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Abstract

his work presents set of nlytil results regrding some elementry rndomized protoolsD lled dynamicsD for solving some fundmentl omE puttionl prolemsF xew tehniques for nlyzing the proesses tht rise from suh dynmis re presentedD together with onrete exmples on how to uild e0ient nd roust distriuted lgorithms for some importnt tsks using these proesses s lkEoxF wore spei(llyD we nlyze severl dynmis suh s the QEwjorityD the everging nd the ndeidedEtte onesD nd we show how to use them to solve fundmentl prolems suh s plurlity onsensusD ommunity deE tetion @inluding the reonstrution prolem in the stohsti lok modelAD nd it dissemintion @rumor spredingAF e fous minly on unstrutured nd rndom intertion modelsD nd we lso del with senrios in whih the ommunition is 'eted y noise or when selfEstilizing protool is requiredF Preface his work presents in systemti wy mjor prt of the reserh s9ve tken prt to during my hh studiesF he min purpose of this refe is to list wht hs een inluded here out of wht s9ve done in these three yersD nd wht hs een not euse of the diversity of topiF e gret prt of suh work hs lredy een presented t onferenes in omputer sieneF he following hpters re sed on the following puliE tionsX Stabilizing Protocols with 3 bits, in roeedings of the PVth enE nul egwEsew ymposium on hisrete elgorithms @SODA'17 AD frelonD pinD PHIUF @frief ennounement in roeedings of the PHIT egw ymposium on riniples of histriuted gomputing @PODC'16 AF ghigoD sllinoisD PHITD ppF PHU!PHWF A es one n see in the previous listD rther thn following the hronologil order of the reserhD the presenttion of the mteril ttins to the ig piture disussed in the sntrodution @ghpter IAF e pper whih could hve een inluded in this work is • hF userD pF wllmnnErennD nd iF xtleD On the Voting Time of the Deterministic Majority ProcessD in roeedings of the RIst snterntionl ymposium on wthemtil poundtions of gomE puter ieneD hgstuhlD qermnyD PHITD volF SVD pF SSXI!SSXISF @wpg9ITA hile the sujet of the forementioned pper is kin to the proesses invesE tigted hereD the deterministi nd worstEse nture of those results does not (t in the spirit of this workD s explined in the sntrodution @ghpter IAF wo other ppers whih don9t hve nything to do with distriuted omE puting re

• vF qulD F veuiD nd iF xtleD Bejeweled, Candy Crush and other match-three games are (NP-)hardD in roeedings of the siii gonferene on gomputtionl sntelligene nd qmesD PHIRD ppF I!VF @gsq9IRA • vF qulàD F veuiD iF xtleD nd F ursoD Large Peg-Army ManeuversD in roeedings of the Vth snterntionl gonferene on pun with elgorithmsD hgstuhlD qermnyD PHITD volF RWD pF IVXI!IVXISF @px9ITA he previous ppers del with omputtionl spets of some omintoE ril puzzlesD nd they me out of the ommon interest of vuino qulàD tefno veuiD oerto urso nd me for lgorithmi spets of perfetE informtion singleEplyer gmesF vst ut not lestD the following work y wihele forssi nd me on omputing the etweenness entrlity of omplex networks is lso o'Etopi with respet to the sope of this tretiseX

• wF forssi nd iF xtleD KADABRA is an ADaptive Algorithm for Betweenness via Random ApproximationD in roeedings of the PRth ennul iuropen ymposium on elgorithmsD hgstuhlD qermnyD PHITD volF SUD pF PHXI!PHXIVF @ie9ITA Acknowledgments gontrry to the old sying tht the neighor9s grss is lwys greenerD every time s look t ny neighor9s grss s feel so luky for hving hd suh n mzing grdenF here is no wy s n express my grtitude to endre glementi for hving een n dvisor so dedited to my est sienti( growthF e speil thnks goes to my internl dvisor irdo ilvestriX eing unonditionlly exposed to his point of views hs sved me from tking mny erroneous deisionsF s thnk my demi older rother prneso squle nd vu feE hetti for the gret time during our reserh meetingsF s thnk vu revisn for the invlule opportunities he hs given meD the (rst of whih is tht of working with himF s thnk some professors whih enrihed my love for mthemtis nd omputer siene nd with whom lter s lso hd the plesure to do reE serh withD suh s oerto ursoD wirim hi snniD qiorgio qmosi nd vuino qulàF s thnk oert ilsässer nd etr ferenrink for the gret time in lzurg nd rmurgD respetivelyF s thnk ierre prigniud for the invlule time s hd in risD where s lso met emos uormnF orking with them hs een very rewrding experiene on severl levelsF hese yers would hve not een the sme without other hh students shring with me n importnt prt of themD suh s tefno veuiD hominik userD prederik wllmnnErennD vus fozkowski nd wihele forssiF hnks to ll of youF s thnk elessndro nonesi nd plvio ghierihetti for supporting gret prt of the reserh tht is presented in this workF s thnk my prtner for hving wlked y my side long this long journeyD supporting me in the di0ult momentsF e speil thnks lso to her fmilyF s deeply thnk my loving fmily for hving done ll their est to llow me to do wht s wnted to doF gorollry @eonstrution in egulr tohsti flok wodelsA QI P heorem @wore gommunitiesA QI S he(nition @glustered γEegulr qrphsA QI Q heorem @ek eonstrutionA QI T he(nition @tohsti flok wodelA QP P gorollry @eonstrution in tohsti flok wodelsA QP R heorem @ight eonstrution in tohsti flok wodelsA QP Q gorollry @pper found with fisA QS S heorem @qenerl pper found for QEwjorityA QS R gorollry @olylogrithmi pper found for QEwjorityA QT T heorem @vower found for QEwjorityA QT U heorem @vower found for hEwjorityA QU S gorollry @pper found with edversryA QU U he(nition @tilizing elmostEgonsensusA RH V heorem @pper found with hynmiEedversryA RH T gorollry @pper found with ttiEedversryA RI V he(nition @wonohromti histneA RQ W heorem @wonohromti pper foundA RR IH heorem @wonohromti vower foundA RS II heorem @wonohromti found on ixpndersA RS W he(nition @@roilistiA elfEtilizing roessA RU IP heorem @epeted flls into fins wx vodA RV IQ heorem @xoisy fit hissemintionA SR IR heorem @xoisy lurlity gonsensusA SR IS heorem @Syn-Phase-SpreadA TH IT heorem @Syn-ClockA TH IU heorem @wessge edution heoremA TI IV heorem @wtrix fernstein snequlityA UV IW heorem @eyl9s heoremA UV PH heorem @hvis nd uhnD IWUHA UV P he(nition @trong nd ek eonstrutionA UW Q he(nition @glustered egulr qrphA VQ I heorem @trong eonstrutionA VS R he(nition @egulr tohsti flok wodelA VT I gorollry @eonstrution in egulr tohsti flok wodelsA VV S he(nition @glustered γEegulr qrphsA VV Q heorem @ek eonstrutionA WI P gorollry @eonstrution in tohsti flok wodelsA WR R heorem @ight eonstrution in tohsti flok wodelsA WW P heorem @wore gommunitiesA IHI S heorem @qenerl pper found for QEwjorityA IIU Q gorollry @pper found with fisA IIV R gorollry @olylogrithmi pper found for QEwjorityA IIV U gorollry @vogrithmi pper found for QEwjorityA IIV S gorollry @pper found with edversryA IPP T heorem @vower found for QEwjorityA IPS IH he(nition @hEsnput hynmisA IPU II he(nition @glerEwjority ropertyA IPU IP he(nition @niform ropertyA IPU IQ he(nition @3Esnput wjorityEfoosting hynmisA IPV IR he(nition @(s, ε)Elurlity gonsensus olverA IPV PI heorem @roperties of qood olversA IPV U heorem @vower found for hEwjorityA IQP PP heorem @edversryEpree pper foundA IQT PP heorem @edversryEpree pper foundA IRH IS he(nition @F Estti dversryA IRI T gorollry @pper found with ttiEedversryA IRI IT he(nition @F Ehynmi edversryA IRI V heorem @pper found with hynmiEedversryA IRP IU he(nition @mll ypinionsA IRP V he(nition @wonohromti histneA ITH IH heorem @wonohromti vower foundA ITU W heorem @wonohromti pper foundA ITU II heorem @wonohromti found on ixpndersA IUI V he(nition @wonohromti histneA IUI IH heorem @wonohromti vower foundA IVR W heorem @wonohromti pper foundA IVV PQ heorem @niform GOSSIP imultion on ixpndersA IWP II heorem @wonohromti found on ixpndersA IWQ IP heorem @epeted flls into fins wx vodA IWT IP heorem @epeted flls into fins wx vodA PHR IV he(nition @xegtive ssoitionA PHS V gorollry @rllel esoure essignmentA PHT IW he(nition @δEfised gon(gurtionA PIH PH he(nition @(ε, δ)EmFpF xoise wtrixA PIH IQ heorem @xoisy fit hissemintionA PII IR heorem @xoisy lurlity gonsensusA PII PI he(nition @essoited flls into fins roessA PIQ PP he(nition @essoited oisson roessA PIR PR heorem @QEwedin dynmis @DF11AA PQV PQ he(nition @he BIT modelA PRP PR he(nition @he bitwiseindependence propertyA PRQ IU heorem @wessge edution heoremA PRR IS heorem @Syn-Phase-SpreadA PTQ Introduction his work is tretise in the (eld of distriuted omputing ndD s suhD there re some expettions tht we re not going to disppointX there is system @the networkA of n gents @the nodesA tht intert @exhnge messgesA with eh other ording to some ommunition modelD nd there is omputtionl gol tht the system ims to hieve through some suitle protocol exeuted y the gents Pel00F ithin the (eld of distriuted omputingD the sope of this work is loE ted within lss of systems tht my resemle the sujet of study of stE tistil mehnis Lig12X the lss of protools tht we onsider re simple nd lightweight HP01D their typil ehvior strongly relies on rndomness whih onstitutes n essentil prt of the proessD nd hve een grouped under the nme of dynamics AAE08, AAB + 11, Dot14, MNT14F es in the se of natural algorithms nd complex networksD the onept of dynmis seems 'eted y ler ontrst etween the informl onE sensus the relted experts9 ommunity hs out the oviousness of wht tht onept mensD nd the lk of serious ttempts to provide rigorous de(nition whih n englighten the outsidersF o prevent us from ontriuting to suh undesirle situtionD with the (rst de(nition of this work we ttempt to provide (rst formliztion 1 of the onept of dynamics s simple, lightweight, natural, local, elementary rulesF Definition I @hynmisA. e dynamics is synhronous distriuted lgorithm hrterized y very simple strutureD wherey the stte of node t round t depends only on her stte nd symmetri funtion of the multiset of sttes of her neighors t round t -1D while the updte rule is the sme for every grph nd every node nd does not hnge over timeF Remark I. glerlyD within the onstrints of the previous de(nitionD it still ppers to e possile to ome up with omputtionl rules whih re complex and unnaturalF e emphsize tht the nture of he(nition I is to provide rough guidelineD nd does not sustitute the reline of the sienti( ommunity on the rel world phenomen the onept intends to ptureD whih re disussed in ghpter QF he(nition I is therefore overtly provisionl nd open to e repled y etter ndidtesF 1 The denition has already appeared in [BCN . sllustrtion of the QEwedin dynmis @in whih eh gent smples two other gents t rndom nd updtes her opinion with the medin of their vlues nd her ownAD the QEwjority @in whih eh gent smples three other gents t rndom nd updte her opinion with the most frequent vlue mong those threeD reking ties ritrrilyAD nd ndeidedE tte hynmis @in whih eh gent smples nother gentD if their vlues di'er she eomes undecidedD nd if she is unE deided she piks the (rst opinion she seesAF xote tht in he(nition I no network shs re usedD so we my ssume tht the network is anonymousF ixmples of dynmis whih re disussed in ghpter Q inlude updte rules in whih every node updtes its stte to the plurlity or the medin of the sttes of its neighors 2 D or whih updtes it to the verge of the vlues held y its neighors @see pigure IAF sn ontrstD n lgorithm thtD syD proeeds in two phsesD using verging during the (rst 10 log n rounds nd plurlity from round 1 + 10 log n onwrdD with n the numer of nodesD is not dynmis ording to our de(nitionD sine its updte rule depends on the size of the grphF es nother exmpleD n lgorithm tht strts y hving the lexiogrphilly (rst node eleted s leder nd then propgtes her stte to ll other nodes gin does not meet the de(nition of dynmisD sine it ssigns roles to the nodes nd requires them to possess distinguishle identitiesF 2 When states correspond to rational values.

+ 15b].
Organization of the work sn etion IFID we egin our journey with n informl ount of the ontent of this workF sn the following hpter @setions PFID PFPD PFQD PFRD PFS nd PFTAD we present the results ontined in this workF sn ghpter QD we disuss the relted litertureF sn hpters RD SD TD UD V nd WD we present the proofs of our resultsF pinllyD in ghpter IHD we disuss some open prolemsF 1.1. The Informal Story of the Big Picture sn setions PFID PFPD PFQD PFRD PFS nd PFTD we re going to individully motivte the sujet of eh of the following hptersF roweverD s we sid oveD ll of them n e frmed within the investigtion of the omputE tionl power of dynmisF reneD prt from the individul motivtionsD the question of whether it mkes sense to look t them s oherent whole rises nturllyF hereforeD efore providing further detils on the individul sujets of our study nd on the empiril resons tht motivte our spei( interest for themD it is worth tking smll digression out how we ended up looking t them s elonging to onsistent lss of ojetsD where eh of them is deeply intertwined to the othersF 1.1.1. Peeking in the Universe of Computational Rules ine the dvent of the omputerD sientists found themselves with new telesope whih provided them with the pity to oserve the omputE tionl universe t new sleF hrough simultionsD they were le to look fr eyond their mthemtil understnding of the reltionship etween lol intertions mong the tiny prts of system nd its glol ehvior ndD in the lst dedesD they were stounded y the unexpeted pperE ne of glol omplexity from lol simpliityF o mention few exmples of the enthusism of the sienti( ommunityD in IWVR the nt pe snstitute ws founded in xew wexioD with the mission of pioneering reserh on how omplex systems emerge from simple intertions ndD lmost twenty yers lterD tephen olfrm ws pulishing his fmous ook Wol02D in whih he provided extensive empiril evidene out the ft tht mny omplex systems emerge from very simple progrmsF roweverD suh enthusism rought from the shoking new ility to explore the universe of omputE tionl rules hs een ounterlned from the inility to develop new mthemtis whih ould ount for our new oservtionsF ith the ove perspetive in mind it is hrd not to e fsinted y the di0ulty of sying something mthemtilly nontrivil on the omplexity from simpliity phenomenon @in short gp phenomenonAF yne of the few possile pths in the ltter diretion with nonEnegligile proility of eing pro(tleD ppers to e tht of theoretil omputer sieneF he mthemtis of omputtionD whih mde us onretely wre of the gp prolemD seems one of the few sensile theoretil tools on whih to et for understnding itF 1. INTRODUCTION ithin the world of theoretil omputer sieneD prtiulrly ppelE ing tool to look t the interply of lolGindividul nd glolGolletive ehvior is the theory of distributed computing @in shortD distriuted omE putingAF histriuted omputing is onerned with how systems of ompuE ttionl gents n hieve some glol gol in the most e0ient wyF sf we set s the gol of the system omplex ehviour nd we onstrin the gents to perform only simple intertions nd omputtionsD we get n instne of the gp phenomenonF hereforeD in some senseD we hve n entire su(eld of theoretil omputer siene @nd thusD of mthemtisAD whose purpose is @in prtA to expliitly del with the gp phenomenonF he ove interprettion of the sttus quo is not wishful thinkingF prom progrmmle mtter DDG + 14, CDRR16 to hemil retion networks CSWB09, Dot14, CKW16, Reu16D from sensor networks AAD + 06, AFJ06 to the ehviour of inset olonies FHK14, FN16D there is huge prt of the distriuted omputing disipline driven y the spirtion to deE velop theory nlogous to tht uilt y sttistil mehnis for interting prtile systemsD when we reple prtile with gentF sn ftD the underlying motif ehind the reserh presented in this work rose when the uthor sid to endre glementi @who ws tehing ourse on distriuted omputing tht the uthor ws ttendingAD tht he would hve liked to work on prolem whih onsisted in (nding simple proess whose interest lied in the intersetion of distriuted omputing nd network nlysisD iFeF tht would hve shown some omplex ehviour depending on the network topologyF endre glementi me up with prolem thtD s we lter disoveredD turned out to e n instne of the fmous reonstrution prolem in stohsti lok models HLL83, DF89, JS98, McS01, CO10, DKMZ11, ABH14D whih is min hrter of ghpter RF sn the next setion we informlly disuss the originl prolem nd how the di'erent results of this work n e tred k to the (rst nturl ide with whih we tried to solve itF 1.1.2. Dynamics for Distributed Clustering and Much More gonsider the prolem of performing ommunity detetion on model of @disreteEtimeA dynmi rndom grphs AKL08D the dynamic stochastic block modelD whih is otined y onsidering sequene of independent grphs generted ording to (xed stohsti lok model @see he(nition TAF ht isD in the dynmi stohsti lok model the nodes re prtitioned in two communities of equl size nd t eh round rndom grph is generE ted y inluding eh edge etween nodes within the sme ommunity with proility pD nd eh edge ross the two ommunities with proility q < pF st follows tht eh node tends to hve more neighors inside her own ommunity thn the other oneF o perform ommunity detetion mens to ssign to eh node lel suh tht two nodes hve the sme lel if nd only if they re in the sme ommunity 3 F xote tht the previous de(nitionD in generlD still requires to de(ne wht ommunity isF e nturl wy to ddress this issue is to onsider planted modelD iFeF to inlude the ommunities right in the de(nition of the grph modelD s is the se of the forementioned dynmi stohsti lok model nd the grph models onsidered in RF sn suh senrio nturl heuristi tht omes to one9s mind to solve the prolem is the followingX @IA ih node initilly genertes rndom olorY @PA et eh round eh node tkes the most frequent vlue of rnE dom smple of neighorsD hosen independently nd uniformly t rndomD reking ties ritrrilyF he previous fmily of epidemic strtegies nd their vrints re known s label propagation algorithms @ve for shortA RAK07, BC09, LHLC09, LM10F he intuition is tht the mehnism employed in the seond prt of the lgorithm 4 should tend to ssign the sme olor to sets of nodes whih re more onneted mong themselves thn with the rest of the grphF erhps surprisinglyD the rules in tep P whih @experimentllyA turns out to e the most e'etiveD e0ient nd roust re proilisti rules thtD in n in(nite timeD would led the system to trivil lelingF sn other wordsD there is possile @lthough exponentilly improleA ontention of spei( unlikely events in the rndom hoies of the protool whih ould led the system to omplete filureD suh s leling the whole grph s sole ommunityF his senrio is often enountered lso in other sienti( ontexts suh s systems studied in sttistil mehnis whereD prioriD n lmostEimpossile sequene of unfortunte events would use n empiril violtion of the lws of thermodynmisF o ope with suh bad events the onept of metastability hs therefore een introduedF e set of sttes of stohsti proess is sid to e metstle ifD informlly spekingD the system spends a lot of time in tht lss of sttesD lthough they my e fr from those tht the system rehes in the equilibriumD iFeF in n in(nite time @in the lnguge of wrkov hinsD the metstle sttes my even e trnsientD iFeF one the system exits themD it never visits them ginAF enlogouslyD good ve is expeted to ssign @with high proilityA the sme lel to nodes in the sme ommunityD nd di'erent lels to nodes in di'erent ommunitiesD nd to mintin this sttus of internal onsensus nd external disgreement for ny polynomil numer of rounds lthoughD in n exponentil timeD it my e tht the system hppens to ssign the sme lel to di'erent ommunitiesD with no possiility of reovering from tht point onF husD the e0y of ves in solving the ommunity detetion prolem prtly relies on the e0y nd roustness of the employed mehnism in 3 According to the literature discussed in Chapter 3, in this work we assume that the communities partition the graph, i.e. each node belongs to exactly one community.

4

Typically, the update rule of an LPA make use of is a dynamics.

INTRODUCTION

utiously solving the plurlity onsensus prolemD tht is the prolem of onverging to the most frequent olor in the system 5 @see etion PFPAF hespite their extreme simpliityD the nlysis of veEsed protools is extremely hllengingD s disussed in etion QFIFIF sn ftD not surprisinglyD while simultions were deisively promising for simple vrints of the preE vious protool @suh s when in tep P we dopt the QEwjority dynmis disussed in ghpter SAD in CDIG + 15 we mnge to rigorously nlyze only distriuted ommunity detetion lgorithm whih is quite fr from eing dynmisD given tht the rule it pplies hnges s funtion of time whih depends on the numer of nodes nF roweverD s in eh filed ttempt of nlyzing simple lgorithmsD we were left with severl smller open prolemsD whose solution ppered still hllenging ut hopefully more hievleF IFIFPFIF The 3-Majority dynamics. fy trying to develop tools for nlyzing veElike dynmis in order to solve the ommunity detetion prolemD we ended up investigting mjority dynmis nd the results presented in ghpE ter SF ery promising evidene in this diretion ws provided y DF11D where it is proved tht dynmis notEtooEfr from those dopted in vesD the QEwedin dynmisD is extremely e0ient in solving onsensus prolems even if there re lot of initil lels in the systemF roweverD s outlined in etion PFPD we surprisingly found tht the onE vergene time in solving the onsensus prolem of the simplest mjority dynmisD the QEwjority proessD is essentilly liner in the numer of iniE til di'erent opinions in the systemF e further proved tht the sitution does not hnge if insted of the QEwjority we onsider ny protool within wide lss of dynmis @hEinput dynmisAD nd tht the QEwjority dyE nmis ws lredy optiml wFrFtF ll those dynmis whih silly onsist in exhnging opinions mking use of t most Q inputs @we my ll suh lss ve with arity 3 AF hese results were very d news for the potentil use of QEwjority dyE nmis s uilding lok for more omplex protools nd s n e0ient dynmis perEseD nd motivted the further investigtion of fster dynmis for hieving plurlity onsensusF efter exploring the vst spe of possile ndidtes for quite whileD osillting etween dynmis whih re no etE ter thn the QEwjority dynmis nd others whose nlysis seems to e out of reh of urrent mthemtil toolsD we found ourselves in front of the ndeidedEtte dynmisD whih is the sujet of ghpter TF IFIFPFPF The Undecided-State dynamics. he ndeidedEtte dynmis ws lredy fmous in omputer siene s n elegnt solution to more restrited mjority onsensus prolems thn the one we were onsidering in reltion to vesF efter some ttempts t proving upper ounds on its onvergene 5 We remark that in applicative scenarios each color represents an opinion or more generally a class of a partition of the possible states of the agents. time wFrFtF the stndrd hypotheses tht re ssumed in mjority onsenE sus prolemsD we disovered tht under its deeptively simple struture the ndeidedEtte dynmis shows n evolution with n unexpeted ntomyF xmelyD its ehviour nd onvergene time re funtion sensile to the whole initil on(gurtionD insted of depending on few ruil prmetersF e nmed this funtion the monochromatic distanceF es disussed in etion PFQD y inspeting the monohromti distne we see tht the ndeidedE tte dynmis hs the dvntge of hving onvergene time whih is t lest s good s tht of the QEwjority dynmis @for numer of opinions in the system whih n e s lrge s √ n/ log nAD nd exponentilly fster for wide rnge of on(gurtionsF husD it is simple ut wy more e'etive dynmis in mny pplitive ontextsF roweverD despite the sensile progress in nlyzing dynmis tht ould serve s the ore of simple ommunity detetion protoolD midwy through the uthor9s hhD the dy in whih we ould e le to ome up with provE ly e'etive dynmis for ommunity detetion seemed quite frF et some pointD vu revisn suggested to look t the everging dynmisD whih hve the dvntge of eing liner nd thus nlyzle using the tools of spetrl grph theoryF tepping wy from veEsed protools turned out to e the right moveX y developing new nlysis of the fmous everging dynmisD we were (nlly le to prove tht suh simple dynmis n e0iently solve the ommunity detetion prolemF IFIFPFQF The Averaging dynamics. fy leverging on the ft thtD in preE ise senseD the everging dynmis is implicitly simulating the lultion of the seond eigenvetor vi mtrix power methodD our nlysis llows the de(nition of simple leling sheme thtD on top of the everging dyE nmisD performs glol lustering on wide lss of grphs whose luster struture is su0iently re)eted on the seond eigenvetor of their djE eny mtrixF he ltter lss notly inludes the fmous stohsti lok modelD whih hs ttrted lot of ttention s n interesting mthemtE il ojet to investigte the omputtionl hrdness of ommunity deteE tionF e show tht the e0ieny of the everging dynmis is omprle to tht of the estD entrlized nd sophistited tehniquesF es disussed in etion PFID this result provides one of the few exmples of dynamics AAE08, AAB + 11, Dot14, MNT14 tht solves omputtionl prolem tht is nonEtrivil in entrlized settingF hespite its simpliityD the everging dynmis still hs the disdvnE tges of ssuming tht gents n interpret their stte s rel numer nd perform rithmetil opertionsF purthermoreD the dynmis opertes in the LOCAL model Pel00F hereforeD the quest for simpler veEsed dynmis for ommunity detetion remins openD s disussed in ghpter IHF hile hpters RD S nd T re dedited to the nlysis of spei( dyE nmisD hpters V nd W re devoted to the pplition of the QEwjority 1. INTRODUCTION dynmis nd vrint of itF sn the reminder of this setion we outline the motivtion tht led us to study the sujets of hpters UD V nd WF IFIFPFRF Parallel random walks in the PUSH model. he nlysis in ghpE ter T strongly relies on the omplete topology of the underlying intertion grphD iFeF on the ft tht the PU LL model is unstruturedX ll pirs of gents hve the sme intertion pilityF he diret nlysis of the ndeidedEtte dynmis on sprser topologies is hllenging open proE lemF roweverD in the GOSSIP model in whih nodes re onstrined to intert with only one neighor ut the ommunition n e idiretionl nd nodes n hoose with whom they intertD it is possile to leverge on the power of this dynmis for the PU LL model even when the interE tion topology hs good expnsion nd regulrity @see etion PFQFI for forml detilsAF sn ftD on good regulr expnder grphs 6 it is possile to e0iently simulte the PULL model in the GOSSIP model vi simple rndomEwlkEsed strtegyF he ruil issue tht 'ets rndom wlks in the GOSSIP model is tht the model onstrins eh node to initite t most one intertion per roundF gonsequentlyD if severl rndom wlks hppen to e on the sme nodeD they re not le to move wy from it onto di'erent neighors t the sme time @see pigure PQAF he ltter issue genertes some congestionF sn etion TFQ of ghpter TD we show tht in the given setting the ongestion is negligile t the ost of smll ftor in the running timeD provided tht the rndom wlks re required to run for few roundsF roweverD whether the ongestion of rndom wlks in the GOSSIP model remins smll even when the topology doesn9t exhiit good expnsionD or when the rndom wlks need to reh onsiderle lengthD is not known ndD s disussed in etion PFRD there is strong evidene tht these prolems require mjor dvnes with respet to the ville tehniquesF ghpter U presents modest ttempt to mke progress in understnding the ongestion of rndom wlks in the uniform PUSH model 7 y onsidE ering the ehviour of the proess on the omplete grph in the long runF yserve tht the opertions of reeption nd dispth of tokens y whih nodes implement rndom wlks on the grphD re simple opertions whih 6 Recall that an expander graph G = (V, E) is a graph whose edge expansion is lower bounded by a constant, i.e. As pointed out in Section 2.4, when we are only interested in the behavior of random walks in the GOSSIP model without the need to perform other operations (e.g. rewinding the random walks as in the simulation of PULL model in Section 6.3), we do not need to assume that nodes can control with whom they interact or that they can request information from the contacted node, unless we want to consider more complicated ways of implementing the random walks, but the latter attempt would lead us too far from a dynamics.

h(G) = min

stisfy the requisites of dynmis @provided the tokens re not too mnyD to keep low memory requirement for nodesAF imilrlyD the nodes n impleE ment rndom wlks in the uniform PU SH model y equipping themselves with pspy queueD whih still produes dynmis @oserve tht the lrger memory requirement is ompensted y very limited ommunition E pilityAF sn ftD proving tht with high proility @w.h.p 8 for shortAD the nodes9 pspy queues do not exeed smll size is the prtil gol of nlyzE ing the rndom wlk proessF sn the forementioned settingD we show tht the ongestion does not deprt signi(ntly from tht of lssil prllel rndom wlks in the LOCAL model @see etion PFR for the forml stteE mentsAF es yprodutD in etion UFQ we get n e0ient dynmis for the prolem of parallel resource assignment in the uniform PU SH modelF IFIFPFSF Noisy bit dissemination and plurality consensus. sn ddition to the purely theoretil interest nd potentil pplitions in tehnologil onE texts @eFgF sensor nd dEho networksAD this work is lso prtilly motivted y iologil questions @hpters V nd WAF sndeedD in the iologil worldD it dissemintion nd mjority onsensus re ommon phenomenon in wide rnge of systemsF ixmples of suh proesses inlude single nt tht hs found food nd reruits others REF13, HW90D few ells tht trigger lrge popultion responses FJT + 10D shool of (sh tht rehes onsensus round group of leders SKJ + 08D or smll numer of oservnt individE uls tht lert their herd Rob96F uh informtion propgtion is hieved despite wht ppers to e highly unpreditleD unoordintedD noisy nd limited ommunition settingsF row iologil systems mnge to operte e'etively despite suh ommunition limittions is fundmentl question whose understnding is still very preliminryF he previous reserh diretion ws tempting ground for the uthor whenD t the end of his (rst yer of hhD he hd the plesure of eing ierre prigniud9s guest t the omputer siene l vsepe 9 F et tht time the uE thor hd onluded the work on the ndeidedEtte dynmis BCN + 15aD whose hrdness origintes from deling with the setting in whih the numer of opinions in the system n e funtion of the system size @see etion PFQAF e deided to work on the generliztion of work y emos uormn et lF to the setting with multiple possile opinionsF sn uormn et lF9s work they investigte nturl protools for solving the it dissemintion nd mjority onsensus prolems in noisy version of the uniform PUSH model FHK14 @see etion PFSAD where eh messge n e orrupted @in ftD changed AD efore eing reeivedF e thus egn the reserh tht led us to the results presented in ghpter VF yur generliztion required us to solve oth oneptul nd tehnil issuesF 1. INTRODUCTION yn the oneptul sideD while in the inryEmessge se the noise merely onsists in the ft tht with some proility one of the two vlues n e )ippedD in the multivlued se it is not ler wht is the right wy of modeling the ft tht messges n e misunderstoodF rereD the right modeling is the formliztion tht llows to seprte in the most nturl wy the settings in whih the prolem n e solved from those in whih it is not solvleF sn ghpter VD we provide nturl formliztion of the noise nd identify some ruil properties whih llows preise hrteriztion of the solvility of the prolems t hndF yn the tehnil sideD the prolem shres the following usul di0ulty of generlizing (niteEvolume proess from dimension one to more thn oneF sn the inry seD informlly spekingD wht is not I hs to e HX the ft tht there re only two possile vlues provides the possiility to tke the omplement of quntities regrding one vlueD to get those regrding the other oneF his possiilityD whih is often key ingredient of the nlysisD vnishes when we introdue further degrees of freedom in the proess y lE lowing more thn two possile vluesF purthermoreD the generliztion to the multivlued se worsens the stohsti dependeny tht is lredy 'eting the inry oneD preventing diret pplition of stndrd onentrtionEofE proility inequlitiesF es yprodut of the nlysis presented in ghpter VD we provide generl frmework to eliminte suh dependeniesF hile the presented generliztion in the end is still fr from eing dynmis perEseD the rules whih the whole protool is sedEon re notX the ore of the lgorithm in ft relies on generliztion of the QEwjority dynmisF IFIFPFTF Self-stabilizing majority bit dissemination. es ierre prigniud9s guest t vsepe in risD the uthor ws delighted to meet emos uormnD who ws working on his ig proposl on histriuted fiologil elgoE rithmsF he ommon interest in pplying distriuted omputing ides to understnding iologil systems ws soon evidentF e rie)y rell emos uormn9s oservtion on the iologil signi(ne tht the onsensus proE lem hs in ntureD whih he expressed in one of the (rst onverstions with the uthorF hile in tehnologil setting rehing onsensus is often seen s the preEondition for hieving some other golD in iologil setting minE tining onsensus is n evolutionry onvenient strtegy to ope with the limittions of single individuls in quiring informtion from the environE ment @eFgF in nswering questions suh s ss there predtor roundcAD nd to mximize the proility of survivl in generl @eFgF isolted individuls re esier preysAF husD the tendeny for iologil system to reh onsenE sus is more of n instint instilled y evolution thn ehvior onsiously dopted to hieve nother gendF es n exmpleD let us imgine group of irds on wireF et some point some ird strts to )yF he other irds hve the legitimte dout tht the moving one is leving her spot on the wire euse she hs ught sight of predtorF hereforeD other irds strt )ying s wellF erhpsD shortly fter leving her point on the wire the (rst ird lnds gin on itD sine her originl intention ws only to move to etter pleF he other lrmed irds then relize tht it ws flse lrmD nd they lso strt lnding gin on the wireF yn the other hndD the (rst ird my lso ontinue her espe from n imminent thretD whih uses more nd more other irds to leve the wire s they see other fellows doing itD nd even the most distrted one rpidly relizes tht it might e wiser to tke o'F prom the previous nedotl exmpleD we n strt the following disE triuted omputing prolemF e hve system of gents in the PULL model @see etion PFPAD nd one of themD the sourceD hs some importnt piee of informtion tht the system ould useD whih we ll input bit 10 F roweverD there is no ssumption on the initil sttes of the gentsX some of themD for exmpleD my hold wrong ssumption on the vlue of the input itF hereforeD we would like to devise strtegyD s simple s possileD suh tht the system n rpidly reh onsensus on the true vlue of the input itD strting from n ritrry initil on(gurtion of the gents9 sttesF sn prtiulrD we would like the system to onverge fst to on(gurtion in whih ll gents re wre of the vlue of the input itD nd to e fst in upE dting the gents9 knowledge of the input it whenever the soure hnges her mindF sn the terminology of distriuted omputingD we would like solution whih is self-stabilizing protool @see he(nition WAF qiven the previous strt formultionD we re essentilly sked to solve the selfEstilizing onsensus prolem in the setting in whih there is one gent @the soureA whih does not change her mind @she knows the true input itAF husD given the ove nedotl motivtion for the prolemD emos uormn informlly referred to the prolem s the stuorn ird prolemF efter yer of work with emos nd his student vus fozkowskiD we were le to leverge on the power of simple dynmis nd prove the results outlined in etion PFTF hereD we illustrte the sound onnetion of the selfEstilizing it dissemintion prolem with the prolem of synhronizE ing loksD in selfEstilizing mnnerD in the uniform PU LL modelF e thus end up devising solution for the selfEstilizing lok synhroniztion prolemF he protool we present in ghpter W usesD s suroutineD ny dynmis for mjority onsensus suh s the QEwedin dynmis ndD in the uniform PULL model using messges of Q its onlyD the presented soluE tion llows the gents to synhronize lok modulo T in time essentilly logrithmi in T nd the size of the systemF es showed in ghpter WD this llows to remove the ssumption of n initil ommon time notion from n entire lss of protools @de(ned in 10 For simplicity's sake, we are assuming that the source's information is a binary value, i.e. a bit.

INTRODUCTION

etion PFTAD nd provides generl solution for the selfEstilizing majority it dissemintion prolemD whih is generliztion of the forementioned it dissemintion prolem whih inludes the mjority onsensus prolem s speil seF e hve onluded n outline of the story ehind the results proved in this workF sn the following hpter we present them formllyD with detiled disussion on their mening nd signi(neF grei P

Overview of Results

sn this hpterD we thoroughly disuss the otined results tht re then proved in the suessive hptersD following the sme order of topisF e thus egin with the everging dynmis whihD s we showD is le to solve omE puttionl prolem @the ommunity detetion prolemA whih is nonEtrivil even in entrlized settingD thus mking strong se for the omputtionl power of dynmisF 2.1. Distributed Community Detection via Averaging gonsider the following distriuted lgorithm on n undireted grphD whih we ll everging protool 1 F et the outsetD every node piks n initil vlueD independently nd uniformly t rndom in {-1, 1}Y thenD in eh synhronous roundD every node updtes its vlue to the verge of those held y its neighorsF e node lso tgs herself lue if the lst updte inresed its vlueD red otherwiseF @ee lso the pseudoode in elgorithm IFA Averaging protocol Rademacher initialization: et round t = 0 every node v ∈ V independently smples its vlue from {-1, +1} uniformly t rnE domY Updating rule: et eh susequent round t 1D every node v ∈ V @IA @everging dynmisA pdtes its vlue x (t) (v) to the verE ge of the vlues of its neighors t the end of the previous round @PA @goloringA sf x (t) (v)

x (t-1) (v) then v sets color (t) (v) = blueD otherwise v sets color (t) (v) = redF
Algorithm 1. seudoode of the everging protoolF sn ghpter RD we prove tht under vrious grph models exhiiting sprse lned uts @de(nitions QD RD SD TAD inluding the stochastic block model @he(nition T t pge QPD see lso etion QFIFPA HLL83D the proess reE sulting from the ove simple lol rule onvergesD in logrithmi timeD to oloring tht re)ets the underlying utD either extly or pproximtely 1 Note that the names Averaging protocol and Averaging dynamics denotes dierent protocols: the latter is the update function applied in step (1) of the updating rule of the former (see Algorithm 1).

depending on the grph modelF he se of n ext identi(tion of the two ommunities is lled strong reonstrutionD while the se of n pE proximte identi(tion of the ut is lled weak reonstrutionD s stted in the following de(nitionF Definition P @trong nd ek eonstrutionA. qiven grph

G = (V 1 ∪ V 2 , E) with V 1 ∩ V 2 = ∅D weak (block) reconstruction is twoEoloring of the nodes tht seprtes V 1 nd V 2 up
to smll frtion of the nodesF pormllyD we de(ne n εEweak reconstruction s mp

f : V 1 ∪ V 2 → {red, blue} suh tht there re two susets W 1 ⊆ V 1 nd W 2 ⊆ V 2 with 2 |W 1 ∪ W 2 | (1 -ε)|V 1 ∪ V 2 | nd f (W 1 ) ∩ f (W 2 ) = ∅.
hen ε = 0 we sy tht f is strong reconstructionF pinllyD we further show tht our pproh simply nd nturlly extends to more ommunitiesD providing quntittive nlysis for regulrized version of the stohsti lok model with multiple ommunitiesF e rodmp of the min results is given in pigure PF

Weak reconstruction on stochastic block models

Strong reconstruction on regular clustered graphs

Strong reconstruction on regular stochastic block models

Weak reconstruction on clustered graphs

Tight weak reconstruction on stochastic block models

A B D C E Figure 2.

ummry of the results proved in ghpter RX

A) → heorem ID B) → heorem QD C) → gorollry ID D) → gorollry PD E) → heorem PF wore preiselyD onsider grph G = (V, E)F e show thtD if prtition (V 1 , V 2 ) of G existsD suh tht 1 V 1 -1 V 2 is 3 @
or is lose toA rightEeigenvetor of the seond lrgest eigenvlue of the trnsition mtrix of GD nd the gp etween the seond nd the third lrgest eigenvlues is su0iently lrgeD our lgorithm identi(es the prtition (V 1 , V 2 )D or lose pproximtion thereofD in logrithmi numer of roundsF hough the everging dynmis does not expliitly perform ny eigenvetor omputtionD it exploits the spetrl struture of the underlying grphX in some senseD the dynmis is n implicit distriuted simultion of the power methodF he presented nlysis involves two min noveltiesD relting to how nodes ssign themselves to lustersD nd to the spetrl ounds tht we prove for ertin lsses of grphsF e oneptul ontriution is to mke eh nodeD t eh round tD ssign herself to luster @(nd its pleA y onsidering the di'erene etween its vlue t time t nd its vlue t time t -1F uh riterion removes the omponent of the vlue lying in the (rst eigenspe without expliitly omputing itF his ide hs two dvntgesX it llows prtiulrly simple lgorithmD nd it gives running time tht depends on the third eigenvlue of the trnsition mtrix of the grphF sn grphs tht hve the struture of two expnder grphs 4 joined y sprse utD the running time of the dynmis depends only on the expnsion of the omponents nd it is fster thn the mixing time of the overll grph @see pigure IPAF es disussed in etion QFID the everging dynmis is the (rst distriuted reonstrution lgorithm onverging fster thn the mixing timeF he everging dynmis works on ny grph where • the rightEeigenspe of the seond eigenvlue of the trnsition mE trix is orrelted to the ut etween the two lusters nd • the gp etween the seond nd third eigenvlues is su0iently lrgeF hile these onditions hve een investigted for the spetrum of the adjacency mtrix of the grphD the nlysis of the everging protool requires these onditions to hold for the transition mtrixF e tehnil novelty of the nlysis in ghpter R is to show tht suh onditions re met y lrge lss of grphsD tht inludes grphs smpled from the stochastic block modelF roving spetrl properties of the trnsition mtrix of rndom grph is more hllenging thn proving suh properties for the djeny mtrixD euse the entries of the trnsition mtrix re not independent 5 F sn the following setions we disuss in detil individul results on the spei( models we onsiderF 

OVERVIEW OF RESULTS

Definition

Q @glustered egulr qrphA. e (2n, d, b)Elustered regulr grph G = ((V 1 , V 2 ), E) is onneted grph over node set V 1 ∪ V 2 D with |V 1 | = |V 2 | = n nd suh thtX • ivery node hs degree dD • ivery node in luster V 1 hs b neighors in luster V 2 nd every node in V 2 hs b neighors in V 1 F
sf the two sugrphs indued y V 1 nd V 2 re good expnder grphs 6 nd b is su0iently smllD the seond nd third eigenvlues of the grph9s trnsition mtrix P = (1/d) • A re seprted y lrge gpF sn this seD we prove tht the following hppens w.h.p. 7 X sf the everging dynmis is iniE tilized y hving every node hoose vlue uniformly nd independently t rndom in {-1, 1}D within logrithmi numer of rounds the system enters regime in whih nodes9 vlues re monotonilly inresing or deresingD depending on the ommunity they elong to @see pigure IPAF es onseE queneD every node n pply simple nd ompletely lol lustering rule in eh roundD whih eventully results in strong reonstrutionF pormllyD we thus prove the followingD where 

λ = max {|λ 3 |, |λ 2n |} is the lrgest eigenvlue of P other thn λ 1 nd λ 2 F Theorem I @trong eonstrutionA. Let G = ((V 1 , V 2 ), E) be a con- nected (2n,
V 1 nd V 2 nd then smple rndom a(n)Eregulr grph over eh of V 1 nd V 2 nd rndom b(n)Eregulr grph etween V 1 nd V 2 F
Remark P. he regulr stohsti lok model n e instntited in di'erent wys depending on how one smples the rndom regulr grphs @for exmpleD vi the uniform distriution over regulr grphsD or y tking the disjoint union of rndom mthingsA MNS14, BDG + 16F e thus otin fst nd extremely simple dynmis for strong reonE strutionD over the full rnge of prmeters of the regulr stohsti lok 6 Recall the denition of expander graph in footnote 6 on page 22. model for whih this is known to e possile using entrlized lgorithms MNS14, BDG + 16F Corollary I @eonstrution in egulr tohsti flok wodelsA. Let G be a random graph sampled from the regular stochastic block model with

a -b > 2(1 + η) √ a + b
for an arbitrarily small constant η > 0, then the Averaging protocol produces a strong reconstruction in O(log n) rounds, w.h.p.

e further show tht nturl extension of the everging protoolD in whih nodes mintin n rry of vlues nd n rry of olorsD orretly identi(es hidden lned kEprtition in regulr lustered grph with gp etween eigenvlues λ k nd λ k+1 F Theorem P @wore gommunitiesA. Let G = (V, E) be a k-clustered dregular graph dened as above and assume that

λ = max{|λ 2n |, λ k+1 } < (1 -ε) • a -b d ,
for a suitable constant ε > 0. e remrk tht grphs smpled from the regulr stohsti lok model with k ommunities stisfy the onditions of heorem PD wFhFpF 2.1.2. Weak reconstruction for non-regular clustered graphs sn etion RFSD we extend the nlysis of etion RFR on regulr grph models to show tht the everging dynmis lso ensures wek reonstruE tion in lustered grphs hving two lusters tht stisfy n pproximte regulrity onditionD ording to the following de(nitionD nd tht lso exE hiit gp etween seond nd third eigenvlues of the trnsition mtrix P F Definition S @glustered γEegulr qrphsA. e (2n, d, b, γ)Elustered qiven (2n, d, b, γ)Elustered grphD in ghpter R we prove the following resultF Theorem Q @ek eonstrutionA. Let G be a connected (2n, d, b, γ)clustered graph with γ c(νλ 3 ) for a suitable constant c > 0. If λ < ν and λ 2 (1 + δ)λ for an arbitrarily-small positive constant δ, then the Averaging protocol produces an O(γ 2 /(νλ 3 ) 2 )-weak reconstruction within O(log n) rounds, w.h.p. 8 es n pplitionD we then prove tht these onditions re met y the stochastic block modelD whih o'ers populr frmework for the proilisti modelling of grphs tht exhiit good lustering or ommunity properties @see etion QFIFP for disussion of the signi(ne of the modelAF e here onsider the following simple version with two ommunities of equl sizeF Definition T @tohsti flok wodelA. he stohsti lok model G 2n,p,q D FkFF plnted isetion modelD onsists of 2n nodes nd n edge proility distriution de(ned s followsX he node set is prtitioned into two susets V 1 nd V 2 D eh of size nY edges linking nodes elonging to the sme prtition pper in E independently t rndom with proility p = p(n)D while edges onneting nodes from di'erent prtitions pper with proility q = q(n) < p @see lso pigure QAF glling a = pn nd b = qnD we prove tht grphs smpled from G 2n,p,q stisfy wFhFpF the ove pproximte regulrity nd spetrl gp onditions of heorem QD whenever ab > 25 (a + b) • log n @vemm UAD thus proving the following resultF e remrk tht the ltter result for the stohsti lok model follows from n nlysis tht pplies to generl non-random lustered grphs nd hene does not exploit ruil properties of rndom grphsF e further tehE nil ontriution desried in ghpter R is re(nedD dEho nlysis of the everging dynmis for the G 2n,p,q modelD showing tht this protool hieves wekEreonstrution in logrithmi time whenever a his re(ned nlysis requires deeper understnding of the eigenvetors of the transition matrix of GF gojEyghln CO10 de(ned ertin grph properties tht gurntee tht nerEoptiml isetion n e found sed on eigenvetor omputtions of the adjacency matrixF imilrlyD we show 8 Consistently, Theorem 1 is a special case of this one when γ = 0. simple su0ient onditions under whih right eigenvetor of the seond lrgest eigenvlue of the trnsition mtrix of grph pproximtely identiE (es the hidden prtitionF e give tight nlysis of the spetrum of the trnsition mtrix of grphs smpled from the stohsti lok model in eE tion RFUF xotie tht the nlysis of the trnsition mtrix is somewht hrder thn tht of the djeny mtrixD sine the entries re not independent of eh otherY we re not wre of omprle results in the existing litertureD whih we review in etion QFPF q p p Figure 3. e representtion of the stohsti lok model @he(nition TAX edges linking nodes elonging to the sme ommunity re inluded in the grph independently t rnE dom with proility p = p(n)D while edges onneting nodes in di'erent ommunities re inluded with proilE ity q = q(n) < pF 2.1.3. Beyond the Averaging dynamics: a wrap up he results presented in etion PFI show rigorous evidene of the posE siilities o'ered y ompletely deentrlizedD extremely simple nd nturl dynmis to ddress omputtionl prolems tht re omplex even in entrlized settingD suh s ommunity detetion in lustered grphsD whose omplexity ppers fr eyond most of the tsks to whih this kind of dyE nmis hve een trditionlly pplied in the re of distriuted omputingF roweverD we remrk tht the everging dynmis is liner dynmisD whih requires the nodes to e le to hold rtionl vlues nd to perform si rithmeti opertions on themF purthermoreD the everging dynmis opertes in the LOCAL modelD in whih eh node t eh round n send nd reeive messge from eh neighorF es disussed in etion IFIFPD inspired y the empiril suess of lel propgtion lgorithmsD in the next two setions we re going to investigte simpler dynmisD whih re nonEliner nd operte in rndom sprse ommunition models 10 F es 10 In the rest of this work we are going to consider more restrictive models such as the GOSSIP model, the stochastic restriction of the GOSSIP model known as uniform GOSSIP model, and the unidirectional restrictions of the uniform GOSSIP model known as uniform PULL and PUSH models. In the next section, we always consider the PULL model. In all these models, as is remarked in the following chapters, the interactions among nodes are very sparse: typically each node interacts with very few neighbors. onsequeneD they re wy more e0ient in terms of ommunition ost nd wy more roustF yur understnding of the ehvior of nonEliner dynmis is still t its infny nd is not su0ient to llow rigorous nlysis of their sophistited usesD eFgF for ommunity detetionF sn order to get to the point in whih there is resonle hope to rry on suh rigorous nlysesD we (rst hve to understnd their ehvior in solving more si prolemsF his is the purpose of setions PFP nd PFQD in whih we study two dynmis for some onsensus prolemsD eing fundmentl issues tht nturlly rise s suE prolems of more omplex tsks suh s ommunity detetionF 2.2. The 3-Majority Dynamics: Plurality and Stabilizing Consensus sn this setion nd the next one we onsider the stabilizing consensus nd the plurality consensus prolems in the ontext of ommunition network in whih eh of n nonymous nodes supports n initil opinion hosen from (nite set [k]D whih we n think of s olorsF e (rst onsider the plurlity onsensus prolemD in whih the initil hypothesis of n initil is towrd the plurlity opinion llows to irumvent some ore di0ulties of the generl onsensus prolem @ee etion SFRFIAF 2.2.1. The 3-Majority dynamics for plurality consensus sn the plurlity onsensus prolem it is ssumed tht the initil @opinionA on(gurtion hs su0iently lrge bias s towrds (xed opinion m ∈ [k] E tht isD the numer c m of nodes supporting the plurlity opinion @in shortD the initial plurality size A exeeds the numer c j of nodes supporting ny other opinion j y n dditive vlue sF he gol is to design n e0ient fullyEdistriuted protool tht let the network onverge to the plurality con-sensusD iFeFD to the monohromti on(gurtion in whih ll nodes support the plurlity opinionF ehing plurlity onsensus in distriuted system is fundmentl prolem rising in severl res suh s distriuted omputing DGM + 11, Pel02D ommunition networks PVV09D nd soil networks CDIG + 13, MS10, MNT14F pollowing some works nlyzing dynmis for this proE lem AD15, DGM + 11 @whih re reviewed in etion QFQAD we study the QEwjority dynmisD whih is disreteEtimeD synhronous proess in whihD t every roundD eh of the n nonymous nodes smples independently nd uniformly t rndom three nodes 11 D inluding herself nd with repetitionsD nd dopts the plurlity opinion mong those three @reking ties uniformly t rndomAF e onsider one of the simplest modelsD the uniform PU LL modelD in whih the network is liqueF 11 We remark that looking at only two random nodes and breaking ties uniformly at random would yield a process equivalent to the polling process [HP01] (see Lemma 66), which is known to converge to a minority opinion with constant probability even for k = 2 and large initial bias (i.e. s = Θ(n)) [HP01].

grph G = ((V 1 , V 2 ), E) @with γ < 1AD is grph over node set V 1 ∪ V 2 D where |V 1 | = |V 2 | = n suh thtX • ivery node hs degree d ± γdD • ivery node in V 1 hs b ± γd neighors in V 2 nd every node in V 2 hs b ± γd neighors in V 1 F
-b > Ω ε ( (a + b))F Theorem R @ight eonstrution in tohsti flok wodelsA. Let G ∼ G 2n,p,q . If (a -b) 2 > c opt (a + b) > 5 log n,
sn DGM + 11D tight nlysis of 3Einput dynmis for the median prolem on the lique ws presentedX the gol there is to onverge to stle on(gurtion where ll nodes support vlue whih is good pproximtion of the median of the initil on(gurtionF st turns out thtD in the inry se @iFe k = 2AD the medin prolem is equivlent to plurlity onsensus nd the 3Einput dynmis for the medin is equivlent to the QEwjority dynmisX es resultD they otinD for ny is s c √ n log n for some onstnt c > 0D n optiml ound Θ(log n) on the onvergene time of the 3Ewjority dynmis for the inry se of the prolem onsidered hereF roweverD for ny k 3D it is esy to see tht the two prolems ove di'er signi(ntly @in prtiulrD the medin my e very di'erent from the plurlityA nd thusD the two dynmis re di'erent from eh other s wellF woreoverD the nlysis in DGM + 11 E strongly sed on the properties of the medin funtion E nnot e dpted to ound the onvergene time of the 3Ewjority dynmisF reviously to the results presented in this setion nd proved in ghpter SD the role of the prmeter k = k(n) @the numer of initil opinionsAD in the onvergene time of this dynmis ws unknown ndD more generllyD the existene of e0ient dynmis rehing plurlity onsensus for k 3

ws left s n importnt open issue in AAE08, DGM + 11, BD13F sn ghpter SD we present n nlysis of the 3Ewjority dynmis in the generl se @iFeF for ny k ∈ [n]AF e onsequene of suh nlysis whih exempli(es the results of ghpter S is the followingF Corollary Q @pper found with fisA. Let c be any initial k-color conguration with s(c) 72 2 min 2k, 3 n log n n log n.

Then, the 3-Majority dynamics converges to the plurality opinion in O(min{2k, 3 n/log n} log n) time w.h.p.

he proof tehnique in etion SFP is urte enough to get nother interesting form of the ove upper ound tht does not depend on kF sn ftD gorollry Q is prtiulr se of the following generl theoremF Theorem S @qenerl pper found for QEwjorityA. Let λ be any value such that λ < 3 √ n and let c be any initial k-cd, with c 1 n/λ and s(c) 72 2λ n log n.

Then the 3-Majority dynamics converges to the plurality opinion in O (λ log n) time w.h.p.

sn prtiulrD heorem S implies tht the onvergene time is polylogE rithmi when the size of the plurlity opinion is of order n/polylognD s followsF Corollary R @olylogrithmi pper found for QEwjorityA. Let c be any initial k-cd with c 1 n/ log n and s(c) 72 2n log +1 n.

Then, the 3-Majority dynamics converges to the plurality opinion in O(log +1 n) time w.h.p. e then show tht the upper ound of heorem S is tight for wide rnge of the input prmetersF hen k (n/ log n) 1/4 D we prove the following lower ound Ω(k log n) on the onvergene time of the 3Ewjority dynmisF Theorem T @vower found for QEwjorityA. Let τ = inf{t ∈ N : C (t) is monochromatic} be the random variable indicating the rst round such that the system is in a monochromatic conguration. If the initial number of opinions is k (n/ log n) 1/4 and the initial conguration is c = (c 1 , . . . , c k ) with

max{c j : j = 1, . . . , k} n k + n k 1-ε for some ε > 0, then τ = Ω(k log n) w.h.p.
yserve tht the rnge of k in heorem S lrgely inludes the initil is required y our upper ound when k (n/ log n) 1/4 F oD the linear-in-k dependene of the onvergene time nnot e removed for wide rnge of the prmeter kF he nlysis presented in ghpter S provides ler piture of the 3E wjority dynmi proessF snformlly spekingD the lrger the initil vlue of c m is @wFrFtF nAD the smller the required initil is s nd the fster the onvergene time reF yn the other hndD the lowerEound rgument showsD s yEprodutD tht the initil plurlity size c m needs Ω(k) rounds just to inrese from n/k + o(n/k) to 2 n/kF e then prove generl negtive resultX nder the distriuted model we onsiderD within the lss of dynmis using no dditionl stte other thn the initil opinionsD no dynmis with t most 3 inputs @other thn the 3Ewjority dynmisA onverges wFhFpF to plurlity onsensus strting from ny initil on(gurtion with is s = o(n)F he ltter result is formlly stted in heorem PIF he sttement requires few de(nitions @de(nitions IHD IID IP nd IRAD nd is deferred to etion SFQFPF sn other wordsD within the lss oveD not only there is no 3Einput dyE nmis tht hieves onvergene to plurlity onsensus in o(k log n) roundsD ut the 3Ewjority dynmis is the only one tht eventully hieves this gol t llD no mtter how long the proess tkesF ther interestinglyD y ompring the O(log n) ound for the QEwedin dynmis DGM + 11 to our negtive results for the plurlity on the sme distriuted modelD we get n exponentil timeEgp etween the tsk of omputing the medin nd the one of omputing plurlity @this hppens for instne when k = n a D for ny onstnt 0 < a < 1/4AF e nturl question suggested y the previous results is whether @slightlyA lrger rndom smples of nodes9 neighorhoods might led to signi(nt imE provements in onvergene time to plurlity onsensusF e provide negE tive nswer to this questionF o this purposeD we onsider the hElurlity dyE nmisD iFeFD the nturl generliztion of the 3Ewjority dynmis in whih every nodeD in eh roundD updtes her opinion ording to the plurlity of the opinions supported y h rndomly smpled neighorsF e prove the following lower oundF Theorem U @vower found for hEwjorityA. Let C (t) be the random variable indicating the conguration at round t according to the h-Plurality dynamics and let

τ = inf{t ∈ N : C (t) is monochromatic}. If the initial conguration c = (c 1 , . . . , c k ) is such that max{c j : j = 1, . . . , k} 3n 2k , then τ = Ω(k/h 2 ) w.h.p.
e emphsize tht slle nd e0ient protools must yield low omE munition omplexity nd smll node ongestion in every roundF hese properties re gurnteed y the hElurlity dynmis only when h is smllD sy h = O(polylog(n))X sn this seD our lower ound implies tht the reE sulting speedEup is only polylogrithmi with respet to the 3Ewjority dyE nmisF yne motivtion for dopting dynmis in rehing @simpleA onsensus 12 @suh s the QEwedin dynmis in DGM + 11A lies in their provlyEgood self-stabilizing properties ginst dynamic adversary corruptions X st turns out tht the 3Ewjority dynmis hs good selfEstilizing properties for the plurality consensus prolemF wore formllyD T -bounded adversary knows the stte of every node t the end of eh round ndD sed on this knowlE edgeD she n orrupt the opinion of up to T nodes in n ritrry wyD just efore the next round eginsF sn this seD the gol is to hieve n lmostEstle phse where ll ut t most O(T ) nodes gree on the plurlE ity vlueF his lmostEstility phse must hve poly(n) lengthD with high proilityF yur nlysis shows tht the 3Ewjority dynmis gurntees the selfEstiliztion property for plurlity onsensusD s given in the followingF

Corollary S @pper found with edversryA. Let λ be any value such that λ < 3 √ n and let c be any initial conguration, with c 1 n/λ and s(c) 24 2λ n log n.
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In the (simple) consensus problem the goal is to reach any stable monochromatic conguration (any opinion is accepted) starting from any initial conguration.

The 3-Majority dynamics achieves O(s(c)/λ)-plurality consensus against any F -bounded adversary with F = o(s(c)/λ), and the convergence time is O (λ log n)

w.h.p.
e hve onluded our overview of the results proved in setions SFID SFP nd SFQ onerning the performne of the QEwjority dynmis in solving the plurlity onsensus prolemF sn the next setionD we silly drop the fundmentl ssumption mde so frD tht is the presene of n initil bias etween the plurlity opinion nd ll other onesF ther thn onverging to spei( vlueD s we explin shortly our next gol is to onverge to ny opinion in stable wyF 2.2.2. The 3-Majority dynamics for stabilizing consensus vet us ll Σ the (nite set of possile initil opinionsF e ll n opinion valid if it is held y t lest one node t the eginningF sn this setion we re interested in the following senrioX efter every node performs step of QEwjority dynmis y pulling the opinion from three rndom nodes nd setting her new opinion to the mjority one @rekE ing ties ritrrilyAD n dptive dynamic adversary n ritrrily hnge the opinions of suset of the nodesD possily hoosing di'erent susets over di'erent rounds @see pigure RAF e onsider F -dynamic adversaries thtD t every roundD n hnge the opinions of up to F nodesD possily introduing nonEvlid opinionsF onvergene of the 3Ewjority dynmis ws open even in the sene of n dversry whenever the initil is towrd some plurlity opinion is not lrgeF sn this setion we desrie in more detil the onsensus prolem nd vrious network senrios in whih it is of interestD nd the results in this setting proved in ghpter SD while we defer omprison with previous relted results to etion QFSF PFPFPFIF Consensus (or Byzantine agreement). he consensus prolem in distriuted network is de(ned s followsX e olletion of gentsD eh holding piee of informtion @n element of set ΣAD intert with the gol of greeing on one of the elements of Σ initilly held y t lest one gentD possily in the presene of n dversry tht is trying to disrupt the protoolF he onsensus prolem in the presene of n dversry @known s fyzntine greementA is fundmentl primitive in the design of distriuted lgorithms PSL80, Rab83F he gol is to design distriutedD lol protool tht rings the system into on(gurtion tht meets the following onditionsX @IA Agreement X ell nonEorrupted nodes support the sme opinion vY @PA Validity X he opinion v must e valid oneD iFeFD n opinion whih ws initilly delred y t lest one @nonEorruptedA nodeY @QA Termination X ivery nonEorrupted node n orretly deide to stop running the protool t some roundF here is onsiderle interest in the design of onsensus lgorithms in models tht severely restrit oth ommunition nd omputtion AAE08, BCN + 15a, DGM + 11D oth for e0ieny onsidertions nd euse suh models pture spets of the wy onsensus is rehed in soil networksD iE ologil systemsD nd other domins of interest in network siene AAD + 06, AFJ06, BSDDS10, CCN12, Dot14, FHK14, FPM + 02F es in the previous setionD we onsider the uniform PU LL modelF sn this prgrphD we rie)y review the model nd the underlying ssumpE tionsF sn ompline with the requirements of dynmisD we onsider the ove prolem in the restritive setting of n nonymous network in whih nodes possess no unique shsD nor do they hve ny stti inding of their lol link ports @iFeFD nodes nnot keep trk of who sent what AF prom the point of view of omputtionD the most prohiitive setting is to ssume tht eh node only hs O(log |Σ|) its of memory villeD iFeFD it rely sufE (es to store the numer of opinionsF e further ssume tht this ound extends to link ndwidth ville in eh roundF pinllyD ommunition pilities re severely onstrined nd nonEdeterministiX ivery node n ommunite with t most @smllA onstnt numer of rndom neighors in eh roundF hese onstrints re wellEptured y the uniform PULL ommunition model DGH + 87, KSSV00, KDG03X et every roundD every node n exhnge @shortA messge @syD Θ(log(|Σ|)) itsA with eh of t most h rndom neighorsD where h is @smllA solute onstnt 13 F e sequentil vrint of the uniform PU LL model is the (random) populationprotocols model AAE08, AAE06, AAD + 06 in whihD in eh roundD single intertion etween pir of rndomly seleted nodes oursF he lssi notion of onsensus is too strong nd unrelisti in the foreE mentioned distriuted settingsD tht insted rely on weaker forms of onsenE susD deeply investigted in AAE08, AFJ06, Asp12, DGM + 11F sn this hpterD we onsider vrint of the stabilizing-consensus prolem AFJ06 onsidered in AAE08X hereD solution is required to onverge to stle regime in whih the ove three properties re gurnteed in relxedD still useful form 14 F wore preiselyX Definition U @tilizing elmostEgonsensusA. trting from ny initil on(gurtion with k vlid opinionsD stabilizing almost-consensus protool must ensure the following propertiesX is a stabilizing almost-consensus protocol in the presence of any F -dynamic adversary and its convergence time is O((

k 2 √ log n + k log n)(k + log n)), w.h.p.
es simple onsequene of the nlysis provided in ghpter SD we lso get the following ound on the onvergene time in the presene of ny Fstatic adversary with lrger ound on F D where y F -static adversary we men n dversry tht looks t the initil on(gurtionD then hnges the opinion of up to F ritrry nodes ndD fter thtD no further dversry9s tions re llowedF Corollary T @pper found with ttiEedversryA. Starting from any initial conguration with k n α active opinions, where α > 0 is a suitable constant, the 3-Majority dynamics reaches almost-consensus within O(( e remrk tht heorem T provides n Ω(k log n) ound on the onverE gene time of the QEwjority dynmisD whih holds even when the system strts from ised on(gurtionsF xot ssuming lrge initil is of the plurlity opinion onsiderly omplites the nlysisF sndeedD the mjor open hllenge is the nlysis from @lmostA uniform on(gurtionsD where the system needs to rek the initil symmetry in the sene of signi(nt drifts towrds ny of the initil opinionsF o frD the symmetry reking in the 3Ewjority dynmis hs never een nlyzed even in the nonEdversril seF woreoverD the phse efore symmetry reking is the one in whih the dversry hs more hnes to use undesired ehvioursX vong delys ndGor onvergene towrds nonE vlid opinionsF sn etion SFRD fter providing some preliminriesD we shll disuss the ove tehnil hllengesF pinllyD one my wonder whether it is possile to provide gurntees out the opinion tht eventully hieves mjorityF es for this pointD the results of ghpter S @lemms PW nd QH in etion SFRFRA imply tht n opinion is not going to eome mjority unless it is near-pluralityD iFeF it is lose to the size of the plurlity opinionF 2.3. The Undecided-State dynamics: Plurality Consensus sn this setionD we onsider the ndeidedEtte dynmis 16 tht hs een introdued in AAE08 nd nlyzed in AAE08, PVV09 only in the inry se @iFeF k = 2AF he nlysis of the multivlued se @iFeF k > 2A hs een proposed in AAE08, AD15, CER14 

k 2 √ log n+ k log n) • (k + log n))

Undecided-State dynamics

Agents' possible states: ih gent either supports n opinion i ∈ [k] or she is in the undecided stteD n extr stte tht gents n supportF he undeided stte does not ount s n opinionD nd gents supporting it re sid to e undeided @or equivlentlyD to hve no opinionAF 1: u pulls the stte of rndomlyEseleted neighor vF 2: sf u is supporting ny opinionD nd v9s opinion di'ers from u9s oneD the gent enters the undecided stteF xote tht u does not updte her stte if her opinion oinides with v9s oneF 3: sf u is undeidedD she opies v9s stteF Algorithm 2. yne round of ndeidedEtte dyE nmisD exeuted y eh gent uF @see lso le IFA e investigte the e0ieny of ndeidedEtte dynmis wFrFtF the plurlity onsensus prolemF es in etion PFPD rell tht in the plurlity onsensus prolem eh gent of distriuted system initilly supports n opinionD iFeF numer i ∈ [k] = {1, 2, . . . , k} @with 2 k nAF sn the initil opinion on(gurtion c = (c 1 , . . . , c k ) @where c i denotes the numer of gents supporting opinion i ∈ [k]AD there is n initil plurality c 1 of gents supporting the plurality opinion @wFlFoFgFD we ssume tht opinion ommuE nities re orderedD so tht c i c i+1 for ny i k -1AF snitillyD every gent only knows her own opinionY the gol is to (nd distriuted lgorithm thtD wFhFpF 17 D rings the system into the target on(gurtionD iFeFD the monohroE mti on(gurtion in whih ll gents support the initil plurlity opinionF sn the reminderD the suset of gents supporting opinion i is lled the i-opinion communityF es disussed further in etion QFRD the performne of ndeidedEtte dynmis on the omplete grph hs een evluted wFrFtF the following prmetersX the numer n of nodesD the numer k of opinionsD nd the initil bias towrds the plurlity opinionD with the ltter hrterized in terms of prmeter tht only depends on the reltive mgnitude 18 of c 1 nd c 2 F roweverD when k > 2D ny suh mesure of the initil is is not sensitive enough to urtely pture the onvergene time of plurlity protoolX global mesure is neededD iFeFD one tht re)ets the whole initil opinion on(gurtionF o etter ppreite this issueD onsider the two on(gurE tions c nd c in pigure SF hether the solute di'erene or the reltive rtio is used to mesure the initil isD the opinion on(gurtion c pE pers to e not worse thn cF tillD omputer simultions nd intuitive rguments suggest thtD under ny nturl plurlity protoolD the lmostE uniform opinion distriution c n result in muh lrger onvergene time thn the highlyEonentrted opinion on(gurtion cF o the est of our knowledgeD the nlysis presented in ghpter T is the (rst one whih investigtes the impt of the whole initil opinion on(guE rtion on the speed of onvergene of plurlity protoolsF

Supporting nodes

Bias

Supporting nodes

Bias where c 1 is @one ofA the plurlity opinion@sAF e use md to hrterize the is of the initil on(gurtionF sn prtiE ulrD note tht md(c) mesures the extent to whih c is uniformX sndeedD the higher the extent of the is towrds smll suset of the opinions @inluding the plurlity oneAD the smller the vlue of md(c)F es n exmE pleD in pigure SD md(c) n e sustntilly smller thn md(c )F et the extremesD when there re only O(1) opinion ommunities of size Θ(c 1 )D we hve md(c) = Θ(1) whileD when Θ(k) opinion ommunities hve size Θ(n/k)D we hve md(c) = Θ(k)F e visul representtion of md is provided in pigure TF is to dd one extr stte to somewht ount for the previous opinion supported y n gent @see etion TFI nd le I for de(nition of this dyE nmisAF sn AD15, AAE08, BD13, BTV09, DV12, PVV09, JKV12D the sme dynmis hs een nlyzed under di'erent distriuted models ndGor under very di'erent initil ssumptions @mong othersD under the ssumption tht k is n solute onstntAF sn these settingsD importnt spets of the omplex dependene of the dynmis9 evolution on the overll shpe of the initil opinion on(gurtion re missedF e nlyse the ndeidedEtte dynmis using tehnique tht strongly deprts from pst work nd tht llows us to ddress the plurlity onsensus prolem in the generl settingF yur nlysis hieves lmostEtight ounds on onvergene timeD s formlly given y the followingF Theorem W @wonohromti pper foundA. Let k = O (n/ log n) 1/3 and let c be any initial conguration such that c 1

c 1 c 2 . . . c 1 c 2 . . .
       ≤ k
(1 + α) • c 2 where α is an arbitrarily small positive constant. Then within time O (md(c) • log n) the system converges to the plurality opinion, w.h.p. his result is lmostEtight in strong senseD s expressed in the other following theoremF Theorem IH @wonohromti vower foundA. Let k = O (n/ log n) 1/6 . Starting from any opinion conguration c the convergence time of the Undecided-State dynamics is Ω(md(c)), w.h.p.

vet us ompre heorem W with the orresponding results in the preE vious setionF eording to heorem S nd heorem TD when the initil di'erene is is s = Ω( √ kn log n)D the 3Ewjority dynmis onverges in Θ(min{k, n 1/3 } log n) rounds using Θ(log k) memory nd messge sizeF gonE vergene times of the 3Ewjority dynmis eome polylogrithmi only if c 1 n/polylog(n)D thus they re not polylogrithmi whenever k = ω(polylog(n)) nd c 1 = o(n/polylog(n))F his is the prmeter rnge where nlysis of the ndeidedEtte dynmis in ghpter T leds to n expoE nentil speed up wFrFtF the onvergene time of the 3Ewjority dynmisF por exmpleD onsider n initil oligrhi senrio where k

= n 1/4 nd suset L ⊆ [k] exists suh tht • |L| = polylog(n)D • for ny i ∈ LD ci ∼ n/ √ kD nd • for ny i ∈ [k] \ LD ci ∼ n/kF glerlyD 1, 2 ∈ L nd the resulting monohromti distne is md(c) = polylog(n)F essuming c 1
(1 + α)c 2 for some α > 0 the upper ound of heorem W implies thtD strting from ny suh on(gurtionD the ndeidedE tte dynmis onverges in polylogrithmi timeD wheres the QEwjority dynmis onverges in Θ(k log n) time @theorems S nd TAF 2.3.1. Uniform PU LL Simulation in the GOSSIP Model he nlysis of the ndeidedEtte dynmis provided in ghpter T is rther generl nd it n e extended to other interesting topologiesF es se supporting this limD we show how to dpt the ndeidedEtte dynmis for the lss of d-regular expanders HLW06D for ny degree d 1F sn this vrint of the ndeidedEtte dynmisD the tsk of seleting rndom neighors is simulted y performing n independent rndomEwlks of suitle lengthF hnks to the wellEknown rpidlyEmixing properties of dEregulr expnder grphs 19 HLW06, LPW09D we n prove the following theoremF Theorem II @wonohromti found on ixpndersA. Let G = (V, E) be a d-regular graph with constant expansion. For any initial conguration he mjor tehnil hurdle here is proving tht this vrint of the proE tool still requires polylog(n) lol memoryF o this imD we prove tht the node congestion is t most polylog(n)F he nlysis of the proess tht reE sults from running prllel rndom wlks over grph hs een the sujet of extensive reserh in the pst AAK + 08, FKP11, HPP + 12, Pel00, DSMP12F roweverD to the est of our knowledgeD none hs ddressed the issues we onsider hereF sn prtiulrD the nlysis of node ongesE tion is fr from trivil nd of independent interestD sine e0ient protools for severl importnt tsks in the GOSSIP model @suh s node-sampling DSMP12D network-discovery prolems HPP + 12D nd averaging proE lems BGPS06A rely on the use of prllel rndom wlksF his leds us diretly to the sujet of the next setionD whih is the study of rndom wlks in the uniform PU SH modelF sn the next setion we deprt from the spei( pplition of rndom wlks in the GOSSIP model whih is instrumentl to heorem IID nd we study the ongestion tht 'ets the dynmis whih results y running prE llel rndom wlks in the uniform PUSH modelD s n importnt primitive lso to other prolems disussed in the next setionF 2.4. Random Walks in the PUSH Model sn this setion we study the exeution of n prllel rndom wlks in the uniform PUSH modelD in whih t eh round eh node n send messge to neighor hosen uniformly t rndomF e fous on the se of omplete grphF sn the setting of omplete topologyD it is onvenient to express the proess s the following repeated balls-into-bins proessF qiven ny n 2D we initilly ssign n lls to n ins in n ritrry wyF henD t every roundD from eh nonEempty in one ll is hosen ording to some strtE egy @rndomD pspyD etA nd reEssigned to one of the n ins uniformly t rndomF st is esy to see tht the ltter proess is equivlent to the former oneD nd tht the ft tht from eh node @inA only one token @llA n move @e extrtedA genertes some stohsti dependene mong the positions of the tokens @llsA nd the numer of tokens on eh node @lls in eh inAD iFeF the maximum load of the proessF he ojetive of ghpter U is indeed to investigte the impt of the stohsti dependene on the mximum lodF wore formllyD inspired y previous notions of @lodA stility AKU05, BFG03D 

Dol00D s followsF

Definition W @@roilistiA elfEtilizing roessA. e sy tht proess is @stohstillyA self-stabilizing if it is stle nd ifD moreoverD strtE ing from any on(gurtionD it onverges to legitimte on(gurtionD wFhFpF he convergence time of selfEstilizing proess is the mximum numer of rounds required to reh legitimte on(gurtion strting from ny onE (gurtionF his nturl notion of @proilistiA selfEstiliztion hs lso een inE spired y tht in IJ90 for other distriuted proessesF tility hs onsequenes for other importnt spets of this proessF por instneD if the proess is stleD we n get good upper ounds on the progress of llD nmely the numer of rounds the ll is seleted from its urrent in queueD long sequene of t 1 rounds @suh implition is ruil in mny pplitionsD eFgF in etion TFQAF purthermoreD we n eventully ound the parallel over timeD iFeFD the time required for every ll to visit all insF elfEstiliztion hs lso importnt onsequenes when the system is prone to trnsient fults Dij74, Lam85, Dol00F he repeted llsEintoEins proess ws (rst studied in BCEG10D where it is used s ruil suEproedure to optimize the messge omplexE ity of gossip lgorithm in the omplete grphD nd then in BCN + 15a, EK15F he nlysis in BCEG10, EK15 @onlyA holds for veryEshort @iFeF logrithmiA periodsD while the nlysis given in etion TFQ onsiders periods of ritrry length ut it @onlyA llows to hieve ound on the mximum lod tht rpidly inreses with timeX fter t roundsD the mximum lod is ounded y O √ t D wFhFpF fy dopting the pspy strtegy t every in queueD the ltter result esily implies tht the progress of ny ll over peE riods of t rounds is Ω( √ t)D wFhFpF yn the other hndD n upper ound O n 2 log n for the prllel over time of the repeted llsEintoEins proess esily follows from the ft tht the over time of one single rndom wlk on the omplete grph is Θ(n log n)D wFhFpF revious results re thus not helpful to estlish whether this proess is stle @orD even moreD stohstilly selfEstilizingA or notF woreoverD the previous nlyses of the mximum lod in BCN + 15a, BCEG10, EK15 re fr from tightD sine they rely on some rough pproximtions of the studied proess vi otherD muh simpler wrkov hinsX for instneD in ghpter TD we present the pproh dopted in BCN + 15aD in whih they onsider the proess E whih lerly domintes the originl one E whereD t every roundD new ll is inserted in every empty inF ht nlysis thus does not exploit the glol invrint @ (xed numer n of llsA of the originl proessF sn ghpter UD we provide the followingD lmostEtight nlysis of the reE peted llsEintoEins proess tht signi(ntly deprts from previous ones nd show tht the system is stohstilly selfEstilizingF Theorem IP @epeted flls into fins wx vodA. Let c be an arbitrarilylarge constant and let q be any legitimate conguration. Let the repeted llsEintoEins proess start from Q (0) = q. Then, over any period of length O(n c ), the process visits only legitimate congurations, w.h.p., i.e. M (t) = O(log n) for all t = O(n c ), w.h.p. Moreover, starting from any conguration, the system reaches a legitimate conguration within O(n) rounds, w.h.p. he previous result strongly improves over the est previous ounds BCN + 15a, BCEG10, EK15 nd it is lmost tightD sine the lssil lower ound Ω(log n/ log log n) on the mximum lod @seeD eFgFD MU05A lerly pplies lso in our repeted settingF heorem IP further implies thtD under the pspy queueing poliyD ny ll performs Ω(t/ log n) steps of its individul rndom wlk over ny sequene of t = poly(n) rounds wFhFpFD whih implies tht the prllel over time is O n log 2 n D wFhFpF his is only log n ftor wy from the lower ound following from the singleEll proessF 2.4.1. An application to multiple resources assignment e oserve tht the proess of prllel rndom wlks in the uniform PU SH modelD models nturl rndomized solution to the prolem of (parallel) resource (or task) assignment in distriuted systems @this prolem is lso known s traversal A San06, Lyn96F sn the si seD the gol is to ssign one resoure in mutul exlusion to all proessors @iFeF nodesA of distriuted systemF his is typilly desried s traversal proess perE formed y token @representing the resoure or tskA over the networkF he proess termintes when the token hs visited ll nodes of the systemF nE domized protools for this prolem Coo11 re e0ient pprohes whenD for instneD the network is prone to fultsGhnges ndGor when there is no glol leling of the nodesF e simple rndomized protool is the one sed on random walks Coo11, IJ90, IKOY02X strting from ny nodeD the token performs rndom wlk over the network until ll nodes re visitedD wFhFpF he (rst round in whih ll nodes hve een visited y the token is lled the cover time of the rndom wlk Coo11, LPW09F he expeted over time for generl grphs is O(|V | • |E|) @seeD for exmpleD MU05AF sn distriuted systemsD we often re in the presene of several resoures or tsks tht must e proessed y every node in parallelF his nturlly leds to onsider the prllel version of the si prolem in whih n di'erent tokens @resouresA re initilly distriuted over the set of nodes nd every token must visit ll nodes of the networkF imilrly to the si seD n e0ient rndomized solution is the one sed on @prllelA rndom wlksF sn order to visit the nodesD every token performs rndom wlk under the nturl onstrint tht every node n proess nd relese t most one token per roundF eginD the mximum lod is ritil omplexity mesureX for instneD it n determine the required u'er size t every nodeD ounds on the token progress ndD thusD on the prllel over timeF por this seD our results imply thtD every token visits ll nodes of the system with t most logrithmi dely wFrFtF the se of single tokenX soD we n derive n upper ound O(n log 2 n) for the prllel over timeD strting from any initil on(gurtionF e n lso onsider the dversril model in whihD in some faulty roundsD n dversry n reEssign the tokens to the nodes in n ritrry wyF he selfEstiliztion nd the liner onvergene time shown in heorem IP imply tht the O n log 2 n ound on the over time still holdsD provided tht fulty rounds our with frequeny no higher thn cnD for su0iently lrge onstnt cF sn the next setions we ontinue our exposition of pplitions of dyE nmis y investigting two si prolems in distriuted omputingD the it dissemintion @etter known s rumor spreading A nd the plurlity onE sensus prolems @the seond of whih hs lredy een the min hrter of setions PFP nd PFQAD in two hllenging fundmentl settingsF sn etion PFSD we onsider the prolems in the uniform PU SH model when ommuE nition is 'eted y noiseD iFeF when there is lrge hne tht messges sent re misunderstoodF sn etion PFT we onsider the prolem of it disE semintion in the PU LL model in the selfEstilizing ontextF e show tht the selfEstilizing it dissemintion prolem is deeply onneted to tht of lokEsynhroniztionD nd we thus investigte lso the ltterF he rtionle ehind the order of the two setion is given y the inrese in sophistition of the two solutionsX in etion PFS @orresponding to ghpter VAD we provide n lgorithm thtD lthough not s simple s dynmisD is still rguly natural Y in etion PFT @orresponding to ghpter WAD the solution uses dyE nmis s lk ox utD lthough the resulting protool is simple from tehnologil point of viewD it nnot e rgued to e iologilly relevntF 2.5. Bit Dissemination and Consensus Despite Noise o gurntee relile ommunition over network in the presene of noise is the min gol of xetwork snformtion heory EGK11F hnks to the hievements of this theoryD the impt of noise n often e drstilly redued to lmost zero y employing error-correcting codesD whih re prtiE l methods whenever deling with rti(il entitiesF roweverD the sitution is rdilly di'erent for senrios in whih the omputtionl entities re iE ologilF sndeedD from iologil perspetiveD omputtionl proess n e onsidered simple only if it onsists of very si primitive opertionsD nd is extremely lightweightF es onsequeneD it is unlikely tht iologil entities re employing tehniques like errorEorreting odes to redue the impt of noise in ommunitions etween themF etD iologil signls re sujet to noiseD when genertedD trnsmittedD nd reeivedF his rises the intriguing question of how entities in iologil ensemles n ooperte in presene of noisy ommunitionsD ut in sene of mehnisms suh s errorEorreting odesF en importnt step towrd understnding ommunitions in iologil ensemles hs een hieved in FHK14D whih showed how it is possile to ope with noisy ommunitions in sene of oding mehnisms for solving omplex tsks suh s bit dissemination nd majority consensusF uh result provides highly vlule hints on how omplex tsks n e hieved in frmeworks suh s the immune system Car04D teri popultions WB05D or superEorgnisms of soil insets HW09D despite the presene of noisy ommunitionsF sn the se of it dissemintion we ssume tht soureEnode initilly hndles itD set to some inry vlueD lled the correct opinionF his opinion hs to e trnsmitted to ll nodesD in noisy environmentD modeled s omplete network with unrelile linksF wore preiselyD messges re trnsmitted in the network ording to the lssil uniform PU SH model DGH + 87, KSSV00, Pit87 whereD t eh roundD every node n send one inry opinion to neighor hosen uniformly nd independently t rndom utD efore rehing the reeiverD tht opinion is )ipped with proility t most 1 2ε with ε > 0F e refer to this vrint of uniform PUSH model s the noisy 20 @uniformA PU SH modelF sn the se of mjority onsensusD it is ssumed tht some nodes re supporting opinion HD some nodes re supporting opinion ID nd some other nodes re supporting no opinionF he ojetive is tht ll nodes eventully support the initilly most frequent opinion @H or IAF wore preiselyD let A e the set of nodes with opinionD nd let b ∈ {0, 1} e the mjority opinion in AF he majority bias of A is de(ned s 1 2 (|A b | -|Ab|)/|A| where A i is the set of nodes with opinion i ∈ {0, 1}F sn FHK14D it is proved thtD even in ove very noisy settingD the it dissemintion nd the noisy mjority onsensus prolems n e solved quite e0ientlyF pei(llyD n lgorithm is provided tht solves the noisy it dissemintion prolem in O( 1 ε 2 log n) ommunition roundsD with high proility 21 in nEnode networksD using O(log log n + log(1/ε)) its of memE ory per nodeF etullyD s speil se of the previous lgorithmD one gets n lgorithm with the sme forementioned performnes whih solves the noisy mjority onsensus prolem for |A| = Ω( 1 ε 2 log n) with mjorityEis Ω( log n/|A|)F xote tht the provided mjority onsensus lgorithm reE quires tht the nodes re initilly wre of the size of AF e remrk tht oth lgorithms exhnge solely opinions etween nodesD nd re optimlD sine si informtionEtheoreti rguments show tht oth it disseminE tion nd mjority onsensus require Ω( 1 ε 2 log n) rounds in nEnode networksD wFhFpF yur ojetive here is to extend the work of FHK14 to the nturl se of n ritrry numer of opinionsD to go eyond proof of oneptF he prolem tht results from this extension is n instne of the plurality consensus prolem in the presene of noiseD iFeFD the prolem of mking the system onverging to the initilly most frequent opinion @iFeFD the plurality opinionAF sndeedD the plurlity onsensus prolem nturlly rises in severl iologil settingsD typilly for hoosing etween di'erent diretions for )ok of irds BSDDS10D di'erent speeds for shool of (sh SKJ + 08D or di'erent nesting sites for nts FPM + 02F he omputtion of the most frequent vlue hs lso een oserved in iologil ells CCN12F he ultimte gol of our investigtion is to mke progress towrd the solution of the ove prolems vi simple dynmisF et presentD the protool of FHK14 nd tht present hereD lthough lredy very simpleD re fr from the timeEhomogeneous property of dynmisD sine they rely on the ility of nodes to oordinte in dopting di'erent rules t di'erent timesF rowever we remrk thtD within the single phses of these protoolsD the mehnisms 20 Observe that the smaller is ε, the more uniformly random received messages appear, and the problem becomes therefore harder. We remark that, even for very large values of ε the problem does not reduce to adversarial scenarios such as those considered in Section 2.2, or more general byzantine settings where even simple consensus cannot be achieved if the fraction of byzantine nodes exceeds 1 3 . For example, if ε = 1 7 , at each round a fraction greater than 1 3 of the messages is corrupted, therefore a naive interpretation of corrupted messages as messages sent by adversarial agents is of no use. dopted y nodes essentilly redue to the hEwjority dynmis nd other elementry rulesF e generlize the results in FHK14 to the setting in whih n ritrry lrge numer k of opinions is present in the systemF sn the ontext of it dissemintionD the orret opinion is vlue i ∈ {1, . . . , k}D for ny onstnt k 2F snitillyD one node supports this opinion iD nd the other nodes hve no opinionsF he nodes must exhnge opinions so thtD eventullyD ll nodes support the orret opinion iF e lso rell thtD s disussed in setions PFP nd PFQD in the ontext of @reltiveA mjority onsensusD lso known s plurality consensusD eh node u initilly supports one opinion i u ∈ {1, . . . , k}D or hs no opinionF he ojetive is tht ll nodes eventully dopt the plurality opinion @iFeFD the opinion initilly held y more nodes thn ny otherD ut not neessrily y n overll mjority of nodesAF es in FHK14D we restrit ourselves to nturl lgorithms Cha09D whih informlly 22 mens tht the lgorithm essentilly onsists in exhngE ing opinions in strightforwrd mnner @iFeFD they do not use the opinions to enodeD eFgFD prt of their internl stteAF por oth prolemsD the di0ulty omes from the ft tht every opinion n e modi(ed during its trversl of ny linkD nd swithed t rndom to ny other opinionF qenerlizing noisy it dissemintion nd noisy mjority onsensus to more thn just two opinions requires to ddress series of issuesD some oneptulD others tehnilF goneptullyD one needs (rst to rede(ne the notion of noiseF sn the se of inry opinionsD the noise n just )ip n opinion to its omplementF sn the se of multiple opinionsD n opinion i sujet to modi(tion is swithed to nother opinion i D ut there re mny wys of piking i F por instneD i n e piked uniformly t rndom @uFFrFA mong ll opinionsF yrD i ould e piked s one of the lose opinionsD syD either i+1 or i-1 modulo kF yrD i ould e reset toD syD i = 1F sn ftD there re very mny lterntivesD nd not ll enle it dissemintion nd plurlity onsensus to e solvedF yne of our ontriutions is to hrterize noise matrices P = (p i,j )D where p i,j is the proility tht opinion i is swithed to opinion jD for whih these two prolems re e0iently solvleF imilr issues rise forD eFgFD rede(ning the mjority is into plurality biasF he tehnil di0ulties re mnifoldF e key ingredient of the nlysis in FHK14 is (ne estimte of how nodes n mitigte the impt of noise y oserving the opinions of many other nodesD nd then onsidering the mode of suh smpleF heir proof relies on the ft tht for the inry opinion seD given smple of size γD the numer of Is nd Hs in the smple sum up to γF iven for the ternry opinion seD the dditionl degree of freedom in the smple rdilly hnges the nture of the prolemD nd the impt of noise is sttistilly fr more di0ult to hndleF 22 We are not aware of any serious attempt at a rigorous denition of what a natural algorithm is. elsoD to ddress the multivlued seD we hve to ope with the ft thtD in the uniform PU SH modelD the messges reeived y nodes t every round re orreltedF o see whyD onsider n instne of the system in whih ertin opinion b is held y one node onlyD nd there is no noise t llF sn one roundD only one other node n reeive bF st follows tht if ertin node u hs reeived bD no other nodes hve reeived itF husD the messges eh node reeives re not independent @see pigure VAF sn ghpter VD we show how to otin onentrtion of proility in this dependent setting y leverging oisson pproximtion tehniquesF yur pproh hs the following dvntgeX insted of showing tht the gherno' ound n e diretly pplied to the spei( involved rndom vrilesD we show tht the exeution of the given protoolD on the uniform PU SH modelD n e tightly pproximted with the exeution of the sme protool over suitle ommunition modelD tht is not 'eted y the stohsti orreltion tht 'ets the uniform PU SH modelF Figure 8. en exmple of the stohsti dependene whih 'ets messges in the uniform PU SH modelF he red nt whih is ontted y the yellow one n infer tht the proE ility tht lue nt is ontted y nother yellow nt deresesF sn shortD we prove tht there re lgorithms solving the noisy it disE semintion prolem nd the noisy plurlity onsensus prolem for multiple opinionsD with the sme performnes nd proilisti gurntees s the lgorithms for inry opinions in FHK14F felowD we stte the min theoE rems proved in ghpter VD onerning the solution of the two prolemsF he sttement require some notions whih it would e too tehnil to rigorously provide hereF sn this introdutory setionD we only informlly ntiipte their meningX

• e noise mtrix is mtrix whose row i nd olumn j give the proility of messge i to e hnged to j y the noiseD efore eing reeivedY • e δEmjorityEised on(gurtion is on(gurtion of the system in whih the most frequent opinion hs support of nodes whih is lrger thn tht of ny other opinion y frtion δ @he(nition IWAY

• e noise mtrix is mjority preserving @mFpFD for shortAD with prmE eters ε nd δD if the proility tht messgeD sent y rndomly hosen node in δEmjorityEised on(gurtionD hs the vlue of the mjority opinion is lrger thn tht of hving ny other opinion y t lest ε • δ @he(nition PHAF qiven the ove notionsD we prove the following resultsF

Theorem IQ @xoisy fit hissemintionA. Assume that the noise matrix P is (ε, δ)-m.p. with ε = Ω(n -1 4 +η ) for an arbitrarily small constant η > 0 and δ = Ω( log n/n). There exists a protocol, using O(log log n + log 1 ε ) bits of memory at each node, which solves the noisy bit dissemination problem with k opinions in O( log n ε 2 ) communication rounds, w.h.p.

Theorem IR @xoisy lurlity gonsensusA. Let S with |S| = Ω( 1 ε 2 log n) be an initial set of nodes with opinions in [k], the rest of the nodes having no opinions. Assume that the noise matrix P is (ε, δ)-m.p. for some ε > 0, and that S is Ω( log n/|S|)-majority-biased. There exists a protocol, using O(log log n + log 1 ε ) bits of memory at each node, which solves the noisy plurality consensus problem with k opinions in O( log n ε 2 ) communication rounds, w.h.p.

sn the lstD next introdutory setionD we move from studying simple protools for deling with noise in the uniform PU SH modelD to studying transient faults @orD in iologil perspetiveD the eect of a dynamic environment A in the uniform PU LL modelF 2.6. Self-Stabilizing Bit Dissemination es in etion PFSD the relEworld senrio we onsider in this setion re distriuted systems omposed of limited gents tht intert in stohsti fshion to jointly perform tsks whih re ommon in the nturl world s well s in engineered systemsD suh s wide rnge of inset popultions HM85D hemil retion networks CCDS14D nd moile sensor netE works AAD + 06F uh systems hve een studied in vrious disiplinesD inluding iologyD physisD omputer siene nd hemistryD while employing di'erent mthemtil nd experimentl toolsF por exmpleD using omE puter simultions to model niml group intertionsD gouzin et lF demonE strted how groups n reh mjorityEonsensus deisionsD even though inE formed individuls do not know whether they re in mjority or minority CKFL05F prom n lgorithmi perspetiveD suh omplex systems shre numer of omputtionl hllengesF sndeedD they ll perform olletively in dynmilly hnging environments despite eing omposed of limited indiE viduls tht ommunite through seemingly unpreditleD unrelileD nd restrited intertionsF sn etion PFS @whih introdues ghpter VAD we hve foused on the unpreditilityD unreliility nd poorness of intertions of iologil sysE tems s strted y the noisy uniform PU SH modelF he ltter invesE tigtion tkes prt to the signi(nt e'ort in understnding the omputE tionl limittions tht re inherent to suh systemsD y strting some of their hrteristis s distriuted omputing modelsD nd nlyzing them lgorithmilly AAD + 06, AG15, DS15, FHK14, AFJ06, BCN + 15aF es these models ttempt to pture iologil senriosD they neessrily onsider gents whih re restrited in their memory nd ommunition E pitiesD tht intert independently nd uniformly t rndom @uFFrFAF fy nowD the understnding of the omputtionl power of suh models is rther dvnedF roweverD it is importnt to note tht muh of this progress hs een mde ssuming non-faulty scenarios E rther strong ssumption when it omes to nturl or sensorEsed systemsF por exmpleD to synhronize tions etween proessorsD mny known distriuted protools rely on the ssumption tht proessors know when the protool is inititedF roweverD in systems omposed of limited individuls tht do not shre ommon time notionD nd must ret to dynmilly hnging environmentD it is often unler how to hieve suh onditionsF o hve etter understnding of suh systemsD it is desirle to identify the wekest omputtionl models tht still llow for oth e0ient s well s roust omputtions in fultE tolernt senseF sn ghpter WD we go k to the si uniform PULL model of omE munition onsidered in hpters S nd TD in whih in eh roundD eh gent n extrt @pullA informtion from few other gentsD hosen uFFrF sn the omputer siene disiplineD this modelD s well s its ompnion PU SH model whih we hve onsidered in etion PFSD gined their popuE lrity due to their simpliity nd inherent roustness to di'erent kinds of fults DGH + 88, KSSV00, DGM + 11, DF11F rereD fousing more on the ontext of nturl systemsD we view the PU LL model s n strtion for ommunition in wellEmixed senriosD where gents n osionlly oserve ritrry other gentsF his my relte to the notion of passive communication ommonly used y iologists to refer to ommunition tht is sed on oserving the ehvior of other individuls Wil92D in ontrst to active communication in whih gents deliertely signl other gents nd whose orresponding model is the uniform PU SH model onsidered in ghpter VF e im t identifying the power nd limittions of the uniform PU LL model with respet to hieving si informtion dissemintion tsks under onditions of inresed unertinty for the gentsD regrding the stte of the system they re inF es mny nturl systems pper to e more restrited y their ommunition ilities thn y their memory pities AAB + 11, EW13D our min fous is on understnding wht n e omputed while reveling s few its per intertion s possile in selfEstilizing wyF e note tht stohsti ommunition ptterns suh s PU LL or PU SH re inherently sensitive to ongestion issuesF sndeedD in suh models it is unE ler how to simulte protool tht uses lrge messges while using only smll size messgesF por exmpleD the strightforwrd strtegy of reking lrge messge into smll piees nd sequentilly sending them one fter nother does not workD sine one typilly nnot mke sure tht the smll messges reh the sme destintionF reneD reduing the messge size my hve profound impt on the running timeD nd perhps even on the solvE ility of the prolem t hndF imilrly to the previous setionD here we onsider the prolem of disE seminting informtion from one or severl soures to the rest of the popuE ltionD whih is one of the most fundmentl uilding loks in distriuted omputing DGH + 88, CHHKM12, DF11, KSSV00, CLP11D nd n importnt primitive in nturl systems REF13, SKJ + 08, Rob96F rowE everD there re profound di'erenes etween the it dissemintion prolem onsidered in etion PFS nd the vrint onsidered hereX we onsider the prolem in the ontext of selfEstiliztionD nd the generliztion onsidered here inludes the singleEsoure it dissemintion nd the mjority onsensus prolems s speil sesF wore formllyD we fous on the majority bit dissemination prolem deE (ned s follows BKN17F e onsider popultion of n gentsF he popultion my ontin multiple source agents whih re spei(ed y desE ignted it in the memory of every gent inditing whether the gent is soure or notF ih soure gent holds inry input bitD howeverD two soures my not neessrily gree on their input itsF sn dditionD eh gent holds inry output bit @lso lled opinionAF he gol of ll gents is to onverge their opinion on the mjority it mong the initil input its of the souresD termed b maj F his prolem ims to pture senrios in whih some individuls view themselves s informedD ut some of these gents ould lso e wrongD or not upEtoEdteF uh situtions re ommon in nE ture CKFL05, REF13 s well s in mnEmde systemsF he numer of soures is termed kF e do not ssume tht gents know the vlue kD or tht soures know whether they re in the mjority or minority @in terms of their input itAF por simpliityD to void deling with the se tht the frtion of the mjority input it mong soures is ritrrily lose to tht of the minority input itD we shll gurntee onvergene only when the frtion of soure gents holding the mjority input it is ounded wy from 1/2F he prtiulr se where we re promised to hve k = 1 is the @singleE soureA it dissemintionF sn this se we hve single soure gent tht ims to disseminte its input it b to the rest of the popultionD nd there re no other soures introduing on)iting opinionF xote tht this prolem hs een studied extensively in di'erent models under di'erent nmes @eFgFD broadcast or rumor spreadingAF rere we use the term bit dissemination to fous on the ft tht we re interested in the dissemintion of single it b ∈ {0, 1}F e lssil exmple of it dissemintion onsiders the synhronous PU SH /PU LL ommunition modelD where b n e propgted from the soure to ll other gents in O(log n) roundsD y simply letting eh uninformed gent opy it whenever it sees n informed gent KSSV00F he orretness of this protool hevily relies on the sene of inorret informtion in the memory of the gentsF uh reliility however my e di0ult to hieve in dynmi or unrelile onditionsF por exmpleD if the soure is sensitive to n unstle environmentD it my hnge its mind severl times efore stilizing to its (nl opinionF wenwhileD it my hve lredy invoked severl onseE utive exeutions of the protool with ontrditing initil opinionsD whih my in turn infet other gents with the wrong opinion 1 -bF sf gents do not shre ommon time notionD it is unler how to let infeted gents distinguish their urrent wrong opinion from the more freshD orret opinE ionF o ddress suh di0ultyD we onsider the ontext of self-stabilization Dij74D where gents must onverge to orret on(gurtion from ny initil on(gurtion of sttesF 2.6.1. Diculties and intuition on bit dissemination gonsider the it dissemintion prolem @where we re gurnteed to hve single soure gentAF his prtiulr se is lredy di0ult in the selfE stilizing ontext if we re restrited to use O(1) its per intertionF es hinted oveD min di0ulty lies in the ft tht gents do not neessrily shre ommon time notionF sndeedD it is esy to see tht if ll gents shre the sme lokD then onvergene n e hieved in O(log n) timeD with high proilityDnd using less thn three its per intertionD s desried in the following prgrphsF PFTFIFIF Solving self-stabilizing bit dissemination (k = 1) with 2 bits per interaction, assuming synchronized clocks. he soure sets her output it to e her input it bF sn ddition to ommunite her output it b u D eh gent u stores nd ommunites certainty it c u F snformllyD hving ertinty it equl to I indites tht the gent is ertin of the orretness of its outE put itF he soure9s ertinty it is lwys set to IF henever nonEsoure gent v oserves u nd sees the tuple (b u , c u )D where c u = 1D it opies the output nd ertinty its of u @i.e., sets b v = b u nd c v = 1AF sn dditionD ll nonEsoure gents ount roundsD nd reset their ertinty it to H simultneE ously every T = O(log n) roundsF he reset llows to get rid of old output its tht my result from pplying the protool efore the soure9s output it hs stilizedF his wyD from the (rst time reset is pplied fter the soure9s output it hs stilizedD the orret soure9s output it propgtes to ll gents within T roundsD wFhFpF xote howeverD tht if gents do not shre onsistent notion of time they nnot reset their ertinty it to zero simultneouslyF sn suh sesD it is unler how to prevent gents tht hve just reset their ertinty it to H from eing infeted y misleding gentsD nmelyD those tht hve the wrong output it nd ertinty it equl to IF PFTFIFPF Solving self-stabilizing bit dissemination (k = 1) with a single bit per interaction, assuming synchronized clocks. nder the ssumption tht ll gents shre the sme lokD the following trik shows how to otin onvergene in O(log n) time nd using only single it per messgeD nmelyD the output itF es eforeD the soure sets her output it to e her input it bF issentillyD gents divide time into phses of some presried length T = O(log n)D eh of them eing further sudivided into 2 suphses of length T /2F sn the (rst suphse of eh phseD nonEsoure gents re sensitive to opinion 0F his mens tht whenever they see 0 in the output it of nother gentD they turn their output it to 0D ut if they see I they ignore itF henD in the seond suphse of eh phseD they do the oppositeD nmely they swith their output it to 1 s soon s they see 1 @see pigure WAF gonsider the (rst phse strting fter initiliztionF sf b = 0 then within one omplete suphse [1, T /2]D every output it is 0D wFhFpFD nd remins there foreverF ytherwiseD if b = 1D when ll gents go over suphse [T /2+1, T ] ll output its re set to 1D wFhFpFD nd remin 1 foreverF xote tht ommon time notion is required to hieve orretnessF

T = 0 T /2
sensitive to 1 sensitive to 0

Figure 9. he division in suphses used for selfEstilizing it dissemintion with lokF huring the (rst hlfD etween times 1 nd T /2D gents re sensitive to 0F hen they re sensitive to 1F he previous protool indites tht the selfEstilizing it disseminE tion prolem is highly relted to the selfEstilizing clock synchronization prolemD where eh gent v internlly stores lok modulo T = T (v) = O(log n) inremented t every round ndD despite hving ritrry initil sttes @iFeF t the eginning it my e tht T (u) = T (v) for some u = vAD ll gents should onverge on shring the sme vlue of the lokF sndeedD given suh protoolD one n otin selfEstilizing it dissemintion proE tool y running the lok synhroniztion protool in prllel to the lst exmple protoolF his prllel exeution osts only n dditionl it to the messge size nd O(log n) dditive ftor to the time omplexity over the omplexities of the lok synhroniztion protoolF o synhronize loks modulo T in selfEstilizing mnnerD one ould use the stilizing onsensus protool in DGM + 11D y displying ll the its of the loks in eh messgeD nd rehing onsensus on eh of them seprtely nd in prllelD while inrementing the loks @see etion WFHFQ for further detilsAF nfortuntelyD this pproh is wsteful in terms of messge sizeD s it requires to revel log T = O(log log n) its per interE tionF es nother pprohD one ould im t sequentilly synhronizing loks it fter itF ht isD (rst disply nd synhronize the (rst itY thenD one gents know tht the (rst it hs een synhronizedD disply nd synhronize the seond itD etF his pproh is prolemti in the ontext of selfEstiliztionD sineD (rstD it requires gents to know when it is synhronizedD nd seondD it requires gents to gree on the it index tht they urrently im to synhronizeF foth of these seem to require loks to e synhronized to egin withF PFTFIFQF Intuition behind the self-stabilizing clock synchronization algorithm. yur tehnique for otining the lok synhroniztion protool is sed on ompt reursive use of the stilizing onsensus protool proposed y hoerr et lF DGM + 11 through our wessge edution heorem @heorem IUAF sn the etion WFHFQ of ghpter WD we desrie simple protool lled Syn-Simple tht uses O(log T ) its per messgeF sn Syn-SimpleD eh gent u mintins lok C u ∈ [0, T -1]F et eh roundD eh gent u displys the opinion of her lokD pulls 2 other suh lok opinionsD nd updtes her lok s the itwise mjority of the two loks she pulled nd her ownF hen the lok C u is inrementedF his protool essentilly mounts to running the protool of hoerr et lF on eh it seprtely nd in prllelD nd selfEstilizes in O(log T log n) roundsD wFhFpF @roposition PAF e wnt to pply strtegy similr to Syn-SimpleD while using only O(1) mny its per intertionF he ore tehnil ingredientD mde rigorE ous in the wessge edution heoremD is tht ertin lss of protools using messges of itsD to whih Syn-Simple elongsD n e emulted y nother protool whih uses log + 1 its only @see pigure PWAF he ide is to uild lok modulo using Syn-Simple itself on log its nd sequentilly disply one it of the originl Eit messge ording to suh lokF husD y pplying suh strtegy to Syn-Simple itselfD we use smller lok modulo to synhronize lok modulo F sterting suh proessD in etion WFPFPD we otin ompt protool whih uses only 3 itsF 2.6.2. Results of Chapter 9 he min results presented in ghpter W re the followingF Theorem IS @Syn-Phase-SpreadA. Fix an arbitrarily small constant ε > 0. There exists a protocol, called Syn-Phase-Spread, which solves the majority bit dissemination problem in a self-stabilizing manner in Õ(log n) rounds 23 , w.h.p. using 3-bit messages, provided that the majority bit is supported by at least a fraction 1 2 + ε of the source agents. heorem IS is proved in etion WFQF he ore ingredient of Syn-Phase-Spread is our onstrution of n e0ient selfEstilizing T Elok synhroE niztion protoolD whih is used s lkEoxF es for the mjority it dissemintion prolemD the se tht interests us is when T = Õ(log n)F xote tht in this seD the following theoremD proved in etion WFPD sttes tht the onvergene time of the lok synhroniztion lgorithm is Õ(log n)F Theorem IT @Syn-ClockA. Let T be an integer. There exists a selfstabilizing T -clock synchronization protocol, called Syn-Clock, which employs only 3-bit messages, and synchronizes clocks modulo T within Õ(log n log T ) rounds, w.h.p. he proof of heorem IT is given in etion WFPF sn ddition to the selfEstilizing ontext our protools n tolerte the presene of fyzntine gentsF pei(llyD it is possile to show thtD s orollry of the nlE ysis given in ghpter W nd the fultEtolerne property of the nlysis in DGM + 11D if T poly(n) then Syn-Clock n tolerte the presene of up to O(n 1/2-ε ) fyzntine gents for ny ε > 0F sn dditionD Syn-Phase-Spread n tolerte min{(1ε)(k majk min ), n 1/2-ε } fyzntine gentsD where k maj nd k min re the numer of soures supporting the mjority nd minority opinionsD respetivelyF xote tht for the se of single soure @k = 1AD no fyzntine gents re llowedY indeedD single fyzntine gent pretending to e the soure with the opposite opinion n lerly ruin ny protoolF roweverD in order to fous on the selfEstilizing spet of our resultsD in this work we do not expliitly ddress the presene of fyzntine gentsF he proofs of oth heorem IT nd heorem IS rely on reursively pplying new generl ompiler whih n essentilly trnsform ny selfE stilizing lgorithm with ertin property @lled bitwise-independence property A tht uses Eit messges to one tht uses only log + 1Eit mesE sgesD while pying only smll penlty in the running timeF his ompiler is desried in etion WFID where we prove the following resultF es explined in etion WFHFPD we denote with PULL(η, ) the model in whih t eh round eh node displys its in the visile prt of her memoryD nd n oserve the visile prt of η other gents smpled uniformly t rndomF Theorem IU @wessge edution heoremA. Any self-stabilizing protocol Ψ in the PULL(η, ) model having the bitwise-independence property, and whose running time is L Ψ , can be emulated by a protocol Emul(Ψ) which runs in 24 the PU LL(2, log( η 2 ) + 1) model, has running time O(log(η ) log n + η 2 L Ψ ) and has itself the bitwise-independence property. he struture etween our di'erent lemms nd results is summrized in the piture elowD pigure PTF es disussed in ghpter IHD it remins n open prolemD oth for the selfEstilizing it dissemintion prolem nd for the selfEstilizing lok synhroniztion prolemD whether the messge size n e redued to P its or even to I itD while keeping the running time polyElogrithmiF 24 The only reason for designing Emul(Ψ) sn this setion we im to provide the sienti( ontext the study of dyE nmis elongs toD fousing on those dynmis studied in this workD nd on lsses of protools losely relted to themF 3.1. Dynamics for Community Detection hynmis hve reeived onsiderle ttention ross di'erent reserh ommunitiesD oth s e0ient distriuted lgorithms AAE08, BTV09, OT09, MRSDZ11 nd s strt models of natural intertion mehE nisms induing emergent ehvior in omplex systems AAB + 11, CCN12, Dot14, FPM + 02, MNT14F por instneD simple verging dynmis hve een onsidered to model opinion formtion mehnisms DeG74, FJ90D while numer of other dynmis hve een proposed to desrie di'erent soil phenomen EK10F en importnt lss of protools whih inludes wide rnge of dynmis is tht of label propagation algorithmsF 3.1.1. Label Propagation Algorithms vel propgtion lgorithms @ve for shortA RAK07 re lss of protools sed on simple epidemi mehnism whih n e e0iently imE plemented in fullyEdistriuted fshionD sine they require esy lol ompuE ttionsF sn their most fmous si versionD some distint lels re initilly ssigned to suset of nodesY t every stepD eh node updtes her lel @if nyA y hoosing the lel whih most of her @urrentA neighors hve @the majority lelAY if there re multiple mjority lelsD one lel is hosen rnE domlyF ypillyD the gol of the protool is to onverge to good leling whih re)ets the lustered struture of the grphF e remrk tht while the @informlA notion of ve does suggest more restrited set of possile updte funtions for the nodes9 sttes ompred to the generl notion of dynmisD n ve lgorithm is not neessrily dynmE isX for exmpleD n ve is not neessrily timeEhomogeneous CDIG + 15F roweverD protool whih is oth dynmis nd n ve is n idel repE resenttive of oth lsses of protoolsD suh s the QEwjority dynmis nlyzed in ghpter SF hespite the simpliity of veEsed protoolsD very few nlytil results re known on their performne over relevnt lsses of grphsF st seems hrd 63 to deriveD from empiril resultsD ny fundmentl onlusions out ve ehviorD even on spei( fmilies of grphs KPS13F yne reson for this hrdness is tht despite its simpliityD even on simple grphsD the lss of ve n exhiit omplex ehviorD not fr from epidemi proesses suh s the spred of disese in n interting popultion New02F everl versions of veEsed protools hve een tested on wide rnge of soil networks RAK07, BC09, LHLC09, LM10, CG12X suh works experimentlly show tht veEsed protools work quite e0iently nd re e'etive in providing almost good lelingF fsed on extensive simultionsD ghvn et lF RAK07 nd veung et lF LHLC09 empirilly show tht the verge onvergene time of veEsed protools is ounded y some logrithmi funtion of n on speil lsses of grphs whose ommunity struture is knownF he only ville rigorous nlysis of lel propgtion lgorithms on the stohsti lok model G 2n,p,q is the one presented in KPS13D where the uthors propose nd nlyze lel propgtion protool on G 2n,p,q for highlyEdense topologiesF sn prtiulrD their nlysis onsiders the se where p = Ω(1/n 1/4-ε ) nd q = O(p 2 )D prmeter rnge in whih very dense lusters of onstnt dimeter seprted y sprse ut our wFhFpF sn this settingD hrterized y polynomil gp etween p nd qD simple omintoril nd onentrtion rguments show tht the protool onverges in onstnt expeted timeF hey lso onjeture logrithmi ound for sprser topologiesF sn generlD providing nlytil ounds on the onvergene time of veE sed protools over relevnt lsses of networks is n importnt open quesE tion tht hs een proposed in severl ppers rising from di'erent res RAK07, LHLC09, BC09, CG12, KPS13, KMTN15F he results out the QEwjority nd ndeidedEtte dynmis studied in ghpter S nd ghpter TD nd the relted work disussed in setions QFR nd QFQD repE resent some preliminry ontriutions with this respetF fefore moving to disuss populr solutions for the ommunity detetion prolemD we review one of the most populr rndom grph models whih hve een theoretilly investigted in order to understnd the verge se omplexity of ommunity detetionF

Stochastic block models for average case community detection

roly the most nturl wy to formlize si instne of the ommunity detetion prolem is s n instne of the minimum isetion prolemX qiven grph G = (V, E) with |V | = 2nD we re sked to

(nd the prtition @isetionA V 1 , V 2 ⊂ V with V 1 • ∪ V 2 = V suh tht | {(u, v) ∈ E : u ∈ V 1 , v ∈ V 2 } |
is minimizedF nlukilyD the minimum iE setion prolem ws one of the (rst prolems to e shown xEomplete GJS76F hereforeD when omplexity theorists relized thtD despite proE lem eing xEhrd in the worst caseD it is still possile to get preious insights on its struture y investigting its average case complexityD the prolem of ommunity detetion did not wit muh until nturl formultion to inE vestigte its vergeEse struture ws proposed DF89F he stochastic block model is rguly the simplest rndom grph model whih exhiits ommunity strutureD nd in its si form it n e deE sried s two grphs

G 1 = (V 1 , E 1 ) nd G 2 = (V 2 , E 2 )
of n nodes @the communities A generted ording to n ird®sEényi model with prmeter p = a/nD whih re glued together y dding n edge (u, v) etween eh pir of nodes u ∈ V 1 nd v ∈ V 2 with proility q = b/n p @see he(E nition TA HLL83F yserve tht if q = p we hve n ird®sEényi model with prmeter p over 2n nodesD while the ut etween the two ommunities eomes intuitively muh esier to detet whenever q pF feuse of their nturlnessD stohsti lok models hve een deeply studied in sttistis HLL83, MNS14D omputer siene Bop87, DF89, Mas14D proility theory MNS14D sttistil physis DKMZ11, KMM + 13D nd soil sienes HLL83F sn the onneted regime with a = Ω(log n)D the ommunities n e extly reovered nd shrp ext reovery threshold is known ABH14F ixt reovery thresholds hve lso een identi(ed in more generl setting with (xed numer of ommunitiesD nd with heterogeneous ommunity sizes nd link proilities ABH14F roweverD rel networks re often sprse with ounded verge degreesD nd in the sprse setting with a = o(log n) ext reovery of ommunities from the grph eomes impossile CO05F hus the gol in the sprse regime is to (nd leling tht hs good orreltion with the true one @up to permuttion of ommunity lelsA KMM + 13F es disussed in etion QFIFRD e0ient lgorithms for stohsti lok models were developed nd shown to detet the loks whenever this is theE oretilly possileF pinllyD we remrk tht it is known tht no lol lgoE rithm with ess to neighorhoods of rdius o(log n) @thus ny distriuted lgorithm in the LOCAL model operting in less thn log n roundsAD n hve nonEtrivil performne for this prolem GS14F feuse of their relevne for the reonstrution prolemD in the next setion we disuss lss of lgorithmsD belief propagation algorithmsD whose simpliity is lose to tht of dynmisF

Belief propagation algorithms

Belief propagation algorithms re est known s messgeEpssing lgoE rithms for performing inferene in grphil models Mac03F felief propE gtion nnot e onsidered dynmisX et eh roundD eh node sends di'erent messge to eh neighorD whih mens tht the updte rule is not symmetri wFrFtF the neighorsD thus requiring port numering Suo13D nd the required lol memory grows linerly in the degree of the nodeF xonErigorous methods hve given strong evidene tht some belief propagation algorithms re optiml for the reonstrution prolem DKMZ11F heir rigorous nlysis is mjor hllengeY in prtiulrD the onvergene to the orret vlue of elief propgtion is fr from eing fullyEunderstood on grphs whih re not trees Wei00, MK07F es we disuss in the next susetionD more omplex lgorithmsD mny of whih hve een inspired y elief propgtionD hve een rigorously shown to perform reonstrution optimllyF 3.1.4. General algorithms for the reconstruction problem hile improving performne of spetrl lustering lgorithms nd testE ing their limits for the purpose of the reonstrution prolem is not the min driver ehind our study in ghpter RD for the ske of ompletenessD we next ompre our results on the everging dynmis to the previous generl lgorithms for the reonstrution prolemF everl lgorithms for ommunity detetion re spectral X hey typilly onsider the eigenvetor ssoited to the seond eigenvlue of the djeny mtrix A of GD or the eigenvetor orresponding to the lrgest eigenvlue of the mtrix A -d n J Bop87, CO05, CO10, McS01 1 D on the grounds tht these re orrelted with the hidden prtitionF sn AS15, CO10, MNS13, KMM + 13, BLM15D spetrl lgorithms hve een proposed tht (nd wek reonstrution even in the sprseD tight regime of the stohsti lok modelD where n eigenvlue omputtion n e used to (nd n pproxiE mtion of the hidden prtition whihD in ertin sesD n e re(ned to n ext omputtion of the hidden prtition using postEproessing phseF iven though the ove mentioned lgorithms hve een presented in entrlized settingD spetrl lgorithms turn out to e fesile pproh lso for distriuted modelsF sndeedD uempe nd wherry KM04 show tht eigenvlue omputtions n e performed in distriuted fshionD yielding distriuted lgorithms for ommunity detetion in vrious modelsD inluding the stohsti lok modelF roweverD uempe nd wherry9s lgorithm s well s ny distriuted version of the ove mentioned entrlized lgorithms re not dynmisF etullyD dopting the e'etive onept from rssin nd eleg in HP01D suh lgorithms re lso not light-weight X hi'erent nd notEsimple opertions re exeuted t di'erent roundsD nodes hve identitiesD messges re treted di'erently depending on the origintorD nd so onF woreoverD ruil spet is onvergene timeX he mixing time of the simple rndom wlk on the grph is ottlenek for uempe nd wherry9s lgorithm nd for ny lgorithm tht performs ommunity detetion in grph GD y employing the power method or the vnzos method Lan50 s suroutine to ompute the eigenvetor ssoited to the seond eigenvlue 1 A is the adjacency matrix of G, J is the matrix having all entries equal to 1, d is the average degree and n is the number of nodes.

of the djeny mtrix of GF xotie tht the mixing time of grphs smpled from G 2n,p,q is onentrted round a+b 2b X heneD it n e superElogrithmi nd even n Ω(1) F sn generlD the reonstrution prolem on the stohsti lok model hs een studied extensively using multipliity of tehniquesD whih inlude omintoril lgorithms DF89D elief propgtion DKMZ11D spetrlE sed tehniques McS01, CO10D wetropolis pprohes JS98D nd semiE de(nite progrmming ABH14D mong othersF nlike the distriuted setE tingD where the existene of light-weight protocols HP01 is the min issue @even in nonEsprse regimesAD in entrlized setting strong ttention hs een devoted to estlishing shrp thresholds for wek nd strong reonstrutionF he(ne a = np s the expeted internal degree @the numer of neighors tht eh node hs on the sme side of the prtitionA nd b = nq s the expeted external degree @the numer of neighors tht eh node hs on the opposite side of the prtitionAF heelle et lF DKMZ11 onjetured tht wek reE onstrution is possile if nd only if ab > 2 √ a + bF his ws proved y wssoulie nd wossel et lF MNS13, Mas14, MNS14F trong reovery

is insted possile if nd only if a -b > 2 √ a + b + log n ABH14F ersions of the stohsti lok model in whih the rndom grph is regulr hve lso een onsidered MNS14, BDG + 16F sn prtiulr frito et lF BDG + 16 show tht strong reonstrution is possile in polynomilE time when a -b > 2 √ a + b -1F
sn the next setion we review the literture onerning the everging dynmisD whih is the min ingredient of our protool in ghpter RF 3.2. The Averaging Dynamics he everging dynmisD in whih eh node updtes its vlue to the verge of its neighorsD is perhps one of the simplest nd most interesting exmples of liner dynmis nd it lwys onverges when G is onneted nd not iprtiteX st onverges to the glol verge of the initil vlues if the grph is regulr nd to weighted glol verge if it isn9t BGPS06, Sha09F smportnt pplitions of liner dynmis hve een proposed in KDG03, AYSS09, Tsi84, Kle99D for exmple to perform si tsks suh s selfEstilizing consensus in fulty distriuted systems BTV09, XBK07, OT09F he onvergene time of the everging dynmis is the mixing time of rndom wlk on G Sha09F st is logrithmi in |V | if the underlying grph is good expander HLW06D while it is slower on grphs tht exhiit sprse utsF hile the everging dynmis is sed on the sttistil onept of av-erageD in the next setion we disuss the previous work relted to designing dynmis sed on the sttistil onept of modeF

Dynamics for Plurality Consensus

sn this setion we disuss previous work relted to the results of hpters S nd T regrding the plurlity onsensus prolemF he plurlity onsensus prolem rises in severl pplitions suh s distriuted dtse mngeE mentD where dt redundny or replition nd mjority rules re used to mnge the presene of unknown fulty proessors DGM + 11, Pel02F he gol here is to onverge to the version of the dt supported y the plurlity of the initil distriuted opies @it is resonle tht su0iently strong plurlity of the nodes re not fulty nd thus possess the orret dtAF enE other pplition is distriuted item rnkingD in whih every node initilly selets some item nd the gol is to gree on the most populr item ording to the initil plurlity opinion PVV09F purther pplitions of mjority updting rules in networks n e found in EK10, Pel02F

esults losely relted to those in ghpter S re those in DGM + 11F everl vrints of inry mjority onsensus hve een studied in di'erent distriuted models AAE08, MS10F he simplest protool is the polling ruleD iFeF the 1Emjority dynmisD whih hs een extensively studied on severl lsses of grphs @see Pel02AF es for the population modelD where there is only one rndom nodeEpir intertion per round @so the dynmis re stritly sequentilAD the inry se on the lique hs een studied in AAE08 where the Undecided-State dynmis hs een introduedF heir generliztion to the multivlued se @k 3A does not onverge to plurlity even strting with lrge is s = Θ(n)F pollowing AAE08D MNRS14 hs nlyzed similr protool on generl grphs whih solves the inry mjority onsensus deterministiE llyF sn AGV15D the trdeEo' etween deterministi suess nd onverE gene speed for protools solving the inry mjority onsensus prolem in popultion protools is investigtedF wore expensive nd omplex protools hve een onsidered in order to speed up the proessF por instneD in KT08D protool for the sequentilE intertion model is presented tht requires Θ(log n) memory per node nd onverges in time O(n 7 )F yther protools for the sequentilEintertion model hve een nlyzed in BTV09, LB95 @with no time oundAF sn PVV09, DV12, BD13D the ndeidedEtte dynmis on the ontinuousEtime popultion model is proved to onverge in O(n log n) exE peted time only for k = Θ(1) nd s = Θ(n)X iven ssuming suh strong restritionsD the ound does not hold with high proility ndD moreoverD their nlysisD sed on relEvlued di'erentilEequtionsD do not work for the disreteEtime prllel model onsidered in ghpter SF rotools for spei( network topologies nd some soilEsed omE munities hve een studied in AD15, DV12, MNT14, PVV09F e mention tht similr mjorityEonsensus prolems hve lso een studied @for exmple in AD15, MNT14A in the LOCAL (communication) model FKP11, Pel00 whereD howeverD node ongestion nd memory size re linE er in the node degree of the networkF sn KDG03D the uthors provide protool in the uniform PU SH model to ompute ggregte funtionsD whih n e used to solve plurlity onE sensus in polylog(n) time strting from ny positive isD ut it requires exE ponentilly lrger memory nd messge size thn the 3Ewjority dynmis nd ndeidedEtte dynmis @nmely Θ(k log n)AF woreoverD their protoE ol requires the nodes to send slightly more omplex messges thn their sole urrent opinionD nd its e'etiveness hevily relies on potentil funtion rgument tht is sensile to slight hnges to the model @eFgF it does not hold in the presene of noiseD whih is the vrint of the plurlity onsensus prolem whih we onsider in etion PFSAF pinllyD in CER14D the uthors provide rigorous nlysis of simple PEvoting dynmis for the inry se on ny @possily rndomA regulr grphX in the ltter seD they provide optiml ounds on the onvergene time s funtion of the seondElrgest eigenvlue of the grphF he mjor forementioned ontriutions to the plurlity onsensus proE lemD prior to the nlysis of the ndeidedEtte dynmis provided in ghpE ter TD re summrized in pigure IHF sn the next setion we rie)y review the previous work regrding the ndeidedEtte dynmis for plurlity onsensusD whih is the min hrE ter of ghpter TF 3.4. Undecided-State Dynamics he ndeidedEtte dynmis hs een introdued nd nlyzed in AAE08 for the inry se in the popultion protool model @where only one edge is tive during roundAF hey prove tht this dynmis hs prE llel onvergene time O(log n) whenever the is Ω √ n log n F he sme dynmis hs een nlyzed in di'erent distriuted models for the inry se BD13, BTV09, DV12, PVV09, MRSDZ11D or when k is n E solute onstnt JKV12F vst ut not lestD interest for this dynmis hs een stimulted y (ndings in iologyX notlyD s shown in CCN12D the struture nd dynmis of the pproximte mjority protool @s it is lled there nd in AAE08A is to gret extent similr to mehnism tht is olletively implemented in the network tht regultes the mitoti entry of the ell yle in eukryotesF sn the next setion we leve ehind the requirement of onverging to n initil vlue with some property @iFeF eing the plurlityAD nd we review the literture onerning the prolem of onverging to ny initil vlue nd mintining onsensus on tht vlue even in the presene of n dversryF iologil systems nd hemil retion networks CCN12F por revity9s skeD we here fous on results tht re losest in spirit to the results of ghpE ter S regrding the stilizing onsensus prolemF @rt of the literture hs lredy een mentioned in the previous setion regrding plurlity onsenE susX we mention some of those works gin to disuss them in di'erent perspetive nd to mke the setion selfEontinedFA sn AAE08D the uthors show tht n gents tht meet t rndom n reh vlid stilizing lmostEonsensus in O(n log n) pirwise interE tionsD wFhFpFD even ginst n

O(k log n) any O(log n) PU SH 2 O(log n) Sequential Θ(1) 2 O(log n) PU LL Θ(1) Constant Sequential O(log n) O(log k) Becchetti et al. SPAA '14 PU LL O(log k) n Θ(1) O(k log n)
F = o( √ n)Eounded dynmi dversryF he dopted protool is the ndeidedEtte protool AAE08, PVV09D
disussed in setions QFQ nd QFRF roweverD their nlysis @ndD thusD their resultA only holds for the inry se nd for the population-protocol modelX et every round only one pir of nodes n intertF he uthors left the existene of protools for the multiEvlued fyzntine se s (nl open question AAE08F

sn the uniform PU LL modelD in DGM + 11 the uthors provide n nlysis of the 3-Median dynmisD in whih every node updtes her vlue to the medin of her rndom smpleF hey show tht this dynmis onverges to n lmostEgreement on(gurtion @whih is even good pproximtion of the glol medinA within O(log k•log log n+log n) roundsD wFhFpF st turns out thtD in the inry seD the medin rule is equivlent to the QEwjority dynmisD thus their result implies tht the QEwjority dynmis is n @F = √ nEAstilizing onsensus with O(log n) onvergene timeF roweverD in the nonEinry seD it requires Σ to e totllyEordered set nd this order to e consistentD iFeF ll gents gree on itX his my e strong restrition when these proesses re used to model emerging ehvior nd selfEorgniztion in omplex gent systems suh s iologil onesF nfortuntelyD even ssuming n ordered opinion set (Σ, )D the QEwedin dynmis does not gurntee the ruil property of validity ginst oth F Estti @ndD lerlyD dynmiA dversries for smll ounds on F @see pigE ure IIAF he ltter de(ieny of the QEwedin dynmis is ritilD sine Changed by adversary

=⇒ =⇒ 1 3 1 3 2 2 Figure 11
. st is not hrd to see tht from the on(gurtion with n/2 gents holding vlue 1 nd n/2 gents holding vlue 2D n dversry with power roughly √ n n led the system to onverge to vlue 2 whih is not initilly present in the systemD nd thus not vlidF the vlidity property of onsensus plys ruil role in severl relisti seE nriosD suh s monitoring sensor networksD ioEinspired dynmi systemsD nd voting systems CCN12, MNT14, YOA + 13F enother version of iE nry stilizing lmostEonsensus is the one studied in YOA + 13X rereD orrupted nodes re stubborn gents of soil network who in)uene others ut never hnge their opinionsF hey prove negtive results under generE lized vrint of the lssi polling dynmis HP01 in the @oissonElokA popultionEprotool modelF sn the next setionsD we move from work diretly linked to dynmis to the roder literture pertinent to hpters UD V nd WF 3.6. Repeated Balls-into-Bins and Random Walks in the Uniform PU SH Model sn this setion we rie)y review the literture onerning the repeted llsEintoEins proess onsidered in ghpter UF ell tht the repeted llsEintoEins proess is equivlent to the proess of performing prllel rndom wlks in the @uniformA GOSSIP modelD nd in ghpter U we invesE tigte the mximum lod of the former in order to ound the ongestion of the ltterF QFTFHFIF Random walks on graphs. he originl proess of prllel rndom wlks in the @uniformA GOSSIP model @lso known s rndom phoneEll model DGH + 87, KSSV00AD ws (rst onsidered in BCEG10, BCN + 15a, EK15D when every messge n ontin t most one tokenF wximum lod @iFeFD node ongestionAD token delysD mixing nd over times re here the most ruil spetsF e remrk tht the )vor of these studies is di'erE ent from tht of ghpter UX indeedD their min gol is to keep mximum lod nd token delys logrithmi over some polylogarithmic periodF heir im is to hieve fst mixing time for every rndom wlk in the se of good expnder grphsF sn prtiulrD in BCEG10D logrithmi ound is shown for the omplete grph when m = O(n/ log n) rndom wlks re performed over logrithmi time intervlF e similr ound is lso given for some fmilies of lmostEregulr rndom grphs in EK15F QFTFHFPF Parallel computing. fllsEintoEins proesses hve een extensively studied in the re of prllel nd distriuted omputingD minly to ddress lnedEllotion prolems ABKU99, BCSV06, RS98D ew simE ultion KLMadH96 nd hshing DGM + 10F sn order to optimize the totl numer of rndom in hoies used for the llotionD further lloE tion strtegies hve een proposed nd nlyzed @seeD eFgFD ACMR95, BKSS13, Mit01, MPS02, Vöc03AF es mentioned in etion PFRD the notion of stility dopted in hpters S nd U is inspired y those invesE tigted in AKU05, BFG03, BFK + 16 where lod lning lgorithms re nlyzed in senrios in whih new tsks rrive during the evolution of the systemD nd existing jos re exeuted y the proessors nd leve the systemF en dversril model for sequentil llsEintoEins proess hs een studied in AS09F e remrk thtD in the ove previous worksD the gol is di'erent from oursX eh llGtsk must e lloted to one, arbitrary inGproessor @it is not tokenEtrversl proessAF QFTFHFQF Queuing theory. sn lssil queuing theory the losest model to the setting onsidered in ghpter U is the closed Jackson network Asm03F sn this modelD time is ontinuous nd eh node proesses single token mong those in its queueY proessing eh token tkes n exponentilly distriuted intervl of timeF es soon s its proessing is ompletedD eh token leves the urrent node nd enters the queue of neighor hosen uniformly t rndomF xotie thtD sine time is ontinuousD the proess9 events re sequentilD so tht the ssoited wrkov hin is muh simpler thn the one desriing our prllel proessF sn prtiulrD the sttionry distriution of losed tkson network n e expressed s produtEform distriutionF st is noted in HW92 tht F F F virtully ll of the models tht hve een suessfully nlyzed in lssil queuing network theory re models hving soElled produt form sttionry distriutionF qiven the nonEreversiility of the wrkov hin ssoited to the repeted llsEintoEins proess nd other di0ulties disussed in ghpter UD the sttionry distriution is insted very likely not to exhiit produtEform distriutionD thus lying outside the domin where the tehniques of lssil queuing theory seem e'etiveF QFTFHFRF Queuing systems in computer science. emong the works in omE puter siene whih deprt from the lssil frmework of queueing theoryD we remrk the seminl work BKR + 01 on adversarial queuing systems X hereD new tokens @hving spei(ed soure nd destintion nodesA re inE serted in the nodes ording to some dversril strtegy nd notion of edge-congestion stility is investigtedF e lso note tht proilisti version of the Tetris proess @whih we investigte in ghpter U in order to ound the ongestion of prllel rndom wlks in the PU SH modelAD hs een studied in BFGK16F hereD the numer of new lls rriving t eh round is rndom vrile with expettion λnD for some λ = λ(n) ∈ [0, 1]D sn the nextD (nl setionD we review the literture out iologil disE triuted lgorithms pertinent to ghpter W @ndD prtlyD to ghpter VAF husD the next setion fous espeilly on the it dissemintion nd plurlE ity onsensus prolemsF 3.7. Toward a Dynamics for Self-Stabilizing Bit Dissemination he omputtionl study of strt systems omposed of simple individE uls tht intert using highly restrited nd stohsti intertions hs een gining onsiderle ttention in the ommunity of theoretil omputer sieneF opulr models inlude population protocols AAD + 06, AR07, AAFJ08, BBK11D whih typilly onsider onstnt size individuls tht intert in pirs @using onstnt size messgesA in rndom ommunition ptternsD nd the beeping model AAB + 11, EW13D whih ssumes (xed network with extremely restrited ommunitionF he models onsidered in hpters V nd W lso flls in this frmework s we onsider the uniform PU SH nd PULL models DGH + 88, KSSV00, KDG03 with onstnt size messgesF o frD despite interesting works tht onsider di'erent fultE tolernt ontexts AAE08, AAFJ08, BBK11D most of the progress in this frmework onsidered nonEfulty senriosF snformtion dissemintion is one of the most wellEstudied topis in disE triuted omputingD see e.g. AAE08, DGM + 11, DGH + 88, CHHKM12, DF11, FHK14, KSSV00F glssil exmples inlude the bit dissemination @broadcast or rumor-spreading A prolemD in whih piee of informtion residing t one soure gent is to e disseminted to the rest of the popuE ltionD nd majority consensus prolems in whih proessors re required to gree on ommon output vlue whih is the mjority initil input vlue mong ll gents AAE08, KK13D or mong set of designted soure gents FHK14F en extensive mount of reserh hs een dedited to study suh prolems in the PU SH/PULL ommunition models @inludE ing the phone call modelAD due to the inherent simpliity nd fultEtolernt resiliene of suh meeting ptternsF sndeedD the roustness of PU SH/PU LL sed protools to wek types of fultsD suh s rshes of messges ndGor gentsD or to the presene of reltively few fyzntine gentsD hs een known for quite while ES09, KSSV00F sn FHK14D it hs een shown tht under the PU SH modelD there exist e0ient it dissemintion nd mjority onsensus protools tht use single it per messge nd n overome )ips in messges @noiseAF he protools thereinD howeverD ssume tht the mesE sges re inry nd hevily rely on the ssumption tht gents know when the protool hs strtedF yserve tht in selfEstilizing ontextD in whih the dversry n orrupt the initil loks setting them to ritrry timesD suh n ssumption would e di0ult to remove while preserving the smll messge sizeF sn generlD there re only few known selfEstilizing protools tht opE erte e0iently under stohsti nd pity restrited intertionsF en exmple is the work of hoerr et lF on stabilizing consensus DGM + 11 operting in the PU LL modelF sn tht workD eh gent initilly hs stte tken out of set of m opinions nd the gol is to onverge on one of the proposed sttesF he proposed dynmis whih runs in logrithmi time is sed on smpling the sttes of 2 gents nd updting the gent9s stte to e the medin of the 2 smpled sttes nd the urrent stte of the gent @3 opinions in totlAF ine the totl numer of possile sttes is mD the numer of its tht must e reveled in eh intertion is Ω(log m)F enE other exmple is the QEwjority dynmis studied in ghpter SD in whih eh gent hs initilly n opinion nd we wnt the system to onverge to the most frequent one in the initil on(gurtion of the systemF sn ftD the mjority it dissemintion prolem studied in ghpter W n e viewed s generliztion of the majority-consensus prolem @iFeF the plurlity onE sensus prolem with two opinionsA to the se in whih multiple gents my initilly e without opinionF enother fundmentl issue in distriuted omputing is clock synchronization AHR96, Lam78, LLW10, LLSW10F e onsider synhroE nous system in whih loks tik t the sme pe ut they my not shre the sme vlueF his version hs erlier een studied in eFgFD BDH08, Dol97, DH07, DW04, Her00, FK15 under di'erent nmesD inluding digitl lok synhroniztion nd synhroniztion of phseEloksY e simply use the term lok synhroniztionF here is y now sustntil line of work on lok synhroniztion prolems in selfEstilizing ontext Spr13, DW04, LRS15, LR15F e note tht in these ppers the min fous is on the resiliene to fyzntine gentsF he numer of rounds nd messge lengths re lso minimizedD ut typilly s funtion of the numer of fyzntine proessorsF he fous of ghpter W is insted on minimizing the time nd messge omplexities s muh s possileF he uthors in LRS15, LR15 onsider mostly deterministi settingD where every gent gets one messge from every other gent on eh roundF woreoverD gents re ssumed to hve unique identi(ersF sn ontrstD ghpter W investigtes the restrited nd rndomized uniform PULL modelF sn Spr13, LRS15

rndomized protools re lso investigtedF e remrk tht the (rst protoE ol we disuss Syn-Simple @roposition PAD whih relies on known simple onnetion etween onsensus nd ounting Spr13D lredy improves exE ponentilly on the rndomized lgorithms from Spr13, LRS15 in terms of numer of roundsD numer of memory sttesD messge length nd totl mount of ommunitionD in the restrited regime where the resiliene pE rmeter f stis(es log n f n 1 2 -ε for n ritrrily smll onstnt ε > 0F e further note tht the works LRS15, LR15 lso use reursive onE strution for their loks @lthough very di'erent from the one we use in the proof of heorem ITAF he indution in LRS15 is on the resiliene pE rmeter f D the numer of gents nd the lok length togetherF his ide is improved in LR15 to hieve optimlity in terms of resiliene to fyzntine gentsF pinllyD we remrk tht ghpter W presents the (rst nlysis investigtE ing the selfEstilizing lok synhroniztion nd mjority it dissemintion prolem whih ims t minimizing the messge size eyond logrithmiF grei R Averaging Dynamics sn this hpter we formlly prove the results presented in etion PFI on the everging dynmisF ell tht in the everging protoolD given n underlying grphD initilly eh node lolly hooses vlue in {-1, 1}D uniformly t rndom nd independently of other nodesY henD in eh onE seutive roundD every node updtes her lol vlue to the verge of the vlues held y her neighorsD t the sme time pplying n elementryD lol lustering rule tht only depends on the urrent nd the previous vlues held y the node @elgorithm IAF es disussed in etion PFID while previous work on pplitions of liner dynmis hs foused on tsks tht re spei( to distriuted omputing suh s rehing onsensus or stility in the presene of fulty nodes @see etion QFPAD in this hpter we prove tht the proess resulting from the everging dynmis produes lustering tht extly or pproximtely @depending on the grphA re)ets the underlying ut in logrithmi timeD under vrious grph models tht exhiit sprse lned utD inluding the stohsti lok modelF e lso prove tht nturl extension of this dynmis perE forms ommunity detetion on regulrized version of the stohsti lok model with multiple ommunitiesF 4.1. Linear Algebra Toolkit e strt y relling some si fts from liner lger nd some results from mtrix perturtion theory SS90F sf M ∈ R n×n is rel symmetri mtrixD then it hs n rel eigenvlues @ounted with repetitionsAD

λ 1 λ 2 • • • λ n D nd we n (nd orE responding olletion of orthonorml rel eigenvetors v 1 , . . . , v n suh tht M v i = λ i v i F sf x ∈ R n
is ny vetorD then we n write it s liner omintion x = i α i v i of eigenvetorsD where the oe0ients of the liner omintion re α i = x, v i F sn this nottionD we n see tht

M x = i λ i α i v i , nd so M t x = i λ t i α i v i .
nless otherwise spei(edD the norm of vetor x is the 2 norm x := i (x(i)) 2 nd the norm of mtrix A is the spetrl norm A := sup x: x =1 Ax F por digonl mtrixD this is the lrgest digonl entry in solute vlueF sn the following we rell the guhyEhwrz inequlityD some properties of the 2 normD nd mtrix version of the gherno' ound for rndom mtriesF Lemma I @guhyEhwrz inequlityA. For any pair of vectors x and y it holds

| x, y | x • y .
Observation I. por ny mtrix A nd ny vetor xD it holds

Ax A • x , nd A • B A • B .
Theorem IV @wtrix fernstein snequlityA. Let X 1 , . . . , X N be a sequence of independent n × n symmetric random matrices 1 , such that E[X i ] = 0 for every i, and such that X i L with probability 1 for every L. Call σ := E i X 2 i . Then, for every t, we have

Pr i X i t 2ne -t 2 2σ+ 2 3 Lt .
he following theorems re weker version thn the originl ones they re nmed fterF por proof of the following oneD see gorollry RFIH in SS90F

Theorem IW @eyl9s heoremA. Let M 1 and M 2 be two Hermitian matrices, let λ 1 λ 2 • • • λ n be the eigenvalues of M 1 with multiplicities in non-increasing order, and let λ 1 λ 2 • • • λ n be the eigenvalues of M 2 with multiplicities in non-increasing order. Then, for every i,

|λ i -λ i | M 1 -M 2 .
he @generl version of theA following theorem ws originlly proved in DK70F

Theorem PH @hvis nd uhnD IWUHA. Let M 1 and M 2 be two symmetric real matrices, let x be a unit length eigenvector of M 1 of eigenvalue t, and let x p be the projection of x on the eigenspace of the eigenvectors of M 2 corresponding to eigenvalues tδ. Then

x p 2 δπ M 1 -M 2 .

Distributed Reconstruction Problem

vet us rell the de(nition of strong nd wek reonstrutionF 1

We remark that here we are only assuming that, for each w, z ∈ {1, . . . , N } with w = z and iw, jw, iz, jz ∈ [n], (Xw)i w ,jw and (Xz)i z ,jz are independent. For any w ∈ {1, . . . , N }, no other assumption on the distribution of the entries of Xw is made, as long as for each i, j ∈ [n] it holds (Xw)i,j = (Xw)j,i with probability 1.

Definition P @trong nd ek eonstrutionA. qiven grph G = (V 1 ∪ V 2 , E) with V 1 ∩ V 2 = ∅D weak (block) reconstruction is twoEoloring of the nodes tht seprtes V 1 nd V 2 up
to smll frtion of the nodesF pormllyD we de(ne n εEweak reconstruction s mp

f : V 1 ∪ V 2 → {red, blue} suh tht there re two susets W 1 ⊆ V 1 nd W 2 ⊆ V 2 with 2 |W 1 ∪ W 2 | (1 -ε)|V 1 ∪ V 2 | nd f (W 1 ) ∩ f (W 2 ) = ∅. hen ε = 0 we sy tht f is strong reconstructionF qiven grph G = ((V 1 , V 2
), E)D the reonstrution prolem requires omputing n εEreonstrution of GF o this purposeD in this hpter we nlyse the distriuted protool given in elgorithm I @see lso (gures IQ nd IRAD whih is sed on the everging dynmis nd produes oloring of the nodes t the end of every roundF 4.2.1. The Averaging dynamics and random walks on G he nlysis of the everging dynmis on grph G is losely relted to the ehvior of rndom wlks in GD whih re est studied using tools from liner lger tht we rie)y summrize elowF Figure 12. he typil ehvior of the everging dynmE is on grph whih exhiits good ommunity strutureD iFeF where the seond eigenvetor is lose to the hrterE isti vetor of the two ommunities nd the third eigenvlue is smller thn the seond one y onstnt ftorF he inE ternl expnsion of the two ommunities leds the vlues of pirs of nodes in ommunity to e muh loser thn those of pirs of nodes in di'erent ommunitiesF yne suh on(gE urtion is rehedD the edges in the ut mke the nodes slowly onverge to ommon vlue whih lies etween the verges of the two ommunitiesD using the vlue of single nodes to evolve monotonillyF vet G = (V, E) e n undireted grph @possily with multiple edges nd self loopsAD A its djeny mtrix nd d i the degree of node iF he 2 We adopt the common convention that f (S) := {f (x) : x ∈ S} for any function f with domain D and any subset S ⊆ D.

transition matrix of @the rndom wlk onA G is the mtrix

P = D -1 A, where D is the digonl mtrix suh tht D i,i = d i F P i,j = (1/d i ) • A i,j
is thus the proility of going from i to j in oneEstep of the rndom wlk on GF P opertes s the rndom wlk proess on G y left multiplitionD nd s the everging dynmis y right multiplitionF por i = 1, 2D de(ne

1 V i D s the |V |Edimensionl vetorD whose jEth omponent is 1 if j ∈ V i D it is 0 otherwiseF sf (V 1 , V 2 ) is iprtition of the nodes with |V 1 | = |V 2 | = nD we de(ne the partition indicator vector χ = 1 V 1 -1 V 2 .
sf x is the initil vetor of vluesD fter t rounds of the everging dynmis the vetor of vlues t time t is

x (t) = P t x.
he produt of the power of mtrix times vetor is est understood in terms of the spetrum of the mtrixD whih is wht we explore in the next setionF sn wht follows we lwys denote y λ 1 . . . λ 2n the eigenvlues of P F ell thtD sine P is stohsti mtrix we hve λ 1 = 1 nd λ 2n -1D moreover for ll grphs tht re onneted nd not iprtite it holds tht λ 2 < 1 nd λ 2n > -1F e denote y λ the lrgestD in solute vlueD mong ll ut the (rst two eigenvluesD nmely λ = max {|λ i | : i = 3, 4, . . . , 2n} .

Length of the Projection of Vector x

por the nlysis of the everging dynmis on oth regulr nd nonE regulr grphsD it is importnt to understnd the distriution of the projeE tion of x on 1 nd χD tht is @up to slingA the distriution of the inner produts x, 1 nd x, χ F sn prtiulr we re going to use the following oundF Lemma P. If we pick x uniformly at random in {-1, 1} 2n then, for any δ > 0 and any xed vector w ∈ {-1, 1} 2n with ±1 entries, it holds

Pr (1/ √ 2n) w, x δ O(δ).
Proof. ine x is vetor of independent nd uniformly distriuted rndom vriles in {-1, 1}D oth x, χ nd x, 1 hve the distriution of sum of 2n demher rndom vriles 3 F uh sum tkes the vlue 2k -2n with proility 1 2 n 2n k D nd so every possile vlue hs proility

3 A Rademacher random variable X is such that Pr(X = +1) = Pr(X = -1) = 1 2 . + + + 4 = 1)
2)

3) 4)

Figure 13. e pitoril representtion of the demher initiliztion nd the pplition of the everging dynmis @step @IA of the updting rule in elgorithm IAX 1)-2): he nodes generte rndom vrile in {-1, +1} uFFrF 3)-4):

ih node sends her urrent vlue to ll the neighorsD nd updtes her vlue with the verge of those reeived from the neighorsF

t most 1 2 n 2n n ≈ 1 √ 2πn F gonsequentlyD if R is the sum of 2n demher rndom vrilesD we hve Pr |R| δ √ 2n O(δ).
gg elthough it is possile to rgue tht demher vetor hs Ω(1) proility of hving inner produt Ω( w ) with every vetor wD suh sttement does not hold wFhFpF e do hveD howeverD estimtes of the inner

t -1 +1 • • • α Label: Value Figure 14
. e pitoril representtion of the leling riteE rion of the everging protool @step @PA of the updting rule in elgorithm IAX nodes whose vlue inreses from one round to the next lel themselves redD otherwise they lel themE selves lueF produt of vetor w with demher vetor x provided tht w is lose to vetor in {-1, 1} 2n F Lemma Q. Let k be a positive integer. For every nk-dimensional vector w such that

| {i | |w(i)| c} | n,
for some positive constant c, if we pick x uniformly at random in {-1, 1} kn , then

Pr 1 √ kn w, x δ O(kδ) + O 1 √ n .
Proof. vet S ⊂ {1, . . . , kn} e the set of oordintes i of w suh tht |w(i)| cF fy hypothesisD we hve |S| nF vet T := {1, . . . , kn} -SF xextD for every ssignment a ∈ {-1, 1} kn D we show tht

Pr | w, x | δ √ kn | ∀i ∈ T, x(i) = a(i) O(δ),
from whih the lemm followsF gll t := i∈T a i z i F e need to show

Pr | i∈S x(i)w(i) + t| δ √ kn O(δ).
prom the ferryEisseen theoremD

Pr | i∈S x(i)w(i) + t| δ √ kn Pr |g + t| δ √ kn + O 1 √ n ,
where g is qussin rndom vrile of men H nd vrine

σ 2 = i∈S (w(i)) 2 c 2 |S| c 2 n, thus Pr |g + t| δ √ kn = 1 √ 2σ 2 π -t+δ √ kn -t-δ √ kn e -s 2 2σ 2 ds 2δ √ kn √ 2πc 2 n = √ 2kδ √ πc ,
where we used the ft tht e -s 2 /2 1 for ll sD onluding the proofF gg 4.4. Strong Reconstruction for Regular Graphs

yserve thtD if G is dEregulr then P = (1/d) • A is rel symmetri mtrix nd P nd A hve the sme set of eigenvetorsF e denote y v 1 = (1/ √ 2n)1, v 2 , .
. . , v 2n sis of orthonorml eigenvetorsD where eh v i is the eigenvetor ssoited to eigenvlue λ i F henD we n write vetor x s liner omintion x = i α i v i nd we hveX

P t x = i λ t i α i v i = 1 2n i x(i) 1 + 2n i=2 λ t i α i v i ,
whih implies tht x (t) = P t x tends to α 1 v 1 s t tends to in(nityD iFeFD it onverges to the vetor tht hs the verge of x in every oordinteF e next show thtD if the regulr grph is well lusteredD then the evE erging protool produes strong reonstrution of the two lustersD wFhFpF Definition Q @glustered egulr qrphA. e (2n, 

d, b)Elustered regulr grph G = ((V 1 , V 2 ), E) is onneted grph over node set V 1 ∪ V 2 D with |V 1 | = |V 2 | = n nd suh thtX • ivery node hs degree dD • ivery node in luster V 1 hs b neighors in luster V 2 nd every node in V 2 hs b neighors in V 1 F vet G = ((V 1 , V 2 ), E) e (2n,
P. sf G is (2n, d, b)Elustered regulr grph with lusters V 1 nd V 2 nd χ = 1 V 1 -1 V 2 is the prtition inditor vetorD then χ is n eigenvetor of the trnsition mtrix P of G with eigenvlue 1 -2b/dF
Proof. ivery node i hs b neighors j on the opposite side of the prE titionD for whih χ(j) = -χ(i)D nd db neighors j on the sme sideD for whih χ(j) = χ(i)D so

(P χ) i = 1 d ((d -b)χ(i) -bχ(i)) = 1 - 2b d χ(i).
gg e (rst show thtD if 1 -2b/d hppens to e the seond eigenvlueD fter t rounds of the everging dynmisD the on(gurtion x (t) is lose to liner omintion of 1 nd χF pormllyD if λ < 1 -2b/d the following holdsF Lemma R. Assume we run the Averaging dynamics in a (2n, d, b)-clustered regular graph G (see Denition 3) with any initial vector x ∈ {-1, 1} 2n . If λ < 1 -2b/d then there are reals α 1 , α 2 such that at every round t we have @IA

x (t) = α 1 1 + α 2 λ t 2 χ + e (t)
where e (t) ∞ λ t √ 2n .

Proof. ine x (t) = P t x we n write

P t x = i λ t i x, v i v i , where 1 = λ 1 > λ 2 = 1 -2b/d > λ 3 • • • λ 2n re the eigenvlues of P nd v 1 = 1 √ 2n 1D v 2 = 1 √ 2n χD v 3 D F F F D v 2n re orresponding sequene of orthonorml eigenvetorsF reneD x (t) = 1 2n x, 1 • 1 + λ t 2 1 2n x, χ • χ + 2n i=3 λ t i α i v i = α 1 1 + α 2 λ t 2 • χ + 2n i=3 λ t i α i v i ,
where we set α 1 = 1 2n 1, x nd α 2 = 1 2n χ, x F e ound the ∞ norm of the lst term s

2n i=3 λ t i α i v i ∞ 2n i=3 λ t i α i v i 2 = 2n i=3 λ 2t i α 2 i λ t 2n i=1 α 2 i = λ t x = λ t √ 2n.
gg snformlly spekingD @IA nturlly suggested the hoie of the oloring rule in the everging protoolD one we onsidered the di'erene of two onseutive vlues of ny node uD iFeFD

@PA x (t-1) (u) -x (t) (u) = α 2 λ t-1 2 (1 -λ 2 )χ(u) + e (t-1) (u) -e (t) (u)
. @ee pigure IS for n interprettion of α 1 D α 2 FA sntuitivelyD if λ is su0iently smllD we n exploit the ound on e (t) ∞ in @IA to show thtD fter short initil phseD the sign of x (t-1) (u)-x (t) (u) is essentilly determined y χ(u)D thus y the ommunity u elongs toD wFhFpF he following theorem nd its proof formlize the ove ftF 

x (t+1) = 1 2n (1 x (0) )1 + λ t 2 1 2n (χ x (0) )χ + e (t) 1 2n u∈V x (0) (u) 1 2 1 n u∈V 1 x (0) (u) -1 n u∈V 2 x (
I @trong eonstrutionA. Let G = ((V 1 , V 2 ), E) be a con- nected (2n, d, b)-clustered regular graph with 1 -2b/d > (1 + δ)λ for an arbitrarily-small constant δ > 0.
Then the Averaging protocol produces a strong reconstruction within O(log n) rounds, w.h.p. Sketch of Proof. prom @PAD we hve tht sgn

x (t-1) (u) -x (t) (u) = sgn (α 2 χ(u)) whenever @QA α 2 λ t-1 2 (1 -λ 2 ) > e (t-1) (u) -e (t) (u) .
prom @IA we hve tht

e (t) (u) λ t √ 2n,
thus @QA is stis(ed for ll t suh tht

t -1 log 2 √ 2n |α 2 |(1 -λ 2 ) • 1 log (λ 2 /λ) .
he seond keyEstep of the proof relies on the rndomness of the initil vetorF sndeedD sine x is vetor of independent nd uniformly distriuted rndom vriles in {-1, 1}D the solute di'erene etween the two prtil verges in the two ommunitiesD iFeF |α 2 |D is su0iently lrgeD wFhFpF wore preiselyD from vemm P we hve tht is the sum of 2n demher rndom vrilesD we hve

Pr |R| δ √ 2n O(δ).
ine α 2 = 1 2n χ, x nd x is vetor of demher rndom vrilesD the previous inequlity implies tht

|α 2 | = 1 2n χ, x n -γ ,
for some positive onstnt γD wFhFpF he theorem thus follows from the ove ound on |α 2 | nd from the hypothesis λ 2 (1 + δ)λF gg Remark Q. qrphs to whih heorem I pply re those onsisting of two regulr expnders onneted y regulr sprse utF sndeedD let sf G is grph smpled from the regulr stohsti lok model with internl nd externl degrees a nd b respetivelyD then it is (2n, d, b)E lustered grph with lrgest eigenvlue of the trnsition mtrix 1 nd orE responding eigenvetor 1D while χ is lso n eigenvetorD with eigenvlue 1 -2b/dD where d := a + bF purthermoreD we n derive the following upper ound on the mximl solute vlue hieved y the other 2n-2 eigenvlues orresponding to eigenvetors orthogonl to 1 nd χX

G = ((V 1 , V 2 ), E) e (2n, d, b)Elustered regulr grphD nd let λ A = max{λ 2 (A 1 ), λ 2 (A 2 )} nd λ B = λ 2 (B)D where A 1 D A 2 nd B re the dE jeny mtries of the sugrphs indued y V 1 D V 2 nd the ut etween V 1 nd V 2 D respetivelyF ine λ = a d λ A + b d λ B , if a -b > (1 + ε)(aλ A + bλ B ),
V 1 nd V 2 nd then smple rndom a(n)Eregulr grph over eh of V 1 nd V 2 nd rndom b(n)Eregulr grph etween V 1 nd V 2 F

4-regular 4-regular 2-regular bipartite

@RA λ 2 a + b ( √ a + b -1 + o n (1))
his ound n e proved using some generl result of priedmn nd uohler FK14 on random degree k lifts of grphD s given in the followingF Lemma S. Let G be a graph sampled from the regular stochastic block model with internal and external degrees a and b respectively. It holds that w.h.p.

λ 2 a + b ( √ a + b -1 + o n (1)).
Sketch of Proof. he lemm follows from the generl results of priedE mn nd uohler FK14D simpli(ed y fordenve Bor15bF sf G is multiE grph on n nodesD then random degree k lift of G is distriution over grphs G on kn nodes smpled s followsX every node v of G is repled y k nodes v 1 , . . . , v k in G D every edge (u, v) in G is repled y rndom iprtite mthing etween u 1 , . . . , u k nd v 1 , . . . , v k @if there re multiple edgesD eh edge is repled y n independently smpled mthingA nd every self loop over u is repled y rndom degreeEP grph over u 1 , . . . , u k whih is smpled y tking rndom permuttion π : {1, . . . , k} → {1, . . . , k} nd onneting u i to u π (i) for every iF por every lift of ny dEregulr grphD the lifted grph is still dEregulrD nd every eigenvlue of the djeny mtrix of the se grph is still n eigenvlue of the lifted grphF priedmn nd uohler FK14 prove thtD if d 3D then with proility 1 -O(1/k) over the hoie of rndom lift of degree kD the new eigenvlues of the djeny mtrix of the lifted grph re t most 2 √ d -1 + o k (1) in solute vlueF fordenve Bor15bD gorollry PH hs onsiderly simpli(ed the proof of priedmn nd uohlerY lthough he does not expliitly stte the proility of the ove eventD his rgument lso ound the filure proility y 1/k Ω(1) Bor15aF he lemm now follows y oserving tht the regulr stohsti lok model is rndom lift of degree n of the grph tht hs only two nodes v 1 nd v 2 D it hs b prllel edges etween v 1 nd v 2 D nd it hs a/2 selfEloops on v 1 nd a/2 selfEloops on v 2 F gg prom vemm SD sine λ 2 = a-b a+b D using @RA in heorem ID we get strong reonstrution for the regulr stohsti lok modelF Corollary I @eonstrution in egulr tohsti flok wodelsA. Let G be a random graph sampled from the regular stochastic block model with

a -b > 2(1 + η) √ a + b
for an arbitrarily small constant η > 0, then the Averaging protocol produces a strong reconstruction in O(log n) rounds, w.h.p.

Weak Reconstruction for Non-Regular Graphs

he results of etion RFR rely on very ler spetrl properties of regE ulrD lustered grphsD immeditely re)eting their underlying topologil strutureF sntuition suggests tht these properties should e pproximtely preserved if we suitly relx the notion of regulrityF e thus generlize our pproh to lrge lss of nonEregulr lustered grphsF Definition S @glustered γEegulr qrphsA. e (2n, d, b, γ)Elustered

grph G = ((V 1 , V 2 ), E) @with γ < 1AD is grph over node set V 1 ∪ V 2 D where |V 1 | = |V 2 | = n suh thtX • ivery node hs degree d ± γdD • ivery node in V 1 hs b ± γd neighors in V 2 nd every node in V 2 hs b ± γd neighors in V 1 F
sf G is not regulr then the mtrix P = D -1 A is not symmetri in generlD however it is possile to relte its eigenvlues nd eigenvetors to those of symmetri mtrixD s followsF henote the normalized adjacency matrix of G s N := D -1/2 AD -1/2 = D 1/2 P D -1/2 . xotie tht N is symmetriD P nd N hve the sme eigenvlues λ 1 , . . . , λ 2n D nd x is n eigenvetor of P if nd only if D 1/2 x is n eigenvetor of N @if G is regulr then P nd N re the sme mtrixAF vet w 1 , . . . , w 2n e sis of orthonorml eigenvetors of N D with w i the eigenvetor ssoited to eigenvlue λ i D for every iF e hve tht

w 1 = D 1/2 1 D 1/2 1 .
sf we set v i := D -1/2 w i D we otin set of eigenvetors for P nd we n write x = i α i v i s liner omintion of themF henD the verging proess n gin e desried s

P t x = i λ t i α i v i = α 1 v 1 + i λ t i α i v i .
oD if G is onneted nd not iprtiteD the everging dynmis onverges to α 1 v 1 F sn generlD it is esy to see tht α i = w T i D 1/2 x @see the (rst lines in the proof of vemm TA nd α 1 v 1 is the vetor

(w T 1 D 1/2 x) • D -1/2 w 1 = 1 T Dx D 1/2 1 2 1 = i d i x(i) i d i • 1 .
es in the regulr seD if the trnsition mtrix P of lustered γEregulr grph hs λ 2 lose to 1 nd |λ 3 |, . . . , |λ 2n | smllD the everging dynmis hs long phse in whih x (t) = P t x is lose to α 1 1 + α 2 v 2 F roweverD providing n rgument similr to the regulr se is onsiderly hrderD sine the prtition inditor vetor χ is no longer n eigenvetor of P F sn order to (x this issueD we generlize @IAD proving in vemm T tht x (t) is still lose to liner omintion of 1 nd χF e set ν = 1 -2b d D sine this vlue ours frequently in this setionF Lemma T. Let Averaging dynamics run on a a connected (2n, d, b, γ)clustered graph G with γ 1/10, with initial vector x. If λ < ν we have: Proof. e prove the following two keyEftsX @iA the seond eigenvlue of the trnsition mtrix of G is not muh smller thn 1 -2b/dD nd @iiA D 1/2 χ is loseD in normD to its projetion on the seond eigenvetor of the normlized djeny mtrix N F xmelyD in vemm IH we prove tht if

x (t) = α 1 1 + α 2 λ t 2 χ + α 2 λ t 2 z + e (t
λ 3 < ν then @SA λ 2 ν -10γ nd D 1/2 χ -β 2 w 2 44 γ ν -λ 3 √ 2nd,
where β 2 = χ D 1/2 w 2 F xowD we n use the ove ounds to nlyze

x (t) = P t xF o eginD note tht N = D -1/2 AD -1/2 nd P = D -1 A imply tht P = D -1/2 N D 1/2 nd P t = D -1/2 N t D 1/2 . husD for ny vetor xD if we write D 1/2 x s liner omintion of n orthonorml sis of N D D 1/2 x = 2n i=1 a i w i , we get @TA P t x = D -1/2 N t D 1/2 x = D -1/2 2n i=1 a i λ t i w i = 2n i=1 a i λ t i D -1/2 w i .
e next estimte the (rst termD the seond termD nd the sum of the remining terms of @TAF First term of @TA. e hve w 1 = D 1/2 1 D 1/2 1 D so the (rst term n e written s α 1 1 with

α 1 = a 1 D 1/2 1 = w 1 D 1/2 x D 1/2 1 = 1 Dx D 1/2 1 2 .
Second term of @TA. sf we write

D 1/2 χ = β 2 w 2 + y, with β 2 = w 2 D 1/2 χD @SA implies tht y 44 γ ν -λ 3 √ 2nd.
rene the seond term n e written s

a 2 λ t 2 D -1/2 w 2 = a 2 λ t 2 D -1/2 D 1/2 χ -y β 2 = a 2 β 2 λ t 2 χ - a 2 β 2 λ t 2 z = α 2 λ t 2 χ -α 2 λ t 2 z,
where

z = D -1/2 y D -1/2 y 2 √ d • 44 γ ν -λ 3 √ 2nd = 88 γ ν -λ 3 √ 2n, nd α 2 = a 2 /β 2 = w 2 D 1/2 x w 2 D 1/2 χ .
Remaining terms of @TA. es for ll other termsD oserve tht

e (t) 2 = 2n i=3 a i λ t i D -1/2 w i 2 D -1/2 2 2n i=3 a i λ t i w i 2 = D -1/2 2 2n i=3 a 2 i λ 2t i D -1/2 2 λ 2t 2n i=3 a 2 i D -1/2 2 λ 2t D 1/2 x 2 D -1/2 2 D 1/2 2 λ 2t x 2 16λ 2t x 2 .
gg he ove lemm llows us to generlize our pproh to hieve e0ientD wek reonstrution in nonEregulr lustered grphsF Theorem Q @ek eonstrutionA. Let G be a connected (2n, d, b, γ)clustered graph with γ c(νλ 3 ) for a suitable constant c > 0. If λ < ν and λ 2 (1 + δ)λ for an arbitrarily-small positive constant δ, then the Averaging protocol produces an O(γ 2 /(νλ 3 ) 2 )-weak reconstruction within O(log n) rounds, w.h.p. 4 Proof. vemm T implies tht for every node u t ny round t we hve

x (t-1) (u) -x (t) (u) = α 2 λ t-1 2 (1 -λ 2 ) (χ(u) + z(u)) + e (t-1) (u) -e (t) (u). reneD for every node u suh tht |z(u)| < 1/2D 5 we hve sgn x (t-1) (u) -x (t) (u) = sgn (α 2 χ(u)) whenever @UA 1 2 α 2 λ t-1 2 (1 -λ 2 ) > e (t-1) (u) -e (t) (u) .
prom vemm T we hve e (t) (u) 4λ t √ 2nD thus @UA is stis(ed for ny t suh tht

@VA t -1 log 16 √ 2n |α 2 |(1 -λ 2 ) • 1 log (λ 2 /λ) .
he rightEhnd side in the ove formul is O(log n)D wFhFpFD euse of the following three pointsX

• prom gheeger9s inequlity @see eFgF Chu96A nd the ft tht the grph is onneted it follows tht

1 -λ 2 1/(2n 4 )Y • λ 2 (1 + δ)λ y hypothesisY • st holds wFhFpF |α 2 | n -c
for some lrge enough positive onstnt cD s onsequene of the following equtions tht we prove elowX

Pr |α 2 | 1 n c = Pr   w 2 D 1 2 x w 2 D 1 2 χ 1 n c   Pr w 2 D 1/2 x 2 √ d n c-1/2 O 1 √ n . @WA
sn the (rst inequlity of @WA we used thtD y de(nitionD

|α 2 | = |w 2 D 1 2 x|/|w 2 D 1 2 χ|. 4
Consistently, Theorem 1 is a special case of this one when γ = 0.

5

The value 1/2 is chosen here only for readability sake, any constant smaller than 1 will do.

sn the (rst inequlity we used thtD y the guhyEhwrz inequlE ityD

|w 2 D 1 2 χ| D 1 2 χ 2 √
dn. sn order to prove the lst inequlity of @WAD we use tht from vemm IH it holds

D 1/2 χ -β 2 w 2 2 = D 1/2 χ 2 + β 2 w 2 2 -2 D 1/2 χ, β 2 w 2 2 44 2 γ 2 (ν -λ 3 ) 2 nd, tht is D 1/2 χ, β 2 w 2 = D 1/2 χ, w 2 2 1 2 D 1/2 χ 2 -2 44 2 γ 2 (ν -λ 3 ) 2 nd nd 3 . @IHA
ine w 2 is normlized the solute vlue of its entries is t most 1D whih together with @IHA implies tht t lest frtion IPGIQ of its entries hve n solute vlue greter thn IGIPF husD we n pE ply vemm Q nd prove the lst inequlity of @WA ndD onsequentlyD the ft tht @VA is O(log n)F pinllyD from vemm T we hve z 88 γ ν-λ 3

√

2nF husD the numer of nodes u with z(u) 1/2 is O(nγ 2 /(νλ 3 ) 2 )F gg oughly spekingD the ove theorem sttes tht the qulity of the reonE strution depends on the regulrity of the grph @through the prmeter γAD nd the ondutne within eh ommunity @here represented y the di'erE ene |νλ 3 |AF snterestingly enoughD s long s |νλ 3 | = Θ(1)D the protool hieves O(γ 2 )Ewek reonstrution on (2n, d, b, γ)Elustered grphsF 4.5.1. Reconstruction in the stochastic block model felow we prove tht the stohsti lok model G 2n,p,q stis(es the hyE potheses of heorem QD wFhFpFD ndD thusD the everging protool e0iently produes good reonstrutionF sn wht followsD we often use the following prmeters of the modelX expeted internl degree a = pnD expeted externl degree

b = qnD nd d = a + bF Lemma U. Let G ∼ G 2n,p,q . If a -b > (a + b) log n then a positive constant δ exists such that w.h.p. i) G is (2n, d, b, 6 log n/d)-clustered and ii) it holds λ min λ 2 1 + δ , 24 log n d .
Sketch of Proof. glim @iA follows @with proility 1-n -1 A from n esy pplition of the gherno' ound @vemm UTAF es for glim @iiAD sine G is not regulr nd rndomD we derive spetrl properties on its djeny mtrix A y onsidering moreEtrtle mtrixD nmely the expeted mtrix

B := E[A] =
pJ, qJ qJ, pJ where B i,j is the proility tht the edge (i, j) exists in rndom grph G ∼ G 2n,p,q F sn vemm V we prove tht suh G is likely to hve n djeny mtrix A lose to B in spetrl normF henD in vemm W we show tht every lustered grph whose djeny mtrix is lose to B hs the properties required in the nlysis of the everging dynmisD thus getting glim @iiAF gg e now prove vemm V nd vemm WD whih re used in the previous proof of vemm UF

Lemma V. If a(n), b(n) are such that d := a + b > log n and , then w.h.p. (over the choice of G ∼ G 2n, a n , b n ) A -B O( d log n).
Proof. e n write A -B s {i,j} X {i,j} D where the mtrix X {i,j} is zero in ll oordintes exept (i, j) nd (j, i)D ndD in those oordintesD it is equl to A -BF hen we see tht the mtries X {i,j} re independentD tht E[X {i,j} ] = 0D tht X {i,j} 1 @euse every row ontins t most one nonEzero elementD nd tht element is t most 1 in solute vlueAD nd tht E[ {i,j} (X {i,j} ) 2 ] is the mtrix tht is zero everywhere exept for the digonl entries (i, i) nd (j, j)D in whih we hve

B i,i -B 2 i,i nd B j,j -B 2 j,j respetivelyF st follows tht E[ {i,j} (X {i,j} ) 2 ] d.
utting these fts togetherD nd pplying the wtrix fernstein snequlity @see heorem IV in etion RFIA with t = √ 6d log nD we hve

Pr A -B 9d log n 2ne - 9d log n 2d+ 2 3 √ 9d log n 2ne -9d log n 4d 2n -1 ,
where we used d > log nF gg Lemma W. Let G be a (2n, d, b, γ)-clustered graph such that ν = 1 -2b d > 12γ and such that its adjacency matrix A satises A -B γd. Then for every i ∈ {3, . . . , 2n}, |λ i | 4γ and λ 2 (1 + δ)λ 3 for some constant δ > 0.

Proof. he mtrix B hs very simple spetrl strutureX 1 is n eigenvetor of eigenvlue dD χ is n eigenvetor of eigenvlue a -bD nd ll vetors orthogonl to 1 nd to χ re eigenvetors of eigenvlue 0F sn order to understnd the eigenvlues nd eigenvetors of N D nd hene the eigenvlues nd eigenvetors of P D we (rst prove tht A pproximtes B nd tht N pproximtes (1/d)AD nmely dN -A 3γdF o show tht dN pproximtes A we need to show tht D pproximtes dIF he ondition on the degrees immeditely gives us D -dI γdF ine every node hs degree d i in the rnge d ± γdD then the squre root

√ d i of eh node must e in the rnge [ √ d -γ √ d, √ d + γ √ d]D so we lso hve the spetrl oundX @IIA D 1/2 - √ dI γ √ d.
e know tht D d + γd < 2d nd tht N = 1D so from @IIA we get

A -dN = D 1/2 N D 1/2 -dN D 1/2 N D 1/2 - √ dN D 1/2 + √ dN D 1/2 -dN = (D 1/2 - √ dI) • N D 1/2 + √ dN • (D 1/2 - √ dI) D 1/2 - √ dI • N • D 1/2 + √ d • N • D 1/2 - √ dI 3γd. @IPA
fy using the tringle inequlity nd @IPA we get

@IQA N -(1/d)B N -(1/d)A + (1/d) • A -B 4γ.
pinllyD we use heorem IW @see etion RFIAD whih is stndrd ft in mtrix pproximtion theoryX if two rel symmetri mtries re lose in spetrl norm then their eigenvlues re loseF prom @IQA nd the ft tht ll eigenvlues of (1/d)B exept for the (rst nd seond one re 0D for eh i ∈ {3, . . . , 2n} we hve

@IRA |λ i | = |λ i -0| N - 1 d B 4γ.
imilrlyD from the ft tht the seond eigenvlue of

(1/d)B is 1 -2b/d we get |λ 2 -(1 -2b/d)| N - 1 d B 4γ,
tht isD from hypothesis ν > 12γ nd @IRAD λ 2 (1 + δ)λ 3 for some onstnt δ > 0F his onludes the proofs of vemm W nd heorem UF gg fy omining vemm U nd heorem QD we hieve wek reonstrution for the stohsti lok modelF 

• γ 6 log n/dD • |λ i | 4γ for ll i = 3, . . . , 2n nd • λ 2 (1 + δ)λ 3 for some onstnt δ > 0F
qiven the hypotheses on a nd bD we lso hve tht the grph is onnetedD

wFhFpF woreoverD sine dν = (a -b) > 25 √ d log nD then γ ν -λ 3 = dγ dν -dλ 3 6 √ d log n (a -b) -24 √ d log n = O √ d log n (a -b)
.

heorem Q then gurntees tht the everging protool (nds n O(d log n /(ab) 2 )Ewek reonstrutionD wFhFpF gg 4.6. Technical Proofs for Clustered Graphs

Lemma IH. Let G be a connected (2n, d, b, γ)-clustered graph (see De- nition 5) with γ 1/10. If λ 3 < ν then λ 2 ν -10γ and D 1/2 χ -β 2 w 2 44 γ ν -λ 3 √ 2nd,
where β 2 = χ D 1/2 w 2 .

Proof. por every node vD let us nme a v nd b v the numers of neighE ors of v in its own luster nd in the other lusterD respetivelyD nd

d v = a v + b v its degreeF ine from the de(nition of (2n, d, b, γ)Elustered grph it holds tht (1 -γ)d d v (1 + γ)d nd b -γd b v b + γdD it is esy to hek tht |a v -b v -νd v | 4d γ for ny node vF reneD Aχ -νDχ 2 = v∈[2n]   w∈Neigh(v) χ(w) -νd v χ(v)   2 = v∈[2n] (a v χ(v) -b v χ(v) -νd v χ(v)) 2 = v∈[2n] (a v -b v -νd v ) 2 32nd 2 γ 2 . husD N D 1/2 χ -νD 1/2 χ = D -1/2 Aχ -νD 1/2 χ @ISA = D -1/2 (Aχ -νDχ) D -1/2 • Aχ -νDχ 2 √ d • √ 2n4d γ = 8 √ 2nd γ.
yserve tht w 1 is prllel to D 1/2 1 nd we hve tht

@ITA |1 Dχ| = v∈[2n] χ(v)d v (1 + γ)dn -(1 -γ)dn = 2nd γ.
reneD if we nme y the omponent of D 1/2 χ orthogonl to the (rst eigenE vetorD we n write it s

@IUA D 1/2 χ = 1 Dχ D 1/2 1 2 D 1/2 1 + y. husD N y -νy = N D 1/2 χ - 1 Dχ D 1/2 1 2 D 1/2 1 @IVA -ν D 1/2 χ - 1 Dχ D 1/2 1 2 D 1/2 1 N D 1/2 χ -νD 1/2 χ + |1 Dχ| D 1/2 1 2 N D 1/2 1 -νD 1/2 1 = N D 1/2 χ -νD 1/2 χ + |1 Dχ| D 1/2 1 2b d 8 √ 2nd γ + 4 √ 2nd γ,
where in the lst inequlity we used @ISA nd @ITA nd the fts tht b d/2

nd D 1/2 1 (1/2) √ 2ndF prom @IUA it follows tht y D 1/2 χ - 1 Dχ D 1/2 1 @IWA (1 -γ) √ 2nd -4γ √ 2nd = (1 -5γ) √ 2nd (1/2) √ 2nd.
xowD let us we write y s liner omintion of the orthonorml eigenE vetors of N D y = β 2 w 2 + • • • + β n w n @rell tht y w 1 = 0 y de(nition of y in @IUAAF prom @IVA nd @IWAD it follows tht

@PHA 100γ 2 y 2 N y -νy 2 = n i=2 (λ i -ν)β i w i 2 = n i=2 (λ i -ν) 2 β 2 i .
woreoverD from hypothesis λ 3 < ν we hve tht

n i=2 (λ i -ν) 2 β 2 i n i=3 (λ i -ν) 2 β 2 i @PIA (λ 3 -ν) 2 n i=3 β 2 i = (λ 3 -ν) 2 y -β 2 w 2 2 .
husD y omining together @PHA nd @PIA we get

y -β 2 w 2 10 γ ν -λ 3 y where β 2 = y w 2 = D 1/2 χ w 2 F es for the (rst thesis of the lemmD oserve tht if λ 2 ν then the (rst thesis is oviousF ytherwiseD if λ 2 < νD then (λ 2 -ν) 2 (λ 3 -ν) 2 • • • (λ n -ν) 2 F husD the (rst thesis follows from @PHA nd the ft tht n i=2 (λ i -ν) 2 β 2 i (λ 2 -ν) 2 n i=2 β 2 i = (λ 2 -ν) 2 y 2 .
es for the seond thesis of the lemmD we hve

D 1/2 χ -β 2 w 2 = 1 Dχ D 1/2 1 2 D 1/2 1 + y -β 2 w 2 |1 Dχ| D 1/2 1 + y -β 2 w 2 4 γ √ 2nd + 10 γ ν -λ 3 y 4 γ √ 2nd + 20 γ ν -λ 3 √ 2nd 44 γ ν -λ 3 √ 2nd,
where in the lst inequlity we used tht y is the projetion of D MNS13, Mas14, MNS14D the ltter eing neessry ondition for ny @entrlized or notA nonEtrivil wek reonstrutionF issentillyD the reson ehind this gp is thtD while heorem Q holds for any @iFeF worstEseA (2n, d, b, γ)Elustered grphD in order to pply it to G 2n,p,q we need to hoose prmeters a nd b in wy tht γd ounds the vrition of the degree of any node wFrFtF the regulr seD wFhFpF yn the other hndD sine the degrees in G 2n,p,q re distriuted ording to sum of fernoulli rndom vrilesD the rre event tht some degrees re muh higher thn the verge does not 'et too muh the eigenvlues nd eigenvetors of the grphF sndeedD y dopting dEho rguments for G 2n,p,q D we prove tht the everging protool tully hieves n O(d/(a-b) 2 )Ewek reonstrutionD wFhFpFD provided tht

1 2 χ on D 1 2 1D nd thus y D 1 2 χ 2 √ 2ndF
(a -b) 2 > c opt (a + b) > 5 log n,
thus mthing the wekEreonstrution threshold up to onstnt ftor for grphs of logrithmi degreeF he min rgument relies on the spetrl properties of G 2n,p,q stted in the following lemmD whose omplete proof is given in etion RFWF (1) for some constant c eigerr > 0, it holds

Lemma II. Let G ∼ G 2n,p,q . If (a -b) 2 > c opt (a + b) > 5 log n,
λ 2 1 -2b/d -c eigerr / √ d,
(2) λ 2 (1 + δ)λ for some constant δ > 0 (where as usual λ = max{|λ 3 |, . . . ,

|λ 2n |}), (3) for each i ∈ V \ S, for some subset S with |S| = O(nd/(a -b) 2 ), it holds | √ 2nd(D -1/2 w 2 )(i) -χ(i)| 1 100
.

Idea of Proof. he keyEsteps of the proof re two onentrtion of proility resultsF sn vemm ISD we prove tight ound on the devition of the vplin L(A) = I -N of G 2n,p,q from the vplin of the expeted mtrix L(B) = I -1 d BF es one my expet from previous results on the ird®sEényi model nd from ve nd ershynin9s onentrtion results for inhomogeneous ird®sE ényi grph @see vemm IRAD we n prove tht wFhFpF

L(A) -L(B) = O( √ d),
even when d = Θ(log n)F o derive the ltter resultD we leverge on the forementioned ve nd ershynin9s ound on the spetrl norm of inhomogeE neous ird®sEényi grphsY in G 2n,p,q this ound implies tht if d = Ω(log n) then wFhFpF A -B = O( √ d)F henD while ve nd ershynin reple the vplin mtrix with regulrized versions of itD we re le to ound L(A) -L(B) diretly y upper ounding it with A -B nd n ddiE tionl ftor Bd -1 D 1/2 BD 1/2 F e then ound from ove the ltter dditionl ftor thnks to our seond resultX sn vemm IT @whose proof n e found t the end of the hpterAD we prove tht wFhFpF

( d i - √ d) 2 2n nd (d i -d) 2 2nd.
e n then prove the (rst two lims of vemm II y ounding the distne of the eigenvlues of N from those of d -1 B vi vemm IWF es for the third lim of the lemmD we prove it y upper ounding the omponents of D -1/2 w orthogonl to χF sn prtiulrD we n limit the projetion w 1 of D -1/2 w on 1 y using vemm ITF henD we n upper ound the projetion w ⊥ of D -1/2 w on the spe orthogonl to oth χ nd 1 with vemm ISX e look t N s pertured version of B nd pply the hvisEuhn theoremF pinllyD we onlude the proof oserving tht

w 2 - 1 √ 2n 2( w 1 + w ⊥ ).
gg yne we hve vemm II we n prove the min theorem on G 2n,p,q with the sme rgument used for heorem Q @the full proof is given in etion RFWAF Theorem R @ight eonstrution in tohsti flok wodelsA. Let G ∼ G 2n,p,q . If Proof. por ny vetor xD we n write

x (t) = P t x = 2n i=1 a i λ t i D -1/2 w i = α 1 1 + a 2 λ t 2 D -1/2 w 2 + e (t)
,

where α 1 = 1 Dx D 1/2 1 nd e (t) 4λ t x F prom vemm II @glim QA we hve tht for t lest 2n -O(nd/(a -b) 2 ) entries i of D -1/2 w 2 D we get | √ 2nd(D -1/2 w 2 )(i) -χ(i)| 1 100 , 6
It should be possible to weaken the condition d < n tht is

(D -1/2 w 2 )(i) 99 100 √ 2nd if i ∈ V 1 ∩ S nd (D -1/2 w 2 )(i) - 99 100 √ 2nd if i ∈ V 2 ∩ S.
husD we get

x (t) -x (t-1) = a 2 λ t-1 2 (λ 2 -1)D -1/2 w 2 + e (t) + e (t-1) a 2 λ t-1 2 (λ 2 -1)D -1/2 w 2 + e (t) -e (t-1) @PPA ndD when t -1 log 16 √ 2n |a 2 |(1-λ 2 ) log λ 2 λ , from @PPA it follows tht (x (t) -x (t-1) )(i) 99 200 √ 2nd a 2 λ t-1 2 (λ 2 -1) if i ∈ V j ∩ S nd (x (t) -x (t-1) )(i) - 99 200 √ 2nd a 2 λ t-1 2 (λ 2 -1) if i ∈ V 3-j ∩ S.
either for j = 1 or for j = 2F ine

|S| > n -O nd (a -b) 2 ,
we thus get O(d/(ab) 2 )Ewek reonstrutionF gg 4.8. Moving Beyond Two Communities: An Outlook he everging protool n e nturlly extended to ddress the se of more ommunitiesF yne wy to hieve this is y performing suitle numer of independentD prllel runs of the protoolF e next outline the nlysis for nturl generliztion of the regulr lok modelF his llows us to esily present the min ides nd to provide n intuition of how nd why the protool worksF vet

G = (V, E) e dEregulr grph in whih V is prtitioned into k equllyEsized ommunities V 1 , . . . , V k D while every node in V i hs extly a neighors within V i nd extly b neighors in eh V j D for j = iF xote tht d = a + (k -1) • b.
st is esy to see tht the trnsition mtrix P of the rndom wlk on G hs n eigenvlue (ab)/d with multipliity k -1F he eigenspe of (ab)/d onsists of ll stepwise vetors tht re onstnt within eh ommunity V i nd whose entries sum to zeroF sf

max{|λ 2n |, λ k+1 } < (1 -ε) • a -b d , P hs eigenvlues λ 1 = 1 nd λ 2 = • • • = λ k = a -b d ,
with ll other eigenvlues stritly smller y (1ε) ftorF vet T e lrge enough threshold suh thtD for ll t T D λ t 2 > n 2 λ t k+1 nd note tht T is in the order of (1/ε) log nF vet x ∈ R V e vetorF e sy tht node v is of negative type with respet to x ifD for ll t > T D the vlue (P t x) v dereses with tF e sy tht node v is of positive type with respet to x ifD for ll t > T D the vlue (P t x) v inreses with tF xote tht node might hve neither typeD euse (P t x) v might not e stritly monotone in t for ll t > T F e prove the followingX sf we pik rndom vetors x 1 , . . . , x D eh in {-1, 1} V D then wFhFpF iA every node is either of positive or negtive type for eh x i7 Y iiA furthermoreD if we ssoite signture to eh nodeD nmelyD the sequene of typesD then nodes within the sme V i exhiit the sme signtureD while nodes in di'erent V i , V j hve di'erent signturesF hese re the si intuitions tht llow us to prove the following theoremF Theorem P @wore gommunitiesA. Let G = (V, E) be a k-clustered dregular graph dened as above and assume that

λ = max{|λ 2n |, λ k+1 } < (1 -ε) • a -b d ,
for a suitable constant ε > 0. Then, for = Θ(log n), the Averaging protocol with parallel runs produces a strong reconstruction within O(log n) rounds, w.h.p.

he proof is divided in the following two lemmsF Lemma IP. Pick x ∼ {-1, 1} kn u.a.r. Then the nodes of V 1 are either all of positive type or all of negative type, w.h.p. Furthermore, the two events have equal probability.

Proof. e write

x = x 1 + x V 1 + x ⊥ 1 + x ⊥ , where x 1 is the omponent of x prllel to 1D x V 1 is the omponent prllel to the vetor 1 V 1 -k -1 1 V D x ⊥ 1 is the omponent in the eigenspe of λ 2 nd orthogonl to 1 V 1 -k -1 1 V D nd x ⊥ is the omponent orthogonl to 1 nd to the eigenspe of λ 2 F por the ove the mke senseD 1 V 1 -k -1 1
V must e n eigenvetor of λ 2 D whih is esily veri(ed euse its entries sum to zero nd they re onstnt within omponentsF en importnt oservtionD nd the reson for piking the ove deomE positionD is tht

x ⊥ 1 is zero in V 1 F he reson is tht x ⊥ 1 hs to e orthogonl to 1 V nd to 1 V 1 -k -1 1 V so from x ⊥ 1 , 1 V = x ⊥ 1 , 1 V 1 -k -1 1 V = 0, we dedue x ⊥ 1 , 1 V 1 = 0. husD the entries of x ⊥ 1 sum to zero within V 1 D utD
eing in the eigenspe of λ 2 D the entries of x ⊥ 1 re onstnt within omponentsD nd so they must e ll zero within V 1 F xow we hve

P t x = x 1 + λ t 2 x V 1 + λ t 2 x ⊥ 1 + P t x ⊥ , nd soD for eh v ∈ V 1 it holds @PQA (P t+1 x) v -(P t x) v = λ t 2 • (1 -λ 2 )(x V 1 ) v + ((P t+1 -P t )x ⊥ ) v . por t > T D the hypothesis λ < (1 -ε)λ 2 implies tht |(P t x ⊥ ) v | ||P t x ⊥ || ∞ ||P t x ⊥ || λ t ||x ⊥ || √ n • λ t 1 n 1.5 λ t 2 . @PRA woreoverD for eh v ∈ V 1 we hve |(x V 1 ) v | = 1 V 1 -k -1 1 V -2 x, 1 V 1 -k -1 1 V 1 -k -1 = k (k -1)n   i∈V 1 x i - i∈V x i k   k -1 k = 1 n   i∈V 1 x i - i∈V x i k   , nd ||x V 1 || = x, 1 V 1 -k -1 1 V 1 V 1 -k -1 1 V = k (k -1)n •   i∈V 1 x i - i∈V x i k   , whih imply tht @PSA |(x V 1 ) v | = 1 -1/k n • x V 1 . pinllyD note tht y vemm Q it holds wFhFpF ||x V 1 || 1 n ||x||
k/nF he ltter ft together with @PRA nd @PSA imply tht wFhFpF the sign of @PQA is the sme s the sign of (x V 1 ) v D whih is the sme for ll elements of V 1 nd is eqully likely to e positive or negtiveF gg yf ourse the sme sttement is true if we reple V 1 y V i for ny i = 1, . . . , kY y union oundD it is lso true for ll i simultneouslyD wFhFpF Lemma IQ. Pick x ∼ {-1, 1} kn u.a.r. There is an absolute constant p (e.g., p = 1 100 ) such that, with probability at least p, all nodes of V 1 have the same type, all nodes of V 2 have the same type, and the types are dierent.

Proof. his time we write

x = x 1 + x V 1plus2 + x V 1minus2 + x ⊥ 1,2 + x ⊥ where • x 1 is the omponent prllel to 1 V D • x V 1plus2 is the omponent prllel to 1 V 1 + 1 V 2 -2 k 1 V D • x V 1minus2 is the omponent prllel to 1 V 1 -1 V 2 D • x ⊥ 1,2 is the omponent in the eigenspe of λ 2 nd orthogonl to x V 1plus2 nd x V 1minus2 D • x ⊥ is the restF imilrly to the proof of vemm IPD the importnt oservtions re tht x V 1plus2 nd x V 1minus2 re in the eigenspe of λ 2 D nd tht x ⊥ 1,2 is zero in ll the oordintes of V 1 nd of V 2 F husD for eh v ∈ V 1 ∪ V 2 we hve @PTA (P t+1 x) v -(P t x) v = λ t 2 (1 -λ 2 )(x V 1plus2 + x V 1minus2 ) v + ((P t+1 -P t )x ⊥ ) v . prom @PTA it is esy to see tht if x is suh thtD for every v ∈ V 1 ∪ V 2 D we hve the two onditions |(x V 1plus2 ) v | 3 4 |(x V 1minus2 ) v | nd @PUA |((P t+1 -P t )x ⊥ ) v | 1 8 λ t 2 • (1 -λ 2 ) • |(x V 1minus2 ) v |, @PVA
then suh n x stis(es the onditions of the vemmD tht is ll the elements in V 1 hve the sme typeD ll the elements of V 2 hve the sme typeD nd the types re di'erentF xow note thtD sine

|(x V 1plus2 ) v | = 1 2n   i∈V 1 x i + i∈V 1 x i - 2 k i∈V x i   nd |(x V 1minus2 ) v | = 1 2n   i∈V 1 x i - i∈V 2 x i   , if x stis(es 2 √ n v∈V 1 x v 3 √ n, @PWA -2 √ n v∈V 2 x v - √ n nd @QHA 0 v∈V /(V 1 ∪V 2 )
x v 1 10 √ kn, @QIA then @PUA is stis(edD nd note tht @PWAD @QHA nd @QIA re independent nd eh hppens with onstnt proilityF pinllyD oserve tht if @PUA holds then @PVA is stis(ed with high proE ility when t > T F gg st is enough to pik = log(3n) to hve tht the signtures re well de(ned nd they re the sme within eh ommunity nd di'erent etween ommunitiesD wFhFpF he (rst lemm gurntees thtD for ll vetorsD ll nodes within eh ommunity hve the sme typeD wFhFpF he seond lemm gurntees tht the signtures re di'erent etween ommunitiesD wFhFpF 4.9. Technical Proofs for Stochastic Block Models (1) for some constant c eigerr > 0, it holds

Lemma II. Let G ∼ G 2n,p,q . If (a -b) 2 > c opt (a + b) > 5 log n,
λ 2 1 -2b/d -c eigerr / √ d, (2) λ 2 (1 + δ)λ for some constant δ > 0 (where as usual λ = max{|λ 3 |, . . . , |λ 2n |}), (3) for each i ∈ V \ S, for some subset S with |S| = O(nd/(a -b) 2 ), it holds | √ 2nd(D -1/2 w 2 )(i) -χ(i)| 1 100
.

Proof. vet G e rndomlyEgenerted grph ording to G 2n,p,q with a = pnD b = qn nd d = a + bF ell the de(nitions of AD DD N D P D λ i nd w i @i ∈ {1, . . . , 2n}A in etion RFPD nd let B e de(ned s in etion RFSFIF vet us denote with A i @i ∈ {1, 2}A the djeny mtrix of the sugrph of G indued y ommunity

V i D with A B = {A u,v-n } u∈V 1 ,v∈V 2 the mtrix whose entry (i, j) is 1 i' there is n edge etween the iEth node of V 1 nd the jEth node of V 2 D then A = A 1 A B A B A 2 .
e need the following tehnil lemmsF he ide for proving vemm IS is to use the tringle inequlity to upper ound dN -B in terms of A -B D whih we n ound with vemm IRD nd B -1/dD 1/2 BD 1/2 D whih we n upper ound y ounding

√ d1 - D 1/2 1 nd √ dχ-D 1/2
χ where 1 nd χ re the eigenvetor orresponding to the only two nonEzero eigenvlues of BF he omplete proof of vemm IS is deferred to etion RFWFIF es for the required ound on

√ d1 -D 1/2 1 = √ dχ -D 1/2 χ = j∈V | √ d -d j | 2 ,
we provide it in the following lemmD whose proof is lso deferred to eE tion RFWFIF

Lemma IT. If 5 log n < d < n 1 3 -c tight for any constant c tight > 0, it holds w.h.p. j∈V | √ d -d j | 2 2n and j∈V |d -d j | 2 2dn.
fy omining vemm IS nd heorem IW we hve

|λ i -λ i | N - d -1 B = O(1/ √ d)D
where λ 1 = 1D λ 2 = 1 -2b/d nd λ i = 0 for i ∈ {3, . . . , 2n} re the eigenvlues of d -1 BF his proves the (rst two prt of vemm IIF es for the third prtD let us write w 2 = w 1 + w χ + w ⊥ where w 1 nd w χ re the projetion of w 2 on 1 nd χ respetivelyD nd w ⊥ is the projetion of w 2 on the spe orthogonl to 1 nd χF yserve tht the only nonEzero eigenvlues of (1/d)B re 1 nd (a-b)/dF husD from vemm IS nd the hvisEuhn theorem @heorem PHA with

M 1 = N D M 2 = 1 d BD t = λ 2 D x = w 2 nd δ = λ 2 /2D we get @QPA w ⊥ 4 λ 2 π N - 1 d B O 1 √ dλ 2 = O √ d a -b .
es for w 1 D we know tht w 2 , D -1/2 1 = 0D thus

w 1 = 1 √ 2n w 2 , 1 -d -1 2 D 1 2 1 @QQA 1 √ 2n w 2 1 -d -1 2 D 1 2 1 1 √ d ,
where in the lst inequlity we used vemm ITF fy the lw of osines nd the ft tht

√ 1 -x 1 -x for x ∈ [0, 1] we hve tht w 2 - 1 √ 2n χ 2 = w 2 2 + 1 √ 2n χ 2 -2 w 2 , 1 √ 2n χ @QRA = 2 -2 w χ = 2 -2 1 -w 1 2 + w ⊥ 2 2 w 1 2 + w ⊥ 2 = O d (a -b) 2 ,
where in the lst inequlity we used @QPA nd @QQAF @QRA implies thtD with the exeption of set S of t most O(nd/(ab) 2 ) nodesD we hve

@QSA √ 2nw 2 (i) -χ(i) 1 201 ,
for eh i ∈ V /SF prom the gherno' ound @vemm UTAD we lso hve tht d/d i = 1 ± 1/201 wFhFpF husD @QSA nd the lst ft imply tht for eh i ∈ V /S it holds wFhFpF

√ 2ndD -1 2 w 2 (i) -χ(i) 1 100 ,
onluding the proofF gg Remark R. efter looking t vemm IID one my wonder whether it ould e enough to generlize he(nition S to inlude qusiE(2n, d, b, γ)E lustered grphD iFeF grphs tht re (2n, d, b, γ)Elustered exept for smll numer of nodes whih my hve muh higher degreeF sn ftD this would e rther surprisingX his higherEdegree nodes my onnet to the other nodes in suh wy tht would gretly pertur the eigenvlues nd eigenE vetors of the grphF sn G 2n,p,q D esides the ft tht the nodes with degree muh lrger thn d re fewD it is lso ruil tht they re onneted in non-adversarial wyD iFeF rndomlyF 4.9.1. Technical lemmas in the proof of Lemma 11

Lemma IS. If d > 5 log n then for some constant c NvsB > 0 it holds w.h.p. dN -B c NvsB √ d.
Proof. e simple pplition of the gherno' ound @vemm UTA nd the union ound shows tht wFhFpF

@QTA √ d D -1/2 1 + O log n d , hene dN -B = ( √ dD -1/2 )A( √ dD -1/2 ) -B √ dD -1/2 A - 1 √ d D 1/2 B 1 √ d D 1/2 √ dD -1/2 A - 1 d D 1/2 BD 1/2 √ dD -1/2 2 A -B + B - 1 d D 1/2 BD 1/2 1 + O log n d . @QUA hnks to vemm IRD it holds A-B = O( √ d)F reneD in order to onlude the proofD it remins to show tht B -d -1 D 1/2 BD 1/2 = O( √ d)F e do tht y oserving tht B - 1 d D 1/2 BD 1/2 @QVA B - 1 √ d BD 1/2 + 1 √ d BD 1/2 - 1 d D 1/2 BD 1/2 ,
nd y upperEounding the two terms on the right hnd sideF he two only nonEzero eigenvlues of B re a+b nd a-bD with orresponding eigenvetors (2n) -1/2 1 nd (2n) -1/2 χD therefore we n write B = d/(2n) 11 + (ab)/(2n) χχ D whih implies tht

B - 1 √ d BD 1/2 = √ d 2n 1 ( √ d 1 -D 1/2 1) + a -b √ d 2n χ ( √ d χ -D 1/2 χ) .
st follows thtD for n ritrry unitry vetor x it holds

B - 1 √ d BD 1/2 x @QWA √ d 2n 1 ( √ d 1 -D 1/2 1) x + a -b √ d 2n χ ( √ d χ -D 1/2 χ) x = √ d 2n 1 |( √ d 1 -D 1/2 1) x| + a -b √ d 2n χ |( √ d χ -D 1/2 χ) x| √ d √ 2n √ d 1 -D 1/2 1 • x + a -b √ 2dn √ d χ -D 1/2 χ • x 2 √ d,
where we used the tringle inequlityD the ft tht 1 = χ = √ 2nD the guhyEhwrtz inequlityD vemm IT nd ab < dF es for the other term on the rFhFsF of @QVAD we hve tht wFhFpF

1 √ d BD 1/2 - 1 d D 1/2 BD 1/2 @RHA B - 1 √ d D 1/2 B 1 √ d D 1/2 2 √ d 1 + O log n d ,
where in the lst inequlity we used @QTA nd tht for ny mtrix M it holds M = M F pinllyD @QWA nd @RHA togeter implies the desired upper ound on @QVA nd thus @QUAD onluding the proofF d @the vrine of the rndom vrile d j AF vet e u,v is the vrile tht is I i' the edge (u, v) is inluded in the grphF yserve tht

|d -d j | 4 = |d - v∈V e j,v | 4 = |a - v∈V i e j,v + b - v∈V 3-i e j,v | 4 = |a - v∈V i e j,v | 4 + |b - v∈V 3-i e j,v | 4 + 6|a - v∈V i e j,v | 2 |b - v∈V 3-i e j,v | 2 + 4(a - v∈V i e j,v ) (b - v∈V 3-i e j,v ) 3 + 4(a - v∈V i e j,v ) 3 (b - v∈V 3-i e j,v ), nd E(a - v∈V i e j,v ) 3 (b - v∈V 3-i e j,v ) = E(a - v∈V i e j,v ) 3 E(b - v∈V 3-i e j,v ) = 0, E(a - v∈V i e j,v )(b - v∈V 3-i e j,v ) 3 = E(a - v∈V i e j,v )E(b - v∈V 3-i e j,v ) 3 .
reneD sine the fourth entrl moment of inomil with prmeters

n nd p is np(1 -p) 4 + np 4 (1 -p) + 3n(n -1)p 2 (1 -p) 2
4(np) 2 D if we let i ∈ {1, 2} e the index of the ommunity of j we hve tht the expettion of the squre of |dd j | 2 @whih is the fourth entrl moment of

d j A is E|d -d j | 4 = E|a - v∈V i e j,v | 4 + E|b - v∈V 3-i e j,v | 4 + 6E|a - v∈V i e j,v | 2 E|b - v∈V 3-i e j,v | 2 4a 2 + 4b 2 + 6ab 4d 2 .
sn order to pply gheyshev9s inequlityD we need to ound the vrine of j |dd j | 2 F es for the seond moment of their sumD we hve

E[( i |d -d j | 2 ) 2 ] = i E[|d -d j | 4 ] + 2 1 i<j 2n E[|d -d i | 2 • |d -d j | 2 ] 8d 2 n + 2 1 i<j 2n E[|d -d i | 2 • |d -d j | 2 ]. @RIA o upper ound the terms E[|d -d i | 2 • |d -d j | 2 ]
D sine the stohsti depenE deny etween d i nd d j is due only to the edge (i, j)D let us write

d i = u∈N (i) e i,u = e i,j + u∈N (i)/{j} e i,u = e i,j + d (j) i , where d (j)
i is the sum of ll the edges inident to i exept for (i, j)F e hve |d -

d i | 2 • |d -d j | 2 @RPA = |d -d (j) i + e i,j | 2 • |d -d (i) j + e i,j | 2 =(|d -d (j) i | 2 + e i,j + 2e i,j (d -d (j) i ))(|d -d (i) j | 2 + e i,j + 2e i,j (d -d (i) j )) = |d -d (j) i | 2 |d -d (i) j | 2 + e i,j |d -d (i) j | 2 + 2e i,j (d -d (j) i )|d -d (i) j | 2 + |d -d (j) i | 2 e i,j + e i,j + 2e i,j (d -d (j) i ) + 2e i,j (d -d (i) j )|d -d (j) i | 2 + 2e i,j (d -d (i) j ) + 4e i,j (d -d (j) i )(d -d (i) j ),
where we used thtD sine e i,j is n inditor vrileD it holds e 2 i,j = e i,j F king the expettion of @RPA we thus get

E[|d -d i | 2 • |d -d j | 2 ] = E[|d -d (j) i | 2 |d -d (i) j | 2 + e i,j |d -d (i) j | 2 + 2e i,j (d -d (j) i )|d -d (i) j | 2 + |d -d (j) i | 2 e i,j + e i,j + 2e i,j (d -d (j) i ) + 2e i,j (d -d (i) j )|d -d (j) i | 2 + 2e i,j (d -d (i) j ) + 4e i,j (d -d (j) i )(d -d (i) j )] = E[|d -d (j) i | 2 ]E[|d -d (i) j | 2 ] + E[e i,j ]E[|d -d (i) j | 2 ] + 2E[e i,j ]E[(d -d (j) i )]E[|d -d (i) j | 2 ] + E[e i,j ]E[|d -d (j) i | 2 ] + E[e i,j ] + 2E[e i,j ]E[(d -d (j) i )] + 2E[e i,j ]E[(d -d (i) j )]E[|d -d (j) i | 2 ] + 2E[e i,j ]E[(d -d (i) j )] + 4E[e i,j ]E[(d -d (j) i )]E[(d -d (i) j )] E[|d -d (j) i | 2 ]E[|d -d (i) j | 2 ] + d 2 n + 2 d 3 n 2 + d 2 n + d n + 2 d 2 n 2 + 2 d 3 n 2 + 2 d 2 n 2 + 4 d 3 n 3 E[|d -d (j) i | 2 ]E[|d -d (i) j | 2 ] + 15 d 2 n , @RQA
where in the inequlities we used tht E[e i,j ] d/nD tht

E[d -d (j) i ] E[e i,j ] + E[ u∈N (i)/{j} E[e i,u ] -d (j) i ] d n , nd tht @RRA E[|d -d (j) i | 2 ] E[e i,j ] + E[|d -E[e i,j ] -d (j) i | 2 ] d n + d -1 d.
fy omining @RIA nd @RQA we get

E[( i |d -d j | 2 ) 2 ] @RSA 8d 2 n + 2 1 i<j 2n E[|d -d (j) i | 2 ]E[|d -d (i) j | 2 ] + 60d 2 n,
es for the squre of the vergeD we hve

(E[ i |d -d i | 2 ]) 2 = i E[|d -d i | 2 ] 2 + 2 i =j E[|d -d i | 2 ]E[|d -d j | 2 ] 2 1 i<j 2n E[|d -d i | 2 ]E[|d -d j | 2 ], nd E[|d -d i | 2 ]E[|d -d j | 2 ] = E[|d -d (j) i -e i,j | 2 ]E[|d -d (i) j -e i,j | 2 ] = (E[|d -d (j) i | 2 ] + E[e i,j ] -2E[e i,j ]E[(d -d (j) i )]) • (E[|d -d (i) j | 2 ] + E[e i,j ] -2E[e i,j ]E[(d -d (i) j )]) (E[|d -d (j) i | 2 ] -2E[e i,j ]E[(d -d (j) i )]) • (E[|d -d (i) j | 2 ] -2E[e i,j ]E[(d -d (i) j )]) E[|d -d (j) i | 2 ]E[|d -d (i) j | 2 ] -4 d 3 n 2 , @RTA where we usedD ginD tht E[e i,j ] d/n nd tht E[|d -d (j) i | 2 ] d @see @RRAAF
gomining @RSA nd @RTA together we get

Var[ i |d -d i | 2 ] = E[( i |d -d i | 2 ) 2 ] -E[ i |d -d i | 2 ] 2 8d 2 n + 60d 2 n + 16d 3 = 84d 2 n
pinllyD y gheyshev9s inequlity we hve

Pr   j |d -d j | 2 > 2dn   21 n ,
whih proves the seond prt of the lemmF e now onsider the sum of the vriles

| √ d -d j | 2 F e hve j∈V | √ d -d j | 2 = i∈V d + i∈V d i -2 √ d • j∈V d j 2dn + i∈V d i -2 √ d • j∈V d j . @RUA
prom the gherno' ound @vemm UTA we hve tht for some positive onE stnt c cb it holds wFhFpF

j∈V d j = u,v∈V u =v 2e u,v + u∈V e u,v 2dn + c cb dn log n 4dn + n,
where we re using the hypothesis d = o(n/ log n)F e now prove tht

j∈V d j 2n √ d - n √ d ,
whih together with @RUA implies tht

j∈V | √ d -d j | 2 4n,
onluding the proof of the lemmF yserve tht if x 0D we hve

√ x 1 + x -1 2 - (x -1) 2 2 , so tht if X is nonEnegtive rndom vrile of expettion I we hve 8 E[ √ X] 1 - Var (X) 2 .
fy pplying the ove inequlity to d j /d we get

E d j d 1 - Var d j d 2 = 1 - Var (d j ) 2d 2 1 - 1 2d , nd @RVA E[ d j ] √ d - 1 2 √ d .
8

This argument is due to Ori Gurel-Gurevich (see [GG]).

e show tht j∈V d j is onentrted round its expettion y using gheyshev9s inequlity 9 F sn order to do thtD we ound their ovrine s

E[ d i d j ] -E[ d i ]E[ d j ] 8d 2 n .
fy the lw of totl proility

E[ d i ] = Pr(e i,j )E[ d (j) i + 1] + (1 -Pr(e i,j ))E[ d (j) i ], nd E[ d j d i ] = Pr(e i,j )E[ d (j) i + 1]E[ d (i) j + 1] + (1 -Pr(e i,j ))E[ d (i) j ]E[ d (j) i ], whih imply tht E[ d i d j ] -E[ d i ]E[ d j ] = Pr(e i,j )E[ d (j) i + 1]E[ d (i) j + 1] + (1 -Pr(e i,j ))E[ d (i) j ]E[ d (j) i ] -Pr(e i,j ) 2 E[ d (i) j + 1]E[ d (j) i + 1] -Pr(e i,j )(1 -Pr(e i,j ))E[ d (i) j ]E[ d (j) i + 1] -Pr(e i,j )(1 -Pr(e i,j ))E[ d (i) j + 1]E[ d (j) i ] -(1 -Pr(e i,j )) 2 E[ d (i) j ]E[ d (j) i ] = p(1 -p) E[ d (j) i + 1]E[ d (i) j + 1] + E[ d (i) j ]E[ d (j) i ] + E[ d (i) j ]E[ d (j) i + 1] + E[ d (i) j + 1]E[ d (j) i ] 8d 2 n , @RWA
where in the lst inequlity we used tht y the gherno' ound @vemm UTA it holds wFhFpF E[ d

(j) i ] < √ 2dD nd tht p(1 -p) < p < d/nF prom @RWA it then follows tht @SHA Var   j∈V d j   2nd + 32d 2 n < n 2 dn c tight .

9

A stronger bound which doesn't require the hypothesis d n 1/3-c tight may be obtained with some concentration techniques compatible with the stochastic dependence among the djs.

pinllyD y omining @SHA nd @RVA with gheyshev9s inequlity we get

Pr( j∈V d j < 2n √ d - n √ d ) Pr( j∈V d j -E j∈V d j > n √ d ) 1 n c tight . gg grei S

3-Majority Dynamics

sn this hpter we prove the results presented in etion PFPF e onsider two fundmentl distriuted onsensus prolemsD in the setting in whih eh node in omplete ommunition network of size n initilly holds n opinion @color AD whih is hosen ritrrily from (nite set ΣF sn the onsensus prolem the system must onverge towrd onsensus stte in whih llD or lmost ll nodesD hold the sme opinionF woreoverD this opinion should e validD iFeFD it should e one mong those initilly present in the systemF e further require this ondition to e met even in the presene of mliious dversry who n modify the opinions of ounded suset of nodesD dptively hosen in every roundF sn the more restritive plurality onsensus prolemD the gol is hving the proess to onverge to the stable on(gurtion in whih ll nodes support the initil plurlityF sn order to elegntly solve these prolemsD we study the 3-Majority dynamics X et every roundD every node pulls the opinion from three rndom neighors nd sets her new opinion to the mjority one @ties re roken ritrrilyAF vet k e the numer of vlid opinionsF es for the onsensus prolemD we show thtD if k n α D where α is suitle positive onstntD the QEwjority dynmis onverges in time polynomil in k nd log nD wFhFpFD even in the presene of n dversry who n 'et up to o( √ n) nodes t eh roundF es for the plurlity onsensus prolemD if the initil opinion on(gurtion exhiits su0iently lrge bias s towrds (xed plurlity opinion @tht isD the numer of nodes supporting the plurlity opinion exeeds the numer of nodes supporting ny other opinion y s dditionl nodesAD we prove tht the QEwjority dynmis onverges in time O(min{k, (n/ log n) 1/3 } log n)D wFhFpF provided tht s c min{2k, (n/ log n) 1/3 } n log nF e then prove tht our upper ound ove is tight s long s k (n/ log n) 1/4 F pinllyD nturl question is whether looking t more @thn threeA rnE dom neighors n signi(ntly speed up the proessF e provide negtive nswer to this questionX sn prtiulrD we show tht smples of polylogrithE mi size n speed up the proess y polylogrithmi ftor onlyF 5.0.1. The majority roadmap etion SFI formlizes the si onepts nd gives some preliminry resultsF etion SFP is devoted to the proofs of the upper ounds on the glerlyD in the se of three di'erent opinionsD hoosing the seond or the third one would not mke ny di'ereneF he sme holds even if the hoie would e uniformly t rndom mong the three opinionsF por ny round t nd for ny j ∈

[k]D let C (t)
j e the rFvF ounting the numer of nodes with opinion j t round t nd let

C (t) = (C (t) 1 , . . . , C (t) k )
denote the rndom vrile inditing the kEd t time t of the exeution of the 3Ewjority dynmisF por every j ∈ [k] let µ j (c) e the expeted numer of nodes with opinion j t the next round when the urrent kEd is cD iFeF

µ j (c) = E C (t+1) j C (t) = c .
o simplify the nottionD in ll the tehnil proofs we write µ j nd s insted of µ j (c) nd s(c) when the dependene on on(gurtion c is ler from the ontextF Lemma IU @xext ixpeted gon(gurtionA. For any k-cd c and for every opinion j ∈

[k], it holds that @SIA µ j (c) = c j 1 + c j n - h∈[k] c 2 h n 2 .
Proof. eording to the 3Ewjority dynmisD node i gets opinion j if it hooses three times opinion jD or if it hooses two times j nd one time di'erent opinionD or if it hooses the (rst time opinion j nd thenD the seond nd third timeD two di'erent distint opinionsF rene if we nme X (t) i,j the inditor rndom vrile of the event xode i gets opinion j t time tD we hve tht

P X (t+1) i,j = 1 | C (t) = c = c j n 3 + 3 c j n 2 n -c j n + c j n 1 - k h=1 c 2 h n 2 + 2 c j n n -c j n = c j n 3 n 2 + c j n - k h=1 c 2 h .
gg Lemma IV @xext expeted isA. For any k-cd c and for every opinion

j ∈ [k] with j = 1, it holds that @SPA µ 1 (c) -µ j (c) s(c) 1 + c 1 n 1 - c 1 n .
Proof. yserve thtD when we ssume c 1 c 2 • • • c k D we n give the following upper ound on the sum of squres in vemm IU

@SQA h∈[k] c 2 h = c 2 1 + k h=2 c 2 h c 2 1 + c 2 k h=2 c h = c 2 1 + c 2 (n -c 1 ).
prom vemm IU it thus follows thtD for ny j = 1D

µ 1 -µ j µ 1 -µ 2 = (c 1 -c 2 ) + c 2 1 -c 2 2 n - c 1 -c 2 n 2 h∈k c 2 h = s • 1 + c 1 + c 2 n - 1 n 2 h∈k c 2 h s • 1 + c 1 + c 2 n - c 2 1 + nc 2 n 2 = s • 1 + c 1 n 1 - c 1 n ,
where in the inequlity we used @SQA nd the ft tht c 1c 2 0F gg 5.2. Upper Bounds for 3-Majority Dynamics sn this setionD we provide the following upper ound on the onverE gene time of the 3Ewjority dynmis whih lri(es the roles plyed y the plurlity opinion nd y the initil isF Theorem S @qenerl pper found for QEwjorityA. Let λ be any value such that λ < 3 √ n and let c be any initial k-cd, with c 1 n/λ and s(c) 72 2λ n log n.

Then the 3-Majority dynamics converges to the plurality opinion in O (λ log n) time w.h.p.

he next three orollries of heorem S ddress three relevnt speil sesF gorollry Q is otined y setting λ = min 2k, 3 n/log n nd it provides ound whih does not ssume ny ondition on c m F Corollary Q @pper found with fisA. Let c be any initial k-color conguration with s(c) 72 2 min 2k, 3 n log n n log n.

Then, the 3-Majority dynamics converges to the plurality opinion in O(min{2k, 3 n/log n} log n) time w.h.p.

gorollries R nd U re otined y setting λ = poly log(n) nd λ = Θ(1)D respetivelyF hey provide su0ient onditions for polylogrithmi onvergene timeF Corollary R @olylogrithmi pper found for QEwjorityA. Let c be any initial k-cd with c 1 n/ log n and s(c) 72 2n log +1 n.

Then, the 3-Majority dynamics converges to the plurality opinion in O(log +1 n) time w.h.p.

Corollary U @vogrithmi pper found for QEwjorityA. Let c be any k-cd with c 1 n/β and s(c) 72 √ 2βn log n, for some constant β 1. Then, the 3-Majority dynamics converges to the plurality opinion in O(log n) rounds, w.h.p. sn order to prove heorem SD we need the following three tehnil lemE ms tht essentilly hrterize three di'erent phses of the proess nlE ysisF ih of them onerns di'erent rnge ssumed y the plurlity c 1 F he (rst lemm onsiders on(gurtions in whih c 1 is less thn suitE le onstnt frtion of nX in this seD it shows tht the is etween the plurlity size nd the size of ny other opinion inreses y ftor

1 + Ω(c 1 /n) = 1 + Ω(1/λ)F
Lemma IW @prom lurlity to wjorityA. Let c be any k-cd with n/λ c 1 2n/3 and s(c) 72 √ 2λn log n where λ < 3 √ n. and α is a suciently large constant. Then, for any other opinion j = 1 it holds that Pr C

(t+1) 1 -C (t+1) j s(c) 1 + c 1 4n C (t) = c 1 - 1 n 3 .
Proof. gonditionl on ny on(gurtion C (t) = cD from the gherno' ounds @vemm UTD in prtiulr @IVVA with δ = 3 log n/µ if µ > log nD @IVWA with δ = 4 log n/µ otherwiseAD it follows tht wFhFpF

C (t+1) j max µ j + 3 µ j log n, 5 log n , C (t+1) 1 µ 1 -3 µ 1 log n.
husD if µ j + 3 µ j log n 5 log nD then it holds wFhFpF

C (t+1) 1 -C (t+1) j µ 1 -µ j -3 µ 1 log n -3 µ j log n @SRA µ 1 -µ j -2α µ 1 log n,
where we used tht y the union ound Pr (A ∩ B) 1-Pr A C -Pr B C F ytherwiseD if µ j + 3 µ j log n < 5 log nD then it holds wFhFpF

C (t+1) 1 -C (t+1) j µ 1 -3 µ 1 log n -5 log n @SSA µ 1 -µ j -6 µ 1 log n,
where in the lst inequlity we used tht µ 1 c 1 n/λ n 2 3 F prom vemm IV nd the hypothesis c 1 2n/3 we get tht

µ 1 -µ j (c 1 -c j ) 1 + c 1 3n ,
nd from @SIA we lso hve tht µ 1 2c 1 F husD in @SRA nd @SSA we get

µ 1 -µ j -6 µ 1 log n (c 1 -c j ) 1 + c 1 3n -6 2c 1 log n (c 1 -c j ) 1 + c 1 3n -6 √ 2c 1 log n (c 1 -c j ) (a) (c 1 -c j ) 1 + c 1 3n - 1 12 c 1 λn (c 1 -c j ) 1 + c 1 3n 1 - 1 4 n c 1 λ (b) (c 1 -c j ) 1 + c 1 4n ,
where in (a) we used tht c 1c j s 72 √ 2λn log n nd in (b) we used tht c 1 n/λD onluding the proofF gg yne c 1 eomes lrger thn 2n/3 the negtive ourrene of c 1 in @SPA does not llow to diretly show drift towrds plurlityF e thus onsider nother useful drift of the proessX he sum of ll the other opinion sizes dereses exponentillyD wFhFpFD s long s this sum is enough lrge to pply onentrtion oundsF his result is formlized in the next lemmF Lemma PH @prom mjority to lmost llA. Let c be any k-cd with 2n/3 c 1 nω (log n). Then, it holds that

Pr   i =1 C (t+1) i 8 9 i =1 c i C (t) = c   1 - 1 n 3 . Proof. vet us de(ne µ -1 = i =1 µ i F prom @SIA we hve µ -1 n = i =1 c i n   1 + c i n - j c j n 2   = 1 - c 1 n + i =1 c i n 2 -1 - c 1 n j c j n 2 = 1 - c 1 n - c 1 n 2 + c 1 n j c j n 2 (a) 1 - c 1 n - c 1 n 2 + c 1 n c 1 n 2 + c 2 n 1 - c 1 n = 1 - c 1 n 1 - c 1 n 2 + c 1 n c 2 n = 1 - c 1 n 1 - c 1 n c 1 n - c 2 n , @STA
where in (a) we used @SQAF sing the hypothesis c 1 /n 2/3 @hene c 2 /n 1/3AD from @STA we otin the lst expression eome

@SUA 1 - c 1 n 1 - c 1 n c 1 n - c 2 n 1 - c 1 n 1 - c 1 3n 7 9 i =1 c i n .
xow oserve thtD from the gherno' ound @vemm UTAD s long s µ

-1 ∈ ω (log n)D it holds wFhFpF i =1 C (t+1) i µ -1 + µ -1 log n @SVA = µ -1 1 + log n µ -1 = µ -1 (1 + o (1)) .
husD y repling @SUA in @SVAD we get tht it holds wFhFpF

i =1 C (t+1) i µ -1 (1 + o (1)) 8 9 i =1 c i ,
onluding the proofF gg pinllyD when the sum of ll the minority opinions is not lrger thn polylogrithmi funtionD the proility tht they ll dispper in one round is highF his is shown in the next lemmF Lemma PI @he lst stepA. Let α > 0 and let c be any k-cd with c 1 nlog α n. Then, it holds that @SWA Pr

  i =1 C (t+1) i = 0 | C (t) = c   1 - 3 log 2α n n .
Proof. es in the previous proof let we nme

µ -1 = i =1 µ i F xote tht c 1 n -log α n implies i =1 c i log α nF husD from @SIA we hve µ -1 = i =1 c i   1 + c i n - j c j n 2   i =1 c i 1 + c i n - c 1 n 2 = i =1 c i   1 + c i n -   1 - j =1 c j n   2   i =1 c i   c i n + 2 j =1 c j n   i =1 c i 3 log α n n = 3 log 2α n n .
pinllyD @SWA follows from wrkov9s inequlity on the event i =1 C

(t+1) i 1 ndD sine i =1 C (t+1) i is nonEnegtive integerEvlued rFvFD this is equivlent s i =1 C (t+1) i > 0F
gg Proof of Theorem 5. prom vemm IW it follows thtD s long s the numer of nodes with the plurlity opinion c 1 is smller thn onstnt frtion of nD the is etween c 1 nd c 2 inreses y ftor (1 + 1 4λ )D wFhFpF prom vemm PH it follows thtD when the plurlity opinion rehes suitle onstnt frtion of nD then the numer of nodes with nonEplurlity opinions dereses t exponentil rteD wFhFpF pinllyD in vemm PI we onsider seprtely the lst round of the proE toolD where ll opinions ut the plurlity one dispperD wFhFpF gg 5.2.1. Plurality consensus with adversary sn this setion we show tht the 3Ewjority dynmis is roust ginst fyzntine dversriesF vet F nD we onsider n F -bounded dynamic adversary thtD t every roundD n hnge the opinion of up to F nodes with the gol of preventing the system to onverge to the plurlity opinionF glerlyD rehing omplete plurlity onsensus is not possile in this frmeE workF sn presene of n F Eounded dynmi dversry we thus onsider the M -plurality consensusD in whih ll ut M nodes hve to gree on the plurlity opinionF xotie tht it is not possile to reh M Eplurlity onsensus ginst n F Eounded dynmi dversry if F > M F yur previous nlysis of the 3Ewjority dynmis n e esily dpted to show tht it hieves o(s/λ)E plurlity onsensus ginst ny F Eounded dversry for F = o(s/λ)D where s is the initil is nd λ < 3 √ nF

Corollary S @pper found with edversryA. Let λ be any value such that λ < 3 √ n and let c be any initial conguration, with c 1 n/λ and s(c) 24 2λ n log n.

The 3-Majority dynamics achieves O(s(c)/λ)-plurality consensus against any F -bounded adversary with F = o(s(c)/λ), and the convergence time is O (λ log n)

w.h.p.

Proof. sn order to formlize the nlysis of the proess with n dverE sryD we split eh round in two onseutive stepsX sn the (rst step nodes pply the updting rule of the QEwjority dynmis whileD in the seond stepD the dversry n hnge the opinion of up to F ritrry nodesF reneD if the on(gurtion of the system t some round t is C (t) = ĉD we nme H (t+1) the rndom vrile inditing the on(gurtion fter the (rst step of round t + 1 nd C (t+1) the on(gurtion fter the seond step of round t + 1D iFeF

C (t) = ĉ Random -→ H (t+1) Adversary -→ C (t+1) .
xotie tht C (t+1) is funtion of H (t+1) ritrrily determined y the dversry within its onstrintsF sf the on(gurtion t some round t is C (t) = ĉD with ĉ1 2n/3D then from vemm IW it follows tht wFhFpF

H (t+1) 1 -H (t+1) j s(ĉ) + s(ĉ) 4λ .
he is fter the dversril step is thus wFhFpF

C (t+1) 1 -C (t+1) j s(ĉ) + s(ĉ)/(4λ) -F.
ine y hypothesis F = O(s(c)/λ)D s long s the is s(ĉ) of the urrent on(gurtion is t lest s lrge s the is s(c) of the initil on(gurtionD we hve tht wFhFpF @THA C

(t+1) 1 -C (t+1) j s(ĉ) + s(ĉ) 4λ -F s(ĉ) + s(ĉ) 5λ .
xotie tht the requirement s(ĉ) s(c) trivilly holds in the initil on(gE urtionD when ĉ = cD nd from TH y indution it holds in ll the following roundsD wFhFpF @THA gurntees thtD s long s the plurlity opinion is supported y t most 2n/3 nodes @see hypothesis of vemm IWA the is inreses y ftor 1 + Θ(1/λ) t eh roundD wFhFpFD even in the presene of the dversryF reneD fter O(λ log n) rounds the plurlity opinion is supported y t lest 2n/3 nodesD wFhFpF hen the system rehesD t some round tD on(gurtion C (t) = ĉ suh tht the plurlity opinion is supported y 2n/3 ĉ1 nω(log n) nodesD then vemm PH gurntees tht the totl numer of nodes supporting the other opinions in on(gurtion H (t+1) fter the step of QEwjority dynmis of the next round is wFhFpF

i =1 H (t+1) i 8 9 i =1 ĉ1 .
reneD s long s i =1 ĉ1 = Ω(s(c)/λ)D the totl numer of nodes supporting the other opinions in on(gurtion C (t+1) @fter the dversril step of the next roundA is wFhFpF

@TIA i =1 C (t+1) i 8 9 i =1 ĉ1 + F 9 10 i =1 ĉ1 .
husD when the plurlity opinion rehes 2n/3 nodesD fter further O(log n) rounds ll ut o(s(c)/λ) nodes support the plurlity opinionD wFhFpF xoE tie tht @TIA lso gurntees thtD one we rehed M Eplurlity onsensusD the system tkes on only on(gurtions tht stisfy M Eplurlity onsensusD wFhFpF gg 5.3. Lower Bounds for 3-Majority Dynamics his setion is orgnized in three susetionsX

• sn etion SFQFID we prove lower ound on the onvergene time of the QEwjority dynmisY • sn etion SFQFPD we show tht the QEwjority dynmis is essentilly the only 3Einput dynmis tht onverges to plurlity onsensusY • sn etion SFQFQD we provide lower ound on the onvergene time of the hEplurlity dynmis for h > 3F

Lower bound for 3-Majority dynamics

sn this setion we show tht if the 3Ewjority dynmis strts from su0iently lned on(gurtion @iFeFD t the eginning there re n/k ± o(n/k) nodes of every opinionA then it tkes Ω(k log n) roundsD wFhFpFD to reh one of the soring on(gurtions where ll nodes hve the sme opinionF sn wht followsD ll events nd rndom vriles thus onern the wrkov proess yielded y the 3Ewjority dynmisF sn the next lemm we show tht if there re t most n/k + b nodes of spei( opinionD where b is smller thn n/kD then t the next round there re t most n/k + (1 + 3/k)b nodes of tht opinionD wFhFpF Lemma PP. Let the number of opinions k be such that k (n/ log n) 1/4 , let b be any number with k √ n log n b n/k, and let c = (c 1 , . . . , c k ) be a conguration. If c j = n/k + a for some opinion j ∈ [k] and for some a b, then the number of nodes with opinion j at the next round are at most n/k + (1 + 3/k)b, w.h.p.; more precisely, for any a b and for any conguration c such that c j = n/k + a it holds that Pr C (t+1)

j n k + 1 + 3 k b C (t) = c 1 n 2 .
Proof. por ny on(gurtion c = (c 1 , . . . , c k ) with k j=1 c j = n nd ny opinion j ∈ [k]D the expeted vlue of the numer of nodes hving opinion j t round t + 1 onditionl on

C (t) = c is @see vemm IUA E C (t+1) j | C (t) = c = c j   1 + c j n - 1 n 2 k j=1 c 2 j   .
yserve thtD sine k j=1 c j = nD from tensen9s inequlity 1 it follows tht

k j=1 c 2 j n 2 1 k .
reneD we n give n upper ound on the expettion of C (t+1) j tht depends only on c j nd not on the whole on(gurtion c t round tD nmely

E C (t+1) j | C (t) C (t) j 1 + C (t) j n - 1 k .
sf we ondition on the numer of nodes of opinion j eing c j = n/k + a in on(gurtion cD for some a bD we get

E C (t+1) j | C (t) = c n k + a 1 + n/k + a n - 1 k = n k + 1 + 1 k a + a 2 n n k + 1 + 1 k b + b 2 n n k + 1 + 2 k b,
where in the lst two inequlities we used tht a b nd b n/kF 2 ine C

(t+1) j onditionl on C (t) = c n e written s sum of n independent 1 Jensen's inequality states that given any convex function φ : R → R and k real numbers x1, . . .

x k ∈ R, it holds φ 1 k k i=1 xi 1 k k i=1 φ(xi).
2 Notice that the inequality holds in particular for negative a as well fernoulli rndom vrilesD from the gherno' ound @vemm UTA we thus get tht for every a b it holds tht

Pr C (t+1) j n k + 1 + 3 k b C (t) = c e -2(b/k) 2 /n 1 n 2 ,
where in the lst inequlity we used tht b k √ n log nF gg vet us sy tht on(gurtion c = (c 1 , . . . , c k ) ∈ {0, 1, . . . , n} k with

k j=1 c j = n is monochromatic if there is n j ∈ [k]
suh tht c j = nF sn the next theorem we show tht if we strt from su0iently balanced on(gurtionD then the 3Ewjority dynmis tkes Ω(k log n) roundsD wFhFpFD to reh monohromti on(gurtionF Theorem T @vower found for QEwjorityA. Let τ = inf{t ∈ N : C (t) is monochromatic} be the random variable indicating the rst round such that the system is in a monochromatic conguration. If the initial number of opinions is k (n/ log n) 1/4 and the initial conguration is c = (c 1 , . . . , c k ) with

max{c j : j = 1, . . . , k} n k + n k 1-ε for some ε > 0, then τ = Ω(k log n) w.h.p.
Idea of Proof. por n opinion j ∈ [k] let us denote the di'erene C jn/k s the positive imbalanceF sn vemm PP we proved thtD s long s the positive imlne of n opinion is smller thn n/kD this di'erene inreses y ftor smller thn (1 + 3/k) t every roundD wFhFpF reneD if n opinion strts with positive imlne smller thn (n/k) 1-ε D for some ε > 0D then it tkes Ω(k log n) rounds to reh n imlne of n/kD wFhFpF fy union ounding on ll the opinionsD we n get the stted lower oundF gg Proof. yserve tht for ny round T c k log nD where c is suitle positive onstntD it holds tht

(1 + 3/k) T (n/k) 1-ε n k ine in the initil on(gurtion c for ny opinion j ∈ [k] we hve tht c j n/k + (n/k) 1-ε D for T c k log n it holds tht Pr C (T ) j = n C (0) = c @TPA Pr C (T ) j n k + 1 + 3 k T n k 1-ε C (0) = c , ine c j n/k + (n/k) 1-ε D if we lso hve C (T ) j n k + 1 + 3 k T n k 1-ε , then round t with 0 t T -1 must exist suh tht C (t) j n/k + b nd C (t+1) j n k + 1 + 3 k b for some vlue bD with k √ n log n b n/kD thus Pr C (T ) j n k + 1 + 3 k T n k 1-ε C (0) = c @TQA Pr ∃t : 0 t T -1 ∧ C (t) j n k + b ∧ C (t+1) j n k + 1 + 3 k b C (0) = c @TRA T -1 t=0 Pr C (t) j n k + b t ∧ C (t+1) j n k + 1 + 3 k b t C (0) = c @TSA
where the inequlity from @TQA to @TRA holds for some b with k n log n b n/k, nd the inequlity from @TRA to @TSA holds for some b

0 , . . . , b T -1 with k √ n log n b t n/k for every t = 0, . . . , T -1F xow oserve tht Pr C (t) j n k + b t ∧ C (t+1) j n k + 1 + 3 k b t C (0) = c @TTA = a bt Pr C (t) j = n k + a ∧ C (t+1) j n k + 1 + 3 k b t C (0) = c = a bt Pr C (t+1) j n k + 1 + 3 k b t C (t) j = n k + a ∧ C (0) = c • Pr C (t) j = n k + a C (0) = c 1 n 2 a bt Pr C (t) j = n k + a C (0) = c 1 n 2 ,
where in the lst line we used vemm PPF fy omining @TPAD @TSAD nd @TTA we get thtD for every opinion j ∈ [k]D if the initil numer of nodes hving opinion j is c j n/k + (n/k) 1-ε t ny round T c k log n the proility tht ll nodes hve opinion j is t most T /n 2 F he proility tht C (T ) is monohromti is thus t most (kT )/n 2 n -α for some positive onstnt αF gg st my e worth notiing tht wht we tully prove in heorem T is tht Ω(k log n) rounds re required in order to go from on(gurtion where the mjority opinion hs t most n/k + (n/k) 1-ε nodes to on(gurtion where it hs 2n/k opinionsF 5.3.2. A negative result for 3-input dynamics sn order to prove tht dynmis tht di'er from the mjority ones do not solve plurlity onsensusD we (rst give some forml de(nitions of the dynmis we re onsideringF Definition IH @hEsnput hynmisA. en h-dynamics is synhronous protool where t eh round every node piks h rndom neighors @inludE ing herself nd with repetitionA nd updtes her opinion ording to some deterministi rule tht depends only on the opinions it seesF vet D h (k) e the lss of hEdynmis nd oserve tht dynmis P ∈ D h n e spei(ed y funtion

f : [k] h → [k], suh tht f (x 1 , . . . , x h ) ∈ {x 1 , . . . , x h }D where f (x 1 , . . . , x h
) is the opinion hosen y node tht sees the @orderedA sequene (x 1 , . . . , x h ) of opinionsF sn the lss D 3 (k)D there is suset M 3 of equivlent protools lled QEwjority dynmis hving two keyEproperties desried elowX the lerE mjority nd the uniform oneF Definition II @glerEwjority ropertyA. vet (x 1 , x 2 , x 3 ) ∈ [k] 3 e triple of opinionsF e sy tht (x 1 , x 2 , x 3 ) hs clear majority if t lest two of the three entries hve the sme vlueF e dynmis P ∈ D 3 (k) hs the clear-majority property if whenever its f sees ler mjority it returns the mjority opinionF qiven ny 3Einput dynmis funtion f (x 1 , x 2 , x 3 )D for ny triple of disE tint opinions r, g, b ∈ [k]D let Π(r, g, b) e the suset of permuttions of the opinions r, g, b nd de(ne the following ountersX

δ r = |{(z 1 , z 2 , z 3 ) ∈ Π(r, g, b), s.t. f (z 1 , z 2 , z 3 ) = r}|, δ g = |{(z 1 , z 2 , z 3 ) ∈ Π(r, g, b), s.t. f (z 1 , z 2 , z 3 ) = g}|, δ b = |{(z 1 , z 2 , z 3 ) ∈ Π(r, g, b), s.t. f (z 1 , z 2 , z 3 ) = b}|.
yserve tht for ny 3Einput dynmis it must hold δ g + δ r + δ b = 6F Definition IP @niform ropertyA. e dynmis P ∈ D 3 (k) hs the uniform property ifD for ny triple of distint opinions r, g, b

∈ [k]D it holds tht δ r = δ g = δ b (= 2)F
snformlly spekingD the lerEmjority nd the uniform properties proE vide len hrteriztion of those dynmis tht re good solvers for plurlity onsensusF his ft is formlized in the next de(nitions nd in the (nl theoremF Definition IQ @3Esnput wjorityEfoosting hynmisA. e protool P ∈ D 3 (k) elongs to the lss M 3 ⊂ D 3 (k) of 3-input majority-boosting dynamics if its funtion f (x 1 , x 2 , x 3 ) hs the lerEmjority nd the uniform propertiesF Definition IR @(s, ε)Elurlity gonsensus olverA. e sy tht proE tool P is n (s, ε)-solver @for the plurlity onsensus prolemA if for every initil sEised on(gurtion cD when running PD with proility t lest 1ε there is round t y whih ll nodes get the plurlity opinion of cF vet us oserve thtD y de(nition of hEdynmis @see he(nition IHAD ny monohromti on(gurtion is n soring stte of the reltive wrkov proessF woreoverD the smller s nd ε the etter n (s, ε)Esolver isY in other wordsD if dynmis is n (s, ε)Esolver then it is lso n (s , ε )Esolver for every s s nd ε εF sn etion SFPD we showed tht ny dynmis

P ∈ M 3 =⇒ (Θ( min{2k, (n/ log n) 1/3 }n log n), Θ(1/n))Esolver ∈ D 3 .
e n now stte the min result of this setionF

Theorem PI @roperties of qood olversA. Given a protocol P, the following hold:

(a) If P is an (n/4, 1/4)-solver in D 3 , then its f must have the clearmajority property.

(b) A constant η > 0 exists such that, if P is an (η • n, 1/4)-solver, then its f must have the uniform property.

he ove theorem lso provides the ler reson why some dynmis n solve onsensus ut nnot solve plurlity onsensus in the nonEinry seF e relevnt exmple is the QEwedin dynmis studied in DGM + 11X it hs the lerEmjority property ut not the uniform oneF por redility skeD we split the proof of the ove theorem in two tehE nil lemmsX in the (rst oneD we show the (rst lim out ler mjority while in the seond lemm we show the seond lim out the uniform propertyF Lemma PQ @ler mjorityA. If a protocol P ∈ D 3 is an (n/4, 1/4)-solver, then it chooses the majority opinion every time there is a triple with a clear majority.

Proof. por every triple of opinions (x 1 , x 2 , x 3 ) ∈ [k] 3 tht hs ler mjorityD let us de(ne δ(x 1 , x 2 , x 3 ) to e 1 if protool P ehves like the mjority protool over triple (x 1 , x 2 , x 3 ) nd 0 otherwiseF gonsider n initil on(gurtion with only two opinionsD sy red @rA nd lue @AD with c r red e n write the proility tht node hooses opinion red s

p(r) = c r n 3 + c r n 2 c b n • ∆ r + c b n 2 c r n (3 -∆ b ) @TUA = c r n 3 c 2 r + c b (c r ∆ r -c b ∆ b ) + 3c 2 b .
yserve tht for mjority protool we hve tht ∆ r = ∆ b = 3F sn wht follows we show tht if this is not the se then there re on(gurtions where the mjority opinion does not inrese in expettionF e distinguish two sesD se

∆ r = ∆ b nd se ∆ r = ∆ b F -Case ∆ r = ∆ b . uppose wFlFoFgF tht ∆ r < ∆ b D nd oserve tht sine
they hve integer vlues it mens ∆ r ∆ b -1F xow we show thtD if we strt from on(gurtion where the red opinion hs the mjority of nodesD the numer of red nodes dereses in expettionF fy using ∆ r ∆ b -1 in @TUA we get

@TVA p(r) c r n 3 c 2 r + c b (c r -c b )∆ b -c r c b + 3c 2 b .
sf the mjority of nodes is red then c rc b is positiveD nd sine ∆ b n e t most 3 from @TVA we get @TWA p(r) c r n 3 c 2 r + 2c r c b . pinllyD if we put c r = n/2 + s nd c b = n/2 -sD for some positive sD in @TWAD we get tht

@UHA p(r) c r n 3 3 4 n 2 + (n -s)s c r n .
-Case ∆ r = ∆ b . hen ∆ r = ∆ b D oserve tht if the protool is not mjority protool then it must e ∆ r = ∆ b 2F reneD if we strt gin from on(gurtion where c r c b D from @TUA we get tht

@UIA p(r) c r n 3 c 2 r + 2c b (c r -c b ) + 3c 2 b = c r n .
sn oth sesD for ny protool P tht does not ehve like mjority protool on triples with ler mjorityD if we nme X t the rndom vrile inditing the numer of red nodes t round tD from @UHA nd @UIA we get tht E [X t+1 | X t ] X t D hene X t is supermrtingleF xow let τ e the rndom vrile inditing the (rst time the hin hits one of the two soring sttesD iFeF τ = inf{t ∈ N : X t ∈ {0, n}}. ine Pr (τ < ∞) = 1 nd ll X t 9s hve vlues ounded etween 0 nd nD from the mrtingle stopping theorem 3 we get tht E [X τ ] E [X 0 ]F sf we 3 See e.g. Chapter 17 in [LPW09] for a summary of martingales and related results. strt from on(gurtion tht is n/4Eimlned in fvor of the red opinionD we hve tht X 0 = n/2 + n/8D nd if we ll ε is the proility tht the proess ends up with ll lue nodes we hve tht E [X τ ] = (1ε)nF rene it must e (1ε)n n/2 + n/8 nd the proility to end up with ll lue nodes is ε 5/8 > 1/4F hus the protool is not (n/4, 1/4)EsolverF gg Lemma PR @uniform propertyA. A constant η > 0 exists such that, if P is an (ηn, 1/4)-solver, then its f must have the uniform property.

Proof. hnks to the previous lemmD we n ssume tht f hs the lerEmjority property ut triple (r, g, b) exists suh tht δ r < max{δ g , δ b }F vet us strt the proess with the following initil on(gurtion hving only the ove Q opinions nd then show tht the proess does not onverge to the plurlity opinion rD wFhFpFX

c = (c r , c g , c b ) = (n/3 + s, n/3, n/3 -s) where s = Θ( n log n).
e onsider the hrdest se where δ r = 1X the se δ r = 0 is simpler sine in this seD no mtter how the other δ s re distriutedD it is esy to see tht the rFvF c r derese exponentilly to 0 strting from the ove on(gurtionF -Case δ r = 1, δ g = 3, and δ b = 2 @nd symmetri sesAF trting from the ove initil on(gurtionD we n ompute the proility

p(r) = Pr X v = r C = c tht node gets the opinion rF p(r) = c r n 3 + 3 c r n 2 n -c r n + c r c g c b n 3 = n + 3s 3n 3 n 3 + s 2 + 3 n 3 + s 2 3 n -s + n 3 n 3 -s .
efter some esy lultionsD we get

p(r) = 8 27 1 + O s n .
es for p(g)D y similr lultionsD we otin the following ound

p(g) = 10 27 1 -O s 2 n 2 .
prom the ove two equtionsD we get the following ounds on the expeE ttion of the rFvF9s X r nd X g ounting the nodes hving opinion r nd gD respetively @t the next roundAF

E [ X r | C = c] 8 27 n + O(s) nd E [ X g | C = c] 10 27 n -O s 2 n .
fy stndrd pplition of the gherno' ound @vemm UTAD we n prove thtD if s ηn for su0iently smll η > 0D the initil vlue c r dereses y onstnt ftorD wFhFpFD going muh elow the new plurlity c g F henD y pplying itertively the ove resoning we get tht the proess does not onverge to rD wFhFpF -Case δ r = 1, δ g = 4, and δ b = 1 @nd symmetri sesAF sn this se it is even simpler to show thtD strting from the sme initil on(gurtion onsidered in the previous seD the proess does not onverge to opinion rD wFhFpF gg 5.3.3. A lower bound for h-plurality sn etion SFQFID we hve shown tht the QEwjority dynmis tkes Θ(k log n) roundsD wFhFpFD to onverge in the worst seF e nturl question is whether y using the hEplurlity protoolD with h slightly lrger thn 3D it is possile to signi(ntly speedEup the proessF e prove tht this is not the seF vet us onsider set of n nodesD eh node hving n opinion out of k possile onesF he hEplurlity protool works s followsX At every round, every node picks h nodes uniformly at random (including herself and with repetitions) and updates her opinion according to the plurality of the opinions she sees (breaking ties u.a.r.) vet j ∈ [k] e n ritrry opinionD in the next lemm we prove thtD if the numer of nodes is smller thn 2n/k nd if k/h = O(n (1-ε)/4 )D then the proility tht the numer of nodes hving opinion j inreses y ftor

(1 + h 2 /k) is exponentilly smllF Lemma PS. Let c = (c 1 , . . . , c k ) be a conguration and let j ∈ [k] be an opinion such that (n/k) c j 2(n/k). If k/h = O(n (1-ε)/4 ) then it holds that Pr C (t+1) j 1 + h 2 k c j C (t) = c e -Θ(n ε ) .
Proof. gonsider spei( nodeD sy u ∈ [n]D let N j e the numer of nodes hving opinion j piked y u during the smpling stge of the tEth round nd let Y e the inditor rndom vrile of the event tht node u hooses opinion j t round t + 1F e give n upper ound on the proility of the event Y = 1 y onditioning it on N j = 1 nd N j 2 @oserve tht if N j = 0 node u nnot hoose j s her opinion t the next roundA

@UPA Pr (Y u = 1) Pr (Y u = 1 | N j = 1) Pr (N j = 1) + Pr (N j 2) . xow oserve tht • Pr (Y u = 1 | N j (u) = 1)
1/h sine it is extly 1/h if ll other smpled nodes hve distint opinions nd it is 0 otherwiseY • Pr (N j = 1) hc j /n sine it n e ounded y the proility tht t lest one of the h smples gives opinion jY • Pr (N j 2) h 2 c 2 j /n 2 sine it is the proility tht pir of smpled nodes exist with the sme opinion jF reneD in @UPA we hve tht

Pr (Y = 1) c j n + h 2 2 • c 2 j n 2
. husD for the expeted numer of nodes hving opinion j t the next round we get

E C (t+1) j | C (t) = c c j + h 2 2n c 2 j = c j 1 + h 2 2n c j c j 1 + h 2 k ,
where in the lst inequlity we used the hypothesis c j 2(n/k)F ine

C (t+1) j
onditionl on {C (t) = c} is sum of n independent fernoulli rndom vrilesD from the gherno' ound @vemm UT with λ U = c j h 2 /kAD we (nlly get

Pr C (t+1) j c j 1 + 2 h 2 k C (t) = c exp - 2(c j h 2 /k) 2 n exp (-Ω(n ε )) ,
where in the lst inequlity we used c j n/k nd k/h = O(n (1-ε)/4 )F gg fy dopting similr rgument to tht used for proving heorem TD we n get lower ound Ω(k/h 2 ) on the ompletion time of the hEplurlityF Theorem U @vower found for hEwjorityA. Let C (t) be the random variable indicating the conguration at round t according to the h-Plurality dynamics and let

τ = inf{t ∈ N : C (t) is monochromatic}. If the initial conguration c = (c 1 , . . . , c k ) is such that max{c j : j = 1, . . . , k} 3n 2k , then τ = Ω(k/h 2 ) w.h.p.
Proof. ine in the initil on(gurtion for ny opinion j ∈ [k] we hve tht c j 3n/(2k)D from vemm PS it follows tht the numer of nodes supporting the plurlity opinion inreses t rte smller thn (1 + 2h 2 /k) with proility exponentilly lose to 1F his esily implies reursive reltion of the form C

(t+1) j 1 + 2h 2 /k C (t) j whihD in turnD gives C (t) j 1 + 2h 2 k t C (0) j 1 + 2h 2 k t 3n 2k .
husD for t < k/h 2 log(4/3)D we hve tht wFhFpF

C (t) j 3n 2k 1 + 2h 2 k t < 2n k ,
onluding the proofF gg 5.4. The 3-Majority Dynamics for Stabilizing Consensus sn this setionD we move on to prove the results disussed in etion PFPFPF ine here we strt investigting di'erent prolemD in the following we prtly rell some si nottion lredy introdued in etion SFIF ine the ommunition grph is omplete nd nodes re nonymousD the overll sysE tem stte t ny round n e desried y conguration c := c 1 , ..., c |Σ| D where the support c i of opinion i is the numer of nodes holding opinion i in tht system9s stteF qiven on(gurtion cD we sy tht n opinion i is active in c if c i > 0 ndD for ny set of tive opinions W ⊆ ΣD we de(ne m(W ) := arg min i∈W c i F por ny vrile x of the proessD we write x (t) if we re onsidering its vlue t round t nd X (t) to denote the orresponding rndom vrileF he next lemm is n esy onsequene of vemm IU nd provides generl upper ound on the expeted numer of nodes supporting given opinion t round t + 1D given the on(gurtion t round tF Lemma PT. Let c be the conguration at round t and let W ⊆ Σ be the subset of active opinions in c. Then, for any opinion

i ∈ W , @UQA E C (t+1) i C (t) = c c i 1 + c i n - 1 |W | Proof. prom vemm IU we hve E C (t+1) i C (t) = c = c j   1 + c j n - 1 n 2 h∈[k] c 2 h   c i 1 + c i n - 1 |W | ,
where in the inequlity we used tht the sum ∈W c 2 is minimized for c = n/|W |F gg vemm PT implies tht opinions whose support flls elow the verge n/|W | derese in expettionF his expeted drift is keyEingredient of the nlysis ndD s we show in the next prgrphD it provides useful intuitions out the proessF yn the other hndD when c is lmost uniformD the ove drift turns out to e negligile nd symmetry reking is due to the inherent vrine of the rndom proessF 5.4.1. Approaches which don't seem to work hen the QEwjority dynmis strts from on(gurtions tht exhiit lrge initil support is etween the lrgest nd the seondElrgest opinionsD the pproh dopted in etion SFP suessfully exploits the ft tht the initil plurlity is preserved throughout the evolution of the rndom proessD with n expeted positive drift tht is lso preservedD wFhFpF en intuition of this ft n e hieved from simple mnipultions of @UQAF roweverD the forementioned drift is only preserved if the lrgest opinion never hngesD wFhFpFD no matter which the second-largest opinion is X ondition tht is not met y uniform on(gurtionsF e promising ttempt to ope with uniform on(gurtions is to onsider the rFvF

S (t) = C (t) M(t) -C (t) 2M(t) ,
where M(t) nd 2M(t) re the rFvFs tht tke the index of @one ofA the lrgest opinion nd of @one ofA the seondElrgest onesD respetivelyD in round tF por ny xed pir i, jD suh tht c i > c j D @UQA implies tht the di'erene

C (t+1) i -C (t+1) j
in the next round is positive in expettionD so suitle sumrtingle rgument @similrly to those in LPW09AD seemed to work in order to show tht the system @rther quiklyA hieves su0ientlyElrge is towrd the plurlity s to llow fst onvergeneF his pproh would work if the random indies M nd 2M mintined their initil vlues ross the entire durtion of the proessF nfortuntelyD strting from uniform on(gurtionsD in the next roundD the expeted di'erene etween the new lrgest opinion nd the new seond lrgest one my hve no positive drift t llF oughly spekingD in the next roundD the rFvF C M(t) F e promising dynmis for the stilizing lmostEonsensus prolem is the one introdued in DGM + 11D in whih nodes revise their opinions @ssumed to e totlly orderedA y tking the medin etween the urrently held opinE ion nd those held y two rndomly smpled nodesF roweverD while we do not ssume opinions to e integers @or totlly orderedAD their nlysis strongly relies on the ft tht the medin opinion @or ny good pproximtion of itA exhiits strong inresing driftD even when strting from lmostEuniform on(gurtionD wheres no opinion is speil to mjority rule when the strting on(gurtion is uniformF he doption of n inherently ised funE tion s the medin n hve importnt onsequenesF o get n intuitionD the reder my onsider the following simple instneX Σ = {1, 2, 3}D with the system strting in on(gurtion c 1 = n/2, c 2 = 0, c 3 = n/2 @pigure IIAF et the end of the (rst roundD stti dversry hnges the vlues of F = log n nodesD eqully distriuted in c 1 nd c 3 D to vlue PF he @nonEvlidA vlue P is the global median nd stndrd ounting rguments show thtD while vlues 1 nd 2 hve no positive expeted driftD the medin hs strong expeted drift tht holds wFhFpF whenever c 1 , c 3 = Θ(n)F his might fool the system into the on(gurtion in whih c 2 = nD thus onverging to nonEvlid vlueF 5.4.2. The new approach he nlysis we present signi(ntly deprts from the ove pprohesF st is importnt to remrk thtD for |Σ| 3D no previous nlysis of the QE wjority dynmis with lmostEuniform initil on(gurtions ws knownD even in the simpler nonEdversril seF yn the other hndD while simplerD the nlysis of the nonEdversril se still hs per-se interest nd it reE quires to ddress some of the min tehnil hllenges tht lso rise in the dversril seF etion SFRFQ is thus devoted to the nlysis of the nonEdversril seD while n outline is given in the prgrphs tht followF hen the on(gurtion is @pproximtelyA uniformD vemm PT tells us tht the proess exhiits no signi(nt drift towrd ny xed opinionF snE terestinglyD things hnge if we onsider the rndom vrile C m lwys exhiits nonEnegligile negtive driftX

@URA E C (t+1) m | C (t) = ĉ ĉm -ε √ n j 3/2 ,
for some onstnt ε > 0 @see pigure IUAF his drift is essentilly onseE quene of vemm PT and of the stndrd devition of rFvFs C (t) i s @see the proof of vemm PVAF he nlysis then proeeds long onseutive phsesD eh onsisting of suitle numer of onseutive roundsF sf the numer of tive opinions t the eginning of the generi phse is jD we prove thtD with positive onstnt proilityD C (t) m vnishes within the end of the phseD so tht the next phse egins with @t mostA j -1 tive opinionsF e lerly need good ound on the length of phse eginning with t most j opinionsF o this imD we derive new upper ound E stted in vemm PU E on the hitting time of stohsti proesses with expeted drift tht re de(ned y (niteEstte wrkov hins LPW09@URA to prove thtD from ny on(gurtion with j k tive opinionsD

C (t)
m drops elow the threshold n/j -√ jn log n within O(poly(j, log n)) roundsD with onstnt positive proilityX his hitting event represents the exit ondition from the symmetryEreking stge of the phseF sndeedD one it oursD we n onsider any xed tive opinion i hving support size c i elow the ove threshold @thnks to the previous stgeD we know tht there is good hne this opinion existsAX e then show tht C i hs negtive drift of order Ω(c i /j)F his llows us to prove tht C i drops from n/j -√ jn log n to zero within O(poly(j, log n)) further roundsD with positive onstnt proilityF his intervl of rounds is the dropping stge of the phseF sdellyD the proess proeeds long k onseutive phsesD indexed s j = k, k -1, . . . , 2D suh tht we re left with t most j -1 tive opinions t the end of hse jF sn prtieD we only hve onstnt proility tht t lest one opinion disppers during hse jF roweverD using stndrd proilisti rgumentsD we n prove thtD wFhFpFD for every jD the trnsition from j to j-1 tive opinions tkes onstnt @mortizedA numer of phsesD eh requiring O(poly(j, log n)) roundsF he presene of dynmiD dptive dversry mkes the ove nlysis tehnilly more omplexF e mjor issue is tht di'erent de(nition of phase must e onsideredD sine the dversry might permnently feed ny opinion so tht the ltter never diesF o the numer of tive opinions might not derese from one phse to the next oneF issentillyD we need to mnge the persistene of smll @vlid or notA opinionsX he end of phse is now hrterized y one ig vlid opinion tht eomes smll ndD moreoverD we need to show thtD in generlD smll olors never eome igD no mtter wht the dynmi F Eounded dversry doesF he dynmiEdversry se is desried in etion SFRFSF

Convergence Time without Adversary

vet C ⊆ Σ e the suset of vlid opinionsD iFeF those supported y t lest one node in the initil on(gurtionD nd denote y k = |C| its sizeF his setion is devoted to the proof of the following resultD whih is given in etion SFRFRF Theorem PP @edversryEpree pper foundA. Starting from any initial conguration with k n 1/3-ε active opinions, where ε > 0 is an arbitrarilysmall constant, the 3-Majority dynamics reaches consensus within O((k

2 log 1/2 n+ k log n) • (k + log n)) rounds, w.h.p.
e (rst provide the lemms required for the proess nlysis nd then we give the forml proof of the ove theoremF he next lemm shows n upper ound on the time it tkes stohsti proess with vlues in N = {0, 1, . . . , n} to reh or exeed trget vlue mD under mild hypotheses on the proessF Lemma PU. Let {X t } t be a Markov chain with nite state space Ω, let f : Ω → N be a function mapping states of the chain to non-negative integer numbers, and let {Y t } t be the stochastic process over N dened by Y t = f (X t ). Let m ∈ N be a target value and let τ = inf{t ∈ N : Y t m}, be the random variable indicating the rst time Y t reaches or exceeds value m. Assume that, for every state x ∈ Ω with f (x) m -1, it holds that (1) (Positive drift). For some λ > 0

E [Y t+1 | X t = x] f (x) + λ, (2) (Bounded jumps). For some α > 1 Pr (Y τ αm | X t = x) αm/n.
Then, for every starting state x ∈ Ω, it holds that

E [τ | X t = x] 2α m λ .
Idea of Proof. prom rypothesis 1 it follows tht Z t = Y tλt is submartingale tht stis(es the hypotheses of the hoo9s Optional Stopping Theorem @heorem PUD pgF PUPAD thus

0 f (x) = E [Z 0 | X t = x] E [Z τ | X t = x] = E [Y τ | X t = x] -λE [τ | X t = x] , nd from rypothesis 2 it follows tht E [Y τ | X t = x] 2αmF gg Proof. gonsider the stohsti proess Z t = Y t -λt nd oserve tht for ny stte x ∈ Ω with f (x) m -1 it holds tht E [Z t+1 | X t = x] = E [Y t+1 | X t = x] -λ(t + 1) f (x) + λ -λ(t + 1) f (x) -λt,
where in the inequlity we used rypotheses 1F hus Z t is submartingale up to the stopping time

τ D iFeF E [Z t+1 | X t ] Z t for ny t < τ F woreoverD sine |Y t | n the jumps of Z t n e ounded y vlue independent of t |Z t+1 -Z t | = |Y t+1 -λ(t + 1) -Y t + λt| n + λ.
st is lso esy to see tht rypothesis 1 implies E [τ | X t = x] < ∞F husD we n pply Doob's Optional Stopping Theorem @heorem PUD pgF PUPAF st then follows tht

E [Z τ | X t = x] E [Z 0 | X t = x] = f (x) ndD sine E [Z τ | X t = x] = E [Y τ | X t = x] -λE [τ | X t = x] ,
we hve tht

E [τ | X t = x] E [Y τ | X t = x] -f (x) λ E [Y τ | X t = x] λ . pinllyD we get E [Y τ | X t = 0] = n j=1 j Pr (Y τ = j | X t = 0) = αm j=1 j Pr (Y τ = j | X t = 0) + n j= αm +1 j Pr (Y τ = j | X t = 0) (αm) + n Pr (Y τ > αm | X t = 0) 2 (αm) ,
where in the lst inequlity we used rypothesis 2F gg e next use the ove lemm to ound the time required y the symmetrybreaking stgeF Lemma PV @ymmetryEfreking tgeA. Let c be any conguration with j active opinions. Within t = O j 2 log 1/2 n rounds it holds that Pr ∃i :

C (t) i n/j -jn log n | C (0) = c 1 2 .
Proof. vet J e the set of j tive opinions in c nd let

C (t) = C (t) i : i ∈ J ,
e the rndom vrile inditing the opinion on(gurtion t round tD where we ssume C (0) = cF vet e now show tht {Y t } t stis(es rypothesis 1 nd 2 of vemm PUD with λ = ε √ n/j 3/2 D for suitle onstnt ε > 0F 1. vet ĉ = (ĉ i : i ∈ J) e ny on(gurtion with j tive opinions suh tht ĉm > n/j -√ jn log nF e wnt to prove tht

C (t) m = min C (t) i : i ∈ J ,
@USA E C (t+1) m | C (t) = ĉ c m -ε √ n j 3/2 .
wo ses my riseF Case ĉm > n/j -2ε n/j. yserve thtD in this seD the rFvFs {C (t+1) i : i ∈ J} onditionl on {C (t) = ĉ} hve stndrd devition Ω( n/j)F woreE overD they re inomil nd negtively ssoitedF reneD y hoosing ε smll enoughD from the gentrl vimit heorem we hve tht

Pr ∃i ∈ J : C (t+1) i n j -6ε • n j C (t) = ĉ 1 2 . e thus get E C (t+1) m | C (t) = ĉ 1 2 n j -6ε • n j + 1 2 • n j = n j -3ε n j c m -ε n j c m -ε √ n j 3/2 .
Case ĉm n/j -2ε n/j. @USA esily follows from vemm PTF sndeedD let i ∈ J e n opinion suh tht ĉi = ĉm D then

E C (t+1) m | C (t) = ĉ E C (t+1) i | C (t) = ĉ @UTA ĉi 1 + ĉi n - 1 j ĉi 1 - 2ε √ nj ĉi - ε √ n j 3/2 = ĉm -ε √ n j 3/2
where we used the se9s ondition nd the ft tht ĉi = ĉm n/(2j)F 2. ine the rndom vriles {C (t+1) i : i ∈ J} re inomilD onditionl on the on(gurtion t round tD it is possile to pply the gherno' ound @vemm UTD though with some reA to prove tht

@UUA Pr Y τ α jn log n | C (0) = c 1 n ,
for some onstnt α > 1F hough this result seems intuitiveD its forml proof is less oviousD sine τ is stopping time nd thus itself rndom vrileF vemm QS in etion SFRFT o'ers forml proof of the ove sttementF prom @USA nd @UUAD we hve tht {Y t } t stis(es the hypotheses of vemm PU with m = √ jn log n nd λ = ε √ n/j 3/2 F rene

E τ | C (0) = c < j 2 log n
ndD from wrkov inequlityD for t = 2j 2 √ log nD we (nlly get

Pr ∀ i ∈ J : C (t) i n/j -jn log n | C (0) = c Pr τ > 2j 2 log n | C (0) = c 1 2 .
gg 5.4.4. The Survival of the Bigger e now provide the nlysis of the dropping stgeX wore preiselyD we show thtD if the system strts with up to j tive opinions nd one of them @sy iA is elow the threshold n/j -√ jn log nD then i drops to the smller threshold j 2 log n within O(j log n) dditionl roundsF his ound n e proved wFhFpF sineD in this regimeD C i is still su0iently lrge to pply the gherno' oundF his onentrtion result is not neessry to the purpose of proving heorem PPD while it is key ingredient in the nlysis of the dversril se @heorem VAF he next lemm n e proved y stndrd onentrtion rguments E pplied in n itertive wy E on the rFvF C (t) i @see etion SFRFTAF Lemma PW @hropping tge IA. Let c be any conguration with j n 1/3-ε active opinions, where ε > 0 is an arbitrarily-small positive constant, and such that an opinion i exists with c i n/j -√ jn log n. Within t = O(j log n) rounds opinion i becomes O j 2 log n , w.h.p.

sn the next lemm we prove tht one c i eomes smller thn n/(2j)D then opinion i disppers within further O(j log n) rounds with onstnt proilityF e only give n outline of the proof @the full proof is presented in etion SFRFTAF Lemma QH @hropping tge PA. Let c be any conguration with j n 1/3-ε active opinions, where ε > 0 is an arbitrarily-small positive constant, and such that an opinion i exists with c i n/(2j). Within t = O(j log n) rounds opinion i disappears with probability at least 1/2. Idea of Proof. sf c i n/(2j) in on(gurtion cD then from vemm PT it follows tht

E C (t+1) i | C (t) = c c i 1 - 1 2j woreoverD sine C (t+1) i onditionl on C (t) = c is inomilD if j n 1/3-ε D from the gherno' ound @vemm UTA it follows tht Pr C (t+1) i > n/(2j) | C (t) = c e -Θ(n ε ) .
reneD it is esy to hek tht for ny initil on(gurtion c with c i n/(2j) the following reursive reltion holds

E C (t) i | C (0) = c 1 - 1 2j E C (t-1) i | C (0) = c + e -n ε/2 tht for some t = O(j log n) gives E C (t) i | C (0) = c 1/2F ine C (t) i
is nonEnegtive integerEvlued rFvFD the thesis then follows from the wrkov inequlityF gg ermed with lemms PW nd QHD we re redy to prove heorem PPF Theorem PP @edversryEpree pper foundA. Starting from any initial conguration with k n 1/3-ε active opinions, where ε > 0 is an arbitrarilysmall constant, the 3-Majority dynamics reaches consensus within O((k 2 log 1/2 n+ k log n) • (k + log n)) rounds, w.h.p.

Proof of Theorem 22. prom vemms PVD PWD nd QH it follows tht from ny on(gurtion with j k tive opinionsD within O(k 2 √ log n + k log n) rounds t lest one of the opinions disppers with proility t lest 1/4F husD within O((k 2 √ log n+k log n)(k+log n)) roundsD ll opinions ut one dispperD wFhFpF gg 5.4.5. Convergence Time with Adversary sn this setion we onsider the presene of fyzntine dversry tht n dptively hnge the opinions of suset of nodes in order to @iA dely the onvergene time towrd vlid onsensusD or @iiA mke the system onverge to nonEvlid opinionF e onsider two di'erent kinds of dversriesX e stti one nd strongerD dynmi oneF Definition IS @F Estti dversryA. vet c e the initil on(gurtionX et the eginning of the proess the dversry looks t c nd n reple the opinions of t most F = n/k -√ kn log n nodes with ritrry opinions in ΣF henD the dversry is not llowed to perform ny further tion during the exeution of the protoolF e onsider the se F = n/k -√ kn log nF ine ny opinion the dE versry my introdue hs size less thn n/k -√ kn log nD s simple onseE quene of the dropping stge @see vemms PW nd QHAD the stti dversril se esily redues to the nonEdversril oneF e thus get the following resultF Corollary T @pper found with ttiEedversryA. Starting from any initial conguration with k n α active opinions, where α > 0 is a suitable constant, the 3-Majority dynamics reaches almost-consensus within O((k 2 √ log n+ k log n) • (k + log n)) rounds, in the presence of any F -static adversary with F n/k -√ kn log n, w.h.p.

e now de(ne the tions of n F Edynmi dversry over the studied proess n e desried s followsF Definition IT @F Ehynmi edversryA. et every round tD fter nodes hve updted their opinions @iFeF one the on(gurtion C (t) = c (t) is reE lizedAD the F Edynmi dversry looks t the urrent on(gurtion nd reples the opinion of up to F nodes with ny opinion in ΣF e de(ne C(t) s the on(gurtion tht results from the dversry9s tion on c (t) nd

D (t) i = D (t)
i (c (0) , c(0) , . . . , c (t-1) , c(t-1) , c (t) ), s the rFvF orresponding to the numer of nodes tht the dversry dds or removes from c i @note tht i∈Σ |D i | 2F A t the end of the tEth roundD sed on ll the pst history of the proessD iFeF

C(t) = C (t) 1 + D (t) 1 , . . . , C (t) |Σ| + D (t) |Σ| .
sn wht follows we onsider n F Edynmi dversry with F β √ n/(k 5 2

log n) for suitle positive onstnt βF es we show in the proof of vemm QID this ound on F turns out to e lmost tight if the gol is to onverge to n lmostEonsensus regime in polynomil timeD wFhFpF he presene of the dversry requires us to distinguish etween vlid nd non vlid opinionsF oD we rell tht the set of vlid opinions C ⊆ Σ is the suset of tive opinions in the initil on(gurtion ndD in the sequelD we denote k s the numer of vlid opinionsD iFeFD k := |C| nd de(ne C := Σ -CF e re now redy to stte our min result in the presene of the dynmi dversryF Theorem V @pper found with hynmiEedversryA. Let k n α and F β √ n/(k 5 2 log n) for some constants β, α > 0. The 3-Majority dynamics is a stabilizing almost-consensus protocol in the presence of any F -dynamic adversary and its convergence time is O((

k 2 √ log n + k log n)(k + log n)), w.h.p.
sn order to prove the ove theoremD we need to improve the tehnil lemms shown in the previous setion for the nonEdversril seF snforE mlly spekingD the dversry n introdue smll nonEvlid opinions nd it n keep smll vlid opinions tive thtD we knowD they would otherwise dispperF hese fts led us to the prolem of mnging smll opinionsF Proof of Theorem 8. he rigorous de(nition of smll opinion is determined y the miniml negtive drift for C (t) m we derived in the proof of vemm PV @see etion @UTAAF Definition IU @mll ypinionsA. vet S := {i c i γ √ n/k 3 2 } e the set of the small opinionsD where γ is some onstnt suh tht γ > βD nd let its omplement B := S = {i c i > γ √ n/k 3 2 } e the set of the big opinionsF st turns out tht we nnot de(ne the end of phse s we did in the nonEdversril seD nmelyD t lest one @vlidA opinion diesF e rther ssume thtD without loss of generlityD ll k vlid opinions re ig when the proess eginsF he onsequent new de(nition of phse is the followingX phse j is n intervl of onseutive roundsD in eh of whih extly j ig vlid opinions re presentF he gol then is to show tht t the end of phse jD one of the j initilly ig opinions eomes smll ndD moreoverD this opinion @nd no other smll opinionA never gets ig ginF sn the symmetryEreking stge of eh phseD we thus need to show tht the negtive drift of C (t) m @notie tht the ltter now denotes the minimum mong the j ig opinionsA nnot e opposed y the tions of the

F Edynmi dversryD provided tht F β √ n/(k 5 2 log n)F
Lemma QI @ymmetryEfreking tge with edversryA. Let c be any conguration such that |B| = j and i∈ m given y the following vemm QPD whih onsiders oth the presene of smll good opinions nd the dversry9s opposing tion @for its proof see etion SFRFTAF iiA e novel use of vemm PU on the hitting time of rndom proesses in order to ound the expet time of the symmetryEreking stgeF e in ft need to de(ne new stopping ondition tht lso inludes some d eventX ome smll @vlid or notA opinion eome igF wore preiselyD in vemm QQ @its forml proof n e found in etion SFRFTAD we prove the following keyEproperties of the proess in the presene of the dynmi dversryX @IA if in given round vlid opinion is smll then it keeps smll in the following roundD wFhFpFD iFeF S (t-1) ⊆ S (t) Y @PA the size of the overll set of non vlid opinions stys elow

C ci γ √ n/k 3 2 . Within t = O(j 2 log 1/2 n) rounds, with probability at least 1/2 it holds that i) |B| = j, i∈ C Ci γ √ n/k 3 2 ,
γ √ n/k 3 2 D wFhFpFD iFeF i∈ C c i γ √ n/k 3 2 F
Lemma QP @hropping tge I with edversryA. Let c be any conguration such that |B| j and i∈ C c(t he dropping stge of phse j is now de(ned s the intervl of rounds in whih C (t) m drops from the symmetryEreking threshold n/j -√ jn log n to the size of smll opinions iFeF γ √ n/k 3 2 F imilrly to the nonEdversril seD we n here (x the ig opinion i tht is dropped elow the symmetryE reking threshold nd look t its negtive drift derived in vemm QPF he drift turns out to e strong enough to ompenste the possile tions of ny F Eounded dversry nd implies n O(j log n) ound on the time required y this seond stge of phse jF his result is stted in the following vemm @its proof is given in etion SFRFTAF Lemma QR @hropping tge P with edversryA. Assume that, at round t , c(t ) is such that

) i γ √ n/k 3 2 . For some constant α > 0, for any opinion i such that ci γ √ n/k 3 2 , it holds E C (t+1) i C(t) = c ci 1 - 1 j + ci + α n/k n E C(t+1) i C(t) = c ci (1 -η(i, j)), where @UVA η(i, j) = min 1 j - ci + α n/k n , 1 2 1 j - ci n Lemma QQ @mll tys mllA. If c(t) is such that i∈ C c(t) i γ √ n/k 3 2 , then i∈ C C(t+1) i γ √ n/k
• i∈ C c i γ √ n/k 3 2 ,
• |B (t ) | = j, and

• an i ∈ B (t ) exists such that γ √ n/k 3 2 c (t ) i n/j -kn log n.
Then, a round t = t + O(k log n) exists such that w.h.p.

• i∈ C C(t ) i γ √ n/k 3 2 ,
• i ∈ S (t ) and • |B (t ) | j -1.

pinllyD fter k phsesD we re left with one @vlidA opinion tht ounts for n -O( √ n) nodesD while the remining nodes n hve ny @possily non vlidA opinion nd re)et the presene of the dversryF sn ftD this is wht hppens with high proilityF gg 5.4.6. Technical lemmas of the analysis sn this setion we omplete the proof of heorem V y proving @UUA nd the lemms QID QPD QR nd QQF hroughout the setionD rell tht we ssume F β √ n/(k 5 2 log n)F e (rst provide forml proof for @UUAF Lemma QS. Let c be any conguration with j active opinions. Consider the stochastic process {Y t } t dened as Y t = n j -C

(t) m and dene the stopping

time τ = inf t ∈ N : Y t √ jn log n . Then Pr Y τ > α jn log n | C (0) = c 1 n ,
for some constant α > 1.

Proof. yserve tht Y τ is well de(nedD euse

E τ | C (0) = c < ∞ s onsequene of the ft tht C (t)
m hs negtive drift @see the proof of vemm PVAF prom the de(nition of Y t D we hve

Pr Y τ > α jn log n | C (0) = c = Pr C (τ ) m < n j -α jn log n | C (0) = c = Pr ∃ : C (τ ) < n j -α jn log n | C (0) = c j =1 Pr C (τ ) < n j -α jn log n | C (0) = c . @UWA
o prove the lemmD we prove tht eh term in @UWA is upper ounded y n -2 D y hossing α lrge enoughF qiven ny opinion D ny omprison opertor ∈ {<, , , >} nd ny round tD let

E (t) = "C (t) n j -jn log n".
prom the de(nition of the stopping time τ D for ny opinion we hve

Pr C (τ ) < n j -α jn log n | C (0) = c = ∞ t=1 Pr C (t) < n j -α jn log n (τ = t) | C (0) = c = ∞ t=1 Pr C (t) < n j -α jn log n E (t) m t-1 s=1 E (s) m> ∧ (C (0) = c) • Pr t-1 s=1 E (s) m> C (0) = c = ∞ t=1 Pr C (t) < n j -α jn log n t-1 s=1 E (s) m> ∧ (C (0) = c) • Pr t-1 s=1 E (s) m> C (0) = c , @VHA
where the lst equlity follows from the ft tht

C (t) < n j -α jn log n, implies C (t) m < n j -jn log n.
e next fous on ounding the term @VIA Pr

t-1 s=1 E (s) m> | C (0) = c in @VHAF e n write Pr t-1 s=1 E (s) m> | C (0) = c = t-1 s=1 Pr E (s) m> s-1 r=1 E (r) m> ∧ C (0) = c = t-1 s=1 Pr E (s) m> E (s-1) m> ∧ C (0) = c ,
where the lst equlity follows sine the proess of the QEwjority dynmis is wrkovinF e n upper ound

Pr E (s) m> E (s-1) m> ∧ C (0) = c = ĉ∈Sm Pr E (s) m> | C (s-1) = ĉ • Pr C (s-1) = ĉ E (s-1) m> ∧ C (0) = c ĉ∈Sm Pr E (s) m> | C (s-1) = ĉ • Pr C (s-1) = ĉ E (s-1) m> ∧ C (0) = c ,
where m is the vlue of m t time s -1 @reking ties ritrrilyAD nd S m is the set of possile on(gurtions whih relize E e n lso upper ound Pr(E (s) m> | C (s-1) = ĉ) y using reverse gherno' ound 4 @heorem PTAF sn prtiulrD for suitle onstnt β it is possile to show tht

Pr C (s) m > (1 -δ)E C (s) m | C (s-1) = ĉ | C (s-1) = ĉ 1 -e -βδ 2 E C (s) m | C (s-1) =ĉ . fy hoosing δ = √ jn log n E C (s) m | C (s-1) = ĉ nd noting tht n 2j E C (s) m | C (s-1) = ĉ n j , 4 
A folklore example with complete proofs can be found at http://cstheory. stackexchange.com/questions/14471/reverse-chernoff-bound.

we get

Pr E (s) m> | C (s-1) = ĉ Pr C (s) m > (1 -δ)E C (s) m | C (s-1) = ĉ | C (s-1) = ĉ
1e -4βj 2 log n . @VPA fy the lw of totl proilityD we n thus sturte with respet to ll ĉ ∈ S m nd from @VPA we otin tht

Pr E (s) m> E (s-1) m> ∧ (C (0) = c)
1e -4βj 2 log n , whih proves @VIAF yn the other hndD from gherno' ounds @vemm UTA nd the ft tht

E C (s) m | C (s-1) = ĉ n j , it follows tht @VQA Pr C (s) m < n j -α jn log n s-1 r=1 E (r) m> ∧ C (0) = c e -α 2 6 j 2 log n .
pinllyD sustituting @VPA nd @VQA into @VHAD the result follows y hoosE ing α lrge enough in @VQAF gg e now provide detiled proofs of the two tehnil lemms of the dropE ping stteF Lemma PW @hropping tge IA. Let c be any conguration with j n 1/3-ε active opinions, where ε > 0 is an arbitrarily-small positive constant, and such that an opinion i exists with c i n/j -√ jn log n. Within t = O(j log n) rounds opinion i becomes O j 2 log n , w.h.p.

Proof. e (rst prove tht the deresing rte of C i depends on its vlue t the end of the previous roundF wore formllyD if we re in on(gurtion stisfying the hypotheses of the lemmD we hve

Pr C (t) i > c (t-1) i 1 - 1 2 1 j - c (t-1) i n = Pr C (t) i > c (t-1) i 1 - 1 j - c (t-1) i n (1 + δ) , where δ = 1 2 ( 1 j - c (t-1) i n ) 1 -( 1 j - c (t-1) i n )
.

sing vemm PT nd pplying gherno' ound @vemm UTA we thus get 1) , @VRA where (a) follows from the de(nition of δD (b) follows y @upperA ounding the denomintor of δ y 1D whih is lwys possile sine c i /n -1/j < 0 y hypothesisD nd (c) follows from the ft tht c i j 2 log n nd tht the funtion x (1x) 2 is deresing i' x ∈ (1/3, 1)D with x = jc i /nF pinllyD we n itertively pply @VRA s long s we hve t most j tive opinions nd C (t) i is igger thn j 2 log nX fy stndrd onentrtion rguE ments we get tht the time to reh this threshold is O (j log n)D wFhFpF gg Lemma QH @hropping tge PA. Let c be any conguration with j n 1/3-ε active opinions, where ε > 0 is an arbitrarily-small positive constant, and such that an opinion i exists with c i n/(2j). Within t = O(j log n) rounds opinion i disappears with probability at least 1/2.

Pr C (t) i > c (t-1) i 1 - 1 2 1 j - c (t-1) i n exp - δ 2 3 1 - 1 j - c (t-1) i n c (t-1) i (a) = exp - δ 3 1 2 1 j - c (t-1) i n c (t-1) i (b) < exp   - 1 3 1 2 1 j - c (t-1) i n 2 c (t-1) i   (c) = n -Θ(
Proof. vet J e the set of tive opinionsF fy onditioning on ll the on(gurtions ĉ = (ĉ : ∈ J) tht the system n tke t round t -1D we n ound the expettion of

C (t) i s follows E C (t) i | C (0) = c = ĉ E C (t) i | C (t-1) = ĉ Pr C (t-1) = ĉ | C (0) = c 1 - 1 2j ĉ : ĉi n/(2j) ĉi • Pr C (t-1) = ĉ | C (0) = c + n • ĉ : ĉi >n/(2j) Pr C (t-1) = ĉ | C (0) = c 1 - 1 2j E C (t-1) i | C (0) = c + n • Pr C (t-1) i > n 2j C (0) = c , @VSA
where we used thtD for ny on(gurtion ĉ with ĉi n/(2j)D vemm PT gives the ound

E C (t) i | C (t-1) = ĉ ĉi 1 - 1 2j .
woreoverD if j n 1/3-ε D from the gherno' ound @vemm UTA it follows tht

@VTA Pr C (t) i > n 2j | C (t-1) = ĉ e -Θ(n ε )
for ny suh on(gurtion ĉF reneD for ny t we n ound the seond term in @VSA s followsX

Pr C (t) i > n 2j | C (0) = c Pr ∃ t = 1, . . . , t : C ( t) i > n 2j ∧ C ( t-1) i n 2j | C (0) = c t t=1 Pr C ( t) i > n 2j ∧ C ( t-1) i n 2j | C (0) = c = t t=1 ĉ : ĉi n 2j Pr C ( t) i > n 2j | C ( t-1) = ĉ • Pr C ( t-1) = ĉ | C (0) = c te -Θ(n ε )
where in the lst inequlity we used @VTAF hus for ny t = poly(n) the following reursive reltion holds

E C (t) i | C (0) = c 1 - 1 2j E C (t-1) i | C (0) = c + exp -n ε 2 , tht is @VUA E C (t) i | C (0) = c 1 - 1 2j t n 2j + e -n ε/3 . prom @VUAD for t = 2j(log n + 1) we get E C (t) i | C (0) = c 1/2 nd sine C (t) i
tkes nonEnegtive integer vluesD the thesis follows from wrkov9s inE equlityF gg Lemma QT @founded tumpA. Let c be any conguration such that |B| = j

and i∈ C ci γ √ n/k Ỹt = n j - C(t)
m and dene the stopping time

τ = inf{t ∈ N : Ỹt jn log n ∨ i∈ C Ci γ √ n/k 3 2
∨ (S (t-1) ⊆ S (t) )}.

It holds that

Pr Ỹτ > α jn log n | C (0) = c 1 n .

Sketch of Proof. he proof of this vemm follows from minor modE i(tions of the proof of vemm QSF sn prtiulrD the rgument is sed on the following oservtionsX 1. he event de(ning the stopping time τ is in this se

E (t) = Ỹt ( jn log n) ∨ i∈ C Ci γ √ n/k 3 2 ∨ (S (t-1) ⊆ S (t) ) .
he negted of this event is

¬E (t) = Ỹt ( jn log n) ∧ i∈ C Ci γ √ n/k 3 2 ∧ (S (t-1) ⊆ S (t) ) ,
whih implies the event " Ỹt √ jn log n"F 2. roeeding like in the proof of vemm QSD we n write n expression tht is similr to @VHAD with the generi onditioning event

C (s) m > n j -jn log n,
repled y ¬E (s) F he onditioned event

C (t) < n j -α jn log n,
is insted repled y the event

C (t) < n j -α jn log n ∧ E (t) .
xowD note tht the event

C (t) < n j -α jn log n,
gin implies E (t) F reneD we n still write @VHAD from whih the proof requires minor dpttions wFrFtF vemm QSF gg ine the dversryD t round tD my deide wht to do sed on the full history of the proess up to time tD the stohsti proess { C(t) } t my not e wrkov proess nymoreF husD we need more generl version of vemm PUF Lemma QU. Let {X t } t be a discrete time stochastic process with a nite state space Ω, let f t : Ω t → N be a function mapping histories of the process in non-negative integer numbers, and let {Y t } t be the stochastic process over N dened by Y t = f t (X 0 , . . . , X t ). Let m ∈ N be a target value, let A ⊆ Ω be an arbirary subset of states, and let τ = inf{t ∈ N : Y t m or X t / ∈ A} be the random variable indicating the rst time X t exits from set A or Y t reaches or exceeds value m. Assume that, for every sequence of states x 0 , . . . , x t ∈ A with f t (x 0 , . . . , x t ) m -1, it holds that

(1) (Positive drift). For some λ > 0, it holds

E [Y t+1 | X 0 = x 0 , . . . , X t = x t ] f t (x 0 , . . . , x t ) + λ,
(2) (Bounded jumps). For some α > 1

Pr Y τ | Xt=x αm αm/n.
Then, for every starting state x ∈ A, it holds that

E [τ | X t = x] 2α m λ .
Proof. he proof is stright dpttion of the proof of vemm PUD in whih we tke into ount the full history of the proessF gonsider the stohsti proess Z t = Y t -λtF por ny sequene of sttes x 0 , . . . , x t ∈ A with f t (x 0 , . . . , x t ) m -1 it holds tht

E [Z t+1 | X 0 = x 0 , . . . , X t = x t ] = E [Y t+1 | X 0 = x 0 , . . . , X t = x t ] -λ(t + 1) f t (x 0 , . . . , x t ) + λ -λ(t + 1) f t (x 0 , . . . , x t ) -λt,
where in the inequlity we used rypothesis 1F husD Z t is submartingale up to the stopping time τ F woreoverD sine

|Y t | n then |Z t+1 -Z t | n + λ ndD together with rypothesis 1 this implies E [τ | X t = x] < ∞F husD we n pply Doob's Optional Stopping Theorem @heorem PUD pgF PUPAF st follows tht E [Z τ | X t = x] E [Z 0 | X t = x] = f 0 (x), nd sine E [Z τ | X t = x] = E [Y τ | X t = x] -λE [τ | X t = x] ,
we hve tht

E [τ | X t = x] E x [Y τ ] -f 0 (x) λ E [Y τ | X t = x] λ . pinllyD we get E [Y τ | X 0 = 0] = αm j=1 j Pr (Y τ = j | X 0 = 0) + n j= αm +1 j Pr (Y τ = j | X 0 = 0) (αm) + n Pr (Y τ > αm | X 0 = 0) 2 (αm) ,
where in the lst inequlity we used rypothesis 2F gg ith the following lemmD we generlize vemm PV to the dversril settingF Lemma QI @ymmetryEfreking tge with edversryA. Let c be any conguration such that |B| = j and i∈

C ci γ √ n/k 3 2 . Within t = O(j 2 log 1/2 n) rounds, with probability at least 1/2 it holds that i) |B| = j, i∈ C Ci γ √ n/k 3 2 , and
ii) there exists an i ∈ B (t) such that C(t)

i n/j -√ jn log n.

Proof. e proeed y dpting the proof of vemm PVF vet C(0) = c e the initil on(gurtionF vet us onsider the stohsti proess { Ỹt } t 0 de(ned s

Ỹt = n j -C(t) m where C(t) m = min{ C(t) i : i ∈ B (t) }.
e re interested in estimting the expeted vlue of

τ = inf{t ∈ N : Ỹt ( jn log n) ∨ i∈ C Ci γ √ n/k 3 2 ∨ (S (t-1) ⊆ S (t) )}.
xow we show tht { Ỹt } t stis(es the rypotheses 1 nd 2 of vemm PU with

A = i∈ C Ci γ √ n/k 3 2 ∨ (S (t-1) ⊆ S (t) ) nd λ = ε √ n/j 3/2 D for suitle onstnt ε > αF 1. vet c e ny on(gurtion suh tht cm > n/j - √ jn log nF xow we prove tht @VVA E C(t+1) m | C(t) = c cm -ε √ n j 3/2 .
Case cm > n/j -2ε n/j. yserve thtD in this seD rndom vriles C t+1 i : i ∈ B hve stndrd devition is Ω( n/j)F woreover they re inomil nd negtively ssoitedF reneD y hoosing ε smll enoughD from the gentrl vimit heorem we hve tht

Pr ∃ i ∈ B suh tht C (t+1) i n j -6ε • n j 1/2. e thus get E C(t+1) m | C(t) = c 1 2 n j -6ε • n j + 1 2 • n j + β √ n k 5 2 log n = n j -2ε n j + β √ n k 5 2 log n cm -ε n j cm -ε √ n j 3/2 .
Case cm n/j -2ε n/j. @VVA esily follows from vemm QPF sndeedD let i ∈ B e n opinion suh tht ĉi = ĉm D then

E C(t+1) m | C(t) = c E C(t+1) i | C(t) = c ci 1 + ci + α n/k n - 1 j ci 1 - 2ε √ nj + α √ kn ci - ε √ n j 3/2 = cm -ε √ n j 3/2 ,
where we used the se9s ondition nd ci = cm n/(2j)F

ine rndom vriles { C(t)

i : i ∈ B (t) } re inomil onditionl on the on(gurtion t round t -1D from the gherno' ound @vemm UTA it follows tht @VWA Pr Ỹτ α jn log n | C(0) = c 1 n , for some onstnt α > 1.

ee vemm QT for the forml sttement of the lst ftF prom @VVA nd @VWA we hve tht { Ỹt } t stis(es the hypotheses of vemm QU with m

= √ jn log nD λ = ε √ n/j 3/2 nd A = i∈ C Ci γ √ n/k 3 2 ∨ (S (t-1) ⊆ S (t) ).
woreoverD y itertively pplying vemm QQD we hve thtD for ny t

= O(n 2 )D it holds wFhFpF i∈ C C(t) i γ √ n/k 3 2 ∨ (S (t-1) ⊆ S (t) ).
husD from wrkov9s inequlityD for t = 2j 2 √ log nD we hve tht

Pr ∀i ∈ B : C (t) i n/j -jn log n ∧ i∈ C C(t) i γ √ n/k 3 2 ∧ (S (0) ⊆ S (t) ) | C = c Pr τ 2j 2 log n | C (0) = c 1 3
where τ = inf{t ∈ N : Ỹt jn log n}.

gg sn the next lemmsD we provide the nlogous versions of lemms PW nd QH in the dversril settingF Lemma QP @hropping tge I with edversryA. Let c be any conguration such that |B| j and i∈ C c(t

) i γ √ n/k 3 2 . For some constant α > 0, for any opinion i such that ci γ √ n/k 3 2 , it holds E C (t+1) i C(t) = c ci 1 - 1 j + ci + α n/k n E C(t+1) i C(t) = c ci (1 -η(i, j)), where @UVA η(i, j) = min 1 j - ci + α n/k n , 1 2 1 j - ci n
Proof. imilrly to the proof of vemm PT we hve

E C (t+1) i C(t) = c ci 1 + ci n - j c2 j n 2 ci 1 + ci n - j∈B c2 j n 2 ci      1 + ci n - j∈B n-(k-j+1)γ √ n/k 3 2 j 2 n 2      ci 1 + ci n - j∈B (n -α/4 n/k) 2 j 2 n 2 ci 1 + ci n - 1 j + α/2 n/k jn ci 1 - n/j -ci -α/2 n/k n .
king into ount ny possile tion of the dversryD we thus get tht

E C(t+1) i C(t) = c = E C (t+1) i C(t) = c + E D (t+1) i C(t) = c ci 1 - n/j -ci -α/2 n/k n + F ci   1 - n/j -ci n + 2 max α/2 n/k, F n/c i n   . @WHA
fy distinguishing the ses ci n/(3j) or ci < n/(3j)D from @WHA we get @UVAF gg Lemma QR @hropping tge P with edversryA. Assume that, at round t , c(t ) is such that

• i∈ C c i γ √ n/k 3 2 ,
• |B (t ) | = j, and

• an i ∈ B (t ) exists such that γ √ n/k 3 2 c (t ) i n/j -kn log n.
Then, a round t = t + O(k log n) exists such that w.h.p.

• i∈ C C(t ) i γ √ n/k 3 2 ,
• i ∈ S (t ) and • |B (t ) | j -1. 

ψ = 1 j - c(t-1) i + α n k n .
sf we re in on(gurtion stisfying the hypotheses of the lemmD we hve

Pr C (t) i > c(t-1) i 1 - ψ 2 = Pr C (t) i > c(t-1) i (1 -ψ(1 + δ)) ,
where

δ = ψ 2(1 -ψ) .
husD using vemm QP nd pplying the gherno' ound @vemm UTA we hve

Pr C (t) i > c(t-1) i 1 - ψ 2 exp - δ 2 3 ψc (t-1) i (a) < exp - 1 3 1 2 ψ 2 c(t-1) i (b)
= n -Θ(1) , @WIA where (a) follows from the de(nition of δ nd the ft tht its denomintor is smller thn 1D nd (b) follows y minimizing ψ 2 c(t-1)

i for γ √ n/k 3 2 c (t ) i n/j -kn log n.
st follows tht wFhFpF

@WPA C(t) i = C (t) i + D (t) i c(t-1) i 1 - ψ 2 + F c(t-1) i husD we n itertively pply @WPA until c(t-1) i γ √ n/k 3 2
D wFhFpF e next prove tht this hppens within O (k log n) roundsD wFhFpF snterestinglyD showing thtD within O (k log n) roundsD C i dereses to ostnt frtion of its vlue t the eginning of the dropping stge does not seem oviousF por this resonD we onsider the evolution of the displement n j -C i D whih seems nlytilly more trtleF o this purposeD note tht @WIA implies tht wFhFpF

n j -C (t) i n j -c (t-1) i + c (t-1) i 2 1 j - c (t-1) i + α n/k n @WQA (a) = n j -c (t-1) i + c (t-1) i 2 1 j - c (t-1) i n   1 - α n/k 1 j - c (t-1) i n   = n j -c (t-1) i + c (t-1) i 2 1 j - c (t-1) i n 1 + α log n = n j -c (t-1) i 1 + α 1 c (t-1) i 2n ,
for some onstnt α 1 > 0D where in (a) we hve used tht n/jc purthermoreD for some positive onstnts α 2 nd α 3 D s long s

C i α 3 n/jD it holds 1 + α 1 c i n 1 + α 2 j . reneD fter O (k log n) stepsD we hve wFhFpF n j -c i (1 -α 3 ) n j ,
whih in turn implies c i α 3 n/jF yne c i α 3 n/jD using gin @WQA we hve tht C i dereses y ftor 1 -Ω(1/j) in every roundD wFhFpF fy stndrd onentrtion rguments we otin tht eventully

c i γ √ n/k 3 2 within O (k log n) more stepsD wFhFpF gg pinllyD it remins to prove QQF Lemma QQ @mll tys mllA. If c(t) is such that i∈ C c(t) i γ √ n/k 3 2 , then i∈ C C(t+1) i γ √ n/k 3 2
and S (t) ⊆ S (t+1) , w.h.p.

Proof. prom vemm QPD for eh i ∈ S (t) we hve tht

E C (t+1) i C(t) = c ci 1 + ci n - 1 k .
prom diret pplition of the gherno' ound @vemm UTA to C (t+1) i D nd tking into ount ny possile tion of the dversryD we thus get tht wFhFpF

C(t+1) i = C (t+1) i + D (t+1) i γ √ n k 3 2 1 - 1 4k + F γ √ n k 3 2
, tht isD i ∈ S (t) D wFhFpF enlogouslyD we hve

E   i∈ C(t) C (t+1) i C(t) = c  i∈ C c(t) i 1 + ci n - 1 k γ √ n k 3 2 1 - 1 2k ,
nd thenD y pplying the gherno' ound @vemm UTAD we get tht wFhFpF

i∈ C(t) C(t+1) i = i∈ C(t) C (t+1) i + i D (t+1) i γ √ n k 3 2 1 - 1 4k + F γ √ n k 3 2
, onluding the proofF gg grei T

Undecided-State Dynamics

sn this hpter we prove the results presented in etion PFQD ontinuing the investigtion of ghpter S out e0ient dynmis for the plurality consensus prolem in the PULL model over network of n nonymous gentsF e onsider the Undecided-State dynmisD wellEknown protool whih uses just one more stte @the undecided oneA thn those neessry to store opinionsF e show tht the speed of onvergene of this protool depends on the initil opinion on(gurtion s wholeD not just on the gp etween the plurlity nd the seond lrgest opinion ommunityF his dependene is est ptured y the notion of monochromatic distance md(c)D whih mesures the distne of the initil opinion on(gurtion c from the losest monohroE mti oneF sn the omplete grphD we prove thtD for wide rnge of the input prmetersD this dynmis onverges within O(md(c) log n) roundsF e prove tht this upper ound is lmost tight in the strong senseX trting from any opinion on(gurtion cD the onvergene time is Ω(md(c))F pinllyD we dpt the ndeidedEtte dynmis to otin fstD rndom wlkEsed protool for plurlity onsensus on regular expandersF his proE tool onverges in O(md(c) polylog(n)) rounds using only polylog(n) lol memoryF e keyEingredient to hieve the ove ounds is the nlysis of the mximum node ongestion tht results from performing n prllel rndom wlks on regulr expndersF 6.1. Warm Up Before the Analysis ell tht in the plurlity onsensus prolem eh of the n @nonymousA gents in the system supports n initil opinion or color out of set of k = k(n) ∈ [n] possile onesF et the onsetD the numer of gents supporting the plurality opinion j ∈ [k] @wFlFoFgFD we ssume j = 1AD exeeds tht of the gents supporting ny other opinion y su0ientlyElrge biasD though the initil plurlity itself might e very fr from solute mjorityF yur gol is to provide dynmis thtD with high proilityD rings the system into the on(gurtion in whih ll gents support the @initilA plurlity opinionF sn this hpter we nlyze the synhronous version of the dynmis introE dued in AAE08 nd PVV09D in the @uniformA PULL modelX in every roundD eh gent pulls the opinion of rndomlyEseleted neighorF sf this opinion di'ers from its ownD the gent enters the undecided stteD n extr stte tht n gent n supportF hen n gent is in the undeided stte nd pulls n opinionD she gets tht opinionF pinllyD n gent tht pulls 159 either the undeided opinion or its own opinion remins in its urrent stte @see lso elgorithm P nd le IAF yserve thtD di'erently from other dynmis @eFgFD the QEwjority dynmis onsidered in ghpter SAD fter the (rst round gents n lso enter n undeided stteD to whih no opinion is ssoitedF e desrie the nottion tht we doptD prt of whih hs lredy een introdued in the previous setionF et eh round tD the glol stte of the system is ompletely hrterized y the orresponding opinion onE (gurtionD nmely y the vetor c (t) = (c

(t) 1 , c (t) 2 , . . . , c (t)
k , q (t) )D where c (t) i @respetively q (t) A denotes the numer of nodes hving opinion i @respeE tively re in the undeided stteA t the end of the tEth roundF sn the initil stteD we lwys hve q (0) = 0F qiven ny initil opinion on(guE rtion c = (c 1 , c 2 , . . . , c k , 0)D let us ssume wFlFoFgF tht c i c i+1 for ny i k -1F vowerEse letters re used to denote funtions of the oserved opinion on(gurtion t ny spei(ed timeF pperEse letters insted deE note random variables @rFvFsAF sn prtiulrD

Q (t) nd C (t)
i denote the numer of nodes tht re undeided nd tht hve opinion iD respetivelyD t time tF et ny time t

0D the exeution of the protool @uniquelyA determines the proility distriution of the @vetorilA rndom vrile inditing the stte t time tX

C (t) = (C (t) 1 , C (t) 2 , . . . , C (t) k , Q (t)
)F ine we re onsidering omplete grphsD this rndom proess is lerly (niteEstte wrkov hinF o simplify nottionD we omit the dependene of the rndom stte on the initil opinion on(gurtionF ine in the nlysis presented in this hpter we don9t need to ondition on more omplited events thn "C where c 1 is @one ofA the plurlity opinion@sAF st is esy to see tht md(c) = d(c, M ) + 1F 6.2. High-level Analysis of the Undecided-State Dynamics qenerlly spekingD when the initil on(gurtion is su0iently isedD the dynmis9 evolution follows typil ptternD hrterized y wellE distint phsesF nderstnding suh pttern requires reful nlysisF sn this setionD we provide n overview of this nlysisD quntittively desriing typil evolution of the proessF e strt from the expettions of few key rFvFs

E C (t+1) i c (t) = c (t) i • c (t) i + 2q (t) n @WRA E Q (t+1) c (t) = q (t) 2 + n -q (t) 2 -i c (t) i 2 n @WSA
hese equtions follow diretly from the de(nition of the ndeidedE tte dynmisF prom @WRAD we n ppreite the ruil role of the funtion c (t) i +2q (t) n

X st represents the expeted growth rate of every opinion ommunityF he orresponding rFvF

C (t+1) i + 2Q (t+1
) is of prtiulr interest when i is the plurlity opinion 2 F sn ftD mjor novelty of our ontriution is the disovery of len mthemtil onnetion etween the expeted growth rte of the plurlity nd the monohromti distne of the urrent on(guE rtionF he following expression formlizes this onnetion nd plys key role in our nlysisF por every t 0D

E C (t+1) 1 + 2Q (t+1) c (t) = @WTA = n 2 + n -2q (t) -c (t) 1 ) 2 + 2(R(c (t) -md(c (t) )) c (t) 1 2 n ,
where

R(c) = k i=1 c i c 1 .
xotie tht 1 md(c), R(c) k nd R(c) md(c) @see @IHHAAF he derivE tion of @WTA eomes strightforwrd only fter guessing the @non oviousA key role plyed y md s mesure of glol isF e oserve tht it is not liner in severl prmeters nd its reursive form dependsD through R nd mdD on the previous opinion on(gurtionD s wholeF he resulting proess evolution is thus rther omplex nd hrd to nlyze in rigorous wy @the detils of this nlysis n e found in etion TFRAF roweverD @WTA llows us to informlly hrterize the min drivers of the proess 2

We are implicitly assuming that 1 remains the plurality opinion across the whole process. This holds w.h.p. under the assumptions of Theorem 9.

evolutionF et the extremesD we hve two omplementry mehnisms tht my determine n exponentil @or qusi exponentilA growth of C 1 nd tht qulittively explin the leftmost @(rst phseA nd rightmost @third phseA regions of pigure PHX xmelyD lrge vlues of Q or of C 1 itselfF sn the ltter seD growth follows preferentil tthmentElike ptternF sn the middleD we hve phse of reltive )t growth tht orresponds to Q dropping to vlue lose to n/2 nd C 1 not eing lrge enough to selfEsustin n expoE nentil growthF huring this phseD growth is silly driven y the term (R(c)-md(c))c 2 1 /nD iFeFD it ruilly depends on the distne from the losest monohromti on(gurtionF

E c (t+1) i c (t) = c (t) i • Figure 18
. he di'erent phses of the ndeidedEtte dyE nmis determined y the growth ftor C 1 +2Q n @frF pigure PHAF e further remrk onerning @WTA is tht its proof ruilly relies on properties of the plurlityD the rgument does not rry over to other opinE ionsF sn the next susetionD we give n overview of the nlysisD deferring to etion TFR some mjor tehnil spets whih re mostly relted to the rigorous hrteriztion of phseEtrnsition timings nd the derivtion of onentrtion oundsF 6.2.1. The process in a nutshell he typil ehviour of the ndeidedEtte dynmis follows hrE teristi pttern tht exhiits three distint phsesD s exempli(ed in (gures PH nd IVF xote tht the quantitative overview we provide below applies to typical evolutionsF e remrk tht the typil ehvior holds wFhFpF under (1) i 9s @with smll 4 ones simply disE ppering wFhFpFAY iiA en explosive surge in Q (1) D tht possily ome to ount for the vst mjorityY iiiA he initil plurlity is preservedD wFhFpFD though it drops in solute termsF e representtion of this phse of the proess is given in pigure IWF yserve thtD from @WRA nd @WSA with t = 0 nd relling tht q (0) = 0D it follows tht

E C (1) 1 c = n R(c) 2 , E Q (1) c = n 1 - 1 Λ(c) , @WUA where Λ(c) = R(c) 2 md(c) , 3 
Exceptions include cases that are less interesting, such as the one in which we have a strong absolute majority already at the onset.
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Namely, o(

√ n) in size.
nd notie tht 1 Λ(c) k @see @IHIAAF purthermoreD C

(1) 1

nd Q (1) re onentrted round their expettions @see vemm RH in etion TFRAF TFPFIFPF First phase: Age of the undecided. he (rst phse strts right fter round IF sn this phseD the C i 9s grow @lmostA exponentilly fst while Q deresesF he durtion of this phse depends on Λ(c) @nd not just the mgnitude of the initil isAF hose fts re disussed in the proof of glim I tht highlights key properties of the proess mrking the end of the (rst phse @for rigorous sttements see vemms RP nd RQ in etion TFRAF 

Q (T ) = n 2 1 ± Θ 1 md(c) , C (T ) 1 = Θ n md(c)
.

Furthermore, the relative ratios C 1 /C i are approximately preserved.

Sketch of Proof. e (rst sketh the proof for the ound on QF esE sume tht t some time t we re in on(gurtion c (t) suh tht q (t) = (n/2)(1 + β) for some β > 0F xotie thtD hoosing β = 1 -Θ(1/Λ(c))D this ssumption holds wFhFpF for t = 1 from the ove overview of the (rst roundF henD from @WSAD we immeditely hveX

E Q (t+1) c (t) = n 2 (1 + β 2 ) - 1 n i c (t) i 2 .
nder resonle ssumptions on kD from the ove inequlity we hve tht wFhFpF

Q (t+1) (n/2)(1 + β 2 )
@see the proof of vemm RQ in etion TFRAF nfolding this rgument for t rounds fter round 1D we otin tht wFhFpF

Q (t+1) (n/2)(1 + β 2 t ).
elling tht β = 1 -Θ(1/Λ(c))D we thus otin

Q (T ) (n/2) (1 + Θ(1/md(c)))
for

T = log Λ(c) + O(log log md(c)).
woreoverD whenever

Q (t) (n/2) (1 + Θ(1/md(c))) ,
we hve wFhFpF

Q (t+1) (n/2) (1 + Θ(1/md(c))) ,
whih implies tht wFhFpF

Q (T ) -n/2 Θ 1 md(c)
.

es for the lim for C 1 D we next onsider the evolution of the term C (t) 1 + 2Q (t) whihD up to the ftor 1/nD determines the growth rte of C (t+1) 1

F essume tht c

(1) 1 + 2q (1) = (1 + ε)nF e know from the nlysis of the (rst round nd in prtiulr from @WUAD tht this ssumption holds wFhFp if we hoose ε ≈ 1 -Θ(1/Λ(c)) @note tht we re negleting the ontriution of C

(1) 1 AF gonsequentlyD from @WTA we get

E C (t+1) 1 + 2Q (t+1) c (t) ≈ (1 + ε 2 )n.
snformllyD y pplying the rgument ove itertively we otin

C (2) 1 + 2Q (2) ≈ (1 + ε 2 )n; C (3) 1 + 2Q (3) ≈ (1 + ε 4 )n; • • • C (t) 1 + 2Q (t) ≈ (1 + ε 2 t-1 )n.
et this pointD from @WRA we get

C (t) 1 ≈ C (1) 1 t-1 i=0 (1 + ε 2 i ) ≈ C (1) 1 t-1 i=0 exp ε 2 i ≈ C
(1)

1 exp t-1 i=0 ε 2 i ≈ C
(1)

1 exp t-1 i=0 1 - 1 Λ(c) 2 i . ine T = log Λ(c) + O(log log md(c)) it holds tht C (T ) 1 ≈ C (1) 1 • Θ (Λ(c)) ≈ Θ n md(c)
.

he lst derivtion follows from @WUAD whih pproximtely holds wFhFpF @see lso vemm RH in etion TFRAF gg he proof outlined ove highlights the following properties of the (rst phseX iA he growth rte of plurlity keeps lmost exponentilD while it quikly dereses mirroring the derese of QY iiA he durtion of the seond phse is determined y log Λ(c) @this n e s lrge s Θ(log n) nd s smll s O(1)AY iiiA prom @WUA it is possile to see tht the ftor 1/md(c)D ppering in the expression of

C (T ) 1
in the sttement of glim ID orresponds to the frtion of the notEundeided nodes tht elong to the plurlity t the end of round 1F TFPFIFQF Second phase: Plateau or Age of stability. he seond phse is hrterized y slow inrese of C 1 D roughly t rte 1 + Θ(1/md(c)) nd sustntil stility of Q round the vlue n/2D s depited in pigure PIF sndeedD if the system is in n opinion on(gurtion c suh tht

q = n 2 1 ± Θ 1 md(c) nd c 1 = Θ n md(c) . @WRA nd @WSA imply tht E Q c ≈ n 2 1 -Θ 1 md(c) , E C 1 c ≈ 1 + Θ 1 md(c) c 1 .
fy hoosing the suitle onstnts we prove tht the ove reltions hold wFhFpF @see vemm RR in etion TFRAF his is lso the min rgument for proving the following lower oundF roweverD s disussed oveD sine C 1 inreses t rte 1+Θ(1/md(c))D fter plteu of O(md(c) log md(c)) rounds the system rehes on(gurE tion c (t) suh tht R(c (t) ) = 1 + o(1)F his ft mrks the end of the seond phseD sine the next phse yields muh fster growth of C 1 F por rigorous nlysis of this prt see vemm RS nd vemm RT in etion TFRF TFPFIFRF Third phase: From plurality to totality. yserve thtD y de(niE

tion of RD C 1 = n-Q
R ndD when the third phse strtsD we hve R = 1 + o(1)X heneD C 1 ≈ n -QF xowD from @WTAD the leding term of the growth rte

C 1 +2Q n eomes 1 + ( Q n ) 2 F oD s long s Q is lrge @sy Q = Θ (n)
AD C 1 hs n exponentil growth while Q deresesF he ove rgumentsD rigorously desried in the proofs of vemm RT nd heorem W in etion TFRD re the min ingredients to ound the time of the lst phseF pinllyD the whole nlysis ove yields the following upper oundF Theorem W @wonohromti pper foundA. Let k = O (n/ log n) 1/3 and let c be any initial conguration such that c 1

(1 + α) • c 2 where α is an arbitrarily small positive constant. Then within time O (md(c) • log n) the system converges to the plurality opinion, w.h.p.

Extension on Expander Graphs

sn this setion we show how to dpt the ndeidedEtte dynmis to hieve plurlity onsensus on the lss of dEregulr expnder grphs HLW06 @with d denoting the degree of the nodesAD t polylogrithmi extrEost in terms of lol memory nd timeF he simple ide is to simulte the @uniformA rndom smpling of nodes9 opinions y using n tokensD eh originting t di'erent node nd performing @shortA independent rndomE wlk over the grphF st is well known LPW09 tht in every dEregulr exE pnder G = (V, E) lzy rndom wlk hs uniform sttionry distriutionF woreoverD it is rapidly mixingD iFeFD its mixing time is t = O(log(1/ε) log n) where ε is the desired ound on the totl vrition distneF he modi(ed dynmis works in synhronous phasesD eh of them onE sisting of extly 2τ rounds @the suitle vlue for τ is de(ned lterAF huring the (rst τ rounds forward process tkes pleX ivery node sends token performing rndom wlk of t lest tEhops nd thus smpling the opinion of rndom nodeF e representtion of this phse for single node is given in pigure PPF sn the next τ rounds we hve backward processX ivery token is sent k to its soure y reversing the pth followed in the forwrd proessF

?

Figure 22. e representtion of the (rst phse of the dpE ttion of the ndeidedEtte dynmis on expnder grphsD in whih eh node sends token performing rndom wlk of t lest tEhops nd thus smpling the opinion of rndom nodeF sf we were in the LOCAL model Pel00D where eh node n ommuE nite with ll its neighors in one roundD eh phse of the ove protool would lst extly 2 t roundsF sn the GOSSIP model CHHKM12D eh node n insted tivte only one @idiretionlA link per roundF woreE overD sine we wnt messages of limited sizeD we ssume tht through eh diretion of n tive link only one token n e trnsmittedF e further ssume tht nodes enqueue tokens with FIFO poliyD rekE ing ties ritrrilyF he rndom wlk performed y token likely requires more thn t rounds to perform @t lestA t hops of the rndom wlkD deE pending on the congestionD iFeF the mximum numer of tokens in the queue of node @see pigure PQ for representtion of the ongestion issueAF e thus need to ound the mximl ongestion nd use this oundD together with tD to suitly set the right vlue for τ D so tht every rndom wlk is wFhFpF mixed enoughF et time 2τ eh node gets k its own tokenD nd updtes its stte ording to the ndeidedEtte dynmisF efter thtD new phse strtsD nd the proess itertesF ? Figure 23. e representtion of the ongestion issue tht rises if we try to perform mny prllel rndom wlks in the GOSSIP model with pspy poliyX if two tokens re on the sme node nd hve to move to di'erent neighorsD one of them hs to wit the next round to do thtF huring the forwrd proessD every token reords the link lels of its rndomEwlk nd eh node reordsD for ny roundD the @lolA link lel it hs used @if nyA to send token t tht roundF hnks to this informtionD every node n esily perform the kwrd proessX et every round eh node knows @if nyA the neighor it must ontt to reeive the right token k 5 F xotie thtD sine the kwrd proess is perfetly speulr to the forwrd oneD the ongestion is the sme in oth phsesF reneD oth node memory nd token messge require Θ(τ log d) itsF fy setting suitle vlue for τ D every token performs t lest t hopsD wFhFpF @some tokens my perform more hops thn othersAF hnks to the rpidlyEmixing propertyD the opinion reported to the sender elongs to rndom nodeD iFeFD eh node hs proility 1/n ± ε to e smpled @our nlysis works setting ε = O(1/n 2 )AF 5 Recall that in the GOSSIP model [CHHKM12], agents can indeed contact one arbitrary neighbor per round.

sn the next prgrphD we provide the min rguments of our ongestion nlysis @ forml nlysis with ll the detils n e found in etion TFRFUAF TFQFHFIF Highlights on the congestion analysis. vet u ∈ [n] e nodeD for every round t ∈ [2τ ] of phseD we onsider the rFvF Q (t) de(ned s the numer of tokens in u t round tF gonsider the numer Y t of tokens reeived y node u t round t @for revity9s skeD we omit index u in ny rFvFAF hen we n write Y t = i∈[d] X i,t where X i,t = 1 if the iEth neighor of u sends token to u nd 0 otherwiseF yserve tht the rFvFs X i,t re not mutully independentF roweverD the ruil ft is thtD for ny t nd ny iD Pr (X i,t = 1) 1/dD regardless of the state of the system (in particular, independently of the value of the other r.v.s)F oD if we onsider fmily

{ Xi,t : i ∈ [d], t ∈ [2τ ]}
of iFiFdF fernoulli rFvFs with Pr( Xi,t = 1) = 1/dD then Y t is stohstilly dominted y Ŷt = i∈[d] Xi,t F por ny node u nd ny round tD the rFvF Q (t) is thus stohstilly dominted y the rFvF Q(t) de(ned reursively s followsF 

Q(t) = Q(t-1) + Ŷt -χ t Q(0) = 1 where χ t = 1 if Q(t-
(s) = 0F
es key ft @see the lim in the proof of vemm RU in the etion TFRFUAD we show tht Q(t) n e written s suitle funtion of Z s,t nd χ t so tht it holds

@WWA Q(t) max s∈[t] {Z s,t } nd thus max t∈[2τ ] {Q (t) } max s t 2τ {Z s,t }.
prom @WVAD the rFvF Z s,t + (ts) is sum of d • (ts + 1) iFiFdF fernoulli rFvFsD eh with expettion 1/dF prom the gherno' ound @vemm UTAD it thus follows thtD for onstnt c > 0 nd ny 1 s t 2τ we hve

Pr Z s,t max c(t -s + 1) log n, 3c log n} 1 -n -c/3 .
fy tking the union ound over ll 1 s t 2τ D from the ove ound nd @WWAD we get the desired onentrtion ound on the mximl node ongestion during every phseX Pr max

1 t 2τ Q (t) max cτ log n, 3c log n 1 - τ 2 n c/3
. he ove ongestion ound llows us to set the right vlue of τ D thus getting the following (nl result @its proof is given in etion TFRFUAF Theorem II @wonohromti found on ixpndersA. Let G = (V, E) be a d-regular graph with constant expansion. For any initial conguration c such that the Undecided-State dynamics on the clique computes plurality consensus in O(md(c) log n) rounds w.h.p., the modied Undecided-State dynamics computes plurality consensus on G in O(md(c) polylog(n)) rounds, w.h.p.

Remark S. xotie tht the nlysis of the ongestion lso works in senrio where every node genertes new token whenever its queue is emptyD sine it does not tke re of the ound n on the overll numer of nodesD nd thus it is not tightF nd the following funtion over pirs of equivlene lsses @with n use of nottionD for ny opinion on(gurtion cD we denote its equivlene lss s c s wellA

d c, c = i c i c 1 - c i c 1 2 he funtion d(•, •
) is distne over the quotient spe of SF vet us now onsider the equivlene lss M of the k possile monochromatic opinion on(gurtions nd rell the de(nition of monochromatic distanceF Definition V @wonohromti histneA. qiven n opinion on(gurE tion cD its monohromti distne is de(ned s md

(c) = k i=1 c i c 1 2 ,
where c 1 is @one ofA the plurlity opinion@sAF st immeditely follows tht md (c) = d(c, M) + 1.

he simple onsidertions ove entil tht md de(nes notion of disE tne from the monohromti on(gurtion tht orresponds to the initil plurlityF gonsistentlyD it is strightforwrd to see tht md is mximized y uniform on(gurtionsD iFeFD on(gurtions c suh tht c 1 ≈ n/kF por every cD it holds tht

@IHHA 1 R(c), md(c) k.
pinllyD let us de(ne the following rtio

Λ(c) := R(c) 2 md(c) .
prom the de(nitions of R(c) nd md(c) nd from simple pplition of the guhyEhwrtz inequlity to R(c)D we get for every on(gurtion c @IHIA Λ(c) k.

General bounds on the Undecided-State dynamics

fefore delving into the nlysisD we provide some ruil properties tht hold long the entire proessF sf c = (c 1 , . . . , c k , q) is the urrent opinion on(gurtion @iFeF stteA of the wrkov hinD then we n esily derive the following expeted vlues of the next opinion on(gurtionX

µ i = E C i c = c i • c i + 2q n (i ∈ [k]), @IHPA µ q = E Q c = q 2 + i =j c i • c j n @IHQA = q 2 + (n -q) 2 -i c 2 i n .
prom @IHPAD we n see the ruil role of the quntity c i +2q n X it represents the expeted growth rate of every opinion ommunityF he following lemm in ft formlizes suh onnetion y mens of R(c) nd it plys key role in the nlysis of the entire proess evolutionF es we show in vemm RID R(c) nd md(c) re in ft strongly reltedF Lemma QV @lurlity hriftA. Assume that, at some round, the system is in an opinion conguration c such that c 1 (1 + α) c i for any i = 1 and for some constant α > 0. Then, at the next round, it holds that

E C 1 + 2Q n c 1 + Γ(c),
where

Γ(c) = 1 - c 1 + 2q n 2 + 2 (1 -γ) (R(c) -1) c 1 n 2 , with γ = (1 + α) -1 . Proof. vet β = (1 -γ)F fy using the hypothesis c 1 (1 + α) c i we get md(c) = i c 2 i c 2 1 1 + 1 (1 + α) i =1 c i c 1 = γR(c) + β.
woreoverD we n write q s q = n -R(c)c 1 F hnks to the ove equtions nd @IHPA nd @IHQAD y simple mnipultionsD we get

E C 1 + 2Q n c = c 1 • c 1 + 2q n 2 + 2 q 2 + (n -q) 2 -i (c i ) 2 n 2 = c 1 • c 1 + 2q n 2 + 2 q 2 + R(c) 2 -md(c) • (c 1 ) 2 n 2 c 1 • c 1 + 2q n 2 + 2 q 2 + R(c) 2 -γR(c) -β • (c 1 ) 2 n 2 = 1 + 1 - c 1 + 2q n 2 + 2 (1 -γ) (R(c) -1) c 2 1 n 2 .
gg enother useful property tht is often used in our nlysis is the ft tht some ruil rFvFs re essentilly monotone long the entire proessF sn the next lemmD we prove this monotoniity for the rFvFs R(C ) nd the rtios C i /C 1 @for i = 1AF

Lemma QW @wonotoniityA. Assume that, at some round, the system is in an opinion conguration c such that, for some constant α > 0 and a large enough constant λ > 0 it holds c 1 (1 + α) c i for any i = 1 and µ 1 λ log n.

Then, at the next round, it holds w.h.p.

R(C

) < R(c) • 1 + O log n µ 1 , @IHRA C 1 (1 + α) • C i • 1 -O log n µ 1 .
Proof. es for glim @IHRAD sine R(C

) = i C i C 1
D it su0es to oundD respetivelyD C 1 nd i C i F fy pplying the gherno' ounds @@IWIA nd @IWPA in vemm UTA nd y using the hypothesis µ µ 1 λ log n we get

Pr C 1 µ 1 • 1 - 2a • log n µ 1 c 1 n a , @IHSA Pr C 1 µ 1 • 1 + 3a log n µ 1 c 1 n a , Pr i C i µ • 1 + 3a log n µ c 1 n a , @IHTA
for ny onstnt a ∈ 0, λ 3 F vet A e the event in @IHSAD let B e the event in @IHTA nd let A c nd B c e their omplimentry eventsD respetivelyF prom the union ound it follows tht P (A c ∩ B c ) 1 -2 n a F woreoverD sine the following inequlity holds

1 + 3a log n µ 1 -2a log n µ 1 1 + 3a log n λ log n 1 -2a log n λ log n 1 + ba log n λ log n with b = √ 3 - √ 2 1 -3 √ 2a λ 2 , we hve tht Pr R(C ) = i C i C 1 < i c i c 1 • 1 + ba log n µ c Pr i C i C 1 < i c i • (c i + q) c 1 • (c 1 + q) • 1 + ba log n µ c = Pr i C i C 1 < µ µ 1 • 1 + ba log n µ c Pr    i C i C 1 < µ • 1 + 3a log n µ µ 1 • 1 -2a log n µ 1 c    P (A c ∩ B c ) 1 - 2 n a .
es for glim @IHRAD the hypothesis c 1 (1 + α) c i lerly implies µ 1 (1 + α) • µ i F husD y @IHSA we get

Pr C 1 (1 + α) • µ i • 1 - 2a log n µ 1 c @IHUA Pr C 1 µ 1 • 1 - 2a log n µ 1 c 1 n a .
e now onsider two sesF sf µ i < µ 1 /(6 (1 + α)) thenD y the gherno' ound @@IVWA in vemm UT with δ = µ 1 /(1 + α)AD with proility 1-n -λ 1+α it holds tht C i µ 1 /((1 + α))F ogether with @IHSAD this implies tht wFhFpF

C 1 > µ 1 • 1 - 2a log n µ 1 > (1 + α) C i • 1 - 2a log n µ 1 .
yn the other hndD if µ i µ 1 /(6 (1 + α)) thenD from the gherno' ound @@IWIA in vemm UTA we get tht

Pr C i µ i • 1 + 3a log n µ i c @IHVA Pr C i µ i • 1 + 3a log n µ 1 /6(1 + α) c 1 n a ,
for ny a ∈ 0, λ 18(1+α) F husD y using @IHUAD @IHVA nd pt I we get tht wFhFpF

C 1 (1 + α) • C i • 1 -O log n µ 1 .
gg 6.4.3. First Round: Rise of the undecided efter the (rst roundD strong derese of the opinion ommunities hpE pensD while the undeided ommunity gets to lrge mjority of the gentsF he next lemms provide some forml sttements out this ehviour whih represent the key strtEup of the proess @nd its nlysisAF e impliitly ssume tht the proess strts in (xed initil opinion on(gurtion c = (c 1 , c 2 , . . . , c k )F oD in the next lemmsD events nd relted proilities re onditioned on some (xed cF e oserve tht when k is lrgeD iFeF when k = ω n b for some b ∈ ( 1 2 , 1]D if the proess strts from lmostEuniform opinion on(gurtions thenD fter the (rst roundD even the plurlity my dispperD wFhFpFX indeedD if we onE sider ny c suh tht c 1 = O n k D then simple pplition of the wrkov inequlity implies tht C 1 = 0D wFhFpF e thus fous on rnges of k suh tht k < n/ log nF st follows tht wFhFpF

R(C (1) ) µ µ 1 • (1 + o(1)) = i (c i ) 2 (c 1 ) 2 • (1 + o(1)) = md • (1 + o(1)) ,
onluding the proofF gg 6.4.4. First phase: Age of the undecided sn this phseD the undeided ommunity rpidly dereses to vlue lose to n/2 while the plurlity rehes size lose to n/(2md)F hen this hppensD the rtios C i /C 1 nd R(c) essentilly keep their initil vlues nd Q dereses to vlue very lose to n/2F he length of this phse is t most logrithmiF he next lemm formlizes the spets of this phse tht re used to get the upper ound on the onvergene time of the proessF Lemma RP. Let k = o( n/log 2 n) and let ε be any constant in (0, 1 2 ). Let c be any initial conguration such that, for any j = 1 and for some arbitrarily small constant α > 0, c 1

(1 + α) • c j . Then at some round t = O (log n) the process reaches a conguration C ( t) such that w.h.p.

@IHWA @IIHA @IIIA @IIPA                        C ( t) 1 1 16 - ε 8 n R(C ( t) ) , R(C ( t) ) md • (1 + o (1)) , C ( t) 1 1 + α 2 • C ( t)
i for any opinion i = 1,

C ( t) 1 + 2Q ( t) n > 1 + ε 2 4 .
Proof. e prove one lim t timeF Proof of @IHWA. vet ε e ny positive onstnt in (ε/2, ε)F wo ses my riseF sf c1 > 1 4 -ε 2 • nD y pplying the gherno' ound @@IWIA in vemm UTA on the expeted vlue of C

(1) 1 nd using @IHHAD it is esy to see tht wFhFpF

C (1) 1 1 16 - ε 8 n 1 16 - ε 8 n R(C (1) ) . sf insted c1 1 4 -ε 2 • nF prom vemm RH t round t = 1 we hve wFhFpF Q (1) n 1 - 2 Λ(c) n 1 - 2c 1 n n 2 + ε • n,
where we used tht Λ(c) R(c) = n/c 1 F sn the generi on(gurtion cD s long s q n 2 + ε • nD from @IHPA we hve

µ 1 c 1 • 1 2 + ε ,
the proess wit for time period Ω (md(c)) efore the plurlity @reE Astrts to grow rpidlyF his is the key ingredient of the lower ound in heorem IHF Lemma RQ. Let k ε • (n/ log n) 1/6 be the initial number of opinions, where ε > 0 is a suciently small positive constant. Let c be the initial opinion conguration and let c (1) be the opinion conguration after the rst round. If it holds that:

1 2 n R(c) 2 c (1) 1 2 n R(c) 2 , n 1 - 2 Λ(c) q (1) n 1 - 1 2Λ(c) ,
within the next O(log n) rounds there is a round t such that w.h.p.

C ( t) 1 γ n md(c) and Q ( t) - n 2 2 γ 2 md(c) ,
where γ > 0 is a suciently large constant.

Proof. pirstD we prove tht if t n ritrry round t the numer of undeided nodes is

q = (1 + δ)(n/2) with 1 md(c) δ 1 - 1 2Λ(c) ,
then t the next round it holds tht Q 1 + δ 2 (n/2)D wFhFpF sndeedD if we reple q = (1 + δ)(n/2) in @IHQAD we get tht the expeted vlue of Q t the next round is

µ q = 1 n (1 + δ) n 2 2 + (1 + δ) n 2 2 - k j=1 (c j ) 2 = 1 + δ 2 n 2 - 1 n k j=1 (c j ) 2 xow oserve tht 1 n k j=1 (c j ) 2 1 n k n -q k 2 = n 4k (1 -δ) 2 n 4k • 1 2Λ(c) 2 n 16k 3 ,
where in the lst inequlity we used @IHIAD tht is Λ(c) kF hereforeD sine Q is sum of independent fernoulli rFvFD from the gherno' ound @@IWHA in vemm UT with λ = 1/16k 3 A it follows tht

Pr Q 1 + δ 2 n 2 c exp - n 128k 6
n -1/(128ε 6 ) , @IIQA where in the lst inequlity we used the hypothesis on kF xow we show tht the numer Q of nodesD while deresing quiklyD nnot jump over the whole intervl

n 2 -2γ 2 n md(c) , n 2 + 2γ 2 n md(c) .
yserve tht the funtion f (q) = q 2 + (nq) 2 hs minimum for q = n/2D therefore for ny

q n 2 + 2γ 2 n md(c) it holds tht f (q) f n 2 + 2γ 2 n md(c) .
rene if t some round t we hve tht

q n 2 1 + 4γ 2 md(c) nd c 1 γn/md(c),
in @IHQA we get

µ q 1 n n 2 + 2γ 2 n md(c) 2 + n 2 + 2γ 2 n md(c) 2 - k j=1 c 2 j = n 2 + 4γ 4 n md(c) 2 - 1 n k j=1 (c j ) 2 n 2 - 1 n k j=1 (c j ) 2 = n 2 - (c 1 ) 2 md(c) n n 2 -γ 2 n md(c) ,
where in the lst inequlity we used tht c 1 γn/md(c)F ine Q is sum of n independent fernoulli rFvFD from the gherno' ound @vemm UTA it follows tht

Pr Q n/2 -2γ 2 n/md(c) c exp -2γ 2 n md(c) 2 @IIRA exp -2γ 2 n k 2 exp -Ω n 2/3 . prom @IIQAD we get tht wFhFpF @IISA Q (t) 1 + δ 2 t n 2 .
reneD within log (Λ(c)) + O(log log md(c)) roundsD the numer Q of undeided nodes is elow (n/2)(1 + 4γ 2 /md(c)) wFhFpF woreoverD from @IIRA it follows tht in one of suh rounds we hve tht wFhFpF

Q - n 2 2γ 2 /md(c).
st remins to show thtD during this timeD the plurlity C 1 does not inrese from less 2n/R(c) 2 to more thn γn/md(c)F prom @IHPA nd @IISA it follows thtD s long s c 1 γn/md(c)D the inresing rte of C 1 t round t is t most

1 + δ 2 t + γ md(c) ,
wFhFpF por the (rst log(Λ(c)) roundsD we n ound the ove inresing rte with 2F husD fter log(Λ(c)) rounds we get tht the plurlity is C 1 2n/md(c)D wFhFpF es for the next O (log log md(c)) roundsD we hve tht the plurlity is t most

2 n md(c) • L t=l 1 + δ 2 t + γ md(c) 2 n md(c) • exp L t=l δ 2 t + γ md(c) 2 n md(c) • exp O(1) + log log md(c) md(c) γ n md(c) ,
wFhFpFD where in the lst inequlity we need to hoose γ su0iently lrgeF gg Remark T. he two lemms ove refer to some rounds t, t = O(log n) in whih the proess lies in stte stisfying ertin propertiesF e oserve tht the nlysis does never omine the two lemms nd thus it does not require tht t = tD indeed the (rst lemm is used to get the upper ound while the seond one to get the lower ound on the onvergene timeF roweverD it is possile to prove tht there is in ft time intervl @t the end of hse PA where oth lims of the lemms hold wFhFpF 6.4.5. Second phase: Plateau or Age of stability his phse is hrterized y slow inrese of c 1 D roughly t rte 1 + Θ(1/md(c))F his ft is formlized in the next lemm nd it is used to derive the lower ound on the onvergene time of the proess in heorem IHF Lemma RR. Let c be the initial opinion conguration, let k ε•(n/ log n) 1/4 be the initial number of opinions, where ε > 0 is a suciently small positive constant. If there is a round t such that

q ( t) - n 2 2γ 2 n md(c) and c ( t) 1 γ(n/md(c)),
where γ is an arbitrary positive constant, then the plurality C 1 remains smaller than 2γ(n/md(c)) for the next Ω(md(c)) rounds, w.h.p.

Proof. vet us de(ne δ = qn/2 nd let ∆ e the rndom vrile Qn/2 in the next roundF prom @IHPA we get

E ∆ c = 1 n   2δ 2 - k j=1 (c j ) 2   , @IITA µ i = 1 + 2δ + c i n c i . @IIUA e show thtD if δ ∈ - 2γ 2 n md(c) , 2γ 2 n md(c) nd c 1 2γn md(c) ,
then the inresing rte of C 1 is smller thn (1 + Θ(1/md(c)))D wFhFpF wore preiselyD we prove tht wFhFpF

   |δ| 2γ 2 n md(c) c 1 2γ n md(c) =⇒    |∆ | 2γ 2 n md(c) C 1 1 + 2γ(γ+1)+1 md(c) c 1 .
es for the inresing rte of the plurlityD from @IIUA it follows tht

µ 1 = 1 + 2δ + c 1 n c 1 1 + 2γ 2 n/md(c) + 2γn/md(c) n c 1 = 1 + 2γ(γ + 1) md(c) c 1
ine C 1 n e written s sum of q + c 1 n independent fernoulli rndom vrilesD from the gherno' ound @@IWHA in vemm UT with λ = c 1 /(nmd(c))A it follows tht

Pr C 1 1 + 2γ(1 + γ) + 1 md(c) c 1 c @IIVA exp - 2 (c 1 /md(c)) 2 n (a) exp - 2n 9k 4 (b) n -2/(9ε 4 ) ,
where in (a) we used tht

c 1 n -q/k n/(3k) nd md(c) k, nd in (b) we used the hypothesis k ε • (n/ log n) 1/4 F es for E [ ∆ | c]D ording to @IITAD we hve the upper ound @IIWA E ∆ c (a) 2 δ 2 n (b) 8γ 4 n (md(c)) 2 (c) γ 2 n md(c) 2 , where
• in (a) we disrded the nonEnegtive term k j=1 (c j ) 2 D

• in (b) we hve used |δ| 2γ 2 n/md(c)D nd • in (c) we simply ssumed tht md(c) is su0iently lrge onstntD nmely md(c) 8γ 2 F yn the other hndD we hve the lower ound

E ∆ c = 1 n   2δ 2 - k j=1 (c j ) 2   - 1 n k j=1 (c j ) 2 @IPHA (a) - k n n -q k 2 (b) - 4 9 • n k (c) - 4 9 • n md(c)
, where

• in (a) we used the ft tht ll c j 9s re smller thn n -qD • in (b) we used the ft tht q is lose to n/2D so nq is smller thnD syD (2/3)nD nd (nlly • in (c) we used the ft tht k md(c)F reneD from @IIWA nd @IPHA we get

- 4 9 n md(c) E ∆ c γ 2 n md(c) . ine ∆ = Q -n/
2 n e written s sum of n independent rndom vriles tking vlues ±1/2D from the pproprite version of gherno' ound @vemm UTA it thus follows tht

Pr ∆ / ∈ -2γ 2 n md(c) , 2γ 2 n md(c) c @IPIA exp -Ω n md(c) 2 exp -Ω n 1/2 ,
where in the lst inequlity we used gin the ft tht md(c) k ε (n/ log n) 1/4 F sn order to formlly omplete the proofD let us now de(ne event E t = A t ∧ B t D where A t nd B t re the events

A t = |∆ (t) | 2γ 2 n md(c) , B t = C (t) 1 1 + 2γ(1 + γ) + 1 md(c) t • γ n md(c) .
yserve tht

1 + 2γ(1 + γ) + 1 md(c) t 2 for t 1 4γ(1 + γ)
• md(c).

reneD if we set

T = 1 4γ(1 + γ) md(c) ,
from @IIVA nd @IPIA it follows thtD for every j ∈ [ t, t + T ]D we get

Pr E j ∩ j-1 i=1 E i (1 -n -c ),
for positive onstnt c tht we n hoose ritrrily lrgeF husD strting from the given opinion on(gurtion c ( t) D the proility tht fter T rounds the plurlity 1) .

C ( t+T ) 1 is t most 2γn/md(c) is Pr C ( t+T ) 1 2γ n md(c) c ( t) Pr   t+T j= t E j   = t+T j= t Pr E j j-1 i= t E i 1 -n -c T 1 -T n -c 1 -n -Ω(
gg Theorem IH @wonohromti vower foundA. Let k = O (n/ log n) 1/6 . Starting from any opinion conguration c the convergence time of the Undecided-State dynamics is Ω(md(c)), w.h.p.

Proof. prom vemm RH nd vemm RQ it follows tht there is round tD within the (rst O(log n) roundsD suh tht the proess lies in n opinion on(gurtion c ( t) where wFhFpF

Q ( t) -n/2 2γ 2 md(c) nd C ( t) 1 γn md(c) ,
where γ is su0iently lrge onstntF prom vemm RRD it then follows tht the plurlity C 1 remins smller thn 2γ(n/md(c)) for the next Ω(md(c)) roundsF gg here isD howeverD positive drift for the plurlity working in this long phse s wellX this miniml drift llows the proess to reh stte whih represents the end of this phse nd from whih the plurlity n reEstrt to grow fstF sn the next lemm we formlly prove tht the proess exhiits the forementioned miniml driftD while the ltter phseEompletion stte is formlized in the susequent vemm RTF Lemma RS @winiml hriftA. Let k = o n log n and let ε ∈ (0, 1 2 ) be an arbitrarily small positive constant. Given an opinion conguration c such that

   c 1 β • n R(c)
for some constant β > 0, c 1 (1 + α) c i for some constant α > 0 and any i = 1.

one of the following two holds, w.h.p.:

• either R(C ) 1 + ε 3 and Q εn, or • we have C 1 + 2Q n 1 + Ω 1 R (c)
.

Proof. pirstD let us derive lower ound on C 1 + 2Q tht holds wFhFpF fy vemm QV

E C 1 + 2Q c = n • (1 + Γ(c)) ,
where

Γ(c) = 1 - c 1 + 2q n 2 + 2 (1 -γ) (R(c) -1) c 1 n 2 , with γ = (1 + α) -1 F es in the proof of vemm RPD oserve tht E [ C 1 + 2Q | c
] n e written s the expeted vlue of the sum of the following independent rFvFsX given cD for eh node i

X i = 1 if node i hs opinion 1 t round t + 1, 2 if node i is undeided t round t + 1.
husD we n pply the gherno' ound @@IWIA in vemm UTA to them nd get tht wFhFpF

@IPPA C 1 + 2Q n • (1 + Γ(c)) 1 -O log n n .
vet us nlyze @IPPA when R(c

) > 1 + ε 4 or Q > 3 4 εnF sf R(c) > 1 + ε 4 we hve tht Γ(c) 2 (1 -γ) (R(c) -1) c 1 n 2 @IPQA 2 (1 -γ) 1 - 1 R(c) R(c) • β R(c) 2 > αεβ 2 2(1 + α)(1 + ε/4) • 1 R(c)
.

yn the other hndD if R(c) 1 + ε 4 then c 1 = n -q R(c) n -q 1 + ε/4 (n -q)(1 -ε/4) n -q - ε 4 n,
heneD if it lso holds tht q > 3 4 εnD the ltter inequlity implies tht

1 - c 1 + 2q n ε 4 - q n - ε 2 , tht is @IPRA Γ(c) 1 - c 1 + 2q n 2 ε 2 4 .
hereforeD if R(c) > 1 + ε 4 or q > 3 4 εnD then using @IPQAD @IPRA nd the given upper ound on the vlue of R(c)D from @IPPA we get

C 1 + 2Q n (1 + Γ(c)) 1 -O log n n 1 + σ R(c) 1 -O log n n 1 + σ 2R(c)
,

where

σ = min ε 2 4 R(c), αεβ 2 2(1 + α)(1 + ε/4) . st remins to show tht if R(c) 1 + ε 4 nd q 3 4 εn then R(C ) 1 + ε 3 nd Q εnD wFhFpF sn order to do soD oserve tht i =1 c i = (R(c) -1)c 1 ε 4 n.
st follows tht

µ q = q 2 + i =j c i c j n q 2 + 2c 1 j =1 c j + i =1 c i j =1 c j n 3 4 ε 2 n + ε 2 c 1 + ε 2 16 n.
hnks to the gherno' ound @@IWPA in vemm UTA nd sine ε < 1 2 D the previous inequlity implies tht Q εnD wFhFpF es for R(C )D y pplying vemm QW nd using the gherno' ound @@IWPA in vemm UTAD we get tht

R(C ) 1 + ε 3 D wFhFpF gg Lemma RT. Let k = O((n/ log n) 1/4
) and let ε > 0 be an arbitrarily small constant. If the process is in an opinion conguration c ( t) that satises the following conditions:

@IPSA @IPTA @IPUA @IPVA                            c ( t) 1 + 2q ( t) n = 1 + Ω 1 R(c ( t) ) , c ( t) 1 1 17 n R(c ( t) ) , R(c ( t) ) = O(md(c)), c ( t) 1 (1 + α) • c ( t) i
for some constant α > 0 and for any opinion i = 1, then, after T = O (md(c) • log n) rounds, the process is in an opinion conguration C ( t+T ) such that w.h.p.

                       C ( t+T ) 1 1 17 n R(C ( t+T ) ) , R(C ( t+T ) ) 1 + ε 3 , Q (t+T ) εn, C ( t+T ) 1 (1 + α) • C ( t+T ) i (1 -o(1))
for any opinion i = 1.

Proof. pirstD we show thtD if we strt in n opinion on(gurtion c stisfying properties @IPSAD @IPTAD @IPUA nd @IPVAD then C still stis(es the onditions @IPTAD @IPUA nd @IPVAD wFhFpF sing the gherno' ound @@IWIA in vemm UTA nd onditions @IPTA nd @IPSAD we get tht wFhFpF

C 1 c ( t) 1 + 2q ( t) n c 1 1 -O log n µ 1 = 1 + Ω 1 R(c) c 1 1 17 n R(c) .
sn the (rst equlityD we used tht @IPSA nd @IPTA together imply tht wFhFpF

µ 1 c 1 1 17 n R(c) 1 R(c) ,
whih proves tht C lso stis(es gondition @IPTAD wFhFpF woreoverD gonE dition @IPTA llows us to pply vemm QW to get tht wFhFpF

C 1 (1 + α) • C i • 1 -O (log n/µ 1 ) 1/2 , R(C ) < R(c) • 1 + O (log n/µ 1 ) 1/2 .
proving tht C stis(es the hypotheses @IPUA nd @IPVAD wFhFpF xowD y vemm RS nd @IPUAD it follows tht either R(C ) 1 + ε 3 nd Q εnD wFhFpF @in whih seD we re doneAD or it holds wFhFpF

C 1 + 2Q n = 1 + Ω 1 R(c) = 1 + Ω 1 md(c)
.

sn the ltter seD C stis(es lso gondition @IPSA nd the ove rguE ment n e iterted ginF sn prtiulrD @IPSA implies tht fter T = Ω(md(c) log n) further rounds we hve wFhFpF

C ( t+T ) 1 = 1 + Ω 1 md(c) c ( t+T -1) 1 = • • • = = 1 + Ω 1 md(c) T c ( t) 1 = n -o(n), nd thus R(C ( t+T ) ) -1 = i =1 C ( t+T ) i C ( t+T ) 1 ε 3 nd Q ( t+T ) εn.
gg 6.4.6. Third phase: From plurality to totality he next theorem onnets the results hieved in the previous setions into onsistent pitureD estlishing n upper ound on the overll onE vergene time of the proessF sts proof lso highlights the min fetures of the (nl phseD during whih plurlity turns into the totlity of gents t n exponentil rteF Theorem W @wonohromti pper foundA. Let k = O (n/ log n) 1/3 and let c be any initial conguration such that c 1

(1 + α) • c 2 where α is an arbitrarily small positive constant. Then within time O (md(c) • log n) the system converges to the plurality opinion, w.h.p.

Proof. vet ε > 0 e n ritrrily smll positive onstntF hnks to vemm RPD we n ssume tht t some time t = O(log n) the proess rehes on(gurtion C ( t) where it holds wFhFpF

                       C ( t) 1 + 2Q ( t) n = 1 + Ω 1 R(c ( t) ) , C ( t) 1 1 17 n R(c ( t) ) , R(c ( t) ) = O(md), C ( t) 1 (1 + α) • c ( t) i (1 -o(1)) for ny opinion i = 1.
essuming c ( t) D vemm RT determines the kikEo' ondition for new phse in whih oth the undeided nd the nonEplurlity opinion ommuE nities derese exponentilly fstF sn prtiulrD it implies thtD within O(md log n) further roundsD the proess rehes on(gurtion

C (t end ) suh tht it holds wFhFpF @IPWA @IQHA @IQIA @IQPA                  C (t end ) 1 1 17 n R(c (t end ) ) , C (t end ) 1 (1 + α) • C (t end ) i (1 -o(1)) for ny opinion i = 1, R(c (t end ) ) 1 + ε 3 , Q t end εn.
xowD we show tht strting from ny on(gurtion stisfying the onE ditions oveD ny ommunity @inluding the undeidedA other thn the plurlity dereses exponentilly fst until dispperneF o this imD let ψ = i =1 c i + q ndD s usulD let Ψ e the rFvF ssoited to the vlue of ψ t the next time stepF e prove tht the following fts holdD wFhFpFD in ny round following t end X iA oth Q nd i =1 C i re ounded y quntities tht derese y onstnt ftorD so tht t ny time following t end D Ψ is @upperA ounded y quntity tht dereses exponentilly fstD thus C 1 = n -Ψ is @lowerA ounded y n inresing quntityY iiA properties @IQHAD still holdsF sn the rest of this proof we ssume ε < 1/3D whih is onsistent with the ssumptions of vemm RTF o egin withD note tht roperty @IQIA implies i =1 c i ε

3 nD so tht i =j c i • c j 2c 1 j =1 c i + i =1 c i j =1 c j 2 3 ε + ε 2 9 n 2 .
hereforeD properties @IQIA nd @IQPA together imply

µ q = (q) 2 + i =j c i • c j n @IQQA ε 2 + 2 3 ε + ε 2 9 n < 3 4 εn, nd E   i =1 C i c   = i =1 c i c i + 2q n @IQRA 1 3 1 3 + 2 ε 2 n = 7 9 ε 2 n < 7 27 ε.
where we use the ssumption tht ε < 1/3F et this pointD we n use the gherno' ound @@IWPA in vemm UTA to show tht @IQQA nd @IQRA holdD wFhFpF @up to multiplitive ftor 1 + o(1)AF his proves tht oth Q nd i =1 C i @nd hene ΨA derese y onstnt ftor in round 6 D wFhFpF st remins to oserve thtD when q ndGor i =1 c i eome O(log n)D n pplition of the gherno' ound @@IVWA in vemm UTA shows tht they remin elow this vlue in the susequent roundsD wFhFpF his ompletes the proof of iAF woreoverD sine C 1 = n -Ψ D iA implies tht C 1 is lower ounded y n inresing quntityD wFhFpF edditionllyD property @IPWA nd the justE proved iAD together with property @IQHAD imply the ssumptions of vemm QWD llowing us to show tht property @IQHA still holds t the end of next roundD wFhFpF es onsequeneD we hve tht in t most τ = O(log n)

6

In fact, a more careful analysis, unnecessary to prove the current result, could use (134) to show that i =1 Ci decreases superexponentially fast.

rounds we reh n opinion on(gurtion C(t end +τ ) suh wFhFpF

(t end +τ ) + i =1 (t end +τ ) i = O(log n).
pinllyD we n pply wrkov9s inequlity on the vlue of i =1 C (t end +τ ) i to show tht t the next round ll opinion ommunities exept for the pluE rlity one wFhFpF gg 6.4.7. Node congestion analysis he prllel rndom wlks desried in etion TFQ yield vrile token queues in the nodesF ell thtD for eh node u ∈ [n]D nd for every round t ∈ [2τ ] of the phseD we onsider the rFvF Q (t) u de(ned s the numer of tokens in u t round t of ny phse of the modi(ed dynmisF sn the next lemm we prove useful ound on the mximl ongestion in phse of length 2τ F Lemma RU. Consider a phase of length 2τ 1 of the above protocol on a d-regular graph G = (V, E). Let u ∈ V be any node and let t be any round of the phase. Then, for any constant c > 0, it holds that Pr max

1 t 2τ Q (t) u max 2cτ log n, 3c log n 1 - (2τ ) 2 n c/3 .
Proof. gonsider the numer Y t of tokens reeived y (xed node u t round t @for revity9s skeD we omit index u in ny rFvFAF hen we n write

Y t = i∈[d] X i,t ,
where X i,t = 1 if the iEth neighor of u sends token to u nd 0 oFwFF yserve @ginA tht the rFvFs X i,t re not mutully independentF roweverD the ruil ft is thtD for ny t nd ny iD it holds

Pr(X i,t = 1) 1 d ,
regardless the state of the system (in particular, independently of the value of the other r.v.s)F oD if we onsider fmily

{ Xi,t : i ∈ [d], t ∈ [2τ ]}
of iFiFdF fernoulli rFvFs with Pr( Xi,t = 1) = 1/dD then Y t is stohstilly smller thn

Ŷt = d i=1
Xi,t .

por ny node u nd ny round the rFvF Q (t) is stohstilly smller thn the rFvF Q(t) de(ned s followsF e the rFvF tking vlue 1 if Q(r-1) > 0 for ll s r t nd 0 otherwiseF st is esy to prove y indution tht Q(t) n e written s @IQUA Q

Q(t) = Q(t-1) + Ŷt -χ t Q(0) = 1 where χ t = 1 if Q(t-1) > 0,
(t) = t s=2 (1 -χ s-1 )χ s,t Z s-1,t + χ 1,t Z 1,t + (1 -χ t )Z t,t . ine t s=2 (1 -χ s-1 )χ s,t + χ 1,t = 1,
the sum in @IQUA is not lrger thn the mximum of the Z s,t D hene

Q(t) max{Z s,t : s = 1, . . . , t} nd max{Q (t) : 1 t 2τ } max{Z s,t : 1 s t 2τ }. gg (of Claim 2)
vet us onsider @IQSAX he rFvF Z s,t + (tis sum of d • (ts 1) iFiFdF fernoulli rFvFs eh one with expettion 1/dF prom the gherno' ounds @@IWPA nd @IVWA in vemm UTAD for ny 1 s it holds tht Pr Z s,t max c(ts + 1) log n, 6c log n} 1n -c/3 . fy tking the union ound over ll 1 s t 2τ D from the ove ound nd @IQTA we n get the desired onentrtion ound on the mximl node ongestion during every phseX Pr max

1 t 2τ Q (t) max 2cτ log n, 6c log n 1 - (2τ ) 2 n c/3 . gg vet t G mix (ε)
e the (rst round suh tht the totl vrition distne eE tween the simple rndom wlk strting t n ritrry node nd the uniform distriution is smller thn εD iFeF

t G mix (ε) = inf{t ∈ N : P t (u, •) -π ε for ll u ∈ V }.
xotie tht for ny ε > 0 it holds tht @see eFgF @RFQTA in LPW09A

@IQVA t G mix (ε) log 1 ε t G mix 1 2e .
es onsequene of the ove vemmD we n now set the right vlue of τ D thus getting the following resultF

Theorem PQ @niform GOSSIP imultion on ixpndersA. Let G = ([n], E) be a d-regular graph with t G mix (1/4) = polylog(n). Each round of a protocol on the clique in the uniform GOSSIP model can be simulated on G in the GOSSIP model in polylog(n) rounds by exchanging messages of polylog(n) size, w.h.p.

Proof. vet 2τ = α t2 log n e the length of the phseD where t = t G mix 1/n 2 nd α is suitle onstnt tht we (x lterF prom vemm RUD we hve tht the mximum numer of tokens in every node t ny round of the phse is t most

2cτ log n = √ αc • t log n,
wFhFp ine tokens re enqueued with pspy poliyD eh single hop of the rndom wlk performed y token n e delyed for t most the ove numer of roundsF reneD in order to perform t hops of the rndom wlkD token tkes t most √ αc • t2 log n roundsD wFhFpF fy hoosing α 4c we hve tht this numer is smller thn τ F his llows us to set τ so tht the forwrd proess nd the kwrd one n oth omplete sfelyF fy union ounding over ll tokens we thus hve tht during the phse ll tokens perform t lest t hops of rndom wlk nd report k to the sender the opinion of the node they rehed fter t hopsD wFhFpF pinllyD notie tht from @IQVA it follows tht t = polylog(n)F he length the size of the exhnged re thus polylog(n) s wellF gg ine lzy rndom wlk on regulr expnders @see eFgF HLW06A hs polylog(n) mixing timeD from the theorem nd our result on the nE deidedEtte dynmis on the lique we get the following (nl resultF Theorem II @wonohromti found on ixpndersA. Let G = (V, E) be a d-regular graph with constant expansion. For any initial conguration c such that the Undecided-State dynamics on the clique computes plurality consensus in O(md(c) log n) rounds w.h.p., the modied Undecided-State dynamics computes plurality consensus on G in O(md(c) polylog(n)) rounds, w.h.p. grei U Congested Random Walks sn this hpter we study the prllel rndom wlks proess in the uniE form PUSH on omplete topologyD proving the results presented in etion PFRF e onveniently reformulte the previous proess s the followE ing repeated balls-into-bins proessX n lls re initilly ssigned to n ins in n ritrry wyY sn every susequent roundD from eh nonEempty in one ll is hosen ording to some (xed strtegy @rndomD pspyD etAD nd reEssigned to one of the n ins uniformly t rndom @see pigure PRAF

? ? A) B)

C) D) ?

Figure 24. A) and B): sn the llsEintoEins proessD eh ll is thrown in one in hosen independently nd uFFrF C) and D): sn the repeted llsEintoEins proessD t eh round we pik one ll from eh nonEempty in @eFgF let us ssume tht the urrent on(gurtion is the one in fA AD nd throw them gin uFFrF edopting the frmework of @proilistiA selfEstiliztion @he(nition WAD we de(ne on(gurtion legitimate if its mximum lod is O(log n)F e prove strting ny on(gurtionD the proess onverges to legitimte on(gurtion in liner time nd then it tkes on only legitimte on(gurtions over period of length ounded y any polynomil in nD wFhFpF his implies tht the proess is selfEstilizing nd tht every ll trverses ll ins in O(n log 2 n) roundsD wFhFpF 7.1. Self-Stabilization of repeated balls into bins sn order to study the mximum lod of the repeted llsEintoEins proE essD the stte of the system is ompletely hrterized y the lod of every inF es in etion TFQ @ghpter TAD for eh in u ∈

[n] let Q (t)
u e the rFvFs 1 inditing the numer of llsD iFeF the loadD in u t round tF e write Q (t) for the vetor of these rndom vrilesD iFeF

Q (t) = (Q (t) u : u ∈ [n]
). e write q = (q 1 , . . . , q n ) for (load) congurationD iFeFD q u ∈ {0, 1, . . . , n} for every u ∈ [n] nd n u=1 q u = nF e de(ne the maximum load of on(gurtion q = (q 1 , . . . , q n ) s

M (q) = max{ q u : u ∈ [n] } ,
ndD for revity9 skeD given ny round t of the proessD we de(ne

M (t) = M (Q (t) ).
eording to the ove de(nitionD we sy tht on(gurtion q is legitimate if M (q) β • log nD for some solute onstnt β > 0F sn this setion we prove the min result of this hpterD whih we prove in etion UFIFRF Theorem IP @epeted flls into fins wx vodA. Let c be an arbitrarilylarge constant and let q be any legitimate conguration. Let the repeted llsEintoEins proess start from Q (0) = q. Then, over any period of length O(n c ), the process visits only legitimate congurations, w.h.p., i.e. M (t) = O(log n) for all t = O(n c ), w.h.p. Moreover, starting from any conguration, the system reaches a legitimate conguration within O(n) rounds, w.h.p. he proof relies on the nlysis of the ehviour of some essentil rnE dom vriles desriing the repeted llsEintoEins proessF sn the next prgrphD we informlly desrie the min steps of this nlysisF hen in setions UFIFIEUFIFQD we prove the tehnil results required y suh steps ndD (nllyD in etion UFIFR these tehnil results re omined in order to prove heorem IPF 1 As usual in this work, we use capital letters for random variables, lower case for quantities, and bold for vectors. UFIFHFIF Overview of the analysis. sn the repeted llsEintoEins proessD every in n relese t most one ll per roundF es onsequeneD the rndom wlks performed y the lls dely eh other nd re thus orrelted in wy tht n mke in queues lrger thn in the independent seF sndeedD intuitively spekingD lrge lod oserved t in in some round mkes ny ll more likely to spend severl future rounds in tht inD euse if the ll ends up in tht in in one of the next few roundsD it undergoes lrge delyF his is essentilly the mjor tehnil issue to ope withF he previous pproh in etion TFQ relies on the ft thtD in every roundD the expeted lne etween the numer of inoming nd outgoing lls is lwys nonEpositive for every nonEempty in @notie tht the expeted numer of inoming lls is lwys t most oneAF his my suggest viewing the proess s sort of prllel birth-death proess LPW09F sing this pproh nd with some further rgumentsD one n @onlyA get the stndrdE devition ound O( √ t) in etion TFQF he nlysis presented hereD whih proves heorem IPD proeeds long three min stepsF i) e (rst show thtD fter the (rst roundD the forementioned expeted lne is lwys negtiveD nmelyD not lrger thn -1/4F sndeedD the numE er of empty ins remins t lest n/4 with @veryA high proilityD whih is extremely useful sine in n only reeive tokens from nonEempty insF his ft is shown to hold strting from any on(gurtion nd over ny period of polynomil lengthF ii) sn order to exploit the ove negtive lne to ound the lod of the insD we need some strong onentrtion ound on the numer of lls entering spei( in u long ny period of polynomil sizeF roweverD it is esy to see thtD for ny (xed uD the rndom vriles {Z (t) u } t 0 ounting the numer of lls entering in u re not mutully independentD neither re they negtively ssoitedD so tht we nnot pply stndrd tools to prove onentrtionD s we show in etion UFPF o ddress this issueD we de(ne simpler repeted llsEintoEins proess s followsF Tetris process.

trting from ny on(gurtion with t lest n/4 empty insD in eh roundX • from every nonEempty in we pik one ll nd we throw it wyD nd • we pik extly (3/4)n new balls nd we put eh of them indeE pendently nd uFFrF in one of the n insF sing oupling rgument nd our previous upper ound on the numer of empty insD we prove tht the mximum numer of lls umulting in in in the originl proess is not lrger thn the mximum numer of lls umulting in in in the Tetris proessD wFhFpF iii) he Tetris proess is simpler thn the originl one sineD t every roundD the numer of lls ssigned to the ins does not depend on the system9s stte in the previous roundF reneD rndom vriles { Ẑ(t) u } t 0 ounting the numer of lls rriving t in u in the Tetris proess re mutully independentF e n thus pply stndrd onentrtion oundsF yn the other hndD di'erently from the pproximting proess onsidered in etion TFQD the negtive lne of inoming nd outgoing lls proved in tep iA still holdsD thus yielding muh smller ound on the mximum lod thn tht in etion TFQF sn the reminder of this setionD we formlly desrie the ove three stepsF vstlyD we prove heorem IP @in etion UFIFRAF 7.1.1. On the number of empty bins e next show tht the numer of empty ins is t lest onstnt frtion of n over very lrge timeEwindowD wFhFpF his ft ould e proved y stndrd onentrtion rguments ifD t every roundD all lls were thrown independently nd uniformly t rndomF e little re is insted required in our proess to properly hndleD t ny roundD ongested ins whose lod exeeds 1F hese ins re surely nonEempty t the next round tooF oD the numer of empty ins t given round lso depends on the numer of ongested ins in the previous roundF Lemma RV. Let q = (q 1 , . . . , q n ) be a conguration in a given round and let X be the random variable indicating the number of empty bins in the next round. For any large enough n, it holds that

Pr X n 4 e -αn ,
where α is a suitable positive constant.

Proof. vet a = a(q) nd b = b(q) respetively denote the numer of empty ins nd the numer of ins with extly one token in on(gurtion qF por eh in u of the a + b ins with t most one tokenD let Y u e the rndom vrile inditing whether or not in u is empty in the next roundD so tht

X = a+b u=1 Y u nd Pr (Y u = 1) = 1 - 1 n n-a e -n-a n-1 ,
where in the lst inequlity we used the ft tht 1x e -x 1-x F rene we hve tht

@IQWA E [X] (a + b) e -n-a n-1 .
he ruil ft is tht the numer of ins with two or more tokens nnot exeed the numer of empty insD iFeF

n -(a + b) a.
husD we n ound the numer of empty ins from elow 2 D a (nb)/2D nd y using tht ound in @IQWA we get (n-1) .

E [X] n + b 2 e -n+b 2 
xow oserve thtD for lrge enough n positive onstnt ε exists suh tht

n + b 2 e -n+b 2(n-1) (1 + ε) n 4 ,
for every 0 b nF es onsequene of propositions 7 nd 11 in DR98D it follows tht the rndom vriles Y 1 , . . . , Y a+b re negatively associated @he(nition IVAF hus we n pply @see vemm U in DR98A the gherno' ound eqrefgfXlowertil in vemm UT with δ = ε/(1 + ε)A to rFvF X to otin

Pr X n 4 exp - ε 2 4(1 + ε) n .
gg prom the ove lemm it follows thtD if we look t our proess over timeEwindow T = T (n) of polynomil sizeD fter the (rst round we lwys see t lest n/4 empty insD wFhFpF wore formllyD for every t ∈ {1, . . . , T }D let E t e the event he numer of empty ins t round t is t lest n/4F prom vemm SI nd the union ound we get the following lemmF Lemma RW. Let q 0 denote the initial conguration, let T = T (n) = n c for an arbitrarily large constant c. For any large enough n it holds that

Pr T t=1 E t | Q (0) = q 0 1 -e -γn ,
where γ is a suitable positive constant.

Proof. fy using the union ound we hve tht

Pr T t=1 E t | Q (0) = q 0 = 1 -Pr T t=1 E t | Q (0) = q 0 1 - T t=1 Pr E t | Q (0) = q 0 .
fy onditioning on the on(gurtion t round t -1D from the wrkov propE erty nd vemm RV it then follows tht

Pr E t | Q (0) = q 0 = q Pr E t | Q (t-1) = q Pr Q (t-1) = q | Q (0) = q 0 e -αn .
2 Observe that this argument only works to get a lower bound on the number of empty bins and not for an upper bound.

For every k 0 it holds that

Pr (M T k) Pr MT k + T • e -γn ,
for a suitable positive constant γ.

Proof. e proeed y oupling the Tetris proess with the originl one round y roundF sntuitively speking the oupling proeeds s followsX

• Case (i). the number of non-empty bins in the original process is k 3 4 nF por eh nonEempty in uD let i u e the ll piked from uF e throw one of the 3 4 n new lls of the Tetris proess in the sme in in whih i u ends upF henD we throw ll the remining 3 4 nk lls independently uFFrF

• Case (ii). the number of non-empty bins is k > 3 4 nF e run one round of the Tetris proess independently from the originl oneF fy onstrutionD if the numer of nonEempty ins in the originl proess is not lrger thn 3 4 n t ny roundD gse @iiA never pplies nd the Tetris proess domintes4 the originl oneD mening tht every in in the Tetris proess ontins t lest s mny lls s the orresponding in in the origE inl oneF ine from vemm RW we know tht the numer of nonEempty ins in the originl proess is not lrger thn 3 4 n for ny timeEwindow of polynomil sizeD wFhFpFD we thus hve tht the Tetris proess domintes the originl proess for the whole time windowD wFhFpF wore formllyD for t ∈ {1, . . . , T }D denote y B (t) the set of new lls in the Tetris proess t round t @rell tht the size of B (t) is (3/4)n for every t ∈ {1, . . . , T }AF por ny round t nd ny ll i ∈ B (t) D let X(t) i e the rndom vrile inditing the in where the ll ends upF pinllyD let

U (t) i : t = 1, . . . , T, i ∈ B (t)
e fmily of iFiFdF rndom vriles uniform over [n]F et ny round t ∈ {1, . . . , T }D we hve to distinguish two sesX

• Case |W (t-1) | (3/4)n. vet B (t)
W e n ritrry suset of B (t) with size extly

|W (t-1) |D let f (t) : B (t) W → W (t-1) e n ritrry ijetion nd set X(t) i = X (t) i if i ∈ B (t) W , U (t) i if i ∈ B (t) \ B (t) W . • Case |W (t-1) | > (3/4)n. et X(t) i = U (t) i for ll i ∈ B (t) F
fy onstrution we hve tht rndom vriles

X(t) i : t ∈ {1, 2, . . . , T }, i ∈ B (t)
re mutully independent nd uniformly distriuted over [n]F woreoverD in the joint proility spe for ny k we hve tht

Pr (M T k) = Pr M T k, MT M t + Pr M T k, MT < M T Pr MT k + Pr MT < M T .
pinllyD let E T e the event here re t lest n/4 empty ins t ll rounds t ∈ {1, . . . , T } nd oserve thtD from the oupling we hve de(nedD the event E T implies event MT M T F rene

Pr MT < M T Pr E T ,
nd the thesis follows from vemm RWF gg 7.1.3. Analysis of the Tetris process e egin y oserving tht in the Tetris proessD the rndom vriles inditing the numer of lls ending up in in in di'erent rounds re iFiFdF inomilF his ft is extremely useful to give upper ounds on the lod of the insD s we do in the next simple lemmD tht we use to prove selfEstiliztion of the originl proessF Lemma SI. From any initial conguration, in the Tetris process every bin is empty at least once within 5n rounds, w.h.p.

Proof. vet u ∈ [n] e in with k n lls in the initil on(gurtionF por t ∈ {1, . . . , 5n} let Y t e the rndom vrile inditing the numer of new lls ending up in in u t round tF xotie tht in the Tetris proess Y 1 , . . . , Y 5n re iFiFdF B ((3/4)n, 1/n) hene

E [Y 1 + • • • + Y 5n ] = (15/4)n,
nd y pplying gherno' ound @vemm UTA with δ = 1/15 we get

Pr (Y 1 + • • • + Y 5n 4n) e -αn ,
where α = 1/(180)F

xow let E u e the event Bin u is non-empty for all the 5n rounds F ine when in is nonEempty it looses ll t every roundD event E u impliesD in prtiulrD tht

k -5n + Y 1 + • • • + Y 5n 0, tht is Y 1 + • • • + Y 5n 5n -k 4n. hus Pr (E u ) Pr (Y 1 + • • • + Y 5n 4n) e -αn .
he thesis follows from the union ound over ll ins u ∈ [n]F gg e next fous on the mximum lod tht n e oserved in the Tetris proess t ny given in within (nite intervl of timeF e note tht this result ould e proved using tools from drift analysis @eFgFD see Haj82AF e provide here n elementry nd diret proofD tht expliitly relies on the wrkovin struture of the Tetris proessF vet {X t } t e sequene of iFiFdF B ((3/4)n, 1/n) rndom vriles nd let Z t e the wrkov hin with stte spe {0, 1, 2, . . . } de(ned s follows

@IRHA Z t = 0 if Z t-1 = 0, Z t-1 -1 + X if Z t-1 1.
yserve tht 0 is n soring stte for Z t nd let τ e the sorption time

τ = inf{t ∈ N : Z t = 0}.
e (rst prove the following lemmF Lemma SP. For any initial starting state k ∈ N and any t 8k, it holds that

Pr (τ > t | Z 0 = k) e -t/144 . Proof. yserve tht Pr (τ > t | Z 0 = k) = Pr (Z t > 0 | Z 0 = k) = Pr k + t i=1 X i -t > 0 = Pr t i=1 X i > t -k Pr t i=1 X i > 7 8 t ,
where in the lst inequlity we used hypothesis k < (1/8)tF ine the

X i s re iFiFdF inomil B((3/4)n, 1/n)D it follows tht t i=1 X i is inomil B((3/4)nt, 1/n) nd from gherno' ound @vemm PSA we hve tht Pr t i=1 X i > 7 8 t = Pr t i=1 X i > 1 + 1 6 3 4 t e -(1/6) 2 3 3 4 t = e -t/144
. gg xow we n esily prove the following sttement on the Tetris proessF Lemma SQ. Let c be an arbitrarily-large constant, and let the Tetris process start from any legitimate conguration. The maximum load M (t) is O(log n) for all t = O(n c ), w.h.p.

Proof. gonsider n ritrry in u tht is nonEempty in the initil legitimte on(gurtionF vet Q(0) = O(log n) e its initil lod 3 nd let τ = inf t : Q(t) = 0 e the (rst round the in eomes emptyF yserve thtD for ny t τ D Q(t) ehves extly s the wrkov hin de(ned in @IRHAF reneD from vemm SP it follows tht for every onstnt ĉ suh tht ĉ log n 8 Q(0) we hve @IRIA Pr(τ > ĉ log n) n -ĉ 144 . husD within O(log n) rounds the in is emptyD wFhFpFD nd sine the lod of the in dereses of t most one unit per roundD the lod of the in is O(log n) for ll suh roundsD wFhFpF xextD de(ne phase s ny sequene of rounds tht strts when the in eomes nonEempty nd ends when it eomes empty ginF xotie thtD y using stndrd llsEintoEins rgumentD in the (rst round of eh phse the lod of the in is O(log n/ log log n)D wFhFpF woreoverD in ny phse the lod of the in n e oupled with the wrkov hin in @IRHAF reneD for ny ritrry lrge onstnt c we n hoose the onstnt ĉ in @IRIA lrge enough so thtD y tking the union ound over ll phses up to round n c D the lod of the in is O(log n) in ll rounds t n c D wFhFpF pinllyD oserve tht for ny in tht is initilly empty the sme rguE ment pplies with the only di'erene tht the (rst phse for the in does not strt t round 0 ut t the (rst round the in eomes nonEemptyF he thesis thus follows from union ound over ll the insF gg 7.1.4. Back to the original process e re now redy to prove the min theorem of the hpterF Theorem IP @epeted flls into fins wx vodA. Let c be an arbitrarilylarge constant and let q be any legitimate conguration. Let the repeted llsEintoEins proess start from Q (0) = q. Then, over any period of length O(n c ), the process visits only legitimate congurations, w.h.p., i.e. M (t) = O(log n) for all t = O(n c ), w.h.p. Moreover, starting from any conguration, the system reaches a legitimate conguration within O(n) rounds, w.h.p.

Proof of Theorem 12. prom stndrd llsEintoEins rgument @seeD eFgFD MU05AD strting from ny legitimte on(gurtionD fter one round the proess still lies in legitimte on(gurtionD wFhFpF woreoverD thnks to vemm RVD there re t lest n/4 empty insD wFhFpF prom vemm SH with T = O (n c )D we hve tht the mximum lod of the repeted llsEintoE ins proess does not exeed the mximum lod of the Tetris proess in ll rounds 1, . . . , T D wFhFpF pinllyD the upper ound on the mximum lod of the Tetris proess in vemm SQ ompletes the proof of the (rst sttement of heorem IPF 3 We omit the subscript u in the remainder of this proof since clear from context. es for selfEstiliztionD given n ritrry initil on(gurtionD vemm SI implies tht within O(n) roundsD ll ins hve een emptied t lest oneD wFhFpF hen in eomes emptyD vemm SP ensures tht its lod is O(log n) over polynomil numer of roundsF reneD within O(n) roundsD the system rehes legitimte on(gurtionD wFhFpF gg 7.2. Negative Association sn this setion we give simple ounterexmple showing thtD in our llsEintoEins proessD the rndom vriles ounting the numer of lls rriving in given in in di'erent rounds nnot e negtively ssoitedF e (rst rell the de(nition of negtive ssoitionF Definition IV @xegtive ssoitionA. ndom vriles X 1 , . . . , X n re negatively associated ifD for every pir of disjoint susets

I, J ⊆ [n]D it holds tht E [f (X i , i ∈ I) • g (X j , j ∈ J)] E [f (X i , i ∈ I)] • E [g (X j , j ∈ J)]
for ll pirs of funtions f : R |I| → R nd g : R |J| → R tht re oth nonEderesing or oth nonEinresingF gonsider our rndom proess with n = 2 nd let X 1 nd X 2 e the rndom vriles inditing the numer of tokens rriving t the (rst in in rounds 1 nd 2D respetivelyF vet f ≡ g e the nonEinresing funtion

f (x) = 1 if x = 0, 0 if x > 0.
sf X 1 nd X 2 were negtively ssoitedD we would hve tht

Pr(X 1 = 0, X 2 = 0) Pr(X 1 = 0) Pr(X 2 = 0).
roweverD y diret lultion it is esy to ompute tht

Pr(X 1 = 0, X 2 = 0) = 1 8 ,
euseD in order for X 1 = 0, X 2 = 0 to hppenD t the (rst round oth lls hve to end up in the seond in @this hppens with proility 1/4A nd t the seond round the ll hosen in the seond in hs to sty there @this hppens with proility 1/2AF e lso hve tht Pr(X 1 = 0) = 1/4 nd y onditioning on ll the three possile on(gurtions t round 1 we hve Pr(X 2 = 0) = 3/8F hus

1 8 = Pr(X 1 = 0, X 2 = 0) > Pr(X 1 = 0) Pr(X 2 = 0) = 1 4 • 3 8 .
sn generlD intuitively speking it seems tht event X t = 0 mkes more likely the event tht there re lot of empty ins in the systemD whih in turn mkes more likely event X t+1 = 0 tht the in reeives no tokens t round t + 1 s wellF 7.3. Parallel Resource Assignment sn this setionD we resume the originl interprettion of the repeted llsEintoEins proess s running prllel rndom wlks of n distint tokens @iFeF llsAD eh of them strting from node @iFeF insA of the omplete grph of size nF his is rndomized protool for the prllel llotion prolem where tokens represent di'erent resouresGtsks tht must e sE signed to ll nodes in mutul exlusion Coo11F sn this senrioD ritil omplexity mesure is the @glolA over timeD iFeFD the time required y ny token to visit ll nodesF st is importnt to oserve tht our nlysis of the mximum lod works for nonymous tokens nd nodes ndD heneD for ny prtiulr queuing strtegyF nder pspy strtegyD no token spends in in numer of rounds exeeding the urrent lod s it entered the inF heorem IP then implies thtD fter n initil stilizing phse of O(n) roundsD every token spends t most logrithmi numer of rounds in ny in queue it trverses nd over ny period of polynomil lengthD wFhFpF e lso know tht the over time of the single rndomEwlk proess is O(n log n)D wFhFpF @seeD eFgFD MU05AF gomining the ove two ftsD we get the followingD lmost tight result on the rllel esoure essignment prolemF Corollary V @rllel esoure essignmentA. The random-walk protocol for the Parallel Resource Assignment problem on the clique has cover time O n log 2 n , w.h.p. UFQFHFIF Adversarial model. he selfEstiliztion property shown in heoE rem IP mkes the rndom wlk protool roust to trnsient fultsF e n onsider n dversril model in whihD in some faulty roundsD n dverE sry n ressign the tokens to the nodes in n ritrry wyF henD the liner onvergene time shown in heorem IP implies tht the O n log 2 n ound on the over time still holds provided the fulty rounds hppen with frequeny not higher thn γnD for ny onstnt γ 6F sndeedD thnks to vemm SID the tion of n dversry mnipulting the system on(gurE tion one every γn rounds n 'et only the suessive 5n roundsD while our nlysis in the nonEdversril model does hold for the remining (γ -5)n roundsF st follows tht the overll slowdown on the over time produed y suh n dversry is t most onstnt ftor on the previous O n log 2 n upper oundD wFhFpF grei V Consensus Despite Noise sn this ghpter we prove the results disussed in etion PFSF hile errorEorreting odes re e0ient methods for hndling noisy ommunition hnnels in the ontext of tehnologil networksD suh elE orte methods di'er lot from the unsophistited wy iologil entities re supposed to ommuniteF etD in FKP11 it hs een shown tht omE plex oordintion tsks suh s bit dissemination nd majority consensus n plusily e hieved in iologil systems sujet to noisy ommuniE tion hnnelsD where every messge trnsferred through hnnel remins intt with smll proility 1 2 + εD without using oding tehniquesF he previous result is onsiderle step towrds etter understnding of the wy iologil entities my ooperteF st hs nevertheless een estlished only in the se of PEvlued opinions X rumor spreding ims t rodsting singleEit opinion to ll nodesD nd mjority onsensus ims t leding ll nodes to dopt the singleEit opinion tht ws initilly present in the system with @reltiveA mjorityF sn this hpterD we extend this previous work to kEvlued opinionsD for ny onstnt k 2F his extension requires to ddress series of importnt issuesD some oneptulD others tehnilF e hve to revisit entirely the notion of noiseD for hndling hnnels rrying kEvalued messgesF sn ftD we preisely hrterize the type of noise ptterns for whih plurlity onsensus is solvleF elsoD key result employed in the iE vlued se y peinermn et lF is n estimte of the proility of oserving the most frequent opinion from oserving the mode of smll smpleF e generlize this result to the multivlued se y providing new nlytil proof for the ivlued se tht is menle to e extendedD y indutionD nd tht is of independent interestF 8.1. Model and Results in the Noisy Setting sn this setion we formlly de(ne the ommunition modelD the min de(nitionsD the investigted prolems nd the results tht we proveD prt of whih hs lredy een introdued in etion PFSF e do not provide de(nition of wht is iologilly fesile protoolD sine the omputtionl investigtion with this respet is still too premture for suh n ttemptF xeverthelessD we remrk tht intuitively we look for protools thtD if not dynmisD re t lest simple enough to e plusile ommunition strtegies for primitive iologil systemF es the reder n see in setions VFIFQ nd VFPFID we onsider nturl generliztion of the 207 protool given in FHK15D whih is plinly n elementry omintion of smpling nd mjority opertionsF 8.1.1. Communication model and denition of the problems e onsider the sme ommunition model onsidered in ghpter UD the uniform PU SH model DGH + 87D where in eh @synhronousA round eh gent n send @push) messge to nother gent hosen uniformly t rndomF his ours without hving the sender or the reeiver lerning out eh other9s identityF xote tht it my hppen tht severl gents push messge to the sme node u t the sme roundF sn the ltter se we ssume tht the nodes reeive them in rndom orderY for detiled disussion regrding this ssumptionD we refer the reder to etion VFRF e study the prolems of it dissemintion nd plurlity onsensusF sn oth sesD we ssume tht nodes n support opinions represented y n integer in [k] = {1, . . . , k}F edditionllyD there my e undecided nodes tht do not support ny opinionD whih represents nodes tht re not tively wre tht the system hs strted to solve the prolemY thusD undeided nodes re not llowed to send ny messge efore reeiving ny of themF • sn it dissemintionD initillyD one nodeD lled the soureD hs n opinion m ∈ {1, . . . , k}D lled the correct opinionF ell the other nodes hve no opinionF he ojetive is to design protool insuring thtD fter ertin numer of ommunition roundsD every node hs the orret opinion mF • sn plurlity onsensusD initillyD for every i ∈ {1, . . . , k}D set A i of nodes hve opinion iF he sets A i D i = 1, . . . , kD re pirwise disjointD nd their union does not need to over ll nodesD iFeFD there my e some undecided nodes with no opinion initillyF he ojetive is to design protool insuring thtD fter ertin numer of ommunition roundsD every node hs the plurlity opinionD tht isD the opinion m with reltive mjority in the initil setting @iFeFD |A m | > |A j | for ny j = mAF yserve tht the it dissemintion prolem is speil se of the pluE rlity onsensus prolem with |A m | = 1 nd |A j | = 0 for ny j = mF pollowing the guidelines of FHK14D we work under two onstrintsX @IA e restrit ourselves to protools in whih eh node n only trnsE mit opinionsD iFeFD every messge is n integer in {1, . . . , k}F @PA rnsmissions re sujet to noiseD tht isD for every roundD nd for every node uD if n opinion i ∈ {1, . . . , k} is trnsmitted to node u during tht roundD then node u will reeive messge j ∈ {1, . . . , k} with proility p i,j 0D where k j=1 p i,j = 1F he noisy push model is the uniform PU SH model together with the previE ous two onstrintsF he proilities {p i,j } i,j∈[k] n e seen s trnsition mtrixD lled the noise matrixD nd denoted y P = (p i,j ) i,j∈[k] @see pigure PSAF he noise mtrix in FHK14 is simply

@IRPA P = 1 2 + ε 1 2 -ε 1 2 -ε 1 2 + ε . ! ∼P :=     p , p , p , p , p , p , p , p , p , p , ! Figure 25
. e representtion of the tion of the noiseF efter n gent sends messge iD kEsided die spei( for messge i is thrownF he reeived messge is determined y the upperE most fe of the die when it omes to restF he die end up on fe j with proility p i,j D de(ned y the noise mtrix P F 8.1.2. Plurality bias, and majority preservation hen time proeedsD our protool results in the proportion of nodes with given opinion to evolveF xote tht there might e nodes who do not support ny opinion t time tF es mentioned in the previous setionD we ll suh nodes undecidedF e denote y a (t) the frtion of nodes supporting ny opinion t time t nd we ll the nodes ontriuting to a (t) decidedF yserve tht the frtion of undeided nodes t time t is then 1a (t) F vet c (t) i e the frtion of deided nodes in the system tht support opinion i ∈ [k] t the eginning of round tD so tht i∈[k] c (t) i = a (t) F e remrk the di'erent mening of the ltter nottion ompred to tht used in hpters S nd TF vet ĉ(t) i e the frtion of deided nodes whih reeive t lest one messge t time t -1 nd support opinion i ∈ [k] t the eginning of round tF e write c (t) = (c

(t) 1 , ..., c (t) 
k ) to denote the opinion distribution of the opinions t time tF imilrlyD let ĉ(t) = (ĉ

(t) 1 , ..., ĉ (t) 
k )F sn prtiulrD if every node would simply swith to the lst opinion it reeivedD then t) • P, where P is the noise mtrixF sn prtiulrD in the sene of noiseD we hve P = I @the identity mtrixAD nd if every node would simply opy the opinion tht it just reeivedD we hd E[ĉ (t+1) | c (t) ] = c (t) F oD given the opinion distriution t round tD from the de(nition of the model it follows tht the messges eh node reeives t round t + 1 n equivlently e seen s eing sent from system without noiseD ut whose opinion distriution t round t is c (t) • P F ell tht m denotes the initilly orret opinionD tht isD the soure9s opinion in the it dissemintion prolemD nd the initil plurlity opinion in the plurlity onsensus prolemF he following de(nition nturlly extends the onept of majority bias in FHK14 to plurality biasF Definition IW @δEfised gon(gurtionA. Let δ > 0. An opinion distribution c is said to be δEised towrd opinion m if c mc i δ for all i = m. sn FHK14D eh inry opinion tht is trnsmitted etween two nodes is )ipped with proility t most 1 2 -εD with 1 ε = n -1 4 +η for n ritrrily smll η > 0F husD the noise is prmetrized y εF he smller εD the more noisy re the ommunitionsF e generlize the role of this prmeter with the following de(nitionF Definition PH @(ε, δ)EmFpF xoise wtrixA. Let ε = ε(n) and δ = δ(n) be positive. A noise matrix P is said to be (ε, δ)EmjorityEpreserving @(ε, δ)E mFpFA with respet to opinion m if, for every opinion distribution c that is δ-biased toward opinion m, we have

E[ĉ (t+1) i | c (t) ] = j∈[k] Pr[reeived i | originl messge is j] • Pr[originl messge is j] = j∈[k] c (t) j • p j,i . ht isD @IRQA E[ĉ (t+1) | c (t) ] = c (
(c • P ) m -(c • P ) i > ε δ for all i = m.
sn the it dissemintion prolemD s well s in the plurlity onsensus prolemD when we sy tht noise mtrix is (ε, δ)EmFpFD we impliitly men tht it is (ε, δ)EmFpF with respet to the initilly orret opinionF e defer disussion on the lss of (ε, δ)EmFpF noise mtries in etion VFQ @inluding the tightness of the lss wFrFtF theorems IQ nd IRAF 1 For a discussion on what happens for other values of ε, see Section 8.6.

Formal statements of the results

e show tht nturl generliztion of the protool in FHK14 solves the it dissemintion prolem nd the plurlity onsensus prolem for n ritrry numer of opinions kF wore preiselyD using the protool whih we desrie in etion VFPFID we n estlish the following two resultsD whose proof n e found in etion VFPF Theorem IQ @xoisy fit hissemintionA. Assume that the noise matrix P is (ε, δ)-m.p. with ε = Ω(n -1 4 +η ) for an arbitrarily small constant η > 0 and δ = Ω( log n/n). There exists a protocol, using O(log log n + log 1 ε ) bits of memory at each node, which solves the noisy bit dissemination problem with k opinions in O( log n ε 2 ) communication rounds, w.h.p.

Theorem IR @xoisy lurlity gonsensusA. Let S with |S| = Ω( 1 ε 2 log n) be an initial set of nodes with opinions in [k], the rest of the nodes having no opinions. Assume that the noise matrix P is (ε, δ)-m.p. for some ε > 0, and that S is Ω( log n/|S|)-majority-biased. There exists a protocol, using O(log log n + log 1 ε ) bits of memory at each node, which solves the noisy plurality consensus problem with k opinions in O( log n ε 2 ) communication rounds, w.h.p.

por k = 2D we get the theorems in FHK14 from the ove two theoremsF sndeedD the simple PEdimensionl noise mtrix of @IRPA is εEmjorityEisedF xote thtD s in FHK14D the plurlity onsensus lgorithm requires the nodes to know the size |S| of the set S of deided nodesF 8.2. The Analysis sn this setion we prove heorem IQ nd heorem IR y presenting more generl nlysis of tge I thn tht given in FHK14 nd new nlysis of tge PF xote tht the proof tehniques required for the generE liztion to ritrry k signi(ntly deprt from those in FHK14 for the se k = 2F sn prtiulrD our pproh provides generl frmework for rigE orously deling with mny kinds of stohsti dependenes mong messges in the uniform PU SH modelF 8.2.1. Denition of the Protocol e desrie it dissemintion protool performing in two stagesF ih stge is deomposed into numer of phasesD eh one deomposed into numer of roundsF huring eh phse of the two stgesD the nodes pply the simple rules given elowF VFPFIFIF The rule during each phase of Stage 1. xodes tht lredy support some opinion t the eginning of the phse push their opinion t eh round of the phseF xodes tht do not support ny opinion t the eginning of the phse ut reeive t lest one opinion during the phse strt supporting n opinion t the end of the phseD hosen uFFrF @ounting multipliitiesA from the reeived opinions 2 F sn other wordsD eh node tries to quire n opinion during eh phse of tge ID ndD s it eventully reeives some opinionsD it strts supporting one of them @hosen uFFrFA from the eginning of the next phseF sn prtiulrD deided nodes never hnge their opinion during the entire stgeF wore formllyD let φ, βD nd s e three onstnts stisfying φ > β > sF he rounds of tge I re grouped in T + 2 phses with T = log(n/(2s/ε 2 log n))/ log(β/ε 2 + 1) . hse H tkes s/ε 2 log n roundsD phse T + 1 tkes φ/ε 2 log n roundsD nd eh phse j with 1 j T tkes β/ε 2 roundsF e denote with τ j the end of the lst round of phse jF vet t u e the (rst time in whih u reeives ny opinion sine the eginning of the protool @with t u = 0 for the soureAF vet j u e the phse of t u D nd let vl(u) e n opinion hosen uFFrF y u mong those tht it reeives during phse j u vet R j (u) e the multiset of messges reeived y node u during phse jF huring the seond stge of the protool eh node pplies the following ruleF Rule of Stage 2. huring eh phse j of length 2L of tge P @L = or AD eh node u pushes its urrent opinion t eh round of the phseD nd strts drwing rndom uniform smple S(u) of size L from R j (u)F rovided |R j (u)| LD t the end of the phse u hnges its opinion to maj(S(u))F vet us remrk tht the reson we require the use of smpling in the previous rule is tht t given round node my reeive muh more messges thn 2LF husD if the nodes were to ollet ll the messges they reeiveD some of them would need muh more memory thn the protool doesF pinllyD oserve tht overll oth stges I nd P tke O( 1 ε 2 log n) roundsF 8.2.2. Pushing Colored Balls into Bins fefore delving into the nlysis of the protoolD we provide frmework to rigorously del with the stohsti dependene tht rises etween mesE sges in the uniform PU SH modelF vet proess O e the proess tht results from the exeution of the protool of etion VFPFI in the uniform PUSH modelF sn order to pply onentrtion of proility results tht requires the involved rndom vriles to e independentD we view the messges s llsD nd the nodes s insD nd employ oisson pproximtion tehniquesF wore spei(llyD during eh phse j of the protoolD let M j e the set of messges tht re sent to rndom nodesD nd N j e the set of messges sent after the noise hs ted on themF @sn other wordsD N j = u R j (u)AF e prove thtD t the end of phse jD we n equivlently ssume tht ll the messges M j hve een sent to the nodes ording to the following proessF Definition PI @essoited flls into fins roessA. he llsEintoEins proess B ssoited to phse j is the twoEstep proess in whih the nodes represent ins nd ll messges sent in the phse represent olored llsD with eh olor orresponding to some opinionF snitillyD lls re olored ording to M j F et the (rst stepD eh ll of olor i ∈ {1, . . . , k} is reE olored with olor j ∈ {1, . . . , k} with proility p i,j D independently of the other llsF et the seond step ll lls re thrown to the ins uFFrF s in llsEintoEins experimentF Claim Q. Given the opinion distribution and the number of active nodes at the beginning of phase j, the probability distribution of the opinion distribution and the number of active nodes at the end of phase j in process O is the same as if the messages were sent according to process B. st is not hrd to see tht glim Q holds in the se of single roundF por more thn one roundD it is ruil to oserve tht the wy eh node u ts in the protool depends only on the reeived messges R j (u)D regrdless of the order in whih these messges re reeivedF es n exmpleD onsider the opinion distriution in whih one node hs opinion ID one other node hs opinion PD nd ll other nodes hve opinion QF uppose tht eh node pushes its opinion for two onseutive roundsF ineD t eh roundD extly one opinion I nd extly one opinion P re pushedD no node n reeive two Is during the (rst round nd then two Ps during the seond roundD iFeF no node n possily reeive the sequene of messges IDIDPDP in this ext orderF snstedD in proess B suh sequene is possileF Proof of Claim 3. sn oth proess B nd proess OD t eh roundD the noise ts independently on eh llGmessge of given olorGopinionD ording to the sme proility distriution for tht olorGopinionF henD in oth proessesD eh llGmessge is sent to some inGnode hosen uFFrF nd independently of the other llsGmessgesF sndeedD we n ouple proE ess B nd proess O y requiring thtX @IA eh llGmessge is hnged y the noise to the sme olorGvlueD nd @PA eh llGmessge ends up in the sme inGnodeF husD the joint proility distriution of the sets {R j (u)} u∈ [n] in proess O is the sme s the one given y proess BF yserve lso thtD from the de(nition of the protool @see the rule of tge I nd tge P in etion VFPFIAD it follows tht eh node9s tion depends only on the set R j (u) of reeived messges t the end of eh phse jD nd does not depend on ny further informtion suh s the tul order in whih the messges re reeived during the phseF umming up the two previous oservtionsD we get tht ifD t the end of eh phse jD we generte the R j (u)s ording to proess BD nd we let the protool exeute ording to themD then we indeed get the sme stohsti proess s proess OF gg xowD one key ingredient in our proof is to pproximte proess B using the following proess PF Definition PP @essoited oisson roessA. qiven N j D proess P ssoE ited to phse j is the oneEshot proess in whih eh node reeives numE er of opinions i tht is rndom vrile with distriution oisson(h i /n)D where h i is the numer of messges in N j rrying opinion iD nd eh oisson rndom vrile is independent of the othersF xow we provide some results from the theory of oisson pproximtion for llsEinEins experiments tht re used in etion VFPFPF por nie introE dution to the topiD we refer to MU05F Lemma SR. Let {X j } j∈[ñ] be independent r.v. such that X j ∼Poisson(λ j ). The vector (X 1 , ..., X ñ) conditional on j X = m follows a multinomial distribution with m trials and probabilities ( λ 1 j λ j , ..., λ ñ j λ j ). Lemma SS. Consider a balls-in-bins experiment in which h colored balls are thrown in n bins, where h i balls have color i with i ∈ {1, ..., k} and i h i = h. Let {X u,i u∈{1,...,n},i∈{1,...,k} be the number of i-colored balls that end up in bin u, let f (x 1,1 , ..., x n,1 , x n,2 , ..., x n,k , z 1 , ..., z n ) be a non-negative function with positive integer arguments x 1,1 , ..., x n,1 , x n,2 , ..., x n,k , z 1 , ..., z n , let {Y u,i } u∈{1,...,n},i∈{1,...,k} be independent r.v. such that Y u,i ∼

Poisson(h i /n) and let Z 1 , ..., Z n be integer valued r.v. independent from the X u,i s and Y u,i s. Then

E [f (X 1,1 , ..., X n,1 , X n,2 , ..., X n,k , Z 1 , ..., Z n )] e k i h i E [f (Y 1,1 , ..., Y n,1 , Y n,2 , ..., Y n,k , Z 1 , ..., Z n )] . Proof. o simplify nottionD let Z = (Z 1 , ..., Z n ), X = (X 1,1 , ..., X n,1 , X n,2 , ..., X n,n ), Ȳ = (Y 1,1 , ..., Y n,1 , Y n,2 , ..., Y n,n ), Ȳ = ( n u=1 Y u,1 , ..., n u=1 Y u,k ), λ i = h i /n, λ = (λ 1 , ..., λ k ),
nd (nlly x = (x 1 , ..., x k ) for ny x 1 , ..., x k F yserve thtD while X u,i nd X v,i re lerly dependentD X u,i nd X v,j with i = j re stohstilly indeE pendent @even if u = vAF sndeedD the distriution of the rFvF {X u,i } u∈{1,...,n} for eh (xed i is multinomil with λ i trils nd uniform distriution on the insF husD from vemm SR we hve tht {X u,i } u∈{1,...,n} re distriuted s {Y u,i } u∈{1,...,n} onditionl on n u=1 Y u,i = λ i D tht is

E f Ȳ , Z n u=1 Y u,1 = λ 1 , ..., n u=1 Y u,k = λ k = E f X, Z . hereforeD we hve E f Ȳ , Z = x:x 1 ,...,x k 0 E f Ȳ , Z Ȳ = x Pr Ȳ = x E f Ȳ , Z Ȳ = λ Pr Ȳ = λ = E f X, Z Pr Ȳ = λ = E f X, Z i h h i i h i ! e -h i E f X, Z e -k i h i ,
whereD in the lst inequlityD we use thtD y tirling9s pproximtionD a! e √ a( a e ) a for ny a > 0F gg prom vemm SR nd vemm we get the following generl result whih sys tht if generi event E holds wFhFp in proess PD it lso holds in proess OD wFhFpF Lemma ST. Given the opinion distribution and the number of active nodes at the beginning of a xed phase j, let E be an event that, at the end of that phase, holds with probability at least 1n -b in process P, for some b > (k log h)/(2 log n) with h = i h i . 4 Then, at the end of phase j, E holds also in process O, w.h.p.

Proof. hnks to glim QD it su0es to prove thtD t the end of phse jD E holds in proess BD wFhFpF vet Ē e the omplementry event of EF vet h = |M j | e the numer of lls tht re thrown in proess B ssoited to phse jD where h i lls hve olor i with i ∈ {1, ..., k} nd i h i = hF vet {X u,i } u∈{1,...,n},i∈{1,...,k} e the numer of iEolored lls tht end up in in uD let {Y u,i } u∈{1,...,n},i∈{1,...,k} e the independent rFvF of proess P suh tht Y u,i ∼oisson(h i /n) nd let Z 1 , ..., Z n e integer vlued rFvF independent from the X u,i s nd Y u,i sF pix ny reliztion of N j D iFeF ny reEoloring of the lls in the (rst step of proess BF fy hoosing f in vemm SS s the inry rFvF inditing whether event Ē hs ourredD where Ē is funtion of the rFvF X 1,1 , ..., X n,1 , X n,2 , ..., X n,k , Z 1 , ..., Z n D we get Pr Ē (X 1,1 , ..., X n,k , Z 1 , ..., Z n ) N j e k i h i Pr Ē (Y 1,1 , ..., Y n,k , Z 1 , ..., Z n ) N j . @IRRA husD from @IRRAD the snequlity of rithmeti nd geometri mens nd the hypotheses on the proility of ED we get

Pr Ē (X 1,1 , ..., X n,k , Z 1 , ..., Z n ) N j e k i h i Pr Ē (Y 1,1 , ..., Y n,k , Z 1 , ..., Z n ) N j e k h k k 2 Pr Ē (Y 1,1 , ..., Y n,k , Z 1 , ..., Z n ) N j
pinllyD let N e the set of possile reliztions of N j F fy the lw of totl proility over N D we get tht

s∈N Pr Ē (X 1,1 , ..., X n,k , Z 1 , ..., Z n ) N j = s Pr (N j = s) e k h k k 2 s∈N Pr Ē (Y 1,1 , ..., Y n,k , Z 1 , ..., Z n ) N j = s Pr (N j = s) e k h k k 2 Pr Ē (Y 1,1 , ..., Y n,k , Z 1 , ..., Z n ) e k k k 2 h k 2 n -b n -Θ(1) ,
where in the (rst inequlity of the lst line we used the hypotheses on the proility of ĒF gg e now nlyze the two stges of our protoolD strting with tge IF xote thtD in the following two setionsD the sttements out the evolution of the proess refer to proess OF 8.2.3. Stage 1 he rule of tge I is imed t gurnteeing thtD the system rehes trget opinion distriution from whih the it dissemintion prolem eE omes n instne of the plurlity onsensus prolemD wFhFpF wore preiselyD we hve the followingF Lemma SU. Stage 1 takes O( 1 ε 2 log n) rounds, after which all nodes are active and c (τ T +1 ) is δ-biased toward the correct opinion with δ = Ω( log n/n), w.h.p.

Proof. he ft tht n undeided node eomes deided during phse only depends on whether it gets messge during tht phseD reE grdless of the vlue of suh messgesF reneD the proof tht a (τ T +1 ) = 1 is redued to the nlysis of the rule of tge I s n informtion spredE ing proessD wFhFpF pirstD y refully exploiting the gherno' @vemm PSA ound nd vemm STD we n estlish glim R nd glim S elowX Claim R. At the end of phase 0, it holds w.h.p.

s ε 2 • log n 3n a (τ 0 ) s ε 2 • log n n .
Claim S. At the end of phase j, 1 j T , it holds w.h.p.

β ε 2 + 1 j • a (τ 0 ) 8 a (τ j ) β ε 2 + 1 j • a (τ 0 ) .
Sketch of Proof of Claim 4 and Claim 5. he proility thtD in the proess OD n undeided node eomes deided t the end of phse j is 1 -(1 -1 n ) h where h is the numer of messges sent during tht phseF sn proess PD this proility is 1e -h n fy using tht e

x 1+x 1 + x e x for |x| < 1 we see tht

1 -e -h n 1 -1 - 1 n h 1 -e -h n-1 .
husD we n prove glim R nd glim S for proess P y repeting essenE tilly the sme lultions s in the proofs of glim PFP nd PFR in FHK15F ine the oisson distriutions in proess P re independentD we n pply the gherno' ound s limed in FHK15F pinllyD we n prove tht the sttements hold lso for proess O thnks to vemm SSF gg (of claims 4 and 5)

prom the previous two limsD nd y the de(nition of T we get the followingF Lemma SV. At the end of phase T , it holds w.h.p.

a (τ T +1 ) = Ω β ε 2 + 1 T a (τ 0 ) = Ω(ε 2 ).
pinllyD from vemm SVD n pplition of the gherno' ound @vemm PSA gives us the followingF Lemma SW. At the end of Stage 1, all nodes are decided, w.h.p. es for the ft thtD c (τ +1) is δEised opinion distriution with δ = Ω( log n/n) @wFhFpFAD we n prove the followingF Lemma TH. At the end of each phase j of Stage 1, we have an (ε/2) jbiased opinion distribution, w.h.p.

Proof. e prove the lemm y indution on the phse numerF he se j = 1 is diret pplition of vemm UU to c

(τ 1 ) m -c (τ 1 ) i @i = mAD
where the numer of deided nodes is given y glim RD ndD where the independene of the rFvF follows from the ft tht eh node tht eomes deided in the (rst phse hs neessrily reeived the messges from the soureEnodeF xowD suppose tht the lemm holds up to phse j -1 T F vet S j = {u| j u = j} e the set of nodes tht eome deided during phse jF ell the de(nition of M j nd N j from etion VFPFPD nd oserve tht

|M j | = |N j | = (τ j -τ j-1 ) n • a (τ j-1 ) ,
nd tht the numer of times opinion i ours in M j is |M j | c (τ j-1 ) i F vet us identify eh messge in M j with distint numer in 1, ..., |M j |D nd let {X w (i)} w∈{1,...,|M j |} e the inry rFvF suh tht X w (i) = 1 if nd only if w is i fter the tion of the noiseF he frequeny of opinion i in N j is

1 |N j | |N j | w=1 X w (i)F
hnks to vemm STD it su0es to prove the lemm for proess PF fy de(nitionD in proess PD for eh iD the numer of messges with opinion i tht eh node reeives onditionl on N j follows oisson(

1 n |N j | w=1 X w (i))
distriutionF ih node u tht eomes deided during phse j gets t lest one messge during the husD from vemm SRD the proility tht u gets opinion i onditionl on N j is

|N j | w=1 X w (i) k i=1 |N j | w=1 X w (i) = 1 |N j | |N j | w=1 X w (i) .
ine deided nodes never hnge opinion during tge ID the is of c (τ j ) is t lest the minimum etween the is of c (τ j-1 ) nd the is mong the newly deided nodes in S j F reneD we n pply the gherno' ound @vemm PSA to the nodes in S j to prove tht the is t the end of phse j is wFhFpF 5 D Pr c

(τ j ) m -c (τ j ) i N j   1 |N j | |N j | w=1 X w (m) - 1 |N j | |N j | w=1 X w (i)   1 -δj , @IRSA where δj = O( log n/|S j |)F woreoverD note tht E   1 |N j | |N j | w=1 X w (i) c (τ j-1 ) , a (τ j-1 )   = c (τ j-1 ) • P i .
purthermoreD @onditionl on c (τ j-1 ) nd a (τ j-1 ) A the rFvF {X w (i)} w∈{1,...,|N j |} re independentF husD for eh i = mD from glim SD nd y pplying the gherno' ound @vemm PSA on

|N j | w=1 X w (m)D nd on |N j | w=1 X w (i)D we get tht wFhFpF @IRTA 1 |N j | |N j | w=1 X w (m) - 1 |N j | |N j | w=1 X w (i) (1 -δ j ) 2 -j+1 ε j , where δ j = O( log n/|N j |)F
prom glim R nd glim SD it follows tht δj , δ j 1 4 D wFhFpF hus y putting together @IRSA nd @IRTA vi the hin ruleD we get tht wFhFpF

c (τ j ) m -c (τ j ) i 1 -δj (1 -δ j ) 2 -j+1 ε j ε 2 j .
gg (of Lemma 60)

vemm TH implies tht we get is ε T +2 = Ω( log n/n) t the end of tge ID wFhFpFD whih ompletes the proof of vemm SUF 

Stage 2

es proved in the previous setionD ll nodes re deided t the end of tge I nd the (nl opinion distriution is Ω( log n/n)EisedD wFhFpF xowD we hve tht the it dissemintion prolem is redued to n instne of the plurlity onsensus prolemF he purpose of tge P is to progressively mplify the initil is until ll nodes support the plurlity opinionD iFeF the opinion originlly held y the soure nodeF huring the (rst T phsesD it is not hrd to see thtD y tking α 4 lrge enoughD frtion ritrrily lose to I of the nodes reeives t lest mesE sgesD wFhFpF ih node u in suh frtion hnges its opinion t the end of the phseF ith slight use of nottionD let maj (u) = maj (S(u)) e u9s new opinion sed on the = |S(u)| rndomly smpled reeived messgesF e show tht these new opinions inrese the is of the opinion distriution towrd the plurlity opinion y onstnt ftor > 1D wFhFpF por the ske of simpliityD we ssume tht is odd @see etion VFS for detils on how to remove this ssumptionAF Proposition I. Suppose that, at the beginning of phase j of Stage 2 with 0 j T -1, the opinion distribution is δ-biased toward m. In process P, if a node u changes its opinion at the end of the phase, then, for any i = m, we have @IRUA Pr (maj (u) = m) -Pr (maj (u

) = i) 2 π g(δ, ) e (k-2) ln 4 , where g (δ, ) = δ(1 -δ 2 ) -1 2 if δ< 1 √ , 1/ (1 -1/ ) -1 2 if δ 1 √ .
pirstD we prove @IRUA for k = 2F e then otin the generl se y indutionF he proof for k = 2 is sed on known reltion etween the umultive distriution funtion of the inomil distriutionD nd the umuE ltive distriution funtion of the et distriutionF his reltion is given y the following lemmF Lemma TI. Given p ∈ (0, 1) and 0 j it holds

j<i i p i (1 -p) -i = j + 1 (j + 1) p 0 z j (1 -z) -j-1 dz.
Proof. fy integrting y prtsD for j < -1 we hve j + 1 (j + 1)

p 0 z j (1 -z) -j-1 dz = j + 1 p j+1 (1 -p) -j-1 - j + 1 ( -j -1) p 0 z j+1 (1 -z) -j-2 dz = j + 1 p j+1 (1 -p) -j-1 - j + 2 (j + 2) p 0 z j+1 (1 -z) -j-2 dz, @IRVA
whereD in the lst equlityD we used the identity j (j) = j + 1 (j + 1) .

xote tht when j = -1D @IRUA eomes

p = p 0 z -1 dz.
reneD we n unroll the reurrene given y @IRVA to otin j + 1 (j + 1)

p 0 z j (1 -z) -j-1 dz = j<i -1 i p i (1 -p) -i + p 0 z -1 dz = j<i i p i (1 -p) -i ,
onluding the proofF gg vemm TI llows us to express the survivl funtion of inomil smple s n integrlF hnks to itD we n prove roposition I when k = 2F Lemma TP. Let c = (c 1 , c 2 ) be a δ-biased opinion distribution during Stage 2. In process P, for any node u, we have

Pr (maj (u) = m) -Pr (maj (u) = 3 -m) 2 π • g (δ, ) .
Proof. ithout loss of generlityD let m = 1F vet X ( )

1 e rFvF with distriution Bin( , p 1 )D nd let X ( ) 2 = -X ( ) 1 F fy using vemm TID we get Pr (maj (u) = 1) -Pr (maj (u) = 2) = Pr X ( ) 1 > X ( ) 2 -Pr X ( ) 2 > X ( ) 1 = 2 i i p i 1 p -i 2 - 2 i i p -i 1 p i 2 = 2 i i p i 1 (1 -p 1 ) -i - 2 i i p -i 1 (1 -p 1 ) i = 2 2 p 1 0 z 2 (1 -z) 2 dz - p 2 0 z 2 (1 -z) 2 dz . fy setting t = z -1 2 D nd rewriting p 1 = p 1 -p 2 2 + 1 2 nd p 2 = p 2 -p 1 2 + 1 2 we otin Pr (maj (u) = 1) -Pr (maj (u) = 2) = 2 2 p 1 0 z 2 (1 -z) 2 dz - p 2 0 z 2 (1 -z) 2 dz = 2 2 p 1 -p 2 2 -1 2 1 4 -t 2 2 dt - -p 1 -p 2 2 -1 2 1 4 -t 2 2 dt = 2 2 p 1 -p 2 2 - p 1 -p 2 2 1 4 -t 2 2 dt. por ny t ∈ (-y 2 , y 2 ) ⊆ (-p 1 -p 2 2 , p 1 -p 2 2 )D it holds 1 4 -t 2 2 1 -y 2 4 2 .
husD for ny y ∈ (-p 1 + p 2 , p 1p 2 ) we hve

@IRWA p 1 -p 2 2 - p 1 -p 2 2 1 4 -t 2 2 dt y 1 -y 2 4 2 .
he rFhFsF of @IRWA is mximized wFrFtF y ∈ (-p 1 + p 2 , p 1p 2 ) when

y = min    p 1 -p 2 , 1 2 2 + 1    = min p 1 -p 2 , 1 √ . reneD for p 1 -p 2 < 1 √ D we get p 1 -p 2 2 - p 1 -p 2 2 1 4 -t 2 2 dt (p 1 -p 2 ) 1 -(p 1 -p 2 ) 2 4 2 = 2 -+1 (p 1 -p 2 ) 1 -(p 1 -p 2 ) 2 -1 2 = 2 -+1 g (p 1 -p 2 , ) . por p 1 -p 2 1 √ we get p 1 -p 2 2 - p 1 -p 2 2 1 4 -t 2 2 dt 2 -+1 √ 1 1 -1 2 = 2 -+1 g (p 1 -p 2 , ) .
fy using the ft tht g is nonEderesing funtion wFrFtF its (rst rgument @see vemm TV in etion VFUAD we otin

Pr (maj (u) = 1) -Pr (maj (u) = 2) = 2 2 p 1 -p 2 2 - p 1 -p 2 2 1 4 -t 2 2 dt 2 2 2 -+1 g (p 1 -p 2 , ) 2 2 2 -+1 g (δ, ) .
pinllyD y using the ounds 2r r 2 2r √ πr e 1 9r @see vemm TW in etion VFUAD nd e x 1x together with the identity 6

2 2 = +1 2 + 1 2 = -1 -1 2 , we get 
Pr (maj (u) = 1) -Pr (maj (u) = 2) 2 2 2 -+1 g (δ, ) 2 -1 π -1 2 e 2 9( -1) • 2 -+1 g (δ, ) 2 π 1 - 2 9 ( -1) 1 - 1 -1 2 • g (δ, ) 2 π • g (δ, ) ,
onluding the proofF gg xext we show how to lower ound the ove di'erene with muh simpler expressionF Lemma TQ. In process P, during Stage 2, for any node u, Pr(maj (u) = m) -Pr(maj (u) = 3m)

Pr(X ( ) 1 > X ( ) 2 , ..., X ( ) k ) -Pr(X ( ) i > X ( ) 1 , ..., X ( ) i-1 , X ( ) i+1 , ..., X ( ) k ), 6
Recall that we are assuming that is odd.

where X( ) = (X ( ) 1 , ..., X ( ) k ) follows a multinomial distribution with trials and probability distribution c • P .

Proof. ithout loss of generlityD let m = 1F vet x = (x 1 , ..., x k ) denote generi vetor with positive integer entries suh tht k j=1 x j = D let (x) e the set of the gretest entries of xD ndD for j ∈ {1, i}D let

• A (!) j = {x | W (x) = {j}}D • A (=) j = {x | 1, i ∈ W (x)}D • A ( =) 1 = {x | 1 ∈ W (x) ∧ i ∈ W (x) ∧ |W (x)| > 1} nd • A ( =) i = {x | i ∈ W (x) ∧ 1 ∈ W (x) ∧ |W (x)| > 1}F st holds Pr (maj (u) = j) = x∈A (!) j Pr X( ) = x Pr maj (u) = j X( ) = x + x∈A (=) j Pr X( ) = x Pr maj (u) = j X( ) = x + x∈A ( =) j Pr X( ) = x Pr maj (u) = j X( ) = x = x∈A (!) j Pr X( ) = x + x∈A (=) j Pr X( ) = x |W (x)| + x∈A ( =) j Pr X( ) = x |W (x)| . @ISHA vet σ (x) = (x i , ..., x i-1 , x 1 , x i+1 , ..., x k ) ,
e the vetor funtion tht swps the entries x 1 nd x i in xF σ is lerly ijetion etween the sets

A (!) 1 DA (=) 1 DA ( =) 1 nd A (!) i D A (=) i D A ( =) i D respetivelyD nmely σ : A (!) 1 → → A (!) i , σ : A (=) 1 → → A (=) i , σ : A ( =) 1 → → A ( =) i ,
where → → denotes ijetionF woreoverD for ll x ∈ A

(=) j D it holds Pr X( ) = x = Pr X( ) = σ (x) . herefore x∈A (=) 1 Pr X( ) = x = σ(x)∈A (=) 1 Pr X( ) = σ (x) @ISIA = x∈A (=) i Pr X( ) = x . purthermoreD for ll x ∈ A ( =) 1 D we hve Pr X( ) = x = x 1 ... x k p x 1 1 . . . p i i . . . p x k k @ISPA > x 1 ... x k p x i 1 . . . p x 1 i . . . p x k k = Pr X( ) 1 = σ (x) ,
where σ(x) ∈ A ( =)

i F prom @ISPA we thus hve tht

x∈A ( =) 1 Pr X( ) = x > σ(x)∈A ( =) 1 Pr X( ) = σ (x) @ISQA = x∈A ( =) i Pr X( ) = x .
prom @ISHAD @ISIA nd @ISQA we (nlly get Pr (maj (u) = 1) -Pr (maj (u) = i)

= x∈A (!) 1 Pr X( ) = x + x∈A (=) 1 Pr X( ) = x |W (x)| + x∈A ( =) 1 Pr X(l) = x |W (x)| - x∈A (!) i Pr X( ) = x - x∈A (=) i Pr X( ) = x |W (x)| - x∈A ( =) i Pr X( ) = x |W (x)| x∈A (!) 1 Pr X( ) = x - x∈A (!) i Pr X( ) = x = Pr W ( X( ) ) = {X ( ) 1 } -Pr W ( X( ) ) = {X ( ) i } ,
onluding the proof of vemm TQF gg sntuitivelyD vemm TQ sys tht the set of events in whih tie ours mong the most frequent opinions in the node9s smple of oserved messges ID y hoosing the onstnt α 4 of the phse length lrge enoughD in proess P we get tht Pr (maj (u) = m) -Pr (maj (u) = i) αδ for some onstnt α > 1 @provided tht δ 1/2AF reneD y pplying vemm UU in eppendix e with θ = α 4 δD we get Pr(c

(τ j ) m -c (τ j ) i αδ/2) exp(-(αδ) 2 n/16) n -α,
for some onstnt α tht is lrge enough to pply vemm SSF hereforeD until δ 1/2D in proess P we hve tht c

(τ j ) m -c (τ j ) i
αδ/2 holdsD wFhFpF prom the previous eqution it follows thtD fter T phsesD the protool hs rehed n opinion distriution with is greter thn 1/2F husD y diret pplition of vemm UU nd vemm SS to c

(τ T ) m -c (τ T ) i D we get tht wFhFpF c (τ T ) m -c (τ T ) i = 1D
onluding the proofF gg pinllyD the time e0ieny limed in heorem IQ nd heorem IR diE retly follows from vemm TSD while the required memory follows from the ft tht in eh phse eh node needs only to ount how mny times it hs reeived eh opinionD iFeF to ount up to t most O( 1 ε 2 log n)D wFhFpF 8.3. On the Notion of (ε, δ)-Majority-Preserving Matrix sn this setion we disuss the notion of (ε, δ)EmFpF noise mtrix given in he(nition PHF vet us onsider @IRQAF he mtrix P represents the perturE tion introdued y the noiseD nd so (c • P ) m -(c • P ) i mesures how muh informtion the system is losing out the orret opinion mD in single ommunition roundF en (ε, δ)EmFpF noise mtrix is noise mtrix tht preserves t lest n ε frtion of isD provided the initil is is t lest δF he (ε, δ)EmFpF property essentilly hrterizes the mount of noise eyond whih some oordintion prolems nnot e solved without further hypotheses on the nodes9 knowledge of the mtrix P F o see why this is the seD onsider n (ε, δ)EmFpF noise mtrix for whih there is δEised opinion distriution c suh tht (c • P ) m -(c • P ) i < 0 for some opinion iF qiven opinion distriution cD from each node's perspective, opinion m does not appear to be the most frequent opinionF sndeedD the messges tht re reeived re more likely to e i thn mF husD plurlity onsensus nnot e solved from opinion distriution cF yserve tht verifying whether given mtrix P is (ε, δ)EmFpF with respet to opinion m onsists in heking whether for eh i = m the vlue of the following liner progrm is t lest εδX

mximize (P • c) m -(P • c) i sujet to j c j = 1, nd ∀j, c j 0, c m -c j -δ 0.
e now provide some negtive nd positive exmples of (ε, δ)EmFpF noise mtriesF pirstD we note tht nturl mtrix property suh s eing digE onlly dominnt does not imply tht the mtrix is (ε, δ)EmFpF por exmpleD y multiplying the following digonlly dominnt mtrix y the δEised opinion distriution c = (1/2 + δ, 1/2δ, 0) D we see tht it does not even preserve the mjority opinion t ll when ε, δ < 1/6X

  1 2 + ε 0 1 2 -ε 1 2 -ε 1 2 + ε 0 0 1 2 -ε 1 2 + ε   .
yn the other hndD the following nturl generliztion of the noise mtrix in FHK14 @see @IRPAAD is (ε, δ)EmFpF for every δ > 0 with respet to ny opinionX

(P ) i,j = p i,j = 1 k + ε if i = j, 1 k -ε k-1
otherwiseF wore generllyD let P e noise mtrix suh tht @ISVA (P ) i,j = p if i = j, q l q i,j q u otherwiseD for some positive numers pD q u nd q l F ine

(P c) m -(P c) i = pc m + j =m q j,m c j -pc i - j =i q j,i c j p(c m -c i ) + j =m q l c j - j =i q u c j p(c m -c i ) + q l (1 -c m ) -q u (1 -c i ) p(c m -c i ) + q l -q l c m -q u + q u c i p(c m -c i ) -q u (c m -c i ) -(q u -q l ) (p -q u )(c m -c i ) -(q u -q l )
(pq u )δ -(q uq l ). @ISWA fy de(ning ε = (pq u )/2D we get tht the lst line in @ISWA is greter thn εδ i' (pq u )δ/2 (q uq l )D whih gives su0ient ondition for ny mtrix of the form given in @ISVA for eing (ε, δ)EmFpF

The Reception of Simultaneous Messages

sn the uniform PU SH modelD it my hppen tht severl gents push messge to the sme node u t the sme roundF sn suh sesD the model should speify whether the node reeives ll suh messgesD only one of them or neither of themF hih hoie is etter depends on the ioE logil setting tht is eing modeledX if the ommunition etween the gents of the system is n uditory or ttile signlD it ould e more relisti to ssume tht simultneous messges to the sme node would feuse of the previous oservtions nd the hypothesis tht p 1 2 D we hve tht

Pr maj +2 = H = i=0 Pr maj +2 = H X ( +1) H = i Pr X ( +1) H = i = l i> +1 2 Pr X ( +1) H = i + Pr maj +2 = H X ( +1) H = + 1 2 • Pr X ( +1) H = + 1 2 = i> +1 2 Pr X ( +1) H = i + p • Pr X ( +1) H = + 1 2 (a) i> +1 2 Pr X ( +1) H = i + 1 2 • Pr X ( +1) H = + 1 2 = Pr maj +1 = H ,
where equlity in (a) holds i' p = 1 2 F pinllyD @ITIA follows from @ITHA nd the ft tht Pr (maj = T ) = 1 -Pr (maj = H) . gg 8.6. Bit dissemination with ε = Θ(n -1 4 -η ) sn FHK15 it is shown tht t the end of tge I the is towrd the orret opinion is t lest ε T +2 /2 ndD t the eginning of tge PD they ssume is towrd the orret opinion of Ω( log n/n)F sn this setionD we show thtD when ε = Θ(n -1 4 -η ) for some η ∈ (0, 1/4)D the protool onsidered y FHK15 nd us nnot solve the it dissemintion nd the plurlity onsensus prolem in time Θ(log n/ε 2 )F pirstD oserve tht when ε = Θ( log n/n) the length of the (rst phse of tge I is Θ log n/ε 2 = Ω(n log n)D whih implies tht eh node gets t lest one messge from the soure during the (rst phseD wFhFpF husD thnks to our nlysis of tge P we hve tht when ε = Θ( log n/n) the protool e'etively solves the it dissemintion prolem in time Θ(log n/ε 2 )D wFhFpF sn generlD for ε < n -1/2-η for some onstnt η > 0D if we dopt the seE ond stge right from the eginning @whih mens tht the soure node sends ε -2 messgesAD we get tht ll nodes reeive t lest log n/(ε 2 n) messgesD wFhFpF husD y diret pplition of vemm UUD fter the (rst phse we get n log n/nEised opinion distriution nd tge P orretly solves the prolem ording to heorem IRD wFhFpF roweverD when ε = Θ(n -1 4 -η ) for some η > 0D from glim R nd vemm TH we hve thtD fter phse H in opinion distriution cD t most O log n/ε 2 = O(n 1 2 +2η log n) nodes re deidedD nd c is ε 2 EisedF ih node tht eomes deided in phse I reeives messge pushed from some node of cD ndD euse of the noiseD the vlue of this messge is distriuted ording to c (τ 0 ) • P F st follows tht c is n ε 2 /2Eised opinion distriuE tion with ε 2 = n -1 2 -2η whih is muh smller thn the Ω( log n/n) ound required for the seond stgeF e elieve tht no minor modi(tion of the protool proposed here n orretly solve the noisy it dissemintion prolem when ε = Θ(n -1 4 -η ) in time O log n/ε 2 F 8.7. Technical Lemmas xext lemms estlishes the monotoniity of the funtion g nd n pE proximtion of the inomil oe0ientD whih hve een used in the proof of vemm TRF Lemma TV. The function

g (x, y) =      x 1 -x 2 y-1 2 if x < 1 √ y , 1 √ y 1 -1 y y-1 2 if x 1 √ y ,
with x ∈ [0, 1] and y ∈ [1, +∞) is non-decreasing w.r.t. x and non-increasing w.r.t. y.

Proof. o show tht g(x, y) is nonEderesing wFrFtF xD oserve tht Self-Stabilizing Consensus sn this hpter we prove the results presented in etion PFTF es in hpters S nd TD we fous on the si PU LL model of ommuE nitionD in whih in eh roundD eh gent extrts informtion from few rndomly hosen gentsF e seek to identify the smllest mount of informE tion reveled in eh intertion @messge sizeA tht nevertheless llows for e0ient nd roust omputtions of fundmentl informtion dissemintion tsksF e fous on the majority bit dissemination prolem tht onsiders popultion of n gentsD with designted suset of source agentsF ih soure gent holds n input bit nd eh gent holds n output bitF he gol is to let ll gents onverge their output its on the most frequent input it of the soures @the majority bitAF xote tht the prtiulr se of single soure gent orresponds to the lssil prolem of broadcast @lso termed bit disseminationAF e onentrte on the severe fultEtolernt ontext of self-stabilizationD in whih orret on(gurtion must e rehed eventuE llyD despite ll gents strting the exeution with ritrry initil sttesF sn prtiulrD the spei(tion of who is soure nd wht is its initil input it my e set y n dversryF e (rst design generl ompiler whih n essentilly trnsform ny selfEstilizing lgorithm with ertin property @lled the bitwise-independence propertyA tht uses Eits messges to one tht uses only log Eits messgesD while pying only smll penlty in the running timeF fy pplying this ompiler reursively we then otin selfEstilizing clock-synchronization protoolD in whih gents synhronize their loks modulo some given integer T D within Õ(log n log T ) rounds wFhFpFD nd using messges tht ontin 3 its onlyF e then employ the new lok synhroniztion tool to otin selfE stilizing mjority it dissemintion protool whih onverges in Õ(log n) timeD wFhFpFD on every initil on(gurtionD provided tht the rtio of soures supporting the minority opinion is ounded wy from hlfF woreoverD this protool lso uses only Q its per intertionF The protocols we analyse use this dynamics as a black box. However, we note that the constructions we outline are in fact independent of the choice of consensus protocol, and this protocol could be replaced by other protocols that achieve similar guarantees. hpter in minimizing the messgeEsizeD we mke expliit two prmeters of the modelX the numer η of gents tht eh gent oserves t eh roundD nd the numer of its tht eh gent displys nd tht re visile to other gentsF wore formllyD in the uniform PU LL(η) modelD ommunition proeeds in disrete roundsF sn eh roundD eh gent u oserves η ritrry other gentsD hosen uFFrFmong ll gentsD inluding herselfF o simplify nottionD we often omit the prmeter η when it is equl to PF hen n gent u oserves nother gent vD she n peek into desigE nted visible part of v9s memoryF sf severl gents oserve n gent v t the sme round then they ll see the sme visile prtF he message size denotes the numer of its stored in the visile prt of n gentF ysionllyD we denote with PU LL(η, ) the PULL(η) model with messge size F e re primrily interested in messge size tht is independent of nD the numer of gentsF WFHFPFPF Agents. es in previous hptersD we ssume tht gents do not hve unique identitiesD tht isD the system is anonymousF e do not im to minimize the @nonEvisileA memory requirement of the gentD yetD we note tht our onstrutions n e implemented with reltively short memoryD using O(log log n) itsF e ssume tht eh gent internlly stores lok modulo some integer T D whih is inremented t every roundF e point out in dvne thtD in the it dissemintion prolemD we set T = O(log n)F WFHFPFQF Majority bit dissemination problem. e ssume system of n gents eh hving n internl stte tht ontins n indicator bit whih indites whether or not the gent is sourceF ih soure holds inry input bit 2 nd eh gent @inluding souresA holds inry opinionF he numer of soures @iFeFD gents whose inditor it is 1A is denoted y kF e denote y k 0 nd k 1 the numer of soures whose input it is initilly set to 1 nd 0D respetivelyF essuming k 1 = k 0 D we de(ne the majority bitD termed b maj D s 1 if k 1 > k 0 nd 0 if k 1 < k 0 F oure gents know tht they re soures @using the inditor itA ut they do not know whether they hold the mjority itF he prmeters kD k 1 or k 0 re not known to the soures or to ny other gentF st is required tht the opinions of ll gents eventully onverge to the mjority it 3 b maj F e note tht gents hold their output nd inditor its privtelyD nd we do not require them to neessrily revel these its pulily @in their visile prtsA unless they wish toF o void deling with the ses where the numer of soures holding the mjority it is ritrrily lose to k 2 D we shll gurntee orretness @wFhFpFA only if the frtion of soures holding the mjority is ounded wy from 1 2 D iFeFD only if | k 1 k 0 -1| > εD for some positive onstnt εF hen k = 1D the prolem is lled bit disseminationD for shortF xote tht in this seD the single soure gent holds the it b maj to e disseminted nd there is no other soure gent introduing on)iting opinionF WFHFPFRF T -clock synchronization. vet T e n integerF sn the T -clock synchronization prolemD eh gent mintins clock modulo T tht is inreE mented t eh roundF he gol of gents is to onverge on hving the sme vlue in their loks modulo T F @e my omit the prmeter T when it is ler from the ontextFA WFHFPFSF Probabilistic self-stabilization and convergence. elfEstilizing proE tools re ment to gurntee tht the system eventully onverges to legal on(gurtion regrdless of the initil sttes of the gents Dij74F rere we dopt the notion of probabilistic self-stabilization dopted in ghpter U @hefE inition WAD where stility @losureA is gurnteed only wFhFpF wore formllyD for the lok synhroniztion nd mjority it dissemintion prolemsD we ssume tht all sttes re initilly set y n dversry exept tht

∂ ∂x g (x, y) = 1 -x 2 y-1 2 -2x 2 y -1 2 1 -x 2 y-1 2 for x < y -1 2 < 1D nd 1 -x 2 y-1 2 -2x 2 y -1 2 1 -x 2 y-1 2 0 for x < y -1 2 F o show tht g(x, y) is nonEinresing wFrFtF yD oserve tht this is true for x < y -1 2 F por x y -1 2 D sine ∂ ∂y log y -1 2 + y -1 2 log 1 - 1 y = ∂ ∂y y -1 2 log (y -1) - y 2 log y 0, we hve ∂ ∂y g (x, y) = ∂ ∂y exp log y -1 2 + y -1 2 log 1 - 1 y 0,
• for oth prolemsD it is ssumed tht the gents know their totl numer nD nd • for the lok synhroniztion prolemsD it is ssumed tht the gents know the modulo T of the lok tht they hve to synhronizeD nd tht these informtion re not orruptedF sn the ontext of T Elok synhroniztionD legl on(gurtion is rehed when ll loks show the sme time modulo T D nd in the mjority it disE semintion prolemD legl on(gurtion is rehed when ll gents output the mjority it b maj F xote tht in the ontext of the mjority it disE semintion prolemD the leglity riteri depends on the initil on(gurtion @tht my e set y n dversryAF ht isD the gents must onverge their 3 The majority is not dened if k1 = k0; in this case the only requirement is consensus, i.e. that the outputs of the agents are eventually equal. opinion on the mjority of input its of souresD s evident in the initil on(gurtionF ell tht system is sid to stabilize in t rounds ifD from ny initil onE (gurtionD within t rounds it rehes legl on(gurtion nd remins legl for t lest some polynomil time DGM + 11D wFhFpF sn ftD for the selfE stilizing it dissemintion prolemD if there re no on)iting soure gents holding minority opinion @suh s in the se of single soure gentAD then our protools gurntee tht one legl on(gurtion is rehedD it remins legl inde(nitelyF xote thtD for ny of the prolemsD we do not require tht eh gent irrevoly ommits to (nl opinion ut tht eventully gents rrive t legl on(gurtion without neessrily eing wre of thtF 9.0.3. Protocol Syn-Simple: A simple protocol with many bits per interaction e now present simple selfEstilizing T Eglok ynhroniztion proE toolD lled Syn-SimpleD tht uses reltively mny its per messgeD nd relies on the ssumption tht T is power of PF he protool is sed on itertively pplying selfEstilizing onsensus protool on eh it of the lok seprtelyD nd in prllelF pormllyD eh gent u mintins lok C u ∈ [0, T -1]F et eh roundD u displys the opinion of her lok C u D pulls 2 uniform other suh lok opinionsD nd updtes her lok s the itwise mjority of the two loks it pulledD nd her ownF usequentlyD the lok C u is inrementedF e present the pseudoode of Syn-Simple in elgorithm QF Syn-Simple protocol 1: u smples two gents u 1 nd u 2 F 2: u updtes its lok with the itwise mjority of its lok nd those of the smple nodesF 3: u inrements its lok y one unitF Algorithm 3. yne round of Syn-SimpleD exeuted y eh gent uF e prove the orretness of Syn-Simple in the next propositionF Proposition P. Let T be a power of 2. The protocol Syn-Simple is a self-stabilizing protocol that uses O(log T ) bits per interaction and synchronizes clocks modulo T in O(log T log n) rounds, w.h.p.

Proof. vet us look t the lest signi(nt itF yne round of Syn-Simple is equivlent to one round of QEwedin dynmis with n extr )ipping of the opinion due to the inrement of the lokF he ruil point is tht ll gents jointly )ip their it on every roundF feuse the funtion gents pplyD mode(AD is symmetriD it ommutes with the )ipping opertionF wore formllyD let b i e the vetor of the (rst its of the loks of the gents t round i under n exeution of Syn-SimpleX in other wordsD ( b i ) u is the less signi(nt it of node u9s lok t time iF e lso denote y c i the (rst its of the loks of the gents t round i otined y running modi(ed version of Syn-Simple in whih time is not incrementedF @iFeF we skip line WFHFQ in elgorithm QAF e ouple b nd c trivillyD y running the two versions on the sme intertion pttern @in other wordsD eh gent strts with the sme memory nd pulls the sme gents t eh round in oth exeutionsAF henD b i is equl to c i on even roundsD while is equl to c i )ipped on odd roundsF woreoverD we know from heorem PR tht c i onverge to stle opinion in selfEstilizing mnnerF st follows thtD from ny initil on(gurtion of sttes @iFeF loksAD fter O(log n) rounds of exeuting Syn-SimpleD ll gents shre the sme opinion for their (rst itD wFhFpD nd jointly )ip it in eh roundF yne gents gree on the (rst itD sine T is power of 2D the inrement of time mkes them )ip the seond it jointly one every 2 rounds 4 F wore generllyD ssuming gents gree on the (rst its of their loksD they jointly )ip the + 19st it one every 2 roundsD on top of doing the QEwedin dynmis protool on tht itF hereforeD the sme oupling rgument shows tht the )ipping doesn9t 'et the onvergene on it + 1F husD O(log n) rounds fter the (rst its re synhronizedD the + 19st it is synhronized s well wFhFpF he result thus follows y indutionF gg 9.0.4. The bitwise-independence property sn etion WFID we desrie generl trnsformer whih is useful for reduing the messge size of protools with ertin property lled bitwise-independenceF fefore de(ning the property we need to de(ne vrint of the PU LL modelD whih we refer to s the BIT modelF he reson we introdue suh vrint is minly tehnilD s it ppers nturlly in the proofsF ell tht in the PU LL(η, ) modelD t ny given roundD eh gent u is reding n Eit messge m v j for eh of the η oserved gents v j hosen uFFrF @in our se η = 2AD nd thenD in turnD u updtes her stte ording to the instrutions of protool ΨF snformllyD in the BIT modelD eh gent u lso reeives η messgesD howeverD in ontrst to the PULL model where eh suh messge orresponds to one oserved gentD in the BIT modelD the i9th it of eh suh messge is reeived independently from n gentD hosen uFFrF from ll gentsF Definition PQ @he BIT modelA. sn the BIT modelD t eh roundD eh gent u piks η gents uFFrFD nmelyD j) , ŝ2 j) , . . . , ŝ (j) ).

v (1) 1 , v (1) 2 , . . . v (1) , . . . , v (η) 1 , v (η) 2 , . . . v (η) , nd reds ŝi (j) = s i (v ( 
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To get the feeling of the kind of dependence more signicant bits have on the less signicant ones when T is not a power of 2 observe that, for example, if T = 3 then the rst bit takes cyclically the values 1, 0 and again 0.

fy slight use of lnguge we ll the strings { mj (u)} j η the messages reeived y u in the BIT modelF e re now redy to de(ne the speil property tht we hve mentioned oveF Definition PR @he bitwiseindependence propertyA. gonsider proE tool Ψ designed to work in the PU LL modelF e sy tht Ψ hs the itwiseEindependene property if its orretness nd running time gurntees remin the smeD under the BIT modelD ssuming tht given the messges { mj (u)} j η it reeives t ny roundD eh gent u performs the sme tions tht it would hveD hd it reeived these messges in the PULL modelF vet us (rst stte ft out protools hving the itwiseEindependene propertyF Lemma UH. Assume protocol Syn-Generic is a protocol synchronizing clocks modulo T for some T and protocol P is a protocol which works assuming agents share a clock modulo T . Denote by Syn-P the parallel execution of Syn-Generic and P, with P using the clock synchronized by Syn-Generic. If Syn-Generic and P are self-stabilizing then so is Syn-P, and the convergence time of Syn-P is at most the sum of convergence times of Syn-Generic and P. Finally, if Syn-Generic and P have the bitwise-independence property, and P is also self-stabilizing, Syn-P has the bitwise-independence property too.

Proof. ine Syn-P onsists in the prllel exeution of Syn-Generic nd PD the on(gurtion of the system C (t)

Syn-P = (C (t) Syn-Generic , C (t) P ) t time t is omposed y (rst prt C (t)
Syn-Generic whih desries the nodes9 stte s for the exeution of Syn-GenericD nd seond prt C (t) P whih desries the nodes9 stte s for the exeution of PF vet T Syn-Generic nd T P e upper ounds on the onvergene time of Syn-Generic nd PD respetivelyF es for the selfEstilizing property of Syn-P nd its onvergene timeD oserve tht sine Syn-Generic is selfEstilizingD there exist time t 1 T Syn-Generic suh tht C (t 1 ) Syn-Generic is legitimteD iFeF suh tht the nodes9 loks modulo T re synhronizedD nd y de(nition of selfEstiliztion @loE sure propertyAD they remin synhronized from tht moment onF henD sine P is selfEstilizing s wellD no mtter wht C (t 1 ) P isX there exist time

t 2 t 1 + T P T Syn-Generic + T P suh tht C (t 1 )
P is legitimteD iFeF suh tht P hs onvergedD whih lso mens tht Syn-P orretly onverges in t most T Syn-Generic + T P roundsF es for the itwiseEindependene propertyD ssume we run Syn-P in the BIT modelF he exeution of Syn-Generic is rried independently of the exeution of PF ineD y hypothesisD Syn-Generic hs the independene propertyD eventully ll gents hve synhronized lok modulo T F husD one loks re synhronizedD we n disregrd the prt of the messge orE responding to Syn-GenericD nd view the exeution of Syn-P s simply PF hereforeD sine P is selfEstilizing nd hs the independene propertyD Syn-P still works in the BIT model s in the originl PU LL modelF gg e next show tht the protool Syn-Simple hs the forementioned itwiseEindependene propertyF Lemma UI. Syn-Simple has the bitwise-independence property.

Proof. vet e the size of the loksF essume the (rst i < its of the loks hve een synhronizedF et this stgeD the (i + 1)Est it of eh gent u is )ipped every 2 i rounds nd updted s the mjority of the (i + 1)Est it of C(u) nd the 2 pulled messges on eh roundF ine the (rst its re synhronizedD the previous )ipping is performed y ll gents t the sme roundF he thesis follows from the oservtion thtD in order for Syn-Simple to workD we do not need the it t index (i + 1) to ome from the sme gent s those its used to synhronize the other indiesD s long s onvergene on the (rst i its hs een hievedF gg 9.1. A General Compiler that Reduces Message Size sn this setion we present generl ompiler tht llows to implement protool Ψ using Eit messges while using messges of order log instedD s long s Ψ enjoys the itwiseEindependene propertyF he ompiler is sed on repling messge y n index to @dynmiA it of the messgeF his tool is repetedly used in the following setions to otin our lok synhroniztion nd mjority it dissemintion lgorithms tht use QEit messgesF Theorem IU @wessge edution heoremA. Any self-stabilizing protocol Ψ in the PULL(η, ) model having the bitwise-independence property, and whose running time is L Ψ , can be emulated by a protocol Emul(Ψ) which runs in w re gurnteed to e displying the ith index of their privte messgesD nmelyD the vlues s i (v) nd s i (w)D respetivelyF egent u then sets ŝ(2j-1) i equl to s i (v) nd ŝ(2j) i equl to s i (w)F sn Emul(Ψ)D the messges displyed y gents re only updted fter full loop of CF st therefore follows from the previous prgrph tht the ΨEits olleted y gent u fter fullEphse re distriuted like the its olE leted during one round of Ψ in the BIT model @see he(nition PQAD ssuming the loks re lredy synhronizedF Correctness. he itwiseEindependene property of Syn-Simple @vemm UIAD implies tht Syn-Simple still works when messges re onstruted from the ΨEits olleted y Emul(Ψ)F hereforeD from roposition PD evenE tully ll the loks C re synhronizedF ine privte messges s re only updted fter full loop of CD one the loks C re synhronized phse of Emul(Ψ) orresponds to one round of ΨD exeuted in the BIT modelF reneD the hypothesis tht Ψ opertes orretly in selfEstilizing wy in the BIT model implies the orretness of Emul(Ψ)F Running time. yne the loks C(u) re synhronizedD for ll gents uD using the (rst log( η 2 ) its of the messgesD the gents reprodue n exeution of Ψ with multiplitive timeEoverhed of η 2 F woreoverD from roposition PD synhronizing the loks C(u) tkes O (log(ηm) log n) roundsF husD the time to synhronize the loks osts only n dditive ftor of

O (log(ηm) log n) roundsD nd the totl running time is O (log(ηm) log n) + η 2 • L Ψ F
Bitwise-independence property. rotool Emul(Ψ) inherits the itwiseE independene property from tht of Syn-Simple @vemm UIA nd Ψ @whih hs the property y hypothesisAX e n pply vemm UH where Syn-Generic is Syn-Simple nd P is the suroutine desried oveD whih displys t eh round the it of Ψ whose index is given y synhronized lok C modulo @iFeF the one produed y Syn-SimpleAF yserve tht the forementioned suroutine is selfEstilizingD sine it emultes Ψ one loks re synhronizedF henD in the nottion of vemm UHD Emul(Ψ) is Syn-PF gg 9.2. Self-Stabilizing Clock Synchronization Syn-Intermediate protocol Memory: ih gent u keeps sequene of loks C 1 , . . . , C τ nd sequene of its b 1 , . . . , b τ F he lok C 1 runs modulo T D the lok C τ runs modulo 4D nd the iEth lok C i runs modulo 2 i -1 @see proof of vemm UPAF ih gent u lso mintins sequene of heps @or some ordered strutureA

S δ i D for eh δ ∈ {1, 2} nd i = 1, . . . , τ F Message: u displys C τ @2 itsA nd b τ @1 itAF por ll i ∈ [τ ], , b i (u) is the C i (u)Eth it of the string otined ontenting the inry representtion of C i-1 (u) nd b i-1 (u)F
1: u smples two gents u 1 nd u 2 F 2: u updtes its lok with the itwise mjority of its lok nd those of the smple nodesF 3: u inrements its lok y one unitF 4: u sets i * equl to the mximl i < τ suh tht

C i+1 = 0F 5: por δ = 1, 2D u pushes b τ (u δ ) in S δ i * F @xote thtD if C i * +1 , . . . , C τ re synhronizedD then ll gents re displying the it with index C i * +1 of (C i * , b i * ) s b τ FA 6: hile i > 1 nd C i = 0D u does the followingX 7: | ops the lst m i-1 -1 its from S δ i-1 nd set s δ equl to itF 8: | ets C i-1 equl to the itwise mjority of C i-1 (u)D s 1 nd s 2 F 9: | snrements C i-1 nd derement i y one unitF
Algorithm 4. stertive version of the protool Syn-IntermediateD exeuted y eh gent uD unfolding the reursion in proof of vemm UPF sn etion WFHFQ we desried Syn-Simple E simple selfEstilizing lok synhroniztion protool tht uses log T its per intertionF sn this setion we desrie our min selfEstilizing lok synhroniztion protoolD Syn-3BitsD tht uses only 3 its per intertionF e (rst ssume T is power of 2F e show how to get rid of this ssumption in etion WFPFPF 9.2.1. Clock Synchronization with 3-bit messages, assuming T is a power of two sn this setionD we show the following resultF Lemma UP. Let T be a power of 2. There exists a synchronization protocol Syn-Intermediate which synchronizes clocks modulo T in time Õ log 2 T log n using only 3-bit messages. Moreover, Syn-Intermediate has the bitwise-independence property. fefore presenting the proof of vemm UPD we need remrk out loksF Remark V. sn order to synhronize lok C modulo T D throughout the nlysis we often otin lok C modulo T which is incremented every roundsF roweverD C n still e trnslted k to lok modulo T whih is inremented every roundD y keeping third lok C modulo nd setting

C = C + C mod T.
Proof of Lemma 72. et high levelD we simply pply itertively the wessge edution heorem in order to redue the messge to 3 itsD strting with Ψ a Syn-SimpleF e pitoril representtion of our reursive protool is given in pigure PVD nd pseudoode is given in elgorithm R6 

0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
The emulated protocol P uses messages of 2 7 bits.

Figure 28. e more expliit view of our 3Eit emultion of protool ΨD otined y iterting vemm IUF he downEmost lyer represents the 2 7 Eits messge displyed y protool ΨF ih lyer on the piture my e seen s the messge of protool emulting Ψ with fewer itsD tht isD s we go up on the (gure we otin more nd more eonomil protools in terms of messge lengthF sn prtiulrD the top lyer repreE sents the 3Eit messge in the (nl emultionF he leftEmost prt of eh messge @olored in light lueA enodes lokF he rightEmost it @olored in light yellowA of eh messge @exept the ottomEmost oneA orresponds to prtiulr it of the lyer below itF he index of this prtiulr displyed it is given y the vlue of the lokF ih lok on n inE termedite lyer is updted only when the lok on the lyer above ompletes loop @iFeFD hs vlue 0AF he lok on the topEmost lyer is updted on every roundF vet us onsider wht we otin fter pplying the wessge edution heorem the (rst time to Ψ =Syn-Simple for loks modulo T F ell tht we ssume tht T is power of PF prom roposition P we know tht in this seD the onvergene time of Syn-Simple is L Ψ = O (log T log n)D the numer of pulled gents t eh round is m = 2 nd the numer of its of eh messge is = log T F xote thtD with the emultion produed y the wessge edution heoremD the lok used in Ψ aSyn-Simple is inremented only every = log T roundsF fy emrk VD we n trnslte the ltter lok to the desired lok modulo T @whih is inremented t eh roundAF reneD y the running time nlysis of the wessge edution heoremD we otin protool Emul(Ψ) whih synhronizes lok modulo T in

O (log n log log T ) + O log 2 T log n = O log 2 T log n roundsF he messge size is redued from log T to log log T + 1 = O (log log T ) .
fy repetedly pplying the wessge edution heoremD we redue the size of the messge s s > log + 1D iFeF s long s > 3F he numer of repeted pplition of the wessge edution heorem until the messge size is 3 is thus 

of order log * T F Public Public Private Private Private Ψ Emul(Ψ) • • • 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 Syn-Clock 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 Public Private bits log + 1 bits

Message Reduction Lemma

L i D suh tht @ITUA L i+1 γ 1 (log i log n + i L i ),
for some onstnt γ 1 independent of iF e set L 1 to e

L 1 := L Syn-Simple ∨ log n = O (log T log n) ∨ log n,
tking the mximum with log n for tehnil onvenieneF he seond term domintes in @ITUA euse i >> log i nd L i > log nF rene L i is t most of order j<i j • L 1 F wore preiselyD y indution we n ound L i

γ i 1 i-1 j=1 j L 1 D sine L i+1 γ 1 log i log n + γ i 1 i j=1 j • L 1 γ 1 i log n + γ i 1 i j=1 j • L 1 2γ i 1 i j=1 j • L 1 γ i+1 1 i j=1 j • L 1 ,
where we use the ft tht γ 1 > 2D nd the de(nition of L 1 F he running time of Emul(Ψ) =Syn-Clock fter the lst pplition of the wessge edution heoremD iFeF τ D is thus

L Syn-Clock := L τ γ τ 1 τ i=1 i L 1 .
e now use the ounds

L 1 = O(log T log n), τ i=1 i 1 2 τ 3 , 1 = O (log T ) , 2 = O (log log T ) , nd (nllyD y vemm US @see in etion WFR t the end of the hpterAD γ τ 1 = O (log log log T ) nd τ 3 2 O((log 4 T ) 2 ) 2 O(log log log T ) (log log T ) O(1) .
e thus onlude tht 1) .

L Syn-Clock γ τ 1 τ i=1 i L 1 O (log log log T ) • 1 2 τ 3 • O(log T log n) O (log log log T ) • O (log T ) • O (log log T ) • O (log log T ) O(1) • O(log T log n) log 2 T log n • (log log T ) O ( 
he totl slowdown with respet to Syn-Simple orresponds to τ i=1 i = Õ(log T )F rene the lok produed y the emultion is inremented every Õ(log T ) roundsF sn other words we otin lok modulo T • f (T ) for some funtion f F fy emrk V we n still view this s lok modulo T F gg 9.2.2. Extension to general T and running time improvement sn this susetion we im to get rid of the ssumption tht T is power of 2 in vemm UPD nd lso redue the running time of our protool to Õ (log n log T )D proving heorem ITF Syn-Clock protocol Memory: ih gent u stores lok C (u) whih runs modulo T γ log n log T F ih gent u lso stores vrile Q whih is inremented only one every T rounds nd runs modulo T F Message: ih gent u displys 4 itsF yn the (rst

3 itsD protool Syn-Intermediate is pplied to synhronize C F he 4Eth it b(u) is the it with index ( C (u) γ log n mod log T ) of Q(u)F 1: u smples two gents u 1 nd u 2 F 2: u updtes b(u) with the mjority of b(u)D b(u 1 ) nd b(u 2 )F 3: sf C = 0D inrement Q y one unit modulo T F Output: he lok modulo T is otined s C := (C + Q • T ) mod T
Algorithm 5. he protool 4Eit Syn-ClockD exeE uted y eh gent uF Proof of Theorem 16. prom vemm UPD we know tht protool Syn-Intermediate synhronizes loks modulo T in time Õ log 2 T log n using only 3Eit messgesD provided tht T is power of PF hile protool Syn-Intermediate emultes protool Syn-SimpleD it displys the (rst it of the messge of Syn-Simple only one every Õ (log T ) roundsF yf ourseD it would e more e0ient to disply it O (log n) times in rowD so tht the QEwedin dynmis would mke every gent gree on this itD nd then move to greeing on the seond itD nd so onF o hieve thisD s in the proof of Syn-SimpleD we n view lok modulo T D sy QD s written on log T itsF sf gents lredy possess smll ounter modulo T := O (log T log n) they n use it to disply the (rst it for O (log n) roundsD then the seond one for O (log n) roundsD nd so on until eh one of the log T its of T hs een synhronizedF his would synhronize ll its of the desired lok within O (log T log n) roundsD wFhFpFD while eing very eonomil in terms of messge lengthD sine only 1 it is displyed t ny timeF hereforeD we n use vemm UP to synhronize ounter modulo O (log T log n) in Õ((log log T ) 2 log n) roundsD using 3 its per messgeF henD we n use fourth it to run QEwedin dynmis on eh of the log T its of Q for O(log n) onseutive roundsD for totl running time of O(log T log n) roundsF et this pointD n pplition of the wessge edution heorem would give us protool with running time O(log T log n) using 3Eit mesE sgesF roweverD perhps surprisinglyD similr strtegy enles us to synE hronize lok modulo ny integer @not neessrily power of 2AF vet us ssume tht T ∈ N is n ritrry integerF vet γ log n e n upper ound on the onvergene time of QEwedin dynmis whih gurntees orret onsensus with proility t lest 1n -2 D for some onstnt γ lrge enough DGM + 11F vet T e the smllest power of 2 igger thn log T • (γ log n + γ log log T ) . fy vemm UPD using 3 itsD the gents n uild synhronized lok C running modulo T in time Õ((log log T ) 2 log n)F he other min ingredient in this onstrution is nother lok Q T whih is inremented one every T rounds nd runs modulo T F he desired lok modulo T D whih we denote CD is otined y

C := C + Q T • T mod T.
st is esy to hekD given the de(nitions of C nd Q T tht this hoie indeed produes lok modulo T F st remins to show how the lok Q T modulo T is synhronizedF yn (rst glneD it my seem s if we did not simplify the prolem sine Q is lok modulo T itselfF roweverD the di'erene etween Q T nd regulr lok modulo T is tht Q T is inremented only one every T roundsF his is exploited s followsF he ounter Q T is written on log T internl itsF e show how to synE hronize Q T using REth it in the messgesD similrly to the forementioned strtegy to synhronize QY we lter show how to remove this ssumption usE ing the wessge edution heoremF vet us ll loop of C modulo T n epochF he rounds of n epoh re divided in phses of equl length γ log n + γ log log T @the remining T mod (γ log n + γ log log T ) rounds re just ignoredAF he lok C determines whih it from Q T to displyF he (rst it of Q T is displyed during the (rst phseD then the seond one is displyed during the seond phseD nd so onF fy heorem PRD the length of eh phse gurntees tht onsensus is hieved on eh it of Q T vi 7 QEwedin dynmisD wFhFpF wore preiselyD fter the (rst it hs een disE plyed for γ log n+γ log log T roundsD ll gents gree on it with proility 8 7 Observe that, once clock C is synchronized, the bits of Q T do not change for each agent during each subphase. Thus, we may replace 3-Median dynamics by the Min protocol where on each round of subphase i each agent u pulls another agent v u.a.r. and updates her i-th bit of Q to the minimum between her current i-th bit of Q and the one of v. However, for simplicity's sake, we reuse the already introduced 3-Median dynamics protocol.
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From Theorem 24, we have that after γ log n rounds, with γ large enough, the probability that consensus has not been reached is smaller than 1 n 2 . Thus, after N • γ log n rounds, the probability that consensus has not been reached is smaller than 1 n 2N . If we choose N log n = log n + log log T , we thus get the claimed upper bound 1 n 2 log T .

1 -1 n 2 log T D provided γ is lrge enoughF husD t the end of n epohD gents gree on ll log T its of Q T with proility greter thn rounds the loks C re ll synhronizedD wFhFpF pinllyD we show how to get rid of the extr 4Eth it to hieve greeE ment on Q T F yserve thtD one C is synhronizedD this it is used in selfEstilizing wyF husD sine Syn-Intermediate hs the itwiseE independene propertyD using vemm UHD the protool we desried ove possesses the itwiseEindependene property tooF fy using the wessge edution heorem we n thus redue the messge size from 4 its to log 4 + 1 = 3 itsD while only inurring onstnt multiplitive loss in the running timeF he lok we otinD ounts modulo T ut is inremented every 4 rounds onlyF roweverD from emrk VD we n still trnslte this into lok modulo T F gg Remark W @snternl memory speA. he internl memory spe needed to implement our protools Syn-SimpleD Syn-IntermediateD nd Syn-Clock is lose to log T in ll sesX protool Syn-Simple uses one ounter written on log T itsD Syn-Intermediate needs internl memory of size log T + O (log log T + log log log T + . . .) log T (1 + o(1)), nd the internl memory requirement of Syn-Clock is of order log T + log log nF 9.3. Majority Bit Dissemination with a Clock sn this setion we ssume tht gents re equipped with synhronized lok C modulo γ log n for some ig enough onstnt γ > 0F sn the previous setion we showed how to estlish suh synhronized lok in Õ(log n) time nd using QEit messgesF e hve lredy seen in etion PFTFI how to solve the it dissemintion prolem @when we re promised to hve single soure gentA ssuming suh synhronized loksD y pying n extr it in the messge size nd n O(log n) dditive ftor in the running timeF his setion is dedited to showing thtD in ftD the more generl mjority it dissemintion prolem n e solved with the sme time omplexity nd using QEit messgesD proving heorem ISF sn etion WFQFID we desrie nd nlyze protool Syn-Phase-SpreadD whih solves mjority it dissemintion y pying only O(log n) dditive overhed in the running time wFrFtF lok synhroniztionF por lrity9s skeD we (rst ssume tht the protool is using 4 its @iFeF I dditionl it over the 3 its used for lok synhroniztionAD nd we lter show how to derese the numer of its k to Q in etion WFQFPD y pplying the wessge edution heoremF he min ide ehind the 3(+1)Eit protoolD lled Syn-Phase-SpreadD is to mke the soures9 input its disseminte on the system in wy tht preserves the initil rtio k 1 k 0 etween the numer of soures supporting the mjority nd minority input itF his is hieved y dividing the disseminE tion proess in phsesD similrly to the min protool in FHK14 whih ws designed to solve the it dissemintion prolem in vrint of the PUSH model in whih messges re 'eted y noiseF he phses indues spredE ing proess whih llows to leverge on the onentrtion property of the gherno' oundsD preserving the forementioned rtioF hileD on n intuE itive levelD the role of noisy messges in the model onsidered in FHK14 my e relted to the presene of soures hving on)iting opinion in our settingD we remrk tht the protool presented here nd its nlysis deprt from those of FHK14 on severl key pointsX while the protool in FHK14 needs to know the the noise prmeterD Syn-Phase-Spread does not sE sume ny knowledge out the numer of di'erent souresD nd the nlysis we present does not require to ontrol the growth of the numer of speking gents from ove 9 F sn order to perform suh spreding proess with I it onlyD the protool in FHK14 leverges on the ft tht in the PU SH model gents n hoose when to speakD iFeF whether to send messge or notF o emulte this property in the PU LL modelD we use the prity of the lok CX on odd rounds gents willing to send 0 disply 0D while others disply 1 nd onversely on even roundsF ounds re then grouped y twoD so 2 rounds in the PULL model orrespond to 1 round in the PUSH versionF 9.3.1. Protocol Syn-Phase-Spread sn this setion we desrie protool Syn-Phase-SpreadF es mentioned oveD for lrity9s ske we ssume tht Syn-Phase-Spread uses 4Eit mesE sgesD nd we show how to remove this ssumption in etion WFQFPF hree of suh its re devoted to the exeution Syn-ClockD in order to synhronize lok C modulo 2 γ phase log n + γ phase 2 log n for some onstnt γ phase 2 + ε end for some positive onstnt ε end = ε end (γ phase , ε) @where the dependeny in γ phase is monotonilly inresingAD b 1 = 0 otherwiseD wFhFpF prom the gherno' ound @gorollry WA nd the union oundD this implies tht when γ phase > 8/ε end t the end of the polling phse eh gent lerns b maj D wFhFpF ithout loss of generlityD let b maj = 1D iFeF k 1 > k 0 F he nlysis is divided in the following lemmsF Lemma UQ. At the end of the boosting phase it holds w.h.p.

1 - 1 n 2 log T log T 1 -O(n -2 ).
k (1) 1 + k (1) 0 @ITVA (k 1 + k 0 ) γ phase 3 log n • 1 k 1 +k 0 < n 2γ phase log n + n 1 - 1 √ e + 1 √ e (k 1 + k 0 ) -n log n • 1 n 2γ phase k 1 +k 0 n-2 √ n log n + n1 {k1+k0>n-2 √ n log n} , k (1) 1 k (1) 0 k 1 k 0 1 - 9 γ phase k 0 . @ITWA
Proof. pirstD we prove @ITVAF fy using the ft tht if |x| < 1D it holds @IUHA e

x 1+x 1 + x e x 1 + x 1x .

we hve

E k (1) 1 + k (1) 0 = k 1 + k 0 + (n -k 1 -k 0 ) 1 -1 - k 1 + k 0 n γ phase log n k 1 + k 0 + (n -k 1 -k 0 ) 1 -exp - k 1 + k 0 n γ phase log n . @IUIA e distinguish three sesF
Case k 1 + k 0 < n 2γ phase log n . fy using @IUHA ginD from @IUIA we get

E k (1) 1 + k (1) 0 k 1 + k 0 + (n -k 1 -k 0 ) 1 -exp - k 1 + k 0 n γ phase log n k 1 + k 0 + (n -k 1 -k 0 ) k 1 +k 0 n γ phase log n 1 + k 1 +k 0 n γ phase log n k 1 + k 0 + (n -k 1 -k 0 ) k 1 + k 0 n γ phase 2 log n k 1 + k 0 + 1 - k 1 + k 0 2n (k 1 + k 0 ) γ phase 2 log n (k 1 + k 0 ) 1 + 1 - 1 4γ phase log n γ phase 2 log n (k 1 + k 0 ) γ phase 2 log n. @IUPA
prom the gherno' ound @vemm PSAD we thus get tht wFhFpF

k (1) 1 + k (1) 0 (k 1 + k 0 ) γ phase 3 log n. Case n 2γ phase log n k 1 + k 0 n -2 √ n log n. prom @IUIAD we hve E k (1) 1 + k (1) 0 k 1 + k 0 + (n -k 1 -k 0 ) 1 -exp - k 1 + k 0 n γ phase k 1 + k 0 + (n -k 1 -k 0 ) 1 - 1 √ e n 1 - 1 √ e + k 1 + k 0 √ e .
prom the gherno' ound @vemm PSAD we thus get tht wFhFpF 

k (1) 1 + k (1) 0 n 1 - 1 √ e + k 1 + k 0 √ e -n log n. Case k (1) 1 + k (1) 0 > n -2 √ n log n.
|S boost | = k (1) 1 -k 1 + k (1) 0 -k 0 .
he proility tht n gent in S boost oserves n gent in B @respF WA is

k 1 k 1 +k 0 @respF k 0 k 1 +k 0 AF hus E k (1) 1 = k 1 + k 1 k 1 + k 0 E [|S boost |] nd E k (1) 0 = k 0 + k 0 k 1 + k 0 E [|S boost |] . @IUQA sn prtiulr @IURA E k (1) 1 E k (1) 0 = k 1 + k 1 k 1 +k 0 E [|S boost |] k 0 + k 0 k 1 +k 0 E [|S boost |] = k 1 k 0 , nd from @IUPA nd @IUQA we hve E k (1) 0 k 0 k 1 + k 0 E [|S boost |] = k 0 k 1 + k 0 E k (1) 1 + k (1) 0 -(k 1 + k 0 ) (1 -o(1)) k 0 k 1 + k 0 γ phase 2 (k 1 + k 0 ) log n = (1 -o(1))k 0 γ phase 2 log n, @IUSA
where the lower ound follows from the ssumption k 1 k 0 < n 2γ phase log n nd @IUPAF prom @IUSA nd the multiplitive form of the gherno' ound @gorolE lry WAD we hve tht wFhFpF

k (1) 1 E k (1) 1 -E k (1) 1 log n nd k (1) 0 E k (1) 0 + E k (1) 0 log n. @IUTA husD sine @IUQA implies E k (1) 1 E k (1) 0 D we hve k (1) 1 k (1) 0 E k (1) 1 -E k (1) 1 log n E k (1) 0 + E k (1) 0 log n = E k (1) 1 E k (1) 0 • 1 - log n E k (1) 1 1 + log n E k (1) 0 E k (1) 1 E k (1) 0 •   1 - log n E k (1) 1 - log n E k (1) 0    E k (1) 1 E k (1) 0 •   1 -2 log n E k (1) 0    = k 1 k 0 • 1 - 9 k 0 γ phase , @IUUA
onluding the proofF gg Lemma UR. At the end of the i + 1th spreading phase, the following holds w.h.p.

k (i+1) 1 + k (i+1) 0 k (i) 1 + k (i) 0 γ phase 3 1 k (i) 1 +k (i) 0 < n 2γ phase + n 1 - 1 √ e + 1 √ e k (i) 1 + k (i) 0 -n log n • 1 n 2γ phase k (i) 1 +k (i) 0 n-2 √ n log n + n1 k (i) 1 +k (i) 0 >n-2 √ n log n , @IUVA
es in @IUTAD from the multiplitive form of the gherno' ound @gorollry WA we hve tht wFhFpF

k (i+1) 1 E k (i+1) 1 -E k (i+1) 1 log n nd k (i+1) 0 E k (i+1) 0 + E k (i+1) 0 log n. @IVRA husD s in @IUUAD from @IVRA nd @IVPAD we get k (i+1) 1 k (i+1) 0 E k (i+1) 1 E k (i+1) 0 •   1 -2 log n E k (i+1) 0    k (i) 1 k (i) 0 • 1 -4 log n γ phase k (i) 0
, whereD s in @IUSAD in the lst inequlity we used tht from @IVIA nd @IVQA it holds

E k (i+1) 0 γ phase 4 k (i) 0 .
gg prom the previous two lemmsD we n derive the following propositionD whih onludes the proofF Proposition Q. If k 1 k 0 (1 + ε) for some constant ε > 0, then at the end of the last spreading phase it holds w.h.p.

k (1+2 log n) 1 = n -k (1+2 log n) 0 k (1+2 log n) 0 (1 + ε end ) , @IVSA where ε end = ε - 4 √ γ phase .
Proof. e (rst show how the equlity in @IVSA follows from @IUVAF hen k

(i) 1 + k (i) 0 < n 2γ phase , @IUVA shows tht k (i) 1 + k (i)
0 inreses y multiplitive ftor γ phase t the end of eh spreding phseF hen n 2γ phase k

(i) 1 + k (i) 0 n -2 n log n, @IUVA shows tht n -k (i+1) 1 -k (i+1) 0 n -k (i) 1 -k (i) 0 √ e -n log n n -k (i) 1 -k (i) 0 √ e .
rene the numer of silent gents dereses y ftor √ e fter eh spredE ing phseF vstlyD when

k (i) 1 + k (i) 0 > n -2 n log n,
fter one more spreding phseD simple pplition of the union ound shows tht k

(i+1) 1 + k (i+1) 0
is equl to nD wFhFpF es onsequeneD if γ phase is ig enoughD fter less thn 1 + 2 log n spreding phses it holds tht wFhFpF

k (1+2 log n) 1 = n -k (1+2 log n) 0 .
he inequlity in @IVSA n e derived from @IUWAD s followsF prom @ITWA nd @IUWA we hve

k (1+2 log n) 1 k (1+2 log n) 0 k 1 k 0 1 - 9 γ phase k 0 1+2 log n i=2 1 - 16 log n γ phase k (i) 0 . @IVTA e n estimte the produt s 1+2 log n i=2 1 - 16 log n γ phase k (i) 0 exp -4 1+2 log n i=2 1 √ γ phase i , exp 4 1 + 1 √ γ phase - 1 -(γ phase ) -2+2 log n 2 1 -(γ phase ) -1 2 exp -4 1 γ phase - √ γ phase -n - 2 log γ phase 2 1 - 5 γ phase , @IVUA
where in the (rst nd lst inequlity we used tht 1x e -x 1-x if |x| < 1F pinllyD from @IVTA nd @IVUA we get

k (1+2 log n) 1 k (1+2 log n) 0 k 1 k 0 1 - 9 γ phase k 0 1 - 5 γ phase k 1 k 0 1 - 4 √ γ phase ,
onluding the proofF gg rving ompleted the proof of roposition QD in the next etion we n (nlly prove the min theorem of this hpterF

Proof of Theorem 15

Theorem IS @Syn-Phase-SpreadA. Fix an arbitrarily small constant ε > 0. There exists a protocol, called Syn-Phase-Spread, which solves the majority bit dissemination problem in a self-stabilizing manner in Õ(log n) rounds 12 , w.h.p. using 3-bit messages, provided that the majority bit is supported by at least a fraction 1 2 + ε of the source agents. Proof of Theorem 15. prom roposition QD it follows tht t the end of the lst spreding phseD ll gents hve een informedF efter the lst spreding phseD during the polling phseD eh gent smples γ phase log n opinions from the popultion nd then dopts the mjority of these s her output itF husD @IVSA ensures tht eh smple holds the orret opinion with proility 1 2 + ε end F reneD y the gherno' ound @vemm UTA nd union oundD if γ phase is ig enough then the mjority of the γ phase log n smples orresponds to the orret vlue for ll the n gentsD wFhFpF he protool otined so fr solves mjority it dissemintionD ut it does it using 4 its per messge rther thn 3F sndeedD synhronizing lok using Syn-Clock tkes 3 itsD nd we use n extr it to exeute Phase-Spread desried in etion WFQFIFIF roweverD the protool Syn-Phase-Spread hs the independene propertyF his follows from vemm UH with Syn-Generic =Syn-ClockD P =Phase-SpreadD Syn-P =Syn-Phase-SpreadD together with the oservtion tht Phase-Spread is selfE stilizingF e n thus redue the messge length of Syn-Phase-Spread to 3 its using gin the wessge edution heoremD with time overhed of ftor 4 onlyF Proof. e n notie tht

f (T ) T -1,
if T is igger thn some onstnt cF woreoverD when f (x) cD the numer of itertions efore rehing 1 is O(1)F his implies tht

τ (T ) T + O(1). fut in ftD y de(nitionD (T ) = g f 4 (T ) + 4 @provided f 4 (T ) > 1D whih holds if T is ig enoughAF rene τ (T ) g f 4 (T ) + 4 f 4 (T ) + O(1) log 4 T + O(1). gg 12
With a slight abuse of notation, with Õ(f (n)g(T )) we refer to f

(n)g(T ) • log O(1) (f (n)) • log O(1) (g(T )
). All logarithms are in base 2.

grei IH

Open Problems es disussed in ghpter ID the everging dynmis studied ghpter R hs the disdvntges of ssuming tht gents n interpret their stte s rel numer nd perform rithmetil opertionsF purthermoreD the dynmis opertes in the LOCAL model Pel00F st is n importnt open prolem whether the everging dynmis itself n still hieve the sme performnes when implemented in the importnt ontext of popultion protoolsX rther thn hving ll nodes omputing the verge of ll neighors t eh roundD t eh time step only single edge is smpled uFFrFD nd its two endpoints verges their vluesF en even greter open prolem is whether the ommunity detetion proE lem n e solvedD with omprle performnesD y even simpler dynmisD suh s the QEwjority dynmisD whih relies only on the ility to ompute the mode of smpleD iFeF on testing equlityF egrding the upper ound on the onvergene time of the QEwjority dynmis given in ghpter S @heorem VAD we elieve tht it is not tight wFrFtF kF e think tht t lest ftor k n e svedF o this imD we would need to show tht more opinions get smll during phseF his numer should lso depend on the urrent numer of ig olorsF enother ide would e tht of @lsoA onsidering the growth of the mximl opinionF nfortuntelyD di'erently from the miniml opinion @see @URA in etion SFRAD we hve no good ound on the expeted drift for the mximl opinion tht holds from any on(gurtionF oD we don9t see how to e0iently dpt our pproh without this ruil ingredientF e more generl open question is to nlyze stilizing lmostEonsensus dynmisD suh s the QEwjority oneD in some interesting grph topologiesF e elieve tht suitle omintion of our nlysis nd some previous nlysis for the inry se CER14 might e useful on expnder grphs HLW06 nd some lsses of rndom evolving grphs CMM + 10F woving to ghpter TD we elieve tht the monohromti distne invesE tigted there might represent generl lower ound on the onvergene time of any plurlity dynmis whih uses only log k + Θ(1) its of lol memoryF enlogously to the QEwjority dynmisD n interesting future reserh is the study of the ndeidedEtte dynmis @or other simple dynmisA for solving the plurlity onsensus prolem over other lsses of grphs in o(k) timeF sn this workD we omined this dynmis with prllel rndom wlks in order to get n e0ient protool for regulr expnder grphsF e elieve tht similr protools n lso in other lsses of grphs suh s ird®sEényi grphs nd dynmi grphs CMM + 10, CCD + 13F sn ghpter UD we showed tht the repeted llsEintoEin proessD whih models prllel rndom wlks in the PU SH model on omplete grphD is selfEstilizing when the numer m of lls equls the numer n of ins @oviouslyD this is still the seD whenever m < nAF en interesting open question is whether this result extends to lrger vlues of mD iFeFD for ny m = O(n log n)F e elieve n pproh sed on lower ound on the numer of empty ins might still workF imultion results for inresing vlues of n @up to n ∼ 10 5 A show tht the numer of empty ins is still omptile with liner funtionD even if stndrd devition in our experiments turned out to e reltively lrgeF e more generl interesting question is the study of prllel rndom wlks in the uniform PU SH model over more generl grph lssesF his line of reserh is lso motivted y severl pplitions of the proess BCEG10, Coo11, EK15, HPP + 16F he nlysis of this proess in etion TFQ provides ound O √ t on the mximum lod fter t rounds on regulr grphs BCN + 15aF e elieve this previous ound for reguE lr grphs is fr from tight nd it leds to rough ounds on prllel over times on these networksF e onjeture tht the mximum lod remins logrithmi for long period in ny regular grphF e possile reson for this phenomenon @if trueA might e tht the expeted di'erene etween @tokenA rrivls nd deprtures is lwys non-positive t every node in regE ulr grphsF es highlighted in our nlysis of the omplete grphD this ft lone is not enough ut it ould e omined with suitle ound on the numer of empty insD in order to prove our onjeture in this more generl seF nfortuntelyD nonEomplete grphs present further tehnil issueX in order to pply ny rgument sed on the presene of empty insD not only do we need to rgue out their numerD ut lso out their distriE ution ross the networkF his tehnil issue seems to e fr from trivil even on simple topologies suh s ringsF enother interesting question onerning the repeted llsEintoEins proE ess is the tightness of the ound on the mximum lod provided y heoE rem IPF sn the lssil @one shotA llsEintoEins prolemD it is wellEknown tht the mximum lod of the ins is Θ (log n/ log log n)D wFhFpF yne my wonder whether our O (log n) upper ound on the mximum lod of the repeted proess for polynomil numer of rounds is tightD or it n e improved to O(log n/ log log n)F e onjeture thtD within ny polynomil time windowD the proility tht the mximum lod symptotilly exeeds log n/ log log n is nonEnegligileF sn ghpter VD we solved the generl version of it dissemintion nd pluE rlity onsensus in iologil systemsF ht isD we hve solved these prolems for n ritrrily lrge numer k of opinionsF e re not wre of relisti iologil ontexts in whih the numer of opinions might e funtion of the numer n of individulsF xeverthelessD it ould e interestingD t lest from oneptul point to viewD to ddress it nd plurlity onsensus in senrio in whih the numer of opinions vries with nF his ppers to e tehnilly hllenging prolemF sndeedD extending the reE sults in the extended strt of FHK15 from P opinions to ny onstnt numer k of opinions lredy required to use omplex toolsF etD severl of these tools do not pply if k depends on nF his is typilly the se of roposition IF e let s n open prolem the design of stohsti tools enling to hndle the senrio where k = k(n)F sn ghpter W we hve delt with the onstrution of protools in highly ongested stohsti intertion ptternsF gorresponding hllenges re prE tiulrly evident when it is di0ult to gurntee synhroniztionD whih seems to e essentil for emulting typil protool tht relies on mny its per messge with protool tht uses fewer itsF ghpter W shows tht in the PU LL modelD if selfEstilizing protool stis(es the itwiseE independene property then it n e emulted with only Q its per messgeF sing this rther generl trnsformerD we solve the selfEstilizing lok synE hroniztion nd mjority it dissemintion prolems in lmostElogrithmi time nd using only 3 its per messgeF st remins n open prolem whether the messge size of either one of these prolems n e further redued while keeping the running time polylogrithmiF sn prtiulrD even for the selfEstilizing it dissemintion prolem @with single soureA it remins open whether there exists polylogrithmi proE tool tht uses single it per intertionF sn ftD we investigted severl ndidte protools whih seem promising in experimentl simultionD ut pper to e out of reh of urrent tehniques for nlysing rndomlyE interting gent systems in selfEstilizing ontextF vet us informlly present one of themD lled BFS 1 F vet Dk ∈ N e two prmetersD sy of order O(log n)F egents n e in 3 sttesX boostingD frozen or sensitiveF

• foosting gents ehve s in the QEwedin dynmis protoolX they pply the mjority rule to the 2 vlues they see in given round nd mke it into their opinion for the next roundF hey lso keep ounter T F sf they hve seen only gents of given olor b for roundsD they eome sensitive to the opposite vlueF • bEsensitive gents turn into frozenEb gents if they see vlue bF • bEfrozen gents keep the vlue b for k rounds efore eoming oostE ers ginF sntuitively wht we expet is thtD from every on(gurtionD t some point lmost ll gents would e in the oosting stteF henD the oosting ehvior would led the gents to onverge to vlue b @whih depends on the initil onditionsAF wost gents would then eome sensitive to 1 -bF sf the soure hs opinion 1-b then there should e swith from b to 1-bF he frozen period is ment to llow for some dely in the times t whih gents eome sensitiveD nd then )ip their opinionF his lgorithm howeverD s the 1 A similar protocol was suggested during discussions with Bernhard Haeupler. and if X i -M for each i, then @IWRA

Pr i X i E i X i -λ exp      - λ 2 2 i E X 2 i + M λ 3     
.

Corollary W. If the X i s are binary, then for λ = E [ i X i ] log n, @IWQA and @IWRA become

Pr   i X i E i X i + E i X i log n   e -E[ i X i] log n , Pr   i X i E i X i -E i X i log n   e -E[ i X i] log n .
Proof. sf the X i s re inry then i E X 2 i i E [X i ]F ogether with λ = E [ i X i ] log nD the ltter ft implies tht in the exponent of the right hnd side of @IWQA nd @IWRA we get with probability r, -1 with probability q.

- λ 2 2 i E X 2 i + M λ 3 - E [ i X i ] log n 2 i E [X i ] + 1 3 E [ i X i ] log n - E [ i X i ] log n 2 E [ i X i ] 1 3 √ log n + 1 -E i X i log n.
with p + r + q = 1. It holds

Pr i X t (1 -θ) E i X t -θn exp - θ 2 4 E i X t + n .
Proof. vet us de(ne the rFvF @IWSA Y t = X t + 1 2 .

e n pply the gherno'Eroe'ding ound to Y t @see heorem IFI in DP09AD otining

Pr i Y i (1 -θ) E i Y i exp - θ 2 2 E i Y i
for ny θ ∈ (0, 1)F ustituting @IWSA we hve

Pr i X t + n (1 -θ) E i X t + n = Pr i X t (1 -θ) E i X t -θn exp - θ 2 4 E i X t + n ,
onluding the proofF gg he following folklore reverseEgherno' ound Mou14D heorem P shows tht the gherno' ound is essentilly tight 1 Theorem PT @everse gherno' oundA. Let X be the sum of m independent Bernoulli variables with probability p 1/4 and let µ = pm. Then, for any t ∈ (0, mµ):

Pr (X -µ > t) 1 4 e -2t 2
µ .

e re often interested in the expeted vlue of stohsti proess t time whih is itself rndom vrileF hoo9s yptionl topping heorem llows us to know suh expeted vlueD under suitle hypothesisF Theorem PU @Doo53D see lso gorollry IUFV in LPW09 or heoE rem IHFIH in Wil91A. Let {X t } t∈N be a discrete-time martingale and τ be a stopping time with values in N ∪ ∞, with respect to a given ltration F t .

Assume one of the following three conditions holds:

(1) The stopping time is almost surely bounded, i.e. Pr(τ c) = 1 for some constant c; 

(n) = o (f (n)) then 1 ± 1 f (n) g(n) = 1 ± O g (n) f ( 

•
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  Figure1. sllustrtion of the QEwedin dynmis @in whih eh gent smples two other gents t rndom nd updtes her opinion with the medin of their vlues nd her ownAD the QEwjority @in whih eh gent smples three other gents t rndom nd updte her opinion with the most frequent vlue mong those threeD reking ties ritrrilyAD nd ndeidedE tte hynmis @in whih eh gent smples nother gentD if their vlues di'er she eomes undecidedD nd if she is unE deided she piks the (rst opinion she seesAF

  B) := {(u, v) ∈ E : u ∈ A, v ∈ B} for A, B ⊆ V . 7

  2.1.1. Strong reconstruction for regular clustered graphs sn etion RFRD we onsider (2n, d, b)Elustered regulr grph G with djeny mtrix AD where the lustered regulr grphs re the following rod fmily of instnes whose regulrity llows us to provide prtiulrly len nlysisF 4 Recall the denition of expander graph in footnote 6 on page 22. 5 See the proof of Lemma 11 for further details.

  d, b)-clustered regular graph with 1 -2b/d > (1 + δ)λ for an arbitrarily-small constant δ > 0. Then the Averaging protocol produces a strong reconstruction within O(log n) rounds, w.h.p. e then show thtD under mild ssumptionsD grph seleted from the following regular stochastic block model BDG + 16 is (2n, d, b)Elustered regulr grph tht stis(es the ove spetrl gp hypothesisD wFhFpF Definition R @egulr tohsti flok wodelA. sn the regulr stohsE ti lok model with two ommunitiesD grph on 2n nodes is otined s followsX qiven two prmeters a(n) nd b(n) @internal nd external degreesD respetivelyAD prtition nodes into two equlEsized susets

  Corollary P @eonstrution in tohsti flok wodelsA. Let G ∼ G 2n,p,q . If ab > 25 √ d log n and b = Ω(log n/n 2 ) then the Averaging protocol produces an O(d log n/(ab) 2 )-weak reconstruction in O(log n) rounds w.h.p.

  tight for some positive constants c opt and c tight , then the Averaging protocol produces an O(d/(ab) 2 )-weak reconstruction within O(log n) rounds w.h.p.

9

  It should be possible to weaken the condition d < n 1 3 -c tight via some stronger concentration argument; see the proof of Lemma 16 at the end of the chapter for details.

Figure 4 .

 4 Figure 4. et the end of eh roundD n F Edynmi dverE sry n hnge the opinions of F nodesD possily hoosing di'erent susets of nodes over di'erent roundsF

Figure 5 .

 5 Figure5. wo di'erent opinion on(gurtions hving the sme is s = s(c 1 , c 2 )F he ore ontriution of the nlysis is represented y the introdution of suitle distne d(•, •) @see etion TFRFI for forml de(nitionA on the set S of ll opinion on(gurtionsF uh distne nturlly indues funtion md(•)D lled the monochromatic distanceD whih equls the distance etween ny on(gurtion c nd the trget on(gurtionF Definition V @wonohromti histneA. qiven n opinion on(gurE tion cD its monohromti distne is de(ned s

Figure 6 .

 6 Figure 6. e visul representtion of the monohromti distneF et the extremesD when there re only O(1) opinE ion ommunities of size Θ(c 1 )D we hve md = Θ(1) whileD when Θ(k) opinion ommunities hve size Θ(n/k)D we hve md = Θ(k)F
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  Recall the denition of expander graph in footnote 6 on page 22.

c

  such that the Undecided-State dynamics on the clique computes plurality consensus in O(md(c) log n) rounds w.h.p., the modied Undecided-State dynamics computes plurality consensus on G in O(md(c) polylog(n)) rounds, w.h.p.

Figure 10 .

 10 Figure 10. he tle summrizes the mjor previous onE triutions towrd n e0ient dynmis for plurlity onsenE sus in rndom intertion modelsF he time e0ieny in the lst row is tht of the QEwjority dynmisD whih motivted the reserh tht led to the ndeidedEtte dynmisF

  d, b)Elustered regulr grph with djE eny mtrix A nd trnsition mtrix P = (1/d) • AF e know tht 1 is n eigenvetor of P with eigenvlue 1F purthermoreD the prtition inditor vetor χ is n eigenvetor of P with eigenvlue 1 -2b/dD s given y the following oservtionF Observation

G

  stis(es the hypothesis of heorem IF 4.4.1. Regular stochastic block model e n use heorem I to prove tht the everging protool hieves strong reonstrution in the regulr stohsti lok model BDG + 16D deE (ned s followsF Definition R @egulr tohsti flok wodelA. sn the regulr stohsE ti lok model with two ommunitiesD grph on 2n nodes is otined s followsX qiven two prmeters a(n) nd b(n) @internal nd external degreesD respetivelyAD prtition nodes into two equlEsized susets

Figure 16

 16 Figure 16. en exmple of regulr stohsti lok model @he(nition RA with n = 8D a = 4 nd b = 2F

  Corollary P @eonstrution in tohsti flok wodelsA. Let G ∼ G 2n,p,q . If ab > 25 √ d log n and b = Ω(log n/n 2 ) then the Averaging protocol produces an O(d log n/(ab) 2 )-weak reconstruction in O(log n) rounds w.h.p. Sketch of Proof. prom vemm U we get tht wFhFpF G is (2n, d, b, γ)E lustered with

  Tight Analysis for the Stochastic Block Model sn vemm U we hve shown thtD when (ab) > (a + b) log nD grph smpled ording to G 2n,p,q stis(es the hypothesis of heorem QD wFhFpF he simple everging protool thus gets wekEreonstrution in O(log n) roundsF es for the prmeters9 rnge of G 2n,p,q D we know tht the ove result is still o' y ftor √ log n from the threshold (ab) > 2 (a + b)

  tight for some positive constants c opt and c tight , then w.h.p.

  (ab) 2 > c opt (a + b) > 5 log n, and 6 a + b < n 1 3 -c tight for some positive constants c opt and c tight , then the Averaging protocol produces an O(d/(ab) 2 )-weak reconstruction within O(log n) rounds w.h.p.

  and 7 a + b < n 1 3 -c tight for some positive constants c opt and c tight , then w.h.p.

  Lemma IR. If d > 5 log n then for some positive constant c spect it holds w.h.p. A -B c spect √ d. Proof of Lemma 14. he lemm diretly follows from heorem PFI in LV15 with d = 2d nd the oservtion thtD from the gherno' ounds @vemm UTAD ll degrees re smller thn 2dD wFhFpF gg (of Lemma 14) Lemma IS. If d > 5 log n then for some constant c NvsB > 0 it holds w.h.p. dN -B c NvsB √ d.

  gg Lemma IT. If 5 log n < d < n 1 3 -c tight for any constant c tight > 0, it holds w.h.p. j∈V | √ dd j | 2 2n and j∈V |dd j | 2 2dn. Proof. ih degree d i hs the distriution of sum of n fernoulli rndom vriles of expettion p plus sum of n fernoulli rndom vriles of expettion qF husD eh d i stis(es Ed i = d nd Var (d i ) dF pirstD we onsider the rndom vriles |dd j | 2 F heir expettion is E|dd j | 2

  115 onvergene time of the 3Ewjority dynmisF sn etion SFQD the lower ounds for the studied dynmis re desriedF 5.1. The 3-Majority Dynamics for Plurality Consensus e (k-opinion) conguration @k-cd for shortA is ny kEtuple c = (c 1 , . . . , c k ) suh tht c j s re non negtive integers nd j=1,...,k c j = nF sn wht followsD we lwys ssume wFlFoFgF c 1 c 2 • • • c k F o c 1 is the plurality opinion nd s(c) = c 1c 2 is the bias of cF he QEwjority dynmis works s followsX At every round, every node samples three nodes (including herself and with repetitions) independently and uniformly at random and reset her opinion according to the majority of the opinions she sees. If she sees three dierent opinions, she chooses the rst one.

  nodes nd c b = nc r lue nodesF vet us de(ne ∆ r nd ∆ b s follows ∆ r = δ(r, r, b) + δ(r, b, r) + δ(b, r, r), ∆ b = δ(b, b, r) + δ(b, r, b) + δ(r, b, b).

  the size of the smllest opinion supported t round tF vet j k e the numE er of tive opinions in given round tD we (rst prove tht the expeted vlue of C (t)
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  and S (t) ⊆ S (t+1) , w.h.p.

  onlude the proof of vemm QRF e (rst prove tht C i n/ (2j) within O (k log n) stepsD wFhFpF o this purpose note thtD from the hypothesesD t the eginning of the dropping stge it holds n j c i kn log n.

  (t) = c D we simply write Pr( • | c) in ple of Pr( • | C (t) = c)D nd similrly for expeted vluesF pinllyD when we ondition the system to e in (xed stte c t some roundD the rndom ommunity sizes in the next round re denoted y C i nd Q F TFIFHFIF Global bias. e de(ne distance 1 etween opinion on(the set M of the k possile monochromatic opinion on(gurtionsF por ny cD let d(c, M ) = min c ∈M {d c, c }.Definition V @wonohromti histneA. qiven n opinion on(gurE tion cD its monohromti distne isde(d (c, c ) is not a distance in the strict sense. See Section 6.4.1 for a formal discussion of this notion.

Figure 19

 19 Figure 19. e representtion of the (rst step of the ndeidedEtte hynmisD where the size of eh opinion i drops in expettion to c 2 i n F the (rst round sees drmti hnges in the systemX iA sn generlD drsti drop in C

Figure 20 .

 20 Figure 20. ypil evolution of the ndeidedEtte dyE nmis fter the (rst roundD for n = 7 • 10 10 nodes nd k = ( n log n ) 1 4 opinionsD with c (0) 1 = 2 n k nd c (0) i = n k 1 -2 k for every i = 1F

Figure 21

 21 Figure 21. e representtion of the plteu phse of the ndeidedEtte dynmisD where the numer of gents whih get new opinion nd tht of new undeided ones lmost lne eh otherF he explosions in the piture represent the event of node seeing nother one with difE ferent opinionF

6. 4 .

 4 Detailed Analysis of the Undecided-State Dynamics sn this setion we work out the detils of the nlysis presented oveF e egin with loser look t the de(nition of the monohromti distneF 6.4.1. The Monochromatic Distance he results of this hpter highlight fundmentl dependene of onverE gene properties of the ndeidedEtte dynmis on prtiulr mesure of the initil glol isF o mthemtilly hrterize this we next introdue the following notion of distne etween equivalent opinion on(gurtionsF qiven ny opinion on(gurtion c = (c 1 , c 2 , . . . , c k , q)D onsider the folE lowing rtio R(c) = k i=1 c i /c 1 F his llows us to de(ne n equivlene reltion ≡ in the spe S c ≡ c i' R(c) = R(c )

3F

  huring the (rst stge of the protool eh node pplies the following ruleF Rule of Stage 1. ih deided node u pushes opinion vl(u) during eh round of every phse j = j u + 1, ..., T + 1F VFPFIFPF The rule during each phase of Stage 2. huring eh phse of tge PD every node pushes its opinion t eh round of the phseF et the end of the phseD eh node tht reeived enough opinions tkes rndom smple 2 of themD nd strts supporting the most frequent opinion in tht smple @reking ties uFFrFAF wore formllyD the rounds of stge P re divided in T + 1 phses withT = log( n/ log n) .ih phse jD 0 j T -1D hs length 2 with = α 4 /ε 2 for some lrgeE enough onstnt α 4 > 0D nd phse T hs length 2 with = O(ε -2 log n)F por ny (nite multiset A of elements in {1, . . . , k}D nd ny i ∈ {1, . . . , k}D let o(i, A) e the numer of ourrenes of i in AD nd let mode(A) = {i ∈ {1, . . . , k} | o(i, A) o(j, A) for every j ∈ {1, . . . , k}}.e then de(ne maj(A) s the most frequent vlue in A @reking ties uFFrFAD iFeFD maj(A) is the rFvF on {1, . . . , k} suh thtPr(maj(A) = i) = in the protocol considered in [FHK14], the choice of each node's new opinion in both stages is based on the rst messages received. In[FHK15], in order to relax the synchronicity assumption that nodes share a common clock, they adopt the same sample-based variant of the rule that we adopt here.3Note that, in order to sample u.a.r. one of them, u does not need to collect all the opinions it receives: A natural sampling strategy such as reservoir sampling can be used to this end.

  that (145) concerns the value of Pr(c (τj) m -c (τj) i |Nj), which is a random variable.

y κD if κ n 1 2

 1 -ε F essume tht we re in the regime κ n 1 2 -ε F st follows from DGM + 11 tht ll ut set of O(κ) gents reh onsensus fter O(log n) roundF his set of size O(κ) ontins oth fyzntine nd non fyzntine gentsF roweverD if the numer of gents holding the minority opinion is O(κ) = O(n 1/2-ε )D then the expeted numer of non fyzntine gents tht disgree with the mjority at the next round is in expettion O(κ 2 /n) = O(n -2ε )F husD y wrkov9s inequlityD this impliesD tht t the next round onsensus is rehed mong all non-Byzantine agentsD wFhFpF xote lso thtD for the sme resonsD the fyzntine gents do not 'et ny other nonEfyzntine gent for n ε roundsD wFhFpF 9.0.2. The Setting WFHFPFIF The communication model. es in ghpters S nd ghpter TD we dopt the uniform PU LL model DGH + 88F feuse of the fous of this

  j) i )D the iEth it of the visile prt of gent v (j) i D for every i nd j ηF por eh j ηD let mj (u) e the Eit string mj (u) := ( ŝ1

  5 the PULL(2, log( η 2 ) +1) model, has running time O(log(η ) log n + η 2 L Ψ ) and has itself the bitwise-independence property.Proof of Theorem 17. vet s(u) ∈ {0, 1} e the messge displyed y n gent u under Ψ t given roundF por simpliity9s skeD in the following we ssume tht η is evenD the other se is hndled similrlyF sn Emul(Ψ)D 5 The only reason for designing Emul(Ψ) to run in the PULL 2Message Reduction Theorem is the consensus protocol we adopt, 3-Median dynamics, which works in the PULL(2) model. In fact, Emul(Ψ) can be adapted to run in the PULL (1, log (η ) + 1) model by using a consensus protocol which works in the PULL(1) model. However, no selfstabilizing binary consensus protocol in the PULL(1) model with the same performances as 3-Median dynamics is currently known.

Figure 29 .

 29 Figure 29. sllustrtion whih omines (gures PU nd PVF he yellow oxes represent the visile prt of gents9 memoryF

e

  hve thus shown thtD y the time C rehes its mximum vlue of T D iFeF fter one epohD ll gents gree on Q T D wFhFpFD nd then inrement it jointlyF prom vemm UPD Syn-Intermediate tkes Õ log 2 T log n = O (log log n + log log T ) 2 log n = O (log log n) 2 log n + (log log T ) 2 log n rounds to synhronize lok C modulo T D wFhFpF ogether with the log T (γ log n + γ log log T ) rounds to gree on Q T D wFhFpFD this implies tht fter log T log n • (log log T ) O(1) • (log log n) O(1) = Õ (log T log n)

  his indues ftor 2 slowdown whih we heneforth omit for simpliityF et the eginning of the oostingD eh nonEsoure gent u is silentF hurE ing the oosting nd during eh spreding phseD eh silent gent pulls until she sees speking gentF hen silent gent u sees speking gent vD u memorizes b 1 (v) ut remins silent until the end of the phseY t the end of the urrent phseD u strts speking nd sets b 1 (u) = b 1 (v)F he it b 1 is then never modi(ed until the lok C rehes 0 ginF henD during the polling phseD eh gent u ounts how mny gents with b 1 = 1 nd how mny with b 1 = 0 she seesF et the end of the phseD eh gent u sets their output it to the most frequent vlue of b 1 oserved during the polling phseF e wnt to show thtD for ll gentsD the ltter is b maj D wFhFpF @iFeF the most frequent initil opinion mong souresAF 10 In other words, Phase-Spread works in the PULL(1) model. 11 Of course, agents are still not able to control who sees/contacts them. Phase-Spread protocol 1: sf u is not speking nd the urrent phse is either the oosting or the spreding oneD u does the followingX 2: | u oserves rndom gent vF 3: | sf v is spekingD u sets b 1 (u) equl to b 1 (v)D nd u will e speking from the next phseF 4: | u sets c 0 nd c 1 equl to 0F 5: sf the urrent phse is pollingX 6: | u oserves rndom gent vF 7: | sf b 1 (v) = 1D u inrements c 1 D otherwise inrement c 0 F 8: u outputs 1 if nd only if c 1 > c 0 F Algorithm 6. he protool Phase-SpreadD exeE uted y eh gent uF WFQFIFPF Analysis of Phase-Spread. e prove tht t the end of the lst spreding phse ll gents re speking nd eh gent hs b 1 = 1 with proility 1

  Proofs of Technical LemmasLemma US. Let f, g : R + → R be functions dened by f (x) = log x + 1and τ (x) = inf k ∈ N | f k (x) 3 ,where we denote by f k the k-fold iteration of f . It holds that τ (T ) log 4 T + O(1).

  (2) E[τ ] < ∞ and for some constant cPr(E[|X t+1 -X t | | F t ] c | {τ > t}) = 1,for all t ∈ N;(3) For some constant c, Pr(|X min{τ,t} | c) = 1 for all t ∈ N.1A number of pretty similar results can be found in specialized mathematical forums, for example http://cstheory.stackexchange.com/questions/14471/ reverse-chernoff-bound. Then E[X τ ] = E[X 0 ]. Remark IH. he proof of heorem PU nturlly extends to supermrtinE gles nd sumrtinglesF pinllyD the following ft is useful when deling with mny events in the uniform PU SH nd PU LL modelsF Fact I. If f (n) = ω (1) and g

  Almost validity. he system is required to onverge wFhFpF to n lmostEgreement regime where ll ut negligile d set of nodes keep the sme valid opinionF • Non termination. sn dynmi distriuted systemsD nodes represent simple nd nonymous omputing units whih re not neessrily le to detet ny glol propertyF • Stability. he onvergene towrd suh weker form of greement is only gurnteed to hold with high proility 15 nd only over long period @iFeF for ny ritrrilyElrge polynomil numer of roundsAF e remrk thtD prior to the results presented in this workD no stilizing lmostEonsensus protool ws known for |Σ| > 2 even in the omplete grphF e mjor result in ghpter S is out the onvergene properties of the QEwjority dynmis in the uniform PU LL model in the presene of the dptive F Edynmi dversry de(ned oveF

	Theorem V @pper found with hynmiEedversryA. Let k n α and F β √ n/(k 5 2 log n) for some constants β, α > 0. The 3-Majority dynamics
	13 In fact, h = 1 in the standard uniform PULL model. It is easy to verify that all
	our results still hold in this more restricted model at the cost of a constant slow-down in
	convergence time and local memory size.

• Almost agreement. sn (nite numer of roundsD the system must reh regime of on(gurtions where ll ut negligible d suset @iFeF hving size O(n γ ) for onstnt γ < 1A of the nodes support the sme opinionF • 14 These relaxed convergence properties are described in detail in Section 7 of [AAE08].

  rounds, in the presence of any F -static adversary with

F n/k -√ kn log n, w.h.p.

  , DGM + 11, MRSDZ11, JKV12 s n open prolemF he interest for this dynmis touhes res eyond the orders of omputer sieneF st ppers to ply mjor role 16 The Protocol has been initially designed for the case k = 2 and, thus, in previous works it has been named the Third-State Dynamics.Table 1. he updte rule of the ndeidedEtte dynmis where i, j ∈ [k] nd i = jF sn this hpter we nlyze the synhronous version of the dynmis in the @uniformA PU LL modelX

	in importnt iologil proesses modelled s soElled hemil retion
	networks CCN12, Dot14F		
	u v	undeided opinion i opinion j
	undeided undeided	i	j
	i	i	i	undeided
	j	j	undeided	j

  we study the mximum numer of lls inside one in t round

	proess over period of any polynomial lengthF e sy tht on(gurE
	tion is legitimate if its mximum lod is O(log n) nd proess is stable ifD strting from ny legitimte on(gurtionD it only tkes on legitimte on(gE
	urtions over period of poly(n) lengthD wFhFpF e remrk tht this notion
	of stility is proilisti relxtion of the notion of closure required y
	selfEstiliztionD whih sks tht strting from ny legitimte on(gurtionD
	the proess only tkes on legitimte on(gurtions @see pigure UAF
	convergence	
	configuration of system	S closure
	Figure 7. en illustrtion of the requirements of selfE
	stiliztionF qiven the set S := {legitimte on(gurtions of the system }D the protool is required to gurntee two propertiesF he (rst one is convergenceX prom any initil
	on(gurtionD the system hs to reh SF he seond one is closureX sf in SD the system keep stying in SF sf we only require the two previous property to hold wFhFpFD we get the
	de(nition of probabilistic selfEstiliztion @in whih losure
	is lled stabilityAF	
	e formlly de(ne the proilisti version of selfEstiliztion Dij74,
	t nd we re interested in the lrgest maximum load M (t) hieved y the

  Figure15. en illustrtion of the interprettion of the proE jetions on the (rst nd seond eigenvetors of the djeny mtrix in the regulr seX the (rst projetion is the global verge of the initil vlues in the whole grphD while the seE ond one is the di'erene etween the verges of the initil vlues within the two communitiesF
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	Theorem							

  ) , for some vectors z and e (t) with

	z	88 γ ν -λ 3	√	2n and	e (t)	4λ t x .
	z	88 γ ν -λ 3	√	2n and	e (t)	4λ t x .

Coecients α 1 and α 2 are

  F yserve tht Y t tkes vlues in {0, 1, . . . , n/j } nd it is funtion of C (t) F e re interested in the (rst time Y

	e the minimum mong ll C	(t)
	(t)	

i s nd onsider the stohsti proess

{Y t } t de(ned s Y t = n/j -C m t eomes t lest s lrge s √ jn log nD iFeF τ = inf t ∈ N : Y t jn log n .

  Figure 17. he negtive drift 'ets ny olor whose size is smller thn the verge size of the olors whih re still present in the systemF iA he ound on the expeted negtive drift for C

	Supporting nodes			Average size
	c 1 c 2 . . .				
					(t)
	and ii) there exists an i ∈ B (t) such that	C(t) i	n/j -	√	jn log n.
	he forml proof of the ove lemm is given in etion SFRFTF snformllyD
	the proof is otined vi two di'erent tehnil stepsX		

  0 otherwiseF ine gol is to provide onentrtion upper ound on Q (t) D we n do it y onsidering the simpler proess Q(t) F fy the wyD unrolling Q(t) diretly is fr from trivilX e need the right wy to write it y using only iFiFdF fernoulli rFvFsF vet us see howF por ny t ∈ [2τ ] nd for ny s ∈ [t]D de(ne the rFvF spekingD Z s,t mthes the vlue of Q(t) whenever s t ws the lst previous round sFtF Q(s) = 0F es keyEft we show tht Q(t) n e ounded y the mximum of Z s,t for s tF

	@IQSA	Z s,t =
	snformlly @IQTA	
	Proof of the Claim. por ny s ∈ [t]D let
		t
		χ s,t =	χ r
		r=s

t i=s Ŷi -(ts). Claim P. For any t ∈ [2τ ] it holds that Q(t) max{Z s,t : s = 1, . . . , t}, and thus max{Q (t) : 1 t 2τ } max{Z s,t : 1 s t 2τ }.

  Byzantine agents, for any constant ε > 0, then after O(log n)

		Building counters				
		modulo T :					
		T power of 2 O (log T log n) rounds sync-simple log T bits	Message Reduction Theorem	Sync-Intermediate T power of 2 Õ(log 2 T log n) rounds 3 bits	Section 2.4	T arbitrary Õ (log T log n) rounds 4 bits 4-bits Syn-Clock	Message Reduction Theorem	syn-clock T arbitrary Õ (log T log n) rounds 3 bits
		Section 2.2		Section 4.1		Section 4.2	Section 4.2
		Solving Majority Bit Dissemination:	4 bits Õ (log n) rounds 4-bits Phase-Spread	Message Reduction Theorem	3 bits phase-spread Õ (log n) rounds
				Section 5.1				Section 5.2
		Figure 26. he struture of our rgumentsF xote tht the
		wessge edution heorem is used on three osionsF
	9.0.1. A majority based, self-stabilizing protocol for consensus on
					one bit
		vet us rell 1 the stilizing onsensus dynmis y hoerr et lF in
	DGM + 11D the QEwedin dynmisF et the outsetD eh gent holds n
	opinionF et eh round eh gent looks t the opinions of two other rndom
	gents nd updtes her opinion tking the mjority mong the its of the
	oserved gents nd her ownF xote thtD in the inryEopinion seD this
	dynmis uses only single it per intertionD nmelyD the node9s opinionF
	he usefulness of QEwedin dynmis omes from its extremely fst nd
	fultEtolernt onvergene towrd n greement mong gentsD s given y
	the following resultF				
		Theorem PR @QEwedin dynmis @DF11AA. From any initial congu-
	ration, 3-Median dynamics converges to a state in which all agents agree on
	the same output bit in O(log n) rounds, w.h.p. Moreover, if there are at most κ n 1/2-ε rounds all non-Byzantine agents have converged and consensus is maintained
	for n Ω(1) rounds, w.h.p.			
	κ	Remark U. he originl sttement of DGM + 11 sys tht if t most √ n gents n e orrupted t ny roundD then onvergene hppens
	for ll ut t most O(κ) gentsF vet us explin why we n reple O(κ)
		1					

  enoughF hroughout this setion we ssumeD thnks to heorem ITD tht C hs lredy een synhronizedD whih hppens fter Õ(log n) rounds from the strt of the protoolF sn etion WFQFIFID we present protool Phase-Spread solving mjority it dissemintion ssuming gents lredy shre ommon lokF WFQFIFIF Protocol Phase-Spread. vet γ phase e onstnt to e set lterF rotool Phase-Spread is exeuted periodilly over periods of length 2 γ phase log n + γ phase 2 log n D given y lok CF yne run of length 2 γ phase log n + γ phase 2 log n is divided in 2 + 2 log n phsesD the (rst nd the lst ones lsting γ phase log n roundsD ll the other 2 log n phses lsting γ phase roundsF he (rst phse is lled boostingD the lst one is lled pollingD nd ll the intermedite ones re lled spreadingF por tehnil onE venieneD in Phase-Spread gents disregrd the messges they get s their seond pull 10 F huring the oosting nd the spreding phsesD we mke use of the prE ity of time to emulte the ility to tively send messge or to notE ommunite nything s in the PU SH model 11 F sn the (rst se we sy tht the gent is speakingD in the seond se we sy tht the gent is silentF
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To get such upper bound, the analysis in [FHK14] leveraged on the property that in the PUSH model the number of agents getting a certain message can be upper bounded by the number of agent sending such message, which is not the case for the passive communication of the PULL model. lrge

  let us onsider the set of gents S boost tht strt speking t the end of the oostingD iFeF tht oserve speking gent during the phseF yserve tht

					he proility tht silent gent
	does not oserve speking one is	
	n -k 1 -k 0 n	γ phase log n	4 log n n	1 2 γ phase log n	,
	hene y simple union ound it follows tht ll gents re spekingD wFhFpF
	xowD we prove @ITWAF es eforeD we hve two sesF he (rst seD
		k 1 k 0		n 2γ phase log n	,
	is simple onsequene of the gherno' ound @vemm PSAF
	sn the seond seD				
		k 1 k 0	<	n 2γ phase log n	,

  {X t } t∈[n] be n i.i.d. random variables such that

	X t =	  1  0	with probability p,
		 	

gg Lemma UU. Let
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OVERVIEW OF RESULTS

Recall the meaning of w.h.p. as in footnote 8 on page 23.

With a slight abuse of notation, with Õ(f (n)g(T )) we refer to f (n)g(T )• log O(1) (f (n)) • log O(1) (g(T )). All logarithms are in base 2.

WORK RELATED TO DYNAMICS (AND SURROUNDINGS)

AVERAGING DYNAMICS

3 -c tight via some stronger concentration argument; see the proof of Lemma 16 at the end of the chapter for details.

I.e., for every t > T , (P t x)v monotonically increases (or decreases) w.r.t. t.

. Consider the stochastic process { Ỹt } t dened as

Note that, if Nj is not yet xed, the parameters hi of process P associated to phase j are random variables. However, if the opinion distribution and the number of active nodes at the beginning of phase j are given, then h = i hi = |Nj| = |Mj| is xed.

Note that having the indicator bit equal to 1 is equivalent to possessing an input bit: both are exclusive properties of source nodes. However, we keep them distinct for a clearer presentation.

The pseudocode deviates from the presentation done in the proof, as it makes no use of recursion.

OPEN PROBLEMS 

the ssumption tht c1 (1 + α) • c2 D where α is n ritrrily smll posiE tive onstntF sndeed this ssumption gurntees tht the initil plurlity is preserved long the whole proessD wFhFpF TFPFIFIF First round: Rise of the undecided. he initil stte is extremely unstle 3 D sine ny node hs high proility of smpling node of difE ferent opinion in the (rst roundD ending up in the undeided stteF husD Lemma RH. Let k = o( n/ log n). Given any initial opinion conguration c, after the rst round it holds w.h.p.

Proof. prom @IHPA nd relling tht in the initil on(gurtion q = 0D we get

imilrlyD from @IHQA we get

,

where the seond equlity follows from the de(nition of mdD while the third one from the de(nition of R(c) nd from simple mnipultionsF ine we ssumed k o( n/ log n) then we hve tht

he ove inequlity llows us to pply the gherno' ound @vemm UTA nd prove the (rst lim @iFeF tht on C 1 AF imilrlyD from @IHIAD it holds n Λ(c) n k .

his llows us to pply the dditive version of the gherno' ound @vemm UTA nd prove the seond lim @iFe tht on Q AF gg he next lemm reltes R(c) to md(c) fter the (rst roundF Lemma RI. Let k = o( n/ log n). Given any initial opinion conguration c, after the rst round it holds w.h.p. (1) ) md(c) • (1 + o(1)) .

R(C

Proof. fy de(nition of plurlity opinionD it holds tht c 1 > n/kF hereE foreD y the hypothesis on k nd @IHPAD we get µ 1 = ω(log n) nd thenD y using the gherno' ounds @vemm UTAD we n get onentrtion ounds on oth the numertor nd the denomintor of R(C (1) ) @s we did in the proof of vemm QWAF pormllyD we hve tht wFhFpF

yserve thtD sine in the initil opinion on(gurtion q = 0D it holds

thusD y pplying the gherno' ound @@IWIA vemm UTAD we see tht C 1 grows exponentilly fstD wFhFpF st follows tht we n onsider the (rst round suh tht

) .

his proves @IHWAF Proof of @IIHA. yserve thtD sine c1 n k D then from @IHPA nd the gherno' ound @@IWIA in vemm UTA it holds C

(1) 1 = ω(log 2 n)D wFhFpF es we hve lredy shown in the proof of glim @IHWAD fter the (rst round C 1 grows exponentilly until round tF st follows tht we n repetedly pply vemm QW ndD together with vemm RID we get tht wFhFpF

his proves @IIHAF Proof of @IIIA.

imilrly to the previous glim proofD the repeted pplition of vemm QW until round t nd pt I implies tht wFhFpF

i . his proves @IIIAF Proof of @IIPA. ineD y the de(nition of tD it holds q ( t-1) n 2 + εD then y vemm QV we get tht

) n e written s the expeted vlue of the sum of the following independent rFvFsX given n opinion on(gurtion c ( t-1) D for eh node i

hen @IIPA is n esy pplition of the gherno' ound @@IWIA in vemm UTAF gg prom the stte onditions hieved fter the (rst round @see vemm RHAD the next lemm shows thtD within O(log n) roundsD the proess rehes on(gurtion where Q gets very lose to n/2 nd C 1 is still reltively smllD wFhFpF sn the next setionD we prove @see heorem IHA tht this ft fores reneD

for suitle positive onstnt γF gg 7.1.2. Coupling with Tetris sing oupling rgument nd vemm RW we now prove tht the mxiE mum lod in the originl proess is stohstilly not lrger thn the mxiE mum lod in the Tetris proessD wFhFpF sn wht follows we denote y W (t) the set of nonEempty ins t round t in the originl proessF ell thtD in the ltterD t every round ll is seleted from every nonEempty in u nd it is moved to in hosen uFFrF eordingly we de(neD for every round tD the rndom vriles

where X (t+1) u indites the new position rehed in round t + 1 y the ll seleted in round t from in uF xotie tht for every nonEempty in u ∈ W (t) we hve tht

for every in v ∈ [n]F he rndom proess Q (t) : t ∈ N is ompletely de(ned y rndom vriles X t u 9sD indeed we n write

where we used nottion a F b = max{ab, 0}F enlogouslyD for eh in u ∈ [n] in the Tetris proessD let Q(t) u e the rndom vrile inditing the numer of lls in in u in round tF e next prove thtD over ny polynomillyElrge time windowD the mximum lod of ny in in our proess is stohstilly smller thn the mximum numer of lls in in of the Tetris proessD wFhFpF wore formllyD we prove the following lemmF Lemma SH. Assume we start our process and the Tetris process from the same initial conguration q = (q 1 , . . . , q n ) such that n u=1 q u = n and containing at least n/4 empty bins. Let T = T (n) be an arbitrary round and let M T and MT be respectively the random variables indicating the maximum loads in our original process and in the Tetris process, up to round T . Formally

does not fvor the proility tht the node piks the wrong opinionF husD y voiding onsidering those eventsD we get lower ound on

hnks to vemm TQD the proof of @IRUA redues to proving the followingF Lemma TR. For any xed k, and with X dened as in Lemma 63, we have @ISRA Pr(X

Proof. e prove @ISRA y indutionF vemm TP provides us with the se se for k = 2F vet us ssume thtD for k κD @ISRA holdsF por k = κ+1D y using the lw of totl proilityD we hve

xowD using the indutive hypothesis on the rFhFsF of @ISTA we get

whereD in the lst inequlityD we used the ft tht g is nonEinresing funtion wFrFtF the seond rgument @see vemm TV in etion VFUAF st remins to show tht

κ+1 e rFvF with proility distriution Bin( , 1 κ+1 )F ine X h .

reneD we n pply the entrl limit theorem 7 on W ( )

4 D there exists some (xed onstnt 0 suh thtD for 0 D we hve @ISUA Pr X

fy using @ISUAD for 0 we (nlly get tht

onluding the proof tht Pr (maj (u) = 1) -Pr (maj (u) = i) 2 π g (δ, ) e (k-2) ln 4 . gg fy using roposition ID we n then prove vemm TSF Lemma TS. At the end of Stage 2, all nodes support the initial plurality opinion, w.h.p.

Proof. vet δ = Ω( log n/n) e the is of the opinion distriution t the eginning of generi phse j < T of tge PF hnks to roposition 7 Recall that the central limit theorem states that given a random sample X1, ..., Xn from a Bernoulli(p) distribution where p ∈ (0, 1) is constant (i.e. does not depend on n), and given a standard normal r.v. Z ∼ N (0, 1), it holds

ollideD nd the node would not e le to grsp ny of themF sfD on the other hndD the messges represent visul or hemil signls @see eFgF SKJ + 08, FPM + 02, BSDDS10, BCN + 14AD then it my e unrelisti to ssume tht nodes nnot reeive more thn one of suh messges t the sme round nd esidesD y stndrd llsEintoEins rgument @eFgF y pplying vemm STAD it follows tht in the uniform PU SH model t eh round no node reeives more thn O(log n) messgesD wFhFpF sn this work we thus onsider the model in whih ll messges re reeivedD lso euse suh ssumption llows us to otin simpler proofs thn the other vrintsF e (nlly note tht our protool does not stritly need suh ssumptionD sine it only requires the nodes to ollet smll rndom smple of the reeived messgesF roweverD sine we look t the ltter feture s onsequene of tive hoies of the nodes rther thn some inherent property of the enE vironmentD we void to weken the model to the point tht it mthes the requirements of the protoolF 8.5. Removing the Parity Assumption on he next lemm shows thtD for k = 2D the inrement of is t the end of eh phse of tge P in the proess P is nonEderesing in the vlue of D regrdless of its prityF Lemma TT. Let k = 2, a = 1, let be odd, and let

The rule of Stage 2 of the protocol is such that

ine we re not using ny feture of the protool other thn the mjority ruleD we otin vemm TT s orollry of generl vemm TUD whih is of independent interestF o get vemm TT from vemm TUD set " maj = H" = " maj (u) = 1"D " maj = T " = " maj (u) = 2" nd p = (c • P ) 1 F Lemma TU. Suppose with throw times a coin whose probability of head is p 1p. Let maj be the face of the coin which shows up more frequently in the throws (i.e. the majority value), breaking ties uniformly at random: if we get 2 heads and 2 tails, we choose one of them with probability 1 2 (notice that a tie is only possible if is even. For any odd , it holds

Pr maj +2 = H ,

where the equality in (a) and (b) holds i p = 1 2 .

Proof. fy de(nitionD we hve

re inomil rFvF with proility p 1 nd numer of trils , + 1D nd + 2D respetivelyF e n view X ( )

s the sum of D + 1 nd + 2 fernoulli(p) rFvFD respetivelyF sn prtiulrD let Y nd Y e independent rFvF with distriution fernoulli(p)F e n ouple X ( )

es for the lst two terms in the previous equtionD we hve tht Pr maj +1 = H X ( )

woreoverD y diret lultion one n verify tht @ITSA Pr X

( )

prom @ITQAD @ITRA nd @ITSA it follows tht

fy plugging @ITTA in @ITPA we get

gent u keeps the messge s(u) privtelyD nd insted displys lok C(u) written on log( η 2 ) itsD nd one it of the messge s(u)D whih we refer to s the ΨEitF husD the totl numer of its displyed y the gent operting in Emul(Ψ) is log( η 2 ) + 1F he purpose of the lok C(u) is to indite to gent u whih it of s(u) to displyF sn prtiulrD if the ounter hs vlue 0D then the 0Eth it @iFe the lest signi(nt itA of s(u) is shown s the ΨEitD nd so onF sn wht followsD we refer to s(u) s the private message of uD to emphsize the ft tht this messge is not visile in Emul(Ψ)F ee pigure PU for n illustrtionF

Only updated every 8 rounds. Figure 27. yn the left is protool Ψ using = 8 its in totl nd pulling only one node per round @η = 1AF yn the right is the emulted version Emul(Ψ) whih uses 4 its onlyF he its depited on the ottom of eh pnel re kept privtelyD while the its on the top re puliD tht isD pper in the visile prtF ih round of Ψ exeuted in the PU LL(η, ) model y n gent u is emulted y η 2 rounds of Emul(Ψ) in the PULL(2, log( η 2 ) + 1) modelF e refer to suh η 2 rounds s phaseD whih is further divided to η 2 suphses of length F xote tht sine eh gent smples P gents in roundD the totl numer of gents smpled y n gent during phses is η F por generi gent uD phse strts when its lok C(u) is zeroD nd ends fter full loop of its lok @iFeF when C(u) returns to zeroAF ih gent u is running protool Syn-Simple on the log( η 2 ) its whih orrespond to her lok C(u)F xote tht the phses exeuted y di'erent gents my initilly e unsynhronizedD utD thnks to roposition PD the loks C(u) eventully onverge to the sme vlueD for eh gent uD nd hene ll gents eventully gree on when eh phse @nd suphseA strtsF vet u e n ritrry gentF henote y

the ΨEits olleted y u from gents hosen uFFr during phseF gonsider phse nd round z ∈ {1, • • • , η 2 } in tht phseF vet i nd j e suh tht z = j • + iF e view z s round i of suphse j + 1 of the phseF yn this roundD gent u pulls two messges from gents v nd wD hosen uFFrF yne the loks @nd thus phses nd suphsesA hve synhronizedD gents v nd

. @IUWA Proof. he proof is lmost the sme s tht of vemm UQF prom @IUHAD we hve

efter the oosting phseD iFeF for i 1D it follows from vemm UQ tht k

.

prom the gherno' ound @vemm PSAD we thus get tht wFhFpF

, hene y simple union ound it follows tht ll gents re spekingD wFhFpF xowD we prove @IUWAF es in the proof of @ITWAD we hve two sesF he (rst seD k 1 k 0 n 2γ phase D is simple onsequene of the gherno' ound @vemm PSAF ytherwiseD let us ssume k 1 k 0 < n 2γ phase F ith n nlogous rgument to tht for @IUQA nd @IURA we n prove

. @IVQA other ndidte protools we hve does not seem menle to rigorous nlysis in the PULL model whih ounts for the selfEstilizing requirementF eixhs e Mathematical Tools sn this ppendix we review severl vrints of the gherno' ound used throughout this workF e lso stte reverse version of the gherno' ound nd other tehnil tools we mke use of in the proofsF Lemma UT @gherno' oundsA. Let X = n i=1 X i where X i 's are independent Bernoulli random variables and let

Then,

• For any 0 < δ 4, @IVVA Pr (X > (1 + δ)µ) < e -δ 2 µ 4 ;

• For any δ 4, @IVWA Pr (X > (1 + δ)µ) < e -δµ ;

• For any λ U > 0 and λ L ∈ (0, 1), Pr (X µ + λ) e -2 λ 2 n , @IWHA Pr (X µλ) e -2 λ 2 n .

• For any δ ∈ (0, 1), Pr (X (1δ)µ L ) exp -δ 2 2 µ L , @IWIA Pr (X (1 + δ)µ H ) exp -δ 2 3 µ H . @IWPA Theorem PS @McD98A. Let X 1 , ..., X n be n independent random variables. If X i M for each i, then @IWQA