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Abstract

A graph is a powerful concept for representation of relations between pairs of entities. Data
with underlying graph structure can be found across many disciplines, describing chemical
compounds, surfaces of three-dimensional models, social interactions, or knowledge bases,
to name only a few. There is a natural desire for understanding such data better. Deep
learning (DL) has achieved significant breakthroughs in a variety of machine learning
tasks in recent years, especially where data is structured on a grid, such as in text,
speech, or image understanding. However, surprisingly little has been done to explore
the applicability of DL on arbitrary graph-structured data directly.

The goal of this thesis is to investigate architectures for DL on graphs and study
how to transfer, adapt or generalize concepts that work well on sequential and image
data to this domain. We concentrate on two important primitives: embedding graphs
or their nodes into a continuous vector space representation (encoding) and, conversely,
generating graphs from such vectors back (decoding). To that end, we make the following
contributions.

First, we introduce Edge-Conditioned Convolutions (ECC), a convolution-like opera-
tion on graphs performed in the spatial domain where filters are dynamically generated
based on edge attributes. The method is used to encode graphs with arbitrary and
varying structure.

Second, we propose SuperPoint Graph, an intermediate point cloud representation
with rich edge attributes encoding the contextual relationship between object parts.
Based on this representation, ECC is employed to segment large-scale point clouds
without major sacrifice in fine details.

Third, we present GraphVAE, a graph generator allowing us to decode graphs with
variable but upper-bounded number of nodes making use of approximate graph matching
for aligning the predictions of an autoencoder with its inputs. The method is applied to
the task of molecule generation.

Keywords: deep learning, graph convolutions, graph embedding, graph generation, point
cloud segmentation



Résumé

Le graphe est un concept puissant pour la représentation des relations entre des paires
d’entités. Les données ayant une structure de graphes sous-jacente peuvent être trouvées
dans de nombreuses disciplines, décrivant des composés chimiques, des surfaces des mod-
èles tridimensionnels, des interactions sociales ou des bases de connaissance, pour n’en
nommer que quelques-unes. L’apprentissage profond (DL) a accompli des avancées signi-
ficatives dans une variété de tâches d’apprentissage automatique au cours des dernières
années, particulièrement lorsque les données sont structurées sur une grille, comme dans
la compréhension du texte, de la parole ou des images. Cependant, étonnamment peu
de choses ont été faites pour explorer l’applicabilité de DL directement sur des données
structurées sous forme des graphes.

L’objectif de cette thèse est d’étudier des architectures de DL sur des graphes et de
rechercher comment transférer, adapter ou généraliser à ce domaine des concepts qui
fonctionnent bien sur des données séquentielles et des images. Nous nous concentrons
sur deux primitives importantes : le plongement de graphes ou leurs nœuds dans une
représentation de l’espace vectorielle continue (codage) et, inversement, la génération des
graphes à partir de ces vecteurs (décodage). Nous faisons les contributions suivantes.

Tout d’abord, nous introduisons Edge-Conditioned Convolutions (ECC), une opération
de type convolution sur les graphes réalisés dans le domaine spatial où les filtres sont
générés dynamiquement en fonction des attributs des arêtes. La méthode est utilisée
pour coder des graphes avec une structure arbitraire et variable.

Deuxièmement, nous proposons SuperPoint Graph, une représentation intermédiaire
de nuages de points avec de riches attributs des arêtes codant la relation contextuelle
entre des parties des objets. Sur la base de cette représentation, l’ECC est utilisé pour
segmenter les nuages de points à grande échelle sans sacrifier les détails les plus fins.

Troisièmement, nous présentons GraphVAE, un générateur de graphes permettant
de décoder des graphes avec un nombre de nœuds variable mais limité en haut, en
utilisant la correspondance approximative des graphes pour aligner les prédictions d’un
auto-encodeur avec ses entrées. La méthode est appliquée à génération de molécules.

Mots clés: apprentissage profond, convolution sur de graphes, plongement de graphes,
génération de graphes, segmentation des nuage de points



Résumé substantiel

Le graphe est un concept puissant pour la représentation des relations entre les paires
d’entités. Sa polyvalence et sa solide compréhension théorique permettent une pléthore de
cas d’utilisation dans une variété de disciplines scientifiques et de problèmes techniques.
Par exemple, les graphes peuvent naturellement être utilisés pour décrire la structure
des composés chimiques, les interactions entre les régions du cerveau, les interactions
sociales entre les personnes, la topologie des modèles tridimensionnels et des plans de
transport, les dépendances des pages Web liées, les flux des programmes ou les bases
de connaissance. Le développement de la théorie et des algorithmes pour manipuler les
graphes a donc été d’un intérêt majeur.

La théorie classique des graphes, que remonte au XVIIIe siècle, se concentre sur la
compréhension et l’analyse de la structure des graphes et sur les problèmes combinatoires
tels que la recherche de applications, chemins, flots, ou colorations. D’autre part, il
y a eu beaucoup de recherches sur les données structurées par graphes au cours des
dernières décennies, particulièrement dans les disciplines du traitement du signal et de
l’apprentissage automatique. Dans le premier cas, la recherche a notamment porté la
transformée de Fourier à des domaines irréguliers, donnant naissance à la théorie spectrale
des graphes et adaptant des opérations fondamentales de traitement du signal comme
le filtrage, la translation, la dilatation ou la sous-échantillonnage (Shuman et al., 2013).
Habituellement, un graphe fixe est considéré avec des données changeantes sur ses nœuds.
Dans le domaine de l’apprentissage automatique, les chercheurs ont explicitement utilisé
des structures de graphes dans les données dans des domaines tels que le partitionnement
des graphes pour le clustering, la propagation des étiquettes pour l’apprentissage semi-
supervisé, des méthodes sur variétés pour réduire la dimensionnalité, des noyaux pour
décrire la similarité entre différents graphes ou des modèles graphiques pour enregistrer
une interprétation probabiliste des données.

Au cours des dernières années, l’apprentissage profond (DL) a permis de réaliser des
avancées significatives en termes de performance quantitative par rapport aux approches
traditionnelles d’apprentissage automatique dans un éventail de tâches et le domaine est
devenu une technologie utile pour les applications commerciales. En particulier, une classe
d’architecture spécifique, réseau neuronal convolutif (CNN), a gagné en popularité dans
les tâches où la représentation des données sous-jacentes a une structure de grille, comme
dans le traitement de la parole et la compréhension du langage naturel (1D, convolutions
temporelles), dans la classification et la segmentation des images (2D, convolutions
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spatiales) et dans la compréhension des vidéos et images médicales (3D, convolutions
volumétriques) (LeCun et al., 2015). D’autre part, le cas des données sur des domaines
irréguliers ou généralement non euclidiens avait reçu comparativement beaucoup moins
d’attention dans la communauté mais est devenu un sujet brûlant lors de la préparation
de cette thèse (Bronstein et al., 2017).

Encouragés par le succès de DL sur les grilles, nous étudions dans cette thèse
les architectures pour les données structurées en graphes. Plus précisément, nous
nous concentrons sur deux primitives importantes: le plongement de graphes ou leurs
nœuds dans une représentation spatiale vectorielle continue (codage) et, inversement, la
génération de graphes à partir de ces vecteurs en retour (décodage). Nous présentons les
deux problèmes, leurs applications et leurs défis dans les deux sous-sections suivantes.
Suivant la philosophie de DL qui consiste à abandonner les fonctions faites à la main
pour leurs équivalens apprises. La principale question de notre recherche est: Comment
pouvons-nous transférer, adapter ou généraliser les concepts DL qui fonctionnent bien
sur les données séquentielles et les données d’image aux graphes? Néanmoins, comme
le domaine est plutôt jeune, nous pensons que de nombreuses approches traditionnelles
seront adaptées avec succès au DL en les rendant différentiables.

Plongement de graphes et leurs nœuds. L’une des tâches centrales abordées par
DL est celle de l’apprentissage de la représentation (Bengio et al., 2013), c’est-à-dire
trouver une correspondance entre les entrées bruts et un espace vectoriel continu à
dimensionnalité fixe. L’objectif est d’optimiser cet application afin que les propriétés
d’objets d’entrée pertinentes aux tâches soient préservées et reflétées dans les relations
géométriques dans l’espace de plongement appris. Par exemple, dans le cas de la
classification des chiffres écrites, l’application devrait enregistrer les propriétés concernant
le type de chiffre, être invariante par rapport à celles concernant le style d’écriture
et s’efforcer de rendre les plongements des images appartenant aux différentes classes
séparable par hyperplan.

Dans le cas des graphes, nous nous intéressons principalement à la représentation
des nœuds individuels ainsi qu’à celle des graphes entiers. Habituellement, l’information
provenant du voisinage local d’un nœud est prise en compte dans son plongement,
tandis que leplongement des graphes est ensuite calculée comme une forme d’agrégation
(pooling) des plongements de nœuds. L’analogie dans l’apprentissage profond sur les
images est, respectivement, le comptage des caractéristiques en pixels (par exemple pour
la segmentation sémantique des images) et des caractéristiques en images (par exemple
pour la reconnaissance des images). Dans le cas des graphes, deux types d’informations
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sont disponibles. La première est la structure du graphe définie par des nœuds et des
arêtes. Le deuxième sont les données associées au graphe, c’est-à-dire les attributs des
noeuds et des arêtes. On peut soutenir qu’un puissant réseau de plongement devrait être
capable d’exploiter autant d’informations que possible.

La possibilité de calculer les plongements de nœuds a donné lieu à de nombreuses
applications, telles que la prédiction de liens (Schlichtkrull et al., 2017), la classification
(semi-supervisée) dans les réseaux de citation (Kipf and Welling, 2016a), la réalisation
de tâches de raisonnement logique (Li et al., 2016b), la recherche des correspondances
entre meshes (Monti et al., 2017) ou de segmentation des points de nuage (chapitre 4).
Le plongement de graphes a également été utile dans de nombreuses tâches, par exemple
pour mesurer la similarité des réseaux cérébraux par apprentissage métrique (Ktena et al.,
2017), suggérer des mouvements heuristiques pour approximer les problèmes NP-durs (Dai
et al., 2017), prévoir la satisfaction des propriétés formelles des programmes (Li et al.,
2016b), classifier les effets chimiques des molécules (chapitre 3) et la régression leurs
propriétés physiques (Gilmer et al., 2017), ou classification des nuages de points (chapitre
3).

La pierre angulaire des architectures de réseau populaires pour le traitement des
images naturelles, de la vidéo ou de la parole est la couche convolutionnelle (LeCun
et al., 1998). L’invariance à translation, l’utilisation de filtres avec un support compact
et l’application sur plusieurs résolutions s’adaptent très bien aux propriétés statistiques
de ces données: la stationnarité, la localisation et la compositionnalité.

En plus du fait que l’architecture impose un prieur particulièrement adapté aux
images naturelles (Ulyanov et al., 2017), un autre avantage majeur est la forte liaison
des paramètres induite (partagement des poids) sur la grille, qui réduit considérablement
le nombre de paramètres libres dans le réseau par rapport à une couche entièrement
connectée (perceptron) sans aucun sacrifice en capacité expressive et permet de traiter
des entrées à dimensions variables (Long et al., 2015).

Supposant que les principes de stationnarité, de localité et éventuellement de compo-
sition de la représentation s’appliquent également aux données de graphes, il est utile
de considérer une architecture hiérarchique de type CNN pour leur traitement afin de
bénéficier des avantages décrits ci-dessus.

Génération de graphes. Les modèles génératifs basés sur l’apprentissage profond
ont gagné en popularité massive au cours des dernières années, en particulier dans le
cas des images et des textes. L’idée principale est de collecter une grande quantité de
données dans un domaine donné, puis de former un modèle pour générer des données
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similaires, c’est-à-dire échantillonner d’une distribution apprise qui se rapproche de la
distribution réelle des données. Comme le modèle a beaucoup moins de paramètres que
la taille de l’ensemble de données, il est forcé de découvrir "l’essence" des données plutôt
que de les mémoriser. Habituellement, le processus de génération (aussi appelé décodage)
est conditionné par un vecteur aléatoire et/ou un point d’un espace vectoriel défini, tel
que l’espace de plongement d’un codeur.

Dans le cas des graphes, nous sommes intéressés à générer à la fois la structure
et les attributs associés. Il existe de nombreuses applications d’un tel générateur de
graphes, par exemple créer des graphes similaires (Bojchevski et al., 2018) ou maintenir des
représentations intermédiaires dans les tâches de raisonnement (Johnson, 2017). Dans une
configuration encodeur-décodeur, tout type d’entrée peut être encodé dans un espace de
plongement latent puis traduit en graphe. Parmi les applications possibles, on peut citer
la découverte de médicaments par optimisation continue de certaines propriétés chimiques
dans l’espace latent (Gómez-Bombarelli et al., 2016), l’échantillonnage de molécules ayant
certaines propriétés (chapitre 5) ou correspondant à des mesures de laboratoire (soit par
conditionnement soit par traduction), ou simplement la pré-apprentissage de codeurs
dans le cas de données annotées sont chères.

Résumé des contributions. Après avoir tracé les deux grandes orientations de cette
thèse, nous présentons un résumé de nos contributions.

• Nous proposons Edge-Conditioned Convolution (ECC) dans le chapitre 3, une
nouvelle opération de type convolution sur des graphes exécuté dans le domaine
spatial où les filtres sont conditionnés par des attributs des arêtes (discret ou
continu) et générés dynamiquement pour chaque graphe spécifique en entrée. Cela
permet à l’algorithme d’exploiter suffisamment d’informations structurelles dans les
voisinages locaux. Notre formulation permet de généraliser la convolution discrète
sur les grilles. En raison de son application dans le domaine spatial, la méthode
peut travailler sur des graphes avec une structure arbitraire et variable. Dans le
chapitre 4, nous intégrons l’ECC dans un réseau récurrent et réduisons ses besoins
en mémoire et en computation, en le reformulant comme ECC-VV.

• Nous présentons SuperPoint Graph (SPG) dans chapitre 4, une nouvelle représen-
tation de nuages de points avec des fonctions des arêtes riches codant la relation
contextuelle entre les parties d’objet. Sur la base de cette représentation, nous
sommes en mesure d’appliquer l’apprentissage profond sous la forme d’ECC/ECC-
VV sur des nuages de points à grande échelle sans sacrifice majeur dans les détails
fins.
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• Nous démontrons les multiples applications de l’ECC/ECC-VV. Le chapitre 3 ex-
amine les applications de classification des graphes, en particulier pour les graphes
représentant des composés chimiques et pour les graphes de voisinage sur nuages de
points. De plus, nous évaluons la performance sur la classification des nœuds dans
le contexte de la segmentation sémantique des scènes à grande échelle au chapitre 4.
ECC est également utilisé comme codeur dans l’autoencodeur moléculaire présenté
au chapitre 5. En plus d’avoir obtenu l’état de l’art en performance sur plusieurs
ensembles de données parmi les méthodes DL aux moments respectifs de publi-
cation (NCI1 (Wale et al., 2008), Sydney Urban Objects (De Deuge et al., 2013),
Semantic3D (Hackel et al., 2017) et S3DIS (Armeni et al., 2016)), nous étions les
premiers à appliquer des convolutions sur graphes pour nuages de points, avec la
motivation de préservation de creux et la précision dans le traitement des détails.

• Nous proposons un décodeur de graphes formulé dans le cadre des auto-encodeurs
variationnels (Kingma and Welling, 2013) au chapitre 5. Le décodeur produit
directement un graphe probabiliste entièrement connecté d’une taille maximale
prédéfinie. C’évite quelque peu les problèmes de discrétisation, et utilise la corre-
spondance des graphes pendant l’apprentisage afin de tenter de relever le défi du
classement indéfini de nœuds. Nous évaluons sur la tâche difficile de la génération
de molécules.
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Chapter 1

Introduction

1.1 Motivation

A graph is a powerful representation of relations between pairs of entities. Its versatility
and strong theoretical understanding has resulted in a plethora of use cases across a
variety of science disciplines and engineering problems. For example, graphs can naturally
be used to describe the structure of chemical compounds, the interactions between regions
in the brain, social interactions between people, the topology of three-dimensional models
and transportation plans, dependencies of linked web pages, program flows, or knowledge
bases. The development of the theory and algorithms to handle graphs has therefore
been of major interest.

Formally, a (directed) graph is an ordered pair G = (V , E) such that V is a non-empty
set of vertices (also called nodes) and E ⊆ V ×V is a set of edges. Additional information
can be attached to both vertices and edges in the form of attributes. A vertex-attributed
graph assumes function V → Rdv assigning attributes to each vertex. An edge-attributed
graph assumes function E → Rde assigning attributes to each edge.

The classical graph theory, foundations of which date back to the 18th century,
focuses on understanding and analyzing the graph structure and addressing combinatorial
problems such as finding mappings, paths, flows or colorings. On the other hand, there
has been a lot of research on graph-structured data in the past decades, especially in
the signal processing and machine learning communities. In the former, the research
has notably brought Fourier transform to irregular domains, giving rise to spectral
graph theory and adapting fundamental signal processing operations such as filtering,
translation, dilation, or downsampling (Shuman et al., 2013). Usually, a fixed graph
is considered with changing data on its nodes. In machine learning, researchers have
explicitly made use of graph structures in the data in areas such as graph partitioning
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for clustering, label propagation for semi-supervised learning, manifold methods for
dimensionality reduction, graph kernels to describe similarity between different graphs,
or graphical models for capturing probabilistic interpretation of data.

In recent years, deep learning (DL) has achieved significant breakthroughs in quantita-
tive performance over traditional machine learning approaches in a broad variety of tasks
and the field has matured into technologies useful for commercial applications. Promi-
nently, a specific class of architecture, called Convolutional Neural Networks (CNNs), has
gained massive popularity in tasks where the underlying data representation has a grid
structure, such as in speech processing and natural language understanding (1D, temporal
convolutions), in image classification and segmentation (2D, spatial convolutions), and
in video and medical image understanding (3D, volumetric convolutions) (LeCun et al.,
2015). On the other hand, the case of data lying on irregular or generally non-Euclidean
domains has received comparatively much less attention in the community but has
become a hot topic during the preparation of this thesis (Bronstein et al., 2017).

Encouraged by the success of DL on grids, in this thesis we study DL architectures
for graph-structured data. Specifically, we concentrate on two important primitives:
embedding graphs or their nodes into a continuous vector space representation (encoding)
and, conversely, generating graphs from such vectors back (decoding). We introduce both
problems, their applications and challenges in the following two subsections. Following
the DL philosophy of abandoning hand-crafted features for their learned counterparts,
our contributions pragmatically build more on accomplished DL methods rather than on
past approaches from the machine learning and signal processing community amendable
to differentiable re-formulation. The main research question we ask is: How can we
transfer, adapt or generalize DL concepts working well on sequential and image data to
graphs?

1.1.1 Embedding Graphs and Their Nodes

One of the central tasks addressed by DL is that of representation learning (Bengio et al.,
2013), i.e. finding a mapping from raw input objects to a continuous vector space of fixed
dimensionality Rd. Both the mapping and the vector space are also interchangeably called
embedding or encoding in the literature. The goal is to optimize this mapping so that
task-relevant object properties are preserved and reflected in the geometric relationships
within the learned embedding space. As an example, in the task of hand-written digit
classification, the mapping should capture properties regarding the type of digit, be
invariant to those concerning writing style, and strive to make embeddings of images
belonging to different classes separable by hyperplanes.
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In the case of graphs, we are primarily interested in finding representation of individual
nodes as well as of the entire graphs. Usually, information from the local neighborhood
of a node is considered in its embedding, while graph embeddings are further computed
as some form of aggregation (pooling) of node embeddings. The analogy in deep learning
on images is computing pixel-wise features (e.g. for semantic image segmentation) and
image-wise features (e.g. for image recognition), respectively. In the case of graphs, there
are two kinds of information available. The first is the graph structure as defined by the
nodes and edges. The second is the data associated to the graph, i.e. its node and edge
attributes. Arguably, a powerful embedding network should be able to exploit as much
information as possible.

The ability to compute node embeddings has given rise to many application, such
as link prediction (Schlichtkrull et al., 2017), (semi-supervised) node classification in
citation networks (Kipf and Welling, 2016a), performing logical reasoning tasks (Li
et al., 2016b), finding correspondences across meshes (Monti et al., 2017) or point
cloud segmentation (Chapter 4). Graph embeddings has also been useful in many
tasks, for example measuring similarity of brain networks by metric learning (Ktena
et al., 2017), suggesting heuristic moves for approximating NP-hard problems (Dai
et al., 2017), predicting satisfaction of formal properties in computer programs (Li et al.,
2016b), classifying chemical effects of molecules (Chapter 3) and regressing their physical
properties (Gilmer et al., 2017), or point cloud classification (Chapter 3).

Challenges

The cornerstone of popular network architectures for processing natural images, video
or speech is the convolutional layer (LeCun et al., 1998). The translation invariance of
the operation, the use of filters with compact support and the application over multiple
resolutions fit very well to the statistical properties of such data, namely the stationarity,
locality and compositionality.

Besides the fact that the architecture imposes a prior especially suitable for natural
images (Ulyanov et al., 2017), another major benefit is the induced strong tying of
parameters (weight sharing) across the grid, which greatly reduces the number of free
parameters in the network compared to a fully-connected layer (perceptron) while still
being able to capture the statistics of real data and enables processing of variable-sized
inputs in so-called fully-convolutional style (Long et al., 2015).

Assuming that the stationarity, locality and possibly compositionality principles of
representation hold to at least some level in graph data as well, it is meaningful to
consider a hierarchical CNN-like architecture for processing it in order to benefit from
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advantages described above. However, the graph domain poses several challenges which
make extensions of CNNs to graphs not straightforward. We detail the main challenges
below.

Irregular Neighborhoods Unlike on grids, where each node has the same amount
of neighbors except for boundaries, nodes in general graphs can have arbitrary number
of adjacent nodes. This means that there is no trivial analogy of translation invariance
and thus the research objective is to come up with strategies to share parameters of the
convolution operator among its applications to different nodes.

Unordered Neighborhoods There is no specific ordering of neighbors of a node, as
both nodes and edges are defined as sets. In order to do better that isotropic smoothing,
the ability to assign different convolutional weights to different edges is desired. This
requires making assumptions or exploiting additional information such as the global
structure, degrees of nodes, or edge attributes. On contrary, grids imply a natural
ordering of neighborhoods.

Structural Variability In practical scenarios, the graph structure may vary through-
out the dataset or may remain fixed, with only the data on nodes changing. The latter is
the usual case for applications stemming from the signal processing community, centered
around spectral filtering methods (Shuman et al., 2013), and data-mining community,
centered around matrix factorization methods (Hamilton et al., 2017a). However, as such
methods cannot naturally handle datasets with varying graph structure (for instance
meshes, molecules, or frequently updated large-scale graphs), spatial filtering methods
have gained on popularity recently. The research question here is to devise explicit local
propagation rules and build links to established past work.

Computational Complexity The current DL architectures on grids benefit from
heavy parallelism on Graphics Processing Units (GPUs) enabled by well-engineering
implementations in popular frameworks such as PyTorch (Paszke et al., 2017) or Ten-
sorFlow (Abadi et al., 2015). Unfortunately, the irregular structure of graphs is less
amendable to parallelism. The research investigates implementation details such as
the use of sparse matrices or other data structures. In addition, for methods based on
spectral processing, the naive use of Graph Fourier transform has quadratic complexity
in the number of nodes.
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1.1.2 Generating Graphs

Deep learning-based generative models have gained massive popularity during several
past years, especially in the case of images and text. The principal idea is to collect a
large amount of (unannotated) data in some domain and then train a model to generate
similar data, i.e. draw samples from a learned distribution closely approximating the true
data distribution. As the model has much less parameters than the size of the dataset, it
is forced to discover the "essence" of the data rather than to memorize it. Usually, the
generative process (also called decoding) is conditioned on a random vector and/or a
point from a defined vector space, such as the embedding space of an encoder.

In the case of graphs, we are interested in generating both the structure and associated
attributes. There are many applications of such a graph generator, for example creating
similar graphs (Bojchevski et al., 2018) or maintaining intermediate representations
in reasoning tasks (Johnson, 2017). In an encoder-decoder setup, any kind of input
can be encoded to a latent embedding space and then translated to a graph. Possible
applications include drug discovery by continuous optimization of certain chemical
properties in the latent space (Gómez-Bombarelli et al., 2016), sampling molecules with
certain properties (Chapter 5) or corresponding to given laboratory measurements (either
by conditioning or translation), or simply encoder pre-training in cases where labeled
data is expensive.

Challenges

In addition to the challenges usually demonstrated in generative models on grids, such as
tricky training (Bowman et al., 2016; Radford et al., 2015), problematic capturing of all
distribution modes (Radford et al., 2015) or difficult quantitative evaluation (Theis et al.,
2015), generative models for graph data face several more challenges, detailed below.

Unordered Nodes Data on regular grids provide an implicit ordering of nodes (that
is of pixels, characters or words) that is amendable both to step by step generation
with autoregressive processes (Bowman et al., 2016; van den Oord et al., 2016) and
generation of entire content in a feed-forward network (Radford et al., 2015). However,
nodes in graphs are defined as a set and so there is often no clear way how to linearize
the construction in a sequence of steps for training autoregressive generators or order
nodes in a graph adjacency matrix for generation by a feed-forward network. While
there are practical algorithms for approximate graph canonization, i.e. finding consistent
node ordering, available (McKay and Piperno, 2014), the empirical result of Vinyals et al.
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(2015) that the linearization order matters when learning on sets suggest that it is a
priori unclear that enforcing a specific canonical ordering would lead to the best results.

Discrete Nature Similar to text and unlike images, graphs are discrete structures.
Incremental construction with autoregressive methods involves discrete decisions, which
are not differentiable and thus problematic for gradient-based optimization methods
common in DL. In sequence generation, this is typically circumvented by a maximum
likelihood objective with so-called teacher forcing (Williams and Zipser, 1989), which
allows to decompose the generation into a sequence of conditional decisions and maximize
the likelihood of each of them. However, the choice of such a decomposition for graphs is
not clear, as we argue above, and teacher forcing is prone the inability to fix its mistakes,
resulting in possibly poor prediction performance if the conditioning context diverges from
sequences seen during training (Bengio et al., 2015). On the other hand, generation of
graphs in a probabilistic formulation can only postpone dealing with non-differentiablity
issues to the final step, when the discretized graph has to be output.

Large Graphs The level to which the locality and compositionality principles apply
to a particular graph can strongly vary due to possibly arbitrary connectivity - for
example, a generator should be able to output both a path and a complete graph. This
seems problematic for scaling up to large graphs, as one cannot trivially enforce some
form of hierarchical decomposition or coarse-to-fine construction, conceptually similar
to using up-sampling operators in images (Radford et al., 2015). This may bring about
the necessity to use more parameters while having less regularization implied by the
architecture design in the case a feed-forward network. For autoregressive methods,
large graphs may make training difficult due to very long chains of construction steps,
especially for denser graphs.

1.2 Summary of Contributions

Having charted the two main directions of this thesis and their challenges, we sum-
marize our contributions in this section. Most of these contributions were published
as "Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs"
at CVPR (Simonovsky and Komodakis, 2017), as "Large-scale Point Cloud Semantic
Segmentation with Superpoint Graphs" at CVPR (Landrieu and Simonovsky, 2018), as
"Towards Variational Generation of Small Graphs" at ICLR workshop track (Simonovsky
and Komodakis, 2018b), and as "GraphVAE: Towards Generation of Small Graphs Using
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Variational Autoencoders" at ICANN (Simonovsky and Komodakis, 2018a). Martin
Simonovsky is the leading author in all publications with the exception of Landrieu and
Simonovsky (2018), where the contribution is equally shared with Loïc Landrieu.

• We propose Edge-Conditioned Convolution (ECC) in Chapter 3, a novel convolution-
like operation on graphs performed in the spatial domain where filters are condi-
tioned on edge attributes (discrete or continuous) and dynamically generated for
each specific input graph. This allows the algorithm to exploit enough structural
information in local neighborhoods so that our formulation can be shown to gen-
eralize discrete convolution on grids. Due the application in spatial domain, the
method can work on graphs with arbitrary and varying structure. In Chapter 4, we
integrate ECC into a recurrent network and reduce its memory and computational
requirements, reformulating it as ECC-VV.

• We introduce SuperPoint Graph (SPG) in Chapter 4, a novel point cloud repre-
sentation with rich edge attributes encoding the contextual relationship between
object parts. Based on this representation, we are able to apply deep learning in
the form of ECC/ECC-VV on large-scale point clouds without major sacrifice in
fine details.

• We demonstrate multiple applications of ECC/ECC-VV. Chapter 3 investigates
graph classification applications, in particular for graphs representing chemical
compounds and for neighborhood graphs of point clouds. Further, we evaluate
the performance on node classification in the context of semantic segmentation
of large-scale scenes in Chapter 4. ECC is also used as encoder in the molecular
autoencoder presented in Chapter 5. Besides having obtained the state of the art
performance on several datasets among DL methods at the respective times of
publication (NCI1 (Wale et al., 2008), Sydney Urban Objects (De Deuge et al.,
2013), Semantic3D (Hackel et al., 2017) and S3DIS (Armeni et al., 2016)), we were
the first to apply graph convolutions to point cloud processing, with the motivation
of preserving sparsity and presumably fine details.

• We propose a graph decoder formulated in the framework of variational autoen-
coders (Kingma and Welling, 2013) in Chapter 5. The decoder outputs a proba-
bilistic fully-connected graph of a predefined maximum size directly at once, which
somewhat sidesteps the issues of discretization, and uses graph matching during
training in order to attempt to overcome the challenge of undefined node ordering.
We evaluate on the difficult task of molecule generation.
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Besides the central topic of deep learning on graphs, we have conducted research
along several other lines within the duration of the thesis. These activities have resulted
in two publications, which are not part of this manuscript and which we therefore briefly
summarize below:

• In the domain of medical image registration, we proposed a patch similarity metric
based on CNNs and applied it to registering volumetric images of different modal-
ities. The key insight was to exploit the differentiability of CNNs and directly
backpropagate through the trained network to update transformation parameters
within a continuous optimization framework. The training was formulated as a clas-
sification task, where the goal was to discriminate between aligned and misaligned
patches. The metric was validated on intersubject deformable registration on a
dataset different from the one used for training, demonstrating good generalization.
In this task, we outperformed mutual information by a significant margin. The work
was done in collaboration with Benjamín Gutiérrez-Becker from TU Munich as a
second author and was published as "A Deep Metric for Multimodal Registration"
at MICCAI 2016 (Simonovsky et al., 2016).

• For retrieval scenarios in computer vision, we proposed a way of speeding up
evaluation of deep neural networks by replacing a monolithic network with a
cascade of feature-sharing classifiers. The key feature was to allow subsequent
stages to add both new layers as well as new feature channels to the previous
ones. Intermediate feature maps were thus shared among classifiers, preventing
them from the necessity of being recomputed. As a result demonstrated in three
applications (patch matching, object detection, and image retrieval), the cascade
could operate significantly faster than both monolithic networks and traditional
cascades without sharing at the cost of marginal decrease in precision. The work
was published as "OnionNet: Sharing Features in Cascaded Deep Classifiers" at
BMVC 2016 (Simonovsky and Komodakis, 2016).

1.3 Outline

In this section we summarize the chapters of the thesis and relate them to each other.

Chapter 2: Background and Related Work This chapter provides the background
and overviews related and prior work on graph-structured data analysis. Both
classic and deep learning-based methods are covered. Further discussions of related
and contemporary work are also provided within each core chapter.
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Chapter 3: Edge-Conditioned Convolutions This chapter introduces the main
workhorse of this thesis, graph convolutions able to process continuous edge at-
tributes. The method is applied to small-scale point cloud classification and
biological graph datasets.

Chapter 4: Large-scale Point Cloud Segmentation This chapter applies ECC to
the the problem of segmentation of large areas, such as streets or office blocks, by
working on homogeneous segments instead of individual points.

Chapter 5: Generation of Small Graphs This chapter introduces a graph autoen-
coder based on ECC and graph matching with an application to drug discovery,
where novel molecules need to be sampled.

Chapter 6: Conclusion This chapter reflects on the contributions of the thesis and
hypothesizes on directions of future work.





Chapter 2

Background and Related Work

This chapter provides background and overview of related and prior work on (sub)graph
embedding techniques. After introducing our notation in Section 2.1, we dive into classical
(non-deep) signal processing on graphs in Section 2.2, which is mostly formulated in the
spectral domain. This knowledge is then useful for the overview of spectral deep learning-
based convolution methods, introduced in Section 2.3. We mention their shortcoming
and move on to review the progress in spatial convolution methods in Section 2.4, also
in relation to the contributions of this thesis. To make the picture complete, we briefly
mention non-convolutional approaches for embedding, namely direct embedding and
graph kernels, in Section 2.5.

While this thesis focuses exclusively on graphs, it is worth to mention the progress
made in (deep) learning on manifolds. Whereas the fields of differential geometry
and graph theory are relatively distant, both graphs and manifolds are examples of
non-Euclidean domains and the approaches for (spectral) signal processing and for
convolutions in particular are closely related, especially when considering discretized
manifolds - meshes. We refer the interested reader to the nice survey paper of Bronstein
et al. (2017) for concrete details.

2.1 Attributed Graphs

Let us repeat and extend graph-related definitions from the introduction. A directed
graph is an ordered pair G = (V , E) such that V is a non-empty set of vertices (also
called nodes) and E ⊆ V × V is a set of edges (also called links). Undirected graph can
be defined by constraining the relation E to be symmetric.

It is frequently very useful to be able to attach additional information to elements
of graphs in the form of attributes. For example, in graph representation of molecules,
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vertices may be assigned atomic numbers while edges may be associated with information
about the chemical bond between two atoms. Concretely, a vertex-attributed graph
assumes function F : V → Rdv assigning attributes to each vertex. An edge-attributed
graph assumes function E : E → Rde assigning attributes to each edge. In the special
case of non-negative one dimensional attributes E → R+, we call the graph weighted.
Discrete attributes E → N can be also called types.

In addition to attributes, which are deemed being a fixed part of the input, we
introduce mapping H : V → Rd to denote vertex representation due to signal processing
or graph embedding algorithms operating on the graph. This mapping is called signal
(especially if d = 1) or simply data. Often, vertex attributes F may be used to initialize
H. The methods for computation of H will constitute a major part of discussion in this
thesis.

Finally, assuming a particular node ordering, the graph can be conveniently described
in matrix, resp. tensor form using its (weighed) adjacency matrix A, signal matrix H,
node attribute matrix F and edge attribute tensor E of rank 3.

2.2 Signal Processing on Graphs

Here we briefly introduce several concepts regarding multiscale signal filtering on graphs,
which are the basis of spectral graph convolution methods presented in Section 2.3 and
also used for pooling in Chapter 3.

Mathematically, both a one-dimensional discrete-time signal with N samples as well
as a signal on a graph with N nodes can be regarded as vectors f ∈ RN . Nevertheless,
applying classical signal processing techniques on the graph domain would yield subopti-
mal results due to disregarding (in)dependencies arising from the irregularity present in
the domain.

However, the efforts to generalize basic signal processing primitives such as filtering
or downsampling faces two major challenges, related to those mentioned in Section 1.1.1:

Translation While translating time signal f(t) to the right by a unit can be expressed
as f(t − 1), there is no analogy to shift-invariant translation in graphs, making
the classical definition of convolution operation (f ∗ w)(t) :=

∫
τ g(τ)w(t− τ)dτ not

directly applicable.

Coarsening While time signal decimation may amount to simply removing every other
point, it is not immediately clear which nodes in a graph to remove and how to
aggregate signal on the remaining ones.
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In the following subsections, we describe three core concepts developed by the signal
processing community: graph Fourier transform, graph filtering operations and graph
coarsening operations. We refer to the excellent overview papers of Shuman et al. (2016,
2013) for a broader perspective as well as details.

2.2.1 Graph Fourier Transform

Assuming undirected finite weighted graph G on N nodes, let A be its weighted adjacency
matrix and D its diagonal degree matrix, i.e. Di,i = ∑

j Ai,j. The central concept in
spectral graph analysis is the family of Laplacians, in particular the unnormalized graph
Laplacian L := D − A and the normalized graph Laplacian L := D−1/2(D − A)D−1/2 =
I−D−1/2AD−1/2. Intuitively, Laplacians capture the difference between the local average
of a function around a node and the value of the function at the node itself. We denote
{ul} the set of real-valued orthonormal eigenvectors of a Laplacian and {λl} the set
of corresponding eigenvalues. Interestingly, Laplacian eigenvalues provide a notion of
frequency in the sense that eigenvectors associated with small eigenvalues are smooth and
vary slowly across the graph (i.e. , the values of an eigenvector at two nodes connected
by an edge with large weight are likely to be similar) and those associated with larger
eigenvalues oscillate more rapidly.

The analogy between graph Laplacian spectra and the set of complex exponentials,
which are eigenfunctions of the classical Laplacian operator on Euclidean space and
provide the basis for the classical Fourier transform, is the motivation for introducing
an analogy to Fourier transform on graphs. The graph Fourier transform f̂ of signal
f ∈ RN on the nodes of G is defined as the expansion in terms of Laplacian eigenvectors
f̂(λl) :=< f , ul >= ∑N−1

i=0 f(i)ul(i) and the inverse graph Fourier transform is then
computed as f(i) = ∑N−1

l=0 f̂(λl)ul(i).

We remark that extensions to directed graphs are complicated (Sardellitti et al., 2017).
Also, handling of discrete or multidimensional edge attributes is not supported by the
framework, to the best of our knowledge, although one way of circumventing the latter
might be to simultaneously consider multiple graphs with the same connectivity but
different edge weights, each graph corresponding to a single real, non-negative attribute
dimension.
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2.2.2 Signal Filtering

Using graph Fourier transform, a signal can be equivalently represented in the spatial
(node) domain and in the graph spectral domain. Thus, as in classical signal processing,
the signal can be filtered in either of the domains.

Graph spatial filtering amounts to expressing the filtered signal g at node i as a
linear combination of the input signal f at nodes within its K-hop local neighborhood
NK : g(i) = Bi,if(i) + ∑

j∈NK(i) Bi,jf(j) with filter coefficients matrix B. While this is a
(spatially) localized operation by design, it requires specifying O(N2) coefficients unless
some form of regularity is assumed.

Graph spectral filtering follows the classical case, where filtering corresponds to
multiplication in the spectral domain, i.e. the amplification or attenuation of the set of
basis functions. It is defined as ĝ(λl) = f̂(λl)ŵ(λl). This suggests a way of generalizing
the convolution operation on graphs by the means of spectral filtering as

g(i) = (f ∗G w)(i) :=
N−1∑
l=0

N−1∑
j=0

f(j)ŵ(λl)ul(i)ul(j) (2.1)

It is important to remark that spectral filter coefficients ŵ are specific to the given
graph, resp. the particular choice of its Laplacian eigenvectors.

Using the full range of N coefficients makes spectral filtering perfectly localized in
the Fourier domain but not localized in the spatial domain due to uncertainty principle,
its extension to graphs first developed by Agaskar and Lu (2013) but still considered
an open problem. However, this property is usually undesired in practice. The popular
remedy is to make the filter spectrum "smooth" by ordering the eigenvectors according
to their eigenvalues and expressing coefficients as continuous function of only a few free
parameters. To make the link between spectral and spatial filtering, it is interesting
to parameterize the spectral filter as order K polynomial ŵ(λl) = ∑K−1

k=0 akλk
l with

coefficients a. It can be shown that this construction corresponds to a spatial filter
on K-hop neighborhood for a particular choice of Bi,j := ∑K−1

k=0 akLk
i,j (Shuman et al.,

2013). Thus, polynomial spectral filters are exactly localized within a certain spatial
neighborhood and have only a limited number of free parameters, independent of N ,
which is beneficial for any learning task, as shown by Defferrard et al. (2016).

Nevertheless, even in the localized case the cost of filtering a graph signal in the
spectral domain is an O(N2) operation due to the multiplications with Fourier basis
in Equation 2.1. Fortunately, approximation methods have been developed for fast
filtering in the case of sparse graphs, where the filter is formulated directly in the spatial
domain as a polynomial in L that can be evaluated recursively, leading to computational
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complexity linear with the number of edges. A popular choice for the polynomial is
truncated Chebyshev expansion (Shuman et al., 2011). Note that this does not require
an explicit computation of the Laplacian eigenbasis.

Building banks of filters localized both in space and frequency has been intensively
studied in the context of graph wavelets and we refer to the review in (Shuman et al.,
2013) for more details. Wavelet coefficients can serve as descriptors for classification or
matching tasks in non-deep machine learning Masoumi and Hamza (2017).

2.2.3 Graph Coarsening

In the Euclidean world, multiresolution representation and processing of signals and
images with techniques such as pyramids, wavelets or CNNs has been very successful.
Finding a similar concept for graphs is therefore of interest. The task of graph coarsening
is to form a series of successively coarser graphs G(s) = (V(s), E (s)) from the original graph
G = G(0). Coarsening typically consists of three steps: subsampling or merging nodes,
creating the new edge structure E(s) and weights (so-called reduction), and mapping the
nodes in the original graph to those in the coarsened one with C(s) : V(s−1) → V(s). In
many practical cases, a desirable property of coarsening is to halve the number nodes at
each level while clustering nodes connected with large weights together. For unweighted
bipartite graphs, there is a natural way of coarsening by sampling "every other node". But
the task is more complex for other cases, which has led to creation of various algorithms.

One line of work is based on partitioning the set of nodes into clusters and representing
these with a single node in the coarsened graph. For example, Graclus (Dhillon et al.,
2007) greedily merges pairs of nodes based on clustering heuristics such the normalized cut
Ai,j(1/Di,i +1/Dj,j), which is efficient but not optimal. The union of the neighborhoods of
the two original nodes becomes the neighborhood of the merged node, leading to decreased
sparsity of the coarsened graphs. This algorithm is used for pooling in Defferrard et al.
(2016).

Another line of work keeps a strict subset of original nodes during the coarsening
steps. For example, Shuman et al. (2016) select the nodes to keep based on the sign of
entries in the eigenvector associated with the largest Laplacian eigenvalue (frequency),
which can be computed efficiently by the power method. The sign is shown to behave
intuitively on bipartite graphs, such as grids or trees. Kron reduction (Dörfler and Bullo,
2013) is suggested as a method of choice to compute the coarsened Laplacian, defned
as the Schur complement of the original Laplacian with respect to the removed node
indices. It offers many nice properties but leads to a decrease in sparsity, which can be
amended by postprocessing with spectral sparsification (Spielman and Srivastava, 2011),
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among others. This randomized algorithm samples edges according to the probability
of the edge appearing in a random spanning tree of the graph, thus mostly removing
those structurally unimportant edges. We use this pipeline for pooling operation later in
Chapter 3.

Finally, let us remark that graph resolutions generated in this fashion are completely
independent of any signals residing on the graph nodes.

2.3 Spectral Graph Convolutions

In this section, we review how the deep learning community have applied spectral signal
processing methods, introduced above, to learning tasks. The characteristic feature of
these methods is the explicit use of graph Laplacian in the convolution operation.

In their pioneering work, Bruna et al. (2013) learned filters using the formulation of
spectral convolution in Equation 2.1. This can be conveniently expressed in matrix form
as ht+1 = UΘUT ht, where U is the column-wise concatenation of Laplacian eigenvectors
{ul}, Θ is a diagonal matrix of filter coefficients and ht and ht+1 is the input and output
signal vector, respectively. Each spectral filter Θ is parameterized as B-spline with the
number of free parameters independent of graph size N to reduce the risk of overfitting
and to make filters smooth and therefore localized in space. In addition, high frequency
eigenvectors may be discarded for better computational efficiency of Fourier transform,
which nevertheless remains quadratic in the number of eigenvectors. By using multiple
filters per layer, stacking multiple convolutional layers and considering coarsened graphs
created by agglomerative clustering, Bruna et al.were the first to present a graph analogue
of classic CNNs.

Defferrard et al. (2016) later proposed an efficient spectrum-free method by formulating
spectral filters as Chebyshev polynomials, as briefly introduced in Section 2.2.2 above.
The filtering is evaluated directly in the spatial domain on a K-hop neighborhood and
can be written in matrix notation as ht+1 = ∑K−1

k=0 θkTk(L̃)ht where θ is a vector of K

parameters and Tk is Chebyshev polynomial of order k evaluated at the scaled Laplacian
L̃ := 2L/ max λ− I. Coarsening for pooling purposes is done by Graclus (Dhillon et al.,
2007), which does not require computation of the spectrum either.

This approach was further simplified by Kipf and Welling (2016a), who proposed
its first-order approximation in spatial domain as ht+1 = θ(I − L̂)ht where θ is a scalar
parameter and L̂ is the Laplacian of the adjacency matrix with added self-connections
Â = A + I. In effect, this model corresponds to simply taking average of neighboring
nodes’ signal weighted proportionally to the Laplacian.
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Note that despite the spatial evaluation of spectral methods, model parameters are
still tied to the particular Laplacian and the trained networks may not generalize to other
graph structures; this has been empirically demonstrated by Monti et al. (2017) for the
model of Defferrard et al. (2016). Yi et al. (2017) embarked on addressing this for the
case of 3D shapes represented as meshes by mapping the spectral representation of signal
on an input graph to a predefined canonical graph, in the context of which filters are
learned. The mapping is a linear transformation predicted by a special network from the
voxelized eigenbasis of the input mesh. The authors leverage duality in functional maps
between spatial and spectral correspondences and use ground truth correspondences
between shapes to initialize the training, which they described as extremely challenging.

Finally, let us recap that spectral methods have been shown to work on undi-
rected graphs only, as the adaptation of Laplacian to directed graphs is not straightfor-
ward (Sardellitti et al., 2017). An interesting way of circumventing this was proposed by
Monti et al. (2018), who exploit the concept of motifs (small subgraphs) to construct a
symmetric motif-induced adjacency matrix based on a non-symmetric adjacency matrix
by counting the number of times an edge takes part in a set of canonical motifs.

2.4 Spatial Graph Convolutions

We have seen above that while the spectral construction is theoretically well motivated,
there are obstacles in going beyond a single undirected graph structure. The spatial
construction, on the other hand, may not have these limitations, though its designs are
perhaps less principled. This section overviews the development in spatial construction
methods for graph convolution and is closely related to the contributions presented in
Chapters 3 and 4.

Let H t ∈ RN×dt be dt-dimensional signal matrix at N nodes. Spatial graph convolution
amounts to expressing the output signal H t+1

i ∈ Rdt+1 at node i as a function of the
input signal H t

j ∈ Rdt at nodes j within its K-hop local neighborhood. Scarselli et al.
(2009) proposed one of the first propagation models M , which (somewhat ironically) is
arguably also the most general one: it may depend in an arbitrary way on the signals H,
as well as edge and node attributes E and F within an arbitrary neighborhood N (i),
formally written as

H t+1
i = m({H t

a|a ∈ N (i) ∪ {i}}, {Fa|a ∈ N (i) ∪ {i}}, {Ea,b|a, b ∈ N (i) ∪ {i}}). (2.2)
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To account for the fact that neighboring nodes are typically unordered, the general form
is then restricted to pairwise potentials with an aggregation over direct neighbors as

H t+1
i = u(Fi,

∑
j∈N (i)

m(H t
j , Fi, Fj, Ej,i). (2.3)

The functions m and u are designed to be contractive operators, the whole network is
treated as a dynamical system and solved for fixed point solution for H from any initial
state in its forward pass1. No concept of graph-level output or graph coarsening was
mentioned.

Recently, many graph convolution variants have appeared in the community. To make
their comparison easier, Gilmer et al. (2017) suggested Message Passing Neural Network
(MPNN) family fitting the vast majority of models of that time. It is a modified version
of Scarselli’s Equation 2.3, where a) node labels are used for initializing node state H0

rather than for propagation and b) states of both the source and the destination node
can be used for propagation. Concretely, Gilmer et al. (2017) use the message function
m and the node update function u in the following way:

M t+1
i =

∑
j∈N (i)

mt(H t
i , H t

j , Ej,i)

H t+1
i = ut(H t

i , M t+1
i )

(2.4)

These function define a recurrent neural network (RNN) where the state is processed
over several iterations (time steps) t = 1 . . . T . At each iteration t, the update function
takes its hidden state H t

i and updates it with M t+1
i , which is the aggregation of messages

mt incoming from each neighbor. Finally, a readout function is defined to aggregate
final node states into a graph-level state. We will use this framework (without the
readout function, for simplicity) to chronologically review interesting related works in the
following. Note that the list is far from being exhaustive, as there has been an explosion of
many very closely related or sometimes even identical models in the community recently.

Bruna et al. (2013) suggested a spatial method, in addition to his spectral model
described in Section 2.3. Here, mt : W t,j,iH t

j and ut : ReLU(M t+1
i ) with an edge-

specific matrices of parameters W . The disadvantage of no weight sharing is a
large number of parameters and no generalization over different graphs.

1It would be a very interesting exercise to implement this approach in a current deep learning
framework and benchmark it against contemporary RNN-based graph convolution methods. Li et al.
(2016b) provide a theoretical insight that contraction is expected to attenuate the effect of long-range
dependencies, though.



2.4 Spatial Graph Convolutions 19

Duvenaud et al. (2015) proposed message passing function mt : H t
j and update func-

tion ut : tanh(W t,deg(i)M t+1
i ) with node-degree specific matrices of parameters

W . The signal is passed over edges indiscriminately (nevertheless, there are weak
constraints for possible edge types and node degree in their specific context of
molecular fingerprints).

Mou et al. (2016) proposed convolution operation on ordered trees, where the weights
linearly depend on the position of a node within a triangular window containing the
parent node and children, mt : (η1

j W 1 + η2
j W 2 + η3

j W 3)H t
j + b and ut : tanh(M t+1

i ),
where η are barycentric coordinates and W , b are learnable parameters.

Li et al. (2016b) introduced support for discrete edge types and successful RNN layers,
such as the Gated Recurrent Unit (Cho et al., 2014a), by having mt : W Ej,iH t

j and
ut : GRU(H t

i , M t+1
i ), where W are edge-type and edge-direction specific weight

matrices.

Kearnes et al. (2016) developed a model where both nodes and edges hold hid-
den representations updated in an alternating fashion. Formally mt : Et

j,i, ut :
ReLU(W 2[ReLU(W 1H t

i ), M t+1
i ]) and Et+1

j,i = ReLU(W 5[ReLU(W 3Et
j,i),

ReLU(W 4[H t
i , H t

j ])]) where [·] denotes concatenation and W weight matrices.

Battaglia et al. (2016) implemented the general version of MPNN in Equation 2.4
with mt and ut as multi-layer perceptrons. This stands out from most other
approaches by not explicitly decomposing message passing into a form of multipli-
cation of H t

j with some weights. While the formulation has been proposed before
Gilmer et al. (2017), it has been demonstrated only as a single convolutional layer
on fully connected graphs with discrete edge attributes.

Schütt et al. (2017) replaced the usual matrix-vector multiplication with element-
wise multiplication in lower-dimensional space, leading to message function mt :
tanh(W 1((W 2H t

j + b1) ⊙ (W 3Ej,i + b2)) and ut : H t
i + M t+1

i where W and b
are learnable parameters. Later in (Schütt et al., 2017), the authors allowed for
handling continuous edge attributes, leading to basically the same message function
as in Gilmer et al. (2017).

Monti et al. (2017) , building on their previous work on learning on manifolds and
meshes, proposed a Gaussian mixture model for message passing conditioned on
continuous edge attributes. The model with K mixture components can be written
as mt : w(Ej,i)H t

j with edge weighting function w,
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w(x) = ∑K
k=0 ak exp(−0.5(x− µk)T diag(σk)−1(x− µk)) where a, µ, σ are learn-

able parameters and diag(·) builds a diagonal matrix from a vector.

Gilmer et al. (2017) , the authors of MPNN, proposed message passing conditioned
on continuous edge attributes using a neural network w outputting a edge-specific
weight matrix, which is then used in mt : w(Ej,i)H t

j . A GRU is used for maintaining
node state, ut : GRU(H t

i , M t+1
i ).

Hamilton et al. (2017b) applied graph convolutions to unsupervised node embedding
using a loss encouraging close nodes to have a similar embedding and distant
ones otherwise. The concrete functions are mt : ReLU(W 1H t

j + b) and ut :
ReLU(W t,2[H t

i , M t+1
i ]) where W and b are learnable parameters. In addition, max

is used instead of sum in Equation 2.4 The neighborhoods are subsampled to
support large node degrees and edges are untyped.

Veličković et al. (2018) used self-attention mechanism to weigh contributions of neigh-
bors using coefficients αi = softmaxj(a[WH t

i , WH t
j ]) in functions mt : αijWH t

j and
ut : ReLU(M t+1

i ), where W and a are learnable parameters and the neighborhood
N (i) includes the central node i itself. Independently, Wang et al. (2018a) proposed
further formulations of αij in the context of non-local image processing.

Wang et al. (2018b) proposed a message passing function formulated as mt : w(H t
i , H t

j−
H t

i ) with a neural network w. While being less general than Battaglia et al. (2016),
it forces the network to perceive H t

j relatively to H t
i , which is arguably advanta-

geous if the embeddings also encode global information, such as position. Max
aggregation is used instead of sum in Equation 2.4 and the update function is
simply ut : M t+1

i .

Verma et al. (2018) used a variant of message passing mt : w(H t
i , H t

j)H t
j with weights

defined as a mixture of K matrices, w(x, y) = ∑K
k=0 W ksoftmaxj(xT aj + yT bj + cj)k,

where W and a, b, c are learnable parameters.

Our work also fits into MPNN framework. Specifically, Edge-Conditioned Convo-
lutions (ECC), presented in Chapter 3, can be defined as mt : wt(Ej,i)H t

j + bt and
ut : ReLU(M t+1

i ), where wt is a neural network2 and bt a learnable bias. In addition,
mean is used instead of sum in Equation 2.4 and the neighborhood N (i) includes the
central node i itself. Several models listed above are put into relation to our formu-
lation in more detail in Subsection 3.3.2. In Chapter 4, we further extend ECC with

2The message function is equivalent to that in Gilmer et al. (2017), which was a concurrent work.
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element-wise multiplication and GRU input gating, defined as mt : w(Ej,i) ⊙ H t
j and

ut : GRU(H t
i , (WH t

i + b)⊙M t+1
i ), where W and a are learnable parameters.

Interestingly, the spatial representation of spectral methods can also be interpreted
within MPNN framework, see Appendix in Gilmer et al. (2017) for details. For example,
the equivalent formulation of Kipf and Welling (2016a) is mt : Âi,j(deg(i)deg(j))−1/2H t

j

and ut : ReLU(W tM t+1
i ).

Finally, let us note that there are also several works which do not easily fit the
MPNN framework. Diffusion-convolutional NN (Atwood and Towsley, 2016) produces
features by applying diffusion of different length, i.e. computes the average of features at
all nodes weighted proportionally to transition probabilities given by powers of graph
stochastic matrix P = D−1A. Patchy-SAN (Niepert et al., 2016) linearizes selected
graph neighborhoods by choosing a lexicographically maximal adjacency matrix so that
a conventional 1D CNN can be used.

2.5 Non-convolutional Embedding Methods

Besides convolutional methods, there have been other approaches of learning the em-
beddings of nodes or parts of graphs. While these methods are not directly related to
the contributions of this thesis, we find it interesting to provide a brief overview for
completeness. In particular, we review direct node embedding and graph kernels in the
following.

2.5.1 Direct Node Embedding

Direct methods define the i-th node embedding zi to be a function of only the node’s
own attributes Fi or even its unique identity if no attributes are given. Note that this is
different from the convolutional approach, where the embedding of a node is defined as the
function of its surroundings as well. The main idea of the majority of direct embedding
approaches is to use unsupervised objective functions encouraging the embedding z of
"close" nodes to be similar, usually measured as their inner-product or Euclidean distance.

Early methods, e.g. Laplacian eigenmaps (Belkin and Niyogi, 2001), often approached
the task as a dimensionality reduction problem. Given proximity matrix S describing
the "closeness" between nodes, such as the (weighted) adjacency matrix, the optimization
problem has the form of matrix factorization ||ZT Z−S||, where Z is the sought matrix of
embeddings. In effect, the obtained embedding vectors just approximates some prescribed
measure.
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The advent of deep learning in natural language processing opened new ways for
representation learning of discrete objects, such as words. Multiple successful techniques
for unsupervised learning of word embeddings were based on co-occurence statistics,
i.e. the assumption that similar words tend to appear in similar word neighborhoods
(context). In particular, Skip-gram (Mikolov et al., 2013) aims to predict a word’s
embedding based on the embedding of its contextual words and vice versa.

This idea has been adapted to graphs in various ways of defining the context of a node.
A popular way of establishing context is by using random walks on graph, pioneered
by DeepWalk (Perozzi et al., 2014) and later improved on by node2vec with biased
walks (Grover and Leskovec, 2016), allowing for smooth transition between depth-first
and breath-first exploration. The similarity of embeddings approximates the stochastic
transition matrix P by ezT

i zj /
∑

vk∈V ezT
i zk ≈ Pi,j, Pi,j being the probability of visiting

node j from i. The unsupervised loss function can combined with a supervised task
objective, such as node classification.

Nevertheless, the vast majority of direct encoding approaches learn a unique embedding
vector for each node individually, which leads to two major drawbacks: the number of
parameters grows linearly with the size of the graph and it is not possible to generate
embeddings for nodes not seen during training or generalize across graphs. In semi-
supervised learning, this is called transductive learning, as opposed to inductive learning,
which can deal with novel test nodes. One way of addressing this deficiency is to learn a
network encoding node attributes instead of identities, as in Bojchevski and Günnemann
(2017). The other way is to use spatial graph convolutions introduced in Section 2.4 above
(Hamilton et al. (2017b) in particular), which may not be suitable for link prediction of
yet unconnected new nodes, though.

2.5.2 Graph Kernels

Kernel methods (Schölkopf and Smola, 2002) are a family of established approaches
based on measuring the similarity between two objects using an explicit kernel function
K corresponding to the inner product in reproducing kernel Hilbert space H. Such kernel
is then used in place of inner products in various kernelized algorithms, notably Support
Vector Machines.

A kernel between two graphs G and G′ is given by K(G, G′) :=< Φ(G), Φ(G′) >H,
where Φ(G) denotes a feature vector containing counts of a certain class of substructures
in graph G and H is typically a Euclidean space. The challenge is to find substructure
decompositions that captures the semantics of the graph while being computationally
tractable to enumerate and evaluate, such as decompositions into graphlets (subgraphs
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of limited size), subtrees, or random walks. The Weisfeiler-Lehman framework increased
the efficiency of previous kernels by using a relabeling procedure and scaled to graphs
with thousands of nodes (Shervashidze et al., 2011). Recently, Lei et al. (2017) cast the
computation process of Weisfeiler-Lehman kernel as a (differentible) recurrent network.

Similarly to direct node embedding introduced above, there has been works exploiting
Skip-gram for substructure embedding. Such embeddings can be used to improve graph
kernels; Yanardag and Vishwanathan (2015) proposed not treating substructures as
independent and introduced bilinear form Φ(G)T MΦ(G′) called Deep graph kernels, where
learnable matrix M captures the relationship between substructures and is computed
from inner products of their individual embeddings. Subgraph2vec (Narayanan et al.,
2016) later improved the way how the context of subgraphs in a graph should be modeled.





Chapter 3

Edge-Conditioned Convolutions

3.1 Introduction

Convolutional Neural Networks (CNNs) have gained massive popularity in tasks where
the underlying data representation has a grid structure, such as in speech processing
and natural language understanding (1D, temporal convolutions), in image classifica-
tion and segmentation (2D, spatial convolutions), or in video parsing (3D, volumetric
convolutions) (LeCun et al., 2015).

On the other hand, in many other tasks the data naturally lie on irregular or generally
non-Euclidean domains, which can be structured as graphs in many cases. These include
problems in 3D modeling, computational chemistry and biology, geospatial analysis,
social networks, or natural language semantics and knowledge bases, to name a few.
Assuming that the locality, stationarity, and composionality principles of representation
hold to at least some level in the data, it is meaningful to consider a hierarchical CNN-like
architecture for processing it.

However, a generalization of CNNs from grids to general graphs is not straightforward
and has recently become a topic of increased interest. We identify that the formulations
of graph convolution predating this work do not exploit continuous edge attributes, which
results in an overly homogeneous view of local graph neighborhoods, with an effect similar
to enforcing rotational invariance of filters in regular convolutions on images. Hence, in
this work we propose a convolution operation which can make use of this information
channel and show that it leads to an improved graph classification performance.

This novel formulation also opens up a broader range of applications; we concentrate
here on point clouds specifically. Point clouds have been mostly ignored by deep learning
before publication of the work presented in this chapter, their voxelization being the
only trend (Huang and You, 2016; Maturana and Scherer, 2015; Qi et al., 2016). To
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offer a competitive alternative with a different set of advantages and disadvantages, we
construct graphs in Euclidean space from point clouds in this work and demonstrate
state of the art performance on Sydney dataset of LiDAR scans (De Deuge et al., 2013).

This chapter is largely based on our CVPR 2017 publication (Simonovsky and
Komodakis, 2017). Its contributions to the field at the time of submission are as follows:

• We formulate a convolution-like operation on graph signals ‘performed in the
spatial domain where filter weights are conditioned on edge attributes (discrete
or continuous) and dynamically generated for each specific input sample. Our
networks work on graphs with arbitrary varying structure throughout a dataset.

• We are the first to apply graph convolutions to point cloud processing. Our method
outperforms volumetric approaches and attains the new state of the art performance
on Sydney dataset, with the benefit of preserving sparsity and presumably fine
details.

• We reach a competitive level of performance on graph classification benchmark
NCI1 (Wale et al., 2008), outperforming other approaches based on deep learning
there.

3.2 Related Work

3.2.1 Graph Convolutions

Here we put the contributions of this chapter in the context of related work and refer
the reader to Chapter 2 for the review of the topic in general. Spectral methods (Bruna
et al., 2013; Defferrard et al., 2016) offer a mathematically sound definition of convolution
operator and learn filters in relation to the spectrum of graph Laplacian, which therefore
has to be the same for all graphs in a dataset. This means that the graph structure is
fixed and only the signal defined on the nodes may differ, precluding applications on
problems where the graph structure varies in the dataset, such as meshes, point clouds,
or diverse biochemical data.

To cover these important cases, we formulate our filtering approach in the spatial
domain, where the limited complexity of evaluation and the localization property is
provided by construction. The main challenge here is dealing with weight sharing among
local neighborhoods, as the number of nodes adjacent to a particular vertex varies and
their ordering is often not well definable.
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Bruna et al. (2013) assumed fixed graph structure and did not share any weights
among neighborhoods. Several works have independently dealt with this problem.
Duvenaud et al. (2015) sum the signal over neighboring nodes followed by a weight
matrix multiplication given by the degree of central node. Atwood and Towsley (2016)
share weights based on the number of hops between two nodes. Kipf and Welling (2016a)
further approximate the spectral method of Defferrard et al. (2016) and weaken the
dependency on the Laplacian, but ultimately arrive at center-surround weighting of
neighborhoods. None of these methods captures finer structure of the neighborhood
and thus does not generalize regular convolution on grids. In contrast, here we show
that methods using additional information in the form of edge attributes do offer such
a convenient property. These includes the work of Li et al. (2016b) and Monti et al.
(2017). Section 3.3.2 demonstrates that our method generalizes the above mentioned
models. In a concurrent work, Gilmer et al. (2017) presented an equivalent formulation
to our method. Finally, the approach of Niepert et al. (2016) introduces a heuristic for
linearizing selected graph neighborhoods so that a conventional 1D CNN can be used.
We share their goal of capturing structure in neighborhoods but approach it in a different
way.

3.2.2 Deep Learning on Sparse 3D Data

Three-dimensional data can be captured and processed in various forms. Here we restrict
ourselves to point clouds and polygonal meshes, which can be treated as volumes, sets or
graphs for their processing.

Volumetric representation. Volumetric representation, which can be processed by
regular convolutions on grid, was the first one to be used in deep learning-based 3D
understanding methods and has enjoyed popularity since then. Medical images (Shen
et al., 2017), distance fields (Li et al., 2016a) or uncertainties in output space (Wu et al.,
2015b) are just a few examples of dense spatial data. Nevertheless, for simplicity and
efficient processing in hardware, also sparse data may be voxelized into a dense volumes.
In fact, prior to the submission of our work (2016), this was the only way of processing
point clouds using deep learning, be it for classification (Maturana and Scherer, 2015;
Qi et al., 2016) or segmentation (Huang and You, 2016) purposes. However, voxel grid
representation of sparse data tends to be much more expensive in terms of memory and
brings about discretization artifacts due to limited resolution or the need to resort to a
sliding window approach.
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To address this, Graham (2015) proposed a way of computing sparse convolution on
lattices where the input is gathered into a dense matrix to allow for standard matrix
multiplication. Unfortunately, the bookkeeping is performed on the CPU in their
implementation and the evaluation has been fairly limited. In a work concurrent to ours,
OctNet (Riegler et al., 2017b) and O-CNN (Wang et al., 2017) have expanded on the topic
and replaced uniform grids by non-uniform octrees of a predefined depth. An octree is a
spatial subdivision structure with adaptive cell size that represents empty space efficiently
while allowing to store data in a linear array. However, unlike in Graham (2015) where
the sparsity is decreased at each layer due to convolution dilating the number of active
(non-zero) locations, octree structures are kept unmodified. While preserving sparsity,
such a formulation of convolution has different behavior from the one on dense grids in
how it propagates information across empty space 1. Nevertheless, this does not seem
to be a problem in practice and has not prevented octree-based methods from reaching
state of the art results. This formulation of spatial convolution has also been named
submanifold sparse convolutions by Graham et al. (2018). There, the authors revisit
the algorithm of Graham (2015) and rely on strided convolutions to allow information
to flow between disconnected components in the input, claiming better efficiency than
OctNet. The necessity to know the grid subdivision structure or the submanifold ahead
is inconvenient in reconstruction and shape generation applications. However, in later
works (Riegler et al., 2017a; Tatarchenko et al., 2017), octrees were successfully used
also in such applications by refining spatial subdivisions in a multi-resolution pipeline.
Independently, Klokov and Lempitsky (2017) proposed hierarchical processing of point
clouds according to the partitioning given by balanced kd-trees, where cells are merged
by multilayer perceptrons. However, the distance metric induced by axis-aligned kd-trees
is often rather different to the Euclidean one, demonstrated in the method’s sensitivity
to global rotations.

Set representation. A set is an intuitive representation for point clouds. Concurrently
to our work, Qi et al. (2017a) was the first to propose a network operating directly on
sets of points. Their key idea is to embed each point individually into high-dimensional
latent space and then apply a permutation-invariant aggregation function (channel-wise
maximum) to arrive at global descriptors, which can be again concatenated with point
embeddings for point-wise prediction tasks. As the learned mapping is sensitive to global

1Interestingly, this is also true for all methods operating directly on point clouds and meshes mentioned
further below: their convolutions add no new points or nodes to the domain. In fact, the computation
of convolution on octree cells can be seen as a particular instance of a graph, which could be processed
by our graph convolution method presented in this Chapter to give rise to the same output.
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transformations, a spatial transformer network (Jaderberg et al., 2015) in the form of
a smaller PointNet is used to roughly normalize the global coordinate system of input
point clouds. While the architecture is remarkably simple, efficient and achieves great
performance on a variety of tasks, Qi et al. (2017b) observed its limitations in fine-grained
segmentation tasks due to its obliviousness to any concept of spatial closeness. Their
follow-up work PointNet++ (Qi et al., 2017b) applies PointNet hierarchically on a nested
partitioning of the input set, in reminiscence of strided convolution. While improving
over PointNet, points in local point sets are still treated independently. Engelmann et al.
(2017) later investigated incorporation of spatial context into PointNet by several ways
of fusing embeddings of neighboring point cloud parts.

Graph representation. Unlike sets, graphs can model the context of spatial data
explicitly. While neighborhood graphs constructed from point clouds express only
geometric information, polygonal meshes additionally capture topological constraints
(faces) and represent discretized manifolds (surfaces). We regard point cloud as graphs
in Euclidean space in this work. Masci et al. (2015) are motivated by connections
between meshes and manifolds and define convolution on spatially binned neighborhoods
around every node in a mesh using geodesic distances. Their architecture contains
only a single convolutional layer operating on combination of intrinsic spectral shape
features. Follow-up work proposed a different local binning technique using anisotropic
diffusion (Boscaini et al., 2016) and, concurrently to our work, using Gaussian mixture
model (Monti et al., 2017). The latter, already mentioned above, can be regarded as a
general graph convolution approach, though subsumed by our proposed model. Later,
Wang et al. (2018b) introduced an architecture where edge attributes are defined as
the difference of current node embeddings and the neighborhood graph is repeatedly
dynamically rebuilt.

3.3 Method

We propose a method for performing convolutions over local graph neighborhoods
exploiting edge attributes (Section 3.3.1) and show it to generalize regular convolutions
(Section 3.3.2). Afterwards, we present deep networks with our convolution operator
(Section 3.3.3) in the case of point clouds (Section 3.3.4) and general graphs (Section 3.3.5).
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Fig. 3.1 Illustration of edge-conditioned convolution on a directed subgraph. Signal H t
1

on vertex 1 in the t-th network layer is computed as a weighted sum of signals H t−1 on
the set of its predecessor nodes, assuming self-loops. The particular weight matrices W
are dynamically generated by filter-generating network wt based on the corresponding
edge attributes E, visualized as colors.

3.3.1 Edge-Conditioned Convolution

Let us consider a directed graph G = (V , E) with edge attributes E : E → Rde . Building
on top of graph notation introduced in Section 2.1, let H t : V → Rdt denote the node
representation (signal) computed at convolutional layer t ∈ {1, . . . , T} in a neural network.
We make the input signal equal to node attributes H0 = F if these are available and
set H0 = 0 otherwise. The neighborhood N (i) = {j; (j, i) ∈ E} of node i is defined to
contain all its direct predecessors.

Our approach computes the filtered signal H t
i ∈ Rdt at node i as a weighted sum

of its own signal H t−1
i ∈ Rdt−1 and signals H t−1

j ∈ Rdt−1 in its neighborhood, j ∈ N (i).
While such a commutative aggregation solves the problem of undefined node ordering and
varying neighborhood sizes, it also smooths out any structural information. To retain it,



3.3 Method 31

we propose to condition each filtering weight on the respective edge attribute. To this
end, we borrow the idea from Dynamic Filter Networks (Brabandere et al., 2016) and
define filter-generating network wt : Rde → Rdt×dt−1 with parameters θt which outputs
an edge-specific weight matrix W t,j,i ∈ Rdt×dt−1 given edge attributes Ej,i. See Figure 3.1
for an illustration.

The convolution operation, coined Edge-Conditioned Convolution (ECC), is formalized
as follows:

H t+1
i = ReLU

 1
|N (i) ∪ {i}|

∑
j∈N (i)∪{i}

wt(Ej,i; θt)H t
j + bt


= ReLU

 1
|N (i) ∪ {i}|

∑
j∈N (i)∪{i}

W t,j,iH t
j + bt

 (3.1)

Equivalently, in the framework of Message Passing Neural Networks (see Section 2.4),
ECC can be defined with message function mt : wt(Ej,i; θt)H t

j + bt, update function
ut : ReLU(M t+1

i ) and modified Equation 2.4 where mean is used instead of sum and the
neighborhood includes the central node i itself.

It is important to understand that we do not learn convolution weights directly
but rather a network which predicts them. In fact, it would be intractable to learn
convolution weights for individual values of continuous attributes. Therefore, θt and bt

are learned model parameters updated with gradient descent during training and W t,j,i

are dynamically predicted parameters for attributes of a particular edge in a particular
input graph.

Parameters θt can be untied in each network layer t (such as in this chapter and
Chapter 5) or shared across layers as in Chapter 4, where a more involved update function
ut is used to compensate for that.

The filter-generating networks w can be implemented using any differentiable ar-
chitecture. As attributes are simple vectors in all our applications, we use multi-layer
perceptrons (MLPs). In the case of structured attributes such as images or text (e.g. a
free-form description of relations in a knowledge graph), CNNs or RNNs would be a
more appropriate choice for w.

Note that ECC is defined on directed graphs. However, directed edges (i, j) without
corresponding opposite edges (j, i) cause asymmetries in message passing. In the extreme
case, start nodes in a directed acyclic graph would obtain no information about any other
node. Therefore, we suggest making sure that both edge directions are present in input
graphs and that their attributes differ so that message passing depends on the direction
of that edge. For instance, it is reasonable to set Ei,j = −Ej,i if attributes represent
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offsets between points in spaces. Having Ei,j = Ej,i is sufficient in the case of undirected
graphs, which are supported by replacing each undirected edge {i, j} with two directed
ones (i, j) and (j, i).

Identity connections (ECC-id). Finally, we discuss the treatment of central node i.
The formulation of ECC in Equation 3.1 effectively adds self-loops to the graph and does
not treat i in any special way (other than consistent weights W t,i,i for all i if self-loops
have a distinct attribute Ei,i), which is consistent with the definition of convolution on
grids. However, the success of Residual Networks (He et al., 2016) is a strong motivation
to consider adding identity skip-connections to the model and encourage ECC in learning
residuals. In addition, moving the central node out of the aggregation makes its influence
independent of the size of the neighborhood. We formulate ECC-id as follows:

H t+1
i = ReLU

id(H t
i ) + 1

|N (i)|
∑

j∈N (i)
w(Ej,i; θt)H t

j + bt

 (3.2)

where id() is an identity mapping if dt = dt−1 and a linear mapping otherwise. The
equivalent update function in Message Passing framework is ut : ReLU(id(H t

i ) + M t+1
i ).

Complexity. Computing H t for all nodes requires at most2 |E| evaluations of w and
|E|+ |V| or 2|E|+ |V| matrix-vector multiplications for directed, resp. undirected graphs.
Both operations can be carried out efficiently on the GPU in batch-mode. Aggregation
over neighborhood can be implemented as sparse-dense matrix multiplication, available
in both PyTorch and TensorFlow frameworks. Therefore, the method can scale well to
large sparse graphs both theoretically and in practice.

3.3.2 Relationship to Existing Formulations

Our formulation of convolution on graph neighborhoods retains the key properties of the
standard convolution on regular grids that are useful in the context of CNNs: weight
sharing and locality.

Importantly, the standard discrete convolution on grids is a special case of ECC,
which we demonstrate in 1D for clarity. Consider an ordered set of nodes V forming a
path graph (chain). To obtain convolution with a centered kernel of size de, we form
E so that each node is connected to its de spatially nearest neighbors including self

2If edge attributes are represented by de discrete values in a particular graph and de < |E|, w can be
evaluated only de-times.
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by a directed edge labeled with one-hot coding of the neighbor’s discrete offset δ, see
Figure 3.2. Taking wt as a single linear layer without bias, we have w(Ej,i; θt) = θt

δ, where
θt

δ denotes the respective reshaped column of the parameter matrix θt ∈ R(dt×dt−1)×de .
With a slight abuse of notation, we arrive at the equivalence to the standard convolution:
H t+1

i = ReLU(∑
j∈N (i) W t,j,iH t

j) = ReLU(∑
δ θt

δH
t
i−δ), ignoring the normalization factor

1/|N (i) ∪ {i}| playing a role only at grid boundaries.
This shows that ECC can retain the same number of parameters and computational

complexity of the regular convolution in the case of grids. Note that such reduction is
not possible with any of related work oblivious to edge attributes due to their way of
weight tying. The weights in ECC are tied by edge attribute, which is in contrast to
tying them by hop distance from a node (Atwood and Towsley, 2016), according to a
neighborhood linearization heuristic (Niepert et al., 2016), by being the central node
or not (Kipf and Welling, 2016a), by node degree (Duvenaud et al., 2015), or not at
all (Bruna et al., 2013).

In fact, our definition of message passing function can be shown to generalize a
number of prior graph convolution methods introduced in Section 2.4 by using a single
linear layer without bias as wt and defining attributes appropriately. The model of
Bruna et al. (2013) can be recovered by assigning a unique one-hot code to every edge.
Duvenaud et al. (2015) requires a one-hot code indicating the degree of target node
deg(i) to every edge (j, i), while the model of (Kipf and Welling, 2016a) is obtained by
setting Ei,j = (deg(i)deg(j))−1/2. The support for discrete attributes in Li et al. (2016b);
Schlichtkrull et al. (2017) can be obtained by using them directly in one-hot coding.
The Gaussian mixture model of Monti et al. (2017) (concurrent work) is subsumed by
our general neural network wt by the universal approximation theorem (Hornik, 1991).
Finally, the message passing function of Gilmer et al. (2017) (also concurrent work) is
equivalent to our method.

Last, let us remark that the idea of exchanging messages among nodes is also the
algorithmic basis of many inference techniques within the context of graphical models,
such as belief propagation (Pearl, 1988). We postpone further discussion to Section 4.3.4
in the following Chapter, where we contrast message passing networks and conditional
random fields.

3.3.3 Deep Networks with ECC

While ECC is in principle applicable to both node classification and graph classification
tasks, in this chapter we restrict ourselves only to the latter one, i.e. predicting a class
for the whole input graph. Hence, we follow the common architectural pattern for
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Fig. 3.2 Construction of a directed graph with one-hot edge attributes where the proposed
edge-conditioned convolution is equivalent to the regular 1D convolution with a centered
filter of size de = 3.

feed-forward networks of interlaced convolutions and poolings topped by global pooling
and fully-connected layers, see Figure 3.3 for an illustration. This way, information from
local neighborhoods gets combined over successive layers to gain context due to enlarged
receptive field. While edge attributes are fixed for a particular graph, their (learned)
interpretation by the means of filter generating networks wt may change from layer to
layer if the weights are untied. Therefore, the restriction of ECC to 1-hop neighborhoods
N (i) is not a constraint, akin to using small 3×3 filters in exchange for deeper networks
in CNNs on grids, which is known to be beneficial (He and Sun, 2015).

We use batch normalization (Ioffe and Szegedy, 2015) after each convolution, which
was necessary for the learning to converge. Interestingly, we had no success with other
feature normalization techniques such as data-dependent initialization (Mishkin and
Matas, 2016) or layer normalization (Ba et al., 2016). On the other hand, explicitly
assuring the convolution operation being a non-expansive operator (Scarselli et al., 2009)
by applying activation function νtanh(w(·)) with 0 < ν < 1 can also make the network
converge; the experimental performance was worse than with batch normalization, though.

Pooling. While (non-strided) convolutional layers and all point-wise layers do not
change the underlying graph and only evolve the signal on nodes, pooling layers are
defined to output aggregated signal on the nodes of a new, coarsened graph. Therefore,
a pyramid of S progressively coarser graphs has to be constructed for each input graph.
Let us extend here our notation with an additional scale superscript s ∈ {0, . . . , S} to
distinguish among different graphs G(s) = (V(s), E (s)) in the pyramid when necessary.
Each G(s) has also its associated attributes E(s) and signal H t,(s).

As introduced in Section 2.2.3, a coarsening of G(s−1) typically consists of three
steps: subsampling or merging nodes, creating the new edge structure E (s) and labeling
E(s) (so-called reduction), and mapping the nodes in the original graph to those in the
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Fig. 3.3 Illustration of a deep network with three edge-conditioned convolutions and one
pooling. The last convolution is executed on a structurally different graph G(1), which is
related to the input graph G(0) by coarsening and signal aggregation in the max pooling
step according to mapping C(1). See Section 3.3.3 for more details.

coarsened one with C(s) : V(s−1) → V (s). We use a different algorithm depending on
whether we work with general graphs or graphs in Euclidean space, therefore we postpone
discussing the details to the applications. Finally, the s-th pooling layer aggregates
H t,(s−1) into a lower dimensional H t,(s) based on C(s). See Figure 3.3 for an example of
using the introduced notation.

During coarsening, a small graph may be reduced to several disconnected nodes in
its lower resolutions without problems as our formulation of graph convolution always
assumes a virtual self-edge. Since the architecture is designed to process graphs with
variable number of edges and nodes, we deal with varying node count |V(S)| in the lowest
graph resolution by global average/max pooling.

3.3.4 Application in Point Clouds

Point clouds are an important 3D data modality arising from many acquisition techniques,
such as laser scanning (LiDAR) or multi-view reconstruction. However, their natural
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irregularity and sparsity present a challenge to the massive parallelism in GPU-based
processing. In fact, at the submission time of our paper (Simonovsky and Komodakis,
2017), the only way of processing point clouds using deep learning has been to first
voxelize them before feeding them to a 3D CNN, be it for classification (Maturana
and Scherer, 2015) or segmentation (Huang and You, 2016) purposes. Such a dense
representation is very hardware friendly and simple to handle with the current deep
learning frameworks.

On the other hand, there are several disadvantages too. First, voxel representation
tends to be much more expensive in terms of memory than usually sparse point clouds.
Second, the necessity to fit them into a fixed size 3D grid brings about discretization
artifacts and the loss of details and possibly metric scale. With the work presented
in this chapter, we attempted at offering a competitive alternative to the mainstream
by performing deep learning on point clouds directly. While we concentrate on point
clouds in this thesis, we believe this work can also directly apply to meshes, as the graph
structure is given and mesh downsampling is a well studied problem.

Graph Construction. Given a point cloud P with point positions P and features
F (such as laser return intensity or color) we build a directed graph G = (P , E) by
connecting each node i to all nodes j in its spatial neighborhood by a directed edge
(j, i). In our experiments with neighborhoods, fixed metric radius ρ worked better than
a fixed number of neighbors, likely due to more symmetric message passing and more
homogeneous speed of information propagation. The node signal is set as H0 = F (or
0 if there are no features F ). The offset δ = Pj − Pi between the points corresponding
to nodes j, i is represented in Cartesian and spherical coordinates as 6D edge attribute
vector Ej,i = (δx, δy, δz, ||δ||, arccos δz/||δ||, arctan δy/δx).

Graph Coarsening. For a single input point cloud P, a pyramid of downsampled
point clouds P(s) is obtained by the VoxelGrid algorithm (Rusu and Cousins, 2011),
which overlays a grid of resolution r(s) over the point cloud and replaces all points within
a voxel with their centroid (and thus maintains subvoxel accuracy). Each of the resulting
point clouds P(s) is then independently converted into a graph G(s) and attributes E(s)

with neighborhood radius ρ(s) as described above. The pooling map C(s) is defined so
that each point in P(s−1) is assigned to its spatially nearest point in the subsampled
point cloud P(s).



3.4 Experiments 37

Data Augmentation. In order to reduce overfitting on small datasets, we perform
online data augmentation. In particular, we randomly rotate point clouds about their
up-axis, jitter their scale, perform mirroring, or delete random points.

3.3.5 Application in General Graphs

Many problems can be modeled directly as graphs. In such cases the graph dataset is
already given and only the appropriate graph coarsening scheme needs to be chosen.
Without any concept of spatial localization of nodes in general graphs, this is by no
means trivial and there exists a large body of literature on this problem, briefly reviewed
in Section 2.2.3.

Here, we resort to established graph coarsening algorithms and utilize the multireso-
lution framework of Shuman et al. (Perraudin et al., 2014; Shuman et al., 2016), which
works by repeated downsampling and graph reduction of the input graph. The downsam-
pling step is based on splitting the graph into two components by the sign of the largest
eigenvector of the Laplacian. This is followed by Kron reduction (Dörfler and Bullo,
2013), which also defines new scalar edge attributes, enhanced with spectral sparsification
of edges (Spielman and Srivastava, 2011). Note that the algorithm regards graphs as
unweighted for the purpose of coarsening.

This method is attractive for us because of two reasons. Each downsampling step
removes approximately half of the nodes, guaranteeing a certain level of pooling strength,
and the sparsification step is randomized. The latter property is exploited as a useful
data augmentation technique since several different graph pyramids can be generated
from a single input graph. This is in spirit similar to the effect of fractional max-
pooling (Graham, 2014). We do not perform any other data augmentation, as this would
need to be domain specific.

3.4 Experiments

The proposed method is evaluated in point cloud classification (real-world data in
Section 3.4.1 and synthetic in 3.4.2) and on a standard graph classification benchmark
(Section 3.4.3). In addition, we validate our method and study its properties on MNIST
(Section 3.4.4). Finally, we perform several ablation studies in Section 3.4.5.



38 Edge-Conditioned Convolutions

3.4.1 Sydney Urban Objects

This point cloud dataset (De Deuge et al., 2013) consists of 588 objects in 14 categories
(vehicles, pedestrians, signs, and trees) manually extracted from 360◦ LiDAR scans, see
Figure 3.4. It demonstrates non-ideal sensing conditions with occlusions (holes) and
a large variability in viewpoint (single viewpoint). This makes object classification a
challenging task.

Following the protocol employed by the dataset authors, we report the mean F1
score weighted by class frequency, as the dataset is imbalanced. This score is further
aggregated over four standard training/testing splits.

Network Configuration. Our ECC-network has 7 parametric layers and 4 levels of
graph resolution. Its configuration can be described as C(16)-C(32)-MP(0.25,0.5)-C(32)-
C(32)-MP(0.75,1.5)-C(64)-MP(1.5,1.5)-GAP-FC(64)-D(0.2)-FC(14), where C(c) denotes
ECC with c output channels followed by affine batch normalization and ReLU activation,
MP(r,ρ) stands for max-pooling down to grid resolution of r meters and neighborhood
radius of ρ meters, GAP is global average pooling, FC(c) is fully-connected layer with c

output channels, and D(p) is dropout with probability p. The filter-generating networks wt

have configuration FC(16)-FC(32)-FC(dtdt−1) with orthogonal weight initialization (Saxe
et al., 2014) and ReLUs in between. Input graphs are created with r0 = 0.1 and
ρ0 = 0.2 meters to break overly dense point clusters. Networks are trained with SGD
and cross-entropy loss for 250 epochs with batch size 32 and learning rate 0.1 step-wise
decreasing after 200 and 245 epochs. Node signal H0 is scalar laser return intensity
(0-255), representing depth.

Results. Table 3.1 compares our result (ECC, 78.4) against two methods based on
volumetric CNNs evaluated on voxelized occupancy grids of size 323 (VoxNet (Maturana
and Scherer, 2015) 73.0 and ORION (Alvar et al., 2016) 77.8), which we outperform by
a small margin and set the new state of the art result on this dataset.

3.4.2 ModelNet

ModelNet (Wu et al., 2015a) is a large scale collection of object meshes. We evaluate
classification performance on its subsets ModelNet10 (3991/908 train/test examples in 10
categories) and ModelNet40 (9843/2468 train/test examples in 40 categories). Synthetic
point clouds are created from meshes by uniformly sampling 1000 points on mesh faces
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Model Representation Mean F1
Triangle+SVM (De Deuge et al., 2013) image 67.1

GFH+SVM (Chen et al., 2014) histogram 71.0
VoxNet (Maturana and Scherer, 2015) volumetric 73.0

ORION (Alvar et al., 2016) volumetric 77.8
ECC graph 78.4

Table 3.1 Mean F1 score weighted by class frequency on Sydney Urban Objects dataset
De Deuge et al. (2013). Only the best-performing models of each baseline are listed.

Fig. 3.4 Illustrative samples of the majority of classes in Sydney Urban Objects dataset,
reproduced from De Deuge et al. (2013).

according to face area (a simulation of acquisition from multiple viewpoints) and rescaled
into a unit sphere.

Network Configuration. Our ECC-network for ModelNet10 has 7 parametric layers
and 3 levels of graph resolution with configuration C(16)-C(32)-MP(2.5/32,7.5/32)-C(32)-
C(32)-MP(7.5/32,22.5/32)-C(64)-GMP-FC(64)-D(0.2)-FC(10), GMP being global max
pooling. Other definitions and filter-generating networks wt are as in Section 3.4.1. Input
graphs are created with r0 = 1/32 and ρ0 = 2/32 units, mimicking the typical grid
resolution of 323 in voxel-based methods. The network is trained with SGD and cross-
entropy loss for 175 epochs with batch size 64 and learning rate 0.1 step-wise decreasing
after every 50 epochs. There is no node signal, i.e. H0 are zero. For ModelNet40, the
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Model Representation ModelNet10 ModelNet40
3DShapeNets (Wu et al., 2015a) volumetric 83.5 77.3

MVCNN (Su et al., 2015) images 90.1
VoxNet (Maturana and Scherer, 2015) volumetric 92 83

ORION (Alvar et al., 2016) volumetric 93.8
SubvolumeSup (Qi et al., 2016) volumetric 86.0 (89.2)
* O-CNN (Wang et al., 2017) sparse vol. (90.6)

* KdNet (Klokov and Lempitsky, 2017) sparse vol. (94.0) (91.8)
* PointNet (Qi et al., 2017a) point set 86.2 (89.2)

* PointNet++ (Qi et al., 2017b) point set (90.7)
* DynamicGraph (Wang et al., 2018b) graph 90.2 (92.2)

ECC graph 89.3 (90.0) 82.4 (87.0)
ECC (12 votes) graph 90.0 (90.8) 83.2 (87.4)

Table 3.2 Mean class accuracy (resp. mean instance accuracy) on ModelNets (Wu
et al., 2015a). Only the best models of each baseline are listed. Concurrent baselines are
denoted with a star.

network is wider (C(24), C(48), C(48), C(48), C(96), FC(64), FC(40)) and is trained for
100 epochs with learning rate decreasing after each 30 epochs.

Results. Table 3.2 compares our result to several previous works, based either on
volumetric (Alvar et al., 2016; Maturana and Scherer, 2015; Qi et al., 2016; Wu et al.,
2015a) or rendered image representation (Su et al., 2015), as well as to contemporary
methods. Test sets were expanded to include 12 orientations (ECC). We also evaluate
voting over orientations (ECC 12 votes), which slightly improves the results likely due to
the rotational variance of VoxelGrid algorithm. While not having fully reached the state
of the art at the time of submission, our method remained very competitive (90.8%, resp.
87.4% mean instance accuracy).

3.4.3 Graph Classification

We evaluate on a graph classification benchmark frequently used in the community,
consisting of five datasets: NCI1, NCI109, MUTAG, ENZYMES, and D&D. Their
properties can be found in Table 3.3, indicating the variability in dataset sizes, in graph
sizes, and in the availability of attributes. Following Shervashidze et al. (2011), we
perform 10-fold cross-validation with 9 folds for training and 1 for testing and report the
average prediction accuracy.
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NCI1 and NCI109 (Wale et al., 2008) consist of graph representations of chemical
compounds screened for activity against non-small cell lung cancer and ovarian cancer
cell lines, respectively. MUTAG (Debnath et al., 1991) is a dataset of nitro compounds
labeled according to whether or not they have a mutagenic effect on a bacterium.
ENZYMES (Borgwardt and Kriegel, 2005) contains representations of tertiary structure
of 6 classes of enzymes. D&D (Dobson and Doig, 2003) is a database of protein structures
(nodes are amino acids, edges indicate spatial closeness) classified as enzymes and
non-enzymes.

Network Configuration. Our ECC-network for NCI1 and NCI109 has 8 parametric
layers and 3 levels of graph resolution. Its configuration can be described as C(48)-
C(48)-C(48)-MP-C(48)-C(64)-MP-C(64)-GAP-FC(64)-D(0.1)-FC(2), where C(c) denotes
ECC with c output channels followed by affine batch normalization, ReLU activation
and dropout (probability 0.05), MP stands for max-pooling onto a coarser graph, GAP
is global average pooling, FC(c) is fully-connected layer with c output channels, and
D(p) is dropout with probability p. The filter-generating networks wt have configuration
FC(64)-FC(dtdt−1) with orthogonal weight initialization Saxe et al. (2014) and ReLU
in between. attributes are encoded as one-hot vectors (d0 = 37 and s = 4 due to an
extra attribute for self-connections). Networks are trained with SGD and cross-entropy
loss for 50 epochs with batch size 64 and learning rate 0.1 step-wise decreasing after
25, 35, and 45 epochs. The dataset is expanded five times by randomized sparsification
(Section 3.3.5).

We made small deviations from this description for the other three datasets as follows.
As MUTAG is a tiny dataset of small graphs, we trained a downsized ECC-network to
combat overfitting with configuration C(16)-C(32)-C(48)-MP-C(64)-MP-GAP-FC(64)-
D(0.2)-FC(2). Due to higher complexity of ENZYMES we use a wider ECC-network
configured as C(64)-C(64)-C(96)-MP-C(96)-C(128)-MP-C(128)-C(160)-MP-C(160)-GAP-
FC(192)-D(0.2)-FC(6). Finally, due to large graphs in D&D dataset we designed a
ECC-network with more pooling configured as C(48)-C(48)-C(48)-MP-C(48)-MP-C(64)-
MP-C(64)-MP-C(64)-MP-C(64)-MP-GAP-FC(64)-D(0.2)-FC(2).

Baselines. We compare our method (ECC) to the state of the art Weisfeiler-Lehman
graph kernel (Shervashidze et al., 2011) and to four approaches using deep learning as at
least one of their components (Atwood and Towsley, 2016; Dai et al., 2016; Narayanan
et al., 2016; Niepert et al., 2016; Yanardag and Vishwanathan, 2015). Randomized
sparsification used during training time can also be exploited at test time, when the
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network prediction scores (ECC-5-scores) or votes (ECC-5-votes) are averaged over 5 runs.
To judge the influence of edge attributes, we run our method with uniform attributes
and wt being a single layer FC(dtdt−1) without bias3 (ECC no edge attributes).

Results. Table 3.4 conveys that while there is no clear winning algorithm, our method
performs at the level of state of the art for edge-labeled datasets (NCI1, NCI109, MUTAG).
The results demonstrate the importance of exploiting edge attributes for convolution-
based methods, as the performance of DCNN (Atwood and Towsley, 2016) and ECC
without edge attributes is distinctly worse, justifying the motivation behind this chapter.
Averaging over random sparsifications at test time improves accuracy by a small amount.
Our results on datasets without edge attributes (ENZYMES, D&D) are somewhat below
the state of the art but still at a reasonable level, though improvement in this case
was not the aim of this work. This indicates that further research is needed into the
adaptation of CNNs to general graphs. In the following, we discuss the results for each
dataset in more detail.

NCI1. ECC (83.80%) performs distinctly better than convolution methods that are not
able to use edge attributes (DCNN (Atwood and Towsley, 2016) 62.61%, PSCN (Niepert
et al., 2016) 78.59%). Methods not approaching the problem as convolutions on graphs
but rather combining deep learning with other techniques are stronger (subgraph2vec
(Narayanan et al., 2016) 78.05%, Deep WL (Yanardag and Vishwanathan, 2015) 80.31%,
structure2vec (Dai et al., 2016) 83.72%) but are still outperformed by ECC. While the
Weisfeiler-Lehman graph kernel remains the strongest method (WL (Shervashidze et al.,
2011) 84.55%), it is fair to conclude that ECC, structure2vec, and WL perform at the
same level.

NCI109. ECC (82.14%) performs distinctly better than DCNN (Atwood and Towsley,
2016) (62.86%), which is not able to use edge attributes, and is on par with non-
convolutional approaches (subgraph2vec (Narayanan et al., 2016) 78.39%, Deep WL
(Yanardag and Vishwanathan, 2015) 80.32%, structure2vec (Dai et al., 2016) 82.16%,
WL (Shervashidze et al., 2011) 84.49%).

MUTAG. While by numbers ECC (89.44%) outperforms all other approaches except of
PSCN (Niepert et al., 2016) (92.63%), we note that all four leading methods (subgraph2vec
(Narayanan et al., 2016) 87.17%, Deep WL (Yanardag and Vishwanathan, 2015) 87.44%,
structure2vec (Dai et al., 2016) 88.28%, ECC, PSCN) can be seen to perform equally

3Also possible for unlabeled ENZYMES and D&D, since our method uses attributes from Kron
reduction for all coarsened graphs by default.
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NCI1 NCI109 MUTAG ENZYMES D&D
# graphs 4110 4127 188 600 1178
mean |V | 29.87 29.68 17.93 32.63 284.32
mean |E| 32.3 32.13 19.79 62.14 715.66
# classes 2 2 2 6 2

# node attributes 37 38 7 3 82
# edge attributes 3 3 11 — —

Table 3.3 Characteristics of the graph benchmark datasets, extended from (Dai et al.,
2016). Both edge and node attributes are categorical.

well due to fluctuations caused by the dataset size. We account the tiny decrease in
performance with test-time randomization (88.33%) to the same reason.

ENZYMES. As this dataset is not edge-labeled, we do not expect to obtain the best
performance. Indeed, our method (53.50%) performs at the level of Deep WL (Yanardag
and Vishwanathan, 2015) (53.43%) and is overperformed by WL (Shervashidze et al.,
2011) (59.05%) and structure2vec (Dai et al., 2016) (61.10%). Note that the gap to the
other convolution-based method DCNN (Atwood and Towsley, 2016) (18.10%) is huge
and there is an improvement of more than 4 percentage points due to edge attributes in
coarser graph resolutions from Kron reduction.

D&D. As this dataset is also not edge-labeled, we do not expect to obtain the best
performance. Our method (74.10%) is overperformed by the others who evaluated on
this dataset (PSCN (Niepert et al., 2016) 77.12%, WL (Shervashidze et al., 2011) 79.78%,
structure2vec (Dai et al., 2016) 82.22%), though the margin is not very large.

3.4.4 MNIST

To further validate our method, we applied it to the MNIST classification problem (LeCun
et al., 1998), a dataset of 70k greyscale images of handwritten digits represented on a 2D
grid of size 28×28. We regard each image I as point cloud P with points p = (x, y, 0)
and signal FP (p) = I(x, y) representing each pixel, x, y ∈ {0, .., 27}. Edge labeling and
graph coarsening is performed as explained in Section 3.3.4. We are mainly interested in
two questions: Is ECC able to reach the standard performance on this classic baseline?
What kind of representation does it learn?

Network Configuration. Our ECC-network has 5 parametric layers with config-
uration C(16)-MP(2,3.4)-C(32)-MP(4,6.8)-C(64)-MP(8,30)-C(128)-D(0.5)-FC(10); the
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Model NCI1 NCI109 MUTAG ENZYMES D&D
DCNN (Atwood and Towsley, 2016) 62.61 62.86 66.98 18.10 —

subgraph2vec (Narayanan et al., 2016) 78.05 78.39 87.17 — —
PSCN (Niepert et al., 2016) 78.59 — 92.63 — 77.12

Deep WL (Yanardag and Vishwanathan, 2015) 80.31 80.32 87.44 53.43 —
structure2vec (Dai et al., 2016) 83.72 82.16 88.28 61.10 82.22
WL (Shervashidze et al., 2011) 84.55 84.49 83.78 59.05 79.78
* CCN (Kondor et al., 2018) 76.27 75.54 91.64 — —

* DGCNN (Zhang et al., 2018) 74.44 — 85.83 — 79.37
ECC (no edge attributes) 76.82 75.03 76.11 45.67 72.54

ECC 83.80 81.87 89.44 50.00 73.65
ECC (5 votes) 83.63 82.04 88.33 53.50 73.68
ECC (5 scores) 83.80 82.14 88.33 52.67 74.10

Table 3.4 Mean accuracy (10 folds) on graph classification datasets. Only the best-
performing models of each baseline are listed. Baselines newer than our work are denoted
with a star.

notation and filter-generating network being as in Section 3.4.1. The last convolution
has a stride of 30 and thus maps all 4× 4 points to only a single point. Input graphs are
created with r0 = 1 and ρ0 = 2.9. This model exactly corresponds to a regular CNN with
three convolutions with filters of size 5×5, 3×3, and 3×3 interlaced with max-poolings
of size 2×2, finished with two fully connected layers. Networks are trained with SGD
and cross-entropy loss for 20 epochs with batch size 64 and learning rate 0.01 step-wise
decreasing after 10 and 15 epochs.

Results. Table 3.5 proves that our ECC network can achieve the level of quality
comparable to the good standard in the community (99.14). This is exactly the same
accuracy as reported by Defferrard et al. (2016) and better than what is offered by other
spectral-based approaches (98.2 (Bruna et al., 2013), 94.96 (Edwards and Xie, 2016)).
Note that we are not aiming at becoming the state of the art on MNIST by this work.

Next, we investigate the effect of regular grid and irregular mesh. To this end, we
discard all black points i : Fi = 0) from the point clouds, corresponding to 80.9% of
data, and retrain the network (ECC sparse input). Exactly the same test performance
is obtained (99.14), indicating that our method is very stable with respect to graph
structure changing from sample to sample.

Furthermore, we check the quality of the learned filter generating networks wt. We
compare with ECC configured to mimic regular convolution using single-layer filter
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Model Train accuracy Test accuracy
ECC 99.12 99.14

ECC (sparse input) 99.36 99.14
ECC (one-hot) 99.53 99.37

Table 3.5 Accuracy on MNIST dataset (LeCun et al., 1998).

Fig. 3.5 Convolutional filters learned on MNIST in the first layer for sparse input ECC,
sampled in two different resolutions. See Section 3.4.4 for details.

networks and one-hot encoding of offsets (ECC one-hot), as described in Section 3.3.2.
This configuration reaches 99.37 accuracy, or 0.23 more than ECC, implying that wt

are not perfect but still perform very well in learning the proper partitioning of edge
attributes.

Last, we explore the generated filters visually for the case of the sparse input ECC.
As filters W 0 ∈ R16×1 are a continuous function of an edge attribute, we can visualize the
change of values in each dimension in 16 images by sampling attributes over grids of two
resolutions. The coarser one in Figure 3.5 has integer steps corresponding to the offsets
δx, δy ∈ {−2, .., 2}. It shows filters exhibiting the structured patterns typically found in
the first layer of CNNs. The finer resolution in Figure 3.5 (sub-pixel steps of 0.1) reveals
that the filters are in fact smooth and do not contain any discontinuities apart from the
angular artifact due to the 2π periodicity of azimuth. Interestingly, the artifact is not
distinct in all filters, suggesting the network may learn to overcome it if necessary.
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Model Mean F1
ECC 2ρ 74.4

ECC 1.5ρ 76.9
ECC 78.4

ECC-id 2ρ 77.4
ECC-id 1.5ρ 79.5

ECC-id 77.0

Table 3.6 Influence of varied neighborhood radius on Sydney Urban Objects dataset
De Deuge et al. (2013).

3.4.5 Detailed Analyses and Ablations

This section provides analysis of several design choices and investigates robustness of
point cloud classification to noise. In the second part, we explore two extensions of our
ECC formulation, specifically with degree attributes and with a learned normalization
factor.

Neighborhood Radius. In Table 3.6 we study the dependence on convolution radii
ρ: increasing them 1.5× or 2× in all convolutional layers leads to a drop in performance
in Sydney dataset, which would correspond to a preference of using smaller filters in
regular CNNs. The average neighborhood size is roughly 10 nodes for our best-performing
network. We hypothesized that larger radii smooth out the information in the central
node. To investigate this, we increased the importance of the self-loop by adding an
identity skip-connection (ECC-id) and retrained the networks. Indeed, stronger identity
connection allowed for successful integration of a larger context, up to some limit, which
suggests that information should be aggregated neither too much nor too little.

Identity Connections We compare the performance of ECC (quation 3.1) and ECC-
id (Equation 3.1) in Table 3.7. With two exceptions (NCI109 and ENZYMES), ECC
does not benefit from identity connections in the specific network configurations. The
trend may be different for other configurations, e.g. ECC 1.5ρ improved from 76.9 to
79.5 mean F1 score on Sydney due to identity connections as mentioned above.

Edge Attributes for Point Clouds In Section 3.3.4 we defined edge attributes Ej,i

as the offset δ = Pj − Pi expressed in Cartesian and spherical coordinates. Here, we
explore the importance of individual elements in the proposed edge labeling and further
evaluate attributes invariant to rotation about objects’ vertical axis z (IRz). Table 3.8
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NCI1 NCI109 MUTAG ENZYMES D&D Sydney ModelNet10
ECC-id 83.24 81.97 85.56 51.83 70.48 77.0 88.5 (89.3)

ECC 83.80 81.87 89.44 50.00 73.65 78.4 89.3 (90.0)

Table 3.7 The effect of adding identity connections (improvements in italics). Performance
metrics vary and are specific to each dataset, as introduced in the respective sections.

attribute Ej,i Mean F1
(δx, δy, δz, ||δ||, arccos δz/||δ||, arctan δy/δx) 78.4

(δx, δy, δz) 76.1
(||δ||, arccos δz/||δ||, arctan δy/δx) 77.3

(||δxy||, δz, ||δ||, arccos δz/||δ||) 75.8
(||δxy||, δz) 78.2

(||δ||, arccos δz/||δ||) 78.7
(||δ||) 60.7
(0) 38.9

Table 3.8 ECC on Sydney dataset with varied edge attribute definition.

conveys that models with isotropic (60.7) or no attributes (38.9) perform poorly as
expected, while either of the coordinate systems is important. IRz labeling performs
comparably or even slightly better than our proposed one. However, we believe this is a
property of the specific dataset and may not necessarily generalize, an example being
MNIST, where IRz is equivalent to full isotropy and decreases accuracy to 89.9%.

Robustness to Noise Real-world point clouds contain several kinds of artifacts, such
as holes due to occlusions and Gaussian noise due to measurement uncertainty. Figure 3.6
shows that ECC is highly robust to point removal and can be made robust to additive
Gaussian noise by a proper training data augmentation.

Node Degrees in Edge Attributes In the task of graph classification, we used
categorical attributes (if present) encoded as one-hot vectors for edges in the input graph
and scalars computed by Kron reduction for edges in all coarsened graphs. Here we
investigate making the edge attributes more informative by including the degrees of the
pair of nodes forming an edge. The degree information is implicitly used by spectral
convolution methods, as the degree information is contained in the graph Laplacian,
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Fig. 3.6 Robustness to point removal and Gaussian noise on Sydney dataset.

NCI1 NCI109 MUTAG ENZYMES D&D

Ldeg(i) = 1/
√

deg(i) 82.99 81.94 87.78 53.67 73.65
Ldeg(i) = 1/deg(i) 83.60 82.40 88.89 52.67 71.77
Ldeg(i) =

√
deg(i) 83.58 82.28 86.67 55.00 75.79

Ldeg(i) = deg(i) 83.16 83.03 86.67 52.83 73.74
ECC without Ldeg(i) 83.80 81.87 89.44 50.00 73.65

Table 3.9 The effect in mean classification accuracy of adding node degrees to edge
attributes (improvements in italics).

and also appears in the explicit propagation rules (Atwood and Towsley, 2016; Kipf and
Welling, 2016a).

Our model can be easily extended to make use of this information by simply appending
it to the existing edge attribute vectors. We consider four variants of providing additional
degree attributes Ldeg(j) and Ldeg(i) about a directed edge (j, i): Ldeg(i) = 1/

√
deg(i),

Ldeg(i) = 1/deg(i), Ldeg(i) =
√

deg(i), and Ldeg(i) = deg(i), where deg(i) = |N (i)| is the
degree of node i ∈ V . We use these additional attributes in all graph resolutions.

Table 3.9 reveals that degree information can improve the results considerably,
especially for datasets without given edge attributes (by up to 5 percentage points for
ENZYMES and up to 2.14 percentage points for D&D). However, no variant of Ldeg(i)
can guarantee consistent improvement over all datasets.

Node Degrees in Normalization The formulation of ECC in Equation 3.1 performs
normalization by the neighborhood size. Here we explore learning an additional multi-
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NCI1 NCI109 MUTAG ENZYMES D&D Sydney ModelNet10
ECC-f 83.48 82.57 86.67 52.50 72.03 75.5 89.9 (90.6)
ECC 83.80 81.87 89.44 50.00 73.65 78.4 89.3 (90.0)

Table 3.10 The effect of adding a learned normalization factor (improvements in italics).
Performance metrics vary and are specific to each dataset, as introduced in the respective
sections.

plicative factor, conditioned on the neighborhood size 1/|N (i)|. The motivation is to
investigate whether modeling a relation between neighborhood size and feature magni-
tude (such as a smooth transition from a sum to an average) could improve predictive
performance. To this end, we again make use of Dynamic filter networks (Brabandere
et al., 2016) and design a factor-generating network f : R→ R which given node degree
deg(i) = |N (i)| outputs a node-specific normalization factor. We formulate ECC-f as
follows:

H t+1
i = ReLU

f t(|N (i)|; θt)
|N (i) ∪ {i}|

∑
j∈N (i)∪{i}

wt(Ej,i; θt)H t
j + bt

 (3.3)

In our experiments, the factor-generating networks f t have configuration FC(32)-FC(1)
with orthogonal weight initialization (Saxe et al., 2014) and ReLUs in between.

The results in Table 3.10 show that while being helpful on some datasets (NCI109,
ENZYMES, ModelNet10), ECC-f harms the performance on the other ones. Embedding
node information in attributes instead seems to achieve higher performance, see above.

3.5 Discussion

In this section, we take a critical viewpoint and discus several limitations of our work as
well.

Memory requirements. While the possibility to work with continuous attributes in
ECC is very convenient in many problems, the model may become quite GPU memory
demanding, especially during training when all intermediate activations need to be stored
(e.g. around 9 GB for our ModelNet10 network). This is particularly valid for point
clouds, where nearly all edges have their unique edge attributes in practice and thus also
their unique filter weights W .
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There are at least two options for addressing this problem. From a modeling per-
spective, one can decrease the number of parameters in generated weights W . One
way is to restrict W to low rank q by generating Wa ∈ Rq×dt−1 and Wb ∈ Rdt×q and
computing WH t

j = Wb(WaH t
j), which is more efficient as long as q(dt + dt−1) < dtdt−1.

Unfortunately, we have seen considerably worse performance in practice. It turned out
that a better way in terms of both performance and memory is to make W diagonal,
effectively replacing matrix-vector multiplication with element-wise multiplication; we
discuss this extension in more detail farther in Chapter 4.

From an engineering perspective, we experimented with clustering of edge attributes
during training with K-means. This can be done independently for each training sample
offline or even online in each iteration. Unlike simple predefined quantization, this
approach can maintain the original empirical distribution of attributes over the dataset
and also doubles as data augmentation. In spite of that, we observed a small decrease in
performance.

In general, the overhead in terms of memory and computation together with no
distinct benefit in predictive performance is likely the main reason why concurrently
introduced set-based approaches such as PointNet (Qi et al., 2017a) have become more
popular in the community for simple, small-scale point clouds. In such cases, modeling
nearest neighbor structures using graphs may indeed be a bit of an overkill. However, in
Chapter 4 we demonstrate a major advantage of using explicit spatial relationships for
modeling large-scale point clouds.

Feed-forward update function. In this Chapter, we were using simple update func-
tions ut : ReLU(M t+1

i ) and ut : ReLU(id(H t
i )+M t+1

i ). While being consistent with many
popular feed-forward architectures for images, the community has drawn inspiration
from recurrent networks and often adopted gated update functions (Gilmer et al., 2017;
Li et al., 2016b; Schütt et al., 2017), which should provide increased protection against
oversmoothing information within neighborhoods. In Chapter 4, we also adopt this view.

Rotation variance. Our definitions of edge attributes for point clouds bind together
the degree of (in)variance to local and global transformations, in particular to rotations.
Instead, very often, the ideal would be to remain equivariant for reasoning about
local spatial relationships and obtain invariance only at the global scale. Popular
remedies include data augmentation, as e.g. in this thesis4, or spatial transformer

4We also performed preliminary experiment finding a local coordinate system in each neighborhood
with principal component analysis of point coordinates but were not able to achieve reasonable results.
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networks (Jaderberg et al., 2015), as e.g. in PointNet (Qi et al., 2017a). Solving the
problem of equivariance efficiently and in a principled way is an active research topic
both in sparse and dense representations and in 2D and 3D - see Kondor (2018); Thomas
et al. (2018) for very recent methods targeting the point cloud domain.

3.6 Conclusion

We have introduced edge-conditioned convolution (ECC), an operation on graph node
signal performed in the spatial domain where filter weights are conditioned on edge
attributes and dynamically generated for each specific input sample. We have shown
that our formulation generalizes the standard convolution on graphs if edge attributes
are chosen properly and experimentally validated this assertion on MNIST. We applied
our approach to point cloud classification in a novel way, setting a new state of the
art performance on Sydney dataset. Furthermore, we have outperformed other deep
learning-based approaches on graph classification dataset NCI1. The source code has
been published at https://github.com/mys007/ecc.

In the next chapter, we integrate ECC into a recurrent network, investigate a reduction
of its memory and computational requirements, and apply it to node-wise prediction
task rather than graph classification tasks as in this chapter.

https://github.com/mys007/ecc




Chapter 4

Large-scale Point Cloud
Segmentation

4.1 Introduction

Visual understanding of 3D environment is a fundamental requirement for agents acting
in the real world, allowing for applications in autonomous driving and robotics, perception
assistance tools or augmented reality. Point cloud representation frequently arises in
such systems, usually originating in dedicated sensors, such as LiDAR and other active
remote sensing devices, or coming from multi-view / structure-from-motion reconstruction
methods. However, analysis of large 3D point clouds presents numerous challenges, the
most obvious one being the scale of the data. Another hurdle is the lack of clear structure
akin to the regular grid arrangement in images, especially in cases when the data has
been fused from multiple sensors or the position of the sensor is uncertain.

Previous attempts at using deep learning for large 3D data were trying to replicate
successful CNN architectures used for image segmentation. For example, SnapNet (Boulch
et al., 2017) converts a 3D point cloud into a set of virtual 2D color and depth (RGB-D)
snapshots, the semantic segmentation of which can then be projected on the original data.
SegCloud (Tchapmi et al., 2017) uses 3D convolutions on a regular voxel grid. However,
we argue that such methods do not capture the inherent structure of 3D point clouds,
which results in limited discrimination performance. Indeed, converting point clouds to
2D format comes with loss of information and requires to perform surface reconstruction,
a problem arguably as hard as semantic segmentation. Volumetric representation of point
clouds is inefficient and tends to discard small details, as discussed in Section 3.2 before.

Deep learning architectures specifically designed for 3D point clouds (Engelmann
et al., 2017; Qi et al., 2017a,b; Riegler et al., 2017b), including our work presented in
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Chapter 3, display good results but are limited by the size of inputs they can handle at
once.

In this chapter we propose a representation of large 3D point clouds as a collection of
interconnected simple shapes, coined superpoints, in spirit similar to superpixel methods
for image segmentation (Achanta et al., 2012). As illustrated in Figure 4.1, this structure
can be captured by an attributed directed graph called the superpoint graph (SPG).
Its nodes represent simple shapes while edges describe their adjacency relationship
characterized by rich edge attributes.

The SPG representation has several compelling advantages. First, instead of classifying
individual points or voxels, it considers entire object parts as whole, which are easier to
identify. Second, it is able to describe in detail the relationship between adjacent objects,
which is crucial for contextual classification: cars are generally above roads, ceilings
are surrounded by walls, etc. Third, the size of the SPG is defined by the number of
simple structures in a scene rather than the total number of points, which is typically
several order of magnitude smaller. This allows us to model long-range interaction which
would be intractable otherwise without strong assumptions on the nature of the pairwise
connections.

This chapter is largely based on our CVPR 2018 publication (Landrieu and Si-
monovsky, 2018), where the contribution was equally shared with Loïc Landrieu. Its
contributions to the field at the time of publication are as follows:

• We introduce superpoint graphs, a novel point cloud representation with rich edge
attributes encoding the contextual relationship between object parts in 3D point
clouds.

• Based on this representation, we are able to apply deep learning on large-scale
point clouds without major sacrifice in fine details. Our architecture consists of
PointNets (Qi et al., 2017a) for superpoint embedding and graph convolutions for
contextual segmentation. For the latter, we introduce a novel, more efficient version
of Edge-Conditioned Convolutions from previous chapter as well as a new form of
input gating in Gated Recurrent Units (Cho et al., 2014a).

• We set a new state of the art on two publicly available datasets: Semantic3D
(Hackel et al., 2017) and S3DIS (Armeni et al., 2016). In particular, we improve
mean per-class intersection over union (mIoU) by 11.9 points for the Semantic3D
reduced test set, by 8.8 points for the Semantic3D full test set, and by up to 12.4
points for the S3DIS dataset.
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(a) RGB point cloud (b) Geometric partition

(c) Superpoint graph (d) Semantic segmentation

Fig. 4.1 Visualization of individual steps in our pipeline. An input point cloud (a)
is partitioned into geometrically simple shapes, called superpoints (b). Based on this
preprocessing, a superpoint graph (SPG) is constructed by linking nearby superpoints by
superedges with rich attributes (c). Finally, superpoints are transformed into compact
embeddings, processed with graph convolutions to make use of contextual information,
and classified into semantic labels.

4.2 Related Work

The classic approach to large-scale point cloud segmentation is to classify each point or
voxel independently using handcrafted features derived from their local neighborhood
(Weinmann et al., 2015). The solution is then spatially regularized using graphical models
(Anand et al., 2013; Kim et al., 2013; Koppula et al., 2011; Lu and Rasmussen, 2012;
Martinovic et al., 2015; Munoz et al., 2009; Niemeyer et al., 2014; Shapovalov et al.,
2013; Wolf et al., 2015) or structured optimization (Landrieu et al., 2017). Clustering as
preprocessing (Guinard and Landrieu, 2017; Hu et al., 2013) or postprocessing (Weinmann
et al., 2017) have been used by several frameworks to improve the accuracy of the
classification.
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Deep Learning on Point Clouds. Several different approaches going beyond naive
volumetric processing of point clouds have been proposed recently and briefly reviewed
in Section 3.2 before. However, very few methods with deep learning components have
been demonstrated to be able to segment large-scale point clouds. PointNet (Qi et al.,
2017a) can segment large clouds with a sliding window approach, therefore constraining
contextual information within a small area only. Engelmann et al. (2017) improves on
this by increasing the context scope with multi-scale windows or by considering directly
neighboring window positions on a voxel grid. SEGCloud (Tchapmi et al., 2017) handles
large clouds by voxelizing followed by interpolation back to the original resolution and
post-processing with a conditional random field (CRF). None of these approaches is able
to consider fine details and long-range contextual information simultaneously. In contrast,
our pipeline partitions point clouds in an adaptive way according to their geometric
complexity and allows deep learning architecture to use both fine detail and interactions
over long distance.

Graph Convolutions. A key step of our approach is using graph convolutions to
spread contextual information. Formulations that are able to deal with graphs of variable
sizes can be seen as a form of message passing over graph edges (Gilmer et al., 2017).
Of particular interest are models supporting continuous edge attributes, which we use
to represent interactions. In image segmentation, convolutions on graphs built over
superpixels have been used for post-processing: Liang et al. (2017, 2016) traverses such
graphs in a sequential node order based on unary confidences to improve the final labels.
We update graph nodes in parallel and exploit edge attributes for informative context
modeling. Xu et al. (2017) convolves information over graphs of object detections to
infer their contextual relationships. Our work infers relationships implicitly to improve
segmentation results. Qi et al. (2017c) also relies on graph convolutions on 3D point
clouds. However, we process large point clouds instead of small RGB-D images with
nodes embedded in 3D instead of 2D in a novel, rich-attributed graph. Finally, we note
that graph convolutions also bear functional similarity to deep learning formulations of
CRFs (Zheng et al., 2015), which we discuss more in Section 4.3.4.

4.3 Method

The main obstacle that our framework tries to overcome is the size of typical LiDAR
scans. Indeed, they can reach hundreds of millions of points, making direct deep learning
approaches intractable. The proposed superpoint graph (SPG) representation allows
us to split the semantic segmentation problem into three distinct problems of different
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Fig. 4.2 Illustration of our framework on a toy scan of a table and a chair. We perform
geometric partitioning on the point cloud (a), which allows us to build the superpoint
graph (b). Each superpoint is embedded by a PointNet network. The embeddings are
then refined in GRUs by message passing along superedges to produce the final labeling
(c).

scales, shown in Figure 4.2, which can in turn be solved by methods of corresponding
complexity:

1 Geometrically homogeneous partition: The first step of our algorithm is to
partition the point cloud into geometrically simple yet meaningful shapes, called
superpoints. This unsupervised step takes the whole point cloud as input, and
therefore must be computationally very efficient. The SPG can be easily computed
from this partition.

2 Superpoint embedding: Each node of the SPG corresponds to a small part of
the point cloud corresponding to a geometrically simple primitive, which we assume
to be semantically homogeneous. Such primitives can be reliably represented by
downsampling small point clouds to at most hundreds of points. This small size
allows us to utilize recent point cloud embedding methods such as PointNet (Qi
et al., 2017a).

3 Contextual segmentation: The graph of superpoints is by orders of magnitude
smaller than any graph built on the original point cloud. Deep learning algorithms
based on graph convolutions can then be used to classify its nodes using rich edge
attributes facilitating long-range interactions.

The SPG representation allows us to perform end-to-end learning of the trainable two
last steps. We will describe each step of our pipeline in the following subsections.
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4.3.1 Geometric Partition with a Global Energy

In this subsection, we describe our method for partitioning the input point cloud into
parts of simple shape. Our objective is not to retrieve individual objects such as cars
or chairs, but rather to break down the objects into simple parts, as seen in Figure 4.4.
However, the clusters being geometrically simple, one can expect them to be semantically
homogeneous as well, i.e. not to cover objects of different classes. Note that this step of
the pipeline is purely unsupervised and makes no use of class labels beyond validation.

We follow the global energy model described by Guinard and Landrieu (2017) for its
computational efficiency. Another advantage is that the segmentation is adaptive to the
local geometric complexity. In other words, the segments obtained can be large simple
shapes such as roads or walls, as well as much smaller components such as parts of a car
or a chair.

Let us consider the input point cloud P as a set of n 3D points. Each point i ∈ P is
defined by its 3D position Pi, and, if available, other observations Oi such as color or
intensity. For each point, we compute a set of dg geometric features Fi ∈ Rdg characterizing
the shape of its local neighborhood. In this paper, we use three dimensionality values
proposed by Demantké et al. (2011): linearity, planarity and scattering, as well as the
verticality feature introduced by Guinard and Landrieu (2017). We also compute the
elevation of each point, defined as the z coordinate of Pi normalized over the whole input
cloud.

The global energy proposed by Guinard and Landrieu (2017) is defined with respect
to the 10-nearest neighbor adjacency graph Gnn = (P , Enn) of the point cloud (note that
this is not the SPG). The geometrically homogeneous partition is defined as the constant
connected components of the solution of the following optimization problem:

arg minG∈Rdg×n

∑
i∈P
∥Gi − Fi∥2 + µ

∑
(i,j)∈Enn

α(i,j) [Gi ̸= Gj] , (4.1)

where [·] is the Iverson bracket. The edge weight α ∈ R|E|
+ is chosen to be inversely

proportional to the edge length. The factor µ is the regularization strength and determines
the coarseness of the resulting partition.

The problem defined in Equation 4.1 is known as generalized minimal partition
problem, and can be seen as a continuous-space version of the Potts energy model, or
an ℓ0 variant of the graph total variation. The minimized functional being nonconvex
and noncontinuous implies that the problem cannot realistically be solved exactly for
large point clouds. However, the ℓ0-cut pursuit algorithm introduced by Landrieu and
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Obozinski (2017) is able to quickly find an approximate solution with a few graph-cut
iterations. In contrast to other optimization methods such as α-expansion (Boykov et al.,
2001), the ℓ0-cut pursuit algorithm does not require selecting the size of the partition
in advance. The constant connected components S = {S1, · · · , Sk} of the solution of
Equation 4.1 define our geometrically simple elements, and are referred as superpoints
(i.e. set of points) in the rest of this chapter.

4.3.2 Superpoint Graph Construction

In this subsection, we describe how we compute the SPG as well as its key features. The
SPG is a structured representation of the point cloud, defined as an oriented attributed
graph G = (S, E , E) whose nodes are the set of superpoints S and edges E (referred to as
superedges) represent the adjacency between superpoints. The superedges are annotated
by a set of df attributes: E ∈ R|E|×df characterizing the adjacency relationship between
superpoints.

We define Gvor = (P , Evor) as the symmetric Voronoi adjacency graph of the complete
input point cloud as defined by Jaromczyk and Toussaint (1992). Two superpoints S and
R are adjacent if there is at least one edge in Evor with one end in S and one end in R:

E =
{
(S, R) ∈ S2 | ∃ (i, j) ∈ Evor ∩ (S ×R)

}
. (4.2)

Important spatial attributes associated with a superedge (S, R) are obtained from the
set of offsets δ(S, R) for edges in Evor linking both superpoints:

δ (S, R) = {(pi − pj) | (i, j) ∈ Evor ∩ (S ×R)} . (4.3)

Superedge attributes can also be derived by comparing the shape and size of the ad-
jacent superpoints. To this end, we compute |S| as the number of points comprised
in a superpoint S, as well as shape attribute length (S) = λ1, surface (S) = λ1λ2,
volume (S) = λ1λ2λ3 derived from the eigenvalues λ1, λ2, λ3 of the covariance of the
positions of the points comprised in each superpoint, sorted by decreasing value. In
Table 4.1, we describe a list of the different superedge attributes used in this paper. Note
that the break of symmetry in the edge attributes makes the SPG a directed graph.

4.3.3 Superpoint Embedding

The goal of this stage is to compute a descriptor for every superpoint Si by embedding it
into a vector Zi of fixed-size dimensionality dz. Note that each superpoint is embedded
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Attribute name Size Description
mean offset 3 meanm∈δ(S,R) δm

offset deviation 3 stdm∈δ(S,R) δm

centroid offset 3 meani∈S Pi −meanj∈R Pj

length ratio 1 log length (S) /length (R)
surface ratio 1 log surface (S) /surface (R)
volume ratio 1 log volume (S) /volume (R)

point count ratio 1 log |S|/|R|

Table 4.1 List of df = 13 superedge attributes characterizing the adjacency between two
superpoints S and R.

in isolation; contextual information required for its reliable classification is provided only
in the following stage by the means of graph convolutions.

Several deep learning-based methods have been proposed for this purpose recently. We
choose PointNet (Qi et al., 2017a) for its remarkable simplicity, efficiency, and robustness.
In PointNet, input points are first aligned by a Spatial Transformer Network (Jaderberg
et al., 2015), independently processed by multi-layer perceptrons (MLPs), and finally
max-pooled to summarize the shape.

In our case, input shapes are geometrically simple objects, which can be reliably
represented by a small amount of points and embedded by a rather compact PointNet.
This is important to limit the memory needed when evaluating many superpoints on
current GPUs. In particular, we subsample superpoints on-the-fly down to np = 128
points to maintain efficient computation in batches and facilitate data augmentation.
Superpoints of less than np points are sampled with replacement, which in principle does
not affect the evaluation of PointNet due to its max-pooling. However, we observed that
including very small superpoints of less than nminp = 40 points in training harms the
overall performance. Thus, embedding of such superpoints is set to zero so that their
classification relies solely on contextual information.

In order for PointNet to learn spatial distribution of different shapes, each superpoint
is rescaled to unit sphere before embedding. Points are represented by their normalized
position P ′

i , observations Oi, and geometric features Fi (since these are already available
precomputed from the partitioning step). Furthermore, the original metric diameter of
the superpoint is concatenated as an additional feature after PointNet max-pooling in
order to stay covariant with shape sizes, see Section 4.3.5 for further details.
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4.3.4 Contextual Segmentation

The final stage of the pipeline is to classify each superpoint Si based on its embedding
Zi and its local surroundings within the SPG. Graph convolutions are naturally suited
to this task. In this section, we explain the propagation model of our system.

Our approach builds on the ideas from Gated Graph Neural Networks (Li et al., 2016b)
and Edge-Conditioned Convolutions (ECC) introduced in the previous chapter. The
general idea is that superpoints refine their embedding according to pieces of information
passed along superedges. Concretely, each superpoint Si maintains its state hidden in a
Gated Recurrent Unit (GRU) (Cho et al., 2014a). The hidden state is initialized with
embedding Zi and is then processed over several iterations (time steps) t = 1 . . . T . At
each iteration t, a GRU takes its hidden state H t

i and an incoming message M t
i as input,

and computes its new hidden state H t+1
i . The incoming message M t

i to superpoint i

is computed as a weighted sum of hidden states H t
j of neighboring superpoints j. The

actual weighting for a superedge (j, i) depends on its attributes Ej,i, listed in Table 4.1.
In particular, it is computed from the attributes by a multi-layer perceptron w, so-called
Filter Generating Network. Formally:

H t+1
i = (1− U t

i )⊙Qt
i + U t

i ⊙H t
i

Qt
i = tanh(X t,1

i + Rt
i ⊙H t,1

i )
U t

i = σ(X t,2
i + H t,2

i )
Rt

i = σ(X t,3
i + H t,3

i )

(4.4)

(H t,1
i , H t,2

i , H t,3
i )T = ρ(WhH t

i + bh)
(X t,1

i , X t,2
i , X t,3

i )T = ρ(WxX t
i + bx)

(4.5)

X t
i = σ(WgH t

i + bg)⊙M t
i (4.6)

M t
i = meanj|(j,i)∈E w(Ej,i,·; We)⊙H t

j (4.7)

H1
i = Zi (4.8)

Yi = Wo(H1
i , . . . , HT +1

i )T , (4.9)

where ⊙ is element-wise multiplication, σ(·) sigmoid function, and W· and b· are trainable
parameters shared among all GRUs. Equation 4.4 lists the standard GRU rules (Cho
et al., 2014a) with its update gate U t

i and reset gate Rt
i. To improve stability during

training, in Equation 4.5 we apply Layer Normalization (Ba et al., 2016) defined as
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ρ(a) := (a − mean(a))/(std(a) + ϵ) separately to linearly transformed input X t
i and

transformed hidden state H t
i , with ϵ being a small constant. Finally, the model includes

three interesting extensions in Equations 4.6–4.9, which we detail below.

Input Gating. We argue that GRU should possess the ability to down-weight (parts
of) an input vector based on its hidden state. For example, GRU might learn to ignore
its context if its class state is highly certain or to direct its attention to only specific
feature channels. Equation 4.6 achieves this by gating message M t

i by the hidden state
before using it as input X t

i .

Edge-Conditioned Convolution. ECC plays a crucial role in our model as it can
dynamically generate filtering weights for any value of continuous attributes Ej,i by
processing them with a multi-layer perceptron w. In the original formulation, w regresses
a weight matrix to perform matrix-vector multiplication w(Ej,i; We)H t

j for each edge. In
this chapter, we propose a lightweight variant with lower memory requirements and fewer
parameters, which is beneficial for datasets with few but large point clouds. Specifically,
we regress only an edge-specific weight vector and perform element-wise multiplication
as in Equation 4.7 (ECC-VV). Channel mixing, albeit in an edge-unspecific fashion, is
postponed to Equation 4.5. Finally, let us remark that w is shared over time iterations
and that self-loops are not necessary due to the existence of hidden states in GRUs.

State Concatenation. Inspired by DenseNet (Huang et al., 2017), we concatenate
hidden states over all time steps and linearly transform them to produce segmentation
logits Yi in Equation 4.9. This allows to exploit the dynamics of hidden states due to
increasing receptive field for the final classification.

4.3.5 Implementation Details

Training. While the geometric partitioning step is unsupervised, superpoint embedding
and contextual segmentation are trained jointly in a supervised way with cross entropy loss.
Superpoints are assumed to be semantically homogeneous and, consequently, assigned
a hard ground truth label corresponding to the majority label among their contained
points. We also considered using soft labels corresponding to normalized histograms of
point labels and training with Kullback-Leibler (Kullback and Leibler, 1951) divergence
loss. It performed slightly worse in our initial experiments, though.

Naive training on large SPGs may approach memory limits of current GPUs. We
circumvent this issue by randomly subsampling the sets of superpoints at each iteration
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and training on induced subgraphs, i.e. graphs composed of subsets of nodes and the orig-
inal edges connecting them. Specifically, graph neighborhoods of order 3 are sampled to
select at most 512 superpoints per SPG with more than nminp points (smaller superpoints
are not embedded). Note that as the induced graph is a union of small neighborhoods,
relationships over many hops may still be formed and learned. This strategy also doubles
as data augmentation and a strong regularization, together with randomized sampling of
point clouds described in Section 4.3.3. Additional data augmentation is performed by
randomly rotating superpoints around the vertical axis and jittering point features by
Gaussian noise N(0, 0.01) truncated to [−0.05, 0.05].

We train using Adam (Kingma and Ba, 2015) with initial learning rate 0.01 and batch
size 2, i.e. effectively up to 1024 superpoints per batch. For Semantic3D, we train for 500
epochs with stepwise learning rate decay of 0.7 at epochs 350, 400, and 450. For S3DIS,
we train for 250 epochs with steps at 200 and 230. We clip gradients within [−1, 1].

Testing. In modern deep learning frameworks, testing can be made very memory-
efficient by discarding layer activations as soon as the follow-up layers have been computed.
In practice, we were able to label full SPGs at once. To compensate for randomness due
to subsampling of point clouds in PointNets, we average logits obtained over 10 runs
with different seeds.

Voxelization. We pre-process input point clouds with voxelization subsampling by
computing per-voxel mean positions and observations over a regular 3D grid (5 cm bins
for Semantic3D and 3 cm bins for S3DIS dataset). The resulting semantic segmentation
is interpolated back to the original point cloud in a nearest neighbor fashion. Voxelization
helps decreasing the computation time and memory requirement, and improves the
accuracy of the semantic segmentation by acting as a form of geometric and radiometric
denoising as well. The quality of further steps is practically not affected, as superpoints
are usually strongly subsampled for embedding during learning and inference anyway
(Section 4.3.3).

Geometric Partition. We set regularization strength µ = 0.8 for Semantic3D and
µ = 0.03 for S3DIS, which strikes a balance between semantic homogeneity of superpoints
and the potential for their successful discrimination (S3DIS is composed of smaller
semantic parts than Semantic3D). In addition to five geometric features f (linearity,
planarity, scattering, verticality, elevation), we use color information O for clustering in
S3DIS due to some classes being geometrically indistinguishable, such as boards or doors.
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Fig. 4.3 The PointNet embedding np dp-dimensional samples of a superpoint to a dz-
dimensional vector.

PointNet. We use a simplified shallow and narrow PointNet architecture with just a
single Spatial Transformer Network (STN), see Figure 4.3. Input points are processed by
a sequence of MLPs (widths 64, 64, 128, 128, 256) and max pooled to a single vector of
256 features. The scalar metric diameter is appended and the result further processed by
a sequence of MLPs (widths 256, 64, dz=32). A residual matrix Φ ∈ R2×2 is regressed by
STN and (I + Φ) is used to transform XY coordinates of input points as the first step.
The architecture of STN is a "small PointNet" with 3 MLPs (widths 64, 64, 128) before
max pooling and 3 MLPs after (widths 128, 64, 4). Batch Normalization (Ioffe and
Szegedy, 2015) and ReLUs are used everywhere. Input points have dp=11 dimensional
features for Semantic3D (position P , color O, geometric features F ), with 3 additional
ones for S3DIS (room-normalized spatial coordinates, as in past work (Qi et al., 2017a)).

Segmentation Network. We use embedding dimensionality dz = 32 and T = 10
iterations. ECC-VV is used for Semantic3D (there are only 15 point clouds even though
the amount of points is large), while full ECC is used for S3DIS (large number of point
clouds). Filter-generating network w is a MLP with 4 layers (widths 32, 128, 64, and
32 or 322 for ECC-VV or ECC) with ReLUs. Batch Normalization is used only after
the third parametric layer. No bias is used in the last layer. Superedges have df = 13
dimensional attributes, normalized by mean subtraction and scaling to unit variance
based on the whole training set.

4.4 Experiments

We evaluate our pipeline on two large point cloud segmentation benchmarks, Semantic3D
(Hackel et al., 2017) and Stanford Large-Scale 3D Indoor Spaces (S3DIS) (Armeni et al.,
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2016), on both of which we set the new state of the art. Furthermore, we perform a
thorough ablation study of our pipeline in Section 4.4.3 and Section 4.4.4.

Even though the two data sets are quite different in nature (large outdoor scenes
for Semantic3D, smaller indoor scanning for S3DIS), we use nearly the same model for
both, described above. The deep model is rather compact and 6 GB of GPU memory is
enough for both testing and training.

Performance is evaluated using three metrics: per-class intersection over union (IoU),
per-class accuracy (Acc), and overall accuracy (OA), defined as the proportion of correctly
classified points. We stress that the metrics are computed on the original point clouds,
not on superpoints.

4.4.1 Semantic3D

Semantic3D (Hackel et al., 2017) is currently the largest available LiDAR dataset with
over 3 billion points from a variety of urban and rural scenes. Each point has RGB and
intensity values (the latter of which we do not use). The dataset consists of 15 training
scans and 15 test scans with withheld labels. We also evaluate on the reduced set of 4
subsampled scans, as common in past work.

In Table 4.2, we provide the results of our algorithm compared to other recent works
and in Figure 4.4, we provide qualitative results of our framework. Our framework
improves significantly on the state of the art of semantic segmentation for this data set,
i.e. by nearly 12 mIoU points on the reduced set and by nearly 9 mIoU points on the full
set. In particular, we observe a steep gain on the "artefact" class. This can be explained
by the ability of the partitioning algorithm to detect artifacts due to their singular shape,
while they are hard to capture using snapshots, as suggested by (Boulch et al., 2017).
Furthermore, these small object are often merged with the road when performing spatial
regularization.

4.4.2 Stanford Large-Scale 3D Indoor Spaces

The S3DIS dataset (Armeni et al., 2016) consists of 3D RGB point clouds of six floors
from three different buildings split into individual rooms. We evaluate our framework
following two dominant strategies found in previous works. As advocated by Qi et al.
(2017a), we perform 6-fold cross validation with micro-averaging, i.e. computing metrics
once over the merged predictions of all test folds. Following Tchapmi et al. (2017), we
also report the performance on the fifth fold only (Area 5), corresponding to a building
not present in the other folds. Since some classes in this data set cannot be partitioned



66 Large-scale Point Cloud Segmentation

(a) RGB point cloud (b) Geometric partitioning

(c) Prediction (d) Ground truth

man-made terrain natural terrain high vegetation low vegetation
buildings hardscape scanning artefacts cars

Fig. 4.4 Example visualizations on Semantic3D. The colors are chosen randomly for each
element of the partition.
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(a) RGB point cloud (b) Geometric partitioning

(c) Prediction (d) Ground truth

ceiling floor wall column beam
window door table chair bookcase

sofa board clutter unlabelled

Fig. 4.5 Example visualizations on S3DIS. The colors are chosen randomly for each
element of the partition.
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Method OA mIoU MaTe NaTe HiVe LoVe Bu Ha ScAr Ca

re
du

ce
d

se
t Hackel et al. (2016) 86.2 54.2 89.8 74.5 53.7 26.8 88.8 18.9 36.4 44.7

Lawin et al. (2017) 88.9 58.5 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2
Boulch et al. (2017) 88.6 59.1 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4

Tchapmi et al. (2017) 88.1 61.3 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3
SPG (Ours) 94.0 73.2 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2

fu
ll

se
t Hackel et al. (2016) 85.0 49.4 91.1 69.5 32.8 21.6 87.6 25.9 11.3 55.3

Boulch et al. (2017) 91.0 67.4 89.6 79.5 74.8 56.1 90.9 36.5 34.3 77.2
SPG (Ours) 92.9 76.2 91.5 75.6 78.3 71.7 94.4 56.8 52.9 88.4

Table 4.2 Intersection over union metric for the different classes of the Semantic3D
dataset: man-made terrain (MaTe), natural terrain (NaTe), high vegetation (HiVe), low
vegetation , (LoVe), buildings (Bu), hardscape (Ha), scanning artefact (ScAr), cars (Ca).
OA is the global accuracy, while mIoU refers to the unweighted average of IoU of each
class. Full test set has 2 091 952 018 points, reduced test set 78 699 329 points.

purely using geometric features (such as boards or paintings on walls), we concatenate
the color information O to the geometric features F for the partitioning step.

The quantitative results are displayed in Table 4.3, with qualitative results in Fig-
ure 4.5. S3DIS is a difficult dataset with hard to retrieve classes such as white boards
on white walls and columns within walls. From the quantitative results we can see that
our framework performs better than other methods on average. Notably, doors are able
to be correctly classified at a higher rate than other approaches, as long as they are
open. Indeed, doors are geometrically similar to walls, but their position with respect to
the door frame allows our network to retrieve them correctly. On the other hand, the
partition merges white boards with walls, depriving the network from the opportunity
to even learn to classify them: the IoU of boards for theoretical perfect classification of
superpoints (Section 4.4.3) is only 51.3.

Computation Time. In Table 4.4, we report computation time over the different
steps of our pipeline for the inference on Area 5 measured on a 4 GHz CPU and GTX
1080 Ti GPU. While the bulk of time is spent on the CPU for partitioning and SPG
computation, we show that voxelization as pre-processing leads to a significant speed-up
as well as improved accuracy.

4.4.3 Segmentation Baselines

To demonstrate the advantage of our overall pipeline design, we compare it to several
baselines. Due to the lack of public ground truth for test sets of Semantic3D, we evaluate
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Method OA mAcc mIoU
A

re
a

5
Qi et al. (2017a) – 48.98 41.09

Tchapmi et al. (2017) – 57.35 48.92
** Tatarchenko et al. (2018) 82.5 62.2 52.8

** Huang et al. (2018) – 59.42 51.93
** Li et al. (2018a) 85.91 63.86 57.26

SPG (Ours) 86.38 66.50 58.04

6-
fo

ld

Qi et al. (2017a) # 78.5 66.2 47.6
Engelmann et al. (2017) 81.1 66.4 49.7
** Huang et al. (2018) – 66.45 56.47

** Li et al. (2018a) 88.14 75.61 65.39
SPG (Ours) 85.5 73.0 62.1

Method ceiling floor wall beam column window door chair table bookcase sofa board clutter

A
re

a
5 Qi et al. (2017a) 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22

Tchapmi et al. (2017) 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60
** Huang et al. (2018) 93.34 98.36 79.18 0.00 15.75 45.37 50.10 65.52 67.87 22.45 52.45 41.02 43.64

SPG (Ours) 89.35 96.87 78.12 0.0 42.81 48.93 61.58 84.66 75.41 69.84 52.60 2.10 52.22

6-
fo

ld

Qi et al. (2017a) # 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
Engelmann et al. (2017) 90.3 92.1 67.9 44.7 24.2 52.3 51.2 47.4 58.1 39.0 6.9 30.0 41.9
** Huang et al. (2018) 92.48 92.83 78.56 32.75 34.37 51.62 68.11 59.72 60.13 16.42 50.22 44.85 52.03

SPG (Ours) 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

Table 4.3 Results on the S3DIS dataset on fold “Area 5” and micro-averaged over all 6
folds. Intersection over union is shown split per class. Concurrent baselines are denoted
with a star. Hash denotes results obtained by Engelmann et al. (2017).

Step Full cloud 2 cm 3 cm 4 cm
Voxelization 0 40 24 16

Feature computation 439 194 88 43
Geometric partition 3428 1013 447 238
SPG computation 3800 958 436 252

Inference 10× 24 10× 11 10× 6 10× 5
Total 7907 2315 1055 599

mIoU 6-fold 54.1 60.2 62.1 57.1

Table 4.4 Computation time in seconds for the inference on S3DIS Area 5 (68 rooms,
78 649 682 points) for different voxel sizes.
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Model mAcc mIoU
Best 73.0 62.1

Perfect 92.7 88.2
Unary 50.8 40.0
iCRF 51.5 40.7

CRF− ECC 65.6 55.3
GRU13 69.1 58.5

Table 4.5 Comparison to various segmentation baselines on S3DIS (6-fold cross validation).

on S3DIS with 6-fold cross validation and show comparison of different models to our
Best model in Table 4.5.

Performance Limits. The contribution of contextual segmentation can be bounded
both from below and above. The lower bound (Unary) is estimated by training PointNet
with dz = 13 but otherwise the same architecture, denoted as PointNet13, to directly
predict class logits, without SPG and GRUs. The upper bound (Perfect) corresponds to
assigning each superpoint its ground truth label, and thus sets the limit of performance
due to the geometric partition. We can see that contextual segmentation is able to
win roughly 22 mIoU points over unaries, confirming its importance. Nevertheless, the
learned model still has room of up to 26 mIoU points for improvement, while about 12
mIoU points are forfeited to the semantic inhomogeneity of superpoints.

CRFs. We compare the effect of our GRU+ECC-based network to CRF-based
regularization. As a baseline (iCRF), we post-process Unary outputs by CRF inference
over SPG connectivity with scalar transition matrix, as described by (Guinard and
Landrieu, 2017). Next (CRF− ECC), we adapt CRF-RNN framework of Zheng et al.
(2015) to general graphs with edge-conditioned convolutions (see 4.5 for details) and train
it with PointNet13 end-to-end. Finally (GRU13), we modify Best to use PointNet13.
We observe that iCRF barely improves accuracy (+1 mIoU), which is to be expected,
since the partitioning step already encourages spatial regularity. CRF− ECC does better
(+15 mIoU) due to end-to-end learning and use of edge attributes, though it is still below
GRU13 (+18 mIoU), which performs more complex operations and does not enforce
normalization of the embedding. Nevertheless, the 32 channels used in Best instead of
the 13 used in GRU13 provide even more freedom for feature representation (+22 mIoU).

4.4.4 Ablation Studies

To better understand the influence of made design decisions and chosen hyperparameters,
we perform ablation studies and present their results in Table 4.6. Concretely, we explore
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the advantages of design choices by individually removing them from Best in order to
compare the framework’s performance with and without them.

a) Spatial Transformer Network. While STN makes superpoint embedding
orientation invariant, the relationship with surrounding objects are still captured by
superedges, which are orientation variant. In practice, STN helps by 4 mIoU points.

b) Geometric Features. Geometric features fi are computed in the geometric
partition step and can therefore be used in the following learning step for free. While
PointNets could be expected to learn similar features from the data, this is hampered by
superpoint subsampling, and therefore their explicit use helps (+4 mIoU).

c) State Concatenation. The advantage of state concatenation is compared to
considering only the last hidden state in GRU for output (Yi = WoH

T +1
i ). This accounts

for about 5 mIoU points.
d) ECC Variant. ECC− VV decreases the performance on the S3DIS dataset by 3

mIoU points. Nevertheless, it has improved the performance on Semantic3D by 2 mIoU.
e) Sampling Superpoints. The main effect of subsampling SPG is regularization by

data augmentation. Too small a sample size leads to disregarding contextual information
(-4 mIoU) while too large a size leads to overfitting (-2 mIoU). Lower memory requirements
at training is an extra benefit. There is no subsampling at test time.

f) Long-range Context. We observe that limiting the range of context information
in SPG harms the performance. Specifically, capping distances in Gvor to 1 m (as used
in PointNet (Qi et al., 2017a)) or 5 m (as used in SegCloud1 (Tchapmi et al., 2017))
worsens the performance of our method (even more on our Semantic 3D validation set).

g) Input Gate. We evaluate the effect of input gating (IG) for GRUs as well as
LSTM units. While a LSTM unit achieves higher score than a GRU (-3 mIoU), the
proposed IG reverses this situation in favor of GRU (+1 mIoU). Unlike the standard
input gate of LSTM, which controls the information flow from the hidden state and input
to the cell, our IG controls the input even before it is used to compute all other gates.

h) Regularization Strength µ. We investigate the balance between superpoints’
discriminative potential and their homogeneity controlled by parameter µ . We observe
that the system is able to perform reasonably over a range of SPG sizes.

Superedge Attributes. Finally, in Table 4.7 we evaluate empirical importance
of individual superedge attributes by removing them from Best. Although no single
attribute is crucial, the most being offset deviation (+3 mIoU), without any superedge
attributes2 the network performs distinctly worse (-22 mIoU), falling back even below

1Furthermore, SegCloud divides the inference into cubes without overlap, possibly causing inconsis-
tencies across boundaries.

2We perform homogeneous regularization by setting all superedge attributes to scalar 1.
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a) Spatial transf. no yes
mIoU 58.1 62.1

b) Geometric features no yes
mIoU 58.4 62.1

c) State concatenation no yes
mIoU 57.7 62.1

d) ECC variant ECC-VV ECC
mIoU 59.4 62.1

e) Max superpoints 256 512 1024
mIoU 57.9 62.1 60.4

f) Superedge limit 1 m 5 m ∞
mIoU 61.0 61.3 62.1

g) Input gate LSTM LSTM+IG GRU GRU+IG
mIoU 61.0 61.0 57.5 62.1

h) Regularization µ 0.01 0.02 0.03 0.04
# superpoints 785 010 385 091 251 266 186 108
perfect mIoU 90.6 88.2 86.6 85.2

mIoU 59.1 59.2 62.1 58.8

Table 4.6 Ablation study of design decisions on S3DIS (6-fold cross validation). Our
choices in bold.

iCRF to the level of Unary, which validates their design and the overall motivation for
SPG.

4.5 Discussion

Relation to CRFs. In image segmentation, post-processing of convolutional out-
puts using Conditional Random Fields (CRFs) is widely popular. Several inference
algorithms can be formulated as (recurrent) network layers amendable to end-to-end

Attribute set mAcc mIoU
Best 73.0 62.1

no superedge attributes 50.1 39.9
no mean offset 72.5 61.8

no offset deviation 71.7 59.3
no centroid offset 74.5 61.2

no len/surf/vol ratios 71.2 60.7
no point count ratio 72.7 61.7

Table 4.7 Ablation study of superedge attributes on S3DIS (6-fold cross validation).
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learning (Schwing and Urtasun, 2015; Zheng et al., 2015), possibly with general pairwise
potentials (Chandra and Kokkinos, 2016; Larsson et al., 2017; Lin et al., 2016). While
our method of information propagation shares both these characteristics, our GRUs
operate on dz-dimensional intermediate feature space, which is richer and less constrained
than low-dimensional vectors representing beliefs over classes, as also discussed in Gadde
et al. (2016). Such enhanced access to information is motivated by the desire to learn
a powerful representation of context, which goes beyond belief compatibilities, as well
as the desire to be able to discriminate our often relatively weak unaries (superpixel
embeddings).

We have empirically evaluated these claims in our experiments above. To provide a
fair comparison, we have adapted CRF-RNN mean field inference introduced by Zheng
et al. (2015) to use the same pairwise information as our model and denoted it CRF-ECC.
Here we describe this adaptation in more detail. The original work proposed a dense
CRF with unary potentials Ui (= Zi) and pairwise potentials Ψ defined to be a mixture
of m Gaussian kernels as Ψij = γ

∑
m wmKm(Ei,j), where γ is label compatibility matrix,

w are parameters, and K are fixed Gaussian kernels applied on edge features.
We replaced this definition of the pairwise term with a Filter generating network w

parameterized with weights We, which generalizes the message passing and compatibility
transform steps of Zheng et al. . Furthermore, we use superedge connectivity E instead
of assuming a complete graph. The pseudo-code is listed in Algorithm 1. Its output
are marginal probability distributions Q. In practice we run the inference for T = 10
iterations.

Algorithm 1 CRF-ECC
Qi ← softmax(Ui)
while not converged do

Q̂i ←
∑

j|(j,i)∈E w(Ej,i; We)Qj

Q̆i ← Ui − Q̂i

Qi ← softmax(Q̆i)
end while

Adjacency Graphs. In this paper, we use two different adjacency graphs on points
of the input clouds: Gnn in Section 4.3.1 and Gvor in Section 4.3.2. Indeed, different
definitions of adjacency have different advantages. Voronoi adjacency is more suited to
capture long-range relationships between points, which is beneficial for the SPG. Nearest
neighbors adjacency tends not to connect objects separated by a small gap. This is
desirable for the global energy but tends to produce a SPG with many small connected
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components, decreasing embedding quality. Fixed radius adjacency should be avoided in
general as it handles the variable density of LiDAR scans poorly.

Limitations. Despite the strong experimental results, it is worth discussing limitations
of our method as well. Foremost, the assumed semantic homogeneity of the obtained
partitions does not necessarily hold up once applied to real world data. The framework
has been evaluated on high-end scanner acquisitions and may not immediately work on
point clouds coming from structure-from-motion reconstructions and especially cheap
depth cameras, such as Kinect.

While the regularization strength µ provides a powerful and an intuitive handle for
the user to adapt the method for a particular dataset, we believe a trainable partitioning
step or at least partitioning of learned features might go even further and allow the
model to learn e.g. SLAM-specific features and provide a better partition. Very recently,
several attempts at learning features for clustering have been presented: Wolf et al. (2017)
predict altitudes for watershed algorithm, Tu et al. (2018) predict affinities for computing
superpixels, and Verelst et al. (2018) looks into backpropagation through SLIC, a popular
superpixel algorithm. This makes us speculate that features for global energy term in
Equation 4.1 could be learned in a similar spirit. Nevertheless, end-to-end training may
remain challenging from the engineering point of view on the current hardware simply
due to the scale of the full problem.

4.6 Conclusion

We presented a deep learning framework for performing semantic segmentation of large
point clouds based on a partition into simple shapes. We showed that SPGs allow us
to use effective deep learning tools, which would not be able to handle the data volume
otherwise. Our method significantly improves on the state of the art on two publicly
available datasets. Our experimental analysis suggested that future improvements can
be made in both partitioning and learning deep contextual classifiers. The source code
has been published at https://github.com/loicland/superpoint_graph.

https://github.com/loicland/superpoint_graph


Chapter 5

Generation of Small Graphs

5.1 Introduction

Generative models capture data distribution in an unsupervised way and may allow
us to draw samples from it. In the recent years, deep generative models have gone
through fast-paced advances leading to massive rise in the realism of generated samples.
They have found use in a myriad of problems and applications, including image super-
resolution (Ledig et al., 2017), domain or modality transfer (Isola et al., 2017; Reed
et al., 2016), anomaly detection (Schlegl et al., 2017), or proposing new molecules in
drug discovery as in this chapter. The most popular model families include generative
adversarial networks (GANs) (Goodfellow et al., 2014), posing the training process as a
game between a generator and a discriminator, variational autoencoders (VAEs) (Kingma
and Welling, 2013), approximating data likelihood by its variational lower bound, and
auto-regressive networks (Sutskever et al., 2011), learning the conditional distribution of
each next sampling step.

Progress in deep learning on graphs, on the other hand, has been nearly exclusively
concentrated on learning graph embedding tasks before the submission of our work,
i.e. encoding an input graph into a vector representation. Hence, it is an intriguing
question how one can transfer the achievements in generative models for images and text
to the domain of graphs, i.e. their decoding from a vector representation.

However, learning to generate graphs is a difficult problem for methods based on
gradient optimization, as graphs are discrete structures. Unlike sequence (text) generation,
graphs can have arbitrary connectivity and it is not trivial to choose how to linearize
their construction in a sequence of steps. On the other hand, learning the order for
incremental construction involves discrete decisions, which are not differentiable.
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In this work, we propose to sidestep these hurdles by having the decoder output a
probabilistic fully-connected graph of a predefined maximum size directly at once. In
a probabilistic graph, the existence of nodes and edges, as well as their attributes, are
modeled as independent random variables. The method is formulated in the framework
of variational autoencoders by Kingma and Welling (2013).

We demonstrate our method, coined GraphVAE, in cheminformatics on the task of
molecule generation. Molecular datasets are a challenging but convenient testbed for
our generative model, as they easily allow for both qualitative and quantitative tests of
decoded samples. Past generative models have operated on textual input data only. An
advantage of a graph-based decoder compared to text-based decoder is the possibility to
predict detailed attributes of atoms and bonds in addition to the base structure.

This chapter is largely based on our ICLR workshop paper (Simonovsky and Ko-
modakis, 2018b) and follow-up ICANN 2018 publication (Simonovsky and Komodakis,
2018a). While our method is applicable for generating smaller graphs only and its
practical performance leaves space for improvement, we believe our work at the time
of its submission was an important initial step towards powerful and efficient graph
decoders with the following contributions:

• We present one of the first methods for graph generation using deep learning. Our
method can generate graphs of variable though limited sizes without any step-wise
supervision.

• We evaluate on two molecular datasets, offering a better selection of valid but at
the same time diverse samples on QM9 dataset (Ramakrishnan et al., 2014) than
previous text generation-based methods. We also suggest a conditional setting of
our model as an alternative way of controlling the molecule generation process.

5.2 Related work

De Novo Molecular Design. In the pharmaceutical industry, generative models may
become promising for computational design of molecules fulfilling certain criteria (such
as solubility) and optimizing certain desirable properties (such as binding strength to
a protein). The hypothesis is that optimization in the continuous space of models or
embeddings is easier than in the original discrete chemical space. In the context of deep
generative models, the field has explored mainly two strategies for navigating the chemical
space, either by fine-tuning a generative model, e.g. with simple hill-climbing (Segler
et al., 2018) or with reinforcement learning (Olivecrona et al., 2017), or by optimization
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in the continuous embedding space (Gómez-Bombarelli et al., 2016). Here, we suggest to
directly drive certain properties by introducing a conditional version of the decoder, also
concurrently proposed by Li et al. (2018b).

While molecules have an intuitive and richer representation as graphs, the field has
had to resort to textual representations with fixed syntax, e.g. so-called SMILES strings
(Weininger, 1988), to exploit recent progress made in text generation with RNNs (Gómez-
Bombarelli et al., 2016; Olivecrona et al., 2017; Segler et al., 2018). As their syntax is
brittle, many invalid strings tend to be generated, which has been recently addressed by
Kusner et al. (2017) by incorporating context-free grammar rules into decoding to mask
out invalid steps, effectively generating a parse tree. While encouraging, their approach
does not guarantee semantic (chemical) validity, similarly to our method. In a concurrent
work, Dai et al. (2018) propose to structure the string decoding space even more tightly
by using attribute grammars, which allow to capture semantic rules as well and thus
generate higher proportions of valid outputs.

Discrete Data Decoders. Text is the most common discrete representation. Gen-
erative models there are usually trained in a maximum likelihood fashion by teacher
forcing (Williams and Zipser, 1989), which avoids the need to backpropagate through
output discretization by feeding the ground truth instead of the past sample at each step.
Bengio et al. (2015) argued this may lead to expose bias, i.e. possibly reduced ability to
recover from own mistakes. Recently, efforts have been made to overcome this problem.
Notably, computing a differentiable approximation using Gumbel distribution (Kusner
and Hernández-Lobato, 2016) or bypassing the problem by learning a stochastic policy
in reinforcement learning (Yu et al., 2017). Our work deals with the non-differentiability
problem by formulating the loss on a probabilistic graph.

Graph Decoders. Related work pre-dating deep learning includes random graphs
(Barabási and Albert, 1999; Erdos and Rényi, 1960), stochastic blockmodels (Snijders
and Nowicki, 1997), or state transition matrix learning (Gong and Xiang, 2003).

Graph generation was largely unexplored in deep learning before 2018. The clos-
est work to ours is by Johnson (2017), who incrementally constructs a probabilistic
(multi)graph as a world representation according to a sequence of input sentences to
answer a query. While our model also outputs a probabilistic graph, we do not assume
having a prescribed order of construction transformations available and we formulate the
learning problem as an autoencoder.
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Xu et al. (2017) learns to produce a scene graph from an input image. They construct
a graph from a set of object proposals, provide initial embeddings to each node and edge,
and use message passing to obtain a consistent prediction. In contrast, our method is
a generative model which produces a probabilistic graph from a single vector, without
specifying the number of nodes or the structure explicitly.

Multiple concurrent and follow up methods have then appeared, which we briefly
review here. These works do not sample edges in an independent way and outperform
the method presented here.

Li et al. (2018b) relax several assumptions made by Johnson (2017) and present the first
self-contained auto-regressive graph decoder. The graphs are incrementally constructed
by a sequence of decisions on adding nodes and edges, predicted by RNN running on
embeddings continuously updated throughout the construction. The network is trained
with random or fixed node orderings and the authors report difficulties due to extensive
length of sequences. You et al. (2018b) improve on this by proposing a more concise
graph building strategy with graph-level and edge-level RNNs and introduce a breadth-
first-search node-ordering scheme, which limits the number of possible permutations and
steps, to significantly improve scalability allowing to handle hundreds of nodes and edges.
Li et al. (2018d) propose even more lightweight construction strategy (graph-level RNN
or even casting it as Markov process) and use depth-first ordering with random noise.
You et al. (2018a) then casted the construction as a Markov process in a reinforcement
learning framework with a GAN loss.

Samanta et al. (2018) also train to generate probabilistic graphs in a VAE framework.
However, they model graph embedding as a set of node embeddings rather than a single
opaque vector, which allows them to avoid graph matching for loss computation but
also means that node embeddings must be sampled independently during inference and
the number of them is not part of the latent code. Edge probabilities are modeled as
functions of node embeddings, similarly to Kipf and Welling (2016b), and invalid steps
are masked out during edge decoding to improve the ratio of semantically valid graphs,
similarly to Kusner et al. (2017). Liu et al. (2018) further builds up on Samanta et al.
(2018) and, among other minor improvements, adds conditioning on the embedding of
the current state of the graph to the edge sampling function, making it a Markov process
unlike in Li et al. (2018b); You et al. (2018b), where decisions depend on the generation
history. Cao and Kipf (2018) generate graphs at once as in our work but use GAN
framework for training, which alleviates the need to use graph matching but makes the
model more susceptible to mode collapse.
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Fig. 5.1 Illustration of the proposed variational graph autoencoder. Starting from a
discrete attributed graph G = (A, E, F ) on n nodes (e.g. a representation of propylene
oxide), stochastic graph encoder qφ(z|G) embeds the graph into continuous representation
z. Given a point in the latent space, our novel graph decoder pθ(G|z) outputs a
probabilistic fully-connected graph G̃ = (Ã, Ẽ, F̃ ) on predefined k ≥ n nodes, from
which discrete samples may be drawn. The process can be conditioned on label y for
controlled sampling at test time. Reconstruction ability of the autoencoder is facilitated
by approximate graph matching for aligning G with G̃.

For the specific task of molecular graph generation, Jin et al. (2018) builds on the
insight that molecules can be decomposed into trees of fragments. From a combined tree
and graph embedding, a molecule is decoded by reconstructing the tree, followed by a
series of greedy choices of compatible fragments with a scoring function involving the
latent embedding as a context. The masking of invalid combinations prevents creation of
invalid molecules.

5.3 Method

We approach the task of graph generation by devising a neural network able to translate
vectors in a continuous code space to graphs. Our main idea is to output a probabilistic
fully-connected graph and use a standard graph matching algorithm to align it to the
ground truth. The proposed method is formulated in the framework of variational
autoencoders (VAE) by Kingma and Welling (2013), although other forms of regularized
autoencoders would be equally suitable (Li et al., 2015; Makhzani et al., 2015). We
briefly recapitulate VAE below and continue with introducing our novel graph decoder
together with an appropriate objective.
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5.3.1 Variational Autoencoder

Let G = (A, E, F ) be a graph specified with its adjacency matrix A, edge attribute
tensor E, and node attribute matrix F . We wish to learn an encoder and a decoder
to map between the space of graphs G and their continuous embedding z ∈ Rc, see
Figure 5.1. In the probabilistic setting of a VAE, the encoder is defined by a variational
posterior qφ(z|G) and the decoder by a generative distribution pθ(G|z), where φ and θ

are learned parameters. Furthermore, there is a prior distribution p(z) imposed on the
latent code representation as a regularization; we use a simplistic isotropic Gaussian
prior p(z) = N(0, I). The whole model is trained by minimizing the upper bound on
negative log-likelihood − log pθ(G) (Kingma and Welling, 2013):

L(φ, θ; G) = Eqφ(z|G)[− log pθ(G|z)] + KL[qφ(z|G)||p(z)] (5.1)

The first term of L, the reconstruction loss, enforces high similarity of sampled generated
graphs to the input graph G. The second term, KL-divergence, regularizes the code
space to allow for sampling of z directly from p(z) instead from qφ(z|G) later. The
dimensionality of z is usually fairly small so that the autoencoder is encouraged to learn
a high-level compression of the input instead of learning to simply copy any given input.
While the regularization is independent on the input space, the reconstruction loss must
be specifically designed for each input modality. In the following, we introduce our graph
decoder together with an appropriate reconstruction loss.

5.3.2 Probabilistic Graph Decoder

Graphs are discrete objects, ultimately. While this does not pose a challenge for encoding,
demonstrated by the recent developments in graph convolution networks, graph generation
was an open problem until early 2018. In a related task of text sequence generation,
the currently dominant approach is character-wise or word-wise prediction (Bowman
et al., 2016). However, graphs can have arbitrary connectivity and there is no clear
way how to linearize their construction in a sequence of steps1. On the other hand,
iterative construction of discrete structures during training without step-wise supervision
involves discrete decisions, which are not differentiable and therefore problematic for
back-propagation.

1While algorithms for canonical graph orderings are available (McKay and Piperno, 2014), Vinyals
et al. (2015) empirically found out that the linearization order matters when learning on sets. However,
see also the evolution of node ordering strategies used by follow up works discussed in Section 5.2



5.3 Method 81

Fortunately, the task can become much simpler if we restrict the domain to the
set of all graphs on maximum k nodes, where k is fairly small (in practice up to the
order of tens). Under this assumption, handling dense graph representations is still
computationally tractable. We propose to make the decoder output a probabilistic
fully-connected graph G̃ = (Ã, Ẽ, F̃ ) on k nodes at once. This effectively sidesteps both
problems mentioned above.

In probabilistic graphs, the existence of nodes and edges is modeled as Bernoulli
variables, whereas node and edge attributes are multinomial variables. While not
discussed in this work, continuous attributes could be easily modeled as Gaussian variables
represented by their mean and variance. We assume all variables to be independent.

Each tensor of the representation of G̃ has thus a probabilistic interpretation. Specifi-
cally, the predicted adjacency matrix Ã ∈ [0, 1]k×k contains both node probabilities Ãa,a

and edge probabilities Ãa,b for nodes a ̸= b. The edge attribute tensor Ẽ ∈ Rk×k×de

indicates class probabilities for edges and, similarly, the node attribute matrix F̃ ∈ Rk×dn

contains class probabilities for nodes.
The decoder itself is deterministic. Its architecture is a simple multi-layer perceptron

(MLP) with three outputs in its last layer. Sigmoid activation function is used to compute
Ã, whereas edge- and node-wise softmax is applied to obtain Ẽ and F̃ , respectively.
At test time, we are often interested in a (discrete) point estimate of G̃, which can be
obtained by taking edge- and node-wise argmax in Ã, Ẽ, and F̃ . Note that this can result
in a discrete graph on less than k nodes.

5.3.3 Reconstruction Loss

Given a particular instance of a discrete input graph G on n ≤ k nodes and its probabilistic
reconstruction G̃ on k nodes, evaluation of Equation 5.1 requires computation of likelihood
pθ(G|z) = P (G|G̃).

Since no particular ordering of nodes is imposed in either G̃ or G and matrix repre-
sentation of graphs is not invariant to permutations of nodes, comparison of two graphs
is hard. However, approximate graph matching described further in Subsection 5.3.4 can
obtain a binary assignment matrix X ∈ {0, 1}k×n, where Xa,i = 1 only if node a ∈ G̃ is
assigned to i ∈ G and Xa,i = 0 otherwise.

Knowledge of X allows to map information between both graphs. Specifically, input
adjacency matrix is mapped to the predicted graph as A′ = XAXT , whereas the
predicted node attribute matrix and slices of edge attribute matrix are transferred to the
input graph as F̃ ′ = XT F̃ and Ẽ ′

·,·,l = XT Ẽ·,·,lX. The maximum likelihood estimates,
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i.e. cross-entropy, of respective variables are as follows:

log p(A′|z) = 1/k
∑

a

A′
a,a log Ãa,a + (1− A′

a,a) log(1− Ãa,a)+

+ 1/k(k − 1)
∑
a̸=b

A′
a,b log Ãa,b + (1− A′

a,b) log(1− Ãa,b)

log p(F |z) = 1/n
∑

i

log F T
i,·F̃

′
i,·

log p(E|z) = 1/(||A||1 − n)
∑
i ̸=j

log ET
i,j,·Ẽ

′
i,j,·

(5.2)

where we assumed that F and E are encoded in one-hot notation. The formulation
considers existence of both matched and unmatched nodes and edges but attributes of
only the matched ones. Furthermore, averaging over nodes and edges separately has
shown beneficial in training as otherwise the edges dominate the likelihood. The overall
reconstruction loss is a weighed sum of the previous terms:

− log p(G|z) = −λA log p(A′|z)− λF log p(F |z)− λE log p(E|z) (5.3)

5.3.4 Graph Matching

The goal of (second-order) graph matching is to find correspondences X ∈ {0, 1}k×n

between nodes of graphs G and G̃ based on the similarities of their node pairs S :
(i, j) × (a, b) → R+ for i, j ∈ G and a, b ∈ G̃. It can be expressed as integer quadratic
programming problem of similarity maximization over X and is typically approximated
by relaxation of X into continuous domain: X∗ ∈ [0, 1]k×n (Cho et al., 2014b). For our
use case, the similarity function is defined as follows:

S((i, j), (a, b)) = (ET
i,j,·Ẽa,b,·)Ai,jÃa,bÃa,aÃb,b[i ̸= j ∧ a ̸= b]+

+ (F T
i,·F̃a,·)Ãa,a[i = j ∧ a = b]

(5.4)

The first term evaluates similarity between edge pairs and the second term between
node pairs, [·] being the Iverson bracket. Note that the scores consider both feature
compatibility (F̃ and Ẽ) and existential compatibility (Ã), which has empirically led
to more stable assignments during training. To summarize the motivation behind both
Equations 5.3 and 5.4, our method aims to find the best graph matching and then further
improve on it by gradient descent on the loss. Given the stochastic way of training deep
networks, we argue that solving the matching step only approximately is sufficient. This
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is conceptually similar to the approach for learning to output unordered sets by (Vinyals
et al., 2015), where the closest ordering of the training data is sought.

In practice, we are looking for a graph matching algorithm robust to noisy corre-
spondences which can be easily implemented on GPU in batch mode. Max-pooling
matching (MPM) by Cho et al. (2014b) is a simple but effective algorithm following the
iterative scheme of power methods. It can be used in batch mode if similarity tensors
are zero-padded, i.e. S((i, j), (a, b)) = 0 for n < i, j ≤ k, and the amount of iterations is
fixed.

Max-pooling matching outputs continuous assignment matrix X∗. Unfortunately,
attempts to directly use X∗ instead of X in Equation 5.3 performed badly, as did
experiments with direct maximization of X∗ or soft discretization with softmax or
straight-through Gumbel softmax (Jang et al., 2016) or using Sinkhorn iterations to
arrive at doubly-stochastic matrices (Sinkhorn and Knopp, 1967). We therefore discretize
X∗ to X using Hungarian algorithm to obtain a strict one-on-one mapping2. While this
operation is non-differentiable, gradient can still flow to the decoder directly through
the loss function and training convergence proceeds without problems. Note that this
approach is often taken in works on object detection, e.g. Stewart et al. (2016), and
more recently point cloud generation Fan et al. (2017), where a set of detections needs
to be matched to a set of ground truth entities and treated as fixed before computing a
differentiable loss.

5.3.5 Further Details

Encoder. A feed forward network with edge-conditioned graph convolutions (ECC) as
presented in Chapter 3 is used as encoder, although any other graph embedding method
is applicable. As our edge attributes are categorical, a single linear layer for the filter
generating network in ECC is sufficient. Due to smaller graph sizes no pooling is used
in encoder except for the global one, for which we employ gated pooling by Li et al.
(2016b). As usual in VAE, we formulate the encoder as probabilistic and enforce Gaussian
distribution of qφ(z|G) by having the last encoder layer outputs 2c features interpreted
as mean and variance, allowing to sample zl ∼ N(µl(G), σl(G)) for l ∈ 1, .., c using the
re-parameterization trick (Kingma and Welling, 2013).

Disentangled Embedding. In practice, rather than random drawing of graphs, one
often desires more control over the properties of generated graphs. In such case, we follow

2Some predicted nodes are not assigned for n < k. Our current implementation performs this step on
CPU although a GPU version has been published (Date and Nagi, 2016).
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Sohn et al. (2015) and condition both encoder and decoder on label vector y associated
with each input graph G. Decoder pθ(G|z, y) is fed a concatenation of z and y, while
in encoder qφ(z|G, y), y is concatenated to every node’s features just before the graph
pooling layer. If the size of latent space c is small, the decoder is encouraged to exploit
information in the label. If the latent space is large, however, one might better explicitly
minimize mutual information between the condition and the embedding, an important
detail which we nevertheless leave for future work.

Max-Pooling Matching We briefly review max-pooling matching algorithm of Cho
et al. (2014b) for clarity. In its relaxed form, a continuous correspondence matrix
X∗ ∈ [0, 1]k×n between nodes of graphs G and G̃ is determined based on similarities of
node pairs i, j ∈ G and a, b ∈ G̃ represented as matrix elements Sia;jb ∈ R+.

Let x∗ denote the column-wise replica of X∗ (with overloaded indexing notation
x∗

ia = X∗
ia). The relaxed graph matching problem is expressed as quadratic programming

task x∗ = arg maxx xT Sx such that ∑n
i=1 xia ≤ 1, ∑k

a=1 xia ≤ 1, and x ∈ [0, 1]kn. The
optimization strategy of choice is derived to be equivalent to the power method with
iterative update rule xt+1 = Sx(t)/||Sxt||2. The starting correspondences x0 are initialized
as uniform and the rule is iterated until convergence; in our use case we run for a fixed
amount of iterations.

In the context of graph matching, the matrix-vector product Sx can be interpreted
as sum-pooling over match candidates: xia ← xiaSia;ia + ∑

j∈Ni

∑
b∈Na

xjbSia;jb, where
Ni and Na denote the set of neighbors of node i and a. The authors argue that this
formulation is strongly influenced by uninformative or irrelevant elements and propose a
more robust max-pooling version, which considers only the best pairwise similarity from
each neighbor: xia ← xiaSia;ia + ∑

j∈Ni
maxb∈Na xjbSia;jb.

5.4 Evaluation

We demonstrate our method for the task of molecule generation by evaluating on two
large public datasets of organic molecules, QM9 and ZINC.

5.4.1 Application in Cheminformatics

Quantitative evaluation of generative models of images and texts has been troublesome
(Theis et al., 2015), as it very difficult to measure realness of generated samples in an
automated and objective way. Thus, researchers frequently resort there to qualitative
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evaluation and embedding plots. However, qualitative evaluation of graphs can be very
unintuitive for humans to judge unless the graphs are planar and fairly simple.

Fortunately, we found graph representation of molecules, as undirected graphs with
atoms as nodes and bonds as edges, to be a convenient testbed for generative models. On
one hand, generated graphs can be easily visualized in standardized structural diagrams.
On the other hand, chemical validity of graphs, as well as many further properties a
molecule can fulfill, can be checked using software packages (SanitizeMol in RDKit) or
simulations. This makes both qualitative and quantitative tests possible.

Chemical constraints on compatible types of bonds and atom valences make the space
of valid graphs complicated and molecule generation challenging. In fact, a single addition
or removal of edge or change in atom or bond type can make a molecule chemically
invalid. Comparably, flipping a single pixel in MNIST-like number generation problem is
of no issue.

To help the network in this application, we introduce three remedies. First, we make
the decoder output symmetric Ã and Ẽ by predicting their (upper) triangular parts
only, as undirected graphs are sufficient representation for molecules. Second, we use
prior knowledge that molecules are connected and, at test time only, construct maximum
spanning tree on the set of probable nodes {a : Ãa,a ≥ 0.5} in order to include its edges
(a, b) in the discrete pointwise estimate of the graph even if Ãa,b < 0.5 originally. Third,
we do not generate Hydrogen explicitly and let it be added as "padding" during chemical
validity check 3.

5.4.2 QM9 Dataset

QM9 dataset (Ramakrishnan et al., 2014) contains about 134k organic molecules of up
to 9 heavy (non Hydrogen) atoms with 4 distinct atomic numbers and 4 bond types, we
set k = 9, de = 4 and dn = 4. We set aside 10k samples for testing and 10k for validation
(model selection).

We compare our unconditional model to the character-based generator of Gómez-
Bombarelli et al. (2016) (CVAE) and the grammar-based generator of Kusner et al.
(2017) (GVAE). We used the code and architecture in Kusner et al. (2017) for both
baselines, adapting the maximum input length to the smallest possible. In addition, we

3The implicit Hydrogen count is calculated as the difference between the valence of a particular atom
and the sum of its bonds to other heavy (non-Hydrogen) atoms. Typically, the number of heavy atoms
is approximately half the total number of atoms in organic molecules. Thus, implicit Hydrogen makes
molecule representations considerably smaller, saving memory and running time. In addition, such a
padding is forgiving to decoders generating less bonds than required by the respective valences. Note
that this does not affect the reconstruction error, though.
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demonstrate a conditional generative model for an artificial task of generating molecules
given a histogram of heavy atoms as 4-dimensional label y, the success of which can be
easily validated.

Setup. The encoder has two graph convolutional layers (32 and 64 channels) with
identity connection, batchnorm, and ReLU; followed by the graph-level output formulation
in Equation 7 of Li et al. (2016b) with auxiliary networks being a single fully connected
layer (FCL) with 128 output channels; finalized by a FCL outputting (µ, σ). The decoder
has 3 FCLs (128, 256, and 512 channels) with batchnorm and ReLU; followed by parallel
triplet of FCLs to output graph tensors. We set c = 40, λA = λF = λE = 1, batch size
32, 75 MPM iterations and train for 25 epochs with Adam with learning rate 1e-3 and
β1=0.5.

Embedding Visualization. To visually judge the quality and smoothness of the
learned embedding z of our model, we may traverse it in two ways: along a slice and
along a line. For the former, we randomly choose two c-dimensional orthonormal vectors
and sample z in regular grid pattern over the induced 2D plane. For the latter, we
randomly choose two molecules G(1), G(2) of the same label from test set and interpolate
between their embeddings µ(G(1)), µ(G(2)). This also evaluates the encoder, and therefore
benefits from low reconstruction error.

We plot two planes in Figure 5.2, for a frequent label (left) and a less frequent label
in QM9 (right). Both images show a varied and fairly smooth mix of molecules. The left
image has many valid samples broadly distributed across the plane, as presumably the
autoencoder had to fit a large portion of database into this space. The right exhibits
stronger effect of regularization, as valid molecules tend to be only around center.

An example of several interpolations is shown in Figure 5.3. We can find both
meaningful (1st, 2nd and 4th row) and less meaningful transitions, though many samples
on the lines do not form chemically valid compounds.

Decoder Quality Metrics. The quality of a conditional decoder can be evaluated by
the validity and variety of generated graphs. For a given label y(l), we draw ns = 104

samples z(l,s) ∼ p(z) and compute the discrete point estimate of their decodings Ĝ(l,s) =
arg max pθ(G|z(l,s), y(l)).

Let V (l) be the list of chemically valid molecules from Ĝ(l,s) and C(l) be the list of
chemically valid molecules with atom histograms equal to y(l). We are interested in
ratios Valid(l) = |V (l)|/ns and Accurate(l) = |C(l)|/ns. Furthermore, let Unique(l) =
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Fig. 5.2 Decodings of latent space points of a conditional model sampled over a random
2D plane in z-space of c = 40 (within 5 units from center of coordinates). Left: Samples
conditioned on 7x Carbon, 1x Nitrogen, 1x Oxygen (12% QM9). Right: Samples
conditioned on 5x Carbon, 1x Nitrogen, 3x Oxygen (2.6% QM9). Color legend as in
Figure 5.3.

|set(C(l))|/|C(l)| be the fraction of unique correct graphs and Novel(l) = 1− |set(C(l)) ∩
QM9|/|set(C(l))| the fraction of novel out-of-dataset graphs; we define Unique(l) = 0 and
Novel(l) = 0 if |C(l)| = 0. Finally, the introduced metrics are aggregated by frequencies of
labels in QM9, e.g. Valid = ∑

l Valid(l)freq(y(l)). Unconditional decoders are evaluated
by assuming there is just a single label, therefore Valid = Accurate.

In Table 5.1, we can see that on average 50% of generated molecules are chemically
valid and, in the case of conditional models, about 40% have the correct label which the
decoder was conditioned on. Larger embedding sizes c are less regularized, demonstrated
by a higher number of Unique samples and by lower accuracy of the conditional model,
as the decoder is forced less to rely on actual labels. The ratio of Valid samples shows
less clear behavior, likely because the discrete performance is not directly optimized for.
For all models, it is remarkable that about 60% of generated molecules are out of the
dataset, i.e. the network has never seen them during training.

Looking at the baselines, CVAE can output only very few valid samples as expected,
while GVAE generates the highest number of valid samples (60%) but of very low
variance (less than 10%). Additionally, we investigate the importance of graph matching
by using identity assignment X instead and thus learning to reproduce particular node
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Fig. 5.3 Linear interpolation between row-wise pairs of randomly chosen molecules in
z-space of c = 40 in a conditional model. Color legend: encoder inputs (green), chemically
invalid graphs (red), valid graphs with wrong label (blue), valid and correct (white).

permutations in the training set, which correspond to the canonical ordering of SMILES
strings from RDKit. This ablated model (denoted as NoGM in Table 5.1) produces many
valid samples of lower variety and, surprisingly, outperforms GVAE in this regard. In
comparison, our model can achieve good performance in both metrics at the same time.

Likelihood. Besides the application-specific metric introduced above, we also report
evidence lower bound (ELBO) commonly used in VAE literature, which corresponds to
−L(φ, θ; G) in our notation. In Table 5.1, we state mean bounds over test set, using
a single z sample per graph. We observe both reconstruction loss and KL-divergence
decrease due to larger c providing more freedom. However, there seems to be no strong
correlation between ELBO and Valid, which makes model selection somewhat difficult.

Implicit Node Probabilities. Our decoder assumes independence of node and edge
probabilities, which allows for isolated nodes or edges. Making further use of the fact
that molecules are connected graphs, here we investigate the effect of making node
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log pθ(G|z) ELBO Valid Accurate Unique Novel
C

on
d.

Ours c = 20 -0.578 -0.722 0.565 0.467 0.314 0.598
Ours c = 40 -0.504 -0.617 0.511 0.416 0.484 0.635
Ours c = 60 -0.492 -0.585 0.520 0.406 0.583 0.613
Ours c = 80 -0.475 -0.557 0.458 0.353 0.666 0.661

U
nc

on
di

tio
na

l Ours c = 20 -0.660 -0.916 0.485 0.485 0.457 0.575
Ours c = 40 -0.537 -0.744 0.542 0.542 0.618 0.617
Ours c = 60 -0.486 -0.656 0.517 0.517 0.695 0.570
Ours c = 80 -0.482 -0.628 0.557 0.557 0.760 0.616

NoGM c = 80 -2.388 -2.553 0.810 0.810 0.241 0.610
CVAE c = 60 – – 0.103 0.103 0.675 0.900
GVAE c = 20 – – 0.602 0.602 0.093 0.809

Table 5.1 Performance on conditional and unconditional QM9 models evaluated by
mean test-time reconstruction log-likelihood (log pθ(G|z)), mean test-time evidence lower
bound (ELBO), and decoding quality metrics (Section 5.4.2). Baselines CVAE (Gómez-
Bombarelli et al., 2016) and GVAE (Kusner et al., 2017) are listed only for the embedding
size with the highest Valid.

probabilities a function of edge probabilities. Specifically, we consider the probability for
node a as that of its most probable edge: Ãa,a = maxb Ãa,b.

The evaluation on QM9 in Table 5.2 shows a clear improvement in Valid, Accurate,
and Novel metrics in both the conditional and unconditional setting. However, this is
paid for by lower variability and higher reconstruction loss. This indicates that while the
new constraint is useful, the model cannot fully cope with it.

Unregularized Autoencoder. The regularization in VAE works against achieving
perfect reconstruction of training data, especially for small embedding sizes. To un-
derstand the reconstruction ability of our architecture, we train it as unregularized
in this section, i.e. with a deterministic encoder and without KL-divergence term in
Equation 5.1.

Unconditional models for QM9 achieve mean test log-likelihood log pθ(G|z) of roughly
−0.37 (about −0.50 for the implicit node probability model) for all c ∈ {20, 40, 60, 80}.
While these log-likelihoods are significantly higher than in Tables 5.1 and 5.2, our
architecture cannot achieve perfect reconstruction of inputs. We were successful to
increase training negative log-likelihood to zero only on fixed small training sets of
hundreds of examples, where the network could overfit. This indicates that the network
has problems finding generally valid rules for assembly of output tensors.
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log pθ(G|z) ELBO Valid Accurate Unique Novel

C
on

d.

Ours/imp c = 20 -0.784 -0.919 0.572 0.482 0.238 0.718
Ours/imp c = 40 -0.671 -0.776 0.611 0.518 0.307 0.665
Ours/imp c = 60 -0.618 -0.714 0.566 0.448 0.416 0.710
Ours/imp c = 80 -0.627 -0.713 0.583 0.451 0.475 0.681

U
nc

on
d. Ours/imp c = 20 -0.857 -1.091 0.533 0.533 0.228 0.610

Ours/imp c = 40 -0.737 -0.932 0.562 0.562 0.420 0.758
Ours/imp c = 60 -0.634 -0.797 0.587 0.587 0.459 0.730
Ours/imp c = 80 -0.642 -0.777 0.571 0.571 0.520 0.719

Table 5.2 Performance on conditional and unconditional QM9 models with implicit node
probabilities. Improvement with respect to Table 5.1 is emphasized in italics.

5.4.3 ZINC Dataset

ZINC dataset (Irwin et al., 2012) contains about 250k drug-like organic molecules of
up to 38 heavy atoms with 9 distinct atomic numbers and 4 bond types, we set k = 38,
de = 4 and dn = 9 and use the same split strategy as with QM9. We investigate the
degree of scalability of an unconditional generative model.

Setup. The setup is equivalent as for QM9 but with a wider encoder (64, 128, 256
channels).

Decoder Quality Metrics. Our best model with c = 40 has archived Valid = 0.135,
which is clearly worse than for QM9. Using implicit node probabilities brought no
improvement. For comparison, CVAE failed to generated any valid sample, while GVAE
achieved Valid = 0.357 (models provided by Kusner et al. (2017), c = 56).

We attribute such a low performance to a generally much higher chance of producing
a chemically-relevant inconsistency (number of possible edges growing quadratically). To
confirm the relationship between performance and graph size k, we kept only graphs not
larger than k = 20 nodes, corresponding to 21% of ZINC, and obtained Valid = 0.341
(and Valid = 0.185 for k = 30 nodes, 92% of ZINC). To verify that the problem is likely
not caused by our proposed graph matching loss, we synthetically evaluate it in the
following.

Matching Robustness. Robust behavior of graph matching using our similarity
function S is important for good performance of GraphVAE. Here we study graph
matching in isolation to investigate its scalability. To that end, we add Gaussian noise
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Noise k = 15 k = 20 k = 25 k = 30 k = 35 k = 40
ϵA,E,F = 0 99.55 99.52 99.45 99.4 99.47 99.46
ϵA = 0.4 90.95 89.55 86.64 87.25 87.07 86.78
ϵA = 0.8 82.14 81.01 79.62 79.67 79.07 78.69
ϵE = 0.4 97.11 96.42 95.65 95.90 95.69 95.69
ϵE = 0.8 92.03 90.76 89.76 89.70 88.34 89.40
ϵF = 0.4 98.32 98.23 97.64 98.28 98.24 97.90
ϵF = 0.8 97.26 97.00 96.60 96.91 96.56 97.17

Table 5.3 Mean accuracy of matching ZINC graphs to their noisy counterparts in a
synthetic benchmark as a function of maximum graph size k.

N(0, ϵA), N(0, ϵE), N(0, ϵF ) to each tensor of input graph G, truncating and renormalizing
to keep their probabilistic interpretation, to create its noisy version GN . We are interested
in the quality of matching between self, P [G, G], using noisy assignment matrix X

between G and GN . The advantage to naive checking X for identity is the invariance to
permutation of equivalent nodes.

In Table 5.3 we vary k and ϵ for each tensor separately and report mean accuracies
(computed in the same fashion as losses in Equation 5.3) over 100 random samples
from ZINC with size up to k nodes. While we observe an expected fall of accuracy
with stronger noise, the behavior is fairly robust with respect to increasing k at a fixed
noise level, the most sensitive being the adjacency matrix. Note that accuracies are not
comparable across tensors due to different dimensionalities of random variables. We may
conclude that the quality of the matching process is not a major hurdle to scalability.

5.5 Discussion

Having presented one of the first works on graph generation, we are aware of range of
limitations and possible extensions, many of them already addressed by the follow-up
works reviewed in Section 5.2.

Size Restriction. As each edge is predicted individually, the proposed model is
expected to be useful only for generating small graphs. This is due to growth of
GPU memory requirements and number of parameters in O(k2) as well as matching
complexity in O(k4), with small decrease in quality for high values of k. In Section 5.4
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we demonstrated results for up to k = 38. Nevertheless, in many applications, such as
drug design, even generation of small graphs is still very useful.

Independence Assumption. We model the existence and attribute of each node and
edge with an independent random variable, which allows us to easily take a point-wise
estimate of the decoded probabilistic graph at the end. However, this assumption has
turned out as too brittle in the case of imperfect predictions, as we have not observed
strong correlation between ELBO and the ratio of valid samples in the experimental
section, which suggests a mismatch between the training objective (probabilistic graph)
and the desired objective (discrete graph). We have presented and evaluated two
amendments to partially mitigate this problem: post-processing with a maximum spanning
tree and making node probabilities implicit. Subsequent work has adopted sequential
sampling approaches, which allows to explicitly control for validity at each step (Jin
et al., 2018; Liu et al., 2018; Samanta et al., 2018).

Simplistic Prior. We use isotropic Gaussian prior p(z) = N(0, I) for regularization.
However, there is a large body of work suggesting more complex distributions, such as
using normalization flows on prior (Dinh et al., 2016) or posterior (Kingma et al., 2016),
or better formulations of VAEs, notably Wasserstein autoencoders (Tolstikhin et al.,
2018). While we expect that building on more powerful frameworks would lead to better
results, it would not solve the limitations discussed above.

5.6 Conclusion

In this chapter we addressed the problem of generating graphs from a continuous
embedding in the context of variational autoencoders. We evaluated our method on
two molecular datasets of different maximum graph size. While we achieved to learn
embedding of reasonable quality on small molecules, our decoder had a hard time
capturing complex chemical interactions for larger molecules. Nevertheless, we believe
our method has been an important initial step towards more powerful decoders and has
sparked interest in the community.



Chapter 6

Conclusion

The goal of this thesis was to study and mutually relate deep learning-based architectures
for processing graph-structured data and, primarily, to propose several novel contributions
to this nascent but fast evolving field. Throughout the past pages, we have seen that many
core concepts (e.g. convolutions, superpixels, or autoencoders) can be taken over from the
domain of regular grids and repurposed for irregular data. We have touched upon both
discriminative and generative models. The field being so young and challenging, it has
offered us many unexplored paths to tread; many of them having a dead end but others
leading us to good experimental results and novel approaches to tasks such as point cloud
processing, graph classification or graph generation. Nevertheless, the proposed methods
are hardly perfect and we tried to remain critical in stating their limitations as well.

Deep learning is a booming topic and with the justified popularity of preprint
repositories, there are often multiple lines of work proposed independently. Specifically in
deep learning on graphs, these papers often come from several, originally rather separate
communities working in signal processing and vision, in biochemistry, in natural language
processing, or in information retrieval. We have thus attempted at providing a somewhat
fused but not exhaustive picture in our literature reviews and at helping the reader to
better understand the context of our work.

In the next paragraphs, we will recapitulate our contributions and conclude with an
outlook on possible future directions of work.

The first main contribution was the introduction of a crucial primitive for processing
data structured on variable attributed graphs, called Edge-Conditioned Convolutions
(ECC). The major insight was learning how to generate filters for every edge attribute
rather than learning such filters directly. We have shown that the standard discrete
convolution on grids as well as many formulations proposed previously can be seen as a
special case of ECC. Our other contributions rely on having such an operation available.
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In addition, this was the first time graph convolutions were applied to processing of
(neighborhood graphs constructed on) point clouds.

The second main contribution was the formulation of a superpixel-inspired interme-
diate point cloud representation, called SuperPoint Graph (SPG). The major insight
was that considering point clouds as a collection of interconnected simple shapes, rather
than individual points, allows ECC to start off from more informative embeddings and
scale up to massive point clouds consisting of millions of points without major sacrifice
in fine details. Important ingredients were also the very efficient partitioning algorithm
and the definition of rich contextual features captured in SPG. Having combined the
parts together and performed an extensive ablation study, we were able to significantly
improve on the state of the art methods on the two largest publicly available datasets
covering outdoor and indoor scenes.

Finally, the third main contribution was the presentation of one the first works on
deep-learning based graph generation. The major insight was to use approximate graph
matching for aligning predictions of an autoencoder with its inputs, which allowed us to
decode graphs with variable but upper-bounded number of nodes. Our motivation was
to avoid several challenges associated with step-wise construction. While the method
could outperform past text generation-based autoencoders on a small-sized dataset, the
practical performance left space for improvement, quickly addressed by consecutive works.
Nevertheless, we believe our work has helped to spark interest for graph generation in
the community and has looked into the direction of generation of graph tensors at once.

In summary, we have ventured a journey from graphs to their embeddings and back.
We hope that the research developed in the context of this thesis has provided the
community with new insights about some of the challenges in the emergent field of deep
learning on graphs and brings us one more step closer to solving real-world problems
arising in the field’s manifold applications, such as drug discovery, remote sensing, social
network understanding, or autonomous systems, for the benefit of all of us.

6.1 Future Directions

Deep learning on graphs is an exciting field with large applicability, offering many future
direction to follow. Here we expand just on some of them.

Dynamic Graphs. In practice, it is often the case that graph data is not static but
rather evolves in time and, in fact, the precise timing of events can be important for
the task at hand. This can include changes in node signal, edge attributes, or in the
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number of nodes and their connectivity. For example, users communicate on social
networks, a moving car updates information about its surroundings, new facts are
included in knowledge bases, or - as we have seen in concurrent work in Chapter 5 -
graphs are sequentially constructed. How to update the representation efficiently and how
incorporate timing information, on what level of granularity, and whether to maintain
history or treat the system as Markovian are just a few questions, the answering of which
is likely application-driven. Extending graph embedding techniques in this direction
could open up a wide range of exciting application domains.

With a few exceptions (Yuan et al., 2017), past DL research has dealt only with time
series on graphs with fixed structure, such as for traffic prediction (Li et al., 2018c) or for
modeling the dynamics of physical systems represented as complete graphs (Battaglia
et al., 2016; Kipf et al., 2018). Extending the latter works to larger-scale systems is
an open question; one way could be to adapt the graph structure according to object
distances or attention scores, which is an application of graph editing discussed below.

Graph Editing. Graph generation is a very recent topic, which has just started to
get explored in DL. While the primary real-world application has been in molecule
generation so far, we believe that many more are awaiting. Past work has already
looked into generating graphs as an intermediate representation, see Johnson (2017) for
reasoning tasks and Brockschmidt et al. (2018) for code generation. We are particularly
excited about the applications of auto-regressive methods to graph editing, where one
starts from an existing graph rather than from scratch. Note that only the case of
adding edges (link prediction) has been well researched. Graph editing could find
use in simulating evolution of phenomena in time, generating similar molecules and
translating measurements into plausible molecules, predicting chemical reactions, or
locally optimizing certain combinatorial properties of graphs. In drug discovery, finding
the right ligands for a specific binding site on a protein (analogous to finding a key for a
keyhole) could been seen as graph inpainting. Also, graph generative models could be
used as samplers for various reinforcement learning-based approaches for automating the
architecture design process of deep networks, as e.g. in Baker et al. (2017). Ultimately,
the variety of tasks that can be achieved with generative models in images can serve as
an inspiration.

Node-Conditioned Convolutions. In ECC, we conditioned message function m on
edge attributes, which allowed specializing the communication between each pair of
nodes. However, all nodes shared the same learned weight matrices. Thus, it could be
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interesting to condition update function u (in the form of RNN) on node attributes as
well. We suspect this might be useful in cases where there are distinct node types present
in a graph, such as in biological networks (with nodes for proteins, diseases, chemical
compounds or symptoms) or perhaps multi-agent systems.

Packages and Benchmarks. Open source implementations and public datasets are
one of the driving forces of the momentum behind deep learning. While many graph
convolution methods have been open sourced, including ours, their programming interfaces
are fairly diverse and written in different DL frameworks, which makes benchmarking and
selection of the right method for an application laborious. It would be thus beneficial to
initiate a single, up-to-date package containing a range of published methods, implemented
with reusable modules and accessible under a unified interface. This should also make
exploring novel model variants easier.

A related point is the desire for better benchmarks for evaluating graph representation
learning approaches. Many popular datasets currently used in the community are tiny
and prone to overfitting or not providing enough variety. For example, not all graphs
may exhibit the degree of locality and stationarity assumed by convolutional methods1.
Evaluating models under different conditions may often lead to (empirical) research
insights. For example, a recently introduced benchmark for molecular machine learning
(Wu et al., 2018) has shown that traditional methods are not yet outperformed by a
selection of graph convolution models on several task.

Theoretical Understanding. The lack of theoretical understanding is a popular
complaint against deep learning, and spatial graph convolution models are no exception.
By leaving the graph spectral theory (Defferrard et al., 2016) and dynamic system theory
(Scarselli et al., 2009) behind, we could learn feed-forward models working on arbitrary
graphs but also forfeited theoretical insights, proposing innovations based mostly on
intuition and experiments. The future work should look more into the properties and
guarantees offered by various message passing and aggregation methods. Specifically, the
convergence at training time and the stability and the way of spreading information at
inference time should be of interest. A source of inspiration could be studies performed
for RNNs as in e.g. Chen et al. (2018); Tallec and Ollivier (2018).

1The fitness of different architectures to different graph datasets could be potentially measured in
a way similar to the work of Ulyanov et al. (2017), who have shown that the structure of networks is
sufficient to capture a great deal of low-level image statistics.
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