
HAL Id: tel-01987048
https://hal.science/tel-01987048v1

Submitted on 25 Jan 2019 (v1), last revised 4 Mar 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Novel Approaches to the Clustering of Large Graphs
Alexandre Hollocou

To cite this version:
Alexandre Hollocou. Novel Approaches to the Clustering of Large Graphs. Computer Science [cs].
ENS, 2018. English. �NNT : �. �tel-01987048v1�

https://hal.science/tel-01987048v1
https://hal.archives-ouvertes.fr

	

	

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres 
PSL Research University

Préparée à l’École Normale Supérieure

Nouvelles approches pour le partitionnement de grands graphes
Novel Approaches to the Clustering of Large Graphs

	

COMPOSITION DU JURY :

M. CHANG Cheng-Shang
National Tsing Hua University, Rapporteur 

M. LAMBIOTTE Renaud
University of Oxford, Rapporteur 

M. VAYATIS Nicolas
ENS Paris-Saclay, Président du jury

M. BONALD Thomas
Télécom Paristech, Membre du jury

M. D’ALCHÉ-BUC Florence
Télécom Paristech, Membre du jury

M. LELARGE Marc
INRIA Paris, Membre du jury

M. VIENNOT Laurent
INRIA Paris, Membre du jury

	

Soutenue par ALEXANDRE HOLLOCOU
le 19 décembre 2018
h

Ecole doctorale n°386

SCIENCES MATHÉMATIQUES DE PARIS CENTRE

Spécialité MATHÉMATIQUES

Dirigée par Marc LELARGE
et Thomas BONALD

h

2

Abstract

Graphs are ubiquitous in many fields of research ranging from sociology to biology. A graph is a very
simple mathematical structure that consists of a set of elements, called nodes, connected to each other
by edges. It is yet able to represent complex systems such as protein-protein interaction or scientific
collaborations. Graph clustering is a central problem in the analysis of graphs whose objective is to
identify dense groups of nodes that are sparsely connected to the rest of the graph. These groups of
nodes, called clusters, are fundamental to an in-depth understanding of graph structures. There is no
universal definition of what a good cluster is, and different approaches might be best suited for different
applications. Whereas most of classic methods focus on finding node partitions, i.e. on coloring graph
nodes so that each node has one and only one color, more elaborate approaches are often necessary to
model the complex structure of real-life graphs and to address sophisticated applications. In particular,
in many cases, we must consider that a given node can belong to more than one cluster. Besides, many
real-world systems exhibit multi-scale structures and one much seek for hierarchies of clusters rather than
flat clusterings. Furthermore, graphs often evolve over time and are too massive to be handled in one
batch so that one must be able to process stream of edges. Finally, in many applications, processing
entire graphs is irrelevant or expensive, and it can be more appropriate to recover local clusters in the
neighborhood of nodes of interest rather than color all graph nodes.

In this work, we study alternative approaches and design novel algorithms to tackle these different
problems. First, we study soft clustering algorithms that aim at finding a degree of membership for
each node to each cluster, allowing a given node to be a member of multiple clusters. Then, we explore
the subject of edge clustering whose objective is to find partitions of edges instead of node partitions.
Third, we study hierarchical clustering techniques to find multi-scale clusters in graphs. We then examine
streaming methods for graph clustering, able to handle graphs with billions of edges. Finally, we focus on
local graph clustering approaches, whose objective is to find clusters in the neighborhood of so-called seed
nodes. The novel methods that we propose to address these different problems are mostly inspired by
variants of modularity, a classic measure that accesses the quality of a node partition, and by random
walks, stochastic processes whose properties are closely related to the graph structure. We provide analyses
that give theoretical guarantees for the different proposed techniques, and endeavour to evaluate these
algorithms on real-world datasets and use cases.

3

4

List of publications

Multiple local community detection.
Hollocou, A., Bonald, T., and Lelarge, M. (2017).
ACM SIGMETRICS Performance Evaluation Review, 45(2):76–83.
Reference [Hollocou et al., 2017a].

A streaming algorithm for graph clustering.
Hollocou, A., Maudet, J., Bonald, T., and Lelarge, M. (2017).
NIPS Workshop.
Reference [Hollocou et al., 2017b].

Hierarchical graph clustering by node pair sampling.
Bonald, T., Charpentier, B., Galland, A., and Hollocou, A. (2018).
KDD Workshop.
Reference [Bonald et al., 2018a].

Weighted spectral embedding of graphs.
Bonald, T., Hollocou, A., and Lelarge, M. (2018).
In Communication, Control, and Computing (Allerton), 2018 56th Annual Allerton Conference on.
Reference [Bonald et al., 2018c].

Modularity-based sparse soft graph clustering.
Hollocou, A., Bonald, T., and Lelarge, M. (2019).
AISTATS.
Reference [Hollocou et al., 2019].

A fast agglomerative algorithm for edge clustering.
Hollocou, A., Lutz, Q., and Bonald, T. (2018).
Preprint.
Reference [Hollocou et al., 2018].

Forward and backward embedding of directed graphs.
Bonald, T., De Lara, N., and Hollocou, A. (2018).
Preprint.
Reference [Bonald et al., 2018b].

5

6

Acknowledgements

First, I would like to express my sincere gratitude to my advisors Marc Lelarge and Thomas Bonald for
their support during the last three years. I would like to thank you for encouraging my research and for
your invaluable contribution to this work. It has been a truly great pleasure to work with you. I hope
that we will have the opportunity to continue discussions in the future.

I am also extremely grateful to my colleagues and friends at the Ministère des Armées. It was an
amazing experience working with you, and I will never forget these moments. Special thanks to Fabrice,
without whom my Ph.D. would not have been possible, and Pierre, for his extensive knowledge and his
always helpful insights.

I would also like to thank my committee members, professor Cheng-Shang Chang, professor Renaud
Lambiotte, professor Florence D’Alche-Buc, professor Nicolas Vayatis and professor Laurent Viennot for
serving as my committee members even at hardship and busy schedules.

I am also grateful to all my friends for their encouragements. Special thanks to the Joko team, Xavier,
Nicolas and Arthur, for your patience and your support.

Lastly, I would like to thank my family and Nathalie for their unwavering love and for supporting me
for everything. I cannot thank you enough for encouraging me throughout this experience.

7

8

Contents

1 Introduction 13
1.1 Motivations . 13

1.1.1 Graphs . 13
1.1.2 Graph clustering . 16

1.2 Contributions . 18
1.3 Notations . 19
1.4 Classic graph clustering methods . 20

1.4.1 Modularity . 20
1.4.2 Spectral methods . 27
1.4.3 Some other graph clustering approaches . 31

1.5 Evaluation of graph clustering algorithms . 32
1.5.1 Synthetic graph models . 32
1.5.2 Real-life graphs and ground-truth clusters . 34

2 Soft clustering 37
2.1 Introduction . 37
2.2 Fuzzy c-means: an illustration of soft clustering . 38

2.2.1 The k-means problem . 38
2.2.2 Fuzzy c-means . 39

2.3 Soft modularity . 41
2.4 Related work . 42

2.4.1 The softmax approach . 42
2.4.2 Other approaches . 44

2.5 Alternating projected gradient descent . 45
2.6 Soft clustering algorithm . 48

2.6.1 Local gradient descent step . 48
2.6.2 Cluster membership representation . 48
2.6.3 Projection onto the probability simplex . 49
2.6.4 MODSOFT . 49

2.7 Link with the Louvain algorithm . 49
2.8 Algorithm pseudo-code . 51
2.9 Experimental results . 53

2.9.1 Synthetic data . 53
2.9.2 Real data . 53

3 Edge clustering 57
3.1 Introduction . 57
3.2 Related work . 58
3.3 A modularity function for edge partitions . 58
3.4 The approach of Evans and Lambiotte . 60

3.4.1 Incidence graph and bipartite graph projections . 60
3.4.2 Line graph . 61
3.4.3 Weighted line graph . 61
3.4.4 Random-walk-based projection . 61

9

3.4.5 Limitation . 62
3.5 An agglomerative algorithm for maximizing edge modularity 62

3.5.1 Agglomerative step . 63
3.5.2 Greedy maximization step . 64
3.5.3 Algorithm . 64

3.6 Experimental results . 64
3.6.1 Synthetic data . 64
3.6.2 Real-life datasets . 65

4 Hierarchical clustering 69
4.1 Introduction . 69
4.2 Related work . 69
4.3 Agglomerative clustering and nearest-neighbor chain . 70

4.3.1 Agglomerative algorithms . 70
4.3.2 Classic distances . 71
4.3.3 Ward’s method . 72
4.3.4 The Lance-Williams family . 72
4.3.5 Nearest-neighbor chain algorithm . 72

4.4 Node pair sampling . 73
4.5 Clustering algorithm . 75
4.6 Link with modularity . 76
4.7 Experiments . 77

5 Streaming approaches 85
5.1 Introduction . 85
5.2 Related work . 86

5.2.1 Edge streaming models . 86
5.2.2 Connected components and pairwise distances . 86
5.2.3 Minimum cut . 87

5.3 A streaming algorithm for graph clustering . 88
5.3.1 Intuition . 88
5.3.2 Algorithm . 89
5.3.3 Complexity . 89
5.3.4 Parameter setting . 89

5.4 Theoretical analysis . 90
5.4.1 Modularity optimization in the streaming setting 90
5.4.2 Streaming decision . 90

5.5 Experimental results . 93
5.5.1 Datasets . 93
5.5.2 Benchmark algorithms . 93
5.5.3 Performance metrics and benchmark setup . 93
5.5.4 Benchmark results . 93

6 Local approaches 95
6.1 Introduction . 95
6.2 Related work . 95

6.2.1 Scoring and sweeping . 96
6.2.2 Personalized PageRank . 96
6.2.3 Heat kernel diffusion . 99
6.2.4 Local spectral analysis . 100
6.2.5 Other approaches . 100
6.2.6 Finding seed sets . 100

6.3 Multiple Community Detection . 100
6.3.1 Scoring gap . 101
6.3.2 Local embedding . 101
6.3.3 Finding new seeds . 101

10

6.4 Algorithm . 101
6.4.1 Inputs . 104
6.4.2 Description . 104
6.4.3 Post-processing . 105

6.5 Experiments . 105
6.5.1 Case study: Wikipedia . 105
6.5.2 Real-world data . 106
6.5.3 Synthetic data . 108

7 Conclusion 109

11

12

Chapter 1

Introduction

1.1 Motivations

1.1.1 Graphs

A graph is a mathematical structure that consists of a set of entities, called nodes, and a set of connections
between pairs of these entities, called edges. More formally, a graph G is a pair (V,E), where V is the
set of nodes and E ⊂ V × V is the set of edges. Graph nodes can also be called vertices, and the term
network is often used to refer to a graph. In Figure 1.1, we give a simple example of a graph with 5 nodes
and 6 edges.

Figure 1.1: A simple graph with 5 nodes

This structure is very simple and yet extremely powerful to model an incredible variety of data. For
instance, it is natural to model the interactions in a social network as a graph where the nodes correspond
to the users of the social network, and the edges correspond to the friendship links between these users
[Leskovec and Mcauley, 2012]. Another common example is the web graph [Barabási et al., 2016], whose
nodes are defined as the web pages on the Internet and whose edges correspond to the hyperlinks between
these pages. Graphs are also very useful for many problems in biology, to model the protein-protein
interactions for example [Breitkreutz et al., 2007], or in medical sciences, where the researchers are
interested among other things in disease-symptom graphs [Hassan et al., 2015], i.e. graphs where nodes
can represent either diseases or symptoms, and where edges are used to connect each disease to its
symptoms.

In the later example, we see that the graphs are a bit particular: nodes are of two types (namely
diseases or symptoms) and edges can only connect nodes of different types. Such graphs are called
bipartite graphs and are widespread to model a wide range of information. For instance, they also can be
used to build the actor-movie graph from a database as IMDb1 (the Internet Movie Database). In this
graph, nodes correspond to actors or movies, and we put an edge between an actor and a movie in the
graph if the actor appears in the movie’s cast. Bipartite graphs can be used to model musical tastes using
datasets from streaming music services like Spotify, Apple Music or Deezer too. For example, we can
consider the graph where nodes can either represent the users or the artists on the platform, and where
there is an edge between a user and an artist if the user has listened to a song interpreted by the artist.

1https://datasets.imdbws.com/

13

https://datasets.imdbws.com/

Figure 1.2: Wikipedia – Hyperlinks between the top 58 human articles

Note that multiple graphs can be built from the same dataset. For instance, if we consider Twitter,
we can build various types of graph from the data collected by this social network. We can for example
consider the graph whose nodes are Twitter users and where there is an edge between two users u and v
if u follows v; or the graph where there is an edge between u and v if u has retweeted a Tweet published
by v. We can also study a graph whose nodes are hashtags, like #christmas or #datascience, and where
an edge is put between two hashtags if they appear in the same Tweet. Such a graph, where entities are
linked by an edge if they are cited together, is called a co-citation graph. We can use this type of graph
to describe scientific collaborations for instance, by looking at the graph where two researchers are linked
by an edge if they are both cited in the same paper. A co-citation graph can also be built from Wikipedia
data: one can consider the graph where nodes are Wikipedia articles and where an edge is put between
two articles u and v if they are cited by the same article w (e.g. Lady Diana and Winston Churchill
are linked because they are both cited in the Elizabeth II article). Note that we can also consider the
graph where there is an edge between two articles if they cite the same article (e.g. Gustave Flaubert
and Francis Scott Fitzgerald would be connected because they both cite the Paris article), or the even
more natural graph where we put an edge between two articles u and v, if u directly cites v (e.g. Albert
Einstein is connected to Sigmund Freud because the Einstein article cites the Freud article). In Figure
1.2, we show a subgraph of the later graph, where we only keep articles corresponding to human beings.
In this figure, we display the Top 58 nodes in terms of degrees (the degree of a node corresponds to its
number of connections to other nodes).

Finally, as it is impossible to give an exhaustive list of the data types that can be represented as graphs,
we give two specific examples that can be easily visualized and that we will use throughout this work.
First, we use the OpenFlights database2 to build a graph whose nodes correspond to airports, and where
we put an edge between two airports if there is an airline operating services between them. We draw this
graph on Figure 1.3. Note that, in this figure, airports are positioned using their geographical coordinates.
We will also use the OpenStreet Map database3 to define a similar graph where edges correspond to roads
and nodes to road intersections. We display a section of this graph that corresponds to the center of

2https://openflights.org/data.html
3https://wiki.openstreetmap.org/wiki/

14

Figure 1.3: OpenFlights graph

Figure 1.4: Open Street Map graph (Paris)

Paris in Figure 1.4.

All the graphs cited above can be of different types. They can be undirected, i.e. their edges have no
direction and we have (u, v) ∈ E ⇔ (v, u) ∈ E, or directed, i.e. their edges have orientations and one can
have (u, v) ∈ E while (v, u) /∈ E. For instance, to model friendships in a social network as Facebook we
will typically use an undirected graph, as the friendships on Facebook are two-way relationships. However,
to model the following interactions on Twitter, it is more relevant to use a directed graph. Indeed, when
a user u follows a user v, v does not necessarily follows u. It is also more relevant to use a directed graph
for the web graph, as the hyperlinks are themselves directed. On a more exotic note, note that directed
graphs can be used to represent the interactions between players or teams in a sport championship (e.g.
the interaction between the tennis players in the ATP World Tour), by taking different players or teams
as nodes and by adding a directed edge (u, v) between these nodes if u as won against v.

Another important characteristic of graphs revolves around edge weights. Indeed, graphs can be
weighted, i.e. a non-negative real number wuv, called the weight, is assigned to each edge (u, v). They
can also be unweighted, and, in this case, we will often consider that each edge weight is equal to 1. For
example, it is natural to weight the edges of the Spotify or Deezer user-artist graph described above
by defining the weight wuv as the number of times the user u has listened to the artist v. We will also
typically use a weighted graph to represent the shopping behavior of users on an e-commerce website or a

15

marketplace as Amazon, by taking the users and the products as nodes of the graph, and by putting an
edge of weight wuv between u and v if the user u has bought a quantity wuv of the product v. The list of
examples we could give is long, but we will now focus on our specific subject of interest, graph clustering.

1.1.2 Graph clustering

As Kleinberg puts it, "whenever one has a heterogeneous set of objects, it is natural to seek methods
for grouping them together" [Kleinberg, 2003]. Therefore, one of the most natural task that arises when
analyzing a graph G = (V,E) consists in subdividing the set of nodes V into cohesive subsets of nodes, the
so-called clusters. Taking the social network example described above, one would like to be able to identify
the different social circles for instance (groups of friends, families, groups of colleagues, associations...). In
the movie-actor graph, one would be interested in pinpointing groups of nodes corresponding to different
film genres (action, adventure, comedy, drama etc.) or different origin countries (Hollywood movies,
Bollywood movies, French movies, Italian movies etc.). And, in the OpenFlights graph considered above,
one would like to identify different regions of the world with dense local flight connections for instance.
The problem of finding relevant clusters in a graph is known as graph clustering. It is also commonly
referred to as community detection, and in this case, the word "community" is used to designate a cluster.
This denomination is best suited for graphs whose nodes represent people whom we wish to study the
social interactions. We will use the more general term "cluster" in the rest of this work.

One of the greatest challenge with graph clustering lies in the fact that there is no universal defi-
nition of what a good clustering is. Graph clustering is actually frequently referred to as an ill-posed
problem [Kleinberg, 2003, Peel et al., 2017]. Researchers often agree that a good node cluster is a
group of nodes with dense internal connections and sparser connections with the nodes outside the
cluster [Newman and Girvan, 2004], but such a definition is vague and can lead to multiple interpre-
tations. As a result, the number of distinct approaches to tackle graph clustering is considerable
[Fortunato and Castellano, 2012].

However, some constants can be identified: a majority of graph clustering methods are interested in
finding node partitions, i.e. in grouping the nodes in non-empty subsets (the clusters), in such a way
that every node is included in one and only one subset. In other word, a node partition corresponds
to a coloring of the nodes where every node has one and only one color. In Figure 1.5, we show such
a partition of the nodes of the Wikipedia subgraph presented above. The different colors code for the
different clusters of this node partition. These clusters correspond to the result of a classic graph clustering
algorithm called Louvain [Blondel et al., 2008]. We see that the clusters correspond to different historical
periods and different spheres of interest. The blue cluster seems to correspond to twentieth century
artists, like Bod Dylan, Miles Davis and Martin Scorsese, whereas the salmon-colored cluster mostly
corresponds to twentieth century political leaders, as Winston Churchill and John F. Kennedy. Beyond
the few inaccuracies of this node coloring, we see that such a partition of the nodes is too restrictive to
model the complexity of the real-world interactions between these historical figures. In particular, we
might want a node to belong to multiple clusters (i.e. to be colored with more than one color), or to
obtain multi-scale clusters. In the following, we list some challenges associated with clustering real-world
graph data.

Overlapping clusters

In a partition of the graph nodes, a given node belongs to a unique cluster. In many examples presented
above, we see that such a constraint is too limited to model the interactions between nodes. In a social
network for instance, we know that a given individual often belongs to multiple social circles corresponding
to her family, here friends, her colleagues etc. Hence, a simple node coloring is not able to model the
complexity of this reality. We can find another example in the Wikipedia graph. In Figure 1.6, we show a
zoom on the Wikipedia subgraph consisting of human articles. The nodes of the graph are partitioned
(and colored) by the Louvain algorithm. We see that George Gershwin is in the same cluster as other
classical music composers as Igor Stravinsky, whereas one could argue that he might also be put in the
same cluster as jazz musicians, as Duke Ellington.

To address this issue, a common solution consists in finding subsets of nodes that are not necessarily
disjoint. In other words, this solution considers that clusters are subsets of nodes that might overlap
[Xie et al., 2013]. Another solution consists in considering partitions of the graph edges instead of the graph

16

Figure 1.5: Wikipedia Top 58 Human Articles: node partition returned by the Louvain algorithm

Figure 1.6: Wikipedia Human Articles: node partition returned by the Louvain algorithm

17

nodes [Evans and Lambiotte, 2009]. One could also be interested in calculating a degree of membership
of each node to each cluster instead of simply assigning nodes to clusters [Chang and Chang, 2017]. This
problem constitutes the subject of Chapter 2 and Chapter 3.

Cluster hierarchy

In most of applications, the notion of "good" cluster is intrinsically related to the scale we are interested
in. For instance, in the actor-movie graph, we could be interested in grouping the nodes by movie genres
(comedy, action etc.), or by sub-genres (biopics, disaster movies etc.). We see that a partition of this
graph’s nodes can only represent one of this breakdown. The same reasoning applies to our user-artist
music graph, where one might be interested in main genres, as electronic music, rock or classical music,
or be interested in sub-genres, as brit-pop, grunge or ambient music, which cannot be solved by a simple
node coloring.

A common solution to this issue consists in studying cluster hierarchies [Girvan and Newman, 2002].
These hierarchies can typically be seen as trees whose nodes are clusters and where the children of a given
cluster in this tree form a partition of this cluster. In a good hierarchical clustering, the different levels of
the tree corresponds to the different scales in the cluster structure of the graph. This problem is the
subject of Chapter 4.

Local approaches

Classic clustering approaches focus on clustering the whole graph given as an input, i.e. they consider
that every node of the graph must belong to a cluster. Moreover, they rely on the knowledge of the
entire graph structure. Yet, in many practical applications, we are only interested in small portions of
the graph. Typically, we are often interested in finding the cluster (or the clusters) to which a given node
belongs, without regard to the other clusters. For instance, if we want to recommend new friends to a
given user on a social network with a graph clustering approach, we will typically focus on the clusters in
the neighborhood of this user. Besides, in many real-life situations, exploring the whole graph can be
expensive or even impossible. Consider the Twitter Retweet graph defined above for instance. One can
explore this graph locally using the Twitter API with queries such as "who did retweet the Tweet X ".
However there is a rate limit that bounds the number of queries to this API to 15 calls every 15 minutes4,
which prevent us to build the whole graph.

For these different reasons, one might be interested in local approaches that focus on finding local
clusters around given nodes of interests, commonly called the seed nodes, and that require only a local
knowledge of the graph structure around these nodes [Kloumann and Kleinberg, 2014]. This problem is
the subject of Chapter 6.

Streaming approaches

Classic graph clustering methods process a graph in one batch. In other words, they need to handle all the
nodes and all the edges of the graph at the same time to identify the clusters. In real-life applications, the
amount of data is often too massive to be handled in a single batch. As an example, it takes about 30 GB
of RAM to load the Friendster5 graph [Yang and Leskovec, 2015], which represents more memory than
what classic computers can handle. Besides, in many situations, edges naturally arrive in a streaming
fashion. For instance, on our Twitter graphs, each new Tweet can make a new edge appears in the graphs.

For both of these reasons, streaming algorithms [McGregor, 2014] are very interesting to cluster
real-world graphs. A streaming algorithm will typically process the graph edges one by one and update
the node clustering at each new edge arrival without storing the whole graph structure in memory. This
will be the subject of Chapter 5.

1.2 Contributions

In all the examples cited above, we see that it is difficult to identify a single right approach to graph
clustering. There exist diverse strategies addressing different angles of this complex problem. In the

4https://developer.twitter.com/en/docs/basics/rate-limiting.html
5Friendster was a social network similar to Facebook. In June 2011, the website repositioned itself as a social gaming site.

18

present work, we propose to study some of the various facets of the graph clustering problem.

• First, we study graph clustering approaches that go beyond simple crisp clusterings of graph nodes.
More precisely, we examine two kinds of methods to tackle this problem:

– soft-clustering approaches that compute for each node a degree of membership to each cluster
instead of a node partition,

– and edge clustering approaches whose objective is to partition the graph edges instead of the
graph nodes.

• Second, we focus on methods for recovering multi-scale clusters and hierarchies instead of partitions
corresponding to a single scale.

• Third, we analyze streaming techniques for graph clustering that handle graph edges one by one
and update the clusters at each new edge arrival for both memory efficiency and the ability to
handle constantly updating graphs.

• Finally, we study local graph clustering approaches that only explore a local neighborhood of a set
of nodes of interest in order to find clusters to which these nodes belong.

This manuscript is organized as follows. In the rest of the present chapter, we introduce notations
that are used throughout this work and key notions on which most of our work is based. In Chapter 2, we
study soft graph clustering methods. In Chapter 3, we focus on the edge clustering problem. In Chapter
4, we study hierarchical graph clustering techniques. We study streaming algorithms for graph clustering
in Chapter 5. Finally, in Chapter 6, we explore the problem of local graph clustering, and Chapter 7
concludes this work.

1.3 Notations

Unless mentioned otherwise, we consider that we are given a graph G = (V,E), where V is the set of nodes
and E is the set of edges. We use n = |V | to denote the number of nodes, and m = |E| to denote the
number of edges. We use A = (Aij)i,j∈V to denote the adjacency matrix of the graph: Aij corresponds
to the weight of the edge (i, j) if (i, j) ∈ E, and we have Aij = 0 if (i, j) /∈ E. In the case of an unweigted
graph, we take Aij = 1 if (i, j) ∈ E. Nei(i) is used to denote the set of neighbors of node i,

Nei(i) = {j ∈ V : (i, j) ∈ E}.

We sometimes use the notation i ∼ j for j ∈ Nei(i). The weighted degree wi of a node i ∈ V , is defined as

wi =
∑
j∈V

Aij .

If the graph is unweighted, we also use the notation di for the degree, di = wi ∈ N. We use w to denote
the sum of the node weights,

w =
∑
i∈V

wi.

Note that we also have
w =

∑
i,j∈V

Aij .

The weighted volume of a set of node C ⊂ V is defined as the sum of the weighted degrees of the nodes
of C: Vol(C) =

∑
i∈C wi.

In the following, we consider the general case of weighted and directed graphs, unless mentioned
otherwise.

19

1.4 Classic graph clustering methods
In this section, we present the major graph clustering concepts on which our work is based. It does on no
account constitute a comprehensive list of graph clustering techniques. We especially focus on modularity,
random walks and spectral methods. Modularity [Newman and Girvan, 2004] measures how well a given
clustering explains the observed graph structure compared to a situation where edges would be distributed
at random. Random walks [Lovász et al., 1993] describe the process of a walker who jumps from a node
to one of its neighbor picked at random and are tightly linked with important graph properties such as
cluster structures. Spectral methods are based on the spectral decomposition of the so-called Laplacian
and are related to random-walks and other key notions in graphs. These notions constitute key pillars
throughout our work. For a more complete field review on the subject of graph clustering we refer the
reader to the work of Fortunato [Fortunato and Castellano, 2012]. Please also note that each chapter of
this document includes a specific bibliography on the subject that is tackled.

1.4.1 Modularity
Modularity is arguably the most widely used method for clustering graphs . It was introduced by Newman
and Girvan in 2004 in [Newman and Girvan, 2004]. The modularity function is a quality function defined
on node partitions. Given a partition P of the nodes of an undirected graph G = (V,E), P = {C1, . . . , CK}
with C1 t . . . t CK , the modularity of P , Q(P) is defined as

Q(P) =
1

w

∑
C∈P

∑
i,j∈C

(
Aij −

wiwj
w

)
. (1.1)

The modularity is the difference between two terms. The first term 1
w

∑
C

∑
i,j∈C Aij corresponds

to the ratio between the weight of the edges within clusters (the intra-cluster edges) and the total edge
weight. This first term can be trivially maximized by putting all the nodes in one cluster, and is therefore
not a good quality measure alone. The second term 1

w

∑
C

∑
i,j∈C wiwj/w counterbalances the first term.

It corresponds to the ratio between the expected weight of intra cluster edges and the total edge weight
in a random graph model where the expected weight of an edge (i, j) is wiwj

w . Note that, in such a model,
the expected weighted degree of a node i corresponds to the weighted degree of i in G, wi. This kind
of random graph model is well-known in graph theory and corresponds to a weighted variant of the
configuration model [Frieze and Karoński, 2016].

In other words, the modularity does not only measures the ratio of in-cluster edges but the difference
between that ratio and the expected ratio in a graph where edges would be placed at random. Modularity
can be interpreted in different manners. In the following, we present some of these interpretations.

Node pair sampling

Consider the following sampling process where an edge (i, j) is chosen with a probability proportional to
its weight. In this process, each node pair (i, j) is chosen with probability

p(i, j) =
Aij
w
.

The distribution p is a symmetric joint distribution with marginal distribution

p(i) =
∑
j∈V

p(i, j) =
wi
w
,

which corresponds to the probability distribution on nodes where a node is picked with a probability
proportional to its weighted degree. Then, the modularity function can be rewritten in function of this
joint distribution and its marginal

Q(P) =
∑
C

∑
i,j∈C

[p(i, j)− p(i)p(j)] .

In other words, the modularity of P corresponds to the difference between the probability of sampling
an edge within a cluster and the probability of sampling a node pair independently, under the marginal
distribution, within a cluster.

20

The sampling process considered here naturally induces a joint distribution on the clusters of a
partition P = {C1, . . . , CK}:

p(C,C ′) =
∑
i∈C

∑
j∈C′

p(i, j),

with marginal distribution
p(C) =

∑
C′∈P

p(C,C ′) =
∑
i∈C

p(i).

Then we can write the modularity as

Q(P) =
∑
C∈P

(p(C,C)− p(C)2).

In other words, the modularity of P also corresponds to the difference between the probability of
sampling a pair of identical clusters with the joint distribution p, and the probability of sampling the
same cluster twice independently under the marginal distribution of p.

If we use w(E)(C) to denote the sum of the weights of the edges within cluster C, w(E) =
∑
i,j∈C Aij ,

and w(V)(C) to denote the sum of the weighted degrees of the nodes within cluster C, w(V) =
∑
i∈C wi,

then we get

Q(P) =
∑
C∈P

w(E)(C)

w
−
∑
C∈P

(
w(V)(C)

w

)2

.

In this form, the first term can still be interpreted as the weighted proportion of in-group edges.
Now, we see that the second term corresponds to the Simpson index associated with the probability
distribution w(V)(C1)

w , . . . , w
(V)(CK)
w . The Simpson index is a popular measure of diversity in biology:

if we interpret p(C) = w(V)(C)/w as the proportion of individuals of species C, it corresponds to the
probability of getting two individuals in the same species when sampled uniformly at random in the total
population [Simpson, 1949]. The minimal value of the Simpson index for a partition with K clusters is
1
K . It corresponds to the most diverse distribution. As a consequence, we see that the modularity of a
partition with K clusters cannot exceed 1− 1

K .

Random walk interpretation

The modularity function can also be interpreted in terms of random walks on the nodes of the graph
G = (V,E). Consider a random walk on the nodes of G, where the probability of moving from node i to
node j is pij = Aij/wi. The successive nodes X0, X1, X2, . . . visited by the random walk form a Markov
chain (Xt)t≥0 on V . We have:

∀t ≥ 0,∀i ∈ V, P(Xt+1 = i) =
∑
j∈V

P(Xt = j)pji.

From this equation, we see that π is a stationary distribution of (Xt)t≥0 if and only if

∀i ∈ V, πi =
∑
j∈V

πjpji.

If the graph G is undirected, it is easy to see that the distribution where the probability of being
at a node i is proportional to its weighted degree wi, defined as πi = wi/w, is a stationary distribution
of the Markov chain (Xt)t≥0. If the graph is also connected and not bipartite, the Perron-Frobenius
theorem [Perron, 1907] implies that πi = wi/w is the unique stationary distribution of the Markov chain.
Moreover, in this case, π is the limiting distribution of Xt when t→∞, independently of the distribution
of the initial state X0.

The modularity of a partition P can be written

Q(P) =
∑
C∈P

(Pπ[X0 ∈ C,X1 ∈ C]− Pπ[X0 ∈ C,X∞ ∈ C])

where Pπ[X0 ∈ C,X1 ∈ C] is the probability for the walk to be in C at initial time (with X0 initialized
with the distribution π) and after one step, and Pπ[X0 ∈ C,X∞ ∈ C] is the probability for the walk to
be in C at initial time and in the stationary regime.

21

Figure 1.7: Open Street Map graph (Paris) – results of the Louvain algorithm for different resolutions

Resolution

The modularity function defined in (1.1) has an important limitation called the resolution limit. As
studied in [Fortunato and Barthelemy, 2007], the modularity function Q(P) is not fit for finding many
small clusters in large graphs. Indeed, maximizing the modularity of a partition P is equivalent to
maximizing

∑
C∈P

∑
i,j∈C (Aij − wiwj/w), and we see that, while the first term

∑
C

∑
i,j∈C Aij does

not depend on the size of the graph, the second term
∑
C

∑
i,j∈C wiwj/w depends on the total edge

weight w and vanishes as w tends to infinity. In particular, this leads to the following surprising situation
for disconnected graphs (i.e. graphs with multiple connected components): adding or removing edges to a
connected component A has an impact on the clusters found by modularity maximization in another
connected component B (because w is impacted), whereas it should have no effect on the community
structure in B, as A and B are disconnected.

To get around this resolution limit, Reichardt and Bornholdt [Reichardt and Bornholdt, 2006] pro-
posed a generalized modularity function

Qγ(P) =
1

w

∑
C∈P

∑
i,j∈C

(
Aij − γ

wiwj
w

)
, (1.2)

where γ ≥ 0 is called the resolution parameter. We see that, if γ = 1, then Qγ corresponds to the standard
modularity function. Otherwise, γ counterbalances the normalization factor 1/w in the second term. In
other works [Lambiotte et al., 2008], authors consider another definition for the generalized modularity
function:

Qt(P) =
1

w

∑
C∈P

∑
i,j∈C

(
tAij −

wiwj
w

)
, (1.3)

with t ≥ 0. Note that both of these definitions are equivalent in the sense that the maximization of one
or the other of these functions leads to the same results if we take t = 1/γ.

In order to illustrate the impact of this resolution parameter, we show in Figure 1.7 the partitions
obtained for the Open Street Map graph centered on Paris with a modularity optimization method (the
Louvain algorithm) for different values of resolutions. The images are ordered by increasing values of
t (or, equivalently, by decreasing values of γ). We see on the top left image, which corresponds to the
smallest value of t, that the clusters correspond to local areas of Paris, like Saint Michel or Saint André
des Arts, that are smaller than Paris arrondissements. On the bottom right image, we see that we have
only two clusters that correspond to the left bank and right bank of Paris.

22

Figure 1.8: Open Flight graph – results of the Louvain algorithm for different resolutions

We show similar results for the Open Flight graph in Figure 1.8. We see on the left image, that
corresponds to the smallest value of t, that the clusters nearly correspond to the continents, whereas, on
the right image, the clusters correspond to larger regions (for instance, Europe and Africa, or South and
North America have been grouped together).

Equivalence with the maximum likelihood method on a degree-corrected SBM

Newman has established a link between the modularity maximization problem and the maximum
likelihood method applied to a random graph model called the degree-corrected stochastic block model
[Newman, 2016]. Stochastic block models, or SBM, are a popular class of models for random graphs with
community structures [Holland et al., 1983]. The standard stochastic block model is defined as follows.
We are given as parameters of this model the set of nodes V and a partition P = {C1, . . . , CK} of this
set, as well as a matrix p = (pkl)1≤k,l≤K of parameters such that pkl ∈ [0, 1]. These parameters determine
the probability of edges within and between each pair of cluster (Ck, Cl). More precisely, in this model,
for each pair of node (i, j) ∈ V × V , an edge is put between i and j with probability pC(i)C(j), where C(i)
(respectively C(j)) denotes the cluster C ∈ P to which i belongs (resp. to which j belongs).

There exists many variants of this stochastic block model. A common variant consists in putting
an edge between each pair of node (i, j) ∈ V × V with a weight drawn with a Poisson distribution
Poi(pC(i)C(j)) of parameter pC(i)C(j). In this case, pkl is the expected weight of an edge between nodes
in groups k and l rather than the probability for such an edge to exist. Another variant of this model
considers that the weight of an edge (i, j) ∈ V × V is drawn with the distribution Poi(

wiwj
w pC(i)C(j)).

Such a model is referred to as a degree-corrected block model [Zhao et al., 2012], and is particularly
interesting because graphs generated with standard SBM (i.e. with non-degree-corrected models) have
degree distributions very different from the real-world graphs, whereas, with degree-corrected block models,
we can generate graphs that fit any degree distribution. We use the notation p′C(i)C(j) =

wiwj
w pC(i)C(j) in

the following to make the calculations more concise.
Here, we consider a slight variation of the degree-corrected model described above where the weight of

an edge (i, j) ∈ V ×V is drawn with the distribution Poi(
wiwj
w pC(i)C(j)) if i 6= j, and with the distribution

Poi(
wiwj
2w pC(i)C(i)) if i = j (i.e. if (i, j) is a self-loop). This model can be used to generate a graph but

also to infer the parameters p and P = (C1, . . . , CK) from an observed graph. Indeed, if we observe a
graph G and make the assumption that this graph has been generated with the block model described
above, we can be interested in finding the parameters of this model that best explains the graph G. To
do so, we study the probability that an observed graph G, with the adjacency matrix A, is generated
with given values of parameters p = (pkl)k,l∈J1,KK and P . This probability, or likelihood, is given by

P(A|P, p) =
∏
i<j

P
[
Poi

(
p′C(i)C(j)

)
= Aij

]∏
i

P

[
Poi

(
p′C(i)C(i)

2

)
=
Aii
2

]
,

where P [Poi (λ) = x] denotes the probability for a Poisson random variable with parameter λ to be equal
to x. Note that we have adopted in this expression the convention where the weight of a self-edge (i, i) is
Aii/2, and not Aii. Knowing that P [Poi (λ) = x] = λ

x!e
−λ, we get

P(A|P, p) =
∏
i<j

(p′C(i)C(j))
Aij

Aij !
e−p

′
C(i)C(j)

∏
i

(
p′C(i)C(i)

2

)Aii/2
(Aii/2)!

e−p
′
C(i)C(i)/2.

23

We are interested in the parameters P and p that maximize this quantity, or, equivalently, the logarithm
of this quantity, i.e. the log-likelihood :

logP(A|P, p) =
∑
i<j

[
Aij log(p′C(i)C(j))− logAij !− p′C(i)C(j)

]

−
∑
i

[
Aii
2

log

(
p′C(i)C(i)

2

)
− log(Aii/2)!−

p′C(i)C(i)

2

]

Replacing p′kl with its value, we get

logP(A|P, p) =
∑
i<j

[
Aij log

(wiwj
w

)
+Aij log(pC(i)C(j))− logAij !−

wiwj
w

pC(i)C(j)

]
−
∑
i

[
Aii
2

log
(wiwi

2w

)
+
Aii
2

log(pC(i)C(i))− log(Aii/2)!− wiwi
2w

pC(i)C(i)

]
.

We can group the terms that do not depend on the parameters P and p in a constant c. We obtain

logP(A|P, p) =
1

2

∑
i,j

[
Aij log(pC(i)C(j))−

wiwj
w

pC(i)C(j)

]
+ c

In order to establish a connection with the modularity, Newman consider the special case where
pkl = pin if k = l and pkl = pout otherwise. Therefore, the average weight of intra-cluster edges is pin and
the average weight of inter-cluster edges is pout for all clusters. Using the Kronecker delta (δ such that
δkl = 1 if k = l, and δkl = 0 otherwise), we have

log pkl = log
pin

pout
δkl + log pout and pkl = (pin − pout)δkl + pout.

This gives us

logP(A|P, p) =
1

2

∑
i,j

[
Aij

(
δC(i)C(j) log

pin

pout
+ log pout

)
− wiwj

w

(
δC(i)C(j)(pin − pout) + pout

)]
+ c

=
1

2
log

pin

pout

∑
ij

(
Aij −

pin − pout

log(pin/pout)

wiwj
w

)
δC(i)C(j) + c+

w

2
(log pout − pout).

If we try to maximize this quantity with respect to the planted partition P for fixed values of the
parameters pin and pout, we obtain

logP(A|P, p) = α
∑
C∈P

∑
i,j∈C

[
Aij − γ

wiwj
w

]
+ β,

where α and β are constants that depends on A, pin and pout but not on P , and where γ = pin−pout
log(pin/pout)

.
Finally, we see that maximizing the maximum likelihood for this degree-corrected stochastic block model
for fixed values of pin and pout is strictly equivalent to maximizing the generalized modularity (1.2) with
the resolution γ.

Stability and continuous-time random walks

We have seen above that the modularity can be interpreted in terms of random walk on the graph nodes
with the expression

Q(P) =
∑
C∈P

(Pπ[X0 ∈ C,X1 ∈ C]− Pπ[X0 ∈ C,X∞ ∈ C]) .

A natural generalization of the modularity based on this expression is the stability [Lambiotte et al., 2008],
defined as

R(t) =
∑
C∈P

(Pπ[X0 ∈ C,Xt ∈ C]− Pπ[X0 ∈ C,X∞ ∈ C]) . (1.4)

24

In this definition, we consider the discrete-time random walk, whose dynamics is governed by the equation

P(Xt+1 = i) =
∑
j

Aji
wj

P(Xt = j).

Writing the distribution of Xt as a vector π(t), and using D = diag(w1, . . . , wn), the diagonal matrix
with the weighted node degrees, this becomes

π(t+ 1)T = π(t)TD−1A.

Instead of this discrete-time random walk, we can consider the continuous-time process associated with
this random walk. The dynamics of this process is governed by the Kolmogorov equation

∂π(t)T

∂t
= π(t)T (D−1A− I),

which leads to π(t)T = π(0)T et(D
−1A−I). If we use this continuous-time process in the definition (1.4),

the stability becomes

R′(t) =
∑
C∈P

∑
i,j∈C

(
πi

(
et(D

−1A−I)
)
ij
− πiπj

)
.

The stationary distribution π of this process for an undirected graph is equal to the stationary
distribution of the discrete-time random walk, πi = wi/w. Therefore, we get

R′(t) =
∑
C∈P

∑
i,j∈C

(
wi
w

(
et(D

−1A−I)
)
ij
− wiwj

w2

)
.

In the limit of small diffusion times t, we have

R′(t) =
∑
C∈P

∑
i,j∈C

(wi
w

[
(1− t)I + tD−1A+ o(t)

]
ij
− wiwj

w2

)
=

1

w

∑
C∈P

∑
i,j∈C

(
tAij −

wiwj
w

)
+ (1− t)I + o(t).

We see that maximizing the linearization of R(t) in the limit t→ 0 is equivalent to maximizing

1

w

∑
C∈P

∑
i,j∈C

(
tAij −

wiwj
w

)
which corresponds to the generalized modularity presented above (1.3). Moreover, we see in this
interpretation that the resolution t corresponds to the diffusion time t considered in the stability R′(t).
Therefore, the smaller t, the more local the information we take into account.

Note that the notion of stability proposed by Lambiotte et al. and the concept of modularity can be
unified in a probabilistic framework defined in [Chang et al., 2015, Chang et al., 2018b]. In this work,
the authors consider any symmetric bivariate distribution p(·, ·) for sampling pairs of nodes. The marginal
distribution p(i) =

∑
j∈V p(i, j) of such a distribution can naturally be used to sample individual nodes.

From such a distribution, the authors define the notion of centrality for any set of node S ⊂ V as the
probability of sampling a node in S, i.e.

C(S) =
∑
i∈S

∑
j∈V

p(i, j) =
∑
i∈S

p(i),

and the notion of relative centrality of a set of nodes S1 with respect to another set of nodes S2 as the
probability of sampling a node pair (i, j) with i ∈ S1 knowing that j is in S2, i.e.

C(S1|S2) =

∑
i∈S1

∑
j∈S2

p(i, j)

C(S2)
.

25

Using these notions, Chang et al. define the notion of cluster strength as the difference of the relative
centrality of a set S ∈ V with respect to itself on the one hand, and its centrality on the other hand:

Str(S) = C(S|S)− C(S).

Based on this new concept, they propose a unified definition for the modularity of a partition P , which is
defined as the weighted average of cluster strengths using cluster centralities as weights, i.e.,

Q(P) =
∑
S∈P

C(S)Str(C).

This notion unifies the different concepts presented above. Indeed, taking the sampling distribution
p(i, j) = Ai,j/w, we find Newman’s modularity, and taking p(i, j) = πi

(
et(D

−1A−I)
)
ij
, we find Lambiotte’s

stability.

Newman’s greedy algorithms

The modularity maximization problem that consists in finding a partition P that maximizes Q(P) cannot
be solved exactly in acceptable time as it has been proven to be NP-hard [Brandes et al., 2007]. However,
many methods have been proposed to find good approximations of the modularity optimum in reasonable
time. These techniques includes greedy algorithms, spectral approaches [Newman, 2006], and simulated
annealing methods [Guimera et al., 2004]. A thorough review of existing algorithms can be found in
[Fortunato and Castellano, 2012].

The greedy algorithm [Newman, 2004] proposed by Newman is certainly the most simple heuristic for
maximizing the modularity. It starts from the situation where every node is isolated in its own cluster, i.e.
P = {{i}, i ∈ V }. Then, at each step, it merges the pair of clusters that leads to the largest increase in
modularity. In other words, if P = {C1, . . . , CK} is the partition at the beginning of a step, the algorithm
considers the partitions Pkl = {Ck ∪Cl} ∪ {Ck′ , k′ 6= k, k′ 6= l}, and picks the one that corresponds to the
highest value of ∆Q = Q(Pkl)−Q(P). The algorithm stops when no merge yields to a positive increase
of modularity.

Since merging two clusters with no edge between them can only lead to a non-positive modularity
increase ∆Q, we only need to consider the pairs of clusters between which there are edges. Therefore, the
number of pairs to consider at each step is at most m. The modularity increase is given by

∆Q = Q(Pkl)−Q(P) =
w(E)(Ck, Cl) + w(E)(Cl, Ck)

w
− 2

w(V)(Ck)w(V)(Cl)

w2
,

where w(E)(Ck, Cl) =
∑
i∈Ck

∑
j∈Cl Aij . If we store the coefficients w(E)(Cl, Ck) and w(V)(Ck) for all

clusters throughout the execution of the algorithms, the update ∆Q can be computed in constant time.
The update of these coefficients after each merge takes O(n) in the worst-case scenario. Hence, each step
is in O(n+m). Since, there is at most n−1 steps, the time complexity of the algorithm is in O(n(n+m)).

The Louvain algorithm

Note that, in the Newman’s algorithm presented above, if two clusters have been merged during a
step of the algorithm, they cannot be split at a later step. For this reason, this algorithm is often
too elementary for recovering clusters in real-world graphs. The widespread Louvain algorithm uses a
similar but more sophisticated approach. The algorithm was named after the university of its inventors
[Blondel et al., 2008].

Like in the Newman’s algorithm, each node is placed in its own cluster at the initialization of the
Louvain algorithm. Then the algorithm repeats the following two steps.

1. (Greedy maximization) While modularity Q increases, we cycle over nodes and move each node to
the neighboring cluster that results in the largest modularity increase.

2. (Aggregation) We build a new graph whose nodes are the clusters found during step 1 and where
edge weights correspond to the sum of edge weights between clusters (self loops with a weight
corresponding to the sum of the intra-cluster edge weights are also added to each node).

26

The algorithm stops when the modularity increase is lower than a threshold ε > 0 given as a parameter.
The result of the first step depends on the order in which the nodes are considered. For this reason, the
nodes are typically shuffled at the beginning of the algorithm. The second step forces the algorithm to
explore more solutions by merging clusters. This aggregation step is build on the key result that states
that modularity Q is invariant under the aggregation step. In other words, the modularity of the partition
obtained after step 1 is the same as the modularity of the partition where each node is isolated in the
aggregated graph.

The aggregated graph is typically much smaller than the original graph, which allows the Louvain
algorithm to handle massive real-world graphs [Prat-Pérez et al., 2014]. However, the complexity of the
algorithm cannot be easily bounded as it depends on the number of iterations during the first step which
is graph specific. Note that the increase considered during step 1, where a node i is moved from its
current cluster Ck to a neighboring cluster Cl, can be written

∆Q =
w(E)({i}, Cl)− w(E)({i}, Ck)

w
− 2

wi(w
(V)(Ck)− w(V)(Cl) + wi)

w2
.

In order to speed up the computation of ∆Q, we typically store the node-cluster weights, w(E)({i}, Ck),
throughout the algorithm. This requires O(m) memory and allows one iteration during step 1 to be in
O(m) (but the number of iterations cannot be bounded).

1.4.2 Spectral methods
Another popular class of methods for graph clustering that plays an important role in our work is known
as spectral methods. Like the modularity, we will see that spectral methods can be linked to random
walks. These methods are based on the spectral decomposition of the Laplacian matrix, a key matrix in
graph theory. This matrix is defined as

L = D −A

where D = diag(w1, . . . , wn) is the diagonal matrix containing the weighted degrees of the nodes. Note
that there exists alternative definitions of the Laplacian matrix that we will review below.

Connection with the Laplacian operator

The Laplacian matrix corresponds to the discrete version of the negative Laplacian operator f 7→ −∆f =
−
∑
i ∂

2f/∂x2
i . Indeed, if f : V → R is a function on the nodes of the graph, then we can represent this

function as a vector f = (fx)x∈V ∈ Rn and get

(Lf)x =
∑
y

(Dxy −Axy)fy = wxfx −
∑
y

Axyfy =
∑
y

Axy(fx − fy).

We consider the case where the graph G = (V,E) is an infinite square lattice grid in RK defined as

V = {ε(a1, . . . , aK)|ai ∈ Z} ⊂ RK

Axy =

{
1/ε2 if ∃i, y = x± εei
0 otherwise,

where (e1, . . . , eK) is the canonical orthonormal basis of RK . Then we have a direct connection between
the Laplacian matrix and the negative continuous Laplacian operator:

(Lf)x =
∑
y

Axy(fx − fy) =
∑
i

(f(x)− f(x− εei)) + (f(x)− f(x+ εei))

ε2
→
ε→0
−
∑
i

∂2f

∂x2
i

= −∆f.

Spectral decomposition

As stated above, spectral methods are based on the spectral decomposition of the Laplacian matrix. We
have, for all v ∈ Rn,

vTLv = vT (D −A)v =
∑
ij

vi(Dij −Aij)vj =
∑
i

wiv
2
i −

∑
ij

Aijvivj =
∑
ij

Aij(v
2
i − vivj).

27

In the following, we assume that G is undirected. Therefore, A is symmetric, and we get

vTLv =
∑
ij

Aij(
v2
i + v2

j

2
− vivj) =

1

2

∑
ij

Aij(vi − vj)2. (1.5)

As a consequence, the Laplacian matrix L is positive semi-definite. Thus, the spectral theorem can be
applied to L and yields to

L = V ΛV T

where Λ = diag(λ1, . . . , λn) is the diagonal matrix of the eigenvalues of L, with 0 ≤ λ1 ≤ . . . ≤ λn, and
V = (v1, . . . , vn) is the matrix whose columns are the corresponding eigenvectors, with V TV = I. Using
(1.5) we see that vTLv = 0 if and only if ∀i, j, Aij > 0⇒ vi = vj . If the graph is connected, this yields to
v ∝ 1. In this case we have λ1 = 0, λ2 > 0 and v1 = 1/

√
n. The vector v2 of the Laplacian associated

with the second smallest eigenvalue is called the Fiedler vector. It is the first non trivial vector of the
Laplacian. We show below that this vector has important properties.

Minimum cut interpretation

Given a partition of the graph nodes into two clusters, A and Ā = V \A, the cut is defined as

cut(A, Ā) =
∑
i∈A

∑
j∈Ā

Aij .

A classical problem consists in finding the set A such that A 6= ∅ and A 6= V that minimizes cut(A, Ā).
A solution to this problem is a simple clustering of G into two clusters. We define the indicator vector
associated with the partition {A, Ā} as vi = 1 if i ∈ A and vi = −1 otherwise. We have

vTLv =
1

2

∑
ij

Aij(vi − vj)2 =
1

2

∑
i∈A,j∈Ā

4Aij +
1

2

∑
i∈Ā,j∈A

4Aij = 4cut(A, Ā)

Thus, minimizing vTLv with v ∈ {−1, 1}n is equivalent to minimizing cut(A, Ā). As explained above,
a trivial solution of this problem is v ∝ 1, i.e. v = 1 or v = −1, which corresponds to A = ∅ or A = V . If
we add the constraint |A| = |Ā|, the equivalent constraint on v is

∑
i vi = vT 1 = 0. Then, we get the

minimization problem
minimize
v∈{−1,1}n

vTLv

subject to vT 1 = 0.

A natural relaxation of this problem is

minimize
v∈Rn

vTLv

subject to vT 1 = 0

‖v‖ = 1.

As the solution is orthogonal to the first eigenvector v1 = 1 of L, it is easy to see that a solution
to this problem is proportional to the Fiedler vector v2, i.e. the eigenvector associated with the second
smallest eigenvalue of L.

Normalized Laplacian

So far, we have considered the Laplacian matrix defined as L = D −A. In many papers, researchers do
not consider the Laplacian L but is normalized version [Chung, 1997]

L = D−1/2LD−1/2 = I −D−1/2AD−1/2

where D−1/2 = diag(w
−1/2
1 , . . . , w

−1/2
n). The normalized Laplacian is closely related to the canonical

random walk on the nodes of the graph. Consider the random walk in the graph where the probability

28

of moving from node i to node j is pij = Aij/wi. We call Xt the tth node visited by the walk. As seen
above, (Xt)t≥0 is a Markov chain on V , and we have

∀i,P(Xt+1 = i) =
∑
j

P(Xt = j)pji.

Writing the distribution of Xt as a vector π(t), this equation becomes

π(t+ 1)T = π(t)TP

where P = D−1A is the transition matrix of the Markov chains. A stationary distribution π of the
Markov chain satisfies πi =

∑
j πjpji i.e.

πT = πTP.

Thus πT is the left eigenvector of P associated with the eigenvalue 1 such that πT 1 = 1. As seen
previously, if the graph is connected and not bipartite, by Perron-Frobenius this stationary distribution is
unique and it is the limit of π(t) when t→∞.

The normalized Laplacian is closely related to the transition matrix P since we have

P = D−1/2(I − L)D1/2. (1.6)

Unlike P , L is symmetric. Therefore, by the spectral theorem, there exists some matrix X such that

L = XΛXT

where XTX = I and Λ = diag(λ1, . . . , λn) is the diagonal matrix with the eigenvalues of L, with
|λ1| ≤ . . . ≤ |λn|. The columns of X are the eigenvectors of L for the respective eigenvalues λ1, . . . , λn.
From (1.6), we get

P = V (I − Λ)UT

with U = D1/2X√
w

and V = D−1/2X
√
w. Observe that UTV = I. As a consequence, the lines of UT and

the columns of V are the left and right eigenvectors of P for the respective eigenvalues 1− λ1, . . . , 1− λn.
We can apply the Perron-Frobenius theorem to P if the graph is connected and not bipartite. Then we
obtain 1− λ1 = 1 > 1− λ2 ≥ 1− λ3 ≥ . . . ≥ 1− λn, which gives us

λ1 = 0 < λ2 ≤ . . . ≤ λn.

We can easily verify that the eigenvector of L associated with the eigenvalue λ1 = 0 is x1 = ±
√
π. The

right and left eigenvectors of P associated with the eigenvalue 1− λ1 = 1 are u1 = π and v1 = 1.

Link with the modularity matrix

The modularity of a partition P can be rewritten as

Q(P) =
∑
C∈P

∑
i,j∈C

Qij ,

with Qij = 1
w

(
Aij − wiwj

w

)
. We call Q = (Qij)1≤i,j≤n the modularity matrix. We will see that Q can

be rewritten using the spectral decomposition of the normalized Laplacian L. If w is the vector whose
components are the weighted degrees wi, we have

Q =
1

w

(
A− wwT

w

)
=

1

w
D1/2

[
D−1/2AD−1/2 −

√
w
√
w
T

w

]
D1/2

=
1

w
D1/2

I − L︸︷︷︸
=XΛXT

−x1x
T
1

D1/2

= Y ΛQY
T ,

with Y = 1√
w
D1/2X and ΛQ = diag(0, 1− λ1, . . . , 1− λn).

29

Figure 1.9: Spectral embedding in 2D of the Jaguar subgraph of Wikipedia with the normalized Laplacian

Therefore, the modularity matrix Q and the diagonal matrix ΛQ are congruents. By Sylvester’s law
of inertia [Sylvester, 1852], Q and ΛQ have the same number of positive, negative and zero eigenvalues.
Hence, if µ1, . . . , µn are the eigenvalues of Q, we have

|i : µi = 0| = |i : λi = 1|+ 1

|i : µi < 0| = |i : λi > 1|
|i : µi > 0| = |i : λi < 1|.

Spectral embedding

Graph embedding aims at representing a graph in a low-dimensional Euclidean space RK with K � n.
More precisely, each node i ∈ V is mapped to a vector xi ∈ RK . A good embedding must encode the
graph structure in the sense that, if two nodes i and j are close in the graph G, they must be represented
by two vectors xi and xj that are close in RK , i.e. for the Euclidean distance ‖xi − xj‖.

The spectral decomposition of the Laplacian matrix can be used to build such an embedding
[Von Luxburg, 2007]. To do so, we compute the first K eigenvectors of the Laplacian L, i.e. the
eigenvectors v1, . . . , vK corresponding to the smallest K eigenvalues λ1 = 0 ≤ λ2 ≤ . . . ≤ λK . These
eigenvectors can be computed efficiently with the Lanczos algorithm [Lanczos, 1950]. In the so-called
spectral embedding, each node i ∈ V is mapped to the vector xi = (v1i, . . . , vKi) ∈ RK . Note that similar
embeddings can be performed by using the first K eigenvectors of the normalized Laplacian L, or the
first K left-eigenvectors u1, . . . , uK or the K right-eigenvectors v1, . . . , vK of the random walk transition
matrix P .

In Figure 1.9, we show the result of the embedding of a subgraph of Wikipedia in two dimensions
using the first two non-trivial eigenvectors x2 and x3 of the normalized Laplacian matrix L. This graph
corresponds to the subgraph induced by the articles at 2 hops from the Jaguar (disambiguation) article in
the Wikipedia graph. In other words, this subgraph consists of neighbors of the Jaguar (disambiguation)
node and of neighbors of these neighbors. This subgraph is quite interesting because we find articles that
refer to very different concepts named Jaguar (e.g. Jaguar cars, the animal, Fender Jaguar guitars etc.).
In Figure 1.9, we see that articles corresponding to different notions are mapped to different areas of the
vector space R2. For instance, a direction in this embedding space corresponds to articles about American
football as there exists a NFL team called the Jacksonville Jaguars. Another direction corresponds to
sport cars related to the Jaguar cars. We can also distinguish thematic regions corresponding to the
jaguar animal or the Atari Jaguar video game console. Zooming in, we could also observe a direction
corresponding to military aircraft and, in particular, a node corresponding to the British-French aircraft
SEPECAT Jaguar.

30

Figure 1.10: Embedding in 2D of the Jaguar subgraph of Wikipedia with the node2vec algorithm

Spectral clustering

Embedding methods can easily be used to cluster graph nodes. Indeed, since these embeddings are
supposed to preserve the graph structure, we can expect node clusters in G to correspond to clusters
of points in the embedding space RK . Therefore, a natural approach consists in first embedding the
graph nodes i ∈ V and then using a clustering algorithm in the embedding space RK to cluster the
images xi ∈ RK of these nodes. Such methods based on a spectral embedding are referred to as spectral
clustering techniques. They traditionally use the k-means algorithm [Lloyd, 1982] to cluster the points in
the Euclidean space RK . There exists a legion of variants for spectral clustering [Von Luxburg, 2007],
using different Laplacian matrices and/or different normalization techniques for the eigenvectors. The
most classic methods [Shi and Malik, 2000, Ng et al., 2002] are simply based on the Laplacian matrix L
or its normalized version L and can be summarized as follows

• computing the first K eigenvectors of the Laplacian L (or the normalized Laplacian L): x1, . . . , xK ;

• mapping each node i ∈ V to the vector (x1i, . . . , xKi) ∈ RK ;

• clustering the points (yi)i∈V with the k-means algorithm into clusters C1, . . . , Ck;

• outputing the node clusters C ′1, . . . , C ′k where C ′l = {i ∈ V |yi ∈ Ck}.

We see that the number of clusters must be given as a parameter of the algorithm. Note that the
first step of this algorithm can easily be replaced by any other embedding method. As a matter of fact,
there exists many similar graph clustering approaches that use this scheme with non-spectral embedding
algorithms [Perozzi et al., 2014, Tang et al., 2015]. In Figure 1.10, we show the embedding ot the Jaguar
subgraph of Wikipedia with an embedding algorithm called node2vec [Grover and Leskovec, 2016] that
is based on the classic Word2vec algorithm [Mikolov et al., 2013], traditionally used to embed words in
a document in Natural Language Processing (NLP). We see in Figure 1.10 that, like with the spectral
embedding, the different regions in the vector space correspond to different topics in this dataset.

1.4.3 Some other graph clustering approaches
As stressed above, the objective of this introductory chapter is not to provide a comprehensive list of
graph clustering algorithms. However, let us cite some other state-of-the-art techniques that we will use in

31

our different benchmarks throughout this work. First, note that there exists many greedy algorithms that
optimize objective functions other than modularity. This is the case for instance of the SCD algorithm,
that partitions the graph by maximizing the WCC [Prat-Pérez et al., 2014], which is a community quality
metric based on triangle counting. Another example is OSLOM [Lancichinetti et al., 2011], that finds node
partitions by locally optimizing a fitness function which measures the statistical significance of a community.
Many other algorithms are based on random walks. For instance, Infomap [Rosvall and Bergstrom, 2008]
splits the network into modules by compressing the information flow generated by random walks. Another
example is Walktrap, that uses random walks to estimate the similarity between nodes, which is then used
to cluster the network [Pons and Latapy, 2005]. Finally, let us cite a family of methods using non-negative
matrix factorization [Lee and Seung, 2001] on the adjacency matrix A or on variants of this matrix, such
as BigClam [Yang and Leskovec, 2013], that can be used to detect overlapping clusters in graph. We refer
the reader to comparative studies [Lancichinetti and Fortunato, 2009, Fortunato and Castellano, 2012,
Xie et al., 2013] for a more exhaustive list of graph clustering methods.

1.5 Evaluation of graph clustering algorithms
We presented above some classic graph clustering algorithms. A big question arises when we try to compare
these different methods between each other: how to evaluate the performance of a graph clustering
algorithm? For some approaches, such as spectral methods, theoretical guarantees about the quality of
the recovered clusters can be obtained. But, most of these analyses only apply to restricted graph models
that are often not in line with real-life graphs. The quality of the results of graph clustering algorithms
can also be evaluated through experiments. These experiments can be conducted on synthetic graphs
with planted clusters or on real-life graphs using ground-truth clusters. In this section, we introduce these
different techniques to evaluate graph clustering algorithms.

1.5.1 Synthetic graph models
Synthetic graphs are mainly used in the theoretical analysis of graph clustering algorithms but can also
be used in experiments [Lancichinetti et al., 2008]. These models are generally random graphs models,
i.e. models to generate graphs from a specific probability distribution or a certain random process. Some
models take the set of clusters C = {C1, . . . , CK}, Ck ∈ V , as a parameter and generate the set of edges E
from these so-called planted clusters. This is the case of the Stochastic Block Model for instance. Other
models, such as the LFR model presented in this section, generate both the clusters and the edges.

Stochastic Block Models

We have already briefly introduced the Stochastic Block Model (SBM) above to give an interpretation of
the modularity measure. Recall that, in the standard SBM [Holland et al., 1983], we are given a partition
P = {C1, . . . , CK} of the nodes V and a matrix p = (pkl)1≤k,l≤K ∈ [0, 1]K×K , and recall that graphs are
generated by connecting any pairs of nodes with the probability pC(i)C(j) independently of other pairs of
nodes. Note that we use C(i) to denote the cluster of P to which the node i belongs. Therefore, the
probability that an observed graph with the adjacency matrix A is generated with this model is given by

P[A|P, p] =
∏
i<j

p
Aij
C(i)C(j)(1− pC(i)C(j))

1−Aij .

The matrix p, which is referred to as the connectivity matrix, determines the way different clusters
interact with each other with the values pkl, k 6= l, outside the diagonal, and the way nodes within the
same cluster connect to each other with its diagonal coefficients, pkk, k ∈ J1,KK. In order to simplify this
model, one commonly consider the restrained model where p takes the same value a on the diagonal, and
the same value b outside the diagonal. This model is referred to as the symmetric SBM.

There exist many variants of the standard stochastic block model. Additional parameters can be added
to the model to control the expected degree of each node [Karrer and Newman, 2011], which leads to the so-
called degree-corrected SBM. Several definitions of overlapping SBMs have bee introduced to overcome the
fact that a node can only belong to one cluster in the standard SBM [Airoldi et al., 2008, Fortunato, 2010].
Finally, it is worth mentioning that models, called Labelled SBMs, have been introduced to allow edges to
carry labels such as a weight [Heimlicher et al., 2012, Lelarge et al., 2015].

32

The objective of graph clustering algorithms in a SBM is to recover the partition P = {C1, . . . , CK}
from the observed graph G. The performance of a graph clustering algorithm can simply be measured with
a function f called the agreement, which measures the similarity between two community membership
vectors x ∈ J1,KKn and y ∈ J1,KKn, and is defined as

f(x, y) = max
π∈SK

1

n

∑
i∈V

1{xi=π(yi)},

where SK is the group of permutation of J1,KK. Therefore, if xi = C(i) for all i ∈ V , and x̂i is the
membership vector returned by a graph clustering algorithm, f(x, x̂) is the maximum number of common
components between x and any relabelling of x̂.

Based on this measure, one can define different tasks for a graph clustering algorithm.

• (Detection) This task consists in determining if an observed graph has been generated from a SBM
or from an Erdos-Renyi model without any cluster structure. More formally, a detection is solved
in an SBM with a planted membership vector x ∈ J1,KKn if, for an observed graph G, there exists
ε > 0 and an algorithm A that takes G as an input and outputs a membership vector x̂ such that

P
[
f(x, x̂) ≥ 1

K
+ ε

]
= 1− o(1),

when n×+∞.

• (Partial recovery) This task consists in approximately recovering the planted membership vector
x. The quality of the recovery is measured through a parameter α ∈ (0, 1). More formally, an
algorithm solves this task for α if it outputs x̂ such that

P[f(x, x̂) ≥ α] = 1− o(1).

• (Exact recovery) This task consists in recovering the planted membership vector x exactly. In other
words, an algorithm solves this task if it outputs x̂ such that

P[f(x, x̂) = 1] = 1− o(1).

The difficulty of these tasks highly depends on the parameters pkl (a and b in the symmetric SBM),
and we typically observe phase transitions, i.e. range of parameters where these tasks are feasible or
impossible. Besides, for different values of the parameters, different algorithms have been proven to be
the most efficient [Abbe, 2017].

Note that spectral approaches based on different versions of the Lapacian matrix have widely been
used for clustering graphs generated with the stochastic block model. But recently it has been proven
that the spectral analysis of a more complicated, higher dimensional, and non-symmetric matrix, known
as the Bethe Hessian, leads to better performances, and even reached the optimal performance on the
classic SBM [Saade et al., 2014]. Whereas, the normalized Laplacian is related to the standard random
walk, the Bethe Hessian is related to the non-backtracking random walk on the graph.

The LFR model

The Lancichinetti-Fortunato-Radicchi (LFR) model [Lancichinetti et al., 2008] is another popular model
used to generate graphs with a cluster structure. Whereas the SBM is inspired by the Erdos-Renyi model,
the LFR model takes its inspiration from the configuration model [Molloy and Reed, 1995]. The graphs
generated from this model are supposed to be closer to real-world graphs because their degree distribution
and their cluster size distribution follow power laws that are typically observed in real-life datasets. The
LFR model takes 4 parameters, n, γ, β, µ and d̄. n corresponds to the number of nodes in the generated
graph. γ and β are the exponents of the power law distributions of the node degrees and respectively the
community sizes. The mixing parameter µ is the fraction of edges between any node i and neighbors j
outside the cluster of i (external neighbors). Finally d̄ is the average degree of a node in the generated
graph. The LFR model generates a graph with the following steps.

33

• The node degrees di are generated from the power-law distribution with parameter γ. The extremes
of the distribution dmin and dmax are chosen so that the average degree is d̄.

• The cluster sizes sk are generated from a power-law distribution with parameter β. The extremes
of the distribution smin and smax are chosen so that the sum of cluster sizes is n, and so that the
size of the smallest cluster smin (resp. the size of the largest cluster smax) is larger than the size of
the smallest degree dmin (resp. the largest degree dmax).

• The edges of the graph are generated with the configuration model in order to follow the degree
sequence (d1, . . . , dn).

• Then, the model assign nodes to clusters as follows. Initially, nodes do not belong to any cluster.
They are said to be homeless. Then, we iteratively try to assign each homeless node i to a cluster
k chosen uniformly at random. If the size sk of the chosen cluster is larger than the number of
neighbors of i in this clusters (i.e. its number of internal neighbors), then we effectively assign i to
the cluster k. Otherwise, the node i remains homeless. If the cluster k is complete (i.e. its size is
equal to sk), then we remove a randomy selected node before inserting i. This procedure naturally
stops when there are no more homeless nodes.

• Note that the previous step generates clusters that follow the size distribution (s1, . . . , sK) but the
mixing condition µ is not enforced. To do so, we perform rewiring operations similar to the ones
performed by the configuration model, so that the node degrees remained unchanged and so that
the fraction of internal neighbors is approximately 1− µ.

In the different chapters of this document, we perform some experiments on synthetic graphs but we
mainly focus on evaluating algorithms on real-life graphs as explained below.

1.5.2 Real-life graphs and ground-truth clusters

Synthetic graph models often fail to model the wide variety of graphs that are observed in real-life
applications. For instance, graphs generated with the standard SBM have a degree distribution that is
way different from what we typically observe in real-world networks (one could use the degree-corrected
SBM, but the number of triangles in the generated graphs is inconsistent with what we commonly have
in real-life datasets). For this reason, benchmarks on real-world graphs are essential to evaluate the
performance of graph clustering algorithms. However, using a real-life graph G is often complex since
we need to know what are the real clusters in G to compare them with the result of graph clustering
algorithms. These real clusters are referred to as ground-truth clusters. To define these clusters, one
typically choose a specific type of metadata on graph nodes that can be used as a proxy for the real cluster
membership. For instance, in a graph between football players, the team of each player can be used to
defined ground-truth clusters. However, we see that such a choice of metadata is somewhat arbitrary and
that other choices could lead to different clusters [Peel et al., 2017]. In our football example, one could
for instance choose the nationality of each player to define the ground-truth clusters. Most of the time,
this issue is ignored and datasets where each graph G comes with a specific set of ground-truth clusters
C = {C1, . . . , CK} are used. One of the most widely-used source of such datasets is the Stanford Network
Analysis Project6 (SNAP) [Yang and Leskovec, 2015]. In order to compare the result of a graph clustering
algorithm with ground-truth clusters, different score functions can be used, such as the Normalized
Mutual Information or the F1-score.

Normalized Mutual Information

The Normalized Mutual Information (NMI), which is a standard measure of dependence between random
variables in information theory, can be used to measure the similarity between a ground-truth partition
C = {C1, . . . , CK} and the partition Ĉ = {Ĉ1, . . . , ĈK′} returned by a graph clustering algorithm. It is
defined as

NMI(C, Ĉ) =
2I(C, Ĉ)

H(C) +H(Ĉ)
,

6https://snap.stanford.edu/data/

34

where H(C) is the entropy of the clustering C, i.e.

H(C) = −
∑
C∈C

|C|
n

log
|C|
n
,

and where I(C, Ĉ) is the mutual information between C and Ĉ, i.e.

I(C, Ĉ) =
∑
C∈C

∑
Ĉ∈Ĉ

|C ∩ Ĉ|
n

log

[
|C ∩ Ĉ|/n
|C|
n
|Ĉ|
n

]
= H(C)−H(Ĉ|C).

It is easy to see that NMI(C, Ĉ) = 1 if C = Ĉ. Moreover, we have by Jensen’s inequality I(C, Ĉ) ≥ 0,
and thus NMI(C, Ĉ) ≥ 0.

The normalized mutual information is well-suited to compare node partitions. However, it cannot
directly be applied to the evaluation of overlapping graph clustering algorithms [McDaid et al., 2011].
For this reason, the F1-score presented below is often more convenient to evaluate the performance of
general clustering algorithms.

F1-Score

The F1-score is a classic measure in statistics to measure the accuracy of a test. It is defined as the
harmonic mean of precision and recall. In the case of graph clustering, the precision for a recovered
cluster Ĉ with respect to a ground-truth cluster C is defined as

precision(Ĉ, C) =
|C ∩ Ĉ|
|Ĉ|

,

and the recall is defined as

recall(Ĉ, C) =
|C ∩ Ĉ|
|C|

.

Then, the F1-score of the cluster Ĉ with respect to C is defined as

F1(Ĉ, C) = 2
precision(Ĉ, C)recall(Ĉ, C)

precision(Ĉ, C) + recall(Ĉ, C)
.

It is easy to verify that the F1-score F1(Ĉ, C) takes values between 0 and 1 and that we have F1(Ĉ, C) = 1
if and only if we have perfect precision and recall, i.e. precision(Ĉ, C) = recall(Ĉ, C) = 1. Note that
we have defined the F1-score for a pair of clusters, but we still need to define the F1-score between
two sets of clusters, C = {C1, . . . , CK} and Ĉ = {Ĉ1, . . . , ĈK′}. A natural way to define such a score
[Prat-Pérez et al., 2014] consists in first defining the F1-score of a cluster Ĉ with respect to a set of
clusters as

F1(Ĉ, C) = max
C∈C

F1(Ĉ, C),

and then defining the average F1-score between two sets of clusters C and Ĉ as

F1(C, Ĉ) =
1

2|C|
∑
C∈C

F1(C, Ĉ) +
1

2|Ĉ|

∑
Ĉ∈Ĉ

F1(Ĉ, C).

We have F1(C, Ĉ) ∈ [0, 1] and F1(C, Ĉ) = 1 if and only if the clusters of C and Ĉ are identical, i.e. ∀C ∈ C,
∃Ĉ ∈ Ĉ, such that C = Ĉ, and ∀Ĉ ∈ Ĉ, ∃C ∈ C, such that Ĉ = C. Therefore, this measure is normalized
and well-suited to compare different graph clustering algorithms, even if they return overlapping clusters.
We widely use it in the experiments performed in the different chapters of this document.

35

36

Chapter 2

Soft clustering

In this chapter, we study soft graph clustering methods derived from the modularity score. In particular,
we introduce an efficient algorithm based on a relaxation of the modularity optimization problem. A
solution of this relaxation gives to each element of the dataset a probability to belong to a given cluster,
whereas a solution of the standard modularity problem is a partition. The algorithm that we introduce is
based on sparse matrices, and can therefore handle large graphs unlike existing approaches. Furthermore,
we prove that our method includes, as a special case, the Louvain optimization scheme. Experiments
on both synthetic and real-world data illustrate that our approach provides meaningful information on
various types of data. This chapter is based on the work presented in [Hollocou et al., 2019].

2.1 Introduction

As stressed in Chapter 1, many classic graph clustering algorithms are focused on finding partitions
of nodes. In such approaches, a node cannot belong to more than one cluster. Yet, in many real-life
applications, it makes more sense to allow some elements to belong to multiple clusters. For instance, if
we consider the problem of clustering the users of a social network such as Facebook or LinkedIn, we
see that a person can belong to several social circles, such as her family, her colleagues and her friends,
and we might be interested in recovering all these circles with a clustering algorithm, even if they do
not form a partition. In this chapter, we study graph clustering methods that overcome this problem by
determining for each node a degree of membership to each cluster, instead of returning a simple node
partition. In particular, we are interested in techniques that aim at finding a probability pik ∈ [0, 1] for
each node i to belong to a given cluster k, whereas the node partioning methods implicitly consider that
this probability can be either 0 or 1. The problem that these techniques try to solve is referred to as soft
clustering, or fuzzy clustering [Dunn, 1973, Bezdek, 1981].

In this chapter, we introduce a relaxation of the classic modularity optimization problem and we study
soft-clustering algorithms based on this relaxation. In particular, we introduce an efficient algorithm to
find an approximation of this soft version of the modularity maximization problem. This algorithm has
the following characteristics:

1. the number of clusters does not need to be specified;

2. the algorithm is local;

3. the solution found by the algorithm is sparse;

4. the algorithm includes the Louvain algorithm as a special case.

More precisely, property 2 indicates that each update of the membership information of a given node
depends only on its direct neighbors in the graph, which implies a fast computation of these updates.
Property 3 states that most of the membership probabilities pik returned by our algorithm are equal to 0,
which guarantees an efficient storage of the solution. Finally, property 4 translates into the fact that an
update performed by our algorithm reduces to an update performed by the Louvain algorithm as soon as
the unique parameter of our algorithm is large enough.

37

The remainder of the chapter is organized as follows. In section 2.2, we introduce the concept of
soft-clustering with the soft version of the k-means algorithm, called fuzzy c-means. We introduce the
relaxation of the modularity maximization problem in section 2.3. In section 2.4, we present the related
work on the topic of soft graph clustering. In section 2.5, we present our optimization method and obtain
theoretical guarantees about its convergence. In section 2.6, we take benefits of the specificities of our
optimization technique to propose an algorithm that is both local and memory efficient. In section 2.7, we
study the ties of our approach to the Louvain algorithm. Finally, in section 2.9, we present experimental
results on synthetic and real-world data.

2.2 Fuzzy c-means: an illustration of soft clustering

In order to introduce the concept of soft clustering, we present the fuzzy c-means algorithm that arises
from a relaxation of the k-means problem. The fuzzy c-means algorithm is a soft clustering algorithm for
observations that live in an Euclidean space. It gives to each observation a degree of membership to each
cluster, whereas the Lloyd’s algorithm [Lloyd, 1982] used to approximate the solution of the k-means
problem simply returns a partition of these observations.

2.2.1 The k-means problem

The k-means clustering problem can be stated as follows. Given a set of observations X = {x1, . . . , xn}
in an Euclidean space (let us say RK), we want to find a partition of these observations into k subsets,
S = {S1, . . . , Sk}, and a set of k vectors of RK , µ = {µ1, . . . , µk}, that minimize the objective

J(S, µ) =

k∑
l=1

∑
x∈Sl

‖x− µl‖2.

k ∈ N∗ is given as a parameter of this problem. The vectors µ are referred to as the means. It is easy to
see that, for a fixed partition S, the optimal vector µl corresponds to the centroid of the observations in
Sl. Indeed, the gradient of the objective function with respect to µl is

∇µlJ(S, µ) = −2
∑
x∈Sl

(x− µl).

Setting ∇µlJ(S, µ) = 0, we get

µl =
1

|Sl|
∑
x∈Sl

x.

If the vectors µl correspond to the centroids of the sets Sl, then the objective can be rewritten as

J(S, µ) =

k∑
l=1

∑
x∈Sl

∥∥∥∥∥∥x− 1

|Sl|
∑
y∈Sl

y

∥∥∥∥∥∥
2

=

k∑
l=1

∑
x∈Sl

xTx− 1

|Sl|
∑
x,y∈Sl

(xT y + yTx) +
1

|Sl|2
∑

x,y,y′∈Sl

yT y′

=

k∑
l=1

1

|Sl|
∑
x,y∈Sl

(xTx− xT y)

=

k∑
l=1

1

2|Sl|
∑
x,y∈Sl

‖x− y‖2.

Thus, when the means µ correspond to the centroids of the clusters S, minimizing the objective
J(S, µ) is equivalent to minimizing the pairwise squared deviations of observations in the same cluster.

The k-means problem cannot be solved exactly in reasonable time as it has been proven to be NP-hard,
event for two clusters and in a plane (K = 2) [Garey et al., 1982, Mahajan et al., 2009]. The classic
heuristic that is used to find an approximation of the solution to this problem is the Lloyd’s algorithm
[Lloyd, 1982]. It is an iterative method that alternates between two steps:

38

• (Assignment step) Each observation is assigned to the cluster whose means is the nearest,

Sl = {x : x ∈ X,∀l′, ‖x− µl‖ ≤ ‖x− µl′‖} .

• (Mean update step) The means µ are chosen to be the centroids of the observations in the clusters

µl =
∑
x∈Sl

x

|Sl|
.

Note that the initial means µ are generally picked at random. There exists many variants of the
Lloyd’s algorithm, that either use different distance function, such as the k-medoids algorithm
[Kaufman and Rousseeuw, 1987], or specific initialization methods for the means, such as the k-means++
algorithm [Arthur and Vassilvitskii, 2007].

2.2.2 Fuzzy c-means
We can associate a binary matrix p = (pil) ∈ Rn×k to a partition S = {S1, . . . , Sk} as follows:

∀i ∈ J1, nK,∀l ∈ J1, kK, pil =

{
1 if xi ∈ Sl
0 otherwise.

We call such a matrix the membership matrix associated with the partition S. The k-means objective
can be rewritten using this membership matrix:

J(S, µ) =

n∑
i=1

k∑
l=1

pil‖xi − µl‖2.

Note that a general matrix with non-negative integer coefficients, p ∈ Nn×k, is a membership matrix
for some partition S if and only if

∀i ∈ J1, nK,
k∑
l=1

pil = 1.

Indeed, as the coefficients can only take non-negative integer values, it is easy to see that this equation is
equivalent to say that, for each i, there is one and only one l such that pil = 1 (and the other coefficients
are = 0). Using this result, we can rewrite the k-means problem as follows

minimize
p∈Nn×k

n∑
i=1

k∑
l=1

pil‖xi − µl‖2

subject to ∀i ∈ J1, nK,
k∑
l=1

pil = 1.

(2.1)

The idead behind the fuzzy c-means algorithm [Dunn, 1973, Bezdek, 1981] consists in considering a
relaxation of the problem (2.1) where the coefficients of p can take real values, i.e.

minimize
p∈Rn×k

J(p, µ) =

n∑
i=1

k∑
l=1

pil‖xi − µl‖2

subject to ∀i ∈ J1, nK,
k∑
l=1

pil = 1.

In this relaxation, pil can now be interpreted as the degree of membership of the observation xi to the
cluster Sl. The objective function can further generalized by introducing a new parameter m

J(p, µ) =

n∑
i=1

k∑
l=1

pmil ‖xi − µl‖2.

39

We will see that m ∈ [1,∞) is a parameter that is used to control the fuzziness of the result. The
Lagrange function associated with this problem is

L(p, µ, λ) =

n∑
i=1

k∑
l=1

pmil ‖xi − µl‖2 −
n∑
i=1

λi

[
k∑
l=1

pil − 1

]
,

where the λi are the Lagrange multipliers associated with the constraints
∑
l pil = 1. The stationary

points of the objective function J(p, µ) can be found by setting the gradients of L with respect to p, µ
and λ to zero. We get

∂L
∂pil

= mpm−1
il ‖xi − µl‖2 − λi = 0

∂L
∂λi

=

k∑
l=1

pil − 1 = 0

∇µlL = −
n∑
i=1

2pmil (xi − µl) = 0.

From the last of these equations, we can get an expression of the mean µl in function of x and p:

µl =

∑
i p
m
il xi∑

i p
m
il

. (2.2)

Note that if the coefficients of p are in {0, 1}, then we have the same equation as in the k-means problem
and µl corresponds to the centroid of the observations of the lth cluster. In the general case where the
coefficients pil take real values, µl corresponds to the weighted centroid of the lth cluster using the weights
pmil .

Combining the other two stationary equations, we can get rid of the Lagrange multipliers λi and
obtain an expression of pil in function of x and µ. On the one hand, we have

pil =

(
λi

m‖xi − µl‖2

) 1
m−1

. (2.3)

On the other hand, we have
∑k
l=1 pil = 1. Using the expression (2.3) for pil, this gives us

k∑
l=1

(
λi

m‖xi − µl‖2

) 1
m−1

= 1⇔ λ
1/(m−1)
i =

(
k∑
l=1

1

m‖xi − µl‖
2

m−1

)−1

.

Finally, we can replace the value of λ1/(m−1)
i in (2.3) by the expression that we have just obtained.

This gives us

pil =

(
k∑

l′=1

(
‖xi − µl‖
‖xi − µl′‖

) 2
m−1

)−1

. (2.4)

The fuzzy c-means algorithm alternatively uses the equations (2.4) and (2.2) to update the means
and the membership matrix. More precisely, it can be decomposed into 2 steps that are repeated until
convergence:

• (Assignment step) The membership matrix is updated with the formula (2.4).

• (Mean update step) The means are updated with the formula (2.2).

This algorithm converges to a local minimum or a saddle point of the objective function J(p, µ). Note
that the coefficients pil obtained with this method are in [0, 1] and verify ∀i,

∑
l pil = 1. Therefore, pil

can be interpreted as the probability for the observation xi to belong to the lth cluster.
Now we study the impact of the parameter m on the fuzziness of the result by looking at the limit

cases m→ 1 and m→∞. We start with the case m→ 1. We have

lim
m→1

(
‖xi − µl‖
‖xi − µl′‖

) 2
m−1

=

+∞ if ‖xi − µl‖ > ‖xi − µl′‖;
1 if ‖xi − µl‖ = ‖xi − µl′‖;
0 if ‖xi − µl‖ < ‖xi − µl′‖.

40

Knowing that there exists a l′ ∈ J1, kK such that ‖xi−µl‖ > ‖xi−µl′‖ if and only if l 6= arg minl′‖xi−µ′l‖,
we have

lim
m→1

k∑
l′=1

(
‖xi − µl‖
‖xi − µl′‖

) 2
m−1

=

{
1 if l = arg minl′‖xi − µ′l‖
+∞ otherwise.

This leads to limm→1 pil = 1 if l = arg minl′‖xi − µ′l‖, and limm→1 pil = 0 otherwise. We see that
in this limit case, we have a crisp partitioning that corresponds to the assignment made by Lloyd’s
algorithm, i.e. each observation is assigned to the nearest cluster. In this limit, the update made in the
second step of the fuzzy c-means algorithm consists in taking the centroid of each cluster, which also
corresponds to the update performed by Lloyd’s approach.

In the limit m→ +∞, we have

lim
m→∞

(
‖xi − µl‖
‖xi − µl′‖

) 2
m−1

= 1,

which gives us

lim
m→∞

pil = lim
m→∞

[
k∑

l′=1

(
‖xi − µl‖
‖xi − µl′‖

) 2
m−1

]−1

=
1

k
.

Therefore, in the limit m→∞, the soft clustering obtained corresponds to the situation of maximum
fuzziness, where each observation xi has an uniform probability to belong to each cluster.

2.3 Soft modularity
Going back to the problem of graph clustering, we will now see how the problem of modularity maximization
can be relaxed into a soft clustering problem. The problem of modularity maximization introduced in
Chapter 1 can be written as

maximize
P∈P

Q(P) =
1

w

∑
C∈P

∑
i,j∈C

(
Aij −

wiwj
w

)
, (2.5)

where P is the set of all partitions of V . The modularity function Q(P) can be reformulated using the
notation C(i) for the cluster of P to which the node i belongs, and with the Kronecker delta δ:

Q(P) =
1

w

∑
i,j∈V

(
Aij −

wiwj
w

)
δC(i)C(j).

As described in the previous section, we can introduce the membership matrix p ∈ {0, 1}n×n associated
with the partition P = {C1, . . . , CK} defined as

∀i ∈ V,∀k ∈ J1, nK, pik =

{
1 if i ∈ Ck
0 otherwise.

Note that the size of such a membership matrix is n×n and not n×k as in the analysis of the k-means
algorithm. Indeed, we no longer bound the maximum number of clusters (but there can be at most n
clusters). The coefficient δC(i)C(j) can be expressed in function of the coefficients of the membership
matrix associated with P ,

δC(i)C(j) =

n∑
k=1

pikpjk.

Therefore, it is easy to see that P is an optimal solution of the modularity maximization problem if and
only if its associated membership matrix p is an optimal solution of

maximize
p∈Zn×n

1

w

∑
i,j∈V

n∑
k=0

(
Aij −

wiwj
w

)
pikpjk

subject to ∀i ∈ V,
n∑
k=1

pik = 1

∀i ∈ V,∀k ∈ J1, nK, pik ≥ 0.

41

Given a membership matrix p, we use pi· to denote the vector that corresponds to the ith line of p and
p·k to denote the vector that corresponds to its kth column. Using this notation, we have the following
simple expression for the coefficient δC(i)C(j)

δC(i)C(j) = pTi·pj·,

and the problem can be rewritten

maximize
p∈Zn×n

1

w

∑
i,j∈V

(
Aij −

wiwj
w

)
pi·

T pj·

subject to ∀i ∈ V, 1T pi· = 1

∀i ∈ V, pi· ≥ 0.

(2.6)

In a similar way to the fuzzy c-means approach described above, we can consider a relaxation of the
modularity optimization problem (2.6) where the coefficient of the membership matrix p can take real
values:

maximize
p∈Rn×n

1

w

∑
i,j∈V

(
Aij −

wiwj
w

)
pi·

T pj·

subject to ∀i ∈ V, 1T pi· = 1

∀i ∈ V, pi· ≥ 0.

(2.7)

Note that if p is a feasible solution of this problem, then the vector pi· can be interpreted as a
probability distribution over clusters, as we have pi· ≥ 0 and 1T pi· = 1. Therefore, pik corresponds to
the probability for a node i to belong to cluster k. Nodes can have a positive degree of membership for
multiple clusters, unlike in the classical modularity maximization problem. We use Q(p) to refer to this
new objective function, that we call soft modularity :

Q(p) =
1

w

∑
i,j∈V

(
Aij −

wiwj
w

)
pi·

T pj·. (2.8)

The soft modularity can also be written in function of the columns of the membership matrix p,

Q(p) =
1

w

n∑
k=1

pT·k

(
A− wwT

w

)
p·k, (2.9)

where w denotes the vector whose coefficients are the weighted degrees wi.

In the rest of this chapter, we study how to solve the soft modularity maximization problem.

2.4 Related work
Several methods have been proposed to solve the soft modularity maximization problem described
above or variants of this problem [Nicosia et al., 2009, Griechisch and Pluhár, 2011, Havens et al., 2013,
Chang and Chang, 2017, Kawase et al., 2016]. In this section, we study in detail the softmax algorithm in-
troduced in [Chang and Chang, 2017]. We also present the characteristics of the other existing approaches
without giving a detailed definition of each of these algorithms.

2.4.1 The softmax approach
Here, we present the approach introduced in [Chang and Chang, 2017] from a slightly different angle
than the original paper. The optimization problem considered here is a slight variant of the relaxation
introduced above where the number of clusters is limited to K. In other words, the membership matrix
considered here has size n×K, and the corresponding problem can be stated as

maximize
p∈Rn×K

1

w

∑
i,j∈V

(
Aij −

wiwj
w

)
pi·

T pj·

subject to ∀i ∈ V, 1T pi· = 1

∀i ∈ V, pi· ≥ 0.

(2.10)

42

The approach of Chang et al. is based on the softmax function defined as follows.

Definition 2.4.1 (Softmax). We define the softmax function σ : Rn×K → (0,∞)n×K as follows,

∀q ∈ Rn×K ,∀i ∈ J1, nK,∀k ∈ J1,KK [σ(q)]ik =
exp(qik)∑K
l=1 exp(qil)

.

Note that, for all matrix q ∈ Rn×K , the softmax function maps q to a matrix σ(q) that verifies the
constraints ∀i, 1Tσ(q)i· = 1 and σ(q) ≥ 0. In particular, the lines of σ(q) can be interpreted as probability
distributions over the clusters. However, note that the image of Rn×K under σ is not the set of constraints
of (2.10), i.e. the set of matrices p ∈ Rn×K s.t. ∀i, 1T pi· = 1 and p ≥ 0. Indeed, we have ∀q, σ(q) > 0.
Nevertheless, we can obtain matrices σ(q) with coefficients equal to zero in the limit where the coefficients
of q tend to ±∞. In other word, the image of the closure of Rn×K under σ is the set of constraints of
(2.10).

Let us study some properties of the softmax function. We see that if q′ ∈ Rn×K verifies ∀i, q′ik = qik+ci
with c ∈ Rn, then σ(q′) = σ(q). In particular, σ is not injective. However, we have the following lemma
that characterizes the q such that σ(q) = p for a given p.

Lemma 2.4.2. For all p ∈ Rn×K such that ∀i, 1T pi· = 1 and pi· > 0, we have

• σ(q) = p for q ∈ Rn×K defined as

∀i, k, qik = log(pik);

• ∀q′ s.t. σ(q′) = p, there exists c ∈ Rn s.t.

∀i, k, q′ik = qik + ci.

Proof. It is easy to verify that σ(q) = p. If q′ verifies σ(q′) = p = σ(q), then, taking the logarithm, we get

q′ik = qik + log

(∑
l exp(q′il)∑
l exp(qil)

)
.

The softmax approach of the soft modularity maximization problem consists in using the softmax
function to parameterized the solution p. In other words, we set p = σ(q) and we study the objective
function

Q(σ(q)) =
1

w

∑
i,j

(
Aij −

wiwj
w

)
σ(q)Ti·σ(q)j·.

We want to find an updated rule for q for which the objective function q 7→ Q(σ(q)) is non-decreasing.
In order to simplify the following calculations, we use B to denote the matrix B = 1

w

(
A− wwT

w

)
, so

that Q(σ(q)) =
∑
ij Bijσ(q)Ti·σ(q)j·. In their approach, Chang et al. consider the case where ∀i, Bii = 0.

Note that it simply corresponds to a particular normalization of the diagonal coefficients of A. They
also consider that B is symmetric, i.e. that the graph G is undirected. We use these hypotheses in the
following.

We consider variations ∆q of the variable q that only impact the ith0 row of q, for some i0, i.e. we
have ∆qi = 0 for all i 6= i0. The variation of modularity ∆Q for such a variation ∆q of q can be written

∆Q = Q(σ(q + ∆q))−Q(σ(q)) = 2 (σ(q + ∆q)i0· − σ(q)i0·)
T
∑
j

Bi0jσ(q)j· (2.11)

σ(q + ∆q) can be written

∀i, k, σ(q + ∆q)ik =
σ(q)ike

∆qik∑
l σ(q)ile∆qil

.

43

We use x ∈ RK to denote the vector σ(q)i0· and y ∈ Rn the vector defined as y =
∑
j Bi0jσ(q)jk. The

equation (2.11) becomes

∆Q = 2
∑
k

[
xke

∆qi0k∑
l xle

∆qi0l
− xk

]
yk.

We see that if we take the variation ∆q defined as ∆qi0· = θy and ∀i 6= i0, ∆qi = 0 for some θ ∈ R,
then we have

∆Q = 2
∑
k

[
xkyke

θyk∑
l xle

θyl
− xk∑

l xl

]
,

where we used
∑
l xl = 1. Now, if we introduce the function f : θ 7→

∑
k xkyke

θyk∑
k xke

θyk
, then we have

∆Q = 2(f(θ)− f(0)).

Note that f is the derivative of F : θ 7→ log
(∑

k xke
θyk
)
. The derivative of f is

f ′(θ) =

∑
k xky

2
ke
θyk
∑
k xke

θyk −
(∑

k xkyke
θyk
)2

(
∑
k xke

θyk)
2 .

The Cauchy-Schwartz inequality (
∑
k akbk)

2 ≤
∑
k a

2
k

∑
k b

2
k applied with ak =

√
xkyke

θyk/2 and
bk =

√
xke

θyk/2 gives us f ′(θ) ≥ 0, with equality if and only if the vectors a and b are proportional, i.e. if
and only if yk is constant for all k. Finally, this yields to the following Lemma.

Lemma 2.4.3. For all i0, for a variation ∆q of q such that ∆qi0· = θ
∑
j Bi0·σ(q)j· with θ > 0, and

∆qi· = 0 for i 6= i0, we have
∆Q = Q(σ(q + ∆q))−Q(σ(q)) ≥ 0 (2.12)

with equality if and only if
∑
j Bi0jσ(q)j· is constant for all k.

This leads to the following algorithm.

1. (Initialization) Take an initial matrix q such that each row qi· is not a constant vector.

2. (Main loop) At each step, for each node i ∈ V , we do

qi· ← qi· + θ
∑
j

Bijσ(q)j·.

3. (Output) We return p = σ(q).

θ > 0 is given as a parameter of the algorithm. We can stop the algorithm when the modularity
Q(σ(q)) does not significantly increase anymore. The analysis performed above shows that Q(σ(q)) is
non-decreasing under each update. The choice of the initialization made in the algorithm is due to the
fact that, if the ith row of q is a constant vector, then we will have an equality in (2.12) (i.e. ∆Q = 0)
when we update the ith row.

The main limitation of this softmax approach is that the membership matrix p computed by the
algorithm is the densest possible matrix i.e. none of its coefficients are equal to zero. As a consequence,
we need to store n×K coefficients which can be very expensive in term of memory when the number of
nodes n or the number of clusters K increase. In most of real-life graphs, for a given node, we expect the
degree of membership to most of the clusters to be equal to zero, as a node will generally be connected to
only a small number of clusters. In other words, we expect the membership matrix p to be sparse, which
is not the case in this softmax approach.

2.4.2 Other approaches

The relaxation of the modularity optimization problem and the optimization of the soft modularity (2.8)
(or slight variants of this objective function) have been tackled by other articles [Nicosia et al., 2009,
Griechisch and Pluhár, 2011, Havens et al., 2013, Kawase et al., 2016]. Like for the softmax approach,

44

the maximum number of clustersK must be specified for all these approaches. They all rely on membership
matrices p ∈ Rn×K , with generally K � n.

These works differ in the optimization techniques they use to solve the problem. In [Nicosia et al., 2009],
the authors use a genetic algorithm to optimize a more general relaxation of the modularity problem.
In [Griechisch and Pluhár, 2011], the authors do not directly study the optimization of the relaxation
problem, but they rely on an external quadratic solver. In [Havens et al., 2013], the authors use a spectral
approach that does not directly solve the relaxation of the modularity problem, but where modularity
is used as a selection criterion. The main limitation of these methods lies in the maximum number of
clusters K that must be specified. We could get around this issue by taking large values for K, but
all the approaches cited above do not scale well to large K. Indeed, like for the softmax approach
[Chang and Chang, 2017] described above, the solutions p ∈ Rn×K found by these methods are dense
matrices. In other words, the number of parameters to store in memory and to optimize is in O(nK), which
quickly becomes prohibitive for large values of K. For instance, in the approach of [Nicosia et al., 2009],
the genetic algorithm starts with dense random matrices of Rn×K , and its hybridation and mutation
mechanisms do not lead to sparser matrices, so that all the coefficients of the solution p found by this
algorithm are positive with probability 1.

In this chapter, we introduce an efficient algorithm to solve a relaxation of the modularity optimization
problem with a membership matrix p ∈ Rn×n. Thus, the maximum number of clusters does not need to
be specified. Besides, unlike the approaches presented above, the updates performed by our algorithm
preserve the sparsity of the solution p and are local, in the sense that the membership vector pi· of a
node i ∈ V is updated using only membership information from its neighbors in the graph. Thus, our
algorithm can easily scale up to large datasets with large number of clusters, which is not the case of the
algorithms listed above.

As proposed in [Whang et al., 2015], the problem of soft graph clustering can also be tackled by a
combination of spectral embedding [Von Luxburg, 2007, Fowlkes et al., 2004] and soft-clustering in the
vector space, with algorithms such as the fuzzy C-means algorithm [Dunn, 1973] or the NEO k-means
algorithm [Whang et al., 2015]. However, the number of clusters K has to be specified for these techniques.
Besides, spectral embedding methods do not scale well to large size graphs [Perozzi et al., 2014]. For
instance, they are unable to handle the subgraph of Wikipedia that we use in our experiments in Section
2.9. Finally, it is worth mentioning that several algorithms have been proposed for the related problem
of overlapping community detection in networks [Lancichinetti et al., 2011, Yang and Leskovec, 2013].
Whereas these approaches return clusters C ⊂ V , soft-clustering methods give for each node the degrees
of membership to all clusters.

2.5 Alternating projected gradient descent

We can rewrite the relaxation of the modularity optimization problem as a classic minimization problem
minp∈X J(p), where J : p 7→ −Q(p) is the cost function and X = {p ∈ Rn×n : ∀i, pi· ≥ 0, 1T pi· = 1} is
the set of constraints.

As seen in Chapter 1, the normalized weighted Laplacian of the graph is defined as L = I −
D−1/2AD−1/2, where D is the diagonal matrix whose entries are the weighted degrees of the nodes:
D = diag(w1, . . . , wn). We have seen that the Laplacian matrix is symmetric and semi-definite positive
[Chung, 1997]. We use 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn to denote its eigenvalues.

Theorem 2.5.1. The function J is convex if and only if the second lowest eigenvalue λ2 of the normalized
Laplacian L verifies λ2 ≥ 1.

Proof. The cost function J can be written as J(p) = 1
w

∑
k J̃(p·k) where J̃(q) =

∑
i

∑
j(Aij−wiwj/w)qiqj .

So J is convex if and only if J̃ is convex. Moreover, the function J̃ is convex iff its hessian matrix H is
semi-definite positive. An expression of H is given by H = −2

(
A− wwT

w

)
, where w denotes the vector

(wi)i∈V . We see that H is closely related to the modularity matrix introduced in Chapter 1.
Let x be a vector of Rn, and y = D1/2x. Then we have:

xTHx = −2
(
yTD−1/2AD−1/2y − ‖uT1 y‖2

)
= 2(yT (L − I)y + ‖uT1 y‖2)

45

where u1 = (1/
√
w)D−1/2w. It is easy to verify that u1 is a normalized eigenvector associated with the

first eigenvalue λ1 = 0 of the normalized Laplacian L. We use u1, . . . , un to denote the orthonormal basis
of eigenvectors corresponding to the eigenvalues (λ1, . . . , λn). Thus, we can write:

xTHx = 2(

n∑
k=1

(λk − 1)‖uTk y‖2 + ‖uT1 y‖2)

= 2(

n∑
k=2

(λk − 1)‖uTk y‖2)

We see that xTHx ≥ 0 for all x if and only if 1 ≥ λ2 ≥ . . . ≥ λn, which concludes the proof.

The condition λ2 ≥ 1, which corresponds to a large spectral gap, is in general not satisfied. For
instance, Lemma 1.7. in [Chung, 1997] proves that λ2 ≤ 1 if G is unweighted and not complete. Therefore,
the loss function associated with our problem is in general non-convex. However, it is convex in pi· for a
graph with no self-loop as shown in the following proposition. In the rest of the chapter, we assume that
the graph G does not contain any self-loop.

Proposition 2.5.2. If the graph does not contain any self loops, i.e. if Aii = 0 for all node i, the
function p 7→ J(p) is convex with respect to variable pi· for all i ∈ V .

Proof. Let i be a given node. We have for all k, k′ ∈ J1, nK,

∂J

∂pik
= − 2

w

∑
j∈V

(Aij − wiwj/w)pjk,

∂J

∂pik∂pik′
=

2

w
(w2

i /w −Aii)δ(k, k′),

where δ(k, k′) = 1 if k = k′ and 0 otherwise. If Aii = 0, the hessian matrix Hi of J with respect to pi·
can be written Hi = 2(wi/w)2I. It is thus definite positive, which proves the convexity of J in pi·.

With this result, we can apply the methods of convex optimization with convex constraints to the
problem minpi·∈Y J(p), with fixed pj· for j 6= i, where the set Y corresponds to the probability simplex of
Rn:

Y = {q ∈ Rn : q ≥ 0, 1T q = 1}.

We use πY to denote the euclidean projection onto the probability simplex Y,

πY(x) = arg min
y∈Y
‖x− y‖2.

Then, using the projected gradient descent method [Goldstein, 1964, Levitin and Polyak, 1966], we can
define an update rule for variable pi· such that modularity is non-decreasing at each step. The gradient
of J with respect to pi· is:

∇iJ = − 2

w

∑
j∈V

(Aij − wiwj/w)pj·.

Theorem 2.5.3. The soft modularity objective function Q(p) is non-decreasing under the update rule

pi· ← πY

pi· + 2t

w

∑
j∈V

(
Aij −

wiwj
w

)
pj·

 (2.13)

for all node i ∈ V if the step size t verifies t < (w/wi)
2.

Q(p) is invariant under all these update rules iff pi· maximizes Q(p) with fixed pj·, j 6= i, for all node
i ∈ V .

46

Proof. Let i be a given node of V and p ∈ X be a feasible solution of the relaxation of the soft modularity
optimization problem. We define p+ with p+

i· = πY

[
pi· +

2t
w

∑
j∈V

(
Aij − wiwj

w

)
pj·

]
, and p+

j· = pj· for all
j 6= i.

The objective function J(p) = −Q(p) is quadratic in pik, k ∈ J1, nK, so we have:

J(p+) = J(p) +∇iJ(p)T (pi·
+ − pi·) +

1

2
(pi·

+ − pi·)Hi(pi·
+ − pi·) (2.14)

= J(p)− t∇iJ(p)TGi(p) +

(
wit

w

)2

‖Gi(p)‖2

where ∇iJ(p) is the gradient of J with respect to pi·, Hi is the hessian matrix of J with respect to pi·
whose expression was given in the proof of Proposition 2.5.2, and Gi(p) = (pi· − pi·+)/t.

Besides, by definition of πY , and using the expression of ∇iJ(p) given in the proof of Proposition
2.5.2, we have

p+
i· = arg min

q∈Y

{
‖q − (pi· − t∇iJ(p))‖2

}
= arg min

q∈Y

{
2t∇iJ(p)T (q − pi·) + ‖q − pi·‖2

}
(2.15)

= arg min
q∈Rn

{
∇iJ(p)T (q − pi·) +

‖q − pi·‖2

2t
+ h(q)

}
where h(q) = 0 if q ∈ Y, and h(q) = +∞ otherwise.
Y is a convex set, so h is a convex function. Note that h is non-differentiable. We use ∂h(q) to denote

the subdifferential of h at q i.e. the set of all its subgradients. Remember that a vector v is defined as a
subgradient of h at q if it verifies, for all q′, h(q′)− h(q) ≥ vT (q′ − q).

Equation (2.15) can be written p+
i = arg minq L(q), where L is a non-differentiable convex function.

The optimality of p+
i· gives us 0 ∈ ∂L(p+

i·). Therefore, there exists a v ∈ ∂h(p+
i·), such that

∇iJ(p) +
1

t
(pi·

+ − pi·) + v = 0.

Using this result in equation (2.14), we obtain

J(p+) = J(p) + tvTGi(p)− t
(

1− t
(wi
w

)2
)
‖Gi(p)‖2.

We have tvTGi(p) = vT (pi· − pi·+) ≤ h(pi·)− h(pi·
+) because v ∈ ∂h(p+

i·). Both pi· and p
+
i· belongs to Y ,

thus vTGi(p) ≤ 0.
Finally, we obtain

J(p+) ≤ J(p)− t
(

1− t
(wi
w

)2
)
‖Gi(p)‖2.

We have Q(p+) ≥ Q(p) if t < (w/wi)
2. The inequality becomes an equality if and only if Gi(p) = 0,

which gives us ∇iJ(p) + v = 0. This is equivalent to say that p is an optimum of J + h with respect to
pi·.

We now consider the natural algorithm that cycles through the nodes of the graph to apply the update
(2.13).

Theorem 2.5.4. The algorithm converges to a local maximum of the soft modularity function p 7→ Q(p)
which is a fixed point of the updates of (2.13).

Proof. The sequence of matrices p built by the algorithm converges to a limit p∗ ∈ Y, since the soft
modularity Q is non-decreasing under each update, Y is a compact, and p 7→ Q(p) is continuous and
upper bounded. From the proof of Theorem 2.5.3, we have for all i ∈ V , Gi(p) = 0, which gives us
(p∗i·)

+ = p∗i·, thus p∗ is a fixed point for the update relative to node i. Moreover, we have for all node
i ∈ V , ∇iJ(p∗) + v = 0 for some v ∈ ∂h(p∗i·), which proves that p∗ is a local optimum of the function
p 7→ J(p) = −Q(p).

47

2.6 Soft clustering algorithm

In the previous section, we have presented updates rules that can be applied in an alternating fashion to
find a local maximum of the soft modularity Q(p). However, there are three major issues with a naive
implementation of this method.

1. The gradient descent update for each node i is computationally expensive because the update rule
(2.13) involves a sum over all nodes of V .

2. The size of a solution p is n2, which is prohibitive for large datasets.

3. The computational cost of the projection πY onto the probability simplex is classically in O(n log n)
[Duchi et al., 2008], which can be a limiting factor in practice.

In the present section, we present an efficient implementation of the algorithm that solves these three
problems. In particular, our implementation guarantees that the update step for node i only requires
local computation, is memory efficient, and uses a fast mechanism for projection.

2.6.1 Local gradient descent step

The update of Theorem 2.5.3 relative to node i ∈ V can be decomposed into two steps:

1. p̂i· ← pi· +
2t
w

∑
j∈V

(
Aij − wiwj

w

)
pj·

2. pi· ← πY(p̂i·).

At first sight, step 1 seems to depend on information from all nodes of V , and to require the computation
of a sum over n terms. However, the gradient descent step can be written as

p̂i· ← pi· +
2t

w

∑
j∼i

Aij(pj· − p̄),

where p̄ is weighted average of vector pj·:

p̄ =
∑
j∈V

wj
w
pj·.

The vector p̄ ∈ Rn can be stored and updated throughout the algorithm. Then, the computation of
p̂i· is purely local, in the sense that it only requires information from neighbors of node i. Moreover, the
sum to compute contains only di terms, where di = |Nei(i)| is the unweighted degree of node i. In most
real-life graphs, di is much smaller than the number of nodes n.

2.6.2 Cluster membership representation

The cluster membership variable p is a n × n matrix. In a naive implementation, the memory cost of
storing p is therefore in O(n2). However, we will see below that the projection step can be written
πY(p̂i·) = (p̂i·− θ1)+ with θ ≥ 0, where [(x)+]k = max(xk, 0). Thus, the projection acts as a thresholding
step. We expect it to have the same effect as a Lasso regularization1 and to lead to a sparse vector pi·.

To take benefit of this sparsity, we only store the non-zero coefficients of p. If, for all node i ∈ V , the
number of non-zero values in vector pi· is lower than a given L, then the memory cost of storing p is in
O(nL). We will see, in our experiments in Section 2.9, that the average number of positive components
that we observe for vectors pi· throughout the execution of our algorithm is lower than 2, and that the
maximum number of positive components that we record is L = 65 for a graph with 731, 293 nodes.

1 Note that the l1 proximal operator for one component is x 7→ sign(x)(|x| − λ)+.

48

2.6.3 Projection onto the probability simplex

The classic algorithm to perform the projection πY(p̂i·) onto Y is described in [Duchi et al., 2008]. It is
defined as follows.

• Sort the vector p̂i· into µ: µ1 ≥ µ2 ≥ · · · ≥ µn.

• Find ρ = max
{
j ∈ [n], µj − 1

j

(∑j
r=1 µr − 1

)
> 0
}
.

• Define θ = 1
ρ (
∑ρ
i=1 µi − 1) so that πY (p̂i·) = (p̂i· − θ1)+.

This algorithm runs in O(n log n) because of the sorting step.
In our case, the complexity can be reduced to O(Li logLi), with Li = |suppi(p)|, where suppi(p) =

{k ∈ J1, nK,∃j ∈ Nei(i) ∪ {i}, pik > 0} is the union of the supports of vectors pj· for j ∈ Nei(i) ∪ {i}. Li
is upper-bounded by L(di + 1) which is typically much smaller than the total number of nodes n.

Proposition 2.6.1. In order to compute πY(p̂i·), we only need to sort the components k ∈ suppi(p) of
p̂i· to determine ρ and θ. All components k /∈ suppi(p) of πY (p̂i·) are set to zero.

Proof. First note that

n∑
k=1

p̂ik =
∑
k

pik +
2t

w

∑
j

Aij

(∑
k

pik −
∑
k

p̄k

)
= 1

since
∑
k

∑
j
wj
w pjk =

∑
j
wj
w

∑
k pjk = 1.

Let j0 be defined by j0 = max{j : µj ≥ 0}. The function j 7→
(∑j

r=1 µr − 1
)
increases for j ≤ j0 and

then decreases to 0 when j = n. In particular, this function is non-negative for j ≥ j0. This implies that
ρ ≤ j0 and θ ≥ 0.

Now, for k /∈ suppi(p), we have p̂ik = − 2twi
w p̄k ≤ 0 so that the k-th component of πY (p̂i·) will be zero

since θ ≥ 0. Moreover, since ρ ≤ j0, the value of p̂ik is not used for the determination of ρ and θ.

2.6.4 MODSOFT

Finally, the algorithm can be described as follows.

• Initialization: p← I and p̄← w/w.

• One epoch: For each node i ∈ V ,

– ∀k ∈ suppi(p), p̂ik ← pik + t′
∑
j∼iAij(pjk − p̄k)

– p+
i· ← project(p̂i·)

– p̄← p̄+ (wi/w)(p+
i· − pi·) and pi· ← p+

i· .

wherew is the vector (wi)1≤i≤n, project is the adaptation of the algorithm of [Duchi et al., 2008] presented
above, and t′ is the effective learning rate t′ = 2t/w. One epoch of the algorithm is typically repeated
until the increase of modularity falls below a given threshold ε > 0, as in the Louvain algorithm. Note that
we chose, in this implementation, to put each node in its own cluster at initialization, but our algorithm
could also be initialized with the results of another algorithm (e.g. Louvain). We refer to this algorithm
as MODSOFT (MODularity SOFT clustering). We give the algorithm pseudo-code as working python
code in Section 2.8.

2.7 Link with the Louvain algorithm

In this section, we show that if the learning rate t is larger than a graph-specific threshold, one update
performed by our algorithm reduces to a local update performed by the Louvain algorithm.

49

First, we observe that, if the membership matrix p verifies p ∈ {0, 1}n2

, then the update rule (2.13)
for a node i ∈ V becomes

pi· ← πY

([
1{i∈Ck} +

2t

w

(
wi(Ck)− wi

Vol(Ck)

w

)]
k

)
where Ck = {i ∈ V : pik = 1} refers to the kth cluster defined by p, wi(C) denotes the degree of node i in
cluster C ⊂ V , wi(C) =

∑
j∈C Aij , and Vol(C) denotes the volume of cluster C, Vol(C) =

∑
j∈C wj .

In the following, we assume that: ∀C,C ′ ⊂ V,∀i ∈ V ,

C 6= C ′ ⇒ wi(C)− wiVol(C)
w 6= wi(C

′)− wiVol(C′)
w . (H)

The hypothesis (H) is non-binding in real cases, because, if the weights (Aij)(i,j)∈E are continuously
distributed, then we will have (H) with probability 1; and if they follow a discrete distribution, we can
always add a small noise to the weights, so that (H) is verified with probability 1.

Proposition 2.7.1. Let p ∈ X be a membership matrix. If p ∈ {0, 1}n2

, if the hypothesis (H) is verified,
and if t > w/δ where

δ = min
C,C′⊂V
i∈V
C 6=C′

∣∣∣∣(wi(C)− wiVol(C)

w

)
−
(
wi(C

′)− wiVol(C ′)

w

)∣∣∣∣ ,

then the update rule (2.13) for node i ∈ V reduces to pik ← 1 if k = arg max
l:j∈Cl,j∼i

[
wi(Cl)− wiVol(Cl)

w

]
, and

pik ← 0 otherwise, where Ck denotes the kth cluster defined by p.

Proof. Given p ∈ X ∩ {0, 1}n2

and i ∈ V , we use p+ to denote the vector obtained by applying the
update rule of Theorem 2.5.3 for node i. We have, for all k ∈ J1, nK, p+

ik = max(p̂ik − λ, 0) where
p̂ik = pik + 2t

w [wi(Ck)− wiVol(Ck)/w] and λ is chosen so that
∑
k p

+
ik = 1.

Let k∗ = arg maxk[wi(Ck)− wiVol(Ck)/w]. We assume that (H) is verified and that t > w/δ. Thus,
for all k ∈ J1, nK s.t. k 6= k∗,

p̂ik∗ − p̂ik ≥ pik∗ − pik +
2t

w
δ ≥ −1 +

2t

w
δ > 1. (2.16)

In particular, this implies p+
ik∗ > p+

ik. Now, note that if we had p+
ik > 0 for a certain k 6= k∗, we would

have p+
ik∗ ∈ (0, 1], p+

ik ∈ (0, 1], and therefore p+
ik∗ − p+

ik < 1. Yet, we would also have p+
ik∗ − p+

ik =
(p̂ik∗ − λ)− (p̂ik − λ) = p̂ik∗ − p̂ik, which leads to a contradiction with (2.16).

Therefore, we have ∀k 6= k∗, p+
ik = 0, which immediately gives us p+

ik∗ = 1.
Finally, we see have seen in our simplification of the projection onto the probability simplex that the

arg max in the definition of k∗ can be taken over the communities in the neighborhood of i.

In particular, this result shows that if p ∈ {0, 1}n2

and t is large enough, then for each update of our
algorithm, the updated membership matrix p+ verifies p+ ∈ {0, 1}n2

, which corresponds to the maximum
sparsity that can be achieved by a feasible solution p ∈ X .

As described in Chapter 1, one epoch of the main routine of the Louvain algorithm considers successively
each node i ∈ V , and (1) removes i from its current cluster, (2) applies an update rule, that we refer to
as LouvainUpdate(i), which consists in transferring i to the cluster that leads to the largest increase in
hard modularity. Proposition 2.7.2 gives an explicit formula to pick the cluster Ck∗ to which node i is
transferred by LouvainUpdate(i).

Proposition 2.7.2. The update performed by LouvainUpdate(i) is equivalent to transferring node i to
the cluster C∗k such that:

k∗ = arg max
k:j∈Ck,j∼i

[
wi(Ck)− wi

Vol(Ck)

w

]

50

(a) Graph (b) Louvain (c) Modsoft

Figure 2.1: Bow tie graph

Proof. The variation of hard modularity when node i ∈ V joins cluster Ck can be written as

∆Q(i→ Ck) =
1

w

[
2

(
wi(Ck)− wi

Vol(Ck)

w

)
− w2

i

w

]
. (2.17)

Therefore, arg maxk ∆Q(i→ Ck) = arg maxk

(
wi(Ck)− wiVol(Ck)

w

)
.

Using Proposition 2.7.1, we see that the update performed by LouvainUpdate(i) and the update rule
(2.13) are equivalent if (H) is verified and t > w/δ (with δ defined in Proposition 2.7.1). Therefore, under
these assumptions, one epoch of our algorithm is strictly equivalent to one epoch of a slightly modified
version of the Louvain algorithm in which we do not apply step (1) before applying LouvainUpdate(i).
Note that step (1) should have no impact on LouvainUpdate(i) if clusters are large enough. Indeed, it
only replaces in Proposition 2.7.2 the volume of the current cluster Ck of i, Vol(Ck), with Vol(Ck)− wi.
It is also worth noting that the Louvain algorithm uses an aggregation routine that is not considered in
the present analysis.

2.8 Algorithm pseudo-code

We give the pseudo-code of the algorithm as working python code in in Algorithm 1. The algorithm only
requires one parameter, the learning rate lr, which corresponds to the 2t

w factor in the previous section.
The algorithm stores two variables p and avg_p. The variable p corresponds to the membership

matrix p, i.e. the output of our algorithm, and is stored as a dictionary of dictionary, so that each p[i][k]
corresponds to a positive coefficient of p, pik. The variable avg_p is a dictionary used to store the average
cluster membership vector p̄, so that avg_p[k] corresponds to p̄k.

The graph is given to the algorithm as four variables: nodes, edges, degree and w. The variable
nodes contains the list of the nodes. The variable edges is a dictionary of dictionary, where edges[i][j]
contains the weight Aij . The variable degree is a dictionary containing the node degrees, and w is the
total weight of the graph.

One epoch in our algorithm corresponds to the application of all the update rules of Theorem 2.5.3,
each update rule corresponding to the update of the membership probabilities of one node. Several
strategies can be adopted regarding the choice of the number of epochs. A fixed number of epochs can be
given in advance as an additional parameter to the algorithm, or the soft-modularity can be computed at
the end of each epoch, and be used as a stopping criterion. For instance, we can stop the algorithm when
the modularity increase becomes smaller than a given precision factor ε > 0. This later strategy is the
equivalent of the strategy used by the Louvain algorithm for the hard modularity problem.

51

Algorithm 1 Soft-modularity optimization
Require: nodes, edges, degree, w, lr (learning rate)

Initialization

p = dict ()
avg_p = dict ()
for node in nodes :

p [node] = {node : 1 . }
avg_p [node] = (1 . /w) ∗ degree [node]

One epoch (update the membership matrix p)

for node in nodes :
new_p = dict ()
Gradient descent s t ep
for com in p [node] :

new_p [com] = p [node] [com]
for neighbor in edges [node] :

weight = edges [node] [ne ighbor]
for com in p [ne ighbor] :

i f com not in new_p :
new_p [com] = 0 .

new_p [com] += l r ∗ weight ∗ p [ne ighbor] [com]
for com in new_p :

new_p [com] −= l r ∗ degree [node] ∗ avg_p [com]
Projec t ion s t ep
new_p = pro j e c t (new_p)
Updating average membership vec tor
for com in p [node] :

avg_p [com] −= (1 . /w) ∗ degree [node] ∗ p [node] [com]
p [node] = dict ()
for com in new_p :

avg_p [com] += (1 . /w) ∗ degree [node] ∗ new_p [com]
p [node] [com] = new_p [com]

Sub-routine project

def p r o j e c t (in_dict) :
Sort the va lue s o f in_dict in decreas ing order
va lue s = sorted (in_dict . va lue s () , r e v e r s e=True)
Find the va lue o f lambda
cum_sum = 0 . ; lamb = 0 .
i = 1
for va l in va lue s :

cum_sum += val
new_lamb = (1 . / i) ∗ (cum_sum − 1 .)
i f va l − new_lamb <= 0 . :

break
else :

lamb = new_lamb
i += 1

Create the output d i c t i ona ry
out_dict = dict ()
for key in in_dict :

out_dict [key] = max(in_dict [key] − lamb , 0)
return out_dict

52

2.9 Experimental results

2.9.1 Synthetic data

Bow tie

We first consider a toy example that we call the bow tie graph, that is defined in Figure 2.1 (a). The
Louvain algorithm applied to this graph returns partition {{1, 2, 3}, {4, 5}} or partition {{1, 2}, {3, 4, 5}}
depending on the order in which the updates LouvainUpdate are performed. It can be easily verified that
these partitions correspond to the maximum of hard modularity over all possible partitions. In Figure
2.1 (b), we represent the results of the Louvain algorithm where colors code for clusters. In Figure 2.1
(c), we represent the results of our algorithm where the cluster membership is coded with a pie chart for
each node. We see that our algorithm assigns nodes 1 and 2 to one cluster, and nodes 4 and 5 to another
cluster, whereas node 3 has a mixed membership, with a probability 0.5 to belong to each cluster. It
is easy to check that the membership matrix p returned by our algorithm corresponds to the optimal
solution of the problem (2.7). The modularity Qsoft found by our algorithm is 50% higher than that
found by the Louvain algorithm Qhard.

Overlapping SBM

Now, we consider a variant with overlaps of the Stochastic Block Model (SBM) presented in Chapter 1,
defined as follows. We have V = C1 ∪ · · · ∪ CK with |C1| = . . . = |CK | = c and |Ck ∩ Ck+1| = o for all k.
For all nodes i and j such that i 6= j, the edge (i, j) exists with probability pin if i, j ∈ Ck for some k,
and with probability pout otherwise.

In order to numerically evaluate the performance of our algorithm on this model, we first compute
the relative difference between the modularity Qsoft obtained with our algorithm and the modularity
Qhard obtained with the Louvain algorithm, ∆Q = (Qsoft −Qhard)/Qhard. We also compare the planted
clusters of our model Ck with the clusters Ĉk returned by our algorithm. We consider that these clusters
are the non-empty sets Ĉk where Ĉk = {i ∈ V : pik > 0}. Note that the clusters Ĉk returned by our
algorithm can overlap just as the Ck. In order to compare the clusters Ck and Ĉk, we use the average of
the F1-score introduced in the introductory chapter. Remember that it takes values between 0 and 1,
and is equal to 1 if the estimated clusters Ĉk correspond exactly to the initial clusters Ck.

We compute the same two metrics for Chang’s algorithm [Chang and Chang, 2017]. Since the
membership matrix returned by this algorithm is not sparse, we define Ĉk as Ĉk = {i ∈ V : pik > α} for
the F1-score evaluation. We present the results for α = 0.05, but other values of α leads to similar results.

For different values of the cluster size c, we run our algorithm, Chang’s algorithm and the Louvain
algorithm on 100 random instances of this model, with o = 2, K = 2, pin = 0.9, and pout = 0.1, We
display the results in Figure 2.2. The average F1-scores for our algorithm and Chang’s algorithm are close
to 1 (> 0.99 on average), and are higher than those obtained by Louvain (0.94 on average). Besides, the
relative difference to the modularity found by Louvain ∆Q for Chang’s algorithm and our algorithm is
always positive. However, we note that ∆Q and the differences between the F1-scores become negligible
as the cluster size c increases. This can be explained by the fact that, as the cluster size c increases, the
proportion of nodes with mixed membership, i.e. nodes that belong to multiple clusters Ck, decreases. If
this proportion is low, the misclassification of nodes with mixed membership has a low impact on the
modularity score Q and on the F1-score.

We also represent in Figure 2.2 the sparsity of the solution in term of the number of non-zero
coefficients of the matrix p, and the average execution time in milliseconds for the different algorithms.
We observe that our algorithm provides performance comparable to Louvain (but with richer membership
information). Besides, we see that MODSOFT runs more than 10 times faster and uses 5 times less
memory than Chang’s algorithm.

2.9.2 Real data

Wikipedia

We consider a graph built from Wikipedia data, where nodes correspond to Wikipedia articles and edges
correspond to hyperlinks between these articles (we consider that the edges are undirected and unweighted).
Wikipedia articles can correspond to a wide variety of entities: persons, locations, organizations, concepts

53

Figure 2.2: Overlapping SBM

etc. In order to restrict ourselves to homogeneous entities, we choose to limit ourselves to Wikipedia
pages that correspond to humans. For this purpose, we use Wikidata, a knowledge base that provides
structured data about Wikipedia articles. In particular, Wikidata objects have an instance_of field
that we use to determine if a Wikipedia article represents a human or not. The subgraph induced by the
human entities has 731,293 nodes and 3,266,258 edges.

We run the Louvain algorithm, Chang’s algorithm and MODSOFT on this subgraph. As described in
Section 2.4, Chang’s algorithm requires the maximum number of clusters K to be specified. We run it
with K = n (which corresponds to the implicit choice made for our algorithm), K equal to the number of
clusters returned by Louvain (i.e. K = 12, 820) and K = 100. Chang’s algorithm is unable to handle
the graph (the execution raises a memory error) for all these choices of K, whereas our algorithm runs
in 38 seconds on an Intel Xeon Broadwell CPU with 32 GB of RAM. As a baseline for comparison, the
Louvain algorithm runs in 20 seconds on this dataset. The difference in memory consumption between
our algorithm and Chang’s algorithm can easily be explained by the fact that the membership matrix p in
Chang’s approach is a dense n×K matrix (see Section 2.4), i.e. the algorithm needs to store and perform
operations on 73, 129, 300 coefficients for K = 100. By contrast, the matrix returned by our algorithm is
very sparse, since it contains only 760, 546 non-zero coefficients in our experiments, which represents a
proportion of approximately 10−6 of the coefficients of the n× n matrix. The average number of positive
components of vectors pi· throughout the execution of the algorithm is 1.21, and the densest vector pi·
has 65 positive components.

Our algorithm leads to a higher modularity than the Louvain algorithm on this dataset. However,
this increase represents a modularity increase ∆Q of slightly less than 1%. This can be explained by the
fact that the nodes with mixed membership found by our algorithm represent less than 5% of the total
number of nodes. Even if the performance increase brought by our algorithm in terms of modularity is
marginal, we qualitatively observe that the results of our algorithm, and in particular the nodes with
mixed membership identified by our approach, are particularly relevant.

In order to be able to graphically represent the results of our algorithm, we consider the subgraph
induced by the top 100 nodes in term of degree. We display the results of our algorithm on this smaller
graph in Figure 2.3. In particular, we observe that Napoleon (1769-1821), who became Emperor of the

54

Figure 2.3: MODSOFT on a small subgraph of Wikipedia

French in 1804, appears to belong to the same cluster as European leaders from the old regime, such
as Charles V (1338-1380) and Louis XIV (1638-1715), and, at the same time, to the same cluster as
post-French-revolution leaders such as Queen Victoria (1819-1901) and Edward VII (1841-1910). We also
see that Miles Davis (1926-1951), a famous American jazz trumpeter, is found to belong to the same
cluster as classical music composers, such as Claude Debussy (1862-1918) and Johan Sebastian Bach
(1685-1750), but also to the same cluster as pop/rock musicians such as Jimi Hendrix (1942-1970) and
Michael Jackson (1958-2009). Finally, we observe that Albert Einstein who became politically involved
during World War II, belongs to the same cluster as thinkers, intellectuals and scientists, such as Sigmond
Freud and Plato, and to the same cluster as political leaders during World War II such as Adolf Hitler
and Joseph Stalin.

Open Flights

We consider a graph built from the Open Flights database that regroups open-source information on
airports and airlines. The graph we consider is built as follows: the nodes correspond to the airports and
the edges correspond to the airline routes, i.e. there is an edge between two airports if an airline operates
services between these airports.

We apply our algorithm and the Louvain algorithm to this graph. During the execution of the
algorithm, the number of positive components of vectors pi· remains lower than 11 and is on average 1.17.
We measure a relative increase in modularity ∆Q of less that 1%, and yet we find that our algorithm
brings insightful information about the dataset by identifying bridges between important zones of the
world. In Figure 2.4, we display the results of our algorithm. We use plain colors to code for the cluster
membership of pure nodes, i.e. nodes that belong to a unique cluster, and bigger red dots to identify
nodes with a mixed membership. Note that most of these nodes with mixed membership are located
on the borders between large regions of the world. For instance, we remark that numbers of nodes are
located on the frontier between Europe, Africa and Middle East, such as the Dubai airport in the United
Arab Emirates. We also observe that six airports with mixed membership are located all along the border
between the United States on the one hand, and Canada and Alaska on the other hand.

55

Figure 2.4: MODSOFT on the OpenFlights graph

Graph size F1-score Execution time (s)
|V | |E| L O M L O M

Amazon 334,863 925,872 0.28 0.47 0.53 15 1038 32
DBLP 317,080 1,049,866 0.14 0.35 0.38 17 1717 33
YouTube 1,134,890 2,987,624 0.01 - 0.15 45 - 98

Table 2.1: F1-scores and execution times in seconds on SNAP datasets

SNAP datasets

We present further experiments on the datasets from SNAP2 that come with ground-truth clusters
[Yang and Leskovec, 2015]. The Amazon dataset corresponds to a product co-purchasing network. The
nodes of the graph represent Amazon products and the edges correspond to frequently co-purchased
products. The ground-truth clusters are defined as the product categories. The DBLP dataset corre-
sponds to a scientific collaboration network. The nodes of the graph represent the authors and the
edges the co-authorship relations. The scientific conferences are used as ground-truth clusters. In the
YouTube dataset, nodes represent users and edges connect users who have a friendship relation. User
groups are used as ground-truth clusters. We use Louvain and the state-of-the-art algorithm OSLOM
[Lancichinetti et al., 2011] as baselines for our experiments. OSLOM is known as one of the most effective
overlapping community detection algorithm [Xie et al., 2013], and its C++ code is open-source. In Table
2.1, we give the F1-scores and the execution times for Louvain (L), OSLOM (O) and Modsoft (M). The
experiments were carried out on an m4.xlarge AWS instance with 64GB RAM and 16 vCPUs with Intel
Xeon. A learning of t = 0.1 was used for Modsoft. Note that we did not include the results of OSLOM on
the YouTube dataset because its the execution time exceeded 6 hours. We see that Modsoft outperforms
OSLOM both in terms of F1-score (11% higher on average) and execution time (OSLOM is about 40
times slower). Moreover, although Modsoft is slower than Louvain (about twice slower on average), it
offers F1-scores that are at least twice as large as the ones provided by Louvain. This can be explained
by the fact that the clusters returned by Louvain are necessary disjoint whereas the ground-truth clusters
in all three datasets can overlap. In contrast, Modsoft is able to capture these mixed memberships.

Note that such results using ground-truth clusters must be handled with care as they highly depend
on the definition of the ground-truth as underlined in Chapter 1. Qualitative results provided above give
additional guarantees about the performance of the Modsoft algorithm.

2Stanford Network Analysis Project, https://snap.stanford.edu/data/

56

Chapter 3

Edge clustering

In this chapter, we study another approach to overcome the limits of node partitioning algorithms. We
study the problem of edge clustering and introduce an algorithm based on a variant of the modularity
function for edge partitions. This extension naturally emerges from the interpretation of the modularity in
terms of random walks. In this paper, we propose a novel agglomerative algorithm to efficiently maximize
this alternative edge modularity function. This algorithm is based on an important conservation result
that guarantees that modularity is invariant under the aggregation operation that we consider. We
show in our experiments that our method outperforms existing algorithms, mainly because, unlike other
methods, our approach does not require the construction of a memory-expensive line graph. This chapter
is based in the work presented in [Hollocou et al., 2018].

3.1 Introduction

As pointed in the previous chapter, most of existing approaches focus on finding partitions of the graph
nodes, even if recovering node partitions is often too restrictive in practice, as a node often belongs to
several clusters in real-life graphs. We gave the example of social networks, where users can potentially
belong to multiple social circles (friends, colleagues, family etc.). For this reason, it can be more interesting
to cluster the graph edges instead of the nodes. In the social network example, this allows us to make a
distinction between the different types of relationships (friendships, business relationships, family ties
etc.) by putting the corresponding edges in different clusters.

In this chapter, we study graph clustering algorithm that output clusters of edges, i.e. subsets C ⊂ E.
In particular, we introduce a generalization of the classic modularity measure to score partition of
edges. We refer to this alternative objective function as the edge modularity. Whereas the standard
modularity function can be interpreted using a random walk on graph nodes [Delvenne et al., 2010,
Lambiotte et al., 2008] as seen in Chapter 1, the edge modularity arises by considering the sequence
of edges crossed by this very same random walk. We propose a novel algorithm to maximize the edge
modularity using an agglomerative strategy similar to the one used by the Louvain algorithm that enables
it to scale to large graphs. Our method is based on a key conservation result that states that the edge
modularity is invariant under the particular aggregation scheme performed by our algorithm. This
aggregation strategy relies on a distinction between border nodes that are linked to edges from different
clusters and internal nodes that are only connected to edges from one cluster.

We show on both synthetic and real-life datasets that our algorithm significantly outperforms, both in
terms of execution time and memory consumption, the existing approaches that rely on the construction
of a weighted line graph [Evans and Lambiotte, 2009] whose size is much larger than the original graph.
Another important benefit of our method is the aggregated graph produced by the algorithm, as it is
easy to visualize and interpret, and can be used to obtain better insights on large datasets.

The rest of the chapter is organized as follows. We briefly present the related work in section 3.2. In
section 3.3, we define the edge modularity that we consider and study some of its properties. We study
in detail the algorithm introduced by Evans and Lambiotte in Section 3.4. In section 3.5, we present
our aggregation scheme, state the edge modularity conservation result, and define our edge modularity
optimization algorithm. We present experimental results on synthetic and real-world data in section 3.6.

57

3.2 Related work

The problem of edge clustering has been tackled in different papers [Evans and Lambiotte, 2009,
Ahn et al., 2010, Shi et al., 2013, Zhou et al., 2008]. We study in details the methods proposed in
[Evans and Lambiotte, 2009] in Section 3.4. This approach relies on the definition of three scoring
functions for edge partitions based on the interpretation of the modularity function in terms of random
walks [Delvenne et al., 2010, Lambiotte et al., 2008] presented in Chapter 1. Evans and Lambiotte
introduce these new functions but do not propose any specific algorithm to maximize them. As explained
in Section 3.4, the optimization of these functions requires the construction of three variants of the
line graph (graphs whose nodes are the edges of the original graph) and the use of classic modularity
optimization techniques on these graphs. In practice, the size of these line graphs is prohibitive, as the
number of edges in these new graphs is in O(

∑
u d

2
u) where du is the degree of node u, and their method

cannot be applied to large real-life graphs (see Section 3.6). In this chapter, we do not review in details
the other existing approaches presented in [Ahn et al., 2010, Shi et al., 2013, Zhou et al., 2008]. But, as
pointed in the respective papers, these algorithms only apply to small graphs an cannot be use to cluster
real-life graphs as the ones considered in Section 3.6.

3.3 A modularity function for edge partitions

As explained in our introductory chapter, the modularity function can also be interpreted in terms of
random walk on the nodes of G [Delvenne et al., 2010, Lambiotte et al., 2008]. Let us consider the classic
random walk (Xt)t≥0 on the nodes of G where the walk moves from a node u to one of its neighbors v with
probability Auv/wu. (Xt)t≥0 is a Markov chain. If G is connected and not bipartite, (Xt)t≥0 has a unique
stationary distribution π, defined as π(u) = wu

w , and we have for all u ∈ V , limt→∞ P[Xt = u] = π(u)
[Chung, 1997]. Then, the modularity of a partition C can be written as

Q(C) =
∑
C∈C

(Pπ[X0 ∈ C,X1 ∈ C]− Pπ[X0 ∈ C,X∞ ∈ C]) , (3.1)

where Pπ[X0 ∈ C,X1 ∈ C] is the probability for the walk to be in C at initial time (with X0 initialized
with the distribution π) and after one step, and Pπ[X0 ∈ C,X∞ ∈ C] is the probability for the walk to
be in C at initial time and in the stationary regime.

From the random walk (Xt)t≥0 on the nodes of G, we can naturally define a Markov chain (Yt)t≥0 on
the edges E of G, with, for all t ≥ 0, Yt = {Xt, Xt+1} ∈ E. For e = {u, v} ∈ E, we have:

P[Yt = e] = we
∑
u′∈e

P[Xt = u′]

wu′
,

where we denotes the weight of the edge e, i.e. we = Auv.
Building on the random walk interpretation of the modularity, we can define the modularity for

a partition of the edges E using (Yt)t≥0. Given a partition C of the edges of G, we define the edge
modularity of C as

Q̃(C) =
∑
C∈C

(Pπ[Y0 ∈ C, Y1 ∈ C]− Pπ[Y0 ∈ C, Y∞ ∈ C]) , (3.2)

where Pπ[Y0 ∈ C, Y1 ∈ C] is the probability for the first two edges crossed by the walk to be in C (with
X0 initialized with the distribution π), and Pπ[Y0 ∈ C, Y∞ ∈ C] is the probability for an edge crossed by
the walk to be in C for the first jump and in the stationary regime.

The following proposition gives explicit expressions of the edge modularity.

Proposition 3.3.1. The edge modularity of a partition C of E can be written as

Q̃(C) =
∑
C∈C

∑
e,f∈C

wewf
w

∑
u∈e∩f

1

wu
− wewf

(w/2)2

 (3.3)

58

and

Q̃(C) =
∑
C∈C

[∑
u∈V

(wu(C))2

wwu
−
(
w(C)

w(E)

)2
]

(3.4)

where wu(C) =
∑
e∈C 1{u∈e}we and w(C) =

∑
e∈C we.

Proof. The first equality follows from

Pπ[Y0 ∈ C, Y1 ∈ C] =
∑
e∈C

Pπ[Y0 ∈ C, Y1 = e] =
∑
e∈C

we
∑
u∈e

Pπ[X1 = u, Y0 ∈ C]

wu

=
∑
e∈C

we
∑
u∈e

1

wu

∑
v∈V

Pπ[X0 = v]︸ ︷︷ ︸
=wv/w

Avu
wv

1{{v,u}∈C}

=
1

w

∑
e∈C

we
∑
u∈e

1

wu

∑
f∈C

1{u∈f}wf =
∑
e,f∈C

wewf
w

∑
u∈e∩f

1

wu

Pπ[Y0 ∈ C, Y∞ ∈ C] =
∑
e,f∈C

4wewf
(w)2

.

where we used the fact that, for all e ∈ E,

lim
t→∞

P[Yt = e] = we
∑
u∈e

1

wu
lim
t→∞

P[Xt = u]︸ ︷︷ ︸
wu/w

=
2we
w

.

For the second equality, we remark that

∑
e,f∈C

wewf
w

∑
u∈e∩f

1

wu
=
∑
u∈V

1

wwu

(∑
e∈C

1{u∈e}we

)2

and ∑
e,f∈C

wewf
(w/2)2

=

(∑
e∈C we

)2(∑
e∈E we

)2 .

The edge modularity Q̃(C) of an edge partition C is actually equal to the standard modularity of C in
a graph H whose nodes correspond to the edges of G. This result is stated in the following proposition.

Proposition 3.3.2. Let us define the graph H = (V H , GH) with V H = E, EH = {{e, f} ∈ E×E : ∃u ∈
V, u ∈ e ∩ f}, and the adjacency matrix AHef =

wewf
2

∑
u∈e∩f

1
wu

.
For all partitions C of E, we have Q̃(C) = QH(C). In other words, the edge modularity of C in G is

equal to the standard modularity of C in H.

Proof. First, we have for all e ∈ V H .

wHe =
∑
f∈V H

AHef =
∑
f∈E

wewf
2

∑
u∈e∩f

1

wu

=
we
2

∑
u∈e

1

wu

∑
f∈E

1{u∈f}wf

=
we
2

∑
u∈e

wu
wu

= we.

Then, observe that
wH =

∑
e∈V H

wHe =
∑
e∈E

we = w/2.

59

This gives us ∑
C∈C

∑
e,f∈C

AHef
wH

=
∑
C∈C

∑
e,f∈C

wewf
w

∑
u∈e∩f

1

wu

and ∑
C∈C

∑
e,f∈C

wHe w
H
f

(wH)2
=
∑
C∈C

∑
e,f∈C

wewf
(w/2)2

Using (3.3), we can conclude the proof.

Proposition 3.3.2 has important consequences. First, it follows from the work of Brandes et al.
[Brandes et al., 2007] that the problem of maximizing Q̃(C) is NP-hard and cannot be solved exactly in
reasonable time. Then, we see that the standard modularity maximization heuristics as the Louvain
algorithm can be used on the graph H to find an approximation of the solution of maxC Q̃(C). However,
we will see that this approach does not scale to large graphs.

3.4 The approach of Evans and Lambiotte

From Proposition 3.3.2, we see that the edge modularity can be written as the standard modularity using
a different adjacency matrix AH of size m×m that corresponds to a graph H whose nodes are the edges
of the original graph:

Q(C) =
1

wH

∑
C∈C

∑
e,f

(
AHef −

wHe w
H
f

wH

)
, (3.5)

where wHe =
∑
f A

H
ef and wH =

∑
e w

H
e . We will see that the matrix AH can be seen as the re-

sult of an operation called a projection of a particular bipartite graph, the incidence graph. In
[Evans and Lambiotte, 2009], the authors study similar approaches with other m × m matrices that
correspond to different projections of the incidence graph on the set of edges.

3.4.1 Incidence graph and bipartite graph projections

The incidence matrix of the graph G is a n×m matrix, that we note B, such that, for all node i ∈ V and
for all edge e ∈ E, Bie = 1 if the edge e is incident to the node i, and Bie = 0 otherwise. This matrix can
be seen as the adjacency matrix of a bipartite graph, the so-called incidence graph I(G), whose nodes
are, on the one hand, the nodes V of the original graph, and, on the other hand, its edges E, and such
that there is an edge between i ∈ V and e ∈ E if and only if i is an extremity of e.

If the graph G is unweighted and has no self-loop, which is an hypothesis of Evans et Lambiotte
that we will use in the rest of this section, the adjacency matrix of the original graph can be written in
function of the incidence matrix B:

∀i, j, Aij =
∑
e∈E

BieBje(1− δij). (3.6)

Such an operation, where we go from the matrix B ∈ {0, 1}n×m to A ∈ {0, 1}n×n is called a projection.
More precisely, a projection of a bipartite graph between two sets X and Y is an operation that compresses
the information contained in the bipartite graph by building a new graph that contains nodes of only
either of the two sets X and Y .

In (3.6), we see that the graph G is a projection of the incidence graph I(G) on the set of nodes.
In this section, we are interested in projections of I(G) to build graphs whose nodes are the edges E
rather that the nodes V . The graph H defined in Proposition 3.3.2 is such a projection. However, there
exists other ways to project the incidence graph I(G) that leads to alternative definitions of the edge
modularity in (3.5). Evans and Lambiotte study three of such projections that we present below.

60

3.4.2 Line graph
The simplest projection of I(G) on the set of edges E consists in using the formula (3.6), that defines G
as a projection of I(G) on the set of nodes, and replace V with E. As in [Evans and Lambiotte, 2009],
we refer to this projection as C. The adjacency matrix of C is defined as

∀e, f, ACef =
∑
i∈V

BieBif (1− δef).

In other words, ACef = 1 if e 6= f and e ∩ f 6= ∅, i.e. if e 6= f and e and f have a common extremity,
and ACef = 0 otherwise. C corresponds to the standard definition of the line graph that we find in the
graph theory literature [Balakrishnan, 1997]. Note that we can derive C from the graph H defined in
Proposition 3.3.2 by removing the edge weights and the self loops from H. The degree of e ∈ E in C can
be written in function of the (unweighted) degrees di of nodes in G:

dCe =
∑
f∈E

ACef =
∑
i∈V

∑
f∈E

BieBif (1− δef) =
∑
i∈e

(di − 1).

In other words, dCe = di + dj − 2 if e = (i, j). Besides, we see that a node of degree di in G corresponds to
a clique of di nodes in the line graph C. This gives too much importance to the nodes with large degrees
in G and motivates the definition of weighted line graphs.

3.4.3 Weighted line graph
We have seen above that the degree of a node e = (i, j) ∈ E in the line graph C is in O(di + dj). The idea
behind the following projection of the incidence graph I(G) studied by Evans and Lambiotte is to obtain
a graph whose degrees are in O(1). This can be done by considering the graph D with the adjacency
matrix

ADef =
∑
i:di>1

BieBif
di − 1

(1− δef).

Note that D is a weighted version of the line graph C. The weighted degree of a node e = (i, j) in D is

wDe =
∑
f

ADef = 1di>1 + 1dj>1.

In other words, the degree of an edge e ∈ E is 0 if it is an isolated edge, it is equal to 1 if it is a leaf, and it is
equal to 2 otherwise. Note that we have wDe = O(1) as wanted. As noted in [Evans and Lambiotte, 2009],
this type of weighted projection is well suited for bipartite graphs corresponding to scientific collaborations.
Indeed, if B corresponds to the adjacency matrix of a graph whose nodes are either scientists X or
scientific papers Y , such that x is connected to y if x has written y, the projection defined as

∀x, x′,∀y, Axx′ =
∑

y:dBy >1

BxyBx′y
dBy − 1

(1− δxx′)

gives a larger weight to edges between scientists who have written papers together with few co-authors
than to edges between scientists who have joint publications with many co-authors.

3.4.4 Random-walk-based projection
In Proposition 3.3.2, we have introduced a projection H of the incidence graph based on the canonical
random walk (Xt)t≥0 on G. This projection is not directly studied in [Evans and Lambiotte, 2009], but
the authors consider a slight variation of H. Note that we have

AHef = wHPπ[Y0 = e, Y1 = f],

where (Yt)t≥0 is the Markov chain on edges E introduced in the previous section. Evans and Lambiotte
consider the projection E1 defined as

AE1

ef = wHP[Y0 = e, Y2 = f],

61

which corresponds to 2 steps of (Yt)t≥0 instead of 1. AE1 can also be written as

∀e, f,
∑

i,j:di>0,dj>0

BieAijBjf
didj

.

This projection is particularly interesting in light of Chapter 2. Indeed, recall that the soft modularity
can be written as

Q(p) =
1

w

∑
ij

(
Aij −

wiwj
w

)
pikpjk,

where pik is the degree of membership of node i to the kth cluster. If we define a membership degree for
each edge e to each cluster k, qek, and we write p in function of q as

∀i, k, pik =
∑
e∈E

Bieqek
di

,

then the soft modularity becomes

Q(p) =
1

w

∑
k

∑
e,f

∑
i,j

(
BieAijBjf

didj
− BieBjf

w

)
qekqfk

=
1

w

∑
k

∑
e,f

(
AE1

ef −
wewf
w

)
qekqfk ≡ QE1(q).

In other words, the soft modularity for nodes Q(p) is equal to the soft modularity QE1(q) for the
membership matrix q in the graph E1.

3.4.5 Limitation
In [Evans and Lambiotte, 2009], the authors do not present any specific technique to optimize the
modularity (3.5) with the three projections C, D and E1 that they introduce. However, this optimization
can be done by applying standard modularity maximization algorithms in these three variants of the line
graph. Nevertheless, as described in the following section, this technique is prohibitive in practice because
the construction of the line graph is too expensive for large graphs (the number of edges in this graph is
in O(

∑
i d

2
i)). The projection H that we introduced in the previous section have specific properties that

enable us to overcome this problem and design an efficient algorithm for the edge modularity maximization
problem that does not require the construction of the graph H. The rest of the chapter is dedicated to
the presentation and analysis of this technique.

Besides, note that the method presented in [Evans and Lambiotte, 2009] do not directly applies to
weighted graphs or graphs with self-loops. In the following, we consider general weighted graphs that can
contain self-loops.

3.5 An agglomerative algorithm for maximizing edge modularity
We have seen above that the edge modularity can be expressed as the standard modularity in a weighted
line graph H. Therefore, a natural approach for maximizing the edge modularity consists in building the
graph H corresponding to G using Proposition 3.3.2 and applying the Louvain algorithm to this new
graph. However there is an important limit to this naive approach. Indeed, building the graph H is
prohibitive in practice for large graphs G as the number of edges in H is(∑

u∈V
(du)2 −m

)
/2,

where du denotes the unweighted degree of a node u in G and m denotes the number of edges in G. This
number typically explodes as the sizes of the considered graphs increase, because node degrees follow
scale-free power-law distributions in most of real-life graphs [Barabási and Albert, 1999].

In this section, we define an algorithm that does not require the construction of the weighted line
graph H. This algorithm is based on an aggregation scheme that preserves the edge modularity (which is
the central result of this section) and that can be easily interpreted.

62

3.5.1 Agglomerative step
In order to define our aggregation scheme, we define two sets of nodes for each edge cluster: the internal
nodes and the border nodes.

Definition 3.5.1. Given a partition of the edges of G, C = {C1, . . . , CK}, we define the internal nodes
for cluster Ck as

I(k) = {u ∈ V : ∀e ∈ E, u ∈ e⇒ e ∈ Ck}
and the border nodes for cluster Ck as

B(k) = {u ∈ V : ∃e ∈ Ck,∃f /∈ Ck, u ∈ e ∩ f}.

In other words, the internal nodes correspond to nodes that are bound to edges that all belong to the
same cluster, whereas border nodes are bound to edges that belong to distinct clusters. These sets of
nodes follow the following properties, for all k:

(a) B(k) ∩ I(k) = ∅ (b) ∀u ∈ B(k),∃l 6= k, u ∈ B(l) (c) ∀l 6= k, I(k) ∩ I(l) = ∅.

In the following definition, we consider an aggregation operation that consists in aggregating the
internal nodes for each cluster Ck into a single node vk with a self-loop.

Definition 3.5.2. Given a graph G and an edge partition C = {C1, . . . , CK}, we define the aggregated
graph relative to G and C as G′ = (V ′, E′) with the set of node

V ′ =

(⋃
k

B(k)

)
∪ {vk : I(k) 6= ∅},

where vk = I(k). The weighted edges E′ of G′ are defined by the adjacency matrix A′

∀u, v ∈ V ′, A′uv =

Auv if u, v ∈ B(k)∑
u′,v′∈I(k)Au′v′ if u = v = vk∑
v′∈I(k)Auv′ if u ∈ B(k), v = vk∑
u′∈I(k)Au′v if u = vk, v ∈ B(k)

0 otherwise.

We also define the corresponding aggregated partition C′ = {C ′1, . . . , C ′K} as

C ′k ={{u, v} ∈ Ck : u, v ∈ B(k)} ∪ {{u, vk} : u ∈ B(k),∃v ∈ I(k), {u, v} ∈ Ck}
∪ {{vk, vk} : A′vkvk > 0}.

In other words, this aggregation operation can be decomposed into two steps. (i) For each cluster Ck,
all the internal nodes are aggregated into a single node vk bearing a self-loop of weight 1

2

∑
u,v∈I(k)Auv.

(ii) For each border node u ∈ B(k), an edge between u and vk is created if ∃v ∈ I(k) s.t. {u, v} ∈ E. The
weight of this edge is then

∑
v∈I(k)Auv. Note that the result of this aggregation operation is easy to

interpret. Indeed, the nodes in the new graph G′ correspond to single nodes or groups of nodes in the
original graph, and the edge weights in G′ correspond to the interactions between these groups of nodes
(or to internal interactions for self-loops). We will illustrate this point on real-life data in Section 3.6.

The following theorem states that the edge modularity is invariant under this aggregation operation.

Theorem 3.5.3. The edge modularity Q̃(C) of the edge partition C in G is equal to the edge modularity
Q̃(C′) of the edge partition C′ in the aggregated graph G′.

Proof. We use the formulation (3.3) to prove this result. On the one hand, it is easy to verify that we
have w′(C ′k) = w(Ck) and w′(E′) = w(E) using Definition 3.5.2, where w′ denotes the weights in the new
graph G′. On the other hand, similar calculations lead to w′u(C ′k) = wu(Ck) and w′u = wu for all nodes
u ∈ B(k) for all k. Therefore, we only need to prove that∑

k

∑
u∈I(k)

wu(Ck)2

wu
=
∑
k

w′vk(C ′k)2

w′vk
. (3.7)

63

We remark that, for all k, for all u ∈ I(k), wu(Ck) = wu and w′vk(C ′k) = w′vk . Thus (3.7) is equivalent to∑
u∈I(k) wu = w′vk , which follows from Definition 3.5.2.

Thanks to this key conservation result, we can use the same strategy as the Louvain algorithm to
optimize the edge modularity, i.e. alternate greedy maximization of Q̃ and the agglomerative operation
described above.

3.5.2 Greedy maximization step

The simplest greedy method to maximize the edge modularity consists in cycling over the graph edges and,
for each edge, move it to the neighboring cluster that leads to the highest increase in edge modularity.

However, this greedy maximization strategy is only applicable to the first step of the algorithm when
the graph has not been aggregated. Indeed, the aggregation operation generally yields to aggregated
clusters C ′k that contain more than one edge. The edges in these clusters must then be moved all together
in order for the modularity conservation result from Theorem 3.5.3 to apply. To handle this issue, we
consider a method that consists in cycling through the cluster C ′k returned by the aggregation operation,
and moves the edges of each of these clusters in groups. We move all the edges of such a group to the
neighboring cluster that results to the largest increase in edge modularity.

The variation of edge modularity when a group of edges M ⊂ E is moved from one cluster Ck to
another cluster Cl is given by

∆Q̃(M : Ck → Cl) =
∑

u:wu(M)>0

wu(M)

w(E)wu
(wu(M) + wu(Cl)− wu(Ck))

− 2w(M)(w(M) + w(Cl)− w(Ck)

w(E)2
.

3.5.3 Algorithm

In Algorithm 2, we give the pseudo-code of the algorithm that iteratively repeats the greedy maximization
step and the aggregation operation described above. At initial time, the algorithm puts each edge in
its own cluster. Like the Louvain algorithm, the algorithm takes a unique parameter ε > 0. The greedy
maximization step and the aggregation step are repeated until the modularity increase is lower than this
sensibility threshold ε.

In order to compute the increase ∆Q̃(M : Ck → Cl) and to perform the aggregation operation in an
efficient manner, the algorithm can store the weights w(Ck), wu(Ck), and the sets B(Ck) and I(Ck) for
each cluster Ck.

3.6 Experimental results

3.6.1 Synthetic data

As in Chapter 2, we use a stochastic block model (SBM) with overlapping blocks to evaluate the
performance of our algorithm on synthetic data. Given a set {B1, . . . , BI} of node blocks Bi ⊂ V , we
consider the random graph model where the edge {u, v} appears in the graph with probability pin if u
and v belongs to the same block Bi, and with probability pout otherwise. The probabilities pin and pout

are parameters of our model. The blocks that we consider have the same size c > 0 (∀i, |Bi| = c) and
overlap as follows: for all i, |Bi ∩Bi+1| = o and Bi ∩Bj = ∅ if j > i+ 1.

We compare our algorithm to the algorithms that consist in building the line graphs defined by Evans
and Lambiotte C, D and E1, and applying the Louvain algorithm to these graphs. We refer to the
algorithm that corresponds to the graph C as EL(C) (and respectively we call EL(D) and EL(E1) the
algorithms that correspond to the graphs D and E1). All these algorithms have been implemented in
Python and will be made available online.

First, we compare the execution time and the memory consumption of these algorithms on multiple
instances of our random graph model for different numbers of blocks I. The other parameters of the
model are set to pin = 0.95, pout = 0.05, c = 10 and o = 2. We display the results in Figure 3.1. We see
that our algorithm runs on average more than 5 times faster than EL(C), EL(D) and EL(E1). Besides,

64

Algorithm 2 Agglomerative edge modularity optimization algorithm
Require: Graph G and sensibility threshold ε ≥ 0.
Initialization: C ← {{e}, e ∈ E} (edge partition) andM← C (groups of edges to consider)
Q̃old ← −∞, Q̃new ← Q̃(C)
while Q̃new − Q̃old > ε do

Greedy maximization step
increase← true
while increase do

increase← false
for M ∈M do

Ck ← current cluster of M in C
Compute ∆Q̃(M : Ck → Cl) for neighboring clusters Cl in C
l∗ ← arg maxl ∆Q̃(M : Ck → Cl)
if ∆Q̃(M : Ck → Cl∗) > ε then

increase← true
Modifiy C by moving M from cluster Ck to Cl∗

end if
end for

end while
Aggregation step
G, C ← aggregated graph and corresponding partition given by Definition 3.5.2
M← C, Q̃old ← Q̃new, Q̃new ← Q̃(C)

end while

our algorithm consumes on average 10 times less memory than EL(C) and EL(D) and almost 100 times
less memory than EL(E1). This can be easily explained by the fact that the size of the line graphs
considered by the approach of Evans and Lambiotte is much larger than the size of the original graph G.

In order to compare the quality of the results of the different algorithms, we define the notion of
estimated blocks B̂k for the different algorithms. If C1, . . . , CK are the edge clusters returned by one
algorithm, we define the corresponding estimated blocks for this algorithm as

∀k, B̂k =

{
u ∈ V :

wu(Ck)

wu
≥ α

}
where α ∈ [0, 1] is a given parameter. Then, we use the F1-score to compare the original blocks (Bi) with
the estimated blocks (B̂k) for the different algorithms. The F1-score is equal to 1 if and only if the blocks
(B̂k) exactly correspond to the planted blocks (Bi).

In Figure 3.1, we plot the average F1-scores for values of α ranging from 0 to 1. We see that the
F1-score for our algorithm is on average 50% higher than the score observed for EL(C) and is very
comparable to the score obtained by EL(D) (within 1% on average). This score is slightly lower (3% on
average) than the score achieved by EL(E1). However, we see that the benefit of EL(E1) is marginal
knowing that the memory consumption of this algorithm is almost 100 times higher than the one measured
for our algorithm.

3.6.2 Real-life datasets

OpenFlights

We first use the OpenFlights Airport Database1 for our benchmarks on real-life data. We consider the
graph whose nodes correspond to airports and whose edges correspond to airline routes between these
airports. We run our algorithm and EL(C), EL(D) and EL(E1) on this graph that contains 3,097 nodes
and 18,193 edges. Our algorithm runs in 16.9 seconds and uses 15 MiB of memory, whereas EL(C) and
EL(D) run respectively in 95 and 7.2 · 103 seconds and use 817 and 815 MiB of memory. The execution
EL(E1) raises a out-of-memory error on a computer with 16GB of RAM.

1https://openflights.org

65

https://openflights.org

(a) Execution time in seconds (b) Memory consumption in MiB

(c) F1-score

Figure 3.1: Overlapping SBM - Execution times, memory consumption and F1-scores

Cluster 1 Frankfurt am Main, Charles de Gaulle, Amsterdam Schiphol, Munich, Barcelona
Cluster 2 Hartsfield Jackson Atlanta, Chicago O’Hare, Dallas Fort Worth, Houston, Denver
Cluster 3 Atatürk, Dubai, Suvarnabhumi, Kuala Lumpur, King Abdulaziz
Cluster 4 Domodedovo, Sheremetyevo, Pulkovo, Ben Gurion, Vnukovo
Cluster 5 Mohammed V, OR Tambo, Jomo Kenyatta, Murtala Muhammed, Quatro de Fevereiro

Figure 3.2: OpenFlights - Edge clusters around London Heathrow

Figure 3.3: OpenFlights - Aggregated graph

66

Run time (in seconds) F1-scores
nodes # edges Louvain Infomap Walktrap Ours Louvain Infomap Walktrap Ours

Amazon 335 ·103 926 ·103 12.7 31.8 261 16.2 0.29 0.30 0.39 0.42
DBLP 317 ·103 1050 ·103 14.1 27.6 1725 26.2 0.14 0.10 0.22 0.25

Table 3.1: Benchmarks on two SNAP datasets

To illustrate the results of our algorithm on this dataset, we first focus on the node corresponding to
the London Heathrow Airport and consider its adjacent edges. We are interested in the clusters in which
these adjacent edges have been categorized by our algorithm. In Figure 3.2, we list the end-nodes of
these edges (i.e. the reachable airports from London Heathrow) and categorize them by edge clusters. We
only display the first 5 clusters in terms of number of edges and we only list the top 5 airports in term
of degree in the graph for each edge cluster. We see that the different clusters correspond to flights to
different regions of the world (Europe for cluster 1, North America for cluster 2, Middle East and South
Asia for cluster 3 etc.).

In addition to the clusters returned by our algorithm, the aggregated graph itself is very useful to
have a synthetic view of the world airline traffic. This graph only contains 426 nodes, i.e. almost 10
times less nodes than the original graph, and 6,940 edges. We display this graph in Figure 3.3. We
use edges of different colors to indicate the different edge clusters. We use colored circles to represent
aggregated nodes, with a size proportional to the number of nodes that have been aggregated and a
color corresponding to the edge cluster to which the aggregated nodes are connected. We position the
aggregated nodes at the centroid of the airports that have been merged. We see that these aggregated
nodes correspond to important regions of the world (North America, Central America, South America,
Central Europe, North Europe etc.). Besides, we observe that the airports that have not been aggregated
correspond to interfaces between these different regions of the world.

Wikipedia subset

In order to compare the performance of the algorithms on a larger graph, we run them on a subgraph of
the Wikipedia graph that contain 4,589 nodes and 106,534 edges. In this graph, nodes correspond to
Wikipedia articles and edges to hyperlinks between those articles. Whereas our algorithm runs in 281
seconds and use 229 MiB of memory on this graph, the three algorithms EL(C), EL(D) and EL(E1) raise
out-of-memory errors on a computer with 16 GB of RAM.

SNAP datasets

In order to provide more quantitative results, we perform experiments on SNAP datasets2 with ground-
truth communities. We use the Amazon co-purchasing network and the DBLP co-citation network datasets
and compare our performance to two algorithms that are not based on modularity optimization: Walktrap
[Pons and Latapy, 2005] and Infomap [Rosvall and Bergstrom, 2008] (that can be used for overlapping
community detection). Note that we tried to run the EL(C), EL(D) and EL(E1) algorithms on these
datasets, but they were not able to handle the graphs on a computer with 16GB of RAM. We report
the results in Table 3.1. We see that our algorithm outperforms both the modularity-based Louvain
algorithm and the other two algorithms, Infomap and Walktrap, in terms of F1-score. Furthermore, our
algorithm offers a competitive execution time compared to the other three algorithms.

2https://snap.stanford.edu/data/

67

68

Chapter 4

Hierarchical clustering

In this chapter, we introduce a novel hierarchical clustering method for graphs. The algorithm is
agglomerative and based on a simple distance between clusters induced by the probability of sampling
node pairs. We prove that this distance is reducible, which allows us to speed up the node aggregation
through a technique known as the nearest-neighbor chain scheme. Our algorithm is parameter-free and
provides a list of the most relevant resolutions of the graph. Furthermore, we show that this approach is
tightly related to modularity, and that it can be used to choose the correct resolution parameter in the
Louvain algorithm. This chapter is based on the work presented in [Bonald et al., 2018a].

4.1 Introduction

Real-life graphs, such as the ones presented in the introductory chapter, often exhibit complex, multi-scale
cluster structures where each node is involved in many groups of nodes of different sizes. Classic graph
clustering algorithms that output node partitions can only capture only one of the multiple scales in
the cluster structure of such graphs. To overcome this problem, we need to use hierarchical clustering
techniques that aim at finding trees of nested clusters, the so-called hierarchies. As seen in Chapter 1,
modularity maximization does not directly enable an analysis of the graph at different scales. However, a
resolution parameter can be introduced in the definition of modularity [Reichardt and Bornholdt, 2006,
Lambiotte et al., 2008], but it is not directly related to the number of clusters or the cluster sizes and is
therefore hard to adjust in practice.

In this chapter, we present a novel algorithm for hierarchical clustering that captures the multi-scale
nature of real graphs. The algorithm is fast, memory-efficient and parameter-free. This approach is related
to modularity optimization but does not require fine-tuning of the resolution parameter. It relies on a
novel notion of distance between clusters induced by the probability of sampling node pairs. We prove that
this distance is reducible, which guarantees that the resulting hierarchical clustering can be represented
by regular dendrograms and enables a fast implementation of our algorithm through the nearest-neighbor
chain scheme, a classical technique for agglomerative algorithms [Murtagh and Contreras, 2012].

The rest of the chapter is organized as follows. We present the related work in Section 4.2. We
introduce classic agglomerative clustering techniques such as the nearest-neighbor chain algorithm in
Section 4.3. The distance between clusters used to aggregate nodes and the clustering algorithm are
presented in Sections 4.4 and 4.5. The link with modularity and the Louvain algorithm is explained in
Section 4.6. Section 4.7 shows the experimental results.

4.2 Related work

As stressed in our introductory chapter, most graph clustering algorithms are not hierarchical and rely on
some resolution parameter that allows one to adapt the clustering to the dataset and to the intended pur-
pose [Reichardt and Bornholdt, 2006, Arenas et al., 2008, Lambiotte et al., 2014, Newman, 2016]. This
parameter is hard to adjust in practice, which motivates the work presented in this chapter.

Usual hierarchical clustering techniques apply to vector data [Ward Jr, 1963, Murtagh and Contreras, 2012].
They do not directly apply to graphs, unless the graph is embedded in some metric space, through spectral

69

techniques such as the ones presented in Chapter 1 for instance [Von Luxburg, 2007, Donetti and Munoz, 2004].
A number of hierarchical clustering algorithms have been developed specifically for graphs. The

most popular algorithms are agglomerative and characterized by some distance between clusters, see
[Newman, 2004, Pons and Latapy, 2005, Huang et al., 2010, Chang et al., 2011]. None of these distances
has been proved to be reducible, a key property of our algorithm. Among non-agglomerative algorithms,
the divisive approach of [Newman and Girvan, 2004] is based on the notion of edge betweenness while
the iterative approach of [Sales-Pardo et al., 2007] and [Lancichinetti et al., 2009] look for local maxima
of modularity or some fitness function; other approaches rely on statistical inference [Clauset et al., 2008],
replica correlations [Ronhovde and Nussinov, 2009] and graph wavelets [Tremblay and Borgnat, 2014].
To our knowledge, non of these algorithms has been proved to lead to regular dendrograms (that is,
without inversion).

Finally, the Louvain algorithm also provides a hierarchy, induced by the successive aggregation steps
of the algorithm [Blondel et al., 2008]. This is not a full hierarchy, however, as there are typically a few
aggregation steps. Moreover, the same resolution is used in the optimization of modularity across all
levels of the hierarchy, while the numbers of clusters decrease rapidly after a few aggregation steps. We
shall see that our algorithm may be seen as a modified version of Louvain using a sliding resolution, that
is adapted to the current agglomeration step of the algorithm.

4.3 Agglomerative clustering and nearest-neighbor chain

In this section, we present classic hierarchical clustering methods that do not traditionally apply to
graph nodes but to observations in a vector space Rk. In particular, we present a classic family
of algorithms, the agglomerative algorithms, and we present the nearest-neighbor chain technique
[Benzécri, 1982, Juan, 1982] that we use to cluster graph nodes in this chapter.

4.3.1 Agglomerative algorithms

We are interested in clustering a set of n observations X = {x1, . . . , xn} in Rk. Note that, even if these
observations cannot directly be graph nodes, they can be the result of an embedding algorithms that maps
nodes of G to vectors in Rk (e.g. spectral embedding algorithms, see Chapter 1). We assume that we are
given a norm in ‖·‖ in Rk (typically the Euclidean norm, but it can also be any p-norm for instance).
There exist two large families of hierarchical clustering algorithms that correspond to two approaches:
the divisive approach and the agglomerative approach.

Divisive approach

In the divisive (or top-down) approach, we are typically given a cut function (A,B) 7→ cut(A,B) that
measures the quality of a split between two clusters A,B ⊂ X. A small value of cut(A,B) corresponds to
two distant or dissimilar clusters A and B, whereas a large value of cut(A,B) corresponds to clusters
that are close to each other. Divisive algorithms start from a situation where all observations are grouped
in one cluster, and then iteratively split clusters until there are only clusters of size 1. The typical divisive
algorithm splits the largest cluster C at each step into two subsets A and B, choosing the best cut, i.e.
the smallest cut(A,B). More precisely, this greedy divisive algorithm can be described as follows.

• (Initialization) C ← {{x1, . . . , xn}}

• While C contains a cluster with at least two observations.

– C ← arg maxC′∈C |C ′|
– A,B ← arg mina,b∈C:a∪b=C cut(a, b)

– C ← C ∪ {A,B} \ {C}
– Output A,B and cut(A,B).

Note that, the maximum cluster size decreases at each step until we only obtain clusters with isolated
nodes. We see that the algorithm does not only outputs one partition but a sequence of splits. The
results that we observe at different steps of the algorithm correspond to different scales in the dataset.

70

Agglomerative approach

In the agglomerative (or bottom-up) approach, that we will adopt in this chapter, we start from individual
clusters and merge iteratively the two closest clusters according to a distance function (A,B) 7→ d(A,B)
that measures the dissimilarity between clusters. More precisely, the standard greedy agglomerative
algorithm can be described as

• (Initialization) C ← {{x1}, . . . , {xn}}

• For t = 1, . . . , n− 1.

– A,B ← arg mina,b∈C:a6=b d(a, b)

– C ← C ∪ {C} \ {A,B}
– Output A,B and d(A,B).

Like the divisive method presented above, we see that the algorithm outputs at each step two clusters
and the distance between these clusters. The result of this approach is typically represented as a
dendrogram (see Figure 4.2). A dendrogram is a special tree whose leaves correspond to individual
observations and whose other nodes correspond to the clusters C observed throughout the execution
of the algorithm. A and B are connected to C in the dendrogram if A and B have been merged into
C = A∪B during the execution of the algorithm. Moreover the position on the vertical axis of C = A∪B
corresponds to the distance between A and B, d(A,B). Therefore, the greater the difference in height,
the more dissimilarity between clusters. We immediately see the interest of such approaches to study a
dataset at multiple scales. Indeed, different levels in the dendrogram correspond to different scales in the
dataset.

4.3.2 Classic distances
The result of the greedy agglomerative approach presented above depends on the choice of the distance
function d : (A,B) 7→ d(A,B) to measure the dissimilarity between clusters A,B ⊂ X. The classic
distance measures that are commonly used are

• the minimum distance, which leads to the so-called single-linkage clustering, defined as

d(A,B) = min
x∈A,y∈B

‖x− y‖;

• the maximum distance, which leads to the so-called complete-linkage clustering, defined as

d(A,B) = max
x∈A,y∈B

‖x− y‖;

• the average distance, which leads to the so-called average-linkage clustering, defined as

d(A,B) =
1

|A||B|
∑
x∈A

∑
y∈B
‖x− y‖.

These three distances have an important property in common: they are reducible. A distance measure
between clusters is said to be reducible if, for any pair of mutual nearest neighbors A and B merged
during the execution of the algorithm, and for all cluster C, we have

d(A ∪B) ≥ min(d(A,C), d(B,C)).

In other words, a distance measure is reducible if the distance between any merged cluster A∪B and any
cluster C is larger than the individual distance between A and C, or the distance between B and C. This
property guarantees that the sequence of distances d(A,B) found during the algorithm is non-decreasing.
Indeed, if d is reducible and if A and B are merged by the algorithm, then, for any other cluster C ∈ C
we have

d(A ∪B,C) ≥ min(d(A,C), d(B,C)) ≥ d(A,B) = min
a,b∈C,a 6=b

d(a, b).

71

4.3.3 Ward’s method

Another classic distance used in the agglomerative approach is Ward’s distance [Ward Jr, 1963]. This
distance arises from the analysis of the minimization problem where the objective is to minimize

J(C) =
∑
C∈C

∑
x∈C
‖x− µ(C)‖2,

where µ(C) is the centroid of the cluster C

µ(C) =
1

|C|
∑
x∈C

x.

We recognize the objective function of the k-means problem presented in Chapter 2 when the means
correspond to the centroids of clusters. Ward’s distance is defined as the cost of merging A and B.
In other words, it is defined as d(A,B) = J(C \ {C} ∪ {A,B}) − J(C). If we use S(C) to denote
S(C) =

∑
x∈C‖x− µ(C)‖2 so that J(C) =

∑
C∈C S(C), then we have

d(A,B) = S(A ∪B)− S(A)− S(B) =
|A||B|
|A|+ |B|

‖µ(A)− µ(B)‖2.

The greedy agglomerative algorithm using this distance is commonly referred to as Ward’s method.

4.3.4 The Lance-Williams family

The Lance-Williams method is an infinite class of agglomerative algorithms where we have a recursive
formula for updating distances between clusters at each step. In a naive implementation of the greedy
agglomerative approach described above, it is necessary to recompute pairwise distances between clusters
after each merge, whereas, with the Lance-Williams method, we do not need to recompute these distances
at each step. An agglomerative algorithm belongs to the Lance-Williams family if the updated distance
d(a ∪ b, c) between a merged cluster a ∪ b and any cluster c can be written as

d(a ∪ b, c) = αd(a, c) + βd(b, c) + γd(a, b) + δ|d(a, c)− d(b, c)|,

where α, β, γ and δ are parameters that may depend on the cluster sizes. The single-linkage, complete-
linkage and average-linkage algorithms belong to this family. Indeed, we have

• for the minimum distance: d(a ∪ b, c) = min(d(a, c), d(b, c)) = d(a,c)+d(b,c)−|d(a,c)−d(b,c)|
2 ;

• for the maximum distance: d(a ∪ b, c) = max(d(a, c), d(b, c)) = d(a,c)+d(b,c)+|d(a,c)−d(b,c)|
2 ;

• for the average distance: d(a ∪ b, c) = |a|d(a,c)+|b|d(b,c)
|a|+|b| .

Ward’s method also belongs to this family. Indeed, it can be shown that we have

d(a ∪ b, c) =
1

|a|+ |b|+ |c|
[(|a|+ |c|)d(a, c) + (|b|+ |c|)d(b, c)− |c|d(a, b)] .

From this formula, we can easily show that Ward’s distance is reducible.

4.3.5 Nearest-neighbor chain algorithm

The greedy algorithm that we present above for agglomerative clustering, that consists in placing each
observation in an isolated cluster and then iteratively merging the closest pair of clusters, is too expensive
in space or time for large datasets [Eppstein, 2000, Day and Edelsbrunner, 1984]. Indeed, at each step
of the algorithms, even if we use the Lance-Williams method to efficiently compute the new pairwise
distances, we need to find the two closest clusters to merge. Existing methods to perform this task
either require superlinear space to maintain a data structure in which we can find the clusters to merge
efficiently, or require superlinear time to find the closest pair of clusters at each step.

72

The nearest-neighbor chain algorithm merges the clusters in a different order than the greedy approach
in a way that avoid to search for the closest pair of clusters at each step. This algorithm starts for any
observation x ∈ X and builds the chain of nearest neighbors, which is directed, until two clusters are
mutually nearest neighbors. When it finds such clusters A and B, it merges them and proceeds with
the rest of the chain until the chain is empty. If the chain is empty and there are at least two clusters
remaining, it restarts from any cluster. More formally, the algorithm can be described as follows.

• (Initialization of clusters) C ← {{x1}, . . . , {xn}}

• (Initialization of the chain) S ← empty stack

• While |C| ≥ 2:

– If |S| = 0, choose C in C arbitrarily and push C onto S.

– C ← cluster on the top of S.

– Compute the distance d(C,D) for all D ∈ C.
– D ← arg min

D′∈C
d(C,D′)

– If D ∈ S, pop C and D from S and merge them, i.e. C ← C ∪ {C ∪D} \ {C,D}.
– Otherwise push D onto S.

The time complexity of the algorithm is in O(n2) because the time to find the nearest cluster at each
step is at most (n− 1) and each cluster is added only once to the chain. The space complexity is in O(n),
because the length of the chain is at most n.

As previously stated, this algorithm requires the distance d to be reducible. On the one hand,
the fact that the chain S remains a nearest neighbor chain after merging the last two clusters that
are jointly nearest neighbors relies on this property. Indeed, if the distance d is reducible, when
we merge two clusters C and D, the resulting cluster C ∪ D cannot be the nearest neighbor of any
other cluster E if one of the cluster C and D was not already the nearest neighbor of E because
d(C ∪D,E) ≥ min(d(C,E), d(D,E)) ≥ minF d(E,F). Therefore, we see that, at each step, S forms a
valid chain of nearest neighbors. On the other hand, the fact that d is reducible guarantees that the
result obtained with the nearest-neighbor chain algorithm is the same as the one obtained with the
greedy algorithm, even if the order in which the clusters are merged is in general different. Indeed, both
clustering will only merge clusters that are mutually nearest neighbors, and such pairs of clusters remain
mutual nearest neighbors until they are merged.

As a consequence the nearest neighbor chain algorithm can be used with the minimum, maximum
and average distances and with Ward’s distance. In this chapter, we define a reducible distance for graph
nodes and use the nearest-neighbor chain algorithm to perform hierarchical clustering in graphs and show
that this technique is closely related to the notion of modularity. We will see that this distance relies on
node pair sampling.

4.4 Node pair sampling

As seen in Chapter 1, the modularity function can be interpreted using a probability distribution on node
pairs induced by edge weights,

∀i, j ∈ V, p(i, j) =
Aij
w
,

and a probability distribution on nodes,

∀i ∈ V, p(i) =
∑
j∈V

p(i, j) =
wi
w
.

Observe that the joint distribution p(i, j) depends on the graph (in particular, only neighbors i, j are
sampled with positive probability), while the marginal distribution p(i) depends on the graph through
the node weights only.

73

We define the distance between two distinct nodes i, j as the node pair sampling ratio1:

d(i, j) =
p(i)p(j)

p(i, j)
, (4.1)

with d(i, j) = +∞ if p(i, j) = 0 (i.e., i and j are not neighbors). Nodes i, j are close with respect to
this distance if the pair i, j is sampled much more frequently through the joint distribution p(i, j) than
through the product distribution p(i)p(j). For unit weights, the joint distribution is uniform over the
edges, so that the closest node pair is the pair of neighbors having the lowest degree product.

Another interpretation of the node distance d follows from the conditional probability,

∀i, j ∈ V, p(i|j) =
p(i, j)

p(j)
=
Aij
wj

.

This is the conditional probability of sampling i given that j is sampled (from the joint distribution).
The distance between i and j can then be written

d(i, j) =
p(i)

p(i|j)
=

p(j)

p(j|i)
.

Nodes i, j are close with respect to this distance if i (respectively, j) is sampled much more frequently
given that j is sampled (respectively, i).

Similarly, consider a clustering C of the graph (that is, a partition of V). The weights induce a
probability distribution on cluster pairs,

∀a, b ∈ C, p(a, b) =
∑

i∈a,j∈b

p(i, j),

and a probability distribution on clusters,

∀a ∈ C, p(a) =
∑
i∈a

p(i) =
∑
b∈C

p(a, b).

We define the distance between two distinct clusters a, b as the cluster pair sampling ratio:

d(a, b) =
p(a)p(b)

p(a, b)
, (4.2)

with d(a, b) = +∞ if p(a, b) = 0 (i.e., there is no edge between clusters a and b). Defining the conditional
probability

∀a, b ∈ C, p(a|b) =
p(a, b)

p(b)
,

which is the conditional probability of sampling a given that b is sampled, we get

d(a, b) =
p(a)

p(a|b)
=

p(b)

p(b|a)
.

This distance will be used in the agglomerative algorithm to merge the closest clusters. We have the
following key results.

Proposition 4.4.1 (Update formula). For any distinct clusters a, b, c ∈ C,

d(a ∪ b, c) =

(
p(a)

p(a ∪ b)
1

d(a, c)
+

p(b)

p(a ∪ b)
1

d(b, c)

)−1

.

Proof. We have:

p(a ∪ b)p(c)d(a ∪ b, c)−1 = p(a ∪ b, c),
= p(a, c) + p(b, c),

= p(a)p(c)d(a, c)−1 + p(b)p(c)d(b, c)−1,

from which the formula follows. �
1The distance d is not a metric in general. We only require symmetry and non-negativity.

74

Proposition 4.4.2 (Reducibility). For any distinct clusters a, b, c ∈ C,

d(a ∪ b, c) ≥ min(d(a, c), d(b, c)).

Proof. By Proposition 4.4.1, d(a ∪ b, c) is a weighted harmonic mean of d(a, c) and d(b, c), from which the
inequality follows. �

By the reducibility property, merging clusters a and b cannot decrease their minimum distance to any
other cluster c.

4.5 Clustering algorithm
For simplicity, and without restricting the generality of the results, we assume that V = {1, . . . , n}. As
explained above, the greedy agglomerative approach consists in starting from individual clusters (i.e.,
each node is in its own cluster) and merging clusters recursively. At each step of the algorithm, the two
closest clusters are merged. For our distance d, we obtain the following algorithm:

1. (Initialization) C ← {{1}, . . . , {n}}; L← ∅

2. (Agglomeration) For t = 1, . . . , n− 1,

• a, b← arg mina′,b′∈C,a′ 6=b′ d(a′, b′)

• C ← C \ {a, b}; C ← C ∪ {a ∪ b}
• L← L ∪ {{a, b}}

3. Return L

The successive clusterings C0, C1, . . . , Cn−1 produced by the algorithm, with C0 = {{1}, . . . , {n}}, can
be recovered from the list L of successive merges. Observe that clustering Ct consists of n− t clusters, for
t = 0, 1, . . . , n− 1. By the reducibility property, the corresponding sequence of distances d0, d1, . . . , dn−1

between merged clusters, with d0 = 0, is non-decreasing, resulting in a regular dendrogram (that is,
without inversions) [Murtagh and Contreras, 2012].

It is worth noting that the graph G does not need to be connected. If the graph consists of k connected
components, then the clustering Cn−k gives these k connected components, whose respective distances are
infinite; the k− 1 last merges can then be done in an arbitrary order. Moreover, the hierarchies associated
with these connected components are independent of one another (i.e., the algorithm successively applied
to the corresponding subgraphs would produce exactly the same clustering). Similarly, we expect the
clustering of weakly connected subgraphs to be approximately independent of one another. This is not
the case of the Louvain algorithm, whose clustering depends on the whole graph through the total weight
w, a shortcoming related to the resolution limit of modularity underlined in Chapter 1.

Aggregate graph. In view of (4.2), for any clustering C of V , the distance d(a, b) between two clusters
a, b ∈ C is the distance between two nodes a, b of the following aggregate graph: nodes are the elements of
C and the weight between a, b ∈ C (including the case a = b, corresponding to a self-loop) is

∑
i∈a,j∈bAij .

Thus the agglomerative algorithm can be implemented by merging nodes and updating the weights (and
thus the distances between nodes) at each step of the algorithm. Since the initial nodes of the graph are
indexed from 0 to n− 1, we index the cluster created at step t of the algorithm by n+ t. We obtain the
following version of the above algorithm, where the clusters are replaced by their respective indices:

1. (Initialization) V ← {1, . . . , n}; L← ∅

2. (Agglomeration) For t = 1, . . . , n− 1,

• i, j ← arg mini′,j′∈V,i′ 6=j′ d(i′, j′)

• L← L ∪ {{i, j}}
• V ← V \ {i, j}; V ← V ∪ {n+ t}
• p(n+ t)← p(i) + p(j)

• p(n+ t, u)← p(i, u) + p(j, u) for u ∈ V \ {n ∪ t}

3. Return L

75

Nearest-neighbor chain. By the reducibility property of the distance, the algorithm can be imple-
mented through the nearest-neighbor chain scheme described above. As explained in Section 4.3, this
scheme reduces the search of a global minimum (the pair of nodes i, j that minimizes d(i, j)) to that of a
local minimum (any pair of nodes i, j such that d(i, j) = minj′ d(i, j′) = mini′ d(i′, j)), which speeds up
the algorithm while returning exactly the same hierarchy. It only requires a consistent tie-breaking rule
for equal distances (e.g., any node at equal distance of i and j is considered as closer to i if and only if
i < j). Observe that the space complexity of the algorithm is in O(m), where m is the number of edges
of G (i.e., the graph size).

4.6 Link with modularity

As described in our introductory chapter, the modularity measure can be written in terms of probability
distributions,

Q(C) =
∑
i,j∈V

(p(i, j)− p(i)p(j))δC(i, j).

Thus the modularity is the difference between the probabilities of sampling two nodes of the same cluster
under the joint distribution p(i, j) and under the product distribution p(i)p(j). It can also be expressed
from the probability distributions at the cluster level,

Q(C) =
∑
a∈C

(p(a, a)− p(a)2).

As stressed in Chapter 1, the modularity has some resolution limit, because its second term is
normalized by the total weight w and thus becomes negligible for too small clusters. To go beyond
this resolution limit, we have seen that it is necessary to introduce a multiplicative factor γ, called the
resolution to define a generalized modularity. The generalized modularity in the node pair sampling
interpretation becomes:

Qγ(C) =
∑
i,j∈V

(p(i, j)− γp(i)p(j))δC(i, j), (4.3)

or equivalently,
Qγ(C) =

∑
a∈C

(p(a, a)− γp(a)2).

We have seen that this resolution parameter can be interpreted in different ways: through the Potts
model of statistical physics [Reichardt and Bornholdt, 2006], random walks [Lambiotte et al., 2014], or
statistical inference of a stochastic block model [Newman, 2016]. For γ = 0, the resolution is minimum
and there is a single cluster, that is C = {{1, . . . , n}}; for γ → +∞, the resolution is maximum and each
node has its own cluster, that is C = {{1}, . . . , {n}}.

The Louvain algorithm can be easily adapted to optimize the generalized modularity for any fixed
resolution parameter γ with the following steps:

1. (Initialization) C ← {{1}, . . . , {n}}

2. (Iteration) While modularity Qγ(C) increases, update C by moving one node from one cluster to
another.

3. (Aggregation) Merge all nodes belonging to the same cluster, update the weights and apply step 2
to the resulting aggregate graph while modularity is increased.

4. Return C

Our algorithm can be viewed as a modularity-maximizing scheme with a sliding resolution. Starting
from the maximum resolution where each node has its own cluster, we look for the first value of the
resolution parameter γ, say γ1, that triggers a single merge between two nodes, resulting in clustering C1.
In view of (4.3), we have:

γ1 = max
i,j∈V

p(i, j)

p(i)p(j)
.

76

These two nodes are merged (corresponding to the aggregation phase of the Louvain algorithm) and we
look for the next value of the resolution parameter, say γ2, that triggers a single merge between two
nodes, resulting in clustering C2, and so on. By construction, the resolution at time t (that triggers the
t-th merge) is γt = 1/dt and the corresponding clustering Ct is that of our algorithm. In particular, the
sequence of resolutions γ1, . . . , γn−1 is non-increasing.

To summarize, our algorithm consists of a simple but deep modification of the Louvain algorithm,
where the iterative step (step 2) is replaced by a single merge, at the best current resolution (that resulting
in a single merge). In particular, unlike the Louvain algorithm, our algorithm provides a full hierarchy.
Moreover, the sequence of resolutions γ1, . . . , γn−1 can be used as an input to the Louvain algorithm.
Specifically, the resolution γt provides exactly n− t clusters in our case, and the Louvain algorithm is
expected to provide approximately the same number of clusters at this resolution.

4.7 Experiments

Our hierarchical clustering algorithm, called Paris (Pairwise node Agglomeration with Resolution Incre-
mental Sliding), is available as a Python package2. The experiments presented below are presented for
illustrative purpose only as, to the best of our knowledge, there is no standard approach or benchmark to
compare hierarchical clustering algorithms.

Synthetic data. We start with a simple hierarchical stochastic block model, as described in
[Lyzinski et al., 2017]. There are n = 160 nodes structured in 2 levels, with 4 blocks of 40 nodes
at level 1, each block of 40 nodes being divided into 4 blocks of 10 nodes at level 2 (see Figure 4.1).

Figure 4.1: A hierachical stochastic block model.

The output of Paris algorithm is shown in Figure 4.2 as a dendrogram where the distances (on the
y-axis) are in log-scale. The two levels of hierarchy clearly appear.

We give in Figure 4.3 the number of clusters with respect to the resolution parameter γ for Paris
(left) and Louvain (right). The results are very close, and clearly show the hierarchical structure of the
model (vertical lines correspond to changes in the number of clusters). The key difference between both
algorithms is that, while Louvain needs to be run for each resolution parameter γ (here 100 values ranging
from 0.01 to 20), Paris is run only once, the relevant resolutions being direct outputs of the algorithm.

Real data. We now consider four real datasets, whose characteristics are summarized in Table 4.1.

Graph # nodes # edges
OpenStreet 5,993 6,958
OpenFlights 3,097 18,193
Wikipedia Schools 4,589 106,644
Wikipedia Humans 702,782 3,247,884

Table 4.1: Summary of the datasets
2See https://github.com/Sharpenb/python_paris

77

https://github.com/Sharpenb/python_paris

Figure 4.2: Dendrogram associated with the clustering of Paris on a hierachical stochastic block model of
16 blocks.

10 1 100 101

Resolution

0

10

20

30

40

50

60

Nu
m

be
r o

f c
lu

st
er

s

10 1 100 101

Resolution

0

10

20

30

40

50

60

Nu
m

be
r o

f c
lu

st
er

s

Figure 4.3: Number of clusters with respect to the resolution parameter γ for Paris (left) and Louvain
(right) on the hierachical stochastic block model of Figure 4.1.

The first dataset, extracted from OpenStreetMap, is the graph formed by the streets of the center of
Paris. To illustrate the quality of the hierarchical clustering returned by our algorithm, we have extracted
the two “best" clusterings, in terms of ratio between successive distance merges in the corresponding
dendrogram; the results are shown in Figure 4.4. The best clustering gives two clusters, Rive Droite (with
Ile de la Cité) and Rive Gauche, the two banks separated by the river Seine; the second best clustering
divides these two clusters into sub-clusters.

The second dataset, extracted from OpenFlights, is the graph of airports with the weight between two
airports equal to the number of daily flights between them. We run Paris and extract the best clusterings
from the largest component of the graph, as for the OpenStreet graph. The first two best clusterings
isolate the Island/Groenland area and the Alaska from the rest of the world, the corresponding airports
forming dense clusters, lightly connected with the other airports. The following two best clusterings are
shown in Figure 4.5, with respectively 5 and 10 clusters corresponding to meaningful continental regions
of the world.

78

Figure 4.4: Clusterings of the OpenStreet graph by Paris.

Figure 4.5: Clusterings of the OpenFlights graph by Paris.

79

Size Main pages
288 Scientific classification, Animal, Chordate,

Binomial nomenclature, Bird,...
231 Iron, Oxygen, Electron, Hydrogen,

Phase (matter),...
196 England, Wales, Elizabeth II of the United Kingdom,

Winston Churchill, William Shakespeare,...
164 Physics, Mathematics, Science,

Albert Einstein, Electricity,...
148 Portugal, Ethiopia, Mozambique,

Madagascar, Sudan,...
139 Washington, D.C., President of the United States,

American Civil War, Puerto Rico, Bill Clinton,...
129 Earth, Sun, Astronomy,

Star, Gravitation,...
127 Plant, Fruit, Sugar, Tea,

Flower,...
104 Internet, Computer, Mass media,

Latin alphabet, Advertising,...
99 Jamaica, The Beatles, Hip hop music,

Jazz, Piano,...

Table 4.2: The 10 largest clusters of Wikipedia for Schools among 100 clusters found by Paris.

80

The third dataset is the graph formed by links between pages of Wikipedia for Schools3, see
[West et al., 2009, West and Leskovec, 2012]. The graph is considered as undirected. Table 4.2 shows
the 10 largest clusters of Cn−100, the 100 last clusters found by Paris. Only pages of highest degrees are
shown for each cluster.

Observe that the ability of selecting the clustering associated with some target number of clusters
is one of the key advantage of Paris over Louvain. Moreover, Paris gives a full hiearchy of the pages,
meaning that each of these clusters is divided into sub-clusters in the output of the algorithm. Table 4.3
gives for instance, among the 500 clusters found by Paris (that is, in Cn−500), the 10 largest clusters that
are subclusters of the first cluster of Table 4.2, related to animals / taxonomy. The subclusters tend to
give meaningful groups of animals, revealing the multi-scale structure of the dataset.

Size Main pages
71 Dinosaur, Fossil, Reptile,

Cretaceous, Jurassic,...
51 Binomial nomenclature, Bird,

Carolus Linnaeus, Insect, Bird migration,...
24 Mammal, Lion, Cheetah,

Giraffe, Nairobi,...
22 Animal, Ant, Arthropod,

Spider, Bee,...
18 Dog, Bat, Vampire, George Byron,

6th Baron Byron, Bear,...
16 Eagle, Glacier National Park (US), Golden Eagle,

Bald Eagle, Bird of prey,...
16 Chordate, Parrot, Gull,

Surtsey, Herring Gull,...
15 Feather, Extinct birds, Mount Rushmore,

Cormorant, Woodpecker,...
13 Miocene, Eocene,

Bryce Canyon National Park, Beaver, Radhanite,...
12 Crow, Dove, Pigeon,

Rock Pigeon, Paleocene,...

Table 4.3: The 10 largest subclusters of the first cluster of Table 4.2 among 500 clusters found by Paris.

The fourth dataset is the subgraph of Wikipedia restricted to pages related to humans. We have done
the same experiment as for Wikipedia for Schools. The results are shown in Tables 4.4-4.5.

Finally, we give in Table 4.6 the running times of Louvain, Paris, and a spectral algorithm4, for each
of the 4 datasets. The experiments have been conducted on a 2.7GHz Intel Core i5 CPU with 8GB of
RAM. We observe that Paris is faster than Louvain, while producing a much richer information on the
graph (hierarchical clustering vs. flat clustering); it is faster than the spectral algorithm in most cases as
well, especially for large graphs (the spectral algorithm did not complete on Wikipedia Humans).

3https://schools-wikipedia.org
4The algorithm gives a hierarchical clustering using the Ward method applied to the spectral embedding of the graph,

based on the 20 leading eigenvectors of the Laplacian matrix; the implementation is based on the Python package scipy.

81

Size Main pages
41363 George W. Bush, Barack Obama,

Bill Clinton, Ronald Reagan, Richard Nixon,...
34291 Alex Ferguson, David Beckham,

Pelé, Diego Maradona, José Mourinho,...
25225 Abraham Lincoln, George Washington, Ulysses

S. Grant, Thomas Jefferson, Edgar Allan Poe,...
23488 Madonna, Woody Allen, Martin Scorsese,

Tennessee Williams, Stephen Sondheim,...
23044 Wolfgang Amadeus Mozart, Johann Sebastian Bach,

Ludwig van Beethoven, Richard Wagner,
Giuseppe Verdi,...

22236 Elvis Presley, Bob Dylan, Elton John,
David Bowie, Paul McCartney,...

20429 Queen Victoria, George III of the UK, Edward VII,
Charles Dickens, Charles, Prince of Wales,...

19105 Sting, Jawaharlal Nehru, Rabindranath Tagore,
Indira Gandhi, Gautama Buddha,...

18348 Edward I of England, Edward III of England,
Henry II of England, Charlemagne,
Henry III of England,...

14668 Jack Kemp, Brett Favre,
Peyton Manning, Walter Camp, Tom Brady,...

Table 4.4: The 10 largest clusters of Wikipedia Humans among 100 clusters found by Paris.

Size Main pages
2722 Barack Obama, John McCain,

Dick Cheney, Newt Gingrich, Nancy Pelosi,...
2443 Arnold Schwarzenegger, Jerry Brown,

Ralph Nader, Dolph Lundgren, Earl Warren,...
2058 Osama bin Laden, Hamid Karzai, Alberto

Gonzales, Janet Reno, Khalid Sheikh Mohammed,...
1917 Dwight D. Eisenhower, Harry S. Truman,

Douglas MacArthur, George S. Patton,
Charles Lindbergh,...

1742 George W. Bush, Condoleezza Rice,
Colin Powell, Donald Rumsfeld, Karl Rove,...

1700 Bill Clinton, Thurgood Marshall,
Mike Huckabee, John Roberts, William Rehnquist,...

1559 Ed Rendell, Arlen Specter,
Rick Santorum, Tom Ridge, Mark B. Cohen,...

1545 Theodore Roosevelt, Herbert Hoover,
William Howard Taft, Calvin Coolidge,
Warren G. Harding,...

1523 Ronald Reagan, Richard Nixon,
Jimmy Carter, Gerald Ford, J. Edgar Hoover,...

1508 Rudy Giuliani, Michael Bloomberg,
Nelson Rockefeller, George Pataki, Eliot Spitzer,...

Table 4.5: The 10 largest subclusters of the first cluster of Table 4.4 among 500 clusters found by Paris.

82

Graph Louvain Paris Spectral
OpenStreet 1.25 0.69 1.55
OpenFlights 1.77 1.15 0.55
Wikipedia Schools 13.1 5.8 10.8
Wikipedia Humans 1438 433 -

Table 4.6: Mean running times over 10 runs (in seconds).

83

84

Chapter 5

Streaming approaches

In this chapter, we study streaming approaches for graph clustering. We introduce a novel algorithm
to perform graph clustering in the edge streaming setting. In this model, the graph is presented as a
sequence of edges that can be processed strictly once. Our streaming algorithm has an extremely low
memory footprint as it stores only three integers per node and does not keep any edge in memory. We
provide a theoretical justification of the design of the algorithm based on the modularity function. We
perform experiments on massive real-life graphs ranging from one million to more than one billion edges
and we show that this new algorithm runs more than ten times faster than existing algorithms. This
chapter is based on the work presented in [Hollocou et al., 2017b].

5.1 Introduction

A major challenge for graph clustering algorithms is their ability to process very large graphs that are
commonly observed in numerous fields. For instance, social networks have typically millions of nodes and
billions of edges (e.g. Friendster [Mislove et al., 2007]). Most of the existing graph clustering approaches
presented in Chapter 1 fail to scale to such large real-life graphs [Prat-Pérez et al., 2014] and require the
whole graph to be stored in memory, which often represents a heavy constraint in practice. Streaming
the edges is a natural way to handle such massive graphs. In this setting, the entire graph is not stored
but processed edge by edge [McGregor, 2014]. Note that the streaming approach is particularly relevant
in most real-life applications where graphs are fundamentally dynamic and edges naturally arrive in a
streaming fashion. This is the case for instance of the Twitter Retweet graph presented in our introductory
chapter.

In this chapter, we introduce a novel approach based on edge streams to detect communities in graphs.
The algorithm processes each edge strictly once. When the graph is a multi-graph, in the sense that two
nodes may be connected by more than one edge, these edges are streamed independently. The algorithm
only stores three integers for each node: its current community index, its current degree (i.e. the number
of adjacent edges that have already been processed), and the current community volume (i.e. the sum
of the degrees of all nodes in the community). Hence, the time complexity of the algorithm is linear
in the number of edges and its space complexity is linear in the number of nodes. In the experimental
evaluation of the algorithm, we show that this streaming algorithm is able to handle massive graphs
[Yang and Leskovec, 2015] with low execution time and memory consumption.

The algorithm takes only one integer parameter vmax and, for each arriving edge (i, j) of the stream,
it uses a simple decision strategy based on this parameter and the volumes of the communities of nodes
i and j. We provide a theoretical analysis that justifies the form of this decision strategy using the
modularity measure. In this analysis, we show that, under certain assumptions, the processing of each
new edge by our algorithm leads to an increase in modularity.

The chapter is organized as follows. First, we present some related work and give an introduction
to graph streaming algorithms in Section 5.2. Then, we describe our streaming algorithm in Section
5.3. A theoretical analysis of this algorithm is presented in Section 5.4. In Section 5.5, we evaluate
experimentally the performance of our approach on real-life graphs and compare it to state-of-the-art
algorithms.

85

5.2 Related work

As underlined above, most of the state-of-the art techniques for graph clustering have proven to be
efficient on graphs with millions of edges, but are often time-consuming and fail to scale to larger graphs,
as shown in the thorough evaluation performed in [Prat-Pérez et al., 2014]. The streaming approach has
drawn considerable interest in network analysis over the last decade. Within the data stream model,
massive graphs with potentially billions of edges can be processed without being stored in memory
[McGregor, 2014]. A lot of algorithm have been proposed for different problems that arise in large
graphs, such as counting subgraphs [Bar-Yossef et al., 2002, Buriol et al., 2006], computing matchings
[Goel et al., 2012, Feigenbaum et al., 2005], finding the minimum spanning tree [Elkin and Zhang, 2006,
Tarjan, 1983] or graph sparsification [Benczúr and Karger, 1996], which can be used to solve the min-cut
problem and iteratively cluster a graph. In this section, we introduce the most common streaming
frameworks and present classic streaming algorithms

5.2.1 Edge streaming models

There exist different frameworks for streaming algorithms in graphs [McGregor, 2014]. The most common
models consider that nodes are given in advance (i.e. the set V is known beforehand) and that edges
arrive in a streaming fashion. The edge stream S can be an insert-only stream, i.e. a simple sequence of
edges S = (e1, . . . , em) such that E = {e1, . . . , em}. Note that we can either assume that elements in S
are distinct from each other, or consider that edges can appear multiple times in S. In the later case,
we generally consider that G = (V,E) is a multi-graph with a multi-set of edge E (i.e. and edge (i, j)
can appear multiple times in E). Otherwise, the edge stream S can be an insert-delete stream, i.e. a
sequence of edge insertion or edge deletion actions, S = (a1, . . . , aM) where ai = (ei,∆i) with ei ∈ E and
∆i ∈ {−1,+1}. An action ai with ∆i = 1 corresponds to an edge insertion whereas an action such that
∆i = −1 corresponds to an edge deletion. In this chapter, we only consider insert-only edge streams.

In this framework, a streaming algorithm is an algorithm that considers the edges of S sequentially
(i.e. that processes the edges e1, . . . , em one by one, or k by k) and computes its result without storing
the whole graph structure (V,E) in memory. Generally, we consider that A is a good streaming algorithm
if its memory complexity is much smaller that |E| = m and if it has limited processing time per edge.
Note that, in many cases, streaming algorithms can only compute approximations of the solutions of the
problems that they want to solve. In order to compute its result, a streaming algorithm needs to store
and maintain a summary of the graph structure. This data structure is referred to as a sketch of the
data stream and is updated at each edge arrival [Ahn et al., 2012].

For instance, consider the problem of computing the node degrees in the insert-only edge steaming
model, with a stream S = (e1, . . . , em). We see that this task can be performed by an algorithm that only
stores the updated degree of each node di, i ∈ V , and that updates them at each step t with di ← di + 1
and dj ← dj + 1 if et = (i, j). It is straightforward to see that di corresponds to the degree of i in G at
the end of the algorithm. The size of the sketch {di, i ∈ V } used by this simple algorithm is n and the
time complexity of each step is in O(1).

5.2.2 Connected components and pairwise distances

Here, we consider the classic problem of determining the connected components of G and the pairwise
distances d(i, j) between nodes, where d(i, j) is the length of the shortest path in G between i and j, in
the insert-only streaming framework.

A simple algorithm to compute the connected components in graph G from the stream S uses a graph
sketch H that corresponds to a minimal subgraph of G whose connected components are the same as G.
At each step t, this algorithm considers the edge et = (i, j) and adds it to H if there is no path in H
between i and j. It is easy to see that there is no cycle in H. Therefore the number of edges in H is
in O(n) [Bollobás, 2004]. This simple algorithm can be extended to approximate the pairwise distance
between nodes in G, by adding an edge et = (i, j) to the subgraph H not only if there is no path in
H between i and j but also if the distance between i and h is greater than a given threshold α. More
formally, this algorithm can be described as follows.

• (Initialization) H = (VH , EH)← (V, ∅) (same nodes as G and no edges)

86

• For each step t, if et = (i, j),

– If d(i, j) > α then EH ← EH ∪ {et},

where dH(i, j) is the length of the shortest path between i and j in H (with dH(i, j) = ∞ if i and j
belong to distinct connected components). At the end of the algorithm, the graph H is an α-spanner of
G, i.e. it verifies, for all i, j ∈ V ,

dG(i, j) ≤ dH(i, j) ≤ αdG(i, j).

Indeed, H is a subgraph of G, so we have dG(i, j) ≤ dH(i, j). Moreover, if et = (i, j) is not added to H
by the algorithm, then there must already be a path of length ≤ α in H between i and j. Based on this
observation, we see that, for any path in G between two nodes i and j of length D, we can build a path
in H of length at most αD, which proves the second inequality. Therefore, this algorithm can be used to
obtain an approximation of the pairwise distance between nodes in G.

In contrast to the algorithm for connected components, the subgraph H built by the later algorithm
can contain cycles. However, we see that the length of these cycles is greater than α+ 1. Therefore, if
α = 2t− 1, the length of such a cycle is greater than 2t. This implies that the graph sketch H has at
most O(n1+1/t) edges [Bollobás, 2004].

5.2.3 Minimum cut

In Chapter 1, we have presented the minimum cut problem that consists in finding the subset C ⊂ V ,
such that C 6= ∅ and C 6= V , that minimizes

cut(C, V \ C) = 2
∑
i∈C

∑
j /∈C

Aij .

A solution to this problem is a clustering of the graph nodes with two clusters. In this section, we
study approaches to approximate cut(C, V \ C) in the insert-only streaming setting. More precisely, we
are interested in algorithms that build and maintain subgraphs H of G such that

∀C ∈ V, |cutH(C, V \ C)− cutG(C, V \ C)| < εcutG(C, V \ C),

with ε > 0. We call such a graph H an ε-sparsification of G.
We have seen in Chapter 1 that, if v ∈ {−1,+1}n is the indicator vector associated to the subset

C ⊂ V (i.e. the vector such that vi = 1 if i ∈ C and vi = −1 otherwise) then we have

vTLGv = 4cut(C, V \ C),

where LG = D−A is the (unnormalized) Laplacian of the graph G. Therefore, a strategy to approximate
the cut in our streaming framework consists in approximating the Laplacian LG by building a subgraph
H that verifies

∀v ∈ Rn, |vTLHv − vTLGv| < εvTLGv.

Such a subgraph H is referred to as an ε-spectral sparsification of G. In can be easily shown that an
ε-spectral sparsification verifies the two following properties.

• (Mergability) If H1 and H2 are respectively ε-spectral sparsifications for two graphs G1 and G2,
then H1 ∪H2 is an ε-spectral sparsification for G1 ∪G2.

• (Composability) If H3 is an α-spectral sparsification for H2, and H2 is a β-spectral sparsification
for H1, then H3 is an αβ-spectral sparsification for H1.

These two properties can be used to design a streaming algorithm to compute an ε-spectral sparsification
for G using any external algorithm A that can compute γ-spectral sparsifications for small graphs
[McGregor, 2014]. This method consists in alternatively applying the algorithm A on small chunks of
the stream S and merging the results until we obtain a spectral sparsification of G. This strategy starts
to divide the edge stream S into K chunks S1, . . . , SK such that each chunk has a size |S|/K and is

87

small enough to be processed by A. The algorithm defines for all k ∈ J1,KK H0
k as the result of the

sparsification algorithm A applied to G0
k, where G

0
k corresponds to the graph defined by the chunk Sk,

∀k, H0
k = A(G0

k).

Then, the algorithm iteratively merges these subgraphs by pair and re-apply the algorithm A on
these merged subgraphs. This method assume that the initial number of chunk is a power of 2 so that
these chunks can be iteratively merged until we obtain the whole graph G. More formally, the algorithm
proceeds as follows.

• (Initialization) H0
k ← A(G0

k), for all k.

• For t ∈ {1, . . . , log2K}, for all k,

Gtk = Gt−1
2k−1 ∪G

t−1
2k and Ht

k = A(Ht−1
2k−1 ∪H

t−1
2k).

It is easy to verify that, for T = log2 k, we have GT1 = G. Then using the mergeability and
composability properties of spectral sparsifications, we see that HT

1 is an γT -spectral sparsification for
G = GT1 . Therefore, if γT ≤ ε, we have the wanted result.

This algorithm can be used to approximate graph cuts. Therefore, it can be used to cluster graphs by
iteratively splitting the graph into two clusters corresponding to the minimum cut. However, solving the
minimum cut problem typically relies on the spectral decomposition of LH , which is expensive and does
not scale to large graphs.

5.3 A streaming algorithm for graph clustering

In the rest of the chapter, we study a novel streaming algorithm for graph clustering in the insert-only
edge streaming framework. More precisely, we assume that we are given an undirected and unweighted
multi-graph G(V,E) where E is a multi-set of edges (i.e. an edge (i, j) can appear multiple times in E),
and that there is no self-loop in G, that is Aii = 0 for all i ∈ V . We use S = (e1, . . . , em) to denote the
edge stream, which is an order sequence of the multi-set E. Note that each edge e = (i, j) ∈ E appears
exactly Aij times in S.

5.3.1 Intuition

As explained in Chapter 1, although there is no universal definition of what a community is, most existing
algorithms rely on the principle that nodes tend to be more connected within a community than across
communities. Hence, if we pick uniformly at random an edge e in E, this edge is more likely to link nodes
of the same community (i.e., e is an intra-community edge), than nodes from distinct communities (i.e., e
is an inter-community edge). Equivalently, if we assume that edges arrive in a random order, we expect
many intra-community edges to arrive before the inter-community edges.

This observation is used to design a streaming algorithm. For each arriving edge (i, j), the algorithm
places i and j in the same community if the edge arrives early (intra-community edge) and splits the
nodes in distinct communities otherwise (inter-community edge). In this formulation, the notion of an
early edge is of course critical. In the proposed algorithm, we consider that an edge (i, j) arrives early if
the current volumes of the communities of nodes i and j, accounting for previously arrived edges only, is
low.

More formally, the algorithm considers successively each edge of the stream S = (e1, e2, . . . , em). Each
node is initially in its own community. At time t, a new edge et = (i, j) arrives and the algorithm performs
one of the following actions: (a) i joins the community of j; (b) j joins the community of i; (c) no action.

The choice of the action depends on the updated community volumes Vol(C(i)) and Vol(C(j)) of the
communities of i and j, C(i) and C(j), i.e., the volumes computed using the edges e1, ..., et. If Vol(C(i))
or Vol(C(j)) is greater than a given threshold vmax, then we do nothing; otherwise, the node belonging to
the smallest community (in volume) joins the community of the other node and the volumes are updated.

88

5.3.2 Algorithm

We define our streaming algorithm in Algorithm 3. It takes the list of edges of the graph and one integer
parameter vmax ≥ 1. The algorithm uses three dictionaries d, c and v, initialized with default value
0. At the end of the algorithm, di is the degree of node i, ci the community of node i, and vk is the
volume of community k. When an edge with an unknown node arrives, let say i, we give this node a new
community index, ci ← k, and increment the index variable k (which is initialized with 1). For each new
edge e = (i, j), the degrees of i and j and the volumes of communities ci and cj are updated. Then, if
these volumes are both lower than the threshold parameter vmax, the node in the community with the
lowest volume joins the community of the other node. Otherwise, the communities remain unchanged.

Algorithm 3 Streaming algorithm for clustering graph nodes
Require: Stream of edges S and parameter vmax ≥ 1
1: d, v, c← dictionaries initialized with default value 0
2: k ← 1 (new community index)
3: for (i, j) ∈ S do
4: if ci = 0 then ci ← k and k ← k + 1
5: end if
6: if cj = 0 then cj ← k and k ← k + 1
7: end if
8: di ← di + 1 and dj ← dj + 1 (update degrees)
9: vci ← vci + 1 and vcj ← vcj + 1 (update community volumes)

10: if vci ≤ vmax and vcj ≤ vmax then
11: if vci ≤ vcj then (i joins the community of j)
12: vcj ← vcj + di
13: vci ← vci − di
14: ci ← cj
15: else (j joins the community of i)
16: vci ← vci + dj
17: vcj ← vcj − dj
18: cj ← ci
19: end if
20: end if
21: end for
22: return (ci)i∈V

Observe that, in case of equality vci = vcj ≤ vmax, j joins the community of i. Of course, this choice
is arbitrary and can be made random (e.g., i joins the community of j with probability 1/2 and j joins
the community of i with probability 1/2).

5.3.3 Complexity

The main loop is linear in the number of edges in the stream. Thus, the time complexity of the algorithm
is linear in m.

Concerning the space complexity, we only use three dictionaries of integers d, c and v, of size n.
Hence, the space complexity of the algorithm is 3n · sizeOf(int) = O(n). Note that the algorithm does
not need to store the list of edges in memory, which is the main benefit of the streaming approach. To
implement dictionaries with default value 0 in practice, we can use classic dictionaries or maps, and,
when an unknown key is requested, set the value relative to this key to 0. Note that, in Python, the
defaultdict structure already allows us to exactly implement dictionaries with 0 as a default value.

5.3.4 Parameter setting

Note that the algorithm can be run once with multiple values of parameter vmax. In this case, only arrays
c and v need to be duplicated for each value of vmax. In this multi-parameter setting, we obtain multiple
results (ca)1≤a≤A at the end of the algorithm, where A is the number of distinct values for the parameter

89

vmax. Then, the best ca can be selected by computing quality metrics that only use dictionaries ca and
va. In particular, we do not want to use metrics that requires the knowledge of the input graph. For
instance, common metrics [Yang and Leskovec, 2015] like entropy H(v) = −

∑
k
vk
w log

(
vk
w

)
or average

density D(c, v) =
∑
k:Ck 6=∅

1
|P |

vk
|Ck|(|Ck|−1) , where Ck is the set of nodes in community k and P is the set

of all non-empty communities, can be easily computed from each pair of dictionaries (va, ca), and be used
to select the best result ca for a = 1, . . . , A. Note that modularity cannot be used here as its computation
requires the knowledge of the whole graph.

5.4 Theoretical analysis
In this section, we analyze the modularity optimization problem in the edge-streaming setting and
qualitatively justify the conditions on community volumes used in Algorithm 3.

5.4.1 Modularity optimization in the streaming setting
The modularity can be rewritten as

Q =
1

w

∑
i∈V

∑
j∈V

Aijδ(i, j)−
∑
C∈P

Vol(C)2

w

 .
In our streaming setting, we are given a stream S = (e1, . . . , em) of edges such that edge (i, j) appears

Aij times in S. We consider the situation where t edges e1, . . . , et from the stream S = (e1, . . . , em) have
already arrived, and where we have computed a partition Pt = (C1, . . . , CK) of the graph. We define St
as St = {e1, . . . , et}, and Qt as

Qt =
∑
C∈Pt

[
2Intt(C)− (Volt(C))2

w

]
where Intt(C) =

∑
(i,j)∈St 1i∈C1i∈C and Volt(C) =

∑
(i,j)∈St(1i∈C + 1j∈C). Note that there is no

normalization factor 1/w in the definition of Qt as it has no impact on the optimization problem.
We do not store the edges of St but we assume that we have kept updated node degrees wt(i) =∑

(i′,j′)∈St(1i′=i + 1j′=i) and community volumes Volt(Ck) in a streaming fashion as shown in Algorithm
3. We consider the situation where a new edge et+1 = (i, j) arrives. We want to make a decision that
maximizes Qt+1.

5.4.2 Streaming decision
We can express Qt+1 in function of Qt as stated in Lemma 5.4.1.

Lemma 5.4.1. If et+1 = (i, j) and if Pt+1 = Pt, Qt+1 can be expressed in function of Qt as follows

Qt+1 = Qt + 2

[
δ(i, j)− Volt(C(i)) + Volt(C(j)) + 1 + δ(i, j)

w

]
where C(v) denotes the community of v in Pt, and δ(i, j) = 1 if i and j belongs to the same community
of Pt and 0 otherwise.

Proof. Given a new edge et+1 = (i, j), we have the following relation between quantities Int(C) and
Vol(C) at times t and t+ 1.

Intt+1(C) = Intt(C) + 1i∈C1j∈C

and
Volt+1(C) = Volt(C) + 1i∈C + 1j∈C .

This gives us the following equation for (Volt+1(C))2

(Volt+1(C))2 = (Volt(C))2 +

0 if C 6= C(i) and C 6= C(j)

2Volt(C(i)) + 1 if C = C(i)

2Volt(C(j)) + 1 if C = C(j)

90

in the case C(i) 6= C(j), and

(Volt+1(C))2 = (Volt(C))2 +

{
0 if C 6= C(i) and C 6= C(j)

4Volt(C(i)) + 4 if C = C(i) = C(j)

in the case C(i) = C(j).
Finally, the definition of Qt+1

Qt+1 =
∑

C∈Pt+1

[
2Intt+1(C)− (Volt+1(C))2

w

]

gives us the wanted result.

We want to update the community membership of i or j with one of the following actions: (a) i joins
the community of j; (b) j joins the community of i; (c) i and j stays in their respective communities. We
consider the case where nodes i and j belongs to distinct communities of Pt, since all three actions are
identical if i and j belong to the same community. We want to choose the action that maximizes Qt+1,
but we have a typical streaming problem where we cannot evaluate the impact of action (a) or (b) on Qt
but only on the term that comes from the new edge et+1.

Let us consider action (a), where i joins the community of j. We can assume that Volt(C(i)) ≤
Volt(C(j)) without loss of generality (otherwise we can swap i and j). We are interested in ∆Qt+1 = Q

(a)
t+1−

Q
(c)
t+1, which is the variation of Qt+1 between the state where i and j are in their own communities and the

state where i has joined C(j). We have ∆Qt+1 = ∆Qt + 2[1− (Volt(C(j))−Volt(C(i)) + 2wi(t) + 1)/w]
where ∆Qt is the variation of Qt. Lemma 5.4.2 gives us an expression for this variation.

Lemma 5.4.2.

∆Qt = Q
(a)
t −Q

(c)
t = 2

[
Lt(i, C(j))− Lt(i, C(i))− (wt(i))

2

w

]
where

Lt(i, C) =
∑

(i′,j′)∈St

[
1i′∈C

(
1j′=i −

wt(i)

w

)
+ 1j′∈C

(
1i′=i −

wt(i)

w

)]
.

Proof. Qt is defined as a sum over all communities of partition Pt. Only terms depending on C(i) and
C(j) are modified by action (a). Thus, we have:

∆Qt = 2 [Intt(C(i) \ {i}) + Intt(C(j) ∪ {i})− Intt(C(i))− Intt(C(i))]

− (Volt(C(i))− wt(i))2 + (Volt(C(j)) + wt(i))
2 − (Volt(C(i)))2 − (Volt(C(j)))2

w
.

This leads to:

∆Qt = 2
∑

(i′,j′)∈St

[
1j′=i(1i′∈C(j) − 1i′∈C(i)) + 1i′=i(1j′∈C(j) − 1j′∈C(i))

]
− 2

wt(i)Volt(C(j))− wt(i)Volt(C(i)) + (wt(i))
2

w
.

Using the definition of Volt, we obtain the wanted expression for ∆Qt.

We define lt(i, C) as lt(i, C) = Lt(i, C)/Volt(C). Then, we can easily show that lt(i, C) ∈ [−1, 1] and
E[lt(i, C)] = 0 if edges of St follow the null model presented above. Lt(i, C) measures the difference
between the number of edges connecting node i to community C in the edge stream St, and the number
of edges that we would observe in the null model. It can be interpreted as a degree of attachment of
node i to community C. Thus, lt(i, C) can be seen as a normalized degree of attachment of node i to
community C in the edge stream St.

Lemma 5.4.1 and 5.4.2 gives us a sufficient condition presented in Theorem 5.4.3 in order to have a
positive variation ∆Qt+1 of the modularity when i joins C(j).

91

Theorem 5.4.3. If Volt(C(i)) ≤ Volt(C(j)), then:

Volt(C(j)) ≤ vt(i, j) =⇒ ∆Qt+1 ≥ 0

where

vt(i, j) =

{
1−(wt(i)+1)2/w

lt(i,C(i))−lt(i,C(j)) if lt(i, C(i)) 6= lt(i, C(j))

+∞ otherwise.

Proof. From Lemma 5.4.1, we obtain

∆Qt+1 = Q
(a)
t + 2

[
1− (Volt(C(j)) + wi(t)) + (Volt(C(j)) + wi(t)) + 2)

w

]
−Q(b)

t − 2

[
0− (Volt(C(i))− wi(t)) + (Volt(C(j)) + wi(t)) + 1)

w

]
,

which gives us:

∆Qt+1 = ∆Qt + 2

[
1− Volt(C(j))−Volt(C(i)) + 2wi(t) + 1

w

]
(5.1)

Then, Equation (5.1) and Lemma 5.4.2 gives us the following expression for ∆Qt+1

∆Qt+1 = 2

[
1 +

(
lt(i, C(j))− 1

w

)
V olt(C(j))−

(
lt(i, C(i))− 1

w

)
V olt(C(i))

− (wt(i) + 1)2

w

]
.

Thus, ∆Qt+1 ≥ 0 is equivalent to(
lt(i, C(i))− 1

w

)
V olt(C(i))−

(
lt(i, C(j))− 1

w

)
V olt(C(j)) ≤ 1− (wt(i) + 1)2

w
. (5.2)

We use ut(i, j) to denote the left-hand side of this inequality. If V olt(C(i)) ≤ V olt(C(j)), then we
have

ut(i, j) ≤ [lt(i, C(i))− lt(i, C(j))]V olt(C(j))

Thus, the following inequality

[lt(i, C(i))− lt(i, C(j))]V olt(C(j)) ≤ 1− (wt(i) + 1)2

w

implies inequality (5.2), which proves the theorem.

Thus, we see that, if we have vmax ≤ vt(i, j), then the strategy used by Algorithm 3 leads to an
increase in modularity. In the general case, we cannot control terms lt(i, C(i)) and lt(i, C(j)), but, in
most cases, we expect the degree of attachment of i to C(i) to be upper-bounded by some constant
τ1 < 1 and the degree of attachment of i to C(j) to be higher than some τ2 > 0. Indeed, the fact that we
observe an edge (i, j) between node i and community C(j) 6= C(i) is likely to indicate that the degree
of attachment between i and C(j) is greater than what we would have in the null model, and that the
degree of attachment between i and C(i) is below maximum. Moreover, since in real-world graphs the
degree of most nodes is in O(1) whereas w is in O(m), we expect the term (wt(i) + 1)2/w to be smaller
than a constant ε� 1. Then, the condition on vmax becomes:

vmax ≤
1− ε
τ1 − τ2

.

This justifies the design of the algorithm, with the decision of joining one community or the other based
on the community volumes.

92

5.5 Experimental results

5.5.1 Datasets

We use real-life graphs provided by the Stanford Social Network Analysis Project for the experimental
evaluation of our new algorithm. As explained in Chapter 1, these datasets include ground-truth
community memberships that we use to measure the quality of the detection. We consider datasets of
different natures.

• Social networks: The YouTube, LiveJournal, Orkut and Friendster datasets correspond to
social networks [Backstrom et al., 2006, Mislove et al., 2007] where nodes represent users and edges
connect users who have a friendship relation. In all these networks, users can create groups that are
used as ground-truth communities in the dataset definitions.

• Co-purchasing network: The Amazon dataset corresponds to a product co-purchasing network
[Leskovec et al., 2007]. The nodes of the graph represent Amazon products and the edges correspond
to frequently co-purchased products. The ground-truth communities are defined as the product
categories.

• Co-citation network: The DBLP dataset corresponds to a scientific collaboration network
[Backstrom et al., 2006]. The nodes of the graph represent the authors and the edges the co-
authorship relations. The scientific conferences are used as ground-truth communities.

The size of these graphs ranges from approximately one million edges to more than one billion edges.
It enables us to test the ability of our algorithm to scale to very large graphs. The characteristics of these
datasets can be found in Table 5.1.

5.5.2 Benchmark algorithms

For assessing the performance of our streaming algorithm we use a wide range of state-of-the-art but
non-streaming algorithms that are based on various approaches: SCD (S), Louvain (L), Infomap (I),
Walktrap (W), and OSLOM (O), that were all briefly introduced in Chapter 1. In the data tables, we
use STR to refer to our streaming algorithm.

5.5.3 Performance metrics and benchmark setup

We use the average F1-score and the Normalized Mutual Information for the performance evaluation of
the selected algorithms. The experiments were performed on EC2 instances provided by Amazon Web
Services of type m4.4xlarge with 64 GB of RAM, 100 GB of disk space, 16 virtual CPU with Intel Xeon
Broadwell or Haswell and Ubuntu Linux 14.04 LTS.

Our algorithm is implemented in C++ and the source code can be found on GitHub1. For the
other algorithms, we used the C++ implementations provided by the authors, that can be found on
their respective websites. Finally, all the scoring functions were implemented in C++. We used the
implementation provided by the authors of [Lancichinetti et al., 2009] for the NMI and the implementation
provided by the authors of SCD [Prat-Pérez et al., 2014] for the F1-Score.

5.5.4 Benchmark results

Execution time

We compare the execution times of the different algorithms on SNAP graphs in Table 5.1. The entries
that are not reported in the table corresponds to algorithms that returned execution errors or algorithms
with execution times exceeding 6 hours. In our experiments, only SCD, except from our algorithm, was
able to run on all datasets. The fastest algorithms in our benchmarks are SCD and Louvain and we
observe that they run more than ten times slower than our streaming algorithm. More precisely, our
streaming algorithm runs in less than 50ms on the Amazon and DBLP graphs, which contain millions of
edges, and less than 5 minutes on the largest network, Friendster, that has more than one billion edges.

1https://github.com/ahollocou/graph-streaming

93

In comparison, it takes seconds for SCD and Louvain to detect communities on the smallest graphs, and
several hours to run on Friendster. Table 5.1 shows the execution times of all the algorithms with respect
to the number of edges in the network. We remark that there is more than one order of magnitude
between our algorithm and the other algorithms.

In order to compare the execution time of our algorithm with a minimal algorithm that only reads the
list of edges without doing any additional operation, we measured the run time of the Unix command cat
on the largest dataset, Friendster. cat reads the edge file sequentially and writes each line corresponding
to an edge to standard output. In our expermiments, the command cat takes 152 seconds to read the list
of edges of the Friendster dataset, whereas our algorithm processes this network in 241 seconds. That is
to say, reading the edge stream is only twice faster than the execution of our streaming algorithm.

|V | |E| S L I W O STR
Amazon 334,863 925,872 1.84 2.85 31.8 261 1038 0.05
DBLP 317,080 1,049,866 1.48 5.52 27.6 1785 1717 0.05
YouTube 1,134,890 2,987,624 9.96 11.5 150 - - 0.14
LiveJournal 3,997,962 34,681,189 85.7 206 - - - 2.50
Orkut 3,072,441 117,185,083 466 348 - - - 8.67
Friendster 65,608,366 1,806,067,135 13464 - - - - 241

Table 5.1: SNAP dataset sizes and execution times in seconds

Memory consumption

We measured the memory consumption of streaming algorithm and compared it to the memory that is
needed to store the list of the edges for each network, which is a lower bound of the memory consumption
of the other algorithms. We use 64-bit integers to store the node indices. The memory needed to represent
the list of edges is 14,8 MB for the smallest network, Amazon, and 28,9 GB for the largest one, Friendster.
In comparison, our algorithm consumes 8,1 MB on Amazon and only 1,6 GB on Friendster.

Detection scores

Table 5.2 shows the Average F1-score and NMI of the algorithms on the SNAP datasets. Note that
the NMI on the Friendster dataset is not reported in the table because the scoring program used for
its computation [Lancichinetti et al., 2009] cannot handle the size of the output on this dataset. While
Louvain and OSLOM clearly outperform our algorithm on Amazon and DBLP (at the expense of longer
execution times), our streaming algorithm shows similar performance as SCD on YouTube and much
better performance than SCD and Louvain on LiveJournal, Orkut and Friendster (the other algorithms do
not run these datasets). Thus our algorithm does not only run much faster than the existing algorithms
but the quality of the detected communities is also better than that of the state-of-the-art algorithms for
very large graphs.

F1-Score NMI
S L I W O STR S L I W O STR

Ama. 0.39 0.47 0.30 0.39 0.47 0.38 0.16 0.24 0.16 0.26 0.23 0.12
DBLP 0.30 0.32 0.10 0.22 0.35 0.28 0.15 0.14 0.01 0.10 0.15 0.10
YT 0.23 0.11 0.02 - - 0.26 0.10 0.04 0.00 - - 0.13
LiveJ. 0.19 0.08 - - - 0.28 0.05 0.02 - - - 0.09
Orkut 0.22 0.19 - - - 0.44 0.22 0.19 - - - 0.24
Friend. 0.10 - - - - 0.19 - - - - - -

Table 5.2: Average F1 Scores and NMI

94

Chapter 6

Local approaches

In this chapter, we study local graph clustering methods that focus on finding one or multiple clusters
in the neighborhood of a given set of nodes, the seed set. While existing approaches typically recover
only one community around the seed set, most nodes belong to multiple communities in practice. In this
paper, we introduce a new algorithm for detecting multiple local communities, possibly overlapping, by
expanding the initial seed set. The new nodes are selected by some local clustering of the graph embedded
in a vector space of low dimension. We validate our approach on real graphs, and show that it provides
more information than existing algorithms to recover the complex graph structure that appears locally.
This chapter is based on the work presented in [Hollocou et al., 2017a].

6.1 Introduction

As explained in Chapter 1, most of graph clustering algorithms focus on clustering the entire graph
G, even if we are only interested in local regions of this graph in many applications. A practically
interesting problem consists in detecting the clusters containing some given set of nodes, the so-called
seed set. This problem, known as local community detection, local graph clustering, seed set expansion or
community-search, is particularly relevant in large datasets where the exploration of the whole graph is
computationally expensive, if not impossible.

The problem of local community detection is generally stated as follows: the objective to recover some
unknown community C in a graph given some subset S ⊂ C of these nodes. The implicit assumption
is that the communities form a partition of the graph. However, nodes typically belong to multiple,
overlapping communities in practice [Reid et al., 2013, Xie et al., 2013]. The problem is then to recover
all communities containing the seed set S.

In the present chapter, we first present some existing approaches that focus on finding a unique
cluster given a set of seed nodes. Then, we propose a novel approach to this problem by introducing
the MULTICOM algorithm, which is able to detect multiple communities nearby a given seed set S. This
algorithm uses local scoring metrics to define an embedding of the graph around the seed set. Based on
this embedding, it picks new seeds in the neighborhood of the original seed set, and uses these new seeds
to recover multiple communities.

The rest of the chapter is organized as follows. Existing approaches for local community detection are
presented in Section 6.2. Our approach to multiple local community detection is presented in Section 6.3.
The algorithm itself is presented in Section 6.4 and tested on real graphs in Section 6.5.

6.2 Related work

Local community detection has drawn the attention of many researchers, motivated both by the ever
increasing size of the datasets and the complex local structure of real graphs [Leskovec et al., 2008,
Jeub et al., 2015]. In this section, we present some classic approaches to this problem.

95

6.2.1 Scoring and sweeping

The classical approach to local community detection is based on two steps [Andersen and Lang, 2006]:
first, nodes are scored according to their proximity to the seed set; then, nodes are considered in decreasing
order of their score and added to the community, with a stopping rule based on some goodness metric.

Formally, the algorithm is based on some scoring function f such that, for any seed set S ⊂ V , fS is a
vector in RV+ whose component fS(v) characterizes the attachment of node v to S. We expect that the
higher the score fS(v), the higher the probability that v is in the same community as the nodes of S.
Examples of scoring functions are the Personalized PageRank, the heat kernel diffusion and the local
spectral score, described below.

Given some seed set S, the score fS(v) of each node v ∈ V is computed. The nodes are then numbered
in decreasing order of their score, so that fS(v1) ≥ fS(v2) ≥ . . . ≥ fS(vJ), where J is the number of nodes
with non-zero scores. This numbering defines a sequence of nested sets S1, ..., SJ , with Sj = {vi, i ≤ j}.

The second step consists in finding the set Sj that defines the best community. To measure the quality
of a community C, the conductance is typically used. Recall that it is defined as

Φ(C) =

∑
u∈C

∑
v/∈C Auv

min(Vol(C),Vol(V \ C))
.

A community of good quality is supposed to have low conductance. Indeed, the conductance corresponds
to the ratio between the weight of edges leaving the set C (i.e. cut(C, C̄)) and the volume of C (or the
volume of V \C if Vol(C) is larger than half of the total weight w, i.e. Vol(C) > w/2). We expect a good
cluster to have a lot more intra-cluster edges than connections with C̄, and thus we expect its conductance
to be small. The conductance of each set Sj+1 can be computed from the conductance of Sj in time
proportional to dvj+1

. This step is called the sweep process [Andersen and Lang, 2006]. The outcome
of the algorithm is the set Sj having the lowest conductance. This set is called the sweep cut. Other
goodness metrics like modularity or density can also be used for the sweep cut [Yang and Leskovec, 2015].

We study some scoring functions fS that can be used in the sweep process below.

6.2.2 Personalized PageRank

First, we introduce the PageRank algorithm and its local variant, the Personalized PageRank, that is
classically used to define the scoring function fS .

Random walk with restart and PageRank

First, consider the random walk where we go from a node i to one of its neighbor j with probability
pij = Aij/wi. We use X0, X1, . . . to denote the successive nodes visited by the random walk. Recall
that (Xt)t≥0 is a Markov chain on V . In order to be able to apply the Perron-Frobenius theorem, which
guarantees the uniqueness of the stationary distribution and the convergence in distribution of Xt towards
this stationary distribution when t→∞, we need the Markov chain to satisfy two properties:

• irreducibility : (Xt)t≥0 is irreducible if any state j is accessible from any state i, i.e. if

∀t ≥ 0,∀i, j, ∃t′ ≥ t, P(Xt′ = j|Xt = i) > 0;

• aperiodicity : (Xt)t≥0 is said to be aperiodic if all states have period 1, i.e. if

∀i, gcd {t > 0 : P(Xt = i|X0 = i) > 0} = 1.

For the random walk defined above, if G is undirected, these properties are satisfied if and only if the
graph is connected and not bipartite. However, these properties are generally not satisfied for a generic
directed graph.

This motivates us to consider a slightly modified random walk where, at each step, the walk can either
move from the current node i to one of its neighbor j with probability αpij , or move to a node picked
uniformly at random in the graph with probability (1− α), where 0 ≤ α ≤ 1 is a given parameter. Such

96

Figure 6.1: Open Flights: measure of importance of the nodes with the PageRank algorithm

a random is called random walk with restart. If we note X0, X1, . . . the successive nodes visited by this
random walk, (Xt)t≥0 is still a random walk and we have

∀t ≥ 0,∀i, P(Xt+1 = i) =
1− α
n

+ α
∑
j∈V

P(Xt = j)
Aji
wj

.

Writing the distribution of (Xt)t≥0 as a vector π(t), this equation becomes

π(t+ 1)T = π(t)T
(

1− α
n

11T + αD−1A

)
.

A stationary distribution π of the Markov chain satisfies

πT = πT
(

1− α
n

11T + αD−1A

)
.

It is easy to see that, if α < 1, then the Markov chain (Xt)t≥0 is aperiodic and irreducible. Therefore,
we can apply the Perron-Frobenius theorem, which proves that the stationary distribution π is unique
and that

lim
t→∞

π(t) = π.

The stationary distribution can be used to rank the nodes of the graph. Indeed, we can consider
that the importance of a node i is represented by the probability πi for the walk to be at this node
when t→∞, and rank the nodes by decreasing value of this probability πi. This is the idea behind the
PageRank algorithm [Page et al., 1999] which is at the origin of the Google search engine.

Local random walks and Personalized PageRank

The random walk described above can be generalized as follows. At each step, instead of restarting form
a node chosen uniformly at random in V with probability (1− α), we can restart from a node chosen
uniformly at random in a subset S of V . The transition probability for this modified random walk

∀t ≥ 0,∀i, P(Xt+1 = i) =
1− α
|S|

1i∈S + α
∑
j∈V

P(Xt = j)
Aji
wj

.

or, in the vectorial form

π(t+ 1)T = π(t)T
(

1− α
|S|

11TS + αD−1A

)
.

where 1S is the indicator vector for S, i.e. the vector whose ith component is equal to 1 if i ∈ S and equal
to 0 otherwise.

The set S is referred to as the seed set and we call the nodes of S the seed nodes. This Markov
chain is aperiodic and irreducible on the subgraph induced by the connected components of the seed

97

Figure 6.2: Open Flights: measure of the relative importance of the nodes with respect to the Frankfurt
airport with the Personalized PageRank algorithm

nodes. Therefore, by Perron-Frobenius, it admits a unique stationary distribution πS . Whereas the
stationary distribution π for the classic random walk with restart that is used in the PageRank measures
the global importance of a node in the graph, the stationary distribution πS of this local random walk
measures the relative importance of a node with respect to the seed nodes of S. We can rank the nodes
by decreasing value of this probability to measure the attachment to S. This method is often referred to
as the Personalized PageRank [Gleich, 2015].

We illustrate the difference between PageRank and Personalized PageRank in Figure 6.1 and Figure
6.2. In Figure 6.1, the color and the size of each node code for its PageRank. We see that important
nodes according to this measure correspond to large hubs across the world. In Figure 6.2, the node colors
and sizes code for the Personalized PageRank of the nodes, where the seed set has been chosen to contain
a single seed node corresponding to the Frankfurt airport. We see that the important nodes according to
this score mostly correspond to European airports.

Local clustering

The Personalized PageRank probability can be used as a local scoring function fS in the sweep process
described above. Indeed, if we are interested in finding a node cluster C from which we already know
some nodes S (S ⊂ C), we expect the nodes i of C to have a higher probability πS(i) than the nodes
outside the cluster. In order not to favor nodes with high degrees we can normalize the probability πS(i)
with the degree of the node i. This leads to the following algorithm.

• Compute the Personalized PageRank πS from the seed set S.

• Order the nodes i ∈ V by decreasing value of πS(i)/di.

• For every k, compute the score Φ(Sk) of the sweep set with the first k nodes.

• Detect the index k∗ corresponding to the first local optima of Φ(Sk).

• Return the set Sk∗ .

Variant and theoretical guarantees

Whereas the local clustering method described above is merely an heuristic, theoretical guarantees for a
very similar approach have been established in the work of Spielman and Teng [Spielman and Teng, 2004]
for unweighted graphs. They consider the random walk with the initial distribution

π(0) =

{
di

Vol(S) if i ∈ S,
0 otherwise,

and the transition equation

π(t+ 1)T = π(t)T
(

1

2
I +

1

2
D−1A

)
.

98

Note that this random walk is different from the one used to defined the Personalized PageRank (even
with α = 1/2). Indeed, at step t, this new random walk restarts with probability 1/2 from a random
node i in the graph picked with a probability proportional to π(t)i (instead of a random node picked
uniformly at random). If the graph is connected, π(t) converges towards a stationary distribution π when
t→∞. Instead of studying this limiting distribution, they consider π(t) after a small number of steps.

We look at the degree-normalized distribution π(t)i
di

. As in the method described above, we can order
and renumber the nodes by decreasing value of π(t)i/di and define the sweep set Stj as Stj = {i|i ≤ j}. If
we view each vertex i ∈ V as consisting of di mini-vertices x(i,j) with j ∈ Nei(i), we can interpret the
degree-normalized distribution π(t)i

di
as a probability distribution on mini-vertices. We use qt(x(i,j)) = π(t)i

di
to denote this distribution on mini-vertices. At each step, we can also order the mini-vertices in a sequence
xt1, . . . , x

t
2m, so that

qt(x
t
i) ≥ qt(xti+1),

Using the notation qt(i) = qt(x
t
i), we can define the quantities

Pt(k) =

k∑
i=1

qt(i) and Ht(k) = Pt(k)− k

2m
.

Pt(k) represents the maximum amount of probability on any set of mini-vertices of size k at time t,
whereas Ht(k) is the difference between this maximum amount of probability and the probability to pick
a set of k mini-vertices uniformly at random, which corresponds to the stationary distribution for this
walk [Andersen and Lang, 2006]. The intuition behind Ht(k) is the following. If Ht(k) is high for some
k, it means that the random walk is localized around the seed set and stays with high probability in the
set of k mini-vertices {xt1, . . . , xtk}. On the contrary, if Ht(k) is low, it corresponds to the case where the
node distribution of the walk is close to its stationary distribution. In this situation, we say that the
random walk mixes.

The following Lemma is due to Spielman and Teng [Spielman and Teng, 2004].

Lemma 6.2.1. For all Φ > 0, α > 0 and T > 0, one of the following statement is verified

1. ∀k, Ht(k) ≤ H0(k)
(

1− Φ2

8

)T
+ αT

2. there exists a sweep cut Stj with t ≤ T such that

• Φ(Stj) ≤ Φ, where Φ(Stj) is the conductance of Stj, and

• qt(k0 − Φk̄0)− qt(k0 + Φk̄0) ≥ 2α
Φk̄0

where k0 = Vol(Stj) and k̄0 = min(k0, 2m− k0).

In other words, this lemma states that either

1. we have a strong bound on HT (k) which means that the random walk mixes well, or

2. one of the sweep sets Stj has a small conductance and we observe a large drop in degree-normalized
probability between the vertices inside and outside Stj .

Hence, if the second statement is verified, Stj is a good cluster in the sense of the conductance.

6.2.3 Heat kernel diffusion
As seen above, the Personalized PageRank is defined as

πTS = πTS

(
1− α
|S|

11TS + αD−1A

)
,

which leads to the following expression for πS ,

πTS =
(1− α)

|S|
1TS (I − αP)−1 =

(1− α)

|S|

∞∑
k=0

αk1TSP
k

where P = D−1A.

99

Another form of diffusion has been introduced by Chung in [Chung, 2007, Chung, 2009]. It is called
the heat kernel diffusion and is defined as

hTS = e−t

(∞∑
k=0

tk

k!
1TSP

k

)
= 1TS exp{−t(I − P)},

where t is a parameter capturing the spread of the diffusion. A method of approximation of hS is proposed
in [Kloster and Gleich, 2014] and used in the sweep method to detect local communities.

6.2.4 Local spectral analysis
Another class of algorithms applies spectral techniques to detect local communities [Mahoney et al., 2012,
Li et al., 2015]. In [Li et al., 2015] for instance, the LEMON algorithm is based on the extraction of a sparse
vector y in the span of the so-called local spectral subspace of the graph around the seed set S. This
vector y is then used as the scoring function. Unlike the previous algorithms, the LEMON algorithm is
iterative: the nodes of highest scores are used to expand the seed set S and to find a new vector y, and so
on. The iteration stops when the conductance starts increasing.

6.2.5 Other approaches
A number of other approaches have been proposed for local community detection. These in-
clude greedy algorithms [Clauset, 2005, Chang et al., 2015, Mehler and Skiena, 2009], flow-based al-
gorithms [Orecchia and Zhu, 2014], degree-based techniques [Sozio and Gionis, 2010], motif detection
[Huang et al., 2014, Yin et al., 2017] and subgraph extraction [Tong and Faloutsos, 2006]. None recover
multiple communities.

6.2.6 Finding seed sets
All the approaches described above are particularly well-suited for the so-called semi-supervised learning
problems where we already know a small portion of the cluster that we want to recover. However,
in many applications, we do not have any prior knowledge on the clusters, or this prior knowledge
is very limited, and a challenge consists in finding good seed sets. This problem has been studied in
[Kloumann and Kleinberg, 2014] where the authors study the impact of the choice of the seed set on the
quality of the cluster found with a local method similar to the ones studied above.

6.3 Multiple Community Detection
Let v1, . . . , vJ be the nodes numbered in decreasing order of their score, as described in §6.2.1, and
S1, . . . , SJ be the corresponding nested sets. For a strong community, the scoring function should give
high values to nodes belonging to the community and small values for nodes outside the community. As a
result, we expect the existence of some a > 0 such that

max (fS(v2)− fS(v1), . . . , fS(vj)− fS(vj−1)) ≤ a,
while fS(vj+1)− fS(vj) > a,

(6.1)

where j is the index of the target set Sj . The parameter a is called the scoring gap. As seen in
Section 6.2, we can prove the existence of such a scoring gap for a variant of the Personalized PageRank
[Spielman and Teng, 2004, Andersen and Lang, 2006]. Experimental studies showing the presence of a
scoring gap in real graphs can be found in [Andersen and Lang, 2006, Danisch et al., 2014].

To illustrate this, we use the DBLP dataset from the Stanford Social Network Analysis Project (SNAP)
website. DBLP is a database that collects the main publications in computer science. The graph we
consider is a collaboration network: nodes correspond to authors and there is an edge between two authors
if they have co-authored a paper. This dataset comes with ground-truth communities that correspond
to journals and conferences (i.e., all authors having published in the same journal or conference form a
community).

In our experiment, we pick a ground-truth community C in the graph and a seed node s ∈ C. We
compute the attachment scores fs to s with three different scoring functions: Personal PageRank p, Heat

100

Kernel score h and LEMON score y, introduced in Section 6.2. We compare the corresponding sets
S1, S2, . . . to the ground-truth community C with the F1-Score.

6.3.1 Scoring gap

In Figure 6.3, we jointly plot for a given target community C and seed node s ∈ C the values of the score
fs(vj) and the F1 score F1(Sj , C), for each scoring function. We observe in each case the existence of a
clear scoring gap. Moreover we observe that the drop in the scoring function corresponds each time to a
peak in the F1 Score, which means that the associated set is actually the best candidate for a community
among all the nested sets. In order to find multiple communities, we elaborate on this idea as described
in the next section.

6.3.2 Local embedding

The main idea of our algorithm is to use the scoring function to get a local embedding of the graph
around the seed set S. Specifically, each node v is embedded into the vector (fs(v))s∈S . Note that for a
node far from the seed set S, this vector will be the all zero vector and it can be safely removed since we
are only interested in local communities. We then cluster nodes with respect to their mutual distances in
the embedding space.

To motivate the proposed embedding, let us consider the case of a perfect scoring function f such that
fs(v) = cs if v is in the same community as s and 0 otherwise, where cs is some positive constant that
depends on s. Let us assume that we have disjoint communities C1, . . . , CK and seed nodes s1, . . . , sK
in each of these communities (sk ∈ Ck). Then, we see that the embedding (fsk(v))1≤k≤K associated
with these seed nodes and this perfect scoring function takes exactly K distinct non-zero values and
that each of these values corresponds to a community Ck. Thus, by using a clustering algorithm on the
vectors in the embedding space, we can exactly recover the communities (Ck)k=1,...,K . The scoring gap
property presented above for Personalized PageRank, LEMON and Heat Kernel guarantees that these
three functions are close to the perfect scoring function defined above. Therefore, applying clustering on
the embedding (fs(v))s∈S should lead to results similar to these perfect setup.

To illustrate the behavior of such embeddings, we show in Figure 6.4 the result of a local embedding
using the Personal PageRank scoring function on a random graph generated from a mixture of two
gaussian vectors in R2 by putting an edge between two points if they are within distance r from each
other. We choose a seed node in each gaussian. We observe that the local embedding from these seed
nodes clearly separates the nodes from the different groups and that a clustering algorithm can be used
in order to recover each gaussian.

6.3.3 Finding new seeds

We use the local embedding introduced in the previous section to iteratively find new seeds S around the
original seed set S. The main idea of the algorithm is simple: we start with S = S and we grow this new
seed set by repeating the following three steps:

1. Perform the local embedding using S: (fs(v))s∈S .

2. Cluster the nodes in the embedding space.

3. Pick a new seed node in each unexplored cluster and add it to S.

The new seed nodes of S are then used to detect multiple communities in the neighborhood of the
initial seed set S. We define more formally the algorithm in the next section, and, in particular, we clarify
the notion of unexplored cluster.

6.4 Algorithm

We now present our algorithm, named MULTICOM, that recovers multiple local communities.

101

0 5 10 15 20 25

0

1

2

·10−2

Sweep index j

P
er
so
na

liz
ed

P
ag
eR

an
k
p

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

F
1-
sc
or
e

0 5 10 15

0

0.1

0.2

0.3

Sweep index j

H
ea
t
ke
rn
el

sc
or
e
h

0 5 10 15
0

0.2

0.4

0.6

0.8

1

F
1-
sc
or
e

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Sweep index j

LE
M
O
N

sc
or
e
y

0 5 10 15
0

0.2

0.4

0.6

0.8

1

F
1-
sc
or
e

Figure 6.3: Attachment scores and F1 scores for the sweep sets in a ground-truth community of DBLP.
We consider three scoring functions to compute the attachment scores: Personalized PageRank, Heat
Kernel and LEMON. The attachment score curves are drawn in orange and the F1 Score curves in grey.

102

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x
2

(a) Mixture of two gaussian vectors in R2

(one seed is picked in each cluster)

s1

s2

(b) Corresponding graph for r = 0.2

0 1 2 3 4 5
·10−2

0

1

2

3

4

5
·10−2

fs1

f s
2

(c) Graph embedding using PPR

Figure 6.4: Example of local graph embedding for a random graph. The graph is generated from a
mixture of two gaussians in R2 by putting an edge between two points if they are within a given distance
r from each other. The local embedding is performed using the Personalized PageRank scoring function
and two seed nodes s1 and s2 picked in each gaussian.

103

6.4.1 Inputs

The inputs of MULTICOM are a graph G = (V,E) and a seed set S ⊂ V . Our algorithm also takes a scoring
function f , which is typically one of the functions presented in Section 6.2, and a local community
detection function local that, given a seed node s and a score fs, returns a local community around S.
For instance, this local function may return the sweep set with the lowest conductance by applying the
sweep process described in §6.2.1. Finally the algorithm takes an integer parameter I that controls the
number of detected communities and a re-seeding threshold β ∈ [0, 1] that controls the number of new
seeds at each iteration of the algorithm.

6.4.2 Description

In order to find multiple communities in the neighborhood of the initial seed set S, the algorithm uses a
larger seed set S that contains S at the end of the algorithm. The new seed nodes found during a step of
the algorithm are stored in Snew. Initially, Snew is initialized with S.

Step 1: Local community detection for new seeds

The algorithm starts by computing the score vectors fs for each new seed node s ∈ Snew. Then, for each
s ∈ Snew we use the local algorithm to extract a local community Cs around s. Thus, at the end of
this step of the algorithm, we obtain one community Cs per seed node s. In particular, if the set Snew is
a singleton, we only recover one community at this stage.

Step 2: Embedding and clustering

We use the scores fs for s ∈ S to define an embedding which maps each node v ∈ V to a vector
xv = (fs(v))s∈S in R|S|+ . We then apply the popular clustering algorithm DBSCAN [Ester et al., 1996] to
the non-zero vectors xv and obtain K clusters of nodes, D1, ..., DK .

Step 3: Picking new seeds

The second step of the algorithm applies the ideas of Section 6.3 to find new seeds. We expect to obtain
two types of clusters in Step 2:

• clusters with significant overlap with the communities Cs, s ∈ S, already detected;

• clusters with low overlap with these communities.

We want to select seed nodes in the later clusters in order to detect new communities. To identify these
clusters, we compute for each cluster Dk the ratio

|Dk ∩ ∪s∈SCs|
|Dk|

.

Clusters with a ratio lower that the threshold β are considered as new directions that are worth exploring:
a new seed node is picked in each of them. In order to have a central node in each cluster, we simply
choose the node with the highest degree.

Loop

The seeds selected at the end of step 3 form the new seed set Snew to which we apply the same three steps.
We stop the algorithm when the number of communities is greater than I or if there is no new seed.

Finally we output all the communities Cs found from the seed nodes s ∈ S. The pseudo-code of our
algorithm is given below.

104

Algorithm 4 MULTICOM
Require: Graph G = (V,E), seed set S ⊂ V , score function f , function local, parameters I, β.
1: S ← ∅ (all seed nodes)
2: Snew ← S (new seed nodes)
3: C ← [] (list of communities)
4: while Snew 6= ∅ and |C| ≤ I do
5: # Detecting communities from new seeds
6: for s ∈ Snew do
7: fs ← compute score function
8: Cs ← local(fs) (local community detection)
9: C.push(Cs)

10: end for
11: S ← S ∪ Snew (add new seeds)
12: # Embedding and clustering
13: ∀v ∈ V , xv ← (fs(v))s∈S
14: D1,, DK ← clustering of (xv)v∈V in R|S|+ \ {0}
15: # Picking new seeds
16: Snew ← ∅
17: E ← ∪C∈CC (explored nodes)
18: for k = 1, ...,K do
19: if |Dk ∩ E| < β|Dk| then
20: snew ← node with highest degree in Dk \ E
21: Snew ← Snew ∪ {snew}
22: end if
23: end for
24: end while
25: return C

6.4.3 Post-processing

Note that the communities returned by MULTICOM might intersect. This is consistent with the fact that
nodes often belong to multiple communities in practice [Reid et al., 2013, Xie et al., 2013]. However, we
might want to limit the number of nodes that the communities have in common, and consider that if two
communities Ci, Cj share too many nodes, then they form only one community Ci ∪ Cj . To do so, we
apply a post-processing step, called MERGE, at the end of MULTICOM that merges two communities Ci and
Cj if their F1 score F1(Ci, Cj) is greater than a given threshold γ ∈ [0, 1]. In the following experiments
we use MERGE with parameter γ = 1

2 .

6.5 Experiments

We now analyse the performance of our algorithm, both qualitatively and quantitatively, on real graphs.

6.5.1 Case study: Wikipedia

First, we illustrate the interest of our algorithm on an extract of Wikipedia presented in [West et al., 2009].
The dataset is built from a selection of articles from the English version of Wikipedia that matches the
UK National Curriculum1. The nodes of the graph corresponds to Wikipedia articles, and we put an
edge between two articles a and a′ if there is an hyperlink to article a′ in article a. We apply MULTICOM
with a Personalized PageRank scoring function and using a cut based on conductance on the seed set
S = {Albert Einstein}. With the parameter I = 5, the algorithm returns 6 communities, for a total of
153 nodes. For each of these communities, we list the top-5 nodes according to their PageRank:

• C1 = {Albert Einstein, Special relativity, Euclid, Wave, String theory}

1http://schools-wikipedia.org

105

http://schools-wikipedia.org

• C2 = {Light, Electric field, Contact lens, Maxwell’s equations, Semiconductor device}

• C3 = {Gottfried Leibniz, Algebra, Pi, Game theory, Thermo- dynamics}

• C4 = {Star, Red dwarf, Open cluster, Orion Nebula, Gliese 876}

• C5 = {Quantum mechanics, Photon, Electromagnetic radiation, Electric charge, Linus Pauling}

• C6 = {Atom, Renormalization, Mechanical work, Quark, Ununpentium}

The top node of each community C2, . . . , C6 turns out to be a seed found by MULTICOM. We see
that each community corresponds to a different facet of Einstein’s work. Note that the state-of-the-art
algorithms like Personalized PageRank only recover community C1, as it corresponds to the first step of
the MULTICOM algorithm. We see that we gain precious information by considering additional communities
around the Albert Einstein article.

6.5.2 Real-world data

Datasets

For a quantitative evaluation of our algorithm on real-world graphs, we use the datasets available
on the SNAP website [Yang and Leskovec, 2015]. All these datasets include ground-truth community
memberships. We consider graphs of different types: the social network YouTube [Backstrom et al., 2006],
the product co-purchasing graph built from Amazon data [Leskovec et al., 2007], and the DBLP dataset
described in Section 6.4.

Algorithms

We compare MUTLTICOM to the three state-of-the-art algorithms presented in Section 6.2: Personalized
PageRank (PPR), Heat Kernel (HK) and LEMON (LEMON). For MULTICOM we use a function cut that
finds the local minimum for the conductance Φ(Sj), and we take Personalized PageRank for the scoring
function f . We have implemented MULTICOM in Python and made it available on GitHub2.

Performance evaluation

In order to evaluate the performance of the algorithms, we measure for each returned community Ĉ its
conductance Φ(Ĉ) and the maximum F1-score between Ĉ and any ground-truth community.

The state-of-the-art algorithms return only one community so the computation of these scores is
straightforward. MUTLTICOM generally outputs several communities, so we consider the average values of
conductance and F1-score for these communities.

We also compute the total number of nodes |E| labeled or explored by each algorithm, i.e. the total
number of nodes that belong to a community at the end of each algorithm.

Benchmark

For each dataset, we pick 100 seed nodes uniformly at random and run the algorithms on each of these
seed nodes. We use the parameter I = 5 and β = 0.8 for MULTICOM. The results are shown in Table 6.1.

Observe that the total number of nodes found by MULTICOM, corresponding to multiple communities,
is much higher than those found by the other algorithms. In other words, the volume of information that
MULTICOM collects in the neighborhood of the seed set is much more important. Moreover, the quality
of this information is not too much downgraded by the multi-directional approach. Indeed, the average
F1-score measured on the multiple communities returned by MULTICOM is essentially the same as the
F1-scores of the other algorithms. The much higher F1-score of LEMON for the YouTube dataset is due to
the much smaller communities detected by this algorithm.

106

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Detected seed nodes
(initial seed in red)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Detected communities

Figure 6.5: Seeds and communities detected by MULTICOM in a SBM. The algorithm has been applied to a
SBM random graph with an initial seed displayed in red in Figure (a). Figure (a) shows the new seeds
detected by MULTICOM. Figure (b) shows the communities detected from these seeds. Note that some
nodes belong to several communities (bi-colored nodes).

107

DBLP

Algo. |E| Φ F1

MULTICOM 103 0.45± 0.14 0.23± 0.15
PPR 21 0.41± 0.17 0.23± 0.22
HK 15 0.32± 0.14 0.23± 0.26
LEMON 18 0.43± 0.20 0.26± 0.24

Amazon

Algo. |E| Φ F1

MULTICOM 80 0.35± 0.14 0.44± 0.19
PPR 26 0.31± 0.16 0.46± 0.24
HK 24 0.27± 0.16 0.49± 0.26
LEMON 21 0.40± 0.27 0.48± 0.25

YouTube

Algo. |E| Φ F1

MULTICOM 284 0.69± 0.11 0.05± 0.03
PPR 95 0.56± 0.25 0.05± 0.11
HK 100 0.55± 0.33 0.04± 0.11
LEMON 5 0.96± 0.12 0.12± 0.20

Table 6.1: Benchmark results on SNAP datasets

6.5.3 Synthetic data
We evaluate our algorithm on synthetic graphs generated with the Stochastic Block Model (SBM)
[Decelle et al., 2011]. We illustrate the results of MULTICOM on such a synthetic graph in Figure 6.5. In
the sub-figure (a), we display the new seeds found by the algorithm when initialized with an initial seed
colored in red in the figure. In the sub-figure (b), we display the corresponding communities returned by
the algorithm. Note that some communities are overlapping i.e. some nodes belong to more than one
community.

In order to numerically evaluate the results of MULTICOM on the SBM model, we generate 100 graphs
with 100 nodes and 5 communities of equal size. We pick a random seed node in each of these graphs
and run MULTICOM starting from this seed with the same parameters as in §6.5.2. We use the same
performance metrics (average conductance, average F1-score and number of explored nodes) to evaluate
the performance of MULTICOM and we compare it to PPR. The results are shown in Table 6.2. We observe
that MULTICOM recovers almost perfectly all 5 communities in each generated graph, whereas PPR recover
only one of these communities.

Algo. |E| Φ F1

MULTICOM 98 0.11 0.98
PPR 20 0.11 0.97

Table 6.2: Benchmark results on a SBM model. Graph generated have 100 nodes and 5 equal-sized
communities.

2https://github.com/ahollocou/multicom

108

https://github.com/ahollocou/multicom

Chapter 7

Conclusion

We presented the problem of graph clustering in Chapter 1 with its multiple facets, and gave numerous
examples of applications in various fields. We have seen that there is no universal approach to this
question and that the problem can be tackled from different angles. We also presented classic graph
clustering methods that are cornerstones in all our work. In particular, we introduced modularity, a
quality measure for clusters that can be defined and interpreted in multiple ways. We also gave an
introduction to spectral approaches and random walks whose properties are tightly related to the cluster
structure in graphs. The rest of our work was then dedicated to studying different facets of the graph
clustering problem.

In Chapter 2, we studied soft clustering approaches to graph clustering, with the aim of determining
degrees of membership to each cluster instead of performing a hard partitioning of graph nodes. We
introduced a relaxation of the popular modularity maximization problem. In order to efficiently solve this
relaxation, we introduced a novel algorithm, called MODSOFT, that is based on an alternating projected
gradient descent. By diving into the specific form of the gradient descent updates, we were able to
guarantee the locality of each algorithm step, and to make good use of the sparsity of the solutions. As a
result, unlike existing methods, our approach is both local and memory efficient. Furthermore, we proved
that our algorithm includes the main routine of the popular Louvain algorithm for a learning rate above
a certain threshold, t > w/δ. We illustrated on real-life examples that our algorithm has an execution
time and a memory consumption comparable to the Louvain algorithm, but goes further than Louvain by
identifying nodes with mixed memberships that represent important bridges between clusters, even if this
does not always translate into a large modularity increase. Note that, in practical cases, the learning rate
t is sometimes hard to tune. It would be interesting for future work to find a way to choose a correct value
for t. Also note that our algorithm tends to be trapped in local optima of the soft modularity function.
A solution to counter this would be to use an adaptive learning rate or to combine the use of Modsoft
with another algorithm, for instance the softmax approach proposed by Chang et al. In future works, it
would also be interesting to compare our approach to a non-negative matrix factorization method applied
to the adjacency matrix A, which can be performed with a comparable alternating projected gradient
descent [Lin, 2007]. Moreover, in some of our experiments, it proves more efficient to consider the more
general update rule

pi· ← πY

bpi· + t′
∑
j∼i

Aij(pj· − p̄)

where b ≥ 0 is a bias parameter. We think that it might be worth understanding the impact of a b 6= 1 on
the solution for future work.

In Chapter 3, we proposed a novel agglomerative algorithm for the edge clustering problem that
maximizes a variant of Newman’s modularity that emerges by considering a random walk on the graph
edges instead of the graph nodes. This algorithm does not require the construction of a weighted line
graph unlike the existing approaches. It is based on a special aggregation operation that conserves the edge
modularity as proven in Theorem 3.5.3. Thanks to this aggregation step, the size of the graph decreases at
each iteration step of the algorithm which enables it to handle large graphs. We showed on both synthetic
and real-world datasets that our algorithm significantly outperforms Evans and Lambiotte’s methods in
terms of memory consumption and time execution. Besides, we illustrated on the OpenFlights dataset

109

that the aggregated graph produced by our algorithm can be used as a powerful tool for visualization.
For future work, we would like to speed up the first greedy maximization step of the algorithm before any
aggregation takes place. This first step is indeed the most expensive one and could be accelerated using
heuristics based on standard modularity maximization techniques for instance. Besides, note that our
edge clustering approach is closely related to approaches using second-order Markov models, like the one
introduced in [Rosvall et al., 2014], that uses the map equation framework [Rosvall and Bergstrom, 2008].
In such models, the transitions can be interpreted as movements between links instead of movements
between nodes, just as the the random walk on edges (Yt)t≥0 that we introduced in Chapter 3. Such
higher-order Markov models have recently regained interests because of their connection to higher-order
structures [Benson et al., 2016]. It would be interesting for future work to study in details the links
between these techniques and our approach.

In Chapter 4, we have proposed an agglomerative clustering algorithm for graphs, called Paris, based
on a reducible distance between clusters. The algorithm is parameter-free and uses the nearest-neighbor
chain technique traditionally used to cluster vector in Euclidean spaces. We showed that the distance we
introduce is tightly linked to modularity and that Paris can be seen as modified version of Louvain using
a sliding resolution. Unlike Louvain, our algorithm is able to capture the multi-scale structure of real
graphs. We showed through experiments both on synthetic graphs (with the HSBM) and on real datasets
that our algorithm is fast and memory-efficient. For future work, we plan to work on the automatic
extraction of the most relevant clusterings from the dendrogram at different scales, which must be done
manually with the existing version. For instance, a way to perform this task would be to extract the
levels that correspond to the largest gaps between successive distances in the dendrogram, or to take
the levels corresponding to the largest distance ratios. This is equivalent to consider the largest gaps
in the dendrogram where distances are represented in log scale. With this technique, we could obtain
theoretical gurantees on the hierarchical stochastic block model that we consider in our experiments.

In Chapter 5, we introduced a new algorithm for the problem of graph clustering in the edge streaming
setting. In this setting, the input data is presented to the algorithm as a sequence of edges that can be
examined only once. Our algorithm only stores three integers per node and requires only one integer
parameter vmax. It runs more than 10 times faster than state-of-the-art algorithms such as Louvain and
SCD and shows better detection scores on the largest graphs. Such an algorithm is extremely useful
in many applications where massive graphs arise. For instance, the web graph contains around 1010

nodes which is much more than in the Friendster dataset. We analyzed the adaptation of the popular
modularity problem to the streaming setting. Theorem 5.4.3 justifies the nature of the condition on the
volumes of the communities of nodes i and j for each new edge (i, j), which is the core of Algorithm 3. It
would be interesting for future work to perform further experiments. First, we could perform additional
experiments on synthetic datasets using stochastic block models or the LFR model introduced in Chapter
1. Then, the ability of the algorithm to handle evolving graphs could be evaluated on dynamic datasets
[Panzarasa et al., 2009] and compared to existing approaches [Gauvin et al., 2014, Epasto et al., 2015].
Note that, in the dynamic network settings, modifications to the algorithm design could be made to
handle events such as edge deletions. Another important subject for future work is the influence of the
ordering of the edges on the final result obtained with our algorithm. In practice, we qualitatively observe
that the result does not depend much on the edge order in the stream, but it would be interesting to
obtain quantitative results on this stability. Finally, our algorithm only returns disjoint communities. An
important research direction would consist in adapting approach to overlapping community detection and
compare it to existing approaches [Xie et al., 2013, Yang and Leskovec, 2013].

In Chapter 6, we have presented an algorithm for multiple local community detection. The approach
relies on the local embedding of the graph near the seed set, using a scoring function such as Personal
PageRank. We have seen that the target communities are typically well separated in the embedding
space. Building on this observation, we have proposed a clustering method to identify new seeds in the
neighborhood of the initial seed set, so as to recover different communities in various directions of the
graph. For future work, we would like to compare the local embedding obtained with MULTICOM with
the existing local spectral embedding, and use it for other tasks such as network visualization and link
prediction.

As explained in the introduction, there is no universal definition of what a good cluster is. We have
addressed some of the many facets of the complex problem of graph clustering by introducing a range of
different approaches. However it is not necessarily clear at this point which technique should be used

110

for specific applications. We think that a hierarchical approach such as the one proposed in Paris is an
appropriate way to start any real-life graph analysis. Indeed, it is crucial to determine what are the
relevant scales for the problem we are interested in, and an algorithm like Paris offers a solution for
identifying these scales. Besides, Paris helps us to detect the relevant resolutions for modularity-based
approach. The values of these resolutions can therefore be used in any modularity-based algorithm that
we have introduced. The big disadvantage of a hierarchical technique such as Paris is that each level in
the dendrogram returned by the algorithm corresponds a node partition, so that each node belongs to
one and only cluster, which is very limiting in practice. To overcome this problem, a natural second step
in the analysis of a real-life dataset would be to apply a soft-clustering approach like Modsoft or an edge
clustering approach such as the one introduced in Chapter 3 at the relevant resolutions determined during
the first step of the analysis. The advantage of the edge clustering approach is that it is easy to interpret,
as we simply cluster the relations between the entities rather than the entities themselves. However, such
a result is often hard to visualize in practice as there could be many edge clusters connected to a single
node (see the example of OpenFlights presented in Chapter 3 for instance). The results of Modsoft are
easier to visualize as there are few nodes with mixed membership in practice, however the parameter of
the algorithm is harder to tune, which can make the analysis more difficult.

Note that we have only discussed cases where we have access to the entire graph and where we can
handle it in one batch. If these conditions are not satisfied, which might be the case in real-life big data
applications, one should turn to streaming or local approaches. The disadvantage of such approaches is
that they are today much less developed and refined that the techniques we have mentioned earlier. This
is especially the case for streaming approaches that only output node partitions.

As the variety of graph clustering approaches that we have introduced is very wide, it would be
interesting to compare these methods with each other for future work. However, such a comparison
would be a difficult task. Indeed, the evaluation of traditional graph clustering methods on real datasets
is already troublesome as noted in Chapter 1, mainly because the definition of ground-truth clusters
is highly subjective. Therefore, it is even more complex to compare techniques that perform tasks as
different as soft node clustering, edge partitioning and hierarchical clustering on such real datasets. A
perfect dataset would contain for each node all the ground-truth clusters to which this node can possibly
belong at all possible scales, which is a pipe dream. Of course, synthetic datasets that model all these
different aspects could certainly be generated using, for instance, a stochastic block model that combine
overlapping blocks and a multi-scale structure as in the HSBM introduced in Chapter 4. But such a
model would certainly have many parameters, which would probably make the experimental comparison
of the different algorithms intractable.

Besides, if it would be useful to compare the different algorithms presented in this work as explained
above, it would also be very interesting to study novel methods that combine these different techniques
to tackle several aspects of the graph clustering problem at the same time. For instance, the hierarchical
algorithms studied in Chapter 4 consider that clusters form a partition of the graph nodes at all level of
the dendrogram, whereas it would be interesting to define a new type of hierarchies such that we could
have at each level a soft clustering of the nodes or a partition of the graph edges. Considering that the
methods presented in our work to perform these different tasks are all based on modularity, we believe
that they could be mixed together to perform such hybrid tasks with a reasonable effort. For instance, we
see that it is easy to generalize the reducible distance between nodes introduced in Chapter 4 to define
a distance between edges, using the logic presented in Chapter 3. It seems however more challenging
to combine the relaxation of modularity introduced in Chapter 2 with the hierarchical agglomerative
approach used in the Paris algorithm.

Finally, note that the list of problems we have studied in the present work is far from being compre-
hensive. Indeed, we focused on some crucial aspects of the complex problem of graph clustering and
meanwhile turned a blind eye on some other important facets of the question [Schaub et al., 2017]. For
instance, we could have studied the problem of clustering annotated graphs [Newman and Clauset, 2016,
Yang et al., 2013, Chang et al., 2018a], i.e. graphs whose nodes and/or edges can carry attributes or
features. Indeed, in many real-life applications, we have access to rich information about nodes and edges
in addition to the graph structure. This is the case, for instance, in a social network such as Facebook,
where we have a great amount of data about nodes representing users, including their age, their gender,
and their nationality. In the Spotify or Deezer user-artist graph, we also have a lot of supplementary
information about the edges of the graph. For example, we know how many times a user has listened

111

to an artist, how regularly and to how many songs. Another important issue for which we only have
scratched the surface is the problem of dynamic graph clustering, which consists in finding clusters in
graphs that evolve over time. The streaming algorithm proposed in Chapter 5, which is mostly designed
to handle massive graphs, can also be applied to dynamic graphs where edges are inserted. However,
in many real-life applications, we must consider that nodes and edges can be inserted and deleted over
time [Gauvin et al., 2014]. This is the case for instance of the Wikipedia graph where nodes representing
articles can be created and removed, and where the modification of articles can lead to the formation of
new edges or the demise of existing ones. In this framework, an interesting problem would be to adapt
the different algorithms that we presented in this work so that they could be applied to time-evolving
graphs without having to run the algorithm on the whole graph at each time step.

112

Bibliography

[Abbe, 2017] Abbe, E. (2017). Community detection and stochastic block models: recent developments.
arXiv preprint arXiv:1703.10146.

[Ahn et al., 2012] Ahn, K. J., Guha, S., and McGregor, A. (2012). Graph sketches: sparsification,
spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on
Principles of Database Systems, pages 5–14. ACM.

[Ahn et al., 2010] Ahn, Y.-Y., Bagrow, J. P., and Lehmann, S. (2010). Link communities reveal multiscale
complexity in networks. nature, 466(7307):761.

[Airoldi et al., 2008] Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P. (2008). Mixed
membership stochastic blockmodels. Journal of Machine Learning Research, 9(Sep):1981–2014.

[Andersen and Lang, 2006] Andersen, R. and Lang, K. J. (2006). Communities from seed sets. In
Proceedings of the 15th international conference on World Wide Web, pages 223–232. ACM.

[Arenas et al., 2008] Arenas, A., Fernandez, A., and Gomez, S. (2008). Analysis of the structure of
complex networks at different resolution levels. New Journal of Physics, 10(5):053039.

[Arthur and Vassilvitskii, 2007] Arthur, D. and Vassilvitskii, S. (2007). k-means++: The advantages of
careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 1027–1035. Society for Industrial and Applied Mathematics.

[Backstrom et al., 2006] Backstrom, L., Huttenlocher, D., Kleinberg, J., and Lan, X. (2006). Group
formation in large social networks: membership, growth, and evolution. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 44–54. ACM.

[Balakrishnan, 1997] Balakrishnan, V. (1997). Schaum’s Outline of Graph Theory: Including Hundreds
of Solved Problems. McGraw Hill Professional.

[Bar-Yossef et al., 2002] Bar-Yossef, Z., Kumar, R., and Sivakumar, D. (2002). Reductions in streaming
algorithms, with an application to counting triangles in graphs. In Proceedings of the thirteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 623–632. Society for Industrial and Applied
Mathematics.

[Barabási and Albert, 1999] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random
networks. science, 286(5439):509–512.

[Barabási et al., 2016] Barabási, A.-L. et al. (2016). Network science. Cambridge university press.

[Benczúr and Karger, 1996] Benczúr, A. A. and Karger, D. R. (1996). Approximating st minimum cuts
in õ (n 2) time. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pages 47–55. ACM.

[Benson et al., 2016] Benson, A. R., Gleich, D. F., and Leskovec, J. (2016). Higher-order organization of
complex networks. Science, 353(6295):163–166.

[Benzécri, 1982] Benzécri, J.-P. (1982). Construction d’une classification ascendante hiérarchique par la
recherche en chaîne des voisins réciproques. Les cahiers de l’analyse des données, 7(2):209–218.

113

[Bezdek, 1981] Bezdek, J. C. (1981). Objective function clustering. In Pattern recognition with fuzzy
objective function algorithms, pages 43–93. Springer.

[Blondel et al., 2008] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast
unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment,
2008(10):P10008.

[Bollobás, 2004] Bollobás, B. (2004). Extremal graph theory. Courier Corporation.

[Bonald et al., 2018a] Bonald, T., Charpentier, B., Galland, A., and Hollocou, A. (2018a). Hierarchical
graph clustering by node pair sampling. KDD Workshop.

[Bonald et al., 2018b] Bonald, T., De Lara, N., and Hollocou, A. (2018b). Forward and backward
embedding of directed graphs. Preprint.

[Bonald et al., 2018c] Bonald, T., Hollocou, A., and Lelarge, M. (2018c). Weighted spectral embedding of
graphs. In Communication, Control, and Computing (Allerton), 2018 56th Annual Allerton Conference
on.

[Brandes et al., 2007] Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., and
Wagner, D. (2007). On finding graph clusterings with maximum modularity. In International Workshop
on Graph-Theoretic Concepts in Computer Science, pages 121–132. Springer.

[Breitkreutz et al., 2007] Breitkreutz, B.-J., Stark, C., Reguly, T., Boucher, L., Breitkreutz, A., Livstone,
M., Oughtred, R., Lackner, D. H., Bähler, J., Wood, V., et al. (2007). The biogrid interaction database:
2008 update. Nucleic acids research, 36(suppl_1):D637–D640.

[Buriol et al., 2006] Buriol, L. S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., and Sohler, C.
(2006). Counting triangles in data streams. In Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 253–262. ACM.

[Chang et al., 2018a] Chang, C.-H., Chang, C.-S., Chang, C.-T., Lee, D.-S., and Lu, P.-E. (2018a).
Exponentially twisted sampling for centrality analysis and community detection in attributed networks.
IEEE Transactions on Network Science and Engineering.

[Chang et al., 2015] Chang, C.-S., Chang, C.-J., Hsieh, W.-T., Lee, D.-S., Liou, L.-H., and Liao, W.
(2015). Relative centrality and local community detection. Network Science, 3(4):445–479.

[Chang et al., 2011] Chang, C.-S., Hsu, C.-Y., Cheng, J., and Lee, D.-S. (2011). A general probabilistic
framework for detecting community structure in networks. In INFOCOM, 2011 Proceedings IEEE,
pages 730–738. IEEE.

[Chang et al., 2018b] Chang, C.-S., Lee, D.-S., Liou, L.-H., Lu, S.-M., and Wu, M.-H. (2018b). A proba-
bilistic framework for structural analysis and community detection in directed networks. IEEE/ACM
Transactions on Networking (TON), 26(1):31–46.

[Chang and Chang, 2017] Chang, C.-T. and Chang, C.-S. (2017). A unified framework for sampling,
clustering and embedding data points in semi-metric spaces. arXiv preprint arXiv:1708.00316.

[Chung, 2007] Chung, F. (2007). The heat kernel as the pagerank of a graph. Proceedings of the National
Academy of Sciences, 104(50):19735–19740.

[Chung, 2009] Chung, F. (2009). A local graph partitioning algorithm using heat kernel pagerank. Internet
Mathematics, 6(3):315–330.

[Chung, 1997] Chung, F. R. (1997). Spectral graph theory. Number 92. American Mathematical Soc.

[Clauset, 2005] Clauset, A. (2005). Finding local community structure in networks. Physical review E,
72(2):026132.

[Clauset et al., 2008] Clauset, A., Moore, C., and Newman, M. E. (2008). Hierarchical structure and the
prediction of missing links in networks. Nature, 453(7191):98.

114

[Danisch et al., 2014] Danisch, M., Guillaume, J.-L., and Le Grand, B. (2014). Learning a proximity
measure to complete a community. In Data Science and Advanced Analytics (DSAA), 2014 International
Conference on, pages 90–96. IEEE.

[Day and Edelsbrunner, 1984] Day, W. H. and Edelsbrunner, H. (1984). Efficient algorithms for agglom-
erative hierarchical clustering methods. Journal of classification, 1(1):7–24.

[Decelle et al., 2011] Decelle, A., Krzakala, F., Moore, C., and Zdeborová, L. (2011). Asymptotic analysis
of the stochastic block model for modular networks and its algorithmic applications. Physical Review
E, 84(6):066106.

[Delvenne et al., 2010] Delvenne, J.-C., Yaliraki, S. N., and Barahona, M. (2010). Stability of graph
communities across time scales. Proceedings of the national academy of sciences, 107(29):12755–12760.

[Donetti and Munoz, 2004] Donetti, L. and Munoz, M. A. (2004). Detecting network communities: a
new systematic and efficient algorithm. Journal of Statistical Mechanics: Theory and Experiment,
2004(10):P10012.

[Duchi et al., 2008] Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). Efficient projections
onto the l 1-ball for learning in high dimensions. In Proceedings of the 25th international conference on
Machine learning, pages 272–279. ACM.

[Dunn, 1973] Dunn, J. C. (1973). A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters.

[Elkin and Zhang, 2006] Elkin, M. and Zhang, J. (2006). Efficient algorithms for constructing (1+ε,
β)-spanners in the distributed and streaming models. Distributed Computing, 18(5):375–385.

[Epasto et al., 2015] Epasto, A., Lattanzi, S., and Sozio, M. (2015). Efficient densest subgraph compu-
tation in evolving graphs. In Proceedings of the 24th International Conference on World Wide Web,
pages 300–310. ACM.

[Eppstein, 2000] Eppstein, D. (2000). Fast hierarchical clustering and other applications of dynamic
closest pairs. Journal of Experimental Algorithmics (JEA), 5:1.

[Ester et al., 1996] Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231.

[Evans and Lambiotte, 2009] Evans, T. and Lambiotte, R. (2009). Line graphs, link partitions, and
overlapping communities. Physical Review E, 80(1):016105.

[Feigenbaum et al., 2005] Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., and Zhang, J. (2005). On
graph problems in a semi-streaming model. Theoretical Computer Science, 348(2-3):207–216.

[Fortunato, 2010] Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3):75–174.

[Fortunato and Barthelemy, 2007] Fortunato, S. and Barthelemy, M. (2007). Resolution limit in commu-
nity detection. Proceedings of the National Academy of Sciences, 104(1):36–41.

[Fortunato and Castellano, 2012] Fortunato, S. and Castellano, C. (2012). Community structure in
graphs. In Computational Complexity, pages 490–512. Springer.

[Fowlkes et al., 2004] Fowlkes, C., Belongie, S., Chung, F., and Malik, J. (2004). Spectral grouping using
the nystrom method. IEEE transactions on pattern analysis and machine intelligence, 26(2):214–225.

[Frieze and Karoński, 2016] Frieze, A. and Karoński, M. (2016). Introduction to random graphs. Cam-
bridge University Press.

[Garey et al., 1982] Garey, M., Johnson, D., and Witsenhausen, H. (1982). The complexity of the
generalized lloyd-max problem (corresp.). IEEE Transactions on Information Theory, 28(2):255–256.

[Gauvin et al., 2014] Gauvin, L., Panisson, A., and Cattuto, C. (2014). Detecting the community
structure and activity patterns of temporal networks: a non-negative tensor factorization approach.
PloS one, 9(1):e86028.

115

[Girvan and Newman, 2002] Girvan, M. and Newman, M. E. (2002). Community structure in social and
biological networks. Proceedings of the national academy of sciences, 99(12):7821–7826.

[Gleich, 2015] Gleich, D. F. (2015). Pagerank beyond the web. SIAM Review, 57(3):321–363.

[Goel et al., 2012] Goel, A., Kapralov, M., and Khanna, S. (2012). On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms, pages 468–485. SIAM.

[Goldstein, 1964] Goldstein, A. A. (1964). Convex programming in hilbert space. Bulletin of the American
Mathematical Society, 70(5):709–710.

[Griechisch and Pluhár, 2011] Griechisch, E. and Pluhár, A. (2011). Community detection by using the
extended modularity. Acta Cybern., 20(1):69–85.

[Grover and Leskovec, 2016] Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 855–864. ACM.

[Guimera et al., 2004] Guimera, R., Sales-Pardo, M., and Amaral, L. A. N. (2004). Modularity from
fluctuations in random graphs and complex networks. Physical Review E, 70(2):025101.

[Hassan et al., 2015] Hassan, M., Makkaoui, O., Coulet, A., and Toussaint, Y. (2015). Extracting disease-
symptom relationships by learning syntactic patterns from dependency graphs. In BioNLP 15, page
184.

[Havens et al., 2013] Havens, T. C., Bezdek, J. C., Leckie, C., Ramamohanarao, K., and Palaniswami,
M. (2013). A soft modularity function for detecting fuzzy communities in social networks. IEEE
Transactions on Fuzzy Systems, 21(6):1170–1175.

[Heimlicher et al., 2012] Heimlicher, S., Lelarge, M., and Massoulié, L. (2012). Community detection in
the labelled stochastic block model. arXiv preprint arXiv:1209.2910.

[Holland et al., 1983] Holland, P. W., Laskey, K. B., and Leinhardt, S. (1983). Stochastic blockmodels:
First steps. Social networks, 5(2):109–137.

[Hollocou et al., 2017a] Hollocou, A., Bonald, T., and Lelarge, M. (2017a). Multiple local community
detection. ACM SIGMETRICS Performance Evaluation Review, 45(2):76–83.

[Hollocou et al., 2019] Hollocou, A., Bonald, T., and Lelarge, M. (2019). Modularity-based sparse soft
graph clustering. AISTATS.

[Hollocou et al., 2018] Hollocou, A., Lutz, Q., and Bonald, T. (2018). A fast agglomerative algorithm for
edge clustering. Preprint.

[Hollocou et al., 2017b] Hollocou, A., Maudet, J., Bonald, T., and Lelarge, M. (2017b). A streaming
algorithm for graph clustering. NIPS Workshop.

[Huang et al., 2010] Huang, J., Sun, H., Han, J., Deng, H., Sun, Y., and Liu, Y. (2010). Shrink: a
structural clustering algorithm for detecting hierarchical communities in networks. In Proceedings of
the 19th ACM international conference on Information and knowledge management, pages 219–228.
ACM.

[Huang et al., 2014] Huang, X., Cheng, H., Qin, L., Tian, W., and Yu, J. X. (2014). Querying k-truss
community in large and dynamic graphs. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 1311–1322. ACM.

[Jeub et al., 2015] Jeub, L. G., Balachandran, P., Porter, M. A., Mucha, P. J., and Mahoney, M. W.
(2015). Think locally, act locally: Detection of small, medium-sized, and large communities in large
networks. Physical Review E, 91(1):012821.

[Juan, 1982] Juan, J. (1982). Programme de classification hiérarchique par l’algorithme de la recherche
en chaıne des voisins réciproques. Les Cahiers de l’Analyse des Données, 7(2):219–225.

116

[Karrer and Newman, 2011] Karrer, B. and Newman, M. E. (2011). Stochastic blockmodels and commu-
nity structure in networks. Physical review E, 83(1):016107.

[Kaufman and Rousseeuw, 1987] Kaufman, L. and Rousseeuw, P. (1987). Clustering by means of medoids.
North-Holland.

[Kawase et al., 2016] Kawase, Y., Matsui, T., and Miyauchi, A. (2016). Additive approximation algorithms
for modularity maximization. arXiv preprint arXiv:1601.03316.

[Kleinberg, 2003] Kleinberg, J. M. (2003). An impossibility theorem for clustering. In Advances in neural
information processing systems, pages 463–470.

[Kloster and Gleich, 2014] Kloster, K. and Gleich, D. F. (2014). Heat kernel based community detection.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1386–1395. ACM.

[Kloumann and Kleinberg, 2014] Kloumann, I. M. and Kleinberg, J. M. (2014). Community membership
identification from small seed sets. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1366–1375. ACM.

[Lambiotte et al., 2008] Lambiotte, R., Delvenne, J.-C., and Barahona, M. (2008). Laplacian dynamics
and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770.

[Lambiotte et al., 2014] Lambiotte, R., Delvenne, J.-C., Barahona, M., et al. (2014). Random walks,
markov processes and the multiscale modular organization of complex networks. IEEE Trans. Network
Science and Engineering, 1(2):76–90.

[Lancichinetti and Fortunato, 2009] Lancichinetti, A. and Fortunato, S. (2009). Community detection
algorithms: a comparative analysis. Physical review E, 80(5):056117.

[Lancichinetti et al., 2009] Lancichinetti, A., Fortunato, S., and Kertész, J. (2009). Detecting the overlap-
ping and hierarchical community structure in complex networks. New Journal of Physics, 11(3):033015.

[Lancichinetti et al., 2008] Lancichinetti, A., Fortunato, S., and Radicchi, F. (2008). Benchmark graphs
for testing community detection algorithms. Physical review E, 78(4):046110.

[Lancichinetti et al., 2011] Lancichinetti, A., Radicchi, F., Ramasco, J. J., and Fortunato, S. (2011).
Finding statistically significant communities in networks. PloS one, 6(4):e18961.

[Lanczos, 1950] Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. United States Governm. Press Office Los Angeles, CA.

[Lee and Seung, 2001] Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix factoriza-
tion. In Advances in neural information processing systems, pages 556–562.

[Lelarge et al., 2015] Lelarge, M., Massoulié, L., and Xu, J. (2015). Reconstruction in the labelled
stochastic block model. IEEE Transactions on Network Science and Engineering, 2(4):152–163.

[Leskovec et al., 2007] Leskovec, J., Adamic, L. A., and Huberman, B. A. (2007). The dynamics of viral
marketing. ACM Transactions on the Web (TWEB), 1(1):5.

[Leskovec et al., 2008] Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney, M. W. (2008). Statistical
properties of community structure in large social and information networks. In Proceedings of the 17th
international conference on World Wide Web, pages 695–704. ACM.

[Leskovec and Mcauley, 2012] Leskovec, J. and Mcauley, J. J. (2012). Learning to discover social circles
in ego networks. In Advances in neural information processing systems, pages 539–547.

[Levitin and Polyak, 1966] Levitin, E. S. and Polyak, B. T. (1966). Constrained minimization methods.
USSR Computational mathematics and mathematical physics, 6(5):1–50.

117

[Li et al., 2015] Li, Y., He, K., Bindel, D., and Hopcroft, J. E. (2015). Uncovering the small community
structure in large networks: A local spectral approach. In Proceedings of the 24th international
conference on world wide web, pages 658–668. International World Wide Web Conferences Steering
Committee.

[Lin, 2007] Lin, C.-J. (2007). Projected gradient methods for nonnegative matrix factorization. Neural
computation, 19(10):2756–2779.

[Lloyd, 1982] Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information
theory, 28(2):129–137.

[Lovász et al., 1993] Lovász, L. et al. (1993). Random walks on graphs: A survey. Combinatorics, Paul
erdos is eighty, 2(1):1–46.

[Lyzinski et al., 2017] Lyzinski, V., Tang, M., Athreya, A., Park, Y., and Priebe, C. E. (2017). Community
detection and classification in hierarchical stochastic blockmodels. IEEE Transactions on Network
Science and Engineering, 4(1):13–26.

[Mahajan et al., 2009] Mahajan, M., Nimbhorkar, P., and Varadarajan, K. (2009). The planar k-means
problem is np-hard. In International Workshop on Algorithms and Computation, pages 274–285.
Springer.

[Mahoney et al., 2012] Mahoney, M. W., Orecchia, L., and Vishnoi, N. K. (2012). A local spectral method
for graphs: With applications to improving graph partitions and exploring data graphs locally. Journal
of Machine Learning Research, 13(Aug):2339–2365.

[McDaid et al., 2011] McDaid, A. F., Greene, D., and Hurley, N. (2011). Normalized mutual information
to evaluate overlapping community finding algorithms. arXiv preprint arXiv:1110.2515.

[McGregor, 2014] McGregor, A. (2014). Graph stream algorithms: a survey. ACM SIGMOD Record,
43(1):9–20.

[Mehler and Skiena, 2009] Mehler, A. and Skiena, S. (2009). Expanding network communities from
representative examples. ACM Transactions on Knowledge Discovery from Data (TKDD), 3(2):7.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781.

[Mislove et al., 2007] Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., and Bhattacharjee, B.
(2007). Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, pages 29–42. ACM.

[Molloy and Reed, 1995] Molloy, M. and Reed, B. (1995). A critical point for random graphs with a
given degree sequence. Random structures & algorithms, 6(2-3):161–180.

[Murtagh and Contreras, 2012] Murtagh, F. and Contreras, P. (2012). Algorithms for hierarchical cluster-
ing: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97.

[Newman, 2004] Newman, M. E. (2004). Fast algorithm for detecting community structure in networks.
Physical review E, 69(6):066133.

[Newman, 2006] Newman, M. E. (2006). Finding community structure in networks using the eigenvectors
of matrices. Physical review E, 74(3):036104.

[Newman, 2016] Newman, M. E. (2016). Equivalence between modularity optimization and maximum
likelihood methods for community detection. Physical Review E, 94(5):052315.

[Newman and Clauset, 2016] Newman, M. E. and Clauset, A. (2016). Structure and inference in annotated
networks. Nature communications, 7:11863.

[Newman and Girvan, 2004] Newman, M. E. and Girvan, M. (2004). Finding and evaluating community
structure in networks. Physical review E, 69(2):026113.

118

[Ng et al., 2002] Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: Analysis and an
algorithm. In Advances in neural information processing systems, pages 849–856.

[Nicosia et al., 2009] Nicosia, V., Mangioni, G., Carchiolo, V., and Malgeri, M. (2009). Extending the
definition of modularity to directed graphs with overlapping communities. Journal of Statistical
Mechanics: Theory and Experiment, 2009(03):P03024.

[Orecchia and Zhu, 2014] Orecchia, L. and Zhu, Z. A. (2014). Flow-based algorithms for local graph
clustering. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms,
pages 1267–1286. Society for Industrial and Applied Mathematics.

[Page et al., 1999] Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab.

[Panzarasa et al., 2009] Panzarasa, P., Opsahl, T., and Carley, K. M. (2009). Patterns and dynamics of
users’ behavior and interaction: Network analysis of an online community. Journal of the American
Society for Information Science and Technology, 60(5):911–932.

[Peel et al., 2017] Peel, L., Larremore, D. B., and Clauset, A. (2017). The ground truth about metadata
and community detection in networks. Science advances, 3(5):e1602548.

[Perozzi et al., 2014] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM.

[Perron, 1907] Perron, O. (1907). Grundlagen für eine theorie des jacobischen kettenbruchalgorithmus.
Mathematische Annalen, 64(1):1–76.

[Pons and Latapy, 2005] Pons, P. and Latapy, M. (2005). Computing communities in large networks using
random walks. In International Symposium on Computer and Information Sciences, pages 284–293.
Springer.

[Prat-Pérez et al., 2014] Prat-Pérez, A., Dominguez-Sal, D., and Larriba-Pey, J.-L. (2014). High quality,
scalable and parallel community detection for large real graphs. In Proceedings of the 23rd international
conference on World wide web, pages 225–236. ACM.

[Reichardt and Bornholdt, 2006] Reichardt, J. and Bornholdt, S. (2006). Statistical mechanics of com-
munity detection. Physical Review E, 74(1):016110.

[Reid et al., 2013] Reid, F., McDaid, A., and Hurley, N. (2013). Partitioning breaks communities. In
Mining Social Networks and Security Informatics, pages 79–105. Springer.

[Ronhovde and Nussinov, 2009] Ronhovde, P. and Nussinov, Z. (2009). Multiresolution community detec-
tion for megascale networks by information-based replica correlations. Physical Review E, 80(1):016109.

[Rosvall and Bergstrom, 2008] Rosvall, M. and Bergstrom, C. T. (2008). Maps of random walks on
complex networks reveal community structure. Proceedings of the National Academy of Sciences,
105(4):1118–1123.

[Rosvall et al., 2014] Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D., and Lambiotte, R.
(2014). Memory in network flows and its effects on spreading dynamics and community detection.
Nature communications, 5:4630.

[Saade et al., 2014] Saade, A., Krzakala, F., and Zdeborová, L. (2014). Spectral clustering of graphs with
the bethe hessian. In Advances in Neural Information Processing Systems, pages 406–414.

[Sales-Pardo et al., 2007] Sales-Pardo, M., Guimera, R., Moreira, A. A., and Amaral, L. A. N. (2007).
Extracting the hierarchical organization of complex systems. Proceedings of the National Academy of
Sciences, 104(39):15224–15229.

[Schaub et al., 2017] Schaub, M. T., Delvenne, J.-C., Rosvall, M., and Lambiotte, R. (2017). The many
facets of community detection in complex networks. Applied Network Science, 2(1):4.

119

[Shi et al., 2013] Shi, C., Cai, Y., Fu, D., Dong, Y., and Wu, B. (2013). A link clustering based overlapping
community detection algorithm. Data & Knowledge Engineering, 87:394–404.

[Shi and Malik, 2000] Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE
Transactions on pattern analysis and machine intelligence, 22(8):888–905.

[Simpson, 1949] Simpson, E. H. (1949). Measurement of diversity. nature.

[Sozio and Gionis, 2010] Sozio, M. and Gionis, A. (2010). The community-search problem and how to
plan a successful cocktail party. In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 939–948. ACM.

[Spielman and Teng, 2004] Spielman, D. A. and Teng, S.-H. (2004). Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, pages 81–90. ACM.

[Sylvester, 1852] Sylvester, J. J. (1852). Xix. a demonstration of the theorem that every homogeneous
quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and
negative squares. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
4(23):138–142.

[Tang et al., 2015] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015). Line: Large-scale
information network embedding. In Proceedings of the 24th International Conference on World Wide
Web, pages 1067–1077. International World Wide Web Conferences Steering Committee.

[Tarjan, 1983] Tarjan, R. E. (1983). Data structures and network algorithms. SIAM.

[Tong and Faloutsos, 2006] Tong, H. and Faloutsos, C. (2006). Center-piece subgraphs: problem definition
and fast solutions. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 404–413. ACM.

[Tremblay and Borgnat, 2014] Tremblay, N. and Borgnat, P. (2014). Graph wavelets for multiscale
community mining. IEEE Transactions on Signal Processing, 62(20):5227–5239.

[Von Luxburg, 2007] Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing,
17(4):395–416.

[Ward Jr, 1963] Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal
of the American statistical association, 58(301):236–244.

[West and Leskovec, 2012] West, R. and Leskovec, J. (2012). Human wayfinding in information networks.
In Proceedings of the 21st international conference on World Wide Web, pages 619–628. ACM.

[West et al., 2009] West, R., Pineau, J., and Precup, D. (2009). Wikispeedia: An online game for inferring
semantic distances between concepts. In IJCAI, pages 1598–1603.

[Whang et al., 2015] Whang, J. J., Dhillon, I. S., and Gleich, D. F. (2015). Non-exhaustive, overlapping
k-means. In Proceedings of the 2015 SIAM International Conference on Data Mining, pages 936–944.
SIAM.

[Xie et al., 2013] Xie, J., Kelley, S., and Szymanski, B. K. (2013). Overlapping community detection in
networks: The state-of-the-art and comparative study. Acm computing surveys (csur), 45(4):43.

[Yang and Leskovec, 2013] Yang, J. and Leskovec, J. (2013). Overlapping community detection at scale:
a nonnegative matrix factorization approach. In Proceedings of the sixth ACM international conference
on Web search and data mining, pages 587–596. ACM.

[Yang and Leskovec, 2015] Yang, J. and Leskovec, J. (2015). Defining and evaluating network communities
based on ground-truth. Knowledge and Information Systems, 42(1):181–213.

[Yang et al., 2013] Yang, J., McAuley, J., and Leskovec, J. (2013). Community detection in networks
with node attributes. In Data Mining (ICDM), 2013 IEEE 13th international conference on, pages
1151–1156. IEEE.

120

[Yin et al., 2017] Yin, H., Benson, A. R., Leskovec, J., and Gleich, D. F. (2017). Local higher-order
graph clustering.

[Zhao et al., 2012] Zhao, Y., Levina, E., Zhu, J., et al. (2012). Consistency of community detection in
networks under degree-corrected stochastic block models. The Annals of Statistics, 40(4):2266–2292.

[Zhou et al., 2008] Zhou, H., Yuan, X., Cui, W., Qu, H., and Chen, B. (2008). Energy-based hierarchical
edge clustering of graphs. In Visualization Symposium, 2008. PacificVIS’08. IEEE Pacific, pages 55–61.
IEEE.

121

	

	

	

Résumé

Les graphes sont omniprésents dans de nombreux
domaines de recherche, allant de la biologie à la
sociologie. Un graphe est une structure
mathématique très simple constituée d’un
ensemble d’éléments, appelés nœuds, reliés entre
eux par des liens, appelés arêtes. Malgré cette
simplicité, les graphes sont capables de
représenter des systèmes extrêmement
complexes, comme les interactions entre protéines
ou les collaborations scientifiques. Le
partitionnement ou clustering de graphe est un
problème central en analyse de graphe dont
l’objectif est d’identifier des groupes de nœuds
densément interconnectés et peu connectés avec
le reste du graphe. Ces groupes de nœuds,
appelés clusters, sont fondamentaux pour une
compréhension fine de la structure des graphes. Il
n’existe pas de définition universelle de ce qu’est
un bon cluster, et différentes approches peuvent
s’avérer mieux adaptées dans différentes
situations. Alors que les méthodes classiques
s’attachent à trouver des partitions des nœuds de
graphe, c’est-à-dire à colorer ces nœuds de
manière à ce qu’un nœud donné n’ait qu’une et
une seule couleur, des approches plus élaborées
se révèlent nécessaires pour modéliser la structure
complexe des graphes que l’on rencontre en
situation réelle. En particulier, dans de nombreux
cas, il est nécessaire de considérer qu’un nœud
donné peut appartenir à plus d’un cluster. Par
ailleurs, de nombreux systèmes que l’on rencontre
en pratique présentent une structure multi-échelle
pour laquelle il est nécessaire de partir à la
recherche de hiérarchies de clusters plutôt que
d’effectuer un partitionnement à plat. De plus, les
graphes que l’on rencontre en pratique évoluent
souvent avec le temps et sont trop massifs pour
être traités en un seul lot. Pour ces raisons, il est
souvent nécessaire d’adopter des approches dites
de streaming qui traitent les arêtes au fil de l’eau.
Enfin, dans de nombreuses applications, traiter des
graphes entiers n’est pas nécessaire ou est trop
coûteux, et il est plus approprié de retrouver des
clusters locaux dans un voisinage de nœuds
d’intérêt plutôt que de colorer tous les nœuds.
Dans ce travail, nous étudions des approches
alternatives de partitionnement de graphe et
mettons au point de nouveaux algorithmes afin de
résoudre les différents problèmes évoqués ci-
dessus.

Mots Clés
Graphe, Partitionnement,	Détection de
communautés, Analyse de données,
Apprentissage statistique, Réseaux

Abstract

Graphs are ubiquitous in many fields of research
ranging from sociology to biology. A graph is a very
simple mathematical structure that consists of a set
of elements, called nodes, connected to each other
by edges. It is yet able to represent complex
systems such as protein-protein interaction or
scientific collaborations. Graph clustering is a
central problem in the analysis of graphs whose
objective is to identify dense groups of nodes that
are sparsely connected to the rest of the graph.
These groups of nodes, called clusters, are
fundamental to an in-depth understanding of graph
structures. There is no universal definition of what
a good cluster is, and different approaches might
be best suited for different applications. Whereas
most of classic methods focus on finding node
partitions, i.e. on coloring graph nodes so that each
node has one and only one color, more elaborate
approaches are often necessary to model the
complex structure of real-life graphs and to
address sophisticated applications. In particular, in
many cases, we must consider that a given node
can belong to more than one cluster. Besides,
many real-world systems exhibit multi-scale
structures and one much seek for hierarchies of
clusters rather than flat clusterings. Furthermore,
graphs often evolve over time and are too massive
to be handled in one batch so that one must be
able to process stream of edges. Finally, in many
applications, processing entire graphs is irrelevant
or expensive, and it can be more appropriate to
recover local clusters in the neighborhood of nodes
of interest rather than color all graph nodes. In this
work, we study alternative approaches and design
novel algorithms to tackle these different problems.
The novel methods that we propose to address
these different problems are mostly inspired by
variants of modularity, a classic measure that
accesses the quality of a node partition, and by
random walks, stochastic processes whose
properties are closely related to the graph
structure. We provide analyses that give theoretical
guarantees for the different proposed techniques,
and endeavour to evaluate these algorithms on
real-world datasets and use cases.

Keywords

Graph, Clustering, Community Detection,
Data analysis, Machine Learning, Networks

	

	Introduction
	Motivations
	Graphs
	Graph clustering

	Contributions
	Notations
	Classic graph clustering methods
	Modularity
	Spectral methods
	Some other graph clustering approaches

	Evaluation of graph clustering algorithms
	Synthetic graph models
	Real-life graphs and ground-truth clusters

	Soft clustering
	Introduction
	Fuzzy c-means: an illustration of soft clustering
	The k-means problem
	Fuzzy c-means

	Soft modularity
	Related work
	The softmax approach
	Other approaches

	Alternating projected gradient descent
	Soft clustering algorithm
	Local gradient descent step
	Cluster membership representation
	Projection onto the probability simplex
	MODSOFT

	Link with the Louvain algorithm
	Algorithm pseudo-code
	Experimental results
	Synthetic data
	Real data

	Edge clustering
	Introduction
	Related work
	A modularity function for edge partitions
	The approach of Evans and Lambiotte
	Incidence graph and bipartite graph projections
	Line graph
	Weighted line graph
	Random-walk-based projection
	Limitation

	An agglomerative algorithm for maximizing edge modularity
	Agglomerative step
	Greedy maximization step
	Algorithm

	Experimental results
	Synthetic data
	Real-life datasets

	Hierarchical clustering
	Introduction
	Related work
	Agglomerative clustering and nearest-neighbor chain
	Agglomerative algorithms
	Classic distances
	Ward's method
	The Lance-Williams family
	Nearest-neighbor chain algorithm

	Node pair sampling
	Clustering algorithm
	Link with modularity
	Experiments

	Streaming approaches
	Introduction
	Related work
	Edge streaming models
	Connected components and pairwise distances
	Minimum cut

	A streaming algorithm for graph clustering
	Intuition
	Algorithm
	Complexity
	Parameter setting

	Theoretical analysis
	Modularity optimization in the streaming setting
	Streaming decision

	Experimental results
	Datasets
	Benchmark algorithms
	Performance metrics and benchmark setup
	Benchmark results

	Local approaches
	Introduction
	Related work
	Scoring and sweeping
	Personalized PageRank
	Heat kernel diffusion
	Local spectral analysis
	Other approaches
	Finding seed sets

	Multiple Community Detection
	Scoring gap
	Local embedding
	Finding new seeds

	Algorithm
	Inputs
	Description
	Post-processing

	Experiments
	Case study: Wikipedia
	Real-world data
	Synthetic data

	Conclusion

