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General Introduction

Synthese en francais

Contexte

L’augmentation des zones urbaines se traduit par une densification des villes et un trafic
routier accru (Tosics, 2017; Voelcker, 2014), engendrant des phénomenes d’ilot de cha-
leur urbain et de pollution de 1’air (Oke, 2011; Chan and Yao, 2008). L’état de santé des
habitants est ainsi dégradé. Entre autres, le cancer du poumon touche de plus en plus
d’individus dans certaines villes (Guo et al., 2016). Dans ce contexte, les arbres urbains
ont un rdle a jouer. Des études ont montré que les parcs pouvaient constituer des ilots de
fraicheurs et que la qualité de 1’air pouvait y étre meilleure (Doick et al., 2014; Yang et al.,
2005). Aussi, la végétation a un effet relaxant sur les personnes (Tsunetsugu et al., 2013).
Par ailleurs, les arbres sont soumis a des conditions difficiles en milieu urbain, notamment
les arbres d’alignement fortement taillés et ayant peu d’espace pour se développer. Les
gestionnaires des villes ont donc intérét a utiliser les diverses propriétés des canopées pour
concevoir les villes de demain. Ils doivent aussi surveiller 1’état de santé des arbres.

Ces éléments montrent que la carte des arbres en milieu urbain (i.e. ’emplacement des
troncs, la délinéation des couronnes, I’espece, la santé, la capacité d’évapotranspiration,
etc.), a I’échelle de la ville et mise a jour régulicrement, semble €tre une information es-
sentielle pour une planification urbaine et un suivi de la végétation efficaces. Il y a deux
taches préliminaires avant de pouvoir vérifier la santé des arbres : la localisation des troncs
d’arbres et I’identification des especes au niveau de I’arbre individuel, les maladies étant
liées a I’espece. C’est I’objet de cette these, c’est-a-dire la cartographie des especes d’arbre
en milieu urbain. De nos jours, ce type de procédure est encore effectuée manuellement,
via une campagne terrain ou par photo-interprétation, en utilisant Google Earth et des
données issues des Systemes d’Information Géographie (SIG) par exemple. La ville de
Toulouse (France) aurait par exemple environ 140 000 arbres répartis sur plus de 100 km?
selon les estimations des gestionnaires de la végétation urbaine. Une telle procédure n’est



donc pas approprié€e parce qu’elle est fastidieuse et ne peut donc pas étre réalisée sur de
grandes zones.

Potentiel de la télédétection pour surveiller les arbres urbains

Les données de télédétection sont intéressantes pour 1’automatisation de la cartographie
des especes d’arbres en milieu urbain. Alors que la délinéation des couronnes d’arbre
a été étudiée a partir d’imagerie optique, de Modeles Numériques de Surface norma-
lisés (nMNS), etc. (Zhen et al., 2016), la classification des especes d’arbres a été ex-
plorée en utilisant des données multispectrales, hyperspectrales, etc. (Fassnacht et al.,
2016) . En particulier, les données hyperspectrales aéroportées permettent d’extraire des
caractéristiques spectrales des couronnes des arbres, liées aux constituants et a la structure
du feuillage, donc a I’espece (Jacquemoud et al., 2009). En outre, des caractéristiques de
texture et de structure 3D liées a I’espece peuvent €tre extraites a partir de données pan-
chromatiques (PAN) et nDSM (Iovan et al., 2008; Dalponte et al., 2014). Pour effectuer la
cartographie des especes d’arbres en milieu urbain, les approches concues pour les foréts
naturelles sont souvent utilisées (Alonzo et al., 2014; Zhang and Hu, 2012; Liu et al.,
2017). Cependant, I’environnement urbain a des caractéristiques spécifiques qui doivent
étre considérées :

s Grande diversité des especes
» Différentes structures d’arbres : arbres d’alignement, arbres de parc, etc.

= Divers développements d’arbres pour une méme espece en raison de I’élagage et
de conditions spécifiques (peu d’espace pour la croissance, ilot de chaleur urbain,
pollution de I’air, etc.)

m Chevauchement modéré des couronnes d’arbres

= Beaucoup d’ombres

Objectifs

L’ objectif de cette these est de cartographier les especes d’arbres en milieu urbain a partir
de plusieurs sources de données aéroportées (hyperspectrales, PAN, nDSM) et d’informa-
tions contextuelles.

I. Evaluer la performance de sources de données aéroportées individuelles hyperspec-
trales, PAN et nDSM, et la performance des sources fusionnées (chapitre I).
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II. Optimiser le schéma de fusion a partir des meilleures sources (chapitre II).

III. Tirer profit des informations contextuelles sur les différentes structures d’arbres en
milieu urbain en considérant les données SIG (chapitre I1I).

Organisation du document

Ce document est organisé suivant les articles qui ont été rédigés pendant le travail de these
(2 articles acceptés avec révision, liés aux premier (I) et troisieme (III) objectifs, et un
autre article en préparation concernant le deuxieme objectif (I)). Il y a ainsi un chapitre de
contribution par article : I, II et III, respectivement. Chaque article est résumé en francais
au début de chaque chapitre, avant d’étre présenté (sections 1.1, II.1 et III.1). Le chapitre
suivant (A) est I’état de I’art. Il peut y avoir des redondances entre les discussions des
articles et la discussion générale présentée a la fin de ce document.

11



English part
Context

Urban areas

The world urban population is growing rapidly, causing a significant expansion of urban
areas. Whereas the proportion of humans living in cities was 2% in 1800s and 29% in
1950s, at least 50% of the humans are living in the urban environment since 2009 (Cun-
ningham, 2018). By 2030, the world urban population will rise to nearly 5 billion, and
at the same time the urban land cover will raise by 1.2 million km? (Seto et al., 2012).
Among others, this expansion of urban areas induces an increase in road traffic and in ur-
ban densification. According to (Voelcker, 2014), there will be 2 billion vehicles by 2035
against 1.2 billion in 2014. Only 2.5% of those 2 billion will be battery electric while 8%
will be hybrid-electric or natural-gas powered. About the densification, the example of the
dynamically expanding Amsterdam (The Netherlands) can be cited, with its obligation to
build 300 thousand new housing units by 2040 (Tosics, 2017).

As already observed, these important changes will cause in a more significant way the
air pollution of the cities (Chan and Yao, 2008) and the urban heat island phenomenon
(Oke, 2011) (Figure 1). These effects have many consequences on our health, but also at
a more global scale on the Earth, through climate changes which will modify the living
conditions of humans and other species (Seinfeld and Pandis, 2016). Focusing on the state
of health of the inhabitants, the results are not encouraging. The number of people with
respiratory and cardiac diseases is increasing, for example lung cancer in China whose rate
was 47.5 per 100,000 for men and 22.2 per 100,000 for women in 2009, and expected to
rise because of the increasing air pollution (Guo et al., 2016). People can suffer from se-
rious illnesses such as heat exhaustion and heat stroke when they are exposed to extreme
heat, in particular older adults and young children (EPA, 2017). The urban heat island
phenomenon contributed around 50% of the total heat-related mortality during the 2003
heatwave in the West Midlands, United Kingdom, according to (Heaviside et al., 2016).

In order to deal with these major issues, one solution is to reduce air pollution and heat
island effect.

12
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Figure 1: Illustration of the urban heat island effect at Birmingham, United Kingdom
(from (MetLink, 2017)). This is the development of Birmingham’s urban heat island on
the night of the 22nd July 2013, during a heat wave. Especially in the evening, the air
temperature in the city centre remains higher than in an urban park (around 5 °C at 10
pm), for example, because the densely packed buildings in the centre retain more heat.

Urban canopies

Urban trees contribute to several ecosystem services (Jones, 2014). Tree infrastructures,
especially park trees, can locally improve the air quality (Yang et al., 2005) (Figure 2) and
decrease the air temperature (Doick et al., 2014) during heatwave in dense and polluted
cities. As an example, the study of (Yin et al., 2011) aims at quantifying air pollution
attenuation within urban parks in Shanghai, China. After monitoring the sulfur dioxide
(SO3) and the nitrogen dioxide (NOy) from six parks in Pudong District, they demonstrate
that park vegetation can remove large amount of airborne pollutants: 9.1% of Total Sus-
pended Particles (TSP) removal in summer. As another example, the work of Doick et
al. (2014) studies the role of one large greenspace in mitigating L.ondon’s nocturnal urban
heat island. They conclude that trees help regulate air temperature and combat the urban
heat island effect, with an observed cooling of up to 4 °C over 400 m distance from the
park on single nights. All these properties depend on the tree species as highlighted by

13
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Figure 2: Illustration of the improvement of air quality thanks to park trees. TSP stands
for Total Suspended Particles. While ”Outside” refers to outside the park, “Inside” refers
to inside the park (from (Yin et al., 2011)).

Figure 3.

Moreover, urban trees promote biodiversity, have a relaxing psychic action and contribute
to aesthetics (Chiesura, 2004). As an example, the study of (Tsunetsugu et al., 2013) char-
acterizes the physiological and psychological effects of viewing urban forest landscapes
in Japan. They find that the subjects exhibited significantly lower heart rate and diastolic
blood pressure in the forested areas. Following on from this phenomenon, the work of
(Song et al., 2013) quantifies the effects of walking on young people in urban parks dur-
ing winter. The heart rate was significantly lower. Walking in the urban park improved
mood and decreased negative feelings and anxiety according to the results of question-
naires proposed to the subjects.

There is no ambiguity on the fact that the urban managers have an interest in taking
advantage of the many properties of urban canopies to design future cities: air quality
improvement, heat island effect reduction, relaxing psychic action, etc.

But urban trees suffer from hard conditions in the urban environment. In particular, they
can be affected by specific diseases depending on species. For example, Ceratocystis
platani is a fungus responsible for the Canker stain of Platanus trees. In Europe, it was al-
legedly introduced to Marseille, France in 1945 from infested wooden crates of US troops
containing military equipment (Vigouroux, 2014). At Forte dei Marmi in Italy, 90% of

14
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Figure 3: Freshness island properties of the trees in function of the LAD (Leaf Area
Density in this particular context) (left) and the species (right). E,,,, stands for the rate of
transpiration (from (Gillner et al., 2015)).

the Platanus trees died in 1972-1991. As another example, Aesculus hippocastanum can
be affected by the horse-chestnut leaf miner (Paterska et al., 2017) which necroses its fo-
liage, making it characteristic (Figure 4). Indeed, the leaf miner, which can more easily
travel in urban areas, attacks the parenchyma of the leaf. In cities, trees are often planted
as alignment trees and belong to the same tree species, thus easing the transmission.

Focusing on the alignment trees (or street trees, Figure 5), they have little space for growth
and are pruned, most often to be adapted to the constraints of the sites. As a case in point,
a pruned lime tree (7ilia) has a life expectancy of 150 years against 800 years without
constraint (Baraton, 2014; Fini et al., 2015). In order to highlight the crucial place of
these trees in the urban environment, the example of Paris, France can be cited with nearly
100,000 alignment trees (about half of the trees). They cover around 700 km of roads and
concern approximately 1600 roads out of 6000.

These examples demonstrate that the urban managers have to take care of the trees by
designing an efficient monitoring of their health.

Beside the mentioned elements, the urban tree map (i.e. the location of tree trunks, crown
delineations, species, health, capacity of evapotranspiration, etc.), at the city scale, updated

15



Figure 4: On the left: horse-chestnut leaf miner from (Wikipédia, 2018). In the middle: a
leaf attacked by the leaf miner from (Jardinier, 2016). On the right: canopy of an Aesculus
hippocastanum attacked by the leaf miner.

Figure 5: Illustration of the urban tree structures extracted from (Dépéche, 2013). Exam-
ple of Toulouse. On the left, the well known Platanus alignment trees highly represented
in the South of France. On the right, park trees.

with regular time basis, appears to be an essential information for an effective urban plan-
ning and vegetation monitoring. There are two preliminary tasks before reaching the health
of trees: the tree trunks localization and the species identification at an individual level,
the diseases being related to the species. This is the purpose of this PhD thesis, in other

16



words the urban tree species mapping. Nowadays, this type of procedure is still carried
out manually, by field campaign or by photointerpretation, considering Google Earth and
Geographic Information System (GIS) data for instance. The city of Toulouse (France),
for example, would have approximately 140,000 trees spread over more than 100 km? ac-
cording to estimates of vegetation managers, such a procedure is not appropriate because
it is tedious and thus cannot be carried out over large areas.

Remote sensing: a useful tool to monitor urban trees

Remotely sensed data are of interest for automating the urban tree species mapping. In-
deed, remote sensing of urban areas and remote sensing of vegetation have been carried
out for decades (Jensen and Cowen, 1999; Ustin and Gamon, 2010). Regarding the trees,
while tree crown delineation has been studied based on optical imagery, normalized Dig-
ital Surface Model (nDSM), etc. (Zhen et al., 2016), tree species classification has been
explored using multispectral, hyperspectral, multitemporal data, etc. (Fassnacht et al.,
2016). In particular, airborne hyperspectral data allow spectral features of the tree crowns
to be extracted, related to the foliage components and structure, and therefore to the species
(Jacquemoud et al., 2009). Also, textural and 3D structural features that are related to the
species can be extracted at the crown level based on airborne panchromatic (PAN) and
nDSM data (Iovan et al., 2008; Dalponte et al., 2014). Focusing on the urban tree species
mapping, approaches designed initially for natural forests are often used in the urban con-
text (Alonzo et al., 2014; Zhang and Hu, 2012; Liu et al., 2017). However, the urban
environment has distinctive features that have to be considered:

» High species diversity
= Different tree structures: street trees, park trees, etc.

» Various tree developments for a same species due to pruning and specific conditions
(little space for growth, urban heat island, air pollution, etc.)

= Moderate overlap between the tree crowns
= A lot of shadows

The latter make the tree species classification difficult, because of the great species di-
versity on the one hand, and due to the different tree developments (especially between
the street trees and the others) on the other hand, increasing the intra-species variability.
However, the specific distribution of the urban trees, as street trees for instance, consti-
tutes a prior knowledge that could be integrated in the methodologies. Also, the moderate

17



overlap between the tree crowns makes the crown delineation easier in comparison to
dense natural forest conditions. In order to improve the existing urban tree species map-
ping methods, one way is to be aware of these distinctive features when developing new
approaches. In particular, the complementarity of several remote sensing data sources,
potentially multitemporal, can be investigated in order to deal with the great species diver-
sity issue, while the contribution of contextual information can be explored to alleviate the
high intra-species variability issue.

Objectives

The objective of this PhD thesis is to map urban tree species based on several airborne
data sources (hyperspectral, PAN, nDSM) and contextual information.

I. Assess the performance of individual airborne hyperspectral, PAN and nDSM sources,
and the performance of the fused ones (chapter I).

I. Optimize the fusion scheme based on the best sources (chapter II).

III. Take advantage of the contextual information about the different urban tree struc-
tures considering GIS data (chapter III).

Figure 6 illustrates the contributions of this PhD work.

Thesis organization

This document is organized according to the papers that have been written during the PhD
work (2 papers accepted, related to the first (I) and third (III) objective, and another paper
under review concerning the second objective (II)). There is then one contribution chapter
per paper: I, II and III, respectively. Each paper is summarized in French in the beginning
of each chapter, before being introduced (sections 1.1, II.1 and III.1). The next chapter
(A) is the state-of-the-art. There can be some redundancies between the discussions of the
papers and the General discussion presented at the end of this document.

18
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Figure 6: Overall diagram of the PhD thesis contributions.
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Chapter A

State-of-the-art

Synthese en francais

Pour la cartographie des especes d’arbres en milieu urbain, il existe des approches ori-
entées pixel ou chaque pixel des images est classé, et des approches orientées objet ou
chaque objet détecté (arbre individuel, amas d’arbres, etc.) est classé. Nous nous focal-
isons sur la classification supervisée parce que certaines especes sont connues a 1’avance.
En ce qui concerne les méthodes orientées objet, nous ne considérons que le niveau de
I’arbre individuel pour répondre a 1’objectif de cette these. Ces méthodes nécessitent
que les couronnes d’arbres soient préalablement délinéées avant que les especes ne soient
classées.

Meéthodes de délinéation des couronnes

Concernant les méthodes de délinéation, un grand nombre de travaux a déja été effectué
comme I’atteste 1’état de I’art de (Zhen et al., 2016). Il existe différents groupes de
méthodes. En particulier, le matériel disponible pour cette thése nous oriente vers
I’utilisation de méthodes utilisant des rasters. Les études de (Iovan et al., 2008; Alonzo
et al., 2014; Ardila et al., 2012) constituent des exemples d’utilisation de ces méthodes
pour la délinéation des arbres urbains, et montrent que des précisions de détections de
I’ordre de 80% peuvent étre obtenues. Les principales erreurs se produisent dans les
cas de chevauchements importants entre les couronnes, un probleme bien connu dans
la littérature (Zhen et al., 2016). Mais le chevauchement modéré dans les villes par
rapport aux foréts naturelles nous pousse a choisir une méthode standard pour effectuer
la délinéation des couronnes. Sans différences significatives entre les approches men-
tionnées, celle développée dans (Iovan et al., 2008) est choisie car elle est efficace en
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termes de temps de calcul et facile a utiliser.

Méthodes de classification des especes

Pour la classification, deux étapes sont en général effectuées: une extraction de car-
actéristiques et une classification supervisée. Ensuite, il est possible d’adopter une ap-
proche de fusion pour améliorer les performances. Un état de 1’art des méthodes de
classification des especes d’arbres est fourni dans (Fassnacht et al., 2016). Selon la
technologie des capteurs, différentes informations peuvent étre utilisées pour classer les
especes. Alors que les capteurs multispectraux ou hyperspectraux permettent de modéliser
les caractéristiques spectrales des especes d’arbres, les caractéristiques spatiales struc-
turales ou texturales peuvent €tre extraites des données PAN et nDSM, respectivement,
mais aussi grace a des mesures RADAR (Radiation Detection And Ranging). De plus,
les caractéristiques temporelles caractérisant la phénologie de la végétation sont acces-
sibles a partir de séries temporelles. Des informations contextuelles peuvent également
étre intégrées. Parce que les données RADAR ne sont pas disponibles pour cette étude,
nous ne considérons pas les travaux. L’utilisation des caractéristiques temporelles n’est
pas détaillée car le colt d’'images adéquates est trop élevé. Premierement, les mesures
d’évaluation de la classification des especes utilisées dans ce document sont détaillées.

Métriques d’évaluation de la classification des especes

Afin d’évaluer les résultats des méthodes et de comparer leurs performances, les métriques
suivantes qui peuvent €tre calculées a partir de la matrice de confusion (exemple pour 3
especes dans la Table A.1) sont habituellement considérées : Précision Globale (OA), K,
Précision du Producteur (PA), la Précision de 1’ Utilisateur (UA) et le F-score. Nous les
utilisons toutes dans le cadre de ces travaux. La matrice de confusion, donc les métriques
associées, ne peut évidemment €tre calculée que si la vérité de terrain est disponible.

’OA et le k sont des métriques globales et sont calculées comme suit (Figure A.1) :

TS14+TS5+TS
s OA = po =100 21228058

Total(s1) Total(s1) | Total(sy) Total(sy) | Total(s3) Total(s}))

= Sachant que pe = 100( Total ~~ Total + Total Total + Total Total

alors k¥ = 100 - 5L
Pe

Dans le cas général de N especes :

o YN, TS
m OA = IOO-W
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Table A.1: Description de la matrice de confusion (cas de 3 especes). ”Vraie” se réfere a
I’espece d’arbre réellement dans la scene tandis que “Prédite” se réfere a I’espece d’arbre
prédite par la méthode considérée. Par exemple, TS| (ie “espece vraie 17) fait référence
aux cas ou la méthode prédit I’espece 1 (s7) alors que 1’espéce réelle est bien 1’espece 1
(51) (c’est-a-dire une vraie prédiction). Comme autre exemple, F'S3 correspond aux cas oll
la méthode prédit a tort I’espece 3 (mauvaise prédiction).

Prédite
51 52 53 Total
.S TS, FS> FS3 Total(s)
Vraie
$ FSy TS, FS; Total(s)
53 FS FS; TS Total(sy)
Total Total(s)) Total(s;) Total(s3) Total

o N Total(s;) Total(s;)
= pe =100 Zi:l Total ~~ Total

La PA, I’UA et le F-score sont des métriques spécifiques a chaque espece et sont calculées
de la manicre suivante, par exemple pour la ieme espece (s;) :

n PA;,(%) = 100 700

n UAy (%) = 100- 7500

2-PA;. - UA;.
n F —scoresl.(%) =100- W

Extraction de caractéristiques et classification supervisée

Pour I’extraction de caractéristiques, la transformation Minimum Noise Fraction (MNF)
est choisie pour extraire les caractéristiques spectrales parce que c’est une approche bien
connue qui est efficace a la fois pour améliorer la performance par rapport a I’utilisation
directe de la réflectance spectrale, et réduire la dimension des données (Fassnacht et al.,
2014; Ghosh et al., 2014a). Par ailleurs, I’utilisation de caractéristiques structurales pour
modéliser avec précision la structure 3D des especes d’arbres est plutdt récente et encour-
ageante (Alonzo et al., 2014; Dalponte et al., 2012). Par conséquent, des rapports de
hauteur similaires a ceux développés dans (Alonzo et al., 2014; Dalponte et al., 2012) et
adaptés aux données nDSM sont considérés pour I’extraction des caractéristiques struc-
turales. En outre, les parametres de Haralick sont couramment utilisés dans la littérature
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pour modéliser la texture des especes d’arbres et ont démontré des résultats encourageants
(Franklin et al., 2000; Iovan et al., 2008). Ils sont donc sélectionnés pour I’extraction de
la texture. Pour la classification supervisée, des échantillons d’apprentissage directement
extraits des images et fondés sur des mesures spectrales terrain sont considérés (Alonzo et
al., 2014; Nidamanuri and Zbell, 2011). Dans d’échantillons d’apprentissage terrain, les
indices spectraux sont préférés pour faire face au changement d’échelle (Cho et al., 2008).
Enfin, les algorithmes Support Vector Machine (SVM) et Random Forest (RF) sont choisis
parce qu’ils ont déja démontré de bonnes performance dans la littérature (Féret and Asner,
2013).

Fusion

Chaque ensemble de caractéristiques (spectrales, structurales, texturales, etc.) contribue
a I’identification de I’espece, il y a donc intérét a les combiner pour obtenir des cartes
d’especes d’arbres plus précises. Une maniere habituelle consiste alors a combiner
plusieurs sources de données / caractéristiques / algorithmes de classification, ¢’est-a-dire
a considérer un cadre de fusion. Cependant, le terme fusion est ambigu car différentes
“choses” peuvent étre fusionnées. Pour éviter toute ambiguité, nous avons résumé les
stratégies de fusion possibles en fonction des informations a fusionner dans la Figure
A.1. Deux cadres de fusion peuvent étre utilisés: fusion de niveau des caractéristiques
(Alonzo et al., 2014; Dalponte et al., 2012) et fusion au niveau de la décision (Stavrak-
oudis et al., 2014; Engler et al., 2013). Dans notre contexte, la fusion du niveau de la
décision et I’ensemble de classifieurs se réferent a la méme méthodologie. D’une part, la
fusion au niveau des caractéristiques concaténe de nombreuses caractéristiques d’intérét
et le vecteur de caractéristiques résultant est classé. D’autre part, la fusion de niveau de
la décision considere plusieurs classifieurs (extraction de caractéristiques et classification
supervisée comme montré dans la Figure A.1), selon un critere, et les prédictions de ces
classifieurs sont combinées a travers une régle de décision. En se concentrant sur la Fig-
ure A.1, nous avons distingué deux catégories de fusions au niveau de la décision: les
approches par sources de données et les approches par classifieurs. Pour la premiere, un
classifieur est défini pour chaque source de données alors que les classifieurs sont choisis
selon un autre critere pour la deuxieme (par exemple donnant le méme ensemble de car-
actéristiques mais différents algorithmes de classification supervisée, le méme algorithme
mais différents ensembles de caractéristiques, etc.). Cette derniere approche est donc tres
flexible. En ce qui concerne le contexte de classification des especes d’arbres, la fusion
au niveau des caractéristiques est toujours préférée pour sa simplicité a implémenter sauf
dans les études de (Stavrakoudis et al., 2014) et (Engler et al., 2013) ou des fusions au
niveau de la décision sont considérées, par source de données et par classifieur respective-
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Figure A.1: Définition des stratégies de fusion. Pour la fusion au niveau de la décision par
classifieur, toutes les fleches ne sont pas dessinées afin de ne pas surcharger le diagramme.

ment.

La combinaison de I'information spectrale et structurale a démontré un intérét pour la
classification des especes d’arbres, mais il n’y a pas d’amélioration significative (Alonzo
et al., 2014; Dalponte et al., 2012). La contribution de I’'information texturale suit le
méme comportement (Franklin et al., 2000), sauf qu’il y a beaucoup moins d’études pour
ce type de fusion. Il n’y a pas de travail qui fusionne I’information spectrale, structurale et
texturale, alors que cela conduirait a de meilleurs résultats, puisque des améliorations ont
été indiquées pour les combinaisons spectrales / structurales et spectrales / texturales, bien
que légeres. De plus, la complémentarité de ces caractéristiques n’a pas été évaluée, alors
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que des sources non complémentaires ne peuvent logiquement pas améliorer la perfor-
mance de la meilleure d’entre elles. Alors que la fusion au niveau des caractéristiques est
principalement utilisée dans la littérature (Fassnacht et al., 2016), la fusion au niveau de la
décision a déja démontré son potentiel (Stavrakoudis et al., 2014; Engler et al., 2013), et
aucune comparaison n’a été effectuée afin de sélectionner la meilleure approche pour un
cas de classification d’especes d’arbres donné. Cela nous amene a identifier la meilleure
stratégie de fusion orientée objet (au niveau des caractéristique ou de la décision) en tirant
profit de la complémentarité de plusieurs sources de données hétérogenes aéroportées
pour améliorer la cartographie des especes d’arbres en milieu urbain. En premier lieu,
une fusion au niveau de la décision fondée sur les sources de données (un classifieur par
source) semble €tre un candidat d’intérét afin d’évaluer la contribution de chaque source
de données. Les échantillons d’apprentissage sont directement extraits des images a partir
de couronnes délimitées manuellement (chapitre I).

Afin d’améliorer ces méthodes de classification multi-source, la deuxieme partie de cette
these est consacrée a 1’exploration du potentiel d’une fusion au niveau de la décision
fondée sur des classifieurs. En particulier, il y a intérét a extraire les caractéristiques
de telle sorte qu’elles optimisent la précision de classification, par exemple par espece
si chaque classifieur est dédié€ a la prédiction d’une espece particuliere. Classiquement,
I’apprentissage des modeles de classification est effectué a partir de pixels des images
(Fassnacht et al., 2016; Alonzo et al., 2014). Nous allons analyser la qualité des cartes
générées quand 1’apprentissage est effectué a partir de mesures terrain (aux échelles de
la canopée et de la feuille). L’intérét est d’utiliser I’approche de classification résultante
dans un contexte opérationnel ot des pixels d’apprentissage ne sont pas disponibles au
sein des images (Nidamanuri and Zbell, 2011). Dans le but de s’affranchir du change-
ment d’échelle, introduit quand 1’apprentissage est effectué a partir de mesures terrain,
les cartes obtenues en utilisant des indices de végétation sont évaluées (Cho et al., 2008).
Par conséquent, il est intéressant de développer une approche d’ensemble de classifieurs a
partir de mesures spectrales terrain en utilisant des indices de végétation (chapitre II).

D’autres améliorations des méthodes proposées pourraient €tre obtenues en tenant compte
des informations contextuelles. La détection des arbres d’alignement permettrait de
régulariser la prédiction des especes d’arbres dans les alignements urbains. Deux cadres
sont possibles pour cette détection: méthode Individual Tree Crown Delineation and De-
tection (ITCD) classique + information a priori (Koch et al., 2014), et les cadres unifiés
(Perrin et al., 2006). En particulier, les cadres unifiés ne présentent pas les inconvénients
des approches classiques en termes de diffusion des erreurs. Deuxiemement, les cadres
unifiés conduisent a des performances similaires. La méthode du contour actif est
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préférable pour une délinéation précise des couronnes, mais n’est pas appropriée pour
modéliser I’interaction entre les arbres (organisation spatiale et caractéristiques communes
parmi les arbres), une composante essentielle pour la détection des arbres d’alignement.
Ainsi, les Marked Point Process (MPP) sont sélectionnés. Le travail de Wen (Wen et
al., 2017) au niveau de I’amas d’arbres n’est pas compatible avec le MPP au niveau de
I’arbre individuel mais certaines des caractéristiques utilisées pour discriminer les arbres
d’alignement pourraient étre considérées, en particulier la distance aux routes. Ceci nous
conduit a développer une méthode MPP de détection des arbres d’alignement a partir de
données aéroportées et d’informations contextuelles (chapitre III).
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English part
Remote sensing introduction

Urban areas

Remote sensing opens the way to automate urban tree species mapping thanks to its high
spatial resolution available from the past and future generations of sensors. The spatial
resolution is a key parameter for monitoring urban areas made of complex arrangements
of objects (buildings, roads, vegetation, mixture, etc.). In a perspective of individual tree
mapping, the spatial resolution has to be much smaller than the size of the tree crowns
(diameter ranging from a few meters up to more than 15 meters), otherwise the individ-
uals are not discernible. Today, satellites such as GeoEye-1, QuickBird, WorldView 1-4,
IKONOS, Pléiades, KOMPSAT or TripleSat provide images with a spatial resolution of
around 1 m or finer (INFO, 2018). GeoEye-1 has for example a spatial resolution of
46 cm in panchromatic (PAN) mode, 1.84 m in multispectral mode (Corporation, 2018).
Airborne systems followed by Unmanned Aerial Systems (UAS) give logically access to
better spatial resolution (e.g. 20 cm in the work of (Feng et al., 2015) based on high-
resolution UAS imagery), but the images cover is smaller. The spatial resolution available
from remote sensing sensors is therefore suitable for characterizing the urban trees at an
individual level.

Many researchers have studied the urban environment thanks to remotely sensed data
(Gamba et al., 2005; Weber and Puissant, 2003; Puissant et al., 2014). As examples
of remote sensing use in the urban context, the satellite data applications of (Hester et al.,
2008) and (Shackelford and Davis, 2003) can be cited. The work of (Hester et al., 2008)
produces a six-category urban land-cover map from QuickBird imagery. In a per-pixel
classification framework, they obtain a performance of nearly 90%. As another exam-
ple, the study of (Shackelford and Davis, 2003) investigates the potential of a combined
fuzzy pixel-based and object-based approach for the classification of IKONOS multispec-
tral data over urban areas. In particular, they aim at discriminating spectrally similar road
and building urban land cover classes by using both spectral and spatial information. They
get classification maps with an accuracy of 84%. Focusing on UAS-based uses, an urban
flood mapping is carried out in (Feng et al., 2015). The results of this study demonstrate
that UAS can provide an appropriate platform for the accurate extraction of inundated
areas (87% of accuracy) (Figure A.2).
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Figure A.2: Flood mapping results obtained in the work of (Feng et al., 2015). Left:
study site with visible inundated areas. Right: resulting map with the detected inundated
areas colored in red.

Vegetation

The spectral resolution is particularly important when attempting to classify vegetation
species or monitor the state of health of vegetation (Ustin and Gamon, 2010). In a per-
spective of tree species identification, an high spectral resolution measurement is required
because of the similarities between the spectral traits of the numerous species under con-
sideration (Dalponte et al., 2009). An hyperspectral system is then a candidate of interest
for estimating the species, while previously mentioned satellite devices are less appropri-
ate from the point of view of the spectral resolution. The future HYPXIM instrument will
be capable of resolving few hundred of spectral bands (from 0.4 to 2.5 wm), however with
a 8-meter spatial resolution (Briottet et al., 2011). The currently operational hyperspec-
tral sensor Hyperion has a spatial resolution of 30 m (USGS, 2011). Knowing that, for a
sensor with the same technology an improvement in spectral resolution implies a decline
in spatial resolution, airborne hyperspectral sensors have both suitable spatial and spectral
resolutions for species classification at the individual tree level.

Spectral imagery of vegetation has been carried out for decades, in particular for esti-
mating biophysical and biochemical parameters of vegetation (Ustin and Gamon, 2010;
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Jacquemoud et al., 2009) (Figure A.3). As an illustration of biophysical parameter es-
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Figure A.3: Spectral reflectance of different live and dry plant foliage and soil (from
(Ustin and Gamon, 2010)).

timation, the work of (Asrar et al., 1984) aims at estimating the Leaf Area Index (LAI)
from field spectral measurements over wheat canopies, because some plant growth mod-
els require estimates of such quantity. Regarding biochemical parameter estimation, the
signature analysis of leaf reflectance spectra carried out in (Gitelson and Merzlyak, 1996),
aimed at extracting relevant vegetation indices for improving the remote sensing of chloro-
phyll, is another example. From field level, the results of these studies are intended to be
applied on a larger scale thanks to satellite and airborne data (Gong et al., 2003; Smith et
al., 2003). These plant parameters depend on the species making it an information of in-
terest in the remote sensing community (Martin et al., 1998). Focusing on the Figure A.3,
it is clear that each species has a particular spectral behaviour (spectral features), because
of the specific foliar component contents (Jacquemoud and Baret, 1990) and the specific
foliage structure (Verhoef, 1984).

Other features can be related to the species such as spatial (textural, structural, etc.), tem-
poral and contextual features. For instance, airborne PAN sensors allow a very high spatial
resolution (order of magnitude of 10 cm) measurement of the reflected radiation integrated
over the visible spectral range (Iovan et al., 2008) and gives information about the spatial
arrangement of the foliage within the tree crowns (textural features), which is also related
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to the species (Zhang and Hu, 2012). Moreover, the airborne nDSMs allow a very high
spatial resolution measurement of the height (order of magnitude of 10 cm) (Dalponte et
al., 2015) and gives information about the 3D structure of trees (structural features), which
may differ among species.

Focusing on the urban context, mapping the extents of urban tree canopy using aerial
or satellite imagery is currently operational (MacFaden et al., 2012). However, the re-
sulting maps rarely provide information about species, LAI, etc. (Alonzo et al., 2014).
This is why urban tree species mapping methods need to be developed, based on the many
features mentioned above.

A.1 Urban tree species mapping methods

In this state-of-the-art, we focus on the urban tree species mapping. However, as ap-
proaches designed initially for natural forests are often used in urban areas, the tree species
mapping in natural forests is also reviewed. Because certain methodologies such as deci-
sion level fusion are rarely used in the tree species mapping context, the classification of
other objects than the trees is also considered.

For urban tree species mapping, there are pixel-based and object-based approaches, both
considered in this state-of-the-art. For pixel-based approaches, each pixel of the images
is classified, while each detected object (individual tree, forest stand, etc.) is classified
for object-based ones. We focus on supervised classification because some of the species
are previously known. Regarding object-based methods, we consider only the individ-
ual tree level in order to fit the objective of this PhD thesis. The individual tree-based
frameworks, for which the obtained maps are particularly suitable from a user perspective,
then requires the tree crowns to be previously delineated before the species are classified.
This object-based approach is illustrated in Figure A.4. The first step aims at delineating
the tree crowns, the second one is intended to identify the species of the trees, by using
the information from within the crowns (spectral, spatial, temporal, etc. information). To
summarize in this framework, the species classification step requires the crown delineation
knowledge.

Crown delineation methods are presented in section A.1.1 whereas species classification
methods (pixel and object-based ones) are reviewed in section A.1.2. For crown delin-
eation, our state-of-the-art is organized according to the review of (Zhen et al., 2016). Fo-
cusing on species classification, the species classification assessment metrics used in this
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Figure A.4: Tllustration of the urban tree species mapping procedure. Left: crown delin-
eation. The white outline polygons correspond to tree crown delineations. Right: species
classification. Each color refers to a specific species. For example, Platanus x hispanica
trees are represented in cyan whereas Tilia tomentosa ones are yellow.

document (state-of-the-art and contribution chapters) are first described (section A.1.2.1).
Then, feature extraction, supervised classification and fusion approaches are reviewed
(sections A.1.2.2, A.1.2.3 and A.1.2.4, respectively).

A.1.1 Crown delineation methods

A review on the state-of-the-art Individual Tree Crown Delineation and Detection (ITCD)
methods was published in 2016 (Zhen et al., 2016). The identified approaches are sum-
marized in Figure A.5. As no Light Detection And Ranging (LiDAR) data are available
in this PhD thesis, the point cloud-based algorithms (second method group in Figure A.5)
are not detailed. Also, as there is no prior information on the crown size or on the stand
density in the urban environment, none of the related algorithms (third method group in
Figure A.5) are considered. Moreover, the tree shape reconstruction approaches (fourth
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Figure A.5: Summary of the Individual Tree Crown Delineation and Detection (ITCD)
approaches from (Zhen et al., 2016)

method group in Figure A.5) are not explored because it is not in the scope of our study.
This leads us to review the raster-based approaches, described in the next section.

A.1.1.1 Raster-based approaches

The raster-based approaches use rasters for crown delineation, whatever the data source.
While the first group of raster-based methods consists of valley-following (Leckie et al.,
2003), region-growing (Adeline, 2014) and watershed segmentation (Chen et al., 2006),
Geographic Object-Based Image Analysis (GEOBIA)-based methods (Suérez et al., 2005)
form the second group. All these methods can be applied on a Canopy Height Model
(CHM) derived from stereoscopic acquisitions. For urban environment, the region grow-
ing approach developed in (Iovan et al., 2008) is a standard illustration of the raster-based
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A.1.2 Species classification methods

methods. Based on a Digital Surface Model (DSM) derived from stereoscopic acquisitions
(spatial resolution of 20 cm), they delineate 78% of the trees in an area located in Marseille,
France. Watershed segmentation is used in the study of (Alonzo et al., 2014) for delineat-
ing trees in Santa Barbara, California, with a CHM (spatial resolution of 25 cm). Whereas
83% of the watershed segments contain a single tree stem, this accuracy decreases to 55%
when assessed on a highly complex urban forest setting, i.e. an area containing several
cases of significant crown overlaps. The GEOBIA approach of (Ardila et al., 2012) can
be cited with their multiple segmentation scales for delineating tree crowns in an urban
area (Delft, The Netherlands). With high resolution imagery (QuickBird, spatial resolu-
tions of 2.4 m and 0.6 m for multispectral and PAN modes, respectively), they successfully
delineate 70%—80% of the trees (illustrated in Figure A.6).
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Figure A.6: Illustration of the results obtained from (Ardila et al., 2012). The yellow
outline polygons correspond to the estimated tree crowns.

As for the previous work, the main errors occur for cases of significant overlaps, a well
known issue in the literature (Zhen et al., 2016). However, the highlighted accuracies are
quite high (around 80% whatever the spatial resolution), because there is moderate over-
lap in cities in comparison to natural forests. This is then reasonable to choose a standard
raster-based approach for delineating the tree crowns. Without significant differences be-
tween the mentioned approaches, the one developed in (Iovan et al., 2008) is chosen for
its efficiency in terms of computational burden and easiness.

A.1.2 Species classification methods

A review on the state-of-the-art tree species classification approaches is provided in (Fass-
nacht et al., 2016). Depending on the technology of the sensors, different information can
be used to classify the species. While multispectral or hyperspectral sensors allow spectral
features of the tree species to be modelled, spatial features such as structural or textural
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A.1.2  Species classification methods A.1.2.1 Species classification assessment metrics

Table A.2: Description of the confusion matrix (case of 3 species). “True” refers to the
real tree species in the scene while ”Predicted” refers to the predicted tree species by the
method under consideration. For instance, 7S (i.e. true species 1) refers to cases where
the method predicts the species 1 (§7) whereas the real species is indeed species 1 (57)
(i.e. a true prediction). As another example, F'S3 corresponds to cases where the method
wrongly predicts the species 3 (wrong prediction).

Predicted
51 ) 53 Total
51 TS, FS FS3 Total(sy)
True
$2 FS TS, FS3 Total(sy)
53 FS FS TS5 Total(s)
Total Total(s]) Total(s;) Total(s3) Total

ones can be extracted from PAN and nDSM data, respectively, but also thanks to RAdio
Detection And Ranging (RADAR) measurements. Moreover, temporal features charac-
terizing the phenology of vegetation are accessible from time series. Contextual features
can also be integrated. Our work is based on optical data, hence the methods related to
RADAR data are not listed in this document. The exploitation of time series is not ad-
dressed in this work owing to the necessity of high spatial and spectral resolutions for the
species cartography at tree level. Once these features are extracted, a supervised classifi-
cation is carried out for identifying the species based on training samples. Based on these
elements, data fusion can be employed in order to improve the classification performance
of the individual methods. First, the species classification assessment metrics used in this
document are detailed.

A.1.2.1 Species classification assessment metrics

In order to assess the results of the methods and compare their performances, the following
metrics that can be derived from the confusion matrix (case of 3 species in Table A.2) are
usually considered: Overall Accuracy (OA), k, Producer Accuracy (PA), User Accuracy
(UA) and F-score. We use them all in this work. The confusion matrix, thus the related
metrics, can obviously be computed only if ground truth is available.

OA and « are overall metrics and are derived such as (Figure A.2):

TS +TSH+TS
s OA = po =100 2122005
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o Total(sy) Total(sy) |, Total(sy) Total(sy) |, Total(sy) Total(s3)
w Letp, = 100( Total "~ Total + Total ~~ Total + Total ~~ Total )’

then Kk = 10()"?%;:

In the general case with N species:

_ LTS
» OA=100-=R1-~

o N Total(s;) Total(s;)
= pe =100 Zi:l Total Total
PA, UA and F-score are species-specific metrics and are derived such as, for instance
for the ith species:

n PAy (%) = 100- rits

n UAy, (%) = 100 7500

2- PA,; - UA;;

» F —scores, (%) = 100- “PA; +UA,,

A.1.2.2 Feature extraction

The feature extraction is an essential step in order to highlight the features that can dis-
criminate the tree species.

Spectral features Although the spectral reflectance can be directly used for the species
classification, it is generally subject to specific processing in order to get more discrim-
inative spectral features, through feature reduction techniques or transformation of the
spectral reflectance.

Feature reduction can be applied to spectral reflectance in order to reduce the dimension-
ality of the data and to reduce potential noise: feature extraction (Principal Component
Analysis (PCA) (Abbasi et al., 2015), Minimum Noise Fraction (MNF) (Ghosh and Joshi,
2014), etc.) and / or feature selection (Genetic Algorithm (GA) (Fassnacht et al., 2014),
Support Vector Machine (SVM) wrapper (Fassnacht et al., 2014), etc.). The study of
(Fassnacht et al., 2014) is intended to compare feature reduction algorithms for classi-
fying tree species with hyperspectral data (HyMap) on three central European test sites
(Demmin, Karlsruhe and Merzalben, Germany). Spatial resolutions of 3 m, 4 m and 5
m are used. Among the feature reduction techniques, the use of the MNF components
systematically leads to the best accuracies with 91%, 96% and 59.6% for the three test
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PLS feature select. SVM wrapper Gcncl'ﬁ: .-'\Iguritllm Reference all bands Rul'cn.!cc MNF
Classifier SVM RF SVM RF SVM RF SVM RF SVM RF
Input dataset REFL REFL CONTREM CONTREM || CONTREM CONTREM | - - MMNF MNF
o Nr. of input bands 20 25 15 20 20 25 125 125 20 20
E Min 0.650 0629 || 0.750 0.742 0.723 0.695 0.729 0.643 0.848 0.820
E Median 0.729* 0.720 || 0.816* 0.803 0.802* 0.785 0.798*  0.742 0.910* 0.882
(=] Max 0.807 0.830 0.891 0.875 0.875 0.873 0.862 0821 0.923 0.952
P-value 0.0384 0.0236 < 0.0001 < 0.0001 < 0.0001
Input dataset SAGO SAGO CONTREM CONTREM SAGO SAGOD - - MMF MMNF
Nr. of input bands 20 30 20 20 20 30 125 125 10 15
& Min 0.710 0.720 0.725 0.665 0.726 0.720 0.680 0.553 0.924 0.919
E Median 0.806 0.808 | 0.817* 0.777 0.826* 0.808 0.783*  0.660 0.960* 0.953
= Max 0.889 0.880 0.886 0.856 0.916 0.879 0.875 0.775 1.0 0.985
] P-value 0.9008 < 0.0001 < 0.0001 < 0.0001 0.0018
Input dataset SAGD SAGOD SAGOD CONTREM SAGO CONTREM || - - MMNF MNF
= Nr. of input bands 25 20 15 10 15 25 125 125 25 10
% Min 0.392 0.375 0.441 0.386 0.396 0.427 0.375 0.356 0.506 0.507
E Median 0.509* 0.492 0.559* 0.529 0.528 0.526 0.510* 0.466 0.596 0.625*
= Max 0.640 0599 || 0.675 0.619 0.678 0.641 0.623 0.583 0.687 0.724
P-value 0.0003 = 0.0001 0.9680 < 0.0001 < 0.0001

Figure A.7: Illustration of the results obtained in the feature reduction algorithms com-
parison (Fassnacht et al., 2014). REFL corresponds to the reflectance. SAGO refers to the
smoothed first-order derivative based on the Savitzky—Golay filter. CONTREM stands for
the continuum removal transformation.

sites respectively, in comparison to 79.8%, 78.3% and 51% with all the spectral bands
(Figure A.7). MNF transformation has also led to the best performance for classifying tree
species and vegetation classes in the works of (Ghosh et al., 2014b; Zhang and Xie, 2012).

Transformation of the spectral reflectance enhances the pigment absorption features and
reduces the effects of the soil background (derivative (Ghiyamat et al., 2013), Continuum
Removal (CM) (Fassnacht et al., 2014), vegetation indices (Clark and Roberts, 2012) etc.).
Whereas some studies find an interest in using derivative spectra (Datt, 2000) (at the leaf
level), other ones demonstrate that the direct use of the reflectance spectra leads to better
results (Ghiyamat et al., 2013) (at the airborne canopy level). In particular, the latter study
aims at discriminating 6 tree species including different ages of Corsican and Scots Pines
located in the Thetford Forest, Britain. They use airborne hyperspectral data with a spatial
resolution of 5 m (HyMap). While an accuracy of 66.9% is obtained with the reflectance,
the consideration of the first and second derivative spectra declines the performance to
64.8% and 53% respectively, when using the Jeffreys—Matusita distance in a single end-
member approach. They conclude that the reflectance spectra is more stable compared to
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derivative spectra, which is consistent as airborne data can be particularly noisy in compar-
ison to field data (e.g. in (Datt, 2000) where better accuracies are obtained with derivative
spectra). Regarding the application of vegetation indices, none of the reviewed studies in
(Fassnacht et al., 2016) demonstrated a clear advantage of their use. Nevertheless, other
works show a benefit in using such indicators (Erudel et al., 2017).

At this stage, the MNF transformation is chosen for extracting the spectral features be-
cause it is a well-known approach for both improving the performance in comparison to
the direct use of the spectral reflectance, and reducing the data dimension.

Structural features Many structural features (statistics (Dalponte et al., 2012), profiles
(Zhang and Hu, 2012)) can be considered for modeling the 3D tree species structure. In
general, this information is used in conjunction with spectral information. (Alonzo et al.,
2014) classify 29 species in Santa Barbara, California, USA, with hyperspectral AVIRIS
(spatial resolution of 3.7 m) and LiDAR (22 pulse/mz) data by defining structural features
from LiDAR point cloud, followed by feature level fusion with the hyperspectral data.
In particular, features such as the median height of returns in crown, the crown width at
median height of returns in crown, or the ratio of crown height to width are considered.
Their fused results compared to those obtained with hyperspectral data alone lead to an
Overall Accuracy (OA) improvement of 4.2 percentage point (pp). Focusing on the frame-
work proposed by (Dalponte et al., 2012), they aim at identifying 7 species in a mountain
area situated in the Southern Alps with AISA Eagle hyperspectral data (spatial resolution
of 1 m) and LiDAR data (8.6 pts/mz). Similar features to those computed by (Alonzo et
al., 2014) are chosen. An OA improvement of 8.9pp is obtained with the inclusion of the
structural features. Other studies of the literature point out the interest of extracting struc-
tural features such as those mentioned above (Holmgren et al., 2008; @rka et al., 2009).
In general, the species discrimination power of these features is low in comparison to the
spectral information but improves the results.

In conclusion, the use of structural features in order to model accurately the 3D struc-
ture of the tree species is rather recent and encouraging. Therefore, height ratios similar
to those developed in (Alonzo et al., 2014; Dalponte et al., 2012) and adapted to nDSM
data are considered for extracting the structural features.

Textural features Different methods exist to define textural features like Grey Level
Cooccurrence Matrix (GLCM) (Coburn and Roberts, 2004) or Wavelet Transform (WT)
(Rajpoot and Rajpoot, 2004). Unlike the structural features for which there is no standard
method dedicated for their extraction, probably because of their recent use, the texture is
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exclusively modelled with the Haralick features derived from the GLCM in the tree species
classification context. As for the structural features, the textural ones are in general used
in conjunction with spectral information. An exception is however the work of (Iovan
et al., 2008) which classifies 37 trees of 2 species in Marseille, France, from airborne
multispectral data with a spatial resolution of 20 cm by computing Haralick’s features
from the GLCM. They get an overall accuracy of 100% in this simple study case. The
study of (Johansen and Phinn, 2006) is another example of use of the Haralick parameters.
In particular, the contrast, dissimilarity, entropy, homogeneity and variance are extracted
from IKONOS imagery for mapping 10 tree species in Australian tropical savannah, but
the benefit of using texture in addition to spectral information is not assessed. Several
works use the GLCM-based parameters (Franklin et al., 2000; Ghosh et al., 2014b). In
a more original way, the study of (Zhang and Hu, 2012) aims at classifying 6 species in
Toronto, Canada, from multispectral data with a spatial resolution of 6 cm. They con-
sider a radiometric profile along a path in the solar plane at the object scale in addition to
multispectral reflectances, vegetation indices and texture information. In fact, this feature
could be viewed as a structural feature. When adding this information, an overall accuracy
improvement of approximately 10 pp is obtained. Similarly to the structural features, the
discriminative power of these features is low in comparison to that of the spectral infor-
mation but improves the results.

In summary, the GLCM-based parameters are commonly used in the literature to model
the texture of the tree species and have demonstrated encouraging results. They are thus
selected for textural feature extraction.

Contextual features The use of contextual features is not new in remote sensing meth-
ods, with the example of the GEOgraphic Object-Based Image Analysis (GEOBIA) com-
munity (Blaschke, 2010) which has already demonstrated the interest of integrating prior
information (Platt and Rapoza, 2008). There are many uses of prior knowledge in the re-
mote sensing community (Forestier et al., 2012; Heinzel et al., 2011; Zhu et al., 2001).
For example, the study of (Heinzel et al., 2011) uses information about the crown size
in order to improve delineation results. Prior knowledge about the objects diameter, area,
perimeter, etc. are considered for improving object-based classification in urban areas
by (Forestier et al., 2012). However, none of the reviewed studies takes advantage of
such knowledge for urban tree species identification, whereas the urban environment has
distinctive features (great species diversity, different tree structures, different tree devel-
opments for a same species, etc.). In particular, contextual information about the different
urban tree structures (i.e. street trees, park trees, etc.), can be used as prior knowledge in
order to improve the urban tree species classification performance. For instance, the detec-
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tion of street trees has several advantages. In addition to being useful to urban managers
for the specific monitoring of these trees, such information could be considered to improve
classification. Knowing that the urban alignments are often monospecific or bispecific, for
example in 57.7% and 24.2% of the Paris roads respectively (Rol-Tanguy et al., 2010),
it is reasonable to consider a species regularization step based on the assumption that the
alignments are often of the same species in order to improve the classification results. On
the other hand, the different tree developments between the street trees and the other ones
suggests differentiating these urban tree structures for improving the classification proce-
dure. There is therefore an interest in identifying the trees that belong to urban alignments.

There is no such method in the literature. However, this objective can be divided in two
sub-objectives: the individual tree crown delineation and the determination of membership
in an alignment. From this point of view, there are many works related to the first task,
as reviewed in section A.1.1. These works are useful to define the appropriate framework
for individual tree crown detection in urban alignment. At this stage, we have to focus on
the Individual Tree Crown Delineation and Detection (ITCD) methods that allow a prior
information to be modelled (third method group in figure A.5). Indeed, trees in urban
alignment are connected to each other, thus their discrimination requires the inclusion of
contextual information (modelled via the so-called prior component of the algorithms). In
particular, there are two categories of frameworks: classic ITCD method + prior informa-
tion (figure A.5), and unified ones. Concerning the determination of membership in an
alignment, the work of (Wen et al., 2017) is the only one, detailed in section A.1.2.2. This
study is an example of definition of the discriminative features of street trees.

ITCD methods using a prior information Regarding classic ITCD method + prior
information, prior information is included in classic ITCD methods in order to improve
their performance. In particular, the most useful information that can be incorporated are
the expected crown size and stand density (Zhen et al., 2015; Koch et al., 2014). About
the crown size, the example of (Heinzel et al., 2011) can be cited. They apply their ap-
proach on two study areas (Poland), in a forest context. A nDSM (spatial resolution of
0.5 m) derived from LiDAR data (7 pts/ m?) is considered. A preliminary classification of
the crown size is carried out before this information is used as prior knowledge for crown
delineation based on watershed. They get an average improvement of 30pp, with reached
accuracies ranging between 64% and 88%. Other works show improvements using the
crown size (Chen et al., 2006; Zhen et al., 2014). Concerning the stand size, the work
of (Hauglin et al., 2014) can be taken as an example (Norway). From data similar to
those used in the previous example, a crown delineation based also on watershed is first
applied, before the stand density (sample plots are used for estimating the stem number)
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Figure A.8: [Illustration of the prior energy of a MPP model (left) and results (right) of
Perrin (Perrin et al., 2006). The prior energy can model alignments as shown on the right
part of the prior energy illustration.

helps guiding the delineation. Even if the contribution of this auxiliary data is not assessed
in this study (not the main objective), it seems to be helpful regarding the authors analysis.
Other studies such that of (Ene et al., 2012) use the stand density.

In conclusion, these frameworks allow a prior information to be modelled in a simple
way, via the inclusion of an additional processing before or after the classical ITCD algo-
rithm, in other words consider several ad hoc steps rather than an unified model. This can
cause errors since the errors associated to each step are spread through the framework in a
non-reversible way (Horvath et al., 2009).

On the other hand, unified frameworks aim at combining the individual tree crown de-
lineation and the prior information in an unified model. In particular, the Marked Point
Process (MPP) framework is dedicated to find objects within an image by minimizing an
energy including a data term and a prior term. The data term models how the objects fit
the image while the prior term (or interaction term depending on the case) models the link
between the objects (overlapping, proximity, similarity, etc., illustrated in figure A.8, left)
(Van Lieshout, 2000). This framework has been used for several applications, including
the crown delineation. Focusing on this application, the contributions of Perrin can be
highlighted through several papers (Perrin et al., 2006, 2005, 2004) (illustrated in figure
A.8). In the MPP, the shape of the delineation has to be assumed preliminarily, this is
the so-called mark (a circle or an ellipse in general). The work of (Larsen et al., 2011)
compares the performance of six tree crown delineation algorithms (including a MPP ap-
proach) when applied to six study sites. Colour Infrared Film (CIR) aerial photos are used
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(spatial resolution varying from 10 cm to 50 cm). Different forest conditions are consid-
ered. Whereas the MPP approach is the best for the plantation scene (similar to the urban
tree alignments) with matching score values up to 99%, it can decrease to 35% in case of
overlapping trees and oblique acquisition configuration.

While the main advantage of the MPP is the possible inclusion of a prior information
in an unified model (via the prior term), its main disadvantage is the shape of the crown
that has to be assumed in advance, not allowing to delineate accurately the crowns. Even
if the mentioned studies indicate errors in case of significant overlap, a more complex data
term definition could help to deal with theses cases.

The active contour model is another framework, aimed at delineating objects outlines
within an image by minimizing an energy including an internal term, an image term and
a constraint term. The internal term can be viewed as a prior on the shape of the contour
(continuity, smoothness, etc.), similar to the prior term of the MPP (at the contour level
instead of the inter-objects level). The image term models how the contour fits the image,
closer in signification to the data term of the MPP. Finally, the constraint term allows a
user intervention to be considered for guiding the contours (via a user interface for exam-
ple) (Kass et al., 1988). This framework has been applied for several applications such
as the crown delineation. The study of (Lin et al., 2011) aims at delineating trees from
three sample plots in Alishan National Scenic Area, Taiwan, based on a CHM derived
from LiDAR data (5 pts/m?). As an initialization step, they compute bottom up erosion
(identifies stand candidates) followed by top down dilation (estimates the crown periph-
ery). An active contour algorithm is then applied giving an average detection accuracy of
76%. Other works use active contour for this purpose (Ke et al., 2010). The Higher-order
active contours (HOACs), improvement of the initial active contour framework in order
to include non-trivial prior knowledge about region shape without constraining topology,
has been developed by (Rochery et al., 2006) and used for crown delineation. Indeed, the
paper of (Horvath et al., 2009) proposes a method for delineating the crowns of poplar
stands, in France, from colour infrared aerial image (spatial resolution of 50 cm). They
found that the HOAC framework is better than the classical active contour with improve-
ments of correct detections varying from 1pp to 12pp according to the complexity of the
case.

While the main advantage of the active contour is the shape of the crown that can be

accurately delineated, its main disadvantage is the prior information that only concerns
the contour shape, not the interaction between objects.
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Figure A.9: Illustration of the workflow (left) and results (right) developed by Wen (Wen
et al., 2017).

Patch-level approach of Wen The work of Wen (Wen et al., 2017) is particularly
relevant because it aims at classifying the urban canopies (patch-level classification) in
three classes (park, roadside and residential-institutional canopies). The roadside class
corresponds to our urban alignments. In particular, their method is applied on two ar-
eas: Shenzhen and Wuhan (China). WorldView-2 satellite imagery (spatial resolution of
2 m for the multispectral mode) as well as the road network (from OSM) are used. From
a methodological point of view, their framework consists of three main steps (presented
in figure A.9, left): vegetation extraction (vegetation / non-vegetation at the pixel level),
vegetation type mapping (tree / ground vegetation / non-vegetation at the object level dif-
ferent to tree level: multiple crowns) and tree type mapping (park / roadside / residential-
institutional at the patch level: alignment scale). For the second and last steps, segmenta-
tion (Baatz and Schape, 2000) and supervised classification (k-NN) are carried out in order
to identify the classes under consideration. Focusing on the last step which is of interest
for this chapter, specific spectral, textural, shape and contextual features are considered
for characterizing these classes. Among these numerous features, the perimeter-area ratio,
the related circumscribing circle and the distance to road of the patches are computed. Re-
garding the results, F-score values of 76%, 89% and 87% are obtained for park, roadside
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and residential canopies respectively (illustrated in figure A.9, right).

In such a patch-level framework, there are confusions between the street trees and the
other populations of trees because of the spatial connections between the canopies (i.e.
proximity between roadside and park ones for example). Moreover, the assessment met-
rics used in this study are computed in terms of patch whose reference data are not clearly
described through the paper, which does not allow the latter confusions to be correctly
quantified.

A.1.2.3 Supervised classification

Once these features (spectral, textural, structural, contextual, etc.) are extracted, they are
subject to classification from training samples, through the use of a supervised classifica-
tion algorithm.

Training samples The training samples can be extracted directly from the images, or
from an external database based on field measurements for examples (Fassnacht et al.,
2016). It is traditionally done directly from the image level, either from the image under
consideration itself, or from other images of the same data type, to get rid of the change of
scale and because field measurements are not always available. In particular, many stud-
ies consider manually delineated trees for extracting the training samples (Alonzo et al.,
2014). While it is useful to consider this assumption in order to compare different clas-
sification strategies, it is not realistic for an operational point of view. Instead, learning
examples extracted from field measurements are relevant candidates. There is no work
dedicated to the classification of tree species based on leaf or canopy training samples
using optical imagery (Fassnacht et al., 2014). However, when focusing on the thermal
infrared domain (8.0 - 13.5 um), the study of (da Luz and Crowley, 2010) uses the SE-
BASS airborne sensor (spatial resolution of 1 m) in order to analyse and map canopy
spectral features in the State Arboretum of Virginia, near Boyce, Virginia. They success in
classifying up to 20 species based on laboratory-measured leaf spectra. To do so, they use
the original spectral reflectance. Focusing on the optical domain, previous studies show
that field and airborne spectral reflectances are often incomparable, especially in the case
of leaf level measurements because of the variability of the canopy structure (Roberts et
al., 2004). Faced with this problem, spectral features such as vegetation indices can be
both discriminative and invariant to the change of scale (Cho et al., 2008) (Figure A.10).
Focusing on Figure A.10, while the majority of the indices changes significantly from leaf
to canopy scale, indices such as Curvature Index (CI), Gitelson and Merzlyak Index (GMI)
or Photochemical Reflectance Index (PRI) are invariant for certain species. As an exam-
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Vegetation Formula Biophysical Reference
index significance

Normalised (Rezo— Canopy greenness, Rouse et al.,
difference Rg70)/(Rgzo LAI, fraction of 1974;
vegetation index  + Rgz) photosynthetically Tucker,
(NDVI) active radiation 1979

Carter index  Rys/Reos Chlorophyll content ~ Carter, 1994
(CD

Gitelson  and  Rys0/Rypo Chlorophyll content  Gitelson and
Merzylak index Merzlyak,
(GMI) 1997
Vogelman index  Rys0/Roo Chlorophyll content ~ Vogelmann
(VOG) etal., 1993
Photochemical (Rs3i— Conversion of Gamon et
reflectance Rs70)/(Rs3 xanthophylls-cycle al, 1992;
index (PRI) + Rs7) pigments, Penuelas et

photosynthetic light-  al., 1995
use efficiency, LAI

Carotenoid Rsoo(1/Rs30-  Carotenoids (alpha-  Getilson et
reflectance 1/Rss0) and beta- al., 2002
index (CRI) xanthophylls),

indicator of plant

stress
Species NDVI ClI GMI VOG PRI CRI
Hedera 22195 -0.90™  -1.24™ 3387 4957 -0.44™
Rhodo- 743" 873" 740" 5667 7447 -
dendron 10.98"
Prunus 411" -4.00” -4.45" -7.94" -5.26" -3.39"
Corvilus -8.03"” -8.45" -4.86" 3417 2.22° 9117
Malus -2.02° -0.5™ 0.88™ 233" 647" -3.94"
Aesculus  -478"  -42" 349" 508" 1.34™ -5.23"

Figure A.10: List of indices (top) and two-sample t-test for differences between leaf and
canopy vegetation indices (bottom) based on the study of (Cho et al., 2008). * = p <
0.05,%x = p < 0.01,ns = notsignificant(p > 0.05) from (Cho et al., 2008).

ple, PRI index is invariant for Aesculus and found to have high potential to discriminate the
tree species in the work of (Cho et al., 2008). In another context than the tree species clas-
sification (crop mapping), the use of ground-based spectral references has already proven
its potential (Nidamanuri and Zbell, 2011).

To conclude, training samples both directly extracted from the images and based on field
spectral measurements are considered. In the case of field measurements, spectral indices
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are preferred in order to deal with the change of scale.

Supervised classification algorithms An overview over advantages and disadvantages
of most commonly applied classification algorithms is provided in (Fassnacht et al., 2016),
with a more detailed review provided by (Lu and Weng, 2007). According to (Fassnacht
et al., 2016), the choice of the algorithm is of low importance when the requirements
of the classifier in terms of data preprocessing are reached. In particular, using the non-
parametric Support Vector Machine (SVM) and Random Forest (RF) does not require any
distributional assumption, and these algorithms have already demonstrated good perfor-
mance in the literature (Féret and Asner, 2013; Sheeren et al., 2016).

Therefore, SVM and RF algorithms are chosen.

A.1.2.4 Fusion

Each set of features (spectral, structural, textural, contextual, etc.) contributes in the
species identification, there is thus an interest in combining them in order to improve
tree species maps. A usual way is then to combine multiple data sources / features / clas-
sification algorithms, i.e. to consider a fusion framework. However, the term fusion is
ambiguous as it can be achieved at different levels. To avoid any ambiguity, we have
summarized the possible fusion strategies depending on the information to fuse in Figure
A.11. Two possible fusion frameworks can be used: feature level fusion (Alonzo et al.,
2014; Dalponte et al., 2012) and decision level fusion (Stavrakoudis et al., 2014; Engler
et al., 2013). In our context, the decision level fusion and the ensemble classifier refer to
the same framework. On the one hand, the feature level fusion stacks many characteristics
of interest and the resulting feature vector is classified. On the other hand, the decision
level fusion considers several classifiers (feature extraction and supervised classification
as shown in Figure A.11), according to a criterion, and the predictions of these classifiers
are combined through a decision rule. Focusing on Figure A.11, two categories of deci-
sion level fusions are distinguished: data sources-based and classifier-based approaches.
For the first one, a classifier is defined for each data source while the classifiers are chosen
according to another criterion for the second one (leading for instance to the same set of
features but different supervised classification algorithms, the same algorithm but differ-
ent sets of features, etc.). The latter approach is therefore very flexible. Regarding the tree
species classification context, the feature level fusion is always preferred for its simplic-
ity to implement except in the studies of (Stavrakoudis et al., 2014) and (Engler et al.,
2013) where decision level fusions are considered, data sources-based and classifier-based
approaches respectively, both detailed below. In general, spectral information is used in
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Figure A.11: Fusion strategies definition. Focusing on the classifier-based decision fu-
sion, all the arrows are not drawn in order not to overload the diagram.

conjunction with others (textual and structural information). In particular, there are many
works which fuse hyperspectral and LiDAR data (17 out of the 29 relevant cases listed in
the recent review of (Fassnacht et al., 2016)).

Feature level fusion Focusing on the fusion of spectral and structural features, the
studies of (Alonzo et al., 2014) and (Dalponte et al., 2012) reflect the state-of-the-art
spectral / structural information combinations. In an urban context, the work of (Alonzo
et al., 2014) aims at classifying 29 tree species in Santa Barbara, California. For that task,
they use hyperspectral AVIRIS data (spatial resolution of 3.7 m) and airborne LiDAR data
(22 pulse/m?). They stack the spectral and structural features at the hyperspectral pixel
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level, knowing that the structural characteristics are computed at the object level (i.e. sub-
sampling of the structural ones). In an object-based approach, the resulting feature vectors
are classified within the objects thanks to a Canonical Discriminant Analysis (CDA) su-
pervised classification algorithm, followed by a majority vote (feature level fusion, Figure
A.12, and results illustrated in Figure A.13). Whereas they get an Overall Accuracy (OA)
value of 83.4% with the hyperspectral data alone, an increase of 4.2pp is obtained with the
inclusion of LiDAR-based metrics (illustrated in Figure A.12). This improvement occurs
for species crowns either small, i.e. having few pixels (6 species on the basis of 8 for which
improvements higher than 10pp have been observed), or morphologically unique, e.g. par-
ticularly tall species such as Washingtonia robusta (2 species concerned). In the work of
(Dalponte et al., 2012), they aim at identifying 7 species in a mountain area situated in the
Southern Alps. In particular, they use AISA Eagle hyperspectral data (spatial resolution
of 1 m) and LiDAR data (8.6 pts/m?). They stack the spectral and structural features at
the hyperspectral pixel level, knowing that this time the structural characteristics are com-
puted at the pixel level. A SVM supervised classification is then applied in a pixel-based
approach (feature level fusion). An OA value of 83% is obtained with the fusion while
the use of the hyperspectral data alone leads to an OA score of 74.1% (-8.9pp). Other
studies demonstrate the interest of using the spectral and structural information together
(Dalponte et al., 2008; Jones et al., 2010) (+2pp in terms of OA).

Regarding the fusion of spectral and textural features, compared to the spectral / struc-
tural information combinations which include hyperspectral data for modelling the spec-
tral features, the spectral features used in the studies which fuse spectral / textural infor-
mation are based on multispectral data. It is expected that the contribution of the textural
information would be more significant when adding to multispectral data in comparison to
hyperspectral data, as hyperspectral data are more powerful for tree species classification
when its spatial resolution is similar. Thus, the following accuracies have to be carefully
considered. The works of (Zhang and Hu, 2012) and (Franklin et al., 2000) illustrate the
spectral / textural combinations. The first one aims at classifying 6 species in Toronto,
Canada, from multispectral data with a spatial resolution of 6 cm. A knowledge-based de-
cision tree including spectral and textural features is used as classification algorithm in an
object-based manner, which can be viewed as a feature level fusion. When adding textural
features, an OA improvement of approximately 10pp is obtained. Otherwise, the study of
(Franklin et al., 2000) aims at identifying pure and mixed wood forest stands species in Al-
berta and New Brunswick, Canada. Multispectral data with a spatial resolution of 1 m are
used. Maximum Likelihood (ML) supervised classification with a pixel-based approach is
applied (feature level fusion). While the addition of the textural features lead to an OA im-
provement of Spp for Alberta, an increase of 12pp is obtained for New Brunswick. Other
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Figure A.12: Illustration of the hyperspectral / LiDAR fusion proposed by (Alonzo et al.,
2014) for the classification of 29 tree species in an urban environment. Top: classification
framework. Bottom: results.

studies (Johansen and Phinn, 2006; Mallinis et al., 2008) lead to similar conclusions.

In conclusion for feature level fusion, even if there is a benefit in fusing spectral / structural
or spectral / textural information for tree species classification, the mentioned approaches
fail to substantially improve the performance. This can be caused by several reasons. First
of all, the structural or textural features are not enough complementary to the spectral ones.
Secondly, the fusion strategy does not allow to take advantage of this complementarity. No
work analyses the complementarity of the sources subject to fusion, and feature level fu-
sion is generally preferred to decision level fusion because of its simplicity to implement
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Figure A.13: Urban tree map obtained in (Alonzo et al., 2014).

whereas no comparison of the strategies has been carried out.

Decision level fusion Even if the feature level fusion framework is preferred for tree
species classification, the method developed in (Stavrakoudis et al., 2014) constitutes an
example of data sources-based decision level fusion, in a pixel-based framework. In par-
ticular, they aim at classifying 6 species in the southern and southwestern slopes of Mount
Cholomontas in Macedonia. Multispectral QuickBird data (spatial resolution of 2.4 m)
and hyperspectral EO-1 Hyperion data (spatial resolution of 30 m) are used, which differs
from the previous state-of-the-art examples where spectral information were used in con-
junction with others (structural or textural). After classifying the pixels of the two images
with a SVM supervised classification, the resulting membership probabilities correspond-
ing to Hyperion are resampled to the QuickBird spatial resolution, and a decision rule is
applied for predicting the species (Figure A.14). While the OA was of 66.5% and 65.7%
for the hyperspectral and the multispectral data, it reaches 78.9% with fusion strategy (il-
lustrated in Figure A.14). In another context than tree species classification (land cover
mapping), other studies have demonstrated the efficiency of data sources-based decision
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Figure A.14: Decision level fusion developed in (Stavrakoudis et al., 2014) for the clas-
sification of 6 tree species in a mountain area. Left: classification framework. Right:
results. Focusing on the results, (a), (b) and (c) correspond to the Hyperion, QuickBird
and fusion performance maps. (d), () and (f) highlight the misclassifications in each case,
by comparing the predicted species with the ground truth available in this study.

level fusion, such as (Abbasi et al., 2015).

To conclude, no analysis of the complementarity of the sources involved in the fusion
has been carried out. The fusion frameworks are not compared to the standard feature
level one. Although having one classifier associated to a particular data source allows the
contribution of each one to be assessed, this remains an arbitrary choice.

The study of (Engler et al., 2013) is an example of classifier-based decision level fu-
sion. They aim at classifying 6 tree species in North-Eastern Switzerland, based on high-
resolution aerial imagery (50 cm spatial resolution) and topo-climatic variables (5 m spa-
tial resolution). In particular, they use different classification algorithms while keeping the
same set of features, and find this ensemble classifier better than individual approaches.
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In another context than tree species classification (land cover mapping), the work of (Cea-
manos et al., 2010) demonstrates that it is preferable to use an ensemble classifier approach
instead of a standard one when dealing with hyperspectral data. The reason given is related
to the Hughes effect (curse of dimensionality) (Hughes, 1968) that is particularly signifi-
cant when the number of training samples is much lower than the number of spectral bands
when focusing on hyperspectral signals. This effect is naturally less important in the case
of an ensemble classifier approach. With AVIRIS hyperspectral data (spatial resolution
of 3.7 m), the ensemble methods developed in the study of (Ceamanos et al., 2010) can
lead to OA improvements up to Spp in comparison to the commonly used approach (Fig-
ure A.15, right). Especially, the hyperspectral data are decomposed into few data sources

u5.SVM ®3.SVM ®84.SVM OML

Images #1 |/

Overall testing accuracy

. ’
Fusion SVM ./I Classification
rule images |/ map

25 TR 50 TR 100 TR ALL
Training samples per class

Figure A.15: Ensemble method and results from the work of (Ceamanos et al., 2010).
s-SVM stands for the standard approach (single classifier) while 3-SVM and 4-SVM refer
to the cases where 3 and 4 SVMs are considered. ML stands for Maximum Likelihood.

according to the similarity of the spectral bands. Then, each source is classified by a SVM
before a decision rule is applied (illustration in Figure A.15, left). Other studies lead to
similar conclusions (Wang et al., 2009; Xia et al., 2015, 2017) (urban land cover applica-
tions).

From a global point of view, a review of the ensemble classifier theory is provided in
(Kuncheva, 2004). In particular, the decision rule used for combining the predictions of
each classifier is the critical point of these approaches. Several strategies can be used:
majority vote, weighted majority vote, naive Bayes combination, multinomial methods,
decision templates, Dempster-Shafer combination, etc. According to (Kuncheva, 2004),
the simple weighted average class of rules have been most widely used due to their sim-
plicity and consistently good performance. The decision level fusion framework has been
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used many times in another context than tree species classification (Zhang, 2010). For in-
stance, the work of (Tupin et al., 1999) is intended to identify classes in Synthetic Aperture
Radar (SAR) images, based on Dempster-Shafer theory (Shafer, 1976) applied to several
structure detectors. The method proposed in (Chanussot et al., 1999) is dedicated to de-
tect linear feature in SAR satellite data applied to road network extraction based on fuzzy
fusion techniques. Using IKONOS imagery, the study of (Fauvel et al., 2006) proposes an
ensemble classifier approach for the classification of urban remote sensing images based
on a fuzzy decision rule.

To conclude regarding the mentioned classifier-based decision level fusion studies, the
feature extraction step is not carried out in such a way that it directly optimizes the clas-
sification accuracy. Another drawback is that the complementarity of the classifiers is not
optimized. Finally, a simple weighted average decision rule is chosen.

Summary and selected approach

Selected methods

Focusing on the tree crown delineation, this is reasonable to choose a standard raster-based
approach for delineating the tree crowns. Without significant differences between the men-
tioned approaches, the one developed in (Iovan et al., 2008) is selected for its efficiency
in terms of computational burden and easiness.

Regarding the species classification, in particular the feature extraction approaches, the
MNF transformation and spectral indices are chosen for extracting the spectral features,
while Haralick parameters will be used to model the tree species texture. About the 3D
structure, height ratios adapted to nDSM data will be computed based on the previous stud-
ies. Regarding the supervised classification task, training samples both directly extracted
from the images and from field measurements are considered. SVM and RF algorithms
are chosen. A simple weighted average decision rule is considered for the fusion.

Finally the Overall Accuracy (OA), k, Producer Accuracy (PA), User Accuracy (UA) and
F-score metrics, are all considered in this work.

Developed methods

Concerning the fusion, the combination of spectral and structural information have demon-
strated a potential for tree species classification, but without substantial improvement. Tex-

52



tural information contribution follows the same behaviour, except that there are far fewer
studies for this type of fusion. There is no work that fuses spectral, structural and textural
information, whereas it would lead to better results, as improvements have been stated for
the spectral / structural and spectral / textural information combinations, although slight.
Moreover, the complementarity of these features has not been assessed, whereas non com-
plementary sources cannot logically improve the performance compared to the best of
them. Whereas the feature level fusion is widely used in the literature, the decision level
fusion has already demonstrated its potential, and no comparison has been carried out in
order to select the best approach for a given tree species classification case. This leads us to
identify the best object-based fusion strategy (feature or decision level) taking advantage
of the complementarity of several heterogeneous airborne data sources for improving the
urban tree species mapping. To begin, a data sources-based decision level fusion seems to
be a candidate of interest in order to assess the contribution of each data source. The train-
ing samples are directly extracted from the images based on manually delineated crowns
(chapter I).

In order to improve these multi-source classification methods, the second part of this PhD
thesis will explore the potential of a classifier-based decision level fusion. In particular,
there is an interest in extracting the features in such way that they optimize the classifi-
cation accuracy, for example per species if each classifier is dedicated to the prediction
of a particular species. Classically, the training step of the classification models is based
on target image data (Fassnacht et al., 2016; Alonzo et al., 2014). We will analyse the
quality of the maps generated when the training is carried out from field measurements
(canopy and leaf levels). The interest is the use the resulting classification approach in
an operational context where target image training samples are not available (Nidamanuri
and Zbell, 2011). In order to overcome the problem of change of scale, introduced when
the training is based on field measurements and not images, the maps obtained by using
vegetation indices are assessed (Cho et al., 2008). Therefore, there is an interest in de-
veloping an ensemble of species-specific classifiers based on field spectral measurements
using vegetation indices (chapter II).

Further improvements of the proposed methodologies could be obtained through the con-
sideration of contextual information. The detection of the street trees would allow the
tree species predictions to be regularized within urban alignments. Two frameworks are
possible for this detection: classic ITCD method + prior information, and unified ones.
In particular, the unified frameworks do not have the disadvantages of the classic + prior
information ones in terms of spread of errors. Secondly, the unified ones leads to similar
performance. Active contour method is better for an accurate delineation of crowns but is
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not appropriate for modelling the interaction between the trees (spatial organization and
common features among the trees), an essential feature for detecting trees in urban align-
ment. Thus the MPP are selected. Regarding the work of Wen, its patch level approach is
not compatible with the MPP but some of the features used to discriminate the street trees
could be considered, especially the distance between the tree and the road. This leads us to
develop a MPP method for detecting the street trees based on airborne data and contextual
information (chapter III).
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Chapter I

Urban tree species classification from
multiple airborne data sources

Synthese de I’article en francais

L’objectif de ce papier est d’identifier la meilleure stratégie de fusion orientée objet qui
exploite la complémentarité de plusieurs sources de données aéroportées hétérogenes pour
améliorer la classification de 15 especes d’arbres en milieu urbain (Toulouse, France).

Jeu de données

Afin de sélectionner la meilleure approche de fusion, des classifications mono et multi-
source sont d’abord testées sur un site de référence ou 15 especes d’arbres sont préalable-
ment identifiées et les couronnes d’arbres délimitées manuellement (un total de 194 arbres).
Ensuite, cette approche est introduite dans un processus automatique (délimitation de la
couronne et classification des especes) pour classer les especes d’un site test, indépendant
du site de référence utilis€ pour 1’apprentissage. Dans ce cas, la méthode n’est évaluée
que pour des arbres d’alignement d’especes majoritaires : Tilia tomentosa et Platanus x
hispanica.

Parce que les données aéroportées hyperspecrales, PAN et nDSM sont a priori
complémentaires pour la classification des especes, ces données sont considérées a tra-
vers les approches de fusion testées. Alors que les données hyperspectrales sont destinées
a mettre en évidence les caractéristiques spectrales des especes d’arbres, les données PAN
et nDSM sont utilisées pour modéliser leurs propriétés texturales et structurales, respec-
tivement. Les principales caractéristiques du jeu de données sont décrites dans le tableau
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TABLE L.1 : Principales caractéristiques du jeu de données. "N fait référence au nombre
de bandes spectrales. GSD signifie Ground Sampling Distance.

VNIR SWIR PAN nDSM
Source HySpex VNIR-1600 HySpex SWIR-320m-e CAMV2 CAMV2
Quantité réflectance spectrale réflectance spectrale compte hauteur
numérique
GSD 0.4 m 1.6 m 0.14m 0.125m
Intervalle 04-1um 1-2.5um
N 160 256

II1.2, apres que les prétraitements géométrique et radiométrique aient été effectués. Le
nDSM est obtenu a partir d’acquisitions stéréoscopiques du systeme CAMV?2.

Méthode proposée

Concernant la classification mono-source, les composantes MNF sont calculées pour
chaque pixel afin de constituer les vecteurs de caractéristiques spectrales Visible Near
Infrared (VNIR) et Short Wavelength Infrared (SWIR). Alors que les vecteurs de ca-
ractéristiques texturales sont constitués de parametres de Haralick dérivés de la matrice
de cooccurrences de niveaux de gris (GLCM), plusieurs rapports de hauteur composent
les vecteurs de caractéristiques structurales. Ces caractéristiques texturales et structurales
sont calculées a 1’échelle de la couronne. Une fois ces caractéristiques construites, elles
sont respectivement classées dans les couronnes d’arbres griace a un algorithme de classifi-
cation supervisée (SVM et RF testés). Cela permet de calculer un profil de décision fondé
sur les probabilités d’appartenance et soumis a une regle de vote majoritaire, permettant
de prédire une espece pour chaque arbre et chaque type de données.

Une approche de fusion au niveau de la décision est ensuite proposée sur la base d’un
profil de décision constitué des profils de décision combinés de chaque type de données.
Trois regles de décision sont prises en compte pour prédire ’espece. La source VNIR
est considérée comme une référence puisqu’elle donne la meilleure classification mono-
source. Une méthode de fusion standard au niveau des caractéristiques est considérée
comme une autre référence. Au lieu de combiner les résultats de classification comme
pour la fusion au niveau de la décision, toutes les caractéristiques (spectrales, texturales
et structurales) sont concaténées dans un vecteur de caractéristiques pour chaque pixel
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TABLE [.2 : OA (%) et K (%) par source. Les scores engras associ€s d’une étoile (*) font
référence au meilleur score parmi les sources.

VNIR SWIR PAN nDSM ‘ Baseline Fusion
OA (%) 75 69 43 35 73 77*
K (%) 72 65 35 27 69 74%*

VNIR, ainsi soumis au méme traitement que dans la classification mono-source.

Résultats

Les principaux résultats des classifications mono-source et multi-source sur le site de
référence sont présentés dans Table 1.2. Pour la classification mono-source, le VNIR est le
meilleur avec une valeur d’OA de 75%, suivi par le SWIR (69%). Le PAN et le nDSM
conduisent a des valeurs d’OA de 43% et 35%. Les composantes MNF montrent de
meilleures précisions que 1’ensemble des bandes spectrales (+9pp pour le SWIR avec
SVM)). En conclusion, les données hyperspectrales sont le principal moteur de la précision
tandis que les données PAN et nDSM contribuent marginalement. En outre, il est avanta-
geux d’utiliser des composantes MNF pour le traitement de données hyperspectrales.

En ce qui concerne la classification multi-source, 1’approche de fusion au niveau de la
décision proposée améliore 1égerement la performance (+2pp) tandis que la fusion stan-
dard diminue I’OA du VNIR (-2pp). En particulier, I’analyse de complémentarité des ac-
cords de prédiction démontre que la fusion proposée tire profit des cas de complémentarité,
par exemple lorsque le VNIR se trompe mais qu’au moins une autre source a raison, mais
les cas ou le VNIR est correct alors que le SWIR est faux ne sont pas bien gérés par la
stratégie proposée. Concernant 1’analyse de la complémentarité par espece, la fusion au
niveau de la décision améliore la performance pour 8 especes sur 15, incluant les deux
especes majoritaires (7ilia tomentosa et Platanus x hispanica). Pour le site test, la fusion
au niveau de la décision conduit a une valeur d’OA de 63% contre 55% pour le VNIR.

Discussions

Ces résultats démontrent que les caractéristiques spectrales sont le principal moteur de la
précision de classification, ce qui est cohérent avec la littérature (Fassnacht et al., 2016).
La réduction MNF améliore les performances, comme mentionné par (Fassnacht et al.,
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2014). Evaluée a partir des communalités MNF des bandes spectrales (Bailey et al., 2002),
la contribution du red edge semble étre particulicrement utile dans notre contexte (Dal-
ponte et al., 2009). D’autre part, ’analyse spatiale de la performance démontre que les
arbres d’alignement monospécifiques sont bien identifiés alors que les principales erreurs
se produisent pour les parcs. Ainsi, la discrimination parc / arbres d’alignement pourrait
étre intéressante pour appliquer un traitement spécifique aux arbres de parc.

En ce qui concerne les caractéristiques texturales et structurales, elles contribuent mar-
ginalement, ce qui est cohérent avec les travaux antérieurs (Franklin et al., 2000; Alonzo
et al., 2014). Globalement, les caractéristiques texturales et structurales permettent de bien
classer les arbres d’alignement. Comme ces caractéristiques ne permettent pas de classer
I’ensemble des especes (15 ici) avec une grande précision, il est probablement intéressant
de les utiliser d’une autre maniere, par exemple en discriminant des groupes d’especes
ayant des textures similaires, de maniere hiérarchique.

L’analyse de complémentarité réalis€e dans cette étude démontre que les sources sont
complémentaires mais que cette complémentarité est faible. Dans ce contexte, une fusion
standard au niveau de la caractéristique (Alonzo et al., 2014) ne permet pas d’améliorer
les performances du VNIR alors que 1’approche proposée y succede, mais avec de légeres
améliorations (Stavrakoudis et al., 2014). Ce n’est a priori pas la conséquence d’une
regle de décision non optimale, mais plutdt les sources individuelles qui ne sont pas as-
sez complémentaires. En particulier, la méthode au niveau des caractéristiques souffre de
I’effet de Hughes (fléau de la dimension) (Hughes, 1968). La complémentarité des sources
doit étre optimisée, par exemple en définissant une source spécifique par espece.

Conclusions

L’ objectif est d’identifier la meilleure stratégie de fusion orientée objet qui tire profit de la
complémentarité de plusieurs sources de données hétérogenes aéroportées pour améliorer
la classification de 15 especes d’arbres dans une zone urbaine (Toulouse, France). Les
données hyperspectrales aéroportées VNIR et SWIR, PAN et nDSM sont prises en compte.
Les stratégies de fusion au niveau de la décision et au niveau des caractéristiques sont
comparées lorsqu’elles sont appliquées a un site de référence, et la meilleure est intro-
duite dans un processus automatique de prédiction des especes d’arbres dans un site test.
L’approche VNIR et I’approche de fusion au niveau des caractéristiques sont choisies
comme méthodes de référence.

En ce qui concerne les résultats, les sources VNIR et SWIR sont les meilleures avec des
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valeurs d’OA de 75% et 69%, respectivement. En particulier, il y a un intérét a classer les
especes avec les composantes MNFE. Le PAN et le nDSM conduisent a des valeurs d’OA
de 43% et 35%. Pour la classification multi-source, la fusion au niveau de la décision
proposée améliore 1égerement les performances du VNIR (77% au lieu de 75%). Cette
légere amélioration est due a la faible complémentarité des sources, plutdt qu’a la regle de
décision.

Une amélioration des méthodes est nécessaire. Premierement, il est nécessaire d’optimiser
la complémentarité des sources, par exemple en définissant une source spécifique par
espece. Cela pourrait se faire en utilisant des indices spectraux, en plus des bandes spec-
trales et des composantes MNFE. D’un autre c6té, il semble prometteur de distinguer les
arbres de parc des arbres d’alignement, comme le démontre I’analyse spatiale. Enfin, la
définition d’échantillons a partir de mesures sur le terrain pourrait permettre de rendre la
méthode plus opérationnelle.
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English part: First article

The first paper is included in the next section'.

I.1 Object-based fusion for urban tree species classifica-
tion from heterogeneous data: hyperspectral, panchro-
matic and nDSM

Abstract: This study aims at identifying the best object-based fusion strategy that takes
advantage of the complementarity of several heterogeneous airborne data sources for im-
proving the classification of 15 tree species in an urban area (Toulouse, France). The
airborne data sources are: hyperspectral Visible Near-Infrared (160 spectral bands, spatial
resolution of 0.4 m) and Short-Wavelength Infrared (256 spectral bands, 1.6 m), panchro-
matic (14 cm) and normalized Digital Surface Model (12.5 cm). Object-based feature and
decision level fusion strategies are proposed and compared when applied to a reference
site where the species are previously identified during ground truth collection. This al-
lows the best fusion strategy to be selected with a view to introducing the method in an
automatic process (tree crown delineation and species classification) on a test site, inde-
pendent of the reference site used for learning. In particular, a decision level fusion is se-
lected: Visible Near-Infrared and Short-Wavelength Infrared classifications use Minimum
Noise Fraction components at the original spatial resolution and Support Vector Machine,
whereas panchromatic and normalized Digital Surface Model classifications use respec-
tively Haralick’s and structural features computed at the object scale, and Random Forest.
After the computation of a decision profile for each source at the object level based on the
classification algorithms membership probabilities, these decision profiles are combined
and a decision rule is applied to predict the species. Focusing on the reference site, the
Visible Near-Infrared exhibits the best performances with F-score values higher than 60%
for 13 species out of 15. The Short-Wavelength Infrared is the most powerful for 3 species
with F-score greater than 60% for 7 common species with the Visible Near-Infrared. The
panchromatic and normalized Digital Surface Model contribute marginally. The best fu-
sion strategy (decision fusion) does not improve significantly the overall accuracy with
77% (kappa = 74%) against 75% (kappa = 72%) for the Visible Near-Infrared but in gen-
eral, it improves the results for cases where complementarities have been observed. When

3. Aval, S. Fabre, E. Zenou, D. Sheeren, M. Fauvel and X. Briottet. Object-based fusion for urban
tree species classification from heterogeneous data: hyperspectral, panchromatic and nDSM. International
Journal of Remote Sensing, 2018.
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applied to the test site and assessed for the two majority species (7ilia tomentosa and Pla-
tanus x hispanica), the selected approach gives consistent results with an overall accuracy
of 63% against 55% for the Visible Near-Infrared.

Keywords Tree species classification; urban remote sensing; hyperspectral; panchro-
matic; nDSM; spatial information; object-based; complementarity; decision fusion.

I.1.1 Introduction

In urban areas, trees can impact the microclimate, promote biodiversity, have a relaxing
psychic action and contribute to aesthetics (Jones, 2014). During heatwaves in dense and
polluted cities, tree infrastructures can locally decrease the temperature (freshness islands)
(ADEUS, 2014) and improve the air quality (Yin et al., 2011). These properties depend on
the capacity of evapotranspiration and on the crown volume of the trees which are related
to the tree species. Urban trees are also subject to special conditions and can be particu-
larly affected by some diseases. For example, Ceratocystis platani is a fungus responsible
for the Canker stain of Platanus trees. In Europe, it was allegedly introduced to Marseille,
France in 1945 from infested wooden crates of US troops containing military equipment
(Vigouroux, 2014). At Forte dei Marmi in Italy, 90% of the Platanus trees died from 1972-
1991. In cities, trees are often planted as street trees and belong to the same tree species,
thus the transmission of this type of disease is easier. The current struggle against these
species specific diseases is based on several key elements, including the monitoring. Be-
side these statements, tree species information is essential for the management of urban
trees. Nowadays, the operational procedure for tree species classification is based on field
campaign which does not allow large areas to be covered on a regular basis. For example,
the city of Toulouse, France, would have approximately 140,000 trees spread over more
than 100 km? according to estimates of vegetation managers, such a procedure is not ap-
propriate.

Remote sensing opens the way to produce maps of tree species automatically (Fassnacht
et al., 2016; Shojanoori and Shafri, 2016; Sheeren et al., 2016; Li et al., 2015). Thanks
to airborne hyperspectral sensors it is possible to acquire the spectral reflectance of veg-
etation volumes with a spatial resolution of an order of magnitude of 1 m (Dalponte et
al., 2009) which is related to the foliar components (Jacquemoud and Baret, 1990) and
the foliage structure (Verhoef, 1984), and therefore to the species. Airborne panchromatic
(PAN) sensors allow a very high spatial resolution measurement of the reflected radia-
tion integrated over the visible spectral range (order of magnitude of 10 cm) (Iovan et al.,
2008) and gives information about the spatial arrangement of the foliage within the tree
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crowns, which is also related to the species (Zhang and Hu, 2012). The airborne normal-
ized Digital Surface Models (nDSM) allow a very high spatial resolution measurement of
the height (order of magnitude of 10 cm) (Dalponte et al., 2015) and gives information
about the 3D structure of trees, which may differ between species (Van Leeuwen et al.,
2010). Remote sensing gives encouraging results in tree species classification (Shojanoori
et al., 2018), but in urban environment it remains a challenging task because of the large
tree diversity (species, age, life conditions, pruning, etc.) (Welch, 1982; Alonzo et al.,
2013) with potentially a small number of individuals per species.

Depending on the technology of the sensors, different parameters can be used to clas-
sify the species. While Very High Resolution (VHR) imagery is required for studying
the urban environment, the high spectral resolution available from hyperspectral data is
more suitable than the one of multispectral data when dealing with several tree species
(Dalponte et al., 2012). The consideration of airborne hyperspectral sensors, combining
both high spatial and spectral resolution, is therefore preferable for urban tree species iden-
tification although VHR satellite data would be cheaper and would allow the monitoring
to be carried out more frequently. Focusing on these hyperspectral data, feature reduction
can be applied to spectral reflectance in order to reduce the dimensionality of the data and
to reduce potential noise: feature extraction (Principal Component Analysis (PCA) (Ab-
basi et al., 2015), Minimum Noise Fraction (MNF) (Ghosh and Joshi, 2014), etc.) and
/ or feature selection (Genetic Algorithm (GA) (Fassnacht et al., 2014), Support Vector
Machine (SVM) wrapper (Fassnacht et al., 2014), etc.). There are also transformations
of the spectral reflectance to enhance the pigment absorption features and to reduce the
effects of the soil background (derivative (Ghiyamat et al., 2013), Continuum Removal
(CM) (Fassnacht et al., 2014), vegetation indices (Clark and Roberts, 2012) etc.). In par-
ticular, the MNF performs well in many studies (Fassnacht et al., 2014).

Regarding PAN and nDSM data, different methods exist to define textural features (Grey
Level Cooccurrence Matrix (GLCM) (Coburn and Roberts, 2004), Wavelet Transform
(WT) (Rajpoot and Rajpoot, 2004)) and structural features (statistics (Dalponte et al.,
2012), profiles (Zhang and Hu, 2012)). In general, these data are used in conjunction
with spectral information. Focusing on object-based classification, (Iovan et al., 2008)
classify 37 trees of 2 species in Marseille, France, from airborne multispectral data with
a spatial resolution of 20 cm by computing GLCM and Haralick’s features at the object
scale. They have an overall accuracy of 100% which can be expected in such a simple
case. (Zhang and Hu, 2012) classify 6 species in Toronto, Canada, from multispectral data
with a spatial resolution of 6 cm by considering a radiometric profile along a path in the
solar plane at the object scale, in addition to multispectral reflectances, vegetation indices
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and texture information. When adding this information, an overall accuracy improvement
of approximately 10 pp is obtained. (Alonzo et al., 2014) classify 29 species in Santa
Barbara, California, USA, with hyperspectral AVIRIS (Airborne Visible Infrared Imaging
Spectrometer, spatial resolution of 3.7 m) and LiDAR (Light Detection And Ranging, 22
pulse/m?) data by defining structural features from LiDAR point cloud at the object scale,
followed by feature level fusion. Their fused results compared to those obtained with hy-
perspectral data alone lead to an overall accuracy improvement of 4.2 pp.

Because hyperspectral, PAN and nDSM data contribute differently in species classifica-
tion, combining them can lead to better performances (Alonzo et al., 2014). In a classifi-
cation process, data fusion can mainly be achieved at two levels: feature (fusion of feature
vectors) (Alonzo et al., 2014) or decision (fusion of classification results) (Stavrakoudis et
al., 2014). As said previously, (Alonzo et al., 2014) classify 29 species in Santa Barbara
by using a feature level fusion where hyperspectral data at the pixel scale and structural
features at the object scale are stacked in a feature vector at the pixel scale (spatial subsam-
pling of structural features). (Stavrakoudis et al., 2014) classify 4 species in Macedonian
forests with hyperspectral (Hyperion, spatial resolution of 30 m) and multispectral (Quick-
bird, spatial resolution of 2.4 m) data by using a pixel-based decision-level fusion based
on SVM membership probabilities. While the overall accuracy was of 66.5% and 65.7%
for the hyperspectral and the multispectral data, it reaches 78.9% with fusion strategy. In
all the studies, there are mainly combinations of two sources while using several sources
should improve the performance more. In addition, there is often partial complemen-
tarity analysis of the data sources, whereas non complementary sources cannot logically
improve the performance compared to the best of them. Concerning the fusion strategy,
feature level fusion is often used for object-based classification whereas all the features are
not necessarily computed at the same spatial scale, precisely when working with hetero-
geneous data as highlighted in Figure I.1. Particularly, these features have to be resampled
at the same scale to be stacked in the same feature vector, requiring quality registration.
This implicitly assigns weights to each feature which have no basis in a perspective of
species classification. And more features can lead to a decrease in accuracy because of
the Hughes effect (Hughes, 1968). Moreover, the classification algorithm is the same for
all the sources, whereas one might be more appropriate for certain sources. On the other
hand, a decision level fusion does not have these drawbacks but requires a decision rule in
order to weight the different sources.

As a conclusion, only few works focused on the case of the object-based fusion from

several heterogeneous airborne data sources for the classification of tree species, by con-
sidering different fusion strategies and by assessing the complementarity of the sources.
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Figure I.1: Example of heterogeneous airborne data sources for the same observed area.
From left to right, hyperspectral Visible Near-Infrared (VNIR) image (a), hyperspectral
Short-Wavelength Infrared (SWIR) image (b), panchromatic image (c) and a nDSM (d)
obtained from stereoscopic acquisitions.

The present work aims at identifying the best object-based fusion strategy taking advan-
tage of the complementarity of several heterogeneous airborne data sources for improving
the classification of 15 tree species in an urban area (Toulouse, France). This includes a
first stage where feature and decision level fusion strategies are compared when applied
to a reference site, and a second stage where the best fusion strategy is introduced in an
automatic process in order to classify the tree species of a test site, independent of the
reference site used for learning. More precisely, the following questions are addressed:

1. What unique information content is available in each data source?

2. What is the best fusion strategy that takes advantage of the sources complementari-
ties?

I.1.2 Materials
I.1.2.1 Study area

The study area is located in Toulouse, France (43.6 °N, 1.44 °E). Toulouse is the fourth
city in France with about 500,000 inhabitants. It has a temperate climate with oceanic,
Mediterranean and continental characteristics. In general, it has mild winters, wet springs
with thunderstorms, dry and warm summers and sunny autumns. Toulouse should have
approximately 140,000 trees according to estimates of vegetation managers, with at least
50 species. These trees are distributed along streets, in parks and in private properties.
Our experimental analysis of the images is carried out in two study sites (Figure 1.2, (a)):
a reference site with a tree reference map (detailed in Section I1.1.2.4) for applying several

64



mono-source and multi-source classification approaches and selecting the best ones, and a
test site, independent from the reference site used for learning, for assessing the potential
of the selected approaches through a completely automatic process (Section 11.1.2.5).

Reference site

Figure 1.2: (a) Overall view of the downtown part of Toulouse from Google Earth. The
yellow rectangles indicate the two study areas: reference and test sites. (b) Reference site
with park and street trees represented on the French Aerospace Lab airborne VNIR data.
The colored polygons indicate the delineations and the species of the inventoried trees
in the reference site. (c) Test site with park and street trees, especially composed of the
two majority species street trees (7ilia tomentosa, Platanus x hispanica) represented on
the VNIR. The white outline polygons correspond to the automatic tree crown delineation
results.
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1.1.2.2 Airborne data

The airborne data were acquired on October 24, 2012 at 11:00 UT (Universal Time) dur-
ing the UMBRA campaign (Adeline et al., 2013) organized by the French Aerospace Lab
(ONERA) and the French Mapping Agency (IGN). The sun zenith angle was approxi-
mately 60 °. Concerning the measurement devices, the HySpex Visible Near-Infrared
(VNIR) and Short-Wavelength Infrared (SWIR) (Kohler, 2016) and CAMv2 (Souchon et
al., 2010) systems were installed on board an aircraft and the flight height was approxi-
mately 2,000 m over the study area. The VNIR and SWIR systems consist of hyperspectral
push broom cameras with respectively 160 spectral bands (0.4 um - 1 um) and 256 spec-
tral bands (1 um - 2.5 um). The CAMv2 system has a PAN matricial camera. Regarding
the spatial resolution, the VNIR camera has a pixel Field Of View (FOV) of 0.18 mrad
and 0.36 mrad across and along track whereas the SWIR camera has a pixel FOV of 0.75
mrad. This results in spatial resolutions of 0.4 m and 0.8 m across and along track for the
VNIR and 1.6 m for the SWIR. For the CAMV2, it results in a spatial resolution of 0.14
m and the images were acquired in stereoscopic configurations with an overlap of 80% to
build a DSM.

I.1.2.3 Preprocessing

The French Mapping Agency (IGN) provides us with an orthorectified and georeferenced
DSM with a spatial resolution of 0.125 m. Then, the hyperspectral and PAN data are
registered on the DSM by defining Ground Control Points (GCP) using QGIS software
and gdalwarp from GDAL. Nearest neighbor resampling is applied in order to preserve the
original spectral data. Also, the Thin Plate Spline (TPS) transformation (Duchon, 1977) is
applied for its ability to correct the deformations locally. Because the VNIR pixels have
rectangular shapes with the longer side along track, a square grid with a spatial resolution
of 0.4 m (minimum between the rectangle sides) is chosen to preserve the original data.
For the SWIR and the PAN data, the spatial resolutions of 1.6 m and 0.14 m are kept.
Visual assessment suggests that the error related to registration quality is less than a pixel
for all the data set. Furthermore, the hyperspectral data are atmospherically corrected to
deal with spectral reflectances with the COCHISE platform (Poutier et al., 2002) based on
MODTRAN and assuming a flat scene. Spectral bands are not taken into account where
the Signal-to-Noise Ratio (SNR) was low (due to atmospheric water absorption (1.339 um
-1.423 um, 1.79 um - 1.952 um) and due to low signal and spectral sensivity (2.444 um
- 2.499 um) for examples). Finally, the DSM is normalized to produce a nDSM thanks
to a Digital Terrain Model (DTM) with a spatial resolution of 25 m and knowing that the
ground of the study area is flat.
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1.1.2.4 Reference site and tree reference map

On the reference site, a tree reference map is built from an existing inventory delivered by
Toulouse city and from a field campaign (Figure 1.2, (b)). In this reference map, there are
194 trees with an unbalanced sample which is representative of the urban environment in
Toulouse (Table 1.3). The trees are delineated manually on the PAN data, ensuring that the
selected pixels belong to trees. This avoids distorting the assessment of the classification
because of delineation errors for example. The number of pixels per species and per data
source is given in Table I.3. The species code (Table 1.3) will be used in Sections 1.1.4 and
I.1.5 (results and discussions).

Table I.3: Main characteristics of the trees in the reference map.

Species scientific name (species code) Tree type Stem Canopy VNIR SWIR PAN nDSM
count area pixel pixel pixel pixel
(m?) count count count count

Acer negundo (A.n.) Broadleaf 6 202 1077 41 9929 12325
Acer platanoides (A.p.) Broadleaf 6 204 1084 39 10035 12458
Aesculus hippocastanum (A.h.)  Broadleaf 23 1433 7936 335 71237 88367
Cedrus atlantica (C.a.) Coniferous 6 1036 5954 283 52119 64584
Celtis australis (C.au.) Broadleaf 10 1032 5856 264 51721 64082
Celtis occidentalis (C.0.) Broadleaf 9 1340 7750 382 67656 83792
Fagus sylvatica (F.s.) Broadleaf 10 529 2897 118 26229 32559
Juglans nigra (J.n.) Broadleaf 12 904 5021 220 45011 55867

Liquidambar styraciflua (L.s.) Broadleaf 6 334 1836 75 16565 20562
Liriodendron tulipifera (L.t.) Broadleaf 11 436 2510 94 22983 28534

Platanus x hispanica (P.h.) Broadleaf 26 2082 11730 521 104134 129107
Taxus baccata (T.b.) Coniferous 7 226 1185 39 11024 13732
Tilia platyphyllos (T.p.) Broadleaf 14 570 3075 106 28064 34380
Tilia tomentosa (T.t.) Broadleaf 41 1424 7650 292 70082 86980
Ulmus glabra (U.g.) Broadleaf 7 1169 6736 323 58918 72962

I.1.2.5 Test site and tree crown delineation

This test site is independent from the reference site and far from it (Figure 1.2, (a)). It is
mainly composed of two majority species street trees (7ilia tomentosa and Platanus x his-
panica, a species highly represented in the south of France), easily identifiable by visual
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interpretation with the help of Google Street View (and checked by Toulouse city). This
visual information is exploited to generate the reference classified product used to assess
the performance of the proposed method (Figure 1.2, (c)).

In order to automate the processing chain, the trees are now delineated automatically
(Figure 1.2, (¢)). In particular, three masks (vegetation, shadow and height) are gener-
ated and combined (geometric intersection, i.e. logical and) to generate a high vegeta-
tion mask without shadow. For the vegetation mask, the Normalized Difference Veg-
etation Index (NDVI) index (Rouse Jr et al., 1974) is computed for each pixel of the
VNIR image from a red and an infrared bands (643 nm and 788 nm respectively). About
the shadow mask, the spectral reflectance cannot be retrieved in shadows, as the atmo-
spheric correction method is based on a flat scene hypothesis. To avoid errors from these
shadow regions, the associated pixels are masked by using the following literature index:
I=1/6(2R+ G+ B+2(NIR)) (Nagao et al., 1979). This index is used for its efficiency
and simplicity. Above thresholds determined automatically with the Otsu method (Otsu,
1975), the pixels are considered as vegetation pixel and pixel in the sun, respectively. Re-
garding the height mask, all the pixels with a nDSM value higher than 5 m are filtered
(the minimum height value of the trees in Toulouse according to urban managers). Then,
the region growing-based delineation method developed by (Adeline, 2014) and inspired
by the work of (Iovan et al., 2008) is chosen because such approach is commonly used
in the literature (Zhen et al., 2016). In particular, a Canopy Height Model (CHM) is de-
rived from the high vegetation mask. The principle of the algorithm is then to choose the
highest pixel of the CHM as the first pixel of the first delineated tree. Then the height
is decremented and the corresponding pixel is either assigned to that first tree if it is at a
distance less than 2 m here as in (Adeline, 2014), or assigned to a new tree, and so on. The
produced delineation map allows localizing the trees for which species have to be defined.

I.1.3 Methods
1.1.3.1 Classification framework

The main steps of our method are detailed in Figure I.3. Different feature extraction tech-
niques and classification algorithms are considered (Section I.1.3.2). Then, object-based
feature and decision level fusion strategies are proposed and compared when applied to
the reference site (Section I.1.3.3). This allows the best fusion strategy to be selected with
a view to mapping the trees of the test site. The feature level fusion is based on the spatial
resampling of the feature vectors on the VNIR spatial resolution. Concerning the deci-
sion level and due to the large heterogeneity of our data set, a classification is conducted
for each source independently (VNIR, SWIR, PAN and nDSM sources) (mono-source
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Figure 1.3: Main steps of the proposed framework.

classification). The results are then combined to estimate the species (multi-source classi-
fication). For the reference site, the assessment of the classifications is carried out through
comparison between the predicted species and the reference map species. The training
and testing sets are independent as explained in Section I.1.3.3. Regarding the test site, the
training is carried out on the whole reference site and the results are assessed only for the
two majority species street trees. Below, the mono-source classification is described with
the specific processing for each source followed by the multi-source classification.

1.1.3.2 Mono-source classification

Feature extraction within the objects For the VNIR and SWIR sources, the feature
vector is made up of either all the spectral bands or MNF components (Figure 1.3). The
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MNF reduction is used for dimensionality reduction and to reduce potential noise. The
MNF reduction improves performance in a number of studies according to (Fassnacht et
al., 2016). Here, 30 and 15 Noise-Adjusted Principal Components (NAPC) are selected for
the VNIR and SWIR sources after testing 5, 10, 15, 20, 25 and 30 as in (Fassnacht et al.,
2014). The training set is used to estimate the MNF model. Concerning the spatial scale
of the features, a feature vector is computed for each pixel within the crowns. Indeed,
the study of (Alonzo et al., 2014) demonstrates that for manually delineated urban tree
crowns, the pixel majority ("winner-take-all””) approach is better than the consideration of
a single crown-mean spectrum for example, especially with limited training data.

For the PAN source, the feature vector is made up of Haralick features, used to char-
acterize the texture of the tree species, derived from the GLCM computed at the crown
scale (Figure 1.3). The GLCM is commonly used in the literature to model the texture
(Haralick et al., 1973; Franklin et al., 2000). Eight Haralick features are derived from
the GLCM (mean, standard deviation, homogeneity, dissimilarity, entropy, second angular
moment, contrast and correlation). A distance and an orientation are necessary to compute
the GLCM. The distance is related to the frequencies of the texture The orientation is re-
lated to the anisotropy of the object. An orientation of 90° is arbitrarily chosen because a
tree is a priori isotropic in terms of texture. A distance of one pixel is chosen to keep the
finer details.

For the nDSM source, the feature vector is made up of structural features computed at
the crown scale (Figure 1.3). These features are used to characterize the 3D structure of
the tree species. Particularly, structural features similar to those developed in (Alonzo et
al., 2014; Dalponte et al., 2012) and adapted to nDSM are used. If % is the height within
the crown and A the crown area, these structural features are: /imax, A, h::j’ Ahmaxs Pmins

hmax—Mmin ~ Amax—h hg . .
hmean> tmax — Mmin> Amax — Ameans Astd, —5— =0 e, 4. The subscripts max, min,

9
hmax max max

mean and std refer to maximum, minimum, mean and standard deviation of 4.

Supervised classification of the feature vectors within the objects The resulting fea-
ture vectors within the objects are used for the classification. For this step, two supervised
classification algorithms, SVM and Random Forest (RF), are considered (Figure 1.3) in
order to ensure the stability of the results. No other algorithm is considered because the
choice of the classifier is not the main purpose of this study. Using these non-parametric
algorithms, no distributional assumption is required and these algorithms have already
demonstrated good performance in the literature (Féret and Asner, 2013; Sheeren et al.,
2016). For the SVM, the one-vs-one multiclass strategy is used for its computation time
which is better than in the case of the one-vs-rest (Fassnacht et al., 2016). Adequate val-
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ues of the hyperparameters are estimated after testing ranges of values using a grid search
by 2-fold cross-validation because the number of samples is limited for some classes like
Acer platanoides or Liquidambar styraciflua (Table I1.3).

In particular, the membership probabilities are used because they give an evaluation of
the certainty of the predictions (Stavrakoudis et al., 2014; Kuncheva, 2004). The method
of computing these membership probabilities depends on the classification algorithm and
the selected methods are commonly used in the literature. For the SVM in the binary case,
they can be calibrated using the Platt scaling (Platt et al., 1999) which consists of a logis-
tic regression on the SVM scores fit by a cross-validation on the training data. (Wu et al.,
2004) extended this to the multiclass case which is used here. For the RF, the membership
probabilities are computed as the mean predicted class probabilities of the decision trees in
the forest. The class probability of a single tree is the fraction of samples of the same class
in a leaf (leaf: end node of the decision tree) (Li, 2013). The membership probabilities are
computed for each feature vector within the objects.

Decision profile computation at the object level From the classification outputs, the
obtained membership probabilities p; ,(c) are combined to compute a Decision Profile
(DP) d per source s (VNIR, SWIR, PAN, nDSM and feature level approach, Figure 1.3).
Ps.n(c) are computed per species ¢ (class) for each feature vector n within the crown and for
each source 5. A source certainty py(c) that the tree belongs to the species ¢ is then com-
puted as if each feature vector votes: ps(c) = ]\% Zﬁ;’;l Ps.n(c). The object is classified as the
species corresponding to the maximum p;(c) by the source of interest: ¢ = argmax, ps(c)
(winner-take-all). The decision profile is defined such as dy = {ps(c),1 < ¢ < 15} know-
ing that there are 15 species. In particular, there are Ny feature vectors within the crown
for the source of interest: Nynir) and Nswir) are the number of VNIR and SWIR pixels
within the crown, Npan) and N,psy) are equal to 1 because the textural and structural
features are computed at the object scale (illustrated in Figure 1.4).

1.1.3.3 Multi-source classification

Feature level fusion The feature vectors need to be spatially resampled before the su-
pervised classification. In order to compare the feature and decision level fusion strategies
with the same features, we chose to resample each feature vector on the VNIR spatial reso-
lution (the smallest in terms of feature spatial scale) to get for each VNIR pixel, the nearest
(in terms of spatial distance) SWIR, textural and structural features. Then, the membership
probabilities of the feature vectors within the crowns are estimated and the species of the
trees are predicted as in the mono-source classification case (Figure 1.3, Sections 1.1.3.2
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Figure 1.4: Tllustration for object-based classification. For the VNIR (a) and SWIR (b)
sources, each pixel within the crown is classified. For the PAN (c) and nDSM (d) sources,
the crown is directly classified as the textural and structural features are computed at the
object scale.

and .1.3.2), i.e. through a pixel majority (winner-take-all) approach.

Decision level fusion The decision profile is represented as a matrix of 4 rows (4 sources)
and 15 columns (15 species), each element is p;(c) (Section 1.1.3.2) (Kuncheva, 2004):

d(VNIR) P(VNIR) (c=1) .. P(VNIR)( =i) .. P(VNIR)(C 15)
d— d(SWIR) _ | P(sWIR)\€ (c=1) ... P(SWIR)\C (c=i) .. P(SWIR) (c=15)
d(PAN) P(PAN) (c=1) .. P(PAN) (c=i) .. P(PAN) (c=15)
d(npsm) pmpsmy(c=1) ... pmpsmy(c=1) ... pmpsm)lc=15)

ny
This decision profile reflects the certainties of each source towards each species. Then,
three Decision Rules (DR) are tested (Table 1.4). The first decision rule is nontrainable
(Kuncheva, 2004), i.e. it can be directly applied from the decision profile. This rule is
chosen because it has been most widely used due to its simplicity and consistently good
performance (Kuncheva, 2004). Also, this rule is practical for the interpretation of the
results. The second decision rule is trainable, i.e. weights w(s,c) have to be computed on
weight estimation sets independent of the training and testing sets. Whereas p(c) can be
seen as a certainty, w(s,c) allows it to be weighted according to the errors of the source p
on the weight estimation sets. For example, w(s,c) can be computed from the confusion
matrix of the source s on the weight estimation sets (Stavrakoudis et al., 2014). Here,
w(s,c) is chosen as the User Accuracy (UA) of the source s concerning species ¢, because
it reflects the probability that the source s is right when it labels ¢. The third decision
rule is also trainable. It is similar to the second one but more complete in the sense that it
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Table 1.4: Decision rules for 4 sources and 15 species. The weights w allow the sources
to be weighted according to their performances. As an example, if a source has a very
poor accuracy for a given species, the contribution of this source for the estimation of
that species will be weighted by this accuracy in the decision rule, in order to prevent
confusions.

DR Type Rule

1 Nontrainable ¢ =argmax, Y+ d(s,c)

2 Trainable c=argmax, Y+  w(s,c)d(s,c)

3 Trainable c=argmax, Yo | Y7 w(s,c,c)d(s,c)

takes into account the probability that the source s labels ¢’ whereas the species is ¢, which
contributes to c. w(s,c,c’) is computed similarly to the UA: for instance, the proportion
of cases corresponding to PAN Platanus x hispanica predictions, whereas the true species
is Tilia tomentosa, can be computed from the confusion matrix of the PAN on the weight
estimation sets, and is used as w(s,c,c’).

Three sets are then considered: training, weight estimation and testing sets as in (Stavrak-
oudis et al., 2014). The second is used to compute the weights w(s,c) and w(s,c,c’).
Knowing that, the following validation strategy is chosen to assess the method, i.e. to test
the individual sources and the fusion:

1. All the trees of the reference map are split into two sets (2/3 and 1/3 compared to
the original set) by keeping the same percentage of the trees per species.

2. The first set is split into two subsets (training and weight estimation subsets) by
keeping the same percentage of trees per species. Then the weight estimation set is
classified. This step is repeated 15 times because the estimations were stable beyond
this value. An average confusion matrix and the weights w(s,c) and w(s,c,c’) are
computed.

3. Each of the 15 training sets is considered and the testing set is classified.

These three steps are repeated 30 times to ensure a stable result. Monte Carlo is used for
random selection of the sets (Dubitzky et al., 2007).
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I.1.4 Results

First, the results on the reference site are presented, with the mono-source (Section 1.1.4.1)
and the multi-source (Section I.1.4.2) classifications respectively. This allows the best
fusion strategy to be selected and applied on the test site (Section 1.1.4.2).

1.1.4.1 Mono-source classification

The OA (Overall Accuracy), k and F-score are chosen to assess the performance of the
VNIR, SWIR, PAN and nDSM sources overall and per species. For each species, the F-
score is computed as the product of the producer and user accuracies (PA and UA), divided

by the sum of the producer and user accuracies (%) defined and used in (Stavrak-

oudis et al., 2014) for instance. The Table 1.5 summarizes the quantitative performances.
The figure 1.5 illustrates the qualitative performances of the sources on the reference site.

VNIR sources The VNIR MNF associated to SVM exhibits the best performances with
an OA of 75% and a « of 72% (Table 1.5). Compared to the VNIR all source associated to
SVM, the MNF reduction slightly improves the OA by 2 pp and the k by 3 pp. Regarding
the classification algorithm comparison, the SVM is better than the RF for the VNIR MNF
with OA and k improvements of 8 pp and 9 pp. Focusing on the best source (VNIR
MNF associated to SVM), Aesculus hippocastanum, Cedrus atlantica, Juglans nigra and
Platanus x hispanica are classified with F-score values better than 80%. On the other
hand, Acer platanoides is classified with a F-score value of 15%. The performance map
(Figure 1.5, (a)) is consistent with the OA of 75% mentioned above in the sense that the
trees are well classified overall. In particular, the street trees are well classified while the
main errors occur for the parks trees. The VNIR MNF associated to SVM is therefore
selected for the decision level fusion, and considered as the baseline for next comparisons.

SWIR sources The SWIR MNF associated to SVM is the best SWIR source with an
OA of 69% and a k of 65% (Table 1.5). Compared to the SWIR all associated to SVM,
the MNF reduction improves the OA and the k by 9 pp. Concerning the classification
algorithm comparison, the SVM is better than the RF for the SWIR MNF with OA and
Kk improvements of 3 pp. Focusing on the best source (SWIR MNF associated to SVM),
Aesculus hippocastanum, Juglans nigra and Platanus x hispanica are classified with F-
score values greater than 80%. On the contrary, poor results are obtained for Acer negundo,
Acer platanoides and Taxus baccata with F-score values of 29%, 2% and 39% respectively.
The performance map (Figure 1.5, (b)) shows that the trees are well classified overall. The
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Table 1.5: F-score (%) per source and per species. OA (%) and x (%) per source. Bolded
scores associated to the star (*) refer to the maximum F-score for this species. The terms
”all” and MNF associated to VNIR and SWIR refer to the feature vector type (spectral
bands or MNF, figure 1.3, Section 1.1.3.2). Blue refers to SVM while red refers to RF. The
species code is presented in table II.3.

Source

VNIR

SWIR

Species code all

MNF

all

MNF

PAN

nDSM

Am. 390 61* 24 72 29 16 20 82
Ap. 90 15%0 20 21 51 01
A, 92 89 95% 91 87 81 88 89 4351 2121
Ca. 99+ 93 99% 94 63 39 73 66 88 147
Cau. 7771 78% 71 63 33 72 68 28 24 24 18
Co. 6148 65% 53 4023 43 42 16 29 2733
Fs. 5852 64% 63 3730 5154 1932 77
Jon. 8144 8172 8324 84* 81 1112 2018
Ls. 56% 27 56% 53 240 5552 11 10
Lt 66 23 70% 42 356 54 47 1513 75
Ph. 88 63 88 80 8554 90* 88 5158 38 40
Tb. 70 44 72% 56 138 39 20 13 25 2529
Tp. 64 39 67% 63 360 62 62 2524 47 44
Tt. 67 50 70 64 64 30 73* 69 50 54 68 71
Usg. 64 43 70% 54 4420 5149 16 23 26 30
OA (%) 7355 75% 67 60 37 69 66 29 37 3135
K (%) 69 50 72% 63 56 30 65 62 2229 2427

main errors occur for the parks trees. The SWIR MNF associated to SVM is then chosen

for the decision level fusion.
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PAN sources The PAN associated to RF is the best PAN source with an OA of 37% and
a kK of 29% (Table 1.5). It only allows the prediction of two species (majority species:
Tilia tomentosa and Platanus x hispanica) with F-score values better than 50%. About
the classification algorithm comparison, the RF is better than the SVM. Apart from the
two majority species (F-score values of 54% and 58% respectively), the performance is
poor overall with the example of Acer platanoides and Liquidambar styraciflua for which
a F-score value of 1% is observed. The performance map of this source (Figure 1.5, (c))
is consistent with that statement. In particular, the street trees are well classified while the
park ones are mainly poorly classified. The PAN associated to RF is thus selected for the
decision level fusion.

nDSM sources The nDSM associated to RF is the best nDSM source with an OA of
35% and a K of 27%. Only one species (7ilia tomentosa) is classified by this source with a
F-score value larger than 60%. Regarding the classification algorithm comparison, the RF
is better than the SVM. Apart for Tilia tomentosa, the performance is poor overall with F-
score values of 8%, 0% and 14% for Acer negundo, Acer platanoides and Cedrus atlantica.
The performance map of this source (Figure 1.5, (d)) reinforces this statement in the sense
that the trees are poorly classified overall, especially the park ones. The street trees in
the bottom right-hand corner are well classified and correspond to Tilia tomentosa trees
(F-score value of 74%). The nDSM associated to RF is finally selected for the decision
level fusion.

1.1.4.2 Multi-source classification

A classification algorithm has to be chosen in case of feature level fusion in order to
classify the feature vectors composed of the previously selected features: VNIR and the
SWIR MNF components, Haralick and structural characteristics. As the SVM gives an
OA of 73% instead of 59% with the RF, the SVM is selected for next comparisons. The
Table 1.6 highlights the performance of the fusion strategies in comparison to the VNIR.

Whereas the feature level fusion gives lower performance in comparison to the VNIR (73%
and 69% against 75% and 72% in terms of OA and k), the decision level fusion slightly
improves the accuracy with OA and « increases of 2 pp for the second decision rule (Table
1.6). Regarding the first decision rule, the OA and x are increased by 1 pp. The OA of
the third rule is increased by 1 pp while its K remains unchanged. The second decision
rule is selected for next comparisons as it has succeeded in improving the performance in
comparison to the two others.
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Table 1.6: OA (%) and K (%) for the VNIR and the fusion. The performance of the feature
and decision-level fusions is showed with for the latter, the three tested Decision Rules
(DR).

VNIR Fusion
Feature Decision
DR1 DR2 DR3
OA (%) 75 73 76 77 76
K (%) 72 69 73 74 72

Prediction agreement complementarity from the sources toward the fusion When
the VNIR and SWIR agree, 62% of the trees are well classified. Among these cases, the
decision level fusion identifies 61% (-1 pp) of the trees, whereas the feature level fusion
well classifies 56% of these trees (-6 pp). This shows that the decision level fusion mainly
allows the original performance of the VNIR and SWIR sources when they agree to be
reached. On the other hand, 13% of the well identified trees refer to cases where the VNIR
is right while the SWIR is wrong. When applying the fusion, 3% and 6% of these trees
are not well classified by the decision and feature level fusion strategies, respectively. This
demonstrates that when the VNIR is right alone, or when the VNIR agrees with the PAN
or / and the nDSM, the fusion mainly does not succeed in keeping the original accuracy of
the VNIR. Finally, there are cases (11%) where the VNIR is wrong and one of the other
sources is right, i.e. cases of complementarity with the VNIR. Among these cases, 6% and
5% of the trees are well classified by the feature and decision fusion strategies respectively,
showing that the fusion is able to take advantage of the complementarity of the sources.

Complementarity per species from the sources toward the fusion The Figure 1.11
highlights the performance of the VNIR and the feature and decision level fusions, per
species. For species where the F-score of the VNIR is larger than the F-score of the other
sources, 1.e. for 12 species out of 15, the feature level fusion slightly improves the F-score
(Liquidambar styraciflua: <1 pp, Tilia platyphyllos: <1 pp and Ulmus glabra: +1 pp),
otherwise declines the performance. At the same time, the decision level fusion improves
the F-score for five species (Celtis australis: +7 pp, Fagus sylvatica: +1 pp, Liquidambar
styraciflua: +2 pp, Tilia platyphyllos: +2 pp and Ulmus glabra: +15 pp). Overall, the
F-score of the VNIR is increased when at least one of the other sources has similar per-
formance (ex: Tilia platyphyllos where the VNIR and SWIR have F-score values of 67%
and 62% respectively). On the contrary, its F-score decreases when the other sources give
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much worse results (ex: Cedrus atlantica for which the second best source has a F-score
value of 73% instead of 99 % for the VNIR). These decreases can be important when the
VNIR has initially small F-score values, which is the case for Acer negundo and Acer
platanoides with declines to 35% and 0% respectively when the decision level fusion is
applied, instead of 61% and 15% for the VNIR. On the other hand, when the F-score of the
VNIR is smaller than the F-score of one of the other sources, i.e. for cases of complemen-
tarity of the other sources (three species for which the SWIR is the best: Juglans nigra,
Platanus x hispanica, Tilia tomentosa), the decision level fusion systematically leads to F-
score improvements of 10 pp, <1 pp and 4 pp respectively for the three considered species.
Focusing on the feature level fusion, it declines the results for Juglans nigra (-3 pp). Fi-
nally, the decision level fusion improves the performance for 8 species out of 15, while the
feature level fusion increases the F-score values for only 5 species out of 15, including the
two majority species (7ilia tomentosa and Platanus x hispanica). Further results can be
found in Appendices 1 and 2.

As a conclusion, the decision level fusion is selected in order to be applied on the test
site.

Classification on the test site The Figure 1.7 highlights the confusion matrices of the
VNIR and the decision level fusion and the Figure 1.8 illustrates the classification map.
93% of the trees are detected in the reference site by the automatic tree crown delineation,
and 63% of these trees correspond to a unique crown. By visual assessment on the test site,
no tree is omitted but oversegmentations are present, i.e. the delineation algorithm can find
several sub-crowns within a single tree. The oversegmentation is not a problem because
our objective is to verify that these sub-crowns belong to the right species. The decision
level fusion leads to an OA improvement of 8 pp (63% against 55%) in comparison to the
VNIR (Figure 1.7). These improvements can be seen on the Figure 1.8, where 8 more Tilia
tomentosa street trees (35 instead of 27 on the basis of 83) are detected on the left of the
image. In addition, 3 more Platanus x hispanica street trees (48 instead of 43 on the basis
of 48) are mapped in the bottom left-hand corner. However, the fusion leads to the most
important confusion between the real 7ilia tomentosa trees and the Platanus x hispanica
species (+8 confusions), as it can be seen on the produced maps (Figure 1.8).
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I.1.5 Discussions
I.1.5.1 Contribution of the spectral features

These results demonstrate that the spectral features are the main driver of the classification
accuracy, a consistent result with the existing literature (Fassnacht et al., 2016). In par-
ticular, the MNF reduction improves the performance in comparison to the use of all the
spectral bands, as already mentioned by (Fassnacht et al., 2014). In our case, significant
improvements are obtained for species with small canopy areas (examples from Table 1.5
and related canopy areas available in Table 1.3: Acer negundo, Fagus sylvatica, Lirioden-
dron tulipifera), and specifically for the SWIR. Both circumstances (small canopy area
and SWIR) lead to a small number of pixels, thus a small number of training examples
with a high number of variables when all the spectral bands are considered, incurring the
Hughes effect (Hughes, 1968). Therefore, this paper reinforces the interest of using a re-
duction like the MNF when dealing with high dimensional data such as hyperspectral data.

Regarding the spectral regions of interest, the Figure 1.9 highlights the communalities
(Bailey et al., 2002) of the spectral bands in the MNF components. This allows the contri-
butions of the spectral bands in the MNF components to be quantified, i.e. to give an idea
of the variability of the spectral bands in the data set. About the VNIR data, the wavelength
spectral region between 650 and 750 nm corresponding to the red edge presents high com-
munalities compared to the other regions. In the visible region, there are comparatively
small communalities but a local peak just after 500 nm. In these regions, the spectral re-
flectance varies a lot in function of the wavelength, which can be related to the absorption
properties of foliar pigments. After the red edge, where the scattering is important and is
influenced by the canopy structure (Ustin and Gamon, 2010), the communalities are com-
parable to those of the visible region. These contributions are consistent with the literature
(Fassnacht et al., 2016; Dalponte et al., 2009) but the red edge communality is particu-
larly significant here. In autumn, the phenological change is remarkable and depends on
the species (Sheeren et al., 2016). This necessarily has an impact on the reflectance in the
red edge because of the important differences of foliar pigments contents at this period. In
our context, there is an interest in extracting features based on the red edge spectral bands,
as the performance is better with the MNF.

Among the studied species, Aesculus hippocastanum is well classified (Table 1.5). This is
because all the trees of this species in the reference site are affected by the horse-chestnut
leaf miner (Paterska et al., 2017) which necroses its foliage, making it characteristic (Fig-
ure 1.10, (a)). Indeed, the leaf miner attacks the parenchyma of the leaf, explaining the
decrease of the reflectance in the near infrared (modification of the structure of the leaf).
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In the Visible, the drying up and leaf necrosis increase the reflectance (less chlorophyll
pigments thus less absorption). On the contrary, Acer platanoides is poorly detected. The
leaves of this species become yellow then red in autumn, making the classification diffi-
cult. In the reference site, half of all trees within this species have green leaves. One tree
has largely yellow leaves and two trees have a lot of red leaves (Figure 1.10, (b)). Due to
the phenological change, there is a decrease of chlorophylls in favor of carotenoids (yel-
low, orange) and anthocyanins (red, purple) (Féret et al., 2017). These results highlight
the potential of the hyperspectral data for monitoring species subject to specific diseases
such as Aesculus hippocastanum. It also demonstrates the difficulty of the classification
task when working with data acquired during periods with high phenological dynamics.

The spatial analysis of the results shows that the VNIR and SWIR mainly success in iden-
tifying the street trees (Figure 1.5), and that the main errors occur for park ones. Whereas
the park trees have various states, whether in terms of species or in terms of stage of devel-
opment, the street trees often belong to the same species and are pruned, which is the case
here. This explains that better performance for street ones, due to similar spectral traits
and high number of individuals per species. Thus, there could be an interest in considering
a first step of park / street trees discrimination in the classification framework, in order to
apply a specific processing for the park trees.

1.1.5.2 Contribution of the textural and structural features

The textural features contribute marginally in the classification, which is consistent with
the existing works (Franklin et al., 2000). However, the results demonstrate that the tex-
ture allows the two majority species (7ilia tomentosa and Platanus x hispanica, Table 1.5)
to be identified with a high performance similar to that of the VNIR and SWIR. In our
study, the trees of these species are mainly distributed as street trees, which can explain
such a performance, as mentioned for the spatial analysis of the VNIR and SWIR results.
Even if the textural characteristics do not allow the whole set of species (15 here) to be
classified with a high accuracy, these results encourage the use of such features in order to
classify the street trees, but also to use them in another way, for example by discriminating
groups of species with similar textural traits, hierarchically.

Regarding the structural features, they only contribute for the classification of one of the
two majority species: Tilia tomentosa (Figure 1.5). This result is consistent with the liter-
ature in the sense that the structural features have marginal contributions (Alonzo et al.,
2014), but it is accentuated here with only one species correctly identified. This species
is mainly composed of trees which belong to the same alignment. Therefore, these trees
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have necessarily the same shape as they are pruned here, explaining the high classification
rate for that species. However, this performance is not transposable to other study areas.
As for the PAN, the nDSM data is not able to classify the whole set of species accurately
and thus needs to be used in another way, for example to discriminate high vegetation from
low vegetation, highest from lowest trees, in a hierarchical framework.

1.1.5.3 Best classification algorithm

While the SVM is significantly better than the RF when all spectral bands are used, the re-
sults become similar (SVM slightly better) when the MNF reduction is applied. Focusing
on the PAN and nDSM-based features, the RF is better, knowing that the dimensions of
the textural and structural features are comparable to those of the MNF-based VNIR and
SWIR spectral features (around 10). This has to be related with the fact that the perfor-
mance of the RF is similar to the SVM one when the dimension of the data is small (Pal,
2005). This leads us to consider a decision level fusion with 2 sources based on SVM
(spectral) and 2 sources based on RF (textural and structural). This finding encourages the
consideration of several supervised classification algorithms when dealing with heteroge-
neous data, thus heterogeneous dimensions, through a decision level fusion framework.
From there, several approaches are possible in order to improve the performance of the
method. For instance, the results from both SVM and RF could be fused at the decision
level, which would amount to considering 8 sources (4 sources and 2 classification algo-
rithms), similarly to what is carried out in the study of (Engler et al., 2013).

I.1.5.4 Best object-based fusion strategy

In this study, a complementarity analysis of the sources has been carried out in order to
highlight the cases where the fusion is theoretically of benefit to the classification (Sec-
tions 1.1.4.2, 1.1.4.2 and 1.1.7). This analysis demonstrates that the sources are indeed
complementary, but that this complementarity is low. This paper highlights that in such a
case, a standard feature level fusion (Alonzo et al., 2014) is not the best strategy to use.
The decision level fusion (Stavrakoudis et al., 2014) success in getting better performance
compared to the VNIR, considered as the best individual source, but with slight improve-
ments. From that result, there are two ways in order to improve the performance of the
fusion. Either we can aim at optimizing the complementarity of the sources, or the fusion
strategy has to be improved. In particular, the necessary condition for taking advantage
of a fusion is the use of complementary sources, whereas the fusion strategy is not a cru-
cial aspect if this first condition is reached. Thus, the results demonstrate the necessity of
building complementary sources before applying any fusion scheme.
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Focusing on the fusion strategy, this paper shows that the feature level fusion decreases
the performance of the VNIR for at least three reasons. First, the feature level fusion re-
quires an accurate registration of the sources, whereas there subsists a residual error that
is intrinsic to the registration of the VNIR and SWIR. Secondly, in our cases, the textural
or structural features are mainly useful for few species. Thus, when they are added in the
VNIR feature vector, they bring useless information for other species, i.e. a noise that
can disturb the classification. Thirdly, adding all these features result in a vector with a
higher number of variables, which is more sensitive to the Hughes effect (Hughes, 1968)
when a small number of training samples are available. On the other hand, the decision
level fusion does not have these drawbacks, but requires the definition of a decision rule
in order to weight the different sources, a difficult task to handle. Even if the second deci-
sion rule gives the best results, improvements are also obtained with each decision rule in
comparison to the VNIR. As a consequence, this paper encourages the use of a decision
level fusion instead of a feature level fusion.

The proposed approach is validated on a test site in order to test its robustness. The perfor-
mance is assessed on the two main species (7ilia tomentosa and Platanus x hispanica), and
the obtained results demonstrate the potential of the proposed framework to automatically
map Platanus x hispanica trees (Figure 1.7, Figure 1.8), a species highly represented in the
south of France. Nevertheless, the VNIR alone gives already a good performance, which is
consistent with the classification results for the reference site. Regarding 7ilia tomentosa,
the performance is not sufficient for an operational purpose. This is mainly explained by
different phenological behaviours between the 7ilia tomentosa trees of the reference site
(used for learning) and those of the test site, probably related to distinct types of pruning
for these street trees. A more representative training set (spectral library) may be used
for improving the performance of such configurations. From a practical point of view, the
slight cost-benefit ratio of the fusion encourages the use of the VNIR only.

I.1.5.5 Limits of the proposed approach

The first limit of the proposed approach concerns the size of the training set. While certain
species are represented by more than 20 trees, a species such as Cedrus atlantica has only
6 trees. Such unbalanced dataset is characteristic of the urban environment, where there
is a high species diversity in parks, and a low species diversity from the mono-specific
street trees. This reinforces the interest of discriminating these different urban tree infras-
tructures. This heterogeneity does not seem to impact the classification accuracy in our
context as for instance Cedrus atlantica is well identified. However, this small training
sample size increases the Hughes effect (Hughes, 1968) and rises the risk of overfitting the
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classification models (Dalponte et al., 2014). Obviously, the conclusions that are drawn
through this study can not be generalized. This is why the proposed method is introduced
in an automatic chain for mapping the trees of an independent site, allowing its robustness
to be assessed for the two majority species, Tilia tomentosa and Platanus x hispanica,
easily identifiable by photointerpretation. In order to get more training samples, Radiative
Transfer (RT) models such as Discrete Anisotropic Radiative Transfer (DART) (Gastellu-
Etchegorry et al., 2004) could be considered based on leaf-level spectra.

Whatever the study case, the overall accuracy percentage is quite low from an operational
point of view (below 80%). However, previous studies show very variable results when at-
tempting to classify tree species based on hyperspectral data, ranging from 60% to almost
100% according to the recent review of (Fassnacht et al., 2016). Focusing on fusion, the
works of (Alonzo et al., 2014) and (Dalponte et al., 2012) reach for instance an accuracy
of 83%. The proposed method results are thus in the same range than the state-of-the-art
ones, our accuracies being equal to 75% based on hyperspectral data and 77% thanks to
fusion. But our studies are difficult to compare. More precisely, whereas certain species
are detected with high rates (e.g. Aesculus hippocastanum, Cedrus atlantica), other ones
are poorly classified (Acer platanoides, Liquidambar styraciflua), declining the overall
performance and indicating that an effort has to be made for discriminating these particu-
lar tree species.

In this work, we took advantage of a campaign dedicated to another application, thus this
autumn acquisition is not part of the research design. During this season, the phenological
differences between the species can be advantageous or not to the classification task. Re-
garding the positive aspect, it is clear that Aesculus hippocastanum, particularly attacked
by the horse-chestnut leaf miner at the end of summer, is easier to identify compared
to the rest of the year. This statement can also be made for Platanus x hispanica trees,
whose senescence happens sooner than the other species in our context, except Aesculus
hippocastanum. On the other hand, there are species for which the intraclass variability
is increased such as Acer platanoides or Liquidambar styraciflua, leading to confusions
with other species. For instance, phenological differences among the individuals of Acer
platanoides are remarkable. The Figure 1.10 shows significant differences in the visible,
through the images, but also in the near infrared region. Liquidambar styraciflua has a
similar behaviour. As a conclusion, our classification method suffers from phenology for
some species, while other cases are easier to classify. Previous works show that the contri-
bution of phenology is more significant in the spring because the duration of phenological
evolutions is longer than in the autumn (Sheeren et al., 2016).
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I.1.6 Conclusions

The objective of this study is to identify the best object-based fusion strategy that takes
advantage of the complementarity of several heterogeneous airborne data sources for im-
proving the classification of 15 tree species in an urban area (Toulouse, France). The
airborne data sources are: hyperspectral VNIR (spatial resolution of 0.4 m) and SWIR
(1.6 m), PAN (14 cm) and nDSM (12.5 cm). Object-based feature and decision level
fusion strategies are proposed and compared when applied to a reference site. Different
feature extraction techniques and classification algorithms are compared on the reference
site with all the trees manually delimited and for each tree, available species identification.
This allows the best fusion strategy to be selected with a view to introducing the method
in an automatic process, in order to map the trees and define their species on a test site,
independent of the reference site used for learning.

The hyperspectral data is the main driver of the classification accuracy with OA values
of 75% and 69% for the VNIR and SWIR respectively for the reference site. The MNF
reduction is of benefit to these classifications. Regarding PAN data, the extracted textural
features contribute marginally to the classification with an OA of 37%. However, the street
trees composed of the two majority species (7ilia tomentosa and Platanus x hispanica) are
well identified. About the structural features derived from the nDSM data, they do not
contribute overall with an OA of 35%, demonstrating that it is not appropriate to use this
type of information to classify the whole set of species, but interesting to detect trees.

The complementarity analysis of the sources carried out in this study highlights that the
complementary of the available sources is low. This is mainly due to the high performance
of the VNIR in comparison to the other source performance. In this particular context, a
standard feature level fusion declines the performance of the VNIR (73% against 75%),
whereas the proposed decision level fusion success in slightly improving the performance
(77%) for cases where complementarities have been highlighted. In order to assess the
robustness of the selected method and to introduce it in an automatic process, it is tested
on a test site and the obtained results are consistent to those of the reference site used for
learning. Indeed, the decision level fusion improves the OA by 8 pp (63% against 55%)
and allows Platanus x hispanica to be well identified. But the VNIR alone gives already a
good performance.

Further development is necessary in order to get the best species classification approach.

First, it is necessary to optimize the complementarity of the sources, for example by defin-
ing a specific source per species and by adopting a hierarchical approach. On the other
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hand, as this paper highlights different behaviors of the classifications between park and
street trees, it looks promising to try to discriminate these specific tree structures of the
urban environment as a first step of the classification process. Finally, the training sam-
ples defined directly within the images do not allow Tilia tomentosa trees to be correctly
identified in the test site. Spectral measurements on the field could be of interest in order
to build more representative training samples.

Acknowledgements

Concerning the field data collection, thanks to the city of Toulouse and Jérome Willm
from the National Institute of Agricultural Research. Regarding airborne data, thanks to
Karine Adeline and Philippe Deliot for his participation in the UMBRA campaign. Thanks
to the members of the Hyperspectral imagery for Environmental urban planning (HYEP)
project, funded by the French National Research Agency (ANR). Thanks to Thierry Erudel
and Xavier Ceamanos for discussions about supervised classification schemes.

Disclosure statement

The authors declare no conflict of interest.

Funding

The authors would like to thank the French Aerospace Lab and the Région Occitanie for
funding this research.

I.1.7 Appendices

Appendix 1: Further results about the complementarity per species
from the sources toward the fusion (Figure 1.11)

Appendix 2: Spatial complementarity from the sources toward the fu-
sion (Figure 1.12)

The Figure 1.12 presents the results of the individual sources and the decision level fusion
on an area of interest. Regarding trees much better classified by the VNIR than by the
other sources, the feature and decision level fusion strategies mainly decline the perfor-
mance (Figure 1.12). Generally, when the performance of the other sources are similar or
higher than the VNIR, the fusion results in higher scores. In particular, there are Juglans
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nigra trees aligned along the diagonal from the top left-hand corner to the bottom right-
hand corner. For some of these trees, the SWIR provides better results than the VNIR
and allows the accuracy to be improved by the fusion, especially by the decision level
fusion. On the other hand, the vertical street trees on the right correspond to Tilia tomen-
tosa species, one of the two majority species. These trees are well identified by all the
sources overall (especially by the PAN and the nDSM). The fusion takes advantage of this
complementarity and all of these trees are well identified.
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Figure 1.5: Performance map per source. For each tree and each source, the performance
is computed as the number of right species predictions for this tree, divided by the number
of times this tree has been classified in the validation strategy (Section 1.1.3.3). By way of
example, a red, white or blue polygon indicates a tree which is never, one in two or always
well classified, respectively. VNIR (a), SWIR (b), PAN (c) and nDSM (d) refer to the
VNIR MNF associated to SVM, the SWIR MNF associated to SVM, the PAN associated
to RF and the nDSM associated to RF, respectively.
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Figure 1.6: F-score per species for the VNIR and for feature and decision fusion strategies.
The x-axis corresponds to the species code (Table 1.3).
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Figure I1.7: Confusion matrices of the VNIR (a) and the fusion (b) on the test site for the
two main species (7Tilia tomentosa and Platanus x hispanica). The term “other” refers to
the other species for which the ground truth is not available. The species code is presented

in Table 1.3.
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Figure 1.8: Map of the VNIR (a) and the fusion (b) on the test site for the two majority
species (Tilia tomentosa and Platanus x hispanica).
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Figure 1.9: Communalities of the spectral bands computed from the first 30 and 15 MNF
components for the VNIR MNF and SWIR MNF sources. The spectral reflectances are
computed as the average per species for the VNIR and SWIR data.
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Figure 1.10: Illustration of the Aesculus hippocastanum and the Acer platanoides VNIR
data. Three trees are presented for each species. The spectral reflectances correspond to

the average spectral reflectances per tree.
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Figure I.11: F-score per species for each source and for feature and decision fusion strate-
gies. The x-axis corresponds to the species code (Table 1.3).
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Figure I.12: Performance map from the sources toward the fusion. For each tree and each
source, the performance is computed as the number of right species predictions for this
tree, divided by the number of times this tree has been classified in the validation strategy
(Section 1.1.3.3). By way of example, a red, white or blue polygon indicates a tree which
is never, one in two or always well classified, respectively. VNIR (a), SWIR (b), PAN (c)
and nDSM (d) refer to the VNIR MNF associated to SVM, the SWIR MNF associated to
SVM, the PAN associated to RF and the nDSM associated to RF, respectively. (e): feature
level fusion. (f): decision level fusion.
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Chapter 11

Urban tree species classification from
multiple spectral classifiers

Synthese de I’article en francais

L’ objectif de cet article est de classer 5 especes d’arbres dans un environnement urbain,
Toulouse, France, en tirant profit de la richesse des données hyperspectrales a travers un
ensemble de classifieurs fondé sur des mesures terrain.

Jeu de données

Le cadre de classification est similaire a celui utilisé dans le chapitre précédent. En ef-
fet, afin de sélectionner la meilleure stratégie de classification, un ensemble de classifieurs
ainsi que deux méthodes de référence sont d’abord testées sur un site de référence ou 5
especes d’arbres sont préalablement identifiées et les couronnes d’arbres délinéées ma-
nuellement (94 arbres). Deuxiemement, 1’approche retenue est introduite dans un proces-
sus automatique (délimitation des couronnes et classification des especes) pour classer les
especes d’un site test, indépendant du site de référence utilisé pour 1’apprentissage. Dans
ce cas, la méthode est évaluée quantitativement pour 1’espece majoritaire (7ilia tomen-
tosa), alors que la performance pour les autres especes est analysée de maniere qualitative
en raison du manque terrain.

Comme les données hyperspectrales aéroportées VNIR ont été identifiées comme le prin-
cipal moteur de la précision de la classification dans le chapitre précédent par rapport
aux données SWIR, PAN et nDSM, seules les données VNIR sont considérées a travers
les stratégies de classification suivantes. Le domaine spectral VNIR est particulicrement
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TABLE II.1 : Principales caractéristiques du jeu de données. "N fait référence au nombre
de bandes spectrales. GSD signifie Ground Sampling Distance. ASD correspond a Analy-
tical Spectral Device.

VNIR Field
Source HySpex VNIR-1600 spectroraiometre ASD
Quantité réflectance spectrale réflectance spectrale
GSD 0.4 m échelle feuille / canopée
Intervalle 0.4-1pum 04-1um
N 160 160

pertinent car il donne des informations sur les pigments foliaires, la chlorophylle, les ca-
roténoides, etc., et la structure du feuillage, Indice de Surface Foliaire (LAI), Distribu-
tion Angulaire des Feuilles (LAD), des caractéristiques biochimiques et biophysiques qui
dépendent de I’espece. Afin d’évaluer le potentiel de mesures spectrales terrain pour la
classification des especes au niveau aéroporté, des mesures ont été effectuées a I’échelle de
la feuilles et de la canopée sur 7 arbres du site de référence. Les principales caractéristiques
du jeu de données sont décrites dans la Table II1.2, apres que les prétraitements géométrique
et radiométrique aient été effectués.

Méthode proposée

Une approche d’ensemble de classifieurs est proposée. Au moins un classifieur est dédié a
la prédiction d’une espece particuliere. Chaque classifieur est constitué d’un SVM associé
a un vecteur de caractéristiques composé de trois indices de végétation. L’ apprentissage
des modeles est fondée sur des données aéroportés ou terrain (feuille ou canopée). Les
triplets d’indices sont choisis de maniere a optimiser le F-score de chaque espece sur
I’image VNIR, a travers la prise en compte de pixels étiquetés dans I’'image. Cela garantit
que les indices extraits soient a la fois discriminants et invariants par rapport au change-
ment d’échelle. A partir des votes des classifieurs, un score est calculé et permet de prédire
I’espece a I’aide d’une regle de décision. Les indices de végétation considérés dans cette
étude sont ceux recensés par (Erudel et al., 2017) (plus de 100 indices). Deux méthodes
de référence sont utilisées. La premiere est 1’utilisation directe de la réflectance (appelée
“réflectance”) tandis que la seconde concatene tous les indices extraits dans un vecteur de

£ 9

caractéristiques (appelé “concaténée”). La méthode proposée est appelée “ensemble”.
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Résultats

Les principaux résultats de cette étude sont donnés dans la Table I1.2. L’ensemble de classi-

TABLE I1.2 : OA (%) et k (%) moyennés entre les différentes échelles des échantillons
d’apprentissage (aéroporté, canopée, feuille) pour chaque méthode dans le cas du site de
référence. Les scores en gras associés d’une étoile (*) font référence au meilleur score
parmi les sources.

Réflectance Concaténée Ensemble
OA (%) 36 58 60*
K (%) 23 44 49*

fieurs proposé dépasse les approches concaténée et réflectance avec des valeurs moyennes
d’OA et de k de 60% (kK = 49%), 58% (x = 44%) et 36% (kK = 23%), respectivement.
La valeur de la métrique k indique que I’approche d’ensemble réduit les confusions par
rapport aux méthodes de référence. Ce comportement est particulierement visible lorsque
des échantillons d’apprentissage au niveau des feuilles sont utilisés. En effet, une valeur
d’OA de 58% (k = 46%) est obtenue dans le cas de I’ensemble de classifieurs, alors que
des valeurs de 45% (K = 27%) et 15% (x = 2%) résultent respectivement de 1’utilisa-
tion des méthodes concaténée et réflectance. Concernant I’effet du changement d’échelle,
I’approche d’ensemble s’avere peu sensible. L’ approche concaténée est sensible au chan-
gement d’échelle de la canopée a la feuille. Enfin, 1a méthode réflectance est tres sensible
au changement d’échelle. En conclusion, la méthode d’ensemble proposée est préférable,
mais la méthode concaténée pourrait étre utilisée pour des échantillons d’apprentissage
aux niveaux canopée ou aéroporté.

Discussions

Ces résultats démontrent que I’ensemble de classifieurs proposé est meilleur que 1’ap-
proche standard concaténée. Bien qu’il y ait peu de recherches sur I'utilisation d’une
telle technique dans le contexte de la classification des especes, ce comportement a déja
été noté dans d’autres applications (Ceamanos et al., 2010) et rend notre conclusion
cohérente. Néanmoins, 1’originalité de notre approche réside dans la prise en compte de
classifieurs spécialisés pour chaque espece. Ensuite, deux raisons principales peuvent étre
données pour expliquer pourquoi I’ensemble de classifieurs est meilleur que la méthode
concaténée de 1’état de ’art. Comme premiere explication, 1’approche d’ensemble est
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fondée sur la prise en compte de plusieurs classifieurs par espece, lui conférant plus de
robustesse. Deuxiemement, certains éléments du vecteur de caractéristiques peuvent €tre
utiles pour la discrimination de certaines especes, mais peuvent jouer le réle de bruit pour
d’autres especes dans 1’approche concaténée, provoquant potentiellement des erreurs. Au
lieu d’avoir des classifieurs spécifiques aux especes, des classifieurs dédiés a la discrimi-
nation de groupes de classes (feuillus, coniferes, etc.) pourraient contribuer.

Les mesures spectrales au sol peuvent étre utilisées pour la classification des especes
d’arbres dans les images. En particulier, notre recherche démontre que des résultats en-
courageants peuvent étre obtenus en se fondant sur des mesures au niveau des feuilles,
sachant que les approches de 1’état de I’art considerent généralement 1’apprentissage avec
des échantillons directement extraits des images (Fassnacht et al., 2016). Cela peut s’ex-
pliquer par I'utilisation d’indices de végétation qui peuvent étre a la fois discriminants
et invariants par rapport au changement d’échelle. De plus, I’approche retenue pour 1’ex-
traction des triplets d’indices suppose que des pixels des images étiquetés sont disponibles
pour optimiser le F-score par espece au niveau des images, sur la base d’échantillons d’ap-
prentissage au niveau de la feuille ou de la canopée. Cela permet d’effectuer le transfert
entre les deux échelles. Cette approche simple est également une limite de notre étude car il
est difficile d’avoir des données étiquetées sur les images. Des techniques d’apprentissage
par transfert (Tuia et al., 2016) pourraient étre envisagées afin de rendre notre méthode
plus opérationnelle, ainsi que des modeles de transfert radiatif (RT) (Gastellu-Etchegorry
et al., 2004; Jacquemoud et al., 2009) pour simuler des échantillons d’apprentissage a
partir de spectres foliaires.

Conclusions

L’objectif de cette étude est de tirer profit de la richesse des données hyperspectrales
pour classer 5 especes d’arbres dans un environnement urbain, Toulouse, France, avec une
méthode d’ensemble a partir de mesures spectrales au sol. En particulier, les données hy-
perspectrales aéroportées VNIR sont considérées pour cette tache, tandis que des mesures
sur le terrain aux niveaux des feuilles et de la canopée acquis sur un site de référence
sont destinées a étre utilisées pour entrainer les modeles de classification supervisée.
L’ensemble de classifieurs proposé est fondé€ sur la prise en compte d’au moins un classi-
fieur par espece, chacune étant constitué d’un SVM associé a trois indices spectraux. Une
regle de décision est ensuite appliquée pour prédire 1’espece.

La conclusion principale est que la méthode proposée dépasse 1’approche concaténée clas-
sique lorsque des échantillons d’entrainement au niveau de la feuille sont utilisés avec une
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valeur d’OA de 58% (K = 46%), au lieu de 45% (k = 27%) et 15% (x = 2%). Néanmoins,
I’approche concaténée pourrait étre utilisée avec des échantillons d’apprentissage au ni-
veau de la canopée ou aéroporté. Ce travail montre que des mesures spectrales terrain
peuvent étre considérées pour la classification des especes d’arbres. Ceci s’explique par
les propriétés discriminantes et invariantes des indices, en plus de I’extraction automatique
des triplets d’indices fondée sur I’optimisation de la précision au niveau des images.

Des travaux supplémentaires doivent étre menés. Premierement, la méthode d’ensemble
doit étre améliorée. En effet, la prise en compte d’autres classifieurs spécialisés dans la dis-
crimination de certains groupes d’especes pourrait aider. En outre, la prise en compte de
techniques d’apprentissage par transfert plus avancées semble nécessaire pour améliorer
les performances, ainsi que la simulation d’échantillons d’apprentissage en raison du
manque de vérité terrain.
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English part: Second article

The second paper is included in the next section!.

II.1 An ensemble classifier approach for urban tree species
classification from ground-based spectral references

Abstract: This study aims at identifying the best object-based classification strategy that
takes advantage of the richness of hyperspectral data, for classifying 5 tree species in an
urban area (Toulouse, France). Field spectral measurements at the leaf and canopy levels
were carried out in a reference site, while airborne hyperspectral Visible Near-Infrared
(160 spectral bands, spatial resolution of 0.4 m) data were acquired over Toulouse. We
propose an ensemble classifier approach (at least one classifier per species) such as each
classifier uses three vegetation indices, followed by Support Vector Machine supervised
classification. Then, a decision rule based on the classifiers votes is applied to predict the
species. The triplets of vegetation indices corresponding to each classifier are chosen in
such way that they optimize the F-score of a given species, ensuring the complementarity
of the classifiers. In this framework, the field data are intended to be used for learning
(either airborne, canopy or leaf level), whereas the airborne data are used for testing, in
order to assess the potential of field measurements for such classification task. Whatever
the training samples level, two baseline approaches are used for comparison. A standard
classification procedure using directly the spectral reflectance is chosen in order to evalu-
ate the interest of using vegetation indices. A method which stacks all the selected indices
in one feature vector is considered in order to assess the potential of the ensemble classi-
fier. Regarding the results, the proposed method outperforms the baseline approaches in
case of leaf level learning with an Overall Accuracy of 58% (k = 46%), instead of 45% (x
=27%) and 15% (x = 2%) respectively. In particular, Aesculus hippocastanum trees are
well classified because of their senescence, caused by the horse-chestnut leaf miner, and
highlighted thanks to the vegetation indices. In conclusion, the proposed ensemble classi-
fier approach improves the performance, and leaf and canopy levels learning give similar
performance in comparison to the use of references from the images.

Keywords: tree species classification; urban remote sensing; hyperspectral; object-based;
ensemble classifier; transfer; vegetation indices.

13. Aval, S. Fabre, E. Zenou, D. Sheeren, M. Fauvel and X. Briottet. An ensemble classifier approach for
urban tree species classification from ground-based spectral references, 2018.
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II.1.1 Introduction

The tree species classification of natural forests, plantations and urban vegetation from
remotely sensed data has been studied for more than four decades (Fassnacht et al., 2016;
Sheeren et al., 2016). While the species knowledge is essential for the biodiversity mon-
itoring in natural forests (Shang and Chisholm, 2014), it is a valuable information in the
urban environment for effective urban planning and vegetation monitoring. Actually, the
urban managers require this information since tree infrastructures can perform as freshness
islands in dense and polluted cities during heatwave, and that the species composition is
a crucial parameter of these islands (Doick et al., 2014). On the other hand, the spread
of diseases, often species-specific ones, is made easier in urban areas due to the anthro-
pogenic activity (Sebestyen et al., 2008). The cases of the canker stain of plane trees (Pla-
tanus) (Vigouroux, 2014) or the leaf miner of horse chestnut (Aesculus hippocastanum)
(Percival et al., 2011) can be highlighted. In particular, the first one causes an incurable
disease which wreak havoc in the south of France (Neu et al., 2014). The struggle against
these diseases is based on several elements, including the monitoring, and requiring the
species knowledge. The literature provides encouraging results in tree species classifi-
cation, but it remains challenging in an urban context due to the tree diversity (species,
life conditions, pruning, etc.) (Welch, 1982; Alonzo et al., 2013) with potentially a small
number of trees per species (Aval, 2018).

Nowadays, airborne hyperspectral sensors (0.4 - 2.5 um range with several hundred spec-
tral bands) make it possible to measure the spectral reflectance of vegetation volumes with
a spatial resolution of an order of magnitude of 1 m (Dalponte et al., 2009), much smaller
than the size of tree crowns. This physical quantity is related to the foliar components,
chlorophyll, carotenoids, etc. (Jacquemoud and Baret, 1990), and the foliage structure,
Leaf Area Index (LAI), Leaf Angular Distribution (LAD), etc. (Verhoef, 1984). Being
specific to each species, the spectral reflectance is a candidate of interest for object-based
tree species classification as demonstrated by several studies (Clark et al., 2005; van De-
venter et al., 2013). Even if the reflectance can be directly used for identifying the species
(Ghiyamat et al., 2013), other works have investigated the interest of applying feature
extraction techniques, in order to increase the inter-species variability while decreasing
the intra-species variability. Whereas studies use Minimum Noise Fraction (MNF) com-
ponents (Ghosh and Joshi, 2014), other ones select automatically the most discrimina-
tive bands (Fassnacht et al., 2014), by way of the consideration of spectral derivatives
(Datt, 2000), continuum removal (Fassnacht et al., 2014) or vegetation indices (Clark and
Roberts, 2012). These transformations improve the classification performance in general
(from a few percent points to around 10pp). However, it seems that for such classifica-
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tion task, these approaches do not allow the richness of the hyperspectral data to be fully
exploited. Indeed, the features derivation is not based on an optimization process, for in-
stance a process where the spectral features would be chosen to reach the highest level of
species prediction accuracy.

Once the spectral features are extracted, the current tree species classification paradigm
generally uses a supervised classification algorithm such as Support Vector Machine (SVM)
or Random Forest (RF) (Féret and Asner, 2013; Sheeren et al., 2016). According to (Aval,
2018) in a data fusion background, a drawback of using one classifier, i.e. one feature vec-
tor and one classification algorithm (well known as feature level in the fusion context), is
that the method is sensitive to the Hughes effect (Hughes, 1968) when the number of vari-
ables is much larger that the number of examples in the training set. Also, some elements
of the feature vector can be useful for the discrimination of certain species, but can per-
form as noise for other species. In a fusion context, we highlight the potential of a decision
level fusion approach instead of a standard feature level one, knowing that the decision fu-
sion considers several classifiers, as much as there are sensors subject to fusion (Aval,
2018). To return to the subject, hyperspectral data can be viewed as several sub-spectral
feature vectors that can be classified by as many classification algorithms, which would
allow to deal with the previously mentioned issues. This type of approach can be designed
through the ensemble classifier framework (Kuncheva, 2004; Engler et al., 2013). For
example, at least one classifier could be dedicated to the prediction of a given species.
On the other hand, the samples used for training these models are often directly extracted
from the images, whereas for an operational purpose the use of field measurements could
be investigated. Even if previous studies show that field and airborne spectral reflectances
are often incomparable, especially in the case of leaf level ground measurements because
of the variability of the canopy structure (Roberts et al., 2004), spectral features such as
vegetation indices can be both discriminative and invariant to the change of scale (Cho et
al., 2008). Moreover, the use of ground-based spectral references has already proven its
potential in other contexts such as crop mapping (Nidamanuri and Zbell, 2011).

Summarizing the existing literature, there is minimal focus on an ensemble classifier ap-
proach for classifying tree species based on hyperspectral data. Moreover, ground-based
spectral references are often not considered for such purpose. The objective of this study
is then to classify 5 species in an urban environment, Toulouse, France, by taking advan-
tage of the richness of hyperspectral data through an ensemble classifier approach based
on field spectral references. In particular, the following issues are addressed:

1. Is the ensemble classifier approach the best classification strategy?
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2. What is the potential of ground-based spectral references for tree species classifica-
tion?

I1.1.2 Materials

The materials used in this study are similar to those described in (Aval, 2018).

II.1.2.1 Study area

The study area is located in Toulouse, the fourth city in France with about 500,000 in-
habitants (43.6 °N, 1.44 °E). According to vegetation managers, Toulouse should have
approximately 140,000 trees. Two study sites are considered (Figure II.1, (a)): a reference
site with a tree reference map (detailed in Section II.1.2.4) for comparing the ensemble
classifier with other approaches and selecting the best one, and a test site for assessing the
potential of that selected approach through an automatic process (Section II.1.2.5).

I1.1.2.2 Airborne data

The airborne hyperspectral data were acquired on September 22, 2016 at 10:00 Universal
Time (UT) during a campaign organized by the French Aerospace Lab (ONERA). The
sun zenith angle was approximately 70 °. Further information about this campaign can be
found in (Adeline et al., 2013). The HySpex Visible Near-Infrared (VNIR) (Kohler, 2016)
system was installed on board an aircraft whose flight height was approximately 2,000 m
over the study area. This system consists of an hyperspectral push broom camera with 160
spectral bands (0.4 um - 1 um). Focusing on the spatial resolution, the VNIR camera has
a pixel Field Of View (FOV) of 0.18 mrad and 0.36 mrad across and along track. This
results in spatial resolutions of 0.4 m and 0.8 m across and along track.

I1.1.2.3 Preprocessing

The French Mapping Agency (IGN) provides us with a georeferenced Digital Surface
Model (DSM) with a spatial resolution of 0.125 m. First, the VNIR hyperspectral image
is registered on the DSM by defining Ground Control Points (GCP) using QGIS software
and gdalwarp module from GDAL. Nearest neighbour resampling is chosen to preserve
the original spectral data. Also, the Thin Plate Spline (TPS) transformation (Duchon,
1977) is applied for its ability to correct the deformations locally. Because the pixels have
rectangular shapes with the longer side along track, a square grid with a spatial resolution
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Figure II.1: (a) Overall view of the downtown part of Toulouse from Google Earth. The
yellow rectangles indicate the two study areas: reference and test sites. (b) Reference site
with park and alignment trees represented on the French Aerospace Lab airborne VNIR
data. The coloured polygons indicate the delineations and the species of the inventoried
trees in the reference site. Trees that were subject to field measurements are showed. (c)
Test site with park and alignment trees, especially composed of Tilia tomentosa alignment
trees, represented on the VNIR. The white outline polygons correspond to the automatic
tree crown delineation results.

of 0.4 m (minimum between the rectangle sides) is chosen in order to preserve the orig-
inal data. The error related to registration quality is less than a pixel according to visual
assessment. Secondly, the hyperspectral data are atmospherically corrected to deal with
spectral reflectances with the COCHISE platform (Poutier et al., 2002) based on MOD-
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TRAN and assuming a flat scene. Finally, the spectral signatures have been smoothed with
a Savitzky-Golay filter (Savitzky and Golay, 1964) for reducing noise.

I1.1.2.4 Reference site and tree reference map

A tree reference map is built on the reference site from an existing inventory delivered by
Toulouse city and from a field campaign (Figure II.1, (b)). There are 94 trees distributed
among 5 species in this reference map, with an unbalanced sample which is representative
of urban areas (Table I1.3). The trees are delineated manually, ensuring that the selected
pixels belong to trees. This avoids distorting the assessment of the classification because
of delineation errors. Among these trees, 7 trees were subject to field measurements, 1
per species plus 1 more for each of the two majority species: Aesculus hippocastanum
and Tilia tomentosa. An Analytical Spectral Device (ASD) spectroradiometer was used to
measure the spectral reflectance on the reflective domain (0.4 um - 2.5 um). Whereas leaf
level measurements were acquired the same day than the airborne campaign, canopy level
measurements were acquired 6 days after (September 28) because the Toulouse city cherry
picker employed for this acquisition was available only at this date. There has been no rain
during this period. The field spectra are resampled to the VNIR hyperspectral image spec-
tral resolution through a linear interpolation as the spectral sensitivities are comparable.
The main characteristics of the trees in the reference map are given in Table II.3. The
species code (Table 1.3) will be used in Sections II.1.4 (results) and II.1.5 (discussions).
Moreover, the Figure I1.2 illustrates the spectral signatures, highlighting the differences
between the different levels of measurement.

Table I1.3: Main characteristics of the trees in the reference map. The training samples
(last three columns) correspond to the trees that were subject to field measurements (Figure
1.1, (b)).

Species scientific name (species code) Stem Canopy VNIR Airborne  Canopy Leaf
count area pixel training training training
(m?) count pixels samples samples
Aesculus hippocastanum (Ah.) 23 1433 7936 267 7 9
Celtis australis (C.au.) 10 1032 5856 66 5 4
Fagus sylvatica (¥s.) 10 529 2897 52 4 4
Juglans nigra (J.n.) 12 904 5021 213 5 4
Tilia tomentosa (T4.) 39 1547 8397 219 10 4
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Figure I1.2: Illustration of the Aesculus hippocastanum (A.h.) and Tilia tomentosa (T.t.)
VNIR spectral signatures measured at three different levels: airborne, canopy, leaf. Each
signature is computed as the mean of the spectral reflectances. The species code is pre-
sented in table I1.3.

I1.1.2.5 Test site and tree crown delineation

This test site is independent from the reference site and far from it in order to avoid spatial
autocorrelation (Figure III.1, (a)). It is mainly composed of majority species alignment
trees (7ilia tomentosa), easily identifiable by visual interpretation with the help of Google
Street View (and checked by Toulouse city). This visual information is exploited to gener-
ate the reference classified product used to assess the performance of the proposed method
(Figure III.1, (c)). In order to automate the processing chain, the trees are delineated au-
tomatically thanks to the method developed in (Adeline, 2014), based on (Iovan et al.,
2008), and used in (Aval, 2018) (Figure IIL.1, (c)). Especially, the principle of the algo-
rithm is to choose the highest pixel of the Canopy Height Model (CHM) as the first pixel
of the first delineated tree. Then, the height is decremented and the corresponding pixel is
either assigned to that first tree if it is at a distance less than 2 m here as in (Adeline, 2014),
or assigned to a new tree, and so on. The produced delineation map allows localizing the
trees for which species have to be defined. The performance is assessed quantitatively for
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the majority species (7ilia tomentosa), while the other species are analysed in a qualitative
way because of the lack of ground truth.

For both sites, the pixels in the shade are removed from the classification process to get
suitable testing samples in comparison to the canopy training ones acquired in the sun (i.e.
vegetation volumes directly illuminated by the sun). To do so, the area of the spectral
reflectance (albedo) is computed for each pixel within each crown and all the pixels above
the 75 percentile are kept, because the classification performance is stable beyond this
value.

I1.1.3 Methods
I1.1.3.1 Ensemble classifier framework

The main steps of the proposed method are presented in Figure I1.3. The term “classifier”
refers to both the feature vector and the associated supervised classification algorithm. In
our context, there are different feature vectors (triplets of spectral indices), but the same
algorithm is used for each triplet, the Support Vector Machine (SVM). Focusing on the
Figure I1.3, from the training data, the training step is carried out based on either airborne
pixels, canopy samples or leaf samples. There is then a first testing step on a subsample of
the hyperspectral image, in order to select the best classifiers, i.e. those that are robust to
the change of scale. The resulting ensemble classifier is used for classifying the rest of the
image. There are two possible cases for the definition of the subsamples. Regarding the
reference site, ’1” and 72" (Figure II.3) refer to two distinct subsamples of the reference
site (50% / 50% split) by keeping the same percentage of the trees per species. This split
is repeated 5 times to ensure a stable result. The Monte Carlo process is used for random
selection of the sets (Dubitzky et al., 2007). Focusing on the real application, ”1” and 2"
correspond to the entire reference and test sites, respectively

11.1.3.2 Derivation of the classifiers

Many spectral indices used for characterizing biochemical components of vegetation such
as chlorophyll, carotenoid, water, nitrogen, etc., have been reviewed by (Erudel et al.,
2017) (more than 100 indices). We assume that these indicators are useful to discrimi-
nate the tree species considered in this study. From either the airborne training pixels,
the canopy training samples or the leaf training samples, each possible triplet of indices
(justified below), which can differ between the scales, is computed and allows as many
SVM models to be trained, and applied to the subsample of the hyperspectral image. This
ensures that the extracted indices are both discriminant and invariant to the change of
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Figure I1.3: Flowchart of the proposed ensemble classifier approach.

scale. Each of these classifiers is selected through the computation of the F-score, for
each species (example of definition and use in (Stavrakoudis et al., 2014)) (loop in Figure
I1.3). The SVM supervised classification algorithm is chosen because it has demonstrated
good performance in the literature (Féret and Asner, 2013), in particular when there are
limited training samples, and because it is a non-parametric algorithm. The pixels within
the crowns are classified and the decisions combined by majority vote, an efficient strat-
egy according to (Alonzo et al., 2014). The Table I1.4 summarizes the performance of the
best classifiers, overall and per species. There is an optimal classifier in terms of Overall
Accuracy (OA). But at the same time, for each species, it exists a significantly better clas-
sifier than the optimal one in terms of F-score. Thus, it is reasonable to assume that the
combination of these species-specialized classifiers (i.e. an ensemble classifier approach)
would improve the performance of the optimal one. Each feature vector is then composed
of three spectral indices, as above this number of indices the F-score obtained for each
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Table I1.4: F-score (%) per classifier and per species in the case of canopy training samples
and three vegetation indices. OA (%) and x (%) per classifier. For example, Cr.  is the
classifier that gives the best F-score for Fagus sylvatica, while Cy), is the classifier that
gives the best OA. Bolded scores associated to the star (*) refer to the maximum F-score
for this species. The species code is presented in Table 11.3.

Cou Cin Chan Ch. G Ch.
0A (%)  T9% 70 70 47 60 51
c@ 2% 54 61 36 46 31
Ah. 88 100 82 67 76 0
Cau. 67 0 89+ 40 46 0
Fs. 89 89 89 100 0 0
Jn. 71 0 48 31 100 62
Tt 80 74 67 27 57 86+

species-specific classifier are not better than the ones given in Table I1.4. Indeed, F-score
values of 100% are obtained with three indices for Aesculus hippocastanum, Fagus syl-
vatica and Juglans nigra. Focusing on Celtis australis and Tilia tomentosa, the F-score
values showed in Table II.4 cannot be improved because of confusions for certain individ-
uals of these species. Knowing that there is at least one classifier per species, the selection
of the best classifiers is carried out based on two parameters: the minimum required clas-
sifier F — score, F' — scorey,;, (0.1), and the maximum number of classifiers per species
(5), both fixed after testing several values (between 0.1 and 0.5 in 0.1 steps for the first
parameter, between 5 and 20 in 5 steps for the second one).

N
Yl

Decision rule We introduce for each species i, F; = F_xorei’j i , knowing that N;
refers to the number of classifiers for a species 7, and F' — score,‘fj is the F-score of the jth
classifier of the species i. w; is a boolean equal to 1 if the classifier under consideration
votes for its species, else 0. The decision rule is then defined as follows:

n If the best F; is higher than F,;, (0.5) and higher than the best second one with a
difference up to AF,i, (0.2), both fixed after testing multiple values, we predict the
species corresponding to arg max; F;.

= Else we predict the rejection class (called “rejected” in the next sections).

The proposed method is referred as “ensemble” in the next sections.
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I1.1.3.3 Baseline approaches

Two baselines are used for comparison. A first baseline consists in using directly the
spectral reflectance in order to assess the interest of the vegetation indices (called re-
flectance™). A second baseline is dedicated to assess the performance of the ensemble
classifier, compared to an approach where the triplets of indices of each classifier are
stacked in the same feature vector, and each redundant index removed (called ”stacked”).
Indeed, if an index appears several times among the triplets of indices, it is considered
only once. Therefore, the dimension of the methods tested is not the same.

I1.1.4 Results

Regarding the reference site, the Table I1.5 gives the Overall Accuracy (OA) and K of the
approaches tested in this study. The Figure I1.4 shows the tree species maps obtained for
the test site with the stacked and ensemble classifier approaches based on leaf level mea-
surements. In order to get a deeper analysis for the reference site, the confusion matrices
of these approaches at the canopy level are given in Figure IL.5.

Table I1.5: OA (%) and K (%) for the different methods depending on the training samples
level when applied to the reference site. Bolded scores associated to the star (*) refer to
the maximum score for a particular level.

Reflectance Stacked Ensemble
Airborne >3 62 26

40 52% 46

41 68%* 66
Canopy 27 53 55+
Leat 15 45 58+

2 27 46*
Average 36 58 60*

23 44 49%

Focusing on the leaf level training samples, the proposed ensemble classifier outper-
forms the stacked and reflectance methods with OA values of 58% (k = 46%), 45% (k =
27%) and 15% (K = 2%) for the reference site, respectively. The significant improvement
in terms of k¥ (+19pp and +44pp) demonstrates that the proposed approach reduces a lot

109



Figure I1.4: Comparison maps between the stacked approach (left) and the ensemble clas-
sifier (right) based on leaf training samples when applied to the test site. The "Rejected”
class concerns only the ensemble classifier approach.

the confusions between species. When assessing the ensemble classifier through an auto-
matic process (on the test site), this behaviour is accentuated. While the stacked approach
leads to the identification of 6% of the Tilia tomentosa alignment trees, the proposed one
reaches 98% of correct detections. This is visible in Figure 1.4 where the Tilia tomentosa
alignment is well reconstructed thanks to the ensemble classifier, whereas the stacked ap-
proach leads to confusions with other species such as Celtis australis or Fagus sylvatica.
Also, the proposed method predicts the rejected class for the majority of the alignment
trees on the right of the scene (Platanus x hispanica), a consistent result as the supervised
algorithms have not been trained for this species. However, the population of 7ilia tomen-
tosa is overestimated in the park at the top of the image. In conclusion, it is preferable to
use the proposed approach in case of leaf training samples.

At the canopy level, the performance of the ensemble classifier is similar to that of the
stacked approach with OA values of 66% (k = 55%) against 68% (kK = 53%) respectively.
These approaches remain significantly better than the reflectance method whose OA and
K values are equal to 41% and 27%. Focusing on the confusion matrices given in Figure
IL.5 in case of canopy training samples, the main phenomenon that can be observed is a
confusion between Tilia tomentosa and the other species. For the stacked approach, 30%
of Juglans nigra, 85% of Fagus sylvatica, 50% of Celtis australis and 15% of Aesculus
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Figure I1.5: Comparison confusion matrices between the stacked approach (top) and the
ensemble classifier (bottom) based on canopy training samples when applied to the refer-
ence site. The matrices on the left are normalized by the reference (producer accuracy)
while the matrices on the right are normalized by the prediction (user accuracy). The
”Rejected” class concerns only the ensemble classifier approach.

hippocastanum are confused with Tilia tomentosa trees. Although the ensemble classifier
approach gives similar results in terms of OA and Kk, it causes less confusion between the
species thanks to the consideration of the rejected class. Instead of being labelled as 7ilia
tomentosa, the trees that were subject to confusion are considered as the rejected class. For

111



that reason, the proposed ensemble classifier is the most appropriate choice when canopy
training samples are used, but the stacked approach could be also considered for such task.

Regarding airborne training samples, the performance of the three approaches is quite
similar with OA values of 53%, 62% and 56%, respectively (k of 40%, 52% and 46%).
The stacked approach is better than the ensemble classifier with improvements of OA and
K of 6pp. In this case, the stacked approach has to be preferred, although the ensemble
classifier and the reflectance method could be also considered. On average among the
training samples levels, the proposed ensemble classifier is slightly better than the stacked
approach with an OA value of 60% (x of 49%) in comparison to 58% (k of 44%). The
better improvement in terms of x (+5pp) compared to that of the OA (+2pp) indicates that
the ensemble method reduces more the confusions between the species. The performance
of the reflectance approach is much lower in comparison to the ensemble (-24pp in terms
of OA and -26pp of k). Overall, the ensemble classifier approach is the most appropriate.

Regarding the effect of the change of scale, the ensemble classifier OA decreases down
to 58% (x = 46%) compared to 66% (x = 55%) from canopy to leaf level, while the OA
is equal to 56% with airborne training samples. Regarding the stacked approach with leaf
training samples, the OA and «x are declined to 45% and 27% in comparison to 68% and
53% at the canopy level, whereas these values are equal to 62% and 52% based on airborne
training samples. Focusing on the use of the reflectance approach, a decrease of the per-
formance is observed from the airborne to leaf level, by way of the canopy level with OA
values of 53% (k =40%), 41% (k = 27%) and 15% (x = 2%), respectively. In conclusion,
the proposed ensemble classifier is not very sensitive to the change of scale. The stacked
approach is more sensitive to this parameter, in particular from the airborne or canopy
level to the leaf level. Finally, the reflectance method cannot be used for classifying tree
species if canopy or leaf training samples are considered whereas airborne samples can be
used.

I1.1.5 Discussions
II.1.5.1 Best classification strategy

These results highlight the interest of using vegetation indices instead of the original spec-
tral reflectance for the classification of tree species when ground-based spectral references
are considered. While studies demonstrate the advantage of using such indicators in the
context of vegetation species identification (Erudel et al., 2017), other works obtain sim-
ilar or better results with the reflectance (Fassnacht et al., 2016). In our case, there are
three reasons to explain why the spectral indices are more efficient than the spectral re-
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flectance. With more than 100 indices, the richness of the parameters used in this research
is substantial. Secondly, the leaf level spectral measurements are not directly comparable
to the target samples which are pixels of the images. This is due to the canopy structure,
especially the LAI and the LAD, which modifies the radiation through the vegetation vol-
umes (Roberts et al., 2004). The comparison of the canopy and airborne samples is easier
but the conditions of the acquisitions (spatial resolution, solar angle, atmospheric com-
position, etc.) can cause significant differences among these signals. Therefore, the field
spectral measurements are not representative of the image pixels. Thirdly, the reflectance
approach is much more sensitive to the Hughes effect (Hughes, 1968) as its dimension is
much higher. Potentially discriminant and invariant, the spectral indices are candidates of
interest when dealing with ground-based spectral references. These properties are proba-
bly also useful for airborne training samples as images acquired in different conditions are
impacted similarly. Although the vegetation indices are powerful, the use of other tech-
niques for automatic feature extraction could be investigated.

On the other hand, the ensemble classifier developed in this research is better than the
commonly used stacked approach. In a fusion context involving hyperspectral, panchro-
matic and normalized Digital Surface Model Data (nDSM), it is shown that a decision
level fusion (equivalent of the ensemble method) can be more appropriate than a feature
level one (equivalent of the stacked approach) for a tree species classification problem
(Aval, 2018), which is consistent with our finding. For other classification applications,
the ensemble methods have already proven their efficiency in comparison to the stacked
approach (Ceamanos et al., 2010). However, the ensemble classifier developed in this
study is based on at least one species-specialized classifier, which allow the complemen-
tarity of the models subject to the decision rule to be optimized. Three reasons can explain
why the ensemble method is the best. First, the ensemble approach is particularly robust
because there are several classifiers per species. Secondly, stacking the triplets of indices
within the same feature vector leads to features that are discriminant for certain species,
but that perform as noise for other ones, which can cause errors. Finally, the Hughes effect,
even if it is less significant than for the spectral reflectance (Hughes, 1968), is compara-
tively more important than in the ensemble method (only three indices per classifier). As
an improvement of the proposed approach, other features could be considered as textu-
ral or structural ones. Also, instead of having classifiers dedicated to the predictions of
specific species, additional classifiers could be designed for separating groups of classes
(leafy, coniferous, etc.), in a hierarchical framework.
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I1.1.5.2 Potential of ground-based spectral references

The ground-based spectral references acquired in this study can be used for the classifica-
tion of tree species at the airborne level. While the majority of the state-of-art approaches
consider training samples directly from the images (Fassnacht et al., 2016), our works
demonstrates that encouraging results can be obtained based on leaf level measurements.
Canopy level samples lead also to encouraging accuracies. Still focusing on tree species
classification, consistent results have been found in the thermal infrared context based on
laboratory measurements (da Luz and Crowley, 2010), even if it is difficult to compare our
findings. As explained above, the spectral indices are efficient for classifying tree species
based on ground measurements because of their discriminant and invariant properties. In
addition, the species-specific feature extraction carried out in the proposed method is an
essential step in order to identify the best indices. Indeed, the triplets of indices have
been chosen for optimizing the target accuracy, i.e. that at the airborne level, through a
simple transfer approach. The transfer carried out in this study is however a limit of our
approach. Indeed, it requires labelled airborne data, whereas such information is often
not available. Transfer learning techniques could be considered for dealing with this issue
(Tuia et al., 2016). Also, more training samples could improve the performance of the
proposed approach. Radiative Transfer (RT) models such as (Gastellu-Etchegorry et al.,
2004; Jacquemoud et al., 2009) could be considered to simulate representative airborne
training samples based on leaf level measurements.

II.1.5.3 Link between the vegetation indices and the species

For certain species such as Aesculus hippocastanum or Fagus sylvatica, the link between
the indices and the species is obvious as illustrated in Figure I1.6. Focusing on Aesculus
hippocastanum, the Plant Senescence Reflectance Index (PSRI) (Merzlyak et al., 1999) is
particularly discriminant as the two clusters are well separated. The spectral reflectance of
that species is consistent with this behaviour as the reflectance in the red region is high in
comparison to the other species, which is highlighted by the PSRI. This is because all the
trees of this species are affected by the horse-chestnut leaf miner. It necroses its foliage
making it characteristic. The leaf miner attacks the parenchyma of the leaf, explaining
the decrease of the reflectance in the near infrared (modification of the structure of the
leaf). The drying up and leaf necrosis in the Visible increase the reflectance (there are
less chlorophyll pigments thus less absorption). Regarding Fagus sylvatica, the Green
NDVI (Gitelson et al., 1996) is discriminant and has to be related to the much lower
reflectance around the green wavelengths in comparison to the other species. Being from
Fagus sylvatica 'Purpurea’ variety, the tree leaves have a significant anthocyanin content,
causing a deep absorption in this spectral region. These links encourage the use of expert
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Figure 11.6: Link between the spectral indices, the spectral signatures and the species for
airborne level data. Left: Aesculus hippocastanum. Right: Fagus sylvatica. Top: Spectral
indices space. Bottom: Spectral signatures space and an illustration of the species.

knowledge about the tree species. However for the other species, such explanation have
not been found through our research.

I1.1.6 Conclusions

The objective of this study is to classify 5 species in an urban environment, Toulouse,
France, by taking advantage of the richness of hyperspectral data through an ensemble
classifier approach based on field spectral references. Visible Near-Infrared airborne hy-
perspectral data are considered for such task. Focusing on the methodological framework,
an ensemble classifier method is proposed where at least one classifier is dedicated to
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the prediction of a particular species, ensuring the complementarity of the models. Each
classifier consists of a Support Vector Machine classification algorithm associated to three
vegetation indices. Three levels of training samples are considered: leaf, canopy and air-
borne levels. Whereas the use of the original spectral reflectance is considered as a first
baseline (reflectance method), a feature vector composed of all the spectral indices is cho-
sen as a second reference method (stacked approach).

The main conclusion of this study is that the proposed ensemble method outperforms
the classical stacked and reflectance approaches in case of leaf level learning with an OA
value of 58% (x = 46%), instead of 45% (k =27%) and 15% (k = 2%), respectively. Sim-
ilar behaviours are obtained for the other training levels, but it is more accentuated when
leaf level measurements are considered. However, the stacked approach could be used in
case of canopy or airborne level training samples. More, the proposed method reduces
the misclassifications thanks to the rejected class. From another point of view, this study
demonstrates that it is possible to use ground-based spectral references for tree species
classification. It is explained by the discriminant and invariant properties of the vegetation
indices, in addition to the automatic triplets of indices derivation based on the optimiza-
tion of the accuracy at the airborne level. However, because the species considered in this
study have a high LAI, this result can not be generalized to species with low values of
LALI Indeed, the effect of the soil background would be not negligible.

Further work is necessary, from the improvement of the ensemble method to a more ef-
ficient use of the field measurements. The consideration of other classifiers specialized
for the discrimination of certain groups of species is of interest for our future research.
Also, the consideration of transfer learning techniques seems to be necessary in order to
improve the performance. For instance, a radiative transfer model could be used for simu-
lating canopy level spectra based on leaf level ones, in order to get more training samples.
Finally, the combination of radiative transfer models and deep learning approaches is a
way of investigation in order to get automatically the most powerful features, and at the
same time understanding what happens through the machine learning framework.
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Chapter 111

Urban tree species classification from
spectral and contextual features

Synthese de I’article en francais

Le but de cet article est de détecter les arbres qui appartiennent a un alignement de maniere
individuelle.

Jeu de données

Afin d’évaluer la robustesse de la méthode proposée pour différentes conditions, trois
zones d’étude sont considérées. Chaque zone a une complexité particuliere, détaillée dans
Table III.1, avec une complexité croissante. En effet, la principale difficulté se manifeste
pour les cas de connexion spatiale importante entre les arbres d’alignement et les autres
populations d’arbres, une difficulté croissante du premier au troisieme site.

Comme les arbres de rue peuvent €tre vus comme une végétation haute a proximité du
réseau routier, des données hyperspectrales sont choisies pour la détection de la végétation,
alors qu’un DSM est utilisé pour filtrer les objets hauts. Des données hyperspectrales
étaient disponibles pour ce travail de doctorat, ce qui explique pourquoi ce type de données
est utilisé pour cette tiche, mais des données multispectrales auraient pu étre utilisées. En-
fin, les données SIG sont utilisées pour détecter les pixels proches des routes. Les princi-
pales caractéristiques du jeu de données sont décrites dans le tableau III1.2, apres que les
prétraitements géométrique et radiométrique aient été effectués.
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TABLE III.1 : Principales caractéristiques des zones d’étude. "Contexte dans la ville”
se réfere soit aux arbres d’alignement du centre de Toulouse, reliés spatialement a ceux
des parc (“centre”), soit aux arbres d’alignement a proximité de propriétés privées, donc
liés aux arbres privés (’privé”). “Taille” indique la forme de la délinéation des arbres
d’alignement, résultant de la taille par les gestionnaires du milieu urbain. Le terme ”Che-
vauchement” fait référence au niveau de chevauchement entre les arbres d’alignement. La
”Connexion spatiale” met en évidence le niveau de connexion spatiale entre les arbres
d’alignement et les autres populations d’arbres.

Cas1 Cas 2 Cas 3
Contexte dans la ville centre centre privé
Genre Tilia Platanus Platanus
Nombre d’arbres d’alignement ~ ~50 ~100 ~70
Nombre d’arbres total ~100 ~400 ~700
Taille rectangle circulaire circulaire
Chevauchement Non Intermediaire Non
Connexion spatiale Faible Faible Importante

TABLE II1.2 : Principales caractéristiques du jeu de données. Le DSM est obtenu a
partir d’acquisitions stéréoscopiques du systtme CAMV2. ”N” représente le nombre de
bandes spectrales. L’attribut principal du réseau routier est le type de route, c’est-a-dire
pour chaque route s’il s’agit d’une voie primaire ou piétonne, une information utile pour
détecter les arbres qui sont plantés le long des routes a circulation automobile.

VNIR DSM GIS
Source HySpex VNIR-1600 CAMV2 OSM
Type raster raster vecteur
Quantité Type de vecteur
réflectance spectrale hauteur ligne
GSD Attribut principal
0.4 m 0.125 m Type de route
Intervalle 04-1pum
N 160
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Méthode proposée

La méthode proposée comporte deux étapes principales : la détection de la végétation
haute suivie de la délimitation individuelle des couronnes d’arbre d’alignement. En ce qui
concerne la détection de la végétation haute, elle est le résultat de quatre masques dont I’in-
tersection géométrique est calculée pour obtenir le masque final. En particulier, le NDVI
est utilisé pour détecter la végétation tandis qu’un autre indice de la littérature est calculé
pour supprimer les ombres. Enfin, la hauteur et la distance aux routes sont calculées pour
détecter les objets hauts et les objets proches des routes, respectivement.

Le masque résultant est ensuite utilisé comme entrée de la délinéation des couronnes
d’arbres d’alignement, a travers une approche MPP. Dans ce contexte, 1’idée du MPP est de
considérer que la carte des arbres d’alignement est une réalisation spécifique d’un proces-
sus ponctuel marqué x, dans un espace d’état ¥ (espace de position associé a I’espace des
marques). Chaque couronne (ou marque) d’arbre d’alignement est modélisée comme un
cercle. Trouver la meilleure réalisation devient une minimisation d’énergie incluant deux
termes d’énergie, 1’énergie d’attache aux données U,(x), la modélisation d’arbres d’ali-
gnement individuels (niveau de I’arbre) et 1’énergie d’interaction U;(x). Cette derniere
modélise les caractéristiques contextuelles discriminantes des arbres d’alignement (niveau
de I’alignement, hypotheses d’angle petit entre les arbres et hauteurs similaires).

La méthode proposée est comparée a deux méthodes de référence, la méthode de délinéation
utilisée jusqu’ici (Adeline, 2014), sans et avec la prise en compte du réseau de routes. Cela
permet de mettre en évidence la contribution de notre terme d’interaction U;(x). Le méme
masque que celui mentionné ci-dessus est utilisé. Une matrice de confusion est calculée
afin d’évaluer la performance de ces méthodes. A partir de cette matrice de confusion, la
précision du producteur (PA), la précision de I'utilisateur (UA) et le F-score sont utilisés
pour la comparaison.

Résultats

La comparaison entre les approches de référence et la méthode proposée est présentée dans
la Table III.3. La méthode proposée surpasse 1’approche de référence ignorant le réseau
routier avec des valeurs de F-score de 91%, 75% et 85% au lieu de 70%, 41% et 20% pour
les trois cas, respectivement. Quand la méthode de référence utilise le réseau de routes,
I’approche proposée permet d’améliorer la performance de 8pp et de 57pp dans les pre-
mier et troisieme cas, respectivement. Cependant, une baisse de 7pp est observée pour le
second cas. En conclusion, la méthode proposée est la plus appropriée pour la détection des
arbres en alignement urbain pour les premier et troisieme cas (pas de chevauchement mais
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TABLE III.3 : Comparaison des méthodes de référence et proposée en termes de F-score
(%). Les scores en gras associés a I’étoile (*) renvoient au score maximum.

Méthode Cas1 Cas 2 Cas 3
Référence Sans GIS 70 41 20
Avec GIS 83 82% 28
Proposée 91* 75 85%*

TABLE II1.4 : Synthese de la contribution de 1’angle (0), de la hauteur (/) et des données
SIG en termes de score F (%). Les scores en caracteres gras associés a I’étoile (*) renvoient
au score maximum.

Combinaison Cas1 Cas 2 Cas 3
Avec GIS, sans 6 et h 84 79% 39
Avec O eth 88 79% 62
Avec GIS, 6 et h 91* 75 85%*

potentiellement une connexion spatiale importante), alors que la méthode de référence as-
sociée aux données SIG est meilleure pour la deuxieme étude zone (c’est-a-dire en cas de
chevauchement sans connexion spatiale significative).

La contribution de I’angle, de la hauteur et des données SIG dans la cartographie des arbres
d’alignement est €tudiée (avec ou sans chacune de ces caractéristiques) et résumée dans
la Table II1.4. Dans I’ensemble, les meilleures performances sont obtenues lorsque toutes
les caractéristiques sont utilisées avec des valeurs de F-score de 91%, 75% et 85% pour
les trois cas, par rapport a 76%, 58% et 26% sans aucune caractéristique. En particulier,
I’utilisation des données SIG seule n’est pas suffisante comme le souligne le F-score pour
le troisieme cas (cas de connexion spatiale significative), égal a 39%. Cependant, utiliser
seulement 0 et & donne déja de bons résultats avec des valeurs de F-score de 88%, 79% et
62%. En conclusion, les trois caractéristiques réunies constituent le meilleur ensemble de
caractéristiques contextuelles discriminantes et doivent étre utilisées pour cette tache, en
particulier dans le troisiéme cas (connexion spatiale significative). Mais pour les premier
et deuxieme cas (pas de connexion spatiale significative), la meilleure performance peut
étre atteinte sans données SIG.
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Discussions

Tout d’abord, ces résultats démontrent que le cadre proposé permet de détecter les arbres
d’alignement, individuellement, alors qu’aucune méthode n’a été dédiée a cette tache jus-
qu’a présent. Comme élément de comparaison, le travail de (Wen et al., 2017) peut étre
cité. Ils utilisent une approche de détection des arbres d’alignement a 1’échelle d’un amas
d’arbres (pas de détection individuelle des arbres) et obtiennent une valeur de F-score de
89%, ce qui est cohérent avec notre approche bien que difficilement comparable. Mais
comme indiqué plus haut, la méthode proposée cartographie les arbres individuellement,
une tache essentielle pour un suivi individuel de la santé des arbres d’alignement. En ef-
fet, la prévention de la chute des arbres malades ne peut étre faite avec précision sans une
connaissance individuelle du niveau de 1’arbre (Fini et al., 2015).

Les résultats mettent également en évidence que la méthode proposée n’est pas la meilleure
en cas de chevauchement, notamment parce qu’elle repose uniquement sur le masque de
végétation haute. Ce probleme bien connu de la littérature sur les méthodes de délimitation
des couronnes d’arbres individuelles (Zhen et al., 2016) pourrait étre traité en ajoutant une
modélisation de la structure 3D des arbres dans I’énergie d’attache aux données, similaire
a ce qui est fait dans I’approche de référence. D’autres modeles 3D plus précis pourraient
bénéficier a la définition de I’énergie d’attache données dans 1’approche MPP, notamment
via ’utilisation de données LiDAR (Leckie et al., 2003; Zhen et al., 2015).

Comme mentionné précédemment, savoir si un arbre appartient a un alignement est
intéressant pour les gestionnaires du milieu urbain, afin d’organiser un suivi spécifique,
mais aussi afin d’améliorer les méthodes existantes, que ce soit pour les approches de
délimitation des arbres ou pour la classification des especes. En particulier, I’approche de
classification des especes fondée sur le VNIR testée dans le premier chapitre, est appliquée
sur le troisieme cas d’étude, donnant 74% des arbres Platanus x hispanica correctement
identifiés, avant que la carte des especes obtenue soit régularisée (100% des prédictions
correctes) en utilisant I’appartenance a 1’alignement, dérivée de la méthode proposée.

Conclusions

L’objectif est de cartographier les arbres d’alignement a partir de données aéroportées et
d’informations contextuelles basées dans le cadre des MPP. Trois sites test sont considérés.
Des données hyperspectrales aéroportées, des données DSM et GIS sont utilisées. Sur
la base de ces données, les canopées proches des rues sont détectés grace aux seuils de
NDVI, d’indice d’ombre, de hauteur et de distance aux routes. Le masque de végétation
haute obtenu constitue 1’entrée d’une approche MPP. En particulier, les caractéristiques

122



contextuelles discriminantes des arbres d’alignement sont modélisées. Une approche de
délimitation standard est considérée comme une référence.

En ce qui concerne les résultats, I’approche proposée surpasse la méthode de référence
ignorant les données SIG avec une valeur F-score moyenne de 84% dans les trois zones
d’étude, au lieu de 44%. Quand la méthode de référence exploite le réseau de routes,
I’amélioration est moins significative (+20pp), la différence étant principalement pour le
troisiéme cas (connexion spatiale significative). Pour une telle condition, la méthode pro-
posée est la plus appropriée, mais elle fait quelques erreurs en cas de chevauchement im-
portant. Enfin, toutes les caractéristiques doivent €tre utilisées ensemble pour atteindre les
meilleures performances, mais les données SIG ne sont pas nécessaires dans les cas ou la
connexion spatiale est faible.

D’autres travaux sont nécessaires. Nous voyons que la méthode proposée peut étre
améliorée en cas de chevauchement important. En outre, d’autres caractéristiques pour-
raient €tre utilisées pour modéliser les arbres de rue. Aussi, la méthode devrait étre ap-
pliquée sur des cas plus difficiles, comme des zone avec des arbres d’alignement formant
une canopée homogene. Dans ces cas, il est souvent impossible de distinguer les couronnes
avec des données spectrales et un DSM, ce qui encourage 1’utilisation d’une autre techno-
logie. Par exemple, des données multitemporelles acquises durant I’hiver pourraient aider.
L’espece et I’état de santé des arbres seront également intéressantes a caractériser.
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English part: Third article

The third paper is included in the next section!.

III.1 Detection of individual trees in urban alignment from
airborne data and contextual information: a marked
point process approach

Abstract: With the current expansion of cities, urban trees have an important role for
preserving the health of its inhabitants. With their evapotranspiration, they reduce the ur-
ban heat island phenomenon, by trapping CO; emission, improve air quality. In particular,
street trees or alignment trees, create shade on the road network, are structuring elements
of the cities and decorate the roads. Street trees are also subject to specific conditions as
they have little space for growth, are pruned and can be affected by the spread of diseases
in single-species plantations. Thus, their detection, identification and monitoring are nec-
essary. In this study, an approach is proposed for mapping these trees that are characteristic
of the urban environment. Three areas of the city of Toulouse in the south of France are
studied. Airborne hyperspectral data and a Digital Surface Model (DSM) for high vege-
tation detection are used. Then, contextual information is used to identify the street trees.
Indeed, Geographic Information System (GIS) data are considered to detect the vegeta-
tion canopies close to the streets. Afterwards, individual street tree crown delineation is
carried out by modelling the discriminative contextual features of individual street trees
(hypotheses of small angle between the trees and similar heights) based on Marked Point
Process (MPP). Compared to a baseline individual tree crown delineation method based
on region growing, our method logically provides the best results with F-score values of
91%, 75% and 85% against 70%, 41% and 20% for the three studied areas respectively.
Our approach mainly succeeds in identifying the street trees. In addition, the contribution
of the angle, the height and the GIS data in the street tree mapping has been studied. The
results encourage the use of the angle, the height and the GIS data together. However, with
only the angle and the height, the results are similar to those obtained with the inclusion
of the GIS data for the first and the second study cases with F-score values of 88%, 79%
and 62% against 91%, 75% and 85% for the three study cases respectively. Finally, it is
shown that the GIS data only is not sufficient.

3. Aval, J. Demuynck, E. Zenou, S. Fabre, D. Sheeren, M. Fauvel, K. Adeline and X. Briottet. Detection
of individual trees in urban alignment from airborne data and contextual information: a marked point process
approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2018.
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Keywords Street tree; Urban remote sensing; Airborne data; Geographic Information
System; Individual tree crown delineation; Marked Point Process.

II1.1.1 Introduction

The world urban population will increase to nearly 5 billions by 2030, and at the same time
the urban land cover will increase by 1.2 millions km? (Seto et al., 2012). With this ex-
pansion of urban areas, urban canopies have an important role to play as they improve air
quality (Yang et al., 2005), reduce heat islands (Doick et al., 2014), promote biodiversity
and have a relaxing psychic action (Chiesura, 2004). Urban tree structures including street
trees and park ones do not have necessarily the same functions / roles in the urban context
(Bolund and Hunhammar, 1999). In addition to the properties mentioned above (Vailshery
et al., 2013; Gillner et al., 2015), the street trees create shade, are structuring elements of
the cities and decorate the roads (McPherson et al., 2016). They are also subject to specific
conditions as they have little space for growth and are pruned, most often to be adapted to
the constraints of the sites, and can be affected by the spread of diseases in single-species
plantations (Sebestyen et al., 2008). As a case in point, a pruned lime tree (7ilia) has a life
expectancy of 150 years against 800 years without constraint (Baraton, 2014; Fini et al.,
2015). In order to highlight the crucial place of the street trees in the urban environment,
the example of Paris, France can be cited with nearly 100,000 street trees (about half of the
trees). These street trees cover around 700 km of roads and concern approximately 1600
roads out of 6000. Especially, the shadow produced by the street trees represents 3% of the
area of Paris (Rol-Tanguy et al., 2010). The managers of the urban environment have to
consider the distinctive characteristics of the street trees for a specific urban planning and
a specific monitoring, and a first step is the individual street tree identification. Nowadays,
this type of procedure is carried out manually, by field campaign or by photointerpretation
(Pulighe and Lupia, 2016), and does not allow to cover large scales of continuous urban
area with regular time basis.

Remote sensing opens the way to automate the individual street tree mapping. Indeed,
airborne remote sensing sensors can cover entire cities with a spatial resolution of an or-
der of magnitude of 1 m and with regular time basis (Alonzo et al., 2014). Airborne
multispectral and hyperspectral sensors measure the spectral radiance and thus allow the
vegetation to be detected (Xiao et al., 2004). Active sensors as Light Detection And Rang-
ing (LiDAR) or passive sensors in stereoscopic configurations can be used to measure the
height and makes it possible to characterize the vertical structure of the objects (MacFaden
et al., 2012). With the association of these remote sensing technologies, the urban canopy
considered as high vegetation can then be mapped (Ramdani, 2013). On the other hand,
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Geographic Information System (GIS) data, especially vector data, constitute an important
source of information and are often available at a city scale from the urban managers, but
also more and more on a global scale from open databases such as OpenStreetMap (OSM).
In a perspective of street tree identification, such vector data are of interest because an in-
formation such as the road network is often available and would allow the canopies close
to the streets to be detected (Wen et al., 2017).

From these remote sensing data, individual tree mapping, conventionally termed Indi-
vidual Tree Crown Delineation and Detection (ITCD), has been addressed for many years
and several ITCD methods have been proposed (Zhen et al., 2016). Raster-based methods
such as valley-following (Leckie et al., 2003), region-growing (Adeline, 2014), watershed
segmentation (Chen et al., 2006) and template matching (Gomesa and Maillarda, 2014)
have been developed. Point cloud-based and tree shape reconstruction approaches like
K-means clustering technique (Gupta et al., 2010) and Hough transform (Van Leeuwen et
al., 2010) have been explored respectively. Finally, there are methods combining raster,
point, and a priori information such as Markov random fields (Ardila et al., 2011), Marked
Point Process (MPP) approaches (Perrin et al., 2006) which can use a prior contextual in-
formation on the trees (Van Lieshout, 2000). Even if these methods have exhibited good
performance in the literature, complicated urban and non-urban forests are still challenging
(mainly in case of important overlaps) (Zhen et al., 2016). Focusing on the urban envi-
ronment, of the 207 studies identified in the recent review of (Zhen et al., 2016) on the
ITCD methods, only 18 have been applied in urban areas. The objective of these studies
was to map the urban trees individually, and no distinction is made between the different
structures of the trees in the urban context such as street trees and park trees.

However, these structures are of interest for the urban managers for a specific urban plan-
ning and a specific monitoring, with the example of the street trees highlighted previously.
In addition, this information could be used in order to improve not only the individual tree
mapping itself (by taking advantage of a prior contextual information knowledge about
the urban trees depending on their structure), but also the tree species classification for
example (by defining specific categories of urban trees depending on their structure be-
cause street trees have not necessarily the same spectral traits than park ones). To our
knowledge, this consideration of the tree structures in the urban canopy mapping is the
subject of only one study, (Wen et al., 2017) where an approach for classifying the ur-
ban canopies (patch-level classification) in three classes (park, roadside and residential-
institutional canopies) has been proposed. GIS data and specific spectral, textural, shape
and contextual features (such as the proximity to the road) are considered in order to char-
acterize these classes. Shenzhen and Wuhan (China) constitute the study sites and the
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method is based on WorldView-2 satellite imagery (spatial resolution of 2 m for the multi-
spectral mode). F-score values of 76%, 89% and 87% are obtained for park, roadside and
residential canopies respectively. In such a patch-level framework, there are confusions
between the street trees and the other populations of trees because of the spatial connec-
tions between the canopies, which could be probably better handled with an individual
detection approach.

Summarizing the existing literature, there is minimal consideration of the specific tree
structures in the urban environment such as street trees and park trees. In particular, no
individual tree mapping which takes into account the structure of the alignment trees has
been proposed. To alleviate this issue, the aim of this paper is to map the trees which
belong to an alignment individually. Airborne data and contextual information are used
in an approach based on MPP, which allows a prior information to be modelled. For that
purpose, the following issues are addressed:

1. What are the discriminative contextual features of the street trees?
2. How to model these features for individual street tree mapping?
3. Which features contribute the most in individual street tree mapping?

The paper is organized as follows. Section III.1.2 presents the study area and the data
used for individual street tree mapping, followed by section III.1.3 with the description
of the proposed method and a baseline ITCD method used for comparison. Afterwards,
the results are showed in section III.1.4 and discussed in section III.1.5. Finally, main
conclusions of the study are detailed and the perspectives of the work highlighted in the
section I1I.1.6.

II1.1.2 Materials
III.1.2.1 Study area

The study is carried out in Toulouse city located in the South West of France (43.6 °N, 1.44
°E). With about 500,000 inhabitants, Toulouse is the fourth city in France. The climate of
Toulouse is temperate with oceanic, Mediterranean and continental characteristics. Con-
cerning the urban vegetation, Toulouse would have approximately 140,000 trees with at
least 20,000 street trees according to urban managers. Three areas in Toulouse downtown
are selected in this study (figure I11.1).

The three study cases are presented in figure II1.2. In all cases, the street trees form lines
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Figure III.1: Study area with the three study cases represented on a Google Earth image.
The yellow rectangles correspond to each study case.
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Study case | Study case 2

Figure III.2: Description of the study cases. At the top, field view is showed for each
case. At the bottom, Google Earth images illustrate each case.

along roads and are pruned as it will be highlighted in section III.1.3.1. This results in
small angle between the street tree trunks and similar tree heights. The first study site is
located in the center of Toulouse and includes street and park trees. The street trees do not
overlap and are silver linden trees (7ilia tomentosa). The second site is also located in the
center of Toulouse and also includes street and park trees. However, this case is more chal-
lenging than the first one because the number of trees is higher and the street trees overlap
more and are organized in two adjacent lines. In this case, the street trees are plane trees
(Platanus x hispanica). The third site is situated in a quarter of private properties. For
this site, the number of trees is high with a complex spatial organization because of the
presence of many garden trees. The majority of the trees are not aligned, and spread over
a great extent. The street trees do not overlap and are plane trees (Platanus x hispanica).

1I1.1.2.2 Airborne and GIS data

Airborne data were acquired on October 24, 2012 at 11:00 UT (Universal Time) during
the UMBRA campaign (Adeline et al., 2013) organized by the French Aerospace Lab
(ONERA) and the French Mapping Agency (IGN). The flight height was approximately
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Not considered roads

Considered roads

Figure II1.3: Illustration of the data used in this study for the first site. Left: VNIR
reflectance image. Right: DSM. The GIS data is represented by blue and violet lines
indicated over the airborne data.

2,000 m over the study area. The HySpex Visible Near-Infrared (VNIR) system (Kohler,
2016) was used and consists of an hyperspectral push broom camera with 160 spectral
bands (0.4 um - 1 pm). About the spatial resolution, the VNIR camera data are acquired
with a spatial resolution of 0.4 m and 0.8 m across and along tracks, respectively. In
order to build a DSM, the French Mapping Agency CAMv2 system was used (Souchon
et al., 2010) for performing stereoscopic acquisitions with an overlap of 80%. A vector
layer of roads derived from the OSM database is used and identified as ”GIS data” in the
next sections. In OSM, each road of the road network is characterized by the attribute
type which describes the type of road (motorway, primary, path, etc.). Only the primary,
secondary, tertiary, residential and service roads are considered because we assume that
the street trees are only planted along roads with motor vehicle traffic (figure I11.3).
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II1.1.2.3 Preprocessing

Geometric and radiometric preprocessing is carried out. From the stereoscopic measure-
ments, the French Mapping Agency provides us a georeferenced DSM with a spatial res-
olution of 12.5 cm. Then, the VNIR image is registered on the DSM by defining Ground
Control Points (GCP) on QGIS and by using the function gdalwarp from GDAL. Nearest
neighbor resampling is applied in order to preserve the original spectral data. Also, the
Thin Plate Spline (TPS) transformation (Duchon, 1977) is applied for its ability to cor-
rect the deformations locally. Because the VNIR pixels have rectangular shapes with the
longer side along track, a square grid with a spatial resolution of 0.4 m (minimum between
the rectangle sides) is chosen to preserve the original data. Visual assessment suggests that
the error is less than a pixel for the whole data set. Furthermore, the hyperspectral data
are atmospherically corrected to deal with spectral reflectances with COCHISE (Poutier
et al., 2002) based on MODTRAN and assuming a flat scene. The DSM is resampled
to the VNIR image resolution (0.4 m x 0.4 m) with the nearest neighbor resampling. In
order to get a normalized DSM (nDSM) and assuming a flat ground, the ground altitude
is estimated as the altitude corresponding to the maximum of the DSM histogram and we
make the difference between the DSM and the estimated altitude (Adeline, 2014). The
size of the bins of the histogram is 1 m.

III.1.3 Methods

The description of the proposed method is carried out in section III.1.3.1, followed by
section II1.1.3.2 with the description of a baseline ITCD method used for comparison.
II1.1.3.1 Proposed street tree mapping

The figure II1.4 presents the proposed street tree mapping scheme. First, the high vegeta-
tion close to the streets is detected (section III.1.3.1). Secondly, the street tree crowns are
delineated based on MPP which allow a prior contextual information to be modelled via
an interaction term (section III.1.3.1). In this paper, we assume that the street trees can be
characterized by the following discriminative contextual features:

m A street tree is close to a road.
= A street tree is aligned with its neighbors.

= A street tree is the same height as its neighbors.
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Figure II1.4: Graphic representation of the street tree mapping method.
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High vegetation detection Four masks (vegetation, shadow, height and optionally dis-
tance) are combined (geometric intersection, i.e. logical operator AND) in order to gener-
ate a high vegetation mask. This last one is then used for computing the data energy Uy (x)
of the MPP, defined in section III.1.3.1 (figure I11.4). The mask is the MPP input data that
allows to reduce the computational time, by restricting the search space P (introduced in
section III.1.3.1). For the vegetation mask, the NDVI (Normalized Difference Vegetation
Index) index (Rouse Jr et al., 1974) is computed for each pixel of the VNIR image from a
red and an infrared hyperspectral bands. Above a threshold determined automatically with
the Otsu method (Otsu, 1975), the pixels are kept. About the shadow mask, the spectral
reflectance cannot be retrieved in shadows, as the atmospheric correction method is based
on a flat scene hypothesis (figure II1.3 near trees and buildings). To avoid errors from these
shadow regions, a literature index defined as: I = 1/6x (2xR+ G+ B+ 2+ NIR) (Nagao
et al., 1979) is used for its efficiency and simplicity in the same way as the NDVI. Re-
garding the height mask, all the pixels with a nDSM value higher than 5 m are filtered (the
minimum height value of the alignment trees in Toulouse according to urban managers).
Finally, a distance to the roads mask is optionally used to assess the contribution of the
GIS data to the street tree mapping. Below a distance threshold of 20 m, the pixels are
retained. Indeed, from the width of the roads and the rules for planting the trees along the
roads in France, street tree trunks can be at more than 10 m from the middle of the roads.
A margin of 10 m is taken in order to consider all the pixels of the crowns. For building
the high vegetation mask, the NDVI and the shadow index could be computed from multi-
spectral data. For next sections, the use of the GIS data is referred as “with GIS”, ”without
GIS” otherwise (with or without road network information).

Street tree crown delineation based on MPP The street tree map can be viewed as a
space where positions and attributes of street trees are a specific realization of a marked
point process noted x (Van Lieshout, 2000). The proposed method assumes that the street
tree crowns can be represented as disks. In this context, a state space } in which x is a
realization can be defined such as:

X=PxM= [I,XM] X [I,YM] X [Y‘m,I’M] (II1.1)

where P and M correspond to the position space and the space of the marks, respectively.
Regarding the positions, Xj; and Y are the column and line numbers of the VNIR image.
About the marks, r,,, and ry; are the minimum and maximum radius of the disks (2 m and
8 m respectively because the street trees are pruned and have their radius included in this
range according to urban managers). To find the realization of x which corresponds to
the street tree map, the issue becomes an energy minimization including two energy terms
called the data energy U,(x) and the interaction energy U;(x) (Perrin et al., 2006). In the
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context of the street tree mapping, the data term models individual street trees (tree level)
while the interaction term models the discriminative contextual features of the street trees
(alignment level with hypotheses of small angle between the trees and similar heights).

The data energy Uy(x) is the sum of the individual data energies Uy(x;) of each street
tree x; (x; is defined by its position and radius). The computation of Uy(x;) is taken from
(Zhou et al., 2010). Instead of computing a grey level radiometric distance between the
pixels in the disk and the pixels in the concentric annulus around the disk (i.e. outside the
possible crown) corresponding to x;, a simple difference between the proportion of high
vegetation pixels (from the high vegetation mask) in the disk and the proportion of high
vegetation pixels in the concentric annulus is computed. We consider that x; corresponds
to a street tree if this distance exceeds a certain threshold dy (0.2 fixed after testing multiple
values between 0 and 1) (equation III.2).

Ny, Ng,. Ny, ay,
dixj))=—"———"="— 1 L — ~ >0 else d(x;)=0
() Ny Nia, Nixi  Nia, ()
d(xi) (I11.2)

then Ud(xi) =1- if a’(xi) <dy

and  Ug(xi) = exp[—(d(xi) —do)] =1 if d(xi)=do

with Ny; and N; ,; the number of high vegetation pixels and the total number of pixels in
the disk (i.e. N’ is a proportion of high vegetation pixels in the disk). Similarly, N, and

Nia,, are the number of high vegetation pixels and the total number of pixels in the con-
centrlc annulus whose radius is fixed to 1 m in order to include pixels all along the annulus.

The interaction energy U;(x) is the sum of an energy U; (X) that ensures the stability of
the process and the street tree feature energy U, (x) that models the features of the street
trees. As in (Perrin et al., 2005), the energy U; (x;) for a street tree x; is defined according
to the intersected areas between the street tree crowns and avoids an excessive overlap of
the trees (for example trees located almost in the same place) (equation I11.3).

) = L in(As A
15( ) jZ#mIH(Awaxj)

(111.3)

where Ay, and A, refer to the areas of x; and x;. Concerning the street tree feature energy
Ui, (x), it is defined by considering the features of the street trees in the urban environment
illustrated in figure II1.5. Whereas the not street trees have no particular spatial organiza-
tion and different heights, the street trees form lines and are pruned in the same way, most
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often to adapt the trees to the constraints of the sites. This results in a small angle between
the trees and similar shapes (here we only consider the height to model the shape). In
order to model these features, we define the street tree feature energy Uj, (x;) for a street
tree x; based on its features and the features of two of its neighbouring street trees, i.e. an
alignment is modelled from three street trees (figure II1.5 and equation III.4). We choose
three trees because such a model is more flexible in case of curved roads for example.

1 0; jk |hi — hj| + |hi — By
U: Ix:. (x; — Aa- . 0.1
l [‘xh(x]?'xk)] a+b (a TC/Z ZmaX(h,,hj,hk) )e[ I ]
then Ui (x;))= min U |x;,(xj,x¢)] for (xj,xx) in Vy
i (%) k)it T b (%) (555 %) > (IIL4)

if Vy#0 else U (x;)=1
where O =T— @ if T2<Qp<T
and Qijk = OQijk if 0< i jk < 75/2

and the boolean a and b are used to study the contribution of the angle between the trees
(first term) and the heights (second term) in the street tree mapping. For next sections,
a =1 is referred as ”with 08” whereas a = 0 is referred as ”without 8 (with or without
angle information). Similarly, b =1 is referred as "with 4 whereas b = 0 is referred as
“without 4 (with or without height information). @;;; is the angle between the two seg-
ments joining the center of x; with the centres of x; and x;. In particular, U;, [xi, (xj,x¢)]
is computed for all pairs of neighbours x; and x; in the neighbourhood V,; of x; (radius
of 25 m because the distance between two trees in an alignment does not exceed 10 m
according to urban managers and the first and last trees have to be considered). The mini-
mum U, [x;, (xj,x;)] is then retained as U, (x;). If there is no pair of neighbours, U; (x;) is
equal to 1 (penalized), because an alignment tree is never isolated. When there is a small
angle between the street tree x; and its neighbouring street trees of similar heights, U;, (xi)
is close to 0. Other configurations are penalized as they result in higher values of U; . (x;).

For the energy minimization, the simulated annealing Multiple Births and Deaths pro-
cess (MBD) (Descombes et al., 2009) is chosen as the optimization algorithm because it
has proven good performance in the literature when applied in combination with MPP for
mapping tree plantations in a rural environment (Perrin et al., 2005). The principle of this
algorithm is to alternate phases of ’birth” (proposal of street trees) and phases of ”death”
(removal of the street trees that are not relevant in the sense of the defined energy). A
temperature term that decreases during the process is used to explore different tree config-
urations. This is necessary in order to reach the global minimum of the energy and not to
stop at a local minimum. First, we initialize the temperature 7" (fixed to 0.01) and the birth
rate 0 (equal to 200 which corresponds to the order of magnitude of the number of trees
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Figure II1.5: Illustration of the contextual features used to compute the interaction energy.
At the top, the case of street trees is described (similar height, tree species and alignment).
At the bottom, the case of trees which are not street trees is presented (various height,

different tree species and no alignment).
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in the scenes). Concerning the value of the initial temperature which is similar to the one
used in (Descamps et al., 2009), the minimized energy distributions resulting from higher
initial temperature values (tests from 0.01 to 0.05) are similar. The lowest is then kept to
reduce computational time. Then, the algorithm is defined as follows:

1. Birth of the street trees: For each pixel s of the VNIR image, if there is not already
a street tree at this position, we place a street tree with the probability 6 * B(s,r) at
this position. B(s, r) is proportional to the data energy Uy (x;) corresponding to a disk
placed at the pixel s with a radius r and is used to reduce computational time as in
(Descombes et al., 2009). Otherwise, the street trees would be randomly positioned
uniformly.

2. Sorting of the street trees according to their energy: We compute the data energy
U, (x;) for each street tree x; in the current street tree map. Then, the street trees are
sorted according to decreasing data energy.

3. Death of the irrelevant street trees: For each street tree x; taken in this order, we
compute the death rate as follows:

_ 6-e(x\xi)
d(x;) = 1+6 e(x\x;) as)
where e(x\x;) = exp(a'Ud(xi) +B UT’s(x’) +Y'U"f(xi))

with o, B and ¥ corresponding to the weights of the different energies (fixed to 1,
1 and 3.5 respectively after testing multiple values). ¥ = O refers to ”without 6 and
without /4 (without angle information and without height information).

These three steps are repeated 1000 times as the street tree map does not change from one
iteration to another at this stage of the process. In other words, the convergence is reached
at this stage. In order the reduce computational time, Y is set to O for the first 600 iterations
to map the trees without distinction between the street trees and the not street trees. From
the 600th iteration, 7y is set to 3.5 to map the street trees. At the end of each iteration, 7 and
0 are multiplied by a factor of 0.997 (similar to that used in (Descombes et al., 2009)).

II1.1.3.2 Baseline tree crown delineation used for comparison

To our knowledge, no individual street tree mapping has been proposed. Thus, as a base-
line for comparison, we chose a standard tree crown delineation that is today the only
available solution for the purpose of that paper, even if the objectives are not exactly the
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Table I11.5: Description of the confusion matrix. ”True” refers to the real street trees and
not street trees in the scene while "Predicted” refers to the predicted street trees and not
street trees by the method under consideration. The - symbol signifies that we do not
take into account the ”True Negative” trees (well predicted not street trees). To consider
the "True Negative” trees, it would be necessary to have the number of park trees in the
first and second study cases, and the number of trees in private properties for the third
study case, an information that is not available.

Predicted
Street tree (57) Not street tree (s:t) Total
True Street tree (sr) True Positive (TP) False Negative (FN) TP+FN
Not street tree (s7) False Positive (FP) -
Total TP+FP

same. The baseline tree crown delineation considered as the reference method is a region
growing method developed in (Adeline, 2014) and inspired from the work of (Iovan et al.,
2008). This type of approach is chosen as a baseline because it is commonly used in the
literature (Zhen et al., 2016). In particular, a Canopy Height Model (CHM) is derived
from a high vegetation mask obtained similarly to the one generated with the proposed
method and the DSM. The CHM is smoothed with a Gaussian filter whose standard devi-
ation SGgyss 1S equal to 2 as in (Adeline, 2014). This allows the irregularities at the surface
of the trees to be removed. Indeed, because of the foliage structure at the top of the trees,
there can be multiple local maximums that do not correspond to multiple trees. The high
vegetation mask is then treated such that the smallest regions are removed. This is done
according to a parameter N//¢¢ which defines the minimum number of pixel per tree (here
equal to 5 as in (Adeline, 2014)). From this step, every pixel of the CHM is assigned to a
particular tree by decreasing height. As an initialization step, the highest pixel of the CHM
is chosen as the first pixel of the first delineated tree. Then the height is decremented and
the corresponding pixel is either assigned to that first tree if it is at a distance d 4 ; less than
2 m here as in (Adeline, 2014), or assigned to a new tree, and so on.

III.1.3.3 Accuracy assessment

In order to assess the results of the methods and compare their performances, a confusion
matrix is built by visual interpretation (table II1.5).
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From the confusion matrix, the Producer Accuracy (PA), the User Accuracy (UA) and
the F-score are used to assess the performance specifically for the street trees: PA(%) =

100- UA(%) = 100+ 755 and F — score(%) = 100 2;24-LA

TP+F N> PA+UA

II1.1.4 Results

In this section, two main results are presented. First, the proposed method with all the
features (with GIS, 0 and A, section I1I.1.3.1, equation I11.4) is compared to the baseline
method for the three study sites. The F-score values and the produced street tree maps are
described for both methods as well as the TP, FP and FN confusion matrix terms in order
to get an exhaustive comparison of the two methods (overall and specifically for the street
trees). Secondly, the contribution of the angle, the height and the GIS data in the street
tree mapping is studied (with or without each feature). The eight possible combinations of
these features (2 raised to the power 3) are analysed in order to identify the set of the most
discriminative contextual features for street tree mapping.

III.1.4.1 Comparison between the proposed method and the baseline method

The figure II1.6 presents the results of the proposed and reference methods overall. As
expected, the proposed method outperforms the reference method with F-score values of
91%, 75% and 85% against 70%, 41% and 20% for the three study cases respectively. In
addition, from the first to the second and third cases (more challenging cases), the F-score
values of the proposed method remain stable whereas the F-score values of the baseline
is decreasing. As another point of comparison, the baseline gives F-score values of 83%,
82% and 28% for the three cases when aware of the GIS data.

In order to explain that results, the figure III.7 shows the confusion matrices of the two
approaches. In particular, there are a lot of “False Positive” trees (table II1.5) for the refer-
ence method with 38, 290 and 613 trees (UA values of 55%, 26% and 11%) instead of 0,
0 and 21 trees (UA values of 100%, 100% and 77%) for the proposed method in the three
cases respectively. This type of error is obviously expected because the reference method
is not dedicated to map the trees with a differentiation between the street trees and the not
street trees. Thus, while the proposed approach maps the street trees correctly in the three
cases, the baseline method logically confuses the street and park trees in the first and sec-
ond cases, and the street and private trees in the third case. This difference is logically less
significant when the baseline uses the GIS with 16, 11 and 368 “False Positive” trees (UA
values of 75%, 88% and 19%). Moreover, the F-score’s decrease of the reference method
from the first to the second and third cases is explained by a larger number of trees in the
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Figure II1.6:  Comparison of F-score between the proposed method and the baseline
method for each study case.

third case than in the second case and a larger number of trees in the second case than in
the first case. These statements are illustrated in figure III.8 where the produced maps of
the baseline and proposed schemes are compared for the third case. We can see that the
two methods map the actual street trees correctly but that the trees of the private properties
are obviously identified as street trees by the reference method. Focusing on the baseline,
this figure demonstrates also that a lot of not street trees can be filtered just using the GIS
data.

In order to assess the performance of the two methods when we focus on the real street
trees, the number of “False negative” trees (table IIL.5) is compared between the two ap-
proaches. In particular, there are 8, 43 and 3 “False Negative” trees (PA values of 84%,
60% and 96%) for the proposed method instead of 3, 4 and O trees (PA values of 94%,
96% and 100%) for the reference method. The proposed method tends to underestimate
the number of street trees (especially for the second area as explained in the next section).
In comparison, the reference method performs better in that it produces fewer “False Neg-
ative” trees, but over the 290 “False Positive” trees obtained for the second study site, 276
are in the park and 14 among the street trees lines (13% of the street trees). Thus many
street trees are oversegmented by the reference method. The important overlaps of the
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Figure II1.7: Comparison between the confusion matrices of the baseline method and
the confusion matrices of the proposed method for the three study cases. Top: Confusion
matrices for the baseline method. Bottom: Confusion matrices for the proposed method.
The colors refer to the colors used in figure II1.6. The prediction is per column.

trees in the second case is a reason of these errors. The reference method is sensitive to the
irregularities at the surface of the canopies. On the other hand, the data energy defined in
the proposed method is only based on the high vegetation mask which results in FN trees
when there are overlaps of high vegetation.

II1.1.4.2 Contributions of the angle, the height and the GIS data in the street tree
mapping

The figure II1.9 presents the results of the proposed method for different configurations
of features in order to identify the best set of the discriminative contextual features of the
street trees. With all the features (with GIS, 0 and A, section III.1.3.1, equation I11.4), the
F-score values are 91%, 75% and 85% instead of 76%, 58% and 26% without any feature
(without GIS, 0 and h) for the three cases respectively. Without GIS but with 6 and 4, the
F-score values become 88%, 79% and 62%. With GIS but without 8 and 4, the F-score
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Figure II1.8: Comparison of the produced maps for the baseline method and the proposed
method for the third case. The colors under "Baseline method” and ’Proposed method”
refer to the colors used in figure III.6.
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Figure II1.9: Contribution of the angle, the height and the GIS data in terms of F-score
for each study case. Each color corresponds to a combination of red (if GIS used), green
(if 6 used) and blue (if h used) colors. The color under “Baseline method” and the white
color refer to the colors used in figure I11.6.

values are equal to 84%, 79% and 39%. These results demonstrate that there is a bene-
fit to exploit together the GIS data, the angle between the trees and the heights (F-score
improvements of 15pp, 17pp and 59pp compared to the case where no feature is used).
However, using only 6 and h gives already good results. On the other hand, using only
the GIS data is not appropriate and needs the integration of 6 and 4. Focusing on 6 and
h, they have to be used together. The figure III.10 illustrates the contribution of the angle
between the trees and the heights. With the integration of these features, the majority of
the street trees are mapped correctly. This result is expected because the street trees form
lines and are mostly the same height which is highlighted in the interaction energy defined
in the proposed method.
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Figure I11.10: Comparison of the produced maps with and without the use of 6 and & for
the second case. The colors under ”Without GIS but with 6 and #” and ”Without GIS, 6
and h” refer to the colors used in figure 1I1.9. The pink road is a not considered pathway.
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In order to go further in the analysis, the figure III.11 shows the confusion matrices of the
three main configurations of features. The F-score improvements obtained with the inte-
gration of the street tree features is mainly explained by a decrease of the number of "True
Negative” trees. Nevertheless, the evolution of the number of “False Negative” among the
configurations of features shows that the “False Negative” tree number is increasing with
the integration of 6 and h. Especially, there are 3 further "False Negative” trees (PA de-
creases of 6pp and 4pp) with the integration of these features for the first and second cases
when using the GIS data. Even if these errors are marginal, this trend is observed among
the set of simulations. In fact, the street trees do not form perfectly straight lines and that
they do not have strictly the same heights (hypothesis not always verified). Thus a too
strong integration of these features (via the parameter Y in the proposed method, section
II1.1.3.1, equation III.5) can result to consider some “non perfect” street trees as not street
trees. In the second case, the number of “False Negative” trees is particularly high when
using GIS data. Indeed, in the GIS data, there is no considered road at the right side of the
square as it is a pathway in the park (figure III.10, pink road). As a consequence, all the
street trees along this pathway are filtered at the high vegetation detection step when using
GIS data as they are too far from the closest roads (other sides of the square).

II1.1.5 Discussions
II1.1.5.1 Individual tree detection in its context

These results demonstrate the ability of the proposed method to detect the street trees in
three different circumstances, while a standard tree crown delineation obviously does not
allow the specific urban tree structures to be identified. This performance is consistent with
that of (Wen et al., 2017) who obtained a F-score of 89% when mapping roadside canopies
with a patch-level approach. However, our scheme maps the trees individually, which is
essential for an individual health monitoring of the street trees. Indeed, the prevention of
the fall of sick trees cannot be carried out if the trees are not mapped individually. In the
urban environment, the alignment trees are subject to specific conditions as they have little
space for growth, are pruned and can be affected by the spread of diseases in single-species
plantations (Fini et al., 2015; Sebestyen et al., 2008).

The proposed study also highlights the interest of considering the tree in its context, i.e.
considering tree structures. In addition to their usefulness for urban managers, the tree
structures could be used in order to improve not only the individual tree mapping itself (by
taking advantage of a prior contextual information knowledge about the urban trees de-
pending on their structure), but also the tree species classification for example (by defining
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Figure III.11: Comparison between the confusion matrices depending of the contextual
features of the street trees used for the three study cases. Top: with GIS but without 8 and
h. Middle: without GIS but with 6 and /. Bottom: with GIS, with @ and 4. The colors
refer to the colors used in figure I11.9. The prediction is per column.
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specific categories of urban trees depending on their structure because street trees have not
necessarily the same spectral traits than park ones). This type of contextual approach is not
only applicable in the urban environment, but also in the rural environment with the case
of plantations. Regarding natural forests, the vegetation grows in a specific way, depend-
ing on sunshine, temperature, moisture, soil, species and other neighbourhood properties
(Alvarez-Uria and Korner, 2007). As an example, it is well known that deciduous trees
can not grow beyond a certain altitude (Miyajima and Takahashi, 2007). Such contextual
elements could be studied and used as prior information in order to better understand the
urban and non-urban tree ecosystems, and improve the existing mapping algorithms.

Nevertheless, modelling the context is not sufficient. Indeed, the results of this study
highlight that the proposed method is overall successful in mapping the street trees but
makes some errors in cases of significant overlap. This is a known issue in the literature
of the individual tree crown delineation methods (Zhen et al., 2016). As an improvement
and similarly to the employed reference method, the height could be used in addition to the
high vegetation mask in the data energy. Also, the more accurate individual tree modelling
of the other standard tree crown delineation algorithms (Leckie et al., 2003; Zhen et al.,
2015; Chen et al., 2006) could be of benefit to the definition of the data energy in the MPP
approach. On the other hand, the mask extraction is based on simple thresholding proce-
dures that produce hard masks, which are combined using intersection operator. They may
be prone to noise and may not recover from any artefacts in any of the data sources, which
can cause errors in cases of significant overlap. The figure 12 shows the behaviour of the
proposed method with all the features (with GIS, 0 and A, section 3.1.2, equation 4), from
the NDVI threshold estimated with the OTSU algorithm, to lower (-0.1) and higher (+0.1)
values of the NDVI threshold. Even if the number of high vegetation pixels decreases from
the lowest to the highest NDVI threshold value, especially around the trees, the street tree
maps are comparable. Only, few differences in terms of radius are observed, but it seems
more related to the optimization process. Although the use of hard masks is appropriate
here (not very sensitive to the value of the threshold), mainly because of the object-based
approach, softer density images of birth probability could be used instead to improve the
performance, through another definition of the data energy.

II1.1.5.2 Discriminative contextual features of the street trees

This research aims at highlighting the discriminative features of the street trees in order
to map them accurately. In comparison to the work of (Wen et al., 2017) who used a
series of patch-level metrics that describe the spatial patterns of the roadside canopies, the
proposed method is mainly based on the angle between the trees and the heights, which
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Figure III.12: Street tree maps obtained with the proposed method for different values
of NDVI thresholds in the first study case. All the features (with GIS, 6 and A, section
IM1.1.3.1, equation II1.4) are used. Values of shadow, height and distance thresholds are
fixed.
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are simple characteristics derived from field observations. Especially, the results show that
the angle and the height are essential parameters in order to get a correct street tree map.
When adding the GIS data, the performance of the baseline and proposed approaches is
improved but using the GIS data only is not sufficient. This can be understood by the
spatial connection between the street trees and other populations of trees such as park,
private trees, etc. (particularly shown in the third study area). Also, the GIS data can lead
to confusion as shown in the second study site and highlights that the proximity to the
roads is probably not an intrinsic feature of the street trees. The street trees often have
the highlighted properties in the cities around the world but other features could be used
for improving the performance of the proposed method such as the distance between two
consecutive trees in an alignment, or spectral similarities within an alignment. This type
of discriminative feature identification could be carried out for mapping other types of
vegetation such as hedges which form lines and have similar heights. The same statement
can be made regarding the detection of the vineyards.

However, using more and more features requires logically the definition of as many pa-
rameters. In this study, the MPP parameters are the same for the three cases which demon-
strates that the proposed scheme is robust from a case to another, but that the set of param-
eters could be better estimated for each case. The parameter estimation is an important
step which effectively impacts the performance of the methods based on MPP (Chatelain
et al., 2009; Hadj et al., 2010). On the other hand, the MBD optimization algorithm has
been chosen, in particular for its very good speed of convergence and its simplicity of
implementation. Instead, other algorithms such as Reversible Jump MCMC (RIMCM) or
Multiple Birth and Cut (MBC) could have been used. While the MBD outperforms the
RIMCMLC in terms of speed of convergence, the MBC reaches a lower energy level than
the MBD but in longer time (Descombes et al., 2009; Gamal-Eldin et al., 2010). Thus
the MBC could be considered as another optimization algorithm in order to get a more
accurate street tree map.

II1.1.5.3 Applicability of the proposed method in other cities

The proposed framework has been applied to three study areas and the observed trends are
the same among these different conditions. But of course, the applicability of the method
in other cities is not assessed here. In order to get an idea of that applicability, we have
computed the street tree feature energy (section III.1.3.1, equation I11.4) of all the invento-
ried street trees in the tree database of Paris (figure II1.13). This database contains, among
other information, the location of the street tree trunks and the heights.
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Figure II1.13: Histogram of the street tree feature energy (section III.1.3.1, equation I11.4)
computed from 43168 street trees of the tree database of Paris. Only the main species
are taken into account: plane tree, horse chestnut, pagoda tree and lime tree (Platanus x
hispanica, Aesculus hippocastanum, Sophora japonica and Tilia tomentosa).
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Table II1.6: Comparison of the baseline and proposed methods in terms of computational
burden.

Framework Case 1 Case 2 Case 3
Without GIS Baseline ~1 Os. ~1 Om%n ~30min
Proposed ~20min  ~50min ~3h
With GIS Baseline ~1 Os. ~1 mip ~20min
Proposed ~20min  ~30min ~1.5h

This histogram shows that the street trees of Paris have overall the discriminative con-
textual features highlighted in this paper. In particular, the peak near O corresponds to
around 8000 street trees that are perfectly aligned with their neighbours and have exactly
the same heights than their neighbours. And knowing that the height resolution of the Paris
tree database is 1 m, the other local peaks highlight recurrent differences in height. For
example, the peak around 0.08 corresponds to perfectly aligned street trees with a height
of 12 m and two neighbours with heights of 11 m, or a neighbour with a height of 11 m
and the other with a height of 13 m, or a neighbour with a height of 14 m and the other
with a height of 12 m, etc. On the other hand, the flexibility of the alignment model based
on three trees should allow to deal with curved roads. This is encouraging with a view to
doing the street tree map of Paris and this attests the potential of the proposed method for
other cities.

Another key element when talking about the applicability of the proposed method in other
cities is the computational burden of the method. The table II1.6 highlights the duration of
the baseline and proposed approaches, knowing that the baseline is written in Interactive
Data Language (IDL) and the proposed one in python. The baseline method is the best
in terms of computational burden with execution times of approximately 10s, 10min and
30min (10s, 1min and 20min with the GIS data) for the three study cases, instead of 20min,
50min and 3h (20min, 30min and 1.5h with the GIS data) for the proposed method. Log-
ically, the execution time decreases when using the GIS data because the high vegetation
mask covers a smaller area. This table highlights also that the behaviour of the baseline
and proposed approaches are different according to the increasing surface covered by the
high vegetation mask from the first to the third case. Indeed, using the GIS data, the base-
line approach is 120 times faster than the proposed one for the first study case, whereas
the baseline becomes 30 and 4.5 times faster for the second and third cases, respectively.
From a small scene to a larger scene, the number of pixels increases more than the number
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of trees. The baseline approach suffers from its pixel-to-pixel approach which implies the
consideration of each pixel during the delineation process. As the data energy can be com-
puted in advance for the proposed method, it can benefit from its object oriented principle.
Finally, even if the computational burden is not an issue for a city-wide application (be-
cause it does not need very frequent updating), and that the baseline gives better execution
times for the cases under consideration in this study, the proposed framework may be more
appropriate for scenes larger than those considered here.

II1.1.5.4 Improving tree species classification in urban alignment

For several applications such as state of health monitoring, tree species information is
essential (Fassnacht et al., 2016). Remote sensing gives encouraging results in tree species
classification, especially thanks to hyperspectral data (Alonzo et al., 2014), but in urban
environment it remains a challenging task because of the large tree diversity (species, age,
life conditions, pruning, etc.) (Welch, 1982). As a case in point, we propose to map the
species of the third study area, whose alignment is composed of Platanus x hispanica
trees). In particular, the tree crowns are first estimated thanks to the proposed method
with all the features (with GIS, 6 and A, section I11.1.3.1, equation II1.4). Then, the tree
species are classified thanks to an object-based approach similar to that used in (Alonzo
et al., 2014). In fact, the VNIR pixels within the tree crowns are classified, followed by a
majority vote for each crown. The learning step is carried out from pixels of a reference
site situated near the first study area, and the Minimum Noise Fraction (MNF) components
are used as feature vector. Focusing on the figure III.14 (top: before regularization), there
are mainly errors in the right part of the alignment (18 trees on the basis of 69 detected are
misclassified). From that baseline, the proposed method can be used in order to regularize
the species estimation within the alignment. Indeed, the different tree triplets identified
thanks to the street tree feature energy U; . (x) (section IIL.1.3.1, equation II1.4) can easily
be linked to form networks. The majority species of each network can then be assigned to
the corresponding trees. With 100% of correct predictions (over the 69 detected trees) for
this study case, the figure III.14 (bottom: after regularization) demonstrates the potential
of the proposed method for improving tree species classification within urban alignment.
Even if a limit of that approach occurs for cases of alignments with multiple species, the
proposed method could be modified in order to handle these cases, only if the trees are
planted in a specific way (bispecific alignment whose species is alternated one in two for
example).
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Figure I11.14: Improvement of tree species classification in urban alignment thanks to the
proposed method for the third case (whose alignment is mainly composed of Platnaus x
hispanica tress).
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II1.1.6 Conclusions

The objective of this study is to map the street trees using airborne data and contextual
information based on MPP method. Three test sites are considered for assessing the per-
formance of the proposed method under different conditions. Airborne hyperspectral data,
a DSM and GIS data which included the roads are used, but multispectral data could be
used instead of the hyperspectral data. From these data, the vegetation canopies close to
the streets are detected thanks to simple thresholds of NDVI, shadow index, height and dis-
tance to the streets respectively. The obtained high vegetation mask is then treated through
a scheme based on MPP. In particular, the discriminative contextual features of the street
trees (hypotheses of small angle between the trees and similar heights) are modeled in the
interaction energy of the MPP. As a baseline for comparisons, a standard region growing
crown delineation approach is considered.

Regarding the results, the proposed method logically outperforms the reference method
with overall F-score values on the three study sites of 85% with all the features against 44%
with differences of 15pp, 38pp and 65pp respectively in favor of the proposed method. It
demonstrates the ability of the proposed method to map the street trees in three different
circumstances. Focusing on the contributions of the discriminative contextual features in
the individual street tree mapping, the F-score values are 91%, 75% and 85% with all the
features (with GIS, 6 and /). Without GIS but with 6 and /4, the F-score values become
88%, 719% and 62% (-3pp, +4pp and -23pp). It is thus more appropriate to exploit together
the GIS data, the angle between the trees and the heights. Nevertheless, using only 8 and
h gives already good results (76% overall on the three study sites). Finally, the GIS data
alone is not sufficient.

Further work is necessary and there are many perspectives. In this paper, we see that
the proposed method can be improved in the case of significant overlap. In addition, the
same set of parameters have been used for the three cases. Compared to the obtained re-
sults, it shows that the proposed approach is robust but highlights the importance of the
parameter estimation step. Also, other features could be used in order to model the street
trees. Moreover, the method will be applied on more difficult cases, like area with street
trees forming a homogeneous canopy. In theses cases, it is often impossible to distinguish
the crowns from the spectral data and from the DSM, which encourages the use of another
technology. For example, multitemporal data acquired during the winter could help. In the
long term, the proposed approach could be improved to map the other populations of trees
such as park trees. The species and the state of health of the trees will be also of interest.
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General discussion

Synthese en francais

L’objectif de cette these est la cartographie des arbres en milieu urbain, en particulier
I’identification des especes, fondées sur plusieurs sources de données aéroportées, hyper-
spectrales, PAN et nDSM, en tirant profit de leur complémentarité. Pour ce faire, une
premiere partie est dédiée a I’évaluation de cette complémentarité, et a la sélection de
la meilleure stratégie entre la fusion au niveau des caractéristiques et la fusion au ni-
veau de la décision. Ensuite, la nature des résultats obtenus nous a conduit a optimiser la
complémentarité, en explorant en profondeur la richesse des données hyperspectrales a tra-
vers un ensemble de classifieurs. Enfin, dans la troisieme partie, une méthode de détection
des arbres d’alignement de maniere individuelle est proposée, la premiere partie soulignant
I’intérét de discriminer les différentes structures d’arbres en milieu urbain (alignements,
parcs, etc.) pour la classification des especes.

Classification des especes d’arbres urbains a partir de multiples sources
de données aéroportées

Les résultats du premier chapitre montrent que les données hyperspectrales sont le prin-
cipal moteur de la précision de classification, tandis que les caractéristiques fondées sur
les données PAN et nDSM contribuent marginalement. Ceci est cohérent avec les tra-
vaux précédents (Fassnacht et al., 2016). Deuxiemement, notre travail renforce 1’intérét
d’appliquer des algorithmes de réduction de dimension tels que le MNF pour traiter des
données de grande dimension telles que les données hyperspectrales (Ghosh et al., 2014a;
Zhang and Xie, 2012). Alors que certaines especes avec des signatures spectrales uniques
sont bien identifiées, par exemple Aesculus hippocastanum, Cedrus deodara, Platanus x
hispanica, la procédure de classification proposée échoue a correctement classer d’autres
especes telles que Acer platanoides ou Acer negundo. Ces erreurs de classification sont
dus a une dynamique phénologique élevée au sein des individus de ces especes. Cette
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limite suggere 1’utilisation de données acquises au cours d’une autre saison, en particu-
lier I’été. Des données multitemporelles sont également intéressantes pour caractériser la
phénologie de chaque espece, utile pour la discrimination des especes d’arbres (Sheeren
et al., 2016). Pour la fusion, la 1égere amélioration obtenue démontre que le VNIR seul
est suffisant. Cette constatation est cohérente avec les travaux précédents (Dalponte et al.,
2008; Jones et al., 2010), mais d’autres obtiennent des améliorations plus significatives
(Dalponte et al., 2012; Alonzo et al., 2014). Méme si les méthodes de fusion proposées
dans cette these ne permettent pas d’augmenter significativement la précision de classifi-
cation, une analyse de complémentarité des sources a été réalisée et explique clairement
pourquoi la fusion n’est pas bénéfique. Le résultat principal de cette analyse est que les
sources ne sont que tres faiblement complémentaires. Alors que la stratégie de fusion au ni-
veau de la décision proposée permet de tirer profit de ces rares cas, elle échoue a préserver
la performance originale du VNIR. Cette theése montre donc que si les sources sujettes a
la fusion ne sont pas trés complémentaires, les performances ne peuvent étre améliorées,
méme avec une stratégie de fusion efficace. Les approches d’ensemble de classifieurs ou
les classifieurs sont tres complémentaires pourraient étre considérées.

Classification des especes d’arbres urbains a partir de multiples classi-
fieurs spectraux

Les résultats du second chapitre démontrent que I’ensemble de classifieurs proposé est
meilleur qu’une approche standard qui concaténe toutes les caractéristiques dans le méme
vecteur de caractéristiques. Ceci est cohérent avec les résultats antérieurs (Ceamanos et al.,
2010; Engler et al., 2013). Cela peut s’expliquer par trois raisons principales. L’ approche
d’ensemble est particulierement robuste car il existe plusieurs classifieurs par espece.
Deuxiemement, la concaténation des triplets d’indices dans le méme vecteur de
caractéristiques conduit a des caractéristiques qui sont discriminantes pour certaines
especes, mais qui jouent le rdle de bruit pour d’autres, ce qui peut provoquer des er-
reurs. Enfin, ’effet de Hughes, méme s’il est moins significatif que pour la réflectance
spectrale (Hughes, 1968), est comparativement plus important que dans la méthode d’en-
semble (seulement trois indices par classificateur). Plus le nombre de caractéristiques est
important, plus ces deux derniers phénomenes sont présents. Afin d’améliorer la méthode
proposée, des classifieurs supplémentaires pourraient étre congus pour séparer des groupes
de classes (feuillu, conifere, genre, etc.).
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Classification des especes d’arbres urbains a partir de caractéristiques
spectrales et contextuelles

Les résultats du troisieme chapitre montrent que les arbres d’alignement peuvent étre
cartographiés avec une grande précision grace a 1’approche MPP proposée. Cependant,
bien que la méthode proposée réussisse a identifier les arbres d’alignement qui ne se che-
vauchent pas, des déclins sont observés dans les cas de chevauchement important, comme
dans la deuxieme zone d’étude. Ce comportement correspond a un probleme bien connu
(Zhen et al., 2016; Alonzo et al., 2014), mais notre modélisation simple des arbres indivi-
duels (fondée uniquement sur les valeurs binaires du masque) est particulierement sensible
au chevauchement. I1 y a donc intérét a modéliser plus précisément les arbres, en utilisant
par exemple leur structure 3D. De nos jours, les approches efficaces de délimitation de la
couronne arborescente sont basées sur les données LiDAR (Gupta et al., 2010), I’énergie
des données du MPP pourrait donc étre inspirée de ces méthodes. Un terme d’attache aux
données fondé sur le nDSM pourrait déja étre efficace pour améliorer les performances
dans de tels cas de chevauchement.

Conclusions

L’ objectif de cette these est d’améliorer les approches de classification des especes d’arbres.
La contribution principale du travail de these est le développement d’approches de car-
tographie des especes d’arbres urbains qui exploitent la complémentarité de plusieurs
sources d’informations, de différents capteurs aéroportés a de multiples classifieurs spec-
traux, en passant par I’information contextuelle. Toulouse, France, est la zone d’étude et
des données hyperspectrales VNIR et SWIR, PAN et nDSM sont considérées. La conclu-
sion principale résultant du premier chapitre est que le VNIR seul est suffisant dans notre
contexte (OA value of 75%). En se concentrant sur la deuxieme partie du travail, le résultat
principal est que I’ensemble de classifieurs proposé conduit a de meilleurs résultats que
I’approche concaténée standard en classant 5 especes, avec une précision globale moyenne
de 60% contre 58%. En ce qui concerne le troisieme chapitre, la détection des arbres d’ali-
gnement proposée est fonctionnelle pour les couronnes ne se chevauchant pas, avec un
taux de détection moyen de 85% dans les trois zones d’étude considérées.

Perspectives

A la fin de cette these, il reste diverses limites. En se concentrant sur 1’ objectif principal du
travail, la classification des especes d’arbres, la performance et I’efficacité des approches
doivent étre améliorées. Un premier levier est la considération de plus d’échantillons
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d’apprentissage, générés via un modele de transfert radiatif par exemple. De plus, comme
les erreurs de délinéation sont critiques (en particulier pour les arbres des parcs), le para-
digme actuel de la cartographie des arbres urbains, a savoir la délimitation de la couronne
suivie de la classification des especes, pourrait €tre remis en question en considérant une
approche unifiée. Parce que les données hyperspectrales sont rares, une réflexion sur des
systtmes d’acquisition complémentaires est nécessaire. D’un autre co6té, plus
d’informations contextuelles pourraient tre utilisées, pour notre application mais aussi
pour d’autres. Enfin, 1’état de la santé constitue le but ultime de ce travail et cela pourrait
étre étudié a partir de données multitemporelles.
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English part

The objective of this thesis is the urban tree mapping, in particular the species identifica-
tion, based on several airborne data sources, hyperspectral, PAN, nDSM, and contextual
information by taking advantage of their complementarity. To do so, a first part is ded-
icated to assess this complementarity, and select the best fusion framework between the
feature and decision level ones. Then, the nature of the obtained results lead us to optimize
the complementarity, by exploring deeply the richness of the hyperspectral data through
an ensemble classifier approach. Finally, in the third part, a method for detecting individ-
ual street trees is proposed, as the first part highlighted the interest of discriminating the
different tree structures in the urban environment (alignment, park, etc.) for the species
classification task.

Urban tree species classification from multiple airborne data
sources

The first chapter of this thesis is dedicated to identify the best object-based fusion strategy
taking advantage of the complementarity of several heterogeneous airborne data sources
for improving the classification of 15 tree species in an urban area (Toulouse, France).
Hyperspectral VNIR and SWIR, PAN and nDSM data are considered for that purpose.
A decision level approach is proposed and compared to a standard feature level fusion.
Whereas a first step is the extraction of spectral (MNF components), textural (Haralick pa-
rameters) and structural (height ratios) features in order to characterize the tree species, a
second step aims at classifying the resulting feature vectors within the tree crowns. Then,
a decision profile is computed for each crown and subject to a decision rule, leading the
species predictions.

The results of this chapter raise that the hyperspectral data are the main driver of the
classification accuracy, whereas the PAN and nDSM-based features contribute marginally.
This is consistent with previous works (Fassnacht et al., 2016). In particular, the VNIR
sources are better than the SWIR ones, a result that may be attributed among others to
the better spatial resolution of the VNIR data in comparison to the SWIR, resulting in an
lower number of examples in the SWIR training set. However, other works related to tree
species classification demonstrate that the VNIR is more powerful than the SWIR owing
to wavelengths sensitive to pigments and red edge in this spectral domain, independently
of the spatial resolution (Fassnacht et al., 2016). Secondly, our work reinforces the interest
of applying feature reduction algorithms such as the MNF to deal with high dimensional
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data such as hyperspectral data, especially when the number of training samples is small
in comparison to the dimension of the data (Ghosh et al., 2014a; Zhang and Xie, 2012).
The analysis of the spectral signatures based on the contribution of each spectral band in
the MNF components reveals that the red edge region seems to be particularly relevant
for the classification task. This finding is consistent with previous studies but accentuated
here, probably because of the period of acquisition (autumn). Whereas certain species
with unique spectral signatures are well identified, e.g. Aesculus hippocastanum, Cedrus
deodara, Platanus x hispanica, the proposed classification procedure fails in correctly
classifying other ones such as Acer platanoides or Acer negundo. These poor performance
cases are due to high phenological dynamics among the individual of these species. This
limit suggests the use of data acquired during another season, especially summer. Multi-
temporal data are also of interest in order to characterize the phenology of each species,
useful for tree species discrimination (Sheeren et al., 2016). Other species with interme-
diary accuracies, e.g. Liquidambar styraciflua, Celtis occidentalis, are slightly confused
with other ones, because of the inherent tree diversity in the urban environment (life con-
ditions, pruning, age, etc.), with potentially a small number of samples. To deal with this
limit, it seems that the richness of the hyperspectral data needs to be explored more deeply,
in order to highlight the intrinsic spectral properties of each species. It can be carried out
through the use of specific spectral indicators such as vegetation indices, even if the re-
viewed studies in the recent work of (Fassnacht et al., 2016) do not demonstrate a clear
advantage of their use.

On the other hand, the textural and structural features used in this thesis contribute
marginally in the classification of tree species. While previous studies aiming at quan-
tifying the contribution of textural and structural features when included with multispec-
tral data find a significant improvement (Zhang and Hu, 2012; Franklin et al., 2000), that
contribution is slight when hyperspectral data are considered (Alonzo et al., 2014). This
behaviour can be easily understood as by their nature, hyperspectral data are more power-
ful than multispectral data for tree species classification, especially when several species
are targeted. The textural and structural features have therefore to be more accurately
modelled. Based on the 14 cm PAN images available for this thesis, the extracted textu-
ral parameters reflect the specific spatial arrangement of the foliage for species with large
leaves such as Platanus x hispanica or Tilia tomentosa, which may explain why these two
species are well classified with PAN-based features. However, this spatial resolution is not
appropriate for the majority of the species which have leaves size smaller than decimetric
resolution. This suggests the use of an acquisition system with a better spatial resolution,
for example an Unmanned Aerial Vehicle (UAV) based system. Moreover, sub-crown de-
rived features depending on radiometric levels (sun / shadow for example) can help in
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improving the performance based on textural features. Focusing on structural features,
their potential appears to be limited if only nDSM-based features are computed. Indeed,
the characteristics that can be extracted from surface models are only related to the 3D
shape of the trees, which varies significantly among the individuals of a particular species
due to pruning. For example, only the pruned 7ilia tomentosa street trees are well identi-
fied in the reference site, not the park ones, poorly represented and having various shapes.
Dense point clouds derived from LiDARs would allow intra-crown structural features to
be considered, features which seem to be more intrinsic among the species. The results of
this chapter highlight also the interest of discriminating the different tree structures in the
urban environment (street trees, park trees, etc.), as the performance of the proposed clas-
sification procedure is particularly high for the alignment trees in comparison to the one
obtained for the park individuals. Based on such information, a specific processing could
be applied for the classification of park trees. A regularization of the species prediction
within an alignment could be carried out, as the street trees often belong to mono-specific
species alignments. However, there may also be bi-specific species ones.

Focusing on the fusion, the slight improvement obtained demonstrates that there is lit-
tle interest in fusing hyperspectral VNIR and SWIR, PAN and nDSM data in our context,
when compared to the performance resulting from the VNIR source alone. This finding is
consistent with previous works (Dalponte et al., 2008; Jones et al., 2010), but other ones
obtain more significant improvements (Dalponte et al., 2012; Alonzo et al., 2014). Even
if the fusion framework proposed in this thesis does not allow the classification accuracy
to be strongly increased, a complementarity analysis of the sources has been carried out
and explain clearly what happens through the fusion. In particular, its objective is to quan-
tify the contribution of each data type in the classification task and then, to check if the
proposed fusion success in taking advantage of this complementarity. The main result of
this analysis raises that there are indeed few cases of complementarity. Whereas the pro-
posed decision level fusion success in taking advantage of these cases, the fusion fails in
preserving the original performance of the VNIR, the best individual source. This thesis
therefore shows that if the sources subject to fusion are not highly complementary, the
performance can not be improved, even with an efficient fusion model. Ensemble classi-
fier approaches where the classifiers are highly complementary could be considered. On
the other hand, this chapter shows that a decision level fusion is better than a feature level
fusion in our context of low complementarity. First, this is explained by the Hughes effect
(Hughes, 1968), because the feature level implies the use of feature vectors with an higher
number of variables (spectral, textural and structural together). Secondly, as the textural
or structural features are mainly useful for few species, they disturb the classification for
the other species. Finally, the residual error resulting from the registration step may cause
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declines. Once again, ensemble classifier could be interest to deal with these issues. The
decision fusion developed in this chapter has been validated for a test site, independent
of the reference site used for learning. Although a more significant improvement is ob-
tained in comparison to the reference area, mainly because we focus on the two majority
species, Platanus x hispanica and Tilia tomentosa, the slight cost-benefit ratio of the fu-
sion encourages the use of the VNIR only, with a deeper investigation of the richness of
the hyperspectral-based features through an ensemble classifier approach.

Urban tree species classification from multiple spectral clas-
sifiers

Following the results of the first chapter, the second chapter of this thesis is dedicated
to develop an ensemble classifier approach based on ground references for classifying 5
species in Toulouse city, France. Airborne VNIR hyperspectral data are considered while
leaf and canopy level spectral signature measurements are used in order to train the su-
pervised classification algorithms. In particular, each species is associated to a specific
classifier, before a decision rule is applied to predict the species. Each classifier consists
of three vegetation indices followed by SVM classification, and the triplets of indices are
chosen to optimize the F-score of each species. Two baselines are used for comparison:
the direct use of the spectral reflectance and the use of a feature vector composed of all the
triplets of indices.

The results of this chapter demonstrates that the proposed ensemble approach is better
than a standard one which stacks all the features is the same feature vector. This is con-
sistent with previous findings (Ceamanos et al., 2010; Engler et al., 2013). This can be
explained by three main reasons. The ensemble approach is particularly robust because
there are several classifiers per species. In such way, the overfitting phenomenon which
can happen through the derivation of the best three spectral indices, is alleviated. More
there are classifiers per species, more the performance will be better, as long as each clas-
sifier reaches an high F-score for each species. Secondly, stacking the triplets of indices
within the same feature vector leads to features that are discriminant for certain species,
but that perform as noise for other ones, which can cause errors. Finally, the Hughes
effect, even if it is less significant than for the spectral reflectance (Hughes, 1968), is com-
paratively more important than in the ensemble method (only three indices per classifier).
More the number of features is large, more these last two phenomena are present. In order
to improve the proposed method, additional classifiers could be designed for separating
groups of classes (leaty, coniferous, genus, etc.). On the one hand, it is assumed in this
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study that there is at least one efficient classifier per species, which is partially verified as
the F-score obtained of each species in not equal to 100%. It is likely that more there will
be species, more this assumption may be invalid. Let’s focus on a classification problem
involving four species, 51,52, 53 and s4. If there exists an efficient classifier only for s; and
52, and another which is able to predict if the species is either s or s4, or s, or s3, it is
sufficient to predict the species unambiguously. On the other hand, even if there exists an
efficient classifier for each species, additional ones are of interest for the robustness of the
approach. For example, if VNIR-based features are found to be able to discriminate only
two or three groups of spectral-similar species, a classifier dedicated to the identification
of such group could be derived. In both cases, a more complex decision rule would have
to be defined through a logical reasoning.

The field measurements considered in this study can be used for the classification of tree
species within airborne images. While the majority of the state-of-art approaches consider
training samples directly from the images (Fassnacht et al., 2016), our research demon-
strates that encouraging results can be obtained based on leaf level spectroscopic measure-
ments. Canopy level samples lead also to encouraging accuracies. Still focusing on tree
species classification, consistent results have been found in the thermal infrared context
based on laboratory measurements (da Luz and Crowley, 2010), even if it is difficult to
compare our findings. There are three reasons to explain why the spectral indices are more
efficient than the spectral reflectance. With more than 100 indices, the richness of the pa-
rameters used in this research is substantial. Secondly, the leaf level spectral measurements
are not directly comparable to the target samples which are pixels of the images. This is
due to the canopy structure, especially the LAI and the LAD, which modifies the radiation
through the vegetation volumes (Roberts et al., 2004). The comparison of the canopy and
airborne samples is easier but the conditions of the acquisitions (spatial resolution, solar
angle, atmospheric composition, etc.) can cause significant differences among these sig-
nals. Therefore, the field spectral measurements at the canopy level are not representative
of the image pixels. Thirdly, the reflectance is much more sensitive to the Hughes effect
(Hughes, 1968) as its dimension is much higher. In addition, the species-specific feature
extraction carried out in the proposed method is an essential step in order to identify the
best indices. Indeed, the triplets of indices have been chosen for optimizing the target accu-
racy, i.e. that at the airborne level, through a simple transfer approach. The transfer carried
out in this study is however a limit of our approach. Indeed, it requires labelled airborne
data, whereas such information is often not available. Transfer learning techniques could
be considered for dealing with this issue (Tuia et al., 2016). Also, more training samples
could improve the performance of the proposed approach. Radiative Transfer (RT) models
such as (Gastellu-Etchegorry et al., 2004; Jacquemoud et al., 2009) could be considered
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to simulate representative airborne training samples based on leaf level measurements.

Urban tree species classification from spectral and contex-
tual features

Based on the results of the first chapter, the third chapter of this thesis aims at detecting the
trees that belong to urban alignments. Three study areas of the city of Toulouse, France,
are considered. While hyperspectral and DSM data are used in order to detect high vege-
tation, the road network available from GIS data allows the pixels close to the streets to be
identified. The resulting mask (vegetation, height and distance) is then processed through
a MPP approach. The interaction energy of the process models the contextual features of
the street trees, i.e. a small angle between the individuals and similar heights. An energy
minimization is carried out with a Multiple Birth and Death (MBD) scheme, and allows
street tree maps to be estimated for the three study cases. The second case is challenging
because of the significant overlap between the street trees crowns, while the third one is
particularly difficult owing to the high spatial connection between the alignment trees and
the other ones.

The results of this chapter show that the street trees can be mapped with high accura-
cies thanks to the proposed MPP approach, going further than the recent method of (Wen
et al., 2017) which aims at classifying the urban canopies (patch-level classification) in
three classes (park, roadside and residential-institutional canopies). Indeed, we propose
an individual detection which is robust to the spatial connection between the street trees
and the other populations of trees. However, while the proposed method success in iden-
tifying non overlapping street trees, declines are observed for cases of significant overlap
such as in the second study area. This behaviour corresponds to a well known issue (Zhen
et al., 2016; Alonzo et al., 2014), but our simple modelling of the individual trees (only
based on the binary values of the mask) is particularly sensitive to overlap. There is thus
an interest in more accurately modelling the trees, by using their 3D structure for example.
Nowadays, efficient tree crown delineation approaches are based on LiDAR data (Gupta
et al., 2010), the data energy of the MPP could therefore be inspired from these methods.
A DSM-based data term could be already efficient for improving the performance in such
cases of overlap. Winter acquisitions could also be of interest. On the other hand, the
contextual features used in this thesis for modelling the street trees are simple, the angle
between the trees (assumed to be small) and the heights of the trees (assumed to be sim-
ilar), and allow to reach high performance. The GIS data are essential only for the third
study area. Nevertheless, some errors remain, in particular for the second and third study
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areas. This could be improved thanks to a more comprehensive modelling of the trees that
belong to alignments. For example, the street trees are often equidistant, a characteristic
that can be included in the interaction term of the MPP. Moreover, they have the same
shape due to pruning, thus a constraint on the radius is another possible solution. In addi-
tion to be close to the roads, the street trees are parallel to these roads, thus a dot product
between the street vectors and the tree triplet vectors could be computed and used in the
MPP energy. The species can also be used as the alignments are often mono-specific or
bi-specific.

This thesis demonstrates that the contextual modelling is obviously interesting for the
extraction of the street trees, but also in order to improve the performance of existing
methods (tree species classification as well as tree crown delineation approaches in par-
ticular). Indeed, the results of this chapter show that the post-regularization of the species
predictions among the individuals of a mono-specific alignment is possible thanks to the
alignment membership knowledge, accessible thanks to the street tree mapping proposed
in this thesis. Still focusing on the species classification, the pruned trees of an alignment
have specific spectral responses as they are particularly stressed. Knowing the alignment
membership, it is possible to include this information in the classification framework in
order to apply a specific processing for the identification of the street trees as well as for
the park ones. Because the urban tree alignments are often mono-specific, this character-
istic could also be used to enrich the species training sets (existing databases). In natural
forests, other information could be used such as the fact that certain species can not live
above a certain altitude, grows in a specific way, depending on sunshine, temperature,
moisture, soil and other neighbourhood properties. On the other hand, the crown delin-
eation approaches could benefit from a contextual modelling. The street trees can overlap
as in the second study area, potentially in a more important way forming homogeneous
canopies that cause the trees to be not discernible. A prior information about the position
of the trees, through an equidistance assumption, is a solution for improving the tree de-
tection in these conditions. Moreover, a constraint on the crown delineation shape could
be used in order to avoid erroneous estimations such as certain obtained with the region
growing approach used in this thesis. Also, the pixels within the tree crowns belong to the
same species, thus the corresponding spectral variability is necessary low in comparison to
the between-trees variability (except specific cases of diseases), which is another possible
a priori information.
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Conclusions

The objective of this thesis is to improve the current urban tree species classification ap-
proaches. The main contribution of the PhD work is the development of urban tree species
mapping approaches that take advantage of the complementarity of several sources of
information, from different airborne sensors to multiple spectral classifiers, by way of
contextual information. Toulouse, France, is the study area and hyperspectral VNIR and
SWIR, PAN and nDSM data are considered for that purpose. While the first part of the the-
sis is dedicated to the development of a fusion method, the second and third parts concern
the design of an ensemble classifier approach and the detection of the trees that belong to
urban alignments, respectively. The main conclusion resulting from the first chapter is that
the VNIR hyperspectral data, with an overall accuracy of 75% for the reference site, are the
main driver of the performance to classify 15 species, in comparison to the SWIR (69%),
PAN (43%) and nDSM (35%) data. The best fusion strategy (decision level) slightly im-
proves the performance of the VNIR with an overall accuracy value of 77% (+2pp). We
conclude that, because there is little interest of including SWIR, PAN and nDSM data, the
VNIR alone is sufficient in our context. Another conclusion is that the complementarity
analysis of the sources subject to combination is essential for a good understanding of the
behaviour of the fusion. Focusing on the second part of the work, the main result is that
the proposed ensemble classifier leads to better results than the standard stacked approach
when classifying 5 species, with an average overall accuracy of 60% (k = 49%) instead
of 58% (k = 44%) among the three training samples levels. The resulting conclusion is
that the proposed approach is not very sensitive to the change of scale. Regarding the third
chapter, we concluded that the proposed street tree mapping method is functional for non
overlapping crowns with an average detection rate of 85% among the three study areas un-
der consideration. Another conclusion is that the angle and the height are discriminative
features of the street trees, while the GIS data is only necessary for the third case.

Perspectives

At the end of this PhD thesis, there are still many limitations. In particular, some concern
the input data of the methods, the methods, while others are about the context in which
they are used.

Our methods suffer from the limited number of training samples available in this PhD
study. This impacts the performance of the tree species classification in the study areas
considered in this work. The proposed approaches can not be operational for other cities
as the training samples used in our context are not representative of all the urban environ-
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ments, owing to the great variety of species in a city changing according to geographical
locations. Two approaches are possible to remove this constraint. One strategy is the mod-
elling of representative training samples. The idea is to create a model able to simulate the
spectral reflectance of each tree species, including its intra-class variability, for any config-
uration of acquisition. This kind of model exists for simulating canopy reflectance based
on leaf level measurements and canopy structure parameters (LAI, LAD, etc.), Discrete
Anisotropic Radiative Transfer (DART) (Gastellu-Etchegorry et al., 2004) for example.
There are also models for simulating leaf reflectance based on foliar components contents,
PROSPECT for instance (Jacquemoud and Baret, 1990). However, it is challenging to
get the distribution of these parameters (LAI, chlorophyll, etc.) for each species. On the
other hand, through a collaborative event (e.g. Mapathon), based on Google Earth and
Google Street View for example, the second one aims at taking advantage of the power of
people in order to get quickly many training samples. The difficulty to discriminate cer-
tain species by photointerpretation is the main drawback of that approach, but many trees
could be delineated. Then, the combination of the two approaches may be of interest. For
example, training samples from a Mapathon could be used to estimate the distribution of
these parameters for each species based on a radiative transfer model, in order to generate
more training samples in a second phase.

A second perspective of this thesis is the reflection on the design of the sensors. In-
deed, without a suitable remote sensing system for extracting the information of interest,
no information can be extracted, whatever the processing applied. It is a whole processing
chain that has to be considered. Focusing on the tree species classification of this thesis,
the usefulness of the textural features derived from PAN images (14 cm spatial resolution)
is disappointing, as well as the interest of the structural ones based on a nDSM (spatial res-
olution of 12.5 cm). Whereas a finer spatial resolution seems to be more appropriate for
the extraction of textural parameters, smaller than the size of the leaves (accessible thanks
to UAV-based systems), LiDAR point cloud would give information about the within tree
crown structure, more species-specific than the crown surface. The intensity of LiDAR
is probably an interesting information, especially for characterizing the structure of the
foliage. In addition, the community focuses mainly on nadir view acquisitions. Since the
trees are long vertically, there is probably an interest in using oblique views, in particular
in the urban environment where the tree stands are significantly distributed. Recent studies
are focusing on the consideration of multispectral LiDAR for vegetation applications. It
can be both interesting for tree crown delineation and species classification. Last but not
least, hyperspectral data at high spatial resolution are rare, there is thus an interest in com-
bining for instance airborne hyperspectral data (at one date) and multitemporal satellite
data such as Sentinel-2, SPOT 6/7, etc. However, the spatial resolution of Sentinel-2 (10
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m for the R, G, B and IR canals) does not allow the trees to be discerned. In the future,
if several airborne hyperspectral images are available per year, there will probably be an
interest in using them to improve species classification. UAV-based hyperspectral systems
could be also of interest (spatial resolution around 10 cm). The proposed methods have to
evolve in order to be practical for time series.

Another outlook is questioning of the current urban tree species mapping paradigm. The
methods developed are parts of the standard urban tree species mapping paradigm: tree
crown delineation followed by tree species classification. To our mind, this paradigm has
not been thought of and results from the research of two communities. Actually, this has
been natural to gather the existing delineation and classification algorithms for mapping
the tree species. However, the urban tree species maps derived from this framework are
still not perfect, due to the errors made through the delineation step as well as other ones
occurring during the classification, either intrinsically or as a consequence of the imperfec-
tions of the delineation. In order to improve the urban tree species mapping approaches,
one way is to refine both procedures separately as realized in the literature. It is also pos-
sible to reverse the two procedures and combine with the results of the traditional way.
Another strategy would be to adopt an unified framework, similarly to what has been done
in the detection of street trees, in particular because the estimation of the tree crown bene-
fits from the species knowledge, but also as the shape of the crowns is related to the species.
While hyperspectral data are often used for tree species classification, LiDAR technology
is particularly considered for tree crown extraction. Why not use hyperspectral data and
thus the species knowledge for delineation? The MPP framework is a candidate of interest
for developing such method.

The comprehensive modelling of the context is another subject of interest. Pixel-based
at the origin, the current paradigm of the tree species mapping in the remote sensing com-
munity tends to be more and more object-based, because of the spatial resolution getting
finer, but essentially because the trees are intrinsically objects with particular features that
can be considered for improving the standard pixel-based approaches. While it is natural
to consider objects, it is a priori not appropriate to develop pixel-based approaches. The
pixel is only a sensor-based characteristic. The development of object-based frameworks
is then not questionable, either focusing on tree species mapping or other applications.
However, the object is still an approximation. Whereas the objects are considered as iso-
lated entities in the majority of the cases, which is reasonable if we talk about anomaly for
example, the trees are often connected each others, either in the urban environment with
the alignment individuals, but also in forests. The objects live in a particular context, trees,
crops, buildings, animals, humans, etc. Expert knowledge about this context is underuti-
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lized, whereas it could improve the existing schemes via an understanding of the main
phenomena involved. After pixel-based and object-based frameworks, object structure-
based ones, e.g. considering a group of trees, have to be explored as it will give a more
accurate modelling of the scenes.

The ultimate goal remains the health monitoring of the trees. Once the trees are delineated
and their species estimated, they can be monitored in order to detect potential diseases
or weaknesses due to the environment, and predict the eventual spread in the case of dis-
eases. In addition to the case of diseases, the urban trees can be subject to hard conditions,
in particular during heatwave or atmospheric pollution conditions. In a first time, the idea
can be to focus on a particular case, for example the Canker stain of Platanus which is the
consequence of a fungus: Ceratocystis platani. Whereas training samples can be obtained
for tree species classification if enough effort is made, it is more difficult to get examples
of sick trees, knowing that the state of health can vary a lot among the individuals affected
by the disease. A first strategy consists in acquiring a strong expert knowledge about
the effect of the disease on the remote sensing signals, and include it in a method. Such
knowledge is probably difficult to learn, but allows a good understanding of what happens
from the data to the extraction of information. Another approach is the consideration of
deep learning techniques, by considering that we have many examples of health cases, and
diseases ones can be detected as anomalies. Secondly, the prediction of the evolution of
the problematic state of health is of particular interest, in order to prevent damages, based
on multitemporal data. A satellite mission with a very rapid-revisit could of interest. Is it
possible to prevent the problematic case before it happens?
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Appendices

Appendices of chapter I

Tree reference map

The tree reference map is a key component of this thesis. It has been designed thanks to
the QGIS software as illustrated in Figure 3.15. QGIS is a powerful tool which allows each
tree to be inventoried through its delineation (polygon) and attributes, in a shapefile easily
handled with the GDAL python module. In the example of Figure 3.15, the attributes
concern for example the species of the trees (species), the potential field measurements
that have been carried out (volume, leaf), the accuracy of the species classification method
(eSpecies), or the values of specific vegetation indices (index!). Focusing on Figure 3.15,
right, the selected yellow tree is dark brown, which indicates that its value of PSRI is
particularly high. The attribute table tells that this is an Aesculus hippocastanum tree and
ground truth shows that this tree is attacked by the horse chestnut leaf miner, which is
consistent.

Confusion matrices

The confusion matrix is a powerful complementary tool for assessing the performance of
classification methods. The Figures 3.16, 3.17 and 3.18 show the results of the mono-
source and multi-source classifications for the reference area. These confusion matrices
are consistent with the Table 1.5 in the sense that the hyperspectral data are the main
driver of the classification accuracy while the textural anbd structural features contribute
marginally. The additional information that can be extracted from the confusion matrices
is, as indicated by its name, the confusion between species. For example, the confusion
matrices of the VNIR (Figure 3.16, top) reveals that there is a significant confusion be-
tween Acer platanoides and Liquidambar styraciflua, which can be explained by similar
phenological behaviours during autumn. Moreover, there is a confusion between Taxus
baccata and Cedrus deodara by the SWIR (Figure 3.16, bottom), which can be expected
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Figure 3.15: [Illustration of the tree reference map designed with QGIS. The polygons
refer to the delineations of the inventoried trees in the reference site. Top left: each color
corresponds to a particular species. Top right: each color indicates a specific level of
PSRI vegetation index (index1). Whereas light brown trees have a low value of PSRI, dark
brown ones have an high value. Bottom: corresponding attribute tables with the yellow
selected tree highlighted in blue.

as these trees are two coniferous. On the other hand, the confusion matrix of the decision
level fusion (Figure 3.18, top) show that the fusion improves the confusion with 7ilia to-
mentosa as each source confuses this species. This result is consistent with the Figure 1.8
(application on the test site).
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Figure 3.16: Reference site confusion matrices for the VNIR and SWIR MNF sources
(%). The prediction is per column.
Appendix of chapter II

Field campaign

The trees that were subject to field measurements are showed in Figure 5. They are planted
in the “Jardin des Plantes” (botanic garden) in Toulouse. In particular, the necrotic leaves
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Figure 3.17: Reference site confusion matrices for the PAN and nDSM sources with four
sub-objects and object scale, respectively (%). The prediction is per column.

of Aesculus hippocastanum are easily identifiable. However, the leaves of Fagus sylvatica
are not purple as the content of anthocyanin is very low in that individual. The Figure 3.20
illustrates the acquisition of the canopy level measurements thanks to a cherry picker of
Toulouse.
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Figure 3.18: Reference site confusion matrices for the decision and feature level fusions
(%). The prediction is per column.

Additional results

Figure 3.21 compares the confusion matrices of the ensemble and stack approaches in the
case of leaf level training samples. In particular, the proposed ensemble method allows
Tilia tomentosa to be less confused thanks to the rejected class. For the other species, the
results are similar. In order to fuel the discussion, the Figure 3.22 illustrates the values
of the spectral indices of Juglans nigra, as well as the associated spectral reflectances. In
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: Celtis australis Tilia tomentosa

Figure 3.19: Trees subject to field measurements.

particular, the Greeness Index (GI) discriminates this species compared to the others. This
is explained by a strong absorption of radiation around 677 nm.

Appendix of chapter II1

Features of the street trees

The discussions of the chapter III highlight the interest of including other contextual fea-
tures such as the distance between the street trees. This distance is expected to be the same
within an alignment whereas its value is expected to change from an alignment to another.
The Figure 3.23 illustrates that contextual feature. From this histogram, it is reasonable to
assume that the distance between the street trees lies within a small range of values. This
information can be included in the MPP model through an improvement of the equation
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1I1.4. However, other measurements demonstrate that we can not assume that there is a
unique distance value for a city, even if recommendations are given by urban managers.
Indeed, each site often requires a specific planning.

Complementary maps

The Figure II1.9 highlights the contribution of the GIS data, angle and height in the street
tree identification. For a complementary analysis, the Figures 3.24, 3.25 and 3.26 illustrate
what happens from a spatial point of view. As visible thanks to the Figure II1.9, the
height information is more discriminative than the angle one. Maybe there is an interest in
weighting differently these two features.
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Figure 3.20: Illustration of the canopy level spectral measurements carried out thanks to
a cherry picker of Toulouse city.
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Figure 3.23: Occurrence of the distances between street trees from the urban alignments
of Allées Paul Sabatier, Toulouse, France. Based on field measurements, the values are
concentrated around 7 m. The average is approximately 7.02 m, with an uncertainty as-
sumed to be + 5 cm because of the position of the tree trunks that can not be exactly
estimated.
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Figure 3.24: Top: with all the features. Bottom: without GIS. Left: first study site. Right:
second study site.
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Figure 3.25: Top: without GIS and without the height. Bottom: without GIS and without
the angle. Left: first study site. Right: second study site.
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Figure 3.26: Without any feature. Left: first study site. Right: second study site.
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Résumé en francais

Avec I’expansion des zones urbaines, la pollution de I’air et les effets des ilots de chaleur augmentent, entrainant des problemes
d’état de santé pour les habitants et des changements climatiques globaux. Dans ce contexte, les arbres urbains sont une ressource
précieuse a la fois pour améliorer la qualité de I’air et promouvoir les lots de fraicheur. D’ autre part, les canopées sont soumises a
des conditions spécifiques dans I’environnement urbain, provoquant la propagation de maladies et une diminution de 1’espérance
de vie parmi les arbres. Cette these explore le potentiel de la télédétection pour la cartographie automatique des arbres ur-
bains, depuis la détection des couronnes d’arbres jusqu’a I’estimation de leur espece. C’est une tache préliminaire essentielle
pour la conception des futures villes vertes et pour un suivi efficace de la végétation. Fondé sur des données hyperspectrales
aéroportées, panchromatiques et Digital Surface Model, le premier objectif de cette these consiste a exploiter plusieurs sources
de données pour améliorer les cartes urbaines existantes, en testant différentes stratégies de fusion (fusion de caractéristiques
et de décision). La nature des résultats nous a conduit a optimiser la complémentarité des sources. En particulier, le second
objectif est d’étudier en profondeur la richesse des données hyperspectrales, en développant un ensemble de classifieurs fondé
sur des classifieurs spécifiques aux especes. Les caractéristiques sont construites grace a une sélection d’indices de végétation,
spécifique a chaque espece. Enfin, la premiere partie a mis en évidence 1’intérét de discriminer les arbres d’alignement des autres
structures d’arbres urbains. Dans un cadre de processus de points marqués, le troisieme objectif est de détecter les arbres appar-
tenant a un alignement. Grace au premier objectif, cette these démontre que les données hyperspectrales (en particulier le VNIR)
sont le principal moteur de la précision de la prédiction de ’espece. La stratégie de fusion au niveau de la décision est la plus
appropriée pour améliorer les performances par rapport aux données hyperspectrales seules, mais de 1égéres améliorations sont
obtenues (quelques pourcents) en raison de la faible complémentarité des caractéristiques texturales et structurales en plus des
caractéristiques spectrales. L’approche d’ensemble développée dans la seconde partie permet de classer les especes d’arbres a
partir de mesures spectrales terrain (2 1’échelle de la feuille ou de la canopée), avec des améliorations significatives par rapport a
une approche standard de classification au niveau des caractéristiques. Enfin, les arbres d’alignement peuvent étre cartographiés
grace au modele proposé intégrant des caractéristiques contextuelles (alignement et hauteurs similaires). Ce travail pourrait étre
étendu au suivi phénologique de la végétation urbaine et a I’analyse de 1’état de santé.

Mots clés : Urbain, Arbre, Télédétection, Hyperspectral, Panchromatique, Modele Numérique de Surface, Orienté objet,
Fusion, Ensemble de classifieurs, MPP, Indices de végétation.

English abstract

With the expansion of urban areas, air pollution and heat island effects are increasing, leading to state of health issues for the
inhabitants and global climate changes. In this context, urban trees are a valuable resource for both improving air quality and
promoting freshness islands. On the other hand, canopies are subject to specific conditions in the urban environment, causing
the spread of diseases and life expectancy decreases among the trees. This thesis explores the potential of remote sensing for the
automatic urban tree mapping, from the detection of the individual tree crowns to their species estimation. This is an essential
preliminary task for designing the future green cities, and for an effective vegetation monitoring. Based on airborne hyperspectral,
panchromatic and Digital Surface Model data, the first objective of this thesis consists in taking advantage of several data sources
for improving the existing urban tree maps, by testing different fusion strategies (feature and decision level fusion). The nature
of the results led us to optimize the complementarity of the sources. In particular, the second objective is to investigate deeply
the richness of the hyperspectral data, by developing an ensemble classifier approach based on species specific classifiers. The
features are built owing to vegetation indices selection, specific for each species. Finally, the first part highlighted to interest of
discriminating the street trees from the other structures of urban trees. In a Marked Point Process framework, the third objective is
to detect trees in urban alignment. Through the first objective, this thesis demonstrates that the hyperspectral data (especially the
VNIR) are the main driver of the species prediction accuracy. The decision level fusion strategy is the most appropriate one for
improving the performance in comparison the hyperspectral data alone, but slight improvements are obtained (a few percent) due
to the low complementarity of textural and structural features in addition to the spectral ones. The ensemble classifier approach
developed in the second part allows the tree species to be classified from ground-based spectral references (leaf and canopy
levels), with significant improvements in comparison to a standard feature level classification approach. Finally, the street trees
can be mapped thanks to the proposed model integrating contextual features (alignment and similar heights). This work could be
extended to the phenological monitoring of urban vegetation and the analysis of the state of health.

Keywords: Urban, Tree, Remote sensing, Hyperspectral, Panchromatic, Digital Surface Model, Object-based, Fusion, En-
semble classifier, MPP, Vegetation indices.
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