
HAL Id: tel-01994860
https://hal.science/tel-01994860

Submitted on 8 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fully FPGA-based Sensorless Control for synchronous
AC drive using an Extended Kalman Filter

Lahoucine Idkhajine

To cite this version:
Lahoucine Idkhajine. Fully FPGA-based Sensorless Control for synchronous AC drive using an Ex-
tended Kalman Filter. Automatic. Université de Cergy-Pontoise, 2010. English. �NNT : �. �tel-
01994860�

https://hal.science/tel-01994860
https://hal.archives-ouvertes.fr

Année 2010

UNIVERSITE DE CERGY PONTOISE

THESE

Présentée pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE DE CERGY PONTOISE

Ecole doctorale: Sciences et Ingénierie
Spécialité: Génie Electrique

Soutenue publiquement le 24 Novembre 2010

Par

Lahoucine IDKHAJINE

Fully FPGA-based Sensorless Control for
Synchronous AC Drive using an Extended Kalman

Filter

JURY

Président : Prof. Benoît ROBYNS HEI Lille

Rapporteurs : Dr. François AUGER Université de Nantes
 Prof. Serge PIERFEDERICI ENSEM Nancy

Examinateurs : Prof. Marcian CIRSTEA Anglia Ruskin University – Royaume Uni
 Dr. Josep GUERRERO Universitat Politècnica de Catalunya – Espagne

Directeur de thèse : Prof. Eric MONMASSON Université de Cergy Pontoise

Laboratoire SATIE - UCP/UMR 8029, 1 rue d’Eragny, 95031 Neuville sur Oise France

 Je dédie ce travail à toute ma famille, à ma mère, à mon père, à ma sœur et

à mon frère pour leur soutien et leur affection.
 Une pensée à mon grand père AGNTAF M’Barek, que Dieu ait son âme !

Résumé

L’objectif du travail réalisé dans le cadre de cette thèse est de montrer l’intérêt d’utiliser les
FPGAs (Field Programmable Gate Array) comme support pour l’implantation d’algorithmes
complexes dédiés à la commande de machines électriques. Pour ce faire, une commande sans capteur
mécanique utilisant un filtre de Kalman étendu et basée sur FPGA est réalisée. Cette commande est
destinée à piloter une machine synchrone à pôles saillants. Le modèle d-q de la machine basé sur
l’approximation d’inertie infinie est implanté. L’ordre du Filtre de Kalman est donc égal à 4 et la
complexité totale de la boucle de régulation est évaluée à près de 700 opérations arithmétiques (dont
plus de 53% de multiplications). Les apports des solutions FPGAs en termes de performances de
contrôle et en termes de capacité d’intégration sont quantifiés.

En termes de performances de contrôle, il a été démontré qu’en utilisant de telles solutions
matérielles, le temps de calcul est très réduit (de l’ordre de 5µs, 5% de la période d’échantillonnage).
Cette rapidité de calcul permet d’avoir un contrôle quasi-instantané ce qui améliore la bande passante
de la boucle de régulation. A ce sujet, une comparaison avec les performances obtenues avec une
solution logicielle telle que le DSP est effectuée. Dans les deux cas, le comportement dynamique de la
boucle de régulation sans capteur est quantifié.

En termes de capacité d’intégration, il est possible de développer une architecture commune qui
peut être adaptée à plusieurs systèmes. A titre d’exemple, il est possible de développer un filtre de
Kalman sur un même FPGA capable d’estimer les grandeurs de plusieurs systèmes sans pour autant
affecter les performances de contrôle.

En outre, une méthodologie de développement dédiée à de tels algorithmes complexes est
proposée. Il s’agit là d’une adaptation des méthodologies proposées dans des travaux de thèse
précédents, [62] et [63]. En effet, une étape de spécification préliminaire du système ainsi que des
procédures d’optimisation supplémentaires y sont introduites. Ces dernières sont particulièrement
nécessaires dans le cas de commandes complexes et permettent une adéquation entre l’algorithme
développé et l’architecture FPGA correspondante. De plus, cette méthodologie a été organisée de
façon à distinguer l’étape du développement de l’algorithme et l’étape du développement de
l’architecture FPGA.

Un état de l’art sur les technologies FPGA est également proposé. La structure interne des
FPGAs récents est décrite. Leur contribution dans le domaine de la commande des machines
électriques est quantifiée. Les différentes étapes de la méthodologie de développement sont présentées.

Le développement d’une commande numérique (basée sur FPGA) d’une machine synchrone à
aimants permanents associée à un capteur de position Resolver est par la suite traité. Cette application
s’inscrit dans un contexte avionique où l’objectif était d’avoir une solution FPGA hautement intégrée.
Pour cela, le FPGA Actel Fusion est utilisé. Ce composant intègre un convertisseur analogique
numérique. La commande, le traitement des signaux Resolver ainsi que la conversion analogique
numérique sont implantés sur le même composant.

En ce qui concerne la commande sans capteur basée sur le filtre de Kalman étendu, il a été
décidé de structurer les chapitres correspondants à travers la méthodologie de développement
proposée. Ainsi, la phase de spécification préliminaire du système, la phase du développement de
l’algorithme, la phase du développement de l’architecture FPGA et la phase d’expérimentation sont
séparément traitées. Durant la phase d’expérimentation, la procédure «Hardware-In-the-Loop (HIL)»
est incluse afin de valider le fonctionnement de l’architecture développée une fois la phase
d’implantation physique achevée.

Mots clefs

• Réseaux de portes programmables – Field Programmable Gate Array

• Méthodologie de développement

• Commande sans capteur mécanique

• Filtre de Kalman Etendu

• Machine synchrone à pôles saillants

• Machine synchrone à aimant permanent

• Capteur de position Resolver

• Traitement des signaux Resolver

Abstract

The aim of this thesis is to present the interest of using Field Programmable Gate Array (FPGA)
devices for the implementation of complex AC drive controllers. The case of a sensorless speed
controller using the Extended Kalman Filter (EKF) has been chosen and applied to a Salient
Synchronous Machine (SSM). The d-q model based on the infinite inertia hypothesis has been
implemented. The corresponding EKF order is then equal to 4 and the complexity of the whole
sensorless controller is equal to 700 arithmetic operations (more than 53% of multiplications). The
contribution of FPGAs in this field has been quantified in terms of control performances and in terms
of system integration.

In terms of control performances, the proposed FPGA-based solution ensures a short execution
time which is around 5µs (5% of the sampling period). This treatment fastness ensures a quasi-
instantaneous control which improves the control bandwidth. To this purpose, a comparison with a
software DSP-based solution is made. The dynamic behavior and the influence of the execution time,
in both cases, on the control bandwidth have been quantified.

In terms of integration capacity, it is possible to implement a generic FPGA architecture that can
be adapted to the control of several systems. Thus, it is possible to develop a common EKF
architecture that is able to estimate variables from many systems without affecting the control
performances.

In addition, a design methodology adapted to such complex controllers has been proposed. The
particularity of this updated methodology, compared to the previous ones ([62], [63]), is to provide an
enlarged set of steps starting from the preliminary system specification to the ultimate
experimentation. Optimization procedures have also been introduced. These optimizations are
necessary in case of complex controllers and lead to the adequation between the developed algorithm
and the corresponding hardware FPGA architecture.

A state of the art FPGA technology is also presented. The internal structure of the recent devices
and their corresponding technology are discussed. Their contribution in the field of AC drive
applications is quantified. An in-depth presentation of the proposed design methodology is made.

Besides, the development of a fully integrated FPGA-based controller for a Permanent Magnet
Synchronous Machine (PMSM) associated with a Resolver sensor is presented. This controller has
been developed for an aircraft application where the main objective was to develop a fully integrated
FPGA solution. The Actel Fusion FPGA device has been used. This device integrates an Analog to
Digital Converter (ADC). The current controller, the Resolver Processing Unit (RPU) and the analog
to digital conversion are implemented within the same device.

When it comes to the sensorless controller, the corresponding chapters have been structured
according to the presented design methodology: the preliminary system specification, the algorithm
development, the FPGA architecture development and finally the experimentation. The latter includes
Hardware-In-the-Loop (HIL) tests and the final experimental validation.

Keywords

• Field Programmable Gate Array

• Design methodology

• Sensorless controller

• Extended Kalman Filter

• Salient Synchronous Machine

• Permanent Magnet Synchronous Machine

• Resolver sensor

• Resolver Processing Unit

Remerciements

Les travaux de thèse présentés dans ce mémoire ont été réalisés au sein de l’équipe SETE

(Systèmes d'Energies pour les Transports et l'Environnement) du laboratoire SATIE (Systèmes et
Applications des Technologies de l’Information et de l’Energie), antenne de l’université de Cergy-
Pontoise.

Ces quelques remerciements témoignent de la reconnaissance que je porte à toutes celles et tous
ceux qui ont contribué de près ou de loin à la réussite de ce travail.

Je ne puis commencer sans remercier mon directeur de thèse Eric MONMASSON, Professeur
des Universités à l’université de Cergy-Pontoise et directeur de recherche de l’antenne du laboratoire
SATIE à Cergy-Pontoise. J’ai eu la grande chance d’avoir été sous sa direction depuis mon premier
stage de Master. J’ai pu découvrir un homme aux grandes qualités humaines et scientifiques. Je ne lui
exprimerai jamais assez ma profonde reconnaissance pour tous ses conseils, ses encouragements, sa
confiance et les conditions de travail excellentes qu’il m’a procurées.

Je voudrais également exprimer mes sincères et inoubliables remerciements à Sandrine
LEBALLOIS, Maître de Conférences à l’université de Cergy-Pontoise. En effet, elle a été à l’origine
de mon parcours et ma réussite puisque c’est elle qui m’a conseillé, encouragé et soutenu pour
continuer mes études et m’orienter vers le domaine de l’enseignement et la recherche.

Je tiens aussi à remercier Wissem NAOUAR, Enseignant Chercheur à l’ENIT (Ecole Nationale
d’Ingénieurs de Tunis) pour son incomparable soutien, ses qualités humaines et ses précieux conseils
qu’il m’a prodigués tout au long de cette période.

Mes remerciements s’adressent aussi à mes très chères collègues Amira MALOUF, Imene
BAHRI et Herie PARK. J’ai eu le grand plaisir de travailler avec elles et j’ai particulièrement apprécié
leur amitié, leur soutien et leur esprit d’équipe.

Je profite également de cette occasion pour exprimer ma profonde reconnaissance à Isabelle
COLLET, Aude BREBANT, Don Abasse BOUKARI et Kamel BOUALLAGA pour leur amitié, leur
contribution et leur soutien sans limite tout au long de cette période.

Mes vifs remerciements s’adressent également à Jean-Yves LEHUEROU, Bruno BUSSO,
Lionel VIDO, Dejan VASIC ainsi que tout le corps professoral de l’Institut Universitaire
Professionnalisé (IUP-GEII) de l’université de Cergy-Pontoise.

Je ne peux terminer sans avoir une pensée à mon grand père M’Barek (que Dieu ait son âme),
mon grand père Lahcen, mes parents Mohamed et Yamina, mon frère Youssef, ma sœur Nadia et toute
ma famille, pour leurs soutien et encouragements. Je voudrais souligner que ma réussite est d’abord et
avant tout leur réussite. Je voudrais en outre témoigner mes sincères reconnaissances à la famille
BIZOUNKAD et plus particulièrement à Lahcen BIZOUNKAD qui n’a cessé de m’assurer tous les
moyens moraux et matériels pendant mes études en France.

Table of content

General Introduction

1. Thesis objectives and author contributions ... 12
2. Outline... 13
3. Nomenclature .. 14

Chapter 2: State of the art FPGA technology

1. Introduction ... 17
2. Generic structure of an FPGA ... 19

2.1. Logic Blocks .. 20
2.2. Interconnection network .. 20
2.3. Clock manager blocks.. 21
2.4. I/O blocks... 22
2.5. Arithmetic (DSP) blocks.. 23
2.6. Memory blocks .. 23
2.7. Communication blocks .. 23
2.8. Embedded processor cores... 23
2.9. Configuration technology .. 24

3. Case studies ... 24
3.1. SRAM based technology ... 25
3.2. Antifuse based technology ... 26
3.3. Flash based technology .. 27
3.4. Feature summary.. 28

4. Design tools... 29
5. Contribution of FPGAs in complex AC drive applications... 30

5.1. Evaluation in terms of control performances ... 30
5.2. Evaluation in terms of system integration.. 32
5.3. FPGA implementation constraints ... 34

6. FPGA design methodology for control applications ... 35
6.1. Preliminary system specification ... 36
6.2. Algorithm development ... 36
6.3. FPGA-based architecture development.. 38
6.4. Experimentation ... 42

7. Conclusion... 43

Chapter 3: Fully integrated FPGA-based controller for a PMSP associated with a resolver
sensor

1. Introduction ... 45
2. Description and implementation of the FPGA integrated ADC.. 47
3. Resolver Processing Unit .. 48

3.1. Resolver sensor description ... 48
3.2. RPU principle.. 49
3.3. Synchronous demodulation.. 49
3.4. Angle Tracking Observer (ATO)... 49
3.5. Compensation of the ADC Sampling Synchronization Error for resolver signals..................... 51
3.6. Evaluation of the noise rejection.. 53
3.7. Experimentation ... 54

4. FPGA-based controller description ... 54
4.1. Controller timing diagram.. 55
4.2. Compensation of ADC Sampling Synchronization Error for PMSM currents 56

4.3. Experimental results... 58
4.4. Time/Area performances.. 58
4.5. Influence of the execution time on the control quality .. 59

5. Conclusion... 59

Chapter 4: FPGA-based sensorless control for synchronous AC drive - Preliminary system
specification

1. Introduction ... 61
2. Sensorless control system - Hardware specification ... 62

2.1. Power stage .. 62
2.2. Electrical sensors, ADC and DAC boards ... 63
2.3. FPGA-based digital control unit .. 63
2.4. Host-PC interface... 63

3. Stator current controller and speed controller ... 63
3.1. Stator current controller ... 63
3.2. PWM specifications ... 64
3.3. Compensation of VSI nonlinearities .. 64
3.4. Speed controller ... 65
3.5. Voltage interface .. 65

4. Estimation of the rotor position and speed - sensorless methods .. 65
4.1. Sensorless methods based on signal injection.. 66
4.2. Sensorless methods based on the motor model.. 66
4.3. Choice of the sensorless method.. 67

5. Extended Kalman Filter basics.. 67
6. System state space modeling... 69

6.1. Modeling in (d-q) rotating frame ... 69
6.2. Modeling in (α-β) stationary frame.. 71
6.3. Choice of the model ... 73

7. Conclusion... 75

Chapter 5: FPGA-based sensorless control for synchronous AC drive - Algorithm development

1. Introduction ... 77
2. Modular partitioning.. 78
3. Continuous-time functional simulation ... 78
4. Digital realization .. 82

4.1. Discretization and sampling period setting .. 82
4.2. Algorithm normalization.. 83
4.3. Fixed-point data setting.. 84

5. Algorithm optimization ... 87
5.1. EKF complexity pre-evaluation ... 87
5.2. Optimization of the EKF algorithm ... 87
5.3. Complexity post-evaluation ... 88

6. Discrete-time, fixed-point simulation.. 89
6.1. Validation of the stator current controller .. 89
6.2. Validation of the speed controller .. 90
6.3. Validation of the EKF observer ... 92
6.4. Validation of the EKF-based sensorless speed controller.. 96

7. Conclusion... 99

Chapter 6: FPGA-based sensorless control for synchronous AC drive - FPGA architecture
development

1. Introduction ... 101
2. Architecture optimization.. 102

2.1. Optimization strategy... 102
2.2. Optimization of the EKF prediction module.. 105
2.3. Optimization of the EKF compensator .. 107
2.4. Optimization of the EKF innovation module... 111

3. FPGA architecture design ... 112
4. Architecture VHDL-coding... 115
5. Architecture functional simulation .. 115
6. Design synthesis and time/area performances analysis... 116
7. Conclusion... 119

Chapter 7: FPGA-based sensorless control for synchronous AC drive - Experimentation

1. Introduction ... 121
2. Overview of the experimental platform .. 122
3. Hardware in The Loop validation ... 124
4. Experimental validation .. 130

4.1. Validation of the stator current controller .. 130
4.2. Validation of the sensor-based speed controller .. 131
4.3. Validation of the EKF observer ... 132
4.4. Validation of the whole sensorless speed controller .. 132

5. Conclusion... 135

General conclusion and perspectives

1. General conclusion .. 137
2. Perspectives ... 137

2.1. Algorithm perspectives .. 138
2.2. FPGA development perspectives ... 138

Appendix A - Compensation of the VSI non-linearities ………………………………………… 139

Appendix B - Salient Synchronous Machine - Modeling and parameter identification ……... 145

Appendix C - Tuning of the current and speed regulators ………………………………………151

Appendix D - EKF for AC drive applications - FPGA-Based solution or DSP-Based solution 155

Appendix E - FPGA-based matrix multiplication and inversion ……………………………… 159

Bibliography ……………………………………………………………………………………… 161

11

Chapter 1

General Introduction

During these last years, the interest of power electronics and drive applications has been

constantly rising. They have encountered a significant progress in terms of power management, by
using high efficiency magnetic and power electronic materials, and in terms of control technology by
implementing sophisticated control solutions.

When focusing on these control solutions, it is commonly accepted that digital-based controllers
are the systematic option. A wide range of them are mostly carried out using software solutions such
as microcontrollers and Digital Signal Processors (DSPs). The increasing interest to such solutions is
due to their low cost, their design flexibility and their ability to implement complex control
algorithms. However, their use remains limited in some industrial applications where high control
performances are required. This is typically true for aircraft applications where high control reactivity
and large bandwidth are key-issues. The latter are mainly related to the computing time of the used
digital controller. The use of software solutions is then limited because of their fixed internal
architecture which leads to fully serialize the treatment. The more complex the control algorithm, the
longer the execution time. As a consequence, delays are introduced in the control closed loop which
affects the control bandwidth.

 To achieve high control performances, the use of fast digital solutions is then essential. Many
researches and industrial applications have proved that Field Programmable Gate Array (FPGA)
solutions are good candidates. Indeed, FPGAs are outperforming today’s software solutions by
exploiting the inherent algorithm parallelism. Consequently, implementing such hardware solution
gives the possibility to develop an architecture that is fully dedicated to the control algorithm. Thus,
allying today’s FPGA high speed performances with parallelism, leads to a drastic reduction of the
execution time. Consequently, in terms of control performances, a quasi-instantaneous control is
ensured which enhances the control reactivity and bandwidth.

In addition to these control performances, the system integration is also another criterion that
justifies the use of FPGAs. Indeed, their increasing integration density allows the implementation of
several independent control algorithms within the same device. When exploiting the control rapidity, it

Chapter 1: General introduction

12

is also possible to implement a unique algorithm that can control quasi-simultaneously several
systems. Along this integration way, recent FPGAs give as well the possibility to implement software
treatment since they can integrate processor cores. This makes them true System on Chip (SoC)
solutions. Furthermore, a novel SoC approach consists in integrating mixed signal elements such as
Analog to Digital Converter (ADC) that has been encountered in niche FPGA devices.

With all these assets, the use of such hardware solutions has successfully allowed the
implementation of advanced AC drive control algorithms, [24], [62]. In addition to the standard
control strategies, advanced control strategies such as oversampling control, multi-level multi phase
control, predictive control and re-configurable control have been proposed.

As far as the design process is concerned, FPGA solutions have been the focus of many
researches. All these researches share the same objective which is to provide a design methodology
that makes the design process more manageable and less intuitive, [33]-[37], [63].

1. Thesis objectives and author contributions

The proposed thesis work is a prolongation of the previously discussed researches and
applications. The objective is to evaluate how FPGAs can also be suitable for the implementation of
complex AC drive controllers. The case of a sensorless controller for a synchronous AC drive has
been chosen. The chosen sensorless method is based on the Extended Kalman Filter (EKF) which
estimates the rotor position and speed from the current and voltage quantities. Due to the EKF
complexity, such sensorless controller is systematically implemented in DSP solutions. With these
solutions, the execution time is frequently evaluated to several tens or hundreds of microseconds.

The aim is then to evaluate how, with only a few microseconds of computing time (less than
5µs), an FPGA solution can boost the control performances and how they can increase the system
integration. In the following, more details about the thesis objectives and author’s contributions are
listed,

• Before starting the development of the sensorless controller, a first evaluation of the
hardware FPGA solutions in terms of system integration is achieved. A sensor-based
controller for a Permanent Magnet Synchronous Machine (PMSM) is developed. This
PMSM is associated with a resolver position sensor. This first task belongs to an avionic
research program and the objective was to develop a fully integrated FPGA-based
controller. To reach this integration aim, the used target is the Actel Fusion FPGA. In
addition to the digital features, this device integrates also an ADC. The PMSM controller,
the resolver signal treatment and the analog to digital conversion are all ensured by the same
device. This development has led to the following publications: [18]-[23].

The next points are related to the development of the FPGA-based sensorless controller using
the EKF. This controller is applied to a Salient Synchronous Machine (SSM). Here again, the
developed design is intended to be used in an aircraft application which aims to develop a sensorless
controller for a Brushless Synchronous Starter Generator (BSSG) [38], [65], [92].

• Adaptation of the design methodology proposed in [63] to complex control applications.
The proposed methodology is reorganized and is divided into four main phases: (i) the
preliminary system specification, (ii) the development of the algorithm, (iii) the
development of the FPGA architecture and (iv) the experimentation. This methodology is
applied to the development of the EKF-based sensorless controller, [25].

• Insertion of algorithm optimization procedures to the design methodology. The objective
here is to optimize the complexity of the algorithm by reducing its computational cost.
When applied to the developed sensorless controller, this optimization is to be balanced with
the precision and the dynamic behavior, [69].

Chapter 1: General introduction

13

• Insertion of an FPGA architecture optimization procedure. The latter takes into account
implementation constraints. The objective is to develop an FPGA architecture that is able to
process the algorithm with the consideration of timing and area constraints, [67].

• Analysis and quantification of the control performances. To this aim, the control bandwidth
of the developed FPGA-based sensorless controller has been quantified. The same analysis
is done with a DSP-based sensorless controller. Both of these solutions have been developed
and compared, [68].

• Analysis and quantification of the system integration. With the obtained time/area
performances, author states the possibility to implement a common architecture that can be
adapted and used quasi-simultaneously to drive many systems without downgrading their
control performances.

• Hardware-In-the-Loop validation of the developed FPGA-based sensorless controller, [24],
[66].

• Experimental validation of the developed FPGA-based sensorless controller, [24], [25],
[65]-[69].

2. Outline

This thesis report is basically divided as follows.

In chapter 2, a state of the art FPGA technology is presented. In this chapter, author starts by
presenting the evolution of FPGAs and their value-added to the nowadays industrial electronics. A
generic structure of the recent devices is provided and then case studies are achieved. In the latter, the
features of recent FPGAs from each technology are given. Their contribution in the field of power
electronics and drive applications is presented. To this aim, we have focused on the case of complex
AC drive control applications. A quantitative analysis in terms of control performances and system
integration is achieved. Finally, the proposed design methodology is presented.

In chapter 3, author deals with the fully integrated FPGA-based controller for the PMSM
associated with the Resolver sensor. The used digital control unit is based on the Actel Fusion FPGA.
At first, the presentation and the implementation of the integrated Analog to Digital Converter (ADC)
is achieved. Then the principle of the Resolver sensor is presented. The extraction of the rotor position
and speed is ensured by the FPGA-based Resolver Processing Unit (RPU). This module is associated
with a Hysteresis PMSM current controller. The introduced Sampling Synchronization Error (SSE) by
the implemented ADC is also discussed and compensation procedures are proposed.

Now, the development of the FPGA-based sensorless speed controller is initiated. Chapters 4 to
chapter 7 are organized according to the proposed design methodology.

In chapter 4, the preliminary system specification is discussed. The objective of this step is to
make a hardware specification of the system in the one hand, and make an algorithm benchmarking in
the other hand. For the first case and depending on the mechanical load conditions, the AC drive and
the supply conditions are chosen. The algorithm benchmarking consists in choosing the control
strategy, the sensorless method and the system state space model.

In chapter 5, the development of the whole sensorless algorithm is achieved. During this phase,
the modular partitioning, the continuous-time simulation, the digital realization, the algorithm
optimization and the necessary discrete-time and fixed-point simulations are achieved.

Chapter 6 treats the development of the corresponding FPGA architecture. Taking into account
the defined implementation constraints, the optimization of this architecture is made with the help of
the Algorithm Architecture Adequation methodology. Then the design of the architecture, its VHDL-
coding and the time/area performances analysis are made.

Chapter 1: General introduction

14

Finally, chapter 7 presents the experimentation step. In order to make a first experimental
operating guarantee, the Hardware-In-the-Loop (HIL) validation is performed. Then the ultimate
experimental validation using the presented experimental platform is achieved.

3. Nomenclature

3.1. Symbols

Clk : Clock signal
Reset : Reset signal
En : Enable signal
Init_done : ADC configuration flag – Fusion FPGA
Start : Start signal
DATAVALID : ADC result ready – Fusion FPGA
CALIBRATE : ADC calibration flag – Fusion FPGA
Vin : ADC analog voltage input – Fusion FPGA
CHNumber : Analog multiplexed selection input – Fusion FPGA
xxx_RDY : ADC conversion flag – Fusion FPGA
tconv : ADC Conversion time – Fusion FPGA
εSSE : ADC sampling synchronization error – Fusion FPGA
θe, ωe : Electrical angular position and speed estimated from the Resolver Processing Unit
θr, ωr : Actual position and speed, from Resolver sensor
θoffset : Position offset
Vcos, Vsin : Amplitude modulated Resolver sensor outputs
Vcos_D, Vsin_D : Demodulated Resolver signals
E : Resolver Excitation signal
ωex : Resolver Excitation pulsation
m : Resolver transformation ratio
εθ : RPU angular position error
Hθ : RPU position-position transfer function
Hω : RPU speed-position transfer function
K1 : RPU closed-loop coefficient
K2 : RPU closed-loop coefficient
Ts : Sampling period
Bw : Hysteresis bandwidth
isa, isb, isc, Ird : 3-phase stator currents and the rotor currents
εisa, εisb, εisc, : 3-phase stator current errors
isd, isq : d-q stator currents
εid, εiq : d-q current errors
isα, isβ : α-β stator currents
θ, ω : Electrical angular position and speed
VDC, VZSS : DC link voltage, Zero Sequence voltage
Vsa, Vsb, Vsc : 3-phase stator voltages
vsd, vsq : d-q stator voltages
vsα, vsβ : α-β stator currents
Sa, Sb, Sc : VSI switching signals
Va, Vb, Vc : 3-phase power supply voltages
Vao, Vbo, Vco : 3-phase voltages – VSI voltages
Te,TL : Electromagnetic torque, Load torque
Rs, Rr : Stator, rotor Resistances
Lsd, Lsq : d-q stator inductances
Msr : Stator-rotor mutual inductance
fL, J : Viscous friction coefficient, Rotor inertia
p : Pole pairs number
N : Mechanical speed
Ω : Angular mechanical speed
θm : Mechanical rotor position
Vbmf : Back-EMF voltage
Ψ : Flux

Chapter 1: General introduction

15

x, u, y : State space vector, System input and output vectors
w, v : System disturbances
f, h : continuous-time state space matrix, System output matrix
fd, hd : Discrete-time State space matrix, Discrete-time System output matrix
Fd, Hd : Jacobian matrices for linearization
K : Kalman gain matrix
P, P0 : State error covariance matrix, Initial covariance matrix
Q, R : Model noise and measurement noise covariance matrices
Kp : PI-regulator proportional gain
Ki : PI-regulator integral gain
Vnom : Nominal voltage
Inom : Nominal current
Nnom : Nominal speed (rpm)
VBcc : Voltage base value for current controller
VBekf : Voltage base value for the EKF
IB : Current base value
ωB : Angular speed base value
θB : Angular position base value
Gvsensor : Gain introduced by the voltage sensor
Gisensor : Gain introduced by the current sensor
GADC : Gain introduced by the ADC

3.2. Indexes

s, r : Stator and rotor index
d, q : Rotating reference frame indexes
α, β : Stationary reference frame indexes
*, ^ : Reference quantity, Estimated quantity
k : Sampling index
B, n : Base quantity for normalization, Normalization index
a, b, c : 3-phase reference frame index
k/k-1, k/k : Predicted quantity, Estimated optimal quantity
k-1/k-1 : Estimated optimal quantity at the previous sampling period

3.3. Abbreviations

A3 : Algorithm Architecture Adequation
ADC : Analog to Digital Converter
ASIC : Application Specific Integrated Circuit
ATO : Angle Tracking Observer
CAD : Computer Aided Design
CAM : Computer Aided Manufacture
CAN : Control Area Network
CAT : Computer Aided Test
CB_PWM : Carrier Based PWM
CB_SPWM : Carrier Based Sinusoidal PWM
CB_ZSS_PWM : Carrier Based PWM with Zero Sequence Signal
CCC : Clock Conditioning Circuit
CLB : Configurable Logic Block
CMT : Clock Management Tile
CORDIC : COordinate Rotation Digital Computer
CPLD : Complex Programmable Logic Device
DAC : Digital to Analog Converter
DCM : Digital Clock Manager
DFG : Data Flow Graph
DSP : Digital Signal Processor
EDA : Electronic Design Automation
EDK : Embedded Development Kit

Chapter 1: General introduction

16

EDS : Embedded Design Suite
EEPROM : Electrically Erasable Programmable Read Only Memory
EKF : Extended Kalman Filter
EMF : Electromotive Force
EPROM : Erasable Programmable Read Only Memory
FDFG : Factorized DFG
FIFO : First In First Out
FPGA : Field Programmable Gate Array
HIL : Hardware In the Loop
I/O : Input / Output
I2C : Inter Integrated Circuit
IC : Integrated Circuit
ICON : Integrated CONtroller
IGBT : Insulated Gate Bipolar Transistors
ILA : Integrated Logic Analyzer
IOE : I/O Element
IP : Intellectual Property
LAB : Logic Array Block
LB : Logic Block
LC : Logic Cell
LE : Logic Element
LM : Logic Module
LUT : Look Up table
MMCM : Mixed Mode Clock Manager
OTP : One Time Programmable
P_PI : Proportional – Proportional – Integral
PCI : Peripheral Component Interconnect
PI : Proportional – Integral
PLL : Phase Locked Loop
PMSM : Permanent Magnet Synchronous Machine
PWM : Pulse Width Modulation
RAM : Random Access Memory
RDC : Resolver to Digital Converter
ROM : Read Only Memory
RPU : Resolver Processing Unit
SAR : Successive Approximation Register
SEU : Single Event Upset
SIA : Satellite Industry Association
SMO : Sliding Mode Observer
SoC : System on Chip
SPI : Serial Peripheral Interface
SR : Shift Register
SRAM : Static Random Access Memory
SSE : Sampling Synchronization Error
SSM : Salient Synchronous Machine
SVPWM : Space Vector PWM
THD : Total Harmonic Distortion
USB : Universal Serial Bus
VCO : Voltage Controlled Oscillator
VHDL : Very high speed integrated Hardware Description Language
VIO : Virtual Input/Output
VSI : Voltage Source Inverter
VT : VersaTile

17

Chapter 2

State of the art FPGA technology

1. Introduction

A few decades ago, digital electronic designs were mainly based on basic Integrated Circuits
(ICs). Each of them was fully specified by the manufacturer and has a specific function. The end-user
had to make a collection of the necessary ICs to develop a digital circuit that performs the desired
function. Generally, digital systems were easier to develop, smaller in terms of complexity, heavier in
terms of board size and ran at low speed performances. No Design tools existed which made the
design processes more intuitive.

The increasing success of these digital systems and their value-added to the early everyday’s life
made customers starting to ask for more sophisticated device solutions. Device solutions that are
manufactured and specified to the developed application and that are smaller, faster, more complex,
low cost and low power consuming. All these challenges made designers to compete and propose
many solutions that led to the expansion of today’s electronic industry.

Driven by these demands, new materials, new fabrication processes, new design tools and
device technologies have been proposed and new markets for digital circuits have evolved. Indeed,
with the increasing resort to informatics and their associated computing resources, a set of efficient
software tools are proposed [8]. Therefore, Electronic Design Automation (EDA) and Computer Aided
Design (CAD) tools are provided for the design process. For the fabrication process, Computer Aided
Manufacture (CAM) and Computer Aided Test (CAT) tools are proposed.

When it comes to device technologies, many solutions are nowadays available and an additional
benchmarking effort has to be made by the end-user so as to choose the best one that suits the desired
performances and also the expected level of flexibility, re-programmability, cost and power
consumption. This leads to many start-up questions that are asked during system specification: do we
have to use a set of standard ICs, a rapid-prototyping reprogrammable solution (Semi-Custom
Application Specific Integrated Circuit-ASIC) or a fully custom solution (Full custom ASIC)? Do we
have to use fully software devices (Digital Signal Processor-DSP, µProcessor, µController …), fully

Chapter 2: State of the art FPGA technology

18

hardware devices (Complex Programmable Logic Device-CPLD, Field Programmable Gate Array-
FPGA …) or mixed software/hardware devices (FPGA System on Chip-SoC)?

Among this diversity of digital solutions and since their first introduction to the market in 1985
by the Xilinx Company, FPGA hardware technologies have attracted an always increasing interest.
Indeed, FPGAs belong to the semi-custom ASIC family. The latter low cost devices consist of pre-
designed (by the manufacturer) elementary cells and interconnections that can be programmed and
interconnected by the user in order to realize a specific function for a specific application. In addition
to their low manufacturing cost, these devices distinguish themselves by a high integration density, a
notable computation rapidity, a high level of flexibility and a rapid prototyping.

Nowadays, the always increasing integration density, speed and the low power consumption
make FPGA solutions suitable for complex applications in different domains such as, digital signal
processing, power electronics and drive applications, communication, aerospace, defense, etc. This is
also made possible with the considerable progress in terms of process technology which has reached
down to 40nm (28nm has been recently announced by Xilinx and Altera vendors) [2], [3]. To give a
visual evolution of FPGA capacities, Figure 2.1 overviews the evolution of FPGAs in terms of density
(logic cells), speed, and process technology. It is worth noticing that these waveforms have been
obtained by comparing the available commercial FPGAs. Also the measurement of speed is based on
the maximum available clock frequency that can be reached within the FPGA.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Logic cells 100 484 1024 1296 12160 27648 51840 99216 200448337500531200758784813050

1985 1987 1990 1992 1995 1998 1999 2002 2004 2006 2008 2009 2010

0

500

1000

1500

2000

speed (MHz) 100 100 100 125 204 420 500 550 667 800 1080 1080

Techno (nm) 2000 1200 800 420 334 220 130 90 65 40 40 40

1985 1987 1990 1992 1995 1998 2002 2004 2006 2008 2009 2010

Figure 2.1: Evolution of FPGA performances

From a more financial point of view, many market analyses have been achieved and the
conclusions in each case gave promising financial value-added of FPGAs. For example, according to
an In-Stat market analyst documentation article (published in 2006) where an estimation of the FPGA
market evolution was made [1], the value of worldwide FPGA market would increase from $1.9
billion in 2005 to $2.75 billion by 2010. Another precise example of FPGA market is given in Figure
2.2 where the evolution of Dollar consumption by Major (Satellite Industry Association) SIA defined
regions is stressed.

Chapter 2: State of the art FPGA technology

19

Figure 2.2: FPGA market evolution in SIA regions (source: In-Stat market analyst)

The goal and the challenge of this chapter are to introduce a large part of FPGA facets. Thus, the
next part introduces the generic structure of an FPGA where the most important and relevant FPGA
elements are presented. The case studies provided in part 3 aim to make a quantitative description of
FPGAs by focusing on precise FPGA devices from each technology. Part 4 is devoted to the
contribution and the application of FPGAs in the field of power electronics and drive applications
especially in the case of complex control algorithms. Advantages of using FPGAs in this field and also
implementation constraints to manage are both focused on. Finally, an FPGA design methodology
dedicated to power electronics and drive applications is discussed.

2. Generic structure of an FPGA

As presented in Figure 2.3, the basic structure of an FPGA consists of a matrix of logic blocks,
an interconnection network and configurable I/O blocks [2]-[17]. To ensure high level of integration,
today’s FPGA devices also include coarse-grain hardwired elements such as memory blocks,
arithmetic (DSP) blocks, clock manager blocks and communication blocks. Furthermore, FPGA
solutions give the possibility to implement embedded processor cores which makes them true System
on Chip (SoC) solutions [26]-[29]. Also, a novel SoC approach consists in integrating mixed signal
elements such as Analog to Digital Converters (ADCs) that has been encountered in the Actel Fusion
FPGA [10].

Figure 2.3: Generic structure of an FPGA (Island topology)

I/O blocks

Interconnection network

Logic block

Clock manager
blocks

Memory blocks Arithmetic (DSP) blocks

Communication
blocks

Embedded
processor core

Chapter 2: State of the art FPGA technology

20

2.1. Logic Blocks

First of all, it is worth noticing that the naming of Logic Blocks (LBs) has been intentionally
chosen so as to keep the generic structure as independent on FPGA families as possible. In fact, to
anticipate the discussion made in the case studies (part 3); different appellations are adopted by FPGA
vendors with different levels of granularity. For instance, Slice and Configurable Logic Block (CLB)
appellations are used by Xilinx vendor, [2]. Logic Element (LE) and Logic Array Block (LAB) are
used by Altera Vendor, [3] and VersaTile is used by Actel, [4].

Depending on the expected function to implement, each LB is configured to perform
combinatorial and/or sequential operations. An LB is generally composed of a set of Look-Up-Tables
(LUTs) dedicated to combinatorial operations and a set of D-Flip-Flops for sequential operations. In
addition to this basic operating mode, an LB is also able to perform a local storage function
(distributed RAM memory), shift register (SR), multiplexer, and adder/subtractor operations.

Although the internal structure of LBs differs from an FPGA family to another, a normalized
FPGA density metric has been accepted. Indeed, a common Logic Cell (LC) has been defined which is
composed of a 4-bit LUT, a D-Flip-Flop, a carry chain (for arithmetic operations) and a multiplexer.
Roughly speaking, Altera FPGAs include LEs, each of them is equivalent to one LC [3]. A Xilinx
Spartan-6 FPGA CLB is equivalent to 12.8 LCs [12] and a Virtex FPGA CLB is equivalent to 4.5 LCs
[13]. Figure 2.4 highlights the internal structure of an elementary LC.

Figure 2.4: Internal structure of an elementary LC

2.2. Interconnection network

The programmable interconnection network is the backbone of the FPGA logic resources.
Where the FPGA fabric performs arithmetic and logical computations, the programmable
interconnection network makes the necessary connections between the necessary elements so as to
develop the architecture that performs the expected user function.

In many today’s FPGAs, three typical interconnection techniques can be encountered: the
nearest-neighbor technique, the segmented technique and the hierarchical technique [6]. By
considering the distance between the FPGA elements to be interconnected and the complexity of the
developed architecture, a combination of these techniques is made so as to optimize signal propagation
delays.

2.2.1. Nearest-neighbor technique

This technique consists in directly routing each logic block with each of its immediate neighbors
using local interconnection [6]. Although, this technique has the credit to be simple, it has a lack
severe propagation delay and connectivity issues. This is especially true when the distance and the
complexity increase. This is the reason why this technique is combined with segmented and
hierarchical techniques.

En

D Q

Clr

LUT Carry
Chain

RAM
SR

a

b

c

d

e

clk
En

Clr

Y1

Y2

Y3 M
U
X

Carry_in

Carry_out

Chapter 2: State of the art FPGA technology

21

2.2.2. Segmented technique

The routing is, in this case, made using specific switch matrices. As described in Figure 2.5, the
interconnection between logic blocks is segmented and the switch matrices ensure the connectivity
between these segments, allowing long distance routing to be accomplished and then ensuring
optimized propagation delays [6]. As an example, this topology is realized in Xilinx and Altera
FPGAs.

Figure 2.5: Segmented interconnection technique

2.2.3. Hierarchical technique

This is a slightly different approach to reducing propagation delays of long wires. In fact, as
depicted in Figure 2.6, at the lower level of hierarchy, local neighbor logic blocks are grouped together
as a single cluster. Within each cluster, local nearest-neighbor routing is made. Then, at the immediate
higher level of hierarchy, adjacent clusters are grouped and form another cluster in the higher level of
grouping [6]. This is repeated at higher levels of hierarchy, with larger clusters (super-clusters) and
longer wires. As in the segmented technique, the connection points that connect one level of routing
hierarchy to another are ensured by switch matrices. This interconnection technique is typically used
by Actel Antifuse FPGAs where 3 levels of hierarchy are available, [4].

Figure 2.6: Hierarchical interconnection technique

2.3. Clock manager blocks

The integrated clock manager blocks allow the management of the clocking resources within the
FPGA. They are commonly based on high frequency Phase-Locked-Loops (PLLs) that support several
features for general purpose clock management such as frequency multiplication/division, phase
shifting, propagation delay compensation and duty cycle correction. For instance, Xilinx Virtex-6
FPGA includes up to 18 clock manager blocks (called Mixed Mode Clock Manager MMCM, [14])
and Altera Stratix-4 FPGA provides up to 12 PLLs, [16].

Cluster

Super-Cluster

LB LB LB

Cluster

Super-Cluster

Switch matrices

Switch matrix

LB LB LB

Interconnection
point

Chapter 2: State of the art FPGA technology

22

As far as clock distribution is concerned, a dedicated global clock network is available so as to
wire clock signals to the FPGA elements. In addition, specific FPGA pins and buffers are provided so
as to ensure a high speed clock signal transmission.

2.4. I/O blocks

The Input/Output blocks provide a programmable bidirectional interface between the internal
FPGA fabric and the external environment. They are usually organized as banks and can reach up to
1200 I/O blocks (Xilinx Virtex-6 FPGA). Each bank can be dedicated to different I/O standards
including single-ended I/Os, differential I/Os, voltage referenced I/Os and high speed interfaces (PCI
and memory interfaces). A simplified diagram of an I/O block internal structure is presented in Figure
2.7. There are three main signal paths, the output path, the input path and the 3-state path. For
synchronization purpose, each path contains a set of storage elements that act as registers or latches.

Figure 2.7: General structure of an I/O block

2.4.1. Input path

This path carries data from the external FPGA pin to the internal logic. A programmable delay
and storage elements are introduced in order to control the synchronization of data with the clock
signal. The input path can be configured to ensure standard input, differential input with another input
path from an adjacent I/O block or voltage referenced input.

2.4.2. Output path

This path carries data from the internal logic to the external FPGA pin. Storage elements can
also be used to synchronize the data transfer with the clock signal.

2.4.3. Three-state path

This path sets the FPGA pin in a high impedance state. A programmable output driver is used to
select either the output path (output mode) or the 3-state path (high impedance mode).

En

D Q

Clr

En

D Q

Clr

En

D Q

Clr

3-state path

Output path

Input path

Delay

Programmable
output driver

Vcc

I/O Pin

I/O Pin from
adjacent I/O block

Global Clock
network

Interconnection
network

Vref

Chapter 2: State of the art FPGA technology

23

2.5. Arithmetic (DSP) blocks

In order to suit the high demand of resources for complex applications, recent FPGAs give the
possibility to implement arithmetic operations using hardwired arithmetic blocks. In most of the cases,
the latter consist of a large amount of hardwired multipliers, e.g. up to 2000 multipliers (25x18 bits)
are included in Virtex-6 SX Xilinx FPGA series. In addition, these arithmetic blocks are pipelined
using a set of registers in order to enhance speed performances.

 Furthermore, in the advanced recent FPGAs, more complex arithmetic blocks are provided:
DSP blocks. Indeed, these pipelined blocks consist of a combination of a multiplier, an
adder/subtractor and an accumulator. Implementing such blocks allows more complex arithmetic
operations in high computational and high frequency demanding applications such as filtering, image
processing, video treatment, signal transmission … Examples of FPGAs that provide DSP blocks are:
Xilinx Virtex-6, Xilinx Spartan-6 and Altera Stratix-4.

2.6. Memory blocks

In addition to logic blocks and hardwired arithmetic blocks, FPGA devices support a large
amount of embedded memory blocks to increase hardware resource availability and speed
performance. Indeed, in large systems that often require data storage, implementing on-chip memories
has a value-added especially by increasing the system integration density and allowing faster
read/write operations.

In nowadays FPGAs, most of these on-chip data storage blocks consist of configurable blocks
which allow the implementation of various memory structures including RAMs, ROMs, FIFOs and
shift registers. As an example, the Xilinx Virtex 6 FPGA provides up to 1064 RAM blocks that
correspond to up to 38 Mb RAM capacity and the Altera Stratix-4 FPGA provides up to 33 Mb
embedded RAM memories.

In addition to these dedicated blocks, distributed RAM memories are also available. This is
especially true when talking about SRAM-based FPGAs where the integrated logic blocks can run as
distributed RAM and/or shift registers.

For the same purpose and in order to provide a nonvolatile memory feature, niche FPGA
families such as Flash-based FPGAs support also Flash memory blocks. For example, Actel Fusion
FPGA supports up to 8 Mb flash memory resources, 1 Kb FlashROMs and up to 270 Kb RAMs, [10].

2.7. Communication blocks

The current FPGA devices include also communication blocks that consist generally of
transmission and reception buffers. Various communication protocols (standard or user-defined) are
supported, including among others USB, Ethernet, CAN, PCI, SPI and I2C protocols. For this aim,
dedicated transceivers are provided so as to support many of these protocols and ensure high data
transmission rates, e.g. up to 11 Gbps with Stratix-4 and Virtex-6 FPGA.

2.8. Embedded processor cores

Besides the evolution of the discussed FPGA elements and in order to meet more flexibility and
higher integration capability, the recent FPGA devices give the possibility to implement an increasing
diversity of processor cores. They are then considered as System-On-Chips (SoCs) or System-on-
Programmable-Chips (SoPCs) solutions [26]-[29].

In such SoPC approach, two categories of processor cores can be encountered, the “non-
synthesizable” cores and the “synthesizable” cores.

The non-synthesizable (also called hard processor) cores are hardwired within the FPGA, in
addition to the previously discussed FPGA elements. As a general rule, a hard processor core offers
higher clock speeds with less flexibility. For example, Altera provides an ARM9 processor core
embedded in its EPXA10 series that is marketed as an Excalibur™ device [3]. The Xilinx Virtex-5

Chapter 2: State of the art FPGA technology

24

integrates also a hardwired PowerPC 440 processor cores on-chip [2]. Recently, Actel has provided
the first hardwired Cortex-M3 processor core integrated into its Fusion FPGA family [10].

The synthesizable (Soft cores), such as Altera Nios II, Xilinx MicroBlaze processors and Actel
ARM7 or Cortex-M1, use existing FPGA configurable elements to implement the processor core, [2]-
[4]. The particularity of such approach is the flexibility that allows the designer to configure and
specify the number, the types of peripherals, the memory width… However, these cores have slower
clock rates.

2.9. Configuration technology

The internal structure, the operating mode and the configuration of the discussed FPGA
elements differ depending on the device family and technology. There are various configuration
methods and technologies including, SRAM, EPROM, EEPROM, Fuse, Antifuse and Flash
technologies. Because of their popularity, only the SRAM, the Antifuse and the Flash technologies
have been here investigated.

2.9.1. SRAM technology

The most widely used method for storing configuration data in available FPGAs is volatile static
RAM, or SRAM. The configuration is entirely made using a set of dedicated SRAM blocks. These
blocks are organized as a specific configuration layer. The most popular SRAM-based FPGA families
are Xilinx and Altera families. The popularity of this technology is manly due to their fast and infinite
reconfiguration cycles [6]. Drawbacks of such technology are power consumption and data volatility.
Indeed, compared to the other technologies, an SRAM-based connection point is based on high
number of transistors (6 transistors) and dissipates significant static power because of leakage current.
Another significant drawback is that SRAM does not maintain its contents after power is off, which
means that at power-up the FPGA is not configured and must be programmed using off-chip logic and
storage, [6].

2.9.2. Antifuse technology

The Antifuse technology is based on the so-called Antifuse connections that are based on metal
link. The latter behaves in the opposite of a Fuse. In other words, an Antifuse link is normally
unconnected and a specific programming procedure is required to make the connection (i.e short
circuit between Antifuse endpoints). This procedure consists in injecting a high current or a Laser that
heats and then melts the silicon layer between endpoints so as to make the connection [6]. The main
drawback of such technology is that FPGAs in this case are One-Time-Programmable (OTP) which
limits significantly their flexibility and make them useless for prototyping environments.

2.9.3. Flash technology

This technology is definitely an interesting gap between SRAM technology and Antifuse
technology since the configuration is based on flash connections that keep the configuration state
when the power is off. Furthermore, a flash-based connection point uses less number of transistors
than its SRAM counterpart (2 transistors sharing a floating gate) [4]. Consequently, this yields to
lower current leakage and then to lower static power consumption. Also this technology is useful in
aircraft and space systems since it guaranties the configuration against the Single Event Upset (SEU)
radiations. In contrast, the main drawbacks of such technology are slow configuration rate and a
limited number of reconfiguration cycles.

3. Case studies

In order to move from an abstract presentation of FPGAs and see how exactly they look like,
single examples have been chosen from the available and most recent FPGAs. The selection is based
on configuration technology criterion. Then, a deeper investigation of each example for each
configuration technology is made.

Chapter 2: State of the art FPGA technology

25

3.1. SRAM based technology

The most popular SRAM-based FPGA families are Xilinx and Altera families. Among the
commercialized FPGA devices, one can stress the high performance VIRTEX (Xilinx) and STRATIX
(Altera) FPGAs and the low cost SPARTAN (Xilinx) and CYCLONE (Altera) FPGAs. As it will be
discussed afterwards, in the field of power electronics and drive applications, cost is a key-issue. As a
consequence, it has been chosen to present only the low cost FPGA families. As examples of
illustration, the latest Xilinx SPARTAN-6 and Altera Cyclone-4 FPGA families will be investigated.

3.1.1. Xilinx Spartan-6 FPGA

A Spartan-6 SRAM-based FPGA incorporates a combination of the previously discussed FPGA
elements and is based on 45-nm process technology. There are up to 11519 CLBs (equivalent to
147443 LCs) and, as seen in Figure 2.8, each single CLB contains a pair of slices: SliceX and
SliceL/SliceM (globally, a Spartan-6 contains 50% of SliceX, 25% of SliceM and 25% of SliceL).
Each slice can be configured to perform combinatorial functions using four 6-bit LUTs and sequential
functions using eight D-Flip-Flops. Furthermore, the SliceM can operate as a distributed RAM block,
as a shift register, as a multiplexer or as a carry chain that performs arithmetic additions and
subtractions. A SliceL supports all the SliceM features except the memory and shift register functions.
To have a deeper idea about the structure of each slice, refer to [12]

Figure 2.8: SRAM-based SPARTAN-6 FPGA fabric

The interconnection network is composed of wires and a sea of switch matrices (with 6-
transistor based connection points). The interconnection of FPGA elements in this case is based on
segmented technique and the routing resources are physically located in horizontal and vertical routing
channels. Various types of routing are ensured depending on the distance between elements to
interconnect (Fast interconnect, Single interconnect, Double interconnect and Quad interconnect).

As for the hardwired arithmetic blocks, Spartan-6 FPGA includes up to 180 DSP blocks named
DSP48A1 slices. Each one supports many independent functions, including 18-bit multiplier, 48-bit
accumulator, 18-bit adder/subtractor, a wide bus multiplexer, magnitude comparator and a wide
counter.

The number of I/O blocks varies from 102 to 576 depending on the series and device size. All of
them operate as bidirectional interfaces. They are organized as banks and can support a large number
of single-ended, differential and voltage referenced standards.

Spartan-6 FPGAs contain a set of clocking resources and Clock Management Tiles (CMTs). The
provided clocking resources consist of dedicated clock inputs, buffers and routings. There are 8
dedicated clock inputs, 32 global clock inputs that can operate as general purpose I/Os and 16 clock
buffers. There are up to 6 CMTs, each single one contains 2 Digital Clock Managers (DCMs) and one
PLL. The role of a DCM is primarily to eliminate clock skew and distribution delays. It can also
ensure phase shifting and clock multiplication and division. A PLL is based on voltage controlled
oscillator (VCO) that operates from 400 MHz to 1080 MHz.

CLB

SLICEM or
SLICEL

SLICEX

Switch
matrix

6-transistor based
connection point

Chapter 2: State of the art FPGA technology

26

As far as memory blocks are concerned, every Spartan-6 FPGA supports between 12 and 268
dual port RAM blocks in addition to the distributed RAM within CLBs. This corresponds to a total of
6179 Kb memory capacity.

3.1.2. Altera Cyclone-4 FPGA

A Cyclone-4 FPGA is based on 60nm process technology and integrates up to 150000 LEs [15].
As seen in Figure 2.9, these latter are gathered in 16-group blocks called Logic Array Blocks (LABs).
Each LE consists of a 4-bit LUT that can perform either combinatorial or arithmetic operations and a
D-Flip-Flop for sequential operations. Also, an LE can operate in arithmetic mode and perform a 2-bit
full adder and also a basic carry chain.

The interconnection network is organized in 2 levels (Figure 2.9); local interconnect and global
interconnect [15]. The first one is used to transfer signals between LEs in the same LAB. The global
interconnect is organized in column and row lines that drive signals between LABs and also between
the other FPGA elements. Direct link interconnect is also provided to connect adjacent elements so as
to minimize the use of columns and rows, providing higher flexibility and higher speed performances.

Figure 2.9: SRAM-based CYCLONE-4 FPGA fabric

Cyclone-4 FPGAs include up to 360 embedded multipliers organized as columns. Each one can
be configured to perform as one 18x18-bit multiplier or two 9x9-bit multipliers. In order to reach high
speed performances, each multiplier is pipelined and associated with input/output registers.

The number of I/Os can reach up to 532 and up to 11 banks are available. Each I/O is associated
with an IO Element (IOE) that contains a set of bidirectional buffers, registers and programmable
delays. Various single-ended, differential and voltage referenced standards are supported.

As for the clocking resources, Cyclone-4 provides up to 15 dedicated clock pins and up to 30
global clock networks that feed the whole FPGA elements. Besides, cyclone-4 includes up to 8 PLLs
that perform general purpose clock management such as multiplication, division, phase shifting and
programmable duty cycle. Each PLL is based on a VCO that operates from 600 MHz to 1300 MHz.

As for the on-chip storage elements, Cyclone-4 integrates up to 6480 Kb embedded RAM
blocks that can be configured to provide various memory modes such as RAM, shift registers, ROM
and FIFO modes.

3.2. Antifuse based technology

The Antifuse technology is based on a one-time non volatile FPGA configuration. The Actel
Axcelerator, EX and SX-A series belong to the most recent Antifuse FPGA families [4]. The internal
architecture of the Axcelerator FPGA is discussed, [11].

An Axcelerator FPGA is based on 150nm process technology and consists of a sea of Logic
Modules (LMs) and Antifuse interconnection elements. There are up to 32000 LMs and two types of

LAB

LE1

LE2

LE16 Local
network

L
A

B

L
A

B

L
A

B

Columns interconnectDirect link

Rows interconnect

Chapter 2: State of the art FPGA technology

27

LMs are available: the Register cell (R-cell) and Combinatorial cell (C-cell). An R-cell consists in a
D-Flip-Flop. A C-cell can implement up to 4000 combinatorial functions with up to 5 inputs.

The arrangement of these modules and the interconnection network are based on hierarchical
approach where combinations of two C-cells and one R-cell (C-C-R) form a cluster. In a higher level
of hierarchy, two clusters form a super-cluster. A set of 336 super-clusters and 4 memory blocks form,
at the next level, a Core Tile. The interconnections are also ensured with respect to the level of
hierarchy. Thus, local direct interconnects are used for elements inside a cluster, fast interconnects
are user to link adjacent super-clusters, horizontal and vertical tracks are used to link Core Tiles.
Figure 2.10 gives an idea of module and interconnection arrangements.

Figure 2.10: Axcelerator Antifuse FPGA fabric

Depending on the device profile, the number of I/Os in an Axcelerator FPGA can reach up to
684 I/Os that support at least 14 different single-ended, differential, voltage-referenced standards.
They are organized into banks, with 8 banks per device. Each I/O block contains input, output and
enable registers and combination of 2 I/O blocks form an I/O cluster.

As for the clocking resources, each device contains 8 PLLs that perform functions such as
frequency multiplication, division, programmable delays and skew minimization. The input frequency
of each PLL ranges from 14 MHz to 200 MHz and its output from 20 MHz to 1 GHz.

An Axcelerator FPGA provides up to 295 Kb embedded memory blocks that are based on
RAM/FIFO memories. No arithmetic (DSP) bocks are included.

3.3. Flash based technology

The Flash based technology ensures a non volatile reprogrammable configuration mode and
leans on specific flash-based configuration switches. In the following, the Actel Fusion Flash-based
FPGA is presented [10].

Based on a 130nm process technology, its internal FPGA fabric contains up to 38400 VersaTiles
(VTs). Due to the flash connections and compared to SRAM based FPGAs, each VT can implement
either a combinatorial (3-bit LUT) or a sequential (D-Flip-Flop) functions. Figure 2.11 gives an
overview of the Fusion FPGA fabric.

Within this FPGA, 4 levels of routing hierarchy are available. Thus, at the lower level, ultra-fast
local lines make the connection between the output of each VT to every inputs of the eight
surrounding immediate VTs. At the next level, efficient long line resources ensure the routing of
longer distances spanning vertically and horizontally up to 4 VTs. Then, very long line resources
ensure the routing of high distance and very long nets. Finally, at the highest level, VersaNet global
networks are used to drive global signals such as clocks, reset signals or other signals that require low
skew.

C R C C RC

C R C C RC
Antifuse-based
switch matrix

Direct
interconnect

Fast
interconnect

Horizontal track

Vertical track

Chapter 2: State of the art FPGA technology

28

 Figure 2.11: Flash-based Fusion FPGA fabric

Fusion devices provide up to 252 I/Os and include a set of I/O tiles, organized as I/O banks.
Each tile supports a large number of standards including single-ended, differential and voltage
referenced I/Os.

As for the clock resources, Fusion FPGA integrates a collection of on-chip resources that create,
manipulate and distribute the clock signals. To this aim, an internal RC oscillator and a Crystal
oscillator are integrated and can generate up to 100 MHz clock source without external component. To
manipulate the clock signals, 2 PLLs are integrated for multiplication, division, synchronization and
phase shift. The input frequency of each PLL ranges from 1.5 MHz to 350 MHz and its output from
0.75 MHz to 350 MHz. The distribution within the global VersaNet lines is ensured by 6 Clock
Conditioning Circuit (CCCs) that can also perform as PLLs.

The embedded memories consist of Flash blocks (up to 8 Mb), SRAM blocks that can perform
as FIFOs (up to 270 Kb), FlashROM blocks (1 Kb).

Another particularity of Fusion FPGA is the integrated mixed signal peripherals. Indeed, this
FPGA integrates a 12-bit programmable successive approximation ADC. Associated with an analog
multiplexer, it can convert successively up to 30 analog signals [10]. Analog quads are integrated and
used to precondition and to adapt the analog inputs to the ADC voltage range. Applications and
implementations of this integrated module are reported in [18]-[23]. In chapter 3, these analog
peripherals will be deeply discussed.

3.4. Feature summary

The following table summarizes the main FPGA characteristics that have been discussed
previously. The provided values correspond to the maximum available values depending on the FPGA
series.

Versa
Tile

Flash switch

VersaTile- flash switches based configuration

Chapter 2: State of the art FPGA technology

29

Table 2.1: Overview of the discussed FPGA characteristics
Technology SRAM Antifuse Flash

 Family
 Elements

Xilinx
Spartan-6

Altera
Cyclone-4

Actel
Axcelerator

Actel
Fusion

Process technology 45 nm 60 nm 150 nm 130 nm
Logic blocks 11519 CLBs

(147443 LCs) 150000 LEs 32000 LMs 38400 VTs

Clocking performances – PLL
output frequency range 400-1080 MHz 600-1300 MHz 20-1000 MHz 1.5-350 MHz

I/Os 576 532 684 252
Arithmetic (DSP) blocks 180 DSP slices 360 multipliers - -
Memory blocks

Distributed RAM:
1355 Kb

RAM blocks:
4824 Kb

RAM blocks:
6480 Kb

RAM blocks:
295 Kb

RAM blocks:
270 Kb

Flash blocks:
8000 Kb

Flash ROM
blocks: 1 Kb

Analog
peripherals: ADC,

Analog Mux,
Analog quads

4. Design tools

As FPGA features are becoming more and more sophisticated and the diversity of integrated
elements is increasing, CAD software tools have become mature as well. Today, FPGA vendors
provide a fairly complete set of design tools that allow high quality design process starting from the
hardware description, using VHDL or Verilog languages, to the final bitstream generation [5], [17],
[24], [25]. An overview of a typical FPGA design process is presented in Figure 2.12.

Figure 2.12: Simplified synoptic of FPGA design process

Generally, design tools include hardware design and verification tools (VHDL/Verilog editor,
synthesizer, place/route and physical implementation tools), vendor libraries (IP cores) in addition to
simulation and debugging tools. Some examples are the Integrated Software Environment (ISE) tools
from Xilinx, Quartus tools from Altera and Libero Integrated Design Environment (LiberoIDE) tools
from Actel. All of them provide flexible and complete design features with additional associated tools
for simulations (e.g. ModelSim tools) and for debugging (e.g. ChipScope tools from Xilinx).

Furthermore, to suit SoC trends, FPGA vendors provide software tools that include software
development tools (editor, compiler, assembler, linker and debugger), software vendor IPs and
processor customization tools. For example, Xilinx provides Embedded Development Kit (EDK)
platform, Altera provides Embedded Design Suite (EDS) platform and Actel provides SoftConsole
platform [25].

Design
synthesis

VHDL/Verilog
coding + IP

blocks

FPGA I/O
assignment

Map, Place
and Route

Bitstream
generation and

device
configuration

Simulation
Functional
validation

Simulation
Post-synthesis

validation

Simulation
Post-Route
validation

Physical implementation

Chapter 2: State of the art FPGA technology

30

5. Contribution of FPGAs in complex AC drive applications.

Nowadays, it is commonly accepted in the field of power electronics and drive applications, that
digital based control solutions are becoming the natural and systematic resort. Indeed, compared to
their analog counterparts, the implementation of a digital based controller has several advantages such
as flexibility, re-programmability, reduced time-to-market and the possibility to implement complex
control algorithms.

However, to achieve high performances and try to compete with performances provided by
analog solutions, the selection of the appropriate digital solution is based on many criteria and
implementation demands. Some of the most challenging criteria are: high performance in terms of
control reactivity and bandwidth, the implementation of algorithms that insure complex treatments,
high level of integration (use of the same digital solution to process many heterogeneous tasks),
reduced time-to-market, system confidentiality and low cost.

In this section, a deep understanding of how FPGAs are highly adapted to these applications and
these demands is proposed. This has been already made in a wide range of applications (e.g. [17]-[51],
[53]-[59]) where FPGAs have successfully accomplished their role with regards to the expected
performances. In these previous evaluations, it has been demonstrated that FPGAs have a significant
contribution and allow the implementation of advanced high performance control strategies. For
instance, in [24] and [25], authors give a clear classification of applications depending on the
switching frequency. Two categories are then defined: high demanding applications and constrained
switching frequency applications.

The first category corresponds to high switching frequency applications (above 100 kHz) where
a high level of parallelism and short execution time are required. The use of FPGAs is then mandatory
in this case. As for the second category where the switching frequency is limited (less than 100 kHz
due to power switch losses), it has been stated that by exploiting the rapidity and the high integration
density of FPGAs, it is possible to implement advanced high performance control strategies with the
possibility to include complementary tasks such as health-monitoring and diagnosis. Relevant
examples are oversampling controllers [32], multi-level multi-phase PWM controllers [45] and multi-
system controllers [54], [55].

Additionally, FPGAs have their value-added to implement many other advanced controllers like,
dynamically reconfigurable controllers [60], [62] and Predictive controllers [56], [61]. Another
challenging field where FPGAs are one of the final resorts is the Hardware-In-the-Loop (HIL)
applications. Here again, many promising FPGA based developments are achieved for Real time
simulation purpose (e.g. [49]).

When it comes to time-to-market, it is clear that FPGAs have their own value-added since they
allow rapid-prototyping solutions in the one hand, and they allow optimized design process in the
other hand. This is possible with the help of the significant progress in terms of design tools and also
design methodologies. Also, in terms of system confidentiality, today’s FPGA technologies ensure
highly secure designs avoiding any bad-intentioned duplication.

To make a connection with the context of the proposed work, it has been chosen to evaluate
quantitatively the FPGA solutions in the case of complex control applications such as the developed
sensorless AC drive application using the Extended Kalman Filter. In the following, two evaluation
axes have been emphasized: the evaluation in terms of control performances and in terms of system
integration. Finally, in the same context of complex control applications, some of the most important
FPGA implementation constraints to manage have been discussed.

5.1. Evaluation in terms of control performances

To start with, it is fair to mention that a wide range of these complex control applications are
mostly carried out with software solutions such as DSP controllers. Main reasons of this statement are:
a good software flexibility, a rapid-prototyping and an easy way of coding (the familiar C/C++
coding). All these reasons allow an easy implementation of complex tasks. However, it is more than

Chapter 2: State of the art FPGA technology

31

important to stress that in some cases, their timing performances can be easily a severe drawback. This
is definitely due to DSP-based architectures which are fixed leading to serialize the treatment.
Consequently, the more complex the implemented controller, the longer the execution time.

For example, in [93]-[106] the total execution time has been evaluated from 90µs to 500µs. In
order to make a quantitative comparison to the FPGA solution, author has tested the EKF-based
sensorless speed controller on a DSP solution. This sensorless controller is applied to a synchronous
AC machine. Note that the complexity is the same in both hardware and software cases. More details
and in-depth studies are provided in [Appendix D].

Figure 2.13 presents the performances obtained with the DSP solution. The case of a elementary
PI-regulator, the case of an AC drive current controller and the case of the sensorless controller are
presented. These results are obtained with a TI TMSF2808 DSP [64] (100MHz, 32Bit, 12-bit ADC,
2x16-bit multiplier, 16Ko RAM memory). They indicate that for different levels of complexity and for
a fixed architecture, the execution time increases.

Figure 2.13: Performances of the DSP solution in case of complex sensorless application

Now as the performances of the used DSP are measured, it is important to analyze how they act
and influence the control performances. In fact, from the control point of view, such long execution
time imposes the use of lower sampling frequency in the one hand and introduces a delay in the closed
loop. Consequently, the bandwidth and the quality of the implemented controller are downgraded.
This is especially true in case of high speed AC drives such as avionic systems [65] where high
frequencies are operated and high control performances are required. With the developed DSP
solution, the obtained frequency response has been measured and plotted in Figure 2.15.

In order to overcome these limits, let’s analyze the appropriate solutions. In fact, staying always
with software solutions, many possibilities can be of great interest in order to speed up the timing
performances. For example, the first reaction could be the reduction of the complexity of the algorithm
which leads to make compromises with the algorithm performances. In a more systemic point of view,
the use of a high clocking frequency DSP can be a simple and relevant resort but the problem that
matters is the availability of DSP which is dedicated to control applications (i.e. fast DSP controller).
Also a parallelization of tasks using multi-DSP structures is possible which, in contrast, downgrades
the system integration. Also, the way of C-coding and the use of Assembly-coding have their own
contribution. Finally, a completely different interesting alternative to these key-solutions is the use of
hardware solutions such as FPGAs.

In fact, FPGAs are outperforming today’s software solutions by exploiting the inherent
algorithm parallelism. Consequently, implementing such hardware solution give the possibility to
develop architecture that are fully dedicated to the control algorithm. Thus, allying today’s FPGA high
speed performances with parallelism, leads to a drastic reduction of the execution time. Consequently,

66

10

1.3

DSP fixed
architecture

5
56

579

Complexity
(Nb. Of operations)

Execution
time (µs)

PI regulator

AC drive Current
controller

AC drive sensorless speed
controller (using EKF)

Area

Chapter 2: State of the art FPGA technology

32

in terms of control performances, a quasi-instantaneous control is ensured which speeds up the control
reactivity and bandwidth.

With the same purpose as before, the EKF-based sensorless speed controller has been
implemented on an FPGA. The development process is described in chapters 4, 5, 6 and 7. This
development is organized according to the design methodology that will be presented afterwards. The
FPGA architecture is synchronized with a 50 MHz clock frequency which gives the timing
performances in Figure 2.14. It can be seen that an additional area degree of freedom allows the
reduction of the execution time.

Figure 2.14: Performances of the FPGA solution in case of complex sensorless application

The impact of the execution time on the control performances and bandwidth (in both software
and hardware cases) has been quantified in the case of the developed application. The obtained results
are deeply presented in [Appendix D]. Figure 2.15 shows the obtained frequency responses. They
indicate that a short execution time improves the control bandwidth.

Figure 2.15: Evaluation of the control bandwidth in case of FPGA-based controller and DSP-based controller –

Case of high speed AC drive (a) : Frequency response (magnitude) (b) : Frequency response (phase)

5.2. Evaluation in terms of system integration

As far as the integration criterion is concerned, the available huge number of elements within
today’s FPGAs, allows them being perfectly suited to high complexity algorithms. Furthermore,
allying high integration and high speed performances allow the implementation of algorithms that can
be used quasi-simultaneously in different applications. For example, when talking about sensorless

-140

-120

-100

-80

-60

-40

-20

0
0,1 1 10 100

-25

-20

-15

-10

-5

0

5
0,1 1 10 100

DSP

FPGA

DSP

FPGA

(a) (b)
deg (dB)

f (Hz)
f (Hz)

0.1 1 10 100 0.1 1 10 100

0.16 5

56

579

Complexity
(Nb. Of operations)

Execution
time (µs)

PI regulator

AC drive Current
controller

AC drive sensorless speed
controller (using EKF)

3.24

6

Area (FPGA
LCs)

924
2465

13560

Chapter 2: State of the art FPGA technology

33

control application, it is possible to implement an EKF that can be used to observe the state space
vector of many systems. Let’s take for example the control system presented in Figure 2.16 where a
sensorless control for an AC drive ([65]-[69]) and a sensorless control of a Rectifier [70] are made.
Normally, two different EKF modules are to be implemented for each application but, when using an
FPGA solution, it is possible to develop a common architecture that is adapted for both applications
almost without impacting the execution time and the used FPGA resources. Thus, using a set of
multiplexers, it is possible to drive the right signals to the EKF so as to estimate the right vector of the
right system.

Figure 2.16: Example of sensorless control for mixed-system application

Another interesting example is the sensorless control of multi AC drives that is presented in

Figure 2.17. Here again, both the EKF and controller can be gathered (or factorized) so as to control
all the systems without impacting their corresponding performances.

A slightly different integration aspect is the possibility (that is ensured by today’s FPGAs) to
implement mixed hardware and software treatments in the same device. Indeed, with the available
processor cores, designer is able to partition the algorithm and decide which treatment is to be made in
hardware and which treatment is to be made in software. To do so, a deeper investigation in terms of
control performances has to be achieved and co-design approaches and methodologies are to be
adopted [73]. This aspect in not covered in the proposed work and is the main subject of an associate
thesis work [74].

EKF Module

Voltage
Inputs

Current
measures

Estimated
Position

and speed

Estimated
DC link
voltage

VDC

VDC controller AC drive
controller Speed

Reference
Voltage

Reference

V
SI control signals

R
ectifier control signals

ADC ADC

FPG
A

 target

AC
Machine

VSI Rectifier Va

Vb

Vc

Chapter 2: State of the art FPGA technology

34

Figure 2.17: Example of sensorless control for multi-system application

5.3. FPGA implementation constraints

Now, having in mind these advantages, there are anyhow some implementation constraints to
manage when using FPGA solutions to implement complex digital controllers. At first, the increasing
complexity of the algorithm induces the need of numerous FPGA resources. This may seem confusing
with the previous argumentation, but in the case where the system constraints impose the use of a
specific FPGA (with limited resources) in a specific application, the implementation of complex
algorithms can be easily inappropriate. As an example, in an avionic actuator control application
where a specific Actel Flash based Fusion FPGA is needed [18]-[23], the implementation of complex
algorithms (for example an Extended Kalman Filter) is difficult since the available resources are
limited and no hardwired arithmetic blocks are provided within the device. Consequently, a specific
care has to be taken so as to design optimum FPGA architectures that use a minimum of operators for
implementing the necessary operations in a short execution time.

The data word-length in FPGAs is also another significant concern. In the case of a DSP
solution, the data size doesn’t matter since it is fixed (32 bits or 64 bits depending on the used device)
and both fixed-point and floating point formats are allowed. This is clearly not the case of FPGAs
since the word-length is fully customized. Thus depending on the complexity of the implemented
algorithm, the larger is the data size, the heavier is the corresponding FPGA architecture. For this
reason, designer has to make the choice of word-length that suits the available FPGA resources
without downgrading the control stability and precision. This is typically true when manipulating fixed
point data format. Otherwise, in the case of manipulating floating point data format, the consumed
FPGA resources depend only on how many floating point operations are processed. As a reminder,
recent VHDL standards offer the possibility to implement floating point arithmetic using the VHDL
2008 libraries [71].

EKF Module

Voltage
Inputs

Current
measures

VDC

AC drive
controller

Speed Reference 1

ADC

AC
Machine

1

VSI 1 Rectifier Va

Vb

Vc

ADC

AC
Machine

2

VSI 2

V
SI 2 control signals

V
SI 1 control signals

Speed Reference 2

Estimated Position
and speed

FPG
A

 target

Chapter 2: State of the art FPGA technology

35

Another concern when using FPGAs is the operating clock performances. Indeed, a placed and
routed complex algorithm, where many successive arithmetic operations are done, introduces many
propagation delays. Consequently, the operating clock frequency is highly limited. To overtake this
issue, the pipelining of the developed architecture is essential. In fact, a fully pipelined architecture
where registers are placed between operators makes sequential the signal routing and leads to low
propagation delays. This has definitely the credit of ensuring a high operating clock frequency.

To end with, the contribution of FPGAs and the induced implementation constraints are to be
considered and balanced with the expected level of control performances. These design considerations
have to be taken into account during the design process. Thus, it is quite mandatory to use a rigorous
and well-structured design methodology that allows designing efficiently the FPGA-based controller
that suits all the process and performance demands.

6. FPGA design methodology for control applications

Now as the advantages of FPGA solutions and their implementation constraints are both
initiated, the main challenge is how to reach efficiently the demanded control performances. In fact, a
well-developed FPGA solution has to be based on a perfect adequation between the control algorithm
and its corresponding FPGA architecture without loosing the potential parallelism. Thus preserving
the inherent parallelism of the algorithm allows high timing performances which enhances the control
performances.

A well developed FPGA solution has also to satisfy the implementation constraints. To this aim,
it is clear that designer has to manage many design considerations (optimization of the complexity,
choice of the data word-length, pipelining of the architecture…) at different stages of the design
process. Consequently, these considerations require from designer to master several different
knowledges and qualifications such as micro-electronics, control, signal processing and electrical
system theories. This is particularly true when implementing complex control applications that need a
narrow link between control engineering and FPGA design domains.

For these reasons, the use of a rigorous and well-structured design methodology is of prime
necessity. This methodology should consist of a set of steps and rules to be followed in order to
optimize the time-to-market and make efficiently the design process more manageable and less
intuitive. By this way, several authors have proposed and formalized interesting design methodologies
[33]–[37], [62]–[63], having always in mind to reach similar objectives.

As it can be seen in Figure 2.18, the particularity of the presented design methodology consists
in providing an enlarged design process that starts from the preliminary system specification to the
final experimental validation. In addition, a notable distinction between the development of the
algorithm and the development of the FPGA architecture is made. This distinction has the credit of
making the algorithm as independent as possible on the used digital device. For instance, once the
developed algorithm is achieved, either a hardware solution (FPGA) or a software solution (DSP) can
be chosen for the digital implementation. Furthermore, this distinction can lead to a separation
between the needed designer qualifications. For example, the algorithm development may be realized
by control engineers and the FPGA development by a micro-electronics expert.

Chapter 2: State of the art FPGA technology

36

Figure 2.18: The proposed FPGA Design methodology

From a more technical point of view, the proposed design methodology includes optimization
assumptions that ought to be achieved so as to adapt the algorithm complexity to the available FPGA
resources. As it will be discussed later, this optimization is done during the algorithm development
process and during the FPGA architecture development one. For the first case, this consists in
reducing the computational cost of the algorithm (reduction of the number of processed operations).
For the second case, this consists in studying the data dependency of the algorithm and finding out the
potential factorizations that lead to the use of a minimum of operators that process a maximum of
operations. The aim here is to develop an FPGA architecture that satisfies the timing and area
constraints. This optimization can be achieved by applying for example the so-called Algorithm
Architecture Adequation (A3) methodology [62], [63], [72].

The proposed methodology has been overviewed in [25] and has been deeply illustrated with the
developed sensorless application that is covered in this thesis report [chapters 4, 5, 6 and 7]

6.1. Preliminary system specification

First of all, designer makes a preliminary system specification regarding the whole control
application. In the case of an AC drive application; this consists in making a physical specification of
the control system and an algorithm benchmarking. The physical specification consists in choosing,
depending on the load conditions, which AC motor is to be controlled and on which supply conditions.
The physical characteristics of the final experimental platform are defined including the selection of
the digital control unit, the used ADC and interface boards.

The algorithm benchmarking, consist in choosing the control strategy, the sensorless method
(case of a sensorless control) and the convenient system model.

6.2. Algorithm development

The algorithm development process consists of a set of steps during which designer makes the
functional validation and prepares the algorithm for the digital implementation.

6.2.1. Modular partitioning

This step is very important, especially in case of complex algorithms, and leads to strategic
choices regarding the reusability and the modularity of the developed algorithm. Indeed, this step is

Preliminary system specification

Modular partitioning
Continuous-time functional simulation

Digital realization

Discrete-time, fixed-point simulation
Algorithm optimization

Architecture optimization
FPGA architecture design

Design synthesis and time/area performances analysis
FPGA physical implementation process

Hardware in The Loop validation
Experimental validation

A
lg

or
ith

m

de
ve

lo
pm

en
t

FP
G

A
-b

as
ed

ar

ch
ite

ct
ur

e
de

ve
lo

pm
en

t

Exper-
imentat°

Architecture VHDL/Verilog coding
Architecture functional simulation

Chapter 2: State of the art FPGA technology

37

based on hierarchy and regularity concepts. Hierarchy is used to divide a large or complex design into
subparts called modules that are more manageable. Regularity is aimed to maximize the reuse of
already designed modules [34], [36], [62], [63]. As a result, the extracted reusable modules are
organized in different levels of granularity and added to a specific library of control for electrical
systems [34], [36], [62], [63].

6.2.2. Continuous-time functional simulation

Once the control system is designed and the algorithm partitioning is made, a continuous-time
(s-domain) functional simulation is achieved using Matlab/Simulink tools. This step is aimed to
simulate and verify the functionality of the complete control system.

6.2.3. Digital realization

During this step, the first task consists in making a digital synthesis of the aimed control closed
loop and choosing the right sampling frequency. Two approaches are considered, the direct synthesis
approach and the digital re-design approach. The first one consists in configuring the controller and
synthesizing the used regulators in a fully discrete-time z-domain. This approach is suitable for high
switching frequency applications.

In most cases, power electronics applications are using limited switching frequency. Thus, the
re-design approach can be adopted. The latter, consists in synthesizing regulators in the continuous s-
domain and then making the convenient transformation to the discrete-time domain (ZOH, Tustin,
Euler…). This is typically the case of the developed sensorless control application.

The obtained digital controller (or observer) can be then considered as a digital filter that is now
to be realized. The corresponding structure is then specified (direct form, cascade form, transpose
form …). Then the normalization is processed. It consists in developing a per-unit algorithm where
variables are replaced by their corresponding per-unit counterparts with the introduction of base-
values. To this purpose, the base-value of each variable is determined according to variable nominal
value and also according to the gains that are introduced by the sensors and the ADC board.

 The following task is the choice of the fixed point data format. This choice can be made in two
stages [40], [41]. The first one is the choice of the fixed-point format of the coefficients by studying
the stability of the closed-loop. The second stage concerns the choice of the fixed-point format for the
variables. To this purpose, the limit-cycle at steady state and the signal-to-noise ratio are both
considered.

A simpler but more intuitive method for choosing the fixed-point format is by trial-and-error
fixed-point simulations. Indeed, designer can develop the fixed-point model and then make a
comparison with the floating point initial model. The format that leads to a minimum quantification
error is then maintained. Another and still more intuitive way to choose the format is the use of
Matlab/Simulink fixed-point tool. At the end of each simulation, this tool collects information about
the processed data and displays their maximum, minimum values. It also indicates when overflows
occur. Then, these data ranges help designer to choose the appropriate fixed point format.

6.2.4. Algorithm optimization

As mentioned before, an optimization is to be performed in order to reduce the number of
operations. This optimization is quite mandatory in the case of the FPGA solution since the size of the
developed architecture is conditioned with the complexity of the algorithm. For instance, a complex
control algorithm, where many greedy operations like multiplications have to be processed, needs a
rigorous and smart simplification without loosing the required performances. Another optimization
example is to perform complex functions with the use of elementary operators. This is the case of
CORDIC (COordinate Rotation Digital Computer [39]) algorithms where trigonometric, hyperbolic,
linear and logarithmic functions are performed with the use of elementary adders, subtractors and
shifters.

Chapter 2: State of the art FPGA technology

38

6.2.5. Discrete-time, fixed-point simulation

After having developed the aimed digital control algorithm and having specified the suitable
sampling frequency and the data fixed-point format, designer makes a final functional verification.
The latter is made by simulating the developed algorithm in the discrete-time and fixed-point domain
with the help of the appropriate Matlab/Simulink tools.

6.3. FPGA-based architecture development

In the case of having chosen the FPGA target to implement the developed algorithm, designer
initiates the development of the corresponding FPGA-based architecture. To make the design process
less constraining in terms of time-to-market, an interesting solution consists in generating
automatically the FPGA-based architecture from Matlab/Simulink, using dedicated toolboxes
proposed by the FPGA manufacturers [43]. In contrast, besides the cost of these toolboxes and in the
case of complex algorithms, such solution can lead to un-optimized architecture that may be
inadequate to the available FPGA resources. This is the reason why, in the proposed design
methodology, designer has to develop and code himself the FPGA-based architecture with the help of
the following steps.

6.3.1. Architecture optimization

The optimization here consists in finding the appropriate FPGA architecture that is able to
perform the developed algorithm with the respect of a set of implementation constraints. These
constraints can be summarized and classified according to the Figure 2.19(a).

Algorithm constraints: They are related to the structure of the developed algorithm including its
complexity and the chosen data word-length that preserves its performances. Thus, the higher are the
complexity and the data word-length, the higher are the needed FPGA resources.

Design constraints: They include the algorithm modularity preservation constraint and the
FPGA architecture pipelining constraint. The more modular is the algorithm, the higher is the
corresponding FPGA architecture. The more pipelined is the developed architecture, the higher is the
operating clock frequency and then the shorter is the execution time.

Power consumption constraints: These constraints concern typically applications such as
portable and power-conscious embedded systems where low power consumption is a key-issue. Here
again the higher are the clock frequency and the used hardware resources, the higher is the consumed
power. This point is not maintained in the following discussion since in the case of AC drive
applications, the power consumption of the digital control unit doesn’t matter compared to the power
consumed by the drive itself.

Area/cost constraints: They concern the hardware FPGA resources. In our case, this consists in
limiting the used FPGA solutions to the low cost FPGA families. Indeed, most of the available FPGAs
are classified into two categories: the low cost category and the high performance category. These
categories distinguish themselves with the quantity of the integrated resources and thus their cost. As
an example, the low cost Xilinx Spartan 6 FPGA contains up to 180 DSP blocks and the high
performance Xilinx Virtex6 FPGA contains up to 2016 DSP blocks.

Timing constraints: These constraints concern the operating clock conditions and the execution
time of the developed FPGA architecture. In the case of a control application, the control
performances are influenced by the execution time. The shorter is the execution time, the larger is the
control bandwidth. These timing constraints consist then in defining an execution time limit that leads
to acceptable control performances. A short execution time limit induces the increasing of the
parallelism and then the increasing of the needed hardware resources.

Chapter 2: State of the art FPGA technology

39

Figure 2.19: Architecture optimization – Implementation constraints

(a) Classification of the implementation constraints (b): chosen constraints

Figure 2.20: Architecture optimization procedure

In order to develop an optimization procedure, we are going to focus on the implementation
constraints presented in Figure 2.19(b). In the following, a general purpose optimization procedure is
then presented. Its concrete illustration can be found in chapter 6.

Algorithm development: Modular partitioning + Complexity + Data word-length

Pre-evaluation of the time/area performances – Full
preservation of the algorithm parallelism

Meet
requirements?

Yes

No

Factorization – A3 methodology

- Architecture design
- VHDL/Verilog coding
- Functional validation

- Design synthesis
- Time/area performances analysis

Meet
requirements?

FPGA physical implementation process: I/O assignment + Place&Route + Bitstream generation

St
ep

 1

St
ep

 2

St
ep

 3

St
ep

 4

Yes

No

Algorithm
constraints

Design
constraints

Power
consumption
constraints

Area/cost
constraints

Timing
constraints

Algorithm constraints

Design
constraints

Area/cost constraints

Timing
constraints

Complexity + Data word-length

Low cost FPGA

Modularity preservation

Execution time limit

(a) (b)

Chapter 2: State of the art FPGA technology

40

We first assume that the complexity of the algorithm and the data word length have been already
defined during the algorithm development step. The objective then is to find an optimum between the
area and the timing constraints with the preservation of the algorithm modularity.

The optimization procedure can be summarized in Figure 2.20. Four main steps can be noticed.
The first one consists in making a first evaluation of the time/area analysis of the developed algorithm
with the full preservation of its parallelism. This aims to verify if the corresponding FPGA architecture
can be directly designed without any optimization. The second step consists in factorizing the
architecture using the A3 methodology. The third step is the design, the VHDL/verilog-coding and the
functional validation of the factorized architecture. Finally, the design synthesis and the time/area
analysis are made. Once the obtained time/area performances satisfy the corresponding constraints, the
FPGA physical implementation process is initiated. A deeper presentation of these steps is made in the
following sections.

When it comes to the A3 methodology, the aim is to find out an optimized FPGA architecture for
a given application algorithm, while satisfying area and timing constraints, [62], [63], [72]. In other
words, it consists in studying the data dependency of the algorithm in order to find the potential
factorization that leads to the use of the minimum number of operators that process a maximum of
operations.

The A3 methodology consists of three steps:
Design of the DFG (Data Flow Graph): this consists in making a graphical representation of the

algorithm to be implemented.

Data dependency evaluation: according to the obtained DFG, the data dependency is evaluated
and the potential parallelism is determined, which leads to the choice of the factorization strategy.
Note that the latter reduces the hardware resources but increases the computation time since it
serializes locally the treatment. The higher is the level of factorization, the longer is the execution
time. A compromise between computation time and consumed hardware resources is then mandatory.
The factorization is generally applied to the greediest operators in terms of consumed hardware
resources like multipliers. Also, in an upper level of granularity, this factorization can also be applied
at a functional module scale (thicker grain operator).

Design of the FDFG (Factorized DFG): this is a graphical representation of the factorized
algorithm on which the development of the FPGA-based architecture is directly derived. This graphic
introduces specific nodes called, F (“Fork”), J (“Join”), D (“Diffuse”) and I (“Iterate”). These nodes
are used to delimit the factorization borders [32].

A “dot product” module has been chosen as an example of illustration (relation 2.1). Figure
2.21(a) shows its DFG.

)()()()()()()(332211 tytxtytxtytxto ⋅+⋅+⋅=

As it can be seen in the corresponding DFG, the multiplications can be performed in parallel
mode which is not the case of additions. Thus, the factorization process can be applied to the
multiplier operator and the obtained FDFG is presented in Fig. 21(b).

(2.1)

Chapter 2: State of the art FPGA technology

41

Figure 2.21: Developed DFG and FDFG – factorization of dot product operator

6.3.2. Architecture design

According to the obtained FDFG, the FPGA-based architecture is designed by replacing the
FDFG nodes (F, J and I) by there corresponding operators. Thus, the node F is replaced by a
multiplexer, J and I replaced by registers.

The hardware architecture of each of the developed modules (according to the adopted modular
partitioning) is then composed of a data path and a control unit that are both synchronized with the
global clock signal. The data path contains the used operators and data buses between them. The
treatment scheduling is ensured by the control unit which is a simple Finite State Machine (FSM). The
latter is activated via a Start pulse signal. When the computation time process is over, an End pulse
signal indicates the end of the treatment. As an example, Figure 2.22 presents the FPGA architecture
corresponding to the FDFG of Figure 2.21(b).

Figure 2.22: Example of a designed FPGA architecture – case of the dot-product operator

6.3.3. Architecture VHDL/Verilog coding

At this stage, the designed FPGA architecture of each module is ready to be described. The
VHDL or Verilog description languages can be used.

6.3.4. Architecture functional simulation

As for the functional validation, the objective is to make the necessary simulation in order to
validate functionally the developed VHDL/Verilog design. This can be achieved using dedicated tools
such as ModelSim tools. The obtained simulation results can also be compared to those obtained
during the fixed-point simulation in Matlab/Simulink environment.

x

+

Sel Sel en0

en0

en0

en0

en2 en1

en3

en0

en1

en2

en3

Clk Reset

Start End

Wait

en0=1
Sel=0

Sel=1

 en2=1 Sel=2 Sel=1

en3=1

End=1

Reset

Start

en0

en3

+

en0

en4

Sel=0
 en1=1

Sel=2

 en4=1

x1
x2
x3

y1
y2
y3

x1

x2

x3 y3

y2

y1

Sel

en4

o

Data-Path

Control unit

Module
architecture

Clk Reset

x x

x1

+

b - FDFG

x F F

J

+ F : Fork
J : Join

x

+

y1 x2 y2 x3 y3

o

x1
x2
x3

y1
y2
y3

+
o

a - DFG

Chapter 2: State of the art FPGA technology

42

6.3.5. Design synthesis and time/area performances analysis

The VHDL-designed and functionally validated architecture is now ready to be synthesized so
as to analyze and translate it to a gate level design (using the dedicated tools, e.g. Xilinx synthesizer,
Synplify synthesizer …). During this synthesis, timing and area analyses are made.

The timing analysis consists in quantifying the propagation delays between the used FPGA
elements. Depending of these delays, the operating clock maximum frequency is estimated. This
estimation is made with regards to the used FPGA target but also on the quality of the designed
architecture. A fully-pipelined architecture leads to short propagation delays between the used FPGA
elements and then to a high clock frequency. From this analysis, designer chooses the appropriate
clock frequency and then estimates the execution time of the whole design.

In addition to the timing analysis, the synthesis process makes an area analysis and establishes
the connection between the used operators and the available FPGA resources.

From the obtained time/area performances, four scenarios are possible:

The timing constraint and area constraint are both satisfied: The design is then appropriate for
the FPGA physical implementation process.

The timing constraint is satisfied but the area constraint is not satisfied: In this case, designer
has to make a choice: (i) Use of another FPGA target (with more resources but if the low cost
constraint is still respected). (ii) Re-design of the architecture so as to increase the level of
factorization. (iii) Revision of the modular partitioning so as to gather potential modules and then
factorize the new architecture of the new module. (iv) Implementation of the optimized versions of the
algorithm. (v) Reduce the data word length which leads to re-validate the algorithm development step.

 The timing constraint is not satisfied but the area constraint is satisfied: In this case, designer
can increase the operating clock frequency and/or decrease the level of factorization.

Both timing and area constraints are not satisfied: In this case it is mandatory to decrease the
level of factorization and change the FPGA target.

6.3.6. FPGA physical implementation process

According to the design flow presented in Figure 2.12, the physical implementation process
includes the I/O assignment, the place&route and then the generation of the final Bitstream that is
ready to be transferred to the chosen FPGA target. These steps are commonly used by the FPGA
development tools (e.g. ISE, Quartus, Libero) provided by FPGA manufacturers (e.g. Xilinx, Altera,
Actel). It is also possible to achieve post-synthesis and post-route simulations that lead to validate the
functionality of the obtained gate-level design.

6.4. Experimentation

6.4.1. Hardware In the Loop (HIL) validation

In order to verify a first experimental operating guarantee, an HIL procedure is recommended.
The latter is an interesting realistic validation technique since it can be considered as an intermediate
between a fully computer-based development validation (Matlab/Simulink, ModelSim, FPGA design
tools) and a fully experimental validation (actual system platform).

The HIL procedure is carried out through a physical implementation of the developed FPGA-
based architecture to be validated. The latter has to be associated with an emulation of the plant [49],
[62]. In addition, a communication controller has to be implemented in order to transfer the stimuli
and the probed data. This communication is to be achieved with a Host-PC in which a comparison is
made between the obtained HIL results and the simulation results. Figure 2.23 highlights the synopsis
of the achieved HIL test. When using a Xilinx FPGA target, the HIL procedure can be made using the
ChipScope analyzer [2]. The latter is used to probe the internal signals in one hand and to configure
the design in the other hand. The data transfer is made using the JTAG interface.

Chapter 2: State of the art FPGA technology

43

Figure 2.23: Synoptic of the HIL procedure

6.4.2. Experimental validation

The experimental validation is the final step of the design methodology and aims to make a final
validation of the developed FPGA-based controller.

7. Conclusion

This chapter has made an in-depth presentation of FPGAs starting by a general purpose
investigation of their relevant elements. This is followed by a deeper investigation of specific FPGA
devices from each family and technology. Then an analysis has been made in order to state how
FPGA-based solutions are useful in the field of power electronics and drive applications. The case of
complex sensorless applications has been focused on and a discussion about the FPGA
implementation constraints is done. Finally, a design methodology is provided. The latter is dedicated
to power electronics and drive applications and consists in a set of steps and guidelines that help
designer to develop the expected application starting from the preliminary system specification to the
ultimate experimentation.

Now that this presentation is made, the next challenge is to present how to build an FPGA-based
controller that is dedicated to the control of a synchronous motor drive. Chapter 3 will deal with the
development of a standard FPGA based controller for a synchronous AC machine. Standard means
that the implemented control system uses the measured rotor position (from a sensor) in the control
closed loop. The development of a fully integrated FPGA-based controller for a Permanent Magnet
Synchronous Machine (PMSM) associated with a Resolver sensor will be presented. As for the
sensorless controller that uses the EKF, a deeper discussion about the development of the
corresponding FPGA solution will be made. The case of a Salient Synchronous Machine (SSM) will
be presented. This has been made in 4 stages according to the design methodology: system
specification of the sensorless controller (chapter 4), development of the algorithm (chapter 5),
development of the FPGA architecture (chapter 6) and finally the experimentation (chapter 7).

Emulated physical plant

Developed FPGA based
controller

Com. Controller Stimuli Signal Probe

Com. Interface

Host-PC

Comparison

Simulation
results

HIL
results

FP
G

A
 ta

rg
et

45

Chapter 3

Fully integrated FPGA-based controller for
a PMSP associated with a resolver sensor

1. Introduction

Before the development of the aimed sensorless controller, it has been decided to start with the
implementation of a fully integrated FPGA-based controller for a Permanent Magnet Synchronous
Machine (PMSM) associated with a resolver position sensor [22], [23]. This start up thesis activity
belongs to an aircraft application where the main objective is to develop a fully integrated FPGA
solution. To suit this high system integration demand, it has been decided to use the Actel Fusion
FPGA as a prototyping platform. Indeed, as presented in chapter 2, this Flash-based FPGA is
considered as a System on Chip (SoC) device since it allows a mixed signal processing: analog
processing using integrated analog peripherals (ADC, analog pre-scalers, analog multiplexer) and
digital features such as FPGA matrix. This last can support either hardware architectures or software
architectures with a processor unit (CoreMP7, CortexM1). This mixed treatment approach offers a
new level of integration by allowing the use of heterogeneous functions in the same device. In addition
to this features, these Flash-based FPGAs are well known for their low power consumption and their
immunity to Single Event Upset (SEU) radiations. Some preliminary motor control implementations
have been achieved using this SoC device and promising results have been obtained [18]-[23].

The developed controller implements the whole necessary functions in the presented Fusion
FPGA SoC. The analog to digital conversion is ensured by the integrated ADC. The whole control
closed loop including the treatment of resolver signals is implemented in the FPGA matrix. The sine
patterns used for the coordinate transformation are stored in the integrated Flash memory block.

At this stage, it can be noticed that this controller has been fully implemented in hardware. In
order to provide a fully SoC solution where software treatment is also ensured (using the processor
unit), an associate thesis work has been fixed [74]. The main objective of this work is to analyze,

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

46

develop, validate and propose a hardware/software solution combining the hardware FPGA treatment
and software processor treatment. Thus, additional co-design approaches are to be initiated in order to
decide which part of the treatment is to be implemented in software and which part of the treatment is
to be accomplished in hardware.

Figure 3.1: Synoptic of the proposed control system

The evaluation of the FPGA-based solution capabilities, in such AC drive application, is
achieved using the experimental set up presented in Figure 3.1. It consists of a PMSM associated with
a load and a resolver position sensor. This PMSM is supplied by a Voltage Source Inverter (VSI). The
switching signals are provided by the FPGA-based controller. The latter includes an ADC
management module, a Resolver Processing Unit (RPU) and a current controller. These modules are
sequenced by a global sequencer unit which is also used to generate a synchronization signal. From
this signal, the resolver interface processes either square or sinusoidal excitation signal for the
resolver. The ADC management module converts the resolver signals and the stator currents using the
integrated ADC. The RPU generates the rotor position and speed using the Angle Tracking Observer
(ATO) algorithm. From this position, the converted currents and the reference currents, the VSI
switching signals are computed by the current controller. The development of these modules has been
achieved with the help of the design methodology that is presented in the previous chapter.

In addition to these tests, a compensation of the ADC limitations is made. Indeed, the used
Fusion FPGA integrates only one ADC which, associated with an analog multiplexer, is able to
convert up to 30 analog signals. Consequently, the conversion is serialized and these analog signals
are not sampled at the same time which introduces a Sampling Synchronization Error (SSE). The
impact of this error has been measured and compensation procedures have been presented.

This chapter is organized as follows. At first, a brief presentation of the integrated ADC and its
implementation is discussed and the problem of synchronization is positioned. The third part presents
the resolver sensor and deals with the FPGA-based RPU. In this part, a presentation of the chosen
ADC SSE compensation method for resolver signals is made in addition to the evaluation of the RPU
noise rejection. Some experimental results are then provided so as to validate this RPU treatment. The
following part presents the FPGA-based controller which uses an ON/OFF current control strategy

PMSM ResolverLOAD

Voltage
Source
Inverter

ADC Management Module

Current
Controller

Fully FPGA-Based Controller

RPU

Host-PC

PMSM & Resolver Load
VSI

References

θe

ωe

Synchronization
signal

VsinVcosisbisa

Global
sequencer

Square / sinusoidal
excitation signal

Resolver
Interface

SoC FPGA-Based Controller

Sa Sb Sc

VDC

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

47

[62], [75]. This part includes the implemented ADC SSE compensation method for PMSM stator
currents. In order to prove the efficiency of this fully integrated solution, some experimental results
are provided, followed by time/area performance analysis. Finally, author makes a comparison, in
terms of execution time delay, between the FPGA-based controller and its corresponding software-
based one. The influence on the control quality is discussed in both cases. This comparison aims to
stress the importance of using FPGAs to enhance the control reactivity. This last point has to be taken
into account when designing a SoC solution. Indeed, designer has to think about the right
hardware/software partitioning that increases the integration density without loosing the control
performances [74].

2. Description and implementation of the FPGA integrated ADC

The Fusion FPGA integrates a 12-bit programmable successive approximation ADC (SAR-
ADC). Associated with an analog multiplexer, it can convert successively up to 30 analog signals,
[10]. Analog quads are used to precondition and adapt the analog inputs to the ADC voltage range.
Figure 3.2 gives an idea about the organization of the analog module.

Figure 3.2: Analog module overview

 The resolution of the ADC is adjustable and can be set to 8, 10 or 12 bits mode. The conversion
time is programmable and depends on the global system clock, the conversion resolution and the
sample and hold (S/H) time.

Figure 3.3: Synoptic of the implemented Global ADC Module

(a): FPGA architecture (b): State diagram

SAR
ADCS/H

12 bits

ADC Result

Vin1Vin2Vin30 Analog inputs

Analog multiplexer - Channel selection

CHNumber
selection

Analog quads – signal conditioning

Analog Module

ADC Control Unit
Clk

Reset
Start

isb

ADCSTART

CHNUMBER

DATAVALID

INIT_DONE

CALIBRATE

En0

En0

En1

En1

En2

En2

5

12

Reg 2

Reg 1

Reg 0

ADC_Result

Vsin
[11 :0]

isa
[11 :0]

Vsin_RDY

isa

Vsin

En3

Vcos
[11 :0]

En3

Reg 3 isb
[11 :0]

Vcos_RDY
isa_RDY
isb_RDY

End

Global ADC Module

Vcos

Conversion

Vsin

Start?

Conversion

Vcos

Conversion

isa

Saving the
ADC result
+ isa_RDY

Conversion

isb

End of
Conversion?

Saving the
ADC result
+ isb_RDY

Waiting for
start

1

Saving the
ADC result
+ Vsin_RDY

End of
Conversion?

End of
Conversion?

End of
Conversion?

Saving the
ADC result

+ Vcos_RDY

(b)

(a)

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

48

Figure 3.3 highlights the operating principle of the implemented Global ADC Module. It
includes the analog module (Figure 3.3(a)) and four registers in which is stored the ADC result
corresponding to each analog input. In the proposed application, the ADC is used to convert
successively resolver signals (Vsin, Vcos) and the PMSM stator currents (isa, isb). The conversion control
is ensured by the ADC control unit. The corresponding state diagram is shown in Figure 3.3(b). At the
end of each conversion cycle, the ADC result is stored in the corresponding 12-bit register and at the
same time, a corresponding xxx_RDY flag signal is activated.

The main limit of the proposed ADC structure is the sequential conversion process. Indeed,
since there is only one ADC, the conversion is serialized. Consequently, this induces a global
computational delay, which increases proportionally with the number of converted signals and
depends on the conversion time. Furthermore, with the proposed structure, analog signals are not
sampled at the same time, so, a Sampling Synchronization Error (SSE) is introduced. In the proposed
application, the influence and the way-to-compensate this error have been studied for resolver signals
in the one hand and for the stator PMSM currents in the other hand.

3. Resolver Processing Unit

3.1. Resolver sensor description

A resolver sensor is an electromagnetic position sensor similar to a rotary transformer with a
rotating excitation winding (also called reference winding) and two 90 degrees shifted stator windings,
[76]-[80]. Figure 3.4(a) gives an overview of resolver construction scheme. Often used in niche
applications like space and aircraft industry systems, resolver position sensors are more efficient
compared to optical sensors (absolute and incremental encoders), thanks to their large operating speed
range, their low volume and their ability to work in noisy and harsh environments (rugged
construction, noise rejection, operating in a large temperature range).

The excitation winding is supplied by a high frequency square or sinusoidal voltage signal
(generally 1 kHz to 20 kHz). When the rotor shaft turns, two voltage signals are induced in the stator
windings. The amplitude of these outputs is modulated respectively with the sine and cosine of the
electrical shaft angle according to relation (3.1).

Figure 3.4: (a): Resolver Construction scheme (b): Resolver Input/output waveforms

⎩
⎨
⎧

⋅⋅=
⋅⋅=

)cos(θE(t)m(t)V
)sin(θE(t)m(t)V

r

rsin

cos

Where E(t) is the high frequency square or sinusoidal excitation signal, m the transformation
ratio and θr the electrical rotor position. In case of sinusoidal excitation signal, resolver input/output
waveforms are presented in Figure 3.4(b).

To ensure high system integration, the treatment and the extraction of the rotor position and
speed from the resolver outputs are ensured by an FPGA-based Resolver Processing Unit (RPU),
instead of using an external off-chip Resolver to Digital Converter (RDC), [79].

Excitation
E(t)

Vsin(t)

Vcos(t)

Excitation
E(t)

Vsin(t)

Vcos(t)
(a)

(b)

(3.1)

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

49

3.2. RPU principle

The RPU treatment is done in two steps, as shown in Figure 3.5. Firstly, a synchronous
demodulation is achieved. The latter consists in demodulating resolver signals so as to extract the sine
and cosine of the rotor position. There are various demodulation techniques, all with their advantages
and limits in terms of demodulation quality and also in terms of algorithm complexity. In [19], authors
have reported and studied three typical methods: PLL-based method, Quadrature method and peak
detection method. The last one has been chosen in the case of the developed application for its
simplicity. It consists in using the ADC to detect and convert the Vsin and Vcos peak values. The second
step of the RPU treatment is the extraction of the position and speed from these demodulated signals.
The so-called Angle Tracking Observer is implemented for this aim.

Figure 3.5: RPU principle

3.3. Synchronous demodulation

The implemented synchronous demodulation method, presented in Figure 3.6, consists in
sampling the Vsin and Vcos peaks and delivering the demodulated Vsin_D and Vcos_D signals. In order to
increase the demodulation precision, the sign of the negative peaks is reversed depending on the
synchronization signal.

Figure 3.6: Synoptic of synchronous demodulation process

3.4. Angle Tracking Observer (ATO)

This is a closed-loop system which estimates accurately both speed and position, compared to
other solutions such as trigonometric extraction methods [19], [79]. Indeed, this observer consists in a
second order closed-loop system which compares permanently the actual angular position θr to the
estimated angular position θe. The objective is to minimize the angular position error.

ATO

Vcos

RESOLVER

Synchronisation signal

RPU

E

Global sequencer

ADC
process

Vsin

Synchronous
demodulation

Vsin_D

Vcos_D θe

ωe

Sign reverse

ADC
Process

Format
Adaptation

Synchronous
sign reverse

Vsin

Vcos

Vsin_D

Vcos_D

Syncho. signal

Synchronisation signal

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

50

Figure 3.7: ATO closed-loop

Figure 3.7 presents the implemented ATO closed-loop system, for the proposed application. In

this closed-loop, the computation of sine and cosine of the estimated position is ensured by a CORDIC
algorithm [39]. This last allows performing trigonometric functions, with an iterative algorithm and
using only simple operations like shifts and additions.

Figure 3.8: Linearized ATO closed-loop

The angular position error between θr and θe can be expressed as in relation (3.2). For small

variations of the error, this relation can be linearized and rewritten according to relation (3.3). Figure
3.8 presents the closed-loop system after the application of the linearization assumption. Based on this
simplified closed-loop, the ATO transfer functions are expressed in relations (3.4) and (3.5).

)()()()()(ererer sinsincoscossin θθθθθθεθ −=⋅−⋅=

erersin θθθθε θ −≈−=)(

121

21

r

e

²
)1(

)(
)()(

kskks
skk

s
ssH

++
+

==
θ
θ

θ

121

1

r

e

²)(
)()(

kskks
sk

s
ssH

++
==

θ
ω

ω

These are second order transfer functions for which the observation dynamic is set using K1 and
K2 coefficients. These coefficients are chosen depending on the required estimation speed and on the
observation error tolerance. As for the digital realization of the ATO, the adopted discretization
assumption is based on Forward Euler approximation. Namely, 1/s is replaced by Ts/z-1 where Ts is the
sampling period which has been set to 50µs in our case. Figure 3.9 shows the block diagram of the
discrete-time ATO closed loop. When it comes to the FPGA implementation, the choice of the
appropriate fixed-point data format is essential. In the proposed ATO algorithm and with the achieved
dynamic setting, the optimum data format that preserves the treatment precision is set to 19Q15 (see
chapter 5 section 4.3 for the fixed-point notation). The obtained fixed-point simulation results are
highlighted in Figure 3.10. They are obtained in the case of a sinusoidal resolver excitation with a
frequency set to 10 kHz.

+
- s

1

+
+

K1

K2

θe
θe

θr

s
1

ωe
εθ

X

X

CORDIC
Algorithm

+
- +

+

K1

K2

 ε = sin(θr – θe)
≈ θr – θe

θe

θe

sin(θe)

cos(θe)

Vsin_D
= sin(θr)

Vcos_D
= cos(θr)

ωe

s
1

s
1

(3.2)

(3.3)

(3.4)

(3.5)

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

51

Figure 3.9: Discrete-time ATO closed-loop

Figure 3.10: Fixed-point simulation results of the RPU –

(a): waveform of Vsin (b) : waveform of Vcos (c) : demodulated Vsin_D (d) : demodulated Vcos_D
(e) : estimated rotor position θe (f) : estimated rotor speed ωe for 8000 rpm mechanical speed

(g) : estimated speed for an acceleration 0-20000 rpm mechanical speed (h) : relative speed estimation error (%)

3.5. Compensation of the ADC Sampling Synchronization Error for resolver signals

During the synchronous demodulation process, the resolver signals Vsin and Vcos are sampled and
converted by the single integrated ADC of the used Fusion FPGA. As a consequence, they aren’t
sampled at the same time, as illustrated in Figure 3.11. At each sampling period kTs, the conversion
process is launched and the conversion results are respectively ready at kTs + tconv and kTs + 2tconv,
where tconv corresponds to the conversion time.

X

X

Cordic
Algorithm

+
- +

+

K1

K2

Speed
(rd/s)

position
(rd)

 εθ = sin(θr – θe)
≈ θr – θe

θe

θe

sin(θe)

cos(θe)

Vsin_D
= sin(θr)

Vcos_D
= cos(θr)

ωe

1−z
Ts

1−z
Ts

0 0.005 0.01 0.015 0.02 0.025 0.03

-1

0

1

0 0.005 0.01 0.015 0.02 0.025 0.03

-1

0

1

0 0.005 0.01 0.015 0.02 0.025 0.03

-1

0

1

0 0.005 0.01 0.015 0.02 0.025 0.03

-1

0

1

0 0.005 0.01 0.015 0.02 0.025 0.03
0

2

4

6

0 0.005 0.01 0.015 0.02 0.025 0.03
0

5000

10000

(a)

(b)

(c)

(d)

(e)

(f)

rpm

rd

8000 rpm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

0

100

200

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-80

-60

-40

-20

0

20

40

60

80

100

0 0.005 0.01 0.015 0.02
-100

-80

-60

-40

-20

0

20

40

60

80

100

(g)

(h)

%

rpm

Vsin

Vcos

Vcos_D

Vsin_D

θe

ωe

ωr

ωe

t(s)

t(s)

t(s)

t(s)

t(s)

t(s)

r

er

ω
ωω −

t(s)

5000 rpm 10000 rpm 15000 rpm 20000 rpm

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

52

Figure 3.11: Conversion process for resolver signals

Taking into account the amplitude modulated signals, the sinusoidal excitation signal and the
ADC SSE, the demodulated signals Vsin_D and Vcos_D are expressed in relation (3.6), where θr, ωr and
ωex are respectively rotor position, rotor speed and the excitation signal pulsation.

[] [])sin(θsinV

ss
kTrkTDsin ⋅=)

2
(_
π

[] [])tcos(θtsinV convrkTrconvexkTD ss
ωωπ

+⋅+=)
2

(cos_

Assuming that ωex and tconv are constant and known, the compensation procedure of the ADC

SSE for resolver signals can be made according to Figure 3.12. This figure shows the z-domain
modified ATO closed-loop. α and β variables are expressed in relation (3.7).

Figure 3.12: Modified ATO closed-loop

])([
2
1)tsin(tsin conveerconveer ωθθωθθα −−+++⋅=

])([
2
1)tsin(tsin convrreconvrre ωθθωθθβ −−+++⋅=

kTs

Vsin_D[kTs]

Start Vsin

Start Vcos

tconv tconv

Vsin

εSSE

Vcos Vcos_D[kTs]

(k+1)Ts t

+
+

X

Modified Cordic
Algorithm

+
-

Speed
(rd/s)

position
(rd)

 εθ ≈ θr – θe + 1/2.(ωr – ωe).tconv

θe

θe

cos(θe + ωetconv)

Vsin_D

ωe

K2

α

β
X

sin(θe)

Vcos_D

K1

tconv

1−z
T s

1−z

T s

)

2
sin(

1

conex tωπ
+

(3.6)

(3.7)

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

53

Figure 3.13: RPU Fixed-point simulations before and after SSE compensation

(a,b): speed estimation error (acceleration 0-20000 rpm-mechanical) before (a) and after (b) SSE compensation
 (c): position estimation error (acceleration 0-20000 rpm mechanical)

Assuming that the rotor speed is correctly estimated (ωr=ωe), relations (3.8) and (3.9) present

the new observation error respectively before and after linearization. The same expression as in (3.3)
is finally obtained.

])([
2
1)tsin(tsin convrreconveer ωθθωθθβαεθ −−−−−⋅=−=

erconverer t θθωωθθεθ −≈−+−≈)(
2
1

Figure 3.13 shows the fixed-point simulation results of the RPU unit before and after ADC SSE
compensation. These results prove that the serialization of the analog to digital conversion has an
impact on the observation quality.

3.6. Evaluation of the noise rejection

An evaluation of the noise rejection of the developed RPU has also been done. A noise at the
PWM frequency (10 kHz) was injected to Resolver signals (Vsin and Vcos) and the behavior of the
obtained position and speed was observed. Figure 3.14 shows the waveform of the relative error
between the theoretical speed and the estimated speed after having injected the PWM noise. This
fixed-point simulation result has been obtained for an acceleration from 0 to 20000 rpm mechanical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-150

-100

-50

0

50

100

150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5
0 03

-0.02

-0.01

0

0.01

0.02

0.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

5000 rpm 10000 rpm 15000 rpm 20000 rpm 5000 rpm 10000 rpm 15000 rpm 20000 rpm

Position error

With SSE before compensation

With SSE after compensation
Without SSE

Speed error before compensation Speed error after compensation

5000 rpm 10000 rpm 15000 rpm 20000 rpm

(a)

(b)

(c)

t(s) t(s)

t(s)

(3.8)

(3.9)

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

54

speed. This indicates that the injected noise has a limited impact on the estimation quality either for
position or speed.

Figure 3.14: Evaluation of the RPU noise rejection

3.7. Experimentation

Figure 3.15 presents the experimental results obtained after implementing the RPU in an
AFS600 Fusion FPGA (13824 FPGA tiles, 1 ADC, 40 analog I/Os, 4 Mb Flash memory, 108Kbits
RAM memory). Resolver shaft is linked to the used PMSM that turns at 800 rpm mechanical speed.
The computation is synchronized by a 50MHz clock signal. The sampling period is synchronized with
the resolver excitation and is fixed to 50µs and the frequency of the resolver excitation signal is set to
10 kHz. The used internal tiles present 25% of the FPGA matrix. These results are obtained for a 19-
bit fixed point data format. The obtained position and speed waveforms prove a good FPGA-based
treatment in terms of quality and accuracy.

 Figure 3.15: RPU - Experimental results

4. FPGA-based controller description

The goal of the proposed control system consists in controlling the stator currents of the PMSM.
Among the various control strategies that have been proposed in [62] and [75], it has been chosen to
implement an Hysteresis ON/OFF controller. The latter consists of a dq-abc coordinates
transformation module and a 3-phase Hysteresis regulator. The dq-abc module generates the 3-phase

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

2

3

4

5

6

7

8

Error between theoretical and estimated speed%

5000 rpm 10000 rpm 15000 rpm 20000 rpm

t(s)

r

er

ω
ωω −

Vsin

Vsin_D

Vsin_D

θe

ωe

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

55

current references with regards to the expected dq current references and the rotor position. These
references are then compared to the measured currents by hysteresis regulators in order to generate the
appropriate switching signals. Figure 3.16 shows the corresponding FPGA architecture. The ADC
management module is composed of the previously discussed Global ADC module and AD interfaces.
The latter adapt the conversion results to the appropriate data format, 19-bit fixed point format
(19Q15) for RPU treatment and 13-bit fixed point format (13Q12) for current controller.

Figure 3.16: FPGA-based controller architecture

4.1. Controller timing diagram

Figure 3.17 highlights the control system timing diagram. At the beginning of each sampling
period Ts (set to 50µs), the Resolver position shift (tphi) is taken into account. This shift (measured
experimentally) corresponds to the delay between the synchronization signal edge and the peak of
resolver signals. This delay is mainly due to the resolver interface electronic circuits and the resolver
windings. After this shift, the ADC management module is activated. It converts, sequentially, the
resolver and current sensor analog outputs. At the end of each conversion cycle, the xxx_RDY flag
corresponding to each input is activated. Thus, as soon as Vcos_D_RDY is activated (Resolver signals
are both converted), the RPU starts. Simultaneously, the conversion of the other analog signals
(PMSM stator currents) is realized. Finally, the current controller is then activated after the Resolver
processing and at the end of the conversion process.

Offset
Position

ABC

3-phase HR

Current controller

Bw*

isd*
isq*

θoffset

Sa

Sb

Sc

13

13

13

10

13

isa*

isb*

isc*

isa

isb

isc

13

13

13

10

RPU

13 13
19 19

19

Synchronization signal

Global_ADC_Module

Vsin
Vcos

isa

isb

AD interfaces- Data Format Adaptation

12 12 12 12

θe

Global
Sequencer

ADC Management Module

Bw

DQ

To resolver

13

13

13

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

56

Figure 3.17: Control system timing diagram

4.2. Compensation of ADC Sampling Synchronization Error for PMSM currents

Figure 3.18 presents the conversion process of the measured currents isa and isb
 which is

launched at each sampling period (kTs) after converting the resolver signals Vsin and Vcos. This
conversion is made sequentially. As consequence sampling synchronization errors are introduced (εSSEa
for isa and εSSEb for isb). Assuming that the stator currents are sinusoidal, these sampling errors
correspond to position errors. The conversion results of isa and isb

 at each sampling period are then
expressed in (3.10). This relation includes the third current isc obtained by considering that the 3-phase
system is balanced.

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+++−=

+−=+

+=+
∧

∧

)εεi(ii

).t3ω
3

2πsin(θIεi

).t2ωsin(θIεi

kTsSSEbkTsSSEakTssbkTssakTssc

convekTseskTsSSEbkTssb

convekTseskTsSSEakTssa

][][][][][

][][][

][][][

Figure 3.18: Conversion process for stator currents

Start of conversion

iaa[kTs]+ εSSEa

isb[kTs] + εSSEb

tconv tconv

isa

isb

εSSEb

εSSEa

tconv tconv

Conv. Vsin
Conv. Vcos

Conv. isa

Conv. isb

kTs (k+1)Ts

tconv tconv tconv tconvtphi

kTs
Vsin [k] Vcos [k] isa [k] isb [k]

tRPU

Vsin RDY
Vcos RDY

isa RDY

θe[k]

ωe[k]

tCC

isb RDY

Sb

Sc

Sa

tcontrol

tRPU : RPU execution time
tphi : Resolver shift
tconv : Conversion time
tCC : Current Control execution time
tControl : Global execution time

A
ct

iv
at

io
n

Sa
m

pl
in

g
V s

in

Sa
m

pl
in

g
V c

os

Sa
m

pl
in

g
i sa

 &

ac

tiv
at

io
n

of
 R

PU

Sa
m

pl
in

g
i sb

A
ct

iv
at

io
n

of

cu
rr

en
t c

on
tro

l

AD
Conversion

RPU
Treatment

Current
Control

(k+1)Ts

Resolver synchronization signal

Actions

Vsin [k+1]

(3.10)

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

57

These measured currents are compared by the hysteresis regulator to their corresponding
reference values isa

*, isb
* and isc

*. The current errors are then written as,

) ε -(i i [kTs]SSEa[kTs]sa[kTs]sai [kTs]sa
+= *ε

) ε -(i i [kTs]SSEb[kTs]sb[kTs]sbi [kTs]sb
+= *ε

[kTs]SSEb[kTs]SSEa[kTs]sb[kTs]sa[kTs]sci ε ε i i i
[kTs]sc

++++= *ε

The compensation of the impact of the sequential conversion is made by adding the sampling
errors εSSEa and εSSEb respectively to the reference values isa

* and isb
* in order to have the same current

errors as in an ideal case (3.12).

[kTs]sa[kTs]sa[kTs]SSEa[kTs]sa[kTs]SSEa[kTs]sai - i i) ε)-(i ε (i
[kTs]sa

** =++=ε

[kTs]sb[kTs]sb[kTs]SSEb[kTs]sb[kTs]SSEb[kTs]sbi - i i) ε)-(i ε (i
[kTs]sb

** =++=ε

[kTs]sc[kTs]sci - i i

[kTs]sc

*=ε

In case of sinusoidal signals and assuming that the conversion time tconv is constant and known,
the compensation is made through the position θe and the electrical speed ωe, both estimated by the
RPU. Figure 3.19 summarizes the proposed compensation procedure. The ADC SSE is introduced
through the modified Park transformation. The 3-phase current references are then expressed
according to the following relation,

)εεi(iεεi

).t3ω
3

2πsin(θIεi

).t2ωsin(θIεi

[kTs]SSEb[kTs]SSEa[kTs]sb[kTs]sa[kTs]SSEb[kTs]SSEa[kTs]ss

conve[kTs]e
*

s[kTs]SSEb[kTs]sb

conve[kTs]e
*

s[kTs]SSEa[kTs]sa

+++−=−−

+−=+

+=+
∧

∧

*

*

Figure 3.20 shows the evolution of the ADC SSE when increasing the current frequency and the
conversion time. This result proves that the serialization of the analog to digital conversion has an
impact on the control quality. In this application the electrical speed is low, so this error can be
neglected. However, it cannot be so when increasing the speed, the ADC conversion time and the
number of analog inputs.

Figure 3.19: Compensation of the ADC SSE for stator currents

εisa= isa* - isa

From ADC

-
-

 Modified
dq-to-abc

transformation

isd
*

isq
*

θe

+

-
+

-
+

-

isa* + εSSEb

isc*-εSSEa- εSSEb ωe

isb+εSSEb

εisb= isb* - isb

εisc= isc* - isc

Bw

Sa

Sb

Sc

From RPU

isa*+ εSSEa

isa+εSSEa

(3.11)

(3.12)

(3.13)

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

58

Figure 3.20: SSE = f (speed, tconv)

4.3. Experimental results

Figure 3.21: Current controller experimental results – Obtained for isd*=0A; isq*=3A; Bw*=0A

The experimental set up presented in the first section (Figure 3.1) is composed of a 0.8kW

PMSM associated with a Resolver sensor, current sensors and a controlled load (powder brake). The
current sensors deliver voltage signals corresponding to the measured currents (2.5V/10A). The
sampling period is synchronized with the resolver excitation and is fixed to 50µs. Figure 3.21 presents
the stator current and voltage instantaneous waveforms.

4.4. Time/Area performances

Table (3.1) presents the time/area resources of the implemented motor controller. This full
FPGA-based solution was based on an AFS600 Fusion FPGA (13824 FPGA VersaTiles, 1 ADC, 40
analog I/Os, 4 Mb Flash memory, 108Kbits RAM memory) [10]. The consumed resources were
obtained for a 13-bit fixed-point format for the current controller and 19-bit fixed-point format for the
RPU treatment. The obtained area performances show that the global implemented architecture takes
47% of the Fusion FPGA matrix. This is mainly due to the greediest operators like multipliers. Indeed,
these multipliers are synthesized in the FPGA matrix because they are not hardwired in the chip. As

(a) (b)
(c)

10 ms

100 mV
4.3 A

10 ms

10 ms

500 mV
2 A

500 mV
100 V

0

0,02

0,04

0,06

0,08

0,1

0,12

0 5000 10000 15000 20000 25000

Speed (rpm)

εSSE (%)

tconv 1=1.32µs

tconv 2=2.6µs

tconv 3=3.88µs

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

59

for the time performances, the global execution time (6.5µs) remains short, but it depends mainly on
the sequential analog to digital conversion time.

Table 3.1: Time/Area resources
 Time/area resources
 Modules

% of hardware resources
(over 13824 cells)

Execution time
CLK = 50MHz

ADC Management module
1 Flash memory block + 4

analog quads + 12-bit ADC

1.48 %
(205 cells)

1 internal ADC
tconv=1.36µs

RPU
Synchronous demodulation
Angle Tracking Observer

Cordic treatment

25.16 %
(3478 cells) tRPU = 1.56 µs

Hysteresis current control
DQ-abc transformation

3-phase hysteresis regulator

16 %
(1242 cells) tCC = 1.06 µs

Global
control architecture

Total

47.01 %
(6499 cells)

tcontrol = 4 * tconv+ tCC
= 6.5 µs

4.5. Influence of the execution time on the control quality

In order to illustrate the influence of execution time on the control quality, the obtained
experimental results using the hardware fully FPGA controller, are compared to those obtained with a
slower solution like a software controller. In the first case, the controller processes and generates the
switching signals in 6.5µs delay (including AD conversion time). In the second case, in order to
reproduce a typical software-based controller, the execution time was deliberately delayed and the
switching signals are generated one sampling period (50µs) later. Figure 3.22 shows the influence of
the execution time on the current waveform in case of hysteresis-based control strategy. In this figure,
it can be seen that current ripples are significantly larger when execution time is equal to a sampling
period (embedded software controller case, Figure 3.22(b)) compared to the case of a fully hardware
controller (Figure 3.22(a)).

Figure 3.22: Comparison between a 6.5µs control delay (a) versus a 50µs control delay (b)

5. Conclusion

This chapter has dealt with the development of a fully integrated FPGA-based controller for a
PMSM. This PMSM is associated with a resolver position sensor. For a high integration purpose, it
has been decided to implement the controller within an Actel Fusion FPGA. The latter is characterized
by mixed-signal elements that combine analog elements (e.g. ADC) in addition to the digital features
ensured by the FPGA matrix.

The developed controller includes a Resolver Processing Unit (RPU) which calculates rotor
position and speed and a current controller which processes the switching signals for the VSI. The
conversion process is ensured by the integrated ADC. These modules have been described and
propped up with fixed-point simulation and experimental results. Also the Sampling Synchronization

1

1) Ch 1: 500 mVolt 25 ms
2) Ch 2: 100 mVolt 25 ms

1

1) Ch 1: 500 mVolt 25 ms
2) Ch 2: 100 mVolt 25 ms

isd* = 0A ; isq* = 3A ; Bw* = 0A

THD = 8% THD = 21%

(b) (a)

25 ms

500 mV
2 A

Chapter 3: Fully integrated FPGA-based controller for PMSM associated with a resolver sensor

60

Error (SSE) which is introduced by the ADC structure has been discussed and compensation methods
have been presented.

Now, as the utility of using FPGAs to suit high integration demands is discussed, the next step is
how they bring their value-added for more complex controllers. Thus, the next chapters deal with the
development of an FPGA-based sensorless AC drive application using an Extended Kalman Filter
(EKF). Besides the importance of sensorless controllers especially for avionic applications, the
performances and the way-to-develop the corresponding FPGA solution will be covered.

61

Chapter 4

FPGA-based sensorless control for
synchronous AC drive

- Preliminary system specification

1. Introduction

In this chapter, author presents the preliminary development step of an FPGA-based sensorless
controller for a synchronous AC drive. According to the design methodology presented in chapter 2
(Figure 2.18), this step consists in making a preliminary system specification regarding the whole
sensorless control application.

Thus, at the beginning, a hardware specification is made. The power stage, the electrical sensors,
the analog/digital interfaces and the digital control unit are specified. For the power stage, this consists
in choosing, depending on the load conditions, which AC motor is to be controlled and which supply
conditions. The specification of the electrical sensors that are used to measure voltages and currents is
also important at this step since the introduced gains are taken into account during the algorithm
normalization (chapter 5). The specification of the analog/digital interfaces consists in choosing the
Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC) boards. Here again the
specification of the ADC is important since the introduced gain and the conversion time are taken into
account respectively during the normalization and during the analysis of the controller timing
performances. Finally, the appropriate FPGA-based digital control unit is defined.

Beyond this physical specification, the algorithm benchmarking is made. This consists in
specifying the appropriate control strategy and the appropriate sensorless method for the estimation of
the rotor position and speed. In the case of the implemented Extended Kalman Filter (EKF), the
selection of the appropriate system model that allies model precision and complexity is to be achieved.

This chapter is organized as follows. The hardware specification is discussed in the following
part. The third part deals with the chosen speed and stator current control strategies. Then, part 4
presents some widespread sensorless methods for the estimation of the rotor position and speed. This

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

62

investigation leads to the choice of the sensorless method for the developed application. Thus the
principle and the algorithm of the chosen EKF are presented in part 5. Finally, the development and
the selection of the system model for the EKF treatment are dealt with in part 6.

2. Sensorless control system - Hardware specification

The structure of the proposed sensorless control system is overviewed in Figure 4.1. It highlights
mainly the power stage structure, the FPGA-based digital control unit, the electrical sensors, the ADC
board, the DAC board and the Host-PC interface.

Figure 4.1: Synoptic of the developed control system

2.1. Power stage

The power stage is composed of a Salient Synchronous Machine (SSM) associated with a
controlled load (i.e. a powder brake). The characteristics of this power stage are presented in chapter 7.
The modeling and the parameter identification of the SSM are presented in [Appendix B].

This machine has a wounded rotor which needs an additional supply source. This last consists of
a buck converter which, associated with a hysteresis-based current controller, aims to maintain the
rotor current to the desired reference. The stator is fed by a 3-phase 2-level Voltage Source Inverter
(VSI) based on Insulated Gate Bipolar Transistor (IGBT) modules. In [Appendix-A] and [21], a
characterization of this VSI is made. A measurement of the dead time between switching signals, the
turn-on/off delays and the voltage drop introduced by the power switches is done. The influence on the
control quality and the way-to-compensate these nonlinearities are presented.

Voltage
Source

Inverter

FPGA-based digital Control Unit

Stator current
Controller

SSM LOAD

Rotor position and speed observer

θ̂

isd* isq*

Sa Sb Sc

VDC

Voltage
interface

isa, isb

Vsa* Vsb* Vsc*

Vsa*,Vsb*, Vsc*

Buck
converter

Rotor current
Controller

Ird*

Ird

ω̂

P-PI based Speed
Controller

ω*

Vsa Vsb Vsc

isa, isb

D
A

C
 in

te
rf

ac
e

D
A

C
 b

oa
rd

Tr
an

sm
is

si
on

 in
te

rf
ac

e

Tr
an

sm
is

si
on

 b
uf

fe
rs

PWM Module

ADC board

ADC interface

Host-PC

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

63

2.2. Electrical sensors, ADC and DAC boards

The used electrical sensors deliver voltage signals corresponding to the measured stator currents
and the measured DC link voltage (2.5V/10A, 1V/100V). The implemented measurement system is
based on the ARCTU3 board which is deeply described in [62].

For the developed platform, the available ADC board is composed of four AD9221 ADCs.
These are successive approximation register components that provide conversion results as 12-bit
signals. The corresponding ADC interface adapts the converted signals to the chosen data format. The
effective conversion time (ADC conversion time + the post signal adaptation) is equal to 2.4 µs.

The implemented Digital to Analog Converter (DAC) board consists of a set of 10-bit AD9760
devices that are used to convert the internal signals for display purposes.

2.3. FPGA-based digital control unit

In the proposed application, the digital control unit is based on a Xilinx FPGA board. As it will
be discussed in chapter 6, the objective is the possibility to implement the developed design within a
low cost FPGA device. Thus with the Xilinx family, this concerns the low cost Spartan-3, Spartan-3E
and Spartan-6 series.

2.4. Host-PC interface

This interface ensures a real-time transfer of data between the digital control unit and the user
Host-PC. In the proposed work and in the case of Xilinx FPGA device, the ChipScope tool has been
used and the transmission is based on USB-JTAG protocol. This tool ensures the setting of the
sensorless controller in the one hand and the probing of the internal signals in the other hand. This
latter point will be deeply investigated during the Hardware-In-the-Loop validation (chapter 7).

3. Stator current controller and speed controller

3.1. Stator current controller

Depending on the aimed synchronous AC drive application, various control strategies are
available. All these strategies are composed of an inner current control closed loop. The latter consists
in maintaining the measured stator currents of the motor as close as possible to the desired current
references. To this purpose, several current control techniques are available [62], [75] including for
example ON/OFF, Predictive, PI-based and sliding mode control techniques.

The evaluation of each of these control techniques and the selection of the appropriate one is
based on which one is able to satisfy the expected control performances (for example high precision,
robustness toward parameter variations, large bandwidth, low switching power losses and low THD in
current waveforms). To this aim, these current control techniques have been studied and analyzed in
[62] and an in-depth comparison in terms of control performances has been made. Also [62] provides
a deep understanding and a relevant argumentation of how the use of FPGAs as digital solutions is
important for the implementation of such current control techniques.

In our case, the implemented FPGA-based stator current controller is based on an Anti-windup
PI regulator [81], [82]. Figure 4.2 summarizes the corresponding principle. The d-q current regulators
calculate the d-q voltage references according to the measured and reference currents. The axes
decoupling has been included so as to make independent the regulation in the d and q axes. After a
coordinate transformation, the 3-phase voltage references are processed. Note that this Park
transformation is processed after a Clark transformation with the amplitude-conservation. The used
Pulse Width Modulation (PWM) module generates the corresponding switching signals for the VSI.
The tuning of the d-q current regulators is discussed in [Appendix C].

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

64

Figure 4.2: Structure of the stator current controller

3.2. PWM specifications

The implemented synchronous machine is fed by a 3-phase, 2-level VSI. The switching signals
of the latter are generated by the PWM module. There are various PWM techniques; each of them is
specified depending on the implementation approach (analog or digital), on the operating conditions
(e.g. rated power and switching frequency) and on the expected performances (e.g. linearity range,
switching losses and THD). According to [62] and [83], where various PWM techniques are analyzed,
two main categories are suggested. The first one is the carrier based PWM which includes the basic
sinusoidal PWM technique (CB-SPWM) and the PWM with zero sequence signal (CB-ZSS-PWM).
The second category is composed of the well-known Space Vector PWM (SVPWM).

In the proposed FPGA-based controller, it has been chosen to implement the CB-ZSS-PWM
technique. Figure 4.3 presents the corresponding principle scheme. The ZSS voltage (between n and o
neutral points) is processed from the 3-phase sinusoidal voltage references (Vsa

*, Vsb
*, Vsc

*) and added
at the same time so as to generate the corresponding voltages (Vao

*, Vbo
*, Vco

*). The choice of such
PWM technique is motivated by its low algorithm complexity (easy FPGA implementation) and also
because it ensures, as an SVPWM, a full use of the VSI 3-phase supply voltage [62], [83].

Figure 4.3: Principle of the CB-ZSS-PWM

3.3. Compensation of VSI nonlinearities

One of the key-issues that influence the motor control quality is the performance of the used
VSI. Indeed, the latter introduces nonlinearities on its output voltage, mainly due to the dead time of
the switching signals (added to avoid short-circuit), to the turn-on/off delays of the used IGBTs and to

Vsa*

Sa PWM
comparator

+
+

Vao*

Vsb*

Sb PWM
comparator

Vbo*

Vsc*
Sc

+Vdc/2

-Vdc/2

PWM
comparator

+
+

Vco*

PWM
carrier

TA1 DA1

TA2 DA2

TB1 DB1

TB2 DB2

TC1 DC1

TC2

o
a

b
c

n

DC2

VDC/2

VDC/2

Stator
windings

+
+

VZSS
calculation

CB-ZSS-PWM VSI

Vzss

abc-dq

isq

isd

vsd
*

vsq
*

+ -

isd
*

+ -

isq
*

+ -

+ +

Axes decoupling

dq-abc PWM Module

ω̂

θ̂

Vsa
*

Vsb
*

Vsc
*

Sa

Sb
Sc

isa

εid

εiq

isb

Estimated speed

Estimated position

Measured stator currents

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

65

the voltage drop across these power switches. This output voltage error has a non-negligible influence
on the motor current and as consequence on the developed torque. Various compensation methods
have been proposed to improve the VSI output voltage waveform such as pulse-based methods [84],
[85] and voltage average value based methods [85], [86]. In our case, the proposed method consists in
compensating the VSI non-linearity through the reference voltage average value applied to the CB-
ZSS-PWM. To this aim, an in-depth study of this compensation assumption is made in [Appendix A]
and [21].

3.4. Speed controller

The developed speed controller is made up using a Proportional-Proportional Integral (P-PI)
regulator. As deeply studied in [81], this controller is characterized by double speed feedback loops,
an internal loop and an external loop. As depicted in Figure 4.4, the first one consists of a Proportional
regulator which imposes the poles of the controlled system. The external speed control loop is
performed via a PI regulator in order to ensure a zero steady-state error and set the response dynamic.
The tuning of this P-PI regulator is discussed in [Appendix C].

Figure 4.4: Structure of the speed controller

3.5. Voltage interface

In order to reduce the number of voltage sensors, the voltage interface has been developed. This
interface generates the 3-phase stator voltages from the measured DC voltage and 3-phase stator
reference voltages according to relation (4.1). These voltages are used for the estimation of the rotor
position and speed that will be discussed thereafter.

cbaiVVV siDCsi ,,;* =⋅=

4. Estimation of the rotor position and speed - sensorless methods

In the literature, many research investigations in the field of sensorless controllers dedicated to
AC drives have been achieved. Several sensorless methods for the estimation of the rotor speed and
position have been implemented. Each of them has its own advantages and limits according to the
operating conditions. In the following, some examples of the frequently encountered sensorless
methods are presented. To make a clear classification, they can be divided in two categories; the
model based category and the signal injection based category (according to [88]). Figure 4.5 highlights
this classification.

ω* isq
* Kω

+ - - +

isd
* Sa

Sb
Sc

Current controller

Estimated speed
ω̂

Internal loop
External loop

(4.1)

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

66

Figure 4.5: Examples of the frequently encountered sensorless methods

4.1. Sensorless methods based on signal injection

This category exploits the machine anisotropy. When implementing an SSM, the estimation
approach exploits typically the saliency and relies on the dependence between the rotor position and
the inductances. The principle is based on signal injection through voltages and on the measurement of
currents. The main advantage of these sensorless methods is their ability to estimate rotor position at
standstill and operate at very low speed.

4.1.1. High frequency injection method

This sensorless method consists in injecting a high frequency voltage signal in the voltage
reference generated by the controller (e.g. d-q voltages in the case of a PI-based controller). Thus the
extraction of the rotor position and speed is achieved by measuring the stator currents and making the
appropriate signal filtering so as to extract the harmonic that contains the position information.
Examples of implementations can be found in [88] and [89].

4.1.2. INFORM method

Another sensorless approach is the INFORM (Indirect Flux Detection by Online Reactance
Measurement) method. This method has been introduced by [52] and consists in applying two
opponent voltage phasors in order to track the saturations and geometric saliency of the motor. In
other words, this consists in applying two consecutive voltage sequences (two switching voltage
states) in opposite direction. Two consecutive current variations are then measured. When calculating
the difference between the applied voltages, it is possible to eliminate the resistive voltage and the
back-EMF. The obtained equation is then based only on the inductance which is extracted and used to
calculate the rotor position.

4.2. Sensorless methods based on the motor model

These sensorless methods are based on the motor model. They are adapted to high speed
operating conditions. However, their main limit is their estimation failure at standstill and very low
speed. This is because the system becomes unobservable and the amplitude of voltages is very low
(zero at standstill).

4.2.1. Back-EMF method

This approach consists in extracting the back-EMF from the implemented machine electrical
equations (e.g. [90]). The implemented motor model is usually based on the stationary (α,β) frame.
The extraction of the rotor position can be made using Arctan function and a post treatment is to be
done to extract the speed. Another extraction method can be based on specific Phase Locked Loop
(PLL) which has the same treatment as the ATO (studied in chapter 3).

Sensorless methods Model-based Signal injection

Back-EMF method

Observer-based
method

High frequency
injection method

INFORM method

Deterministic
observers

Stochastic
observers

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

67

4.2.2. Observer-based method

In this case, the extraction of the rotor position and speed is done with the use of observers.
These lasts lean on the state space model of the implemented AC motor and the main goal is to
minimize the observation error between the measured and the estimated quantities. There are two
observation approaches: deterministic approach and stochastic approach.

The first one consists in using deterministic observers such as Luenberger observer or Extended
Luenberger observer (for non-linear systems) [91]. Along the same line, other sensorless methods
using Sliding Mode Observers (SMO) have been proposed and a typical example is given by [90].
These deterministic observers lean on the system model without considering measurement noises and
modeling errors.

The second approach is based on stochastic observers such as Kalman filter for linear systems
and the Extended Kalman filter (EKF) for non linear systems [93]-[106]. These observers consist of a
set of mathematical equations that implement prediction/innovation optimal estimation process. The
goal is to minimize the covariance of the error between the real state space vector and the estimated
one by considering measurement noises and modeling errors.

4.3. Choice of the sensorless method

As discussed during the general introduction (chapter 1), the developed sensorless control
system is going to be adapted to an industrial aircraft research program. The main objective of this
program is to develop an FPGA-based sensorless controller for a Brushless Synchronous Starter
Generator (BSSG) [92], [38]. Two sensorless methods will be implemented, one for low and high
speed and one for very low speed and standstill.

In the proposed work, the chosen FPGA-based sensorless method for low and high speed
operating conditions is the EKF-based method. This choice is based on two main motivations.

The first one is related to its performances. Indeed, the EKF is well-known for its inherent
robustness towards random noisy environment (typically the case of avionic systems). This has been
proved in wide range of sensorless applications. Such observer presents, anyhow, a major
disadvantage which is the intensive mathematical operations compared to other sensorless methods.
As it will be seen in the next part, this is due to intensive matrix operations such as multiplications and
divisions that demand high computational resources. In the proposed thesis work, this drawback has
been transformed to a challenge. This is in fact the second motivation of having chosen the EKF
because it is the best candidate to prove that FPGA solutions are suited to such complex algorithms.

As for the case of very low speed and standstill, the high frequency injection method is
implemented. This activity is not covered here and is the main subject of the associate thesis work
[92].

5. Extended Kalman Filter basics

In the literature, a wide range of papers have discussed the basics the EKF theory. In addition to
the conventional structure, many other structures have been proposed (for example, Adaptative EKF,
Neural EKF, Two-stage EKF, Reduced order EKF, Unscented Kalman filter …). In this work, the
conventional structure of the discrete-time EKF algorithm has been implemented. A brief recall of the
corresponding principle is made.

To start with, relation (4.2) presents the discrete-time stochastic state space model of the
observed system.

kkdk

kkkdk

vxhy
wuxfx

+=
+= −−−

)(
),(111 (4.2)

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

68

Where x is the state space vector, fd is the discrete-time state space matrix, u is the input matrix,
y is the output (measurement) vector and hd is the discrete-time output matrix. The model and
measurement disturbances are statistically described by the zero-mean Gaussian noises w and v
respectively characterized by covariance matrices Q and R.

Figure 4.6: Synoptic of the EKF algorithm

Figure 4.6 summarizes the EKF treatment. The latter is done in two main steps, prediction step
and innovation step. The first one consists in predicting the state vector of the used system model
from and . Once this step is achieved, the innovation procedure is launched. This one
consists in compensating the predicted vector using the performed Kalman gain Kk and the
measurement vector and generates the estimated optimal vector .The order of the EKF
corresponds to the length of the state space vector x.

Table 4.1 shows the processed EKF equations within each step. Note that, with regards to the
conventional principle, the proposed algorithm has been reorganized so as to gather the intensive
matrix operations. For the chosen non linear model, the calculation of the Kalman gain requires a
linearization assumption. The most commonly used linearization method is the first order Taylor
approximation [93]-[95]. By this way, the computation of the derivative of fd and hd, also called
Jacobian matrices Fd and Hd, is needed (relations (4.4) and (4.5)). The covariance matrices P0, Q and R
represent respectively the initial state error, the model noise and the measurement noise.

The stability and robustness of the EKF in the proposed sensorless application is going to be
discussed in the next chapter. This is the same for the discussion about the digital implementation
tradeoffs.

As for the tuning of the EKF, the covariance matrices have been set according to methodology
proposed in [95]. The latter consists of a trial-and-error procedure which gives some guidelines to be
followed in order to set the EKF estimation behavior during the transient and at steady state. Then
varying the matrix P0 yields different transient amplitudes. Varying Q and R yields the setting of the
transient duration and the steady state behavior. It is in a common practice to assume these covariance
matrices to be diagonal and invariant.

Table 4.1: Discrete-time EKF Algorithm

Prediction Step

),ˆ(ˆ 11/11/ −−−− = kkkdkk uxfx

EKF Compensator – Kalman gain calculation

Jacobian matrices :

()
1/1ˆ −−=∂

∂
=

kkxx

d
dk x

fF

()
1/1ˆ −−=∂

∂
=

kkxx

d
dk x

hH

z-1

z-1
Prediction

EKF Compensator

Innovation

yk

1/ˆ −kkx

kK

1/1ˆ −− kkx

kkx /ˆ
uk

1/ˆ −kkx
1−ku 1/1ˆ −− kkx

1/ˆ −kkx
ky kkx /ˆ

(4.3)

(4.4)

(4.5)

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

69

Covariance matrix
prediction : QFPFP t

dkkkdkkk += −−− .. 1/11/ ; Initial value P0

Kalman gain
calculation : () 1

1/1/ .. −

−− += RHPHHPK t
dkkkdk

t
dkkkk

Updating covariance
matrix : 1/1// −− −= kkdkkkkkk PHKPP

Innovation step

()1/1// ˆˆˆ −− ⋅−+= kkdkkkkkk xhyKxx

6. System state space modeling

The use of an EKF in a sensorless control application demands a reliable and accurate motor
model considering the whole physical phenomena (saliency, saturations, core losses, nonlinearities,
skin effects …). In contrast, designer has to be aware that the more complete the system, the higher the
complexity and the order of the EKF and thus the more constraining is its digital implementation.
Then optimizations and hypotheses regarding the simplification of the system model have to be
achieved in order to find an optimum between the precision of the model and its complexity.

In this part, the development of the used SSM model is discussed. The first hypotheses
regarding model optimization are listed below:

• The SSM has a 3-phase Y connected stator windings
• The 3-phase coordinate system is balanced
• Saturations are neglected
• Core losses and skin effects are neglected
• The friction torque is assumed to be linear regarding the speed
• The rotor current is constant

 As far as the coordinate system is concerned, the SSM model can be developed either in
stationary frame (α,β) or in rotating frame (d,q). In the following, the two cases have been studied and
different versions of the system model are presented. At the end, a quantitative comparison between
these models is achieved and the fixed criteria are: the EKF estimation behavior and the model
complexity. From the obtained results, the choice of the appropriate system model is made.

6.1. Modeling in (d-q) rotating frame

In the literature, several implementations of sensorless applications have been achieved using a
rotating d-q reference frame (e.g. [99], [100]). Various structures of the used state space model have
been proposed. Depending on the controlled AC drive, the expected level of performances and the
digital implementation constraints, model simplification assumptions have been achieved. To start the
state space modeling, let’s recall at first the d-q based SSM equations (Table 4.2). These equations
have been developed in [Appendix B]. Note that the Park transformation is processed after a Clark
transformation with the amplitude-conservation.

Table 4.2: SSM model in d-q reference frame

Electrical equations

rdsrsdsd
sq

sqsqssq

sqsq
sd

sdsdssd

IMiL
dt
id

LiRv

iL
dt
idLiRv

ωω

ω

+++=

−+=

)(

)(

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

70

Electromagnetic torque

[] sqrdsrsqsdsqsde iIpMiiLLpT
2
3

2
3

+−=

Mechanical equation

L
L

e T
p
fT

dt
d

p
J

−−= ωω

The corresponding state space model is then expressed in relation (4.13):

)(
),(

xhy
uxfx

=
=&

With,
t

sqsd iix][θω= ; t
Lsqsd Tvvu][= ; t

sqsd iiy][=

[] ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅−⋅⋅+⋅⋅−

⋅⋅−⋅⋅−⋅
−

⋅⋅+⋅
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

L
T

v
v

J
p

L

L

J
fiIM

J
piiLL

J
p

I
L
Mi

L
Li

L
R

i
L
L

i
L

R

i
i

dt
df sq

sd

sq

sd

L
sqrdsrsqsdsqsd

rd
sq

sr
sd

sq

sd
sq

sq

s

sq
sd

sq
sd

sd

s

sq

sd

000

00

010

001

2
²3

2
²3

ω

ω

ωω

ω

θ
ω

x
0010
0001

xh ⋅⎥
⎦

⎤
⎢
⎣

⎡
=)(

 For the observation purpose and in the case where the motor is connected to an unknown load
torque (or inaccurately known), this variable is generally estimated. Namely, the value of the load
torque has to be added to the state space vector. In most of the cases, it is assumed to be constant
because its dynamic can be neglected with regard to the dynamic of the electrical quantities. The new
formulation of the sate space model for the observation is expressed in relation (4.15).

t
Lsqsd Tiix][θω= ; t

sqsd vvu][= ; t
sqsd iiy][=

[]
⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅−⋅−⋅⋅+⋅⋅−

⋅⋅−⋅⋅−⋅
−

⋅⋅+⋅
−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
sq

sd
sq

sd

L
L

sqrdsrsqsdsqsd

rd
sq

sr
sd

sq

sd
sq

sq

s

sq
sd

sq
sd

sd

s

L

sq

sd

v
vL

L

T
J
p

J
fiIM

J
piiLL

J
p

I
L
Mi

L
Li

L
R

i
L
L

i
L

R

T

i
i

dt
df

00
00
00

10

01

0

2
²3

2
²3

ω

ω

ωω

ω

θ
ω

x
00010
00001

xh ⋅⎥
⎦

⎤
⎢
⎣

⎡
=)(

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

71

It can be seen in this relation that the order of the state space model is equal to 5. With this
model, the whole EKF complexity is equal to 1200 equivalent arithmetic operations. This number can
be reduced almost by 35% if the Infinite Inertia hypothesis is adopted. Indeed, this assumption
consists in assuming that the dynamic of mechanical quantities is slower than the dynamic of the
electrical ones. Namely, the variation of the speed is neglected. Consequently, the obtained model
does not include the mechanical equation which makes it independent on the used mechanical load.
The obtained state space matrix is then rewritten in relation (4.16). It can be noticed that in the
following sections, the presented models are all based on the Infinite Inertia hypothesis.

⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅−⋅⋅−⋅
−

⋅⋅+⋅
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
sq

sd

sq

sd

rd
sq

sr
sd

sq

sd
sq

sq

s

sq
sd

sq
sd

sd

s

sq

sd

v
v

L

L

I
L
Mi

L
Li

L
R

i
L
L

i
L

R

i
i

dt
df

00
00

10

01

0
ω

ωω

ω

θ
ω

The input and output matrices of this model include the (d-q) based voltages and currents. They
are obtained after a coordinate Park transformation which uses the estimated position. This is
unfortunately the main drawback of using such (d-q) model since the inputs and outputs are
conditioned by a quantity which is supposed to be estimated. This issue can be bypassed when the
whole necessary Park transformations are included in the system model according to relation (4.17). In
this case the input and output matrices include terms of position which are taken into account in the
EKF treatment. The input and output vectors are composed of the stationary α-β based voltages and
currents.

t
sqsd iix][θω= ; t

ss vvu][βα= ; t
ss iiy][βα=

⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅−

⋅⋅

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅−⋅⋅−⋅
−

⋅⋅+⋅
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
sβ

sα

sqsq

sdsd

rd
sq

sr
sd

sq

sd
sq

sq

s

sq
sd

sq
sd

sd

s

sq

sd

v
v

00
00

θcos
L
1θsin

L
1

θsin
L
1θcos

L
1

ω
0

ωI
L
Miω

L
Li

L
R

iω
L
L

i
L

R

θ
ω
i
i

dt
df)()(

)()(

x
00θcosθsin
00θsinθcos

xh ⋅⎥
⎦

⎤
⎢
⎣

⎡ −
=

)()(
)()(

)(

6.2. Modeling in (α-β) stationary frame

In the case of α-β based model, the state space inputs and outputs are position independent.
Thus, these variables are not affected by the estimated position. In the literature, numerous sensorless
applications using EKF and based on (α-β) frame have been proposed, [93]-[95]. In most of the cases,
the implemented control system is based on non-salient synchronous motors. When it comes to a
salient motor, the state space modeling in (α-β) may seem to be a tricky task since the saliency is to be
taken into account. To prop up this statement, the state space modeling is discussed and some
simplification assumptions that allow reducing the model complexity are proposed. Here again we
start by presenting the α-β based equations (obtained after Clark transofmations) where the saliency is
taken into account (Table 4.3). These equations have been developed in [Appendix B]

(4.16)

(4.17)

dq model with
external
transformation

dq model with
internal
transformation

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

72

Table 4.3: SSM model in α-β reference frame

Electrical equations

⎥
⎦

⎤
⎢
⎣

⎡−
+⎥

⎦

⎤
⎢
⎣

⎡
−

+

⎥
⎦

⎤
⎢
⎣

⎡−
++=

)(
)(][

)2()2(
)2()2(

2
3

][
)2()2(
)2()2(

3
][

][

2

21

θ
θ

ω
θθ

θθ

θθ
θθ

ω

αβ

αβ
αβ

αβαβ

cos
sin

IM
dt
id

cossin
sincos

L

i
sincos
cossin

L
dt
id

LiRv

rdsr
s

s
s

sss

Electromagnetic torque

())2(²)²(
4
9)2(

2
9)()(

2
3

22 θθθθ βαβαβα siniipLcosiipLcosisiniIpMT ssssssrdsre ⋅−⋅−⋅⋅⋅+⋅+⋅−=

Mechanical equation

L
L

e T
p
fT

dt
d

p
J

−−= ωω

To develop the corresponding state space model, the electrical equations can be rewritten so as

to gather terms in stator currents and terms in the derivative of currents as follows.

[] [] []),(
][

)(][),(θωθθω αβ
αβαβ E

dt
id

GiFv s
ss +⋅+⋅=

Where,

[] ⎥
⎦

⎤
⎢
⎣

⎡−
⋅+⋅=

)2()2(
)2()2(

3][22 θθ
θθ

ω
sincos
cossin

LIRF s

[] ⎥
⎦

⎤
⎢
⎣

⎡
−

⋅+⋅=
)2()2(

)2()2(
2
3][221 θθ

θθ
cossin

sincos
LILG

[] ⎥
⎦

⎤
⎢
⎣

⎡−
⋅⋅⋅=

)(
)(

θ
θ

ω
cos

sin
IME rdsr

From this settlement, the state space model based on the infinite inertia hypothesis is given in
the following relation,

)(
),(

xhy
uxfx

=
=&

With,
t

six]][[θωαβ= ; t
ss vvu][βα= ; t

ss iiy][βα=

[] [] [] [] [] []
[]αβ

αβαβ

ωθ
ω s

ss

v
GEiFGi

dt
df ⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ +⋅⋅−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−−

00
000

)(11

⎥
⎦

⎤
⎢
⎣

⎡
=

0010
0001

y

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

73

This relation shows clearly that this model is quite complex. This is mainly due to the matrix
treatments in which matrix multiplication and inversion have to be processed. Furthermore, according
to the EKF algorithm, the Jacobian matrix for linearization seems to be even more complex and
constraining for digital implementation. An alternative to overtake this issue consists in rewriting the
whole electrical equations so as to expand them as follows [101],

[] []

[]
⎥
⎦

⎤
⎢
⎣

⎡−
⋅⋅+⋅⎥

⎦

⎤
⎢
⎣

⎡
⋅−+

⎥
⎦

⎤
⎢
⎣

⎡−
⋅⋅−+⋅+⋅=

)(
)(

)(
)(

)(

)(
)(

)(

θ
θ

ω
θ
θ

θ
θ

ω

αβ

αβ
αβαβ

cos
sin

IM
dt
id

sin
cos

LL

cos
sin

iLL
dt
id

LiRv

rdsr
s

sqsd

sdsqsd
s

sqsss

In this equation, the direct current isd has been introduced. It has been obtained after doing the
appropriate transformation of the former equations. Lsd and Lsq are the inductances expressed in
rotating frame according to the following relations,

21
sqsd LL

L
+

= ;
32

sqsd LL
L

−
=

From these rewritten equations two potential simplifications are possible, [101].

• The first one consists in assuming that the current controller has usually its direct current reference
set to zero. By this way, the terms containing isd and its derivative can be eliminated. The state
space model is then,

⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅
−−

⋅⋅
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
β

αβ

α

β

α

θ
ω

θ

θ

θ
ω s

s

sq

sq

s

s

rd
sq

sr

sq

s

rd
sq

sr

sq

s

s

s

v
v

L

L
i
i

cosI
L
M

L
R

sinI
L
M

L
R

i
i

dt
df

00
00

10

01

0100
0000

0)(0

0)(0

This assumption is adapted to flux oriented AC drive controllers where the direct current
reference is maintained to zero. However, this is not adapted for controllers that require a variation of
this current, for example in over-speed applications.

• The second assumption consists in assuming that isd is not equal to but can be considered as
constant (slow variation). In this case the electrical equations are rewritten by maintaining the term
with isd and eliminating the term with its derivative. The new state space model is then,

⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅−−⋅⋅
−−

⋅⋅−+⋅⋅
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

β

αβ

α

β

α

θ
ω

θθ

θθ

θ
ω s

s

sq

sq

s

s

sdsqsdrd
sq

sr

sq

s

sdsqsdrd
sq

sr

sq

s

s

s

v
v

L

L
i
i

cosiLLcosI
L
M

L
R

siniLLsinI
L
M

L
R

i
i

dt
d

00
00

10

01

0100
0000

0)()()(0

0)()()(0

6.3. Choice of the model

In order to make a comparison between each of the developed SSM models, two criteria are
taken into account. The first one consists in studying the dynamic performances and the behavior of
the EKF estimation for each model. To this purpose, the dynamic of the speed estimation is studied.

(4.27)

(4.28)

(4.29)

(4.30)

αβ model with
isd=0
approximation

αβ model with
disd/dt=0
approximation

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

74

The second criterion consists in evaluating the complexity of the model with regards to the digital
implementation.

Figure 4.7 highlights the behavior of the EKF in terms of speed estimation dynamic for each of
the previously discussed models. These models are all based on the infinite inertia approximation. The
order of the EKF is then equal to 4 for each case. The values of P0, Q and R matrices remain the same
in both cases. The waveforms are obtained after a functional simulation using Matlab/Simulink
environment. During this evaluation the SSM is supplied by the VSI and a sensor-based stator current
controller is implemented. Thus, the obtained estimation responses concern the case of an open loop
EKF estimation. Open loop means that the estimated speed and position are not injected to the
controller.

Figure 4.7: EKF speed estimation behavior

The obtained results indicate that, in terms of estimation dynamic and depending on the motor
saliency, the α-β based model with isd equal to zero has the slowest dynamic. However, the evaluation
of the complexity indicates that this model has the lowest computational cost. Figure 4.8 presents the
evaluation results. In this case, the complexity corresponds to the number of arithmetic operations. As
a reminder, this complexity concerns only the system model (i.e. EKF prediction) and its linearization
(Jacobian matrix calculation). The complexity of the EKF compensator remains the same since the
EKF order is the same in all cases. The trigonometric functions (sinθ, cosθ) are approximated to a fifth
degree polynomial function, which corresponds to 10 arithmetic operations.

In the proposed application and according the these results, the chosen model that allies low
complexity and acceptable estimation dynamic is the d-q based model with external Park
transformations.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0

10

20

30

40

50

-4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

1- Real speed
2- Estimated speed - dq model with external transformation (relation 4.16)
3- Estimated speed - dq model with internal transformation (relation 4.17)
4- Estimated speed - αβ model with isd=0 approximation (relation 4.29)
5- Estimated speed - αβ model with disd/dt=0 approximation (relation 4.30)

1

4

5
3

2

rd/s

Chapter 4: FPGA-based sensorless controller for synchronous AC drive – Preliminary system specification

75

Figure 4.8: Evaluation of the model complexity: EKF prediction + Jacobian matrix

7. Conclusion

This chapter aimed to present the preliminary system specification of the developed sensorless
control application. According to the design methodology, presented in chapter 2, the main objective
of this specification is to choose the AC drive that will be controlled, the appropriate control strategy
and the suitable sensorless method.

As a summary, the chosen AC drive consists of an SSM associated with a controller mechanical
load and fed by a 3-phase 2-level VSI. The chosen stator current controller is based on PI-regulator
control technique. The implemented PWM module leans on a CB-ZSS-PWM technique. The
developed speed controller is based on a P-PI regulator. The chosen sensorless method is the observer
method which uses the EKF. Finally, the implemented system model for the EKF treatment is the d-q
based model with infinite inertia hypothesis.

Once this preliminary development step is achieved, the next task (chapter 5) is the development
of the corresponding algorithm. This process consists of a set of steps during which designer makes
the functional validation and prepares the algorithm for the FPGA digital implementation.

0

20

40

60

80

100

120

140

160

Additions/Subtractions
Multiplications
Sin/Cos
Total Complexity

23 23

6

106

27

50

4

117

14

30

2

64

28

48

156

dq model with
external

transformation

dq model with
internal

transformation

αβ model with
isd=0

approximation

αβ model with
disd/dt=0

approximation

 8

77

Chapter 5

FPGA-based sensorless control for
synchronous AC drive

- Algorithm development

1. Introduction

In this chapter, author deals with the algorithm development step, during which the whole
sensorless control algorithm is developed and validated. After having made a preliminary system
specification, the main task here is to make the necessary functional validation. The whole control
system is then simulated and validated and the developed algorithm is prepared for the digital
implementation. According to the design methodology (chapter 2, Figure 2.18), the listed-below steps
have been followed.

Modular partitioning (Part 2) which aims to divide the algorithm into independent and reusable
modules of different levels of granularity.

Continuous-time functional simulation (Part 3) which aims to validate the functionality of the
closed-loop system using the friendly Matlab/Simlink simulation tools. Also, the configuration of the
implemented regulators is achieved during this step.

Digital realization (Part 4) during which designer makes the appropriate discretization
assumption and chooses the sampling period. The realization structure is then designed. This is
followed by the normalization of the algorithm and the choice of the appropriate fixed-point data
format.

Algorithm optimization (Part 5) which is a necessary assumption especially in the case of
complex algorithms such as the implemented EKF. This step aims to simplify the processed equations
so as to reduce the computational cost.

Discrete-time, fixed-point simulation (Part 6) which is the ultimate algorithm validation step. It
aims to make a final verification of the developed discrete-time fixed-point sensorless controller.

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

78

2. Modular partitioning

The modular partitioning consists in dividing the whole sensorless algorithm into independent
and reusable modules with different levels of granularity. In the case of the developed sensorless
controller, five levels of hierarchy have been defined (Figure 5.1). At the lowest level, the basic
operators such as logic and arithmetic operators are listed. From a functional point of view, these
operators can be considered as fine-grain operators [62], [36]. Then at a higher level of granularity, the
matrix operators (used in EKF module) are defined. The third level contains functions dedicated to the
control (PI-regulator, P-regulator, Anti-windup PI-regulator, Park transformations, PWM module and
Hysteresis regulator) and functions dedicated to the EKF observation (Prediction module, EKF
compensator and Innovation module). The interfacing modules are also included here since they are at
the same level of hierarchy. At the fourth level, coarser grain modules such as the P-PI speed
controller, the stator and rotor current controllers and the EKF module are listed. Finally, at the highest
level, the global sensorless controller is defined.

Figure 5.1: Sensorless controller – Modular partitioning

3. Continuous-time functional simulation

The continuous-time functional simulation aims to verify the functionality of the whole control
application. This is made with the use of the friendly Matlab/Simulink environment where the
functional model of the control system is designed using Simulink continuous-time blocks.

In the proposed sensorless controller the implemented EKF module is based on the discrete-time
EKF algorithm. Thus, the presented continuous-time functional simulation concerns only the
validation of the speed and current controllers. The objective here is to validate the speed and current
responses according to the desired dynamic performances. During this simulation, the rotor current is
assumed to be constant and the PWM switching frequency has been set to 10 kHz. Also, it is worth
noticing that this simulation has been achieved at non-zero mechanical load conditions. The chosen
load torque TL is proportional to the mechanical speed N (rpm): TL=0.15*N. This load torque remains
the same for the whole simulations that are presented in this chapter. Figure 5.2 presents the
corresponding Matlab/Simulink block diagram.

PI-Regulator

P-Regulator

dq-abc Prediction module

Speed controller Stator Current
controller

Rotor current
controller

SSM Sensorless speed controller

Arithmetic operators
Adder, Subtractor, Multiplier, Sin, Cos, Divider

Matrix operators
Adder, Subtractor, Multiplier, Inverter, Transpose

Logic operators
Logic gate, Register, Multiplexer, comparator, shift

Hysteresis
regulator

Innovation module

EKF module

Level 1

Level 2

Level 3

Level 4

Level 5

AW-PI-
Regulator PWM module

abc-dq

EKF compensator

ADC interface DAC interface Voltage interface Transmission
interface

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

79

Figure 5.2: Sensorless controller – Modular partitioning

At this stage, the directly measured rotor position and speed are used. The tuning of the
developed regulators is made according to [62] and [81] and summarized in [Appendix C]. The whole
current control closed-loop (with axes decoupling) is approximated to a first order transfer function
where the time constant is user-defined. The whole speed control closed-loop is approximated to a
second order transfer function where the controller coefficients are determined with regards to the
expected overshoot and settling time.

First of all, a validation of the stator current controller is achieved. The direct current reference
has been set to zero. At start up, a 2A step reference has been applied to the quadrature current
reference and at 0.5s a -1A negative step value is applied so as to validate the functionality at the
opposite rotating direction.

The obtained simulation results are presented in Figure 5.3. The isd, isq current step responses are
respectively shown in Figure 5.3(a) and Figure 5.3(b). The stationary frame (α,β) based stator current
waveform is presented in Figure 5.3(c). The 3-phase stator currents are highlighted in Figure 5.3(d).
The stator voltage Vsa is shown in Figure 5.3(e) and the corresponding post-filtered waveform (voltage
fundamental) is shown in Figure 5.3(f). The obtained waveforms attest the good functionality of the
developed stator current controller and the observed static and dynamic responses correspond exactly
to the expected behavior.

As for the functional validation of the speed controller, Figure 5.4 presents the obtained
simulation results. A 750-rpm step reference (mechanical speed) has been applied at the beginning and
the opposite value is applied at 2s. The speed response and the rotor position are shown in Figure
5.4(a,b). The waveform of the developed torque is shown in Figure 5.4(c). The d-q, 3-phase and (α,β)
based stator currents are presented in Figure 5.4(d-g). Finally, the waveforms of the stator voltage and
its fundamental are presented in Figure 5.4(h,i). Here again, the expected operating conditions and the
desired response dynamic have been successfully obtained.

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

80

Figure 5.3: Continuous time simulation results – Stator current control validation

0 0.2 0.4 0.6 0.8 1
-250

-200

-150

-100

-50

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1
-400

-300

-200

-100

0

100

200

300

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3
isd isq

t(s)

isα

isβ
isa,b,c

Vsa Vsaf

40 ms

95%

Direct current (A) Quadrature current (A)

Reference Measured

Reference Measured

Stationary frame
currents (A) 3-phase currents (A)

3-phase stator voltage (V)
 Post-filtered stator voltage (V)

t(s)

t(s)

t(s) t(s)

(a) (b)

(c) (d)

(e)

(f)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

81

Figure 5.4: Continuous time simulation results – Speed control validation

0 0.5 1 1.5 2 2.5 3 3.5 4
-800

-600

-400

-200

0

200

400

600

800

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4

-6

-4

-2

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4
-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
-400

-300

-200

-100

0

100

200

300

400

0 0.5 1 1.5 2 2.5 3 3.5 4
-200

-150

-100

-50

0

50

100

150

200

Mechanical
speed (rpm)

650 ms

95%

isd

isq

isα

isβ

isa,b,c

Vsa
Vsaf

Rotor position (rd)

Torque (Nm)

Reference Measured

Reference Measured

Direct current (A)

Quadrature current (A)

Reference

Measured

3-phase currents (A)

Stationary frame
currents (A)

3-phase stator voltage (V) Post-filtered stator voltage (V)

t(s)

t(s)

t(s) t(s)

t(s) t(s)

t(s) t(s)

(a)

(b)

(c)
(d)

(e)

(f)

(g)

(h

(i)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

82

4. Digital realization

4.1. Discretization and sampling period setting

For the digital implementation purpose, the discretization of the controller is mandatory. In the
following, the discretization of the PI-regulator and the discretization of the system model for the EKF
treatment are both presented. This is made with the adoption of the digital re-design approach (chapter
2, §6.2.3).

To start with, relation (5.1) presents the s-domain transfer function of a standard PI-regulator.

s
KK

s
sosPI i

p +==
)(
)()(

ε

The Tustin discretization method has been adopted. The s-domain integrator has been
transformed to its z-domain counterpart according to relation (5.2).

1
1

2
1

−
+

→
z
zT

s
s

Ts is the sampling period. The obtained discrete-time recurrence equation is expressed in the
following relation.

∑
=

⋅+⋅−=
k

sik
si

pk TKTKKo
0

)
2

(
ρ

ρεε

The developed anti-windup structure is based on the conditional integration (integration
clamping) principle [82], [107]. Indeed, depending on the output saturation conditions, the integration
is switched on or switched off. Figure 5.5 presents the corresponding block diagram.

Figure 5.5: Block diagram of the implemented Anti-windup structure

When it comes to the EKF algorithm (chapter 4, part 5), the discretization of the used non linear

system model (relation (5.4)) is also required.

vxhy
wuxfx

+=
+=

)(
),(&

In the literature, the most commonly used discretization method is the the first order Forward
Euler approximation. The latter consists in moving from the s-domain to the z-domain according to the
following substitution,

sT
zs 1−

→

siTK

2
si

p
TKK −

z-1

+

!=

ε o

+

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

83

The obtained discrete-time stochastic model is then expressed in relation (5.6).

kkk

kkkskk

vxhy
wuxfTxx

+=
++= −−−−

)(
),(. 1111

As far as the sampling period is concerned, the choice of the appropriate value is made
according to the following settlement. With the used CB-ZSS-PWM technique (chapter 4 §3.2), the
generated Vio

* voltage must be refreshed at each PWM carrier peak (high or low) and must be constant
within each PWM switching period. This is the reason why the chosen sampling period has been set
equal to the switching period (100µs in our case). Also, as we are talking about a synchronous PWM
control, the fact that the treatment starts at each carrier peak, the value of the sampled stator current
can be assumed to be the instantaneous average value within a sampling period.

4.2. Algorithm normalization

The normalization consists in developing a per-unit algorithm where variables are replaced by
their corresponding per-unit counterparts with the introduction of base-values, relation (5.7).

B
n γ

γγ =

To this purpose, the base-value of each variable is determined according to variable nominal
value and also according to the gains that are introduced by the sensors and the ADC board. In our
case, the defined base-values are: VBcc and VBekf (for the voltage), IB (for the current), ωB (for the speed)
and θB (for the position). VBcc is used in the stator current controller and VBekf is used in the EKF
module. The corresponding numerical values are listed below,

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

=⋅⋅⋅=

=⋅⋅⋅=
=⋅⋅⋅=⋅⋅=

=⋅=

=
=
=

rd2πθ

628rd/sNpω

20AIGGI
936VVGGVGGV

VVV

rpmN
AI
VV

B

nomB

nomADCsensoriB

nomADCsensorvDCADCsensorvBekf

nomBcc

nom

nom

nom

30
2

2
6

5636

1500
5.1

230

π

Then, relation (5.9) presents the normalized discrete-time equation of the direct and quadrature
current PI-regulators.

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−=
−=

⋅⋅+⋅⋅−=

⋅⋅+⋅⋅−=

∑

∑

=

=

snqsnqniq

sndsndnid

k

snq
Bcc

B
siqksnq

Bcc

Bsiq
pqksnq

k

snd
Bcc

B
sidksnd

Bcc

Bsid
pdksnd

ii
ii

V
ITK

V
ITK

Kv

V
ITK

V
ITKKv

*

*
0

0

)
2

(

)
2

(

ε
ε

εε

εε

ρ
ρ

ρ
ρ

As for the EKF algorithm, relation (5.10) gives the expression of the normalized system model.
As a reminder, the chosen model is based on the d-q SSM equations with the infinite inertia
approximation (Chapter 4, relation (4.16)).

(5.6)

(5.9)

(5.8)

(5.7)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

84

knkknkdnnk

knknksnkknknkdnnk

vxhvxhy
wuxfTxwuxfx

+=+=
++=+= −−−−−−−

)()(
),(.),(1111111

 Where xn is the normalized state space vector. un and yn are respectively the normalized system
input and output vectors. The normalized input and output matrices are,

T

B

sq

B

sd
n

T

Bekf

sq

Bekf

sd
n

T

BBB

sq

B

sd
n I

i
I
iy

V
v

V
vu

I
i

I
ix ⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= ;;

θ
θ

ω
ω

n

t

nn
sqB

Bekf

sdB

Bekf

n
B

B

nB
sq

rndsr
snd

sq

sd
snq

sq

s

snqnB
sd

sq
snd

sd

s

nn xxhu
LI

V
LI

V

L
IMi

L
Li

L
R

i
L
L

i
L
R

uxf ⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⋅

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⋅⋅
⋅

+⋅−⋅
−

⋅⋅⋅+⋅
−

=

00
00
10
01

)(;

00
00

0

0

0

)(),(

ω
θ
ω

ωω

ωω

4.3. Fixed-point data setting

Also, for the digital implementation where the fixed-point data are manipulated, the choice of
the appropriate format is of great concern. Indeed, the chosen fixed-point format must have a high-
enough data precision so as to preserve the algorithm precision as closed as possible to its real data
format version (i.e. floating point algorithm version). However, in the case of an FPGA solution, this
must be balanced with the available FPGA resources. The longer is the data word length, the heavier is
the FPGA architecture. A compromise is then mandatory so as to choose a format that preserves the
algorithm performances and that allows an efficient use of the FPGA resources. This last point will be
deeply discussed in the next chapter.

In this section, author is presenting the chosen fixed-point format for the whole sensorless
controller. To start with, let’s recall the general purpose fixed-point representation (Figure 5.6). The
latter is divided into two parts: an integer part and a fractional part. This representation is labeled as
s[(i+f)/Qf] for signed data and u[(i+f)/Qf] for unsigned data, (i+f) is the total data size, i is the number
of bits of the integer part, f is the number of bits of the fractional part.

Figure 5.6: Fixed-point representation

The choice of the format has been made after a set of fixed-point simulation tests. The precision

and the stability of the fixed-point algorithm (for each module, Figure 5.1) are evaluated and
compared to the floating-point algorithm version. Table 5.1 lists the formats that have been chosen for
the final digital implementation.

,b0 b1 b2 bi-2 bi-1 b-f b-f+1 b-3 b-2 b-1

i f

Sign
bit

(5.10)

(5.11)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

85

Table 5.1: Fixed-point format setting – speed and current controllers
Modules Fixed-point format

PI-regulator s[17Q16] Speed
controller P-regulator s[17Q16]

Rotor
current

controller
Hysteresis regulator s[14Q12]

dq-abc s[13Q12]
AW-PI-Regulator s[20Q18]

abc-dq s[20Q18]

Stator
current

controller
PWM module s[13Q12]

ADC interface s[13Q12]
DAC interface u[10Q9]

As far as the EKF module is concerned, the same comparative simulations have been achieved.
The choice of the format is based on the evaluation of the EKF estimation error. The format that leads
to the minimum error is then chosen. Figure 5.7 shows the estimation error in the case floating point
and fixed-point simulation and for different formats. From the obtained results, the final fixed point
format that has been maintained for the FPGA implementation is s[22Q20].

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

86

Figure 5.7: Estimation error for different fixed-point data formats

Mechanical
speed (rpm)

Rotor position (rd)

Direct current (A) Quadrature current (A)

Fixed-point algorithm

Floating point algorithm

22Q20

21Q19

20Q18

19Q17

18Q16

17Q15

Fixed-point algorithm

Floating point algorithm

22Q20

21Q19

20Q18

19Q17

18Q16

17Q15

Fixed-point algorithm

Floating point algorithm

22Q20

21Q19

20Q18

19Q17

18Q16

17Q15 Fixed-point algorithm

Floating point algorithm

22Q20

21Q19

20Q18

19Q17

18Q16

17Q15

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

87

5. Algorithm optimization

Mainly due to the intensive EKF treatment, the development of the whole sensorless controller
demands optimization assumptions so as to reduce the computational cost of the algorithm without
loosing the required performances. This optimization is especially mandatory in the case when
implementing the algorithm in an FPGA with limited hardware resources. This is due to the size of the
developed architecture which is also conditioned with the complexity of the algorithm.

In order to prop up this statement, the developed EKF module has been focused on. Then,
according the EKF theory and its practical tradeoffs, many algorithm optimizations can be adopted, all
with the same objective: the reduction of the computational cost. Examples of algorithmic solutions
have been studied by [98] including the so-called Chandrasekhar equation, multi-level EKF and
Interlaced EKF. These solutions consist in modifying the conventional structure of the EKF so as to
simplify the operated equations and then reduce its intensity. Additional and simpler solutions can also
be adopted. For example the infinite Kalman gain K(∞) [98] optimization procedure and the Matrix
symmetrization procedure can be good candidates. These two last solutions have been chosen in our
case. Before developing them, let’s make, at first, a complexity pre-evaluation of the EKF algorithm.

5.1. EKF complexity pre-evaluation

Table 5.2 shows the complexity of the developed EKF module in terms of arithmetic operations.
It indicates clearly the intensity and the hugeness the treatment.

Table 5.2: Complexity of the initial EKF algorithm

Operations
Modules x + - 1/x

Prediction 10 6 0 0

Jacobian matrices 4 1 0 0
Kalman

compensator Kalman gain &
covariance matrix 318 244 16 1

Innovation 8 8 8 0
External abc_dq transformations 12 12 0 0

Total 352 271 24 1

5.2. Optimization of the EKF algorithm

5.2.1. Offline K(∞) based optimization procedure

This assumption concerns especially the matrix-based Kalman compensator. The principle is to
assume that the optimal Kalman gain remains constant at steady state. Then, this gain can be set to
offline pre-calculated values avoiding the whole matrix treatment, as shown in Figure 5.8. In this case,
only the prediction (based on the normalized SSM model) and the innovation steps are performed.

With this assumption, it can be noticed that the complexity of the developed algorithm has been
reduced. However, this approximation has a functional drawback since such algorithm does not ensure
a good estimation dynamic, as it will be confirmed during the fixed-point discrete-time simulations.

Figure 5.8: Synoptic of the EKF with K(∞) assumption

z-1

z-1
Prediction Innovation

ynk

1/ˆ −knkx

)(∞K

1/1ˆ −− knkx

knkx /ˆ

unk

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

88

5.2.2. Matrix symmetrization procedure

Also based on the EKF compensator equations, the principle of this procedure consists in
assuming that the initial covariance matrix P0, the noise matrix Q and the measurement matrix R are
diagonal (relation (5.12)).

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
22

11

44

33

22

11

044

033

022

011

0 0
0

;

000
000
000
000

;

000
000
000
000

R
R

R

Q
Q

Q
Q

Q

P
P

P
P

P

In this case, it can be easily demonstrated by iterative reasoning that the processed covariance
matrices Pnk/k-1 and Pnk/k are symmetrical (relations (5.13) and (5.14)).

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−

−−−−

−−−−

−−−−

−

1/
44

1/
34

1/
24

1/
14

1/
34

1/
33

1/
23

1/
13

1/
24

1/
23

1/
22

1/
12

1/
14

1/
13

1/
12

1/
11

1/

knkknkknkknk

knkknkknkknk

knkknkknkknk

knkknkknkknk

knk

PPPP
PPPP
PPPP
PPPP

P

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

knkknkknkknk

knkknkknkknk

knkknkknkknk

knkknkknkknk

knk

PPPP
PPPP
PPPP
PPPP

P

/
44

/
34

/
24

/
14

/
34

/
33

/
23

/
13

/
24

/
23

/
22

/
12

/
14

/
13

/
12

/
11

/

Consequently, a significant reduction of the computational cost is possible. The matrix treatment
can be replaced by scalar treatment with a significant reduction of the number of performed arithmetic
operations and processed variables. Furthermore, this assumption does not downgrade the estimation
dynamic since a real-time online EKF calculation is still ensured. However, this solution does not
prevent designer from the inversion operator which is quite-tricky to implement digitally (especially in
the case of an FPGA solution).

5.3. Complexity post-evaluation

Table 5.3 highlights how the presented optimization procedures can significantly reduce the
complexity of the EKF algorithm, compared to table 5.2. It can be seen that a reduction of 50% is
obtained with the matrix symmetrization assumption and a reduction of 94 % is obtained with the
offline K(∞) assumption. However, depending on the used FPGA solution (number of the available
hardware resources), an additional effort is, in some cases, quite mandatory so as to adapt the
algorithm complexity to the available FPGA resources. To this aim, additional optimization
assumptions ought to be achieved during the development of the FPGA architecture. This is covered in
the next chapter.

Table 5.3: complexity of the EKF after algorithm optimization

Operations
Modules x + - 1/x

Matrix Symmetrization 10 6 0 0 Prediction
K(∞) 10 6 0 0

Matrix Symmetrization 149 107 11 1 Kalman
compensator K(∞) 0 0 0 0

Matrix Symmetrization 8 8 8 0 Innovation
K(∞) 8 8 8 0

External abc_dq transformations 12 12 0 0

Matrix Symmetrization 179 133 19 1
Total

K(∞) 30 26 8 0

(5.12)

(5.13)

(5.14)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

89

6. Discrete-time, fixed-point simulation

Now as the whole sensorless algorithm is developed and the corresponding digital realization is
made, the discrete-time and fixed-point simulation is to be achieved so as to make an ultimate
algorithmic validation. Figure 5.9 shows the developed Matlab/Simulink block diagram where the
fixed-point toolbox has been used.

Figure 5.9: Sensorless speed controller – Matlab/Simulink block diagram

The following sections present the obtained results. At first, the validation of the stator current

controller is made, followed by the validation of the speed controller. Then, an open-loop validation of
the EKF estimation is made. Open-loop means that the estimated position and speed are not injected to
the speed and current controllers. The objective of this activity is to validate the estimation dynamic
and the robustness of the EKF. Finally, the sensorless controller, where the estimated data are injected
to the controllers, is validated.

6.1. Validation of the stator current controller

Figure 5.10 presents the fixed-point simulation results of the stator current controller. The
measured rotor position and speed are used. The same operating conditions (current references and
load conditions) as during the continuous-time simulation are maintained. The obtained waveforms
validate the choices made during the digital realization. Also the obtained static and dynamic
performances are as expected.

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

90

Figure 5.10: Stator current controller – Fixed-point discrete-time simulation results

6.2. Validation of the speed controller

The speed controller is validated in the same motor operating conditions. The obtained fixed-
point results are highlighted in Figure 5.11. Here again, the same performances as in the case of
continuous-time validation are obtained.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-250

-200

-150

-100

-50

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
isq

isα

isβ isa,b,c

Vsa Vsaf

40 ms

95%

isd

0 0.2 0.4 0.6 0.8 1
-400

-300

-200

-100

0

100

200

300

400

Quadrature current (A)

Reference Measured

Direct current (A)

Reference Measured

Stationary frame
currents (A)

3-phase currents (A)

3-phase stator voltage (V) Post-filtered stator voltage (V)

t(s) t(s)

t(s)

t(s) t(s)

(a)
(b)

(c)

(d)

(e)

(f)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

91

Figure 5.11: Speed controller – Fixed-point discrete-time simulation results

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4

-6

-4

-2

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4
-800

-600

-400

-200

0

200

400

600

800

0 0.5 1 1.5 2 2.5 3 3.5 4
-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
-400

-300

-200

-100

0

100

200

300

400

0 0.5 1 1.5 2 2.5 3 3.5 4
-200

-150

-100

-50

0

50

100

150

200

isα

isβ

Stationary frame
currents (A)

Mechanical
speed (rpm)

650 ms

95%

Reference Measured

Rotor position (rd)

Torque (Nm)

isd

Reference Measured

Direct current (A)

isq Quadrature current (A)

Reference

Measured

isa,b,c
3-phase currents (A)

Vsa 3-phase stator voltage (V) Post-filtered stator voltage (V)
Vsaf

t(s)

t(s)

t(s) t(s)

t(s) t(s)

t(s) t(s)

(a) (b)

(c)

(d)

(e)
(f)

(g)

(h)

(i)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

92

6.3. Validation of the EKF observer

As explained right before, an open-loop validation of the EKF is presented in this section.
Indeed, the measured position and speed are injected to the speed and current controllers and the
measured and estimated data are compared.

At first, the estimation process of the EKF is validated. The waveforms of the estimated space
vector are presented and compared to their measured counterparts. Then, a discussion about how to
improve the EKF treatment is made. The robustness against parameter variation is dealt with. Also, the
analysis of the EKF robustness against a random initial position error is made. Finally, a comparison
in terms of estimation behavior is made between the initial EKF algorithm and its optimized versions
(§5.2).

6.3.1. Validation of the estimation process

Figure 5.12 shows the estimation behavior of the implemented EKF observer. The waveforms of
the measured and estimated quantities are shown. Figure 5.12(a) presents the estimated direct current
îsd and the actual current isd. This is the same for the quadrature current (Figure 5.12(b)). The
waveforms of the measured and estimated mechanical speed and electrical position are respectively
depicted in Figure 5.12(c) and Figure 5.12(d). The obtained results prove the proper EKF estimation
behavior. This will also be confirmed during the robustness analysis. The obtained estimation dynamic
has been obtained for the following EKF setting,

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
10
01

;

001.0000
0001.000
00001.00
000001.0

;

1000
0100
0010
0001

0 RQP

Figure 5.12: Validation of the EKF estimation – Fixed-point discrete-time simulation results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-3

-2

-1

0

1

2

3

Mechanical
speed (rpm)

Actual Estimated

Rotor position (rd)

Direct current (A) Quadrature current (A)Estimated

Actual

Estimated
Actual

t(s) t(s)

t(s)

Actual Estimated
t(s)

(a) (b)

(c)

(d)

(5.15)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

93

6.3.2. Improvement of the EKF estimation

The manipulation of fixed-point data in such intensive EKF algorithm can be easily a source of
convergence problems which affects the EKF stability. Indeed, the limited precision of the data can
typically lead to a non-symmetrical covariance matrix P, which is processed after intensive matrix
multiplications and a matrix inversion. A simple and efficient way to improve the EKF treatment is to
force the covariance matrix P to be symmetrical using the following matrix-update, relation (5.16)
[98]. Figure 5.13 presents the estimation error in the case of a standard EKF treatment and the case of
the added matrix-update. It can be seen that this matrix-update improves the estimation dynamic and
minimizes the precision errors.

2
//

/
knk

t
knk

knk
PPP +

=

 Other algorithmic solutions that can improve the EKF treatment and manage its stability are
the so-called algorithm decompositions (also called algorithm factorizations). Among the most
widespread solutions are the Square-Root and UD factorizations. They are presented and deeply
studied in [98].

Figure 5.13: Improvement of the EKF estimation – waveforms of the estimation error

(a) Direct current (A); (b): Quadrature current (A); (c): rotor position (rd); (d): mechanical speed (rpm)

6.3.3. Robustness against parameter variation

Up to now, the developed EKF algorithm has been validated in the case where the parameters of
the used salient synchronous machine are perfectly known, which is not exactly the case in practice.
For this reason, it is necessary to study and evaluate how the EKF is robust when the parameters are
varying. For this aim, the influence of the stator resistance Rs variation is evaluated. The following
figures (5.14 and 5.15) present the speed and rotor estimation error (at steady state) in the case when
the resistance is overestimated (+ 20% and +50%) and also the case when it is underestimated (-20%
and -50%). From these simulation results, we can notice a smooth estimation error in both cases,
which confirms the robustness of the developed EKF with the chosen tuning values. The same
simulations when varying the values of the inductances have been done and the obtained estimation
error remains negligible.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0 0.05 0.1 0.15 0.2 0.25 0.3

-0.4

-0.2

0

0.2

0.4

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-50

0

50

100

150

200

250

(a)

(b)

(c)

(d)

Initial version

With matrix Update

Initial version

With matrix Update

Initial version

With matrix
Update

With matrix Update

Initial version

(5.16)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

94

Figure 5.14: Rotor position estimation error – For Rs, Rs-50%, Rs-20%, Rs+20% and Rs+50%

Figure 5.15: Mechanical speed estimation error – For Rs, Rs-50%, Rs-20%, Rs+20% and Rs+50%

Operating mechanical speed: N=800 rpm

6.3.4. Robustness against random initial position error

Another robustness evaluation of the developed EKF is its ability to converge properly and
reach the desired motor operating point when the initial position is unknown. Here again, fixed-point
simulations have been achieved with random initial rotor position. Figure 5.16 presents the obtained
results for 0.18 rad (10°), 0.88 rad (50 °), 1.745 rad (100 °) and 3.14 rad (180 °) initial values. In all
cases, a zero steady state position estimation error is ensured.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-6

-4

-2

0

2

4

6

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-6

-4

-2

0

2

4

6

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-6

-4

-2

0

2

4

6

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-6

-4

-2

0

2

4

6

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-6

-4

-2

0

2

4

6Rs -50% Rs -20%

Rs

Rs +20% Rs +50%

ΔN (rpm) ΔN (rpm)

ΔN (rpm)

ΔN (rpm)

t(s)
t(s)

t(s)

t(s)
t(s)

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05Rs -50% Rs -20%

Rs

Rs +20% Rs +50%

Δθ (rd) Δθ (rd)

Δθ (rd)

Δθ (rd)

t(s)
t(s)

t(s)

t(s)
t(s)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

95

 Figure 5.16: Position estimation error for an unknown initial rotor position

6.3.5. Validation of the optimized EKF algorithm

The optimization of the EKF algorithm (reduction of the computational cost) has to be balanced
with the ability to keep an acceptable estimation performance. Figure 5.17 presents the obtained speed
estimation behavior with the adopted optimization procedures (§5.2). These simulation results indicate
that a zero steady state error is ensured by both optimized EKF versions. As for the estimation
dynamic, the matrix symmetrization of the EKF algorithm does not affect the behavior. This is not the
case for the K(∞) version since a good dynamic behavior is not guaranteed.

Figure 5.17: Speed estimation dynamic when implementing the optimized EKF algorithms – Mechanical speed

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

-5

-4

-3

-2

-1

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

-3

-2.5

-2

-1.5

-1

-0.5

0

Initial position error = 0.18 rd

Δθ (rd)

Δθ (rd)

Initial position error = 0.88 rd

Initial position error = 1.745 rd
Initial position error = 3.14 rd

Δθ (rd)

Δθ (rd)
Δθ (rd)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

Initial EKF
algorithm

K(∞) EKF version

MS EKF version

Actual speed

K(∞) EKF version

Initial EKF
algorithm

MS EKF version

Actual speed

 (rpm)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

96

6.4. Validation of the EKF-based sensorless speed controller

Now as both stator current controller, speed controller and the EKF estimation are validated, the
ultimate fixed-point simulation aims to validate the whole sensorless controller. The estimated rotor
speed and position are then injected to the controllers.

Figure 5.18 presents the obtained results with the same operating conditions as previously (a
750-rpm step reference at 0s, -750 rpm step reference at 2s and the same mechanical load conditions).
The speed response and the rotor position are shown in Figure 5.18(a,b). The waveform of the
developed torque is shown in Figure 5.18(c). The d-q, 3-phase and (α,β) based stator currents are
presented in Figure 5.18(d-g). Finally, the waveforms of the stator voltage and its fundamental are
presented in Figure 5.18(h,i).

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

97

Figure 5.18: Validation of the EKF-based sensorless speed controller

0 0.5 1 1.5 2 2.5 3 3.5 4
-200

-150

-100

-50

0

50

100

150

200

0 0.5 1 1.5 2 2.5 3 3.5 4
-400

-300

-200

-100

0

100

200

300

400
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
0 0.5 1 1.5 2 2.5 3 3.5 4

-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4

-6

-4

-2

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4
-800

-600

-400

-200

0

200

400

600

800

isα

isβ

Stationary frame
currents (A)

Mechanical
speed (rpm)

t

650 ms

95%

Reference Actual

Estimated and actual rotor position (rd)

t

Torque (Nm)

t

isd

Reference

Actual

Direct current (A)

t

isq Quadrature current (A)

Reference

Actual

isa,b,c
3-phase currents (A)

Vsa 3-phase stator voltage (V) Post-filtered stator voltage (V)
Vsaf

t t

t

t

(a) (b)

(c)

(d)

(e)
(f)

(g)

(h)

(i)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

98

6.4.1. Evaluation of the sensorless control robustness

Figure 5.19 confirms how the developed sensorless controller is robust towards a variation of
the load torque. A 750-rpm step reference is applied to the sensorless controller and a variation of
1Nm is applied at 1.6s. The waveform of the speed response and the waveform of the developed
torque are respectively shown in Figure 5.19(a) and Figure 5.19(b).

Figure 5.19: Robustness evaluation of the developed EKF-based sensorless speed controller

6.4.2. Expansion to a large operating speed range

In addition to the achieved validation, the evaluation of the developed sensorless controller at an
expansive operating speed range is necessary. To this aim, simulations have been made respectively at
very low speed, at medium speed and at high speed. Also over-speed conditions are tested. The
obtained results indicate that, with the used 1500-rpm SSM, the developed EKF-based sensorless
speed controller is able to operate up to 200% of the nominal speed (3000rpm) and down to 8% of the
nominal speed (125 rpm). Indeed, at very low speed and at standstill, the EKF does not guarantee a
zero steady state estimation error since the back-EMF is very low (zero at standstill). Consequently,
this attests the necessity to implement specific estimation method that is dedicated to this operating
range. Thus the high frequency injection method has been chosen to this aim. This method is not
covered in this work and is the main topic of the associate thesis work [92].

Figure 5.20: Expansion of the developed EKF-based sensorless controller to large operating speed range

0 0.5 1 1.5 2 2.5 3
-100

0

100

200

300

400

500

600

700

800

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

(a) (b)

1Nm load torque variation

1Nm load torque variation

t(s) t(s)

Mechanical speed (rpm)
Torque (Nm)

t(s)

t(s)

Mechanical speed (rpm)
Mechanical speed (rpm)

Chapter 5: FPGA-based sensorless controller for synchronous AC drive – Algorithm development

99

7. Conclusion

The objective of this chapter was to present the development of the EKF-based sensorless speed
controller. This algorithm development step aims to validate the functionality of the algorithm and
prepare it to the digital implementation.

This chapter was organized according to the design methodology. At first, a modular
partitioning is achieved. Then, the continuous-time functional validation is made. The configuration
and the validation of the speed and current closed-loops are made. This is followed by the digital
realization where the discretization, the normalization, the data quantification and the algorithm
optimization are both realized. Finally, Fixed-point and discrete time simulations are made in order to
validate the whole sensorless controller with regards to the achieved digital realization.

101

Chapter 6

FPGA-based sensorless control for
synchronous AC drive

- FPGA architecture development

1. Introduction

This chapter presents the FPGA architecture development of the proposed sensorless speed
controller. According to the design methodology (chapter 2, Figure 2.18), this development takes
place after having validated the corresponding algorithm.

The first task of this development is the optimization of the FPGA architecture. This is made
according to the optimization procedure, presented in chapter 2. The objective of this procedure is to
find the appropriate FPGA architecture that is able to perform the developed algorithm with regards to
implementation constraints. In our case, the latter are: the modularity preservation constraint, the area
constraint and the timing constraint.

Assuming that the modular partitioning of the algorithm (chapter 5 part 2) has been maintained,
a first evaluation of the time/area performances is made. This pre-evaluation is achieved when the
parallelism of the algorithm is fully preserved. The objective here is to verify if the corresponding
FPGA architecture can be directly designed without any optimization. Otherwise, the Algorithm
Architecture Adequation (A3) methodology is applied to each module so as to factorize the developed
architecture and then reduce the consumed FPGA resources.

The optimization is followed by the design of the architecture, the VHDL coding and then the
functional validation. During the VHDL synthesis, a time/area evaluation is achieved. Once the
obtained time/area performances satisfy the corresponding constraints, the designed FPGA
architecture is then ready to be physically implemented.

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

102

2. Architecture optimization

2.1. Optimization strategy

Up to now, the EKF-based sensorless control algorithm has been developed and validated. The
appropriate fixed-point data format has been chosen and the necessary algorithm optimization has
been achieved. Note that in order to enlarge the case studies, both of the EKF versions (initial and
optimized versions) have been taken into account during the FPGA architecture development.

The optimization of the corresponding FPGA architecture consists in designing the appropriate
architecture that is able to process this algorithm. However, the following FPGA implementation
constraints ought to be respected (see chapter 2, §6.3.1).

2.1.1. Modularity constraint

The first development constraint is to preserve the whole modular partitioning that was made
during the algorithm development (chapter 5 part 2). According to this partitioning and depending on
the level of hierarchy, the FPGA architecture of each module is to be developed. In the case where the
area constraint is not satisfied, this partitioning must be revised so as to gather potential modules that
lead to the reduction of the FPGA resources.

2.1.2. Area constraint

This constraint imposes the development of a global FPGA architecture that can be easily
implemented in a low cost FPGA solution. In the case of having chosen the Xilinx FPGA family, the
objective is the possibility to use the available FPGA Spartan series (e.g. Spartan3, Spartan3E and
Spartan6).

2.1.3. Timing constraint

The timing constraint here consists is defining an execution time limit, depending on the
required control performances. For this aim, the influence of execution time on the control bandwidth
of developed EKF speed sensorless controller is evaluated. The case of a high speed synchronous
motor has been chosen since the influence of the execution time is more visible at high operating
speed [Appendix D]. Figure 6.1 presents the obtained simulation results for different execution times
(0%, 10%, 30%, 50%, 70%, 90% and 100% of the sampling period, Ts=100µs). The shorter is the
execution time, the larger is the control bandwidth. Finally, the chosen execution time limit is set to
10% of the sampling period.

Figure 6.1: Influence of the execution time on the bandwidth of the EKF-based sensorless speed controller

2.1.4. Optimization procedure

The optimization procedure is done with regards the diagram presented in chapter 2, Figure
2.20. The listed-below four steps have been processed:

-3

-25

-20

-15

-10

-5

0

5
0,1 1 10 100

(dB)

f (Hz)

10%
0% of Ts

30%

50%

70%

90%

100%

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

103

1- The first task is to evaluate the execution time and estimate the used FPGA resources when
the parallelism of the whole algorithm is fully preserved. As an example, the case of the
non-optimized EKF version is discussed.

Figure 6.2 presents the timing diagram of the whole sensorless speed controller. The
treatment is synchronized with the PWM carrier peaks. Furthermore, when the timing
constraint is satisfied, it is possible to launch the treatment before and then refresh the
switching signals at the PWM peaks. With the used ADC devices, the necessary conversion
time is equal to 2.4µs. Thus, in the case of a full preservation of the algorithm parallelism,
the execution time of the whole sensorless controller is expressed according to relation (6.1).
With a fully pipelined structure, this execution time can be rewritten as a function of the
latency and the operating clock period. In our case, the new expression is given by relation
(6.2).

It can be seen from this relation that when using a high clock frequency, the obtained total
execution time satisfies the timing constraint. However, when estimating the necessary
FPGA resources to implement this fully parallel algorithm, the obtained results (Table 6.1)
indicate that the corresponding architecture cannot be supported by any of the available low
cost FPGA solutions. Consequently, the area constraint is not satisfied which leads to the
second optimization step.

Figure 6.2: Timing diagram of the developed sensorless speed controller

⎪
⎪

⎩

⎪
⎪

⎨

⎧

<=

>=

++++=

)('

)('

'

KGadcKG

KGadcadc

sccspcinnovdqex

ttiftt

ttiftt

tttttt

k.Ts

tvi

1/1
ˆ

−− knkX

knkX /
ˆ

Vi

1/
ˆ

−knkX

ADC

spc
scc

vsn(ab)_k-1 DQ Pred.

K. Compensator
DQisn(ab)_k

Innov.,Knk

rcc

 Sa, Sb, Sc

 Sr

 EKF module

tdq
tpred

tKG

tdq

tinnov
tspc

tscc

tex = tssc ≤ 0.1Ts

trcc
tadc

tvi: Voltage interface execution time
tdq: Park transformation execution time
tpred: Prediction module execution time
tKG: Kalman compensator execution time
tinnov: Innovation module execution time
tspc: Speed control execution time
tscc: Stator current control execution time
trcc: Rotor current control execution time

k.Ts (k+1).Ts (k+2).Ts

PWM carrier

tex ≤ 0.1Ts

t

(6.1)

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

104

⎪⎩

⎪
⎨
⎧

=====⋅==

⋅+=⋅++++=

18;6;4;7;30;;4.2

65')('

sccspcdqinnovKGclkKGKGadc

clkclksccspcinnovdqex

NNNNNTNtµst

TtTNNNNtt

Table 6.1: Estimation of the FPGA resources when the algorithm parallelism is fully preserved – case of the non-
optimized EKF version.

Modules Operators Number Corresponding FPGA hardware resources
22-bit multiplier 352 1408 equivalent 18-bit multipliers (DSP blocks)

22-bit adder 271 7181 6-bit LUTs

22-bit subtractor 24 6456 6-bit LUTs

22-bit register 1932 42504 Flip-Flops

EKF Module

22-bit inverter 1 1303 6-bit LUTs and 3426 Flop-flops

17-bit multiplier 3 3 equivalent 18-bit multipliers (DSP blocks)

17-bit adder 2 38 6-bit LUTs

17-bit subtractor 2 38 6-bit LUTs
Speed controller

17-bit register 21 357 Flop-flops

20-bit multiplier 16 16 equivalent 18-bit multipliers (DSP blocks) +
164 6-bit LUTs

13-bit multiplier 4 4 equivalent 18-bit multipliers (DSP blocks)

20-bit adder 13 286 6-bit LUTs

13-bit adder 6 90 6-bit LUTs

20-bit subtractor 2 44 6-bit LUTs

14-bit subtractor 1 16 6-bit LUTs

13-bit subtractor 1 15 6-bit LUTs

20-bit register 93 1860 Flop-flops
14-bit register 3 42 Flop-flops

Stator & rotor
current controllers

13-bit register 33 429 Flop-flops

Total

 - 1431 equivalent 18-bit multipliers (DSP blocks)
 - 15631 6-bit LUTs

- 46944 Flop-flops
100% of the 180 DSP blocks (Sp6 xc6slx150)

704% of 6-bit LUTs (Sp6 xc6slx150)

2- This second step aims to cope with the area mismatch and design an FPGA architecture that
needs fewer resources. To reach this objective, the A3 methodology can be adopted (chapter
2, §6.3.2). When applied to each module, this methodology consists in finding the potential
parallelism and then making the necessary factorization. This concerns mainly the greediest
operators such as multipliers. However, factorizing an architecture leads to serialize the
treatment. The higher is the level of factorization, the longer is the execution time.

For example, when factorizing the EKF compensator, the corresponding execution time tKG
will increase and then can exceed tADC (Relation (6.1)). Because of its complexity, this
module has then a significant timing criticality and can lead to the non respect of the timing
constraint. Consequently, a compromise is to be found so as to apply the appropriate
factorization that keeps the timing constraint satisfied.

(6.2)

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

105

In sections 2.2, 2.3 and 2.4, the application of the A3 methodology to the EKF module is
presented. The case of the prediction module (section 2.2), the EKF compensator (section
2.3) and the innovation module (section 2.4) are focused on. For each case, the Data Flow
Graph (DFG), the factorization procedure and the Factorized DFG are discussed.

3- Once the appropriate factorization level and the FDFG of each module are defined, the third
task is the design of the corresponding FPGA architecture. This design has to respect the
hierarchy levels according to the modularity constraint. This is followed by the architecture
VHDL-coding and the architecture functional validation. For the developed sensorless
controller, these points are respectively discussed in parts 3, 4 and 5.

4- Once the global FPGA architecture is functionally validated, the next step is the analysis of
the time/area performances. This is obtained after having synthesized the developed design
(using the dedicated synthesis tools). This synthesis indicates the consumed FPGA resources
and the maximum frequency of the operating clock. This maximum frequency allows the
calculation of the global execution time. For the developed FPGA-based sensorless
controller, the analysis of the time/area performances is made in part 6.

2.2. Optimization of the EKF prediction module

As a reminder, the prediction module calculates the non-compensated state space vector using
the salient synchronous machine model. Relations (6.3-6.6) represent the implemented discrete-time
normalized equations and Figure 6.3 highlights the corresponding DFG.

131/11/121/111/ ˆˆˆˆ
−−−−−−−− ⋅+⋅⋅+⋅= sndkisdknkksnqkisdksndkisdksndk vGiGiGi ω

141/131/11/121/111/ ˆˆˆˆˆ
−−−−−−−−−− ⋅+⋅+⋅⋅+⋅= snqkisqknkisqknkksndkisqksnqkisqksnqk vGGiGiGi ωω

1/11/ ˆˆ −−− = knkknk ωω

1/11/11/
ˆˆˆ

−−−−− +⋅= knkknkknk G θωθ θ

Where,

sd

s
sisd L

RTG −= 11
 ;

B
sd

sq
sisd L

L
TG ω=2

 ;
sdB

Bekf
sisd LI

V
TG =3

sq

s
sisq L

RTG −= 11
 ;

B
sq

sd
sisq L

LTG ω−=2
 ;

B
sq

rdsr
sisq L

IMTG ω−=3
 ;

sqB

Bekf
sisd LI

V
TG =4

B

B
sTG

θ
ω

θ =

(6.3)

(6.4)

(6.5)

(6.6)

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

106

Figure 6.3: DFG of EKF prediction module

From this associated DFG, it can be seen that the equations are processed independently. For

each equation (except the speed equation), the treatment can be divided in two stages. The first stage is
dedicated to multiplications and the second one is dedicated to additions. Also, the DFG indicates that
there are multiplications that can be performed in parallel. Thus they can be factorized and processed
using only one multiplier. With an iterative structure, this multiplier can also perform the
multiplication which is not made in parallel to the others (case of the isd and isq equations). Figure 6.4
shows the FDFG that represents the factorized isq equation. This graphic introduces specific nodes
called, F (“Fork”), J (“Join”) and I (“Iterate”) that are used to delimit the factorization borders.

Figure 6.4: FDFG of isq equation

When it comes to the whole prediction module, it can be seen from the defined timing diagram
(Figure 6.2), that the corresponding treatment can be fully serialized without affecting the execution
time of the whole sensorless controller. This means that the prediction equations can be gathered and
then processed by the same factorized architecture. The advantage is the use of a minimum of
operators without downgrading the timing performances. Figure 6.5 presents the corresponding FDFG.

X

++

+

isqG1 1/1
ˆ

−− kksnqi

isqG2
1/1

ˆ
−− kksndi

1/1ˆ
−− kknω isqG3

isqG4

1−ksnqv

F F

J
I

1/
ˆ

−kksnqi

X X X

+

+

X

+

X X X

+

+

X

X

+

X

isdG1 isdG2 isdG3 isqG1

isqG2isqG3 isqG4 θG
1/1

ˆ
−− kksndi 1/1

ˆ
−− kksnqi

1/1ˆ
−− kknω 1−ksndv 1−ksnqv

1/1ˆ
−− kknω

1/1
ˆ

−− kksndi
1/1ˆ

−− kknω
1/1ˆ

−− kknω1/1
ˆ

−− kknθ

1/
ˆ

−kksndi 1/
ˆ

−kksnqi
1/ˆ

−kknω
1/

ˆ
−kknθ

1/1
ˆ

−− kksnqi

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

107

Figure 6.5: FDFG of EKF prediction module

2.3. Optimization of the EKF compensator

The EKF compensator is definitely the most constraining module in terms of complexity as well
as the FPGA resources. In order to satisfy the low cost FPGA constraint, the factorization of the
corresponding architecture is mandatory. Because this module presents a high timing criticality, this
factorization can lead to the non respect of the timing constraint. A compromise is then necessary so as
to balance the level of factorization with the corresponding execution time. In the following, it has
been decided to present the factorization of the initial Kalman compensator (non-optimized version)
and also the optimized version that is based on the matrix symmetrization (chapter 5 §5.2.2).

2.3.1. Jacobian matrices

Relation (6.7) and (6.8) present the processed Jacobian matrices for the model linearization.

()

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⋅⋅
⋅⋅

=
∂

∂
= −−−−

−−−−

= −−

1G00
0100
0GiGGωG
0iGωGG

x
f

F

θ

isq311/kksndisq2isq111/knkisq2

11/kksnqisd211/knkisd2isd1

xxn

dn
dnk

knk

ˆˆ

ˆˆ

1/1ˆ

()
⎥
⎦

⎤
⎢
⎣

⎡
=

∂
∂

=
−−=

0010
0001

x
hH

knkxxn

dn
dnk

1/1ˆ

Figure 6.6 shows the DFG for Fdnk. It can be noticed that the time-varying matrix elements are
processed in parallel. Thus the multiplication can be factorized and processed by only one multiplier.
The obtained FDFG is then depicted in Figure 6.7.

X

+

+

+

F

F

F

F

F

F

F

F

FFF

I
J

J
1/

ˆ
−kksnqi1/

ˆ
−kksndi 1/ˆ

−kknω
1/

ˆ
−kknθ

1/1
ˆ

−− kksndi

1/1
ˆ

−− kksnqi
isqG1

isdG1

1/1ˆ
−− kknω 1/1

ˆ
−− kksndi

1/1
ˆ

−− kksnqi

1/1ˆ
−− kknω

1−ksndv

1/1ˆ
−− kknω

1−ksnqv

isqG4

isqG3

isdG3

isqG2

isdG2

θG

1/1
ˆ

−− kknθ 00

1/1ˆ
−− kknω

(6.7)

(6.8)

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

108

Figure 6.6: DFG for Jacobian matrix Fdnk

Figure 6.7: FDFG for Jacobian matrix Fdnk

2.3.2. Kalman gain and covariance matrix

The non-optimized computation of Knk and Pnk/k (respectively the Kalman gain and the
covariance matrix of the estimation error, chapter 4, relations (4.6-4.8)) is based on matrix treatment
including matrix multiplications, additions, subtractions, transpose and a matrix inversion. For figure-
view simplicity, the corresponding DFG has been extracted from the Simulink block diagram (Figure
6.8).

The factorization of this module has been done according to the following settlement. The whole
matrix multiplications have been factorized using only one 3-matrix multiplier (AxBxC). Because the
matrix dimensions are not the same everywhere, it has been decided to make uniform the matrix
multiplications. Consequently, the matrix dimensions have been extended (when necessary) to 4x4. At
the end of each multiplication, the result is re-adapted (when necessary) to the initial dimension.
Figure 6.9 overviews the developed FDFG.

In the proposed FPGA architecture, the 3-matrix multiplier is also factorized. To process the 128
multiplications, only four multipliers have been used. As for the matrix inversion, the needed 6
multiplications are processed with one multiplier. To anticipate the FPGA architecture design, the
implementation of the inverter (matrix determinant inversion) is made with the help of a dedicated
Xilinx IP. In [Appendix E], an in-depth presentation of the developed 3-matrix multiplier and the
developed matrix inverter is made.

0 0 1 0

0 0 Gθ 1

0 G1isd

0 G1isq

Fdnk(12) Fdnk (13)

Fdnk (23) Fdnk (21)

X

+
isqG3

isdG2

isqG2

1/1ˆ
−− kknω

1/1
ˆ

−− kksnqi

1/1
ˆ

−− kksndi

Fdnk(12)
Fdnk (13)

Fdnk (21) Fdnk (23)

F F

J

+

X

0 0 1 0

0 0 Gθ 1

0 G1isd

0 G1isq

Fdnk(12) Fdnk (13)

Fdnk (23) Fdnk (21)
X XX

Fdnk(12) Fdnk (13) Fdnk (21)

Fdnk (23)

isdG2
1/1

ˆ
−− kksndi

1/1ˆ
−− kknωisdG2 1/1

ˆ
−− kksnqi isqG2 isqG2

isqG31/1ˆ
−− kknω

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

109

Figure 6.8: DFG for non-optimized EKF compensator

Figure 6.9: FDFG for non-optimized EKF compensator

UT

UT

dnkF

dnkH

Q
R

3-Matrix multiplier

Matrix
Inv.

++

_

+

UT

>> 1

>> 1

Dimension extension to 4x4
Dimension re-adaptation

Divider by 2 (1-bit shift)

F

F

F

J

I

I

I

dnk
tF

dnk
tH

dnk
tF

dnk
tH

A B C

dnkF

dnkH

nkK

nkK

nkK

1/ −knkP

1/ −knkP

1/ −knkP

1/1 −− knkP dnk
tH

dnkH

1/ −knkP

knkP /

4x4

4x4

4x4

4x4

4x4 4x4 4x4

4x4 4x4

4x2 2x4

4x4

4x2

4x4

2x2

4x4

2x4

4x2

4x4

4x4

4x44x4

4x4

4x4

4x4 4x4 4x4 4x4

2x2

4x4

4x4

4x2

dnkF
dnkH

1/1 −− knkP

knkP /

Q
R

nkK

1/ −knkP

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

110

As far as the optimized version of the EKF compensator is concerned (Matrix symmetrization
version), the treatment is mainly based on scalar operations (except the matrix inversion). Figure 6.10
presents the DFG that concerns the calculation of the covariance matrix (extracted from Simulink).

When looking closely to the processed equations, it can be seen that the calculation of the matrix
elements can be made using only a dot-product (see the example in chapter 2 §6.3.1). It is then
possible to factorize the whole treatment around this dot-product. Figure 6.11 shows the corresponding
FDFG.

Figure 6.10: DFG for MS-optimized EKF compensator

Figure 6.11: FDFG for MS-optimized EKF compensator

I

I

I

I

J

J

Dot Product

F

F

F

F

F

F

Fdk

Pk-1/k-1

Kk

Pk/k-1

Pk/k

x1(t)
y1(t)
x2(t)
y2(t)
x3(t)
y3(t)

x1(t)

y1(t)

x2(t)

y2(t)

x3(t)

y3(t)

o(t)

M
at

ri
ce

s e
le

m
en

ts

M
at

ri
ce

s e
le

m
en

ts

+

+
Matrix

inversion

11
1/ −knkP

12
1/ −knkP

21
1/ −knkP

22
1/ −knkP

11R

22R

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

111

2.4. Optimization of the EKF innovation module

The innovation module is launched ones the EKF compensator has generated the Kalman gain.
Relations (6.9-6.12) present the processed equations and Figure 6.12 highlights the corresponding
DFG. Here again the processed parallel multiplications can be factorized and only one multiplier can
be used. Figure 6.13 presents the obtained FDFG.

)ˆ()ˆ(ˆˆ
1/121/111// −−− −⋅+−⋅+= ksnqksnqkksndksndkksndkksndk iiKiiKii

)ˆ()ˆ(ˆˆ
1/221/211// −−− −⋅+−⋅+= ksnqksnqkksndksndkksnqkksnqk iiKiiKii

)ˆ()ˆ(ˆˆ 1/321/311// −−− −⋅+−⋅+= ksnqksnqkksndksndkknkknk iiKiiKωω

)ˆ()ˆ(ˆˆ
1/421/411// −−− −⋅+−⋅+= ksnqksnqkksndksndkknkknk iiKiiKθθ

Figure 6.12: DFG of the innovation module

Figure 6.13: FDFG of the innovation module

X

+

F F

J

- -

+
++

+

11nkK
12nkK

21nkK
22nkK

31nkK
32nkK

41nkK
42nkK

1/
ˆ

−kksndiksndi 1/
ˆ

−kksnqi
ksnqi

1/ˆ
−kknω

1/
ˆ

−kknθ 1/
ˆ

−kksndi

1/
ˆ

−kksnqi

J

kksndi /
ˆ

kksnqi
/

ˆ
kkn /ω̂kkn /θ̂

1/
ˆ

−kksndi

1/
ˆ

−kksnqi1/ˆ
−kknω

1/
ˆ

−kknθ

--

X X X X X X X X

11nkK
12nkK21nkK22nkK31nkK32nkK41nkK42nkK

++++

++++

ksndi
1/

ˆ
−kksnqi

ksnqi)(2nky)(1nky

1/
ˆ

−kksndi

kksndi /
ˆ

kksnqi
/

ˆkkn /ω̂
kkn /θ̂

(6.9)

(6.10)

(6.11)

(6.12)

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

112

3. FPGA architecture design

With regards to the modular partitioning and the level of hierarchy, the hardware FPGA
architecture of each module is designed. It is composed of a data path and a control unit that are both
synchronized with the global clock signal. According to the obtained FDFG, the architecture is
designed by replacing the FDFG nodes (F, J and I) by there corresponding operators. Thus, the node F
is replaced by a multiplexer, J and I replaced by registers.

The data path contains the used operators and data buses between them. The treatment
scheduling is ensured by the control unit which is a simple Finite State Machine (FSM). The latter is
activated via a Start pulse signal at each sampling period. When the computation time process is over,
an End pulse signal indicates the end of the treatment.

Once the architecture of each module is developed, the global data path (4th and 5th level of
hierarchy of the modular partitioning, chapter 5, Figure 5.1) is then designed by associating the needed
modules. A global control unit is also implemented so as to synchronize the global treatment.

In the following, author is focusing on the architectures of the prediction module and the EKF
compensator (3rd level of hierarchy, chapter 5, Figure 5.1). Figure 6.14 presents the developed FPGA
architecture of the prediction module and Table 6.2 lists the signal configuration depending on which
prediction equation is processed. Figure 6.15 presents the architecture of the EKF compensator,
especially the module that calculates the Kalman gain and the covariance matrix.

Figure 6.14: FPGA architecture of the innovation module

22
9

Sel0

22

22

22
9

22
9

Sel1

22
9x

22

 Slice

44

22

en2 en4 en3 en1

22

22

22
9

Prediction Control unit

en1 en2 en3 en4 en5 en6 en7 Sel0
3

Start_pred
Reset

Clk

en0 Sel1
3

end_pred

en0

0 1 0 1 0 1

+ +

22
22

+ +

22 22

+ +

22

en6 en8 en7 en5

S10
S11 S12

c
e f
g h

22 a

i

22
9 b

d

00

S10 S11 S12

1

0

1

0

1

0

2

1

0
1

0

Sa

Sd

Sf

Sb

1

0

2

Se

Sg

a

c

e

g

i

b

d

f

h

c x d

Sa Sd Sf Sb Se Sg

Prediction data path

isqG1

isdG1

1/1ˆ
−− kknω

isqG4

isqG3

isdG3

isqG2

isdG2

θG

1/1
ˆ

−− kksndi

1/1
ˆ

−− kksnqi

1/1
ˆ

−− kksndi

1/1
ˆ

−− kksnqi

1/1ˆ
−− kknω

1−ksndv

1/1ˆ
−− kknω

1/
ˆ

−kksndi 1/ˆ
−kknω1/

ˆ
−kknθ

1−ksnqv

1/1
ˆ

−− kknθ

1/1ˆ
−− kknω

1/
ˆ

−kksnqi

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

113

Table 6.2: Prediction module - Configuration of the multiplexers
 îsndk/k-1 îsnqk/k-1 ŵnk/k-1 θnk/k-1

a G1isd G1isq -- --
b îsndk-1/k-1 îsnqk-1/k-1 -- --
c ŵnk-1/k-1 ŵnk-1/k-1 -- --
d îsnqk-1/k-1 îsndk-1/k-1 -- ŵnk-1/k-1
e G2isd G2isq -- Gθ
f vsndk-1 ŵnk-1/k-1 -- --
g G3isd G3isq -- --
h -- vsnqk-1 -- --
i -- G4isq -- --

S10 0 0 -- 1
S11 0 0 -- 1
S12 0 0 -- 1

Figure 6.15: FPGA architecture of the Kalman gain and covariance matrix calculator

Figure 6.16 presents the FPGA architecture of the EKF module which is located at the 4th level

of hierarchy (chapter 5, Figure 5.1). This module includes Park transformation (abc-dq) modules. The
used sine pattern has been stored in a RAM memory block and the corresponding total size is 13312
Kbits. As for the final level, Figure 6.17 presents the architecture of the global sensorless speed
controller.

Sel0

4x4

Sel1

Kalman gain control unit

en1 en2 en3 Start mul
Sel02

Start_KG
Reset
Clk

en0 Sel12

end K G

X

4x4 4x4 4x4

4x4

A B C

Q +
+4x4

en0 +
+2x2R

Matrix inversion

en1

0 1

4x4

Init_K

en3

P0

Ut
Fdnk d

Ut
Hdnk j

d
j

t

g t2

c g j Hdnk

g

tt2

c

4x4

4x4

4x4

4x2

2x2

4x4 4x4

4x4 4x4

4x2 2x4

4x4

4x4

4x4

4x4 4x2

2x4

2x2

2x2 4x4

2x2

4x2

4x2

Start_mult end_mult

Start_inv end_inv

end mult Start inv end inv

+ - 4x4

g
en2

Ut

+
+ 4x4

>> 1

Fdnk

Hdnk

g

nkK

1/ −knkP

knkP /

1/1 −− knkP

1/ −knkP

Kalman gain data path

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

114

Figure 6.16: FPGA architecture of the EKF module

Figure 6.17: FPGA architecture of the global sensorless speed controller

Start_sensorless
Reset
Clk

End_sensorlessSensorless speed controller - Global control unit

ADC
interface

Voltage
interface

Rotor current
controller

Stator current
controller

EKF module

Speed controllerTransmission
interface

sbsa ii ,

DCV

rdI
rndi

snbsna ii ,
snbsna VV ,

nDCV
*** ,, sncsnbsna VVV

*
rndI

nω̂

*
nω

*
rndI

*
sndi

*
sndi
*
snqi

snbsna ii ,

nθˆ

Sa

Sb

Sc

Sr

From Host-PC

Start_adc End_adc Start_rcc End_rcc

Start_EKF End_adc End_EKF

Start_spc End_spc

Start_scc End_scc

Start_vi

End_vi

Start_adc End_adc Start_vi End_vi Start_rcc End_rcc Start_EKF End_EKF Start_spc End_spc End_scc Start_scc

Sensorless controller data path

PWM carrier
and global

start generator

+1/2

-1/2

PWM carrier

PWM carrier

Reset
Clk

Reset
Clk

en1

en1

en1

en1

abc-dq

abc-dq

Prediction module

EKF compensator

Innovation
module

Start_abc_dq_v End_abc_dq_v

Start_abc_dq_i End_abc_dq_i

Start_EKF_comp End_EKF_comp

Start_pred End_pred
Start_innov End_innov en0

kksndi /
ˆ

1−ksndv

kksnqi
/

ˆ

kkn /θ̂

1−ksnqv

ksndi

ksnqi

knK

1−ksnav

1−ksnbv

ksnai
ksnbi

Start_abc_dq_v End_abc_dq_v Start_abc_dq_i End_abc_dq_i Start_pred End_pred Start_EKF_comp End_EKF_comp Start_innov End_innov en0 en1

Start_EKF
Reset
Clk

End_ADC
end EKFEKF Module control unit

1/ˆ −kknx

kkn /ω̂

1/1ˆ −− kknx

EKF module data path

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

115

4. Architecture VHDL-coding

At this stage, the designed FPGA architecture of each module is ready to be programmed. The
VHDL description language is used in our case. Also, with the used Xilinx FPGA solutions, the Xilinx
ISE design tool is used. In order to preserve the modularity and make the design easy to manage,
hierarchical and multi-file VHDL programming approach is adopted (e.g. Figure 6.18). Each module
is coded as a unique VHDL file and then used as a component at a higher level of hierarchy.

The implemented matrix inversion uses a divider. The latter is used to invert the input matrix
determinant. To this aim, the Xilinx Pipelined Divider IP has been implemented. An overview of this
IP has been made in [Appendix E].

Figure 6.18: Architecture VHDL-coding – Hierarchical Multi-file approach

5. Architecture functional simulation

The developed VHDL design has been functionally simulated using dedicated tools such as the
well-known ModelSim. The test has been done by applying Testbench waveforms to the inputs of the
developed sensorless speed controller. These waveforms have been extracted from their correspondent
Matlab/Simulink counterparts.

Figure 6.19 show the ModelSim results obtained after having tested the EKF module. Sinusoidal
voltage and current waveforms have been applied to the inputs. The estimated electrical rotor position
and speed are displayed.

In order to confirm the good functionality of the EKF module, the same simulation process has
been made in Matlab/Simulink environment with the same input waveforms. The obtained simulation
results are then compared to those obtained with ModelSim. Figure 6.20 shows the waveforms of the
electrical rotor position and speed in both cases.

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

116

Figure 6.19: VHDL design functional validation – ModelSim results

Figure 6.20: VHDL design functional validation – Comparison between ModelSim and Matlab/Simulink results

6. Design synthesis and time/area performances analysis

In the case of the developed FPGA-based sensorless controller, Tables 6.3, 6.4 and 6.5
summarize the obtained synthesis results in the case of the non-optimized and the optimized EKF
versions. They highlight the estimated maximum frequency of the operating clock and show the global
hardware resource consumption. All these data are listed for different FPGA device solutions
including low cost and high performance FPGAs.

Table 6.3: Synthesis results for the initial sensorless speed controller (non-optimized EKF)

Low cost FPGA High performance FPGA
 Spartan 3

xc3s5000
Spartan 3E

xc3s1600E
Spartan 6
xc6slx150

Virtex 2P
xc2vp30

Virtex 6
Xc6vsx475

Max. clk
Frequency 67 MHz 44 MHz 82 MHz 120 MHz 226 MHz

Global
resources

use

- 20 % (8320 CLB)
- 66% hw 18-bit
multipliers (over

104)
- 1 18-Kbit RAM

block

- 63% (3688 CLB)
- 100% hw 18-bit
multipliers (over

36)
- 1 18-Kbit RAM

block

- 11% (11519
CLB)

- 38 % hw 18-
bit DSP blocks

(over 180)
- 1 18-Kbit
RAM block

- 49% (3424 CLB)
- 50% hw 18-bit
multipliers (over

136)
- 1 18-Kbit RAM

block

- 3.4% (37200
CLB)

- 3.4% hw 18-bit
DSP blocks (over

2016)
- 1 18-Kbit RAM

block

Matlab/SimulinkModelSim ModelSim Matlab/Simulink

Speed

Position

ModelSim results

(a)

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

117

Table 6.4: Synthesis results for the optimized sensorless speed controller (k(∞) EKF)
Low cost FPGA High performance FPGA

 Spartan 3
xc3s5000

Spartan 3E
xc3s1600E

Spartan 6
xc6slx150

Virtex 2P
xc2vp30

Virtex 6
Xc6vsx475

Max. clk
Frequency 67 MHz 65 MHz 97 MHz 120 MHz 252 MHz

Global
resources

use

-10 % (8320 CLB)
-25% hw 18-bit
multipliers (over

104)
- 1 18-Kbit RAM

block

-21% (3688 CLB)
-80% hw 18-bit
multipliers (over

36)
- 1 18-Kbit RAM

block

-3.4% (11519
CLB)

-12 % hw 18-bit
DSP blocks
(over 180)
- 1 18-Kbit
RAM block

-25% (3424 CLB)
-19% hw 18-bit
multipliers (over

136)
- 1 18-Kbit RAM

block

-1.4% (37200
CLB)

-1.24% hw 18-bit
DSP blocks (over

2016)
- 1 18-Kbit RAM

block

Table 6.5: Synthesis results for the optimized sensorless speed controller (MS-EKF)

Low cost FPGA High performance FPGA
 Spartan 3

xc3s5000
Spartan 3E

xc3s1600E
Spartan 6
xc6slx150

Virtex 2P
xc2vp30

Virtex 6
Xc6vsx475

Max. clk
Frequency 120 MHz 54 MHz 97 MHz 167 MHz 253 MHz

Global
resources

use

-16 % (8320 CLB)
-50% hw 18-bit
multipliers (over

104)
- 1 18-Kbit RAM

block

-45% (3688 CLB)
-100% hw 18-bit
multipliers (over

36)
- 1 18-Kbit RAM

block

-5.8% (11519
CLB)

-26 % hw 18-bit
DSP blocks
(over 180)
- 1 18-Kbit
RAM block

-39% (3424 CLB)
-38% hw 18-bit
multipliers (over

136)
- 1 18-Kbit RAM

block

-2.5% (37200
CLB)

-2.5% hw 18-bit
DSP blocks (over

2016)
- 1 18-Kbit RAM

block

From these synthesis results, it can be seen that with the fixed factorization level, both

sensorless controller versions (Optimized and non-optimized EKF versions) can be implemented in
low-cost FPGA devices. According to the optimization strategy, the area constraint is consequently
satisfied.

As for the timing constraint, Tables 6.6, 6.7 and 6.8 list the minimum execution time depending
on the clock frequency and for each of the chosen FPGA devices. This execution time has been
calculated using relation (6.1). The conversion time of the used ADC devices is equal to 2.4µs. The
obtained results indicate that both of the chosen FPGA solutions and the fixed factorization level lead
to short execution times which all satisfy the timing constraint (maximum execution time limit). It is
also important to notice that in some cases (typically table 6.7), the obtained execution time depends
strongly on the ADC conversion time. The use of high speed ADC devices is then necessary in order
to enhance, if needed, the obtained timing performances.

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

118

Table 6.6: Minimum execution time (µs) for the initial sensorless speed controller (non-optimized EKF)
Low cost FPGA High performance FPGA

 Spartan 3
xc3s5000

Spartan 3E
xc3s1600E

Spartan 6
xc6slx150

Virtex 2P
xc2vp30

Virtex 6
Xc6vsx475

Maximum clock
Frequency (MHz) 67 44 82 120 226

tADC 2.4

tKG (latency :230) 3.43 5.23 2.8 1.91 1.02

tdq (latency :9) 0.134 0.204 0.11 0.075 0.04

tinnov (latency :18) 0.269 0.41 0.22 0.15 0.08

tspc (latency :9) 0.134 0.204 0.11 0.075 0.04

tscc (latency :43) 0.642 0.977 0.524 0.358 0.19

tex_min 4,612 7,023 3,768 3,058 2,75

Table 6.7: Minimum execution time (µs) for the optimized sensorless speed controller (k(∞) EKF)

Low cost FPGA High performance FPGA
 Spartan 3

xc3s5000
Spartan 3E
xc3s1600E

Spartan 6
xc6slx150

Virtex 2P
xc2vp30

Virtex 6
Xc6vsx475

Maximum clock
Frequency (MHz) 67 65 97 120 252

tADC 2.4

tKG (latency :0) 0 0 0 0 0

tdq (latency :9) 0,134 0,138 0,093 0,075 0,036

tinnov (latency :18) 0,269 0,277 0,186 0,15 0,071

tspc (latency :9) 0,134 0,138 0,093 0,075 0,036

tscc (latency :43) 0,642 0,662 0,443 0,358 0,171

tex_min 3,579 3,615 3,214 3,058 2,713

Table 6.8: Minimum execution time (µs) for the optimized sensorless speed controller (MS EKF)

Low cost FPGA High performance FPGA
 Spartan 3

xc3s5000
Spartan 3E
xc3s1600E

Spartan 6
xc6slx150

Virtex 2P
xc2vp30

Virtex 6
Xc6vsx475

Maximum clock
Frequency (MHz) 120 54 97 167 253

tADC 2.4

tKG (latency :198) 2.955 4.5 2.414 1.65 0.876

tdq (latency :9) 0,075 0,167 0,093 0,054 0,036

tinnov (latency :18) 0,15 0,333 0,186 0,108 0,071

tspc (latency :9) 0,075 0,167 0,093 0,054 0,036

tscc (latency :43) 0,358 0,796 0,443 0,257 0,17

tex_min 3,058 5,130 3,214 2,873 2,712

Chapter 6: FPGA-based sensorless controller for synchronous AC drive – FPGA architecture development

119

7. Conclusion

This chapter was dedicated to the development of the FPGA architecture of the EKF-based
sensorless speed controller. This development has been done according to the design methodology
which includes the proposed optimization procedure.

As a summary, at the beginning of the FPGA architecture development, a first estimation of the
time/area performances has been made. This estimation concerned the whole sensorless speed
controller where the parallelism has been fully preserved. Then, it has been observed that the
corresponding architecture is too heavy to be implemented in a low cost FPGA solution. To reduce the
needed FPGA resources, the A3 methodology has been applied so as to factorize each of the developed
modules. Although this assumption leads to serialize the treatment, the final FPGA architecture has
respected both of the timing and area constraints. Thus, the architecture is ready for the FPGA
implementation process (chapter 2 §6.3.4).

121

Chapter 7

FPGA-based sensorless control for
synchronous AC drive

- Experimentation

1. Introduction

This chapter discusses the final step of the FPGA-based sensorless speed controller design
process: the experimentation. The latter has been divided into two steps, the Hardware-In-the-Loop
(HIL) validation and the ultimate experimental validation.

The HIL gives the possibility to make an intermediate validation between a full software
development (Matlab/Simulink, Xilinx ISE, ModelSim …) and a full experimental validation using
the experimental platform. The advantage is to guarantee the functionality of the implemented FPGA-
based controller when applied to the actual system.

This chapter is organized as follows. First of all, the features of the experimental platform are
presented. This section is complementary to the system specification made in chapter 4.

The HIL validation is then discussed starting by recalling the principle synoptic and by
describing the implemented emulation modules. This is followed by the presentation of the obtained
results. It can be observed that these results are organized in the same way as the Matlab/Simulink
simulation results. We start by presenting the validation of the stator current controller, then the speed
controller, then the EKF estimation and finally the validation of the whole sensorless controller.

As far as the experimental validation is focused on, the proposed experimental results are once
again organized as previously discussed. Additional tests have been, anyhow, proposed and deal with
the evaluation of the robustness of the sensorless speed controller against load torque variation.
Furthermore, an expansion to a larger operating speed range is achieved and the corresponding results
are presented.

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

122

2. Overview of the experimental platform

Figure 7.1 presents the power stage of the implemented experimental platform. According to the
hardware system specification (chapter 3), the features of this platform are listed below.

Figure 7.1: Experimental platform – Power stage

Mechanical load (Figure 7.1(a)):
 Controlled powder brake: Maximum torque:25Nm, Maximum speed: 6000 rpm

Salient Synchronous Machine (Figure 7.1(b)):
 230/400V, 1.52/2.66A, 4-poles, 0.8kW, 1500 rpm, 5Nm

Position sensor (Figure 7.1(c)): Used to compare estimated and measured rotor positions.
 Absolute encoder: 10-bit resolution

Stator power supply (Figure 7.1(d)):
 Autotransformer: 3-phase, 230/400V, 50Hz
 AC-DC converter: SEMIKRON 3-phase, diode-bridge rectifier, 1100µF/800V capacitors
 DC-AC converter: SEMIKRON VSI – CM50DY IGBT modules – VDCmax=800V, Imax=30A

Rotor power supply (Figure 7.1(e)):
 Autotransformer: 1-phase, 230V, 50Hz
 AC-DC converter: 1-phase, diode-bridge rectifier, 2200µF/450V capacitor
 DC-DC converter: Buck converter – ARCEL-2RDV-22 IGBT module – VDCmax=800V,

Imax=30A

Buck converter 3-phase diode-bridge Rectifier + VSI

Power supply system

Controlled
powder brake

SSM

(a) (b)

(c)

(d)

(d)

(e)

(e)

 10-bit position encoder

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

123

Figure 7.2 overviews the implemented voltage and current sensor board, the ADC board and the
FPGA board. Their features are listed below. It can be noticed that the FPGA board is based on Xilinx
XUP Virtex_2P board. The used XC2VP30 FPGA belongs to the high performance FPGA family.
This may seem confusing with the analysis made in the previous chapter where the objective was the
use of low cost FPGAs. However, such FPGA board was used for two reasons. The first one is related
to experimental constraints where a high number of signals are wired (89 signals), mainly due to the
position encoder, to the ADC and to the DAC boards. The second reason is related to the Hardware In
the Loop (HIL) tests where the emulation of the physical plant is added to the developed design.
Additional FPGA resources are consequently needed. Furthermore, during these HIL tests, a high
number of RAM memory blocks is required for data storage.

Figure 7.2: Experimental platform – Digital control unit and interface boards

Voltage and current sensor board (Figure 7.2(a)):
 Based on the ARCTU3 board: 2.5V/10A and 1V/100V

ADC board (Figure 7.2(b)):
 AD9221 ADCs
 Resolution : 12 bits
 Voltage reference Vref: 1V, 2.5V
 Input voltage range : 0-2V (with Vref =1V), 0-5V (with Vref =2.5V)
 Maximum conversion rate: 1.5Msps
 Maximum clock frequency: 1.5MHz
 Effective conversion time : 3 clock cycles; tconv_min=2µs
 Used clock frequency: 1.25MHz tconv=2.4µs

Xilinx XUP Virtex_2P board (Figure 7.2(c)):
 XC2VP30 FPGA
 6 expansion connectors (80 user I/O pins)
 1 high speed expansion connector (40 user I/O pins)
 32MHz, 75MHz and 100MHz clocking resources
 Up to 2Gb Synchronous Dynamic RAM
 USB/JTAG configuration port; transmission rate: 3MHz
 Dedicated peripherals (switches, push-buttons, LEDs, RS232 port, PS-2 ports, Audio

Codec, SATA ports, transceiver ports …)

Voltage & Current
sensors

ADC board

Xilinx Virtex_2P FPGA
board

(a)

(b)

(c)

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

124

3. Hardware in The Loop validation

In order to verify a first experimental operating guarantee of the developed FPGA-based
sensorless controller, an HIL validation has been achieved. The latter is an intermediate validation step
between a fully computer-based development (Matlab/Simulink, ModelSim, FPGA design tools) and a
fully experimental test (actual system platform). The developed design has to be associated with an
emulation of the plant. In addition, a communication controller has to be implemented in order to
transfer the stimuli and the probed data. This communication is made with a Host-PC. A comparison
between the obtained HIL results and the simulation results is achieved.

Figure 7.3: HIL validation of the developed FPGA-based speed sensorless controller

Figure 7.3 presents the corresponding synoptic. When using a Xilinx FPGA target, the HIL
procedure can be achieved using the ChipScope analyzer [2]. The latter is used to probe the internal
signals on the one hand and to configure the design on the other hand. The data transfer is made using
the USB/JTAG interface. Depending on the used configuration cable, the supported synchronization
clock ranges from 750 kHz to 24 MHz. Also, depending on the used configuration cable and the
available memory resources, the transmission rate can reach up to 24 Mbps. In our case, the frequency
of synchronization clock is 3MHz and the corresponding transmission rate is 3Mbps.

The implemented design must be associated with the following cores:
- Integrated CONtroller (ICON): This core aims to control the communication between the

Host-PC (via the JTAG boundary scan port) and the FPGA target.
- Integrated Logic Analyzer (ILA): The main function of this core is to probe and store data

information on the RAM block resources. These data are then sent and displayed by the
ChipScope analyzer.

- Virtual Input/Output (VIO): This core aims to monitor and drive internal FPGA signals in real
time. In our case, this core is then used to set the speed reference, the direct current reference,
the load torque and the EKF covariance matrices.

The emulation of the SSM leans on the developed model that is expressed in chapter 4, in
relation (4.14). The Forward Euler discretization method has been adopted. The chosen sampling

Emulated physical plant

EKF-based speed
sensorless controller

ICON core VIO core ILA core

USB/JTAG Interface

Host-PC

Comparison

Simulation
results

HIL
results

FP
G

A
 ta

rg
et

VSI SSM LOAD

Sa

Sb

Sc

VDC

VSI Switching signals Stator voltages and
currents

Settings
(references,

mechanical load
configuration,

EKF tuning …)

Probed signals
(speed, position,

currents, voltages,
torque …)

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

125

period has been set to 1µs and the chosen fixed-point format is s[30Q28]. To anticipate the obtained
HIL results, acceptable performances have been obtained with this digital realization. However, it is
worth noticing that the Euler discretization method has a major drawback in terms of stability. Indeed,
the stability of the system is influenced by the value of the sampling period and the data word-length.
Thus, with a limited data precision and when the sampling period decreases, the poles of the system
move closer to |z| = 1, which move them to the stability limit (Figure 7.4(a)).

To cope with this limitation, it is highly recommended to implement a system model that is
based on the delta-operator (δ-operator) [44]. The main advantage of such model remains in the
possibility to use a very small sampling period without affecting the stability. Indeed, with the delta
approach, when the sampling period decreases, the stability zone increases and becomes closer to the
stability zone of the s-domain (Left-hand plane, Figure 7.4(b)). An example of the SSM delta-operator
based is given in [108]. As a perspective, this model will be systematically included to the future HIL
tests.

Figure 7.4: Stability regions for discrete z-plane and δ-plane

As far as the VSI is concerned, the implemented emulation model is presented in [109]. The

latter includes the non-linearities introduced by the power switches dead time. The buck converter has
not been implemented and the SSM rotor current is assumed to be constant (Ird=1.5A).

The following HIL results have been organized in the same way as the fixed point discrete time
simulations (chapter 5 part 6). We start by highlighting the validation of the stator current controller,
followed by the validation of the speed controller. An open loop validation of the EFK estimation is
made and finally the whole sensorless speed controller is validated.

Figure 7.5 presents the HIL results of the stator current controller. The same references settings
have been chosen: the direct current is set to 0A and for the quadrature current a step of 2A at start up
and a negative step (-1A) at 2s are applied. As shown in Figure 7.5(a) and Figure 7.5(b), the current
responses behave as expected with a settling time equal to 40ms. The corresponding 3-phase stator
currents are presented in Figure 7.5(d). The stator spatial current vector is plotted in the stationary α-β
frame as shown in Figure 7.5(c). Finally, the waveforms of the voltages (VSI output voltage and its
fundamental) are presented in Figure 7.5(e) and Figure 7.5(f) .

As for the validation of the speed controller, Figure 7.6 presents the obtained results. Note that
in this case, the actual speed and position (from the plant) are injected to the controllers. The same
reference settings as during Matlab/Simulink simulations are achieved. Thus, a step of 750 rpm
(mechanical speed) is applied at start up and a -750 rpm at 2s (opposite rotor direction). The direct
current here is maintained to zero. The expected settling time (650ms) has been obtained and the
dynamic and steady state behavior are both the same as those of fixed point discrete time simulations.
The waveforms of the position, torque, currents and voltages are also presented.

1

Im

Re 1/Ts1

Im

Re

z-plane δ-plane

1/Ts2 1/Ts3

(a) (b)

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

126

Figure 7.5: HIL validation of the stator current controller

AIi bsq 22104700 20 =⋅⋅= −

Quadrature current
Direct current

Stationary frame
currents

3-phase currents

3-phase stator voltage

 Post-filtered stator
voltage

AIi bsq 1252480 20 −=⋅⋅−= −

t(ms)
t(ms)

t(ms)

t(ms)t(ms)

isα

isβ

Reference

Measured

Reference

Measured

572 rpm

381 rpm

191 rpm

0 rpm

5.72 A

3.8A

1.9 A

0 A

14.6 Nm

9.72 Nm

6.77 Nm

0 Nm

150 V

100 V

50 V

0 V

(b)

(c)

(d)

(e)

(f)

(a)

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

127

Figure 7.6: HIL validation of the speed current controller

isα

isβ

95%

650 ms t(ms)

t(ms)

t(ms)t(ms)

t(ms) t(ms)

t(ms)t(ms)

Reference

Measured

rpm
pb 750
.

302392900 20 =⋅⋅⋅ −

π
ω

Torque

Quadrature current

Direct current

Reference

Measured

3-phase currents

Position

3-phase stator voltage Post-filtered stator voltage

572 rpm

381 rpm

191 rpm

0 rpm

5.72 A

3.8A

1.9 A

0 A

14.6 Nm

9.72 Nm

6.77 Nm

0 Nm

150 V

100 V

50 V

0 V

Stationary frame
currents

(a)
(b)

(c) (d)

(e)
(f)

(g)

(h) (i)

Speed

2π/θB

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

128

As for the estimation of the EKF, Figure 7.7 highlights the waveforms of the rotor speed and
position. The obtained HIL results are compared with the obtained fixed-point discrete-time
simulation results. Both sensorless controllers (HIL and Matlab/Simulink versions) operate in the
same operating conditions. With the chosen covariance matrices settings (relation (7.1)), the obtained
results attest that the EKF converges properly in both rotor directions.

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
10
01

;

001.0000
0001.000
00005.00
000005.0

;

1000
0100
0010
0001

0 RQP

Figure 7.7: HIL validation of the EKF estimation

Finally, when it comes to the HIL validation of the whole EKF-based sensorless speed

controller, Figure 7.8 presents the obtained results. Here again, with the same operating conditions as
during Matlab/Simulink simulations, the same behavior has been obtained. The estimated speed and
position are injected to the speed and stator current controllers. A step of 750 rpm (mechanical speed)
is applied and a negative -750 rpm is applied at 2s. The objective here is to validate the functionally at
both rotor directions. The direct current is set to 0A. The waveforms of the rotor position, the
developed torque, currents and voltages are highlighted.

(a)

(b)

Actual

Estimated

Actual

Estimated

(7.1)

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

129

Figure 7.8: HIL validation of the FPGA-based sensorless speed controller

isα

isβ

95%

650 ms t(ms)

Reference

Actual

rpm
pb 750
.

302392900 20 =⋅⋅⋅ −

π
ω

t(ms)

t(ms)t(ms)

t(ms) t(ms)

t(ms)t(ms)

Torque

Quadrature current

Direct current

Position

3-phase stator voltage Post-filtered stator voltage

Reference

Actual

572 rpm

381 rpm

191 rpm

0 rpm

5.72 A

3.8A

1.9 A

0 A

14.6 Nm

9.72 Nm

6.77 Nm

0 Nm

150 V

100 V

50 V

0 V

Stationary frame
currents

3-phase currents

(a)

Speed

(b)

(c) (d)

(e)
(f)

(g)

(h) (i)

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

130

4. Experimental validation

4.1. Validation of the stator current controller

In this section, we are presenting the obtained experimental results after having implemented the
FPGA based stator current controller. During this test, the rotor position is provided by the used
position absolute encoder (10-bit resolution encoder). From this position, the rotor speed (used for
axes decoupling) is performed by the speed estimator, discussed in [81]. The principle of this
estimator is based on the position variation. Indeed, the duration between two position increments is
calculated using a counter. Then at each increment, the value of this counter is registered and used to
address the memory where the corresponding pre-calculated speed is stored. The corresponding
mathematical equation is expressed in relation (7.2).

clkcounter TN
1]θ[kθ[k]

1024
2πω

⋅
−−

⋅=

Where ω is the electrical speed and θ is the electrical 10-bit coded position. Ncounter is the value
of the counter at each position variation and Tclk is the clock period.

Figure 7.9: Experimental validation of the stator current controller

Quadrature current Direct current
2A

40ms0A

-0.5A

0A

40ms

1A
50ms

0.5A
50ms

1A
1A

2A
25ms

50V
25ms

isα

isβ Stationary frame
currents

3-phase currents – isa and isb

 Post-filtered
stator voltage

(a) (b)

(c) (d)

(e)

(7.2)

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

131

Figure 7.9 presents the obtained experimental results. A 0-to-2A step reference is applied to the
quadrature current and a -1A-to-0A step reference is applied to the direct current. Figure 7.9(a) and
Figure 7.9(b) show respectively the quadrature isq and direct isd current waveforms. These data are
processed internally and converted by the used DAC boards. First order responses have been obtained
and the settling time is equal to 40ms which is the expected value. Figure 7.9(c) presents the steady
state α-β currents and Figure 7.9(d) presents the 3-phase isa and isb current waveforms. The steady state
post-filtered (output of a low-pass RC filter, cutoff frequency: 300 Hz) stator voltage is shown in
Figure 7.9(e).

4.2. Validation of the sensor-based speed controller

Here again, the speed controller has been experimentally validated using the absolute 10-bit
position encoder. The previously discussed speed estimator generates the rotor speed. The achieved
test consists in applying a progression of positive and negative 750rpm steps. The direct current has
been set to 0A. As it can be seen in Figure 7.10 where the obtained experimental results are
highlighted, the expected performances (response dynamic and settling time) have been successfully
reached: first order response and 650ms settling time. Figure 7.10(a) and Figure 7.10(b) present the
rotor speed and position. Figure 7.10(c) presents the waveform of the stator current. The amplitude of
the steady state current is equal to 1A and an over-current is observed at each rotor direction variation
which is due to the mechanical load. Finally, the waveform of the post-filtered (fundamental) stator
voltage is depicted in Figure 7.10(d).

Figure 7.10: Experimental validation of the sensor-based speed controller

Rotor speed

750 rpm

-750 rpm

Rotor position – From encoder

3-phase current - isa

 Post-filtered stator voltage

0.8A

400ms

1A

-1A

1.8A

(a) (b)

(c)

(d)

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

132

4.3. Validation of the EKF observer

This experimental test aims to make an open loop validation of the EKF. The measured position
and the processed speed (by the speed estimator) are used. To do so, the stator current controller has
been implemented where a 0-to-2A step is applied to the quadrature current reference and the direct
current is set to zero. Figure 7.11(a) shows the waveform of the actual and estimated speed and Figure
7.11(b) shows the waveform of the actual and estimated electrical position. As a reminder, the d-q
based SSM model has been implemented with the infinite inertia approximation (chapter 4, part 6).
The identification of the SSM parameters has been discussed in [Appendix B].

Figure 7.11: Waveforms of the estimated rotor speed and position

As we are dealing with the experimental validation of the EKF, it is worth presenting the
obtained estimation behavior of the optimized EKF versions. As discussed in chapter 5 during the
algorithm optimization, the chosen optimized EKF versions are: the infinite Kalman gain version and
the matrix symmetrization EKF version. It has been observed during simulations that the first EKF
version (K∞) doesn’t preserve the estimation dynamic. This has been confirmed during the
experimentation (Figure 7.12(b)). As for the matrix symmetrization EKF version, the experimentation
confirms that the estimation dynamic is preserved and no miss-convergence is observed at start up
(Figure 7.12(a)).

Figure 7.12: Validation of the optimized EKF versions

4.4. Validation of the whole sensorless speed controller

The estimated rotor position and speed are now injected into the speed and stator current
controllers. Figure 7.13 presents the obtained experimental results. Figures 7.13(a-d) correspond to the
test where a progression of positive and negative 750rpm steps are applied as mechanical speed
references. The direct current is still maintained to zero. Figures 7.13(e-f) present the speed ramp

Speed response 1000 rpm

Position

Speed response 1000 rpm

Position

(a) (b)

500 rpm

0 rpm

Actual

EstimatedEstimated

Actual

(a) (b)

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

133

response where a 1000 rpm mechanical speed reference ramp has been applied. It is to be noted that
the observed convergence at start up has been obtained after having determined the standstill rotor
position. Indeed, if the motor is started without the a priori knowledge of the initial position, it cannot
be guaranteed that this motor will rotate in the expected direction during start up. An additional
algorithm is then to be implemented so as to estimate the standstill position (e.g high frequency signal
injection algorithm, [92]). During primarily test procedure, the initial position has been measured
using the position encoder. Another alternative to cope with this start up miss-convergence is to
implement an open-loop controller that operates during start up and imposes to rotor position. With
this procedure, a transition algorithm is to be added to ensure the transition between the imposed
position and the estimated position.

Figure 7.13: Experimental validation of the whole sensorless speed controller

 In order to expand the sensorless controller tests, the robustness evaluation against load torque

variation has been achieved. Figure 7.14 highlights the speed waveform in the case of a 2Nm and 4Nm
load torque variation.

Rotor speed

750 rpm

-750 rpm

Rotor position

Actual

Estimated

3-phase current - isa

2A

450ms

1.5A

-1.5A

3.2A

-3.2A

200V

450ms

Post-filtered stator voltage

Speed response 1000 rpm

Position

1000 rpm Speed response

Position

(a) (b)

(c) (d)

(e) (f)

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

134

Figure 7.14: Sensorless speed controller: Experimental evaluation of the robustness against load torque variation

– waveforms of the rotor speed
In addition, the evaluation of the developed sensorless controller on a wide operating speed

range was also made. Figure 7.15 presents the waveforms of the rotor position from 125 rpm to 2500
rpm. With the used 1500-rpm SSM and in order to reach over-speed operating conditions, the value of
the applied rotor current is decreased and a negative direct current reference is applied to the stator
current controller.

The obtained results indicate that, with the used 1500-rpm SSM, the developed EKF-based
sensorless speed controller is able to operate at over-speed operating conditions (up to 170%) and
down to 8% of the nominal speed (125 rpm). Indeed, at very low speed and at standstill, the EKF does
not guarantee a zero steady state estimation error since the back-EMF is very low (zero at standstill).
Consequently, this attests the necessity to implement a specific estimation method that is dedicated to
very low speed operating range.

Figure 7.15: Experimental validation of the sensorless speed controller – expansion to a large operating speed

range – waveforms of the measured and estimated rotor position.

(a) (b)

TL variation = 2Nm TL variation = 4Nm

Actual

Estimated

Actual

Estimated

Actual

Estimated

Actual

Estimated

Actual

Estimated

Actual

Estimated

Actual

Estimated

Actual

Estimated

Actual

Estimated

125 rpm 250 rpm 500 rpm

750 rpm 1000 rpm 1200 rpm

1500 rpm 2000 rpm 2500 rpm

Chapter 7: FPGA-based sensorless controller for synchronous AC drive – Experimentation

135

5. Conclusion

 This chapter was aimed to present the experimental validation of the developed fully FPGA-
based sensorless speed controller. At the beginning, the features of the experimental platform were
listed. This was followed by the Hardware-In-the-Loop (HIL) validation. The HIL results of the stator
current controller were firstly presented. They were followed by those of the sensor-based speed
controller. Then the estimation of the developed EKF was validated before the ultimate HIL validation
of the whole sensorless speed controller. At next, experiments were carried out. Here again, the
provided results are organized similarly to the HIL validation. In addition, the robustness of the
sensorless speed controller against load torque variation was checked and a wide range operating
speed range was tested.

137

General conclusion and perspectives

1. General conclusion

The objective of this thesis was to analyze and emphasize the contribution of FPGA devices in
the field of complex AC drive applications. This contribution was quantified in terms of control
performances and in terms of system integration. The chosen application was the sensorless speed
controller of a Salient Synchronous Machine (SSM) based on the Extended Kalman Filter (EKF).

Such EKF based sensorless controllers are systematically implemented using software devices
such as DSPs. Due to the fixed architecture of these solutions, the treatment is fully serialized.
Consequently, the implementation of complex control algorithm leads to long execution time. This has
a significant impact on the control quality and bandwidth since the sampling frequency is limited and
delays are introduced in the control closed-loop. Our idea trough this thesis is to use hardware devices
such as FPGAs. With these solutions, it is possible to exploit the parallelism of the algorithm and then
reduce significantly the execution time. Consequently, the control quality and bandwidth are not
affected. Furthermore, the use of FPGAs can improve the system integration. For example, it is
possible to develop a generic EKF that is able to estimate quasi-simultaneously variables of many
heterogeneous systems. Two typical examples were treated in chapter 2.

To make the design more manageable and less intuitive, the development of the FPGA-based
sensorless speed controller was achieved by following a dedicated design methodology. The latter
consists of a four major phases. The first one is the preliminary system specification. This consists in
making a hardware specification of the control system and making the algorithm benchmarking. The
second phase is dedicated to the development of the algorithm where the necessary modular
partitioning, digital realization, algorithm optimization and simulations are achieved. The third phase
is the development of the FPGA architecture. This development starts with the optimization of the
architecture and ends with the physical implementation. Time/area performances are also analyzed and
compared to the expected time/area constraints. The last step is the experimentation which includes
the Hardware-In-the-Loop (HIL) and the experimental validations.

At the beginning of this thesis report, a state of the art FPGA technology was made. In this
chapter, author described the structure of the recent FPGA devices and discussed their contribution in
the field of power electronics and drive applications, especially the case of complex control
applications. Also, the previously discussed design methodology was presented. This chapter was
followed by the description of a fully integrated FPGA-based controller for a Permanent Magnet
Synchronous Machine (PMSM) associated with a resolver sensor. This development was firstly made
so as to evaluate the system integration of a sensor-based FPGA-based controller. Then the following
chapters (4, 5, 6 and 7) dealt with the development of the FPGA-based sensorless speed controller. It
can be noticed that these chapters were organized according to the design methodology.

2. Perspectives

During these researches, it has been proved that when combining the speed and the integration
capacity of the recent FPGAs, it is possible to implement complex AC drive controllers. With the
developed EKF-based sensorless controller, it is possible to use a low cost FPGA device and at the
same time ensure short execution time. These promising results made us think about different possible
perspectives. We have established them into two groups: perspectives related to the development of
the algorithm and perspectives related to the development of the FPGA architecture.

General conclusion and perspectives

138

2.1. Algorithm perspectives

During the specification of the system model, we had chosen the state space model based on the
infinite inertia hypothesis. This led to a 4th order EKF. As a perspective, it is interesting to evaluate the
performances of FPGAs with a more complex system model which includes for example, the load
torque, rotor excitation equation, or also saturations. Furthermore, using the EKF, it is interesting to
extend the system model for online identification of the system parameters.

Other interesting investigations are related to the digital realization of the filter. Indeed, the
discretization of the system model is based on Euler approximation. In fact this corresponds to a first
order approximation of the exponential of the continuous-time state space matrix. Although this
approximation allows a simple model, it is important to test a higher order approximation.

Also the choice of the fixed-point data format is a promising research field. Indeed, in this thesis
work, this choice has been done intuitively during simulations and using Matlab/Simulink fixed-point
tools. In the next future, we are going to apply the methodology discussed in chapter 2 and presented
in [40], [41]. This is a less intuitive methodology that aims to choose separately the fixed-point format
of coefficients and variables by studying the stability and the steady state behavior of the EKF.

Another important topic is the implementation of the continuous-time EKF algorithm [112].
This is possible with the obtained short execution time with FPGAs. In this context, the use of delta-
transform could be of great interest.

2.2. FPGA development perspectives

Additional perspectives related to the FPGA architecture development are to be focused on. At
first, improvements are to be brought to the proposed architecture optimization procedure (chapter 2,
Figure 2.20). As proposed in this work, the first and the second steps of this procedure are made
manually. The idea is to develop an optimization algorithm that calculates the appropriate level of
factorization according to the defined implementation constraints.

Finally, along these FPGA developments, it is also important to evaluate the value-added of
FPGAs when exploiting the possibility to implement Hardware/Software treatments. Indeed, the
recent FPGAs give the possibility to implement high performance processor cores. To this purpose,
co-design approaches and methodologies are to be adopted so as to make the efficient partitioning
between the hardware and software treatments. This is the subject of the associate thesis work [74].

139

Appendix A
Compensation of the VSI non-linearities

1. Voltage Source Inverter Characterization

Figure A.1 presents the topology of a Voltage Source Inverter (VSI). The outputs are applied to
the machine stator windings. The latter are assumed to be Y-connected and balanced. In the following,
we are going to start the development of the VSI linear model before studying the introduced non-
linearties.

Figure A.1: 3-phase VSI topology

1.1. VSI linear model

The VSI linear model is developed without considering any dead time and turn-on/off delays
introduced by the switching signals. Thus, the ideal switching function can be written as a simple
arithmetic relation 1i S Si =+ (i: a, b or c). As consequence, the voltages Vao, Vbo, Vco can be
expressed as follows,

2
V1)S(2V DC

aao ⋅−⋅=

2
V1)S(2V DC

bbo ⋅−⋅=

2
V1)S(2V DC

cco ⋅−⋅=

Assuming that the stator windings are Y-connected and balanced, the 3-phase output voltages

Vsan, Vsbn and Vscn are written according to relation (A.2).

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

⋅=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

c

b

a
DC

scn

sbn

san

S
S
S

211
121
112

3
V

V
V
V

1.2. Analysis of VSI non-linearities

In this section, the non-linear VSI modeling is achieved. It describes how the model was
developed by taking into account the effects of the dead time between switching signals, turn-on/off
delays and voltage drop introduced by the power switches (IGBTs). As a first step, the model of one
single VSI leg is achieved as shown in Figure A.2. Then, it is duplicated for the other two legs with
the same manner.

TA1 DA1

TA2 DA2

TB1 DB1

TB2 DB2

TC1 DC1

TC2

o
a

b
c

n

DC2

VDC/2

VDC/2

isa
isb
isc

Stator windings

Sa

/Sa

Sb

/Sb

Sc

/Sc

(A.1)

(A.2)

Appendix A: Compensation of the VSI non-linearities

140

Figure A.2: One single VSI leg

For this leg, depending on Sa and /Sa states, four possible combinations are considered. As

shown in Figure A.3, these combinations are obtained after introducing the necessary dead time tDT to
avoid a simultaneous conduction of the switches.

Figure A.3: Dead time introduction and the four possible combinations

In addition to this dead time, the listed-below time delays are introduced by these switches.

They are to be considered to determine accurately the Vao voltage waveform.

ton : turn-on propagation time
toff : turn-off propagation time
tr : rise time (from 10%ic to 90%ic)
tf : fall time (from 90%ic to 10%ic)

Figure A.4 shows an idealized timing characteristic of an IGBT during turn-on and turn-off.

Figure A.4: Idealized IGBT timing diagram

For each combination, the value of Vao voltage is determined according to the direction of the

output current isa. The later is used to determine whether the current is flowing through IGBT or the
anti-parallel diode. Figure A.5 shows the Vao waveform when isa is positive or negative.

S

ic

Vc

ton

tr

toff
tf

2 4 1 3 2

Ideal Sa

Ideal /Sa

Combination
number

tDT tDT

Actual Sa

Actual /Sa

o a n
VDC/2

VDC/2

isa

TA1 DA1ic1

Vc1
Sa

/Sa

Vao

TA2 DA2ic2

Vc2

Vd1

Vd2

Appendix A: Compensation of the VSI non-linearities

141

Figure A.5: VSI output voltage waveform depending on current direction

2. Compensation of the VSI non-linearities

In the developed application, switching signals are processed using a Carrier Based PWM with
Zero Sequence Signal (CB-ZSS-PWM) [62], [75]. As explained in Figure A.6, the purpose of this
PWM method is to fix the instantaneous average value of VSI output voltage <Vio> (i: a, b or c) and to
make it equal to an instantaneous reference voltage <Vio>*. This later is obtained after adding, to
<Vin>* an additional ZSS which occurs between N and O points (Figure A.1).

Figure A.6: CB-ZSS-PWM principle

For example, for the first VSI leg, the output average voltage <Vao> expression, extracted from

Figure A.5, is given in relation (A.3),

⎟
⎠
⎞

⎜
⎝
⎛ +

⋅−⎟
⎠
⎞

⎜
⎝
⎛ −

⋅+⋅+−⋅>=<
T

ttV
T

ttVVDVVDVAO
12

2
12

1221

Where T and D are, respectively, the PWM period and duty cycle. V1 and V2 are the positive and

negative voltage levels and t1 and t2 the time delays defined as,

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<++==

===

>=++=

0;

0;

0;

21

21

21

scronDToff

sboffoff

saoffronDT

iwhentttttt

iwhentttt

iwhentttttt

Without considering VSI non-linearities, the ideal output voltage can be written as,

221 VDVVDV idealAO ⋅+−⋅=><

From these two last relations, the introduced error is extracted and expressed as follows,

One-leg VSI

<Vao> = <Vao>*

<Van>*
Sa

+Vdc/2

-Vdc/2

PWM
comparator

+
+

<Vao>*

<Vno>
(ZSS)

PWM
carrier

2 4 1 3 2

Ideal Sa

Combination
tDT tDT

Vao

isa ≥ 0

tDT

toff

isa = 0 isa > 0

VDC /2 – Vcsat

Vao

isa < 0

tDT
toff

ton+ tr

toff

isa = 0

ton+ tr

-VDC /2 – Vd

VDC /2 + Vd

-VDC /2 + Vcsat

tDT

isa > 0

(A.3)

(A.4)

(A.5)

Appendix A: Compensation of the VSI non-linearities

142

⎟
⎠
⎞

⎜
⎝
⎛ +

⋅−⎟
⎠
⎞

⎜
⎝
⎛ −

⋅>=<
T

ttV
T

ttVVSI
12

2
12

1ε

The chosen compensation method in this application consists in subtracting this error from the

PWM reference voltage. As consequence, the ideal average voltage will be applied to the VSI output.
Figure A.7 summaries the adopted compensation principle.

Figure A.7: CB-ZSS-PWM unit with the compensation of VSI non-linearities

3. Application to stator current controller

A characterization of the implemented VSI is firstly achieved. This consists in measuring the
dead time and IGBT turn on/off delays. These timing performances are listed below,

- toff = 2.12 μs
- tDT + ton + tr = 5.7 μs

The simulation results presented in Figure A.8 show the stator currents isa and isb before (a) and

after (b) applying the VSI non-linearies compensation. These results have been obtained for the
following settings:

- isd* = 0A
- isq* = 2A
- PWM frequency = 6 KHz

Before the compensation, the observed current distortions near 0A are mainly due to the effect

of VSI time delays. Indeed, the effect of these delays over the switching signal duty cycle increases
when value of the current is low.

Figure A.8: Simulation results before and after compensation

Figure A.9 shows the variation of Total Harmonic Distortion (THD) of stator currents over the

electrical rotor speed before and after applying compensations.

(a) (b)

Current before compensation Current after compensation

isa
isb isa

isb

+
-

One-leg VSI
<Vao>*ideal

<εao>
With non-linearity error

<Vao> = <Vao>*comp + <εao>VSI
= <VAO>*ideal

<Vao>*comp Sa (T, D)

+Vdc/2

-Vdc/2

PWM
comparator

(A.6)

Appendix A: Compensation of the VSI non-linearities

143

Figure A.9: THD = f (ω, PWM frequency)

4. Experimental results

 The Experimental set up is presented in Figure A.10. It is composed of a 0.8kW synchronous
motor associated with a 1024 points absolute encoder, current sensors and a controlled mechanical
load. The SM is supplied by a SEMIKRON VSI module which implements SKM 50GB123D IGBT
modules. Timing performances of this VSI are listed below,

- toff = 2.12 μs
- tDT + ton + tr = 5.7 μs

The used FPGA target is the Fusion AFS600 FPGA which implements a stator current

controller.

Figure A.10: Prototyping platform

(a) : Power circuit (b) : Fusion FPGA Control circuit

Figure A.11 presents the stator current instantaneous waveforms after and before the
compensation of the VSI non-linearities. Before compensation, distortions appear in the current
waveform (Figures A.11(a,c)). These distortions are clearly reduced by the chosen compensation
method as shown in Figures A.11(b,d).

 (a)

Current Sensors

Synchronous
machine

Load

Encoder

Actel Fusion
board

 (b)

3φ rectifier
+

VSI Module

0

0,5

1

1,5

2

2,5

3

3,5

4

0 20 40 60 80 100 120

THD before compensation

THD after compensation

3 KHz
6 KHz

3 KHz
6 KHz

ω (rd/s)

THD (%)

Appendix A: Compensation of the VSI non-linearities

144

Figure A.11: Stator current waveforms before and after compensation

isd* = 0A; isq* = 2A; FPWM = (3kHz, 6kHz)

1) Ch 1: 200 mVolt 10 ms

(a) (b)

Current before compensation isA

1) Ch 1: 200 mVolt 10 ms

1) Ch 1: 200 mVolt 10 ms

>

1) Ch 1: 200 mVolt 10 ms

(c) (d)

isA

isA isA

FPWM = 6KHz FPWM = 6KHz

FPWM = 3KHzFPWM = 3KHz

THD = 5.83 % THD = 4.86 %

THD = 5.69 % THD = 4.74 %

Current after compensation

Current before compensation Current after compensation

distortions

145

Appendix B
Salient Synchronous Machine: Modeling and parameter

identification

1. d-q modeling of the Salient Synchronous Machine (SSM)

In this section, the modeling in the rotating d-q reference frame of the implemented rotor
wounded SSM is made. The latter is composed of 3-phase stator windings and an excitation rotor
winding. As a first assumption, the stator windings are Y-connected and balanced. Figure B.1
overview the 3-phase representation of the SSM, [62], [111].

Figure B.1: 3-phase representation of an SSM

The angle θm corresponds to the mechanical rotor position. The latter is linked to the mechanical

angular rotating speed Ωm according to relation (B.1).

dt
dθΩ m

m =

With regards to the number of pole pairs p, relations (B.2) and (B.3) express respectively the
relationship between the electrical and the mechanical positions and speeds.

mp θθ ⋅=

mΩpω ⋅=

To start the d-q modeling of the SSM, let’s recall the principle and the equations of the used

coordinate transformations.

1.1. Coordinate transformations

In this section, the principle and the equations of the Clark transformation and the Park
transformation are presented.

a

b

c

Vsa

isa

Vsb

isb

Vsc
isc

θm
Lsa
Rs

Lsb
Rs

Lsc
Rs

Ird

Φsc

r

(B.1)

(B.2)

(B.3)

Appendix B: SSM modeling and parameter identification

146

1.1.1. Clark transformation

The Clark transformation aims to transform a 3-phase reference frame (Xa, Xb, Xc) to a stationary
2-phase (α-β) reference frame (Xα, Xβ) according to the following relation. Figure B.2 gives the
corresponding vector representation.

⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−−
⋅=⎥

⎦

⎤
⎢
⎣

⎡

b

a

c

b

a

X
X

X
X
X

X
X

3
2

3
1

01

2
3230
2

1
2

11

3
2

β

α

Figure B.2: vector-representation of the Clark transformation

1.1.2. Park transformation

The Park transformation aims to transform a 3-phase reference frame (Xa, Xb, Xc) to a rotating
(d-q) reference frame (Xd, Xq). This frame is composed of a direct axis d and a quadrature axis q. The
direct axis d is linked to the rotor axis. Figure B.3 gives the corresponding vector representation.

Figure B.3: vector-representation of the Park transformation

The (d-q) based components are obtained by multiplying their stationary based counterparts by

the rotation matrix [R(-θ)]. This last is expressed in relation (B.5) and the final Park transformation
equation is expressed in relation (B.6).

a

c

b

Xa

Xb

Xc

d

q

X

Xd

Xq

Rotor axis

θ = θdq

dt
dθω =

a

c

b

Xa

Xb

Xc

α

β

X

Xα

Xβ
dt
dθω =

(B.4)

Appendix B: SSM modeling and parameter identification

147

[] ⎥
⎦

⎤
⎢
⎣

⎡ −
=

θθ
θθ

θ
cossin
sincos

)(R ; [] ⎥
⎦

⎤
⎢
⎣

⎡
−

=−
θθ
θθ

θ
cossin
sincos

)(R

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
−−−−−

−−
⋅=⎥

⎦

⎤
⎢
⎣

⎡
⋅−=⎥

⎦

⎤
⎢
⎣

⎡

c

b

a

q

d

X
X
X

X
X

R
X
X

)3/4sin()3/2sin(sin
)3/4cos()3/2cos(cos

3
2)(

πθπθθ
πθπθθ

θ
β

α

1.2. Model equations

1.2.1. Electrical equations

Relation (B.7) gives the 3-phase electrical equations of the SSM. Its corresponding matrix-based
formulation is given in relation (B.8).

[]

[]

[]scscsc

sbsbsb

sasasa

Ψ
dt
diRV

Ψ
dt
diRV

Ψ
dt
diRV

+⋅=

+⋅=

+⋅=

[] [] [])Ψ(

dt
diRV sabcsabcsabc +⋅=

When applying the Park transformation to these 3-phase vectors, the following d-q based

equations can be extracted.

sd
sq

sqsq

sq
sd

sdsd

Ψω
dt

)d(Ψ
iRv

Ψω
dt

)d(ΨiRv

⋅++⋅=

⋅−+⋅=

Where,

sqsqsq

rdsrsdsdsd

iLΨ
IMiLΨ

⋅=
⋅+⋅=

1.2.2. Electromagnetic torque

Relation (B.11) gives the expression of the electromagnetic torque.

[] sqrdsrsqsdsqsdsdsqsqsde iIpMiiLLpiipT
2
3

2
3)(

2
3

+−=⋅Ψ−⋅Ψ⋅=

1.2.3. Mechanical equation

Relation (B.12) gives the expression of the mechanical equation.

L
L

e T
p
fT

dt
d

p
J

−−= ωω

2. α-β modeling of the Salient Synchronous Machine

The expression of the stator flux is given in the relation (B.13). It is expressed as function of the
stator inductance matrix, stator currents, mutual inductance matrix and the rotor current. Since the
machine is salient, the inductances are position dependent, [62], [111].

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

Appendix B: SSM modeling and parameter identification

148

[] [] [] [] rdsrsabcsabcsabc IθmiθLΨ ⋅+⋅=)()(

Where,

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+
+−

+−
⋅+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)3/22cos()2cos()3/22cos(
)2cos()3/22cos()3/22cos(

)3/22cos()3/22cos()2cos(
)(2

000

000

000

πθθπθ
θπθπθ

πθπθθ
L

LMM
MLM
MML

θL ssabc

And,

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
−⋅=

)3/2cos(
)3/2cos(

)cos(
)(

πθ
πθ

θ

srsr Mθm

From the 3-phase electrical equations (relation B.8), and after a Clark transformation, the (α-β)
electrical equations are,

[] [] [])Ψ(

dt
diRV sss αβαβαβ +⋅=

Where,

[] [] [] [] rdsrsss ImiLΨ ⋅+⋅=)()(θθ αβαβαβαβ

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

+−
=

)2cos(
2
3)2sin(

2
3

)2sin(
2
3)2cos(

2
3

)2cos(
2
3)2sin(

2
3

)2sin(
2
3)2cos(

2
3

)(
212

221

2002

2200

θθ

θθ

θθ

θθ
θαβ

LLL

LLL

LMLL

LLML
Ls

[] ⎥

⎦

⎤
⎢
⎣

⎡
⋅=

)sin(
)cos(

)(
θ
θ

θαβ srsr Mm

The (α-β) electrical equation are then rewritten as follows,

⎥
⎦

⎤
⎢
⎣

⎡−
+⎥

⎦

⎤
⎢
⎣

⎡
−

+

⎥
⎦

⎤
⎢
⎣

⎡−
++=

)(
)(][

)2()2(
)2()2(

2
3

][
)2()2(
)2()2(

3
][

][

2

21

θ
θ

ω
θθ

θθ

θθ
θθ

ω

αβ

αβ
αβ

αβαβ

cos
sin

IM
dt
id

cossin
sincos

L

i
sincos
cossin

L
dt
id

LiRv

rdsr
s

s
s

sss

As it will be discussed afterwards, the identified stator inductances are the d-q Lsd and Lsq
inductances. Their relationship with the inductances L1 and L2 is then,

21
sqsd LL

L
+

= ;
32

sqsd LL
L

−
=

Finally, the expression of the electromagnetic torque is,

())2(²)²(
4
9)2(

2
9)()(

2
3

22 θθθθ βαβαβα siniipLcosiipLcosisiniIpMT ssssssrdsre ⋅−⋅−⋅⋅⋅+⋅+⋅−=

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

Appendix B: SSM modeling and parameter identification

149

3. Parameter identification

3.1. Identification of the stator resistance Rs

The identification of the stator resistance can be made either by measuring directly the resistance
of the stator winding or by applying a DC voltage and then measuring the current. In our case the first
method has been used. The obtained value is 10.5Ω.

3.2. Identification of the mutual inductance Msr

The identification of the mutual inductance is made when the implemented SSM runs as a no-
load generator. The amplitude of the measured Back-EMF, the rotating speed and the rotor current are
then measured. From these data, the mutual inductance Msr is extracted according to the following
relation.

rd

bmf
sr I

V
M

⋅
=

ω
max

During the whole tests (simulations and experimentations), the excitation rotor current is
maintained to 1.5A. With this value, the obtained Mutual inductance is equal to 0.85H

3.3. Identification of the stator inductances Lsd and Ldq

 The identification of the stator inductances is based on the method deeply investigated in [110].
This method is performed via a hysteresis based current control of the dq components of the stator
current vector. With a locked rotor, the hysteresis based current controller allows the application of
step reference to one component (e.g q component) of the stator current vector while the current
component of the other axis (e.g. d component) is set to zero vice versa. From the sampled current
responses, the dq-based stator inductances are then deduced. Note that, with the proposed
identification method, the saturation is neglected and the cross saturations between the d and q axis are
not considered. Figure B.4 gives an example of the current responses in both cases.

Figure B.4: (a) Response to a step isd*=Isn and isq*=0A

(b) Response to a step isq*=Isn and isd*=0A
(Figure extracted from [110])

From the measured settling times td and tq, and depending on the DC-link voltage VDC, the stator

resistance Rs and the value of the current Isn, the stator inductances can be calculated as follow,

)
2

31log(
DC

sns

ds
sd

V
IR

tRL
⋅

−

⋅−
= ;

)31log(
DC

sns

qs
sq

V
IR

tR
L

⋅
−

⋅−
=

Having in mind that the stator inductances vary depending on the stator current, the average
numerical values are then calculated and used by the implemented EKF. In our case they are:
Lsd=0.245H and Lsq=0.229H.

(B.23)

(B.24)

151

Appendix C
Tuning of the current and speed regulators

1. Tuning of the stator current d-q PI regulators

To start with, it is necessary to recall the d-q based electrical equations of the implemented SSM
(relation (C.1)).

rdsrsdsd
sq

sqsqssq

sqsq
sd

sdsdssd

IMiL
dt
id

LiRv

iL
dt
idLiRv

⋅⋅+⋅⋅++⋅=

⋅⋅−⋅+⋅=

ωω

ω

)(

)(

Relations (C.2) and (C.3) are the equivalent d and q transfer functions.

sLR
iLV

i
sds

sqsqsd
sd ⋅+

⋅⋅+
=

ω

sLR
IMiLV

i
sqs

rdsrsdsdsq
sq ⋅+

⋅⋅−⋅⋅−
=

ωω

These d-q currents are controlled with the help of PI regulators, whom the transfer functions are
expressed as follows,

s
KKPI id

pdd +=

s
K

KPI iq
pqq +=

Figure C.1 highlights a simplified block diagram of the control closed loops of isd and isq stator
currents.

 Figure C.1: Current control block diagram

After having decoupled the d-q axes, the global d-q transfer functions are then extracted,

+

-

+
+

+

-

-
+

s
KK id

pd +

s
K

K iq
pq +

+

+

-
+

sLR sds ⋅+
1

sLR sqs ⋅+
1

sqsq iL ⋅⋅ω

rdsrsdsd IMiL ⋅+⋅⋅ ωω

sqsq iL ⋅⋅ω

isd*

isq*

isd

isq

εid

εiq

vsd
*

vsq
*

PI regulators Axes decoupling SSM model

rdsrsdsd IMiL ⋅+⋅⋅ ωω

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)

Appendix C: Tuning of the current and speed regulators

152

sd

s

pd

id

sd

pd

sd

s

pd

id

sd

pd

sds

id
pd

sds

id
pd

sd

sd

L
Rs

K
Ks

L
K

s

L
Rs

K
Ks

L
K

s

sLRs
KK

sLRs
KK

i
i

+

+
⋅⋅+

+

+
⋅⋅

=

⋅+
⋅++

⋅+
⋅+

=

11

1

1)(1

1)(

*

sq

s

pq

iq

sq

pq

sq

s

pq

iq

sq

pq

sqs

iq
pq

sqs

iq
pq

sq

sq

L
Rs

K
K

s

L
K

s

L
Rs

K
K

s

L
K

s

sLRs
K

K

sLRs
K

K

i
i

+

+
⋅⋅+

+

+
⋅⋅

=

⋅+
⋅++

⋅+
⋅+

=

11

1

1)(1

1)(

*

The tuning of the PI regulator gains is based on the poles compensation. This consists in making
Kid/Kpd and Kiq/Kpq respectively equal to Rs/Lsd and Rs/Lsq. With this assumption, the final transfer
functions of the control closed loops are,

sTs
K
Li

i
isd

pd

sdsd

sd

⋅+
=

⋅+
=

1
1

1

1
*

sTs
K
Li

i

isq

pq

sqsq

sq

⋅+
=

⋅+
=

1
1

1

1
*

These are first order transfer functions and Tisd and Tisq are respectively the time constants of isd
and isq current control closed loops. These constants can then be set according to the desired dynamic
performances. The values of the PI regulators gains are,

isd

sd
pd T

LK = ;
isd

s
id T

RK =

isq

sq
pq T

L
K = ;

isq

s
iq T

RK =

2. Tuning of the P-PI speed regulator

The speed control strategy that has been implemented in the proposed work is based on P-PI
speed regulator. This controller is characterized by two closed loops: an inner closed loop and an outer
closed loop. The first one is based on a proportional regulator (P) which aims to impose the system
poles at the user-defined location. The outer loop is based on a PI regulator which ensures the desired
static and dynamic speed responses. Figure C.2 summarizes the principle of this regulator.

 Figure C.2: Speed control block diagram

ω* isq
* Kω

+ - - +

isd
* isd

isq
Current control

ω

Internal loop
External loop

ωi

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)

(C.11)

Appendix C: Tuning of the current and speed regulators

153

Assuming that the current controller is well-established and its dynamic is much faster than the
speed controller, it is possible to make a link between the electrical speed ω and the stator currents isd
and isq according to the following relation:

[])
3

2(1
2
3

2
2

Lsqrdsrsqsdsqsd
L

T
p

iIMiiLL
sJf

p ⋅
⋅

−⋅⋅+⋅⋅−⋅
⋅+

⋅⋅=ω

Assuming that in case of a flux oriented control application, the direct current isd is set to zero.
Also, the effect of the load torque TL and the friction coefficient fL are neglected. This leads to the
following transfer function between ω and isq,

sJ
IMp

i
rdsr

sq ⋅
⋅

⋅⋅= 2

2
3ω

The internal speed control loop is made up of a proportional controller, which is aimed to
impose the controlled system poles at the desired locations. The corresponding transfer function is
expressed in relation (C.14). This relation has been obtained with the consideration of the isq transfer
function (relation (C.9)).

isq

rdsr

isq

isq

rdsr

i

JT
IMpKs

T
s

JT
IMpK

2
2

2

5.11

5.1

ω

ω

ω
ω

+⋅+
=

When assuming that,

rdsrisq IMpT
JK 26

=ω

The final transfer function of the internal loop can be expressed as a second order system with
double-real poles according to relation (C.16).

2

2

)
2

1(

4
1

isq

isq

i

T
s

T

+

⋅
=

ω
ω

The external speed control feedback loop is performed via a PI controller in order to ensure zero
steady-state speed error and to impose the response dynamic. The transfer function of the PI speed
controller is given by,

s
KKPI iw

pww +=

Imposing the ratio Kiw/Kpw equal to 1/2Tisq, the final transfer function of the external speed loop

is:

2
2

2

*

42
1
4

isq

pw

isq

isq

pw

T
K

s
T

s

T
K

++
=

ω
ω

Here again a second order transfer function has been obtained. The value of Kpw is determined
with regards to the expected overshoot and settling time.

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

155

Appendix D
Extended Kalman Filter for AC Drive Sensorless Speed Controller

FPGA-Based solution or DSP-Based solution

1. Problem statement

The performances of the developed FPGA-based sensorless speed controller have been
compared to a fully software solution based on a DSP, [68]. The aim is to study and discuss the
influence of the necessary execution time of the whole sensorless algorithm on the control bandwidth
and quality. In fact the use of a software solution allows a long execution time which introduces
significant time delays in the controller closed-loop. Consequently, in case of a high speed AC drive
where high control performances are required, the controller bandwidth and quality are downgraded.
This is mainly due to the DSP fixed architecture leading to serialize the treatment.

In contrast, the use of a hardware solution such as FPGA ensures the possibility to implement a
fully user-defined parallel architecture and then provides parallel treatment. In this case the execution
time is dramatically reduced which leads to a quasi-instantaneous control (see chapter 6). This
particularity provides the possibility to implement high bandwidth and high quality sensorless
controllers.

In order to illustrate and quantify the influence of the execution time, simulation and
experimental tests have been achieved. In the following subsections, a comparison in terms of
dynamic behavior is achieved. The used digital controller consists then on a Xilinx Virtex_2P FPGA
in the one hand and on a TI TMSF2808 DSP (100MHz, 32Bit, 12-bit ADC, 2x16-bit multiplier, 16Ko
RAM memory) [64] in the other hand.

To start with, let us present the adopted timing diagram in both cases, Figure D.1 In the first
case (Figure D.1(a)) and having in mind that the whole algorithm including the presented EKF
equations have been implemented in the same DSP device, the obtained execution time is evaluated to
66µs. Consequently, the necessary sampling period of the digital treatment has been set to 100µs,
which is the same as the PWM switching period.

Figure D.1: Timing diagram

(a): case of a DSP sensorless controller (b): case of an FPGA sensorless controller

Ts= TPWM= 100µs

Pr
og

ra
m

 In
te

rr
up

tio
n

PWM signals generation

(1) (2) (3) (4) (5a)

t

t

TexDSP=66µs

PWM signals generation

Ts = TPWM= 100µs

(1)
(2)
(3)
(4)
(5b)

TexFPGA=6µs

(a)

(b)

t

PWM carrier

k.Ts (k+1).Ts

k.Ts
(k+1).Ts

(1) ADC conversion process
(2) EKF state space estimation process
(3) P-PI speed controller
(4) PI current controller
(5a) SVM-PWM process
(5b) CB-PWM process with ZSS

injection

t

Appendix D: EKF sensorless speed controller: FPGA-based solution or DSP-based solution

156

As far as the hardware FPGA based solution is concerned and when operating at a 50MHz clock
frequency, the corresponding execution time is evaluated to 6µs which is eleven times less then the
one obtained with the software solution. This fast treatment ensures an important flexibility regarding
the timing diagram. For example, as shown in Figure D.1(b), the short execution time gives the
possibility to launch the controller right before the PWM carrier peak so as to update the necessary
PWM signals at the same switching period which ensures a quasi-instantaneous controller.

Figure D.2 shows the synoptic of the normalized speed sensorless control closed-loop. In order
to illustrate the impact of the execution time on the dynamic behavior, a time delay is introduced and
the sensorless controller tuning (EKF, speed and current regulators) remains the same in both cases as
well as the motor load conditions.

As it can be noticed in this figure, the introduced time delay has an impact on the estimated
speed and position. For the latter, this time can be considered as a phase shift and then influences Park
transformations. Consequently, erroneous values are processed which affects the behavior of speed
and current controllers. In other words, the control bandwidth is then influenced.

Figure D.2: Sensorless speed control closed loop

2. Influence of the time delay on Park transformations

Relation (D.1) presents the equation of the abc_dq transformation module, where [R(θ)] is the
rotation matrix. This module generates the d-q stator currents from the measured currents and the
estimation position with the consideration of the time delay (phase shift). The latter is set to
Tssc=Ts=Tpwm=100µs for the DSP-based solution and to Tssc=TexFPGA=6µs for the FPGA one.

[] [] ⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⋅⎥

⎦

⎤
⎢
⎣

⎡ −
=

snb

sna

sscssc

sscssc
sndq i

i
R

TT
TT

i
3

2
3

1
01

)(
)cos()sin(
)sin()cos(

θ
ωω
ωω

From this relation, it can be noticed that when the operating speed increases, erroneous values
are processed. For instance, in case of a 1256 rd/s electrical speed (corresponding to a 4000 rpm
mechanical speed, case of a high speed AC drive, Table D.2), the processed currents are written as,

[] []
delaywithout 992.01256.0

1256.0992.0
sndqDSPsndq ii ⋅⎥

⎦

⎤
⎢
⎣

⎡ −
=

[] []
delaywithout 9999.00075.0

0075.09999.0
sndqFPGAsndq ii ⋅⎥

⎦

⎤
⎢
⎣

⎡ −
=

SSM

ωn
*

abc-dq

isnq

isnd

vsnd
*

vsnq
*

+ -

isnd
*

+ -

isnq
*

+ +

+ +

0

Kω
+ - - +

Axes decoupling

dq-abc VDC

EKF
module

V. interface

CB-ZSS-PWM

e-s.Tssc

e-s.Tssc

nω̂

nθ̂

A
D

C

Vsna
*

Vsnb
*

Vsnc
*

Sa
Sb
Sc

isna isnb
Stator current controller Speed controller

PIω PIC

εind

εinq

(D.1)

(D.2)

(D.3)

Appendix D: EKF sensorless speed controller: FPGA-based solution or DSP-based solution

157

As for the dq_abc transformation module, relation (D.4) presents the corresponding equation.

[] []**

)3/4sin()3/4cos(
)3/2sin()3/2cos(

sincos

)cos()
3

4cos()
3

2cos(

)
3

4cos()cos()
3

2cos(

)
3

2cos()
3

2cos()cos(

3
2

sndq

sscsscssc

sscsscssc

sscsscssc

snabc V

TTT

TTT

TTT

V ⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−

−
⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

++

+−

⋅=
πθπθ
πθπθ

θθ

ωπωπω

πωωπω

πωπωω

Here again the influence of the introduced phase delay has an increasing impact with regards to
the operating speed. In case of a 1256 rd/s operating speed, the obtained 3-phase voltages are
expressed in relations (D.5) and (D.6),

[] [] delaywithoutsabcDSPsabc VV **

992.00.604-0.387-
0.387-992.00.604-
0.604-0.387-992.0

3
2

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅=

[] [] delaywithoutsabcFPGAsabc VV **

9999.00.506-0.493-
0.493-9999.00.506-
0.506-0.493-9999.0

3
2

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅=

Thus, in case of high speed operating condition, the introduced error is less important in the case
of FPGA solution than in the case of DSP solution.

3. Influence of the time delay on the controller bandwidth

As mentioned before, the introduced errors on park transformations and the time delay
introduced in the speed controller have a significant impact on the behavior of the corresponding
regulators.

The speed controller processes the isndq* reference for the current controller. With the
consideration of the time delay, the corresponding mathematical equation is then

[] ⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅−⋅−⋅⋅

= −− sscssc Ts
n

Ts
nnw

sndq eKesPIK
i ..*

*

)()(
0

ωωω ωω

The dq-voltage references generated by the PI-based regulator (with the dq axes decoupling
assumption) are expressed in relation (D.8). According to the latter, the influence of time and phase
delay can be stressed.

[] [] [] [] sscssc Ts
n

rndsr

Ts
nsndq

sd

sq
indqcdqsndq e

IM
ei

L
L

sPIV ..* 0
0

0
)(−− ⋅⋅⎥

⎦

⎤
⎢
⎣

⎡
⋅

+⋅⋅⋅⎥
⎦

⎤
⎢
⎣

⎡ −
+⋅= ωωε

Figure D.3 highlights the obtained simulations and experimental results. These results are
obtained for a low speed 1500 rpm AC Drive, Table D.1. It can be noticed, from the frequency
behavior (Figure D.3 (a) and (b)) and the step response (Figure D.3 (c) and (d)) that for this low
operating speed, the influence of the time delay is of less importance since the error in Park
transformations and the delay in the speed controller are negligible.

This is not the case for a high speed AC drive (Table D.2), [65], where a notable difference on
the dynamic behavior is indicated. Figure D.4 presents the obtained simulation results in this case. The
fast execution time ensured by the FPGA solution provides a greater bandwidth than the DSP one.

(D.4)

(D.5)

(D.6)

(D.7)

(D.8)

Appendix D: EKF sensorless speed controller: FPGA-based solution or DSP-based solution

158

Figure D.3: Evaluation of the control bandwidth – Case of low speed AC drive

(a) : Frequency response (magnitude) –Simulation (b) : Frequency response (phase) –Simulation (c) : Step
response (1000 rpm) –Simulation (d) : Step response (1000 rpm) –Experimentation

Figure D.4: Evaluation of the control bandwidth – Case of high speed AC drive

 (a) : Frequency response (magnitude)– Simulation (b) : Frequency response (phase) –Simulation
(c) : Step response (4000 rpm) –Simulation

 Table D.1: Synchronous Machine Parameters Table D.2: Main Starter Generator Parameters
 Low speed AC Drive High speed AC Drive

0.8 KVA, 220V,1.5A, 50 Hz,
3 Phases, Y connection, 2 pole pairs

 200 KVA, 230V, 290A, 380 Hz,
3 Phases, Y connection, 3 pole pairs

Stator resistance
Rs = 10.5 Ω

Rotor resistance
Rr = 62.5 Ω

Stator resistance
Rs = 16 mΩ

Rotor resistance
Rr = 0.34 Ω

d axis stator
inductance

Lsd = 0.245 H

Mutual inductance
Msr = 0.85 H

d axis stator
inductance

Lsd = 0.45 mH

Mutual inductance
Msr = 3.6 mH

q axis stator
inductance

Lsq = 0.229 H

Nominal stator
current

Inom = 1.52 A

q axis stator
inductance

Lsq = 0.35 mH

Nominal stator
current

Inom = 290 A

1) Ch 1: 100 mVolt 50 ms
2) Ch 2: 100 mVolt 50 ms

-25

-20

-15

-10

-5

0
0,1 1 10 100

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0
0,1 1 10 100

0.1 1 10 100

f (Hz)

(dB)

DSP

FPGA

-5

-10

-15

-20

-25

(a)

0.1 1 10 100

f (Hz)

(c)

(b)

(d)

DSP

FPGA

DSP

FPGA

DSP

FPGA

deg

t (s)

-140

-120

-100

-80

-60

-40

-20

0
0,1 1 10 100

-25

-20

-15

-10

-5

0

5
0,1 1 10 100

DSP

FPGA

DSP

FPGA

(a) (b)
deg(dB)

f (Hz)
f (Hz)

(c)

DSP FPGA

t (s)

0.1 1 10 100 0.1 1 10 100

159

 Appendix E
FPGA-based matrix multiplication and inversion

1. FPGA-based 2-matrix multiplier

In the case of the developed non-optimized EKF observer, matrix multiplications are processed.
As discussed in chapter 6, the dimensions of processed matrices have been extended to 4x4 matrices
which have allowed the factorization of matrix multiplications. In this section, we are presenting the
FPGA architecture of the implemented 2-matrix multiplier.

To start with, let’s define M1 and M2 as the two 4x4 input matrices and T the output 4x4 matrix.
They are related as expressed in relation (E.1).

4;21,
1

=⋅=∀ ∑
=

d

m

k
kjikij mMMTji

d

 The output matrix is processed after a set of 64 multiplications and 48 additions. In order to
reduce the needed FPGA resources, it has been decided to factorize the multiplications and the
additions. Then only four 22-bit multipliers and three 22-bit adders are used. With this assumption, the
treatment is consequently serialized. The corresponding latency is then equal to 48 instead of 4
without factorization. Figure E.1 presents the designed FPGA architecture.

Figure E.1: FPGA architecture of the 2-matrix multiplier

2. FPGA-based 3-matrix multiplier

When it come the multiplication of three matrices, the development of the corresponding FPGA
architecture is based on the factorization of the previously discussed 2-matrix multiplier. Additional
matrix multiplexers and a matrix register have been introduced. Figure E.2 presents the designed
FPGA architecture where A, B and C are the input matrices and O is the output matrix. With this

M111
M121
M131
M141

M112
M122
M132
M142

M113
M123
M133
M143

M114
M124
M134
M144

M11

M12

M13

M14

M211
M212
M213
M214

M221
M222
M223
M224

M231
M232
M233
M234

M241
M242
M243
M244

M21

M22

M23

M24

t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44

22 x
22

 Slice

44

+ +

22 x
22

 Slice

44

22 x
22

 Slice

44

22 x
22

 Slice

44

+ +

+ +

22 22 22 22

22

M11 M21M12 M22M13 M23M14 M24

2-matrix multiplier control unit
Start_Mult2x2

Reset
Clk

end_Mult2x2

Sel0en0 Sel7en15

(E.1)

Appendix E: FPGA-based matrix multiplication and inversion

160

configuration, the total latency of the 3-matrix multiplier is equal to 96 instead of 8 without
factorization.

Figure E.2: FPGA architecture of the 3-matrix multiplier

3. Matrix inversion

The implemented 2x2 matrix inversion module is based on relation E.2.

[] ⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
=

−
−

ac
bd

bcadac
bd

Adc
ba

A 1
)det(

1
1

1

In the case of having chosen the Xilinx FPGA solutions, the inversion of the matrix determinant
is made using the Pipelined-Divider IP [2]. Figure E.3(a) presents the corresponding configuration
wizard.

Figure E.3: Xilinx Pipelined Divider IP

The latency of the divider and the consumed FPGA resources are all conditioned by the chosen

clock per division value (1, 2, 4 or 8). These values mean that the input data is sampled at each 1st, 2nd,
4th of 8th clock rising edge. Figure E.3(b) and Figure E.3(c) present the relationship between the
divider latency, consumed resources and the clock per division value. In the case of the developed
application, the time/area performances (presented in chapter 6) have been analyzed in the case of
clk/div set to 8.

1991

1434

835
582

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9

FPGA slices

Clk/div

(c)

11

18

30

58

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9

Clk/div

Latency

(a)

(b)

X

4x4 4x4

A

M2M1

en0

M

B

C

4x4

3x3 matrix multiplier control unit
Start_Mult

Reset
Clk

end_Mult

Sel0en0 Sel1

t
Start_mult2x2

end_mult2x2

Sel0 Sel1

O=AxBxC

Start_mult2x2 End_mult2x2

(E.2)

161

Bibliography

 [1] In-Stat market analyst website: www.instat.com

[2] Xilinx on-line documentation. Available in www.xilinx.com

[3] Altera on-line literature. Available in www.altera.com

[4] Actel on-line documentation. Available in www.actel.com

[5] J. J. Rodriguez-Andina, M. J. Moure, M. D. Valdes, “Features, design tools, and application domains
of FPGAs”, IEEE Transactions On Industrial Electronics, vol. 54, no. 4, pp. 1810–1823, August
2007.

[6] S. Hauck, A. Dehon, “Reconfigurable Computing, the theory and practice of FPGA-based
computing”, University of Pennsylvania, Philadelphia and Pennsylvania USA, Elsevier and Morgan
Kauffman publishers, 2008.

[7] I. Grout, “Digital Systems Design with FPGAs and CPLDs”, Elsevier and Newnes, 2008.

[8] Katarzyna Leijten-Nowak, “Template-Based Embedded Reconfigurable Computing”, PhD thesis,
Library Technische Universiteit Eindhoven, Philips Research Laboratories, 2004

[9] Wai-Kai Chen, “The VLSI Handbook, second edition”, University of Illinois Chicago USA, CRC
Press, 2007.

[10] Actel Fusion FPGA product specification. www.actel.com/products/fusion/

[11] Actel Axcelerator FPGA product specification. www.actel.com/products/axcelerator/

[12] Xilinx Spartan-6 FPGA product specification. www.xilinx.com/products/spartan6/

[13] Xilinx Virtex FPGA product specification. www.xilinx.com/products/virtex/

[14] Xilinx Virtex-6 FPGA product specification. www.xilinx.com/products/virtex6/

[15] Altera Cyclone-4 FPGA product specification. www.altera.com/products/devices/cyclone-iv

[16] Altera Stratix-4 FPGA product specification. www.altera.com/products/devices/stratix-iv

[17] E. Monmasson, Y. A. Chapuis, “Contributions of FPGAs to the control of Electrical systems, a
Review”, IEEE Industrial Electronics Society Newsletter, vol. 49, no. 4, pp. 8-15, December 2002.

[18] L. Idkhajine, M-W. Naouar, E. Monmasson, A. Prata, “Fully FPGA-Based System on Chip Solution
for Current Control of AC Machine“, In Proceedings EPE’2007 Conference, CD-ROM, Aalborg,
Denmark.

[19] K. Bouallaga, L. Idkhajine, E. Monmasson, A. Prata, “Demodulation Methods on Fully FPGA-
Based System for Resolver Signals Treatment “, In Proceedings EPE’2007 Conference, CD-ROM,
Aalborg, Denmark.

[20] L. Idkhajine, M-W. Naouar, E. Monmasson, A. Prata, “Standard FPGA-based or Full FPGA-based
Controllers for Electrical systems, two viable solutions”. In Proceedings ISIE’2007 Conference, pp.
2332-2337, Vigo, Spain.

[21] L. Idkhajine, E. Monmasson, A. Maalouf, “AC drive System on Chip Controller with non-linearity
errors compensation”. In Proceedings IECON’2008 Conference, pp. 2381-2386, Orlando, Florida,
USA.

[22] L. Idkhajine, A. Prata, E. Monmasson, M-W. Naouar, “System on Chip Controller for Electrical
Actuator”. In Proceedings ISIE’2008 Conference, pp. 2481-2486, Cambridge, UK.

[23] L.Idkhajine, E. Monmasson, M-W. Naouar, A.Prata, K.Bouallaga, “Fully integrated FPGA-based
controller for synchronous motor drives”, IEEE Transactions On Industrial Electronics, vol. 56, n°.
10, pp. 4006-4017, October 2009.

Bibliography

162

[24] E. Monmasson, M. W. Naouar, L. Idkhajine, “FPGA-based Controllers for Power Electronics and
Drive Applications”, IEEE Industrial Electronics Magazine, Accepted for publication.

[25] E. Monmasson, L. Idkhajine, I. Bahri, M.W. Naouar, L. Charaabi, “Design methodology and FPGA-
based controllers for Power Electronics and drive applications”, In Proceedings ICIEA’2010
Conference, pp. 2328-2338, Taichung, Taiwan.

[26] K. Eshraghian, “SoC Emerging Technologies”, IEEE Proceedings, vol. 94, n° 6, June 2006, pp.
1197 – 1213.

[27] A.K. Ben-Salem, S. Ben-Othman, S. Ben-Saoud, N. Litayem, “Servo Drive System Based on
Programmable SoC Architecture”, In Proceedings IECON’2009 Conference, pp. 2961-2966, Porto,
Portugal.

[28] A. Das , K. Banerjee, “Fast Prototyping of a Digital PID Controller on a FPGA based Soft-Core
Microcontroller for precision control of a Brushed DC Servo Motor”, In Proceedings IECON’2009
Conference, pp. 2825-2830, Porto, Portugal.

[29] G. Martin, “Overview of the MPSoC Design Challenge". In Proceedings DAC’2006 Conference, pp.
274-279, Yokohama, Japan

[30] A. Tjondronugroho, A. Al-Anbuky, S. Round, R. Duke “Evaluation of DSP and FPGA based digital
controllers for a single-phase PWM inverter”, In Proceedings AUPEC’2004 Conference, Brisbane,
Australia

[31] E.J. Bueño,, Ã. Hernandez, F.J. Rodriguez, C. Giron and R. Mateos and S. Cóbreces,. “A DSP and
FPGA based industrial control with high-speed communication interfaces for grid converters applied
to distributed power generation systems”, IEEE Transactions On Industrial Electronics, vol. 56, n°
3, pp. 654-669, March 2009,

[32] A. Fratta, G. Griffero, and S. Nieddu, “Comparative analysis among DSP and FPGA-based control
capabilities in PWM power converters,” In Proceedings IECON’2004 Conference, pp.257-262,
Busan, Korea.

[33] S. N. Murthy, W. Alvis, R. Shirodkar, K. Valavanis, W. Moreno, “Methodology for implementation
of unmanned vehicle control on FPGA using system generator”, In Proceedings ICCDCS’2004
Conference, CD-ROM.

[34] E. Monmasson, M. Cirstea, “FPGA design methodology for industrial control systems – A review,”
IEEE Transactions On Industrial Electronics, vol. 54, no. 4, pp. 1824–1842, August 2007.

[35] J. S. Beeckler, W. J. Gross, “A Methodology for Prototyping Flexible Embedded Systems”, In
Proceedings CCECE’07 Conference, CD-ROM

[36] M. W. Naouar, E. Monmasson, A. A. Naassani, I. Slama-Belkhodja, N. Patin, “FPGA-based current
controllers for AC machine drives – A review,” IEEE Transactions On Industrial Electronics, vol.
54, no. 4, pp. 1907–1925, August 2007.

[37] Y. A. Chapuis, J. P. Blonde, F. Braun, “FPGA implementation by modular design reuse mode to
optimize hardware architecture and performance of ac motor controller algorithm,” In Proceedings
EPE-PEMC’2004 Conference, pp. 134–142, CD-ROM.

[38] A. Maalouf, L. Idkhajine, S. Le Ballois, E. Monmasson, “FPGA-based Sensorless Control of
Brushless Synchronous Starter Generator for Aircraft Application”, IET Electric Power
Applications Journal, Accepted for publication in 2011.

[39] R. Andraka, “A survey of CORDIC algorithms for FPGAs”, In Proceedings ACM/SIGDA’1998
Conference, pp. 191–200.

[40] D. Menard, O. Sentieys, “Automatic evaluation of the accuracy of fixed-point algorithms,” In
Proceedings ACM Des., Autom. and Test Eur. Conference, 2002, pp. 529–535, CD-ROM.

[41] F. Zhengwei, J. E. Carletta, R. J. Veillette, “A methodology for FPGA-based control
implementation”, IEEE Transactions On Control Systems Technology, vol. 13, no. 6, pp. 977–987,
November 2005.

[42] T. Grandpierre, C. Lavrenne, Y. Sorel, “Optimized rapid prototyping for real-time embedded
heterogeneous multiprocessor,” In Proceedings CODES’1999, 7th International Workshop on

Bibliography

163

Hardware/ Software Co-Design Conference, pp. 74-78.

[43] F. Ricci and H. Le-Huy, “An FPGA-based rapid prototyping platform for variable-speed drives”, in
In Proceedings IECON’2002 Conference, pp. 1156–1161, Sevilla Spain.

[44] M. J. Newman and D. G. Holmes, “Delta operator digital filters for high performance inverter
applications”, IEEE Transactions On Power Electronics, vol. 18, no. 1, pp. 447–454, January 2003.

[45] O. Lopez,, J. Alvarez, J. Doval-Gandoy, F.D. Freijedo, “Multilevel Multiphase Space Vector PWM
Algorithm”, IEEE Transactions On Industrial Electronics, vol. 55, no 5, pp 1933 – 1942, May 2008.

[46] B. J. Patella, A. Prodic, A. Zirger, and D. Maksimovic, “High-frequency digital controller IC for dc–
dc converters”, IEEE Transactions On Power Electronics, vol. 18, no. 1, pp. 438–446, January 2003.

[47] S.C. Huerta, A. de Castro, O. Garcia, J.A. Cobos, “FPGA-Based Digital Pulsewidth Modulator With
Time Resolution Under 2 ns”, IEEE Transactions On Power Electronics, vol. 23, n°6, pp. 3135-
3141, November 2008.

[48] A. V. Peterchev and S. R. Sanders, “Quantization resolution and limit cycling in digitally controlled
PWM converters”, IEEE Transactions On Power Electronics, vol. 18, no. 1, pp. 301–308, January
2003.

[49] A. Myaing, V. Dinavahi, “FPGA-Based Real-Time Emulation of Power Electronic Systems With
Detailed Representation of Device Characteristics,” IEEE Transactions On Industrial Electronics,
Accepted for publication in 2010.

[50] S. Karimi, A. Gaillard, P. Poure, S. Saadate, S. “FPGA-Based Real-Time Power Converter Failure
Diagnosis for Wind Energy Conversion Systems”, IEEE Transactions On Industrial Electronics,
vol. 55, n°12, pp. 4299-4308, December 2008.

[51] F. Blaabjerg, P.C. Kjaer, P.O. Rasmussen, C. Cossar, “Improved digital current control methods in
switched reluctance motor drives”, IEEE Transactions On Power Electronics, vol. 14, n°3, pp. 563-
572, May 1999.

[52] M. Schroedl, “Sensorless control of AC machines at low speed and standstill based on the
“INFORM” method,” In Proceedings IEEE-IAS’1996 Conference, vol.1, pp. 270–277.

[53] D. Samuelsen, “AC machine control Robust and sensorless control by parameter independency,”
PhD Thesis, Narvik University College, Norway, 2009.

[54] K. Tazi, E. Monmasson and J.P. Louis, “Description of an entirely reconfigurable architecture
dedicated to the current vector control of a set of AC machines,” In Proceedings IECON’1999
Conference, pp. 1415-1420.

[55] Y.-S. Kung, R.-F. Fung, and T.-Y. Tai, “Realization of a motion control IC for x-y table based on
novel FPGA technology”, IEEE Transactions On Industrial Electronics, vol. 56, no. 1, pp. 43–53,
January 2009.

[56] M. W. Naouar, A. A. Naassani, E. Monmasson, I. Slama-Belkhodja. “FPGA-based predictive
current for synchronous machine speed drive,” IEEE Transactions On Power Electronics, vol. 23,
no. 4, pp.2115–2126. July 2008.

[57] B. Miao, R. Zane, D. Maksimovic, “System identification of power converters with digital control
through cross-correlation methods”, IEEE Transactions On Power Electronics, vol. 20, n°5, pp.
1093-109, Sept. 2005.

[58] A. Ordaz-Moreno, R. De Jesus Romero-Troncoso, J.A. Vite-Frias, J.R. Rivera-Gillen, A. Garcia-
Perez, “Automatic Online Diagnosis Algorithm for Broken-Bar Detection on Induction Motors
Based on Discret Wavelet Transform for FPGA Implementation”, IEEE Transactions On Industrial
Electronics, vol. 55, n°5, pp. 2193-2202, May 2008.

[59] P. Simi Valsan and K. Shanti Swarup, “High-Speed Fault Classification in Power Lines: Theory and
FPGA-Based Implementation”, IEEE Transactions On Industrial Electronics, vol. 56, no. 5, pp.
1793–1800, May 2009.

[60] E. Monmasson, H. Achelard, J.P Louis, “Dynamically reconfigurable architecture dedicated to the
test of PWM algorithms”, In Proceedings EPE’1999 Conference, CD-ROM, Lausanne, Suisse.

Bibliography

164

[61] S. Mariethoz, A. Domahidi, M. Morari, “A model predictive control scheme with torque ripple
mitigation for permanent magnet motors”, In Proceedings IECON’2009 Conference, pp. 2943-2948,
Porto, Portugal.

[62] M. W. Naouar, “Commande numérique à base de composants FPGA d’une machine synchrone”,
PhD Thesis, UCP-ENIT, France-Tunisia, 2007.

[63] L. Charaabi, “Conception des architectures matérielles dédiées à la commande de systèmes
électriques”, PhD Thesis, UCP-ENIT, France-Tunisia, 2006.

[64] Texas Instrument technical documents. Available in www.ti.com

[65] A. Maalouf, S. Le Ballois, L. Idkhajine, E. Monmasson: “Sensorless control of brushless exciter
synchronous starter generator using extended Kalman filter”, In Proceedings IECON’2009
Conference, pp. 2581-2586, Porto, Portugal.

[66] L. Idkhajine, E. Monmasson, A. Maalouf: “FPGA-Based Sensorless Controller for Synchronous
Machine using an Extended Kalman Filter”, In Proceedings EPE’2009 Conference, CD-ROM,
Barcelona Spain.

[67] L. Idkhajine, E. Monmasson, A. Maalouf: “Fully FPGA-based Sensorless Control for AC Drive
using an Extended Kalman Filter”, In Proceedings IECON’2009 Conference, pp. 2925-2930, Porto,
Portugal.

[68] L. Idkhajine, E. Monmasson, A. Maalouf: “Extended Kalman Filter for AC Drive Sensorless Speed
Controller - FPGA-Based solution or DSP-Based solution”, In Proceedings ISIE’2010 Conference,
Bari Italy.

[69] L. Idkhajine, E. Monmasson: “Optimized FPGA-based Extended Kalman Filter Application to an
AC Drive Sensorless Speed Controller “, In Proceedings SPEEDAM’2010 Conference, pp. 1012-
1017 Pisa Italy.

[70] N. Youssef, K. Al-Haddad, “Sensorless nonlinear control of a three-phase switch level Vienna
rectifier based on a numerical reconstruction of DC and AC voltages”, In Proceedings
MELECON’2008 Conference, pp. 560-566, Ajaccio, France.

[71] P. J. Ashenden, J. Lewis, “VHDL-2008 Just the New Stuff”, Elsevier and Morgan Kauffman
publishers, 2008.

[72] T. Grandpierre, C Lavrenne and Y. Sorel, “Optimized rapid prototyping for real-time embedded
heterogeneous multiprocessor”, In Proceedings CODES’1999 7th International Workshop on
Hardware/ Software Co-Design Conference, CD-ROM, pp. 74-78.

[73] Sang-Il Han, Soo-Ik Chae, Lisane Brisolara, Luigi Carro, Katalin Popovici, Xavier Guerin, Ahmed
A. Jerraya, Kai Huang, Lei Li, Xiaolang Yan, “Simulink-based heterogeneous multiprocessor SoC
design flow for mixed hardware/software refinement and simulation”, Integration, the VLSI journal,
Elsevier, 2008

[74] I. Bahri, “SW/HW Co-Design methodology for AC Drive applications”, PhD Thesis, in process, to
be defended in 2011.

[75] M. P. Kazimierkowski and L. Malesani, “Current Control Techniques for Three-Phase Voltage-
Source PWM Converters”, IEEE Transactions On Industrial Electronics, Vol. 45, n°5, pp. 691-703,
October 1998.

[76] R. Hoseinnezhad, A. Bab-Hadiashar, P. Harding, “Calibration of Resolver Sensors in
Electromechanical Braking Systems: A Modified Recursive Weighted Least-Squares Approach”,
IEEE Transactions On Industrial Electronics, Vol. 54, n°2, pp. 1052-1060, April 2007.

[77] Santanu Sarma, V. K. Agrawal, Subramanya Udupa, “Software-Based Resolver-to-Digital
Conversion Using a DSP”, IEEE Transactions On Industrial Electronics, Vol. 55, n°1, pp. 371-379,
January 2008.

[78] L. Ben-Brahim, M. Benammar, Mohd A. Alhamadi, “A Resolver Angle Estimator Based on Its
Excitation Signal”, IEEE Transactions On Industrial Electronics, Vol. 56, n°2, pp. 574-580,
February 2009.

Bibliography

165

[79] M. Mienkina, P. Pekarek, F. Dobe "DSP56F80x Resolver Driver and Hardware Interface", Motorola,
Inc., 2002

[80] R. Hoseinnezhad, P. Harding, “A Novel Hybrid Angle Tracking Observer for Resolver to Digital
Conversion”, In Proceedings CDC-ECC’2005 Conference, pp. 7020-7025, Seville, Spain.

[81] W. Naouar, A. Naassani, E. Monmasson, I. Slama Belkhodja, “FPGA-Based Speed Control of
Synchronous Machine using a P-PI Controller”, In Proceedings ISIE’2006 Conference, pp 1527-
1532, CD-ROM.

[82] L.Charaabi, E.Monmasson, I.S.Belkhodja, “Presentation of an efficient design methodology to
develop IP-Core Functions for Control Systems: Application to the Design of an Antiwindup PI
Controller”, In Proceedings IECON’2002 Conference, pp. 1942 - 1947 , CD-ROM.

[83] M. P. Kazimierkowski, “Teaching of Pulse Width Modulation Methods for Three-Phase Converter
Using Internet”, IEEE Transactions On Industrial Electronics, Vol. 51, No 2, 2004.

[84] F. Blaabjerg, J. K. Pedersen, and P. Thoegersen, “Improved modulation techniques for PWM-VSI
drives”, IEEE Transactions On Industrial Electronics, vol. 44, pp. 87–95, February 1997.

[85] D. Leggate and R. Kerkman, “Pulse based time compensator for PWM voltage inverters”, In
Proceedings IECON’1995 Conference, pp. 474–481.

[86] J.-W. Choi and S.-K. Sul, “Inverter output voltage synthesis using novel dead time compensation”,
IEEE Transactions On Power Electronics, vol. 11, pp. 222-227, Mars 1996.

[87] C. Wang, L. Xu, “A Novel Approach for Sensorless Control of PM Machines Down to Zero Speed
Without Signal Injection or Special PWM Technique” IEEE Transactions On Power Electronics,
vol. 19, N° 6, pp. 1601–1607, November 2004.

[88] J. Holtz, “Sensorless Control of Induction Machines – With or Without Signal Injection?”, IEEE
Transactions On Industrial Electronics, Vol. 53 No 1, pp. 7-30, February 2006.

[89] H. Kim, K. K. Huh, R.D. Lorenz, T. M. Jahns “A novel method for initial rotor position for IPM
synchronous machine drives” IEEE Transactions On Industry Applications, vol. 40, n° 5, pp. 1369-
1378, October 2004.

[90] M. Fadel, R. Ruelland, G. Gateau, JC Hapiot, P. Brodeau, JP. Carayon, “Commande sans mécanique
des actionneurs embarqués” Journées de la section électrotechnique du club EEA, Cergy Pontoise,
France, March 2004.

[91] J.A. Solsona, M.I. Valla, “Disturbance and nonlinear Luenberger observers for estimating
mechanical variables in permanent magnet synchronous motors under mechanical parameters
uncertainties”, IEEE Transactions On Industrial Electronics, Vol. 50, N° 4, pp. 717-725, 2003.

[92] A. Maalouf, “Sensorless control for a Brushless Synchronous Starter Generator for Aircraft
Applications”, PhD Thesis, in process, to be defended in 2010.

[93] S. Bolognani, M. Zigliotto, M. Zordan, “Extended-Range PMSM Sensorless Speed Drive Based on
Stochastic Filtering”, IEEE Transactions On Industrial Electronics, Vol. 16, N° 1, pp. 110-117
January 2001

[94] S. Bolognani, M. Zigliotto, M. Zordan, “Rotor position detection for Sensorless PM synchronous
motor drives”, In Proceedings PEMC’1998 Conference, pp. 883-888.

[95] S. Bolognani, L. Tubiana, M. Zigliotto, “Extended Kalman Filter Tuning in Sensorless PMSM
Drives”, IEEE Transactions On Industry Applications, Vol. 39, No. 6, pp. 1741-1747, November
2003.

[96] A. Akrad, M. Hilairet, D. Diallo, “A Sensorless PMSM drive using a two stage Extended Kalman
Estimator”, In Proceedings IECON’2008 Conference, pp. 2776-2781, Orlando, Florida, USA.

[97] J. Person, “Innovative Standstill Position Detection Combined with Sensorless Control of
Synchronous Motors”, PhD Thesis, N° 3221, EPFL, Lausanne, 2005

[98] M. Hilairet, “Application des outils de traitement de signal à la commande des machines
tournantes”, PhD Thesis, N° 0366-038, EPUN, St Nazaire, 2001

Bibliography

166

[99] Y-H. Kim , Y-S. Kook, “High Performance IPMSM Drives without Rotational Position Sensors
Using Reduced-Order EKF”, IEEE Transactions On Energy Conversion, Vol 14, No. 4, pp. 868-
873, December 1999.

[100] S. Bolognani, L. Tubiana, M. Zigliotto, “EKF-Based Sensorless IPM Synchronous Motor Drive for
Flux-Weakening Applications”, IEEE Transactions On Industry Applications, Vol. 39, No. 3,
pp.112-119, May/June 2003.

[101] M. Kosaka, H. Uda, “Sensorless IPMSM drive with EKF estimation of speed and rotor position”, In
Proceedings CDC’2003 Conference, pp. 5915-5920, Hawaii USA.

[102] Texas Instruments Europe, “Sensorless Control with Kalman Filter on TMS320 Fixed-Point DSP”,
Literature Number: BPRA057, July 1997

[103] Babak Nahid-Mobarakeh, Farid Meibody-Tabar, and François-Michel Sargos, “Mechanical
Sensorless Control of PMSM With Online Estimation of Stator Resistance” IEEE Transactions On
Industry Applications, Vol. 40, N° 2, pp. 457-471, March/April 2004

[104] Z. Peroutka : “Development of Sensorless PMSM Drives: Application of Extended Kalman Filter”
In Proceedings ISIE’2005 Conference, pp. 1647-1652, Dubrovnik, Croatia

[105] Pavel Brandstetter, Martin Kuchar, David Vinklarek: “Estimation Techniques for Sensorless Speed
Control of Induction Motor Drive”, In Proceedings ISIE’2006 Conference, pp. 154-159, Montreal,
Quebec, Canada

[106] Bendjedia, M.; Ait-Amirat, Y.; Walther, B.; Berthon, A : “Sensorless control of hybrid stepper
motor” In Proceedings EPE’2007 Conference, CD-ROM, Aalborg, Denmark.

[107] J-W Choi, S-C Lee, “Antiwindup Strategy for PI-Type Speed Controller”, IEEE Transactions On
Industrial Electronics, vol. 56, no. 6, pp. 2039–2046, June 2009.

[108] M. Dagbagi, “Implantation numérique sur cible FPGA d’un émulateur temps réel d’une machine
alternative”, Master’s report, July 2010, ENIT Tunisia.

[109] I. Bahri, M-W. Naouar, E. Monmasson, I. Slama-Belkhodja, L. Charaabi, “Design of an FPGA-
based Real-Time Simulator for electrical system”, In Proceedings EPE-PEMC’2008 Conference,
CD-ROM, September 2008.

[110] W. Naouar, E. Monmasson, I. Slama Belkhodja, “Identification of Synchronous Machine Parameters
Using Hysteresis Based Current Controller”, In Proceedings IECON’2006 Conference, pp 1357-
1362.

[111] J-P. Louis, "Modélisation des machines électriques en vue de leur commande", Traité EGEM
Electronique - Génie électrique - Microsystèmes.

[112] M. Labarrere, J.P. Krief, B. Gimonet, “LE FILTRAGE et ses applications”, CEPADUES editions
1995.

