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Abstract

In this thesis, we investigate how a proof assistant can be used to study the foundations of
geometry. We start by focusing on ways to axiomatize Euclidean geometry and their relationship to
each other. Then, we expose a new proof that Euclid’s parallel postulate is not derivable from the
other axioms of first-order Euclidean geometry.

This leads us to refine Pejas’ classification of parallel postulates. We do so by considering
decidability properties when classifying the postulates. However, our intuition often guides us to
overlook uses of such properties. A proof assistant allows us to use a perfect tool which possesses no
intuition: a computer.

Moreover, proof assistants let us leverage the computational capabilities of computers. We
demonstrate how we enable the use of algebraic automated deduction methods thanks to the arith-
metization of geometry. Finally, we present a specific procedure designed to automate proofs of
incidence properties.

Résumé

Dans cette these, nous examinons comment un assistant de preuve peut étre utilisé pour étudier
les fondements de la géométrie. Nous débutons en nous concentrant sur les fagons d’axiomatiser
la géométrie euclidienne et leurs relations. Ensuite, nous exposons une nouvelle preuve de
I'indépendance de ’axiome des paralléles des autres axiomes de la géométrie euclidienne du pre-
mier ordre.

Cela nous amene & affiner la classification des plans de Hilbert de Pejas en considérant les
propriétés de décidabilité. Mais, notre intuition nous amene souvent a négliger leur utilisation. Un
assistant de preuve nous permet d’utiliser un outil parfait qui ne possede aucune intuition : un
ordinateur.

De plus, les assistants de preuve nous laissent exploiter les capacités de calcul des ordinateurs.
Nous démontrons comment utiliser de méthodes algébriques de déduction automatique en géométrie
synthétique. Enfin, nous présentons une procédure spécifique destinée & automatiser des preuves
d’incidence.
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Introduction



Throughout the history of mathematical proof, geometry has played a central role.

As a matter of fact, one of the most influential work in the history of mathematics concerns
geometry: Euclid’s Elements [EHDO02|. For over 2000 years, it was considered as a paradigm of
rigorous argumentation. Even nowadays, it still is the object of research [ADMO09, BNW17].
Moreover, Euclid’s Elements introduced the axiomatic approach which is still used today.

Furthermore, one of the important events in the history of mathematics is the foundational
crisis of mathematics. Following the discovery of Russell’s paradoz, mathematicians searched for a
new consistent foundation for mathematics. During this period, three different schools of thought
emerged with the leading school opting for a formalist approach. Geometry played a significant
role for this leading school. Indeed, it was led by Hilbert who began his work on formalism with
geometry which culminated with Grundlagen der Geometrie [Hil60].

During this crisis, mathematicians started to differentiate theorems from metatheorems to high-
light that the latter correspond to theorems about mathematics itself. As well as for mathemat-
ics, geometry has had a substantial place in the history of metamathematics. First, the earliest
milestone in the history of metamathematics is probably the discovery of non-Euclidean geom-
etry [Bol32, Lob85, Bel68]. Incidentally, the impact of this discovery was very important in
the history of mathematics. Second, aside from Hilbert, another prominent figure in metamath-
ematics, namely Tarski, dedicated a notable part of his research to an axiomatization of geome-
try [Tar59, SST83, TG99] that he proposed with a special emphasis on its metamathematical
properties.

Finally, geometry has influenced other areas of mathematics. When Descartes invented analytic
geometry [Des25], he started to consider squares of numbers not only as areas but also as lengths.
This led him to analyze algebraic equations of degree higher than three which, until then, corre-
sponded to three-dimensional objects and were regarded as the highest dimension of the universe.
Thus, the invention of analytic geometry proved to be crucial in the development of modern algebra,
yet, it contributed to the discovery of calculus too. Calculus was created by Leibniz [Lei84] and
Newton [New36] to study continuously changing quantities. For example, Newton was investigat-
ing the evolution of the speed of a falling object. However, prior to him, no mathematician was able
to determine this speed. Thanks to analytic geometry, Newton understood that it corresponded
to the derivative of the position of the falling object, thus creating calculus. Algebra and calculus
are not the only fields that geometry affected. Actually, number theory has always been one of the
principal areas of application of geometry. As early as the third century BC, Euclid presented an
exposition of number theory based on geometry. In 1995, geometry was still used by Wiles in his
proof of Fermat’s last theorem [Wil95, TW95|.

One of the purposes of a mathematical proof is to guaranty the veracity of a mathematical
statement. To this end, having access to a mechanism to check a mathematical proof becomes very
attractive. This idea can be tracked back to Leibniz and his calculus ratiocinator, which, he invented
in 1666 [Lei89|. Nevertheless, Leibniz was way ahead of his time since it took hundreds of years
for his dream to become reality. Indeed, the first formal system that could be mechanized, namely
Frege’s Begriffsschrift [Fre79|, appeared in 1879 and the first logical framework, namely de Bruijn’s
Automath [NGAV94], was designed in 1967. Since Automath, a plethora of proof assistants have
been developed [Wie06].

Interestingly, the same reasons that explain the central role of geometry in the history of math-
ematical proof also motivate computer-assisted proof in geometry. Indeed, the three axiomatic
systems that we have mentioned so far, namely Euclid’s postulates, Hilbert’s axioms and Tarski’s
system of geometry, have provided the basis for systematic developments. Thus, for computer-
assisted proofs, these systematic developments can serve as references which contain fewer gaps
than the average pen-and-paper proof. Another explanation for this central role was the many ap-
plication areas, including mathematics itself, physics or more applied areas such as robotics. Hence,
the mechanization of geometry paves the way for the formalization of these areas. Moreover, while
the visual nature of geometry could suggest that its formalization inside a proof assistant would
include unnecessary and tedious steps to derive the validity of facts that seem obvious, we believe
on the contrary that dealing with these steps is critical. Either these steps could be automated
through a systematic procedure. In this case, finding such a procedure' and implementing it would

lWith a view to implement a procedure automating steps of a formal proof, one class of proof assistants stands out:
those based on intuitionistic type theories. Thanks to the Curry-Howard correspondence, expressing the relationship be-
tween programs and proofs, the procedure and its proof of correctness can be encoded in these proof assistants. Then,
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result in reducing the gap between pen-and-paper proofs and their formalization inside a proof as-
sistant, thus making proof assistants more accessible to mathematicians. Such a procedure could
even prove to ease the task of mathematicians in a similar way to computer algebra systems. Or
the fact supposed to be verified by these steps could also turn out to not be obvious or possibly
false. Then the use of proof assistants could help in realizing it. Let us now illustrate this case with
Legendre’s Proof of Euclid’s parallel postulate.

Legendre’s Proof of Euclid’s Parallel Postulate

Euclid’s parallel postulate is undoubtedly the most famous of Euclid’s postulates due to the
many attempts made to prove that it is a theorem rather than a postulate. This postulate can be
expressed as:

“If two lines are drawn which intersect a third in such a way that the sum of the
inner angles on one side is less than two right angles, then the two lines inevitably
must intersect each other on that side if extended far enough.”

Legendre is one of the mathematicians who made such an attempt. Legendre’s proof? of Euclid’s
parallel postulate is based on a specific notion: the defect of a triangle. The defect of a triangle is the
angle which together with the sum of the angles of this triangle make two right angles. Actually, the
notion of defect is not restricted to triangles: for instance, the defect of a quadrilateral is the angle
which together with the sum of the angles of this quadrilateral make four right angles. In order to
prove Euclid’s parallel postulate, Legendre demonstrates that the defect of any triangle is null, since
it is equivalent to Euclid’s parallel postulate.® Let us now sketch Legendre’s proof [Leg33] that the
defect of any triangle is null.

Theorem. The defect of any triangle is null.

B2

B

Do

Dy

A C Cy Ca

Legendre’s Proof of Euclid’s Parallel Postulate.

PrOOF. We know that the defect of any triangle is either positive or null. So to prove that the
defect of any triangle is null, we proceed by contradiction to eliminate the case where the defect
is positive. So let us assume that there exist a triangle ABC with a positive defect D(AABC) >
0. Let us pose that ZBAC is acute by taking Z/BAC to be the smallest angle of triangle ABC.
Obviously, A, B and C are not collinear since D(AABC) > 0. Let n be an integer such that
2" D(AABC) > w. We will construct a triangle AB,,C,, of defect D(AAB,C,,) > 2" D(AABC)
thus reaching a contradiction. To do so we construct two sequences of points (B;),cy and (C;),cy
such that By = B, Cy = C and D(AABH_ch_l) > 2D(AABZCZ) for i € N. By and Cy are
trivially constructed so let us focus on how to construct B;y; and C;y; from B; and C;. Pose D;
the symmetric of A with respect to the midpoint of B; and C;. Let [ be a line through D; that
intersect both sides of ZBAC' in B;y; and C;41. Since AB;D;C; is a parallelogram, we know that
AB; || CiD; and AC; || B;D; so B;y1 # B; and C;11 # C; as otherwise [ would not intersect both
sides of ZBAC'. Thus, either B;11 is between A and B; or B; is between A and B;;. Assuming
that B;11 is between A and B;, since AC; || B; D; and C;41 is collinear with A and C;, we would have
B;+1 and Cj;y1 on the same side of line B;D; which would contradict the fact that D; is between

automating the tedious steps amounts to applying the lemma asserting that the procedure is sound to reduce these steps to
the computation of the procedure.

2We italicize the word “proof” to highlight the fact that it is only a proof attempt. Indeed, we later see that the proof
is flawed.

3In Part II, we study the different meanings of being equivalent to Euclid’s parallel postulate.



B;+1 and C11. So, B; is between A and B;y; and similarly C; is between A and C;1;. We know
that if two polygons, each being either a triangle or a quadrilateral, with an adjacent side, which
combined form either a triangle or a quadrilateral, then the defect of this polygon is equal to the
sum of the defects of the two polygons. Therefore, the defect of triangle AB;11Cjy; verifies that
D(AAB;11Ci41) > 2D(AAB;C;). Having constructed the desired sequences of points (B;),; .y and
(Ci)ien,> we proved that, the existence of a triangle ABC with a positive defect D(AABC) > 0
leads to a contradiction, thus proving that the defect of any triangle is null. O

Thanks to the discovery of non-Euclidean geometry, the status of Euclid’s parallel postulate as
a postulate was confirmed, thus ensuring that Legendre’s proof is flawed. So let us examine this
proof to find the reason why it does not constitute a demonstration.

The first statement made in this proof is that the defect of any triangle is either positive or null.
Saccheri is the first mathematician to have considered the case where Euclid’s parallel postulate
would not hold [Sac33]. In doing so, he posed three hypotheses which could all be true. These
hypotheses are known as Saccheri’s three hypotheses. They are about a specific type of quadrilateral
that we consider in Chapter I1.4. Saccheri established that only one of these hypotheses could hold
and that each of these hypotheses implies that the defect of any triangle is, respectively, either
positive, null or negative. He later proved that the hypothesis leading to the defect of any triangle
being negative was absolutely false. Nevertheless, there are geometries in which the defect of any
triangle is negative such as elliptic geometry [Cer09]. This would seem to contradict Saccheri’s
findings but, in fact, it does not. Indeed, Saccheri was performing his studies in what is known as
neutral geometry (or as Hilbert planes) where the defect of any triangle cannot be negative. Neutral
geometry is defined by the set of axioms of Euclidean geometry from which the parallel postulate
has been removed. Therefore, the reason why Legendre did not prove the parallel postulate must
be somewhere else.

The next logical step that can be questioned is the assumption that, given D(AABC) > 0, there
is an integer n such that 2" D(AABC) > m. In order to assert the existence of such an integer n,
the following axiom, known as Archimedes’ axiom, must hold. Archimedes’ axiom can be expressed
in the following way. Given two segments AB and CD such that A is different from B, there exist
some positive integer n and n + 1 points Ay,--- , A, 1 on line C'D, such that A; is between A;_;
and A1 for 2 < j < n, AjA;;1 and AB are congruent for 1 < j < n, A; = C and D is between
A, and A, ;1. As a matter of fact, this axiom was already implicitly used. Indeed, Saccheri’s proof
that the defect of any triangle is either positive or null is based on Archimedes’ axiom. The last use
of Archimedes’ axiom could have more easily been missed: the additivity of the defect for particular
polygons. This property is again only true when Archimedes’ axiom is assumed because it relies on
the associativity of the sum of angles which is only valid when the considered angles make less than
two right angles. This last requirement cannot be met if the defect of any triangle is negative, thus
making Archimedes’ axiom necessary.

Next, we hinted that there are different meanings of being equivalent to Euclid’s parallel pos-
tulate. We have seen that the importance of axiom system that we assume. So one could think
that, in order for the property that the defect of any triangle is null to be equivalent to Euclid’s
parallel postulate, an extra axiom could be needed and that this axiom could render the axiom sys-
tem inconsistent when assuming, for example, Archimedes’ axiom. In fact, an extra axiom is indeed
necessary for it to be equivalent to Euclid’s parallel postulate. However, since Archimedes’ axiom is
sufficient for the equivalence, we still have not located the reason explaining why Legendre’s proof
is flawed. Actually, the reason for it is very common amongst flawed proof of Euclid’s parallel pos-
tulate: a statement equivalent to it is implicitly used. Here the implicit assumption is made when
asserting the existence of a line [ through D; that intersects both sides of ZBAC in B;y; and Cj41.

Searching for the flaw in Legendre’s proof has allowed us to highlight the importance of knowing
the exact assumptions made for a proof. This makes the use of a proof assistant appealing as a way
to avoid implicit assumptions, as they only accept a proof if all the steps are detailed according to
their rules. While the process of writing proofs to this level of details entails an obvious cost, the
reward makes up for it: these proofs present a much higher level of confidence from which both
mathematics and software have benefited.



FORMALIZATION OF GEOMETRY

t

Formalization of Mathematics and Software Verification

The capacity of proof assistants to deal with very large and complex demonstrations has been
leveraged to convince the mathematical community of the status of theorem of several properties. In
recent years, mathematical journals have received some proofs that were so long and so complicated
that, in order for these proofs to be recognized as such, they had to be formalized inside a proof
assistant. The first of these was the four color theorem [AHT76]. The four color theorem states that
any planar map can be colored in such a way that no two adjacent colors are the same, using at
most four colors. Because of the involvement of a computer program in the proof from Appel and
Haken, it was only universally accepted when Gonthier and Werner [Gon04, Gon07] formalized
it in the Coq proof assistant [Teal8|. The next theorem to have obtained its status thanks to a
formalization of its proof inside a proof assistant is the Feit-Thompson odd order theorem [FT63|.
This theorem, which expresses the solvability of all groups of odd order, was controversial because
of the length of its proof: 255 pages. The formalization of the proof from Feit and Thompson in
Coq was achieved by a team led by Gonthier [GAAT13|. The last mathematical result of the sort
is Hales’ proof of the Kepler conjecture [Hal98]. As for the four color theorem, the controversy
surrounding this proof was explained by the fact that it relied on a computer program. To bring the
debate to a conclusion, Hales led a team which completed the formalization of his proof [HAB*17]
in HOL-Light [Har96] and Isabelle [NWP02]. Although their proofs were not questioned by the
mathematical community, two other major theorems have been formalized inside proof assistants:
the prime number theorem, verified in Isabelle by Avigad, Donnelly, Gray and Raff [ADGRO7] as
well as in HOL-Light by Harrison [Har09], and the Jordan curve theorem formalized in HOL-Light
by Hales [Hal07].

Proof assistants have not been restricted to the formalization of mathematics. They have also
been used to certify computer programs. Some programs are so critical that proving that they are
bug-free or respect their specifications can avoid significant losses, be they economical, industrial or
even human. Nowadays, the use of computer programs in aerospace, financial, medical or nuclear
industries justifies the need for certified software to avoid such losses. To achieve this goal, several
formalizations have been conducted in the context of computer science. Probably most notable is
the formal verification of the functional correctness of the seL/ microkernel in Isabelle has been
achieved by a team led by Klein [KEH'09]|. This certification ensures to correct behavior of the
microkernel according to its specifications as well as the absence of bugs such as deadlocks, buffer
overflows or arithmetic exceptions. The other formalization effort in computer science that we
would like to mention has been completed by a team led by Leroy [Ler06|. They carried out the
specification, the implementation, and the formal verification of the CompCert C' compiler in Coq.

Formalization of Geometry

Another way of harvesting the power of computers for theorem proving purposes is to take
advantage of their computational capabilities. Due to the success of the application of automated
theorem proving to geometry, we focus on it in Part III. Nonetheless, geometry has also been an im-
portant subject of research in interactive theorem proving. The major part of this research has been
devoted to Euclidean geometry. In fact, in Part I, we cover the formalization of Euclidean geometry.
Besides Euclidean geometry, projective geometry has also been explored using proof assistants. Mag-
aud, Narboux and Schreck proposed alternatives to the traditional axiom systems [Cox03] for plane
and space projectice geometry based on the notion of ranks and verified using Coq that Desargues’
property holds in the latter [MINS12]. The mutual interpretability of their systems with the tra-
ditional ones was then formally proved by Braun, Magaud and Schreck in Coq [BMS16]. Further-
more, the formalization of complex geometry has been investigated by Mari¢ and Petrovi¢ [MP15].
They defined the extended complex plane both in terms of complex projective lines and as the
stereographic projection of the Riemann sphere to study Mobius transformations and generalized
circles.

Despite not being branches of geometry, two fields strongly connected to geometry have been
the object of significant formalization efforts: non-standard analysis and computational geometry.
Non-standard analysis is the field dedicated to the analysis of infinitesimals through hyperreal num-
bers. Fleuriot formalized notions of non-standard analysis in geometry in Isabelle to mechanize
the geometric part of Newton’s Principia [Fle01b] and Kepler’s law of Equal Areas [Fle01a] using
methods of automated theorem proving. Additionally, the discrete model of the continuum known
as the Harthong-Reeb line has been formalized in Coq by Magaud, Chollet and Fuchs [MCF15]
and in Isabelle by Fleuriot [Fle10]. Computational geometry is the study of data structures and



algorithms used for solving geometric problems. In Coq, the formalization of combinatorial maps
and hypermaps have been caried out by Puitg and Dufourd [PD98] as well as Dehlinger and Du-
fourd [DDO04], and Dufourd [Duf07], respectively. These structures have allowed to formally prove
the correctness of several algorithms such as the plane Delaunay triangulation algorithm, studied
by Dufourd and Bertot [DB10] in Coq. Furthermore, various convex hull algorithms have also been
proved correct by Pichardie and Bertot [PB01] in Coq, by Meikle and Fleuriot [MFO06] in Isabelle,
and by Brun, Dufourd and Magaud [BDM12]| in Coq.

We invite the reader to refer to [NJF18] for a more exhaustive description of the existing
formalizations of geometry.

This Thesis

All of these achievements in the field of interactive theorem proving further motivate the for-
malization of geometry. Yet, we already mentioned three axiom systems for Euclidean geometry:
Euclid’s, Hilbert’s and Tarski’s axioms. So, the question that naturally arises is: Which axiom
system should we formalize to build a systematic development of geometry? This question is of rel-
evance to foundations of geometry which concern themselves with geometrical axiom systems and
metatheorems about them. These metatheorems provide grounds for selecting an axiom system.
Once an axiom system has been selected for its metatheoretical properties it seems compelling to
not restrict ourselves to the formalization of a systematic development based on this system but
to formalize the proof of these properties too. However, metatheoretical properties are not only
relative to geometrical theories but also to the logic. In constructive mathematics, where the law of
excluded middle and the aziom of choice are not valid, the choice of version of the parallel postulate
is crucial for a “folklore theorem” expressing the mutual interpretability of Hilbert’s and Tarski’s
axioms. This theorem is based on the culminating result of both [Hil60] and [SST83|, namely the
arithmetization of Euclidean geometry. Nevertheless, as we see in this thesis, in constructive math-
ematics, the arithmetization of Euclidean geometry, as defined by Descartes, cannot be achieved
with some versions of the parallel postulate, thus resulting in the validity of this theorem to be
dependent on the choice of either the logic or the version of the parallel postulate. As tempting
as studying the refinements required for certain metatheoretical properties to remain valid in con-
structive mathematics may be, it is quite easy to overlook uses of statements that are not valid in
constructive mathematics [Sch01]. Having a mechanical way to guarantee that a proof is indeed
constructive can then be critical, hence making proof assistants based on intuitionistic type theories
particularly desirable to perform this kind of studies.

In this thesis, our aim is to extend the GeoCoq library and simultaneously study its axiomatic
foundations from a metatheoretical perspective. The GeoCoq library provides a formal development
of geometry based on Tarski’s system of geometry [SST83| which can be found at:

http://geocoq.github.io/GeoCoq/

Tarski’s system of geometry was chosen as a basis for this library for its well-known meta-
mathematical properties, the most relevant ones being its consistency and completeness [TG99].
The development is carried out in the Coq proof assistant, which, for the purpose of studying
metatheoretical properties in constructive mathematics, is conveniently based on an intuitionistic
type theory. The theory behind Coq is the Calculus of Inductive Constructions [CP90] which unifies
Martin-Lof type theory [MIL84| and the Calculus of Constructions [CH86]. The reader not familiar
with Coq or SSREFLECT, which will be used in this thesis, can find in the Coq’Art [BCO04| and the
user manual of SSREFLECT [GMT16] introductions to this proof assistant and its extension.

The main contributions of this thesis can be summarized as follows:

e In the context of Tarski’s system of geometry, we defined the arithmetic operations geo-
metrically and formalized the proof that they verify the properties of an ordered field.

o We formalized that Cartesian planes over a Pythagorean ordered field form a model of
Tarski’s system of geometry (excluding continuity axioms).

e We formally proved that Tarski’s axioms for plane neutral geometry can be derived from
the corresponding Hilbert’s axioms.

e We used Herbrand’s theorem to give a new proof that Euclid’s parallel axiom is not deriv-
able from the other axioms of first-order Euclidean geometry.

e We proved that, by dropping the law of excluded middle, point equality decidability is
sufficient to achieve the arithmetization of Tarski’s geometry.
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e We provided a clarification of the conditions under which different versions of the parallel
postulate are equivalent and formalized the proofs of equivalence.

e We implemented a reflexive tactic for automated generation of proofs of incidence to an
affine variety.

e In the context of Tarski’s system of geometry, we introduced Cartesian coordinates, and
provided characterizations of the main geometric predicates, which enabled the use of
algebraic automated deduction methods in synthetic geometry.

Most of these contributions have already been described in the following papers:

e Pierre Boutry, Gabriel Braun, and Julien Narboux. Formalization of the Arithmetization
of Euclidean Plane Geometry and Applications. Journal of Symbolic Computation, 2018

e Gabriel Braun, Pierre Boutry, and Julien Narboux. From Hilbert to Tarski. In Julien
Narboux, Pascal Schreck, and Ileana Streinu, editors, Proceedings of the Eleventh Interna-
tional Workshop on Automated Deduction in Geometry, Proceedings of ADG 2016, pages
78-96, 2016

e Michael Beeson, Pierre Boutry, and Julien Narboux. Herbrand’s theorem and non-
Euclidean geometry. The Bulletin of Symbolic Logic, 21(2):111-122, 2015

e Pierre Boutry, Julien Narboux, Pascal Schreck, and Gabriel Braun. A short note about
case distinctions in Tarski’s geometry. In Francisco Botana and Pedro Quaresma, editors,
Proceedings of the Tenth International Workshop on Automated Deduction in Geometry,
Proceedings of ADG 2014, pages 51-65, 2014

e Pierre Boutry, Charly Gries, Julien Narboux, and Pascal Schreck. Parallel Postulates and
Continuity Axioms: A Mechanized Study in Intuitionistic Logic Using Coq. Journal of
Automated Reasoning, 2017

This thesis collects these papers in slightly modified form. Chapter III.1 contains a generaliza-
tion of one of the procedure presented in:

e Pierre Boutry, Julien Narboux, Pascal Schreck, and Gabriel Braun. Using small scale au-
tomation to improve both accessibility and readability of formal proofs in geometry. In
Francisco Botana and Pedro Quaresma, editors, Proceedings of the Tenth International
Workshop on Automated Deduction in Geometry, Proceedings of ADG 2014, pages 31-49,
2014

Chapter 1.1, Section 2 describes a work not yet published which has been realized in collabo-
ration with Cyril Cohen. We would like to specify that, while we collaborated on the writing of
most parts of these papers, the paper entitled Herbrand’s theorem and non-FEuclidean geometry was
almost entirely written by Michael Beeson. We had found an informal proof of the independence
of the parallel postulate in Tarski’s system of geometry (excluding the continuity axiom) without
actually constructing a model of non-Euclidean geometry which we presented to him. He then came
up with the idea of using Herbrand’s theorem to formalize our argument, extended it to Tarski’s
system of geometry with continuity axioms using the “Cauchy bound” and wrote the paper for which
we only proposed a few modifications. Because Chapter 1.3, Section 1, describing the results of this
paper, represents the only part of this thesis which has not been formalized, we often misuse “prove”
when we actually mean “mechanize the already known proof of” for the sake of brevity.

The formalization described in this thesis is the result of a collaborative work. Therefore we
will refrain from providing data such as the number of lines of code, or definitions or lemmas about
this development. Nonetheless, we have collaborated to most parts of this development. For ex-
ample, even for the formalization of the arithmetization of Tarski’s system of geometry, where the
last chapters of [SST83| to be formalized were clearly allocated among the contributors, we formal-
ized additional results which were not included in the chapters of [SST83] allocated to the other
contributors in order to complete our part of the formalization.

The rest of this thesis is organized as follows. Part I presents our results on the formalization
of foundations of Euclidean geometry. In this part, we focus on Tarski’s system of geometry: we
mechanize its arithmetization and the proof of its satisfiability. Moreover, we formally prove the
mutual interpretability of Hilbert’s axioms and Tarski’s system of geometry, and expose our proof
that Euclid’s parallel axiom is not derivable from the other axioms of first-order Euclidean geom-
etry and our progress towards obtaining the decidability of every first-order formula. Part II is
devoted to the clarification of the conditions under which different versions of the parallel postulate
are equivalent and formalization of the proofs of equivalence. In this part, we refine Pejas’ classi-
fication of Hilbert planes [Pej61] in the context of constructive mathematics, derive a surprising



equivalence between continuity axioms and a decidability property and formalize of a variant of
Szmielew’s theorem expressing that every statement which is false in hyperbolic geometry and cor-
rect in Euclidean geometry is equivalent to the parallel postulate. Finally, we describe our work on
automated theorem proving in geometry in Part III. In this part, we develop a reflexive tactic for
automated generation of proofs of incidence to an affine variety which has been used throughout
the rest of the formalization presented in this thesis, present our approach based on bootstrapping
to obtain the characterizations of the geometric predicates, and illustrate the concrete use of our
formalization with several applications of the Grébner basis method in synthetic geometry.



Part 1

Foundations of Euclidean (Geometry



There are several ways to define the foundations of Euclidean geometry on which we focus in
this part. In the synthetic approach, the axiom system is based on some geometric objects and
axioms about them. The best-known modern axiomatic systems based on this approach are those
of Hilbert [Hil60] and Tarski [SST83].! Readers unfamiliar with Tarski’s system of geometry may
also refer to [TG99] which describes its axioms and their history. In the analytic approach, a
field F is assumed (usually R) and the space is defined as F™. In the mixed analytic/synthetic ap-
proach, one assumes both the existence of a field and also some geometric axioms. For example, the
axiomatic systems proposed by the School Mathematics Study Group for teaching geometry in high-
school [Gro61] in North America in the 1960s are based on Birkhoff’s axiomatic system [Bir32]. In
this axiom system, the existence of a field to measure distances and angles is assumed. This is called
the metric approach. A modern development of geometry based on this approach can be found in
the books of Millman or Moise [MP91, Mo0i90]. The metric approach is also used by Chou, Gao
and Zhang for the definition of the area method [CGZ94| (a method for automated deduction in
geometry). Analogous to Birkhoff’s axiomatic system, the field serves to measure ratios of signed
distances and areas. The formalization in Coq of the axioms can be found in [JNQ12]|. Finally, in
the relatively modern approach for the foundations of geometry, a geometry is defined as a space of
objects and a group of transformations acting on it (Erlangen program [Kle93a, Kle93b]).

Although these approaches seem very different, Descartes proved that the analytic approach
can be derived from the synthetic approach by defining addition, multiplication and square root
geometrically [Des25]. This is called arithmetization and coordinatization of geometry and it rep-
resents the culminating result of both [Hil60] and [SST83|.

As far as we know, there was no existing formalization of the arithmetization of Euclidean plane
geometry inside a proof assistant. However the reverse connection, namely that the Euclidean plane
is a model of this axiomatized geometry, has been mechanized by Petrovi¢ and Mari¢ [PM12] as
well as by Makarios [Mak12] in Isabelle. In [MP15], Mari¢ and Petrovi¢ formalized complex plane
geometry in the Isabelle/HOL theorem prover. In doing so, they demonstrated the advantage of
using an algebraic approach and the need for a connection with a synthetic approach. Braun and
Narboux also formalized the link from Tarski’s axioms to Hilbert’s in Coq [BN12|, Beeson has
later written a note [Beel4] to demonstrate that the main results to obtain Hilbert’s axioms are
contained in [SST83]. Some formalization of Hilbert’s foundations of geometry have been proposed
by Dehlinger, Dufourd and Schreck [DDS01] in the Coq proof assistant, and by Dixon, Meikle and
Fleuriot [MF03] using Isabelle/HOL. Dehlinger, Dufourd and Schreck have studied the formaliza-
tion of Hilbert’s foundations of geometry in the intuitionistic setting of Coq [DDSO01]|. They focus
on the first two groups of axioms and prove some betweenness properties. Meikle and Fleuriot have
done a similar study within the Isabelle/HOL proof assistant [MIF03]. They went up to twelfth?
theorem of Hilbert’s book. Scott has continued the formalization of Meikle using Isabelle/HOL and
revised it [Sco08]. He has corrected some “subtle errors in the formalization of Group III by Meikle”.
Scott was interested in trying to obtain readable proofs. Later, he developed a system within the
HOL-Light proof assistant to automatically fill some gaps in the incidence proofs [SF10|. Moreover
Richter has formalized a substantial number of results based on Hilbert’s axioms and a metric axiom
system using HOL-Light [Ric]. Likewise, a few developments based on Tarski’s system of geome-
try have been carried out. For example, Richter, Grabowski and Alama have ported some of our
Coq proofs to Mizar [NK09] (forty-six lemmas) [RGA14]|. Moreover, Beeson and Wos proved 200
lemmas of the first twelve chapters of [SST83| with the Otter theorem prover [BW17|. Further-
more, Purdevié, Narboux and Janici¢ [SDINJ15]| generated automatically some readable proofs in
Tarski’s system of geometry. Finally, von Plato’s constructive geometry [vP95] has been formalized
in Coq by Kahn [Kah95]|. None of these formalization efforts went up to Pappus’ theorem nor to
the arithmetization of geometry.

Some of these approaches have also been the object of metamathematical investigations. One
of the first metamathematical results was the proof of the independence of the parallel postulate.
Bolyai [Bol32] and Lobachevsky [Lob85] published developments about non-Euclidean geometry
which led to Beltrami’s independence proof [Bel68]. In his thesis [Gup65]|, Gupta presented a
variant of Tarski’s system of geometry which he proved independent by providing independence
models. Following the classical approach to prove that Euclid’s fifth postulate is not a theorem

IThe first version of this axiomatic system appeared as note of Tarski’s paper about his decision method for real closed
fields |Tar51].
2We use the numbering of theorems as of the tenth edition.
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of neutral geometry,> Makarios has provided a formal proof of the independence of Tarski’s Eu-
clidean axiom [Mak12]|. He used the Isabelle proof assistant to construct the Klein-Beltrami model,
where the postulate is not verified. This independence has also been proved without constructing
a model of non-Euclidean geometry. Skolem [Sko70] already in 1920 proved the independence of
a form of the parallel axiom from the other axioms of projective geometry, using methods similar
to Herbrand’s theorem. In 1944, Ketonen invented the system of sequent calculus made famous in
Kleene [Kle52] as G3, and used it to revisit Skolem’s result and extend it to affine geometry. This
result was reformulated using a different sequent calculus in 2001 by von Plato [vP01]. It should
be noted that the modern proof of Herbrand’s theorem also proceeds by cut-elimination in sequent
calculus. More recently, new synthetic approaches have been proposed. These new approaches dif-
fer from the previous ones because they are intuitionistic axiomatizations. The first axiom system
was due to Heyting [Hey59] who introduced the concept of apartness. Later, von Plato presented
an extension of this work which he implemented in type theory [vP95]|. Finally, Beeson gave a
constructive version of Hilbert’s axioms [BeelO] and Tarski’s axioms [Beel5| and proved several
metatheorems about his axiomatic systems.

Part I is organized as follows. In Chapter 1.1, we start by proving the mutual interpretability
of the synthetic approach based on Tarski’s system of geometry without continuity axioms and
the analytic approach. Then, in Chapter 1.2, we provide the proof that Tarski’s axioms can be
derived from Hilbert’s axioms. Finally, in Chapter 1.3, we present a new proof that Euclid’s parallel
postulate is not derivable from the other axioms of first-order Euclidean geometry and prove some
decidability properties in the context of Tarski’s system of geometry.

3Let us recall that neutral geometry designates the set of theorems which are valid in both Euclidean and hyperbolic
geometry. Therefore, for any given line and any given point, there exists at least a line parallel to this line and passing
through this point. This definition excludes elliptic geometry in the sense that an elliptic geometry is not a neutral geometry.
Some authors use “absolute geometry” to designate the set of theorems which are valid in Euclidean, hyperbolic and elliptic
geometry.






CHAPTER 1.1

Tarski’s System of Geometry: a Theory for Euclidean
Geometry

In this chapter, we describe the formalization of the mutual interpretability of Tarski’s system of
geometry without continuity axioms and Cartesian planes over a Pythagorean' ordered field. First,
in Section 1, we present the axioms of Tarski’s system of geometry and their formalization in Coq.
Second, in Section 2 we expose our proof that Cartesian planes over a Pythagorean ordered field
form a model of these axioms. Third, in Section 3, we report on the formalization of the final results
of the systematic development of geometry based on Tarski’s system of geometry due to Szmielew
and Schwabhéiuser [SST83|: the arithmetization and coordinatization of Euclidean geometry.

1. Formalization of Tarski’s Axioms

In this section, we present Tarski’s axioms and their formalization in Coq. We should point
out that we omit the “continuity” axiom since the systematic development from Szmielew and
Schwabhauser was realized without relying on it. We also introduce a variant of this axiom sys-
tem which we use to simplify the proof in the next section.

1.1. A Set of Axioms for Euclidean Geometry. Tarski’s axiom system is based on a single
primitive type depicting points and two predicates, namely congruence and betweenness. AB=CD
states that the segments AB and CD have the same length. A—B—C means that A, B and C are
collinear and B is between A and C (and B may be equal to A or C'). For an explanation of the
axioms and their history see [TG99]. Tab. I.1.1 lists the axioms for Euclidean geometry while the
full list of axioms of Tarski’s system of geometry is given in Appendix B.

Al Symmetry AB=BA

A2 Pseudo-Transitivity AB=CDAAB=FEF = CD=FEF
A3 Cong Identity AB=CC = A=1DB

A4 Segment construction IE, A—B—EANBE=CD

A5 Five-segment AB=A'B’ A BC = B'C'A

AD=A'D' ABD = B'D'A
A B CANA-B-C'NA+B=CD=C'D

A6 Between Identity A—B—A= A=RB

A7 Inner Pasch A—P—CAB—Q-—C=3X,P-X—-BANQ—X—A

A8 Lower Dimension 3JABC,-A—B—C AN—-B—C—AAN-C—A—B

A9 Upper Dimension AP=AQANBP=BQANCP=CQANP#Q =
A—-B—-CvVv B—C—Av(C—A-B

A10 Euclid A—-D-TAB—D-CANA#D=

AXY, A—-B—X NA-C-Y NX-T-Y
TABLE I.1.1. Tarski’s axiom system for Euclidean geometry.

The symmetry axiom for equidistance (A1l on Tab.I.1.1) together with the transitivity axiom
for equidistance A2 imply that the equidistance relation is an equivalence relation between pair of
points.

The identity axiom for equidistance A3 ens