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Résumé étendu

Ces dernières années ont été marquées par l’explosion de la quantité d’information échangée
via les communications sans fil. En particulier, le volume du trafic des données mobiles

a augmenté d’un facteur 18 entre 2011 et 2017 [2]. Le marché en pleine expansion de l’Internet
des Objets, des objets physiques connectés tels que des appareils électroménagers intelligents,
est également concerné : 500 milliards d’appareils sont attendus à l’horizon 2030 [2].

Pourtant, à un temps et un endroit donné, le spectre fréquentiel est majoritairement
non occupé (le taux d’occupation estimé se situe entre 2 et 5 %, y compris dans des zones
métropolitaines [3]). Mais, en raison d’une politique de régulation rigide basée sur l’attribution
de licences, l’essor des communications sans fil a conduit à une situation préoccupante en
termes de raréfaction de la ressource spectrale. En conséquence, le prix de l’accès au spectre
augmente et des tensions apparaissent entre les différents usagers (cellulaire, gouvernemental,
sécurité publique, non licencié, ...). Pour les seuls Etats-Unis, un rapport gouvernemental [4]
a estimé à 1000 milliards de dollars et des millions de créations d’emplois le bénéfice potentiel
si l’on parvient à relâcher la contrainte que constitue la rareté du spectre.

Ce problème appelle à une transformation du modèle de gestion de l’accès au spectre,
de sorte que l’accès des utilisateurs secondaires aux bandes de fréquences non licenciées soit
facilité. Pour porter ce changement, il est nécessaire de développer la Radio Cognitive (CR),
des récepteurs radiofréquences (RF) conscients de l’environnement spectral et capables de
s’adapter de façon intelligente en conséquence. Le récepteur intelligent doit notamment être
en mesure de détecter des bandes de fréquences vides et de reconfigurer ses paramètres de
façon à éviter les interférences entre utilisateurs. Cependant, l’observation efficace et à bas
coût de larges bandes de fréquences constitue un défi technique majeur pour les Convertisseurs
Analogiques-Numériques (CAN). Concilier à prix raisonnable les impératifs de résilience au
bruit et ultra faible consommation avec des fonctions d’estimation paramétrique sur de larges
bandes de fréquences est une véritable gageure.

La théorie de l’acquisition compressée (CS) introduite en 2006 par E. Candès et al. [5]
apparaît comme un candidat prometteur pour satisfaire à ces contraintes. L’acquisition com-
pressée est un récent changement de paradigme en termes d’acquisition de données, capa-
ble de passer outre la cadence minimale d’échantillonnage de Nyquist en considérant plutôt
le concept de quantité d’information dans la base de représentation adaptée. Supposons
que le signal est parcimonieux, c’est-à-dire qu’il est décrit par un nombre réduit de coeffi-
cients non nuls dans une base appropriée, le domaine spectral dans le cadre de notre étude.
Alors un faible nombre de mesures incohérentes est suffisant pour reconstruire le signal orig-
inel. Le nombre d’échantillons nécessaires dépend alors de la bande de fréquence agrégée et
non plus de la fréquence maximale du signal d’entrée. Pour ces raisons, il est pressenti que
l’acquisition compressée va bouleverser les compromis usuels de la conception de Convertis-
seurs Analogique-Numérique (CAN) en matière de bande, figure de bruit et consommation.
Cependant la reconstruction du signal d’origine à partir des échantillons compressés est un
processus d’optimisation non-linéaire, gourmand en consommation et ainsi peu compatible
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10 Résumé étendu

avec des solutions radio embarquées.
Pour éviter cet écueil, il est proposé de ne pas effectuer l’étape de reconstruction et

d’extraire plutôt les caractéristiques d’intérêt pour les applications envisagées directement
à partir des échantillons compressés. Dans ce but, il est nécessaire d’étudier à la fois les
challenges de l’implémentation d’un récepteur radiofréquence compressé efficace et les spé-
cificités de l’estimation paramétrique à partir des échantillons compressés, par opposition à
l’estimation à partir de la reconstruction du signal d’origine. Dans cette thèse, nous abordons
dans un premier temps les problématiques d’implémentation, qui sont considérées à travers
le prisme d’une tâche de reconstruction car cet aspect est mieux compris et avancé dans la
littérature que l’extraction de caractéristiques. Les spécificités de l’extraction paramétrique
seront ensuite pleinement prises en compte.

Une métaphore naïve de notre approche serait la suivante. Supposons qu’on dispose d’une
balance à plateau, d’un étalon de mesure et de 9 lingots d’or, dont on sait que pas plus d’un
n’est truqué (c’est-à-dire plus léger). Une analogie de l’acquisition à la cadence de Nyquist
serait de comparer chacun des lingots au poids étalon. Mais, deux mesures seulement (par
exemple mesurer deux lots de trois lingots selon lignes et colonnes, 1 + 2 + 3 versus 4 + 5 + 6

et 1 + 4 + 7 versus 2 + 5 + 8) permettent de savoir si un lingot est truqué et si oui lequel, avec
un peu de déduction. L’idée qui est exploitée dans ces travaux est similaire, dans une certaine
mesure.

Ce manuscrit comporte quatre chapitres, les deux premiers chapitres dressent un panorama
qui se veut presque exhaustif d’un domaine en pleine effervescence, et les deux chapitres suiv-
ants apportent des contributions originales.

Dans le premier chapitre sont introduits les enjeux de la radio cognitive pour l’accès dy-
namique au spectre. L’intérêt de développer des récepteurs radiofréquences capables de sonder
un environnement spectral multistandard avec des contraintes aiguës de coût et de consomma-
tion est souligné. Comme solution à ces contraintes, la théorie de l’acquisition compressée est
mise en avant car elle permet de passer outre l’impasse qui consiste à utiliser un CAN à haute
fréquence d’échantillonnage. L’acquisition compressée dit qu’un nombre réduit de mesures est
suffisant pour reconstruire le signal sous hypothèse de parcimonie du spectre du signal. Si
le contenu informatif est réparti de façon adéquate entre les mesures, il devient possible de
résoudre ce problème sous-déterminé. Ainsi cette approche pourrait permettre d’aller au-delà
de la limite de Nyquist, en se concentrant plutôt sur la grandeur physique correspondant à la
bande de fréquence agrégée.

Pour commencer, un bref historique remontant jusqu’aux années 60 est dépeint. Ensuite,
les deux éléments fondamentaux qui rendent possible la reconstruction du signal d’origine en
acquisition compressée sont décrits : les conditions sur la matrice qui modélise l’acquisition
d’une part, et les algorithmes de reconstruction d’autre part. Tout d’abord, des métriques
d’évaluation concernant la matrice d’acquisition sont présentées. En particulier la cohérence,
essentielle pour limiter le nombre de mesures nécessaires, et la préservation des normes et
distances par la projection (isométrie), essentielle par rapport à la résilience au bruit. Ensuite
les différents algorithmes de reconstruction sont abordés, et le principe de fonctionnement des
deux plus connus décrit : Orthogonal Matching Pursuit (OMP), qui est basé sur la recherche
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gloutonne de la colonne du dictionnaire de représentation la plus corrélée avec les observa-
tions et Basis Pursuit, qui est basé sur la relaxation dans la formulation du problème de
reconstruction de la pseudo-norme l0 par la norme l1. La comparaison montre que la magie
de l’acquisition compressée a cependant un prix : Au vu de la complexité algorithmique des
méthodes de reconstruction, il est choisi d’écarter l’option de la reconstruction pour une so-
lution embarquée.

C’est la raison pour laquelle un focus est ensuite fait sur l’actuel état de l’art concernant
l’extraction d’information partielle directement à partir des échantillons compressés. Tout
d’abord, il convient de définir les paramètres d’intérêt pour les applications de radio cognitives
et la reconfigurabilité. Ensuite, des garanties concernant les tâches d’estimation paramétrique
et de classification sont données. Il apparaît que ces garanties sont essentiellement basées sur
la préservation des normes et distances. Le principe d’extraction de caractéristiques avec perte
d’information est également introduit. Enfin, les solutions existantes, inspirées des méthodes
à la cadence de Nyquist, sont présentées et leurs limitations exposées.

De cette étude, il ressort l’existence de lacunes qui empêchent l’établissement d’une vraie
méthodologie générale dans la conception d’un Convertisseur Analogique-Information (AIC)
pour des tâches de détection de spectre.

Dans le chapitre 2, nous nous sommes attachés à mettre en pratique les notions abordées
et à passer en revue les différentes architectures de récepteurs radiofréquence compressés. Une
pléthore de convertisseurs Analogique-Information a été proposée dans le but de réaliser les
promesses de l’acquisition compressée. Dans un souci de clarté, les architectures ont été re-
groupées suivant trois principes généraux de fonctionnement : échantillonnage non-uniforme,
démodulation aléatoire et cadence d’échantillonnage variable. Les convertisseurs exploitent
plusieurs idées provenant des récepteurs RF traditionnels comme l’étalement de spectre et le
sous-échantillonnage, dans le but de créer de la diversité de différentes façons. Par exemple,
les techniques de sous-échantillonnage aléatoire (Récepteur à repliement de Nyquist (NYFR),
échantillonnage sub-Nyquist multicadence asynchrone (MASS)) s’inspirent des techniques de
sous-échantillonnage usuelles (bandpass sampling) pour créer différents mélanges qui peuvent
être démêlés. Aussi, les démodulateurs aléatoires (Démodulateur aléatoire (RD), Convertis-
seur modulé à large bande (MWC)) opèrent du codage par modulation avec un générateur de
nombre (pseudo)-aléatoire à haute fréquence.

Il est cependant un peu décevant de constater que, si le signal est bien échantillonné sous
la fréquence de Nyquist, de nombreuses architectures nécessitent des composants dépendant
de cette fréquence. Un autre problème réside dans le manque de flexibilité de la plupart des
architectures, un handicap pour des applications de radio cognitive. On compte parmi les
autres points faibles les coûts de reconstruction prohibitifs, l’inévitable repliement du bruit
qui dégrade le rapport signal à bruit (SNR) et une surface de silicium rendue parfois trop
importante par la parallélisation de l’architecture.

Les architectures suivantes sont particulièrement encourageantes vis-à-vis des points blo-
quants identifiés : Le Convertisseur Analogue-Information en Quadrature (QAIC), basé sur
un MWC en bande de base, fait l’objet de toutes les attentions car il parvient à améliorer le
MWC en matière de consommation et de simplicité du générateur de code. Les performances
en détection d’interférences présentées dans [6] éveillent particulièrement l’intérêt.
Le récepteur à repliement de Nyquist (NYFR) est une méthode astucieuse combinant le sous-
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échantillonnage et la modulation par un train d’impulsions, et qui présente deux avantages :
absence de composants à la fréquence de Nyquist et préservation de la structure du signal qui
permet une restitution rapide de l’information.
Le sous-échantillonneur non uniforme d’ondelettes (NUWBS), qui ne nécessite pas non plus
de composants à la fréquence de Nyquist, est lui aussi très prometteur grâce à une approche
adaptative multi-échelles. Vu qu’il offre un haut degré de flexibilité (instant d’échantillonnage,
fréquence centrale et support temporel des ondelettes), il évite les défauts classiques des ar-
chitectures AIC et se présente entre autres comme le choix naturel pour des signaux d’entrée
parcimonieux en temps et en fréquence.

Les codes de mélanges se distinguant comme étant l’élément structurant des architectures
à démodulation aléatoire et aussi comme le point clé de leur implémentation, leurs propriétés
font l’objet du Chapitre 3, dans le cadre d’un convertisseur modulé à large bande (MWC).
Tout d’abord, les enjeux de la génération des codes de mélange sont esquissés. La ques-
tion de la signification des notions d’aléatoire et d’universalité appliquées à l’implémentation
d’architectures concrètes est posée. Les bénéfices attendus des matrices circulantes du point
de vue de l’implémentation sont évoqués et leur performance en reconstruction soulignées.

Capitalisant sur les propriétés mises en lumière dans l’état de l’art poussé, la proposition
d’une nouvelle matrice de code est faite, en vue de son évaluation. Les pré-requis sont d’abord
définis : une famille de code particulière, retenue pour ses bonnes propriétés de corrélation,
les codes Constant Amplitude Zero Autocorrelation (CAZAC) est décrite. Puis un exemple
type de code CAZAC, les codes de Zadoff-Chu, est exposé plus en détails. Enfin, la nouvelle
matrice de codes, circulante et à valeurs réelles, est définie à partir des codes de Zadoff-Chu
par l’utilisation d’une symétrie hermitienne dans le domaine fréquentiel.

Dans une troisième partie, une analyse multi-critères originale est présentée. C’est-à-dire
que les différentes familles de code et différents opérateurs de sélection de ligne parmi la ma-
trice complète des codes sont comparés en fonction de plusieurs métriques. Tout d’abord, les
propriétés mathématiques sont considérées. En premier lieu, la cohérence qui est indispens-
able pour limiter le nombre de branches du récepteur est calculée et comparée pour différents
codes. Les propriétés d’isométrie qui sont essentielles par rapport à la résilience au bruit sont,
elles, évaluées grâce à deux outils : une première estimation de la propriété d’isométrie re-
streinte (RIP) est menée grâce à une simulation Monte-Carlo. En outre, une comparaison de
l’Expected RIP, la probabilité que la RIP soit satisfaite étant donné des hypothèses addition-
nelles sur le signal d’entrée, est menée. Les considérations haut niveau sont ensuite validées
grâce à une plateforme de simulation Matlab R© répliquant le processus d’acquisition du con-
vertisseur modulé à large bande (MWC), pour des scénarii sans bruit et avec bruit. Pour
résumer, l’évaluation des métriques haut niveau comme la validation en simulation montrent
que les codes de mélange proposés sont plus performants que ceux de l’état de l’art, notam-
ment en matière de robustesse au bruit. Un autre élément marquant est la mise en évidence
du rôle prépondérant du schéma de sélection des lignes à l’intérieur de la matrice des codes
possibles.

Concernant les problématiques d’implémentation, mais pour l’architecture NUWBS, les
éléments clés en vue de l’ajout éventuel d’une modulation temporelle du NUWBS par des
codes de Zadoff-Chu sont également mis en évidence en annexe. Ce point fait l’objet d’un
travail en cours.
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Enfin, la problématique de l’estimation paramétrique à partir des échantillons compressés
est abordée, avec pour objectif de quantifier la précision de l’estimation paramétrique en fonc-
tion de la matrice d’acquisition et par rapport à un échantillonnage à la fréquence de Nyquist.
L’estimation paramétrique basée sur les échantillons compressés diffère fondamentalement de
l’estimation paramétrique traditionnelle, dans le sens où la structure du signal a été altérée
lors du processus d’acquisition. Un outil adapté à cet objectif de quantification est la borne de
Cramér-Rao sur la variance d’un estimateur non-biaisé. La borne de Cramér-Rao ne dit rien
sur la meilleure méthode d’estimation, mais elle permet la quantification des performances
envisageables en fonction de la configuration. Elle est obtenue par la diagonale de l’inverse
de la matrice de Fisher, matrice qui traduit la quantité d’information à propos du paramètre
contenue dans les mesures. Cette évaluation permet ainsi au système d’être conçu par rapport
à des spécifications, un point essentiel car les contraintes sur les performances ne sont pas les
mêmes que pour la reconstruction.

Une forme analytique de la matrice de Fisher pour des échantillons compressés issus d’une
architecture multibande est établie sous l’hypothèse d’un modèle spectral disjoint. Cette
expression est donnée en fonction de la matrice de Fisher pour de l’échantillonnage à la ca-
dence de Nyquist et du Gramien de la matrice d’acquisition d’une architecture compressée
multibande, en passant par une étape intermédiaire impliquant la matrice de Fisher pour du
sous-échantillonnage. Comme l’expression obtenue est adaptée à chaque terme, elle est plus
précise que les résultats de l’état de l’art qui fournissent des garanties sur l’ensemble de la
matrice, basées sur les propriétés statistiques. Ces nouvelles expressions soulignent le rôle clé
du Gramien de la matrice d’acquisition qui traduit les contraintes géométriques en termes
de produit scalaire. Cette contribution permet aussi de dissocier les effets de la compression
(aspect sous-échantillonnage) de ceux de la création de diversité (aspect lié au Gramien). Les
architectures multibandes sont des architectures où chaque bin fréquentiel d’une sous-bande
est traité de la même manière. Comme cette définition inclut la plupart des architectures
répandues (MWC, QAIC, PNUS, MRS, BPS) les résultats ont une portée assez générique.

L’influence du processus d’acquisition, notamment le couplage entre paramètres et la fuite
spectrale, est illustrée par l’exemple. Dans le cadre de la radio cognitive, le cas d’application
de la détection d’un interféreur en présence d’un signal utile est choisi. Tout d’abord, le cas
de l’estimation de l’amplitude est posé. Les bornes théoriques sont déterminées ainsi que des
variances expérimentales issues d’un estimateur de maximum de vraisemblance. Ensuite, le
cas de l’estimation de fréquence est considéré. L’interprétation des formules établies n’étant
pas évidente, une illustration est donnée en complément. Au vu des expressions nouvellement
établies, il est souligné que les effets délétères de la présence d’un interféreur de forte puissance
peuvent être contrôlés et attenués via l’ajustement des coefficients du Gramien de la matrice
d’acquisition. Cela offre des opportunités intéressantes d’approches adaptées à des a priori
sur la distribution du spectre. Les propriétés de cohérence et d’isométrie qui découlent du
Gramien ayant été étudiées en détails dans le Chapitre 3, l’optimisation peut être menée en
suivant les mêmes principes.

En revanche, ces résultats signifient aussi que, dans ce cadre, aucun paramètre n’est plus
robuste vis-à-vis du processus d’acquisition compressée que les autres.

Dans ce manuscrit, un pont supplémentaire a été construit pour permettre d’enjamber le
fossé entre les objets abstraits dont traite la théorie mathématique de l’acquisition compressée
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et les réalités du terrain de la détection de spectre radiofréquence.
Beaucoup de questions restent encore ouvertes, comme le choix d’un estimateur

paramétrique et son implémentation.



Introduction

Recent years have been marked by a steep increase in the amount of data exchanged via
wireless communications. In particular the volume of mobile data traffic has increased

18-fold between 2011 and 2017 [2]. Also the rapidly expanding market of the Internet of
Things (IoT), connected physical devices such as smart home appliances and other monitoring
systems, is concerned: 500 billions connected devices are expected by 2030 [2].

However, at a given time and place, the frequency spectrum is usually mostly empty
(an estimated 2-5% occupation, even in metropolitan areas [3]). But, because of the rigid
license-based spectrum access regulation, the boom of wireless communications has lead to a
worrying situation in terms of scarcity of spectral resources. As a consequence, the price of
the spectrum access rises and tensions may emerge between the different users (cellular, public
safety, governmental, unlicensed, ...). In the USA alone, the gain expected from achieving to
relax spectrum scarcity has been estimated to more than $1 trillion benefit and millions of
job creations over a decade [4].

This bottleneck calls for a model transformation in terms of spectrum access management,
in order to enable better dynamic spectrum access for secondary users on unlicensed bands.
To carry out this change, it is mandatory to develop Cognitive Radio (CR), radiofrequency
receivers that are aware of the spectral environment and able to adjust smartly in consequence.
The cognitive receiver should notably be able to detect unused frequency bandwidths and
reconfigure its parameters in order to use them without creating interferences between users.
The analysis of the spectral environment also enables to optimize the operating point regarding
the energy consumption. However, efficiently monitoring at low-power and low-cost wide areas
of spectrum is a major technical challenge for Analog-to-Digital Converters. Combining over
wideband functions performing the extraction of the parameters of interest, called features,
with the imperatives of robustness and ultralow-power consumption is a dare.

The Compressive Sampling (CS) theory introduced in 2006 by E. Candès et al. [5] is an ap-
pealing candidate to meet these constraints. Compressive Sampling is a recent paradigm shift
in data acquisition, able to overcome the Nyquist rate deadlock by focusing on the concept of
information amount under the adequate representation instead. If the signal is described by
few non-zero coefficients in an appropriate basis, which is the spectral domain in the context
of this study, the signal is said to be sparse and a small amount of incoherent samples is
sufficient to recover the original information. The number of samples then depends on the
gathered frequency bandwidth and not the maximal frequency of the input. Therefore the
Compressive Sampling framework is foreseen to disrupt the usual trade-offs between band-
width, noise figure and energy consumption in Analog-to-Digital-Converters conception.

However, the reconstruction of the original signal from the acquired samples is a non-
linear optimization process, highly energy-consuming and hence not readily compatible with
the context of embedded radio solutions. In order to avoid this pitfall, it is proposed to skip
the reconstruction step and extract the features of interest for the targeted application directly
from the compressed samples. But how should we design an Analog-to-Information Converter
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tailored to feature extraction for Cognitive Radio ?
To answer this question, it is necessary to investigate both the implementation challenges

of an efficient compressive radiofrequency receiver and the specificities of parametric esti-
mation with compressed samples, as opposed to estimation from the reconstruction of the
original signal. At first, implementation challenges will be considered through the prism of
a reconstruction task, as it is better understood and advanced than for feature extraction.
Specificities of estimation from the compressed samples will later be fully taken into account.

The manuscript will be organized as follows in four chapters. Chapters 1 and 2 provide
a panorama which aims to be almost exhaustive of a field in booming expansion, Chapters 3

and 4 are original contributions.
In Chapter 1, the potential of Compressive Sensing for the development of Cognitive Radio

is highlighted. First, it is underscored that developing further Cognitive Radio solutions is
necessary to be able to relax the spectrum crowding conundrum by exploiting Dynamic Spec-
trum Sharing. Then, the Compressive Sensing theory, a potential response to the exposed
challenges, is presented. Finally, as the reconstruction stage is discarded because computa-
tionally expensive, the stakes of information retrieval directly from compressed samples are
exposed.

In the second chapter, the State-of-the-Art of existing compressive radiofrequency ar-
chitectures is presented and discussed. Architectures are classified according to three main
functioning principles and their drawbacks are highlighted. Among the many, two solutions
rise the interest: the Modulated Wideband Converter (MWC) due to its robustness to grid
mismatch and the Non Uniform Wavelet Bandpass Sampling (NUWBS) due to its flexibility.

Since the mixing codes are identified as the core and structural element of architectures
based on random demodulation, their properties will be investigated further in Chapter 3,
focusing on the exemple of a MWC receiver. To begin with, the potential of circulant code
matrices is highlighted. An original code is proposed and a detailed evaluation benchmark
with the state-of-the-art is displayed. The comparison methodology is based on both high-
level metrics (coherence, isometry) and simulations on a Matlab R© platform featuring the
MWC acquisition and reconstruction process.

Then, Chapter 4 focuses on the accuracy of feature extraction on the compressed sam-
ples without a reconstruction step. What differences should be considered in comparison to
Analog-to-Information Converters performing reconstruction ? The Cramér-Rao lower bound
on the variance of any unbiased estimator is considered in order to understand and quantify
the effect of Compressive Sampling on parametric estimation guarantees. An original closed-
form expression of the bound, more accurate than previous results based on global guarantees,
will be established for compressive multiband architectures. The mechanisms involved are ex-
plained and the effects of bandpass sampling and diversity dissociated. A typical scenario
of Cognitive Radio, detection of an interferer near useful signal, is detailed as an illustrative
example.

Finally a conclusion is drawn and perspectives are given.

Note that all figures in this manuscript, except Figure C.1, have been produced or repro-
duced by the author. Some of them are strongly inspired by a specific source, which will be
notified with the mention ‘inspired from [xxx]’.
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1.1 Spectral Crowding and Cognitive Radio

Even though at a given time and space the radiofrequency spectrum is mostly empty,
spectral ressource scarcity has become an increasingly important issue in recent years

due to the rigid framework of license-based spectrum access regulation. The growing amount
of data exchanged in mobile services and the emergence of the Internet of Things (IoT) have
provoked a drastic increase in the spectrum demand. A demand which becomes more and
more difficult to meet by spectrum allocation based on an exclusive use policy.

In response to the growing pressure on the available spectrum bands, the multiple legacy
regulatory organisations (the Federal Communications Commission in the USA, the Euro-
pean Conference of Postal and Telecommunications Administrations in Europe, the Agence
Nationale des fréquences in France, etc.) have begun to promote the opportunity of Dynamic
Spectrum Sharing (DSS) between different types of users. Dynamic Spectrum Sharing is based
on Dynamic Spectrum Access (DSA), which is formally defined as ‘real-time adjustement of
spectrum utilization in response to changing circumstances and objectives’ [7]. Typically, Sec-
ondary Users seek for opportunistic access to the spectrum, as opposed to Incombent Users
that have a warrantied legal access right.

Accurate details on this legal policy evolution and the concerned frequency subbands, as
well as on the current types of user accesses are provided in [8].

One famous example of DSS are the IEEE Standards 802.22 and 802.11af which allow
low-power devices in several countries (USA, UK, Canada, etc.) to operate on unused TV
broadcast bands, known as TV White Spaces.

Figure 1.1 illustrates the multiple spectrum access authorization regimes currently utilized,
and in particular the possibilities for unlicensed accesses.

Dynamic Spectrum Access is a consequential paradigm shift in the domain of communica-
tions, challenging in regard to the definition of new access protocols as well as associated with
significant technical issues. It requires in particular ultra low-power radiofrequency receivers
that are aware of the radio environment and are able to smartly adapt operational aspects.
The goal is to achieve robust and enhanced performances with low-power consumption via
the understanding of the radio environment and reconfigurability. Ultra low-power is all the
more important because of what is called the ‘Deploy and Forget’ approach in the Internet of
Things: a huge number of devices is settled, which should not require active maintenance such
as battery substitutions from the user. In the road-map outlined in [8] with respect to Cog-
nitive Radio development for Dynamic Spectrum Sharing, there are among others, following
technical points to be dealt with:

• low-power for sustainability

• improvements in smart radio architectures to support high dynamic range for wideband
operations

• reconfigurable radio hardware, interference nulling capabilities

• definition of techniques and standards for spectrum measurement
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Figure 1.1: Spectrum access schemes and authorization regimes, inspired from [8].

One solution foreseen to be able to meet the exposed challenges would be to exploit the
emerging theory of Compressive Sensing (CS), since it relaxes the Nyquist-rate constraint.
Investigating further the opportunities offered by Compressive Sensing for Cognitive Radio
applications will be the topic of this study.

Hence the concept of Compressive Sampling will be presented in the next Section. First, the
roots of Compressive Sensing are sketched in Subsection 1.2.1. Then it is necessary to introduce
precisely the framework and notations in Subsection 1.2.2. In following Subsection 1.2.3, the
issue of the reconstruction of the original signal is investigated. This is done by discussing
different evaluation metrics regarding the sensing matrix and sketching and comparing possible
reconstruction algorithms. Given the computational complexity, the conducted analysis leads
to the choice of exploring the potential of partial information restitution. As a consequence,
the topic of information retrieval from compressed samples for cognitive radio applications is
tackled in Section 1.3.

1.2 Compressive Sensing

Compressive Sensing, also known as Compressive Sampling or Compressed Sensing, represents
a revolution in the way that information is extracted. This recently developed framework
aims at capturing the fair amount of information through a reduced number of incoherent
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measurements. It is no longer necessary to acquire data at the Nyquist-Shannon rate but
rather depending on what can be seen as the ‘intrinsic dimension’ of the signal, which is the
minimal number of parameters required to describe it in some appropriate dictionary or basis.

If it is assumed that the signal is sparse (few non zero coefficients represent it in the said
basis), it is possible to reconstruct or estimate the signal from the compressed samples through
non-linear convex optimization or iterative methods. For instance, frequency tones are sparse
in the Fourier domain or Radar pulse signals are sparse in the time-frequency domain.

The underlying goal is to extract and acquire only the relevant information directly at the
sensing stage, in order to avoid waste of power and storage. In this way, a new constraint
balance between acquisition chain and information retrieval should be figured out.

1.2.1 Historical development

For more than half a century the cornerstone of signal processing and information theory has
been the Shannon-Nyquist-Whittaker theorem on the choice of the sampling frequency:

Every signal of finite energy and bandwidth W Hertz may be completely
recovered from taking its samples at the rate of 2W per second [9]

For signals with known high frequencies, the constraints can be relaxed by using a heterodyne
receiver [10] which translates the bands of interest on an intermediate frequency. But if the
frequencies are unknown, this is not possible.

Premises of the present Compressive Sensing framework emerged as early as the 1960s. In
1965, the development of recovery algorithms based on l1-norm minimization was launched
by the statement of the Logan’s phenomenon:

If the product of the signal bandwidth and the measure of the support of the
noise is sufficiently small, we can find a perfect decomposition of the signal into
band-limited function and impulsive noise by finding the band-limited function

closest to the observed signal in the l1 sense [11]

The relaxation in the expression of the recovery problem of the pseudo-norm l0 to the norm l1

yields, under conditions stated above, the correct original signal and simplifies computationally
the resolution. Under assumption of spectral support knowledge, the Landau’s theorem estab-
lished in 1967 bypasses the previous Nyquist rate by considering the bandwidth occupation
instead of the maximal frequency:

Every signal of finite energy may be completely recovered from its samples
taken at the rate of 2Woccupied [occupied bandwidth] as soon as we have knowledge

of the spectral support [12]

Other steps were made and major developments in l1-based reconstruction techniques occurred
in the 1990s, with Matching Pursuit [13] or LASSO [14] algorithms. In 2006, E. Candès, T.
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Tao, J. Romberg and D. Donoho built on those foundations to set a new groundbreaking frame
for signal acquisition with a complete and formalized Compressive Sensing theory as well as
optimized recovery criteria [5, 15, 16].

Compressive Sensing (CS) already proved itself very valuable in specific constraints set-
tings: for example impossibility to take complete measurements as in imaging (e.g. medical
imaging [17]), or strong asymmetry between acquisition and reconstruction costs (e.g. recon-
struction delocalized from the sensor to a fusion center). In the field of radiofrequency (RF)
communications, various compressive receiver architectures have been proposed since 2006,
which is at the core of our topic and detailed in Chapter 2. CS is still a growing topic of in-
terest and investigations must be carried on to identify and benchmark the potential interest
for other domains and applications.

1.2.2 Framework and notations

All notations are summarized in the notation table.
As usual, b.c will denote the floor operator, mod (.) the modulo operator, .∗ the conjugate,
.H the conjugate transpose, < . , . > a scalar product and [[. . . ; . . .]] an interval of integers.
The tilde .̃ will refer to the continuous Fourier Transform (of an analog or discrete time signal).
Indices of a vector are noted with [.] in both time and frequency domain.
The norm lp, noted |.|p, is computed for a vector x as |x|p = p

√∑
n x[n]p . If p < 1, the

triangular inequality condition required from norms is not fulfilled, hence it is only a pseudo-
norm. For p = 0, l0 matches the number of non-zero elements.

Let x ∈ CN be the sampled representation of a continuous time series x(t). In Compressive
Sensing, x is assumed to be sparse with respect to some dictionary or basis in the sense that
there exists s such that x = Ψs and s has few non zero components (||s||0 << N). Let
Φ ∈ CMxN denotes the acquisition matrix acting on the noisy input signal x+ = x+w. It is
assumed that M < N .

Then the noisy signal at the output y+ is given by:

y+ = Φ(x+w) +wmeas = y +wCS +wmeas (1.1)

with y = ΦΨs (1.2)

where w and wCS = Φw are respectively the input noise (noise at the antenna) and the input
noise after compression. wmeas refers to the measurement noise, i.e. the noise caused by the
measurement hardware. ΦΨ, or in some instances Φ, is called the sensing matrix.

In practice, most physical signals are not exactly sparse but considered compressible,
meaning that there exists a sparse approximation of the signal. In this work focused on
Cognitive Radio applications, x will be assumed to be sparse in the frequency domain. Thus
x is the time domain signal sampled at Nyquist rate at the receiver input, Ψ is the Inverse
Discrete Fourier Transform (IDFT) matrix F−1 and s = x̃ = DFT (x) is a frequency domain
representation of the signal. Figure 1.2 illustrates matrix-wise Compressive Sensing acquisition
and the different matrices, for a radiofrequency signal sparse in the frequency domain.

In the following subsection, it will be explained how reconstruction of the original from
the compressed samples is possible.
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Figure 1.2: Matrix-wise depiction of the Compressive Sampling acquisition process.

1.2.3 Reconstruction

From an algebraic point of view, if N unknowns must be estimated from M linear measure-
ments and M < N , the equation system is underdetermined, hence there exists an infinity of
solutions. However, by adding the constraint of sparsity, it is possible with computationally-
complex algorithms to completely recover the original signal, provided that the acquisition
process satisfies some specific properties. These properties will be introduced in the first
subsection and recovery algorithms in the second.

1.2.3.1 Metrics

In order to be able to recover the information from the compressed samples, the acquisition
method must satisfy some mathematical properties, presented hereafter. Note that random
matrices are generally considered because they satisfy these properties with high probability.

1.2.3.1.a Coherence
A first requirement is that each measurement contains a part of the information, so as to
maximize the entropy. Coherence measures a deviation from the orthogonality condition
between the columns of the sensing matrix. This quasi orthogonality ensures that the input
information is spread among all the measurements. Formally, the coherence [18, 19] of the
matrix ΦΨ is the largest absolute Hermitian inner product between any two different unit
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normalized columns:

µ((ΦΨ)) = max
i 6=j

(
| < (ΦΨ).,i, (ΦΨ).,j > |
‖(ΦΨ).,i‖ ‖(ΦΨ).,j‖

)
(1.3)

where (ΦΨ).,i is the ith column of (ΦΨ).
Coherence should be as small as possible with a lower bound given by the Welch bound [20]:√

N −M
M(N − 1)

≤ µ ≤ 1 (1.4)

To temper the rawness of the maximum extraction operator, other types of coherence that
capture a more averaged behavior of the same notion have been introduced, e.g. average or
cumulative coherence [21].

1.2.3.1.b Mutual coherence
Mutual coherence [5] describes the adequacy between the acquisition process and the domain
of sparsity, by measuring the correlation between rows of Φ and columns Ψ:

µm =
√
N.max

i,j
| <Φi,. |Ψ.,j> | (1.5)

A low value of µm ensures that every measurement performed by the acquistion matrix Φ

carries a useful amount of information of all the non-zeros of s for any location because
the sampling waveforms have an extremely dense representation in Ψ [22]. The smaller the
mutual coherence, the larger the probability that any sample provides an information about
the signal. It is bounded [23] by [1;N ]. The mutual incoherence between time and frequency
e.g. is maximal.

It should be noted that in the literature the mutual coherence may sometimes also be
called coherence, which can be confusing. To clarify, in our terminology, mutual coherence
considers the relationship between Φ and Ψ whereas coherence considers the relationships
between the different measurement vectors of ΦΨ.

1.2.3.1.c Isometry
In order to guarantee the recovery in Compressive Sampling, approximate preservation of
norms and distances is a point of major interest.

• Restricted Isometry Property (RIP)
The RIP measures the norm deformation induced by the projection.
A matrix Φ is said to satisfy the Restricted Isometry Property (RIP) [5, 24, 19] with
parameters (K, δK), or of order K, if:

(1− δK) ‖s‖22 ≤ ‖ΦΨs‖22 ≤ (1 + δK) ‖s‖22 (1.6)

for all K-sparse vectors s ∈ CN .
In others words, the l2-norm of K-sparse vectors is preserved up to a multiplying factor
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Figure 1.3: Distance preservation between K-sparse vectors through Compressive Sampling.

(1±δK) by the projection. This leads to fundamental implications concerning robustness
to noise [25, 26].
Eq. (1.6) ensures that K-sparse vectors do not lie in the nullspace of ΦΨ [27].
As noted in [28], the RIP is a convenient tool but not a necessary condition for any
reconstruction algorithms. For example, a RIP-1 criteria (replacing l2 by l1 in the RIP
definition) is more suitable for combinatorial recovery algorithms [29]. Furthermore,
certifying the RIP is NP -hard hence it cannot be computed easily [30, 31].
If a matrix Φ satisfies the RIP of order 2K, it is easy to check [27] that eq. (1.6) is
equivalent to saying that Φ preserves the distance between any pair of K-sparse vectors
up to the same multiplying factor (1 ± δ2K), which will be referred to as Johnson-
Lindenstrauss Lemma (JLL)-property in this work. As demonstrated in [32], RIP also
implies preservation of angles.

• Johnson-Lindenstrauss Lemma (JLL)
The Johnson-Lindenstrauss Lemma [33] guarantees the conservation of the pairwise
distance from a cloud of points in a lower-dimensional embedding.
In this work, a matrix Φ is, perhaps abusively, said to satisfy the JLL property with
parameters (K, δ2K), illustrated on Figure 1.3, if:

(1− δ2K) ‖u− v‖22 ≤ ‖ΦΨu−ΦΨv‖22 ≤ (1 + δ2K) ‖u− v‖22 (1.7)

for all K-sparse vectors (u,v) ∈ R2xN .
Hence two signals that were close in the input space will stay close in the output space
and conversely, which is obviously essential with regard to classification tasks.

• Statistical Restricted Isometry Property (StaRIP)
Introduced in [34], the Statistical RIP established itself as the non-uniform counterpart
of the RIP, meaning that it is the probability that RIP is satisfied for one given K sparse
vector:
A matrix Φ is said to satisfy the (K, δ, ε)-Statistical Restricted Isometry Property
(StaRIP) if for K-sparse vectors x, the inequalities (1.6) hold with probability exceeding
1− ε (with respect to a uniform distribution of the vectors among all sparse vectors in
RN with the same fixed magnitudes).

• ExRIP
The Expected RIP (ExRIP) criterion introduced by [35] is a weaker variant of the StaRIP
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where random distribution of non-zero values is additionally assumed. This assumption
is reasonable and the advantage over StaRIP is that the ExRIP can be computed from
three easily computable correlation-based criteria, summarized in Table 1.1.

Table 1.1: Definition of the coefficients necessary to ExRIP probability computation (real-
valued matrices).

α = 1
(MN)2

∑M
i,k=1(Φk,.Φ

H
i,.)

2 Average correlation power of the rows

β = 1
M2N3

∑M
i,k=1 ‖Φk,. ◦Φi,.‖ Average cyclic auto- and cross-correlation power of the rows

γ = 1
(MN)2

∑M
i,k=1(ΦH

k,.Φ
−
i,.)

2 Average convolution power of the rows

where ◦ denotes circular convolution.

Then the ExRIP probability P is computed as:

P = 1− (1− CK)ρ(1 + α− 2β)

δ2
K

− (BK − CK)ρ(γ − β) + CKMβ − 1

δ2
K

(1.8)

where ρ = M
M−1 , BK = 1 if non-zero entries are real-valued and CK = 3K

2K+K2 if the
entries are standard random variables.
The lower α, β, γ the higher the ExRIP probability.

1.2.3.1.d Gramian
The Gramian or Gram matrix of a matrix M is given by MHM . Due to dimensionality
reduction, the Gramian (ΦΨ)HΦΨ of a Compressive Sensing matrix is of maximum rank
M smaller than its row length N . Since the Gramian is not full rank, some eigenvalues are
zeros, which implies that neither norms nor orthogonality can be totally preserved by the
projection through the sensing matrix ΦΨ. The Gramian expresses this deformation of the
scalar product by the acquisition process. As such it yields an accurate general overview
of the geometric aspects of the projection. Note that for a unit column energy normalized
sensing matrix, coherence and RIP can be deduced from it. The maximum of the Gramian
without the diagonal is the coherence metric, which stems directly from both definitions, and
the K-RIP property is given by extremal eigenvalues over all possible support Λ of cardinal
K [19, 27], given the definition of eigenvalues.

1.2.3.1.e Combinatorial geometry
D. Donoho and J. Tanner explored high-dimensional combinatorial geometric considerations
called neighboorliness which imply abrupt changes in the number of faces of convex polytopes.
In [36] they propose to use a metric of distance from faces to the center on the polytope that
is created by projection of the l1-ball with the sensing matrix. However, their geometrical
conditions are restricted to l1 recovery, not tailored for noisy settings and less universal than
RIP. In [37], these conditions are used to construct pathological vectors that will make recovery
fails, in order to evaluate the RIP.
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1.2.3.1.f Corresponding guarantees
Previous metrics imply various recovery guarantees, without and with additive noise, depend-
ing on the chosen reconstruction algorithm. For a Basis Pursuit reconstruction algorithm (see
next Subsection), following results have been proven:

• According to [23]: If Φ satisfies RIP with (2K, δ2K) and 0 < δ2K <
√

2 − 1, then any
K-sparse vector x is perfectly reconstructed with overwhelming probability. Also the
reconstruction error scales linearly with additive noise (C-stability), which is vital.

• According to [38]: If K ≤ 0.5(1 + 1
µ) where µ is the coherence, then any K-sparse vector

x is perfectly reconstructed.

• According to [23]: If M verifies M > Cµ2
mKlog(N) where C is a non-zero constant

and µm is the mutual coherence, then the M measurements are sufficient to recover the
input x with overwhelming probability. Note that this bound is relatively loose [35].

Hence the interest of a small coherence, mutual coherence and RIP constant is highlighted.
For more mathematical details, a thorough overview of theoretical recovery guarantees in
Compressive Sensing is for instance provided in [27].

Note that given guarantees are usually with respect to uniform recovery. As detailed in
[39], the difference between uniform and non-uniform recovery is the following: the uniform
recovery is defined by the high probability that after defining a matrix, every sparse vector
can be reconstructed. On the other hand, non-uniform recovery is the high probability that
after defining a matrix, one vector drawn among every possible can be reconstructed. In other
words, it features a probability over the draw of a vector.

In the next part, algorithms able to perform signal reconstruction from compressed samples
satisfying the above properties will be briefly presented.

1.2.3.2 Benchmark of non-adaptive recovery algorithms

For a signal acquired at the Nyquist rate the reconstruction of the signal is simply per-
formed with ‘sinc’ interpolation, but for compressed samples, it is more complicated. Various
techniques have been proposed to perform the reconstruction of the original signal from the
compressed samples. The two most widely used algorithms are convex relaxation algorithms
such as Basis Pursuit denoising (BPDN) and greedy algorithms such as Orthogonal Matching
Pursuit (OMP) but many exists. The 6 main classes, as divided in [40], are:

• Convex relaxation algorithms
Typical Algorithms: Basis Pursuit (BP), BP denoising (BPDN), Least absolute
shrinkage and selection operator (LASSO), least angle regression (LARS).
Principle: Recovering x from y and Φ is an ill-posed problem since Φ is singular.
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Therefore, the solution is the sparsest Ψ−1u among all possible solutions of y = Φu:

(P0) x̂ = argmin
u
||Ψ−1u||0 s.t. y = Φu (1.9)

where ||.||0 denotes the l0 pseudo-norm i.e. the number of non-zero components. Because
of the non convexity of l0, solving this problem (P0) is computationally very difficult
(NP-Hard, that is at least as difficult as any problem where one solution could be tested
in polynomial time). The l1 regularization problem (P1 or Basis Pursuit), consists in
replacing l0 by the norm l1:

(P1) x̂ = argmin
u
||Ψ−1u||1 s.t. y = Φu (1.10)

The Null Space Property [27] is a necessary and sufficient condition on having the same
result with a relaxation of l0 by l1. Also, because x+ is generally noisy, the equality
constraint is replaced by a fidelity term, leading to:

(P1, λ) x̂ = argmin
u
||Ψ−1u||1 + λ||y −Φu||2 (1.11)

where λ is a constant balancing the sparsity and fidelity constraints.

Figure 1.4: Sparsity and different norm minimization, inspired from [41].

Figure 1.4 helps to visualize on a simplified example why, in contrast to the l2 norm, the
l1 norm favors sparsity and is able replace the l0 pseudo-norm problem with accuracy.
The set of all K-sparse vectors in R3, depicted in (a), is a non-linear space consisting
of all K-dimensional hyperplanes aligned with the coordinate axes. The hyperplane H
generated by s+Ker(ΦΨ) whereKer(.) denotes the kernel, is depicted in red. The point
of H with minimal l2-norm, ŝ, corresponds then to the contact point between H and a
dilated l2 ball centered at the origin. The l2-ball being isotropic, the probability that ŝ
is sparse is very low, as shown in (b). On the contrary, the l1 ball is pointy, meaning its
points are aligned along coordinate axes. Hence the first contact will appear near the
coordinate axes and be sparse with high probability, as shown in (c).
Pro/cons: Too slow.

• Greedy Iterative Algorithms
Typical Algorithms: Matching pursuit (MP), Orthogonal Matching Pursuit (OMP).
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Principle: Matching Pursuit selects iteratively each column of the dictionary that
correlates most with y, minimizing the least square error (fidelity term). OMP [18] adds
a Gram-Schmidt pre-process before MP to compensate the issues raised by the possible
non-orthonormality of the dictionary.
Pro/cons: Low implementation cost, high speed of recovery, poor performances if
modulations or phase noise [42].

• Iterative Thresholding Algorithms
Typical Algorithms: Belief propagation, Expander matching pursuits.
Principle: Iterative thresholding methods, including message passing
Pro/cons: High computational cost for low sparsity, slow.

• Bregman Iterative Algorithms
Principle: Iterative solving of a sequence of unconstrained problems.
Pro/cons: Potentially unsteady but fast.

• Combinatorial/Sublinear Algorithms
Typical Algorithms: Fourier sampling, Chaining pursuits.
Principle: Based on group testing.

• Non Convex Minimization Algorithms
Typical Algorithms: Focal underdetermined system solution (FOCUSS), Iteratively
Reweighted Least Squares (IRLS).
Principle: Relaxation with lp where p ≤ 1.

A main highlight is that reconstruction with any of these algorithms will be extremely
expensive from a computational point of view. This also means that real-time processing will
be hard to achieve. A comparison of required number of measurements and complexity is
provided as an example in Table 1.2 for a few algorithms.

Table 1.2: Comparisons between reconstruction algorithms, from [34], α is a non-zero constant.

Approaches Number of Measurements Complexity
Basis Pursuit K log(NK ) N3

Orthogonal Matching Pursuit K logα(N) K2 logα(N)

Group testing K logα(N) K logα(N)

Greedy Expander Recovery K log(NK ) N log(NK )

1.2.3.3 Adaptive approaches

Adaptive approaches have been considered to improve performances by conciliating the im-
perative of robustness to changing noise level and degree of sparsity K with the opportunity
of savings through scalability. Scalability in our context means for instance adjusting the
energy consumption by activating a given number of branches according to the level of noise.
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Or in [43], adaptive thresholding and adaptive time segmentation adjust the signal detec-
tion capability of the Quadrature-Analog-to-Information Converter (QAIC, see 2.3.2) to the
sparsity level of the signal. Reconfigurability, on the other hand means that at same energy
consumption, the parameters of the architecture are optimized to yield better reconstruction
and estimation performances.

In Bayesian adaptive methods [44, 45], the coefficients of the sensing matrix (for the Mod-
ulated Wideband Converter, MWC, see 2.3.2, that would be the mixing codes) are computed
based on the available information on the current spectrum. However, achieving real-time is
already an issue in Compressive Sensing, so the additional burden of computation may not be
manageable or worth it [44]. Moreover such reconfigurability possibilities also implies more
complicated hardware.

In his PhD work, D. Adams [46] proposes to use an MWC to perform adaptive interference
canceling. Interferers are a notorious problem in Compressive Spectrum Sensing and solving
this issue enhances greatly the dynamic of the system. When an interferer is detected at a
given frequency, the Fourier coefficient corresponding to this frequency is set to zero in or-
der to null his contribution in the folded spectrum. In [28], an interferer canceling method
for Radar parameters extraction with the Random Modulation Pre-Integrator (RMPI), see
2.3.1, is also suggested. Once an undesirable frequency is identified, its contribution in form
of the corresponding Discrete Prolate Spheroidal Sequence component is subtracted from the
measurement. In [47], Ultra Wideband (UWB) signal specificities are e.g. taken into ac-
count to modify the sensing matrix energy distribution in order to mitigate the narrowband
interferences.

The reconstruction of the original signal (complete reconstruction) has the drawback of
being highly energy-consuming and the question must be raised whether or not the benefits
at the acquisition stage preveil on the reconstruction cost in the context of this study, as
it depends largely from the application. Benchmarking fairly and thoroughly Compressive
Sampling and Nyquist-rate approaches for radiofrequency receivers regarding all the imple-
mentations aspects (consumption, resolution, dynamic range, die area, etc.) is a difficult task,
that has been tackled but not fully completed yet. Encouraging analyses have been lead in
[48], where a model-based approach showed that at lower gain requirements and low to mod-
erate resolutions (4-6 Effective Number Of Bits), the Random Modulation Pre-Integrator (see
2.3.1) has the potential to be between 2 and 10 times more power-efficient than high-speed
ADCs.

However, on the contrary, in [49] Compressive Sensing followed by reconstruction is pro-
posed and an order of magnitude of several Watts was found (while current ultra-low power
wake-up receivers achieve about 10µW consumption [50]). This seems not suitable for the
purpose of Cognitive Radio with embedded solutions. That is why, in order to reduce the
burden of information extraction, in this PhD manuscript the choice is made to perform par-
tial restitution of features of interest rather than exact reconstruction of the original signal
followed with parametric estimation.

An oversimplified and naive metaphor of the approach would be the following: Suppose
having an equal-arm balance, a calibration weight and 9 numbered gold bars, from which it
is known that no more than one is rigged, i.e. it weights less that it ought to.

A matching with the Nyquist-rate approach would be to compare each one of the gold
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bars to the calibration weight. But obviously, two measurements (measuring 2 sets of 3 gold
bars e.g. row- and column-wise, 1 + 2 + 3 versus 4 + 5 + 6 and 1 + 4 + 7 versus 2 + 5 + 8)
would allow, with a bit of deduction, to find out if one bar is rigged and which one it is, even
in the worst case. The idea that will be exploited in this work is similar, in a certain extent.
This aspect will be developed in the next Section.

1.3 Information retrieval from the compressed samples

Subsection 1.2.3 has highlighted that the complete reconstruction of the signal is a non-linear
optimization process, highly energy-consuming and hence barely compatible with the require-
ments of embedded radio solutions. Yet reconstruction is not always necessary and a promising
alternative to this drawback is to perform the extraction of the sole features of interest from
the compressed samples directly. The concept, called Analog-to-Feature extraction [51], con-
sists in extracting features of interest while bypassing the Analog-to-Digital conversion (and
hence the Nyquist frequency criterion). These features can be of interest for themselves or can
be used further for classification purpose. Classification tasks consist in assigning the obser-
vation to a class among a set of few classes and detection tasks can be seen as a classification
between two classes: presence or absence of the signal. Due to its low computational cost,
this approach is relevant for various applications. The authors of [52] introduced in particular
the potential for Cognitive Radios (CRs). However, the compressive acquisition has scram-
bled along the structure of the signal information, which renders information retrieval more
difficult.

In this Section, the State-of-the-Art of information retrieval directly from the raw com-
pressed samples is outlined. First, the parameters of interest need to be defined in Subsection
1.3.1. A second part tackles guarantees and challenges at stakes, first for estimation and then
for classification. Finally, examples of existing solutions, mostly derived from solutions at the
Nyquist rate, are given and their benefits and drawbacks discussed.

1.3.1 Parameters of interest

For Cognitive Radio, a certain number of features must be estimated to ensure that the radio
system is able to avoid interferences with other users. Mainly, it consists in detecting if a
frequency band is occupied or not. In addition to this, other applications of interest can be
considered. For instance, smart RF receivers that are enhanced via reconfigurability thanks
to environment sensing. That would for instance be the estimation of Peak-to-Average-Power-
Ratio (PAPR), in order to adjust the dynamic of the low-rate ADC or the detection of high
power interferers, in order to possibly circumvent them adaptively. Detection of interferers
is all the more important in Compressive Sensing because of the noise folding phenomenon.
Also environment identification (home, indoor, outdoor, car, etc.) for specific adjustments is
of potential interest.

Among others, following parameters regarding useful signal or interferences are concerned:
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• Central frequency, bandwidth, power level, Peak-to-Average-Power-Ratio (PAPR)

• Transmission times, direction-of-arrival and localization

• Modulation (AM/FM, size of the phase constellation, etc.) and protocol (WiFi, Blue-
tooth, etc.)

1.3.2 Bounds and guarantees for Analog-to-Feature extraction

First and foremost, it is necessary to evaluate which performances can be expected from an
Analog-to-Feature extraction approach and in which extent they are influenced by the settings,
in order to see if this strategy is viable. For estimation performances, this question will be
tackled through the prism of the Cramér-Rao lower bound on the estimation variance for any
unbiased estimator. For classification, several aspects will be addressed: distance preservation,
feature enhancement and dictionary learning.

1.3.2.1 Compressive parametric estimation: Cramér-Rao bounds

The Cramér-Rao bound is the lower bound on the estimation variance for any unbiased esti-
mator. It is therefore a convenient performance evaluation tool [53] to understand the mecha-
nisms at stake in estimation from the compressed samples. The Cramér-Rao bound (CRB) is
computed from the diagonal of the inverse of the Fisher information matrix, a matrix which
quantifies the amount of information about the parameters that is carried by a signal obser-
vation. The reader is referred to Appendix A for more thorough details and equations.

An interesting bounding of the Fisher matrix for Compressive Sensing has been established
in [54, 55], by approaching the limit in the distance preservation property (2K-RIP) with an
infinitesimal parameter variation. Thus norm preservation is extended to the vector of partial
derivative toward the estimated parameters. And since the Fisher matrix is by construction
the Gramian of this partial derivative vector, the authors obtained following inequalities:

M

N
(1− δ2K)2JNyq ≤ JCS ≤

M

N
(1 + δ2K)2JNyq (1.12)

where JNyq and JCS are the Fisher information matrices given the Nyquist or the compressed
samples respectively and ≤ for matrices is understood as a positive definite difference.
M
N corresponds to the noise folding aspect, which will be tackled in 2.1.4.
(1± δ2K)2 corresponds to the unavoidable anisometry of the projection (RIP), which was dis-
cussed in 1.2.3.1.c. Some more specific analytics were derived for parametric model estimation
with random distributions, for example the mean of a complex distribution for direction-of-
arrival estimation in [56].

1.3.2.2 Compressive classification

Classification tasks output a prediction taking values in a discrete phase space. Thus it allows
generally for more flexible approaches than estimation.
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1.3.2.2.a Distance preservation, ellipse problem and separable classes
Distance preservation properties guarantee that classes of K-sparse signals that are sepa-
rated in the N -dimensional input space stay approximately separated after projection in
a M -dimensional subspace through the Analog-to-Information-Converter. For a class well-
represented by a typical point, the problem has been tackled under the term of smashed
filtering (cf 1.3.3). In the case where the classes are ellipsoids, this is called the Rare Eclipse
problem and bounds on the sufficient number of measurements have been given for random
matrices (cf [57]). But classes are in principle not separable in the input space and then they
will not be in the output space either.

1.3.2.2.b Feature enhancing
Signal-agnostic approaches present a certain number of advantages. However, for a well-
defined classification problem, better performances could ideally be achieved through a de-
noising anisotropic projection that focuses on preserving the discriminative information. It
is acceptable to loose definitely information on the signal as long as this information is not
discriminative. Distance preservation implies the preservation of separability but the reverse
is not true. This approach, called feature enhancing [58], has for instance been successfully
used for the specific task of voice activity detection [51]. In Figure 1.5, different subsampling
methods are compared in terms of physical information bandwidth during the acquisition and
restitution process. While Compressive Sensing and Innovation Rate Sampling allow to recon-
struct all the information, Feature Extraction subsamples the signal information rate leading
to information loss. The processing involved can be linear or not.
This approach is very dependent on the geometry of the problem and hence on the application.
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Figure 1.5: Comparison of different subsampling methods in terms of information rate evolu-
tion during the acquisition process, inspired from [51].

1.3.2.2.c Dictionary decomposition
In order to perform classification (discrete classes) or regression (continuous values), one pos-
sible technique is to use a decomposition on a dictionary.

For regression, one would for instance build a dictionary per class, with a matched filter for
each type: white noise, useful signal, interferers, etc. But the problem is that orthogonality
between classes is not guaranteed. For classification, the goal is to build a decomposition
dictionary with a double constraint: high discriminative power (allowing accurate classifica-
tion) and on which the input signal is nearly sparse. Discriminative power means that the
cost function depends on the accuracy of classification on training data. Examples from the
State-of-the-Art are the following:

• Sparse Representation based Classification (SRC)[59]: a shared dictionary, minimizes
reconstruction error on the different possible classes.

• Fisher Discriminative Dictionary Learning (FDDL)[60]: one dictionary per class, dis-
criminative criteria based on Fisher criterion.

• Label Consistent K-SVD (K-Singular Value Decomposition)[61]: classifier and dictionary
are jointly learned with a K-SVD algorithm.

• Discriminative Bayesian dictionary learning [62]: based on the probabilities of selection
of the dictionary atoms in the expansion of data from each class.
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It appears that the current bounds given for estimation and classification by means of
compressed samples are essentially based on distance preservation properties. These bounds
enable to understand the broad lines of the problem. However, it is not entirely sufficient in
order to specify precisely a compressive receiver architecture.

1.3.3 Existing solutions for compressive information retrieval

Various methods have been suggested for classification, detection and parametric estimation
by means of compressed samples, often based on the adaptation of existing techniques for
samples at the Nyquist rate. The most relevant strategies are mentioned non exhaustively
below and summarized in a conclusion table.

• Matching filters propose an optimization of the architecture with respect to the ex-
pected classes. The principle is to correlate the input signal with its expected model. It
is optimal in additive white Gaussian noise but requires knowledge of the signal model.
The authors of [63] propose a universal CS matched filtering scheme able to detect any
sparse signal, which approximates the matching signal pattern.
In [64], an implementation of a compressive matching filter, called a ‘Smashed filter’, is
proposed for image classification purposes.

Other exposed strategies rely on a specific estimation or classification algorithm which has
been tailored to work on a reduced number of samples acquired by a compressive receiver.

• Energy detection is the simplest spectrum detection technique for samples at the
Nyquist rate. The decision is taken based on the comparison between the amount of
energy received in a frequency band and a given threshold.
Energy detection extended to the sampled compressed observations has been formalized
by [65]. However, as noted in [66] and similarly to its counterpart at the Nyquist rate,
it is critically sensitive to noise.

• The principle of cyclic detection is to detect cyclostationarity features provoked by the
modulation of the signal with sine wave carriers or repeating codes. It is more complex
than energy detection but also more robust to noise.
The authors of [66] propose a method for cyclostationarity detection from the com-
pressed samples of a Periodic Non Uniform Sampler (PNUS) or a Modulated Wideband
Converter (MWC).
In [67], it is proposed to estimate spectrum occupancy from compressive samples through
the recovery of the sparse 2D cyclic spectrum, the Fourier transform of the cyclic covari-
ance with respect to time-lag and cyclic frequency index. Time-varying cross-correlations
of compressive measurements are linked to cyclic statistics, which permits to solve the
2D cyclic spectrum via l1-norm minimization. Two techniques can be used to estimate
the spectrum occupancy from the cyclic spectrum: a band-by-band Generalized Likeli-
hood Ratio Test detector or fast thresholding for signals with known modulation such
as BPSK.



1.3. Information retrieval from the compressed samples 35

• MUltiple SIgnal Classification (MUSIC) is a famous algorithm introduced by [68]
which consists in estimating the frequencies contained in a signal by using an eigenspace
decomposition method. The input signal is modeled as a sum of K complex exponentials
and Gaussian white noise. Given the autocorrelation matrix and assuming the value of
K, the space is decomposed into two subspaces, signal and noise.
A counterpart based on compressive measurements, Compressive MUSIC, is presented
in [69]. Compressive MUSIC identifies one part of the support using a conventional CS
algorithm, then estimates the other part using a generalized MUSIC criterion.

• Power Spectrum Estimation. In [66] it is proved that the minimal sampling rate for
perfect power spectrum reconstruction, i.e. with loss of the phase information, is half the
rate that allows for perfect signal reconstruction. Minimal sampling rate refers to the
lowest rate enabling perfect reconstruction of the power spectrum in a noiseless environ-
ment for a general sampling scheme. But the authors of [70] proved that e.g. designing
the Periodic Non Uniform Sampling (PNUS, see 2.2.1) sampling matrix according to the
minimal sparse ruler pattern results in a sampling rate below.

• Automatic Modulation Recognition Different PSK modulations have different num-
bers of peaks in the spectrum after raising to diverse N th power. That is because the
finite number of symbol phases are transformed in a constant phase through the process.
These features can be used for Automatic Modulation Recognition (AMR), as well as
carrier frequency and symbol rate rough estimations (except for 8PSK). The authors of
[71] show that a link can be drawn between the compressed samples and the N th power
spectrum of the original signal, enabling AMR directly with compressed samples.

It would seem that the proposed solutions do not fully answer the problematic. Matched
filtering requires a prior that might not be available and besides, implementing the sensing
matrix solution of the problem might be expensive. Compressive MUSIC and cyclostationarity
detection have a high computational cost, which should preferably be avoided. Automatic
Modulation Recognition is not flexible and generic enough to be used in practice. Power
Spectrum estimation has ultimately the same stakes as reconstruction, hence it does not
significantly change the balance.

A quick summary table is established in Table 1.3
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Table 1.3: Summary table of estimation methods from the compressed samples.

Methods Advantages Disadvantages
Matched filtering Optimal performances Requires prior

Low computational cost of the primary user
Energy detection Does not require prior Poor performance for low SNR

Low computational cost Cannot differentiate users
Cyclostationarity Valid in low SNR region Requires partial prior

feature Robust against interference High computational cost
MUSIC Superresolution High computation and storage cost

Knowledge of K required
Power spectrum Less measures required Phase information loss

AMR Energy efficient Limited to some modulation
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1.4 Conclusion

In this chapter, the challenges at stake in the emergence of Cognitive Radio for Dynamic Spec-
trum Access have been introduced. The interest of developing radiofrequency receivers able
to handle a multi-standard spectral environment under stringent power and cost constraints
has been highlighted.

As a solution to meet these constraints, the theory of Compressive Sensing has been put
forward to overcome the high-rate ADC deadlock. Compressive Sensing claims that a re-
duced number of incoherent measures are sufficient to recover the signal under the additional
constraint of sparsity. If the information content is appropriately spread among the measure-
ments, solving the resulting underdetermined problem becomes possible. Hence this approach
would enable to bypass the Nyquist sampling rate limit by focusing instead on the gathered
frequency bandwidth quantity.

To begin with, a short background historic has been given. Then the two pillars that render
reconstruction of the original signal in Compressive Sensing possible have been described:
conditions on the sensing matrix modeling the acquisition process on one hand and recovery
algorithms on the other hand. First, evaluation metrics of the sensing matrix, in particular
norm preservation and coherence which is the maximum correlation between columns, have
been presented. Next, the various mechanisms of recovery algorithms has been tackled and
the principle of the two most famous ones exposed: Orthogonal Matching Pursuit, based on
greedy search of the column of the dictionary that correlates the most with the observation
and Basis Pursuit, based on the problem relaxation to l1-minimization. The benchmark has
pointed out that the wonders of Compressive Sensing regarding reduction of acquisition and
storage costs do however come at a price. Given the computational complexity of the recovery
algorithms, the option of reconstructing the original signal should preferably be discarded if
an embedded solution is targeted.

Hence a focus has then been made on the current State-of-the-Art regarding partial infor-
mation retrieval, limited to what is called features or characteristics, directly from compressed
samples. First, parameters of interest for Cognitive Radio applications and reconfigurability
have been defined. Then some guarantee bounds were given for estimation and classification
tasks and it appeared that they are mostly based on distance preservation. The principle of
feature extraction with loss of information was also introduced. Finally, existing solutions
inspired from estimation at the Nyquist rate were presented and their limitations exposed.

From this review, it emerged that some key elements lack in order to establish a general
methodology for the design of an efficient Analog-to-Feature Converter with respect to spec-
trum sensing tasks. To yield additional answers, two aspects must be tackled. On one hand,
the implementation challenges of an efficient compressive radiofrequency receiver, whose key
considerations will be outlined in Chapter 2 and explored further in Chapter 3. On the other
hand, it is necessary to bring to light the fundamental specificities of parametric estimation
with compressed samples, as opposed to estimation from the reconstruction of the original
signal.
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That is why, in the next chapter, the notions presented above are put into practice: In
Chapter 2 a large variety of radiofrequency receivers based on Compressive Sampling will be
presented, discussed and compared to each others. Based on the conclusions of this analysis,
the role of mixing codes is investigated further in Chapter 3, focusing on one architecture, the
Modulated Wideband Converter (MWC) architecture. Note that since reconstruction aspects
are better understood and developed in the literature than feature extraction, reconstruction
is considered as a first step to understand the challenges in Chapter 2 and 3. Specificities of
parametric estimation are then explored in Chapter 4 through original contributions on the
Cramér-Rao bound under specific assumptions.
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Applied to the field of radiofrequency receivers, the Compressive Sensing theory intro-
duced in Chapter 1 offers the promise to replace the energy-inefficient high-rate Analog-

to-Digital Converters (ADCs) by architectures able to monitor large frequency bandwidths
with a low sampling rate. A wide range of compressive acquisition architectures, also called
Analog-to-Information Converters (AICs), have been developed for radiofrequency (RF) re-
ceivers in the last years in order to deliver this promise. Before the investigations on parametric
estimation that will be presented in Chapter 4, it is vital and necessary to benchmark and
fully understand the challenges of existing compressive receivers, tailored to reconstruction.
Each of those AICs uses different mechanisms, has various drawbacks and dedicated applica-
tions as target. However, as they all share the purpose of reducing the sampling rate beyond
the Nyquist rate, they all suffer from the phenomenon of spectrum aliasing. To solve the
ambiguity and be able to discriminate different folded inputs, compressed radioreceivers need
to control the spectrum folding operations by tagging the original signals in a certain way.
The transformation of the signal must allow for both identification of the original frequency
and reconstruction of the original signal. Various techniques have been investigated, including
exploitation of time, phase, frequency or coding diversity. Among those, three main categories
emerge, which are pictured in Figure 2.1:

• Non Uniform Sampling which is based on the incoherence between the sparse domain
and the subsampling of the acquisition domain.

• Random Demodulation which consists in the mixing with pseudo-random sequences
followed by low-pass filtering, performing a modulation/demodulation coding of the
frequency bands.

• Variable Rate Sampling which can be viewed as generalized bandpass sampling (sub-
sampling). It relies on the fact that if two signals are aliased for one undersampling
frequency, they might not be for another.

Hence a first meaningful manner to classify architectures is by the different ways in which
they create the diversity between the measurements.

The chapter is organized as follows. First of all, the framework related to compressive
radiofrequency receiver architectures needs to be presented in Section 2.1. In particular the
input signal models and associated notations will be introduced in Subsection 2.1.1 and 2.1.2
respectively. Then the original concept of multiband architectures is introduced in Subsection
2.1.3 in order to interpret in a generic way properties that are shared by some of the architec-
tures. Next, the question of the modeling of the noise on the compressed data will be discussed
in Subsection 2.1.4. The calibration problematic will be quickly tackled in Subsection 2.1.5,
and the quantization problem mentionned in Subsection 2.1.6.

After these first considerations, the principal compressive radiofrequency receiver solutions
are presented and reviewed: Non Uniform Sampling solutions are presented in Section 2.2,
comprising Non Uniform Sampler (NUS) in Subsection 2.2.1 and the recent Non Uniform
Wavelet Bandpass Sampling (NUWBS) in Subsection 2.2.2. Architectures based on Random
Demodulation are presented in Section 2.3, including the Random Demodulator (RD) in Sub-
section 2.3.1, the popular Modulated Wideband Converter (MWC) in Subsection 2.3.2, and
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Figure 2.1: Classification of compressive radiofrequency architectures according to the way in
which diversity is created.

the Compressive Sensing Filter (CSF) in Subsection 2.3.3. Variable rate sampling is tackled
in Section 2.4, through the examples of synchronous and asynchronous Multirate Sampling
(MRS) in Subsection 2.4.1, and the Nyquist Folding Receiver (NYFR) with his continuously
variating rate in Subsection 2.4.2.

A general conclusion is then drawn in Section 2.5.

2.1 Framework

First, a framework for Analog-to-Information Converters is established. To begin with, dif-
ferent ways of modeling the input signal are compared and related notations in the time and
frequency domains are introduced. Next, considerations on the compressed noise and then on
the calibration and quantization issues are discussed.
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2.1.1 Considerations on the input signal model

Compressive Sensing provides a theory for objects that are approximately sparse in a given
representation space, which can be a basis or a dictionary. A compressive RF architecture
specifies signal acquisition operations. These actions can be described by a sensing matrix
operating on an input signal to produce output samples. Hence defining the sensing matrix
(through the architecture) implicitly defines simultaneously a representation of the input (and
output) signal. In order to guarantee success, the way in which the AIC represents the input
signal must provide sparsity.

As mentioned earlier in Chapter 1, in the context of cognitive radio, the RF spectrum is
assumed to be sparsely populated. Hence a first intuition about the input signal model might
be to consider harmonic tones on a Nyquist grid as in [72]. However, alternative descriptions
of the RF signal are also suitable, with benefits and drawbacks to be considered. The Union
of Subspaces (UoS) model, developed within the Xampling framework by Y. Eldar [1], enables
to gather under the same framework the different implied input models. In UoS, the signal
belongs to a set ∪λ∈ΛAλ, where card(Λ) and dim(Aλ) may be finite or infinite and ∪ stands
for union. The two most popular descriptions are the decomposition on a dictionary and the
finite union of bandpass signals. Other models, see details in [1], could also be successfully
taken into consideration. For example models based on Finite-Rate-of-Innovation [73], which
assume a limited number of degrees of freedom per unit of time, are well-suited for the narrow-
band pulses of Ultra-Wideband (UWB) [74, 75]. Manifolds [76] appear as another interesting
low-dimensionnal model alternative.

One possibility is to decompose RF signals on a dictionary such as multitones (as in the
Random Demodulator) or wavelets (as in the Non Uniform Wavelet Bandpass Sampling). One
issue lies in the quickly prohibitory size of the dictionary in absence of additional prior on the
structure of the RF signals. The other issue is basis mismatch, meaning that assumed and
actual sparsity basis differ [77]. Since frequencies are rarely bin-centered on a frequency grid,
they generally do not decompose themselves adequately on the grid given by the Discrete
Fourier Transform matrix, a phenomenon known as spectral leakage. One notable benefit,
however, is that it enables to treat a wider range of signals, for instance Radar pulses that are
sparse in both time and frequency [28].

Another way to treat the input signal is as a finite union of bandpass signals, each ac-
tive subband containing signal with analog representation. Union of bandpass signals model
assumes that the signal is bandlimited, has support on no more than N disjoint intervals
with bandwidths each smaller than a given B. This description enables to keep the analog
formulation of the input signal, avoiding some pitfalls of the dictionary model [1].

In [78] a clever alternative is proposed which addresses the time/frequency limitation
problem by using the Slepian basis formed by Discrete Prolate Spheroidal Sequences (DPSS)
as the sparsity representation basis. Slepian bases are the solution of the spectral concentration
problem, i.e. they are the time- and bandlimited representation that is the most faithful to
the original signal in terms of energy. Whereas the authors of [79] tried to decompose the
whole signal using one family leading to huge dimensionality, in [80] each band of the signal
is described by the non-modulated Slepian families. The decomposition of multiband signals
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on DPSS is very sparse, i.e. few coefficients are non-negligible. Simulation results showed
an improvement between 35dB (noiseless) and 13dB (noise) in the recovery SNR with the
adequate interpolation recovery algorithm, compared to the same MWC considering a sparsity
in the frequency domain. The recovery SNR is defined as the ratio between the power of the
original signal and of the reconstruction error.

Notations, suitable for both models, are set in the next subsection.

2.1.2 Notations

A summary of notations and symbols introduced below is given in Figure 2.2.

Figure 2.2: Time and frequency notations.

In this study, the number of active frequency subbands K will be assumed to satisfy
K � N and will be referred to as the sparsity degree. The frequency support of the complex-
valued x is given by:

Λ = {n ∈ [[1;N ]]| ∃(n, l) satisfying |s[ň]| > 0}

Λ is therefore the set of indices corresponding to non-empty frequency subbands. It will be
considered that the Nyquist band [−fNyq

2 ;
fNyq

2 ] is split into N subbands so that fNyq = N.fp.
The other possibility would be to consider a real-valued signal x(t) with support [0; fNyq].

The previously presented framework that considers input and output of respective di-
mensions N and M will be sometimes slightly modified for reasons that will shortly appear.
Presently, the acquisition length corresponding to the time Tacq is set to be NL where N
denotes the number of considered subbands and L is the number of bins per subband. The
frequency resolution is thus given by δf =

fNyq
NL . It will be useful to introduce the global

frequency index ň = (n− 1)L+ l, to index the bin l in the frequency subband n. The output
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dimension is ML where M is typically, but not always, the number of channels. Similarly the
index m̌ = (m − 1)L + l for the lth bin in the mth branch is defined. Considering both the
relationship between ň, n, m̌, m and l and the indexation of [−fNyq

2 ;
fNyq

2 ] from 1 to NL, it is
possible to write the discretization of the input and output signals as:

x̃[ň] = x̃((n− bN
2
c − 3

2
)fp + (l − 1)δf) (2.1)

ỹ[m̌] = ỹm((l − 1)δf − fp
2

) (2.2)

Note that depending on different versions of the architecture, and in particular a possible
parallelization or serialization of the branches, the meaning of indices may differ a little.

2.1.3 Multiband model sensing matrices equivalence

In this work, the formalism of compressive multiband architecture is introduced, in order to
exploit in a generic way specific properties that are shared by various architectures. Multi-
band architectures will hence refer to devices that process identically all frequency bins within
the same subband. This is a particular subgroup within architectures defined with a union
of bandpass signals model. Multiband architectures include the Periodic Non Uniform Sam-
pler, the Modulated Wideband Converter, Random Convolution, Multirate Sampling but not
the Non Uniform Wavelet Bandpass Sampling, the Nyquist Folding Receiver or the Random
Demodulator. Then instead of considering the architecture-agnostic sensing matrix ΦΨ, the
acquisition process operations between the input and output spectra can be described for
multiband architectures by a M.LxN.L block matrix B̌.
B̌, illustrated in Figure 2.3a, is composed of subblocks formed by the identity matrix of size
LxL weighted by a coefficient bm,n for (m,n) ∈ [[1;M ]]x[[1;N ]]:

ỹ = B̌x̃ (2.3)

The vector ỹ concatenates the spectrum components of the M acquisition channels, each
having L components (bins).

For purposes of computationally-tractable restitution, it is however better to deal with a
sensing matrix whose size does not depend on the length of the acquisition. Toward this end,
it is possible and preferable, as in [81], to consider a sensing matrix B ∈ CMxN , compact
version of B̌, and x̃] and ỹ] so that input x̃ is reordered in a matrix x̃] of N rows of L bins,
and output ỹ is reordered in a matrix ỹ] of M rows of L bins. B is illustrated in Figure
2.3b. As the considered frequency band is zero-centered, it finally yields, for odd N and
(m,n, l) ∈ [[1;M ]]x[[1;N ]]x[[1;L]]:

x̃][n, l] = x̃((n− bN
2
c − 3

2
)fp + (l − 1)δf) (2.4)

ỹ][m, l] = ỹm((l − 1)δf − fp
2

) (2.5)
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(a) Multiband architecture, formalism B̌.

(b) Multiband architecture, formalism B.

Figure 2.3: Sensing matrix of a multiband architecture for two different formalisms.
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Then eq. (2.3) transforms into:
ỹ] = Bx̃] (2.6)

The benefit is that B is of dimension MxN whereas B̌ was of dimension M.LxN.L. Here-
inafter the canonical formalism will denote the matrix B̌ and the multiband formalism will
denote the matrix B. Compressive multiband architectures will be at the core of Chapter 4.

2.1.4 Modelling of the input noise after compression

As tackled in Subsection 1.2.2, the noise on the compressed samples is composed of the
measurement noise and of the projected input noise. The modeling of the input noise
after compression is a key question. If the input noise w follows a normal distribution
w ∼ N (0, σ2INL) then the noise affecting the compressed data follows a normal distribu-
tion Φw ∼ N (0,Φw(Φw)H) = Φw ∼ N (0, σ2ΦΦH).

Assuming that Φ satisfies properties of coherence and isometry, [82] showed through
whitening the Cholesky decomposition of Φ that assuming Φw ∼ N (0, NM σ

2IML) is an accu-
rate approximation (with unitary column energy normalization of Φ). Hence the assumption
that the noise after folding is still white Gaussian, with an SNR degradation of the ratioM/N ,
will generally be admitted, except if specified otherwise. In other words, as also demonstrated
in [83], for any kind of Analog-to-Information Converter a price of a theoretical and un-
avoidable 10log10(MN ) must be paid. It is often referred to as 3dB SNR loss per octave of
subsampling.

2.1.5 Calibration

In theory, the sensing matrix corresponding to a given Analog-to-Information-Converter is
defined and known. However, in practice several hardware imperfections (non-linearities from
the mixer, phase noise and jitter, non-idealities of analog components such as filters, bad
synchronization, etc.) will alter the acquisition process so that the actual sensing matrix is
mildly distorted [28, 84]. Some imperfections can be taken into account into a new matrix but
not all. As a consequence, the theoretical sensing matrix does not correspond to the transfer
function anymore so that using the theoretical matrix for recovery on a concrete prototype
might fail. That is why in many cases an accurate calibration process is necessary, depending
on the restitution algorithm.

2.1.6 Quantization

An implementation aspect that will not be addressed in this study but should not be forgotten
is the quantization issue. The overall compression rate should logically be based on the product
between the number of measurement M and the number of bits per measurement. There is a
compromise to be found between the two compression phenomena, quantization on one hand
and sampling below Nyquist on the other hand. This topic has been tackled e.g. in [85]
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for classification tasks, in [86] for correlation estimation, in [87] with respect to the property
of democratic measurements and in [88], guarantees optimization is done for a Sigma-Delta
quantization scheme. Even measurements severely quantized on 1-bit [89, 90] have been proven
to be potentially sufficient.

Now that the framework of compressive sensing applied to radiofrequency receivers has
been defined, the different compressive receiver architectures will be presented, reviewed and
compared in the next three subsections, starting with devices exploiting the principle of Non
Uniform Sampling.

2.2 Non Uniform Sampling

The core concept of Non Uniform Sampling is to exploit the mutual incoherence between the
representation space where the signal is sparse and the subsampled acquisition domain. The
most straightforward solution is to take advantage of the maximal mutual incoherence between
time and frequency [22], as in the Non Uniform Sampler (NUS).

The Non Uniform Wavelet Bandpass Sampling (NUWBS) on the other hand exploits the
mutual incoherence between the frequency and time-frequency domain, making it particularly
fitted to signals sparse in the latter.

2.2.1 Non Uniform Sampler (NUS)

The Non-Uniform Sampler (NUS) positions itself as the first compressive receiver. Based on
ideas dating back to the 60s on spatially sparse antenna arrays subsampling [91], J. Laska,
S. Kirolos et al. [92] formalize random sampling into the CS framework as early as 2006. As
pictured in Figure 2.4, the principle of the NUS is to sample the incoming signal at intervals
irregularly spaced in time by taking a subset of the Nyquist-regularly spaced samples (only
black circles). The device, whose block diagram is presented in Figure 2.5, is composed of a
Sample-and-Hold stage controlled by a Pseudo-Random Bit Sequence and of an ADC operating
at the shortest sampling period between two samples. Formally, the process is described by:

y = Rx = RFH x̃ (2.7)

where R is a M.LxN.L matrix containing 0 and 1 that randomly subsamples the signal in
the time domain and it is recalled that x̃ is the Discrete Fourier transform of the signal x.
Use of a Non Uniform Sampler for Spectrum Sensing has been widely investigated in [93], in
particular the choice of an optimal R. The time-domain sensing matrix of the NUS is pictured
in Figure 2.6, with a highlight on the MxN sampling pattern. The way of implementing the
clocking subset patterns may rely on different strategies:

• Periodic non-uniform sampling (PNUS), also known as Multicoset sampling [94], corre-
sponds to the periodical repetition of a stored non-regularly spaced sampling pattern. In
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Figure 2.4: Sketch of time sample selection in the Non Uniform Sampler.

Figure 2.5: Block diagram of the NUS.

practice it consists of M parallel channels with subsampling factor N , and initial shifts
pm (1 ≤ m ≤M , 1 ≤ pm ≤ N) determined by a pattern P = [p1— pm]T . Hence the lth

sample in the mth channel is given by:

ym[l] = x((lN + pm)TNyq), 1 ≤ m ≤M

• Randomized non-uniform sampling (RNUS) exploits one on-chip randomly generated
subsampling sequence for the whole set of time intervals [49] allowing for flexible under-
sampling rate adjustment.

• Level-triggered non-uniform sampling (LTNUS) operates with a grid determined by the
randomized (through a feedback loop) zero crossing points of the one-bit quantized
representation of the input signal [95].

The post-processing is computationally relatively simple, enabling quick recovery [96].
However, taking less samples may decrease the average sampling rate but does not suffice to
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Figure 2.6: Sensing matrix and process of the NUS (canonical formalism).

alleviate completely the Nyquist rate constraint since two subsamples could be separated from
just one Nyquist bin (possibly a couple of bins if the pattern is well-chosen). Also the Track-
and-Hold circuitry still needs to track a Nyquist-rate varying input, even if the conversion
lasts longer [81]. A major drawback is that a power-greedy Nyquist rate clock is still required
to synchronize the shifters on each branch [97]. A second issue is that the NUS is extremely
sensitive to clock jitter [72].

2.2.2 Non Uniform Wavelet Bandpass Sampling (NUWBS)

The principle of Non Uniform Wavelet Sampling (NUWS), introduced lately by M. Pelissier
and C. Studer [98], is to perform a wavelet transform preprocessing before the non uniform
sampling step to introduce more degrees of freedom and alleviate some implementation issues.
Concretely, the NUWS correlates the input signal with a set of wavelets with variable time
support τ and central frequency fc, integrates over the support of each wavelet, and subsamples
the resulting wavelet coefficients. The corresponding block diagram, which is similar to the
NUS block diagram except for the W preprocessing block, is pictured in Figure 2.7. Hence
the Dirac stream sampling scheme of the NUS is replaced by a time-subsampled wavelet comb
of variable parameters, namely central frequency, sampling instant and wavelet envelop linked
to its scale. Non Uniform Wavelet Bandpass Sampling (NUWBS) is a variation of the NUWS
based on bandpass sampling techniques and adapted to RF multiband signals. A graphical
comparison of the sampling mechanisms of NUS, NUWS and NUWBS in descending order is
provided in Figure 2.8. In particular the Ts-uniform spacing of the wavelets in the NUWBS
scheme is brought to light. Different colors correspond to different wavelets as the parameters
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Figure 2.7: Non Uniform Wavelet Bandpass Sampling Block Diagram.

τ and fc can be chosen different. The Gaussian envelope depicted in dark gray varies with
τ . Virtual sample instants that are not selected by R are depicted with a light gray Dirac
instead of a black Dirac.

Figure 2.9 represents the NUWBS operating principle in more detail. Formally the sensing
process is described by:

y = RWHx = R(FW )H x̃ = RWHF−1x̃ (2.8)

where R is a M.LxW matrix that subsamples the wavelet frame WH of dimension WxN.L,
potentially over-complete since W ≥ M.L. Hence compression is obtained by two combining
effects, non uniform sampling by R of the possible time delays and folding of the spectrum by
WH . The operations can be parallelized or serialized, in which case x̃ is considered stationary
over the different correlations. Whereas the NUS subsamples the inverse DFT matrix, eq.
(2.8) highlights that the NUWS subsamples the conjugate transpose of the Discrete Fourier
Transform of the wavelet frame.

From [98], the Fourier representation of the wavelet atoms Ψ = (FW )H for central fre-
quency fc and time shift δk with choice of a Gaussian windowing defined by its time spreading
parameter τ is given by:

Ψfc,δk(f) = (τ
√

2π)1/2e−j2πδkfe−(πτ(f−fc))2
(2.9)

Compared to the NUS for example, the NUWS reduces the bandwidth of the Sample-and-
Hold due to mixing and low-pass processing, and avoids the use of Nyquist-rate clocks or
code sequence. Compared to bandpass subsampling, the selection of adequate wavelets in
the NUWBS allows to attenuate the out-of-band noise and interferers by focusing on the
subbands of interest without loosing the information from the rest of the spectrum. The
three offered degrees of freedom (sample time instants, wavelet bandwidth, center frequency)
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Figure 2.8: Sampling patterns of NUS, NUWS and NUWBS, inspired from [98].
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Figure 2.9: Non Uniform Wavelet Bandpass Sampling for a single branch, inspired from [98].
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are particularly favorable in order to cope with the challenge of changing environments. In
contrast to the other immutable architectures with e.g. a static number of channels, this
flexibility enables adaptive approaches. Note that generating wavelets in the time domain is
indeed very similar to generating pulses for ultra-wideband (UWB) applications. It has been
shown recently that power-efficient implementation is possible [99].

2.3 Random Demodulation

The concept of Random Demodulation gathers compressive acquisition schemes inspired from
Direct-Sequence Spread Spectrum (DSSS) receivers, where the input signal is modulated by
a high-rate pseudo-random sequences, low-pass filtered and then demodulated during the
reconstruction. The Random Modulation Pre-Integrator (RMPI) uses integration to reduce
the dimension of the signal whereas the MWC uses ideal low-pass filtering. They share the
same key principle but this difference implies a different modeling of the input signal. The
Compressive Sensing Filter (CSF) inspired from the Random Convolution theory uses random
phase modulation.

2.3.1 Random Demodulator (RD)

J. Laska, S. Kirolos et al. [100] also laid the foundation for the implementation of RF receivers
based on random demodulation in 2007. In this approach, the RF signal is correlated by
analog means with a Nyquist-rate sequence p(t) of pseudo-random ±1, integrated over a
time window, and sampled uniformly at low rate. Thus the burden of performing high-rate
sampling is alleviated by high-rate mixing. The Random Demodulator (RD) refers usually to
the one-branch variant whereas the Random Modulation Pre-Integrator (RMPI) refers to the
multi-branch variant. The corresponding architecture which includes a mixer, an integrator
and a low-rate ADC is featured in Figure 2.10. The process in the spectral domain is pictured
in Figure 2.11. It highlights that mixing a tone with a random signal amounts in the frequency
domain to shifting a spectrum that is approximately white noise. As different shifts of the
noise spectrum are nearly orthogonal, it is then possible to identify amplitude and frequency
of few tones from low-rate samples according to the signature of the noise. Formally, the
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sensing process is described in the time domain by:

Φ =

φ1 0 . . .

0 φ2 . . .

. . . . . . . . .

 =



±1 ±1 ... ±1 0 ... ... 0
...

±1
. . . ... ±1

...
. . .

...
...

...
...

. . .
...

...
. . .

...
...

±1 ±1 ...
. . . 0 ... ... 0

...

0 ... ... 0 ±1 ±1 ... ±1
...

...
. . .

... ±1
. . . ... ±1

...
...

. . .
...

... ...
. . .

...
...

0 ... ... 0 ±1 ... ... ±1
...

... ... ... ... ... ... ... ... ...



(2.10)

where each Φl∈[[1;L]] is a MxN subblock containing different random ±1, drawn typically from
a Bernoulli distribution.
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Figure 2.10: Random Demodulator block diagram.

One can note that the structure of the Random Modulation Pre-Integrator is similar to
the one of a multi-user receiver in Coded-Division Multiple-Access (CDMA) communication
system [101, 102], with a front end composed of a bank of matched filters (to the codes of
different users), composed in each branch by despreading (multiplication by one code), inte-
gration (low pass filter), and sampling operations.

Y. Juhwan [103] proposes a 90nm CMOS technology implementation of the RMPI for
impulse radar detection within 100MHz− 2GHz. A benchmark with respect to Nyquist rate
converters regarding jitter and aperture error and power consumption is established in [48].

Since the clock is uniform, Random Demodulators are less sensitive to timing jitter than
Non Uniform Samplers [72]. However, the pseudo-noise generator must still run at the ex-
pensive Nyquist rate. And the dictionary model represents a severe limitation as it implies a
high sensitivity to the grid choice and a computationally-complex reconstruction process. The
multitone model for instance is not adapted to real time processing [28] because the dimension
of the sensing matrix with a reasonable grid spacing is too large.
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Figure 2.11: Action of the Random Demodulator on a pure tone, inspired from [100].

2.3.2 Modulated Wideband Converter (MWC)

Similarly to the RMPI, the Modulated Wideband Converter relies on analog multiplications
with pulse-shaped pseudo-random code sequences, whose elements are at the Nyquist rate.
One major difference is that this first step is followed by ideal low-pass filtering before uniform
sampling at low rate. This results in each subband being folded at baseband with weights
linked with the mixing function. As for the RMPI, performing high-rate sampling is avoided
by spreading all the spectrum at baseband through mixing. The acquisition scheme of the
MWC is pictured in Figure 2.12 and detailed hereafter.

In each of the M parallel branches, the K-sparse (K active frequency subbands) input
signal is mixed with functions based on codes. For each branch m ∈ [[1;M ]], the mixing
function pm(t), pictured in Figure 2.13, is Tp-periodic and consists, within each period, in a
code am,. of N elements, shaped with e.g. rectangular chip pulses of period Tc.

The input spectrum is thus convolved with a fp-spaced Dirac comb so that each band is
weighted by the corresponding Fourier coefficient of the code and the whole spectrum is aliased
at baseband. Hence diversity is created because each linear combination of active subbands is
different. The last step consists in low-pass filtering (h(t) in Figure 2.12) with cut-off frequency
fc = 1/2.Ts and uniform sampling at fs. Unless stated otherwise, the canonical version where
fs = 1/Ts = fp will be considered. Because they run at the Nyquist rate, the mixing codes
represent most of the energy consumption of the MWC.

Appendix B details formally the acquisition process for a Modulated Wideband Converter
and demonstrates that the coefficients b[m,n] correspond to the Fourier coefficients of the
time domain mixing codes pm(t) in the mth branch for index n−bN2 c−1. The result, which is
established by Y. Eldar in [81], is detailed more thoroughly and with the notations introduced
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Figure 2.13: Mixing function pm(t).

in this work for sake of comprehension. Thus the MWC sensing matrix can be written, in
the canonical formalism as in Figure 2.3a or in the compact multiband formalism as in Figure
2.3b with b[m,n] as computed in the Appendix B.

As stated earlier, Random Demodulators differ from the MWC regarding the expected
signal model, which is for the latter a sum of analog subbands. This corresponds in terms of
block diagram to the fact that the MWC uses an ideal low pass filter with a finite frequency
response, localized in frequency but not in time. Whereas Random Demodulators use an ideal
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integrator with a finite impulse response, localized in time but with infinite spectral support.
This difference in representation models leads to better performances of the MWC regarding
robustness to model mismatch, hardware complexity and computational loads [1] .

Note also that non-ideal time-domain properties have no effect on the MWC as long as
spectral properties are preserved [1]. Also the ideal low-pass filter, which would be difficult
to implement, can be replaced by any filter fulfilling the Nyquist intersymbol interference
(ISI) criterion for symbol frequency fp [104]. However, compared to other receivers, an MWC
would yield poor performance if inputs are time-dependent like Radar pulses [28] because a
static spectrum needs to be assumed on many time samples. A calibration process based on
injecting consecutive sinusoidal inputs at incrementing rates is described in [84].

The Quadrature-Analog-to-Information-Converter (QAIC) system proposed by [105] is a
variation of the MWC that performs frequency down-conversion of the real-valued signal into
a baseband complex-valued signal (in phase and quadrature low-pass components) before the
analog mixing with the pseudo-random codes. Reducing the analyzed bandwidth allows to
use code sequences with shorter length and lower frequency and is often justified for cognitive
radio applications, where the entire spectrum does usually not need to be scanned. Energy
consumption has been estimated [6] to be potentially an order of magnitude lower than the
MWC, since the code generation is the most power-greedy part. Of course frequency downcon-
version implies in return the issue of I/Q mismatch. Encouraging performances in interferer
detection were presented in [6]: the QAIC detects interferers in the spectrum between 2.7GHz
and 3.7GHz with a 4.4µs sensing time for a 20MHz resolution bandwidth and a consumption
of 81mW . The interested reader is referred to Appendix C for a more detailed numerical
benchmark.

2.3.3 Compressive Sensing Filter (CSF)

The Random Convolution theory proposed by J. Romberg [106] and its application to Com-
pressive Sensing Filters (CSFs) equates to a random dephasing of the frequency subbands
through convolution with a filter impulse response. It is shown in [106] that such an approach
is universal, which means that it can tackle signals that are sparse in any domain. More
notably, it is particularly suited for signals sparse in the time domain. Preservation of the
time structure requires precise relationships between the phases of the Fourier coefficients,
which will be destroyed by the random filtering. Hence it is ensured that the information is
not concentrated anymore in the measurement (time) domain. The acquisition process can
formally be described by following equation:

y =
1√
N
RF−1DFx (2.11)

where D is a N.LxN.L diagonal filtering matrix that must satisfy additional conditions
(unit magnitude coefficients drawn from a uniform distribution and conjugation between two
halves) and R is a M.LxN.L subsampling matrix. In [107], R subsamples with a regular
spacing the time domain, while in the more general framework of [106], R selects a subset
of M rows out of N . The foreseen implementations with random phase filters as in [107]
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did however not meet success for wideband applications because affecting only phase over a
wide bandwidth is horrendous from an implementation point of view, as magnitude must be
preserved over all frequencies.

Note a certain similarity between Random Convolution and a Modulated Wide-
band Converter with mixing codes that have random phases but constant magnitudes, a
device which would then also operate a simple dephasing. However, a notable difference lays
in the reduction of the signal dimension, which is done by subsampling the time representation
for Random Convolution and by filtering the spectral representation for the MWC.

2.4 Variable Rate Sampling

It is first recalled that Bandpass sampling [108] consists in subsampling under the Nyquist
rate with a carefully chosen frequency fs. The output spectrum is given by:

ỹ(f) =
+∞∑

k=−∞
x̃(f − kfs) (2.12)

Variable Rate Sampling corresponds to Bandpass Sampling, carried out with different sampling
frequencies fs. It relies on the fact that with different sampling rates, the spectrum folds in a
different manner, hence aliases happen differently. In the case of Multirate Sampling (MRS),
a predetermined set of sampling frequencies is used in each of the parallel branches. But
also the Nyquist Folding Receiver (NYFR) can be considered to be a variable rate sampling
architecture, with a rate that is varied continuously.

2.4.1 Multirate Sampling (MRS)

Multirate Sampling is based on the fact that since each branch provokes frequency aliases
between different frequencies, it is possible to locate bands by comparing the spectra. Figure
2.14 pictures the block diagram of Multirate Sampling, which consists of M branches with
bandpass sampling at different frequencies. Among Multirate Sampling, a distinction can be
made between what is called asynchronous and synchronous multi-rate sampling.

• Synchronous Multirate Sampling [109, 110], represented in Figure 2.15, implies that the
sampling starts simultaneously in all channels.

• In Asynchronous Multirate Sampling, the target application is energy detection so the
phase information is not needed [97]. Hence synchronization between the channels is not
required, therefore hardware design constraints are relaxed and the calibration effort is
reduced.

The choice of an optimal set of undersampling frequencies, based on coprime integers, is
detailed in [110, 111]. The main advantage of this approach is that it does not need a Nyquist
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Figure 2.14: Block diagram of Multirate Sampling.

Figure 2.15: Multirate Sampling Sensing Matrix.

rate clock. Another asset is its robustness when the signal is not very sparse (>50% subband
occupation typically). Compared to the NUS, less branches are needed and the processing time
is also relatively short. However, there remains the need of a Nyquist-bandwidth front-end
and the issue of high sensitivity to jitter.

2.4.2 Nyquist Folding Receiver (NYFR)

The Nyquist Folding Receiver (NYFR) [42] performs variable rate chirp sampling so as to
modulate the input spectrum in frequency and bandwidth. As such, it could also be seen as
hybrid between (structured) Non Uniform Sampling and Random Demodulation (but with a
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sub-Nyquist pulse rate) approaches. As pictured in Figure 2.16, the folding is achieved by
undersampling the input spectrum according to a stream of time-modulated short pulses and
then interpolating via continuous-time low-pass filtering.
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Figure 2.16: Nyquist Folding Receiver.

The sampling operations mark the original spectrum bands with frequency-dependent
signatures in the following manner: The sampling rate is on average fs1 but varies sinusoidally
between two values fs1 + ∆ and fs1 − ∆, with a given modulation index MI according to
a narrowband clock modulation Θ(t). The aliased signal will change frequency over time
since the sampling rate is changing over time. The modulation scale factor MI is an integer
corresponding bijectively to the fold (or alias) number, i.e. the corresponding support element.
As a result, signals at the output of the interpolation filter are modulated by MI.Θ(t).
For instance if, as in [42], a sinusoidal input is considered:

x(t) = cos(ωct+ Ψ(t))

where Ψ(t) is the information content of the input signal. Then the output is given by:

y(t) = cos(ωf ± βΨ(t)−MI.Φ(t))

where:

• ωf = |ωc − ωs1kh| gives the folded spectrum orientation (positive or reversed)

• kh = b ωcωs1 c is the sampling harmonic

• MI = β.kh is the induced modulation factor

The acquisition matrix corresponding to these operations is pictured in Figure 2.17.
A major asset of the Nyquist Folding Receiver lies in its ability to sample high analog
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Figure 2.17: Sensing matrix and process of the Nyquist Folding Receiver.

input frequencies without the need of any high-speed components operating at the Nyquist
rate for the maximum analog input frequency. Another perk is the possibility to use fast and
power-efficient recovery techniques instead of traditional algorithms, since the NYFR preserves
essentially the signal structure. The solution is robust to mismatch with the frequency basis
as the samples do not need to correspond to a grid defined by the Nyquist rate. As magnitude
is preserved, it is also less sensitive to noise folding than other architectures such as the MWC,
because there is no subband where the power is relatively amplified. However, on the other
hand, a stumbling point lies in the high sensitivity to noise at the zero-crossing risings (jitter).
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2.5 Conclusion

A large variety of Analog-to-Information-Converters has been put forward in order to make
the promises of Compressive Sensing to overcome the Nyquist rate come true. In addition to
the main sparsity concept, AICs exploit several ideas originating from traditional RF receivers
such as Spread Spectrum and Bandpass Sampling, in order to create diversity in miscellaneous
ways. For instance, random bandpass sampling techniques (Nyquist Folding Receiver, Multi-
rate Asynchronous Sub-Nyquist Sampling) take inspiration from bandpass sampling to create
different frequency aliases that can be disentangled. Also random pre-integrators (Random
Demodulator, Modulated Wideband Converter) perform coding by the modulation with a
high-rate random number generator.

It appears though that even if the signal is sampled under the Nyquist rate, many archi-
tectures still require Nyquist-rate components, which is disappointing. Another issue seems
to be the lack of versatility of most architectures, which is inconvenient for cognitive radio ap-
plications. Prohibitive reconstruction costs, unavoidable noise folding that degrades the SNR
and sometimes large silicon area due to parallelization of the architecture are other topics of
concern. Those rising technologies are still prototypes.

The following architectures are particularly encouraging with respect to the stumbling
points that have been raised:

The Quadrature-Analog-to-Information-Converter architecture (QAIC), based on a band-
passed MWC, focuses the spotlights as it enhances further the popular field-proven MWC
regarding to both power and code sequence generator simplicity. Performances presented in
[6] regarding the common issue of interferer detection in particular generate much interest.

The NYFR is a clever method combining Compressive Sampling, Bandpass Sampling, and
pulse train modulation that has the two assets of no Nyquist-rate components and signal
structure preservation for quicker restitution.

The Non Uniform Wavelet Bandpass Sampler, which does not need any Nyquist-rate com-
ponent either, is also very promising thanks to an adaptive multiscale approach. As it offers
a high degree of flexibility and adaptation, it overcomes some notorious drawbacks of AIC ar-
chitectures and presents itself as a natural choice for signals sparse in both time and frequency
in particular.

The presented receivers were conceived with the purpose of reconstruction of the original
signal from the compressed samples but they can be equally considered for partial information
retrieval purposes. In Chapter 3, some aspects of the presented receiver architectures will be
investigated further. A structural principle found across many receivers inspired by random
demodulation is the pseudo-random mixing sequences, and it is the principal bottleneck of
their implementation. Hence the choice of adequate codes is a topic that needs to be tackled
further in order to be able to yield answers to the implementation challenges. The Modulated
Wideband Converter architecture will generally be taken as baseline in this work, due to its
qualities of robustness to basis mismatch and compact sensing matrix. That is why properties
of the mixing codes will be studied and discussed for the particular instance of a Modulated
Wideband Converter, and different codes benchmarked.
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A known difficulty of the MWC is choosing appropriate periodic functions pn(t)

so that their Fourier coefficients fulfill CS requirements.

- S. Stein, O. Yair, D. Cohen, Y. Eldar, CaSCADE: Compressed Carrier and DOA
Estimation [112]

It was demonstrated that the main performance bottleneck of sub-Nyquist sys-
tems proposed to date are the pseudo-random bit sequence generators employed in
the analog frontend.

- T. Haque, R. T. Yazicigil, K. J.-L. Pan, J. Wright, P. R. Kinget, Theory and Design of a
Quadrature Analog-to-Information Converter for Energy-Efficient Wideband Spectrum

Sensing [105]

In Chapter 2, different architectures of radiofrequency receivers based on Compressive
Sampling have been presented and discussed. The Modulated Wideband Converter

(MWC) and by extension its downconverted to baseband version, the Quadrature-Analog-
to-Information Converter (QAIC), notably stood out. This is due in particular to robustness
to basis mismatch and reduced dimension of the recovery problem, qualities that are inher-
ited from the compact multiband formalism [1]. As the cornerstone of architectures based on
random demodulation is clearly the mixing codes regarding both implementation, power con-
sumption and recovery performances, it is necessary to investigate this crucial topic further,
which is at the core of this chapter. This work has resulted in the conference articles [113]
and [114].

In the first section, system aspects regarding number of branches of the MWC architecture
and generation of the code sequences will be tackled. The potential benefits of circulant
matrices from an implementation point of view will be highlighted and their performances in
signal reconstruction will be outlined.

Our contributions begin in the second section, where innovative codes which capitalize on
specific properties brought to light are introduced. A particular code family, selected because
of its interesting correlation properties, Constant Amplitude Zero Autocorrelation (CAZAC)
sequences will be featured. Then a specific instance, the Zadoff-Chu codes, will be more
precisely investigated. Based on this, a proposition of a new code matrix is formulated, in
anticipation of its evaluation.

In the third section, an original multifaceted performance analysis is presented. That
is, different code families with different row selection matrices R are compared based on
multiple criteria. In the first place, mathematical properties are addressed. To begin with,
the coherence, which is vital to limit the number of measurements and hence of parallel
branches, is computed and compared for different codes. Properties of norm and distance
preservation, crucial to ensure robustness to noise, are evaluated through two different tools.
A first estimation of the Restricted Isometry Property (RIP) is conducted via a statistical
Monte-Carlo simulation. Additionally, a comparison is lead based on the Expected RIP which
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is the probability that RIP is satisfied under furtherl prior on the input. High-level insights are
validated by means of a Matlab R© simulation platform featuring the Modulated Wideband
Converter acquisition and reconstruction process, in both noiseless and noisy settings.

Finally, a conclusion is drawn from the presented results.

3.1 From random matrices to structured acquisition

In order to implement the Modulated Wideband Converter (MWC), the degree of paralleliza-
tion i.e. the number of branches M , see Figure 2.12, should be kept small. However, less
measurements means that the manageable sparsity level K is limited, which limits the range
of application. One way to overcome this limitation is to optimize as much as possible the
information captured in each measurement by choosing very carefully the best sensing matrix
Φ while keeping in mind implementation problems. Other complementary solutions are men-
tioned in the literature, including serialized [115] or collapsed architectures [81, 116] but it is
not sufficient.

Typically, following matrices are employed: the authors in [81] use random Bernoulli
codes, the inconvenient being that it requires M.N flip-flops for their generation. In [35], a
shift register with a pattern chosen according to a criterion of high ExRIP value (cf 1.2.3.1.c)
is implemented. The authors in [117] use a circulant matrix generated from a maximal or
Legendre sequence. On the other hand, the RMPI developed by Northrop Grumman [28] or
the QAIC [6] use Gold sequences, which only exists for M = 2k − 1 where k is an integer
corresponding to the number of flip-flops [118]. Since it is typically used in Spread Spectrum
communications techniques and benchmarked in [119], Hadamard sequences are mentioned
but never chosen because not efficient for information retrieval.

3.1.1 Limitation of random matrices

Random matrices whose entries are independent and identically distributed (i.i.d.) satisfy the
Restricted Isometry Property (RIP) with high probability if the entries are chosen according
to a Gaussian, Bernoulli, or more generally any sub-Gaussian distribution [5, 23]. Therefore
in theoretical representation of Compressive Sampling, a typical way to generate Φ consists in
sampling i.i.d entries from a symmetric Bernoulli distribution taking values ± 1√

M
with equal

probability, so as to generate M vectors.
However, in practical applications the actual hardware of the sensing devices, for which

some examples have been given in the previous chapter, must be taken into account. It means
that the sensing matrix exhibits an underlying structure, a notion referred to as Structured
Compressed Sensing [120]. Also, only one instance of a random matrix can be implemented at
once. In other words, the object of interest in this study is a deterministic matrix structured
around one element (or more) which should provide ‘random-like’ properties. In the case of
receivers based on random demodulation, that would be the mixing code sequences. These
‘random-like’ properties, that are required to guarantee recovery, can be the consequence of
the element being one draw from a random distribution. But they can also derived from the
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deterministic definition of an expression adequately chosen. Since generating true randomness
is, to say the least, not an easy task in hardware, the latter approach is promising for practical
purposes. The randomness aspect is exploited fruitfully in other application contexts, e.g. in
compressive imagers [121] or optical computing [122], however in compressive radiofrequency
receivers, it is perhaps not the most suitable option.

Another potentially misleading theoretical concept would be universality, meaning that
the recovery guarantees given by a sensing matrix must hold independently from the basis or
dictionary Ψ in which the signal is sparse. This is another reason why matrices with entries
drawn from a standard random distribution, which ensures this property, are often used as
a reference in the mathematical framework of CS. However, imposing such constraint to a
concrete architecture is not mandatory. In this study it is known that the signals are sparse
in the frequency domain, so it is possible to explicitly take Ψ, the IDFT, into account in the
construction of Φ. Matrices that perform poorly in a very general frame could perform very
well in a specific setting, in this study a signal sparse in frequency or time.

Therefore the goal is to find practical matrices that are incoherent with bases such as time
or frequency domain and not necessarily with any basis.

3.1.2 Circulant matrix structures

3.1.2.1 Motivation and definition

Besides the performance of the sensing matrix with respect to information retrieval, the hard-
ware cost of code generation must be considered. Toward this end, circulant matrices which
only require to generate one code stand out. Additionally, they exist for every number of row
M ≤ N and the structure in the matrix should improve the speed of recovery computations.
For example, in [123], specific variations in relaxation reconstruction algorithms are proposed
in order to seize benefit of the structure of the circulant sensing matrix, enabling much faster
processing of the reconstruction.

The possible use of a matrix whose M ′ first sequences were shifted to create the (M −M ′)
last rows was quickly mentioned in [81] regarding the MWC. It is reported that there was
no empirical performance degradation for M ′ = M/5. Therefore circulant matrices will be
investigated in the following.

As represented in eq. (3.1), circulant matrices, noted with C, can be defined by a shift
of the N elements of the first row c in the time domain or by the diagonal σk∈{1,...,N} in the
frequency domain [123].

C =

cN cN−1 . . . c1

c1 cN . . . c2

. . . . . . . . .
...

cN−1 cN−2 . . . cN





temporal code in the first branch

= F−1

σ1 0 0

0
. . . 0

0 0 σN

F (3.1)

where F is the Discrete Fourier Transform (DFT) matrix. This is simply because the appli-
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cation of a circulant matrix C to an input vector x corresponds to the discrete convolution
of x with c, which amounts in the frequency domain to a multiplication with the Fourier
Transform of c.

3.1.2.2 Typical performances

As stated in [120], standard techniques used in proving CS guarantees cannot be employed
for a subsampled circulant matrix, since entries of the matrix are not independent. However,
different methods still allow to yield guarantees. In the following, state-of-the-art proofs of
the good performances of circulant matrices for Compressive Sampling are sketched, starting
with the most empirical ones.

A first contribution are the simulations presented in [123]. Performances of circulant
matrices defined by one random sequence are compared toward those of matrices where all
elements are randomly drawn. The sensing matrix is given by Φ = RC, where R is a row
selection matrix which can be random in different extents, as detailed in Table 3.1, last column.
Ψ is the identity matrix or the Discrete Cosine Transform (DCT) matrix. Input signals are
K-sparse and follow various distributions e.g. independent and identically distributed (i.i.d.)
Gaussian values with randomly distributed support.

Table 3.1: Experiment settings, from [123], Φ = RC.

C-type R-type
R1 Circulant

1st row given
1st row i.i.d. Gaussian

real
P1 First m rows

R2 1st row i.i.d. Bernoulli
D1 Circulant

C = F ∗DF ,
D = diag(d)

di random phase, |di| = 1
P2 Equally spaced m rows

D2 di random phase
D3 D1 without conjugate symmetry complex

P3 Randomly spaced m rowsI1 i.i.d. random
Non Circulant

i.i.d. Gaussian
real

I2 i.i.d. Bernoulli

Whether for random distributions (I1, I2), for circulant matrices with random diagonal
elements (D2) or for others described in Table 3.1, it appears that the chosen evaluation
metric, the average frequency of a relative reconstruction error lower than 10−3, is nearly
identical for all signals. Therefore it is empirically proved that matrices tailored for signals
sparse in specific bases can perform as well as their totally random counterpart, even with a
non-random subsampling operator (such as P1 or P3). This good performance is explained
by the incoherence between circulant matrices and the time domain. D1 and D3, which
matches in fact the modeling of a Compressive Sensing Filter (CSF) (2.3.3), are moreover
incoherent with any orthonormal sparsifying basis with high probability [106].

As well, in [117], simulation results show that circulant matrices based on Legendre se-
quences perform better than Bernoulli matrices in support recovery tasks.

More analytical considerations are exposed in [124]. If C is a unitary deterministic cir-
culant matrix of dimension NxN with mutual coherence µm(CF ) = O(1), sampled ran-
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domly by R of dimension MxN , then uniform recovery (cf. 1.2.3.1.f p.26) is achieved with
M ≥ O(K(logN)4) and non-uniform recovery with M ≥ O(KlogN) measurements. Uniform
recovery conditions are satisfactory from a mathematical point of view but non-uniform re-
covery is more adapted for the purposes of this work, which is more concerned with statistical
success.

As it is not easy to ensure a unitary C using the time domain approach, the authors of
[124] propose to use the frequency-domain approach, i.e. generating the matrices from the
chosen sequence σ. Yet C is a unitary matrix if and only if σ is a unimodular sequence,
i.e. the module of all coefficients is 1. It is then pointed out that for signals sparse in time
and frequency, a randomly sampled deterministic sensing matrix generated in the frequency
domain by a unimodular sequence σ has mutual coherence bounded by O(1) if σ has unimod-
ular Inverse Discrete Fourier Transform (IDFT), which is notably the case if σ is a perfect (or
almost perfect in a certain extent) sequence. The definition of perfect sequences is that they
have ideal correlation properties i.e. the cyclic autocorrelation function Γxx(τ) for a sequence
x of size N and a delay τ is a centered Dirac (Zero AutoCorrelation):

Γxx(τ) =
1

N

N−1∑
n=0

x[n]x∗[n+ τ ] = δ(τ), τ ∈ Z

Theoretical guarantees regarding the required number of samples M to satisfy the Re-
stricted Isometry Property (RIP) and high probability of non-uniform recovery are compared
for the codes analyzed in [124] against earlier state-of-the-art in Table 3.2.

Table 3.2: Comparison between different circulant matrices ΦΨ, from [124].
Note that a typing mistake happened in the original table for non-uniform recovery in random convolution.

Sensing Random Partial Circulant Coherence bounded circu-
matrix ΦΨ Convolution [106] matrix [125, 126] lant unitary matrices [124]

Filter coefficients Random Random Deterministic
Subsampling matrix R Random Deterministic Random
Sparsifying Transform Ψ Arbitrary IN F−1

Restricted Isometry Prop. M ≥ O(K(logN)5) M ≥ O(K(logN)4) M ≥ (K(logN)4)

Non-uniform Recovery M ≥ O(K(logN)2) M ≥ O(KlogN) M ≥ O(KlogN)

An improvement compared to random convolution of the number of required measurements
M to satisfy RIP and non-uniform guarantees appears for the sensing matrices in the last
two columns of the Table, partial circulant matrices and coherence bounded circulant unitary
matrices. This improvement is explained by the fact that the mutual coherence of the random
filter is only bounded by O(

√
logN) for an arbitrary sparsifying transform Ψ. Whereas for a

specific sparsifying matrix, identity I or inverse Discrete Fourier Transform F−1, it is known
that the proposed deterministic sequences have mutual coherence O(1).

In [127], the interest of circulant matrices built on perfect sequences is developed further.
It is noted that perfect sequences have a constant discrete periodic spectrum according to the
Wiener-Khinchin theorem. Hence their eigenvalues, which are given by the DFT of the first
row, are unimodular, and the Power Spectral Density (PSD) is preserved, a quality which
provides robustness to noise.
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The Subsampled Circulant Matrix based Analogue Compressed Sensing (SCM-ACS) ar-
chitecture proposed in [78, 80] uses randomly sampled complex circulant Zadoff-Chu codes,
which are perfect unimodular sequences. One very promising result of recovery simulation is
shown ([80], Fig. 4.6) in the study, however, a detailed high level metric analysis is lacking.
The authors only argue that the RIP constant (see Sect. 1.2.3.1) of the sensing matrix will be
the same as the RIP constant from the row selection matrix R, since the matrix consisting of
Zadoff-Chu codes is unitary. This is an interesting remark but not a decisive argument.

Considering the promising nature of the exposed results, properties of Constant Amplitude
Zero Autocorrelation (CAZAC) sequences, and in particular the Zadoff-Chu (ZC) sequences,
will be investigated in details in the following. Based on these considerations, a new MWC
sensing matrix B combining the properties sketched above and an idea originating from Ran-
dom Convolution is then proposed. Afterwards, a thorough benchmark of the novel sensing
matrix is conducted with respect to the state-of-the-art in order to evaluate the respective
recovery performances. Considering its thoroughness, this benchmark methodology is another
contribution of this work,.

3.2 On the interest of CAZAC sequences for structured MWC
acquisition

A specific code family, Constant Amplitude Zero Autocorrelation (CAZAC) sequences, will be
introduced, and one specific instance of them, Zadoff-Chu codes, investigated further. Based
on this, a proposition of innovative codes, which have the benefit of being real-valued, is made.

3.2.1 Constant Amplitude Zero Autocorrelation (CAZAC) sequences

CAZAC sequences have two distinctive features:

• unimodularity, i.e. unit magnitude (Constant Amplitude) for all elements

• ideal cyclic autocorrelation function Γxx(τ), a property also called being a perfect se-
quence:

Γxx(τ) =
1

N

N−1∑
n=0

x[n]x∗[n+ τ ] = δ(τ), τ ∈ Z

These properties are interesting because no real-valued binary perfect sequence is known [124]
except the sequence [1; 1; 1;−1] for N = 4, and therefore codes usually proposed for the MWC
so far are suboptimal.

For circulant codes, only one instance is considered to generate the matrix, so the key
point will be the cyclic autocorrelation rather than cyclic cross-correlations.

Also the Fourier Transform of an unimodular perfect sequences is another unimodular
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perfect sequence [128], which implies that the Power Spectral Density (PSD) of the sequence is
constant along the frequency. Note that an expression for the Fourier Transform of generalized
chirp-like sequences is established in [129], which could be useful to study properties for wider
class of codes.

3.2.2 One example: Zadoff-Chu codes

Coming from the field of Spectrum Spreading techniques, one interesting instance of such
unimodular perfect codes are Zadoff-Chu codes (ZC) [130]. Zadoff-Chu, or Frank-Zadoff-Chu,
sequences are complex-valued and constant envelope codes known for long time in Radar [131]
and more recently for synchronization in Long-Term Evolution (LTE) mobile communications
systems due to their perfect cyclic autocorrelation function. They are also used to build
chirp-based orthogonal modulation dictionaries for energy-efficient long range transmission as
in LoRa (Long Range) communications [132] or Turbo-Zadoff-Chu systems [133].
Zadoff-Chu codes are defined by:

ZCR[k] = e−jπRk(k+1)/N , N odd (3.2)

ZCR[k] = e−jπRk(k)/N , N even (3.3)

for k ∈ [[0;N − 1]], R prime to N

where R is called the index of the sequence. For illustration purposes, an example of Zadoff-
Chu sequences highlighting real and imaginary parts is depicted in Figure 3.1 for N = 64.
There are as many sequences of length N as number of possible R prime to N , R ≤ N . If N
is prime, a square matrix can be generated.

Additionally, they have constant cyclic cross-correlation under certain conditions. In par-
ticular |Rxy(τ)| = 1√

N
for prime N [134].

Note also that with prime N , the Discrete Fourier Transform of a Zadoff-Chu sequence is
another time-scaled Zadoff-Chu sequence [135]:

Z̃CR[k] = ZC∗R[R−1k]ZCR[0]

In the particular case (R = 1, N even), a simple expression of the DFT is derived in [136]:

Z̃CR[k] = ZCR[k]exp(
−jπ

4
)

3.2.3 Proposition of an original mixing code sequence

In [106], it is pointed out that if a simple Hermitian symmetry condition is respected on the
elements σk∈{1,...,N} of a circulant matrix, it is possible to generate a real-valued circulant
matrix, which is of main interest compared to [117] for instance. For even N , the condition is
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Figure 3.1: Real and imaginary part of Zadoff-Chu codes [R = 1, N = 64].

given by:

k ∈ {1;
N

2
+ 1} σk = ±1 with equal proportion

for 2 ≤ k < N

2
+ 1 σk s.t. |σk| = 1

for
N

2
+ 2 < k ≤ N σk = σ∗N−k+2

(3.4)

These real-valued circulant matrices can be viewed as a specific case of the Random Convolu-
tion introduced by [106] where phases of σk are supposed to be uniformly distributed. Note
that preservation of the power in the frequency domain through multiplication with a uni-
modular sequence implies, as in the Nyquist Folding Receiver for example, a better robustness
to noise because the power of no frequency subband is amplified compared to the others.

Based on previous elements, a new, real-valued, matrix which will be referred to as ‘ZC circ
real’ and such that A = R.ZCcirc real is proposed in this work. That is, A, the MxN code
expression in the time domain, is the subsampling by R of the proposed ZCcirc real. This
real-valued circulant matrix is obtained as the time domain expression of a diagonal matrix
in the frequency domain, diagonal which is defined by the symmetry condition (3.4) imposed
on a Zadoff-Chu sequence of length bN/2c, as pictured in eq. (3.5):

ZCcirc real = F−1


1 0 0 0

0 ZCR[2] 0 0

0
. . . . . . 0

0 0 0 ZC∗R[2]

F (3.5)

Note that despite the similarity of performing pseudo-random dephasing, this is intrinsically
different from the Random Convolution (see 2.3.3), as dimension reduction is performed in
the frequency domain for a Modulated Wideband Converter through bandpass whereas the
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dimension reduction in the Random Convolution is performed by subsampling the time di-
mension.

The matrix referred to as ‘ZC circ tmp’ on the other hand consists in the circulant matrix
defined by one complex-valued Zadoff-Chu sequence as the first row in the time domain.

In the next Section, proposed codes are compared against codes from the state-of-the-art
according to various criteria.

3.3 Analysis of the reconstruction performances of the sensing
matrix

Different codes will be evaluated based on a thorough comparison methodology including
both theoretical and practical metrics. First, the high-level aspects of coherence and isometry
properties of the sensing matrix ΦΨ are investigated. Then performances are confirmed by
means of a simulation platform mimicking the MWC acquisition and reconstruction process.

3.3.1 Coherence

This analysis begins with the comparison of the coherence of matrices ΦΨ typically bench-
marked in classical Compressive Sampling (Bernoulli [81], Gold [6]) and more advanced tech-
nics (a circulant Zadoff-Chu code in the time domain ‘ZC circ tmp’ [78, 80], our original
proposition ‘ZC circ real’). Coherence is essential because, as seen on p.26, it is proportionally
related to the degree of sparsity K that can be handled and hence with the number of required
branches M .

Comparisons will be carried out for a specific architecture, the Modulated Wideband Con-
verter (MWC), and therefore the sensing matrix to be analyzed is not solely the temporal
code pattern A. Indeed, as detailed in Appendix B, the sensing matrix for the MWC frame-
work is given by B = AF̄D where F̄ is a reordered Discrete Fourier Transform matrix, A of
dimension MxN matches the code in the time domain and D is a diagonal matrix accounting
for the decay of the code’s Fourier transform at high frequencies. Therefore the analysis must
be lead on B = AF̄D . In [35] and [117], it is pointed out that if a random A is considered,
D and the permutation matrix of F̄ can be ignored in the analysis because the input signal
z or Dz would have the same sparsity. In fact F̄ cannot be ignored with deterministic codes
but is equivalently replaced by F , as sorting colmuns does not matter. And D can be ignored
for the coherence because of the column normalization taking place which cancels the effect
of D. Hence for the computation of the coherence, AF will be considered.

The choice of a code family is an important part, but the choice of R, the subsampling
of the square matrix must not be neglected either. The question of whether it is possible
to improve performances by a specific and non naive row selection within the square sensing
matrix will also be investigated.
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• Publications [5, 16, 33, 123, 137] often stay on the theoretical level and use random
selectors, typically Gaussian or Bernoulli with zero mean. Those approaches will be
pictured with a uniform distribution (noted ‘rand’).

• Naive selectors are taking the first lines (noted ‘fl’) or performing regularly spaced sub-
sampling (noted ‘sub’).

• Another idea in this study was to test a sparse ruler row selector on circulant matrices.
A set Ω ⊂ {0, . . . , L−1} is a length (L−1) sparse ruler [138] if for every l ∈ {0, .., L−1},
there exists at least one pair of elements (k, k′) in Ω satisfying k− k′ = l. Thus a sparse
ruler guarantees that all distances are represented as a difference between two elements
of the selected set. Therefore it allows to capture all dephasings through a dimensionally
reduced matrix and this might perform better. Wichmann rulers [139] are conjectured to
be optimal rulers and are easy to generate so they were chosen (noted ‘Wh.’). However,
they do not exist for all (M,N) value, only very few values can be plotted for small
values of M/N .

• Exploiting the asset that coherence is easy to compute, a method for choosing a matrix
with very good coherence with the help of random selectors is also proposed. 1000

selectors are generated and for each value of M , the matrix with best coherence (noted
‘stat’) and its coherence value are extracted. Since it is much easier to generate circulant
matrices than regular ones, they should be preferred if it is shown that they also perform
better.

The coherence is computed for different values of M . The optimal Welch lower bound (cf
1.2.3.1) is drawn in dashed blue. Note that for clarity, in all figures the color represents the
code nature and the pattern represents the row selector R.

Gold codes
The study begins with Gold codes (brown), which are currently the state-of-the-art. Coher-
ences curves are presented in Figure 3.2

All curves for sensing matrices based on Gold codes have approximately the same profile,
the selection process does not seem to be a highly relevant element regarding the coherence.
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Figure 3.2: Coherence µ(AF ) comparison for Gold code matrices [N = 255].

Zadoff-Chu codes
The study is extended to Zadoff-Chu codes (dark blue)(ZC) in Figure 3.3.
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Figure 3.3: Coherence µ(AF ) comparison for Zadoff-Chu codes [N = 127, R ∈ [[1;N ]], prime
N behavior].

Non-circulant Zadoff-Chu matrices exhibit the worst possible performance, meeting the
µ = 1 limit. The explanation lies in the symmetry appearing on the antidiagonal (for sequence
indices k and k′ = N − k) of the Gramian of the matrix featuring the Zadoff-Chu code ‘ZC
circ tmp’.
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The coherence of circulant Zadoff-Chu matrices (green) is studied as well, either for a
Zadoff-Chu code in the time domain ‘ZC circ tmp’ or for Zadoff-Chu-based real-valued matrices
‘ZC circ real’, pictured in Figure 3.4. In constrast to Zadoff-Chu codes with different sequence
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Figure 3.4: Coherence µ(AF ) comparison for Zadoff-Chu circulant codes [N = 255, R = 1].

indices R, diagonal and antidiagonal coefficients of the Gramian for circulant codes ‘ZC circ
tmp’ and ‘ZC circ real’ are not equal, so the coherence is lower than 1. The second observation
in Figure 3.4 is that the proposed Zadoff-Chu-based real-valued matrices perform exactly the
same as complex-valued circulant matrices based on a Zadoff-Chu code in the time domain,
hence the notation ‘tmp+real’ in the legend because the curves are superimposed. This
validates that good circular correlation properties of the Zadoff-Chu sequences are preserved
by the symmetry condition on the diagonal.

Then it appears that circulant Zadoff-Chu matrices selected through a Wichmann ruler
outperform Gold codes. However, the choice of the size is limited and this adds a significant
constraint. Zadoff-Chu circulant matrices selected with the best random selector, whether for
a pattern defined in time (‘ZC circ tmp’) or as the half diagonal in the frequency domain (‘ZC
circ real’), yield similar values. They have significantly lower coherence than Gold codes and
also better than the Wichmann ruler, which is very promising.

Summary
Intuitions based on analytical considerations established in the previous part are therefore
confirmed by the summary graph pictured in Figure 3.5.

Zadoff-Chu-based matrices confirm that they have better coherence than matrices from
the state-of-the-art. Statistical selection proved to be the best method, capitalizing on the
advantage that the coherence is quickly computable. If these results are confirmed by the other
metrics of interest, a good strategy would be to pick selection schemes with good coherence
properties before implementation. The outcomes are encouraging because they confirm the
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Figure 3.5: Coherence µ(AF ) comparison [N = 255, R = 1], from [113].

quality of circulant matrices that have the advantage of being easy to compute, store and
manipulate.

After the coherence, another vital high-level property of the sensing matrix, preservation
of norms and distances, will be evaluated in the next subsection.

3.3.2 Isometry

As evoked in 1.2.3.1, preservation of norm and distances (isometry) plays a major role in
Compressive Sensing and in particular with respect to the noise robustness aspect [25, 26].
However, it has been mentioned that the Restricted Isometry Property (RIP) constant is NP-
hard to compute. Hence two strategies are developed in this work to approach it: first a
statistical evaluation of δK , and second, computing a theoretical guarantee under additional
assumptions, the Expected RIP.

3.3.2.1 Statistical estimation

The empirical Restricted Isometry Property (RIP) constant δK which describes norm preser-
vation of K-sparse vectors and the empirical Johnson-Lindenstrauss Lemma (JLL) constant
δ′K which describes distance preservation between K-sparse vectors are evaluated through sta-
tistical estimation. The JLL constant of order K corresponds to the RIP constant of order
2K, hence δ′K might also be noted and computed as δ2K but in this section it will be com-
puted as the constant governing the preservation of distances. Such statistical simulations
are known to miss specific pathological cases [37] and be overoptimistic. However, it could be
expected that the maximum δK and δ′K encountered in practice will almost always be close



3.3. Analysis of the reconstruction performances of the sensing matrix 77

to the maximum δNv estimated over Nv vectors.
For the RIP constant, 107 test vectors are generated, subdivided into Ns = 1000 subsets

of Nv = 10000 vectors. Each vector of length 127 has K = 10 non-zero values, uniformly
distributed on the support and with values uniformly distributed on [−0.5; 0.5]. Then vectors
are projected with a sensing matrix of dimension 50× 127 to study the variations of the norm
of K-sparse vectors through projection.

For the JLL constant, Ns = 1000 subsets of Nv = 200 vectors (Ns.
Nv(Nv−1)

2 = 19.900.000

distances) are similarly generated to study the variations of the norm of distances between
K-sparse vectors through projection.

To get an estimation of the variation of the estimation for different input vector sets, his-
tograms are established, depicting the values taken by δK in Figure 3.6 for RIP and by δ′K
in Figure 3.7 for JLL for the subsets Ns. It is reminded that the overall Restricted Isometry
Property (RIP) constant δK is given by the worst value over all input vectors from all subsets.
Following quantities are reported:

• the Restricted Isometry Property (RIP) constant δNv ,Ns and JLL constant δ′Nv ,Ns per
subset

• the average ENs(δNv) = 1
Ns

∑
Ns
δNv ,Ns of the estimation of δK and δ′K over the different

Ns subsets

• the standard deviation σNs(δNv) =
√

1
Ns

∑
Ns

(δNv ,Ns − ENs(δNv))2 of the estimation of
δK and δ′K over the different Ns subsets

0 0.1 0.2 0.3 0.4 0.5
0

40

80

120

δNs,Nv=0.36/0.39/0.27
ENs(δNv)=0.27/0.27/0.21
σNs(δNv)=0.019/0.024/0.016

δNv

C
ar

di
na

l

Gold (fl)
Random
ZC circ real (fl)

Figure 3.6: Histogram of RIP-δK estimation [Ns = 1000, Nv = 10000, K = 10], from [113].

The standard deviations being very small compared to the mean values, the estimation
methodology is validated. It appears in Figure 3.6 that RIP-δK is nearly 1.5 times smaller
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Figure 3.7: Histogram of JLL-δ′K estimation [Ns = 1000, Nv = 200, K = 10], from [113].

for real-valued circulant sensing matrices based on Zadoff-Chu codes than Gold and Random
codes (0.27 instead of 0.36 and 0.39). It appears in Figure 3.7 that JLL-δ′K is more than
1.5 smaller for circulant sensing matrices based on Zadoff-Chu codes than Random codes and
more than 12 times smaller than Gold codes (0.28 instead of 0.44 and 3.4). These results mean
that one can reasonably rely on a small norm and distance preservation bound for circulant
Zadoff-Chu-based matrices, in comparison to the codes from the state-of-the-art.

3.3.2.2 Isometry under additional assumptions: Expected RIP

The Expected RIP (ExRIP) criterion introduced in Subsection 1.2.3.1 expresses the probability
P that a matrix satisfies the Restricted Isometry Property (RIP), assuming an uniform distri-
bution of the support and random distribution of non-zero values. To the best of the author’s
knowledge, ExRIP guarantees are only established for real-valued codes, hence complex-valued
Zadoff-Chu circulant codes can not be compared. Table 3.3 shows a comparison of ExRIP
probability P computed for various codes (“This work”), benchmarked with results from [35].
Note that the value δ2K =

√
2 − 1 is presumably chosen because it corresponds to the value

guaranteeing exactitude of the convex relaxation of l0 to l1 [24].

Table 3.3: ExRIP [M = 80, N = 511, K = 24, δ2K =
√

2− 1, R = 1].

Code ZC circ real (fl) ZC circ real (stat) Random Gold (fl) Hadamard

P
This work 0.9498 0.9511 0.9270 0.9405 0

[35] − − 0.927 0.939 0
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The benchmark for random, Gold and Hadamard codes is consistent. Note that parame-
ters of [35] are more detailed in the corresponding technical report [119], but not completely,
which explains the thin discrepancy for Gold codes with different settings.

Thus three remarks: Hadamard codes are absolutely not recommended, the poor prob-
ability of satisfying the RIP is caused by high values of the coefficients β and γ (see Table
1.1) due to many peaks in their crosscorrelation function. Zadoff-Chu-based circulant codes
perform better than all other analyzed codes, e.g. the probability (1 − P ) that RIP is not
met is decreased by almost a third compared to random codes. Also, for Zadoff-Chu-based
circulant codes, a statistical best coherence row selector (‘stat’) is slightly more effective than
first row selection (‘fl’). This performance can be related to their known good correlations
properties.

3.3.3 Empirical validation of the reconstruction performances by means of
simulation platform

The aforementioned metrics (coherence, RIP, ExRIP) are not entirely sufficient to conclude
on overall restitution performances as they only shed light on specific theoretical aspects of
the acquisition process. Hence it is proposed to confirm or not the good properties outlined
in the theoretical framework by means of simulation of the Modulated Wideband Converter
(MWC) architecture. A Matlab R© platform has been built, inspired from the code available
in [116, 140]. The purpose is to validate the choice of the mixing sequences based on practical
evaluation metrics through Monte-Carlo simulations.

3.3.3.1 Simulation framework

The simulation platform that is used enables to picture the functioning of the MWC archi-
tecture more precisely than just using the sensing matrix: in particular, it accounts for the
specificity of finite unions of bandpass signals model, which enables to describe the process of
acquisition on the analog representation of the frequency subbands.

To represent numerically an analog hardware, especially the non-bandlimited signal after
analog mixing, the time grid is oversampled by a factor Rep. In order to mimic the analog
filtering and sampling steps, an oversampled digital Finite Impulse Response (FIR) filter fol-
lowed by decimation at the adequate factor and removal of the delay is used. However, more
advanced realism such as non-ideality of the low-pass filters, non-linearity of the mixer or clock
jitter is not tackled. Parameters are set as defined in Table 3.4.

Similarly to [116, 117, 78] and others, the input signal is given by:

x(t) =

K∑
k=1

√
EkBsinc(B(t− τk))cos(2πfk(t− τk)) + w(t) (3.6)

where τk and fk are chosen uniformly at random and other parameters according to Table 3.4.
That is, each active band is modeled as a ‘sinc’ in time domain/window in frequency domain,
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Table 3.4: Parameters of the MWC simulation.

Name Unit Specification Default value Variable

A
rc
h
it
ec
tu
re N [] Number of bands 127 Settings

before downconversion
=Code length Settings 2k − 1

fp Hz Width of a band in the signal model 78.74MHz Settings
= 2x filter cut-off frequency

M [] Number of channels 50 Settings

S
ig
n
al

K [] Degree of sparsity 6 Settings

B Hz Maximal bandwidth of the input signal 78MHz Settings B ≤ fp
ISNR dB Global SNR NS Settings

Ek J Energy in the active band k Settings = 1

fk Hz Centralized frequency of the band k Variable, random

τk Hz Dephasing of the kth band Variable, random

fNyq Hz 2x the maximal frequency of the signal model 1GHz L.fp

L [] Signal length coefficient 128 Settings

Rep [] Oversampling factor 10 Settings

Reconstruction: Orthogonal Matching pursuit (OMP)

centered around the randomly-drawn frequency fk. w(t) is white Gaussian noise, scaled such
that the test signal has the desired Signal-to-Noise Ratio (SNR).

Let us note with Λ the true support and with Λ̂ the identified support. As in the original
platform [140], a variation in the reconstruction process is employed for denoising: In the
Continuous-to-Finite (CTF) reconstruction block, thresholding is applied on negligible eigen-
values of the frame constructed from the samples, in order to remove at best the noise space.
Hence success is declared for Λ ⊂ Λ̂ and linear independence of the columns Λ̂ of the sensing
matrix instead of the more straightforword condition Λ = Λ̂.

The platform has been validated step by step concerning various spectral aspects:

• First, that the frequency are translated as expected

• Then that the intermediate spectral aspects of the coding sequences match the expec-
tations.

• Last, that the spectrum components present at baseband have the amplitudes corre-
sponding to those of the Dirac they were expected to be coming from.

In Figure 3.8, it is first verified that the expression of the spectrum of the sensing matrix
matches the analytical expectations, in particular the effect of windowing (‘Windowed
Repeated Code Spectrum’) and artificial upsampling (‘Non Repeated Upsampled Code
Spectrum’). The magnitude of the 13th coefficient of the spectrum of the shaped mixing
codes is 8.6dB. Then the low-passed spectrum of the compressed samples is measured
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and indeed a magnitude at the active frequency Magnitude(f = fi[fp]) = 8.6dB is
found (the energy of the signal spectrum has been normalized at the earlier stages).

Figure 3.8: Validation of the spectrum of the mixing codes [K = 2, B = 5MHz].

Evaluations of the support identification performances will be carried out, first in noiseless
then in noisy settings.

3.3.3.2 Noiseless scenario

Accuracy graph
The transition graph which pictures the percentage of successful support recovery for varying
relative number of measurement M/N (x-axis) and relative sparsity degree K/N (y-axis) is a
metric frequently used because, for geometrical reasons developed in [36], the transition graph
shows two distinctive phases: a success phase, where exact reconstruction typically occurs,
and a failure phase, where exact reconstruction typically fails. Results strongly depend on the
chosen reconstruction algorithm [141].

In the first place, for faster comparison accuraccy graph which shows the evolution of
accuracy depending of the compression ratio are established for the Orthogonal Matching
Pursuit (OMP) algorithm. An accuracy graph is a cut at constant K of a transition graph.
The accuracy, on the y-axis, is given by the fraction of the trials with successful support
identification. An accuracy graph is represented in Figure 3.9 for a noiseless environment.

Gold codes, Zadoff-Chu-based circulant codes with statistical selection and Random
Bernoulli codes show similar good accuracy performance. Additionally, Zadoff-Chu-based
codes (stat) show a success rate increasing already for higher compression ratio (0.075 instead
of 0.1). For Zadoff-Chu-based circulant codes with first rows selection, which it is reminded
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Figure 3.9: Accuracy of the MWC with growing compression ratio [N = 127, K = 6, R = 1,
200 trials, OMP reconstruction algorithm].

had lower coherence than state-of the-art and ‘ZC circ real (stat)’, the success rate increases
only at small compression ratio (> 0.5). So it seems, as expected, that the required number
of measurements is affected by coherence properties, which for Zadoff-Chu are dependent on
the selector and can be better than the state-of-the-art.

Detection graph
The last step of the reconstruction process is the operation of pseudo-inverting the restriction
of the sensing matrix to the support. Hence transition graphs are essential for reconstruction
tasks because, if there is a single error in the support estimation, it will yield results that are
completely off the mark. However, if the aim is to perform detection, estimation or classifica-
tion, it is rather desirable to know how often errors appear overall.

Hence the concept of detection graph, which represents the percentage of support ele-
ments successfully identified for a given sparsity level K and number of branches M , will be
introduced. The true detection rate is the probability that a bin of the support is identified
correctly, Pr(f ∈ Λ̂|f ∈ Λ). More formally, the true detection rate is given by:

TD =
card(Λ ∩ Λ̂)

card(Λ)
(3.7)

The chance of true detection rises at lower sparsity levels. Indeed if Λ is estimated uniformly at
random, the probability for one element of Λ̂ to belong effectively to Λ isK/N . AtK/N > 0.5

for example, it is obvious that the intersection of both ensembles can not be empty and thus
there is some success independently of the algorithm. This effect does not transpire with
transition graphs which requires a perfect support identification to consider a success.

Figure 3.10 pictures the detection graph for circulant matrices based on Bernoulli, Gold
and real-valued Zadoff-Chu codes defined on the frequency domain for 250 averaging trials.
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(a) Bernoulli (b) Gold

(c) Real-valued Zadoff-Chu-based circulant

Figure 3.10: Detection graph for different codes [N = 255, R = 1].

The transition between favorable (light) and insufficient (dark) settings appears relatively
clearly on all three figures. The comparison between the graphs shows that with increasing
sparsity degree K, Zadoff-Chu-based circulant codes keep a slight advantage over Bernoulli
codes.

To interpret more precisely the gray levels, it is looked at the frontier (TD=80%). In
order to establish if this difference is significant, the bound of the 95% confidence interval (i.e.
there is 95% chance that the true value lies between the bounds under assumption of a normal
distribution of the estimations) is plotted in Figure 3.11. At 95%, it is given by:

Confidence interval95% = [
x̂− (1.96σ)√

N
;
x̂+ (1.96σ)√

N
] (3.8)

where σ is the standard deviation of the estimator.

The transition appears quite clearly for all three codes and the measurement inaccuracies
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Figure 3.11: Contour of the 95% confidence interval on the 80% true detection boundary of 3

previous figures, IC=Confidence interval.

are closely bounded. The zone of detection < 20%, under the curves, remains quite identical
for all codes. Still, note that there is a slight advantage to ‘ZC circ real (stat)’.

Now, the more realistic scenario of a noisy environment will be considered.

3.3.3.3 Noisy scenario

Accuracy graph
The accuracy graph is represented in Figure 3.12 for a noisy environment: 10dB Input Signal
to Noise Ratio (ISNR) as defined in [83].
In the noisy context, Gold codes performance collapses (at M/N = 0.5, 70% loss) whereas
for Zadoff-Chu-based codes it degrades less (plateau at 0.85) than random codes (plateau
at 0.7). Performance in a noisy context fits therefore our analysis of isometry properties:
Zadoff-Chu-based codes are more resilient to noise than other analyzed codes.
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Figure 3.12: Accuracy graph of the MWC with growing compression ratio [N = 127, K = 6,
R = 1, 200 trials, OMP reconstruction algorithm], dashed=noiseless, plain=10dB ISNR, from
[113].

Detection graph
Adding noise has the effect of making the detection graph darker and the transition phe-
nomenon more blurry hence the contour graph at 80% is directly shown in Figure 3.13
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Figure 3.13: Contour of the 95% confidence interval on the 80% true detection boundary of
noisy detection graph.

The zone defined by true detection over 80% is wider for Zadoff-Chu-based codes than for
random and Gold codes, even if the worst estimation error is assumed. It shows that Zadoff-
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Chu codes have significantly better support identification performance than the two other
codes in this settings, and therefore that they have better resilience to noise. In contrast to the
noiseless setting (Figure 3.11) where it was difficult to conclude, the difference is statistically
significant.

Less clear is, however, why for a few settings with very high sparsity level and very high
compression ratio, the chances of true detection of one support element are better. One lead
is that with growing sparsity degree K, the chance of finding randomly one element of the
support also grows (K/N).



3.4. Conclusions and Perspectives 87

3.4 Conclusions and Perspectives

First, a quick state-of-the art of mixing code sequences that are used in the Modulated Wide-
band Converter was sketched. The meaning of notions such as randomness and universality
for matrices implemented as a RF receiver in hardware was discussed. In the light of these
reflexions, the interest of using circulant matrices regarding both performances and ease of
implementation was underscored, based on the literature. Then a proposition of a new code
matrix was made: this real-valued circulant matrix is determined by its diagonal in the fre-
quency domain where a symmetry condition is used on a half-length Zadoff-Chu sequence. A
thorough benchmark of the respective interest of our proposition and matrices from the state-
of-the-art was conducted, based on both high-level metrics such as coherence and isometric
properties and on a simulation platform mimicking the acquisition and restitution process of
a MWC receiver. The different elements brought to light are summarized in Table 3.5.

Table 3.5: Conclusion table.

Metric Goal Results
Coherence Minimal number of measurements .Row selection is decisive for circulant codes

or lower sparsity level handleable .Circulant codes with statistical selection
perform better than Bernoulli and Gold codes

ExRIP Isometry for noise robustness ZC circulant codes are the best,
(Theoretical) they are better with ‘rand’ or ‘stat’ selector

Estimated RIP Isometry for noise robustness Reliably smaller constants
(Practical) for ZC circulant codes

Accuracy Validation of the concrete
recovery performance

.Noiseless settings No significant difference
slight advantage to ZC circ stat

.Noisy settings Noise resilience ZC circ stat best, Gold → strong degradation

Detection graph for partial restitution
Confirm results
at lower sparsity

Noiseless settings No significant difference
Noisy settings Noise resilience ZC circulant stat best

For circulant codes, it is shown that the coherence is essentially determined by the row
selector R and not by the nature of the code (‘ZC circ tmp’ or ‘ZC circ real’). Selection by
taking the best coherence out of matrices from a given type yields the best coherence result
overall, better than the state-of-the art. The selection by a sparse ruler which performs worse
than Zadoff-Chu codes but also better than state-of-the-art, might be an alternative. However
it is not recommended, as it is more size-constrained.

Regarding estimations of the isometry properties, conclusions emerge as follows. Concern-
ing the Expected RIP criteria, Zadoff-Chu-based circulant real-valued codes perform better
than Gold codes or any other considered codes. Concerning statistical RIP and JLL estima-
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tion, Zadoff-Chu circulant codes, especially real-valued ones, also perform better than Gold
codes or any other considered codes. Additionally, for accuracy at sparsity K = 6, it ap-
pears that Zadoff-Chu-based circulant codes are much more resilient to noise. These results
are then confirmed and extended by detection graphs for varying sparsity levels, regarding
performances in both noiseless and noisy environment.

Some questions remain open:

1. Implementation aspect: How to implement these codes easily? What is the best index R
of Zadoff-Chu sequence for the circulant matrix ? And notably, is it possible to optimize
the use/generation of complex codes in the QAIC ?

2. Extension of the results to feature extraction: Are these conclusions also valid for esti-
mation and classification tasks ?

To the light of the review lead in Chapter 2, the NUWBS solution showed promising
results, with respect to implementation considerations [98] [99]. To tackle the critical points
1. and 2., we suggest in Appendix D to analyze in details the benefits of ZC sequences mapped
to the principle of a NUWBS solution. Some implementation considerations have also beeen
analyzed, which are not reported in this manuscript for the sake of intellectual property
concern. This developments lead to a patent deposit [142]. The purpose is to examine further
the potential of flexibility of the NUWBS.

As mentioned earlier, reconstruction of the original signal is too energy-consuming for em-
bedded radio solutions, and hence in this work feature extraction directly from the compressed
samples is considered. Since the principles and struggles governing the conception of com-
pressive receiver architectures are better understood, by now the second aspect of this work,
compressive spectral parametric estimation without reconstruction, should be addressed. This
will be done in the next chapter where new theoretical bounds on the estimation error are
established. In order to depict the influence of Compressive Sensing on spectral parametric
estimation, compressive multiband architectures will be considered, with the particular exam-
ple of the MWC in mind. More precisely, a closed-form expression of the Cramér-Rao bounds
on the variance of any unbiased estimator for multiband architectures with a disjoint spectral
subband model will be demonstrated. These results will allow to distinguish the effect of
subsampling and diversity on the coupling between parameters. It will then be illustrated on
a typical scenario of Cognitive Radio, interferer detection.
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As outlined in Chapter 1, the reconstruction of the original signal is considered to be com-
putationally too expensive with regard to the stringent power constraints of embedded

radio solutions. This observation has lead to the proposition of performing feature extrac-
tion directly from the samples acquired with a compressive radiofrequency architecture, an
approach whose implications in terms of performances and design were only briefly tackled in
previous Chapters. That is why, in this Chapter, specificities of parametric estimation from
the compressed samples, as opposed to parametric estimation on the signal reconstructed from
the compressive samples, are investigated.

As far as spectral information is concerned, the estimation of the parameters governing
the underlying signal model is mostly based on Nyquist rate sampling since folding must be
avoided to recover the information. Parametric estimation directly from the compressed sam-
ples, on the other hand, differs strongly from traditional parametric estimation in the sense
that the structure of the information has been scrambled along during the acquisition process.
When reconstruction is performed after the Compressive Sensing acquisition, an additional
assumption on the sparsity of the input enables to recover the information. However, extract-
ing information about features of interest directly from the compressed samples is another
challenge, still in exploration.

The goal of this chapter is to quantify the accuracy of parametric estimation depending on
the sensing matrix and compared to sampling at the Nyquist rate. A convenient performance
assessment tool toward this end, introduced in Section 1.3 and presented in Appendix A, is the
Cramér-Rao lower bound (CRB) on the variance of any unbiased estimator, which is computed
from the diagonal of the inverse of the Fisher information matrix. Although the Cramér-Rao
bound says nothing about the most suitable estimation method, it allows to evaluate in which
extent settings impact the estimation performances. This evaluation will in return enables a
feature extraction system to be designed according to needs. It is notably essential because
constraints on performances appearing in partial restitution of the information are different
from those in better-known reconstruction tasks.

The State-of-the-Art of parametric estimation from compressed samples has been detailed
in Section 1.3.2.1. In [54], a parametric estimation based on compressed samples is developed,
with a specific focus on frequency estimation. Bounds are derived and asymptotic results
given as a function of the statistical properties of the sensing matrix:

M

N
(1− δ2K)2JNyq ≤ JCS ≤

M

N
(1 + δ2K)2JNyq (4.1)

where JNyq and JCS are the Fisher matrices for Nyquist and Compressive Sampling respec-
tively, it is recalled that δ2K is the Restricted Isometry Constant for 2K-sparse vectors, ≤
should be understood as an order relationship between matrices, and M

N is the consequence of
compression ratio.

Yet in practice, sensing matrices, whether randomly generated from a distribution or struc-
tured, are deterministic. That is why, in order to be able to specify a compressive architecture
performing feature extraction, a more thorough framework is advisable. The purpose of fol-
lowing original developments is two-fold: First, to establish asymptotic constraints on each
parameter to be estimated, instead of global guarantees with the same scaling factor for all
coefficients of the Fisher matrix. Second, to provide bounds straightforwardly computable
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from the coefficients of the sensing matrix instead of statistical guarantees, which depends on
the RIP constant for instance. Potentially, this analysis could also enable to provide advices
on an adequate choice of parameters of interest.

In Section 4.1.1, an original result yielding a closed-form expression of the Fisher infor-
mation matrix for samples from a compressive multiband architecture is determined under
assumption of a spectral disjoint subband model, i.e. assuming that one parameter influences
no more than one frequency subband. The expression is given as a function of the Fisher infor-
mation matrix for Nyquist sampling and of the Gramian of the sensing matrix of a compressive
multiband architecture, a result which is more accurate than global guarantees. An interme-
diate step in function of the Fisher information matrix for Bandpass Sampling is used for
sake of clarity. As introduced in Subsection 2.1.3, multiband architectures are receivers where
each bin in the same frequency subband is projected identically (multiplied with the same
coefficient). Since that includes most popular compressive receivers such as the Modulated
Wideband Converter (MWC), the Quadrature Analog to Information Converter (QAIC), the
Periodic Non Uniform Sampling (PNUS), Multirate Sampling or Bandpass Sampling, results
have a relatively broad application scope.

The targeted application field being Cognitive Radio, simple typical scenarios of detecting
interferers near an useful signal are then taken as illustrative examples. Working scenarios
with dual-tone signals are first defined in Section 4.2. In Section 4.3, the topic of amplitude
estimation for known frequencies is considered. Theoretical bounds are compared as well as
variances of Maximum-Likelihood estimators used in simulations. In Section 4.4, frequency
estimation with known amplitudes is considered. As the interpretation of the derived formu-
las is not straightforward, the equations are graphically interpreted. This interpretation then
suggests a manner, presented in Section 4.5, of tailoring the sensing matrix to priors on the
spectrum so as to tame the influence of strong interferers. Finally, implications of these results
are discussed and conclusions are drawn in Section 4.6.

The work presented in this Chapter has lead to the submission of the journal article [143].

4.1 Cramér-Rao bounds for spectral parametric estimation
with compressive multiband architectures

To begin with, two original theorems will be stated and then their significance and key el-
ements will be discussed. The reader is kindly asked to refer to Subsection 2.1.3 regarding
further properties of multiband architectures and to Subsection 2.1.2 regarding more exhaus-
tive notations, in particular time and frequency indices that are illustrated in Figure 2.2.

4.1.1 Original theorems: Fisher information matrices for different sam-
pling schemes under assumption of a disjoint subband spectral model

Consider a Qx1 parameter vector θ to be estimated and a K-sparse signal x, meaning that it
contains K active subbands. If there is a unique unknown parameter in each active subband,
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then K = Q. In general K < Q. The vector Λ denotes the support and Λ(f) denotes the
support index of frequency f .

Hypothesis 1 (Disjoint subband model). Suppose the existence of an underlying disjoint
signal model: one parameter influences no more than one subband signal. An illustration
example is given in Figure 4.1. More formally, this assumption translates into the existence
of a function g that maps each parameter θq with its unique corresponding support element
g(θq) = λq ∈ Λ such that:
∀q ∈ [[1;Q]] if λq 6= Λ(f) then

∂x̃(f)

∂θq
= 0 (4.2)

where it is recalled that x̃(f) is the continuous Fourier Transform of the input signal.
Tones satisfy this model and so do modulated signals whose channel bandwidths belong to a
unique frequency subband of the architecture. For sake of conciseness x̃q will denote abusively
the subsignal influenced by the qth parameter and central frequencies will be noted fk for k ∈
[[1;K]].

Figure 4.1: Disjoint subband model.

Theorem 1 (Compressive Multiband architectures versus Bandpass Sampling). Assuming
the above model and a real-valued signal x, the Fisher information matrix for compressive
multiband architectures JMB can be expressed as a function of the Fisher information matrix
for Bandpass sampling JBP in the following manner:

JMB = <[BH
ΛBΛ] ◦ JBP (4.3)

where BΛ is the restriction of the sensing matrix B of a compressive multiband architecture
to the support Λ, with column energy normalization to M , ◦ is the Hadamard (element-wise)
product and <[.] the real part.
If the signal x is complex-valued, then eq. (4.3) transforms into:

JMB = <[BH
ΛBΛ] ◦ JBP + =[BH

ΛBΛ] ◦ J̌BP (4.4)

where =[.] denotes the imaginary part. J̌BP [q, r] corresponds to the (q, r)th coefficient of the
Fisher matrix for Bandpass Sampling in a virtual scenario where the initial dephasing between
components x̃q and x̃r is increased by π

2 .
The interpretation for complex-valued x(t), which would corresponds to the baseband signal

in a complex architecture, is less intuitive due to the effect of a complex Gramian on a complex
signal which burdens the notations. Note, however, that the behaviour regarding parameters
influence and order of magnitude is similar as in the case where x(t) is real-valued.

The Cramér-Rao bound is then obtained through eq. (A.5).
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Refer to Appendix E for proof.

Hypothesis 2 (Bandlimited discrete signal). Suppose also that the sampled subsignals are
bandlimited:

∀q ∈ [[1;Q]] x̃q[ň] = 0 for ň /∈ [[ň0(q)− L

2
; ň0(q) +

L

2
]] (4.5)

where ň0(q) corresponds to the central bin of x̃q and L to the number of frequency bins per
subband.

Due to finite duration of the acquisition and therefore spectral leakage, this hypothesis is
an approximation. Note that Hyp. 2 deals, through the decomposition of the signal on the
frequency grid, with bandlimited discretized representations. Whereas Hyp. 1, in contrast,
was dealing with bandlimited analog representations and hence did not need to neglect spectral
leakage on remote frequencies.

Theorem 2 (Bandpass Sampling versus Nyquist Sampling). Under the above assumptions,
Hypothesis 1 on a disjoint subband model and Hypothesis 2 on a bandlimited discrete repre-
sentation, the (q, r)th element of JBP for (q, r) ∈ [[1;Q]]2 is given as a function of the (q, r)th

element of the Fisher information matrix for Nyquist rate sampling JNyq:

JBP [q, r](∆fq,r) =
1

N
(JNyq[q, r](∆fq,r).HLP (∆fq,r)) ∗

∞∑
k=−∞

δ(∆fq,r − kfp) (4.6)

where ∆fq,r is the distance in the frequency domain between x̃q and x̃r, HLP (f) is the transfer
function of an ideal low-pass filter with cut-off frequency fc = fp/2 and gain 1, ∗ is the
convolution operator and δ(.) is the Dirac distribution. Note that the term

∑∞
k=−∞ δ(∆fq,r −

kfp) corresponds to a fp-spaced Dirac comb distribution, used as periodisation operator.
In other words, eq. (4.6) means that the Fisher information matrix for Bandpass Sampling

as a function of the frequency distance between subsignals x̃q and x̃r, JBP [q, r](∆fq,r), is fp-
periodic and matches with the Fisher information matrix for Nyquist sampling JNyq[q, r] at
baseband, up to a N factor.

Refer to Appendix F for proof.

4.1.2 Discussions

The reference benchmark is the inequality (1.12) derived in [54] and discussed in 1.3.2.1:

M

N
(1− δ2K)2JNyq ≤ JCS ≤

M

N
(1 + δ2K)2JNyq (4.7)

where it is recalled that δ2K is the Restricted Isometry Constant for 2K-sparse vectors and
M
N is the consequence of dimension reduction.

In this work, an additional hypothesis on a compressive multiband architecture and a
disjoint subband model is made in the context of Spectrum Sensing to obtain eq. (4.3)
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and (4.4). This assumption enables to describe the effect of the acquisition matrix on each
frequency subband and thus enables to determine each term thanks to the deterministic nature
of the sensing matrix. It results in a better accuracy than the state-of-the-art that considers
statistical guarantees on the globality of the Fisher matrix.

Also, the relationships established in eq. (4.4) and eq. (4.6) between Fisher matrices for
compressive multiband, subsampling and Nyquist sampling allow to distinguish the influence
on the estimation bound of the effect of subsampling from the effect of diversity creation
between channels.

Regarding Theorem 1, it is not surprising to see the Gramian of the sensing matrix re-
stricted to the support, BH

ΛBΛ, appearing for Theorem 1 in eq. (4.3) and (4.4), since the
Gramian also holds a crucial role in signal reconstruction. Recall that coherence and isomet-
ric properties analyzed in Chapter 3 can be derived from the Gramian. This is because the
Gramian defines the deformation of the scalar product by the dimension-reducing acquisition
process and hence expresses the geometric constraints.

One fundamental but thin subtlety allowing the establishment of the first theorem lies in
the fact that the sensing matrix of compressive multiband architectures can be expressed in
the ‘compact formalism’ (see 2.1.3). Hence all frequencies of an analog subband are projected
identically, even if they do not lie on the Nyquist grid with frequency resolution δf , which
means that leakages provoked by the discretization of the analog disjoint model will depend
on the coefficient of the sensing matrix B given by the original support index (cf proof).

Regarding Theorem 2, the fp-periodicity of the Fisher information matrix for Bandpass
Sampling JBP [q, r](∆fq,r) due to the signal folding is relatively obvious and the scaling factor
is related to noise folding (cf proof). The link between JBP and JNyq is drawn under a small
approximation on band-limitation of the discrete representation (Hyp.2) an approximation
that is more accurate as the acquisition time grows, because potential spectral leakage from
components that do not lie on the Nyquist grid with finite resolution δf is reduced.

Note that in contrast to the usual unit column energy normalization of the sensing matrix
B which matches an equal measurement power budget allocation per bin, it is chosen here to
use the convention of a column energy normalization of the sensing matrix to M for sake of
compactness and so that the scaling effects appears more clearly.

In the following section, these new theorems will be illustrated through a practical appli-
cation case in order to clarify and exemplify their implications.

4.2 Applications to cognitive radio: definition of a framework

To illustrate the interest of Theorems 1 and 2 for cognitive radio applications, it will be
focused on the canonical application case of amplitude and frequency estimation of two tones.
This admittedly simplified scenario mimics the detection of an interferer in presence of useful
signal with background noise, a common issue for wideband compressive receivers (see e.g.[6,



4.3. Amplitude estimation 95

46]). Thus it allows to illustrate the challenges at stake. Ideally, one would like to be able
to handle interferers whose power is up to 80dB above the signal of interest and located in
adjacent channels, which should be in a different frequency subband from the point of view of
the compressive receiver.

The noisy time domain input signal sampled at rate fNyq is given at the sampling instant
ňTNyq for ň ∈ [[1;NL]] by:

x[ň]+ = A1cos(2πf1ň+ φ1) +A2cos(2πf2ň+ φ2) + w[ň] (4.8)

where (f1,f2) ∈ [−0.5; 0.5]2 are the tone frequencies normalized by fNyq, A1 and A2 the
amplitudes and w ∼ N (0, σ2INL).
x+ can be decomposed in the following manner:

x+ = Ea+w (4.9)

with

E =


cos(2πf1) cos(2πf2)

...
...

cos(2πf1ň) cos(2πf2ň)
...

...
cos(2πf1NL) cos(2πf2NL)

 , (4.10)

where E ∈ RNLx2 and aT = (A1, A2).

For sake of conciness of the equations, following notations will be used:
∆f = f2 − f1, ∆φ = φ2 − φ1, Σf = f2 + f1 and Σφ = φ2 + φ1.
For illustrations, the Modulated Wideband Converter architecture is chosen but the proposed
Theorem 1 is valid for all multiband architectures (Bandpass, MWC, QAIC, PNUS, MRS);
results can be easily extended by replacing the corresponding sensing matrix B, see section
2.1.3.

The exhaustive Fisher matrix for Nyquist sampling of K real tones which is used as
benchmark throughout the following is derived in Appendix G. For sake of clarity, non-realistic
disjoint estimation with 2 real tones is presented, however the study of joint estimation or a
multitone input signal would be methodologically similar. Note that the benchmark is logically
established for equal acquisition times Tacq between architectures, and not equal number of
samples, as scanning time is also a constraint for our targeted application.

4.3 Amplitude estimation

In this scenario, it is considered that the normalized frequencies of the useful signal f1 and of
a possible interferer f2 are known, and that the parameters to be estimated are θ = (A1, A2).

First, the expressions of Fisher matrices for three sampling schemes (Nyquist rate, Band-
pass and compressive multiband sampling) are established and then compared to each others.
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To supplement these results with another point of view, a typical unbiased estimator, the
Maximum Likelihood estimator, is considered. Analytical expressions are established and
benchmarked with experimental values.

4.3.1 Expressions of the Fisher information matrices

4.3.1.1 Nyquist Sampling

According to the definition (A.5), for (q, r) ∈ [[1; 2]]2, the (q, r)th coefficient of the Fisher
information matrix for Nyquist Sampling is expressed by:

JNyq[q, r] =
1

σ2

NL∑
ň=1

∂y[ň]

∂Aq

∂y[ň]

∂Ar
(4.11)

For Nyquist sampling, it is immediate that y[ň] = x[ň] for ň ∈ [[1;NL]]. Given the real-valued
signal model (G.1), the partial derivative with respect to amplitude of the signal sampled at
the Nyquist rate is given by:

∂x[ň]

∂Ai
= cos(2πfiň+ φi), for i = 1, 2. (4.12)

Easy but long computations detailed in Appendix G, which consider the real part of the sum
of geometrical sequence terms with common ratio e2jπf and use half angle factorization, then
yields:

JNyq ' NL
2σ2

(
1 J.,Nyq[1, 2]

J.,Nyq[1, 2] 1

)
(4.13)

where J.,Nyq[1, 2] is given by:

J.,Nyq[1, 2] = J1/2,Nyq[1, 2](∆f,∆φ) + J1/2,Nyq[1, 2](Σf,Σφ) (4.14)

with:

J1/2,Nyq[1, 2](f, φ) = sin(2πNLf)
NLsin(2πf)cos(φ+ πf(NL+ 1)) (4.15)

' sinc(πNLf)cos(φ+ πf(NL+ 1))

where sinc(x) stands for sin(x)
x .

The lower the cross-term coefficient of the Fisher matrix JNyq[1, 2], the lower the determi-
nant ∆ = NL

2σ2 [(1− J.,Nyq[1, 2]2)] of J.,Nyq and the better the estimation.
When J.,Nyq[1, 2] = 0, the matrix is diagonal so that not knowing one amplitude does not

degrade the estimation of the other. In other words, if J.,Nyq[1, 2] is non-zero, the presence of
one signal makes the estimation of the parameters of the other more difficult; an interaction
that is slightly different from the correlation notion (one frequency cannot be expressed as a
function of the other).
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When f1 = f2 and φ1 = φ2 mod π, or f1 = −f2 and φ1 = −φ2 mod π, then
JNyq[1, 2] = JNyq[1, 1], all terms of the Fisher matrix are equal. Because foldings are in-
discernible in this situation, the matrix is singular, meaning that amplitude estimation by an
unbiased estimator is not possible.

Consider first, as often in the literature, the frequency on-grid case, meaning that the
frequencies Σf and ∆f lie exactly on the Nyquist grid with frequency resolution δf :

∃(k, k′) ∈ N∗2 such that ∆f.fNyq = kδf and Σf.fNyq = k′δf. (4.16)

where fNyq = NL.δf . Then sin(2πNL∆f) = sin(2πk) = 0 and sin(2πNLΣf) = sin(2πk′) =

0 hence J.[1, 2] = 0 and JNyq ' NL
2σ2 .I2. There is no spectral leakage if f2 − f1 and f2 + f1

are multiples of the frequency resolution given by the inverse of the acquisition time 1
Tacq

.
Furthermore, it is important to take note that the Cramér-Rao bound and hence the accuracy
of the estimation depends only on the number of samples NL.

However, in practice the probability that tones lay exactly on the grid is equal to zero.
Consider now the more realistic off-grid case meaning that there exists 0 < η, η′ < 1 such that:

∆f.fNyq = b
(f2 − f1).fNyq

δf
cδf + ηδf

Σf.fNyq = b
(f1 + f2).fNyq

δf
cδf + η′δf

where ηδf and η′δf stands for the distance of (f2− f1)fNyq and (f1 + f2)fNyq respectively to
the Nyquist grid with frequency resolution δf . Then eq. (4.15) is transformed into:

J.,Nyq[1, 2] =
1

NL
[
sin(π(k + η))

sin(π∆f)
cos(∆φ+ π∆f(NL+ 1)) (4.17)

+
sin(π(k + η′))

sin(πΣf)
cos(Σφ+ πΣf(NL+ 1))]

Hence for large number of samples NL, J.,Nyq[1, 2] = O(sinc(πNL∆f)) approaches 0.
This matches the fact that the spectral leakage created by the mismatch with the frequency
grid approaches 0 as the acquisition time tends to infinity (hence the signal model converges
to a frequency-continuous model).

4.3.1.2 Bandpass Sampling

For Bandpass Sampling at normalized subsampling frequency fp = 1
N , let us define the fre-

quencies folded at baseband with the notation .̄ :

f̄1 = f1 − fpb f1

fp
c, (4.18)

f̄2 = f2 − fpb f2

fp
c and

∆f̄ = f̄1 − f̄2.
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From the expression of the signal in (G.1), the partial derivative with respect to amplitude of
the subsampled signal can be derived as:

∂y[l]BP
∂Ai

= cos(2πf̄iNl + φi), for i = 1, 2. (4.19)

Hence from the definition formula (A.6), the Fisher information matrix for Bandpass Sampling
is yielded by:

JBP =
L

2σ2

(
1 J.,BP [1, 2]

J.,BP [1, 2] 1

)
(4.20)

where the element in the first row and first column of JBP is given by:

JBP [1, 1] =
1

σ2

L∑
ň=1

(
1

2
+
cos(4πňf̄1 + 2φ̄1)

2
) ' L

2σ2
(4.21)

and:

J.,BP [1, 2] =
1

L

L∑
l=1

[cos(2π∆f̄Nl + ∆φ) + cos(2πΣf̄Nl + Σφ)] (4.22)

Similarly to the establishment of eq. (G.10) in Appendix G, by considering the real part of
the sum of geometrical sequence terms with common ratio e2jπf and factorizing through the
half angle, it is established that:

J.,BP [1, 2] = J1/2,BP [1, 2](N∆f̄ ,∆φ) + J1/2,BP [1, 2](NΣf̄ ,Σφ) (4.23)

where:

J1/2,BP [1, 2](f, φ) =
sin(πLf)

Lsin(πf)
cos(φ+ πf(L+ 1)) ' sinc(πLf)cos(φ+ πf(L+ 1)) (4.24)

which will be discussed shortly after.

4.3.1.3 Multiband Compressive Sampling

From the application of Theorem 1 and eq. (4.4), the Fisher information matrix for a com-
pressive multiband architecture is derived as a function of the Fisher information for bandpass
sampling JBP :

JMB = <[BH
ΛBΛ] ◦ JBP (4.25)

where it is recalled that BΛ is the restriction to the active frequency support of the columns
of B, the sensing matrix of a compressive multiband architecture expressed in the ‘compact
formalism’. BH

ΛBΛ is called its Gramian. Previous results on JBP and JMB, eq. (4.23)
and (4.25), will be discussed below and compared to JNyq. Note that coefficients energy
normalization implies that diagonal elements of the Gramian are equal to M .
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4.3.2 Interpretation and discussions

Consider first the on-grid frequency case, i.e. the frequencies ∆f̄ and Σf̄ lie on the Nyquist
grid:

∃(k, k′) ∈ N∗2 such that ∆f̄ .fNyq = kδf̄ and Σf̄ .fNyq = k′δf̄ (4.26)

As was obtained for Nyquist samples, JBP [1, 2] = JBP [2, 1] = 0 and JMB[2, 1] = JMB[1, 2] =

0. For all sampling methods, the values taken by J [1, 1] and J [2, 2] are proportional to the
number of samples, which is L for bandpass sampling; that is, N times less than Nyquist
sampling, for the same acquisition time. Hence when the two tones do not interfere with
each others (hence the Fisher matrix is diagonal), the accuracies of Bandpass and multiband
compressive amplitude estimation with an unbiased estimator compared to estimation from
the Nyquist samples are exactly characterized by the respective compression ratios 1/N and
M/N .

Consider now the off-grid frequency case, i.e. frequencies ∆f̄ and Σf̄ do not lie on the
Nyquist grid. The interference phenomenon between the two tones under compressive sam-
pling acquisition is then characterized by the product of two terms. The first term, JBP [1, 2],
depends on the distance toward the frequency grid of the sum and difference of the tone
frequencies. The second term is an element of the Gramian sensing matrix, BH

Λ BΛ[1, 2].

For Φ1 = Φ2, one may notice that f1 = f2 for Nyquist and Multiband Compressive Sam-
pling and f1 = f2 mod (fp) for Bandpass Sampling makes the estimation problem singular
because of the mismatch between the two tones model and the single tone observation.

Here, note that Hyp. 2 on bandlimited spectral representations of the sampled tones needs
not be assumed. Hence obtained results are slightly more accurate than the application of
Theorem 2 because the effect of spectral leakage is not approximated.

4.3.3 Maximum Likelihood Estimator (MLE)

Another perspective on the topic is to consider the Maximum Likelihood estimator (MLE),
which is an unbiased estimator and hence lower-bounded by the Cramér-Rao bound. In
this part, theoretical expressions of the Maximum-Likelihood estimator and its variance are
established for Nyquist rate and compressive multiband sampling. Then an experimental
benchmark illustrates and validates previous equations.

4.3.3.1 Theoretical expressions

Under noise Gaussianity assumption, it is well-known that the Maximum-Likelihood (ML)
estimator in the non-compressed case is given from eq. (4.9) by [53]:

âNyq = (EHE)−1EHx+ (4.27)
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with E as in (4.11) that matches the expression of a real-valued dual tones signal.
Also the Maximum-Likelihood covariance matrix is given by:

Cov(âNyq) = σ2(EHE)
−1 ' 2σ2

NL
(4.28)

For a compressive multiband architecture, it is possible to write the output as y = Ha where

H =



(
cos(2πf̄1N+φ1) cos(2πf̄2N+φ2)

...
...

cos(2πf̄1NL+φ1) cos(2πf̄2NL+φ2)

)(
b[1,1] 0

0 b[1,2]

)
−−−−−−−−−−−−−−−

...
−−−−−−−−−−−−−−−(

cos(2πf̄1N+φ1) cos(2πf̄2N+φ2)

...
...

cos(2πf̄1NL+φ1) cos(2πf̄2NL+φ2)

)(
b[M,1] 0

0 b[M,2]

)


(4.29)

is a matrix of dimension MLx2, and b[i, j] is the (i, j)th coefficient of the sensing matrix of
the compressive multiband architecture B.

If the compressed noise is assumed to be white Gaussian, the Maximum-Likelihood esti-
mator coincides with the best linear estimator and is given by [53]:

âMB = (HHH)−1HHy+ (4.30)

and the covariance matrix of the estimation is given by:

Cov(âMB) = σ2(HHH)
−1 (4.31)

The more the coherence and isometric properties of the sensing matrix are degraded, the
more the approximation made in Subsection 2.1.4 of Chapter 2 on a diagonal noise covariance
matrix Γ becomes rough. Without this approximation, the covariance matrix given in (4.31)
would become:

Cov(âMB) = (HHΓ−1H)
−1 (4.32)

It is recalled that as the number of samples tends to infinity, the covariance of any Maximum-
Likelihood estimator converges to the corresponding Cramér-Rao bound.
For multiband architectures, cross-terms of J are negligible toward diagonal terms as the
number of samples tends to infinity, approaching the on-grid case:

Cov(âMB) ≈ 2σ2

ML

(
1

(BH
Λ BΛ)1,1

0

0 1
(BH

Λ BΛ)2,2

)

≈ N

M
Cov(âNyq) (4.33)

As expected, the compression ratio M
N appears as scaling between the variances of Nyquist

sampling and compressive multiband sampling.
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4.3.3.2 Experimental variance benchmark

In the Subsection above, the expressions of the theoretical variance lower bounds for a
Maximum-Likelihood estimator (MLE) has been established for Nyquist rate and compressive
multiband sampling. To complement this benchmark, variances obtained by simulation means
with a MLE are compared to these analytical expressions.

A simplified version of the MWC platform is used to compute the compressed samples.
Set-up parameters are reported in Table 4.1.

Table 4.1: Set-up parameters.

Parameters Number of trials N M L

Default value 1000 127 50 120

The empirical variance of the MLE obtained for both the Nyquist (blue) and Modulated
Wideband Converter (red) architecture with random Bernoulli codes (stars, from (4.27) and
(4.30)) is shown in Figure 4.2. It is compared to the expected variance of the MLE, from (4.31)
and (4.32) (triangle). Results are also compared to the Cramér-Rao bound from Theorem 2

(line).

Figure 4.2: Variance comparison for amplitude estimation of 2 real tones.
[M = 50, N = 127, 1000 trials, f1 = 1GHz, f2 = 3GHz, fNyq = 10GHz, A1 = A2 = 1].

The variance obtained by simulation means with a Maximum Likelihood estimator indeed
converges quickly to the Cramér-Rao bound, as is expected from the theory (cf Appendix G).
Note also the expected 10 log10(MN ) = −4.04dB loss between the acquisition methods, which
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matches with the Signal-to-Noise degradation by the compressive sensing projection. Hence
the simulation results validate with an illustration the bound established analytically.

In the next Subsection, the study will be lead on another parameter of interest: the
example of frequency estimation will be tackled, with a focus on the role of the Gramian.

4.4 Frequency estimation

The second scenario mimics the detection of an interferer at any frequency with known am-
plitude and phase in presence of background noise. The parameters to be estimated are the
normalized frequencies of the two tones θ = (f1, f2).

In this Section, the expressions of Fisher matrices for three sampling schemes (Nyquist rate,
Bandpass and compressive multiband) are established. A graphical illustration is provided to
interpret the equations.

4.4.1 Expressions of the Fisher information matrices

4.4.1.1 Nyquist Sampling

According to the definition given in eq. (A.5), the input model given in eq. (G.1) and
computations that are developed in Appendix G, following expression of the Fisher information
matrix given Nyquist samples is established:

JNyq '
2π2

σ2

(
A2

1S2(NL) J.[1, 2]

J.[1, 2] A2
2S2(NL)

)
where S2(NL) =

∑NL
ň=1 ň

2 = NL(NL+1)(NL+2)
6 is the sum of squares, and from (G.12):

J.,Nyq[1, 2] = A1A2<[ej∆φ1,2χ2(∆f,NL)− ejΣφ1,2χ2(Σf,NL)] (4.34)

where χ2(f,NL) =
∑NL

ň=1 ň
2ej2πfň.

Hence the Cramér-Rao bound for frequency estimation is of the order of O( σ2

(NL)3 ).

4.4.1.2 Bandpass Sampling

The derivative of a subsampled dual-tone signal with respect to frequency is given by:

∂y[l]BP
∂fi

= −2πNAilsin(2πf̄iNl + φi), for i = 1, 2. (4.35)

where it is recalled that f̄i is the normalized subsampling frequency as defined in eq. (4.18).
Therefore, from the definition formula (A.5), and similarly to the establishment of eq. (G.12),
the Fisher information matrix given bandpass samples is given by:

JBP '
2π2

σ2

(
N2A2

1S2(L) J.,BP [1, 2]

J.,BP [1, 2] N2A2
2S2(L)

)
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where:

J.,BP [1, 2] = A1A2<[
∑L

l=1 l
2e2jπ∆f̄Nl+∆φ]

= A1A2<[ej∆φ̄1,2χ2(∆f̄N, L)− ejΣφ̄1,2χ2(Σf̄N, L)] (4.36)

Hence the Cramér-Rao bound for frequency estimation which was of order of O( σ2

(NL)3 ) for

Nyquist Sampling is modified in of order of O( σ2

N2L3 ) for Bandpass Sampling.

4.4.1.3 Multiband Compressive Sampling

From applying Theorem 1, the Fisher information matrix for a compressive multiband archi-
tecture is derived as a function of the Fisher information for bandpass sampling JBP :

JMB = <[BH
ΛBΛ] ◦ JBP (4.37)

Due to scaling of the Gramian, the variance of frequency estimation with an unbiased estimator
is modified in of order of O( σ2

(NL)2ML
) for Compressive Sensing, which matches the results

obtained in [55].

As the behaviour of eq. (4.36) and (4.34) is not straightforward to analyze, these expres-
sions will be studied in simulation.

4.4.2 Illustration and interpretation of the analytical expressions

For these three acquisition methods (Nyquist sampling, bandpass sampling and compressive
multiband sampling) the normalized coefficient Jnorm[1, 2] = |J [1,2]

J [1,1] |, which translates the
ambiguity of the estimation due to coupling between parameters, is pictured in Figure 4.3. It
is reminded that if it is equal to 0, there is no degradation of the estimation of one amplitude
due to not knowing the other amplitude, and if it is equal to 1, it is impossible to raise the
ambiguity between the two signals and no estimation can be made. The x-axis corresponds to
the relative normalized frequency f2

fNyq
, and the term f1

fNyq
= 0.22581 is arbitrarily fixed. The

codes of the acquisition matrix in the time domain are randomly generated from a Bernoulli
distribution.

It appears that the value of Jnorm[1, 2]( f2

fNyq
) is for Bandpass Sampling (blue) the fp-

periodic repetition of the value of Jnorm[1, 2]( f2

fNyq
) in [−fp/2; +fp/2] for a Nyquist approach

(black). For multiband compressive sensing (red), Jnorm[1, 2]( f2

fNyq
) is additionally weighted

in each frequency subband. This weight, corresponding to <[BH
Λ BΛ[λ1, λ2]], is given by the

real part of the cross-correlation between the two support columns of the sensing matrix of
indices λ1 = 7 and variable λ2. It would be 1 for Bandpass Sampling.

Hence two frequencies f1 and f2 belonging to the same frequency subband fold similarly
(with the same coefficient). In this setting, the Cramér-Rao bound for Multiband CS is equal
to the Cramér-Rao bound for Bandpass, up to a factor M . However, for two frequencies
belonging to different subbands, there is an attenuation coefficient (< 1) controlled by the
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Figure 4.3: Normalized off-diagonal coefficient of the Fisher matrix for frequency estimation
Jnorm[1, 2]( f2

fNyq
) (top=overall, bottom=zoom), [M = 10, N = 31].

sensing matrix.
Note that the figure is not symmetric which is due to the influence of the second term

depending on Σf̄ , <[−ejΣφ̄χ2(Σf̄)] in eq. (4.36).

4.5 Influencing the Gramian

In this section, opportunities of adaptive approaches that ensue directly from the analysis
which has been conducted above on the parametric estimation accuracy are sketched. First,
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the working principle, based on the exploitation of non uniform priors on the spectrum distri-
bution, is described. Secondly, this principle is pictured on the Gramian of the sensing matrix
B.

4.5.1 Interest of exploiting non-uniform spectrum distribution assump-
tions

For generality purpose, the sensing matrix ΦΨ, noted B for compressive multiband archi-
tectures, is often supposed to be random. However, the sensing matrix depends on both the
structure of the architecture and a pseudo-random element (mixing codes, sample selection
patterns, etc.). This opens the opportunity to design codes to improve the overall perfor-
mances of the system. For example, it can be used to take into account a non uniform input
spectrum distribution.

In an adaptive Bayesian approach [144], it is required to recompute the sensing matrix,
which is extremely expensive, especially if the spectrum is changing quickly.

In comparison, an approach where an adapted sensing matrix is determined once based
on a non-uniform spectrum distribution criterion, may raise interest. This is similar to the
concept of rakeness presented in [145]. It must be ensured that signals and interferers are well
discriminated and hence that the corresponding columns of interest of B are weakly corre-
lated. On the other hand, columns of B corresponding to frequency ranges where no useful
signal is expected are allowed to be far from orthogonal to each others. Very concretely, for
the MWC, one frequency subband and its matching column in B corresponds on each of the
M branches to one coefficient of the Fourier transform of the shaped codes.

Note that rakeness is against the very notion of CS uniform guarantees for which it is
guaranteed that any K-sparse vectors can be recovered given sufficient measurement. Con-
versely, adaptive schemes would rather try to maximize the detection probability over the
non-detection probability given a non-random distribution of the sparse input signal. In this
sense, one walks a few steps away from the agnostic random compressive sensing to move
toward tailored dimensionality reduction techniques.

4.5.2 Illustrative example

Element [i, j] of the Gramian BHB is the cross-correlation between columns i and j of the
matrix. A simple example on how to influence the Gramian is given hereafter to yield a brief
insight into the possibilities.

It is shown in Appendix B that the MWC sensing matrix may be expressed as B = AF̃D

where A is the time expression of the code, F̃ is a reordered subset of the DFT matrix, D is
a diagonal matrix accounting for pulse shaping. Figure 4.4 presents the Gramian for a Mod-
ulated Wideband Converter, and two different codes studied in Chapter 3 for reconstruction.

“Random” corresponds to a Bernoulli distribution, “ZC circ” corresponds to Zadoff-Chu-
based circulant codes introduced in Chapter 3 which have good cross-correlation properties.
The weights of the coefficients for multiband CS architectures (red dots on the red curve) in
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Figure 4.4: Gramian of the Modulated Wideband Converter sensing matrix for different codes:
Random Bernoulli (top) and Zadoff-Chu-based circulant (bottom) [N=31].

Figure 4.3 are given by the values on the 7th row (because Λ(f1) = 7) of the Gramian in
Figure 4.4, values which are reproduced at the top. For the two different structures of codes,
the Gramian presents two specific patterns. For “Random” codes, values of the off-diagonal
coefficients appear uniformly distributed whereas the circulant character of code (bottom)
implies equal-valued diagonal lines. Hence by changing the shift of the circulant matrix, it is
possible to choose the circular permutation with the most favorable coefficient between λ1 and
λ2. More sophisticated tunings, by optimizing the choice ofM rows among N for example, are
also possible. Note that it is shown in Chapter 3 that the coherence (maximal value of the off-
diagonal coefficients) of the second code (‘ZC circ’) is also lower. Thus it is possible to adapt
the structure of the mixing code in the MWC, and the choice of the pseudo-random element
in the general case, in order to promote non-uniformly distributed performance according to
the frequency subband index.
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Combined with the presented theorems, this perspective shows that it is possible to control
the Cramér-Rao bound and hence the frequency estimation precision thanks to the cross-
correlation properties of the acquisition matrix. With the random codes for the MWC given
in example, one reads at the 4th row and 7th column of the Gramian, <[BH

ΛBΛ[4, 7]] = 0.9.
Thus frequency estimation of a single tone signal is as accurate if there is an interferer in
the 4th subband with −80dB Signal-to-Interference ratio (SIR), as if the interferer is in the
7th subband (same as the signal, Λ(f1) = 7), same bin, with −70dB SIR. Given the orders
of magnitude obtained, it is possible to handle even strong blockers, if the sensing matrix is
adequately chosen.

4.6 Conclusions

In the state-of-the-art, the Cramér-Rao bound for parametric estimation from compressed
samples had so far only been given as a guarantee on the globality of the Fisher matrix [54],
based on a statistical property, the Restricted Isometry Property. In this Chapter, two theo-
rems have been presented and demonstrated, which offer a bound on each term of the Fisher
matrix from samples acquired with a multiband compressive radiofrequency receiver. As it
is adapted to each term, it is more accurate than [54]. This is achieved thanks to the de-
terministic nature of the sensing matrix in practice and the assumption of a specific signal
model, where each parameter influences no more than one signal subband. These expressions
underline the key role of the Gramian of the sensing matrix B. It is interesting to note that
since reconstruction performance depends on coherence and norm preservation, metrics which
are closely linked to the Gramian, a good matrix for feature extraction is a good matrix for
reconstruction and vice versa. This is not surprising as, in this educational scenario, the
signal is accurately described by the set of parameters. Also this contribution enables to con-
sider separately the two fundamental aspects of compressive architectures and their influence:
bandpass compression on one hand, and diversity creation on the other.

From the application examples, following main points emerged: For amplitude estimation,
the on-grid case yields a diagonal Fisher matrix, and Cramér-Rao bounds are exactly described
by the inverse of the number of samples, hence by the compression ratio. Otherwise perfor-
mance depends on the crossterms of J , and therefore on correlations between the columns of
the sensing matrix that belong to the support. Since the precision of frequency and amplitude
estimation can be controlled for each pair of subbands through the cross-correlation properties
of the sensing matrix, a simple way is pointed out to optimize performances based on priors
on the input spectrum distribution.

It is highlighted that choices on the structure of a pseudo-random Φ may favor non uniform
performances. Hence it is sketched within a computationally-lighter framework than Bayesian
approaches how to optimize the performances given prior on the parameter distribution. In
Chapter 3, the question of the optimal choice of code parameters was raised. An interesting
lead would be to optimize the parameters of the code ( for example the row selection process)
in order to enhance the Cramér-Rao bounds between specific portions of the spectrum. Note
that in this setting, an average or cumulative coherence might be more relevant than usual
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coherence.

Compared to the interference cancellation method proposed in [146], the adaptive approach
suggested here is more flexible and simpler as it is not necessary to generate new codes at
every interferer detection.

The proposed framework is relatively general as it concerns all types of parameters and
all compressive multiband architectures, whether for real- or complex-valued signals (after
frequency downconversion). Also the effect of spectral leakage, which is rarely tackled even
with Nyquist rate samples, is discussed. The limitation could rather be found in the signal
model, and the assumption of bandlimited representation of the samples of the signal (Hyp.
2).

Cramér-Rao bounds expression for other wideband RF receivers and wider class of signals
ought to be exposed as well. Also the Cramér-Rao bound is given for unbiased estimators,
so it might be of interest to look into other bounds, more accurate at low SNR than the
Cramér-Rao bound to picture the threshold effect, for example the Barankin bound [147] or
the Ziv-Zakai bound [148].

In the chosen framework, no parameter is better than others regarding the robustness to
dimension reduction. It means that, given a particular sensing matrix, B for compressive
multiband acquistion, there is no set of parameters that is more resilient to the detrimental
effects of compressive sensing. Hence, there is no preference inherent to the sensing matrix
that governs the choice of a set of parameters with whom to possibly perform classification
afterwards.

The most interesting question to investigate remains whether (biased) estimators with
lower variance can be built and how.



Conclusion and perspectives

Conclusion

In this work, the potential of radiofrequency receivers based on Compressive Sampling for
Cognitive Radio applications has been investigated.

Through this manuscript, another small bridge has been built to help overcome the gap be-
tween the appealing abstract objects and concepts of the mathematical theory of Compressive
Sensing and realities and stakes of Radiofrequency Spectrum Sensing.

First and foremost, Chapter 1 started by introducing the urge to develop smart and adap-
tive radiofrequency receivers in order to meet the technical challenges of low-power Dynamic
Spectrum Sharing. Then the Compressive Sampling theory has been presented as a potential
answer to this daunting task. Applied to Spectrum Sensing, Compressive Sampling allows to
go substantially lower than the Nyquist acquisition rate and hence modifies the usual trade-
offs, provided that the spectrum is sparse and the architecture is modeled by a matrix that
satisfies some mathematical properties.

However, if acquisition is facilitated, the reconstruction of the original signal, on the other
hand, requires an amount of energy that is not readily compatible with an embedded solution.
Hence it has been proposed in this work to perform the extraction of the features of interest
directly from the compressed samples. Theoretical guarantees as well as existing solutions and
their limitations have been sketched.

The second Chapter has focused on the State-of-the-Art of compressive radiofrequency
receivers. Architectures have been gathered according to three main functioning principles:
Non Uniform Sampling, Random Demodulation and Variable Rate Sampling. However, it has
been highlighted that most of them lack versatility and still require Nyquist-rate components.

Two receivers stood out: first, the Modulated Wideband Converter (MWC) which is based
on the mixing with pseudorandom periodic sequences and showed an interesting potential for
interferer detection among other things. Second, the Non UniformWavelet Bandpass Sampling
(NUWBS), a variant of Non Uniform Sampling applied on wavelet coefficients instead of time
samples which provides three appealing degrees of freedom and reconfigurability.

Chapter 3 has hence focused on the core and bottleneck element of all architectures based
on random demodulation, the mixing codes. The Modulated Wideband Converter is chosen
as a concrete example. First, the meaning of the notions of randomness and universality for
practical matrices implementing a RF receiver in hardware was discussed. Also the potential
of circulant matrices has been highlighted, based on the literature. Then a proposition was
made of an original code sensing matrix, to be tested afterwards against the codes used in
the state-of-the-art: circulant and defined by its diagonal in the frequency domain, which is a
half-length Zadoff-Chu code on which hermitian symmetry is applied.

In a second part, a systematic study of the influence on various evaluation criteria of dif-
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ferent choices of code families and of row selection, including our original proposition, was
carried out. First, mathematical properties of the sensing matrix have been addressed. The
coherence, which is vital to limit the number of branches, was investigated. Then an approach
that focuses on evaluating norm and distance preservation, which is essential to noise robust-
ness, was developed. The relevance of previous high-level metrics was validated by means
of a simulation platform reproducing the acquisition and reconstruction process of a MWC,
in both noiseless and noisy settings. From this study, it appeared that the proposed codes
had better coherence and isometric properties and also provided better recovery performances
than codes used in the state-of-the-art, especially in noisy environment. Another highlight
was the importance of appropriate row selection. Altogether a methodology for a thorough
comparison between usual compressive sensing matrices and new proposals was delivered.

We also paved the way for practical implementation of Zadoff-Chu codes in the NUWBS
architecture.

In order to design a compressive receiver performing feature extraction, specificities of
compressive parametric estimation must be clarified. That is why, in Chapter 4, the question of
the accuracy of spectral parametric estimation directly from the compressed samples has been
tackled. An analysis based on the Cramér-Rao lower bound on the variance of any unbiased
estimator has been carried out. A new closed-form expression of the Fisher information matrix
for samples from a compressive multiband architecture has been established: it is equal to the
element-wise multiplication between the real part of the Gramian of the sensing matrix and the
Fisher information matrix for bandpass sampling. Then it is shown how the Fisher information
matrix for bandpass sampling can be expressed with respect to the Fisher information matrix
for Nyquist sampling, under a small approximation. In contrast to the existing state-of-the-art,
where bounds had so far only been given statistically on the Fisher matrix as a whole, these
results are deterministically given for each coefficient and hence each parameter, a bounding
which provides more accuracy. The established theorems also shed light on the mechanisms
at stake in compressive estimation, in particular dissociate the effect of the two cornerstones
of compressive sampling: compression on one hand and diversity creation on the other hand.
In the process, it is highlighted that properties required from the sensing matrix regarding
feature extraction are similar to those required for signal reconstruction, as it depends on the
Gramian of the sensing matrix and hence on coherence and isometric properties.

In addition to the closed-form equation of the theorems, interferer detection, a common
issue in Cognitive Radio, has been tackled through the examples of amplitude and frequency
estimation of multitone signals. In particular the effects of spectral leakage, that might be
very detrimental in presence of a strong interferer due to folding, were discussed. Based upon
the newly established expressions of the Cramér-Rao bounds, it was then highlighted that
the effects of this spectral leakage can be controlled by the coefficients of the Gramian of the
sensing matrix. By adjusting the coefficients of the Gramian matrix, it is hence possible to
control the precision of parametric estimation, offering interesting opportunities for adaptation
to specific spectrum priors. As properties of coherence and isometry had been studied in details
in Chapter 3, the optimization of the accuracy of parametric estimation can be done following
the same guidelines.
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Perspectives

As attested by the abundance of references in the recent literature, the level of current ex-
pectations regarding performances offered by compressive RF receivers is high. Some answers
have been given, but so many questions remain open.

The future of Analog-to-Information Converter for Cognitive Radio will probably con-
sists in a further hybridization between two elements: on one hand, the original theory of
Compressive Sampling with universal statistical guarantees and on the other hand, addi-
tional application-related priors. For instance compressive modulation recognition [71] seems
a promising technique. More generally, improvements through the proposition of innovative
feature extraction algorithms from the compressed samples are expected. Also taking into
consideration additional structure on top of sparsity, for example through manifold-like struc-
tures [54] or in the direction of the Finite-Rate of Innovation framework.

It would also be very interesting to analyze the possibilities of feature extraction with
the NUWBS architecture in the light of Mallat’s work on the scattering transform and the
preservation of invariants [149, 150, 151]. Ideally, simple but adequately chosen embedded
processing would allow to highlight the inherent structure of the information, which would
make restitution of the features of interest possible from few samples.

Quantization is of course another vital aspect with respect to efficient implementation that
was not adressed in this study, and quantization on few bits seems to entail an interesting
potential.

On a different level, Cooperative Spectrum Sensing has not been tackled in this manuscript
as it adds many other considerations but it is currently a major field of interest with respect
to the Internet of Things.





Appendix A

Cramér-Rao bound

A.1 Fisher information matrix

Let us note with .̂ an estimator. The probability density function p(y;θ) of a signal y as a
function of a parameter vector θ can be interpreted as a likelihood function. The ‘sharper’ the
probability density function, the more accurate the parametric estimation can be. In fact the
amount of information on parameters which is carried by a signal observation can be measured
by the Fisher information matrix, noted J . J is computed as the averaged second derivative
of the log-likelihood function or as the covariance of the derivative of the log-likelihood:

J = −E[
∂2ln(p(y;θ))

∂θ2
] = E[

∂ln(p(y;θ))

∂θ

∂ln(p(y; θ))H

∂θ
] (A.1)

A.2 Cramér-Rao bound

More precisely, let us note with Γ ∈ RQxQ the covariance matrix of an unbiased estimator of
a Qx1 parameter vector θ. Then under mild conditions [53], Γ is lower bounded, in the sense
of positive definiteness, by the Cramér-Rao lower bound (CRB) [53]:

Γ ≥ CRB(θ) = J(θ)−1 (A.2)

Γ− J(θ)−1 ≥ 0 (A.3)

Therefore the unbiased estimation of θq, the qth parameter of the vector θ (q ∈ [[1;Q]]), is
lower bounded by [53]:

var(θ̂q) ≥ CRB(θ̂q) = (J(θ)−1)[q, q] ≥ (J(θ)[q, q])−1 (A.4)

where the two right hand terms are equal if and only if J is diagonal.
If J [q, r] 6= 0 for q 6= r, the additional parameter interferes, degrading performances. This
coupling interaction is different from the correlation notion.
In this thesis, we are mainly concernend by Gaussian vectors, for which the computation of
the CRB (A.2) can be done by a more specific form. Indeed, for a complex vector y+[ň; θ] =

y[ň; θ] + w[ň] where w ∼ N (0, σ2INL) is a circular white complex Gaussian noise [53], for
(q, r) ∈ [[1;Q]]2:

J [q, r] =
2

σ2
<[

NL∑
ň=1

∂y∗[ň;θ]

∂θq

∂y[ň;θ]

∂θr
] (A.5)
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where <[.] denotes the real part. For a real vector y+:

J [q, r] =
1

σ2

NL∑
ň=1

∂y[ň;θ]

∂θq

∂y[ň;θ]

∂θr
(A.6)

A.3 Efficient estimator

An estimator is efficient if and only if the probability density function comes from a family of
exponentials (Darmois theorem). An estimator is called asymptotically efficient if it achieved
the Cramér-Rao bound when the number of samples N approaches infinity. It is the case
of Maximum Likelihood estimator under mild regularity conditions. An unbiased estimator
does not always exist and it is not always the best estimator in the sense of minimal square
error. The best unbiased estimator in sense of Minimum Square Error (MSE) is called the
Minimum-Variance unbiased estimator (MVUE) and can be built from any unbiased estimator
using the Rao-Blackwell theorem. There exists some other bounds, more accurate at low SNR
than the Cramér-Rao bound in the picturing of the threshold effect, the Barankin bound [147]
or the Ziv-Zakai bound [148].



Appendix B

Computation of the MWC sensing
matrix expression

First, the expression of the Fourier coefficients of the shaped code sequences is established.
Then it is proven that the sensing matrix B of the Modulated Wideband Converter used in
eq. (2.6) is indeed given by these coefficients.

B.1 Expression of the Fourier coefficients of the shaped code
sequences

For sake of simplicity, the case where N is odd will be considered. As the mixing code in the
mth branch of the MWC receiver is assumet to be Tp-periodic, it admits following Fourier
decomposition:

pm(t) =
+∞∑

n′=−∞
γm,n′e

2iπt n
′

Tp (B.1)

Its restriction to a period Tp is given by:

pm,[Tp](t) =
N−1∑
q=0

αm(q)g(t− qTc) (B.2)

where αm corresponds to the N code elements and g is a shaping function, by default a
unit-amplitude rectangular window of length Tc. Notations are illustrated in Fig. B.1. Thus
the Fourier Transform of the signal after mixing is given by the sum of weighted subbands:

FT [x(t)pm(t)] = x̃(f) ∗ p̃m(f) =
∑+∞

n′=−∞ γm,n′ x̃(f − n′

Tp
)

=
∑+∞

n′=−∞ γm,−n′ x̃(f + n′

Tp
) (B.3)

Yet the Fourier coefficients are given by:

γm,n′ =
1

Tp

∫ Tp

0
pm(t)e

−j( 2π
Tp

)n′t
dt =

1

Tp

∫ ∞
−∞

pm,[Tp](t)e
−j( 2π

Tp
)n′t

dt

=
1

Tp
p̃m,[Tp](f =

n′

Tp
) (B.4)
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Figure B.1: Notations related to the mixing function pm(t).

where p̃m,[Tp](f) is the Fourier transform of the finite duration analog code pm,[Tp](t) which
can be rewritten in the time domain as a convolution product:

pm,[Tp](t) = (
N−1∑
q=0

αm(q).δ(t− qTc)) ∗ g(t) (B.5)

Hence in the frequency domain, the term in eq. (B.4) is given by:

p̃m,[Tp](
n′

Tp
) = ãm(

n′

Tp
).g̃(

n′

Tp
) (B.6)

where

ãm(f) =
N−1∑
q=0

αm(q)e−j2πqTcf (B.7)

is the analog Fourier Transform of the Discrete Sequence and g̃(f) is the Fourier transform of
g(t). Fig. B.2 illustrates previous formula.

Note that the effect of shaping is seldom, if ever, mentioned in the literature but it is
clear from the above equations that shaping implies that the compressive sampling acquistion
grants less measurement power to higher frequencies. As a consequence, higher frequencies
have lower probability to be recovered, i.e. recovery guarantees are not uniform.

Finally, by replacing (B.5) in (B.4) for rectangular window shaping, following expression
of the Fourier coefficients is obtained:

γm,n′ =
1

Tp
g̃[
n′

Tp
]DFT (αm)[n′] =

ãm[n′fp]

Tp
Tcsinc(

πn′

N
)e−j

πn′
N (B.8)
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Figure B.2: Power Spectral Density of the shaped discrete Sequence p̃m,[Tp](f).

For sake of clarity, let us note with σ the Discrete Fourier Transform (DFT) of the vector
containing the code sequence am:

σ[[1;N ]],m = Fa[[1;N ]],m (B.9)

or with reindexing:

σ[−N0;N0],m = F̄ a[[1;N ]],m (B.10)

where F is the Discrete Fourier Transform matrix of dimension N = 2N0 + 1 and F̄ is a
flipped row version of F so that F̄m,n = e−j

2π(N−m)n
N .

Let us define the diagonal matrix of dimension N , for n ∈ [[1;N ]]:

D = diag(
1

N
sinc(

πn

N
)e−j

πn
N ) (B.11)

Then it is possible to rewrite as a matrix expression eq. (B.8):

ΓT− = Dσ = DF̄AT (B.12)

where A and ΓT− correspond to NxM matrices containing the coefficients am,n and γ−n′,m
respectively. Hence after transpose:

Γ− = AF̄D (B.13)

because F̄ T = F̄ and DT = D.
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B.2 Sensing matrix expression

The input signal x̃(f) belongs to a union of bandpass signals hence it can be rewritten as a
sum of shifted support limited functions:

x̃(f) =

bN/2c∑
k=−bN/2c

β̃k(f − kfp) (B.14)

where β̃k(f) = 0 if f /∈ [−fp
2 ;

fp
2 ].

Hence the last term of eq. (B.3) can be rewritten:

FT [x(t)pm(t)] =

bN/2c∑
k=−bN/2c

bN/2c∑
n′=−bN/2c

γm,−n′ β̃k(f − (k − n′)fp) (B.15)

After filtering, only k = n′ is kept at baseband since β̃k are support limited:

ỹm(f) = FT [x(t)pm(t)]BB =

bN/2c∑
n′=−bN/2c

γm,−n′ β̃n′(f) (B.16)

For a given acquisition time, suppose that the spectrum does not have very quick fluctuations,
we can decompose the continuous β̃k on the l discrete frequency bins by averaging on each
one for k ∈ [[−bN/2c; bN/2c]]:

β̃k(f) =

L∑
l=1

β̃k,l(f − (l − 1)δf) (B.17)

Hence eq. (B.16) can be rewritten as:

ỹm(f) =

bN/2c∑
n′=−bN/2c

γm,−n′ β̃n′(f) =

L∑
l=1

bN/2c∑
n′=−bN/2c

γm,−n′ β̃n′,l(f) (B.18)

where β̃n′,l(f) represents the ñth = (n− 1)L+ lth bin of the input spectrum and β̃n′(f)

represents the concatenation of the l bins of the nth subband.
This is because n′ spans [[−bN/2c; bN/2c]] but index of the sensing matrix n spans [[1;N ]].
Eq. (B.18) highlights perfectly the equivalence between the canonical model and the multiband
compact formalism described in Subsection 2.1.3. In other words:

ỹm[l] = ỹm(f = (l − 1)δf − fp
2 )

=
∑N

n=1 bm,nx̃((l − 1)δf + ((n− bN2 c −
3
2).fp) (B.19)

for l ∈ [[1;L]]. It also establishes that the acquisition matrix B̌ in eq. (2.3) is indeed given by
coefficients bm,n = γm,−(n−bN

2
c−1) with γm,n defined by eq. (B.1) as the Fourier coefficients of

the shaped mixing codes. Hence in combination with (B.13) it can be concluded that:

B = AF̄D (B.20)
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Appendix C

Numerical benchmark elements
between acquisition methods

To underpin the potential of the Quadrature-to-Analog-Information Converter (QAIC) pre-
sented in 2.3.2, a comparison benchmark of interferer detection performances is reported.

Figure C.1: Comparison of interferer detection performances, from [6].
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Appendix D

Exploration of time modulation in the
NUWBS architectures with

Zadoff-Chu codes controlled delays

In this appendix, an investigation of the use of Zadoff-Chu codes for time modulation in the
Non Uniform Wavelet Bandpass Sampling (NUWBS) scheme is proposed. The NUWBS has
demarcated itself as a promising candidate from the overall comparison in Chapter 2 due to
its high degree of flexibility and versatility, a valuable asset for Cognitive Radio applications.

In [99], a hardware-in-the-loop proof of the intraband reconstruction capabilities of the
NUWBS for fixed central frequency fc and time support τ has been demonstrated, based
on a previous Application-Specific Integrated Circuit (ASIC) developed in our CEA-LETI
laboratory. To go further, the exploration of the potential of the NUWBS architecture for
Spectrum Sensing is proposed through time modulation with code sequences. It is chosen not
to reveal in details the implementation aspect in this manuscript.

The core idea is to use a Tacq-periodic Zadoff-Chu sequence, with rapidity rate of fp
matching the wavelet rate and sampling rate fs (fp = fs). For each wavelet, the phase of the
corresponding Zadoff-Chu element is used to command an additional delay on the starting
time of each wavelet. As a first step to simplify the problem, it will be considered that there
is no flexibility on time supports τ and central frequencies fc, which will be the same for all
wavelets. A potential further improvement in the ability of the acquisition sensing matrix to
generate diversity is foreseen.

D.1 Periodicity of the normalized sensing matrix of the
NUWBS

The different aliasing zones of the input spectrum are sketched in Figure D.1. Note as BWRF

the width of the occupied RF bandwidth and fi the frequency of another active signal with
whom aliasing could happen. “Intraband” refers to the frequency range [fi − fs; fi + fs].
The term “interband” corresponds to the physical quantity of the signal frequency bandwidth,
BWRF and denotes the frequency range [fi − BWRF ; fi + BWRF ]. “Out-of-band” indicates
frequencies further away than the “interband” range but belonging to the Nyquist band.

In this study, it is desired to consider the acquisition process independently of the beneficial
windowing effect of the envelope. Hence it is appropriate to introduce the matrix An ∈ CLxN ,
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Figure D.1: Definition of the different frequency aliasing zones.

whose elements have the same phase as those from A but their module is normalized to 1.
From eq. (2.9), it appears that columns of An are fp-periodic in frequency.

The periodicity appears because the subsampling period is chosen below the Nyquist rate.
This well-known aliasing phenomenon is similar to what happens in classical bandpass sam-
pling. Unlike the former, the NUWBS benefits from the pulse envelope which acts as a
selective band-pass filter. However, a potential point of interest would be to know whether
the discrimination capabilities guaranteed by the decreasing of the Gaussian envelope can be
further reinforced for signals spaced from fs, for which the corresponding normalized columns
of the sensing matrix are identical. Hence, in the following, time modulation is proposed to
temper the periodicity.

D.2 NUWBS architecture with Zadoff-Chu modulated wavelet
stream

In the proposed system, a delay is added with respect to the expected periodic starting date
of each wavelet of the NUWBS. This new architecture will be referred to as ∆ZAC-WBS.
For sake of simplicity, a single branch architecture is considered.
Consider Z∆ ∈ CLxN , the sensing matrix corresponding to the acquisition with a ∆ZAC-WBS.
As pictured on Figure D.2, the application of the delays can be expressed as a convolution
product in the time domain with a matrix C ∈ CLxN such that the sensing matrix Z∆ is
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given by:
Z∆ = RA∆ = RC ◦A = RC ◦WHF−1 (D.1)

where it is recalled that R is a matrix selecting a subset of rows, A = WHF−1 and C
representing the delays is defined as follows:

C[k, n] = e−j2πεknδf (D.2)

with the delay on the kth wavelet, noted εk, that can be linked to a phase φk through the
relationship εk = φk

2πfc
.

Figure D.2: Decomposition of the acquisition matrix of a NUWBS architecture with Zadoff-
Chu modulated wavelet stream.

The expression of the kth delayed measurement vector in the time domain is given by [98]:

Ψ∆,δk(t) = Ψδk(t− εk) =
21/4

√
τ(π)1/4

e−j2πfc(t−εk−δk)e
−(t−εk−δk)

τ (D.3)

Hence the Fourier Transform of eq. (D.3) is given by [98]:

Ψ̌∆,δk(f) = FT [Ψδk(t)].e−j2πεkf = (τ
√

2π)1/2e−j2πδkfe−(πτ(f−fc))2
.e
−φk
fc
f (D.4)

Replacing δk as in eq. (2.9), and replacing φk by assuming that it is chosen to be the phase
of a Zadoff-Chu sequence according to eq. (3.4) so that εk = Rk2

2fcL
yields:

a∆[k, n] = (τ
√

2π)1/2e
−j2π( k

fs
+ Rk2

2fcL
)nδf

e−(πτ(nδf−fc))2
(D.5)

whereR is the index of the Zadoff-Chu sequence and δf corresponds to the frequency resolution
so that f = nδf .
For sake of dissociating the effect of windowing, the matrix An∆ ∈ CLxN , whose elements
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have the same phase as those from A∆ but the module is normalized to 1 is also introduced.
The expression of its elements is then:

an∆[k, n] = e
−j2π( k

fs
+ Rk2

2fcL
)nδf (D.6)

By considering this equation, it appears that the application of a delay amounts in fact to
defining a new equivalent sampling grid with sampling instant defined by (δk + εk).Tp. That
is, it is possible to rewrite (D.2) as:

an∆[k, n] = Ψn∆,δk(nδf) = e−j2π(δk+εk)nδf (D.7)

This point of view reminds for instance of chirp sampling [152, 153], a method consisting in
sampling at instants given by the zero-crossings of a chirp. A parallel could perhaps also be
drawn with the choice of the optimal sampling pattern in the Non Uniform Sampling (NUS),
a problem tackled for instance by S. Traoré in [93].
Then for indices (n, n′) ∈ Z2, the correlation Γn,n′ between two columns of the normalized
sensing matrix An∆ is given by:

Γn,n′ =

L∑
k=1

e
j2π( k

fs
+ Rk2

2fcL
)nδf

e
−j2π( k

fs
+ Rk2

2fcL
)n′δf (D.8)

=
L∑
k=1

e
−j2π( k

fs
+ Rk2

2fcL
)(n′−n)δf

If a distance fs = L.δf is considered, which corresponds to an index n′ = n + L, previous
equation becomes:

Γn,n+L =
L∑
k=1

e
−j2π( k

fs
+ Rk2

2fcL
)fs =

L∑
k=1

e
−j2πRk

2

2fc
δf (D.9)

This expression is smaller than L in general. A given delay entails a different phase depending
on frequency, thus creating some diversity. In particular for R and k odd and fc multiple of
δf , a first insight highlights that the fraction Rk2δf

2fcL
can not be an integer since Rk2 is odd

and 2fcL contains a factor 2. Hence Γ is not fs- periodic anymore.
Previous equation is then analyzed more thoroughly for varying parameters R and fc, and

a fixed distance fs (i.e. n′ − n = L), in Figure D.3. For an appropriate choice of (R, fcfs )

the cross-correlation Γn,n+L in the ∆ZAC-WBS is much smaller (i.e. better) than L = 32,
the worst case of the NUWBS. For the optimal parameter set [R = 55, fc = 6.fs], a gain of
−24.41dB is achieved. For fc = 4GHz = 32.fs which corresponds to the available hardware
used in [99], a gain of −15.68dB is achieved for optimal R = 62. This shows that introducing
pseudo-random delays at each wavelet may indeed allow to prevent further interband aliasing
through fs-periodicity.

The fs-periodicity, which is characterized by the analysis for n′ = n + L, was the most
obvious issue. Varying n′ allows to go further in evaluating the amount of information brought
globally by the acquisition process. It is similar to the analysis of coherence, which would then
be the maximum correlation over all possible columns.
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Figure D.3: Module of the correlation Γn,n+L between fs-spaced columns of the ∆ZAC-WBS
sensing matrix, [L = 32,R = 1, fc = 4GHz, fs = 125MHz].

Parameters are fixed according to the hardware constraint fc = 4GHz and with the optimal
R found in the previous parametric analysis: R = 62, fs = 125MHz and fNyq = 32GHz. In
Figure D.4, the module of the crosscorrelation is pictured for the NUWBS and the ∆ZAC-
WBS respectively, in dBc. The reference column is set to f = fc but note that since eq.
(D.9) points out that the result only depends on the distance n − n′, any reference point
could have been chosen. For the NUWBS (red dashed), the module of the correlation is a
fs-spaced Dirac comb distribution. However, for the ∆ZAC-WBS (blue), it appears that the
fs-periodicity has been broken: For f = fc ± fs, the amplitudes of the intercorrelation peak
with fc is at −15.68dBc. Hence the proposed method achieves the targeted purpose: taming
the periodicity ofthe measurement. In inter-peak zones, coefficients are not zeros anymore
hence orthogonality within a subband is not ensured anymore, but this does not necessarily
mean that the signals cannot be discrimated.

The use of Zadoff-Chu codes for time modulation in the NUWBS has been sketched. A
correlation analysis showed that the fs-periodicity of the normalized sensing matrix is indeed
broken. The interest of this compromise on the overall performances of the RF receiver will be
investigated further, notably through a practical performance benchmark with the NUWBS
simulation platform. Also, further interpretation of the spectrum of the measurement vectors
with respect to properties of Zadoff-Chu codes could shed additional light on the acquisition
process.

These elements have been studied further, leading to the patent deposit [142].
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Figure D.4: Module of the correlation for the ∆ZAC-WBS, in dBc, for varying frequency n′δf
and fixed nδf = fc.



Appendix E

Proof of Theorem 1: Link between
Fisher matrices for Compressive

Sampling and Subsampling

First, (A.5) is derived, then (A.6) as a simplification. According to (A.5),(1.1) the (q, r)th

element of the Fisher matrix from the compressed samples of a multiband architecture (MB)
JMB is given by:

JMB,[q,r] =
2

σ2
CS

<[

ML∑
m̌=1

∂y∗[m̌]

∂θq

∂y[m̌]

∂θr
] (E.1)

where the compressed noise satisfies σ2
CS = σ2 since B has column energy normalization

to M . Due to orthonormality and independence toward parameters of the Discrete Fourier
Transform matrix F , it is also true in the spectral domain:

JMB,[q,r] =
2M

Nσ2
<[

ML∑
m̌=1

∂ỹ∗[m̌]MB

∂θq

∂ỹ[m̌]MB

∂θr
] (E.2)

For Bandpass sampling:

ỹBP (f) =

+∞∑
k=−∞

x̃(f − kfp) (E.3)

The (q, r)th element of the Fisher matrix is given by:

JBP [q, r] =
2

Nσ2
<[

L∑
l=1

∂ỹ∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

] (E.4)

where from the discretization of (E.3) the sample derivatives are given by:

∂ỹ[l]BP
∂θq

=
N∑
n=1

∂x̃[L(n− 1) + l]

∂θq
=
∂x̃q[L(λq − 1) + l]

∂θq
(E.5)

where the second equality is due to the subband model (Hyp.1). Whereas for Compressive
Multiband Sensing, the samples derivatives are given, from (B.19), by:

∂ỹm[l]MB

∂θq
=

∑N
n=1 bm,n

∂x̃[L(n−1)+l]
∂θq

= bm,λq
∂x̃q [L(λq−1)+l]

∂θq
= bm,λq

∂ỹ[l]BP
∂θq

(E.6)
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where the second equality is due to (Hyp.1) and the third by recognizing (E.5). Hence:

M∑
m=1

L∑
l=1

∂ỹ∗m[l]MB

∂θq

∂ỹm[l]MB

∂θr
=

M∑
m=1

b∗m,λqbm,λr

L∑
l=1

∂ỹ∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

(E.7)

Yet:

<[b∗m,λqbm,λr
∂ỹ∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

] =

<[b∗m,λqbm,λr ]<[∂ỹ
∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

]−=[b∗m,λqbm,λr ]=[∂ỹ
∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

] (E.8)

One may recognize that:

=[
∂ỹ∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

] = −<[i
∂ỹ∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

]. (E.9)

Since i∂ỹ
∗[l]BP
∂θq

= ∂ej
π
2 ỹ∗[l]BP
∂θq

, it therefore corresponds to a simple additional dephasing of π
2

between the two subsignals. So according to (E.2) and (E.4), it is possible to rewrite matrix-
wise for (q, r) ∈ [[1;Q]]2:

JMB = <[BH
ΛBΛ] ◦ JBP + =[BH

ΛBΛ] ◦ J̌BP (E.10)

where J̌BP [q, r] corresponds to the (q, r)th coefficient of the Fisher matrix for Bandpass Sam-
pling in a virtual scenario where the initial dephasing between components xλq and xλr is
increased by π

2 .
Similarly but more simply in the real case, by using eq. (A.6) JMB can be rewritten

matrix-wise for (q, r) ∈ [[1;Q]]2 into:

JMB = <[BH
ΛBΛ] ◦ JBP (E.11)
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Appendix F

Proof of Theorem 2: Link between
Fisher matrices for Subsampling and

Nyquist Sampling

We will first note that JBP [q, r](∆fq,r) is fp-periodic and then demonstrate that
JBP [q, r](∆fq,r) = 1

N JNyq[q, r](∆fq,r) for ∆fq,r ∈ [−fs
2 ; fs2 ].

First, notice from (E.3) that ỹ is fp-periodic, hence it follows from (E.4) that JBP [q, r](∆fq,r)

is fp-periodic.
Concerning the second point, the Fisher information matrix for a Nyquist-rate acquisition is
given by:

JNyq[q, r] =
1

σ2

L∑
l=1

N∑
n=1

∂x̃∗[(n− 1)L+ l]

∂θq

∂x̃[(n− 1)L+ l]

∂θr
(F.1)

According to Hyp. 2, for a given l ∈ [[1;L]]:

∂x̃q[(n− 1)L+ l]

∂θq
,∀q ∈ [[1;Q]] (F.2)

has among n ∈ [[1;N ]] at most one non-zero term, for n = λq.
Therefore for ∆fq,r ∈ [−fp

2 ;
fp
2 ] it is possible to simplify the sum on n leading to:

JNyq[q, r] =
1

σ2

L∑
l=1

∂x̃∗q [(λq − 1)L+ l]

∂θq

∂x̃r[(λr − 1)L+ l]

∂θr
(F.3)

where λq and λr are equal, or consecutive indices (in case of leakage from the adja-
cent subband). Hence by recognizing (E.4)(E.5), we have: JNyq[q, r] = N.JBP [q, r] for
∆fq,r ∈ [−fp

2 ;
fp
2 ]. Combining both proofs, the theorem is proven:

JBP [q, r](∆fq,r) =
1

N
(JNyq[q, r](∆fq,r).HLP (∆fq,r)) ∗

∞∑
k=−∞

δ(∆fq,r − kfp) (F.4)
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Appendix G

Fisher matrix for spectral estimation
of multitone signals with Nyquist

Sampling

Consider a K-tone signal, generalization of eq. (G.1).

x[ň]+ =

K∑
k=1

Akcos(2πfkň+ φk) + w[ň] (G.1)

The parameter vector is θ = [A1...AK ,Φ1...ΦK , f1...fK ]. For Nyquist sampling, y[ň] = x[ň]

for ň ∈ [[1;NL]]. Hence the coefficients of the Fisher matrix JNyq are given by:

JNyq[q, r] =
1

σ2

NL∑
ň=1

∂y[ň]

∂θq

∂y[ň]

∂θr
=

1

σ2

NL∑
ň=1

∂x[ň]

∂θq

∂x[ň]

∂θr
(G.2)

The partial derivatives of the measured signal model with respect to the considered parameter
are given by, for k ∈ [[1;K]]:

∂x̃[ň]

∂Ak
= cos(2πfkň+ φk) (G.3)

∂x̃[ň]

∂φk
= −Aqsin(2πfkň+ φk) (G.4)

∂x̃[ň]

∂fk
= −Aq2πňsin(2πfkň+ φk) (G.5)

Then coefficients of the Fisher matrix JNyq for Nyquist sampling are given as follows.
For same parameters, (k, k′) ∈ [[1;K]]2:

J [Ak, Ak′ ] =
1

σ2

NL∑
ň=1

cos(2πfkň+ φk)cos(2πfk′ ň+ φk′) (G.6)

Recall that cos(a)cos(b) = 1
2(cos(a+ b) + cos(a− b)) for (a,b) ∈ R. Hence:

J [Ak, Ak′ ] =
1

2σ2

NL∑
ň=1

cos(2π(∆f)k,k′ ň+ (∆φ)k,k′) + cos(2π(Σf)k,k′ ň+ (Σφ)k,k′) (G.7)
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where the notations (∆f)k,k′ = f ′k − fk and (Σf)k,k′ = f ′k + fk are used for sake of brevity.
Consider then the real part of a sum of geometrical terms with common ratio e2jπf given by
(f 6= 0):

NL∑
ň=1

e2jπfň+∆φ = e∆φ+2jπf 1− e2jπNLf

1− e2jπf
(G.8)

Then from half angle factorization (for f 6= {0; 0.5}):

e∆φ+2jπf 1− e2jπNLf

1− e2jπf
= e∆φ+jπf(NL+1) sin(2πNLf)

sin(2πf)
(G.9)

Taking the real part in eq. (G.9) to replace in eq. (G.7) yields:

J [Ak, Ak′ ] = 1
2σ2 [

sin(NL(∆f)k,k′ )

sin((∆f)k,k′ )
cos((∆Φ)k,k′ + π(∆f)k,k′(NL+ 1)) +

sin(NL(Σf)k,k′ )

sin((Σf)k,k′ )
cos(ΣΦk,k′ + π(Σf)k,k′(NL+ 1))]

' NL
2σ2 [sinc(NL(∆f)k,k′)cos((∆Φ)k,k′ + π(∆f)k,k′(NL+ 1)) +

sinc(NL(Σf)k,k′)cos(ΣΦk,k′ + π(Σf)k,k′(NL+ 1))] (G.10)

Similarly by using sin(a)sin(b) = 1
2(−cos(a + b) + cos(a − b)) for (a,b) ∈ R, the partial

derivatives with respect to phase and frequency are given by:

J [Φk,Φk′ ] '
AkAk′NL

2σ2 [sinc(NL(∆f)k,k′)cos((∆Φ)k,k′ + π(∆f)k,k′(NL+ 1))−
sinc(NL(Σf)k,k′)cos((ΣΦ)k,k′) + π(Σf)k,k′(NL+ 1))] (G.11)

J [fk, fk′ ] = 2π2

σ2 AkAk′<[ej(∆Φ)k,k′χ2(∆f,NL)− ej(ΣΦ)k,k′χ2(Σf,NL)]

where χ2(f,NL) =
∑NL

ň=1 ň
2ej2πfň. For diagonal terms and k = k′ ∈ [[1;K]], previous equa-

tions simplify to:

J [Ak, Ak] =

NL∑
ň=1

(
1

2
+
cos(4πňfk + 2φk)

2
) ' NL

2σ2
(G.12)

J [Φk,Φk] = A2
k

NL∑
ň=1

(
1

2
− cos(4πňfk + 2φk)

2
) '

NLA2
q

2σ2
(G.13)

J [fk, fk] '
2π2A2

k

σ2

NL∑
ň=1

ň2

=
2π2A2

k

σ2

NL(NL+ 1)(NL+ 2)

6
(G.14)

Other terms of the Fisher information matrix are given as follows.

J [Ak,Φk′ ] = −Ak′
NL

σ2

NL∑
ň=1

sin(2πfkň+ φk)cos(2πfk′ ň+ φk′) (G.15)
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Using sin(a)cos(b) = 1
2(sin(a+ b) + sin(a− b)) for (a,b) ∈ R yields:

J [Ak,Φk′ ] '
−Ak′NL

2σ2 [sinc(NL(∆f)k,k′)sin((∆Φ)k,k′ + π(∆f)k,k′(NL+ 1)) +

sinc(NL(Σf)k,k′)sin((ΣΦ)k,k′ + π(Σf)k,k′(NL+ 1))] (G.16)

J [Ak, fk′ ] = −2π2

σ2 Ak′=[ej(∆Φ)k,k′χ2(∆f,NL) + ej(ΣΦ)k,k′χ2(Σf,NL)] (G.17)

J [Φk, fk′ ] = 2π
σ2AkAk′<[ej(∆Φ)k,k′χ1(∆f,NL)− ej(ΣΦ)k,k′χ1(Σf,NL)] (G.18)

where χ1(f,NL) =
∑NL

ň=1 ňe
j2πfň.

For k = k′:

J [Ak,Φk] '
NL

2σ2
sinc(2NLfk)sin(2Φk + 2πfk(NL+ 1))] (G.19)

J [Ak, fk] =
2π2

σ2
Ak=[ej2Φkχ2(2fk, NL)] (G.20)

J [Φk, fk] =
2πA2

k

σ2

NL(NL+ 1)

2
(G.21)

Note that eq. (G.12-G.14) and (G.19-G.21) match the reference benchmark of eq. (3.41)
established in [53]. It is possible to compute further χ1 and χ2, either by simple but tedious
calculations consisting in deriving twice

∑N
n=1 e

j2πfn or by recognizing the Fourier Transform
of a ramp function and a square function.
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Résumé – Cette thèse traite de la conception de récepteurs radiofréquences basés sur
l’acquisition compressée pour de l’estimation paramétrique en radio cognitive. L’acquisition
compressée est un changement du paradigme de la conversion analogique-numérique qui per-
met de s’affranchir de la fréquence d’échantillonnage de Nyquist sous hypothèse d’occupation
parcimonieuse du spectre. Dans ces travaux, les estimations sont effectuées sur les échantillons
compressés vu le coût prohibitif de la reconstruction du signal d’entrée. Après avoir dressé un
état de l’art de l’acquisition compressée pour la radio cognitive et passé en revue différentes
architectures de récepteurs, la première contribution concerne l’étude des codes de mélange
pour une architecture particulière, le convertisseur modulé à large bande (MWC). Une anal-
yse haut niveau des propriétés de la matrice d’acquisition, à savoir la cohérence pour réduire
le nombre de mesures et l’isométrie pour la robustesse au bruit, est menée puis validée par
une plateforme de simulation. Ensuite, l’estimation paramétrique à partir des échantillons
compressés est abordée à travers la borne de Cramér-Rao sur la variance d’un estimateur non
biaisé. Une forme analytique de la borne est établie sous certaines hypothèses et permet de
dissocier les effets de la compression et de la création de diversité. L’influence du processus
d’acquisition, notamment le couplage entre paramètres et la fuite spectrale, est illustrée par
l’exemple.
Mots clés : Acquisition compressée, Acquisition comprimée, Détection de Spectre, Estima-
tion Paramétrique, Radio Cognitive, MWC, NUWBS, Internet des Objets, Récepteurs radio

Abstract – This work deals with the topic of radiofrequency receivers based on Compres-
sive Sampling for feature extraction in Cognitive Radio. Compressive Sampling is a paradigm
shift in analog to digital conversion that bypasses the Nyquist sampling frequency under as-
sumption of spectral sparsity of the signal. In this work, estimations are carried out on the
compressed samples due to the prohibitive cost of signal reconstruction. After a state-of-the-
art on Compressive Sampling in Cognitive Radio and a discussion on different compressive
receiver architectures, our first contribution is a study of the mixing codes of a particular re-
ceiver, the Modulated Wideband Converter. A high-level analysis on properties of the sensing
matrix, coherence to reduce the number of measurement and isometry for noise robustness,
is carried out and validated by a simulation platform. Then, parametric estimation based on
compressed samples is tackled through the prism of the Cramér-Rao lower bound on unbiased
estimators. A closed form expression of the bound is established under certain assumptions
and enables to dissociate the effects of compression and diversity creation. The influence of
Compressive Sampling on estimation bounds, in particular coupling between parameters and
spectral leakage, is illustrated by the example.
Keywords: Compressive Sensing, Compressive Sampling, Spectrum Sensing, Parametric
Estimation, Cognitive Radio, Modulated Wideband Converter, Non Uniform Wavelet Band-
pass Sampling, IoT, Radiofrequency receiver
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