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Introduction

Time series data restoration is a common problem that we are facing in many fields.

In this general problem, we are supposed to estimate the hidden sequence from an observed one, given or supposed there are some links between them. For example, in speech recognition, one wants to find out the uttered word from the given acoustic signal [START_REF] Gales | The application of hidden Markov models in speech recognition[END_REF], [START_REF] Xuedong | Hidden Markov models for speech recognition[END_REF], [START_REF] Lawrence R Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF]; in motion detection, we are interested in discovering the realtime human activity from video or time sequential images [START_REF] Elmezain | A hidden Markov model-based continuous gesture recognition system for hand motion trajectory[END_REF], [START_REF] Thanh Nguyen | Learning and detecting activities from movement trajectories using the hierarchical hidden Markov model[END_REF]. The Hidden Markov Model (HMM), since introduced in the late 1960s [START_REF] Leonard | Statistical inference for probabilistic functions of finite state Markov chains[END_REF], [START_REF] Rabiner | An introduction to hidden Markov models[END_REF], has become a popular statistical tool for modeling these "generative" sequences which can be characterized by an underlying process generating an observable sequence. HMM is such a class of models, assuming that the hidden states form a Markovian process, and the observations are "emitted" from the hidden states by some probability distribution. When dealing with discrete time processes, HMMs are usually called Hidden Markov Chain (HMC) as the discrete time index makes the processes like chains. Thus, concerning the applications mentioned above, two related must-besolved problems in HMC are: For restoration problem, the most popular two methods are the forwardbackward algorithm [START_REF] Lawrence R Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF] and the Viterbi one [START_REF] Viterbi | Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[END_REF], [START_REF] Rodríguez | Comparative study of the Baum-Welch and Viterbi training algorithms applied to read and spontaneous speech recognition[END_REF]. The forward-backward algorithm refers to p (x n |y n 1 ) and p Introduction p (x 1 , . . . , x N , y 1 , . . . , y N ). Two conditions can be met when dealing with the parameter estimation problem. One is to estimate the parameters from observations only, for instance, maximizing p (y 1 , y 2 , • • • , y N |Θ ). Most of the time we use the Baum-Welch algorithm and applies the Expectation-Maximization (EM) principle to solve this parameter estimation problem with latent variables [START_REF] Baum | A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains[END_REF]. We may meet another parameter estimation occasion less tough in contrast, in which we have milder condition that sample data set which includes both hidden state samples and observation samples are given. In this case, we can simply maximize the complete data likelihood p (x 1 , . . . , x N , y 1 , . . . , y N |Θ ) to figure out the suitable parameters.

With the progress of the methods for HMC, new models which generalize the classic HMC are also developed. One extension is introducing the "switch" (also called "jump") into the HMC to characterize the time series behaviors in different regimes and permitting the change between model structures, leading to the so-called "switching Markov model" [START_REF] Guy | On state estimation in switching environments[END_REF], [START_REF] Chang | State estimation for discrete systems with switching parameters[END_REF]. The efficiency of the flexibility which benefits from this extension has been proved in targets tracking [START_REF] Bar | Multitarget-multisensor tracking: principles and techniques[END_REF], [START_REF] Mazor | Interacting multiple model methods in target tracking: a survey[END_REF], manufacturing control [START_REF] Boukas | Stochastic switching systems: analysis and design[END_REF] and business intelligence [41], [START_REF] Rogemar | Hidden markov models in finance[END_REF]. The toughness under the switching Markov models is that most of the time, the Bayesian optimal restoration is no more feasible with unknown switches, so they are often approached by Markov Chain Monte-Carlo (MCMC) methods. This optimal restoration infeasibility also results in the hardness of parameter estimation for switching Markov models [START_REF] Andrieu | Efficient particle filtering for jump Markov systems. application to time-varying autoregressions[END_REF], [START_REF] Doucet | Iterative algorithms for state estimation of jump Markov linear systems[END_REF], [START_REF] Logothetis | Expectation maximization algorithms for MAP estimation of jump Markov linear systems[END_REF]. The other extension path of HMC enriches the dependences between the hidden states and observations. It means that the observations are no more simply "emitted" from the hidden states but have also some interactive effects on the hidden process. This extension results in the "Pairwise Markov Chain" (PMC) [START_REF] Pieczynski | Pairwise markov chains[END_REF], and it shows in following works on image segmentations that the Introduction (CGPMSM) [START_REF] Abbassi | Optimal filter approximations in conditionally Gaussian pairwise Markov switching models[END_REF], which thus owns both the abilities to model the switching regimes and consider more complete variable dependences. Moreover, it has a prominent merit over the other switching Markov models that the optimal restorations can be derived with specific model setting. The CGPMSM with this special setting is taken as its sub-model named "Conditionally Gaussian Observed Markov Switching

Model" (CGOMSM) [START_REF] Abbassi | Optimal filter approximations in conditionally Gaussian pairwise Markov switching models[END_REF], and has been studied in [START_REF] Gorynin | Fast filtering in switching approximations of nonlinear Markov systems with applications to stochastic volatility[END_REF], [START_REF] Gorynin | Exact fast smoothing in switching models with application to stochastic volatility[END_REF] for approximating any stationary Markov systems. Since the supervised restoration method and solution of parameter estimation with given samples are already considered in these previous works, in this dissertation, we are interested in developing the unsupervised restoration methods for CGPMSM. It means to find solutions for learning its parameters from only observations and conducting restorations with the learned parameters. This is one main part of our work. Also, we notice that the feasibility of optimal restoration is no need to be constrained under the Gaussian linear model structure.

In fact, we can form the conditional joint distributions in switching Markov models with the introduction of Copulas, which has been widely applied in the field of finance and insurance [START_REF] Bouyé | Copulas for finance -A reading guide and some applications[END_REF], [START_REF] Pravin K Trivedi | Copula modeling: an introduction for practitioners[END_REF], [START_REF] Embrechts | Copulas: A personal view[END_REF]. The Copula can be considered as a "tie" between margins, with which a joint distribution becomes easily be written in terms of univariate marginal distribution functions. It has been successfully introduced into Markov models such as the HMC and PMC [START_REF] Brunel | Unsupervised signal restoration using hidden Markov chains with copulas[END_REF], [START_REF] Derrode | Unsupervised data classification using pairwise Markov chains with automatic copulas selection[END_REF], [START_REF] Derrode | Unsupervised classification using hidden Markov chain with unknown noise copulas and margins[END_REF], but from our best knowledge, so far, there is no work that considers the incorporation of Copulas in a switching Markov model. Inspired by this, the second main part of our work focuses on extending the CGOMSM into a more general switching Markov model by making use of Copulas. Thus, the new model can incorporate varied conditional
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Chapter 1 describes the PMC model, which is the basic structure of the switching Markov models that we are going to study. Discrete and continuous state-space PMC are introduced separately with their matched methods of restoration and parameter estimation.

Chapter 2 focuses on the restoration methods of Gaussian linear Markov models (the CGPMSM family). Optimal restoration is derived for the special sub-model of CGPMSM known as CGOMSM. Then, for the unsupervised restoration of the CGPMSM, an EM principle based parameter estimation method from only observations is proposed and described with details. Meanwhile, two restoration approaches are presented for restoration under the general CGPMSM. The fusion of the proposed parameter estimation method and the restoration approaches leads to an unsupervised strategy whose efficiency is proved by simulations. Finally, several series of experiments are conducted to analyze the performance of the proposed unsupervised restoration method with comparison to supervised optimal and sub-optimal methods considering different impacting factors.

Chapter 3 contributes to build the general non-Gaussian model which allows optimal restorations inspired by the CGOMSM model. Firstly, we give the definition of the proposed model (briefly denoted by GCOMSM), and the way for its simulation. Then the optimal restorations (filtering and smoothing) are derived, with two simulation examples to verify their efficiency and show the generality of the GCOMSM. Moreover, an identification method based on "Generalized Iterative Conditional Estimation" (GICE) and Least-Square (LS) called GICE-LS is proposed for estimating the distributions and parameters of the proposed model. The efficiency of GICE-LS on identification of GCOMSM is proved by simulation. Finally, we apply the GCOMSM restoration identified by GICE-LS to some generable non-Gaussian non-linear systems to objectively show the merits of our algorithm comparing to the CGOMSM restoration and Particle Filter.

In the end, Chapter 4 summarizes the main contributions of this dissertation, presents some limitations in the proposed methods which can be improved, and draws an outlook for possible future work.

xviii Chapter 1

Pairwise Markov chain and basic methods

Since proposed in [START_REF] Pieczynski | Pairwise markov chains[END_REF], Pairwise Markov Chain (PMC) arouses more and more attention as a generalization of Hidden Markov Chain (HMC). Playing the same role, replacing the classic HMC, the PMC has been applied to signal and image processing fields, such as speech recognition [87], image segmentation or classification [34], [START_REF] Derrode | Signal and image segmentation using pairwise Markov chains[END_REF], [START_REF] Papila | Multiscale segmentation of remotely sensed images using pairwise Markov chains[END_REF], [START_REF] Yahiaoui | Implementation of unsupervised statistical methods for low-quality iris segmentation[END_REF]. All these works show that the PMC brings improvements on result thanks to its consideration of more complex dependence between stochastic variables.

We will introduce and detail the properties of PMC in this Chapter. In section 1.1, we explain its sub-cases of different dependences between variables. Focus on the restoration of the hidden states in PMC, we consider both discrete finite space case and continuous case in Section 1.2 and Section 1.3. Supervised and unsupervised restoration solutions for these PMC models are given. Meanwhile, the frequently used Gaussian PMCs are discussed, and some results of different restoration solutions are illustrated for discrete finite space case.

Let us consider two sequences of random variables.

R N 1 = (R 1 , R 2 , . . . , R N ), each R n takes its value in a set R; and Y N 1 = (Y 1 , Y 2 , . . . , Y N )
, each Y n takes its value in a set Y . Both the spaces R and Y can be discrete or continuous. We note further

H N 1 = (H 1 , H 2 . . . , H N ), where H n = (R n , Y n ), and r N 1 , y N 1 , h N 1 for the realization of R N 1 , Y N 1 and H N 1 respectively. Then, the process H N 1 is a PMC if it holds the Markov property that p ( h N 1 ) = p (h 1 ) p (h 2 |h 1 ) . . . p (h N |h N -1 ) . (1.1)
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Different dependences in PMC

There could be varying dependences inside a PMC structure, as we can decompose the transition probability of PMC into

p (h n+1 |h n ) = p ( r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n , y n ) p ( y n+1 |r n , r n+1 , y n ) . (1.2)
Considering the different cases in equation (1.2), we have four sub-models of PMC, each of them holds their special dependence of noise. The dependence graphs of all these sub-cases of PMC are displayed in Figure (d) Here we consider R N 1 no more Markovian, and

Y 1 , • • • , Y N independent con- ditionally on R N 1 , which means that p ( r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n , y n ) p ( y n+1 |r n , r n+1 ) (1.6)
This special case is called "Pairwise Markov Chain with Independent Noise" (PMC-IN), and if we call the most general PMC the "Pairwise Markov Chain with Dependent Noise" (PMC-DN), in which all dependences are conserved,
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the PMC-IN is its sub-case. Later if no confusion will be introduced, "PMC" will refer to the PMC-DN instead.

Let us notice that, there are a lot of works on Markov models among which some also inspired by the "pairwise" idea. In [START_REF] Ephraim | Causal recursive parameter estimation for discrete-time hidden bivariate Markov chains[END_REF], [51], the PMC is called Bivariate Markov Chain; similarly, it is called the Coupled Markov Chain or Models in [START_REF] Brand | Coupled hidden Markov models for complex action recognition[END_REF], [20], [START_REF] Gary | Exact sampling with coupled Markov chains and applications to statistical mechanics[END_REF]; moreover, the Double Chain Markov Model discussed in [START_REF] Berchtold | The double chain Markov model[END_REF] and [14] which is actually the HMC-DN but with p (

y n+1 |r n , r n+1 , y n ) = p ( y n+1 |r n+1 , y n ) .
The novelty of PMC is the fact that R N 1 is not necessarily Markovian, and it gives necessary and sufficient conditions for stationary timereversible model to exist [START_REF] Lanchantin | Unsupervised segmentation of randomly switching data hidden with nongaussian correlated noise[END_REF]. Besides, one should pay attention that these works have different emphasis. Some of them assumes R N 1 are hidden, Y N 1 are observed; while the others consider the total pair H N 1 are hidden states. Also, considering the state-space, it can be discrete classes or continues real values. One can decide where to apply the PMC and which state-space to choose according to the practical issue. In this chapter, we only discuss the case that R N 1 are hidden states and Y N 1 are observations.

PMC with discrete finite state-space

Let us consider the PMC with discrete finite state-space, like in classic HMC, hidden states R N 1 is a discrete process, each R n takes its values in discrete finite state-space Ω = {1, 2, . . . , K}; and

Y N 1 = (Y 1 , Y 2 , . . . , Y N ) is a continuous observation with each Y n taking its values in R q , q represents the dimension of Y n . Benefiting from the Markovianity of p ( R N 1 Y N 1 )
, optimal restoration exists in PMC in spite weather R N 1 being Markovian or not [START_REF] Pieczynski | Pairwise markov chains[END_REF], [START_REF] Lanchantin | Unsupervised segmentation of randomly switching data hidden with nongaussian correlated noise[END_REF], [52].

Optimal restoration

Here we explain how the restorations (both filtering and smoothing) of PMC with discrete finite state-space run. We define that

ϕ n (j) = p ( r n = j y N 1 ) , ( 1.7) 
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ψ n (j, k) = p ( r n = j, r n+1 = k y N 1 ) , (1.8)
where j, k ∈ Ω. The restoration can be calculated through the forward and backward probabilities by Baum's algorithm [START_REF] Baum | A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains[END_REF], [START_REF] Lanchantin | Unsupervised restoration of hidden nonstationary Markov chains using evidential priors[END_REF], [START_REF] Pierre | Baum's forward-backward algorithm revisited[END_REF] from the structure of PMC.

To iteratively compute (1.7)-(1.8), we adopt the "normalize" forward and backward probabilities [START_REF] Derrode | Signal and image segmentation using pairwise Markov chains[END_REF]:

α n (j) = p (r n = j |y n 1 )
, (1.9)

β n (j) = p ( y N n+1 |r n = j, y n ) p ( y N n+1 |y n 1 )
.

(1.10) These definition avoid the numerical underflow problem comparing to the original one [START_REF] Baum | A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains[END_REF], which computes the forward p

( y N 1 , x n = j ) and backward p ( y N n+1 |y n , x n = j ) recursively instead.
With the definitions above, we get forwardly the α n through

α 1 (j) = p (r 1 = j, y 1 ) ∑ l∈Ω p (r 1 = l, y 1 )
;

α n (j) = ∑ l∈Ω α n-1 (l) p ( r n = j, y n r n-1 = l, y n-1 ) ∑ (l 1 ,l 2 )∈Ω 2 α n-1 (l 1 ) p ( r n = l 2 , y n r n-1 = l 1 , y n-1 ) , (1.11)
which is the probability of filtering. While backwardly, we get the intermediate elements for smoothing

β N (j) = 1; β n (j) = ∑ l∈Ω β n+1 (l) p ( r n+1 = l, y n+1 |r n = j, y n ) ∑ (l 1 ,l 2 )∈Ω 2 α n (l 1 ) p ( r n+1 = l 2 , y n+1 |r n = l 1 , y n ) , (1.12)
where 1 ≤ n < N . So the smoothing probability, which is noted as

ϕ n (j) in (1.7)
is given by

ϕ n (j) = α n (j) β n (j) , (1.13) 
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and the joint posteriori probability ψ n (j, k) is given by 

ψ n (j, k) = α n (j) p ( r n+1 = k, y n+1 |r n = j, y n ) β n+1 (k) ∑ (l 1 ,l 2 )∈Ω 2 α n (l 1 ) p ( r n+1 = l 2 , y n+1 |r n = l 1 , y n ) β n+1 (l 2 ) . ( 1 
p (h 1 , h 2 ) = p (r 1 = j, y 1 , r 2 = k, y 2 ) = p j,k f j,k (y 1 , y 2 ) , (1.15)
p j,k is the abbreviation of p (r n = j, r n+1 = k) (we will keep using this abbreviation though out this dissertation), and

f j,k (y 1 , y 2 ) = p (y 1 , y 2 |r 1 = j, r 2 = k ) = N ( M y 2 1 j,k , Γ y 2 1 j,k
) .

(1.16)

M y 2 1 j,k and Γ y 2 1
j,k denote the mean and variance of the joint Gaussian distribution of (y 1 , y 2 ) conditionally on (r n = j, r n+1 = k) respectively.

In practice, sometimes, Gaussian distribution may be not always suitable, and a flexible shape of f j,k (y 1 , y 2 ) can be defined by two marginal distributions and a dependence item known as copula [START_REF] Choroś | Copula estimation. Copula theory and its applications[END_REF], [START_REF] Alexander | Multivariate Archimedean copulas, d-monotone functions and l1-norm symmetric distributions[END_REF], [START_REF] Nelsen | An Introduction to Copulas[END_REF], [START_REF] Sklar | Fonctions de Répartition À N Dimensions Et Leurs Marges[END_REF]. So the form of f j,k (y 1 , y 2 ) writes according to this construction as

f j,k (y 1 , y 2 ) = f (l) j,k (y 1 ) f (r) k,j (y 2 ) c j,k ( F (l) j,k (y 1 ) , F (r) k,j (y 2 ) ) , (1.17) in which f (l) j,k (y 1 ) = f (l) (y 1 |r n = j, r n+1 = k), f (r) k,j (y 2 ) = f (r) (y 2 |r n+1 = k, r n = j)
are the two marginal densities, with (l), (r) specify the left or right margin respectively. The dependent structure c j,k (•, •) is the so called "copula", and F (l) j,k (y 1 ) denotes the associated Cumulative Distribution Function (CDF) of f (l) j,k (y 1 ), and

F (r) k,j (y 2 ), the associated CDF of f (r)
k,j (y 2 ). More details of the copula in f j,k (y 1 , y 2 ) of PMC will be discussed later embedded in the Markov switching model which we are going to deal with in Chapter 3.

Of course, for any sub-case of PMC that has special dependence structure as described in previous Section, the restoration of the general PMC are suitable.

Unsupervised restoration

When applying the PMC to a real system, we have no idea what the parameters of a suitable PMC are. In this case, we often turn to the well known Expectation-Maximization (EM) principle for solution.

EM is an iterative method for searching maximum likelihood (ML) estimates of parameters in statistical models, when parts of the variables are missing (latent).

The definition of EM principle was explained in [START_REF] Arthur P Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], [START_REF] Mclachlan | The EM algorithm and extensions[END_REF], but there are earlier works on this iterative method for exponential families [START_REF] Sundberg | An iterative method for solution of the likelihood equations for incomplete data from exponential families[END_REF], [START_REF] Sundberg | Maximum likelihood theory for incomplete data from an exponential family[END_REF], [START_REF] Sundberg | Maximum likelihood theory and applications for distributions generated when observing a function of an exponential family variable[END_REF], published as pointed out in [START_REF] Arthur P Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. The convergence of EM in [START_REF] Arthur P Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] is revised by [START_REF] Wu | On the convergence properties of the EM algorithm[END_REF] later.

Back to the PMC that we are dealing with,

( r N 1 , y N 1 )
is considered as the complete data for likelihood calculation, while r N 1 is latent, so the unsupervised Bayesian restoration based on ML can be handled with EM as already dealt in [START_REF] Lanchantin | Chaînes de Markov triplets et segmentation non supervisée de signaux[END_REF], [START_REF] Rafi | Pairwise Markov model applied to unsupervised image separation[END_REF] extended from the solution of HMC discussed in [START_REF] Robert | An approach to time series smoothing and forecasting using the EM algorithm[END_REF], [START_REF] Cappé | Online EM algorithm for hidden Markov models[END_REF]. It is necessary to mention that EM algorithm works well when the system is stationary. Otherwise, the unsupervised restoration would loss its efficiency, since it can only recover the stationary PMC which models the system.

EM for Gaussian stationary case

As proposed in [START_REF] Lanchantin | Chaînes de Markov triplets et segmentation non supervisée de signaux[END_REF], the EM method estimates the parameters of stationary Gaussian PMC by maximizing the likelihood function of incomplete data Y N 1 iteratively according to

Θ h(i+1) = arg max Θ h E Θ h(i) [ ln p Θ h ( H N 1 ) y N 1 ] , (1.18) with Θ h = ( p j,k , M y 2 1 j,k , Γ y 2 1 j,k
) , 1 ≤ j, k ≤ K and the index i denotes the EM iteration.

The EM algorithm constituted by the Expectation (E-step) and Maximization (M-
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Step) iteratively run as follows:

1) E-step: E-step calculates the expectation of the likelihood with current parameters Θ h(i)

(estimated from last M-step) which is actually simplified to get the update of

ψ n (j, k) in (1.8).
The computation is just the same as the optimal smoothing of this discrete state-space PMC which has been specified from equations (1.7) to (1.14).

2) M-step:

Then, the M-step searches to maximize (1.18) by taking derivative with respect to each parameter, which gives the following update equations for all the parameters:

pj,k = 1 N -1 N -1 ∑ n=1 ψ n (j, k) ; My 2 1 j,k = N -1 ∑ n=1 ψ n (j, k)    y n y n+1    N -1 ∑ n=1 ψ n (j, k) ; Γy 2 1 j,k = N -1 ∑ n=1 ψ n (j, k)       y n y n+1    - My 2 1 j,k          y n y n+1    - My 2 1 j,k    ⊺ N -1 ∑ n=1 ψ n (j, k) . (1.19)
To initialize the iterations, one simple way is to use K-means clustering method to find the initial switches R N 1 = r N 1 , and calculate the initial values for parameters
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Θ h(0) by empirical estimations:

pj,k = Card (j, k) N -1 ; My 2 1 j,k = 1 Card (j, k) N -1 ∑ n=1 δ n (j, k)       y n y n+1       ; Γy 2 1 j,k = 1 Card (j, k) N -1 ∑ n=1 δ n (j, k)       y n y n+1    - My 2 1 j,k          y n y n+1    - My 2 1 j,k    ⊺ .
(1.20) in which δ n (j, k) denotes the function (r n = j, r n+1 = k), and Card (j, k) =

∑ N -1 n=1 δ n (j, k).
There are also some other initialization methods which could be applied as discussed and compared in [15]. Finally, EM is stopped after the change of the likelihood between two iterations is considered small enough (one can set a threshold to specify the convergence).

ICE for stationary case

When it comes to non-Gaussian case, direct derivative of parameters from the form of ML may be complex or not possible. As an alternative method, "iterative conditional estimation" (ICE) was proposed by [START_REF] Pieczynski | Statistical image segmentation[END_REF] for solving the fundamental limitation of EM. It uses also the complete data H N 1 , but the computation of the likelihood is not necessary. The efficiency and convergence of ICE have been verified with application in statistical image segmentation by [START_REF] Lanchantin | Unsupervised segmentation of triplet Markov chains hidden with long-memory noise[END_REF], [START_REF] Peng | Adaptive mixture estimation and unsupervised local Bayesian image segmentation[END_REF], [START_REF] Braathen | Global and local methods of unsupervised Bayesian segmentation of images[END_REF] and [START_REF] Delignon | Estimation of generalized mixtures and its application in image segmentation[END_REF]. ICE assumes that there exists an estimator for H N 1 denoted by Θh (

H N 1 ) = Θh ( R N 1 , Y N 1 )
with hidden data R N 1 that one wants to recover. The natural best estimator, which considers the minimum mean square error denoted by

E Θ h [ Θh ( H N 1 ) y N 1 ]
is a conditional expectation on Θ h . While Θ h is unknown, we can have iterative method to approach it

Θ h(i+1) = E Θ h(i) [ Θh ( H N 1 ) y N 1 ] .
(1.21)
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We see that, when Θh is chosen to be an ML estimator, equation (1.21) becomes

Θ h(i+1) = E Θ h(i) [ arg max Θ h ln p Θ h ( H N 1 ) y N 1 ] , (1.22)
which is identical to EM if the expectation and the log-likelihood maximization can be exchanged, and this occurs when the distribution of complete data belongs to an exponential family. Therefore, EM algorithm can be taken as a particular case of ICE for this kind of canonical parameterization structures. More discussion about the equivalence of ICE and EM can be found in [START_REF] Pierre | An equivalence of the EM and ICE algorithm for exponential family[END_REF].

The advantage of ICE is that, if we can compute the conditional distribution of ( R N 1 |y N 1 ) at step i but not the expectation in (1.21) analytically, we can simulate

the realization r N 1 of R N 1 according to p ( R N 1 y N 1 )
, with the current parameter Θ h(i) (it is called the Random Imputation Principle (RIP) in [START_REF] Celeux | A stochastic approximation type EM algorithm for the mixture problem[END_REF]), and then θ i+1 can be approximated empirically, thanks to the law of large numbers as

Θ h(i+1) = 1 M [ Θh ( r N 1 ) 1 + Θh ( r N 1 ) 2 + • • • + Θh ( r N 1 ) M ] , (1.23) 
where

( r N 1 ) 1 , • • • , ( r N 1 ) M are M realizations of R N 1 .
Let us pay attention that, there is another similar simulation based alternative method for EM, which is called stochastic EM (SEM) [START_REF] Moser | Dictionary-based stochastic Expectation-Maximization for SAR amplitude probability density function estimation[END_REF], [START_REF] Lanchantin | Unsupervised non stationary image segmentation using triplet Markov chains[END_REF], [START_REF] Masson | SEM algorithm and unsupervised statistical segmentation of satellite images[END_REF], [START_REF] Celeux | A stochastic approximation type EM algorithm for the mixture problem[END_REF]. SEM takes realization (stochastic) step after E-step only once, and M-step which defining Θ h(i+1) is given by solve the ML function with the realized complete data. We can see that, SEM is also a special case of ICE when M = 1 and ML is chosen to be the Θh .

Principles for infering hidden states

There are several criterions to infer the hidden R N 1 from the filtering probabilities p (r n |y n 1 ) and smoothing ones p ) that .25) In this dissertation, we always use MPM to obtain the restoration of R N 1 due to its simplicity.

rN 1 = arg max rn∈Ω p ( r N 1 , y N 1 ) . ( 1 
We address here an experiment to show the performance of unsupervised restoration methods on HMC-DN as a groundwork, since it is a partial structure of the switching Markov models we deal with later.

As defined in HMC-DN, R N 1 is Markov, and we set each R n adopts simply two possible values, which means that Ω = {1, 2}. The probabilities of R N 1 , which has already appeared in (1.15) are defined by p 1,2 = p 2,1 = 0.05 and p 1,1 = p 2,2 = 0.45.

The dependence of p

( y N 1 r N 1
) is set to be Gaussian with the auto-regressive relation

Y n+1 = F yy ( R n+1 n ) Y n + B yy ( R n+1 n ) V n+1 , (1.26)
in which V n+1 is a standard normal white noise written as V n+1 ∼ N (0, 1), and initially, the Y 1 ∼ N (0, 1) also. The parameters 

F yy ( R n+1 n ) and B yy ( R n+1 n ) are assigned as F yy (R n = 0, R n+1 = 0) = F yy (R n = 1, R n+1 = 0) = 0.4, F yy (R n = 0, R n+1 = 1) = F yy (R n = 1, R n+1 = 1) = 0.9 and B yy (R n , R n+1 ) = √ 1 -F yy (R n , R n+1 ) 2 .
pj,k = 1 N -1 N -1 ∑ n=1 ψ n (j, k) ; My 2 1 j,k = 1 Card (j, k) N -1 ∑ n=1 δ n (j, k)       y n y n+1       ; Γy 2 1 j,k = 1 Card (j, k) N -1 ∑ n=1 δ n (j, k)       y n y n+1    - My 2 1 j,k          y n y n+1    - My 2 1 j,k    ⊺ , (1.27) 
where δ n (j, k) and Card (j, k) are defined the same as in (1.20).

The average result of 100 Monte-Carlo experiments are reported in Table 1.1

As EM and ICE make use of the entire Y N 1 , we only report their smoothing result in the Table . The error ratio tendencies of EM and ICE of both one instance and average of 100 independent experiments are displayed in figure 1.2. We find that with estimator based on realization, ICE is more fluctuating than EM, but the two algorithms perform nearly the same under the setting of this experiment. The fluctuation may be smoothen with the increasing value of M which is only set to 1 in this example. 

PMC with continuous state-space

The continuous state-space PMC has the hidden state takes its value in a continuous real space. To distinguish it from the discrete state-space PMC, we take X

N 1 = (X 1 , X 2 , • • • , X N ) instead of R N
1 to denote the values of hidden state, where each X n takes its value in R s , and "s" being the dimension of X n .

A commonly used example is when this continuous state-space PMC meets the particular Gaussian linear case, which is called "Linear Gaussian Pairwise Markov

Model" [START_REF] Pieczynski | Kalman filtering using pairwise Gaussian models[END_REF] or "Gaussian Pairwise Markov Model" (GPMM) [START_REF] Abbassi | Optimal filter approximations in conditionally Gaussian pairwise Markov switching models[END_REF], written as ) are all Gaussian.

   X n+1 Y n+1    =    F xx n+1 F xy n+1 F yx n+1 F yy n+1    F n+1    X n Y n    +    B xx n+1 B xy n+1 B yx n+1 B yy n+1    B n+1    U n+1 V n+1    , ( 1 
The continuous state-space Gaussian linear HMC known as Hidden Gaussian Markov Model (HGMM) [START_REF] Phillip L Ainsleigh | Hidden Gauss-Markov models for signal classification[END_REF], [START_REF] Sanjeev | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF], [START_REF] Soo | Speech feature mapping based on switching linear dynamic system[END_REF] is often written in the form 

X n+1 = A n+1 X n + B n+1 U n+1 ; Y n+1 = C n+1 X n+1 + D n+1 V n+1 , ( 1 
   X n+1 Y n+1    =    F xx n+1 0 F yx n+1 0    F n+1    X n Y n    +    B xx n+1 0 B yx n+1 B yy n+1    B n+1    U n+1 V n+1    , (1.30)
where

F xx n+1 = A n+1 , F yx n+1 = C n+1 A n+1 , B xx n+1 = B n+1 , B yx n+1 = C n+1 B n+1
, and B yy n+1 = D n+1 . As in PMC, the hidden X N 1 in GPMM can be Markov or not [START_REF] Lanchantin | Unsupervised segmentation of randomly switching data hidden with nongaussian correlated noise[END_REF].

Restoration of continuous state-space PMC

The optimal restoration for the continuous state-space PMC in general way can be derived by the following steps.

One step ahead prediction: The unsupervised restoration based on EM for GPMM has been developed by [START_REF] Ait-El-Fquih | Unsupervised signal restoration in partially observed Markov chains[END_REF] and the robustness strengthened by [START_REF] Némesin | Robust blind pairwise Kalman algorithms using QR decompositions[END_REF] through QR decompositions. Moreover, a partial supervised solution is given by [START_REF] Némesin | Robust partial-learning in linear Gaussian systems[END_REF]. As we will depict the extension model of GPMM with switches in next chapter, GPMM will become its sub-case with zero switch. For not duplicating the state of method, the unsupervised restoration of GPMM can be referred in next Section removing the switch symbols.

p (x n+1 |y n 1 ) = ∫ p (x n+1 |x n , y n ) p (x n |y n 1 ) dx n , ( 1 

Conclusion

This chapter presents the principle of Pairwise Markov Chains (PMCs) and their restoration algorithms, whatever supervised or unsupervised based on Expectation-Maximization (EM) and Iterative Conditional Estimation (ICE) principles for parameter estimation. The PMC is a generalization of the classic Hidden Markov Chain (HMC). Definition, property and advantage of PMC are described in details in the beginning of this chapter. Two cases of hidden states (discrete finite and continuous) in PMC are specified then, with the derivation of both supervised and unsupervised restorations. In addition, an example of unsupervised restoration of the discrete finite state-space PMC is reported to show the performance of all restoration methods on the commonly used Gaussian case.

PMC is the basic of the switching Markov model we handle in this thesis. Actually, the special switching Markov model we are going to deal with, is a Triplet Markov Chain (TMC) [START_REF] Pieczynski | Triplet Markov chains in hidden signal restoration[END_REF] developed from the GPMM (Gaussian continuous statespace PMC) with essential consideration of switching regime. In practice, this "switching" regime makes the Markov chain owns the ability to describe the dramatic change of the auto-regression and better suits for approaching the non-linear systems. This chapter paves the way for finding the solution of the main subject
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which we are facing to and the methods described will be the reference of the new methods we developed for switching Markov models in following chapters.

Chapter 2

Optimal and approximated restorations in Gaussian linear

Markov switching models

As described in previous Chapter, the simplest model for the distribution of

(X N 1 , Y N 1 )
which allows fast Bayesian linear processing, is the classic HGMM defined by Gaussian distribution p (x 1 ) of X 1 , the Markov transitions p (x n+1 |x n ) and simple dependence p (y n |x n ). The HGMM has been later extended to GPMM defined by Gaussian distribution p (x 1 , y 1 ) of (X 1 , Y 1 ) and the pairwise Markov transitions p ( x n+1 , y n+1 |x n , y n ) . Optimal filtering and smoothing remains workable in GPMM, while comparing to HGMM, it incorporates more complex dependence between the stochastic variables.

Let us now extend the previous models by introducing a hidden process to model the "switches" (also called "jumps"). We consider

X N 1 = {X 1 , X 2 , . . . , X N }, R N 1 = {R 1 , R 2 , . . . , R N }, and Y N 1 = {Y 1 , Y 2 , . . . , Y N }, each X n , R n , Y n takes its value in R s , Ω = {1, 2, . . . , K}, and R q respectively. Y N
1 is observed, and the problem is to estimate the hidden realizations of X N 1 from only Y N 1 . Introducing discrete switches R N 1 in the plain models mentioned before is of interest for at least two aspects. Firstly, this can model stochastic regime changes. It is to say that it allows random changes in the parameters which define the plain HGMM and GPMM. Secondly, when we consider a Markov triplet T

N 1 = (X N 1 , R N 1 , Y N 1 ) such that (X N 1 , Y N 1 ) is a GPMM conditionally on R N 1 , the distribution of (X N 1 , Y N 1 )
becomes a Gaussian mixture distribution, which is likely to approximate non-Gaussian non-linear systems. Such situation has been successfully considered in [START_REF] Gorynin | Fast filtering in switching approximations of nonlinear Markov systems with applications to stochastic volatility[END_REF], where
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Markov switching models it shows that stationary or asymptomatically stationary Markov system can be approximated by a Gaussian switching system once a method to simulate realizations of the system is available.

Introducing discrete switches R N 1 in the classic HGMM leads to the following Conditionally Gaussian Linear State-space Model (CGLSSM) [26]:

R N 1 is Markov, X n+1 = A n+1 (R n+1 )X n + B n+1 (R n+1 )U n+1 , Y n+1 = C n+1 (R n+1 )X n+1 + D n+1 (R n+1 )V n+1 .
(2.1)

A n+1 (R n+1 ), B n+1 (R n+1 ), C n+1 (R n+1 ), D n+1 (R n+1 ) are matrices conditionally on
R n of dimension s × s, s × s, q × s and q × q respectively. U n+1 , V n+1 are random variables distributed according to standard Normal distribution. The CGLSSM is also known as "Linear system with jump parameters" [START_REF] Tugnait | Adaptive estimation and identification for discrete systems with Markov jump parameters[END_REF]; "Switching Linear Dynamic Systems" [START_REF] Soo | Speech feature mapping based on switching linear dynamic system[END_REF], [START_REF] Smith | Identification and validation of effective connectivity networks in functional magnetic resonance imaging using switching linear dynamic systems[END_REF]; "Jump Markov Linear Systems" [START_REF] Andrieu | Efficient particle filtering for jump Markov systems[END_REF]; "Switching Linear State-space Models" [START_REF] Ait-El-Fquih | Fixed-interval Kalman smoothing algorithms in singular state-space systems[END_REF]; and "Conditional Linear Gaussian Models" [START_REF] Marc | An unscented transformation for conditionally linear models[END_REF] applied in tracking, speech feature mapping and biomedical engineering, etc.

While R N 1 is hidden, in CGLSSM, computing conditional mean estimates of hidden states is infeasible as it involves a cost that grows exponentially with the number of observations [START_REF] Pieczynski | Exact filtering in conditionally markov switching hidden linear models[END_REF]. The restoration is often approached by Markov Chain Monte-Carlo (MCMC) methods [START_REF] Doucet | Iterative algorithms for state estimation of jump Markov linear systems[END_REF], [START_REF] Doucet | Particle filters for state estimation of jump Markov linear systems[END_REF]. When it comes to the unsupervised case, recent works on the parameter estimation of CGLSSM or the more general Jump Markov System (JMS), combine EM with Sequential Monte-Carlo (SMC) methods to do the parameter estimation [START_REF] Fritsche | Online EM algorithm for jump Markov systems[END_REF], [START_REF] Özkan | Recursive maximum likelihood identification of jump Markov nonlinear systems[END_REF]. As MCMC methods can approximate properly the target distribution with large sample numbers, the restoration performance can be quite satisfactory. However, the computational consumption of MCMC based methods increases with sample numbers when high accuracy is required and can meet degeneracy problems [START_REF] Kamatani | Local degeneracy of Markov chain Monte Carlo methods[END_REF], [START_REF] Mark S Handcock | Assessing degeneracy in statistical models of social networks[END_REF].

We consider the recent model extended from CGLSSM, called Conditionally Gaussian Pairwise Markov Switching Model (CGPMSM) [START_REF] Abbassi | Optimal filter approximations in conditionally Gaussian pairwise Markov switching models[END_REF], which introduces the switches R N 1 in GPMM. The aim of this chapter is to propose a parameter esti-
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Markov switching models mation method only from the observed Y N 1 for stationary CGPMSM, and perform unsupervised restoration without making use of the MCMC methods. The remaining of this chapter is organized as follows. In Section 2.1, we recall the definition of the special JMLS family called CGPMSM which we are interested in. Next, we derive the optimal filtering and smoothing of the "Conditionally Gaussian Observed Markov Switching Model" (CGOMSM), which is a sub-model of CGPMSM.

Then, for the restoration of general stationary CGPMSM, which will be discussed in following Sections, we detail its parameterizations. Two experimental series on simulated data are conducted in this Section to verify the supervised filtering and smoothing for CGOMSM, and their ability to restore the close CGPMSM as suboptimal solution. Section 2.2 extends the EM algorithm for parameter estimation in GPMM to Switching EM which works on parameter estimation on CGPMSM with known switches. Then, a parameter estimation method for CGPMSM with unknown switches called Double EM is proposed, which applies twice the EM principle incorporating the Switching EM. Meanwhile, the shortcoming of the proposed Double EM is also pointed out. Section 2.3 proposes two restoration approaches in CGPMSM, one is with partial mild modification of parameters and the other is based on EM principle. Then, several unsupervised strategies are produced by fusing the Double EM parameter estimation and restoration approaches. Two Series of experiments focus on different observation means and varying noise levels are conducted to test the proposed Double EM method and study the performance of all proposed unsupervised restoration methods with comparison to several existing supervised restoration methods under the influence of these two factors. Finally, the work of this Chapter is concluded in Section 2.4.
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Filtering and smoothing

Definition of CGPMSM and CGOMSM

The CGPMSM is a switching Gaussian linear dynamic stochastic system defined by:

T N 1 = (X N 1 , R N 1 , Y N 1 ) is Markov with p (r n+1 |x n , r n , y n ) = p (r n+1 |r n ) , (2.2)    X n+1 -M x n+1 (R n+1 ) Y n+1 -M y n+1 (R n+1 )    Z n+1 -M z n+1 =    F xx n+1 (R n+1 n ) F xy n+1 (R n+1 n ) F yx n+1 (R n+1 n ) F yy n+1 (R n+1 n )    F n+1 (R n+1 n )    X n -M x n (R n ) Y n -M y n (R n )    Zn-M z n +    B xx n+1 (R n+1 n ) B xy n+1 (R n+1 n ) B yx n+1 (R n+1 n ) B yy n+1 (R n+1 n )    B n+1 (R n+1 n )    U n+1 V n+1    W n+1 . (2.3) X 1 , Y 1 , R 1 are given following Gaussian distribution p (x 1 , y 1 |r 1 ) and p (r 1 )
respectively. The hidden switches R N 1 is a Markov chain, which comes from p (r n+1 |x n , r n , y n ) = p (r n+1 |r n ). U N 1 and V N 1 note the mutually independent centered Gaussian noise with unit variance-covariance matrix which are also as-

sumed independent from R N 1 . The system parameters F n+1 (r n+1 n ) and B n+1 (r n+1 n ) depend on the switches r n+1 n = (r n , r n+1 ) 1 , so the couple (X N 1 , Y N 1 ) is Markovian and Gaussian conditionally on R N 1 . M x n (r n ) and M y n (r n ) are the means of X n and Y n conditionally on r n , we denote M z n (r n ) = [M x n (r n ), M y n (r n )] ⊺ .
The original model defined by [START_REF] Abbassi | Optimal filter approximations in conditionally Gaussian pairwise Markov switching models[END_REF] does not consider M x n (r n ) and M y n (r n ), or we can say they are set to be both zero. (2.3) can be concisely written as

Z n+1 -M z n+1 (R n+1 ) = F n+1 (R n+1 n ) (Z n -M z n (R n )) + B n+1 (R n+1 n )W n+1 . (2.4)
Like HGMM can be taken as a special case under GPMM. Under the general family of CGPMSM, the classic CGLSSM without the consideration of means can
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   X n+1 Y n+1    Z n+1 =    F xx n+1 (R n+1 ) 0 F yx n+1 (R n+1 ) 0    F n+1 (R n+1 )    X n Y n    Zn +    B xx n+1 (R n+1 ) 0 B yx n+1 (R n+1 ) B yy n+1 (R n+1 )    B n+1 (R n+1 )    U n+1 V n+1    W n+1
.

(2.5)

Compare to the classic CGLSSM (2.1), we have the congruent relationship:

F xx n+1 (R n+1 ) = A n+1 (R n+1 ); F yx n+1 (R n+1 ) = C n+1 (R n+1 )A n+1 (R n+1 ); B xx n+1 (R n+1 ) = B n+1 (R n+1 ); B yx n+1 (R n+1 ) = C n+1 (R n+1 )B n+1 (R n+1 ); B yy n+1 (R n+1 ) = D n+1 (R n+1 ).
(2.6)

Conditionally on R N 1 , X N 1 is

linear Gaussian and Markovian, and the distribution of Y

N 1 conditionally to X N 1 is simple in CGLSSM. Thus given R N 1 = r N 1 , the couple (X N 1 , Y N 1 )
degenerates as a HGMM, in which the classical optimal Kalman filter and smoother can be applied. But in case that R N 1 is unknown, although CGLSSM appears as "natural" switching Gaussian system, neither optimal filtering nor smoothing can be derived.

Of course, the general CGPMSM extended from GPMM also meets this tough problem. But let us pay attention to the pairwise structure of CGPMSM. Actually, the observations and hidden states play symmetrical roles, we can take arbitrarily any of these two as the other's noisy version. If we inverse the roles of

X N 1 and Y N 1 in CGLSSM, both p ( r n x N 1 ) and p ( y n r n , x N 1 )
become computable. Based on this idea, the sub-family of CGPMSM named "Conditionally Gaussian Observed Markov Switching Model" (CGOMSM) has also been proposed in [START_REF] Abbassi | Optimal filter approximations in conditionally Gaussian pairwise Markov switching models[END_REF], [START_REF] Abbassi | Kalman filtering approximations in triplet Markov Gaussian switching models[END_REF]. The CGOMSM is with a fixed F yx n+1 (R n+1 n ) = 0 in CGPMSM verifying that:
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   X n+1 -M x n+1 (R n+1 ) Y n+1 -M y n+1 (R n+1 )    =    F xx n+1 (R n+1 n ) F xy n+1 (R n+1 n ) 0 F yy n+1 (R n+1 n )       X n -M x n (R n ) Y n -M y n (R n )    +    B xx n+1 (R n+1 n ) B xy n+1 (R n+1 n ) B yx n+1 (R n+1 n ) B yy n+1 (R n+1 n )       U n+1 V n+1    .
(2.7)

The prominent advantage of this CGOMSM over CGLSSM is that optimal filtering and smoothing are feasible, as the observations and switches processes (R N 1 , Y N 1 ) becomes a pairwise Markov chain, which is of importance in some real-data applications.

Optimal restoration in CGOMSM

Firstly, let us recall the classic optimal filtering and smoothing equations. Optimal filtering consists in computing E [X n |y n 1 ] for each n = 1, . . . , N . In presence of switches

E [X n |y n 1 ] = ∑ rn p (r n |y n 1 ) E [X n |r n , y n 1 ] , (2.8) 
and the optimal smoothing of switching Markov models is classically calculated by

E [ X n y N 1 ] = ∑ rn p ( r n y N 1 ) E [ X n r n , y N 1 ] . (2.9)
Profiting from the special structure of CGOMSM, (R N 1 , Y N 1 ) is a Markov chain. This allows the exact computation of p (r n |y n 1 ) in optimal filtering which is not possible in classical Markov switching models, which needs to be approximated by Monte-Carlo methods for example.

To make the derivation more legible, we rewrite the expression of CGPMSM Chapter 2. Optimal and approximated restorations in Gaussian linear Markov switching models (2.3) for better showing the dependences in the switching regimes to the form

   X n+1 Y n+1    Z n+1 =    F xx n+1 (R n+1 n ) F xy n+1 (R n+1 n ) F yx n+1 (R n+1 n ) F yy n+1 (R n+1 n )    F n+1 (R n+1 n )    X n Y n    Zn +    ω x n+1 ω y n+1    ω z n+1 +    N x n+1 (R n+1 n ) N y n+1 (R n+1 n )    N z n+1 (R n+1 n ) , (2.10)
in which the noises follow the Normal distribution:

ω z n+1 ∼ N     0,    Q xx n+1 (r n+1 n ) Q xy n+1 (r n+1 n ) Q yx n+1 (r n+1 n ) Q yy n+1 (r n+1 n )    Q n+1 (r n+1 n )     .
Apparently, the covariance of noises

Q n+1 (r n+1 n ) = B n+1 (r n+1 n )B ⊺ n+1 (r n+1 n ). N z n+1 (R n+1 n ) is the item links to the means M z n and M z n+1 :    N x n+1 (R n+1 n ) N y n+1 (R n+1 n )    N z (R n+1 n ) =    M x n+1 (R n+1 ) M y n+1 (R n+1 )    M z (R n+1 ) -F n+1 (R n+1 n )    M x n (R n ) M y n (R n )    M z (Rn)
. Now we start to compute the filtering and smoothing in order. Under CGOMSM, we have F yx n+1 (R n+1 n ) = 0, and consequently

( R N 1 , Y N 1 ) is Markov with p ( r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n ) p ( y n+1 r n+1 n , y n ) , ( 2.11) 
and

p ( y n+1 r n+1 n , y n ) = N ( F yy n+1 (R n+1 n )y n + N y n+1 (R n+1 n ), Q yy n+1 (r n+1 n )
) , (2.12) so that we get the joint probability 

p ( r n , r n+1 y n+1 1 ) = p ( r n+1 , y n+1 |r n , y n ) p (r n |y n 1 ) ∑ rn,
F xx n+1 (r n+1 n )x n + F xy n+1 (r n+1 n )y n + N x n+1 , F yy n+1 (r n+1 n )y n+1 + N y n+1
) and variancecovariance matrix Q n+1 (r n+1 n ). This implies that p

( x n+1 x n , y n+1 n , r n+1 n ) is also
Gaussian with mean

F xx n+1 (r n+1 n )x n + H n+1 ( r n+1 n , y n+1 n ) , ( 2.15) 
where

H n+1 ( r n+1 n , y n+1 n ) = F xy n+1 (r n+1 n )y n + N x n+1 (r n+1 n ) + Q xy n+1 (r n+1 n ) ( Q yy n+1 (r n+1 n ) ) -1 ( y n+1 -F yy n+1 (r n+1 n )y n -N y n+1 (r n+1 n )
) ,

(2.16)

and variance-covariance matrix

Π 2 n+1 ( r n+1 n ) = Q xx n+1 (r n+1 n ) -Q xy n+1 (r n+1 n ) ( Q yy n+1 (r n+1 n ) ) -1 Q yx n+1 (r n+1 n ). (2.17) Besides, as (R n+1 , Y n+1 ) and X n are independent conditionally on (R n , Y n ) in CGOMSM, we have E [ X n r n+1 n , y n+1 1 ] = E [X n |r n , y n 1 ]
. So the intermediate item of filtering is given according to (2.8), by the iterative computation of

E [ X n+1 r n+1 , y n+1 1 ] = ∑ rn ( p ( r n r n+1 , y n+1 1 ) [ F xx n+1 (r n+1 n )E [X n |r n , y n 1 ] + H n+1 ( r n+1 n , y n+1 n )] ) .
(2.18)

The covariance Cov

[ X n+1 X ⊺ n+1 r n+1 , y n+1 1 ]
can be achieved by computing the
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E [ X n+1 X ⊺ n+1 |r n+1 , y n+1 1 ] = ∑ rn ( p ( r n r n+1 , y n+1 1 ) [ F xx n+1 (r n+1 n )E [X n X ⊺ n |r n , y n 1 ] ( F xx n+1 (r n+1 n ) ) ⊺ + F xx n+1 (r n+1 n )E [X n |r n , y n 1 ] H ⊺ n+1 ( r n+1 n , y n+1 n ) + H n+1 ( r n+1 n , y n+1 n ) E [X ⊺ n |r n , y n 1 ] ( F xx n+1 (r n+1 n ) ) ⊺ + Π 2 n+1 ( r n+1 n ) + H n+1 ( r n+1 n , y n+1 n ) H ⊺ n+1 ( r n+1 n , y n+1 n )]
) .

(2.19)

Finally, the filtering is calculated with E

[ X n+1 r n+1 , y n+1 1 ]
and p (r n |y n 1 ). The calculation of p (r n |y n 1 ) is no more repeated here, since it is the filtering of discrete state-space PMC which has already been tackled in Chapter 1, Section 1.2.1.

Once we have the filtering, optimal smoothing (2.9) in CGOMSM is simple, as )

we have E [ X n r n , y N 1 ] = E [X n |r n , y n 1 ] from p ( x n r n , y N 1 ) = p (x n |r n , y n 1 ) p ( y N n+1 |x n ,
. Thus, smoothing can be calculated by (2.9). Meanwhile, the calculation of p (

r n y N 1 )
is the smoothing of discrete statespace PMC, which has been also derived in Chapter 1, Section 1.2.1.

Parameterization of stationary models

Stationary models are more widely used for unsupervised data restoration than the time-varying ones. A CGPMSM is stationary if the distributions p

( t n+1 n ) = p ( x n+1 n , r n+1 n , y n+1 n ) of T n+1 n
do not depend on n, and thus are equal to p

( x 2 1 , r 2 1 , y 2 1 
) .

Let us write the latter as ) on R s+q defined by K mean vectors and K 2 variancecovariance matrices. Thus, for 1 ≤ j, k ≤ K, the model parameters are

p ( x 2 1 , r 2 1 , y 2 1 ) = p ( r 2 
p j,k = p (r 1 = j, r 2 = k) ; (2.23) M z j =    E [X 1 |r 1 = j] E [Y 1 |r 1 = j]    =    M x j M y j    ; (2.24) Γ z 2 1 j,k = E       Z 1 -M z j Z 2 -M z k       Z 1 -M z j Z 2 -M z k    ⊺ r 1 = j, r 2 = k    =    Γ z j Σ z j,k ( Σ z j,k ) ⊺ Γ z k    , (2.25) 
in which

Γ z j =    Γ xx j Γ xy j ( Γ xy j ) ⊺ Γ yy j    ; Σ z j,k =    Σ xx j,k Σ xy j,k Σ yx j,k Σ yy j,k    . (2.26)
There we have two parameterizations of CGPMSM. We will call first parametrization the following one:

1. The set Θ 1 of K 2 probabilities (p j,k ) j,k∈Ω given by (2.23);

2. The set Θ 2 of K mean vectors (M z j ) j∈Ω given by (2.24);

3. The set Θ 3 of K 2 variance-covariance matrices given by (2.25).

Sets Θ 2 , Θ 3 define the Gaussian distributions p (z 1 , z 2 |r 1 = j, r 2 = k ). We will denote this first parametrization as

Θ 1 = {Θ 1 , Θ 2 , Θ 3 }.
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In the second parametrization, we will keep the same Θ 1 and Θ 2 , while Θ 4 will respect the regimes of the CGPMSM (2.10), and replace Θ 3 . More precisely, in stationary CGPMSM, transitions of the triplet Markov chain do not depend on n, so (2.10) can be rewritten as:

   X n+1 Y n+1    Z n+1 =    F xx (R n+1 n ) F xy (R n+1 n ) F yx (R n+1 n ) F yy (R n+1 n )    F (R n+1 n )    X n Y n    Zn +    ω x n+1 ω y n+1    ω n+1 +    N x (R n+1 n ) N y (R n+1 n )    N z (R n+1 n ) , (2.27)
in which

ω n+1 ∼ N     0,    Q xx (r n+1 n ) Q xy (r n+1 n ) Q yx (r n+1 n ) Q yy (r n+1 n )    Q(r n+1 n )     . Q(r n+1 n ) = B(r n+1 )B ⊺ (r n+1
) and the item considering the means:

   N x (R n+1 n ) N y (R n+1 n )    N z (R n+1 n ) =    M x (R n+1 ) M y (R n+1 )    M z (R n+1 ) -F (R n+1 n )    M x (R n ) M y (R n )    M z (Rn)
,

where M z (R n = j) = M z j in (2.24). Setting F j,k = F (r n = j, r n+1 = k) and Q j,k = Q(r n = j, r n+1 = k),
we can say that the model is also defined by the parameters Θ 1 , Θ 2 above, and by 4) The set Θ 4 of K 2 matrices (F j,k ) j,k∈Ω and of K 2 variance-covariance matrices of noise (Q j,k ) j,k∈Ω given by

F j,k =    F xx j,k F xy j,k F yx j,k F yy j,k    , Q j,k =    Q xx j,k Q xy j,k Q yx j,k Q yy j,k    .
(2.28)

We will call second parametrization, the set

Θ 2 = {Θ 1 , Θ 2 , Θ 4 }.
Let us specify the links between Θ 3 and Θ 4 . Classically, Θ 4 can be obtained
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F j,k = ( Σ z j,k ) ⊺ ( Γ z j ) -1 ; Q j,k = Γ z k -F j,k Σ z j,k . (2.29)
And, conversely, using Lyapunov equation [START_REF] Douglas | Time series analysis[END_REF], (2.29) implies that

Γ z j = argvec [ (I -F j,j ⊗ F j,j ) -1 vec (Q j,j ) ] ; Σ z j,k = ( F j,k Γ z j ) ⊺ , (2.30)
in which argvec (•) is the inverse function of the operator vector vec (•) that stacks the columns of a matrix and ⊗ represents the Kronecker product.

We display in Figures 2.1 and 2.2, the variable dependences of the general stationary CGPMSM and stationary CGLSSM respectively. 

x 1 x 2 Σ xx j,k Γ xy j y 1 y 2 Σ yy j,k Γ xy k Σ x y j, k Σ y x j, k Figure 2.1: Dependence graph of CGPMSM. x 1 x 2 Σ xx j,k Γ xy j y 1 y 2 Σ yy j,k Γ xy k Σ x y j, k Σ y x j, k

Reversible CGOMSM

If a CGPMSM is concurrently a CGOMSM, then in Θ 4 , the parameter F yx j,k = 0. From (2.29), we can get the relation of elements in Θ 3 of a CGOMSM that

Σ xy j,k = Γ xy j ( Γ yy j ) -1 Σ yy j,k , (2.31)
see the variable dependence in Figure 2.3a. And if CGOMSM is reversible, then the optimal restoration can be conducted forwardly and backwardly. Symmetrically, the stationary reversible CGOMSM (CGOMSM-R) holds an extra condition that

Σ yx j,k = Σ yy j,k ( Γ yy k ) -1 ( Γ xy k ) ⊺ , (2.32)
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Markov switching models see the dependence in Figure 2.3b. The interesting point in the reversibility of CGOMSM-R is that exact backward filtering and smoothing can be calculated, which may be competitive comparing to the forward one when we apply this model to any data.

x 1 x 2 Σ xx j,k Γ xy j y 1 y 2 Σ yy j,k Γ xy k Σ x y j ,k Σ y x j ,k (a) General CGOMSM. x 1 x 2 Σ xx j,k Γ xy j y 1 y 2 Σ yy j,k Γ xy k Σ x y j ,k Σ y x j ,k (b) Reversible CGOMSM.

Restoration of simulated stationary data

We present two experiments here to verify the property of CGOMSM-R (Series Each method includes filtering and smoothing.

Series 1

This experiment is conducted to test the equality of the forward and backward exact restorations of CGOMSM-R.

Assume a simple case that X n , Y n are both scalar, K = 2, probabilities (Θ 1 ) 

p 1,1 = p 2,2 = 0.
Θ 3 of series 1 (CGOMSM-R). Γ z 2 1 j,k k = 1 k = 2 j = 1     
1.00 0.30 0.10 0.12 0.30 1.00 0.12 0.40 0.10 0.12 1.00 0.30 0.12 0.40 0.30 1.00 ). So the optimal filtering and smoothing perform equivalently in CGOMSM knowing r N 1 . Moreover, the optimal smoothing of CGOMSM-R calculated forwardly and backwardly are equal, that is why all the four optimal restorations give the same results. Trajectories of one experiment in this Series is illustrated in Figure 2.4.

          1 
M SE = N ∑ n=1 (x n -x n ) 2 /N. ( 2 

Series 2

This Series focuses on CGOMSM-based approximation for CGPMSM, to study the performance of CGO-B and decide weather CGO-F or CGO-B is closer to a given CGPMSM.

In this Series, data is simulated from the general CGPMSM with the same parameters Θ 1 and Θ 2 set in Series 1, but with different Θ 3 and Θ 4 . We consider F yx j,k = 0.2 for CGOMSM, then Σ xy j,k is given from the relation of Θ 3 and Θ 4 (2.30) by calculating

Σ xy j,k = ( F yx j,k Γ xx j Γ yy j -F yx j,k ( Γ xy j ) 2 + Σ yy j,k Γ xy j ) /Γ yy j .
This equation is only valid when both X n and Y n are scalar, and therefore all 

Σ yx j,k = ( F b yx j,k Γ xx k Γ yy k -F b yx j,k ( Γ xy k ) 2 + Σ yy j,k Γ xy k ) /Γ yy k .
. 2.5 shows the MSE of estimated hidden states from all forward and backward methods. For optimal methods, knowing the switches, forward and backward smoothing are equal. Noticed that in this experiment, F yx j,k were set to 0.2, when F b yx j,k is less than 0.2, the CGO-B has large opportunity to be a better approximation to CGPMSM, so that CGO-B gets better restoration than CGO-F. The performance superiority of CGO-B over CGO-F is more prominent when F b yx j,k gets closer to 0.0, and CGO-B becomes the exact restoration method when

For
F b yx j,k = 0. While F yx j,k = F b yx j,k = 0.
2, the forward and backward performance are difficult to compare from the complex dependence of the model. Nevertheless, it is reasonable to have CGO-B better than CGO-F, as referring to the optimal restoration, Opt-B is better than Opt-R. The smoothing of CGO-B has not too much improvements from filtering with better estimation of switches since only p (

r n y N n ) is updated to p ( r n y N 1 )
from filtering to smoothing, as in the same case of CGO-F for CGOMSM, see (2.20).
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We may conclude that, both algorithms CGO-F and CGO-B are competitive when approximating a given CGPMSM. Normally, if we have all F yx j,k > F b yx j,k , it could be better to chose CGO-B to approximate the CGPMSM. But when it comes to the case (most of the time) that in one covariance set, for several classes of (j, k),

F yx j,k > F b yx j,k
, while the other classes hold the contrary, it is hard to predict which of the two is the closer CGOMSM for a given CGPMSM. In our work presented by the following Sections, when mention CGOMSM, we will only consider CGOMSM forwardly, so as the corresponding CGO-F for restoration.

EM-based parameter estimation of stationary CGPMSM

So far, we consider only the restorations of CGPMSM assuming that all the parameters are known. From this Section, we are going to cope with the unsupervised restoration without knowledge of parameters. The primary problem we need to solve under unsupervised case, is the parameter estimation problem. We are going to deal the parameter estimation problem by using the classic EM principle, since under Gaussian linear case, the derivatives are computable in M-Step and EM shows more stability after converging comparing to ICE, see Figure 1.2a. However, when applying EM principle, the exact computation of E [

X n y N 1 ]
given by (2.9)

is not possible under the general CGPMSM, which brings the out come that either

E Θ 1 [ Z N 1 y N 1 ] or E Θ 2 [ Z N 1 y N 1 ]
(Θ 1 and Θ2 are the two equivalent parameter sets of CGPMSM defined in Section 2.1.3) in the E-step of the EM iterations can not be computed in a reasonable time.

The main contribution of this Section is to propose a general estimation method.

Based on applying EM principle twice, this method allows one to estimate all model parameters 2 from all observation Y N 1 = y N 1 only, with a certain number of possible switches K. The estimated parameters could be used for smoothing which results in unsupervised restoration.

Firstly, we notice that if R N 1 can be estimated, CGPMSM will degenerated The repeat of these three steps can be stopped with respect to some criterion. Let us remark that the first two steps above are sufficient to estimate all the parameters, however, the repeating of them by using result of step B as a new initialization of the EM in step A may improve the final result.
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Let us detail the three steps which constitute the entire Double EM algorithm we propose.

Step A is for estimating Θ 1 , Θ 2 and getting a realization rN Step B is for estimating the remaining parameters Θ 3 and Θ 4 by applying EM principle the second time, with hypothesis that θ2 and rN 1 are the true ones. We detail the second EM algorithm in next Section.

1 of

EM estimation for CGPMSM with known switches

Knowing Θ 2 (the means) and the switches, a CGPMSM is actually a GPMM with switching parameters. In this Section, we extend the constant parameter GPMMbased EM algorithm [START_REF] Ait-El-Fquih | Unsupervised signal restoration in partially observed Markov chains[END_REF] to the switching parameter case that we are dealing with here. We call this extension "Switching EM".

Under the assumption that r N 1 is known. For the convenience of likelihood expression, let Θ z be the parameter set of the likelihood, which is actually constituted by the parameter sets defined in Section 2.1.3. The function to update Θ z is

Θ z(l+1) = arg max Θ z L(Θ z(l) , Θ z ).
(2.35)
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Index l here denotes the Switching EM iteration, and

L(Θ z(l) , Θ z ) = E Θ z(l) [ ln p Θ z ( z N 1 ) r N 1 , y N 1 ] , ( 2.36) 
is the complete data likelihood. The joint distribution p Θ z ( z N

1

) can be factorized as

p Θ z ( z N 1 ) = p M z r 1 ,Γ z r 1 (z 1 ) N -1 ∏ n=1 p Θ 4 (z n+1 |z n ) , ( 2.37) 
with

p M z r 1 ,Γ z r 1 (z 1 ) = N ( M z r 1 , Γ z r 1 
) ;

p Θ 4 (z n+1 |z n ) = N ( F (r n+1 n ) + N z (r n+1 n ), Q(r n+1 n )
) .

(2.38)

M z r 1 ∈ Θ 2 is given, while Γ z r 1 ∈ Θ 3 , is linked to Θ 4 with equation (2.

29) and (2.30). To avoid complex derivation when doing maximization, we remove p

M z r 1 ,Γ z r 1 (z 1 )
from the complete data likelihood, since only one point of data makes nearly no influence on the update of Θ 4 . So, in M-step we calculate

Θ (l+1) 4 = arg max Θ 4 L(Θ (l) 4 , Θ 4 ), (2.39) 
which maximizes the simplified likelihood:

L(Θ (l) 4 , Θ 4 ) = E Θ (l) 4 [ ln N -1 ∏ n=1 p Θ 4 (z n+1 |z n ) r N 1 , y N 1 ] , = E Θ (l) 4 [ N -1 ∑ n=1 ln p Θ 4 (z n+1 |z n ) r N 1 , y N 1 ]
.

(2.40)

E-step:

With assumption that R N 1 = rN 1 , Θ 2 = θ2 , and

Θ 4 = Θ (l) 4 , the E-step calculates p ( x n r N 1 , y N 1 )
of the switching GPMM model. p (x n |r n 1 , y n 1 ) is needed during its calculation.

As no confusion will be introduced, let us remove the dependence notation related to r for simplification in the calculation of this E-step. Then the computation is just similar to the computation of filtering and smoothing for a stationary GPMM
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P n|n+1 = P n|n -K n|n+1 S n|n+1 ( K n|n+1 ) ⊺ , ( 2.41) 
with

S n|n+1 = Q yy + F yx P n|n (F yx ) ⊺ ; K n|n+1 = P n|n (F yx ) ⊺ ( S n|n+1 ) -1 ; ŷn+1|n = F yx xn|n + F yy y n + N y ; ỹn+1|n = y n+1 -ŷn+1|n .
(2.42) Thus, we get

xn+1|n+1 = A n xn|n+1 + C n ; P n+1|n+1 = Q 2 + A n P n|n+1 (A n ) ⊺ , ( 2.43) 
where ) -1 . For later use, we compute also the covariance between x n+1 and x n knowing y N 1 :

A n = F xx -Q xy (Q yy ) -1 F yx ; C n = Q xy (Q yy ) -1 y n+1 -Q xy (Q yy ) -1 N y + ( F xy -Q xy (Q yy ) -1 F yy ) y n + N x ; Q 2 = Q xx -Q xy (Q yy ) -1 Q yx . ( 2 
C n+1,n|N = P n+1|N ( K n|N ) ⊺ . (2.46)
We should notice that this computation is of difference from the one in [START_REF] Ait-El-Fquih | Unsupervised signal restoration in partially observed Markov chains[END_REF] and [START_REF] Némesin | Robust blind pairwise Kalman algorithms using QR decompositions[END_REF], because there is a "shift" of the pair from (X n , Y n-1 ) in the model handled in these two articles to (X n , Y n ) in our model (2.27), and our model considers an extra mean item N y n .

M-step:

For the calculation in M-step, we need to take back the notation of r, but the explicit dependence on the current iteration l in (2.40) can be dropped, also, the dependence on y N 1 in the notation is removed for brevity. Then, the log-likelihood we need to maximize writes

L(Θ 4 ) = N -1 ∑ n=1 L n ( Θ 4 (r n+1 n ) ) , ( 2.47) 
with

L n ( Θ 4 (r n+1 n ) ) = E [lnp (z n+1 |z n )] = E [ lnp ( z ′ n+1 z ′ n )] , (2.48) in which p ( z ′ n+1 z ′ n ) = N ( F (r n+1 n )z ′ n , Q(r n+1 n ) ) (2.49) and      z ′ n+1 = z n+1 -M z (r n+1 ), z ′ n = z n -M z (r n ).
(2.50)

We define covariances by

C z ′ n ,z ′ n = E [ z ′ n z ′t n |y N 1 ] =    xn|N -M x (r n ) y n -M y (r n )       xn|N -M x (r n ) y n -M y (r n )    t +    P n|N 0 0 0    ,
(2.51)
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C z ′ n+1 ,z ′ n = E [ z ′ n+1 z ′t n |y N 1 ] =    xn+1|N -M x (r n+1 ) y n+1 -M y (r n+1 )       xn|N -M x (r n ) y n -M y (r n )    t +    C n+1,n|N 0 0 0    .
(2.52)

Then, taking the derivative of the likelihood (2.47) with respect to each F j,k , with ∀j, k ∈ Ω. We have

∂L(Θ 4 ) ∂F j,k = ∂ ∑ N -1 n=1 L n ( Θ 4 (r n+1 n ) ) ∂F j,k = ∂ ∑ N -1 n=1 δ n (j, k) L n (Θ 4 (r n = j, r n+1 = k)) ∂F j,k , (2.53) 
where δ n (j, k) denotes the function (r n = j, r n+1 = k). Similarly, we take the derivative of the likelihood with respect to each Q j,k

∂L(Θ 4 ) ∂F j,k = ∂ ∑ N -1 n=1 L n ( Θ 4 (r n+1 n ) ) ∂Q j,k = ∂ ∑ N -1 n=1 δ n (j, k) L n (Θ 4 (r n = j, r n+1 = k)) ∂Q j,k , (2.54) 
Making both (2.53) and (2.54) equals to zero, we can get the update expression of

F j,k . Q j,k in Θ 4 given by F j,k = C z ′ n+1 ,z ′ n j,k ( C z ′ n ,z ′ n j,k ) -1 ; Qj,k = 1 Card (j, k) ( C z ′ n+1 ,z ′ n+1 j,k -F j,k ( C z ′ n+1 ,z ′ n j,k ) ⊺ ) ,
(2.55)
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where Card (j, k) = ∑ N -1 n=1 δ n (j, k) and

C z ′ n ,z ′ n j,k = N -1 ∑ n=1 δ n (j, k) C z ′ n ,z ′ n ; C z ′ n+1 ,z ′ n j,k = N -1 ∑ n=1 δ n (j, k) C z ′ n+1 ,z ′ n ; C z ′ n+1 ,z ′ n+1 j,k = N -1 ∑ n=1 δ n (j, k) C z ′ n+1 ,z ′ n+1 .
(2.56)

The details of all derivatives in M-step is available in Appendix A.

The log-likelihood L (

Θ z ; y N 1 )
is given by

E [ lnp ( y N 1 |Θ z )] = - 1 2 N -1 ∑ n=1 { qln(2π) + ln|S n|n+1 |+ ( ỹn+1|n ) ⊺ ( S n|n+1 ) -1 ( ỹn+1|n 
)} , (2.57)
with q denoting the dimension of Y n .

We provide here an experiment on simulated data to test the robustness of the proposed Switching EM under the assumption that true r N 1 is known, as Switching EM is an indispensable part of the entire Double EM algorithm for estimating the parameters Θ 4 and Θ 3 parallelly. Consider a simple case of stationary CGPMSM, where s = q = 1, Ω = {1, 2}, and the variance-covariance matrices is of the form:

Γ z 2 1 j,k =           1 b j a j,k d j,k b j 1 e j,k c j,k a j,k e j,k 1 b k d j,k c j,k b k 1           . (2.58)
with ∀j, k ∈ Ω. All variance are ones. The joint probabilities Θ 1 is set by p 1,1 = p 2,2 = 0.45, p 1,2 = p 2,1 = 0.05; all means in Θ 2 set to be zero and assumed known;

In Θ 3 : b 1 = 0.3, b 2 = 0.5, a j,1 = 0.1, a j,2 = 0.5, c j,1 = 0.4, c j,2 = 0.9, e j,1 = 0.75, e j,2 = 0.33, while d j,1 and d j,2 varies to make F yx j,k in Θ 4 which is the unique value
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N = 10000 samples of T N 1 = ( X N 1 , R N 1 , Y N 1 )
are simulated with a ranging value of all F yx j,k = F yx from 0.05 to 0.40 to show the behavior of the Switching EM on CGPMSM with respect to the optimal smoothing for comparison. Larger F yx means that the CGPMSM specified here is less similar to a CGOMSM, which implies that the pair (R N 1 , Y N 1 ) is less like a PMC. This remark will be of interest in unsupervised smoothing. are all monotone increasing and convergent. Specifically in the case F yx = 0.05, the likelihood converged fastest as indicated in Fig. 2.6a, but the MSE hasn't been stable even at the last iteration in fact. This behavior shows that when F yx becomes smaller (which means that the model gets closer to the CGOMSM) it is easier to get likelihood converged but get worse parameter estimation. The extreme case is obtained when F yx = 0, the likelihood can be maximized (converged) within one step, and only parameters F yy j,k and Q yy j,k can be estimated from the maximization. This point will be discussed later in Section 2.2.3.

The initialization of Θ

The restoration result is illustrated in Figure 2.6b. Over all, it shows a good performance of Switching EM based restoration compared to the optimal result
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Markov switching models knowing all the parameters. The restoration performs better and steadier with an increasing value of F yx as indicated by the blue shadow which shows the 95% confidence interval of the result of Switching EM.

The true and estimated parameters under F yx = 0.40 in this series are displayed as an example in Table 2 switchingEM " in Table 2.6, and "switchingEM (500) " in Table 2.7 record the estimated Θ 4 and Θ 3 through Switching EM with 500 iterations. "switchingEM (0) "

] Σ z j,k Σ z 1,1 Σ z 1,2 Σ z 2,1 Σ z 2,2
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shows the initial parameters at the beginning of the Switching EM. Comparing to the initialization, the parameters estimated through Switching EM are closer to the true ones (more prominent in Θ 4 ).

Overall double-EM algorithm

So far, we have explained the Step A and Step B, and actually these two steps are already enough to estimate all the parameters. However, if we consider an improvement of initialization in Step A, the entire Double EM is then constructed by applying Step A, Step B sequentially and a feedback Step C, which can update the initialization of the parameters for Step A, so that we can iterate these three steps several loops to get better estimation.

In detail, what the feedback

Step C does, is to return θ1 , θ2 given by Step A, and the variance-covariance of p (y 1 , y 2 |r 1 = j, r 2 = k ) extracted from θ3 given by

Step B, to be the initialization of the EM for discrete state-space PMC in next loop's Step A to replace the K-means initialization, which may cause failure.

The entire Double EM parameter estimation algorithm is summarized in Algorithm 1.

Discussion about special failure case of double-EM algorithm

The Double EM assumes that (R N 1 , Y N 1 ) is Markovian to approach r N 1 . When the model comes to be CGOMSM with

Y n+1 = F yy (R n+1 n )Y n (see (2.10)) and (R N 1 , Y N 1 )
truly Markovian, it seems it naturally possesses the assumption that we made for estimating the switches, but one should look out that, Switching EM becomes invalid when dealing with the parameter estimation of CGOMSM. Let us explain this point with details.

The general EM tries to find the maximum likelihood, where the model depends on unobserved latent variables, by alternating E-step and M-step through iterations. 

p ( y N 1 |Θ z ) = ∫ x N 1 p ( x N 1 , y N 1 |Θ z ) dx N 1 , (2.59)
as we consider the general case of GPMM, Θ z = {Θ 0 , Θ 4 }. Θ 0 represents the parameter of p (x 1 , y 1 ), and Θ 4 = {F , Q}. While specially with F yx = 0, we have

p ( y n+1 |y n ) = N (F yy y n , Q yy ).
The likelihood can be extended and simplified as:

∫ x N 1 { p (x 1 , y 1 |Θ 0 ) N ∏ n=1 p ( x n+1 , y n+1 |x n , y n , Θ 4 ) } dx N 1 = ∫ x N 1 { p (x 1 |y 1 , Θ 0 ) p (y 1 |Θ 0 ) N ∏ n=1 [ p (x n+1 |x n , y n , Θ 4 ) p ( y n+1 |y n , F yy , Q yy )] } dx N 1 =p (y 1 |Θ 0 ) N ∏ n=1 p ( y n+1 |y n , F yy , Q yy ) ∫ x N 1 { p (x 1 |y 1 , Θ 0 ) N ∏ n=1 p (x n+1 |x n , y n , Θ 4 ) } dx N 1 =1
.

(2.60)

It means that when F yx = 0, we meet a special case where the parameters other than F yy , Q yy in F , Q are not identifiable through maximum likelihood.

But this extreme case can be rare since usually Y N 1 is a noised process of X N 1 .

Unsupervised restoration in CGPMSM

This section aims to find a proper restoration approach for CGPMSM, so that we can get an unsupervised restoration method for the general CGPMSM by fusing the proposed Double EM algorithm for parameter estimation, and the restoration approach.
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Markov switching models tion similarly from

p ( x n+1 y N 1 , r n+1 1 ) = N ( xn+1|N (r n+1 1 ), P n+1|N (r n+1 1 ) ) , (2.64) we get p ( x n y N 1 , r n 1 ) = N ( xn|N (r n 1 ), P n|N (r n 1 ) ) = N ( B r n+1 n { xn+1|N (r n+1 1 ), P n+1|N (r n+1 1 ) } ) .
( ) .

In CGOMSM, (R N 1 , Y N 1 ) is Markov, then we have:

p ( x n y n+1 1 , r n+1 n ) = p (x n |y n 1 , r n ) , p ( x n y n+1 1 , r n+1 1 ) = p (x n |y n 1 , r n 1 ) . (2.66)
This is the way of CGOMSM approximation, but if we need to use the original parameters of the model which is not with F yx = 0, then (2.66) may be too arbitrary. Here we adopt the transformation of mean and variance from p

(x n |y n 1 , r n ) to p ( x n y n+1 1 , r n+1 n ) the same as p (x n |y n 1 , r n 1 ) to p ( x n y n+1 1 , r n+1 1 )
, which means that we adopt

{ xn+1|n+1 (r n+1 n ), P n+1|n+1 (r n+1 n ) } = F r n+1 n { xn|n (r n ), P n|n (r n ) } .
(2.67)

The mean and variance approach forwardly of p (

x n+1 y n+1 1 , r n+1 ) calculated from Markov switching models p (x n |y n 1 , r n ) is that { xn+1|n+1 (r n+1 ), P n+1|n+1 (r n+1 ) } = ∑ rn p ( r n r n+1 , y n+1 1 ) F r n+1 n { xn|n (r n ), P n|n (r n ) } .
( ) by the same transformation as from ) that

p ( x n+1 y N 1 , r n+1 1 ) to p ( x n y N 1 , r n+1 1 ) , thus { xn|N (r n+1 n ), P n|N (r n+1 n ) } = B r n+1 n { xn+1|N (r n+1 ), P n+1|N (r n+1 ) } , ( 2 
{ xn|N (r n ), P n|N (r n ) } = ∑ r n+1 p (r n+1 |r n ) B r n+1 n { xn+1|N (r n+1 ), P n+1|N (r n+1 ) } .
(2.71)

Finally, the smoothing is approached by

xn|N = ∑ rn p ( r n y N 1 ) xn|N (r n ). (2.72)
The approximation proposed above is milder than assuming the model to be CGOMSM (it considers the information of y N n+1 in p

( x n r n , y N 1 ) while CGOMSM holds that p ( x n r n , y N 1 ) = p (x n |r n , y n 1 )
.) and is equal to optimal one when the model is actually a CGOMSM. To conclude, we need to approximate three items

still: p ( r n+1 y n+1 1 ) , p ( r n r n+1 , y n+1 1 ) , p ( r n y N 1 )
. Here, we consider two ways
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Markov switching models to carry out the approximation. One way is based on parameter modification to CGOMSM with known transition probabilities. The other way is based on EM with unknown transition probabilities.

Approximation based on parameter modification

We modify the parameters of the original CGPMSM to be CGOMSM, according

to Σ xy j,k ′ = Γ xy j ( Γ yy j ) -1 Σ yy j,k , then, (R N 1 , Y N 1 ) is Markov chain and p ( y n+1 r n+1 n , y n ) = N (F yx′ (r n+1 n ), Q yy′ (r n+1 n )), (2.73) 
where F yx′ (r n+1 n ) and Q yy′ (r n+1 n ) are calculated from the modified variancecovariance matrix with Σ xy j,k replaced by Σ xy j,k ′ . The three key probabilities of

p ( r N 1 y N 1 )
can be computed iteratively like under model discrete state-space PMC.

As p (r n+1 |r n , y n ) = p (r n+1 |r n ), we have

p ( r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n ) p ( y n+1 r n+1 n , y n ) . (2.74) Besides, since (R N 1 , Y N 1 ) is Markov, we have p ( r n , r n+1 y n+1 1 ) = p ( r n+1 , y n+1 |r n , y n ) p (r n |y n 1 ) ∑ rn,r n+1 p ( r n+1 , y n+1 |r n , y n ) p (r n |y n 1 ) , ( 2.75) 
and thus,

p ( r n+1 y n+1 1 ) = ∑ rn p ( r n , r n+1 y n+1 1 ) ; (2.76) p ( r n r n+1 , y n+1 1 ) = p ( r n+1 , y n+1 |r n , y n ) p (r n |y n 1 ) ∑ rn p ( r n+1 , y n+1 |r n , y n ) p (r n |y n 1 )
.

(2.77)

To iteratively calculate p ( r n y N 1 ) , β(r n ) = p(y N n+1 |rn,y n ) p(y N n+1 |y n 1 ) is introduced with β(r N ) = 1. Then β(r n ) = ∑ r n+1 β(r n+1 )p ( r n+1 , y n+1 |r n , y n ) ∑ rn,r n+1 p (r n |y n 1 ) p ( r n+1 , y n+1 |r n , y n ) , (2.78) 
and

p ( r n y N 1 ) = p (r n |y n 1 ) β(r n ). (2.79) 
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of EM approach only applied on smoothing. Besides, the particle smoother is not considered here 5 .

Shortly, we call the two approximation methods proposed above:

1) CGO-Appro: Restoration approach with partial approximation based on parameter modified to CGOMSM, using all parameters (as described in Section 2.3.1.1);

2) EM-Appro: Restoration approach with partial approximation based on EM without making use of the transition probability of switches (as described in Section 2.3.1.2).

To better understand the performance of these two approximations, we also do another approach:

3) Rough-Appro: Restoration approach with partial approximation like CGO-Appro, but with F yx′ (r n+1 n ) and Q yy′ (r n+1 n ) in (2.73) roughly replaced by the original F yx (r n+1 n ) and Q yy (r n+1 n ).

These three approaches are compared to several existing restoration methods listed bellow, which may appear also in the other experiments in later Sections.

• OF: Optimal filtering knowing true switches and true parameters;

• PF: Particle filter for CGPMSM;

• OFA: Optimal filtering approximation with unknown switches and true parameters modified to become a CGOMSM using equation (2.31) proposed

in [1] 6 .
Correspondingly, the abbreviations of smoothing methods are represented by changing the "F" to "S", e.g. "OS" represents Optimal smoothing; "OSA" represents optimal smoothing extended from "OFA". 5 We have not yet found a proper way to sample p

( r N 1 y N 1 )
for smoothing, direct extension of the distribution p ( r N 1 y N 1 ) estimated from particle filter suffers the sample depletion and gets very bad result. 6 Which actually has been used once under the name of CGO-F in Section 2.1.4. See the error ratio of estimated r N 1 in Fig. 2.7a, OFA and CGO-Appro perform exactly the same, as their approximation process on p ( r n y N 1 ) are the same. They get competitive error ratio as PF, and when F yx is smaller (model is more like CGOMSM), CGO-Appro and OFA can perform better than PF as when F yx = 0 they are equal and both are optimal restoration. When data is far from model CGOMSM, PF works better as it has no approximation related to CGOMSM.

Rough-Appro is affected a lot by the value of F yx , when the model is going far from CGOMSM, it can not recover R N 1 appropriately. The MSE of filtering result is displayed in Fig. 2.7b, the methods proposed with partial approximation and OFA perform nearly the same. Still, Rough-Appro gets worse result when F yx becomes larger. PF can be considered as optimal filter when r N 1 is unknown once there are enough particles (under this experimental setting, we found empirically PF behaves asymptotically for 200 particles). Thus the proposed CGO-Appro is quite efficient as it performs quite close to PF but much less time consuming. Implemented with Python 3.6 on a 3.7GHz CPU, the CGO-Appro takes around 0.36 seconds while PF takes 36.20 seconds.

Turning to the smoothing result, the performance of different methods becomes more prominent. Figure 2.8a shows that with unknown transition matrix, EM-Appro performs little worse than OSA and CGO-Appro, and also the iteration of EM requires sufficient sample numbers. See the MSE of smoothing result in Fig. 2.8b, the approach methods proposed who still use the original parameters can maintain the same tendency as the OS, while OSA can not keep this tendency.

The main reason is that, the assumption F yx = 0 through out the restoration process of OSA means that p (

x n r n , y N 1 ) is equal to p (x n |r n , y n 1 ), thus, y N n+1 only brings new information in p ( r n y N 1 )
for smoothing comparing to filtering.

This point has been explained in Section 2.1.4. The two approximation methods proposed here, although still partially based on the assumption that

( R N 1 , Y N 1 ) is 
Markovian, adopt milder approximation for p (

x n r n , y N 1 )
, in which the information given by y N n+1 is considered. CGO-Appro gets exactly the same result as OSA
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when F yx = 0, and then performs better when the model becomes less likely to a CGOMSM. Rough-Appro behaves the same, but not so well as CGO-Appro when F yx increases. Meanwhile, without relying on modification of the variancecovariance matrix by fixed value, EM-Appro has almost the same tendency as CGO-Appro when F yx increases, and in fact, no artificial modification of the elements in variance-covariance matrix can avoid the non-positive definite problem, which makes sense when doing smoothing. Regarding the time consumption of the two proposed method in this experiment, CGO-Appro takes around 26 seconds, while EM-Appro takes around 3 minutes because of the EM learning process. However, EM-Appro is still much less time-consuming comparing to particle methods.

We can conclude from this series of experiment that, normally, CGO-Appro works better than OSA, which shows that the partial approach we made in proposed method can be a milder one comparing to CGOMSM approach (when F yx = 0 they are equal to each other). When it comes to smoothing case, with enough samples, EM-Appro can get also appropriate performance, especially when the model is far from CGOMSM.

Double EM based unsupervised restorations

Having both the strategies for parameter estimation and methods for approaching restoration, we can now study the way to accomplish the unsupervised restoration of the general CGPMSM. This Section of experiment aims to verify the performance of the unsupervised methods, which combines the Double EM with different restoration approaches, and also analyzes some impacts that can influent their performance.

The parameter estimation and unsupervised restoration methods, which will appear in the following experiments are listed bellow with their abbreviations. To avoid duplication, we omit the definitions of the methods which has been appeared

in previous experiments, so as their abbreviations.

Two Double EM methods with different feedback times:

1. DEM (FB = 0): Double EM without feedback for parameter estimation; 

[ X n y N 1 ] = E [ X n rN 1 , y N 1 ] ,
assuming that rN 1 is a proper estimation. In this experiment, we chose only DEM-EM-Appro and DEM-R-MPM for unsupervised smoothing, to avoid the modification of estimated Θ 3 in CGOMSM or CGLSSM, which can meet non-positive definite matrix and any adjustment for turning it into positive definite one introduces more error. The restoration results under F yx = 0.20 and F yx = 0.40 are illustrated in Fig. 2.9 and Fig. 2.10 respectively. From these two figures, we observe that the performance of EM is very similar to OSA regarding the estimation of R N 1 , even though OSA knows the transition probabilities of the switches. When |M y | reaches For example, if y n is classified in a wrong class of r n , when |M y | is larger, removing the mean cause larger error introduced when recovering x n . This tendency can be observed also in the result of any other method applied in the condition that R N 1 is unknown, the OSA in the figures for instance.

Experiment on varying noise levels

To better describe the interest of the new methods we proposed in unsupervised smoothing, we continue comparing the efficiency of different methods increasing the "level of noise", which means decreasing the degree of stochastic dependence between the observed process Y N 1 and the hidden ones (R N 1 , X N 1 ). Here, we take the same parameter for Θ 1 as the previous experimental series, set means in Θ 2 all zero. Then the noise level will be evolved through the parameters of the distribution p

( x N 1 , y N 1 r N 1 ) defined by p ( x 2 1 , y 2 1 r 2 1 
)

. Indeed, the noise level is linked with covariances b j , d j,k , e j,k (see (2.58) and Fig. 2.1): the lower they are, the higher the noise level is. Thus, the MSE of smoothing based on true parameters will increase when the covariances b j , d j,k , e j,k decrease, and the interest in this series is to study whether unsupervised smoothing results are not too far from the real parameters based one. Of course, when these covariances are very small, the link between the observed signal and the hidden one is very tiny, thus the proposed parameter estimation method can not provide good results like any other methods.

Let us mention that the covariances a j,k , c j,k also play a role in the noise level.

However, it is much more difficult to evaluate them theoretically.

We fix the value of a j,k and c j,k as: a j,1 = 0.1, a j,2 = 0.5, c j,1 = 0.5, c j,2 = 0.9

with ∀j ∈ {1, 2}. Consider two cases with F yx = 0.1 and F yx = 0.3, and five sub-cases with decreasing noise, which means that b j , e j,k , d j,k increase, whose parameters are given in Table 2.9. The initialization of Θ 4 is chosen also to be the same, except that the initial F xx j,1 is changed to 0.1 for suiting this series. As it has been proved in previous Series that DEM-EM-Appro performs better than DEM-R-MPM, in this series, instead of DEM-R-MPM, we consider the other three unsupervised restoration approaches with parameters estimated from Double Results of this series is given in Figure 2.11 (shows the error ratio of restored switches) and Figure 2.12 (shows the restoration MSE of all methods considered).

Under supervised case, the approximated models CGOMSM of Case F yx = 0.1 is the same as of Case F yx = 0.4 so as the approximated model CGLSSM. The reason is that they both modify F yx to zero.

Let us see the estimation result of R N 1 . Both of the Figures 2.11a and 2.11b present the improvement of the error ratio after one feedback in Double EM. Also, small increasing error ratio which can be observed with the increasing number of sub-cases in these two Figures indicates that, the more Y n links to X n-1 , X n ,

X n+1 (by increasing b j,k , e j,k , d j,k , ∀j, k ∈ Ω) the less (R N 1 , Y N 1
) can be considered as PMC. In fact, although not being proved in this Series, c j,k has also significant influence on the error ratio of estimated switches, as it defines the noise level between It is obvious that, under less noisy case, the observation is closer to hidden state, so as the restorations. Meanwhile, both Figure 2.13a and 2.13b show a closer restoration of DEM-EM-Appro to OS than the observations even with misclassification of switches.

Y n and Y n+1 . Comparing Figures 2.

Conclusion

Among all Markov switching models, this Chapter focuses on the recent CGPMSM family extended from GPMM. The CGPMSM considers more complete variable dependence comparing to the widely used CGLSSM, just similar to the advantage brings by GPMM from the classic HGMM. Moreover, benefit from the pairwise structure, under CGPMSM family, there is a special sub-model CGOMSM which allows optimal restoration. The existing supervised restoration approach which does not use MCMC methods in CGPMSM is based on parameter modification to CGOMSM, while according to author's knowledge, no previous work considers the unsupervised restoration of CGPMSM. This Chapter contributes to enrich both supervised and unsupervised restoration methods in CGPMSM. Firstly, we broaden the scope of filtering in CGOMSM.

The reversible CGOMSM is considered, which provides a backward way to approximate the CGPMSM by CGOMSM and experiment shows that, the backward approximation is competitive to the forward one. However, it leaves us the problem to find out a suitable criterion to decide which one is better for a specific case. Secondly, we deal with parameter estimation problem in CGPMSM. The EM method for parameter estimation of GPMM is extended to a switching one with known switches, call Switching EM. Further, with the essential assumption that the processes 

( R N 1 , Y N 1 )
)
is Gaussian defined in (3.4) in a GCOMSM,

we have 

E [ X n+1 x n , r n+1 n , y n+1 n ] = A n+1 ( r n+1 n , y n+1 n ) + B n+1 ( r n+1 n , y n+1 n ) . (3.8) Then E [ X n+1 r n+1 n , y n+1 1 ] is computable from E [X n |r n , y n 1 ] with E [ X n+1 r n+1 n , y n+1 1 ] = E [ E [ X n+1 X n , r n+1 n , y n+1 1 ]] = A n+1 ( r n+1 n , y n+1 n ) E [ X n r n+1 n , y n+1 1 ] + B n+1 ( r n+1 n , y n+1 n ) = A n+1 ( r n+1 n , y n+1 n ) E [X n |r n , y n 1 ] + B n+1 ( r n+1 n , y n+1 n ) , (3.9) E [ X n+1 r n+1 , y n+1 1 ] = ∑ rn p ( r n r n+1 , y n+1 1 ) E [ X n+1 r n+1 n , y n+1 1 ] . ( 3 
) = ∑ r n-1 p ( r n-1 , r n+1 n , y n+1 1 ) = ∑ r n-1 p ( r n n-1 , y n 1 ) p ( r n+1 , y n+1 |r n , y n ) = ∑ r n-1 p ( r n n-1 , y n 1 ) p (r n+1 |r n ) p ( y n+1 r n+1 n , y n ) , (3.12) 
where p ( y n+1 r n+1 n , y n

) is computed from its distribution set by equation (3.3).

Finally, the filtering is given by 

E [ X n+1 y n+1 1 ] = ∑ r n+1 p ( r n+1 y n+1 1 ) E [ X n+1 r n+1 , y n+1 1 ] . ( 3 
E [ X n y N 1 ] = ∑ rn p ( r n y N 1 ) E [ X n r n , y N 1 ] = ∑ rn p ( r n y N 1 ) E [X n |r n , y n 1 ] . (3.14) 
We see that optimal restorations in GCOMSM have quite similar forms as the optimal restorations in CGOMSM. 

L =       p 1 1,1 g 1 a,b • • • p 1 1,K g 1 a,b • • • p 1 K,K g 1 a,b . . . . . . . . . . . . . . . p N -1 1,1 g N -1 a,b • • • p N -1 1,K g N -1 a,b • • • p N -1 K,K g N -1 a,b ,       (3.23) where p n j,k = p ( r n = j, r n+1 = k y N 1 ) with j, k ∈ Ω, and g n a,b = [ g a ( y n+1 n ) x n g b ( y n+1 n ) ] .
When it comes to the case that A r n+1 n

( y n+1 n ) , B r n+1 n ( y n+1 1 
) are non-linear on parameters, we can turn to various of numerical algorithms for minimizing the error, for example, the basic Gauss-Newton method with linear approximation of the functions, the Powell's Dog Leg method with a control of trust region, and some hybrid methods introduced in [START_REF] Björck | Numerical methods for least squares problems[END_REF], [START_REF] Madsen | Methods for Non-Linear Least Squares Problems[END_REF], [START_REF] Kenneth | A new algorithm for nonlinear least-Squares curve fitting[END_REF]. In practice of the experiments illustrated in following Chapters, we tackle the non-linear least square problem with Levenberg-Marquardt (LM) algorithm which is a Damped Gauss-Newton method as proposed in [START_REF] Levenberg | A method for the solution of certain non-linear problems in least squares[END_REF] and completed in [START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF], [START_REF] Osborne | Nonlinear least squares -the Levenberg algorithm revisited[END_REF] and [START_REF] Kanzow | Withdrawn: Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints[END_REF].

The overall GICE-LS identification algorithm

Combining the GICE and LS methods for GCOMSM explained in previous Sections, 

Margins

Copulas 0.01 0.07 0.01 0.02 0.00 0.00 0.00 0.00 tested is quite efficient in this series, since all the three methods get similar results

f 1 (Gaussian) f 2 (Gaussian) c 1,1 (Gaussian) c 1,2 /c 2,1 (Gaussian) c 2,2 (Gaussian) loc 1 scale 1 loc 2 scale 2 α 1,1 α 1,2 /α 2,
as the supervised optimal one. ICE-LS could be taken as an alternative method to CGOMSM-ABF, as they both work on Gaussian case, and get very close results. An example of trajectories (smoothing) is given in Figure 3.9 which shows intuitively very similar performance of all the three identification methods and also the optimal restoration.

Non-Gaussian non-linear case

As last series shows the efficiency of all the three identification method on Gaussian linear case of GCOMSM, this series is designed to test their performance on the general non-Gaussian non-linear case of GCOMSM.

The parameters of p ( y n+1 n r n+1 n ) which are supposed to be non-Gaussian in this experiment are set as:

-Margins: ) .

f 1 (y n ) = Gamma {θ 1 = 16, loc 1 = -5, scale 1 = 0.25}, f 2 (y n ) = Fisk {θ 2 = 4, loc 2 = -2.
The parameters estimated by GICE-LS are quite near to the true ones as listed in Table 3.11 (average of the instances where the forms of the distribution are exactly estimated) and Table 3.12. Estimated switch joint probabilities from GICE are p 1,1 = 0.474, p 1,2 = p 2,1 = 0.040, p 2,2 = 0.445. Margins Copulas 0.00 -0.01 -0.13 -0.01 0.00 0.00 0.00 0.00

f 1 (Gamma) f 2 (Fisk) c 1,1 (Gumbel) c 1,2 /c 2,1 (Gaussian) c 2,2 (Clayton) θ 1 loc 1 scale 1 θ 2 loc 2 scale 2 α 1,1 α 1,2 /α 2,
Finally, we display a trajectory example of

( x N 1 , y N 1 )
, with all estimated hidden 

Application of GICE-LS to non-Gaussian non-linear models

The efficiency of GICE-LS on identification of GCOMSM has been proved in previews Sections. We would like to see how it performs on other non-Gaussian nonlinear data. This application means to approximate a non-Gaussian non-linear system by GCOMSM, with parameter identified through GICE-LS, and also restored by the optimal restoration method of the approximated GCOMSM.

On stochastic volatility data

Stochastic volatility model is a family of models used in the field of mathematical finance. It models the volatility as a stochastic process and is widely used as an approach to solve the shortcoming of the Black-Scholes model, in which the underlying volatility is always constant and unaffected by the changes, and it explains the "volatility smile" in a self-consistent way that the volatility has its realistic Chapter 3. Non-Gaussian Markov switching model with copulas )

. Implemented by C programming language, the smoothing for CGOMSM in CGOMSM-ABF takes 0.0038 seconds on a 3.7GHz CPU, while Particle Filter takes 0.56s seconds 10 .

The smoothing for GCOMSM costs around 0.40 seconds implemented by python 3.6. Though different programming language based implementations make the time consumption incomparable at present, both as exact restoration, the smoothing for GCOMSM should consume time not far (could be a little more due to the calculation of copulas) from CGOMSM-ABF if implemented in the same programming language. To conclude, we sum up some interesting points from these two experimental series that 1. Switching Markov model can be a good approach for stationary stochastic volatility models, the advantage of this approach is that exact restoration can be derived which is normally less time consuming than MCMC based restoration methods. 3. With less knowledge, GICE-LS could be the least efficient method when it comes to the case that linear Gaussian well fits distributions. But it still gets the result not too far away from the other identification methods. 

Conclusion

The This Chapter defines the new general GCOMSM, gives the model simulation method, and derives the associated optimal restorations (filtering and smoothing).

Two different examples of data simulation and optimal restorations of GCOMSM are given. One is with special Gaussian linear settings which degenerates the model to the CGOMSM, the other is with general non-Gaussian non-linear settings to show the interest of the extension in GCOMSM. Moreover, a GCOMSM identification method based on the recent "Generalized Iterative Conditional Estimation"

Chapter 4

Conclusion and perspectives

Switching Markov models are widely used in many fields to describe the dynamic state-space systems. When applying switching Markov models on imitating real systems, the issues of learning their suitable parameters and data restoration (filtering and smoothing) are indispensable. This dissertation focuses on finding solutions for these two problems of recent switching Markov models without taking use of the Markov Chain Monte-Carlo (MCMC) method which is the generic train of thought when dealing with these problems.

The main contribution of this dissertation is two folds:

1. An unsupervised parameter estimation method named "Double EM" is pro- Moreover, an identification method called "GICE-LS" is proposed to learn the distributions and parameters of time-independent GCOMSM from its sample data set

( x N 1 , y N 1 )
. GICE-LS is based on two principles:

a) The "Generalized Iterative Conditional Estimation" principle (GICE) c) The proposed Double EM can not work on the CGOMSM, for which, we may find another parameter estimation method other than applying the Taking partial derivative of the likelihood function with respect to F j,k , we get (2.53), and make it equal to zero we have where

= - 1 2 { qln(2π) + ln|Q j,k | + tr [ Q j,k -1 E (( z ′ n+1 -F j,k z ′ n ) ( z ′ n+1 -F j,k z ′ n ) ⊺ )]} = - 1 2 { qln(2π) + ln|Q j,k | + tr [ Q j,k -1 C z ′ n+1 ,z ′ n+1 ] -tr [ Q j,k -1 F j,k ( C z ′ n+1 ,z ′ n ) ⊺ ] -tr [ Q j,k -1 C z ′ n+1 ,z ′ n F j,k ⊺ ] + tr [ Q j,k -1 F j,k C z ′ n ,z ′ n F j,k ⊺ ]} , (A.
N -1 ∑ n=1 δ n (j, k) { -∂tr [ Q j,k -1 F j,k ( C z ′ n+1 ,z ′ n ) ⊺ ] -∂tr [ Q j,k -1 C z ′ n+1 ,z ′ n F j,k ⊺ ] + ∂tr [ Q j,k -1 F j,k C z ′ n ,z ′ n F j,k ⊺ ] } / ∂F j,k = N -1 ∑ n=1 δ n (j, k) { - (( C z ′ n+1 ,z ′ n ) ⊺ Q j,k -1 ) ⊺ -Q j,k -1 C z ′ n+1 ,z ′ n +Q j,k -1 F j,k C z ′ n ,z ′ n + Q j,k -t F j,k ( C z ′ n ,z ′ n ) ⊺ } = N -1 ∑ n=1 δ n (j, k) { -2Q j,k -1 ( C z ′ n+1 ,z ′ n -F j,k C z ′ n ,z ′ n )} =0.
C z ′ n ,z ′ n j,k = N -1 ∑ n=1 δ n (j, k) C z ′ n ,z ′ n ; C z ′ n+1 ,z ′ n j,k = N -1 ∑ n=1 δ n (j, k) C z ′ n+1 ,z ′ n ; C z ′ n+1 ,z ′ n+1 j,k = N -1 ∑ n=1 δ n (j, k) C z ′ n+1 ,z ′ n+1 , (A.7)
as defined in (2.56).

Also, taking partial derivative of the likelihood function (A.3) with respect to Q j,k and making it equal to zero we have

N -1 ∑ n=1 δ n (j, k) { ∂ln|Q j,k | + ∂tr [ Q j,k -1 C z ′ n+1 ,z ′ n+1 ] -∂tr [ Q j,k -1 F j,k ( C z n+1 ,zn ) ⊺ ]
-∂tr

[ Q j,k -1 C z ′ n+1 ,z ′ n F j,k ⊺ ] + ∂tr [ Q j,k -1 F j,k C z ′ n ,z ′ n F j,k ⊺ ]} / ∂Q j,k =Card (j, k) Q j,k -1 + N -1 ∑ n=1 δ n (j, k) { -Q j,k -1 ( C z ′ n+1 ,z ′ n+1 ) ⊺ Q j,k -1 + Q j,k -1 C z ′ n+1 ,z ′ n F j,k ⊺ Q j,k -1 + Q j,k -1 F j,k ( C z ′ n+1 ,z ′ n ) ⊺ Q j,k -1 -Q j,k -1 F j,k ( C z ′ n ,z ′ n ) ⊺ F j,k ⊺ Q j,k -1 } =0.
(A.8)

After simplification, we have

Card (j, k) Q j,k + N -1 ∑ n=1 δ n (j, k) { C z ′ n+1 ,z ′ n F j,k ⊺ + F j,k ( C z ′ n+1 ,z ′ n ) ⊺ -C z ′ n+1 ,z ′ n+1 -F j,k C z ′ n ,z ′ n F j,k ⊺ } = 0.
(A.9)

Bringing F j,k into expression, we get .10) 

Qj,k = 1 Card (j, k) ( C z ′ n+1 ,z ′ n+1 j,k -F j,k ( C z ′ n+1 ,z ′ n j,k ) t ) . ( A 
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 12 Restoration problem: given the observation series {y 1 , y 2 , • • • , y N }, what the most likely hidden states {x 1 , x 2 , • • • , x N } are. Parameter estimation problem: under the case that the model parameters Θ are unknown, how we figure out the suitable Θ of the applied HMC.

Figure 1 . 1 :

 11 Figure 1.1: Dependence graphs of particular sub-models of PMC.

( r n y N 1 )Chapter 1 .

 11 . The MPM (Maximum Posterior Mode) criterion, which maximizes the posteriors is commonly used according to the computation of rn = arg max j ϕ n (j) , (1.24) Pairwise Markov chain and basic methods with j ∈ Ω for n from {1, • • • , N }. And another Bayesian criterion often used is the MAP (Maximum A Posteriori estimation) defined as a regularization of ML estimation by the prior of p ( y N 1

Chapter 1 .

 1 Pairwise Markov chain and basic methods (a) One instance. (b) Average of 100 experiments.

Figure 1 . 2 :

 12 Figure 1.2: Error ratio tendency with iterations.

Figure 2 . 2 :

 22 Figure 2.2: Dependence graph of CGLSSM.

Figure 2 . 3 :

 23 Figure 2.3: Dependence graph of CGOMSM.

1 )

 1 and show the efficiency of both the exact forward and backward restorations of CGOMSM when approximating the CGPMSM (Series 2). All results presented here are averages of 100 independent experiments. The abbreviations of methods used in the following experiments are 1. Opt-F: Optimal forward restoration knowing the true switches. 2. Opt-B: Optimal backward restoration knowing the true switches. 3. CGO-F: Exact forward CGOMSM restoration with unknown switches. 4. CGO-B: Exact backward CGOMSM restoration with unknown switches.

  ) are: Γ xx j = Γ yy j = 1, Γ xy 1 = 0.3, Γ xy 2 = 0.5, Σ xx j,1 = 0.1, Σ yy j,1 = 0.4, Σ xx j,2 = 0.5, Σ yy j,2 = 0.9, ∀j, k ∈ Ω = {1, 2}. Σ xy j,k and Σ yx j,k are given by (2.31) and (2.32) respectively. Parameters in Θ 3 are reported in Table 2.1. We denote the parameters of reverse model by adding a subscript b to the notation of parameters of forward model. For example, the corresponding F j,k in reverse model to the original one is F bj,k . Parameter F j,k (CGO-F) and F bj,k (CGO-B) in Θ 4 in this Series are listed in Table 2.2. We see no matter forwardly or backwardly, CGOMSM-R are CGOMSM as both F yx j,k and F b yx j,k are zero, but the other parameters can be different. 10000 samples are simulated according to the parameter setting of this CGOMSM-R and then restored according to the four filtering as well as the four Chapter 2. Optimal and approximated restorations in Gaussian linear Markov switching models smoothing algorithms. We evaluate the restoration performance by error ratio of estimated switches comparing to the true ones and the Mean Square Error (MSE) of the restored hidden states comparing to true states which computes

Chapter 2 .Figure 2 . 4 :

 224 Figure 2.4: Trajectory example of Series 1 (50 samples).

Chapter 2 .Figure 2 . 5 : 1 ) 1 )N 1 y N 1 )

 225111 Figure 2.5: DEM-CGPMSM scheme.

4 4FL

 4 are always set to be the same through all experiments as = 500 iterations are set for Switching EM to converge, and all results are averages of 100 independent experiments. Figure 2.6a draws the likelihoods (first 100 EM iterations) of five different F yx values from Switching EM calculated by (2.57), they

Figure 2 . 7 :Chapter 2 .Figure 2 . 7

 27227 Figure 2.7: Experiment of CGPMSM filtering approaches (9 different values of F yx ).

Chapter 2 .

 2 Optimal and approximated restorations in Gaussian linear Markov switching models 2. DEM (FB = 1): Double EM with one feedback for parameter estimation. One extra supervised restoration based on parameter modification: • CGLSSM: Classical restoration with true R N 1 = r N 1 and true parameters based CGLSSM obtained from CGPMSM 7 . Five unsupervised restoration methods based on Double EM and combined with different restoration approaches: 1. DEM-EM-Appro: DEM 8 combined with EM-Appro as entire unsupervised restoration. 2. DEM-CGO-Appro: DEM combined with CGO-Appro as entire unsupervised restoration. 3. DEM-R-MPM: Parameters estimated from DEM. The smoothing adopts the realization of rN 1 using MPM criterion, and E

4 .Chapter 2 .models 2 . 3 . 2 . 1

 422321 DEM-CGOMSM: Parameters estimated from DEM then modified into CGOMSM for smoothing. 5. DEM-CGLSSM: Parameters estimated from DEM then modified into CGLSSM, and take the realization rN 1 from DEM for restoration. As Double EM is based on all observation y N 1 , the restoration methods we talk about here are all smoothing. We present too series of experiments to better understand all these methods. The experiments are based on N = 10000 data simulated from specific model settings and for each setting, 100 independent experiments are conducted to provide average results. Iterations for the Double EM are set the same through the experiments as I = 100 for EM in Step A and L = 500 for Switching EM in Step B. Optimal and approximated restorations in Gaussian linear Markov switching Experiment on varying switching observation means This series of experiments is designed for analyzing the performance of the Double EM based unsupervised restoration approach methods compared to several other supervised restoration approaches. We change the focus of F yx in the former experiments to the means of observation in Θ 2 (see the parameterization in Section 2.1.3), to adjust the difficulty of the circumstance for finding Θ 1 and estimating the switches. Data is generated with |M y | ranging from 0.0 to 2.5, where |M y | represents the absolute value of the mean of Y n , defined by the two possible values of R n . As an example, |M y | = 2.5 indicates that M y 1 = 2.5 and M y 2 = -2.5. Other parameter settings are the same as experiments of Swithing EM in Section 2.2.1, and initialization of the parameters for Double EM are also the same as (2.59).

2. 5

 5 we get R N 1 exactly estimated (0 error ratio). Both of Figure 2.9a and Figure 2.10a verify that the feedback from the Step B to the initialization of Step A in Double EM can bring improvement of the error ratio when |M y | is small, which means a difficult situation for K-means to initialize Chapter 2. Optimal and approximated restorations in Gaussian linear Markov switching models of each individual wrong classification of y N 1 .

Chapter 2 .

 2 Optimal and approximated restorations in Gaussian linearMarkov switching modelsEM: DEM-CGO-Appro, DEM-CGOMSM and DEM-CGLSSM. When modification of parameters into CGOMSM and CGLSSM meets non-positive definite covariance matrix, we replace their negative eigenvalues with a small positive value. This adjustment assures the process but possibly drive parameters inappropriate. The mean MSE of observation is set as a threshold for the selection of proper instances in 100 experiments to show the average result.

  11a

  and 2.11b, for each sub-case, case F yx = 0.3 always gets more error in the restored switches thanF yx = 0.1, since (R N 1 , Y N 1 )is less PMC like with larger F yx value, so that the EM in Step A of Double EM is less efficient.Combining the restoration MSE of the methods considered illustrated in Figure Chapter 2. Optimal and approximated restorations in Gaussian linear Markov switching models (a) case: F yx = 0.1. (b) case: F yx = 0.3.

Figure 2 . 12 :Chapter 2 .

 2122 Figure 2.12: Restoration MSE of hidden states in five different noise levels.

Figure 2 . 13 :Chapter 2 .

 2132 Figure 2.13: Examples of a trajectory of (x N 1 , y N 1 , r N 1 ) (30 sample points) and restoration with OS and DEM-EM-Appro.

  (a) Histogram of Y N 1 (r n = 1). (b) Histogram of Y N 1 (r n = 2). (c) Histogram of Y N 1 . (d) Histogram of X N 1 .

Figure 3 . 2 :

 32 Figure 3.2: Histograms of simulated data of Example 1 (Gaussian linear case).

( a )

 a Two marginal distributions. (b) Joint distribution of ( y n , y n+1 |r n = 1, r n+1 = 2 ) .

Figure 3 . 4 :

 34 Figure 3.4: The distributions in Example 2.

Figure 3 . 5 :

 35 Figure 3.5: Histograms of simulated data of Example 2 (non-Gaussian non-linear case).

Figure 3 . 6 :Chapter 3 .

 363 Figure 3.6: Trajectories of Example 2 (100 samples, non-Gaussian non-linear case).

Figure 3 .)

 3 Figure 3.7 gives the scheme of the entire GICE-LS identification strategy.

Chapter 3 .

 3 Non-Gaussian Markov switching model with copulas states restored by the parameters identified through all the three identification methods in Figure 3.13. From this Figure, the superiority of GICE-LS over the other methods on general GCOMSM data is clearly visible.

Figure 3 . 13 :

 313 Figure 3.13: Trajectory example in series 2 (100 samples, smoothing).

2 .

 2 Working on CGOMSM, CGOMSM-ABF and ICE-LS are alternative identification methods of each other, but since CGOMSM-ABF has more general assumption in its partial process (which is actually of the property of CGPMSM), in practice, it may work better than ICE-LS ifG ( x n+1 x n , y n+1 n , r n+1 n )is linear on y n+1 n .

Chapter 3 .Figure 3 . 17 :

 3317 Figure 3.17: Trajectory example of KTGWSL model (60 samples, K=7).

  CGOMSM model introduced in Chapter 2 is extended to a more general switching model called "Generalized Conditionally Observed Markov Switching Model" (GCOMSM). GCOMSM can incorporate any distribution of p ( y n+1 y n , r n+1 n ) and includes non-linear formation of the regime of G ( x n+1 x n , r n+1 n , y n+1 n ) on y n and y n+1 , while still keeping the advantage of CGOMSM that the optimal restorations are feasible.

  posed for the recent Conditionally Gaussian Pairwise Markov Switching Model (CGPMSM) which is based on two successive Expectation-Maximization (EM) algorithms: a) EM for discrete state-space Pairwise Markov Chain (PMC), with a mild approximation that the pair of switches and observations, property in CGPMSM. b) An extension of the EM algorithm for constant parameter Pairwise Gaussian Markov Model (GPMM) to switching case, under condition that the switches are known, called "Switching EM". Besides, two restoration approaches were proposed for CGPMSM: a) one is based on parameter modification to a sub-model known as Conditionally Gaussian Observation Markov Switching Model (CGOMSM), called "CGO-Appro".

Chapter 4 . 2 .

 42 Conclusion and perspectivesb) A second one is based on EM algorithm assuming that ( "EM-Appro".Simulations were conducted to evaluate all proposed methods. Results show that Switching EM can furnish good estimation of parameters for Gaussian switching case. The two restoration approaches are superior to other parameter modification based restorations and can get competitive results w.r.t. Particle Filter. Integrally, the Double EM algorithm combined with the EM-Appro works well on solving the unsupervised restoration problem of CGPMSM. Its performance even has great chance to surpass the other suboptimal supervised restoration methods. In addition, the effects of observation means and noise level defined by covariances on restoration are studied in the meanwhile. Copulas are introduced in the CGOMSM and fused to a more general one, called "Generalized Conditionally Observed Markov Switching Model" (GCOMSM). The main advantage of this general switching Markov model is that, it incorporates more flexible distributions and regimes while still allows the fast optimal restoration as CGOMSM does. The extensions are on two aspects that a) Introduction of copulas in the distribution of observations conditionally on switches, p ( distributions in GCOMSM which are always assumed Gaussian or Gaussian mixtures in the classic CGOMSM. b) The auto-regressive function G ( x n+1 x n , y n+1 n , r n+1 n ) is linear on x n , but can be of any form on y n and y n+1 in GCOMSM, whereas they are all linear defined in the classic CGOMSM.

n y N 1 )

 1 Least-Square (LS) principle for estimating the parameters of the supposed regime form of G ( x n+1 x n , y n+1 n , r n+1 n) .Experiments verify the capability of GCOMSM to work on data under flexible distributions and non-linear regimes. The GICE-LS can get proper distributions and parameters of GCOMSM and the associated optimal restorations work well on the data simulated from GCOMSM model, while the methods of identification and restorations for the inchoate CGOMSM turn out to be an improper choice for the data following this more general system settings. The "identification-restoration" method combining GICE-LS and optimal restoration of GCOMSM is also tested on other generable non-Gaussian non-linear systems (the Stochastic Volatility and Kitagawa models), results show the merits of the extensions embedded in GCOMSM comparing to CGOMSM.Due to the limitation of time, the efficiency of proposed methods in this dissertation has not been evaluated by real data applications. Also, the proposed methods may still have some inadequacies and maybe some unnecessary assumptions. Considering the current state of the methods, the future work may include:1. For the unsupervised restoration of CGPMSM a) The performance of Double EM is dependent on the accuracy of the realization of R N 1 from the first EM principle applied, which can be further replaced by the probability of p ( r , to reduce the influence brought by arbitrariness of the MPM criterion on Switching EM. b) In this work, the parameter initialization of Switching EM is assumed to be not very far away from the true one. An initialization method will be incorporated or developed later for completing the Double EM algorithm for suiting the real issues.

  xn|N -M x (r n ) y n -M y (r n ) xn|N -M x (r n ) y n -M y (r n ) x (r n+1 ) y n+1 -M y (r n+1 ) x (r n ) y n -M y (r n )

(A. 6 )

 6 So we get F j,k = C
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	writes									
	p	(	r n+1 , y n+1 |r n , y n	)	= p (r n+1 |r n ) p	(	y n+1 |r n , r n+1 , y n	)	.	(1.5)
	Under this case, Y Rn	R n+1	Rn	R n+1
	Yn				Y n+1	Yn	Y n+1
			(a) HMC-IN.							(b) HMC-IN2.
	Rn			R n+1		Rn	R n+1
	Yn			Y n+1		Yn	Y n+1
		(c) HMC-DN.							(d) PMC-IN.
				Rn							R n+1
				) Yn	= p	( (e) PMC. y n+1 |r n , r n+1	Y n+1 ) , the process H N 1 is called
	"Hidden Markov Chain with Independent Noise of order 2" (HMC-IN2) with
	transition probability						
		p	(	r n+1 , y n+1 |r n , y n	)	= p (r n+1 |r n ) p	(	y n+1 |r n , r n+1	)	.	(1.4)
	R N 1 is still a Markov chain, and Y 1 , • • • , Y N are independent conditionally
	on R N 1 , but the dependence on R N 1 is more complicated than in HMC-IN.
	HMC-IN can be seen as a particular case of this HMC-IN2.

1.1. (a) When p (r n+1 |r n , y n ) = p (r n+1 |r n ) and p ( y n+1 |r n , r n+1 , y n ) = p ( y n+1 |r n+1 ) , the process H N 1 is the well recognized HMC. More precisely, we call it "Hidden Markov Chain with Independent Noise" (HMC-IN). The transition probability in (1.2) thus becomes p ( r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n ) p ( y n+1 |r n+1 ) . (1.3) In this classic case, R N 1 is a Markov chain and Y 1 , • • • , Y N are independent from each other knowing R N 1 . (b) When p ( y n+1 |r n , r n+1 , y n (c) If only R N 1 is assumed Markovian, the process H N 1 is called "Hidden Markov Chain with Dependent Noise" (HMC-DN), with the transition probability Chapter 1. 1 , • • • , Y N become dependent from each other conditionally on R N 1 , and obviously, this is a more general case than the last two cases.

  .14) Most of the time, we deal the restoration under simple but practical assumption that the PMC is Gaussian stationary. It means that the probability of p (h n , h n+1 )does not depend on n, and therefore, the distributions p ( y

n , y n+1 |r n , r n+1 )

, which can be written as p (y 1 , y 2 |r 1 , r 2 ) are Gaussian given by:

Chapter 1. Pairwise Markov chain and basic methods

  

	state realizations r N 1 , and M set to one in (1.23), which runs				
				Under this setting, we have the conditional means of
	(	y n , y n+1 |r n , r n+1	)	all 0, variance all 1, and the covariance cov	(	y n , y n+1 |r n , r n+1	)	=
	F yy (r n , r n+1 ). 2000 samples are simulated according to the model setting, then,
	the supervised filtering, smoothing, and unsupervised smoothing through EM and
	ICE are applied on the observations for restoration. In particular, the ICE applied
	here adopts the classic empirical estimation of the moments as	Θh , based on hidden

Table 1 .1: Restoration error ratio of all methods (average of 100 independent ex- periments) .

 1 

		Optimal filtering Optimal smoothing EM	ICE
	Error Ratio	0.196	0.173	0.189 0.180

Chapter 1. Pairwise Markov chain and basic methods can be rewritten as

  

	.29)
	with matrices A n+1 , B n+1 , C n+1 , D n+1 defining the linear functions. U n+1 , V n+1
	are standard normal white noises which are independent from each other and inde-
	pendent from X 1 and Y 1 . However, as HMC is a sub-model of PMC, spontaneously,
	HGMM is a sub-model of GPMM. Just with some parameters set to be 0, HGMM

Chapter 1. Pairwise Markov chain and basic methods

  

	with									
			p	(	x n+1 , y n+1 |y n 1	)	=	∫	p (x n |y n 1 ) p	(	x n+1 , y n+1 |x n , y n	)	dx n .	(1.35)
	Then (1.31)-(1.34) are computable in Gaussian case.
													.31)
	so the forward filtering is	
				p	(	x n+1 y n+1 1	)	= =	p ∫	( p x n+1 , y n+1 |y n 1 p ( ) y n+1 |y n 1 ( x n+1 , y n+1 |x n , y n ) ∫ p ( y n+1 |x n , y n p (x n |y n ) p (x n |y n 1 ) dx n ) 1 ) dx n	.	(1.32)
	Benefit from the pairwise structure, we have
									p	(	x n x n+1 , y n+1 1	)	= p	(	x n x n+1 , y N 1	)	,	(1.33)
	and the backward smoothing can be reached by
	p	(	x n y N 1	)	= = = p (x n |y n ∫ p ( x n , x n+1 y n+1 1 p ( ) p ) x n+1 y n+1 1 ∫ p (x n |y n 1 ) p ( x n+1 , y n+1 |x n , y n ( x n+1 y N 1 ) 1 ) p ( y n+1 |y n ) p ( 1 1 ) ∫ p ( x n+1 , y n+1 |x n , y n 1 ) p ( x n+1 , y n+1 |y n dx n+1 p ( 1 ) x n+1 y N 1 x n+1 y n+1 ) p ( x n+1 y N 1	) )	dx n+1 dx n+1	,	(1.34)

Optimal and approximated restorations in Gaussian linear Markov switching models

  

	and thus								
		p	(	r n r n+1 , y n+1 1	)	=	p ∑	( p r n+1 , y n+1 |r n , y n ( r n+1 , y n+1 |r n , y n ) p (r n |y n 1 ) ) 1 ) p (r n |y n	.	(2.14)
								rn	
	According		to		(2.10),		(X n+1 , Y n+1 )	is	Gaus-
	sian (	conditionally	on		r n+1 n	and	(x n , y n )	with	mean

r n+1 p ( r n+1 , y n+1 |r n , y n ) p (r n |y n 1 ) , (2.13) Chapter 2.
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  Besides, according to p (r 2 |x 1 , r 1 , y 1 ) = p (r 2 |r 1 ) in (2.3), we have

	Chapter 2. p p	( (	x 2 , y 2 r 2 1 x 1 , y 1 r 2 1	) )	= p (x 2 , y 2 |r 2 ) , = p (x 1 , y 1 |r 1 ) .	(2.22)
	Finally, a stationary CGPMSM distribution is defined by p distributions p ( x 2 1 , y 2 1 r 2 1	(	r 2 1	)	and Gaussian
					1	)	p	(	x 2 1 , y 2 1 r 2 1	)	.	(2.21)

Optimal and approximated restorations in Gaussian linear Markov switching modelsTable 2 . 1 :

 21 

45, p 1,2 = p 2,1 = 0.05, and means (Θ 2 ) are all zero. The elements Chapter 2.

Table 2 .

 2 2: Θ 4 of series 1 (CGOMSM-R).

	.00 0.30 0.50 0.27 
	0.30 1.00 0.45 0.90 0.50 0.45 1.00 0.50    
	0.27 0.90 0.50 1.00

Table 2 .

 2 3: Restoration result in Series 1.

		Obser-	Filtering/Smoothing	Filtering	Smoothing
		vation	Opt-F/Opt-B	CGO-F CGO-B CGO-F/CGO-B
	Error Ratio	/	0	0.203	0.263	0.155
	MSE	1.201	0.829	0.834	0.836	0.833
	set in the covariance matrix (Θ 3			

  .33) Results of 100 independent experiments are reported in Table 2.3. It verifies that the smoothing results calculated from forward and backward directions are exactly equal, as both of them use all the information from observation with p

								(	x n y N 1	)	.
	Filtering results can be different. The forward filtering relies on p (x n |y n 1 ), while backward filtering relies on p ( x n y N
	and it leads to p	(	x n y N	1	)	= p	(	y N n+1 |y n 1	)	,

n

)

. Turn to the optimal restorations knowing the switches, under the special structure of CGOMSM, X n and Y n+1 are independent conditionally on Y n , which means that p ( y N n+1 |x n , y n 1 ) = p (x n |y n 1

Optimal and approximated restorations in Gaussian linear Markov switching models exact

  all four CGPMSMs with different F b restoration of approximated CGO-B.The error ratio of estimated switches comparing to the true ones are listed in Table2.4. Under this parameter setting, the CGO-F performs better than CGO-B for filtering, but for smoothing, CGO-B surpasses CGO-F.

	Table 2.4: Error ratio of estimated R N 1 in Series 2.
	F b	yx j,k	Filtering CGO-F CGO-B CGO-F CGO-B Smoothing
	0.0	0.205	0.263	0.158	0.155
	0.1	0.206	0.264	0.159	0.157
	0.2	0.208	0.265	0.161	0.159
	0.3	0.209	0.266	0.163	0.161
					yx j,k , and each individual experiment,
	10000 samples are simulated to test the exact restoration methods of approximated
	models. When using the CGOMSM to approximate the CGPMSM, the parameters
	used for CGO-F is modified from the CGPMSM ones. In detail, we replace Σ xy j,k by Σ xy j,k = Γ xy j ( Γ yy j ) -1 Σ yy j,k to get F yx j,k = 0 according to (2.31) for exact restoration
	of the approximated CGOMSM. Similarly, when using the reverse CGOMSM to

approximate the CGPMSM, the original Σ yx j,k is replaced according to (2.32) for the Chapter 2.

Table 2 .

 2 5: MSE of estimated X N 1 in Series 2.

	F b	yx j,k	Filtering Opt-F Opt-B CGO-F CGO-B Opt-F/Opt-B CGO-F CGO-B Smoothing
	0.0	0.829	0.743	0.839	0.762	0.743	0.837	0.758
	0.1	0.807	0.742	0.818	0.761	0.726	0.817	0.757
	0.2	0.743	0.741	0.765	0.761	0.676	0.765	0.756
	0.3	0.633	0.740	0.680	0.761	0.587	0.679	0.756
	Table						

  3. So we can just follow the equations from (1.31) to (1.34) to get in order p (x n |y n 1 ), and then the target of E-step p

	(	x n y N 1	)	.
	The computation of initial p (x 1 |y 1 ) is trivial. p (x n |y n 1 ), ∀n ∈ 1, . . . , N are cal-culated in a forward direction from p (x n |y n 1 ) = N ( xn|n , P n|n ) to p ( x n+1 y n+1 ) = 1 N ( xn+1|n+1 , P n+1|n+1 ) through several intermediate variables:
	xn|n+1 = xn|n + K n|n+1 ỹn+1|n ;			
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				.44)
	p	(	p x n+1 y N ( x n y N 1 1 )	) = N , ∀n ∈ 1, . . . , N is calculated in a backward direction from ( xn+1|N , P n+1|N ) to p ( x n y N 1 ) = N ( xn|N , P n|N ) according to
				xn|N = xn|n+1 + K

n|N (x n+1|N -xn+1|n+1 );

P n|N = P n|n+1 + K n|N (P n+1|N -P n+1|n+1 ) ( K n|N ) ⊺ , (2.45) Chapter 2. which K n|N = P n|n+1 (A n ) ⊺ ( P n+1|n+1

  .6 and Table 2.7 Table 2.6: True and estimated Θ 4 in experiment of Switching EM (F yx = 0.40).

		R 2 1	[	(1, 1)	]	[		(1, 2)	]	[		(2, 1)	]	[	(2, 2)	]
		F T rue	[	-0.137 0.791 0.400 0.280 ]	[	0.440 0.202 0.400 0.780 ]	[	-0.367 0.933 0.400 0.200 ]	[	0.444 0.111 0.400 0.700 ]
	F	(500) switchingEM	-0.220 0.956 0.289 0.358 [ ]	[	0.357 0.072 0.288 0.857 ]	-0.382 1.059 0.271 0.313 [ ]	[	0.321 0.011 0.263 0.816 ]
		Q true	[	0.420 0.050 0.050 0.694	] [	0.713 0.040 0.040 0.044 ] [	0.337 0.110 0.110 0.720	] [	0.741 0.067 0.067 0.070
	(500) Q switchingEM	0.586 -0.132 -0.132 0.716		0.611 0.069 0.069 0.064	0.481 -0.145 -0.145 0.782	0.720 0.157 0.157 0.140
				Γ z j			[	Γ z 1	] [	Γ z 2		]
				T rue			1.000 0.300 0.300 1.000 [ ] [	1.000 0.500 0.500 1.000	]
			Switching EM (500)		1.518 0.142 0.142 1.003 [ ] [	0.810 0.319 0.319 0.995
			Switching EM (0)		1.411 0.251 0.251 0.809			0.696 0.146 0.146 0.743

]

Table

2

.7: True and estimated Θ 3 in experiment of Switching EM (F yx = 0.40).

  True parameters Θ 4 are reported in Table2.6 in row "F true ", "Q true " and the equivalent Θ 3 are in Table2.7 of row "T rue", while rows "F

			[	]	[	]	[	]	[	]
		T rue	[	0.100 0.484 0.750 0.400	] [	0.500 0.634 0.333 0.900 ]	[	0.100 0.500 0.750 0.400 ]	[	0.500 0.750 0.333 0.900 ]
	Switching EM (500)	[	-0.199 0.491 0.927 0.401 ] [	0.553 0.560 0.123 0.900 ] [	0.027 0.320 0.932 0.398	] [	0.264 0.474 0.114 0.896 ]
	Switching EM (0)		-0.455 0.408 0.683 0.455		0.730 0.408 0.206 0.455	-0.202 0.212 0.670 0.401	0.363 0.212 0.147 0.401
										(500) switchingEM ",
	"Q	(500)							
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	Chapter 2.							
	Algorithm 1 Double EM				
	Inputs:								
	y N 1 , K.								
	Initialize: θh = {	pj,k ,	My 2 1 j,k ,	Γy 2 1 j,k	}	, θ4 =	{	F j,k , Qj,k	} .
										My 2 1 j,k and	Γy 2 1 j,k by (1.19).
	Estimate	My						
	Calculate θ3 =	{ Γ z 2 1 j,k	}	through (2.30) from estimated θ4 ,
	and extract Γ y 2 1 j,k as feedback to EM for discrete state-space PMC.
	Outputs:								
	θ1 , θ2 , θ3 , θ4						
	But under the case that F yx j,k = 0, EM becomes invalid, since parameters defining p ( x N 1 y N 1 ) have no influence on p ( y N

1

)

. Here we give a simple proof on constant parameter GPMM that F (R n+1 n ) is simplified to F , thus, F yx j,k is simplified to F Compute: for fb = 0 to FB do for i = 0 to I do 1) EM for discrete state-space PMC. E-step: calculate ϕ n (j), ψ n (j, k) in (1.7), (1.8) by (1.11)-(1.14). M-step: update θ1 = pj,k , j of θ2 from (2.34), and rn|N from ϕ n (j) with MPM criterion. for l = 0 to L do 2) Switching EM. E-step: calculate xn|N , P n|N , C n+1,n|N with (2.41)-(2.46). M-step: get update of θ4 with (2.55).
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  so as the other parameters as it is the same case in CGPMSM. The likelihood of observed data is:

Table 2 .

 2 8: Estimated Θ 1 and Θ 2 in Series 2 (F yx = 0.40).

		|M y |	0.0	0.5	1.0	1.5	2.0	2.5
		p 1,1	0.369	0.406	0.447	0.450	0.450	0.450
	θ1	p 1,2 = p 2,1	0.063	0.058	0.051	0.050	0.050	0.050
		p 2,2	0.506	0.479	0.451	0.449	0.450	0.450
	θ2	M y 1 M y 2	-0.007 -0.001 -0.456 -1.023 -1.502 -1.996 -2.496 0.540 1.007 1.503 2.000 2.499

Table 2 .

 2 9: Parameters of five different noise sub-cases.

	Sub-case	b 1	b 2	e j,1 e j,2	F yx = 0.1 d 1,1 d 1,2 d 2,1 d 2,2 d 1,1 d 1,2 d 2,1 d 2,2 F yx = 0.3
	1	0.00 0.20 0.40 0.10 0.10 0.10 0.20 0.18 0.30 0.30 0.39 0.47
	2	0.10 0.30 0.50 0.20 0.15 0.19 0.24 0.36 0.35 0.39 0.42 0.54
	3	0.20 0.40 0.60 0.30 0.20 0.28 0.28 0.44 0.39 0.47 0.45 0.61
	4	0.30 0.50 0.70 0.40 0.24 0.36 0.33 0.53 0.42 0.54 0.48 0.68
	5	0.40 0.60 0.80 0.50 0.28 0.44 0.36 0.60 0.45 0.61 0.49 0.73
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	Chapter 2. Optimal and approximated restorations in Gaussian linear Markov switching models comparing to the original parameter modification approach in [1], since they take assumption in their partial process. Experiments conducted verify the efficiency of these two approaches against the other restoration methods including Particle Fil-ter, and that they are much less time consuming comparing to Particle filer. Finally, Chapter 3. As in GCOMSM, we have p ( r n+1 , y n+1 |x n , r n , y n ) = p ( r n+1 , y n+1 |r n , y n ) , it leads
	combining the Double EM for parameter estimation and the proposed restoration to
	approaches, we get unsupervised restoration solutions for CGPMSM. Simulations p ( x n r n+1 n , y n+1 1 ) = p (x n |r n , y n 1 ) . (3.7)
	show the competitive performances of DEM-EM-Appro among all considered unsu-pervised strategies, which can even surpass the supervised restoration approaches, Besides, since p ( x n+1 x n , r n+1 n , y n+1 n
	such as CGOMSM based one and CGLSSM based one.
	is a PMC, an EM principle based parameter estimation
	method for CGPMSM is proposed, called Double EM, incorporating the Switching
	EM. Thirdly, for supervised restoration in CGPMSM, two restoration approaches,
	"CGO-Appro" and "DEM-Appro" are proposed based on parameter modification
	to CGOMSM and EM principle respectively. These two approaches are milder

Table 3 .

 3 1: Restoration result of Example 1.

	Observation	Exact filtering	Exact smoothing
	MSE	Error ratio MSE Error ratio MSE
	2.328	0.261	1.086	0.229	1.079

Non-Gaussian Markov switching model with copulas

  

Table 3 .

 3 3: Restoration results of series 1 (Gaussian linear).) on the learning sample set is listed in Table3.4 and Table3.5.

		MSE of observation: 1.726 Optimal GICE-LS ICE-LS CGOMSM-ABF
			Filtering		Error ratio MSE	0.245 1.037	0.289 1.047	0.249 1.044	0.247 1.044
		Smoothing		Error ratio MSE	0.211 1.032	0.261 1.044	0.215 1.039	0.213 1.040
			From Table 3.3, we see that GCOMSM still works on Gaussian case as
	CGOMSM does. Under the worst condition that both distribution forms and pa-
	rameters of p	(	y n+1 n	y n+1 n	)	are unclear, the filtering and smoothing with the param-
	eters identified through GICE-LS gets competitive result not far from the filtering
	and smoothing result identified thorough ICE-LS and CGOMSM-ABF which as-
	sumes knowing all the shapes to be Gaussian. However, it still needs to notice that
	GICE not always find Gaussian as the "best fitted" distribution, it may sometimes
	converge to the others with similar PDF, the identification result of the form of
	p	(	y n+1 n	r n+1 n		

Table 3 .

 3 4: Margin selection result of GICE in series 1.

	Form Gamma Fisk Gaussian Laplace Beta Beta prime
	f 1	2%	1%	86%	0%	0%	0%
	f 2	5%	3%	54%	1%	0%	37%

Table 3 .

 3 5: Copula selection result of GICE in series 1.

		Form	Gumbel Gaussian Clayton FGM Arch12 Arch14 Product
		c 1,1	1%	43%	2%	0%		3%	51%	0%
	c 1,2 = c 2,1	32%	52%	10%	4%		0%	2%	0%
		c 2,2	14%	60%	4%	19%	0%	3%	0%
	Actually, this fact affects not too much in the final restoration, since with specific
	parameter settings, different distributions can have very similar PDF. The same
	phenomenon will also be reported in next experimental series with details. Table
	3.6 shows the average of estimated parameters of p	(	y n+1 n	r n+1 n	)	from the instances
	that GICE converges to the true Gaussian forms. The estimated parameters related
	to G	(	x n+1 x n , y n+1 n r n+1				

n

)

are reported in Table 3.7. The estimated parameters are all not far away from the true ones. Estimated switching joint probabilities from Chapter 3.
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  are p 1,1 = 0.485, p 1,2 = p 2,1 = 0.047, p 2,2 = 0.421; while from ICE are p 1,1 = 0.489, p 1,2 = p 2,1 = 0.046, p 2,2 = 0.419. In addition, the identification

Table 3 .

 3 

	6: Estimated parameters of p	(	y n+1 n	r n+1 n	)	in series 1.

Table 3 .

 3 [START_REF] Xuedong | Hidden Markov models for speech recognition[END_REF], scale 2 = 2.4}. 9: Margin selection result of GICE in series 2.

	Chapter 3. Non-Gaussian Markov switching model with copulas
	frequently in this series.					
	Form Gamma Fisk Gaussian Laplace Beta Beta prime
	f 1	87%	12%	0%	1%	0%	0%
	f 2	1%	99%	0%	0%	0%	0%

Table 3 .

 3 10: Copula selection result of GICE in series 2.

	Form	Gumbel Gaussian Clayton FGM Arch12 Arch14 Product
	c 1,1	96%		2%	1%	0%	0%	1%	0%
	c 1,2 = c 2,1	34%		58%	4%	0%	0%	0%	0%
	c 2,2	2%		0%	96%	1%	1%	0%	0%
	An example of error ratio tendencies with GICE and ICE iterations of estimated
	R N 1 (using MPM criterion) in identification set is given in Figure 3.12. It shows
	that GICE and ICE both converge after around 40 iterations, but ICE is not able
	to well approximate p	(	y n+1 n	r n+1 n			

Table 3 .

 3 

	11: Estimated parameters of p	(	y n+1 n	r n+1 n	)	in series 2.

Table 3 .

 3 

	12: Estimated parameters of G	(	x n+1 x n , y n+1 n , r n+1 n	)	in series 2.
		Estimates		True values
	(j, k) (1,1) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1) (2,2)
	a j,k	0.27 0.41 0.69 0.81		0.20 0.40 0.60 0.80
	b j,k	0.69 0.56 0.63 0.90		0.70 0.50 0.60 0.90
	d j,k				

Table 3 .

 3 [START_REF] Berchtold | The double chain Markov model[END_REF]: MSE results of four methods on SV model (PF represents the Particle Filter). All the conditions set for identification, restoration, and sample size are the same as the experiment on SV model. Results of the four methods applied on the simulated data following this ASV are reported in Table3.14.

		K	2	3	4	5	PF
		CGOMSM-ABF 0.71 0.69 0.70 0.70
	Filtering	ICE-LS	0.73 0.70 0.70 0.70	0.70
		GICE-LS	0.79 0.70 0.70 0.69
		CGOMSM-ABF 0.69 0.67 0.67 0.67
	Smoothing	ICE-LS	0.71 0.68 0.67 0.67	0.67
		GICE-LS	0.79 0.69 0.69 0.69
	We take the same parameter setting of µ, β, ϕ, σ as SV for ASV model, the extra
	parameters are assigned by ρ = -0.5 and λ =	√ 1 -ρ 2 (to ensure the stationarity
	of X N 1 ).					

Table 3 .

 3 14: MSE results of four methods on ASV model.

		K	2	3	4	5	7	PF
		CGOMSM-ABF 0.60 0.59 0.58 0.58 0.58
	Filtering	ICE-LS	0.60 0.61 0.60 0.58 0.58	0.57
		GICE-LS	0.66 0.59 0.59 0.59 0.58
		CGOMSM-ABF 0.57 0.56 0.54 0.54 0.54
	Smoothing	ICE-LS	0.58 0.59 0.58 0.56 0.55	0.54
		GICE-LS	0.66 0.58 0.58 0.57 0.56
	From the result of these two experiments on SV and ASV models, we can see
	that switching Markov models works well on approximating the stationary stochas-
	tic volatility models. Their exact filtering or smoothing results are quite close to
	Particle Filter. Still, we see the differences of the performance between different
	identification methods. Before explaining their performance, let us recall simulta-
	neously the characteristics of the three identification methods. CGOMSM-ABF is
	specified for CGOMSM which is a Gaussian linear GCOMSM, ICE-LS is for Gaus-
	sian GCOMSM which can be non-linear, and GICE-LS is for GCOMSM which can
	be non-Gaussian non-linear. No matter what the value K is, the results in

Table 3 .

 3 

13 and 3.14 

show that CGOMSM-ABF is always the most efficient identification method on these two stochastic volatility models. It indicates that Gaussian mix-Chapter 3.
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  to the better performance of CGOMSM-ABF comparing to ICE-LS. Regarding the identification performance between ICE-LS and GICE-LS, when the Gaussian linear case fits well for the true system, ICE-LS works better than GICE-LS which lacks knowledge of the shape of p

	ture is a very suitable approximation of p settings in this experiment. As G ( x n+1 x n , r n+1 ( x n+1 n , y n+1 n n , y n+1 ) n )	for SV models under the is set to be linear on x n ,
	both CGOMSM-ABF and ICE-LS identification methods serve for CGOMSM. But
	partial general consideration of dependence that	(	R N 1 , XY N 1	)	in the identification
	procedure may lead (	y n+1 n	r n+1 n

This written simplification will be applied to other symbols though whole text

M x j is always assumed to be known since it can not be recovered.

This second EM algorithm is called Switching EM with details in following Section.

Initializations are set not too far from the true parameters, to make the local maximum approached from EM more possibly to be the global one.

(a) Likelihood evolution w.r.t. EM iterations (first 100 iterations). (b) MSE of restoration.Figure 2.6: Experiment of Switching EM (8 different values of F yx ).

(a) Error ratio of estimated switches. (b) MSE of estimated hidden state.

Practically in this experiment, parameters obtained by modifying d j,k , e j,k , c j,k and setting them to a j,k b k , a j,k bj, a j,k bjb k respectively.

While applying Double EM algorithm, no FB specified implies that one feedback is applied.

(a) Error ratio of estimated switches. (b) MSE of estimated hidden state.Figure 2.9: Result of restoration methods with varying |M y | (F yx = 0.20).

(a) Error ratio of estimated switches. (b) MSE of estimated hidden state.Figure 2.10: Result of restoration methods with varying |M y | (F yx = 0.40).

The original program is provided by the author of[START_REF] Gorynin | Fast filtering in switching approximations of nonlinear Markov systems with applications to stochastic volatility[END_REF] 

The classes of switches are randomly distributed from K-means, so most of the time, the class labels of two individual experiments are different.

Here, B j,k,n is not time independent, but the parameters which need to be estimated are still time-independent.
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Chapter 2. Optimal and approximated restorations in Gaussian linear

Markov switching models

Two restoration approaches in CGPMSM

Once having the parameters of the switching model, one wants to restore the hidden states. As described before, optimal restoration is not feasible in CGPMSM, and a common way is to use MCMC methods to get its approximation. We derive the widely used particle filter for CGPMSM in Appendix B. To reduce the calculation burden of sampling method, here, we avoid the MCMC methods, and discuss two approaches based on the assumption that (R N 1 , Y N 1 ) is Markovian. First switching model of this kind called "Conditionally Markov Switching Hidden Linear Models"(CMSHLMs) proposed in [START_REF] Pieczynski | Exact filtering in conditionally markov switching hidden linear models[END_REF]. Subsequently, it has been shown that CGOMSMs which are not only particular CGPMSMs but also particular CMSHLMs, can be quite close to CGLSSMs [START_REF] Derrode | Exact fast computation of optimal filter in Gaussian switching linear systems[END_REF], [START_REF] Petetin | A class of fast exact Bayesian filters in dynamical models with jumps[END_REF].

Tracing back to the E-step of Switching EM, we now reconsider the r N 1 in all conditional hidden state probabilities, as r N 1 is no more assumed to be known. 

from the last M-step (1.19) of the EM algorithm.

This EM approach might be considered as a modification of Γ yy j and Σ yy j,k in the variance-covariance matrix, but the modified value is learned by EM. Just for a mention, as alternative methods of EM, SEM or ICE works also for approximation.

Here we discuss the performance of these two restoration approaches through an experiment considering supervised case. The model and parameters set in this experiment is the same as the former experiment we made in Section 2.2.1 for Switching EM.

All F yx j,k with ∀j, k ∈ Ω are set to be equal represented by F yx , and F yx is varied from 0.00 to 0.40 to adjust the similarity of CGPMSM to CGOMSM. 100 iteration is set for EM to converge when doing the EM approach, and 200 particles is set for particle filter. For comparing the filtering performance of all methods, we simulate 200 samples from the model, while for smoothing we take 10000 samples, as the EM based approach requires enough amount of samples to find suitable p ( y n , y n+1 |r n , r n+1 ) of the assumed pairwise (R N 1 , Y N 1 ). The performance ) is computed. So, applying MPM, we get R N 1 estimated as its error ratio is drawn in the two Figures also. We can see that, rN 1 given by Double EM get a reasonable worse error ratio than OSA, as OSA assumes that Θ 1 is known. Also, when F yx = 0.20, we get a better estimation of R N 1 compared to F yx = 0.40. Noticed that the smaller F yx means the model is closer to CGOMSM, and consequently, the pair

generated from the CGPMSM is more similar to a PMC which contributes to this result. The estimated parameters Θ 1 and Θ 2 under F yx = 0.40 are listed in Table 2.8. We do not list the estimated Θ 4 any more to save place, since the parameter estimation of Switching EM has been evaluated in Section 2.2.1. refers to the MPM realization of rN 1 by probabilities 1 or 0, DEM-EM-Appro and DEM-R-MPM are equal (case |M y | = 2.5). In this series of experiment, all methods show much more efficient than CGLSSM. The performance of these two Double EM based methods is competitive to supervised OSA, and even has great chance to surpass it, which implies the advantage of keeping the parameters as CGPMSM when doing restoration for a general CGPMSM over the parameter modification approaches.

It is needed to be mentioned here that, the tendency of the restoration MSE through the two Double EM based methods displayed in both Figure 2.9b and 3) All methods in either Figure 2.12a or Figure 2.12b show the same tendency that the lower noise level is, the better restoration result they get, although with a little worse estimated rN 1 through unsupervised methods.

4) Relatively, when d j,k increases (equals to increasing F yx in these two series), the noise level is diminished, that is why integrally, OS under the series of case F yx = 0.3 has better restoration result than the series under case F yx = 0.1. Two trajectories of (x N 1 , y N 1 , r N 1 ), restored with OS and DEM-EM-Appro, belongs to "sub-case 1" of case F yx = 0.1 (the most noisy one) and "Case 5" of case Chapter 3

5) The affection of F

Non-Gaussian Markov switching model with copulas

The switching models we discussed in previous Chapter are all conditionally Gaussian linear. In this Chapter, we will deal with the non-Gaussian switching models while still considering the feasibility for optimal restorations. 

Developed by Sklar [START_REF] Sklar | Fonctions de Répartition À N Dimensions Et Leurs Marges[END_REF], copula has become one of the most popular methods to analyze multiple variables in many fields especially financial markets [START_REF] Li | Identifying asymmetric comovements of international stock market returns[END_REF],

[56], [53], [START_REF] Andrew | Modelling asymmetric exchange rate dependence[END_REF], as it can model flexible multivariate joint distributions in a simple way. All joint distributions with continues margins can be decomposed by univariate marginal distributions and their joining copula, which means that defining the univariate marginal CDF by Copulas were firstly introduced into HMC with dependent noise by [START_REF] Brunel | Unsupervised signal restoration using hidden Markov chains with copulas[END_REF] and the importance of their role in segmentation efficiency is proved in [START_REF] Derrode | Unsupervised data classification using pairwise Markov chains with automatic copulas selection[END_REF]. However, to our best knowledge, no work considers them in switching state-space models.

In the GCOMSM which we propose, the couple

becomes a HMC-DN with copulas, and the regime G

is linear on x n but can be of any form on y n and y n+1 (see (3.4)). Optimal restorations are workable for this general model. Moreover, the model identification of time independent GCOMSM is also possible, since in time independent GCOMSM, the stationary distribution

with copulas is with possibilities of automatic search of forms of both copulas and margins, and automatic estimation of the parameters associated to the chosen forms from only observations, as recently proposed in [START_REF] Derrode | Unsupervised classification using hidden Markov chain with unknown noise copulas and margins[END_REF]. Combining this automatic identification method for finding the distribution p (

, and regime estimation method for finding G (

, such as Least-square (LS) principle, can fuse to an integral identification method to learn the form and all necessary parameters for the restoration under GCOMSM.

This chapter is organized as follows. In Section 3.1, we define the general model GCOMSM, give its simulation method, explain its properties and advantages over the classic CGOMSM. The optimal filtering and smoothing of this newly proposed model are derived in Section 3.2 with experiments to show the efficiency of these GCOMSM matched optimal restorations. In Section 3.3, we propose the "GICE-LS" strategy, which combines the Generalized Iterative Conditional Estimation (GICE [START_REF] Derrode | Unsupervised classification using hidden Markov chain with unknown noise copulas and margins[END_REF]) and Least-square (LS) parameter estimation for identifying GCOMSM. In Section 3.4, experiments are conducted on simulated data which follows the general GCOMSM to show the appropriate performance of GICE-LS. Then GCOMSM is applied on data of some generable non-linear non-Gaussian models (Kitagawa and Stochastic volatility) with GICE-LS for parameter estimation to get the restoration of their hidden state with comparison to some existing supervised and unsupervised methods. Finally, Section 3.5 concludes the contributions of this Chapter.

Chapter 3. Non-Gaussian Markov switching model with copulas

Generalization of conditionally observed Markov switching model

Inspired by CGOMSM, which specially has the advantage over the other switching Markov models that optimal filtering and smoothing are possible, we propose this new general model called " Generalized Conditionally Observed Markov Switching Model" (GCOMSM) as an extension of CGOMSM, which incorporates richer distributions and non-linear auto-regressive functions.

Definition of GCOMSM

Like the common used Markov switching models, GCOMSM considers three

and R q respectively. As usual, the triplet

is assumed to be a Markov chain. The distribution of (

is defined by the initial distribution p (x 1 , r 

in which, A n+1 (•) and B n+1 (•) can be any function forms of r n , r n+1 , y n , y n+1 .

. We see this regime is only linear on x n , but can be non-linear on y n and y n+1 .

The higher generality of this GCOMSM compared to CGOMSM is then based on these two extensions. 

no more needs to be Gaussian. Thus, the CGOMSM can be taken as a special Gaussian linear case of the general GCOMSM 2 .

Model simulation

As defined in the previous Section, GCOMSM is a switching model in which 
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The simulation of this model can be done in the order:

Firstly, we simulate the Markov chain r N 1 according to p (r 1 ), p (r n+1 |r n ). Then as

is a HMC-DN, the Acceptance-Rejection method can be used for simulating y N 1 knowing r N 1 [START_REF] Michael | Non-Uniform Random Variate Generation[END_REF].

Knowing ) and V = v according to the uniform law, written as U ([0, 1]).

Accept

where

So that y N 1 can be generated in series. We listed the marginal distributions and copulas which will be studied in the following statement respectively in Table C for which the classical way of calculation has been given in (2.8) and (2.9).

Optimal restoration in GCOMSM
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So, we do not need to consider the margin is "left" or "right" any more as they are the same under these assumptions. In this simple GCOMSM, the definition of

The dependence on switches is then moved to subscript in f rn (y n ) since n is no more needed for referring the time, so as in the other expressions of distributions and functions. The time independent auto-regressive function of G (

. It is the same that sometimes we write integrally

We should notice that, the model is set to be time independent, which means

are both time independent. However,

are complex mixtures that may be not stable, which means that the model could be non-stationary.

Examples of GCOMSM and the optimal restoration in them

We present here two experimental examples to show the flexibility of the proposed GCOMSM, as well as the performance of its optimal filtering and smoothing. First example aims to verify that the CGOMSM can be considered as a special Gaussian linear case of GCOMSM. Then the second one is a general non-Gaussian non-linear 3 case of GCOMSM.

Both these two examples assume that the Markov chain R N 1 has K = 2, and p 1,1 = p 2,2 = 0.45, p 1,2 = p 2,1 = 0.05. To further simplify the notation, we will denote similarly f j,k (

is non-linear on y n and y n+1 .

Chapter 3. Non-Gaussian Markov switching model with copulas

)) with F j,k , F j , C j,k the associated cumulative functions, j, k ∈ Ω. And in (3.17)the abbreviation is like

, so as the other notations. The details of the form of all marginal distributions and copulas applied can be found in Appendix C.

1000 samples are simulated from GCOMSM under specific settings for restoration.

All results presented are average of 100 independent experiments.

Example 1 -Gaussian linear case

We set both the margins and copulas of the joint distribution p (

As we consider a stationary reversible case of (

, and the parameter sets are:

-Margins:

in which loc j and scale j represent the mean and standard deviation of Gaussian distribution of the margin f j (y n ), while α j,k denotes the only (linear correlation)

of the Gaussian margin and copula in Appendix C. The parameters of p

defined in (3.17) are set to be more CGOMSM like, as defined in (2.7) (but with a reverse of places of x n and y n+1 ), 
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Similar to the zero set for F yx n+1 (R n+1 n ) in (2.7), the zero set in the expression of µ j,k here leave out the direct relation between y n+1 and x n , which assures the Markovianity of the pair

in such a linear case. For this experimental example, µ j,k and σ 2 j,k are assigned by

Then the equivalent parameters of p

(3.20)

in the original form has becomes a constant so it turns to A j,k .

1000 samples are simulated according to the setting of this general GCOMSM.

The histograms of the data are displayed in Both optimal filtering and smoothing for GCOMSM are processed to restore the switches and hidden states from only observations. MPM criterion is applied on p (r n |y n 1 ) and p

for getting the filtering and smoothing estimation of

All restoration results are listed in Table 3.1. An improvement of both the estimated r N 1 and x N 1 can be observed from the filtering to smoothing, but not too much regarding the MSE, since the y N n+1 brings no more information for E

in the filtering. An instance of trajectories in this series is given in Figure 3.3 which shows the visual performance of these two exact restorations. The restoration of optimal filtering is actually quite close to the smoothing one that we can not distinguish 

Example 2 -non-Gaussian non-linear case

Let us turn to an example of general GCOMSM which has non-Gaussian , which are supposed to be non-Gaussian, are set according to:

-Margins:

where loc j is short for location of f j (y n ), and scale j represents its scale. How the parameters form this set of margins and copulas are detailed in Appendix C. 4 With the setting α1 = 1, β1 = 1, the Beta distribution is equal to a uniform distribution. 5 Short for Archimiedean copula, order: 12.

6 Short for Archimiedean copula, order: 14.
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We see the two marginal distributions of p (y n |r n ) and the joint distribution of

in Figure 3.4, they are far from Gaussian distributions and hard to be approximated by Gaussian mixture distribution with a small component number.

and in which the parameters are assigned as

The histograms of the simulated data follows the general GCOMSM with all the setting above are given in Figure 3.5. We see the two non-Gaussian Margins makes the integral histogram of y N 1 an odd shape. The x N 1 is also non-Gaussian in spite of the conditional distribution p

The restoration efficiency of optimal filtering and smoothing on this general case of GCOMSM is proofed by the results listed in Table 3 

Model identification

In the former Sections, we have defined the GCOMSM, and show how the optimal filtering and smoothing work. From this Section, we start to tackle how to approach a noised non-Gaussian non-linear system by the time independent GCOMSM with its learning sample set. The model identification problem we are facing is multifolds: We deal with the problems above simultaneously which will result in a general strategy for model identification and parameter estimation for GCOMSM.

Generalized iterative conditional estimation

Let us deal with the first two problems, which are how to identify the conditional

from the observation of the learning sample. As no confusion introduced, when we are discussing about the identification problem,

represents the data of learning sample set. To solve the first two problems, we use an original variant of the "Generalized Iterative Conditional Estimation" (GICE) method, recently proposed in [START_REF] Derrode | Unsupervised classification using hidden Markov chain with unknown noise copulas and margins[END_REF]. GICE is a generalization of "Iterative Conditional Estimation" (ICE) which has been introduced and applied in Chapter 1 as an alternative method to EM. ICE is an iterative method works on the parameter estimation of stationary Gaussian PMC, while the GICE is not limited for Gaussian case. It searches the proper form of distributions from an expected form set for PMC and also give the estimated parameters.

For the stationary reversible case we are dealing with here, knowing

) is equivalent to knowing f j (y 1 ), f k (y 2 ) and c j,k (F j (y 1 ) , F k (y 2 )). For each pair j, k ∈ Ω = {1, . . . , K}, the forms of f j (•), f k (•) are unknown, but we assume that they belong to a known set of possible forms

is also a parameter, but if aiming at restoration, we can see from Chapter 3.2 that it is not necessary in neither the computation of filtering nor smoothing.
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Finally, for each j, k ∈ Ω, the two former problems we are tackling under all these assumptions is to find from y N 1 :

1. The proper forms H l and G m ;

2. The proper parameters θ(l) and α(m).

To solve these questions, we need two families of estimators. Firstly, for each l ∈ {1, . . . , L}, we assume that an estimator θ(l)(y N 1 ) exists for giving θ(l) of the marginal distribution p (y n ) from y N 1 , with the marginal distribution p (y n ) equals everywhere through y N 1 and belong to H l . Secondly, for each m ∈ {1, . . . , M }, another estimator α(m)(y N 1 ) exists to estimate the parameter α(m) of the Copula c(y n+1 n ) from y N 1 , with c(y n+1 n ) equal everywhere through all y N 1 and belong to G m . Having the parameters estimated for all possible margins and copulas, we need to decide the best fit distribution constructed by the best fit margins and copulas, which needs also two decision rules. For each j, k ∈ Ω, we note the two required "decision rules" by D 1 and D 2 . They are applied on the observation sam- Dealing with all of these problems, the GICE is an iterative method who runs the following steps (with i denotes the iterations):

1. Initialize GICE with

) (for each j, k ∈ Ω) found with a simple method.

Find

) from

) and y N 1 .

(a) set

) with 3. Stop according to some criterion.

As the GICE is a general frame for finding the distribution forms and their parameters, different possible ways can be included for parameter estimation, and for the decision rules. In this dissertation, when conducting the GICE principle, we adopt Kolmogorov distance [START_REF] Giordana | Estimation of generalized multisensor hidden Markov chains and unsupervised image segmentation[END_REF] for the decision rule D 1 , while the original paper [START_REF] Derrode | Unsupervised classification using hidden Markov chain with unknown noise copulas and margins[END_REF] is based on Pearson's system. Besides, all the θ (l) and α (m) are estimated through Maximum Likelihood (ML), while in [START_REF] Derrode | Unsupervised classification using hidden Markov chain with unknown noise copulas and margins[END_REF] α (m) are obtained with the empirical estimation of Kendall's tau. . Then, the Ordinary Least-square (OLS) aims to minimize

Least

In this way, we treat each x n+1 be the same informative about the underlying relationship of (

If not, we need to turn to Weighted Leastsquare (WLS) for solution, which considers x n+1 as more or less informative and gives more "weight" for the more informative ones while doing the minimization.

The weight should be the reciprocal of the variance of ( )

Figure 3.7: GICE-LS scheme.

Performance and application of the GICE-LS identification algorithm

In this Section, we study how time independent GCOMSM identified by GICE-LS performs on non-Gaussian non-linear data.

We will firstly test the ability of the regimes and parameter recognition of GICE-LS on simulated GCOMSM data. Two cases are considered here. One

Gaussian linear case which is the case degenerated to CGOMSM, and one general non-Gaussian non-linear case. For comparison, we display also the result of other two identification restoration algorithms. One replaces the GICE with ICE and assuming the distribution form of p ( y n+1 n r n+1 n ) are all Gaussian, another one is the "CGOMSM Approximation Based Filter" (CGOMSM-ABF) [START_REF] Gorynin | Exact fast smoothing in switching models with application to stochastic volatility[END_REF], [START_REF] Gorynin | Fast filtering in switching approximations of nonlinear Markov systems with applications to stochastic volatility[END_REF], which is an identification method for CGOMSM, takes entirely p

Gaussian. In addition, result of optimal restoration using the true parameters is given as a reference. Secondly, for further investigating the adaptability of the proposed GCOMSM, we apply the restoration of GCOMSM on other non-Gaussian non-linear generable models identified by GICE-LS, with comparison to the result of CGOMSM-ABF and the supervised particle filter (since no optimal filter exists for these non-Gaussian non-linear models) [START_REF] Sanjeev | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF], [START_REF] Gordon | Beyond the Kalman filter: Particle filters for tracking applications[END_REF], [START_REF] Kim | State-space models with regime switching: classical and Gibbs-sampling approaches with applications[END_REF]. 

, assuming knowing the true regimes by GICE-LS. Another set of 1000 simulated data is taken for testing the restoration with the identified parameters. Meanwhile, replacing the GICE with the classic ICE which leads to the identification method ICE-LS is also applied on the same data set for comparison. This is of interest, because ICE (knowing all distributions are Gaussian) can be considered as a particular case of GICE which is sufficient for the identifi-

The CGOMSM-ABF which will also be conducted for comparison is a newly proposed identification method based on EM for the CGOMSM. It is interesting to see what will happen when the CGOMSM-ABF is applied to the data which follows GCOMSM but no more its special Gaussian linear case.

Gaussian linear case

In this series, p (

) is assumed to be Gaussian. The parameters of its Gaussian margins and copulas are set as -Margins:

loc j and cale j denote the mean and standard deviation of the Gaussian margins respectively. α j,k represents the single parameter of Gaussian copula, j, k ∈ {1, 2}. 
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The Gaussian distribution p (

is assumed with all linear forms conditionally on x n , y n , y n+1 . Particularly, here we set A j,k (

The parameters are assigned as:

a j,k : a 1,1 = 0.3, a 1,2 = a 2,1 = 0.5, a 2,2 = 0.7,

and the constant d j,k is set to be 0 with ∀j, k ∈ {1, 2}. Specially, for the identification with GICE, we assume that there are six candidate margin forms

them are one-parameter copula families with details in Table C.2 in Appendix C).

-

In each iteration of GICE, parameters of all the candidate margins and copulas are estimated by ML here. When estimating the parameters α j,k of copulas, we use the semi-parametric method [START_REF] Kim | Comparison of semiparametric and parametric methods for estimating copulas[END_REF], [START_REF] Yang | Semiparametric es timation for index copula models[END_REF], which calculates the ML with αj,k = arg max

where

) is the empirical CDF of the pair ( y n , y n+1 |r n = j, r n+1 = k

) .

In fact, we can have variate alternative methods for estimating the parameters.

For margins, one could use also the moments method, while for copulas, a popular way is to estimate their Kendall's tau τ [START_REF] Kendall | A new measure of rank correlation[END_REF], which is equivalent to estimate α since they are linked by specific relations following individual copula forms. Moreover, one
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can also use parametric or non-parametric methods to replace the semi-parametric estimation in (3.24) [START_REF] Jaworski | Copula theory and its applications[END_REF].

The decision rules D 1 for deciding the best fit marginal distribution we apply here, is the minimization of the "Kolmogorov Distance" denoted by "d" between the distribution specified by estimated parameters and the empirical distribution of p (y n |r n = j ). It makes decision by computing

Paying attention that ( y N

1

) j here refers to the data which is considered belonging to the same candidate distribution. For each iteration of GCOMSM, it is ( y N

1

) i+1 j , the sub-sequence of y N 1 which corresponds to r i+1 n = j. The empirical CDF F e (y) =

, and the related CDF are F 1 (y), • • • , F L (y). The Kolmogorov Distance d between two CDFs is given by d (F, F ′ ) = sup y∈R |F (y) -F ′ (y) |. As an alternative method, one can also use the "Bayesian Copula Selection" proposed in [START_REF] Huard | Bayesian copula selection[END_REF].

The decision rule D 2 adopted for choosing the best fit copula is called "Pseudo-Likelihood Maximization" (PLM) [START_REF] Derrode | Unsupervised classification using hidden Markov chain with unknown noise copulas and margins[END_REF] [76], whose decision is made by -

See the detail of the parameterization of all margins and copulas in 

with simply one parameter b j,k and all the parameters are assigned as:

-

The constants d j,k with ∀j, k ∈ {1, 2} are all set to be zero. The two margins and a joint distribution, which has Gamma and Fisk as marginal distributions and Gaussian as copula are displayed in Figure 3.10.

The same settings (iteration, candidate forms) for GICE-LS, ICE-LS and 

as a PMC where

This assumption can be very sensible and practical in real applications. But under GCOMSM, the case is

can be not a PMC (for example under the setting in this experimental series). This explains why ICE-LS gets better error ratio of estimated r N 1 than CGOMSM-ABF. Inevitably, like briefly illustrated in the Gaussian linear series, the automatic selection process of GICE sometimes may choose other distributions but not the optimal one. As listed in Table 3.9, the selection percentage of margins, and Table 3.10, the selection percentage of copulas in this series, Fisk is selected as the optimal shape with 8% rate which originally should be Gamma distribution. But according to the result, GICE still converges when the "wrong" shape is selected, since with specific parameter estimated, the "wrong" shape may also fits the data well. This situation exists in the copula selection too. An instance of this similarity is reported in Figure 3.11 from one "wrong" estimated form case in the 100 Monte-Carlo experiments, it has a very close PDF shape compared to true one illustrated in Figure 3.10b. Nevertheless, the original margins and copulas are selected by GICE most 
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dynamics [START_REF] Gatheral | The volatility surface: a practitioner's guide[END_REF], [START_REF] Ghysels | Stochastic volatility[END_REF]. There are stochastic volatility models which formulate the dynamic volatility in different ways, for example Heston model [START_REF] Steven L Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF], CEV model [START_REF] David | Further results on the constant elasticity of variance call option pricing model[END_REF],

GARCH model [START_REF] Brooks | Introductory Econometrics for Finance[END_REF] etc.

The article which proposes the CGOMSM-ABF [START_REF] Gorynin | Fast filtering in switching approximations of nonlinear Markov systems with applications to stochastic volatility[END_REF] shows that switching Gaussian Markov model can well approximate the non-linear non-Gaussian stochastic volatility models. The associated optimal restoration to the approximated CGOMSM for the stochastic volatility models can reach a very close performance as Particle Filter [START_REF] Doucet | A tutorial on particle filtering and smoothing: Fifteen years later[END_REF], [30] on same stochastic volatility model but with much less time consumption.

In this Section, we apply the identification method GICE-LS to approach the stochastic volatility with the general GCOMSM and see the performance comparing to CGOMSM-ABF of CGOMSM and the Particle filter. Two stochastic volatility models are considered in this experimental series, one is the standard stochastic volatility (SV) model [START_REF] Kim | Stochastic volatility: likelihood inference and comparison with ARCH models[END_REF], [START_REF] Jacquier | Bayesian analysis of stochastic volatility models[END_REF], [START_REF] Stephen | Modelling financial time series[END_REF], which is defined as

in which, the hidden state X N 1 is normally taken as log-volatility and observations Y N 1 is the so called mean corrected return. U N 1 , V N 1 are independent standard normal white noises. µ. ϕ, σ represent the mean, persistence, and the volatility of this hidden log-volatility process. The parameter β is the constant scaling factor.

A second stochastic volatility model which is extended from the canonical one, is the asymmetric stochastic volatility (ASV) [START_REF] Andrew | Estimation of an asymmetric stochastic volatility model for asset returns[END_REF], [START_REF] Nikolay Y Nikolaev | Nonlinear filtering of asymmetric stochastic volatility models and value-at-risk estimation[END_REF], [START_REF] Omori | Block sampler and posterior mode estimation for asymmetric stochastic volatility models[END_REF], [START_REF] Takahashi | Estimating stochastic volatility models using daily returns and realized volatility simultaneously[END_REF], defined as

These two stochastic volatility models are both generable HMM models.

SV model

The parameters in SV model in this experiment is set as µ = β = ϕ = 0.5, and σ is got by √ 1 -ϕ 2 to ensure the stationarity (both mean and variance are stationary) of X N 1 . We test the CGOMSM-ABF, ICE-LS, GICE-LS and the Particle Filter on the same observations generated from this SV model. When carrying out the three identification methods, we try different state numbers K of the switches.

The size of learning sample set for identification is 20000, while the testing data set is of 1000 samples. Regarding especially GICE which assumes the distributions of (

and seven candidate copula shapes {G 1 , • • • , G 7 } as in previous experiments. All candidate forms are listed bellow.

-

where j, k ∈ Ω assumed for the approximated GCOMSM is with the form A j,k (

the parameters needed to be estimated. 100 iterations is set for EM in CGOMSM-ABF, ICE and GICE.

As there is no exact filtering for SV model, the result of Particle Filter can be a reference to see if the switching models fit for the SV model or not. 1500 particles 9 are used for Particle Filter in the result reported in this experiment since empirically we found tiny difference between the performances of Particle Filter with more particles. The MSE results of all the methods are reported in Table 3.13.

Asymmetric SV model 9 PF behaves asymptotically for this particle number in this experimental series. 

On Kitagawa data

To better understand these methods and their properties, we also test all of the methods on the non-Gaussian non-linear model originally used in [START_REF] Netto | On the optimal and suboptimal nonlinear filtering problem for discrete-time systems[END_REF], and has been reconsidered by [START_REF] Kitagawa | Monte Carlo filter and smoother for non-Gaussian nonlinear state space models[END_REF] and [START_REF] Kitagawa | Non-Gaussian state -space modeling of nonstationary time series[END_REF] for testing the performance of MCMC based filter. Here we call this model "Kitagawa model" (KTGW). In addition, we test the methods on the transformed semi-linear case of KTGW, called "Kitagawa semilinear model" (KTGWSL) later which has been studied in [START_REF] Desbouvries | Direct, prediction-and smoothing-based Kalman and particle filter algorithms[END_REF] as supplementary.

KTGW model is defined as

where V n+1 and U n+1 are Gaussian white noise sequences, and the KTGWSL Chapter 3. Non-Gaussian Markov switching model with copulas model is defined just with a change of non-linear measurement to a linear one.

They are both non-stationary models.

For the experimental series on Kitagawa models, learning sample set for identification is of 20000 points and testing sample set is of 1000 samples. All settings of the identification methods and Particle Filter are the same as previous experimental series on stochastic volatility models if no specification declared.

KTGW model

We assign the parameters of KTGW with

and U n+1 ∼ N {0, 2}. Regarding the GCOMSM approximation here (in the identification of GICE-LS and ICE-LS), we consider a non-linear form on y n , y n+1 which is a bit similar to the regime of KTGW that

(

The exact restoration results of all applied identification methods are reported in Table 3.15 with the restorations of Particle Filter in the rightmost column of the Table . We see that the Markov switching models are less efficient for approach- 3.15, we find better result of both ICE-LS and GICE-LS when K = 4 than K = 5 or K = 7.

Assuming both stationary and linear, CGOMSM-ABF turns out to be nonef- for comparison. One is the linear form that has been applied already on SV models, which is defined by

The other one is the non-linear form as defined in (3.31) for KTGW experiment.

Results of ICE-LS and GICE-LS applied are reported in Table 3.16, while the performance of CGOMSM-ABF and Particle Filter are reported in Table 3.17.

Comparing the two subtables in Table 3 given in Figure 3.17.

In summary, the result of these two experimental series on KTGW models show that 1. Switching Markov models could be less efficient when approaching the nonstationary non-Gaussian non-linear system than a stationary one. Under non-stationary case, more switching classes can not always leads to better approximation. So, when we chose K, it is not the larger the better. The results show that GCOMSM can perform better when approximating a non-stationary non-Gaussian non-linear system than CGOMSM. Approaching an unknown non-Gaussian non-linear system with GCOMSM by GICE-LS, then restoring by the optimal restorations of the approximated GCOMSM can be an alternative of MCMC based methods under high dimension state-space condition, since MCMC based methods will become much more time consuming when large amount of particle is required.

Chapter 4. Conclusion and perspectives

"EM" principle. . In practice, it can be replaced by other alternative methods. For example, to get the parameters of some marginal distributions, the moments method can be considered; and to get the estimation of copulas, the empirical calculation of Kendall's tau, τ can replace the calculation of α [START_REF] William | A computer method for calculating Kendall's tau with ungrouped data[END_REF]. They are all worth a try for comparison. In addition, we use the semi-parametric method to estimate the parameters of copulas. It might be also interesting to try the other copula estimation methods, such as non-parametric methods to further improve the GICE efficiency [START_REF] Kodjo | Unsupervised image segmentation with pairwise Markov chains based on nonparametric estimation of copula using orthogonal polynomials[END_REF], [START_REF] Kauermann | Flexible copula density estimation with penalized hierarchical b-splines[END_REF].

c) The model and methods proposed in this dissertation are easy to extend to higher dimensional state-space, at least when parameters are known. Their interest with respect to MCMC based methods could increase when the state-space dimension grows, since under high dimension circumstance, much more particles will be required by MCMC methods.

Appendix A

Maximization of the likelihood function in Switching EM

The likelihood (2.47) we want to maximize in the Switching EM concerns the parameter Θ 4 as

Specifically, when r n = j, r n+1 = k:

Particle filter for CGPMSM

Given the observations and parameters of CGPMSM, we are interested in two optimal problems: ] .

If we are able to sample M random samples called particles

); m = 1, . . . , M } according to p (r n 1 , x n 1 |y n 1 ), then an empirical estimation of this distribution would be given by

and also a corollary, one can easily estimate the mean of function f (r n , x n |y n 1 ), noted by I ( f n|n ) 

where the importance weight is equal to

If we have M random samples

is given by:

where the normalized importance weights ωn ((m))

1 are equal to ) is Gaussian, and can be evaluated by Kalman filter. This simplification is the so called variance reduction in [START_REF] Doucet | Particle filters for state estimation of jump Markov linear systems[END_REF].

So, the estimation of I ( f n|n ) can be simplified to

where

.

(B.8)

B.1.1 Sequential Importance Sampling

According to the structure of CGPMSM, we can rewrite the importance function at time n as follows:

) , (B.9) so that π (r n 1 |y n 1 ) admits π

as marginal distribution at time n -1.

We can propagate the estimated distribution of p ( r n-1 ) ω n , where the incremental weight ω n is given by

) .

(B.10)

B.1.2 Importance distribution and weight

There are infinite possible choices for π (r n 1 |y n 1 ), the only condition is that it should include the one of p (r n 1 |y n 1 ), that is the support of p (r n 1 ). To choose a proposal that minimizes the variance of the importance weights at time n, given r n-1 1 and y n 1 as the importance weight, the optimal importance distribution is p

) .

It can be computed with

The associate importance weight computed following (B.10) is Resampling allows reallocating particles from low-density regions into high-density ones making thus a more optimal use of available articles.

B.2 Particle Smoother

The simulation based filter can be straightforwardly extended to smoothing. However, this direct extension suffers from the so-called sample depletion problem, which means that the trajectories have been resampled N -n times and it causes a loss of diversity of particles [START_REF] Doucet | Stochastic sampling algorithms for state estimation of jump Markov linear systems[END_REF].

Appendix C

Margins and copulas used in this dissertation

The standard form of marginal distribution studied in this dissertation are listed in 

) dt is a complete Gamma function and γ (s, x) = ∫ x 0 t s-1 exp (-t) dt represents the lower incomplete gamma function.

2 Also known as log-logistic distribution.

dt represents the error function. 4 Sometimes called double exponential distribution. 5 B (x, s) = ∫ 1 0 t x-1 (1 -t) s-1 dt is the Beta function and Ix (a, b) = ∫ x 0 t a-1 (1 -t) b-1 dt is the incomplete Beta function. 6 Also called beta distribution of the second kind or inverted beta distribution. All the copulas studied in this article are one parameter copulas, listed in Table C