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Résumé 
 

L’objectif du travail réalisé dans le cadre de cette thèse est de montrer l’intérêt d’utiliser les 
FPGAs (Field Programmable Gate Array) comme support pour l’implantation d’algorithmes 
complexes dédiés à la commande de machines électriques. Pour ce faire, une commande sans capteur 
mécanique utilisant un filtre de Kalman étendu et basée sur FPGA est réalisée. Cette commande est 
destinée à piloter une machine synchrone à pôles saillants. Le modèle d-q de la machine basé sur 
l’approximation d’inertie infinie est implanté. L’ordre du Filtre de Kalman est donc égal à 4 et la 
complexité totale de la boucle de régulation est évaluée à près de 700 opérations arithmétiques (dont 
plus de 53% de multiplications). Les apports des solutions FPGAs en termes de performances de 
contrôle et en termes de capacité d’intégration sont quantifiés. 

En termes de performances de contrôle, il a été démontré qu’en utilisant de telles solutions 
matérielles, le temps de calcul est très réduit (de l’ordre de 5µs, 5% de la période d’échantillonnage). 
Cette rapidité de calcul permet d’avoir un contrôle quasi-instantané ce qui améliore la bande passante 
de la boucle de régulation. A ce sujet, une comparaison avec les performances obtenues avec une 
solution logicielle telle que le DSP est effectuée. Dans les deux cas, le comportement dynamique de la 
boucle de régulation sans capteur est quantifié. 

En termes de capacité d’intégration, il est possible de développer une architecture commune qui 
peut être adaptée à plusieurs systèmes. A titre d’exemple, il est possible de développer un filtre de 
Kalman sur un même FPGA capable d’estimer les grandeurs de plusieurs systèmes sans pour autant 
affecter les performances de contrôle.        

En outre, une méthodologie de développement dédiée à de tels algorithmes complexes est 
proposée. Il s’agit là d’une adaptation des méthodologies proposées dans des travaux de thèse 
précédents, [62] et [63]. En effet, une étape de spécification préliminaire du système ainsi que des 
procédures d’optimisation supplémentaires y sont introduites. Ces dernières sont particulièrement 
nécessaires dans le cas de commandes complexes et permettent une adéquation entre l’algorithme 
développé et l’architecture FPGA correspondante. De plus, cette méthodologie a été organisée de 
façon à distinguer l’étape du développement de l’algorithme et l’étape du développement de 
l’architecture FPGA.   

Un état de l’art sur les technologies FPGA est également proposé. La structure interne des 
FPGAs récents est décrite. Leur contribution dans le domaine de la commande des machines 
électriques est quantifiée. Les différentes étapes de la méthodologie de développement sont présentées.  

Le développement d’une commande numérique (basée sur FPGA) d’une machine synchrone à 
aimants permanents associée à un capteur de position Resolver est par la suite traité. Cette application 
s’inscrit dans un contexte avionique où l’objectif était d’avoir une solution FPGA hautement intégrée. 
Pour cela, le FPGA Actel Fusion est utilisé. Ce composant intègre un convertisseur analogique 
numérique. La commande, le traitement des signaux Resolver ainsi que la conversion analogique 
numérique sont implantés sur le même composant. 

En ce qui concerne la commande sans capteur basée sur le filtre de Kalman étendu, il a été 
décidé de structurer les chapitres correspondants à travers la méthodologie de développement 
proposée. Ainsi, la phase de spécification préliminaire du système, la phase du développement de 
l’algorithme, la phase du développement de l’architecture FPGA et la phase d’expérimentation sont 
séparément traitées. Durant la phase d’expérimentation, la procédure «Hardware-In-the-Loop (HIL)» 
est incluse afin de valider le fonctionnement de l’architecture développée une fois la phase 
d’implantation physique achevée.         

 
 
 



 

Mots clefs 
 

  

• Réseaux de portes programmables – Field Programmable Gate Array 

• Méthodologie de développement 

• Commande sans capteur mécanique 

• Filtre de Kalman Etendu  

• Machine synchrone à pôles saillants 

• Machine synchrone à aimant permanent 

• Capteur de position Resolver 

• Traitement des signaux Resolver 



 

Abstract 
 

 

The aim of this thesis is to present the interest of using Field Programmable Gate Array (FPGA) 
devices for the implementation of complex AC drive controllers. The case of a sensorless speed 
controller using the Extended Kalman Filter (EKF) has been chosen and applied to a Salient 
Synchronous Machine (SSM). The d-q model based on the infinite inertia hypothesis has been 
implemented. The corresponding EKF order is then equal to 4 and the complexity of the whole 
sensorless controller is equal to 700 arithmetic operations (more than 53% of multiplications). The 
contribution of FPGAs in this field has been quantified in terms of control performances and in terms 
of system integration.  

In terms of control performances, the proposed FPGA-based solution ensures a short execution 
time which is around 5µs (5% of the sampling period). This treatment fastness ensures a quasi-
instantaneous control which improves the control bandwidth. To this purpose, a comparison with a 
software DSP-based solution is made. The dynamic behavior and the influence of the execution time, 
in both cases, on the control bandwidth have been quantified.    

In terms of integration capacity, it is possible to implement a generic FPGA architecture that can 
be adapted to the control of several systems. Thus, it is possible to develop a common EKF 
architecture that is able to estimate variables from many systems without affecting the control 
performances. 

In addition, a design methodology adapted to such complex controllers has been proposed. The 
particularity of this updated methodology, compared to the previous ones ([62], [63]), is to provide an 
enlarged set of steps starting from the preliminary system specification to the ultimate 
experimentation. Optimization procedures have also been introduced. These optimizations are 
necessary in case of complex controllers and lead to the adequation between the developed algorithm 
and the corresponding hardware FPGA architecture.   

A state of the art FPGA technology is also presented. The internal structure of the recent devices 
and their corresponding technology are discussed. Their contribution in the field of AC drive 
applications is quantified. An in-depth presentation of the proposed design methodology is made. 

Besides, the development of a fully integrated FPGA-based controller for a Permanent Magnet 
Synchronous Machine (PMSM) associated with a Resolver sensor is presented. This controller has 
been developed for an aircraft application where the main objective was to develop a fully integrated 
FPGA solution. The Actel Fusion FPGA device has been used. This device integrates an Analog to 
Digital Converter (ADC). The current controller, the Resolver Processing Unit (RPU) and the analog 
to digital conversion are implemented within the same device.  

When it comes to the sensorless controller, the corresponding chapters have been structured 
according to the presented design methodology: the preliminary system specification, the algorithm 
development, the FPGA architecture development and finally the experimentation. The latter includes 
Hardware-In-the-Loop (HIL) tests and the final experimental validation.    
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Chapter 1 

General Introduction 
 

 
During these last years, the interest of power electronics and drive applications has been 

constantly rising. They have encountered a significant progress in terms of power management, by 
using high efficiency magnetic and power electronic materials, and in terms of control technology by 
implementing sophisticated control solutions.   

When focusing on these control solutions, it is commonly accepted that digital-based controllers 
are the systematic option. A wide range of them are mostly carried out using software solutions such 
as microcontrollers and Digital Signal Processors (DSPs). The increasing interest to such solutions is 
due to their low cost, their design flexibility and their ability to implement complex control 
algorithms. However, their use remains limited in some industrial applications where high control 
performances are required. This is typically true for aircraft applications where high control reactivity 
and large bandwidth are key-issues. The latter are mainly related to the computing time of the used 
digital controller. The use of software solutions is then limited because of their fixed internal 
architecture which leads to fully serialize the treatment. The more complex the control algorithm, the 
longer the execution time. As a consequence, delays are introduced in the control closed loop which 
affects the control bandwidth.    

 To achieve high control performances, the use of fast digital solutions is then essential. Many 
researches and industrial applications have proved that Field Programmable Gate Array (FPGA) 
solutions are good candidates. Indeed, FPGAs are outperforming today’s software solutions by 
exploiting the inherent algorithm parallelism. Consequently, implementing such hardware solution 
gives the possibility to develop an architecture that is fully dedicated to the control algorithm. Thus, 
allying today’s FPGA high speed performances with parallelism, leads to a drastic reduction of the 
execution time. Consequently, in terms of control performances, a quasi-instantaneous control is 
ensured which enhances the control reactivity and bandwidth.  

In addition to these control performances, the system integration is also another criterion that 
justifies the use of FPGAs. Indeed, their increasing integration density allows the implementation of 
several independent control algorithms within the same device. When exploiting the control rapidity, it 
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is also possible to implement a unique algorithm that can control quasi-simultaneously several 
systems. Along this integration way, recent FPGAs give as well the possibility to implement software 
treatment since they can integrate processor cores. This makes them true System on Chip (SoC) 
solutions. Furthermore, a novel SoC approach consists in integrating mixed signal elements such as 
Analog to Digital Converter (ADC) that has been encountered in niche FPGA devices.  

With all these assets, the use of such hardware solutions has successfully allowed the 
implementation of advanced AC drive control algorithms, [24], [62]. In addition to the standard 
control strategies, advanced control strategies such as oversampling control, multi-level multi phase 
control, predictive control and re-configurable control have been proposed.      

As far as the design process is concerned, FPGA solutions have been the focus of many 
researches. All these researches share the same objective which is to provide a design methodology 
that makes the design process more manageable and less intuitive, [33]-[37], [63].    

1. Thesis objectives and author contributions 

The proposed thesis work is a prolongation of the previously discussed researches and 
applications. The objective is to evaluate how FPGAs can also be suitable for the implementation of 
complex AC drive controllers. The case of a sensorless controller for a synchronous AC drive has 
been chosen. The chosen sensorless method is based on the Extended Kalman Filter (EKF) which 
estimates the rotor position and speed from the current and voltage quantities. Due to the EKF 
complexity, such sensorless controller is systematically implemented in DSP solutions. With these 
solutions, the execution time is frequently evaluated to several tens or hundreds of microseconds.   

The aim is then to evaluate how, with only a few microseconds of computing time (less than 
5µs), an FPGA solution can boost the control performances and how they can increase the system 
integration. In the following, more details about the thesis objectives and author’s contributions are 
listed, 

• Before starting the development of the sensorless controller, a first evaluation of the 
hardware FPGA solutions in terms of system integration is achieved. A sensor-based 
controller for a Permanent Magnet Synchronous Machine (PMSM) is developed. This 
PMSM is associated with a resolver position sensor. This first task belongs to an avionic 
research program and the objective was to develop a fully integrated FPGA-based 
controller. To reach this integration aim, the used target is the Actel Fusion FPGA. In 
addition to the digital features, this device integrates also an ADC. The PMSM controller, 
the resolver signal treatment and the analog to digital conversion are all ensured by the same 
device. This development has led to the following publications: [18]-[23]. 

The next points are related to the development of the FPGA-based sensorless controller using 
the EKF. This controller is applied to a Salient Synchronous Machine (SSM). Here again, the 
developed design is intended to be used in an aircraft application which aims to develop a sensorless 
controller for a Brushless Synchronous Starter Generator (BSSG) [38], [65], [92].  

• Adaptation of the design methodology proposed in [63] to complex control applications. 
The proposed methodology is reorganized and is divided into four main phases: (i) the 
preliminary system specification, (ii) the development of the algorithm, (iii) the 
development of the FPGA architecture and (iv) the experimentation. This methodology is 
applied to the development of the EKF-based sensorless controller, [25]. 

• Insertion of algorithm optimization procedures to the design methodology. The objective 
here is to optimize the complexity of the algorithm by reducing its computational cost. 
When applied to the developed sensorless controller, this optimization is to be balanced with 
the precision and the dynamic behavior, [69]. 
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• Insertion of an FPGA architecture optimization procedure. The latter takes into account 
implementation constraints. The objective is to develop an FPGA architecture that is able to 
process the algorithm with the consideration of timing and area constraints, [67].     

• Analysis and quantification of the control performances. To this aim, the control bandwidth 
of the developed FPGA-based sensorless controller has been quantified. The same analysis 
is done with a DSP-based sensorless controller. Both of these solutions have been developed 
and compared, [68]. 

• Analysis and quantification of the system integration. With the obtained time/area 
performances, author states the possibility to implement a common architecture that can be 
adapted and used quasi-simultaneously to drive many systems without downgrading their 
control performances.      

• Hardware-In-the-Loop validation of the developed FPGA-based sensorless controller, [24], 
[66]. 

• Experimental validation of the developed FPGA-based sensorless controller, [24], [25], 
[65]-[69].   

2. Outline 

This thesis report is basically divided as follows.  

In chapter 2, a state of the art FPGA technology is presented. In this chapter, author starts by 
presenting the evolution of FPGAs and their value-added to the nowadays industrial electronics. A 
generic structure of the recent devices is provided and then case studies are achieved. In the latter, the 
features of recent FPGAs from each technology are given. Their contribution in the field of power 
electronics and drive applications is presented. To this aim, we have focused on the case of complex 
AC drive control applications. A quantitative analysis in terms of control performances and system 
integration is achieved.  Finally, the proposed design methodology is presented.  

In chapter 3, author deals with the fully integrated FPGA-based controller for the PMSM 
associated with the Resolver sensor. The used digital control unit is based on the Actel Fusion FPGA. 
At first, the presentation and the implementation of the integrated Analog to Digital Converter (ADC) 
is achieved. Then the principle of the Resolver sensor is presented. The extraction of the rotor position 
and speed is ensured by the FPGA-based Resolver Processing Unit (RPU). This module is associated 
with a Hysteresis PMSM current controller. The introduced Sampling Synchronization Error (SSE) by 
the implemented ADC is also discussed and compensation procedures are proposed. 

Now, the development of the FPGA-based sensorless speed controller is initiated. Chapters 4 to 
chapter 7 are organized according to the proposed design methodology. 

In chapter 4, the preliminary system specification is discussed. The objective of this step is to 
make a hardware specification of the system in the one hand, and make an algorithm benchmarking in 
the other hand. For the first case and depending on the mechanical load conditions, the AC drive and 
the supply conditions are chosen. The algorithm benchmarking consists in choosing the control 
strategy, the sensorless method and the system state space model. 

In chapter 5, the development of the whole sensorless algorithm is achieved. During this phase, 
the modular partitioning, the continuous-time simulation, the digital realization, the algorithm 
optimization and the necessary discrete-time and fixed-point simulations are achieved. 

Chapter 6 treats the development of the corresponding FPGA architecture. Taking into account 
the defined implementation constraints, the optimization of this architecture is made with the help of 
the Algorithm Architecture Adequation methodology. Then the design of the architecture, its VHDL-
coding and the time/area performances analysis are made. 
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Finally, chapter 7 presents the experimentation step. In order to make a first experimental 
operating guarantee, the Hardware-In-the-Loop (HIL) validation is performed. Then the ultimate 
experimental validation using the presented experimental platform is achieved. 

          

3. Nomenclature  

3.1. Symbols  

Clk  : Clock signal 
Reset  : Reset signal 
En  : Enable signal  
Init_done  : ADC configuration flag – Fusion FPGA 
Start  : Start signal 
DATAVALID  : ADC result ready – Fusion FPGA 
CALIBRATE  : ADC calibration flag – Fusion FPGA 
Vin  : ADC analog voltage input – Fusion FPGA   
CHNumber  : Analog multiplexed selection input – Fusion FPGA 
xxx_RDY  : ADC conversion flag – Fusion FPGA  
tconv  : ADC Conversion time – Fusion FPGA 
εSSE  : ADC sampling synchronization error – Fusion FPGA  
θe, ωe  : Electrical angular position and speed estimated from the Resolver Processing Unit 
θr, ωr  : Actual position and speed, from Resolver sensor   
θoffset  : Position offset 
Vcos, Vsin  : Amplitude modulated Resolver sensor outputs   
Vcos_D, Vsin_D  : Demodulated Resolver signals   
E  : Resolver Excitation signal 
ωex  : Resolver Excitation pulsation 
m  : Resolver transformation ratio 
εθ  : RPU angular position error 
Hθ  : RPU position-position transfer function 
Hω  : RPU speed-position transfer function 
K1  : RPU closed-loop coefficient 
K2  : RPU closed-loop coefficient 
Ts  : Sampling period  
Bw  : Hysteresis bandwidth 
isa, isb,  isc, Ird      : 3-phase stator currents and the rotor currents  
εisa, εisb, εisc,  : 3-phase stator current errors 
isd, isq  : d-q stator currents 
εid, εiq  : d-q current errors 
isα, isβ  : α-β stator currents 
θ, ω  : Electrical angular position and speed 
VDC, VZSS  : DC link voltage, Zero Sequence voltage 
Vsa, Vsb, Vsc  : 3-phase stator voltages 
vsd, vsq  : d-q stator voltages 
vsα, vsβ  : α-β stator currents 
Sa, Sb, Sc      : VSI switching signals  
Va, Vb, Vc  : 3-phase power supply voltages 
Vao, Vbo, Vco  : 3-phase voltages – VSI voltages 
Te,TL  : Electromagnetic torque, Load torque 
Rs, Rr  : Stator, rotor Resistances 
Lsd, Lsq  : d-q stator inductances 
Msr  : Stator-rotor mutual inductance 
fL, J  : Viscous friction coefficient, Rotor inertia  
p  : Pole pairs number 
N  : Mechanical speed 
Ω  : Angular mechanical speed 
θm  : Mechanical rotor position 
Vbmf  : Back-EMF voltage 
Ψ  : Flux 
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x, u, y  : State space vector, System input and output vectors 
w, v   : System disturbances  
f, h  : continuous-time state space matrix, System output matrix 
fd, hd  : Discrete-time State space matrix, Discrete-time System output matrix 
Fd, Hd  : Jacobian matrices for linearization 
K  : Kalman gain matrix  
P, P0  : State error covariance matrix, Initial covariance matrix  
Q, R  : Model noise and measurement noise covariance matrices 
Kp  : PI-regulator proportional gain 
Ki  : PI-regulator integral gain 
Vnom  : Nominal voltage 
Inom  : Nominal current 
Nnom  : Nominal speed (rpm) 
VBcc  : Voltage base value for current controller 
VBekf  : Voltage base value for the EKF 
IB  : Current base value 
ωB  : Angular speed base value 
θB  : Angular position base value 
Gvsensor  : Gain introduced by the voltage sensor 
Gisensor  : Gain introduced by the current sensor 
GADC  : Gain introduced by the ADC 

3.2. Indexes  

s, r  : Stator and rotor index 
d, q  : Rotating reference frame indexes 
α, β  : Stationary reference frame indexes 
*, ^  : Reference quantity, Estimated quantity 
k  : Sampling index 
B, n  : Base quantity for normalization, Normalization index  
a, b, c  : 3-phase reference frame index 
k/k-1, k/k  : Predicted quantity, Estimated optimal quantity 
k-1/k-1  : Estimated optimal quantity at the previous sampling period 
 

3.3. Abbreviations  

A3 : Algorithm Architecture Adequation 
ADC : Analog to Digital Converter 
ASIC : Application Specific Integrated Circuit 
ATO : Angle Tracking Observer 
CAD : Computer Aided Design 
CAM : Computer Aided Manufacture 
CAN : Control Area Network 
CAT : Computer Aided Test 
CB_PWM : Carrier Based PWM 
CB_SPWM : Carrier Based Sinusoidal PWM 
CB_ZSS_PWM : Carrier Based PWM with Zero Sequence Signal 
CCC : Clock Conditioning Circuit  
CLB : Configurable Logic Block 
CMT : Clock Management Tile 
CORDIC : COordinate Rotation Digital Computer 
CPLD : Complex Programmable Logic Device 
DAC : Digital to Analog Converter 
DCM : Digital Clock Manager 
DFG : Data Flow Graph 
DSP : Digital Signal Processor 
EDA : Electronic Design Automation 
EDK : Embedded Development Kit 
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EDS : Embedded Design Suite 
EEPROM : Electrically Erasable Programmable Read Only Memory 
EKF : Extended Kalman Filter 
EMF : Electromotive Force 
EPROM : Erasable Programmable Read Only Memory 
FDFG : Factorized DFG 
FIFO : First In First Out 
FPGA : Field Programmable Gate Array 
HIL : Hardware In the Loop 
I/O : Input / Output 
I2C : Inter Integrated Circuit 
IC : Integrated Circuit 
ICON : Integrated CONtroller 
IGBT : Insulated Gate Bipolar Transistors 
ILA : Integrated Logic Analyzer 
IOE : I/O Element  
IP : Intellectual Property  
LAB : Logic Array Block 
LB : Logic Block 
LC : Logic Cell 
LE : Logic Element  
LM : Logic Module 
LUT : Look Up table 
MMCM : Mixed Mode Clock Manager 
OTP : One Time Programmable 
P_PI : Proportional – Proportional – Integral  
PCI : Peripheral Component Interconnect 
PI : Proportional – Integral  
PLL : Phase Locked Loop 
PMSM : Permanent Magnet Synchronous Machine 
PWM : Pulse Width Modulation 
RAM : Random Access Memory 
RDC : Resolver to Digital Converter 
ROM : Read Only Memory 
RPU : Resolver Processing Unit 
SAR : Successive Approximation Register 
SEU : Single Event Upset 
SIA : Satellite Industry Association 
SMO : Sliding Mode Observer 
SoC : System on Chip 
SPI : Serial Peripheral Interface 
SR : Shift Register 
SRAM : Static Random Access Memory 
SSE : Sampling Synchronization Error 
SSM : Salient Synchronous Machine 
SVPWM : Space Vector PWM 
THD : Total Harmonic Distortion 
USB : Universal Serial Bus 
VCO : Voltage Controlled Oscillator 
VHDL : Very high speed integrated Hardware Description Language 
VIO : Virtual Input/Output 
VSI : Voltage Source Inverter  
VT : VersaTile 
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Chapter 2 

State of the art FPGA technology 
 

 
1. Introduction  

A few decades ago, digital electronic designs were mainly based on basic Integrated Circuits 
(ICs). Each of them was fully specified by the manufacturer and has a specific function. The end-user 
had to make a collection of the necessary ICs to develop a digital circuit that performs the desired 
function. Generally, digital systems were easier to develop, smaller in terms of complexity, heavier in 
terms of board size and ran at low speed performances. No Design tools existed which made the 
design processes more intuitive.       

The increasing success of these digital systems and their value-added to the early everyday’s life 
made customers starting to ask for more sophisticated device solutions. Device solutions that are 
manufactured and specified to the developed application and that are smaller, faster, more complex, 
low cost and low power consuming. All these challenges made designers to compete and propose 
many solutions that led to the expansion of today’s electronic industry.    

Driven by these demands, new materials, new fabrication processes, new design tools and 
device technologies have been proposed and new markets for digital circuits have evolved. Indeed, 
with the increasing resort to informatics and their associated computing resources, a set of efficient 
software tools are proposed [8]. Therefore, Electronic Design Automation (EDA) and Computer Aided 
Design (CAD) tools are provided for the design process. For the fabrication process, Computer Aided 
Manufacture (CAM) and Computer Aided Test (CAT) tools are proposed. 

When it comes to device technologies, many solutions are nowadays available and an additional 
benchmarking effort has to be made by the end-user so as to choose the best one that suits the desired 
performances and also the expected level of flexibility, re-programmability, cost and power 
consumption. This leads to many start-up questions that are asked during system specification: do we 
have to use a set of standard ICs, a rapid-prototyping reprogrammable solution (Semi-Custom 
Application Specific Integrated Circuit-ASIC) or a fully custom solution (Full custom ASIC)? Do we 
have to use fully software devices (Digital Signal Processor-DSP, µProcessor, µController …), fully 
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hardware devices (Complex Programmable Logic Device-CPLD, Field Programmable Gate Array-
FPGA …) or mixed software/hardware devices (FPGA System on Chip-SoC)?       

Among this diversity of digital solutions and since their first introduction to the market in 1985 
by the Xilinx Company, FPGA hardware technologies have attracted an always increasing interest. 
Indeed, FPGAs belong to the semi-custom ASIC family. The latter low cost devices consist of pre-
designed (by the manufacturer) elementary cells and interconnections that can be programmed and 
interconnected by the user in order to realize a specific function for a specific application. In addition 
to their low manufacturing cost, these devices distinguish themselves by a high integration density, a 
notable computation rapidity, a high level of flexibility and a rapid prototyping.  

Nowadays, the always increasing integration density, speed and the low power consumption 
make FPGA solutions suitable for complex applications in different domains such as, digital signal 
processing, power electronics and drive applications, communication, aerospace, defense, etc. This is 
also made possible with the considerable progress in terms of process technology which has reached 
down to 40nm (28nm has been recently announced by Xilinx and Altera vendors) [2], [3]. To give a 
visual evolution of FPGA capacities, Figure 2.1 overviews the evolution of FPGAs in terms of density 
(logic cells), speed, and process technology. It is worth noticing that these waveforms have been 
obtained by comparing the available commercial FPGAs. Also the measurement of speed is based on 
the maximum available clock frequency that can be reached within the FPGA.   
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Figure 2.1: Evolution of FPGA performances  

From a more financial point of view, many market analyses have been achieved and the 
conclusions in each case gave promising financial value-added of FPGAs. For example, according to 
an In-Stat market analyst documentation article (published in 2006) where an estimation of the FPGA 
market evolution was made [1], the value of worldwide FPGA market would increase from $1.9 
billion in 2005 to $2.75 billion by 2010. Another precise example of FPGA market is given in Figure 
2.2 where the evolution of Dollar consumption by Major (Satellite Industry Association) SIA defined 
regions is stressed.  
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Figure 2.2: FPGA market evolution in SIA regions (source: In-Stat market analyst)    

The goal and the challenge of this chapter are to introduce a large part of FPGA facets. Thus, the 
next part introduces the generic structure of an FPGA where the most important and relevant FPGA 
elements are presented. The case studies provided in part 3 aim to make a quantitative description of 
FPGAs by focusing on precise FPGA devices from each technology. Part 4 is devoted to the 
contribution and the application of FPGAs in the field of power electronics and drive applications 
especially in the case of complex control algorithms. Advantages of using FPGAs in this field and also 
implementation constraints to manage are both focused on. Finally, an FPGA design methodology 
dedicated to power electronics and drive applications is discussed.    

2. Generic structure of an FPGA 

As presented in Figure 2.3, the basic structure of an FPGA consists of a matrix of logic blocks, 
an interconnection network and configurable I/O blocks [2]-[17]. To ensure high level of integration, 
today’s FPGA devices also include coarse-grain hardwired elements such as memory blocks, 
arithmetic (DSP) blocks, clock manager blocks and communication blocks. Furthermore, FPGA 
solutions give the possibility to implement embedded processor cores which makes them true System 
on Chip (SoC) solutions [26]-[29]. Also, a novel SoC approach consists in integrating mixed signal 
elements such as Analog to Digital Converters (ADCs) that has been encountered in the Actel Fusion 
FPGA [10].      

 
Figure 2.3: Generic structure of an FPGA (Island topology)  
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2.1. Logic Blocks  

First of all, it is worth noticing that the naming of Logic Blocks (LBs) has been intentionally 
chosen so as to keep the generic structure as independent on FPGA families as possible. In fact, to 
anticipate the discussion made in the case studies (part 3); different appellations are adopted by FPGA 
vendors with different levels of granularity. For instance, Slice and Configurable Logic Block (CLB) 
appellations are used by Xilinx vendor, [2]. Logic Element (LE) and Logic Array Block (LAB) are 
used by Altera Vendor, [3] and VersaTile is used by Actel, [4]. 

Depending on the expected function to implement, each LB is configured to perform 
combinatorial and/or sequential operations. An LB is generally composed of a set of Look-Up-Tables 
(LUTs) dedicated to combinatorial operations and a set of D-Flip-Flops for sequential operations.  In 
addition to this basic operating mode, an LB is also able to perform a local storage function 
(distributed RAM memory), shift register (SR), multiplexer, and adder/subtractor operations. 

Although the internal structure of LBs differs from an FPGA family to another, a normalized 
FPGA density metric has been accepted. Indeed, a common Logic Cell (LC) has been defined which is 
composed of a 4-bit LUT, a D-Flip-Flop, a carry chain (for arithmetic operations) and a multiplexer. 
Roughly speaking, Altera FPGAs include LEs, each of them is equivalent to one LC [3]. A Xilinx 
Spartan-6 FPGA CLB is equivalent to 12.8 LCs [12] and a Virtex FPGA CLB is equivalent to 4.5 LCs 
[13]. Figure 2.4 highlights the internal structure of an elementary LC.  

 
Figure 2.4: Internal structure of an elementary LC  

2.2. Interconnection network 

The programmable interconnection network is the backbone of the FPGA logic resources. 
Where the FPGA fabric performs arithmetic and logical computations, the programmable 
interconnection network makes the necessary connections between the necessary elements so as to 
develop the architecture that performs the expected user function. 

In many today’s FPGAs, three typical interconnection techniques can be encountered: the 
nearest-neighbor technique, the segmented technique and the hierarchical technique [6]. By 
considering the distance between the FPGA elements to be interconnected and the complexity of the 
developed architecture, a combination of these techniques is made so as to optimize signal propagation 
delays.      

2.2.1. Nearest-neighbor technique 

This technique consists in directly routing each logic block with each of its immediate neighbors 
using local interconnection [6]. Although, this technique has the credit to be simple, it has a lack 
severe propagation delay and connectivity issues. This is especially true when the distance and the 
complexity increase. This is the reason why this technique is combined with segmented and 
hierarchical techniques.   
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2.2.2. Segmented technique 

The routing is, in this case, made using specific switch matrices. As described in Figure 2.5, the 
interconnection between logic blocks is segmented and the switch matrices ensure the connectivity 
between these segments, allowing long distance routing to be accomplished and then ensuring 
optimized propagation delays [6]. As an example, this topology is realized in Xilinx and Altera 
FPGAs.  

 
Figure 2.5: Segmented interconnection technique  

2.2.3. Hierarchical technique 

This is a slightly different approach to reducing propagation delays of long wires. In fact, as 
depicted in Figure 2.6, at the lower level of hierarchy, local neighbor logic blocks are grouped together 
as a single cluster. Within each cluster, local nearest-neighbor routing is made. Then, at the immediate 
higher level of hierarchy, adjacent clusters are grouped and form another cluster in the higher level of 
grouping [6]. This is repeated at higher levels of hierarchy, with larger clusters (super-clusters) and 
longer wires. As in the segmented technique, the connection points that connect one level of routing 
hierarchy to another are ensured by switch matrices. This interconnection technique is typically used 
by Actel Antifuse FPGAs where 3 levels of hierarchy are available, [4]. 

 
Figure 2.6: Hierarchical interconnection technique 

2.3. Clock manager blocks 

The integrated clock manager blocks allow the management of the clocking resources within the 
FPGA. They are commonly based on high frequency Phase-Locked-Loops (PLLs) that support several 
features for general purpose clock management such as frequency multiplication/division, phase 
shifting, propagation delay compensation and duty cycle correction. For instance, Xilinx Virtex-6 
FPGA includes up to 18 clock manager blocks (called Mixed Mode Clock Manager MMCM, [14]) 
and Altera Stratix-4 FPGA provides up to 12 PLLs, [16].  
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As far as clock distribution is concerned, a dedicated global clock network is available so as to 
wire clock signals to the FPGA elements. In addition, specific FPGA pins and buffers are provided so 
as to ensure a high speed clock signal transmission. 

2.4. I/O blocks  

The Input/Output blocks provide a programmable bidirectional interface between the internal 
FPGA fabric and the external environment. They are usually organized as banks and can reach up to 
1200 I/O blocks (Xilinx Virtex-6 FPGA). Each bank can be dedicated to different I/O standards 
including single-ended I/Os, differential I/Os, voltage referenced I/Os and high speed interfaces (PCI 
and memory interfaces). A simplified diagram of an I/O block internal structure is presented in Figure 
2.7. There are three main signal paths, the output path, the input path and the 3-state path. For 
synchronization purpose, each path contains a set of storage elements that act as registers or latches.  

 
Figure 2.7: General structure of an I/O block 

2.4.1.  Input path 

This path carries data from the external FPGA pin to the internal logic. A programmable delay 
and storage elements are introduced in order to control the synchronization of data with the clock 
signal. The input path can be configured to ensure standard input, differential input with another input 
path from an adjacent I/O block or voltage referenced input. 

2.4.2.  Output path 

This path carries data from the internal logic to the external FPGA pin. Storage elements can 
also be used to synchronize the data transfer with the clock signal.   

2.4.3. Three-state path 

This path sets the FPGA pin in a high impedance state. A programmable output driver is used to 
select either the output path (output mode) or the 3-state path (high impedance mode).  
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2.5. Arithmetic (DSP) blocks 

In order to suit the high demand of resources for complex applications, recent FPGAs give the 
possibility to implement arithmetic operations using hardwired arithmetic blocks. In most of the cases, 
the latter consist of a large amount of hardwired multipliers, e.g. up to 2000 multipliers (25x18 bits) 
are included in Virtex-6 SX Xilinx FPGA series. In addition, these arithmetic blocks are pipelined 
using a set of registers in order to enhance speed performances. 

 Furthermore, in the advanced recent FPGAs, more complex arithmetic blocks are provided: 
DSP blocks. Indeed, these pipelined blocks consist of a combination of a multiplier, an 
adder/subtractor and an accumulator. Implementing such blocks allows more complex arithmetic 
operations in high computational and high frequency demanding applications such as filtering, image 
processing, video treatment, signal transmission … Examples of FPGAs that provide DSP blocks are: 
Xilinx Virtex-6, Xilinx Spartan-6 and Altera Stratix-4.  

2.6. Memory blocks 

In addition to logic blocks and hardwired arithmetic blocks, FPGA devices support a large 
amount of embedded memory blocks to increase hardware resource availability and speed 
performance. Indeed, in large systems that often require data storage, implementing on-chip memories 
has a value-added especially by increasing the system integration density and allowing faster 
read/write operations.   

In nowadays FPGAs, most of these on-chip data storage blocks consist of configurable blocks 
which allow the implementation of various memory structures including RAMs, ROMs, FIFOs and 
shift registers. As an example, the Xilinx Virtex 6 FPGA provides up to 1064 RAM blocks that 
correspond to up to 38 Mb RAM capacity and the Altera Stratix-4 FPGA provides up to 33 Mb 
embedded RAM memories. 

In addition to these dedicated blocks, distributed RAM memories are also available. This is 
especially true when talking about SRAM-based FPGAs where the integrated logic blocks can run as 
distributed RAM and/or shift registers.    

For the same purpose and in order to provide a nonvolatile memory feature, niche FPGA 
families such as Flash-based FPGAs support also Flash memory blocks. For example, Actel Fusion 
FPGA supports up to 8 Mb flash memory resources, 1 Kb FlashROMs and up to 270 Kb RAMs, [10].  

2.7. Communication blocks 

The current FPGA devices include also communication blocks that consist generally of 
transmission and reception buffers. Various communication protocols (standard or user-defined) are 
supported, including among others USB, Ethernet, CAN, PCI, SPI and I2C protocols. For this aim, 
dedicated transceivers are provided so as to support many of these protocols and ensure high data 
transmission rates, e.g. up to 11 Gbps with Stratix-4 and Virtex-6 FPGA. 

2.8. Embedded processor cores 

Besides the evolution of the discussed FPGA elements and in order to meet more flexibility and 
higher integration capability, the recent FPGA devices give the possibility to implement an increasing 
diversity of processor cores. They are then considered as System-On-Chips (SoCs) or System-on-
Programmable-Chips (SoPCs) solutions [26]-[29]. 

In such SoPC approach, two categories of processor cores can be encountered, the “non-
synthesizable” cores and the “synthesizable” cores.  

The non-synthesizable (also called hard processor) cores are hardwired within the FPGA, in 
addition to the previously discussed FPGA elements. As a general rule, a hard processor core offers 
higher clock speeds with less flexibility. For example, Altera provides an ARM9 processor core 
embedded in its EPXA10 series that is marketed as an Excalibur™ device [3]. The Xilinx Virtex-5 
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integrates also a hardwired PowerPC 440 processor cores on-chip [2]. Recently, Actel has provided 
the first hardwired Cortex-M3 processor core integrated into its Fusion FPGA family [10]. 

The synthesizable (Soft cores), such as Altera Nios II, Xilinx MicroBlaze processors and Actel 
ARM7 or Cortex-M1, use existing FPGA configurable elements to implement the processor core, [2]-
[4]. The particularity of such approach is the flexibility that allows the designer to configure and 
specify the number, the types of peripherals, the memory width… However, these cores have slower 
clock rates. 

2.9. Configuration technology   

The internal structure, the operating mode and the configuration of the discussed FPGA 
elements differ depending on the device family and technology. There are various configuration 
methods and technologies including, SRAM, EPROM, EEPROM, Fuse, Antifuse and Flash 
technologies. Because of their popularity, only the SRAM, the Antifuse and the Flash technologies 
have been here investigated. 

2.9.1. SRAM technology 

The most widely used method for storing configuration data in available FPGAs is volatile static 
RAM, or SRAM. The configuration is entirely made using a set of dedicated SRAM blocks. These 
blocks are organized as a specific configuration layer. The most popular SRAM-based FPGA families 
are Xilinx and Altera families. The popularity of this technology is manly due to their fast and infinite 
reconfiguration cycles [6]. Drawbacks of such technology are power consumption and data volatility. 
Indeed, compared to the other technologies, an SRAM-based connection point is based on high 
number of transistors (6 transistors) and dissipates significant static power because of leakage current. 
Another significant drawback is that SRAM does not maintain its contents after power is off, which 
means that at power-up the FPGA is not configured and must be programmed using off-chip logic and 
storage, [6].  

2.9.2. Antifuse technology 

The Antifuse technology is based on the so-called Antifuse connections that are based on metal 
link. The latter behaves in the opposite of a Fuse. In other words, an Antifuse link is normally 
unconnected and a specific programming procedure is required to make the connection (i.e short 
circuit between Antifuse endpoints). This procedure consists in injecting a high current or a Laser that 
heats and then melts the silicon layer between endpoints so as to make the connection [6]. The main 
drawback of such technology is that FPGAs in this case are One-Time-Programmable (OTP) which 
limits significantly their flexibility and make them useless for prototyping environments. 

2.9.3. Flash technology 

This technology is definitely an interesting gap between SRAM technology and Antifuse 
technology since the configuration is based on flash connections that keep the configuration state 
when the power is off. Furthermore, a flash-based connection point uses less number of transistors 
than its SRAM counterpart (2 transistors sharing a floating gate) [4]. Consequently, this yields to 
lower current leakage and then to lower static power consumption. Also this technology is useful in 
aircraft and space systems since it guaranties the configuration against the Single Event Upset (SEU) 
radiations. In contrast, the main drawbacks of such technology are slow configuration rate and a 
limited number of reconfiguration cycles.     

3. Case studies  

In order to move from an abstract presentation of FPGAs and see how exactly they look like, 
single examples have been chosen from the available and most recent FPGAs. The selection is based 
on configuration technology criterion. Then, a deeper investigation of each example for each 
configuration technology is made.  
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3.1.  SRAM based technology 

The most popular SRAM-based FPGA families are Xilinx and Altera families. Among the 
commercialized FPGA devices, one can stress the high performance VIRTEX (Xilinx) and STRATIX 
(Altera) FPGAs and the low cost SPARTAN (Xilinx) and CYCLONE (Altera) FPGAs. As it will be 
discussed afterwards, in the field of power electronics and drive applications, cost is a key-issue. As a 
consequence, it has been chosen to present only the low cost FPGA families. As examples of 
illustration, the latest Xilinx SPARTAN-6 and Altera Cyclone-4 FPGA families will be investigated. 

3.1.1. Xilinx Spartan-6 FPGA 

A Spartan-6 SRAM-based FPGA incorporates a combination of the previously discussed FPGA 
elements and is based on 45-nm process technology. There are up to 11519 CLBs (equivalent to 
147443 LCs) and, as seen in Figure 2.8, each single CLB contains a pair of slices: SliceX and 
SliceL/SliceM (globally, a Spartan-6 contains 50% of SliceX, 25% of SliceM and 25% of SliceL). 
Each slice can be configured to perform combinatorial functions using four 6-bit LUTs and sequential 
functions using eight D-Flip-Flops. Furthermore, the SliceM can operate as a distributed RAM block, 
as a shift register, as a multiplexer or as a carry chain that performs arithmetic additions and 
subtractions. A SliceL supports all the SliceM features except the memory and shift register functions. 
To have a deeper idea about the structure of each slice, refer to [12] 

 
Figure 2.8: SRAM-based SPARTAN-6 FPGA fabric 

The interconnection network is composed of wires and a sea of switch matrices (with 6-
transistor based connection points). The interconnection of FPGA elements in this case is based on 
segmented technique and the routing resources are physically located in horizontal and vertical routing 
channels. Various types of routing are ensured depending on the distance between elements to 
interconnect (Fast interconnect, Single interconnect, Double interconnect and Quad interconnect).  

As for the hardwired arithmetic blocks, Spartan-6 FPGA includes up to 180 DSP blocks named 
DSP48A1 slices. Each one supports many independent functions, including 18-bit multiplier, 48-bit 
accumulator, 18-bit adder/subtractor, a wide bus multiplexer, magnitude comparator and a wide 
counter.  

The number of I/O blocks varies from 102 to 576 depending on the series and device size. All of 
them operate as bidirectional interfaces. They are organized as banks and can support a large number 
of single-ended, differential and voltage referenced standards. 

Spartan-6 FPGAs contain a set of clocking resources and Clock Management Tiles (CMTs). The 
provided clocking resources consist of dedicated clock inputs, buffers and routings. There are 8 
dedicated clock inputs, 32 global clock inputs that can operate as general purpose I/Os and 16 clock 
buffers. There are up to 6 CMTs, each single one contains 2 Digital Clock Managers (DCMs) and one 
PLL. The role of a DCM is primarily to eliminate clock skew and distribution delays. It can also 
ensure phase shifting and clock multiplication and division. A PLL is based on voltage controlled 
oscillator (VCO) that operates from 400 MHz to 1080 MHz.   
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As far as memory blocks are concerned, every Spartan-6 FPGA supports between 12 and 268 
dual port RAM blocks in addition to the distributed RAM within CLBs. This corresponds to a total of 
6179 Kb memory capacity.   

3.1.2. Altera Cyclone-4 FPGA 

A Cyclone-4 FPGA is based on 60nm process technology and integrates up to 150000 LEs [15]. 
As seen in Figure 2.9, these latter are gathered in 16-group blocks called Logic Array Blocks (LABs). 
Each LE consists of a 4-bit LUT that can perform either combinatorial or arithmetic operations and a 
D-Flip-Flop for sequential operations. Also, an LE can operate in arithmetic mode and perform a 2-bit 
full adder and also a basic carry chain.  

The interconnection network is organized in 2 levels (Figure 2.9); local interconnect and global 
interconnect [15]. The first one is used to transfer signals between LEs in the same LAB. The global 
interconnect is organized in column and row lines that drive signals between LABs and also between 
the other FPGA elements. Direct link interconnect is also provided to connect adjacent elements so as 
to minimize the use of columns and rows, providing higher flexibility and higher speed performances.    

 
Figure 2.9: SRAM-based CYCLONE-4 FPGA fabric 

Cyclone-4 FPGAs include up to 360 embedded multipliers organized as columns. Each one can 
be configured to perform as one 18x18-bit multiplier or two 9x9-bit multipliers. In order to reach high 
speed performances, each multiplier is pipelined and associated with input/output registers. 

The number of I/Os can reach up to 532 and up to 11 banks are available. Each I/O is associated 
with an IO Element (IOE) that contains a set of bidirectional buffers, registers and programmable 
delays. Various single-ended, differential and voltage referenced standards are supported.   

As for the clocking resources, Cyclone-4 provides up to 15 dedicated clock pins and up to 30 
global clock networks that feed the whole FPGA elements. Besides, cyclone-4 includes up to 8 PLLs 
that perform general purpose clock management such as multiplication, division, phase shifting and 
programmable duty cycle. Each PLL is based on a VCO that operates from 600 MHz to 1300 MHz. 

As for the on-chip storage elements, Cyclone-4 integrates up to 6480 Kb embedded RAM 
blocks that can be configured to provide various memory modes such as RAM, shift registers, ROM 
and FIFO modes.   

3.2. Antifuse based technology 

The Antifuse technology is based on a one-time non volatile FPGA configuration. The Actel 
Axcelerator, EX and SX-A series belong to the most recent Antifuse FPGA families [4]. The internal 
architecture of the Axcelerator FPGA is discussed, [11]. 

An Axcelerator FPGA is based on 150nm process technology and consists of a sea of Logic 
Modules (LMs) and Antifuse interconnection elements. There are up to 32000 LMs and two types of 

LAB 

LE1 

LE2 

LE16 Local 
network 

L
A

B
 

L
A

B
 

L
A

B
 

Columns interconnectDirect link 

Rows interconnect 



Chapter 2: State of the art FPGA technology  

27 

LMs are available: the Register cell (R-cell) and Combinatorial cell (C-cell). An R-cell consists in a 
D-Flip-Flop. A C-cell can implement up to 4000 combinatorial functions with up to 5 inputs.   

The arrangement of these modules and the interconnection network are based on hierarchical 
approach where combinations of two C-cells and one R-cell (C-C-R) form a cluster. In a higher level 
of hierarchy, two clusters form a super-cluster. A set of 336 super-clusters and 4 memory blocks form, 
at the next level, a Core Tile. The interconnections are also ensured with respect to the level of 
hierarchy.  Thus, local direct interconnects are used for elements inside a cluster, fast interconnects 
are user to link adjacent super-clusters, horizontal and vertical tracks are used to link Core Tiles. 
Figure 2.10 gives an idea of module and interconnection arrangements.      

 
Figure 2.10: Axcelerator Antifuse FPGA fabric 

Depending on the device profile, the number of I/Os in an Axcelerator FPGA can reach up to 
684 I/Os that support at least 14 different single-ended, differential, voltage-referenced standards. 
They are organized into banks, with 8 banks per device. Each I/O block contains input, output and 
enable registers and combination of 2 I/O blocks form an I/O cluster. 

As for the clocking resources, each device contains 8 PLLs that perform functions such as 
frequency multiplication, division, programmable delays and skew minimization. The input frequency 
of each PLL ranges from 14 MHz to 200 MHz and its output from 20 MHz to 1 GHz. 

An Axcelerator FPGA provides up to 295 Kb embedded memory blocks that are based on 
RAM/FIFO memories. No arithmetic (DSP) bocks are included.   

3.3. Flash based technology 

The Flash based technology ensures a non volatile reprogrammable configuration mode and 
leans on specific flash-based configuration switches. In the following, the Actel Fusion Flash-based 
FPGA is presented [10].  

Based on a 130nm process technology, its internal FPGA fabric contains up to 38400 VersaTiles 
(VTs). Due to the flash connections and compared to SRAM based FPGAs, each VT can implement 
either a combinatorial (3-bit LUT) or a sequential (D-Flip-Flop) functions. Figure 2.11 gives an 
overview of the Fusion FPGA fabric. 

Within this FPGA, 4 levels of routing hierarchy are available. Thus, at the lower level, ultra-fast 
local lines make the connection between the output of each VT to every inputs of the eight 
surrounding immediate VTs. At the next level, efficient long line resources ensure the routing of 
longer distances spanning vertically and horizontally up to 4 VTs. Then, very long line resources 
ensure the routing of high distance and very long nets. Finally, at the highest level, VersaNet global 
networks are used to drive global signals such as clocks, reset signals or other signals that require low 
skew. 
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      Figure 2.11: Flash-based Fusion FPGA fabric 

Fusion devices provide up to 252 I/Os and include a set of I/O tiles, organized as I/O banks. 
Each tile supports a large number of standards including single-ended, differential and voltage 
referenced I/Os. 

As for the clock resources, Fusion FPGA integrates a collection of on-chip resources that create, 
manipulate and distribute the clock signals. To this aim, an internal RC oscillator and a Crystal 
oscillator are integrated and can generate up to 100 MHz clock source without external component. To 
manipulate the clock signals, 2 PLLs are integrated for multiplication, division, synchronization and 
phase shift. The input frequency of each PLL ranges from 1.5 MHz to 350 MHz and its output from 
0.75 MHz to 350 MHz. The distribution within the global VersaNet lines is ensured by 6 Clock 
Conditioning Circuit (CCCs) that can also perform as PLLs.   

The embedded memories consist of Flash blocks (up to 8 Mb), SRAM blocks that can perform 
as FIFOs (up to 270 Kb), FlashROM blocks (1 Kb).   

Another particularity of Fusion FPGA is the integrated mixed signal peripherals. Indeed, this 
FPGA integrates a 12-bit programmable successive approximation ADC. Associated with an analog 
multiplexer, it can convert successively up to 30 analog signals [10]. Analog quads are integrated and 
used to precondition and to adapt the analog inputs to the ADC voltage range. Applications and 
implementations of this integrated module are reported in [18]-[23]. In chapter 3, these analog 
peripherals will be deeply discussed.  

3.4. Feature summary 

The following table summarizes the main FPGA characteristics that have been discussed 
previously. The provided values correspond to the maximum available values depending on the FPGA 
series. 
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Table 2.1: Overview of the discussed FPGA characteristics 
Technology SRAM Antifuse  Flash 

                                 Family 
  Elements 

Xilinx      
Spartan-6 

Altera     
Cyclone-4 

Actel  
Axcelerator 

Actel  
Fusion 

Process technology 45 nm 60 nm 150 nm 130 nm 
Logic blocks 11519 CLBs 

(147443 LCs) 150000 LEs 32000 LMs 38400 VTs 

Clocking performances – PLL 
output frequency range 400-1080 MHz 600-1300 MHz 20-1000 MHz 1.5-350 MHz 

I/Os 576 532 684 252 
Arithmetic (DSP) blocks 180 DSP slices 360 multipliers - - 
Memory blocks 

Distributed RAM: 
1355 Kb  

RAM blocks: 
4824 Kb 

RAM blocks: 
6480 Kb 

RAM blocks: 
295 Kb 

RAM blocks: 
270 Kb 

Flash blocks: 
8000 Kb 

Flash ROM 
blocks: 1 Kb 

 

   

Analog 
peripherals: ADC, 

Analog Mux, 
Analog quads 

4. Design tools 

As FPGA features are becoming more and more sophisticated and the diversity of integrated 
elements is increasing, CAD software tools have become mature as well. Today, FPGA vendors 
provide a fairly complete set of design tools that allow high quality design process starting from the 
hardware description, using VHDL or Verilog languages, to the final bitstream generation [5], [17], 
[24], [25]. An overview of a typical FPGA design process is presented in Figure 2.12. 

 
Figure 2.12: Simplified synoptic of FPGA design process 

Generally, design tools include hardware design and verification tools (VHDL/Verilog editor, 
synthesizer, place/route and physical implementation tools), vendor libraries (IP cores) in addition to 
simulation and debugging tools. Some examples are the Integrated Software Environment (ISE) tools 
from Xilinx, Quartus tools from Altera and Libero Integrated Design Environment (LiberoIDE) tools 
from Actel. All of them provide flexible and complete design features with additional associated tools 
for simulations (e.g. ModelSim tools) and for debugging (e.g. ChipScope tools from Xilinx). 

Furthermore, to suit SoC trends, FPGA vendors provide software tools that include software 
development tools (editor, compiler, assembler, linker and debugger), software vendor IPs and 
processor customization tools. For example, Xilinx provides Embedded Development Kit (EDK) 
platform, Altera provides Embedded Design Suite (EDS) platform and Actel provides SoftConsole 
platform [25]. 
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5. Contribution of FPGAs in complex AC drive applications. 

Nowadays, it is commonly accepted in the field of power electronics and drive applications, that 
digital based control solutions are becoming the natural and systematic resort. Indeed, compared to 
their analog counterparts, the implementation of a digital based controller has several advantages such 
as flexibility, re-programmability, reduced time-to-market and the possibility to implement complex 
control algorithms. 

However, to achieve high performances and try to compete with performances provided by 
analog solutions, the selection of the appropriate digital solution is based on many criteria and 
implementation demands. Some of the most challenging criteria are: high performance in terms of 
control reactivity and bandwidth, the implementation of algorithms that insure complex treatments, 
high level of integration (use of the same digital solution to process many heterogeneous tasks), 
reduced time-to-market, system confidentiality and low cost.      

In this section, a deep understanding of how FPGAs are highly adapted to these applications and 
these demands is proposed. This has been already made in a wide range of applications (e.g. [17]-[51], 
[53]-[59]) where FPGAs have successfully accomplished their role with regards to the expected 
performances. In these previous evaluations, it has been demonstrated that FPGAs have a significant 
contribution and allow the implementation of advanced high performance control strategies. For 
instance, in [24] and [25], authors give a clear classification of applications depending on the 
switching frequency. Two categories are then defined: high demanding applications and constrained 
switching frequency applications.  

The first category corresponds to high switching frequency applications (above 100 kHz) where 
a high level of parallelism and short execution time are required. The use of FPGAs is then mandatory 
in this case. As for the second category where the switching frequency is limited (less than 100 kHz 
due to power switch losses), it has been stated that by exploiting the rapidity and the high integration 
density of FPGAs, it is possible to implement advanced high performance control strategies with the 
possibility to include complementary tasks such as health-monitoring and diagnosis. Relevant 
examples are oversampling controllers [32], multi-level multi-phase PWM controllers [45] and multi-
system controllers [54], [55].  

Additionally, FPGAs have their value-added to implement many other advanced controllers like, 
dynamically reconfigurable controllers [60], [62] and Predictive controllers [56], [61]. Another 
challenging field where FPGAs are one of the final resorts is the Hardware-In-the-Loop (HIL) 
applications. Here again, many promising FPGA based developments are achieved for Real time 
simulation purpose (e.g. [49]).  

When it comes to time-to-market, it is clear that FPGAs have their own value-added since they 
allow rapid-prototyping solutions in the one hand, and they allow optimized design process in the 
other hand. This is possible with the help of the significant progress in terms of design tools and also 
design methodologies. Also, in terms of system confidentiality, today’s FPGA technologies ensure 
highly secure designs avoiding any bad-intentioned duplication.    

To make a connection with the context of the proposed work, it has been chosen to evaluate 
quantitatively the FPGA solutions in the case of complex control applications such as the developed 
sensorless AC drive application using the Extended Kalman Filter. In the following, two evaluation 
axes have been emphasized: the evaluation in terms of control performances and in terms of system 
integration. Finally, in the same context of complex control applications, some of the most important 
FPGA implementation constraints to manage have been discussed. 

5.1. Evaluation in terms of control performances       

To start with, it is fair to mention that a wide range of these complex control applications are 
mostly carried out with software solutions such as DSP controllers. Main reasons of this statement are: 
a good software flexibility, a rapid-prototyping and an easy way of coding (the familiar C/C++ 
coding). All these reasons allow an easy implementation of complex tasks. However, it is more than 



Chapter 2: State of the art FPGA technology  

31 

important to stress that in some cases, their timing performances can be easily a severe drawback. This 
is definitely due to DSP-based architectures which are fixed leading to serialize the treatment. 
Consequently, the more complex the implemented controller, the longer the execution time.  

For example, in [93]-[106] the total execution time has been evaluated from 90µs to 500µs. In 
order to make a quantitative comparison to the FPGA solution, author has tested the EKF-based 
sensorless speed controller on a DSP solution. This sensorless controller is applied to a synchronous 
AC machine. Note that the complexity is the same in both hardware and software cases.  More details 
and in-depth studies are provided in [Appendix D].  

Figure 2.13 presents the performances obtained with the DSP solution. The case of a elementary 
PI-regulator, the case of an AC drive current controller and the case of the sensorless controller are 
presented. These results are obtained with a TI TMSF2808 DSP [64] (100MHz, 32Bit, 12-bit ADC, 
2x16-bit multiplier, 16Ko RAM memory). They indicate that for different levels of complexity and for 
a fixed architecture, the execution time increases.  

 
Figure 2.13: Performances of the DSP solution in case of complex sensorless application 

Now as the performances of the used DSP are measured, it is important to analyze how they act 
and influence the control performances. In fact, from the control point of view, such long execution 
time imposes the use of lower sampling frequency in the one hand and introduces a delay in the closed 
loop. Consequently, the bandwidth and the quality of the implemented controller are downgraded. 
This is especially true in case of high speed AC drives such as avionic systems [65] where high 
frequencies are operated and high control performances are required. With the developed DSP 
solution, the obtained frequency response has been measured and plotted in Figure 2.15.   

In order to overcome these limits, let’s analyze the appropriate solutions. In fact, staying always 
with software solutions, many possibilities can be of great interest in order to speed up the timing 
performances. For example, the first reaction could be the reduction of the complexity of the algorithm 
which leads to make compromises with the algorithm performances. In a more systemic point of view, 
the use of a high clocking frequency DSP can be a simple and relevant resort but the problem that 
matters is the availability of DSP which is dedicated to control applications (i.e. fast DSP controller). 
Also a parallelization of tasks using multi-DSP structures is possible which, in contrast, downgrades 
the system integration. Also, the way of C-coding and the use of Assembly-coding have their own 
contribution. Finally, a completely different interesting alternative to these key-solutions is the use of 
hardware solutions such as FPGAs.    

In fact, FPGAs are outperforming today’s software solutions by exploiting the inherent 
algorithm parallelism. Consequently, implementing such hardware solution give the possibility to 
develop architecture that are fully dedicated to the control algorithm. Thus, allying today’s FPGA high 
speed performances with parallelism, leads to a drastic reduction of the execution time. Consequently, 
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in terms of control performances, a quasi-instantaneous control is ensured which speeds up the control 
reactivity and bandwidth.  

With the same purpose as before, the EKF-based sensorless speed controller has been 
implemented on an FPGA. The development process is described in chapters 4, 5, 6 and 7. This 
development is organized according to the design methodology that will be presented afterwards. The 
FPGA architecture is synchronized with a 50 MHz clock frequency which gives the timing 
performances in Figure 2.14. It can be seen that an additional area degree of freedom allows the 
reduction of the execution time.  

 

   
Figure 2.14: Performances of the FPGA solution in case of complex sensorless application 

The impact of the execution time on the control performances and bandwidth (in both software 
and hardware cases) has been quantified in the case of the developed application. The obtained results 
are deeply presented in [Appendix D]. Figure 2.15 shows the obtained frequency responses. They 
indicate that a short execution time improves the control bandwidth. 

 
Figure 2.15: Evaluation of the control bandwidth in case of FPGA-based controller and DSP-based controller – 

Case of high speed AC drive   (a) : Frequency response (magnitude) (b) : Frequency response (phase)  

5.2. Evaluation in terms of system integration 

As far as the integration criterion is concerned, the available huge number of elements within 
today’s FPGAs, allows them being perfectly suited to high complexity algorithms. Furthermore, 
allying high integration and high speed performances allow the implementation of algorithms that can 
be used quasi-simultaneously in different applications. For example, when talking about sensorless 
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control application, it is possible to implement an EKF that can be used to observe the state space 
vector of many systems. Let’s take for example the control system presented in Figure 2.16 where a 
sensorless control for an AC drive ([65]-[69]) and a sensorless control of a Rectifier [70] are made. 
Normally, two different EKF modules are to be implemented for each application but, when using an 
FPGA solution, it is possible to develop a common architecture that is adapted for both applications 
almost without impacting the execution time and the used FPGA resources. Thus, using a set of 
multiplexers, it is possible to drive the right signals to the EKF so as to estimate the right vector of the 
right system.     

 
Figure 2.16: Example of sensorless control for mixed-system application  

 
Another interesting example is the sensorless control of multi AC drives that is presented in 

Figure 2.17. Here again, both the EKF and controller can be gathered (or factorized) so as to control 
all the systems without impacting their corresponding performances. 

A slightly different integration aspect is the possibility (that is ensured by today’s FPGAs) to 
implement mixed hardware and software treatments in the same device. Indeed, with the available 
processor cores, designer is able to partition the algorithm and decide which treatment is to be made in 
hardware and which treatment is to be made in software. To do so, a deeper investigation in terms of 
control performances has to be achieved and co-design approaches and methodologies are to be 
adopted [73]. This aspect in not covered in the proposed work and is the main subject of an associate 
thesis work [74].     
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Figure 2.17: Example of sensorless control for multi-system application 

5.3. FPGA implementation constraints 

Now, having in mind these advantages, there are anyhow some implementation constraints to 
manage when using FPGA solutions to implement complex digital controllers. At first, the increasing 
complexity of the algorithm induces the need of numerous FPGA resources. This may seem confusing 
with the previous argumentation, but in the case where the system constraints impose the use of a 
specific FPGA (with limited resources) in a specific application, the implementation of complex 
algorithms can be easily inappropriate. As an example, in an avionic actuator control application 
where a specific Actel Flash based Fusion FPGA is needed [18]-[23], the implementation of complex 
algorithms (for example an Extended Kalman Filter) is difficult since the available resources are 
limited and no hardwired arithmetic blocks are provided within the device. Consequently, a specific 
care has to be taken so as to design optimum FPGA architectures that use a minimum of operators for 
implementing the necessary operations in a short execution time. 

The data word-length in FPGAs is also another significant concern. In the case of a DSP 
solution, the data size doesn’t matter since it is fixed (32 bits or 64 bits depending on the used device) 
and both fixed-point and floating point formats are allowed. This is clearly not the case of FPGAs 
since the word-length is fully customized. Thus depending on the complexity of the implemented 
algorithm, the larger is the data size, the heavier is the corresponding FPGA architecture. For this 
reason, designer has to make the choice of word-length that suits the available FPGA resources 
without downgrading the control stability and precision. This is typically true when manipulating fixed 
point data format. Otherwise, in the case of manipulating floating point data format, the consumed 
FPGA resources depend only on how many floating point operations are processed. As a reminder, 
recent VHDL standards offer the possibility to implement floating point arithmetic using the VHDL 
2008 libraries [71].                 

EKF Module 

Voltage 
Inputs 

Current 
measures

VDC 

AC drive 
controller 

Speed Reference 1

ADC 

AC  
Machine  

1 

VSI 1 Rectifier Va 

Vb 

Vc 

ADC 

AC  
Machine  

2 

VSI 2 

V
SI 2 control signals 

V
SI 1 control signals 

Speed Reference 2

Estimated Position 
and speed 

FPG
A

 target 



Chapter 2: State of the art FPGA technology  

35 

Another concern when using FPGAs is the operating clock performances. Indeed, a placed and 
routed complex algorithm, where many successive arithmetic operations are done, introduces many 
propagation delays. Consequently, the operating clock frequency is highly limited. To overtake this 
issue, the pipelining of the developed architecture is essential. In fact, a fully pipelined architecture 
where registers are placed between operators makes sequential the signal routing and leads to low 
propagation delays. This has definitely the credit of ensuring a high operating clock frequency. 

To end with, the contribution of FPGAs and the induced implementation constraints are to be 
considered and balanced with the expected level of control performances. These design considerations 
have to be taken into account during the design process. Thus, it is quite mandatory to use a rigorous 
and well-structured design methodology that allows designing efficiently the FPGA-based controller 
that suits all the process and performance demands. 

6. FPGA design methodology for control applications  

Now as the advantages of FPGA solutions and their implementation constraints are both 
initiated, the main challenge is how to reach efficiently the demanded control performances. In fact, a 
well-developed FPGA solution has to be based on a perfect adequation between the control algorithm 
and its corresponding FPGA architecture without loosing the potential parallelism. Thus preserving 
the inherent parallelism of the algorithm allows high timing performances which enhances the control 
performances.   

A well developed FPGA solution has also to satisfy the implementation constraints. To this aim, 
it is clear that designer has to manage many design considerations (optimization of the complexity, 
choice of the data word-length, pipelining of the architecture…) at different stages of the design 
process. Consequently, these considerations require from designer to master several different 
knowledges and qualifications such as micro-electronics, control, signal processing and electrical 
system theories. This is particularly true when implementing complex control applications that need a 
narrow link between control engineering and FPGA design domains.    

For these reasons, the use of a rigorous and well-structured design methodology is of prime 
necessity. This methodology should consist of a set of steps and rules to be followed in order to 
optimize the time-to-market and make efficiently the design process more manageable and less 
intuitive. By this way, several authors have proposed and formalized interesting design methodologies 
[33]–[37], [62]–[63], having always in mind to reach similar objectives.  

As it can be seen in Figure 2.18, the particularity of the presented design methodology consists 
in providing an enlarged design process that starts from the preliminary system specification to the 
final experimental validation. In addition, a notable distinction between the development of the 
algorithm and the development of the FPGA architecture is made. This distinction has the credit of 
making the algorithm as independent as possible on the used digital device. For instance, once the 
developed algorithm is achieved, either a hardware solution (FPGA) or a software solution (DSP) can 
be chosen for the digital implementation. Furthermore, this distinction can lead to a separation 
between the needed designer qualifications. For example, the algorithm development may be realized 
by control engineers and the FPGA development by a micro-electronics expert.   
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Figure 2.18: The proposed FPGA Design methodology 

From a more technical point of view, the proposed design methodology includes optimization 
assumptions that ought to be achieved so as to adapt the algorithm complexity to the available FPGA 
resources. As it will be discussed later, this optimization is done during the algorithm development 
process and during the FPGA architecture development one. For the first case, this consists in 
reducing the computational cost of the algorithm (reduction of the number of processed operations). 
For the second case, this consists in studying the data dependency of the algorithm and finding out the 
potential factorizations that lead to the use of a minimum of operators that process a maximum of 
operations. The aim here is to develop an FPGA architecture that satisfies the timing and area 
constraints. This optimization can be achieved by applying for example the so-called Algorithm 
Architecture Adequation (A3) methodology [62], [63], [72].  

The proposed methodology has been overviewed in [25] and has been deeply illustrated with the 
developed sensorless application that is covered in this thesis report [chapters 4, 5, 6 and 7] 

6.1. Preliminary system specification  

First of all, designer makes a preliminary system specification regarding the whole control 
application. In the case of an AC drive application; this consists in making a physical specification of 
the control system and an algorithm benchmarking. The physical specification consists in choosing, 
depending on the load conditions, which AC motor is to be controlled and on which supply conditions. 
The physical characteristics of the final experimental platform are defined including the selection of 
the digital control unit, the used ADC and interface boards.  

The algorithm benchmarking, consist in choosing the control strategy, the sensorless method 
(case of a sensorless control) and the convenient system model.  

6.2. Algorithm development  

The algorithm development process consists of a set of steps during which designer makes the 
functional validation and prepares the algorithm for the digital implementation.  

6.2.1. Modular partitioning 

This step is very important, especially in case of complex algorithms, and leads to strategic 
choices regarding the reusability and the modularity of the developed algorithm. Indeed, this step is 
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based on hierarchy and regularity concepts. Hierarchy is used to divide a large or complex design into 
subparts called modules that are more manageable. Regularity is aimed to maximize the reuse of 
already designed modules [34], [36], [62], [63]. As a result, the extracted reusable modules are 
organized in different levels of granularity and added to a specific library of control for electrical 
systems [34], [36], [62], [63].  

6.2.2. Continuous-time functional simulation 

Once the control system is designed and the algorithm partitioning is made, a continuous-time 
(s-domain) functional simulation is achieved using Matlab/Simulink tools. This step is aimed to 
simulate and verify the functionality of the complete control system.  

6.2.3. Digital realization 

During this step, the first task consists in making a digital synthesis of the aimed control closed 
loop and choosing the right sampling frequency. Two approaches are considered, the direct synthesis 
approach and the digital re-design approach. The first one consists in configuring the controller and 
synthesizing the used regulators in a fully discrete-time z-domain. This approach is suitable for high 
switching frequency applications.  

In most cases, power electronics applications are using limited switching frequency. Thus, the 
re-design approach can be adopted. The latter, consists in synthesizing regulators in the continuous s-
domain and then making the convenient transformation to the discrete-time domain (ZOH, Tustin, 
Euler…). This is typically the case of the developed sensorless control application. 

The obtained digital controller (or observer) can be then considered as a digital filter that is now 
to be realized. The corresponding structure is then specified (direct form, cascade form, transpose 
form …). Then the normalization is processed. It consists in developing a per-unit algorithm where 
variables are replaced by their corresponding per-unit counterparts with the introduction of base-
values. To this purpose, the base-value of each variable is determined according to variable nominal 
value and also according to the gains that are introduced by the sensors and the ADC board. 

 The following task is the choice of the fixed point data format. This choice can be made in two 
stages [40], [41]. The first one is the choice of the fixed-point format of the coefficients by studying 
the stability of the closed-loop. The second stage concerns the choice of the fixed-point format for the 
variables. To this purpose, the limit-cycle at steady state and the signal-to-noise ratio are both 
considered.  

A simpler but more intuitive method for choosing the fixed-point format is by trial-and-error 
fixed-point simulations. Indeed, designer can develop the fixed-point model and then make a 
comparison with the floating point initial model. The format that leads to a minimum quantification 
error is then maintained. Another and still more intuitive way to choose the format is the use of 
Matlab/Simulink fixed-point tool. At the end of each simulation, this tool collects information about 
the processed data and displays their maximum, minimum values. It also indicates when overflows 
occur. Then, these data ranges help designer to choose the appropriate fixed point format.    

6.2.4. Algorithm optimization  

As mentioned before, an optimization is to be performed in order to reduce the number of 
operations. This optimization is quite mandatory in the case of the FPGA solution since the size of the 
developed architecture is conditioned with the complexity of the algorithm. For instance, a complex 
control algorithm, where many greedy operations like multiplications have to be processed, needs a 
rigorous and smart simplification without loosing the required performances. Another optimization 
example is to perform complex functions with the use of elementary operators. This is the case of 
CORDIC (COordinate Rotation Digital Computer [39]) algorithms where trigonometric, hyperbolic, 
linear and logarithmic functions are performed with the use of elementary adders, subtractors and 
shifters. 
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6.2.5. Discrete-time, fixed-point simulation 

After having developed the aimed digital control algorithm and having specified the suitable 
sampling frequency and the data fixed-point format, designer makes a final functional verification. 
The latter is made by simulating the developed algorithm in the discrete-time and fixed-point domain 
with the help of the appropriate Matlab/Simulink tools.  

6.3. FPGA-based architecture development  

In the case of having chosen the FPGA target to implement the developed algorithm, designer 
initiates the development of the corresponding FPGA-based architecture. To make the design process 
less constraining in terms of time-to-market, an interesting solution consists in generating 
automatically the FPGA-based architecture from Matlab/Simulink, using dedicated toolboxes 
proposed by the FPGA manufacturers [43]. In contrast, besides the cost of these toolboxes and in the 
case of complex algorithms, such solution can lead to un-optimized architecture that may be 
inadequate to the available FPGA resources. This is the reason why, in the proposed design 
methodology, designer has to develop and code himself the FPGA-based architecture with the help of 
the following steps.  

6.3.1. Architecture optimization 

The optimization here consists in finding the appropriate FPGA architecture that is able to 
perform the developed algorithm with the respect of a set of implementation constraints. These 
constraints can be summarized and classified according to the Figure 2.19(a). 

Algorithm constraints: They are related to the structure of the developed algorithm including its 
complexity and the chosen data word-length that preserves its performances. Thus, the higher are the 
complexity and the data word-length, the higher are the needed FPGA resources. 

Design constraints: They include the algorithm modularity preservation constraint and the 
FPGA architecture pipelining constraint. The more modular is the algorithm, the higher is the 
corresponding FPGA architecture. The more pipelined is the developed architecture, the higher is the 
operating clock frequency and then the shorter is the execution time.  

Power consumption constraints: These constraints concern typically applications such as 
portable and power-conscious embedded systems where low power consumption is a key-issue. Here 
again the higher are the clock frequency and the used hardware resources, the higher is the consumed 
power. This point is not maintained in the following discussion since in the case of AC drive 
applications, the power consumption of the digital control unit doesn’t matter compared to the power 
consumed by the drive itself.     

Area/cost constraints: They concern the hardware FPGA resources. In our case, this consists in 
limiting the used FPGA solutions to the low cost FPGA families. Indeed, most of the available FPGAs 
are classified into two categories: the low cost category and the high performance category. These 
categories distinguish themselves with the quantity of the integrated resources and thus their cost.  As 
an example, the low cost Xilinx Spartan 6 FPGA contains up to 180 DSP blocks and the high 
performance Xilinx Virtex6 FPGA contains up to 2016 DSP blocks.   

Timing constraints: These constraints concern the operating clock conditions and the execution 
time of the developed FPGA architecture. In the case of a control application, the control 
performances are influenced by the execution time. The shorter is the execution time, the larger is the 
control bandwidth. These timing constraints consist then in defining an execution time limit that leads 
to acceptable control performances. A short execution time limit induces the increasing of the 
parallelism and then the increasing of the needed hardware resources. 
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Figure 2.19: Architecture optimization – Implementation constraints 

(a) Classification of the implementation constraints (b): chosen constraints  

 

 

 
Figure 2.20: Architecture optimization procedure 

In order to develop an optimization procedure, we are going to focus on the implementation 
constraints presented in Figure 2.19(b). In the following, a general purpose optimization procedure is 
then presented. Its concrete illustration can be found in chapter 6.  
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We first assume that the complexity of the algorithm and the data word length have been already 
defined during the algorithm development step. The objective then is to find an optimum between the 
area and the timing constraints with the preservation of the algorithm modularity.  

The optimization procedure can be summarized in Figure 2.20. Four main steps can be noticed. 
The first one consists in making a first evaluation of the time/area analysis of the developed algorithm 
with the full preservation of its parallelism. This aims to verify if the corresponding FPGA architecture 
can be directly designed without any optimization. The second step consists in factorizing the 
architecture using the A3 methodology. The third step is the design, the VHDL/verilog-coding and the 
functional validation of the factorized architecture. Finally, the design synthesis and the time/area 
analysis are made. Once the obtained time/area performances satisfy the corresponding constraints, the 
FPGA physical implementation process is initiated. A deeper presentation of these steps is made in the 
following sections. 

When it comes to the A3 methodology, the aim is to find out an optimized FPGA architecture for 
a given application algorithm, while satisfying area and timing constraints, [62], [63], [72]. In other 
words, it consists in studying the data dependency of the algorithm in order to find the potential 
factorization that leads to the use of the minimum number of operators that process a maximum of 
operations. 

The A3 methodology consists of three steps: 
Design of the DFG (Data Flow Graph): this consists in making a graphical representation of the 

algorithm to be implemented.   

Data dependency evaluation: according to the obtained DFG, the data dependency is evaluated 
and the potential parallelism is determined, which leads to the choice of the factorization strategy. 
Note that the latter reduces the hardware resources but increases the computation time since it 
serializes locally the treatment. The higher is the level of factorization, the longer is the execution 
time. A compromise between computation time and consumed hardware resources is then mandatory. 
The factorization is generally applied to the greediest operators in terms of consumed hardware 
resources like multipliers. Also, in an upper level of granularity, this factorization can also be applied 
at a functional module scale (thicker grain operator). 

Design of the FDFG (Factorized DFG): this is a graphical representation of the factorized 
algorithm on which the development of the FPGA-based architecture is directly derived. This graphic 
introduces specific nodes called, F (“Fork”), J (“Join”), D (“Diffuse”) and I (“Iterate”). These nodes 
are used to delimit the factorization borders [32].    

A “dot product” module has been chosen as an example of illustration (relation 2.1). Figure 
2.21(a) shows its DFG. 

)()()()()()()( 332211 tytxtytxtytxto ⋅+⋅+⋅=  

As it can be seen in the corresponding DFG, the multiplications can be performed in parallel 
mode which is not the case of additions. Thus, the factorization process can be applied to the 
multiplier operator and the obtained FDFG is presented in Fig. 21(b). 

 

(2.1)
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Figure 2.21: Developed DFG and FDFG – factorization of dot product operator 

6.3.2. Architecture design 

According to the obtained FDFG, the FPGA-based architecture is designed by replacing the 
FDFG nodes (F, J and I) by there corresponding operators. Thus, the node F is replaced by a 
multiplexer, J and I replaced by registers.  

The hardware architecture of each of the developed modules (according to the adopted modular 
partitioning) is then composed of a data path and a control unit that are both synchronized with the 
global clock signal. The data path contains the used operators and data buses between them. The 
treatment scheduling is ensured by the control unit which is a simple Finite State Machine (FSM). The 
latter is activated via a Start pulse signal. When the computation time process is over, an End pulse 
signal indicates the end of the treatment. As an example, Figure 2.22 presents the FPGA architecture 
corresponding to the FDFG of Figure 2.21(b). 

 
Figure 2.22:  Example of a designed FPGA architecture – case of the dot-product operator  
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At this stage, the designed FPGA architecture of each module is ready to be described. The 
VHDL or Verilog description languages can be used.  

6.3.4. Architecture functional simulation 

As for the functional validation, the objective is to make the necessary simulation in order to 
validate functionally the developed VHDL/Verilog design. This can be achieved using dedicated tools 
such as ModelSim tools. The obtained simulation results can also be compared to those obtained 
during the fixed-point simulation in Matlab/Simulink environment.   
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6.3.5. Design synthesis and time/area performances analysis 

The VHDL-designed and functionally validated architecture is now ready to be synthesized so 
as to analyze and translate it to a gate level design (using the dedicated tools, e.g. Xilinx synthesizer, 
Synplify synthesizer …). During this synthesis, timing and area analyses are made. 

The timing analysis consists in quantifying the propagation delays between the used FPGA 
elements. Depending of these delays, the operating clock maximum frequency is estimated. This 
estimation is made with regards to the used FPGA target but also on the quality of the designed 
architecture. A fully-pipelined architecture leads to short propagation delays between the used FPGA 
elements and then to a high clock frequency. From this analysis, designer chooses the appropriate 
clock frequency and then estimates the execution time of the whole design.  

In addition to the timing analysis, the synthesis process makes an area analysis and establishes 
the connection between the used operators and the available FPGA resources.  

From the obtained time/area performances, four scenarios are possible: 

The timing constraint and area constraint are both satisfied: The design is then appropriate for 
the FPGA physical implementation process. 

The timing constraint is satisfied but the area constraint is not satisfied: In this case, designer 
has to make a choice: (i) Use of another FPGA target (with more resources but if the low cost 
constraint is still respected). (ii) Re-design of the architecture so as to increase the level of 
factorization. (iii) Revision of the modular partitioning so as to gather potential modules and then 
factorize the new architecture of the new module. (iv) Implementation of the optimized versions of the 
algorithm. (v) Reduce the data word length which leads to re-validate the algorithm development step. 

 The timing constraint is not satisfied but the area constraint is satisfied: In this case, designer 
can increase the operating clock frequency and/or decrease the level of factorization.  

Both timing and area constraints are not satisfied: In this case it is mandatory to decrease the 
level of factorization and change the FPGA target. 

6.3.6. FPGA physical implementation process 

According to the design flow presented in Figure 2.12, the physical implementation process 
includes the I/O assignment, the place&route and then the generation of the final Bitstream that is 
ready to be transferred to the chosen FPGA target. These steps are commonly used by the FPGA 
development tools (e.g. ISE, Quartus, Libero) provided by FPGA manufacturers (e.g. Xilinx, Altera, 
Actel). It is also possible to achieve post-synthesis and post-route simulations that lead to validate the 
functionality of the obtained gate-level design.   

6.4. Experimentation  

6.4.1. Hardware In the Loop (HIL)  validation 

In order to verify a first experimental operating guarantee, an HIL procedure is recommended. 
The latter is an interesting realistic validation technique since it can be considered as an intermediate 
between a fully computer-based development validation (Matlab/Simulink, ModelSim, FPGA design 
tools) and a fully experimental validation (actual system platform).  

The HIL procedure is carried out through a physical implementation of the developed FPGA-
based architecture to be validated. The latter has to be associated with an emulation of the plant [49], 
[62]. In addition, a communication controller has to be implemented in order to transfer the stimuli 
and the probed data. This communication is to be achieved with a Host-PC in which a comparison is 
made between the obtained HIL results and the simulation results. Figure 2.23 highlights the synopsis 
of the achieved HIL test. When using a Xilinx FPGA target, the HIL procedure can be made using the 
ChipScope analyzer [2]. The latter is used to probe the internal signals in one hand and to configure 
the design in the other hand. The data transfer is made using the JTAG interface.  
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Figure 2.23: Synoptic of the HIL procedure 

6.4.2. Experimental validation 

The experimental validation is the final step of the design methodology and aims to make a final 
validation of the developed FPGA-based controller. 

7. Conclusion  

This chapter has made an in-depth presentation of FPGAs starting by a general purpose 
investigation of their relevant elements. This is followed by a deeper investigation of specific FPGA 
devices from each family and technology. Then an analysis has been made in order to state how 
FPGA-based solutions are useful in the field of power electronics and drive applications. The case of 
complex sensorless applications has been focused on and a discussion about the FPGA 
implementation constraints is done. Finally, a design methodology is provided. The latter is dedicated 
to power electronics and drive applications and consists in a set of steps and guidelines that help 
designer to develop the expected application starting from the preliminary system specification to the 
ultimate experimentation. 

Now that this presentation is made, the next challenge is to present how to build an FPGA-based 
controller that is dedicated to the control of a synchronous motor drive. Chapter 3 will deal with the 
development of a standard FPGA based controller for a synchronous AC machine. Standard means 
that the implemented control system uses the measured rotor position (from a sensor) in the control 
closed loop. The development of a fully integrated FPGA-based controller for a Permanent Magnet 
Synchronous Machine (PMSM) associated with a Resolver sensor will be presented. As for the 
sensorless controller that uses the EKF, a deeper discussion about the development of the 
corresponding FPGA solution will be made. The case of a Salient Synchronous Machine (SSM) will 
be presented. This has been made in 4 stages according to the design methodology: system 
specification of the sensorless controller (chapter 4), development of the algorithm (chapter 5), 
development of the FPGA architecture (chapter 6) and finally the experimentation (chapter 7).      
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1. Introduction  

Before the development of the aimed sensorless controller, it has been decided to start with the 
implementation of a fully integrated FPGA-based controller for a Permanent Magnet Synchronous 
Machine (PMSM) associated with a resolver position sensor [22], [23]. This start up thesis activity 
belongs to an aircraft application where the main objective is to develop a fully integrated FPGA 
solution. To suit this high system integration demand, it has been decided to use the Actel Fusion 
FPGA as a prototyping platform. Indeed, as presented in chapter 2, this Flash-based FPGA is 
considered as a System on Chip (SoC) device since it allows a mixed signal processing: analog 
processing using integrated analog peripherals (ADC, analog pre-scalers, analog multiplexer) and 
digital features such as FPGA matrix. This last can support either hardware architectures or software 
architectures with a processor unit (CoreMP7, CortexM1). This mixed treatment approach offers a 
new level of integration by allowing the use of heterogeneous functions in the same device. In addition 
to this features, these Flash-based FPGAs are well known for their low power consumption and their 
immunity to Single Event Upset (SEU) radiations. Some preliminary motor control implementations 
have been achieved using this SoC device and promising results have been obtained [18]-[23].   

The developed controller implements the whole necessary functions in the presented Fusion 
FPGA SoC. The analog to digital conversion is ensured by the integrated ADC. The whole control 
closed loop including the treatment of resolver signals is implemented in the FPGA matrix. The sine 
patterns used for the coordinate transformation are stored in the integrated Flash memory block.  

At this stage, it can be noticed that this controller has been fully implemented in hardware. In 
order to provide a fully SoC solution where software treatment is also ensured (using the processor 
unit), an associate thesis work has been fixed [74]. The main objective of this work is to analyze, 
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develop, validate and propose a hardware/software solution combining the hardware FPGA treatment 
and software processor treatment. Thus, additional co-design approaches are to be initiated in order to 
decide which part of the treatment is to be implemented in software and which part of the treatment is 
to be accomplished in hardware. 

 
Figure 3.1: Synoptic of the proposed control system 

The evaluation of the FPGA-based solution capabilities, in such AC drive application, is 
achieved using the experimental set up presented in Figure 3.1. It consists of a PMSM associated with 
a load and a resolver position sensor. This PMSM is supplied by a Voltage Source Inverter (VSI). The 
switching signals are provided by the FPGA-based controller. The latter includes an ADC 
management module, a Resolver Processing Unit (RPU) and a current controller. These modules are 
sequenced by a global sequencer unit which is also used to generate a synchronization signal. From 
this signal, the resolver interface processes either square or sinusoidal excitation signal for the 
resolver. The ADC management module converts the resolver signals and the stator currents using the 
integrated ADC. The RPU generates the rotor position and speed using the Angle Tracking Observer 
(ATO) algorithm. From this position, the converted currents and the reference currents, the VSI 
switching signals are computed by the current controller. The development of these modules has been 
achieved with the help of the design methodology that is presented in the previous chapter. 

In addition to these tests, a compensation of the ADC limitations is made. Indeed, the used 
Fusion FPGA integrates only one ADC which, associated with an analog multiplexer, is able to 
convert up to 30 analog signals. Consequently, the conversion is serialized and these analog signals 
are not sampled at the same time which introduces a Sampling Synchronization Error (SSE). The 
impact of this error has been measured and compensation procedures have been presented. 

This chapter is organized as follows. At first, a brief presentation of the integrated ADC and its 
implementation is discussed and the problem of synchronization is positioned. The third part presents 
the resolver sensor and deals with the FPGA-based RPU. In this part, a presentation of the chosen 
ADC SSE compensation method for resolver signals is made in addition to the evaluation of the RPU 
noise rejection. Some experimental results are then provided so as to validate this RPU treatment. The 
following part presents the FPGA-based controller which uses an ON/OFF current control strategy 
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[62], [75]. This part includes the implemented ADC SSE compensation method for PMSM stator 
currents. In order to prove the efficiency of this fully integrated solution, some experimental results 
are provided, followed by time/area performance analysis. Finally, author makes a comparison, in 
terms of execution time delay, between the FPGA-based controller and its corresponding software-
based one. The influence on the control quality is discussed in both cases. This comparison aims to 
stress the importance of using FPGAs to enhance the control reactivity. This last point has to be taken 
into account when designing a SoC solution. Indeed, designer has to think about the right 
hardware/software partitioning that increases the integration density without loosing the control 
performances [74].  

2. Description and implementation of the FPGA integrated ADC 

The Fusion FPGA integrates a 12-bit programmable successive approximation ADC (SAR-
ADC). Associated with an analog multiplexer, it can convert successively up to 30 analog signals, 
[10]. Analog quads are used to precondition and adapt the analog inputs to the ADC voltage range. 
Figure 3.2 gives an idea about the organization of the analog module. 

 

 
Figure 3.2: Analog module overview  

 The resolution of the ADC is adjustable and can be set to 8, 10 or 12 bits mode. The conversion 
time is programmable and depends on the global system clock, the conversion resolution and the 
sample and hold (S/H) time.  

 
Figure 3.3: Synoptic of the implemented Global ADC Module 
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Figure 3.3 highlights the operating principle of the implemented Global ADC Module. It 
includes the analog module (Figure 3.3(a)) and four registers in which is stored the ADC result 
corresponding to each analog input. In the proposed application, the ADC is used to convert 
successively resolver signals (Vsin, Vcos) and the PMSM stator currents (isa, isb). The conversion control 
is ensured by the ADC control unit. The corresponding state diagram is shown in Figure 3.3(b). At the 
end of each conversion cycle, the ADC result is stored in the corresponding 12-bit register and at the 
same time, a corresponding xxx_RDY flag signal is activated. 

The main limit of the proposed ADC structure is the sequential conversion process. Indeed, 
since there is only one ADC, the conversion is serialized. Consequently, this induces a global 
computational delay, which increases proportionally with the number of converted signals and 
depends on the conversion time. Furthermore, with the proposed structure, analog signals are not 
sampled at the same time, so, a Sampling Synchronization Error (SSE) is introduced. In the proposed 
application, the influence and the way-to-compensate this error have been studied for resolver signals 
in the one hand and for the stator PMSM currents in the other hand. 

3. Resolver Processing Unit 

3.1. Resolver sensor description 

A resolver sensor is an electromagnetic position sensor similar to a rotary transformer with a 
rotating excitation winding (also called reference winding) and two 90 degrees shifted stator windings, 
[76]-[80]. Figure 3.4(a) gives an overview of resolver construction scheme. Often used in niche 
applications like space and aircraft industry systems, resolver position sensors are more efficient 
compared to optical sensors (absolute and incremental encoders), thanks to their large operating speed 
range, their low volume and their ability to work in noisy and harsh environments (rugged 
construction, noise rejection, operating in a large temperature range). 

The excitation winding is supplied by a high frequency square or sinusoidal voltage signal 
(generally 1 kHz to 20 kHz). When the rotor shaft turns, two voltage signals are induced in the stator 
windings. The amplitude of these outputs is modulated respectively with the sine and cosine of the 
electrical shaft angle according to relation (3.1). 

 
Figure 3.4: (a): Resolver Construction scheme   (b): Resolver Input/output waveforms  
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Where E(t) is the high frequency square or sinusoidal excitation signal, m the transformation 
ratio and θr the electrical rotor position. In case of sinusoidal excitation signal, resolver input/output 
waveforms are presented in Figure 3.4(b). 

To ensure high system integration, the treatment and the extraction of the rotor position and 
speed from the resolver outputs are ensured by an FPGA-based Resolver Processing Unit (RPU), 
instead of using an external off-chip Resolver to Digital Converter (RDC), [79]. 
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3.2. RPU  principle 

The RPU treatment is done in two steps, as shown in Figure 3.5. Firstly, a synchronous 
demodulation is achieved. The latter consists in demodulating resolver signals so as to extract the sine 
and cosine of the rotor position. There are various demodulation techniques, all with their advantages 
and limits in terms of demodulation quality and also in terms of algorithm complexity. In [19], authors 
have reported and studied three typical methods: PLL-based method, Quadrature method and peak 
detection method. The last one has been chosen in the case of the developed application for its 
simplicity. It consists in using the ADC to detect and convert the Vsin and Vcos peak values. The second 
step of the RPU treatment is the extraction of the position and speed from these demodulated signals. 
The so-called Angle Tracking Observer is implemented for this aim.    

 
Figure 3.5: RPU principle 

 

3.3. Synchronous demodulation 

The implemented synchronous demodulation method, presented in Figure 3.6, consists in 
sampling the Vsin and Vcos peaks and delivering the demodulated Vsin_D and Vcos_D signals. In order to 
increase the demodulation precision, the sign of the negative peaks is reversed depending on the 
synchronization signal. 

 

 
Figure 3.6: Synoptic of synchronous demodulation process 

 

3.4. Angle Tracking Observer (ATO) 

This is a closed-loop system which estimates accurately both speed and position, compared to 
other solutions such as trigonometric extraction methods [19], [79]. Indeed, this observer consists in a 
second order closed-loop system which compares permanently the actual angular position θr to the 
estimated angular position θe. The objective is to minimize the angular position error.  
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Figure 3.7: ATO closed-loop 

 
Figure 3.7 presents the implemented ATO closed-loop system, for the proposed application. In 

this closed-loop, the computation of sine and cosine of the estimated position is ensured by a CORDIC 
algorithm [39]. This last allows performing trigonometric functions, with an iterative algorithm and 
using only simple operations like shifts and additions.  

 
Figure 3.8: Linearized ATO closed-loop 

 
The angular position error between θr and θe can be expressed as in relation (3.2). For small 

variations of the error, this relation can be linearized and rewritten according to relation (3.3). Figure 
3.8 presents the closed-loop system after the application of the linearization assumption. Based on this 
simplified closed-loop, the ATO transfer functions are expressed in relations (3.4) and (3.5). 
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These are second order transfer functions for which the observation dynamic is set using K1 and 
K2 coefficients. These coefficients are chosen depending on the required estimation speed and on the 
observation error tolerance. As for the digital realization of the ATO, the adopted discretization 
assumption is based on Forward Euler approximation. Namely, 1/s is replaced by Ts/z-1 where Ts is the 
sampling period which has been set to 50µs in our case. Figure 3.9 shows the block diagram of the 
discrete-time ATO closed loop. When it comes to the FPGA implementation, the choice of the 
appropriate fixed-point data format is essential. In the proposed ATO algorithm and with the achieved 
dynamic setting, the optimum data format that preserves the treatment precision is set to 19Q15 (see 
chapter 5 section 4.3 for the fixed-point notation). The obtained fixed-point simulation results are 
highlighted in Figure 3.10. They are obtained in the case of a sinusoidal resolver excitation with a 
frequency set to 10 kHz.   
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Figure 3.9: Discrete-time ATO closed-loop  

 
 

 
Figure 3.10: Fixed-point simulation results of the RPU –  

(a): waveform of Vsin   (b) : waveform of Vcos   (c) : demodulated Vsin_D   (d) : demodulated Vcos_D                           
(e) : estimated rotor position θe (f) : estimated rotor speed ωe for 8000 rpm mechanical speed                             

(g) : estimated speed for an acceleration 0-20000 rpm mechanical speed (h) : relative speed estimation error (%) 
 
 

3.5. Compensation of the ADC Sampling Synchronization Error for resolver signals 

During the synchronous demodulation process, the resolver signals Vsin and Vcos are sampled and 
converted by the single integrated ADC of the used Fusion FPGA. As a consequence, they aren’t 
sampled at the same time, as illustrated in Figure 3.11. At each sampling period kTs, the conversion 
process is launched and the conversion results are respectively ready at kTs + tconv and kTs + 2tconv, 
where tconv corresponds to the conversion time. 
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Figure 3.11: Conversion process for resolver signals 

 

Taking into account the amplitude modulated signals, the sinusoidal excitation signal and the 
ADC SSE, the demodulated signals Vsin_D and Vcos_D are expressed in relation (3.6), where θr, ωr and 
ωex are respectively rotor position, rotor speed and the excitation signal pulsation. 
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Assuming that ωex and tconv are constant and known, the compensation procedure of the ADC 

SSE for resolver signals can be made according to Figure 3.12. This figure shows the z-domain 
modified ATO closed-loop. α and β variables are expressed in relation (3.7).  

  
 

 
Figure 3.12: Modified ATO closed-loop 

 

])([
2
1 )tsin(tsin conveerconveer ωθθωθθα −−+++⋅=  

])([
2
1 )tsin(tsin convrreconvrre ωθθωθθβ −−+++⋅=  

 

kTs

Vsin_D[kTs] 

Start Vsin 

Start Vcos 

tconv tconv 

Vsin 

εSSE 

Vcos Vcos_D[kTs] 

(k+1)Ts t 

+
+

X 

Modified Cordic  
Algorithm 

+
-

Speed 
(rd/s) 

position 
(rd) 

 εθ   ≈  θr – θe + 1/2.(ωr – ωe).tconv

θe

θe 

cos(θe + ωetconv) 

Vsin_D  
 

ωe 

K2

α 

β 
X 

sin(θe) 

Vcos_D  
 

K1

tconv 

1−z
T s

 
1−z

T s

 
)

2
sin(

1

conex tωπ
+

(3.6)

(3.7)



Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor 

53 

 
Figure 3.13: RPU Fixed-point simulations before and after SSE compensation 

(a,b): speed estimation error (acceleration 0-20000 rpm-mechanical) before (a) and after (b) SSE compensation 
 (c): position estimation error (acceleration 0-20000 rpm mechanical) 

 
Assuming that the rotor speed is correctly estimated (ωr=ωe), relations (3.8) and (3.9) present 

the new observation error respectively before and after linearization. The same expression as in (3.3) 
is finally obtained. 
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Figure 3.13 shows the fixed-point simulation results of the RPU unit before and after ADC SSE 
compensation. These results prove that the serialization of the analog to digital conversion has an 
impact on the observation quality. 

3.6. Evaluation of the noise rejection 

An evaluation of the noise rejection of the developed RPU has also been done. A noise at the 
PWM frequency (10 kHz) was injected to Resolver signals (Vsin and Vcos) and the behavior of the 
obtained position and speed was observed. Figure 3.14 shows the waveform of the relative error 
between the theoretical speed and the estimated speed after having injected the PWM noise. This 
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speed. This indicates that the injected noise has a limited impact on the estimation quality either for 
position or speed. 
 

 
Figure 3.14: Evaluation of the RPU noise rejection  

 

3.7. Experimentation 

Figure 3.15 presents the experimental results obtained after implementing the RPU in an 
AFS600 Fusion FPGA (13824 FPGA tiles, 1 ADC, 40 analog I/Os, 4 Mb Flash memory, 108Kbits 
RAM memory). Resolver shaft is linked to the used PMSM that turns at 800 rpm mechanical speed. 
The computation is synchronized by a 50MHz clock signal. The sampling period is synchronized with 
the resolver excitation and is fixed to 50µs and the frequency of the resolver excitation signal is set to 
10 kHz. The used internal tiles present 25% of the FPGA matrix. These results are obtained for a 19-
bit fixed point data format. The obtained position and speed waveforms prove a good FPGA-based 
treatment in terms of quality and accuracy. 

 
 

 
  Figure 3.15: RPU - Experimental results  
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current references with regards to the expected dq current references and the rotor position. These 
references are then compared to the measured currents by hysteresis regulators in order to generate the 
appropriate switching signals. Figure 3.16 shows the corresponding FPGA architecture. The ADC 
management module is composed of the previously discussed Global ADC module and AD interfaces. 
The latter adapt the conversion results to the appropriate data format, 19-bit fixed point format 
(19Q15) for RPU treatment and 13-bit fixed point format (13Q12) for current controller. 

 

 
Figure 3.16: FPGA-based controller architecture 

 

4.1. Controller timing diagram 

Figure 3.17 highlights the control system timing diagram. At the beginning of each sampling 
period Ts (set to 50µs), the Resolver position shift (tphi) is taken into account. This shift (measured 
experimentally) corresponds to the delay between the synchronization signal edge and the peak of 
resolver signals. This delay is mainly due to the resolver interface electronic circuits and the resolver 
windings. After this shift, the ADC management module is activated. It converts, sequentially, the 
resolver and current sensor analog outputs. At the end of each conversion cycle, the xxx_RDY flag 
corresponding to each input is activated. Thus, as soon as Vcos_D_RDY is activated (Resolver signals 
are both converted), the RPU starts. Simultaneously, the conversion of the other analog signals 
(PMSM stator currents) is realized. Finally, the current controller is then activated after the Resolver 
processing and at the end of the conversion process.       
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Figure 3.17: Control system timing diagram 

 

4.2. Compensation of ADC Sampling Synchronization Error for PMSM currents  

Figure 3.18 presents the conversion process of the measured currents isa and isb
 which is 

launched at each sampling period (kTs) after converting the resolver signals Vsin and Vcos. This 
conversion is made sequentially. As consequence sampling synchronization errors are introduced (εSSEa 
for isa and εSSEb for isb). Assuming that the stator currents are sinusoidal, these sampling errors 
correspond to position errors. The conversion results of isa and isb

 at each sampling period are then 
expressed in (3.10). This relation includes the third current isc obtained by considering that the 3-phase 
system is balanced. 
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Figure 3.18: Conversion process for stator currents 
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These measured currents are compared by the hysteresis regulator to their corresponding 
reference values isa

*, isb
* and isc

*. The current errors are then written as, 
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The compensation of the impact of the sequential conversion is made by adding the sampling 
errors εSSEa and εSSEb respectively to the reference values isa

* and isb
* in order to have the same current 

errors as in an ideal case (3.12).   
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In case of sinusoidal signals and assuming that the conversion time tconv is constant and known, 
the compensation is made through the position θe and the electrical speed ωe, both estimated by the 
RPU. Figure 3.19 summarizes the proposed compensation procedure. The ADC SSE is introduced 
through the modified Park transformation. The 3-phase current references are then expressed 
according to the following relation, 
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Figure 3.20 shows the evolution of the ADC SSE when increasing the current frequency and the 
conversion time. This result proves that the serialization of the analog to digital conversion has an 
impact on the control quality. In this application the electrical speed is low, so this error can be 
neglected. However, it cannot be so when increasing the speed, the ADC conversion time and the 
number of analog inputs. 

 

 
Figure 3.19: Compensation of the ADC SSE for stator currents 
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Figure 3.20: SSE = f (speed, tconv) 

 

4.3. Experimental results  

 

 
Figure 3.21: Current controller experimental results – Obtained for isd*=0A; isq*=3A; Bw*=0A 

 
The experimental set up presented in the first section (Figure 3.1) is composed of a 0.8kW 

PMSM associated with a Resolver sensor, current sensors and a controlled load (powder brake). The 
current sensors deliver voltage signals corresponding to the measured currents (2.5V/10A). The 
sampling period is synchronized with the resolver excitation and is fixed to 50µs. Figure 3.21 presents 
the stator current and voltage instantaneous waveforms. 

4.4. Time/Area performances 

Table (3.1) presents the time/area resources of the implemented motor controller. This full 
FPGA-based solution was based on an AFS600 Fusion FPGA (13824 FPGA VersaTiles, 1 ADC, 40 
analog I/Os, 4 Mb Flash memory, 108Kbits RAM memory) [10]. The consumed resources were 
obtained for a 13-bit fixed-point format for the current controller and 19-bit fixed-point format for the 
RPU treatment. The obtained area performances show that the global implemented architecture takes 
47% of the Fusion FPGA matrix. This is mainly due to the greediest operators like multipliers. Indeed, 
these multipliers are synthesized in the FPGA matrix because they are not hardwired in the chip. As 
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for the time performances, the global execution time (6.5µs) remains short, but it depends mainly on 
the sequential analog to digital conversion time.  

Table 3.1: Time/Area resources 
                Time/area resources 
  Modules 

% of hardware resources 
(over 13824 cells) 

Execution time 
CLK = 50MHz 

ADC Management module 
1 Flash memory block + 4 

analog quads + 12-bit ADC 

1.48 % 
( 205 cells ) 

1 internal ADC 
tconv=1.36µs 

RPU 
Synchronous demodulation 
Angle Tracking Observer 

Cordic treatment 

25.16 % 
( 3478 cells ) tRPU = 1.56 µs 

Hysteresis current control 
DQ-abc transformation 

3-phase hysteresis regulator 

16 % 
( 1242 cells ) tCC = 1.06 µs 

Global                    
control architecture 

Total 

47.01 % 
( 6499 cells ) 

tcontrol = 4 * tconv+ tCC 
= 6.5 µs 

 

4.5. Influence of the execution time on the control quality 

In order to illustrate the influence of execution time on the control quality, the obtained 
experimental results using the hardware fully FPGA controller, are compared to those obtained with a 
slower solution like a software controller. In the first case, the controller processes and generates the 
switching signals in 6.5µs delay (including AD conversion time). In the second case, in order to 
reproduce a typical software-based controller, the execution time was deliberately delayed and the 
switching signals are generated one sampling period (50µs) later. Figure 3.22 shows the influence of 
the execution time on the current waveform in case of hysteresis-based control strategy. In this figure, 
it can be seen that current ripples are significantly larger when execution time is equal to a sampling 
period (embedded software controller case, Figure 3.22(b)) compared to the case of a fully hardware 
controller (Figure 3.22(a)). 

  

 
Figure 3.22: Comparison between a 6.5µs control delay (a) versus a 50µs control delay (b) 

5. Conclusion 

This chapter has dealt with the development of a fully integrated FPGA-based controller for a 
PMSM. This PMSM is associated with a resolver position sensor. For a high integration purpose, it 
has been decided to implement the controller within an Actel Fusion FPGA. The latter is characterized 
by mixed-signal elements that combine analog elements (e.g. ADC) in addition to the digital features 
ensured by the FPGA matrix. 

The developed controller includes a Resolver Processing Unit (RPU) which calculates rotor 
position and speed and a current controller which processes the switching signals for the VSI. The 
conversion process is ensured by the integrated ADC. These modules have been described and 
propped up with fixed-point simulation and experimental results. Also the Sampling Synchronization 
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Error (SSE) which is introduced by the ADC structure has been discussed and compensation methods 
have been presented. 

Now, as the utility of using FPGAs to suit high integration demands is discussed, the next step is 
how they bring their value-added for more complex controllers. Thus, the next chapters deal with the 
development of an FPGA-based sensorless AC drive application using an Extended Kalman Filter 
(EKF). Besides the importance of sensorless controllers especially for avionic applications, the 
performances and the way-to-develop the corresponding FPGA solution will be covered.      
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Chapter 4 

FPGA-based sensorless control for 
synchronous AC drive 

- Preliminary system specification 
 

 
1. Introduction  

In this chapter, author presents the preliminary development step of an FPGA-based sensorless 
controller for a synchronous AC drive. According to the design methodology presented in chapter 2 
(Figure 2.18), this step consists in making a preliminary system specification regarding the whole 
sensorless control application.  

Thus, at the beginning, a hardware specification is made. The power stage, the electrical sensors, 
the analog/digital interfaces and the digital control unit are specified. For the power stage, this consists 
in choosing, depending on the load conditions, which AC motor is to be controlled and which supply 
conditions. The specification of the electrical sensors that are used to measure voltages and currents is 
also important at this step since the introduced gains are taken into account during the algorithm 
normalization (chapter 5). The specification of the analog/digital interfaces consists in choosing the 
Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC) boards. Here again the 
specification of the ADC is important since the introduced gain and the conversion time are taken into 
account respectively during the normalization and during the analysis of the controller timing 
performances.   Finally, the appropriate FPGA-based digital control unit is defined. 

Beyond this physical specification, the algorithm benchmarking is made. This consists in 
specifying the appropriate control strategy and the appropriate sensorless method for the estimation of 
the rotor position and speed. In the case of the implemented Extended Kalman Filter (EKF), the 
selection of the appropriate system model that allies model precision and complexity is to be achieved. 

This chapter is organized as follows. The hardware specification is discussed in the following 
part. The third part deals with the chosen speed and stator current control strategies. Then, part 4 
presents some widespread sensorless methods for the estimation of the rotor position and speed. This 
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investigation leads to the choice of the sensorless method for the developed application. Thus the 
principle and the algorithm of the chosen EKF are presented in part 5. Finally, the development and 
the selection of the system model for the EKF treatment are dealt with in part 6.     

2. Sensorless control system - Hardware specification 

The structure of the proposed sensorless control system is overviewed in Figure 4.1. It highlights 
mainly the power stage structure, the FPGA-based digital control unit, the electrical sensors, the ADC 
board, the DAC board and the Host-PC interface. 
 

 
Figure 4.1: Synoptic of the developed control system 

2.1. Power stage  

The power stage is composed of a Salient Synchronous Machine (SSM) associated with a 
controlled load (i.e. a powder brake). The characteristics of this power stage are presented in chapter 7. 
The modeling and the parameter identification of the SSM are presented in [Appendix B].  

This machine has a wounded rotor which needs an additional supply source. This last consists of 
a buck converter which, associated with a hysteresis-based current controller, aims to maintain the 
rotor current to the desired reference. The stator is fed by a 3-phase 2-level Voltage Source Inverter 
(VSI) based on Insulated Gate Bipolar Transistor (IGBT) modules. In [Appendix-A] and [21], a 
characterization of this VSI is made. A measurement of the dead time between switching signals, the 
turn-on/off delays and the voltage drop introduced by the power switches is done. The influence on the 
control quality and the way-to-compensate these nonlinearities are presented.      
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2.2. Electrical sensors, ADC and DAC boards 

The used electrical sensors deliver voltage signals corresponding to the measured stator currents 
and the measured DC link voltage (2.5V/10A, 1V/100V). The implemented measurement system is 
based on the ARCTU3 board which is deeply described in [62].  

For the developed platform, the available ADC board is composed of four AD9221 ADCs. 
These are successive approximation register components that provide conversion results as 12-bit 
signals. The corresponding ADC interface adapts the converted signals to the chosen data format.  The 
effective conversion time (ADC conversion time + the post signal adaptation) is equal to 2.4 µs.  

The implemented Digital to Analog Converter (DAC) board consists of a set of 10-bit AD9760 
devices that are used to convert the internal signals for display purposes.   

2.3. FPGA-based digital control unit 

In the proposed application, the digital control unit is based on a Xilinx FPGA board. As it will 
be discussed in chapter 6, the objective is the possibility to implement the developed design within a 
low cost FPGA device. Thus with the Xilinx family, this concerns the low cost Spartan-3, Spartan-3E 
and Spartan-6 series.  

2.4. Host-PC interface 

This interface ensures a real-time transfer of data between the digital control unit and the user 
Host-PC. In the proposed work and in the case of Xilinx FPGA device, the ChipScope tool has been 
used and the transmission is based on USB-JTAG protocol. This tool ensures the setting of the 
sensorless controller in the one hand and the probing of the internal signals in the other hand. This 
latter point will be deeply investigated during the Hardware-In-the-Loop validation (chapter 7).     
 
3. Stator current controller and speed controller 

3.1. Stator current controller 

Depending on the aimed synchronous AC drive application, various control strategies are 
available. All these strategies are composed of an inner current control closed loop. The latter consists 
in maintaining the measured stator currents of the motor as close as possible to the desired current 
references. To this purpose, several current control techniques are available [62], [75] including for 
example ON/OFF, Predictive, PI-based and sliding mode control techniques. 

The evaluation of each of these control techniques and the selection of the appropriate one is 
based on which one is able to satisfy the expected control performances (for example high precision, 
robustness toward parameter variations, large bandwidth, low switching power losses and low THD in 
current waveforms). To this aim, these current control techniques have been studied and analyzed in 
[62] and an in-depth comparison in terms of control performances has been made. Also [62] provides 
a deep understanding and a relevant argumentation of how the use of FPGAs as digital solutions is 
important for the implementation of such current control techniques.   

In our case, the implemented FPGA-based stator current controller is based on an Anti-windup 
PI regulator [81], [82]. Figure 4.2 summarizes the corresponding principle. The d-q current regulators 
calculate the d-q voltage references according to the measured and reference currents. The axes 
decoupling has been included so as to make independent the regulation in the d and q axes. After a 
coordinate transformation, the 3-phase voltage references are processed. Note that this Park 
transformation is processed after a Clark transformation with the amplitude-conservation. The used 
Pulse Width Modulation (PWM) module generates the corresponding switching signals for the VSI. 
The tuning of the d-q current regulators is discussed in [Appendix C].  



Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification 

64 

 
Figure 4.2: Structure of the stator current controller   

3.2. PWM specifications  

The implemented synchronous machine is fed by a 3-phase, 2-level VSI. The switching signals 
of the latter are generated by the PWM module. There are various PWM techniques; each of them is 
specified depending on the implementation approach (analog or digital), on the operating conditions 
(e.g. rated power and switching frequency) and on the expected performances (e.g. linearity range, 
switching losses and THD). According to [62] and [83], where various PWM techniques are analyzed, 
two main categories are suggested. The first one is the carrier based PWM which includes the basic 
sinusoidal PWM technique (CB-SPWM) and the PWM with zero sequence signal (CB-ZSS-PWM). 
The second category is composed of the well-known Space Vector PWM (SVPWM). 

In the proposed FPGA-based controller, it has been chosen to implement the CB-ZSS-PWM 
technique. Figure 4.3 presents the corresponding principle scheme. The ZSS voltage (between n and o 
neutral points) is processed from the 3-phase sinusoidal voltage references (Vsa

*, Vsb
*, Vsc

*) and added 
at the same time so as to generate the corresponding voltages (Vao

*, Vbo
*, Vco

*). The choice of such 
PWM technique is motivated by its low algorithm complexity (easy FPGA implementation) and also 
because it ensures, as an SVPWM, a full use of the VSI 3-phase supply voltage [62], [83]. 

 

 
Figure 4.3: Principle of the CB-ZSS-PWM  

 

3.3. Compensation of VSI nonlinearities 

One of the key-issues that influence the motor control quality is the performance of the used 
VSI. Indeed, the latter introduces nonlinearities on its output voltage, mainly due to the dead time of 
the switching signals (added to avoid short-circuit), to the turn-on/off delays of the used IGBTs and to 
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the voltage drop across these power switches. This output voltage error has a non-negligible influence 
on the motor current and as consequence on the developed torque. Various compensation methods 
have been proposed to improve the VSI output voltage waveform such as pulse-based methods [84], 
[85] and voltage average value based methods [85], [86]. In our case, the proposed method consists in 
compensating the VSI non-linearity through the reference voltage average value applied to the CB-
ZSS-PWM. To this aim, an in-depth study of this compensation assumption is made in [Appendix A] 
and [21]. 

3.4. Speed controller 

The developed speed controller is made up using a Proportional-Proportional Integral (P-PI) 
regulator. As deeply studied in [81], this controller is characterized by double speed feedback loops, 
an internal loop and an external loop. As depicted in Figure 4.4, the first one consists of a Proportional 
regulator which imposes the poles of the controlled system. The external speed control loop is 
performed via a PI regulator in order to ensure a zero steady-state error and set the response dynamic. 
The tuning of this P-PI regulator is discussed in [Appendix C]. 

 

 
Figure 4.4: Structure of the speed controller 

 

3.5. Voltage interface 

In order to reduce the number of voltage sensors, the voltage interface has been developed. This 
interface generates the 3-phase stator voltages from the measured DC voltage and 3-phase stator 
reference voltages according to relation (4.1).  These voltages are used for the estimation of the rotor 
position and speed that will be discussed thereafter.  

cbaiVVV siDCsi ,,;* =⋅=   

4. Estimation of the rotor position and speed - sensorless methods 

In the literature, many research investigations in the field of sensorless controllers dedicated to 
AC drives have been achieved. Several sensorless methods for the estimation of the rotor speed and 
position have been implemented. Each of them has its own advantages and limits according to the 
operating conditions. In the following, some examples of the frequently encountered sensorless 
methods are presented. To make a clear classification, they can be divided in two categories; the 
model based category and the signal injection based category (according to [88]). Figure 4.5 highlights 
this classification. 
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Figure 4.5: Examples of the frequently encountered sensorless methods 

 

4.1. Sensorless methods based on signal injection 

This category exploits the machine anisotropy. When implementing an SSM, the estimation 
approach exploits typically the saliency and relies on the dependence between the rotor position and 
the inductances. The principle is based on signal injection through voltages and on the measurement of 
currents. The main advantage of these sensorless methods is their ability to estimate rotor position at 
standstill and operate at very low speed.  

4.1.1. High frequency injection method 

This sensorless method consists in injecting a high frequency voltage signal in the voltage 
reference generated by the controller (e.g. d-q voltages in the case of a PI-based controller). Thus the 
extraction of the rotor position and speed is achieved by measuring the stator currents and making the 
appropriate signal filtering so as to extract the harmonic that contains the position information. 
Examples of implementations can be found in [88] and [89]. 

4.1.2. INFORM  method 

Another sensorless approach is the INFORM (Indirect Flux Detection by Online Reactance 
Measurement) method. This method has been introduced by [52] and consists in applying two 
opponent voltage phasors in order to track the saturations and geometric saliency of the motor. In 
other words, this consists in applying two consecutive voltage sequences (two switching voltage 
states) in opposite direction. Two consecutive current variations are then measured. When calculating 
the difference between the applied voltages, it is possible to eliminate the resistive voltage and the 
back-EMF. The obtained equation is then based only on the inductance which is extracted and used to 
calculate the rotor position.     

4.2. Sensorless methods based on the motor model 

These sensorless methods are based on the motor model. They are adapted to high speed 
operating conditions. However, their main limit is their estimation failure at standstill and very low 
speed. This is because the system becomes unobservable and the amplitude of voltages is very low 
(zero at standstill).  
 
4.2.1. Back-EMF method 

This approach consists in extracting the back-EMF from the implemented machine electrical 
equations (e.g. [90]). The implemented motor model is usually based on the stationary (α,β) frame. 
The extraction of the rotor position can be made using Arctan function and a post treatment is to be 
done to extract the speed. Another extraction method can be based on specific Phase Locked Loop 
(PLL) which has the same treatment as the ATO (studied in chapter 3). 
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4.2.2.  Observer-based  method 

In this case, the extraction of the rotor position and speed is done with the use of observers. 
These lasts lean on the state space model of the implemented AC motor and the main goal is to 
minimize the observation error between the measured and the estimated quantities. There are two 
observation approaches: deterministic approach and stochastic approach.  

The first one consists in using deterministic observers such as Luenberger observer or Extended 
Luenberger observer (for non-linear systems) [91]. Along the same line, other sensorless methods 
using Sliding Mode Observers (SMO) have been proposed and a typical example is given by [90].  
These deterministic observers lean on the system model without considering measurement noises and 
modeling errors.  

The second approach is based on stochastic observers such as Kalman filter for linear systems 
and the Extended Kalman filter (EKF) for non linear systems [93]-[106]. These observers consist of a 
set of mathematical equations that implement prediction/innovation optimal estimation process. The 
goal is to minimize the covariance of the error between the real state space vector and the estimated 
one by considering measurement noises and modeling errors.   

4.3. Choice of the sensorless method 

As discussed during the general introduction (chapter 1), the developed sensorless control 
system is going to be adapted to an industrial aircraft research program. The main objective of this 
program is to develop an FPGA-based sensorless controller for a Brushless Synchronous Starter 
Generator (BSSG) [92], [38]. Two sensorless methods will be implemented, one for low and high 
speed and one for very low speed and standstill. 

In the proposed work, the chosen FPGA-based sensorless method for low and high speed 
operating conditions is the EKF-based method. This choice is based on two main motivations. 

The first one is related to its performances. Indeed, the EKF is well-known for its inherent 
robustness towards random noisy environment (typically the case of avionic systems). This has been 
proved in wide range of sensorless applications. Such observer presents, anyhow, a major 
disadvantage which is the intensive mathematical operations compared to other sensorless methods. 
As it will be seen in the next part, this is due to intensive matrix operations such as multiplications and 
divisions that demand high computational resources. In the proposed thesis work, this drawback has 
been transformed to a challenge. This is in fact the second motivation of having chosen the EKF 
because it is the best candidate to prove that FPGA solutions are suited to such complex algorithms.   

As for the case of very low speed and standstill, the high frequency injection method is 
implemented. This activity is not covered here and is the main subject of the associate thesis work 
[92].  

5. Extended Kalman Filter basics 

In the literature, a wide range of papers have discussed the basics the EKF theory. In addition to 
the conventional structure, many other structures have been proposed (for example, Adaptative EKF, 
Neural EKF, Two-stage EKF, Reduced order EKF, Unscented Kalman filter …). In this work, the 
conventional structure of the discrete-time EKF algorithm has been implemented. A brief recall of the 
corresponding principle is made. 

To start with, relation (4.2) presents the discrete-time stochastic state space model of the 
observed system. 
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Where x is the state space vector, fd is the discrete-time state space matrix, u is the input matrix, 
y is the output (measurement) vector and hd is the discrete-time output matrix. The model and 
measurement disturbances are statistically described by the zero-mean Gaussian noises w and v 
respectively characterized by covariance matrices Q and R. 

 
Figure 4.6: Synoptic of the EKF algorithm 

Figure 4.6 summarizes the EKF treatment. The latter is done in two main steps, prediction step 
and innovation step. The first one consists in predicting the state vector          of the used system model 
from        and          . Once this step is achieved, the innovation procedure is launched. This one 
consists in compensating the predicted vector           using the performed Kalman gain Kk and the 
measurement vector     and generates the estimated optimal vector      .The order of the EKF 
corresponds to the length of the state space vector x. 

Table 4.1 shows the processed EKF equations within each step. Note that, with regards to the 
conventional principle, the proposed algorithm has been reorganized so as to gather the intensive 
matrix operations. For the chosen non linear model, the calculation of the Kalman gain requires a 
linearization assumption. The most commonly used linearization method is the first order Taylor 
approximation [93]-[95]. By this way, the computation of the derivative of fd and hd, also called 
Jacobian matrices Fd and Hd, is needed (relations (4.4) and (4.5)). The covariance matrices P0, Q and R 
represent respectively the initial state error, the model noise and the measurement noise.  

The stability and robustness of the EKF in the proposed sensorless application is going to be 
discussed in the next chapter. This is the same for the discussion about the digital implementation 
tradeoffs. 

As for the tuning of the EKF, the covariance matrices have been set according to methodology 
proposed in [95]. The latter consists of a trial-and-error procedure which gives some guidelines to be 
followed in order to set the EKF estimation behavior during the transient and at steady state. Then 
varying the matrix P0 yields different transient amplitudes. Varying Q and R yields the setting of the 
transient duration and the steady state behavior. It is in a common practice to assume these covariance 
matrices to be diagonal and invariant. 

Table 4.1: Discrete-time EKF Algorithm 
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6. System state space modeling  

The use of an EKF in a sensorless control application demands a reliable and accurate motor 
model considering the whole physical phenomena (saliency, saturations, core losses, nonlinearities, 
skin effects …). In contrast, designer has to be aware that the more complete the system, the higher the 
complexity and the order of the EKF and thus the more constraining is its digital implementation. 
Then optimizations and hypotheses regarding the simplification of the system model have to be 
achieved in order to find an optimum between the precision of the model and its complexity.     

In this part, the development of the used SSM model is discussed. The first hypotheses 
regarding model optimization are listed below: 

• The SSM has a 3-phase Y connected stator windings 
• The 3-phase coordinate system is balanced 
• Saturations are neglected 
• Core losses and skin effects are neglected 
• The friction torque is assumed to be linear regarding the speed 
• The rotor current is constant  

 As far as the coordinate system is concerned, the SSM model can be developed either in 
stationary frame (α,β) or in rotating frame (d,q). In the following, the two cases have been studied and 
different versions of the system model are presented. At the end, a quantitative comparison between 
these models is achieved and the fixed criteria are: the EKF estimation behavior and the model 
complexity. From the obtained results, the choice of the appropriate system model is made. 

6.1. Modeling in (d-q) rotating frame 

In the literature, several implementations of sensorless applications have been achieved using a 
rotating d-q reference frame (e.g. [99], [100]). Various structures of the used state space model have 
been proposed. Depending on the controlled AC drive, the expected level of performances and the 
digital implementation constraints, model simplification assumptions have been achieved. To start the 
state space modeling, let’s recall at first the d-q based SSM equations (Table 4.2). These equations 
have been developed in [Appendix B]. Note that the Park transformation is processed after a Clark 
transformation with the amplitude-conservation.   

Table 4.2: SSM model in d-q reference frame 
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   For the observation purpose and in the case where the motor is connected to an unknown load 
torque (or inaccurately known), this variable is generally estimated. Namely, the value of the load 
torque has to be added to the state space vector. In most of the cases, it is assumed to be constant 
because its dynamic can be neglected with regard to the dynamic of the electrical quantities. The new 
formulation of the sate space model for the observation is expressed in relation (4.15).    
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It can be seen in this relation that the order of the state space model is equal to 5. With this 
model, the whole EKF complexity is equal to 1200 equivalent arithmetic operations. This number can 
be reduced almost by 35% if the Infinite Inertia hypothesis is adopted. Indeed, this assumption 
consists in assuming that the dynamic of mechanical quantities is slower than the dynamic of the 
electrical ones. Namely, the variation of the speed is neglected. Consequently, the obtained model 
does not include the mechanical equation which makes it independent on the used mechanical load. 
The obtained state space matrix is then rewritten in relation (4.16). It can be noticed that in the 
following sections, the presented models are all based on the Infinite Inertia hypothesis.  
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The input and output matrices of this model include the (d-q) based voltages and currents. They 
are obtained after a coordinate Park transformation which uses the estimated position. This is 
unfortunately the main drawback of using such (d-q) model since the inputs and outputs are 
conditioned by a quantity which is supposed to be estimated. This issue can be bypassed when the 
whole necessary Park transformations are included in the system model according to relation (4.17). In 
this case the input and output matrices include terms of position which are taken into account in the 
EKF treatment. The input and output vectors are composed of the stationary α-β based voltages and 
currents.      
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6.2. Modeling in (α-β) stationary frame 

In the case of α-β based model, the state space inputs and outputs are position independent. 
Thus, these variables are not affected by the estimated position. In the literature, numerous sensorless 
applications using EKF and based on (α-β) frame have been proposed, [93]-[95]. In most of the cases, 
the implemented control system is based on non-salient synchronous motors. When it comes to a 
salient motor, the state space modeling in (α-β) may seem to be a tricky task since the saliency is to be 
taken into account. To prop up this statement, the state space modeling is discussed and some 
simplification assumptions that allow reducing the model complexity are proposed. Here again we 
start by presenting the α-β based equations (obtained after Clark transofmations) where the saliency is 
taken into account (Table 4.3). These equations have been developed in [Appendix B]      

   

(4.16)

(4.17)

dq model with 
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Table 4.3: SSM model in α-β reference frame 
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To develop the corresponding state space model, the electrical equations can be rewritten so as 

to gather terms in stator currents and terms in the derivative of currents as follows.  
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From this settlement, the state space model based on the infinite inertia hypothesis is given in 
the following relation, 

)(
),(

xhy
uxfx

=
=&

 

With, 
t

six ]][[ θωαβ= ; t
ss vvu ][ βα= ; t

ss iiy ][ βα=  

[ ] [ ] [ ] [ ] [ ] [ ]
[ ]αβ

αβαβ

ωθ
ω s

ss

v
GEiFGi

dt
df ⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ +⋅⋅−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−−

00
000

)( 11

 

⎥
⎦

⎤
⎢
⎣

⎡
=

0010
0001

y  

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)



Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification 

73 

This relation shows clearly that this model is quite complex. This is mainly due to the matrix 
treatments in which matrix multiplication and inversion have to be processed. Furthermore, according 
to the EKF algorithm, the Jacobian matrix for linearization seems to be even more complex and 
constraining for digital implementation. An alternative to overtake this issue consists in rewriting the 
whole electrical equations so as to expand them as follows [101], 
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In this equation, the direct current isd has been introduced. It has been obtained after doing the 
appropriate transformation of the former equations. Lsd and Lsq are the inductances expressed in 
rotating frame according to the following relations, 
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From these rewritten equations two potential simplifications are possible, [101]. 

• The first one consists in assuming that the current controller has usually its direct current reference 
set to zero. By this way, the terms containing isd and its derivative can be eliminated. The state 
space model is then, 
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This assumption is adapted to flux oriented AC drive controllers where the direct current 
reference is maintained to zero. However, this is not adapted for controllers that require a variation of 
this current, for example in over-speed applications. 

• The second assumption consists in assuming that isd is not equal to but can be considered as 
constant (slow variation). In this case the electrical equations are rewritten by maintaining the term 
with isd and eliminating the term with its derivative. The new state space model is then, 
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6.3. Choice of the model 

In order to make a comparison between each of the developed SSM models, two criteria are 
taken into account. The first one consists in studying the dynamic performances and the behavior of 
the EKF estimation for each model. To this purpose, the dynamic of the speed estimation is studied. 

(4.27)

(4.28)

(4.29)

(4.30)

αβ model with      
isd=0     
approximation 

αβ model with      
disd/dt=0     
approximation 
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The second criterion consists in evaluating the complexity of the model with regards to the digital 
implementation. 

Figure 4.7 highlights the behavior of the EKF in terms of speed estimation dynamic for each of 
the previously discussed models. These models are all based on the infinite inertia approximation. The 
order of the EKF is then equal to 4 for each case. The values of P0, Q and R matrices remain the same 
in both cases. The waveforms are obtained after a functional simulation using Matlab/Simulink 
environment. During this evaluation the SSM is supplied by the VSI and a sensor-based stator current 
controller is implemented. Thus, the obtained estimation responses concern the case of an open loop 
EKF estimation. Open loop means that the estimated speed and position are not injected to the 
controller.  

 
Figure 4.7: EKF speed estimation behavior 

The obtained results indicate that, in terms of estimation dynamic and depending on the motor 
saliency, the α-β based model with isd equal to zero has the slowest dynamic. However, the evaluation 
of the complexity indicates that this model has the lowest computational cost. Figure 4.8 presents the 
evaluation results. In this case, the complexity corresponds to the number of arithmetic operations. As 
a reminder, this complexity concerns only the system model (i.e. EKF prediction) and its linearization 
(Jacobian matrix calculation). The complexity of the EKF compensator remains the same since the 
EKF order is the same in all cases. The trigonometric functions (sinθ, cosθ) are approximated to a fifth 
degree polynomial function, which corresponds to 10 arithmetic operations. 

In the proposed application and according the these results, the chosen model that allies low 
complexity and acceptable estimation dynamic is the d-q based model with external Park 
transformations.  
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Figure 4.8: Evaluation of the model complexity: EKF prediction + Jacobian matrix 

 
7. Conclusion 

This chapter aimed to present the preliminary system specification of the developed sensorless 
control application. According to the design methodology, presented in chapter 2, the main objective 
of this specification is to choose the AC drive that will be controlled, the appropriate control strategy 
and the suitable sensorless method.  

As a summary, the chosen AC drive consists of an SSM associated with a controller mechanical 
load and fed by a 3-phase 2-level VSI. The chosen stator current controller is based on PI-regulator 
control technique. The implemented PWM module leans on a CB-ZSS-PWM technique. The 
developed speed controller is based on a P-PI regulator. The chosen sensorless method is the observer 
method which uses the EKF. Finally, the implemented system model for the EKF treatment is the d-q 
based model with infinite inertia hypothesis.   

Once this preliminary development step is achieved, the next task (chapter 5) is the development 
of the corresponding algorithm. This process consists of a set of steps during which designer makes 
the functional validation and prepares the algorithm for the FPGA digital implementation.  
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Chapter 5 

FPGA-based sensorless control for 
synchronous AC drive 

- Algorithm development 
 

 
1. Introduction  

In this chapter, author deals with the algorithm development step, during which the whole 
sensorless control algorithm is developed and validated. After having made a preliminary system 
specification, the main task here is to make the necessary functional validation. The whole control 
system is then simulated and validated and the developed algorithm is prepared for the digital 
implementation. According to the design methodology (chapter 2, Figure 2.18), the listed-below steps 
have been followed. 

Modular partitioning (Part 2) which aims to divide the algorithm into independent and reusable 
modules of different levels of granularity.  

Continuous-time functional simulation (Part 3) which aims to validate the functionality of the 
closed-loop system using the friendly Matlab/Simlink simulation tools. Also, the configuration of the 
implemented regulators is achieved during this step.   

Digital realization (Part 4) during which designer makes the appropriate discretization 
assumption and chooses the sampling period. The realization structure is then designed. This is 
followed by the normalization of the algorithm and the choice of the appropriate fixed-point data 
format. 

Algorithm optimization (Part 5) which is a necessary assumption especially in the case of 
complex algorithms such as the implemented EKF. This step aims to simplify the processed equations 
so as to reduce the computational cost. 

Discrete-time, fixed-point simulation (Part 6) which is the ultimate algorithm validation step. It 
aims to make a final verification of the developed discrete-time fixed-point sensorless controller. 
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2. Modular partitioning 

The modular partitioning consists in dividing the whole sensorless algorithm into independent 
and reusable modules with different levels of granularity. In the case of the developed sensorless 
controller, five levels of hierarchy have been defined (Figure 5.1). At the lowest level, the basic 
operators such as logic and arithmetic operators are listed. From a functional point of view, these 
operators can be considered as fine-grain operators [62], [36]. Then at a higher level of granularity, the 
matrix operators (used in EKF module) are defined. The third level contains functions dedicated to the 
control (PI-regulator, P-regulator, Anti-windup PI-regulator, Park transformations, PWM module and 
Hysteresis regulator) and functions dedicated to the EKF observation (Prediction module, EKF 
compensator and Innovation module). The interfacing modules are also included here since they are at 
the same level of hierarchy. At the fourth level, coarser grain modules such as the P-PI speed 
controller, the stator and rotor current controllers and the EKF module are listed. Finally, at the highest 
level, the global sensorless controller is defined.        
 

 
Figure 5.1: Sensorless controller – Modular partitioning 

3. Continuous-time functional simulation 

The continuous-time functional simulation aims to verify the functionality of the whole control 
application. This is made with the use of the friendly Matlab/Simulink environment where the 
functional model of the control system is designed using Simulink continuous-time blocks.  

In the proposed sensorless controller the implemented EKF module is based on the discrete-time 
EKF algorithm. Thus, the presented continuous-time functional simulation concerns only the 
validation of the speed and current controllers. The objective here is to validate the speed and current 
responses according to the desired dynamic performances. During this simulation, the rotor current is 
assumed to be constant and the PWM switching frequency has been set to 10 kHz. Also, it is worth 
noticing that this simulation has been achieved at non-zero mechanical load conditions. The chosen 
load torque TL is proportional to the mechanical speed N (rpm): TL=0.15*N. This load torque remains 
the same for the whole simulations that are presented in this chapter. Figure 5.2 presents the 
corresponding Matlab/Simulink block diagram. 
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Figure 5.2: Sensorless controller – Modular partitioning 

At this stage, the directly measured rotor position and speed are used. The tuning of the 
developed regulators is made according to [62] and [81] and summarized in [Appendix C]. The whole 
current control closed-loop (with axes decoupling) is approximated to a first order transfer function 
where the time constant is user-defined. The whole speed control closed-loop is approximated to a 
second order transfer function where the controller coefficients are determined with regards to the 
expected overshoot and settling time.  

First of all, a validation of the stator current controller is achieved. The direct current reference 
has been set to zero. At start up, a 2A step reference has been applied to the quadrature current 
reference and at 0.5s a -1A negative step value is applied so as to validate the functionality at the 
opposite rotating direction.   

The obtained simulation results are presented in Figure 5.3. The isd, isq current step responses are 
respectively shown in Figure 5.3(a) and Figure 5.3(b). The stationary frame (α,β) based stator current 
waveform is presented in Figure 5.3(c). The 3-phase stator currents are highlighted in Figure 5.3(d). 
The stator voltage Vsa is shown in Figure 5.3(e) and the corresponding post-filtered waveform (voltage 
fundamental) is shown in Figure 5.3(f). The obtained waveforms attest the good functionality of the 
developed stator current controller and the observed static and dynamic responses correspond exactly 
to the expected behavior.   

As for the functional validation of the speed controller, Figure 5.4 presents the obtained 
simulation results. A 750-rpm step reference (mechanical speed) has been applied at the beginning and 
the opposite value is applied at 2s. The speed response and the rotor position are shown in Figure 
5.4(a,b). The waveform of the developed torque is shown in Figure 5.4(c). The d-q, 3-phase and (α,β) 
based stator currents are presented in Figure 5.4(d-g). Finally, the waveforms of the stator voltage and 
its fundamental are presented in Figure 5.4(h,i). Here again, the expected operating conditions and the 
desired response dynamic have been successfully obtained. 

  

 
 
 
 
 
 
 
 
 



Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development 

80 

 
 
 
 
 
 
 

 
Figure 5.3: Continuous time simulation results – Stator current control validation 
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Figure 5.4: Continuous time simulation results – Speed control validation 
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4. Digital realization 

4.1. Discretization and sampling period setting 

For the digital implementation purpose, the discretization of the controller is mandatory. In the 
following, the discretization of the PI-regulator and the discretization of the system model for the EKF 
treatment are both presented. This is made with the adoption of the digital re-design approach (chapter 
2, §6.2.3). 

To start with, relation (5.1) presents the s-domain transfer function of a standard PI-regulator.  
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The Tustin discretization method has been adopted. The s-domain integrator has been 
transformed to its z-domain counterpart according to relation (5.2). 

1
1

2
1

−
+

→
z
zT

s
s  

Ts is the sampling period. The obtained discrete-time recurrence equation is expressed in the 
following relation.     
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The developed anti-windup structure is based on the conditional integration (integration 
clamping) principle [82], [107]. Indeed, depending on the output saturation conditions, the integration 
is switched on or switched off. Figure 5.5 presents the corresponding block diagram. 
 

 
Figure 5.5: Block diagram of the implemented Anti-windup structure 

 
When it comes to the EKF algorithm (chapter 4, part 5), the discretization of the used non linear 

system model (relation (5.4)) is also required.  
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In the literature, the most commonly used discretization method is the the first order Forward 
Euler approximation. The latter consists in moving from the s-domain to the z-domain according to the 
following substitution, 
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The obtained discrete-time stochastic model is then expressed in relation (5.6). 
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As far as the sampling period is concerned, the choice of the appropriate value is made 
according to the following settlement. With the used CB-ZSS-PWM technique (chapter 4 §3.2), the 
generated Vio

* voltage must be refreshed at each PWM carrier peak (high or low) and must be constant 
within each PWM switching period. This is the reason why the chosen sampling period has been set 
equal to the switching period (100µs in our case). Also, as we are talking about a synchronous PWM 
control, the fact that the treatment starts at each carrier peak, the value of the sampled stator current 
can be assumed to be the instantaneous average value within a sampling period.   

4.2. Algorithm normalization 

The normalization consists in developing a per-unit algorithm where variables are replaced by 
their corresponding per-unit counterparts with the introduction of base-values, relation (5.7).  

B
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To this purpose, the base-value of each variable is determined according to variable nominal 
value and also according to the gains that are introduced by the sensors and the ADC board. In our 
case, the defined base-values are: VBcc and VBekf (for the voltage), IB (for the current), ωB (for the speed) 
and θB (for the position). VBcc is used in the stator current controller and VBekf is used in the EKF 
module. The corresponding numerical values are listed below, 
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Then, relation (5.9) presents the normalized discrete-time equation of the direct and quadrature 
current PI-regulators. 
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As for the EKF algorithm, relation (5.10) gives the expression of the normalized system model. 
As a reminder, the chosen model is based on the d-q SSM equations with the infinite inertia 
approximation (Chapter 4, relation (4.16)).   

(5.6)

(5.9)

(5.8)

(5.7)
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 Where xn is the normalized state space vector. un and yn are respectively the normalized system 
input and output vectors. The normalized input and output matrices are,   
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4.3. Fixed-point data setting 

Also, for the digital implementation where the fixed-point data are manipulated, the choice of 
the appropriate format is of great concern. Indeed, the chosen fixed-point format must have a high-
enough data precision so as to preserve the algorithm precision as closed as possible to its real data 
format version (i.e. floating point algorithm version). However, in the case of an FPGA solution, this 
must be balanced with the available FPGA resources. The longer is the data word length, the heavier is 
the FPGA architecture. A compromise is then mandatory so as to choose a format that preserves the 
algorithm performances and that allows an efficient use of the FPGA resources. This last point will be 
deeply discussed in the next chapter.  

In this section, author is presenting the chosen fixed-point format for the whole sensorless 
controller. To start with, let’s recall the general purpose fixed-point representation (Figure 5.6). The 
latter is divided into two parts: an integer part and a fractional part. This representation is labeled as 
s[(i+f)/Qf] for signed data and u[(i+f)/Qf] for unsigned data, (i+f) is the total data size, i is the number 
of bits of the integer part,  f is the number of bits of the fractional part. 

 
Figure 5.6: Fixed-point representation 

 
The choice of the format has been made after a set of fixed-point simulation tests. The precision 

and the stability of the fixed-point algorithm (for each module, Figure 5.1) are evaluated and 
compared to the floating-point algorithm version. Table 5.1 lists the formats that have been chosen for 
the final digital implementation. 
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Table 5.1: Fixed-point format setting – speed and current controllers 
Modules Fixed-point format 

PI-regulator s[17Q16] Speed 
controller P-regulator s[17Q16] 

Rotor 
current 

controller 
Hysteresis regulator s[14Q12] 

dq-abc s[13Q12] 
AW-PI-Regulator s[20Q18] 

abc-dq s[20Q18] 

Stator 
current 

controller 
PWM module s[13Q12] 

ADC interface s[13Q12] 
DAC interface u[10Q9] 

As far as the EKF module is concerned, the same comparative simulations have been achieved. 
The choice of the format is based on the evaluation of the EKF estimation error. The format that leads 
to the minimum error is then chosen. Figure 5.7 shows the estimation error in the case floating point 
and fixed-point simulation and for different formats. From the obtained results, the final fixed point 
format that has been maintained for the FPGA implementation is s[22Q20]. 
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Figure 5.7: Estimation error for different fixed-point data formats  
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5. Algorithm optimization 

Mainly due to the intensive EKF treatment, the development of the whole sensorless controller 
demands optimization assumptions so as to reduce the computational cost of the algorithm without 
loosing the required performances. This optimization is especially mandatory in the case when 
implementing the algorithm in an FPGA with limited hardware resources. This is due to the size of the 
developed architecture which is also conditioned with the complexity of the algorithm.  

In order to prop up this statement, the developed EKF module has been focused on. Then, 
according the EKF theory and its practical tradeoffs, many algorithm optimizations can be adopted, all 
with the same objective: the reduction of the computational cost. Examples of algorithmic solutions 
have been studied by [98] including the so-called Chandrasekhar equation, multi-level EKF and 
Interlaced EKF. These solutions consist in modifying the conventional structure of the EKF so as to 
simplify the operated equations and then reduce its intensity. Additional and simpler solutions can also 
be adopted. For example the infinite Kalman gain K(∞) [98] optimization procedure and the Matrix 
symmetrization procedure can be good candidates. These two last solutions have been chosen in our 
case. Before developing them, let’s make, at first, a complexity pre-evaluation of the EKF algorithm.  

5.1. EKF complexity pre-evaluation 

Table 5.2 shows the complexity of the developed EKF module in terms of arithmetic operations. 
It indicates clearly the intensity and the hugeness the treatment. 

Table 5.2: Complexity of the initial EKF algorithm 

Operations
Modules x + - 1/x 

Prediction 10 6 0 0 

Jacobian matrices 4 1 0 0 
Kalman 

compensator Kalman gain & 
covariance matrix 318 244 16 1 

Innovation 8 8 8 0 
External abc_dq transformations 12 12 0 0 

Total 352 271 24 1 

5.2. Optimization of the EKF algorithm  

5.2.1. Offline K(∞) based optimization procedure 

This assumption concerns especially the matrix-based Kalman compensator. The principle is to 
assume that the optimal Kalman gain remains constant at steady state. Then, this gain can be set to 
offline pre-calculated values avoiding the whole matrix treatment, as shown in Figure 5.8. In this case, 
only the prediction (based on the normalized SSM model) and the innovation steps are performed. 

With this assumption, it can be noticed that the complexity of the developed algorithm has been 
reduced. However, this approximation has a functional drawback since such algorithm does not ensure 
a good estimation dynamic, as it will be confirmed during the fixed-point discrete-time simulations.    

 
Figure 5.8: Synoptic of the EKF with K(∞) assumption 
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5.2.2. Matrix symmetrization procedure  

Also based on the EKF compensator equations, the principle of this procedure consists in 
assuming that the initial covariance matrix P0, the noise matrix Q and the measurement matrix R are 
diagonal (relation (5.12)). 
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In this case, it can be easily demonstrated by iterative reasoning that the processed covariance 
matrices Pnk/k-1 and Pnk/k are symmetrical (relations (5.13) and (5.14)). 
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Consequently, a significant reduction of the computational cost is possible. The matrix treatment 
can be replaced by scalar treatment with a significant reduction of the number of performed arithmetic 
operations and processed variables. Furthermore, this assumption does not downgrade the estimation 
dynamic since a real-time online EKF calculation is still ensured. However, this solution does not 
prevent designer from the inversion operator which is quite-tricky to implement digitally (especially in 
the case of an FPGA solution). 

5.3. Complexity post-evaluation 

Table 5.3 highlights how the presented optimization procedures can significantly reduce the 
complexity of the EKF algorithm, compared to table 5.2. It can be seen that a reduction of 50% is 
obtained with the matrix symmetrization assumption and a reduction of 94 % is obtained with the 
offline K(∞) assumption. However, depending on the used FPGA solution (number of the available 
hardware resources), an additional effort is, in some cases, quite mandatory so as to adapt the 
algorithm complexity to the available FPGA resources. To this aim, additional optimization 
assumptions ought to be achieved during the development of the FPGA architecture. This is covered in 
the next chapter. 

Table 5.3: complexity of the EKF after algorithm optimization 

Operations
Modules x + - 1/x 

Matrix Symmetrization 10 6 0 0 Prediction 
K(∞) 10 6 0 0 

Matrix Symmetrization 149 107 11 1 Kalman 
compensator K(∞) 0 0 0 0 

Matrix Symmetrization 8 8 8 0 Innovation 
K(∞) 8 8 8 0 

External abc_dq transformations 12 12 0 0 

Matrix Symmetrization 179 133 19 1 
Total 

K(∞) 30 26 8 0 

(5.12)

(5.13)

(5.14)
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6. Discrete-time, fixed-point simulation 

Now as the whole sensorless algorithm is developed and the corresponding digital realization is 
made, the discrete-time and fixed-point simulation is to be achieved so as to make an ultimate 
algorithmic validation. Figure 5.9 shows the developed Matlab/Simulink block diagram where the 
fixed-point toolbox has been used. 

 
Figure 5.9: Sensorless speed controller – Matlab/Simulink block diagram  

 
The following sections present the obtained results. At first, the validation of the stator current 

controller is made, followed by the validation of the speed controller. Then, an open-loop validation of 
the EKF estimation is made. Open-loop means that the estimated position and speed are not injected to 
the speed and current controllers. The objective of this activity is to validate the estimation dynamic 
and the robustness of the EKF. Finally, the sensorless controller, where the estimated data are injected 
to the controllers, is validated.   

6.1. Validation of the stator current controller 

Figure 5.10 presents the fixed-point simulation results of the stator current controller. The 
measured rotor position and speed are used. The same operating conditions (current references and 
load conditions) as during the continuous-time simulation are maintained. The obtained waveforms 
validate the choices made during the digital realization. Also the obtained static and dynamic 
performances are as expected.  
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Figure 5.10: Stator current controller – Fixed-point discrete-time simulation results 

 

6.2. Validation of the speed controller 

The speed controller is validated in the same motor operating conditions. The obtained fixed-
point results are highlighted in Figure 5.11. Here again, the same performances as in the case of 
continuous-time validation are obtained.  
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Figure 5.11: Speed controller – Fixed-point discrete-time simulation results 
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6.3. Validation of the EKF observer 

As explained right before, an open-loop validation of the EKF is presented in this section. 
Indeed, the measured position and speed are injected to the speed and current controllers and the 
measured and estimated data are compared.  

At first, the estimation process of the EKF is validated. The waveforms of the estimated space 
vector are presented and compared to their measured counterparts. Then, a discussion about how to 
improve the EKF treatment is made. The robustness against parameter variation is dealt with. Also, the 
analysis of the EKF robustness against a random initial position error is made. Finally, a comparison 
in terms of estimation behavior is made between the initial EKF algorithm and its optimized versions 
(§5.2). 

6.3.1. Validation of the estimation process       

Figure 5.12 shows the estimation behavior of the implemented EKF observer. The waveforms of 
the measured and estimated quantities are shown. Figure 5.12(a) presents the estimated direct current 
îsd and the actual current isd. This is the same for the quadrature current (Figure 5.12(b)). The 
waveforms of the measured and estimated mechanical speed and electrical position are respectively 
depicted in Figure 5.12(c) and Figure 5.12(d). The obtained results prove the proper EKF estimation 
behavior. This will also be confirmed during the robustness analysis. The obtained estimation dynamic 
has been obtained for the following EKF setting, 
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Figure 5.12: Validation of the EKF estimation – Fixed-point discrete-time simulation results 
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6.3.2. Improvement of the EKF estimation      

The manipulation of fixed-point data in such intensive EKF algorithm can be easily a source of 
convergence problems which affects the EKF stability. Indeed, the limited precision of the data can 
typically lead to a non-symmetrical covariance matrix P, which is processed after intensive matrix 
multiplications and a matrix inversion. A simple and efficient way to improve the EKF treatment is to 
force the covariance matrix P to be symmetrical using the following matrix-update, relation (5.16) 
[98]. Figure 5.13 presents the estimation error in the case of a standard EKF treatment and the case of 
the added matrix-update. It can be seen that this matrix-update improves the estimation dynamic and 
minimizes the precision errors.      

2
//

/
knk

t
knk

knk
PPP +

=  

   Other algorithmic solutions that can improve the EKF treatment and manage its stability are 
the so-called algorithm decompositions (also called algorithm factorizations). Among the most 
widespread solutions are the Square-Root and UD factorizations. They are presented and deeply 
studied in [98]. 
 

 
Figure 5.13: Improvement of the EKF estimation – waveforms of the estimation error 

(a) Direct current (A);   (b): Quadrature current (A);   (c): rotor position (rd);   (d): mechanical speed (rpm) 
 

6.3.3. Robustness against parameter variation       

Up to now, the developed EKF algorithm has been validated in the case where the parameters of 
the used salient synchronous machine are perfectly known, which is not exactly the case in practice. 
For this reason, it is necessary to study and evaluate how the EKF is robust when the parameters are 
varying.  For this aim, the influence of the stator resistance Rs variation is evaluated. The following 
figures (5.14 and 5.15) present the speed and rotor estimation error (at steady state) in the case when 
the resistance is overestimated (+ 20% and +50%) and also the case when it is underestimated (-20% 
and -50%). From these simulation results, we can notice a smooth estimation error in both cases, 
which confirms the robustness of the developed EKF with the chosen tuning values. The same 
simulations when varying the values of the inductances have been done and the obtained estimation 
error remains negligible.  
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Figure 5.14: Rotor position estimation error – For Rs, Rs-50%, Rs-20%, Rs+20% and Rs+50% 

 

 
Figure 5.15: Mechanical speed estimation error – For Rs, Rs-50%, Rs-20%, Rs+20% and Rs+50% 

Operating mechanical speed: N=800 rpm 
 
6.3.4. Robustness against random  initial position error 

Another robustness evaluation of the developed EKF is its ability to converge properly and 
reach the desired motor operating point when the initial position is unknown. Here again, fixed-point 
simulations have been achieved with random initial rotor position. Figure 5.16 presents the obtained 
results for 0.18 rad (10°), 0.88 rad (50 °), 1.745 rad (100 °) and 3.14 rad (180 °) initial values. In all 
cases, a zero steady state position estimation error is ensured. 
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 Figure 5.16: Position estimation error for an unknown initial rotor position  

  
6.3.5. Validation of the optimized EKF algorithm    

The optimization of the EKF algorithm (reduction of the computational cost) has to be balanced 
with the ability to keep an acceptable estimation performance. Figure 5.17 presents the obtained speed 
estimation behavior with the adopted optimization procedures (§5.2). These simulation results indicate 
that a zero steady state error is ensured by both optimized EKF versions. As for the estimation 
dynamic, the matrix symmetrization of the EKF algorithm does not affect the behavior. This is not the 
case for the K(∞) version since a good dynamic behavior is not guaranteed.       
 

 
Figure 5.17: Speed estimation dynamic when implementing the optimized EKF algorithms – Mechanical speed 
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6.4. Validation of the EKF-based sensorless speed controller 

Now as both stator current controller, speed controller and the EKF estimation are validated, the 
ultimate fixed-point simulation aims to validate the whole sensorless controller. The estimated rotor 
speed and position are then injected to the controllers.  

Figure 5.18 presents the obtained results with the same operating conditions as previously (a 
750-rpm step reference at 0s, -750 rpm step reference at 2s and the same mechanical load conditions). 
The speed response and the rotor position are shown in Figure 5.18(a,b). The waveform of the 
developed torque is shown in Figure 5.18(c). The d-q, 3-phase and (α,β) based stator currents are 
presented in Figure 5.18(d-g). Finally, the waveforms of the stator voltage and its fundamental are 
presented in Figure 5.18(h,i).  
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Figure 5.18: Validation of the EKF-based sensorless speed controller 
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6.4.1. Evaluation of the sensorless control robustness 

Figure 5.19 confirms how the developed sensorless controller is robust towards a variation of 
the load torque. A 750-rpm step reference is applied to the sensorless controller and a variation of 
1Nm is applied at 1.6s. The waveform of the speed response and the waveform of the developed 
torque are respectively shown in Figure 5.19(a) and Figure 5.19(b). 

 
Figure 5.19: Robustness evaluation of the developed EKF-based sensorless speed controller 

 

6.4.2. Expansion to a large operating speed range 

In addition to the achieved validation, the evaluation of the developed sensorless controller at an 
expansive operating speed range is necessary. To this aim, simulations have been made respectively at 
very low speed, at medium speed and at high speed. Also over-speed conditions are tested. The 
obtained results indicate that, with the used 1500-rpm SSM, the developed EKF-based sensorless 
speed controller is able to operate up to 200% of the nominal speed (3000rpm) and down to 8% of the 
nominal speed (125 rpm). Indeed, at very low speed and at standstill, the EKF does not guarantee a 
zero steady state estimation error since the back-EMF is very low (zero at standstill). Consequently, 
this attests the necessity to implement specific estimation method that is dedicated to this operating 
range. Thus the high frequency injection method has been chosen to this aim. This method is not 
covered in this work and is the main topic of the associate thesis work [92].    
 

 
Figure 5.20: Expansion of the developed EKF-based sensorless controller to large operating speed range  
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7. Conclusion 

The objective of this chapter was to present the development of the EKF-based sensorless speed 
controller. This algorithm development step aims to validate the functionality of the algorithm and 
prepare it to the digital implementation. 

This chapter was organized according to the design methodology. At first, a modular 
partitioning is achieved. Then, the continuous-time functional validation is made. The configuration 
and the validation of the speed and current closed-loops are made. This is followed by the digital 
realization where the discretization, the normalization, the data quantification and the algorithm 
optimization are both realized. Finally, Fixed-point and discrete time simulations are made in order to 
validate the whole sensorless controller with regards to the achieved digital realization.   
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Chapter 6 

FPGA-based sensorless control for 
synchronous AC drive 

- FPGA architecture development 
 

 
1. Introduction  

This chapter presents the FPGA architecture development of the proposed sensorless speed 
controller. According to the design methodology (chapter 2, Figure 2.18), this development takes 
place after having validated the corresponding algorithm. 

The first task of this development is the optimization of the FPGA architecture. This is made 
according to the optimization procedure, presented in chapter 2. The objective of this procedure is to 
find the appropriate FPGA architecture that is able to perform the developed algorithm with regards to 
implementation constraints. In our case, the latter are: the modularity preservation constraint, the area 
constraint and the timing constraint. 

Assuming that the modular partitioning of the algorithm (chapter 5 part 2) has been maintained, 
a first evaluation of the time/area performances is made. This pre-evaluation is achieved when the 
parallelism of the algorithm is fully preserved. The objective here is to verify if the corresponding 
FPGA architecture can be directly designed without any optimization. Otherwise, the Algorithm 
Architecture Adequation (A3) methodology is applied to each module so as to factorize the developed 
architecture and then reduce the consumed FPGA resources.    

The optimization is followed by the design of the architecture, the VHDL coding and then the 
functional validation. During the VHDL synthesis, a time/area evaluation is achieved. Once the 
obtained time/area performances satisfy the corresponding constraints, the designed FPGA 
architecture is then ready to be physically implemented. 
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2. Architecture optimization 

2.1. Optimization strategy 

Up to now, the EKF-based sensorless control algorithm has been developed and validated. The 
appropriate fixed-point data format has been chosen and the necessary algorithm optimization has 
been achieved. Note that in order to enlarge the case studies, both of the EKF versions (initial and 
optimized versions) have been taken into account during the FPGA architecture development.   

The optimization of the corresponding FPGA architecture consists in designing the appropriate 
architecture that is able to process this algorithm. However, the following FPGA implementation 
constraints ought to be respected (see chapter 2, §6.3.1).  

2.1.1. Modularity constraint 

The first development constraint is to preserve the whole modular partitioning that was made 
during the algorithm development (chapter 5 part 2). According to this partitioning and depending on 
the level of hierarchy, the FPGA architecture of each module is to be developed. In the case where the 
area constraint is not satisfied, this partitioning must be revised so as to gather potential modules that 
lead to the reduction of the FPGA resources.   

2.1.2. Area constraint 

This constraint imposes the development of a global FPGA architecture that can be easily 
implemented in a low cost FPGA solution. In the case of having chosen the Xilinx FPGA family, the 
objective is the possibility to use the available FPGA Spartan series (e.g. Spartan3, Spartan3E and 
Spartan6).   

2.1.3. Timing constraint 

The timing constraint here consists is defining an execution time limit, depending on the 
required control performances. For this aim, the influence of execution time on the control bandwidth 
of developed EKF speed sensorless controller is evaluated. The case of a high speed synchronous 
motor has been chosen since the influence of the execution time is more visible at high operating 
speed [Appendix D]. Figure 6.1 presents the obtained simulation results for different execution times 
(0%, 10%, 30%, 50%, 70%, 90% and 100% of the sampling period, Ts=100µs). The shorter is the 
execution time, the larger is the control bandwidth. Finally, the chosen execution time limit is set to 
10% of the sampling period.   

 
Figure 6.1: Influence of the execution time on the bandwidth of the EKF-based sensorless speed controller 
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1- The first task is to evaluate the execution time and estimate the used FPGA resources when 
the parallelism of the whole algorithm is fully preserved. As an example, the case of the 
non-optimized EKF version is discussed. 

Figure 6.2 presents the timing diagram of the whole sensorless speed controller. The 
treatment is synchronized with the PWM carrier peaks. Furthermore, when the timing 
constraint is satisfied, it is possible to launch the treatment before and then refresh the 
switching signals at the PWM peaks. With the used ADC devices, the necessary conversion 
time is equal to 2.4µs. Thus, in the case of a full preservation of the algorithm parallelism, 
the execution time of the whole sensorless controller is expressed according to relation (6.1). 
With a fully pipelined structure, this execution time can be rewritten as a function of the 
latency and the operating clock period. In our case, the new expression is given by relation 
(6.2). 

It can be seen from this relation that when using a high clock frequency, the obtained total 
execution time satisfies the timing constraint. However, when estimating the necessary 
FPGA resources to implement this fully parallel algorithm, the obtained results (Table 6.1) 
indicate that the corresponding architecture cannot be supported by any of the available low 
cost FPGA solutions. Consequently, the area constraint is not satisfied which leads to the 
second optimization step.  

 

 
Figure 6.2: Timing diagram of the developed sensorless speed controller 
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Table 6.1: Estimation of the FPGA resources when the algorithm parallelism is fully preserved – case of the non-
optimized EKF version. 

Modules Operators Number Corresponding FPGA hardware resources 
22-bit multiplier 352 1408 equivalent 18-bit multipliers (DSP blocks) 

22-bit adder 271 7181 6-bit LUTs 

22-bit subtractor 24 6456 6-bit LUTs 

22-bit register 1932 42504 Flip-Flops 

EKF Module 

22-bit inverter 1 1303 6-bit LUTs and 3426 Flop-flops 

17-bit multiplier 3 3 equivalent 18-bit multipliers (DSP blocks) 

17-bit adder 2 38 6-bit LUTs 

17-bit subtractor 2 38 6-bit LUTs 
Speed controller 

17-bit register 21 357 Flop-flops 

20-bit multiplier 16 16 equivalent 18-bit multipliers (DSP blocks) + 
164 6-bit LUTs  

13-bit multiplier 4 4 equivalent 18-bit multipliers (DSP blocks) 

20-bit adder 13 286 6-bit LUTs 

13-bit adder 6 90 6-bit LUTs 

20-bit subtractor 2 44 6-bit LUTs 

14-bit subtractor 1 16 6-bit LUTs 

13-bit subtractor 1 15 6-bit LUTs 

20-bit register 93 1860 Flop-flops 
14-bit register 3 42 Flop-flops 

Stator & rotor 
current controllers 

13-bit register 33 429 Flop-flops 

Total 

  - 1431 equivalent 18-bit multipliers (DSP blocks)
  - 15631 6-bit LUTs  

- 46944 Flop-flops 
100% of the 180 DSP blocks (Sp6 xc6slx150) 

704% of 6-bit LUTs (Sp6 xc6slx150) 
 

2- This second step aims to cope with the area mismatch and design an FPGA architecture that 
needs fewer resources. To reach this objective, the A3 methodology can be adopted (chapter 
2, §6.3.2). When applied to each module, this methodology consists in finding the potential 
parallelism and then making the necessary factorization. This concerns mainly the greediest 
operators such as multipliers. However, factorizing an architecture leads to serialize the 
treatment. The higher is the level of factorization, the longer is the execution time.  

For example, when factorizing the EKF compensator, the corresponding execution time tKG 
will increase and then can exceed tADC (Relation (6.1)). Because of its complexity, this 
module has then a significant timing criticality and can lead to the non respect of the timing 
constraint. Consequently, a compromise is to be found so as to apply the appropriate 
factorization that keeps the timing constraint satisfied. 

(6.2)
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In sections 2.2, 2.3 and 2.4, the application of the A3 methodology to the EKF module is 
presented. The case of the prediction module (section 2.2), the EKF compensator (section 
2.3) and the innovation module (section 2.4) are focused on. For each case, the Data Flow 
Graph (DFG), the factorization procedure and the Factorized DFG are discussed.   

3- Once the appropriate factorization level and the FDFG of each module are defined, the third 
task is the design of the corresponding FPGA architecture. This design has to respect the 
hierarchy levels according to the modularity constraint. This is followed by the architecture 
VHDL-coding and the architecture functional validation. For the developed sensorless 
controller, these points are respectively discussed in parts 3, 4 and 5.      

4- Once the global FPGA architecture is functionally validated, the next step is the analysis of 
the time/area performances. This is obtained after having synthesized the developed design 
(using the dedicated synthesis tools). This synthesis indicates the consumed FPGA resources 
and the maximum frequency of the operating clock. This maximum frequency allows the 
calculation of the global execution time. For the developed FPGA-based sensorless 
controller, the analysis of the time/area performances is made in part 6.       

2.2. Optimization of the EKF prediction module 

As a reminder, the prediction module calculates the non-compensated state space vector using 
the salient synchronous machine model. Relations (6.3-6.6) represent the implemented discrete-time 
normalized equations and Figure 6.3 highlights the corresponding DFG.  
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Figure 6.3: DFG of EKF prediction module 

 
From this associated DFG, it can be seen that the equations are processed independently. For 

each equation (except the speed equation), the treatment can be divided in two stages. The first stage is 
dedicated to multiplications and the second one is dedicated to additions. Also, the DFG indicates that 
there are multiplications that can be performed in parallel. Thus they can be factorized and processed 
using only one multiplier. With an iterative structure, this multiplier can also perform the 
multiplication which is not made in parallel to the others (case of the isd and isq equations). Figure 6.4 
shows the FDFG that represents the factorized isq equation. This graphic introduces specific nodes 
called, F (“Fork”), J (“Join”) and I (“Iterate”) that are used to delimit the factorization borders. 
 

 
Figure 6.4: FDFG of isq equation 

When it comes to the whole prediction module, it can be seen from the defined timing diagram 
(Figure 6.2), that the corresponding treatment can be fully serialized without affecting the execution 
time of the whole sensorless controller. This means that the prediction equations can be gathered and 
then processed by the same factorized architecture. The advantage is the use of a minimum of 
operators without downgrading the timing performances. Figure 6.5 presents the corresponding FDFG.     
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Figure 6.5: FDFG of EKF prediction module 

2.3. Optimization of the EKF compensator 

The EKF compensator is definitely the most constraining module in terms of complexity as well 
as the FPGA resources. In order to satisfy the low cost FPGA constraint, the factorization of the 
corresponding architecture is mandatory. Because this module presents a high timing criticality, this 
factorization can lead to the non respect of the timing constraint. A compromise is then necessary so as 
to balance the level of factorization with the corresponding execution time. In the following, it has 
been decided to present the factorization of the initial Kalman compensator (non-optimized version) 
and also the optimized version that is based on the matrix symmetrization (chapter 5 §5.2.2).         
 
2.3.1. Jacobian matrices 

Relation (6.7) and (6.8) present the processed Jacobian matrices for the model linearization.  
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Figure 6.6 shows the DFG for Fdnk. It can be noticed that the time-varying matrix elements are 
processed in parallel. Thus the multiplication can be factorized and processed by only one multiplier. 
The obtained FDFG is then depicted in Figure 6.7.  
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Figure 6.6: DFG for Jacobian matrix Fdnk 
 

 
Figure 6.7: FDFG for Jacobian matrix Fdnk 

 
2.3.2. Kalman gain and covariance matrix 

The non-optimized computation of Knk and Pnk/k (respectively the Kalman gain and the 
covariance matrix of the estimation error, chapter 4, relations (4.6-4.8)) is based on matrix treatment 
including matrix multiplications, additions, subtractions, transpose and a matrix inversion. For figure-
view simplicity, the corresponding DFG has been extracted from the Simulink block diagram (Figure 
6.8). 
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Figure 6.9 overviews the developed FDFG. 
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multiplications, only four multipliers have been used. As for the matrix inversion, the needed 6 
multiplications are processed with one multiplier. To anticipate the FPGA architecture design, the 
implementation of the inverter (matrix determinant inversion) is made with the help of a dedicated 
Xilinx IP. In [Appendix E], an in-depth presentation of the developed 3-matrix multiplier and the 
developed matrix inverter is made. 
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Figure 6.8: DFG for non-optimized EKF compensator 

 
    

 
 

Figure 6.9: FDFG for non-optimized EKF compensator 
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As far as the optimized version of the EKF compensator is concerned (Matrix symmetrization 
version), the treatment is mainly based on scalar operations (except the matrix inversion). Figure 6.10 
presents the DFG that concerns the calculation of the covariance matrix (extracted from Simulink). 

When looking closely to the processed equations, it can be seen that the calculation of the matrix 
elements can be made using only a dot-product (see the example in chapter 2 §6.3.1). It is then 
possible to factorize the whole treatment around this dot-product. Figure 6.11 shows the corresponding 
FDFG.  

 
 

Figure 6.10: DFG for MS-optimized EKF compensator 
 

 
Figure 6.11: FDFG for MS-optimized EKF compensator 
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2.4. Optimization of the EKF innovation module 

The innovation module is launched ones the EKF compensator has generated the Kalman gain. 
Relations (6.9-6.12) present the processed equations and Figure 6.12 highlights the corresponding 
DFG. Here again the processed parallel multiplications can be factorized and only one multiplier can 
be used. Figure 6.13 presents the obtained FDFG. 
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Figure 6.12: DFG of the innovation module 

 

 
Figure 6.13: FDFG of the innovation module 
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3. FPGA architecture design 

With regards to the modular partitioning and the level of hierarchy, the hardware FPGA 
architecture of each module is designed. It is composed of a data path and a control unit that are both 
synchronized with the global clock signal. According to the obtained FDFG, the architecture is 
designed by replacing the FDFG nodes (F, J and I) by there corresponding operators. Thus, the node F 
is replaced by a multiplexer, J and I replaced by registers.  

The data path contains the used operators and data buses between them. The treatment 
scheduling is ensured by the control unit which is a simple Finite State Machine (FSM). The latter is 
activated via a Start pulse signal at each sampling period. When the computation time process is over, 
an End pulse signal indicates the end of the treatment. 

Once the architecture of each module is developed, the global data path (4th and 5th level of 
hierarchy of the modular partitioning, chapter 5, Figure 5.1) is then designed by associating the needed 
modules. A global control unit is also implemented so as to synchronize the global treatment.  

In the following, author is focusing on the architectures of the prediction module and the EKF 
compensator (3rd level of hierarchy, chapter 5, Figure 5.1). Figure 6.14 presents the developed FPGA 
architecture of the prediction module and Table 6.2 lists the signal configuration depending on which 
prediction equation is processed. Figure 6.15 presents the architecture of the EKF compensator, 
especially the module that calculates the Kalman gain and the covariance matrix. 

 
Figure 6.14: FPGA architecture of the innovation module 
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Table 6.2: Prediction module - Configuration of the multiplexers  
 îsndk/k-1 îsnqk/k-1 ŵnk/k-1 θnk/k-1 

a G1isd G1isq -- -- 
b îsndk-1/k-1 îsnqk-1/k-1 -- -- 
c ŵnk-1/k-1 ŵnk-1/k-1 -- -- 
d îsnqk-1/k-1 îsndk-1/k-1 -- ŵnk-1/k-1 
e G2isd G2isq -- Gθ 
f vsndk-1 ŵnk-1/k-1 -- -- 
g G3isd G3isq -- -- 
h -- vsnqk-1 -- -- 
i -- G4isq -- -- 

S10 0 0 -- 1 
S11 0 0 -- 1 
S12 0 0 -- 1 

 

 
Figure 6.15: FPGA architecture of the Kalman gain and covariance matrix calculator 

 
 
Figure 6.16 presents the FPGA architecture of the EKF module which is located at the 4th level 

of hierarchy (chapter 5, Figure 5.1). This module includes Park transformation (abc-dq) modules. The 
used sine pattern has been stored in a RAM memory block and the corresponding total size is 13312 
Kbits. As for the final level, Figure 6.17 presents the architecture of the global sensorless speed 
controller. 
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Figure 6.16: FPGA architecture of the EKF module 

 
 

 
Figure 6.17: FPGA architecture of the global sensorless speed controller 
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4. Architecture VHDL-coding 

At this stage, the designed FPGA architecture of each module is ready to be programmed. The 
VHDL description language is used in our case. Also, with the used Xilinx FPGA solutions, the Xilinx 
ISE design tool is used. In order to preserve the modularity and make the design easy to manage, 
hierarchical and multi-file VHDL programming approach is adopted (e.g. Figure 6.18). Each module 
is coded as a unique VHDL file and then used as a component at a higher level of hierarchy.  

The implemented matrix inversion uses a divider. The latter is used to invert the input matrix 
determinant. To this aim, the Xilinx Pipelined Divider IP has been implemented. An overview of this 
IP has been made in [Appendix E].     
 

 
Figure 6.18: Architecture VHDL-coding – Hierarchical Multi-file approach 

 
5. Architecture functional simulation  

The developed VHDL design has been functionally simulated using dedicated tools such as the 
well-known ModelSim. The test has been done by applying Testbench waveforms to the inputs of the 
developed sensorless speed controller. These waveforms have been extracted from their correspondent 
Matlab/Simulink counterparts.  

Figure 6.19 show the ModelSim results obtained after having tested the EKF module. Sinusoidal 
voltage and current waveforms have been applied to the inputs. The estimated electrical rotor position 
and speed are displayed. 

In order to confirm the good functionality of the EKF module, the same simulation process has 
been made in Matlab/Simulink environment with the same input waveforms. The obtained simulation 
results are then compared to those obtained with ModelSim. Figure 6.20 shows the waveforms of the 
electrical rotor position and speed in both cases.   
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Figure 6.19: VHDL design functional validation – ModelSim results 

 
Figure 6.20: VHDL design functional validation – Comparison between ModelSim and Matlab/Simulink results 

 

6. Design synthesis and time/area performances analysis  

In the case of the developed FPGA-based sensorless controller, Tables 6.3, 6.4 and 6.5 
summarize the obtained synthesis results in the case of the non-optimized and the optimized EKF 
versions. They highlight the estimated maximum frequency of the operating clock and show the global 
hardware resource consumption. All these data are listed for different FPGA device solutions 
including low cost and high performance FPGAs.  

 
Table 6.3: Synthesis results for the initial sensorless speed controller (non-optimized EKF) 

Low cost FPGA High performance FPGA 
 Spartan 3 

xc3s5000 
Spartan 3E 

xc3s1600E 
Spartan 6 
xc6slx150 

Virtex 2P 
xc2vp30 

Virtex 6 
Xc6vsx475 

Max. clk 
Frequency 67 MHz 44 MHz 82 MHz 120 MHz 226 MHz 

Global 
resources 

use 

- 20 % (8320 CLB) 
- 66% hw 18-bit 
multipliers (over 

104) 
- 1 18-Kbit RAM 

block 

- 63% (3688 CLB)
- 100% hw 18-bit 
multipliers (over 

36) 
- 1 18-Kbit RAM 

block 

- 11% (11519 
CLB) 

- 38 % hw 18-
bit DSP blocks 

(over 180) 
- 1 18-Kbit 
RAM block 

- 49% (3424 CLB) 
- 50% hw 18-bit 
multipliers (over 

136) 
- 1 18-Kbit RAM 

block 

- 3.4% (37200 
CLB) 

- 3.4% hw 18-bit 
DSP blocks (over 

2016) 
- 1 18-Kbit RAM 

block 
 
 
 
 
 
 

Matlab/SimulinkModelSim ModelSim Matlab/Simulink 

Speed 

Position

ModelSim results 

(a) 
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Table 6.4: Synthesis results for the optimized sensorless speed controller (k(∞) EKF) 
Low cost FPGA High performance FPGA 

 Spartan 3 
xc3s5000 

Spartan 3E 
xc3s1600E 

Spartan 6 
xc6slx150 

Virtex 2P 
xc2vp30 

Virtex 6 
Xc6vsx475 

Max. clk 
Frequency 67 MHz 65 MHz 97 MHz 120 MHz 252 MHz 

Global 
resources 

use 

-10 % (8320 CLB) 
-25% hw 18-bit 
multipliers (over 

104) 
- 1 18-Kbit RAM 

block 

-21% (3688 CLB)
-80% hw 18-bit 
multipliers (over 

36) 
- 1 18-Kbit RAM 

block 

-3.4% (11519 
CLB) 

-12 % hw 18-bit 
DSP blocks 
(over 180) 
- 1 18-Kbit 
RAM block 

-25% (3424 CLB) 
-19% hw 18-bit 
multipliers (over 

136) 
- 1 18-Kbit RAM 

block 

-1.4% (37200 
CLB) 

-1.24% hw 18-bit 
DSP blocks (over 

2016) 
- 1 18-Kbit RAM 

block 
 

Table 6.5: Synthesis results for the optimized sensorless speed controller (MS-EKF) 

Low cost FPGA High performance FPGA 
 Spartan 3 

xc3s5000 
Spartan 3E 

xc3s1600E 
Spartan 6 
xc6slx150 

Virtex 2P 
xc2vp30 

Virtex 6 
Xc6vsx475 

Max. clk 
Frequency 120 MHz 54 MHz 97 MHz 167 MHz 253 MHz 

Global 
resources 

use 

-16 % (8320 CLB) 
-50% hw 18-bit 
multipliers (over 

104) 
- 1 18-Kbit RAM 

block 

-45% (3688 CLB)
-100% hw 18-bit 
multipliers (over 

36) 
- 1 18-Kbit RAM 

block 

-5.8% (11519 
CLB) 

-26 % hw 18-bit 
DSP blocks 
(over 180) 
- 1 18-Kbit 
RAM block 

-39% (3424 CLB) 
-38% hw 18-bit 
multipliers (over 

136) 
- 1 18-Kbit RAM 

block 

-2.5% (37200 
CLB) 

-2.5% hw 18-bit 
DSP blocks (over 

2016) 
- 1 18-Kbit RAM 

block 
 
From these synthesis results, it can be seen that with the fixed factorization level, both 

sensorless controller versions (Optimized and non-optimized EKF versions) can be implemented in 
low-cost FPGA devices. According to the optimization strategy, the area constraint is consequently 
satisfied. 

As for the timing constraint, Tables 6.6, 6.7 and 6.8 list the minimum execution time depending 
on the clock frequency and for each of the chosen FPGA devices. This execution time has been 
calculated using relation (6.1). The conversion time of the used ADC devices is equal to 2.4µs. The 
obtained results indicate that both of the chosen FPGA solutions and the fixed factorization level lead 
to short execution times which all satisfy the timing constraint (maximum execution time limit). It is 
also important to notice that in some cases (typically table 6.7), the obtained execution time depends 
strongly on the ADC conversion time. The use of high speed ADC devices is then necessary in order 
to enhance, if needed, the obtained timing performances.    
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Table 6.6: Minimum execution time (µs) for the initial sensorless speed controller (non-optimized EKF) 
Low cost FPGA High performance FPGA 

 Spartan 3 
xc3s5000 

Spartan 3E 
xc3s1600E 

Spartan 6 
xc6slx150 

Virtex 2P 
xc2vp30 

Virtex 6 
Xc6vsx475 

Maximum clock 
Frequency (MHz) 67 44 82 120 226 

tADC 2.4 

tKG (latency :230) 3.43 5.23 2.8 1.91 1.02 

tdq (latency :9) 0.134 0.204 0.11 0.075 0.04 

tinnov (latency :18) 0.269 0.41 0.22 0.15 0.08 

tspc (latency :9) 0.134 0.204 0.11 0.075 0.04 

tscc (latency :43) 0.642 0.977 0.524 0.358 0.19 

tex_min 4,612 7,023 3,768 3,058 2,75 

 
Table 6.7: Minimum execution time (µs) for the optimized sensorless speed controller (k(∞) EKF) 

Low cost FPGA High performance FPGA 
 Spartan 3 

xc3s5000 
Spartan 3E 
xc3s1600E 

Spartan 6 
xc6slx150 

Virtex 2P 
xc2vp30 

Virtex 6 
Xc6vsx475 

Maximum clock 
Frequency (MHz) 67 65 97 120 252 

tADC 2.4 

tKG (latency :0) 0 0 0 0 0 

tdq (latency :9) 0,134 0,138 0,093 0,075 0,036 

tinnov (latency :18) 0,269 0,277 0,186 0,15 0,071 

tspc (latency :9) 0,134 0,138 0,093 0,075 0,036 

tscc (latency :43) 0,642 0,662 0,443 0,358 0,171 

tex_min 3,579 3,615 3,214 3,058 2,713 

 
Table 6.8: Minimum execution time (µs) for the optimized sensorless speed controller (MS EKF) 

Low cost FPGA High performance FPGA 
 Spartan 3 

xc3s5000 
Spartan 3E 
xc3s1600E 

Spartan 6 
xc6slx150 

Virtex 2P 
xc2vp30 

Virtex 6 
Xc6vsx475 

Maximum clock 
Frequency (MHz) 120 54 97 167 253 

tADC 2.4 

tKG (latency :198) 2.955 4.5 2.414 1.65 0.876 

tdq (latency :9) 0,075 0,167 0,093 0,054 0,036 

tinnov (latency :18) 0,15 0,333 0,186 0,108 0,071 

tspc (latency :9) 0,075 0,167 0,093 0,054 0,036 

tscc (latency :43) 0,358 0,796 0,443 0,257 0,17 

tex_min 3,058 5,130 3,214 2,873 2,712 
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7. Conclusion 

This chapter was dedicated to the development of the FPGA architecture of the EKF-based 
sensorless speed controller. This development has been done according to the design methodology 
which includes the proposed optimization procedure. 

As a summary, at the beginning of the FPGA architecture development, a first estimation of the 
time/area performances has been made. This estimation concerned the whole sensorless speed 
controller where the parallelism has been fully preserved. Then, it has been observed that the 
corresponding architecture is too heavy to be implemented in a low cost FPGA solution. To reduce the 
needed FPGA resources, the A3 methodology has been applied so as to factorize each of the developed 
modules. Although this assumption leads to serialize the treatment, the final FPGA architecture has 
respected both of the timing and area constraints. Thus, the architecture is ready for the FPGA 
implementation process (chapter 2 §6.3.4). 
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Chapter 7 

FPGA-based sensorless control for 
synchronous AC drive 

- Experimentation 
 

 
1. Introduction  

This chapter discusses the final step of the FPGA-based sensorless speed controller design 
process: the experimentation. The latter has been divided into two steps, the Hardware-In-the-Loop 
(HIL) validation and the ultimate experimental validation. 

The HIL gives the possibility to make an intermediate validation between a full software 
development (Matlab/Simulink, Xilinx ISE, ModelSim …) and a full experimental validation using 
the experimental platform. The advantage is to guarantee the functionality of the implemented FPGA-
based controller when applied to the actual system. 

This chapter is organized as follows. First of all, the features of the experimental platform are 
presented. This section is complementary to the system specification made in chapter 4. 

The HIL validation is then discussed starting by recalling the principle synoptic and by 
describing the implemented emulation modules. This is followed by the presentation of the obtained 
results. It can be observed that these results are organized in the same way as the Matlab/Simulink 
simulation results. We start by presenting the validation of the stator current controller, then the speed 
controller, then the EKF estimation and finally the validation of the whole sensorless controller.  

As far as the experimental validation is focused on, the proposed experimental results are once 
again organized as previously discussed. Additional tests have been, anyhow, proposed and deal with 
the evaluation of the robustness of the sensorless speed controller against load torque variation. 
Furthermore, an expansion to a larger operating speed range is achieved and the corresponding results 
are presented.  
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2. Overview of the experimental platform 

Figure 7.1 presents the power stage of the implemented experimental platform. According to the 
hardware system specification (chapter 3), the features of this platform are listed below. 

 

 
Figure 7.1: Experimental platform – Power stage 

Mechanical load (Figure 7.1(a)): 
 Controlled powder brake: Maximum torque:25Nm, Maximum speed: 6000 rpm 

Salient Synchronous Machine (Figure 7.1(b)): 
 230/400V, 1.52/2.66A, 4-poles, 0.8kW, 1500 rpm, 5Nm   

Position sensor (Figure 7.1(c)): Used to compare estimated and measured rotor positions. 
 Absolute encoder: 10-bit resolution  

Stator power supply (Figure 7.1(d)): 
 Autotransformer: 3-phase, 230/400V, 50Hz  
 AC-DC converter: SEMIKRON 3-phase, diode-bridge rectifier, 1100µF/800V capacitors 
 DC-AC converter: SEMIKRON VSI – CM50DY IGBT modules – VDCmax=800V, Imax=30A 

Rotor power supply (Figure 7.1(e)): 
 Autotransformer: 1-phase, 230V, 50Hz  
 AC-DC converter: 1-phase, diode-bridge rectifier, 2200µF/450V capacitor 
 DC-DC converter: Buck converter – ARCEL-2RDV-22 IGBT module – VDCmax=800V, 

Imax=30A 
 

Buck converter 3-phase diode-bridge Rectifier + VSI 

Power supply system 

Controlled 
powder brake

SSM 

(a) (b)

(c) 

(d)

(d) 

(e) 

(e)

 10-bit position encoder 
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Figure 7.2 overviews the implemented voltage and current sensor board, the ADC board and the 
FPGA board. Their features are listed below. It can be noticed that the FPGA board is based on Xilinx 
XUP Virtex_2P board. The used XC2VP30 FPGA belongs to the high performance FPGA family. 
This may seem confusing with the analysis made in the previous chapter where the objective was the 
use of low cost FPGAs. However, such FPGA board was used for two reasons. The first one is related 
to experimental constraints where a high number of signals are wired (89 signals), mainly due to the 
position encoder, to the ADC and to the DAC boards. The second reason is related to the Hardware In 
the Loop (HIL) tests where the emulation of the physical plant is added to the developed design. 
Additional FPGA resources are consequently needed. Furthermore, during these HIL tests, a high 
number of RAM memory blocks is required for data storage.  

 
Figure 7.2: Experimental platform – Digital control unit and interface boards 

Voltage and current sensor board (Figure 7.2(a)): 
 Based on the ARCTU3 board: 2.5V/10A and 1V/100V   

ADC board (Figure 7.2(b)): 
 AD9221 ADCs 
 Resolution : 12 bits 
 Voltage reference Vref: 1V, 2.5V 
 Input voltage range : 0-2V (with Vref =1V), 0-5V (with Vref =2.5V) 
 Maximum conversion rate: 1.5Msps 
 Maximum clock frequency: 1.5MHz 
 Effective conversion time : 3 clock cycles; tconv_min=2µs 
 Used clock frequency: 1.25MHz  tconv=2.4µs   

Xilinx XUP Virtex_2P board (Figure 7.2(c)): 
 XC2VP30 FPGA 
 6 expansion connectors (80 user I/O pins) 
 1 high speed expansion connector (40 user I/O pins) 
 32MHz, 75MHz and 100MHz clocking resources 
 Up to 2Gb Synchronous Dynamic RAM 
 USB/JTAG configuration port; transmission rate: 3MHz 
 Dedicated peripherals (switches, push-buttons, LEDs, RS232 port, PS-2 ports, Audio 

Codec, SATA ports, transceiver ports …)  

Voltage & Current 
sensors  

ADC board  

Xilinx Virtex_2P FPGA 
board  

(a)

(b) 

(c) 
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3. Hardware in The Loop validation 

In order to verify a first experimental operating guarantee of the developed FPGA-based 
sensorless controller, an HIL validation has been achieved. The latter is an intermediate validation step 
between a fully computer-based development (Matlab/Simulink, ModelSim, FPGA design tools) and a 
fully experimental test (actual system platform). The developed design has to be associated with an 
emulation of the plant. In addition, a communication controller has to be implemented in order to 
transfer the stimuli and the probed data. This communication is made with a Host-PC. A comparison 
between the obtained HIL results and the simulation results is achieved. 

 
Figure 7.3: HIL validation of the developed FPGA-based speed sensorless controller 

Figure 7.3 presents the corresponding synoptic. When using a Xilinx FPGA target, the HIL 
procedure can be achieved using the ChipScope analyzer [2]. The latter is used to probe the internal 
signals on the one hand and to configure the design on the other hand. The data transfer is made using 
the USB/JTAG interface. Depending on the used configuration cable, the supported synchronization 
clock ranges from 750 kHz to 24 MHz. Also, depending on the used configuration cable and the 
available memory resources, the transmission rate can reach up to 24 Mbps. In our case, the frequency 
of synchronization clock is 3MHz and the corresponding transmission rate is 3Mbps.   

The implemented design must be associated with the following cores:  
- Integrated CONtroller (ICON): This core aims to control the communication between the 

Host-PC (via the JTAG boundary scan port) and the FPGA target.  
- Integrated Logic Analyzer (ILA): The main function of this core is to probe and store data 

information on the RAM block resources. These data are then sent and displayed by the 
ChipScope analyzer. 

- Virtual Input/Output (VIO): This core aims to monitor and drive internal FPGA signals in real 
time. In our case, this core is then used to set the speed reference, the direct current reference, 
the load torque and the EKF covariance matrices.        

The emulation of the SSM leans on the developed model that is expressed in chapter 4, in 
relation (4.14). The Forward Euler discretization method has been adopted. The chosen sampling 
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period has been set to 1µs and the chosen fixed-point format is s[30Q28]. To anticipate the obtained 
HIL results, acceptable performances have been obtained with this digital realization. However, it is 
worth noticing that the Euler discretization method has a major drawback in terms of stability. Indeed, 
the stability of the system is influenced by the value of the sampling period and the data word-length. 
Thus, with a limited data precision and when the sampling period decreases, the poles of the system 
move closer to |z| = 1, which move them to the stability limit (Figure 7.4(a)). 

To cope with this limitation, it is highly recommended to implement a system model that is 
based on the delta-operator (δ-operator) [44]. The main advantage of such model remains in the 
possibility to use a very small sampling period without affecting the stability. Indeed, with the delta 
approach, when the sampling period decreases, the stability zone increases and becomes closer to the 
stability zone of the s-domain (Left-hand plane, Figure 7.4(b)). An example of the SSM delta-operator 
based is given in [108]. As a perspective, this model will be systematically included to the future HIL 
tests. 

 
Figure 7.4: Stability regions for discrete z-plane and δ-plane 

 
As far as the VSI is concerned, the implemented emulation model is presented in [109]. The 

latter includes the non-linearities introduced by the power switches dead time. The buck converter has 
not been implemented and the SSM rotor current is assumed to be constant (Ird=1.5A).     

The following HIL results have been organized in the same way as the fixed point discrete time 
simulations (chapter 5 part 6). We start by highlighting the validation of the stator current controller, 
followed by the validation of the speed controller. An open loop validation of the EFK estimation is 
made and finally the whole sensorless speed controller is validated.  

Figure 7.5 presents the HIL results of the stator current controller. The same references settings 
have been chosen: the direct current is set to 0A and for the quadrature current a step of 2A at start up 
and a negative step (-1A) at 2s are applied. As shown in Figure 7.5(a) and Figure 7.5(b), the current 
responses behave as expected with a settling time equal to 40ms. The corresponding 3-phase stator 
currents are presented in Figure 7.5(d). The stator spatial current vector is plotted in the stationary α-β 
frame as shown in Figure 7.5(c). Finally, the waveforms of the voltages (VSI output voltage and its 
fundamental) are presented in Figure 7.5(e) and Figure 7.5(f) . 

As for the validation of the speed controller, Figure 7.6 presents the obtained results. Note that 
in this case, the actual speed and position (from the plant) are injected to the controllers. The same 
reference settings as during Matlab/Simulink simulations are achieved. Thus, a step of 750 rpm 
(mechanical speed) is applied at start up and a -750 rpm at 2s (opposite rotor direction). The direct 
current here is maintained to zero. The expected settling time (650ms) has been obtained and the 
dynamic and steady state behavior are both the same as those of fixed point discrete time simulations. 
The waveforms of the position, torque, currents and voltages are also presented.    
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Figure 7.5: HIL validation of the stator current controller 
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Figure 7.6: HIL validation of the speed current controller 
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As for the estimation of the EKF, Figure 7.7 highlights the waveforms of the rotor speed and 
position. The obtained HIL results are compared with the obtained fixed-point discrete-time 
simulation results. Both sensorless controllers (HIL and Matlab/Simulink versions) operate in the 
same operating conditions. With the chosen covariance matrices settings (relation (7.1)), the obtained 
results attest that the EKF converges properly in both rotor directions.  
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Figure 7.7: HIL validation of the EKF estimation 

 
Finally, when it comes to the HIL validation of the whole EKF-based sensorless speed 

controller, Figure 7.8 presents the obtained results. Here again, with the same operating conditions as 
during Matlab/Simulink simulations, the same behavior has been obtained. The estimated speed and 
position are injected to the speed and stator current controllers. A step of 750 rpm (mechanical speed) 
is applied and a negative -750 rpm is applied at 2s. The objective here is to validate the functionally at 
both rotor directions. The direct current is set to 0A. The waveforms of the rotor position, the 
developed torque, currents and voltages are highlighted.   
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Figure 7.8: HIL validation of the FPGA-based sensorless speed controller 
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4. Experimental validation  

4.1. Validation of the stator current controller 

In this section, we are presenting the obtained experimental results after having implemented the 
FPGA based stator current controller. During this test, the rotor position is provided by the used 
position absolute encoder (10-bit resolution encoder). From this position, the rotor speed (used for 
axes decoupling) is performed by the speed estimator, discussed in [81]. The principle of this 
estimator is based on the position variation. Indeed, the duration between two position increments is 
calculated using a counter. Then at each increment, the value of this counter is registered and used to 
address the memory where the corresponding pre-calculated speed is stored. The corresponding 
mathematical equation is expressed in relation (7.2). 

clkcounter TN
1]θ[kθ[k]

1024
2πω

⋅
−−

⋅=  

Where ω is the electrical speed and θ is the electrical 10-bit coded position. Ncounter is the value 
of the counter at each position variation and Tclk is the clock period.  

 

 
 

Figure 7.9: Experimental validation of the stator current controller 
 

Quadrature current Direct current 
2A 

40ms0A 

-0.5A

0A 

40ms

1A 
50ms

0.5A 
50ms 

1A 
1A 

2A 
25ms 

50V
25ms

isα 

isβ Stationary frame
currents 

3-phase currents – isa and isb 

 Post-filtered 
stator voltage 

(a) (b)

(c) (d)

(e)

(7.2) 



Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation 

131 

Figure 7.9 presents the obtained experimental results. A 0-to-2A step reference is applied to the 
quadrature current and a -1A-to-0A step reference is applied to the direct current. Figure 7.9(a) and 
Figure 7.9(b) show respectively the quadrature isq and direct isd current waveforms. These data are 
processed internally and converted by the used DAC boards. First order responses have been obtained 
and the settling time is equal to 40ms which is the expected value. Figure 7.9(c) presents the steady 
state α-β currents and Figure 7.9(d) presents the 3-phase isa and isb current waveforms. The steady state 
post-filtered (output of a low-pass RC filter, cutoff frequency: 300 Hz) stator voltage is shown in 
Figure 7.9(e).   

4.2. Validation of the sensor-based speed controller 

Here again, the speed controller has been experimentally validated using the absolute 10-bit 
position encoder. The previously discussed speed estimator generates the rotor speed. The achieved 
test consists in applying a progression of positive and negative 750rpm steps. The direct current has 
been set to 0A. As it can be seen in Figure 7.10 where the obtained experimental results are 
highlighted, the expected performances (response dynamic and settling time) have been successfully 
reached: first order response and 650ms settling time. Figure 7.10(a) and Figure 7.10(b) present the 
rotor speed and position. Figure 7.10(c) presents the waveform of the stator current. The amplitude of 
the steady state current is equal to 1A and an over-current is observed at each rotor direction variation 
which is due to the mechanical load. Finally, the waveform of the post-filtered (fundamental) stator 
voltage is depicted in Figure 7.10(d).  
 

 
 

Figure 7.10: Experimental validation of the sensor-based speed controller 
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4.3. Validation of the EKF observer 

This experimental test aims to make an open loop validation of the EKF. The measured position 
and the processed speed (by the speed estimator) are used. To do so, the stator current controller has 
been implemented where a 0-to-2A step is applied to the quadrature current reference and the direct 
current is set to zero. Figure 7.11(a) shows the waveform of the actual and estimated speed and Figure 
7.11(b) shows the waveform of the actual and estimated electrical position. As a reminder, the d-q 
based SSM model has been implemented with the infinite inertia approximation (chapter 4, part 6). 
The identification of the SSM parameters has been discussed in [Appendix B].    
 

 
 

Figure 7.11: Waveforms of the estimated rotor speed and position 
 

As we are dealing with the experimental validation of the EKF, it is worth presenting the 
obtained estimation behavior of the optimized EKF versions. As discussed in chapter 5 during the 
algorithm optimization, the chosen optimized EKF versions are: the infinite Kalman gain version and 
the matrix symmetrization EKF version. It has been observed during simulations that the first EKF 
version (K∞) doesn’t preserve the estimation dynamic. This has been confirmed during the 
experimentation (Figure 7.12(b)). As for the matrix symmetrization EKF version, the experimentation 
confirms that the estimation dynamic is preserved and no miss-convergence is observed at start up 
(Figure 7.12(a)).     

 

 
 

Figure 7.12: Validation of the optimized EKF versions 
 

4.4. Validation of the whole sensorless speed controller 

The estimated rotor position and speed are now injected into the speed and stator current 
controllers. Figure 7.13 presents the obtained experimental results. Figures 7.13(a-d) correspond to the 
test where a progression of positive and negative 750rpm steps are applied as mechanical speed 
references. The direct current is still maintained to zero. Figures 7.13(e-f) present the speed ramp 
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response where a 1000 rpm mechanical speed reference ramp has been applied. It is to be noted that 
the observed convergence at start up has been obtained after having determined the standstill rotor 
position. Indeed, if the motor is started without the a priori knowledge of the initial position, it cannot 
be guaranteed that this motor will rotate in the expected direction during start up. An additional 
algorithm is then to be implemented so as to estimate the standstill position (e.g high frequency signal 
injection algorithm, [92]). During primarily test procedure, the initial position has been measured 
using the position encoder. Another alternative to cope with this start up miss-convergence is to 
implement an open-loop controller that operates during start up and imposes to rotor position. With 
this procedure, a transition algorithm is to be added to ensure the transition between the imposed 
position and the estimated position.         

  

 
Figure 7.13: Experimental validation of the whole sensorless speed controller 

 
 In order to expand the sensorless controller tests, the robustness evaluation against load torque 

variation has been achieved. Figure 7.14 highlights the speed waveform in the case of a 2Nm and 4Nm 
load torque variation.  
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Figure 7.14: Sensorless speed controller: Experimental evaluation of the robustness against load torque variation 

– waveforms of the rotor speed  
In addition, the evaluation of the developed sensorless controller on a wide operating speed 

range was also made. Figure 7.15 presents the waveforms of the rotor position from 125 rpm to 2500 
rpm. With the used 1500-rpm SSM and in order to reach over-speed operating conditions, the value of 
the applied rotor current is decreased and a negative direct current reference is applied to the stator 
current controller. 

The obtained results indicate that, with the used 1500-rpm SSM, the developed EKF-based 
sensorless speed controller is able to operate at over-speed operating conditions (up to 170%) and 
down to 8% of the nominal speed (125 rpm). Indeed, at very low speed and at standstill, the EKF does 
not guarantee a zero steady state estimation error since the back-EMF is very low (zero at standstill). 
Consequently, this attests the necessity to implement a specific estimation method that is dedicated to 
very low speed operating range.  

 
Figure 7.15: Experimental validation of the sensorless speed controller – expansion to a large operating speed 

range – waveforms of the measured and estimated rotor position.  
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5. Conclusion 

 This chapter was aimed to present the experimental validation of the developed fully FPGA-
based sensorless speed controller. At the beginning, the features of the experimental platform were 
listed. This was followed by the Hardware-In-the-Loop (HIL) validation. The HIL results of the stator 
current controller were firstly presented. They were followed by those of the sensor-based speed 
controller. Then the estimation of the developed EKF was validated before the ultimate HIL validation 
of the whole sensorless speed controller. At next, experiments were carried out. Here again, the 
provided results are organized similarly to the HIL validation. In addition, the robustness of the 
sensorless speed controller against load torque variation was checked and a wide range operating 
speed range was tested.  
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General conclusion and perspectives 
 

 
1. General conclusion 

The objective of this thesis was to analyze and emphasize the contribution of FPGA devices in 
the field of complex AC drive applications. This contribution was quantified in terms of control 
performances and in terms of system integration. The chosen application was the sensorless speed 
controller of a Salient Synchronous Machine (SSM) based on the Extended Kalman Filter (EKF). 

Such EKF based sensorless controllers are systematically implemented using software devices 
such as DSPs. Due to the fixed architecture of these solutions, the treatment is fully serialized. 
Consequently, the implementation of complex control algorithm leads to long execution time. This has 
a significant impact on the control quality and bandwidth since the sampling frequency is limited and 
delays are introduced in the control closed-loop. Our idea trough this thesis is to use hardware devices 
such as FPGAs. With these solutions, it is possible to exploit the parallelism of the algorithm and then 
reduce significantly the execution time. Consequently, the control quality and bandwidth are not 
affected. Furthermore, the use of FPGAs can improve the system integration. For example, it is 
possible to develop a generic EKF that is able to estimate quasi-simultaneously variables of many 
heterogeneous systems. Two typical examples were treated in chapter 2. 

To make the design more manageable and less intuitive, the development of the FPGA-based 
sensorless speed controller was achieved by following a dedicated design methodology. The latter 
consists of a four major phases. The first one is the preliminary system specification. This consists in 
making a hardware specification of the control system and making the algorithm benchmarking. The 
second phase is dedicated to the development of the algorithm where the necessary modular 
partitioning, digital realization, algorithm optimization and simulations are achieved. The third phase 
is the development of the FPGA architecture. This development starts with the optimization of the 
architecture and ends with the physical implementation. Time/area performances are also analyzed and 
compared to the expected time/area constraints. The last step is the experimentation which includes 
the Hardware-In-the-Loop (HIL) and the experimental validations. 

At the beginning of this thesis report, a state of the art FPGA technology was made. In this 
chapter, author described the structure of the recent FPGA devices and discussed their contribution in 
the field of power electronics and drive applications, especially the case of complex control 
applications. Also, the previously discussed design methodology was presented. This chapter was 
followed by the description of a fully integrated FPGA-based controller for a Permanent Magnet 
Synchronous Machine (PMSM) associated with a resolver sensor. This development was firstly made 
so as to evaluate the system integration of a sensor-based FPGA-based controller. Then the following 
chapters (4, 5, 6 and 7) dealt with the development of the FPGA-based sensorless speed controller. It 
can be noticed that these chapters were organized according to the design methodology.  

 

2. Perspectives 

During these researches, it has been proved that when combining the speed and the integration 
capacity of the recent FPGAs, it is possible to implement complex AC drive controllers. With the 
developed EKF-based sensorless controller, it is possible to use a low cost FPGA device and at the 
same time ensure short execution time. These promising results made us think about different possible 
perspectives. We have established them into two groups: perspectives related to the development of 
the algorithm and perspectives related to the development of the FPGA architecture. 
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2.1. Algorithm perspectives 

During the specification of the system model, we had chosen the state space model based on the 
infinite inertia hypothesis. This led to a 4th order EKF. As a perspective, it is interesting to evaluate the 
performances of FPGAs with a more complex system model which includes for example, the load 
torque, rotor excitation equation, or also saturations. Furthermore, using the EKF, it is interesting to 
extend the system model for online identification of the system parameters. 

Other interesting investigations are related to the digital realization of the filter. Indeed, the 
discretization of the system model is based on Euler approximation. In fact this corresponds to a first 
order approximation of the exponential of the continuous-time state space matrix. Although this 
approximation allows a simple model, it is important to test a higher order approximation. 

Also the choice of the fixed-point data format is a promising research field. Indeed, in this thesis 
work, this choice has been done intuitively during simulations and using Matlab/Simulink fixed-point 
tools. In the next future, we are going to apply the methodology discussed in chapter 2 and presented 
in [40], [41]. This is a less intuitive methodology that aims to choose separately the fixed-point format 
of coefficients and variables by studying the stability and the steady state behavior of the EKF. 

Another important topic is the implementation of the continuous-time EKF algorithm [112]. 
This is possible with the obtained short execution time with FPGAs. In this context, the use of delta-
transform could be of great interest.     

2.2. FPGA development perspectives 

Additional perspectives related to the FPGA architecture development are to be focused on. At 
first, improvements are to be brought to the proposed architecture optimization procedure (chapter 2, 
Figure 2.20). As proposed in this work, the first and the second steps of this procedure are made 
manually. The idea is to develop an optimization algorithm that calculates the appropriate level of 
factorization according to the defined implementation constraints. 

Finally, along these FPGA developments, it is also important to evaluate the value-added of 
FPGAs when exploiting the possibility to implement Hardware/Software treatments. Indeed, the 
recent FPGAs give the possibility to implement high performance processor cores. To this purpose, 
co-design approaches and methodologies are to be adopted so as to make the efficient partitioning 
between the hardware and software treatments. This is the subject of the associate thesis work [74]. 
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Appendix A 
Compensation of the VSI non-linearities  

 

 
1. Voltage Source Inverter Characterization   

Figure A.1 presents the topology of a Voltage Source Inverter (VSI). The outputs are applied to 
the machine stator windings. The latter are assumed to be Y-connected and balanced. In the following, 
we are going to start the development of the VSI linear model before studying the introduced non-
linearties.   

 

 
 

Figure A.1: 3-phase VSI topology 

1.1. VSI linear model 

The VSI linear model is developed without considering any dead time and turn-on/off delays 
introduced by the switching signals. Thus, the ideal switching function can be written as a simple 
arithmetic relation  1i S Si =+  (i: a, b or c). As consequence, the voltages Vao, Vbo, Vco can be 
expressed as follows, 
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Assuming that the stator windings are Y-connected and balanced, the 3-phase output voltages 

Vsan, Vsbn and Vscn are written according to relation (A.2).    
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1.2. Analysis of VSI non-linearities 

In this section, the non-linear VSI modeling is achieved. It describes how the model was 
developed by taking into account the effects of the dead time between switching signals, turn-on/off 
delays and voltage drop introduced by the power switches (IGBTs). As a first step, the model of one 
single VSI leg is achieved as shown in Figure A.2. Then, it is duplicated for the other two legs with 
the same manner.  
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Figure A.2: One single VSI leg 

 
For this leg, depending on Sa and /Sa states, four possible combinations are considered. As 

shown in Figure A.3, these combinations are obtained after introducing the necessary dead time tDT to 
avoid a simultaneous conduction of the switches.  
 

 
Figure A.3: Dead time introduction and the four possible combinations  

 
In addition to this dead time, the listed-below time delays are introduced by these switches. 

They are to be considered to determine accurately the Vao voltage waveform. 
 

ton  : turn-on propagation time  
toff  : turn-off propagation time 
tr  : rise time (from 10%ic to 90%ic) 
tf   : fall time (from 90%ic to 10%ic) 

 
Figure A.4 shows an idealized timing characteristic of an IGBT during turn-on and turn-off. 
 

 
Figure A.4: Idealized IGBT timing diagram 

 
For each combination, the value of Vao voltage is determined according to the direction of the 

output current isa. The later is used to determine whether the current is flowing through IGBT or the 
anti-parallel diode. Figure A.5 shows the Vao waveform when isa is positive or negative. 
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Figure A.5: VSI output voltage waveform depending on current direction 

 
2. Compensation of the VSI non-linearities 

In the developed application, switching signals are processed using a Carrier Based PWM with 
Zero Sequence Signal (CB-ZSS-PWM) [62], [75]. As explained in Figure A.6, the purpose of this 
PWM method is to fix the instantaneous average value of VSI output voltage <Vio> (i: a, b or c) and to 
make it equal to an instantaneous reference voltage <Vio>*. This later is obtained after adding, to 
<Vin>* an additional ZSS which occurs between N and O points (Figure A.1).   

 

 
Figure A.6: CB-ZSS-PWM principle 

 
For example, for the first VSI leg, the output average voltage <Vao> expression, extracted from 

Figure A.5, is given in relation (A.3),  
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Where T and D are, respectively, the PWM period and duty cycle. V1 and V2 are the positive and 

negative voltage levels and t1 and t2 the time delays defined as, 
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Without considering VSI non-linearities, the ideal output voltage can be written as, 

 
221 VDVVDV idealAO ⋅+−⋅=><  

 
From these two last relations, the introduced error is extracted and expressed as follows, 
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The chosen compensation method in this application consists in subtracting this error from the 

PWM reference voltage. As consequence, the ideal average voltage will be applied to the VSI output. 
Figure A.7 summaries the adopted compensation principle.  

 

  
 

Figure A.7: CB-ZSS-PWM unit with the compensation of VSI non-linearities 
 

3. Application to stator current controller   

A characterization of the implemented VSI is firstly achieved. This consists in measuring the 
dead time and IGBT turn on/off delays. These timing performances are listed below, 

 
- toff = 2.12 μs  
- tDT + ton + tr = 5.7 μs 

       
The simulation results presented in Figure A.8 show the stator currents isa and isb before (a) and 

after (b) applying the VSI non-linearies compensation. These results have been obtained for the 
following settings: 

 
- isd* = 0A 
- isq* = 2A 
- PWM frequency = 6 KHz 

 
Before the compensation, the observed current distortions near 0A are mainly due to the effect 

of VSI time delays. Indeed, the effect of these delays over the switching signal duty cycle increases 
when value of the current is low.   

 

 
Figure A.8: Simulation results before and after compensation 

 
Figure A.9 shows the variation of Total Harmonic Distortion (THD) of stator currents over the 

electrical rotor speed before and after applying compensations. 
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Figure A.9: THD = f (ω, PWM frequency) 

 
4. Experimental results 

 The Experimental set up is presented in Figure A.10. It is composed of a 0.8kW synchronous 
motor associated with a 1024 points absolute encoder, current sensors and a controlled mechanical 
load. The SM is supplied by a SEMIKRON VSI module which implements SKM 50GB123D IGBT 
modules. Timing performances of this VSI are listed below, 

 
- toff = 2.12 μs  
- tDT + ton + tr = 5.7 μs 

 
The used FPGA target is the Fusion AFS600 FPGA which implements a stator current 

controller.  

 
Figure A.10: Prototyping platform 

(a) :  Power circuit    (b) :  Fusion FPGA Control circuit 
 

Figure A.11 presents the stator current instantaneous waveforms after and before the 
compensation of the VSI non-linearities. Before compensation, distortions appear in the current 
waveform (Figures A.11(a,c)). These distortions are clearly reduced by the chosen compensation 
method as shown in Figures A.11(b,d).      
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Figure A.11: Stator current waveforms before and after compensation 

isd* = 0A; isq* = 2A; FPWM = (3kHz, 6kHz) 
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Appendix B 
Salient Synchronous Machine: Modeling and parameter 

identification  
 

 
1. d-q modeling of the Salient Synchronous Machine (SSM) 

In this section, the modeling in the rotating d-q reference frame of the implemented rotor 
wounded SSM is made. The latter is composed of 3-phase stator windings and an excitation rotor 
winding. As a first assumption, the stator windings are Y-connected and balanced. Figure B.1 
overview the 3-phase representation of the SSM, [62], [111].  

 

 
Figure B.1: 3-phase representation of an SSM 

 
The angle θm corresponds to the mechanical rotor position. The latter is linked to the mechanical 

angular rotating speed Ωm according to relation (B.1). 
 

dt
dθΩ m

m =  

With regards to the number of pole pairs p, relations (B.2) and (B.3) express respectively the 
relationship between the electrical and the mechanical positions and speeds. 

 
mp θθ ⋅=  

mΩpω ⋅=  
 
To start the d-q modeling of the SSM, let’s recall the principle and the equations of the used 

coordinate transformations. 

1.1. Coordinate transformations  

In this section, the principle and the equations of the Clark transformation and the Park 
transformation are presented. 
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1.1.1. Clark transformation  

The Clark transformation aims to transform a 3-phase reference frame (Xa, Xb, Xc) to a stationary 
2-phase (α-β) reference frame (Xα, Xβ) according to the following relation. Figure B.2 gives the 
corresponding vector representation. 
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Figure B.2: vector-representation of the Clark transformation 

 
1.1.2. Park  transformation  

The Park transformation aims to transform a 3-phase reference frame (Xa, Xb, Xc) to a rotating 
(d-q) reference frame (Xd, Xq). This frame is composed of a direct axis d and a quadrature axis q. The 
direct axis d is linked to the rotor axis. Figure B.3 gives the corresponding vector representation.  

 
 

 
Figure B.3: vector-representation of the Park transformation 

 
The (d-q) based components are obtained by multiplying their stationary based counterparts by 

the rotation matrix [R(-θ)]. This last is expressed in relation (B.5) and the final Park transformation 
equation is expressed in relation (B.6). 
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1.2. Model equations 

1.2.1. Electrical equations  

Relation (B.7) gives the 3-phase electrical equations of the SSM. Its corresponding matrix-based 
formulation is given in relation (B.8). 
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When applying the Park transformation to these 3-phase vectors, the following d-q based 

equations can be extracted. 

sd
sq

sqsq

sq
sd

sdsd

Ψω
dt

)d(Ψ
iRv

Ψω
dt

)d(ΨiRv

⋅++⋅=

⋅−+⋅=
 

Where, 
 

sqsqsq

rdsrsdsdsd

iLΨ
IMiLΨ

⋅=
⋅+⋅=  

 
1.2.2. Electromagnetic torque 

Relation (B.11) gives the expression of the electromagnetic torque. 
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1.2.3. Mechanical equation  

Relation (B.12) gives the expression of the mechanical equation. 
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2. α-β modeling of the Salient Synchronous Machine 

The expression of the stator flux is given in the relation (B.13). It is expressed as function of the 
stator inductance matrix, stator currents, mutual inductance matrix and the rotor current. Since the 
machine is salient, the inductances are position dependent, [62], [111]. 
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And, 
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From the 3-phase electrical equations (relation B.8), and after a Clark transformation, the (α-β) 
electrical equations are, 
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The (α-β) electrical equation are then rewritten as follows,  
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As it will be discussed afterwards, the identified stator inductances are the d-q Lsd and Lsq 
inductances. Their relationship with the inductances L1 and L2 is then, 
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Finally, the expression of the electromagnetic torque is, 
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3. Parameter identification 

3.1. Identification of the stator resistance Rs 

The identification of the stator resistance can be made either by measuring directly the resistance 
of the stator winding or by applying a DC voltage and then measuring the current. In our case the first 
method has been used. The obtained value is 10.5Ω. 

3.2. Identification of the mutual inductance Msr 

The identification of the mutual inductance is made when the implemented SSM runs as a no-
load generator. The amplitude of the measured Back-EMF, the rotating speed and the rotor current are 
then measured. From these data, the mutual inductance Msr is extracted according to the following 
relation. 

rd

bmf
sr I

V
M

⋅
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ω
max  

During the whole tests (simulations and experimentations), the excitation rotor current is 
maintained to 1.5A. With this value, the obtained Mutual inductance is equal to 0.85H 

 

3.3. Identification of the stator inductances Lsd and Ldq 

 The identification of the stator inductances is based on the method deeply investigated in [110]. 
This method is performed via a hysteresis based current control of the dq components of the stator 
current vector. With a locked rotor, the hysteresis based current controller allows the application of 
step reference to one component (e.g q component) of the stator current vector while the current 
component of the other axis (e.g. d component) is set to zero vice versa. From the sampled current 
responses, the dq-based stator inductances are then deduced. Note that, with the proposed 
identification method, the saturation is neglected and the cross saturations between the d and q axis are 
not considered. Figure B.4 gives an example of the current responses in both cases. 

 
Figure B.4:  (a) Response to a step isd*=Isn and isq*=0A  

(b) Response to a step isq*=Isn and isd*=0A 
(Figure extracted from [110]) 

 
From the measured settling times td and tq, and depending on the DC-link voltage VDC, the stator 

resistance Rs and the value of the current Isn, the stator inductances can be calculated as follow, 
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Having in mind that the stator inductances vary depending on the stator current, the average 
numerical values are then calculated and used by the implemented EKF. In our case they are: 
Lsd=0.245H and Lsq=0.229H. 
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Tuning of the current and speed regulators  

 

 
1. Tuning of the stator current d-q PI regulators 

To start with, it is necessary to recall the d-q based electrical equations of the implemented SSM 
(relation (C.1)).  
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Relations (C.2) and (C.3) are the equivalent d and q transfer functions. 

sLR
iLV

i
sds

sqsqsd
sd ⋅+

⋅⋅+
=

ω  

sLR
IMiLV

i
sqs

rdsrsdsdsq
sq ⋅+

⋅⋅−⋅⋅−
=

ωω  

These d-q currents are controlled with the help of PI regulators, whom the transfer functions are 
expressed as follows,  

s
KKPI id

pdd +=  

s
K

KPI iq
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Figure C.1 highlights a simplified block diagram of the control closed loops of isd and isq stator 
currents.  

 
  Figure C.1: Current control block diagram 

 
After having decoupled the d-q axes, the global d-q transfer functions are then extracted, 
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The tuning of the PI regulator gains is based on the poles compensation. This consists in making 
Kid/Kpd and Kiq/Kpq respectively equal to Rs/Lsd and Rs/Lsq. With this assumption, the final transfer 
functions of the control closed loops are, 
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These are first order transfer functions and Tisd and Tisq are respectively the time constants of isd 
and isq current control closed loops. These constants can then be set according to the desired dynamic 
performances. The values of the PI regulators gains are, 
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2. Tuning of the P-PI speed regulator  

The speed control strategy that has been implemented in the proposed work is based on P-PI 
speed regulator. This controller is characterized by two closed loops: an inner closed loop and an outer 
closed loop. The first one is based on a proportional regulator (P) which aims to impose the system 
poles at the user-defined location. The outer loop is based on a PI regulator which ensures the desired 
static and dynamic speed responses. Figure C.2 summarizes the principle of this regulator. 

 
  Figure C.2: Speed control block diagram 
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Assuming that the current controller is well-established and its dynamic is much faster than the 
speed controller, it is possible to make a link between the electrical speed ω and the stator currents isd 
and isq according to the following relation:  
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Assuming that in case of a flux oriented control application, the direct current isd is set to zero. 
Also, the effect of the load torque TL and the friction coefficient fL are neglected. This leads to the 
following transfer function between ω and isq, 
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The internal speed control loop is made up of a proportional controller, which is aimed to 
impose the controlled system poles at the desired locations. The corresponding transfer function is 
expressed in relation (C.14). This relation has been obtained with the consideration of the isq transfer 
function (relation (C.9)). 
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rdsrisq IMpT
JK 26

=ω
   

The final transfer function of the internal loop can be expressed as a second order system with 
double-real poles according to relation (C.16). 
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The external speed control feedback loop is performed via a PI controller in order to ensure zero 
steady-state speed error and to impose the response dynamic. The transfer function of the PI speed 
controller is given by, 
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Imposing the ratio Kiw/Kpw equal to 1/2Tisq, the final transfer function of the external speed loop 
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Here again a second order transfer function has been obtained. The value of Kpw is determined 
with regards to the expected overshoot and settling time. 
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Appendix D 
Extended Kalman Filter for AC Drive Sensorless Speed Controller 

FPGA-Based solution or DSP-Based solution 
 

 
1. Problem statement  

The performances of the developed FPGA-based sensorless speed controller have been 
compared to a fully software solution based on a DSP, [68]. The aim is to study and discuss the 
influence of the necessary execution time of the whole sensorless algorithm on the control bandwidth 
and quality. In fact the use of a software solution allows a long execution time which introduces 
significant time delays in the controller closed-loop. Consequently, in case of a high speed AC drive 
where high control performances are required, the controller bandwidth and quality are downgraded. 
This is mainly due to the DSP fixed architecture leading to serialize the treatment.  

In contrast, the use of a hardware solution such as FPGA ensures the possibility to implement a 
fully user-defined parallel architecture and then provides parallel treatment. In this case the execution 
time is dramatically reduced which leads to a quasi-instantaneous control (see chapter 6). This 
particularity provides the possibility to implement high bandwidth and high quality sensorless 
controllers.   

In order to illustrate and quantify the influence of the execution time, simulation and 
experimental tests have been achieved. In the following subsections, a comparison in terms of 
dynamic behavior is achieved. The used digital controller consists then on a Xilinx Virtex_2P FPGA 
in the one hand and on a TI TMSF2808 DSP (100MHz, 32Bit, 12-bit ADC, 2x16-bit multiplier, 16Ko 
RAM memory) [64] in the other hand. 

To start with, let us present the adopted timing diagram in both cases, Figure D.1 In the first 
case (Figure D.1(a)) and having in mind that the whole algorithm including the presented EKF 
equations have been implemented in the same DSP device, the obtained execution time is evaluated to 
66µs. Consequently, the necessary sampling period of the digital treatment has been set to 100µs, 
which is the same as the PWM switching period. 

 
Figure D.1: Timing diagram 

(a): case of a DSP sensorless controller (b): case of an FPGA sensorless controller 
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As far as the hardware FPGA based solution is concerned and when operating at a 50MHz clock 
frequency, the corresponding execution time is evaluated to 6µs which is eleven times less then the 
one obtained with the software solution. This fast treatment ensures an important flexibility regarding 
the timing diagram. For example, as shown in Figure D.1(b), the short execution time gives the 
possibility to launch the controller right before the PWM carrier peak so as to update the necessary 
PWM signals at the same switching period which ensures a quasi-instantaneous controller.   

Figure D.2 shows the synoptic of the normalized speed sensorless control closed-loop. In order 
to illustrate the impact of the execution time on the dynamic behavior, a time delay is introduced and 
the sensorless controller tuning (EKF, speed and current regulators) remains the same in both cases as 
well as the motor load conditions. 

As it can be noticed in this figure, the introduced time delay has an impact on the estimated 
speed and position. For the latter, this time can be considered as a phase shift and then influences Park 
transformations. Consequently, erroneous values are processed which affects the behavior of speed 
and current controllers. In other words, the control bandwidth is then influenced. 

 

 
Figure D.2: Sensorless speed control closed loop 

 
2. Influence of the time delay on Park transformations  

Relation (D.1) presents the equation of the abc_dq transformation module, where [R(θ)] is the 
rotation matrix. This module generates the d-q stator currents from the measured currents and the 
estimation position with the consideration of the time delay (phase shift). The latter is set to 
Tssc=Ts=Tpwm=100µs for the DSP-based solution and to Tssc=TexFPGA=6µs for the FPGA one. 

[ ] [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⋅⎥

⎦

⎤
⎢
⎣

⎡ −
=

snb

sna

sscssc

sscssc
sndq i

i
R

TT
TT

i
3

2
3

1
01

)(
)cos()sin(
)sin()cos(

θ
ωω
ωω  

From this relation, it can be noticed that when the operating speed increases, erroneous values 
are processed. For instance, in case of a 1256 rd/s electrical speed (corresponding to a 4000 rpm 
mechanical speed, case of a high speed AC drive, Table D.2), the processed currents are written as, 
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As for the dq_abc transformation module, relation (D.4) presents the corresponding equation.  
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Here again the influence of the introduced phase delay has an increasing impact with regards to 
the operating speed. In case of a 1256 rd/s operating speed, the obtained 3-phase voltages are 
expressed in relations (D.5) and (D.6),  
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Thus, in case of high speed operating condition, the introduced error is less important in the case 
of FPGA solution than in the case of DSP solution. 

3. Influence of the time delay on the controller bandwidth 

As mentioned before, the introduced errors on park transformations and the time delay 
introduced in the speed controller have a significant impact on the behavior of the corresponding 
regulators.  

The speed controller processes the isndq* reference for the current controller. With the 
consideration of the time delay, the corresponding mathematical equation is then  
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The dq-voltage references generated by the PI-based regulator (with the dq axes decoupling 
assumption) are expressed in relation (D.8).  According to the latter, the influence of time and phase 
delay can be stressed. 
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Figure D.3 highlights the obtained simulations and experimental results. These results are 
obtained for a low speed 1500 rpm AC Drive, Table D.1. It can be noticed, from the frequency 
behavior (Figure D.3 (a) and (b)) and the step response (Figure D.3 (c) and (d)) that for this low 
operating speed, the influence of the time delay is of less importance since the error in Park 
transformations and the delay in the speed controller are negligible. 

This is not the case for a high speed AC drive (Table D.2), [65], where a notable difference on 
the dynamic behavior is indicated. Figure D.4 presents the obtained simulation results in this case. The 
fast execution time ensured by the FPGA solution provides a greater bandwidth than the DSP one. 
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Figure D.3: Evaluation of the control bandwidth – Case of low speed AC drive 

(a) : Frequency response (magnitude) –Simulation  (b) : Frequency response (phase) –Simulation (c) : Step 
response (1000 rpm) –Simulation (d) : Step response (1000 rpm) –Experimentation 

 
Figure D.4: Evaluation of the control bandwidth – Case of high speed AC drive 

   (a) : Frequency response (magnitude)– Simulation  (b) : Frequency response (phase) –Simulation  
(c) : Step response (4000 rpm) –Simulation 

 

                      Table D.1: Synchronous Machine Parameters                                 Table D.2: Main Starter Generator Parameters  
                                                 Low speed AC Drive                                                                    High speed AC Drive 

0.8 KVA, 220V,1.5A, 50 Hz,  
3 Phases, Y connection, 2 pole pairs 

 200 KVA, 230V, 290A, 380 Hz,  
3 Phases, Y connection, 3 pole pairs 

Stator resistance 
Rs = 10.5 Ω 

Rotor resistance  
Rr = 62.5 Ω 

Stator resistance 
Rs = 16 mΩ 

Rotor resistance 
Rr = 0.34 Ω 

d axis stator 
inductance 

Lsd = 0.245 H 

Mutual inductance 
Msr = 0.85 H 

d axis stator 
inductance 

Lsd = 0.45 mH 

Mutual inductance 
Msr = 3.6 mH 

q axis stator 
inductance 

Lsq = 0.229 H 

Nominal stator 
current 

Inom = 1.52 A 

q axis stator 
inductance 

Lsq = 0.35 mH 

Nominal stator 
current 

Inom = 290 A 

1) Ch 1:    100 mVolt  50 ms          
2) Ch 2:    100 mVolt  50 ms          
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 Appendix E 
FPGA-based matrix multiplication and inversion  

 

 
1. FPGA-based 2-matrix multiplier 

In the case of the developed non-optimized EKF observer, matrix multiplications are processed. 
As discussed in chapter 6, the dimensions of processed matrices have been extended to 4x4 matrices 
which have allowed the factorization of matrix multiplications. In this section, we are presenting the 
FPGA architecture of the implemented 2-matrix multiplier.  

To start with, let’s define M1 and M2 as the two 4x4 input matrices and T the output 4x4 matrix. 
They are related as expressed in relation (E.1). 

4;21,
1

=⋅=∀ ∑
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d
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d

 

 The output matrix is processed after a set of 64 multiplications and 48 additions. In order to 
reduce the needed FPGA resources, it has been decided to factorize the multiplications and the 
additions. Then only four 22-bit multipliers and three 22-bit adders are used. With this assumption, the 
treatment is consequently serialized. The corresponding latency is then equal to 48 instead of 4 
without factorization. Figure E.1 presents the designed FPGA architecture.  
 

 
Figure E.1: FPGA architecture of the 2-matrix multiplier 

 
2. FPGA-based 3-matrix multiplier 

When it come the multiplication of three matrices, the development of the corresponding FPGA 
architecture is based on the factorization of the previously discussed 2-matrix multiplier. Additional 
matrix multiplexers and a matrix register have been introduced. Figure E.2 presents the designed 
FPGA architecture where A, B and C are the input matrices and O is the output matrix. With this 
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configuration, the total latency of the 3-matrix multiplier is equal to 96 instead of 8 without 
factorization.  

 
Figure E.2: FPGA architecture of the 3-matrix multiplier 

 

3. Matrix inversion 

The implemented 2x2 matrix inversion module is based on relation E.2.    
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In the case of having chosen the Xilinx FPGA solutions, the inversion of the matrix determinant 
is made using the Pipelined-Divider IP [2]. Figure E.3(a) presents the corresponding configuration 
wizard.  

 
Figure E.3: Xilinx Pipelined Divider IP 

 
The latency of the divider and the consumed FPGA resources are all conditioned by the chosen 

clock per division value (1, 2, 4 or 8). These values mean that the input data is sampled at each 1st, 2nd, 
4th of 8th clock rising edge. Figure E.3(b) and Figure E.3(c) present the relationship between the 
divider latency, consumed resources and the clock per division value. In the case of the developed 
application, the time/area performances (presented in chapter 6) have been analyzed in the case of 
clk/div set to 8.     
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