,...,77,1} — {1,...,77,2}
such that
1. ¢v is a map of posets, and ¢y is increasing,

2. the diagram

M) — 2% a
N1J sz
v, ov v

is commutative,



A.2. PLANAR TREES 211

3. forallv' € ¢y (V1), ifw' € Vy is such that w' < v/, then w' € ¢y (V1), and
4. if vy, ve € V are such that ¢y (v1) = v’ = ¢y (v2), then ¢y (FCA(v1,v2)) =0,

Remark A.1.4. Equivalently to condition (4), one can ask that the preimage of any vertex under the
morphism is again a rooted tree.

Definition A.1.5. A tree is reduced if all of its vertices have arity at least 2. It is binary if all of its
vertices have arity exactly 2.

Definition A.1.6. We denote by RT the set of isomorphism classes of rooted trees, and by rRT the set
of isomorphism classes of reduced rooted trees. For n > 0, we denote by RT), the arity n elements of RT,
and similarly for rRT,,.

Let M be an S-module, let 7 = (V, E,n, N) be a rooted tree, and let f : V' — M be a function
such that f(v) € M(Jv]). Then we denote by 7(f) € I (M) the element with underlying tree 7
and the vertices labeled by their image in M under f.

A.2 Planar trees

A planar tree is just a rooted tree with a chosen way of drawing it in the plane. This can be
encoded by a total order on the set of children of a vertex, for every vertex of the tree.

Definition A.2.1. Let 7 € RT be a rooted tree, and let v be a vertex of . The set ch(v) of children of
v is

ch(v) :== N~ (v) U{w € V | v is the parent of w} .
Notice that |v| = |ch(v)].

Definition A.2.2. A planar tree t is a rooted tree T together with a total order on ch(v) for every vertex
vofr.
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Appendix B

Filtered operads and filtered
algebras

In order to make sense of certain naturally occurring infinite sums, such as in the Maurer—
Cartan equation for £ -algebras, cf. Section 6.2.1, one has to consider additional data on chain
complexes and algebras. One convenient way to do this is to look at filtered chain complexes, i.e.
chain complexes equipped with a descending filtration. These ideas go back at least to Lazard’s
PhD thesis [Laz54]. We base ourselves on [DSV18, Sect. 2] for a clean, modern treatment in the
context of operad theory.

B.1 Filtered chain complexes

We begin by defining the category of filtered chain complexes and its monoidal structure.

B.1.1 Definitions
Definition B.1.1. A filtered chain complex is a couple (V,F,V') where V is a chain complex, and
V=FRVIFVIHVD. ..

is a descending chain of sub-chain complexes. We will often omit the filtration from the notation when
there is no risk of confusion, and speak of the filtered chain complex V. Moreover, we say that V' is proper

Any filtered chain complex V' automatically carries a first-countable topology of which a basis
is given by
{v+FV]veVandk > 0}.

With this topology, the chain complex V' becomes a Fréchet-Urysohn space, i.e. topological
closure and sequential closure in V' are the same. Notice that scalar multiplication and sum are
continuous with respect to this topology.

Definition B.1.2. Let V and W be filtered chain complexes. A filtered morphism f : V — Wisa
morphism of chain complexes from V to W, i.e. a chain map, such that for all n > 0 we have

f(FV)CFW.
We denote by fCh the category of filtered chain complexes and filtered morphisms.
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Lemma B.1.3. Every filtered morphism is continuous with respect to topologies induced by the filtra-
tions.

Proof. Let f : V. — W be a filtered morphism, and let n > 0. Then, for any v € V such that
f(v) € F, W, we have

Therefore, we have
)= | v+Fv,
vef~1(F, W)

which implies the claim. We denote by cCh the full subcategory of fCh spanned by complete
filtered morphisms. O

B.1.2 Limits and colimits of filtered chain complexes

We can describe all limits and colimits in the category of filtered chain complexes.

Proposition B.1.4. The category fCh of filtered chain complexes is complete and cocomplete, with limits
and colimits given as follows.

1. The product of a collection {(V*,FV*)}icr of filtered chain complexes is the chain complex
[1,c; V' together with the filtration

F, (H Vi> = H F, V.
i€l i€l

2. The coproduct of a collection {(V*,FV")}icr of filtered chain complexes is the chain complex
@D, V" together with the filtration

F, (QB vi> = @‘EJ«V
1€l el

3 Iff: (VFV) = (W, FW) is a filtered chain map, then the kernel of f is the chain complex
ker f C V endowed with the filtration

Fpoker f i=ker fNF,V .
Given two filtered chain maps f, g with the same domain and range, their equalizer is ker(f — g).

4. If f - (V,FV) = (W, FW) is a filtered chain map, then the cokernel of f is the chain complex
W/ f(V') endowed with the filtration

Fo (W) (V) = FuW/(F(V) N FaW) .

Given two filtered chain maps f, g with the same domain and range, their coequalizer is the cokernel
of the difference f — g.

In particular, limits and colimits of proper filtered chain complexes are again proper.
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B.1.3 The closed symmetric monoidal structure
Let V, W be two filtered chain complexes. On the chain complex hom(V, W) we put the filtration
Fphom(V,W) ={f:V o> W | f(F,V) C Fp1,W forall k > 0} .

This makes hom(V, W) into a filtered chain complex. Similarly, we endow the chain complex
V ® W with the filtration

Fu(VOW)= > FnVoFW.
mtk=n

This makes V' ® W into a filtered chain complex.

Theorem B.1.5. The category fCh with the tensor product and the inner hom defined as above is a closed
symmetric monoidal category.

B.1.4 Complete chain complexes

If one desires to consider infinite sums in a chain complex, asking for a filtration is not enough.
Therefore, one defines a complete chain complex as follows.

Definition B.1.6. A complete chain complex V is a filtered chain complex such that the canonical
map
V — lim V/%,V

is an isomorphism.

In a complete chain complex, an infinite sum ), ., v, of terms v, € V makes sense as long as
for all n > 0 there is a kg such that v, € %,V forall k > k.

Lemma B.1.7. Ifa filtered chain complex V is complete, then

() %V ={0}.

n>1
Proof. The kernel of the canonical map
V — limV/F,V
is the intersection (1,5, F,V. O

Given a filtered chain complex V', one defines its completion as the filtered chain complex
Vi=lmV/%V, and V= lm &, V/F4V = FV .
Lemma B.1.8. Let V be a filtered chain complex. The completion Vis complete.
Proof. The statement follows immediately from the fact that
V/F .V 2V/F,V.

Fix n > 1. An element of V can be given as a | sequence (vi)rZy with v € V/F,V, and vj4q
mapping to vy under the canonical projection V/Fis1V — V/F,V. Fix such an element, and
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choose representatives in V' for the v;. We will abuse of notation and again write vy, for the
chosen representative of vi,. We define a sequence (wy)52; by

0 ifk<n,
Wy, = .
v —v, ifk>n+1,

where we see wy, as an element of V/%;, V. It is straightforward to check that (wy)$2 ; defines an
element of &, V. Then

(vk)zozl - (wk)zozl = (Ulvv% ce oy Uny Un,y Uny .- ) .

Thus, we can map the class of (v;)52 ; in 1% / %JA/ to v, € V/%,V. This is well defined, and gives
us a map
V/FV — V/F,V .

This map is an isomorphism, as it has an inverse which is given by sending v € V/%,V to

(v,v,v,0,...) € ‘7/9“17 (where once again we confound equivalence classes and representa-
tives). O

Morphisms between filtered chain complexes induce morphisms between their completions.
With this action, completion defines a functor

“: fCh — cCh

from filtered chain complexes to complete chain complexes.

Lemma B.1.9. The completion functor is left adjoint to the forgetful functor
(=) : cCh — fCh .

Proposition B.1.10. The category of complete chain complexes is complete and cocomplete. Its limits are
the same as the limits taken in the category of filtered chain complexes, and its colimits are the completion
of the colimits taken in the category of filtered chain complexes. The subcategory of proper complete chain
complexes is also complete and cocomplete, with the same limits and colimits.

Finally, one defines a tensor product in the category of complete chain complexes as the com-
pletion of the tensor product in the category of filtered chain complexes.

B.2 Proper complete algebras over an operad

We are interested in the notion of filtered, proper, and complete algebras over an operad. One
can also define a natural notion of filtered operad, but it is not extremely interesting for the
applications we have in mind in the rest of the present work.

B.2.1 Filtered algebras over operads and related notions

Let V be a filtered chain complex. We define the filtered endomorphism operad by

Endy (n) = (hom(V®"™, V), F, hom(VE" V)) .
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Notice that the composition map is a filtered morphism. Also, if V' is a complete chain complex,
it is indifferent if we take the completed tensor product or the usual tensor product of filtered
chain complexes in the definition.

Let & be an operad, then a filtered, respectively complete (and possibly proper) &-algebra is a
filtered, resp. complete (proper) chain complex A together with a morphism of operads

pa: P — Endy .

In other words, it is a map
va: P(A) — A

satisfying the usual axioms for a &7-algebra and which is such that
1a(P (k) @ Fn, A® -+ ® OJMA) S Fnitodm A
We will sometimes denote the category of proper complete &7-algebras with filtered morphisms
of Y-algebras by &-alg.
B.2.2 Filtered co-morphisms

The notion of a filtered morphism of algebra over an operad is immediate. Filtered co-morphi-
sms are not much more complicated.

Let o : € — 2 be a twisting morphism, and let A, B be two filtered &7-algebras.

Definition B.2.1. A filtered oo,-morphism is an co,-morphism' ® : A ~ B such that
On(C(n) @F AR @Fn, A) CFpiyoqn, B .
It is a filtered oo, -quasi-isomorphism if for every n > 1, the chain map
61 :FnA — F,B

is a quasi-isomorphism.

B.2.3 Filtrations and cofiltrations

In Section 3.3.7, we mentioned te notion of a cofiltered coalgebra over a cooperad, see Defini-
tion 3.3.10. The relation between filtered algebras and cofiltered coalgebras is strightforward.

Lemma B.2.2. Let C be a cofiltered €-coalgebra. Then CV is a complete € -algebra when endowed
with the orthogonal filtration
F,CV = (F"O)™ .

Proof. Straightforward. O

Notice that in the definition of cofiltered coalgebra we require colim,, #"C = C, which cor-
responds to completeness on the algebra side. The condition of being proper corresponds to
FlC =0.

1See Chapter 8.
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Appendix C

Formal fixed-point equations and
differential equations

We present some results about fixed-point equations and differential equations in the setting of
complete, possibly graded, vector spaces — and in particular, complete chain complexes. We
prove that under reasonable assumptions, both fixed-point equations and differential equations
admit unique solutions in this context.

C.1 Formal fixed-point equations

We begin by defining formal fixed-point equations in complete graded vector spaces, i.e. equa-
tions of the form = f(z), with some conditions on f. The conditions we impose imply that
any such equation admits a unique solution.

C.1.1 Definitions
Let V be a complete graded vector space.

Definition C.1.1. A homogeneous polynomial operator P of (polynomial) degree k on V' is a map
P :V — V of the form
P(v) = F(v®)

for some linear map
F:ve — v,

We call F the linear map associated to P. A polynomial operator on V' is a finite sum of homogeneous
polynomial operators.

Definition C.1.2. A formal fixed-point equation on V' is an equation of the form

x:P0+ZPn(x),

n>1

in the variable x, where Py € V and for n > 2, P, is a polynomial operator on V' such that the linear
map associated to any homogeneous polynomial composing P, increases the filtration by n.
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C.1.2 Existence and uniqueness of solutions
We show that every formal fixed-point equation admits a unique solution.

Theorem C.1.3. Let
v=Py+ Y Pale), (C.1)

n>1

be a formal fixed-point equation on V. Then there exists a unique element of V solving the equation.

Proof. We begin by constructing a solution recursively. Atstep ¢ > 0 we want to have an element
v; € FV such that v; == v0 + v1 + - - - + v; solves the equation in V/%F; 1, V.

For steps 0 and 1, in V/%,V the equation becomes
r=PyeV =%V,

as all other terms live at least in # V. Therefore, we fix vg := Py and v; = 0.

Suppose we have our procedure successfully up to step i > 1. We take equation (C.1), substitute
the variable = by v; + y and project in V/%;.2V. Under the additional assumption that y €
Fi+1V, the resulting equation reads

Tity=Po+ Y Pu(@+y)

n>1

=Py+ > Pu),

n>1
since by the definition of a formal fixed-point equation we have
P,(v; +y) = P,(v;) 4 terms in F; 1,V .

Therefore, we define
Vit1 = Py + Z Pn(@) -0, e€V.
n>1
It is in fact an element of F; 1V because its projection to V/%; 1V gives back the equation that
we solved at step 1.

Passing to the limit for ¢ going to infinity is allowed because we are in a complete graded vector
space. Therefore, the process above gives us a solution of the fixed point equation.

For uniqueness, suppose that v, w € V both solve the fixed-point equation. We show by induc-
tion that v —w € %;V for all i > 0. The cases ¢ = 0 and 1 are trivially satisfied. For i = 2, in
V/F2V we have

v = PO =w.

Therefore, we have v — w € F V.
Suppose the statement is true up to ¢ > 2. Then the fixed-point equation (C.1) in V/%; 1V reads

v :Po—i—ZPn(v)

n>1

:PO—FZPn(w)

n>1
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=W 5
where in the second line we used the fact that for all n > 1 we have

Pp(v) = Po(w+ (v — w))
= P,(w) + terms in F; 1V

by induction hypothesis and the definition of a formal fixed-point equation. Therefore, we have
vV—w E gH»l V.

We conclude by noticing that this implies that

v—we [ FV ={0},

i>1

where we used Lemma B.1.7. O

C.2 Formal differential equations on vector spaces

We define formal differential equations, and prove an existence and uniqueness result for their
solution.

C.2.1 Definitions

Let K[[t]] be the formal power series in the variable ¢. If V is a (potentially graded) vector space,
we denote

V[t =V o K[[] ,

the formal power series in ¢ with coefficients in V. We have the “differentiation in ¢" operator
acting by

Given a linear map
there is a canonical extension
fVIE® — V]
It is given by
f Z Unyat™, .., Z Uy, ot ::Z Z FOngaseoy Ung )t .
ny1>0 ng >0 n>0ni+-+nrg=n

Differentiation in ¢ acts as one expects on such maps.
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Definition C.2.1. Let V be a vector space. For each k,n > 0 let
fok venr v

be linear maps, and suppose that for any k, there are finitely many non-zero f,, . A formal differential
equation in V' is an equation of the form

Do) = 3t fusle).. (1) (€2)

k20 n times

in V[[t]].

Remark C.2.2. The condition that for any k there are finitely many non-zero f,, i, is necessary in order
for equation (C.2) to make sense. However, it can sometimes be relaxed. For example, if V itself is a
proper complete chain complex — see Appendix B — and the fy, ., are filtered maps, then we don’t have
to make any finiteness assumption.

Notice that for any v(¢) € V|[t]], the value v(0) € V is well-defined. This in not true for evalua-
tion at any other ¢t € K if one does not make any further assumptions.

Lemma C.2.3. A solution of an equation on the form (C.2) exists and is unique for any fixed initial
value at t = 0.

Proof. This is a straightforward induction: one proves that the nth coefficient is completely
determined by the coefficients up to the (n — 1)th, together with the fact that the initial value
fixes the Oth coefficient. O

Remark C.2.4. One can also prove this lemma by imitating formally the proof of the classical Cauchy—
Lipschitz theorem' to obtain a formal fixed-point equation

v(t):vo—l-/o > S fakv(s), .. v(s)) ds

n,k>0
in the complete graded vector space V'[[t]], where the filtration is given by
F, V[t]] = {power series starting at the term t"} ,
and then conclude by Theorem C.1.3.

C.2.2 Solving formal differential equations

We will now exhibit an explicit formula for the solution of a formal differential equation.

Denote by wPT the set of rooted weighted planar trees, that is planar trees with the assignment
of an integer weight greater or equal to 1 to each vertex. We include the empty tree () and the
arity 0 and 1 corollas in wPT. Grafting the empty tree to any tree gives back the original tree.
We denote by ") the n-corolla of weight w.

Denoting 7 = c;’”) o(m,...,m,) € wPT the grafting of the trees 7,...,7, € wPT to cﬁlw), we

construct some functions on wPT recursively. First we have the total weight function

W () =0, W (™)) = w, W(r)=w+ z”: wW(r),

=1

1Or Picard-Lindelof theorem, depending on who was the reader’s lecturer in his or her first course in real analysis.
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which gives the sum of all the weights of the tree. Then we have the following coefficient
F)y=1, F()=w, F@)=wmn][][Fmn).

We associate a function

7 V(" — V)]
to each tree in wPT by

0 = id, 01(1“’) =1 fw—1, T =1 fow_10(T1,...,Tn) -

Finally, fix vg € V. We assign an element of V[[t]] to each tree in wPT by

T(vo) == 7(vg,...,v0) -
Proposition C.2.5. The element of V[[t]] given by

1
u(t) = Z mT(UO)
TcwPT

is the unique solution for the formal differential equation (C.2) with initial value v(0) = vo.

Proof. Let 7 € wPT, then notice that the total exponent of the formal variable ¢ in 7(v) is given
by the weight W (7). Therefore, we have

d d 1
%v(t) =% ( Z F(T)T(UO))

TewPT

n>0,w>1
T1yeeesTn EWPT
1 d
N Z F(r) %T(UO)
n>0,w>1

T1yeesTn €WPT

Wir) ., _
= Y Tty i(w0), 7o)
()
n>0,w>1
Ty Tn EWPT

E 1 ~1
= = t" fn,wf (T (1} ), e ,Tn(v ))
n>0,w>1 [[i—) F'(7) RN 0

T1ye.e, Tn EWPT

=y tkfn,k< > F(lﬁ)n(vo),..., > F(lTn)Tn(vo)>

n,k>0 T1€EWPT ThEWPT

= > F (), 0() .

n,k>0

In the second line, we wrote the sum over all weighted planar trees as the sum over all possible
combinations of a corolla at the root with subtrees grafted at its leaves. Implicitly, we denoted
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r=c®o (71, ..., 7n). In the fourth and fifth line, we used the definition of 7(vy) and of F(7). In
the sixth line, we renamed k£ = w — 1 and used the fact that f,, ; is multilinear. The fact that we
have the correct initial value is obvious from the fact that the only term which doesn’t involve
the formal variable ¢ is ()(vg) = vo. O

Remark C.2.6. The material presented here has close relations with the B-series studied in numerical
analysis, cf. e.g. with [But08, Ch. 38].
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Résumé

Cette these s’inscrit dans les themes de la théorie des opérades et de 'algebre homotopique.

Soient donnés un type d’algebres, un type de cogebres et une relation entre ces types de structures
algébriques (codés respectivement par une opérade, une coopérade et un morphisme tordant). Il est
possible alors de mettre une structure naturelle d’algebre de Lie & homotopie pres sur 1’'espace des
application linéaires d"une cogebre C vers une algébre A. On appelle I'algebre de Lie & homotopie preés
obtenue de cette fagon 1’algebre de convolution de A et C.

Dans cette these, on étudie la théorie des algeébres de convolution et leur compatibilité avec les in-
struments de 1’algebre homotopique : les infini-morphismes et le théoreme de transfert homotopique.
Apreés avoir fait cela, on applique cette théorie a plusieurs domaines, comme la théorie de la défor-
mation dérivée et la théorie de 'homotopie rationnelle. Dans le premier cas, on utilise les instru-
ments développés en construisant une algebre de Lie universelle qui représente 1’espace des éléments
de Maurer-Cartan, un objet fondamental de la théorie de la déformation. Dans le deuxiéme cas, on
donne une généralisation d'un résultat de Berglund sur des modeles rationnels pour les espaces de
morphismes entre deux espaces pointés.

Mots Clef

1. Opérades algébriques 5. Homotopie rationnelle

2. Eléments de Maurer—Cartan 6. Algebres de convolution

3. Algebre homotopique 7. Algebres de Lie a homotopie pres

4. Théorie de la déformation 8. Catégories de modeles
Summary

This thesis is inscribed in the topics of operad theory and homotopical algebra.

Suppose we are given a type of algebras, a type of coalgebras, and a relationship between those types of
algebraic structures (encoded by an operad, a cooperad, and a twisting morphism respectively). Then,
it is possible to endow the space of linear maps from a coalgebra C' and an algebra A with a natural
structure of Lie algebra up to homotopy. We call the resulting homotopy Lie algebra the convolution
algebra of A and C.

In this thesis, we study the theory of convolution algebras and their compatibility with the tools of
homotopical algebra : infinity morphisms and the homotopy transfer theorem. After doing that, we
apply this theory to various domains, such as derived deformation theory and rational homotopy the-
ory. In the first case, we use the tools we developed to construct an universal Lie algebra representing
the space of Maurer-Cartan elements, a fundamental object of deformation theory. In the second case,
we generalize a result of Berglund on rational models for mapping spaces between pointed topological
spaces.

Keywords
1. Algebraic operads 5. Rational homotopy theory
2. Maurer—Cartan elements 6. Convolution algebras
3. Homotopical algebra 7. Homotopy Lie algebras

4. Deformation theory 8. Model categories



