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Abstract

This work presents a set of analytical results regarding some elementary
randomized protocols, called dynamics, for solving some fundamental com-
putational problems. New techniques for analyzing the processes that arise
from such dynamics are presented, together with concrete examples on how
to build e�cient and robust distributed algorithms for some important tasks
using these processes as a black-box.

More speci�cally, we analyze several dynamics such as the 3-Majority,
the Averaging and the Undecided-State ones, and we show how to use them
to solve fundamental problems such as plurality consensus, community de-
tection (including the reconstruction problem in the stochastic block model),
and bit dissemination (rumor spreading). We focus mainly on unstructured
and random interaction models, and we also deal with scenarios in which
the communication is a�ected by noise or when a self-stabilizing protocol is
required.



Preface

This work presents in a systematic way a major part of the research I've
taken part to during my PhD studies. The main purpose of this Preface is to
list what has been included here out of what I've done in these three years,
and what has been not because of the diversity of topic.

A great part of such work has already been presented at conferences in
computer science. The following chapters are based on the following publi-
cations:

• Chapter 4: L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and
L. Trevisan, Find Your Place: Simple Distributed Algorithms for
Community Detection, in Proceedings of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA'17 ), Barcelona,
Spain, 2017.
• Chapter 5:

� L. Becchetti, A. Clementi, E. Natale, F. Pasquale, R. Silvestri,
and L. Trevisan, Simple dynamics for plurality consensus, in
Proceedings of the 26th ACM on Symposium on Parallelism
in Algorithms and Architectures (SPAA'14 ), Prague, Czech
Republic, 2014, pp. 247�256.

� L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L.
Trevisan, Stabilizing Consensus with Many Opinions, in Pro-
ceedings of the 27th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA'16 ), Arlington, Virginia, 2016, pp.
620�635.

• Chapter 6: L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and
R. Silvestri, Plurality Consensus in the Gossip Model, in Proceed-
ings of the 26th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA'15 ), San Diego, California, 2015, pp. 371�390.
• Chapter 7: L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and
G. Posta, Self-Stabilizing Repeated Balls-into-Bins, in Proceedings
of the 27th ACM on Symposium on Parallelism in Algorithms and
Architectures (SPAA'15 ), Portland, Oregon, 2015, pp. 332�339.
• Chapter 8: P. Fraigniaud and E. Natale, Noisy Rumor Spreading
and Plurality Consensus, in Proceedings of the 2016 ACM Sympo-
sium on Principles of Distributed Computing (PODC'16 ), Chicago,
Illinois, 2016, pp. 127�136.
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• Chapter 9: L. Boczkowski, A. Korman, and E. Natale, Minimiz-
ing Message Size in Stochastic Communication Patterns: Fast Self-
Stabilizing Protocols with 3 bits, in Proceedings of the 28th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA'17 ),
Barcelona, Spain, 2017. (Brief Announcement in Proceedings of
the 2016 ACM Symposium on Principles of Distributed Computing
(PODC'16 ). Chicago, Illinois, 2016, pp. 207�209. )

As one can see in the previous list, rather than following the chronological
order of the research, the presentation of the material attains to the �big
picture� discussed in the Introduction (Chapter 1).

A paper which could have been included in this work is

• D. Kaaser, F. Mallmann-Trenn, and E. Natale, On the Voting Time
of the Deterministic Majority Process, in Proceedings of the 41st
International Symposium on Mathematical Foundations of Com-
puter Science, Dagstuhl, Germany, 2016, vol. 58, p. 55:1�55:15.
(MFCS'16)

While the subject of the aforementioned paper is akin to the processes inves-
tigated here, the deterministic and worst-case nature of those results does
not �t in the spirit of this work, as explained in the Introduction (Chapter
1).

Two other papers which don't have anything to do with distributed com-
puting are

• L. Guala, S. Leucci, and E. Natale, Bejeweled, Candy Crush and
other match-three games are (NP-)hard, in Proceedings of the IEEE
Conference on Computational Intelligence and Games, 2014, pp.
1�8. (CIG'14)
• L. Gualà, S. Leucci, E. Natale, and R. Tauraso, Large Peg-Army
Maneuvers, in Proceedings of the 8th International Conference on
Fun with Algorithms, Dagstuhl, Germany, 2016, vol. 49, p. 18:1�18:15.
(FUN'16)

The previous papers deal with computational aspects of some combinato-
rial puzzles, and they came out of the common interest of Luciano Gualà,
Stefano Leucci, Roberto Tauraso and me for algorithmic aspects of perfect-
information single-player games.

Last but not least, the following work by Michele Borassi and me on
computing the betweenness centrality of complex networks is also o�-topic
with respect to the scope of this treatise:

• M. Borassi and E. Natale, KADABRA is an ADaptive Algorithm for
Betweenness via Random Approximation, in Proceedings of the 24th
Annual European Symposium on Algorithms, Dagstuhl, Germany,
2016, vol. 57, p. 20:1�20:18. (ESA'16)
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CHAPTER 1

Introduction

This work is a treatise in the �eld of distributed computing and, as
such, there are some expectations that we are not going to disappoint: there
is a system (the network) of n agents (the nodes) that interact (exchange
messages) with each other according to some communication model, and
there is a computational goal that the system aims to achieve through some
suitable protocol executed by the agents [Pel00].

Within the �eld of distributed computing, the scope of this work is lo-
cated within a class of systems that may resemble the subject of study of sta-
tistical mechanics [Lig12]: the class of protocols that we consider are simple
and lightweight [HP01], their typical behavior strongly relies on randomness
which constitutes an essential part of the process, and have been grouped
under the name of dynamics [AAE08, AAB+11, Dot14, MNT14].

As in the case of natural algorithms and complex networks, the concept
of dynamics seems a�ected by a clear contrast between the informal con-
sensus the related experts' community has about the obviousness of what
that concept means, and the lack of serious attempts to provide a rigorous
de�nition which can englighten the outsiders.

To prevent us from contributing to such undesirable situation, with the
�rst de�nition of this work we attempt to provide a �rst formalization1 of the
concept of dynamics as simple, lightweight, natural, local, elementary rules.

Definition 1 (Dynamics). A dynamics is a synchronous distributed
algorithm characterized by a very simple structure, whereby the state of a
node at round t depends only on her state and a symmetric function of the
multiset of states of her neighbors at round t − 1, while the update rule is
the same for every graph and every node and does not change over time.

Remark 1. Clearly, within the constraints of the previous de�nition,
it still appears to be possible to come up with computational rules which
are complex and unnatural. We emphasize that the nature of De�nition 1
is to provide a rough guideline, and does not substitute the reliance of the
scienti�c community on the real world phenomena the concept intends to
capture, which are discussed in Chapter 3. De�nition 1 is therefore overtly
provisional and open to be replaced by better candidates.

1The de�nition has already appeared in [BCN+
15b].
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=⇒ < <

=⇒ =⇒

?

3-Median
dynamics

3-Majority
dynamics

Undecided-state
dynamics

?

Figure 1. Illustration of the 3-Median dynamics (in which
each agent samples two other agents at random and updates
her opinion with the median of their values and her own), the
3-Majority (in which each agent samples three other agents at
random and update her opinion with the most frequent value
among those three, breaking ties arbitrarily), and Undecided-
State Dynamics (in which each agent samples another agent,
if their values di�er she becomes undecided, and if she is un-
decided she picks the �rst opinion she sees).

Note that in De�nition 1 no network IDs are used, so we may assume
that the network is anonymous. Examples of dynamics which are discussed
in Chapter 3 include update rules in which every node updates its state to
the plurality or the median of the states of its neighbors2, or which updates
it to the average of the values held by its neighbors (see Figure 1). In
contrast, an algorithm that, say, proceeds in two phases, using averaging
during the �rst 10 log n rounds and plurality from round 1+10 log n onward,
with n the number of nodes, is not a dynamics according to our de�nition,
since its update rule depends on the size of the graph. As another example,
an algorithm that starts by having the lexicographically �rst node elected as
�leader� and then propagates her state to all other nodes again does not meet
the de�nition of dynamics, since it assigns roles to the nodes and requires
them to possess distinguishable identities.

2When states correspond to rational values.
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Organization of the work

In Section 1.1, we begin our journey with an informal account of the
content of this work. In the following chapter (sections 2.1, 2.2, 2.3, 2.4, 2.5
and 2.6), we present the results contained in this work. In Chapter 3, we
discuss the related literature. In chapters 4, 5, 6, 7, 8 and 9, we present the
proofs of our results. Finally, in Chapter 10, we discuss some open problems.

1.1. The Informal Story of the Big Picture

In sections 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6, we are going to individually
motivate the subject of each of the following chapters. However, as we said
above, all of them can be framed within the investigation of the computa-
tional power of dynamics. Hence, apart from the individual motivations,
the question of whether it makes sense to look at them as a coherent whole
arises naturally. Therefore, before providing further details on the individual
subjects of our study and on the empirical reasons that motivate our speci�c
interest for them, it is worth taking a small digression about how we ended
up looking at them as belonging to a consistent class of objects, where each
of them is deeply intertwined to the others.

1.1.1. Peeking in the Universe of Computational Rules

Since the advent of the computer, scientists found themselves with a new
telescope which provided them with the capacity to observe the computa-
tional universe at a new scale. Through simulations, they were able to look
far beyond their mathematical understanding of the relationship between
local interactions among the tiny parts of a system and its global behavior
and, in the last decades, they were astounded by the unexpected appear-
ance of global complexity from local simplicity. To mention few examples of
the enthusiasm of the scienti�c community, in 1984 the Santa Fe Institute
was founded in New Mexico, with the mission of pioneering research on how
complex systems emerge from simple interactions and, almost twenty years
later, Stephen Wolfram was publishing his famous book [Wol02], in which
he provided extensive empirical evidence about the fact that many complex
systems emerge from very simple �programs�. However, such enthusiasm
brought from the shocking new ability to explore the universe of computa-
tional rules has been counterbalanced from the inability to develop a new
mathematics which could account for our new observations.

With the above perspective in mind it is hard not to be fascinated by the
di�culty of saying something mathematically nontrivial on the �complexity
from simplicity� phenomenon (in short CFS phenomenon). One of the few
possible paths in the latter direction with a non-negligible probability of
being pro�table, appears to be that of theoretical computer science. The
mathematics of computation, which made us concretely aware of the CFS
problem, seems one of the few sensible theoretical tools on which to bet for
understanding it.
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Within the world of theoretical computer science, a particularly appeal-
ing tool to look at the interplay of local/individual and global/collective
behavior is the theory of distributed computing (in short, distributed com-
puting). Distributed computing is concerned with how systems of compu-
tational agents can achieve some global goal in the most e�cient way. If
we set as the goal of the system �a complex behaviour� and we constrain
the agents to perform only �simple� interactions and computations, we get
an instance of the CFS phenomenon. Therefore, in some sense, we have an
entire sub�eld of theoretical computer science (and thus, of mathematics),
whose purpose is (in part) to explicitly deal with the CFS phenomenon.

The above interpretation of the status quo is not wishful thinking. From
programmable matter [DDG+14, CDRR16] to chemical reaction networks
[CSWB09, Dot14, CKW16, Reu16], from sensor networks [AAD+06,
AFJ06] to the behaviour of insect colonies [FHK14, FN16], there is a huge
part of the distributed computing discipline driven by the aspiration to de-
velop a theory analogous to that built by statistical mechanics for interacting
particle systems, when we replace �particle� with �agent�.

In fact, the underlying motif behind the research presented in this work
arose when the author said to Andrea Clementi (who was teaching a course
on distributed computing that the author was attending), that he would
have liked to work on a problem which consisted in �nding a simple process
whose interest lied in the intersection of distributed computing and network
analysis, i.e. that would have shown some complex behaviour depending on
the network topology. Andrea Clementi came up with a problem that, as we
later discovered, turned out to be an instance of the famous reconstruction
problem in stochastic block models [HLL83, DF89, JS98, McS01, CO10,
DKMZ11, ABH14], which is a main character of Chapter 4. In the next
section we informally discuss the original problem and how the di�erent
results of this work can be traced back to the �rst natural idea with which
we tried to solve it.

1.1.2. Dynamics for Distributed Clustering and Much More

Consider the problem of performing community detection on a model
of (discrete-time) dynamic random graphs [AKL08], the dynamic stochas-
tic block model, which is obtained by considering a sequence of independent
graphs generated according to a �xed stochastic block model (see De�nition
6). That is, in the dynamic stochastic block model the nodes are partitioned
in two communities of equal size and at each round a random graph is gener-
ated by including each edge between nodes within the same community with
probability p, and each edge across the two communities with probability
q < p. It follows that each node tends to have more neighbors inside her
own community than the other one.

To perform community detection means to assign to each node a label
such that two nodes have the same label if and only if they are in the same
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community3. Note that the previous de�nition, in general, still requires to
de�ne what a community is. A natural way to address this issue is to consider
a planted model, i.e. to include the communities right in the de�nition of the
graph model, as is the case of the aforementioned dynamic stochastic block
model and the graph models considered in 4.

In such a scenario a natural heuristic that comes to one's mind to solve
the problem is the following:

(1) Each node initially generates a random color;
(2) At each round each node takes the most frequent value of a ran-

dom sample of neighbors, chosen independently and uniformly at
random, breaking ties arbitrarily.

The previous family of epidemic strategies and their variants are known
as label propagation algorithms (LPA for short) [RAK07, BC09, LHLC09,
LM10]. The intuition is that the mechanism employed in the second part of
the algorithm4 should tend to assign the same color to sets of nodes which
are more connected among themselves than with the rest of the graph.

Perhaps surprisingly, the rules in Step 2 which (experimentally) turns
out to be the most e�ective, e�cient and robust are probabilistic rules that,
in an in�nite time, would lead the system to a trivial labeling. In other
words, there is a possible (although exponentially improbable) concatenation
of speci�c unlikely events in the random choices of the protocol which could
lead the system to a complete failure, such as labeling the whole graph as
a sole community. This scenario is often encountered also in other scienti�c
contexts such as systems studied in statistical mechanics where, a priori, an
�almost-impossible� sequence of unfortunate events would cause an empirical
violation of the laws of thermodynamics. To cope with such bad events the
concept of metastability has therefore been introduced. A set of states of
a stochastic process is said to be metastable if, informally speaking, the
system spends a lot of time in that class of states, although they may be
far from those that the system reaches in the equilibrium, i.e. in an in�nite
time (in the language of Markov chains, the metastable states may even
be transient, i.e. once the system exits them, it never visits them again).
Analogously, a good LPA is expected to assign (with high probability) the
same label to nodes in the same community, and di�erent labels to nodes in
di�erent communities, and to maintain this status of internal consensus and
external disagreement for any polynomial number of rounds although, in an
exponential time, it may be that the system happens to assign the same label
to di�erent communities, with no possibility of recovering from that point
on. Thus, the e�cacy of LPAs in solving the community detection problem
partly relies on the e�cacy and robustness of the employed mechanism in

3According to the literature discussed in Chapter 3, in this work we assume that the
communities partition the graph, i.e. each node belongs to exactly one community.

4Typically, the update rule of an LPA make use of is a dynamics.
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cautiously solving the plurality consensus problem, that is the problem of
converging to the most frequent color in the system5 (see Section 2.2).

Despite their extreme simplicity, the analysis of LPA-based protocols is
extremely challenging, as discussed in Section 3.1.1. In fact, not surprisingly,
while simulations were decisively promising for simple variants of the pre-
vious protocol (such as when in Step 2 we adopt the 3-Majority dynamics
discussed in Chapter 5), in [CDIG+15] we manage to rigorously analyze
only a distributed community detection algorithm which is quite far from
being a dynamics, given that the rule it applies changes as a function of
time which depends on the number of nodes n. However, as in each failed
attempt of analyzing simple algorithms, we were left with several smaller
open problems, whose solution appeared still challenging but hopefully more
achievable.

1.1.2.1. The 3-Majority dynamics. By trying to develop tools for analyzing
LPA-like dynamics in order to solve the community detection problem, we
ended up investigating majority dynamics and the results presented in Chap-
ter 5. Very promising evidence in this direction was provided by [DF11],
where it is proved that a dynamics not-too-far from those adopted in LPAs,
the 3-Median dynamics, is extremely e�cient in solving consensus problems
even if there are a lot of initial labels in the system.

However, as outlined in Section 2.2, we surprisingly found that the con-
vergence time in solving the consensus problem of the simplest majority
dynamics, the 3-Majority process, is essentially linear in the number of ini-
tial di�erent opinions in the system. We further proved that the situation
does not change if instead of the 3-Majority we consider any protocol within
a wide class of dynamics (h-input dynamics), and that the 3-Majority dy-
namics was already optimal w.r.t. all those dynamics which basically consist
in exchanging opinions making use of at most 3 inputs (we may call such
class LPA with arity 3 ).

These results were very bad news for the potential use of 3-Majority dy-
namics as a building block for more complex protocols and as an e�cient
dynamics per-se, and motivated the further investigation of faster dynamics
for achieving plurality consensus. After exploring the vast space of possible
candidates for quite a while, oscillating between dynamics which are no bet-
ter than the 3-Majority dynamics and others whose analysis seems to be out
of reach of current mathematical tools, we found ourselves in front of the
Undecided-State dynamics, which is the subject of Chapter 6.

1.1.2.2. The Undecided-State dynamics. The Undecided-State dynamics was
already famous in computer science as an elegant solution to more restricted
majority consensus problems than the one we were considering in relation
to LPAs. After some attempts at proving upper bounds on its convergence

5We remark that in applicative scenarios each color represents an opinion or more
generally a class of a partition of the possible states of the agents.
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time w.r.t. the standard hypotheses that are assumed in majority consen-
sus problems, we discovered that under its deceptively simple structure the
Undecided-State dynamics shows an evolution with an unexpected anatomy.
Namely, its behaviour and convergence time are a function sensible to the
whole initial con�guration, instead of depending on few crucial parameters.
We named this function themonochromatic distance. As discussed in Section
2.3, by inspecting the monochromatic distance we see that the Undecided-
State dynamics has the advantage of having a convergence time which is at
least as good as that of the 3-Majority dynamics (for a number of opinions in
the system which can be as large as

√
n/ log n), and exponentially faster for

a wide range of con�gurations. Thus, it is a simple but way more e�ective
dynamics in many applicative contexts.

However, despite the sensible progress in analyzing dynamics that could
serve as the core of a simple community detection protocol, midway through
the author's PhD, the day in which we could be able to come up with a prov-
ably e�ective dynamics for community detection seemed quite far. At some
point, Luca Trevisan suggested to look at the Averaging dynamics, which
have the advantage of being linear and thus analyzable using the tools of
spectral graph theory. Stepping away from LPA-based protocols turned out
to be the right move: by developing a new analysis of the famous Averaging
dynamics, we were �nally able to prove that such a simple dynamics can
e�ciently solve the community detection problem.

1.1.2.3. The Averaging dynamics. By leveraging on the fact that, in a pre-
cise sense, the Averaging dynamics is implicitly simulating the calculation
of the second eigenvector via a matrix power method, our analysis allows
the de�nition of a simple labeling scheme that, on top of the Averaging dy-
namics, performs a global clustering on a wide class of graphs whose cluster
structure is su�ciently re�ected on the second eigenvector of their adja-
cency matrix. The latter class notably includes the famous stochastic block
model, which has attracted a lot of attention as an interesting mathemat-
ical object to investigate the computational hardness of community detec-
tion. We show that the e�ciency of the Averaging dynamics is comparable
to that of the best, centralized and sophisticated techniques. As discussed
in Section 2.1, this result provides one of the few examples of a dynam-
ics [AAE08, AAB+11, Dot14, MNT14] that solves a computational
problem that is non-trivial in a centralized setting.

Despite its simplicity, the Averaging dynamics still has the disadvan-
tages of assuming that agents can interpret their state as a real number
and perform arithmetical operations. Furthermore, the dynamics operates
in the LOCAL model [Pel00]. Therefore, the quest for a simpler LPA-based
dynamics for community detection remains open, as discussed in Chapter
10.

While chapters 4, 5 and 6 are dedicated to the analysis of speci�c dy-
namics, chapters 8 and 9 are devoted to the application of the 3-Majority
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dynamics and a variant of it. In the remainder of this section we outline the
motivation that led us to study the subjects of chapters 7, 8 and 9.

1.1.2.4. Parallel random walks in the PUSH model. The analysis in Chap-
ter 6 strongly relies on the complete topology of the underlying interaction
graph, i.e. on the fact that the PULL model is unstructured: all pairs
of agents have the same interaction capability. The direct analysis of the
Undecided-State dynamics on sparser topologies is a challenging open prob-
lem. However, in the GOSSIP model in which nodes are constrained to
interact with only one neighbor but the communication can be bidirectional
and nodes can choose with whom they interact, it is possible to leverage
on the power of this dynamics for the PULL model even when the inter-
action topology has good expansion and regularity (see Section 2.3.1 for
formal details). In fact, on good regular expander graphs6 it is possible to
e�ciently simulate the PULL model in the GOSSIP model via a simple
random-walk-based strategy.

The crucial issue that a�ects random walks in the GOSSIP model is
that the model constrains each node to initiate at most one interaction per
round. Consequently, if several random walks happen to be on the same
node, they are not able to move away from it onto di�erent neighbors at the
same time (see Figure 23). The latter issue generates some congestion. In
Section 6.3 of Chapter 6, we show that in the given setting the congestion
is negligible at the cost of a small factor in the running time, provided that
the random walks are required to run for few rounds. However, whether the
congestion of random walks in the GOSSIP model remains small even when
the topology doesn't exhibit good expansion, or when the random walks need
to reach a considerable length, is not known and, as discussed in Section 2.4,
there is strong evidence that these problems require major advances with
respect to the available techniques.

Chapter 7 presents a modest attempt to make progress in understanding
the congestion of random walks in the uniform PUSH model7 by consid-
ering the behaviour of the process on the complete graph in the long run.
Observe that the operations of reception and dispatch of tokens by which
nodes implement random walks on the graph, are simple operations which

6Recall that an expander graph G = (V,E) is a graph whose edge expansion is lower
bounded by a constant, i.e.

h(G) = min
0<|S|6n

2

|E(S, V − S)|
|S| ,

where E(A,B) := {(u, v) ∈ E : u ∈ A, v ∈ B} for A,B ⊆ V .
7As pointed out in Section 2.4, when we are only interested in the behavior of random

walks in the GOSSIP model without the need to perform other operations (e.g. rewinding
the random walks as in the simulation of PULL model in Section 6.3), we do not need
to assume that nodes can control with whom they interact or that they can request
information from the contacted node, unless we want to consider more complicated ways
of implementing the random walks, but the latter attempt would lead us too far from a
dynamics.
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satisfy the requisites of dynamics (provided the tokens are not too many, to
keep a low memory requirement for nodes). Similarly, the nodes can imple-
ment random walks in the uniform PUSH model by equipping themselves
with a FIFO queue, which still produces a dynamics (observe that the larger
memory requirement is compensated by a very limited communication ca-
pability). In fact, proving that with high probability (w.h.p8 for short), the
nodes' FIFO queues do not exceed a small size is the practical goal of analyz-
ing the random walk process. In the aforementioned setting, we show that
the congestion does not depart signi�cantly from that of classical parallel
random walks in the LOCAL model (see Section 2.4 for the formal state-
ments). As a byproduct, in Section 7.3 we get an e�cient dynamics for the
problem of parallel resource assignment in the uniform PUSH model.

1.1.2.5. Noisy bit dissemination and plurality consensus. In addition to the
purely theoretical interest and potential applications in technological con-
texts (e.g. sensor and ad-hoc networks), this work is also partially motivated
by biological questions (chapters 8 and 9). Indeed, in the biological world,
bit dissemination and majority consensus are a common phenomenon in a
wide range of systems. Examples of such processes include a single ant that
has found food and recruits others [REF13, HW90], few cells that trigger
large population responses [FJT+10], a school of �sh that reaches consensus
around a group of leaders [SKJ+08], or a small number of observant individ-
uals that alert their herd [Rob96]. Such information propagation is achieved
despite what appears to be highly unpredictable, uncoordinated, noisy and
limited communication settings. How biological systems manage to operate
e�ectively despite such communication limitations is a fundamental question
whose understanding is still very preliminary.

The previous research direction was a tempting ground for the author
when, at the end of his �rst year of PhD, he had the pleasure of being Pierre
Fraigniaud's guest at the computer science lab LIAFA9. At that time the au-
thor had concluded the work on the Undecided-State dynamics [BCN+15a],
whose hardness originates from dealing with the setting in which the number
of opinions in the system can be a function of the system size (see Section
2.3). We decided to work on the generalization of a work by Amos Korman
et al. to the setting with multiple possible opinions. In Korman et al.'s
work they investigate �natural� protocols for solving the bit dissemination
and majority consensus problems in a noisy version of the uniform PUSH
model [FHK14] (see Section 2.5), where each message can be corrupted (in
fact, changed), before being received.

We thus began the research that led us to the results presented in Chapter
8. Our generalization required us to solve both conceptual and technical
issues.

8We say that a sequence of events En, n = 1, 2, . . . holds with high probability if
Pr (En) = 1−O(1/nγ) for some positive constant γ > 0.

9LIAFA was later renamed IRIF.
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On the conceptual side, while in the binary-message case the noise merely
consists in the fact that with some probability one of the two values can be
��ipped�, in the multivalued case it is not clear what is the right way of
modeling the fact that messages can be misunderstood. Here, the �right�
modeling is the formalization that allows to separate in the most natural
way the settings in which the problem can be solved from those in which it
is not solvable. In Chapter 8, we provide a natural formalization of the noise
and identify some crucial properties which allows a precise characterization
of the solvability of the problems at hand.

On the technical side, the problem shares the following usual di�culty of
generalizing a �nite-volume process from dimension one to more than one.
In the binary case, informally speaking, what is not 1 has to be 0: the fact
that there are only two possible values provides the possibility to �take the
complement� of quantities regarding one value, to get those regarding the
other one. This possibility, which is often a key ingredient of the analysis,
vanishes when we introduce further degrees of freedom in the process by al-
lowing more than two possible values. Furthermore, the generalization to the
multivalued case worsens the stochastic dependency that is already a�ecting
the binary one, preventing a direct application of standard concentration-of-
probability inequalities. As a byproduct of the analysis presented in Chapter
8, we provide a general framework to eliminate such dependencies.

While the presented generalization in the end is still far from being a
dynamics per-se, the rules which the whole protocol is based-on are not:
the core of the algorithm in fact relies on a generalization of the 3-Majority
dynamics.

1.1.2.6. Self-stabilizing majority bit dissemination. As Pierre Fraigniaud's
guest at LIAFA in Paris, the author was delighted to meet Amos Korman,
who was working on his ERC proposal on �Distributed Biological Algo-
rithms�. The common interest in applying distributed computing ideas to
understanding biological systems was soon evident. We brie�y recall Amos
Korman's observation on the biological signi�cance that the consensus prob-
lem has in nature, which he expressed in one of the �rst conversations with
the author.

While in a technological setting reaching consensus is often seen as the
pre-condition for achieving some other goal, in a biological setting main-
taining consensus is an evolutionary convenient strategy to cope with the
limitations of single individuals in acquiring information from the environ-
ment (e.g. in answering questions such as �Is there a predator around?�), and
to maximize the probability of survival in general (e.g. isolated individuals
are easier preys). Thus, the tendency for a biological system to reach consen-
sus is more of an instinct instilled by evolution than a behavior consciously
adopted to achieve another agenda.

As an example, let us imagine a group of birds on a wire. At some point
some bird starts to �y. The other birds have the legitimate doubt that the
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moving one is leaving her spot on the wire because she has caught sight
of a predator. Therefore, other birds start �ying as well. Perhaps, shortly
after leaving her point on the wire the �rst bird lands again on it, since her
original intention was only to move to a better place. The other alarmed
birds then realize that it was a false alarm, and they also start landing again
on the wire. On the other hand, the �rst bird may also continue her escape
from an imminent threat, which causes more and more other birds to leave
the wire as they see other fellows doing it, and even the most distracted one
rapidly realizes that it might be wiser to take o�.

From the previous anecdotal example, we can abstract the following dis-
tributed computing problem. We have a system of agents in the PULL
model (see Section 2.2), and one of them, the source, has some important
piece of information that the system could use, which we call input bit10.
However, there is no assumption on the initial states of the agents: some of
them, for example, may hold a wrong assumption on the value of the input
bit. Therefore, we would like to devise a strategy, as simple as possible, such
that the system can rapidly reach consensus on the true value of the input
bit, starting from an arbitrary initial con�guration of the agents' states. In
particular, we would like the system to converge fast to a con�guration in
which all agents are aware of the value of the input bit, and to be fast in up-
dating the agents' knowledge of the input bit whenever the source changes
her mind. In the terminology of distributed computing, we would like a
solution which is a self-stabilizing protocol (see De�nition 9).

Given the previous abstract formulation, we are essentially asked to solve
the self-stabilizing consensus problem in the setting in which there is one
agent (the source) which does not change her mind (she knows the true
input bit). Thus, given the above anecdotal motivation for the problem,
Amos Korman informally referred to the problem as the �stubborn bird�
problem.

After a year of work with Amos and his student Lucas Boczkowski, we
were able to leverage on the power of simple dynamics and prove the results
outlined in Section 2.6. There, we illustrate the sound connection of the
self-stabilizing bit dissemination problem with the problem of synchroniz-
ing clocks, in a self-stabilizing manner, in the uniform PULL model. We
thus end up devising a solution for the self-stabilizing clock synchronization
problem. The protocol we present in Chapter 9 uses, as a subroutine, any
dynamics for majority consensus such as the 3-Median dynamics and, in
the uniform PULL model using messages of 3 bits only, the presented solu-
tion allows the agents to synchronize a clock modulo T in time essentially
logarithmic in T and the size of the system.

As showed in Chapter 9, this allows to remove the assumption of an
initial common time notion from an entire class of protocols (de�ned in

10For simplicity's sake, we are assuming that the source's information is a binary
value, i.e. a bit.
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Section 2.6), and provides a general solution for the self-stabilizing majority
bit dissemination problem, which is a generalization of the aforementioned
bit dissemination problem which includes the majority consensus problem
as a special case.

We have concluded an outline of the story behind the results proved in
this work. In the following chapter we present them formally, with a detailed
discussion on their meaning and signi�cance.



CHAPTER 2

Overview of Results

In this chapter, we thoroughly discuss the obtained results that are then
proved in the successive chapters, following the same order of topics. We thus
begin with the Averaging dynamics which, as we show, is able to solve a com-
putational problem (the community detection problem) which is non-trivial
even in a centralized setting, thus making a strong case for the computational
power of dynamics.

2.1. Distributed Community Detection via Averaging

Consider the following distributed algorithm on an undirected graph,
which we call Averaging protocol1. At the outset, every node picks an initial
value, independently and uniformly at random in {−1, 1}; then, in each
synchronous round, every node updates its value to the average of those
held by its neighbors. A node also tags herself �blue� if the last update
increased its value, �red� otherwise. (See also the pseudocode in Algorithm
1.)

Averaging protocol

Rademacher initialization: At round t = 0 every node v ∈ V
independently samples its value from {−1,+1} uniformly at ran-
dom;

Updating rule: At each subsequent round t > 1, every node v ∈ V
(1) (Averaging dynamics) Updates its value x(t)(v) to the aver-

age of the values of its neighbors at the end of the previous
round

(2) (Coloring) If x(t)(v) > x(t−1)(v) then v sets color(t)(v) =

blue, otherwise v sets color(t)(v) = red.

Algorithm 1. Pseudocode of the Averaging protocol.

In Chapter 4, we prove that under various graph models exhibiting sparse
balanced cuts (de�nitions 3, 4, 5, 6), including the stochastic block model
(De�nition 6 at page 32, see also Section 3.1.2) [HLL83], the process re-
sulting from the above simple local rule converges, in logarithmic time, to
a coloring that re�ects the underlying cut, either exactly or approximately

1Note that the names �Averaging protocol� and �Averaging dynamics� denotes di�er-
ent protocols: the latter is the update function applied in step (1) of the updating rule of
the former (see Algorithm 1).

27
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depending on the graph model. The case of an exact identi�cation of the
two communities is called a strong reconstruction, while the case of an ap-
proximate identi�cation of the cut is called a weak reconstruction, as stated
in the following de�nition.

Definition 2 (Strong and Weak Reconstruction). Given a graph G =
(V1 ∪ V2, E) with V1∩V2 = ∅, a weak (block) reconstruction is a two-coloring
of the nodes that separates V1 and V2 up to a small fraction of the nodes.
Formally, we de�ne an ε-weak reconstruction as a map

f : V1 ∪ V2 → {red, blue}
such that there are two subsets W1 ⊆ V1 and W2 ⊆ V2 with2

|W1 ∪W2| > (1− ε)|V1 ∪ V2| and f(W1) ∩ f(W2) = ∅.
When ε = 0 we say that f is a strong reconstruction.

Finally, we further show that our approach simply and naturally extends
to more communities, providing a quantitative analysis for a regularized
version of the stochastic block model with multiple communities. A roadmap
of the main results is given in Figure 2.

Weak reconstruction
on stochastic block

models

Strong reconstruction
on regular clustered

graphs

Strong reconstruction
on regular stochastic

block models

Weak reconstruction on
clustered graphs

Tight weak reconstruction
on stochastic block

models

A B

DC

E

Figure 2. Summary of the results proved in Chapter 4:
A) → Theorem 1, B) → Theorem 3, C) → Corollary 1,
D)→ Corollary 2, E)→ Theorem 2.

More precisely, consider a graph G = (V,E). We show that, if a partition
(V1, V2) of G exists, such that 1V1−1V2 is

3 (or is close to) a right-eigenvector

2We adopt the common convention that f(S) := {f(x) : x ∈ S} for any function f
with domain D and any subset S ⊆ D.

3As explained further, 1Vi , is the vector with |V | components, such that the j-th
component is 1 if j ∈ Vi, it is 0 otherwise.
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of the second largest eigenvalue of the transition matrix of G, and the gap
between the second and the third largest eigenvalues is su�ciently large, our
algorithm identi�es the partition (V1, V2), or a close approximation thereof,
in a logarithmic number of rounds. Though the Averaging dynamics does
not explicitly perform any eigenvector computation, it exploits the spectral
structure of the underlying graph: in some sense, the dynamics is an implicit
distributed simulation of the power method.

The presented analysis involves two main novelties, relating to how nodes
assign themselves to clusters, and to the spectral bounds that we prove for
certain classes of graphs. A conceptual contribution is to make each node,
at each round t, assign herself to a cluster (��nd its place�) by considering
the di�erence between its value at time t and its value at time t − 1. Such
a criterion removes the component of the value lying in the �rst eigenspace
without explicitly computing it. This idea has two advantages: it allows
a particularly simple algorithm, and it gives a running time that depends
on the third eigenvalue of the transition matrix of the graph. In graphs
that have the structure of two expander graphs4 joined by a sparse cut,
the running time of the dynamics depends only on the expansion of the
components and it is faster than the mixing time of the overall graph (see
Figure 12). As discussed in Section 3.1, the Averaging dynamics is the �rst
distributed reconstruction algorithm converging faster than the mixing time.

The Averaging dynamics works on any graph where

• the right-eigenspace of the second eigenvalue of the transition ma-
trix is correlated to the cut between the two clusters and
• the gap between the second and third eigenvalues is su�ciently
large.

While these conditions have been investigated for the spectrum of the adja-
cency matrix of the graph, the analysis of the Averaging protocol requires
these conditions to hold for the transition matrix. A technical novelty of
the analysis in Chapter 4 is to show that such conditions are met by a
large class of graphs, that includes graphs sampled from the stochastic block
model. Proving spectral properties of the transition matrix of a random
graph is more challenging than proving such properties for the adjacency
matrix, because the entries of the transition matrix are not independent5.

In the following sections we discuss in detail individual results on the
speci�c models we consider.

2.1.1. Strong reconstruction for regular clustered graphs

In Section 4.4, we consider a (2n, d, b)-clustered regular graph G with
adjacency matrix A, where the clustered regular graphs are the following
broad family of instances whose regularity allows us to provide a particularly
clean analysis.

4Recall the de�nition of expander graph in footnote 6 on page 22.
5See the proof of Lemma 11 for further details.
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Definition 3 (Clustered Regular Graph). A (2n, d, b)-clustered regular
graph G = ((V1, V2), E) is a connected graph over node set V1 ∪ V2, with
|V1| = |V2| = n and such that:

• Every node has degree d,
• Every node in cluster V1 has b neighbors in cluster V2 and every
node in V2 has b neighbors in V1.

If the two subgraphs induced by V1 and V2 are good expander graphs6

and b is su�ciently small, the second and third eigenvalues of the graph's
transition matrix P = (1/d) ·A are separated by a large gap. In this case, we
prove that the following happens w.h.p.7: If the Averaging dynamics is ini-
tialized by having every node choose a value uniformly and independently at
random in {−1, 1}, within a logarithmic number of rounds the system enters
a regime in which nodes' values are monotonically increasing or decreasing,
depending on the community they belong to (see Figure 12). As a conse-
quence, every node can apply a simple and completely local clustering rule
in each round, which eventually results in a strong reconstruction. Formally,
we thus prove the following, where

λ = max {|λ3|, |λ2n|}
is the largest eigenvalue of P other than λ1 and λ2.

Theorem 1 (Strong Reconstruction). Let G = ((V1, V2), E) be a con-
nected (2n, d, b)-clustered regular graph with 1 − 2b/d > (1 + δ)λ for an
arbitrarily-small constant δ > 0. Then the Averaging protocol produces a
strong reconstruction within O(log n) rounds, w.h.p.

We then show that, under mild assumptions, a graph selected from the
following regular stochastic block model [BDG+16] is a (2n, d, b)-clustered
regular graph that satis�es the above spectral gap hypothesis, w.h.p.

Definition 4 (Regular Stochastic Block Model). In the regular stochas-
tic block model with two communities, a graph on 2n nodes is obtained as
follows: Given two parameters a(n) and b(n) (internal and external degrees,
respectively), partition nodes into two equal-sized subsets V1 and V2 and then
sample a random a(n)-regular graph over each of V1 and V2 and a random
b(n)-regular graph between V1 and V2.

Remark 2. The regular stochastic block model can be instantiated in
di�erent ways depending on how one samples the random regular graphs (for
example, via the uniform distribution over regular graphs, or by taking the
disjoint union of random matchings) [MNS14, BDG+16].

We thus obtain a fast and extremely simple dynamics for strong recon-
struction, over the full range of parameters of the regular stochastic block

6Recall the de�nition of expander graph in footnote 6 on page 22.
7Recall the meaning of w.h.p. as in footnote 8 on page 23.
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model for which this is known to be possible using centralized algorithms
[MNS14, BDG+16].

Corollary 1 (Reconstruction in Regular Stochastic Block Models). Let
G be a random graph sampled from the regular stochastic block model with

a− b > 2(1 + η)
√
a+ b

for an arbitrarily small constant η > 0, then the Averaging protocol produces
a strong reconstruction in O(log n) rounds, w.h.p.

We further show that a natural extension of the Averaging protocol, in
which nodes maintain an array of values and an array of colors, correctly
identi�es a hidden balanced k-partition in a regular clustered graph with a
gap between eigenvalues λk and λk+1.

Theorem 2 (More Communities). Let G = (V,E) be a k-clustered d-
regular graph de�ned as above and assume that

λ = max{|λ2n|, λk+1} < (1− ε) · a− b
d

,

for a suitable constant ε > 0. Then, for ` = Θ(log n), the Averaging protocol
with ` parallel runs produces a strong reconstruction within O(log n) rounds,
w.h.p.

We remark that graphs sampled from the regular stochastic block model
with k communities satisfy the conditions of Theorem 2, w.h.p.

2.1.2. Weak reconstruction for non-regular clustered graphs

In Section 4.5, we extend the analysis of Section 4.4 on regular graph
models to show that the Averaging dynamics also ensures weak reconstruc-
tion in clustered graphs having two clusters that satisfy an approximate
regularity condition, according to the following de�nition, and that also ex-
hibit a gap between second and third eigenvalues of the transition matrix
P .

Definition 5 (Clustered γ-Regular Graphs). A (2n, d, b, γ)-clustered
graph G = ((V1, V2), E) (with γ < 1), is a graph over node set V1∪V2, where
|V1| = |V2| = n such that:

• Every node has degree d± γd,
• Every node in V1 has b ± γd neighbors in V2 and every node in V2

has b± γd neighbors in V1.

Given a (2n, d, b, γ)-clustered graph, in Chapter 4 we prove the following
result.

Theorem 3 (Weak Reconstruction). Let G be a connected (2n, d, b, γ)-
clustered graph with γ 6 c(ν−λ3) for a suitable constant c > 0. If λ < ν and
λ2 > (1+δ)λ for an arbitrarily-small positive constant δ, then the Averaging
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protocol produces an O(γ2/(ν − λ3)2)-weak reconstruction within O(log n)
rounds, w.h.p.8

As an application, we then prove that these conditions are met by the
stochastic block model, which o�ers a popular framework for the probabilistic
modelling of graphs that exhibit good clustering or community properties
(see Section 3.1.2 for a discussion of the signi�cance of the model). We here
consider the following simple version with two communities of equal size.

Definition 6 (Stochastic Block Model). The stochastic block model
G2n,p,q, a.k.a. planted bisection model, consists of 2n nodes and an edge
probability distribution de�ned as follows: The node set is partitioned into
two subsets V1 and V2, each of size n; edges linking nodes belonging to
the same partition appear in E independently at random with probability
p = p(n), while edges connecting nodes from di�erent partitions appear with
probability q = q(n) < p (see also Figure 3).

Calling a = pn and b = qn, we prove that graphs sampled from G2n,p,q

satisfy w.h.p. the above approximate regularity and spectral gap conditions
of Theorem 3, whenever a− b > 25

√
(a+ b) · log n (Lemma 7), thus proving

the following result.

Corollary 2 (Reconstruction in Stochastic Block Models). Let G ∼
G2n,p,q. If a− b > 25

√
d log n and b = Ω(log n/n2) then the Averaging proto-

col produces an O(d log n/(a− b)2)-weak reconstruction in O(log n) rounds
w.h.p.

We remark that the latter result for the stochastic block model follows
from an analysis that applies to general non-random clustered graphs and
hence does not exploit crucial properties of random graphs. A further tech-
nical contribution described in Chapter 4 is a re�ned, ad-hoc analysis of the
Averaging dynamics for the G2n,p,q model, showing that this protocol achieves

weak-reconstruction in logarithmic time whenever a− b > Ωε(
√

(a+ b)).

Theorem 4 (Tight Reconstruction in Stochastic Block Models). Let
G ∼ G2n,p,q. If

(a− b)2 > copt(a+ b) > 5 log n,

and9 a + b < n
1
3
−ctight for some positive constants copt and ctight, then the

Averaging protocol produces an O(d/(a − b)2)-weak reconstruction within
O(log n) rounds w.h.p.

This re�ned analysis requires a deeper understanding of the eigenvectors
of the transition matrix of G. Coja-Oghlan [CO10] de�ned certain graph
properties that guarantee that a near-optimal bisection can be found based
on eigenvector computations of the adjacency matrix. Similarly, we show

8Consistently, Theorem 1 is a special case of this one when γ = 0.
9It should be possible to weaken the condition d < n

1
3
−ctight via some stronger con-

centration argument; see the proof of Lemma 16 at the end of the chapter for details.
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simple su�cient conditions under which a right eigenvector of the second
largest eigenvalue of the transition matrix of a graph approximately identi-
�es the hidden partition. We give a tight analysis of the spectrum of the
transition matrix of graphs sampled from the stochastic block model in Sec-
tion 4.7. Notice that the analysis of the transition matrix is somewhat harder
than that of the adjacency matrix, since the entries are not independent of
each other; we are not aware of comparable results in the existing literature,
which we review in Section 3.2.

q
p p

Figure 3. A representation of the stochastic block model
(De�nition 6): edges linking nodes belonging to the same
community are included in the graph independently at ran-
dom with probability p = p(n), while edges connecting
nodes in di�erent communities are included with probabil-
ity q = q(n) < p.

2.1.3. Beyond the Averaging dynamics: a wrap up

The results presented in Section 2.1 show rigorous evidence of the pos-
sibilities o�ered by completely decentralized, extremely simple and natural
dynamics to address computational problems that are complex even in a
centralized setting, such as community detection in clustered graphs, whose
complexity appears far beyond most of the tasks to which this kind of dy-
namics have been traditionally applied in the area of distributed computing.

However, we remark that the Averaging dynamics is a linear dynamics,
which requires the nodes to be able to hold rational values and to perform
basic arithmetic operations on them. Furthermore, the Averaging dynamics
operates in the LOCAL model, in which each node at each round can send
and receive a message from each neighbor. As discussed in Section 1.1.2,
inspired by the empirical success of label propagation algorithms, in the
next two sections we are going to investigate simpler dynamics, which are
non-linear and operate in random sparse communication models10. As a

10In the rest of this work we are going to consider more restrictive models such as
the GOSSIP model, the stochastic restriction of the GOSSIP model known as uniform
GOSSIP model, and the unidirectional restrictions of the uniform GOSSIP model known
as uniform PULL and PUSH models. In the next section, we always consider the PULL
model. In all these models, as is remarked in the following chapters, the interactions
among nodes are very sparse: typically each node interacts with very few neighbors.
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consequence, they are way more e�cient in terms of communication cost
and way more robust.

Our understanding of the behavior of non-linear dynamics is still at its
infancy and is not su�cient to allow a rigorous analysis of their sophisticated
uses, e.g. for community detection. In order to get to the point in which
there is reasonable hope to carry on such rigorous analyses, we �rst have
to understand their behavior in solving more basic problems. This is the
purpose of sections 2.2 and 2.3, in which we study two dynamics for some
consensus problems, being fundamental issues that naturally arise as sub-
problems of more complex tasks such as community detection.

2.2. The 3-Majority Dynamics: Plurality and Stabilizing
Consensus

In this section and the next one we consider the stabilizing consensus and
the plurality consensus problems in the context of a communication network
in which each of n anonymous nodes supports an initial opinion chosen from
a �nite set [k], which we can think of as colors. We �rst consider the plurality
consensus problem, in which the initial hypothesis of an initial bias toward
the plurality opinion allows to circumvent some core di�culties of the general
consensus problem (See Section 5.4.1).

2.2.1. The 3-Majority dynamics for plurality consensus

In the plurality consensus problem it is assumed that the initial (opinion)
con�guration has a su�ciently large bias s towards a �xed opinion m ∈ [k]
- that is, the number cm of nodes supporting the plurality opinion (in short,
the initial plurality size) exceeds the number cj of nodes supporting any
other opinion j by an additive value s. The goal is to design an e�cient
fully-distributed protocol that let the network converge to the plurality con-
sensus, i.e., to the monochromatic con�guration in which all nodes support
the plurality opinion.

Reaching plurality consensus in a distributed system is a fundamental
problem arising in several areas such as distributed computing [DGM+11,
Pel02], communication networks [PVV09], and social networks [CDIG+13,
MS10, MNT14]. Following some works analyzing dynamics for this prob-
lem [AD15, DGM+11] (which are reviewed in Section 3.3), we study the
3-Majority dynamics, which is a discrete-time, synchronous process in which,
at every round, each of the n anonymous nodes samples independently and
uniformly at random three nodes11, including herself and with repetitions,
and adopts the plurality opinion among those three (breaking ties uniformly
at random). We consider one of the simplest models, the uniform PULL
model, in which the network is a clique.

11 We remark that looking at only two random nodes and breaking ties uniformly at
random would yield a process equivalent to the polling process [HP01] (see Lemma 66),
which is known to converge to a minority opinion with constant probability even for k = 2
and large initial bias (i.e. s = Θ(n)) [HP01].
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In [DGM+11], a tight analysis of a 3-input dynamics for the median
problem on the clique was presented: the goal there is to converge to a stable
con�guration where all nodes support a value which is a good approximation
of the median of the initial con�guration. It turns out that, in the binary
case (i.e k = 2), the median problem is equivalent to plurality consensus
and the 3-input dynamics for the median is equivalent to the 3-Majority
dynamics: As a result, they obtain, for any bias s > c

√
n log n for some

constant c > 0, an optimal bound Θ(log n) on the convergence time of the
3-Majority dynamics for the binary case of the problem considered here.
However, for any k > 3, it is easy to see that the two problems above
di�er signi�cantly (in particular, the median may be very di�erent from the
plurality) and thus, the two dynamics are di�erent from each other as well.
Moreover, the analysis in [DGM+11] - strongly based on the properties of
the median function - cannot be adapted to bound the convergence time of
the 3-Majority dynamics.

Previously to the results presented in this section and proved in Chapter
5, the role of the parameter k = k(n) (the number of initial opinions), in
the convergence time of this dynamics was unknown and, more generally,
the existence of e�cient dynamics reaching plurality consensus for k > 3
was left as an important open issue in [AAE08, DGM+11, BD13]. In
Chapter 5, we present an analysis of the 3-Majority dynamics in the general
case (i.e. for any k ∈ [n]). A consequence of such analysis which exempli�es
the results of Chapter 5 is the following.

Corollary 3 (Upper Bound with Bias). Let c be any initial k-color
con�guration with

s(c) > 72

√
2 min

{
2k, 3

√
n

log n

}
n log n.

Then, the 3-Majority dynamics converges to the plurality opinion in O(min{2k,
3
√
n/log n} log n) time w.h.p.

The proof technique in Section 5.2 is accurate enough to get another
interesting form of the above upper bound that does not depend on k. In
fact, Corollary 3 is a particular case of the following general theorem.

Theorem 5 (General Upper Bound for 3-Majority). Let λ be any value
such that λ < 3

√
n and let c be any initial k-cd, with c1 > n/λ and

s(c) > 72
√

2λn log n.

Then the 3-Majority dynamics converges to the plurality opinion in O (λ log n)
time w.h.p.

In particular, Theorem 5 implies that the convergence time is polylog-
arithmic when the size of the plurality opinion is of order n/polylogn, as
follows.



36 2. OVERVIEW OF RESULTS

Corollary 4 (Polylogarithmic Upper Bound for 3-Majority). Let c be

any initial k-cd with c1 > n/ log` n and

s(c) > 72

√
2n log`+1 n.

Then, the 3-Majority dynamics converges to the plurality opinion in O(log`+1 n)
time w.h.p.

We then show that the upper bound of Theorem 5 is tight for a wide range
of the input parameters. When k 6 (n/ log n)1/4, we prove the following
lower bound Ω(k log n) on the convergence time of the 3-Majority dynamics.

Theorem 6 (Lower Bound for 3-Majority). Let

τ = inf{t ∈ N : C(t) is monochromatic}
be the random variable indicating the �rst round such that the system is in
a monochromatic con�guration. If the initial number of opinions is k 6
(n/ log n)1/4 and the initial con�guration is c = (c1, . . . , ck) with

max{cj : j = 1, . . . , k} 6 n

k
+
(n
k

)1−ε

for some ε > 0, then τ = Ω(k log n) w.h.p.

Observe that the range of k in Theorem 5 largely includes the initial bias
required by our upper bound when k 6 (n/ log n)1/4. So, the linear-in-k
dependence of the convergence time cannot be removed for a wide range of
the parameter k.

The analysis presented in Chapter 5 provides a clear picture of the 3-
Majority dynamic process. Informally speaking, the larger the initial value
of cm is (w.r.t. n), the smaller the required initial bias s and the faster the
convergence time are. On the other hand, the lower-bound argument shows,
as a by-product, that the initial plurality size cm needs Ω(k) rounds just to
increase from n/k + o(n/k) to 2n/k.

We then prove a general negative result: Under the distributed model
we consider, within the class of dynamics using no additional state other
than the initial opinions, no dynamics with at most 3 inputs (other than the
3-Majority dynamics) converges w.h.p. to plurality consensus starting from
any initial con�guration with bias s = o(n). The latter result is formally
stated in Theorem 21. The statement requires few de�nitions (de�nitions
10, 11, 12 and 14), and is deferred to Section 5.3.2.

In other words, within the class above, not only there is no 3-input dy-
namics that achieves convergence to plurality consensus in o(k log n) rounds,
but the 3-Majority dynamics is the only one that eventually achieves this
goal at all, no matter how long the process takes. Rather interestingly, by
comparing the O(log n) bound for the 3-Median dynamics [DGM+11] to
our negative results for the plurality on the same distributed model, we get
an exponential time-gap between the task of computing the median and the



2.2. THE 3-MAJORITY DYNAMICS: PLURALITY AND STABILIZING CONSENSUS 37

one of computing plurality (this happens for instance when k = na, for any
constant 0 < a < 1/4).

A natural question suggested by the previous results is whether (slightly)
larger random samples of nodes' neighborhoods might lead to signi�cant im-
provements in convergence time to plurality consensus. We provide a nega-
tive answer to this question. To this purpose, we consider the h-Plurality dy-
namics, i.e., the natural generalization of the 3-Majority dynamics in which
every node, in each round, updates her opinion according to the plurality
of the opinions supported by h randomly sampled neighbors. We prove the
following lower bound.

Theorem 7 (Lower Bound for h-Majority). Let C(t) be the random vari-
able indicating the con�guration at round t according to the h-Plurality dy-
namics and let

τ = inf{t ∈ N : C(t) is monochromatic}.
If the initial con�guration c = (c1, . . . , ck) is such that

max{cj : j = 1, . . . , k} 6 3n

2k
,

then τ = Ω(k/h2) w.h.p.

We emphasize that scalable and e�cient protocols must yield low com-
munication complexity and small node congestion in every round. These
properties are guaranteed by the h-Plurality dynamics only when h is small,
say h = O(polylog(n)): In this case, our lower bound implies that the re-
sulting speed-up is only polylogarithmic with respect to the 3-Majority dy-
namics.

One motivation for adopting dynamics in reaching (simple) consensus12

(such as the 3-Median dynamics in [DGM+11]) lies in their provably-good
self-stabilizing properties against dynamic adversary corruptions: It turns
out that the 3-Majority dynamics has good self-stabilizing properties for the
plurality consensus problem. More formally, a T -bounded adversary knows
the state of every node at the end of each round and, based on this knowl-
edge, she can corrupt the opinion of up to T nodes in an arbitrary way,
just before the next round begins. In this case, the goal is to achieve an
almost-stable phase where all but at most O(T ) nodes agree on the plural-
ity value. This �almost-stability� phase must have poly(n) length, with high
probability. Our analysis shows that the 3-Majority dynamics guarantees the
self-stabilization property for plurality consensus, as given in the following.

Corollary 5 (Upper Bound with Adversary). Let λ be any value such
that λ < 3

√
n and let c be any initial con�guration, with c1 > n/λ and

s(c) > 24
√

2λn log n.

12In the (simple) consensus problem the goal is to reach any stable monochromatic
con�guration (any opinion is accepted) starting from any initial con�guration.
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The 3-Majority dynamics achieves O(s(c)/λ)-plurality consensus against any
F -bounded adversary with F = o(s(c)/λ), and the convergence time is O (λ log n)
w.h.p.

We have concluded our overview of the results proved in sections 5.1, 5.2
and 5.3 concerning the performance of the 3-Majority dynamics in solving
the plurality consensus problem. In the next section, we basically drop the
fundamental assumption made so far, that is the presence of an initial bias
between the plurality opinion and all other ones. Rather than converging to
a speci�c value, as we explain shortly our next goal is to converge to any
opinion in a stable way.

2.2.2. The 3-Majority dynamics for stabilizing consensus

Let us call Σ the �nite set of possible initial opinions. We call an opinion
valid if it is held by at least one node at the beginning.

In this section we are interested in the following scenario: After every
node performs a step of 3-Majority dynamics by pulling the opinion from
three random nodes and setting her new opinion to the majority one (break-
ing ties arbitrarily), an adaptive dynamic adversary can arbitrarily change
the opinions of a subset of the nodes, possibly choosing di�erent subsets over
di�erent rounds (see Figure 4). We consider F -dynamic adversaries that, at
every round, can change the opinions of up to F nodes, possibly introducing
non-valid opinions.

Figure 4. At the end of each round, an F -dynamic adver-
sary can change the opinions of F nodes, possibly choosing
di�erent subsets of nodes over di�erent rounds.

Let the system start from any con�guration having k valid opinions with
k 6 nα for a suitable constant α < 1 and consider any F -dynamic adver-
sary with F = O(

√
n/(k5/2 log n)). We prove that the process converges to

a con�guration in which all but O(
√
n) nodes hold the same valid opinion

within O((k2
√

log n+ k log n)(k+ log n)) rounds, w.h.p. (see Theorem 8 be-
low). This shows that the 3-Majority dynamics provides an e�cient solution
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to the stabilizing-consensus problem in the uniform PULL model. Previ-
ously to our result, this was known only for the binary case, i.e. |Σ| = 2,
while for any |Σ| > 3, it has been an important open question for several
years [AAE08, DGM+11]. Furthermore, still for any |Σ| > 3, o(n)-time
convergence of the 3-Majority dynamics was open even in the absence of
an adversary whenever the initial bias toward some plurality opinion is not
large.

In this section we describe in more detail the consensus problem and
various network scenarios in which it is of interest, and the results in this
setting proved in Chapter 5, while we defer a comparison with previous
related results to Section 3.5.

2.2.2.1. Consensus (or Byzantine agreement). The consensus problem in a
distributed network is de�ned as follows: A collection of agents, each holding
a piece of information (an element of a set Σ), interact with the goal of
agreeing on one of the elements of Σ initially held by at least one agent,
possibly in the presence of an adversary that is trying to disrupt the protocol.
The consensus problem in the presence of an adversary (known as Byzantine
agreement) is a fundamental primitive in the design of distributed algorithms
[PSL80, Rab83]. The goal is to design a distributed, local protocol that
brings the system into a con�guration that meets the following conditions:

(1) Agreement : All non-corrupted nodes support the same opinion v;
(2) Validity : The opinion v must be a valid one, i.e., an opinion which

was initially declared by at least one (non-corrupted) node;
(3) Termination: Every non-corrupted node can correctly decide to

stop running the protocol at some round.

There is considerable interest in the design of consensus algorithms in
models that severely restrict both communication and computation [AAE08,
BCN+15a, DGM+11], both for e�ciency considerations and because such
models capture aspects of the way consensus is reached in social networks, bi-
ological systems, and other domains of interest in network science [AAD+06,
AFJ06, BSDDS10, CCN12, Dot14, FHK14, FPM+02].

As in the previous section, we consider the uniform PULL model. In
this paragraph, we brie�y review the model and the underlying assump-
tions. In compliance with the requirements of dynamics, we consider the
above problem in the restrictive setting of an anonymous network in which
nodes possess no unique IDs, nor do they have any static binding of their
local link ports (i.e., nodes cannot keep track of who sent what). From the
point of view of computation, the most prohibitive setting is to assume that
each node only has O(log |Σ|) bits of memory available, i.e., it barely suf-
�ces to store the number of opinions. We further assume that this bound
extends to link bandwidth available in each round. Finally, communication
capabilities are severely constrained and non-deterministic: Every node can
communicate with at most a (small) constant number of random neighbors
in each round. These constraints are well-captured by the uniform PULL
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communication model [DGH+87, KSSV00, KDG03]: At every round,
every node can exchange a (short) message (say, Θ(log(|Σ|)) bits) with each
of at most h random neighbors, where h is a (small) absolute constant13. A
sequential variant of the uniform PULL model is the (random) population-
protocols model [AAE08, AAE06, AAD+06] in which, in each round, a
single interaction between a pair of randomly selected nodes occurs.

The classic notion of consensus is too strong and unrealistic in the afore-
mentioned distributed settings, that instead rely on weaker forms of consen-
sus, deeply investigated in [AAE08, AFJ06, Asp12, DGM+11]. In this
chapter, we consider a variant of the stabilizing-consensus problem [AFJ06]
considered in [AAE08]: There, a solution is required to converge to a stable
regime in which the above three properties are guaranteed in a relaxed, still
useful form14. More precisely:

Definition 7 (Stabilizing Almost-Consensus). Starting from any initial
con�guration with k valid opinions, a stabilizing almost-consensus protocol
must ensure the following properties:

• Almost agreement. In a �nite number of rounds, the system must
reach a regime of con�gurations where all but a negligible �bad�
subset (i.e. having size O(nγ) for constant γ < 1) of the nodes
support the same opinion.
• Almost validity. The system is required to converge w.h.p. to an
almost-agreement regime where all but a negligible bad set of nodes
keep the same valid opinion.
• Non termination. In dynamic distributed systems, nodes represent
simple and anonymous computing units which are not necessarily
able to detect any global property.
• Stability. The convergence toward such a weaker form of agreement
is only guaranteed to hold with high probability15 and only over
a long period (i.e. for any arbitrarily-large polynomial number of
rounds).

We remark that, prior to the results presented in this work, no stabilizing
almost-consensus protocol was known for |Σ| > 2 even in the complete graph.

A major result in Chapter 5 is about the convergence properties of the
3-Majority dynamics in the uniform PULL model in the presence of the
adaptive F -dynamic adversary de�ned above.

Theorem 8 (Upper Bound with Dynamic-Adversary). Let k 6 nα and

F 6 β√n/(k 5
2 log n) for some constants β, α > 0. The 3-Majority dynamics

13In fact, h = 1 in the standard uniform PULL model. It is easy to verify that all
our results still hold in this more restricted model at the cost of a constant slow-down in
convergence time and local memory size.

14 These relaxed convergence properties are described in detail in Section 7 of
[AAE08].

15Recall the meaning of w.h.p. as in footnote 8 on page 23.
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is a stabilizing almost-consensus protocol in the presence of any F -dynamic
adversary and its convergence time is O((k2

√
log n + k log n)(k + log n)),

w.h.p.

As a simple consequence of the analysis provided in Chapter 5, we also
get the following bound on the convergence time in the presence of any F -
static adversary with a larger bound on F , where by F -static adversary we
mean an adversary that looks at the initial con�guration, then changes the
opinion of up to F arbitrary nodes and, after that, no further adversary's
actions are allowed.

Corollary 6 (Upper Bound with Static-Adversary). Starting from any
initial con�guration with k 6 nα active opinions, where α > 0 is a suitable
constant, the 3-Majority dynamics reaches almost-consensus within O((k2

√
log n+

k log n) · (k + log n)) rounds, in the presence of any F -static adversary with
F 6 n/k −√kn log n, w.h.p.

We remark that Theorem 6 provides an Ω(k log n) bound on the conver-
gence time of the 3-Majority dynamics, which holds even when the system
starts from biased con�gurations.

Not assuming a large initial bias of the plurality opinion considerably
complicates the analysis. Indeed, the major open challenge is the analysis
from (almost) uniform con�gurations, where the system needs to break the
initial symmetry in the absence of signi�cant drifts towards any of the initial
opinions. So far, the symmetry breaking in the 3-Majority dynamics has
never been analyzed even in the non-adversarial case. Moreover, the phase
before symmetry breaking is the one in which the adversary has more chances
to cause undesired behaviours: Long delays and/or convergence towards non-
valid opinions. In Section 5.4, after providing some preliminaries, we shall
discuss the above technical challenges.

Finally, one may wonder whether it is possible to provide guarantees
about the opinion that eventually achieves majority. As for this point, the
results of Chapter 5 (lemmas 29 and 30 in Section 5.4.4) imply that an
opinion is not going to become majority unless it is a near-plurality, i.e. it
is close to the size of the plurality opinion.

2.3. The Undecided-State dynamics: Plurality Consensus

In this section, we consider the Undecided-State dynamics16 that has
been introduced in [AAE08] and analyzed in [AAE08, PVV09] only in
the binary case (i.e. k = 2). The analysis of the multivalued case (i.e. k > 2)
has been proposed in [AAE08, AD15, CER14, DGM+11, MRSDZ11,
JKV12] as an open problem. The interest for this dynamics touches areas
beyond the borders of computer science. It appears to play a major role

16The Protocol has been initially �designed� for the case k = 2 and, thus, in previous
works it has been named the Third-State Dynamics.
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in important biological processes modelled as so-called chemical reaction
networks [CCN12, Dot14].

u
∖
v undecided opinion i opinion j

undecided undecided i j
i i i undecided
j j undecided j

Table 1. The update rule of the Undecided-State dynamics
where i, j ∈ [k] and i 6= j.

In this chapter we analyze the synchronous version of the dynamics in
the (uniform) PULL model:

Undecided-State dynamics

Agents' possible states: Each agent either supports an opinion
i ∈ [k] or she is in the undecided state, an extra state that agents
can support. The undecided state does not count as an opinion, and
agents supporting it are said to be undecided (or equivalently, to
have no opinion).

1: u pulls the state of a randomly-selected neighbor v.
2: If u is supporting any opinion, and v's opinion di�ers from u's

one, the agent enters the undecided state. Note that u does not
update her state if her opinion coincides with v's one.

3: If u is undecided, she copies v's state.

Algorithm 2. One round of Undecided-State dy-
namics, executed by each agent u. (see also Table 1.)

We investigate the e�ciency of Undecided-State dynamics w.r.t. the
plurality consensus problem. As in Section 2.2, recall that in the plurality
consensus problem each agent of a distributed system initially supports an
opinion, i.e. a number i ∈ [k] = {1, 2, . . . , k} (with 2 6 k 6 n). In the
initial opinion con�guration c = (c1, . . . , ck) (where ci denotes the number
of agents supporting opinion i ∈ [k]), there is an initial plurality c1 of agents
supporting the plurality opinion (w.l.o.g., we assume that opinion commu-
nities are ordered, so that ci > ci+1 for any i 6 k− 1). Initially, every agent
only knows her own opinion; the goal is to �nd a distributed algorithm that,
w.h.p.17, brings the system into the target con�guration, i.e., the monochro-
matic con�guration in which all agents support the initial plurality opinion.
In the remainder, the subset of agents supporting opinion i is called the
i-opinion community.

As discussed further in Section 3.4, the performance of Undecided-State
dynamics on the complete graph has been evaluated w.r.t. the following

17Recall the meaning of w.h.p. as in footnote 8 on page 23.
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parameters: the number n of nodes, the number k of opinions, and the
initial bias towards the plurality opinion, with the latter characterized in
terms of a parameter that only depends on the relative magnitude18 of c1

and c2.
However, when k > 2, any such measure of the initial bias is not sensitive

enough to accurately capture the convergence time of a plurality protocol:
a global measure is needed, i.e., one that re�ects the whole initial opinion
con�guration. To better appreciate this issue, consider the two con�gura-
tions c and c′ in Figure 5. Whether the absolute di�erence or the relative
ratio is used to measure the initial bias, the opinion con�guration c′ ap-
pears to be not �worse� than c. Still, computer simulations and intuitive
arguments suggest that, under any �natural� plurality protocol, the almost-
uniform opinion distribution c′ can result in much larger convergence time
than the highly-concentrated opinion con�guration c.

To the best of our knowledge, the analysis presented in Chapter 6 is the
�rst one which investigates the impact of the whole initial opinion con�gu-
ration on the speed of convergence of plurality protocols.
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c1 c2 . . . c′1 c′2 . . .

c c′

Figure 5. Two di�erent opinion con�gurations having the
same bias s = s(c1, c2).

The core contribution of the analysis is represented by the introduction of
a suitable distance d(·, ·) (see Section 6.4.1 for a formal de�nition) on the set
S of all opinion con�gurations. Such distance naturally induces a function
md(·), called the monochromatic distance, which equals the distance between
any con�guration c and the target con�guration.

Definition 8 (Monochromatic Distance). Given an opinion con�gura-
tion c, its monochromatic distance is de�ned as

md(c) =
k∑
i=1

(
ci
c1

)2

,

18Typically, this relative magnitude is de�ned in terms of the absolute di�erence or
the ratio.
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where c1 is (one of) the plurality opinion(s).

We use md to characterize the bias of the initial con�guration. In partic-
ular, note that md(c) measures the extent to which c is �uniform�: Indeed,
the higher the extent of the bias towards a small subset of the opinions
(including the plurality one), the smaller the value of md(c). As an exam-
ple, in Figure 5, md(c) can be substantially smaller than md(c′). At the
extremes, when there are only O(1) opinion communities of size Θ(c1), we
have md(c) = Θ(1) while, when Θ(k) opinion communities have size Θ(n/k),
we have md(c) = Θ(k). A visual representation of md is provided in Figure
6.

md(c(0)) := k∑

i=1
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Figure 6. A visual representation of the monochromatic
distance. At the extremes, when there are only O(1) opin-
ion communities of size Θ(c1), we have md = Θ(1) while,
when Θ(k) opinion communities have size Θ(n/k), we have
md = Θ(k).

The simple strategy of the Undecided-State dynamics [AAE08, PVV09]
is to �add� one extra state to somewhat account for the �previous� opinion
supported by an agent (see Section 6.1 and Table 1 for a de�nition of this dy-
namics). In [AD15, AAE08, BD13, BTV09, DV12, PVV09, JKV12],
the same dynamics has been analyzed under di�erent distributed models
and/or under very di�erent initial assumptions (among others, under the
assumption that k is an absolute constant). In these settings, important
aspects of the complex dependence of the dynamics' evolution on the overall
shape of the initial opinion con�guration are missed.

We analyse the Undecided-State dynamics using a technique that strongly
departs from past work and that allows us to address the plurality consensus
problem in the general setting. Our analysis achieves almost-tight bounds
on convergence time, as formally given by the following.
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Theorem 9 (Monochromatic Upper Bound). Let k = O
(
(n/ log n)1/3

)
and let c be any initial con�guration such that c1 > (1 + α) · c2 where α is
an arbitrarily small positive constant. Then within time O (md(c) · log n) the
system converges to the plurality opinion, w.h.p.

This result is almost-tight in a strong sense, as expressed in the other
following theorem.

Theorem 10 (Monochromatic Lower Bound). Let k = O
(
(n/ log n)1/6

)
.

Starting from any opinion con�guration c the convergence time of the Undecided-
State dynamics is Ω(md(c)), w.h.p.

Let us compare Theorem 9 with the corresponding results in the pre-
vious section. According to Theorem 5 and Theorem 6, when the initial
di�erence bias is s = Ω(

√
kn log n), the 3-Majority dynamics converges in

Θ(min{k, n1/3} log n) rounds using Θ(log k) memory and message size. Con-
vergence times of the 3-Majority dynamics become polylogarithmic only
if c1 > n/polylog(n), thus they are not polylogarithmic whenever k =
ω(polylog(n)) and c1 = o(n/polylog(n)). This is the parameter range where
analysis of the Undecided-State dynamics in Chapter 6 leads to an expo-
nential speed up w.r.t. the convergence time of the 3-Majority dynamics.
For example, consider an initial �oligarchic� scenario where k = n1/4 and a
subset L ⊆ [k] exists such that

• |L| = polylog(n),

• for any i ∈ L, c̄i ∼ n/
√
k, and

• for any i ∈ [k] \ L, c̄i ∼ n/k.
Clearly, 1, 2 ∈ L and the resulting monochromatic distance is md(c) =
polylog(n). Assuming c1 > (1 + α)c2 for some α > 0 the upper bound of
Theorem 9 implies that, starting from any such con�guration, the Undecided-
State dynamics converges in polylogarithmic time, whereas the 3-Majority
dynamics converges in Θ(k log n) time (theorems 5 and 6).

2.3.1. Uniform PULL Simulation in the GOSSIP Model

The analysis of the Undecided-State dynamics provided in Chapter 6 is
rather general and it can be extended to other interesting topologies. As
a case supporting this claim, we show how to adapt the Undecided-State
dynamics for the class of d-regular expanders [HLW06], for any degree d > 1.

In this variant of the Undecided-State dynamics, the task of selecting
random neighbors is simulated by performing n independent random-walks
of suitable length. Thanks to the well-known rapidly-mixing properties of
d-regular expander graphs19 [HLW06, LPW09], we can prove the following
theorem.

Theorem 11 (Monochromatic Bound on Expanders). Let G = (V,E)
be a d-regular graph with constant expansion. For any initial con�guration

19Recall the de�nition of expander graph in footnote 6 on page 22.
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c such that the Undecided-State dynamics on the clique computes plurality
consensus in O(md(c) log n) rounds w.h.p., the modi�ed Undecided-State dy-
namics computes plurality consensus on G in O(md(c) polylog(n)) rounds,
w.h.p.

The major technical hurdle here is proving that this variant of the pro-
tocol still requires polylog(n) local memory. To this aim, we prove that the
node congestion is at most polylog(n). The analysis of the process that re-
sults from running parallel random walks over a graph has been the subject
of extensive research in the past [AAK+08, FKP11, HPP+12, Pel00,
DSMP12]. However, to the best of our knowledge, none has addressed
the issues we consider here. In particular, the analysis of node conges-
tion is far from trivial and of independent interest, since e�cient protocols
for several important tasks in the GOSSIP model (such as node-sampling
[DSMP12], network-discovery problems [HPP+12], and averaging prob-
lems [BGPS06]) rely on the use of parallel random walks. This leads us
directly to the subject of the next section, which is the study of random
walks in the uniform PUSH model.

In the next section we depart from the speci�c application of random
walks in the GOSSIP model which is instrumental to Theorem 11, and we
study the congestion that a�ects the dynamics which results by running par-
allel random walks in the uniform PUSH model, as an important primitive
also to other problems discussed in the next section.

2.4. Random Walks in the PUSH Model

In this section we study the execution of n parallel random walks in
the uniform PUSH model, in which at each round each node can send a
message to a neighbor chosen uniformly at random. We focus on the case of
a complete graph.

In the setting of a complete topology, it is convenient to express the
process as the following repeated balls-into-bins process. Given any n > 2,
we initially assign n balls to n bins in an arbitrary way. Then, at every
round, from each non-empty bin one ball is chosen according to some strat-
egy (random, FIFO, etc) and re-assigned to one of the n bins uniformly at
random.

It is easy to see that the latter process is equivalent to the former one,
and that the fact that from each node (bin) only one token (ball) can move
(be extracted) generates some stochastic dependence among the positions of
the tokens (balls) and the number of tokens on each node (balls in each bin),
i.e. the maximum load of the process. The objective of Chapter 7 is indeed
to investigate the impact of the stochastic dependence on the maximum load.

More formally, inspired by previous notions of (load) stability [AKU05,
BFG03], we study the maximum number of balls inside one bin at round

t and we are interested in the largest maximum load M (t) achieved by the
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process over a period of any polynomial length. We say that a con�gura-
tion is legitimate if its maximum load is O(log n) and a process is stable if,
starting from any legitimate con�guration, it only takes on legitimate con�g-
urations over a period of poly(n) length, w.h.p. We remark that this notion
of stability is a probabilistic relaxation of the notion of closure required by
self-stabilization, which asks that starting from any legitimate con�guration,
the process only takes on legitimate con�gurations (see Figure 7).

configuration
of system

S

convergence

closure

Figure 7. An illustration of the requirements of self-
stabilization. Given the set S := {�legitimate con�gurations
of the system� }, the protocol is required to guarantee two
properties. The �rst one is convergence: From any initial
con�guration, the system has to reach S. The second one is
closure: If in S, the system keep staying in S. If we only
require the two previous property to hold w.h.p., we get the
de�nition of probabilistic self-stabilization (in which closure
is called stability).

We formally de�ne the probabilistic version of self-stabilization [Dij74,
Dol00], as follows.

Definition 9 ((Probabilistic) Self-Stabilizing Process). We say that a
process is (stochastically) self-stabilizing if it is stable and if, moreover, start-
ing from any con�guration, it converges to a legitimate con�guration, w.h.p.
The convergence time of a self-stabilizing process is the maximum number
of rounds required to reach a legitimate con�guration starting from any con-
�guration.

This natural notion of (probabilistic) self-stabilization has also been in-
spired by that in [IJ90] for other distributed processes.

Stability has consequences for other important aspects of this process.
For instance, if the process is stable, we can get good upper bounds on the
progress of a ball, namely the number of rounds the ball is selected from
its current bin queue, along a sequence of t > 1 rounds (such implication
is crucial in many applications, e.g. in Section 6.3). Furthermore, we can
eventually bound the parallel cover time, i.e., the time required for every ball
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to visit all bins. Self-stabilization has also important consequences when the
system is prone to transient faults [Dij74, Lam85, Dol00].

The repeated balls-into-bins process was �rst studied in [BCEG10],
where it is used as a crucial sub-procedure to optimize the message complex-
ity of a gossip algorithm in the complete graph, and then in [BCN+15a,
EK15]. The analysis in [BCEG10, EK15] (only) holds for very-short (i.e.
logarithmic) periods, while the analysis given in Section 6.3 considers periods
of arbitrary length but it (only) allows to achieve a bound on the maximum
load that rapidly increases with time: after t rounds, the maximum load
is bounded by O

(√
t
)
, w.h.p. By adopting the FIFO strategy at every bin

queue, the latter result easily implies that the progress of any ball over pe-
riods of t rounds is Ω(

√
t), w.h.p. On the other hand, an upper bound

O
(
n2 log n

)
for the parallel cover time of the repeated balls-into-bins process

easily follows from the fact that the cover time of one single random walk
on the complete graph is Θ(n log n), w.h.p.

Previous results are thus not helpful to establish whether this process is
stable (or, even more, stochastically self-stabilizing) or not. Moreover, the
previous analyses of the maximum load in [BCN+15a, BCEG10, EK15]
are far from tight, since they rely on some rough approximations of the
studied process via other, much simpler Markov chains: for instance, in
Chapter 6, we present the approach adopted in [BCN+15a], in which they
consider the process - which clearly dominates the original one - where, at
every round, a new ball is inserted in every empty bin. That analysis thus
does not exploit the global invariant (a �xed number n of balls) of the original
process.

In Chapter 7, we provide the following, almost-tight analysis of the re-
peated balls-into-bins process that signi�cantly departs from previous ones
and show that the system is stochastically self-stabilizing.

Theorem 12 (Repeated Balls into Bins Max Load). Let c be an arbitrarily-
large constant and let q be any legitimate con�guration. Let the repeated
balls-into-bins process start from Q(0) = q. Then, over any period of length
O(nc), the process visits only legitimate con�gurations, w.h.p., i.e. M (t) =
O(log n) for all t = O(nc), w.h.p. Moreover, starting from any con�guration,
the system reaches a legitimate con�guration within O(n) rounds, w.h.p.

The previous result strongly improves over the best previous bounds [BCN+15a,
BCEG10, EK15] and it is almost tight, since the classical lower bound
Ω(log n/ log log n) on the maximum load (see, e.g., [MU05]) clearly applies
also in our repeated setting. Theorem 12 further implies that, under the
FIFO queueing policy, any ball performs Ω(t/ log n) steps of its individual
random walk over any sequence of t = poly(n) rounds w.h.p., which implies
that the parallel cover time is O

(
n log2 n

)
, w.h.p. This is only a log n factor

away from the lower bound following from the single-ball process.
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2.4.1. An application to multiple resources assignment

We observe that the process of parallel random walks in the uniform
PUSH model, models a natural randomized solution to the problem of (par-
allel) resource (or task) assignment in distributed systems (this problem is
also known as traversal) [San06, Lyn96]. In the basic case, the goal is to
assign one resource in mutual exclusion to all processors (i.e. nodes) of a
distributed system. This is typically described as a traversal process per-
formed by a token (representing the resource or task) over the network. The
process terminates when the token has visited all nodes of the system. Ran-
domized protocols for this problem [Coo11] are e�cient approaches when,
for instance, the network is prone to faults/changes and/or when there is no
global labeling of the nodes. A simple randomized protocol is the one based
on random walks [Coo11, IJ90, IKOY02]: starting from any node, the
token performs a random walk over the network until all nodes are visited,
w.h.p. The �rst round in which all nodes have been visited by the token is
called the cover time of the random walk [Coo11, LPW09]. The expected
cover time for general graphs is O(|V | · |E|) (see, for example, [MU05]).

In distributed systems, we often are in the presence of several resources
or tasks that must be processed by every node in parallel. This naturally
leads to consider the parallel version of the basic problem in which n di�erent
tokens (resources) are initially distributed over the set of nodes and every
token must visit all nodes of the network. Similarly to the basic case, an
e�cient randomized solution is the one based on (parallel) random walks.
In order to visit the nodes, every token performs a random walk under the
natural constraint that every node can process and release at most one token
per round. Again, the maximum load is a critical complexity measure: for
instance, it can determine the required bu�er size at every node, bounds
on the token progress and, thus, on the parallel cover time. For this case,
our results imply that, every token visits all nodes of the system with at
most a logarithmic delay w.r.t. the case of a single token: so, we can derive
an upper bound O(n log2 n) for the parallel cover time, starting from any
initial con�guration. We can also consider the adversarial model in which,
in some faulty rounds, an adversary can re-assign the tokens to the nodes
in an arbitrary way. The self-stabilization and the linear convergence time
shown in Theorem 12 imply that the O

(
n log2 n

)
bound on the cover time

still holds, provided that faulty rounds occur with a frequency no higher
than cn, for a su�ciently large constant c.

In the next sections we continue our exposition of applications of dy-
namics by investigating two basic problems in distributed computing, the
bit dissemination (better known as rumor spreading) and the plurality con-
sensus problems (the second of which has already been the main character
of sections 2.2 and 2.3), in two challenging fundamental settings. In Section
2.5, we consider the problems in the uniform PUSH model when commu-
nication is a�ected by noise, i.e. when there is large chance that messages
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sent are �misunderstood�. In Section 2.6 we consider the problem of bit dis-
semination in the PULL model in the self-stabilizing context. We show that
the self-stabilizing bit dissemination problem is deeply connected to that of
clock-synchronization, and we thus investigate also the latter. The rationale
behind the order of the two section is given by the increase in sophistication
of the two solutions: in Section 2.5 (corresponding to Chapter 8), we provide
an algorithm that, although not as simple as a dynamics, is still arguably
natural ; in Section 2.6 (corresponding to Chapter 9), the solution uses dy-
namics as a black box but, although the resulting protocol is simple from a
technological point of view, it cannot be argued to be biologically relevant.

2.5. Bit Dissemination and Consensus Despite Noise

To guarantee reliable communication over a network in the presence of
noise is the main goal of Network Information Theory [EGK11]. Thanks to
the achievements of this theory, the impact of noise can often be drastically
reduced to almost zero by employing error-correcting codes, which are practi-
cal methods whenever dealing with arti�cial entities. However, the situation
is radically di�erent for scenarios in which the computational entities are bi-
ological. Indeed, from a biological perspective, a computational process can
be considered �simple� only if it consists of very basic primitive operations,
and is extremely lightweight. As a consequence, it is unlikely that biological
entities are employing techniques like error-correcting codes to reduce the
impact of noise in communications between them. Yet, biological signals
are subject to noise, when generated, transmitted, and received. This rises
the intriguing question of how entities in biological ensembles can cooperate
in presence of noisy communications, but in absence of mechanisms such as
error-correcting codes.

An important step toward understanding communications in biological
ensembles has been achieved in [FHK14], which showed how it is possible to
cope with noisy communications in absence of coding mechanisms for solving
complex tasks such as bit dissemination and majority consensus. Such a
result provides highly valuable hints on how complex tasks can be achieved
in frameworks such as the immune system [Car04], bacteria populations
[WB05], or super-organisms of social insects [HW09], despite the presence
of noisy communications.

In the case of bit dissemination we assume that a source-node initially
handles a bit, set to some binary value, called the correct opinion. This
opinion has to be transmitted to all nodes, in a noisy environment, modeled
as a complete network with unreliable links. More precisely, messages are
transmitted in the network according to the classical uniform PUSH model
[DGH+87, KSSV00, Pit87] where, at each round, every node can send one
binary opinion to a neighbor chosen uniformly and independently at random
but, before reaching the receiver, that opinion is �ipped with probability at
most 1

2 − ε with ε > 0. We refer to this variant of uniform PUSH model
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as the noisy20 (uniform) PUSH model. In the case of majority consensus,
it is assumed that some nodes are supporting opinion 0, some nodes are
supporting opinion 1, and some other nodes are supporting no opinion. The
objective is that all nodes eventually support the initially most frequent
opinion (0 or 1). More precisely, let A be the set of nodes with opinion, and
let b ∈ {0, 1} be the majority opinion in A. The majority bias of A is de�ned
as 1

2(|Ab| − |Ab̄|)/|A| where Ai is the set of nodes with opinion i ∈ {0, 1}.
In [FHK14], it is proved that, even in above very noisy setting, the

bit dissemination and the noisy majority consensus problems can be solved
quite e�ciently. Speci�cally, an algorithm is provided that solves the noisy
bit dissemination problem in O( 1

ε2
log n) communication rounds, with high

probability21 in n-node networks, using O(log log n+ log(1/ε)) bits of mem-
ory per node. Actually, as a special case of the previous algorithm, one gets
an algorithm with the same aforementioned performances which solves the
noisy majority consensus problem for |A| = Ω( 1

ε2
log n) with majority-bias

Ω(
√

log n/|A|). Note that the provided majority consensus algorithm re-
quires that the nodes are initially aware of the size of A. We remark that
both algorithms exchange solely opinions between nodes, and are optimal,
since basic information-theoretic arguments show that both bit dissemina-
tion and majority consensus require Ω( 1

ε2
log n) rounds in n-node networks,

w.h.p.
Our objective here is to extend the work of [FHK14] to the natural

case of an arbitrary number of opinions, to go beyond a proof of concept.
The problem that results from this extension is an instance of the plurality
consensus problem in the presence of noise, i.e., the problem of making the
system converging to the initially most frequent opinion (i.e., the plurality
opinion). Indeed, the plurality consensus problem naturally arises in several
biological settings, typically for choosing between di�erent directions for a
�ock of birds [BSDDS10], di�erent speeds for a school of �sh [SKJ+08],
or di�erent nesting sites for ants [FPM+02]. The computation of the most
frequent value has also been observed in biological cells [CCN12].

The ultimate goal of our investigation is to make progress toward the
solution of the above problems via simple dynamics. At present, the protocol
of [FHK14] and that present here, although already very simple, are far from
the time-homogeneous property of dynamics, since they rely on the ability
of nodes to coordinate in adopting di�erent rules at di�erent times. However
we remark that, within the single phases of these protocols, the mechanisms

20Observe that the smaller is ε, the more uniformly random received messages appear,
and the problem becomes therefore harder. We remark that, even for very large values of
ε the problem does not reduce to adversarial scenarios such as those considered in Section
2.2, or more general byzantine settings where even simple consensus cannot be achieved if
the fraction of byzantine nodes exceeds 1

3
. For example, if ε = 1

7
, at each round a fraction

greater than 1
3
of the messages is corrupted, therefore a naive interpretation of corrupted

messages as messages sent by adversarial agents is of no use.
21Recall the meaning of w.h.p. as in footnote 8 on page 23.
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adopted by nodes essentially reduce to the h-Majority dynamics and other
elementary rules.

We generalize the results in [FHK14] to the setting in which an arbitrary
large number k of opinions is present in the system. In the context of bit
dissemination, the correct opinion is a value i ∈ {1, . . . , k}, for any constant
k > 2. Initially, one node supports this opinion i, and the other nodes
have no opinions. The nodes must exchange opinions so that, eventually,
all nodes support the correct opinion i. We also recall that, as discussed
in sections 2.2 and 2.3, in the context of (relative) majority consensus, also
known as plurality consensus, each node u initially supports one opinion
iu ∈ {1, . . . , k}, or has no opinion. The objective is that all nodes eventually
adopt the plurality opinion (i.e., the opinion initially held by more nodes
than any other, but not necessarily by an overall majority of nodes).

As in [FHK14], we restrict ourselves to �natural� algorithms [Cha09],
which informally22 means that the algorithm essentially consists in exchang-
ing opinions in a straightforward manner (i.e., they do not use the opinions
to encode, e.g., part of their internal state). For both problems, the di�culty
comes from the fact that every opinion can be modi�ed during its traversal
of any link, and switched at random to any other opinion.

Generalizing noisy bit dissemination and noisy majority consensus to
more than just two opinions requires to address a series of issues, some
conceptual, others technical.

Conceptually, one needs �rst to rede�ne the notion of noise. In the case of
binary opinions, the noise can just �ip an opinion to its complement. In the
case of multiple opinions, an opinion i subject to a modi�cation is switched
to another opinion i′, but there are many ways of picking i′. For instance, i′

can be picked uniformly at random (u.a.r.) among all opinions. Or, i′ could
be picked as one of the �close opinions�, say, either i+1 or i−1 modulo k. Or,
i′ could be �reset� to, say, i = 1. In fact, there are very many alternatives,
and not all enable bit dissemination and plurality consensus to be solved.
One of our contributions is to characterize noise matrices P = (pi,j), where
pi,j is the probability that opinion i is switched to opinion j, for which these
two problems are e�ciently solvable. Similar issues arise for, e.g., rede�ning
the majority bias into a plurality bias.

The technical di�culties are manifold. A key ingredient of the analysis in
[FHK14] is a �ne estimate of how nodes can mitigate the impact of noise by
observing the opinions of many other nodes, and then considering the mode
of such sample. Their proof relies on the fact that for the binary opinion
case, given a sample of size γ, the number of 1s and 0s in the sample sum
up to γ. Even for the ternary opinion case, the additional degree of freedom
in the sample radically changes the nature of the problem, and the impact
of noise is statistically far more di�cult to handle.

22We are not aware of any serious attempt at a rigorous de�nition of what a natural
algorithm is.
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Also, to address the multivalued case, we have to cope with the fact
that, in the uniform PUSH model, the messages received by nodes at every
round are correlated. To see why, consider an instance of the system in
which a certain opinion b is held by one node only, and there is no noise
at all. In one round, only one other node can receive b. It follows that if
a certain node u has received b, no other nodes have received it. Thus, the
messages each node receives are not independent (see Figure 8). In Chapter
8, we show how to obtain concentration of probability in this dependent
setting by leveraging Poisson approximation techniques. Our approach has
the following advantage: instead of showing that the Cherno� bound can
be directly applied to the speci�c involved random variables, we show that
the execution of the given protocol, on the uniform PUSH model, can be
tightly approximated with the execution of the same protocol over a suitable
communication model, that is not a�ected by the stochastic correlation that
a�ects the uniform PUSH model.

Figure 8. An example of the stochastic dependence which
a�ects messages in the uniform PUSH model. The red ant
which is contacted by the yellow one can infer that the prob-
ability that a blue ant is contacted by another yellow ant
decreases.

In short, we prove that there are algorithms solving the noisy bit dis-
semination problem and the noisy plurality consensus problem for multiple
opinions, with the same performances and probabilistic guarantees as the
algorithms for binary opinions in [FHK14]. Below, we state the main theo-
rems proved in Chapter 8, concerning the solution of the two problems. The
statement require some notions which it would be too technical to rigorously
provide here. In this introductory section, we only informally anticipate their
meaning:

• A noise matrix is a matrix whose row i and column j give the
probability of a message i to be changed to j by the noise, before
being received;
• A δ-majority-biased con�guration is a con�guration of the system
in which the most frequent opinion has a support of nodes which
is larger than that of any other opinion by a fraction δ (De�nition
19);
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• A noise matrix is majority preserving (m.p., for short), with param-
eters ε and δ, if the probability that a message, sent by a randomly
chosen node in a δ-majority-biased con�guration, has the value of
the majority opinion is larger than that of having any other opinion
by at least ε · δ (De�nition 20).

Given the above notions, we prove the following results.

Theorem 13 (Noisy Bit Dissemination). Assume that the noise matrix

P is (ε, δ)-m.p. with ε = Ω(n−
1
4

+η) for an arbitrarily small constant η > 0

and δ = Ω(
√

log n/n). There exists a protocol, using O(log log n+log 1
ε ) bits

of memory at each node, which solves the noisy bit dissemination problem

with k opinions in O( logn
ε2

) communication rounds, w.h.p.

Theorem 14 (Noisy Plurality Consensus). Let S with |S| = Ω( 1
ε2

log n)
be an initial set of nodes with opinions in [k], the rest of the nodes having
no opinions. Assume that the noise matrix P is (ε, δ)-m.p. for some ε >

0, and that S is Ω(
√

log n/|S|)-majority-biased. There exists a protocol,

using O(log log n + log 1
ε ) bits of memory at each node, which solves the

noisy plurality consensus problem with k opinions in O( logn
ε2

) communication
rounds, w.h.p.

In the last, next introductory section, we move from studying simple
protocols for dealing with noise in the uniform PUSH model, to studying
transient faults (or, in a biological perspective, the e�ect of a dynamic envi-
ronment) in the uniform PULL model.

2.6. Self-Stabilizing Bit Dissemination

As in Section 2.5, the real-world scenario we consider in this section are
distributed systems composed of limited agents that interact in a stochastic
fashion to jointly perform tasks which are common in the natural world as
well as in engineered systems, such as a wide range of insect populations
[HM85], chemical reaction networks [CCDS14], and mobile sensor net-
works [AAD+06]. Such systems have been studied in various disciplines,
including biology, physics, computer science and chemistry, while employing
di�erent mathematical and experimental tools. For example, using com-
puter simulations to model animal group interactions, Couzin et al. demon-
strated how groups can reach majority-consensus decisions, even though in-
formed individuals do not know whether they are in a majority or minority
[CKFL05]. From an algorithmic perspective, such complex systems share a
number of computational challenges. Indeed, they all perform collectively in
dynamically changing environments despite being composed of limited indi-
viduals that communicate through seemingly unpredictable, unreliable, and
restricted interactions.
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In Section 2.5 (which introduces Chapter 8), we have focused on the
unpredictability, unreliability and poorness of interactions of biological sys-
tems as abstracted by the noisy uniform PUSH model. The latter inves-
tigation takes part to the signi�cant e�ort in understanding the computa-
tional limitations that are inherent to such systems, by abstracting some of
their characteristics as distributed computing models, and analyzing them
algorithmically [AAD+06, AG15, DS15, FHK14, AFJ06, BCN+15a].
As these models attempt to capture biological scenarios, they necessarily
consider agents which are restricted in their memory and communication ca-
pacities, that interact independently and uniformly at random (u.a.r.). By
now, the understanding of the computational power of such models is rather
advanced. However, it is important to note that much of this progress has
been made assuming non-faulty scenarios - a rather strong assumption when
it comes to natural or sensor-based systems. For example, to synchronize
actions between processors, many known distributed protocols rely on the
assumption that processors know when the protocol is initiated. However, in
systems composed of limited individuals that do not share a common time
notion, and must react to a dynamically changing environment, it is often
unclear how to achieve such conditions. To have a better understanding of
such systems, it is desirable to identify the weakest computational models
that still allow for both e�cient as well as robust computations in a fault-
tolerant sense.

In Chapter 9, we go back to the basic uniform PULL model of com-
munication considered in chapters 5 and 6, in which in each round, each
agent can extract (pull) information from few other agents, chosen u.a.r.
In the computer science discipline, this model, as well as its companion
PUSH model which we have considered in Section 2.5, gained their popu-
larity due to their simplicity and inherent robustness to di�erent kinds of
faults [DGH+88, KSSV00, DGM+11, DF11]. Here, focusing more on
the context of natural systems, we view the PULL model as an abstraction
for communication in well-mixed scenarios, where agents can occasionally
�observe� arbitrary other agents. This may relate to the notion of passive
communication commonly used by biologists to refer to communication that
is based on observing the behavior of other individuals [Wil92], in contrast
to active communication in which agents �deliberately� signal other agents
and whose corresponding model is the uniform PUSH model considered in
Chapter 8.

We aim at identifying the power and limitations of the uniform PULL
model with respect to achieving basic information dissemination tasks under
conditions of increased uncertainty for the agents, regarding the state of the
system they are in. As many natural systems appear to be more restricted by
their communication abilities than by their memory capacities [AAB+11,
EW13], our main focus is on understanding what can be computed while
revealing as few bits per interaction as possible in a self-stabilizing way.
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We note that stochastic communication patterns such as PULL or PUSH
are inherently sensitive to congestion issues. Indeed, in such models it is un-
clear how to simulate a protocol that uses large messages while using only
small size messages. For example, the straightforward strategy of breaking
a large message into small pieces and sequentially sending them one after
another does not work, since one typically cannot make sure that the small
messages reach the same destination. Hence, reducing the message size may
have a profound impact on the running time, and perhaps even on the solv-
ability of the problem at hand.

Similarly to the previous section, here we consider the problem of dis-
seminating information from one or several sources to the rest of the popu-
lation, which is one of the most fundamental building blocks in distributed
computing [DGH+88, CHHKM12, DF11, KSSV00, CLP11], and an
important primitive in natural systems [REF13, SKJ+08, Rob96]. How-
ever, there are profound di�erences between the bit dissemination problem
considered in Section 2.5 and the variant considered here: we consider the
problem in the context of self-stabilization, and the generalization considered
here includes the single-source bit dissemination and the majority consensus
problems as special cases.

More formally, we focus on the majority bit dissemination problem de-
�ned as follows [BKN17]. We consider a population of n agents. The
population may contain multiple source agents which are speci�ed by a des-
ignated bit in the memory of every agent indicating whether the agent is
a source or not. Each source agent holds a binary input bit, however, two
sources may not necessarily agree on their input bits. In addition, each agent
holds a binary output bit (also called opinion). The goal of all agents is to
converge their opinion on the majority bit among the initial input bits of
the sources, termed bmaj . This problem aims to capture scenarios in which
some individuals view themselves as informed, but some of these agents
could also be wrong, or not up-to-date. Such situations are common in na-
ture [CKFL05, REF13] as well as in man-made systems. The number of
sources is termed k. We do not assume that agents know the value k, or that
sources know whether they are in the majority or minority (in terms of their
input bit). For simplicity, to avoid dealing with the case that the fraction
of the majority input bit among sources is arbitrarily close to that of the
minority input bit, we shall guarantee convergence only when the fraction of
source agents holding the majority input bit is bounded away from 1/2.

The particular case where we are promised to have k = 1 is the (single-
source) bit dissemination. In this case we have a single source agent that
aims to disseminate its input bit b to the rest of the population, and there are
no other sources introducing a con�icting opinion. Note that this problem
has been studied extensively in di�erent models under di�erent names (e.g.,
broadcast or rumor spreading). Here we use the term bit dissemination to
focus on the fact that we are interested in the dissemination of a single bit
b ∈ {0, 1}.
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A classical example of bit dissemination considers the synchronous PUSH
/PULL communication model, where b can be propagated from the source to
all other agents in O(log n) rounds, by simply letting each uninformed agent
copy it whenever it sees an informed agent [KSSV00]. The correctness of
this protocol heavily relies on the absence of incorrect information in the
memory of the agents. Such reliability however may be di�cult to achieve in
dynamic or unreliable conditions. For example, if the source is sensitive to an
unstable environment, it may change its mind several times before stabilizing
to its �nal opinion. Meanwhile, it may have already invoked several consec-
utive executions of the protocol with contradicting initial opinions, which
may in turn �infect� other agents with the wrong opinion 1 − b. If agents
do not share a common time notion, it is unclear how to let infected agents
distinguish their current wrong opinion from the more �fresh�, correct opin-
ion. To address such di�culty, we consider the context of self-stabilization
[Dij74], where agents must converge to a correct con�guration from any
initial con�guration of states.

2.6.1. Di�culties and intuition on bit dissemination

Consider the bit dissemination problem (where we are guaranteed to have
a single source agent). This particular case is already di�cult in the self-
stabilizing context if we are restricted to use O(1) bits per interaction. As
hinted above, a main di�culty lies in the fact that agents do not necessarily
share a common time notion. Indeed, it is easy to see that if all agents share
the same clock, then convergence can be achieved in O(log n) time, with
high probability,and using less than three bits per interaction, as described
in the following paragraphs.

2.6.1.1. Solving self-stabilizing bit dissemination (k = 1) with 2 bits per in-
teraction, assuming synchronized clocks. The source sets her output bit to
be her input bit b. In addition to communicate her output bit bu, each agent
u stores and communicates a certainty bit cu. Informally, having a certainty
bit equal to 1 indicates that the agent is certain of the correctness of its out-
put bit. The source's certainty bit is always set to 1. Whenever a non-source
agent v observes u and sees the tuple (bu, cu), where cu = 1, it copies the
output and certainty bits of u (i.e., sets bv = bu and cv = 1). In addition, all
non-source agents count rounds, and reset their certainty bit to 0 simultane-
ously every T = O(log n) rounds. The reset allows to get rid of �old� output
bits that may result from applying the protocol before the source's output
bit has stabilized. This way, from the �rst time a reset is applied after the
source's output bit has stabilized, the correct source's output bit propagates
to all agents within T rounds, w.h.p. Note however, that if agents do not
share a consistent notion of time they cannot reset their certainty bit to
zero simultaneously. In such cases, it is unclear how to prevent agents that
have just reset their certainty bit to 0 from being �infected� by �misleading�
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agents, namely, those that have the wrong output bit and certainty bit equal
to 1.

2.6.1.2. Solving self-stabilizing bit dissemination (k = 1) with a single bit
per interaction, assuming synchronized clocks. Under the assumption that
all agents share the same clock, the following trick shows how to obtain
convergence in O(log n) time and using only a single bit per message, namely,
the output bit. As before, the source sets her output bit to be her input bit
b. Essentially, agents divide time into phases of some prescribed length T =
O(log n), each of them being further subdivided into 2 subphases of length
T/2. In the �rst subphase of each phase, non-source agents are sensitive to
opinion 0. This means that whenever they see a 0 in the output bit of another
agent, they turn their output bit to 0, but if they see 1 they ignore it. Then,
in the second subphase of each phase, they do the opposite, namely they
switch their output bit to 1 as soon as they see a 1 (see Figure 9). Consider
the �rst phase starting after initialization. If b = 0 then within one complete
subphase [1, T/2], every output bit is 0, w.h.p., and remains there forever.
Otherwise, if b = 1, when all agents go over a subphase [T/2+1, T ] all output
bits are set to 1, w.h.p., and remain 1 forever. Note that a common time
notion is required to achieve correctness.

T = 0

T/2
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to
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Figure 9. The division in subphases used for self-stabilizing
bit dissemination with a clock. During the �rst half, between
times 1 and T/2, agents are sensitive to 0. Then they are
sensitive to 1.

The previous protocol indicates that the self-stabilizing bit dissemina-
tion problem is highly related to the self-stabilizing clock synchronization
problem, where each agent v internally stores a clock modulo T = T (v) =
O(log n) incremented at every round and, despite having arbitrary initial
states (i.e. at the beginning it may be that T (u) 6= T (v) for some u 6= v),
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all agents should converge on sharing the same value of the clock. Indeed,
given such a protocol, one can obtain a self-stabilizing bit dissemination pro-
tocol by running the clock synchronization protocol in parallel to the last
example protocol. This parallel execution costs only an additional bit to the
message size and a O(log n) additive factor to the time complexity over the
complexities of the clock synchronization protocol.

To synchronize clocks modulo T in a self-stabilizing manner, one could
use the stabilizing consensus protocol in [DGM+11], by displaying all the
bits of the clocks in each message, and reaching consensus on each of them
separately and in parallel, while incrementing the clocks (see Section 9.0.3
for further details). Unfortunately, this approach is wasteful in terms of
message size, as it requires to reveal log T = O(log log n) bits per inter-
action. As another approach, one could aim at sequentially synchronizing
clocks bit after bit. That is, �rst display and synchronize the �rst bit; then,
once agents �know� that the �rst bit has been synchronized, display and
synchronize the second bit, etc. This approach is problematic in the context
of self-stabilization, since, �rst, it requires agents to �know� when a bit is
synchronized, and second, it requires agents to agree on the bit index that
they currently aim to synchronize. Both of these seem to require clocks to
be synchronized to begin with.

2.6.1.3. Intuition behind the self-stabilizing clock synchronization algorithm.
Our technique for obtaining the clock synchronization protocol is based on
a compact recursive use of the stabilizing consensus protocol proposed by
Doerr et al. [DGM+11] through our Message Reduction Theorem (Theorem
17). In the Section 9.0.3 of Chapter 9, we describe a simple protocol called
Syn-Simple that uses O(log T ) bits per message. In Syn-Simple, each
agent u maintains a clock Cu ∈ [0, T − 1]. At each round, each agent u
displays the opinion of her clock, pulls 2 other such clock opinions, and
updates her clock as the bitwise majority of the two clocks she pulled and her
own. Then the clock Cu is incremented. This protocol essentially amounts
to running the protocol of Doerr et al. on each bit separately and in parallel,
and self-stabilizes in O(log T log n) rounds, w.h.p. (Proposition 2).

We want to apply a strategy similar to Syn-Simple, while using only
O(1) many bits per interaction. The core technical ingredient, made rigor-
ous in the Message Reduction Theorem, is that a certain class of protocols
using messages of ` bits, to which Syn-Simple belongs, can be emulated
by another protocol which uses dlog `e + 1 bits only (see Figure 29). The
idea is to build a clock modulo ` using Syn-Simple itself on dlog `e bits
and sequentially display one bit of the original `-bit message according to
such clock. Thus, by applying such strategy to Syn-Simple itself, we use a
smaller clock modulo `′ � ` to synchronize a clock modulo `. Iterating such
process, in Section 9.2.2, we obtain a compact protocol which uses only 3
bits.
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2.6.2. Results of Chapter 9

The main results presented in Chapter 9 are the following.

Theorem 15 (Syn-Phase-Spread). Fix an arbitrarily small constant
ε > 0. There exists a protocol, called Syn-Phase-Spread, which solves the
majority bit dissemination problem in a self-stabilizing manner in Õ(log n)
rounds23, w.h.p. using 3-bit messages, provided that the majority bit is sup-
ported by at least a fraction 1

2 + ε of the source agents.

Theorem 15 is proved in Section 9.3. The core ingredient of Syn-Phase-
Spread is our construction of an e�cient self-stabilizing T -clock synchro-
nization protocol, which is used as a black-box. As for the majority bit
dissemination problem, the case that interests us is when T = Õ(log n).
Note that in this case, the following theorem, proved in Section 9.2, states
that the convergence time of the clock synchronization algorithm is Õ(log n).

Theorem 16 (Syn-Clock). Let T be an integer. There exists a self-
stabilizing T -clock synchronization protocol, called Syn-Clock, which em-
ploys only 3-bit messages, and synchronizes clocks modulo T within Õ(log n log T )
rounds, w.h.p.

The proof of Theorem 16 is given in Section 9.2. In addition to the
self-stabilizing context our protocols can tolerate the presence of Byzantine
agents. Speci�cally, it is possible to show that, as a corollary of the anal-
ysis given in Chapter 9 and the fault-tolerance property of the analysis in
[DGM+11], if T 6 poly(n) then Syn-Clock can tolerate the presence of

up to O(n1/2−ε) Byzantine agents for any ε > 0. In addition, Syn-Phase-

Spread can tolerate min{(1 − ε)(kmaj − kmin), n1/2−ε} Byzantine agents,
where kmaj and kmin are the number of sources supporting the majority and
minority opinions, respectively. Note that for the case of a single source
(k = 1), no Byzantine agents are allowed; indeed, a single Byzantine agent
pretending to be the source with the opposite opinion can clearly ruin any
protocol. However, in order to focus on the self-stabilizing aspect of our
results, in this work we do not explicitly address the presence of Byzantine
agents.

The proofs of both Theorem 16 and Theorem 15 rely on recursively
applying a new general compiler which can essentially transform any self-
stabilizing algorithm with a certain property (called bitwise-independence
property) that uses `-bit messages to one that uses only dlog `e+ 1-bit mes-
sages, while paying only a small penalty in the running time. This compiler is
described in Section 9.1, where we prove the following result. As explained in
Section 9.0.2, we denote with PULL(η, `) the model in which at each round
each node displays ` bits in the visible part of her memory, and can observe
the visible part of η other agents sampled uniformly at random.

23With a slight abuse of notation, with Õ(f(n)g(T )) we refer to f(n)g(T ) ·
logO(1)(f(n)) · logO(1)(g(T )). All logarithms are in base 2.
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Theorem 17 (Message Reduction Theorem). Any self-stabilizing proto-
col Ψ in the PULL(η, `) model having the bitwise-independence property, and
whose running time is LΨ, can be emulated by a protocol Emul(Ψ) which
runs in24 the PULL(2, dlog(η2`)e + 1) model, has running time O(log(η`)
log n+ η

2`LΨ) and has itself the bitwise-independence property.

The structure between our di�erent lemmas and results is summarized
in the picture below, Figure 26.

As discussed in Chapter 10, it remains an open problem, both for the
self-stabilizing bit dissemination problem and for the self-stabilizing clock
synchronization problem, whether the message size can be reduced to 2 bits
or even to 1 bit, while keeping the running time poly-logarithmic.

24 The only reason for designing Emul(Ψ) to run in the

PULL
(

2, dlog
(η

2
`
)
e+ 1

)
model in the Message Reduction Theorem is the consensus protocol we adopt, 3-Median
dynamics, which works in the PULL(2) model. In fact, Emul(Ψ) can be adapted to run
in the

PULL (1, dlog (η`)e+ 1)

model by using a consensus protocol which works in the PULL(1) model. However, no self-
stabilizing binary consensus protocol in the PULL(1) model with the same performances
as 3-Median dynamics is currently known.





CHAPTER 3

Work Related to Dynamics (and Surroundings)

In this section we aim to provide the scienti�c context the study of dy-
namics belongs to, focusing on those dynamics studied in this work, and on
classes of protocols closely related to them.

3.1. Dynamics for Community Detection

Dynamics have received considerable attention across di�erent research
communities, both as e�cient distributed algorithms [AAE08, BTV09,
OT09, MRSDZ11] and as abstract models of natural interaction mecha-
nisms inducing emergent behavior in complex systems [AAB+11, CCN12,
Dot14, FPM+02, MNT14]. For instance, simple averaging dynamics have
been considered to model opinion formation mechanisms [DeG74, FJ90],
while a number of other dynamics have been proposed to describe di�erent
social phenomena [EK10].

An important class of protocols which includes a wide range of dynamics
is that of label propagation algorithms.

3.1.1. Label Propagation Algorithms

Label propagation algorithms (LPA for short) [RAK07] are a class of
protocols based on a simple epidemic mechanism which can be e�ciently im-
plemented in a fully-distributed fashion, since they require easy local compu-
tations. In their most famous basic version, some distinct labels are initially
assigned to a subset of nodes; at every step, each node updates her label (if
any) by choosing the label which most of her (current) neighbors have (the
majority label); if there are multiple majority labels, one label is chosen ran-
domly. Typically, the goal of the protocol is to converge to a good labeling
which re�ects the clustered structure of the graph.

We remark that while the (informal) notion of LPA does suggest a more
restricted set of possible update functions for the nodes' states compared to
the general notion of dynamics, an LPA algorithm is not necessarily a dynam-
ics: for example, an LPA is not necessarily time-homogeneous [CDIG+15].
However, a protocol which is both a dynamics and an LPA is an ideal rep-
resentative of both classes of protocols, such as the 3-Majority dynamics
analyzed in Chapter 5.

Despite the simplicity of LPA-based protocols, very few analytical results
are known on their performance over relevant classes of graphs. It seems hard

63
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to derive, from empirical results, any fundamental conclusions about LPA
behavior, even on speci�c families of graphs [KPS13]. One reason for this
hardness is that despite its simplicity, even on simple graphs, the class of
LPA can exhibit complex behavior, not far from epidemic processes such as
the spread of a disease in an interacting population [New02].

Several versions of LPA-based protocols have been tested on a wide range
of social networks [RAK07, BC09, LHLC09, LM10, CG12]: such works
experimentally show that LPA-based protocols work quite e�ciently and are
e�ective in providing almost good labeling. Based on extensive simulations,
Raghavan et al. [RAK07] and Leung et al. [LHLC09] empirically show
that the average convergence time of LPA-based protocols is bounded by
some logarithmic function of n on special classes of graphs whose community
structure is known.

The only available rigorous analysis of label propagation algorithms on
the stochastic block model G2n,p,q is the one presented in [KPS13], where
the authors propose and analyze a label propagation protocol on G2n,p,q for
highly-dense topologies. In particular, their analysis considers the case where
p = Ω(1/n1/4−ε) and q = O(p2), a parameter range in which very dense
clusters of constant diameter separated by a sparse cut occur w.h.p. In
this setting, characterized by a polynomial gap between p and q, simple
combinatorial and concentration arguments show that the protocol converges
in constant expected time. They also conjecture a logarithmic bound for
sparser topologies.

In general, providing analytical bounds on the convergence time of LPA-
based protocols over relevant classes of networks is an important open ques-
tion that has been proposed in several papers arising from di�erent areas
[RAK07, LHLC09, BC09, CG12, KPS13, KMTN15]. The results
about the 3-Majority and Undecided-State dynamics studied in Chapter 5
and Chapter 6, and the related work discussed in sections 3.4 and 3.3, rep-
resent some preliminary contributions with this respect.

Before moving to discuss popular solutions for the community detection
problem, we review one of the most popular random graph models which
have been theoretically investigated in order to understand the average case
complexity of community detection.

3.1.2. Stochastic block models for average case community
detection

Probably the most natural way to formalize a basic instance of the
community detection problem is as an instance of the minimum bisection
problem: Given a graph G = (V,E) with |V | = 2n, we are asked to

�nd the partition (bisection) V1, V2 ⊂ V with V1
·∪ V2 = V such that

| {(u, v) ∈ E : u ∈ V1, v ∈ V2} | is minimized. Unluckily, the minimum bi-
section problem was one of the �rst problems to be shown NP-complete
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[GJS76]. Therefore, when complexity theorists realized that, despite a prob-
lem being NP-hard in the worst case, it is still possible to get precious insights
on its structure by investigating its average case complexity, the problem of
community detection did not wait much until a natural formulation to in-
vestigate its average-case structure was proposed [DF89].

The stochastic block model is arguably the simplest random graph model
which exhibits a community structure, and in its basic form it can be de-
scribed as two graphs G1 = (V1, E1) and G2 = (V2, E2) of n nodes (the
communities) generated according to an Erd®s-Rényi model with parameter
p = a/n, which are �glued� together by adding an edge (u, v) between each
pair of nodes u ∈ V1 and v ∈ V2 with probability q = b/n 6 p (see De�-
nition 6) [HLL83]. Observe that if q = p we have an Erd®s-Rényi model
with parameter p over 2n nodes, while the cut between the two communities
becomes intuitively much easier to detect whenever q � p.

Because of their naturalness, stochastic block models have been deeply
studied in statistics [HLL83, MNS14], computer science [Bop87, DF89,
Mas14], probability theory [MNS14], statistical physics [DKMZ11, KMM+13],
and social sciences [HLL83].

In the connected regime with a = Ω(log n), the communities can be
exactly recovered and a sharp exact recovery threshold is known [ABH14].
Exact recovery thresholds have also been identi�ed in a more general setting
with a �xed number of communities, and with heterogeneous community
sizes and link probabilities [ABH14]. However, real networks are often
sparse with bounded average degrees, and in the sparse setting with a =
o(log n) exact recovery of communities from the graph becomes impossible
[CO05]. Thus the goal in the sparse regime is to �nd a labeling that has
good correlation with the true one (up to permutation of community labels)
[KMM+13].

As discussed in Section 3.1.4, e�cient algorithms for stochastic block
models were developed and shown to detect the blocks whenever this is the-
oretically possible. Finally, we remark that it is known that no local algo-
rithm with access to neighborhoods of radius o(log n) (thus any distributed
algorithm in the LOCAL model operating in less than log n rounds), can
have non-trivial performance for this problem [GS14].

Because of their relevance for the reconstruction problem, in the next
section we discuss a class of algorithms, belief propagation algorithms, whose
simplicity is close to that of dynamics.

3.1.3. Belief propagation algorithms

Belief propagation algorithms are best known as message-passing algo-
rithms for performing inference in graphical models [Mac03]. Belief prop-
agation cannot be considered a dynamics: At each round, each node sends
a di�erent message to each neighbor, which means that the update rule is
not symmetric w.r.t. the neighbors, thus requiring port numbering [Suo13],
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and the required local memory grows linearly in the degree of the node.
Non-rigorous methods have given strong evidence that some belief propa-
gation algorithms are optimal for the reconstruction problem [DKMZ11].
Their rigorous analysis is a major challenge; in particular, the convergence
to the correct value of belief propagation is far from being fully-understood
on graphs which are not trees [Wei00, MK07].

As we discuss in the next subsection, more complex algorithms, many of
which have been inspired by belief propagation, have been rigorously shown
to perform reconstruction optimally.

3.1.4. General algorithms for the reconstruction problem

While improving performance of spectral clustering algorithms and test-
ing their limits for the purpose of the reconstruction problem is not the
main driver behind our study in Chapter 4, for the sake of completeness, we
next compare our results on the Averaging dynamics to the previous general
algorithms for the reconstruction problem.

Several algorithms for community detection are spectral : They typically
consider the eigenvector associated to the second eigenvalue of the adjacency
matrix A of G, or the eigenvector corresponding to the largest eigenvalue of
the matrix A− d

nJ [Bop87, CO05, CO10, McS01]1, on the grounds that
these are correlated with the hidden partition. In [AS15, CO10, MNS13,
KMM+13, BLM15], spectral algorithms have been proposed that �nd a
weak reconstruction even in the sparse, tight regime of the stochastic block
model, where an eigenvalue computation can be used to �nd an approxi-
mation of the hidden partition which, in certain cases, can be re�ned to an
exact computation of the hidden partition using a post-processing phase.

Even though the above mentioned algorithms have been presented in a
centralized setting, spectral algorithms turn out to be a feasible approach also
for distributed models. Indeed, Kempe and McSherry [KM04] show that
eigenvalue computations can be performed in a distributed fashion, yielding
distributed algorithms for community detection in various models, including
the stochastic block model. However, Kempe and McSherry's algorithm as
well as any distributed version of the above mentioned centralized algorithms
are not dynamics. Actually, adopting the e�ective concept from Hassin and
Peleg in [HP01], such algorithms are also not light-weight : Di�erent and
not-simple operations are executed at di�erent rounds, nodes have identities,
messages are treated di�erently depending on the originator, and so on.
Moreover, a crucial aspect is convergence time: The mixing time of the
simple random walk on the graph is a bottleneck for Kempe and McSherry's
algorithm and for any algorithm that performs community detection in a
graph G, by employing the power method or the Lanczos method [Lan50] as
a subroutine to compute the eigenvector associated to the second eigenvalue

1A is the adjacency matrix of G, J is the matrix having all entries equal to 1, d is the
average degree and n is the number of nodes.
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of the adjacency matrix of G. Notice that the mixing time of graphs sampled
from G2n,p,q is concentrated around a+b

2b : hence, it can be super-logarithmic

and even nΩ(1).
In general, the reconstruction problem on the stochastic block model has

been studied extensively using a multiplicity of techniques, which include
combinatorial algorithms [DF89], belief propagation [DKMZ11], spectral-
based techniques [McS01, CO10], Metropolis approaches [JS98], and semi-
de�nite programming [ABH14], among others. Unlike the distributed set-
ting, where the existence of light-weight protocols [HP01] is the main issue
(even in non-sparse regimes), in centralized setting strong attention has been
devoted to establishing sharp thresholds for weak and strong reconstruction.
De�ne a = np as the expected internal degree (the number of neighbors that
each node has on the same side of the partition) and b = nq as the expected
external degree (the number of neighbors that each node has on the opposite
side of the partition). Decelle et al. [DKMZ11] conjectured that weak re-
construction is possible if and only if a− b > 2

√
a+ b. This was proved by

Massoulie and Mossel et al. [MNS13, Mas14, MNS14]. Strong recovery
is instead possible if and only if a− b > 2

√
a+ b+ log n [ABH14].

Versions of the stochastic block model in which the random graph is
regular have also been considered [MNS14, BDG+16]. In particular Brito
et al. [BDG+16] show that strong reconstruction is possible in polynomial-
time when a− b > 2

√
a+ b− 1.

In the next section we review the literature concerning the Averaging
dynamics, which is the main ingredient of our protocol in Chapter 4.

3.2. The Averaging Dynamics

The Averaging dynamics, in which each node updates its value to the
average of its neighbors, is perhaps one of the simplest and most interesting
examples of linear dynamics and it always converges when G is connected
and not bipartite: It converges to the global average of the initial values if
the graph is regular and to a weighted global average if it isn't [BGPS06,
Sha09]. Important applications of linear dynamics have been proposed in
[KDG03, AYSS09, Tsi84, Kle99], for example to perform basic tasks
such as self-stabilizing consensus in faulty distributed systems [BTV09,
XBK07, OT09]. The convergence time of the Averaging dynamics is the
mixing time of a random walk on G [Sha09]. It is logarithmic in |V | if the
underlying graph is a good expander [HLW06], while it is slower on graphs
that exhibit sparse cuts.

While the Averaging dynamics is based on the statistical concept of av-
erage, in the next section we discuss the previous work related to designing
a dynamics based on the statistical concept of mode.
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3.3. Dynamics for Plurality Consensus

In this section we discuss previous work related to the results of chapters
5 and 6 regarding the plurality consensus problem. The plurality consensus
problem arises in several applications such as distributed database manage-
ment, where data redundancy or replication and majority rules are used to
manage the presence of unknown faulty processors [DGM+11, Pel02]. The
goal here is to converge to the version of the data supported by the plurality
of the initial distributed copies (it is reasonable that a su�ciently strong
plurality of the nodes are not faulty and thus possess the correct data). An-
other application is distributed item ranking, in which every node initially
selects some item and the goal is to agree on the most popular item according
to the initial plurality opinion [PVV09]. Further applications of majority
updating rules in networks can be found in [EK10, Pel02].

Results closely related to those in Chapter 5 are those in [DGM+11].
Several variants of binary majority consensus have been studied in di�erent
distributed models [AAE08, MS10]. The simplest protocol is the polling
rule, i.e. the 1-majority dynamics, which has been extensively studied on
several classes of graphs (see [Pel02]).

As for the population model, where there is only one random node-pair
interaction per round (so the dynamics are strictly sequential), the binary
case on the clique has been studied in [AAE08] where the Undecided-State
dynamics has been introduced. Their generalization to the multivalued
case (k > 3) does not converge to plurality even starting with a large bias
s = Θ(n). Following [AAE08], [MNRS14] has analyzed a similar protocol
on general graphs which solves the binary majority consensus deterministi-
cally. In [AGV15], the trade-o� between deterministic success and conver-
gence speed for protocols solving the binary majority consensus problem in
population protocols is investigated.

More expensive and complex protocols have been considered in order to
speed up the process. For instance, in [KT08], a protocol for the sequential-
interaction model is presented that requires Θ(log n) memory per node and
converges in time O(n7). Other protocols for the sequential-interaction
model have been analyzed in [BTV09, LB95] (with no time bound).

In [PVV09, DV12, BD13], the Undecided-State dynamics on the
continuous-time population model is proved to converge in O(n log n) ex-
pected time only for k = Θ(1) and s = Θ(n): Even assuming such strong
restrictions, the bound does not hold with high probability and, moreover,
their analysis, based on real-valued di�erential-equations, do not work for
the discrete-time parallel model considered in Chapter 5.

Protocols for speci�c network topologies and some �social-based� com-
munities have been studied in [AD15, DV12, MNT14, PVV09]. We
mention that similar majority-consensus problems have also been studied
(for example in [AD15, MNT14]) in the LOCAL (communication) model
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[FKP11, Pel00] where, however, node congestion and memory size are lin-
ear in the node degree of the network.

In [KDG03], the authors provide a protocol in the uniform PUSHmodel
to compute aggregate functions, which can be used to solve plurality con-
sensus in polylog(n) time starting from any positive bias, but it requires ex-
ponentially larger memory and message size than the 3-Majority dynamics
and Undecided-State dynamics (namely Θ(k log n)). Moreover, their proto-
col requires the nodes to send slightly more complex messages than their sole
current opinion, and its e�ectiveness heavily relies on a potential function
argument that is sensible to slight changes to the model (e.g. it does not
hold in the presence of noise, which is the variant of the plurality consensus
problem which we consider in Section 2.5).

Finally, in [CER14], the authors provide a rigorous analysis of a simple
2-voting dynamics for the binary case on any (possibly random) regular
graph: in the latter case, they provide optimal bounds on the convergence
time as a function of the second-largest eigenvalue of the graph.

The major aforementioned contributions to the plurality consensus prob-
lem, prior to the analysis of the Undecided-State dynamics provided in Chap-
ter 6, are summarized in Figure 10.

In the next section we brie�y review the previous work regarding the
Undecided-State dynamics for plurality consensus, which is the main char-
acter of Chapter 6.

3.4. Undecided-State Dynamics

The Undecided-State dynamics has been introduced and analyzed in
[AAE08] for the binary case in the population protocol model (where only
one edge is active during a round). They prove that this dynamics has �par-
allel� convergence time O(log n) whenever the bias Ω

(√
n log n

)
. The same

dynamics has been analyzed in di�erent distributed models for the binary
case [BD13, BTV09, DV12, PVV09, MRSDZ11], or when k is an ab-
solute constant [JKV12]. Last but not least, interest for this dynamics
has been stimulated by �ndings in biology: notably, as shown in [CCN12],
the structure and dynamics of the �approximate majority� protocol (as it is
called there and in [AAE08]) is to a great extent similar to a mechanism
that is collectively implemented in the network that regulates the mitotic
entry of the cell cycle in eukaryotes.

In the next section we leave behind the requirement of converging to an
initial value with some property (i.e. being the plurality), and we review
the literature concerning the problem of converging to any initial value and
maintaining consensus on that value even in the presence of an adversary.
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Mem. &
mess. size

# of
colors

Time
efficiency

Comm.
Model

Kempe et al.
FOCS ’03

Angluin et al.
DISC ’07
Perron et al.
INFOCOM ’09

Doerr et al.
SPAA ’11

Jung et al.
ISIT ’12

Comp. J. ’12
Babaee et al.

O(k log n) any O(log n) PUSH

2 O(log n) SequentialΘ(1)

2 O(log n) PULLΘ(1)

Constant SequentialO(log n)O(log k)

Becchetti et al.
SPAA ’14 PULLO(log k) nΘ(1) O(k log n)

Figure 10. The table summarizes the major previous con-
tributions toward an e�cient dynamics for plurality consen-
sus in random interaction models. The time e�ciency in the
last row is that of the 3-Majority dynamics, which motivated
the research that led to the Undecided-State dynamics.

3.5. Dynamics for Stabilizing Consensus

Consensus problems in distributed systems have been the focus of a
large body of work in several research areas, such as distributed computing
[GK10], communication networks [RM08], social networks and voting sys-
tems [MNT14, YOA+13], distributed databases [DGH+87, DGM+10],
biological systems and chemical reaction networks [CCN12]. For brevity's
sake, we here focus on results that are closest in spirit to the results of Chap-
ter 5 regarding the stabilizing consensus problem. (Part of the literature has
already been mentioned in the previous section regarding plurality consen-
sus: we mention some of those works again to discuss them in a di�erent
perspective and to make the section self-contained.)

In [AAE08], the authors show that n agents that meet at random
can reach valid stabilizing almost-consensus in O(n log n) pairwise inter-
actions, w.h.p., even against an F = o(

√
n)-bounded dynamic adversary.

The adopted protocol is the Undecided-State protocol [AAE08, PVV09],
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discussed in sections 3.3 and 3.4. However, their analysis (and, thus, their
result) only holds for the binary case and for the population-protocol model:
At every round only one pair of nodes can interact. The authors left the
existence of protocols for the multi-valued Byzantine case as a �nal open
question [AAE08].

In the uniform PULL model, in [DGM+11] the authors provide an
analysis of the 3-Median dynamics, in which every node updates her value to
the median of her random sample. They show that this dynamics converges
to an almost-agreement con�guration (which is even a good approximation
of the global median) within O(log k ·log logn+log n) rounds, w.h.p. It turns
out that, in the binary case, the median rule is equivalent to the 3-Majority
dynamics, thus their result implies that the 3-Majority dynamics is an (F =√
n-)stabilizing consensus with O(log n) convergence time. However, in the

non-binary case, it requires Σ to be a totally-ordered set and this order to be
consistent, i.e. all agents agree on it: This may be a strong restriction when
these processes are used to model emerging behavior and self-organization
in complex agent systems such as biological ones.

Unfortunately, even assuming an ordered opinion set (Σ,6), the 3-Median
dynamics does not guarantee the crucial property of validity against both
F -static (and, clearly, dynamic) adversaries for small bounds on F (see Fig-
ure 11). The latter de�ciency of the 3-Median dynamics is critical, since

Changed by adversary

=⇒ =⇒1 3 1 3
2

2

Figure 11. It is not hard to see that from the con�guration
with n/2 agents holding value 1 and n/2 agents holding value
2, an adversary with power roughly

√
n can lead the system

to converge to value 2 which is not initially present in the
system, and thus not valid.

the validity property of consensus plays a crucial role in several realistic sce-
narios, such as monitoring sensor networks, bio-inspired dynamic systems,
and voting systems [CCN12, MNT14, YOA+13]. Another version of bi-
nary stabilizing almost-consensus is the one studied in [YOA+13]: Here,
corrupted nodes are stubborn agents of a social network who in�uence others
but never change their opinions. They prove negative results under a gener-
alized variant of the classic polling dynamics [HP01] in the (Poisson-clock)
population-protocol model.
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In the next sections, we move from work directly linked to dynamics to
the broader literature pertinent to chapters 7, 8 and 9.

3.6. Repeated Balls-into-Bins and Random Walks in the Uniform
PUSH Model

In this section we brie�y review the literature concerning the repeated
balls-into-bins process considered in Chapter 7. Recall that the repeated
balls-into-bins process is equivalent to the process of performing parallel
random walks in the (uniform) GOSSIP model, and in Chapter 7 we inves-
tigate the maximum load of the former in order to bound the congestion of
the latter.

3.6.0.1. Random walks on graphs. The original process of parallel random
walks in the (uniform) GOSSIP model (also known as random phone-call
model [DGH+87, KSSV00]), was �rst considered in [BCEG10, BCN+15a,
EK15], when every message can contain at most one token. Maximum load
(i.e., node congestion), token delays, mixing and cover times are here the
most crucial aspects. We remark that the �avor of these studies is di�er-
ent from that of Chapter 7: indeed, their main goal is to keep maximum
load and token delays logarithmic over some polylogarithmic period. Their
aim is to achieve a fast mixing time for every random walk in the case of
good expander graphs. In particular, in [BCEG10], a logarithmic bound
is shown for the complete graph when m = O(n/ log n) random walks are
performed over a logarithmic time interval. A similar bound is also given for
some families of almost-regular random graphs in [EK15].

3.6.0.2. Parallel computing. Balls-into-bins processes have been extensively
studied in the area of parallel and distributed computing, mainly to address
balanced-allocation problems [ABKU99, BCSV06, RS98], PRAM sim-
ulation [KLMadH96] and hashing [DGM+10]. In order to optimize the
total number of random bin choices used for the allocation, further allo-
cation strategies have been proposed and analyzed (see, e.g., [ACMR95,
BKSS13, Mit01, MPS02, Vöc03]). As mentioned in Section 2.4, the
notion of stability adopted in chapters 5 and 7 is inspired by those inves-
tigated in [AKU05, BFG03, BFK+16] where load balancing algorithms
are analyzed in scenarios in which new tasks arrive during the evolution of
the system, and existing jobs are executed by the processors and leave the
system. An adversarial model for a sequential balls-into-bins process has
been studied in [AS09]. We remark that, in the above previous works, the
goal is di�erent from ours: each ball/task must be allocated to one, arbitrary
bin/processor (it is not a token-traversal process).

3.6.0.3. Queuing theory. In classical queuing theory the closest model to the
setting considered in Chapter 7 is the closed Jackson network [Asm03]. In
this model, time is continuous and each node processes a single token among
those in its queue; processing each token takes an exponentially distributed
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interval of time. As soon as its processing is completed, each token leaves the
current node and enters the queue of a neighbor chosen uniformly at random.
Notice that, since time is continuous, the process' events are sequential, so
that the associated Markov chain is much simpler than the one describing
our parallel process. In particular, the stationary distribution of a closed
Jackson network can be expressed as a product-form distribution. It is noted
in [HW92] that �[. . . ] virtually all of the models that have been successfully
analyzed in classical queuing network theory are models having a so-called
product form stationary distribution�. Given the non-reversibility of the
Markov chain associated to the repeated balls-into-bins process and other
di�culties discussed in Chapter 7, the stationary distribution is instead very
likely not to exhibit a product-form distribution, thus laying outside the
domain where the techniques of classical queuing theory seem e�ective.

3.6.0.4. Queuing systems in computer science. Among the works in com-
puter science which depart from the classical framework of queueing theory,
we remark the seminal work [BKR+01] on adversarial queuing systems:
here, new tokens (having speci�ed source and destination nodes) are in-
serted in the nodes according to some adversarial strategy and a notion of
edge-congestion stability is investigated. We also note that a probabilistic
version of the Tetris process (which we investigate in Chapter 7 in order
to bound the congestion of parallel random walks in the PUSH model), has
been studied in [BFGK16]. There, the number of new balls arriving at each
round is a random variable with expectation λn, for some λ = λ(n) ∈ [0, 1],

In the next, �nal section, we review the literature about �biological dis-
tributed algorithms� pertinent to Chapter 9 (and, partly, to Chapter 8).
Thus, the next section focus especially on the bit dissemination and plural-
ity consensus problems.

3.7. Toward a Dynamics for Self-Stabilizing Bit Dissemination

The computational study of abstract systems composed of simple individ-
uals that interact using highly restricted and stochastic interactions has been
gaining considerable attention in the community of theoretical computer
science. Popular models include population protocols [AAD+06, AR07,
AAFJ08, BBK11], which typically consider constant size individuals that
interact in pairs (using constant size messages) in random communication
patterns, and the beeping model [AAB+11, EW13], which assumes a �xed
network with extremely restricted communication. The models considered
in chapters 8 and 9 also falls in this framework as we consider the uniform
PUSH and PULL models [DGH+88, KSSV00, KDG03] with constant
size messages. So far, despite interesting works that consider di�erent fault-
tolerant contexts [AAE08, AAFJ08, BBK11], most of the progress in this
framework considered non-faulty scenarios.
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Information dissemination is one of the most well-studied topics in dis-
tributed computing, see e.g. [AAE08, DGM+11, DGH+88, CHHKM12,
DF11, FHK14, KSSV00]. Classical examples include the bit dissemina-
tion (broadcast or rumor-spreading) problem, in which a piece of information
residing at one source agent is to be disseminated to the rest of the popu-
lation, and majority consensus problems in which processors are required to
agree on a common output value which is the majority initial input value
among all agents [AAE08, KK13], or among a set of designated source
agents [FHK14]. An extensive amount of research has been dedicated to
study such problems in the PUSH/PULL communication models (includ-
ing the phone call model), due to the inherent simplicity and fault-tolerant
resilience of such meeting patterns. Indeed, the robustness of PUSH/PULL
based protocols to weak types of faults, such as crashes of messages and/or
agents, or to the presence of relatively few Byzantine agents, has been known
for quite a while [ES09, KSSV00]. In [FHK14], it has been shown that
under the PUSH model, there exist e�cient bit dissemination and majority
consensus protocols that use a single bit per message and can overcome �ips
in messages (noise). The protocols therein, however, assume that the mes-
sages are binary and heavily rely on the assumption that agents know when
the protocol has started. Observe that in a self-stabilizing context, in which
the adversary can corrupt the initial clocks setting them to arbitrary times,
such an assumption would be di�cult to remove while preserving the small
message size.

In general, there are only few known self-stabilizing protocols that op-
erate e�ciently under stochastic and capacity restricted interactions. An
example is the work of Doerr et al. on stabilizing consensus [DGM+11]
operating in the PULL model. In that work, each agent initially has a state
taken out of a set of m opinions and the goal is to converge on one of the
proposed states. The proposed dynamics which runs in logarithmic time is
based on sampling the states of 2 agents and updating the agent's state to
be the median of the 2 sampled states and the current state of the agent
(3 opinions in total). Since the total number of possible states is m, the
number of bits that must be revealed in each interaction is Ω(logm). An-
other example is the 3-Majority dynamics studied in Chapter 5, in which
each agent has initially an opinion and we want the system to converge to
the most frequent one in the initial con�guration of the system. In fact, the
majority bit dissemination problem studied in Chapter 9 can be viewed as
a generalization of the majority-consensus problem (i.e. the plurality con-
sensus problem with two opinions) to the case in which multiple agents may
initially be without opinion.

Another fundamental issue in distributed computing is clock synchro-
nization [AHR96, Lam78, LLW10, LLSW10]. We consider a synchro-
nous system in which clocks tick at the same pace but they may not share
the same value. This version has earlier been studied in e.g., [BDH08,
Dol97, DH07, DW04, Her00, FK15] under di�erent names, including
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�digital clock synchronization� and �synchronization of phase-clocks�; We
simply use the term �clock synchronization�. There is by now a substantial
line of work on clock synchronization problems in a self-stabilizing context
[Spr13, DW04, LRS15, LR15]. We note that in these papers the main
focus is on the resilience to Byzantine agents. The number of rounds and
message lengths are also minimized, but typically as a function of the number
of Byzantine processors. The focus of Chapter 9 is instead on minimizing
the time and message complexities as much as possible. The authors in
[LRS15, LR15] consider mostly a deterministic setting, where every agent
gets one message from every other agent on each round. Moreover, agents
are assumed to have unique identi�ers. In contrast, Chapter 9 investigates
the restricted and randomized uniform PULL model. In [Spr13, LRS15]
randomized protocols are also investigated. We remark that the �rst proto-
col we discuss Syn-Simple (Proposition 2), which relies on a known simple
connection between consensus and counting [Spr13], already improves ex-
ponentially on the randomized algorithms from [Spr13, LRS15] in terms
of number of rounds, number of memory states, message length and total
amount of communication, in the restricted regime where the resilience pa-

rameter f satis�es log n 6 f 6 n 1
2
−ε for an arbitrarily small constant ε > 0.

We further note that the works [LRS15, LR15] also use a recursive con-
struction for their clocks (although very di�erent from the one we use in the
proof of Theorem 16). The induction in [LRS15] is on the resilience pa-
rameter f , the number of agents and the clock length together. This idea is
improved in [LR15] to achieve optimality in terms of resilience to Byzantine
agents.

Finally, we remark that Chapter 9 presents the �rst analysis investigat-
ing the self-stabilizing clock synchronization and majority bit dissemination
problem which aims at minimizing the message size beyond logarithmic.





CHAPTER 4

Averaging Dynamics

In this chapter we formally prove the results presented in Section 2.1
on the Averaging dynamics. Recall that in the Averaging protocol, given
an underlying graph, initially each node locally chooses a value in {−1, 1},
uniformly at random and independently of other nodes; Then, in each con-
secutive round, every node updates her local value to the average of the
values held by her neighbors, at the same time applying an elementary, local
clustering rule that only depends on the current and the previous values held
by the node (Algorithm 1).

As discussed in Section 2.1, while previous work on applications of linear
dynamics has focused on tasks that are speci�c to distributed computing such
as reaching consensus or stability in the presence of faulty nodes (see Section
3.2), in this chapter we prove that the process resulting from the Averaging
dynamics produces a clustering that exactly or approximately (depending
on the graph) re�ects the underlying cut in logarithmic time, under various
graph models that exhibit a sparse balanced cut, including the stochastic
block model. We also prove that a natural extension of this dynamics per-
forms community detection on a regularized version of the stochastic block
model with multiple communities.

4.1. Linear Algebra Toolkit

We start by recalling some basic facts from linear algebra and some
results from matrix perturbation theory [SS90].

If M ∈ Rn×n is a real symmetric matrix, then it has n real eigenvalues
(counted with repetitions), λ1 > λ2 > · · · > λn, and we can �nd a cor-
responding collection of orthonormal real eigenvectors v1, . . . ,vn such that
Mvi = λivi. If x ∈ Rn is any vector, then we can write it as a linear
combination x =

∑
i αivi of eigenvectors, where the coe�cients of the linear

combination are αi = 〈x,vi〉. In this notation, we can see that

Mx =
∑
i

λiαivi, and so M tx =
∑
i

λtiαivi.

Unless otherwise speci�ed, the norm of a vector x is the `2 norm ‖x‖ :=√∑
i(x(i))2 and the norm of a matrix A is the spectral norm ‖A‖ :=

supx:‖x‖=1 ‖Ax‖. For a diagonal matrix, this is the largest diagonal entry
in absolute value. In the following we recall the Cauchy-Schwarz inequality,

77
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some properties of the `2 norm, and a matrix version of the Cherno� bound
for random matrices.

Lemma 1 (Cauchy-Schwarz inequality). For any pair of vectors x and y
it holds

|〈x,y〉| 6 ‖x‖ · ‖y‖.

Observation 1. For any matrix A and any vector x, it holds

‖Ax‖ 6 ‖A‖ · ‖x‖, and ‖A ·B‖ 6 ‖A‖ · ‖B‖.

Theorem 18 (Matrix Bernstein Inequality). Let X1, . . . , XN be a se-
quence of independent n×n symmetric random matrices1, such that E[Xi] =
0 for every i, and such that ‖Xi‖ 6 L with probability 1 for every L. Call
σ := ‖E∑iX

2
i ‖. Then, for every t, we have

Pr

(∥∥∥∑
i

Xi

∥∥∥ > t) 6 2ne
−t2

2σ+ 2
3Lt .

The following theorems are a weaker version than the original ones they
are named after. For a proof of the following one, see Corollary 4.10 in
[SS90].

Theorem 19 (Weyl's Theorem). Let M1 and M2 be two Hermitian ma-
trices, let λ1 > λ2 > · · · > λn be the eigenvalues of M1 with multiplicities in
non-increasing order, and let λ′1 > λ′2 > · · · > λ′n be the eigenvalues of M2

with multiplicities in non-increasing order. Then, for every i,

|λi − λ′i| 6 ‖M1 −M2‖.

The (general version of the) following theorem was originally proved in
[DK70].

Theorem 20 (Davis and Kahan, 1970). Let M1 and M2 be two sym-
metric real matrices, let x be a unit length eigenvector of M1 of eigenvalue
t, and let xp be the projection of x on the eigenspace of the eigenvectors of
M2 corresponding to eigenvalues 6 t− δ. Then

‖xp‖ 6
2

δπ
‖M1 −M2‖.

4.2. Distributed Reconstruction Problem

Let us recall the de�nition of strong and weak reconstruction.

1We remark that here we are only assuming that, for each w, z ∈ {1, . . . , N} with
w 6= z and iw, jw, iz, jz ∈ [n], (Xw)iw,jw and (Xz)iz ,jz are independent. For any w ∈
{1, . . . , N}, no other assumption on the distribution of the entries of Xw is made, as long
as for each i, j ∈ [n] it holds (Xw)i,j = (Xw)j,i with probability 1.
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Definition 2 (Strong and Weak Reconstruction). Given a graph G =
(V1 ∪ V2, E) with V1∩V2 = ∅, a weak (block) reconstruction is a two-coloring
of the nodes that separates V1 and V2 up to a small fraction of the nodes.
Formally, we de�ne an ε-weak reconstruction as a map

f : V1 ∪ V2 → {red, blue}
such that there are two subsets W1 ⊆ V1 and W2 ⊆ V2 with2

|W1 ∪W2| > (1− ε)|V1 ∪ V2| and f(W1) ∩ f(W2) = ∅.
When ε = 0 we say that f is a strong reconstruction.

Given a graph G = ((V1, V2), E), the reconstruction problem requires
computing an ε-reconstruction of G. To this purpose, in this chapter we
analyse the distributed protocol given in Algorithm 1 (see also �gures 13
and 14), which is based on the Averaging dynamics and produces a coloring
of the nodes at the end of every round.

4.2.1. The Averaging dynamics and random walks on G

The analysis of the Averaging dynamics on a graph G is closely related
to the behavior of random walks in G, which are best studied using tools
from linear algebra that we brie�y summarize below.

Figure 12. The typical behavior of the Averaging dynam-
ics on a graph which exhibits a �good� community structure,
i.e. where the second eigenvector is close to the character-
istic vector of the two communities and the third eigenvalue
is smaller than the second one by a constant factor. The in-
ternal expansion of the two communities leads the values of
pairs of nodes in a community to be much closer than those
of pairs of nodes in di�erent communities. Once such con�g-
uration is reached, the edges in the cut make the nodes slowly
converge to a common value which lies between the averages
of the two communities, causing the value of single nodes to
evolve monotonically.

Let G = (V,E) be an undirected graph (possibly with multiple edges
and self loops), A its adjacency matrix and di the degree of node i. The

2We adopt the common convention that f(S) := {f(x) : x ∈ S} for any function f
with domain D and any subset S ⊆ D.
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transition matrix of (the random walk on) G is the matrix

P = D−1A,

where D is the diagonal matrix such that Di,i = di. Pi,j = (1/di) · Ai,j is
thus the probability of going from i to j in one-step of the random walk on
G. P operates as the random walk process on G by left multiplication, and
as the Averaging dynamics by right multiplication. For i = 1, 2, de�ne 1Vi ,
as the |V |-dimensional vector, whose j-th component is 1 if j ∈ Vi, it is 0
otherwise. If (V1, V2) is a bipartition of the nodes with |V1| = |V2| = n, we
de�ne the partition indicator vector

χ = 1V1 − 1V2 .

If x is the initial vector of values, after t rounds of the Averaging dynamics
the vector of values at time t is

x(t) = P tx.

The product of the power of a matrix times a vector is best understood in
terms of the spectrum of the matrix, which is what we explore in the next
section.

In what follows we always denote by λ1 > . . . > λ2n the eigenvalues of
P . Recall that, since P is a stochastic matrix we have λ1 = 1 and λ2n > −1,
moreover for all graphs that are connected and not bipartite it holds that
λ2 < 1 and λ2n > −1. We denote by λ the largest, in absolute value, among
all but the �rst two eigenvalues, namely

λ = max {|λi| : i = 3, 4, . . . , 2n} .

4.3. Length of the Projection of Vector x

For the analysis of the Averaging dynamics on both regular and non-
regular graphs, it is important to understand the distribution of the projec-
tion of x on 1 and χ, that is (up to scaling) the distribution of the inner
products 〈x,1〉 and 〈x,χ〉. In particular we are going to use the following
bound.

Lemma 2. If we pick x uniformly at random in {−1, 1}2n then, for any
δ > 0 and any �xed vector w ∈ {−1, 1}2n with ±1 entries, it holds

Pr
(∣∣〈(1/√2n)w, x〉

∣∣ 6 δ) 6 O(δ).

Proof. Since x is a vector of independent and uniformly distributed
random variables in {−1, 1}, both 〈x,χ〉 and 〈x,1〉 have the distribution of
a sum of 2n Rademacher random variables3. Such a sum takes the value
2k− 2n with probability 1

2n

(
2n
k

)
, and so every possible value has probability

3A Rademacher random variable X is such that Pr(X = +1) = Pr(X = −1) = 1
2
.
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Figure 13. A pictorial representation of the Rademacher
initialization and the application of the Averaging dynamics
(step (1) of the updating rule in Algorithm 1): 1)-2): The
nodes generate a random variable in {−1,+1} u.a.r. 3)-4):
Each node sends her current value to all the neighbors, and
updates her value with the average of those received from the
neighbors.

at most 1
2n

(
2n
n

)
≈ 1√

2πn
. Consequently, if R is the sum of 2n Rademacher

random variables, we have

Pr
(
|R| 6 δ

√
2n
)
6 O(δ).

gg�

Although it is possible to argue that a Rademacher vector has Ω(1)
probability of having inner product Ω(‖w‖) with every vector w, such a
statement does not hold w.h.p. We do have, however, estimates of the inner
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t

−1

+1

· · ·
α

Label:

Va
lu

e

Figure 14. A pictorial representation of the labeling crite-
rion of the Averaging protocol (step (2) of the updating rule
in Algorithm 1): nodes whose value increases from one round
to the next label themselves �red�, otherwise they label them-
selves �blue�.

product of a vector w with a Rademacher vector x provided that w is close
to a vector in {−1, 1}2n.

Lemma 3. Let k be a positive integer. For every nk-dimensional vector
w such that

| {i | |w(i)| > c} | > n,
for some positive constant c, if we pick x uniformly at random in {−1, 1}kn,
then

Pr

(∣∣〈 1√
kn

w, x〉
∣∣ 6 δ) 6 O(kδ) +O

(
1√
n

)
.

Proof. Let S ⊂ {1, . . . , kn} be the set of coordinates i of w such that
|w(i)| > c. By hypothesis, we have |S| > n. Let T := {1, . . . , kn} − S.

Next, for every assignment a ∈ {−1, 1}kn, we show that

Pr
(
|〈w,x〉| 6 δ

√
kn | ∀i ∈ T, x(i) = a(i)

)
6 O(δ),

from which the lemma follows.
Call t :=

∑
i∈T aizi. We need to show

Pr

(
|
∑
i∈S

x(i)w(i) + t| 6 δ
√
kn

)
6 O(δ).

From the Berry-Esseen theorem,

Pr

(
|
∑
i∈S

x(i)w(i) + t| 6 δ
√
kn

)
6 Pr

(
|g + t| 6 δ

√
kn
)

+O
(

1√
n

)
,
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where g is a Gaussian random variable of mean 0 and variance

σ2 =
∑
i∈S

(w(i))2 > c2|S| > c2 n,

thus

Pr
(
|g + t| 6 δ

√
kn
)

=
1√

2σ2π

∫ −t+δ√kn
−t−δ

√
kn

e−
s2

2σ2 ds 6 2δ
√
kn√

2πc2 n
=

√
2kδ√
πc

,

where we used the fact that e−s
2/2 6 1 for all s, concluding the proof. gg�

4.4. Strong Reconstruction for Regular Graphs

Observe that, if G is d-regular then P = (1/d) · A is a real symmetric
matrix and P and A have the same set of eigenvectors. We denote by
v1 = (1/

√
2n)1,v2, . . . ,v2n a basis of orthonormal eigenvectors, where each

vi is the eigenvector associated to eigenvalue λi. Then, we can write a vector
x as a linear combination x =

∑
i αivi and we have:

P tx =
∑
i

λtiαivi =
1

2n

(∑
i

x(i)

)
1 +

2n∑
i=2

λtiαivi,

which implies that x(t) = P tx tends to α1v1 as t tends to in�nity, i.e., it
converges to the vector that has the average of x in every coordinate.

We next show that, if the regular graph is �well� clustered, then the Av-
eraging protocol produces a strong reconstruction of the two clusters, w.h.p.

Definition 3 (Clustered Regular Graph). A (2n, d, b)-clustered regular
graph G = ((V1, V2), E) is a connected graph over node set V1 ∪ V2, with
|V1| = |V2| = n and such that:

• Every node has degree d,
• Every node in cluster V1 has b neighbors in cluster V2 and every
node in V2 has b neighbors in V1.

Let G = ((V1, V2), E) be a (2n, d, b)-clustered regular graph with adja-
cency matrix A and transition matrix P = (1/d) ·A.

We know that 1 is an eigenvector of P with eigenvalue 1. Furthermore,
the partition indicator vector χ is an eigenvector of P with eigenvalue 1 −
2b/d, as given by the following observation.

Observation 2. If G is a (2n, d, b)-clustered regular graph with clusters
V1 and V2 and χ = 1V1 − 1V2 is the partition indicator vector, then χ is an
eigenvector of the transition matrix P of G with eigenvalue 1− 2b/d.

Proof. Every node i has b neighbors j on the opposite side of the par-
tition, for which χ(j) = −χ(i), and d− b neighbors j on the same side, for
which χ(j) = χ(i), so

(Pχ)i =
1

d
((d− b)χ(i)− bχ(i)) =

(
1− 2b

d

)
χ(i).
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gg�

We �rst show that, if 1−2b/d happens to be the second eigenvalue, after

t rounds of the Averaging dynamics, the con�guration x(t) is close to a linear
combination of 1 and χ. Formally, if λ < 1− 2b/d the following holds.

Lemma 4. Assume we run the Averaging dynamics in a (2n, d, b)-clustered
regular graph G (see De�nition 3) with any initial vector x ∈ {−1, 1}2n. If
λ < 1− 2b/d then there are reals α1, α2 such that at every round t we have

(1) x(t) = α11 + α2λ
t
2χ + e(t) where

∥∥∥e(t)
∥∥∥
∞
6 λt
√

2n .

Proof. Since x(t) = P tx we can write

P tx =
∑
i

λti〈x,vi〉vi,

where 1 = λ1 > λ2 = 1 − 2b/d > λ3 > · · · > λ2n are the eigenvalues of P
and v1 = 1√

2n
1, v2 = 1√

2n
χ, v3, . . . , v2n are a corresponding sequence of

orthonormal eigenvectors. Hence,

x(t) =
1

2n
〈x,1〉 · 1 + λt2

1

2n
〈x,χ〉 · χ +

2n∑
i=3

λtiαivi

= α11 + α2λ
t
2 · χ +

2n∑
i=3

λtiαivi,

where we set α1 = 1
2n〈1,x〉 and α2 = 1

2n〈χ,x〉. We bound the `∞ norm of
the last term as∥∥∥∥∥

2n∑
i=3

λtiαivi

∥∥∥∥∥
∞

6
∥∥∥∥∥

2n∑
i=3

λtiαivi

∥∥∥∥∥
2

=

√√√√ 2n∑
i=3

λ2t
i α

2
i

6 λt
√√√√ 2n∑

i=1

α2
i = λt‖x‖ = λt

√
2n.

gg�

Informally speaking, (1) naturally �suggested� the choice of the coloring
rule in the Averaging protocol, once we considered the di�erence of two
consecutive values of any node u, i.e.,

(2) x(t−1)(u)− x(t)(u) = α2λ
t−1
2 (1− λ2)χ(u) + e(t−1)(u)− e(t)(u) .

(See Figure 15 for an interpretation of α1, α2.) Intuitively, if λ is su�ciently

small, we can exploit the bound on
∥∥e(t)

∥∥
∞ in (1) to show that, after a short

initial phase, the sign of x(t−1)(u)−x(t)(u) is essentially determined by χ(u),
thus by the community u belongs to, w.h.p. The following theorem and its
proof formalize the above fact.
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x(t+1) = 1
2n(1ᵀx(0))1 + λt2

1
2n(χᵀx(0))χ + e(t)

1
2n

∑
u∈V x(0)(u) 1

2
(1
n
∑
u∈V1 x(0)(u)− 1

n
∑
u∈V2 x(0)(u)

)

+

+
+

+

+

+
+

++ +
+
+

+
+ +

+
++ =

+

+
+

+

+

+
+

++ +
+
+

+
+ +

+
+− = −

Figure 15. An illustration of the interpretation of the pro-
jections on the �rst and second eigenvectors of the adjacency
matrix in the regular case: the �rst projection is the global
average of the initial values in the whole graph, while the sec-
ond one is the di�erence between the averages of the initial
values within the two communities.

Theorem 1 (Strong Reconstruction). Let G = ((V1, V2), E) be a con-
nected (2n, d, b)-clustered regular graph with 1 − 2b/d > (1 + δ)λ for an
arbitrarily-small constant δ > 0. Then the Averaging protocol produces a
strong reconstruction within O(log n) rounds, w.h.p.

Sketch of Proof. From (2), we have that

sgn

(
x(t−1)(u)− x(t)(u)

)
= sgn (α2χ(u))

whenever

(3)
∣∣α2λ

t−1
2 (1− λ2)

∣∣ > ∣∣∣e(t−1)(u)− e(t)(u)
∣∣∣ .

From (1) we have that ∣∣∣e(t)(u)
∣∣∣ 6 λt√2n,

thus (3) is satis�ed for all t such that

t− 1 > log

(
2
√

2n

|α2|(1− λ2)

)
· 1

log (λ2/λ)
.

The second key-step of the proof relies on the randomness of the initial
vector. Indeed, since x is a vector of independent and uniformly distributed
random variables in {−1, 1}, the absolute di�erence between the two partial
averages in the two communities, i.e. |α2|, is �su�ciently� large, w.h.p. More
precisely, from Lemma 2 we have that is the sum of 2n Rademacher random
variables, we have

Pr
(
|R| 6 δ

√
2n
)
6 O(δ).
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Since α2 = 1
2n〈χ,x〉 and x is a vector of Rademacher random variables, the

previous inequality implies that

|α2| =
1

2n
〈χ,x〉 > n−γ ,

for some positive constant γ, w.h.p. The theorem thus follows from the above
bound on |α2| and from the hypothesis λ2 > (1 + δ)λ. gg�

Remark 3. Graphs to which Theorem 1 apply are those consisting
of two regular expanders connected by a regular sparse cut. Indeed, let
G = ((V1, V2), E) be a (2n, d, b)-clustered regular graph, and let λA =
max{λ2(A1), λ2(A2)} and λB = λ2(B), where A1, A2 and B are the ad-
jacency matrices of the subgraphs induced by V1, V2 and the cut between V1

and V2, respectively. Since

λ =
a

d
λA +

b

d
λB,

if

a− b > (1 + ε)(aλA + bλB),

G satis�es the hypothesis of Theorem 1.

4.4.1. Regular stochastic block model

We can use Theorem 1 to prove that the Averaging protocol achieves
strong reconstruction in the regular stochastic block model [BDG+16], de-
�ned as follows.

Definition 4 (Regular Stochastic Block Model). In the regular stochas-
tic block model with two communities, a graph on 2n nodes is obtained as
follows: Given two parameters a(n) and b(n) (internal and external degrees,
respectively), partition nodes into two equal-sized subsets V1 and V2 and then
sample a random a(n)-regular graph over each of V1 and V2 and a random
b(n)-regular graph between V1 and V2.

4-regular 4-regular
2-regular bipartite

Figure 16. An example of a regular stochastic block model
(De�nition 4) with n = 8, a = 4 and b = 2.
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If G is a graph sampled from the regular stochastic block model with
internal and external degrees a and b respectively, then it is a (2n, d, b)-
clustered graph with largest eigenvalue of the transition matrix 1 and cor-
responding eigenvector 1, while χ is also an eigenvector, with eigenvalue
1− 2b/d, where d := a+ b. Furthermore, we can derive the following upper
bound on the maximal absolute value achieved by the other 2n−2 eigenvalues
corresponding to eigenvectors orthogonal to 1 and χ:

(4) λ 6 2

a+ b
(
√
a+ b− 1 + on(1))

This bound can be proved using some general result of Friedman and Kohler [FK14]
on random degree k lifts of a graph, as given in the following.

Lemma 5. Let G be a graph sampled from the regular stochastic block
model with internal and external degrees a and b respectively. It holds that
w.h.p.

λ 6 2

a+ b
(
√
a+ b− 1 + on(1)).

Sketch of Proof. The lemma follows from the general results of Fried-
man and Kohler [FK14], simpli�ed by Bordenave [Bor15b]. If G is a multi-
graph on n nodes, then a random degree k lift of G is a distribution over
graphs G′ on kn nodes sampled as follows: every node v of G is replaced
by k nodes v1, . . . , vk in G′, every edge (u, v) in G is replaced by a random
bipartite matching between u1, . . . , uk and v1, . . . , vk (if there are multiple
edges, each edge is replaced by an independently sampled matching) and
every self loop over u is replaced by a random degree-2 graph over u1, . . . , uk
which is sampled by taking a random permutation

π : {1, . . . , k} → {1, . . . , k}
and connecting ui to uπ(i) for every i.

For every lift of any d-regular graph, the lifted graph is still d-regular,
and every eigenvalue of the adjacency matrix of the base graph is still an
eigenvalue of the lifted graph. Friedman and Kohler [FK14] prove that, if
d > 3, then with probability 1 −O(1/k) over the choice of a random lift of
degree k, the new eigenvalues of the adjacency matrix of the lifted graph are
at most 2

√
d− 1 + ok(1) in absolute value. Bordenave [Bor15b, Corollary

20] has considerably simpli�ed the proof of Friedman and Kohler; although
he does not explicitly state the probability of the above event, his argument
also bound the failure probability by 1/kΩ(1) [Bor15a].

The lemma now follows by observing that the regular stochastic block
model is a random lift of degree n of the graph that has only two nodes v1

and v2, it has b parallel edges between v1 and v2, and it has a/2 self-loops
on v1 and a/2 self-loops on v2. gg�

From Lemma 5, since λ2 = a−b
a+b , using (4) in Theorem 1, we get a strong

reconstruction for the regular stochastic block model.
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Corollary 1 (Reconstruction in Regular Stochastic Block Models). Let
G be a random graph sampled from the regular stochastic block model with

a− b > 2(1 + η)
√
a+ b

for an arbitrarily small constant η > 0, then the Averaging protocol produces
a strong reconstruction in O(log n) rounds, w.h.p.

4.5. Weak Reconstruction for Non-Regular Graphs

The results of Section 4.4 rely on very clear spectral properties of reg-
ular, clustered graphs, immediately re�ecting their underlying topological
structure. Intuition suggests that these properties should be approximately
preserved if we suitably relax the notion of regularity. We thus generalize
our approach to a large class of non-regular clustered graphs.

Definition 5 (Clustered γ-Regular Graphs). A (2n, d, b, γ)-clustered
graph G = ((V1, V2), E) (with γ < 1), is a graph over node set V1∪V2, where
|V1| = |V2| = n such that:

• Every node has degree d± γd,
• Every node in V1 has b ± γd neighbors in V2 and every node in V2

has b± γd neighbors in V1.

If G is not regular then the matrix P = D−1A is not symmetric in
general, however it is possible to relate its eigenvalues and eigenvectors to
those of a symmetric matrix, as follows. Denote the normalized adjacency
matrix of G as

N := D−1/2AD−1/2 = D1/2PD−1/2.

Notice that N is symmetric, P and N have the same eigenvalues λ1, . . . , λ2n,
and x is an eigenvector of P if and only if D1/2x is an eigenvector of N (if
G is regular then P and N are the same matrix). Let w1, . . . ,w2n be a
basis of orthonormal eigenvectors of N , with wi the eigenvector associated
to eigenvalue λi, for every i. We have that

w1 =
D1/21

‖D1/21‖ .

If we set vi := D−1/2wi, we obtain a set of eigenvectors for P and we can
write x =

∑
i αivi as a linear combination of them. Then, the averaging

process can again be described as

P tx =
∑
i

λtiαivi = α1v1 +
∑
i

λtiαivi.

So, if G is connected and not bipartite, the Averaging dynamics converges
to α1v1. In general, it is easy to see that αi = wT

i D
1/2x (see the �rst lines

in the proof of Lemma 6) and α1v1 is the vector

(wT
1 D

1/2x) ·D−1/2w1 =
1TDx

‖D1/21‖21 =

∑
i dix(i)∑
i di

· 1 .
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As in the regular case, if the transition matrix P of a clustered γ-regular
graph has λ2 close to 1 and |λ3|, . . . , |λ2n| small, the Averaging dynamics has

a long phase in which x(t) = P tx is close to α11+α2v2. However, providing
an argument similar to the regular case is considerably harder, since the
partition indicator vector χ is no longer an eigenvector of P . In order to �x
this issue, we generalize (1), proving in Lemma 6 that x(t) is still close to a
linear combination of 1 and χ. We set ν = 1 − 2b

d , since this value occurs
frequently in this section.

Lemma 6. Let Averaging dynamics run on a a connected (2n, d, b, γ)-
clustered graph G with γ 6 1/10, with initial vector x. If λ < ν we have:

x(t) = α11 + α2λ
t
2χ + α2λ

t
2z + e(t),

for some vectors z and e(t) with

‖z‖ 6 88 γ

ν − λ3

√
2n and ‖e(t)‖ 6 4λt‖x‖.

Coe�cients α1 and α2 are

‖z‖ 6 88 γ

ν − λ3

√
2n and ‖e(t)‖ 6 4λt‖x‖.

Proof. We prove the following two key-facts:

(i) the second eigenvalue of the transition matrix of G is not much
smaller than 1− 2b/d, and

(ii) D1/2χ is close, in norm, to its projection on the second eigenvector
of the normalized adjacency matrix N .

Namely, in Lemma 10 we prove that if λ3 < ν then

(5) λ2 > ν − 10γ and
∥∥∥D1/2χ− β2w2

∥∥∥ 6 44 γ

ν − λ3

√
2nd,

where β2 = χᵀD1/2w2.
Now, we can use the above bounds to analyze x(t) = P tx. To begin,

note that

N = D−1/2AD−1/2 and P = D−1A

imply that

P = D−1/2ND1/2 and P t = D−1/2N tD1/2.

Thus, for any vector x, if we write D1/2x as a linear combination of an
orthonormal basis of N ,

D1/2x =
2n∑
i=1

aiwi,

we get

(6) P tx = D−1/2N tD1/2x = D−1/2
2n∑
i=1

aiλ
t
iwi =

2n∑
i=1

aiλ
t
iD
−1/2wi.
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We next estimate the �rst term, the second term, and the sum of the
remaining terms of (6).

First term of (6). We have w1 = D1/21
‖D1/21‖ , so the �rst term can be

written as α11 with

α1 =
a1∥∥D1/21

∥∥ =
wᵀ1D

1/2x∥∥D1/21
∥∥ =

1ᵀDx∥∥D1/21
∥∥2 .

Second term of (6). If we write

D1/2χ = β2w2 + y,

with β2 = wᵀ2D
1/2χ, (5) implies that

‖y‖ 6 44 γ

ν − λ3

√
2nd.

Hence the second term can be written as

a2λ
t
2D
−1/2w2 = a2λ

t
2D
−1/2

(
D1/2χ− y

β2

)
=
a2

β2
λt2χ−

a2

β2
λt2z = α2λ

t
2χ− α2λ

t
2z,

where

‖z‖ =
∥∥∥D−1/2y

∥∥∥ 6 ∥∥∥D−1/2
∥∥∥ ‖y‖ 6 2√

d
· 44 γ

ν − λ3

√
2nd =

88 γ

ν − λ3

√
2n,

and

α2 = a2/β2 =
wᵀ2D

1/2x

w2D1/2χ
.

Remaining terms of (6). As for all other terms, observe that

‖e(t)‖2 =

∥∥∥∥∥
2n∑
i=3

aiλ
t
iD
−1/2wi

∥∥∥∥∥
2

6
∥∥∥D−1/2

∥∥∥2
∥∥∥∥∥

2n∑
i=3

aiλ
t
iwi

∥∥∥∥∥
2

=
∥∥∥D−1/2

∥∥∥2
2n∑
i=3

a2
iλ

2t
i

6
∥∥∥D−1/2

∥∥∥2
λ2t

2n∑
i=3

a2
i

6
∥∥∥D−1/2

∥∥∥2
λ2t
∥∥∥D1/2x

∥∥∥2

6
∥∥∥D−1/2

∥∥∥2 ∥∥∥D1/2
∥∥∥2

λ2t‖x‖2 6 16λ2t‖x‖2.
gg�
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The above lemma allows us to generalize our approach to achieve e�cient,
weak reconstruction in non-regular clustered graphs.

Theorem 3 (Weak Reconstruction). Let G be a connected (2n, d, b, γ)-
clustered graph with γ 6 c(ν−λ3) for a suitable constant c > 0. If λ < ν and
λ2 > (1+δ)λ for an arbitrarily-small positive constant δ, then the Averaging
protocol produces an O(γ2/(ν − λ3)2)-weak reconstruction within O(log n)
rounds, w.h.p.4

Proof. Lemma 6 implies that for every node u at any round t we have

x(t−1)(u)− x(t)(u) = α2λ
t−1
2 (1− λ2) (χ(u) + z(u)) + e(t−1)(u)− e(t)(u).

Hence, for every node u such that |z(u)| < 1/2,5 we have

sgn

(
x(t−1)(u)− x(t)(u)

)
= sgn (α2χ(u))

whenever

(7)

∣∣∣∣12α2λ
t−1
2 (1− λ2)

∣∣∣∣ > ∣∣∣e(t−1)(u)− e(t)(u)
∣∣∣ .

From Lemma 6 we have
∣∣e(t)(u)

∣∣ 6 4λt
√

2n, thus (7) is satis�ed for any t
such that

(8) t− 1 > log

(
16
√

2n

|α2|(1− λ2)

)
· 1

log (λ2/λ)
.

The right-hand side in the above formula is O(log n), w.h.p., because of
the following three points:

• From Cheeger's inequality (see e.g. [Chu96]) and the fact that the
graph is connected it follows that 1− λ2 > 1/(2n4);
• λ2 > (1 + δ)λ by hypothesis;
• It holds w.h.p. |α2| > n−c for some large enough positive constant
c, as a consequence of the following equations that we prove below:

Pr

(
|α2| 6

1

nc

)
= Pr


∣∣∣wᵀ2D 1

2x
∣∣∣∣∣∣wᵀ2D 1

2χ
∣∣∣ 6 1

nc


6 Pr

(∣∣∣wᵀ2D1/2x
∣∣∣ 6 2

√
d

nc−1/2

)
6 O

(
1√
n

)
.(9)

In the �rst inequality of (9) we used that, by de�nition,

|α2| = |wᵀ2D
1
2x|/|wᵀ2D

1
2χ|.

4Consistently, Theorem 1 is a special case of this one when γ = 0.
5The value 1/2 is chosen here only for readability sake, any constant smaller than 1

will do.
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In the �rst inequality we used that, by the Cauchy-Schwarz inequal-
ity,

|wᵀ2D
1
2χ| 6 ‖D 1

2χ‖ 6 2
√
dn.

In order to prove the last inequality of (9), we use that from Lemma
10 it holds∥∥∥D1/2χ− β2w2

∥∥∥2

=
∥∥∥D1/2χ

∥∥∥2
+ ‖β2w2‖2 − 2〈D1/2χ, β2w2〉

6 2
442 γ2

(ν − λ3)2
nd,

that is

〈D1/2χ, β2w2〉 = 〈D1/2χ,w2〉2

> 1

2

(∥∥∥D1/2χ
∥∥∥2
− 2

442 γ2

(ν − λ3)2
nd

)
> nd

3
.(10)

Since w2 is normalized the absolute value of its entries is at most 1,
which together with (10) implies that at least a fraction 12/13 of its
entries have an absolute value greater than 1/12. Thus, we can ap-
ply Lemma 3 and prove the last inequality of (9) and, consequently,
the fact that (8) is O(log n).

Finally, from Lemma 6 we have ‖z‖ 6 88 γ
ν−λ3

√
2n. Thus, the number of nodes

u with z(u) > 1/2 is O(nγ2/(ν − λ3)2). gg�

Roughly speaking, the above theorem states that the quality of the recon-
struction depends on the regularity of the graph (through the parameter γ),
and the conductance within each community (here represented by the di�er-
ence |ν−λ3|). Interestingly enough, as long as |ν−λ3| = Θ(1), the protocol
achieves O(γ2)-weak reconstruction on (2n, d, b, γ)-clustered graphs.

4.5.1. Reconstruction in the stochastic block model

Below we prove that the stochastic block model G2n,p,q satis�es the hy-
potheses of Theorem 3, w.h.p., and, thus, the Averaging protocol e�ciently
produces a good reconstruction. In what follows, we often use the following
parameters of the model: expected internal degree a = pn, expected external
degree b = qn, and d = a+ b.

Lemma 7. Let G ∼ G2n,p,q. If a − b >
√

(a+ b) log n then a positive
constant δ exists such that w.h.p.

i) G is (2n, d, b, 6
√

log n/d)-clustered and
ii) it holds

λ 6 min

{
λ2

1 + δ
, 24

√
log n

d

}
.
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Sketch of Proof. Claim (i) follows (with probability 1−n−1) from an
easy application of the Cherno� bound (Lemma 76). As for Claim (ii), since
G is not regular and random, we derive spectral properties on its adjacency
matrix A by considering a �more-tractable� matrix, namely the expected
matrix

B := E[A] =

(
pJ, qJ
qJ, pJ

)
where Bi,j is the probability that the edge (i, j) exists in a random graph
G ∼ G2n,p,q. In Lemma 8 we prove that such a G is likely to have an
adjacency matrix A close to B in spectral norm. Then, in Lemma 9 we show
that every clustered graph whose adjacency matrix is close to B has the
properties required in the analysis of the Averaging dynamics, thus getting
Claim (ii). gg�

We now prove Lemma 8 and Lemma 9, which are used in the previous
proof of Lemma 7.

Lemma 8. If a(n), b(n) are such that d := a+b > log n and , then w.h.p.
(over the choice of G ∼ G2n, a

n
, b
n
)

‖A−B‖ 6 O(
√
d log n).

Proof. We can write A − B as
∑
{i,j}X

{i,j}, where the matrix X{i,j}

is zero in all coordinates except (i, j) and (j, i), and, in those coordinates, it

is equal to A − B. Then we see that the matrices X{i,j} are independent,
that E[X{i,j}] = 0, that ‖X{i,j}‖ 6 1 (because every row contains at most
one non-zero element, and that element is at most 1 in absolute value), and

that E[
∑
{i,j}(X

{i,j})2] is the matrix that is zero everywhere except for the

diagonal entries (i, i) and (j, j), in which we have Bi,i −B2
i,i and Bj,j −B2

j,j

respectively. It follows that

‖E[
∑
{i,j}

(X{i,j})2]‖ 6 d.

Putting these facts together, and applying the Matrix Bernstein Inequality
(see Theorem 18 in Section 4.1) with t =

√
6d log n, we have

Pr
(
‖A−B‖ >

√
9d log n

)
6 2ne

− 9d logn

2d+ 2
3
√

9d logn 6 2ne−
9d logn

4d 6 2n−1,

where we used d > log n. gg�
Lemma 9. Let G be a (2n, d, b, γ)-clustered graph such that ν = 1− 2b

d >
12γ and such that its adjacency matrix A satis�es ‖A−B‖ 6 γd. Then for
every i ∈ {3, . . . , 2n}, |λi| 6 4γ and λ2 > (1 + δ)λ3 for some constant δ > 0.

Proof. The matrix B has a very simple spectral structure: 1 is an
eigenvector of eigenvalue d, χ is an eigenvector of eigenvalue a − b, and all
vectors orthogonal to 1 and to χ are eigenvectors of eigenvalue 0. In order to
understand the eigenvalues and eigenvectors of N , and hence the eigenvalues
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and eigenvectors of P , we �rst prove that A approximates B and that N
approximates (1/d)A, namely ‖dN −A‖ 6 3γd.

To show that dN approximates A we need to show that D approximates
dI. The condition on the degrees immediately gives us ‖D−dI‖ 6 γd. Since
every node has degree di in the range d ± γd, then the square root

√
di of

each node must be in the range [
√
d− γ

√
d,
√
d+ γ

√
d], so we also have the

spectral bound:

(11) ‖D1/2 −
√
dI‖ 6 γ

√
d.

We know that ‖D‖ 6 d+ γd < 2d and that ‖N‖ = 1, so from (11) we get

‖A− dN‖ = ‖D1/2ND1/2 − dN‖
6 ‖D1/2ND1/2 −

√
dND1/2‖

+ ‖
√
dND1/2 − dN‖

= ‖(D1/2 −
√
dI) ·ND1/2‖

+ ‖
√
dN · (D1/2 −

√
dI)‖

6 ‖D1/2 −
√
dI‖ · ‖N‖ · ‖D1/2‖

+
√
d · ‖N‖ · ‖D1/2 −

√
dI‖ 6 3γd.(12)

By using the triangle inequality and (12) we get

(13) ‖N − (1/d)B‖ 6 ‖N − (1/d)A‖+ (1/d) · ‖A−B‖ 6 4γ.

Finally, we use Theorem 19 (see Section 4.1), which is a standard fact
in matrix approximation theory: if two real symmetric matrices are close in
spectral norm then their eigenvalues are close. From (13) and the fact that
all eigenvalues of (1/d)B except for the �rst and second one are 0, for each
i ∈ {3, . . . , 2n} we have

(14) |λi| = |λi − 0| 6 ‖N − 1

d
B‖ 6 4γ.

Similarly, from the fact that the second eigenvalue of (1/d)B is 1− 2b/d we
get

|λ2 − (1− 2b/d)| 6 ‖N − 1

d
B‖ 6 4γ,

that is, from hypothesis ν > 12γ and (14), λ2 > (1 + δ)λ3 for some constant
δ > 0. This concludes the proofs of Lemma 9 and Theorem 7. gg�

By combining Lemma 7 and Theorem 3, we achieve weak reconstruction
for the stochastic block model.

Corollary 2 (Reconstruction in Stochastic Block Models). Let G ∼
G2n,p,q. If a− b > 25

√
d log n and b = Ω(log n/n2) then the Averaging proto-

col produces an O(d log n/(a− b)2)-weak reconstruction in O(log n) rounds
w.h.p.
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Sketch of Proof. From Lemma 7 we get that w.h.p. G is (2n, d, b, γ)-
clustered with

• γ 6 6
√

log n/d,
• |λi| 6 4γ for all i = 3, . . . , 2n and
• λ2 > (1 + δ)λ3 for some constant δ > 0.

Given the hypotheses on a and b, we also have that the graph is connected,
w.h.p. Moreover, since dν = (a− b) > 25

√
d log n, then

γ

ν − λ3
=

dγ

dν − dλ3
6 6

√
d log n

(a− b)− 24
√
d log n

= O
(√

d log n

(a− b)

)
.

Theorem 3 then guarantees that the Averaging protocol �nds an O(d log n
/(a− b)2)-weak reconstruction, w.h.p. gg�

4.6. Technical Proofs for Clustered Graphs

Lemma 10. Let G be a connected (2n, d, b, γ)-clustered graph (see De�-
nition 5) with γ 6 1/10. If λ3 < ν then

λ2 > ν − 10γ and
∥∥∥D1/2χ− β2w2

∥∥∥ 6 44 γ

ν − λ3

√
2nd,

where β2 = χᵀD1/2w2.

Proof. For every node v, let us name av and bv the numbers of neigh-
bors of v in its own cluster and in the other cluster, respectively, and
dv = av + bv its degree. Since from the de�nition of (2n, d, b, γ)-clustered
graph it holds that (1− γ)d 6 dv 6 (1 + γ)d and b− γd 6 bv 6 b+ γd, it is
easy to check that

|av − bv − νdv| 6 4d γ

for any node v. Hence,

‖Aχ− νDχ‖2 =
∑
v∈[2n]

 ∑
w∈Neigh(v)

χ(w)− νdvχ(v)

2

=
∑
v∈[2n]

(avχ(v)− bvχ(v)− νdvχ(v))2

=
∑
v∈[2n]

(av − bv − νdv)2 6 32nd2γ2.
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Thus, ∥∥∥ND1/2χ− νD1/2χ
∥∥∥ =

∥∥∥D−1/2Aχ− νD1/2χ
∥∥∥(15)

=
∥∥∥D−1/2 (Aχ− νDχ)

∥∥∥
6
∥∥∥D−1/2

∥∥∥ · ‖Aχ− νDχ‖

6 2√
d
·
√

2n4d γ = 8
√

2nd γ.

Observe that w1 is parallel to D1/21 and we have that

(16) |1ᵀDχ| =

∣∣∣∣∣∣
∑
v∈[2n]

χ(v)dv

∣∣∣∣∣∣ 6 (1 + γ)dn− (1− γ)dn = 2nd γ.

Hence, if we name y the component of D1/2χ orthogonal to the �rst eigen-
vector, we can write it as

(17) D1/2χ =
1ᵀDχ

‖D1/21‖2D
1/21 + y.

Thus,

‖Ny − νy‖ =

∥∥∥∥N(D1/2χ− 1ᵀDχ

‖D1/21‖2D
1/21

)
(18)

− ν
(
D1/2χ− 1ᵀDχ

‖D1/21‖2D
1/21

)∥∥∥∥
6
∥∥∥ND1/2χ− νD1/2χ

∥∥∥
+
|1ᵀDχ|
‖D1/21‖2

∥∥∥ND1/21− νD1/21
∥∥∥

=
∥∥∥ND1/2χ− νD1/2χ

∥∥∥+
|1ᵀDχ|
‖D1/21‖

2b

d

6 8
√

2nd γ + 4
√

2nd γ,

where in the last inequality we used (15) and (16) and the facts that b 6 d/2
and

∥∥D1/21
∥∥ > (1/2)

√
2nd. From (17) it follows that

‖y‖ >
∥∥∥D1/2χ

∥∥∥− 1ᵀDχ∥∥D1/21
∥∥(19)

> (1− γ)
√

2nd− 4γ
√

2nd

= (1− 5γ)
√

2nd > (1/2)
√

2nd.

Now, let us we write y as a linear combination of the orthonormal eigen-
vectors of N , y = β2w2 + · · ·+ βnwn (recall that yᵀw1 = 0 by de�nition of
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y in (17)). From (18) and (19), it follows that

(20) 100γ2‖y‖2 > ‖Ny − νy‖2 =

∥∥∥∥∥
n∑
i=2

(λi − ν)βiwi

∥∥∥∥∥
2

=

n∑
i=2

(λi − ν)2β2
i .

Moreover, from hypothesis λ3 < ν we have that
n∑
i=2

(λi − ν)2β2
i >

n∑
i=3

(λi − ν)2β2
i(21)

> (λ3 − ν)2
n∑
i=3

β2
i

= (λ3 − ν)2‖y − β2w2‖2.
Thus, by combining together (20) and (21) we get

‖y − β2w2‖ 6
10 γ

ν − λ3
‖y‖

where β2 = yᵀw2 =
(
D1/2χ

)ᵀ
w2.

As for the �rst thesis of the lemma, observe that if λ2 > ν then the �rst
thesis is obvious. Otherwise, if λ2 < ν, then (λ2 − ν)2 6 (λ3 − ν)2 6 · · · 6
(λn − ν)2. Thus, the �rst thesis follows from (20) and the fact that

n∑
i=2

(λi − ν)2β2
i > (λ2 − ν)2

n∑
i=2

β2
i = (λ2 − ν)2‖y‖2.

As for the second thesis of the lemma, we have∥∥∥D1/2χ− β2w2

∥∥∥ =

∥∥∥∥ 1ᵀDχ

‖D1/21‖2D
1/21 + y − β2w2

∥∥∥∥
6 |1

ᵀDχ|
‖D1/21‖ + ‖y − β2w2‖

6 4 γ
√

2nd +
10 γ

ν − λ3
‖y‖

6 4 γ
√

2nd +
20 γ

ν − λ3

√
2nd 6 44 γ

ν − λ3

√
2nd,

where in the last inequality we used that y is the projection of D
1
2χ on D

1
21,

and thus ‖y‖ 6 ‖D 1
2χ‖ 6 2

√
2nd. gg�

4.7. Tight Analysis for the Stochastic Block Model

In Lemma 7 we have shown that, when (a− b) >
√

(a+ b) log n, a graph
sampled according to G2n,p,q satis�es the hypothesis of Theorem 3, w.h.p.
The simple Averaging protocol thus gets weak-reconstruction in O(log n)
rounds. As for the parameters' range of G2n,p,q, we know that the above

result is still o� by a factor
√

log n from the threshold (a − b) > 2
√

(a+ b)
[MNS13, Mas14, MNS14], the latter being a necessary condition for any
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(centralized or not) non-trivial weak reconstruction. Essentially, the reason
behind this gap is that, while Theorem 3 holds for any (i.e. �worst-case�)
(2n, d, b, γ)-clustered graph, in order to apply it to G2n,p,q we need to choose
parameters a and b in a way that γd bounds the variation of the degree of
any node w.r.t. the regular case, w.h.p.

On the other hand, since the degrees in G2n,p,q are distributed according
to a sum of Bernoulli random variables, the rare event that some degrees are
much higher than the average does not a�ect too much the eigenvalues and
eigenvectors of the graph. Indeed, by adopting ad-hoc arguments for G2n,p,q,
we prove that the Averaging protocol actually achieves an O(d/(a−b)2)-weak
reconstruction, w.h.p., provided that

(a− b)2 > copt(a+ b) > 5 log n,

thus matching the weak-reconstruction threshold up to a constant factor
for graphs of logarithmic degree. The main argument relies on the spectral
properties of G2n,p,q stated in the following lemma, whose complete proof is
given in Section 4.9.

Lemma 11. Let G ∼ G2n,p,q. If

(a− b)2 > copt(a+ b) > 5 log n,

and5 a+ b < n
1
3
−ctight for some positive constants copt and ctight, then w.h.p.

(1) for some constant ceigerr > 0, it holds

λ2 > 1− 2b/d− ceigerr/
√
d,

(2) λ2 > (1 + δ)λ for some constant δ > 0 (where as usual λ =
max{|λ3|, . . . , |λ2n|}),

(3) for each i ∈ V \ S, for some subset S with |S| = O(nd/(a− b)2), it
holds

|
√

2nd(D−1/2w2)(i)− χ(i)| 6 1

100
.

Idea of Proof. The key-steps of the proof are two concentration of
probability results.

In Lemma 15, we prove a tight bound on the deviation of the Laplacian
L(A) = I −N of G2n,p,q from the Laplacian of the expected matrix L(B) =
I − 1

dB. As one may expect from previous results on the Erd®s-Rényi model
and from Le and Vershynin's concentration results for inhomogeneous Erd®s-
Rényi graph (see Lemma 14), we can prove that w.h.p.

‖L(A)− L(B)‖ = O(
√
d),

even when d = Θ(log n). To derive the latter result, we leverage on the
aforementioned Le and Vershynin's bound on the spectral norm of inhomoge-
neous Erd®s-Rényi graphs; in G2n,p,q this bound implies that if d = Ω(log n)

then w.h.p. ‖A − B‖ = O(
√
d). Then, while Le and Vershynin replace

the Laplacian matrix with regularized versions of it, we are able to bound
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‖L(A) − L(B)‖ directly by upper bounding it with ‖A − B‖ and an addi-

tional factor ‖B − d−1D1/2BD1/2‖. We then bound from above the latter
additional factor thanks to our second result: In Lemma 16 (whose proof
can be found at the end of the chapter), we prove that w.h.p.∑

(
√
di −

√
d)2 6 2n and

∑
(di − d)2 6 2nd.

We can then prove the �rst two claims of Lemma 11 by bounding the distance
of the eigenvalues of N from those of d−1B via Lemma 19.

As for the third claim of the lemma, we prove it by upper bounding
the components of D−1/2w orthogonal to χ. In particular, we can limit the
projection w1 of D−1/2w on 1 by using Lemma 16. Then, we can upper
bound the projection w⊥ of D−1/2w on the space orthogonal to both χ and
1 with Lemma 15: We look at N as a perturbed version of B and apply the
Davis-Kahan theorem. Finally, we conclude the proof observing that∥∥∥∥w2 −

1√
2n

∥∥∥∥ 6 2(‖w1‖+ ‖w⊥‖).

gg�

Once we have Lemma 11 we can prove the main theorem on G2n,p,q with
the same argument used for Theorem 3 (the full proof is given in Section 4.9).

Theorem 4 (Tight Reconstruction in Stochastic Block Models). Let
G ∼ G2n,p,q. If

(a− b)2 > copt(a+ b) > 5 log n,

and6 a + b < n
1
3
−ctight for some positive constants copt and ctight, then the

Averaging protocol produces an O(d/(a − b)2)-weak reconstruction within
O(log n) rounds w.h.p.

Proof. For any vector x, we can write

x(t) = P tx =
2n∑
i=1

aiλ
t
iD
−1/2wi = α11 + a2λ

t
2D
−1/2w2 + e(t),

where α1 = 1ᵀDx
‖D1/21‖ and ‖e

(t)‖ 6 4λt‖x‖.
From Lemma 11 (Claim 3) we have that for at least 2n−O(nd/(a− b)2)

entries i of D−1/2w2, we get

|
√

2nd(D−1/2w2)(i)− χ(i)| 6 1

100
,

6It should be possible to weaken the condition d < n
1
3
−ctight via some stronger con-

centration argument; see the proof of Lemma 16 at the end of the chapter for details.
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that is

(D−1/2w2)(i) > 99

100
√

2nd
if i ∈ V1 ∩ S and

(D−1/2w2)(i) 6 − 99

100
√

2nd
if i ∈ V2 ∩ S.

Thus, we get∣∣∣x(t) − x(t−1)
∣∣∣ =

∣∣∣a2λ
t−1
2 (λ2 − 1)D−1/2w2 + e(t) + e(t−1)

∣∣∣
6
∣∣∣a2λ

t−1
2 (λ2 − 1)D−1/2w2

∣∣∣+
∣∣∣e(t) − e(t−1)

∣∣∣(22)

and, when

t− 1 >
log
(

16
√

2n
|a2|(1−λ2)

)
log
(
λ2
λ

) ,

from (22) it follows that

(x(t) − x(t−1))(i) > 99

200
√

2nd
a2λ

t−1
2 (λ2 − 1) if i ∈ Vj ∩ S and

(x(t) − x(t−1))(i) 6 − 99

200
√

2nd
a2λ

t−1
2 (λ2 − 1) if i ∈ V3−j ∩ S.

either for j = 1 or for j = 2. Since

|S| > n−O
(

nd

(a− b)2

)
,

we thus get a O(d/(a− b)2)-weak reconstruction. gg�

4.8. Moving Beyond Two Communities: An Outlook

The Averaging protocol can be naturally extended to address the case
of more communities. One way to achieve this is by performing a suitable
number of independent, parallel runs of the protocol. We next outline the
analysis for a natural generalization of the regular block model. This allows
us to easily present the main ideas and to provide an intuition of how and
why the protocol works.

Let G = (V,E) be a d-regular graph in which V is partitioned into k
equally-sized communities V1, . . . , Vk, while every node in Vi has exactly a
neighbors within Vi and exactly b neighbors in each Vj , for j 6= i. Note that

d = a+ (k − 1) · b.
It is easy to see that the transition matrix P of the random walk on G has
an eigenvalue (a− b)/d with multiplicity k − 1. The eigenspace of (a− b)/d
consists of all stepwise vectors that are constant within each community Vi
and whose entries sum to zero. If

max{|λ2n|, λk+1} < (1− ε) · a− b
d

,
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P has eigenvalues λ1 = 1 and

λ2 = · · · = λk =
a− b
d

,

with all other eigenvalues strictly smaller by a (1− ε) factor.
Let T be a large enough threshold such that, for all t > T , λt2 > n2λtk+1

and note that T is in the order of (1/ε) log n. Let x ∈ RV be a vector. We
say that a node v is of negative type with respect to x if, for all t > T ,
the value (P tx)v decreases with t. We say that a node v is of positive type
with respect to x if, for all t > T , the value (P tx)v increases with t. Note
that a node might have neither type, because (P tx)v might not be strictly
monotone in t for all t > T .

We prove the following: If we pick ` random vectors x1, . . . ,x`, each in
{−1, 1}V , then w.h.p.

i) every node is either of positive or negative type for each xi7;
ii) furthermore, if we associate a �signature� to each node, namely, the

sequence of ` types, then nodes within the same Vi exhibit the same
signature, while nodes in di�erent Vi, Vj have di�erent signatures.

These are the basic intuitions that allow us to prove the following theorem.

Theorem 2 (More Communities). Let G = (V,E) be a k-clustered d-
regular graph de�ned as above and assume that

λ = max{|λ2n|, λk+1} < (1− ε) · a− b
d

,

for a suitable constant ε > 0. Then, for ` = Θ(log n), the Averaging protocol
with ` parallel runs produces a strong reconstruction within O(log n) rounds,
w.h.p.

The proof is divided in the following two lemmas.

Lemma 12. Pick x ∼ {−1, 1}kn u.a.r. Then the nodes of V1 are either
all of positive type or all of negative type, w.h.p. Furthermore, the two events
have equal probability.

Proof. We write

x = x1 + xV1 + x⊥1 + x⊥,

where x1 is the component of x parallel to 1, xV1 is the component parallel
to the vector 1V1−k−11V , x⊥1 is the component in the eigenspace of λ2 and
orthogonal to 1V1 − k−11V , and x⊥ is the component orthogonal to 1 and
to the eigenspace of λ2.

For the above the make sense, 1V1−k−11V must be an eigenvector of λ2,
which is easily veri�ed because its entries sum to zero and they are constant
within components.

7I.e., for every t > T , (P tx)v monotonically increases (or decreases) w.r.t. t.
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An important observation, and the reason for picking the above decom-
position, is that x⊥1 is zero in V1. The reason is that x⊥1 has to be orthogonal
to 1V and to 1V1 − k−11V so from

〈x⊥1 ,1V 〉 = 〈x⊥1 ,1V1 − k−11V 〉 = 0,

we deduce
〈x⊥1 ,1V1〉 = 0.

Thus, the entries of x⊥1 sum to zero within V1, but, being in the eigenspace
of λ2, the entries of x⊥1 are constant within components, and so they must
be all zero within V1.

Now we have

P tx = x1 + λt2xV1 + λt2x⊥1 + P tx⊥,

and so, for each v ∈ V1 it holds

(23) (P t+1x)v − (P tx)v = λt2 · (1− λ2)(xV1)v + ((P t+1 − P t)x⊥)v.

For t > T , the hypothesis λ < (1− ε)λ2 implies that

|(P tx⊥)v| 6 ||P tx⊥||∞ 6 ||P tx⊥||

6 λt||x⊥|| 6
√
n · λt 6 1

n1.5
λt2.(24)

Moreover, for each v ∈ V1 we have

|(xV1)v| = ‖1V1 − k−11V ‖−2〈x,1V1 − k−11V 〉
(
1− k−1

)
=

k

(k − 1)n

∑
i∈V1

xi −
∑
i∈V

xi
k

(k − 1

k

)

=
1

n

∑
i∈V1

xi −
∑
i∈V

xi
k

 ,

and

||xV1 || =
〈x,1V1 − k−11V 〉
‖1V1 − k−11V ‖

=

√
k

(k − 1)n
·

∑
i∈V1

xi −
∑
i∈V

xi
k

 ,

which imply that

(25) |(xV1)v| =
√

1− 1/k

n
· ‖xV1‖.

Finally, note that by Lemma 3 it holds w.h.p. ||xV1 || > 1
n ||x|| >

√
k/n.

The latter fact together with (24) and (25) imply that w.h.p. the sign of
(23) is the same as the sign of (xV1)v, which is the same for all elements of
V1 and is equally likely to be positive or negative. gg�

Of course the same statement is true if we replace V1 by Vi for any
i = 1, . . . , k; by a union bound, it is also true for all i simultaneously, w.h.p.
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Lemma 13. Pick x ∼ {−1, 1}kn u.a.r. There is an absolute constant p
(e.g., p = 1

100) such that, with probability at least p, all nodes of V1 have the
same type, all nodes of V2 have the same type, and the types are di�erent.

Proof. This time we write

x = x1 + xV1plus2
+ xV1minus2 + x⊥1,2 + x⊥

where

• x1 is the component parallel to 1V ,
• xV1plus2

is the component parallel to 1V1 + 1V2 − 2
k1V ,

• xV1minus2 is the component parallel to 1V1 − 1V2 ,
• x⊥1,2 is the component in the eigenspace of λ2 and orthogonal to
xV1plus2

and xV1minus2 ,
• x⊥ is the rest.

Similarly to the proof of Lemma 12, the important observations are that
xV1plus2

and xV1minus2 are in the eigenspace of λ2, and that x⊥1,2 is zero in
all the coordinates of V1 and of V2.

Thus, for each v ∈ V1 ∪ V2 we have
(26)
(P t+1x)v − (P tx)v = λt2(1− λ2)(xV1plus2

+ xV1minus2)v + ((P t+1 − P t)x⊥)v.

From (26) it is easy to see that if x is such that, for every v ∈ V1 ∪ V2, we
have the two conditions

|(xV1plus2
)v| 6

3

4
|(xV1minus2)v| and(27)

|((P t+1 − P t)x⊥)v| 6
1

8
λt2 · (1− λ2) · |(xV1minus2)v|,(28)

then such an x satis�es the conditions of the Lemma, that is all the elements
in V1 have the same type, all the elements of V2 have the same type, and the
types are di�erent. Now note that, since

|(xV1plus2
)v| =

1

2n

∑
i∈V1

xi +
∑
i∈V1

xi −
2

k

∑
i∈V

xi

 and

|(xV1minus2)v| =
1

2n

∑
i∈V1

xi −
∑
i∈V2

xi

 ,

if x satis�es

2
√
n 6

∑
v∈V1

xv 6 3
√
n,(29)

−2
√
n 6

∑
v∈V2

xv 6 −
√
n and(30)

0 6
∑

v∈V/(V1∪V2)

xv 6
1

10

√
kn,(31)
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then (27) is satis�ed, and note that (29), (30) and (31) are independent and
each happens with constant probability.

Finally, observe that if (27) holds then (28) is satis�ed with high proba-
bility when t > T . gg�

It is enough to pick ` = log(3n) to have that the signatures are well
de�ned and they are the same within each community and di�erent between
communities, w.h.p. The �rst lemma guarantees that, for all ` vectors, all
nodes within each community have the same type, w.h.p. The second lemma
guarantees that the signatures are di�erent between communities, w.h.p.

4.9. Technical Proofs for Stochastic Block Models

Lemma 11. Let G ∼ G2n,p,q. If

(a− b)2 > copt(a+ b) > 5 log n,

and7 a+ b < n
1
3
−ctight for some positive constants copt and ctight, then w.h.p.

(1) for some constant ceigerr > 0, it holds

λ2 > 1− 2b/d− ceigerr/
√
d,

(2) λ2 > (1 + δ)λ for some constant δ > 0 (where as usual λ =
max{|λ3|, . . . , |λ2n|}),

(3) for each i ∈ V \ S, for some subset S with |S| = O(nd/(a− b)2), it
holds

|
√

2nd(D−1/2w2)(i)− χ(i)| 6 1

100
.

Proof. Let G be a randomly-generated graph according to G2n,p,q with
a = pn, b = qn and d = a+ b. Recall the de�nitions of A, D, N , P , λi and
wi (i ∈ {1, . . . , 2n}) in Section 4.2, and let B be de�ned as in Section 4.5.1.
Let us denote with Ai (i ∈ {1, 2}) the adjacency matrix of the subgraph of G
induced by community Vi, with AB = {Au,v−n}u∈V1,v∈V2

the matrix whose

entry (i, j) is 1 i� there is an edge between the i-th node of V1 and the j-th
node of V2, then

A =

(
A1 AB
AᵀB A2

)
.

We need the following technical lemmas.

Lemma 14. If d > 5 log n then for some positive constant cspect it holds
w.h.p.

‖A−B‖ 6 cspect

√
d.

Proof of Lemma 14. The lemma directly follows from Theorem 2.1
in [LV15] with d′ = 2d and the observation that, from the Cherno� bounds
(Lemma 76), all degrees are smaller than 2d, w.h.p. gg� (of Lemma 14)
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Lemma 15. If d > 5 log n then for some constant cNvsB > 0 it holds
w.h.p.

‖dN −B‖ 6 cNvsB

√
d.

The idea for proving Lemma 15 is to use the triangle inequality to upper
bound ‖dN −B‖ in terms of ‖A−B‖, which we can bound with Lemma 14,

and ‖B− 1/dD1/2BD1/2‖, which we can upper bound by bounding ‖
√
d1−

D1/21‖ and ‖
√
dχ−D1/2χ‖ where 1 and χ are the eigenvector corresponding

to the only two non-zero eigenvalues of B. The complete proof of Lemma 15
is deferred to Section 4.9.1. As for the required bound on

‖
√
d1−D1/21‖ = ‖

√
dχ−D1/2χ‖ =

∑
j∈V
|
√
d−

√
dj |2,

we provide it in the following lemma, whose proof is also deferred to Sec-
tion 4.9.1.

Lemma 16. If 5 log n < d < n
1
3
−ctight for any constant ctight > 0, it holds

w.h.p. ∑
j∈V
|
√
d−

√
dj |2 6 2n and

∑
j∈V
|d− dj |2 6 2dn.

By combining Lemma 15 and Theorem 19 we have |λi − λ′i| 6 ‖N −
d−1B‖ = O(1/

√
d), where λ′1 = 1, λ′2 = 1 − 2b/d and λ′i = 0 for i ∈

{3, . . . , 2n} are the eigenvalues of d−1B. This proves the �rst two part of
Lemma 11.

As for the third part, let us write w2 = w1+wχ+w⊥ where w1 and wχ

are the projection of w2 on 1 and χ respectively, and w⊥ is the projection
of w2 on the space orthogonal to 1 and χ.

Observe that the only non-zero eigenvalues of (1/d)B are 1 and (a−b)/d.
Thus, from Lemma 15 and the Davis-Kahan theorem (Theorem 20) with
M1 = N , M2 = 1

dB, t = λ2, x = w2 and δ = λ2/2, we get

(32) ‖w⊥‖ 6
4

λ2π

∥∥∥N − 1

d
B
∥∥∥ 6 O( 1√

dλ2

)
= O

( √
d

a− b

)
.

As for w1, we know that 〈w2, D
−1/21〉 = 0, thus

‖w1‖ =
1√
2n
〈w2,1− d−

1
2D

1
21〉(33)

6 1√
2n
‖w2‖‖1− d−

1
2D

1
21‖ 6 1√

d
,

where in the last inequality we used Lemma 16.
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By the law of cosines and the fact that
√

1− x > 1− x for x ∈ [0, 1] we
have that∥∥∥w2 −

1√
2n

χ
∥∥∥2

= ‖w2‖2 +
∥∥∥ 1√

2n
χ
∥∥∥2
− 2〈w2,

1√
2n

χ〉(34)

= 2− 2‖wχ‖
= 2− 2

√
1− ‖w1‖2 + ‖w⊥‖2

6 2
(
‖w1‖2 + ‖w⊥‖2

)
= O

(
d

(a− b)2

)
,

where in the last inequality we used (32) and (33). (34) implies that, with
the exception of a set S of at most O(nd/(a− b)2) nodes, we have

(35)
∣∣∣√2nw2(i)− χ(i)

∣∣∣ 6 1

201
,

for each i ∈ V/S. From the Cherno� bound (Lemma 76), we also have that√
d/di = 1± 1/201 w.h.p. Thus, (35) and the last fact imply that for each

i ∈ V/S it holds w.h.p.∣∣∣√2ndD−
1
2w2(i)− χ(i)

∣∣∣ 6 1

100
,

concluding the proof. gg�

Remark 4. After looking at Lemma 11, one may wonder whether it
could be enough to generalize De�nition 5 to include �quasi-(2n, d, b, γ)-
clustered graph�, i.e. graphs that are (2n, d, b, γ)-clustered except for a small
number of nodes which may have a much higher degree. In fact, this would
be rather surprising: This higher-degree nodes may connect to the other
nodes in such a way that would greatly perturb the eigenvalues and eigen-
vectors of the graph. In G2n,p,q, besides the fact that the nodes with degree
much larger than d are few, it is also crucial that they are connected in a
non-adversarial way, i.e. randomly.

4.9.1. Technical lemmas in the proof of Lemma 11

Lemma 15. If d > 5 log n then for some constant cNvsB > 0 it holds
w.h.p.

‖dN −B‖ 6 cNvsB

√
d.

Proof. A simple application of the Cherno� bound (Lemma 76) and
the union bound shows that w.h.p.

(36)
√
d‖D−1/2‖ 6 1 +O

(√
log n

d

)
,
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hence

‖dN −B‖ = ‖(
√
dD−1/2)A(

√
dD−1/2)−B‖

6 ‖
√
dD−1/2‖

∥∥∥∥A− 1√
d
D1/2B

1√
d
D1/2

∥∥∥∥ ‖√dD−1/2‖

6
∥∥∥∥A− 1

d
D1/2BD1/2

∥∥∥∥ ‖√dD−1/2‖2

6
(
‖A−B‖+

∥∥∥∥B − 1

d
D1/2BD1/2

∥∥∥∥)
(

1 +O
(√

log n

d

))
.(37)

Thanks to Lemma 14, it holds ‖A−B‖ = O(
√
d). Hence, in order to conclude

the proof, it remains to show that ‖B − d−1D1/2BD1/2‖ = O(
√
d). We do

that by observing that∥∥∥∥B − 1

d
D1/2BD1/2

∥∥∥∥(38)

6
∥∥∥∥B − 1√

d
BD1/2

∥∥∥∥+

∥∥∥∥ 1√
d
BD1/2 − 1

d
D1/2BD1/2

∥∥∥∥ ,
and by upper-bounding the two terms on the right hand side. The two only
non-zero eigenvalues of B are a+b and a−b, with corresponding eigenvectors
(2n)−1/2 1 and (2n)−1/2 χ, therefore we can write B = d/(2n)11ᵀ + (a −
b)/(2n)χχᵀ, which implies that

B − 1√
d
BD1/2 =

√
d

2n
1 (
√
d1−D1/2 1)ᵀ +

a− b√
d 2n

χ (
√
dχ−D1/2 χ)ᵀ.

It follows that, for an arbitrary unitary vector x it holds∥∥∥∥(B − 1√
d
BD1/2

)
x

∥∥∥∥(39)

6
∥∥∥∥∥
√
d

2n
1 (
√
d1−D1/2 1)ᵀx

∥∥∥∥∥
+

∥∥∥∥ a− b√
d 2n

χ (
√
dχ−D1/2 χ)ᵀx

∥∥∥∥
=

√
d

2n
‖1‖ |(

√
d1−D1/2 1)ᵀx|

+
a− b√
d 2n

‖χ‖ |(
√
dχ−D1/2 χ)ᵀx|

6
√
d√

2n

∥∥∥√d1−D1/2 1
∥∥∥ · ‖x‖

+
a− b√

2dn

∥∥∥√dχ−D1/2 χ
∥∥∥ · ‖x‖ 6 2

√
d,
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where we used the triangle inequality, the fact that ‖1‖ = ‖χ‖ =
√

2n, the
Cauchy-Schwartz inequality, Lemma 16 and a−b < d. As for the other term
on the r.h.s. of (38), we have that w.h.p.∥∥∥∥ 1√

d
BD1/2 − 1

d
D1/2BD1/2

∥∥∥∥(40)

6
∥∥∥∥B − 1√

d
D1/2B

∥∥∥∥ 1√
d
‖D1/2‖ 6 2

√
d

(
1 +O

(√
log n

d

))
,

where in the last inequality we used (36) and that for any matrix M it
holds ‖M‖ = ‖Mᵀ‖. Finally, (39) and (40) togeter implies the desired upper
bound on (38) and thus (37), concluding the proof. gg�

Lemma 16. If 5 log n < d < n
1
3
−ctight for any constant ctight > 0, it holds

w.h.p. ∑
j∈V
|
√
d−

√
dj |2 6 2n and

∑
j∈V
|d− dj |2 6 2dn.

Proof. Each degree di has the distribution of a sum of n Bernoulli
random variables of expectation p plus a sum of n Bernoulli random variables
of expectation q. Thus, each di satis�es Edi = d and Var (di) 6 d.

First, we consider the random variables |d − dj |2. Their expectation is
E|d− dj |2 6 d (the variance of the random variable dj). Let eu,v is the
variable that is 1 i� the edge (u, v) is included in the graph. Observe that

|d− dj |4 = |d−
∑
v∈V

ej,v|4

= |a−
∑
v∈Vi

ej,v + b−
∑

v∈V3−i

ej,v|4

= |a−
∑
v∈Vi

ej,v|4 + |b−
∑

v∈V3−i

ej,v|4

+ 6|a−
∑
v∈Vi

ej,v|2 |b−
∑

v∈V3−i

ej,v|2

+ 4(a−
∑
v∈Vi

ej,v) (b−
∑

v∈V3−i

ej,v)
3

+ 4(a−
∑
v∈Vi

ej,v)
3 (b−

∑
v∈V3−i

ej,v),
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and

E(a−
∑
v∈Vi

ej,v)
3(b−

∑
v∈V3−i

ej,v)

= E(a−
∑
v∈Vi

ej,v)
3E(b−

∑
v∈V3−i

ej,v) = 0,

E(a−
∑
v∈Vi

ej,v)(b−
∑

v∈V3−i

ej,v)
3

= E(a−
∑
v∈Vi

ej,v)E(b−
∑

v∈V3−i

ej,v)
3.

Hence, since the fourth central moment of a binomial with parameters n
and p is np(1 − p)4 + np4(1 − p) + 3n(n − 1)p2(1 − p)2 6 4(np)2, if we let
i ∈ {1, 2} be the index of the community of j we have that the expectation
of the square of |d− dj |2 (which is the fourth central moment of dj) is

E|d− dj |4 = E|a−
∑
v∈Vi

ej,v|4 + E|b−
∑

v∈V3−i

ej,v|4

+ 6E|a−
∑
v∈Vi

ej,v|2E|b−
∑

v∈V3−i

ej,v|2

6 4a2 + 4b2 + 6ab 6 4d2.

In order to apply Chebyshev's inequality, we need to bound the variance of∑
j |d− dj |2. As for the second moment of their sum, we have

E[(
∑
i

|d− dj |2)2] =
∑
i

E[|d− dj |4]

+ 2
∑

16i<j62n

E[|d− di|2 · |d− dj |2]

6 8d2n+ 2
∑

16i<j62n

E[|d− di|2 · |d− dj |2].(41)

To upper bound the terms E[|d− di|2 · |d− dj |2], since the stochastic depen-
dency between di and dj is due only to the edge (i, j), let us write

di =
∑

u∈N(i)

ei,u = ei,j +
∑

u∈N(i)/{j}

ei,u = ei,j + d
(j)
i ,
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where d
(j)
i is the sum of all the edges incident to i except for (i, j). We have

|d− di|2 · |d− dj |2(42)

= |d− d(j)
i + ei,j |2 · |d− d(i)

j + ei,j |2

=(|d− d(j)
i |2 + ei,j

+ 2ei,j(d− d(j)
i ))(|d− d(i)

j |2 + ei,j + 2ei,j(d− d(i)
j ))

= |d− d(j)
i |2|d− d

(i)
j |2 + ei,j |d− d(i)

j |2 + 2ei,j(d− d(j)
i )|d− d(i)

j |2

+ |d− d(j)
i |2ei,j + ei,j + 2ei,j(d− d(j)

i )

+ 2ei,j(d− d(i)
j )|d− d(j)

i |2 + 2ei,j(d− d(i)
j )

+ 4ei,j(d− d(j)
i )(d− d(i)

j ),

where we used that, since ei,j is an indicator variable, it holds e2
i,j = ei,j .

Taking the expectation of (42) we thus get

E[|d− di|2 · |d− dj |2]

= E[|d− d(j)
i |2|d− d

(i)
j |2 + ei,j |d− d(i)

j |2

+ 2ei,j(d− d(j)
i )|d− d(i)

j |2

+ |d− d(j)
i |2ei,j + ei,j + 2ei,j(d− d(j)

i )

+ 2ei,j(d− d(i)
j )|d− d(j)

i |2 + 2ei,j(d− d(i)
j )

+ 4ei,j(d− d(j)
i )(d− d(i)

j )]

= E[|d− d(j)
i |2]E[|d− d(i)

j |2] + E[ei,j ]E[|d− d(i)
j |2]

+ 2E[ei,j ]E[(d− d(j)
i )]E[|d− d(i)

j |2]

+ E[ei,j ]E[|d− d(j)
i |2] + E[ei,j ] + 2E[ei,j ]E[(d− d(j)

i )]

+ 2E[ei,j ]E[(d− d(i)
j )]E[|d− d(j)

i |2] + 2E[ei,j ]E[(d− d(i)
j )]

+ 4E[ei,j ]E[(d− d(j)
i )]E[(d− d(i)

j )]

6 E[|d− d(j)
i |2]E[|d− d(i)

j |2] +
d2

n
+ 2

d3

n2
+
d2

n
+
d

n

+ 2
d2

n2
+ 2

d3

n2
+ 2

d2

n2
+ 4

d3

n3

6 E[|d− d(j)
i |2]E[|d− d(i)

j |2] + 15
d2

n
,(43)

where in the inequalities we used that E[ei,j ] 6 d/n, that

E[d− d(j)
i ] 6 E[ei,j ] + E[

∑
u∈N(i)/{j}

E[ei,u]− d(j)
i ] 6 d

n
,
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and that

(44) E[|d− d(j)
i |2] 6 E[ei,j ] + E[|d− E[ei,j ]− d(j)

i |2] 6 d

n
+ d− 1 6 d.

By combining (41) and (43) we get

E[(
∑
i

|d− dj |2)2](45)

6 8d2n+ 2
∑

16i<j62n

E[|d− d(j)
i |2]E[|d− d(i)

j |2] + 60d2n,

As for the square of the average, we have

(E[
∑
i

|d− di|2])2

=
∑
i

E[|d− di|2]2 + 2
∑
i 6=j

E[|d− di|2]E[|d− dj |2]

> 2
∑

16i<j62n

E[|d− di|2]E[|d− dj |2],

and

E[|d− di|2]E[|d− dj |2]

= E[|d− d(j)
i − ei,j |2]E[|d− d(i)

j − ei,j |2]

= (E[|d− d(j)
i |2] + E[ei,j ]

− 2E[ei,j ]E[(d− d(j)
i )]) · (E[|d− d(i)

j |2]

+ E[ei,j ]− 2E[ei,j ]E[(d− d(i)
j )])

> (E[|d− d(j)
i |2]− 2E[ei,j ]E[(d− d(j)

i )]) · (E[|d− d(i)
j |2]

− 2E[ei,j ]E[(d− d(i)
j )])

> E[|d− d(j)
i |2]E[|d− d(i)

j |2]− 4
d3

n2
,(46)

where we used, again, that E[ei,j ] 6 d/n and that E[|d − d(j)
i |2] 6 d (see

(44)).
Combining (45) and (46) together we get

Var[
∑
i

|d− di|2] = E[(
∑
i

|d− di|2)2]− E[
∑
i

|d− di|2]2

6 8d2n+ 60d2n+ 16d3 = 84d2n

Finally, by Chebyshev's inequality we have

Pr

∑
j

|d− dj |2 > 2dn

 6 21

n
,
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which proves the second part of the lemma.
We now consider the sum of the variables |

√
d−

√
dj |2. We have∑

j∈V
|
√
d−

√
dj |2 =

∑
i∈V

d+
∑
i∈V

di − 2
√
d ·
∑
j∈V

√
dj

6 2dn+
∑
i∈V

di − 2
√
d ·
∑
j∈V

√
dj .(47)

From the Cherno� bound (Lemma 76) we have that for some positive con-
stant ccb it holds w.h.p.∑

j∈V
dj =

∑
u,v∈V
u6=v

2eu,v +
∑
u∈V

eu,v 6 2dn+ ccb

√
dn log n 6 4dn+ n,

where we are using the hypothesis d = o(n/ log n). We now prove that∑
j∈V

√
dj > 2n

√
d− n√

d
,

which together with (47) implies that∑
j∈V
|
√
d−

√
dj |2 6 4n,

concluding the proof of the lemma.
Observe that if x > 0, we have

√
x > 1 +

x− 1

2
− (x− 1)2

2
,

so that if X is a non-negative random variable of expectation 1 we have8

E[
√
X] > 1− Var (X)

2
.

By applying the above inequality to dj/d we get

E

[√
dj
d

]
> 1−

Var
(
dj
d

)
2

= 1− Var (dj)

2d2
> 1− 1

2d
,

and

(48) E[
√
dj ] >

√
d− 1

2
√
d
.

8This argument is due to Ori Gurel-Gurevich (see [GG]).
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We show that
∑

j∈V
√
dj is concentrated around its expectation by using

Chebyshev's inequality9. In order to do that, we bound their covariance as

E[
√
didj ]− E[

√
di]E[

√
dj ] 6

8d2

n
.

By the law of total probability

E[
√
di] = Pr(ei,j)E[

√
d

(j)
i + 1] + (1− Pr(ei,j))E[

√
d

(j)
i ],

and

E[
√
djdi] = Pr(ei,j)E[

√
d

(j)
i + 1]E[

√
d

(i)
j + 1]

+ (1− Pr(ei,j))E[

√
d

(i)
j ]E[

√
d

(j)
i ],

which imply that

E[
√
didj ]− E[

√
di]E[

√
dj ]

= Pr(ei,j)E[

√
d

(j)
i + 1]E[

√
d

(i)
j + 1]

+ (1− Pr(ei,j))E[

√
d

(i)
j ]E[

√
d

(j)
i ]

− Pr(ei,j)
2E[

√
d

(i)
j + 1]E[

√
d

(j)
i + 1]

− Pr(ei,j)(1− Pr(ei,j))E[

√
d

(i)
j ]E[

√
d

(j)
i + 1]

− Pr(ei,j)(1− Pr(ei,j))E[

√
d

(i)
j + 1]E[

√
d

(j)
i ]

− (1− Pr(ei,j))
2E[

√
d

(i)
j ]E[

√
d

(j)
i ]

= p(1− p)
(
E[

√
d

(j)
i + 1]E[

√
d

(i)
j + 1]

+ E[

√
d

(i)
j ]E[

√
d

(j)
i ] + E[

√
d

(i)
j ]E[

√
d

(j)
i + 1]

+ E[

√
d

(i)
j + 1]E[

√
d

(j)
i ]
)
6 8d2

n
,(49)

where in the last inequality we used that by the Cherno� bound (Lemma

76) it holds w.h.p. E[

√
d

(j)
i ] <

√
2d, and that p(1 − p) < p < d/n. From

(49) it then follows that

(50) Var

∑
j∈V

√
dj

 6 2nd+ 32d2n <
n2

dnctight
.

9A stronger bound which doesn't require the hypothesis d 6 n1/3−ctight may be ob-
tained with some concentration techniques compatible with the stochastic dependence
among the

√
djs.
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Finally, by combining (50) and (48) with Chebyshev's inequality we get

Pr(
∑
j∈V

√
dj < 2n

√
d− n√

d
)

6 Pr(
∣∣∣∑
j∈V

√
dj −E

[∑
j∈V

√
dj

]∣∣∣ > n√
d

) 6 1

nctight
.

gg�



CHAPTER 5

3-Majority Dynamics

In this chapter we prove the results presented in Section 2.2. We consider
two fundamental distributed consensus problems, in the setting in which
each node in a complete communication network of size n initially holds
an opinion (color), which is chosen arbitrarily from a �nite set Σ. In the
consensus problem the system must converge toward a consensus state in
which all, or almost all nodes, hold the same opinion. Moreover, this opinion
should be valid, i.e., it should be one among those initially present in the
system. We further require this condition to be met even in the presence
of a malicious adversary who can modify the opinions of a bounded subset
of nodes, adaptively chosen in every round. In the more restrictive plurality
consensus problem, the goal is having the process to converge to the stable
con�guration in which all nodes support the initial plurality.

In order to elegantly solve these problems, we study the 3-Majority dy-
namics: At every round, every node pulls the opinion from three random
neighbors and sets her new opinion to the majority one (ties are broken
arbitrarily).

Let k be the number of valid opinions. As for the consensus problem, we
show that, if k 6 nα, where α is a suitable positive constant, the 3-Majority
dynamics converges in time polynomial in k and log n, w.h.p., even in the
presence of an adversary who can a�ect up to o(

√
n) nodes at each round.

As for the plurality consensus problem, if the initial opinion con�guration
exhibits a su�ciently large bias s towards a �xed plurality opinion (that is,
the number of nodes supporting the plurality opinion exceeds the number of
nodes supporting any other opinion by s additional nodes), we prove that

the 3-Majority dynamics converges in time O(min{k, (n/ log n)1/3} log n),

w.h.p. provided that s > c
√

min{2k, (n/ log n)1/3}n log n. We then prove

that our upper bound above is tight as long as k 6 (n/ log n)1/4.
Finally, a natural question is whether looking at more (than three) ran-

dom neighbors can signi�cantly speed up the process. We provide a negative
answer to this question: In particular, we show that samples of polylogarith-
mic size can speed up the process by a polylogarithmic factor only.

5.0.1. The majority roadmap

Section 5.1 formalizes the basic concepts and gives some preliminary
results. Section 5.2 is devoted to the proofs of the upper bounds on the

115



116 5. 3-MAJORITY DYNAMICS

convergence time of the 3-Majority dynamics. In Section 5.3, the lower
bounds for the studied dynamics are described.

5.1. The 3-Majority Dynamics for Plurality Consensus

A (k-opinion) con�guration (k-cd for short) is any k-tuple c = (c1, . . . , ck)
such that cjs are non negative integers and

∑
j=1,...,k cj = n. In what follows,

we always assume w.l.o.g. c1 > c2 > · · · > ck. So c1 is the plurality opinion
and s(c) = c1 − c2 is the bias of c.

The 3-Majority dynamics works as follows:

At every round, every node samples three nodes (including
herself and with repetitions) independently and uniformly
at random and reset her opinion according to the majority
of the opinions she sees. If she sees three di�erent opin-
ions, she chooses the �rst one.

Clearly, in the case of three di�erent opinions, choosing the second or the
third one would not make any di�erence. The same holds even if the choice
would be uniformly at random among the three opinions.

For any round t and for any j ∈ [k], let C
(t)
j be the r.v. counting the

number of nodes with opinion j at round t and let C(t) = (C
(t)
1 , . . . , C

(t)
k )

denote the random variable indicating the k-cd at time t of the execution of
the 3-Majority dynamics.

For every j ∈ [k] let µj(c) be the expected number of nodes with opinion
j at the next round when the current k-cd is c, i.e.

µj(c) = E
[
C

(t+1)
j

∣∣∣C(t) = c
]
.

To simplify the notation, in all the technical proofs we write µj and s
instead of µj(c) and s(c) when the dependence on con�guration c is clear
from the context.

Lemma 17 (Next Expected Con�guration). For any k-cd c and for every
opinion j ∈ [k], it holds that

(51) µj(c) = cj

(
1 +

cj
n
−
∑
h∈[k]

c2
h

n2

)
.

Proof. According to the 3-Majority dynamics, a node i gets opinion j
if it chooses three times opinion j, or if it chooses two times j and one time a
di�erent opinion, or if it chooses the �rst time opinion j and then, the second

and third time, two di�erent distinct opinions. Hence if we name X
(t)
i,j the

indicator random variable of the event �Node i gets opinion j at time t�, we
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have that

P
(
X

(t+1)
i,j = 1 |C(t) = c

)
=
(cj
n

)3
+ 3

(cj
n

)2
(
n− cj
n

)
+
(cj
n

)(
1−

(∑k
h=1 c

2
h

n2
+ 2

(cj
n

)(n− cj
n

)))

=
( cj
n3

)(
n2 + cjn−

k∑
h=1

c2
h

)
.

gg�

Lemma 18 (Next expected bias). For any k-cd c and for every opinion
j ∈ [k] with j 6= 1, it holds that

(52) µ1(c)− µj(c) > s(c)
(

1 +
c1

n

(
1− c1

n

))
.

Proof. Observe that, when we assume c1 > c2 > · · · > ck, we can give
the following upper bound on the sum of squares in Lemma 17

(53)
∑
h∈[k]

c2
h = c2

1 +

k∑
h=2

c2
h 6 c2

1 + c2

k∑
h=2

ch = c2
1 + c2(n− c1).

From Lemma 17 it thus follows that, for any j 6= 1,

µ1 − µj > µ1 − µ2 = (c1 − c2) +

(
c2

1 − c2
2

)
n

− c1 − c2

n2

∑
h∈k

c2
h

= s ·
(

1 +
c1 + c2

n
− 1

n2

∑
h∈k

c2
h

)

> s ·
(

1 +
c1 + c2

n
− c2

1 + nc2

n2

)
= s ·

(
1 +

c1

n

(
1− c1

n

))
,

where in the inequality we used (53) and the fact that c1 − c2 > 0. gg�

5.2. Upper Bounds for 3-Majority Dynamics

In this section, we provide the following upper bound on the conver-
gence time of the 3-Majority dynamics which clari�es the roles played by
the plurality opinion and by the initial bias.

Theorem 5 (General Upper Bound for 3-Majority). Let λ be any value
such that λ < 3

√
n and let c be any initial k-cd, with c1 > n/λ and

s(c) > 72
√

2λn log n.
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Then the 3-Majority dynamics converges to the plurality opinion in O (λ log n)
time w.h.p.

The next three corollaries of Theorem 5 address three relevant special

cases. Corollary 3 is obtained by setting λ = min
{

2k, 3
√
n/log n

}
and it

provides a bound which does not assume any condition on cm.

Corollary 3 (Upper Bound with Bias). Let c be any initial k-color
con�guration with

s(c) > 72

√
2 min

{
2k, 3

√
n

log n

}
n log n.

Then, the 3-Majority dynamics converges to the plurality opinion in O(min{2k,
3
√
n/log n} log n) time w.h.p.

Corollaries 4 and 7 are obtained by setting λ = poly log(n) and λ =
Θ(1), respectively. They provide su�cient conditions for a polylogarithmic
convergence time.

Corollary 4 (Polylogarithmic Upper Bound for 3-Majority). Let c be

any initial k-cd with c1 > n/ log` n and

s(c) > 72

√
2n log`+1 n.

Then, the 3-Majority dynamics converges to the plurality opinion in O(log`+1 n)
time w.h.p.

Corollary 7 (Logarithmic Upper Bound for 3-Majority). Let c be any
k-cd with c1 > n/β and s(c) > 72

√
2βn log n, for some constant β > 1.

Then, the 3-Majority dynamics converges to the plurality opinion in O(log n)
rounds, w.h.p.

In order to prove Theorem 5, we need the following three technical lem-
mas that essentially characterize three di�erent phases of the process anal-
ysis. Each of them concerns a di�erent range assumed by the plurality c1.
The �rst lemma considers con�gurations in which c1 is less than a suit-
able constant fraction of n: in this case, it shows that the bias between
the plurality size and the size of any other opinion increases by a factor
1 + Ω(c1/n) = 1 + Ω(1/λ).

Lemma 19 (From Plurality to Majority). Let c be any k-cd with n/λ 6
c1 6 2n/3 and s(c) > 72

√
2λn log n where λ < 3

√
n. and α is a su�ciently

large constant. Then, for any other opinion j 6= 1 it holds that

Pr
(
C

(t+1)
1 − C(t+1)

j > s(c)
(

1 +
c1

4n

) ∣∣∣ C(t) = c
)
> 1− 1

n3
.

Proof. Conditional on any con�guration C(t) = c, from the Cherno�
bounds (Lemma 76, in particular (188) with δ = 3

√
log n/µ if µ > log n,
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(189) with δ = 4 log n/µ otherwise), it follows that w.h.p.

C
(t+1)
j 6 max

{
µj + 3

√
µj log n, 5 log n

}
,

C
(t+1)
1 > µ1 − 3

√
µ1 log n.

Thus, if µj + 3
√
µj log n > 5 log n, then it holds w.h.p.

C
(t+1)
1 − C(t+1)

j > µ1 − µj − 3
√
µ1 log n− 3

√
µj log n(54)

> µ1 − µj − 2α
√
µ1 log n,

where we used that by the union bound Pr (A ∩B) > 1−Pr
(
AC
)
−Pr

(
BC
)
.

Otherwise, if µj + 3
√
µj log n < 5 log n, then it holds w.h.p.

C
(t+1)
1 − C(t+1)

j > µ1 − 3
√
µ1 log n− 5 log n(55)

> µ1 − µj − 6
√
µ1 log n,

where in the last inequality we used that µ1 > c1 > n/λ > n
2
3 .

From Lemma 18 and the hypothesis c1 6 2n/3 we get that

µ1 − µj > (c1 − cj)
(

1 +
c1

3n

)
,

and from (51) we also have that µ1 6 2c1. Thus, in (54) and (55) we get

µ1 − µj − 6
√
µ1 log n > (c1 − cj)

(
1 +

c1

3n

)
− 6
√

2c1 log n

> (c1 − cj)
(

1 +
c1

3n
− 6

√
2c1 log n

(c1 − cj)

)
(a)

> (c1 − cj)
(

1 +
c1

3n
− 1

12

√
c1

λn

)
> (c1 − cj)

(
1 +

c1

3n

(
1− 1

4

√
n

c1λ

))
(b)

> (c1 − cj)
(

1 +
c1

4n

)
,

where in (a) we used that c1 − cj > s > 72
√

2λn log n and in (b) we used
that c1 > n/λ, concluding the proof. gg�

Once c1 becomes larger than 2n/3 the negative occurrence of c1 in (52)
does not allow to directly show a drift towards plurality. We thus consider
another useful �drift� of the process: The sum of all the other opinion sizes
decreases exponentially, w.h.p., as long as this sum is enough large to apply
concentration bounds. This result is formalized in the next lemma.
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Lemma 20 (From majority to almost all). Let c be any k-cd with 2n/3 6
c1 6 n− ω (log n). Then, it holds that

Pr

∑
i 6=1

C
(t+1)
i 6 8

9

∑
i 6=1

ci

∣∣∣∣∣∣ C(t) = c

 > 1− 1

n3
.

Proof. Let us de�ne µ−1 =
∑

i 6=1 µi. From (51) we have

µ−1

n
=
∑
i 6=1

ci
n

1 +
ci
n
−
∑
j

(cj
n

)2


= 1− c1

n
+
∑
i 6=1

(ci
n

)2
−
(

1− c1

n

)∑
j

(cj
n

)2

= 1− c1

n
−
(c1

n

)2
+
c1

n

∑
j

(cj
n

)2

(a)

6 1− c1

n
−
(c1

n

)2
+
c1

n

((c1

n

)2
+
c2

n

(
1− c1

n

))
=
(

1− c1

n

)(
1−

(c1

n

)2
+
c1

n

c2

n

)
=
(

1− c1

n

)(
1− c1

n

(c1

n
− c2

n

))
,(56)

where in (a) we used (53). Using the hypothesis c1/n > 2/3 (hence c2/n 6
1/3), from (56) we obtain the last expression become

(57)
(

1− c1

n

)(
1− c1

n

(c1

n
− c2

n

))
6
(

1− c1

n

)(
1− c1

3n

)
6 7

9

∑
i 6=1

ci
n
.

Now observe that, from the Cherno� bound (Lemma 76), as long as µ−1 ∈
ω (log n), it holds w.h.p.∑

i 6=1

C
(t+1)
i 6 µ−1 +

√
µ−1 log n(58)

= µ−1

(
1 +

√
log n

µ−1

)
= µ−1 (1 + o (1)) .

Thus, by replacing (57) in (58), we get that it holds w.h.p.∑
i 6=1

C
(t+1)
i 6 µ−1 (1 + o (1)) 6 8

9

∑
i 6=1

ci,

concluding the proof. gg�

Finally, when the sum of all the minority opinions is not larger than
a polylogarithmic function, the probability that they all disappear in one
round is high. This is shown in the next lemma.
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Lemma 21 (The last step). Let α > 0 and let c be any k-cd with c1 >
n− logα n. Then, it holds that

(59) Pr

∑
i 6=1

C
(t+1)
i = 0 |C(t) = c

 > 1− 3 log2α n

n
.

Proof. As in the previous proof let we name µ−1 =
∑

i 6=1 µi. Note that

c1 > n− logα n implies
∑

i 6=1 ci 6 logα n. Thus, from (51) we have

µ−1 =
∑
i 6=1

ci

1 +
ci
n
−
∑
j

(cj
n

)2


6
∑
i 6=1

ci

(
1 +

ci
n
−
(c1

n

)2
)

=
∑
i 6=1

ci

1 +
ci
n
−

1−
∑
j 6=1

cj
n

2
6
∑
i 6=1

ci

ci
n

+ 2
∑
j 6=1

cj
n


6
∑
i 6=1

ci

(
3 logα n

n

)
=

3 log2α n

n
.

Finally, (59) follows fromMarkov's inequality on the event �
∑

i 6=1C
(t+1)
i > 1�

and, since
∑

i 6=1C
(t+1)
i is a non-negative integer-valued r.v., this is equivalent

as �
∑

i 6=1C
(t+1)
i > 0�. gg�

Proof of Theorem 5. From Lemma 19 it follows that, as long as the
number of nodes with the plurality opinion c1 is smaller than a constant
fraction of n, the bias between c1 and c2 increases by a factor (1 + 1

4λ),
w.h.p.

From Lemma 20 it follows that, when the plurality opinion reaches a
suitable constant fraction of n, then the number of nodes with non-plurality
opinions decreases at exponential rate, w.h.p.

Finally, in Lemma 21 we consider separately the last round of the pro-
tocol, where all opinions but the plurality one disappear, w.h.p. gg�

5.2.1. Plurality consensus with adversary

In this section we show that the 3-Majority dynamics is robust against
Byzantine adversaries. Let F 6 n, we consider an F -bounded dynamic ad-
versary that, at every round, can change the opinion of up to F nodes
with the goal of preventing the system to converge to the plurality opinion.
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Clearly, reaching complete plurality consensus is not possible in this frame-
work. In presence of an F -bounded dynamic adversary we thus consider
the M -plurality consensus, in which all but M nodes have to agree on the
plurality opinion.

Notice that it is not possible to reach M -plurality consensus against an
F -bounded dynamic adversary if F > M . Our previous analysis of the
3-Majority dynamics can be easily adapted to show that it achieves o(s/λ)-
plurality consensus against any F -bounded adversary for F = o(s/λ), where
s is the initial bias and λ < 3

√
n.

Corollary 5 (Upper Bound with Adversary). Let λ be any value such
that λ < 3

√
n and let c be any initial con�guration, with c1 > n/λ and

s(c) > 24
√

2λn log n.

The 3-Majority dynamics achieves O(s(c)/λ)-plurality consensus against any
F -bounded adversary with F = o(s(c)/λ), and the convergence time is O (λ log n)
w.h.p.

Proof. In order to formalize the analysis of the process with an adver-
sary, we split each round in two consecutive steps: In the �rst step nodes
apply the updating rule of the 3-Majority dynamics while, in the second step,
the adversary can change the opinion of up to F arbitrary nodes. Hence, if
the con�guration of the system at some round t is C(t) = ĉ, we name H(t+1)

the random variable indicating the con�guration after the �rst step of round
t+ 1 and C(t+1) the con�guration after the second step of round t+ 1, i.e.

C(t) = ĉ
Random−→ H(t+1) Adversary−→ C(t+1) .

Notice that C(t+1) is a function of H(t+1) arbitrarily determined by the
adversary within its constraints.

If the con�guration at some round t is C(t) = ĉ, with ĉ1 6 2n/3, then
from Lemma 19 it follows that w.h.p.

H
(t+1)
1 −H(t+1)

j > s(ĉ) +
s(ĉ)

4λ
.

The bias after the adversarial step is thus w.h.p.

C
(t+1)
1 − C(t+1)

j > s(ĉ) + s(ĉ)/(4λ)− F.
Since by hypothesis F = O(s(c)/λ), as long as the bias s(ĉ) of the current
con�guration is at least as large as the bias s(c) of the initial con�guration,
we have that w.h.p.

(60) C
(t+1)
1 − C(t+1)

j > s(ĉ) +
s(ĉ)

4λ
− F > s(ĉ) +

s(ĉ)

5λ
.

Notice that the requirement s(ĉ) > s(c) trivially holds in the initial con�g-
uration, when ĉ = c, and from 60 by induction it holds in all the following
rounds, w.h.p.
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(60) guarantees that, as long as the plurality opinion is supported by at
most 2n/3 nodes (see hypothesis of Lemma 19) the bias increases by a factor
1 + Θ(1/λ) at each round, w.h.p., even in the presence of the adversary.
Hence, after O(λ log n) rounds the plurality opinion is supported by at least
2n/3 nodes, w.h.p.

When the system reaches, at some round t, a con�guration C(t) = ĉ such
that the plurality opinion is supported by 2n/3 6 ĉ1 6 n − ω(log n) nodes,
then Lemma 20 guarantees that the total number of nodes supporting the
other opinions in con�guration H(t+1) after the step of 3-Majority dynamics
of the next round is w.h.p.∑

i 6=1

H
(t+1)
i 6 8

9

∑
i 6=1

ĉ1 .

Hence, as long as
∑

i 6=1 ĉ1 = Ω(s(c)/λ), the total number of nodes supporting

the other opinions in con�guration C(t+1) (after the adversarial step of the
next round) is w.h.p.

(61)
∑
i 6=1

C
(t+1)
i 6 8

9

∑
i 6=1

ĉ1 + F 6 9

10

∑
i 6=1

ĉ1 .

Thus, when the plurality opinion reaches 2n/3 nodes, after further O(log n)
rounds all but o(s(c)/λ) nodes support the plurality opinion, w.h.p. No-
tice that (61) also guarantees that, once we reached M -plurality consensus,
the system takes on only con�gurations that satisfy M -plurality consensus,
w.h.p. gg�

5.3. Lower Bounds for 3-Majority Dynamics

This section is organized in three subsections:

• In Section 5.3.1, we prove a lower bound on the convergence time
of the 3-Majority dynamics;
• In Section 5.3.2, we show that the 3-Majority dynamics is essentially
the only 3-input dynamics that converges to plurality consensus;
• In Section 5.3.3, we provide a lower bound on the convergence time
of the h-plurality dynamics for h > 3.

5.3.1. Lower bound for 3-Majority dynamics

In this section we show that if the 3-Majority dynamics starts from a
su�ciently balanced con�guration (i.e., at the beginning there are n/k ±
o(n/k) nodes of every opinion) then it takes Ω(k log n) rounds, w.h.p., to
reach one of the absorbing con�gurations where all nodes have the same
opinion. In what follows, all events and random variables thus concern the
Markov process yielded by the 3-Majority dynamics.

In the next lemma we show that if there are at most n/k + b nodes of a
speci�c opinion, where b is smaller than n/k, then at the next round there
are at most n/k + (1 + 3/k)b nodes of that opinion, w.h.p.
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Lemma 22. Let the number of opinions k be such that k 6 (n/ log n)1/4,
let b be any number with k

√
n log n 6 b 6 n/k, and let c = (c1, . . . , ck) be

a con�guration. If cj = n/k + a for some opinion j ∈ [k] and for some
a 6 b, then the number of nodes with opinion j at the next round are at
most n/k + (1 + 3/k)b, w.h.p.; more precisely, for any a 6 b and for any
con�guration c such that cj = n/k + a it holds that

Pr

(
C

(t+1)
j > n

k
+

(
1 +

3

k

)
b

∣∣∣∣ C(t) = c

)
6 1

n2
.

Proof. For any con�guration c = (c1, . . . , ck) with
∑k

j=1 cj = n and

any opinion j ∈ [k], the expected value of the number of nodes having

opinion j at round t+ 1 conditional on
{
C(t) = c

}
is (see Lemma 17)

E
[
C

(t+1)
j | C(t) = c

]
= cj

1 +
cj
n
− 1

n2

k∑
j=1

c2
j

 .

Observe that, since
∑k

j=1 cj = n, from Jensen's inequality1 it follows that

k∑
j=1

c2
j

n2
> 1

k
.

Hence, we can give an upper bound on the expectation of C
(t+1)
j that depends

only on cj and not on the whole con�guration c at round t, namely

E
[
C

(t+1)
j |C(t)

]
6 C(t)

j

(
1 +

C
(t)
j

n
− 1

k

)
.

If we condition on the number of nodes of opinion j being cj = n/k + a in
con�guration c, for some a 6 b, we get

E
[
C

(t+1)
j |C(t) = c

]
6
(n
k

+ a
)(

1 +
n/k + a

n
− 1

k

)
=
n

k
+

(
1 +

1

k

)
a+

a2

n

6 n

k
+

(
1 +

1

k

)
b+

b2

n
6 n

k
+

(
1 +

2

k

)
b,

where in the last two inequalities we used that a 6 b and b 6 n/k.2 Since

C
(t+1)
j conditional on

{
C(t) = c

}
can be written as a sum of n independent

1 Jensen's inequality states that given any convex function φ : R → R and k real

numbers x1, . . . xk ∈ R, it holds φ
(

1
k

∑k
i=1 xi

)
6 1

k

∑k
i=1 φ(xi).

2Notice that the inequality holds in particular for negative a as well
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Bernoulli random variables, from the Cherno� bound (Lemma 76) we thus
get that for every a 6 b it holds that

Pr

(
C

(t+1)
j > n

k
+

(
1 +

3

k

)
b

∣∣∣∣ C(t) = c

)
6 e−2(b/k)2/n 6 1

n2
,

where in the last inequality we used that b > k
√
n log n. gg�

Let us say that a con�guration c = (c1, . . . , ck) ∈ {0, 1, . . . , n}k with∑k
j=1 cj = n is monochromatic if there is an j ∈ [k] such that cj = n.

In the next theorem we show that if we start from a su�ciently balanced
con�guration, then the 3-Majority dynamics takes Ω(k log n) rounds, w.h.p.,
to reach a monochromatic con�guration.

Theorem 6 (Lower Bound for 3-Majority). Let

τ = inf{t ∈ N : C(t) is monochromatic}
be the random variable indicating the �rst round such that the system is in
a monochromatic con�guration. If the initial number of opinions is k 6
(n/ log n)1/4 and the initial con�guration is c = (c1, . . . , ck) with

max{cj : j = 1, . . . , k} 6 n

k
+
(n
k

)1−ε

for some ε > 0, then τ = Ω(k log n) w.h.p.

Idea of Proof. For an opinion j ∈ [k] let us denote the di�erence
Cj − n/k as the positive imbalance. In Lemma 22 we proved that, as long
as the positive imbalance of an opinion is smaller than n/k, this di�erence
increases by a factor smaller than (1 + 3/k) at every round, w.h.p. Hence,
if an opinion starts with a positive imbalance smaller than (n/k)1−ε, for
some ε > 0, then it takes Ω(k log n) rounds to reach an imbalance of n/k,
w.h.p. By union bounding on all the opinions, we can get the stated lower
bound. gg�

Proof. Observe that for any round T 6 c k log n, where c is a suitable
positive constant, it holds that

(1 + 3/k)T (n/k)1−ε 6 n

k

Since in the initial con�guration c for any opinion j ∈ [k] we have that

cj 6 n/k + (n/k)1−ε, for T 6 c k log n it holds that

Pr
(
C

(T )
j = n

∣∣∣C(0) = c
)

(62)

6 Pr

(
C

(T )
j > n

k
+

(
1 +

3

k

)T (n
k

)1−ε ∣∣∣C(0) = c

)
,

Since cj 6 n/k + (n/k)1−ε, if we also have

C
(T )
j > n

k
+

(
1 +

3

k

)T (n
k

)1−ε
,
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then a round t with 0 6 t 6 T − 1 must exist such that C
(t)
j 6 n/k + b and

C
(t+1)
j > n

k
+

(
1 +

3

k

)
b

for some value b, with k
√
n log n 6 b 6 n/k, thus

Pr

(
C

(T )
j > n

k
+

(
1 +

3

k

)T (n
k

)1−ε ∣∣∣C(0) = c

)
(63)

6 Pr

((
∃t : 0 6 t 6 T − 1 ∧ C

(t)
j 6

n

k
+ b
)

∧
(
C

(t+1)
j > n

k
+

(
1 +

3

k

)
b

) ∣∣∣ C(0) = c

)
(64)

6
T−1∑
t=0

Pr

((
C

(t)
j 6

n

k
+ bt

)
∧
(
C

(t+1)
j > n

k
+

(
1 +

3

k

)
bt

) ∣∣∣ C(0) = c

)
(65)

where the inequality from (63) to (64) holds for some b with

k
√
n log n 6 b 6 n/k,

and the inequality from (64) to (65) holds for some b0, . . . , bT−1 with k
√
n log n 6

bt 6 n/k for every t = 0, . . . , T − 1. Now observe that

Pr

((
C

(t)
j 6

n

k
+ bt

)
∧
(
C

(t+1)
j > n

k
+

(
1 +

3

k

)
bt

) ∣∣∣ C(0) = c

)(66)

=
∑
a6bt

Pr

((
C

(t)
j =

n

k
+ a
)
∧
(
C

(t+1)
j > n

k
+

(
1 +

3

k

)
bt

) ∣∣∣ C(0) = c

)

=
∑
a6bt

Pr

((
C

(t+1)
j > n

k
+

(
1 +

3

k

)
bt

) ∣∣∣ (C(t)
j =

n

k
+ a
)
∧
(
C(0) = c

))

· Pr
(
C

(t)
j =

n

k
+ a

∣∣∣ C(0) = c
)

6 1

n2

∑
a6bt

Pr
(
C

(t)
j =

n

k
+ a

∣∣∣ C(0) = c
)
6 1

n2
,

where in the last line we used Lemma 22.
By combining (62), (65), and (66) we get that, for every opinion j ∈ [k],

if the initial number of nodes having opinion j is cj 6 n/k + (n/k)1−ε at
any round T 6 c k log n the probability that all nodes have opinion j is at
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most T/n2. The probability that C(T ) is monochromatic is thus at most
(kT )/n2 6 n−α for some positive constant α. gg�

It may be worth noticing that what we actually prove in Theorem 6 is
that Ω(k log n) rounds are required in order to go from a con�guration where
the majority opinion has at most n/k + (n/k)1−ε nodes to a con�guration
where it has 2n/k opinions.

5.3.2. A negative result for 3-input dynamics

In order to prove that dynamics that di�er from the majority ones do
not solve plurality consensus, we �rst give some formal de�nitions of the
dynamics we are considering.

Definition 10 (h-Input Dynamics). An h-dynamics is a synchronous
protocol where at each round every node picks h random neighbors (includ-
ing herself and with repetition) and updates her opinion according to some
deterministic rule that depends only on the opinions it sees. Let Dh(k) be
the class of h-dynamics and observe that a dynamics P ∈ Dh can be speci�ed
by a function

f : [k]h → [k],

such that f(x1, . . . , xh) ∈ {x1, . . . , xh}, where f(x1, . . . , xh) is the opinion
chosen by a node that sees the (ordered) sequence (x1, . . . , xh) of opinions.

In the class D3(k), there is a subset M3 of equivalent protocols called
3-Majority dynamics having two key-properties described below: the clear-
majority and the uniform one.

Definition 11 (Clear-Majority Property). Let (x1, x2, x3) ∈ [k]3 be a
triple of opinions. We say that (x1, x2, x3) has a clear majority if at least
two of the three entries have the same value. A dynamics P ∈ D3(k) has the
clear-majority property if whenever its f sees a clear majority it returns the
majority opinion.

Given any 3-input dynamics function f(x1, x2, x3), for any triple of dis-
tinct opinions r, g, b ∈ [k], let Π(r, g, b) be the subset of permutations of the
opinions r, g, b and de�ne the following �counters�:

δr = |{(z1, z2, z3) ∈ Π(r, g, b), s.t. f(z1, z2, z3) = r}|,
δg = |{(z1, z2, z3) ∈ Π(r, g, b), s.t. f(z1, z2, z3) = g}|,
δb = |{(z1, z2, z3) ∈ Π(r, g, b), s.t. f(z1, z2, z3) = b}|.

Observe that for any 3-input dynamics it must hold δg + δr + δb = 6.

Definition 12 (Uniform Property). A dynamics P ∈ D3(k) has the
uniform property if, for any triple of distinct opinions r, g, b ∈ [k], it holds
that δr = δg = δb (= 2).

Informally speaking, the clear-majority and the uniform properties pro-
vide a clean characterization of those dynamics that are good solvers for
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plurality consensus. This fact is formalized in the next de�nitions and in the
�nal theorem.

Definition 13 (3-Input Majority-Boosting Dynamics). A protocol P ∈
D3(k) belongs to the class M3 ⊂ D3(k) of 3-input majority-boosting dy-
namics if its function f(x1, x2, x3) has the clear-majority and the uniform
properties.

Definition 14 ((s, ε)-Plurality Consensus Solver). We say that a pro-
tocol P is an (s, ε)-solver (for the plurality consensus problem) if for every
initial s-biased con�guration c, when running P, with probability at least
1− ε there is a round t by which all nodes get the plurality opinion of c.

Let us observe that, by de�nition of h-dynamics (see De�nition 10), any
monochromatic con�guration is an absorbing state of the relative Markov
process. Moreover, the smaller s and ε the better an (s, ε)-solver is; in other
words, if a dynamics is an (s, ε)-solver then it is also an (s′, ε′)-solver for
every s′ > s and ε′ > ε. In Section 5.2, we showed that any dynamics

P ∈M3 =⇒ (Θ(
√

min{2k, (n/ log n)1/3}n log n),Θ(1/n))-solver ∈ D3.

We can now state the main result of this section.

Theorem 21 (Properties of Good Solvers). Given a protocol P, the
following hold:

(a) If P is an (n/4, 1/4)-solver in D3, then its f must have the clear-
majority property.

(b) A constant η > 0 exists such that, if P is an (η ·n, 1/4)-solver, then
its f must have the uniform property.

The above theorem also provides the clear reason why some dynamics
can solve consensus but cannot solve plurality consensus in the non-binary
case. A relevant example is the 3-Median dynamics studied in [DGM+11]:
it has the clear-majority property but not the uniform one.

For readability sake, we split the proof of the above theorem in two tech-
nical lemmas: in the �rst one, we show the �rst claim about clear majority
while in the second lemma we show the second claim about the uniform
property.

Lemma 23 (clear majority). If a protocol P ∈ D3 is an (n/4, 1/4)-solver,
then it chooses the majority opinion every time there is a triple with a clear
majority.

Proof. For every triple of opinions (x1, x2, x3) ∈ [k]3 that has a clear
majority, let us de�ne δ(x1, x2, x3) to be 1 if protocol P behaves like the
majority protocol over triple (x1, x2, x3) and 0 otherwise. Consider an initial
con�guration with only two opinions, say red (r) and blue (b), with cr red
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nodes and cb = n− cr blue nodes. Let us de�ne ∆r and ∆b as follows

∆r = δ(r, r, b) + δ(r, b, r) + δ(b, r, r),

∆b = δ(b, b, r) + δ(b, r, b) + δ(r, b, b).

We can write the probability that a node chooses opinion red as

p(r) =
(cr
n

)3
+
(cr
n

)2 cb
n
·∆r +

(cb
n

)2 cr
n

(3−∆b)(67)

=
cr
n3

(
c2
r + cb (cr∆r − cb∆b) + 3c2

b

)
.

Observe that for a majority protocol we have that ∆r = ∆b = 3. In what
follows we show that if this is not the case then there are con�gurations
where the majority opinion does not increase in expectation. We distinguish
two cases, case ∆r 6= ∆b and case ∆r = ∆b.

- Case ∆r 6= ∆b. Suppose w.l.o.g. that ∆r < ∆b, and observe that since
they have integer values it means ∆r 6 ∆b − 1. Now we show that, if we
start from a con�guration where the red opinion has the majority of nodes,
the number of red nodes decreases in expectation. By using ∆r 6 ∆b − 1 in
(67) we get

(68) p(r) 6 cr
n3

(
c2
r + cb(cr − cb)∆b − crcb + 3c2

b

)
.

If the majority of nodes is red then cr − cb is positive, and since ∆b can be
at most 3 from (68) we get

(69) p(r) 6 cr
n3

(
c2
r + 2crcb

)
.

Finally, if we put cr = n/2 + s and cb = n/2− s, for some positive s, in (69),
we get that

(70) p(r) 6 cr
n3

(
3

4
n2 + (n− s)s

)
6 cr
n
.

- Case ∆r = ∆b. When ∆r = ∆b, observe that if the protocol is not a
majority protocol then it must be ∆r = ∆b 6 2. Hence, if we start again
from a con�guration where cr > cb, from (67) we get that

(71) p(r) 6 cr
n3

(
c2
r + 2cb(cr − cb) + 3c2

b

)
=
cr
n
.

In both cases, for any protocol P that does not behave like a majority
protocol on triples with a clear majority, if we name Xt the random variable
indicating the number of red nodes at round t, from (70) and (71) we get that
E [Xt+1 |Xt] 6 Xt, hence Xt is a supermartingale. Now let τ be the random
variable indicating the �rst time the chain hits one of the two absorbing
states, i.e.

τ = inf{t ∈ N : Xt ∈ {0, n}}.
Since Pr (τ <∞) = 1 and all Xt's have values bounded between 0 and n,
from the martingale stopping theorem3 we get that E [Xτ ] 6 E [X0]. If we

3See e.g. Chapter 17 in [LPW09] for a summary of martingales and related results.
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start from a con�guration that is n/4-imbalanced in favor of the red opinion,
we have that X0 = n/2 + n/8, and if we call ε is the probability that the
process ends up with all blue nodes we have that E [Xτ ] = (1− ε)n. Hence
it must be (1− ε)n 6 n/2 + n/8 and the probability to end up with all blue
nodes is ε > 5/8 > 1/4. Thus the protocol is not a (n/4, 1/4)-solver. gg�

Lemma 24 (uniform property). A constant η > 0 exists such that, if P
is an (ηn, 1/4)-solver, then its f must have the uniform property.

Proof. Thanks to the previous lemma, we can assume that f has the
clear-majority property but a triple (r, g, b) exists such that δr < max{δg, δb}.
Let us start the process with the following initial con�guration having only
the above 3 opinions and then show that the process does not converge to
the plurality opinion r, w.h.p.:

c = (cr, cg, cb) = (n/3 + s, n/3, n/3− s) where s = Θ(
√
n log n).

We consider the �hardest� case where δr = 1: the case δr = 0 is simpler since
in this case, no matter how the other δ′s are distributed, it is easy to see that
the r.v. cr decrease exponentially to 0 starting from the above con�guration.

- Case δr = 1, δg = 3, and δb = 2 (and symmetric cases). Starting
from the above initial con�guration, we can compute the probability

p(r) = Pr
(
Xv = r

∣∣C = c
)

that a node gets the opinion r.

p(r) =
(cr
n

)3
+ 3

(cr
n

)2 n− cr
n

+
crcgcb
n3

=
n+ 3s

3n3

((n
3

+ s
)2

+ 3
(n

3
+ s
)(2

3
n− s

)
+
(n

3

)(n
3
− s
))

.

After some easy calculations, we get

p(r) =
8

27

(
1 +O

( s
n

))
.

As for p(g), by similar calculations, we obtain the following bound

p(g) =
10

27

(
1−O

(
s2

n2

))
.

From the above two equations, we get the following bounds on the expec-
tation of the r.v.'s Xr and Xg counting the nodes having opinion r and g,
respectively (at the next round).

E [Xr |C = c] 6 8

27
n+O(s) and

E [Xg |C = c] > 10

27
n−O

(
s2

n

)
.
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By a standard application of the Cherno� bound (Lemma 76), we can prove
that, if s 6 ηn for a su�ciently small η > 0, the initial value cr decreases
by a constant factor, w.h.p., going much below the new plurality cg. Then,
by applying iteratively the above reasoning we get that the process does not
converge to r, w.h.p.

- Case δr = 1, δg = 4, and δb = 1 (and symmetric cases). In this case
it is even simpler to show that, starting from the same initial con�guration
considered in the previous case, the process does not converge to opinion r,
w.h.p. gg�

5.3.3. A lower bound for h-plurality

In Section 5.3.1, we have shown that the 3-Majority dynamics takes
Θ(k log n) rounds, w.h.p., to converge in the worst case. A natural question
is whether by using the h-plurality protocol, with h slightly larger than 3, it
is possible to signi�cantly speed-up the process. We prove that this is not
the case.

Let us consider a set of n nodes, each node having an opinion out of k
possible ones. The h-plurality protocol works as follows:

At every round, every node picks h nodes uniformly at ran-
dom (including herself and with repetitions) and updates
her opinion according to the plurality of the opinions she
sees (breaking ties u.a.r.)

Let j ∈ [k] be an arbitrary opinion, in the next lemma we prove that, if the

number of nodes is smaller than 2n/k and if k/h = O(n(1−ε)/4), then the
probability that the number of nodes having opinion j increases by a factor
(1 + h2/k) is exponentially small.

Lemma 25. Let c = (c1, . . . , ck) be a con�guration and let j ∈ [k] be an

opinion such that (n/k) 6 cj 6 2(n/k). If k/h = O(n(1−ε)/4) then it holds
that

Pr

(
C

(t+1)
j >

(
1 +

h2

k

)
cj

∣∣∣∣ C(t) = c

)
6 e−Θ(nε).

Proof. Consider a speci�c node, say u ∈ [n], let Nj be the number of
nodes having opinion j picked by u during the sampling stage of the t-th
round and let Y be the indicator random variable of the event that node u
chooses opinion j at round t+1. We give an upper bound on the probability
of the event Y = 1 by conditioning it on Nj = 1 and Nj > 2 (observe that
if Nj = 0 node u cannot choose j as her opinion at the next round)

(72) Pr (Yu = 1) 6 Pr (Yu = 1 |Nj = 1) Pr (Nj = 1) + Pr (Nj > 2) .

Now observe that

• Pr (Yu = 1 |Nj(u) = 1) 6 1/h since it is exactly 1/h if all other
sampled nodes have distinct opinions and it is 0 otherwise;
• Pr (Nj = 1) 6 hcj/n since it can be bounded by the probability
that at least one of the h samples gives opinion j;
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• Pr (Nj > 2) 6
(
h
2

)
c2
j/n

2 since it is the probability that a pair of
sampled nodes exist with the same opinion j.

Hence, in (72) we have that

Pr (Y = 1) 6 cj
n

+
h2

2
·
c2
j

n2
.

Thus, for the expected number of nodes having opinion j at the next round
we get

E
[
C

(t+1)
j |C(t) = c

]
6 cj +

h2

2n
c2
j = cj

(
1 +

h2

2n
cj

)
6 cj

(
1 +

h2

k

)
,

where in the last inequality we used the hypothesis cj 6 2(n/k). Since

C
(t+1)
j conditional on {C(t) = c} is a sum of n independent Bernoulli random

variables, from the Cherno� bound (Lemma 76 with λU = cjh
2/k), we �nally

get

Pr

(
C

(t+1)
j > cj

(
1 + 2

h2

k

) ∣∣∣∣ C(t) = c

)
6 exp

(
−2(cjh

2/k)2

n

)
6 exp (−Ω(nε)) ,

where in the last inequality we used cj > n/k and k/h = O(n(1−ε)/4). gg�
By adopting a similar argument to that used for proving Theorem 6, we

can get a lower bound Ω(k/h2) on the completion time of the h-plurality.

Theorem 7 (Lower Bound for h-Majority). Let C(t) be the random vari-
able indicating the con�guration at round t according to the h-Plurality dy-
namics and let

τ = inf{t ∈ N : C(t) is monochromatic}.
If the initial con�guration c = (c1, . . . , ck) is such that

max{cj : j = 1, . . . , k} 6 3n

2k
,

then τ = Ω(k/h2) w.h.p.

Proof. Since in the initial con�guration for any opinion j ∈ [k] we have
that cj 6 3n/(2k), from Lemma 25 it follows that the number of nodes
supporting the plurality opinion increases at a rate smaller than (1 + 2h2/k)
with probability exponentially close to 1. This easily implies a recursive

relation of the form C
(t+1)
j 6

(
1 + 2h2/k

)
C

(t)
j which, in turn, gives

C
(t)
j 6

(
1 +

2h2

k

)t
C

(0)
j 6

(
1 +

2h2

k

)t
3n

2k
.

Thus, for t < k/h2 log(4/3), we have that w.h.p.

C
(t)
j 6

3n

2k

(
1 +

2h2

k

)t
<

2n

k
,
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concluding the proof. gg�

5.4. The 3-Majority Dynamics for Stabilizing Consensus

In this section, we move on to prove the results discussed in Section 2.2.2.
Since here we start investigating a di�erent problem, in the following we

partly recall some basic notation alredy introduced in Section 5.1. Since the
communication graph is complete and nodes are anonymous, the overall sys-
tem state at any round can be described by a con�guration c :=

(
c1, ..., c|Σ|

)
,

where the support ci of opinion i is the number of nodes holding opinion i
in that system's state. Given con�guration c, we say that an opinion i is
active in c if ci > 0 and, for any set of active opinions W ⊆ Σ, we de�ne
m(W ) := arg mini∈W ci. For any variable x of the process, we write x(t) if

we are considering its value at round t and X(t) to denote the corresponding
random variable.

The next lemma is an easy consequence of Lemma 17 and provides a
general upper bound on the expected number of nodes supporting a given
opinion at round t+ 1, given the con�guration at round t.

Lemma 26. Let c be the con�guration at round t and let W ⊆ Σ be the
subset of active opinions in c. Then, for any opinion i ∈W ,

(73) E
[
C

(t+1)
i

∣∣∣C(t) = c
]
6 ci

(
1 +

ci
n
− 1

|W |

)
Proof. From Lemma 17 we have

E
[
C

(t+1)
i

∣∣∣C(t) = c
]

= cj

1 +
cj
n
− 1

n2

∑
h∈[k]

c2
h


6 ci

(
1 +

ci
n
− 1

|W |

)
,

where in the inequality we used that the sum
∑

`∈W c2
` is minimized for

c` = n/|W |. gg�
Lemma 26 implies that opinions whose support falls below the average

n/|W | decrease in expectation. This expected drift is a key-ingredient of the
analysis and, as we show in the next paragraph, it provides useful intuitions
about the process. On the other hand, when c is almost uniform, the above
drift turns out to be negligible and symmetry breaking is due to the inherent
variance of the random process.

5.4.1. Approaches which don't seem to work

When the 3-Majority dynamics starts from con�gurations that exhibit a
large initial support bias between the largest and the second-largest opinions,
the approach adopted in Section 5.2 successfully exploits the fact that the
initial plurality is preserved throughout the evolution of the random process,
with an expected positive drift that is also preserved, w.h.p. An intuition of
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this fact can be achieved from simple manipulations of (73). However, the
aforementioned drift is only preserved if the largest opinion never changes,
w.h.p., no matter which the second-largest opinion is: a condition that is not
met by uniform con�gurations. A promising attempt to cope with uniform
con�gurations is to consider the r.v.

S(t) = C
(t)
M(t) − C

(t)
2M(t),

where M(t) and 2M(t) are the r.v.s that take the index of (one of) the
largest opinion and of (one of) the second-largest ones, respectively, in round
t. For any �xed pair i, j, such that ci > cj , (73) implies that the di�erence

C
(t+1)
i − C(t+1)

j in the next round is positive in expectation, so a suitable

submartingale argument (similarly to those in [LPW09]), seemed to work in
order to show that the system (rather quickly) achieves a �su�ciently-large�
bias toward the plurality as to allow fast convergence. This approach would
work if the random indicesM and 2M maintained their initial values across
the entire duration of the process. Unfortunately, starting from uniform
con�gurations, in the next round, the expected di�erence between the new
largest opinion and the new second largest one may have no positive drift

at all. Roughly speaking, in the next round, the r.v. C
(t+1)
2M(t+1) can be much

larger than the r.v. C
(t+1)
M(t) .

A promising dynamics for the stabilizing almost-consensus problem is the
one introduced in [DGM+11], in which nodes revise their opinions (assumed
to be totally ordered) by taking the median between the currently held opin-
ion and those held by two randomly sampled nodes. However, while we do
not assume opinions to be integers (or totally ordered), their analysis strongly
relies on the fact that the median opinion (or any good approximation of it)
exhibits a strong increasing drift, even when starting from almost-uniform
con�guration, whereas no opinion is �special� to a majority rule when the
starting con�guration is uniform. The adoption of an inherently biased func-
tion as the median can have important consequences. To get an intuition, the
reader may consider the following simple instance: Σ = {1, 2, 3}, with the
system starting in con�guration c1 = n/2, c2 = 0, c3 = n/2 (Figure 11). At
the end of the �rst round, a static adversary changes the values of F = log n
nodes, equally distributed in c1 and c3, to value 2. The (non-valid) value 2 is
the global median and standard counting arguments show that, while values
1 and 2 have no positive expected drift, the median has a strong expected
drift that holds w.h.p. whenever c1, c3 = Θ(n). This might fool the system
into the con�guration in which c2 = n, thus converging to a non-valid value.

5.4.2. The new approach

The analysis we present signi�cantly departs from the above approaches.
It is important to remark that, for |Σ| > 3, no previous analysis of the 3-
Majority dynamics with almost-uniform initial con�gurations was known,
even in the simpler non-adversarial case. On the other hand, while simpler,
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the analysis of the non-adversarial case still has per-se interest and it re-
quires to address some of the main technical challenges that also arise in
the adversarial case. Section 5.4.3 is thus devoted to the analysis of the
non-adversarial case, while an outline is given in the paragraphs that follow.

When the con�guration is (approximately) uniform, Lemma 26 tells us
that the process exhibits no signi�cant drift toward any �xed opinion. In-

terestingly, things change if we consider the random variable C
(t)
m , indicating

the size of the smallest opinion supported at round t. Let j 6 k be the num-
ber of active opinions in a given round t, we �rst prove that the expected

value of C
(t)
m always exhibits a non-negligible negative drift:

(74) E
[
C(t+1)
m |C(t) = ĉ

]
6 ĉm − ε

√
n

j3/2
,

for some constant ε > 0 (see Figure 17). This drift is essentially a conse-

quence of Lemma 26 and of the standard deviation of r.v.s C
(t)
i s (see the

proof of Lemma 28). The analysis then proceeds along consecutive phases,
each consisting of a suitable number of consecutive rounds. If the number
of active opinions at the beginning of the generic phase is j, we prove that,

with positive constant probability, C
(t)
m vanishes within the end of the phase,

so that the next phase begins with (at most) j − 1 active opinions.
We clearly need a good bound on the length of a phase beginning with

at most j opinions. To this aim, we derive a new upper bound - stated
in Lemma 27 - on the hitting time of stochastic processes with expected
drift that are de�ned by �nite-state Markov chains [LPW09](74) to prove

that, from any con�guration with j 6 k active opinions, C
(t)
m drops below

the threshold n/j−√jn log n within O(poly(j, log n)) rounds, with constant
positive probability: This �hitting� event represents the exit condition from
the symmetry-breaking stage of the phase. Indeed, once it occurs, we can
consider any �xed active opinion i having support size ci below the above
threshold (thanks to the previous stage, we know that there is a good chance
this opinion exists): We then show that Ci has a negative drift of order
Ω(ci/j). This allows us to prove that Ci drops from n/j −√jn log n to zero
within O(poly(j, log n)) further rounds, with positive constant probability.
This interval of rounds is the dropping stage of the phase.

Ideally, the process proceeds along k consecutive phases, indexed as j =
k, k − 1, . . . , 2, such that we are left with at most j − 1 active opinions at
the end of Phase j. In practice, we only have a constant probability that
at least one opinion disappears during Phase j. However, using standard
probabilistic arguments, we can prove that, w.h.p., for every j, the transition
from j to j−1 active opinions takes a constant (amortized) number of phases,
each requiring O(poly(j, log n)) rounds.

The presence of a dynamic, adaptive adversary makes the above analysis
technically more complex. A major issue is that a di�erent de�nition of
phase must be considered, since the adversary might permanently feed any
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opinion so that the latter never dies. So the number of active opinions might
not decrease from one phase to the next one. Essentially, we need to manage
the persistence of �small� (valid or not) opinions: The end of a phase is now
characterized by one �big� valid opinion that becomes �small� and, moreover,
we need to show that, in general, �small� colors never become �big�, no matter
what the dynamic F -bounded adversary does. The dynamic-adversary case
is described in Section 5.4.5.

5.4.3. Convergence Time without Adversary

Let C ⊆ Σ be the subset of valid opinions, i.e. those supported by at
least one node in the initial con�guration, and denote by k = |C| its size.
This section is devoted to the proof of the following result, which is given in
Section 5.4.4.

Theorem 22 (Adversary-Free Upper Bound). Starting from any initial

con�guration with k 6 n1/3−ε active opinions, where ε > 0 is an arbitrarily-

small constant, the 3-Majority dynamics reaches consensus within O((k2 log1/2 n+
k log n) · (k + log n)) rounds, w.h.p.

We �rst provide the lemmas required for the process analysis and then
we give the formal proof of the above theorem.

The next lemma shows an upper bound on the time it takes a stochastic
process with values in N = {0, 1, . . . , n} to reach or exceed a target value m,
under mild hypotheses on the process.

Lemma 27. Let {Xt}t be a Markov chain with �nite state space Ω, let
f : Ω→ N be a function mapping states of the chain to non-negative integer
numbers, and let {Yt}t be the stochastic process over N de�ned by Yt = f(Xt).
Let m ∈ N be a �target value� and let

τ = inf{t ∈ N : Yt > m},
be the random variable indicating the �rst time Yt reaches or exceeds value
m. Assume that, for every state x ∈ Ω with f(x) 6 m− 1, it holds that

(1) (Positive drift). For some λ > 0

E [Yt+1 |Xt = x] > f(x) + λ,

(2) (Bounded jumps). For some α > 1

Pr (Yτ > αm |Xt = x) 6 αm/n.

Then, for every starting state x ∈ Ω, it holds that

E [τ |Xt = x] 6 2α
m

λ
.

Idea of Proof. From Hypothesis 1 it follows that Zt = Yt − λt is a
submartingale that satis�es the hypotheses of the Doob's Optional Stopping
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Theorem (Theorem 27, pag. 272), thus

0 6 f(x) = E [Z0 |Xt = x]

6 E [Zτ |Xt = x]

= E [Yτ |Xt = x]− λE [τ |Xt = x] ,

and from Hypothesis 2 it follows that E [Yτ |Xt = x] 6 2αm. gg�

Proof. Consider the stochastic process Zt = Yt − λt and observe that
for any state x ∈ Ω with f(x) 6 m− 1 it holds that

E [Zt+1 |Xt = x] = E [Yt+1 |Xt = x]− λ(t+ 1)

> f(x) + λ− λ(t+ 1)

> f(x)− λt,
where in the inequality we used Hypotheses 1. Thus Zt is a submartingale
up to the stopping time τ , i.e. E [Zt+1 |Xt] > Zt for any t < τ . Moreover,
since |Yt| 6 n the jumps of Zt can be bounded by a value independent of t

|Zt+1 − Zt| = |Yt+1 − λ(t+ 1)− Yt + λt| 6 n+ λ.

It is also easy to see that Hypothesis 1 implies E [τ |Xt = x] < ∞. Thus,
we can apply Doob's Optional Stopping Theorem (Theorem 27, pag. 272).
It then follows that

E [Zτ |Xt = x] > E [Z0 |Xt = x] = f(x)

and, since

E [Zτ |Xt = x] = E [Yτ |Xt = x]− λE [τ |Xt = x] ,

we have that

E [τ |Xt = x] 6 E [Yτ |Xt = x]− f(x)

λ
6 E [Yτ |Xt = x]

λ
.

Finally, we get

E [Yτ |Xt = 0]

=
n∑
j=1

j Pr (Yτ = j |Xt = 0)

=

bαmc∑
j=1

j Pr (Yτ = j |Xt = 0) +

n∑
j=bαmc+1

j Pr (Yτ = j |Xt = 0)

6 (αm) + nPr (Yτ > αm |Xt = 0) 6 2 (αm) ,

where in the last inequality we used Hypothesis 2. gg�

We next use the above lemma to bound the time required by the symmetry-
breaking stage.
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Lemma 28 (Symmetry-Breaking Stage). Let c be any con�guration with

j active opinions. Within t = O
(
j2 log1/2 n

)
rounds it holds that

Pr
(
∃i : C

(t)
i 6 n/j −

√
jn log n |C(0) = c

)
> 1

2
.

Proof. Let J be the set of j active opinions in c and let

C(t) =
(
C

(t)
i : i ∈ J

)
,

be the random variable indicating the opinion con�guration at round t, where
we assume C(0) = c. Let

C(t)
m = min

{
C

(t)
i : i ∈ J

}
,

be the minimum among all C
(t)
i s and consider the stochastic process {Yt}t

de�ned as Yt = bn/jc−C(t)
m . Observe that Yt takes values in {0, 1, . . . , bn/jc}

and it is a function of C(t). We are interested in the �rst time Yt becomes
at least as large as

√
jn log n, i.e.

τ = inf
{
t ∈ N : Yt >

√
jn log n

}
.

We now show that {Yt}t satis�es Hypothesis 1 and 2 of Lemma 27, with

λ = ε
√
n/j3/2, for a suitable constant ε > 0.

1. Let ĉ = (ĉi : i ∈ J) be any con�guration with j active opinions such
that ĉm > n/j −√jn log n. We want to prove that

(75) E
[
C(t+1)
m |C(t) = ĉ

]
6 cm − ε

√
n

j3/2
.

Two cases may arise.

Case ĉm > n/j−2ε
√
n/j. Observe that, in this case, the r.v.s {C(t+1)

i :

i ∈ J} conditional on {C(t) = ĉ} have standard deviation Ω(
√
n/j). More-

over, they are binomial and negatively associated. Hence, by choosing ε
small enough, from the Central Limit Theorem we have that

Pr

(
∃i ∈ J : C

(t+1)
i 6 n

j
− 6ε ·

√
n

j

∣∣C(t) = ĉ

)
> 1

2
.

We thus get

E
[
C(t+1)
m |C(t) = ĉ

]
6 1

2

(
n

j
− 6ε ·

√
n

j

)
+

1

2
· n
j

=
n

j
− 3ε

√
n

j
6 cm − ε

√
n

j
6 cm − ε

√
n

j3/2
.
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Case ĉm 6 n/j − 2ε
√
n/j. (75) easily follows from Lemma 26. Indeed,

let i ∈ J be an opinion such that ĉi = ĉm, then

E
[
C(t+1)
m |C(t) = ĉ

]
6 E

[
C

(t+1)
i |C(t) = ĉ

]
(76)

6 ĉi
(

1 +
ĉi
n
− 1

j

)
6 ĉi

(
1− 2ε√

nj

)
6 ĉi −

ε
√
n

j3/2
= ĉm − ε

√
n

j3/2

where we used the case's condition and the fact that ĉi = ĉm > n/(2j).
2. Since the random variables {C(t+1)

i : i ∈ J} are binomial, conditional
on the con�guration at round t, it is possible to apply the Cherno� bound
(Lemma 76, though with some care) to prove that

(77) Pr
(
Yτ > α

√
jn log n |C(0) = c

)
6 1

n
,

for some constant α > 1. Though this result seems intuitive, its formal proof
is less obvious, since τ is a stopping time and thus itself a random variable.
Lemma 35 in Section 5.4.6 o�ers a formal proof of the above statement.

From (75) and (77), we have that {Yt}t satis�es the hypotheses of Lemma 27

with m =
√
jn log n and λ = ε

√
n/j3/2. Hence

E
[
τ |C(0) = c

]
< j2

√
log n

and, from Markov inequality, for t = 2j2
√

log n, we �nally get

Pr
(
∀ i ∈ J : C

(t)
i > n/j −

√
jn log n |C(0) = c

)
6 Pr

(
τ > 2j2

√
log n |C(0) = c

)
6 1

2
.

gg�

5.4.4. The Survival of the Bigger

We now provide the analysis of the dropping stage: More precisely, we
show that, if the system starts with up to j active opinions and one of them
(say i) is below the threshold n/j − √jn log n, then i drops to the smaller
threshold j2 log n within O(j log n) additional rounds. This bound can be
proved w.h.p. since, in this regime, Ci is still su�ciently large to apply the
Cherno� bound. This concentration result is not necessary to the purpose
of proving Theorem 22, while it is a key ingredient in the analysis of the
adversarial case (Theorem 8). The next lemma can be proved by standard

concentration arguments - applied in an iterative way - on the r.v. C
(t)
i (see

Section 5.4.6).
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Lemma 29 (Dropping Stage 1). Let c be any con�guration with j 6
n1/3−ε active opinions, where ε > 0 is an arbitrarily-small positive constant,
and such that an opinion i exists with ci 6 n/j − √jn log n. Within t =
O(j log n) rounds opinion i becomes O

(
j2 log n

)
, w.h.p.

In the next lemma we prove that once ci becomes smaller than n/(2j),
then opinion i disappears within further O(j log n) rounds with constant
probability. We only give an outline of the proof (the full proof is presented
in Section 5.4.6).

Lemma 30 (Dropping Stage 2). Let c be any con�guration with j 6
n1/3−ε active opinions, where ε > 0 is an arbitrarily-small positive constant,
and such that an opinion i exists with ci 6 n/(2j). Within t = O(j log n)
rounds opinion i disappears with probability at least 1/2.

Idea of Proof. If ci 6 n/(2j) in con�guration c, then from Lemma
26 it follows that

E
[
C

(t+1)
i |C(t) = c

]
6 ci

(
1− 1

2j

)
Moreover, since C

(t+1)
i conditional on

{
C(t) = c

}
is binomial, if j 6 n1/3−ε,

from the Cherno� bound (Lemma 76) it follows that

Pr
(
C

(t+1)
i > n/(2j) |C(t) = c

)
6 e−Θ(nε).

Hence, it is easy to check that for any initial con�guration c with ci 6 n/(2j)
the following recursive relation holds

E
[
C

(t)
i |C(0) = c

]
6
(

1− 1

2j

)
E
[
C

(t−1)
i |C(0) = c

]
+ e−n

ε/2

that for some t = O(j log n) gives E
[
C

(t)
i |C(0) = c

]
6 1/2. Since C

(t)
i is

a non-negative integer-valued r.v., the thesis then follows from the Markov
inequality. gg�

Armed with lemmas 29 and 30, we are ready to prove Theorem 22.

Theorem 22 (Adversary-Free Upper Bound). Starting from any initial

con�guration with k 6 n1/3−ε active opinions, where ε > 0 is an arbitrarily-

small constant, the 3-Majority dynamics reaches consensus within O((k2 log1/2 n+
k log n) · (k + log n)) rounds, w.h.p.

Proof of Theorem 22. From Lemmas 28, 29, and 30 it follows that
from any con�guration with j 6 k active opinions, within O(k2

√
log n +

k log n) rounds at least one of the opinions disappears with probability at
least 1/4. Thus, within O((k2

√
log n+k log n)(k+log n)) rounds, all opinions

but one disappear, w.h.p. gg�
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5.4.5. Convergence Time with Adversary

In this section we consider the presence of a Byzantine adversary that
can adaptively change the opinions of a subset of nodes in order to

(i) delay the convergence time toward a valid consensus, or
(ii) make the system converge to a non-valid opinion.

We consider two di�erent kinds of adversaries: A static one and a stronger,
dynamic one.

Definition 15 (F -static adversary). Let c be the initial con�guration:
At the beginning of the process the adversary looks at c and can replace the
opinions of at most F = n/k − √kn log n nodes with arbitrary opinions in
Σ. Then, the adversary is not allowed to perform any further action during
the execution of the protocol.

We consider the case F = n/k − √kn log n. Since any opinion the ad-
versary may introduce has size less than n/k−√kn log n, as a simple conse-
quence of the dropping stage (see Lemmas 29 and 30), the static adversarial
case easily reduces to the non-adversarial one. We thus get the following
result.

Corollary 6 (Upper Bound with Static-Adversary). Starting from any
initial con�guration with k 6 nα active opinions, where α > 0 is a suitable
constant, the 3-Majority dynamics reaches almost-consensus within O((k2

√
log n+

k log n) · (k + log n)) rounds, in the presence of any F -static adversary with
F 6 n/k −√kn log n, w.h.p.

We now de�ne the actions of an F -dynamic adversary over the studied
process can be described as follows.

Definition 16 (F -Dynamic Adversary). At every round t, after nodes

have updated their opinions (i.e. once the con�guration C(t) = c(t) is re-
alized), the F -dynamic adversary looks at the current con�guration and

replaces the opinion of up to F nodes with any opinion in Σ. We de�ne C̃(t)

as the con�guration that results from the adversary's action on c(t) and

D
(t)
i = D

(t)
i (c(0), c̃(0), . . . , c(t−1), c̃(t−1), c(t)),

as the r.v. corresponding to the number of nodes that the adversary adds
or removes from ci (note that

∑
i∈Σ |Di| 6 2F ) at the end of the t-th round,

based on all the past history of the process, i.e.

C̃(t) =
(
C

(t)
1 +D

(t)
1 , . . . , C

(t)
|Σ| +D

(t)
|Σ|

)
.

In what follows we consider an F -dynamic adversary with F 6 β√n/(k 5
2

log n) for a suitable positive constant β. As we show in the proof of Lemma
31, this bound on F turns out to be almost tight if the goal is to converge
to an almost-consensus regime in polynomial time, w.h.p.

The presence of the adversary requires us to distinguish between valid
and non valid opinions. So, we recall that the set of valid opinions C ⊆ Σ is
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the subset of active opinions in the initial con�guration and, in the sequel, we
denote k as the number of valid opinions, i.e., k := |C| and de�ne C̄ := Σ−C.

We are now ready to state our main result in the presence of the dynamic
adversary.

Theorem 8 (Upper Bound with Dynamic-Adversary). Let k 6 nα and

F 6 β√n/(k 5
2 log n) for some constants β, α > 0. The 3-Majority dynamics

is a stabilizing almost-consensus protocol in the presence of any F -dynamic
adversary and its convergence time is O((k2

√
log n + k log n)(k + log n)),

w.h.p.

In order to prove the above theorem, we need to �improve� the technical
lemmas shown in the previous section for the non-adversarial case. Infor-
mally speaking, the adversary can introduce �small� non-valid opinions and
it can keep small valid opinions active that, we know, they would otherwise
disappear. These facts lead us to the problem of managing �small� opinions.

Proof of Theorem 8. The rigorous de�nition of �small opinion� is

determined by the minimal negative drift for C
(t)
m we derived in the proof of

Lemma 28 (see Section (76)).

Definition 17 (Small Opinions). Let S := {i
∣∣ ci 6 γ

√
n/k

3
2 } be the

set of the small opinions, where γ is some constant such that γ > β, and let

its complement B := S̄ = {i
∣∣ ci > γ

√
n/k

3
2 } be the set of the big opinions.

It turns out that we cannot de�ne the end of a phase as we did in the
non-adversarial case, namely, at least one (valid) opinion dies. We rather
assume that, without loss of generality, all k valid opinions are big when the
process begins. The consequent new de�nition of a phase is the following:
phase j is an interval of consecutive rounds, in each of which exactly j big
valid opinions are present. The goal then is to show that at the end of
phase j, one of the j initially big opinions becomes small and, moreover, this
opinion (and no other small opinion) never gets big again.

In the symmetry-breaking stage of each phase, we thus need to show that

the negative drift of C
(t)
m (notice that the latter now denotes the minimum

among the j big opinions) cannot be opposed by the actions of the F -dynamic

adversary, provided that F 6 β√n/(k 5
2 log n).

Lemma 31 (Symmetry-Breaking Stage with Adversary). Let c̃ be any

con�guration such that |B| = j and
∑

i∈C̄ c̃i 6 γ
√
n/k

3
2 . Within t =

O(j2 log1/2 n) rounds, with probability at least 1/2 it holds that

i) |B| = j,
∑

i∈C̄ C̃i 6 γ
√
n/k

3
2 , and

ii) there exists an i ∈ B(t) such that C̃
(t)
i 6 n/j −

√
jn log n.

The formal proof of the above lemma is given in Section 5.4.6. Informally,
the proof is obtained via two di�erent technical steps:
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Su
pp

or
tin

g
no

de
s

c1 c2 . . .

Average
size

Figure 17. The negative drift a�ects any color whose size
is smaller than the average size of the colors which are still
present in the system.

i) The bound on the expected negative drift for C
(t)
m given by the

following Lemma 32, which considers both the presence of small
good opinions and the adversary's opposing action (for its proof see
Section 5.4.6).

ii) A novel use of Lemma 27 on the hitting time of random processes
in order to bound the expect time of the symmetry-breaking stage.
We in fact need to de�ne a new stopping condition that also includes
some �bad� event: Some small (valid or not) opinion become big.
More precisely, in Lemma 33 (its formal proof can be found in
Section 5.4.6), we prove the following key-properties of the process
in the presence of the dynamic adversary:
(1) if in a given round a valid opinion is small then it keeps small

in the following round, w.h.p., i.e. S(t−1) ⊆ S(t);
(2) the size of the overall set of non valid opinions stays below

γ
√
n/k

3
2 , w.h.p., i.e.

∑
i∈C̄ ci > γ

√
n/k

3
2 .

Lemma 32 (Dropping Stage 1 with Adversary). Let c̃ be any con�gura-

tion such that |B| 6 j and
∑

i∈C̄ c̃
(t)
i 6 γ

√
n/k

3
2 . For some constant α > 0,

for any opinion i such that c̃i > γ
√
n/k

3
2 , it holds

E
[
C

(t+1)
i

∣∣∣ C̃(t) = c̃
]
6 c̃i

(
1− 1

j
+
c̃i + α

√
n/k

n

)
E
[
C̃

(t+1)
i

∣∣∣ C̃(t) = c̃
]
6 c̃i(1− η(i, j)), where(78)

η(i, j) = min

{
1

j
− c̃i + α

√
n/k

n
,

1

2

(
1

j
− c̃i
n

)}
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Lemma 33 (Small Stays Small). If c̃(t) is such that
∑

i∈C̄ c̃
(t)
i 6 γ

√
n/k

3
2 ,

then
∑

i∈C̄ C̃
(t+1)
i 6 γ√n/k 3

2 and S(t) ⊆ S(t+1), w.h.p.

The dropping stage of phase j is now de�ned as the interval of rounds

in which C
(t)
m drops from the symmetry-breaking threshold n/j −√jn log n

to the size of small opinions i.e. γ
√
n/k

3
2 . Similarly to the non-adversarial

case, we can here �x the big opinion i that is dropped below the symmetry-
breaking threshold and look at its negative drift derived in Lemma 32. The
drift turns out to be strong enough to compensate the possible actions of any
F -bounded adversary and implies an O(j log n) bound on the time required
by this second stage of phase j. This result is stated in the following Lemma
(its proof is given in Section 5.4.6).

Lemma 34 (Dropping Stage 2 with Adversary). Assume that, at round

t′, c̃(t′) is such that

• ∑i∈C̄ ci 6 γ
√
n/k

3
2 ,

• |B(t′)| = j, and

• an i ∈ B(t′) exists such that

γ
√
n/k

3
2 6 c(t′)

i 6 n/j −
√
kn log n.

Then, a round t′′ = t′ +O(k log n) exists such that w.h.p.

• ∑i∈C̄ C̃
(t′′)
i 6 γ√n/k 3

2 ,

• i ∈ S(t′′) and
• |B(t′′)| 6 j − 1.

Finally, after k phases, we are left with one (valid) opinion that accounts
for n−O(

√
n) nodes, while the remaining nodes can have any (possibly non

valid) opinion and re�ect the presence of the adversary. In fact, this is what
happens with high probability. gg�

5.4.6. Technical lemmas of the analysis

In this section we complete the proof of Theorem 8 by proving (77) and
the lemmas 31, 32, 34 and 33. Throughout the section, recall that we assume

F 6 β√n/(k 5
2 log n). We �rst provide a formal proof for (77).

Lemma 35. Let c be any con�guration with j active opinions. Consider

the stochastic process {Yt}t de�ned as Yt =
⌊
n
j

⌋
−C(t)

m and de�ne the stopping

time τ = inf
{
t ∈ N : Yt >

√
jn log n

}
. Then

Pr
(
Yτ > α

√
jn log n |C(0) = c

)
6 1

n
,

for some constant α > 1.

Proof. Observe that Yτ is well de�ned, because E
[
τ |C(0) = c

]
< ∞

as a consequence of the fact that C
(t)
m has a negative drift (see the proof of

Lemma 28).
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From the de�nition of Yt, we have

Pr
(
Yτ > α

√
jn log n |C(0) = c

)
= Pr

(
C(τ)
m <

⌊
n

j

⌋
− α

√
jn log n |C(0) = c

)
= Pr

(
∃` : C

(τ)
` <

⌊
n

j

⌋
− α

√
jn log n |C(0) = c

)
6

j∑
`=1

Pr

(
C

(τ)
` <

⌊
n

j

⌋
− α

√
jn log n |C(0) = c

)
.(79)

To prove the lemma, we prove that each term in (79) is upper bounded by
n−2, by chossing α large enough.

Given any opinion `, any comparison operator � ∈ {<,6,>, >} and any
round t, let

E(t)
`� = “C

(t)
` �

⌊
n

j

⌋
−
√
jn log n”.

From the de�nition of the stopping time τ , for any opinion ` we have

Pr

(
C

(τ)
` <

⌊
n

j

⌋
− α

√
jn log n |C(0) = c

)
=

∞∑
t=1

Pr

((
C

(t)
` <

⌊
n

j

⌋
− α

√
jn log n

)∧
(τ = t) |C(0) = c

)

=
∞∑
t=1

Pr

((
C

(t)
` <

⌊
n

j

⌋
− α

√
jn log n

)∧
E(t)
m6

∣∣∣ t−1∧
s=1

E(s)
m> ∧ (C(0) = c)

)

· Pr

(
t−1∧
s=1

E(s)
m>

∣∣C(0) = c

)

=
∞∑
t=1

Pr
(
C

(t)
` <

⌊
n

j

⌋
− α

√
jn log n

∣∣∣ t−1∧
s=1

E(s)
m> ∧ (C(0) = c)

)
· Pr

(
t−1∧
s=1

E(s)
m>

∣∣C(0) = c

)
,(80)

where the last equality follows from the fact that

C
(t)
` <

⌊
n

j

⌋
− α

√
jn log n,

implies

C(t)
m <

⌊
n

j

⌋
−
√
jn log n.
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We next focus on bounding the term

(81) Pr

(
t−1∧
s=1

E(s)
m> |C(0) = c

)
in (80). We can write

Pr

(
t−1∧
s=1

E(s)
m> |C(0) = c

)
=

t−1∏
s=1

Pr
(
E(s)
m>

∣∣∣ s−1∧
r=1

E(r)
m> ∧C(0) = c

)
=

t−1∏
s=1

Pr
(
E(s)
m>

∣∣∣ E(s−1)
m> ∧C(0) = c

)
,

where the last equality follows since the process of the 3-Majority dynamics
is Markovian. We can upper bound

Pr
(
E(s)
m>

∣∣∣ E(s−1)
m> ∧C(0) = c

)
=
∑
ĉ∈Sm

Pr
(
E(s)
m> |C(s−1) = ĉ

)
· Pr

(
C(s−1) = ĉ

∣∣∣ E(s−1)
m> ∧C(0) = c

)
6
∑
ĉ∈Sm

Pr
(
E(s)
m̄> |C(s−1) = ĉ

)
· Pr

(
C(s−1) = ĉ

∣∣∣ E(s−1)
m> ∧C(0) = c

)
,

where m̄ is the value of m at time s− 1 (breaking ties arbitrarily), and Sm
is the set of possible con�gurations which realize E(s−1)

m> , that is

Sm :=

{
ĉ : ĉm >

⌊
n

j

⌋
−
√
jn log n

}
.

We can also upper bound Pr(E(s)
m̄> |C(s−1) = ĉ) by using a �reverse� Cherno�

bound4 (Theorem 26). In particular, for a suitable constant β it is possible
to show that

Pr
(
C

(s)
m̄ > (1− δ)E

[
C

(s)
m̄ |C(s−1) = ĉ

]
|C(s−1) = ĉ

)
6 1− e−βδ

2E
[
C

(s)
m̄ |C(s−1)=ĉ

]
.

By choosing

δ =

√
jn log n

E
[
C

(s)
m̄ |C(s−1) = ĉ

]
and noting that

n

2j
6 E

[
C

(s)
m̄ |C(s−1) = ĉ

]
6 n

j
,

4A folklore example with complete proofs can be found at http://cstheory.

stackexchange.com/questions/14471/reverse-chernoff-bound.

http://cstheory.stackexchange.com/questions/14471/reverse-chernoff-bound
http://cstheory.stackexchange.com/questions/14471/reverse-chernoff-bound
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we get

Pr
(
E(s)
m̄> |C(s−1) = ĉ

)
6 Pr

(
C

(s)
m̄ > (1− δ)E

[
C

(s)
m̄ |C(s−1) = ĉ

]
|C(s−1) = ĉ

)
6 1− e−4βj2 logn.(82)

By the law of total probability, we can thus saturate with respect to all
ĉ ∈ Sm and from (82) we obtain that

Pr
(
E(s)
m>

∣∣∣ E(s−1)
m> ∧ (C(0) = c)

)
6 1− e−4βj2 logn,

which proves (81).
On the other hand, from Cherno� bounds (Lemma 76) and the fact that

E
[
C

(s)
m̄ |C(s−1) = ĉ

]
6 n

j
,

it follows that

(83) Pr
(
C

(s)
m̄ <

⌊
n

j

⌋
− α

√
jn log n

∣∣∣ s−1∧
r=1

E(r)
m> ∧C(0) = c

)
6 e−α

2

6
j2 logn.

Finally, substituting (82) and (83) into (80), the result follows by choos-
ing α large enough in (83). gg�

We now provide detailed proofs of the two technical lemmas of the drop-
ping state.

Lemma 29 (Dropping Stage 1). Let c be any con�guration with j 6
n1/3−ε active opinions, where ε > 0 is an arbitrarily-small positive constant,
and such that an opinion i exists with ci 6 n/j − √jn log n. Within t =
O(j log n) rounds opinion i becomes O

(
j2 log n

)
, w.h.p.

Proof. We �rst prove that the decreasing rate of Ci depends on its value
at the end of the previous round. More formally, if we are in a con�guration
satisfying the hypotheses of the lemma, we have

Pr

(
C

(t)
i > c

(t−1)
i

(
1− 1

2

(
1

j
− c

(t−1)
i

n

)))

= Pr

(
C

(t)
i > c

(t−1)
i

(
1−

(
1

j
− c

(t−1)
i

n

))
(1 + δ)

)
,

where

δ =

1
2(1
j −

c
(t−1)
i
n )

1− (1
j −

c
(t−1)
i
n )

.
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Using Lemma 26 and applying Cherno� bound (Lemma 76) we thus get

Pr

(
C

(t)
i > c

(t−1)
i

(
1− 1

2

(
1

j
− c

(t−1)
i

n

)))

6 exp

(
−δ

2

3

(
1−

(
1

j
− c

(t−1)
i

n

))
c

(t−1)
i

)
(a)
= exp

(
−δ

3

(
1

2

(
1

j
− c

(t−1)
i

n

))
c

(t−1)
i

)
(b)
< exp

−1

3

(
1

2

(
1

j
− c

(t−1)
i

n

))2

c
(t−1)
i

 (c)
= n−Θ(1),(84)

where

(a) follows from the de�nition of δ,
(b) follows by (upper) bounding the denominator of δ by 1, which is

always possible since ci/n− 1/j < 0 by hypothesis, and

(c) follows from the fact that ci > j2 log n and that the function x (1− x)2

is decreasing i� x ∈ (1/3, 1), with x = jci/n.

Finally, we can iteratively apply (84) as long as we have at most j active

opinions and C
(t)
i is bigger than j2 log n: By standard concentration argu-

ments we get that the time to reach this threshold is O (j log n), w.h.p. gg�

Lemma 30 (Dropping Stage 2). Let c be any con�guration with j 6
n1/3−ε active opinions, where ε > 0 is an arbitrarily-small positive constant,
and such that an opinion i exists with ci 6 n/(2j). Within t = O(j log n)
rounds opinion i disappears with probability at least 1/2.

Proof. Let J be the set of active opinions. By conditioning on all the
con�gurations ĉ = (ĉ` : ` ∈ J) that the system can take at round t− 1, we

can bound the expectation of C
(t)
i as follows

E
[
C

(t)
i |C(0) = c

]
=
∑
ĉ

E
[
C

(t)
i |C(t−1) = ĉ

]
Pr
(
C(t−1) = ĉ |C(0) = c

)
6
(

1− 1

2j

) ∑
ĉ : ĉi6n/(2j)

ĉi · Pr
(
C(t−1) = ĉ |C(0) = c

)
+ n ·

∑
ĉ : ĉi>n/(2j)

Pr
(
C(t−1) = ĉ |C(0) = c

)
6
(

1− 1

2j

)
E
[
C

(t−1)
i |C(0) = c

]
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+ n · Pr

(
C

(t−1)
i >

n

2j

∣∣C(0) = c

)
,(85)

where we used that, for any con�guration ĉ with ĉi 6 n/(2j), Lemma 26
gives the bound

E
[
C

(t)
i |C(t−1) = ĉ

]
6 ĉi

(
1− 1

2j

)
.

Moreover, if j 6 n1/3−ε, from the Cherno� bound (Lemma 76) it follows
that

(86) Pr

(
C

(t)
i >

n

2j
|C(t−1) = ĉ

)
6 e−Θ(nε)

for any such con�guration ĉ. Hence, for any t we can bound the second term
in (85) as follows:

Pr

(
C

(t)
i >

n

2j
|C(0) = c

)
6 Pr

(
∃t̄ = 1, . . . , t :

(
C

(t̄)
i >

n

2j

)
∧
(
C

(t̄−1)
i 6 n

2j

)
|C(0) = c

)
6

t∑
t̄=1

Pr

((
C

(t̄)
i >

n

2j

)
∧
(
C

(t̄−1)
i 6 n

2j

)
|C(0) = c

)

=

t∑
t̄=1

∑
ĉ : ĉi6 n

2j

Pr

(
C

(t̄)
i >

n

2j
|C(t̄−1) = ĉ

)

· Pr
(
C(t̄−1) = ĉ |C(0) = c

)
6 te−Θ(nε)

where in the last inequality we used (86). Thus for any t = poly(n) the
following recursive relation holds

E
[
C

(t)
i |C(0) = c

]
6
(

1− 1

2j

)
E
[
C

(t−1)
i |C(0) = c

]
+ exp

(
−n ε2

)
,

that is

(87) E
[
C

(t)
i |C(0) = c

]
6
(

1− 1

2j

)t n
2j

+ e−n
ε/3
.

From (87), for t = 2j(log n + 1) we get E
[
C

(t)
i |C(0) = c

]
6 1/2 and since

C
(t)
i takes non-negative integer values, the thesis follows from Markov's in-

equality. gg�

Lemma 36 (Bounded Jump). Let c̃ be any con�guration such that |B| = j

and
∑

i∈C̄ c̃i 6 γ
√
n/k

3
2 . Consider the stochastic process {Ỹt}t de�ned as
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Ỹt =
⌊
n
j

⌋
− C̃(t)

m and de�ne the stopping time

τ = inf{t ∈ N : Ỹt >
√
jn log n ∨

(∑
i∈C̄

C̃i > γ
√
n/k

3
2
)
∨ (S(t−1) 6⊆ S(t))}.

It holds that

Pr
(
Ỹτ > α

√
jn log n |C(0) = c

)
6 1

n
.

Sketch of Proof. The proof of this Lemma follows from minor mod-
i�cations of the proof of Lemma 35. In particular, the argument is based on
the following observations:

1. The event de�ning the stopping time τ is in this case

E(t) =
(
Ỹt > (

√
jn log n) ∨

(∑
i∈C̄

C̃i > γ
√
n/k

3
2
)
∨ (S(t−1) 6⊆ S(t))

)
.

The negated of this event is

¬E(t) =
(
Ỹt 6 (

√
jn log n) ∧

(∑
i∈C̄

C̃i 6 γ
√
n/k

3
2
)
∧ (S(t−1) ⊆ S(t))

)
,

which implies the event “Ỹt 6
√
jn log n”.

2. Proceeding like in the proof of Lemma 35, we can write an expression
that is similar to (80), with the generic conditioning event

C(s)
m >

⌊
n

j

⌋
−
√
jn log n,

replaced by ¬E(s). The conditioned event

C
(t)
` <

⌊
n

j

⌋
− α

√
jn log n,

is instead replaced by the event(
C

(t)
` <

⌊
n

j

⌋
− α

√
jn log n

)
∧ E(t).

Now, note that the event

C
(t)
` <

⌊
n

j

⌋
− α

√
jn log n,

again implies E(t). Hence, we can still write (80), from which the proof
requires minor adaptations w.r.t. Lemma 35. gg�

Since the adversary, at round t, may decide what to do based on the full
history of the process up to time t, the stochastic process {C̃(t)}t may not be
a Markov process anymore. Thus, we need a more general version of Lemma
27.
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Lemma 37. Let {Xt}t be a discrete time stochastic process with a �nite
state space Ω, let ft : Ωt → N be a function mapping histories of the process
in non-negative integer numbers, and let {Yt}t be the stochastic process over
N de�ned by Yt = ft(X0, . . . , Xt). Let m ∈ N be a �target value�, let A ⊆ Ω
be an arbirary subset of states, and let

τ = inf{t ∈ N : Yt > m or Xt /∈ A}
be the random variable indicating the �rst time Xt exits from set A or
Yt reaches or exceeds value m. Assume that, for every sequence of states
x0, . . . , xt ∈ A with ft(x0, . . . , xt) 6 m− 1, it holds that

(1) (Positive drift). For some λ > 0, it holds

E [Yt+1 |X0 = x0, . . . , Xt = xt] > ft(x0, . . . , xt) + λ,

(2) (Bounded jumps). For some α > 1

Pr
(
Yτ |Xt=x > αm

)
6 αm/n.

Then, for every starting state x ∈ A, it holds that

E [τ |Xt = x] 6 2α
m

λ
.

Proof. The proof is a straight adaptation of the proof of Lemma 27, in
which we take into account the full history of the process.

Consider the stochastic process Zt = Yt− λt. For any sequence of states
x0, . . . , xt ∈ A with ft(x0, . . . , xt) 6 m− 1 it holds that

E [Zt+1 |X0 = x0, . . . , Xt = xt]

= E [Yt+1 |X0 = x0, . . . , Xt = xt]− λ(t+ 1)

> ft(x0, . . . , xt) + λ− λ(t+ 1)

> ft(x0, . . . , xt)− λt,
where in the inequality we used Hypothesis 1. Thus, Zt is a submartingale
up to the stopping time τ . Moreover, since |Yt| 6 n then

|Zt+1 − Zt| 6 n+ λ

and, together with Hypothesis 1 this implies E [τ |Xt = x] < ∞. Thus, we
can apply Doob's Optional Stopping Theorem (Theorem 27, pag. 272). It
follows that

E [Zτ |Xt = x] > E [Z0 |Xt = x] = f0(x),

and since

E [Zτ |Xt = x] = E [Yτ |Xt = x]− λE [τ |Xt = x] ,

we have that

E [τ |Xt = x] 6 Ex [Yτ ]− f0(x)

λ
6 E [Yτ |Xt = x]

λ
.
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Finally, we get

E [Yτ |X0 = 0] =

bαmc∑
j=1

j Pr (Yτ = j |X0 = 0) +
n∑

j=bαmc+1

j Pr (Yτ = j |X0 = 0)

6 (αm) + nPr (Yτ > αm |X0 = 0) 6 2 (αm) ,

where in the last inequality we used Hypothesis 2. gg�
With the following lemma, we generalize Lemma 28 to the adversarial

setting.

Lemma 31 (Symmetry-Breaking Stage with Adversary). Let c̃ be any

con�guration such that |B| = j and
∑

i∈C̄ c̃i 6 γ
√
n/k

3
2 . Within t =

O(j2 log1/2 n) rounds, with probability at least 1/2 it holds that

i) |B| = j,
∑

i∈C̄ C̃i 6 γ
√
n/k

3
2 , and

ii) there exists an i ∈ B(t) such that C̃
(t)
i 6 n/j −

√
jn log n.

Proof. We proceed by adapting the proof of Lemma 28. Let C̃(0) = c̃
be the initial con�guration. Let us consider the stochastic process {Ỹt}t>0

de�ned as

Ỹt =

⌊
n

j

⌋
− C̃(t)

m where C̃(t)
m = min{C̃(t)

i : i ∈ B(t)}.

We are interested in estimating the expected value of

τ = inf{t ∈ N : Ỹt > (
√
jn log n) ∨

(∑
i∈C̄

C̃i > γ
√
n/k

3
2
)

∨ (S(t−1) 6⊆ S(t))}.
Now we show that {Ỹt}t satis�es the Hypotheses 1 and 2 of Lemma 27 with

A =
(∑
i∈C̄

C̃i 6 γ
√
n/k

3
2
)
∨ (S(t−1) ⊆ S(t))

and λ = ε
√
n/j3/2, for a suitable constant ε > α.

1. Let c̃ be any con�guration such that c̃m > n/j −√jn log n. Now we
prove that

(88) E
[
C̃(t+1)
m | C̃(t) = c̃

]
6 c̃m − ε

√
n

j3/2
.

Case c̃m > n/j− 2ε
√
n/j. Observe that, in this case, random variables{

Ct+1
i : i ∈ B

}
have standard deviation is Ω(

√
n/j). Moreover they are

binomial and negatively associated. Hence, by choosing ε small enough,
from the Central Limit Theorem we have that

Pr

(
∃ i ∈ B such that C

(t+1)
i 6 n

j
− 6ε ·

√
n

j

)
> 1/2.
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We thus get

E
[
C̃(t+1)
m | C̃(t) = c̃

]
6 1

2

(
n

j
− 6ε ·

√
n

j

)
+

1

2
· n
j

+
β
√
n

k
5
2 log n

=
n

j
− 2ε

√
n

j
+

β
√
n

k
5
2 log n

6 c̃m − ε
√
n

j
6 c̃m − ε

√
n

j3/2
.

Case c̃m 6 n/j − 2ε
√
n/j. (88) easily follows from Lemma 32. Indeed,

let i ∈ B be an opinion such that ĉi = ĉm, then

E
[
C̃(t+1)
m | C̃(t) = c̃

]
6 E

[
C̃

(t+1)
i | C̃(t) = c̃

]
6 c̃i

(
1 +

c̃i + α
√
n/k

n
− 1

j

)

6 c̃i
(

1− 2ε√
nj

+
α√
kn

)
6 c̃i −

ε
√
n

j3/2
= c̃m − ε

√
n

j3/2
,

where we used the case's condition and c̃i = c̃m > n/(2j).
2. Since random variables {C̃(t)

i : i ∈ B(t)} are binomial conditional on
the con�guration at round t − 1, from the Cherno� bound (Lemma 76) it
follows that

(89) Pr
(
Ỹτ > α

√
jn log n | C̃(0) = c̃

)
6 1

n
, for some constant α > 1.

See Lemma 36 for the formal statement of the last fact.
From (88) and (89) we have that {Ỹt}t satis�es the hypotheses of Lemma 37

with m =
√
jn log n, λ = ε

√
n/j3/2 and

A =
(∑
i∈C̄

C̃i 6 γ
√
n/k

3
2
)
∨ (S(t−1) ⊆ S(t)).

Moreover, by iteratively applying Lemma 33, we have that, for any t =
O(n2), it holds w.h.p.(∑

i∈C̄

C̃
(t)
i 6 γ

√
n/k

3
2
)
∨ (S(t−1) ⊆ S(t)).

Thus, from Markov's inequality, for t = 2j2
√

log n, we have that

Pr
(
∀i ∈ B :

(
C

(t)
i 6 n/j −

√
jn log n

)
∧
(∑
i∈C̄

C̃
(t)
i 6 γ

√
n/k

3
2
)

∧ (S(0) ⊆ S(t)) | C̃ = c̃
)

> Pr
(
τ̂ 6 2j2

√
log n |C(0) = c̃

)
> 1

3
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where

τ̂ = inf{t ∈ N : Ỹt >
√
jn log n}.

gg�

In the next lemmas, we provide the analogous versions of lemmas 29 and
30 in the adversarial setting.

Lemma 32 (Dropping Stage 1 with Adversary). Let c̃ be any con�gura-

tion such that |B| 6 j and
∑

i∈C̄ c̃
(t)
i 6 γ

√
n/k

3
2 . For some constant α > 0,

for any opinion i such that c̃i > γ
√
n/k

3
2 , it holds

E
[
C

(t+1)
i

∣∣∣ C̃(t) = c̃
]
6 c̃i

(
1− 1

j
+
c̃i + α

√
n/k

n

)
E
[
C̃

(t+1)
i

∣∣∣ C̃(t) = c̃
]
6 c̃i(1− η(i, j)), where(78)

η(i, j) = min

{
1

j
− c̃i + α

√
n/k

n
,

1

2

(
1

j
− c̃i
n

)}

Proof. Similarly to the proof of Lemma 26 we have

E
[
C

(t+1)
i

∣∣∣ C̃(t) = c̃
]

6 c̃i

(
1 +

c̃i
n
−
∑

j c̃
2
j

n2

)
6 c̃i

(
1 +

c̃i
n
−
∑

j∈B c̃
2
j

n2

)

6 c̃i

1 +
c̃i
n
−

∑
j∈B

(
n−(k−j+1)γ

√
n/k

3
2

j

)2

n2


6 c̃i

(
1 +

c̃i
n
−
∑

j∈B(n− α/4
√
n/k)2

j2n2

)

6 c̃i

(
1 +

c̃i
n
− 1

j
+
α/2

√
n/k

jn

)

6 c̃i

(
1− n/j − c̃i − α/2

√
n/k

n

)
.
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Taking into account any possible action of the adversary, we thus get that

E
[
C̃

(t+1)
i

∣∣∣ C̃(t) = c̃
]

= E
[
C

(t+1)
i

∣∣∣ C̃(t) = c̃
]

+ E
[
D

(t+1)
i

∣∣∣ C̃(t) = c̃
]

6 c̃i

(
1− n/j − c̃i − α/2

√
n/k

n

)
+ F

6 c̃i

1− n/j − c̃i
n

+
2 max

{
α/2

√
n/k, Fn/c̃i

}
n

 .(90)

By distinguishing the cases c̃i > n/(3j) or c̃i < n/(3j), from (90) we get
(78). gg�

Lemma 34 (Dropping Stage 2 with Adversary). Assume that, at round

t′, c̃(t′) is such that

• ∑i∈C̄ ci 6 γ
√
n/k

3
2 ,

• |B(t′)| = j, and

• an i ∈ B(t′) exists such that

γ
√
n/k

3
2 6 c(t′)

i 6 n/j −
√
kn log n.

Then, a round t′′ = t′ +O(k log n) exists such that w.h.p.

• ∑i∈C̄ C̃
(t′′)
i 6 γ√n/k 3

2 ,

• i ∈ S(t′′) and
• |B(t′′)| 6 j − 1.

Proof. By iteratively applying Lemma 33, we have that for each t ∈
{t′, . . . , t′′ − 1} it holds ∑i∈C̄ C̃

(t)
i 6 γ

√
n/k

3
2 and i ∈ S(t), w.h.p.

To prove that |B(t′′)| 6 j − 1, we �rst prove that, for each round t ∈
{t′ + 1, . . . , t′′}, C̃(t)

i decreases by a certain extent that depends on c̃
(t−1)
i ,

w.h.p., regardless of what the adversary does.
Let

ψ =

(
1

j
− c̃

(t−1)
i + α

√
n
k

n

)
.

If we are in a con�guration satisfying the hypotheses of the lemma, we have

Pr

(
C

(t)
i > c̃

(t−1)
i

(
1− ψ

2

))
= Pr

(
C

(t)
i > c̃

(t−1)
i (1− ψ(1 + δ))

)
,

where

δ =
ψ

2(1− ψ)
.
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Thus, using Lemma 32 and applying the Cherno� bound (Lemma 76) we
have

Pr

(
C

(t)
i > c̃

(t−1)
i

(
1− ψ

2

))
6 exp

(
−δ

2

3
ψc̃

(t−1)
i

)
(a)
< exp

(
−1

3

(
1

2
ψ

)2

c̃
(t−1)
i

)
(b)
= n−Θ(1),(91)

where (a) follows from the de�nition of δ and the fact that its denominator

is smaller than 1, and (b) follows by minimizing ψ2c̃
(t−1)
i for

γ
√
n/k

3
2 6 c(t′)

i 6 n/j −
√
kn log n.

It follows that w.h.p.

(92) C̃
(t)
i = C

(t)
i +D

(t)
i 6 c̃

(t−1)
i

(
1− ψ

2

)
+ F 6 c̃(t−1)

i

Thus, we can iteratively apply (92) until c̃
(t−1)
i 6 γ

√
n/k

3
2 , w.h.p. We

next prove that this happens within O (k log n) rounds, w.h.p. Interestingly,
showing that, within O (k log n) rounds, Ci decreases to a costant fraction
of its value at the beginning of the dropping stage does not seem obvious.
For this reason, we consider the evolution of the displacement n

j −Ci, which
seems analytically more tractable. To this purpose, note that (91) implies
that w.h.p.

n

j
− C(t)

i >
n

j
− c(t−1)

i +
c

(t−1)
i

2

(
1

j
− c

(t−1)
i + α

√
n/k

n

)
(93)

(a)
=
n

j
− c(t−1)

i +
c

(t−1)
i

2

(
1

j
− c

(t−1)
i

n

)1− α
√
n/k

1
j −

c
(t−1)
i
n


=
n

j
− c(t−1)

i +
c

(t−1)
i

2

(
1

j
− c

(t−1)
i

n

(
1 +

α

log n

))

=

(
n

j
− c(t−1)

i

)(
1 + α1

c
(t−1)
i

2n

)
,

for some constant α1 > 0, where in (a) we have used that n/j − c(t−1)
i >√

kn log n.
We can now conclude the proof of Lemma 34. We �rst prove that Ci 6

n/ (2j) within O (k log n) steps, w.h.p. To this purpose note that, from the
hypotheses, at the beginning of the dropping stage it holds

n

j
− ci >

√
kn log n.
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Furthermore, for some positive constants α2 and α3, as long as Ci > α3n/j,
it holds

1 + α1
ci
n
> 1 +

α2

j
.

Hence, after O (k log n) steps, we have w.h.p.
n

j
− ci > (1− α3)

n

j
,

which in turn implies ci 6 α3n/j. Once ci 6 α3n/j, using again (93) we
have that Ci decreases by a factor 1 − Ω(1/j) in every round, w.h.p. By

standard concentration arguments we obtain that eventually ci 6 γ
√
n/k

3
2

within O (k log n) more steps, w.h.p. gg�
Finally, it remains to prove 33.

Lemma 33 (Small Stays Small). If c̃(t) is such that
∑

i∈C̄ c̃
(t)
i 6 γ

√
n/k

3
2 ,

then
∑

i∈C̄ C̃
(t+1)
i 6 γ√n/k 3

2 and S(t) ⊆ S(t+1), w.h.p.

Proof. From Lemma 32, for each i ∈ S(t) we have that

E
[
C

(t+1)
i

∣∣∣ C̃(t) = c̃
]
6 c̃i

(
1 +

c̃i
n
− 1

k

)
.

From a direct application of the Cherno� bound (Lemma 76) to C
(t+1)
i , and

taking into account any possible action of the adversary, we thus get that
w.h.p.

C̃
(t+1)
i = C

(t+1)
i +D

(t+1)
i 6 γ

√
n

k
3
2

(
1− 1

4k

)
+ F 6 γ

√
n

k
3
2

,

that is, i ∈ S(t), w.h.p. Analogously, we have

E

 ∑
i∈C̄(t)

C
(t+1)
i

∣∣∣∣∣∣ C̃(t) = c̃


6
∑
i∈C̄

c̃
(t)
i

(
1 +

c̃i
n
− 1

k

)
6 γ
√
n

k
3
2

(
1− 1

2k

)
,

and then, by applying the Cherno� bound (Lemma 76), we get that w.h.p.∑
i∈C̄(t)

C̃
(t+1)
i =

∑
i∈C̄(t)

C
(t+1)
i +

∑
i

D
(t+1)
i

6 γ
√
n

k
3
2

(
1− 1

4k

)
+ F 6 γ

√
n

k
3
2

,

concluding the proof. gg�





CHAPTER 6

Undecided-State Dynamics

In this chapter we prove the results presented in Section 2.3, continuing
the investigation of Chapter 5 about e�cient dynamics for the plurality con-
sensus problem in the PULL model over a network of n anonymous agents.

We consider the Undecided-State dynamics, a well-known protocol which
uses just one more state (the undecided one) than those necessary to store
opinions. We show that the speed of convergence of this protocol depends on
the initial opinion con�guration as a whole, not just on the gap between the
plurality and the second largest opinion community. This dependence is best
captured by the notion of monochromatic distance md(c), which measures
the distance of the initial opinion con�guration c from the closest monochro-
matic one. In the complete graph, we prove that, for a wide range of the
input parameters, this dynamics converges within O(md(c) log n) rounds.
We prove that this upper bound is almost tight in the strong sense: Starting
from any opinion con�guration c, the convergence time is Ω(md(c)).

Finally, we adapt the Undecided-State dynamics to obtain a fast, random
walk-based protocol for plurality consensus on regular expanders. This pro-
tocol converges in O(md(c) polylog(n)) rounds using only polylog(n) local
memory. A key-ingredient to achieve the above bounds is the analysis of the
maximum node congestion that results from performing n parallel random
walks on regular expanders.

6.1. Warm Up Before the Analysis

Recall that in the plurality consensus problem each of the n (anonymous)
agents in the system supports an initial opinion or color out of a set of
k = k(n) ∈ [n] possible ones. At the onset, the number of agents supporting
the plurality opinion j ∈ [k] (w.l.o.g., we assume j = 1), exceeds that of the
agents supporting any other opinion by a su�ciently-large bias, though the
initial plurality itself might be very far from absolute majority. Our goal is
to provide a dynamics that, with high probability, brings the system into the
con�guration in which all agents support the (initial) plurality opinion.

In this chapter we analyze the synchronous version of the dynamics intro-
duced in [AAE08] and [PVV09], in the (uniform) PULL model: in every
round, each agent pulls the opinion of a randomly-selected neighbor. If this
opinion di�ers from its own, the agent enters the undecided state, an extra
state that an agent can support. When an agent is in the undecided state
and pulls an opinion, she gets that opinion. Finally, an agent that pulls

159
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either the undecided opinion or its own opinion remains in its current state
(see also Algorithm 2 and Table 1). Observe that, di�erently from other
dynamics (e.g., the 3-Majority dynamics considered in Chapter 5), after the
�rst round agents can also enter an undecided state, to which no opinion is
associated.

We describe the notation that we adopt, part of which has already been
introduced in the previous section. At each round t, the global state of
the system is completely characterized by the corresponding opinion con-

�guration, namely by the vector c(t) = (c
(t)
1 , c

(t)
2 , . . . , c

(t)
k , q

(t)), where c
(t)
i

(respectively q(t)) denotes the number of nodes having opinion i (respec-
tively are in the undecided state) at the end of the t-th round. In the

initial state, we always have q(0) = 0. Given any initial opinion con�gu-
ration c = (c1, c2, . . . , ck, 0), let us assume w.l.o.g. that ci > ci+1 for any
i 6 k − 1. Lower-case letters are used to denote functions of the observed
opinion con�guration at any speci�ed time. Upper-case letters instead de-

note random variables (r.v.s). In particular, Q(t) and C
(t)
i denote the number

of nodes that are undecided and that have opinion i, respectively, at time
t. At any time t > 0, the execution of the protocol (uniquely) determines
the probability distribution of the (vectorial) random variable indicating the

state at time t: C(t) = (C
(t)
1 , C

(t)
2 , . . . , C

(t)
k , Q(t)). Since we are considering

complete graphs, this random process is clearly a �nite-state Markov chain.
To simplify notation, we omit the dependence of the random state on the
initial opinion con�guration. Since in the analysis presented in this chapter
we don't need to condition on more complicated events than “C(t) = c′′, we
simply write Pr( · | c) in place of Pr( · |C(t) = c), and similarly for expected
values. Finally, when we condition the system to be in a �xed state c at
some round, the random community sizes in the next round are denoted by
C ′i and Q

′.

6.1.0.1. Global bias. We de�ne a distance1 between opinion con�gurations
as follows:

d
(
c, c′

)
=
∑
i

(
ci
c1
− c′i
c′1

)2

In particular, consider the set M of the k possible monochromatic opinion
con�gurations. For any c, let

d(c,M) = min
c′∈M
{d
(
c, c′

)
}.

Definition 8 (Monochromatic Distance). Given an opinion con�gura-
tion c, its monochromatic distance is de�ned as

md(c) =

k∑
i=1

(
ci
c1

)2

,

1Note that d (c̄, c̄′) is not a distance in the strict sense. See Section 6.4.1 for a formal
discussion of this notion.
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where c1 is (one of) the plurality opinion(s).

It is easy to see that md(c) = d(c,M) + 1.

6.2. High-level Analysis of the Undecided-State Dynamics

Generally speaking, when the initial con�guration is su�ciently biased,
the dynamics' evolution follows a typical pattern, characterized by well-
distinct phases.

Understanding such a pattern requires a careful analysis. In this section,
we provide an overview of this analysis, quantitatively describing a typical
evolution of the process. We start from the expectations of a few key r.v.s

E
[
C

(t+1)
i

∣∣∣ c(t)
]

= c
(t)
i ·

c
(t)
i + 2q(t)

n
(94)

E
[
Q(t+1)

∣∣∣ c(t)
]

=

(
q(t)
)2

+
(
n− q(t)

)2 −∑i

(
c

(t)
i

)2

n
(95)

These equations follow directly from the de�nition of the Undecided-
State dynamics. From (94), we can appreciate the crucial role of the function
c
(t)
i +2q(t)

n : It represents the expected growth rate of every opinion community.

The corresponding r.v. C
(t+1)
i + 2Q(t+1) is of particular interest when i is

the plurality opinion2. In fact, a major novelty of our contribution is the
discovery of a clean mathematical connection between the expected growth
rate of the plurality and the monochromatic distance of the current con�gu-
ration. The following expression formalizes this connection and plays a key
role in our analysis. For every t > 0,

E
[
C

(t+1)
1 + 2Q(t+1)

∣∣∣ c(t)
]

=(96)

=
n2 +

(
n− 2q(t) − c(t)

1 )2 + 2(R(c(t)
)
−md(c(t)))

(
c

(t)
1

)2

n
,

where

R(c) =
k∑
i=1

ci
c1
.

Notice that 1 6 md(c), R(c) 6 k and R(c) > md(c) (see (100)). The deriva-
tion of (96) becomes straightforward only after guessing the (non obvious)
key role played by md as a measure of global bias. We observe that it is
not linear in several parameters and its recursive form depends, through R
and md, on the previous opinion con�guration, as a whole. The resulting
process evolution is thus rather complex and hard to analyze in a rigorous
way (the details of this analysis can be found in Section 6.4). However,
(96) allows us to informally characterize the main drivers of the process

2We are implicitly assuming that 1 remains the plurality opinion across the whole
process. This holds w.h.p. under the assumptions of Theorem 9.
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evolution. At the extremes, we have two complementary mechanisms that
may determine an exponential (or quasi exponential) growth of C1 and that
qualitatively explain the leftmost (�rst phase) and rightmost (third phase)
regions of Figure 20: Namely, large values of Q or of C1 itself. In the latter
case, growth follows a preferential attachment-like pattern. In the middle,
we have a phase of relative ��at� growth that corresponds to Q dropping to
a value close to n/2 and C1 not being large enough to self-sustain an expo-
nential growth. During this phase, growth is basically driven by the term
(R(c)−md(c))c2

1/n, i.e., it crucially depends on the distance from the closest
monochromatic con�guration.

E
[
c

(t+1)
i

∣∣∣c(t)
]

= c
(t)
i · �

Figure 18. The di�erent phases of the Undecided-State dy-
namics determined by the growth factor C1+2Q

n (cfr. Figure
20).

A further remark concerning (96) is that its proof crucially relies on
properties of the plurality, the argument does not carry over to other opin-
ions. In the next subsection, we give an overview of the analysis, deferring
to Section 6.4 some major technical aspects which are mostly related to the
rigorous characterization of phase-transition timings and the derivation of
concentration bounds.

6.2.1. The process in a nutshell

The typical behaviour of the Undecided-State dynamics follows a charac-
teristic pattern that exhibits three distinct phases, as exempli�ed in �gures
20 and 18. Note that the quantitative overview we provide below applies to
typical evolutions. We remark that the typical behavior holds w.h.p. under
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the assumption that c̄1 > (1 + α) · c̄2, where α is an arbitrarily small posi-
tive constant. Indeed this assumption guarantees that the initial plurality is
preserved along the whole process, w.h.p.

6.2.1.1. First round: Rise of the undecided. The initial state is extremely
unstable3, since any node has a high probability of sampling a node of dif-
ferent opinion in the �rst round, ending up in the undecided state. Thus,

?
?
?
?

?
?
?
?
?? ?
?
?
?

?
???
?

?
?
?
?
?
?
?
?

?
?
?
?

?
?
?
??

?

??

?
?
?
?

?
?

?
?

???
??

?
?
?
?

?
?
???
??
??

?

?
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Figure 19. A representation of the �rst step of the
Undecided-State Dynamics, where the size of each opinion

i drops in expectation to
c2i
n .

the �rst round sees dramatic changes in the system:

i) In general, a drastic drop in C
(1)
i 's (with �small�4 ones simply dis-

appearing w.h.p.);

ii) An explosive surge in Q(1), that possibly come to account for the
vast majority;

iii) The initial plurality is preserved, w.h.p., though it drops in absolute
terms.

A representation of this phase of the process is given in Figure 19.
Observe that, from (94) and (95) with t = 0 and recalling that q(0) = 0,

it follows that

E
[
C

(1)
1

∣∣∣ c̄] =
n

R(c̄)2
,

E
[
Q(1)

∣∣∣ c̄] = n

(
1− 1

Λ(c̄)

)
,(97)

where

Λ(c̄) =
R(c̄)2

md(c̄)
,

3Exceptions include cases that are less interesting, such as the one in which we have
a strong absolute majority already at the onset.

4Namely, o(
√
n) in size.
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and notice that 1 6 Λ(c̄) 6 k (see (101)). Furthermore, C
(1)
1 and Q(1) are

concentrated around their expectations (see Lemma 40 in Section 6.4).

6.2.1.2. First phase: Age of the undecided. The �rst phase starts right
after round 1. In this phase, the Ci's grow (almost) exponentially fast while
Q decreases. The duration of this phase depends on Λ(c̄) (and not just
the magnitude of the initial bias). Those facts are discussed in the proof of
Claim 1 that highlights key properties of the process marking the end of the
�rst phase (for rigorous statements see Lemmas 42 and 43 in Section 6.4).

Figure 20. Typical evolution of the Undecided-State dy-
namics after the �rst round, for n = 7 · 1010 nodes and

k = ( n
logn)

1
4 opinions, with c

(0)
1 = 2nk and c

(0)
i = n

k

(
1− 2

k

)
for

every i 6= 1.

Claim 1. Within T = O (log Λ(c̄)) rounds the system reaches a con�gu-
ration such that w.h.p.

Q(T ) =
n

2

(
1±Θ

(
1

md(c̄)

))
,

C
(T )
1 = Θ

(
n

md(c̄)

)
.

Furthermore, the relative ratios C1/Ci are approximately preserved.

Sketch of Proof. We �rst sketch the proof for the bound on Q. As-
sume that at some time t we are in a con�guration c(t) such that q(t) =
(n/2)(1 + β) for some β > 0. Notice that, choosing β = 1 − Θ(1/Λ(c̄)),
this assumption holds w.h.p. for t = 1 from the above overview of the �rst
round. Then, from (95), we immediately have:

E
[
Q(t+1)

∣∣∣ c(t)
]

=
n

2
(1 + β2)− 1

n

∑
i

(
c

(t)
i

)2
.
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Under reasonable assumptions on k, from the above inequality we have that
w.h.p.

Q(t+1) 6 (n/2)(1 + β2)

(see the proof of Lemma 43 in Section 6.4). Unfolding this argument for t
rounds after round 1, we obtain that w.h.p.

Q(t+1) 6 (n/2)(1 + β2t).

Recalling that β = 1−Θ(1/Λ(c̄)), we thus obtain

Q(T ) 6 (n/2) (1 + Θ(1/md(c̄)))

for

T = log Λ(c̄) +O(log logmd(c̄)).

Moreover, whenever

Q(t) > (n/2) (1 + Θ(1/md(c̄))) ,

we have w.h.p.

Q(t+1) > (n/2) (1 + Θ(1/md(c̄))) ,

which implies that w.h.p.∣∣∣Q(T ) − n/2
∣∣∣ 6 Θ

(
1

md(c̄)

)
.

As for the claim for C1, we next consider the evolution of the term

C
(t)
1 + 2Q(t) which, up to the factor 1/n, determines the growth rate of

C
(t+1)
1 . Assume that c

(1)
1 + 2q(1) = (1 + ε)n. We know from the analysis of

the �rst round and in particular from (97), that this assumption holds w.h.p
if we choose ε ≈ 1−Θ(1/Λ(c̄)) (note that we are neglecting the contribution

of C
(1)
1 ). Consequently, from (96) we get

E
[
C

(t+1)
1 + 2Q(t+1)

∣∣∣ c(t)
]
≈ (1 + ε2)n.

Informally, by applying the argument above iteratively we obtain

C
(2)
1 + 2Q(2) ≈ (1 + ε2)n;

C
(3)
1 + 2Q(3) ≈ (1 + ε4)n;

· · ·
C

(t)
1 + 2Q(t) ≈ (1 + ε2t−1

)n.
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At this point, from (94) we get

C
(t)
1 ≈ C

(1)
1

t−1∏
i=0

(1 + ε2i) ≈ C(1)
1

t−1∏
i=0

exp
(
ε2i
)

≈ C(1)
1 exp

(
t−1∑
i=0

ε2i

)

≈ C(1)
1 exp

(
t−1∑
i=0

(
1− 1

Λ(c̄)

)2i
)
.

Since T = log Λ(c̄) +O(log logmd(c̄)) it holds that

C
(T )
1 ≈ C(1)

1 ·Θ (Λ(c̄)) ≈ Θ

(
n

md(c̄)

)
.

The last derivation follows from (97), which approximately holds w.h.p. (see
also Lemma 40 in Section 6.4). gg�

The proof outlined above highlights the following properties of the �rst
phase:

i) The growth rate of plurality keeps �almost� exponential, while it
quickly decreases mirroring the decrease of Q;

ii) The duration of the second phase is determined by log Λ(c̄) (this
can be as large as Θ(log n) and as small as O(1));

iii) From (97) it is possible to see that the factor 1/md(c̄), appearing in

the expression of C
(T )
1 in the statement of Claim 1, corresponds to

the fraction of the not-undecided nodes that belong to the plurality
at the end of round 1.

6.2.1.3. Second phase: Plateau or Age of stability. The second phase is
characterized by a slow increase of C1, roughly at a rate 1+Θ(1/md(c̄)) and
a substantial stability of Q around the value n/2, as depicted in Figure 21.
Indeed, if the system is in an opinion con�guration c such that

q =
n

2

(
1±Θ

(
1

md(c̄)

))
and c1 = Θ

(
n

md(c̄)

)
.

(94) and (95) imply that

E
[
Q′
∣∣ c] ≈ n

2

(
1−Θ

(
1

md(c̄)

))
,

E
[
C ′1
∣∣ c] ≈ (1 + Θ

(
1

md(c̄)

))
c1.

By choosing the suitable constants we prove that the above relations hold
w.h.p. (see Lemma 44 in Section 6.4). This is also the main argument for
proving the following lower bound.
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Figure 21. A representation of the plateau phase of the
Undecided-State dynamics, where the number of agents
which get a new opinion and that of new undecided ones
almost balance each other. The �explosions� in the picture
represent the event of a node seeing another one with a dif-
ferent opinion.

Theorem 10 (Monochromatic Lower Bound). Let k = O
(
(n/ log n)1/6

)
.

Starting from any opinion con�guration c the convergence time of the Undecided-
State dynamics is Ω(md(c)), w.h.p.

However, as discussed above, since C1 increases at a rate 1+Θ(1/md(c̄)),
after a plateau of O(md(c̄) logmd(c̄)) rounds the system reaches a con�gura-

tion c(t) such that R(c(t)) = 1 + o(1). This fact marks the end of the second
phase, since the next phase yields a much faster growth of C1. For a rigorous
analysis of this part see Lemma 45 and Lemma 46 in Section 6.4.

6.2.1.4. Third phase: From plurality to totality. Observe that, by de�ni-
tion of R, C1 = n−Q

R and, when the third phase starts, we have R = 1+o(1):
hence, C1 ≈ n − Q. Now, from (96), the leading term of the growth rate
C1+2Q

n becomes 1 + (Qn )2. So, as long as Q is large (say Q = Θ (n)), C1 has
an exponential growth while Q decreases. The above arguments, rigorously
described in the proofs of Lemma 46 and Theorem 9 in Section 6.4, are the
main ingredients to bound the time of the last phase. Finally, the whole
analysis above yields the following upper bound.

Theorem 9 (Monochromatic Upper Bound). Let k = O
(
(n/ log n)1/3

)
and let c be any initial con�guration such that c1 > (1 + α) · c2 where α is
an arbitrarily small positive constant. Then within time O (md(c) · log n) the
system converges to the plurality opinion, w.h.p.
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6.3. Extension on Expander Graphs

In this section we show how to adapt the Undecided-State dynamics
to achieve plurality consensus on the class of d-regular expander graphs
[HLW06] (with d denoting the degree of the nodes), at a polylogarithmic
extra-cost in terms of local memory and time. The simple idea is to simulate
the (uniform) random sampling of nodes' opinions by using n tokens, each
originating at a di�erent node and performing a (short) independent random-
walk over the graph. It is well known [LPW09] that in every d-regular ex-
pander G = (V,E) a lazy random walk has a uniform stationary distribution.
Moreover, it is rapidly mixing, i.e., its mixing time is t̄ = O(log(1/ε) log n)
where ε is the desired bound on the total variation distance.

The modi�ed dynamics works in synchronous phases, each of them con-
sisting of exactly 2τ rounds (the suitable value for τ is de�ned later). During
the �rst τ rounds a forward process takes place: Every node sends a token
performing a random walk of at least t̄-hops and thus sampling the opinion
of a random node. A representation of this phase for a single node is given
in Figure 22. In the next τ rounds we have a backward process: Every token
is sent back to its source by �reversing� the path followed in the forward
process.

?

Figure 22. A representation of the �rst phase of the adap-
tation of the Undecided-State dynamics on expander graphs,
in which each node sends a token performing a random walk
of at least t̄-hops and thus sampling the opinion of a random
node.

If we were in the LOCAL model [Pel00], where each node can commu-
nicate with all its neighbors in one round, each phase of the above protocol
would last exactly 2t̄ rounds. In the GOSSIP model [CHHKM12], each
node can instead activate only one (bidirectional) link per round. More-
over, since we want messages of limited size, we assume that through each
direction of an active link only one token can be transmitted.
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We further assume that nodes enqueue tokens with a FIFO policy, break-
ing ties arbitrarily. The random walk performed by a token likely requires
more than t̄ rounds to perform (at least) t̄ hops of the random walk, de-
pending on the congestion, i.e. the maximum number of tokens in the queue
of a node (see Figure 23 for a representation of the congestion issue). We
thus need to bound the maximal congestion and use this bound, together
with t̄, to suitably set the right value for τ , so that every random walk is
w.h.p. �mixed� enough. At time 2τ each node gets back its own token, and
updates its state according to the Undecided-State dynamics. After that, a
new phase starts, and the process iterates.

?

Figure 23. A representation of the congestion issue that
arises if we try to perform many parallel random walks in the
GOSSIP model with a FIFO policy: if two tokens are on
the same node and have to move to di�erent neighbors, one
of them has to wait the next round to do that.

During the forward process, every token records the link labels of its
random-walk and each node records, for any round, the (local) link label it
has used (if any) to send a token at that round. Thanks to this information,
every node can easily perform the backward process: At every round each
node knows (if any) the neighbor it must contact to receive the right token
back5. Notice that, since the backward process is perfectly specular to the
forward one, the congestion is the same in both phases. Hence, both node
memory and token message require Θ(τ log d) bits.

By setting a suitable value for τ , every token performs at least t̄ hops,
w.h.p. (some tokens may perform more hops than others). Thanks to the
rapidly-mixing property, the opinion reported to the sender belongs to a
random node, i.e., each node has probability 1/n ± ε to be sampled (our
analysis works setting ε = O(1/n2)).

5Recall that in the GOSSIP model [CHHKM12], agents can indeed contact one
arbitrary neighbor per round.
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In the next paragraph, we provide the main arguments of our congestion
analysis (a formal analysis with all the details can be found in Section 6.4.7).

6.3.0.1. Highlights on the congestion analysis. Let u ∈ [n] be a node, for

every round t ∈ [2τ ] of a phase, we consider the r.v. Q(t) de�ned as the
number of tokens in u at round t. Consider the number Yt of tokens received
by node u at round t (for brevity's sake, we omit index u in any r.v.).
Then we can write Yt =

∑
i∈[d]Xi,t where Xi,t = 1 if the i-th neighbor of

u sends a token to u and 0 otherwise. Observe that the r.v.s Xi,t are not
mutually independent. However, the crucial fact is that, for any t and any
i, Pr (Xi,t = 1) 6 1/d, regardless of the state of the system (in particular,
independently of the value of the other r.v.s). So, if we consider a family

{X̂i,t : i ∈ [d], t ∈ [2τ ]}
of i.i.d. Bernoulli r.v.s with Pr(X̂i,t = 1) = 1/d, then Yt is stochastically

dominated by Ŷt =
∑

i∈[d] X̂i,t. For any node u and any round t, the r.v.

Q(t) is thus stochastically dominated by the r.v. Q̂(t) de�ned recursively as
follows.

{
Q̂(t) = Q̂(t−1) + Ŷt − χt
Q̂(0) = 1

where χt =

{
1 if Q̂(t−1) > 0,
0 otherwise.

Since our goal is to provide a concentration upper bound on Q(t), we can do
this by considering the �simpler� process Q̂(t). It turns out that �unrolling�
Q̂(t) directly is far from trivial: we thus need the �right� way to write it by
using only i.i.d. Bernoulli r.v.s. To this aim, for any t ∈ [2τ ] and for any
s ∈ [t], we de�ne the r.v.s

(98) Zs,t =
t∑
i=s

Ŷi − (t− s)

Informally speaking, Zs,t matches the value of Q̂(t) whenever s 6 t was

the last previous round s.t. Q̂(s) = 0.
As a key fact (see the claim in the proof of Lemma 47 in the Section 6.4.7),

we show that Q̂(t) can be written as a suitable function of Zs,t and χt so that
it holds

(99) Q̂(t) 6 max
s∈[t]
{Zs,t} and thus max

t∈[2τ ]
{Q(t)} 6 max

s6t62τ
{Zs,t}.

From (98), the r.v. Zs,t + (t− s) is a sum of d · (t− s+ 1) i.i.d. Bernoulli
r.v.s, each with expectation 1/d. From the Cherno� bound (Lemma 76), it
thus follows that, for constant c > 0 and any 1 6 s 6 t 6 2τ we have

Pr
(
Zs,t 6 max

{√
c(t− s+ 1) log n, 3c log n}

})
> 1− n−c/3.

By taking the union bound over all 1 6 s 6 t 6 2τ , from the above
bound and (99), we get the desired concentration bound on the maximal
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node congestion during every phase:

Pr

(
max

16t62τ
Q(t) 6 max

{√
cτ log n, 3c log n

})
> 1− τ2

nc/3
.

The above congestion bound allows us to set the right value of τ , thus getting
the following �nal result (its proof is given in Section 6.4.7).

Theorem 11 (Monochromatic Bound on Expanders). Let G = (V,E)
be a d-regular graph with constant expansion. For any initial con�guration
c such that the Undecided-State dynamics on the clique computes plurality
consensus in O(md(c) log n) rounds w.h.p., the modi�ed Undecided-State dy-
namics computes plurality consensus on G in O(md(c) polylog(n)) rounds,
w.h.p.

Remark 5. Notice that the analysis of the congestion also works in
a scenario where every node generates a new token whenever its queue is
empty, since it does not take care of the bound n on the overall number of
nodes, and thus it is not tight.

6.4. Detailed Analysis of the Undecided-State Dynamics

In this section we work out the details of the analysis presented above.
We begin with a closer look at the de�nition of the monochromatic distance.

6.4.1. The Monochromatic Distance

The results of this chapter highlight a fundamental dependence of conver-
gence properties of the Undecided-State dynamics on a particular measure of
the initial global bias. To mathematically characterize this we next introduce
the following notion of distance between equivalent opinion con�gurations.

Given any opinion con�guration c = (c1, c2, . . . , ck, q), consider the fol-

lowing ratio R(c) =
∑k

i=1 ci/c1. This allows us to de�ne an equivalence
relation ≡ in the space S

c ≡ c′ i� R(c) = R(c′)

and the following function over pairs of equivalence classes (with an abuse
of notation, for any opinion con�guration c, we denote its equivalence class
as c as well)

d
(
c, c′

)
=
∑
i

(
ci
c1
− c′i
c′1

)2

The function d(·, ·) is a distance over the quotient space of S. Let us now
consider the equivalence class M of the k possible monochromatic opinion
con�gurations and recall the de�nition of monochromatic distance.

Definition 8 (Monochromatic Distance). Given an opinion con�gura-
tion c, its monochromatic distance is de�ned as

md(c) =

k∑
i=1

(
ci
c1

)2

,
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where c1 is (one of) the plurality opinion(s).

It immediately follows that

md (c) = d(c,M) + 1.

The simple considerations above entail that md de�nes a notion of dis-
tance from the monochromatic con�guration that corresponds to the initial
plurality. Consistently, it is straightforward to see that md is maximized by
�uniform� con�gurations, i.e., con�gurations c such that c1 ≈ n/k. For every
c, it holds that

(100) 1 6 R(c),md(c) 6 k.

Finally, let us de�ne the following ratio

Λ(c) :=
R(c)2

md(c)
.

From the de�nitions of R(c) and md(c) and from a simple application of the
Cauchy-Schwartz inequality to R(c), we get for every con�guration c

(101) Λ(c) 6 k.

6.4.2. General bounds on the Undecided-State dynamics

Before delving into the analysis, we provide some crucial properties that
hold along the entire process. If c = (c1, . . . , ck, q) is the current opinion
con�guration (i.e. state) of the Markov chain, then we can easily derive the
following expected values of the next opinion con�guration:

µi = E
[
C ′i
∣∣ c̄] = ci ·

ci + 2q

n
(i ∈ [k]),(102)

µq = E
[
Q′
∣∣ c̄] =

q2 +
∑

i 6=j ci · cj
n

(103)

=
q2 + (n− q)2 −∑i c

2
i

n
.

From (102), we can see the crucial role of the quantity ci+2q
n : it represents

the expected growth rate of every opinion community. The following lemma
in fact formalizes such a connection by means of R(c) and it plays a key role
in the analysis of the entire process evolution. As we show in Lemma 41,
R(c) and md(c) are in fact strongly related.

Lemma 38 (Plurality Drift). Assume that, at some round, the system is
in an opinion con�guration c such that c1 > (1 + α) ci for any i 6= 1 and for
some constant α > 0. Then, at the next round, it holds that

E
[
C ′1 + 2Q′

n

∣∣∣∣ c] > 1 + Γ(c),

where

Γ(c) =

(
1− c1 + 2q

n

)2

+ 2 (1− γ) (R(c)− 1)
(c1

n

)2
,
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with γ = (1 + α)−1.

Proof. Let β = (1− γ). By using the hypothesis c1 > (1 + α) ci we get

md(c) =
∑
i

c2
i

c2
1

6 1 +
1

(1 + α)

∑
i 6=1

ci
c1

= γR(c) + β.

Moreover, we can write q as q = n−R(c)c1. Thanks to the above equations
and (102) and (103), by simple manipulations, we get

E
[
C ′1 + 2Q′

n

∣∣∣∣ c] = c1 ·
c1 + 2q

n2
+ 2

q2 + (n− q)2 −∑i(ci)
2

n2

= c1 ·
c1 + 2q

n2
+ 2

q2 +
(
R(c)2 −md(c)

)
· (c1)2

n2

> c1 ·
c1 + 2q

n2
+ 2

q2 +
(
R(c)2 − γR(c)− β

)
· (c1)2

n2

= 1 +

(
1− c1 + 2q

n

)2

+ 2 (1− γ) (R(c)− 1)
c2

1

n2
.

gg�

Another useful property that is often used in our analysis is the fact that
some crucial r.v.s are essentially monotone along the entire process. In the
next lemma, we prove this monotonicity for the r.v.s R(C′) and the ratios
C ′i/C

′
1 (for i 6= 1).

Lemma 39 (Monotonicity). Assume that, at some round, the system is
in an opinion con�guration c such that, for some constant α > 0 and a large
enough constant λ > 0 it holds

c1 > (1 + α) ci for any i 6= 1 and µ1 > λ log n.

Then, at the next round, it holds w.h.p.

R(C′) < R(c) ·
(

1 +O

(√
log n

µ1

))
,(104)

C ′1 > (1 + α) · C ′i ·
(

1−O
(√

log n

µ1

))
.

Proof. As for Claim (104), since R(C′) =
∑
i C
′
i

C′1
, it su�ces to bound,

respectively, C ′1 and
∑

iC
′
i. By applying the Cherno� bounds ((191) and
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(192) in Lemma 76) and by using the hypothesis µ > µ1 > λ log n we get

Pr

(
C ′1 6 µ1 ·

(
1−

√
2a · log n

µ1

) ∣∣ c) 6 1

na
,(105)

Pr

(
C ′1 > µ1 ·

(
1 +

√
3a log n

µ1

) ∣∣ c) 6 1

na
,

Pr

(∑
i

C ′i > µ ·
(

1 +

√
3a log n

µ

) ∣∣ c) 6 1

na
,(106)

for any constant a ∈
(
0, λ3

)
.

Let A be the event in (105), let B be the event in (106) and let Ac and
Bc be their complimentary events, respectively. From the union bound it
follows that P (Ac ∩Bc) > 1− 2

na . Moreover, since the following inequality
holds

1 +
√

3a logn
µ

1−
√

2a logn
µ1

6
1 +

√
3a logn
λ logn

1−
√

2a logn
λ logn

6 1 +

√
ba log n

λ log n
with b =

(√
3−
√

2

1− 3
√

2a
λ

)2

,

we have that

Pr

(
R(C′) =

∑
iC
′
i

C ′1
<

∑
i ci
c1
·
(

1 +

√
ba log n

µ

) ∣∣ c)

> Pr

(∑
iC
′
i

C ′1
<

∑
i ci · (ci + q)

c1 · (c1 + q)
·
(

1 +

√
ba log n

µ

) ∣∣ c)

= Pr

(∑
iC
′
i

C ′1
<

µ

µ1
·
(

1 +

√
ba log n

µ

) ∣∣ c)

> Pr

∑iC
′
i

C ′1
<

µ ·
(

1 +
√

3a logn
µ

)
µ1 ·

(
1−

√
2a logn
µ1

) ∣∣ c


> P (Ac ∩Bc) > 1− 2

na
.
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As for Claim (104), the hypothesis c1 > (1 + α) ci clearly implies µ1 >
(1 + α) · µi. Thus, by (105) we get

Pr

(
C ′1 6 (1 + α) · µi ·

(
1−

√
2a log n

µ1

) ∣∣ c)(107)

6 Pr

(
C ′1 6 µ1 ·

(
1−

√
2a log n

µ1

) ∣∣ c) 6 1

na
.

We now consider two cases. If µi < µ1/(6 (1 + α)) then, by the Cherno�

bound ((189) in Lemma 76 with δ = µ1/(1 + α)), with probability 1−n− λ
1+α

it holds that C ′i 6 µ1/((1 + α)). Together with (105), this implies that w.h.p.

C ′1 > µ1 ·
(

1−
√

2a log n

µ1

)
> (1 + α)C ′i ·

(
1−

√
2a log n

µ1

)
.

On the other hand, if µi > µ1/(6 (1 + α)) then, from the Cherno� bound
((191) in Lemma 76) we get that

Pr

(
C ′i > µi ·

(
1 +

√
3a log n

µi

) ∣∣ c)(108)

6 Pr

(
C ′i > µi ·

(
1 +

√
3a log n

µ1/6(1 + α)

) ∣∣ c) 6 1

na
,

for any a ∈
(

0, λ
18(1+α)

)
. Thus, by using (107), (108) and Fact 1 we get

that w.h.p.

C ′1 > (1 + α) · C ′i ·
(

1−O
(√

log n

µ1

))
.

gg�

6.4.3. First Round: Rise of the undecided

After the �rst round, a strong decrease of the opinion communities hap-
pens, while the undecided community gets to a large majority of the agents.

The next lemmas provide some formal statements about this behaviour
which represent the key start-up of the process (and its analysis).

We implicitly assume that the process starts in a �xed initial opinion
con�guration c = (c1, c2, . . . , ck). So, in the next lemmas, events and related
probabilities are conditioned on some �xed c.

We observe that when k is large, i.e. when k = ω
(
nb
)
for some b ∈ (1

2 , 1],
if the process starts from �almost-uniform� opinion con�gurations then, after
the �rst round, even the plurality may disappear, w.h.p.: indeed, if we con-
sider any c such that c1 = O

(
n
k

)
, then a simple application of the Markov

inequality implies that C ′1 = 0, w.h.p. We thus focus on ranges of k such

that k <
√
n/ log n.
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Lemma 40. Let k = o(
√
n/ log n). Given any initial opinion con�gura-

tion c, after the �rst round it holds w.h.p.

1
2

n
R(c̄)2 6 C ′1 6 2 n

R(c̄)2 ,

n
(

1− 2
Λ(c̄)

)
6 Q′ 6 n

(
1− 1

2Λ(c̄)

)
.

Proof. From (102) and recalling that in the initial con�guration q = 0,
we get

µ1 =
(c̄1)2

n
=

n

R(c)2
.

Similarly, from (103) we get

µq =
n2 −∑i (c̄i)

2

n
=
n2 −md · (c̄1)2

n
= n

(
1− 1

Λ(c̄)

)
,

where the second equality follows from the de�nition of md, while the third
one from the de�nition of R(c̄) and from simple manipulations. Since we

assumed k 6 o(
√
n/ log n) then we have that

µq =
n

R(c̄)2
> n

k2
= ω(log n).

The above inequality allows us to apply the Cherno� bound (Lemma 76)
and prove the �rst claim (i.e. that on C ′1).

Similarly, from (101), it holds

n

Λ(c̄)
> n

k
.

This allows us to apply the additive version of the Cherno� bound (Lemma
76) and prove the second claim (i.e that on Q′). gg�

The next lemma relates R(c) to md(c̄) after the �rst round.

Lemma 41. Let k = o(
√
n/ log n). Given any initial opinion con�gura-

tion c̄, after the �rst round it holds w.h.p.

R(C(1)) 6 md(c̄) · (1 + o(1)) .

Proof. By de�nition of plurality opinion, it holds that c1 > n/k. There-
fore, by the hypothesis on k and (102), we get µ1 = ω(log n) and then, by
using the Cherno� bounds (Lemma 76), we can get concentration bounds on

both the numerator and the denominator of R(C(1)) (as we did in the proof
of Lemma 39). Formally, we have that w.h.p.

R(C(1)) =

∑
iC

(1)
i

C
(1)
1

6 µ

µ1
· (1 + o(1)) .

Observe that, since in the initial opinion con�guration q = 0, it holds

µ

µ1
=

∑
i (c̄i)

2

(c̄1)2 .
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It follows that w.h.p.

R(C(1)) 6 µ

µ1
· (1 + o(1)) =

∑
i (c̄i)

2

(c̄1)2 · (1 + o(1))

= md · (1 + o(1)) ,

concluding the proof. gg�

6.4.4. First phase: Age of the undecided

In this phase, the undecided community rapidly decreases to a value
close to n/2 while the plurality reaches a size close to n/(2md). When this
happens, the ratios Ci/C1 and R(c) essentially keep their initial values and
Q decreases to a value very close to n/2. The length of this phase is at most
logarithmic.

The next lemma formalizes the aspects of this phase that are used to get
the upper bound on the convergence time of the process.

Lemma 42. Let k = o(
√
n/log2 n) and let ε be any constant in (0, 1

2).

Let c̄ be any initial con�guration such that, for any j 6= 1 and for some
arbitrarily small constant α > 0, c1 > (1 + α) · cj. Then at some round

t̃ = O (log n) the process reaches a con�guration C(t̃) such that w.h.p.

(109)

(110)

(111)

(112)



C
(t̃)
1 >

(
1

16
− ε

8

)
n

R(C(t̃))
,

R(C(t̃)) 6 md · (1 + o (1)) ,

C
(t̃)
1 >

(
1 +

α

2

)
· C(t̃)

i for any opinion i 6= 1,

C
(t̃)
1 + 2Q(t̃)

n
> 1 +

ε2

4
.

Proof. We prove one claim at a time.
Proof of (109). Let ε̃ be any positive constant in (ε/2, ε). Two cases may
arise. If c̄1 >

(
1
4 − ε̃

2

)
· n, by applying the Cherno� bound ((191) in Lemma

76) on the expected value of C
(1)
1 and using (100), it is easy to see that w.h.p.

C
(1)
1 >

(
1

16
− ε

8

)
n >

(
1

16
− ε

8

)
n

R(C(1))
.

If instead c̄1 6
(

1
4 − ε̃

2

)
· n. From Lemma 40 at round t = 1 we have w.h.p.

Q(1) > n
(

1− 2

Λ(c̄)

)
> n

(
1− 2c1

n

)
> n

2
+ ε̃ · n,

where we used that Λ(c̄) > R(c̄) = n/c̄1.
In the generic con�guration c, as long as q > n

2 + ε̃ · n, from (102) we
have

µ1 > c1 ·
(

1

2
+ ε̃

)
,
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thus, by applying the Cherno� bound ((191) in Lemma 76), we see that C1

grows exponentially fast, w.h.p.
It follows that we can consider the �rst round such that t̃ = O (log n)

and Q(t̃) < n
2 + ε̃ · n. This implies that

n−Q(t̃) > n

2
− ε̃ · n,

hence

C
(t̃)
1 =

n−Q(t̃)

R(C(t̃))
>

n
2 − ε̃ · n
R(C(t̃))

.

This proves (109).
Proof of (110). Observe that, since c̄1 > n

k , then from (102) and the

Cherno� bound ((191) in Lemma 76) it holds C
(1)
1 = ω(log2 n), w.h.p. As

we have already shown in the proof of Claim (109), after the �rst round C1

grows exponentially until round t̃. It follows that we can repeatedly apply
Lemma 39 and, together with Lemma 41, we get that w.h.p.

R(C(t̃)) 6 md ·
(

1 + o

(
1

log n

))logn

6 md · (1 + o (1)) .

This proves (110).
Proof of (111). Similarly to the previous Claim proof, the repeated
application of Lemma 39 until round t̃ and Fact 1 implies that w.h.p.

C
(t̃)
1 > (1 + α) · C(t̃)

i ·
(

1− o
(

1

log n

))logn

= (1 + α) · C(t̃)
i · (1− o (1)) >

(
1 +

α

2

)
· C(t̃)

i .

This proves (111).

Proof of (112). Since, by the de�nition of t̃, it holds q(t̃−1) > n
2 + ε̃, then

by Lemma 38 we get that

E
[
C

(t̃)
1 + 2Q(t̃)

∣∣∣ c(t̃−1)
]
> (1 + ε̃2) · n.

Observe that E
[
C

(t̃)
1 + 2Q(t̃)

∣∣∣ c(t̃−1)
]
can be written as the expected value

of the sum of the following independent r.v.s: given an opinion con�guration

c(t̃−1), for each node i

Xi =

{
1 if node i has opinion 1 at the next round,
2 if node i is undecided at the next round.

Then (112) is an easy application of the Cherno� bound ((191) in Lemma
76). gg�

From the state conditions achieved after the �rst round (see Lemma 40),
the next lemma shows that, within O(log n) rounds, the process reaches a
con�guration where Q gets very close to n/2 and C1 is still relatively small,
w.h.p. In the next section, we prove (see Theorem 10) that this fact forces
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the process to �wait� for a time period Ω (md(c̄)) before the plurality (re-
)starts to grow rapidly. This is the key ingredient of the lower bound in
Theorem 10.

Lemma 43. Let k 6 ε · (n/ log n)1/6 be the initial number of opinions,
where ε > 0 is a su�ciently small positive constant. Let c̄ be the initial
opinion con�guration and let c(1) be the opinion con�guration after the �rst
round. If it holds that:

1

2

n

R(c̄)2
6 c

(1)
1 6 2

n

R(c̄)2
,

n

(
1− 2

Λ(c̄)

)
6 q(1) 6 n

(
1− 1

2Λ(c̄)

)
,

within the next O(log n) rounds there is a round t̄ such that w.h.p.

C
(t̄)
1 6 γ

n

md(c̄)
and

∣∣∣Q(t̄) − n

2

∣∣∣ 6 2
γ2

md(c̄)
,

where γ > 0 is a su�ciently large constant.

Proof. First, we prove that if at an arbitrary round t the number of
undecided nodes is

q = (1 + δ)(n/2) with
1

md(c̄)
6 δ 6 1− 1

2Λ(c̄)
,

then at the next round it holds that Q′ 6
(
1 + δ2

)
(n/2), w.h.p. Indeed, if

we replace q = (1 + δ)(n/2) in (103), we get that the expected value of Q′

at the next round is

µq =
1

n

((
(1 + δ)

n

2

)2
+
(

(1 + δ)
n

2

)2
−

k∑
j=1

(cj)
2
)

=
(
1 + δ2

) n
2
− 1

n

k∑
j=1

(cj)
2

Now observe that

1

n

k∑
j=1

(cj)
2 > 1

n
k

(
n− q
k

)2

=
n

4k
(1− δ)2

> n

4k
·
(

1

2Λ(c̄)

)2

> n

16k3
,

where in the last inequality we used (101), that is Λ(c̄) 6 k.
Therefore, since Q′ is a sum of independent Bernoulli r.v., from the

Cherno� bound ((190) in Lemma 76 with λ = 1/16k3) it follows that

Pr
(
Q′ >

(
1 + δ2

) n
2

∣∣ c) 6 exp
(
− n

128k6

)
6 n−1/(128ε6),(113)

where in the last inequality we used the hypothesis on k.
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Now we show that the number Q of undecided nodes, while decreasing
quickly, cannot jump over the whole interval[

n

2
− 2γ2 n

md(c̄)
,
n

2
+ 2γ2 n

md(c̄)

]
.

Observe that the function f(q) = q2 + (n− q)2 has a minimum for q = n/2,
therefore for any

q > n

2
+ 2γ2 n

md(c̄)

it holds that

f(q) > f
(
n

2
+ 2γ2 n

md(c̄)

)
.

Hence if at some round t we have that

q > n

2

(
1 +

4γ2

md(c̄)

)
and c1 6 γn/md(c̄),

in (103) we get

µq >
1

n

((
n

2
+ 2γ2 n

md(c̄)

)2

+

(
n

2
+ 2γ2 n

md(c̄)

)2

−
k∑
j=1

c2
j

)

=
n

2
+ 4γ4 n

md(c̄)2
− 1

n

k∑
j=1

(cj)
2

> n

2
− 1

n

k∑
j=1

(cj)
2 =

n

2
− (c1)2

md(c̄)

n
> n

2
− γ2 n

md(c̄)
,

where in the last inequality we used that c1 6 γn/md(c̄). Since Q′ is a sum
of n independent Bernoulli r.v., from the Cherno� bound (Lemma 76) it
follows that

Pr
(
Q′ 6 n/2− 2γ2n/md(c̄)

∣∣ c) 6 exp

(
−2γ2 n

md(c̄)2

)
(114)

6 exp
(
−2γ2 n

k2

)
6 exp

(
−Ω

(
n2/3

))
.

From (113), we get that w.h.p.

(115) Q(t) 6
(

1 + δ2t
) n

2
.

Hence, within
log (Λ(c̄)) +O(log logmd(c̄))

rounds, the number Q of undecided nodes is below (n/2)(1 + 4γ2/md(c̄))
w.h.p. Moreover, from (114) it follows that in one of such rounds we have
that w.h.p. ∣∣∣Q− n

2

∣∣∣ 6 2γ2/md(c̄).
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It remains to show that, during this time, the plurality C1 does not increase
from less 2n/R(c̄)2 to more than γn/md(c̄).

From (102) and (115) it follows that, as long as c1 6 γn/md(c̄), the
increasing rate of C1 at round t is at most

1 + δ2t +
γ

md(c̄)
,

w.h.p. For the �rst log(Λ(c̄)) rounds, we can bound the above increasing
rate with 2. Thus, after log(Λ(c̄)) rounds we get that the plurality is C1 6
2n/md(c̄), w.h.p. As for the next O (log logmd(c̄)) rounds, we have that the
plurality is at most

2
n

md(c̄)
·
L∏
t=l

(
1 + δ2t +

γ

md(c̄)

)
6

6 2
n

md(c̄)
· exp

(
L∑
t=l

(
δ2t +

γ

md(c̄)

))

6 2
n

md(c̄)
· exp

(
O(1) +

log logmd(c̄)

md(c̄)

)
6 γ n

md(c̄)
,

w.h.p., where in the last inequality we need to choose γ su�ciently large. gg�

Remark 6. The two lemmas above refer to some rounds t̃, t̄ = O(log n)
in which the process lies in a state satisfying certain properties. We observe
that the analysis does never combine the two lemmas and thus it does not
require that t̃ = t̄, indeed the �rst lemma is used to get the upper bound while
the second one to get the lower bound on the convergence time. However, it
is possible to prove that there is in fact a time interval (at the end of Phase
2) where both claims of the lemmas hold w.h.p.

6.4.5. Second phase: Plateau or Age of stability

This phase is characterized by a slow increase of c1, roughly at a rate
1 + Θ(1/md(c̄)). This fact is formalized in the next lemma and it is used to
derive the lower bound on the convergence time of the process in Theorem
10.

Lemma 44. Let c̄ be the initial opinion con�guration, let k 6 ε·(n/ log n)1/4

be the initial number of opinions, where ε > 0 is a su�ciently small positive
constant. If there is a round t̄ such that∣∣∣q(t̄) − n

2

∣∣∣ 6 2γ2 n

md(c̄)
and c

(t̄)
1 6 γ(n/md(c̄)),

where γ is an arbitrary positive constant, then the plurality C1 remains
smaller than 2γ(n/md(c̄)) for the next Ω(md(c̄)) rounds, w.h.p.
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Proof. Let us de�ne δ = q − n/2 and let ∆′ be the random variable
Q′ − n/2 in the next round. From (102) we get

E
[
∆′
∣∣ c] =

1

n

2δ2 −
k∑
j=1

(cj)
2

 ,(116)

µi =

(
1 +

2δ + ci
n

)
ci.(117)

We show that, if

δ ∈
(
− 2γ2n

md(c̄)
,

2γ2n

md(c̄)

)
and c1 6

2γn

md(c̄)
,

then the increasing rate of C1 is smaller than (1+Θ(1/md(c̄))), w.h.p. More
precisely, we prove that w.h.p. |δ| 6 2γ2 n

md(c̄)

c1 6 2γ n
md(c̄)

=⇒


|∆′| 6 2γ2 n

md(c̄)

C ′1 6
(

1 + 2γ(γ+1)+1
md(c̄)

)
c1

.

As for the increasing rate of the plurality, from (117) it follows that

µ1 =

(
1 +

2δ + c1

n

)
c1

6
(

1 +
2γ2n/md(c̄) + 2γn/md(c̄)

n

)
c1

=

(
1 +

2γ(γ + 1)

md(c̄)

)
c1

Since C ′1 can be written as a sum of q + c1 6 n independent Bernoulli
random variables, from the Cherno� bound ((190) in Lemma 76 with λ =
c1/(nmd(c̄))) it follows that

Pr

(
C1 >

(
1 +

2γ(1 + γ) + 1

md(c̄)

)
c1

∣∣ c) 6(118)

6 exp

(
−2 (c1/md(c̄))2

n

)
(a)

6 exp

(
− 2n

9k4

)
(b)

6 n−2/(9ε4),

where in (a) we used that

c1 > n− q/k > n/(3k) and md(c̄) 6 k,
and in (b) we used the hypothesis k 6 ε · (n/ log n)1/4.

As for E [∆′ | c], according to (116), we have the upper bound

(119) E
[
∆′
∣∣ c] (a)

6 2
δ2

n

(b)

6 8γ4 n

(md(c̄))2

(c)

6 γ2 n

md(c̄)2
,

where

• in (a) we discarded the non-negative term
∑k

j=1 (cj)
2,
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• in (b) we have used |δ| 6 2γ2n/md(c̄), and
• in (c) we simply assumed that md(c̄) is a su�ciently large constant,
namely md(c̄) > 8γ2.

On the other hand, we have the lower bound

E
[
∆′
∣∣ c] =

1

n

2δ2 −
k∑
j=1

(cj)
2

 > − 1

n

k∑
j=1

(cj)
2(120)

(a)

> −k
n

(
n− q
k

)2 (b)

> −4

9
· n
k

(c)

> −4

9
· n

md(c̄)
,

where

• in (a) we used the fact that all cj 's are smaller than n− q,
• in (b) we used the fact that q is close to n/2, so n − q is smaller
than, say, (2/3)n, and �nally
• in (c) we used the fact that k > md(c̄).

Hence, from (119) and (120) we get

−4

9

n

md(c̄)
6 E

[
∆′
∣∣ c] 6 γ2 n

md(c̄)
.

Since ∆′ = Q′ − n/2 can be written as a sum of n independent random
variables taking values ±1/2, from the appropriate version of Cherno� bound
(Lemma 76) it thus follows that

Pr

(
∆′ /∈

(
−2γ2 n

md(c̄)
, 2γ2 n

md(c̄)

) ∣∣ c)(121)

6 exp

(
−Ω

(
n

md(c̄)2

))
6 exp

(
−Ω

(
n1/2

))
,

where in the last inequality we used again the fact that md(c̄) 6 k 6
ε (n/ log n)1/4.

In order to formally complete the proof, let us now de�ne event Et =
At ∧ Bt, where At and Bt are the events

At = �|∆(t)| 6 2γ2 n

md(c̄)
�,

Bt = �C
(t)
1 6

(
1 +

2γ(1 + γ) + 1

md(c̄)

)t
· γ n

md(c̄)
�.

Observe that(
1 +

2γ(1 + γ) + 1

md(c̄)

)t
6 2 for t 6 1

4γ(1 + γ)
·md(c̄).

Hence, if we set

T =

⌊
1

4γ(1 + γ)
md(c̄)

⌋
,
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from (118) and (121) it follows that, for every j ∈ [t̄, t̄+ T ], we get

Pr
(
Ej
∣∣ ∩j−1

i=1 Ei
)
> (1− n−c),

for a positive constant c that we can choose arbitrarily large. Thus, starting
from the given opinion con�guration c(t̄), the probability that after T rounds

the plurality C
(t̄+T )
1 is at most 2γn/md(c̄) is

Pr

(
C

(t̄+T )
1 6 2γ

n

md(c̄)

∣∣ c(t̄)

)

> Pr

t̄+T⋂
j=t̄

Ej

 =
t̄+T∏
j=t̄

Pr

(
Ej
∣∣ j−1⋂
i=t̄

Ei
)

>
(
1− n−c

)T > 1− Tn−c > 1− n−Ω(1).

gg�
Theorem 10 (Monochromatic Lower Bound). Let k = O

(
(n/ log n)1/6

)
.

Starting from any opinion con�guration c the convergence time of the Undecided-
State dynamics is Ω(md(c)), w.h.p.

Proof. From Lemma 40 and Lemma 43 it follows that there is a round
t̄, within the �rst O(log n) rounds, such that the process lies in an opinion

con�guration c(t̄) where w.h.p.∣∣∣Q(t̄) − n/2
∣∣∣ 6 2γ2

md(c̄)
and C

(t̄)
1 6

γn

md(c̄)
,

where γ is a su�ciently large constant. From Lemma 44, it then follows that
the plurality C1 remains smaller than 2γ(n/md(c̄)) for the next Ω(md(c̄))
rounds. gg�

There is, however, a positive drift for the plurality working in this �long�
phase as well: this minimal drift allows the process to reach a state which
represents the end of this phase and from which the plurality can re-start to
grow fast. In the next lemma we formally prove that the process exhibits
the aforementioned minimal drift, while the latter phase-completion state is
formalized in the subsequent Lemma 46.

Lemma 45 (Minimal Drift). Let k = o
(√

n
logn

)
and let ε ∈ (0, 1

2) be an

arbitrarily small positive constant. Given an opinion con�guration c such
that 

c1 > β · n
R(c) for some constant β > 0,

c1 > (1 + α) ci for some constant α > 0
and any i 6= 1.

one of the following two holds, w.h.p.:

• either
R(C′) 6 1 +

ε

3
and Q′ 6 εn,

or
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• we have
C ′1 + 2Q′

n
> 1 + Ω

(
1

R (c)

)
.

Proof. First, let us derive a lower bound on C ′1 + 2Q′ that holds w.h.p.
By Lemma 38

E
[
C ′1 + 2Q′

∣∣ c] = n · (1 + Γ(c)) ,

where

Γ(c) =

(
1− c1 + 2q

n

)2

+ 2 (1− γ) (R(c)− 1)
(c1

n

)2
,

with γ = (1 + α)−1. As in the proof of Lemma 42, observe that E [C ′1 + 2Q′ | c]
can be written as the expected value of the sum of the following independent
r.v.s: given c̄, for each node i

Xi =

{
1 if node i has opinion 1 at round t+ 1,
2 if node i is undecided at round t+ 1.

Thus, we can apply the Cherno� bound ((191) in Lemma 76) to them and
get that w.h.p.

(122) C ′1 + 2Q′ > n · (1 + Γ(c))

(
1−O

(√
log n

n

))
.

Let us analyze (122) when R(c) > 1 + ε
4 or Q′ > 3

4εn.
If R(c) > 1 + ε

4 we have that

Γ(c) > 2 (1− γ) (R(c)− 1)
(c1

n

)2
(123)

> 2 (1− γ)

(
1− 1

R(c)

)
R(c) ·

(
β

R(c)

)2

>
αεβ2

2(1 + α)(1 + ε/4)
· 1

R(c)
.

On the other hand, if R(c) 6 1 + ε
4 then

c1 =
n− q
R(c)

> n− q
1 + ε/4

> (n− q)(1− ε/4) > n− q − ε

4
n,

hence, if it also holds that q > 3
4εn, the latter inequality implies that

1− c1 + 2q

n
6 ε

4
− q

n
6 −ε

2
,

that is

(124) Γ(c) >
(

1− c1 + 2q

n

)2

> ε2

4
.
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Therefore, if R(c) > 1 + ε
4 or q > 3

4εn, then using (123), (124) and the
given upper bound on the value of R(c), from (122) we get

C ′1 + 2Q′

n
> (1 + Γ(c))

(
1−O

(√
log n

n

))

>
(

1 +
σ

R(c)

)(
1−O

(√
log n

n

))
>
(

1 +
σ

2R(c)

)
,

where

σ = min

{
ε2

4
R(c),

αεβ2

2(1 + α)(1 + ε/4)

}
.

It remains to show that if R(c) 6 1 + ε
4 and q 6 3

4εn then R(C′) 6 1 + ε
3

and Q′ 6 εn, w.h.p.
In order to do so, observe that∑

i 6=1

ci = (R(c)− 1)c1 6
ε

4
n.

It follows that

µq =
q2 +

∑
i 6=j cicj

n

6
q2 + 2c1

∑
j 6=1 cj +

∑
i 6=1 ci

∑
j 6=1 cj

n

6
(

3

4
ε

)2

n+
ε

2
c1 +

ε2

16
n.

Thanks to the Cherno� bound ((192) in Lemma 76) and since ε < 1
2 , the

previous inequality implies that Q′ 6 εn, w.h.p. As for R(C′), by applying
Lemma 39 and using the Cherno� bound ((192) in Lemma 76), we get that
R(C′) 6 1 + ε

3 , w.h.p.
gg�

Lemma 46. Let k = O((n/ log n)1/4) and let ε > 0 be an arbitrarily small

constant. If the process is in an opinion con�guration c(t̃) that satis�es the
following conditions:

(125)

(126)

(127)

(128)



c
(t̃)
1 + 2q(t̃)

n
= 1 + Ω

(
1

R(c(t̃))

)
,

c
(t̃)
1 >

1

17

n

R(c(t̃))
,

R(c(t̃)) = O(md(c̄)),

c
(t̃)
1 > (1 + α) · c(t̃)

i for some constant α > 0

and for any opinion i 6= 1,
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then, after T = O (md(c̄) · log n) rounds, the process is in an opinion con�g-

uration C(t̃+T ) such that w.h.p.

C
(t̃+T )
1 > 1

17

n

R(C(t̃+T ))
,

R(C(t̃+T )) 6 1 +
ε

3
,

Q(t+T ) 6 εn,

C
(t̃+T )
1 > (1 + α) · C(t̃+T )

i (1− o(1))

for any opinion i 6= 1.

Proof. First, we show that, if we start in an opinion con�guration c
satisfying properties (125), (126), (127) and (128), then C′ still satis�es the
conditions (126), (127) and (128), w.h.p.

Using the Cherno� bound ((191) in Lemma 76) and conditions (126) and
(125), we get that w.h.p.

C ′1 >
c

(t̃)
1 + 2q(t̃)

n
c1

(
1−O

(√
log n

µ1

))

=

(
1 + Ω

(
1

R(c)

))
c1 >

1

17

n

R(c)
.

In the �rst equality, we used that (125) and (126) together imply that w.h.p.

µ1 > c1 >
1

17

n

R(c)
� 1

R(c)
,

which proves that C′ also satis�es Condition (126), w.h.p. Moreover, Con-
dition (126) allows us to apply Lemma 39 to get that w.h.p.

C ′1 > (1 + α) · C ′i ·
(

1−O
(

(log n/µ1)1/2
))

,

R(C′) < R(c) ·
(

1 +O
(

(log n/µ1)1/2
))

.

proving that C′ satis�es the hypotheses (127) and (128), w.h.p.
Now, by Lemma 45 and (127), it follows that either R(C′) 6 1 + ε

3 and
Q′ 6 εn, w.h.p. (in which case, we are done), or it holds w.h.p.

C ′1 + 2Q′

n
= 1 + Ω

(
1

R(c)

)
= 1 + Ω

(
1

md(c̄)

)
.

In the latter case, C′ satis�es also Condition (125) and the above argu-
ment can be iterated again. In particular, (125) implies that after T =
Ω(md(c̄) log n) further rounds we have w.h.p.

C
(t̃+T )
1 =

(
1 + Ω

(
1

md(c̄)

))
c

(t̃+T−1)
1 = · · · =

=

(
1 + Ω

(
1

md(c̄)

))T
c

(t̃)
1 = n− o(n),
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and thus

R(C(t̃+T ))− 1 =

∑
i 6=1C

(t̃+T )
i

C
(t̃+T )
1

6 ε

3
and Q(t̃+T ) 6 εn.

gg�

6.4.6. Third phase: From plurality to totality

The next theorem connects the results achieved in the previous sections
into a consistent picture, establishing an upper bound on the overall con-
vergence time of the process. Its proof also highlights the main features of
the �nal phase, during which plurality turns into the totality of agents at an
exponential rate.

Theorem 9 (Monochromatic Upper Bound). Let k = O
(
(n/ log n)1/3

)
and let c be any initial con�guration such that c1 > (1 + α) · c2 where α is
an arbitrarily small positive constant. Then within time O (md(c) · log n) the
system converges to the plurality opinion, w.h.p.

Proof. Let ε > 0 be an arbitrarily small positive constant. Thanks
to Lemma 42, we can assume that at some time t̃ = O(log n) the process

reaches a con�guration C(t̃) where it holds w.h.p.

C
(t̃)
1 + 2Q(t̃)

n
= 1 + Ω

(
1

R(c(t̃))

)
,

C
(t̃)
1 >

1

17

n

R(c(t̃))
,

R(c(t̃)) = O(md),

C
(t̃)
1 > (1 + α) · c(t̃)

i (1− o(1)) for any opinion i 6= 1.

Assuming c(t̃), Lemma 46 determines the kick-o� condition for a new
phase in which both the undecided and the non-plurality opinion commu-
nities decrease exponentially fast. In particular, it implies that, within
O(md log n) further rounds, the process reaches a con�guration C(tend) such
that it holds w.h.p.

(129)

(130)

(131)

(132)



C
(tend)
1 > 1

17

n

R(c(tend))
,

C
(tend)
1 > (1 + α) · C(tend)

i (1− o(1)) for any opinion i 6= 1,

R(c(tend)) 6 1 +
ε

3
,

Qtend 6 εn.
Now, we show that starting from any con�guration satisfying the con-

ditions above, any community (including the undecided) other than the
plurality decreases exponentially fast until disappearance. To this aim, let
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ψ =
∑

i 6=1 ci + q and, as usual, let Ψ′ be the r.v. associated to the value of
ψ at the next time step. We prove that the following facts hold, w.h.p., in
any round following tend:

i) both Q and
∑

i 6=1Ci are bounded by quantities that decrease by

a constant factor, so that at any time following tend, Ψ is (upper)
bounded by a quantity that decreases exponentially fast, thus C1 =
n−Ψ is (lower) bounded by an increasing quantity;

ii) properties (130), still holds.

In the rest of this proof we assume ε < 1/3, which is consistent with the
assumptions of Lemma 46.

To begin with, note that Property (131) implies
∑

i 6=1 ci 6 ε
3n, so that

∑
i 6=j

ci · cj 6 2c1

∑
j 6=1

ci +
∑
i 6=1

ci
∑
j 6=1

cj 6
(

2

3
ε+

ε2

9

)
n2.

Therefore, properties (131) and (132) together imply

µq =
(q)2 +

∑
i 6=j ci · cj
n

(133)

6
(
ε2 +

2

3
ε+

ε2

9

)
n <

3

4
εn, and

E

∑
i 6=1

C ′i

∣∣∣∣∣∣ c
 =

∑
i 6=1

(
ci
ci + 2q

n

)
(134)

6 1

3

(
1

3
+ 2

)
ε2n =

7

9
ε2n <

7

27
ε.

where we use the assumption that ε < 1/3. At this point, we can use the
Cherno� bound ((192) in Lemma 76) to show that (133) and (134) hold,
w.h.p. (up to a multiplicative factor 1 + o(1)). This proves that both Q and∑

i 6=1Ci (and hence Ψ) decrease by a constant factor in a round6, w.h.p.

It remains to observe that, when q and/or
∑

i 6=1 ci become O(log n), an

application of the Cherno� bound ((189) in Lemma 76) shows that they
remain below this value in the subsequent rounds, w.h.p. This completes
the proof of i).

Moreover, since C ′1 = n − Ψ′, i) implies that C ′1 is lower bounded by
an increasing quantity, w.h.p. Additionally, property (129) and the just-
proved i), together with property (130), imply the assumptions of Lemma
39, allowing us to show that property (130) still holds at the end of next
round, w.h.p. As a consequence, we have that in at most τ = O(log n)

6In fact, a more careful analysis, unnecessary to prove the current result, could use
(134) to show that

∑
i 6=1 Ci decreases superexponentially fast.



190 6. UNDECIDED-STATE DYNAMICS

rounds we reach an opinion con�guration C̄(tend+τ) such that w.h.p.

Q(tend+τ) +
∑
i 6=1

C
(tend+τ)
i = O(log n).

Finally, we can apply Markov's inequality on the value of
∑

i 6=1C
(tend+τ)
i

to show that at the next round all opinion communities except for the plu-
rality one disappear, w.h.p. gg�

6.4.7. Node congestion analysis

The parallel random walks described in Section 6.3 yield variable token
queues in the nodes. Recall that, for each node u ∈ [n], and for every round

t ∈ [2τ ] of the phase, we consider the r.v. Q(t)
u de�ned as the number of

tokens in u at round t of any phase of the modi�ed dynamics. In the next
lemma we prove a useful bound on the maximal congestion in a phase of
length 2τ .

Lemma 47. Consider a phase of length 2τ > 1 of the above protocol on
a d-regular graph G = (V,E). Let u ∈ V be any node and let t be any round
of the phase. Then, for any constant c > 0, it holds that

Pr

(
max

16t62τ
Q(t)
u 6 max

{√
2cτ log n, 3c log n

})
> 1− (2τ)2

nc/3
.

Proof. Consider the number Yt of tokens received by a �xed node u at
round t (for brevity's sake, we omit index u in any r.v.). Then we can write

Yt =
∑
i∈[d]

Xi,t,

where Xi,t = 1 if the i-th neighbor of u sends a token to u and 0 o.w..
Observe (again) that the r.v.s Xi,t are not mutually independent. However,
the crucial fact is that, for any t and any i, it holds

Pr(Xi,t = 1) 6 1

d
,

regardless the state of the system (in particular, independently of the value
of the other r.v.s).

So, if we consider a family

{X̂i,t : i ∈ [d], t ∈ [2τ ]}

of i.i.d. Bernoulli r.v.s with Pr(X̂i,t = 1) = 1/d, then Yt is stochastically
smaller than

Ŷt =

d∑
i=1

X̂i,t.
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For any node u and any round t, the r.v. Q(t) is thus stochastically smaller
than the r.v. Q̂(t) de�ned recursively as follows.{

Q̂(t) = Q̂(t−1) + Ŷt − χt
Q̂(0) = 1

where χt =

{
1 if Q̂(t−1) > 0,
0 otherwise.

Since our goal is to provide a concentration upper bound on Q(t), we can
do it by considering the �simpler� process Q̂(t). By the way, unrolling Q̂(t)

directly is far from trivial: We need the �right� way to write it by using only
i.i.d. Bernoulli r.v.s. Let us see how.

For any t ∈ [2τ ] and for any s ∈ [t], de�ne the r.v.

(135) Zs,t =

t∑
i=s

Ŷi − (t− s).

Informally speaking, Zs,t matches the value of Q̂(t) whenever s 6 t was

the last previous round s.t. Q̂(s) = 0. As a key-fact we show that Q̂(t) can
be bounded by the maximum of Zs,t for s 6 t.

Claim 2. For any t ∈ [2τ ] it holds that

Q̂(t) 6 max{Zs,t : s = 1, . . . , t},
and thus

max{Q(t) : 1 6 t 6 2τ} 6 max{Zs,t : 1 6 s 6 t 6 2τ}.(136)

Proof of the Claim. For any s ∈ [t], let

χs,t =
t∏

r=s

χr

be the r.v. taking value 1 if Q̂(r−1) > 0 for all s 6 r 6 t and 0 otherwise. It
is easy to prove by induction that Q̂(t) can be written as

(137) Q̂(t) =

t∑
s=2

(1− χs−1)χs,tZs−1,t + χ1,tZ1,t + (1− χt)Zt,t.

Since
t∑

s=2

(1− χs−1)χs,t + χ1,t = 1,

the sum in (137) is not larger than the maximum of the Zs,t, hence

Q̂(t) 6 max{Zs,t : s = 1, . . . , t}
and

max{Q(t) : 1 6 t 6 2τ} 6 max{Zs,t : 1 6 s 6 t 6 2τ}.
gg� (of Claim 2)
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Let us consider (135): The r.v. Zs,t+(t−s) is a sum of d ·(t−s+1) i.i.d.
Bernoulli r.v.s each one with expectation 1/d. From the Cherno� bounds
((192) and (189) in Lemma 76), for any 1 6 s 6 t, it holds that

Pr
(
Zs,t 6 max

{√
c(t− s+ 1) log n, 6c log n}

})
> 1− n−c/3.

By taking the union bound over all 1 6 s 6 t 6 2τ , from the above bound
and (136) we can get the desired concentration bound on the maximal node
congestion during every phase:

Pr

(
max

16t62τ
Q(t) 6 max

{√
2cτ log n, 6c log n

})
> 1− (2τ)2

nc/3
.

gg�
Let tGmix (ε) be the �rst round such that the total variation distance be-

tween the simple random walk starting at an arbitrary node and the uniform
distribution is smaller than ε, i.e.

tGmix (ε) = inf{t ∈ N : ‖P t(u, ·)− π‖ 6 ε for all u ∈ V }.
Notice that for any ε > 0 it holds that (see e.g. (4.36) in [LPW09])

(138) tGmix (ε) 6 log

(
1

ε

)
tGmix

(
1

2e

)
.

As a consequence of the above Lemma, we can now set the right value of τ ,
thus getting the following result.

Theorem 23 (Uniform GOSSIP Simulation on Expanders). Let G =
([n], E) be a d-regular graph with tG

mix
(1/4) = polylog(n). Each round of a

protocol on the clique in the uniform GOSSIP model can be simulated on
G in the GOSSIP model in polylog(n) rounds by exchanging messages of
polylog(n) size, w.h.p.

Proof. Let 2τ = αt̄2 log n be the length of the phase, where t̄ =
tGmix

(
1/n2

)
and α is a suitable constant that we �x later. From Lemma 47,

we have that the maximum number of tokens in every node at any round of
the phase is at most √

2cτ log n =
√
αc · t̄ log n,

w.h.p Since tokens are enqueued with a FIFO policy, each single hop of the
random walk performed by a token can be delayed for at most the above
number of rounds. Hence, in order to perform t̄ hops of the random walk, a
token takes at most

√
αc · t̄2 log n rounds, w.h.p.

By choosing α > 4c we have that this number is smaller than τ . This
allows us to set τ so that the forward process and the backward one can both
complete safely.

By union bounding over all tokens we thus have that during the phase
all tokens perform at least t̄ hops of a random walk and report back to the
sender the opinion of the node they reached after t̄ hops, w.h.p.
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Finally, notice that from (138) it follows that t̄ = polylog(n). The phase
length and the size of the exchanged messages are thus polylog(n) as well. gg�

Since a lazy random walk on regular expanders (see e.g. [HLW06]) has
polylog(n) mixing time, from the above theorem and our result on the Un-
decided-State dynamics on the clique we get the following �nal result.

Theorem 11 (Monochromatic Bound on Expanders). Let G = (V,E)
be a d-regular graph with constant expansion. For any initial con�guration
c such that the Undecided-State dynamics on the clique computes plurality
consensus in O(md(c) log n) rounds w.h.p., the modi�ed Undecided-State dy-
namics computes plurality consensus on G in O(md(c) polylog(n)) rounds,
w.h.p.





CHAPTER 7

Congested Random Walks

In this chapter we study the parallel random walks process in the uni-
form PUSH model on a complete topology, proving the results presented in
Section 2.4. We conveniently reformulate the previous process as the follow-
ing repeated balls-into-bins process: n balls are initially assigned to n bins
in an arbitrary way; In every subsequent round, from each non-empty bin
one ball is chosen according to some �xed strategy (random, FIFO, etc), and
re-assigned to one of the n bins uniformly at random (see Figure 24).

? ?
A) B)

C) D)

?

Figure 24. A) and B): In the balls-into-bins process, each
ball is thrown in one bin chosen independently and u.a.r.
C) and D): In the repeated balls-into-bins process, at each
round we pick one ball from each non-empty bin (e.g. let us
assume that the current con�guration is the one in B) ), and
throw them again u.a.r.

195
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Adopting the framework of (probabilistic) self-stabilization (De�nition
9), we de�ne a con�guration legitimate if its maximum load is O(log n).
We prove that, starting from any con�guration, the process converges to a
legitimate con�guration in linear time and then it takes on only legitimate
con�gurations over a period of length bounded by any polynomial in n,
w.h.p. This implies that the process is self-stabilizing and that every ball
traverses all bins in O(n log2 n) rounds, w.h.p.

7.1. Self-Stabilization of repeated balls into bins

In order to study the maximum load of the repeated balls-into-bins pro-
cess, the state of the system is completely characterized by the load of every

bin. As in Section 6.3 (Chapter 6), for each bin u ∈ [n] let Q(t)
u be the r.v.s1

indicating the number of balls, i.e. the load, in u at round t. We write
Q(t) for the vector of these random variables, i.e.

Q(t) = (Q(t)
u : u ∈ [n]).

We write q = (q1, . . . , qn) for a (load) con�guration, i.e., qu ∈ {0, 1, . . . , n}
for every u ∈ [n] and

∑n
u=1 qu = n. We de�ne the maximum load of a

con�guration q = (q1, . . . , qn) as

M(q) = max{ qu : u ∈ [n] } ,
and, for brevity' sake, given any round t of the process, we de�ne

M (t) = M(Q(t)).

According to the above de�nition, we say that a con�guration q is legitimate
if M(q) 6 β · log n, for some absolute constant β > 0.

In this section we prove the main result of this chapter, which we prove
in Section 7.1.4.

Theorem 12 (Repeated Balls into Bins Max Load). Let c be an arbitrarily-
large constant and let q be any legitimate con�guration. Let the repeated
balls-into-bins process start from Q(0) = q. Then, over any period of length
O(nc), the process visits only legitimate con�gurations, w.h.p., i.e. M (t) =
O(log n) for all t = O(nc), w.h.p. Moreover, starting from any con�guration,
the system reaches a legitimate con�guration within O(n) rounds, w.h.p.

The proof relies on the analysis of the behaviour of some essential ran-
dom variables describing the repeated balls-into-bins process. In the next
paragraph, we informally describe the main steps of this analysis. Then in
sections 7.1.1-7.1.3, we prove the technical results required by such steps
and, �nally, in Section 7.1.4 these technical results are combined in order to
prove Theorem 12.

1As usual in this work, we use capital letters for random variables, lower case for
quantities, and bold for vectors.
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7.1.0.1. Overview of the analysis. In the repeated balls-into-bins process,
every bin can release at most one ball per round. As a consequence, the
random walks performed by the balls delay each other and are thus correlated
in a way that can make bin queues larger than in the independent case.
Indeed, intuitively speaking, a large load observed at a bin in some round
makes �any� ball more likely to spend several future rounds in that bin,
because if the ball ends up in that bin in one of the next few rounds, it
undergoes a large delay. This is essentially the major technical issue to cope
with.

The previous approach in Section 6.3 relies on the fact that, in every
round, the expected balance between the number of incoming and outgoing
balls is always non-positive for every non-empty bin (notice that the expected
number of incoming balls is always at most one). This may suggest viewing
the process as a sort of parallel birth-death process [LPW09]. Using this
approach and with some further arguments, one can (only) get the �standard-
deviation� bound O(

√
t) in Section 6.3.

The analysis presented here, which proves Theorem 12, proceeds along
three main steps.

i) We �rst show that, after the �rst round, the aforementioned expected
balance is always negative, namely, not larger than −1/4. Indeed, the num-
ber of empty bins remains at least n/4 with (very) high probability, which
is extremely useful since a bin can only receive tokens from non-empty bins.
This fact is shown to hold starting from any con�guration and over any
period of polynomial length.

ii) In order to exploit the above negative balance to bound the load of
the bins, we need some strong concentration bound on the number of balls
entering a speci�c bin u along any period of polynomial size. However, it

is easy to see that, for any �xed u, the random variables {Z(t)
u }t>0 counting

the number of balls entering bin u are not mutually independent, neither are
they negatively associated, so that we cannot apply standard tools to prove
concentration, as we show in Section 7.2. To address this issue, we de�ne a
simpler repeated balls-into-bins process as follows.

Tetris process.
Starting from any con�guration with at least n/4 empty bins, in each
round:

• from every non-empty bin we pick one ball and we throw it away,
and
• we pick exactly (3/4)n new balls and we put each of them inde-
pendently and u.a.r. in one of the n bins.

Using a coupling argument and our previous upper bound on the number of
empty bins, we prove that the maximum number of balls accumulating in a
bin in the original process is not larger than the maximum number of balls
accumulating in a bin in the Tetris process, w.h.p.
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iii) The Tetris process is simpler than the original one since, at every
round, the number of balls assigned to the bins does not depend on the

system's state in the previous round. Hence, random variables {Ẑ(t)
u }t>0

counting the number of balls arriving at bin u in the Tetris process are
mutually independent. We can thus apply standard concentration bounds.
On the other hand, di�erently from the approximating process considered
in Section 6.3, the negative balance of incoming and outgoing balls proved
in Step i) still holds, thus yielding a much smaller bound on the maximum
load than that in Section 6.3.

In the remainder of this section, we formally describe the above three
steps. Lastly, we prove Theorem 12 (in Section 7.1.4).

7.1.1. On the number of empty bins

We next show that the number of empty bins is at least a constant
fraction of n over a very large time-window, w.h.p. This fact could be proved
by standard concentration arguments if, at every round, all balls were thrown
independently and uniformly at random. A little care is instead required in
our process to properly handle, at any round, �congested� bins whose load
exceeds 1. These bins are surely non-empty at the next round too. So,
the number of empty bins at a given round also depends on the number of
congested bins in the previous round.

Lemma 48. Let q = (q1, . . . , qn) be a con�guration in a given round and
let X be the random variable indicating the number of empty bins in the next
round. For any large enough n, it holds that

Pr
(
X 6 n

4

)
6 e−αn,

where α is a suitable positive constant.

Proof. Let a = a(q) and b = b(q) respectively denote the number of
empty bins and the number of bins with exactly one token in con�guration
q. For each bin u of the a + b bins with at most one token, let Yu be the
random variable indicating whether or not bin u is empty in the next round,
so that

X =
a+b∑
u=1

Yu and Pr (Yu = 1) =

(
1− 1

n

)n−a
> e−

n−a
n−1 ,

where in the last inequality we used the fact that 1− x > e− x
1−x . Hence we

have that

(139) E [X] > (a+ b) e−
n−a
n−1 .

The crucial fact is that the number of bins with two or more tokens cannot
exceed the number of empty bins, i.e.

n− (a+ b) 6 a.
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Thus, we can bound the number of empty bins from below2, a > (n− b)/2,
and by using that bound in (139) we get

E [X] > n+ b

2
e
− n+b

2(n−1) .

Now observe that, for large enough n a positive constant ε exists such that

n+ b

2
e
− n+b

2(n−1) > (1 + ε)
n

4
,

for every 0 6 b 6 n.
As a consequence of propositions 7 and 11 in [DR98], it follows that the

random variables Y1, . . . , Ya+b are negatively associated (De�nition 18). Thus
we can apply (see Lemma 7 in [DR98]) the Cherno� bound eqrefCB:lowertail
in Lemma 76 with δ = ε/(1 + ε)) to r.v. X to obtain

Pr
(
X 6 n

4

)
6 exp

(
− ε2

4(1 + ε)
n

)
.

gg�
From the above lemma it follows that, if we look at our process over a

time-window T = T (n) of polynomial size, after the �rst round we always
see at least n/4 empty bins, w.h.p. More formally, for every t ∈ {1, . . . , T},
let Et be the event �The number of empty bins at round t is at least n/4�.
From Lemma 51 and the union bound we get the following lemma.

Lemma 49. Let q0 denote the initial con�guration, let T = T (n) = nc

for an arbitrarily large constant c. For any large enough n it holds that

Pr

(
T⋂
t=1

Et | Q(0) = q0

)
> 1− e−γn,

where γ is a suitable positive constant.

Proof. By using the union bound we have that

Pr

(
T⋂
t=1

Et | Q(0) = q0

)
= 1− Pr

(
T⋃
t=1

Et | Q(0) = q0

)

> 1−
T∑
t=1

Pr
(
Et | Q(0) = q0

)
.

By conditioning on the con�guration at round t− 1, from the Markov prop-
erty and Lemma 48 it then follows that

Pr
(
Et | Q(0) = q0

)
=
∑
q

Pr
(
Et | Q(t−1) = q

)
Pr
(
Q(t−1) = q | Q(0) = q0

)
6 e−αn.

2Observe that this argument only works to get a lower bound on the number of empty
bins and not for an upper bound.
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Hence,

Pr

(
T⋂
t=1

Et | Q(0) = q0

)
> 1− Te−αn > 1− e−γn,

for a suitable positive constant γ. gg�

7.1.2. Coupling with Tetris

Using a coupling argument and Lemma 49 we now prove that the maxi-
mum load in the original process is stochastically not larger than the maxi-
mum load in the Tetris process, w.h.p.

In what follows we denote by W (t) the set of non-empty bins at round
t in the original process. Recall that, in the latter, at every round a ball is
selected from every non-empty bin u and it is moved to a bin chosen u.a.r.
Accordingly we de�ne, for every round t, the random variables{

X(t+1)
u : u ∈W (t)

}
,

where X
(t+1)
u indicates the new position reached in round t + 1 by the ball

selected in round t from bin u. Notice that for every non-empty bin u ∈W (t)

we have that

Pr
(
X(t+1)
u = v

)
=

1

n
,

for every bin v ∈ [n]. The random process
{
Q(t) : t ∈ N

}
is completely

de�ned by random variables Xt
u's, indeed we can write

Q(t+1)
v = Q(t)

v
.− 1 +

∣∣∣{u ∈W (t) : X(t+1)
u = v

}∣∣∣ ,
and

W (t+1) =
{
u ∈ [n] : Q(t+1)

u > 1
}
,

where we used notation a .− b = max{a − b, 0}. Analogously, for each bin

u ∈ [n] in the Tetris process, let Q̂(t)
u be the random variable indicating

the number of balls in bin u in round t. We next prove that, over any
polynomially-large time window, the maximum load of any bin in our process
is stochastically smaller than the maximum number of balls in a bin of the
Tetris process, w.h.p. More formally, we prove the following lemma.

Lemma 50. Assume we start our process and the Tetris process from
the same initial con�guration q = (q1, . . . , qn) such that

∑n
u=1 qu = n and

containing at least n/4 empty bins. Let T = T (n) be an arbitrary round and

let MT and M̂T be respectively the random variables indicating the maximum
loads in our original process and in the Tetris process, up to round T .
Formally

MT = max{Q(t)
u : u ∈ [n], t = 1, 2, . . . , T},

M̂T = max{Q̂(t)
u : u ∈ [n], t = 1, 2, . . . , T}.
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For every k > 0 it holds that

Pr (MT > k) 6 Pr
(
M̂T > k

)
+ T · e−γn,

for a suitable positive constant γ.

Proof. We proceed by coupling the Tetris process with the original
one round by round. Intuitively speaking the coupling proceeds as follows:

• Case (i). the number of non-empty bins in the original process is
k 6 3

4n. For each non-empty bin u, let iu be the ball picked from

u. We throw one of the 3
4n new balls of the Tetris process in the

same bin in which iu ends up. Then, we throw all the remaining
3
4n− k balls independently u.a.r.

• Case (ii). the number of non-empty bins is k > 3
4n. We run one

round of the Tetris process independently from the original one.

By construction, if the number of non-empty bins in the original process
is not larger than 3

4n at any round, Case (ii) never applies and the Tetris
process �dominates" the original one, meaning that every bin in the Tetris
process contains at least as many balls as the corresponding bin in the orig-
inal one. Since from Lemma 49 we know that the number of non-empty
bins in the original process is not larger than 3

4n for any time-window of
polynomial size, w.h.p., we thus have that the Tetris process dominates
the original process for the whole time window, w.h.p.

More formally, for t ∈ {1, . . . , T}, denote by B(t) the set of new balls

in the Tetris process at round t (recall that the size of B(t) is (3/4)n for

every t ∈ {1, . . . , T}). For any round t and any ball i ∈ B(t), let X̂
(t)
i be the

random variable indicating the bin where the ball ends up. Finally, let{
U

(t)
i : t = 1, . . . , T, i ∈ B(t)

}
be a family of i.i.d. random variables uniform over [n]. At any round t ∈
{1, . . . , T}, we have to distinguish two cases:

• Case |W (t−1)| 6 (3/4)n. Let B
(t)
W be an arbitrary subset of B(t)

with size exactly |W (t−1)|, let f (t) : B
(t)
W →W (t−1) be an arbitrary

bijection and set

X̂
(t)
i =

{
X

(t)
i if i ∈ B(t)

W ,

U
(t)
i if i ∈ B(t) \B(t)

W .

• Case |W (t−1)| > (3/4)n. Set X̂
(t)
i = U

(t)
i for all i ∈ B(t).

By construction we have that random variables{
X̂

(t)
i : t ∈ {1, 2, . . . , T}, i ∈ B(t)

}
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are mutually independent and uniformly distributed over [n]. Moreover, in
the joint probability space for any k we have that

Pr (MT > k) = Pr
(
MT > k, M̂T >Mt

)
+ Pr

(
MT > k, M̂T < MT

)
6 Pr

(
M̂T > k

)
+ Pr

(
M̂T < MT

)
.

Finally, let ET be the event �There are at least n/4 empty bins at all rounds
t ∈ {1, . . . , T}� and observe that, from the coupling we have de�ned, the

event ET implies event �M̂T >MT �. Hence

Pr
(
M̂T < MT

)
6 Pr

(
ET
)
,

and the thesis follows from Lemma 49. gg�

7.1.3. Analysis of the Tetris process

We begin by observing that in the Tetris process, the random variables
indicating the number of balls ending up in a bin in di�erent rounds are
i.i.d. binomial. This fact is extremely useful to give upper bounds on the
load of the bins, as we do in the next simple lemma, that we use to prove
self-stabilization of the original process.

Lemma 51. From any initial con�guration, in the Tetris process every
bin is empty at least once within 5n rounds, w.h.p.

Proof. Let u ∈ [n] be a bin with k 6 n balls in the initial con�guration.
For t ∈ {1, . . . , 5n} let Yt be the random variable indicating the number of
new balls ending up in bin u at round t. Notice that in the Tetris process
Y1, . . . , Y5n are i.i.d. B ((3/4)n, 1/n) hence

E [Y1 + · · ·+ Y5n] = (15/4)n,

and by applying Cherno� bound (Lemma 76) with δ = 1/15 we get

Pr (Y1 + · · ·+ Y5n > 4n) 6 e−αn,

where α = 1/(180).
Now let Eu be the event �Bin u is non-empty for all the 5n rounds�. Since

when a bin is non-empty it looses a ball at every round, event Eu implies, in
particular, that

k − 5n+ Y1 + · · ·+ Y5n > 0,

that is

Y1 + · · ·+ Y5n > 5n− k > 4n.

Thus

Pr (Eu) 6 Pr (Y1 + · · ·+ Y5n > 4n) 6 e−αn.

The thesis follows from the union bound over all bins u ∈ [n]. gg�
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We next focus on the maximum load that can be observed in the Tetris
process at any given bin within a �nite interval of time. We note that this
result could be proved using tools from drift analysis (e.g., see [Haj82]).
We provide here an elementary and direct proof, that explicitly relies on the
Markovian structure of the Tetris process.

Let {Xt}t be a sequence of i.i.d. B ((3/4)n, 1/n) random variables and
let Zt be the Markov chain with state space {0, 1, 2, . . . } de�ned as follows

(140) Zt =

{
0 if Zt−1 = 0,

Zt−1 − 1 +Xt if Zt−1 > 1.

Observe that 0 is an absorbing state for Zt and let τ be the absorption time

τ = inf{t ∈ N : Zt = 0}.

We �rst prove the following lemma.

Lemma 52. For any initial starting state k ∈ N and any t > 8k, it holds
that

Pr (τ > t |Z0 = k) 6 e−t/144.

Proof. Observe that

Pr (τ > t |Z0 = k) = Pr (Zt > 0 |Z0 = k)

= Pr

(
k +

t∑
i=1

Xi − t > 0

)

= Pr

(
t∑
i=1

Xi > t− k
)
6 Pr

(
t∑
i=1

Xi >
7

8
t

)
,

where in the last inequality we used hypothesis k < (1/8)t. Since the

Xis are i.i.d. binomial B((3/4)n, 1/n), it follows that
∑t

i=1Xi is binomial
B((3/4)nt, 1/n) and from Cherno� bound (Lemma 25) we have that

Pr

(
t∑
i=1

Xi >
7

8
t

)
= Pr

(
t∑
i=1

Xi >

(
1 +

1

6

)
3

4
t

)

6 e−
(1/6)2

3
3
4
t = e−t/144.

gg�

Now we can easily prove the following statement on the Tetris process.

Lemma 53. Let c be an arbitrarily-large constant, and let the Tetris
process start from any legitimate con�guration. The maximum load M̂ (t) is
O(log n) for all t = O(nc), w.h.p.
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Proof. Consider an arbitrary bin u that is non-empty in the initial
legitimate con�guration. Let Q̂(0) = O(log n) be its initial load3 and let

τ = inf
{
t : Q̂(t) = 0

}
be the �rst round the bin becomes empty. Observe that, for any t 6 τ ,
Q̂(t) behaves exactly as the Markov chain de�ned in (140). Hence, from

Lemma 52 it follows that for every constant ĉ such that ĉ log n > 8Q̂(0) we
have

(141) Pr(τ > ĉ log n) 6 n− ĉ
144 .

Thus, within O(log n) rounds the bin is empty, w.h.p., and since the load
of the bin decreases of at most one unit per round, the load of the bin is
O(log n) for all such rounds, w.h.p.

Next, de�ne a phase as any sequence of rounds that starts when the bin
becomes non-empty and ends when it becomes empty again. Notice that, by
using a standard balls-into-bins argument, in the �rst round of each phase
the load of the bin is O(log n/ log logn), w.h.p. Moreover, in any phase the
load of the bin can be coupled with the Markov chain in (140). Hence, for
any arbitrary large constant c we can choose the constant ĉ in (141) large
enough so that, by taking the union bound over all phases up to round nc,
the load of the bin is O(log n) in all rounds t 6 nc, w.h.p.

Finally, observe that for any bin that is initially empty the same argu-
ment applies with the only di�erence that the �rst phase for the bin does
not start at round 0 but at the �rst round the bin becomes non-empty. The
thesis thus follows from a union bound over all the bins. gg�

7.1.4. Back to the original process

We are now ready to prove the main theorem of the chapter.

Theorem 12 (Repeated Balls into Bins Max Load). Let c be an arbitrarily-
large constant and let q be any legitimate con�guration. Let the repeated
balls-into-bins process start from Q(0) = q. Then, over any period of length
O(nc), the process visits only legitimate con�gurations, w.h.p., i.e. M (t) =
O(log n) for all t = O(nc), w.h.p. Moreover, starting from any con�guration,
the system reaches a legitimate con�guration within O(n) rounds, w.h.p.

Proof of Theorem 12. From a standard balls-into-bins argument (see,
e.g., [MU05]), starting from any legitimate con�guration, after one round
the process still lies in a legitimate con�guration, w.h.p. Moreover, thanks
to Lemma 48, there are at least n/4 empty bins, w.h.p. From Lemma 50
with T = O (nc), we have that the maximum load of the repeated balls-into-
bins process does not exceed the maximum load of the Tetris process in all
rounds 1, . . . , T , w.h.p. Finally, the upper bound on the maximum load of
the Tetris process in Lemma 53 completes the proof of the �rst statement
of Theorem 12.

3We omit the subscript u in the remainder of this proof since clear from context.
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As for self-stabilization, given an arbitrary initial con�guration, Lemma 51
implies that within O(n) rounds, all bins have been emptied at least once,
w.h.p. When a bin becomes empty, Lemma 52 ensures that its load is
O(log n) over a polynomial number of rounds. Hence, within O(n) rounds,
the system reaches a legitimate con�guration, w.h.p. gg�

7.2. Negative Association

In this section we give a simple counterexample showing that, in our
balls-into-bins process, the random variables counting the number of balls
arriving in a given bin in di�erent rounds cannot be negatively associated.
We �rst recall the de�nition of negative association.

Definition 18 (Negative association). Random variables X1, . . . , Xn

are negatively associated if, for every pair of disjoint subsets I, J ⊆ [n], it
holds that

E [f (Xi, i ∈ I) · g (Xj , j ∈ J)] 6 E [f (Xi, i ∈ I)] · E [g (Xj , j ∈ J)]

for all pairs of functions f : R|I| → R and g : R|J | → R that are both
non-decreasing or both non-increasing.

Consider our random process with n = 2 and let X1 and X2 be the
random variables indicating the number of tokens arriving at the �rst bin in
rounds 1 and 2, respectively. Let f ≡ g be the non-increasing function

f(x) =

{
1 if x = 0,
0 if x > 0.

If X1 and X2 were negatively associated, we would have that

Pr(X1 = 0, X2 = 0) 6 Pr(X1 = 0) Pr(X2 = 0).

However, by direct calculation it is easy to compute that

Pr(X1 = 0, X2 = 0) =
1

8
,

because, in order for �X1 = 0, X2 = 0� to happen, at the �rst round both
balls have to end up in the second bin (this happens with probability 1/4)
and at the second round the ball chosen in the second bin has to stay there
(this happens with probability 1/2). We also have that Pr(X1 = 0) = 1/4
and by conditioning on all the three possible con�gurations at round 1 we
have Pr(X2 = 0) = 3/8. Thus

1

8
= Pr(X1 = 0, X2 = 0) > Pr(X1 = 0) Pr(X2 = 0) =

1

4
· 3

8
.

In general, intuitively speaking it seems that event �Xt = 0� makes more
likely the event that there are a lot of empty bins in the system, which in
turn makes more likely event �Xt+1 = 0� that the bin receives no tokens at
round t+ 1 as well.
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7.3. Parallel Resource Assignment

In this section, we resume the original interpretation of the repeated
balls-into-bins process as running parallel random walks of n distinct tokens
(i.e. balls), each of them starting from a node (i.e. bins) of the complete
graph of size n. This is a randomized protocol for the parallel allocation
problem where tokens represent di�erent resources/tasks that must be as-
signed to all nodes in mutual exclusion [Coo11]. In this scenario, a critical
complexity measure is the (global) cover time, i.e., the time required by any
token to visit all nodes.

It is important to observe that our analysis of the maximum load works
for anonymous tokens and nodes and, hence, for any particular queuing
strategy. Under FIFO strategy, no token spends in a bin a number of rounds
exceeding the current load as it entered the bin. Theorem 12 then implies
that, after an initial stabilizing phase of O(n) rounds, every token spends at
most a logarithmic number of rounds in any bin queue it traverses and over
any period of polynomial length, w.h.p. We also know that the cover time
of the single random-walk process is O(n log n), w.h.p. (see, e.g., [MU05]).
Combining the above two facts, we get the following, almost tight result on
the Parallel Resource Assignment problem.

Corollary 8 (Parallel Resource Assignment). The random-walk pro-
tocol for the Parallel Resource Assignment problem on the clique has cover
time O

(
n log2 n

)
, w.h.p.

7.3.0.1. Adversarial model. The self-stabilization property shown in Theo-
rem 12 makes the random walk protocol robust to transient faults. We can
consider an adversarial model in which, in some faulty rounds, an adver-
sary can reassign the tokens to the nodes in an arbitrary way. Then, the
linear convergence time shown in Theorem 12 implies that the O

(
n log2 n

)
bound on the cover time still holds provided the faulty rounds happen with
a frequency not higher than γn, for any constant γ > 6. Indeed, thanks to
Lemma 51, the action of an adversary manipulating the system con�gura-
tion once every γn rounds can a�ect only the successive 5n rounds, while our
analysis in the non-adversarial model does hold for the remaining (γ − 5)n
rounds. It follows that the overall slowdown on the cover time produced by
such an adversary is at most a constant factor on the previous O

(
n log2 n

)
upper bound, w.h.p.



CHAPTER 8

Consensus Despite Noise

In this Chapter we prove the results discussed in Section 2.5.
While error-correcting codes are e�cient methods for handling noisy

communication channels in the context of technological networks, such elab-
orate methods di�er a lot from the unsophisticated way biological entities are
supposed to communicate. Yet, in [FKP11] it has been shown that com-
plex coordination tasks such as bit dissemination and majority consensus
can plausibly be achieved in biological systems subject to noisy communica-
tion channels, where every message transferred through a channel remains
intact with small probability 1

2 + ε, without using coding techniques. The
previous result is a considerable step towards a better understanding of the
way biological entities may cooperate. It has nevertheless been established
only in the case of 2-valued opinions: rumor spreading aims at broadcasting
a single-bit opinion to all nodes, and majority consensus aims at leading all
nodes to adopt the single-bit opinion that was initially present in the system
with (relative) majority. In this chapter, we extend this previous work to
k-valued opinions, for any constant k > 2. This extension requires to address
a series of important issues, some conceptual, others technical. We have to
revisit entirely the notion of noise, for handling channels carrying k-valued
messages. In fact, we precisely characterize the type of noise patterns for
which plurality consensus is solvable. Also, a key result employed in the bi-
valued case by Feinerman et al. is an estimate of the probability of observing
the most frequent opinion from observing the mode of a small sample. We
generalize this result to the multivalued case by providing a new analytical
proof for the bivalued case that is amenable to be extended, by induction,
and that is of independent interest.

8.1. Model and Results in the Noisy Setting

In this section we formally de�ne the communication model, the main
de�nitions, the investigated problems and the results that we prove, part of
which has already been introduced in Section 2.5.

We do not provide a de�nition of what is a biologically feasible protocol,
since the computational investigation with this respect is still too premature
for such an attempt. Nevertheless, we remark that intuitively we look for
protocols that, if not dynamics, are at least simple enough to be plausible
communication strategies for primitive biological system. As the reader can
see in sections 8.1.3 and 8.2.1, we consider a natural generalization of the

207
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protocol given in [FHK15], which is plainly an elementary combination of
sampling and majority operations.

8.1.1. Communication model and de�nition of the problems

We consider the same communication model considered in Chapter 7,
the uniform PUSH model [DGH+87], where in each (synchronous) round
each agent can send (push) a message to another agent chosen uniformly
at random. This occurs without having the sender or the receiver learning
about each other's identity. Note that it may happen that several agents
push a message to the same node u at the same round. In the latter case
we assume that the nodes receive them in a random order; for a detailed
discussion regarding this assumption, we refer the reader to Section 8.4.

We study the problems of bit dissemination and plurality consensus. In
both cases, we assume that nodes can support opinions represented by an
integer in [k] = {1, . . . , k}. Additionally, there may be undecided nodes that
do not support any opinion, which represents nodes that are not actively
aware that the system has started to solve the problem; thus, undecided
nodes are not allowed to send any message before receiving any of them.

• In bit dissemination, initially, one node, called the source, has an
opinion m ∈ {1, . . . , k}, called the correct opinion. All the other
nodes have no opinion. The objective is to design a protocol insuring
that, after a certain number of communication rounds, every node
has the correct opinion m.
• In plurality consensus, initially, for every i ∈ {1, . . . , k}, a set Ai of
nodes have opinion i. The sets Ai, i = 1, . . . , k, are pairwise disjoint,
and their union does not need to cover all nodes, i.e., there may
be some undecided nodes with no opinion initially. The objective
is to design a protocol insuring that, after a certain number of
communication rounds, every node has the plurality opinion, that
is, the opinion m with relative majority in the initial setting (i.e.,
|Am| > |Aj | for any j 6= m).

Observe that the bit dissemination problem is a special case of the plu-
rality consensus problem with |Am| = 1 and |Aj | = 0 for any j 6= m.

Following the guidelines of [FHK14], we work under two constraints:

(1) We restrict ourselves to protocols in which each node can only trans-
mit opinions, i.e., every message is an integer in {1, . . . , k}.

(2) Transmissions are subject to noise, that is, for every round, and for
every node u, if an opinion i ∈ {1, . . . , k} is transmitted to node u
during that round, then node u will receive message j ∈ {1, . . . , k}
with probability pi,j > 0, where

∑k
j=1 pi,j = 1.

The noisy push model is the uniform PUSH model together with the previ-
ous two constraints. The probabilities {pi,j}i,j∈[k] can be seen as a transition
matrix, called the noise matrix, and denoted by P = (pi,j)i,j∈[k] (see Figure
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25). The noise matrix in [FHK14] is simply

(142) P =

(
1
2 + ε 1

2 − ε
1
2 − ε 1

2 + ε

)
.
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Figure 25. A representation of the action of the noise. After
an agent sends message i, a k-sided die speci�c for message i
is thrown. The received message is determined by the upper-
most face of the die when it comes to rest. The die end up on
face j with probability pi,j , de�ned by the noise matrix P .

8.1.2. Plurality bias, and majority preservation

When time proceeds, our protocol results in the proportion of nodes with
a given opinion to evolve. Note that there might be nodes who do not support
any opinion at time t. As mentioned in the previous section, we call such
nodes undecided. We denote by a(t) the fraction of nodes supporting any
opinion at time t and we call the nodes contributing to a(t) decided. Observe

that the fraction of undecided nodes at time t is then 1 − a(t). Let c
(t)
i be

the fraction of decided nodes in the system that support opinion i ∈ [k] at

the beginning of round t, so that
∑

i∈[k] c
(t)
i = a(t). We remark the di�erent

meaning of the latter notation compared to that used in chapters 5 and 6.

Let ĉ
(t)
i be the fraction of decided nodes which receive at least one message

at time t − 1 and support opinion i ∈ [k] at the beginning of round t. We

write c(t) = (c
(t)
1 , ..., c

(t)
k ) to denote the opinion distribution of the opinions at

time t. Similarly, let ĉ(t) = (ĉ
(t)
1 , ..., ĉ

(t)
k ). In particular, if every node would
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simply switch to the last opinion it received, then

E[ĉ
(t+1)
i | c(t)] =∑

j∈[k]

Pr[received i | original message is j] · Pr[original message is j] =

∑
j∈[k]

c
(t)
j · pj,i.

That is,

(143) E[ĉ(t+1) | c(t)] = c(t) · P,
where P is the noise matrix. In particular, in the absence of noise, we
have P = I (the identity matrix), and if every node would simply copy the

opinion that it just received, we had E[ĉ(t+1) | c(t)] = c(t). So, given the
opinion distribution at round t, from the de�nition of the model it follows
that the messages each node receives at round t+ 1 can equivalently be seen
as being sent from a system without noise, but whose opinion distribution
at round t is c(t) · P .

Recall that m denotes the initially correct opinion, that is, the source's
opinion in the bit dissemination problem, and the initial plurality opinion in
the plurality consensus problem. The following de�nition naturally extends
the concept of majority bias in [FHK14] to plurality bias.

Definition 19 (δ-Biased Con�guration). Let δ > 0. An opinion dis-
tribution c is said to be δ-biased toward opinion m if cm − ci > δ for all
i 6= m.

In [FHK14], each binary opinion that is transmitted between two nodes

is �ipped with probability at most 1
2 − ε, with1 ε = n−

1
4

+η for an arbitrarily
small η > 0. Thus, the noise is parametrized by ε. The smaller ε, the more
noisy are the communications. We generalize the role of this parameter with
the following de�nition.

Definition 20 ((ε, δ)-m.p. Noise Matrix). Let ε = ε(n) and δ = δ(n)
be positive. A noise matrix P is said to be (ε, δ)-majority-preserving ((ε, δ)-
m.p.) with respect to opinion m if, for every opinion distribution c that is
δ-biased toward opinion m, we have

(c · P )m − (c · P ) i > ε δ

for all i 6= m.

In the bit dissemination problem, as well as in the plurality consensus
problem, when we say that a noise matrix is (ε, δ)-m.p., we implicitly mean
that it is (ε, δ)-m.p. with respect to the initially correct opinion. We defer a
discussion on the class of (ε, δ)-m.p. noise matrices in Section 8.3 (including
the tightness of the class w.r.t. theorems 13 and 14).

1For a discussion on what happens for other values of ε, see Section 8.6.
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8.1.3. Formal statements of the results

We show that a natural generalization of the protocol in [FHK14] solves
the bit dissemination problem and the plurality consensus problem for an
arbitrary number of opinions k. More precisely, using the protocol which we
describe in Section 8.2.1, we can establish the following two results, whose
proof can be found in Section 8.2.

Theorem 13 (Noisy Bit Dissemination). Assume that the noise matrix

P is (ε, δ)-m.p. with ε = Ω(n−
1
4

+η) for an arbitrarily small constant η > 0

and δ = Ω(
√

log n/n). There exists a protocol, using O(log log n+log 1
ε ) bits

of memory at each node, which solves the noisy bit dissemination problem

with k opinions in O( logn
ε2

) communication rounds, w.h.p.

Theorem 14 (Noisy Plurality Consensus). Let S with |S| = Ω( 1
ε2

log n)
be an initial set of nodes with opinions in [k], the rest of the nodes having
no opinions. Assume that the noise matrix P is (ε, δ)-m.p. for some ε >

0, and that S is Ω(
√

log n/|S|)-majority-biased. There exists a protocol,

using O(log log n + log 1
ε ) bits of memory at each node, which solves the

noisy plurality consensus problem with k opinions in O( logn
ε2

) communication
rounds, w.h.p.

For k = 2, we get the theorems in [FHK14] from the above two theorems.
Indeed, the simple 2-dimensional noise matrix of (142) is ε-majority-biased.
Note that, as in [FHK14], the plurality consensus algorithm requires the
nodes to know the size |S| of the set S of decided nodes.

8.2. The Analysis

In this section we prove Theorem 13 and Theorem 14 by presenting a
more general analysis of Stage 1 than that given in [FHK14] and a new
analysis of Stage 2. Note that the proof techniques required for the gener-
alization to arbitrary k signi�cantly depart from those in [FHK14] for the
case k = 2. In particular, our approach provides a general framework for rig-
orously dealing with many kinds of stochastic dependences among messages
in the uniform PUSH model.

8.2.1. De�nition of the Protocol

We describe a bit dissemination protocol performing in two stages. Each
stage is decomposed into a number of phases, each one decomposed into a
number of rounds. During each phase of the two stages, the nodes apply the
simple rules given below.

8.2.1.1. The rule during each phase of Stage 1. Nodes that already support
some opinion at the beginning of the phase push their opinion at each round
of the phase. Nodes that do not support any opinion at the beginning of the
phase but receive at least one opinion during the phase start supporting an
opinion at the end of the phase, chosen u.a.r. (counting multiplicities) from
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the received opinions2. In other words, each node tries to acquire an opinion
during each phase of Stage 1, and, as it eventually receives some opinions,
it starts supporting one of them (chosen u.a.r.) from the beginning of the
next phase. In particular, decided nodes never change their opinion during
the entire stage.

More formally, let φ, β, and s be three constants satisfying φ > β > s.
The rounds of Stage 1 are grouped in T + 2 phases with

T = blog(n/(2s/ε2 log n))/ log(β/ε2 + 1)c.
Phase 0 takes s/ε2 log n rounds, phase T + 1 takes φ/ε2 log n rounds, and
each phase j with 1 6 j 6 T takes β/ε2 rounds. We denote with τj the end
of the last round of phase j.

Let tu be the �rst time in which u receives any opinion since the beginning
of the protocol (with tu = 0 for the source). Let ju be the phase of tu, and
let val(u) be an opinion chosen u.a.r. by u among those that it receives
during phase ju

3. During the �rst stage of the protocol each node applies
the following rule.

Rule of Stage 1. Each decided node u pushes opinion val(u) during
each round of every phase j = ju + 1, ..., T + 1.

8.2.1.2. The rule during each phase of Stage 2. During each phase of Stage 2,
every node pushes its opinion at each round of the phase. At the end of the
phase, each node that received �enough� opinions takes a random sample2

of them, and starts supporting the most frequent opinion in that sample
(breaking ties u.a.r.).

More formally, the rounds of stage 2 are divided in T ′ + 1 phases with

T ′ = dlog(
√
n/ log n)e.

Each phase j, 0 6 j 6 T ′−1, has length 2` with ` = dα4/ε
2e for some large-

enough constant α4 > 0, and phase T ′ has length 2`′ with `′ = O(ε−2 log n).
For any �nite multiset A of elements in {1, . . . , k}, and any i ∈ {1, . . . , k},
let occ(i, A) be the number of occurrences of i in A, and let

mode(A) = {i ∈ {1, . . . , k} | occ(i, A) > occ(j, A) for every j ∈ {1, . . . , k}}.
We then de�ne maj(A) as the most frequent value in A (breaking ties u.a.r.),
i.e., maj(A) is the r.v. on {1, . . . , k} such that

Pr(maj(A) = i) =
1{i∈mode(A)}

|mode(A)| .

2Note that, in the protocol considered in [FHK14], the choice of each node's new
opinion in both stages is based on the �rst messages received. In [FHK15], in order to
relax the synchronicity assumption that nodes share a common clock, they adopt the same
sample-based variant of the rule that we adopt here.

3Note that, in order to sample u.a.r. one of them, u does not need to collect all the
opinions it receives: A natural sampling strategy such as reservoir sampling can be used
to this end.
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Let Rj(u) be the multiset of messages received by node u during phase j.
During the second stage of the protocol each node applies the following rule.

Rule of Stage 2. During each phase j of length 2L of Stage 2
(L = ` or `′), each node u pushes its current opinion at each round
of the phase, and starts drawing a random uniform sample S(u) of
size L from Rj(u). Provided |Rj(u)| > L, at the end of the phase u
changes its opinion to maj(S(u)).

Let us remark that the reason we require the use of sampling in the
previous rule is that at a given round a node may receive much more messages
than 2L. Thus, if the nodes were to collect all the messages they receive, some
of them would need much more memory than the protocol does. Finally,
observe that overall both stages 1 and 2 take O( 1

ε2
log n) rounds.

8.2.2. Pushing Colored Balls into Bins

Before delving into the analysis of the protocol, we provide a framework
to rigorously deal with the stochastic dependence that arises between mes-
sages in the uniform PUSH model. Let processO be the process that results
from the execution of the protocol of Section 8.2.1 in the uniform PUSH
model. In order to apply concentration of probability results that requires
the involved random variables to be independent, we view the messages as
balls, and the nodes as bins, and employ Poisson approximation techniques.
More speci�cally, during each phase j of the protocol, let Mj be the set of
messages that are sent to random nodes, and Nj be the set of messages sent
after the noise has acted on them. (In other words, Nj =

⋃
uRj(u)). We

prove that, at the end of phase j, we can equivalently assume that all the
messagesMj have been sent to the nodes according to the following process.

Definition 21 (Associated Balls into Bins Process). The balls-into-bins
process B associated to phase j is the two-step process in which the nodes
represent bins and all messages sent in the phase represent colored balls,
with each color corresponding to some opinion. Initially, balls are colored
according to Mj . At the �rst step, each ball of color i ∈ {1, . . . , k} is re-
colored with color j ∈ {1, . . . , k} with probability pi,j , independently of the
other balls. At the second step all balls are thrown to the bins u.a.r. as in a
balls-into-bins experiment.

Claim 3. Given the opinion distribution and the number of active nodes
at the beginning of phase j, the probability distribution of the opinion distri-
bution and the number of active nodes at the end of phase j in process O is
the same as if the messages were sent according to process B.

It is not hard to see that Claim 3 holds in the case of a single round.
For more than one round, it is crucial to observe that the way each node u
acts in the protocol depends only on the received messages Rj(u), regardless
of the order in which these messages are received. As an example, consider
the opinion distribution in which one node has opinion 1, one other node
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has opinion 2, and all other nodes have opinion 3. Suppose that each node
pushes its opinion for two consecutive rounds. Since, at each round, exactly
one opinion 1 and exactly one opinion 2 are pushed, no node can receive
two 1s during the �rst round and then two 2s during the second round, i.e.
no node can possibly receive the sequence of messages �1,1,2,2� in this exact
order. Instead, in process B such a sequence is possible.

Proof of Claim 3. In both process B and process O, at each round,
the noise acts independently on each ball/message of a given color/opinion,
according to the same probability distribution for that color/opinion. Then,
in both processes, each ball/message is sent to some bin/node chosen u.a.r.
and independently of the other balls/messages. Indeed, we can couple pro-
cess B and process O by requiring that:

(1) each ball/message is changed by the noise to the same color/value,
and

(2) each ball/message ends up in the same bin/node.

Thus, the joint probability distribution of the sets {Rj(u)}u∈[n] in process O

is the same as the one given by process B.
Observe also that, from the de�nition of the protocol (see the rule of

Stage 1 and Stage 2 in Section 8.2.1), it follows that each node's action
depends only on the set Rj(u) of received messages at the end of each phase j,
and does not depend on any further information such as the actual order in
which the messages are received during the phase.

Summing up the two previous observations, we get that if, at the end of
each phase j, we generate the Rj(u)s according to process B, and we let the
protocol execute according to them, then we indeed get the same stochastic
process as process O. gg�

Now, one key ingredient in our proof is to approximate process B using
the following process P.

Definition 22 (Associated Poisson Process). Given Nj , process P asso-
ciated to phase j is the one-shot process in which each node receives a num-
ber of opinions i that is a random variable with distribution Poisson(hi/n),
where hi is the number of messages inNj carrying opinion i, and each Poisson
random variable is independent of the others.

Now we provide some results from the theory of Poisson approximation
for balls-in-bins experiments that are used in Section 8.2.2. For a nice intro-
duction to the topic, we refer to [MU05].

Lemma 54. Let {Xj}j∈[ñ] be independent r.v. such that Xj ∼Poisson(λj).

The vector (X1, ..., Xñ) conditional on
∑

j X = m̃ follows a multinomial dis-

tribution with m̃ trials and probabilities ( λ1∑
j λj

, ..., λñ∑
j λj

).

Lemma 55. Consider a balls-in-bins experiment in which h colored balls
are thrown in n bins, where hi balls have color i with i ∈ {1, ..., k} and
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i hi = h. Let {Xu,i}u∈{1,...,n},i∈{1,...,k} be the number of i-colored balls that

end up in bin u, let

f(x1,1, ..., xn,1, xn,2, ..., xn,k, z1, ..., zn)

be a non-negative function with positive integer arguments x1,1, ..., xn,1, xn,2, ..., xn,k,
z1, ..., zn, let {Yu,i}u∈{1,...,n},i∈{1,...,k} be independent r.v. such that Yu,i ∼
Poisson(hi/n) and let Z1, ..., Zn be integer valued r.v. independent from the
Xu,is and Yu,is. Then

E [f (X1,1, ..., Xn,1, Xn,2, ..., Xn,k, Z1, ..., Zn)]

6 ek
√∏

i

hi E [f (Y1,1, ..., Yn,1, Yn,2, ..., Yn,k, Z1, ..., Zn)] .

Proof. To simplify notation, let

Z̄ = (Z1, ..., Zn),

X̄ = (X1,1, ..., Xn,1, Xn,2, ..., Xn,n),

Ȳ = (Y1,1, ..., Yn,1, Yn,2, ..., Yn,n),

Ȳ∑ = (

n∑
u=1

Yu,1, ...,

n∑
u=1

Yu,k),

λi = hi/n,

λ̄ = (λ1, ..., λk),

and �nally x̄ = (x1, ..., xk) for any x1, ..., xk. Observe that, while Xu,i and
Xv,i are clearly dependent, Xu,i and Xv,j with i 6= j are stochastically inde-
pendent (even if u = v). Indeed, the distribution of the r.v. {Xu,i}u∈{1,...,n}
for each �xed i is multinomial with λi trials and uniform distribution on the
bins. Thus, from Lemma 54 we have that {Xu,i}u∈{1,...,n}are distributed as

{Yu,i}u∈{1,...,n} conditional on
∑n

u=1 Yu,i = λi, that is

E

[
f
(
Ȳ , Z̄

)∣∣∣∣∣
n∑
u=1

Yu,1 = λ1, ...,

n∑
u=1

Yu,k = λk

]
= E

[
f
(
X̄, Z̄

)]
.

Therefore, we have

E
[
f
(
Ȳ , Z̄

)]
=

∑
x̄:x1,...,xk>0

E
[
f
(
Ȳ , Z̄

)∣∣ Ȳ∑ = x̄
]

Pr
(
Ȳ∑ = x̄

)
> E

[
f
(
Ȳ , Z̄

)∣∣ Ȳ∑ = λ̄
]

Pr
(
Ȳ∑ = λ̄

)
= E

[
f
(
X̄, Z̄

)]
Pr
(
Ȳ∑ = λ̄

)
= E

[
f
(
X̄, Z̄

)]∏
i

hhii
hi!

e−hi > E
[
f
(
X̄, Z̄

)] e−k√∏
i hi

,

where, in the last inequality, we use that, by Stirling's approximation, a! 6
e
√
a(ae )a for any a > 0. gg�
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From Lemma 54 and Lemma 55, we get the following general result which
says that if a generic event E holds w.h.p in process P, it also holds in process
O, w.h.p.

Lemma 56. Given the opinion distribution and the number of active
nodes at the beginning of a �xed phase j, let E be an event that, at the end
of that phase, holds with probability at least 1 − n−b in process P, for some
b > (k log h)/(2 log n) with h =

∑
i hi.

4 Then, at the end of phase j, E holds
also in process O, w.h.p.

Proof. Thanks to Claim 3, it su�ces to prove that, at the end of phase
j, E holds in process B, w.h.p.

Let Ē be the complementary event of E . Let h = |Mj | be the number of
balls that are thrown in process B associated to phase j, where hi balls have
color i with i ∈ {1, ..., k} and∑i hi = h. Let {Xu,i}u∈{1,...,n},i∈{1,...,k} be the
number of i-colored balls that end up in bin u, let {Yu,i}u∈{1,...,n},i∈{1,...,k}
be the independent r.v. of process P such that Yu,i ∼Poisson(hi/n) and let
Z1, ..., Zn be integer valued r.v. independent from the Xu,is and Yu,is.

Fix any realization of Nj , i.e. any re-coloring of the balls in the �rst
step of process B. By choosing f in Lemma 55 as the binary r.v. indicating
whether event Ē has occurred, where Ē is a function of the r.v. X1,1, ..., Xn,1,
Xn,2, ..., Xn,k, Z1, ..., Zn, we get

Pr
(
Ē (X1,1, ..., Xn,k, Z1, ..., Zn)

∣∣Nj

)
6 ek

√∏
i

hi Pr
(
Ē (Y1,1, ..., Yn,k, Z1, ..., Zn)

∣∣Nj

)
.(144)

Thus, from (144), the Inequality of arithmetic and geometric means and the
hypotheses on the probability of E , we get

Pr
(
Ē (X1,1, ..., Xn,k, Z1, ..., Zn)

∣∣Nj

)
6 ek

√∏
i

hi Pr
(
Ē (Y1,1, ..., Yn,k, Z1, ..., Zn)

∣∣Nj

)
6 ek

(
h

k

) k
2

Pr
(
Ē (Y1,1, ..., Yn,k, Z1, ..., Zn)

∣∣Nj

)

4 Note that, if Nj is not yet �xed, the parameters hi of process P associated to phase
j are random variables. However, if the opinion distribution and the number of active
nodes at the beginning of phase j are given, then h =

∑
i hi = |Nj | = |Mj | is �xed.
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Finally, let N be the set of all possible realizations of Nj . By the law of total
probability over N , we get that∑

s∈N
Pr
(
Ē (X1,1, ..., Xn,k, Z1, ..., Zn)

∣∣Nj = s
)

Pr (Nj = s)

6 ek
(
h

k

) k
2 ∑
s∈N

Pr
(
Ē (Y1,1, ..., Yn,k, Z1, ..., Zn)

∣∣Nj = s
)

Pr (Nj = s)

6 ek
(
h

k

) k
2

Pr
(
Ē (Y1,1, ..., Yn,k, Z1, ..., Zn)

)
6 ek

k
k
2

h
k
2n−b 6 n−Θ(1),

where in the �rst inequality of the last line we used the hypotheses on the
probability of Ē . gg�

We now analyze the two stages of our protocol, starting with Stage 1.
Note that, in the following two sections, the statements about the evolution
of the process refer to process O.

8.2.3. Stage 1

The rule of Stage 1 is aimed at guaranteeing that, the system reaches
a target opinion distribution from which the bit dissemination problem be-
comes an instance of the plurality consensus problem, w.h.p. More precisely,
we have the following.

Lemma 57. Stage 1 takes O( 1
ε2

log n) rounds, after which all nodes are

active and c(τT+1) is δ-biased toward the correct opinion with δ = Ω(
√

log n/n),
w.h.p.

Proof. The fact that an undecided node becomes decided during a
phase only depends on whether it gets a message during that phase, re-
gardless of the value of such messages. Hence, the proof that a(τT+1) = 1
is reduced to the analysis of the rule of Stage 1 as an information spread-
ing process, w.h.p. First, by carefully exploiting the Cherno� (Lemma 25)
bound and Lemma 56, we can establish Claim 4 and Claim 5 below:

Claim 4. At the end of phase 0, it holds w.h.p.

s

ε2
· log n

3n
6 a(τ0) 6 s

ε2
· log n

n
.

Claim 5. At the end of phase j, 1 6 j 6 T , it holds w.h.p.(
β

ε2
+ 1

)j
· a

(τ0)

8
6 a(τj) 6

(
β

ε2
+ 1

)j
· a(τ0).

Sketch of Proof of Claim 4 and Claim 5. The probability that,
in the process O, an undecided node becomes decided at the end of phase j
is 1 − (1 − 1

n)h where h is the number of messages sent during that phase.
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In process P, this probability is 1 − e− hn . By using that e
x

1+x 6 1 + x 6 ex

for |x| < 1 we see that

1− e− hn 6 1−
(

1− 1

n

)h
6 1− e− h

n−1 .

Thus, we can prove Claim 4 and Claim 5 for process P by repeating essen-
tially the same calculations as in the proofs of Claim 2.2 and 2.4 in [FHK15].
Since the Poisson distributions in process P are independent, we can apply
the Cherno� bound as claimed in [FHK15]. Finally, we can prove that the
statements hold also for process O thanks to Lemma 55. gg� (of claims 4 and 5)

From the previous two claims, and by the de�nition of T we get the
following.

Lemma 58. At the end of phase T , it holds w.h.p.

a(τT+1) = Ω

((
β

ε2
+ 1

)T
a(τ0)

)
= Ω(ε2).

Finally, from Lemma 58, an application of the Cherno� bound (Lemma
25) gives us the following.

Lemma 59. At the end of Stage 1, all nodes are decided, w.h.p.

As for the fact that, c(τ+1) is a δ-biased opinion distribution with δ =
Ω(
√

log n/n) (w.h.p.), we can prove the following.

Lemma 60. At the end of each phase j of Stage 1, we have an (ε/2)j-
biased opinion distribution, w.h.p.

Proof. We prove the lemma by induction on the phase number. The

case j = 1 is a direct application of Lemma 77 to c
(τ1)
m − c

(τ1)
i (i 6= m),

where the number of decided nodes is given by Claim 4, and, where the
independence of the r.v. follows from the fact that each node that becomes
decided in the �rst phase has necessarily received the messages from the
source-node. Now, suppose that the lemma holds up to phase j − 1 6 T .
Let Sj = {u| ju = j} be the set of nodes that become decided during phase
j. Recall the de�nition of Mj and Nj from Section 8.2.2, and observe that

|Mj | = |Nj | = (τj − τj−1)n · a(τj−1),

and that the number of times opinion i occurs in Mj is |Mj | c(τj−1)
i . Let

us identify each message in Mj with a distinct number in 1, ..., |Mj |, and
let {Xw(i)}w∈{1,...,|Mj |} be the binary r.v. such that Xw(i) = 1 if and only

if w is i after the action of the noise. The frequency of opinion i in Nj is
1
|Nj |

∑|Nj |
w=1Xw(i).

Thanks to Lemma 56, it su�ces to prove the lemma for process P. By
de�nition, in process P, for each i, the number of messages with opinion i

that each node receives conditional on Nj follows a Poisson( 1
n

∑|Nj |
w=1Xw (i))
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distribution. Each node u that becomes decided during phase j gets at least
one message during the phase. Thus, from Lemma 54, the probability that
u gets opinion i conditional on Nj is∑|Nj |

w=1Xw (i)∑k
i=1

∑|Nj |
w=1Xw (i)

=
1

|Nj |

|Nj |∑
w=1

Xw (i) .

Since decided nodes never change opinion during Stage 1, the bias of c(τj)

is at least the minimum between the bias of c(τj−1) and the bias among the
newly decided nodes in Sj . Hence, we can apply the Cherno� bound (Lemma
25) to the nodes in Sj to prove that the bias at the end of phase j is w.h.p.5,

Pr
(
c

(τj)
m − c(τj)

i

∣∣∣Nj

)
>

 1

|Nj |

|Nj |∑
w=1

Xw (m)− 1

|Nj |

|Nj |∑
w=1

Xw (i)

(1− δ̃j
)
,(145)

where δ̃j = O(
√

log n/|Sj |).
Moreover, note that

E

 1

|Nj |

|Nj |∑
w=1

Xw (i)

∣∣∣∣∣∣ c(τj−1), a(τj−1)

 =
(
c(τj−1) · P

)
i
.

Furthermore, (conditional on c(τj−1) and a(τj−1)) the r.v. {Xw(i)}w∈{1,...,|Nj |}
are independent. Thus, for each i 6= m, from Claim 5, and by applying the

Cherno� bound (Lemma 25) on
∑|Nj |

w=1Xw(m), and on
∑|Nj |

w=1Xw(i), we get
that w.h.p.

(146)
1

|Nj |

|Nj |∑
w=1

Xw (m)− 1

|Nj |

|Nj |∑
w=1

Xw (i) > (1− δj) 2−j+1εj ,

where δj = O(
√

log n/|Nj |).
From Claim 4 and Claim 5, it follows that δ̃j , δj 6 1

4 , w.h.p. Thus by
putting together (145) and (146) via the chain rule, we get that w.h.p.

c
(τj)
m − c(τj)

i >
(

1− δ̃j
)

(1− δj) 2−j+1εj >
(ε

2

)j
.

gg� (of Lemma 60)

Lemma 60 implies that we get a bias εT+2 = Ω(
√

log n/n) at the end of
Stage 1, w.h.p., which completes the proof of Lemma 57. gg�

5We remark that (145) concerns the value of Pr(c
(τj)
m − c(τj)i |Nj), which is a random

variable.
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8.2.4. Stage 2

As proved in the previous section, all nodes are decided at the end of
Stage 1 and the �nal opinion distribution is Ω(

√
log n/n)-biased, w.h.p.

Now, we have that the bit dissemination problem is reduced to an instance of
the plurality consensus problem. The purpose of Stage 2 is to progressively
amplify the initial bias until all nodes support the plurality opinion, i.e. the
opinion originally held by the source node.

During the �rst T ′ phases, it is not hard to see that, by taking α4 large
enough, a fraction arbitrarily close to 1 of the nodes receives at least ` mes-
sages, w.h.p. Each node u in such fraction changes its opinion at the end of
the phase. With a slight abuse of notation, let maj`(u) = maj (S(u)) be u's
new opinion based on the ` = |S(u)| randomly sampled received messages.
We show that these new opinions increase the bias of the opinion distribution
toward the plurality opinion by a constant factor > 1, w.h.p.

For the sake of simplicity, we assume that ` is odd (see Section 8.5 for
details on how to remove this assumption).

Proposition 1. Suppose that, at the beginning of phase j of Stage 2 with
0 6 j 6 T ′ − 1, the opinion distribution is δ-biased toward m. In process P,
if a node u changes its opinion at the end of the phase, then, for any i 6= m,
we have

(147) Pr (maj`(u) = m)− Pr (maj`(u) = i) >
√

2`

π

g(δ, `)

e(k−2) ln 4
,

where

g (δ, `) =

{
δ(1− δ2)

`−1
2 if δ< 1√

`
,√

1/` (1−
√

1/`)
`−1

2 if δ > 1√
`
.

First, we prove (147) for k = 2. We then obtain the general case by
induction. The proof for k = 2 is based on a known relation between the
cumulative distribution function of the binomial distribution, and the cumu-
lative distribution function of the beta distribution. This relation is given
by the following lemma.

Lemma 61. Given p ∈ (0, 1) and 0 6 j 6 ` it holds∑
j<i6`

(
`

i

)
pi (1− p)`−i =

(
`

j + 1

)
(j + 1)

∫ p

0
zj (1− z)`−j−1 dz.

Proof. By integrating by parts, for j < `− 1 we have(
`

j + 1

)
(j + 1)

∫ p

0
zj (1− z)`−j−1 dz

=

(
`

j + 1

)
pj+1 (1− p)`−j−1

−
(

`

j + 1

)
(`− j − 1)

∫ p

0
zj+1 (1− z)`−j−2 dz
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=

(
`

j + 1

)
pj+1 (1− p)`−j−1

−
(

`

j + 2

)
(j + 2)

∫ p

0
zj+1 (1− z)`−j−2 dz,(148)

where, in the last equality, we used the identity(
`

j

)
(`− j) =

(
`

j + 1

)
(j + 1) .

Note that when j = `− 1, (147) becomes

p` = `

∫ p

0
z`−1dz.

Hence, we can unroll the recurrence given by (148) to obtain(
`

j + 1

)
(j + 1)

∫ p

0
zj (1− z)`−j−1 dz

=
∑

j<i6`−1

(
`

i

)
pi (1− p)`−i + `

∫ p

0
z`−1dz

=
∑
j<i6`

(
`

i

)
pi (1− p)`−i ,

concluding the proof. gg�

Lemma 61 allows us to express the survival function of a binomial sample
as an integral. Thanks to it, we can prove Proposition 1 when k = 2.

Lemma 62. Let c = (c1, c2) be a δ-biased opinion distribution during
Stage 2. In process P, for any node u, we have

Pr (maj`(u) = m)− Pr (maj`(u) = 3−m) >
√

2`

π
· g (δ, `) .

Proof. Without loss of generality, let m = 1. Let X
(`)
1 be a r.v. with

distribution Bin(`, p1), and let X
(`)
2 = `−X(`)

1 . By using Lemma 61, we get

Pr (maj`(u) = 1)− Pr (maj`(u) = 2)

= Pr
(
X

(`)
1 > X

(`)
2

)
− Pr

(
X

(`)
2 > X

(`)
1

)
=

∑
d `2e6i6`

(
`

i

)
pi1p

`−i
2 −

∑
d `2e6i6`

(
`

i

)
p`−i1 pi2

=
∑
d `2e6i6`

(
`

i

)
pi1 (1− p1)`−i −

∑
d `2e6i6`

(
`

i

)
p`−i1 (1− p1)i

=

(
`⌈
`
2

⌉)⌈ `
2

⌉(∫ p1

0
zb `2c (1− z)b `2c dz
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−
∫ p2

0
zb `2c (1− z)b `2c dz

)
.

By setting t = z − 1
2 , and rewriting p1 = p1−p2

2 + 1
2 and p2 = p2−p1

2 + 1
2 we

obtain

Pr (maj`(u) = 1)− Pr (maj`(u) = 2)

=

(
`⌈
`
2

⌉)⌈ `
2

⌉(∫ p1

0
zb `2c (1− z)b `2c dz

−
∫ p2

0
zb `2c (1− z)b `2c dz

)
=

(
`⌈
`
2

⌉)⌈ `
2

⌉(∫ p1−p2
2

− 1
2

(
1

4
− t2

)b `2c
dt

−
∫ −p1−p2

2

− 1
2

(
1

4
− t2

)b `2c
dt

)

=

(
`⌈
`
2

⌉)⌈ `
2

⌉∫ p1−p2
2

− p1−p2
2

(
1

4
− t2

)b `2c
dt.

For any t ∈ (−y
2 ,

y
2 ) ⊆ (−p1−p2

2 , p1−p2

2 ), it holds(
1

4
− t2

)b `2c
>
(

1− y2

4

)b `2c
.

Thus, for any y ∈ (−p1 + p2, p1 − p2) we have

(149)

∫ p1−p2
2

− p1−p2
2

(
1

4
− t2

)b `2c
dt > y

(
1− y2

4

)b `2c
.

The r.h.s. of (149) is maximized w.r.t. y ∈ (−p1 + p2, p1 − p2) when

y = min

p1 − p2,
1√

2
⌊
`
2

⌋
+ 1

 = min

{
p1 − p2,

1√
`

}
.

Hence, for p1 − p2 <
1√
`
, we get∫ p1−p2
2

− p1−p2
2

(
1

4
− t2

)b `2c
dt

> (p1 − p2)

(
1− (p1 − p2)2

4

)b `2c
= 2−`+1 (p1 − p2)

(
1− (p1 − p2)2

) `−1
2

= 2−`+1g (p1 − p2, `) .
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For p1 − p2 > 1√
`
we get∫ p1−p2

2

− p1−p2
2

(
1

4
− t2

)b `2c
dt > 2−`+1

√
`

(
1− 1

`

) `−1
2

= 2−`+1g (p1 − p2, `) .

By using the fact that g is a non-decreasing function w.r.t. its �rst argument
(see Lemma 68 in Section 8.7), we obtain

Pr (maj`(u) = 1)− Pr (maj`(u) = 2)

=

(
`⌈
`
2

⌉)⌈ `
2

⌉∫ p1−p2
2

− p1−p2
2

(
1

4
− t2

)b `2c
dt

>
(

`⌈
`
2

⌉)⌈ `
2

⌉
2−`+1g (p1 − p2, `)

>
(

`⌈
`
2

⌉)⌈ `
2

⌉
2−`+1g (δ, `) .

Finally, by using the bounds
(

2r
r

)
> 22r
√
πr
e

1
9r (see Lemma 69 in Section 8.7),

and ex > 1− x together with the identity6(
`⌈
`
2

⌉)⌈ `
2

⌉
=

(
`
`+1

2

)
`+ 1

2
=

(
`− 1
`−1

2

)
`,

we get

Pr (maj`(u) = 1)− Pr (maj`(u) = 2)

>
(

`⌈
`
2

⌉)⌈ `
2

⌉
2−`+1g (δ, `)

> 2`−1√
π `−1

2

e
2

9(`−1) ` · 2−`+1g (δ, `)

>
√

2`

π

(
1− 2

9 (`− 1)

)(
1− 1

`

)− 1
2

· g (δ, `)

>
√

2`

π
· g (δ, `) ,

concluding the proof. gg�

Next we show how to lower bound the above di�erence with a much
simpler expression.

Lemma 63. In process P, during Stage 2, for any node u,

Pr(maj`(u) = m)− Pr(maj`(u) = 3−m) >

Pr(X
(`)
1 > X

(`)
2 , ..., X

(`)
k )− Pr(X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
k ),

6Recall that we are assuming that ` is odd.



224 8. CONSENSUS DESPITE NOISE

where X̄(`) = (X
(`)
1 , ..., X

(`)
k ) follows a multinomial distribution with ` trials

and probability distribution c · P .

Proof. Without loss of generality, let m = 1. Let x = (x1, ..., xk)

denote a generic vector with positive integer entries such that
∑k

j=1 xj = `,

let W (x) be the set of the greatest entries of x, and, for j ∈ {1, i}, let
• A(!)

j = {x |W (x) = {j}},
• A(=)

j = {x | 1, i ∈W (x)},
• A(6=)

1 = {x | 1 ∈W (x) ∧ i 6∈W (x) ∧ |W (x)| > 1} and
• A(6=)

i = {x | i ∈W (x) ∧ 1 6∈W (x) ∧ |W (x)| > 1}.
It holds

Pr (maj`(u) = j)

=
∑

x∈A(!)
j

Pr
(
X̄(`) = x

)
Pr
(

maj`(u) = j
∣∣∣ X̄(`) = x

)
+

∑
x∈A(=)

j

Pr
(
X̄(`) = x

)
Pr
(

maj`(u) = j
∣∣∣ X̄(`) = x

)
+

∑
x∈A(6=)

j

Pr
(
X̄(`) = x

)
Pr
(

maj`(u) = j
∣∣∣ X̄(`) = x

)

=
∑

x∈A(!)
j

Pr
(
X̄(`) = x

)
+

∑
x∈A(=)

j

Pr
(
X̄(`) = x

)
|W (x)|

+
∑

x∈A(6=)
j

Pr
(
X̄(`) = x

)
|W (x)| .(150)

Let

σ (x) = (xi, ..., xi−1, x1, xi+1, ..., xk) ,

be the vector function that swaps the entries x1 and xi in x. σ is clearly a

bijection between the sets A
(!)
1 ,A

(=)
1 ,A

(6=)
1 and A

(!)
i , A

(=)
i , A

(6=)
i , respectively,

namely

σ : A
(!)
1 ↪→→ A

(!)
i , σ : A

(=)
1 ↪→→ A

(=)
i , σ : A

(6=)
1 ↪→→ A

(6=)
i ,

where ↪→→ denotes a bijection.

Moreover, for all x ∈ A(=)
j , it holds

Pr
(
X̄(`) = x

)
= Pr

(
X̄(`) = σ (x)

)
.
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Therefore ∑
x∈A(=)

1

Pr
(
X̄(`) = x

)
=

∑
σ(x)∈A(=)

1

Pr
(
X̄(`) = σ (x)

)
(151)

=
∑

x∈A(=)
i

Pr
(
X̄(`) = x

)
.

Furthermore, for all x ∈ A( 6=)
1 , we have

Pr
(
X̄(`) = x

)
=

(
`

x1 ... xk

)
px1

1 . . . pxii . . . p
xk
k(152)

>

(
`

x1 ... xk

)
pxi1 . . . px1

i . . . pxkk

= Pr
(
X̄

(`)
1 = σ (x)

)
,

where σ(x) ∈ A(6=)
i . From (152) we thus have that∑

x∈A(6=)
1

Pr
(
X̄(`) = x

)
>

∑
σ(x)∈A(6=)

1

Pr
(
X̄(`) = σ (x)

)
(153)

=
∑

x∈A(6=)
i

Pr
(
X̄(`) = x

)
.

From (150), (151) and (153) we �nally get

Pr (maj`(u) = 1)− Pr (maj`(u) = i)

=
∑

x∈A(!)
1

Pr
(
X̄(`) = x

)
+

∑
x∈A(=)

1

Pr
(
X̄(`) = x

)
|W (x)|

+
∑

x∈A(6=)
1

Pr
(
X̄(l) = x

)
|W (x)| −

∑
x∈A(!)

i

Pr
(
X̄(`) = x

)

−
∑

x∈A(=)
i

Pr
(
X̄(`) = x

)
|W (x)| −

∑
x∈A(6=)

i

Pr
(
X̄(`) = x

)
|W (x)|

>
∑

x∈A(!)
1

Pr
(
X̄(`) = x

)
−
∑

x∈A(!)
i

Pr
(
X̄(`) = x

)
= Pr

(
W (X̄(`)) = {X(`)

1 }
)
− Pr

(
W (X̄(`)) = {X(`)

i }
)
,

concluding the proof of Lemma 63. gg�

Intuitively, Lemma 63 says that the set of events in which a tie occurs
among the most frequent opinions in the node's sample of observed messages



226 8. CONSENSUS DESPITE NOISE

does not favor the probability that the node picks the wrong opinion. Thus,
by avoiding considering those events, we get a lower bound on

Pr(maj`(u) = 1)− Pr(maj`(u) = i).

Thanks to Lemma 63, the proof of (147) reduces to proving the following.

Lemma 64. For any �xed k, and with X̄ de�ned as in Lemma 63, we
have

(154) Pr(X
(`)
1 > X

(`)
2 , ..., X

(`)
k )− Pr(X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
k )

>
√

2`/π
g (δ, `)

4k−2
.

Proof. We prove (154) by induction. Lemma 62 provides us with the
base case for k = 2. Let us assume that, for k 6 κ, (154) holds. For k = κ+1,
by using the law of total probability, we have

Pr
(
X

(`)
1 > X

(`)
2 , ..., X

(`)
κ+1

)
− Pr

(
X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
κ+1

)
>
b `
κ+1c∑
h=0

Pr
(
X

(`)
1 > X

(`)
2 , ..., X

(`)
κ+1

∣∣∣X(`)
κ+1 = h

)
Pr
(
X

(`)
κ+1 = h

)

−
b `
κ+1c∑
h=0

Pr
(
X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
κ+1

∣∣∣X(`)
κ+1 = h

)
· Pr

(
X

(`)
κ+1 = h

)
.(155)

Now, arg maxj{X(`)
j } = i and X

(`)
κ+1 6

⌊
`

κ+1

⌋
together imply X

(`)
i > X

(`)
κ+1.

Thus, in the r.h.s. of (155), we have

Pr
(
X

(`)
1 > X

(`)
2 , ..., X

(`)
κ+1

∣∣∣X(`)
κ+1 = h

)
= Pr

(
X

(`)
1 > X

(`)
2 , ..., X(`)

κ

∣∣∣X(`)
κ+1 = h

)
,

and

Pr
(
X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
κ+1

∣∣∣X(`)
κ+1 = h

)
= Pr

(
X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
κ

∣∣∣X(`)
κ+1 = h

)
.

Moreover, X(`) follows a multinomial distribution with parameters p and

`. Thus X
(`)
k = h implies that the remaining entries X

(`)
1 , ..., X

(`)
k−1 follow a

multinomial distribution with l − h trials, and distribution ( p1

1−pk , ...,
pk−1

1−pk ).
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Let Y (`−h) = (Y
(`−h)

1 , ..., Y
(`−h)
k−1 ) be the distribution of X

(`)
1 , ..., X

(`)
k−1 condi-

tional on X
(`)
k = h. From (155) we get

Pr
(
X

(`)
1 > X

(`)
2 , ..., X

(`)
κ+1

)
− Pr

(
X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
κ+1

)
>
b `
κ+1c∑
h=0

Pr
(
X

(`)
1 > X

(`)
2 , ..., X(l)

κ

∣∣∣X(`)
κ+1 = h

)
Pr
(
X

(`)
κ+1 = h

)

−
b `
κ+1c∑
h=0

Pr
(
X

(`)
i > X

(`)
1 , ..., X

(`)
i−1, X

(`)
i+1, ..., X

(`)
κ

∣∣∣X(`)
κ+1 = h

)
· Pr

(
X

(`)
κ+1 = h

)
>
b `
κ+1c∑
h=0

(
Pr
(
Y

(`−h)
1 > Y

(`−h)
2 , ..., Y (`−h)

κ

)
−

− Pr
(
Y

(l−h)
i > Y

(l−h)
1 , ..., Y

(l−h)
i−1 , Y

(l−h)
i+1 , ..., Y (l−h)

κ

))
· Pr

(
X

(l)
κ+1 = h

)
.(156)

Now, using the inductive hypothesis on the r.h.s. of (156) we get

b `
κ+1c∑
h=0

(
Pr
(
Y

(`−h)
1 > Y

(`−h)
2 , ..., Y (`−h)

κ

)
− Pr

(
Y

(`−h)
i > Y

(`−h)
1 , ..., Y

(`−h)
i−1 , Y

(`−h)
i+1 , ..., Y (`−h)

κ

))
· Pr

(
X

(`)
κ+1 = h

)
>
b `
κ+1c∑
h=0

(√
2`− 2h

π

g (δ, `− h)

4κ−2

)
Pr
(
X

(`)
κ+1 = h

)

>
√

2`

π

g (δ, `)

4κ−2
·
b `
κ+1c∑
h=0

√
1− h

`
Pr
(
X

(`)
κ+1 = h

)
,

where, in the last inequality, we used the fact that g is a non-increasing
function w.r.t. the second argument (see Lemma 68 in Section 8.7).

It remains to show that

b `
κ+1c∑
h=0

√
1− h

l
Pr
(
X

(`)
κ+1 = h

)
> 1

4
.
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Let W
(`)
κ+1 be a r.v. with probability distribution Bin(`, 1

κ+1). Since X
(`)
κ+1 ∼

Bin(`, pκ+1) with pκ+1 6 1
κ+1 , a standard coupling argument (see for exam-

ple [DP09, Exercise 1.1.]), enables to show that

Pr
(
X

(`)
κ+1 6 h

)
> Pr

(
W

(`)
κ+1 6 h

)
.

Hence, we can apply the central limit theorem7 on W
(`)
κ+1, and get that, for

any ε̃ 6 2−
√

3
4 , there exists some �xed constant `0 such that, for ` > `0, we

have

(157) Pr

(
X

(`)
κ+1 6

`

κ+ 1

)
> Pr

(
W

(`)
κ+1 6

`

κ+ 1

)
>
(

1

2
− ε̃
)
.

By using (157), for ` > `0 we �nally get that

b `
κ+1c∑
h=0

√
1− h

`
Pr
(
X

(`)
κ+1 = h

)

>

√√√√
1−

⌊
`

κ+1

⌋
`
·
b `
κ+1c∑
h=0

Pr
(
X

(`)
κ+1 = h

)
>
√

1− 2

κ+ 1
· Pr

(
X

(`)
κ+1 6

`

κ+ 1

)
>
√
κ− 1

κ+ 1
·
(

1

2
− ε̃
)
>
√

1

3
·
(

1

2
− ε̃
)
> 1

4
,

concluding the proof that

Pr (maj`(u) = 1)− Pr (maj`(u) = i) >
√

2`

π

g (δ, `)

e(k−2) ln 4
.

gg�

By using Proposition 1, we can then prove Lemma 65.

Lemma 65. At the end of Stage 2, all nodes support the initial plurality
opinion, w.h.p.

Proof. Let δ = Ω(
√

log n/n) be the bias of the opinion distribution at
the beginning of a generic phase j < T ′ of Stage 2. Thanks to Proposition

7 Recall that the central limit theorem states that given a random sample X1, ..., Xn
from a Bernoulli(p) distribution where p ∈ (0, 1) is constant (i.e. does not depend on n),
and given a standard normal r.v. Z ∼ N(0, 1), it holds

lim
n→∞

sup
z∈R

∣∣∣∣∣Pr

(∑n
i=1 Xi − pn√

n
6 z
)
− Pr

(
Z 6 z√

p (1− p)

)∣∣∣∣∣ = 0.
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1, by choosing the constant α4 of the phase length large enough, in process
P we get that

Pr (maj`(u) = m)− Pr (maj`(u) = i) > αδ
for some constant α > 1 (provided that δ 6 1/2). Hence, by applying Lemma
77 in Appendix A with θ = α

4 δ, we get

Pr(c
(τj)
m − c(τj)

i 6 αδ/2) 6 exp(−(αδ)2n/16) 6 n−α̃,
for some constant α̃ that is large enough to apply Lemma 55. Therefore,

until δ > 1/2, in process P we have that c
(τj)
m − c(τj)

i > αδ/2 holds, w.h.p.
From the previous equation it follows that, after T ′ phases, the protocol has
reached an opinion distribution with a bias greater than 1/2. Thus, by a

direct application of Lemma 77 and Lemma 55 to c
(τT ′ )
m − c(τT ′ )

i , we get that

w.h.p. c
(τT ′ )
m − c(τT ′ )

i = 1, concluding the proof. gg�

Finally, the time e�ciency claimed in Theorem 13 and Theorem 14 di-
rectly follows from Lemma 65, while the required memory follows from the
fact that in each phase each node needs only to count how many times it
has received each opinion, i.e. to count up to at most O( 1

ε2
log n), w.h.p.

8.3. On the Notion of (ε, δ)-Majority-Preserving Matrix

In this section we discuss the notion of (ε, δ)-m.p. noise matrix given in
De�nition 20. Let us consider (143). The matrix P represents the �perturba-
tion� introduced by the noise, and so (c ·P )m− (c ·P )i measures how much
information the system is losing about the correct opinion m, in a single
communication round. An (ε, δ)-m.p. noise matrix is a noise matrix that
preserves at least an ε fraction of bias, provided the initial bias is at least
δ. The (ε, δ)-m.p. property essentially characterizes the amount of noise
beyond which some coordination problems cannot be solved without further
hypotheses on the nodes' knowledge of the matrix P . To see why this is
the case, consider an (ε, δ)-m.p. noise matrix for which there is a δ-biased
opinion distribution c̃ such that (c̃ · P )m − (c̃ · P )i < 0 for some opinion i.
Given opinion distribution c̃, from each node's perspective, opinion m does
not appear to be the most frequent opinion. Indeed, the messages that are
received are more likely to be i than m. Thus, plurality consensus cannot
be solved from opinion distribution c̃.

Observe that verifying whether a given matrix P is (ε, δ)-m.p. with
respect to opinion m consists in checking whether for each i 6= m the value
of the following linear program is at least εδ:

maximize (P · c)m − (P · c)i

subject to
∑
j

cj = 1,

and ∀j, cj > 0, cm − cj − δ > 0.
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We now provide some negative and positive examples of (ε, δ)-m.p. noise
matrices. First, we note that a natural matrix property such as being diag-
onally dominant does not imply that the matrix is (ε, δ)-m.p. For example,
by multiplying the following diagonally dominant matrix by the δ-biased
opinion distribution c = (1/2 + δ, 1/2 − δ, 0)ᵀ, we see that it does not even
preserve the majority opinion at all when ε, δ < 1/6: 1

2 + ε 0 1
2 − ε

1
2 − ε 1

2 + ε 0
0 1

2 − ε 1
2 + ε

 .

On the other hand, the following natural generalization of the noise matrix
in [FHK14] (see (142)), is (ε, δ)-m.p. for every δ > 0 with respect to any
opinion:

(P )i,j = pi,j =

{
1
k + ε if i = j,
1
k − ε

k−1 otherwise.

More generally, let P be a noise matrix such that

(158) (P )i,j =

{
p if i = j,

ql 6 qi,j 6 qu otherwise,

for some positive numbers p, qu and ql. Since

(Pc)m − (Pc)i = pcm +
∑
j 6=m

qj,mcj − pci −
∑
j 6=i

qj,icj

> p(cm − ci) +
∑
j 6=m

qlcj −
∑
j 6=i

qucj

> p(cm − ci) + ql(1− cm)− qu(1− ci)
> p(cm − ci) + ql − qlcm − qu + quci

> p(cm − ci)− qu(cm − ci)− (qu − ql)
> (p− qu)(cm − ci)− (qu − ql)
> (p− qu)δ − (qu − ql).(159)

By de�ning ε = (p− qu)/2, we get that the last line in (159) is greater than
εδ i� (p−qu)δ/2 > (qu−ql), which gives a su�cient condition for any matrix
of the form given in (158) for being (ε, δ)-m.p.

8.4. The Reception of Simultaneous Messages

In the uniform PUSH model, it may happen that several agents push
a message to the same node u at the same round. In such cases, the
model should specify whether the node receives all such messages, only one
of them or neither of them. Which choice is better depends on the bio-
logical setting that is being modeled: if the communication between the
agents of the system is an auditory or tactile signal, it could be more
realistic to assume that simultaneous messages to the same node would
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�collide�, and the node would not be able to grasp any of them. If, on
the other hand, the messages represent visual or chemical signals (see e.g.
[SKJ+08, FPM+02, BSDDS10, BCN+14]), then it may be unrealistic
to assume that nodes cannot receive more than one of such messages at the
same round and besides, by a standard balls-into-bins argument (e.g. by
applying Lemma 56), it follows that in the uniform PUSH model at each
round no node receives more than O(log n) messages, w.h.p. In this work we
thus consider the model in which all messages are received, also because such
assumption allows us to obtain simpler proofs than the other variants. We
�nally note that our protocol does not strictly need such assumption, since
it only requires the nodes to collect a small random sample of the received
messages. However, since we look at the latter feature as a consequence of
active choices of the nodes rather than some inherent property of the en-
vironment, we avoid to weaken the model to the point that it matches the
requirements of the protocol.

8.5. Removing the Parity Assumption on `

The next lemma shows that, for k = 2, the increment of bias at the end
of each phase of Stage 2 in the process P is non-decreasing in the value of `,
regardless of its parity.

Lemma 66. Let k = 2, a = 1, let ` be odd, and let

(c · P )1 > 1− (c · P )1 = (c · P )2.

The rule of Stage 2 of the protocol is such that

Pr (maj`(u) = 1) = Pr
(
maj`+1(u) = 1

)
6 Pr

(
maj`+2(u) = 1

)
,

Pr (maj`(u) = 2) = Pr
(
maj`+1(u) = 2

)
> Pr

(
maj`+2(u) = 2

)
.

Since we are not using any feature of the protocol other than the majority
rule, we obtain Lemma 66 as corollary of a general Lemma 67, which is of
independent interest. To get Lemma 66 from Lemma 67, set “ maj` = H” =
“ maj`(u) = 1”, “ maj` = T” = “ maj`(u) = 2” and p = (c · P )1.

Lemma 67. Suppose with throw ` times a coin whose probability of head
is p > 1−p. Let maj` be the face of the coin which shows up more frequently
in the ` throws (i.e. the majority value), breaking ties uniformly at random:

if we get `2 heads and `
2 tails, we choose one of them with probability 1

2 (notice
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that a tie is only possible if ` is even. For any odd `, it holds

Pr (maj` = H) = Pr
(
maj`+1 = H

)
(160)

(a)

6 Pr
(
maj`+2 = H

)
,

Pr (maj` = T ) = Pr
(
maj`+1 = T

)
(161)

(b)

> Pr
(
maj`+2 = T

)
,

where the equality in (a) and (b) holds i� p = 1
2 .

Proof. By de�nition, we have

Pr (maj` = H) = Pr

(
X

(`)
H >

⌈
`

2

⌉)
,

Pr
(
maj`+1 = H

)
= Pr

(
X

(`+1)
H >

`+ 1

2

)
+

1

2
Pr

(
X

(`+1)
H =

`+ 1

2

)
,

Pr
(
maj`+2 = H

)
= Pr

(
X

(`+2)
H >

⌈
`+ 2

2

⌉)
,

where X
(`)
1 , X

(`+1)
1 and X

(`+2)
1 are binomial r.v. with probability p1 and

number of trials `, `+ 1, and `+ 2, respectively. We can view X
(`)
1 , X

(`+1)
1 ,

and X
(`+2)
1 as the sum of `, `+ 1 and `+ 2 Bernoulli(p) r.v., respectively. In

particular, let Y and Y
′
be independent r.v. with distribution Bernoulli(p).

We can couple X
(`)
1 , X

(`+1)
1 and X

(`+2)
1 as follows:

X
(`+1)
1 = X

(`)
1 + Y,

and

X
(`+2)
1 = X

(`+1)
1 + Y ′.

Since ` is odd, observe that if X
(`)
H >

⌈
`
2

⌉
, then maj` = H regardless of the

value of Y , and similarly if X
(`)
H <

⌈
`
2

⌉
then maj` = T . Thus we have

Pr
(
maj`+1 = H

)
=
∑̀
i=1

Pr
(

maj`+1 = H
∣∣∣X(`)

H = i
)

Pr
(
X

(`)
H = i

)
=
∑̀
i>d `2e

Pr
(
X

(`)
H = i

)
+ Pr

(
maj`+1 = H

∣∣∣∣X(`)
H =

⌈
`

2

⌉)

· Pr

(
X

(`)
H =

⌈
`

2

⌉)
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+ Pr

(
maj`+1 = H

∣∣∣∣X(`)
H =

⌊
`

2

⌋)
Pr

(
X

(`)
H =

⌊
`

2

⌋)
.(162)

As for the last two terms in the previous equation, we have that

Pr

(
maj`+1 = H

∣∣∣∣X(`)
H =

⌈
`

2

⌉)
= Pr (Y = H) + Pr (Y = T ) · 1

2
,(163)

and

(164) Pr

(
maj`+1 = H

∣∣∣∣X(`)
H =

⌊
l

2

⌋)
= Pr (Y = H) · 1

2
.

Moreover, by a direct calculation one can verify that

(165) Pr

(
X

(`)
H =

⌈
`

2

⌉)
=

Pr (Y = T )

Pr (Y = H)
· Pr

(
X

(`)
H =

⌊
`

2

⌋)
.

From (163), (164) and (165) it follows that

Pr

(
maj`+1 = H

∣∣∣∣X(`)
H =

⌈
`

2

⌉)
Pr

(
X

(`)
H =

⌈
`

2

⌉)
+ Pr

(
maj`+1 = H

∣∣∣∣X(`)
H =

⌊
`

2

⌋)
Pr

(
X

(`)
H =

⌊
`

2

⌋)
=

(
Pr (Y = H) + Pr (Y = T ) · 1

2

)
Pr

(
X

(`)
H =

⌈
`

2

⌉)
+

(
Pr (Y = H) · 1

2

)
Pr

(
X

(`)
H =

⌊
`

2

⌋)
= Pr

(
X

(`)
H =

⌈
`

2

⌉)
·
(

Pr (Y = H) +
Pr (Y = T )

2
+

Pr (Y = H)

2

Pr (Y = T )

Pr (Y = H)

)
= Pr

(
X

(`)
H =

⌈
`

2

⌉)
.(166)

By plugging (166) in (162) we get

Pr (maj` = H) = Pr
(
maj`+1 = H

)
.

As for the second part, observe that if X
(`+1)
H > `+1

2 , then maj`+2 = H

regardless of the value of Y ′, and similarly if X
(`+1)
H < `+1

2 then maj`+2 = T .
Observe also that

Pr

(
maj`+2 = H

∣∣∣∣X(`+1)
H =

l + 1

2

)
= Pr (Y = H) = p.
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Because of the previous observations and the hypothesis that p > 1
2 , we have

that

Pr
(
maj`+2 = H

)
=
∑̀
i=0

Pr
(

maj`+2 = H
∣∣∣X(`+1)

H = i
)

Pr
(
X

(`+1)
H = i

)
=

l∑
i> `+1

2

Pr
(
X

(`+1)
H = i

)

+ Pr

(
maj`+2 = H

∣∣∣∣X(`+1)
H =

`+ 1

2

)
· Pr

(
X

(`+1)
H =

`+ 1

2

)
=
∑̀
i> `+1

2

Pr
(
X

(`+1)
H = i

)
+ p · Pr

(
X

(`+1)
H =

`+ 1

2

)
(a)

>
∑̀
i> `+1

2

Pr
(
X

(`+1)
H = i

)
+

1

2
· Pr

(
X

(`+1)
H =

`+ 1

2

)
= Pr

(
maj`+1 = H

)
,

where equality in (a) holds i� p = 1
2 .

Finally, (161) follows from (160) and the fact that

Pr (maj` = T ) = 1− Pr (maj` = H) .

gg�

8.6. Bit dissemination with ε = Θ(n−
1
4
−η)

In [FHK15] it is shown that at the end of Stage 1 the bias toward the
correct opinion is at least εT+2/2 and, at the beginning of Stage 2, they

assume a bias toward the correct opinion of Ω(
√

log n/n). In this section,

we show that, when ε = Θ(n−
1
4
−η) for some η ∈ (0, 1/4), the protocol

considered by [FHK15] and us cannot solve the bit dissemination and the
plurality consensus problem in time Θ(log n/ε2).

First, observe that when ε = Θ(
√

log n/n) the length of the �rst phase
of Stage 1 is Θ

(
log n/ε2

)
= Ω(n log n), which implies that each node gets

at least one message from the source during the �rst phase, w.h.p. Thus,
thanks to our analysis of Stage 2 we have that when ε = Θ(

√
log n/n) the

protocol e�ectively solves the bit dissemination problem in time Θ(log n/ε2),
w.h.p.

In general, for ε < n−1/2−η for some constant η > 0, if we adopt the sec-
ond stage right from the beginning (which means that the source node sends
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ε−2 messages), we get that all nodes receive at least log n/(ε2n) messages,
w.h.p. Thus, by a direct application of Lemma 77, after the �rst phase we
get an

√
log n/n-biased opinion distribution and Stage 2 correctly solves the

problem according to Theorem 14, w.h.p.

However, when ε = Θ(n−
1
4
−η) for some η > 0, from Claim 4 and

Lemma 60 we have that, after phase 0 in opinion distribution c, at most

O
(
log n/ε2

)
= O(n

1
2

+2η log n) nodes are decided, and c is ε
2 -biased. Each

node that becomes decided in phase 1 receives a message pushed from some
node of c, and, because of the noise, the value of this message is distributed
according to c(τ0) · P . It follows that c is an ε2/2-biased opinion distribu-

tion with ε2 = n−
1
2
−2η which is much smaller than the Ω(

√
log n/n) bound

required for the second stage.
We believe that no minor modi�cation of the protocol proposed here can

correctly solve the noisy bit dissemination problem when ε = Θ(n−
1
4
−η) in

time O
(
log n/ε2

)
.

8.7. Technical Lemmas

Next lemmas establishes the monotonicity of the function g and an ap-
proximation of the binomial coe�cient, which have been used in the proof
of Lemma 64.

Lemma 68. The function

g (x, y) =


x
(
1− x2

) y−1
2 if x < 1√

y ,

1√
y

(
1− 1

y

) y−1
2

if x > 1√
y ,

with x ∈ [0, 1] and y ∈ [1,+∞) is non-decreasing w.r.t. x and non-increasing
w.r.t. y.

Proof. To show that g(x, y) is non-decreasing w.r.t. x, observe that

∂

∂x
g (x, y) =

((
1− x2

) y−1
2 − 2x2

(
y − 1

2

)(
1− x2

) y−1
2

)
for x < y−

1
2 < 1, and(

1− x2
) y−1

2 − 2x2

(
y − 1

2

)(
1− x2

) y−1
2 > 0

for x < y−
1
2 .

To show that g(x, y) is non-increasing w.r.t. y, observe that this is true

for x < y−
1
2 . For x > y− 1

2 , since

∂

∂y

(
log y−

1
2 +

y − 1

2
log

(
1− 1

y

))
=

∂

∂y

(
y − 1

2
log (y − 1)− y

2
log y

)
6 0,
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we have

∂

∂y
g (x, y) =

∂

∂y
exp

{
log y−

1
2 +

y − 1

2
log

(
1− 1

y

)}
6 0,

concluding the proof. gg�
Lemma 69. For any integer r > 1 it holds

22r

√
πr
e

1
9r 6

(
2r

r

)
6 22r

√
πr
e

1
8r .

Proof. By using Stirling's approximation [Rob55]
√

2πr
(r
e

)r
e

1
12r+1 6 r! 6

√
2πr

(r
e

)r
e

1
12r ,

we have (
2r

r

)
=

(2r)!

(r!)2 >
√

2π2r
(

2r
e

)2r
e

1
12r+1(√

2πr
(
r
e

)r
e

1
12r

)2

=

√
4πr

(
2r
e

)2r
e

2
12r+1

2πr
(
r
e

)2r
e

1
24r

=
22r

√
πr
e

2
12r+1

− 1
24r > 22r

√
πr
e

1
9r .

The proof of the upper bound is analogous (swap e
1

12r+1 and e
1

12r in the �rst
inequality). gg�



CHAPTER 9

Self-Stabilizing Consensus

In this chapter we prove the results presented in Section 2.6.
As in chapters 5 and 6, we focus on the basic PULL model of commu-

nication, in which in each round, each agent extracts information from few
randomly chosen agents. We seek to identify the smallest amount of informa-
tion revealed in each interaction (message size) that nevertheless allows for
e�cient and robust computations of fundamental information dissemination
tasks. We focus on the majority bit dissemination problem that considers
a population of n agents, with a designated subset of source agents. Each
source agent holds an input bit and each agent holds an output bit. The goal
is to let all agents converge their output bits on the most frequent input bit
of the sources (the majority bit). Note that the particular case of a single
source agent corresponds to the classical problem of broadcast (also termed
bit dissemination). We concentrate on the severe fault-tolerant context of
self-stabilization, in which a correct con�guration must be reached eventu-
ally, despite all agents starting the execution with arbitrary initial states. In
particular, the speci�cation of who is a source and what is its initial input
bit may be set by an adversary.

We �rst design a general compiler which can essentially transform any
self-stabilizing algorithm with a certain property (called �the bitwise-independence
property�) that uses `-bits messages to one that uses only log `-bits messages,
while paying only a small penalty in the running time. By applying this
compiler recursively we then obtain a self-stabilizing clock-synchronization
protocol, in which agents synchronize their clocks modulo some given integer
T , within Õ(log n log T ) rounds w.h.p., and using messages that contain 3
bits only.

We then employ the new clock synchronization tool to obtain a self-
stabilizing majority bit dissemination protocol which converges in Õ(log n)
time, w.h.p., on every initial con�guration, provided that the ratio of sources
supporting the minority opinion is bounded away from half. Moreover, this
protocol also uses only 3 bits per interaction.

237
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Õ (log n) rounds Õ (log n) rounds

sync-simple

M
es
sa
ge

R
ed
u
ct
io
n

T
h
eo
re
m
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Figure 26. The structure of our arguments. Note that the
Message Reduction Theorem is used on three occasions.

9.0.1. A majority based, self-stabilizing protocol for consensus on
one bit

Let us recall1 the stabilizing consensus dynamics by Doerr et al. in
[DGM+11], the 3-Median dynamics. At the outset, each agent holds an
opinion. At each round each agent looks at the opinions of two other random
agents and updates her opinion taking the majority among the bits of the
observed agents and her own. Note that, in the binary-opinion case, this
dynamics uses only a single bit per interaction, namely, the node's opinion.
The usefulness of 3-Median dynamics comes from its extremely fast and
fault-tolerant convergence toward an agreement among agents, as given by
the following result.

Theorem 24 (3-Median dynamics ([DF11])). From any initial con�gu-
ration, 3-Median dynamics converges to a state in which all agents agree on
the same output bit in O(log n) rounds, w.h.p. Moreover, if there are at most

κ 6 n1/2−ε Byzantine agents, for any constant ε > 0, then after O(log n)
rounds all non-Byzantine agents have converged and consensus is maintained
for nΩ(1) rounds, w.h.p.

Remark 7. The original statement of [DGM+11] says that if at most
κ 6 √n agents can be corrupted at any round, then convergence happens
for all but at most O(κ) agents. Let us explain why we can replace O(κ)

1The protocols we analyse use this dynamics as a black box. However, we note that
the constructions we outline are in fact independent of the choice of consensus protocol,
and this protocol could be replaced by other protocols that achieve similar guarantees.
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by κ, if κ 6 n
1
2
−ε. Assume that we are in the regime κ 6 n

1
2
−ε. It follows

from [DGM+11] that all but a set of O(κ) agents reach consensus after
O(log n) round. This set of size O(κ) contains both Byzantine and non
Byzantine agents. However, if the number of agents holding the minority
opinion is O(κ) = O(n1/2−ε), then the expected number of non Byzantine
agents that disagree with the majority at the next round is in expectation
O(κ2/n) = O(n−2ε). Thus, by Markov's inequality, this implies, that at
the next round consensus is reached among all non-Byzantine agents, w.h.p.
Note also that, for the same reasons, the Byzantine agents do not a�ect any
other non-Byzantine agent for nε rounds, w.h.p.

9.0.2. The Setting

9.0.2.1. The communication model. As in Chapters 5 and Chapter 6, we
adopt the uniform PULL model [DGH+88]. Because of the focus of this
chapter in minimizing the message-size, we make explicit two parameters
of the model: the number η of agents that each agent observes at each
round, and the number ` of bits that each agent �displays� and that are
visible to other agents. More formally, in the uniform PULL(η) model,
communication proceeds in discrete rounds. In each round, each agent u
�observes� η arbitrary other agents, chosen u.a.r.among all agents, including
herself. To simplify notation, we often omit the parameter η when it is equal
to 2.

When an agent u �observes� another agent v, she can peek into a desig-
nated visible part of v's memory. If several agents observe an agent v at the
same round then they all see the same visible part. The message size denotes
the number of bits stored in the visible part of an agent. Occasionally, we
denote with PULL(η, `) the PULL(η) model with message size `. We are
primarily interested in message size that is independent of n, the number of
agents.

9.0.2.2. Agents. As in previous chapters, we assume that agents do not have
unique identities, that is, the system is anonymous. We do not aim to
minimize the (non-visible) memory requirement of the agent, yet, we note
that our constructions can be implemented with relatively short memory,
using O(log log n) bits. We assume that each agent internally stores a clock
modulo some integer T , which is incremented at every round. We point out
in advance that, in the bit dissemination problem, we set T = O(log n).

9.0.2.3. Majority bit dissemination problem. We assume a system of n agents
each having an internal state that contains an indicator bit which indicates
whether or not the agent is a source. Each source holds a binary input
bit2and each agent (including sources) holds a binary opinion. The number
of sources (i.e., agents whose indicator bit is 1) is denoted by k. We denote

2 Note that having the indicator bit equal to 1 is equivalent to possessing an input
bit: both are exclusive properties of source nodes. However, we keep them distinct for a
clearer presentation.
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by k0 and k1 the number of sources whose input bit is initially set to 1 and 0,
respectively. Assuming k1 6= k0, we de�ne the majority bit, termed bmaj , as 1
if k1 > k0 and 0 if k1 < k0. Source agents know that they are sources (using
the indicator bit) but they do not know whether they hold the majority bit.
The parameters k, k1 or k0 are not known to the sources or to any other
agent.

It is required that the opinions of all agents eventually converge to the
majority bit3 bmaj . We note that agents hold their output and indicator bits
privately, and we do not require them to necessarily reveal these bits publicly
(in their visible parts) unless they wish to. To avoid dealing with the cases
where the number of sources holding the majority bit is arbitrarily close to k

2 ,
we shall guarantee correctness (w.h.p.) only if the fraction of sources holding

the majority is bounded away from 1
2 , i.e., only if |k1

k0
− 1| > ε, for some

positive constant ε. When k = 1, the problem is called bit dissemination, for
short. Note that in this case, the single source agent holds the bit bmaj to
be disseminated and there is no other source agent introducing a con�icting
opinion.

9.0.2.4. T -clock synchronization. Let T be an integer. In the T -clock syn-
chronization problem, each agent maintains a clock modulo T that is incre-
mented at each round. The goal of agents is to converge on having the same
value in their clocks modulo T . (We may omit the parameter T when it is
clear from the context.)

9.0.2.5. Probabilistic self-stabilization and convergence. Self-stabilizing pro-
tocols are meant to guarantee that the system eventually converges to a legal
con�guration regardless of the initial states of the agents [Dij74]. Here we
adopt the notion of probabilistic self-stabilization adopted in Chapter 7 (Def-
inition 9), where stability (closure) is guaranteed only w.h.p. More formally,
for the clock synchronization and majority bit dissemination problems, we
assume that all states are initially set by an adversary except that

• for both problems, it is assumed that the agents know their total
number n, and
• for the clock synchronization problems, it is assumed that the agents
know the modulo T of the clock that they have to synchronize,

and that these information are not corrupted.
In the context of T -clock synchronization, a legal con�guration is reached

when all clocks show the same time modulo T , and in the majority bit dis-
semination problem, a legal con�guration is reached when all agents output
the majority bit bmaj . Note that in the context of the majority bit dis-
semination problem, the legality criteria depends on the initial con�guration
(that may be set by an adversary). That is, the agents must converge their

3The majority is not de�ned if k1 = k0; in this case the only requirement is consensus,
i.e. that the outputs of the agents are eventually equal.
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opinion on the majority of input bits of sources, as evident in the initial
con�guration.

Recall that a system is said to stabilize in t rounds if, from any initial con-
�guration, within t rounds it reaches a legal con�guration and remains legal
for at least some polynomial time [DGM+11], w.h.p. In fact, for the self-
stabilizing bit dissemination problem, if there are no con�icting source agents
holding a minority opinion (such as in the case of a single source agent), then
our protocols guarantee that once a legal con�guration is reached, it remains
legal inde�nitely. Note that, for any of the problems, we do not require that
each agent irrevocably commits to a �nal opinion but that eventually agents
arrive at a legal con�guration without necessarily being aware of that.

9.0.3. Protocol Syn-Simple: A simple protocol with many bits
per interaction

We now present a simple self-stabilizing T -Clock Synchronization pro-
tocol, called Syn-Simple, that uses relatively many bits per message, and
relies on the assumption that T is a power of 2. The protocol is based on
iteratively applying a self-stabilizing consensus protocol on each bit of the
clock separately, and in parallel.

Formally, each agent u maintains a clock Cu ∈ [0, T − 1]. At each round,
u displays the opinion of her clock Cu, pulls 2 uniform other such clock
opinions, and updates her clock as the bitwise majority of the two clocks it
pulled, and her own. Subsequently, the clock Cu is incremented. We present
the pseudocode of Syn-Simple in Algorithm 3.

Syn-Simple protocol

1: u samples two agents u1 and u2.
2: u updates its clock with the bitwise majority of its clock and those

of the sample nodes.
3: u increments its clock by one unit.

Algorithm 3. One round of Syn-Simple, executed
by each agent u.

We prove the correctness of Syn-Simple in the next proposition.

Proposition 2. Let T be a power of 2. The protocol Syn-Simple is a
self-stabilizing protocol that uses O(log T ) bits per interaction and synchro-
nizes clocks modulo T in O(log T log n) rounds, w.h.p.

Proof. Let us look at the least signi�cant bit. One round of Syn-
Simple is equivalent to one round of 3-Median dynamics with an extra
�ipping of the opinion due to the increment of the clock. The crucial point
is that all agents jointly �ip their bit on every round. Because the function
agents apply, mode(), is symmetric, it commutes with the �ipping operation.

More formally, let~bi be the vector of the �rst bits of the clocks of the agents at

round i under an execution of Syn-Simple: in other words, (~bi)u is the less
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signi�cant bit of node u's clock at time i. We also denote by ~ci the �rst bits
of the clocks of the agents at round i obtained by running a modi�ed version
of Syn-Simple in which time is not incremented. (i.e. we skip line 9.0.3 in

Algorithm 3). We couple~b and ~c trivially, by running the two versions on the
same interaction pattern (in other words, each agent starts with the same
memory and pulls the same agents at each round in both executions). Then,
~bi is equal to ~ci on even rounds, while is equal to ~ci �ipped on odd rounds.
Moreover, we know from Theorem 24 that ~ci converge to a stable opinion
in a self-stabilizing manner. It follows that, from any initial con�guration
of states (i.e. clocks), after O(log n) rounds of executing Syn-Simple, all
agents share the same opinion for their �rst bit, w.h.p, and jointly �ip it
in each round. Once agents agree on the �rst bit, since T is a power of 2,
the increment of time makes them �ip the second bit jointly once every 2
rounds4. More generally, assuming agents agree on the �rst ` bits of their
clocks, they jointly �ip the `+ 1'st bit once every 2` rounds, on top of doing
the 3-Median dynamics protocol on that bit. Therefore, the same coupling
argument shows that the �ipping doesn't a�ect the convergence on bit `+ 1.
Thus, O(log n) rounds after the �rst ` bits are synchronized, the `+ 1'st bit
is synchronized as well w.h.p. The result thus follows by induction. gg�

9.0.4. The bitwise-independence property

In Section 9.1, we describe a general transformer which is useful for
reducing the message size of protocols with a certain property called bitwise-
independence. Before de�ning the property we need to de�ne a variant of the
PULL model, which we refer to as the BIT model. The reason we introduce
such a variant is mainly technical, as it appears naturally in the proofs.

Recall that in the PULL(η, `) model, at any given round, each agent u
is reading an `-bit message mvj for each of the η observed agents vj chosen
u.a.r. (in our case η = 2), and then, in turn, u updates her state according to
the instructions of a protocol Ψ. Informally, in the BIT model, each agent
u also receives η messages, however, in contrast to the PULL model where
each such message corresponds to one observed agent, in the BIT model,
the i'th bit of each such message is received independently from an agent,
chosen u.a.r. from all agents.

Definition 23 (The BIT model). In the BIT model, at each round,
each agent u picks η` agents u.a.r., namely,

v
(1)
1 , v

(1)
2 , . . . v

(1)
` , . . . , v

(η)
1 , v

(η)
2 , . . . v

(η)
` ,

and reads ŝi
(j) = si(v

(j)
i ), the i-th bit of the visible part of agent v

(j)
i , for

every i 6 ` and j 6 η. For each j 6 η, let m̂j(u) be the `-bit string

m̂j(u) := (ŝ1
(j), ŝ2

(j), . . . , ŝ`
(j)).

4To get the feeling of the kind of dependence more signi�cant bits have on the less
signi�cant ones when T is not a power of 2 observe that, for example, if T = 3 then the
�rst bit takes cyclically the values 1, 0 and again 0.
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By a slight abuse of language we call the strings {m̂j(u)}j6η the messages
received by u in the BIT model.

We are now ready to de�ne the special property that we have mentioned
above.

Definition 24 (The bitwise− independence property). Consider a pro-
tocol Ψ designed to work in the PULL model. We say that Ψ has the
bitwise-independence property if its correctness and running time guarantees
remain the same, under the BIT model, assuming that given the messages
{m̂j(u)}j6η it receives at any round, each agent u performs the same actions
that it would have, had it received these messages in the PULL model.

Let us �rst state a fact about protocols having the bitwise-independence
property.

Lemma 70. Assume protocol Syn-Generic is a protocol synchroniz-
ing clocks modulo T for some T and protocol P is a protocol which works
assuming agents share a clock modulo T . Denote by Syn-P the parallel ex-
ecution of Syn-Generic and P, with P using the clock synchronized by
Syn-Generic. If Syn-Generic and P are self-stabilizing then so is Syn-
P, and the convergence time of Syn-P is at most the sum of convergence
times of Syn-Generic and P. Finally, if Syn-Generic and P have the
bitwise-independence property, and P is also self-stabilizing, Syn-P has the
bitwise-independence property too.

Proof. Since Syn-P consists in the parallel execution of Syn-Generic

and P, the con�guration of the systemC
(t)
Syn-P

= (C
(t)
Syn-Generic

,C
(t)
P

) at time

t is composed by a a �rst part C
(t)
Syn-Generic

which describes the nodes' state

as for the execution of Syn-Generic, and a second partC
(t)
P

which describes
the nodes' state as for the execution of P.

Let TSyn-Generic and TP be upper bounds on the convergence time of
Syn-Generic and P, respectively.

As for the self-stabilizing property of Syn-P and its convergence time,
observe that since Syn-Generic is self-stabilizing, there exist a time t1 6
TSyn-Generic such that C

(t1)
Syn-Generic

is legitimate, i.e. such that the nodes'
clocks modulo T are synchronized, and by de�nition of self-stabilization (clo-
sure property), they remain synchronized from that moment on. Then, since

P is self-stabilizing as well, no matter what C
(t1)
P

is: there exist a time

t2 6 t1 + TP 6 TSyn-Generic + TP such that C
(t1)
P

is legitimate, i.e. such
that P has converged, which also means that Syn-P correctly converges in
at most TSyn-Generic + TP rounds.

As for the bitwise-independence property, assume we run Syn-P in the
BIT model. The execution of Syn-Generic is carried independently of the
execution of P. Since, by hypothesis, Syn-Generic has the independence
property, eventually all agents have a synchronized clock modulo T . Thus,
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once clocks are synchronized, we can disregard the part of the message cor-
responding to Syn-Generic, and view the execution of Syn-P as simply
P. Therefore, since P is self-stabilizing and has the independence property,
Syn-P still works in the BIT model as in the original PULL model. gg�

We next show that the protocol Syn-Simple has the aforementioned
bitwise-independence property.

Lemma 71. Syn-Simple has the bitwise-independence property.

Proof. Let `′ be the size of the clocks. Assume the �rst i < `′ bits
of the clocks have been synchronized. At this stage, the (i + 1)-st bit of
each agent u is �ipped every 2i rounds and updated as the majority of the
(i + 1)-st bit of C(u) and the 2 pulled messages on each round. Since the
�rst `′ bits are synchronized, the previous �ipping is performed by all agents
at the same round. The thesis follows from the observation that, in order
for Syn-Simple to work, we do not need the bit at index (i + 1) to come
from the same agent as those bits used to synchronize the other indices, as
long as convergence on the �rst i bits has been achieved. gg�

9.1. A General Compiler that Reduces Message Size

In this section we present a general compiler that allows to implement a
protocol Ψ using `-bit messages while using messages of order log ` instead,
as long as Ψ enjoys the bitwise-independence property. The compiler is
based on replacing a message by an index to a (dynamic) bit of the message.
This tool is repeatedly used in the following sections to obtain our clock
synchronization and majority bit dissemination algorithms that use 3-bit
messages.

Theorem 17 (Message Reduction Theorem). Any self-stabilizing proto-
col Ψ in the PULL(η, `) model having the bitwise-independence property, and
whose running time is LΨ, can be emulated by a protocol Emul(Ψ) which
runs in5 the PULL(2, dlog(η2`)e+1) model, has running time O(log(η`) log n
+ η

2`LΨ) and has itself the bitwise-independence property.

Proof of Theorem 17. Let s(u) ∈ {0, 1}` be the message displayed
by an agent u under Ψ at a given round. For simplicity's sake, in the following
we assume that η is even, the other case is handled similarly. In Emul(Ψ),

5 The only reason for designing Emul(Ψ) to run in the

PULL
(

2, dlog
(η

2
`
)
e+ 1

)
model in the Message Reduction Theorem is the consensus protocol we adopt, 3-Median
dynamics, which works in the PULL(2) model. In fact, Emul(Ψ) can be adapted to run
in the

PULL (1, dlog (η`)e+ 1)

model by using a consensus protocol which works in the PULL(1) model. However, no self-
stabilizing binary consensus protocol in the PULL(1) model with the same performances
as 3-Median dynamics is currently known.
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agent u keeps the message s(u) privately, and instead displays a clock C(u)
written on dlog(η2`)e bits, and one bit of the message s(u), which we refer to
as the Ψ-bit. Thus, the total number of bits displayed by the agent operating
in Emul(Ψ) is dlog(η2`)e+1. The purpose of the clock C(u) is to indicate to
agent u which bit of s(u) to display. In particular, if the counter has value 0,
then the 0-th bit (i.e the least signi�cant bit) of s(u) is shown as the Ψ-bit,
and so on. In what follows, we refer to s(u) as the private message of u, to
emphasize the fact that this message is not visible in Emul(Ψ). See Figure
27 for an illustration.

1 0

Only updated

every 8 rounds.

1

A counter

modulo 8.

(kept private)

Output bit

(kept private)

s1, s2, . . . , s8
P emul(p)

Figure 27. On the left is a protocol Ψ using ` = 8 bits
in total and pulling only one node per round (η = 1). On
the right is the emulated version Emul(Ψ) which uses 4 bits
only. The bits depicted on the bottom of each panel are kept
privately, while the bits on the top are public, that is, appear
in the visible part.

Each round of Ψ executed in the PULL(η, `) model by an agent u is
emulated by η

2` rounds of Emul(Ψ) in the PULL(2, dlog(η2`)e + 1) model.
We refer to such η

2` rounds as a phase, which is further divided to
η
2 subphases

of length `. Note that since each agent samples 2 agents in a round, the total
number of agents sampled by an agent during a phases is η`.

For a generic agent u, a phase starts when its clock C(u) is zero, and
ends after a full loop of its clock (i.e. when C(u) returns to zero). Each agent
u is running protocol Syn-Simple on the dlog(η2`)e bits which correspond
to her clock C(u). Note that the phases executed by di�erent agents may
initially be unsynchronized, but, thanks to Proposition 2, the clocks C(u)
eventually converge to the same value, for each agent u, and hence all agents
eventually agree on when each phase (and subphase) starts.

Let u be an arbitrary agent. Denote by

ŝ
(1)
1 , ŝ

(1)
2 , . . . ŝ

(1)
` , ..., ŝ

(η)
1 , ŝ

(η)
2 , . . . ŝ

(η)
`

the Ψ-bits collected by u from agents chosen u.a.r during a phase. Consider
a phase and a round z ∈ {1, · · · , η2`} in that phase. Let i and j be such that
z = j · `+ i. We view z as round i of subphase j + 1 of the phase. On this
round, agent u pulls two messages from agents v and w, chosen u.a.r. Once
the clocks (and thus phases and subphases) have synchronized, agents v and
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w are guaranteed to be displaying the ith index of their private messages,

namely, the values si(v) and si(w), respectively. Agent u then sets ŝ
(2j−1)
i

equal to si(v) and ŝ
(2j)
i equal to si(w).

In Emul(Ψ), the messages displayed by agents are only updated after
a full loop of C. It therefore follows from the previous paragraph that the
Ψ-bits collected by agent u after a full-phase are distributed like the bits col-
lected during one round of Ψ in the BIT model (see De�nition 23), assuming
the clocks are already synchronized.

Correctness. The bitwise-independence property of Syn-Simple (Lemma
71), implies that Syn-Simple still works when messages are constructed
from the Ψ-bits collected by Emul(Ψ). Therefore, from Proposition 2, even-
tually all the clocks C are synchronized. Since private messages s are only
updated after a full loop of C, once the clocks C are synchronized a phase
of Emul(Ψ) corresponds to one round of Ψ, executed in the BIT model.
Hence, the hypothesis that Ψ operates correctly in a self-stabilizing way in
the BIT model implies the correctness of Emul(Ψ).

Running time. Once the clocks C(u) are synchronized, for all agents
u, using the �rst dlog(η2`)e bits of the messages, the agents reproduce an
execution of Ψ with a multiplicative time-overhead of η

2`. Moreover, from
Proposition 2, synchronizing the clocks C(u) takes O (log(ηm) log n) rounds.
Thus, the time to synchronize the clocks costs only an additive factor of
O (log(ηm) log n) rounds, and the total running time is O (log(ηm) log n) +
η
2` · LΨ.

Bitwise-independence property. Protocol Emul(Ψ) inherits the bitwise-
independence property from that of Syn-Simple (Lemma 71) and Ψ (which
has the property by hypothesis): We can apply Lemma 70 where Syn-
Generic is Syn-Simple and P is the subroutine described above, which
displays at each round the bit of Ψ whose index is given by a synchronized
clock C modulo ` (i.e. the one produced by Syn-Simple). Observe that the
aforementioned subroutine is self-stabilizing, since it emulates Ψ once clocks
are synchronized. Then, in the notation of Lemma 70, Emul(Ψ) is Syn-P.

gg�
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9.2. Self-Stabilizing Clock Synchronization

Syn-Intermediate protocol

Memory: Each agent u keeps a sequence of clocks C1, . . . , Cτ and
a sequence of bits b1, . . . , bτ . The clock C1 runs modulo T , the clock
Cτ runs modulo 4, and the i-th clock Ci runs modulo 2`i−1 (see proof
of Lemma 72). Each agent u also maintains a sequence of heaps (or
some ordered structure) Sδi , for each δ ∈ {1, 2} and i = 1, . . . , τ .

Message: u displays Cτ (2 bits) and bτ (1 bit). For all i ∈ [τ ], , bi(u)
is the Ci(u)-th bit of the string obtained concatenating the binary
representation of Ci−1(u) and bi−1(u).

1: u samples two agents u1 and u2.
2: u updates its clock with the bitwise majority of its clock and those

of the sample nodes.
3: u increments its clock by one unit.
4: u sets i∗ equal to the maximal i < τ such that Ci+1 6= 0.
5: For δ = 1, 2, u pushes bτ (uδ) in S

δ
i∗ .

(Note that, if Ci∗+1, . . . , Cτ are synchronized, then all agents are
displaying the bit with index Ci∗+1 of (Ci∗ , bi∗) as bτ .)

6: While i > 1 and Ci = 0, u does the following:
7: | Pops the last mi−1 − 1 bits from Sδi−1 and set sδ equal to it.

8: | Sets Ci−1 equal to the bitwise majority of Ci−1(u), s1 and s2.
9: | Increments Ci−1 and decrement i by one unit.

Algorithm 4. Iterative version of the protocol Syn-
Intermediate, executed by each agent u, unfolding
the recursion in proof of Lemma 72.

In Section 9.0.3 we described Syn-Simple - a simple self-stabilizing
clock synchronization protocol that uses log T bits per interaction. In this
section we describe our main self-stabilizing clock synchronization protocol,
Syn-3Bits, that uses only 3 bits per interaction. We �rst assume T is a
power of 2. We show how to get rid of this assumption in Section 9.2.2.

9.2.1. Clock Synchronization with 3-bit messages, assuming T is a
power of two

In this section, we show the following result.

Lemma 72. Let T be a power of 2. There exists a synchronization
protocol Syn-Intermediate which synchronizes clocks modulo T in time
Õ
(
log2 T log n

)
using only 3-bit messages. Moreover, Syn-Intermediate

has the bitwise-independence property.

Before presenting the proof of Lemma 72, we need a remark about clocks.
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Remark 8. In order to synchronize a clock C modulo T , throughout the
analysis we often obtain a clock C ′ modulo T which is incremented every `
rounds. However, C ′ can still be translated back to a clock modulo T which
is incremented every round, by keeping a third clock C ′′ modulo ` and setting

C = C ′ + C ′′ mod T.

Proof of Lemma 72. At a high level, we simply apply iteratively the
Message Reduction Theorem in order to reduce the message to 3 bits, starting
with Ψ = Syn-Simple. A pictorial representation of our recursive protocol
is given in Figure 28, and a pseudocode is given in Algorithm 46

0

0

1

1 1 1

1

11 100 0 0

0

0
The emulated
protocol P

uses messages
of 27 bits.

Figure 28. A more explicit view of our 3-bit emulation of
protocol Ψ, obtained by iterating Lemma 17. The down-most
layer represents the 27-bits message displayed by protocol Ψ.
Each layer on the picture may be seen as the message of a
protocol emulating Ψ with fewer bits, that is, as we go up on
the �gure we obtain more and more economical protocols in
terms of message length. In particular, the top layer repre-
sents the 3-bit message in the �nal emulation. The left-most
part of each message (colored in light blue) encodes a clock.
The right-most bit (colored in light yellow) of each message
(except the bottom-most one) corresponds to a particular bit
of the layer below it. The index of this particular displayed
bit is given by the value of the clock. Each clock on an in-
termediate layer is updated only when the clock on the layer
above completes a loop (i.e., has value 0). The clock on the
top-most layer is updated on every round.

Let us consider what we obtain after applying the Message Reduction
Theorem the �rst time to Ψ =Syn-Simple for clocks modulo T . Recall
that we assume that T is a power of 2. From Proposition 2 we know that

6The pseudocode deviates from the presentation done in the proof, as it makes no use
of recursion.
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in this case, the convergence time of Syn-Simple is LΨ = O (log T log n),
the number of pulled agents at each round is m = 2 and the number of
bits of each message is ` = log T . Note that, with the emulation produced
by the Message Reduction Theorem, the clock used in Ψ =Syn-Simple is
incremented only every ` = log T rounds. By Remark 8, we can translate
the latter clock to the desired clock modulo T (which is incremented at each
round).

Hence, by the running time analysis of the Message Reduction Theorem,
we obtain a protocol Emul(Ψ) which synchronizes a clock modulo T in

O (log n log log T ) +O
(
log2 T log n

)
= O

(
log2 T log n

)
rounds. The message size is reduced from log T to

dlog log T e+ 1 = O (log log T ) .

By repeatedly applying the Message Reduction Theorem, we reduce the
size of the message ` as long as ` > dlog `e + 1, i.e. as long as ` > 3. The
number of repeated application of the Message Reduction Theorem until the
message size is 3 is thus of order log∗ T .
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Figure 29. Illustration which combines �gures 27 and 28.
The yellow boxes represent the visible part of agents' memory.

Let us analyze the running time. Let `1 = log T , `i+1 = dlog `ie + 1
and let τ(T ) = τ be the smallest integer such that `τ = 3. We apply the
Message Reduction Theorem i 6 τ times, and we obtain a message size `i
and a running time Li, such that

(167) Li+1 6 γ1(log `i log n+ `iLi),
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for some constant γ1 independent of i. We set L1 to be

L1 := LSyn-Simple ∨ log n = O (log T log n) ∨ log n,

taking the maximum with log n for technical convenience. The second term
dominates in (167) because `i >> log `i and Li > log n. Hence Li is at
most of order

∏
j<i `j · L1. More precisely, by induction we can bound Li 6

γi1
∏i−1
j=1 `jL1, since

Li+1 6 γ1 log `i log n+ γi1

i∏
j=1

`j · L1

6 γ1`i log n+ γi1

i∏
j=1

`j · L1

6 2γi1

i∏
j=1

`j · L1 6 γi+1
1

i∏
j=1

`j · L1,

where we use the fact that γ1 > 2, and the de�nition of L1.
The running time of Emul(Ψ) =Syn-Clock after the last application

of the Message Reduction Theorem, i.e. τ , is thus

LSyn-Clock := Lτ 6 γτ1
τ∏
i=1

`iL1.

We now use the bounds

L1 = O(log T log n),
τ∏
i=1

`i 6 `1`2`τ3 ,

`1 = O (log T ) ,

`2 = O (log log T ) ,

and �nally, by Lemma 75 (see in Section 9.4 at the end of the chapter),
γτ1 = O (log log log T ) and

`τ3 6 2O((log~4 T )2) 6 2O(log log log T ) 6 (log log T )O(1) .

We thus conclude that

LSyn-Clock 6 γτ1
τ∏
i=1

`iL1 6 O (log log log T ) · `1`2`τ3 · O(log T log n)

6 O (log log log T ) · O (log T ) · O (log log T )

· O (log log T )O(1) · O(log T log n)

6 log2 T log n · (log log T )O(1) .
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The total slowdown with respect to Syn-Simple corresponds to
∏τ
i=1 `i =

Õ(log T ). Hence the clock produced by the emulation is incremented every

Õ(log T ) rounds. In other words we obtain a clock modulo T ·f(T ) for some
function f . By Remark 8 we can still view this as a clock modulo T . gg�

9.2.2. Extension to general T and running time improvement

In this subsection we aim to get rid of the assumption that T is a power
of 2 in Lemma 72, and also reduce the running time of our protocol to
Õ (log n log T ), proving Theorem 16.

Syn-Clock protocol

Memory: Each agent u stores a clock C ′(u) which runs modulo
T ′ � γ log n log T . Each agent u also stores a variable Q which is
incremented only once every T ′ rounds and runs modulo T .

Message: Each agent u displays 4 bits. On the �rst 3 bits, protocol
Syn-Intermediate is applied to synchronize C ′. The 4-th bit b(u)

is the bit with index (b C′(u)
γ lognc mod dlog T e) of Q(u).

1: u samples two agents u1 and u2.
2: u updates b(u) with the majority of b(u), b(u1) and b(u2).
3: If C ′ = 0, increment Q by one unit modulo T .

Output: The clock modulo T is obtained as C := (C ′ +Q · T ′)
mod T

Algorithm 5. The protocol 4-bit Syn-Clock, exe-
cuted by each agent u.

Proof of Theorem 16. From Lemma 72, we know that protocol Syn-
Intermediate synchronizes clocks modulo T in time Õ

(
log2 T log n

)
using

only 3-bit messages, provided that T is a power of 2. While protocol Syn-
Intermediate emulates protocol Syn-Simple, it displays the �rst bit of
the message of Syn-Simple only once every Õ (log T ) rounds. Of course,
it would be more e�cient to display it O (log n) times in a row, so that the
3-Median dynamics would make every agent agree on this bit, and then move
to agreeing on the second bit, and so on. To achieve this, as in the proof
of Syn-Simple, we can view a clock modulo T , say Q, as written on log T
bits. If agents already possess a �small� counter modulo T ′ := O (log T log n)
they can use it to display the �rst bit for O (log n) rounds, then the second
one for O (log n) rounds, and so on until each one of the dlog T e bits of T
has been synchronized. This would synchronize all bits of the desired clock
within O (log T log n) rounds, w.h.p., while being very economical in terms
of message length, since only 1 bit is displayed at any time.

Therefore, we can use Lemma 72 to synchronize a counter moduloO (log T log n)

in Õ((log log T )2 log n) rounds, using 3 bits per message. Then, we can
use a fourth bit to run 3-Median dynamics on each of the log T bits of Q
for O(log n) consecutive rounds, for a total running time of O(log T log n)
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rounds. At this point, an application of the Message Reduction Theorem
would give us a protocol with running time O(log T log n) using 3-bit mes-
sages. However, perhaps surprisingly, a similar strategy enables us to syn-
chronize a clock modulo any integer (not necessarily a power of 2).

Let us assume that T ∈ N is an arbitrary integer. Let γ log n be an upper
bound on the convergence time of 3-Median dynamics which guarantees a
correct consensus with probability at least 1−n−2, for some constant γ large
enough [DGM+11]. Let T ′ be the smallest power of 2 bigger than

log T · (γ log n+ γ log log T ) .

By Lemma 72, using 3 bits, the agents can build a synchronized clock C ′

running modulo T ′ in time Õ((log log T )2 log n). The other main ingredient
in this construction is another clock QT ′ which is incremented once every T ′

rounds and runs modulo T . The desired clock modulo T , which we denote
C, is obtained by

C :=
(
C ′ +QT ′ · T ′

)
mod T.

It is easy to check, given the de�nitions of C ′ and QT ′ that this choice indeed
produces a clock modulo T .

It remains to show how the clock QT ′ modulo T is synchronized. On a
�rst glance, it may seem as if we did not simplify the problem since Q is a
clock modulo T itself. However, the di�erence between QT ′ and a regular
clock modulo T is that QT ′ is incremented only once every T ′ rounds. This
is exploited as follows.

The counter QT ′ is written on dlog T e internal bits. We show how to syn-
chronize QT ′ using a 4-th bit in the messages, similarly to the aforementioned
strategy to synchronize Q; we later show how to remove this assumption us-
ing the Message Reduction Theorem. Let us call a loop of C ′ modulo T ′

an epoch. The rounds of an epoch are divided in phases of equal length
γ log n+γ log log T (the remaining T ′ mod (γ log n+γ log log T ) rounds are
just ignored). The clock C ′ determines which bit from QT ′ to display. The
�rst bit of QT ′ is displayed during the �rst phase, then the second one is
displayed during the second phase, and so on. By Theorem 24, the length
of each phase guarantees that consensus is achieved on each bit of QT ′ via

7

3-Median dynamics, w.h.p. More precisely, after the �rst bit has been dis-
played for γ log n+γ log log T rounds, all agents agree on it with probability8

7Observe that, once clock C′ is synchronized, the bits of QT ′ do not change for
each agent during each subphase. Thus, we may replace 3-Median dynamics by the Min
protocol where on each round of subphase i each agent u pulls another agent v u.a.r. and
updates her i-th bit of Q to the minimum between her current i-th bit of Q and the one
of v. However, for simplicity's sake, we reuse the already introduced 3-Median dynamics
protocol.

8From Theorem 24, we have that after γ logn rounds, with γ large enough, the prob-
ability that consensus has not been reached is smaller than 1

n2 . Thus, after N · γ logn

rounds, the probability that consensus has not been reached is smaller than 1
n2N . If we

choose N logn = log n+ log log T , we thus get the claimed upper bound 1
n2 log T

.
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1− 1
n2 log T

, provided γ is large enough. Thus, at the end of an epoch, agents

agree on all dlog T e bits of QT ′ with probability greater than(
1− 1

n2 log T

)log T

� 1−O(n−2).

We have thus shown that, by the time C ′ reaches its maximum value of
T ′, i.e. after one epoch, all agents agree on QT ′ , w.h.p., and then increment
it jointly. From Lemma 72, Syn-Intermediate takes

Õ
(
log2 T ′ log n

)
= O

(
(log log n+ log log T )2 log n

)
= O

((
(log log n)2 log n+ (log log T )2 log n

))
rounds to synchronize a clock C ′ modulo T ′, w.h.p. Together with the
log T (γ log n+ γ log log T ) rounds to agree on QT ′ , w.h.p., this implies that
after

log T log n · (log log T )O(1) · (log log n)O(1) = Õ (log T log n)

rounds the clocks C are all synchronized, w.h.p.
Finally, we show how to get rid of the extra 4-th bit to achieve agree-

ment on QT ′ . Observe that, once C ′ is synchronized, this bit is used in
a self-stabilizing way. Thus, since Syn-Intermediate has the bitwise-
independence property, using Lemma 70, the protocol we described above
possesses the bitwise-independence property too. By using the Message
Reduction Theorem we can thus reduce the message size from 4 bits to
dlog 4e + 1 = 3 bits, while only incurring a constant multiplicative loss in
the running time. The clock we obtain, counts modulo T but is incremented
every 4 rounds only. However, from Remark 8, we can still translate this
into a clock modulo T . gg�

Remark 9 (Internal memory space). The internal memory space needed
to implement our protocols Syn-Simple, Syn-Intermediate, and Syn-
Clock is close to log T in all cases: protocol Syn-Simple uses one counter
written on log T bits, Syn-Intermediate needs internal memory of size

log T +O (log log T + log log log T + . . .) 6 log T (1 + o(1)),

and the internal memory requirement of Syn-Clock is of order log T +
log logn.

9.3. Majority Bit Dissemination with a Clock

In this section we assume that agents are equipped with a synchronized
clock C modulo γ log n for some big enough constant γ > 0. In the previous
section we showed how to establish such a synchronized clock in Õ(log n)
time and using 3-bit messages. We have already seen in Section 2.6.1 how to
solve the bit dissemination problem (when we are promised to have a single
source agent) assuming such synchronized clocks, by paying an extra bit in
the message size and an O(log n) additive factor in the running time. This
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section is dedicated to showing that, in fact, the more general majority bit
dissemination problem can be solved with the same time complexity and
using 3-bit messages, proving Theorem 15.

In Section 9.3.1, we describe and analyze protocol Syn-Phase-Spread,
which solves majority bit dissemination by paying only a O(log n) additive
overhead in the running time w.r.t. clock synchronization. For clarity's sake,
we �rst assume that the protocol is using 4 bits (i.e. 1 additional bit over the
3 bits used for clock synchronization), and we later show how to decrease the
number of bits back to 3 in Section 9.3.2, by applying the Message Reduction
Theorem.

The main idea behind the 3(+1)-bit protocol, called Syn-Phase-Spread,
is to make the sources' input bits disseminate on the system in a way that
preserves the initial ratio k1

k0
between the number of sources supporting the

majority and minority input bit. This is achieved by dividing the dissemina-
tion process in phases, similarly to the main protocol in [FHK14] which was
designed to solve the bit dissemination problem in a variant of the PUSH
model in which messages are a�ected by noise. The phases induces a spread-
ing process which allows to leverage on the concentration property of the
Cherno� bounds, preserving the aforementioned ratio. While, on an intu-
itive level, the role of noisy messages in the model considered in [FHK14]
may be related to the presence of sources having con�icting opinion in our
setting, we remark that the protocol presented here and its analysis depart
from those of [FHK14] on several key points: while the protocol in [FHK14]
needs to know the the noise parameter, Syn-Phase-Spread does not as-
sume any knowledge about the number of di�erent sources, and the analysis
we present does not require to control the growth of the number of speaking
agents from above9.

In order to perform such spreading process with 1 bit only, the protocol in
[FHK14] leverages on the fact that in the PUSH model agents can choose
when to speak, i.e. whether to send a message or not. To emulate this
property in the PULL model, we use the parity of the clock C: on odd
rounds agents willing to �send� a 0 display 0, while others display 1 and
conversely on even rounds. Rounds are then grouped by two, so 2 rounds in
the PULL model correspond to 1 round in the PUSH version.

9.3.1. Protocol Syn-Phase-Spread

In this section we describe protocol Syn-Phase-Spread. As mentioned
above, for clarity's sake we assume that Syn-Phase-Spread uses 4-bit mes-
sages, and we show how to remove this assumption in Section 9.3.2. Three of
such bits are devoted to the execution Syn-Clock, in order to synchronize
a clock C modulo 2dγphase log ne + γphased2 log ne for some constant γphase

9To get such upper bound, the analysis in [FHK14] leveraged on the property that in
the PUSH model the number of agents getting a certain message can be upper bounded
by the number of agent sending such message, which is not the case for the passive
communication of the PULL model.
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large enough. Throughout this section we assume, thanks to Theorem 16,
that C has already been synchronized, which happens after Õ(log n) rounds
from the start of the protocol. In Section 9.3.1.1, we present a protocol
Phase-Spread solving majority bit dissemination assuming agents already
share a common clock.
9.3.1.1. Protocol Phase-Spread. Let γphase be a constant to be set later.
Protocol Phase-Spread is executed periodically over periods of length
2dγphase log ne + γphased2 log ne, given by a clock C. One run of length
2dγphase log ne + γphased2 log ne is divided in 2 + d2 log ne phases, the �rst
and the last ones lasting dγphase log ne rounds, all the other d2 log ne phases
lasting γphase rounds. The �rst phase is called boosting, the last one is called
polling, and all the intermediate ones are called spreading. For technical con-
venience, in Phase-Spread agents disregard the messages they get as their
second pull10.

During the boosting and the spreading phases, we make use of the par-
ity of time to emulate the ability to actively send a message or to not-
communicate anything as in the PUSH model11. In the �rst case we say
that the agent is speaking, in the second case we say that the agent is silent.
This induces a factor 2 slowdown which we henceforth omit for simplicity.

At the beginning of the boosting, each non-source agent u is silent. Dur-
ing the boosting and during each spreading phase, each silent agent pulls
until she sees a speaking agent. When a silent agent u sees a speaking agent
v, u memorizes b1 (v) but remains silent until the end of the phase; at the
end of the current phase, u starts speaking and sets b1 (u) = b1 (v). The bit
b1 is then never modi�ed until the clock C reaches 0 again. Then, during
the polling phase, each agent u counts how many agents with b1 = 1 and
how many with b1 = 0 she sees. At the end of the phase, each agent u sets
their output bit to the most frequent value of b1 observed during the polling
phase. We want to show that, for all agents, the latter is bmaj , w.h.p. (i.e.
the most frequent initial opinion among sources).

10In other words, Phase-Spread works in the PULL(1) model.
11Of course, agents are still not able to control who sees/contacts them.
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Phase-Spread protocol

1: If u is not speaking and the current phase is either the boosting
or the spreading one, u does the following:

2: | u observes a random agent v.
3: | If v is speaking, u sets b1(u) equal to b1(v),

and u will be speaking from the next phase.
4: | u sets c0 and c1 equal to 0.
5: If the current phase is polling:
6: | u observes a random agent v.
7: | If b1(v) = 1, u increments c1, otherwise increment c0.
8: u outputs 1 if and only if c1 > c0.

Algorithm 6. The protocol Phase-Spread, exe-
cuted by each agent u.

9.3.1.2. Analysis of Phase-Spread. We prove that at the end of the last
spreading phase all agents are speaking and each agent has b1 = 1 with
probability 1

2 + εend for some positive constant εend = εend (γphase, ε) (where
the dependency in γphase is monotonically increasing), b1 = 0 otherwise,
w.h.p. From the Cherno� bound (Corollary 9) and the union bound, this
implies that when γphase > 8/εend at the end of the polling phase each agent
learns bmaj , w.h.p.

Without loss of generality, let bmaj = 1, i.e. k1 > k0. The analysis is
divided in the following lemmas.

Lemma 73. At the end of the boosting phase it holds w.h.p.

k
(1)
1 + k

(1)
0(168)

> (k1 + k0)
γphase

3
log n · 1{

k1+k0<
n

2γphase logn

}

+

(
n

(
1− 1√

e

)
+

1√
e

(k1 + k0)−
√
n log n

)
· 1{

n
2γphase

6k1+k06n−2
√
n logn

}
+ n1{k1+k0>n−2

√
n logn},

k
(1)
1

k
(1)
0

> k1

k0

(
1−

√
9

γphasek0

)
.(169)

Proof. First, we prove (168). By using the fact that if |x| < 1, it holds

(170) e
x

1+x 6 1 + x 6 ex 6 1 +
x

1− x.
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we have

E
[
k

(1)
1 + k

(1)
0

]
= k1 + k0 + (n− k1 − k0)

(
1−

(
1− k1 + k0

n

)γphase logn
)

> k1 + k0 + (n− k1 − k0)

(
1− exp

(
−k1 + k0

n
γphase log n

))
.(171)

We distinguish three cases.
Case k1 + k0 <

n
2γphase logn . By using (170) again, from (171) we get

E
[
k

(1)
1 + k

(1)
0

]
> k1 + k0 + (n− k1 − k0)

(
1− exp

(
−k1 + k0

n
γphase log n

))
> k1 + k0 + (n− k1 − k0)

k1+k0
n γphase log n

1 + k1+k0
n γphase log n

> k1 + k0 + (n− k1 − k0)
k1 + k0

n

γphase
2

log n

> k1 + k0 +

(
1− k1 + k0

2n

)
(k1 + k0)

γphase
2

log n

> (k1 + k0)

(
1 +

(
1− 1

4γphase log n

)
γphase

2
log n

)
> (k1 + k0)

γphase
2

log n.(172)

From the Cherno� bound (Lemma 25), we thus get that w.h.p.

k
(1)
1 + k

(1)
0 > (k1 + k0)

γphase
3

log n.

Case n
2γphase logn 6 k1 + k0 6 n− 2

√
n log n. From (171), we have

E
[
k

(1)
1 + k

(1)
0

]
> k1 + k0 + (n− k1 − k0)

(
1− exp

(
−k1 + k0

n
γphase

))
> k1 + k0 + (n− k1 − k0)

(
1− 1√

e

)
> n

(
1− 1√

e

)
+
k1 + k0√

e
.

From the Cherno� bound (Lemma 25), we thus get that w.h.p.

k
(1)
1 + k

(1)
0 > n

(
1− 1√

e

)
+
k1 + k0√

e
−
√
n log n.
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Case k
(1)
1 + k

(1)
0 > n − 2

√
n log n. The probability that a silent agent

does not observe a speaking one is(
n− k1 − k0

n

)γphase logn

6
(

4 log n

n

) 1
2
γphase logn

,

hence by a simple union bound it follows that all agents are speaking, w.h.p.
Now, we prove (169). As before, we have two cases. The �rst case,

k1

k0
> n

2γphase log n
,

is a simple consequence of the Cherno� bound (Lemma 25).
In the second case,

k1

k0
<

n

2γphase log n
,

let us consider the set of agents Sboost that start speaking at the end of the
boosting, i.e. that observe a speaking agent during the phase. Observe that

|Sboost| = k
(1)
1 − k1 + k

(1)
0 − k0.

The probability that an agent in Sboost observes an agent in B (resp. W) is
k1

k1+k0
(resp. k0

k1+k0
). Thus

E
[
k

(1)
1

]
= k1 +

k1

k1 + k0
E [|Sboost|] and

E
[
k

(1)
0

]
= k0 +

k0

k1 + k0
E [|Sboost|] .(173)

In particular

(174)
E
[
k

(1)
1

]
E
[
k

(1)
0

] =
k1 + k1

k1+k0
E [|Sboost|]

k0 + k0
k1+k0

E [|Sboost|]
=
k1

k0
,

and from (172) and (173) we have

E
[
k

(1)
0

]
> k0

k1 + k0
E [|Sboost|]

=
k0

k1 + k0

(
E
[
k

(1)
1 + k

(1)
0

]
− (k1 + k0)

)
> (1− o(1))

k0

k1 + k0

γphase
2

(k1 + k0) log n

= (1− o(1))k0
γphase

2
log n,(175)
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where the lower bound follows from the assumption k1
k0

< n
2γphase logn and

(172). From (175) and the multiplicative form of the Cherno� bound (Corol-
lary 9), we have that w.h.p.

k
(1)
1 > E

[
k

(1)
1

]
−
√
E
[
k

(1)
1

]
log n and

k
(1)
0 6 E

[
k

(1)
0

]
+

√
E
[
k

(1)
0

]
log n.(176)

Thus, since (173) implies E
[
k

(1)
1

]
> E

[
k

(1)
0

]
, we have

k
(1)
1

k
(1)
0

>
E
[
k

(1)
1

]
−
√

E
[
k

(1)
1

]
log n

E
[
k

(1)
0

]
+

√
E
[
k

(1)
0

]
log n

=
E
[
k

(1)
1

]
E
[
k

(1)
0

] · 1−
√

logn

E
[
k

(1)
1

]
1 +

√
logn

E
[
k

(1)
0

]

>
E
[
k

(1)
1

]
E
[
k

(1)
0

] ·
1−

√√√√ log n

E
[
k

(1)
1

] −√√√√ log n

E
[
k

(1)
0

]


>
E
[
k

(1)
1

]
E
[
k

(1)
0

] ·
1− 2

√√√√ log n

E
[
k

(1)
0

]


=
k1

k0
·
(

1−
√

9

k0γphase

)
,(177)

concluding the proof. gg�

Lemma 74. At the end of the i+1th spreading phase, the following holds
w.h.p.

k
(i+1)
1 + k

(i+1)
0

>
(
k

(i)
1 + k

(i)
0

) γphase
3

1{
k

(i)
1 +k

(i)
0 < n

2γphase

}

+

(
n

(
1− 1√

e

)
+

1√
e

(
k

(i)
1 + k

(i)
0

)
−
√
n log n

)
· 1{

n
2γphase

6k(i)
1 +k

(i)
0 6n−2

√
n logn

}
+ n1{

k
(i)
1 +k

(i)
0 >n−2

√
n logn

},(178)
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k
(i+1)
1

k
(i+1)
0

> k
(i)
1

k
(i)
0

(
1− 4

√
log n

γphasek
(i)
0

)
.(179)

Proof. The proof is almost the same as that of Lemma 73.
From (170), we have

E
[
k

(i+1)
1 + k

(i+1)
0

]
= k

(i)
1 + k

(i)
0 +

(
n− k(i)

1 − k
(i)
0

)(
1−

(
1− k

(i)
1 + k

(i)
0

n

)γphase)
> k(i)

1 + k
(i)
0 +

(
n− k(i)

1 − k
(i)
0

)(
1− exp

(
− γphase

k
(i)
1 + k

(i)
0

n

))
.(180)

We distinguish three cases.

Case k
(i)
1 + k

(i)
0 < n

2γphase
. From (170) and (180) we get

E
[
k

(i+1)
1 + k

(i+1)
0

]
> k(i)

1 + k
(i)
0 +

(
n− k(i)

1 − k
(i)
0

)
·
(

1− exp

(
−k

(i)
1 + k

(i)
0

n
γphase

))

> k(i)
1 + k

(i)
0 +

(
n− k(i)

1 − k
(i)
0

)
·

k
(i)
1 +k

(i)
0

n γphase

1 +
k

(i)
1 +k

(i)
0

n γphase

> k(i)
1 + k

(i)
0 +

(
n− k(i)

1 − k
(i)
0

)
· k

(i)
1 + k

(i)
0

2n
γphase

> k(i)
1 + k

(i)
0 +

(
1− k

(i)
1 + k

(i)
0

n

)
·
(
k

(i)
1 + k

(i)
0

) γphase
2

>
(
k

(i)
1 + k

(i)
0

)(
1 +

(
1− 1

2γphase

)
γphase

2

)
>
(
k

(i)
1 + k

(i)
0

) γphase
2

.(181)

After the boosting phase, i.e. for i > 1, it follows from Lemma 73 that

k
(i)
1 +k

(i)
0 = Ω (γphase log n). From the Cherno� bound (Lemma 25), if γphase

is chosen big enough, we thus get that w.h.p.

k
(i+1)
1 + k

(i+1)
0 >

(
k

(i)
1 + k

(i)
0

) γphase
3

.
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Case n
2γphase

6 k(i)
1 + k

(i)
0 6 n− 2

√
n log n. From (180), we have

E
[(
k

(i+1)
1 + k

(i+1)
0

)]
> k(i)

1 + k
(i)
0 +

(
n− k(i)

1 − k
(i)
0

)
·
(

1− exp

(
−k

(i)
1 + k

(i)
0

n
γphase

))

> k(i)
1 + k

(i)
0 +

(
n− k(i)

1 − k
(i)
0

)(
1− 1√

e

)
> n

(
1− 1√

e

)
+

1√
e

(
k

(i)
1 + k

(i)
0

)
.

From the Cherno� bound (Lemma 25), we thus get that w.h.p.

k
(i+1)
1 + k

(i+1)
0 > n

(
1− 1√

e

)
+

1√
e

(
k

(i)
1 + k

(i)
0

)
−
√
n log n.

Case k
(i)
1 + k

(i)
0 > n − 2

√
n log n. The probability that a silent agent

does not observe a speaking one is(
n− k(i)

1 − k
(i)
0

n

)γphase
6
(

4 log n

n

) 1
2
γphase

,

hence by a simple union bound it follows that all agents are speaking, w.h.p.
Now, we prove (179). As in the proof of (169), we have two cases.

The �rst case, k1
k0
> n

2γphase
, is a simple consequence of the Cherno� bound

(Lemma 25). Otherwise, let us assume k1
k0

< n
2γphase

. With an analogous

argument to that for (173) and (174) we can prove

(182)
E
[
k

(i+1)
1

]
E
[
k

(i+1)
0

] =
k

(i)
1

k
(i)
0

,

and

E
[
k

(i+1)
1

]
= k

(i)
1 +

k
(i)
1

k
(i)
1 + k

(i)
1

E
[
k

(i+1)
1 − k(i)

1 + k
(i+1)
0 − k(i)

0

]
,

E
[
k

(i+1)
0

]
= k

(i)
0 +

k
(i)
0

k
(i)
1 + k

(i)
0

E
[
k

(i+1)
1 − k(i)

1 + k
(i+1)
0 − k(i)

0

]
.(183)
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As in (176), from the multiplicative form of the Cherno� bound (Corollary
9) we have that w.h.p.

k
(i+1)
1 > E

[
k

(i+1)
1

]
−
√

E
[
k

(i+1)
1

]
log n and

k
(i+1)
0 6 E

[
k

(i+1)
0

]
+

√
E
[
k

(i+1)
0

]
log n.(184)

Thus, as in (177), from (184) and (182), we get

k
(i+1)
1

k
(i+1)
0

>
E
[
k

(i+1)
1

]
E
[
k

(i+1)
0

] ·
1− 2

√√√√ log n

E
[
k

(i+1)
0

]


> k
(i)
1

k
(i)
0

·
(

1− 4

√
log n

γphasek
(i)
0

)
,

where, as in (175), in the last inequality we used that from (181) and (183)
it holds

E
[
k

(i+1)
0

]
> γphase

4
k

(i)
0 .

gg�
From the previous two lemmas, we can derive the following proposition,

which concludes the proof.

Proposition 3. If k1 > k0(1 + ε) for some constant ε > 0, then at the
end of the last spreading phase it holds w.h.p.

k
(1+2 logn)
1 = n− k(1+2 logn)

0 > k(1+2 logn)
0 (1 + εend) ,(185)

where εend = ε− 4√
γphase

.

Proof. We �rst show how the equality in (185) follows from (178).
When

k
(i)
1 + k

(i)
0 <

n

2γphase
,

(178) shows that k
(i)
1 + k

(i)
0 increases by multiplicative a factor γphase at the

end of each spreading phase. When
n

2γphase
6 k(i)

1 + k
(i)
0 6 n− 2

√
n log n,

(178) shows that

n− k(i+1)
1 − k(i+1)

0 6 n− k(i)
1 − k

(i)
0√

e
−
√
n log n 6 n− k(i)

1 − k
(i)
0√

e
.

Hence the number of silent agents decreases by a factor
√
e after each spread-

ing phase. Lastly, when

k
(i)
1 + k

(i)
0 > n− 2

√
n log n,
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after one more spreading phase, a simple application of the union bound

shows that k
(i+1)
1 + k

(i+1)
0 is equal to n, w.h.p. As a consequence, if γphase is

big enough, after less than 1 + 2 log n spreading phases it holds that w.h.p.

k
(1+2 logn)
1 = n− k(1+2 logn)

0 .

The inequality in (185) can be derived from (179), as follows. From (169)
and (179) we have

k
(1+2 logn)
1

k
(1+2 logn)
0

> k1

k0

(
1−

√
9

γphasek0

)
1+2 logn∏
i=2

(
1−

√
16 log n

γphasek
(i)
0

)
.(186)

We can estimate the product as

1+2 logn∏
i=2

(
1−

√
16 log n

γphasek
(i)
0

)

> exp

(
−4

1+2 logn∑
i=2

1(√
γphase

)i
)
,

> exp

{
4

(
1 +

1
√
γphase

− 1− (γphase)
− 2+2 logn

2

1− (γphase)
− 1

2

)}

> exp

{
−4

(
1

γphase −√γphase
− n−

2 log γphase
2

)}
>
(

1− 5

γphase

)
,(187)

where in the �rst and last inequality we used that 1− x > e− x
1−x if |x| < 1.

Finally, from (186) and (187) we get

k
(1+2 logn)
1

k
(1+2 logn)
0

> k1

k0

(
1−

√
9

γphasek0

)(
1− 5

γphase

)
> k1

k0

(
1− 4
√
γphase

)
,

concluding the proof. gg�

Having completed the proof of Proposition 3, in the next Section we can
�nally prove the main theorem of this chapter.

9.3.2. Proof of Theorem 15

Theorem 15 (Syn-Phase-Spread). Fix an arbitrarily small constant
ε > 0. There exists a protocol, called Syn-Phase-Spread, which solves the
majority bit dissemination problem in a self-stabilizing manner in Õ(log n)
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rounds12, w.h.p. using 3-bit messages, provided that the majority bit is sup-
ported by at least a fraction 1

2 + ε of the source agents.

Proof of Theorem 15. From Proposition 3, it follows that at the end
of the last spreading phase, all agents have been informed. After the last
spreading phase, during the polling phase, each agent samples γphase log n
opinions from the population and then adopts the majority of these as her
output bit. Thus, (185) ensures that each sample holds the correct opinion
with probability > 1

2 + εend. Hence, by the Cherno� bound (Lemma 76) and
a union bound, if γphase is big enough then the majority of the γphase log n
samples corresponds to the correct value for all the n agents, w.h.p.

The protocol obtained so far solves majority bit dissemination, but it
does it using 4 bits per message rather than 3. Indeed, synchronizing a
clock using Syn-Clock takes 3 bits, and we use an extra bit to execute
Phase-Spread described in Section 9.3.1.1. However, the protocol Syn-
Phase-Spread has the independence property. This follows from Lemma
70 with Syn-Generic =Syn-Clock, P =Phase-Spread, Syn-P =Syn-
Phase-Spread, together with the observation that Phase-Spread is self-
stabilizing. We can thus reduce the message length of Syn-Phase-Spread
to 3 bits using again the Message Reduction Theorem, with a time overhead
of a factor 4 only. gg�

9.4. Proofs of Technical Lemmas

Lemma 75. Let f, g : R+ → R be functions de�ned by f(x) = dlog xe+ 1
and

τ(x) = inf
{
k ∈ N | f~k(x) 6 3

}
,

where we denote by f~k the k-fold iteration of f . It holds that

τ(T ) 6 log~4 T +O(1).

Proof. We can notice that

f(T ) 6 T − 1,

if T is bigger than some constant c. Moreover, when f(x) 6 c, the number
of iterations before reaching 1 is O(1). This implies that

τ(T ) 6 T +O(1).

But in fact, by de�nition, `(T ) = g
(
f~4(T )

)
+ 4 (provided f~4(T ) > 1,

which holds if T is big enough). Hence

τ(T ) 6 g
(
f~4(T )

)
+ 4 6 f~4(T ) +O(1) 6 log~4 T +O(1).

gg�

12With a slight abuse of notation, with Õ(f(n)g(T )) we refer to f(n)g(T ) ·
logO(1)(f(n)) · logO(1)(g(T )). All logarithms are in base 2.



CHAPTER 10

Open Problems

As discussed in Chapter 1, the Averaging dynamics studied in Chapter
4 has the disadvantages of assuming that agents can interpret their state
as a real number and perform arithmetical operations. Furthermore, the
dynamics operates in the LOCAL model [Pel00].

It is an important open problem whether the Averaging dynamics itself
can still achieve the same performances when implemented in the important
context of population protocols: rather than having all nodes computing the
average of all neighbors at each round, at each time step only a single edge
is sampled u.a.r., and its two endpoints averages their values.

An even greater open problem is whether the community detection prob-
lem can be solved, with comparable performances, by even simpler dynamics,
such as the 3-Majority dynamics, which relies only on the ability to compute
the mode of a sample, i.e. on testing equality.

Regarding the upper bound on the convergence time of the 3-Majority
dynamics given in Chapter 5 (Theorem 8), we believe that it is not tight
w.r.t. k. We think that at least a factor k can be saved. To this aim, we
would need to show that �more� opinions get small during a phase. This
number should also depend on the current number of big colors. Another
idea would be that of (also) considering the growth of the maximal opinion.
Unfortunately, di�erently from the minimal opinion (see (74) in Section 5.4),
we have no good bound on the expected drift for the maximal opinion that
holds from any con�guration. So, we don't see how to e�ciently adapt our
approach without this crucial ingredient.

A more general open question is to analyze stabilizing almost-consensus
dynamics, such as the 3-Majority one, in some interesting graph topologies.
We believe that a suitable combination of our analysis and some previous
analysis for the binary case [CER14] might be useful on expander graphs
[HLW06] and some classes of random evolving graphs [CMM+10].

Moving to Chapter 6, we believe that the monochromatic distance inves-
tigated there might represent a general lower bound on the convergence time
of any plurality dynamics which uses only log k+ Θ(1) bits of local memory.

Analogously to the 3-Majority dynamics, an interesting future research
is the study of the Undecided-State dynamics (or other simple dynamics)
for solving the plurality consensus problem over other classes of graphs in
o(k) time. In this work, we combined this dynamics with parallel random
walks in order to get an e�cient protocol for regular expander graphs. We

265
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believe that similar protocols can work also in other classes of graphs such
as Erd®s-Rényi graphs and dynamic graphs [CMM+10, CCD+13].

In Chapter 7, we showed that the repeated balls-into-bin process, which
models parallel random walks in the PUSH model on a complete graph,
is self-stabilizing when the number m of balls equals the number n of bins
(obviously, this is still the case, whenever m < n). An interesting open
question is whether this result extends to larger values ofm, i.e., for anym =
O(n log n). We believe an approach based on a lower bound on the number
of empty bins might still work. Simulation results for increasing values of n
(up to n ∼ 105) show that the number of empty bins is still compatible with
a linear function, even if standard deviation in our experiments turned out
to be relatively large.

A more general interesting question is the study of parallel random
walks in the uniform PUSH model over more general graph classes. This
line of research is also motivated by several applications of the process
[BCEG10, Coo11, EK15, HPP+16]. The analysis of this process in
Section 6.3 provides a bound O

(√
t
)
on the maximum load after t rounds

on regular graphs [BCN+15a]. We believe this previous bound for regu-
lar graphs is far from tight and it leads to rough bounds on parallel cover
times on these networks. We conjecture that the maximum load remains
logarithmic for a long period in any regular graph. A possible reason for
this phenomenon (if true) might be that the expected di�erence between
(token) arrivals and departures is always non-positive at every node in reg-
ular graphs. As highlighted in our analysis of the complete graph, this fact
alone is not enough but it could be combined with a suitable bound on the
number of empty bins, in order to prove our conjecture in this more general
case. Unfortunately, non-complete graphs present a further technical issue:
in order to apply any argument based on the presence of empty bins, not
only do we need to argue about their number, but also about their distri-
bution across the network. This technical issue seems to be far from trivial
even on simple topologies such as rings.

Another interesting question concerning the repeated balls-into-bins pro-
cess is the tightness of the bound on the maximum load provided by Theo-
rem 12. In the classical (one shot) balls-into-bins problem, it is well-known
that the maximum load of the bins is Θ (log n/ log log n), w.h.p. One may
wonder whether our O (log n) upper bound on the maximum load of the
repeated process for a polynomial number of rounds is tight, or it can be
improved to O(log n/ log logn). We conjecture that, within any polynomial
time window, the probability that the maximum load asymptotically exceeds
log n/ log logn is non-negligible.

In Chapter 8, we solved the general version of bit dissemination and plu-
rality consensus in biological systems. That is, we have solved these problems
for an arbitrarily large number k of opinions. We are not aware of realistic
biological contexts in which the number of opinions might be a function of
the number n of individuals. Nevertheless, it could be interesting, at least
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from a conceptual point to view, to address bit dissemination and plurality
consensus in a scenario in which the number of opinions varies with n. This
appears to be a technically challenging problem. Indeed, extending the re-
sults in the extended abstract of [FHK15] from 2 opinions to any constant
number k of opinions already required to use complex tools. Yet, several
of these tools do not apply if k depends on n. This is typically the case
of Proposition 1. We let as an open problem the design of stochastic tools
enabling to handle the scenario where k = k(n).

In Chapter 9 we have dealt with the construction of protocols in highly
congested stochastic interaction patterns. Corresponding challenges are par-
ticularly evident when it is di�cult to guarantee synchronization, which
seems to be essential for emulating a typical protocol that relies on many
bits per message with a protocol that uses fewer bits. Chapter 9 shows
that in the PULL model, if a self-stabilizing protocol satis�es the bitwise-
independence property then it can be emulated with only 3 bits per message.
Using this rather general transformer, we solve the self-stabilizing clock syn-
chronization and majority bit dissemination problems in almost-logarithmic
time and using only 3 bits per message. It remains an open problem whether
the message size of either one of these problems can be further reduced while
keeping the running time polylogarithmic.

In particular, even for the self-stabilizing bit dissemination problem (with
a single source) it remains open whether there exists a polylogarithmic pro-
tocol that uses a single bit per interaction. In fact, we investigated several
candidate protocols which seem promising in experimental simulation, but
appear to be out of reach of current techniques for analysing randomly-
interacting agent systems in a self-stabilizing context. Let us informally
present one of them, called BFS1. Let `,k ∈ N be two parameters, say of
order O(log n). Agents can be in 3 states: boosting, frozen or sensitive.

• Boosting agents behave as in the 3-Median dynamics protocol: they
apply the majority rule to the 2 values they see in a given round
and make it into their opinion for the next round. They also keep
a counter T . If they have seen only agents of a given color b for `
rounds, they become sensitive to the opposite value.
• b-sensitive agents turn into frozen-b agents if they see value b.
• b-frozen agents keep the value b for k rounds before becoming boost-
ers again.

Intuitively what we expect is that, from every con�guration, at some
point almost all agents would be in the boosting state. Then, the boosting
behavior would lead the agents to converge to a value b (which depends on
the initial conditions). Most agents would then become sensitive to 1− b. If
the source has opinion 1−b then there should be a switch from b to 1−b. The
�frozen� period is meant to allow for some delay in the times at which agents
become sensitive, and then �ip their opinion. This algorithm however, as the

1A similar protocol was suggested during discussions with Bernhard Haeupler.
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other candidate protocols we have considered, does not seem amenable to a
rigorous analysis in the PULL model which accounts for the self-stabilizing
requirement.



APPENDIX A

Mathematical Tools

In this appendix we review several variants of the Cherno� bound used
throughout this work. We also state a reverse version of the Cherno� bound
and other technical tools we make use of in the proofs.

Lemma 76 (Cherno� bounds). Let X =
∑n

i=1Xi where Xi's are inde-
pendent Bernoulli random variables and let

µL 6 µ = E [X] 6 µH .

Then,

• For any 0 < δ 6 4,

(188) Pr (X > (1 + δ)µ) < e−
δ2µ

4 ;

• For any δ > 4,

(189) Pr (X > (1 + δ)µ) < e−δµ;

• For any λU > 0 and λL ∈ (0, 1),

Pr (X > µ+ λ) 6 e−2λ
2

n ,(190)

Pr (X 6 µ− λ) 6 e−2λ
2

n .

• For any δ ∈ (0, 1),

Pr (X 6 (1− δ)µL) 6 exp

(
−δ

2

2
µL

)
,(191)

Pr (X > (1 + δ)µH) 6 exp

(
−δ

2

3
µH

)
.(192)

Theorem 25 ([McD98]). Let X1, ..., Xn be n independent random vari-
ables. If Xi 6M for each i, then
(193)

Pr

(∑
i

Xi > E

[∑
i

Xi

]
+ λ

)
6 exp

− λ2

2
(√∑

i E
[
X2
i

]
+ Mλ

3

)
 ,
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and if Xi > −M for each i, then
(194)

Pr

(∑
i

Xi 6 E

[∑
i

Xi

]
− λ

)
6 exp

− λ2

2
(√∑

i E
[
X2
i

]
+ Mλ

3

)
 .

Corollary 9. If the Xis are binary, then for λ =
√
E [
∑

iXi] log n,
(193) and (194) become

Pr

∑
i

Xi > E

[∑
i

Xi

]
+

√√√√E

[∑
i

Xi

]
log n

 6 e−√E[
∑
iXi] logn

,

Pr

∑
i

Xi 6 E

[∑
i

Xi

]
−

√√√√E

[∑
i

Xi

]
log n

 6 e−√E[
∑
iXi] logn

.

Proof. If the Xis are binary then
∑

i E
[
X2
i

]
6
∑

i E [Xi]. Together

with λ =
√
E [
∑

iXi] log n, the latter fact implies that in the exponent of
the right hand side of (193) and (194) we get

− λ2

2
(√∑

i E
[
X2
i

]
+ Mλ

3

)
6 − E [

∑
iXi] log n

2
(√∑

i E [Xi] + 1
3

√
E [
∑

iXi] log n
)

6 − E [
∑

iXi] log n

2
√
E [
∑

iXi]
(

1
3

√
log n+ 1

) 6 −
√√√√E

[∑
i

Xi

]
log n.

gg�

Lemma 77. Let {Xt} t∈[n] be n i.i.d. random variables such that

Xt =


1 with probability p,

0 with probability r,

−1 with probability q.

with p+ r + q = 1. It holds

Pr

(∑
i

Xt 6 (1− θ)E
[∑

i

Xt

]
− θn

)
6 exp

(
−θ

2

4

(
E

[∑
i

Xt

]
+ n

))
.

Proof. Let us de�ne the r.v.

(195) Yt =
Xt + 1

2
.
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We can apply the Cherno�-Hoe�ding bound to Yt (see Theorem 1.1 in
[DP09]), obtaining

Pr

(∑
i

Yi 6 (1− θ)E
[∑

i

Yi

])
6 exp

(
−θ

2

2
E

[∑
i

Yi

])
for any θ ∈ (0, 1). Substituting (195) we have

Pr

(∑
i

Xt + n 6 (1− θ)
(
E

[∑
i

Xt

]
+ n

))

= Pr

(∑
i

Xt 6 (1− θ)E
[∑

i

Xt

]
− θn

)

6 exp

(
−θ

2

4

(
E

[∑
i

Xt

]
+ n

))
,

concluding the proof. gg�

The following folklore �reverse�-Cherno� bound [Mou14, Theorem 2]
shows that the Cherno� bound is essentially tight1

Theorem 26 (Reverse Cherno� bound). Let X be the sum of m inde-
pendent Bernoulli variables with probability p 6 1/4 and let µ = pm. Then,
for any t ∈ (0,m− µ):

Pr (X − µ > t) > 1

4
e
− 2t2

µ .

We are often interested in the expected value of a stochastic process at a
time which is itself a random variable. Doob's Optional Stopping Theorem
allows us to know such expected value, under suitable hypothesis.

Theorem 27 ([Doo53], see also Corollary 17.8 in [LPW09] or Theo-
rem 10.10 in [Wil91]). Let {Xt}t∈N be a discrete-time martingale and τ be
a stopping time with values in N ∪∞, with respect to a given �ltration Ft.
Assume one of the following three conditions holds:

(1) The stopping time is almost surely bounded, i.e. Pr(τ 6 c) = 1 for
some constant c;

(2) E[τ ] <∞ and for some constant c

Pr(E[|Xt+1 −Xt| | Ft] 6 c | {τ > t}) = 1,

for all t ∈ N;
(3) For some constant c, Pr(|Xmin{τ,t}| 6 c) = 1 for all t ∈ N.

1A number of pretty similar results can be found in specialized mathe-
matical forums, for example http://cstheory.stackexchange.com/questions/14471/

reverse-chernoff-bound.

http://cstheory.stackexchange.com/questions/14471/reverse-chernoff-bound
http://cstheory.stackexchange.com/questions/14471/reverse-chernoff-bound
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Then

E[Xτ ] = E[X0].

Remark 10. The proof of Theorem 27 naturally extends to supermartin-
gales and submartingales.

Finally, the following fact is useful when dealing with many events in the
uniform PUSH and PULL models.

Fact 1. If f (n) = ω (1) and g (n) = o (f (n)) then(
1± 1

f (n)

)g(n)

= 1±O
(
g (n)

f (n)

)
.
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