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l’Université Paris-Saclay
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taquineries bienveillantes, leurs encouragements et leur enthousiasme à chaque nouvelle figure
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qui répond présent en toute circonstance, qui a patiemment écouté mes doutes et m’a redonné
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Jean-Bernard, dont l’âge restera à jamais un grand mystère, même s’il n’est pas aussi vieux qu’il

le prétend : son sens de l’écoute exclut toute dureté de feuille. J’ai partagé avec lui les déboires
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a réussi à faire courir ses Vieux, qu’il fallait bien endurer malgré leur sincère affection. Merci
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Introduction

The art of structure is where to put holes

Robert Le Ricolais, architecte et chercheur

Cette phrase résume à elle seule le contexte et les motivations à l’origine de cette thèse. Elle

soulève néanmoins quelques questions. En quoi consiste l’art des structures ? Pourquoi évoque-

t-on des trous, alors que l’objectif est de concevoir des structures ? Au premier abord, cela

semble contradictoire : quel intérêt aurait-on à ajouter des trous dans une structure ? Et pour

conclure, comment déterminer en pratique où placer, ou non, des trous dans une structure ?

Figure 1: Automorphic Compression Member, Robert Le Ricolais, 1962 ( c©Centre Pompidou)

Ce que nous entendons par art des structures dans ce manuscrit est la conception de struc-

tures optimales, connue également sous le nom d’optimisation de formes ou encore d’optimisation

topologique. Voici un exemple. Dans le milieu industriel, lorsqu’on conçoit une pièce mécanique,

elle doit satisfaire un cahier des charges, pour remplir correctement son rôle lors de son utilisa-

tion. Toutefois, plusieurs structures différentes peuvent convenir. Certaines seront par exemple

plus légères ou plus faciles à usiner que les autres. On a ainsi une certaine liberté dans la

conception de la pièce finale. On peut sélectionner parmi les structures admissibles la meilleure

du point de vue d’un critère supplémentaire. Le choix de ce critère dépend du contexte du

problème. L’un des plus courants est le poids (ou le volume) de la pièce finale. En effet, en le

réduisant, on économise de la matière première et donc on réduit les coûts. Dans l’industrie

aéronautique, le poids final de la structure est une question cruciale, avec un impact non seule-

ment économique, mais également écologique : la consommation de carburant est directement

corrélée au poids de l’avion.
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L’optimisation de formes est un domaine des mathématiques appliquées largement étudié.

De nombreuses méthodes ont été mises au point afin d’optimiser des structures. Les deux

méthodes les plus répandues sont la méthode SIMP (Solid Isotropic Material with Penalization)

[Bendsoe 2003] et la méthode des lignes de niveau [Osher 2006]. L’approche de la méthode SIMP

consiste à optimiser la densité locale d’un matériau fictif, puis à la pénaliser pour atteindre une

structure en noir et blanc. Des trous apparaissent dans la structure finale là où la densité du

matériau fictif vaut zéro. Dans la méthode des lignes de niveau, on travaille directement sur

les frontières de la structure, et par conséquent sur ses trous. Ainsi, dans ces deux méthodes,

s’appuyant sur des approches très distinctes, le design des trous de la structure est un élément

clef. C’est pourquoi on les appelle aussi méthode d’optimisation topologique. En effet, en 2D,

la topologie est liée au nombre de trous dans la forme considérée. En 3D, c’est un peu plus

complexe. La topologie dépend également de la nature des trous : ces derniers peuvent être par

exemple des cavités ou bien des anses (comme dans un tore). Nous avons ainsi répondu à notre

seconde question, mais pas à la troisième portant sur l’intérêt de percer les structures pour les

optimiser.

Figure 2: Structure poreuse d’un os : section d’un fémur, extrait de [Gray 1918]

Une première réponse peut être trouvée simplement en observant la nature, où les matériaux

poreux sont très répandus. Prenons l’exemple des os. Les os de tous les vertébrés sont poreux.

Ils présentent une couche extérieur solide et pleine (l’os cortical) et une matrice interne poreuse

(l’os trabéculaire, aussi appelé os spongieux), voir la Figure 2. Chez les oiseaux, certains os

sont encore plus vides, avec seulement des treillis internes renforçant l’ensemble de la struc-

ture. Ce design assure aux os résistance et solidité, ainsi que légèreté. Ainsi, les trous ne

sont pas nécessairement synonymes de fragilité, mais presque le contraire dans de nombreux

cas : un équilibre subtil entre résistance et légèreté. Les hommes ont d’ailleurs tiré partie

de cette observation comme en témoignent de nombreux édifices, le Colisée à Rome et ses

nombreuses arcades par exemple, ou bien la Tour Eiffel. On diminue ainsi la quantité de

matière première nécessaire, sans compromettre la solidité et la longévité des bâtiments. En

fait, mathématiquement, on a montré que les matériaux poreux étaient optimaux dans de nom-
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breuses applications de l’optimisation de forme. Dans la suite, nous nous intéresserons à une

famille particulière de matériaux poreux : les matériaux lattices. Dans la littérature, ce terme

désigne parfois des microstructures périodiques présentant uniquement des petites barres. Nous

adopterons ici une définition plus large : un matériau périodique issu d’un mélange entre un

matériau et du vide, sans aucune restriction sur la géométrie de cette répartition.

Demeure la dernière question : comment concevoir les trous dans la structure. Comme

vu précédemment, de nombreuses méthodes d’optimisation existe pour optimiser la topologie,

et donc les trous, d’une structure. La méthode SIMP et la méthode des lignes de niveau

reposent numériquement sur la méthode des éléments finis. Il est nécessaire de mailler le domaine

de travail, au sein duquel la structure finale est conçue. Si nous souhaitons considérer des

trous microscopiques dans la structure finale, par exemple en utilisant des matériaux lattices,

le maillage doit être suffisamment fin pour décrire correctement ces trous. En pratique, le

coût numérique de telles approches est prohibitif. Une solution est apportée par la théorie

de l’homogénéisation [Murat 1985]. Elle consiste à moyenner le comportement physique du

matériau lattice sur une échelle mésoscopique. On définit de la sorte, un nouveau matériau

équivalent et plein, dont le comportement est similaire à celui du matériau lattice (troué). Ce

nouveau matériau est appelé matériau effectif et remplace le matériau lattice dans le processus

d’optimisation. Puisqu’il est homogène (plein), il ne présente pas de microstructure. Ainsi, un

maillage relativement grossier suffit pour l’optimisation numérique.

La géométrie du matériau lattice choisi est caractérisée par quelques paramètres et son

orientation. Par exemple, en 2D nous pouvons choisir des cellules périodiques carrées percées

en leur centre d’un trou rectangulaire. Un tel matériau lattice est alors paramétré par les

dimensions du trou central, voir la Figure 3. Le comportement effectif du matériau lattice

dépend de ces paramètres. En optimisant leur distribution dans le domaine de travail, nous

modulons localement le matériau lattice. Cette approche a été implémentée pour la première

fois puis popularisée par Bendsoe et Kikuchi [Bendsøe 1988] dans les années 80. Mais elle a peu

à peu été reléguée au second plan, au profit de la méthode SIMP, ce que l’on peut expliquer par

deux éléments.

6

?
m2

-�
m1

Γint

- y1

6

y2

Figure 3: Exemple d’un matériau lattice périodique paramétré : une cellule périodique carrée est

percée d’un trou rectangulaire, dont les dimensions paramètrent la géométrie de la microstruc-

ture

Premièrement, les structures lattices ne sont pas usinables par les méthodes traditionnelles
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de fabrication, par exemple la fonderie, du fait de leur microstructure et de leur topologie très

complexe. Les récentes avancées dans le domaine de la fabrication additive permettent en partie

de résoudre ce problème. En effet, les matériaux lattices sont aujourd’hui usinables, mais de

nombreuses recherches sont menées pour améliorer le procédé de fabrication et le modéliser,

notamment d’un point de vue thermique afin de caractériser les contraintes résiduelles et les

éventuels défauts de la structure. Néanmoins, la fabrication additive a en un sens ravivé l’intérêt

général pour la méthode d’optimisation par homogénéisation.

Deuxièmement, la question de la déshomogénéisation des structures optimisées restait jusqu’alors

sans réponse. Une structure optimisée par la méthode par homogénéisation est elle-même ho-

mogénéisée : ce n’est pas une véritable forme comme dans les méthodes SIMP et de lignes de

niveau. Ainsi, il est nécessaire de construire une véritable structure à partir de la structure

optimisée homogénéisée. Le processus de déshomogénéisation remplace l’étape traditionnelle

de pénalisation. Lorsque l’orientation du matériau lattice est constante, cela n’est pas très

compliqué. On choisit la période du matériau, et dans chaque cellule on utilise les paramètres

moyennés pour dessiner la microstructure. En revanche, lorsque l’orientation du matériau est

à son tour optimisée, elle doit être prise en compte lors du processus de déshomogénéisation.

De plus, la connectivité de la structure doit être assurée. Pantz et Trabelsi [Pantz 2008] ont

proposé d’introduire un difféomorphisme : une grille régulière de matériau lattice est déformée

par ce difféomorphisme pour l’orienter localement, voir la Figure 4.
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(a) Grille régulière (b) Champ de direction

(c) Grille déformée

Figure 4: Une grille régulière (a) est associée à un champ de direction (b), donnant l’orientation

locale de chaque cellule : ce qui conduit à une grille déformée (c)

Structure du manuscrit

Ce manuscrit présente deux parties. Dans la première, on introduit l’optimisation de formes

(Chapitre 1), et la théorie de l’homogénéisation (Chapitre 2).

Dans la seconde partie, on présente les contributions de la thèse. On se focalise sur le

domaine mécanique de l’élasticité linéaire.

Au Chapitre 3, nous présentons la méthode d’optimisation de formes basée sur la théorie

de l’homogénéisation, pour des matériaux lattices isotropes, en 2D et en 3D, paramétrés par

leur densité. Premièrement, nous introduisons les microstructures isotropes en 2D et en 3D,

voir la Figure 5(a) et nous calculons leurs propriétés mécaniques effectives. Deuxièmement,

nous présentons l’algorithme d’optimisation, basé sur une méthode de descente de gradient.

Nous étudions la minimisation de plusieus fonctions objectif : la compliance en simple et en

multi chargement, voir la Figure 5(b), ou la norme L2 du tenseur des contraintes par exemple.

Troisièmement, nous présentons une méthode de déshomogénéisation des structures optimisées

homogénéisées, qui assure la connectivité et la continuité des formes finales, voir la Figure

5(c). Nous soulignons que nous avons vérifié que les structures optimisées étaient usinables par

fabrication additive, voir la Figure 6. Notre méthode de déshomogénéisation fournit en effet
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des fichiers géométriques compatibles avec les drivers des machines de fabrication additive.

(a) Microstructure périodique isotrope, paramétrée par sa

densité

(b) Densité optimale d’un pont pour un

problème de minimisation de la compliance en

multi-chargements

(c) Structure déshomogénéisée

Figure 5: Résultats (bas) d’optimisation topologique de structures 2D fabriquées à partir d’un

matériau lattice isotrope (haut)

Au Chapitre 4, nous présentons une méthode d’optimisation de formes basée sur la théorie

de l’homogénéisation pour optimiser des structures 2D faites en un matériau lattice orthotrope,

modulé localement (pour un exemple de microstructure orthotrope, voir la Figure 3). La

méthode présentée est mise au point pour les problèmes de minimisation de la compliance

en monochargement. La différence majeure avec le chapitre précédent vient du fait qu’ici, on

tient compte de l’orientation des cellules. En effet, quelque soit leur orientation, les matériaux

isotropes conservent le même comportement mécanique. Leur orientation peut donc être choisie

constante dans le domaine sans aucun impact sur l’optimisation, et ce qui simplifie grandement

l’étape de déshomogénéisation. D’un autre côté, les matériaux orthotropes sont plus optimaux

que les isotropes dans le problème considéré, ce qui justifie leur utilisation. Grâce aux formules

de Pedersen [Pedersen 1989], on sait que l’orientation optimale d’un matériau orthotrope est

donnée par les directions principales du tenseur des contraintes. Ainsi, à chaque itération de

l’algorithme d’optimisation, le processus de minimisation par rapport à l’orientation est une

méthode de minimisation globale. L’orientation optimale de la microstructure orthotrope et

sa densité optimale sont représentées sur les Figures 7(a) et 7(b), dans le cas d’une poutre

console (la structure est encastrée à gauche et on applique un chargement vertical au centre

du côté droit). Afin de prendre en compte l’orientation optimale des cellules lors du proces-

sus de déshomogénéisation, nous introduisons une transformation conforme. Pour cela, il est

nécessaire de régulariser l’orientation, afin de satisfaire une contrainte de conformité. Une

structure déshomogénéisée dans le cas de la poutre console est visible à la Figure 7(c).

Ce travail a été publié [Allaire 2018]. Dans une section supplémentaire, nous montrons que

cette méthode peut être efficacement étendue aux problèmes de minimisation des contraintes.

Le Chapitre 5 est dédié au processus de déshomogénéisation dans le cas général en 2D, c’est-
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(a) (b)

Figure 6: Structures imprimées (b) et faites en un matériau lattice isotrope modulé (a)

(a) Densité optimale (b) Orientation optimale des cel-

lules

(c) Structure déshomogénéisée

Figure 7: Résultats de l’optimisation toplogique de structures 2D, fabriquées à partir d’un

matériau lattice orthotrope, cas de la poutre console

à-dire lorsque le domaine de travail est perforé et lorsque le champ d’orientation présente des sin-

gularités, voir la Figure 8. Nous présentons également une méthode alternative de régularisation

de l’orientation des cellules, basée sur les énergies de Ginzburg-Landau et de Modica-Mortola,

afin d’améliorer les structures déshomogénéisées lorsque l’orientation optimale présente des sin-

gularités.

Le Chapitre 6 résulte d’une collaboration avec Jonas Martinez (INRIA Nancy). Nous avons

optimisé des structures faites en un matériau stochastique, en utilisant l’approche par ho-

mogénéisation, voir la Figure 9(c). Ces matériaux, développés par Jonas Martinez et basés

sur des cellules de Voronoi, peuvent être soit isotropes, soit orthotropes, voir les Figures 9(a)

et 9(b). Ce travail a été soumis pour publication.

Au Chapitre 7, nous proposons une extension à la 3D du Chapitre 4 : une méthode

d’optimisation de formes pour des structures composées de matériau lattice orthotrope et

modulé (pour un exemple de microstructure 3D orthotrope, voir la Figure 10(a)). Toutefois, la
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(a) Champ de vecteurs

d’orientation présentant deux

singularités (points noirs)

(b) Projection d’une grille

régulière

Figure 8: Projection (droite) d’une grille régulière selon un champ de vecteurs d’orientation

présentant des singularités (gauche)

(a) Microstructure

stochastique isotrope

(b) Microstructure

stochastique orthotrope

(c) Structure déshomogénéisée dans le cas

d’un pont

Figure 9: Optimisation topologique de structures composées d’un matériau lattice stochastique

modélisation de l’orientation des cellules périodiques en 3D est beaucoup plus compliquée qu’en

2D. L’approche proposée repose sur l’introduction d’une matrice de rotation. Une méthode de

régularisation de l’orientation 3D est également présentée, elle est basée sur la régularisation de

la matrice de rotation. Contrairement au cas 2D, les transformations conformes en 3D sont très

restreintes. Ainsi, nous proposons une adaptation de la méthode de déshomogénéisation, pour

laquelle aucune condition de conformité n’est requise. Une structure déshomogénéisée du design

optimal dans le cas d’une poutre console est représentée sur la Figure 10(b) : l’orientation des

cellules est respectée et la structure finale est lisse et connectée.

Pour conclure, une des limitations de l’approche par homogénéisation est l’absence d’une

frontière extérieure bien définie pour la structure homogénéisée. Ainsi, aucune contrainte

géométrique ne peut être prise en compte, et des chargements de type force suiveuse sont

également à proscrire. Au Chapitre 8, nous proposons de remédier à cela en couplant la méthode

par homogénéisation avec la méthode des lignes de niveau. La méthode a été validée pour une

contrainte de peau sur la structure finale, voir la Figure 11. Grâce à la méthode par lignes
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(a) Microstructure 3D orthotrope et

périodique et sa paramétrisation

(b) Structure déshomogénéisée

Figure 10: Projection (droite) de la structure optimisée (gauche) d’une poutre console en 3D,

pour le problème de minimisation de la compliance

de niveau, la frontière extérieure de la structure est clairement identifiée. Nous pouvons ainsi

forcer la densité du matériau lattice à valoir un sur une couche extérieure : on dira que la

structure finale présente une peau. La méthode a également été testée avec succès dans le cas

d’un chargement par force suiveuse, ici une pression hydraulique.

(a) Densité optimale (b) Structure déshomogénéisée

Figure 11: Résultats de l’optimisation topologique d’une poutre console, avec une contrainte de

peau, par couplage des méthodes d’optimisation par lignes de niveau et par homogénéisation
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Introduction

The art of structure is where to put holes, wrote the architect and researcher Robert Le Ricolais.

This could be a one-sentence summary of the context and the motivations of this thesis. It raises

few questions. What does the art of structure consists here in ? Why do we talk about holes,

while the goal is to design structures. At first sight it seems contradictory. And consequently,

what is the interest of the holes in a structure ? To conclude, how can we in fact decide where

to put holes or not ?

Figure 12: Automorphic Compression Member, Robert Le Ricolais, 1962 ( c©Centre Pompidou)

What we mean by art of structure in this thesis, is the optimal design of structures, known

also as shape and topology optimization. Let us give here an example. In the industry, when

a mechanical structure is designed, it has to satisfy specifications in order to fulfil its physical

purpose and to not fail during its use. However, those specifications can be satisfied by several

different structures. Some will be lighter than the others, or more easy to produce. Hence,

we have some freedom to design the final structure and we can choose among the admissible

shapes, the better one according to a supplementary criteria. This criteria is chosen depending

on the context of the problem. A very common one is the volume of the shape. Indeed by

reducing it, raw materials can be saved, and the shapes would be consequently cheaper. In

aerospace industry, the final weight of the structures is a crucial question, with economic but

also ecological impacts. The lighter the aircraft, the lower the fuel consumption.

Shape and topology optimization is a large and well studied domain of applied mathematics.

Several methods have been developed in order to optimize structures. The two most well known

are the SIMP (Solid Isotropic Material with Penalization) method [Bendsoe 2003] and the level-

set method [Osher 2006]. The approach of the SIMP method consists in optimizing the local
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density of a fictitious material, then penalizing it in order to yield a black and white structure.

Holes appear in the final structure where the density is equal to zero. In the level-set method,

the optimization process runs directly on the boundaries of the structure, and so on its holes.

Hence in those two distinct methods, the design of the holes is a key point. They are called

topology optimization method. Indeed, in 2D, the topology is linked to the number of the holes

in the considered shape. In 3D, this is quite more complex. The topology also depends on

the nature of the holes: it could be cavities or loops (like a torus). This answers to our second

question (why speaking about holes) but not on the third: what interest do we have to perforate

structures in order to optimize them ?

Figure 13: Porous structure of a bone: frontal longitudinal midsection of upper femur, from

[Gray 1918]

One answer could be found in observing nature, where porous material and structures are

common. We focus on a particular example: the bones. The bones of all vertebrates are porous.

They feature an external solid and full layer (the cortical bone) and are filled with a porous

matrix (the trabecular bone), see Figure 13. Some birds bones are even mostly empty, with

only internal trusses to reinforce the whole structure. Their design gives to bones strength

and solidity, but also lightness. Hence, holes do not mean necessarily fragility, but quite the

contrary in several cases: a clever balance between strength and lightness. Numerous human

constructions take advantage of this observation, from the Roman Colosseum and its arcades

to the Eiffel tower. Less raw material is required, but the solidity and the longevity are not

compromised, as attested by the two thousands years old Colosseum. In fact, porous material

are mathematically shown to be optimal for numerous applications of shape optimization. In

the following, we will focus on a particular class of porous materials: the lattice materials.

In the literature, lattice material designates sometimes periodic microstructures featuring only

bars. But here, we keep a larger definition : a periodic mix of void and material, without any

restriction on the periodic pattern.

The last question remains: how to design holes in the structure. As seen above, several

optimization methods exist to optimize the topology, and consequently the holes in a structure.
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The SIMP method and the level-set method are based on finite elements and so require to

mesh the working domain (the domain where the structure is designed). If we want to consider

lattice material, and so microscopic holes in the structures, the mesh should be fine enough

to capture their shapes. Such approaches are prohibitive to compute numerically in practice.

A solution is given by the homogenization method [Murat 1985]. It consists in averaging the

physical behaviour of the lattice material at a mesoscopic scale. By this mean, we define a new

equivalent full media, that has a similar behaviour as the lattice material. We call it the effective

material. This effective material being homogeneous, it does not exhibit small scale structures.

Then a relatively coarse mesh can be used to run the numerical optimization algorithm.

The geometry of the chosen lattice is characterized by some parameters and its orientation.

For example, we can consider the periodic 2D square cells perforated by a central rectangular

hole, parametrized by its length and height, see Figure 14. The effective behaviour of the lattice

material depends on those parameters. By optimizing their distribution in the working domain,

we modulate locally the lattice material. This approach was first numerically implemented and

popularized by Bendsoe and Kikuchi [Bendsøe 1988] in the 80’s. But two limitations put it

aside progressively in favour of the SIMP method.

6

?
m2

-�
m1

Γint

- y1

6

y2

Figure 14: Example of parametrized periodic lattice material: a periodic square cell is perforated

by a rectangular holes, whose length and height parametrize the geometry of the microstructure

First, lattice structures are not manufacturable using the traditional fabrication processes,

like foundry, because of their microscopic structure and their complex topology. Thanks to

the recent advances in additive manufacturing processes, this problem is partly solved. Lattice

structures are indeed now manufacturable. But numerous investigations are currently led in

order to improve the process and to modelize it, notably from a thermic point of view in order

to characterize the residual stresses or the eventual defects in the structure. Nevertheless, this

led to a resurrection of the homogenization method.

The second limitation is related to the deshomogenization of the optimized structure. The

homogenization method yields an optimized but also homogenized structure: this is not a gen-

uine shape, like in the SIMP method or in the level-set method, straightly manufacturable.

Hence we have to construct from the effective design a genuine shape. This deshomogenization

process replace the traditional penalization step. When the orientation of the lattice cells is

uniform, this is not a big challenge. The periodic size of the deshomogenized cells is chosen,

then on each cell we use the average parameters to design the local microstructure. Still the
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connectivity between adjacent cells has to be carefully ensured. But when the orientation cells

is also optimized, this orientation has to be taken into account during the deshomogenization

process. Pantz and Trabelsi [Pantz 2008] proposed to introduce a diffeomorphism: a regular

grid of lattice material is distorted with this diffeomorphism in order to locally orientate the

cells, see Figure 15.

(a) Regular grid (b) Direction field

(c) Distorted grid

Figure 15: A regular grid (a) is associated to a direction field (b), giving the local orientation

of each cell: it yields a distorted grid (c)
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Contents of the thesis

This thesis is composed of two parts. The first provides an introduction to shape optimiza-

tion (Chapter 1), and to homogenization method (Chapter 2).

The second part is dedicated to the contributions of this thesis. We focus on the mechanical

domain of linear elasticity.

In Chapter 3, we present a shape optimization method based on homogenization method

to optimize structures made of modulated isotropic lattice material in 2D and in 3D. First we

introduce isotropic microstructures in 2D an in 3D parametrized by their density, see Figure

16(a) and we compute their effective mechanical properties. Second, we present the optimization

algorithm based on a gradient descent method. The minimization of several objective functions

is investigated: the compliance in single-load and multiple-loads test cases, see Figure 16(b) or

the L2-norm of the stress tensor for example. Third, we present a method to deshomogenize

the optimized homogenized structures, ensuring the connectivity and the smoothness of the

final shapes, see Figure 16(c). We emphasize that optimized structures have been proved to

be manufacturable by additive manufacturing process, see Figure 17, our deshomogenization

method yielding the generation of geometric files compatible with additive machines drivers.

(a) An isotropic periodic microstructure, parametrized by

its density

(b) Optimized density of a bridge for multiple-

loads compliance minimization problem

(c) Deshomogenized structure

Figure 16: Results (bottom) of topology optimization of 2D structures built with isotropic

lattice materials (top)

In Chapter 4, we present a shape optimization method based on homogenization method to

optimize structures made of modulated orthotropic lattice material in 2D, see Figure 14 for an

example of orthotropic microstructure. The method is developed for compliance minimization

problems in single-load test cases. The main difference with the previous chapter consists

in adding the orientation of the cells to our method. Indeed, isotropic lattice materials do not

require to be oriented, what greatly simplifies the deshomogenization step. But anisotropic, and

in particular here orthotropic, microstructures are more optimal, what explains our interest into

them. Thanks to Pedersen formulas [Pedersen 1989], the optimal orientation of an orthotropic
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(a) (b)

Figure 17: Printed structures (b) made of modulated isotropic lattice material (a)

material is known to be given by the local principal directions of the stress. Hence at each

iteration of the optimization algorithm, the minimization process according to the orientation

is a global minimization method. The optimal orientation of an orthotropic microstructure

and its optimized density are displayed in Figures 18(a) and 18(b) for a cantilever case (the

structure is clamped on the left side and a vertical load is applied on the middle of the right

side). To take into account the optimal orientation of the cells during the deshomogenization

step, a conformal transformation is introduced. It requires beforehand a regularization of the

orientation in order to satisfy a conformality constraint. A deshomogenized structure for the

cantilever case is displayed on Figure 18(c). This work has been published in [Allaire 2018].

In a supplementary section, this method is shown to be efficient also for stress minimization

problems.

(a) Optimized density (b) Optimized orientation of the

cells

(c) Deshomogenized structure

Figure 18: Result of topology optimization of 2D structures built with orthotropic lattice ma-

terials for the cantilever case

Chapter 5 is dedicated to the deshomogenization step in the general case in 2D, namely when

the working domain is perforated and when the optimized orientation features singularities, see
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Figure 19. We present a regularization method based on Ginzburg-Landau and Modica-Mortola

energies for the orientation of the cells in order to improve the deshomogenized structures.

(a) Orientation vector field featur-

ing two singularities (black points)

(b) Projection of a regular square

grid

Figure 19: Projection (right) of a regular square grid according to an orientation field featuring

singularities (left)

Chapter 6 is the fruit of a collaboration with Jonas Martinez (INRIA Nancy). We perform

shape optimization of structures made of stochastic materials, using the homogenization ap-

proach, see Figure 20(c). These materials, developed by Jonas Martinez and based on Voronoi

cells are either isotropic or orthotropic, see Figures 20(a) and 20(b). This work has been sub-

mitted for publication.

(a) Isotropic stochastic

microstructure

(b) Orthotropic stochastic

microstructure

(c) Deshomogenized structure of the opti-

mized design of a bridge for a compliance

minimization problem

Figure 20: Topological optimization of structures made of stochastic lattice material

In Chapter 7, we propose an extension to 3D case of Chapter 4: a shape optimization

method for structures made of modulated orthotropic lattice material is presented, see Figure

21(a) for an orthotropic microstructure. Nevertheless, modeling the orientation of periodic cells

in 3D is more complex than in 2D. The approach proposed here relies on the introduction of a

rotation matrix. A regularization method of the orientation in 3D is also developed, based on

the regularization of the rotation matrix. Contrary to 2D cases, conformal mappings in 3D are

very restrictive. Hence we propose an adapted deshomogenization process: a diffeomorphism is
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still introduced, but which is no longer necessarily conformal. A deshomogenized structure of

an optimized design for a cantilever case is displayed on Figure 21(b): orientation of the cells

is respected and the final genuine shape is smooth.

(a) 3D orthotropic periodic microstructure

and its parametrization

(b) Deshomogenized structure of the opti-

mized design of a cantilever for a compli-

ance minimization problem

Figure 21: Projection (right) of a optimized design of a 3D cantilever for a compliance mini-

mization problem (left)

Finally, a limitation of the approach by homogenization is the absence of a well-defined ex-

ternal border for the optimized homogenized structure. Thus, neither geometric constraint nor

design-dependent loads can easily be taken into account. In Chapter 8, we propose a solution,

by coupling the homogenization method and the level-set method. The method is tested for a

coating constraint, see Figure 22. Thanks to the level-set method the external border of the

structure is clearly identified. Hence it enables to force the density on an external layer of given

width to be equal to one: the final shape is said to be coated. The method is also successfully

tested for a design-dependent load, namely a uniform hydraulic pressure load.

(a) Optimized density (b) Deshomogenized structure

Figure 22: Results of topology optimization of a cantilever under a coating constraint by cou-

pling homogenization and level-set methods
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Shape optimization
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1.1 Shape optimization problem

1.1.1 Introduction

Three ingredients have to be given in order to define a shape optimization problem:

1. the physical behaviour of the shape to optimize, here we focus on the case of linear elasticity.

2. the set Uad of admissible shapes, which includes the constraints due to the mechanical

behaviour of the structure and the ones due to chosen description of the shape, other may

be taken into account, like volume constraint for example.

3. the objective, also known as the cost function, often denoted J in the following. It is usually

a physical characteristic, like the compliance of the structure, or a geometrical characteristic,

like the volume of the structure.

The general optimization problem reads as:

min
Ω∈Uad

J(u(Ω)) ,

where Ω denotes the structure and will depend of the chosen description of the structures,

and u(Ω) is a physical value, solution of the equation modeling the physical behaviour of the

structure.
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1.1.2 Three categories of problem

The shape optimization problem can be classified in three main categories:

• parametric shape optimization: the admissible structures are parametrized with few param-

eters, like the width of a bar or the radius of a circular hole. The subset of admissible

structures Uad is necessarily small, but the optimization process may be reasonably easy

to compute and implement numerically. This process may be used for industrial purposes,

when the main shape of the structure is already fixed, like the shape optimization of an

airplane [El Majd 2008, Joshi 2009].

• geometric shape optimization: the admissible structures are described by their borders,

which can move, but without changing the topology of the shape. Hence, for example, all the

admissible structures have the same number of holes. This approach may be similar to the

parametric one when the borders are described by spline functions or Nurbs [Schramm 1993],

[Wall 2008]

• topology optimization: the admissible structures are not parametrized and their topology is

not fixed. This approach is the more general in the sense where the set of admissible shapes

is the largest. In the following, we will focus on this kind of shape optimization.

1.1.3 Existence of optimal shapes

This counter example is taken from [Allaire 2007]. The problems consists in optimizing the

distribution of two isotropic phases in the domain D = (0, 1)2. Their respective elasticity

coefficients are denoted α and β, with 0 < α < β.

Let χ be the characteristic function of the subset of D fulfilled with the phase β. The global

elasticity coefficient of the membrane is given by:

aχ = χβ + (1− χ)α .

A unit horizontal load is applied on the domain: on the left and on the right boundary, in

the outward normal direction, see Figure 1.1(a). This boundary is denoted ΓN .

The displacement uχ of the membrane is the unique solution in H1(D)/R of:
−div(aχ∇uχ) = 0 in D

aχ∇uχ · n = 1 on ΓN

aχ∇uχ · n = 0 on ∂D \ ΓN

(1.1)

The objective function is the compliance of the structure:

J(χ) =

∫
ΓN

uχds .

We take into account a volume constraint on the phase β, and no other geometric constraint

on the final structure. The set of admissible shapes is given by:

Uad =

{
χ ∈ L∞(D, {0; 1}) |

1

|D|

∫
D
χ(x)dx = θ

}
,
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D

ΓN

(a) Boundary conditions

α

β

(b) Admissible distribution of

phases α and β

α

β

(c) Improvement of the shape (b),

using thinner layers of material

Figure 1.1: Counter example of existence: load case of a membrane (left), admissible shapes

(center and right)

where θ ∈ [0; 1] is the fixed proportion of phase β.

The minimization problem reads as:

inf χ ∈ Uad
uχ solution of (1.1)

J(χ) .

In the absence of the volume constraint, the stiffer membrane is clearly the one filled ex-

clusively with the stronger material β. Hence the problem consists in finding the best way to

distribute the weaker material in D.

We explain here the mechanical principal on which the proof relies, we refer to [Allaire 2007]

for the complete proof. Since the forces are horizontal, the principal directions of the stress will

tend to be horizontal too. In order to not perturbate this stress field, the weaker material should

be distributed along thin horizontal inclusions. In fact, making these inclusions thinner and

thinner, we can always improve a given admissible shape, see Figures 1.1(b) and 1.1(c). Such a

sequence of shapes will not converge to a classical shape. The minimum of the cost function is

reached by a mix of phases α and β in respective proportions (1−θ) and θ, namely a composite

material.

1.1.4 Obtaining existence

Given the previous counter example, the existence of an optimal shape can be obtained using

two strategies.

The first approach consists in reducing the set of admissible shapes to forbid sequences

which converge to composite material. For example, we can add a perimeter constraint, see

[Ambrosio 1993, Henrot 2006], or a topological constraint to limit the number of holes in the

shapes, see [Chambolle 2003] or [Šverák 1993], or even regularity constraints on the admissible

shapes, see [Henrot 2006].

The second approach is quite the contrary: it consists in relaxing the problem, by enlarg-

ing the subset of admissible shapes to homogenized ones, meaning shapes made of composite
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material. The characteristic function χ ∈ L∞(D, {0; 1} is then replaced by a density function

θ ∈ L∞(D, [0; 1]). Moreover, the microstructure of the shape, originally parametrized by χ

is no longer given by the density function θ. Hence the physical behaviour of the composite

materials has to be specified, using homogenized elasticity tensors. This is the object of the

homogenization method, presented in detail in Chapter 2.

In this thesis, we use the second approach: we optimize structures made of composite

materials.

1.2 Classical shape optimization methods

We present here the most well-known shape optimization methods. The two first, namely the

level-set method and the SIMP method, are used to optimize macroscopic shapes: no composite

material is allowed. Hence the only way to use these approaches to design shape featuring a

microstructure consists in explicitly describing the microscopic details, which is numerically

prohibitive.

The third and the fourth presented methods, namely the homogenization method and the

multi-scale approach, are based on a homogenized description of the microstructures, and are

consequently the appropriate strategies to optimize structures made of composite material. In

the homogenization method, only a family of composite materials is admissible. The opti-

mized structures feature the chosen kind of periodic cells, locally modulated. In the multi-scale

approach, there is no constraint on the microstructure: this one is also optimized.

1.2.1 Level-set method

The level-set method was introduced by Osher and Sethian [Osher 1988], see also textbooks

[Osher 2006] and [Sethian 1999]. It is used in a wide range of domains, from image analysis to

front propagation. Since the first papers [Sethian 2000, Osher 2001, Allaire 2002b, Wang 2003],

it became a very common approach in shape optimization. Its main advantage relies on the

fact that the optimized structures are black and white structures. No penalization is required,

contrary to other methods, like the SIMP method, presented in the next section.

The structures are described through a level-set function ψ, defined on the working domain

D. The border of the shape is given by the zeros of this function, its interior by the negative

values of ψ, and its exterior by the positive ones, see Figure 1.2. The optimization is done

with a gradient-based algorithm. The partial derivative of the cost function with respect to the

shape gives the descent direction, in the form of a velocity field. The shape is then updated by

advection of the initial shape with the computed velocity field.

We do not give details here about this method. We refer to [Henrot 2006], [Allaire 2007]

for theoretical results about the differentiation of criteria with respect to a shape. The numer-

ical implementation of this method is described in [Allaire 2002b] or in [Allaire 2006] for the

particular finite elements software Freefem++.

One of the limitation of this method relies on the fact that changes of topology may be

difficult to achieve. Thanks to the notion of topological derivative (see [Céa 2000, Amstutz 2006,

Novotny 2012, Sokolowski 2001]), the sensitivity of the objective function to the creation of small
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ψ=0ψ<0

ψ>0

Ω

D

Figure 1.2: Description of a shape with a level-set function ψ

holes is quantified. Coupled with the level-set method, holes can be wisely created during the

optimization process, meaning that changes in the topology are reachable.

Thanks to the level-set method, an initial shape can be hugely improved in terms of the

objective function. Nevertheless, only a local minimum can be reached. Indeed, as seen previ-

ously, the existence of a global minimum is not ensured without strong geometric constraints on

the admissible structures (for example a minimum perimeter of the shape or a maximal number

of holes). Otherwise, in some cases, a sequence of structures featuring even more microscopic

holes and converging to no genuine shape, could possibly be constructed in order to improve

the cost function.

Numerically, this will not happen. Indeed, the domain is discretized using a mesh and the

level-set function is discretized by a finite element function. The size of the holes could not be

smaller than the size of the edges of the mesh: infinite number of microscopic holes can not be

computed. Hence, numerically, the optimized structure is only a local minimum.

1.2.2 SIMP method

The Solid Isotropic Material with Penalization (SIMP) method was first introduced by Bendsoe

in [Bendsøe 1989], we refer to [Bendsoe 2003, Zhou 1991] for more details. This method can be

seen as a simplification of the homogenization method, which is briefly presented in the next

section, and into details in the Chapter 2. However, due to the great success of this method in

the shape optimization community, we present it separately.

We present here the SIMP method in the case of the linear elasticity, for a review of this

method, one can read [Rozvany 2009]. An isotropic material is characterized by its Hooke’s

law tensor A. We introduce a fictitious material made of void and the previous isotropic

material. This fictitious material is parametrized by its density θ. No assumption is made

about the eventual microstructure of the material, which in fact may not correspond to any

mixture of void and of the phase A, see [Bendsøe 1999] for an interpretation of the grey material

as a microstructured material. The elasticity Hooke’s law tensor for the fictitious material is

represented as a power law of the density: θpA, with p > 0. We emphasize that for density

equal to one, the fictitious material is the phase A. For a density equal to zero, the fictitious
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material corresponds to void. Hence, when the density takes only the two values one and zero

on the working domain, it describes a genuine shape. The interior of the shape is characterized

by θ = 1 and its exterior by θ = 0.

The optimization process consists in optimizing the distribution of the density field θ in the

working domain. This is an easy task of parametric optimization. The intermediate densities are

then penalized in order to yield a black and white solution, which describes a genuine shape. In

practice, the value of the exponent p is progressively increased during the optimization process

until it reaches p = 3. In the main cases, with this value the grey densities are autopenalized. It

may occur that some grey densities still persist. To solve this problem, filters on the density field

have been proposed [Bourdin 2001, Fuchs 2005, Sigmund 2007], but also alternative elasticity

law for the fictitious material [Bruns 2005]. To address the problems of checkerboard effect or

of mesh dependency, slight modifications of this method have been proposed [Sigmund 1998].

Like for the level-set method, numerically, the optimized structure is only a local minimum

for the objective function. Moreover the final optimized structure can not feature too thin

details, and even less a microstructure, due to discretization on a mesh. These both methods

yield optimized macroscopic structures, meaning that they feature only one scale of material.

Hence, those methods are not appropriate to optimize structures built with modulated

microstructure. This would imply to use a very thin mesh and would be too time-consuming.

1.2.3 Homogenization method

The mathematical framework of the homogenization method is given in Chapter 2. Here, we

only briefly present the principles of this method.

The homogenization method was one of the earliest method of topology optimization. It has

been introduced in the early eighties by mathematicians [Kohn 1986, Lurie 1982, Murat 1985]

(see the textbook [Allaire 2002a] for more references), and popularized by the seminal paper

[Bendsøe 1988] which was the first one to numerically treat a realistic problem in the elasticity

setting (the previous numerical works were restricted to an anti-plane elasticity setting, namely

a scalar equation). Despite its great success, the homogenization method progressively faded

away because it was surpassed by a much simpler method and as efficient in most cases, the

so-called SIMP method, previously presented.

However, the appearance of mature additive manufacturing technologies which are able to

build finely graded microstructures (sometimes called lattice materials) may drastically change

the picture and we could well see a resurrection of the homogenization method for such appli-

cations. Indeed, homogenization is the right technique to deal with microstructured materials

where anisotropy plays a key role, a feature which is absent from SIMP. Homogenization theory

allows to replace the microscopic details of the structure (typically a complex networks of bars,

trusses and plates) by a simpler effective elasticity tensor describing the mesoscopic properties

of the structure. Therefore, the analysis of the structure is greatly accelerated since there is no

need to mesh or represent on a fixed mesh all the microscopic details of its shape.

There is however one final hurdle, once an optimal composite structure has been obtained.

Indeed the homogenized optimized structure is not a genuine shape, and so is not straightfor-

wardly manufacturable.

In this thesis, we propose a method, inspired by [Pantz 2008], to project the optimal mi-



1.2. Classical shape optimization methods 31

crostructure at a chosen finite length scale to get a global and detailed picture of the optimal

microstructure.

1.2.4 Multi-scale methods

The homogenization method relies on the optimization of the microstructure. Nevertheless,

the set of admissible microstructures is generally reduced to a family of parametrized mi-

crostructures: a square cell perforated by a square in [Bendsøe 1988], a perforated hexagon

in [Zhang 2015], a square perforated by an ellipse in [Geihe 2013], or a truss [Daynes 2017] in

for example.

How to choose an appropriate family of composite material is not obvious. Hence, several

methods based on a multiscale optimization have been proposed to bypass this question. The

material distributions in microscale and macroscale are optimized simultaneously.

The microstructure is sometimes optimized but taken uniform in the working domain, see

[Xie 2012] or [Liu 2008]. But methods have also been developed in order to modulate locally

the microstructures, see [Kim 2000], [Rodrigues 2002], [Luo 2007] or [Yan 2014]. The major

part of those optimization algorithms use evolutionary methods ([Xie 2012], [Zuo 2013]...), or

gradient-based methods ([Rodrigues 2002]).
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2.1 H-convergence in linear elasticity

We present briefly the homogenization theory in the case of linear elasticity. For more details,

we refer to [Tartar 1978], Chapter 2 of [Kawohl 2007] and to the textbook [Allaire 2002a].

2.1.1 Strong and weak convergences

Let Ω be an open set in RN . Let Lp(Ω) be the Lebesgue space, meaning the space of all

measurable functions u in Ω, such that:

||u||Lp(Ω) =

 (

∫
Ω
|u(x)|pdx)

1
p for 1 ≤ p < +∞

supx∈Ω |u(x)| for p = +∞

is finite. Lp(Ω) is a Banach space, where two types of convergence are defined, namely the

strong and the weak convergences, whose definitions are given below.

Definition 2.1.1. A sequence uε is said to converge strongly in Lp(Ω) to a limit u if:

lim
ε→0
||uε − u||Lp(Ω) = 0 .

The strong convergence is denoted by:

uε → u in Lp(Ω) strongly .
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Definition 2.1.2. For 1 ≤ p < +∞, the dual space of Lp(Ω) is Lq(Ω), with 1
p + 1

q = 1. A

sequence uε is said to converge weakly in Lp(Ω) to a limit u if:

∀φ ∈ Lq(Ω) lim
ε→0

∫
Ω
uε(x)φ(x)dx =

∫
Ω
u(x)φ(x)dx .

The weak convergence is denoted by:

uε ⇀ u in Lp(Ω) weakly .

For p = +∞, despite L1(Ω) is not the dual space of L∞(Ω), a sequence uε would be said to

weak * converge in L∞(Ω) to a limit u if:

∀φ ∈ L1(Ω) lim
ε→0

∫
Ω
uε(x)φ(x)dx =

∫
Ω
u(x)φ(x)dx .

We recall also the definition of the convergence in the sense of distributions for further

purposes.

Definition 2.1.3. A sequence uε ∈ L1
loc(Ω) is said to converge in the sense of distributions to

u if:

∀φ ∈ D(Ω) lim
ε→0

∫
Ω
φ(x)uε(x)dx =

∫
Ω
φ(x)u(x)dx ,

where D is the set of smooth functions with compact support in Ω.

2.1.2 H-convergence

The following theorems and results are given in the particular case of the linear elasticity. Ob-

viously, the homogenization theory is not restricted to this problem and is far more general. For

general and theoretical results, one could report to [Tartar 1985, Allaire 2002a]. For an historic

presentation of the homogenization theory, one could read the chapter 2 of [Kawohl 2007].

The behaviour of an elastic phase is modelized through a positive definite fourth order

tensor, namely its Hooke’s law A. LetM4
N be the set of fourth order tensor acting on symmetric

matrices : A ∈M4
N .

We now introduce the sets Mα,β of admissible Hooke’s laws, because they are compact for

the topology of the H-convergence, see Theorem 2.1.1.

Definition 2.1.4. Let α > 0 and β > 0 be two positive constants. The set of admissible

Hooke’s law Mα,β is defined by:

Mα,β = {A ∈M4
N such that ∀ξ ∈Ms

N Aξ : ξ ≥ α|ξ|2 and A−1ξ : ξ ≥ β|ξ|2} .

We recall that the definition of H-convergence which follows is given for the particular case

of linear elasticity.

Definition 2.1.5. A sequence of Hooke’s law Aε(x) is said to converge in the sense of homog-

enization, or simply to H-converge, to an homogenized Hooke’s law A∗(x) ∈ L∞(Ω,Mα,β) if

for any right hand side f ∈ H−1(Ω)N , the sequence uε of solutions of:{
−div(Aε(x)e(uε)(x)) = f(x) in Ω

uε = 0 on ∂Ω
(2.1)
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satisfies

uε ⇀ u weakly in H1
0 (Ω)N

Aεe(uε) ⇀ A∗e(u) weakly in L2(Ω;Ms
N )

, (2.2)

where u is the unique solution of the homogenized equation:{
−div(A∗(x)e(u)(x)) = f(x) in Ω

u = 0 on δΩ
. (2.3)

The following theorem, due to Tartar and Murat is a fundamental one of the homogenization

theory, it is a compactness result: any bounded sequence of Mα,β admits a H-converging

subsequence:

Theorem 2.1.1. For any sequence Aε(x) of Hooke’s laws in L∞(Ω,Mα,β), there exists a sub-

sequence, still denoted by Aε and an homogenized Hooke’s law A∗(x) ∈ L∞(Ω,Mα,β) such that

Aε H-converges to A∗.

A proof of this theorem is given in [Tartar 1978], an English translation is available in

[Murat 1997]. This general theorem does not give any formula for the H-limit. In fact, we have

explicit formula only for few particular cases, like periodic media.

2.1.3 Periodic homogenization

Let the periodic cell be the unit cube Y = (0, 1)N .

Let the Lebesgue space Lp#(Y ) be the set of Y -periodic functions in Lp
loc

(RN ), the norm for

this space is the norm ||f ||Lp(Y ).

Let the Sobolev space H1
#(Y ) be the set of Y -periodic functions of H1

loc(RN ), the norm for

this space is the norm ||f ||H1(Y ).

Let A ∈ L∞(Y,Mα,β) be a Y -periodic admissible Hooke’s law. Let Aε be the sequence of

admissible Hooke’s laws defined by:

Aε(x) = A(
x

ε
) . (2.4)

The theorem 2.1.1 ensures that the sequence Aε has a H-converging subsequence. In fact,

according to the following theorem, the whole sequence H-converges, and there is an explicit

formula for its H-limit.

Theorem 2.1.2. The sequence Aε, defined by (2.4), H-converges to a constant homogenized

fourth order tensor A∗ ∈Mα,β defined by its coefficients:

A∗ijkl =

∫
Y
A(y)(eij + e(wij)) : (ekl + e(wkl))dy , (2.5)

where eij = 1
2(ei ⊗ ej + ej ⊗ ei) is the canonical basis of the symmetric tensors of order 2, and

the functions wij ∈ H1
] (Y,RN ) (with 1 ≤ i, j ≤ N) are the unique solutions, up to an additive

constant, of the cell problems:{
div(A(eij + e(wij)) = 0 in Y

y → wij Y -periodic
(2.6)
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The particular interest of Theorem 2.1.2 relies on the fact that any H-limit can be reached

by a converging sequence of periodic Hooke’s laws:

Theorem 2.1.3. Let Aε be a sequence of Hooke’s law in L∞(Ω,Mα,β), which H-converges

to a limit A∗. Let A∗x,ε,h be the periodic homogenized matrix defined, for any x ∈ Ω and any

sufficiently small positive h > 0, by:

(A∗x,ε,h)ijkl =

∫
Y
Aε(x+ hy)(eij + e(wijx,ε,h) : (ekl + e(wklx,ε,h)dy ,

where (wijx,ε,h)1≤i,j≤N is the family of solutions in H1
#(Y )/R of the cell problems:{

div(Aε(eij + e(wijx,ε,h)) = 0 in Y

y → wijx,ε,h Y -periodic
. (2.7)

There exists a subsequence h going to zero such that, for almost every x ∈ Ω:

lim
h→0

lim
ε→0

A∗x,ε,h = A∗(x)

The theorem 2.1.3 is a density result, since any general H-limit can be approached by

periodic H-limits.

In particular, periodic homogenization is perfectly appropriate to study modulated cellular

structures. Indeed, let us consider a periodic cell whose design is parametrized by finite param-

eters p ∈ Rnp . Thanks to the theroem 2.1.2, the homogenized Hooke’s law A∗(p) of the cell can

be computed for any parameters p. Let be the domain Ω be tiled by periodic cells of size ε. Let

pε(x) : Ω → Rnp be the function of parameters of the periodic cells: it is a piecewise constant

function. We assume that pε converges weakly to p∗.

Let Aε(x) ∈ L∞(Ω,Mα,β) be the Hooke’s law of this modulated cellular structure. Then the

theorem 2.1.3 ensures that the sequence Aε H-converges to the Hooke’s law A∗(p∗(x)), when

the size ε of the periodic cells is going to zero.

We now have all the results in order to compute effective Hooke’s laws with homogenization

method for modulated cellular structures. However, there are few other questions to be answered

before using homogenization theory to any linear elastic problem. Indeed the definition 2.1.5 is

given for particular boundary conditions. We will see it can be extended to others. Moreover,

we give in the following more results in order to be able to compute some quantities, like energy

and eigenfrequencies.

2.1.4 Irrelevance of the boundary conditions

Proposition 2.1.4. Let Aε(x) be a sequence of Hooke’s laws in L∞(Ω,Mα,β) that H-converges

to A∗(x). Any sequence zε such that: −div(Aεe(zε)) = fε → f strongly in H−1

loc
(Ω)N

zε ⇀ z weakly in H1
loc(Ω)N
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satisfies:

Aεe(zε) ⇀ A∗e(z) weakly in L2
loc(Ω,Ms

N )

Before exposing the proof of this proposition, we give the following fundamental result,

which is a generalization of the div-curl lemma, also called compensated compactness lemma

[Tartar 1979]. One can refer to Theorem 3.1 of [Francfort 1986] for more details.

We recall that, the product of two sequences which respectively converges weakly to u and

v does not converge weakly to the product u v. The div-curl lemma and its generalization, state

that if the derivatives verify some convergence, the product converge in the sense of distributions.

Lemma 2.1.5. Let uε and vε be two sequences in L2(Ω,Ms
N ) such that{

uε ⇀ u weakly in L2(Ω,Ms
N )

div(uε)→ div(u) strongly in H−1(Ω)
,

and

vε ⇀ v weakly in L2(Ω,Ms
N )

∀i, j, k, l ∈ {1, .., N},
∂vε,jl

∂xi∂xK
+

∂vε,ik

∂xj∂xl
−

∂vε,jk

∂xi∂xl
−

∂vε,il

∂xj∂xk
→

∂vjl

∂xi∂xK
+

∂vik

∂xj∂xl
−

∂vjk

∂xi∂xl
−

∂vil

∂xj∂xk
strongly in H−2(Ω,MN )

.

(2.8)

Then

uε : vε → u : v in the sense of distributions.

The term compensated comes from the fact that specific derivatives of each sequence converge

in order to compensate each other.

The second condition of (2.8) is automatically satisfied for sequences of symmetric matrices

vε which are strain tensor, meaning can be written vε = (∇aε + ∇aTε )/2. Indeed this linear

combination of partial derivatives is equal to zero for such matrices.

Proof. We give here a proof of the proposition 2.1.4.

Let ω be a compactly embedded subset of Ω. Since zε converges weakly to w in H1
loc(Ω)N ,

e(zε) converges weakly to e(z) in L2
loc(Ω)N . Moreover ∇∧ e(zε)(Ω)N ) = 0 = ∇∧ e(z).

Since zε is bounded in H1(ω)N , the product Aεe(zε) is bounded in L2(ω)N , and so converges

weakly to σ ∈ L2(ω)N , up to a subsequence still denoted by ε. The strong convergence of the

divergence of the product is an assumption of the proposition.

The goal is to prove σ = A∗e(z) in ω.

Let φ ∈ D(Ω) such that φ ≡ 1 on ω. Let λ ∈Ms
N be a symmetric matrix. Let the function

w(x) = φ(x)λx, then we have e(w)(x) = λ in ω.
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Let the test function wε be the solution in H1
0 (Ω)N of:{

−div(Aεe(wε) = −div(A∗e(w)) in Ω

wε = 0 on ∂Ω
.

Thanks to the H-convergence of Aε, we get:

wε ⇀ w weakly in H1
0 (Ω)N ,

and so

e(wε) ⇀ e(w) weakly in L2(Ω)N .

Moreover, e(wε) satisfies the second condition of (2.8), since it is a strain tensor.

From the H-convergence of Aε, we also get that Aεe(wε) converges weakly to A∗e(w) in

L2(Ω)N . Moreover, we have div(Aεe(wε)) = div(A∗e(w)) and so the strong convergence in

H−1(Ω).

Since Aε ∈Mα,β, A is coercive, we then have:

Aε(e(zε)− e(wε)) : (e(zε)− e(wε)) ≥ α|e(zε)− e(wε)|2 ≥ 0 almost everywhere in ω.

By application of the div-curl lemma, we get:

(σ −A∗λ) : (e(z)− λ) ≥ 0 a. e. in ω.

Let x0 ∈ ω be a point where the above inequality holds. By taking λ = e(z)(x0) + tµ, with

t > 0 and µ ∈Ms
N and dividing by t and letting t going to zero:

−(σ(x0)−A∗e(z)(x0)) : µ ≥ 0 .

Since this inequality holds for any µ ∈Ms
N , necessarily:

σ(x) = A∗e(z)(x) a. e. in ω.

Hence all converging subsequences of Aε(e(zε) converges to the same limit for any subset ω ⊂ Ω,

the entire sequence converges weakly to A∗e(z)(x) in L2
loc(Ω,Ms

N ).

2.1.5 Convergence of the energy

In shape optimization in linear elasticity, a classic objective consists in minimizing the compli-

ance of the final structure, meaning maximizing its rigidity. Taking a sequence of structures,

whose Hooke’s laws H converge to A∗, the following proposition ensures that the energy, and

so the compliance, of the structures converges to the energy of the homogenized structure.

Proposition 2.1.6. Let Aε(x) be a sequence of Hooke’s laws in L∞(Ω,Mα,β) that H-converges

to A∗(x). For any right hand side f ∈ H−1(Ω)N , the sequence uε of solutions of:{
−div(Aε(x)e(uε)(x)) = f(x) in Ω

uε = 0 on ∂Ω
(2.9)
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satisfies:

Aεe(uε) : e(uε) ⇀ A∗e(u) : e(u) in the sense of distributions

and ∫
Ω
Aεe(uε) : e(uε)dx→

∫
Ω
A∗e(u) : e(u)

where u is the weak limit of uε in H1
0 (Ω)N and so the solution of the homogenized equation

(2.3).

Proof. We give here the proof of the proposition 2.1.6 to illustrate a simple application of the

div-curl lemma. Since Aε(x) H-converges to A∗(x), we get:

Aεe(uε) ⇀ A∗e(u) in L2(Ω,Ms
N )

Since

∀x ∈ Ω div(Aε(x)e(uε)(x)) = f(x) = div(A∗(x)e(u)(x)) ,

we have:

div(Aεe(uε)→ div(A∗e(u)) strongly .

Besides, from

uε ⇀ u in H1
0 (Ω)N ,

we get

e(uε) ⇀ e(u) in L2(Ω)N .

Moreover, e(wε) satisfies the second condition of (2.8), since it is a strain tensor.

By application of the generalized div-curl lemma 2.1.5, we get the convergence of Aεe(uε) :

e(uε) in the sense of distributions in Ω to A∗e(u) : e(u).

For the second result of the proposition, we recall that uε converges weakly to u in H1
0 (Ω)

and consequently: ∫
Ω
f · uεdx→

∫
Ω
f · udx .

An integration by parts of the elasticity problems gives respectively:∫
Ω
Aεe(uε) : e(uε)dx =

∫
Ω
f · uεdx∫

Ω
A∗e(u) : e(u)dx =

∫
Ω
f · udx

,

which leads eventually to the desired result.

Remark 1. The second result of the proposition 2.1.6 can be extended to other boundary con-

ditions only if they are fixed, in order to proceed to the integration by parts of the elasticity

problems. This is the case for any elasticity problems studied in the present work.
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2.1.6 Corrector results

In linear elasticity, we made the assumption that the stress and the strain are always linked

together through the Hooke’s law, no matter their values. However in real elasticity, several phe-

nomena (plasticity or buckling for example) may occur when the stress exceeds some threshold.

So, in shape optimization, it would be relevant to estimate the limit, if it exists, of:

Jε =

∫
Ω
k(x)|σε|2dx , (2.10)

where k is a non-negative function. It is a weighting factor, thanks which the evaluation of the

stress can be localized.

We recall that σε converges weakly to σ and that the product of two weakly converging

sequences does not generally converge weakly to the product of the weak limits. Hence to pass

to the limit in (2.10), strong convergence is required for the sequence σε.

From a mechanical point of view, this means that in a composite, the microstructure induces

local stress. But the homogenized, meaning the average, stress does not report this local stress.

Amplification, or corrector, factors are required to estimate local stress from the average one.

Definition 2.1.6. Let (Xij)1≤i,j≤N be the family functions of H1(Ω)N defined by their coeffi-

cients:

Xij
k = xjδik (2.11)

In particular, we have:

e(Xij) = eij (2.12)

We now introduce the corrector tensors:

Definition 2.1.7. Let Aε be a sequence of Hooke’s laws in L∞(Ω,Mα,β) that H-converges to

A∗. Let (wijε )1≤i,j≤N be a family of functions in H1(Ω) such that:

wijε ⇀ Xij weakly in H1(Ω)N

gijε = div(Aεe(wijε )) → gij = div(A∗eij) strongly in H−1(Ω)N
(2.13)

The fourth order tensor W ε defined by its coefficients:

W ε
ijkl = (e(wijε ))kl

is called a corrector tensor.

The existence of the functions wijε is at the heart of the proof of theorem 2.1.1 by Tartar

and Murat. They are called correctors or oscillating test functions. They are introduced in

the proof to define the homogenized tensor A∗. It is so quite natural that they are involved

in the correction of A∗ in order to compute the strong limit of the stress, as we will see in the

following. We emphasize they are not uniquely defined, but only up to a strongly convergent

additive term, which leads to the following lemma:

Lemma 2.1.7. Let Aε be a sequence of Hooke’s laws in L∞(Ω,Mα,β) that H-converges to A∗.

If there exist two corrector tensor W ε and W̃ ε, then their difference converges strongly to zero

in L2
loc(Ω,M4

N ).
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In the periodic case, the oscillating test functions can be given explicitly by the solutions

wij of the cell problem (2.7):

wijε (x) = Xij + εwij(
x

ε
) , (2.14)

which leads to:

e(wijε )(x) = eij + (ey(wij))(
x

ε
) .

Indeed, by rescaling the cell problem (2.7), we eventually get:

div(e(wijε )) = 0 = div(A∗eij) in Ω ,

since A∗ is homogeneous in Ω in the periodic case, and the so-defined wijε satisfies (2.13)

Hence, the corrector tensor is given by:

W ε
ijkl = I4

ijkl + (ey(wij))kl(
x

ε
) ,

where I4 is the fourth order identity tensor, and ey is the operator e with respect to the periodic

variable y.

Lemma 2.1.8. Let Aε be a sequence of Hooke’s laws in L∞(Ω,Mα,β) that H-converges to A∗.

Then we have:

W ε ⇀ I4 weakly in L2(Ω,M4
N )

AεW ε ⇀ A∗ weakly in L2(Ω,M4
N )

(W ε)TAεW ε ⇀ A∗ in D′(Ω,M4
N )

(2.15)

Theorem 2.1.9. Let Aε be a sequence of Hooke’s laws in L∞(Ω,Mα,β) that H-converges to

A∗. Let uε be the solution of (2.1), which converges weakly (up to a subsequence still denoted

uε) to u, the solution of the homogenized equation (2.3).

Then:

e(uε) = W εe(u) + rε ,

where rε converges strongly to zero in L1
loc(Ω,Ms

N ).

With the settings of theorem 2.1.9, we have:

σε = Aεe(uε) = AεW εe(u) +Aεrε = P εσ +Aεrε

where P ε is the fourth order tensor defined by:

P ε = AεW εA∗−1 , .

The sequence P ε converges weakly to I4, thanks to lemma 2.1.8.

The objective function (2.10) can then be rewritten:

Jε =

∫
Ω
k(x)|σε|2dx

=

∫
Ω
k(x)|P εσ|2dx+ 2

∫
Ω
k(x)(Aεrε : P εσdx) +

∫
Ω
k(x)|Aεrε|2dx)

(2.16)

We focus in the following in the case of periodic homogenization.
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Proposition 2.1.10. In periodic homogenization, assuming that the solution u of the elasticity

problem is W 1,∞(Ω,RN ), the objective function (2.10) converges, when ε is going to zero, to:

J =

∫
Ω
k(x)P ∗σ : σdx

where σ is the associated constraint tensor to the displacement u and

P ∗ =
1

|Y |

∫
Y
A(y)W (y)A∗−1A(y)W (y)A∗−1dy .

Before to display the proof of this proposition, we recall the following lemma, see Lemma

1.3.19 in [Allaire 2002a]:

Lemma 2.1.11. Let f(y) ∈ L2
#(Y ) be a periodic function. The sequence fε, defined by

fε(x) = f(
x

ε
)

converges weakly in L2
loc(RN ) to the average:

1

|Y |

∫
Y
f(y)dy.

Proof. Proof of Proposition 2.1.10

Thanks to Meyers theorem (see Theorem 1.3.41 in [Allaire 2002a]), the displacement uε,

solution of (2.1), is known to belong to W 1,p
0 (Ω), with p > 2 the Meyers exponent (p independent

of ε). Hence, its symmetrized gradient e(uε) is Lp-bounded.

Likewise, the solutions wij of the cell problem (2.7) belong to W 1,p(Y ), and Wε is Lp-

bounded.

We recall that we assume here e(u) to be L∞-bounded.

Hence, rε = Wεe(u)− e(uε) is Lp-bounded. Thanks to Lemma 1.2.5 in [Allaire 2002a], since

rε converges strongly to zero in L1
loc(Ω,Ms

N ), it also converges strongly to zero in L2(Ω,Ms
N ).

Recalling that Aε is L∞-bounded, the third term of (2.16) converges to zero.

The second term of (2.16) converges also to zero, since σ is assuming to be L∞-bounded.

We conclude using Lemma 2.1.11.

The term amplification tensor stands for the fact that the L2 norm of the homogenized

stress σ is amplified by this tensor in order to reach the convergence.

In the particular case of laminated composite material, an explicit formula of the correctors

is due to Briane [Briane 1994] in conductivity. This result has been extended to linear elasticity

[Allaire 2004a] and implemented for shape optimization.

Remark 2. Other assumptions in Proposition 2.1.10 could be chosen, like regularity on the so-

lutions wij of the cell problem (2.7), leading to Wε to be L∞-bounded. However, microstructures

featuring sharp corners are used in this thesis: such assumption can not be considered here.
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2.1.7 Eigenfrequencies

Homogenization theory stands also for dynamic problems and eigenvalue problems. Let Ω be

a bounded subset of RN . Let A ∈ L∞(Ω,Mα,β) be an admissible Hooke’s law. We recall that

the spectral problem in linear elasticity reads as:{
−div(A∗(x)e(u)(x)) = λρ(x)u(x) in Ω

u = 0 on ∂Ω
, (2.17)

where the unknown λ > 0 is an eigenvalue, and u ∈ H1
0 (Ω)N is an associated nonzero

eigenvector. There is a countable infinite number of solutions λ: the eigenvalues are a positive

unbounded sequence. They are labeled by increasing order.

Homogenization theory gives a convergence result for the eigenfrequencies λ, as stated in

the following theorem:

Theorem 2.1.12. Let Aε be a sequence of Hooke’s laws in L∞(Ω,Mα,β) that H-converges to

A∗. Let ρε be a sequence of positive functions, such that:

0 < ρ− ≤ ρε(x) ≤ ρ+ <∞ ,

which converges weakly * in L∞(Ω,Mα,β) to a limit ρ(x).

Let (λmε )m≥1 be the eigenvalues, labeled by increasing order, and (umε )m≥1 be associated

normalized eigenvectors (||umε ||L2(Ω)N = 1) of the spectral problem:{
−div(Aε(x)e(umε )(x)) = λmε ρε(x)umε (x) in Ω

umε = 0 on ∂Ω
. (2.18)

Then for any fixed m ≥ 1,

lim
ε→0

λmε = λm ,

and, up to a subsequence, umε converges weakly in H1
0 (Ω)N to um, a normalized eigenvector

associated to λm, which are solutions of the homogenized eigenvalue problem:{
−div(A∗(x)e(um)(x)) = λmρ(x)um(x) in Ω

um = 0 on ∂Ω
. (2.19)

Moreover (λm)m≥1 is the complete family of eigenvalues of (2.19), labeled in increasing order.

We emphasize that several eigenvectors may be associated to the same eigenvalue, and so

the convergence of the sequence umε can only be ensured up to a subsequence.
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2.2 Composite material

We focus here on composite materials, made of two isotropic phases A and B in Mα,β. Their

shear moduli and Lamé coefficients are respectively µA, µB and λA, λB. We assume that:

0 < µB ≤ µA , 0 < λB ≤ λA .

Let χε ∈ L∞(Ω, {0, 1}) be a family of scalar characteristic functions, which converges weakly

* to θ ∈ L∞(Ω, [0; 1]). Let Aε ∈ L∞(Ω,Mα,β be a sequence of Hooke’s laws defined by:

Aε(x) = χε(x)A+ (1− χε(x))B .

The sequence Aε, up to a subsequence still denoted Aε, H-converges, thanks to Theorem 2.1.1.

The H-limit A∗ is the homogenized tensor of the composite material made of phase A in

proportions θ and phase B in proportions (1−θ), with a microstructure defined by the sequence

(χε)ε>0.

Definition 2.2.1. Let θ ∈ L∞(Ω, [0; 1]) be density function. The set Gθ is defined as the set of

all H-limits A∗ associated to the density θ.

Generally, there is no formula for theH-limit A∗ of Aε. Hence, the set Gθ can not be explicitly

characterized. This is a huge limitation to perform shape optimization with the whole set of

composite materials. A solution consists in reducing the set of admissible composites to families

of composites, for which the effective elastic properties can be computed. To start, we focus on a

particular class of composites : the sequential laminates. Then we recall the Hashin-Shtrikman

bounds on the elastic properties of isotropic composites from Gθ, which will serve as reference.

To conclude we briefly present the design of microstructures, an important research field in

shape optimization.

Remark 3. The H-limit A∗ is not the Hooke’s law defined by: (θA + (1 − θ)B). Indeed, this

would imply that the local microstructure of the composite does not affect its homogenized elastic

behaviour. Only the proportions of each phase (θ for A and (1 − θ for B) would control the

homogenized Hooke’s law. Moreover the homogenized Hooke’s law would be isotropic. All of

this is obviously false. To illustrate this, we can consider the composite made of equal layers of

phases A and B in the direction (0, 1), see Figure 2.1. It would collapse for a vertical load but

stay very strong for a horizontal load: it is clearly not isotropic.

2.2.1 Sequential laminates

We focus here on a particular class of two-phase composites: the sequential laminates.

Single laminated composites. The definition of a single laminated composite relies on the

following result of H-convergence (see Lemma 1.4.10 in [Allaire 2002a]):

Lemma 2.2.1. Let χε(x1) ∈ L∞(R; {0, 1}) be a sequence of scalar characteristic functions

that converges weakly ∗ to a limit θ(x1) in L∞(R; [0, 1]). Let Aε be a sequence of matrices in

L∞(Ω,Mα,β) defined as:

Aε(x1) = χε(x1)A+ (1− χε(x1))B .
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Figure 2.1

The sequence Aε H-converges to A∗, which depends only on x1 and is defined by:

θ(A∗ −B)−1 = (A−B)−1 + (1− θ)fB(e1) ,

where fB(e1) is a positive nondefinite fourth order tensor defined, for any symmetric matrix ξ

by:

fB(e1)ξ : ξ =
1

µB
(|ξe1|2 − (ξe1 · e1)2) +

1

2µB + λB
(ξe1 · e1)e1 ⊗ e1 . (2.20)

The composite A∗ is said to be a single lamination in the direction e1 of the two phases A

and B in proportions θ and (1− θ).

The single laminated composites define a whole family of composite materials, parametrized

by the proportion of lamination θ and the direction of lamination.

Moreover, a single laminated composite can also be laminated, defining an enlarged family

of composite materials.

Sequential laminated composites.

Lemma 2.2.2. Let (ei)1≤i≤p be a set of unit vectors. Let θ be a volumic fraction in [0; 1]. For

any collection of non-negative real numbers (mi)1≤i≤p satisfying:

p∑
i=1

mi = 1 and ∀i ∈ {1, .., p}mi ≥ 0 ,

there exists a rank-p sequential laminate A∗p, with matrix A and core B, in proportions θ and

(1− θ), respectively, with lamination directions (ei)1≤i≤p such that:

(1− θ)(A∗p −A)−1 = (B −A)−1 + θ

p∑
i=1

mifA(ei) ,

where fA is given by (2.20). The numbers (mi)1≤i≤p are called the lamination parameters.

On Figure 2.2, we display the sequential construction of a sequence of composite materials

converging to a rank-2 laminate.
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(a) First lamination, in direction

e1

(b) Change of scale (c) Second lamination, in direc-

tion e2

Figure 2.2: Process of to construct a sequential laminated composite

The first lamination between the two phases A and B is done in the direction e1, see Figure

2.2(a). This new material, namely a single laminated composite, is seen as an homogenized

material. This is a key point in the proof of the explicit formula of the elastic properties of

the sequential laminates. Hence, the characteristic size ε of the single laminated composite

is drastically reduced, what we call a change of scale, see Figure 2.2(b). Finally, this new

effective material is laminated in direction e2 with the previous matrix A, see Figure 2.2(c). We

emphasize that without a change of scale between two laminations, the constructed composite

will not converge to a sequential laminates. The process for laminated composites of higher

ranks is exactly the same: the new material is seen as an effective material, thanks to a change

of scale, then laminated in the appropriate direction.

2.2.2 Hashin Shtrikman bounds

The following theorem is due to Hashin and Shtrikman [Hashin 1963], Francfort and Murat

proved that Hashin Shtrikman bounds are reached by sequential laminates [Francfort 1986].

Theorem 2.2.3. Let A∗ be an isotropic homogenized tensor in Gθ:

A∗ = 2µ∗I4 + (κ∗ −
2µ∗

N
)I2 ⊗ I2 ,

where κ∗ is its bulk modulus and µ∗ its shear modulus.

Then κ∗ and µ∗ satisfy:

θ

κ∗ − κB
≤

1

κA − κB
+

1− θ
2µB + λB

, (2.21)

1− θ
κA − κ∗

≤
1

κA − κB
−

θ

2µA + λA
, (2.22)

and
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θ

µ∗ − µB
≤

1

µA − µB
+

2(1− θ)(N − 1)(κB + 2µB)

(N2 +N − 2)µB(2µB + λB)
, (2.23)

1− θ
µA − µ∗

≤
1

µA − µB
−

2θ(N − 1)(κA + 2µA)

(N2 +N − 2)µA(2µA + λA)
, (2.24)

Furthermore, the lower bounds (2.21) and (2.23) and the upper bounds (2.22) and (2.24)

are respectively simultaneously attained by an isotropic rank-p sequential laminate with p ≤
(N + 3)(N + 2)(N + 1)N/24. Optimality is achieved with p = 3 when N = 2 (in 2D), and with

p = 6 when N = 3 (in 3D).

In the following, the upper Hashin Shtrikman bounds will be our references for composite

material. The composite materials in the presented work are made of an isotropic phase and

void. Hence, we give the upper bounds κHS and µHS in this particular case:

κHS = κA −
κA(1− θ)(2µA + λA)

2µA + λA − κAθ
= κAθ

2µA + λA − κA
2µA + λA − κAθ

(2.25)

and

µHS = µAθ
(N2 +N − 2)(2µA + λA)− 2(N − 1)(κA + 2µA)

(N2 +N − 2)(2µA + λA)− 2θ(N − 1)(κA + 2µA)

=


µAθ

κA

κA + (1− θ)(κA + 2µA)
when N = 2

µAθ
20µA − 9κA)

5(4µA + 3κA)− 6θ(N − 1)(κA + 2µA
when N = 3

(2.26)

The SIMP method. In the Solid Isotropic Material with Penalization (SIMP) method, the

Hooke’s law is represented as a power law of the density, the maximal exponent is 3. The bulk

and the shear moduli with respect to the density are respectively represented on Figures 2.3(a)

and 2.3(b), for three values of the exponent: 1 (linear law), 2 (quadratic law) and 3 (cubic law).

The upper Hashin Shtrikman for a composite of isotropic material and void is also displayed

on those figures, as references. The linear and quadratic materials are above the upper Hashin

Shtrikman bounds for any density: they are fictitious material in the sens where no composite

material reach those elastic properties for the same density. The cubic material satisfies the

Hashin Shtrikman bounds for density lower than 70%: up to this point, the cubic material

may match composite material. However, we do not have any information of which kind of mi-

crostructure it could be. Moreover, for greater densities, the cubic material turns also fictitious.

Hence the SIMP method is not appropriate for shape optimization with microstructures. The

penalization part is mandatory in order to reach real material (by opposition with fictitious

materials), namely void and full material.

2.2.3 Design of a periodic microstructure

As seen previously, the set Gθ is very large and can not be explicitly characterized. There exists

an infinite choice of microstructures: to choose an adapted class of composites for a given min-

imization problem is not an easy task, see the textbook [Milton 2002] for more details about
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Figure 2.3: Hashin Shtrikman (H-S) upper bound of bulk (left) and shear (right) moduli in 2D,

with linear, quadratic and cubic laws

composite materials in numerous physical domains. Microstructures have been theoretically

elaborated in order to reach some specific properties, like the sequential laminates, the coated

confocal ellipsoid [Tartar 1985] or the Vigdergauz cells [Vigdergauz 1999]. Other microstruc-

tures have also been optimized using shape optimization methods: see [Sigmund 1994a] and

[Michailidis 2014], or [Hyun 2002] for isotropic microstructures, [Guest 2006] for optimized cells

for permeability to fluids, [Lin 2004] for optimization of biomaterials...

In this thesis, the chosen periodic microstructures should satisfy some criteria. First, it

should be manufacturable, using additive manufacturing process. This imply that the mi-

crostructure can feature only one scale of material: rank-2 or more laminated composite are then

excluded. For 3D microstructures, other constraints have to be taken into account, depending

on the process of fabrication. For example, for metal additive manufacturing, the microstruc-

ture has to be drilled from end to end, otherwise metallic powder could be trapped in the final

structure. Second, we consider only lattice material, meaning a mixing of an isotropic elastic

phase and void. Third, the geometry of the microstructure has to be easily parametrizable, to

perform the optimization process only over few parameters. To finish, the microstructure should

explore, within the realm of the possible, a large range of elastic properties. In particular, it

has to reach complete void and full material. This excludes for example a square perforated

with an ellipse.
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3.1 Introduction

We present a shape optimization method based on homogenization method to optimize struc-

tures made of modulated isotropic lattice material in 2D and in 3D. Two characteristics of the

isotropic microstructures make them of high interest for shape optimization. First, there is no

need to orientate them locally in the domain, what simplifies the optimization process but also

the deshomogenization one. Second their geometry is parametrized by only one parameter, their

density for example. Hence the distribution of only one parameter has to be optimized. One

could notice that the optimization process is then very close to the SIMP method. Neverthe-

less, we recall that no fictitious material is used here. The homogenized elasticity tensor of the

isotropic lattice material has to be computed, and taken into account during the optimization

process. It is not approximated by a power law of the density.
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In Section 1, we introduce isotropic microstructures in 2D an in 3D parametrized by their

density. We compute their homogenized elasticity tensor, and the corresponding stress amplifi-

cation tensor.

In Section 2, we present the optimization algorithm based on a gradient descent method. The

optimization of several objective functions is investigated: the minimization of the compliance in

single-load and multiple-loads test cases, the optimization of the displacement, the minimization

of the L2-norm of the stress tensor and the maximization of the first eigenfrequency. The

isotropy of the cells is not optimal in some minimization problems, for example the minimization

of the compliance for single-load case. Indeed the microstructure has to support constraints

in two orthogonal directions simultaneously, when itself has no privileged strength direction.

But isotropic microstructures appear to be highly adapted for other particular optimization

problems, for example the minimization of the compliance for multiple-loads case.

In Section 3, two methods to deshomogenize the optimized homogenized structures are

presented. The first one relies on a local approach: each cell of the deshomogenized structure is

separately computed according to the local average density. In the second method, a global one,

a level-set function, depending on the optimized density of the cells is introduced to describe the

final structure. This strategy ensures the connectivity and the smoothness of the final shapes.

3.2 Isotropic microstructures

3.2.1 Cell designs

We present in this section, three isotropic microstructures in 2D and one in 3D. Only one

parameter is retained here to modulate the cells : their density. Other equivalent parameters

could be chosen, as the width of the bars. More parameters could have been retained in order

to design a morphing between different types of isotropic cells.

classical honeycomb. The classical honeycomb is a regular hexagon perforated by a hexago-

nal hole, see Figure 3.1(a). This kind of cell is parametrized by its density, whose range is [0; 1]:

the cell varies from void to full material.

Let θ be the density of the cell: θ ∈ [0; 1]. Let m be the relative width of the bars, with

respect to the size of the cell: m ∈ [0;
√

3
2 ]. Those two quantities are linked to each other:

m =

√
3

2
(1−

√
1− θ) (3.1)

Reinforced honeycomb. The reinforced honeycomb cell is a regular hexagon with its three

diagonals, see Figure 3.1(b). The periodic pattern can be seen as a truss of three groups of

parallel bars. All the bars have the same width. They are equally spaced and oriented : the

angle between two bars of different groups is equal to π
3 . As the classical honeycomb, this kind

of cell is parametrized by its density and varies from void to full material.

Let θ be the density of the cell: θ ∈ [0; 1]. Let m be the relative width of the bars, with

respect to size of the cell: m ∈ [0; 1
2
√

3
]. Those two quantities are linked to each other:

m =
1

2
√

3
(1−

√
1− θ) (3.2)
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Smooth honeycomb. The smooth honeycomb is similar to the classic one, except that the

interior corners are rounded, see Figure 3.1(c). Moreover, when the density increases to go

to 1, the central hole converges to a circle, whose diameter is going to 0. Contrary to the

previous kinds of cell and because of the smoothened corners, this kind of cell can not reach

formally complete void. This cell is not parametrized using its density for practical reason, but

by another parameter, h ∈ [0; 1]. Indeed, in order to design this kind of cell, a parametric curve

Γh is introduced and represents the border of the hole. This curve depends on h. We introduce

some notations before giving its polar equation.

Let the vector v(t) = (cos(t), sin(t))T and let the vectors ni, with i ∈ {0, 1, 2} be respectively

the normal vectors of the three diagonals of the honeycomb :

n0 =

(
0

1

)
, n1 =

( √
3

2
1
2

)
, n2 =

( √
3

2

−1
2

)
. (3.3)

Eventually, the polar equation of Γh is:

r(t) = h

√
3

2
(

2∑
i=0

|v(t) · ni|p)−
1
p with t ∈ [0; 2π] (3.4)

where p is a positive coefficient which depends potentially of h. Here we took p = 4 + 20h2.

We emphasize the fact that h is homogeneous to a distance, like m in the previous designs

of hexagonal cells. The three kinds of honeycomb cells are hence parametrized quite the same

way.

The polar equation of Γh relies on some following remarks and can easily be extended to

other polygons. A regular unit hexagon H is the set of points whose maximal distances from

the three diagonals is equal to
√

3
2 , see Figure 3.1(b). Let M(r, t) be a point, labeled with its

polar coordinates: M is a point of the regular unit hexagon if and only if:

M(r, t) ∈ H ⇔ rmax
i
|v(t) · ni| =

√
3

2
.

m

(a) classical honeycomb

m

2m

(b) Reinforced Honeycomb

(0,0)

M(r,t)
r
t

Γh

(c) Smooth Honeycomb

Figure 3.1: Periodic isotropic cells in 2D
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We then get the polar equation of H:

r(t) =

√
3

2
(max

i
|v(t) · ni|)−1 .

Let us recall that:

(
2∑
i=0

|v(t) · ni|p)−
1
p →p→+∞ max

i
|v(t) · ni| .

The polar equation of Γh comes from combining the polar equation of H and the above

limit. The scalar parameter h is added in order to adjust the diameter of the inner hole.

The interest of this design relies on its smooth rounded corners. Indeed, sharp corners

are known in mechanics to concentrate high stress. Smooth corners will generate lower local

concentration of stress, see [Neuber 1961], for the impact of smooth rounded corners on the

performances in fatigue, see also [Abad 2013].

Remark 4. Those cells are qualitatively similar to the celebrated Vigdergauz hexagonal cells

[Vigdergauz 1999], which are known to be extremal composites in the sense that they minimize

the energy. However, for practical issues, we do not implement the Vigdergauz composites:

the hole boundary is described through a complex parametrization. Moreover, we do not claim

that our smooth honeycomb cells reach particular elastic properties. Our only goal consisted in

reducing the stress concentration, localized around the sharp corners of the classical honeycomb.

Tetrakaidecahedron. In 3D, isotropic cells are less easy to design. The most known one is the

regular tetrakaidecahedron, also called Kelvin foam, (in [Li 2006]n, it is numerically shown to

yield an isotropic homogenized Hooke’s law). Other isotropic cells, with particular properties,

have been designed, like sequential laminates in [Francfort 1986]. But for our purpose, an easily

parametrizable cell is required. That is why, we focus on the tetrakaidecahedron cell.

A unit tetrakaidecahedron features fourteen faces: six unit squares and eight regular unit

hexagons, see Figure 3.2. Several approaches are possible in order to design a parametrized

isotropic cell from this one, whose density range is [0; 1]. A naive approach consists in adding

a central tetrakaidecahedron inclusion, whose characteristic size is going from 0 to 1. However,

we keep in mind that the final structure has to be manufacturable using additive manufacturing

processes, including metallic ones. No inclusion is permitted because metal powder would be

trapped inside during the process and could not be removed at the end. Then, the cell should

be drilled from end to end. Hence, through holes are drilled from each face to its opposite face,

see Figure 3.3. As previously, we introduce a single parameter m ∈ [0; 1] to characterize the

cell: it is the ratio of the homothety between the hole in a face and the external border of this

face, the same for all faces. When m = 0, there is no hole and the cell is full. When m = 1, the

hole occupies all the faces and the cell is completely void.

3.2.2 Homogenized Hooke’s laws of the microstructures

Let Y be the periodic cell pattern: either the regular hexagon in 2D or the regular tetrakaidec-

ahedron in 3D, and not a square or a cube. The periodicity of the cells is defined by the same

displacement on two opposite and parallel faces. Hence, in 2D for hexagonal cells, there are
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Figure 3.2: Tetrakaidecahedron

Figure 3.3: Periodic isotropic cells in 3D
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classical honeycomb – Reinforced honeycomb – Smooth honeycomb – Kelvin foam

(a) θ = 20% (b) θ = 20% (c) θ = 20% (d) θ = 20%

(e) θ = 50% (f) θ = 50% (g) θ = 50% (h) θ = 50%

(i) θ = 80% (j) θ = 80% (k) θ = 80% (l) θ = 80%

Figure 3.4: Periodic isotropic cells according to their density θ
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three directions of periodicity, and in 3D for the tetrakaidecahedron cell, there are seven direc-

tions of periodicity. Let Y0 be the solid domain in Y , Γint be the boundary of the holes, and n

its normal vector. Let |Y | be the volume of Y .

Let A be the constant elasticity tensor of the isotropic solid phase. Let µ be its shear

modulus, κ its bulk modulus and λ = κ− 2µ
N its Lamé coefficient. Hence A is defined by:

A = 2µI2N + λIN ⊗ IN .

Let a given macroscopic domain be periodically tiled with cells εY0, where ε > 0 is the

periodicity size. When ε → 0, the periodic medium can be considered homogeneous, with an

effective elasticity tensor A∗.

As seen in (Part 1 chapter 2), the coefficients of the homogenized tensor A∗ are given by:

A∗ijkl =
1

|Y |

∫
Y0

A(eij + e(wij) : (ekl + e(wkl)dy ∀i, j, k, l ∈ {1, ..N} , (3.5)

where wij are the so-called correctors, solutions of the following cell problems:
div(A(eij + e(wij)) = 0 in Y0

A(eij + e(wij)n = 0 on Γint

y 7→ wij(y) Y0-periodic

, (3.6)

with eij = 1
2(ei ⊗ ej + ej ⊗ ei), a basis of the symmetric tensors of order 2. We emphasize

that in (3.5), the coefficients are divided by the area of the periodic cell Y . Generally, the

periodic cell is taken unitary, in order to bypass this point. But with complicate cells like the

tetrakaidecahedron, one could prefer to design a cell whose characteristic length is equal to 1.

If so, one should not forget to rescale the computed coefficients.

We recall that the homogenized elasticity tensor A∗ is isotropic. Hence, its Hooke’s law A∗

is given by:

A∗ = 2µ∗I2N + λ∗IN ⊗ IN ,

where µ∗ is the homogenized shear modulus and λ∗ the homogenized Lamé coefficient. The

homogenized bulk modulus is defined by: κ∗ = λ∗ + 2µ∗

N . Then, these homogenized coefficients

are also given by:
µ∗ = A∗ijij

λ∗ = A∗iijj

κ∗ = A∗iijj + 2
NA

∗
ijij

∀i, j ∈ {1, .., N} such that i 6= j . (3.7)

Hashin-Shtrikman bounds. As seen in (Part 1, Chapter 2 ), the bulk and the shear moduli

of any isotropic two-phase composite material are bounded by the Hashin Shtrikman bounds

[Hashin 1963]. Here, the first isotropic phase is the phase A in proportions θ, and the second

is void, in proportions 1 − θ. The upper bounds µHS and κHS for the homogenized shear and

bulk moduli are respectively:
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∀θ ∈ [0; 1]


µ∗(θ) = µθ

(N2 +N − 2)(2µ+ λ)− 2(N − 1)(κ+ 2µ)

(N2 +N − 2)(2µ+ λ)− θ(N − 1)(κ+ 2µ)

κ∗(θ) = κθ
µ

2µ+ λ− κθ

. (3.8)

Numerical results. We recall that each cell is parametrized by its density θ. The set of

effective elasticity tensors {A∗(θ)|θ ∈ L∞(D, [0, 1])} has to be characterized. The homogenized

Lamé coefficients are computed for a discrete sample of parameters values. From those data, a

surrogate model for the constitutive law is then constructed by linear interpolation.

Since considered cells Y0(θ) are specifically chosen in order to design an isotropic homog-

enized media, only two coefficients of A∗, for example A∗1122 and A∗1212, could be computed

in order to fully characterize the effective tensor A∗. However, all the coefficients have been

computed, in order to confirm numerically the isotropy.

The range of the density θ is regularly discretized with 50 elements, in 2D and with 20

elements in 3D. The cell’s problems (3.6) are solved using the finite element solver FreeFem++

[Hecht 2012] for each value of the discretized density. Eventually, the homogenized tensor A∗(θ)

is computed with (3.5).

The Young modulus of the solid phase A is E = 15 GPa and its Poisson’s ratio is ν = 0.35.

The void (when θ = 0) is replaced by an ersatz material, in order to avoid undefined tensor

when the elasticity problem is solved. Its elasticity tensor is equal to 0.01% of the tensor of the

solid phase A.

The isotropy implies some equalities between the coefficients of A∗:

∀i, j, k, l, p ∈ {1, .., N}


A∗iijk = 0

A∗iiii = A∗jjjj

A∗iijj = A∗kkll

A∗iiii = A∗jkjk +A∗llpp

. (3.9)

The associated relative errors to those equalities have been computed for each design of cell

and all the samples of density. For the classical honeycomb and for the reinforced one, the errors

are lower than 10−3, and for the smooth honeycomb, the errors are lower than 10−4. These

values are low enough to be imputed to numerical errors. The isotropy of the honeycomb cells

is confirmed.

The homogenized bulk modulus κ∗ and the homogenized shear modulus µ∗ are respectively

displayed on Figures 3.5(a) and 3.5(b). As a reference, the upper Hashin-Shtrikman bound

(3.8) is also displayed. In each case, the moduli are smooth increasing functions of the density:

the more material, the stronger the cell. This behaviour according to the density ensures that

the optimization algorithms will converge. In the case of the bulk modulus, the classic and

the smooth honeycomb cells are very closed to the upper Hashin-Shtrikman bound. The bulk

modulus of the reinforced honeycomb is a bit lower. The upper bound of the shear modulus

is clearly respected by all the kinds of hexagonal cells. The shear moduli of the classic and

the smooth honeycombs are both very closed and a bit lower than the reinforced honeycomb.

Indeed, the reinforced honeycomb features diagonals which greatly help to support the shear.
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Figure 3.5: Homogenized bulk (left) and shear (right) moduli in 2D for the several kinds of

hexagonal cells
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Figure 3.6: Homogenized bulk (left) and shear (right) moduli in 3D for the tetrakaidecahedron

cells

For the tetrakaidecahedron (in 3D), the homogenized bulk modulus κ∗ and the homoge-

nized shear modulus µ∗ are respectively displayed on Figures 3.6(a) and 3.6(b). The upper

bound of Hashin Shtrikman, given by (3.8) are also displayed on those Figures. The computed

homogenized elastic moduli satisfy the upper bound.

3.2.3 Correctors matrices

The microscopic heterogeneities may cause stress concentration. The real stress distribution is

different from the macroscopic homogenized stress.

This is due to the fact that the stress for a microstructure of size ε, denoted by σε does not

converge strongly to (A∗e(u∗)) when ε is going to zero.

As seen in Chapter 2, a stress amplification factor may be introduced in order to compute

a L2-norm criteria on the stress. This is not a pointwise maximum, as it could requested for
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(a) P ∗1111, for compression load
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Figure 3.7: L2- norm of the corrected stress depending on the density of the microstructures

example to know if the material is plastic not.

We recall from Section 2.1.6 of Chapter 2, that the coefficients of the corrector tensor W

are given by:

Wijkl = I4
ijkl + e(wij)kl ,

where wij is the solution of the cell problem (3.6).

Let P ∗(θ) be the amplification tensor defined by:

P ∗(θ) =
1

|Y |

∫
Y0

AW (y)A∗(θ)−1AW (y)A∗(θ)−1 dy , (3.10)

see Section 2.1.6 of Chapter 2 for more details.

Numerical results The amplification tensor P ∗(θ) has been computed in 2D for the three

isotropic microstructures, on the same scheme than their homogenized elasticity tensor A∗.

Let σ1 = 1.e11 be a unit stress in direction x1, and σ2 = 1√
2
(e12 + e21) be a unit shear stress.

Their L2-norms are equal to one on a unit square. Let a unit square be fulfilled with the above

isotropic microstructures. We assume that the homogenized stress tensor is equal respectively

to σ1 and σ2. The L2- norm of the corrected stresses can be computed using the amplification

tensor P ∗: their values are respectively given by P ∗1111 and by P ∗1212. It has been computed for

several densities of the microstructures.

The results are displayed on Figures 3.7(a) and 3.7(b). For small densities, the corrected

stress norm blows up: the local stress in the thin bars can not be approximated by the ho-

mogenized stress. For high densities, the corrected stress norm converges to one, which is the

homogenized stress norm. The amplification factor is the lower for the reinforced honeycomb.

One can check that the correction factor is smaller for the smooth honeycomb than for the

classical honeycomb. Indeed the smooth rounded corners concentrate lower stresses than sharp

corners.
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3.3 Optimization with isotropic cells

Let J∗(θ) the relaxed cost function for composite material, made of one kind of the previous

isotropic cells, and so, parametrized by its density θ. In all the cases, the volume is constrained

to be equal to V . Hence the minimization problem reads as:

min∫
D θ=V

J∗(θ) . (3.11)

3.3.1 Minimization of the compliance: single load case

The objective is to find the most rigid structure, made of isotropic composite material, when

the structure is submitted to a given load. The cost function is here the compliance of the

structure:

J∗(θ) =

∫
ΓN

g · u∗ds = min
τ∈H0

∫
D
A∗−1τ : τdx ,

where

H0 =

τ ∈ L2(D,Ms
N ) such that

div(τ) = 0 in D

τn = g on ΓN

τn = 0 on Γ

 .

The optimization problem can be recast as a minimization problem over the stress field σ

and the density field θ of the microstructure:

inf

σ ∈ H0

θ ∈ L∞(D, [0, 1])∫
D θ = V

∫
D
A∗−1(θ)σ : σdx .

This problem is solved by an alternate minimization algorithm [Allaire 2002a], minimizing

successively with respect to the stress field σ and to the density θ of the microstructure. It is

an algorithm of type Optimality criteria. The corresponding Lagrangian is introduced:

L(θ, σ, `) =

∫
D
A∗−1(θ)σ : σdx+ `(

∫
D
θdx− V ) , (3.12)

where ` is the Lagrange multiplier associated to the volume constraint.

Stress field. Minimizing with respect to the stress field σ for a given density θ, and so for

a given design of the structure, consists in solving the elasticity problem with a material of

elasticity tensor equal to A∗(θ) in D.

Let VD be the set defined by:

VD = {v ∈ H1(D,R2) such that v = 0 on ΓD} (3.13)

The elasticity problem can be recast as a variational formulation:

∀v ∈ VD
∫
D
A∗(θ)e(u) : e(v)dx =

∫
ΓN

g · vds .

Numerically, we use P1 finite elements to compute the displacement u.
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Density field. For a given stress field σ, the minimization with respect to the density θ is

performed using the projected gradient algorithm. Since the problem is self-adjoint, the descend

direction is given by the derivative of L with respect to θ:〈
∂L
∂θ

(θ, σ, `), h

〉
= −

∫
D

(
∂A∗

∂θ
(θ)A∗−1(θ)σ : A∗−1(θ)σ − `)hdx .

The descent direction h = dθ has to be selected such that:〈
∂L
∂θ

(θ, σ, `), dθ

〉
< 0 ,

which is achieved by choosing

dθ =
∂A∗

∂θ
(θ)A∗−1(θ)σ : A∗−1(θ)σ − ` in D .

At iteration n the density is updated by:

θn+1 = P|0,1|(θ
n + pdθ) , (3.14)

where p > 0 is the step size and P|0,1| is the projection operator on the interval [0; 1].

The value of the Lagrange multiplier ` is computed at each iteration by a dichotomy process

designed to respect the volume constraint. Indeed the volume constraint has to be respected

at each iteration. We emphasize that the exact value of ` to respect the volume constraint can

not be analytically given, because of the projection operator on the density.

Numerically, the partial derivative for the Lagrangian, denoted by ∂L
∂θ is regularized using a

H1 equivalent norm, by solving the following variational formulation:

∀h ∈ H1(D,R)

∫
D

(
∂L
∂θ
h+ η2∇∂L

∂θ
· ∇h)dx = −

∫
D

(
∂A∗

∂θ
(θ)e(u) : e(u)− `)hdx ,

where η > 0 is a small coefficient, which typically depends on the size of the elements of the

mesh. The purpose of this small coefficient is to numerically regularize the partial derivative on

a length scale of order η and to limit the checkerboard effect. In practice, we use an adaptive

step size p. At each iteration, if the newly computed homogenized structure is accepted (i.e. if

its compliance is lower than the one of the previous structure), the step size p is increased of

20%. On the contrary, if it is rejected, the step size is divided by 2.

Algorithm. Here is the complete optimization algorithm:

1. Initialization of the density θ in order to respect the volume constraint:

∀x ∈ D θ0(x) =
V∫

D 1dx

2. Iteration until convergence, for n ≥ 0:

(a) Computation of σn through a problem of linear elasticity with A∗(θn) as elasticity tensor.

(b) Updating the density θn+1 using (3.14).
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Numerical results The above algorithm has been implemented in FreeFem++, [Hecht 2012].

All the unknowns are discretized using P1 finite elements.

The test case here is a cantilever. The domain size is 20 × 20. The structure is clamped

on a central segment of length 10 on its left boundary. A unit vertical load is applied on a

central segment of length 1 on its right boundary. The boundary conditions are displayed on

Figure 3.8. The volume constraint is fixed to 23% of the working domain. The three isotropic

microstructures have been tested, and also the material corresponding to the upper bound of

Hashin-Shtrikman, as a reference for the other tests.

The convergence history is displayed on Figure 3.9. The algorithm converges quickly and

smoothly for each microstructure. We emphasize that the lower curve corresponds to the upper

bound of Hashin-Shtrikman. It reaches the lowest compliance. The optimized compliance for

the three other microstructures are almost equal to each other.

The optimized densities for each microstructure is displayed on Figure 3.10. The structure

with the upper bound of Hashin-Shtrikman still features grey material. But the structures with

the three isotropic microstructures are autopenalized: they are black and white structures. The

structures with respectively the classic and the smooth honeycomb microstructures are quite

similar. This can be explained by the fact that their homogenized elasticity tensor are very

closed, as seen in the previous Section. The structure with the reinforced honeycomb is very

different from them : it recalls the structure with the upper bound of Hashin-Shtrikman. Indeed,

its homogenized elasticity tensor is quite closed to the upper bound of Hashin-Shtrikman. The

optimized path could possibly be similar in the both cases, even if the reinforced honeycomb

finally autopenalized.

We emphasize that those structures are local minima, which explains the difference kind of

autopenalized structures. This is no limitation of the method.

The fact that optimized structures for real isotropic microstructures are autopenalized sug-

gests that those microstructures are not optimal for the compliance minimization problem in

single load cases. Indeed, the local microstructure has to be designed in order to support the

stress in privileged directions, namely the principal directions of the stress. However, because

of their isotropy, they are no stronger in a particular direction, but equally in the whole direc-

tions. In Chapter 4, we investigate orthotropic microstructures for this problem and prove their

efficiency. Indeed, orthotropic microstructures can be oriented in order to align their principal

directions to the ones of the stress.

For isotropic microstructures, other shape optimization problems are investigated in the

following of this Chapter, in particular multiple loads test cases. Indeed, for such cases, the

local microstructure should be able to support stresses in several directions. Their isotropy

could then a great advantage.

3.3.2 Minimization of the compliance: multiple loads case

The objective is to find the most rigid structure on average, when the structure is submitted to

nl several loads separately. For each load i, let gi be the surface load, applied on ΓNi ⊂ ∂D.
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Figure 3.8: Boundary conditions for the cantilever problem
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Figure 3.9: Convergence history of the objective function for the cantilever, in the single-load

compliance minimization problem
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(a) classical honeycomb, J∗ = 22.86 (b) Reinforced honeycomb, J∗ = 22.21

(c) Smooth honeycomb, J∗ = 22.47 (d) Hashin Shtrikman upper bound,

J∗ = 19.71

Figure 3.10: Optimized densities for several isotropic microstructures in the cantilever test case,

for the single-load compliance minimization problem
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The cost function is then the sum of the compliances of the structure for each load case:

J∗(θ) =

nl∑
i=1

∫
ΓNi

gi · u∗i ds =

nl∑
i=1

min
τ∈H0,i

∫
D
A∗−1τ : τdx ,

where

H0,i =

τ ∈ L2(D,Ms
N ) such that

div(τ) = 0 in D

τn = gi on ΓNi

τn = 0 on Γ

 .

As previously this optimization problem can be rescast as a minimization over the stress

fields σi, for each load case i, and over the density field θ of the microstructure:

inf

θ ∈ L∞(D, [0, 1])∫
D θ = V

nl∑
i=1

inf

σ ∈ H0,i

∫
D
A∗−1(θ)σ : σdx .

We introduce the corresponding Lagrangian:

L(θ, σ1, .., σnl , `) =

nl∑
i=1

∫
D
A∗−1(θ)σi : σidx+ `(

∫
D
θdx− V ) , (3.15)

with ` the Lagrange multiplier associated to the volume constraint.

As in the single-load case, the minimization with respect to the stress fields σi consists in

solving the ealsticity problem for each load case i separately.

To minimize with respect to the density θ, we used a projected gradient algorithm. The

problem is still self-adjoint and so he descent step is given by the partial derivative of L with

respect to θ, namely:〈
∂L
∂θ

(θ, σ1, .., σnl , `), h

〉
=

∫
D
` h dx−

nl∑
i=1

∫
D

(
∂A∗

∂θ
(θ)A∗−1(θ)σi : A∗−1(θ)σi)hdx .

The optimization algorithm is then identical to the previous one for single-load case, except

that nl elasticity problems have to be solved and that the descent step dθ for the density is

given by:

dθ =

nl∑
i=1

∂A∗

∂θ
(θ)A∗−1(θ)σ : A∗−1(θ)σ − ` in D .

Numerical results The above algorithm has been implemented in FreeFem++ for a bridge

case. The domain size is 22× 13. The structure is clamped on symmetric segments of length 1

on the bottom border. Unit vertical loads are applied separately on segments of length 1 on the

bottom border. The boundary conditions are displayed on Figure 3.11. The volume constraint

is fixed to 10% of the working domain. As previously, the three isotropic microstructures have

been tested, and also the material corresponding to the upper bound of Hashin-Shtrikman, as

a reference for the other tests.
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Figure 3.11: Boundary conditions for the bridge with multiple loads

The convergence history is displayed on Figure 3.12. The algorithm converges quickly and

smoothly for each microstructure. We emphasize that the lower curve corresponds to the bound

of Hashin-Shtrikman. It reaches the lowest compliance. The optimized compliance for the three

other microstructures are almost equal to each other.

The opitmized densities for each microstructure is displayed on Figure 3.13. The structures

with respectively the classic and the smooth honeycomb microstructures are again quite sim-

ilar. The structure with the reinforced honeycomb is very different from them : it recalls the

structure with the upper bound of Hashin-Shtrikman. Each optimized structure features grey

densities. They are not autopenalized. Hence the isotropic microstructures seem to be efficient

microstructure for compliance minimization in multiple loads cases. That can be explained

by the fact that the local microstructure should be able to support stresses in several direc-

tions, namely the principal directions of the stress for each load. Their isotropy is then a great

advantage.

We emphasize that the lower compliance is reached by the upper bound of Hashin-Shtrikman.

This seems legit, since the upper bound are for the more rigid isotropic material for a gievn

density. The reinforced honeycomb microstructure reachs the second lower optimized compli-

ance. This microstructure is more rigid thant the classical honeycomb. It should a priori be

preferred fot compliance minimization problems.

We also implemented this algorithm for 3D cases. Two different load cases have been tested,

they are displayed on Figure 3.14.

Various iso-surfaces of the optimal density field θ for each test case are plotted respectively

on Figures 3.15 and 3.16. The optimized structure is clearly not a black and white design.

High densities are reached only around where Dirichlet and Neumann boundary conditions are

applied. The major part of the domain is filled with intermediate or grey densities.

3.3.3 Displacement optimization

The objective function is given by:

J∗(θ) =

∫
ΓT

(u∗ − uT )2dx .



68 Chapter 3. Optimization with isotropic lattice material

0 10 20 30 40 50 60
0

100

200

300

iterations

o
b

je
ct

iv
e

Hashin Shtrikman bounds
Classic Honeycomb
Smooth Honeycomb

Reinforced Honeycomb

Figure 3.12: Convergence history of the objective function for the multiple loads test case, in

compliance minimization problem

(a) classical honeycomb, J∗ = 30.592 (b) Reinforced honeycomb, J∗ = 28.951

(c) Smooth honeycomb, J∗ = 32.508 (d) Hashin Shtrikman upper bound,

J∗ = 24.285

Figure 3.13: Optimized density for the multiple loads test case, in the compliance minimization

problem
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(a) First test case (b) Second test case

Figure 3.14: Load cases for the 3D multiple loads test case, each color of the loads is applied

separately

(a) θ ≤ 15% (b) θ ≤ 50% (c) θ ≤ 85%

Figure 3.15: Threshold of the domain according to the optimized density θ for the first test

case, in the multiple loads compliance minimization problem

(a) θ ≤ 15% (b) θ ≤ 50% (c) θ ≤ 85%

Figure 3.16: Threshold of the domain according to the optimized density θ for the second test

case, in the multiple loads compliance minimization problem



70 Chapter 3. Optimization with isotropic lattice material

where uT is a target displacement.

This problem, contrary to the compliance minimization problem, is not self-adjoint. In

order to define the associated adjoint problem, we use the Céa method. First, we introduce the

following Lagrangian:

L(v, q, θ, `) =

∫
D
A∗(θ)e(v) : e(q)dx−

∫
ΓN

g · q dx+

∫
ΓT

(v − uT )2dx+ `(

∫
D
θdx− V ) , (3.16)

where q ∈ H1
ΓD

(D)N plays the role of the Lagrange multiplier for the elasticity equation, seen as

a constraint and ` ∈ R the Lagrange multiplier for the volume constraint. Second, we compute

the partial derivatives of L. We note (u, p) a stationary point of L.

The partial derivative of L with respect to q in the direction ψ ∈ H1
ΓD

(D)N is given by:

<
∂L
∂q
, ψ >=

∫
D
A∗e(v) : e(ψ)−

∫
ΓN

g · ψ dx . (3.17)

At the stationary point (u, p), this derivative is equal to zero and leads to the variational

formulation of the elasticity problem.

The partial derivative of L with respect to v in the direction ψ ∈ H1
ΓD

(D)N is given by:

<
∂L
∂v
, ψ >=

∫
D
A∗e(ψ) : e(q) +

∫
ΓT

2ψ(v − uT )dx . (3.18)

At the stationary point (u, p), this derivative is equal to zero and leads to the adjoint problem:

∀ψ ∈ H1
ΓD

(D)N
∫
D
A∗e(p) : e(ψ) = −

∫
ΓT

2ψ(u− uT )dx . (3.19)

The partial derivative of the Lagrangian L with respect to the density θ of the microstructure,

at the stationary point (u, p) is given by:

<
∂L
∂θ

(u, p, θ, `), h >=

∫
D

(
∂A∗

∂θ
(θ)e(u) : e(p) + `)h dx (3.20)

The descent direction h = dθ has to be selected such that:〈
∂L
∂θ

(u, p, θ, `), dθ

〉
< 0 ,

which is achieved by choosing

dθ = −∂A
∗

∂θ
e(u) : e(p)− ` in D .

At iteration n the density is updated by:

θn+1 = P|0,1|(θ
n + pdθ) ,

where p > 0 is the step size and P|0,1| is the projection operator on the interval [0; 1].

The value of the Lagrange multiplier ` is computed at each iteration by a dichotomy process

designed to respect the volume constraint.
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Figure 3.17: Boundary conditions for the gripping mechanism
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Figure 3.18: Convergence history of the objective function for the displacement optimization

Numerical results The above algorithm has been implemented in FreeFem++ for a gripping

mechanism. The boundary conditions are displayed on Figure 3.17. Numerically we took part

of the symmetry of the structure. The black areas are not optimizable: the density is fixed to

one there. A unit vertical load is applied on the right corners. The vertical target displacement

is equal to two on the jaw on the left. The horizontal displacement is not constrained. The

volume constraint is fixed to 20%.

The convergence history is displayed on Figure 3.18. The optimized densities for the classical

honeycomb and the upper Hashin-Shtrikman bound are displayed on Figure 3.19, with the

displacement of the optimized structures.
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(a) classical honeycomb (b) Hashin Shtrikman upper bounds

(c) classical honeycomb (d) Hashin Shtrikman upper bounds

Figure 3.19: Optimized structures for the displacement optimization (top) and their displace-

ment (bottom)



3.3. Optimization with isotropic cells 73

3.3.4 Stress minimization

The objective function is given by:

J∗(θ) =

∫
D
P ∗(θ)σ : σ dx =

∫
D
P ∗(θ)A∗(θ)e(u) : A∗(θ)e(u) dx ,

where P ∗ is the corrector tensor defined by (3.10), σ the stress tensor, solution of the elasticity

problem and u the displacement.

In order to define the associated adjoint problem, we use the Céa method. Let L be the

Lagrangian defined by:

L(v, q, θ, `) =

∫
D
A∗(θ)e(v) : e(q) dx−

∫
ΓN

g·q ds+
∫
D
P ∗(θ)A∗(θ)e(v) : A∗(θ)e(v) dx+`(

∫
D
θ dx−V ) ,

where q ∈ H1
ΓD

(D)N plays the role of the Lagrange multiplier for the elasticity equation, and

` ∈ R the Lagrange multiplier for the volume constraint.

The partial derivative of L with respect to q in the direction ψ ∈ H1
ΓD

(D)N is given by:

<
∂L
∂q
, ψ >=

∫
D
A∗(θ)e(v) : e(ψ) dx−

∫
ΓN

q · ψ dx .

At the stationary point, this derivative is equal to zero and leads to the variational formulation

of the elasticity problem.

The partial derivative of L with respect to v in the direction ψ ∈ H1
ΓD

(D)N is given by:

<
∂L
∂v
, ψ >=

∫
D
A∗(θ)e(q) : e(ψ) dx+ 2

∫
D
P ∗(θ)A∗(θ)e(v) : A∗(θ)e(ψ) .

At the stationary point, this derivative is equal to zero and leads to the variational formulation

of the adjoint problem. Let p ∈ H1
ΓD

(D)N be the adjoint.

The partial derivative of L with respect to θ, at the point (u, p), in the direction h is given

by:

<
∂L
∂θ

(u, p, θ, `), h >=

∫
D

(
∂A∗

∂θ
(θ)e(u) : e(p))h dx

+

∫
D

(
∂P ∗

∂θ
(θ)A∗(θ)e(u) : A∗(θ)e(p))h dx

+ 2

∫
D

(P ∗(θ)
∂A∗

∂θ
(θ)e(u) : A∗(θ)e(u))h dx

+

∫
D
`h dx .
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Hence, the descent direction dθ is given by:

dθ =−
∂A∗

∂θ
(θ)e(u) : e(p)

−
∂P ∗

∂θ
(θ)A∗(θ)e(u) : A∗(θ)e(p)

− 2P ∗(θ)
∂A∗

∂θ
(θ)e(u) : A∗(θ)e(u)

− ` .

At iteration n the density is updated by:

θn+1 = P|0,1|(θ
n + pdθ) ,

where p > 0 is the step size and P|0,1| is the projection operator on the interval [0; 1].

The value of the Lagrange multiplier ` is computed at each iteration by a dichotomy process

designed to respect the volume constraint.

Numerical results The above algorithm has been implemented in FreeFem++ for a cantilever

case. The domain size is 20 × 20. The structure is clamped on a central segment of length 10

on its left boundary. A unit vertical load is applied on a central segment of length 1 on its

right boundary. The boundary conditions are displayed on Figure 3.20. The three isotropic

microstructures have been tested. The bound of Hashin-Shtrikman can not be used here as

reference. Indeed, the corrector tensor P ∗ is computed for a given microstructure. But no

microstructure featuring one scale of material can reach the bounds of Hashin-Shtrikman.

The history of convergence is displayed on Figure 3.21. The algorithm converges quickly

and smoothly for the three microstructures. The optimized densities are displayed on Fig-

ure 3.22. The optimized structures with classic and smooth honeycomb microstructures are

autopenalized: they are black and white structure. The optimized structure with reinforced

honeycomb microstructure features grey densities. However, its final stress is higher than the

one of autopenalized structures. Either the optimization process is trapped in a local minimum,

or the optimization is so slow for this microstructure that is not yet finished. In both cases,

the optimized structure is not optimal. We emphasize that, despite what parameters we used,

we never reach better structure for this microstructure. To conclude, the considered isotropic

microstructures are not adapted to this problem. Other kind of microstructures, not necessarily

isotropic, should be investigated.

3.3.5 Maximization of the first eigenfrequency

In order to reduce noise or avoid possible resonance with external low frequencies, the first

eigenfrequency of the structure has to maximized.

We recall from Part 1 Chapter 2 that the homogenized spectral problem in linear elasticity

reads to:
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Figure 3.20: Boundary conditions for the stress minimization problem
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Figure 3.21: Convergence history of the objective function for the stress minimization problem
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(a) classical honeycomb (b) Smooth honeycomb

(c) Reinforced honeycomb

Figure 3.22: Optimized structures for the stress minimization
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
−div(A∗(x)e(u)(x)) = ω2ρθ(x)u(x) in Ω

A∗(x)e(u)ns = 0 on ΓN

u = 0 on ΓD

, (3.21)

where ρ is the material density of the phase A, in which the composite is made.

This problem admits a countably infinite family of positive eigenvalues (ω2
i )i∈N∗ . The first

eigenvalue ω2
1 is defined by:

ω2
1 = min

u∈H1
ΓD

(D)N

∫
D A

∗(θ)e(u) : e(u)ds∫
D ρθ|u|2dx

.

Since the cost function is here J∗(θ) = ω2
1, the optimization problems is given by:

sup

θ ∈ L∞(D, [0, 1])∫
D θ = V

min
u∈H1

ΓD
(D)N

∫
D A

∗(θ)e(u) : e(u)ds∫
D ρθ|u|2dx

We assume the first eigenvalue ω1 to be simple at the current state. The cost function is Gateaux

differentiable, see Lemma 5.2.16 in [Allaire 2002a]. The descent direction dθ is then given by:

dθ = −
1∫

D ρAθ|u|2
(
∂A∗

∂θ
(θ)e(u) : e(u) + ω2

1ρA|u|2)− ` ,

where u is solution of (3.21) for the first eigenvalue ω1, ρA is the massic density of the isotropic

material A, which forms, with void, the microstructure.

Optimization algorithm

1. Initialization of the density

2. Iteration until convergence, for n ≥ 0

(a) Computation of the first eigenvalue ωn1 and the first eigenvector un with the density θn

(b) Updating of the density by θn+1 = P|0,1|(θ
n + pdθ), with p > 0 the step size. The value of

the Lagrange multiplier ` is computed by dichotomy.

Implementation The above algorithm has been implemented in FreeFem++. All the un-

knowns are discretized using P1 finite elements. The eigenvalue problem is solved with algorithm

already implemented in FreeFem++. As usual, the descent direction is interpolated, using a

H1 equivalent norm, by solving a following variational formulation :

∀h ∈ H1(D,R)

∫
D
dθ h+η2∇dθ·∇h dx = −

∫
D

(
1∫

D ρAθ|u|2
(
∂A∗

∂θ
(θ)e(u) : e(u)+ω2

1ρA|u|2)+`)h dx ,

with η > 0 a small coefficient, which typically depends on the size of the elements of the mesh.
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Figure 3.23: Boundary conditions for the maximization of the first eigenfrequency problem
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Figure 3.24: Convergence history of the objective function for the maximization of the first

eigenfrequency problem

Numerical results We applied this algorithm to a cantilever case, for several microstructures.

The domain size is 20× 10. A square of size 1× 1, denoted Ω0 is non optimizable: the density

of the material is fixed to one in this area, see Figure 3.23.

The history of the objective function is displayed on Figure 3.24. The optimized density, for

each microstructure, is displayed on Figure 3.25. The algorithm converges quickly and smoothly

for the upper bound of Hashin-Shtrikman. It is slower with classical and smooth honeycomb

microstructures, and laborious with reinforced microstructure. The optimized density for any

microstructure is autopenalized (black and white structure). There is no interest to keep grey

material for the eigenfrequency maximization problem, with isotropic microstructure. Other

types of microstructures should be investigated for this problem.

We emphasize that the four optimized structures seem to be identical on Figure 3.25. How-

ever, there are slight differences, and the optimized first eigenfrequencies are not equal to each

other. For example, some grey material is still present in the optimized structure with the

reinforced honeycomb. This could explain why this structure has the lowest eigenfrequency.



3.3. Optimization with isotropic cells 79

(a) classical honeycomb (b) Reinforced honeycomb

(c) Smooth honeycomb (d) Hashin Shtrikman upper bound

Figure 3.25: Optimized structures for the maximization of the first eigenfrequency problem

3.3.6 Discussion

Several optimization problems have been investigated for the use of isotropic microstructure.

The microstructure tend to autopenalize in numerous cases. Since, the upper bound of Hashin-

Shtrikman have also this tendency, we can only conclude that modulated isotropic microstruc-

tures are not adapted to those problems. Concerning the compliance minimization prob-

lem for single load cases for example, orthotropic rank-2 laminates are known to be optimal

[Allaire 2002a]. Hence, it sounds coherent that isotropic microstructures are not relevant. In

[Zhang 2015], structures are optimized with classical honeycomb microstructures. But, in order

to keep grey densities, the gradient of the density is bounded in the domain: black and white

structures are no longer admissible. This strategy certainly leads to grey structures, but they

have no chance to be more optimal than structures optimized with the SIMP method or the

level-set method.

The compliance minimization problem for multiple load cases stands out from the crowd:

the microstructures do not auto-penalized. Isotropic microstructures appear to be meaningful

in those cases.
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(a) Density field

ε

(b) Tesselation of the domain for a

given periodic size ε

(c) Design of each cell separately

Figure 3.26: Local deshomogenization approach: example in 2D with honeycomb cells for an

arbitrary density field

3.4 Deshomogenization process

The homogenized structures are not straightly manufacturable. Indeed, only the local density

of the cells is given but this does not describe a classical shape. The idea is to construct

a sequence of classical shapes that actually converges toward the homogenized structure. In

order to converge to the homogenized structure, the size of the periodic cells of the elements

of the above sequence has to converge to zero. The size of the cells will be denoted ε, and the

elements of the sequence will be denoted Ωε.

Two main approaches are possible in order to construct such a sequence. The first method

is a local approach and leads to regular cells, in the sense where each cell is exactly the one

described above. But this method is very time consuming since each cell has to be constructed

separately. In the second method, the said global one, the final structure is described through

a level-set function and is really fast to be computed. However, the cells may be not regular

ones in the sense where the width of the bars of a given cell may be not constant in the whole

cell.

3.4.1 Local approach : projection on each cell

This method appears as the most intuitive. It has been used for example in [Zhang 2015],

in the same context: how to project optimized homogenized structures on explicit cellular

structures. First, the size of the periodic cell ε is fixed. Second, the whole domain D is paved

using the periodic pattern: hexagons in 2D or tetrakaidecahedra in 3D, see Figure 3.26(b).

The density in each cell remains to be computed. Several approaches are possible in order

to construct a sequence of shapes converging to the homogenized design. The density of each

cell may be defined as the density of the homogenized structure on the center of the cell, or

as the average density on the whole cell. When the density for a given cell is computed, the

corresponding microstructure is projected in the corresponding tile, see Figure 3.26(c). At the

end, the structures feature only regular cells.
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h

(a) Another periodic

cell: the cross

h1 h2

(b) Non smooth interface with the local

deshomogenization method

h2h1

(c) Smooth interface with the interpolating

approach

Figure 3.27: Two local strategies to deshomogenize optimization results made of cross cells in

2D

However, the final structures are not ensured to be smooth. This matter does not exist

here in 2D thanks to the design of the cells: the common side between two hexagons is always

filled. But for other types of cells, one may face this problem. An example is displayed on

Figure 3.27. The periodic cell is a regular cross, parametrized by h the width of the bars, see

Figure 3.27(a). If two adjacent cells are parametrized by different h, the final structure will no

be smooth at the interface, in red on Figure 3.27(b). A solution consists in interpolating the

geometric parameters of both cells at the interface, see Figure 3.27(c).

With the chosen isotropic cells, this problem appears in 3D. Indeed, two neighbours cells

have a common holed face. As soon as their densities are not exactly the same, see Figure

3.28(a), the holes do not match on both sides of the common face. On Figure 3.28(b), a slice of

the both previous cells is displayed. The border of the common hole is displayed in yellow. One

can check that this border is not smooth. The interpolating method has been implemented in

3D for two neighbours cells of different density. The result is displayed on Figure 3.28(c). The

border of the common hole is displayed in yellow: one can check that it is smooth.

We implemented this deshomogenization method in Python, for the 3D optimized structures.

Deshomogenized structures for the multiple loads compliance minimization are displayed on

Figures 3.29(a) and 3.29(b). The output of the Python script is 3D geometric file (’.obj’): it

can be printed straightforwardly. We successfully printed tests structures made of modulated

periodic tetrakaidecahedron cells, see Figure 3.30

When the size of the periodic cell is going to 0, the number of periodic cells increases

drastically. The local deshomogenization approach may required efficient geometric algorithms

in order to be efficient. An other solution is given by the second approach, where the cells are

not computed one by one, but all simultaneously, no matter of their numbers.

3.4.2 Global approach : using the level-set method

In this method, the cellular structure Ωε is implicitly given by a level-set function ψε : D → R:
ψε(x) = 0 if x ∈ ∂Ω

ψε(x) < 0 if x ∈ Ω

ψε(x) > 0 if x ∈ D \ Ω

. (3.22)
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(a) Two neighbour tetrakaidecahedron cells

(b) Design of a sharp interface (yellow) (c) Design of a smooth interface (yellow) between

neighbour cells

Figure 3.28: Two local strategies to deshomogenize optimization results in 3D

(a) First load case (b) Second load case

Figure 3.29: Deshomogenization of optimal homogenized structures in 3D in a multiple loads

test case
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(a) Tetrakaidecahedron cell (b) Four cells of different densities (c) Test structure made of modu-

lated tetrakaidecahedron cells

Figure 3.30: Printed structures made of tetrakaidecahedron microstructures (the geometric files

are produced by our Python script to deshomogenize structures)

3.4.2.a Level-set function for the reinforced honeycomb

The reinforced honeycomb is the union of three sets of parallel bars, rotated of 0, π
3 and 2π

3

from the horizontal, see Figure 3.31. The three sets of parallel bars Ωε,i are respectively given

by the level-set ψε,i:

ψε,i(x) = − cos(
2π

ε

√
3

2
(x1, x2)T · ni) + cos(2π

√
3

2
m(x)) , (3.23)

where m(x) is the relative width of bar corresponding to the density θ, it is defined by (3.2).

The complete network of bars Ωε is the union of the three sets of parallel bars. It is described

by the level-set ψε:

ψε(x) = min
i∈{0,1,2}

ψε,i(x)

For hexagons of side ε, parallel bars are distant from their neighbours of
√

3
2 ε. The distance

of a point from one of the diagonals of the hexagon is given by the scalar product with the unit

normal vectors ni. Hence, thanks to the even and periodic function cosine, the first term of

(3.23) defines the set of parallel bars of normal ni and with a periodicity equal to
√

3
2 ε. The

second term adjusts the local width of the bar, with respect to m, by thresholding the cosine

function at the adapted value.

We compute the final structure Ωε for several values of ε, in D = [−1; 1]2, in the case of a

radial

θ = 1.− 0.5(x2
1 + x2

2) . (3.24)

The results are displayed on Figure 3.32. The smaller ε, the thinner the final structure. As

predicted, the cells are not exactly reinforced honeycomb, since the local width of the bar is

given by the local density: the width of the bars is smooth in the whole domain, it does not

feature any discontinuity as in the first projection approach.

3.4.2.b Level-set function for the classical honeycomb

Let ε bet the size of the side of the hexagonal cell. The classical honeycomb network does not

feature infinite bars, but only segments. As previously those segments can be divided in three
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Figure 3.31: Process to describe a reinforced honeycomb cell with a level-set function

(a) ε = 1 (b) ε = 0.5 (c) ε = 0.25 (d) ε = 0.125

Figure 3.32: Projection of a radial density θ over a reinforced honeycomb composite, for several

sizes of cell ε
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Figure 3.33: Process to describe a classical honeycomb cell with a level-set function

sets, Ωε,i, according to their normal, ni. Considering one set of segments, it can be divided in

two subsets see Figure 3.33, of periodic segments: Ωε,i,1 and Ωε,i,2. Finally each of those subsets

can be described as the intersection between two sets of bars, orthogonal to each other : Ωε,i,j,1

and Ωε,i,j,2. The first subset, Ωε,i,j,1, has a periodicity of
√

3ε and the width of the bars depends

on m:

Ωε,i,j,1(m) = {x ∈ D such that cos(
2π
√

3

ε
(x1, x2)T · ni + jπ) ≥ cos(2π

√
3

2
m(x))} ,

where the term jπ is here to shift the second subset of segments with respect to the first one.

The second subset, Ωε,i,j,2, has a periodicity of 3ε and the width of the bars is fixed to ε:

Ωε,i,j,2 = {x ∈ D such that cos(
2π

3ε
(x1, x2)T · ni + jπ + (2δi,2 − 1)

π

3
) ≥ cos(

π

3
)} ,

where δi,j is the Kronecker delta. The purpose of the term featuring the Kronecker delta is to

adjust all the segments together. Here the origin (0, 0) of the domain D corresponds to the

upper left corner of the hexagon. Obviously, the displayed level-set description is not unique

and can be translating in order to place the origin (0, 0) of the domain D wherever one would

like in the periodic cell. We chose this one because of its relative simplicity.

As previously, we compute the final structure Ωε for several values of ε, in D = [−1; 1]2, in

the case of a radial density, given by (3.24). The results are displayed on Figure 3.34. The same

remarks, as with reinforced honeycomb, are still valid here.

3.4.2.c Numerical results

Optimized structures for compliance minimization in the multiple loads bridge, see Section 3.3.2,

have been deshomogenized with the above method. We emphasize that all the optimization was

done on quite a coarse mesh (about 104 vertices). But the construction of genuine shapes is

done on a very thin mesh (about 106 vertices), in order to catch the smaller details of the shapes.
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(a) ε = 1 (b) ε = 0.5 (c) ε = 0.25 (d) ε = 0.125

Figure 3.34: Projection of a radial density θ over a classical honeycomb composite, for several

sizes of cell ε

However, only the level-set functions are computed at this step: the use of a thin mesh is not

time-consuming.
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(a) ε = 1.6 (b) ε = 0.8

(c) ε = 0.4 (d) ε = 0.2

Figure 3.35: Projection of a radial density θ over a classical honeycomb composite, for several

sizes of cell ε
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(a) ε = 4

(b) ε = 2

(c) ε = 1

(d) ε = 0.5

Figure 3.36: Projection of a radial density θ over a classical honeycomb composite, for several

sizes of cell ε
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This chapter, at the exception of Section 7, is the following published article:

Topology optimization of modulated and oriented periodic microstructures by the

homogenization method, P. Geoffroy-Donders, G. Allaire and O. Pantz, Computers and

Mathematics with Applications, March 2018

Abstract. This paper is concerned with the topology optimization of structures made of

periodically perforated material, where the microscopic periodic cell can be macroscopically

modulated and oriented. The main idea is to optimize the homogenized formulation of this

problem, which is an easy task of parametric optimization, then to project the optimal mi-

crostructure at a desired length-scale, which is a delicate issue, albeit computationally cheap.

The main novelty of our work is, in a plane setting, the conformal treatment of the optimal

orientation of the microstructure. In other words, although the periodicity cell has varying pa-

rameters and orientation throughout the computational domain, the angles between its members

or bars are conserved. The main application of our work is the optimization of so-called lattice

materials which are becoming increasingly popular in the context of additive manufacturing.

Several numerical examples are presented for compliance minimization in 2-d.

4.1 Introduction

Topology optimization of structures is nowadays a well developed field with many different

approaches and a wealth of applications. One of the earliest method of topology optimization

was the so-called homogenization method, introduced in the early eighties by mathematicians

[Kohn 1986], [Lurie 1982], [Murat 1985] (see the textbook [Allaire 2002a] for more references),

and popularized by the seminal paper [Bendsøe 1988] which was the first one to numerically

treat a realistic problem in the elasticity setting (the previous numerical works were restricted

to an anti-plane elasticity setting, namely a scalar equation). Despite its great success, the

homogenization method progressively faded away because it was surpassed by a less rigorous

method, but much simpler and as efficient in most cases, the so-called SIMP method introduced

in [Bendsøe 1989], [Zhou 1991] (see the textbook [Bendsoe 2003] for a more complete account).

The SIMP method is said to be less rigorous because it uses fictitious isotropic materials while

the homogenization relies on true composite materials, possibly anisotropic. However, as soon as

penalization of intermediate densities is put in action, there is no need of using true composite

materials, which have complicated effective properties and require much more modeling and

computational efforts than the simple material interpolation involved in SIMP. This is the key

for the immense popularity of SIMP which is the most commonly used method in commercial

topology optimization software.

However, the appearance of mature additive manufacturing technologies which are able to

build finely graded microstructures (sometime called lattice materials) may drastically change

the picture and we could well see a resurrection of the homogenization method for such appli-

cations. Indeed, homogenization is the right technique to deal with microstructured materials

where anisotropy plays a key role, a feature which is absent from SIMP. Homogenization the-

ory allows to replace the microscopic details of the structure (typically a complex networks

of bars, trusses and plates) by a simpler effective elasticity tensor describing the mesoscopic
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properties of the structure. Therefore, the analysis of the structure is greatly accelerated since

there is no need to mesh or represent on a fixed mesh all the microscopic details of its shape.

There is however one final hurdle, once an optimal composite structure has been obtained,

which is the projection of the optimal microstructure at a chosen finite length scale to get a

global and detailed picture of the optimal microstructure. This is the most delicate part of this

homogenization approach and the one where the present paper is most contributing.

We follow the lead of the pioneering paper [Pantz 2008] which was the first to propose such

a post-treatment of the homogenization method in topology optimization. The main idea is

to project the optimal microstructure on a fine mesh of the overall structure in a smoothly

varying way. This implies that locally the microstructure is deformed and oriented to adapt

to its macroscopic variations. We depart from the work [Pantz 2008] and improve it in several

aspects.

First, in [Pantz 2008], rank-two laminates were used during the optimization process. The

advantage is that such rank-two laminates have explicit effective properties and are known to be

optimal for 2-d compliance minimization. The drawback is that they are difficult to manufacture

since they are featuring two well separated length scales. To circumvent this problem, during the

post-processing or projection step, those rank-two laminates were arbitrary replaced by periodic

composites, whose behavior are close – but still different – from the rank-2 laminates used during

the optimization stage. As a consequence, the sequence of projected shapes were not exactly

converging toward the computed optimal composite shape. In the present article, we lift this

inconsistency. At all stages of our method, we use the same microstructure, namely periodic

square cells with rectangular holes like in [Bendsøe 1988]. Other parametrized periodicity cell

would be acceptable in our approach (for other examples, see 3 for triangular or hexagonal cells,

or see 6 for stochastic microstructures).

Second, in [Pantz 2008], rectangular and squared cells were assumed to behave similarly.

This simplified greatly the projection step. Here, we do not make such an approximation. We

construct a sequence of genuine shapes based on a square lattice. As a consequence, we have

to enforce a conformality property to the underlying lattice of the periodic composite, namely

that, after deformation and orientation, right angles in the microstructures should stay right

angles (see Figure 4.1). Note that a side effect of the conformality condition is that it imposes

to the rotation field of the cells to be harmonic and thus regular. In [Pantz 2008], a different

regularization was applied.

Third, we have greatly simplified the projection step. A major obstacle is related to the fact

that the orientation of the cells are only defined up to a rotation of angle π. In [Pantz 2008], a

quite unnatural trick was used to get over this problem. It led to a verbose formulation during

the regularization step of the orientation of the cells. We propose here a different solution that

consists in replacing the computational domain by an abstract manifold. It is worthy to note

that our method is ready to use in the presence of singularities of the lattice, that is when

no coherent orientation of the cells does exist (see [Pantz 2010]). Eventually, in a last post-

processing operation, we clean the projected structure by removing disconnected bars or bars

that have a free hanging end point.

At this point, let us mention the recent work [Groen 2017] which is proposing yet another

homogenization method in the spirit of [Pantz 2008].

The content of this paper is the following. Section 4.2 is devoted to a presentation of
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(a) Regular grid (b) Direction field

(c) Distorted grid

Figure 4.1: A regular grid (a) is associated to a direction field (b), giving the local orientation

of each cell: it yields a distorted grid (c)
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our setting. We focus on 2-d compliance minimization for a single load state equation (the

generalization to other objective functions, multiple load problems, or 3-d requires additional

ideas, see 7). We briefly recall the necessary ingredients of the homogenization approach and

we explain our three-steps strategy. First, choose a parametrized periodicity cell and pre-

compute its effective properties for the entire range of its parameters. Second, perform a

topology optimization of the composite structure, which turns out to be a simple parametric

optimization problem since our periodicity cell is parametrized. Third, apply a post-processing

step which amounts to project, at a specified length scale, a modulated and oriented periodicity

cell.

Section 4.3 deals with the pre-processing step of computing the effective properties of our

parametrized periodicity cell which, here, is a square cell with a rectangular holes (thus having

two parameters for the hole, on top of the orientation angle). We recall the homogenization

formulas, based on the notion of cell problems [Allaire 2002a] and we compute the derivatives,

with respect to the parameters, of the effective or homogenized tensor.

Section 4.4 deals with topology optimization for a 2-d compliance problem with a set of ad-

missible designs which are the homogenized tensors of Section 4.3. Therefore, it is a parametric

optimization problem and solving it is quite standard. Here we rely on a projected gradient

algorithm for the hole parameters and optimality criteria for its orientation.

Section 4.5 is the main novelty of the present work, devoted to the post-processing of the

homogenized result of Section 4.4, namely the projection of the optimal microstructure. Sec-

tion 4.5.1 defines the way the microscopic cell is macroscopically modulated. First, the cell

parameters (more precisely the width and height of the rectangular hole, see Figure 4.2) vary

from point to point in the computational domain. Second, the orientation of the periodicity

cell varies too. More precisely, we introduce a vector field ϕ(x), the inverse of which maps the

periodic square grid on a distorted grid where each cell is optimally oriented (see Figure 4.1).

Section 4.5.2 introduces a conformality condition to be satisfied by the grid map ϕ so that right

angles in the original square grid remain right angles in the deformed configuration. As proved

in Lemma 4.5.1 this is equivalent for the orientation angle α to be harmonic (in two space

dimensions). Section 4.5.3 explains how the orientation angle α is optimized for mechanical

performance and slightly regularized. Section 4.5.4 is the heart of our approach: there, the grid

map ϕ(x) is deduced from the optimal angle α(x). Section 4.5.5 gives all the necessary com-

putational details on how to find the grid map ϕ in practice. Section 4.5.6 gives the numerical

results obtained with our approach. Eventually, Section 4.5.7 is devoted to a last ”cleaning”

step of the projected structure where disconnected bars or bars that have a free hanging end

point are automatically removed.

Section 4.6 gives numerical examples of the whole process applied to other test cases includ-

ing an arch, a cantilever, a MBB beam and a L-beam. We also present an example featuring

singularities in the orientation field which can not be treated by our current implementation of

the proposed algorithm. Nevertheless, a more careful regularization of the orientation allows us

to remove the singularities and give a satisfactory optimal design. The complete description of

how to remove the singularities will be the topic of the next Chapter 5.
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4.2 Setting of the problem

4.2.1 Topology Optimization

Let D ⊂ RN be a fixed smooth bounded open set (the working domain) and Ω ⊂ D the

reference configuration of an isotropic elastic body. The structure Ω is clamped on ΓD ⊂ ∂Ω,

and submitted to surface loads g on ΓN ⊂ ∂Ω. For simplicity these parts ΓD and ΓN of the

boundary are assumed to be fixed and subsets of ∂D. We assume that the solid is made of an

homogeneous isotropic linear elastic material of Hooke’s law A, with Lamé coefficients λ and µ.

The displacement u and the stress tensor σ are then solution of the system

div(σ) = 0 in Ω,

σ = Ae(u) in Ω,

u = 0 on ΓD,

σ · n = g on ΓN ,

σ · n = 0 on Γ = ∂Ω \ (ΓD ∪ ΓN ),

where e(u) = 1
2(∇u+∇uT ) is the strain tensor (the symmetrized gradient of the displacement).

Shape and topology optimization consists to determine the domain Ω that minimizes a given

objective function J ,

min

|Ω| ≤ V,
ΓD ∪ ΓN ⊂ ∂Ω

J(Ω) (4.1)

where V ∈ R+ is the maximum admissible volume. A typical objective function is the compli-

ance

J(Ω) =

∫
ΓN

g · u ds .

For most cost functions J , problem (4.1) does not admit a solution [Allaire 2002a]. This is due

to the fact that composite shapes, made of very small microstructures, can always outperform

genuine shapes made of plain material. A composite shape is described by the local density

θ(x) of material and a homogenized elasticity tensor A∗(x) that depends on the microstructure

at the point x ∈ D. The homogenized or macroscopic displacement u∗ of the structure is then

solution of the system 

div(σ) = 0 in D,

σ = A∗e(u∗) in D,

u∗ = 0 on ΓD,

σ · n = g on ΓN ,

σ · n = 0 on Γ = ∂D \ (ΓD ∪ ΓN ).

We emphasize that the problem is now defined on the whole working domain D and no longer on

a shape Ω. Then, the minimization problem should be rewritten as a minimization problem of
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a relaxed cost function J∗ with respect to the homogenized elasticity tensor A∗ and the density

θ

min∫
D θ ≤ V,

A∗(x) ∈ Gθ(x)

J∗(θ,A∗) . (4.2)

where Gθ(x) is the set of effective or homogenized Hooke’s laws for microstructures of density

θ(x). The main difficulties in the homogenized formulation (4.2) are, first, to compute the

relaxed cost function J∗ (which may be different from the original cost function J), second and

most importantly, to give a complete and explicit description of the set of admissible Hooke’s

laws Gθ. It is only for special cases (like compliance minimization) that (4.2) can be made fully

explicit [Allaire 2002a]. Furthermore, composite shapes are only mathematical ideal objects.

They can not be actually build as they are made of infinitely small details. To circumvent these

obstacles, following the lead of [Pantz 2008], we propose to limit the set of admissible composites

to microstructures for which the Hooke’s law can be numerically computed (typically, periodic

composites with a square cell). Finally, we do not seek for the optimal homogenized or composite

solution but for a sequence of genuine non composite shapes containing more and more details

that does converge toward the optimal composite solution.

4.2.2 A three steps approach

Our goal is to construct a minimizing sequence for (4.2), where the homogenized tensors A∗

are restricted to a specific class of composite materials. By minimizing sequence, we mean

a sequence of classical or genuine shapes which converges to the infimum value of (4.2), and

which is indexed by its length scale (or periodicity) ε > 0, a small parameter going to zero.

To achieve this goal, our main strategy is to follow a three step approach. First, choosing a

parametrized class of composite materials, we determine the subset of homogenized Hooke’s laws

for these allowed composite shapes, when their parameters vary. Second, we solve the relaxed or

homogenized formulation (4.2) when the full set Gθ is replaced by its subset numerically found

during the first step. This is typically a rather easy parametric optimization problem. Third,

and most importantly, we construct a sequence of genuine shapes that does converge toward

the optimal composite found during the second step. This last step is a rather computationally

cheap post-processing of the previous step but it is where we put our main modeling and

algorithmic efforts.

We restrict our analysis to the two dimensional case (N = 2) and to locally square-periodic

composites. Note that it should be possible to adapt the whole method (or at least part of

it) to hexagonal cells or to the three dimensional case. The first step consists in determin-

ing the properties of such materials when varying their parameters (see Section 4.3). It is a

preprocessing stage which can be performed off-line and is the same, whatever the choice of

objective functions, computational domain, applied loads and boundary conditions. Hooke’s

laws are computed by solving cells problems that describe the deformation at the scale of the

microstructure. This is a very classical task in homogenization theory. Adding a rotation is

obvious and does not require additional computations.

In a second step, we compute the optimal solution of the shape optimization problem (4.2)
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over the previously found set of locally square-periodic composites (see Section 4.4). This is a

parametric problem where the design variables are, at every point of the computational domain,

the periodicity cell parameters and its orientation or angle.

Finally, the third step yields a minimizing sequence of genuine shapes, converging toward

the optimal solution, and indexed by the period ε (see Section 4.5). For each given value of ε,

a genuine or classical shape is obtained by projecting on a mesoscopic (or even macroscopic)

scale the distorted grid of the periodicity cells. To achieve this, we deduce from the optimal

orientation angle, satisfying a conformality condition, a vector field or grid map. The optimal

microstructure is then projected along this grid map. A final post-processing cleaning process

is also applied to remove disconnected or hanging bars.
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4.3 Preprocessing : homogenized Hooke’s laws of the microstruc-

tures

4.3.1 Set of admissible microstructures

From now on, we restrict ourselves to the two dimensional case (see 7 for some 3-d examples)

and restrain our analysis to a simple class of composites already used in the seminal paper

[Bendsøe 1988] : square cells with a rectangular central hole (see Fig.1) repeated periodically

on the whole space. This class of composites is parametrized by the relative linear dimensions

of the hole m = (m1,m2) ∈ [0, 1]2, together with the orientation α of the cell, which is the angle

made by the y1-axis of the cell with the x1-axis of the domain D. We denote the periodic cells

Yα(m).

The structure of those cells as well as their Hooke’s laws are not very far from those of

rank-2 laminates with orthogonal lamination directions, which are optimal for single-load com-

pliance minimization problems [Allaire 2002a]. Rank-2 laminates were used in the inspiring

work [Pantz 2008]: however they are intrinsically multiscale (more precisely, they feature two

well separated microscopic scales) and thus hard to manufacture. On the contrary, perforated

square cells feature a single scale and are more likely to be additive manufacturable. We em-

phasize that the following method is not restricted to our choice of cells, and it can easily be

extended to any other parametrizable cells. Particularly, some authors have optimized peri-

odic cells for given objective function [Haslinger 1995, Barbarosie 2010a] that could be good

candidates.

6

?
m2

-�
m1

Γint

- y1

6

y2

Figure 4.2: Periodicity cell Y0(m).

4.3.2 Cell problem and homogenized elasticity tensor

For the sake of brevity, only a few important results on the theory of homogenization are recalled

here: the interested reader will find more details in [Allaire 2002a]. Assume that, in a given

macroscopic domain, there is a periodic distribution of holes inside an isotropic elastic solid

phase, with constant elasticity tensor A. The periodicity size is denoted by ε > 0. The rescaled

periodicity cell is the unit cube (0, 1)2. Inside this unit periodicity cell, the solid domain is

the subset Y0 ⊂ (0, 1)2, its complement being holes with boundaries Γint. When ε → 0, the
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medium can be considered homogeneous, with an effective constant elasticity tensor A∗. To

compute this homogenized tensor A∗, one needs so-called correctors wij , corresponding to the

local displacements in the cell Y0, defined for each pair (i, j) ∈ {1, 2}2 as the solutions of the

following cell problems 
div(A(eij + e(wij))) = 0 in Y0

A(eij + e(wij))n = 0 on Γint

y 7→ wij(y) (0, 1)2-periodic

(4.3)

where eij = 1
2(ei ⊗ ej + ej ⊗ ei) is a basis of the symmetric tensors of order 2, and n is the

normal to the hole’s boundary Γint in Y0. The variational formulation of the cell problem (4.3)

is: find wij ∈ H1
#(Y0,R2) such that

∀φ ∈ H1
#(Y0,R2)

∫
Y0

Ae(wij) : e(φ) +

∫
Y0

Aeij : e(φ) = 0 , (4.4)

which admits a unique solution (up to an additive translation). The tensor A∗ is then given in

terms of the solutions wij of the cell problems by

A∗ijkl =

∫
Y0

A(eij + e(wij)) : (ekl + e(wkl))dy ∀i, j, k, l ∈ {1, 2}. (4.5)

Restricting the analysis to periodic composites is an acceptable limitation, as the set of Hooke’s

laws of periodic composites is dense in the set of all possible Hooke’s laws reachable with

composites [Allaire 2002a]. However, restricting the set of periodic composites to square cells

with rectangular holes is clearly a loss of generality since, for example, the resulting homogenized

Hooke’s laws are never isotropic (for intermediate densities). Exploring a larger range of periodic

microstructures is an obvious line of research for future work.

4.3.3 Sensitivity of the homogenized elasticity tensor

The computation of the sensitivity of the homogenized elasticity tensor with respect to the

parameters of the cell design will be based on the notion of shape derivative. We define

W 1,∞
# ((0, 1)2;R2) as the set of (0, 1)2− periodic Lipschitz maps from (0, 1)2 with value in R2

(the # symbol indicates that the functions are (0, 1)2-periodic).

Definition 4.3.1. Let θ ∈ W 1,∞
# ((0, 1)2;R2). The shape derivative of a function F (Y0) is

defined as the Fréchet derivative in W 1,∞ at 0 of the application θ 7→ F ((Id +θ)Y0)

F ((Id +θ)Y0) = F (Y0) +
〈
F ′(Y0), θ

〉
+ o(θ) with lim

θ→0

|o(θ)|
‖θ‖

W 1,∞
#

= 0

where F ′(Y0) is a continuous linear form on W 1,∞
# ((0, 1)2;R2).

Let MN be the set of squared N ×N matrices and Ms
N the subset of symmetric ones.
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Lemma 4.3.1. The shape derivative of A∗ijkl is given by:

〈
(A∗ijkl)

′(Y0), θ
〉

=

∫
Y0

A(eij + e(wij)) : (ekl + e(wkl)) div(θ)dy

−
∫
Y0

A(eij + e(wij)) : 〈de(wkl); θ〉dy

−
∫
Y0

A(ekl + e(wkl)) : 〈de(wij); θ〉dy, (4.6)

where de(w) is a linear operator from W 1,∞
# (Y0;R2) to L2(Y0;Ms

2) defined for every w ∈
H1

#(Y0,R2) by

〈de(w), θ〉 =
1

2
(∇w∇θ +∇θT∇wT ).

Proof. The proof is classical (see e.g. [Michailidis 2014]), thus we simply give its main idea. It

relies on the Lagrangian method of Cea [Céa 1986] which amounts to introduce a Lagrangian,

defined as the sum of formula (4.5) for A∗ijkl and of the variational formulation (4.4). Differenti-

ating with respect to the state variable gives the adjoint system. It turns out that the problem

is self-adjoint, so no adjoint appears in (4.6). Differentiating with respect to the shape leads to

the final result.

4.3.4 Computing the homogenized elasticity tensor

The set of effective elasticity tensors {A∗α(m)|(m,α) ∈ L∞(D, [0, 1]2 × R)} has to be charac-

terized. The proposed strategy consists in computing the material properties for a discrete

sample of parameters values and using the collected data to construct a surrogate model for the

constitutive law (by a simple interpolation).

4.3.4.a Cell orientation

The considered cells Yα(m) are not isotropic, nor are their corresponding elasticity tensors

A∗α(m). Therefore, their elastic behavior depends on their orientation α. Let R(α) a fourth-

order tensor defined by :

∀ξ ∈Ms
2 R(α)ξ = Q(α)T ξQ(α)

where Q(α) ∈ M2 is the rotation matrix of angle α. Then, the dependency of A∗α(m) with

respect to the angle α can be made explicit as follows

A∗α(m) = R(α)TA∗0(m)R(α) . (4.7)

Unlike the parameters m = (m1,m2), the dependency on the orientation α is explicit and the

derivative of the elasticity tensor with respect to α is also algebraically known. The numerical

computation of the homogenized elasticity tensors A∗α(m) can thus be restricted to the case

α = 0. Note that a rotation of the cell by an angle π does not change its Hooke’s law as

R(π) = − Id. Hence the optimal orientation can only be defined modulo π.
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4.3.4.b Derivatives of the homogenized elasticity tensor

In order to compute the derivative of the homogenized tensor, with respect to m1 (respectively to

m2), we choose a specific deformation field θ in the shape derivative formula (4.6). Introducing

the smooth (0, 1)2-periodic vector fields θ1 and θ2, defined by

θ1 = c1(sin(2πy1), 0)T , θ2 = c2(0, sin(2πy2))T ,

where c1 = − sin(πm1)−1, c2 = − sin(πm2)−1 are rescaling coefficients, it is easy to check that

Y0(m1 +δm1,m2 +δm2) = (Id +δm1θ1 +δm2θ2)(Y0(m)), where (δm1, δm2) is a small increment.

It follows that, for i = 1, 2,
∂A∗0
∂mi

(m) =
〈
(A∗0)′(Y0), θi

〉
.

Therefore, (4.6) leads to the sensitivities of A∗0(m) with respect to m1 and m2.

4.3.4.c Numerical implementation

The considered cells Y0(m) have cubic symmetry, thus the corresponding homogenized elasticity

tensors {A∗0(m)} are orthotropic and fully characterized by only four of its entries, namely

(A∗0(m))1111, (A
∗
0(m))1122, (A

∗
0(m))2222, (A

∗
0(m))1212. The three cell problems (4.3) on Y0(m) are

solved using a finite element method. Once the correctors w11, w22, w12 are computed, the four

independent coefficients of the elasticity tensor are obtained using equation (4.5). Similarly, the

sensitivities to the parameters m1 and m2 are deduced from the integral formula (4.6).

We discretized the space of the parameter m describing the microstructure on a regular

grid with 50 elements in each direction. We then compute numerically the effective elasticity

tensors A∗0(m) for each so-defined samples of parameters m = (m1,m2), by using the finite

element solver FreeFem++ [Hecht 2012]. We emphasize the fact that rotating a periodic cell

by π/2 while exchanging m1 and m2 leaves it invariant. Thus, the computation of the effective

elasticity tensor can be restricted to the samples where m1 ≤ m2.

To interpolate the effective elastic law, we take advantage of the structure of the P1-functions

in FreeFem++. Indeed, we have the value of all components of A∗ and their sensitivities on

each vertex of the discretization grid of m, which defines a P1-function. Hence, there is no need

to implement a specific interpolation function in FreeFem++ and during the optimization step,

the call to the effective elasticity tensor is not time consuming.

We noticed from our numerical results that all the homogenized coefficients of A∗ are strictly

decreasing, with respect to m1 and m2 (as could be expected from mechanical intuition). This

property must be preserved during the interpolation of the elasticity tensor. Among the several

interpolation methods that were investigated, namely linear interpolation, splines, Kriging,

only the linear interpolation ensures the strict monotonicity of the functions. However, using

a linear interpolation, the derivatives of the interpolated tensor with respect to m1 and m2

are piecewise constant and discontinuous. Thus, these derivatives are not very precise and

difficult to use in an optimization algorithm. Thus, we decided to interpolate the sensitivities,

computed from (4.6), separately by the same P1 algorithm. This choice makes the values of the

homogenized coefficients and their sensitivities slightly inconsistent. However, in practice, the

chosen interpolations are precise enough so not to impair the convergence of the gradient type

algorithm used during the optimization stage.
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Figure 4.3: Comparison of the numerically computed components of A∗0((1,m2)) with the the-

oretical ones given by the rank-one laminate formula.

4.3.4.d Degeneracy issues

There exists two kinds of configurations where the Y0(m) cells are degenerate. Firstly, when

one of the microstructure parameters mi is equal to 0 but, not the other one. The square cell is

full of material but features a central crack. Hence, the homogenized tensor A∗0(m) is not equal

to the pure solid tensor A. Numerically, the crack is represented by a thin rectangle excluded

from the mesh of the cell of width mi = 10−3.

Secondly, when one of the microstructure parameters mi is equal to 1, the domain obtained

by periodic repetition of the cell is no longer connected, but is rather a union of disconnected

parallel bars. To avoid the degeneracy of the homogenized elasticity tensor in such a case, we

impose mi to be less than a maximal value of (1− 10−3). However, in the case when mi is close

to 1, the composite material is a single lamination along the yj axis (with j = 3 − i) of phase

A and void in respective proportions ρ = 1−mj and (1− ρ) = mj . The homogenized elasticity

tensor A∗0(m) is then algebraically known [Allaire 1997]. All of its components are equal to 0,

except (A∗0(m))iiii given by

(A∗0(m))iiii =
4µ(λ+ µ)

λ+ 2µ
ρ

The Lamé coefficients of the isotropic material used numerically are : λ = 12.96 and µ =

5.56, corresponding to a Young modulus Y = 15 and to a Poisson ratio ν = 0.35. As shown in

Figure 4.3, the numerical results are close to the theoretical ones of the rank-one laminate. It

is therefore a justification of the above approximation which amounts to replace mi = 1 by the

smaller value mi = (1− 10−3) when computing the homogenized tensor.

4.3.5 Numerical results and discussion

Numerical results for the entries of the homogenized tensor A∗ and their derivatives as functions

of the parameters m are displayed on Figure 4.4. The results are consistent, since the gradients
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(a) (A∗0(m))1111, with A1111 = 24.07 (b) (A∗0(m))2222, with A2222 = 24.07

(c) (A∗0(m))1122, with A1122 = 12.96 (d) (A∗0(m))1212, with A1212 = 11.11

Figure 4.4: Isolines of the entries of the homogenized tensor A∗ and their gradient (small arrows)

according to the parameters m. The x-axis is m1, the y-axis is m2
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are orthogonal to the isolines. When the cell is full and without crack, i.e. m = 0, the

homogenized tensor A∗0(m) is equal to A. When the cell is close to be empty, i.e. m close to

(1, 1), the homogenized tensor is converging to the null tensor. Moreover, one can easily check,

that the entries of A∗0(m) decrease, when m1 is fixed and m2 is increasing (and vice versa).

In other words, the cell is globally weaker when its hole is widening in one direction or the

other. However, the sensitivity of the component (A∗0(m))1111 to the parameter m2 is greater

than the one to the parameter m1, see Figure 4.4(a). That is explained by the fact that, along

the y1 axis, the strength of the cell is mainly insured by the material in the areas above and

below the hole, whose sizes depend on m2. As could be expected, the homogenized elasticity

tensor is quite smooth with respect to the parameter m, so it is amenable to a gradient based

optimization method.
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4.4 Processing: optimization among the set of periodic com-

posite materials

4.4.1 Settings of the homogenized problem

In this paper, we focus on the compliance minimization problem, hence the cost function J

defined in Section 4.2 is given by

J(Ω) =

∫
ΓN

g · u ds,

whose relaxed version for composite material reads as

J∗(θ,A∗) =

∫
ΓN

g · u∗ ds,

which is also equal to

J∗(θ,A∗) = min

τ ∈ H0

∫
D
A∗−1τ : τ dx,

where

H0 =

τ ∈ L2(D;Ms
2) such that

div(τ) = 0 in D

τn = g on ΓN

τn = 0 on Γ

 .

Note that the results of the present section are not restricted to compliance minimization. For

example, see 4.7.1 for a stress minimization problem.

The optimization problem defined in Section 4.2 can be recast as a minimization problem

over the stress field and the admissible microstructures [Allaire 2002a]. Namely, it is equivalent

to

inf

σ ∈ H0

m ∈ L∞(D; [0, 1]2)

α ∈ L∞(D;R)∫
D θ(m) dx ≤ V

∫
D
A∗−1
α (m)σ : σ dx,

where

θ(m) = 1−m1m2

is the local density of the periodic microstructure of parameters m.

In order to solve this problem, we use an alternate minimization algorithm [Allaire 2002b],

minimizing successively with respect to the stress field σ, the microstructure m and the orien-

tation α of the cell. We introduce the corresponding Lagrangian

L(m,α, σ, `) =

∫
D
A∗−1
α (m)σ : σ dx +`

(∫
D
θ(m) dx−V

)
,

where ` is the Lagrange multiplier associated to the volume constraint.
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Minimization w.r.t the stress field. For given design fields (m,α), the minimization with

respect to the stress field σ amounts to solve the elasticity problem with a material of elasticity

tensor equal to A∗α(m) in D.

Minimization w.r.t the microstructure m. For a given stress field σ, to minimize with

respect to the microstructure m, we use the projected gradient algorithm. Recall that the

considered problem is self-adjoint. The descent directions are given by the derivatives of L with

respect to m〈
∂L
∂mi

(m,α, σ, `), h

〉
= −

∫
D

(
∂A∗α
∂mi

(m)A∗−1
α (m)σ : A∗−1

α (m)σ + `mj

)
h dx,

with j = 3− i. We have to select a descent direction h = dmi such that〈
∂L
∂mi

(m,α, σ, `), dmi

〉
< 0,

which is achieved by choosing

dmi =
∂A∗α
∂mi

(m)A∗−1
α (m)σ : A∗−1

α (m)σ + `mj in D. (4.8)

The update of the microstructure at iteration n is given by :

mn+1
i = P[0,1](m

n
i + µmdmi) (4.9)

where µm > 0 is the step size and P[0,1] is the projection operator on the interval [0, 1]. The

value of ` is updated at each iteration by a dichotomy process designed to respect the volume

constraint.

Minimization w.r.t the orientation α. To minimize with respect to the orientation, we

could use the same method as for the minimization with respect to the microstructure, but

there exists a better (more efficient) algorithm than the gradient descent method to compute

the optimal orientation. Pedersen [Pedersen 1989] proved that the optimal orientation of an

orthotropic cell for a given displacement field is the one where the cell is aligned with the

principal directions of the strain tensor. A similar result with a given stress field can easily be

shown in the same way.

First, the principal (orthogonal) directions of the given stress field σ are computed. Accord-

ing to Pedersen formulas, we have to align the principal directions σ with the orientation of

the cell. Hence, at this stage, the optimal orientation is known up to an additive multiple of π
2 .

However, by choosing to align the vector a1 = (cos(α), sin(α)) with the eigenvector of σ of small-

est eigenvalue (possibly negative), the angle α is defined modulo π. Note that the cases where σ

is proportional to the identity are generically limited to isolated points (and thus the set of such

point is of null measure). This approach is more efficient than the gradient descent method,

mainly because it is a global minimization method, providing an optimal orientation at each

iteration. However, this method can usually not be generalized to other objective functions.

Remark 5. For multiple loads cases, Pedersen algorithm does not work. However, the optimal

orientation at one point still only depends on the values of the local stress fields and is solution

of a one dimensional minimization problem. Thus the global minimization of the cost function

with respect to the orientation α remains relatively easy even without any explicit expression.
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4.4.2 Implementation

Complete optimization algorithm. The optimization algorithm is an iterative method,

structured as follows :

1. Initialization of the design parameters (m,α), for example we take m1 = m2, constant

satisfying the volume constraint, and α = 0.

2. Iteration until convergence, for n ≥ 0 :

(a) Computation of σn through a problem of linear elasticity with A∗αn(mn) as elasticity tensor

(b) Updating the orientation αn+1, using the Pedersen formulas

(c) Updating the design parameters mn+1, using (4.8-4.9), with the parameters σn and αn.

We implemented the topology optimization in the finite element software FreeFem++ [Hecht 2012]

(see [Allaire 2006] for the use of FreeFem++ in optimal design). All unknowns are discretized

using P1-functions.

Stress field σ. We solve the elasticity problem, namely we compute the displacement field

u ∈ VD := {v ∈ H1(D;R2) such that v = 0 on ΓD},

such that, for all v ∈ VD,∫
D
A∗0(m)R(α)T e(u) : R(α)T e(v) dx =

∫
ΓN

g · v ds .

We use P1 finite elements to compute the displacement u. Afterwards, the stress tensor σ is

obtained as the interpolation of the P0-function R(α)A∗0(m)R(α)T e(u) in the set of P1 finite

elements

Minimization with respect to the orientation. As recalled previously, the minimizer of

L(m,α, `, σ) with respect to α is reached when the cell is aligned with the eigenvectors of the

stress tensor σ. Denote by a and b the rotation matrices of angles α and 2α, respectively,

a = Q(α) , b = Q(2α) . (4.10)

As is well known [Pedersen 1989], the Hooke’s law depends on the orientation α only through

the tensor R(α) which, in turns, only depends on the rotation matrix b. If we choose the first

column a1 to be aligned with the eigenvector of σ of smallest eigenvalue, we get that

b1 =
1√

(σ11 − σ22)2 + 4σ2
12

(σ11 − σ22, 2σ12)T .

Remark 6. In practice, Voigt notations are used, in order to replace tensors product by matrix

product. Hence, a second-order tensor ξ is represented by the following vector :

{ξ} =

(
ξ11, ξ22,

ξ12 + ξ21√
2

)T
.
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And the fourth-order tensor R(α) can be represented by a matrix, which is expressed only using

the vector b1 = (b11, b21)

{R(α)} =


1+b11

2
1−b11

2 − b21√
2

1−b11
2

1+b11
2

b21√
2

b21√
2

− b21√
2

b11

 . (4.11)

Minimization with respect to the cell parameters m. At each iteration, the descent

directions for both parameters m1 and m2 are computed using (4.8). Numerically, the fields

m1 and m2 are P1-functions. Thus, the partial derivatives for the Lagrangian, denoted by ∂L
∂mi

are interpolated, using a H1 equivalent norm, by solving the following variational formulation

: ∀h ∈ H1(D,R)∫
D

(
∂L
∂mi

h+ η2∇ ∂L
∂mi

· ∇h
)

dx = −
∫
D

(
∂A∗0
∂mi

(m)R(α)T e(u) : R(α)T e(u) + `mj

)
h dx

with η > 0 a small coefficient, which typically depends on the size of the elements of the mesh.

The purpose of this small coefficient is to numerically regularize the partial derivatives on a

length scale of order η and to limit the checkerboard effect [Sigmund 1998]. The update of the

fields is then given by

mn+1
i = max

(
0,min

(
1,mn

i − µm
∂L
∂mi

))
.

In practice, we use an adaptive step size µm. At each iteration, if the newly computed ho-

mogenized structure is accepted (i.e. if its compliance is lower than the one of the previous

structure), the step size µm is increased of 20%. On the contrary, if the newly computed

structure is rejected, the step size is divided by 2.

The Lagrange multiplier ` is computed so that the volume constraint∫
D
θ(m) = V

is satisfied almost exactly. To this end, we use a dichotomy process (note that the variational

formulation that defines ∂L/∂mi has not to be solved at each iteration of the dichotomy, as the

dependency on ` is linear).

4.4.3 Numerical results and discussion

We have numerically implemented the optimization algorithm for the bridge problem, see Figure

4.5 for the boundary conditions. The domain size is 22×13 and it is discretized by a structured

triangular mesh. Taking 4 nodes per unit length on the boundary yields a mesh with 18304

triangles and 9293 vertices. The volume constraint is fixed to 30% of the working domain. The

algorithm converged quickly and smoothly, see Figure 4.6. The results are displayed on Figure

4.7. The optimized design parameters m1 and m2 in Figures 4.7(c) and 4.7(d) are most of the

time not equal (when they are different from the extreme values 0 and 1), and the optimized

orientation (Figure 4.7(b)) is almost radial. This is a clear manifestation that the obtained

optimal composite is anisotropic.
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D

ΓNΓD ΓD

Figure 4.5: Boundary conditions for the bridge problem

The minimal compliance for a single-load case is known to be reached by rank-2 laminates

[Allaire 2002a]. We have also computed the optimal design for such laminates. The results are

displayed in Figure 4.8 (note that the m1 and m2 parameters have a different signification for

rank-2 laminates). The two optimized designs, respectively with square cells and laminates, are

closed to each other. Indeed, both feature a radial structure, with high density on the main arch

and in the loading areas. Moreover, the final compliance 2.141 for the locally periodic square

cells case is closed to the optimal one 2.100 for rank-2 laminates: the difference is less than 2%.

This can be seen as a justification of our choice of such cells. For the sake of comparison, the

same test case has been performed with the Solid Isotropic Material with Penalization (SIMP)

method: the elastic law is represented as a power law of the density (the maximal exponent is 3).

The optimal compliance obtained by this method is equal to 2.38, which is 11% greater than the

final compliance reached by the homogenization method. The discretized mesh was the same

than the one for the homogenization method. In order to obtain a mesh independent design

(and to avoid checkerboards), a sensitivity filter was applied. The radius of the filter was equal

to three mesh-element sizes. The optimal design is displayed on Figure 4.9(b). The optimal

design without penalization (i.e. with exponent 1) was also computed and, of course, displays

large grey areas, see Figure 4.9(a). Its compliance is equal to 1.99, a much lower value than

that for the homogenization method, as it is expected [Allaire 2002a], since the SIMP method

(with exponent 1) is equivalent to use fictitious isotropic material which do not fit into the

Hashin-Shtrikman bounds. Hence, the optimized compliance is much lower than the previous

ones, including the compliance reached by the rank-2 laminates which is the global optimum.

We also ran several tests with additional constraints on the design parameters, denoted by

B, C, D and E. The previous one is denoted by A. The test cases and the results are summarized

in Table 4.1, sorted according to the final compliance. The lower compliance is reached when we

optimize with respect to the three variables, m1, m2 and α. In this case, the set of admissible

shapes is the largest and contains all other used subsets.

When the orientation of the cells is fixed to zero (cases B and D, see Figures 4.10 and 4.11),

the anisotropy of the cells is no longer an asset. The optimized design is then self-penalized.

Only small areas of intermediate density are visible. Most of the domain is either made of void

or plain material. Indeed the best strategy to bear stress, when the cell is not aligned with the

principal directions of σ, is to be strong in all directions, and so to be isotropic.
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Figure 4.6: Convergence history of the objective function (compliance) for the bridge

(a) Density (b) Orientation of the cells

(c) m1 (d) m2

Figure 4.7: Optimized design of the bridge, case A : no constraint on the design variables.
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(a) Density (b) Orientation of the cells

(c) m1 (d) m2

Figure 4.8: Optimized design of the bridge with rank-2 laminates

(a) Density (b) Density

Figure 4.9: Optimized design of the bridge with penalized (a) and non penalized (b) SIMP

method

Case Constraint on m Constraint on α Optimal compliance

A none none 2.141

B none α = 0 2.524

C m1 = m2 none 2.549

D m1 = m2 α = 0 2.600

E m1 = m2 =
√

0.7 none 5.121

reference m1 = m2 =
√

0.7 α = 0 37.410

Table 4.1: Test Cases
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(a) Density (b) Orientation of the cells

(c) m1 (d) m2

Figure 4.10: Optimized design of the bridge, case B : α = 0.

When the dimensions of the holes are fixed (case E), the optimal orientation of Pedersen

is still valid. The optimized orientation is closed to the one of case A. However, the optimized

compliance is much greater. Nevertheless, the compliance is decreased by 87% compared to the

reference value.
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(a) Density (b) Orientation of the cells

(c) m1 (d) m2

Figure 4.11: Optimized design of the bridge, case D : m1 = m2 and α = 0.

4.5 Post-Processing : projection of the optimized microstruc-

ture

The last step is to construct a sequence of classical or genuine shapes that actually converges

toward the computed optimal composite. This sequence is indexed by a small positive parameter

ε > 0 which is the size of the period of the periodic composite. In numerical practice, one has

to choose a specific value of ε and then the projection will be done for this chosen periodicity.

Of course, the smaller ε, the more detailed will be the resulting genuine shape.

In section 4.5.1 we define a set of sequences of shapes that converge toward square periodic

composites. Each sequence of shapes is defined by the micro-structure m of the composite and

a mapping function ϕ. As shown in section 4.5.2 each reachable square periodic composite has

to be build on a conformal lattice. Equivalently, the Laplacian of the orientation of the cells

has to be a harmonic function. This condition is enforced to the optimal composite by pursuing

the optimization while imposing this extra constraint (section 4.5.3). It remains to compute

the mapping function ϕ to completely define a sequence of genuine shapes converging toward

the optimum obtained. To be able to cope with the fact that the orientation if defined up to a

rotation of angle π, we introduce an abstract manifold on which the mapping function is defined

(section 4.5.4). Its computation then reduced itself to solve two linear problems (section 4.5.5).

4.5.1 Sequences of shapes

Projection of the optimized design, case without optimal orientation. First, we con-

sider the case where the orientation of the cell is constant in the whole domain D. Our unit
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cells (rectangular hole in a square) can be analytically defined by

Y0(m) =

{
y ∈ [0, 1]2 such that cos(2πy1) ≥ cos(π(1−m1))

or cos(2πy2) ≥ cos(π(1−m2))

}
.

Hence, to build a cellular structure Ωε(m), we have to pave the domain D with cells εY0(m).

However, the hole size m is varying inside D so the periodicity cell is macroscopically modulated,

as is classical in homogenization. Thus the genuine shape Ωε(m) is defined by

Ωε(m) =

{
x ∈ D such that cos

(
2π
x1

ε

)
≥ cos(π(1−m1(x)))

or cos
(

2π
x2

ε

)
≥ cos(π(1−m2(x)))

}
,

where m1(x),m2(x) are functions defined on D with values in [0, 1]. The values of m1 and m2

are not necessarily constant in each cell of the structure. Hence, the cellular structure Ωε(m)

do not exactly feature square cells with rectangular holes. But, since the size ε is going to 0,

if the functions m1 and m2 are continuous, the sequence of cellular structures is converging to

the composite of local Hooke’s law equal to A∗0(m).

An other approach is to compute on each cell, the mean value of the dimensions parameter m1

and m2 on the cell [Zhang 2015]. With this method, each shape of the minimization sequence

is composed of square cells as defined previously. However, its implementation can be time-

consuming : for each shape of the sequence, we have to determine each cell of the lattice and

its dimension parameters before constructing the final design. Hence, in the following, we will

use the previous formulation.

The cellular structures can be defined using level-sets. We introduce two level-set functions

fmε,i ∈ C(D;R), one for each direction

fmε,i(x) = − cos

(
2πxi
ε

)
+ cos(π(1−mi(x))).

and the level set function

Fmε = min(fmε,1, f
m
ε,2).

The final structure Ωε(m) is then defined by

Ωε(m) = {x ∈ D such that Fmε (x) ≤ 0}.

The construction of a minimizing sequence is immediate : we just have to update the size ε in

the previous level set function.

Projection of the optimized design, case with optimized orientation. The crucial point

is to take into account the optimized orientation of the cell. Indeed, neither gap nor overlap is

allowed between two cells. Hence, cells have to be slightly deformed to ensure the connectivity

of the final structure. A map ϕ = (ϕ1, ϕ2) from D into R2 is introduced for this purpose :
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the inverse of this map distorts a regular grid of squares in order to orientate each square at

the optimized orientation α. Then, the previous projection method can be applied on this new

grid. The final shape, now denoted Ωε(ϕ,m), is still defined by a level set function, the same

as previously except that the coordinates are now given by the map function ϕ:

fϕ,mε,i (x) = − cos

(
2πϕi(x)

ε

)
+ cos(π(1−mi(x))). (4.12)

Fϕ,mε = min(fϕ,mε,1 , fϕ,mε,2 ). (4.13)

Ωε(ϕ,m) = {x ∈ D such that Fϕ,mε (x) ≤ 0}. (4.14)

Remark 7. The map ϕ is introduced in order to take into account the optimal orientation of

the cell. Hence, ϕ depends only on the angle field α. In particular, ϕ does not depend on the size

ε of the cells. Once ϕ has been computed, it could be used for any value of this scale parameter.

4.5.2 Conformality condition

As seen above, we introduce here a map ϕ in order to construct a minimizing sequence of

genuine shapes that converges to the optimal composite. We emphasize that the cells featured

in those genuine shapes have to converge to square cells, in order that their effective elasticity

tensor converges to A∗. To perform this, we require that ϕ locally preserves all angles: it is

a conformal map. In other words, a small square cell is deformed by ϕ into another almost

square cell since the angles between the cell sides, and their diagonals too, are unchanged. This

conformality requirement is not specific to square cells. It should be imposed to other types of

periodicity cells, like hexagonal cells, in order that the minimizing sequence of genuine shapes

converges to the optimal composite A∗.

To respect the local orientation, the gradient of ϕ has to be aligned with the axis of the

cell given by a = Q(α). Moreover, the proportions of the cell have to be preserved in order to

converge to a true square and not simply to a rectangle: |∇ϕ1| = |∇ϕ2| = er, where r ∈ H1(D)

is a (scalar) dilation field. The exponential form has been chosen in order to simplify the

following equation, and to impose easily the condition of positiveness. Hence,

∇ϕ = erQ(α). (4.15)

It is a classical result that, provided the rotation field is regular, the existence of a compatible

conformal mapping ϕ is equivalent to the harmonicity of the orientation α. We recall the proof

of this result which holds true only in two space dimensions.

Lemma 4.5.1. Let α be a regular orientation field and D be a simply connected domain. There

exists a mapping function ϕ and a dilatation field r satisfying (4.15) if and only if

∆α = 0 in D. (4.16)
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Proof. Recall that in 2-d the rotational or curl of a vector field u = (u1, u2) is defined as

curlu = ∇ ∧ u = ∂u2
∂x1
− ∂u1

∂x2
, where ∧ is the 2-d cross product of vectors. Of course, the

rotational of a gradient vanishes. Conversely, as D is assumed to be simply connected, a vector-

valued map is a gradient if and only if its rotational vanishes. Therefore, there exists a map

ϕ which verifies (4.15) if and only if the rotational of the right hand side vanishes, namely

curl erQ(α). Recall from (4.10) that a = Q(α) with columns a1, a2. Therefore

curl (erQ(α)) = 0⇔ ∀i ∈ {1, 2}, ∇r ∧ ai = −∇ ∧ ai.

Since (a1, a2) is an orthonormal basis, ∇r can be rewritten as

∇r = (−∇ ∧ a2)a1 + (∇∧ a1)a2. (4.17)

We compute

∇∧ a1 =
∂α

∂x1
cos(α) +

∂α

∂x2
sin(α) and ∇∧ a2 = − ∂α

∂x1
sin(α) +

∂α

∂x2
cos(α). (4.18)

Coupling equations (4.17) and (4.18) leads to

∇r =

(
− ∂α

∂x2
,
∂α

∂x1

)T
. (4.19)

Finally, the dilation factor r does exist if and only if, the left hand side of (4.19) is curl free,

which leads to the harmonic condition (4.16) on the orientation field α.

4.5.3 Optimization over feasible locally square periodic composites

The orientation α given by the optimization does not necessarily respect the conformality con-

dition. In order to enforce this condition, we pursue the optimization algorithm while imposing

the harmonicity of α. The only step that differs from the optimization algorithm of section 4.4

concerns the minimization with respect to α. We can no longer simply align the periodicity

cells with the principal directions of the stress as it leads to solutions that does not satisfy

the conformality condition. Moreover, we slightly change the cost function by adding a small

regularization term on the orientation. Thus, the optimization with respect to the orientation

reduces to the minimization of∫
D

(
A∗α(m)−1σ : σ + η2|∇α|2

)
dx,

under the constraint ∫
D
∇α · ∇q dx = 0 for all q ∈ H1

0 (D).

Remark 8. The regularization term in the above minimization problem is the usual L2-norm of

the angle gradient. Other choices are possible, including more ”local” criteria. For example, one

could replace this gradient norm by a least square difference between the angle and its filtered

version, obtained by a local convolution. We did not try this idea since the gradient norm

works nicely. Note that the conformality constraint is already non-local and thus the additional

computational cost of minimizing the gradient norm is somehow negligible.
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We recall that the dependence of the Hooke’s law with respect to the orientation is explicitly

known by (4.7). Moreover, the tensor R(α) depends only on b1, see (4.11), where

(b1, b2) = b = a2 = Q(α)2 = Q(β),

with β = 2α or equivalently

b1 = (cos(β), sin(β)). (4.20)

Let S(b1) = R(α). As shown by formula (4.11), S(b1) is an affine function of b1. Since (4.7) can

be rewritten as

A∗α(m) = S(b1)TA∗0(m)S(b1),

we are left with the minimization problem of∫
D

(
A∗0(m)−1S(b1)σ : S(b1)σ + η2|∇β|2

)
dx

under the constraints (4.20) (relating b1 and β) and∫
D
∇β · ∇q dx = 0, for all q ∈ H1

0 (D).

This minimization problem can not be solved exactly because of the non linear constraint (4.20).

At each iteration n, we approximate this constraint by its linearization around the current state.

We compute δbn1 and δβn that minimizes∫
D
A∗0(m)−1S(bn1 + δb1)σ : S(bn1 + δb1)σ dx +η2

∫
D
|∇(βn + δβ)|2 dx

under the constraint ∫
D
∇(βn + δβ) · ∇q dx = 0, for all q ∈ H1

0 (D)

and the linearized constraint

δb1 = (− sin(βn), cos(βn))δβ.

Note that, we have

∇βn = bn1 ∧∇bn1 ,

and thanks to the linearized constraint,

∇δβ = bn1 ∧∇δb1.

Thus, we can rewrite the linearized minimization problem solely as the variational problem

consisting in finding δbn1 ∈ H1(D;R2) and pn+1 ∈ H1
0 (D) such that for all test functions

δc ∈ H1(D;R2) and q ∈ H1
0 (D),

2

∫
D
A∗0(m)−1S(bn1 + δbn1 )σ : S′(δc)σ dx +2η2

∫
D

(bn1 ∧∇(bn1 + δbn1 )) · (bn1 ∧∇δc) dx

+

∫
D

(bn1 ∧∇δc) · ∇pn+1 dx = 0 (4.21)
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Figure 4.12: Regularized Orientation for the bridge case

and ∫
D

(bn1 ∧∇(bn1 + δbn1 )) · ∇q dx = 0. (4.22)

In (4.21), pn+1 is the Lagrange multiplier, corresponding to the constraint (4.22) and S′(δc) is

the directional derivative of S(b1) in the direction δc. Recall that S is affine so S′ is easy to

determine.

The vector field b1 is then updated after renormalization of bn1 + δbn1

bn+1
1 =

bn1 + δbn1
|bn1 + δbn1 |

. (4.23)

Regularization algorithm. The above algorithm is structured as follows :

1. Initialization of the design parameters (m, b) with the results of the optimization without

the conformality constraint.

2. Iteration until convergence, for n ≥ 0 :

(a) Computation of the strain tensor e(un) through the problem of linear elasticity.

(b) Computation of the increment δbn1 by solving the variational problem (4.21,4.22).

(c) Updating of the orientation with (4.23).

(d) Updating of the design parameters mn, using (4.8,4.9), with the parameters bn, where the

Lagrange multiplier ` for the volume constraint in (4.8) is again computed by dichotomy.

Numerical Results. We implemented this algorithm for the optimized bridge (case A). Regu-

larized orientation is displayed in Figure 4.12 and a comparison between the optimized orienta-

tion and the regularized orientation is displayed in Figure 4.13. There is no significant difference

concerning the dimension parameters m. Hence they are not produced here.

The regularized orientation is not far from the optimized one. The regularization occurred

mainly in areas where density is closed to 0 or to 1, i.e. where the homogenized material is

almost isotropic and the orientation has no significant impact on the Hooke’s law. Moreover,

the singularity at the point (0, 0) is put outside of the working domain D by the regularization

algorithm. This is crucial to compute the mapping ϕ, but does not really degrade the final
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Figure 4.13: Angle difference in radian between the optimized orientation and the regularized

orientation for the bridge case

design since in the vicinity of the singularities the density is equal to 1. The compliance of the

regularized structure is equal to 2.169, to be compared with the value 2.141 for case A: the

degradation of the solution is lower than 2%.

4.5.4 Reconstruction of a sequence of shapes

Once the optimal locally square periodic composite that satisfies the conformality condition has

been computed, it remains to determine the corresponding grid map ϕ from D into R2, that

satisfies (4.15). As shown in the proof of Lemma 4.5.1, the dilation field r of the cells is given

by

∇r = (∇∧ a1)a2 − (∇∧ a2)a1.

Thus, it can be computed simply by minimizing∫
D
|∇r − (∇∧ a1)a2 + (∇∧ a2)a1|2 dx (4.24)

over the maps r ∈ H1(D). If the orientation α is coherent on the working domain D, the

computation of ϕ reduced to the minimization of∫
D
|∇ϕ− era|2 dx

over the fields ϕ ∈ H1(D;R2). Unfortunately, as a consequence of the property of central

symmetry of the periodicity cells, a = Q(α) is only defined up to a sign. There are two ways to

bypass this issue. The first and obvious one (see [Groen 2017]) would be to determine a coherent

orientation of a over D (what could be done proceeding from one triangle to its neighbors and

so on). The second option is based on the introduction of a covering space D over D and to

define ϕ on D rather than on D itself (we will give more details soon). A minor advantage of

this second approach relies on the fact that it saves us the computation of a coherent rotation

field a. More important, even if we discard this possibility in the current article, such a coherent
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(a) Positive singularity (b) Negative singularity

Figure 4.14: The two canonical type of singularities of the field a1. The field a1 is not coherently

orientable in those cases, as the vector a1 rotates of an angle of ±π along circles which are

enclosing the singularities.

orientation does not necessarily exists in the presence of singularities like the ones displayed

in Figure 4.14). Hence, the first option can not be extended to encompass the general case

contrarily to the second one that we retain here (a rapid description of the way the singularities

could be treated in this context can be found in [Pantz 2010], for a detailed description see

Section 1 of Chapter 5). In this section, we introduce the manifold D and recast the problem

that defines the grid map. The reader mainly interested in the practical implementation could

skip this part for section 4.5.5.

An abstract manifold. We introduce the cover space of D

D = {(x, T ) ∈ D × SO(2) such that T 2 = b(x)},

where SO(2) is the set of rotations in R2. It is a submanifold of the space D × SO(2). The

rotation field a is assume to be locally orientable, meaning that D can be covered by open sets

U for each of which there exists a map TU ∈ C(U,SO(2)) such that for all x ∈ U , TU (x)2 = b(x).

The map TU defines two charts g+
U and g−u of the manifold D given by

g+
U : U → D

x 7→ (x, TU (x))
and

g−U : U → D
x 7→ (x,−TU (x)).

(4.25)

In the present article, we assume the rotation field a of the optimal design to be without

singularities (and thus orientable). Thus, D is simply the union of two copies of D consisting

of the two possible orientations of a. Nevertheless, we will not use this feature in the following.
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Figure 4.15: Representation of the manifold D in the presence of a singularity.

Its makes our method relatively easy to extend so to encompass the case with singularities,

what will be done in a future work. Before digging into deeper details in the next section, let

us illustrate how D can be represented if the field a contains singularities.

The Figure 4.15 gives such a representation of the manifold D in the presence of a negative

singularity. The manifold D is obtained starting with two copies of the initial domain D (a

square in the present case). Each of them is cut along the same path connecting the singularity

to the boundary of D. Then, they are glued together along this very path. On Figure 4.15

the thick (respectively the dotted) lines are glued together. Contrarily to the case without

singularity, D is connected but not simply connected and can not be embedded in R2. Another

representation of D is given by the Figure 4.16 as a submanifold of D × SO(2) ' D × R/2πZ.

In this case, the manifold D looks as a screw in the cylinder D × (0, 2π) whose axis is parallel

to the z-direction and located at the very position of the singularity in D. The top and bottom

parts of the screw are identified.

Finally, we endow D with a differential structure through the projection pD onto D. In

particular, it induces a gradient operator on D and a second linear form p∗D( dx), the pull-back

of second linear form dx defined on D. For sake of simplicity, we will denote p∗D( dx) simply

dx in the following.

Construction of ϕ. We change our working space from D to D, meaning that we are now

seeking for a grid map ϕ from D into R2 such that

∇ϕ = erT (4.26)

for all (x, T ) ∈ D and for some function r(x). The operator ∇ in (4.26) is not the standard

gradient on the manifold D but is rather defined by

∇ϕ(x, T ) = ∇ϕU (x),

where U is an open subset of D,

ϕU (x) = ϕ ◦ gU (x),
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Figure 4.16: Submanifold D in D × R/2πZ.
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and gU is a chart of the neighborhood of (x, T ) like in (4.25). Moreover, without loss of generality,

we can assume that

ϕ(x,−T ) = −ϕ(x, T ). (4.27)

Indeed, if ϕ satisfies (4.26), then the map (x, T ) 7→ (ϕ(x, T )− ϕ(x,−T ))/2 still satisfies (4.26)

together with the antisymmetric property (4.27). Thus, if the conformality condition (4.16) is

satisfied, the map ϕ can be defined as the solution of

min
ϕ∈V

∫
D
|∇ϕ− erT |2 dx, (4.28)

over the maps ϕ in

V :=
{
ϕ ∈ H1(D;R2) such that ϕ(x,−T ) = −ϕ(x, T ) for all (x, T ) ∈ D

}
.

Previously in this section we assumed that D can be covered by open sets U where the rotation

field a is coherently orientable. From now on, let us be more specific in assuming that those

open sets U are the cells K of a mesh covering D. In other words, there exists a finite family

T of disjoint open subsets K such that

D = ∪K∈TK,

and such that the rotation field a is coherently orientable on all K. We denote TK : K → SO(2)

such an orientation on K. We have∫
D
|∇ϕ− erT |2 dx =

∑
K∈T

∫
p−1
D (K)

|∇ϕ− erT |2 dx =

∑
K∈T

∫
g+
K(K)∪g−K(K)

|∇ϕ− erT |2 dx

=
∑
K∈T

∫
K

∣∣∇(ϕ ◦ g+
K)− erTK(x)

∣∣2 dx +

∫
K

∣∣∇(ϕ ◦ g−K) + erTK(x)
∣∣2 dx

with g±K = Id×(±TK). In particular, for all ϕ ∈ V, due to the antisymmetry condition, we get∫
D
|∇ϕ− erT |2 dx = 2

∑
K∈T

∫
K

∣∣∇(ϕ ◦ g+
K)− erTK(x)

∣∣2 dx . (4.29)

4.5.5 Practical computation of the grid map ϕ

Solving (4.28) using a classical finite element software seems at first sight far form straightfor-

ward, mainly because the solution ϕ is defined over the manifold D and not a two dimensional

open subset of R2.

We use P1 finite elements to discretize ϕ. To build the bilinear form of the variational

formulation, we introduce an interpolation operator from Vh, the Lagrange finite elements of

degree one on D that satisfies the antisymmetry condition (4.27), onto the space Wh of P1

discontinuous Galerkin elements on D.
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The finite element space Vh. Let Th be a regular mesh of D. We assume that on each

triangle K of the mesh, the rotation field a is locally orientable, meaning that, on each K, there

exists a regular map TK with values in SO(2) such that

TK(x)2 = b(x) for all x ∈ K. (4.30)

Such a coherent orientation field TK is easy to define and more details are given at the end of

this section. We also choose an orientation Ti at each vertex xi of the mesh such that

T 2
i = b(xi). (4.31)

The manifold D can be endowed with a mesh, whose elements are g+
K(K) = (Id×TK)(K)

and g−K(K) = (Id×(−TK))(K) and whose vertices are (xi, Ti) and (xi,−Ti), where xi spans the

vertices of Th and K its triangles. A P1 finite element on D is defined by its values on the nodes

(xi, Ti) and (xi,−Ti). Moreover, for any element ϕ ∈ Vh we have from (4.27)

ϕ(xi,−Ti) = −ϕ(xi, Ti).

Thus ϕ ∈ Vh is uniquely determined by the values ϕ(xi, Ti). It follows that Vh is of the same

dimension than Vh, the space of P1 Lagrange finite elements over D. An element ϕ ∈ Vh is

completely defined by a vector {ϕ} of coordinates

ϕi = ϕ(xi, Ti).

The finite element space Wh. We denote by Wh the space of P1 discontinuous finite elements

on D with values in R2. Any element ψ ∈Wh is uniquely defined by its values at each vertices

of each triangle K ∈ Th, that is by a vector

ψ3k+l = ψ|Kk(xi),

with k the index of the k-th triangle Kk of Th and xi is the l-th vertex of the triangle Kk (where

l ∈ {0, 1, 2}).

The interpolation Ih from Vh onto Wh. We are now in a position to introduce an inter-

polation operator Ih from Vh (the P1 antisymmetric finite elements on D with values in R2)

onto Wh (the P1 Galerkin discontinuous finite elements over D with values in R2). Let ϕ be an

element of Vh. For all triangle K ∈ Th, we define

(Ihϕ)|K = ϕ ◦ g+
K . (4.32)

We recall that g+
K = Id×TK as in (4.25). In other words, the restriction of Ihϕ to K is equal

to the restriction of ϕ on the corresponding triangle endowed with the chosen orientation TK .

From a practical point of view, the interpolation matrix from Vh to Wh is sparse and defined

for all index k of a triangle, for all l ∈ {0, 1, 2} and for all index i of a vertex by

Ih3k+l,i =


+1 if Ti = +TKk(xi) and xi is the l-th vertex of Kk

−1 if Ti = −TKk(xi) and xi is the l-th vertex of Kk

0 if xi is not the l-th vertex of Kk

(4.33)
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Computation of ϕ. The map ϕ from Vh into R2 is the minimizer of

G(ϕ) :=

∫
D
|∇ϕ− erT |2 dx .

We recall that from (4.29) that

G(ϕ) = 2
∑
K∈Th

∫
K

∣∣∇(ϕ ◦ g+
K)− erTK(x)

∣∣2 dx .

Thanks to (4.32), this functional can be rewritten as

G(ϕ) = 2
∑
K∈Th

∫
K
|∇Ih(ϕ)− erTK |2 dx .

Thus, the minimizer is the solution of the variational formulation consisting in finding ϕ ∈ Vh
such that for all for all ψ ∈ Vh,∑

K∈Th

∫
K
∇Ih(ϕ) : ∇Ih(ψ) dx =

∑
K∈Th

∫
K
erTK : ∇Ih(ψ) dx .

Introducing the bilinear form

A(Φ,Ψ) =
∑
K∈Th

∫
K
∇Φ : ∇Ψ dx (4.34)

on Wh and the linear form (also on Wh)

L(Ψ) =
∑
K∈Th

∫
K
erTK : ∇Ψ dx, (4.35)

The map ϕ ∈ Vh is such that for all ψ ∈ Vh,

A(Ih(ϕ), Ih(ψ)) = L(Ih(ψ)). (4.36)

It only requires to assemble the matrices associated with the bilinear and linear forms A and L

on the space of Galerkin discontinuous functions to obtain the system satisfied by ϕ.

Remark 9. If (as we consider here), the rotation field of the periodicity cells is coherently

orientable, the manifold D is made of two disconnected copies of D and ϕ is defined up to a

constant. This constant can be fixed by adding a small penalization of the L2-norm of ϕ in the

definition of the bilinear form A(·, ·),

A(Φ,Ψ) =
∑
K∈Th

∫
K

(
∇Φ : ∇Ψ + η2Φ ·Ψ

)
dx,

with 0 < η � 1.
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(a) Field b on a triangle ... (b) ... and its image in S1.

Figure 4.17: Field b1 = (cos(β), sin(β)) that defines the rotation of the periodicity cells.

Coherent local orientation. It remains to determine a local coherent orientation on each

triangle of the mesh in order to be able to define the interpolation operator Ih form Vh onto

Wh.

Let us consider a practical example. We recall that the output of the homogenization step

is a rotation field b. During this phase of the optimization, we use P1 Lagrange finite elements

to discretized this field. Hence, we can consider each triangle of the mesh separately.

Figure 4.17(a) displays the vector field b1 on the nodes of a triangle, while Figure 4.17(b)

shows the image of this field on S1 (the bold part of the circle). We have now to choose coherent

values of the vector a1 on each node of this triangle (we recall that a2 = b). Two choices are

possible at each node of the triangle as illustrated by Figure 4.18. This leads to eight options

for the orientation of the triangle. If the triangle does not contain any singularity, two of

them define a coherent orientation (see Figure 4.19). The possible orientations of a1 are simply

obtained by the condition that the scalar product between all couples of values taken by the

vector a1 at nodes should be positive. Hence, it suffices to choose an arbitrary orientation for

one vertex and to orient the others accordingly. Doing so, we obtain a rotation field TK on each

triangle K. Note that the chosen orientation is not continuous from on triangle to the other.

Moreover, such a coherent orientation does not exists if the triangle contains a singularity, a

case that is disregarded in this article.

Sequence of shapes. In conclusion, after the regularization algorithm described in section

4.5.3, the sequence of shapes is constructed in three steps

1. Choosing a coherent orientation TK on each triangle and an orientation Ti on each vertex

of the mesh Th of the working domain D (4.30-4.31).

2. Build the interpolation matrix Ih defined by (4.33).

3. Build the matrix Ah and the vector Lh in the space of P1 discontinuous finite elements
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Figure 4.18: Field a1 = (cos(α), sin(α)) is defined up to a sign at the nodes.

Figure 4.19: The two possible orientations of a1 on a triangle.
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associated to the bilinear and linear forms A and L (4.34-4.35).

4. Compute the component {ϕ} = (ϕi) of the coordinates of grid map ϕ in the base of Vh
defined by the chosen orientation Ti.

(Ih)TAhIh{ϕ} = LhIh

5. The sequence of shapes is implicitly defined by (4.12-4.14)

Ωε(ϕ,m) = Ωε(Ih(ϕ),m) = {x ∈ D such that F Ih(ϕ),m
ε ≤ 0}.

Remark 10. Both Ωε(ϕ,m) and Ωε(Ih(ϕ),m) do define the same sequence of shapes due to

the antisymmetry property of the grid map ϕ.

Remark 11. In all our examples the computational domain D is a simply connected domain

in the plane (i.e., without holes). The connectivity property of D does not play any role in

the pre-processing and processing steps (see Sections 4.3 and 4.4) but it has some impact in

the present post-processing step. In particular, Lemma 4.5.1 (about the conformality condition

on the angle α) is stated only for simply connected domains. This is linked somehow to the

singularity issue: for example, a radial vector field has a singularity at the origin in a ball but

no singularity in a corona. Therefore, the conformality condition, as well as the presence and

the removal of singularities, are different for domains with or without holes. The generalization

of our algorithm in such a case is work under progress. Note that it is not difficult to take into

account non-optimizable zones where the material density is fixed, either to 1 or to 0 (more

precisely, to the minimal value imposed by the upper bound 1−10−3 imposed on the microstruc-

ture parameters mi). In such a case, the conformality condition is enforced everywhere in the

domain D, including the non-optimizable zones.

4.5.6 Numerical results

We implemented the above algorithm in Freefem++ [Hecht 2012]. Here, we consider the bridge

test case. The computed map ϕ is displayed in Figure 4.20. However, ϕ is defined up to its

sign on D. Hence for better readability of the figures, we displayed the absolute value of ϕ. On

Figure 4.20(a) (resp. 4.20(b)), the vector a2 (resp. a1) is also displayed. Hence, we can easily

check that the isolines of |ϕi| are orthogonal to the vector ai. The computed map ϕ respects

the regularized optimal orientation of the microstructure. On Figure 4.21 one can check that

the regular square grid, projected by ϕ, is conformal, namely all lines cross at right angles.

The sequence of genuine or classical shapes can now be constructed using the simple formulas

(4.12), (4.14). We displayed in Figure 4.22 several shapes Ωε(ϕ,m) for various values of ε. Those

shapes are very smooth. They feature rectangular holes, oriented according to α. The smaller

ε, the closer from the homogenized optimal design the shape Ωε(ϕ,m) is.

For the sake of comparison, the elasticity problem for each of these classical shapes has

been solved on a fine mesh (316 250 elements), using the same ersatz material for void than

in the optimization process (0.1% of the elastic tensor of the isotropic material). The resulting

compliances for various values of the cell characteristic size ε are displayed on Figure 4.23 (each

dot corresponds to one value of ε). Their relative volume, defined as the ratio between the
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(a) |ϕ1| and a2 (b) |ϕ2| and a1

Figure 4.20: Map ϕ (isolines) and the vectors ai (arrows) for the bridge case

Figure 4.21: Projection of a regular grid through the map ϕ for the bridge case
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(a) ε = 0.4 (b) ε = 0.2

(c) ε = 0.1 (d) ε = 0.05

Figure 4.22: Ωε(ϕ,m) for several ε in the case of the bridge

actual volume of the shape and the target one, is also plotted. The compliance of the genuine

shapes is close to the optimal value of the homogenized design but slightly above. As soon

as ε is small enough, these compliances are lower than that for an optimized shape using no

lattice material (here, the reference is the shape obtained by the SIMP method, see Figure 4.9).

The variations of the compliance are mostly caused by the variations of the volume. Indeed, a

smaller volume induces a larger compliance. As a matter of fact, the projection post-processing

phase does not ensure a preservation of the total volume. However, such volume errors are

smaller for smaller ε. Nevertheless, for too small values of ε, the mesh may not be fine enough

to capture accurately the details of the shapes, which can alter the evaluation of the compliance.

Note that the compliance values for the SIMP design and the homogenized design are computed

on a coarser mesh. But we check that their compliances on the fine mesh are almost the same

(the relative differences are of the order of 1%).

4.5.7 Post-processing of the final structures

The above shapes are not straightforwardly manufacturable. Indeed, they can feature very thin

bars, some of them not even connected to the principal structure, as well as very tiny holes. We

propose here a simple post-treatment in order to get manufacturable shapes. More clever ideas

could certainly be implemented but we leave this to future work.

Let hmin > 0 be the minimal manufacturable length scale or feature size, meaning the

smallest possible width of bars and diameter of holes which can be effectively built. We do not

allow for details or features smaller than hmin in the post-processed shape. Recall that ε is our

choice of a global size of cells. Then, locally after deformation, the cell size is hc(x) = εe−r(x),
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Figure 4.23: Compliance and relative volume of the genuine shapes according to the cell char-

acteristic size ε

which is varying from point to point. Hence, the local widths of bars and holes are respectively

given by (1−mi(x))hc(x) and mi(x)hc(x).

In the following, we distinguish two regimes, depending of the local size of the cell hc(x).

First, if the local cell size is too small, a hole and a bar of minimal width cannot coexist: we

have to choose between a completely full or void cell. Hence, if hc < 2hmin, a thresholding is

applied separately to each field mi: it is assigned the value 0 if mi < 0.5 and 1 otherwise.

Second, when hc ≥ 2hmin, our post-processing criteria about the widths of the bar and the

hole is satisfied if:

∀i ∈ {1, 2} hmin
hc
≤ mi ≤ 1− hmin

hc
. (4.37)

Failing (4.37), we simply threshold the values of m1 and m2, according to the functions displayed

on Figure 4.24 in order to reach void or full material.

The thresholded m is then denoted m̃.

Let Oε(ϕ, m̃) be the shape obtained from Ωε(ϕ, m̃) by filling its closed holes, see Figure

4.25(e). Numerically, the complement of Oε(ϕ, m̃) is computed step by step, by evaluating the

sign of Fϕ,m̃ε . If it is positive, the current vertex belongs to the complement Ocε(ϕ, m̃) and

then its neighbors, which are not already visited, are added to a list of vertices, which should

be tested. Otherwise, the current vertex does not belong to Ocε(ϕ, m̃): no particular action is

required and so we keep going with the next vertex of our list.

Then, the subset Oε(ϕ, m̃) is regularized in order to remove the disconnected bars or the

bars that have one free end point. Numerically, we explore all the vertices of the complement

as follows. For any given vertex, we check all other vertices not further away than a distance

hmin: if this vertex belongs to the complement too, all vertices between them are added to the

complement. In this way, we suppress all disconnected bars and all bars that have one free end
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Figure 4.24: Thresholds for the post-treatment, or m̃i as a function of mi, in order to fulfill a

minimal feature size hmin

point, which are not too wide, of Oε(ϕ, m̃). This new subset is denoted Õε(ϕ, m̃), see Figure

4.25(f).

Finally, the post-processed structure is given by the intersection Ω̃ε(ϕ, m̃) = Ωε(ϕ, m̃) ∩
Õε(ϕ, m̃), see Figure 4.25(g). Several post-processed structures Ω̃ε(ϕ, m̃) for the bridge case are

displayed on Figure 4.26.
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(a) m̃1 (b) m̃2

(c) Ωε(ϕ,m), without threshold (d) Ωε(ϕ, m̃), with threshold

(e) Oε(ϕ, m̃) (f) Õε(ϕ, m̃)

(g) Post-processed structure Ω̃ε(ϕ, m̃)

Figure 4.25: Results of the post-treatment for the bridge case, with a minimal feature size

hmin = 0.05ε (here : ε = 0.1)
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(a) ε = 0.4 (b) ε = 0.2

(c) ε = 0.1 (d) ε = 0.05

Figure 4.26: Post-processed structures Ω̃ε(ϕ, m̃) for several ε in the case of the bridge

4.6 Other numerical examples

We applied the whole method to the several cases: optimization of an arch (Figure 4.27), a

cantilever (Figure 4.27), a MBB beam (Figure 4.28) and a L-beam (Figure 4.29). As in the

case of the bridge, used previously to illustrate our approach, the volume constraint is fixed

to 30% of the working domain and the number of iterations during the optimization – before

regularization – is set to 200. The number of vertices is in all cases, lower than 9000 and the

numbers of triangles to 18000.

For the arch (Figure 4.27) the domain size is 22 × 13 and a unit vertical load is applied at

the middle of the bottom border on an interval of length 2. The Dirichlet boundary condition

is applied on two symmetric intervals of length 1 starting at a distance 1 from the sides. The

resulting compliance for the homogenized design is 1.558.

For the cantilever (Figure 4.27), the domain size is 20×20. The Dirichlet boundary condition

is applied on a central interval of length 10 on the left side. A unit vertical load is applied in the

center of its right side on a segment of length 1. The resulting compliance for the homogenized

design is 2.729.

For the MBB beam (Figure 4.28), the domain size is 30 × 10. We took advantage of the

symmetry, by running the algorithm just on the half of a complete beam. Then the structure

is allowed to slide on its left side. A unit vertical load is applied in the upper left corner on a

segment of length 1. The resulting compliance for the homogenized design is 13.626

For the L-beam (Figure 4.29), the domain size is 10 × 10. The structure is clamped on its

upper side, and is submitted to a unit vertical load in the center of its right side on a segment

of 20% of the total length. The resulting compliance for the homogenized design is 6.581.
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For each case, we have represented: (a) the applied loads and the boundary conditions; (b-c)

the optimal orientation of the periodicity cells before and after regularization; (d) the underlying

lattice on which the optimal composite is built; (e-g) the optimal density and microstructure

parameters; (h-j) the sequence of shapes before post-processing, and after (k-n).

The orientation fields of all those cases do not feature any singularity after regularization,

which is a necessary condition for our method to apply. In the case of the L-beam, the ori-

entation field in Figure 4.29(b) presents two singularities. Both have been ejected during the

regularization step as seen on Figure 4.29(c). Note that the orientation field before and after

regularization are significantly different (it turns with an angle of order π/2 on some areas).

We would like to draw the attention of the reader to the fact that it is not universal: in some

cases, no matter how strong the regularization is chosen, singularities do persist. We perform

a last test case, the so-called electrical mast (see Figure 4.30), to illustrate this fact: two nega-

tive singularities, located inside the domain, cannot neither be removed nor pushed toward the

boundary during the regularization step (see Figure 4.30(b)). The application of our method

failed in this case, as it is not designed to deal with the presence of singularities. This is il-

lustrated by Figure 4.30(c), where the computed grid is clearly not correctly aligned with the

optimal orientation of the cells in the vicinity of the singularities. To overcome this problem,

at least two different strategies can be considered. One consists in modifying the regularization

in a way that force more effectively the singularities to be eliminated. For instance, this can be

done by adding a penalization of the singularities to the cost function. We have implemented

such a method and are indeed able to remove the singularities from the optimal shape as shown

in Figures 4.30(d) and 4.30(e). Another option, already mentioned previously, is to adapt the

projection step so that it is able to take singularities into account. These approaches are not

presented here, but will be the topic of the next Chapter 5.
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D

ΓNΓD ΓD

(a) Load case

(b) Optimized orientation (c) Regularized orientation (d) Projection of a regular grid

through ϕ

(e) Density (f) m1 (g) m2

(h) Ωε(ϕ,m), ε = 0.2 (i) Ωε(ϕ,m), ε = 0.1 (j) Ωε(ϕ,m), ε = 0.05

(k) Ω̃ε(ϕ, m̃), ε = 0.2 (l) Ω̃ε(ϕ, m̃), ε = 0.1 (m) Ω̃ε(ϕ, m̃), ε = 0.05

Figure 4.27: Complete process for an arch case
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D

ΓN

ΓD

(a) Load case

(b) Optimized orientation (c) Regularized orientation (d) Projection of a regular grid

through ϕ

(e) Density (f) m1 (g) m2
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(h) Ωε(ϕ,m), ε = 0.2 (i) Ωε(ϕ,m), ε = 0.1 (j) Ωε(ϕ,m), ε = 0.05

(k) Ω̃ε(ϕ, m̃), ε = 0.2 (l) Ω̃ε(ϕ, m̃), ε = 0.1 (m) Ω̃ε(ϕ, m̃), ε = 0.05

Figure 4.27: Complete process for a cantilever case
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D

(n) Load case

(o) Optimized orientation (p) Regularized orientation (q) Projection of a regular grid

through ϕ

(r) Density (s) m1 (t) m2

(u) Ωε(ϕ,m), ε = 0.2 (v) Ωε(ϕ,m), ε = 0.1 (w) Ωε(ϕ,m), ε = 0.05

(x) Ω̃ε(ϕ, m̃), ε = 0.2 (y) Ω̃ε(ϕ, m̃), ε = 0.1 (z) Ω̃ε(ϕ, m̃), ε = 0.05

Figure 4.28: Complete process for a MBB beam
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D

ΓD

ΓN

(a) Load case

(b) Optimized orientation (c) Regularized orientation (d) Projection of a regular grid

through ϕ

(e) Ωε(ϕ,m), ε = 0.2 (f) Ωε(ϕ,m), ε = 0.1 (g) Ωε(ϕ,m), ε = 0.05

(h) Ω̃ε(ϕ, m̃), ε = 0.2 (i) Ω̃ε(ϕ, m̃), ε = 0.1 (j) Ω̃ε(ϕ, m̃), ε = 0.05

Figure 4.29: Complete process for a L-beam
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D

ΓD

ΓNΓN

(a) Load case (b) Regularized orientation (c) Distorted grid

(d) Improved regularized orientation without

anymore singularities

(e) Grid cleaned of singularities

Figure 4.30: The electrical mast test case: singularities persist in the optimized orientation

field, even after regularization
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4.7 Stress minimization problem

We focus on the stress minimization problem in this section.

4.7.1 Preprocessing: amplification tensor P ∗

We recall that the microscopic heterogeneities may cause stress concentration. The real stress

distribution is different from the macroscopic homogenized stress.

This is due to the fact that the stress for a microstructure of size ε, denoted by σε does not

converge strongly to (A∗e(u∗)) when ε is going to zero.

As seen in Chapter 2, a stress amplification factor may be introduced in order to compute

a L2-norm criteria on the stress. This is not a pointwise maximum.

Hence the objective function in this case is:

J(m,α) =

∫
D
P ∗(m)R(α)Tσ : R(α)Tσdx ,

where σ is the homogenized stress tensor, solution of the elasticity problem and P ∗(m) is the

amplification tensor, corresponding to the microstructure, see Section 2.1.6 of Chapter 2. P ∗(m)

is defined by:

P ∗(m) =

∫
Y0

A(y)W (y)A∗(m)−1A(y)W (y)A∗(m)−1 dy , (4.38)

where W is the corrector tensor, see Section 2.1.6 of Chapter 2. Its coefficients are given by:

Wijkl = I4
ijkl + e(wij)kl ,

where wij is the solution of the cell problem (4.3).

4.7.1.a Numerical implementation

The set of amplification tensor {P ∗m|m ∈ L∞(D, [0, 1]2)} has to be characterized. The proposed

strategy is the same that the one used to characterize the effective homogenized tensor A∗. It

consists in computing the amplification tensor for a discrete sample of parameters values and

using the collected data to construct a surrogate model by a simple interpolation.

We discretized the space of the parameter m describing the microstructure on a regular grid

with 20 elements in each direction. Then the amplification tensor is numerically computed for

each samples of parameters m, by using the finite element solver FreeFem++.

For each sample, the three cell problems (4.3) on Y0(m) are solved. The amplification tensor

P ∗(m) is then computed with (4.38).

Like for the effective homogenized tensor, we take advantage of the P1-functions in FreeFem++

to interpolate the amplification tensor law.

The coefficients of P ∗ are displayed for m2 = 0.5 on Figure 4.31. These coefficients can be

interpreted as the amplification value of the L2 norm of the effective stress, for particular load

cases: compression load in directions e1 (resp. e2) for P1111 (resp. P2222) and shear load for

P1212.

For small values of m1 all the coefficients are closed to one: there is no amplification of the

effective stress. Indeed, when m1 = 0, the density of the cell is equal to one, the cell is full,
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Figure 4.31: P ∗(m1, 0.5)

so the microstructure does not concentrate any stress. The coefficients P2222 and P1212 explode

when m1 is going to one: the microstructure concentrates a lot of local stress. The coefficient

P1111 increases from 1 to around 2 when m1 is going from zero to one. Indeed, the width of the

hole in the direction e1 has little impact on the behaviour of the cell for a compression load in

direction e1.

4.7.2 Processing: optimization among the set of periodic composite materi-
als

The cost function is J(m,α) =
∫
D P

∗(m)R(α)Tσ : R(α)Tσdx, with σ is the effective stress

tensor, solution of the elasticity problem. The optimization problem reads as:

inf

σ ∈ H0

m ∈ L∞(D; [0, 1]2)

α ∈ L∞(D;R)∫
D θ(m) dx ≤ V

J(m,α) ,

where θ(m) = 1 −m1m2 is the density of the periodic microstructure of parameters m and V

the target volume.

In order to solve this problem, we use an algorithm closed to the one for the compliance

minimization. We give here only the elements that have to be adjusted, due to the fact that

this problem is not self-adjoint. For the complete algorithm, one can refer to Section 4.4.
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Minimization with respect to the design parameters m. We use the Céa method

[Céa 1986] to compute the adjoint state and then the derivatives of the objective function. The

corresponding Lagrangian L to the minimization problem is:

L(m,α, v, q, `) =

∫
D
A∗0(m)R(α)T e(v) : R(α)T e(q))dx−

∫
ΓN

g · q ds

+

∫
D
P ∗(m)A∗0(m)R(α)T e(v) : A∗0(m)R(α)T e(v)dx+ `

(∫
D
θ(m)dx− V

)
, (4.39)

where ` is the Lagrange multiplier associated to the volume constraint, and v, q ∈ H1
ΓD

(D)N .

The partial derivative of L with respect to q in the direction ψ ∈ H1
ΓD

(D)N is given by:〈
∂L

∂q
, ψ

〉
=

∫
D
A∗0(m)R(α)T e(v) : R(α)T e(ψ)dx−

∫
ΓN

g · ψ ds .

At the stationary point, this derivative is equal to zero and leads to the variational formulation

of the elasticity problem.

The partial derivative of L with respect to v in the direction ψ ∈ H1
ΓD

(D)N is given by:〈
∂L

∂v
, ψ

〉
=

∫
D
A∗0(m)R(α)T e(q) : R(α)T e(ψ) dx

+ 2

∫
D
P ∗(m)A∗0(m)R(α)T e(v) : A∗0(m)R(α)T e(ψ) dx . (4.40)

At the stationary point, this derivative is equal to zero and leads to the variational formu-

lation of the adjoint problem. Its solution, the adjoint state, is denoted p.

The partial derivative of the cost function with respect to m is equal to the partial derivative

of the Lagrangian L at the state (u, p):

∂J

∂mi
(m,α) =

∫
D

∂A∗0
∂mi

R(α)T e(u) : R(α)T e(p)) dx+

∫
D

∂P ∗0
∂mi

R(α)Tσ : R(α)Tσ) dx

+ 2

∫
D
P ∗(m)

∂A∗0
∂mi

R(α)T e(u) : A∗0(m)R(α)T e(u) dx (4.41)

In the optimization algorithm, the adjoint problem has to be solved before computing the

descent direction for the design parameters m. The descent direction is then given by:

dmi = −
∂J

∂mi
(m,α) + `mj in D .

Minimization with respect to the orientation α. The optimal orientation of the mi-

crostructure in order to minimize the corrected stress, for a given effective stress is not explictly

known. It the corrector tensor P ∗ was known to be orthotropic, this optimal orientation would

be given by the Pedersen formulas. It would be align with the principal directions of the stress

tensor.
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We do not have theoretically such a result. However, numerically, we notice that the coeffi-

cients P ∗1112 and P ∗2212 are almost equal to zero, see Figure 4.31. Moreover, it seems reasonable

to align the principal directions of the cell with the principal directions of the stress, in order

to minimize this last one. Hence, we used a heuristic here: the optimization with respect to the

orientation is done exactly like in the compliance minimization problem.

4.7.2.a Numerical results

We have numerically implemented the optimization algorithm for the cantilever case, the bound-

ary conditions are displayed on Figure 4.28(a). The volume constraint is fixed to 30% of the

working domain. The algorithm converged quickly and smoothly , see Figure 4.32 (solid line).

The results are displayed on Figure 4.33. The obtained composite is anisotropic: the optimized

design parameters m1 and m2, see Figures 4.33(b) and 4.33(c) are not equal, and the orientation

is not uniform, see Figure 4.33(d). The facts that the microstructure does not autopenalized

and that the algorithm converges smoothly justify the heuristic used to optimize with respect

to the orientation. This orthotropic microstructure is a good candidate for this problem, since

it does not autopenalize. To compare, we also ran a test with fixed orientation: α is taken

equal to zero on the whole domain, and is not updated during the optimization process. The

optimized density of the final structure is displayed on Figure 4.34. It is autopenalized: the

final structure is black and white. The history of convergence is also displayed on Figure 4.32

(dashed line). The cost function decreases but its final value is much greater than the optimized

cost function when the orientation is not fixed. Hence the heuristic used to optimize on the

orientation is efficient: thanks to it, the cost function reaches lower values.

4.7.3 Post-processing: projection of the optimized microstructures

4.7.3.a Regularization of the orientation

The optimized orientation, see Figure 4.33(d) does not respect the conformality condition (4.16).

Like previously, we pursue the optimization algorithm while imposing the harmonicity of the

angle α.

We take the same notations as previously, in particular β = 2α and b1 = (cos(β), sin(β)).

In order to regularize the orientation, we are left with the minimization problem of∫
D

(
P ∗(m)S(b1)σ : S(b1)σ + η2|∇β|2

)
dx

under the constraints∫
D
∇β · ∇q dx = 0, for all q ∈ H1

0 (D) and b1 = (cos(β), sin(β)).

At each iteration, the first constraint is approximated by its linearization around the current

state. The linearized minimization problem can finally be rewritten as the variational problem

consisting in finding δbn1 ∈ H1(D;R2) and pn+1 ∈ H1
0 (D) such that for all test functions
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Figure 4.32: Convergence history of the objective function

.
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(a) Optimized Density (b) Optimized m1 (c) Optimized m2

(d) Optimized Orientation

Figure 4.33: Optimized design of the cantilever for the stress minimization problem

Figure 4.34: Optimized density of the cantilever, for a fixed orientation (α = 0
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(a) Regularized Orientation

Figure 4.35: Optimized design of the cantilever for the stress minimization problem

δc ∈ H1(D;R2) and q ∈ H1
0 (D),

2

∫
D
P ∗(m)(S(bn1 ) + S′(δbn1 ))σ : S′(δc)σ dx+ 2η2

∫
D

(bn1 ∧∇(bn1 + δbn1 )) · (bn1 ∧∇δc) dx

+

∫
D

(bn1 ∧∇δc) · ∇pn+1 dx = 0 (4.42)

4.7.3.b Reconstruction of a sequence of shapes

The computation of the diffeomorphism ϕ which distorts a regular grid in order to align the

bars with a given orientation, depends only on the orientation vector field. Hence, the over

presented method is valid no matter the optimization problem. We construct a sequence of

genuine shapes (Ωε(ϕ,m))ε>0 converging to the optimized homogenized structure. We applied

also the post-process to these structures, see Section 4.5.7. Results are displayed on Figure 4.36

for two values of ε, the period of the periodic microstructure.

Those structures are not the same as the ones optimized for the compliance minimization,

see Figure 4.27. In particular, the external layers of the structure feature only parallel bars.

They are not connected to each other by perpendicular bars, like the structures optimized for

the compliance. That can be explained by the fact that the local stress induced in the sharp

corners, at the junction of perpendicular bars, was quite important.
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(a) Ωε(ϕ,m), ε = 0.1 (b) Ωε(ϕ,m), ε = 0.05

(c) Ω̃ε(ϕ, m̃), ε = 0.1 (d) Ω̃ε(ϕ, m̃), ε = 0.05

Figure 4.36: Deshomogenized structures Ωε(ϕ,m) and Post-processed structures Ω̃ε(ϕ, m̃) for

several ε
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5.1 Introduction

In the previous chapter, we presented how to compute a diffeomorphism, which distorts a regular

grid in order to align each bar with a given direction. However, this initial method is not valid

in the general case, especially when the domain D features holes and when the orientation field

features singularities. Indeed, on a non simply connected domain, an irrotational vector field is

not necessarily the gradient of a function.

Section 5.2 is dedicated to the theoretical computation of such a diffeormorphism. First, we

introduce general results of differential geometry. Thanks to these settings, we determine the

necessary conditions to integrate a vector field on a not simply connected domain. The idea

consists in ripping the domain D in order to connect the holes to the exterior of D. This new
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subset D̃ is now simply connected. Thanks to Poincaré lemma, see 5.2.2, an irrotational vector

field on D̃ is the gradient of a function f . Correction functions are then introduced, to ensure

the continuity of the function f along the cut lines. Then, this method is extended to cases

where the orientation vector is known up to a π rotation. Indeed, optimized orientation vector

field is generally not unequivocally defined. As in Chapter 4, the extended method relies on the

introduction of a specific manifold. Results about integrability of antisymmetric vector fields

defined on this manifold are given.

In Section 5.3, we focus on the numerical computation of the diffeomorphism in the general

case. First, singularities of a vector field are defined, then we give a method to spot them

in the domain. Singularities and holes of the domain can be treated the same way, thanks to

correction functions. Second, we explain how to numerically compute those functions. Third the

computation of the diffeomorphism is performed: it is equivalent to a minimization problem. To

conclude, the numerical algorithm is successfully tested for vector fields featuring singularities

and for perforated domains.

Section 5.4 deals with the regularization of vector fields featuring singularities. Thanks to

an energy of Ginzburg-Landau, singularities of a vector field can be kept, while the conformality

condition is satisfied. By considering also an energy of Modica Mortola, singularities can be

removed of the orientation vector field. Those regularization methods are successfully tested on

the optimized orientation of an electric mast.

5.2 Integrability of a vector field

5.2.1 Elements of differential geometry

We give here some classical results of differential geometry, one could read the textbooks

[Weintraub 1997] or [Do Carmo 2012] for more details.

5.2.1.a Generalities

Fundamental correspondence. There is a fundamental correspondence between the differ-

ential forms and the functions, see section I.3 of [Weintraub 1997]. Hence, some results about

the differential forms are directly transposable to the vector fields: they are straightly given for

vector fields in the following. We refer to the previous textbooks for more details.

Closed and exact forms. A vector field v is said to be closed, if and only if ∇∧ v = 0. The

vector field v is also called a curl-free or irrotational vector field.

A vector field v is said to be exact, if and only if there is a function f such that ∇f = v.

The vector field v is also called a conservative vector field.

There is a link between exact and closed vector fields, as stated in the following proposition,

but no equivalence.

Proposition 5.2.1. Every C1 conservative vector field is an irrotational vector field.

Proof. Let v be a C1 conservative vector field. Hence, there is a function f such that: ∇f =

v. Recall the following identity of vector calculus to conclude: any C2 scalar field f satisfies
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∇∧ (∇f) = ∂
∂x1

∂f
∂x2
− ∂

∂x2

∂f
∂x1

= 0.

The Poincaré lemma (see Theorem 2, section 4.3 in [Do Carmo 2012]) gives a partial converse

to this proposition, if the considered domain is simply connected.

Lemma 5.2.2. Poincaré Lemma

Let D be a simply connected open subset of R2, meaning that every closed curve in D can be

continuously deformed to a point through deformations that stay in D, in particular, D features

no hole.

Then every irrotational vector field on D is conservative.

5.2.1.b Non simply connected domain

The following theorem states that the linear integral around (0, 0) of an irrotational vector field

defined on R2 \ {(0, 0)} does not depend of the chosen curve:

Theorem 5.2.3. Let v be an irrotational vector field on D = R2 \ {(0, 0)}. Let S1 be the unit

circle in R2, oriented counterclockwise, centered in (0, 0). Hence, for any simple closed curve

γ0 on D containing (0, 0) and oriented counterclockwise:∫
S1

v · dr =

∫
γ0

v · dr .

Proof. We start to prove the above result for a particular kind of closed curves: the circles Sd

of radius d, centered in (0, 0) and oriented counterclockwise.

The domain D is divided into two simple connected regions: D+ = D ∩ (R × R+) and

D− = D ∩ (R× R−). The vector field v is still irrotational on D+ (resp. on D−).

We assume here that d < 1 without loss of generalities: the proof is exactly the same with

d > 1 except that the orientation of some curves has to be reversed.

Let T+ and T− be two oriented straight line segments, from (1, 0) to (d, 0) and respectively

from (−d, 0) to (−1, 0), see Figure 5.1.

Let Sd,+ = Sd ∩D+ and Sd,− = Sd ∩D−.

The curve γ+ defined by: γ+ = S1,+∪T+∪−Sd,+∪T− is closed in D+, see Figure 5.1(b). Let

Ω be the region bounded by γ+. Thanks to Green’s theorem, we get:
∫
γ+ v ·dr =

∫
Ω∇∧v dx = 0.

The curve γ− defined by: γ− = S1,− ∪ −T+ ∪ −Sd,− ∪ −T− is closed in D−, see Figure

5.1(c). Thanks to Green’s theorem, we get also:
∫
γ− v · dr = 0.

Since γ+ + γ− = S1 − Sd, we have:∫
S1

v · dr −
∫
Sd
v · dr = 0 .

The proof of the general case is almost identical. Let γ0 be a simple closed curve on D

containing (0, 0) and oriented counterclockwise. Let d > 0 such that Sd contains γ0, see Figure

5.2(a). Indeed, since γ0 is closed, it is bounded.

As previously, the closed curves Sd and γ0 are divided into two parts, see Figure 5.2(b), and

two oriented straight line segments are introduced.
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Figure 5.1

We emphasize that γ0 may intersect the horizontal axis in several points. Let T = {t ∈
R|(t, 0) ∈ γ0} the set of the abscissas of the intersection points between γ0 and the horizontal

axis. We recall that T is bounded: T ⊂ [−d, d].

Let t+ = max(T ) and t− = min(T ). The curve γ0 is cut in (t+, 0) and (t−, 0). The straight

segments T+ and T− are respectively defined from these points to Sd.

The closed curves γ+ and γ− are respectively defined as previously by: γ+ = Sd,+ + T+ −
γ+

0 + T− and γ− = Sd,− − T+ − γ−0 − T−

The domains D+ and D− are no longer relevant. Nevertheless the domains bounded by

the closed curves γ+ and γ− are simply connected sets of R2. We can conclude by similar

arguments, thanks to Green’s theorem.

The above theorem can easily be generalized to any perforated domain:

Corollary 5.2.4. Let D ⊂ R2 be a connected domain featuring holes: D is not simply connected.

Let v be an irrotational vector field on D.

Let γi be a simple closed curve, oriented counterclockwise and containing the i-th hole of D

and no other one.

Then,
∫
γi
v ·dr is independent of the curve γi which satisfies the above conditions. The value

of the linear integral of v around the i-th hole will be denoted ci(v) in the following:

ci(v) =

∫
γi

v · dr . (5.1)

The sketch of the proof is quite the same the one of the previous theorem, hence it is not

displayed here.
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Figure 5.2

5.2.2 Integrability of irrotational vector fields on non simply connected do-
mains

5.2.2.a How to correct an irrotational vector field on a non simply connected

domain

Let D ⊂ R2 be a connected domain featuring a finite number nH of holes. Its holes will be

denoted (Hi)1≤i≤nH , will be assumed to be smooth and not reduced to one point.

Let v be an irrotational vector field defined on D. Because D is not simply connected, the

Poincaré Lemma 5.2.2 can not be used here. In order to use it, we have to construct from D

a new domain D̃, simply connected. The idea is to cut the domain D in order to connect the

holes Hi to the exterior of the domain.

For each hole Hi, let Γi be an arbitrary C1 curve joining the external border of D and the

border of the i-th hole Hi of D. Since D is assumed to feature a finite number of holes, we can

construct a family of pairwise disjoint curves (Γi)1≤i≤nH , see Figure 5.3.

The domain D̃ = D \ {Γi}1≤i≤nH is simply connected. Hence, we get en integrability result

for irrotational vector fields on the domain D̃:

Proposition 5.2.5. Let v be an irrotational vector field on D. There exists a function f ∈
C1(D̃,R) such that:

v = ∇f on D̃ .

The jump of f through Γi is constant and equal to ci(v), for all i ∈ {1, .., nH}.

Before giving the proof of this proposition, we recall the following classic proposition:
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D

H1 Hi

Γi

 D
~Γ1

Figure 5.3: Cutting D (left) along curves Γi connecting the holes to the exterior of D led to a

simply connected domain D̃ (right)

Proposition 5.2.6. Let a, b ∈ D̃ (possibly a = b), let γ be a curve in D̃ joining a to b. Let f

be a C1(D̃,R) be a function on D̃. Then we have:∫
γ
∇f · dr = f(b)− f(a) .

Proof. Proof of Proposition 5.2.5

On D̃, the vector field v (still denoted v for the sake of simplicity) is always irrotational. Thanks

to Poincaré Lemma 5.2.2, there exists a function f ∈ C1(D̃,R) such that:

v = ∇f .

We focus now on the behaviour of the function f around the curves Γi.

Let a ∈ Γi. As f is defined on D̃, f is not defined on a. Let (a+
n )n≥0 (resp (a−n )n≥0 be a

sequence of points in D̃, which are all on the same side of Γi. We assume that those sequences

converge to a, meaning ||a±n − a|| −→n→+∞
0. Let (γn)n≥0 be a sequence of curves in D̃ joining a−n

to a+
n , see Figure 5.4. Thanks to the proposition 5.2.6, we get:∫

γn

v · dr = f(a+
n )− f(a−n ) . (5.2)

Since f is continuous, the sequences (f(a±n )n≥0 are converging, we denote their respective

limits f(a+) and f(a−). By passing to the limit in (5.2) we get:

ci(v) = f(a+)− f(a−) .

This result does not depend on the choice of the point a of Γi. Hence the jump of f through

the curve Γi is constant and equal to ci(v).

Thanks to Proposition 5.2.5, an irrotational vector field is integrable on D̃. However we

would like an integrability result on the whole domain D. Because of its jump through the

curves Γi, the function f can not be continuously extended to the whole domain D. Hence, we

propose to introduce the so-called correction functions. The purpose of these functions is to

take into account the jump of the function f through the curves Γi.

We first define the set of continuous R/Z-valued functions:
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Γi

 D
~an

+

an
- γn

Figure 5.4: Curves γn crossing the cut lines Γj

Definition 5.2.1. We introduce the set C1(D,R/Z) of R/Z-valued functions, which are con-

tinuous in R/Z and twice derivable, their first derivatives are in the classical set C1(D,R2) and

their second derivatives in C(D,M(R)2). We recall that R/Z is the quotient space R by Z, also

known as the unit torus.

Since R/Z is a differentiable manifold locally similar to R, the local notion of gradient is

well defined for these functions. However, in order to prevent confusion between the gradients

of R-valued functions and of R/Z-valued functions, the gradient of the last ones will be denoted

∇̃ in the following.

We can now define the correction functions:

Definition 5.2.2. Let (γj)1≤j≤nH be a family of simple closed curves, clockwise oriented and

containing respectively only the hole Hj .

A function ψi ∈ C1(D,R/Z) is said to be a correction function for the hole Hi if and only

if:

∀γj ⊂ D
∫
γj

∇̃ψi · dr = δij ,

where δij is the Kronecker delta.

We emphasize that the choice of the curves of the family (γj)1≤j≤nH has no impact on the

definition of the correction functions, thanks to Corollary 5.2.4.

We will give further proofs of existence of correction functions, by construction. We assume

for the moment their existence.

Theorem 5.2.7. Let D ⊂ R2 be a connected domain featuring nH holes. Let 0 < η < ηm be a

small scalar. Let (ψi)1≤i≤nH be a family of correction functions.

Let v be an irrotational vector field on D. Let ci(v), defined by (5.1), be the value of the

linear integral of v around the i-th hole.
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Then there exists ϕ ∈ C1(D,R), such that :

v = ∇ϕ+

nH∑
i=1

ci(v)∇̃ψi .

Proof. Let D̃ be the simply connected domain defined as previously.

Let w be a vector field defined on D as the vector field, corrected with the correction

functions. It is given by:

w = v −
nH∑
i=1

ci(v)∇̃ψi .

The corrected vector field is obviously irrotational on D, since v is irrotational.

Hence, thanks to Poincaré Lemma 5.2.2, there exists a function ϕ ∈ C1(D̃,R) such that:

w = ∇ϕ on D̃ .

Thanks to Proposition 5.2.5, the jump of ϕ through the curve Γi is equal to:

ci(w) =

∫
γi

v · dr −
nH∑
i=1

ci(v)

∫
γi

∇̃ψi · dr = ci(v)−
nH∑
i=1

ci(v)δij = 0 .

Hence the function ϕ defined on D̃, can continuously be extended to the whole domain D.

To conclude, we have:

v = ∇ϕ+

nH∑
i=1

ci(v)∇̃ψi .

5.2.2.b Existence of correction functions

We recall the settings. Let D ⊂ R2 be a connected domain featuring a finite number nH of

holes. Its holes are denoted (Hi)1≤i≤nH , are assumed to be smooth and not reduced to one

point.

We assume that the border of each hole Hi can be joined to the exterior of the domain

D by a straight line Γi, of normal ni, see Figure 5.5. We assume also that the straight lines

(Γi)1≤i≤nH are pairwise disjoint.

Let ηm > 0 be the scalar defined by:

ηm =
1

2
min

1≤i<j≤nH
d(Γi,Γj) ,

where d is the usual euclidian distance.

Let 0 < η < ηm, and let l ∈ C1(R,R/Z) be the function defined by:

l(t) =


0 if |t| > η

1

4
(cos(

π

η
t) + 1) if 0 ≤ t ≤ η

−
1

4
(cos(

π

η
t) + 1) if −η ≤ t < 0

(5.3)
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n1

ni

Γi

 D
~Γ1

Figure 5.5: Cutting D with straight lines Γi

We emphasize that the function l is R/Z-valued and so is continuous in zero.

For each hole Hi, the domain D is cut along a line of normal n⊥i crossing the hole Hi, see

Figure 5.6. It subdivides the domain D in two parts: the open subset Ωi containing Γi and

D \ Ωi.

Proposition 5.2.8. Let Mi ∈ Γi. Let ψi ∈ C1(D,R/Z) be the function defined by:

ψi(x) =

{
l((x−Mi) · ni) if x ∈ Ωi

0 if x /∈ Ωi

ψi is a correction function for the hole Hi.

Proof. We recall that the function ψi is R/Z valued. Its gradient ∇̃ψi is irrotational on D.

From Corollary 5.2.4, the value of linear integral of ∇̃ψi around the hole Hj does not depend

on the choice of the simple closed curve, oriented counterclockwise and containing the hole Hj .

Around the holes Hj, j 6= i

We recall that η < ηm. Hence, for each hole Hj with j 6= i, there exists a simple closed curve γj ,

oriented counterclockwise and containing only the hole Hj such that d(Γi, γj) > η, see Figure

5.7. This leads to ∇̃ψ(x) is equal to zero for all x ∈ γj and so:∫
γj

∇̃ψi · dr = 0 .

Around the hole Hi

Let x ∈ Γi, such that γ = {x + t η ni | t ∈ [−1; 1]} is included in D. Let γ2 be a curve joining
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n1

ni

Γi

 D
~Γ1 Ωi

Figure 5.6: Definition of Ωi

Γi
 D
~

Γj γj
Figure 5.7: Integration of ∇ψi around holes Hj , j 6= i
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Γi
 D
~

Γj

x

η

γ2

γ

Figure 5.8: Integration of ∇ψi around the hole Hi

the points x+ ηni and x− ηni, without crossing Γi, see Figure 5.8. Let γi = γ + γ2. Then∫
γi
∇̃ψi · dr =

∫
γ ∇̃ψi · dr +

∫
γ2
∇̃ψi · dr

=
∫
γ ∇̃ψi · dr

= ±(ψ(x− ηni)− ψ(xi)) + (ψ(xi)− ψ(x+ ηni))

= ±(0 + 0.5) + (0.5− 0) = ±1

(5.4)

Strictly speaking, the sign of
∫
γi
∇̃ψi · dr depends on the orientation of the normal ni. It

can be replaced by −ni without loss of generality in order to get +1 and not −1.

We make here the assumption that the curves Γi could be straight lines. It is not always

the case, see Figure 5.9.

The previous process to construct a correction function ψi, when Γi is a straight line can be

transposed to the case where Γi is only a C1 curve:

Proposition 5.2.9. The function ψi defined by:

∀x ∈ Γi,∀t ∈ R ψi(x+ t ni(x)) =

{
l(t) if x+ t ni(x) ∈ Ωi

0 else
,

where ni(x) is the normal of Γi in point x, is a correction function for the hole Hi.

However, two points have to be carefully satisfied. First, the curve has to be continuously

extended outside of the domain D, on its both extremities. On Figure 5.9, the point z does not

belong to D, but because the curve Γi is extended, the ray from this point exists. This ray is

essential to define the correction function, because it is the only one to reach points where the
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 D
~Γj

yx
rayy

rayx

rayz

z
η

Figure 5.9: Definition of correction functions, when Γi is not a straight line

correction function is not equal to zero.

Second, the function ψ is defined along the rays coming from Γi. Hence the width η of the tube

around Γi has to be chosen small enough in order that the rays do not intersect each other on

a distance of η. This depends on the local curvature of the curve Γi. On Figure 5.9, the rays

from the points x and y do intersect each other, but on a distance greater than η. If it is not

the case, the correction function is not well defined at the intersection point, because it comes

from multiple rays.

5.2.3 Exact functions on a differentiable manifold

Let D ⊂ R2 be an open subset featuring nH holes (Hi)1≤i≤nH .

Let v1 and v2 be two orthogonal vector fields on D defined up to their sign. Like in Section

5.3 of Chapter 4, we introduce a submanifold D of the space D × SO(2) in order to compute

the grid map ϕ required to distort a regular grid according to the vector fields v1 and v2. We

recall that SO(2) is the set of rotations in R2.

We change our working space from D to D. Hence, the vector fields to integrate are no

longer defined on a subset of R2, but on a differentiable submanifold D of D×SO(2). However,

all the previous results are still valid for such a space, and the proofs are identical. In particular,

the Poincaré lemma 5.2.2.

We recall the settings and the notations of Chapter 4. Let D ⊂ R2, and α ∈ H1(D,R/πZ)

an orientation field defined on D. We emphasize that this orientation field is defined up to π.

Let a1 = (cos(α), sin(α)) and a2 = (− sin(α), cos(α)) be two vector fields defined on D. Those

vectors are defined up to their sign. They may feature discontinuities in their direction: they

will be said to be non coherently oriented. We will denote a = (a1, a2) in the following.

We introduce β = 2α: it is defined modulo 2π. Hence the vector fields b1 = (cos(β), sin(β)) and

b2 = (− sin(β), cos(β)) are coherently defined. We will denote b = (b1, b2) in the following.
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We introduce the following submanifold of D × SO(2):

D = {(x, T ) ∈ D × SO(2) such that T 2 = b(x)} .

The domain D featuring holes, the manifold D is also perforated. For each hole Hi of D,

two scenarios may occur: either the field a can be coherently oriented around the hole, possibly,

by changing its sign, see Figure 5.10(a), or it can not, see Figure 5.10(c). In the first case, the

manifold D around the hole Hi is locally the union of two copies of a neighbourhood of Hi,

consisting of the two possible orientations of a, see Figure 5.10(b). The manifold features two

distinct holes, that will be denoted H+
i and H−i .

In the second case, the manifold D around the hole Hi is locally connected, contrary to

the previous case. A representation of D is displayed on Figure 5.10(d). Each copy of the

neighbourhood of the hole Hi is cut along the same path. Then, they are glued together along

this very path. On Figure 5.10(d), the solid (respectively the dashed) lines are glued together.

5.2.3.a Integrability conditions of an irrotational vector field on the manifold D.

The method to integrate an irrotational vector field v on the manifold D follows the same steps

that in R2. First the manifold D is cut in order to have simply connected domains, on which

the vector field v is integrable, thanks to Poincaré lemma. Second, the jumps of the primitives

of v, through the cut lines, are explicitly given by linear integrals of v along particular closed

curves. Third, a family of corrections functions are introduced. To conclude a corrected vector

field w defined as a linear combination of v and of the gradients of the correction functions is

introduced. The primitives of this irrotational vector field w over the simply connected domains

are shown to be continuously glued together.

Cutting the manifold D. The domain D is perforated by nH holes. Like in the previous

section, we define a family of pairwise disjoint, smooth curves (Γi)1≤i≤nH , joining the holes Hi

to the external border of the domain D. The domain D can be cut along these curves, yielding

the domain D̃ = D \ {Γi}1≤i≤nH .

For each i ∈ {1, .., nH}, the subset {(x, T ) ∈ D such that x ∈ Γi} of D consists in two

disjoint curves. They will be arbitrarily denoted Γ+
i and Γ−i . The manifold D is cut along these

2nH curves, yielding two disjoint copies of D̃, see Figure 5.11. They are arbitrarily denoted D̃+

and D̃−.

A family of simple closed curves on D. We introduce here a family of simple closed curves

on D. The hole H1 is assumed to be a hole around which the field a can not be coherently

oriented, possibly by renumbering the holes. We emphasize that the case where the field a can

be coherently oriented around every hole, can be treated like in the previous Section in R2. The

introduction of the manifold D is not be required in such a case.

Let the curve Γ+
1 be the reference curve. Let γ−1 be a simple closed curve going through the

curves Γ+
1 and Γ−1 , see Figure 5.12(a).

For the holes Hi, i 6= 1, around which a can not be coherently oriented, let γ±i be a simple

closed curve going through the curves Γ+
1 and Γ±i , see Figures 5.12(b) and 5.12(c). We emphasize

that going through those curves, make switch the current copy of D̃ on which we are. Hence, by
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D

(a) Domain D (b) Manifold D

D

(c) Domain D (d) Manifold D

Figure 5.10: A perforated domain D (left) leads to two manifolds D (right), depending on

whether the vector field is coherently orientable around the hole (top), or not (bottom). On

(d), the solid (respectively dashed) lines are glued together.
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D

 D+

H1 Hi

Γ1
+

Γ1
-

Γ1
-

Γ1
+

Γi
+

Γi
-

Γi
-

Γi
+~

 D-~

Figure 5.11: From a perforated domain D (top), a manifold D is introduced. This manifold D is

cut along the curves Γ±i , this leads to two disconnected copies of the simply connected domain

D̃. To find back the manifold, those copies have to be glued together along the cut lines Γ±i
(the segments of the same color are connected in the manifold D).

crossing two of them, we switch twice and so go back to the copy on which we start the closed

curve.

For the holes Hi, around which a can be coherently oriented, when the curves Γ±i are crossed,

the current copy of D̃ stays unchanged. Hence, let γ±i be a simple closed curve going through

the curves Γ±i , see Figures 5.12(d) and 5.12(e).

Integration of an irrotational vector field on the subset D̃+ and D̃−.

Proposition 5.2.10. Assuming all the previous settings.

Let v be an irrotational vector field defined on the manifold D.

There exists two functions f+ and f−, respectively defined on D̃+ and on D̃−, such that:

∇f+ = v on D̃+

∇f− = v on D̃−

and such that:

- the difference between f+ and f− through Γ+
1 is equal to zero,

- for holes Hi around which the field a can not be coherently oriented, the difference between

f+ and f− through Γ±i , different of Γ+
1 , is equal to c±i (v) =

∫
γ±i
v · dr,

- for holes Hi around which the field a can be coherently oriented, the jump of f+ (resp f−)

through Γ+
i (resp. Γ−i ) is equal to c+

i (v) =
∫
γ+
i
v · dr, (resp. c−i (v) =

∫
γ−i
v · dr).
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 D+~
 D-~Γ1

-

γ1
-γ1

-

(a) γ−1

 D+

Γi
+

Γi
+~

 D-~
γi
+

γi
+

(b) γ+
i , when the field a is non coherently orientable around Hi

 D+ Γi
-

Γi
-

~
 D-~

γi
- γi

-

(c) γ−i , when the field a is non coherently orientable around Hi

 D+

Γi
+

~

 D-~
γi
+

(d) γ+
i , when the field a is coherently orientable around Hi

 D+

Γi
-

~

 D-~

γi
-

(e) γ+
i , when the field a is coherently orientable around Hi

Figure 5.12: Definition of the curves γ±i , crossing the corresponding curve Γ±i
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 D-~γ

γM1
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Figure 5.13: Difference between f+ and f− through Γ+
i

 D+~

 D-~
γi
+

γi
+

M1
+ M1

-

Mi
+

Mi
-

Figure 5.14: Difference between f+ and f− through Γ+
i

Proof. The vector field v is irrotational on the simply connected domain D̃+ (resp. on D̃−).

Thanks to Poincaré lemma 5.2.2, there exists a function f+ (resp. f−) such that ∇f+ = v on

D̃+ (resp ∇f− = v on D̃−).

Let M ∈ Γ+
1 , and f+(M) (resp. f−(M) the limit of f+ (resp. of f−) on M . We can assume

that f+(M) = f−(M). If not, we can add the constant f+(M) − f−(M) to the function f−,

without altering its gradient.

For holes Hi around which a can not be coherently oriented:

The difference between f+ and f− through Γ+
i (resp. Γ−i ) is uniform, as we can see below.

It will be denote ∆f+
i (resp. ∆f−i ). Let M1,M2 ∈ Γ+

i , (resp. Γ−i ) let γ in D be a closed

curve joining M1 and M2 by crossing twice Γ+
i , (resp. Γ−i ) see Figure 5.13. Then, since v is

irrotational on D, we have thanks to the Green’s theorem:∫
γ
v · dr = 0 = (f−(M1)− f+(M1)) + (f+(M2)− f−(M2)) .

The linear integral of v along the closed curve γ+
i (resp. γ−i )can be explictly given using the

values of the primitives f+ and f−, see Figure 5.14:

c+
i (v) =

∫
γ+
i

= (f+(Mi)− f+(M1)) + f−(M1)− f−(Mi) = ∆f+
i −∆f+

1 = ∆f+
i .

Likewise, c−i (v) = ∆f−i
For holes Hi around which a can be coherently oriented:

The jump of f+ (reps. f−) through Γ+
i (resp. Γ−i ) is uniform, and will be denoted ∆f+

i (resp.

∆f−i ). Let M1,M2 ∈ Γ+
i (resp. Γ−i ), let γ in D be a closed curve joining M1 and M2 by crossing
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 D+~
 D-~γ

M1 M2

Figure 5.15: Jump of f+ through Γ+
i

twice Γ+
i , (resp Γ+

i ) see Figure 5.15. Then, since v is irrotational on D, we have thanks to the

Green’s theorem:∫
γ
v · dr = 0 = (f+(M+

1 )− f+(M1)−)− (f+(M+
2 )− f−(M−2 )) ,

where f+(M+
i ) is the limit of f+ in Mi on one side of the cut line Γ+

i , and f+(M−i ) the limit

on the other side.

The linear integral of v along the closed curve γ+
i (resp. γ−i ) is equal to the jump ∆f+

i

(resp. ∆f−i ).

Correction of an irrotational vector field. We introduce the so-called correction functions.

Definition 5.2.3. Let i ∈ {2, .., nH}. A function ψ+
i ∈ C1(D,R/Z) is said to be a correction

function if and only if: ∫
γ+
i

∇̃ψ+
i · dr = 1 ,

∀j ∈ {2, .., nH}, j 6= i,

∫
γ+
j

∇̃ψ+
i · dr = 0 ,

∀j ∈ {1, .., nH},
∫
γ−j

∇̃ψ+
i · dr = 0 .

Let i ∈ {1, .., nH}. A function ψ−i ∈ C1(D,R/Z) is said to be a correction function if and

only if: ∫
γ−i

∇̃ψ−i · dr = 1 ,

∀j ∈ {1, .., nH}, j 6= i,

∫
γ−j

∇̃ψ6
i · dr = 0 ,

∀j ∈ {2, .., nH},
∫
γ+
j

∇̃ψ−i · dr = 0 .

We assume their existence for the moment.
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Theorem 5.2.11. Assuming the previous settings.

Let v be an irrotational vector field on D. Let c±i (v) be the coefficients defined by c±i (v) =∫
γ±i
v · dr.
Let (ψ+

i )2≤i≤nH and (ψ−i )1≤i≤nH be families of correction functions, defined by Definition

5.2.3.

There exists ϕ ∈ C1(D,R) such that

v = ∇ϕ+

nH∑
i=2

c+
i (v)∇̃ψ+

i +

nH∑
i=1

c−i (v)∇̃ψ−i .

Proof. Let the corrected vector field w be defined by:

w = v −
nH∑
i=2

c+
i (v)∇̃ψ+

i −
nH∑
i=1

c−i (v)∇̃ψ−i .

This vector field is irrotational on D. Moreover the value c±i (w) of its linear integral along the

curves γ±i is equal to zero:

c±i (w) =
∫
γ±i
w · dr

=
∫
γ±i
v · dr −

∑nH
i=2 c

+
i (v)

∫
γ±i
∇̃ψ+

i · dr −
∑nH

i=1 c
−
i (v)

∫
γ±i
∇̃ψ−i · dr

= c±i (v)− c±i (v) = 0

.

Thanks to Proposition 5.2.10, there exists two functions f+ and f−, respectively defined on

D̃+ and on D̃−, such that ∇f+ = v on D̃+ and ∇f− = v on D̃−.

The manifold D is obtained from D̃+ and D̃−, by gluing them together along the cut lines

Γ±i .

Thanks to Proposition 5.2.10, the differences between the functions f+ and f−, and also

their respective jumps (when the field a can be coherently oriented around the considered hole

Hi), through the cut lines Γ±i are respectively equal to c±i (w) = 0 The functions f+ and f− can

then be continuously extended to the whole manifold D, defining a new function ϕ on D. The

continuity of its gradient on the whole manifold D is ensured by the fact that ∇ϕ = v on the

subdomains D̃+ and D̃−.

Correction functions on a manifold.

Proposition 5.2.12. Let η > 0, and i ∈ {1, .., nH}.
Let ψi ∈ D be the correction function defined at Proposition 5.2.9.

Let Ω+
i , (resp. Ω−i ) be the open subset of D defined as the tubular space around Γ+

i (resp.

Γ−i ). The functions defined by:

ψ+
i (x, T ) =

{
ψi(x) if (x, T ) ∈ Ω+

i

0 else
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and

ψ−i (x, T ) =

{
ψi(x) if (x, T ) ∈ Ω−i

0 else

are correction functions.

Proof. The proof consists in computing the linear integral of the gradient of the over-defined

functions along the curves γ±i . It is similar to the proof of Proposition 5.2.5, and so it is not

reproduced here.

5.2.3.b Integration of an antisymmetric irrotational vector field.

Theorem 5.2.13. Let v be an antisymmetric irrotational vector field on D, meaning:

∀(x, T ) ∈ D v(x, T ) = −v(x,−T ) .

Let ci(v) be the coefficient defined by ci(v) =
∫
γ+
i
v · dr, for 2 ≤ i ≤ nH .

There exist (ψi)2≤i≤nH ∈ C1(D,R/Z), antisymmetric functions, and ϕ ∈ C1(D,R), an

antisymmetric function too, such that :

v = ∇ϕ+

nH∑
i=2

ci(v)∇̃ψi on D .

Proof. Thanks to Theorem 5.2.11, there exists ϕ ∈ C1(D,R) such that:

v = ∇ϕ+

nH∑
i=2

c+
i (v)∇̃ψ+

i +

nH∑
i=1

c−i (v)∇̃ψ−i ,

where c±i (v) =
∫
γ±i
v · dr.

Values of c±i (v). The curve γ−1 can be split in two curves γ+ and γ− on respectively D+ and

D−. Then we get:

c−1 (v) =
∫
γ−1
v · dr

=
∫
γ+ v · dr +

∫
γ− v · dr

=
∫
γ+ v · dr −

∫
γ+ v · dr = 0

For holes Hi around which the field a can not be coherently oriented:

Let γ be the closed curve defined by γ = γ+
i + γ−i , see Figure 5.16(a). This curve can be split

in two curves γ+ and γ− on respectively D+ and D−.

Let γ0 be a symmetric closed curve on D, going twice through Γi, see Figure 5.16(b). It has

two components: γ+
0 and γ−0 on respectively D+ and D−. Since v is antisymmetric, we get:∫

γ+
0

v · dr = −
∫
γ−0

v · dr .
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(a) Curve γ+
i ∪ γ
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(b) Closed curve γ0
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γ0
+ γ0

-γ+
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(c) Curves γ+ ∪ γ+
0 and γ− ∪ γ−0

Figure 5.16: Computing ci(v) for holes around which the field a can not be coherently oriented
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The curves γ+ ∪ γ+
0 and γ− ∪ γ−0 are closed curves on respectively D̃+ and D̃−, containing no

hole, see Figure 5.16(c). Thanks to Green’s theorem, and since v is irrotational, we get:∫
γ+

v · dr +

∫
γ+

0

v · dr = 0

and ∫
γ−
v · dr +

∫
γ−0

v · dr = 0 .

To conclude: ∫
γ+

0

v · dr +

∫
γ−0

v · dr =

∫
γ+
i

v · dr +

∫
γ−i

v · dr = c+
i (v) + c−i (v) = 0 ,

what can be rewritten : c+
i (v) = −c−i (v).

For holes Hi around which the field a can be coherently oriented:

We can prove likewise: c+
i (v) = −c−i (v).

Finally, v can be rewritten:

v = ∇ϕ+

nH∑
i=2

c+
i (v)(∇̃ψ+

i − ∇̃ψ
−
i ) ,

Antisymmetry of the correction functions Let ψ±i be the correction functions defined by.

For i ≥ 2, one can notice that for all (x, T ) ∈ D:

ψ+
i (x, T ) = ψ−i (x,−T ) .

Hence we introduce the function ψi defined by: ψi = ψ+
i (x, T )−ψ−i (x, T ). It is an antisymmetric

function.

v can be rewritten:

v = ∇ϕ+

nH∑
i=2

c+
i (v)∇̃ψi ,

Antisymmetry of the function ϕ. The gradient of ϕ is given as the sum of antisymmetric

vector fields, namely v and (∇̃ψi)2≤i≤nH . Hence, it is antisymmetric too.

Let g be the function defined by g(x, T ) = ϕ(x, T ) + ϕ(x,−T ). Its gradient is given by

∇ϕ(x, T ) +∇ϕ(x,−T )0. Hence g is constant on D, let c be this constant. Then we have:

ϕ(x, T )− c

2
= −ϕ(x, T ) +

c

2
. (5.5)

Let ψ the function defined by: ψ = ϕ(x, T )− c
2 . This function is antisymmetric thanks to (5.5),

and it satisfies : ∇ψ = ∇ϕ.

Finally, we have:

v = ∇ψ +

nH∑
i=2

c+
i (v)∇̃ψi ,

where the functions ψ and ψi (2 ≤ i ≤ nH) are antisymmetric on D.
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5.3 Numerical implementation

We focus here on the numerical implementation of the integration method of an irrotational

vector field.

5.3.1 Numerical settings of the problem

Let D ⊂ R2 be a connected open set, let (Hi)1≤i≤nH be the holes of D.

Let Th be a regular mesh of D. Let Vh be the space of P1 finite elements on D, and Wh the

space of P1 discontinuous Galerkin elements on D.

Let α ∈ Vh be an orientation field over D, so discretized using P1 finite elements. It is

assumed to satisfy the conformality condition, see Lemma 4.5.1 in Chapter 4.

Let r ∈ Vh be a dilatation field, such that ∇r = (−
∂α

∂x2
,
∂α

∂x1
)T , see Section 5.2 in Chapter 4

for more details.

We introduce the cover space of D:

D = {(x, T ) ∈ D × SO(2) such that T 2 = b(x)} ,

where

b(x) =

(
cos(2α) − sin(2α)

sin(2α) cos(2α)

)
.

Let Vh be the set of Lagrange finite elements of degree one on D that satisfy an antisymmetry

condition, namely for a function f ∈ Vh: f(x, T ) = −f(x,−T ).

Let Ih be the interpolation operator from Vh onto Wh. For the practical computation of

this operator, one could refer to Section 5.5 of Chapter 4. Briefly, the triangles of the mesh are

seen as charts of the manifold. Hence, the vector fields have to be coherently oriented in each

triangle separately. However, we do not impose any adjacent triangles to be adjacent charts of

D: this is in fact not possible in presence of singularities in the vector field. The purpose of the

interpolation operator is to ensure a coherent orientation of the vector fields on each triangle.

5.3.2 Singularities of a vector field

Numerically the angle α is defined by the orientation of the unit vector a1. This vector field

is discretized using P1 finite elements: its value is known at each vertex of the mesh and

interpolated on the rest of the domain. Hence, even if its norm is equal to one on the vertices, it

is not necessarily the case on the rest of the domain, due to the interpolation. Where the vector

a1 is the null vector, the orientation α can not be defined. Those zeros of the vector field are

called singularities. In particular, the rotational of the vector field on a singularity is not equal

to zero. Hence, it is not locally integrable. In order to solve this problem, a small neighbourhood

of each singularity is removed from the domain. On this new perforated subset, the vector field

is irrotational: we apply the integration method presented in the previous section.
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5.3.3 Spotting the singularities of a vector field

We explain here how to spot the singularities of the numerical vector fields v1 = era1 and

v2 = era2, discretized by P1 finite elements. We recall that a singularity of a vector field is

defined as a zero of the vector field. Hence to spot the singularities of a vector field, we can

simply spot its zeros.

Since a1 and a2 are unit vector fields, the vector fields v1 and v2 do not feature a zero on a

vertex of the mesh. However, they may feature a zero inside a triangle of the mesh, or on the

edge of the mesh. We assume in the following that the considered vector fields do not feature

zeros on the edges of the mesh.

Since the vector fields v1 and v2 are the same up to a rotation of angle π
2 , p ∈ D is a zero of

v2 if and only if it is a zero of v1. Hence it is enough to spot the zeros of only one of the vector

fields, v1 for example. However, we recall that the vector field v1 is defined up to its sign, since

the angle α is only defined modulo π. To bypass this difficulty, we introduce the well defined

vector field w = e2rb1. This vector field w is unequivocal defined. Its root square is given by

v1. Hence p ∈ D is a zero of v1 if and only if it is a zero of w.

The following proposition gives criteria to spot the zeros of w:

Proposition 5.3.1. Let K be a triangle of the mesh Th. Let w ∈ Vh be a vector field, discretized

by P1 finite elements. We assume that w has no zero on the edges of the triangle.

Let w1, w2 and w3 be the value of w at the three vertices of the triangle K.

If the vector field w features a singularity in the interior of K, then there exists no half plane

such that the three vectors w1, w2 and w3 belong simultaneously to it. This is equivalent to the

fact that at least two scalar products wi · wj are negative.

Proof. Let K be a triangle of Th, featuring an isolated zero of v in x0 ∈ K. The linear

interpolation of the vector field v can be written:

∀x ∈ K v(x) = A(x− x0) ,

where A ∈M2×2 is a constant square matrix of size two.

If the matrix A is not invertible, v would be equal to zero on a whole segment in K, which

necessarily meets edges of the triangle in two distinct points. This is in contradiction with the

assumption that there is no zero of the vector fields on the edges of the mesh.

Consequently, the matrix A is invertible. It has two eigenvalues, possibly equal to each other

λ1 and λ2. There exists a rotation matrix R ∈ SO(2) such that:

A = R

(
|λ1| 0

0 |λ2|

) (
±1 0

0 ±1

)
,

where the ±1 are in fact defined by the sign of the eigenvalues of A. Since a rotation and

an homothetic transformation do not change the zeros of vector field, the study of A can be

reduced to the study of the matrices of kind:(
±1 0

0 ±1

)
.
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x0

(a) (b)

x0

(c) (d)

Figure 5.17

We develop here only two cases over the four possible. Indeed the sketch of the proofs is

exactly the same. When the matrix A is equivalent to the matrix:(
1 0

0 1

)
,

the interpolation of v over the triangle K can be written: v(x) = (x−x0). The vectors v at the

vertices of the triangle K is represented on Figure 5.17(a). They are displayed all together on

Figure 5.17(b). One can see that those three vectors can not be drawn in the same half plane.

Indeed, if it was possible, it would imply that x0 is on an edge of the triangle K or outside K.

We will say that the winding number of the vector field w on the triangle K is not equal to

zero.

When the matrix A is equivalent to the matrix:(
1 0

0 −1

)
,

the interpolation of v over the triangle K can be written: v(x) = (x1 − x0,1, x2 − x0,2)T . It is

exactly the same case as previously up to an axial symmetry of axis e2.
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To conclude, if a triangle K of the mesh contains a singularity of the vector fields v1 and

v2, necessarily the vectors w on the vertices of the triangle can not be drawn in the same half

plane. We recall that the vector field v1 is a root square of w. Hence if a triangle K contains a

zero of v1, the vectors v1 on the vertices of K can not be drawn in the same quarter of plane,

even after changing their sign. This leads to the following proposition, giving criteria to spot

singularities of the vector fields v1 and v2:

Proposition 5.3.2. Let K be a triangle of the mesh Th. Let v ∈ Vh be a vector field, discretized

by P1 finite elements, defined up to its sign. We assume that v has no zero on the edges of the

triangle.

Let v1, v2 and v3 be the value of v at the three vertices of the triangle K.

If the vector field v features a singularity in the interior of K, then there exists no quarter

of plane such that the three vectors v1, v2 and v3 belong simultaneously to it, possibly even after

changing their sign. This is equivalent to:∏
1≤i<j≤3

vi · vj < 0 .

In practice, for each triangle of the mesh, we compute the products of the scalar product

between the vectors v1 at the vertices of the triangle. If the result is strictly negative, the

triangle features a zero of v1, which is treated in the following as a singularity.

The triangles featuring zeros could be removed from the mesh, in order to treat singularities

like holes in the domain. Indeed, there is no coherent orientation of the vector field in such

triangles. But numerically, there is no limitation to keep them: the computed diffeormorphism

is not impacted by the presence of those triangles as we will see in the numerical results.

5.3.4 Correction functions

This section is devoted to the practical computation of the correction functions.

Let K be a triangle featuring a zero x0 of the vector fields, see Figure 5.18(a). This zero

is treated as a singularity of the vector field. Let ψ be the correction function associated to

x0. This function is defined on the manifold D and discretized using P1 finite elements on

the manifold. Hence, we can use P1 discontinuous Galerkin elements on D to discretize the

correction function ψ. The technical point is that we can not use the interpolation operator to

compute straightly the correction functions.

To start, we have to compute a curve Γ joining the point x0 to the external border of the

domain. Numerically, Γ is discretized: it is a set of edges and vertices of the mesh, see Figure

5.18(b). We recall that a correction function is defined by (5.3). In particular, it is equal to zero

on the whole domain except on a tube of size η around the curve Γ. We choose a coefficient η

smaller than the minimal size of the triangle of the mesh. Hence, the correction function ψ is

equal to zero on every vertex that does not belong to Γ.

The triangles which contain a vertex of Γ can be split into two subsets, according to which

side of Γ they are. The triangle K which contains x0 is the frontier between the both subsets.

From the triangle K, we are going step by step through each triangle, which contains a vertex

in Γ. We have to determine if two adjacent triangles represent adjacent charts of the manifold D.
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Adjacent triangles have one common vertex belonging to Γ. If the retained coherent orientation

at this vertex is the same in the both triangles, the both triangles represent in fact adjacent

charts of D. This can be easily checked by looking the value of the interpolation operator at

this vertex for the both triangles. If it is the same value, we have adjacent charts, else, we

have charts belonging to two distinct copies of D. On Figure 5.18(c), the retained coherent

orientation of the vector fields is displayed for each triangle. On Figure 5.18(d), the values of

the interpolation operator corresponding to this coherent orientation is displayed. On Figure

5.18(e), the discretization of the manifold D is represented. The triangles of the mesh D are

colored respectively in blue and red, according to which charts of D they represent. We also

displayed the sign of the correction function on the manifold according to which side of Γ we

are looking at. We recall that the correction function is antisymmetric. To conclude, the values

of the correction function on the mesh Th are displayed on Figure 5.18(f): + stands for +0.5,

and − for −0.5.

The correction functions for the holes of the domain D are computed exactly with the same

method. The only slight difference is that the curve Γ joins a vertex of the external border of

the domain to a vertex of the border of the hole.

5.3.5 Computation of the diffeomorphism

Let nc be the sum of the number of the holes of the domain and the number of singularities

in the vector fields v1 and v2 to integrate. Let (ψi)1≤i≤nc be the nc corresponding correction

functions.

Thanks to Theorem 5.2.13, there exist nc real coefficients ci ∈ R2 and an antisymmetric

function ϕ ∈ C1(D,R2) such that, for j ∈ {1, 2}:

er T = ∇ϕ+

nc∑
i=1

ci ⊗∇ψi .

An other formulation leads to looking for ci ∈ R2 and a map ϕ from D into R2 as the

minimizer of:

G(ϕ, ci) =

∫
D
|∇ϕ+

nc∑
i=1

ci ⊗∇ψi − erT |2dx

=

∫
D
|∇ϕ− erT |2dx+

∫
D
|
nc∑
i=1

ci ⊗∇ψi|2dx+ 2

∫
D

(∇ϕ− erT ) · (
nc∑
i=1

ci ⊗∇ψi)dx

In order to split the above minimization problem into two independent minimization prob-

lems, we introduce the functions fi ∈ C1(D,R), solutions of the following variational problem:

∀g ∈ C1(D,R), g antisymmetric on D,

∫
D
∇fi · ∇g dx =

∫
D
∇ψi · ∇g dx .

In the following, we will denote: ψ̃i = ψi−fi. They would be referred as orthogonalized correction functions

since the scalar product of their gradient with any conservative vector field w on D is equal to

zero: ∫
D
∇ψ̃i · w = 0 .
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Figure 5.18: Numerical construction of a correction function
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We emphasize that the functions ψi are R/Z valued. Hence, the product
∫
D∇ψ̃i · ∇ψj , where

i, j ∈ {1, ..nH}, is not necessarily equal to zero.

We are looking for ci ∈ R2 and a map ϕ from D into R2, minimizer of:

G̃(ϕ, ci) =

∫
D
|∇ϕ+

nc∑
i=1

∇ψ̃i ci − erT |2dx

=

∫
D
|∇ϕ− erT |2dx+

∫
D
|
nc∑
i=1

∇ψ̃i ci|2dx+ 2

∫
D

(−erT ) : (

nc∑
i=1

∇ψ̃i ci)dx

The first term features only the unknown ϕ, and the second and the third only the unknowns

ci. Hence the minimization problem leads to two independent minimization problems.

First minimization problem The map ϕ from D into R2 is the minimizer of:

G1(ϕ) =

∫
D
|∇ϕ− erT |2dx .

This is the exact same minimization problem than in the case without singularities neither holes

in the domain. One could refer to Section 5.5 of Chapter 4 for more details: we give here only

essential elements to compute the map ϕ.

Numerically, ϕ is a map from Vh to R2. The functional G1 can be rewritten as:

G1(ϕ) = 2
∑
K∈Th

∫
K
|∇Ih(ϕ)− erT (K)|2dx ,

where Ih is the interpolation operator from Vh onto Wh, and T (K) the coherent vector field T

on the triangle K. The minimizer of G1 is the solution of the variational formulation consisting

in finding ϕ ∈ Vh such that for all g ∈ Vh:∑
K∈Th

∫
K
∇Ih(ϕ) : ∇Ih(g)dx =

∑
K∈Th

∫
K
erT (K) : ∇Ih(g)dx .

Second minimization problem The family of real coefficients (ci)1≤i≤nc in R2 is the minimizer

of:

G2(ci) =

∫
D
|
nc∑
i=1

∇ψ̃i ci|2dx+ 2

∫
D

(−erT ) : (

nc∑
i=1

∇ψ̃i ci)dx .

This minimization problem can also be split into two independent minimization problems,

according to respectively the first and the second component of T , namely, v1 and v2.

Let ci,j be the j-th component of ci, and for j ∈ {1, 2}, let G2,j be the functional defined

by:

G2,j(ci,j) =

∫
D
|
nc∑
i=1

ci,j∇ψ̃i|2dx+ 2

∫
D

(−erT ) : (

nc∑
i=1

∇ψ̃i ci)dx

Let M ∈M(R) be the symmetric square matrix defined by:

M = (

∫
D
∇ψ̃i · ∇ψ̃jdx)1≤i,j≤nc .
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For j ∈ {1, 2}, let Nj ∈ Rnc be the real vector defined by:

Nj = (

∫
D
∇ψ̃i · ervj dx)1≤i≤nc ,

and let cj be the real vector defined by:

cj = (ci,j)1≤i≤nc .

The functional G2,j can be rewritten as:

G2,j(ci,j) =
1

2
cjM cTj −Nj · cj .

Its minimizer is classically given by the solution of: McTj = Nj .

Numerically, we compute the matrix M and the vector Nj using the interpolation operator

Ih:

Mij =
∑
K∈Th

∫
K
∇Ih(ψ̃i) · ∇Ih(ψ̃j)dx , Nj i =

∑
K∈Th

∫
K
∇Ih(ψ̃i) · erT (K)dx .

5.3.6 Projection of the microstructure

We have computed a diffeomorphism of D which distorts a regular grid in order to orientate

locally the bars according to a given orientation. We explain here how to compute a sequence

of genuine shapes from an homogenized structure made of the same periodic microstructures

than in Chapter 4. We recall that this microstructure is characterized by geometric parameters

m ∈ [0; 1], which are the relative dimensions of the central rectangular hole in the square cell,

see Figure 4.2.

Like in Chapter 4, a sequence of genuine shapes, indexed by a small coefficient ε > 0, which

is the size of the period of the periodic composite, is computed thanks to the diffeomorphism

Φ, defined by:

Φ = ϕ+

nc∑
i=1

ψ̃ici = ϕ+

nc∑
i=1

fici +

nc∑
i=1

ψici .

The functions ϕ and fi are continuous on R. However the functions ψi are R/Z-valued. The

level-set functions defining the final shapes are sine functions of the diffeomorphism. In order

to avoid any discontinuity in the level-set functions, we have to ensure that the coefficients for

any orthogonal test functions ψ̃i are multiples of 2π. Let Φ̃ε,j be two functions defined by:

Φ̃ε,j = ϕj +

nc∑
i=1

εdi,jψ̃i ,

where di,j = E

(
ci,j

ε

)
∈ Z, with E the floor function.
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Let fmε,i ∈ C(D,R) be two level-set functions defined by:

fmε,j(x) = − cos

(
2πΦ̃ε,j(x)

ε

)
+ cos(π(1−mi(x)))

= − cos

(
2πϕε,j(x)

ε
+ 2π

nc∑
i=1

di,jψ̃i)

)
+ cos(π(1−mi(x))) .

Let the level-set function:

Fmε = min(fmε,1, f
m
ε,2) .

The final structure Ωε(m) is then defined by:

Ωε(m) =

{
x ∈ D such that Fmε (x) ≤ 0

}
.

Integer coefficients By taking the floor of the coefficients in Φ̃ε,j , we alter the exact diffeo-

morphism Φ. In order to prevent this, one could choose only sizes of cell ε, such that every

coefficient ci,j is a multiple of ε. Nevertheless, this could be extremely restrictive, especially if

there are a lot of singularities and holes.

In practice, we decline this: the diffeomorphism used for the projection is slightly altered,

but with no significant consequence on the orientation of the microstructure, see numerical

results below.

However, we can minimize the functionals G2,j on Znc . First, we compute the coefficients

cj as previously on Rnc . Second, G2,j is computed in ε(d1,j , ..., dnc,j) + ε{0, 1}nc . Among those

vectors, the one minimizing G2,j is kept. Nevertheless, this method implies to compute 2nc times

the functional G2,j : it is quickly prohibitive. Optimization algorithms in integer programming

could be efficient here, this approach should be investigated.

5.3.7 Numerical results

5.3.7.a Theoretical test case

In order to generate a direction field featuring singularities, we used the method developed by

Sacchelli in [Boscain 2016]. Let V be the vector field defined on R2 by:

V =

(
cos (π(x1 + s1x2)) , cos (π(x2 + s2 ∗ x1))

)
,

with for example here s1 = 0.3 and s2 = −0.8. Let β ∈ R/2πZ be the angle between the

vectors (1, 0) and V , and α ∈ R/πZ the angle defined by: α = 0.5β. The direction field

a = (cos(α), sin(α)) features singularities where V = (0, 0).

Let D = [0.5; 2]× [0.25; 1.75]. The direction field a is displayed on Figure 5.19 on the subset

D. Let r be the dilatation factor defined by (4.7). Let v1 = era, and v2 = era⊥, where a⊥ is a

unit vector field orthogonal to a.

The projection algorithm, implemented in FreeFem++, has been tested on the above direc-

tion field a. The mesh is a regular triangular one, with 2704 vertices. The algorithm successfully
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Figure 5.19: Direction field featuring two singularities (black points)

detected the two singularities of the vector field in D. We recall, that we need here only one

correction function to proceed to the projection: one less than the number of singularities. The

algorithm computed the orthogonalized correction function ψ̃1, for the lower singularity. This

function is displayed on Figure 5.20(a). It features a constant gap along the curve Γ1, repre-

sented in red on Figure 5.20(b). The functions ϕ1 and ϕ2 are respectively displayed on Figures

5.20(c) and 5.20(d). They are regular and their isolines are not aligned with the vector fields v

and v⊥, which is a strong difference with the case without singularity, see Section 4.5 of Chapter

4. The projection functions Φ1 = ϕ1 + c11ψ̃1 and Φ2 = ϕ2 + c12ψ̃1 are displayed on Figures

5.20(e) and 5.20(f). Their isolines are respectively well aligned with the vector fields a and a⊥.

Hence the correction function corrects properly the functions ϕ1 and ϕ2. On Figures 5.20(g)

and 5.20(h), one can check that the projection functions are not continuous through Γi (in red):

the isolines are not well connected on both sides of Γi. Nevertheless, the gap is constant along

Γi, as desired.

The projection of regular square cells, with m = (0.8, 0.8), with the diffeomorphism Φ̃−1
ε is

displayed on Figure 5.21(c). At this step (and not before) we used a finer mesh, featuring 106

vertices, in order to catch the fine details of the structures. The size of the cell is ε = 0.01.

The bars of the distorted grid are well aligned with the vector fields a and a⊥. One can check

that the final grid is not homotopic to a regular grid. Indeed, around the upper singularity for

example, one vertex connect six square cells.

We emphasize that during the projection, we took the floor of the coefficients c11 and c12 as

seen in the previous section. This ensures the projected grid to be well connected. Indeed, the

result of the projection in the case where we do not take the floor of the coefficients, is displayed

on Figure 5.22. Along the curve Γi the bars of the structure are not connected to each other.

Let e be the mean of the error on the angle between the bars and the vectors a , when we take
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(a) |ψ̃1| (b) |ψ̃1| features a constant gap

along Γ1(in red)

(c) |ϕ1| (d) |ϕ2|

(e) |ϕ1 + c11ψ̃1| (f) |ϕ2 + c12ψ̃1|

(g) |Φ̃ε,1| features a constant gap

along Γ1(in red)

(h) |Φ̃ε,2| features a constant gap

along Γ1(in red)

Figure 5.20: Isolines of the maps involved in the projection algorithm, in red the curve Γ1

linking the singularity to the border
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(a) (b) (c)

Figure 5.21: Projection of regular square cells according to the direction field α defined on

D = [0.5; 2]× [0.25; 1.75]

the floor of the coefficients. It is defined by:

e =

∫
D a
⊥ ·

∇Φ1

||∇Φ1||
dx∫

D dx
.

For this test case we get e = 2.3 · 10−3. This corresponds to a mean deviation of 0.13◦ of the

bars in comparison to the desired orientation, which is very low. In practice, this would be

perfectly tolerable.

This method can be applied to vector fields featuring many more singularities. Let the same

vector field α be defined on D = [0.8; 4.8] × [0.1; 4.1] for example. On this subset, there are

twenty singularities. The result of the projection of regular cells on this subset is displayed on

Figure 5.23.

5.3.7.b Domain featuring a hole

The domain D of the wheel is a circle perforated in its center. Its external radius is equal to 4,

its internal radius is equal to 1. The mesh is triangular, it features 2600 vertices. The structure

is clamped on its internal radius. A unit load is applied on the external border. In the first case,

the load is normal to the border, see Figure 5.24(a). In the second case, the load is tangential

to the border, see Figure 5.25(a).

For both cases, optimized homogenized structures are computed with the method presented

in Chapter 4. The microstructure is the same square periodic cell, perforated with a central

rectangular hole, whose relative dimensions are given by m ∈ [0; 1]2.

Let α ∈ C(D,R/Z) be the optimized orientation, and a the unit vector field defined by

a(cos(α], sin(α)). Let r be the dilatation factor defined by (4.7). Let v1 = era, and v2 = era⊥,

where a⊥ is a unit vector field orthogonal to a.

Normal loading The optimized density is displayed on Figure 5.24(b), and the optimized

orientation on Figure 5.24(c).
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Figure 5.22: Projection of regular square cells according to the direction field α defined on

D = [0.5; 2]× [0.25; 1.75] with non integer coefficients : failures in the connectivity between the

bars along Γi (in the red rectangle)

Figure 5.23: Projection of regular square cells according to the direction field α defined on

D = [0.8; 4.8]× [0.1; 4.1]



184 Chapter 5. Projection in the general case

The function ϕ1 is displayed on Figure 5.24(d). Its isolines are almost everywhere orthogonal

to the vector field a. But in some areas, they are quite messy. The vector field a⊥ is not

conservative, a correction function is required to integrate this vector field.

The function ϕ2 is displayed on Figure 5.24(e). Its isolines are perfectly aligned with a. The

vector field a is indeed conservative.

The distortion of a regular grid with only the diffeormorphism ϕ, meaning, without any

correction function, is displayed on Figure 5.24(f). One can check that the diffeormorphism is

not conformal. Indeed, the cells are not dilated of the same ratio in the both direction, in spite

of the dilatation factor r. The correction function is required to correct this.

The orthogonalized correction ψ̃1 function is displayed on Figure 5.24(g). The corresponding

curve Γ1 is the black segment on the left half of the domain. The functions Φ1 and Φ2 are

displayed respectively on Figures 5.24(h) and 5.24(i). We emphasize that the coefficient c1,2

corresponding to contribution of the correction function in the direction a is equal to zero. As

seen above, no correction function is required to integrate the vector field a. The isolines of the

both functions are well aligned with respectively the vector fields a⊥ and a.

The shape Ωε(m) is then computed with the diffeomorphism Φ̃, with integer coefficients for

the correction functions. It is displayed on Figure 5.24(l). Let Ωε,j(m) be the shape defined by:

Ωε,j(m) = {x ∈ D such that fmε,j(x) ≤ 0} .

They are respectively displayed on Figures 5.24(j) and 5.24(k). Those shapes are the distorted

set of parallel bars.

Tangent loading The optimized density is displayed on Figure 5.25(b), and the optimized

orientation on 5.25(c).

The functions ϕ1 and ϕ2 are displayed respectively on Figures 5.25(d) and 5.25(e). Their

isolines are not aligned with a and a⊥. Those vector fields are not conservative, a correction

function is required to integrate them.

The distortion of a regular grid with only the diffeormorphism ϕ, meaning, without any

correction function, is displayed on Figure 5.25(f). The cells are oriented according to α. The

correction function is required to correct this.

The orthogonalized correction ψ̃1 function is displayed on Figure 5.25(g). The corresponding

curve Γ1 is the black segment on the left half of the domain. The functions Φ1 and Φ2 are

displayed respectively on Figures 5.25(h) and 5.25(i). The isolines of the both functions are

well aligned with respectively the vector fields a⊥ and a.

The shape Ωε(m) is then computed with the diffeomorphism Φ̃, with integer coefficients for

the correction functions. It is displayed on Figure 5.25(l). Let Ωε,j(m) be the shape defined by:

Ωε,j(m) = {x ∈ D such that fmε,j(x) ≤ 0} .

They are respectively displayed on Figures 5.25(j) and 5.25(k). Those shapes are the distorted

set of parallel bars.
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D

ΓN

ΓD

(a) Load case (b) Optimized density (c) Optimized orientation

(d) |ϕ1| (e) |ϕ2| (f) Distortion of a regular grid by ϕ

(meaning without correction func-

tion)

(g) Correction function: |ψ̃1| (h) |Φ1| = |ϕ1 + c1,1ψ̃1| (i) |Φ2| = |ϕ2 + c1,2ψ̃1|

(j) Ωε,1(m) (k) Ωε,2(m) (l) Ωε(m)

Figure 5.24: Projection of optimized homogenized wheel
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D

ΓN

ΓD

(a) Load case (b) Optimized density (c) Optimized orientation

(d) |ϕ1| (e) |ϕ2| (f) Distortion of a regular grid by ϕ

(meaning without correction func-

tion)

(g) Correction function: |ψ̃1| (h) |Φ1| = |ϕ1 + c1,1ψ̃1| (i) |Φ2| = |ϕ2 + c1,2ψ̃1|

(j) Ωε,1(m) (k) Ωε,2(m) (l) Ωε(m)

Figure 5.25: Projection of optimized homogenized wheel



5.4. Regularization of the orientation taking into account the singularities 187

5.4 Regularization of the orientation taking into account the

singularities

5.4.1 Settings of the problem

We briefly recall the frame of Chapter 4 Section 5.3.

Let α ∈ L∞(D,R) be an orientation field which is known to minimize an objective function

J . The optimal orientation field has now to satisfy the conformality condition: the set of

admissible orientation is reduced. The idea is to regularize the optimal orientation field α using

an iterative optimization algorithm : α will be the initial orientation.

Moreover, we add a small regularization term on the orientation to the cost function J .

Indeed, in areas where the density is equal to zero or to one, the homogenized material is

isotropic: any orientation is then admissible there. By adding a small penalization of the L2-

norm of α, the orientation will be regularized in those areas, without significant effect everywhere

else.

The new cost function Jreg is given by:

Jreg(α) = J(α) + η2

∫
D
|∇α|2dx .

The new minimization problem consists in minimizing Jreg under the constraint:∫
D
∇α · ∇q dx = 0 for all q ∈ H1

0 (D) .

We recall that the orientation α is defined modulo π, and hence it is not convenient to

solve a minimization problem over it. We then introduced the vector field b = (cos(β), sin(β))T ,

where the angle β ∈ R/2πZ is given by: β = 2α. The minimization problem over α was then

rewritten as a minimization problem over b, see Chapter 4 Section 5.3 for more details. In the

following, we will use Jreg(b) to denote the objective function.

We recall that β is not a R-valued function but a R/2πZ-valued function. Hence its classical

gradient is not defined. In the following we will use in the whole domain D:

∇β = b ∧∇b .

This method is efficient provided that the orientation field does not feature singularities.

In the case of singularities, this regularization method may be able to remove them, see the

L-beam test case in 4.6. But it may also fail to remove them, like in the electrical mast test

case, see 4.6.

In order to remove those singularities or just to limit their number, a penalization term of

the singularities may be added to the current objective function Jreg.

5.4.2 Regularization of the orientation with an energy of Ginzburg-Landau
type

5.4.2.a Ginzburg-Landau model in superconductivity

We give here only very general elements about the Ginzburg-Landau model in superconductivity.

One could read [Sandier 2008] for more details about the model.
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A superconductor is a material where the electrical resistance is equal to zero under par-

ticular conditions (like low temperature). The superconductivity is also characterized by the

Meissner effect : the expulsion of the magnetic field from the material, when the material is

cooled and submitted to a magnetic field. There are two types of superconductor. The ones

from Type I have only two states according to the applied magnetic field: normal state or super-

conducting state. The ones from Type II have three states: the normal and the superconducting

ones, but also a mixed state. In this state, some areas of the material are superconductor but

other, called vortices, are not conductor. The Ginzburg Landau model with magnetic field

describes the behavior of the superconductors of Type II.

The local state of the material is described through a complex-valued function u, the order

parameter: u = 0 corresponds to the normal state and |u| = 1 corresponds to the supercon-

ducting state. Hence in the mixed state, a vortex in x ∈ D is characterized by u(x) = 0. The

electromagnetic vector potential will be denoted E : D → R2. The induced magnetic field is

given by: ∇∧ E.

A parameter ε, known as the inverse of the Ginzburg-Landau parameter, depends only of

the material. For extreme Type II superconductors, the parameter ε is very small. Moreover,

this parameter characterizes the size of the vortices. Hence, when ε is going to zero, the vortices

are reduced to isolated points.

If the material is in a bounded subset Ω ∈ R2, the Ginzburg-Landau energy of (u,E) is

given by:
1

2

∫
Ω
|∇Eu|2 + |∇ ∧ E|2 +

1

2ε2
(1− |u|)2 dx ,

where the operator ∇E is the covariant gradient, defined by: ∇E = ∇ − iE, see (2.5) in

[Sandier 2008].

5.4.2.b Energy of Ginzburg-Landau type

We can make some analogies between the Ginzburg-Landau model and the orientation of the

cells in shape optimization. Hence, the orientation, which can be seen as a complex, would

correspond to the order parameter u. The singularities in the orientation would correspond to

the vortices in superconductivity, if ε is small enough. However, there is no parallel for the

electromagnetic vector potential: we introduce a new vector, also denoted E.

Other formulations of the Ginzburg-Landau energy have also been used to regularize orien-

tation vector fields for the generation of quadrangular meshes, [Viertel 2017]. The orientation

of the boundary elements is given by the normal of the frontier. It is then propagated in the

volume, leading to singularities in the orientation field. We emphasize that the method to mesh

coherently the domain is different from the one we presented above, but relies on the same

main idea. The domain is subdivided into subsets where the orientation vector field does not

feature any singularity. Those subsets are then carefully merged together, paying attention

to the continuity of the mesh between two adjacent domains. Let us notice that the meshing

method relies on a Ginzburg-Landau energy with E = 0. We also investigated this approach

for regularization, but it was not concluding. Hence we kept the general formulation.

Relaxation of the minimization problem. We emphasize that the norm of the vector

field u is not equal to one on the whole domain. Hence, before anything else, the previous
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minimization problem, consisting in minimizing Jreg, has to be relaxed relaxed. Indeed the

norm of the vector field b is no longer restricted to one.

When the norm of b is equal to one, we recall that the compliance is written:∫
D
A∗0(m)−1S(b)σ : S(b)σ ,

where σ is the stress tensor, A∗0 the homogenized elasticity tensor, depending on the geometric

parameters m of the microstructure, and S(b) the rotation operator tensor. Let S′(δb) be the

directional derivative of S(b) in the direction δb. When the Voigt notations are used, S(b) and

S′(δb) are represented respectively by the matrices:

{S(b)} =


1+b1

2
1−b1

2 − b2√
2

1−b1
2

1+b1
2

b2√
2

b2√
2
− b2√

2
b1

 {S′(δb)} =


δb1
2

−δb1
2 − δb2√

2
−δb1

2
δb1
2

δb2√
2

δb2√
2
− δb2√

2
δb1

 .

From now on, the norm of b can vary. Let Sn(b) be the fourth-order tensor defined by:

Sn(b) = S(
b

|b|
). Hence the compliance is written as:∫

D
A∗0(m)−1Sn(b)σ : Sn(b)σ .

Let S′n(δb) be the directional derivative of S′n(b) in the direction δb: S′n(δb) = S′((
δb

|b|
−
b · δb
|b|2

)b) .

Supplementary term in the cost function. An energy of kind of Ginzburg-Landau is

added to the cost function Jreg:

IGL(b, E) =

∫
D

(ε1|∇b− b⊥ ⊗ E|2 + ε1|∇ ∧ E|2 + ε−1
1 (|b|2 − 1)2) dx . (5.6)

The first term in this energy is the real correspondence to the covariant gradient in complex.

Proposition 5.4.1. The minimum of the energy IGL(b, E) defined by (5.6) depends only on

the number of singularities, on their type and on ε1 the characteristic size of the vicinity of the

singularities.

In particular, when there is no singularity in the vector field, the minimum of this energy is

equal to zero.

Proof. We refer to [Sandier 2008] for the first part of the proposition.

When there is no singularity, the angle α is defined on the whole domain. Hence the

minimizer b is defined by b = (cos(β), sin(β)). It is a unit vector field: the third term of the

energy is equal to zero. Moreover, we have

∇b = b⊥ ⊗∇β ,

where ∇β is well defined on the whole domain D. Then the minimizer E is ∇β. The first and

the second terms are equal to zero.
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5.4.2.c Minimization problem and its approximation

The objective function to minimize is now:

Jreg, GL(b, E,m) =

∫
D

(A∗0(m)−1S(b)σ : S(b)σ + η2|∇b|2)dx+ γIGL(b, E) ,

under the conformality constraint:∫
D

(b ∧∇b) · ∇q dx = 0 for all q ∈ H1
0 (D) . (5.7)

The coefficient γ > 0 is the weight of the Ginzburg-Landau energy in the cost function. The

corresponding Lagrangian is given by:

LGL(b, E,m, p) =

∫
D

(A∗0(m)−1S(b)σ : S(b)σ + η2|∇b|2)dx+ γIGL(b, E) +

∫
D

(b ∧∇b) · ∇p ,

where p ∈ H1
0 (D,R) is the Lagrange multiplier for the constraint (5.7).

We emphasize that the optimization process with respect to the geometric parameter m

is unchanged, see Section 4 of Chapter 4 for more details. Indeed, none of the new terms in

the objective function depends on this parameter. For the sake of clearness, the geometric

parameter m will be omitted in the following equations.

A SQP (Sequential quadratic programming) type algorithm is used to solve this minimization

problem with respect to b, ζ and p. At each iteration n, the Lagrangian LGL is approximated,

around the current state, at second order in δb, δE and δp.

The Ginzburg-Landau energy is approximated at second order in δb and δE around the

state (b, E) by:

IGL(b+ δb, E + δE) '
∫
D

(ε1|∇b− b⊥ ⊗ E|2 + ε1|∇ ∧ E|2 + ε−1
1 (|b|2 − 1)2) dx

+

∫
D

2ε1(∇b− b⊥ ⊗ E) · (∇δb− δb⊥ ⊗ E − b⊥ ⊗ δE) dx

+

∫
D
ε1|∇δb− δb⊥ ⊗ E − b⊥ ⊗ δE|2 dx

+ε1

∫
D

(2(∇∧ E) · (∇∧ δE) + |∇ ∧ δE|2) dx

+ε−1
1

∫
D

(4(|b|2 − 1)(b · δb) + 4(b · δb)2 + 2(|b|2 − 1)|δb|2) dx

The approximation at second order in δb and δp of the constraint term is given by:

Icst(b+ δb, p+ δp) =

∫
D

(b+ δb) ∧ (∇b+∇δb) · (∇p+∇δp) dx

'
∫
D

(b ∧∇b) · ∇p dx

+

∫
D

((b ∧∇b) · ∇δp+ (δb ∧∇b) · ∇p+ (b ∧∇δb) · ∇p) dx

+

∫
D

((δb ∧∇δb) · ∇p+ (δb ∧∇b) · ∇δp+ (b ∧∇δb) · ∇δp) dx
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The regularization term over the L2-norm of b is approximated at second order in δb by:

Ireg(b+ δb) =

∫
D
|∇b+∇δb|2 dx

'
∫
D
|∇b|2 dx+ 2

∫
D
∇b : ∇δb dx+

∫
D
|∇δb|2 dx

Finally, at iteration n, at state (βn, En, pn), we write the necessary and sufficient opti-

mality condition of the minimization problem as the variational problem consisting in finding

(δbn, δEn, δpn) ∈ () such that for all test functions (c, F, q) ∈ ():

∫
D
A∗−1

0 (mn)S(bn)S′(δbn)TA∗0(mn)S(bn)e(u) : S(bn)S′(c)TA∗0(mn)S(bn)e(u) dx

+

∫
D

2γε1(∇δb− δb⊥ ⊗ E − b⊥ ⊗ δE) : (∇c− c⊥ ⊗ E − b⊥ ⊗ F ) dx

+

∫
D

2γε1(∇∧ δE) · (∇∧ F ) dx

+

∫
D

4γε−1
1 (2(b · δb)(b · c) dx

+

∫
D

((δbn ∧∇c+ c ∧∇δbn) · ∇pn dx

+

∫
D

(δbn ∧∇bn) · ∇q + (c ∧∇bn) · ∇δpn) dx

+

∫
D

((bn ∧∇δbn) · ∇q + (bn ∧∇c) · ∇δpn) dx

+

∫
D

2η2∇δbn : ∇c dx



bilinear form

+

∫
D

(A∗0(mn)S(bn)e(u)) : S′(c)e(u) dx

+

∫
D

2γε1(∇b− b⊥ ⊗ E) : (∇c− c⊥ ⊗ E − b⊥ ⊗ δF ) dx

+

∫
D

2γε1(∇∧ E) · (∇∧ F ) dx

+

∫
D

4γε−1
1 (|b|2 − 1)(δb · c) dx

+

∫
D

((bn ∧∇bn) · ∇q + (c ∧∇bn) · ∇pn + (bn ∧∇c) · ∇pn) dx

+

∫
D

2η2∇bn : ∇c dx



linear form

= 0
(5.8)

5.4.2.d Initialization of E

There is no good obvious initialization of the vector field E. Hence, to start, we take E = (0, 0).

Then the cost function Jreg, GL is minimized only according to the variable E. Here again,

a SQP type algorithm is used: the same approximation of the cost function, at second order
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in δE is computed. It leads to solve at each iteration the variational formulation consisting in

finding δE ∈ H1(D,R2) such that for all test functions F ∈ H1(D,R2):∫
D

2γε1(b⊥ ⊗ δE) : (b⊥ ⊗ F ) dx

+

∫
D

2γε1(∇∧ δE) · (∇∧ F ) dx

 bilinear form

+

∫
D

2γε1(b⊥ ⊗ E) : ·(b⊥ ⊗ δF ) dx

+

∫
D

2γε1(∇∧ E) · (∇∧ F ) dx

 linear form

= 0

(5.9)

After a few iterations, (typically between ten and twelve iterations), the vector field E is

initialized. Hence the minimization of the cost function over the three variables is computed.

At each iteration, the variational formulation (5.8) is solved. The variables are then updated:

bn+1 = bn + δbn, En+1 = En + δEn and pn+1 = pn + δpn.

5.4.2.e Stabilization terms

Numerically, we add some stabilization terms to the cost function:

- r1||δp||2L2 , with r1 = 1.e−2

- r2||δE||2L2 , with r2 = 1.e−1.

5.4.2.f Numerical results

The above regularization method has been implemented in Freefem++.

We tested it for the electric mast test case. Indeed, the optimized orientation for this case

features singularities, as seen in Section 4.6 of Chapter 4. The optimized orientation is displayed

on Figure 5.26.

The orientation is regularized with the above regularization algorithm. The numerical values

of the coefficients are:

- γ = 1. for the weight of the Ginzburg Landau energy,

- ε1 = 0.05 for the characteristic size of the vicinity of the singularities,

- η = 0.001 for the regularization of the gradient of the angle.

The initialization of the vector field E is made in 15 iterations. The regularization of the

orientation is done in 70 iterations. The convergence history of the compliance, the conformality

constraint and the Ginzburg Landau energy is displayed on Figure 5.27. The conformality

constraint is respected, since it goes to zero. The Ginzburg Landau energy decreases quickly.

We emphasize that the energy does not go to zero, but to a constant around 9.7. Indeed,

the orientation field still features singularities. Hence the minimum of the Ginzburg Landau

energy is not zero, but a coefficient which depends on the number of singularities. Finally, the

compliance increases slightly during the regularization process. Indeed, the cells are no longer
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Figure 5.26: Optimal orientation for the electric mast test case

exactly aligned with the principal directions of the stress. This is an inevitable cost to pay to

regularize the orientation field.

The regularized orientation is displayed on Figure 5.28(a). The regularized vector field is

cleaned. It features always four singularities. But the orientation is smoother in their vicinity

than previously in the optimal orientation.

The regularized vector field can be integrated with the method developed in Section 5.3. A

diffeomorphism Φ̃ is computed for this vector field. The projection of a regular grid through

the diffeomorphism Φ̃ is displayed on Figure 5.28(b). The singularities in the vector field are

not a limitation to align the cells with the regularized orientation. A genuine shape Ωε(m) is

also computed, with ε = 0.1. It is displayed on Figure 5.28(c).

We run again the regularization algorithm but with a higher value of ε1, the characteristic

size of the vicinity of the singularities. We took ε1 = 0.25.

The convergence history is displayed on Figure 5.29. The regularized orientation is displayed

on Figure 5.30(a). Two singularities have been removed, and only two are kept. By adjusting

the characteristic size of the vicinity of the singularities, it is possible to make disappear some

of them. In fact, the vicinity of the lateral singularities in the electric mast case is large enough

to reach the external border of the domain and consequently to put those singularities outside

of the domain.

5.4.3 Regularization of the orientation using a Modica-Mortola energy

5.4.3.a Modica-Mortola energy

In order to eliminate singularities quickly, we introduce an energy of kind of Modica-Mortola:

IMM (b, ζ) =

∫
D

(ε2|∇b− b⊥ ⊗∇ζ|2 + ε−1
2 |b− (cos(ζ), sin(ζ))|2)dx ,

where ζ ∈ L∞(D,R).
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Figure 5.27: Convergence history during the regularization process, in the case where the four

singularities are kept

(a) Regularized orientation with

Ginzburg-Landau energy

(b) Distorted grid (c) Ωε(m)

Figure 5.28: Electric mast test case: the four singularities are kept during the regularization

process
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Figure 5.29: Convergence history during the regularization process, in the case where only two

singularities are kept

(a) Regularized orientation of the

electric mast test case, with an en-

ergy of kind of Ginzburg-Landau

(b) Distorted grid (c) Ωε(m)

Figure 5.30: Electric mast test case: only two singularities are kept during the regularization

process
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If there is no singularity, the minimum of this energy is zero and it is reached when ζ is such

that (cos(ζ), sin(ζ)) = (cos(β), sin(β)). The function ζ is a R-valued ”relevement” of β.

If the initial orientation features singularities, there is no R-valued ”relevement” of β. We

emphasize that this energy is differentiable, thanks to the fact that the norm of b is not equal

to one everywhere. Indeed, the vector b vanishes around the singularities.

5.4.3.b Minimization problem and its approximation

The objective function to minimize is now:

Jreg, GL-MM(b, E, ζ) = Jreg, GL(b, E) + γ2IMM (b, ζ) ,

under the constraint: ∫
D

(b ∧∇b) · ∇q dx = 0 for all q ∈ H1
0 (D) . (5.10)

The corresponding Lagrangian is given by:

LGL,MM(b, E, ζ, p) = LGL(b, E, p) + γIMM (b, ζ) ,

where p ∈ H1
0 (D,R) is the Lagrange multiplier for the constraint (5.10).

A SQP type algorithm is used to solve this minimization problem with respect to b, E, ζ and

p. At each iteration n, the Lagrangian LGL,MM is approximated, around the current state, at

second order in δb, δE, δζ and δp.

5.4.3.c Approximation at second order of the Modica-Mortola energy

Both terms of the Modica-Mortola energy are respectively approximated at second order in δb

and δζ (denoted with ') by:

I1(b+ δb, ζ + δζ) =

∫
D
|∇(b+ δb)− (b+ δb)⊥ ⊗∇(ζ + δζ)|2 dx

'
∫
D
|∇b− b⊥ ⊗∇ζ|2 dx

+

∫
D

2(∇b− b⊥ ⊗∇ζ) : (∇δb− b⊥ ⊗∇δζ − δb⊥ ⊗∇ζ) dx

+

∫
D

(|∇δb− b⊥ ⊗∇δζ − δb⊥ ⊗∇ζ|2 − 2(∇b− b⊥ ⊗∇ζ) : (δb⊥ ⊗∇δζ)) dx ,

and
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I2(b+ δb, ζ + δζ) =

∫
D
|b+ δb− (cos(ζ + δζ), sin(ζ + δζ))|2 dx

'
∫
D
|b− (cos(ζ), sin(ζ))|2 dx

+

∫
D

2(b− (cos(ζ), sin(ζ))) · (δb− δζ(− sin(ζ), cos(ζ))) dx

+

∫
D

(|δb− (− sin(ζ), cos(ζ))δζ|2 − (|b− (cos(ζ), sin(ζ))|2)

·(δζ2(cos(ζ), sin(ζ))) dx .

The quadratic terms of both approximations are not necessarily positive. In order to avoid

numerical instabilities, those terms have been neglected in the implementation, and the method

is efficient in practice.

At iteration n, at state (βn, En, ζ, pn), we write the necessary and sufficient optimality

condition of the minimization problem as a variational problem, namely the variational problem

(5.8) with some supplementary terms (corresponding to the Modica-Mortola energy):

- to the linear form:

A(c, F ) =

∫
D

2γ2ε2(∇bn − bn,⊥ ⊗∇ζn) : (∇c− bn,⊥ ⊗∇ξ − c⊥ ⊗∇ζn) dx

+

∫
D

2γ2ε
−1
2 (bn − (cos(ζn), sin(ζn))) · (c− ξ(− sin(ζn), cos(ζn))) dx .

- to the bilinear form:

B((δb, δE), (c, F )) =

∫
D

2γ2ε2(∇δbn − bn,⊥ ⊗∇δζn − δbn,⊥ ⊗∇ζn) : (∇c− bn,⊥ ⊗∇ξ − c⊥ ⊗∇ζn) dx

+

∫
D

2γ2ε
−1
2 (δbn − δζn(− sin(ζn), cos(ζn))) · (c− ξ(− sin(ζn), cos(ζn))) dx

5.4.3.d Stabilization terms

Numerically, a stabilization term to the cost function for the new unknown is used:

- r3||δζ||2L2 , with r1 = 1.e−5.

5.4.3.e Numerical results

The regularization method based on the energies of Ginzburg-Landau et Modica-Mortolas, has

also been implemented in Freefem++. We tested it also for the electric mast test case.

The orientation is regularized with the regularization algorithm using the both energies.

The numerical values of the coefficients are:

- γ = 10. for the weight of the Ginzburg-Landau energy,

- ε1 = 0.2 for the characteristic size of the vicinity of the singularities,
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Figure 5.31: Regularized orientation with Modica-Mortola and Ginzburg-Landau energies in

the electric mast test case

- η = 0.001 for the regularization of the gradient of the angle,

- γ2 = 10. for the weight of the Modica-Mortola energy,

- ε2 = 0.2.

The initialization of the vector field E is made in 70 iterations. The regularization of the

orientation is done in 80 iterations. The regularized orientation is displayed on Figure 5.31. It

features no longer any singularity.
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This chapter is a submitted article:

Topology optimization of parametrized stochastic microstructures, by P. Geoffroy-

Donders and J. Martinez.

6.1 Introduction

The field of topology optimization is dedicated to the optimization of material properties within

a domain [Eschenauer 2001, Rozvany 2001]. For instance, a classical scenario seeks to obtain

the structure with minimal compliance under a prescribed budget of material. One of the

main approaches to make topology optimization tractable is to rely on periodic microstruc-

tures [Sigmund 1994b, Sigmund 1995, Sigmund 1999]. This offers two significant advantages.
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First, the periodicity allows for a compact representation, that is implicitly repeated in a reg-

ular grid covering the object. Second, the theory of periodic homogenization affords for the

computation of the parameters of an equivalent homogeneous material [Allaire 2002a]. Given

these, the macroscopic physical behavior of an object can be simulated while abstracting away

fine scale heterogeneities.

Figure 6.1: 6.1(a): A two dimensional vector field of orthotropy with a singularity in the center,

which is challenging to deal with periodic microstructures. 6.1(b): Our parametric stochastic

microstructures follows the orientation of orthotropy, without any particular regard about field

singularities. Moreover, their geometry can be computed very efficiently, making them amenable

to fill large optimization domains.

Different works have explored the topology optimization of parametrized periodic microstruc-

tures by the homogenization method [Zhang 2015, Cramer 2016a, Cramer 2016b, Wang 2017,

Wang 2018b, Wang 2018a]. A promising venue of work lies in within Additive Manufactur-

ing technologies, that allow us to physically realize the intricate designs obtained with topol-

ogy optimization. In order to fabricate the results, the parametrized microstructures must

be projected at some finite scale taking into account the minimum printable size. How-

ever, for periodic microstructures it remains difficult to project and continuously grade the

material properties since the boundary and transition between tiles has to be carefully han-

dled [Schumacher 2015, Cramer 2016a]. Recent efforts [Wang 2017, Du 2018] attempt to deal

with this issue. The problem becomes even more acute when dealing with orthotropic mi-

crostructures, as tackled by recent works [Groen 2017, Allaire 2018]. The vector field of or-

thotropy orientation may exhibit singularities which are challenging to deal with (see Fig-

ure 6.1). In general, the problem of mapping a periodic domain following an arbitrary vector

field is known to be hard and computationally expensive [Staten 2007], and is still an open

problem in the three dimensional case.

In this work we consider two different stochastic microstructures (isotropic and orthotropic)

solely parametrized by an anisotropic metric and a Poisson point process. We perform topology

optimization with such microstructures by an homogenization method based akin to [Allaire 2018].

Both stochastic microstructures are amenable to efficient and scalable computation of their

geometry. Unlike previous methods dealing with the projection of orthotropic microstruc-

tures [Groen 2017, Allaire 2018] the presented microstructures are able to easily follow a field of
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orthotropy orientation (possibly with singularities as illustrated in Figure 6.1), without requiring

any additional treatment.

The article is structured as follows. In Section 6.2 we review prior work regarding topology

optimization with periodic microstructures, and the computational challenges that arise. In Sec-

tion 6.3 we provide some previous definitions. In Section 6.4 we describe the two parametrized

stochastic microstructures and their macroscopic linear elastic behavior. In Section 6.5 we de-

tail the topology optimization procedure. In Section 6.6 we present some optimized results with

both isotropic and orthotropic microstructures.

6.2 Related work

Optimizing for material properties. The methods optimizing for continuously spatially

varying material properties (e.g. density) are of direct interest to us [Bendsøe 1988, Allaire 2002a].

Microstructures are one possible approach to map the homogenized properties to an actual

material [Bendsøe 1988, Suzuki 1991, Rodrigues 2002] . It is worth noting that topology opti-

mization via homogenization optimizes for a full elasticity tensor at every point (e.g. free mate-

rial optimization [Bendsøe 1994, Kočvara 2007], laminate optimization [Allaire 1993]), and thus

anisotropy information is available. In practice, it is difficult to physically produce materials

with this type of control, and this information is often unexploited. In this work, we pursue a

tighter integration between stochastic microstructures and topology optimization.

Microstructures for material design. The base tile of a periodic microstructure can be opti-

mized through an inverse homogenization problem to target a specific material [Sigmund 1994b,

Zhou 2008, Radman 2013, Andreassen 2014, Xia 2015]. Recent works [Schumacher 2015, Cramer 2016a,

Wang 2017] extended this methodology to optimize families of periodic tiles with varying prop-

erties. Panetta et al. [Panetta 2015] proposed a family of isotropic tiles based on periodic

truss structures. In these works, tiles with different properties can be spatially arranged to

grade properties, such as obtaining varying degrees of elasticity. This requires a special treat-

ment of the boundaries, either ensuring the tile borders are compatible across the entire tile

set [Panetta 2015], or performing a global optimization step to choose tiles with best matching

borders [Schumacher 2015]. Whenever using a periodic grid care must be taken where the grid

intersects the object surface, as tiles are cut by the surface [Robbins 2016]. Our stochastic

formulation allows us to deviate from periodic methods in order to attain better gradation

properties (see Section 6.4).

Scalable computation of microstructures. Given a specific microstructure geometry the

question of how to fill a target shape with this detailed geometry arises. Wang et al. [Wang 2005]

conform truss lattices in a thick shell below an object’s surface through an efficient procedure

that directly outputs an STL model. Rosen [Rosen 2007] considers the challenges of designing

parts with internal lattices and proposes a slicing algorithm which works directly from the truss

skeleton. Chen [Chen 2007] extends texture mapping and signal specialized parameterization to

infill volumes with density-varying truss lattices. Brennan-Craddock [Brennan-Craddock 2011]

studies several approaches to apply microstructures within objects, and proposes a slicing algo-

rithm exploiting the periodicity of the structures for efficiency. Li et al. [Li 2015] rely on such mi-
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crostructures to optimize the internal cross-sections of an object. Vidimče et al. [Vidimče 2013,

Vidimče 2016] explore a voxel approach to define complex procedural structures within objects,

with an emphasis on multi-materials, usability, and slicing efficiency. In a similar vein, our

method is scales in terms of computation, thanks to the efficient synthesis of the parametrized

stochastic microstructures [Mart́ınez 2016, Mart́ınez 2017].

6.3 Previous definitions

Consider a composite material, whose local microstructure is described through a set of param-

eters p. Thanks to the homogenization method, this composite material can be considered as

homogeneous. Let A∗(p) be its homogenized elasticity tensor, which depends smoothly of the

parameters p. We do not develop here the homogenization theory, the reader could find more

details in [Allaire 2002a]. Let D ⊂ RN , with N = 2 or 3, be a fixed smooth bounded open set,

namely the working domain.

6.4 Parametrized stochastic microstructures

We consider parametrized microstructures induced by a Poisson point process [Moller 2003] on

the domain D. The Poisson point process is specified by an intensity function λ : D → R≥0

which is locally integrable. The intensity measure is defined as:

δ(B) =

∫
B
λ(ε)dε ≤ ∞, B ⊆ D

Function δ(B) determines the expected number of points in B. Intuitively speaking, λ(ε)dε

corresponds the probability for the occurrence of a point in an infinitesimally small ball with

centre ε and volume dε. For an homogeneous Poisson point process λ is the mean number of

points per unit volume (see Figure 6.2(b)). Let S ⊂ D be the set of points induced by a Poisson

point process with intensity function λ.

Figure 6.2: 6.2(b): Homogeneous Poisson point process (λ = 1000) in the unit square. 6.2(a):

Induced microstructure with circular inclusions of radius r = 0.017.
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6.4.1 Homogenization of stochastic microstructures

Consider a microstructure induced by an homogeneous Poisson point process D with intensity

λ, and some parameters p. For instance, a microstructure made of circular inclusions centered

at each point of D with radius r (see Figure 6.2(a)).

Most stochastic homogenization methods seek to establish upper and lower bounds of

A∗(p) [Hashin 1963]. We consider the homogenization of random periodic sample of extent

[0, χ]N . It is known that this approximation converges as χ → ∞, giving back the effective

coefficients of the original random operator. The variance of A∗(p) between different random

microstructures remains low for a large enough extent χ [Xu 2009, Savvas 2016, Mart́ınez 2016,

Mart́ınez 2017]. Thus, we approximate A∗(p) by periodic homogenization of a random mi-

crostructures with parameters p. In particular, we compute the homogenized elasticity tensor

A∗(p) of the periodic sample with the publicly available FEM homogenization code of [Andreassen 2014].

We consider an isotropic base material with Young’s modulus 1 and Poisson’s ratio 0.3.

In the following, we present two different parametrized stochastic microstructures induced

by S.

6.4.2 Voronoi microstructures

For a point p ∈ D, the set of closest points in S is:

C(p, S) = {si ∈ S : ‖si − p‖ ≤ ‖sj − p‖ ,∀sj ∈ S \ {si}}

Where ‖·‖ corresponds to the Euclidean norm. The Voronoi edges of S are:

Ve(S) = {x ∈ D : |C(x, S)| ≥ N}

Given some radius function r : D → R>0, the Voronoi microstructure corresponds to Ve(S)⊕Br,
where ⊕ is the Minkowski sum operator, and Br is a closed ball centered at the origin with

radius r.

In summary, the Voronoi microstructure is parametrized by p = {λ, r} (see Figure 6.3).

Figure 6.3: Voronoi microstructure induced by the set of points of Figure 6.2 (periodic domain),

with r = 0.003.

For r → 0 and λ→∞, it is known that the homogenized elasticity tensor A∗(p) of stochas-

tic Voronoi microstructures [Moller 2012] is close to an isotropic material [Gibson 1999]. An
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Figure 6.4: Isotropic material space of two dimensional Voronoi microstructures, showing the

correlation between the overall density of the microstructure and: (6.4(a)) Young’s modulus,

(6.4(b)) the Poisson’s ratio (base material Poisson’s ratio marked with a dashed line).

isotropic elasticity tensor is defined by two independent elastic constants [Jones 1975] (e.g.

Young’s modulus and Poisson’s ratio). Both parameters λ and r correlate in a power-law fash-

ion with the Young’s modulus [Roberts 2002, Mart́ınez 2016]. This is illustrated by the 2D

homogenization results shown in Figure 6.4.

6.4.3 k-nearest graph microstructures

Consider a graph Gk = {S,E}, where S is the set of vertices, and E is the set of edges connecting

each vertex s ∈ S to its k > 0 nearest (under some metric) points in S \ {s}.
We consider an anisotropic metric, where θ : D → SO(N) corresponds to the metric rotation

and ξ : D → RN>0 to the metric scaling. Let d′(si, sj) be the asymmetric distance between two

points si, sj ∈ S:

d′(si, sj) =
√

(si − sj)M(si)(si − sj)T

where

M(s) = θ(s)diag(ξ(s)−2)θ(s)T

Then, we construct the k-nearest graph with the symmetric metric:

d(si, sj) =
d′(si, sj) + d′(sj , si)

2

The k-nearest graph microstructure corresponds to Gk ⊕Br.
In summary, the k-nearest graph microstructure is parametrized by p = {λ, r, θ, ξ} (see

Figure 6.5).

For r → 0 and λ→∞, the homogenized elasticity tensor A∗(p) of stochastic k-nearest graph

microstructures is close to an orthotropic material [Mart́ınez 2017]. An orthotropic elasticity

tensor is defined by either four (in 2D) or nine (in 3D) independent elastic constants [Jones 1975]

(e.g. Young’s moduli, Poisson’s ratios, and shear moduli varying independently along each
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Figure 6.5: Two k-nearest graph microstructures induced by the set of points of Figure 6.2

(periodic domain), with k = 6, r = 0.003, and θ = R(30◦). R corresponds to a two dimensional

rotation matrix (counter-clockwise). 6.5(a): Metric scaling ξ = {4, 1}. 6.5(b): Metric scaling

ξ =
{

1
4 , 1
}

.

orthogonal axis). As shown in [Mart́ınez 2017], the metric rotation θ directly translates into

the orientation of the orthotropic material, the metric scaling ξ correlates independently with

the different orthogonal Young’s moduli, and the point intensity λ correlates with the overall

elastic moduli. Again, this is illustrated by the two dimensional FEM homogenization results

shown in Figure 6.6.

6.4.4 Comparison with periodic microstructures

Most prior works consider parametrized periodic microstructures [Sigmund 1994b]. This offers

two significant advantages. First, the periodicity allows for compact storage of the microstruc-

ture geometry. Second, periodic homogenization affords for the computation of the parameters

of an equivalent homogeneous material [Allaire 2002a].

However, for periodic microstructures it remains difficult to grade the material properties

since the boundary and transition between tiles has to be carefully handled [Schumacher 2015,

Cramer 2016a, Wang 2017, Zhu 2017]. This problem becomes even more acute when grading

anisotropic material properties (e.g. following some orthotropy material orientation). Namely,

periodicity imposes strict boundary conditions that need to be carefully handled. On the con-

trary, stochastic microstructures do not suffer from this drawbacks, due to their less constrained

formulation (see Figure 6.7).

6.4.5 Geometry computation

Microstructures are intended to fill large working domains. Most approaches explicitly store the

microstructure geometry [Wang 2005, Robbins 2016, Gorguluarslan 2017]. This quickly leads

to large data structures, and will eventually render impractical the geometry computation.

To avoid the aforementioned problems we consider a procedural computation [Lagae 2010]

of stochastic microstructures, instead of explicitly storing their geometry. Consider a stochastic

microstructure defined as a function M : D → {0, 1}, 0 being void material, and 1 solid material.
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Figure 6.6: Orthotropic material space of two dimensional k-nearest graph microstructures.

We sample the interval of metric scaling ξ0 = [1, 6], with fixed ξ1 = 1. Correlation between

1) metric scaling (from 6.6(a) to 6.6(c)), 2) the overall density (from 6.6(d) to 6.6(f)), with

the orthogonal Young’s moduli (left column), the orthogonal Poisson’s ratio (middle column),

and the independent shear modulus (right column). When approaching higher density, the

homogenized tensor converges to the base material properties.
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Figure 6.7: Grading material density with stochastic parametrized microstructures.

6.7(a): Inhomogeneous Poisson point process in the unit square with λ(ε) =

500
(

1 + 200 ‖ε− [0.5, 0.5]‖3
)

. 6.7(b): Corresponding Voronoi microstructure. 6.7(c): Cor-

responding k-nearest microstructure with concentric variation of the metric rotation θ and a

constant metric scaling ξ = {4, 1}.
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M is a procedural function if:

• M can be evaluated for all points of D in constant time and constant memory computational

complexity.

• The size of the program to compute M is constant.

The time/space complexity quantifies the amount of time/space taken by an algorithm to run as

a function of the length of its output. In other words, having a constant factor implies that the

algorithm complexity is independent of the output size. Thus, a procedural function trivially

scales with the increase of microstructure geometry size and complexity.

A procedural computation of Voronoi microstructures [Mart́ınez 2016] and k-nearest graph

microstructures [Mart́ınez 2017] have already been proposed.

6.5 Optimization

6.5.1 Settings of the problem

The domain D is filled by the composite material, whose microstructure at the point x ∈ D
is given by p(x). This composite structure is clamped on ΓD ⊂ ∂D and submitted to surface

loads g on ΓN ⊂ ∂D. The homogenized displacement u∗ and the homogenized stress tensor σ∗

are the solutions of the following homogenized elasticity problem:

div(σ∗) = 0 in D,

σ∗ = A ∗ (p(x))e(u∗) in D,

u∗ = 0 on ΓD,

σ∗ · n = g on ΓN ,

σ∗ · n = 0 on Γ = ∂D \ (ΓD ∪ ΓN ),

(6.1)

where e(u∗) = 1
2(∇u∗+∇u∗T ) is the homogenized strain tensor, and n is the normal to ∂D.

The purpose of topology optimization is to determine the composite structure, described by

the field p over the whole domain D, that minimizes a given objective function J∗, under for

example a volume constraint:

min

p∫
D ρ(p) = V

J∗(p) , (6.2)

where ρ is the local density of the composite material and V is the target volume. In the

following the objective function will be exclusively the compliance:

J∗(p) =

∫
ΓN

g · u∗ds . (6.3)

We emphasize that the compliance is also equal to the minimum of an energy:

J∗(p) = min

τ ∈ H0

∫
D
A∗−1(p(x))τ : τdx , (6.4)
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where :

H0 =

τ ∈ L2(D,Ms
3)|

div(τ) = 0 in D

τn = g on ΓN

τn = 0 on Γ


Hence, the shape optimization problem 6.2 can be rewritten as:

J∗(p) = inf

τ ∈ H0

min

p ∈ P∫
D ρ(p) = 0

∫
D
A∗−1(p(x))τ : τdx , (6.5)

where P is the admissible set of the parameters p.

6.5.2 Optimization with a parametrized material

We present briefly the optimization method, one could find more details in [Allaire 2018].

General optimization process. The minimization problem 6.5 can be solved using an

alternate algorithm: we minimize successively with respect to the stress tensor σ and to the

material parameters p. The corresponding Lagrangian is given by:

L(p, σ, `) =

∫
D
A∗−1(p(x))σ : σdx+ `(

∫
D
ρ(p(x))dx− V ) ,

where ` is the Lagrange multiplier associated to the volume constraint.

The minimization with respect to the stress field σ is done by solving the elasticity problem

6.1, with the current state for the material parameters p. First we compute the displacement

field u ∈ VD solution of :

∀v ∈ VD
∫
D
A∗(p(x))e(u) : e(u)dx =

∫
ΓN

g · vds , (6.6)

where VD = {v ∈ H1(D,RN |v = 0 on ΓD}. The stress tensor is then given by:

σ = A∗(p)e(u) .

The minimization with respect to the material parameters p = (pi)1≤i≤np is done using

the projected gradient algorithm. Since we consider here only the case of the compliance, our

problem is self-adjoint. Hence the descent direction dpi is given by:

dpi =
∂A∗

∂pi
(p(x))A∗−1(p(x))σ : A∗−1(p(x))σ + `

∂ρ

∂pi
(p(x)) . (6.7)

The update of the material parameters at iteration n is given by:

pn+1
i = PP(mn

i + µdpi) , (6.8)

where µ > 0 is the step size and PP is the projection operator on the set P of admissible

material parameters p. The Lagrange multiplier ` is determined by a dichotomy process in

order to respect the volume constraint at each iteration. We emphasize that the several terms

in the descent direction (6.7) are computed once by iteration, thanks to the linearity of (6.7)

with respect to `.
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Consideration about the orientation of the material. In the following, we consider

two kinds of material: an isotropic one and an orthotropic one. The isotropic material is only

parametrized by its local density ρ. Hence the parameter p is reduced to ρ in this particular

case.

Contrary to an isotropic material, an orthotropic one can be suitably oriented in the domain

D, in order to support efficiently the local stress. The orientation of the material can be

seen as one of the material parameters pi. Hence the above gradient algorithm could be used

on it. However, we can improve the efficiency of our algorithm using the Pedersen formulas

[Pedersen 1989]: for a given stress field σ the optimal orientation of an orthotropic material in

order to minimize the compliance is the one aligned with the principal directions of σ.

Let be p̃ be the material parameters excluding the orientation, denoted by α. Let A∗0(p̃) be

the homogenized elasticity tensor corresponding to the material parameters p̃ for a reference

orientation. Let R(α) be a fourth order tensor defined by:

∀ξ ∈Ms
N R(α)ξ = Q(α)T ξQ(α) ,

where Q(α) ∈ SO(N) is the rotation matrix from the reference orientation to the orientation

α. The dependency of A∗(p) with respect to the orientation α is then given by:

A∗(p) = R(α)A∗0(p̃)R(α)T .

At each iteration, we have to minimize with respect to the orientation α. Thanks to Pedersen

formulas, the optimal orientation is given by the unit eigenvectors v1, and v2 of the stress tensor

σ. Those eigenvectors are ordered according to their respective eigenvalues : λ1 < λ2, in order

to ensure the continuity of the orientation of the composite in the whole domain D. Then we

have to find the angle α such that v1 = (cos(α), sin(α))T .

In fact, the rotation tensor R(α) depends only on the angle 2α. Let the vector b =

(cos(2α), sin(2α))T . b is then given by:

b =
1√

(σ11 − σ22)2 + 4σ2
12

(σ11 − σ22, 2σ12)T . (6.9)

Complete optimization algorithm. The algorithm has been implemented in the finite

elements software FreeFem++ [Hecht 2012]. All unknowns are discretized using P1-functions.

Here is the complete optimization algorithm:

1. Initialization of the parameters p0: either ρ0 for isotropic material, or b0 and p̃0 for or-

thotropic material.

2. Iteration until convergence, for n ≥ 0:

(a) Computation of the stress field σn by solving the variational formulation (6.6) with p0,

using finite element method

(b) If orthotropic material : Computation of the optimal orientation given by the vector bn+1,

using (6.9) with σn.

(c) Computation of the gradient descent (6.7), with σn and pn, then update of the parameters

pn+1 with (6.8).
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D

ΓD

ΓNΓN

(b) Electric mast

Figure 6.8: Boundary conditions for the bridge and the electric mast problems

6.6 Numerical results of the optimization

The above optimization algorithm has been implemented for a bridge problem and for an electric

mast problem, with two kinds of material: Voronoi microstructures, which are isotropic, and

k-nearest graph microstructures, which are orthotropic. For both cases, the volume constraint

is set to V = 30%.

The domain size of the bridge is 22×13, it is discretized by a triangular mesh (9000 vertices).

A unit vertical load is applied at the middle of the bottom border on an interval of length 2,

ΓN , see Figure 6.8(a). A sliding boundary condition is applied on two symmetric intervals of

length 1 starting at a distance 1 from the sides, ΓD.

The electric mast is high of 20 and width of 18, its pillar is high of 15 and width of 6. It is

discretized by a triangular mesh (11000 vertices). A unit vertical load is applied at the middle

of the bottom border on an interval of length 1, ΓN , see Figure 6.8(b). A Dirichlet boundary

condition is applied on the bottom border, ΓD.

6.6.1 Isotropic material

The Voronoi microstructures are parametrized by their density, ρ, linked to the radius r. We run

the algorithm respectively on the bridge case and on the electrical mast case. The optimized

compliance are respectively equal to 63.8 and 68.02. Results are respectively displayed on

Figures 6.9 and 6.10. The microstructure auto penalized: the density is taken only two values,

the upper and the lower bounds of the admissible range for the density, [0.1; 1]. In other

words, the final structure does not feature microstructure, it is only full material and most

reachable void. The final structures are very close to shapes optimized with classic shape

optimization methods, like SIMP method (Solid Isotropic Material with Penalization method)

[Bendsøe 1989] or level-set methods [Allaire 2004b]. Note that those methods optimize only the

macroscopic distribution of the material in the whole domain D, without any consideration for

microstructures.



212 Chapter 6. Optimization with stochastic microstructures

One could conclude that Voronoi microstructures are not relevant in shape optimization.

But, if they are not efficient for compliance minimization in single-load cases, other objective

functions have to be investigated.

0.0

0.2

0.4

0.6

0.8

1.0

L
o
ca

l
d

en
si

ty
θ

(a) Local density ρ.

0

10

20

30

40

P
oi

n
t

in
te

n
si

ty
λ

(b) Point intensity λ

(c) r = 0.016, V = 31.5% (d) r = 0.01, V = 30.9%

Figure 6.9: Isotropic case for the bridge. Volume constraint V = 30%. Compliance J∗(p) = 63.8.

6.6.2 Orthotropic material

The k-nearest graph microstructures are parametrized by the metric orientation θ, their density

ρ ∈ [0.1; 1], and their metric scaling ξ0 ∈ [0, 6] (fixed ξ1 = 1). We run the algorithm respectively

on the bridge case and on the electric mast case. Results are respectively displayed on Figures

6.11 and 6.12. There is no autopenalization of the microstructures. Thanks to the orientation

and the stretch, the material can be efficiently locally distributed to support the stress. The

optimized compliances are respectively equal to 60.2 and 65.1, which is about 5% better than

the optimized compliances with isotropic material.

We run another test, where the density is fixed to ρ = 0.3 in the whole domain. Only

the orientation and the stretch are optimized. Results are displayed on Figures 6.13 and 6.14.

The optimal orientation is very closed to the one, where all parameters were optimized. The

optimized compliances are respectively equal to 112.4 and 140.6, which are unsurprisingly higher

than the previous ones.

The density is the parameter with the better leverage for compliance minimization, but it is

not efficient to optimize a microstructure only with respect to the density. All parameters have

to be carefully and simultaneously optimized. Note that only compliance minimization has been
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Figure 6.10: Isotropic case for the electric mast. Volume constraint V = 30%. Compliance

J∗(p) = 68.02.
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Figure 6.13: Orthotropic case with fixed density ρ = 0.3. Compliance J∗(p) = 112.4.
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performed here. Other applications for those microstructures have still to be investigated in

shape optimization, for example compliance minimization in multiple-loads cases for isotropic

cells, or optimal filing of shapes.

6.6.3 Discussion

There exists small differences between the target volume constraint and the actual volume of

the microstructure. This is largely explained by two different factors. First, the microstructure

geometry being computed at a finite scale (r > 0). In particular, sudden changes of the local

density, may lead to divergences with respect the target volume constraint as discussed in

Figure 6.15. Finally, the reconstructed of the material space shown in Figures 6.4 and 6.6 is

approximate, since we consider a finite periodic domain to perform the homogenization.

6.7 Conclusions and future work

We have presented an approach to perform topology optimization with parametric and stochas-

tic microstructures, that it is notably well-suited for orthotropic materials, due to its intrinsic

ability to effortlessly follow a vector field.

Although all the presented results are in 2D, the formulation of our approach naturally

extends to the 3D dimensional case. We find particularly promising the case of 3D orthotropic

microstructures, following an arbitrary vector field of orthotropy orientation. The problem of

finding a 3D periodic parametrization is known to be particularly hard [Sokolov 2016].

As discussed in Section 6.6.3 due to the finite scale of the projected microstructures, the

microstructure volume may differ from the target volume constraint. We would like to study

how to compensate for this finite scale side effect, possibly by taking into account the radius of

the microstructure edges r in the projection phase.
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Figure 6.15: Studying the effect of abrupt changes of target density, paired with a high metric

scaling ξ0 = 4. Given a target overall density θ = 0.3, the two different densities θ1 and θ2

are parametrized with β ∈ [0, 1
2 ] such that θ1 = 2θβ and θ2 = 2θ(1 − β). Thus, θ = θ1+θ2

2 .

6.15(a): Square domain with dimension 1 × 1. The radius of the k-nearest microstructures is

set to r = 0.0016. 6.15(e): Results for 40 random realizations of the same microstructure with

varying β ∈ [0.05, 1
2 ]. Due to the close interaction the microstructures in θ1 and θ2, for low

values of β (high contrast of densities, and high metric scaling) the overall density increases

significantly from the target one of θ = 0.3. This likely explains why the results exhibiting a

field of density with high contrast(Figures 6.11 and 6.12) show a higher overall density than the

target one.



220 Chapter 6. Optimization with stochastic microstructures



Chapter 7

Topology optimization of 3D

structures built with orthotropic

lattice materials

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.2 Setting of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.3 Preprocessing : homogenized Hooke’s laws of the microstructures . 225

7.3.1 Set of admissible microstructures . . . . . . . . . . . . . . . . . . . . . . 225

7.3.2 Cell problem and homogenized elasticity tensor . . . . . . . . . . . . . . 227

7.3.3 Cell orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

7.3.4 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.4 Processing: optimization among the set of periodic composite ma-

terials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.4.1 Settings of the homogenized problem . . . . . . . . . . . . . . . . . . . . 229

7.4.2 Numerical results and discussion . . . . . . . . . . . . . . . . . . . . . . 232

7.4.3 Regularization of the orientation . . . . . . . . . . . . . . . . . . . . . . 233

7.5 Post-Processing : projection of the optimized microstructure . . . . 239

7.5.1 Sequences of shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

7.5.2 Computation of the projection map ϕ . . . . . . . . . . . . . . . . . . . 241

7.5.3 Coherent orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

7.5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

7.5.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

7.6 Other numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . 248

This chapter is a submitted article:

3-d topology optimization of modulated and oriented periodic microstructures by

the homogenization method, by P. Geoffroy-Donders, G. Allaire and O. Pantz.

Abstract. This paper is motivated by the optimization of so-called lattice materials which

are becoming increasingly popular in the context of additive manufacturing. Generalizing our

previous work in 2-d we propose a method for topology optimization of structures made of

periodically perforated material, where the microscopic periodic cell can be macroscopically

modulated and oriented. This method is made of three steps. The first step amounts to compute
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the homogenized properties of an adequately chosen parametrized microstructure (here, a cubic

lattice with varying bar thicknesses). The second step optimizes the homogenized formulation

of the problem, which is a classical problem of parametric optimization. The third, and most

delicate, step projects the optimal oriented microstructure at a desired length scale. Compared

to the 2-d case where rotations are parametrized by a single angle, to which a conformality

constraint can be applied, the 3-d case is more involved and requires new ingredients. In

particular, the full rotation matrix is regularized (instead of just one angle in 2-d) and the

projection map which deforms the square periodic lattice is computed component by component.

Several numerical examples are presented for compliance minimization in 3-d.

7.1 Introduction

The homogenization method is the ancestor of many popular and successful algorithms for

topology optimization of structures. Its main idea is to introduce microstructures with a con-

tinuously variable material density as admissible designs in the optimization process. This idea

was first introduced by mathematicians [Kohn 1986], [Lurie 1982], [Murat 1985] (see the text-

book [Allaire 2002a] for more references), who motivated the use of such composite materials by

the notion of relaxation, i.e., making the optimization well-posed. The homogenization method

became popular thanks to the pioneering paper [Bendsøe 1988] which was the first one to nu-

merically address a realistic problem in the elasticity setting. Since then, the homogenization

method has been replaced by its much simplified version, the so-called SIMP method introduced

in [Bendsøe 1989], [Zhou 1991] (see the textbook [Bendsoe 2003] for a more complete account),

which is the most commonly used method in commercial topology optimization software, as

well as in many academic contributions. Compared to the homogenization method, which relies

on true composite materials, possibly anisotropic, SIMP uses only fictitious isotropic materials.

Since intermediate densities (between full material and void) are penalized in the end, there is

indeed no need to have a detailed knowledge and optimization of microstructures.

Nevertheless, the recent progress of additive manufacturing techniques revive the inter-

est for the use of graded or microstructured materials since they are now manufacturable.

Their range of applications is very large, from standard light-weighting mechanical structures

[Wang 2013], to the design of bone scaffolds [Cramer 2016b, Khanoki 2012], passing by heat

exchangers [Luo 2007].

Although homogenization theory applies to any kind of composite materials (without any

restriction on the geometry of their microstructure), in this work we restrict ourselves to peri-

odic homogenization and macroscopically modulated periodic structures. The reason for this

choice is the obvious manufacturability of such periodic structures, although other choices

would be possible, like (stationary) random structures (see e.g. [Mart́ınez 2017]). The opti-

mization of periodic microstructure for composite materials is an old topic [Barbarosie 1997],

[Barbarosie 2010a], [Barbarosie 2010b], [Haslinger 1995], [Lipton 2002], [Xia 2008]. Typically,

the properties of the microstructures are homogenized (or averaged), then parametrized in or-

der to optimize only a few scalar fields. Very often, these microstructures are anisotropic.

However, their orientation is rarely taken into account and optimized, although it is well-

known that their orientation is a crucial and determining parameter in topology optimization
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[Allaire 2002a, Pedersen 1989]. Actually, if optimizing the microstructure orientation is not

difficult, reconstructing the oriented periodic structure is a challenging issue. In particular,

two neighbouring cells, if oriented differently, either overlap or leave a small gap between their

sides. Therefore, the periodic structure might be not connected or would not respect an im-

posed volume constraint [Zhou 2008, Cramer 2016a]. Morphing approaches have been suggested

[Schumacher 2015], but they are not effective as soon as the cell orientation varies in the struc-

ture. Another method, developed in 2-d [Pantz 2008, Allaire 2018, Groen 2017] alleviates this

difficulty by deforming the original periodic grid with a diffeormorphism, which ensures the co-

hesion between cells by slightly distorting them. This diffeormorphism is defined and computed

in such a way that, roughly speaking, its gradient is aligned with the optimal orientation of the

periodicity cell.

The goal of the present paper is to extend this approach from the 2-d setting to the 3-

d case. It is not a simple matter since many new difficulties appear, which are not merely

computational issues but also modeling and theoretical issues. In particular, orientation in 2-d

is easily parametrized by a single angle which, furthermore, can satisfy a conformality condition,

ensuring preservation of angles upon deformation. There is no such conformality condition in

3-d and there are several different ways of modeling orientation. Here, orientation would be

represented by a rotation matrix. There are two main novelties in the present work. First, we

propose a new method to regularize the orientation of the cells in 3-d, which avoids the sign

indeterminacy of a vector representing a direction (see Section 7.4.3). Second, we extend in

3-d our 2-d projection method [Allaire 2018] in order to reconstruct a modulated and oriented

periodic structure with properties closed to the homogenized optimal design. The key difference

with respect to the 2-d setting is that the projection is made direction by direction and not

globally (see Section 7.5).

The content of this paper is the following. Section 7.2 introduces the optimal design problem

of compliance minimization in 3-d and its relaxation using the homogenization approach.

Section 7.3 is devoted to the first or pre-processing step of our method. It amounts to choose

a parametrized periodicity cell, here a cube drilled from end to end by three rectangular holes,

and to compute its homogenized elasticity properties, as well as their derivatives, with respect

to the cell parameters. We also discuss a representation of the cell orientation by a set of three

orthogonal unit vectors (in 3-d) in Section 7.3.3.

Section 7.4 focuses on the second step of our method, namely the optimization of the homoge-

nized formulation of the 3-d compliance problem, with respect to the periodicity cell parameters.

We rely on a gradient-based algorithm where the gradient is classically computed by an adjoint

approach. The optimal orientation is found analytically [Pedersen 1989], [Norris 2005] since we

consider single load compliance minimization problem. However, for more general problems we

could have used a more standard, albeit less efficient, gradient algorithm for the orientation

(see Remark 13). The method differs from the one developed in 2-d [Allaire 2018] by the reg-

ularization of the cell orientation. Indeed, after optimization, the orientation has to be slightly

regularized in order to lead to reasonable results during the post-processing step. The regular-

ization method, presented in Section 7.4.3 is one of the main novelties of the present work. It

relies on the fact that the chosen orientation representation is not unique: each three vectors

can be replaced by its opposite. Hence, the regularization approach has to take into account

this property. A symmetric matrix, with eigenvectors given by these three orientation vectors,
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is introduced. The regularization of this matrix is then preferably chosen, rather than a direct

regularization of the orientation vectors.

Section 7.5 deals with the third or post-processing step, namely the projection of the ho-

mogenized design over genuine shapes. This is the second main novelty of the present work.

As in 2-d [Allaire 2018], a vector field ϕ(x), which distorts a regular grid according to a given

local orientation, is defined. The main difference with 2-d is that the map ϕ is no longer a

conformal map, which would be a too restrictive requirement in 3-d. Section 7.5.2 introduces

a method to compute the map ϕ. Numerical implementation is detailed in Section 7.5.4. The

numerical results are displayed in Section 7.5.5 for a cantilever test case. We emphasize that the

orientation regularization and the post processing algorithm are completely general, meaning

that they are not restricted to single load compliance minimization, and that they can readily

be implemented for any other optimization problem.

In Section 7.6 numerical examples of the whole process applied to a bridge and to an electrical

mast are displayed.

7.2 Setting of the problem

Let D ⊂ R3 be a fixed smooth bounded open set (the working domain) and Ω ⊂ D the

reference configuration of an isotropic elastic body. The structure Ω is clamped on ΓD ⊂ ∂Ω,

and submitted to surface loads g on ΓN ⊂ ∂Ω. For simplicity these parts ΓD and ΓN of the

boundary are assumed to be fixed subsets of ∂D. We assume that the solid is made of an

homogeneous isotropic linear elastic material of Hooke’s law A, with Lamé coefficients λ and µ.

The displacement u and the stress tensor σ are then solutions of the system

div(σ) = 0 in Ω,

σ = Ae(u) in Ω,

u = 0 on ΓD,

σ · n = g on ΓN ,

σ · n = 0 on Γ = ∂Ω \ (ΓD ∪ ΓN ),

where e(u) = 1
2(∇u+∇uT ) is the strain tensor (the symmetrized gradient of the displacement).

Shape and topology optimization consists in determining the domain Ω that minimizes a given

objective function J ,

min

|Ω| ≤ V,
ΓD ∪ ΓN ⊂ ∂Ω

J(Ω) (7.1)

where V ∈ R+ is the maximum admissible volume. A typical objective function is the compli-

ance

J(Ω) =

∫
ΓN

g · u ds .

As is well known [Allaire 2002a], for most cost functions J , problem (7.1) does not admit a

solution. This is due to the fact that composite shapes, made of very small microstructures,
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can always outperform genuine shapes made of plain material. A composite shape is described

by the local density θ(x) of material and a homogenized elasticity tensor A∗(x) that depends

on the microstructure at the point x ∈ D. The homogenized or macroscopic displacement u∗ of

the structure is then solution of the system

div(σ) = 0 in D,

σ = A∗e(u∗) in D,

u∗ = 0 on ΓD,

σ · n = g on ΓN ,

σ · n = 0 on Γ = ∂D \ (ΓD ∪ ΓN ).

We emphasize that the mechanical problem is now defined on the whole working domain D

and no longer on a shape Ω ⊂ D. Then, the minimization problem should be rewritten as a

minimization problem of a relaxed cost function J∗ with respect to the homogenized elasticity

tensor A∗ and the density θ

min∫
D θ(x) dx ≤ V,

A∗(x) ∈ Gθ(x) a.e. x ∈ D

J∗(θ,A∗) , (7.2)

where Gθ(x) is the set of effective or homogenized Hooke’s laws for microstructures of density

θ(x). The main difficulties in the homogenized formulation (7.2) are, first, to compute the

relaxed cost function J∗ (which may be different from the original cost function J), second and

more importantly, to give a complete and explicit description of the set of admissible Hooke’s

laws Gθ. It is only for special cases (like compliance minimization) that (7.2) can be made fully

explicit [Allaire 2002a]. Furthermore, composite shapes are only ideal mathematical objects.

Very often, optimal composites are multi-scale microstructures (like sequential laminates) which

cannot be actually built as they are made of infinitely small details. To circumvent these

obstacles, we restrict the set of admissible composites to periodic microstructures for which the

Hooke’s law can be numerically computed and, furthermore, which can be explicitly projected

on a so-called lattice structure as in [Allaire 2018], [Pantz 2008]. Of course, optimizing periodic

composites is an old idea that goes back at least to [Bendsøe 1988]. The new idea here is that

this periodic microstructure will be projected to build a sequence of genuine non composite

shapes with increasing levels of detail that converges toward the optimal periodic composite.

7.3 Preprocessing : homogenized Hooke’s laws of the microstruc-

tures

7.3.1 Set of admissible microstructures

From now on, we limit our analysis to a simple class of periodic composites, which is a natural

extension to 3-d of the one used in the seminal paper [Bendsøe 1988]. The periodic cell is the

unit cube drilled from face to face by three cylindrical holes with rectangular cross sections

(see Figure 7.1). Hence this class of composites is parametrized by its geometric parameters
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m = (m1,m2,m3), where (mi−1,mi+1) denotes the size of the holes rectangular cross sections

perpendicular to direction ei. We emphasize the fact that we only have three dimensions,

since each hole has a common dimension with each of the two remaining holes. The periodic

cell with geometric parameters m is denoted Y (m). The solid volume fraction in Y (m) is

θ(m) = 1−m1m2 −m1m3 −m2m3 + 2m1m2m3. A mathematically more precise definition of

the cell Y (m) is given in Section 7.5.1. Moreover, the cubic cell can be freely oriented in the

space. This orientation is denoted by ω (an explicit definition of ω will be given later in Section

7.3.3).

Rank 3-laminates are known to reach the optimum for single-load compliance minimization

problems [Allaire 2002a]. The directions of lamination are given by the principal direction of

the stress tensor and, consequently, form an orthogonal basis. There are two regimes for the

optimal proportions of lamination. First, where the stress tensor is quite isotropic, the opti-

mum laminate is a non degenerate rank-3 laminate. This microstructure features closed holes.

Second, where the stress tensor is strongly anisotropic (the principal stress in one direction

is much larger than in the orthogonal plane), the optimum is reached by a degenerate rank-

3 laminate, namely a rank-2 laminate. Such a microstructure looks like tubular holes in the

direction of the largest principal stress. In any case, those laminates feature up to three well

separated microscopic scales and thus they are far from being manufacturable, even by addi-

tive manufacturing processes. Hence we have to choose a simpler microstructure, featuring a

single microscopic scale, probably sub-optimal but manufacturable. Another reason for choos-

ing the periodic cell of Figure 7.1 is that it does not contain closed holes (contrary to rank-3

laminates) and thus the metal powder can be recovered after the building process. Indeed,

another possible periodic cell, which would be more similar to a rank-3 laminate, is a cubic cell

with solid walls and a closed hole. However it is not manufacturable since the metal powder

would be trapped in the closed hole and could not be removed Hence, our choice of periodic cell

is not the union between three orthogonal planes, but their intersection, resulting in through

holes. Obviously, this microstructure is not optimal, and could be improved (for example, by

rounding its corners and edges to avoid local stress concentrations), possibly at the detriment

of the manufacturability. Eventually, other manufacturable microstructures could be consid-

ered. For example a generalization of a rank-2 laminate (from the second regime), namely a

material featuring through tubular holes, may be relevant, although not optimal, in the single-

load compliance minimization problem. Other manufacturable orthotropic materials, dedicated

to additive manufacturing are developed [Mart́ınez 2017] and could be good candidates too.

We emphasize that orthotropic periodic materials whose elastic properties can be modulated

through cell parameters in three orthogonal directions separately, like rank-3 laminates, are the

best candidates for single-load compliance minimization problems. Indeed, in our numerical

experiments, see Chapter 3, compliance minimization with isotropic cells, like Kelvin foams

[Li 2006], or orthotropic cells modulated only by density, leads to black and white designs (with

almost no composite zones of intermediate densities), less optimal than the structures computed

by the present method. In other words, these microstructures are self-penalizing (a feature al-

ready remarked for isotropic materials in [Aubry 1999]). In any case, the present optimization

method could be implemented for other orthotropic composites without any additional work.

Remark 12. Recall that we focus here on single-load compliance minimization problems (see
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Remark 13). For other objective functions, suitable microstructures are not discussed here and

should be investigated.

m3

m1

m2

e1

e2
e3

Figure 7.1: Periodicity cell Y (m).

7.3.2 Cell problem and homogenized elasticity tensor

The periodic cell Y (m) is the unit cube perforated by holes, the boundary of which is denoted by

Γint. It defines a composite material which has a macroscopic of effective behavior characterized

by an homogenized elasticity tensor A∗. In other words, the local geometry of the cell Y (m) is

enough to describe the elastic properties of the composite material. More detailed explanations

about the homogenization method could be found on Chapter 2.

To compute this homogenized tensor A∗, one needs so-called correctors wij , corresponding to

the local displacements in the cell Y (m), defined for each pair (i, j) ∈ {1, 2, 3}2 as the solutions

of the following cell problem
div(A(eij + e(wij))) = 0 in Y (m)

A(eij + e(wij))n = 0 on Γint

y 7→ wij(y) (0, 1)3-periodic

(7.3)

where eij = 1
2(ei ⊗ ej + ej ⊗ ei) is a basis of the symmetric tensors of order 2 and n is the

normal to the hole boundaries Γint. This problem admits a unique solution, up to an additive

translation. The variational formulation of the cell problem (7.3) is: find wij ∈ H1
#(Y (m),R3)

such that

∀φ ∈ H1
#(Y (m),R3)

∫
Y (m)

Ae(wij) : e(φ) +

∫
Y (m)

Aeij : e(φ) = 0 . (7.4)

The tensor A∗ is then given in terms of the solutions wij of the cell problems by

A∗ijkl =

∫
Y (m)

A(eij + e(wij)) : (ekl + e(wkl))dy ∀i, j, k, l ∈ {1, 2, 3}. (7.5)



228 Chapter 7. Optimization with 3D orthotropic lattice material

The above equation defines indeed a coercive fourth order tensor with the suitable symmetric

properties of an elasticity tensor.

Since the geometry of the cell Y (m) depends on the parameter m, the corresponding ho-

mogenized elastic tensor depends on the parameters m too, and it is denoted A∗(m). The

sensitivity of the homogenized tensor A∗(m), with respect to m, is given by the same formula

than in 2-d, (see Chapter 4, equation (4.6)). Since, by virtue of its definition (7.5), A∗ijkl is an

energy, computing the sensitivity of A∗(m) is a self-adjoint problem (no adjoint are necessary)

and the derivative formula is easily obtained by differentiating (7.5) with respect to the shape.

7.3.3 Cell orientation

The periodic cells Y (m) may be oriented and their orientation can vary in the working domain

D. Indeed, they are orthotropic: they feature three orthogonal planes of symmetry. Therefore,

their elastic behavior depends also on their 3-d orientation, denoted ω. The homogenized elastic

tensor will be denoted A∗ω(m) (the orientation is in subscript in the chosen notation). Indeed,

thanks to a rotation operator, the homogenized tensor A∗ω(m) can easily be computed for any

orientation ω from A∗ω0
(m), where ω0 is an arbitrary orientation. Consequently, if the orientation

is fixed, the homogenized tensor can be seen as depending only on the geometric parameters.

On the contrary, the geometric parameter m is an intrinsic variable of the elasticity tensor.

The modeling of the cell orientation in 3-d is a delicate problem: one could use Euler angles

or quaternions for example. However our choice is dictated by the optimization method. Indeed,

the optimal orientation in a compliance minimizing problem with orthotropic cells is given by the

three principal directions of the stress tensor (see Section 7.4.1). Hence, we view the orientation

ω as the set of three unit vectors aligned with the principal directions: ω = (ω1, ω2, ω3). Those

vectors form an orthonormal basis, since they are eigenvectors of a symmetric matrix, here the

stress tensor.

The reference orientation of the cell is the canonical basis ω0 = (e1, e2, e3), as in Figure 7.1.

For simplicity, we set A∗ω0
(m) = A∗(m).

Let SO(3) be the special orthogonal group, and let Q(ω) ∈ SO(3) be the rotation matrix,

whose columns are respectively the unit vectors ω1, ω2 and ±ω3. We emphasize that in order

to define a rotation matrix (i.e. an element of SO(3)), we have to ensure that its determinant is

equal to 1, and not to −1: this defines the sign of ±ω3. Eventually Q(ω) is the rotation matrix

between the orientations ω0 and ω.

Let R(ω) be the fourth-order tensor defined by :

∀ξ ∈Ms
3 R(ω)ξ = Q(ω)T ξQ(ω) ,

where Ms
3 is the set of 3 × 3 symmetric matrices. The dependency of A∗ω(m) with respect to

the orientation ω can be made explicit as follows:

A∗ω(m) = R(ω)TA∗(m)R(ω) . (7.6)

We emphasize that the knowledge of R(ω) does not define uniquely ω, since the vectors ωi are

chosen arbitrarily up to their sign. This particularity is inherited from the principal directions of

the stress tensor. However, the signs of the vectors ωi have no impact on the result of equation

(7.6).
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7.3.4 Numerical implementation

The set of effective elasticity tensors {A∗(m) such that m ∈ [0, 1]3} has to be characterized. The

proposed strategy consists in computing the material properties for a discrete sample of param-

eters values and using the collected data to construct a surrogate model for the constitutive law

(by a simple interpolation).

A few remarks lead to a massive reduction of the cost of this characterization. First, the

considered cells are orthotropic, hence only 9 coefficients (out of 36) of the homogenized tensor

A∗ω0
(m) have to be computed in order to characterize it. Second, the homogenized tensor does

not have to be computed on the whole admissible set [0, 1]3 of the geometric parameters m.

Indeed, a permutation s of the parameters mi is equivalent to a rotation of R(s(ω0)), where

s(ω) = (ωs(1), ωs(2), ωs(3)). Hence, we run the characterization of A∗ω0
(m) only on the subset

{m ∈ [0, 1]3 |m1 ≤ m2 ≤ m3}, dividing by a factor 6 the number of samples.

The computations of A∗(m) are performed with FreeFem++ [Hecht 2012]. We used a regular

discretization of parameters values, with 20 elements in each direction. The homogenized tensor

is numerically represented as a P1 function over the domain [0, 1]3. Hence the interpolation

giving the homogenized tensor on the whole domain is automatically computed by FreeFem++.

The Young modulus of the isotropic material used to design those cells is E = 15GPa and its

Poisson’s ratio is ν = 0.35.

Results for A∗(m) can not be easily displayed since it would involve 3-d plots. Therefore

we content ourselves in displaying only two slices of A∗(m) in Figures 7.2(a) and 7.2(b). The

parameter m3 is fixed to 0.5 and the parameters m1 and m2 vary from zero to one. The

coefficient A∗1111 (respectively A∗3333) and its gradient are displayed on Figure 7.2(a) (respectively

7.2(b)). Those coefficients are smooth functions of m1 and m2. Moreover they decrease when

m1 (respectively m2) increases, as is expected. The entry A∗1111 is more sensitive to a variation

of m2 when m1 is fixed than the opposite. Indeed, the larger the m2×m3 rectangular hole, the

weaker the cell is in the direction x1. Moreover, when m2 = 0 (resp. m1 = 0), the cell features

a crack of normal e2 (resp. e1): the homogenized properties do not reach the ones of the full

material. The entry A∗3333 is a symmetric function of the parameters m1 and m2. Indeed, in the

direction x3, the more significant source of loss of rigidity comes from the m1×m2 rectangular

hole, no matter its orientation. When m1 = m2 = 0, the cell features a crack line in the

direction x3. For a load in the same direction, the crack line has no impact: the homogenized

coefficient A∗3333 is equal to the same coefficient of the full material: A3333.

7.4 Processing: optimization among the set of periodic com-

posite materials

7.4.1 Settings of the homogenized problem

In this paper, only compliance minimization problems, as defined in Section 7.2, are considered.

Recall that its relaxed version for composite designs amounts to minimize the cost function

J∗(θ,A∗) =

∫
ΓN

g · u∗ ds,
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(a) A∗1111(m1,m2, 0.5) with A1111 = 25.58 (b) A∗3333(m1,m2, 0.5) with A3333 = 25.58

Figure 7.2: Isolines of the entries of the homogenized coefficients A∗1111 (left) and A∗3333 (right)

and their gradients (small arrows) according to the parameters m, with m3 = 0.5. The x-axis

is m1, the y-axis is m2

which is also equal to the minimum of complementary energy

J∗(θ,A∗) = min

τ ∈ H0

∫
D
A∗−1τ : τ dx,

where

H0 =

τ ∈ L2(D;Ms
3) such that

div(τ) = 0 in D

τn = g on ΓN

τn = 0 on Γ

 .

Thus, this compliance minimization problem can be recast as a double minimization problem

over the stress field and the admissible microstructures [Allaire 2002a]. Namely, it is equivalent

to:

inf

σ ∈ H0

m ∈ L∞(D; [0, 1]2)

ω ∈ L∞(D;W )∫
D θ(m) dx ≤ V

∫
D
A∗−1
ω (m)σ : σ dx,

where

θ(m) = 1−m1m2 −m1m3 −m2m3 + 2m1m2m3
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is the local density of the periodic microstructure of parameters m and

W = {(ω1, ω2, ω3) ∈ (§2)3 such that ∀i, j ∈ {1, 2, 3} ωi · ωj = δij} (7.7)

where §2 is the unit sphere in R3 and δij is the Kronecker symbol.

In order to solve this problem, we use an alternate minimization algorithm [Allaire 2002a],

minimizing successively with respect to the stress field σ, the cell parameters m and the orien-

tation ω of the cell. We introduce the corresponding Lagrangian

L(m,ω, σ, `) =

∫
D
A∗−1
ω (m)σ : σ dx +`

(∫
D
θ(m) dx−V

)
, (7.8)

where ` is the Lagrange multiplier associated to the volume constraint.

To minimize with respect to the geometric parameters m, we use a projected gradient

algorithm. Minimizing with respect to the stress field σ amounts to solve the elasticity problem

with a material of elasticity tensor equal to A∗ω(m) inD. For more details on both minimizations,

which are completely similar in 3-d to the 2-case, we refer to our previous work [Allaire 2018].

However the minimization with respect to the orientation ω is different in 3-d, compared to 2-d,

and is presented in full details.

Recall that there are various representations for 3-d orientation, like Euler angles or quater-

nions. They could be valid choices if a gradient descent method was used to compute the optimal

orientation. However, this strategy may not be very efficient due to the occurrence of possible

local minima. Besides, as proved by Pedersen [Pedersen 1989] in 2-d and Norris [Norris 2005]

in 3-d, the optimal orientation of an orthotropic cell is given by the principal directions of the

stress tensor. This result motivates our choice of modeling the orientation as the set of three

unit vectors forming an orthonormal basis: ω = (ω1, ω2, ω3). Then the rotation matrix Q(ω) is

simply the change-of-basis matrix from (e1, e2, e3) to (ω1, ω2,±ω3), the sign ± being chosen so

that detQ(ω) = 1 (see Section 7.3.3 for more details).

At each iteration n of the optimization algorithm, the updated orientation ωn+1(x) is then

given by the three normalized (i.e. unit) eigenvectors of the stress tensor σn+1(x). Moreover

the vectors (ω1, ω2, ω3) are labelled according to their associated eigenvalue (taken with their

sign): from the smaller one to the larger one. Of course, unit eigenvectors are defined only up

to their sign: they are not uniquely defined and only their direction is unambiguously defined.

However, this sign ambiguity has no influence on the rotation operator R(ω), defined by (7.6).

Remark 13. This approach is more efficient than the gradient descent method, mainly because

it is a global minimization method, providing an optimal orientation at each iteration. However

it works only for compliance minimization problem. For other objective functions, other methods

should be implemented.

The complete optimization algorithm is the same as in 2-d [Allaire 2018]. It is an iterative

method, structured as follows :

1. Initialization of the design parameters (m,ω), for example we take m1 = m2 = m3, constant

satisfying the volume constraint, and ω = ω0 = (e1, e2, e3).

2. Iteration until convergence, for n ≥ 0 :
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(a) Computation of the stress σn through a problem of linear elasticity with A∗ωn(mn) as

elasticity tensor.

(b) Updating the orientation ωn+1, using Norris formula.

(c) Updating the cell parameters mn+1 by one step of a projected gradient algorithm where

the descent direction is given by the derivative according to m of the Lagrangian (7.8)

evaluated at σn and ωn.

This topology optimization algorithm was implemented in the finite element software FreeFem++

[Hecht 2012] (see [Allaire 2006] for the use of FreeFem++ in optimal design). All unknown fields

are discretized using P1-functions.

At each iteration and for each node of the mesh, the principal directions of the stress tensor

σn+1 are computed thanks to the library lapack. They are ordered according to their respective

eigenvalue. In practice, Voigt notations are used, in order to replace tensors product by matrix

product. Hence, the fourth-order tensor R(ω) is represented by a 6 × 6 matrix. Its expression

in terms of ω is given in the appendix.

7.4.2 Numerical results and discussion

The previous optimization algorithm is discussed and illustrated for a cantilever problem, for

which the boundary conditions are displayed on Figure 7.3. Other examples are performed

in Section 7.6. The domain size is 15 × 10 × 5 and it is discretized by a tetrahedral mesh

with 3604 elements and 959 vertices. This mesh is coarse, a parallel implementation would

enable the use of finer meshes. Decomposition domain methods [Dolean 2015] are available in

FreeFem++, hence our algorithms could be parallelized with only few additional work. This

has to be investigated.

The volume constraint is fixed at 35% of the working domain. The convergence history is

displayed on Figure 7.4 : the algorithm converges smoothly and quickly.

The optimized density θ and cell parameter m displayed on Figure 7.5. As usual, 3-d

results are difficult to display clearly because only external borders are represented. Therefore,

in Figure 7.6 various iso-surfaces of the density field are plotted. The optimized structure is

clearly not a black and white design. High densities are reached only around where Dirichlet

and Neumann boundary conditions are applied. The major part of the domain is filled with

intermediate or grey densities. Similarly, the optimized geometric parameters (m1,m2,m3)

vary in their full range from 0 to 1 and they are not equal in a large region of the domain.

The obtained optimal composite is clearly not isotropic. Moreover, the optimal orientation is

displayed on Figures 7.7(a), 7.7(c) and 7.7(e). It is not constant in the whole domain : the

obtained optimal composite takes advantage of the anisotropy of the cells.

For the sake of comparison, the same test case has been performed with different homog-

enized properties. Since minimal compliance for a single load-case is known to be reached by

rank-3 laminates [Allaire 2002a], the optimal design for such laminates has also been computed.

For the sake of brevity, the resulting design is not displayed here. The rank-3 laminate compli-

ance is equal to 14.802 and is indeed lower than the compliance reached by our periodic optimal

homogenized structure, which is 20.933. Such a large gap in performance is obviously due to
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Figure 7.3: Boundary conditions for the cantilever problem
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Figure 7.4: Convergence history of the objective function (compliance) for the bridge

our constraint of choosing a periodic cell with connected holes (see Figure 7.1) for manufac-

turability reasons, while the rank-3 laminates feature closed holes which are definitely better

for structural performance. Another comparison is made with the Solid Isotropic Material with

Penalization (SIMP) method, including a sensitivity filter (in order to avoid checkerboards).

The homogenized tensor A∗ is replaced by θpA where A is the pure material Hooke’s law and

the maximal exponent is p = 3 in the power law of the density. The result is displayed in

Figure 7.8 since it is a black and white design, more suitable to be displayed. The optimal

compliance reached by this method is 22.401, which is 7% greater than the compliance reached

by the optimal periodic homogenized structure. The discretized mesh was the same for all test

cases, as well as the ersatz material (0.1% of the elastic tensor of the isotropic material).

7.4.3 Regularization of the orientation

The orientation might be not very smooth in some regions, in particular in the areas of either

full or zero density, in which the material is isotropic. Hence, it is possible to regularize the

orientation field without changing too much the performance of the final structure. The interest

in regularizing the orientation is crucial for the post-processing stage to lead to reasonable

results. The orientation in those black and white areas has no influence on the performances of

the homogenized structure. However, they may sensibly degrade the computation of the grid

map ϕ, which distorts a regular grid in order to align the cells along a given local orientation,
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(a) m1 (b) m2

(c) m3 (d) density

Figure 7.5: Optimized geometric parameters m and density of the cantilever

(a) θ ≥ 10% (b) θ ≥ 25% (c) θ ≥ 50% (d) θ ≥ 75% (e) θ ≥ 90%

Figure 7.6: Threshold of the domain according to the optimized density θ for the cantilever case
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(a) Optimized ω1 (b) Regularized ω1

(c) Optimized ω2 (d) Regularized ω2

(e) Optimized ω3 (f) Regularized ω3

Figure 7.7: Optimized (left) and regularized (right) orientation for the cantilever case
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Figure 7.8: Optimized design of the cantilever with penalized SIMP method

see Section 7.5.

Classically, in order to regularize the orientation, we would like to minimize a function:

3∑
i=1

||∇ωi||2L2(D) ,

where || · ||2L2(D) denotes the integral over D of the (squared) Frobenius norm (the same notation

shall be used for tensors of order 3 and 4 too).

However, since the orientation vectors ωi are the principal directions of the stress tensor,

they are defined locally up to their sign and can feature discontinuities. Then, there is no hope

to compute directly their gradient. A possible approach would be to introduce a manifold, like

in [Allaire 2018] in order to evaluate the gradients. This approach is doable but since we use

an iterative algorithm in order to regularize the orientation, we should recompute interpolation

operators at each iteration, which is too time-consuming.

Regularized cost function. We present here another approach, based on the fact that the ωi
are computed as the principal directions of a symmetric matrix. The main idea amounts not

to regularize directly the orientation ω but rather a symmetric matrix M(ω), independent of

the arbitrary chosen sign for the orientation vectors ωi. Recall that Q(ω) is the rotation matrix

from (e1, e2, e3) to (ω1, ω2,±ω3). Let D(λ) be the diagonal matrix, with entries λ1 = −1, λ2 = 1

and λ3 = 0. We define a symmetric matrix M by

M(ω) = Q(ω)TD(λ)Q(ω) , (7.9)

whose eigenvalues are λi and associated eigenvectors are ωi. Since we want to regularize the

orientation without degrading the compliance, we introduce a new cost-function to minimize:

Jreg(m,ω) =

∫
D
A∗−1
ω (m)σ : σdx+ η2

reg||∇M(ω)||2L2(D) ,

with σ the stress tensor solution of the elasticity problem and ηreg > 0, a small coefficient. In

practice, ηreg = 0.1 works well.

Approximate minimization. We now describe a SQP type algorithm to minimize this cost

function Jreg with respect to ω. The optimization process with respect to m is unchanged. At

each iteration n, we approximate Jreg at second order in δω, around the current state, by

Japprox(m,ω + δω) = Jreg(m,ω)+ < J ′reg(m,ω), δω > +
1

2
< J ′′reg(m,ω)δω, δω > . (7.10)
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In theory, ω + δω should belong to W , defined by (7.7). Since the sign of the vectors of the

orientation does not matter, we can impose without loss of generality that ω and ω + δω have

the same determinant. In other words, ω and ω + δω are both either direct triads or indirect

triads and we have:

∀i ∈ {1, 2, 3} ωi + δωi = Sωi, where S = Q(ω + δω)Q(ω)T ∈ SO(3) , (7.11)

where SO(3) is the special orthogonal group. First, we change the unknown, from δω to S, in the

minimization of Japprox. Second, we write the necessary and sufficient optimality condition of

this minimization problem as the variational problem consisting in finding Sn ∈ H1(D,SO(3))

such that for all test functions T ∈ H1(D,SO(3)):

< J ′reg(m,ωn), ((T − Id3)ωn) >

+ < J ′′reg(m,ωn)((Sn − Id3)ωn), ((T − Id3)ωn) >= 0

(7.12)

The orientation is then updated with:

ωn+1 = Snωn.

Nevertheless, problem (7.12) is still too complex. So, we approximate it by another vari-

ational problem whose unknown is no longer a field of orthogonal matrices in SO(3), but a

field of vectors in R3. This approximation is based on the following idea: since an iterative

method is used for regularizing the orientation, between two iterations the orientation should

not change drastically. This means that the rotation matrix Sn should be close to the identity

Id3. Hence the variational formulation (7.12) is approximated in a neighbourhood of Id3, which

is not a subset of SO(3) (the numerical approximation of a neighbourhood of Id3 in SO(3) is

too complicated). In what follows we explain how to construct this neighbourhood. First, the

set of admissible rotation matrices S in the variational problem (7.12) is parametrized. Second,

this parametrization allows us to build a neighborhood of Id3.

Since the unknown matrix Sn in (7.12) is close to the identity, −1 is not one of its eigenvalues.

The Cayley transform ensures there exists an involution between the set of skew-symmetric

matrices and the set of orthogonal matrix, for which no eigenvalue is equal to −1. Hence, the

set of admissible rotation matrices SO(3) in the variational problem (7.12) can be restricted to:

{(Id3 −N)−1(Id3 +N) | N ∈M3(R) such thatNT = −N} . (7.13)

Using again that Sn is close to the identity Id3, by an asymptotic expansion, we approximate

(7.13) by the following neighbourhood of Id3

VId = {Id3 + 2N | N ∈M3(R) such thatNT = −N and ||N || << 1} . (7.14)

Skew matrices in M3(R) can be parametrized by a vector in δs ∈ R3 as follows

F (δs) =

 0 −δs3 −δs2

δs3 0 −δs1

δs2 δs1 0

 .
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Then (7.14) can be rewritten as:

VId = {Id3 + F (δs) | δs ∈ H1(D,R3) such that ||δs|| << 1} .

Under the hypothesis that Sn is close to Id3, the variational problem (7.12) is approximated

by a variational problem where H1(D,SO(3)) is replaced by VId. We take this opportunity to

further add a penalization term on the norm of δs in order to ensure that δs is indeed small.

The final approximate variational formulation is: find δsn ∈ H1(D,R3) such that, for any test

function δτ ∈ H1(D,R3),

< J ′reg(m,ωn), (F (δτ)ωn) >

+ < J ′′reg(m,ωn)(F (δsn)ωn), (F (δτ)ωn) >

+
1

η2
pen

< δsn, δτ >= 0 , (7.15)

where ηpen > 0 is a small coefficient. In practice, we take ηpen = 1.

Finally, to update the orientation, we compute the matrix:

Sn = Id3 + F (δsn) ,

which is not a rotation matrix, as already said. Hence ωn+1 is not equal to Snωn but rather is

given by a Gram-Schmidt orthonormalization process, applied to the set of vectors (Snωn1 , S
nωn2 , S

nωn3 ).

Several approximations have been used, and their combination is not guaranteed to work well.

However, in practice the algorithm converges and its implementation is rather simple.

Derivatives of Jreg. To make (7.15) fully explicit, we now give formulas for the derivatives

of Jreg(m,ω) with respect to ω. From the definitions (7.9) of M and (7.11) of S, we get:

M(ω + δω) = M(ω) +
(
F T (δs)M(ω) +M(ω)F (δs)

)
+ F (δs)M(ω)F (δs)T .

Eventually, it leads to

< J ′reg(m,ω), (F (δτ)δω) >=

∫
D

(A∗−1
ω0

(m)R(ω)σ) : (R′(F (δτ)ω)σ)dx

+η2
reg

∑
1≤i,j≤3

∫
D

2∇Mi,j(ω) · ∇(F T (δτ)M +M F (δτ))i,jdx ,

and

< J ′′reg(m,ω)(F (δτ)δω), (F (δs)δω) >= 2

∫
D
A∗−1
ω0

(m)R′(F (δs)ω)σ : R′(F (δτ)ω)σdx

+2η2
reg

∑
1≤i,j≤3

∫
D

2∇Mi,j(ω) · ∇(F T (δs)M F (δτ))i,jdx

+2η2
reg

∑
1≤i,j≤3

∫
D
∇(F T (δs))M +M F (δs))i,j · ∇(F T (δτ)M +M F (δτ))i,jdx ,

where R′(v) is the directional derivative of R(ω) in the direction v, and A∗ω0
is the homogenized

elasticity tensor in the reference orientation ω0.
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Figure 7.9: Convergence history of the regularization cost function Jreg for the bridge

Numerical results. The above algorithm has been implemented in FreeFem++, using again

P1 functions for all the unknown fields. Recall that λ1 = −1, λ2 = 1 and λ3 = 0. Hence the

three vector fields ωi are equally regularized. Indeed ω1 and ω2 have the same regularization

coefficient since |λ1| = |λ2|, and the last one is fully determined by the others thanks to the

orthogonality of the eigenvectors for a symmetric matrix. For the cantilever case, the regularized

vector fields are displayed on Figures 7.7(b), 7.7(d) and 7.7(f). The orientation vectors are not

changed much by the regularization step, except in the black and white design regions. As

can be checked in Figure 7.9, during the regularization process, the compliance is only slightly

increasing while the regularization term undergoes a strict decrease.

7.5 Post-Processing : projection of the optimized microstruc-

ture

The last step is to construct a sequence of classical or genuine shapes that converges toward

the computed optimal composite. This sequence is indexed by a small positive parameter

ε > 0 which is the characteristic size of the period of the periodic composite. In practice, the

parameter ε is set to a value freely chosen by the user. Of course, the smaller ε, the more

detailed will be the resulting genuine shape.

The main ideas are roughly the same as in 2-d, see Chapter 4 except for the following crucial

points. In 2-d, we took advantage of conformal maps in 2-d in order to compute a distortion

map. We can no longer make this assumption in 3-d and we present a different approach here.

Moreover, the treatment of the orientation in 3-d is quite different as in 2-d, which implies to

adapt our algorithms.
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7.5.1 Sequences of shapes

Similarly to the 2-d case, we introduce a map ϕ = (ϕ1, ϕ2, ϕ3) from D into R3, in order to

properly orient each cell locally, without connectivity failures in the final structure. This map

distorts a regular grid, such that each bar in direction ei is locally oriented along ωi.

For all i ∈ {1, 2, 3}, let Yi be defined by:

Yi(m) =

{
y ∈ [0, 1]3 such that cos(2πyi) ≥ cos(π(1−mi))

}
. (7.16)

Yi is the unit cube, cut by a central slice of normal ei, and thickness mi, see Figure 7.10.

Our unit cells Y0(m) can then be analytically defined by:

Y0(m) = ∪1≤i<j≤3 (Yi(m) ∩ Yj(m)) (7.17)

e1

e2

e3

Figure 7.10: Construction of the cell Y0(m) from Yi(m).

In order to compute a sequence of genuine shapes converging to the optimized homogenized

structures, we introduce ε the reference size of the cells, which is going to 0. The elements of

this sequence are denoted by Ωϕ,ε(m), since they depend on the map ϕ that gives the proper

orientation. We give details about its computation further.

In periodic homogenization, we have two systems of coordinates : x, the macroscopic coordi-

nates, and y the microscopic coordinates, indicating the position into the periodic cell. Clas-

sically, we take y = x
ε − E(xε ) to describe a homogenized periodic structure, where E(·) is the
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floor function.

Thanks to the map ϕ, that distorts the regular grid, the new macroscopic coordinates to be

considered are then ϕ(x). The sequence of genuine shapes is then built according to the exact

same scheme as the unit cell Y0(m). Let us introduce the counterparts of Yi(m) :

Ωi,ϕ,ε(m) =

{
x ∈ D such that cos

(
2πϕi(xi)

ε

)
≥ cos

(
π(1−mi)

ε

)}
. (7.18)

Hence, the sequence of genuine shapes is given by:

Ωϕ,ε(m) = ∪1≤i<j≤3 (Ωi,ϕ,ε(m) ∩ Ωj,ϕ,ε(m)) (7.19)

We emphasize that thanks to the periodicity of the cosine function, there is no need to

consider the integer part of x
ε in the approximation of the microscopic coordinates.

Remark 14. The map ϕ is introduced in order to take into account the optimal orientation

of the cell. Hence, ϕ depends only on the orientation ω. In particular, ϕ does not depend on

the size ε of the cells. Once ϕ has been computed, it could be used for any value of this scale

parameter.

7.5.2 Computation of the projection map ϕ

We are looking for a map ϕ = (ϕ1, ϕ2, ϕ3) from D into R3 such that its gradients ∇ϕi are

aligned with ωi. Hence, we impose for the map ϕ to satisfy:

∀i ∈ {1, 2, 3} ∇ϕi = eriωi, (7.20)

where ri is a scalar field, given the local dilation of the cubic cell in the direction ωi.

Unlike the 2-d case, we can not assume here that the three fields ri are the same field.

Indeed, if the values of ri are locally equal to each other, infinitesimal cubes is distorted into

cubes. If the fields ri were equal everywhere to each other, then the map ϕ would be a confor-

mal map. However, there is only a few conformal maps in 3-d, thanks to Liouville’s theorem

[Rešetnjak 1967]. Hence, it would be too restrictive to impose such a condition on the map ϕ.

Taking the rotational of (7.20) leads to:

∀i ∈ {1, 2, 3} (∇ri ∧ ωi +∇∧ ωi) = 0 (7.21)

Those equations do not define uniquely the dilation factors ri: they give the gradient of ri
in only two directions, the orthogonal ones to ωi. We then penalize the third component by

minimizing :

∀i ∈ {1, 2, 3} min
si

∫
D
|∇si ∧ ωi +∇∧ ωi|2 + η2

1|∇si · ωi|2 . (7.22)

Hence, the dilations factors are defined up to a constant, that we can fix, by small penalization

of the L2 norm of ri.

∀i ∈ {1, 2, 3} min
si

∫
D
|∇si ∧ ωi +∇∧ ωi|2 + η2

1|∇si · ωi|2 + η2
2|si|2. (7.23)
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The minimizer r̂i is the solution of the variational formulation consisting in finding r̂i ∈
H1(D,R) such that for all t ∈ H1(D,R):∫

D
(∇r̂i ∧ ωi +∇∧ ωi) · (∇t ∧ ωi) + η2

1 (∇r̂i · ωi)(∇t · ωi) + η2
2 r̂i t = 0. (7.24)

We emphasize that the solution r̂i of the above variational formulation does not verify the

equation (7.21). Indeed, r̂i is an approximation of a theoretically perfect dilation factor ri. In

the following, we will no longer make the distinction between them, and we will indifferently

write ri.

Once the dilation factors ri are computed for each direction, the computation of the distor-

tion map is reduced to the following minimization problem:

min

ψ

3∑
i = 1

∫
D
|∇ψ − eriωi|2 (7.25)

which can be separated in three independent minimization problems over the three components

of ϕ. The minimizers ϕi are respectively the solutions of the variational problems consisting in

finding ϕi ∈ H1(D,R) such that for all ψ ∈ H1(D,R):∫
D

(∇ϕi − eriωi) · ∇ψ = 0 (7.26)

7.5.3 Coherent orientation

We compute separately the three components ϕi of the map ϕ. First, we have to compute the

dilation factor ri. We see from the variational formulation (7.24) over the dilation factor that

it depends on only one of the orientation vectors, namely ωi. Likewise, we can see from the

variational formulation (7.26) over ϕi, that only the orientation vector ωi is involved. Hence,

we can consider each vector field separately.

We recall here that the representation of the optimal orientation using the vectors ω· is not

unique, since it is independent of their sign.

Numerically, we only compute the principal directions of the stress tensors, without any

constraint about the regularity of the fields ωi. It might features discontinuities, coming from

an uncontrolled change of sign. Because of their sign indetermination, the rotational of the

vectors ωi, like in the above variational formulation (7.24) can not be directly computed.

A first naive approach amounts to reorientate each vector field by looking over the mesh,

which is not efficient in the presence of singularities in the orientation field. Therefore, we

prefer a second approach, similar to the one developed in [Allaire 2018]. We introduce a mani-

fold, defined as a two-fold covering space of the working domain. On each of those subsets the

orientation vector fields are coherent and have opposed signs. Defining an atlas over those man-

ifolds, we are now able to address this sign problem. We will give more details in the following.

We do not consider the possible presence of singularities in the orientation ω in the present work.
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For each i, we introduce a covering space of the working domain D:

Di = {(x, T ) ∈ D × §2 such that T ∧ ωi(x) = 0} ,

where §2 is the unit sphere in R3 (in other words, Di is a submanifold of D × §2). Let U be a

covering of D by open sets U . Since we assume that the optimal orientation does not feature

any singularity, for each open set U there exists a continuous map TU,i ∈ C(U, §2) such that for

all x ∈ U , TU,i(x) = ±ωi(x). Two charts g+
U,i and g−U,i of Di are then defined:

g+
U,i :

U → Di
x 7→ (x, TU,i(x))

and g−U,i :
U → Di
x 7→ (x,−TU,i(x))

. (7.27)

If the domain D is simply connected and ωi does not feature any singularity, the manifold Di
consists of two disconnected copies of the working domain D, on which the vector field ωi is

coherently oriented. Those two copies are only distinguished by the sign of T .

Integrals on the manifold Di. We introduce here the notion of integrals on the manifold

Di.
Let U be a finite family of disjoint open subsets U covering D, and f ∈ C(Di,R), a continuous

map. We define the integral of f over Di by:∫
Di

f(x, T )dx =
∑
U∈U

∫
U
f ◦ g+

U,i(x)dx+

∫
U
f ◦ g−U,i(x)dx , (7.28)

where the charts g±U,i are defined by (7.27). This definition does not depend on the family U of

disjoint subsets.

Differential operators on the manifold Di. The manifold Di can be endowed with a

differential structure: a gradient operator and a rotational operator are induced on Di as follows.

Let x ∈ D and U be an open subset of D containing x, we define the gradient operator by:

∇f(x, T ) = ∇(f ◦ gU,i)(x) ,

where f ∈ H1(Di,R) and gU,i is a chart of the neighborhood of (x, T ), and the rotational

operator by:

∇∧W (x, T ) = ∇∧ (W ◦ gU,i)(x) ,

where W ∈ H1(Di,R3).

Those operators do not depend of the choice of the open subset U .

Symmetric and antisymmetric maps on the manifold Di. We introduce the subset of

symmetric maps on Di:

Vsi = {f ∈ H1(Di,R) such that: ∀(x, T ) ∈ Di f(x,−T ) = f(x, T )}

and of antisymmetric maps on Di:

Vai = {f ∈ H1(Di,R) such that: ∀(x, T ) ∈ Di f(x,−T ) = −f(x, T )} .
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Remark 15. The integral of a symmetric map over the manifold Di can be simply rewritten.

Let U be a finite family of disjoint open subsets U covering D, and f ∈ Vsi . We have:∫
Di
f(x, T ) dx =

∑
U∈U

(∫
U f ◦ g

+
U,i(x) dx+

∫
U f ◦ g

−
U,i(x) dx

)
= 2

∑
U∈U

(∫
U f ◦ g

+
U,i(x)dx

)
.

We now have all the requirements to change our working space from D to Di: we are looking

for a dilation map ri from Di into R and a grid map ϕi from Di into R3.

Dilation map ri. The dilation map ri satisfied (7.21) on D. Therefore it also satisfies on Di:

∇ri ∧ T +∇∧ T = 0.

A solution of the above equation is also solution of the same equation where −T replaces

T . We emphasize that there is no unicity of the solution, since we can create a new solution

from a previous one simply by adding a constant to it. Then, we assume that ri satisfies a

symmetric property on Di, meaning that ri ∈ Vsi , without loss of generality. Hence, from

(7.23), we compute ri as the minimizer of:

min
si∈Vsi

∫
Di
|∇si ∧ T +∇∧ T |2 + η2|∇si · T |2 + η2

N |si|2 dx.

Grid map ϕi. The grid map ϕi satisfies on Di :

∇ϕi = eriT .

The opposite of a solution of the above equation is also solution of the same equation where

−T replaces T . As previously for the dilation maps, we emphasize there is no unicity of the

solution. We assume that ϕi satisfies an antisymmetric property on Di, meaning that ϕi ∈ Vai ,

without loss of generality. Hence, ϕi is the minimizer of:

min
ψi∈Vai

∫
Di
|∇ψi − eriT |2dx .

7.5.4 Implementation

We present here briefly the numerical implementation using the manifolds Di. The reader could

find more details on Chapter 4.

Let T be the mesh of D used during the optimization process, and Tk, its kth element (a

tetrahedron). We recall that we use P1 finite elements to discretize all fields, including the

vector fields ωi, see figure 7.12(a).

The difficulty is to represent the manifold Di, which is equivalent to two copies of D, using

finite elements in a classical finite element solver. However, all the maps involved in this

problem are either symmetric or antisymmetric on Di. Hence, they are completely determined

by their values at (x, T ), from which the other values at (x,−T ) are deduced by symmetry. As

a consequence, a possibility would be to use only one copy of D to represent Di. However, this
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requires to compute a coherent orientation on the whole domain D, a solution we previously

declined.

Instead, we subdivide the working domain D into open subsets U whose closures covers D.

In practice, the tetrahedra Tk of T are natural candidates for such purpose. Then, we work

independently on each tetrahedron and compute a coherent orientation on each tetrahedron,

meaning to have a continuous orientation vector field, featuring no change of sign. Hence, on

each tetrahedron we can compute the rotational of the orientation vector field. The key point

is that we do not require the orientation on each tetrahedron to be coherent with one another.

We give more details about coherent orientation in the following.

Recall that standard P1 conforming finite elements are used for discretization during the

optimization process. However, since we work now on each tetrahedron separately, P1 discon-

tinuous Galerkin elements on T are now used for this post-processing projection. Furthermore

symmetry (or antisymmetry) of the considered maps have to be taken into account, which is

explained in the following.

Coherent orientation on a tetrahedron. In the whole paragraph, vector fields are dis-

cretized by their values at each vertex of the mesh. For a tetrahedron Tk of the mesh T , its

four vertices are denoted by (xj)1≤j≤4. The vector field ωi on Tk is defined by four vectors.

A vector field admits a coherent orientation over the tetrahedron Tk if there exists an affine

map ω̃i from Tk to R3 such that:

∀j ∈ {1, 2, 3, 4} ‘ω̃i(xj) = ±ωi(xj) and ∀x ∈ Tk ω̃i(x) 6= 0 .

Such a coherent orientation does not necessarily exists on each tetrahedron. If not, the

orientation field is said singular. In the present work, we do not treat such cases and assume

that a coherent orientation does indeed exists on every element of the mesh.

In practice, for each tetrahedron, we pick a first vertex x1, where the value ωi(x1) will be

the reference orientation of the tetrahedron : ω̃i(x1) = ωi(x1). For the three other vertices xj ,

we choose the orientation ω̃i(xj) = ±ωi(xj) in order to have :

ω̃i(xj) · ω̃i(x1) ≥ 0 .

Hence two coherent orientations could be defined on each tetrahedron, see figure (7.11), de-

pending of the choice of the first vertex x1 : one for each copy of D into D.

By iterating this over the whole mesh T we define a P1 discontinuous finite element on D. The

different steps to construct a coherent orientation ω̃i are represented on the Figures 7.12(a),

7.12(b) and 7.12(c). To avoid unnecessary complex figures, that would have undermined their

readability, this process is illustrated in a 2-d setting, which is perfectly similar to the 3-d case.

Interpolation of symmetric maps. The value of a symmetric map ψ ∈ Vsi at a vertex does

not depend on its second variable, since ψ(x, T ) = ψ(x,−T ). Hence, it can be represented by a

standard conformal P1 finite element function over D.

Interpolation of antisymmetric maps. We explain here how to represent an antisymmetric

map of Di using a standard conformal P1 finite element function on D.

Let ψ ∈ Vai be an antisymmetric map. Let xj be a vertex, and xj,k its copies in all tetrahedra

featuring xj . The value of ψ in each vertex xj,k depends on the current coherent orientation:
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(a) ωi (b) ω̃i (c) ω̃i

Figure 7.11: Optimized orientation field ωi (a) on a tetrahedron and the both possible coherent

orientation fields ω̃i from ωi : the coherent orientation when the first vertex x1 is the upper one

(b) and the coherent orientation when the first vertex x1 is the vertex on the right (c)

ω̃i(xj,k) = ±ωi(xj). We can order the vertices xj,k in two sets, X+
j and X−j , according to this

sign.

All the elements of X+
j (resp. of X−j ) are the same points of the manifold D: (xj , ωi(xj))

(resp (xj ,−ωi(xj))). Hence ψ is constant on X+
j (resp. on X−j ). Moreover, we have ψ(X+

j ) =

−ψ(X−j ).

We now have all the requirements to represent the antisymmetric maps by standard P1 finite

element functions on D. Let I be the projection operator from P1 elements to P1 discontinuous

elements. Let g be a P1 discontinuous finite element, see figure 7.12(d) defined by:

g(xj,k) =

{
+1 if ω̃i(xj,k) = ωi(xj)

−1 if ω̃i(xj,k) = −ωi(xj)

Define Ia, the interpolation operator for antisymmetric maps, from P1 finite elements on D to

P1 discontinuous finite element on D by Ia = g × I, meaning that Ia(ϕ)(xj,k) = g(xj,k)ϕ(xj).

We emphasize that this operator is uniquely defined, but depends on the previously computed

field ω̃i, the coherent orientation on each tetrahedron.

Computation of r and ϕ. In order to compute the dilation factors and the distortion map,

as seen previously, we work on each tetrahedron separately, using P1 Galerkin discontinuous

finite elements. However, as just seen, the three dilation factors ri and the three components of

the distortion map ϕ are represented by standard P1 finite elements functions, composed with

projection operators I and Ia.

Let V be the set of P1 finite elements on T . The dilation factor ri ∈ V is the minimizer of:

mins∈V
∑
TkT

∫
Tk |∇(I(s)) ∧ ω̃i +∇∧ ω̃i|2

+η2
1|∇(I(s) · ω̃i|2

+η2
2|(I(s)|2dx .
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(a) Optimized orientation ωi, defined up to its sign (b) Local possible orientations of the cells ωi and

−ωi, leading to the same final structure

(c) Coherent orientation ω̃i as a P1 discontinuous

finite elements

+

-

+

-

+
-

-

-

-
-

-

+ +

+

+

+

+

+

(d) ω̃i and the interpolation map g for antisymmet-

ric maps

Figure 7.12: Complete process to represent the manifold D using classical finite elements
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We emphasize that the P1 finite element functions ri is continuous on T .

The ith-component ϕi ∈ V of the distortion map, is the minimizer of:

min
ψ∈V

∑
Tk∈T

∫
Tk
|∇(Ia(ψ))− eI(ri)ω̃i|2dx .

Although Ia(ϕi) is a P1 discontinuous finite element function, its absolute value |Ia(ϕi)| = ϕi|
is continuous on the whole mesh. Since the genuine shapes are built using the even function

cos, the projection is smoothly defined by using ϕi.

Both preceding problems can be classically solved by writing the first order optimality

condition, which is a standard variational formulation featuring a linear form and a bilinear

form.

7.5.5 Numerical results

The above algorithm for the computation of the diffeomorphism is implemented in Freefem++

[Hecht 2012]. The projection step has been scripted in Paraview. Hence, stl files of the

deshomogenized structures are straightforwardly generated and are ready to be printed using

additive manufacturing machines. We emphasizing that the size ε of the chosen periodic cells is

editable on line in order to adapt the resolution of the deshomogenized structures without any

supplementary actions.

The cantilever case is chosen in order to assess our method.

The several steps of the whole process of building the distortion of a regular periodic grid

are displayed on Figure 7.13. The regular grid is defined by constant geometric parameters over

the whole domain D : mreg = (0.9, 0.9, 0.9). Note the definition of the grid is independent of

the mesh.

Several shapes Ωε(ϕ,m) for various values of the characteristic size ε of the cells are displayed

in Figure 7.14. The smaller ε, the closer from the homogenized optimal design the shape

Ωε(ϕ,m).

We emphasize that small non connected components have been removed from the displayed

final shapes. The final shapes are therefore connected.

On Figure 7.14, we displayed several shapes Ωε(ϕ,m) for various values of ε.

7.6 Other numerical examples

We applied the whole method to a bridge case and to an electrical mast. In both cases, the

volume constraint is fixed to 30% of the working domain and the number of iterations during

the optimization – before regularization – is set to 200. The optimized geometric parameters

and densities are not displayed for both cases. Indeed, as seen in the cantilever case, such 3-d

results are difficult to displayed in 2-d, or required too many figures to be explicit. The main

novelties of the present work are the regularization of the orientation and the projection step.

Hence we privileged Figures for those parts.

For the bridge (Figure 7.15) the domain size is 22×10×12 and a unit vertical load is applied

at the middle of the bottom border on a square of length 2. The Dirichlet boundary condition
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(a) Ω1 = Ω1,ϕ,0.2(mreg) (b) Ω2 = Ω2,ϕ,0.2(mreg) (c) Ω3 = Ω3,ϕ,0.2(mreg)

(d) Ω12 = Ω1 ∩ Ω2 (e) Ω13 = Ω1 ∩ Ω3 (f) Ω23 = Ω2 ∩ Ω3

(g) Ω12 ∪ Ω13 (h) Ω12 ∪ Ω23 (i) Ω13 ∪ Ω23

(j) Ω12 ∪ Ω13 ∪ Ω23

Figure 7.13: Distortion of a regular grid through the map ϕ from the cantilever case
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(a) ε = 0.275 (b) ε = 0.225

(c) ε = 0.125 (d) ε = 0.05

Figure 7.14: Ωε(ϕ,m) for several ε in the case of the cantilever
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Figure 7.15: Boundary conditions for the bridge case

is applied on two symmetric rectangles, of length 1 and of width 1, on the bottom border. The

resulting compliance for the homogenized design is 1.017.

The applied loads and the boundary conditions are displayed on Figure 7.15, the optimal

orientation of the periodicity cells before and after regularization on Figure 7.16. The distortion

of a regular grid is displayed on Figure 7.17. The sequence of final shapes is displayed on Figure

7.18.

For the electrical mast (Figure 7.19), the domain size of the pillar is 2 × 2 × 8, and the

domain size of the upper part is 9 × 9 × 3.5. We took advantage of the symmetry, by running

the algorithm just on the quarter of a complete working domain : the domain in bold on Figure

7.19. Then the structure is allowed to slide on its two intern sides. The Dirichlet boundary

condition is applied on the bottom border. A unit vertical load is applied on a square of size

1 on the external corner of the bottom face of the upper part of the domain. The resulting

compliance for the homogenized design on the quarter of the whole domain is 4.288.

The optimal orientation of the periodicity cells before and after regularization is displayed

on Figure 7.20. The distortion of a regular grid is displayed on Figure 7.20. The sequence of

final shapes is displayed on Figure 7.21, for the quarter of the domain and for the whole domain

: the second ones are obtained by reflections of the first ones. The pillar is not completely full,

but feature thin holes: central slices of final structures and of normal x1 are displayed on Figure

7.22. We emphasize that nothing ensures that the phase of ϕ is the same for each value of ε:

on a given slice, the density could seem to be not the same according to the value of ε, but it

is not the case.
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(a) Optimized ω1 (b) Regularized ω1

(c) Optimized ω2 (d) Regularized ω2

(e) Optimized ω3 (f) Regularized ω3

Figure 7.16: Optimized (left) and regularized (right) orientation for the bridge case
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(a) Ω1 = Ω1,ϕ,0.2(mreg) (b) Ω2 = Ω2,ϕ,0.2(mreg) (c) Ω3 = Ω3,ϕ,0.2(mreg)

(d) Ω12 = Ω1 ∩ Ω2 (e) Ω13 = Ω1 ∩ Ω3 (f) Ω23 = Ω2 ∩ Ω3

(g) Ω12 ∪ Ω13 (h) Ω12 ∪ Ω23 (i) Ω13 ∪ Ω23

(j) Ω12 ∪ Ω13 ∪ Ω23

Figure 7.17: Distortion of a regular grid through the map ϕ from the bridge case
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(a) ε = 0.5 (b) ε = 0.4

(c) ε = 0.2 (d) ε = 0.1

Figure 7.18: Ωε(ϕ,m) for several ε in the case of the bridge
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Figure 7.19: Boundary conditions for the bridge case

Appendix

In numerical practice, we use the normalized Voigt notations. Hence a symmetric tensor s of

order 2, like the stress or strain tensor, is represented by a vector {s} of size 6 with same norm:

{s} =



s11

s22

s33√
2s12√
2s13√
2s23


.

The rotation operator R(ω), as any fourth-order tensor, is then represented by a 6× 6 matrix,

which is precisely defined by

{R(ω)} =

(
R11(ω) R12(ω)

R21(ω) R22(ω)

)
, (7.29)

where the four sub-matrices Rij of size 3× 3 are respectively given by:

R11(ω) =

ω
2
1,1 ω2

2,1 ω2
3,1

ω2
1,2 ω2

2,2 ω2
3,2

ω2
1,3 ω2

2,3 ω2
3,3

 , (7.30)
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(a) Optimized ω1 (b) Optimized ω2

hh

(c) Optimized ω3

(d) Regularized ω1 (e) Regularized ω2 (f) Regularized ω3

Figure 7.20: Optimized (up) and regularized (down) orientation for the electrical mast case
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(a) Ω1 = Ω1,ϕ,ε(mreg) (b) Ω2 = Ω2,ϕ,ε(mreg) (c) Ω3 = Ω3,ϕ,ε(mreg)

(d) Ω12 = Ω1 ∩ Ω2 (e) Ω13 = Ω1 ∩ Ω3 (f) Ω23 = Ω2 ∩ Ω3
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(g) Ω12 ∪ Ω13 (h) Ω12 ∪ Ω23 (i) Ω13 ∪ Ω23

(j) Ω12 ∪ Ω13 ∪ Ω23

Figure 7.20: Distortion of a regular grid through the map ϕ from the electrical mast test case
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(k) ε = 1. (l) ε = 0.4 (m) ε = 0.2 (n) ε = 0.1

(o) ε = 1. (p) ε = 0.4 (q) ε = 0.2 (r) ε = 0.1

Figure 7.21: Ωε(ϕ,m) for several ε in the electrical mast test case on the quarter of the whole

domain (up), and on the whole domain (down).
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(a) ε = 1. (b) ε = 0.4 (c) ε = 0.2 (d) ε = 0.1

Figure 7.22: Slices of normal x1 of Ωε(ϕ,m) for several ε for the electrical mast test.

R12(ω) =


√

2ω1,1 ω2,1

√
2ω1,1 ω3,1

√
2ω2,1 ω3,1√

2ω1,2 ω2,2

√
2ω1,2 ω3,2

√
2ω2,2 ω3,2√

2ω1,3 ω2,3

√
2ω1,3 ω3,3

√
2ω2,3 ω3,3

 , (7.31)

R21(ω) =


√

2ω1,1 ω1,2

√
2ω2,1 ω2,2

√
2ω3,1 ω3,2√

2ω1,1 ω1,3

√
2ω2,1 ω2,3

√
2ω3,1 ω3,3√

2ω1,2 ω1,3

√
2ω2,2 ω2,3

√
2ω3,2 ω3,3

 , (7.32)

R22(ω) =

ω1,1 ω2,2 + ω1,2 ω2,1 ω1,1 ω3,2 + ω1,2 ω3,1 ω2,1 ω3,2 + ω2,2 ω3,1

ω1,1 ω2,3 + ω1,3 ω2,1 ω1,1 ω3,3 + ω1,3 ω3,1 ω2,1 ω3,3 + ω2,3 ω3,1

ω1,3 ω2,2 + ω1,2 ω2,3 ω1,3 ω3,2 + ω1,2 ω3,3 ω2,3 ω3,2 + ω2,2 ω3,3

 . (7.33)
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Efficient topology optimization method of structures made of composite materials, using the

homogenization theory have been presented. We also presented a deshomogenization process

yielding optimized genuine structures in 2D and in 3D, straightforwardly manufacturable by

additive manufacturing processes.

Using the homogenization method, the external border of the structure is not explicitly

known. In practice, it is only available after the deshomogenization process, and a fortiori after

the optimization process. Thus, neither geometric constraint nor design-dependent loads can

easily be taken into account with this topology optimization method.

The solution presented here relies on coupling two shape optimization methods, namely the

homogenization method, and the level-set method. Indeed, in the level-set method, the external

border of the structure is clearly identified during the whole optimization process. We propose

here to optimize at once the general shape of the structure, given by a level-set function, and

the distribution of the composite material in the shape.

In Section 8.1, the level-set method is briefly presented.
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In Section 8.2, the coupling of both methods is explained. The coupled optimization algo-

rithm is given, and successfully tested on a bridge and on a cantilever.

In Section 8.2.6, a coating-constraint is added to the optimization problem, in order to have

an external layer of solid material on the final structure. Other approaches have been proposed.

In [Wu 2018], an adapted SIMP method including adapted filters is used to optimize a bone-like

structure. In [Wang 2013] the parameters of the bars of an internal truss are optimized, the

objective is to lighten a shape by filling it with a lightweight frame structure. In [Dapogny 2017],

a level-set method is proposed to optimize a structure featuring an anisotropic coating and filling

with a uniform composite material. The main novelty of our method consists in optimizing the

distribution of the given composite material filling the shape, and doing it at the same time as

the external shape optimization.

In Section 8.2.7, we focus on design-dependent load cases, [Chen 2001, Bourdin 2003, Allaire 2004b].

Our method is successfully extended and tested for such a load, namely a uniform hydraulic

pressure load.

8.1 Level-set method

8.1.1 Shape derivative

The notion of shape derivative was first introduced by Hadamard and has been well developed

since, see for instance []. We recall here only few classical results required for the present work.

Let Ω be a smooth reference open set, θ ∈ W 1,∞(RN ,RN ) and Id the identity map. If θ is

small enough, the map Id+ θ is a diffeomorphism in RN . Hence we can consider the domains:

Ωθ = (Id+ θ)(Ω) .

Definition 8.1.1. A functional J(Ω) is said to be shape differentiable at Ω if there exists a

continuous linear form J ′(Ω) on W 1,∞(RN ,RN ) such that, for all θ ∈W 1,∞(RN ,RN ) :

J((I + θ)(Ω)) = J(Ω) + J ′(Ω)(θ) + o(θ) with lim
θ→0

|o(θ)|
||θ||

= 0 .

Remark 16. The shape derivative defined here is the Fréchet derivative. Others could be

defined, like the Gateaux derivative.

Lemma 8.1.1. Let Ω be a smooth bounded open set, φv(x) ∈W 1,1(RN ) and φs(x) ∈W 2,1(RN ).

Let two functionals Jv and Js be defined by:

Jv(Ω) =

∫
Ω
φv(x)dx Js(Ω) =

∫
∂Ω
φs(x)ds .

The two functionals are differentiable at Ω and for all θ ∈ C1(RN ,RN ) we have:

J ′v(Ω)(θ) =

∫
Ω

div(θ(x)φv(x))dx =

∫
∂Ω
θ(x) · n(x)φv(x)ds

and

J ′s(Ω)(θ) =

∫
∂Ω
θ(x) · n(x)(

∂φs
∂n

+Hφs)ds ,

where n is the unit normal of ∂Ω, and H is the mean curvature of ∂Ω defined by H = div n.
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The proof of this lemma relies on a change of variable, which is valid because θ is a diffeo-

morphism.

8.1.2 Shape derivative in linear elasticity

Let Ω be a smooth bounded open set of D ⊂ RN , occupied by a linear elastic material whose

Hooke’s law is denoted by A. The boundary ∂Ω is divided in three disjoint parts: ∂Ω =

ΓN ∪ ΓD ∪ Γ0.

A surface load g ∈ H1(D)N is applied on ΓN (Neumann boundary conditions) and the

structure is clamped on ΓD (Dirichlet boundary conditions). The boundary Γ0 is free of charge.

The linear elasticity system reads as:
−div(Ae(u)) = 0 in Ω

(Ae(u))n = g on ΓN

u = 0 on ΓD

(Ae(u))n = 0 on Γ0

, (8.1)

where u is the displacement field, e(u) = 1
2(∇u+∇uT ) is the strain field, and n is the unit

normal on ∂Ω. This problem admits a unique solution u ∈ H1(Ω)N . Here we consider only

problems without bulk load, but there will be no major difference if one would take bulk forces

into account. We assume that the boundaries ΓD and ΓN are fixed: only the free boundary Γ0

is varying during the optimization.

Let J(Ω) be the objective function, only the case of the compliance will be considered here:

J(Ω) =

∫
Ω
Ae(u) : e(u)dx =

∫
ΓN

g · uds. (8.2)

In order to minimize J , a gradient algorithm is used. It is an iterative method: shapes Ωn

are successively computed. The main idea is to slightly distort a shape to define the next one.

Hence, a small vector field θn is computed at each step, thanks to the shape derivative of the

objective function.

Lemma 8.1.2. Let θ ∈ W 1,∞(RN ,RN ). Assume that g ∈ H2(Ω) and that the solution u of

(8.1) is in H2(Ω)N . Assume that θ = 0 on ΓD ∪ ΓN . The shape derivative of the functional

J(Ω) defined by (8.2) is:

J ′(Ω)(θ) = −
∫

Γ0

(Ae(u) : e(u))θ · ndx .

Proof. The proof relies on the Céa’s method. To be perfectly rigorous, we should also proved

that the solution u of (8.1) is Gateau differentiable with respect to the shape, thanks to a change

of variable of type: Ω = (Id+ tθ)(Ω0), see []. Let V = {φ ∈ H1(D)N such that φ = 0 on ΓD}.
We introduce the following Lagrangian L(Ω, v, q), where v, q ∈ V ,

L(Ω, v, q) =

∫
Ω

(Ae(v) : e(q)dx−
∫

ΓN

g · qds+

∫
Ω
Ae(v) : e(v)dx ,
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where q is the Lagrange multiplier for the elasticity problem. The partial derivative of L with

respect to q in the direction φ ∈ H1(RN ,RN ) is given by:

<
∂L

∂q
(Ω, v, q), φ >=

∫
Ω
Ae(v) : e(φ)dx−

∫
ΓN

g · φds .

If we take φ with compact support in Ω, we recover the state equation in Ω. This partial

derivative is equal to zero if and only if v = u(Ω), the unique solution of (8.1).

The partial derivative of L with respect to v in the direction φ ∈ H1(RN ,RN ) is given by:

<
∂L

∂v
(Ω, v, q), φ >=

∫
Ω
Ae(q) : e(φ)dx+

∫
ΓN

g · φds .

When it vanishes, it leads to the adjoint state equation, which is nothing but the state equation

with a surface load equal to −g. Indeed, it is very well known that the compliance minimization

is a self-adjoint problem. This partial derivative is equal to zero if and only if q = −u(Ω), the

unique solution of (8.1).

The objective function is given by: J(Ω) = L(Ω, u(Ω),−u(Ω)). Hence the shape deriva-

tive of the objective function is given by the partial derivative of L with respect to Ω at

(Ω, u(Ω),−u(Ω)). Thanks to Lemma 8.1.2:

J ′(Ω)(θ) = <
∂L

∂Ω
(Ω, u(Ω),−u(Ω)), θ >

= −
∫
∂Ω

(Ae(u(Ω)) : e(u(Ω)))(θ · n)ds

8.1.3 Geometric constraints

In linear elasticity, if the objective function is reduced to the compliance without any constraints

over the final shape, the optimal shape is given by Ω = D: a structure which occupies the whole

working domain. Hence, geometric constraints are introduced. The more classical geometric

constraints are on the total volume of the shape and on its perimeter. A first approach consists

in imposing this constraint at every step of the optimization algorithm. However, this could

be not effective, because too restrictive. Indeed, between two iterations, there is no freedom to

break the geometric constraints in order to eventually get out of a local minimum. A second

approach consists in introducing some penalization terms in the Lagrangian function, with a

Lagrange multiplier. This more flexible approach enables to get out of eventual local minima.

However, the Lagrange multipliers have to be carefully chosen. If they are too small, they

would not have any impact on the final shape. But if they are too large, the actual approach

will lead to the same pitfalls as the previous one: it would not be able to get out of eventual

local minima.

If the volume (resp. the perimeter) of the final shape have to reach a target volume VT
(resp. a target perimeter PT ), we introduce the following function fV (Ω) (resp. fP (Ω)):

fV (Ω) = (

∫
Ω
dx− VT )2 and fP (Ω) = (

∫
∂Ω
dx− PT )2 . (8.3)
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If the volume (resp. the perimeter) of the final shape have only to be minimized, we introduce

the following function fV (Ω) (resp. fP (Ω)):

fV (Ω) =

∫
Ω
dx and fP (Ω) =

∫
∂Ω
dx . (8.4)

The shape derivatives of all these functions are given by Lemma 8.1.1.

8.1.4 Implicit description of the shape

In order to describe implicitly the shape Ω ⊂ D, a level-set function ϕ is introduced, such that:
ϕ(x) = 0 if x ∈ ∂Ω ∩D
ϕ(x) < 0 if x ∈ Ω

ϕ(x) > 0 if x ∈ D \ Ω

A classical example of level-set function, and the one that will be used on all the following,

is the signed distance function:

Definition 8.1.2. Let Ω ⊂ RN be a Lipschitz open set. The signed distance function to Ω,

denoted by dΩ : RN → R, is defined as:

dΩ(x) =


−d(x, ∂Ω) if x ∈ Ω

0 if x ∈ ∂Ω

d(x, ∂Ω) if x /∈ Ω

, (8.5)

where d(·, ∂Ω) is the usual Euclidean distance to the boundary ∂Ω.

The skeleton Σ of ∂Ω is defined as:

Σ =
{
x ∈ RN | (dΩ)2 is not differentiable in x

}
At every point x ∈ ∂Ω, the unit normal vector to Ω is given by: n(x) = ∇dΩ(x). We can

extend to Ω \ Σ this unit vector field. Since Σ has zero Lebesgue measure in RN , thanks to

Rademacher’s theorem, the normal is not defined over Σ but this has no real incidence for the

following.

8.1.5 Evolution of the shape

We recall that between two iterations, the new shape is given by a slight distortion of the

previous one. Hence, we have to define this process. We will consider that the shape depends

fictively on the time t and so evolves in time. Thanks to the implicit description of the shape,

the shape Ω(t) is given at time t ∈ R+ by:

{x(t) ∈ D|ϕ(t, x(t)) < 0} .

The evolution of the shape is characterized by a velocity, equal to the descent direction

θ(t, x(t)) given by the gradient of the Lagrangian. This leads to a transport equation:

∂ϕ

∂t
(t, x) + θ(t, x(t) · ∇ϕ(t, x) = 0 in D , (8.6)
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In the classical level-set method, meaning with no composite material, the velocity is given

at the boundary of the shape, and aligned with the normal to the frontier. It is then extended

to the whole working domain. The transport equation yields an Hamilton-Jacobi equation.

However, in the following, the shape is filled with a modulated composite material. This one

has also to be advected. Hence, we can no longer assume the velocity field to be normal to the

boundary, neither approximate it in the whole domain. The equation (8.6) is the one used here

to update the shape at each iteration.

In practice, the same velocity is kept for a short while of time dt. If the Lagrangian of the

new shape is lower than the previous, the new shape is validated. Else, the shape is rejected and

the time interval is divided by two. Hence, the interval of time dt has to be chosen carefully at

the beginning. If it is too high, the descent direction computed at t = 0 will not be admissible

during all the time interval. If it is too small, the shape will evolve very slightly and a lot of

iterations will be required until convergence of the optimization algorithm.

Numerically, we need to compute a velocity field in the whole domain D. If the descent

direction is known only at a part of the border ∂Ω, the velocity will be extended in the whole

domain, this point will be developed in the following.

The advect library has been used to solve numerically the transport equation. For all

theoretical questions about the implementation and the use of viscosity solutions, one can refer

to [Bui 2012]. In order to compute the signed distance function for new shapes, we use the

mshdist library [Dapogny 2012].

8.1.6 Algorithm of shape optimization by the level-set method

The shape optimization algorithm follows the following steps:

1. Initialization of the shape Ω0.

2. Iteration until convergence, for n ≥ 0:

(a) Computation of the solution un of the linear elasticity (8.1).

(b) Computation the descent direction θn+1 as the partial derivative of the Lagrangian.

(c) Updating the shape Ωn+1 using the Hamilton Jacobi equation.

(d) Verification that the new shape improves the Lagrangian, else, reduction of the time

interval dt and rejection of the new shape: Ωn+1 = Ωn.

This algorithm ensures to find a local minimum of the Lagrangian, which depends in part

of the initialization of the shape Ω0. Indeed, as seen in Chapter 1, the global minimum is not

a genuine structure and so can not be reach using a level-set method.
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8.2 Coupling the homogenization and the level-set methods

The purpose of this chapter is to propose a coupling of the homogenization and level-set methods

in order to obtain a smooth exterior boundary of a finely perforated lattice structure. At the

difference with the first section, the shape Ω is no longer occupied by a constant isotropic

material A, but by a composite material.

8.2.1 Elastic phases

We consider two elastic phases: the first occupies the shape Ω, the second one the domain D\Ω.

The first phase is a composite material made of two phases: void and isotropic material whose

tensor will be denoted A. We will assume that the effective composite material is orthotropic

and that its microstructure is parametrized by geometric parameters m. Its effective elasticity

tensor will be denoted A∗(m). Since the phase is not isotropic but orthotropic, it might be

oriented according to an angle α. Hence the complete elastic tensor will be given by:

R(α)A∗(m)R(α)T ,

where R is the rotation operator of fourth-order tensor defined by 4.7 in Chapter 4. The volumic

density of the material will be denoted ρ(m) ∈ [0; 1], it depends of the geometric parameters

of the material, but obviously not of its orientation. When the density ρ is equal to zero, the

composite material is void. When the density ρ is equal to one, the composite material is full

and A∗ = A.

In the following numerical tests, the material featuring square cells and rectangular holes,

presented in Section 2 Chapter 4 will be used. However we emphasize that the above method

is not restricted to this particular material.

The second phase is an ersatz material, in order to mimic void while avoiding the stiffness

matrix to be singular. It is a very commonly used method in shape optimization. Its elastic

tensor Ae is taken equal to 10−3 of A, the full isotropic material making up the composite

material.

8.2.2 Description of the structures in the coupling method

The set of admissible structures in homogenization method is given by:

{
(m,α) ∈ L∞(D, [0; 1]2 × R |

∫
D
ρ(m)dx = VT

}
,

where ρ(m) is the density of the microstructure.

The structures Ω ⊂ D in level-set method are described using a level-set function φ :

Ω =
{
x ∈ D | φ(x) < 0

}
.

The structures in the coupling method are described with:

- a level-set function φ, which gives the subset of the working domain D where the structure is,

- the geometry parameters m ∈ L∞(Ω, [0; 1]2) of the material, and its orientation α ∈ L∞(Ω,R).
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8.2.3 Optimization problem

Let D ⊂ R2 be a fixed smooth bounded open set (the working domain). Let Ω ⊂ D be a

bounded open set occupied by a homogenized elastic material, characterized by its geometric

parameters m ∈ L∞(Ω, [0; 1]) and its orientation α ∈ L∞(Ω,R), its homogenized elasticity

tensor is denoted A∗(m). The boundary of Ω contains ΓN and ΓD, with respectively Neumann

and Dirichlet boundary conditions. The boundary parts ΓN and ΓD are assumed to be fixed in

the optimization process.

The displacement u and the stress tensor σ are then solution of the system:

div(σ) = 0 in Ω

σ = R(α)A∗(m)e(u) in Ω

u = 0 on ΓD

σ · n = g on ΓN

σ · n = 0 on ∂Ω \ (ΓD ∪ ΓN )

,

where e(u) = 1
2(∇u+∇uT ) is the strain tensor.

Let Uad be the set of admissible shapes, defined by:

Uad = {Ω ⊂ D|ΓN ⊂ ∂Ω,ΓD ⊂ ∂Ω, } .

Let VT be the target, and ρ(m) be the density of the homogenized material. Let the cost

function J(Ω,m, α) be a combination of of the compliance and of the volume constraint, namely:

J(Ω,m, α) =

∫
Ω
R(α)A∗0(m)−1R(α)Tσ : σdx+ γ(

∫
Ω
ρ(x)dx− VT )2 ,

where γ > 0 is the weight for the volume constraint.

The minimization problem reads as:

inf

σ ∈ H0(Ω)

Ω ∈ Uad
m ∈ L∞(Ω, [0; 1])

α ∈ L∞(Ω,R)

∫
Ω
R(α)A∗0(m)−1R(α)Tσ : σdx+ γ(

∫
Ω
ρ(x)dx− VT )2 ,

with

H0(Ω) =
{
τ ∈ L2(Ω,Ms

2)|
div(τ) = 0 in Ω

τn = g on ΓN

τn = 0 on ∂Ω \ (ΓD ∪ ΓN )

}
.

In order to solve this problem, we use an alternate minimization algorithm [Allaire 2002b],

minimizing successively with respect to the stress field σ, the microstructure m and the orien-

tation α of the cell, and finally the shape Ω.
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Minimization with respect to the stress field. For given design fields (Ω,m, α), the

minimization with respect to the stress field σ amounts to solve the elasticity problem with a

material of elasticity tensor equal to R(α)A∗(m)R(α)T in Ω, and to Aε in D ⊂ Ω.

Minimization with respect to the microstructure. For a given stress field σ and a shape

Ω, a gradient algorithm is used to minimize with respect to m. We recall that the compliance

minimization is self-adjoint. The descent direction dmi is given by the derivative of J with

respect to m

<
∂J(Ω,m, α, )

∂mi
, h >=

∫
Ω

(−
∂A∗(m)

∂mi
R(α)Tσ : R(α)Tσ + 2γ(

∫
Ω
ρ(m)dx− VT )

∂ρ(m)

∂mi
)h dx .

Hence,

dmi =
∂A∗(m)

∂mi
R(α)Tσ : R(α)Tσ − 2γ(

∫
Ω
ρ(m)dx− VT )

∂ρ(m)

∂mi
. (8.7)

The update at iteration n is given by mn+1
i = mn

i + µmdmi, with mum > 0 is the step size.

Minimization with respect to the orientation. We recall that the homogenized material

is orthotropic. Hence, its optimal orientation for a given stress field σ is given by the principal

directions of σ. This result is an extension of the Pedersen formulas [Pedersen 1989]. By

choosing to align the vector a1 = (cos(α); sin(α)) with the eigenvector of σ of smallest eigenvalue

(possibly negative), the angle α is then defined modulo π.

Minimization with respect to the shape. For a given stress field σ, a gradient algorithm

is used to minimize with respect to Ω. When the shape Ω is moved by θ, the microstructure is

not defined in (Id + θ)(Ω) \ Ω. Hence, we decided to advect also the microstructure m, which

consequently depends here on the shape Ω. The orientation α is updated using the Pedersen

formulas. Other approaches are possible, like extending by continuity the actual microstructure,

but it has not been investigated here.

For all θ ∈ C1(D,D) we have:

J ′(Ω,m, α)(θ) =
∫

Γ0
(−R(α)A∗(m)R(α)T e(u) : e(u))θ.nds

+
∫

Ω(−R(α)
∂A∗

∂m
(m)R(α)T e(u) : e(u))∇m · θdx

+
∫

Ω(−(
∂R

∂α
(α)A∗(m)R(α)T +R(α)A∗(m)

∂RT

∂α
(α))e(u) : e(u))∇α · θdx

+
∫

Γ0
2γρ(m)(

∫
Ω ρ(m)dx− VT )θ · nds

+2γ(
∫

Ω ρ(m)dx− VT )
∫

Ω(
∂ρ(m)

∂m
∇m · θ) ,

(8.8)

Let θ ∈ C1(D,D) be the solution of the variational formulation:

∀t ∈ C1(D,D)

∫
D
θ · t dx = −J ′(Ω,m, α)(t) . (8.9)

We recall that the shape Ω is described by a level-set function ϕ, namely the signed distance

function defined by (8.5). At each iteration, the level-set function and the microstructure are

updated by advection during a period dt, using the Hamilton-Jacobi equation (8.6).
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8.2.4 Implementation

We described here the numerical implementation of the optimization algorithm.

Complete optimization algorithm. The optimization algorithm is an iterative method,

structured as follows:

1. Initialization of the design parameters (Ω,m, α)

2. Iteration until convergence for n ≥ 0:

(a) Computation of σn through a problem of linear elasticity for the structure characterized

by (Ωn,mn, αn).

(b) Updating the orientation α̃, using the Pedersen formulas.

(c) Updating the design parameters m̃, using (8.7).

(d) Updating the level-set function ϕn+1 and the design parameters mn+1 by advection of

respectively ϕn and m̃, using (8.9). The shape Ωn+1 is described by the level-set function

ϕn+1.

(e) Computation of σ through a problem of linear elasticity for the structure characterized

by (Ωn+1,mn+1, αn).

(f) Updating the orientation αn+1, using the Pedersen formulas.

We emphasize that the domain D \Ω is numerically fulfilled with an ersatz material. Hence,

the stress tensor is computed in the whole domain D, and the orientation α as well. There is

no numerical limitation at step (2e) of the algorithm, when the orientation of the new structure

is given by the old orientation.

We implemented the topology optimization in the finite element software FreeFem++ [Hecht 2012]

(see [Allaire 2006] for the use of FreeFem++ in optimal design). All unknowns are discretized

using P1-functions.

The implementation of the minimization with respect to the stress field, the design param-

eters m and the orientation α is exactly the same as the one presented in Section 4 of Chapter

4. Hence, it is not reproduced here.

Minimization with respect to the shape. The shape is described by the level-set function

ϕ. This function is discretized using P1 finite elements.

The descent direction θ is computed using a H1 equivalent norm, by solving the following

variational formulation: ∀t ∈ C1(D,D)∫
D
θ · t+ η2∇θ : ∇t dx = −J ′(Ω,m, α, `)(t) ,

where J ′ is given by (8.8), and η > 0 is a small coefficient, which typically depends on the

size of the elements of the mesh. The purpose of this small coefficient is to numerically regu-

larize the partial derivatives on a length scale of order η and to limit the checkerboard effect

[Sigmund 1998].
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The derivative of J features linear integral along Γ0. Since numerically mesh adaptation

is not used here, this border is not exactly discretized on the mesh. Hence we use the regu-

larization method, proposed by [Osher 2006], to approximate those integrals. One can refer to

[Feppon 2017] for an other implementation of this method in shape optimization. Let ε > 0

be a small coefficient, typically the characteristic size of the edges of the mesh. Let f be a P1

discretized function. The linear integral
∫

Γ0
f(s)θ · nds is numerically approximated by:∫

Ω
δε(x)f(x)θ · ndx ,

where

δε(x) =

 0 if |δΩ(x)| > ε

1

2ε
(1 + cos(

π

ε
δΩ(x))) else

.

The level set function and the design parameters are then updated by advection during a

period dt. In practice, we use an adaptive period dt. At each iteration, if the newly computed

homogenized structure is accepted, the period is increased of 20%. On the contrary, if the newly

computed structure is rejected, the period is divided by two. Moreover, the initialization of dt

is given by:

dt =
hmax

||θ||L∞
,

where hmax is the maximal size of the edges of the mesh. The idea is to prevent the shape to

move too much between two iterations.

The advection of those functions is done with the library advection, [Bui 2012]. The advected

level-set function is then again updated, using the library mshdist, in order to be the signed

distance function of the advected shape.

Bounds on the density. If the effective material can reach a density equal to zero (meaning

to be equivalent to the ersatz material), the level-set function disappears. Then, a lower bound

is taken for the density of the effective material. Here for the sake of simplicity, the geometric

parameters mi are bounded. This no perfect because the cell can not reach the phases where it

features only two parallel bars.

If we want to work only on the density, we could add a penalization term like
∫

Ω(f(ρ(x))2dx

for example, where f is a penalization function, equal to around one for low densities (0 ≤
ρ < ρmin) and equal to around zero for other densities (ρmin ≤ ρ ≤ 1). This has not been

investigated here.

8.2.5 Numerical results

8.2.5.a Cantilever case

We have numerically implemented the optimization algorithm for the cantilever problem, see

Figure 8.1(a) for the boundary conditions. The domain size is 20 × 20 and it is discretized by

a structured triangular mesh, featuring about 800 vertices. The target volume is fixed to 30%

of the working domain. The optimized density is displayed on Figure 8.1(b).
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D

ΓN

ΓD

(a) Load case (b) Optimized density

Figure 8.1: Cantilever test case

(a) ε = 0.2 (b) ε = 0.1 (c) ε = 0.05

Figure 8.2: Ωε(ϕ,m) for several ε in the case of the cantilever

The optimized orientation of the structure is then regularized with the same method than in

Chapter 4. A diffeormorphism corresponding to the regularized orientation is then computed,

like in Section 5 of Chapter 4. A sequence of genuine shapes Ωε(m) can then be computed, see

Figure 8.2.

8.2.5.b Bridge case

We have numerically implemented the optimization algorithm for the bridge problem, see Figure

8.3 for the boundary conditions. The domain size is 22×13 and it is discretized by a structured

triangular mesh, featuring about 1000 vertices. The target volume is fixed to 30% of the working

domain.

8.2.5.c Discussion

The genuine shapes Ωε(ϕ,m) are not post-treated here. Thanks to the shape Ω, there is no

very thin bars in the whole domain, contrary to non post-treated structures of Chapter 4.

Nevertheless, the external border is not very smooth: it features stumps of bars. The same

post-treatment method as the one presented in Chapter 4, Section 5, could be used here to
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D

ΓNΓD ΓD

Figure 8.3: Boundary conditions for a bridge

(a) ε = 0.2 (b) ε = 0.1 (c) ε = 0.05

Figure 8.4: Ωε(ϕ,m) for several ε in the case of the bridge

clean the structures. However we could also fix this problem during the optimization process

by imposing a coating to the structure. This is the subject of the next section.

8.2.6 With geometric constraints: optimization of coated structures

Thanks to the shape Ω, we can now consider more sophisticated geometric constraints. Indeed,

the genuine external border of the final structure is known all the time. This is not the case

where only the homogenized method is used : the external border of the shape is known only

at the end, after the deshomogenization step.

We want to impose the final structure to feature a coating of full material and of width

h. This is motivated by diverse reasons. For example, if the final structure is coated, no

post-treatment will be required to clean it of little bars. The external border will fit perfectly

the level-set function and so will be smooth. An other kind of reason is industrial. A coated

structure will not be susceptible to be fulfill by dust during its use, which could damage it or

limit its performances.

The coated structures are also known as in-fill structures, or structures featuring a crust.

Other approaches have been developed, [Wu 2018, Wang 2013]. They mostly rely on a SIMP

method, and do not use a specific microstructure: the frame structure inside the shape is also

optimized using a SIMP type method. The motivations are multiple: mimicking the structure

of porous bones [Wu 2018], or reduce the quantity of material to fulfill structures, produced

with additive manufacturing processes, [Wang 2013].

Let Ωh be the domain of the coating, it is defined by:

Ωh = {x ∈ Ω|dΩ(x) > −h} .

Two main approaches are possible to impose a coat. The first consists in considering as

admissible structures only structures featuring a coating. Hence the homogenized material is
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now restricted to the domain Ω \ Ωh. During the advection of the shape, the width of the

domain Ωh has to be kept equal to h. The derivative of the cost function with respect to the

shape has to taken into account this new constraint. This results in a very complex equation,

featuring in particular integral along rays. Those terms are not easy to compute numerically.

On other difficulty remains in the modelization of the interface between the coating and the

effective material. In the case of a sharp interface, we face new difficulties linked to the non

continuity of the displacement around the interface. A smooth transition is then preferable, see

[Allaire 2014] for more details.

To conclude, this approach has been explored, but with no satisfactory results. Indeed, the

set of admissible shapes is so restricted than the optimization algorithm is quickly trapped in

local minima.

The second approach consists in penalizing the density in the domain of the coating. We

add a new term in the cost function:

I(Ω,m) = γh(

∫
Ωh

(ρ(m)− 1)dx)2 .

We emphasize that this term is an integral over Ωh, defined using the signed distance function

dΩ. The proposition 3.5 of [Allaire 2014] gives its derivative:

Proposition 8.2.1. Assume Ω ⊂ D is an open set of class C1 and fix a point x /∈ Σ, the

skeleton of ∂Ω. Then θ 7→ d(Id+θ)Ω(x) is Gateaux differentiable at θ = 0, as an application from

W 1,∞(D,Rn) into R and its derivative is

d′Ω(θ)(x) = −θ(p∂Ω(x)) · n(p∂Ω(x)) , (8.10)

where p∂Ω(x) is the projection on ∂Ω, defined for x /∈ Σ.

Proposition 8.2.2. Let φ ∈W 1,1(RN ) and let K be the functional defined by: K =
∫

Ωh
φ(x)dx.

The derivative of the functional K is:

K ′(Ω)(θ) =

∫
∂Ω
φ(x)θ(x) · n(x) ds−

∫
∂Ω
φ(y)θ(y) · n(y)dy

Proof. Let ε > 0 a small coefficient, let χε be the function defined by:

χε(t) =


0 if t < −ε

1

2
(sin(

π

2ε
t) + 1) if |t| ≤ ε

1 if t > ε

(8.11)

Its derivative χ′ε is given by:

χ′ε(t) =

 0 if |t| > ε

π

4ε
cos(

π

2ε
t) if |t| ≤ ε

(8.12)

Let χΩh,ε be the function defined by χΩh,ε = χε(−h+ dΩ(x)). Hence, we get

Ωh = {x ∈ Ω|χΩh,ε(x) <
1

2
} .
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Let the functional Kε be defined by:

Kε(Ω) =

∫
Ω
χΩh,εφ(x)dx .

It converges in the sense of distributions to K(Ω), when ε goes to zero.

Thanks to Proposition 8.2.1, the derivative of Kε(Ω) is:

K ′ε(Ω)(θ) =

∫
∂Ω0

φ(x)θ(x) · n(x) ds−
∫

Ω

∂χΩh,ε

∂dΩ
φ(x)θ(p∂Ω(x)) · n(p∂Ω(x))dx

=

∫
∂Ω
φ(x)θ(x) · n(x) ds−

∫
∂Ω

(∫ ε

−ε

π

4ε
cos(

π

2ε
t)φ(y + (t− h)n(y))dt

)
θ(y) · n(y)dy

−→
ε→0

∫
∂Ω
φ(x)θ(x) · n(x) ds−

∫
∂Ω
φ(y − hn(y))θ(y) · n(y)dy

This leads straightforwardly to the derivative of the coating penalization term I(Ω,m):

Proposition 8.2.3. Assume Ω ⊂ D is an open set of class C1 and fix a point x /∈ Σ, the skeleton

of ∂Ω. Then θ → I((Id+ θ)Ω,m)(x) is Gateaux differentiable at θ = 0, as an application from

W 1,∞(D,Rn) into R and its derivative is

I ′(Ω,m, α)(θ) = 2γh(
∫

Ωh
(ρ(m)− 1)dx)

∫
Ωh

∂ρ(m)

∂m
∇m · θdx

+2γh(
∫

Ωh
(ρ(m)− 1)dx)

∫
Γ0

(ρ(m)− 1)θ(x) · n(x) ds

+2γh(
∫

Ωh
(ρ(m)− 1)dx)

∫
Γ0

(ρ(m(x− hn(x)))− 1)θ(x) · n(x) ds ,

(8.13)

The derivative of the new objective function is simply given by adding (8.13) to (8.8). The

descent direction θ is then again computed as the solution of a variational formulation, similar

to (8.9).

The optimization algorithm is then identical to the one described in Section 8.2.4.

8.2.6.a Numerical results

The above algorithm has been implemented in FreeFem++, for a cantilever test case. The

boundary conditions are identical to the previous section, see Figure 8.1(a).

Numerically, the derivative (8.13) is complex to implement because of its third term. Indeed,

the value of the density ρ has to be computed along the rays emerging from the border Γ0. In

fact, we expect the coating to appear thanks to the homogenization part of the algorithm. It

is indeed the only way to increase density locally, no matter of the neighbour density. The

level-set part of the algorithm only moves the density inside the shape. Hence, the second and

the third terms of (8.13) are expecting to be negligible during the whole optimization process.

The third one, being complex to be implemented, is neglected. We will see in the following that

does impact neither the convergence of the algorithm, nor the presence of a coating.
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The volume constraint is set to 40% of the whole working domain. We run the algorithm

for two different widths h of coating: h = 0.7 and h = 2.1, and two different upper bounds for

the geometric parameters mi: mmax = 0.8 and mmax = 0.9. The results are displayed on Figure

8.5.

One can check that the final densities feature a coating of constant width. For the thin

coating (h = 0.7), the final shapes depend on the minimal admissible value of the density: the

smaller, the vaster the final shape. Indeed, without lower bound for the density, the shape Ω

converges to the whole domain D. This can be explained by the fact that the optimized shape

computed with only the homogenization method, see Chapter 4, features microstructure on the

whole domain, and no real void.

For the large coating (h = 2.1), the shapes are less vast. Indeed, the volume of the coating is

closed to the target volume, and the inner of the shape has also to be fulfilled, since the density

zero is not admissible. In fact, for mmax = 0.8, the final volume is not equal to the volume

target. To respect the volume constraint was too detrimental for the compliance.

The optimized structures are deshomogenized according to the method presented on Chap-

ter 4. The orientation is first regularized. Then a diffeomorphism ϕ is computed from the

regularized orientation. Deshomogenized structures Ωε(ϕ,m) are computed for several values

of ε, the characteristic period of the periodic cells. Results are displayed on Figure 8.6. Those

genuine shapes do not require any post-treatment in order to clean them. The external border

is smooth and regular thanks to the presence of the coating.

8.2.7 Design-dependent loads

Thanks to the shape Ω, we can now consider design-dependent loads. Indeed, the genuine

external border of the final structure is known all the time. This is not the case where only the

homogenized method is used : the external border of the shape is known only at the end, after

the deshomogenization step.

We consider here the case of a pressure load p0n, where p0 is a given pressure. The elasticity

problem reads as: 
div(σ) = 0 in Ω

σ = R(α)A∗(m)e(u) in Ω

u = 0 on ΓD

σ · n = p0 on ΓN

,

where the border ΓN is varying during the optimization process.

8.2.7.a Minimization problem

The compliance I(Ω,m, α) of the structure is given by: I(Ω,m, α) =
∫

ΓN
p0n·u =

∫
Ω div(p0u)dx.

The volume is penalized using (8.4), and with a weight η > 0.

Hence the objective function J is given by:

J(Ω,m, α) = I(Ω,m, α) + η

∫
Ω
dx . (8.14)

We have the following proposition, see Corollary 9 of [Allaire 2004b]:
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(a) h = 0.7 and mmax = 0.8 (b) h = 0.7 and mmax = 0.9

(c) h = 2.1 and mmax = 0.8 (d) h = 2.1 and mmax = 0.9

Figure 8.5: Optimized density in the case of the cantilever for two different values of coating

width and of upper bound on mi
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(a) ε = 0.15 (b) ε = 0.1 (c) ε = 0.05

(d) ε = 0.15 (e) ε = 0.1 (f) ε = 0.05

(g) ε = 0.15 (h) ε = 0.1 (i) ε = 0.05

(j) ε = 0.15 (k) ε = 0.1 (l) ε = 0.05

Figure 8.6: Ωε(ϕ,m) for several ε in the case of the cantilever
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Proposition 8.2.4. Let Ω be a smooth bounded open set and θ ∈ W 1,∞(RN ,RN ). Assume

that the solution u of (8.14) is smooth, say u ∈ H2(Ω)N . The shape derivative of the objective

function defined by (8.14) is:

J ′(Ω,m, α) =

∫
ΓN

θ · n(2 div(p0u)−R(α)A∗(m)e(u) : e(u))ds+ η

∫
ΓN

θ · nds (8.15)

Proof. The Lagrangian of the problem is defined for (v, q) ∈ H1(RN ,RN )2 by:

L(Ω, v, q,m, α) =

∫
Ω

div(p0v)dx+

∫
Ω
R(α)A∗(m)e(v) : e(q)dx−

∫
Ω

div(p0q)dx+ η

∫
Ω
dx .

The compliance minimization is self-adjoint. Hence the adjoint state of the problem is p = −u,

with u solution of (8.14).

The objective function is given by J(Ω,m, α) = L(Ω, u,−u,m, α)). Its shape derivative is

given by the partial derivative of L with respect to Ω at (Ω, u,−u). Thanks to Lemma 8.1.1,

for all θ ∈W 1,∞(RN ,RN ), such that θ is equal to zero on ∂Ω \ ΓN :

J ′(Ω,m, α)(θ) =

∫
ΓN

div(p0u)θ · ndx+

∫
ΓN

R(α)A∗(m)e(u) : (−e(u))θ · ndx−
∫

ΓN

div(−p0u)θ · ndx

=

∫
ΓN

(2 div(p0u)−R(α)A∗(m)e(u) : e(u))θ · ndx (8.16)

The optimization algorithm is then identical to the one described in Section 8.2.4.

8.2.7.b Numerical results

The above algorithm has been implemented in FreeFem++. The domain size is 22 × 10. The

structure is clamped on two unit segments of the bottom border, see Figure 8.7(a). The pressure

load p0 is set to minus one. The weight of the volume penalization is η = 0.1. The upper bound

on the geometric parameters mi is mmax = 0.8.

The optimized density is displayed on Figure 8.7(b). The final structure features a large

coating, we emphasize that it was not a requirement: we do not impose a coating with the

method of the previous section. The interior of the structure is filled with a composite material

of uniform density, the lowest admissible. The optimization process tends to make disappear

the composite material. It is not optimal to have composite material under the coating with

this objective function. Our result is similar to the one in [Chen 2001], where no microstructure

is used to optimize the shape.

The orientation is regularized according to the method presented at Chapter 5, it features a

singularity. A diffeomorphism ϕ is then computed from the regularized orientation: it distorts a

regular grid in order to align the bars with the given local orientation. Genuine shapes Ωε(ϕ,m)

are then computed on a finer mesh, they are displayed on Figures 8.7(c) and 8.7(d).

The use of a lattice material in this particular case is not relevant. However, the method is

proved to be effective. Other load cases should be investigated. For example the method could

be used to optimize a dam like in [Bourdin 2003]: a pressure of uniform direction is applied on

a part of the structure, mimicking the behaviour of fluid inside the dam. This is an ongoing

work.
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D

40 4010020 20

100

(a) Boundary conditions (b) Optimized density

(c) Ωε(ϕ,m) with ε = 0.01 (d) Ωε(ϕ,m)with ε = 0.005

Figure 8.7: Numerical results in a design-dependent load case



Conclusion and perspectives

In this thesis, an efficient topology optimization method of structures made of lattice materials,

using the homogenization theory has been presented. We investigated isotropic and orthotropic

microstructures in 2D and in 3D. In particular, the orientation of the orthotropic composite

materials has been taken into account during the optimization process. These materials are

adapted for particular shape optimization problems, namely the compliance and the stress

minimization in a single-load case. Other objective functions have to be investigated. The

crucial point is the optimization of the orientation of the lattice material. Indeed, the Pedersen

formulas have no extension to other objective functions. A gradient based algorithm is not

adapted to optimize the orientation, because of the numerous local minima. Other approaches

have to be developed, like a local global minimization of the orientation. Nevertheless, such

a strategy is only possible for particular cost functions. Indeed, it requires to introduce a

local optimality criteria on the orientation. It should be efficient for example in multiple-loads

compliance minimization.

On an other side, the use of other microstructures has to be investigated. For example, or-

thotropic materials are not adapted to multiple-loads compliance minimization. Indeed they are

stiff in only two orthogonal principal directions. Consequently, they can not support efficiently

stresses in several directions. We have shown that isotropic lattice materials are adequate can-

didates for this problem. Nevertheless, some anisotropic microstructures could possibly be more

optimal.

The collaboration with Jonas Martinez will continue. In particular, shape optimization using

3D stochastic materials will be implemented. The particular interest of these materials relies on

the fact that their geometry files, used as input for additive manufacturing machines, are very

light. Indeed, it contains only the distribution of the parameters in the working domain and not

a complete and fine description of the structure. An additive manufacturing machine builds the

structure layer by layer. With stochastic material, the current layer is computed on the fly with

respect to the previous one and the current parameters of the material. A similar approach to

build structures made of modulated periodic lattice material could lighten the geometric files

and should be investigated.

We presented a deshomogenization process yielding optimized genuine structures in 2D and

in 3D, straightforwardly manufacturable by additive manufacturing processes. This method

could be extended to other applications. First it could be used in structures conception. Indeed,

uniform periodic lattice microstructures are increasingly used by industrials to fill structures,

in order to lighten them (instead of filling them with solid material). However, they do not

have adapted software to design such structures. Our deshomogenization method could be

helpful. Moreover, the given volume could be filled with periodic cells which are aligned with

the external boundaries: the orientation of the cells being known at the external frontier, it

can be extended to the whole domain, and possibly regularized. Second, this method could be

used for unstructured meshes generation, where the elements have to be oriented according to

a given orientation field.

To conclude, we would like to print deshomogenized structures, the generation of the geom-



282 Chapter 8. Coupling the homogenization method and the level-set method

etry files is already implemented. Hence we could confirm that they are manufacturable, but

also perform experimental tests to check their physical behaviour.
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Appendix A

Deshomogenization with arbitrary

periodic microstructures

The purpose of this short chapter is to show how to extend the deshomogenization method

relying on a diffeomorphism, to any periodic microstructure described by a level-set function.

A.1 Periodic microstructures

Let Y = [−0.5; 0.5]N be the unit cube. In the following, only the case where N = 2 is illustrated.

Indeed 3D-structures are difficult to display in 2D-figures, however the exact same method is

still valid. Let Y0 be a unit periodic cell, whose microstructure is given by a level-set function

ψ : Y → R:

Y0 = {y ∈ Y |ψ(y) < 0}.

We emphasize that the geometry of the microstructure can be parametrized by parameters p.

In this case, the corresponding level-set function will be denoted ψ(p).

Examples:

The following microstructures are chosen to illustrate the method and not for any mechanical

interest.

• The microstructure of a square cell featuring a central circular hole of radius r ∈ [0; 0.5], see

Figure A.1(a), is given by the level-set function:

ψ(r)(y1, y2) = r2 − (y2
1 + y2

2).

• The microstructure of a square cell featuring a central ellipse of semi-major axis a, semi-

minor axis b and orientation θ, see Figure A.1(b), is given by the level-set function:

ψ(a, b, θ)(y1, y2) = 1−
(( cos(θ)y1 + sin(θ)y2

a

)2
+
( sin(θ)y1 − cos(θ)y2

b

)2)
.

• The microstructure of a square cell featuring a central rectangular hole with round corners,

see Figure A.1(c), is given by the level-set-function:

ψ(a1, a2)(y1, y2) = 1−
(
|
y1

a1
|p + |

y2

a2
|p
) 1
p

,

with p > 1.
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(a) Circular hole (b) Rounded square

hole

(c) Elliptical hole

(d) Four-lobed hole (e) Two-lobed hole

Figure A.1: Several design of periodic cells

• The microstructure of a square cell featuring a central four-lobed hole of radius r ∈ [0; 0.5],

see Figure A.1(d), is given by the level-set-function:

ψ(r)(y1, y2) = r
|y2

1 − y2
2|

y2
1 + y2

2 + η2
−
√
y2

1 + y2
2,

with η a small coefficient.

• The microstructure of a square cell featuring a central two-lobed hole of radius r ∈ [0; 0.5],

see Figure A.1(d), is given by the level-set-function:

ψ(r)(y1, y2) = r
y2

1 − y2
2

y2
1 + y2

2 + η2
−
√
y2

1 + y2
2,

with η a small coefficient.

A.2 Deshomogenization

Let D ⊂ RN , with N = 2 or 3, be the working domain.

Let ϕ : D → RN be a diffeomorphism.

We want to tile D with periodic microstructures, of characteristic size ε > 0, and distorted

according to the diffeomorphism ϕ.

The ith coordinate of the point M(x1, ..xN ) in the corresponding distorted periodic cell is given

by:

zi = ϕi(x1, ..xN )−
(
E(
ϕi(x1, ..xN )

ε
) +

1

2

)
,
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(a) Distortion of a regular grid by

the diffeomorphism ϕ

(b) Circular hole (c) Rounded square hole

(d) Elliptical hole (e) Four-lobed hole (f) Two-lobed hole

Figure A.2: Tiled square with uniform microstructures

where E stands for the floor function.

Hence the final structure is given by the level-set function Ψ : D → R given by:

Ψ(x1, ..xN ) = ψ(p)(z1, .., zN ),

where ψ(p) is the level-set function describing the microstructure.

The final structures made with the previous microstructures have been computed for arbi-

trary diffeomorphisms. In Figure A.2, the parameters of the microstructures are uniform in the

whole domain. The distortion of a regular grid is given as reference, see Figure A.2(a).

Obviously, the parameters may vary in the domain, in order to modulate the microstructure,

see Figure A.3.

To conclude, this method is still valid when the diffeomorphism features singularities, see

Figure A.4, the distortion of a regular grid is displayed in Figure A.4(a).
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(a) Distortion of a regular grid by

the diffeomorphism ϕ

(b) Circular hole, whose radius r is

modulated

(c) Rounded square hole, whose

realtive dimension a2 is modu-

lated

(d) Elliptical hole, whose orienta-

tion θ is modulated

(e) Four-lobed hole, whose radius

r is modulated

(f) Two-lobed hole, whose radius r

is modulated

Figure A.3: Tiled square with modulated microstructures
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(a) Distortion of a regular grid by

the diffeomorphism ϕ

(b) Circular hole (c) Rounded square hole

(d) Rounded square hole (e) Four-lobed hole (f) Two-lobed hole

Figure A.4: Tiled domain with uniform microstructures, in presence of singularities
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Appendix B

Deshomogenization when the

orientation is given up to a rotation

This short chapter is an extension to Chapter 5. In Chapter 5, we present a method to integrate

an irrotational vector field on a differentiable manifold, when the orientation is given up to a

π-rotation. The method can be straightly extended to the cases where the orientation is known

up to a
π

n
-rotation, with n ∈ N∗.

B.1 Context

Let D ⊂ R2 be an open subset. Let α : D → R/
π

n
Z be an orientation angle: the orientation is

given up to a rotation of angle π
n where n ∈ N∗.

Let introduce the unit vector field b = (cos(2nα), sin(2nα)): it is continuous on D.

We assume in the following that the orientation satisfies the conformity condition, see Section

4.5.2 for more details.

B.2 Simply connected domain

B.2.1 Integrability of the vector field

We assume here that the working domain D is simply connected.

Let D be the differentiable manifold defined by:

D = {(x, T ) |Tn = b}.

The manifold D consists in 2n disjoint copies of D. On each of those copies, the vector field

T is continuous. Moreover, from one copy to another, the vector field T is rotated of
πk

n
, with

k ∈ Z∗. Hence, each copy can be labeled. The first one is arbitrarily chosen, and denoted D1.

The ith copy Di satisfies:

∀x ∈ D Ti(x) = R

(
(i− 1)π

n

)
T1(x),

where R(θ) is the rotation matrix of angle θ, and Ti is the value of T on the copy Di.
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Proposition B.2.1. Assuming all the previous settings, there exists a function ϕ ∈ C1(D,R2)

such that:

∀(x, T ) ∈ D ϕ(x, T ) = R(
π

n
)ϕ(x,R(

π

n
)T ), (B.1)

and that satisfies: 
erT = ∇ϕ1 on D

erR

(
π

2

)
T = ∇ϕ2 on D

,

where R(θ) is the rotation matrix of angle θ, and r : D → R is the dilatation factor defined by

(4.7).

Proof. On each copy Di of D, thanks to Poincaré lemma, there exists functions ϕi,1 and ϕi,2
such that: 

erTi = ∇ϕi,1

erR

(
π

2

)
Ti = ∇ϕi,2

.

Hence, we get:

∀i ∈ {1, .., 2n}


∇ϕi,1 = R

(
(i− 1)π

n

)
∇ϕ1,1

∇ϕi,2 = R

(
(i− 1)π

n

)
∇ϕ1,2

.

Possibly by adding constants, we can assume that:

ϕi = R

(
(i− 1)π

n

)
ϕ1 .

B.2.2 Numerical implementation

For details about the numerical implementation, one can read Section 4.5.5.

Here is the main difference with Chapter 4: to take into account the rotation condition

(B.1), both components of ϕ have to be simultaneously computed.

We recall that P1 finite elements are used to discretize ϕ. Let Vh be the Lagrange finite

elements of degree one on D with values in R2, that satisfy the rotation condition (B.1). Let

Wh be the P1 discontinuous Galerkin elements on D, with values in R2,.

To compute the diffeomorphism ϕ, we introduce an interpolation operator Ih from Vh onto

Wh. This interpolation operator Ih is a sparse matrix that is computed by going through all the

elements of the mesh and by determining a coherent orientation on each element. This means

that for any triangle, its all vertices belong to the same copy Di of D. Numerically, for a given

element, the orientation will be said coherent, if the three orientation vectors of the vertices

belong to the same
π

2n
angular sector.

Technically, at each triangle, one vertex is arbitrarily chosen and its current orientation

vector v0 = (cos(α0), sin(α0)) is taken as reference. On the ith vertex of the triangle, the current
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orientation vector vi = (cos(αi), sin(αi)) is rotated of an angle
π

n
until the angle between v0 and

vi is lower than
π

2n
. Let ni be the number of necessar iterations of rotations. The interpolation

operator on the ith vertex is then equal to the rotation matrix of an angle ni
π

n
. Once the

interpolation operator Ih has been computed, the same variationnal formulation than in Section

4.5.5, see Equation (4.36), is solved.

Remark 17. Let ϕ be a diffeomorphism corresponing to a vector field defined up to a
π

n
-rotation.

Only periodic microstructures, which are invariant by a
π

n
-rotation, can be deshomogenized using

this diffeomorphism. Hence, in practice, n will be equal to 1, 2 or 3. We emphasize that the

case where n = 1 is the one studied in Chapter 4.

B.2.3 Numerical results

Vector field defined up to a
π

2
rotation. An arbitrary orientation vector field, defined

up to a
π

2
rotation, is taken, see Figure B.1. The corresponding diffeomorphism ϕ is computed

according to the above method, see Figure B.2. The numerical components of ϕ are not con-

tinuous on the mesh: their gradient suddenly turn of an angle
π

2
where the orientation vector

field jumps too. Indeed, the elements of the mesh do not necessarily belong to the same copy

Di of D. However, the structure deshomogenized using this diffeomorphism ϕ is smooth, see

Figure B.3(c). The periodic microstructure chosen here for the deshomogenization is a square

holed by a square, with relative dimensions m ∈ [0; 1].

We emphasize that the sets of deshomogenized bars, see Figures B.3(a) and B.3(b) are not

continuous, since they are respectively defined by:

Ωi,ϕ,ε(m) =

{
x ∈ D | cos(

2π

ε
ϕi) > cos(π(1−m(x)))

}
,

where ε > 0 is the characteristic period of the composite. However, these sets are perfectly

complementar and their union yield a final smooth structure.

Vector field defined up to a
π

3
rotation. An arbitrary orientation vector field, defined

up to a
π

3
rotation, is taken, see Figure B.4. The corresponding diffeomorphism ϕ is computed

according to the above method, see Figure B.5. Here again, the numerical components of ϕ are

not continuous on the mesh: their gradient suddenly turn of an angle
π

3
where the orientation

vector field jumps too. Indeed, the elements of the mesh do not necessarily belong to the same

copy Di of D. However, the structure deshomogenized using this diffeomorphism ϕ is smooth,

see Figure B.6(d). The periodic microstructure chosen here is the reinforced honeycomb see
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Figure B.1: Orientation up to a
π

2
-rotation

(a) (b)

Figure B.2: Diffeomorphism ϕ corresponding to the vector field defined up to a
π

2
-rotation

(a) Ω1,ϕ,ε (b) Ω2,ϕ,ε (c) Deshomogenized structure

Figure B.3: Deshomogenization process
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Figure B.4: Orientation up to a
π

3
-rotation

(a) ϕ1 (b) ϕ2

Figure B.5: Diffeomorphism ϕ corresponding to the vector field defined up to a
π

3
-rotation

Figure 3.1(b). For details about the deshomogenization process for this microstructure, see

Section 3.4.2.

We emphasize that the sets of deshomogenized bars, see Figures B.6(a), B.6(b) and B.6(c)

are not continuous. However, these sets are perfectly complementar and their union yield a

final smooth structure.

B.3 Non simply connected domain

B.3.1 Correction functions

In the case where the working domain D is not simply connected, the manifold D is no longer the

union of disjoint copies of D: copies are glued to each other. The previous approach is no longer

valid. However, using the same process than the one described in Chapter 5, correction functions
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(a) Ω1,ϕ,ε (b) Ω2,ϕ,ε (c) Ω3,ϕ,ε

(d) Deshomogenized structure

Figure B.6: Deshomogenization process
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are introduced in order to compute a continuous diffeomorphism ϕ. The main difference is that

correction functions have now two components, and satisfy the rotation condition (B.1).

B.3.2 Spotting the singularities

A discretized orientation vector field may feature singularities, meaning points where the linear

interpolation yield a null vector, see Proposition 5.3.2. In the case of an orientation field α

defined up to a
π

n
-rotation, singularites may also occur.

Assuming the orientation is discretized using P1 finite elements, singularities can numerically

be spotted thanks to Proposition 5.3.1, applied to the vector fields w = erb, where r is the

dilatation factor defined by (4.7). Briefly, a triangle K of the mesh contains a singularity if and

only if at least two scalar products wi · wj are negative, where wi is the value of w at the ith

vertex of the triangle K.

B.3.3 Numercial results

We do not give here details about the numerical implementation, but numerical results are

briefly displayed.

Arbitrary orientation vector fields, defined up to a
π

2
(resp.

π

3
) rotation and featuring

singularities, are taken, see Figure B.7 (resp Figure B.10). The corresponding diffeomorphisms

ϕ are computed according to the method presented in Chapter 5, see Figure B.8 (resp Figure

B.11). The numerical components of ϕ are not continuous on the mesh. However, the structures

deshomogenized using these diffeomorphisms are smooth, see Figure B.9(c) and B.12(d).

We emphasize that the sets of deshomogenized bars, see Figures B.9 and B.12 are not

continuous. However, these sets are perfectly complementar and their union yield a final smooth

structure. In particular, the connectivity of the bars is perfect along the cut lines used to define

the correction functions.

Besides, there is an odd number of cells around the singularities, respectively 3 and 5 for

the square cells, in red in Figure B.9(d), and 5 and 7 for the hexagonal cells, in red in Figure

B.12(e). This would never occur on a regular grid: this illustrates clearly the effect of the

correction functions on the diffeomorphism.
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Figure B.7: Orientation up to a
π

2
-rotation

(a) ϕ1 (b) ϕ2

Figure B.8: Diffeomorphism corresponding to the vector field defined up to a
π

2
-rotation and

featuring two singularities

ϕ1
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(a) Ω1,ϕ,ε (b) Ω2,ϕ,ε

(c) Deshomogenized structure (d) Deshomogenized structure, in

red, odd number of cells around

the singularities

Figure B.9: Deshomogenization process

Figure B.10: Orientation up to a
π

3
-rotation
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(a) ϕ1 (b) ϕ2

Figure B.11: Diffeomorphism corresponding to the vector field defined up to a
π

3
-rotation and

featuring two singularities

(a) Ω1,ϕ,ε (b) Ω2,ϕ,ε (c) Ω3,ϕ,ε

(d) Deshomogenized structure (e) Deshomogenized structure, in

red, odd number of cells around

the singularities

Figure B.12: Deshomogenization process
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3D deshomogenization method for a

non simply connected domain

In Section 4.5 of Chapter 4, we presented how to compute a 2D map whose gradient is aligned

with a given orientation. In Chapter 5, this method has been extended to the general case,

namely when the working domain is non simply connected.

In Chapter 7, the 2D-method has been adapted to the 3D case, when the the working

domain is simply connected. This short chapter is dedicated to the extension of the 3D-method

when the working domain features drilled holes. The approach is the same as the one presented

in Chapter 5: the proofs are not detailed here.

C.1 Integrability of a 3D vector field on a non simply connected

domain

Let D ⊂ R3 be an open subset featuring nH holes (Hi)1≤i≤nH . We assume that all those holes

are loops (like in a torus) and not cavities. As in Chapter 5, we cut the domain D in order to

connect the holes to the external border. However, there are no longer cut lines but cut surfaces,

still denoted Γi, see Figure C.1. The new working domain D̃ is given by: D̃ = D \ {Γi}1≤i≤nH .

Let w be an irrotational vector field on D. There exists a continuous function ϕ̃ on D̃ such

that: ∇ϕ̃ = w.

The jump of the function ϕ through the cut surfaces Γi is constant. Hence particular

correction functions ψi ∈ C1(D,R/Z) are introduced. We emphasize that their values are in

R/Z.

Γ1 H1

Figure C.1: The non simply connected domain D is cut along a surface Γ1
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(a) ω1 (b) ω2 (c) ω3

Figure C.2: Orientation

Hence there exists real coefficients ci such that:

∀x ∈ D̃ w(x) = ∇ϕ̃(x) +

nH∑
i=1

ci∇ψi(x)

and such that the function ϕ = ϕ̃+
∑nH

i=1 ciψi can continuoulsy be extended to D.

C.2 Numerical examples

C.2.1 Theoretical test case

In this example, the working domain is a tube: its external radius is 4, its internal radius is 1

and its height is 5.

We chose an arbitrary orientation vectors field:
ω1 = (

x√
x2 + y2

,
y√

x2 + y2
, 0)

ω2 = (−
y√

x2 + y2
,

x√
x2 + y2

, 0)

ω3 = (0, 0, 1)

.

The three vector fields are respectively displayed in Figure C.2.

The diffeomorphism ϕ has been computed according to the method developed in Chapter 7

by taking into account the correction functions.

The microstructures used here is the periodic cubic square, holed from end to end with

rectangular holes, see Figure 7.1. We took uniform microstructure: mi = 0.7. The deshomoge-

nization process is detailed in Section 7.5.1.

Let Ωi,ϕ,ε be the subsets defined by:

Ωi,ϕ,ε =

{
x ∈ D | cos(

2π

ε
ϕi(x)) > cos(π(1−mi(x))

}
,
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see Figures C.3(a), C.3(b) and C.3(c). One can check that the normals to this sets of surfaces

are aligned with the orientation vectors ωi.

The sets of parallel bars featuring in the final structure are given by the intersections in

pairs of the previous subsets, see Figures C.3(d), C.3(e) and C.3(f).

The final structure is displayed in Figure C.3(g). It is smooth: the bars are well connected

around the cut surface Γ1. The orientation of the cells is respected.

One can notice that the considered orientation is similar to the one of the 2D optimized

wheel under normal loading, see Figure 5.24(c), but extruded in 3D. As expected, an horizontal

slice of the final structure is identical to the final structure of the wheel, see Figure 5.24(l).

C.2.2 Optimization of a tube

In this example, the working domain D is still the tube. The main difference is that the

considered orientation is not arbitrary anymore, but the result of a shape optimization.

The structure is clamped on its bottom face. A unit tangential load is applied on its upper

face, see Figure C.4. The optimized homogenized structure is computed with the method

presented in Chapter 7. The microstructure is the same cubic periodic cell, see Figure 7.1.

Here, the relative dimensions mi of the holes are fixed to 0.7. Only the orientation of the cells

is optimized.

The optimized orientation vector fields are displayed in Figure C.5. Contrary to the previous

example, this orientation is not a 2D orientation extruded in 3D.

The deshomogenization process is displayed in Figure C.6, and the final structure in Figure

C.6(g). Here again, the connectivity of the final structure is perfect and the orientation of the

cells is respected.
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(a) Ω1 = Ω1,ϕ,0.2 (b) Ω2 = Ω2,ϕ,0.2 (c) Ω3 = Ω3,ϕ,0.2

(d) Ω12 = Ω1 ∩ Ω2 (e) Ω13 = Ω1 ∩ Ω3 (f) Ω23 = Ω2 ∩ Ω3

(g) Final structure

Figure C.3: Deshomogenization process
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ΓN

ΓD

Figure C.4: Boundary conditions for the tube case

(a) ω1 (b) ω2 (c) ω3

Figure C.5: Orientation of the cells
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(a) Ω1 = Ω1,ϕ,0.2 (b) Ω2 = Ω2,ϕ,0.2 (c) Ω3 = Ω3,ϕ,0.2

(d) Ω12 = Ω1 ∩ Ω2 (e) Ω13 = Ω1 ∩ Ω3 (f) Ω23 = Ω2 ∩ Ω3

(g) Final structure

Figure C.6: Deshomogenization process
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[Allaire 2002a] Grégoire Allaire. Shape optimization by the homogenization method, volume

146. Springer Science & Business Media, 2002.
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dérivée directionnelle de la fonction coût. ESAIM: Mathematical Modelling and Numer-

ical Analysis, vol. 20, no. 3, pages 371–402, 1986.
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Titre : Méthode d’homogénéisation pour l’optimisation topologique de structures composées de matériau lattice

Mots Clefs : optimisation topologique, méthode d’homogénéisation, matériau lattice, matériau cellulaire, fab-

rication additive

Résumé : Les développements récents des méthodes de fabrication additive permettent aujourd’hui d’envisager

l’usinage de pièces à la topologie complexe, composées de microstructures. Ceci ranime l’intérêt pour les méthodes

d’optimisation topologique par méthode d’homogénéisation, développées dans les années 80 et quelque peu ou-

bliées par manque d’applications industrielles. L’objectif de cette thèse est de fournir des méthodes d’optimisation

topologique pour des structures constituées de matériau lattice localement périodique, c’est-à-dire dont la mi-

crostructure est modulée au sein de la pièce. Trois phases ont été définies. La première consiste à calculer les

propriétés élastiques homogénéisées de microstructures en fonction de paramètres définissant leur géométrie. Dans

la seconde étape, on optimise la structure constituée de matériau homogénéisé selon les paramètres géométriques

de la microstructure ainsi que son orientation. Une structure homogénéisée n’est pas usinable en l’état. En

effet, l’homogénéisation revient à considérer que la taille des cellules la composant converge vers zéro. Dans une

troisième étape, on propose donc de déshomogénéiser la structure optimisée, c’est-à-dire de construire une suite

de structures convergeant vers elle. Pour cela, on introduit un difféomorphisme déformant une grille régulière de

sorte que chaque cellule soit orientée selon l’orientation optimale. Nous présentons dans cette thèse les détails

de cette méthode, pour des microstructures élastiques isotropes et orthotropes, en deux et en trois dimensions.

Nous proposons également un couplage de cette méthode avec la méthode d’optimisation de forme par les lignes

de niveau, ce qui permet notamment d’inclure des contraintes géométriques sur les structures finales.

Title : Homogenization method for topology optimization of structures built with lattice materials

Keys words : topology optimization, homogenization method, lattice material, cellular material, additive

manufacturing

Abstract : Thanks to the recent developments of the additive manufacturing processes, structures built with

modulated microstructures and featuring a complex topology are now manufacturable. This leads to a resurrection

of the homogenization method for shape optimization, an approach developed in the 80’s but which progressively

faded away because yielding too complex structures for manufacturing processes at this time.

The goal of this thesis is to develop shape optimization methods for structures built with modulated locally

periodic lattice microstructures.

Three steps have been defined. The first consists in computing the homogenized, or effective, elastic properties

of microstructures according to few parameters characterizing their geometry. In the second step, the geometric

properties of the microstructure and its orientation are optimized in the working domain, yielding a homogenized

optimized structure. Such a structure is nevertheless not straightforwardly manufacturable. Indeed, the homog-

enization is equivalent to have a structure featuring cells whose size is converging to zero. Hence, in the third

and last step, a deshomogenization process is proposed. It consists in building a sequence of genuine structures

converging to the homogenized optimal structures. The key point is to respect locally the orientation of the cells,

which is performed thanks to a grid diffeomorphism.

In this thesis, we present the details of the whole method, for isotropic and orthotropic microstructures, in 2D

and in 3D. A coupling of this method with the level-set shape optimization method is also presented, thanks

which the set of geometric constraints on the final structures may be enlarged.
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