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Abstract

The Internet of Things (IoT) evolved from a connected toaster in 1990 to
networks of hundreds of tiny devices used in industrial applications. Those
“Things” usually are tiny electronic devices able to measure a physical value
(temperature, humidity, etc.) and/or to actuate on the physical world (pump,
valve, etc). Due to their cost and ease of deployment, battery-powered wire-
less IoT networks are rapidly being adopted.
The promise of wireless communication is to offer wire-like connectiv-

ity. Major improvements have been made in that sense, but many challenges
remain as industrial application have strong operational requirements. This
section of the IoT application is called Industrial IoT (IIoT).
The main IIoT requirement is reliability. Every bit of information that is

transmitted in the network must not be lost. Current off-the-shelf solutions
offer over 99.999% reliability. That is, for every 100k packets of information
generated, less than one is lost.
Then come latency and energy-efficiency requirements. As devices are

battery-powered, they need to consume as little as possible to be able to op-
erate during years. The next step for the IoT is to target time-critical appli-
cations.
Industrial IoT technologies are now adopted by companies over the world,

and are now a proven solution. Yet, challenges remain and some of the limits
of the technologies are still not fully understood. In this work we address
TSCH-based Wireless Sensor Networks and study their latency and lifetime
limits under real-world conditions.
We gathered 3M network statistics 32M sensor measurements on 11 datasets

with a total of 170,037 mote hours in real-world and testbeds deployments.
We assembled what we believed to be the largest dataset available to the net-
working community.
Based on those datasets and on insights we learned from deploying net-

works in real-world conditions, we study the limits and trade-offs of TSCH-
based Wireless Sensor Networks. We provide methods and tools to estimate
the network performances of such networks in various scenarios. We believe
we assembled the right tools for protocol designer to built deterministic net-
working to the Industrial IoT.
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Glossary

Mercator is a system to collect large wireless connectivity datasets that
are dense in time, space and frequency. This system allows us to understand
the quality of wireless connectivity, and its variation over time and frequency.

SolSystem is a set of tools we developed and used in our real-world de-
ployment. SolSystem includes (i) software that runs next to the deployment
gateway. It backs up the data locally, parses it and forwards it to the API.
(ii) software that runs in a datacenter. This software parses, stores, analyzes,
and displays the data.

TSCH: Time Slotted Channel Hopping (TSCH) is a medium access control
method for shared medium networks. TSCH is designed for applications that
require reliability and ultra long battery life.

6TiSCH: 6TiSCH is a working group at the IETF which is standardizing
how to combine IEEE802.15.4 Time Slotted Channel Hopping (TSCH) with
IPv6. In this work, I also use the terms 6TiSCH stack and 6TiSCH network
to refer to the stack of networking protocols defined by the working group,
and a network using that 6TiSCH stack, respectively.
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Chapter 1

Introduction

....

In this chapter, we introduce the notions about the Internet of
Things (IoT) that are used throughout this thesis. We explain
the reasons that led us to carry out this work, and we present
our contributions.

1.1 Preliminaries

1.1.1 The Internet of Things

The Internet of Things (IoT) has so many definitions that the first thing I
want to do is to rename it to fit my understanding. The broadest definition
I have in mind is “tiny computers connected to the Internet”. The term In-
ternet of Things was first coined by Kevin Ashton in 1999 to describe the
communication between a Radio Frequency Identifiers (RFID) device and the
Internet. The term was rapidly adopted by governments and leading Infor-
mation Technology (IT) companies to define a technology concept that would
bring sustainability and economic growth. The way those “tiny computers”
are connected to the Internet and what protocols they use varies a lot. The
first “connected Thing” was a toaster, built in 1990 by John Romkey and
Simon Hackett. The toaster was using TCP/IP and SNMP and was mains-
powered. We now see devices the size of a grain of rice, battery powered, and
that can communicate wirelessly [1].
In this document, I use the term Industrial Internet of Things (IIoT) to

describe a subset of the IoT targeted towards reliability. The IoT brings many
advantages such as ease of deployment and cost reduction, and its adoption
by the Industry is increasing. The IoT is now a major component of the In-
dustry 4.0, a vision where machines are capable of sensing their physical en-
vironment, taking decentralized decisions and collaborate with other systems
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or users.

1.1.2 Wireless Sensor Networks

The term “IoT” encompasses many technologies. In this thesis, I focus on a
subpart of the IoT that is the Wireless Sensor Networks (WSNs). Wireless
Sensor Networks are networks of small electronic devices – called nodes –
that communicate wirelessly using radio waves1. In Wireless Sensor Net-
works, nodes are organized around one (or multiple) collecting device(s) –
called sink or gateway. The networks are usually “multi-hop”, that is, nodes
serve as data relays to forward data to the sink.

Figure 1.1: An example of multi-hop Wireless Sensor Network topology.

Wireless Sensor Networks (WSNs) need to offer at least the same ca-
pabilities as their wired counterpart. They need to be reliable, scalable, and
durable, but also be easy to deploy, cost-effective and flexible. Most of those
goals are achieved today. Solutions exist offering wire-like reliability with
networks of hundreds of nodes, able to operate for years, deployable in only a
few hours at a very low cost. The following chapter gives the reader an idea
of how those requirements are achieved.
The major difference between traditional wireless networks such as

IEEE802.11 (WiFi) or IEEE802.15.1 (Bluetooth) is that WSN nodes need
to run over years on battery. This means that WSN nodes are heavily opti-
mized to consume as little as possible. The main energy consumption source
of those devices is the radio chip. Reducing the use of this chip reduces the
node’s energy consumption, yet it makes communication between nodes more
complex.

1Electromagnetic waves on the radio spectrum (3 Hz to 3 THz)
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Wireless is unreliable by nature. Unlike wired connection, wireless suf-
fers from external interference, and is affected by different types of fading.
This does not mean that there is no way of building a reliable service on top
of it. There are multiple techniques available to mitigate the radio medium
uncertainty; we survey those in Chapter 2. Wireless constraints are present
under different forms, we now present them in more details.

1.1.3 The Wireless Impairment

We divide the wireless constraints in two parts, external interference and
fading.
External interference occurs when multiple devices transmit at the same

time on the same frequency2. In that case, the radio waves might collide,
resulting in data loss. Such external interference is very present in the envi-
ronments we study in this work as the technology we use communicates on
an Industrial, Scientific and Medical (ISM) radio band. ISM bands are por-
tions of the radio spectrum that are not subject to license. ISM bands are
subject to rules (e.g. transmission power, data-rate) but do not require users
to pay a usage fee. Regulations and bandwidth only varies a little across con-
tinents making their adoption by communication technologies easier. As a
consequence, the radio communication contention is high in those bands, and
particular care needs to be taken when designing protocols. We will see how
this is achieved in Chapter 2.
The other wireless constraint is fading. Fading is the attenuation or vari-

ation of a radio signal. The first type of fading we can think about is called
Free Space Path-Loss (FSPL). Free Space Path-Loss is the attenuation of
a signal over distance. The radio energy dissipates making the amount of
energy received lower than the amount of energy emitted.
The second type of fading I want to present is called Shadowing or Shadow

Fading. Shadowing is also an attenuation but this time due to obstacles.
When the radio wave hits an obstacle (e.g. wall, tree, water), the amount
of energy that passes through is inferior to the amount energy before the
obstacle.
The last type of fading I want to mention is namedMultipath Fading and

is less intuitive. Multipath Fading can be seen as self interference. When
a signal is transmitted using radio waves, a receiver hears the signal that
traveled following the direct line-of-sight (LOS), but also the echoes of the
signal that bounced on nearby objects. Those “echoes” can be constructive or
destructive. In the latter case, a fading occurs and the signal can become un-
exploitable. This phenomenon is called Multipath Fading. Multipath Fading
is not related to distance, as shown in [2], [3], Multipath Fading can occur
over very small distances. Multipath Fading increases when the number of re-

2 This is not true for all technologies. For instance when using modulations such as OFDM.
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(a) External In-
terferences

(b) Free Space
Path Loss

(c) Shadowing (d) Multipath

Figure 1.2: The different Wireless Constraints we are faced with in WSN.

flecting objects increases. Fortunately, the effects of Multipath Fading differs
depending on the signal frequency. We will see how this is taken advantage
of in Chapter 2.
Fig. 1.2 illustrates the main wireless constraints we are faced with when

using WSNs. This list of constraints is not exhaustive, but rather gives an
overview of the main challenges that need to be taken into account when de-
signing WSN protocols.

1.1.4 Applications and Market Opportunities

Although computer-based monitoring has existed for years, the ability to be
deployed densely at a very low cost opens a wide scope of applications toWSN
and the IoT: Environmental Monitoring, Precision Agriculture, Building Au-
tomation, Factory Monitoring and many more. Dense monitoring information
brings new insights and opens up a new era of competitiveness and growth.
This list is not exhaustive and the details of each application type may not be
true in every situation. This list is only presented here to give an overview of
the potential IoT applications for IoT. Table 1.1 summarizes those types of
applications and their requirements.

Home Automation: In those applications, the system can for instance con-
trol lighting, HVAC, or appliances in order to optimize a house consumption
or comfort. To do so, the system is equipped with sensors and actuators that
can communicate with each others forming networks. Those networks re-
quire low latency (e.g. switching light, changing music volume) and tolerate
loss. Many IoT devices in home automation are powered with wires. Home
Automation networks are usually in range of a gateway, meaning that the
topology is a star.

Smart Metering: The goal of those applications is to periodically record
consumption (e.g. electricity, gas) for monitoring and billing. Those applica-
tions require very low data rate and payload size (a few tenth of bytes per
hours or per day) and do not require low latencies. Devices can be powered
by batteries or with wires. They usually are located in urban environment at
a range of a gateway (could be kilometers away).

Environmental Monitoring: The goal of these applications is to charac-
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terize an environment in order to asses its health or understand its behavior.
Unlike the other types of application, actuation is rarely involved. Devices are
located far away from each others and sometimes not in range of the gateway.
Unlike previously presented types of application, they might need to use other
devices (relays) to forward their data to the gateway. They are usually located
in harsh environments (subject to animals attack, tree falling, wind, rain, …)
in remote location. Replacing batteries or using wires is not an option in those
use cases, those networks need to work during years on batteries. There is no
strong requirement in reliability (e.g. a humidity data point loss is tolerated).
As networks are located outdoor, they rarely suffer from multipath effects or
external interferences.

Industrial IoT (Industrial Monitoring and Automation): In those appli-
cations, the goal is to provide industrial machines the ability to sense their
environment and react according to it. Those applications have very strong
reliability requirements. When data is lost, it can directly impact the automa-
tion process (supply chain interruption) and result in loss of production. The
devices are usually densely located, and surrounded by metal objects, thus
multipath and external interferences are common in those environments.

Application Reliability Latency Topology Links Dist. Radio Env. Power
Home Automation Low High Star < 100m Multipath & Ext. Int. Battery or Wires
Smart Metering Low Low Star > 500m Multipath & Ext. Int. Battery or Wires
Env. Monitoring Medium Low Mesh > 500m No Multipath, no Ext. Int. Battery
Industrial IoT High Low Mesh < 50m Multipath & Ext. Int. Battery

Table 1.1: A summary of the IoT applications and their requirements.

We are now at a turning point for WSN and Industrial IoT. In the last
ten years, the lack of a fully standardized network stack led companies to im-
plement their own proprietary solutions. As a result, no interoperability was
possible between the different IIoT companies, slowing down market adop-
tion. This is over as Standards Developing Organizations (SDOs) are now
proposing fully standardized, IPv6-ready, network stacks that provide the
requirements the IIoT needs.
SDOs are professional associations that create and maintain normative

technical documents (standards) that describe how network protocols should
work. The standard elaboration process is open to the community and pub-
licly available without any discriminatory conditions. This profits to vendors
as they can penetrate market more easily – as those standard are usually
world-wide adopted –, but also customers as they can access the technology
without being tied to one company. The main SDOs in IIoT are the IEEE
(link and physical layers), ETSI (complete machine-to-machine solutions),
ISA (regulation for control systems) and the IETF (routing and network lay-
ers).
Thousand of proprietary IIoT networks are deployed in the world today.
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The interoperability between those networks and devices can widen the ap-
plication scope even more. While I can only foresee application-layer inter-
operability in industries, the coexistence of solutions in city-scale automation
seems logical to me.
There is still work to be done to fully understand the capacity of IIoT

networks. For instance, actuation and control loops is still at its infancy, and
applications that provide industry-grade guarantees are in early development.
The goal of my thesis is to reduce this gap, and trying to understand howmuch
guarantee those networks can provide.
In this section, I defined what I mean by IoT and IIoT, what WSNs are

and what main challenges to keep in mind when using WSNs. I show that
applications can be very diverse and that the IoT market is still in expansion.

1.2 Contributions

My contribution is threefold:

• I participated in the deployment of four real-world WSN deployments
and gathered more than 3M over two years, creating what we believe to
be the largest real-world WSN dataset available.

• I analyzed, benchmarked and compared those datasets with IoT
testbeds and defined a set of requirements that need to be taken into
account when designing IoT protocols.

• I showed that determinism in Industrial IoT networks can be achieved
and built a tool to estimate the performances of Industrial IoT networks.

1.2.1 Network Deployments and Data Collection

During the first year of my thesis I actively participated in the deployment of
four real-world WSN deployments:

• PEACH: A frost prediction system for peach orchards in Mendoza (Ar-
gentina). We deployed 23 nodes to measure temperature and humidity
at different locations in the orchard.

• SnowHow: A snow-pack monitoring system in the Sierra Nevada (Cal-
ifornia). We deployed 27 nodes to measure snow level, solar radiation
and more in the mountain.

• EvaLab: A Smart Building monitoring system in Paris (France). We
deployed 22 nodes to measure temperature in an office building.
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• SmartMarina: A metering and management system for marinas in
Agde (France). We deployed 19 nodes to measure electricity consump-
tion in the marina.

Together, those deployments generated more than 32M sensor measure-
ments and 3M network statistics. I built the rest of my work on top of those
datasets.

1.2.2 Data Analysis and Comparisons

I first looked into the real-world network statistics and started my first net-
work characterization and benchmarking study. I produced plots and results
that indicate how well a network behaves, and found that in some cases links
can be considered symmetric and that network churn (node parent change)
could be only a few per day.
Then I compared real-world and testbed results. Using the IoT-LAB, a

group of open testbeds in France, I collected dense radio connectivity traces
(i.e. radio link qualities over time). Comparing those traces results with the
ones collected in real-world deployments, I identified weaknesses of testbeds
and provided a list of Key Performance Indicators (KPI) to watch for when
designing IoT protocols.

1.2.3 Determinism in IIoT

As we said earlier, the radio medium is unreliable by nature. Given such
statement is it possible to identify behaviors that are predictable in WSN ?
By using Trace-Based Simulation to replay real-world and testbed results, I
identified the limits ofWSN regarding latency and network lifetime. I showed
that when a set of conditions are met, we can predict the performances of a
WSN. I designed and built a tool to help WSN protocol designers having a
better idea of what to expect of their networks.

1.3 Thesis outline

The second chapter presents the state of the art. It starts from an
overview of the existing WSN protocols before going into the details of the
lastly adopted networking stack for the Industrial IoT.

The third chapter describes the methodology and assumptions we decided
to take in this work. Unlike the mostly adopted approach that consists in
reading the maximum number of papers and articles of the domain literature,
we decided to start by manipulating networks in real-world conditions and un-
derstanding their real limits before proposing any improvement. I believe that
this approach strengthened my opinions when taking improvement decisions
and allowed me to easily spot unrealistic assumptions.
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The fourth chapter details our real-world deployments. For each deploy-
ment we explain its application and challenges, the hardware and software
choices we made, how many nodes were deployed, what data we collected.
We also give a first idea of the performance of the network and list the lessons
learned.

The fifth chapter presents the experiments we ran in testbeds and the re-
sults we obtained by comparing testbeds with real-world deployments. In par-
ticular, I talk about the Mercator project, a dense radio connectivity data col-
lection system. We identified the network Key Performance Indicators (KPI)
and behaviors one must observe in order to validate an IoT protocol.

The seventh chapter focuses on studying the limits and trade-offs ofWSN
scheduling regarding latency and network lifetime. I explain why we think
that Trace-Based Simulation is the right tool for such study and compare
real-world results with theoretical limits. I finish by presenting the 6TiSCH
Performance Estimator, a tool I built to estimate the performances of IIoT
networks.
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Chapter 2

State of the Art and Challenges

....

In this chapter, we survey the related work in IoT, explain
why we believe IoT networks can be deterministic, and expose
the open issues and challenges.

2.1 The IoT Standards

2.1.1 A Diversity of Applications

As IoT is a vast term, many protocols can be associated with it. In this section,
I give a brief overview of the different protocols classified by category of appli-
cations presented in Chapter 1, namely Home Automation, Smart Metering,
Environmental Monitoring, IIoT. This categorization might not be accurate
for each type of application and is only used here to give the reader a first
understanding of the variety of possible scenarios IoT can cover.

Home Automation: In Home Automation a small number of devices are
deployed within a small range (e.g < 15m) to provide monitoring (temper-
ature, humidity, noise...) and actuation (opening the windows, turning off
the lights...). We only consider the devices communicating wirelessly, al-
tough Home Automation also includes devices communicating using wires.
The most broadly adopted wireless standards used in Home Automation are
IEEE802.11 (WiFi) and IEEE802.15.1 (Bluetooth). WiFi-based networks
consume a lot of energy (i.e. > 10mA on average) and need to be powered
with wires (or recharged frequently, as it is done with WiFi-enabled phones).
Bluetooth based networks consume less energy, especially since the Bluetooth
Low Energy (BLE) appearance, and targets applications that require a small
amount of sensing points. Bluetooth devices can be powered by battery and
can last a few years when using a low data rate. In its latest versions, Blue-
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tooth can form mesh topologies but only with a limited number of devices. In
this mode, the lifetime of the devices that relay information does go beyond
a few weeks. Then comes 802.15.4-based networks, technologies such as
Thread or Zigbee offer years of operation with devices powered by batteries.
Those technologies can be densely deployed and cover larger areas than Blue-
tooth using a single gateway as they are meant to form a mesh topology. The
last one I would like to mention is Z-Wave. Unlike the previously presented
technologies that use the 2.4 GHz ISM frequency band, Z-Waves uses sub-
GHz frequencies and thus can form links with longer range. Z-Wave can also
form self-organizing mesh topologies to increase range and reliability. Again,
this list is not exhaustive and many other technologies exist. I am only pre-
senting the mostly adopted ones to illustrate the diversity of approaches.

Smart Metering: As said in Chapter 1, Smart Metering applications do
not require low latency and high data-rate. Usually, only a few bytes are
generated periodically (i.e. every hour) per meter. Technologies include Ultra
Narrowband-based solutions like Sigfox, or Spread Spectrum-based solutions
like LoRa. The Smart Utility Networks (SUN) task group is also working on
a PHY amendment to address such applications. Note that Smart Metering
can also be done using Power Line Carrier (PLC) but this is out of scope.

Environmental Monitoring: Those applications are very similar to Smart
Metering as they are not producing a lot of data and rarely need to be densely
deployed. As they are located in remote areas, they do not have a strong
requirement in being able to cope with external interference or multi-path.
Remote locations are however more likely to be to far for any cellular connec-
tivity or power supply and thus require low energy consumption. They also
need to be extremely solid and reliable as they need to work for years without
human intervention in harsh condition (temperature, humidity, rain, wild life,
…).

Industrial IoT: Unlike previously presented applications, IIoT requires
the combination of high reliability, years of battery lifetime, and be able to
work even when densely deployed in radio environment where multipath and
external interferences are present. This is the type of applications we focus on
in this work. To the best of my knowledge, the only solution that can provide
such guaranties today are TSCH-based technologies. We will define what it
is and why we think it is the best suited solution available in Section 2.2.

2.1.2 Standardization and Interoperability

Many Standards Developing Organizations (SDOs) exist in the IoT world.
The goal of these organizations is to design technical standards and protocols
so that multiple technologies can talk the same language and thus, interop-
erate. The usual process is that private companies innovate and implement
their own technology. As pioneers, they would lead this new technology for
a few years and obtain recognition and market shares for that. Then other
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companies will implement their own version of the technology and multiple
similar solutions will coexist for a time. Finally, those companies, together
with other technology experts, will merge efforts and create standards so that
one technology gets adopted by all and that the different implementations can
interoperate.
Standard and protocols are usually grouped into abstraction layers where

each layer is responsible for a set of tasks (e.g. formating, compressing, rout-
ing, signaling). In networking, the complete set of layers is called a Network-
ing Stack (or just Stack). The most widely used stack models are the Open
Systems Interconnection (OSI) model and the Internet Protocol Suite, com-
monly known as the TCP/IP model. Each layer knows the tasks it has to
do and what to expect from its upper and low layers. This layering distri-
bution makes the protocols interchangeable. The main SDOs in IIoT are the
Institute of Electrical and Electronics Engineers (IEEE), responsible for the
lowest layers (close to the hardware), the Internet Engineering Task Force
(IETF) responsible for routing and networking, the European Telecommuni-
cations Standards Institute (ETSI) famous for Machine-to-Machine (M2M)
standards, and the International Society of Automation (ISA) oriented to-
wards control system regulations.
A wide range of standards and protocols exist in the IoT world, but until

recent year, no entire networking stack existed to answer the Industrial IoT
requirements. Such a stack requires to be IPv6-ready to be able to commu-
nicate with other devices on the Internet, Low Power to operate during years
on battery, andHighly Reliable to offer Quality of Service (QoS) guarantees.
One of the main idea behind the Internet of Things is that devices need

to be addressable in order to interact with the rest of the Internet. Being
able to communicate with other devices on the Internet opens the way to a
wide range of applications. As an example, Internet allows to bypass the lim-
its of geographical distances, two machines can exchange information across
continents to optimize a delivery process. The Internet Protocol (IP) is the
main addressing protocol on Internet. Its first version (IPv4) was released in
1981 and we are now moving towards the latest version, IPv6. In 2007, an
IETF working group called “IPv6 over Low-Power Wireless Personal Area
Networks” (6LoWPAN), was created to bring IP capabilities to low power
and constrained devices [4]. This resulted in the creation of the 6LoWPAN
adaptation layer, a set of protocols and methods to enable efficient transport
of IPv6 packets over IEEE802.15.4 frames. At that point, the IPv6-ready
goal was achieved, but we were still lacking the reliability and low power con-
sumption.
Right after, the IEEE task group ”4e” (TG4e) was created, chartered

with defining an amendment to IEEE802.15.4 for the MAC layer to better
support the industrial markets. Among other mechanisms, the TG4e chose to
incorporate time slotting and channel hopping techniques embodied in a MAC
layer mode called Time Slotted Channel Hopping (TSCH). In 2016, those
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changes got merged into the standard’s new version, IEEE802.15.4-2015.
This was, however, not enough to yield a fully standardized IIoT stack,

as there was still no standard for the networking layer to access and reserve
MAC resources. A component was missing to bridge the gap between the
IEEE802.15.4 TSCH and the networking layer. The IETF 6TiSCH Work-
ing Group (WG) was created in 2013 to bridge that gap and propose a fully
standardized stack for the Industrial IoT. At the time of writing, two Request
for Comments (RFC) were published in the working group [5], [6] and the
6TiSCH stack architecture is about to be published [7].
In the next sections we explain the concepts and mechanisms of TSCH

and detail all the layers of the 6TiSCH stack, the Industrial IoT networking
stack.

2.2 Time Slotted Channel Hopping

....

Time Slotted Channel Hopping (TSCH) is a channel access method
for shared medium networks. TSCH is designed for applications that
require reliability and ultra long battery life.

2.2.1 History & Description

In 2006, a startup company called Dust Networks introduces TSMP (Time
Synchronized Mesh Protocol) [8], a protocol for self-organizingWireless Sen-
sor Networks (WSN). In a TSMP network, the devices – called motes, as
small particles of dust – are synchronized to each other and communicate
respecting a time schedule. Time is divided into slots (timeslots), similar to
other Time Division Multiplexing (TDM) systems. The devices know when to
sleep, transmit or receive, and stay asleepmost of the time, allowing extremely
low energy consumption. On top of the time scheduling, TSMP devices use
Channel Hopping, a technique in which transmissions are distributed over
time and radio channels. Hopping through channels increases the communi-
cation reliability over noisy environment.
In 2008, the base concepts of Dust Networks’ TSMP got included into

two low-power wireless industrial standards, WirelessHART (2008) and
ISA100.11a (2009) under the name Time Synchronized Channel Hopping.
These standards have been very successfully rolled out in the industrial mar-
ket (industrial process monitoring, factory automation). WirelessHART is an
interoperable wireless standard designed to provide reliable, cost-effective,
high-quality system for industrial wireless sensing applications [9]. Wire-
lessHART got widely adopted as it was backward-compatible to the legacy
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(wired) HART1.
In the mean time, the IEEE 802.15 Task Group 4e was chartered to define

aMAC amendment to the existing standard 802.15.4-2006 to “better support
the industrial markets”. They chose to reuse the TSMP concepts and named
it Time Slotted Channel Hopping (TSCH). The amendment was published in
April 2012 and got incorporated into the IEEE802.15.4-2015 standard [10].
The 6TiSCH working group [11] is now standardizing the use of IPv6 on

top of IEEE802.15.4-2015 TSCH technology.

2.2.2 A Slotted Structure

In TSCH, time is divided into time slots (also called slots) that typically last
around 10 ms. Time slots are grouped into a slotframe that repeats over time
(as depicted in Fig. 2.1). The way time slots are organized into slotframes is
called a schedule. To each time slot is associated an action: sleep, transmit,
or receive so that each node knows in advance what to do next. If the action
is sleep, the node turns its radio off and waits for the duration of a time slot.
When sleeping, the node only consumes a few µA at 3.6 V. If the action is
transmit, the node turns its radio on and transmits a frame. If the frame
requires to be acknowledged, the node then listens for an acknowledgement
frame in the same slot. If the action is receive, the node turns its radio on and
listens for a frame. If the frame requires to be acknowledged, it transmits an
acknowledgement. A schedule example is depicted in Fig. 2.2. In the first
time slot, node D transmits to node B and node C transmits to node A. In the
second time slot (about 10 ms later) node B transmits to node A. We will see
in Section 2.3 how the schedule is managed.
As depicted in Fig. 2.4, slot are long enough (e.g. 10 ms) for both the

transmission of a data frame and the transmission of an acknowledgement
(ACK) frame. Unlike with wired transmissions, there is no way to know if
a collision occurred during a transmission when using wireless communica-
tion. The only way to know if a transmission failed or succeed is to ask the
receiver for confirmation. This is done using an acknowledgement (ACK)
frame. When the first sender receives an ACK, it knows the receiver got the
message. Of course, there is no way for the receiver to know if the first sender
correctly received the ACK. Rather than sending a second ACK, nodes usu-
ally assume that if the first message went through, the probability of success
of the ACK message is high (as the delay between the two messages is short
and the frequency does not change).
TSCH defines two types of cells:

• A Shared Cell is a cell in which multiple communications can occur.
When using shared cells, node need to expect collisions and thus imple-
ment mechanisms to prevent them.

1 Highway Addressable Remote Transducer (HART)
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Figure 2.1: Time Slotted Channel Hopping slotframe.

Figure 2.2: Time Slotted Channel Hopping schedule. A minimal schedule
example.

• A Dedicated Cell is a contention-free cell. The cell is dedicated to a
pair of nodes, in one direction so it has a fixed source and a destination.
When using a dedicated cell, a source node can assume that no other
transmitter will use that same dedicated cell with the destination node.

The main source of the nodes’ energy consumption is the radio; there is
a direct link between the number of cells that are scheduled and the energy
consumed. Typically, nodes stay in sleep mode most of the time allowing
them to consume only a few tenth of µA at 3.6 V on average, and achieve
years of battery lifetime. Xavier Vilajosana et al. [12], propose a realistic
model to estimate a node’s energy consumption based on the number and type
of cells that are used in the schedule. We use those results in Chapter 6
to evaluate the relation between energy consumption and latency in different
environments and network configurations.
On top of time division, TSCH also does frequency division. The available

frequency band is divided into channels by the physical layer. Each channel is
an available resource the MAC layer can use. Multiple channels can be used at
the same time, meaning that in each time slot, all the available channels can
be used in parallel. This results in the notion of a cell, where a cell is a part
of the schedule that can be identified with a slot offset and a channel offset (as
depicted in Fig. 2.3).
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Figure 2.3: Time Slotted Channel Hopping Taxonomy.

Each channel is not equally affected by external interferences or multi-
path fading, thus using multiple channels augments the radio environment
diversity and reduces the probability of failure [2]. For instance, if the third
channel is used continuously by another technology (e.g. WiFi) and all other
channels are free, using all the channels available will give a probability of
failure of 1/number of channels. To make sure all channels are used and
well distributed, TSCH uses (2.1).

frequency = (ASN + channel_offset)%number_channels (2.1)

Where, channel_offset is the channel offset of that cell and
number_channels is the total number of channels available. The Absolute
Sequence Number (ASN) is a global time slot counter allowing all nodes to
share the same sense of time. The ASN value increases at every slot: two
consecutive cells on the same channel offset will not use the same channel,
and that a same cell will not use the same channel in two consecutive slot-
frames (unless the slotframe length and the number of channels are not mu-
tually prime). At every time slot the channel changes, this is called “channel
hopping”. The resulting frequency diversity greatly increases reliability and
stability of the links [2] making TSCH a perfectly suited MAC layer technique
for a reliable IoT.

2.2.3 Time Synchronization

Because every communication in the network is scheduled, node must stay
synchronized. Nodes locally keep track of time with an internal clock. This is
typically done using a crystal oscillator (although on-chip ring oscillators were
proven to work for millimeter-scale motes [13]). Those clocks are never per-
fectly accurate and drift in time with respect to one another. Nodes therefore
need to periodically resynchronize.
Clock drift is usually measured in parts per million (ppm), that is how

many clock “ticks” are off in a million. A typical crystal drift in WSN de-
vices is between 10 ppm and 50 ppm. A 10 ppm clock drift corresponds to
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a maximum drift of 10 µs per second or + − 0.864s per day. Although this
number might appear small, it makes a difference as a slot duration is usually
in the order of magnitude of 10 ms. This is even more important as the clocks
of two neighbor nodes might drift in opposite direction (one going 10 ppm
slower, the other 10 ppm faster) making the nodes’ relative clock drift twice
the absolute clock drift.
What is the maximum desynchronization two nodes can tolerate and how

nodes can resynchronize? Fig. 2.4 depicts the different steps performed
within a cell when a transmission occurs. The transmission starts exactly af-
ter a fixed delay (TxOffset). If the destination node (DST in Fig. 2.4) starts
receiving at the same TxOffset, it might miss the beginning of the frame as
its own time view might not be the same as the transmission source (SRC
in Fig. 2.4) one. Thus, the destination starts listening GuardTime before
TxOffset and keeps listen until it receives a frame, for a maximum listen-
ing duration of GuardTime. If the relative desynchronization is higher than
GuardTime, the transmission fails. Another way of reducing the impact of
clock drift is to compensate for it using its estimated drift. Quartz manufac-
turers provide a drift estimation depending on temperature. To take this into
account, WSN hardware typically comes with a temperature sensor so that
nodes can compensate the clock drift in software. Adding a GuardTime and
compensating for temperature helps reduce the impact of clock drift until some
limits.
The nodes needs to resynchronize periodically. In TSCH, resynchroniza-

tion is done by exchanging frames. Each IEEE802.15.4 frame is times-
tamped: when a node receives a frame, it calculates the delta between the
reception time and the frame timestamp and can recalibrate its clock. How of-
ten a node’s clock needs to be recalibrated depends on the drift and GuardTime
values. With a 30 ppm drift and a 1 ms GuardTime (typical values), two nodes
need to resynchronize every 1ms/30ppm = 33s. If no data frame is sent dur-
ing that period, nodes exchange dedicated keep-alive frames for resynchro-
nization. Considering a transmission of 4 ms (typical duration) every 33 s
would lead to a 4/33 = 0.12% duty cycle. The cost of resynchronization in
TSCH is hence very low.
In the next section, we describe the different protocols and mechanisms

that form what we call an Industrial IoT Stack. We give an overview of the
different approaches taken by the research community and companies to result
in a fully standardized stack for the Industrial IoT: the 6TiSCH stack.

2.3 Industrial IoT Stack

A networking stack is the assembly of a series of network protocols. It is
called a stack as those protocols can be grouped in layers that are piled up
from the higher level (i.e. the application) to the lower layer (i.e. physical).
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Figure 2.4: A Time Slot Timing Example

In this section, we present a subset of the different protocols that exist in the
IoT, and describe in more details the one that got selected to form 6TiSCH,
the networking stack for the IIoT.

2.3.1 The 6TiSCH Networking Stack

....

6TiSCH is the name of the Internet Engineering Task Force (IETF)
working group in charge of designing a networking stack for the Indus-
trial IoT.

The goal of the 6TiSCH working group is to provide a standardized net-
working stack for the IoT. The stack needs to be Low Power, Highly Reli-
able and Internet-Enabled. The 6TiSCH name comes from the combination
of IPv6 and the TSCH mode of IEEE 802.15.4, two proven technologies se-
lected as they provide interoperability and reliability respectively.
The proposed stack is flexible as there is room to fine-tune several proto-

cols in the stack to a particular application. The goal is to propose a reference
stack that Industrial IoT designers can adapt to their particular needs. As a
proof of concept (PoC), an RFC was published to define a 6TiSCH minimal
mode of operation that 6TiSCH-compliant devices should implement [6].
The 6TiSCH stack is similar to the Open Systems Interconnection (OSI)

model or TCP/IP layering model. The protocols are separated into abstrac-
tion layers, each layer only interacting with its upper and lower layer. By
following this separation of work, a stack can easily be adapted to a particu-
lar use case, just by switching a protocol of one layer with a more suited one.
The 6TiSCH stack is depicted in Fig. 2.5 and is separated in five layers that
we will define in the following sections.
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Figure 2.5: An overview of the 6TiSCH Networking Stack

In the following subsections we describe, layer by layer, the main protocols
and mechanisms that exist to build an IIoT stack and present which ones were
selected to be part of the 6TiSCH stack and why.

2.3.2 Physical

Wireless nodes communicate by sending digital information as electromag-
netic waves over the air. To transform a digital information into an electro-
magnetic waves, the digital information must first be translated into an ana-
log signal. This transformation is called modulation. Then the analog signal
needs to be amplified and sent over the antenna. A typical low-power radio
outputs 0 dBm (1 mW). As explained in Chapter 1, the radio signal power
might fade due to obstacles, distance or external interferences. As a result,
a receiving node needs to amplify the received signal before demodulating it.
To extract relevant information from the signal, the ratio between the sig-
nal carrying the data and the ambient radio noise must be kept high. This is
quantified using the Signal-to-Noise Ratio (SNR).
The amplifier and modulator components draw a significant amount of en-

ergy, making the radio the most power-hungry part in most designs. Those
components do not consume energy when off. The challenge is thus to limit
their usage while providing reliable communication. An energy-efficient com-
munication stack usually uses those components less than 1% of the time.
The PHY layer is responsible for the activation and deactivation of the

radio, preamble detection (identifying symbols that correspond to a known
modulation), and energy detection (ED). The chosen standard in 6TiSCH is
IEEE802.15.4-PHY as it is the most prominent standard in low-power radio
technologies. IEEE802.15.4-PHY proposes multiple modulation schemes.
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Figure 2.6: Overlapping Channels in 802.11b/g/n and 802.15.4 OQPSK

In 6TiSCH, the default modulation scheme is Offset Quadrature Phase-Shift
Keying (OQPSK)[6] on the 2.4 GHz ISM band. In this modulation, the digital
data in translated into an analog signal by modulating (changing) the signal
phase. OQPSK is a variant of phase-shift keying modulation using four differ-
ent values of the phase to transmit. This modulation technique is also used in
Bluetooth and RFID. IEEE802.15.4 with OQPSK provides 16 independent
channels (numbered from 11 to 26), that is, sending on channel 12 will not
impact another communication (using the same technology) on channel 11 or
13. Fig. 2.6 depicts the channel overlapping between 802.15.4 OQPSK and
802.11b/g/n (WiFi).

2.3.3 DataLink

In IEEE802, the DataLink layer in divided into two sub-layers: Medium Ac-
cess Control (MAC) and Logical Link Control (LLC). The MAC sub-layer
is responsible for controlling how devices gain access to a physical medium
(e.g. which channel to use). The LLC sub-layer is responsible for bridging the
gap between the MAC sub-layer and the network layer, and also controls er-
ror checking and frame synchronization. 6TiSCH uses IEEE802.15.4-2015
with the TSCH mode at the MAC layer and the 6TiSCH Operation Sublayer
(6top) for LLC. The 6top sub-layer includes the 6top Protocol (6P) that de-
fines the commands and interaction between nodes to reserve resources (cells)
and the Scheduling Function (SF) that is internal to each node and defines
when to add or delete cells in the schedule. Work is being proposed at the
IEEE (802.15.12 PAR) for an LLC that would logically include the 6top
sublayer.

MAC

The Medium Access Control (MAC) sub-layer provides an interface between
the physical layer (PHY) and the LLC layer. The different MAC designs can
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be separated into two different paradigms, contention-based and time-divided.
In contention-based MAC, nodes need to make sure the radio medium is

not used by other transmissions before transmitting. This is usually done
using Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA),
a method in which nodes send a short message named Request to Send (RTS)
before sending, to make sure no other node is transmitting. If the receiver has
no ongoing transmission, it replies with another short message named Clear
to Send (CTS). Then the actual data transmission can start. This technique
is used in broadly adopted technologies such asWiFi. Contention-based MAC
protocols are appealing as they allow multiple devices to share the same radio
channel without being pre-coordinated.
One of the first adaptation of existing contention-based MAC protocols for

Wireless Sensor Networks is SMAC [14]. S-MAC is designed to reduce en-
ergy consumption, while supporting good scalability and collision avoidance.
S-MAC consumes from 2 to 6 times less energy than traditional IEEE802.11
MAC protocols. Still, they show a 30% duty cycle, that is way above what is
expected for a solution to run during years. Contention-base solution cannot
provide strict guarantees with ultra low-power consumption.
The other MAC paradigm is time-division, where devices share the same

radio frequency by using it at different times. This is known as Time-Division
Multiple Access (TDMA). Time is usually divided into slots of the same du-
ration. As opposed to contention-based solutions, nodes need to agree on a
time-division scheme (e.g the duration of a time slot). TDMA can be coupled
with Frequency-Division Multiple Access (FDMA) in which a frequency band
in sub-divided into channels and multiple channels can be used at the same
time without interfering with each others. This is now a largely adopted tech-
nique in Wireless Sensor Networks2.
Before 2012, the IEEE802.15.4 MAC sub-layer was designed for star

networks, in which all motes communicate directly with a central coordinator
mote. The way the sub-layer was built would not match IIoT use cases for
two reasons:

• Link Reliability. As described in Chapter 1, the radio environment is
unreliable in nature. The quality of a transmission over one frequency
can change from one second to another. Until 2012, the MAC sub-layer
was not using Channel Hopping.

• Relay Energy Consumption. To have a mesh network, some nodes need
to act as relays (routers). Until 2012, relaying nodes needed to keep
their radio on all the time (100% duty cycle).

2At the time of writing more than 70k networks are deployed in the world using the
SmartMesh IP solution that include such technique. This technique is also included in Wire-
lessHart, a protocol used in many industries for factory automation.
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In 6TiSCH, the chosen MAC layer is the IEEE802.15.4-2015 with the
TSCH mode. Using the TSCH mode allows both low duty cycle (<1%) and
high reliability (>99.999%) [15]. IEEE802.15.4-2015 describes the way
TSCH works and its typology, but does not define how the schedule is built.

LLC

The way cells are organized in time and channels is called the schedule. The
management of the schedule is a crucial task as it has a direct impact on la-
tency, reliability and energy consumption. The number of allocated cells in
TSCH is directly related to bandwidth. The more cells a node has, the more
opportunities to transmit or receive. Scheduling with TSCH can be done fol-
lowing five paradigms: Static Scheduling, Neighbor-to-Neighbor Scheduling,
Remote Scheduling, Hop-by-hop Scheduling, and Id-based Scheduling.
In Static Scheduling, a fixed schedule is defined for the entire network, no

matter the bandwidth required by each node, no matter the number of nodes.
It means that multiple transmissions can occur in the same cell, resulting in
potential interference and data loss. Static Scheduling is often used to boot-
strap the network or as a fall-back mode (when other scheduling techniques
failed to operate).
InNeighbor-to-neighbor Scheduling, nodes negotiate cells in a distributed

manner. Each node exchanges messages with its neighbors to allocate/deal-
locate cells between each other.
In Remote Scheduling, a central entity (e.g. the gateway) computes a

schedule for each mote. The advantage of that approach is that one entity has
a global view of the network and can thus take decisions that can optimize the
overall performances. The drawback is that it takes more time and network
usage, as each node needs to send information to the scheduling entity. The
central entity might then have information that is not up to date.
In Hop-by-hop Scheduling, nodes can reserve cells among a path to a

destination. In 6TiSCH this is called a Track. A Track is the 6TiSCH in-
stantiation of the concept of a Deterministic Path [16].
In Id-based Scheduling, nodes decide which cells to allocate depending

on a unique identifier (MAC address or other). If this identifier is obtained
from the sender, it is called Sender-based Scheduling, and if obtained from
the receiver, it is called Receiver-based scheduling. When two nodes want to
communicate and know their identifiers, they choose one of the two identifiers
and translate it into cell coordinates (i.e. slot offset and channel offset). How
to translate an unique identifier into cell coordinates is not defined. The only
constraint is to make sure the mapping to a cell coordinate is unique. Cells
allocated using Id-based scheduling are shared. This approach is presented in
Orchestra [17] and is now being merged in the 6TiSCH Minimal Scheduling
Function (MSF). This technique is efficient as it does not require any wireless
communication and negotiation.
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While the standard does not define how the schedule is built and oper-
ated, scheduling has major impacts on the network performance. In their
survey [18], Teles Hermeto et al. provide an extensive description of the
different scheduling techniques available. They classify the scheduling tech-
niques according to their paradigms (i.e. centralized or distributed) and opti-
mization goal (e.g. low latency or reliability). They point out that centralized
schedules are ideal for static topologies with periodic traffic and distributed
scheduling is more suited for mobile topologies and traffic that is not deter-
mined in advance.
As we mainly use centralized scheduling in this thesis, I will now describe

the corresponding state of the art. One of the pioneer work in centralized
scheduling algorithm over TSCH proposed by the research community is the
Traffic Aware Scheduling Algorithm (TASA) [19]. In TASA, the schedule is
managed by a centralized entity named the Path Computation Element (PCE).
TASA is built for periodic convergecast traffic (the entire traffic is addressed
to the gateway) and works over DODAG where node have only one parent.
TASA aims at building compact schedules, that is, minimizing the offset of
the last cell in the schedule. It starts to allocate bandwidth (cells) to the
most constrained nodes (the nodes that carry the most traffic). TASA then
uses matching and coloring heuristics to find the smallest schedule taking into
account the traffic and the topology. TASA guarantees optimal schedule com-
pactness but does not provide any guarantees in terms of reliability, mainly
because it assume perfect links and no retransmissions.
Gaillard et al. [20] proposed an extension of TASA (TASARTX) to take

into account retransmissions and fragmented packets. They build a schedule
that complies with reliability expectation by adding extra cells that are used
in case of consecutive retransmissions. They take into account link quality,
packet fragmentation and traffic changes.
The same authors further extend their research by proposing Kausa, a

KPI-aware scheduling function [21]. The authors consider that multiple ap-
plications use the same network, and that each application has its own set
of requirement and traffic flow. They design Kausa, a centralized scheduling
algorithm that builds resource paths that guaranty per flow QoS.
Khoufi et al. [22] use centralized scheduling to build a schedule that is

compliant with both latency and reliability requirements. To do so, they intro-
duce the concept of debt-based scheduling, that is a mechanism that schedules
first the node with the highest debt. They define the debt of a node based on
the amount of traffic it needs to carry out and its depth in the network (the
number of hops to DAG root). We reuse this concept in Chapter 6.
In 6TiSCH, the LLC sublayer is embodied by the 6TiSCH Operation Sub-

layer (6top). 6top provides a management interface that enables an external
management entity to schedule cells and slotframes named the 6top Proto-
col (6P) as well as a structure and formalism for the scheduling mechanisms
called the Scheduling Function (SF). 6top defines two types of cells: Hard
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cells, cells that cannot be modified (i.e read-only), and Soft cells, cells that
can be modified.
The scheduling tasks are done by the Scheduling Function (SF) compo-

nents. A node may support multiple SFs at the same time, each SF is iden-
tified with an SFID. 6TiSCH only defines a set of requirements a SF must
have (e.g. the SFID) but does not define how the SF computes the schedule.
As an example, a scheduling function namedMinimal Scheduling Function

(MSF) is proposed in RFC8180 [6], defined in [23] and described in [24].
MSF defines both the behavior of a node when joining the network, and how
the schedule is managed in a distributed manner. MSF uses a combination of
Neighbor-to-neighbor Scheduling and Id-based scheduling. During the join
process, MSF defines a set of steps a node follows to allocate the minimal set
of cells its will use to start communicating with the network. After the joining
process, MSF dynamically modifies the schedule to continuously adapt to the
application and routing changes as well as to handle the schedule collisions.
The Scheduling Functions (SFs) decide which cells to allocate/deallocate

locally, but does not apply those changes alone. To do so it uses the 6top
Protocol (6P). The 6top Protocol (6P) defines the commands nodes send to
each others to add, delete or relocate cells (redefine the location of the cell in
the schedule) [25]. When the SF takes a scheduling decision, it triggers a 6P
mechanism that is called a “6P Transaction”. A “6P Transaction” is a series
of messages a node and its neighbor exchange to negotiate the modification of
their schedules. An example of a 2-step 6P Transaction is depicted in Fig. 2.7
After a 6P transaction, if both node agree, they modify their schedule. It is
important that the two nodes keep their schedule consistent. If a node A has
a transmit cell and node B does not have the corresponding reception cell, this
results in communication failure.

2.3.4 Network

The Internet Protocol version 6 (IPv6) is the latest version of the Internet
Protocol (IP) that provides devices addressing across the Internet. Devices
are often considered part of the IoT domain when they are able to use IP.
Having IPv6 capabilities simplifies the integration of a technology into a pro-
duction system.
The IETF “IPv6 over Low-Power Wireless Personal Area Networks”

(6LoWPAN) working group was created in 2005 to provide an adaptation
layer for IPv6 to work over IEEE 802.15.4 and resulted in a set of mecha-
nisms known as 6LoWPAN [4]. Adapting IPv6 to constrained device net-
works is not straightforward and the main obstacle is size. The IPv6 Maxi-
mum Transmission Unit (MTU) is 1280 B and the IEEE 802.15.4 maximum
frame, size is 127 B. 6LoWPAN thus defines mechanisms to compress and
fragments datagrams.
6LoWPAN allows IPv6 to function on top of IEEE 802.15.4, but does
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+----------+ +----------+
| Node A | | Node B |
+----+-----+ +-----+----+

| |
| 6P ADD Request |
| Type = REQUEST |
| Code = ADD |
| SeqNum = 123 |

cells | NumCells = 2 |
locked | CellList = [(1,2),(2,2),(3,5)] |
+-- |-------------------------------------->|
| | L2 ACK |
| 6P Timeout |<- - - - - - - - - - - - - - - - - - - |
| | | |
| | | 6P Response |
| | | Type = RESPONSE |
| | | Code = RC_SUCCESS |
| | | SeqNum = 123 | cells
| | | CellList = [(2,2),(3,5)] | locked
+-> X |<--------------------------------------| --+

| L2 ACK | |
| - - - - - - - - - - - - - - - - - - ->| <-+
| |

Figure 2.7: A 2-step 6P Transaction (borrowed from [25]).
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Figure 2.8: DODAG construction with hop count as a routing metric. Fig-
ure taken from “The Love-Hate Relationship between IEEE802.15.4 and
RPL” [27].

not define how neighbors are selected and how the network is formed. In
6TiSCH, the default routing protocol is the “Routing Protocol for Low-Power
and Lossy Networks” (RPL) [26]. RPL supports a wide variety of datalink
layers and is not only designed for WSN. RPL can build up network routes,
adapt to a changing topology and distribute routing knowledge among nodes.
RPL forms a Destination-Oriented Directed Acyclic Graph (DODAG), that is
a multi-hop routing graph rooted at a central point (named gateway, root or
sink). The routing graph is usually created by accounting for link quality and
nodes attributes, based on a gradient-based approach. Which parameters to
take into account is defined in an Objective Function (OF). The OF chooses
the parameters to use based on the routing objective (e.g. create short paths,
build redundant paths). Each node thus obtains aRank that denotes its virtual
distance to the DODAG root.
The DODAG construction starts at the root. The root periodically broad-

casts a control message named DODAG Information Object (DIO). A DIO
contains the rank of the node that sent it, as well other routing configuration
parameters. When a joining node receives a DIO, it adds the DIO trans-
mitter node to its list of potential parents. After receiving a few DIOs (the
number of DIOs to wait for is defined in the OF), the joining node selects one
of the potential parent and defines it as its preferred parent. How to select
the preferred parent is also defined in the OF. For instance, a node can select
its parent given its Rank, or given the Rank that will provide to the joining
node. Once the joining node has selected its preferred parent, it redirects all
its packets addressed to the sink to that parent. The joining node then com-
putes its own Rank and starts broadcasting its own DIOs. Fig. 2.8 depicts
the steps of a DODAG construction using hop count as the routing metric.
Once the routing and scheduling are settled, the application can start.
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2.3.5 Application and Transport

As the goal is for IoT devices to be able to talk with the rest of the Internet,
IPv6 is not sufficient. IPv6 provides a way to address other devices, but does
not specify the type of data it carries or how this data is formatted. This is the
task of the Application layer. The most famous Application layer protocol is
the HyperText Transfer Protocol (HTTP). Two applications that use HTTP
are able to communicate as they know in advance the format of the data they
will manipulate, and what the communication steps are they need to respect
for the conversation to be carried out well. Classical wired networks do not
have tight restrictions in terms of packet size or energy consumption, and are
thus not optimized for minimum packet overhead. To be able to interoperate
with such networks, the 6TiSCH stack needs to have techniques to compress
the communications without compromising its content.
The Constrained Application Protocol (CoAP) over User Datagram Pro-

tocol (UDP) is the default choice for Application and Transport Layers in
6TiSCH. CoAP can be seen as a compression of HTTP with extra features
built toward IoT such as IP multicast for group communication. CoAP inte-
grates well with IPv6 and 6LoWPAN that are described in Section 2.3.4.
In this section, we saw that the 6TiSCH working group assembled what

I believe to be the right protocols and mechanisms to build a stack for the In-
dustrial Internet of Things that isHighly Reliable, Low-Power and Internet-
Enabled. We will now see what the next steps are for this technology, and
what the open issues and challenges are.

2.4 Open Issues and Challenges

2.4.1 Benchmarking IoT

To design and validate an IoT communication protocol, one needs to test its
capabilities in different scenarios (e.g. number of nodes, position of the nodes,
data rate, etc) and environments (indoor/outdoor, with or without external
interferences, etc). There are three ways this can be carried out: simulation,
testbed, and real-world. Unfortunately each solution has its drawbacks. Sim-
ulation is fast, flexible and does not requires hardware, but rarely represents
the reality well. Testbeds better reflect reality, especially in terms of radio
propagation and interferences, but are static in the sense that they represent
only one radio environment. Real-world deployments present the same pros
and cons than testbeds, with the advantage of being tied to an application.
There is no need to make the network behave to fit one application as it is al-
ready designed for it (e.g. node positions, temperature and humidity changes,
data rate, etc). Ideally, a protocol needs to be tested in as many scenarios and
environments as possible. Unfortunately, validation is often done only with
a subset of the possible application configuration [28]. There is a need for a
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consistent way to test, validate and compare deployments and their results.
The IoT Benchmark Initiative (IoTBench) was recently created to provide

a set of tools and best practices to enable fair comparison and repeatability of
experimental results. They define 3 types of parameters and metrics an IoT
benchmark should have: Inputs (e.g. number of nodes, data rate), Outputs
(e.g. the nodes’ energy consumption) and Observed (e.g. external interfer-
ences). I strongly believe this benchmarking initiative is the right approach
for providing reliable solutions for the IoT.
During my work, I participated in the deployment of multiple real-world

solutions and ran testbed experiments. In order to compare them, I adopted
a way of formating “traces” (network statistics and radio connectivity) and
extracted Key Performance Indicators (KPIs) that I present in Chapter 5.
This trace format is generic enough and can be reused for deployment bench-
marking. I then went further and “replayed” those traces to combine the
advantages of simulation and experimentation with Trace-Based Simulation.
I explain this work in Chapter 6. My goal is for the community to adopt a
standard trace format and build an extensive set of traces to be able to test
and validate protocols in a wide range of scenarios.

2.4.2 Determinism in IoT

Determinism is the theory according to which, given a system state, if an
event occurs it results in an expected system state. In computer networking,
this translates into the ability of predicting the performance of a network. Key
metrics are typically the lifetime of a network (i.e. the time before one node
runs out of battery), its reliability (i.e. how many messages were lost), and its
latency (i.e. how much time messages need to go from source to destination).
When a network is said to be deterministic, it means that it can provide guar-
antees. That is, network operator can commit to contracts named “service-
level agreements” (SLAs) to ensure a client that the system will provide the
desired quality of service (QoS)[29], [30].
Network Determinism has been around for years. Formed in 2012, the

Time-Sensitive Networking (TSN) IEEETask Group aims at providing deter-
ministic services (not only time-related) through IEEE802 networks. Then
the Deterministic Networking (DetNet) IETF working group started in 2014
and aims at providing networking layer determinism [16]. They work with
the TSN task group to define a common architecture for both layers. The
DetNet working group also works with other IETF working groups such as
6TiSCH.
We saw that TSCH can provide high reliability together with low energy

consumption. As TSCH uses a time slotted structure, nodes know when to
sleep, transmit or receive, thus, most of the network events are known in
advance. The uncertainty comes from the radio environment variations or
the potential traffic changes. We will now see how performances guarantees
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can be obtain when using TSCH-based networks in term of reliability, latency
and energy consumption.

Reliability

End-to-end (E2E) reliability is evaluated by the number of messages that
reach their destination over the number of messages sent. For instance, a
90% E2E reliability means that, out of the 100 messages the were generated
in the network, only 90 reached their destination. Message loss usually occurs
for three reasons:

• Queue full. When a node receives a message and the node’s message
queue is full, the node cannot handle more messages and thus drops the
new message.

• Maximum number of retransmissions. When a node tries to transmit a
message, if the transmission fails, the node increases a retransmission
counter. If a maximum number of retransmissions is set and the counter
reaches that limit, the node discards the message.

• Disconnection. If a node has messages in its queue and it disconnects
(e.g. due to high desynchronization) or runs out of battery, the messages
are dropped.

A high E2E reliability (>99.99%) can be obtained by reserving enough
resources (no queue full), allowing an infinite number of retransmissions (no
retransmission limit reached), and ensuring low-power consumption.
In practice, reserving enough resources a complex task, especially when

the number of retransmissions is unlimited. The number of resources (cells)
required depends on the number of messages a node needs to transmit (locally
generated messages and forwarded messages) but also on the expected num-
ber of retransmissions. Let’s consider the scenario depicted in Fig. 2.9 where
node A needs to transmit a message to node B at a rate of one message per
slotframe, and there is one cell allocated from A to B. If the first transmission
fails, node A can save the message in its queue and wait for the next available
slot. As only one slot is available per slotframe, node A waits for the next
slotframe and now has two messages to transmit and only one cell available.
If retransmissions occur multiple times, the node’s transmission queue might
fill up and newly generated messages will be dropped. One way of solving
this problem is to allocate more cells, to anticipate retransmissions that may
occur.
The question is: how to estimate the number of retransmissions? This

boils down to: how to estimate the quality of a link ? Nouha Baccour et
al. [31] provide an extensive survey of the existing techniques to estimate
the quality of a link. Rather than reproducing this survey, we list here the
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different paradigms and give some metric examples. First, we can discern
between passive and active estimation.
In passive estimation, a node simply listens to the radio medium and es-

timates the quality of its different links from what it hears. This is the case
when using the Received Signal Strength Indicator (RSSI) that denotes the
amount of power a node receives when another node transmits. Using passive
measurement is handy as it does not require a node to transmit any informa-
tion. It does, however, rely on other nodes transmitting frequently in order
to have up-to-date link information.
In active estimation, a node transmits frames to estimate the probability of

success or failure of a transmission. The Packet Reception Rate (PRR) is the
ratio of the number of packets successfully received over the number of packets
sent. A similar metric is the Estimated Transmission Counter (ETX) [32],
that represents the expected number of transmissions needed to successfully
transmit a frame. It takes into account the probability of delivery and the
probability of “reverse delivery” (i.e the ACK probability of success). Such
metrics usually provide a more precise understanding of the expected number
of transmissions needed on average but do not take into account the maximum
number of consecutive successes or failures.
Kannan Srinivasan et al. [33] show that links are bursty, that is, they fluc-

tuate between low and high delivery ratios and that existing metrics such as
PRR does not denote those fluctuations. They introduce the β-factor, a metric
to quantify the burstiness of a link. Knowing the number of estimated consec-
utive failures allows to estimate the number of cells needed in the worst-case
conditions.
Pottner et al. [34] use Bmax that indicates the maximum number of re-

transmissions required to successfully transmit a frame. Bmax is obtained by
exchanging data in the network, thus Bmax is not representative during the
first exchanges of data but gets more and more accurate as the time goes. The
authors use this metric to create a schedule for time-critical applications by
allocating enough cells for the schedule to
Allowing an infinite number of retransmissions can result in very high

reliability but has an impact on energy consumption as more cells are needed
to enable retransmissions.

Energy Consumption and Latency

If the data traffic is periodic and we know the network topology, average link
quality, and payload size, estimating the lifetime and latency of the network
is straightforward [35]. The energy consumption is directly linked to the
number of cells used as the main source of consumption is the radio. The
latency depends on how the schedule is built. As the schedule is typically
done as a function of the amount of data to carry (bandwidth needed) and the
link quality (how many retransmissions needed), if those parameters are fixed
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Figure 2.9: Time Slotted Channel Hopping schedule. A retransmission ex-
ample. As only one cell is allocated per slotframe, nodes need to wait for 1
slotframe to retransmit.

and known in advance, we can estimate latency (as it is done in Ines Khoufi
et al. [22]) and energy consumption (using models such as the one proposed
by Xavier Vilajosanaet al. [12]). Those conditions may not be met.
The first condition is to have periodic traffic. This depends entirely on the

type of application. We can distinguish two types of application: Constant Bit
Rate, where each node periodically generates data, and Event-based, where
events are generated sporadically. In the latter case, for instance if alerts
information is needed (e.g. button pressed, value threshold reached) and no
resource (i.e. cells) is reserved in the schedule, the Scheduling Function needs
to dynamically adapt the schedule (by triggering 6P events) to increase the
number of allocated cells. This takes time, and the alert might not be relevant
anymore when reaching the destination. The only way to reduce the resource
reservation delay is to consider the worst case scenario and over-allocate re-
sources, and thus increase the energy consumption of the devices.
The second condition is to have fixed link quality. Using channel-hopping

averages the per-channel link qualities resulting in very stable links [2]. As
an example, we observe links over days in our deployments [36] and show that
routing with at most 5 parent changes per day can be achieved with highly
reliable WSN.

Toward Time-Critical Applications

Wire-like E2E reliability is usually the first requirement that is demanded in
industrial applications. Today, commercial products provide such reliability
guarantees, we thus consider it as a solved issue. Wireless sensor network
are now being studied in applications that require time-critical data collection.
Pöttner et al. study time-critical applications over TSCH networks in an

oil refinery [34]. They propose a metric calledBmax to quantify the maximum
number of consecutive transmission failures to expect on a link, and based
on that metric, they estimate the end-to-end (E2E) upstream latency of the
packets. The drawback of this technique is that it requires several hours to
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have an accurate Bmax for each link.
Chang et al. propose a low-latency scheduling function (LLSF) for fast

delivery in WSN[37]. They show that it is possible to achieve an average of
E2E upstream latency of 320 ms over a 5-hop network.
Schindler et al. implement what they claim to be the first closed-

loop wireless feedback control network using completely standards-compliant
IEEE802.15.4 TSCH technology [38]. They study the trade-off between
duty cycle and latency in various combination over a 4-hops network.
Finally Yang et al. build an event-detection system using the 6TiSCH

stack and study the latency distribution [39] between two mote using different
duty cycle. Their results are promising and show that per-link low-latency
(tenth of ms) is achievable using 6TiSCH.
There is still a lack of understanding about how TSCH behaves in different

environments and what are the trade-offs between, reliability, latency and
network lifetime. In Chapter 6, we estimate the trade-offs between latency
and energy consumption taking those conditions into account.

2.5 Summary

The IoT world is vast and its applications are flourishing. In this thesis, we
focus on Industrial IoT, that is applications that should provide very high re-
liability event in harsh environments. Battery powered wireless technologies
are more and more used in IIoT as they are easy to deploy and cost effective.
To allow devices constrained in energy and computation power to operate in
such harsh environments, the right technologies need to be selected. A wide
range of standards exists but until recently no fully standardized networking
stack existed to answer the IIoT requirements. The 6TiSCH stack was cre-
ated to bridge that gap and will soon be fully approved. I believe we are at a
cornerstone of Industrial IoT and that in the next following years we will see
6TiSCH adopted by a large number of network operators. Yet, some chal-
lenges remain. To be able to provide performance guarantees, the 6TiSCH
technology needs to be studied in depth over a wide range of applications sce-
narios and environments. In Chapter 6, I explain how I study the limits and
trade-offs of TSCH, the mechanism at the heart of the 6TiSCH stack.
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Chapter 3

Methodology and Assumptions

....

In this chapter, we describe the methodology we follow to
conduct our work. We start by deploying real-world IoT
solutions and gathered what we believe to be one of the largest
real-world IoT datasets available. Based on this ground work
we propose improvements and recommendations for the IIoT.

Our research methodology is not the usual one as it does not follow the
typical order: proposition-measurements-validation. We believe that to be
able to fully understand a system and its limits, we need to “get our hands
dirty”. We thus started by the measurements, gathering data and insights
from real-world and testbed deployments. This allows us to ground or work
in realistic assumptions, and produce solid results based on extensive datasets.
From this ground work, we identify the limits and trade-offs of the networks
we study, and propose enhancements. We then test and validate our proposals
through simulation and experimentation.

3.1 Real-World Deployments

....

What is the state-of-the-art in IIoT and what are the real challenges
the IIoT is faced with?

What do we mean by real-world networks? We consider a real-world net-
work as a network that serves a real application, that is, an application whose
purpose is not (or not only) to collect network statistics or test a system. Note
that the network environment is not mentioned in that definition. There is
neither a “right” nor a “wrong” network environment, as low-power wireless
applications are very diverse.
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While simulation and emulation can help proving theoretical protocol de-
signs, they quickly face limits. There is a trade-off between realism and com-
plexity: fully simulating the radio environment would lead to overly complex
computation, but using simple models often does not represent reality. A com-
mon model type is the Path-Loss model that describes the signal attenuation
between a transmitter and a receiver as a function of the propagation distance,
on top of which other parameters can be added such as carrier frequency, an-
tenna positions or terrain profile. Models such as the Path-Loss model rarely
take into account multi-path fading or the variation of the radio environment
over time.
Deploying hardware is more costly and creates systems that represent a

single environment. A smart building deployment will always be an indoor
deployment and the location of the devices will not change to adapt to a given
application setup and then to another. Results obtained using testbeds are
however more trustworthy than simulation as they are proven to work on real
physical hardware (e.g. processing and memory delays and limits) and envi-
ronments (radio propagation and interferences). Many testbeds are now being
deployed and used to validate protocols. Although testbeds are more realistic,
we show in Chapter 5 that they might not show the worst case characteristics
of a real-world network and that results obtained from testbeds might not be
sufficient to fully validate a protocol.
Deploying a network that serves a purpose other than testing protocols

(i.e. a real-world network) helps ensuring a high level of realism, from the
position of the devices, to the current consumed, the radio environment and
the data traffic. We thus decided to start with real-world deployment to bet-
ter understand the WSN and their challenges. I actively participated in the
deployment of four real-world WSN deployments:

• PEACH: A frost prediction system for peach orchards in Mendoza (Ar-
gentina). We deployed 23 devices on a 11km2 area to measure temper-
ature and humidity at different locations in the orchard.

• SnowHow: A snow-pack monitoring system in the Sierra Nevada (Cal-
ifornia). We deployed 27 devices in a 100km2 area to measure snow
level, solar radiation and other environmental data in the mountain.

• EvaLab: A Smart Building monitoring system in Paris (France). We
deployed 22 devices in a 800m2 area to measure temperature in an office
building.

• SmartMarina: A metering and management system for marinas in
Agde (France). We deployed 19 devices in a 5km2 area to measure
the presence and electricity consumption of the boats in the marina.

As no end-to-end solution existed that suited our needs to format, transfer
and store our data, we created SolSystem. We took existing tools and assem-
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bled them, together with custom Python scripts, to create a system that is
able to:

• format data: as some deployments are connected to the Internet using
a satellite connection, we needed to highly compress the data produced
by the network. We designed the concepts of “SOL Objects”, a way of
representing data in a compressed way, to which Object Security can
be applied [40].

• transfer: as we wanted to centralize the data of each deployment for
easy treatment, we created a system to transfer the data from the gate-
way on the deployment site to a remote server.

• store: to make sure we do not loose any information, data is compressed
and stored in both the gateway and the remote server.

• display: we use existing tools to visualize to visualize the data in real-
time. This allowed us to have a clear view of what is happening in the
field, in real-time.

These deployments gave me two things: real-world insights, and a large
amount of data. We verified intuitive assumptions we had about real-world
deployments such as network density, the relation between RSSI and dis-
tance, and overall network performances (reliability and lifetime). We went
further and obtained not-so-intuitive results about link asymmetry and net-
work churn.
We describe the deployments and their results in Chapter 4.

3.2 Characterizing Networks

....

How to characterize the radio environment a network is deployed in,
and what are the key performance indicators to look at?

After learning about real-world networks, I wanted to get more insights
from testbed deployments. As I started to understand the challenges of
WSNs, the need for denser connectivity data increased. One key advantage
of using testbeds is that it allows out-of-band communication. That is, de-
vices are usually powered by cables and accessible using wired communica-
tion (e.g. serial communication). This allows users to program the devices
by loading firmware, trigger commands to interact with the running system,
or debug at run time by inserting breakpoints or observing logs. Out-of-band
communication enables the collection of dense network statistics.
In real-world networks, we collect sensor data and network statistics. Net-

work statistics are useful for the network to operate well, but should not re-
duce the resources for the sensor data to be carried over the network. Network
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statistics are therefore usually sent at a low data rate. In our deployments,
network statistics are generated by each device every 15 min, and contain
averages of statistics over the last 15 min. To better understand the behavior
of TSCH, I needed a denser statistics, i.e. more data.
Both testbed and real-world networks suffer from the same limitation:

they only represent one scenario. In order to be properly validated, a system
needs to be tested in all situations it is to be used in, or at least in the worst
case scenarios. Testbeds are often considered realistic, but rarely represent a
worst-case scenario. After observing testbeds that are part of the IoT-LAB,
we found that they present only low external interferences from other tech-
nology (e.g. WiFi) and rarely show changes in radio connectivity. A protocol
should not be validated by using only results obtained in such radio conditions
unless the protocol is designed only for such conditions. This emphasizes the
need for new ways of validating wireless protocols and increase testbed di-
versity.
To get those values I use the IoT-LAB, 6 large testbeds deployed through-

out France, and designed for network design and testing. To collect connec-
tivity data that is dense in time, space, and frequency, I modified and used a
system called Mercator. I describe each experiment and its results in Chap-
ter 5. Using Mercator, I collected radio connectivity traces that allow me
to know the quality of the radio links between two devices in every available
radio channels, and this, several times per minute.
In order to compare the datasets obtained from SolSystem and Mercator,

I designed K7, a simple file format (extended CSV) that allows to present
both types of data in a uniform way.
By extracting information from both testbed and real-world results, we

were able to identify key parameters to look at when characterizing a network
environment. We identified 3 phenomena that are the most common in real-
world deployments, and which have a deep impact on connectivity: external
interference, multi-path fading, dynamics in the environment. We consider
those as the worst-case radio environments, and claim that a WSN protocol
should be tested under such conditions (at least) in order to be validated.
Analyzing those radio connectivity traces and network statistics further

improved my understanding of how the radio environment behaves.

3.3 TSCH Limits and Trade-offs

....

Given a required end-to-end reliability, what is the minimum possible
latency when using TSCH? How many years does the network loose if
I want to reduce the end-to-end upstream latency by X seconds ?

The Industrial IoT technologies are now adopted by many companies over
the world and are now a proven solution. Yet challenges remain and some
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of the limits of such technologies are still not fully understood. The use of
TSCH-based networks to support time-critical applications is still at its early
stages. More specifically, the trade-offs between latency and energy consump-
tion (lifetime) are still not well understood. In this work, we try to fill that
gap and study the limits of TSCH-based networks in term of:

1. end-to-end upstream latency. The time for a message generated by a
sensor node to be delivered to the gateway.

2. energy consumption. How much energy is required to achieve a given
latency limit.

To do so, we simulate networks on top of the connectivity traces obtained
from both real-world and testbeds experiments. The connectivity traces re-
places the (typically used) radio propagation models and provide results based
on real-world radio environment. We recommend trace-based simulation as a
tool for protocol performance evaluation.

3.4 Summary

In this chapter, we detail our methodology and assumptions. We explain how
we go from exploring real-world deployments, to studying the performances
limits and trade-offs of TSCH-based networks through trace-based simula-
tion. We gather network statistics from real-world deployments from which
we extract a set of conditions that we believe should be present to have rep-
resentative results. We then study the limits and trade-offs of TSCH-based
network in term of reliability, latency and energy consumption. By following
a non-traditional approach, we believe we have identified realistic challenges
and assumptions to propose results that are both representative of a real de-
ployment, and immediately useful.
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Chapter 4

Real-World Deployments

....

In this chapter, we present the real-world IoT networks we
deployed, and their corresponding applications. We explain
how we collect network statistics and list the lessons we
learned when deploying and operating networks in real-world
conditions.

“C’est en forgeant que l’on devient forgeron1”. This rather old-fashion
sentence, or at least the idea it carries, brought me to start my research by
deploying wireless sensor networks. The first deployment happened to be
near Mendoza, in Western Argentina. In April 2016, together with an in-
ternational team from Chile, Argentina and France, I went to a city named
Junín to deploy 23 nodes in a peach orchard to build a frost prediction IoT
system. This first real-world deployment taught me a lot, from sensor inte-
gration and devices positioning to system architecture and data gathering. I
then continued with other deployments in the Sierra Nevada in Eastern Cal-
ifornia, and in Agde, Southern France. In this Chapter, I describe each of
these deployments and explain the lessons I learned.
We needed a common technology, both robust and already available on

the market in order to understand development status of Industrial IoT. We
selected SmartMesh IP. We describe how it works, and explain why we chose
it in Section 4.1. We needed a system to store and analyze data produced
by SmartMesh IP. No such system was available on the market, so we built
our own, named SolSystem. We describe it in Section 4.2. The remainder
of the chapter describes each real-world application, and the corresponding
network we deployed. For each application, we present its context, describe
our deployment, give an overview of the network performances, and list the

1literally: “its by forging that one become a blacksmith”, and usually translated into “prac-
tice makes perfect”.
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lessons we learned. We first present two outdoor applications, Smart Agri-
culture in Section 4.3, and Environmental Monitoring in Section 4.4. These
two applications have similar radio environment, but different scales (covered
areas). We then present the EvaLab application in Section 4.5. In this indoor
“Smart Building” application, radio communications are subject to external
interferences and multi-path fading. We finish by presenting SmartMarina
(Section 4.6), a marina monitoring solution, an outdoor application with large
moving objects and external interferences. We compare the network statistics
of those different networks in Chapter 5.

4.1 SmartMesh IP

4.1.1 An IIoT World Leader

For the first phase of this work we need a product that is thoroughly tested,
proven and commercially available off-the-shelf. SmartMesh IP, a product line
from the Dust Networks group at Analog Devices2 fits those requirements.
Dust Networks is initially a spin-off company from the University of Califor-
nia at Berkeley, now the world leader in supplying low power wireless mesh
networks for demanding applications. Over 76,000 SmartMesh networks are
deployed today in applications including industrial process monitoring, city-
wide parking management, building automation and remote environmental
sensing.
The protocol stack implemented in SmartMesh IP devices is standards-

based, and includes standards such as IEEE802.15.4 Time Slotted Chan-
nel Hopping (TSCH) and IETF 6LoWPAN [41]. A SmartMesh IP network
is composed of one manager and up to 100 motes. The manager serves as
the gateway of the SmartMesh IP network, and is typically connected to a
computer, itself connected to the Internet. A mote is a standalone device,
typically battery powered, itself connected to sensors and actuators. The
SmartMesh IP network offers bi-directional connectivity: the motes can send
sensor measurements to the gateway (and from there to some server on the
Internet), the server can send actions/configurations to the motes.
Security is built into the SmartMesh IP protocol stack around an AES-

128 cipher, and cannot be switched off. A set of keys ensures confidentiality,
integrity and authentication of the data. The SmartMesh IP network is op-
erated in such a way that it offers wire-like reliability, with over 99.999%
end-to-end reliability.
Each node in a SmartMesh IP network can periodically send beacons to

announce the presence of the network. When a mote wants to join a net-
work, it listens for those beacons. Once it has heard a number of those, it
starts a security handshake with the network. During that handshake, the

2 https://www.analog.com/
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SmartMesh IP manager sends a mote_create event notification over its se-
rial port. It contains, among other information, the association between the
newly-joined device’s 8-byte MAC address and its 2-byte moteId.
In SmartMesh IP terminology, a “path” is the link-layer resource that al-

lows two neighbor nodes to communicate3. Each time a mote starts communi-
cating with a new neighbor (e.g. its routing parent), a path_create event is
produced. Similarly, each time a mote stops communicating with a neighbor
(e.g. it changes routing parent), a path_delete event is produced. We log
both messages.
The motes in a SmartMesh IP network automatically and periodically gen-

erate “Health Reports” (HR), a series of counters and statistics to assess the
overall health of the network. Three types of statistics are generated:

• HRDevice. Internal counters of the mote (e.g. packet counters, energy
consumed)

• HRNeighbors. The list of neighbors the mote is communicating with

• HRDiscovered. The list of neighbors the mote can hear but is not com-
municating with.

• HRExtended. The number of transmission attempts and link-layer re-
transmissions for each frequency.

A mote generates a complete set of health reports every 15 min.
A SmartMesh IP network is fully synchronized, and time is split up into

timeslots. A schedule orchestrates all communication in a SmartMesh IP net-
work and indicates what to do in each timeslot: transmit, listen or sleep.
How the schedule is built and maintained allows a clear trade-off between
the amount of data generated by the sensors, the communication latency, and
the power consumption of the motes.
The “Dust Networks SmartMesh Power and Performance Estimator” is

a tool provided by Dust Networks4 that allows one to estimate the power
consumption and latency of a SmartMesh IP network, given the topology
and amount of data generated. A typical SmartMesh IP network offers over
99.999% reliability and over a decade of battery lifetime when motes are
powered by a pair of AA batteries [35].

4.1.2 Low-power Wireless Motes

Fig. 4.1 shows the three types of motes that we use in our deployments. All
boards are manufactured by Analog Devices. DC9003 (Fig. 4.1d), DC9018
(Fig. 4.1c) and long-range prototype boards (Fig. 4.1b) are deployed.

3 In more classical networking terminology, this is often referred to as a “link”. We use the
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(a) DC2274: Low-power wireless man-
ager (1 deployed)

(b) Long-range prototype board (3 de-
ployed)

(c) DC9018: External antenna mote (2
deployed)

(d) DC9003: chip antenna
mote (16 deployed)

Figure 4.1: The boards deployed.
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The DC9003 (Fig. 4.1d) is the development board for SmartMesh IP
networks. This is the board used to experiment with and prototype
SmartMesh IP technology. All the pins of the micro-controller are exposed,
allowing a developer to interface sensors and actuators over digital and ana-
log interfaces. The DC9003 features the LTC5800 chip (a SoC with an
ARM Cortex-M3 and an IEEE802.15.4 radio) connected to a chip antenna.
The DC9003 is an off-the-shelf commercially available board.
The DC9018 (Fig. 4.1c) is functionally equivalent to the DC9003, but

with a 2 dBi external antenna, rather than a chip antenna. It is expected
that the DC9018 has a better range than the DC9003. The DC9018 is an
off-the-shelf commercially available board.
The long-range board depicted in Fig. 4.1b is a prototype of a new prod-

uct Analog Devices allows us to test. It is a fully SmartMesh IP-compliant
product (i.e. it interoperates with DC9003 and DC9018 boards in the same
network), with a line-of-sight range of 1500 m. This board features a 2 dBi
external antenna.
The boards deployment in Phase 1 of the PEACH project are develop-

er/prototyping boards. We expect to transition to the NeoMote in Phase 2, a
ruggedized version of the motes, manufactured by Metronome Systems5.
All the boards deployed during Phase 1 run the default SmartMesh IP

firmware. Each board automatically joins the network and sends a tempera-
ture reading every 30 s to the manager, using its built-in temperature sensor.
In Phase 2, we will reprogram the motes with custom firmware, using the
“DustCloud” development environment provided by Analog Devices6.

4.1.3 Low-power Wireless Manager

Fig. 4.1a shows the SmartMesh IP manager used in the PEACH project. It is
composed of an LTP5902-IPR SmartMesh IP manager chip, a 2 dBi external
antenna and USB connectivity, in the form-factor of a USB pen drive. USB
connectivity is used to connect the DC2274 to a computer. The computer can
run a program to configure the DC2274, send commands and configurations
to the motes, and retrieve sensor measurements. The DC2274 is a standalone
device, i.e. the computer does not play any active role in operating/managing
the network, it just serves as an interface between the SmartMesh IP net-
work and the Internet. The DC2274 is an off-the-shelf commercially available
board.

terms “path” and “link” interchangeably in this work.
4 http://www.analog.com/en/technical-articles/smartmesh-power-and-performance-estimator.

html
5 http://metronomesystems.com/
6 http://www.dustcloud.org/
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4.2 SolSystem

SmartMesh IP provides the networking solution and makes sure data is car-
ried to the gateway. Then data needs to be forwarded to other entities in order
to be stored and analyzed. Analog Devices provides a set of applications and
libraries to start manipulating the network and its data but does not provide
an “End-to-End Solution” that allows to carry, store, analyze and display this
data. Other solutions exist such as ThingWorx, Xively or ThingSpeak but do
not provide the flexibility we wanted. As we will see in Section 4.4, some
deployments need to highly compress the data generate as the only available
connection to the Internet is done via satellite, with a very limited data plan.
We hence needed a solution that allowed us to use our own optimized com-
pression format. Another limitation comes from the fact we have two types
of data, sensor data and network statistics, and solutions such as the ones
presented above are only focusing on sensor data. Current solutions are not
flexible enough or do not match the types of data we are manipulating in our
work. We hence developed our own solution named SolSystem.
SolSystem is composed of two entities: the solmanager and the

solserver. The solmanager lives on-site, and directly communicates with
the SmartMesh IP manager. It collects, stores and forwards the data pro-
duced by the network to the solserver, that lives in a remote computer.

4.2.1 solmanager

The solmanager application runs on an embedded computer (e.g. a Rasp-
berry Pi computer) and connects to the serial port of the SmartMesh IP man-
ager. It subscribes to all the notifications from the SmartMesh IP manager:
data, health reports, network events. It then parses that information and
formats it as a series of SOL objects, which it forwards to the solserver
application.
In the PEACH deployment, a Raspberry Pi is connected to an Ethernet-

to-WiFi bridge equipped with a long-range directional antenna pointing to a
building with WiFi Internet access 200 m away. In practice, this means the
Raspberry Pi is directly connected to the Internet. Through that connection,
the Raspberry Pi forwards all the generated SOL objects, in binary format,
to the solserver application over HTTPS. Public/private Transport Layer
Security (TLS) keys and an HTTP token provide confidentiality, integrity,
authentication and authorization of the solmanager↔ solserver communi-
cation.

4.2.2 solserver

The solserver application runs on a server in the Inria-Paris research center.
The application listens for incoming SOL objects. When those objects are
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Figure 4.2: Example dashboard showing the last 7 days of data.

received from a properly authorized solmanager application, the solserver
converts them from their binary representation to their JSON representation,
and writes them into a database7.
A dashboard allows a user to visualize key information. Fig. 4.2 shows

an example dashboard with 7 days worth of data, including the temperature
(the day/night temperature swing is clearly visible, the last day being cold),
the number of discovered neighbors, and the charge consumed by the devices.

4.2.3 SOL

The SmartMesh IP network continuously generates information: the data
produced by the motes, the Health Reports produced by the motes, and net-
work events (e.g. a mote joined the network) produced by the manager. The
data produced by the motes contains the bytes generated by the application
running on the mote; this data is formatted differently depending on the ap-
plication.
We created the “Sensors Object Library” (SOL) to wrap that information

as generic SOL objects. A SOL object is always composed of the same fields:

• the identifier of the device generating the information,

• the timestamp of when this information was generated,

• the type of information,
7 We use an InfluxDB (https://influxdata.com/) database.
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• the value of the information.

A SOL object can be seen as a generalization of the Type-Length-Value
(TLV) format.
A SOL Registry contains the list of SOL types currently used, and their

associated format. This includes data generated by the motes, health reports,
and network events. Each SOL object can be represented either in a compact
binary form, or in a more easily parseable JSON format. The SOL registry
is publicly maintained and can be easily augmented with new types of sensor
data8.
We use SolSystem in each deployment we will present in the following

sections. SolSystem is flexible enough to match each one of them and greatly
helped us in the deployment process, the monitoring process and the analysis
process. We will continue using it in our future deployments.
We will now go through each of the real-world deployment we conducted.

For each deployment we present its application context, describe the deploy-
ment, give an overview of the network performances, and list the lessons we
learned.

4.3 PEACH

....
A frost prediction solution for peach orchards in Mendoza (Argentina).

4.3.1 Context and objectives

In 2013, 85% of the peach production in the Mendoza region (Argentina) was
lost because of frost. Because less fruit was produced in the region, 600,000
less work days were needed to process the harvest between November 2013
and March 2014, a reduction in work force of 10,600 people. Across the
Mendoza region, frost caused a loss of revenue of 950 million Argentine pe-
sos, roughly 100 million USD (at that time) in the peach business alone.
Handling a frost event is possible, but it is hard to predict when it is go-
ing to happen. The goal of the PEACH project is to predict frost events by
analyzing measurements from sensors deployed around an orchard. This sec-
tion provides an in-depth description of a complete solution we designed and
deployed: the low-power wireless network and the back-end system. The
low-power wireless network is composed entirely of commercial off-the-shelf
devices. We develop a methodology for deploying the network and present the
open-source tools to assist with the deployment and to monitor the network.
We discuss how the technology used is the right one for precision agriculture
applications.

8 https://github.com/realms-team/sol/blob/master/registry.md
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(a) Flower bud on vegetative
rest

(b) Flower bud prior to spring
blooming

Figure 4.3: Peach flower buds at different stages of winter rest. The flower
bud has a lower resistance to frost in (b).

(a) healthy (b) damaged

Figure 4.4: Gynoecium healthy and damaged by frosts. Damage is visualized
by brown tissues (extracted from [43]).

Peach (Prunus persica (L.) Batsch.) is a deciduous fruit tree, growing
mainly in temperate regions. It has a rest period between vegetative cycles,
saving growing organs from extreme winter frost. To leave winter dormancy,
buds need to accumulate chill followed by heat, resulting in Spring flower-
ing [42].
Peach flower buds contains floral primordia, consisting of sepals, petals,

androecium and gynoecium (see Fig. 4.3).
Spring frost events are one of the main limiting factors for the produc-

tion of temperate fruit trees [43]. To develop into a fruit, a flower bud needs
to bloom without frost damage, to later be successfully pollinated and fertil-
ized, eventually causing fruit set. When the temperature drops below zero
in Spring, the migration of water to inter-cellular spaces causes tension and
breaks the cell membranes. This causes internal solutes to be lost and cells to
die.
Fruit production mainly depends on the number of healthy flowers that

resist subzero temperatures. Different peach cultivars have different levels of
flower bud resistance to Spring frost, depending on the date of full flowering,
the lethal temperature, and the flower density [43], see Fig. 4.4.
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Figure 4.5: Air temperature at ground level measured in Junín, Mendoza in
Spring 2013, showing several frost events.

In Mendoza, Argentina, there are 14,216 ha of peaches, including
5,759 ha for fresh consumption [44] and 8,457 ha for the canning indus-
try [45]. During Spring 2013, a series of frost events (see Fig. 4.5) caused
major damages in the peach production. 56% of the fruit production area
was affected by frost. It is estimated that 85% of the peach production in the
Mendoza region was lost. Because less fruit was produced, 600,000 less work
days were needed to process the harvest between November 2013 and March
2014, resulting in a reduction in work force of 10,600 people. Across the
Mendoza region, frost caused a loss of revenue of 950 million Argentine pe-
sos, roughly 100 million USD (at that time) in the peach business alone [44],
[46]).
A frost event happens when the temperature is so low that the crops can-

not recover their tissue or internal structure from the effects of water freezing
inside or outside the plant. For the peach production, a critical period is when
the trees are in bloom and fruit sets (August/September in Mendoza), during
which the temperature needs to be kept above –3 C. Even a few hours below
that temperature causes flowers to fall, preventing fruit to grow.
Because of the huge economic impact, countermeasures exist, but are ex-

pensive. Today, virtually all industrial peach orchards are equippedwith ame-
teorological station that monitors temperature and humidity. Farmers need to
deal with false positives (the countermeasure is applied, but there is no frost
event) and false negatives (the meteorological station does not pick up a frost
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event happening in some part of the orchard).
What is needed is a dense real-time monitoring solution deployed in the

orchard, feeding a frost prediction model. Having a meteorological station
does not provide the measurement density needed. Frost events are micro-
climatic: cold and hot air have a different density, wind blows irregularly
between the trees, so different parts of the orchard are affected very differently
by frost. What we build is a system with a large number of sensing points
(air temperature, air relative humidity, soil moisture, soil temperature), at
different elevations/depths, throughout the orchard.
Low-power wireless mesh networking technology has evolved signifi-

cantly over recent years. With this technology, a node is the size of a deck of
cards, is self-contained and battery-powered. When switched on, nodes form
a multi-hop low-power wireless network, automatically. Off-the-shelf com-
mercial solutions are available today that offer >99.999% end-to-end data
reliability and over a decade of battery lifetime.
The goal of the PEACH project is to increase the predictability of frost

events in peach orchards by using dense monitoring provided by low-power
wireless mesh networking technology.

4.3.2 Related applications

Active frost control is possible [47]. One option is to position heaters across
the orchard, but the fuel used is a pollutant and is expensive. Over-plant
sprinklers can also be used (latent heat is produced when the water from the
sprinklers freezes), but installation cost is high and a lot of water is needed.
Another option is to mix the warmer air above the orchard with the cooler
air at ground level, causing an increase in temperature around the flowers.
This can be done by vertical wind towers, or even flying a helicopter above
the orchard. Regardless of the method used, it is expensive. It is therefore
essential to be able to accurately predict the frost event.
To predict a frost event, one needs to know the dew point. The problem is

that the dew point depends on the relative humidity: at lower relative humid-
ity, air temperature drops faster and to lower values. To predict the minimum
temperatures – hence a frost event – one needs to observe the temperature at
several locations across an orchard, at different elevations, since winds and
foliage cause micro-climatic differences in the orchard. Using a single mete-
orological station in the orchard is not enough; the temperature and humidity
it measures are not representative of the entire orchard.
To accurately characterize and predict frost events, what is needed are air

temperature and relative humidity measurements at different locations across
the orchard, at different elevations, as well as soil temperature and soil mois-
ture at different depths. This data can then feed to a machine-learning algo-
rithm to determine which features are important to predict frost events, and
eventually build an early warning system.
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Figure 4.6: The wireless motes deployed in the peach orchard in Mendoza,
Argentina.

4.3.3 Deployment

The goal of the PEACH project is to retrieve data from different types of
sensors deployed densely across a peach orchard. Because heavy machinery
is used throughout the field, using wires to interconnect the sensors is not an
option. We instead use a low-power wireless mesh network. Our requirement
is that the security and reliability of this wireless network must be equivalent
to that of a wired network. Our target battery lifetime for the devices is “at
least a year”, the natural grow cycle of peaches.
This project is not a low-power wireless project, i.e. we need a techni-

cal solution that “just works”. While very interesting research can be done
with academic projects [48], [49] (there are many in the research field of
low-power wireless), we need a product that is thoroughly tested, proven and
commercially available off-the-shelf. We have selected SmartMesh IP, which
satisfies our requirements.
We deployed a SmartMesh IP network in a peach orchard of 204 trees,

planted in a 50 m × 100 m area (shown in Fig. 4.7). The low-power wireless
network is composed of 18 sensor motes9 uniformly distributed between the
peach trees, and 3 relay motes to connect the orchard to the gateway some
300 m away. Each mote is placed in a water-tight box that is fixed on a 4 m
high pole (see Fig. 4.6).

92 motes malfunctioned and are not present on the map.
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Figure 4.7: Areal view of the sensor network deployed in the orchard near
Mendoza, Argentina.

4.3.4 Hardware Integration

The PEACH network is deployed in an orchard for 2 years, and is exposed to
direct sunlight, freezing temperatures, dust and rain. All motes and manager
are therefore protected by an enclosure with Internal Protection 65 (IP65)
rating10.
Fig. 4.8a shows the manager enclosure with the lid open. It con-

tains the DC2274 board, a Raspberry Pi single-board computer running the
solmanager software (see Section 4.2.1), and the power adapter for that
board. The DC2274 is powered through USB. A water-tight pass-through
opening in the manager enclosure is used to pass power and Ethernet cables.
Fig. 4.8b shows a mote in its enclosure. The mote is powered by a pair

of Energizer L-91 AA batteries with a charge of 2821 mAh11. The mote,
antenna and battery are glued in place using silicone. No opening is present
in the mote enclosures.

4.3.5 Performance of the Network

Table 4.1 summarizes the network performance after 5 days and 6 hours of
operation. After approx. 24 hours of operation, a SmartMesh IP network
reaches “steady state”, so we expect the numbers presented in this section to
be representative of the lifetime of the network.
The network reliability indicates the portion of the packets generated by

the motes that reach their final destination, in our case the SmartMesh IP
manager. A packet is said “lost” when it never reaches its destination. The
motes in the PEACH deployment have generated 243,089 packets, all were
10 Totally dust tight and protection against low pressure water jets in all directions.
11 The charge mentioned in the datasheet of the Energizer L-91 is 3135mAh, but we assume

a 10% derated charge to account for shelf-life.
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(a) Manager (b) Mote

Figure 4.8: The devices encased in 20 cm × 15 cm IP65 enclosures.

reliability 100% (Arrived/Lost: 243089/0)
stability 93% (Transmit/Fails: 1462435/96923)
latency 800 ms

Table 4.1: Key network performance indicators.
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successfully received by the SmartMesh IP manager, in part after multiple
hops, yielding 100% reliability.
The wireless medium is unreliable in nature, and it is common that a link-

layer frame sent by mote A is not received by mote B, forcing A to re-transmit.
The network stability represents the average PDR over the link. The motes
in the PEACH deployment have sent 1,462,435 data-link frames, 96,923 un-
successfully (i.e. no link-layer acknowledgment was received), yielding a net-
work stability of 93%. This number is very high, indicating that the nodes
are deployed close enough in an environment with little external interference
and multi-path fading.
A SmartMesh IP network is fully synchronized. A mote generating a data

packet adds a timestamp to its data so that what is written in the database
is the time the sensor is sampled (not the time it reaches the database). As
a side effect, it is possible, at the SmartMesh IP manager, to calculate how
long the packet has been traveling in the multi-hop wireless mesh network.
This is called average network latency. In the PEACH deployment, it takes
on average 800 ms for a sensor measurement to travel from the mote that
generated it to the SmartMesh IP manager, over the multi-hop low-power
wireless mesh network. This latency is very small compared to the variation
speed of the signal we are observing (temperature).

4.3.6 Performance of the Motes

The health reports generated by each mote contain a wealth of information.
Table 4.2 contains a summary of the most important information for assessing
the performance of the network.
Each line in Table 4.2 is indexed by the unique identifier of the mote, its

“MAC address”. This is a unique 8-byte number – called EUI64 – written
into the mote at manufacturing time. The EUI64 of all motes starts with
00-17-0d-00-00; in the interest of space, this 5-byte prefix does not appear
in Table 4.2.
The Uptime is the time the mote has been operational, and is of format

day-hour:min:sec. The 3 first motes were deployed 2 days before the others;
it is hence normal to have a 2-day gap in their uptime.
Each node reports the number of neighbors it currently sees. This is

shown in column “Neig.” in Table 4.2. The number of neighbors indicates
the density of the deployment. Dust Networks recommends for each mote to
ideally have 3 or more neighbors. This is not the case for 10 of the motes in
the PEACH deployment. We expect that, when swapping the DC9003 boards
(chip antenna) for boards with external antenna, the density will increase.
All communication in a SmartMesh IP network is orchestrated by a com-

munication schedule. The column Cells in Table 4.2 indicates the number of
cells in the schedule the mote is active in (transmitting or receiving). That
number is directly proportional to the energy it consumes. We analyze the
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MAC Uptime Neig. Cells Hops Latency Recv’d Lost Relia. Charge Lifetime
60-3C-D9⋆ 5-06:57:07 2 40 N.A. N.A. N.A. N.A. N.A. N.A. N.A.
B0-00-AA 5-06:56:06 3 20 1.0 170 ms 16450 0 100% 33263 mC 4.42 years
B0-00-CC 5-06:54:55 5 18 2.7 280 ms 16657 0 100% 28396 mC 5.18 years
58-32-36 3-09:29:11 10 21 3.0 420 ms 10788 0 100% 27546 mC 3.43 years
B0-00-BE 3-10:17:42 6 15 2.8 670 ms 10560 0 100% 15147 mC 6.30 years
60-06-0F 3-09:01:05 4 11 3.5 1020 ms 10386 0 100% 15759 mC 5.96 years
B0-00-87 3-10:06:30 6 37 1.2 120 ms 10628 0 100% 20038 mC 4.75 years
3F-F8-20 3-09:21:15 2 9 3.6 1180 ms 10428 0 100% 11907 mC 7.92 years
30-60-EF 3-09:16:26 9 24 2.7 340 ms 10551 0 100% 22471 mC 4.19 years
60-03-82 3-09:11:22 4 11 3.5 740 ms 10409 0 100% 15977 mC 5.89 years
60-08-D5 3-09:04:03 2 9 3.5 810 ms 10389 0 100% 11173 mC 8.41 years
3F-FE-88 3-08:56:18 3 10 3.5 1210 ms 10384 0 100% 12924 mC 7.26 years
3F-FE-87 3-08:51:28 2 9 4.2 1440 ms 10372 0 100% 11900 mC 7.88 years
60-05-5F 3-08:45:53 2 9 4.4 1860 ms 10346 0 100% 10867 mC 8.61 years
60-06-27 3-08:45:09 4 12 3.6 770 ms 10368 0 100% 14629 mC 6.40 years
60-05-69 3-08:40:17 2 9 3.6 1100 ms 10334 0 100% 10915 mC 8.57 years
60-01-F8 3-08:37:02 3 10 3.6 640 ms 10322 0 100% 11292 mC 8.28 years
60-02-4B 3-08:31:59 2 9 4.3 1520 ms 10326 0 100% 13186 mC 7.08 years
60-02-1B 3-08:28:39 6 14 3.5 650 ms 10301 0 100% 14700 mC 6.35 years
60-05-AB 3-08:22:30 3 10 4.0 920 ms 10298 0 100% 12808 mC 7.27 years
60-06-EC 3-08:21:17 2 9 4.4 1740 ms 10289 0 100% 10964 mC 8.50 years
38-0F-66 3-08:03:38 2 9 4.4 1430 ms 10254 0 100% 10781 mC 8.61 years
60-05-78 3-08:00:26 2 9 3.6 950 ms 10247 0 100% 10710 mC 8.66 years

⋆ the manager

Table 4.2: Key mote performance indicators.
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energy consumption more finely below.
Each packet sent through the low-power SmartMesh IP mesh network

contains a hop count field12. This allows the SmartMesh IP manager to know
how many hops this packet took to go from its source to the manager. The
value printed in the Hops field is an average calculated over the packets re-
ceived so far. As can be seen from Table 4.2, the closest (resp. furthest) mote
is 1.0 (resp. 4.4) hops away from the manager. Dust Network recommends
to keep that number below 8 for efficiency; a condition we satisfy.
The Latency column shows the average latency for a packet to go from

that node to the manager. The average value of all motes is the network
latency shown in Table 4.1. As can be seen, the latency increases with the
number of hops.
The overall network reliability is shown in Table 4.1. Table 4.2 shows

the same information, but broken up per mote. Column “Recv’d” shows the
number of packets generated by that mote that have reached the manager.
Column “Lost” shows the number of packets lost en route. No packets are
lost, the Reliability for each node is 100%.
In their health reports, motes indicate the amount of Charge drawn so far

from their battery, in mC. Knowing their uptime and the theoretical charge
of their battery13, we calculate the expected Lifetime of each mote. The ex-
pected lifetime varies between 3.43 years and 8.66 years, depending on the
type of motes (a long-range mote consumes more than a DC9003) and its ac-
tivity (a mote with more cells consumes more). These numbers are well above
the targeted 1 year of lifetime.

4.3.7 After 3 Months

In 3 months of operation, we gathered over 4 million temperature values, and
more than 350,000 network statistics [36].
Table 4.3 summarizes the number of events and HRs gathered during the

3 month period. In the remainder of this section, we detail the meaning of
each of the statistics.

4.3.8 Intuitive Results

Previous publications [2], [3], [35], [50] underline the performance of TSCH
networks in general, and SmartMesh IP in particular. Standardization work
in the IETF 6TiSCH working group14 around TSCH networks further illus-
trates the move of the industry towards this type of networking technology.
So while we expect good performance from the network, we verify that this
is indeed the case. We start by looking at two physical-layer metrics: RSSI
12 Equivalent to the “hop limit” field in the IPv6 header.
13We assume 2821 mAh, per Section 4.3.4 of charge, or 101,556,000 mC.
14 https://tools.ietf.org/wg/6tisch/charters
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type number
mote_create 133
path_create 4,098
path_delete 3,653
HRDevice 132,758
HRDiscovered 87,737
HRNeighbors 140,897

Table 4.3: The number of statistics collected over the 3 month period.

vs Distance and PDR vs. RSSI. While these have no dependency on TSCH
(the type of medium access), they allow us to verify the overall connectivity
in the network. We then look at key performance indicators of SmartMesh IP
networks: end-to-end reliability and network lifetime.

RSSI vs. Distance

The Friis transmissionmodel [51] gives the relationship between the Received
Signal Strength (RSSI)15 in free space. While it does not apply directly to our
Smart Agriculture outdoor deployment, we note in Fig. 4.9 that the individual
RSSI values are located between the Friis model, and the Friis model offset
by −40 dB. This corroborates the results from [52].

Wireless Waterfall

Due to the inherent physical unreliability of the radio medium, it is impos-
sible to know if a future transmission will be successful or not. The Packet
Delivery Ratio (PDR) is the portion of successful link-layer transmissions
over the total number of link-layer transmission attempts. A failed attempt
means that the link-layer frame needs to be re-transmitted; it does not mean
the packet is lost. Over a period of 3 months, 140,897 HRNeighbors mes-
sages are collected. These contain, for a given node, the number of link-layer
transmission attempts and successes to each of its neighbors. We remove the
portion of neighbors with no transmission and keep only the DC9003 motes,
resulting in a total of 88,284 messages (approx. 37% from the total number
of HRNeighbors).
Fig. 4.10 plots the PDR and the RSSI of these 125,103 messages. For

readability, we also plot the average/deviation of the data for a given RSSI
value. Because of its shape, this is known as the “waterfall plot”.
15 Strictly speaking, the RSSI is the Received Signal Strength Indicator, a value returned

by radio chip. Because of its prevalence in low-power wireless literature, we use it RSS and
RSSI interchangeably.
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Figure 4.9: RSSI measurements are roughly located between the Friis model
and the Friis model shifted by −40 dB.

Overall, above −85 dBm, the PDR of the link is very good (>95%). Be-
low that value, the PDR rapidly degrades, indicating that, on these links, fre-
quent retransmissions happen. The device manufacturer documentation [53]
indicates that a path is considered as “bad” when:

• RSSI>−80 dBm and PDR<50%

• RSSI>−70 dBm and PDR<70%

This is not the case here.
A waterfall plot either shifted right with very few paths below −70 dBm,

or with a non-constantly decreasing curve would be an example of
interference-prone environment. This is not the case in Fig. 4.10, meaning
that the SmartMesh IP network is not experiencing high levels of interfer-
ences from co-located wireless devices.

End-to-End Reliability

We expect the SmartMesh IP network to offer wire-like reliability. Table 4.4
confirms that this is the case. It presents statistics gathered over the 15-25
July 2016 period.

59



Figure 4.10: The PDR/RSSI “waterfall” plot.

reliability 100% (Arrived/Lost: 693844/0)
average PDR 95% (Transmit/Fails: 4405569/258778)
latency 700 msec

Table 4.4: The overall network performance in the 15-25 July 2016 period.
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It shows that, as none of the 693,844 packets generated in the network
was lost, the end-to-end reliability is 100%. The average PDR over all the
links is very high (95%), indicating that the nodes are deployed close enough
to one another. Finally, the average latency over all nodes is 700 ms. These
results are very similar to the very initial results presented in [50], indicating
no degradation in performance of the SmartMesh IP network over the 3 month
operation.

Network Lifetime

Each device is powered by a pair of Energizer L-91 AA batteries. These
contain a nominal 3134 mAh of charge, or 2821 mAh when accounting for
a 10% decrease due to manufacturing differences. A SmartMesh IP node
contains a “charge accounting” feature in which it tracks the amount of charge
is has been drawing from the battery. The mote reports this number every
15 min as a field in its HRDevice health report. This number allows us to
predict the lifetime of the device.
Table 4.5 shows charge consumed by the 16 motes inside the orchard

over the 3 month period (87 days), as well as the portion of the battery this
represents. Assuming the same energy consumption rate, we can extrapolate
the lifetime. The node with the longest lifetime is 60-02-4b. From Fig. 4.7,
we can see that this is a leaf node. Since it does not have to relay data from
any children, it is normal that this node consumes very little. The node with
the shortest lifetime is 60-03-82 and has 5 years of lifetime. This shows the
ultra-low power consumption of the SmartMesh IP network.

4.3.9 Lessons Learned

Although frost events may appear harmless, they yield enormous losses in
fruit production, for example peaches. The most important lesson learned is
that IoT is the right technology for this precision agriculture application, and
that using it makes a huge monetary difference. Moreover, as seen through-
out this project, IoT technology is ready for this type of application. We
strongly believe that the combination of technologies demonstrated through
the PEACH project is the right one for a large number of “Smart Agricul-
ture” applications. We hope that the present chapter can guide end users put
together the right technical solution.
The main outcome of this project is a perfectly working end-to-end low-

power wireless distributed sensor system, built exclusively from commercial
off-the-shelf components. Deploying such a network took only a couple of
hours, and putting all the hardware and software together only a couple of
days. The resulting network is 100% reliable, offers latency below 2 s, and
3+ years of battery lifetime.
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MAC address charge consumed lifetime
30-60-ef 227,847 C (2.2% battery) 10.8 years
38-0f-66 252,356 C (2.5% battery) 9.8 years
3f-f8-20 291,312 C (2.9% battery) 8.4 years
3f-fe-87 392,606 C (3.9% battery) 6.3 years
3f-fe-88 458,459 C (4.5% battery) 5.3 years
58-32-36 327,634 C (3.2% battery) 7.5 years
60-01-f8 252,454 C (2.5% battery) 9.8 years
60-02-1b 222,253 C (2.2% battery) 10.1 years
60-02-4b 146,068 C (1.4% battery) 16.8 years
60-03-82 494,841 C (4.9% battery) 5.0 years
60-05-5f 274,502 C (2.7% battery) 9.0 years
60-05-69 437,136 C (4.3% battery) 5.7 years
60-05-78 304,145 C (3.0% battery) 8.1 years
60-05-ab 284,764 C (2.8% battery) 8.7 years
60-06-27 321,879 C (3.2% battery) 7.7 years
60-08-d5 263,120 C (2.6% battery) 9.3 years

Table 4.5: Per-node power consumption and associated expected lifetime
when powered by a pair of AA batteries.

In 2006, Langendoen et al. wrote a foundational (and “brutally honest”)
paper listing everything that went wrong in a precision agriculture deploy-
ment similar to the PEACH project [54]. This included board failure, bat-
teries running out, sub-optimal software tracking, etc. So what went right
this time, about a decade later? The teams in both cases are of the same cal-
iber, so the wrong conclusion would be to blame/praise the people involved.
What has really happened is that the field of low-power wireless has evolved
substantially, and has radically changed in that decade.
In 2006, researchers bought boards and programmed them from scratch

with academic open-source projects. In 2016, end users buy complete work-
ing systems, including all the hardware and software.
In 2006, the protocol stack implemented was a combination of the most

promising research papers from recent years. In 2016, the protocol stack
implemented is entirely standards-based, with standards matured over years
in a commercial/industrial mind-set.
In 2006, every new deployment was pushing the frontier. In 2016, tens

of thousands of these network have been running for years in the most critical
applications.
To put it plainly, Wireless Sensor Network/Internet of Things tech-

nology has successfully transitioned from the academic to the commercial
world.
The result is a necessary redefinition of the work of the academic commu-
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nity. The era of building everything from scratch is over. This is in particular
true for software implementations; a small research group is simply no match
for the heavy lifting full-time development teams do. In our opinion, the en-
ergy of small and agile research teams should be spent on (1) ensuring that
clever ideas transition to the commercial world through standardization and
(2) be very well connected to the commercial world, for example by contin-
uously surveying existing products/technologies. As for point (2) above, we
encourage journal editors and conference program chairs to include “lessons
learned from practical deployments” onto the topics of interest.

4.4 SnowHow

....

A snow-pack monitoring system in the Sierra Nevada (California). We
deployed 27 devices in a 100km2 area to measure snow level, solar
radiation and other environmental indicators, in the mountain.

4.4.1 Context

Between 2012 and 2015, California suffered from the highest water drought
since recordings started in this state. Up to 2/3 of its water resources are
coming from the Sierra Nevada snowpack. Understanding the effect of the
droughts on the mountain snowpack is crucial.
Until recently, snow melting and water displacement measurements were

done by hand. This manual process is costly and not frequent enough to reflect
the environment changes. There was a need for a dense (i.e. in time and space)
monitoring solution to capture the spacial variability of the water.
The SnowHow project started in 2009 with the goal of monitoring the

Sierra Nevada snowpack without human intervention. At the time of writ-
ing, 21 low-power wireless networks are deployed in the Sierra Nevada.
They measure snow level, solar radiation, soil moisture, soil tempera-
ture, air temperature and air relative humidity in different locations. The
SnowHow project currently includes the American River Hydrological Ob-
servatory (ARHO) project [55] with 985 sensors, and the Southern Sierra
project [56] with 300 sensors [57].

4.4.2 Related Work

Bogena et al. highlight the potential of low-power wireless for measuring soil
water content variability [58], Pohl et al. do a similar analysis for understand-
ing the snow cover [59]. Rice and Bales show how embedded sensors can be
used to evaluate the water content of snow [60] and Qian et al. propose a sys-
tem using short range nodes and cellular phones to capture orchard data [61].
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Figure 4.11: The setup of the SnowHow demonstration, including the motes,
the manager, the sensors, and the web interface of the back-end system.

Simoni et al. use wireless sensor networks to model the hydrologic response
of an alpine watershed [62]. Li et al. summarize lessons learned from deploy-
ing a wireless sensor network for soil monitoring [63]. Gutierrez et al. use
low-power wireless to monitor water and automate irrigation [64]. Moreover,
Ojha et al. [65] survey the state of the art of wireless sensors for agriculture.

4.4.3 Deployment

Each network of the ARHO and Southern Sierra deployments shares the same
architecture. Sensor stations are placed in hydrologically-significant loca-
tions. Repeater nodes are added to ensure good connectivity. Sensor data
is relayed to the manager node, which is connected to a Linux computer. This
computer connects to the Internet through a satellite or cellular link. Seconds
after the generated data is produced in the deployment site, it appears in the
database and can be visualized online.
At the heart of each sensor station is a NeoMote, a low-power wireless

platform commercialized byMetronome Systems, a UCBerkeley spin-off com-
pany. The NeoMote is a generic sensor platform, which features a Cypress
PSoC micro-controller and a SmartMesh IP low-power wireless mote, in a
hardened weather-proof design. The NeoMotes are using the SmartMesh IP
technology to form low-power wireless networks with >99.999% end-to-end
reliability and a over decade of battery lifetime [35].
I participated in one of the AHRO deployment in the Southern Sierra Crit-
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Figure 4.12: A cluster of 5 sensor stations in the the Southern Sierra CZO
deployment. Other similar cluster make up this approximately 2 km long
deployment.

ical Zone Observatory (CZO)16. CZO is a program founded by the USA Na-
tional Science Foundation (NSF) to study how components interact at the
Earth’s surface and support life. CZO allows researchers (e.g. hydrologists
and ecologists) to collaborate and improve our understanding of natural pro-
cesses such as water and nutrient cycling, weathering processes, and forest
function. In the Southern Sierra zone, we deployed 27 nodes in a 100km2

area, half of them equipped with soil sensors, to measure humidity and tem-
perature at different levels and ultrasonic distance sensors to measure the
height of the snowpack.
The deployment zone is composed of areas densely forested, with clear-

ings. The sensor locations were selected in advance to maximize the repre-
sentativity of the measurements so that they can be reused to extrapolate the
data into the rest of the mountain.
Sensors include soil temperature and moisture, air temperature and hu-

midity, wind speed, solar radiation and distance to ground.

4.4.4 Performance of the Network

While the deployment of this site went well, we were not able to connect it to
the Internet during the time of this thesis and get the data due to a series of
events: two forest fires and a broken cellular antenna. Table 4.6 depicts the
network performance results obtained after 20 hours of operation.
16https://criticalzone.org
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Figure 4.13: The map of the Southern Sierra CZO deployment.

reliability 99.97% (Arrived/Lost: 59552/15)
stability 83% (Transmit/Fails: 538879/89337)
latency 1000 ms

Table 4.6: Southern Sierra CZO key network performance indicators after
20 hours.

4.4.5 Lessons Learned

While we were not able to analyze network statistics, we performed range
experiments while deploying the network and were able to better understand
the radio propagation in a forest environment. The main rule to follow is:
“Line-of-Sight” (LoS). As the sensor location is fixed, we needed to build
a network of relays to link the sensor nodes to the gateway. Our first idea
was to reduce the number of hops and place the relays to form short distance
paths to the gateway. We realized that building short paths through dense
forest was greatly reducing the transmission range and creating links with
poor quality. We finally built our network maximizing LoS links by placing
relays in forest clearings and created long-but-solid paths. Those resulted
guided the selection of the parameters for a machine-learning-based repeater
placement algorithm [66].
Meeting with other teams who had experience in real-world deployments

also taught me things I would never learn in an office environment. Those
lessons are more hardware related and anecdotal but I think deserve to be
noted.
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One day, one the network was not reachable anymore, as it was in summer
my colleagues were able to go and investigate the situation. A massive tree
felt on the manager. This risk is real and should be taken into account when
building dependable systems.
Another day, the manager was showing an unusual behavior (poor link

quality with its child nodes, power supply was going up and down). The wind
was strong enough to bend the aluminum pole that was holding both the solar
panel and the antenna. Wind-exposed base stations are now grounded with
cables.
Before deploying sensor networks into wildlife areas, I did not know bears

and rodents liked to chew rubber insulated wire. All cables we deploy are now
Kevlar-reinforced.
Last but not least, and there is not much you can do about it, hunters

sometimes use solar panels for target practice.

4.5 EvaLab

....
A Smart Building monitoring system in Paris (France).

4.5.1 Context

This deployment might not be considered as a real-world deployment as it
was setup to measure network performance and not to answer a real IoT
application. However, we consider it as realistic as it is placed conditions
that are far from ideal: external radio interferences (WiFi and Bluetooth),
reflecting object (metallic ceiling), and propagation variation (people moving).
We will see how we select and quantify those characteristics in Chapter 5. In
this section we present the results obtained from the EvaLab agains the one
obtained from the PEACH deployment.

4.5.2 Related Work

Smart buildings save energy by automating controls and optimizing systems.
This adds value to leasing and sales of properties [67]. Smart Building appli-
cations face external interference, as the low-power wireless mesh networks
are co-located with other technologies sharing the same frequency bands. For
example, SmartMesh IP operates in the same 2.4 GHz band as WiFi and
Bluetooth. A solution deployed in a building must be resilient to external in-
terference.
Deploying IoT-based solutions in real-world application is complex, and

involves elements well beyond the low-power wireless network. Barrenetxea
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(a) outdoors (b) indoors

Figure 4.14: Devices deployed in the Inria-Paris offices for the EvaLab de-
ployment.

et al. [68] survey experimental studies and discuss best practices from system
conception to data analysis.

4.5.3 Deployment

The EvaLab deployment is done across a single 40 m × 20 m office build-
ing floor. We deployed the EvaLab network two times. The first time with
14 motes placed on the ceiling of one floor of the building, and 3 additional
motes placed right outside the building, on lamp posts (Fig. 4.15). The
14 motes inside are fixed to the ceiling using magnets; the 3 motes outside
are placed in a water-tight boxes (Fig. 4.14). Thanks to the “peel-and-stick”
nature of this low-power wireless technology, deployment takes less than an
hour. The second time we deployed the EvaLab network, 22 were placed in-
door only, also fixed on the ceiling with magnets. The study in this chapter
only concern the 17 nodes deployment. We use the 22 nodes deployment in
the analysis presented in Chapter 5.
About 200 people work in that building, many of them using WiFi exten-

sively. Nodes are not attached to external sensors, each node reports temper-
ature data every 30 s.

4.5.4 Intuitive Results

As we did for the PEACH results, we start by looking at the physical-layer
metrics and then study the key performance estimators of the networks: end-
to-end reliability and network lifetime.
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Figure 4.15: The map of the first EvaLab deployment.
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Figure 4.16: We observe that the RSSI measurements are roughly located
between the Friis model and the Friis model shifted by −40 dB.

RSSI vs. Distance

The Friis transmission model [51] gives the relationship between the Re-
ceived Signal Strength (RSSI)17 in free space. While the Friis transmission
model does not apply directly to our real-world deployment18, we observe
in Fig. 4.16 that the individual RSSI values are located between the Friis
model, and the Friis model offset by −40 dB. This corroborates the results
from [52]. Variability is lower on the Smart Agriculture deployment, given
that there is almost no environmental change, compared to what happens on
the Smart Building deployment where people move around creating rapid fad-
ing changes.
17 Strictly speaking, the RSSI is the Received Signal Strength Indicator, a value returned

by the radio chip. Because of its prevalence in low-power wireless literature, we use RSS and
RSSI interchangeably.
18a Log-Normal model would be more appropriate for indoor environment
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(a) Smart Agriculture (b) Smart Building

Figure 4.17: The PDR/RSSI “waterfall” plot. The Smart Building plot is
shifted right compared to the Smart Agriculture plot, indicating an environ-
ment where external interference is present.

Wireless Waterfall

Due to the inherent physical unreliability of the radio medium, it is impossible
to know if a future transmission will succeed or not. The Packet Delivery
Ratio (PDR) is the portion of successful link-layer transmissions over the to-
tal number of link-layer transmission attempts. A failed attempt means that
the link-layer frame needs to be re-transmitted; this does not mean the packet
is lost. Over a period of 3 months, 140,897 HRNeighbors messages are col-
lected in the Smart Agriculture deployment and 128,072 in the Smart Build-
ing deployment. These contain, for a given node, the number of link-layer
transmission attempts and successes to each of its neighbors. We remove the
portion of neighbors with no transmission and keep only the DC9003 motes,
resulting in a total of 69,643 messages (approx. 49% from the total number
of HRNeighbors) for the Smart Agriculture deployment and a total of 93,135
messages (approx. 73%) for the Smart Building deployment.
Fig. 4.17 plots the PDR and the RSSI of these 69,643 and 93,135 mes-

sages. For readability, we also plot the average/deviation of the data for a
given RSSI value. Because of its shape, we name it the “waterfall plot”.
For the Smart Agriculture deployment, the average PDR of the links is

very good (>95%) above -85 dBm. Below that value, the PDR rapidly de-
grades, indicating that, on these links, frequent retransmissions happen. For
the Smart Building deployment, the PDR starts to degrade at -60 dBm. Note
that, if the network were using a non-schedule MAC layer (e.g. ZigBee), the
PDR for the same RSSI would be lower than in Fig. 4.17 because of colli-
sions. The device manufacturer documentation [53] indicates that a path is
considered as “bad” when:

• RSSI>-80 dBm and PDR< 50%

• RSSI>-70 dBm and PDR< 70%
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Smart Agriculture Smart Building
reliability 100% 100%
(Arrived/Lost) (693,844 / 0) (431,193 / 0)
average PDR 95% 87%
(Transmit/Fails) (4,405,569 / 258,778) (19,807,535 / 2,488,149)
latency 700 msec not measured.

Table 4.7: The overall network performance in the 15-25 July 2016 period
(Smart Agriculture) and the 12 Nov. 2016 - 12 Feb. 2017 period (Smart
Building).

This is not the case in any of the two deployments.
The waterfall plot allows us to assess the level of external interference.

In the presence of external interference, the waterfall plot is either shifted to
the right with very few paths below -70 dBm, or does no constantly increase
with RSSI.
The waterfall plot in the Smart Agriculture deployment (Fig. 4.17a) is

“clean”, meaning that the SmartMesh IP network is not experiencing high
levels of external interference from co-located wireless devices. Especially
when comparing both, the waterfall plot in the Smart Building deployment
is shifted to the right (Fig. 4.17a), indicating the SmartMesh IP network
is experiencing external interference. This is expected, as several hundred
WiFi devices and tens of WiFi access points are operating in the building on
IEEE802.11 2.4 GHz channels 1, 6 and 11.
A fourth type of Health Report allows us to measure the link quality per

channel. The HRExtended are generated by each mote every 20 minutes and
indicate the number of transmission attempts and link-layer retransmissions
for each frequency, allowing us to calculate the PDR per channel for each
mote. Fig. 4.18 shows the average PDR collected over a 24-hour period on a
business day. During that period, 1402 HRExtended were collected. We can
clearly observe the PDR drop of the IEEE802.15.4 links that share the same
channel bands as IEEE802.11.
Yet, despite the high external interference, the Smart Building deployment

exhibits 100% end-to-end reliability (as detailed in Section 4.5.4), underlying
the resiliency of SmartMesh IP to external interference.

End-to-End Reliability

We expect the SmartMesh IP network to offer wire-like reliability. Table 4.7
confirms that this is the case. It presents statistics gathered over the 15-
25 July 2016 period in the Smart Agriculture deployment, and over the
12 November 2016 - 12 February 2017 period in the Smart Building de-
ployment. Both sensor data and network statistics are taken into account.

71



Figure 4.18: In the Smart Building deployment, external interference from
nearby WiFi devices causes some retries (the PDR is lower) without impact-
ing end-to-end reliability which stays at 100% (see Section 4.5.4).

It shows that, as none of the 693,844 and 431,193 packets generated
in the networks was lost, the end-to-end reliability is 100%. The average
PDR over all links is very high (95% and 87%), indicating that the nodes are
deployed close enough to one another. Finally, the average latency over all
nodes is 700ms for the Smart Agriculture deployment. These results are very
similar to the very initial results presented in [50], indicating no degradation
in performance of the SmartMesh IP network over the 3 month periods.

Network Lifetime

Each device is powered by a pair of Energizer L-91 AA batteries19. These
contain a nominal 3134 mAh of charge, or 2821 mAh when accounting for
a 10% decrease due to manufacturing differences. A SmartMesh IP node
contains a “charge accounting” feature in which it tracks the amount of charge
it has been drawing from the battery. Each mote reports this number every
15 min as a field in its HRDevice health report. This number allows us to
predict the lifetime of the device.
Table 4.8 shows charge consumed by the motes over the two 3 month

periods. Assuming a constant energy consumption rate, we extrapolate the
lifetime. The nodes with the longest lifetime (8 years) are all leaf nodes as we
19http://data.energizer.com/pdfs/l91.pdf
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MAC charge lifetime
consumed⋆

30-60-ef 695 C 4 years
38-0f-66 461 C 6 years
3f-f8-20 380 C 8 years
3f-fe-87 549 C 5 years
3f-fe-88 718 C 4 years
58-32-36 311 C 7 years
60-01-f8 387 C 8 years
60-02-1b 371 C 8 years
60-02-4b 406 C 7 years
60-03-82 395 C 8 years
60-05-5f 386 C 8 years
60-05-69 509 C 6 years
60-05-78 364 C 8 years
60-05-ab 381 C 8 years
60-06-27 422 C 7 years
60-08-d5 432 C 7 years

(a) Smart Agriculture

MAC charge lifetime
consumed⋆

38-03-dd 459 C 5 years
58-e9-ca 411 C 6 years
58-e9-cb 407 C 6 years
58-eb-5b 423 C 6 years
58-eb-64 322 C 8 years
58-eb-67 468 C 5 years
58-eb-69 243 C 7 years
58-f3-17 357 C 7 years
58-f4-f8 402 C 6 years
58-f5-23 416 C 6 years
58-f5-3c 412 C 6 years
58-f5-58 387 C 6 years
58-f8-63 198 C 9 years
58-f8-78 233 C 7 years
58-f8-8f 439 C 6 years
58-f9-c4 325 C 8 years

(b) Smart Building
⋆ over the 3.5 month and 3 month periods, respectively.

Table 4.8: Per-node charge consumed and associated expected lifetime when
powered by a pair of AA batteries.

can see from Fig. 4.15. Since they do not have to relay data from any children,
it is expected for these motes to consume the least. The mote with the shortest
lifetime is 30-60-ef, with a 4 year battery lifetime. This is expected, as this
mote relays an important amount of data. This confirms the ultra-low power
consumption nature of the SmartMesh IP network.

4.5.5 Not so Intuitive Results

Results from Section 4.5.4 are “intuitive” in that they corroborate previous
measurements [50] or confirm theoretical/lab results [2], [3], [35]. This
section presents results which we believe go against popular belief. This clas-
sification is necessarily subjective.
We first show that links are, in fact, symmetrical. We then show that,

through the use of TSCH, the low-power wireless topology is, in fact, ex-
tremely stable.
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(a) Smart Agriculture (b) Smart Building

Figure 4.19: The difference in RSSI between the two directions of the wire-
less links with the highest number of exchanged messages. The violin plots
show the distribution of the value and the standard deviation.

Link (A)Symmetry

Motes report the average RSSI value of the packets received from each neigh-
bor in their HRNeighbors health reports. Because the network uses channel
hopping, the reported RSSI values are also averaged over 15 IEEE802.15.4
frequencies [69]. In this section, we use the term “RSSI” to denote the aver-
age RSSI over 15 frequencies.
A common assumption is that links between neighbor low-power wireless

devices are hugely asymmetric. That is, on a link between nodes A and B, A
receives B’s link-layer frames with an RSSI very different from the frames B
receives from A. Numerous routing protocols (often standardized [70]) reuse
that assumption and start with a costly step of filtering out asymmetric links.
We look at the link statistics between 18 June 2016 and 4 July 2016 (16

days) in the Smart Agriculture deployment, and between the 12 November
2016 and 7 February 2017 (87 days) in the Smart Building deployment. The
dataset contains 411,132 HRNeighbors messages received from 14 DC9003
nodes (same hardware). During that period, 21 links are active with at least
250 transmissions for each link. For each of these links, we compute the
difference between the average RSSI in each direction. Results are presented
in Fig. 4.19.
In 99.6% of the cases, the difference does not exceed 7 dB. Looking at

Fig. 4.17, this translates into only a handful of percentage points difference in
PDR. This means the links can be considered symmetric. This result is in-line
with the physical phenomenon that the signal traveling fromA toB undergoes
the same attenuation as that from B to A. This result would not hold if the
neighbor radios had a different transmit power or sensitivity. That being
said, discussions on link (a)symmetry at the routing layer is largely artificial,
as virtually all state-of-the-art medium access control (MAC) protocols uses
link-layer acknowledgments, thereby naturally filtering out asymmetric links.
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Network Stability

Wireless is unreliable in nature. It is normal that somewireless links intercon-
necting motes “come and go”. That is, links that have been performing well
(e.g. PDR>90%) can suddenly disappear (e.g. PDR<10%). Similarly, nodes
that were not able to communicate can suddenly hear one another perfectly.
The question, however, is what time scale is considered. Early academic

work on low-power wireless [33] has looked at the “burstiness” of the wireless
links, i.e. changes over the course of 10-1000’s ms. Some follow-up work has
taken the assumption that wireless links are so unstable that only a reactive
routing approach works. In this section, we infirm this statement by looking
at the stability of the network.
In particular, we look at the path_delete and path_create events.

These are generated each time a node adds/deletes a neighbor to communicate
with, which happens for example when the routing topology changes. The
number of path_delete and path_create events is a direct measurement
of network stability. We remove the nodes that do not respect the deploy-
ment requirement of having at least two parents to associate with (we remove
one node in the Smart Agriculture deployment and three nodes in the Smart
Building one). Due to the lack of second parent, these nodes were producing
over 20 times the amount of messages than all the other nodes combined.
Fig. 4.20 shows the number of path_delete and path_create events per

day, over the 16 day (Smart Agriculture) and 87 day (Smart Building) peri-
ods. For reference, the total number of links in the network is also depicted.
There are less than 5 path_delete or path_create events per day in the
entire Smart Agriculture network, and at most 15 in the Smart Building net-
work. This means that links, once established, remain useful for days/weeks
at a time, and that the network is extremely stable. We attribute the higher
churn in the Smart Building deployment to the presence of significant external
interference.
This stability can largely be attributed to the use of channel hopping.

Changing frequency for each frame is known to efficiently combat multi-path
fading and external interference [2], the two major causes of instability. If
channel hopping were not used, selecting links with high PDR would not be
sufficient as they could be affected by external interference at any time and
become unstable. It does not contradict the findings of [33], it just means that
link-layer retransmissions can efficiently cope with link burstiness, and that
the multi-hop topology can remain very stable.

4.5.6 Conclusion and Lessons Learnt

Weanalyzed the network statistics generated by two low-power wireless mesh
networks deployed in real-world conditions. The first network is deployed in
a peach orchard in Argentina, in a Smart Agriculture scenario. Its 21 motes
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Figure 4.20: Network stability: the number of path_create and
path_delete events generated per day over a 16 day (Smart Agriculture)
and two month (Smart Building) period. The top line shows the total number
of active links.

have produced 369,276 statistic measurements over the course of 3.5 months.
The second network is deployed in an office building in Paris, in a Smart Build-
ing scenario. Its 17 motes have produced 386,929 statistic measurements
over the course of 3 months.
We use a “waterfall” plot to show that the two networks are subject to dif-

ferent amounts of external interference from other wireless devices deployed
in the same area. The SmartMesh IP network delivers its exceptional perfor-
mance, with 0 packets lost out of 693,844 (Smart Agriculture) and 431,193
(Smart Building) received (100% reliable) and 4-8 years of battery lifetime on
a pair of commercial AA batteries. This is representative of the performance
of 6TiSCH technology.
While it is often assumed that wireless links are asymmetric, we show

to the contrary that the difference in RSSI averaged over 15 IEEE802.15.4
channels does not exceed a handful of dB. We show that the network is ex-
tremely stable, with less than 5 links being added or deleted per day in the
Smart Agriculture deployment, at most 15 in the Smart Building deployment.
We attribute this performance to the use of Time Synchronized Channel Hop-
ping (TSCH) technology at the heart of the SmartMesh IP products.
We conclude that SmartMesh IP is a perfectly suitable IoT solution for

Smart Agriculture and Smart Building applications.

4.6 SmartMarina

....

A metering and management solution for marinas, deployed in Agde
(France).
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4.6.1 Context

Marinas are quickly evolving from sailing spots to floating neighborhoods. It
is now common for people to live on their boat year-round, and for boats to be
rented for just a week-end through online platforms. Today, living or staying
on a boat is often cheaper that buying or renting an apartment. Similarly, in
coastal areas, the marina is often the center of the city, so an ideal location
for lodging. As a result, the trend is not going to end any time soon. Today’s
marinas are tomorrow’s smart cities. And as the marina is evolving, so are
the needs.
From a marina management point of view, automatic mooring manage-

ment and electricity/water monitoring allows personnel to free up to welcome
visitors and focus entirely on their well-being. Year-road boat owners and oc-
casional marina visitors now can enjoy new services, from increased mooring
availability to remote monitoring and alerts about the state of their boat.
The combination of embedded micro-controllers, low-power wireless com-

munication and sensors/actuators offers tremendous opportunities for mari-
nas. Off-the-shelf “Internet of Things” technology can now be used to detect
the presence of boats in moorings, track usage of water and electricity on a
per-boat basis, track a boat in real-time as it enters the marina, etc. Because
no wires need to be installed -– neither for power, nor for communication –-
installation can be done in a matter of hours in a peal-and-stick fashion. Pon-
toons can be moved, rearranged or removed, without having to worry about
the smart devices mounted on it.
The goal of the SmartMarina project is to build a system composed of

sensors deployed all over the marina, and advanced software to monitor the
occupation of moorings, and the electricity and water consumption on each
spot. The result is a system that allows more efficient management and new
services.
Today’s boat owners can install a private system on their boat and receive

an alert when something suspicious happens, such as a break-in, a fire or a
leak. But since the owner are most often away from the boat, it is the marina
which needs react. The goal of the SmartMarina project is to place the marina
at the center of the solution.

4.6.2 Related Work

Using IoT for marine-based applications is a recently growing field. One ap-
plication is boat location detection for management or border intrusion [71],
[72]. To the best of our knowledge, no system exist that takes into account
the new trend in the marinas and consider them as floating cities.
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Figure 4.21: A map of the SmartMarina deployment.

4.6.3 Deployment

The 19-node SmartMarina deployment is done as part of a “smart parking for
boats” project at the Cap d’Agde marina, in Southern France20. Nodes are
attached to ultrasonic sensors to detect the presence of boats on the different
moorings. The network is deployed along a 50-boat pier.
External interferences are present as WiFi is deployed across the marina

and used extensively by boat owners.

4.6.4 Results

Table 4.9 lists the key network performance indicators after 5 months of op-
eration. We can see that high reliability of SmartMesh IP is confirmed despite
having a low 70% average link stability.

reliability 99.999% (Arrived/Lost: 3365708/14)
stability 69% (Transmit/Fails: 22515224/6939652)
latency 1400 ms

Table 4.9: The SmartMarina network performance indicators after 5 months
of operation.

20 http://www.smartmarina.org/
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4.6.5 Lessons Learned

Deploying a 19-nodeWSN in a marina took us (a team of 3) less than 3 hours.
We confirm that TSCH-based networks can offer high reliability even in a
marina environment with large objects (i.e. boats) moving around.

4.7 Conclusion

4.7.1 Summary

Table 4.10 summarizes the real-world deployments we worked on and their
corresponding environment.

Deployment #nodes area (m²) Environ. Multipath External Interf.
PEACH 23 11km2 outdoor No No
SnowHow 27 100km2 outdoor No No
EvaLab 17 & 22 800m2 indoor Yes Yes

SmartMarina 19 5km2 outdoor Yes Yes

Table 4.10: A summary of the real-world deployments we worked on.

4.7.2 Lessons Learned

I provide here a non exhaustive list of wrong assumptions I had before de-
ploying real-world networks.

Deployment Related

• it is always easy to move a mote

• it is always easy to add a mote

• a tree will not fall on the base station

• a bear will not eat your wires (rodents neither)

• the wind will never bend an aluminum pole

• a better antenna gain means a better range

• two nodes side by side will always hear each-other

• RSSI indication is sufficient to estimate a link quality

• firmware testing is optional

• you have unlimited cellular data plan

• a cellular access is always available

• radio communication always passes through the windows

• radio communication always passes through a building floor
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Network Related

• a sphere-based propagation model is valid

• the links quality are always asymmetric

• the L3 network paths are very unstable

• reducing a node’s publish-rate below 30 s saves energy (The nodes will
send empty messages to resynchronize any way. The time depends on
the clock drift.)

4.7.3 Challenges & Contributions

In this chapter I presented the challenges we faced when deploying networks
in real-world scenarios. Those challenges are mainly deployment-related and
can be considered as non-relevant from a research point of view. I disagree
with that statement and argue that applicability should be taken more into
account when designing network protocols. I gathered practical insight from
issues I faced when I deployed devices in rough environments. I believe I
would not have fully understood those insights without deploying those net-
works. My contribution is to describe those insights so that unrealistic as-
sumptions can be identified more easily.
I analyzed the data obtained from those deployments and presented sim-

ple performances statistics. While those simple results do not highlight new
scientific issues, I believe they are valuable in the sense that they provide a
practical reminder of what performances are currently achieved by off-the-
shelf products. Those results can act as a reference and help the research
community focusing on problems that are not already solved.
I went further and analyzed the symmetry of the radio links of those net-

works. I showed that, given certain conditions, radio links can be considered
symmetric. I also looked at the network paths stability and showed that, in
some of our networks, paths are very stable.
Finally, to the best of my knowledge, there are no TSCH-based network

connectivity and statistic traces available to the research community. Thank
to those deployments we now have large datasets on top of which we can
study. I believe I gathered the largest real-world TSCH-based dataset avail-
able to the research community.
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Chapter 5

Characterizing Networks

....

In this chapter, we explain how we gathered data from IoT
testbed deployments and compared them with real-world
datasets. We identify the key metrics and behaviors of the
network that we must take into account when developing a
protocol for the IIoT. We look at external interferences,
multipath fading, and their variations over time.

We gathered large network statistic datasets and understood how net-
works behave in real-world environments. However, the datasets we collected
are not dense enough in time and radio frequency to fully grasp what happens
at the MAC level. The SmartMesh IP technology we used in our real-world
deployment produces one full set of statistics per node every 15 min, and each
statistic thus contains an aggregation of the counters and network configura-
tions produced since the previous statistic was sent. To really understand
what happens at the MAC level, we need to know the precise status of the
MAC layer resources at any given time. That includes, for instance, how
many cells are allocated, how many retransmissions are needed to success-
fully transmit a frame, or what contributes most to packet latency. Getting
enough data to answer those questions using a real-world network is impos-
sible as the amount of data we need to collect goes beyond the network traffic
capacity. We thus use deployments dedicated for network data collections,
where each node can communicate both wirelessly – for standard WSN oper-
ation –, and through wires – for debugging and logging information. Those
network are called testbeds.
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5.1 Introduction

Designing a low-power wireless networking protocol typically involves early
back-of-the-envelope analysis, high-level simulation, and experimental eval-
uation to benchmark its performance. After that, the protocol is considered
ready to be deployed in real-world applications. But is it really?

How can one be sure the conditions in the testbed were varied enough that
the protocol was actually tested in real-world conditions? How realistic is a
testbed deployment compared to real-world scenarios?
We focus on connectivity (the characteristics of the wireless links between

nodes) of IEEE802.15.4-based low-power wireless networks and want to (1)
compare the connectivity between testbeds and real-world deployments, and
(2) propose amethodology to verify that the testbed evaluation includes all key
connectivity characteristics seen in the real world. The goal of this method-
ology is to ensure that a protocol that performs well on a testbed also does so
when moving beyond testbeds.
The methodology we adopt is the following. We start by gathering a

large set of connectivity traces on testbeds. Then, we extract from the previ-
ous real-world deployment traces the three main connectivity characteristics:
presence of external interference, level of multi-path fading, and amount of
dynamics in the environment. In the process, we show that some testbeds do
not feature all three characteristics. Finally, we propose a methodology for
ensuring testbed results are realistic and describe the associated tools.
This chapter makes the following contributions:

1. A methodology to collect dense connectivity datasets.

2. Mercator: a tool for collecting dense connectivity datasets in testbeds:
Mercator is fully described in this chapter and the related code is pub-
lished under an open-source license.

3. Eleven connectivity datasets available to the research commu-
nity, from both testbeds and real-world deployments, containing
2,873,156 Packet Delivery Ratio (PDR) measurements gathered over
a cumulative 170,037 mote-hours of operation.

4. A check-list to asses the realism of a (testbed) deployment.

5. The visual “waterfall plot” tool to instantaneously evaluate connectivity
characteristics.

5.2 Related Work

This chapter focuses on the evaluation of protocol proposals. In particular,
on making sure that a protocol that has proven to perform well in a testbed,
also does so when used in real-world applications.
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New protocol proposals typically are evaluated through analysis, simula-
tion, and experimentation. Experimentation is done mostly on testbeds: per-
manent instrumented deployments focused entirely on protocol benchmark-
ing. There is no shortage of open-access testbeds, including Indriya [73],
IoT-lab [74], and Tutornet [75]. Typical testbeds consist of between 50 and
400 nodes deployed in an indoor environment, usually a university laboratory.
Tonneau et al. put together an up-to-date survey of over a dozen open-access
testbeds [76].

Tala et al. list the main characteristics to look at when performing an
experiment on a testbed, including transmission power, type of hardware, and
hardware acceleration [77].
Since each testbed is different, it is important to understand the connectiv-

ity between nodes in a particular site. It is equally important to make sure that
this connectivity has the same key characteristics as real-world deployments.

Papadopoulos et al. study the connectivity in the IoT-LAB Strasbourg
testbed, and show how the shape/structure of the building, WiFi interference,
and time of day impact experimental results [78].

Watteyne et al. perform a similar analysis on IoT-LAB Grenoble, a 350-
node testbed deployed in a 65 m× 30 m office building [79]. Each node trans-
mits 100-frame bursts while all others listen and record received frames. This
process is repeated for all 16 IEEE802.15.4 channels at 2.4 GHz. The au-
thors quantify multi-path fading, and show that WiFi beaconing significantly
impacts network performance.
With such variety of testbeds, being able to conduct reproducible experi-

ment becomes important. Papadopoulos et al. show that only 16.5% of the
studied experimental-based work propose reproducible results [78].
Somewhat more fundamentally, it is of paramount importance to ensure

that a solution evaluated on the testbeds “looks like” real-world deployments.
If that is not the case, a solution might work perfectly on a testbed, but fail
when deployed beyond testbeds.

Zhao et al. did some early work on measuring the connectivity between
nodes deployed in realistic environments [80]. They deployed 60 nodes in a
building, a forest and a parking lot.
More recently, Dong et al. proposed a methodology for collecting data

traffic and analyzing the impact of packet delivery ratio in different proto-
cols [81]. The data is collected from a real-world deployment in the wild, with
343 nodes deployed for 10 days. All nodes generate three types of packets
every 10 minutes, containing raw application data, link quality, and routing
statistics. They propose a detailed algorithm to analyze the root causes of
network loss, and account for issues related to the environment, as well as
for software and hardware problems. The proposed methodology is not easily
extensible to collection and analysis of other applications, since statistic gen-
eration is protocol-dependent. Even though the experiment was performed
in a large-scale deployment, the network runs on a single channel, and from
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the results, it is clear that the links were very stable and not influenced by
external interference.

Doherty et al. deployed a 44-node low-power wireless network in a
76 m × 69 m industrial printing facility for 26 days [15]. Authors show
that the PDR varies over frequency (i.e. because of multi-path fading) and
time (i.e. because of dynamics in the environment). The authors propose a
simple model that takes multi-path variation into account.

CRAWDAD1 is a community archive that gathers wireless traces, includ-
ing on connectivity, since 2002 [82]. It is a web platform to store and doc-
ument traces of production wireless networks. To date, the platform has
121 datasets on different application and technologies. For instance, the
dataset used in [83] is available. This dataset is the results of the analysis of
different IEEE802.15.4 parameters for a network deployed in an indoor en-
vironment for 6 months. As an online addition to this thesis, the 11 datasets
gathered (see Section 5.3.3) are available on the CRAWDAD platform.
With such datasets available, some run simulations on them, i.e. replacing

the propagation model at the PHY layer of simulators.
Watteyne et al. analyze multi-channel networks based on frequency hop-

ping [2]. The authors deploy 46 TelosB nodes in a 50 m × 50 m office en-
vironment. They show that end-to-end reliability can be improved through
channel hopping. The results are based on simulations that take into account
the connectivity datasets (more precisely, the Packet Delivery Ratio) obtained
from a deployment in a working office. Even though the datasets utilized are
realistic, the chosen environment is very limited in size, and the results may
not be applicable to other scenarios, such as large-scale and/or outdoor de-
ployments.
We make two main observations from surveying related work. First, only

very few connectivity traces are gathered on testbeds, and their connectivity
is not studied well. Most often, protocols are being evaluated, without really
knowing whether the connectivity in the testbed resembles that in real-world
scenarios. Very little is done in related work to show the completeness of the
evaluation, i.e. demonstrate that the testbed(s) used for evaluation contains
the same connectivity characteristics as real-world deployments. Second,
very little has been done to verify that the connectivity in these testbeds re-
sembles real-world deployment connectivity. The impact of this second point
is particularly important, as, without it, one cannot really trust that a solution
that works on a testbed will also work in a real-world deployment.
This chapter contributes to answering that need in several steps. First,

we present Mercator, the tools we developed and used to collect connectivity
traces which are dense in time, space and frequency (Section 5.3). Second, we
present the 11 datasets collected, containing 2,873,156 measurements, both
on testbeds and real-world deployments (Section 5.3.3). These datasets are

1 https://crawdad.org/

84

https://crawdad.org/


made available to the community, and to the best of our knowledge, are the
largest dataset dense in time, frequency, and space available to date. Third,
we make a number of observations, highlighting, in particular, the fact that
testbeds can easily not present a key connectivity characteristic (Section 5.5).
This means that there is a real risk of having a protocol that performs well
on a testbed, but fails in real life. Lastly, we present a 5-point checklist to
verify that a testbed features the key connectivity characteristics of real-world
deployments (Section 5.6).

5.3 Mercator: Dense Connectivity Datasets

This section details how we collected the connectivity datasets that we will
then analyze in Section 5.5. Section 5.3.1 starts by describing the method-
ology, and introduces the necessary terminology. Section 5.3.3 introduces
Mercator, the tool used to collect connectivity datasets on testbeds. Sec-
tion 5.3.4 details the 3 testbeds, 3 long-term real-world deployments, and
1 short-term real-world deployment done to collect the datasets. Section 5.4
lists the 11 datasets collected, containing 2,873,156 PDR measurements
gathered over a cumulated 170,037 mote-hours of operation.

5.3.1 Methodology and Terminology

Our goal is to gather dense connectivity datasets and learn lessons from them.
We are interested in the connectivity between the nodes in an

IEEE802.15.4-based low-power wireless network, and quantify the “quality”
of its links using their Packet Delivery Ratio (PDR). We operate at 2.4 GHz,
the most commonly used IEEE802.15.4 frequency band. The PDR of a link
between nodes A and B can be measured as the ratio between the number
of link-layer acknowledgments frames received by node A, and the number
of link-layer frames sent from node A to node B. A link with PDR = 50%
means that, on average, node A has to transmit the same frame twice to node
B to receive an acknowledgment and consider the communication successful.
We consider the PDR of a link to be a good indicator of the “quality” of a
link, and prefer it over other indicators such as the Received Signal Strength
Indicator (RSSI), which are related but hardware-dependent.
We call PDR measurement the measurement of the PDR (a number be-

tween 0% and 100%) between two nodes, at a particular time. A dataset
consists of all the PDR measurements collected during one experiment.
We want the dataset to be dense along 3 axes:

1. dense in time, as we want to analyze the PDR of a link evolving over
time,
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2. dense in frequency, as we want to see the impact of the communication
frequency used on the PDR at a particular time,

3. dense in space, i.e. collected over as many environments as possible to
draw conclusions that apply to various use cases.

Datasets are collected on both testbeds and real-world deployments.
While the data contained in the datasets are equivalent (and can be com-
pared), the hardware and tools in both cases are different. We hence use two
tools (Mercator and SolSystem), both creating equivalent data.

5.3.2 IoT-LAB

The IoT-LAB [74] is a 2728-node testbed platform that allows to run IoT ex-
periments on real hardware. The project is part of the FIT (Future Internet of
Things) Consortium, an “open large-scale testing infrastructure for systems
and applications on wireless and sensor communications” 2. At the time of
writing, the IoT-LAB features over 2000 wireless sensor nodes spread across
6 different sites in France. The number of devices per site varies between 29
and 640. Devices can be fixed or mobile.

5.3.3 Mercator: Testbed Datasets

The 3 testbeds we use offer the ability to load arbitrary firmware directly on
IEEE802.15.4-compliant nodes. These nodes are deployed in a particular
location (detailed in Section 5.3.4), and while our firmware executes, we have
access to the serial port of each device. This means we are able to (1) receive
notifications from the nodes, and (2) send commands to the nodes, without
interfering with the radio environment.
We developed Mercator, a combination of firmware and software specif-

ically designed to collect connectivity datasets in testbeds3. The same
firmware runs on each node in the testbed; the software runs on a computer
connected to the testbed, and drives the experiment. The firmware allows the
software to control the radio of the node, by sending commands to its serial
port. The software can send a command to a node to either transmit a frame
(specifying the frequency to transmit on), or switch the remote node to re-
ceive mode (on a particular frequency). In receive mode, the node issues a
notification to the software each time it receives a frame.
All frames are 100 B long, and contain the necessary fields (unique num-

bers, addressing fields, etc.) to filter out possible IEEE802.15.4 frames sent
by nodes outside the experiment.

2 https://www.fit-equipex.fr/
3 The Mercator source code is published under a BSD open-source license at https://

github.com/openwsn-berkeley/mercator.
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(a) [testbed] Lille (b) [testbed] Grenoble (c) [testbed] Strasbourg

(d) [real-world] EvaLab
and Inria-C

(e) [real-world] SmartMa-
rina

(f) [real-world] PEACH

Figure 5.1: Pictures of the testbeds and real-world deployments we collect
dense connectivity datasets in. Green lines are added to suggest wireless
communication between nodes. They show the position of the nodes, but do
not per-se represent the exact connectivity collected in the datasets.

At the beginning of an experiment, the same firmware is loaded on all
nodes. The software is responsible for orchestrating the experiment, which
has a pre-set duration. The software starts by having a particular node trans-
mit a burst of 100 frames, on a particular frequency, while all other nodes are
listening to that frequency. By computing the portion of frames received, each
listening node measures the PDR to the transmitting node, at that time, on
that frequency. The PDR ranges from 100% if the node received all frames,
and 0% if it received none. The software repeats this over all 16 available fre-
quencies, and all nodes, in a round-robin fashion, until the end of the experi-
ment. The dataset resulting from the experiment contains the PDR measured
over all source-destination pairs, all frequencies, and throughout the duration
of the experiment.
Mercator has been used on 3 testbeds (Section 5.3.4), resulting in

5 datasets (Section 5.4).

5.3.4 Deployments

Fig. 5.1 shows pictures of the 7 deployments used to generate the datasets.
We run Mercator on the Lille, Grenoble and Strasbourg IoT-LAB sites.

On the Lille site (Fig. 5.1a), nodes are deployed on the ceiling and walls of
a single large, mostly empty, room in an office building. On the Grenoble
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Figure 5.2: Floor plan of the Inria-C deployment.

site (Fig. 5.1b), nodes are deployed along four interconnected corridors of
an office building, hidden between the dropped ceiling and the roof. On the
Strasbourg site (Fig. 5.1c), nodes are deployed inside a single room in the
basement of an office building. In all cases, the distance between adjacent
nodes does not exceed 1 m. On each site, we run two types of experiments:
an 18 h experiment with 50 nodes, and a multi-day experiment with 5 nodes.
From a hardware/system point of view, the three IoT-lab deployments

are equivalent. We run Mercator on the same hardware (the “IoT-lab_M3”
node4), and use the exact same procedure for all experiments on these three
sites.
The 21-node Inria-C SolSystem deployment is done across a single

27 m × 10 m section of an office building floor. About 200 people work in
that building, many of them using WiFi extensively. Nodes are not attached
to external sensors, each node reports temperature data every 1 s. Unlike all
other SolSystem deployments, the Inria-C network is forced to form a star
topology (only leaf nodes). This is a requirement for the network to produce
the per-frequency statistics we need for Sections 5.5.3 and 5.5.4.

5.3.5 K7: Formating Traces

For our data to be compared and reused in a simulator (see Chapter 6),
we needed a common format. We introduce K7, a file format for multi-
channel radio connectivity traces. The format is simple: a CSV extension

4 https://www.iot-lab.info/hardware/m3/
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1 {” l o c a t i o n ” : ” l i l l e ” , ” tx_ l eng th ” : 100 , ” s t a r t _da t e ” :
”2017−12−19 21:34:57” , ” s top_date ” : ”2018−01−03 %21:29:25” ,
” node_count ” : 4 , ” channe ls ” : [11 , 12 , 13 , 14 , 15 , 16 , 17 ,
18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26] , ” t x _ i f d u r ” : 100}

2 datet ime , src , dst , channel , mean_rssi , d e l i v e r y _ r a t i o , tx_count
3 2017−12−19 21:34:57 , de−90−73, d7−24−58, 11 , −48.99, 1 , 100
4 2017−12−19 21:34:57 , de−90−73, d9−17−59, 11 , −50.39, 1 , 100
5 2017−12−19 21:34:57 , de−90−73, d7−b1−89, 11 , −53.43, 0.9 , 90
6 2017−12−19 21:35:08 , d7−b1−89, d9−17−59, 11 , −39.09, 0.7 , 20
7 2017−12−19 21:35:08 , d7−b1−89, d7−24−58, 12 , −57.41, 1 , 100

Figure 5.3: The first lines of the lille_1 dataset.

with 7 columns following a given value format.
Each dataset represents one experiment, and consists of a single Comma

Separate Values (CSV) file in which the first line contains a JavaScript Ob-
ject Notation (JSON) formatted set of meta information. Fig. 5.3 shows an
example of a dataset file.
Line 1 contains metadata about the experiment, encoded as a JSON

string. It contains the location where the experiment was run on (location),
the length in bytes of the frames sent (tx_length), the start date
(start_date), the end date (stop_date), the number of nodes in the experi-
ment (node_count), the number of channels used (channel_count), and the
duration between two frames (tx_ifdur).
Line 2 contains the CSV header, the names of the “columns” in the data

that follows. The following columns must be present:

• datetime. The date time when the measurement was taken, in ISO 8601
format.

• src. A unique identifier to identify the node (or interface) that sent the
frames. Can be a string or an integer.

• dst. A unique identifier to identify the node (or interface) that receives
the frames. Can be a string or an integer.

• channel. The channel on which the frames where sent on. An integer.

• mean_rssi. The mean RSSI value recorded. A signed float.

• delivery_ratio. The ratio of frames that where successfully transmitted.
A float between 0.0 and 1.0.

• tx_count. The number of transmissions on which the measurements
where taken on. An integer.
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The actual data starts at line 3, with one line per PDR measurements.
Line 3 for example reads: node de-90-73 sent 100 frames to node d7-24-58
on IEEE802.15 4 channel 11, which received 100% of them, with an average
RSSI of -48.99 dBm.
A K7 file must contain the columns listed above, but can also be extended

with extra columns. Except for datetime, src and dst, if a value is unknown,
the field can be left blank.
A link delivery ratio metric can consider a frame to be successfully trans-

mitted only when the sender receives an acknowledgement message (ACK).
We consider that the probability of an ACK loss is small if the radio charac-
teristics are identical. Both communications (DATA and ACK) happen in the
same slot, meaning that the same radio frequency is used and the time delta
is very small (<10ms).
The data format is the same whether it is generated by Mercator or Sol-

System. This allows the same tools to be used to analyze both. A SolSystem
dataset is more complete as it contains informations about the routing layers
(e.g. node’s neighbors) and about the devices (e.g. energy spent). K7 contains
a subset of a SolSystem dataset, focusing on radio connectivity. Because Sol-
System does not provide information on which channel was used to transmit
a frame, the channel column is left blank. When reusing the dataset, one
can decide whether or not to consider the delivery ratio value as equal in all
channels.

5.4 Published Datasets

Table 5.1 lists the 11 datasets produced by the deployments listed in Chap-
ter 4 and previously in this Chapter. They contain a total of 2,873,156 PDR
measurements, gathered over a cumulative 170,037 mote-hours of operation.
To the best of our knowledge, they are, to date, the most comprehensive set
of multi-frequency connectivity datasets gathered over a wide variety of en-
vironments.

5.5 Observations from the Datasets

The datasets presented in Section 5.4 contain a wealth of information. The
goal of this section is to contrast/compare the connectivity in testbeds and
real-world deployments. We highlight the lessons (we) learned when “moving
beyond testbeds”, and believe these are interesting to the readership.
Clearly, the points we discuss do not necessarily apply to every testbed,

nor do we claim to even know what “realistic” connectivity means (see discus-
sion in Section 5.6). That being said, we believe the datasets to be comprehen-
sive enough to extract clear connectivity characteristics in real-world cases
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dataset name # nodes duration # PDR measurements associated figures
lille_1 5 nodes 15 days 367,293 Figs. 5.6a
lille_2 50 nodes 18 h 274,392 Figs. 5.4a, 5.5a, 5.8a
grenoble_2 50 nodes 18 h 284,068 Figs. 5.4b, 5.5b, 5.8b
strasbourg_1 5 nodes 3 days 81,900 Figs. 5.6b
strasbourg_3 49 nodes 21 h 300,938 Figs. 5.4c, 5.5c, 5.8c
evalab_1 22 nodes 3 days 9,422 Figs. 5.8d
evalab_2 22 nodes 3 days 58,895 Figs. 5.4d
smartmarina_1 18 nodes 4 months 1,122,177 Figs. 5.4e
smartmarina_2 19 nodes 4 months 183,939 Figs. 5.8e
peach_1 19 nodes 4 months 166,927 Figs. 5.8f
inria-c 20 nodes 30 h 23,205 Figs. 5.5d, 5.6c, 5.6d

11 datasets 170,037 mote-hours of operation 2,873,156 PDR measurements

Table 5.1: Summary of published datasets.

that are not per-se present in testbeds. Our main message is that protocol
evaluation should be done also in the presence of these different phenomena.
Specifically, this section answers the following questions: What are the

phenomena related to connectivity that are typically seen in real-world de-
ployments? How can these be measured? Are those phenomena present in
most testbeds?
Mercator was created specifically to gather dense datasets; all testbed

datasets are hence used in each section below. SolSystem was not created
to create these datasets, we hence cannot use all real-world datasets in each
analysis. The specificities are:

1. the Peach network does not generate per-frequency information because
of outdated firmware,

2. the EvaLab and SmartMarina deployments do generate per-frequency
information, but not on a link-by-link basis,

3. the Inria-C dataset is the only one that contains per-link and per-
frequency PDR measurements, but is constrained to a star topology.

Based on these constraints, we pick the right datasets to fuel the different
discussion points below.
Section 5.5.1 contains preliminary observations about node degree. Sec-

tions 5.5.2, 5.5.3 and 5.5.4 then focus on what we argue to be key qualifiers
of a deployment environment: (1) the amount of external interference, (2) the
amount of external multi-path fading, and (3) the dynamics of the environ-
ment, respectively.
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testbed real-world
Lille Grenoble Strasbourg EvaLab SmartMarina PEACH

Average Node Degree 49.00 38.67 48.00 11.32 5.94 9.04

Table 5.2: Average degree of a node.

5.5.1 Node Degree

Average node degree, or the average number of neighbors of the nodes in the
network, is typically used to quantify topologies. Table 5.2 shows the node
degree in the 6 deployments, using a 0 dBm output power in the testbeds and
+8 dBm in real-world deployments. We declare two nodes as being neighbors
when the link that interconnects them has a PDR of at least 50%. We borrow
this rule from SmartMesh IP5.
While there is certainly no rule defining what a “realistic” node degree

is, typical real-world deployment operators try to cut cost by deploying the
smallest possible number of nodes. Analog Devices, for example, recommends
that each node has at least 3 neighbors; if given the choice, network operators
will not exceed that number. In that case, a node degree around 3 is a lower
bound.
Table 5.2 shows that the testbeds used exhibit a very high node degree, at

least 5 times that of the real-world deployments. Testbed operators typically
recommend lowering the output power of the nodes to lower the average node
degree. Section 5.6.2 argues that this is not a good idea, but that the real
solution is to spread the testbed nodes.

....

The lesson learned is that testbeds may be too densely deployed (e.g. all
nodes in the same room) and that reducing the output power is not a
valid workaround.

5.5.2 Witnessing External Interference

External interference happens when a different technology – or a different
deployment of the same technology – operates within the same radio space.
In the types of networks considered in this thesis, the most common case of
external interference is IEEE802.11 WiFi interfering with IEEE802.15.4
at 2.4 GHz. WiFi interference causes a portion of the packets sent by the
low-power wireless nodes to fail, requiring re-transmissions.
External interference can be shown by plotting the PDR, averaged over

all measurements, grouped by frequency. This is done, for all deployments6,
5 http://www.linear.com/dust_networks/
6 The appropriate HRs data was not gathered on the SolSystem Peach deployment; we are

hence unable to plot the figure for that deployment.
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(a) [testbed] Lille (b) [testbed] Grenoble (c) [testbed] Strasbourg

(d) [real-world] EvaLab (e) [real-world] SmartMa-
rina

Figure 5.4: [External Interference] PDR per frequency, averaged over all
measurements. IEEE802.15.4 channel 26 (2.480 GHz) is not used by
SmartMesh IP, and hence does not appear in the real-world plots.

in Fig. 5.4.
Fig. 5.4 shows some level of external WiFi interference on all deploy-

ments, except for IoT-LABLille. In a multi-Access-PointWiFi configuration,
different APs typically operate on 3 different frequencies, centered around
IEEE802.15.4 channels 13, 18 and 23. This is clearly the case in the EvaLab
deployment (Fig. 5.4d). It appears from Fig. 5.4b that IEEE802.11 chan-
nel 1 (2.412 GHz) is mostly used next to the IoT-LAB Grenoble deployment.
In the SmartMarina deployment (Fig. 5.4e), the very high interference on
IEEE802.15.4 channels 23-24 is due to a continuously streaming WiFi se-
curity camera next to the deployment site, operating on IEEE802.11 channel
11 (2.462 GHz).

....

The lesson learned is that external interference from WiFi is typically
present in real-world deployments. It is also most often present in
testbeds, as those are typically deployed in office buildings.

5.5.3 Witnessing Instantaneous Multi-Path Fading

Multi-path fading is both less intuitive and far more destructive than external
interference. It is entirely caused by the environment around nodes that com-
municate. When node A sends a frame to node B, what B receives is the signal
that has traveled over the line-of-sight path between A and B, but also the
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“echoes” that have bounced off of nearby objects. Depending on the relative
position of nodes A and B and the objects around, these different components
can destructively interfere. The result is that, even though A and B are close,
and that A transmits with a high output power, B does not receive any of
its frames. This “self-interference” pattern depends on the frequency used.
What typically happens is that node A can send frames to node B on most of
the available frequencies, except on a handful of frequencies on which com-
munication is impossible. The impact of multi-path fading is higher when the
deployment area is cluttered by highly reflective (e.g. metallic) objects.
What we are looking for in the datasets is hence how many frequencies

are usable (PDR>50%), for each link. If all frequencies are usable, there is
no multi-path in the environment. Fig. 5.5 plots, for each PDRmeasurement,
how many frequencies have a PDR higher than 50%.
In the IoT-LAB Lille case (Fig. 5.5a), almost all PDR measurements

show that all frequencies are usable: there is very little multi-path fading in
that environment. This is expected, as the deployment is done in one large un-
cluttered room (see Fig. 5.1a). In contrast, multi-path fading is very present
in the IoT-LAB Grenoble site (Fig. 5.5b). This is expected, as the deploy-
ment is done in a tight space between the dropped ceiling and the roof, a
space cluttered with metallic structure and wiring (see Fig. 5.1b). Multi-path
fading is also very present in the Inria-C deployment (Fig. 5.5b). This de-
ployment spans multiple rooms, with 20 m long links crossing several walls
and rooms filled with white boards, chairs, tables, ventilation piping, etc., all
opportunities for multi-path fading to occur.

....

Multi-path fading takes place in varying degrees in virtually all de-
ployments. It is in particular present in an environment cluttered with
highly reflective (e.g. metallic) objects, or simply when links are long
(over 10 m). It causes the PDR of a link to vary significantly with fre-
quency, and it is essential to test networks in testbeds in which there is
a lot of multi-path. The lesson learned is that it is essential to deploy a
testbed across a large area, e.g. across an entire floor rather than in a
single room.

5.5.4 Witnessing Dynamics in the Environment

In virtually any real-world deployment, the environment changes over time:
people move across buildings, WiFi traffic continuously changes, machines are
switched on and off, doors are opened and closed, forklifts zip around factory
floors, etc. This means that the level of both external interference and multi-
path fading changes over time. From a connectivity point of view, this means
that the PDR of each link varies over time, and across all frequencies.
Fig. 5.6 shows how the PDR of particular links varies over time, on each
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(a) [testbed] IoT-LABLille (b) [testbed] IoT-LAB
Grenoble

(c) [testbed] IoT-LAB
Strasbourg

(d) [real-world] SolSystem
Inria-C

Figure 5.5: [Instantaneous Multi-Path Fading] Measurements with number
of frequencies with PDR>50%.

(a) [testbed] Lille (b) [testbed] Strasbourg

(c) [real-world] Inria-C TX1→ RX (d) [real-world] Inria-C TX2→ RX

Figure 5.6: [dynamics in the environment] PDR evolving over time for spe-
cific links.
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IEEE802.15.4 frequency. The gray zones highlight daily business hours.
While we had to choose specific links for each deployment, we make sure they
are representative of the other links.
In the Inria-C deployment, Figs. 5.6c and 5.6d show the PDR variation

over time for the link from nodes TX1 and TX2 sending to node RX, respec-
tively. Nodes TX1 and TX2 are both placed 27 m away from RX. Even
though TX1 and TX2 are only separated by 50 cm, the per-frequency PDR
variations on their links to node RX evolve in very different manners, which
is expected.
Figs. 5.6a and 5.6b show the variation of PDR on a particular link in the

IoT-LAB Lille and IoT-LAB Strasbourg deployment, respectively. Even over
many days, there are no significant changes in PDR. This has severe conse-
quences, as a networking solution validated on a testbed like this might fail in
the real world, in which the environment (and the PDR) changes frequently.

....

In virtually all real-world deployments, the environment in which nodes
are deployed changes, resulting in dynamics in the connectivity between
nodes, on each frequency. Testbeds often do not capture these effects,
as nodes may be deployed in basements. This has a severe impact on the
validity of evaluations in these testbeds, and solutions working perfectly
on them might not work at all in the real world. The lesson learned
is that the evaluation of a networking solution on a testbed without
dynamics has very limited validity.

5.6 Discussion

Section 5.4 has generated 11 dense connectivity datasets gathered over both
testbeds and real-world deployments. Section 5.5 analyzes the node degree,
level of external interference and multi-path fading, and their variation over
time, and contrasts/compares testbeds and real-world deployments. The goal
of this section is to discuss what changes when going from testbeds to real-
world deployments. In particular, we discuss some of the steps one needs
to take to ensure a solution is properly tested in a testbed so it succeeds in
real-world deployments.
We start by discussing what “realistic” connectivity looks like, and pro-

pose a network evaluation checklist in Section 5.6.1. We quickly focus on the
common misconception that lowering the output power is a good idea (Sec-
tion 5.6.2). In Section 5.6.3, we then introduce the notion of a waterfall
plot, and how to use it to visualize the connectivity in a deployment. Finally,
Section 5.6.4 presents directions for future work.
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5.6.1 What is Realistic?

We do not claim to know what “realistic” connectivity looks like. Every de-
ployment is different, and a dense deployment in a small basement room is
as realistic as a deployment on an entire factor floor. It all depends on the
application. We do not argue in favor or against particular testbeds.
Rather, we list the 3 phenomena that are most common in real-world de-

ployments, and which have a deep impact on connectivity: external inter-
ference, multi-path fading, dynamics in the environment. Any deployment
exhibits a combination of these three phenomena. When evaluating a net-
working solution, it is hence essential to do so in environment(s) which
exhibit all three. Without this, you run the risk of having your solution fail
during a real-world deployment.
Before evaluating a solution in a testbed, we recommend you go through

the following 5-point checklist:

1. Gather connectivity traces that are dense in time, frequency and space,
by using Mercator, SolSystem, or an equivalent tool.

2. Compute the average node degree (as in Section 5.5.1), and ensure that
you are testing your solution also on very sparse deployments (down to
a degree of 3).

3. Plot the average PDR for each frequency (as in Section 5.5.2), and
ensure that you see variations across different frequencies, indicating
the presence of external interference.

4. Plot a histogram of the number of frequencies with PDR>50% (as in
Section 5.5.3), and ensure that a significant portion of the links in your
deployment have one or more “bad” frequencies, indicating the presence
of multi-path fading.

5. Plot, for each link, the evolution of its PDR over time, for each frequency
(as in Section 5.5.4), and ensure that a significant portion of the links
see the PDR switch from 0% to 100% on multiple frequencies, indicat-
ing the presence of dynamics in the environment.

It is our experience that a solution evaluated on a testbed in which the
check-list above passes performs well in real-world deployments.

5.6.2 A Word about Output Power Tuning

Some testbeds are often too densely deployed, and to limit the node degree
(number of neighbors) and increase the network radius (number of hops),
testbed operators often reduce the output power of the radios (e.g. –55 dBm).
This is not a good idea. The reason is that this also limits the amount of
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multi-path fading, as the echoes that reach the receiver antenna are so weak
that self-interference is not happening. The result is a deployment that looks
more like free space.
Instead, we recommend installing MAC address filtering on the software

of the nodes so they artificially drop packets from neighbors not in the list.
This is a way to force a topology while maintaining the same level of multi-
path fading and dynamics.

5.6.3 Waterfall Plot

Each PDR measurement in the datasets also contains the average RSSI over
the 100 frames received in that burst. Plotting a scatterplot of PDR as a
function of RSSI reveals a large number of insights about the connectivity
in the network. Because of its shape, we call this a “waterfall plot”. In the
absence of external interference and multi-path fading, the waterfall plot is at
PDR≈100% above sensitivity, at PDR≈0% 10-15 dB below the radio chip’s
sensitivity, and with a almost linear ramp between the two.
You can apply the tools detailed in this section both to your testbed (to

verify it is “realistic”), and to your real-world deployment (to quantify its
connectivity).
We assume you have generated a waterfall plot from the connectivity

dataset gathered in your deployment. Fig. 5.7 shows such a waterfall plot.
Each cross represents a PDR measurement; the mean value with standard
deviation is also depicted. Fig. 5.7 contains annotations on how to “read” it:

..1 Make sure the left-hand side of the waterfall plot is complete, i.e. it
reaches 0%. Not having this left-hand side indicates that your nodes
are very close to one another. On a testbed, this means you are not
testing your solution close to sensitivity.

..2 Any discontinuity in the plot indicates that your deployment contains
either very good links, or bad links, but no in-between. This is typically
the case for networks in which nodes are deployed in clusters.

..3 A waterfall plot shifted to the right indicates the presence of external
interference and multi-path fading.

..4 A “dip” in the waterfall plot indicates strong interference on specific
links.

..5 The spread of PDR measurements around the mean value indicates dy-
namics in the environment.

Given these rules, just looking at a waterfall plot allows one to determine
how close together nodes are deployed, and whether external interference,
multi-path fading and dynamics are present.
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Figure 5.7: Five elements to look at when assessing the connectivity in a
deployment by “reading” its waterfall plot (detailed in Section 5.6.3).

We show the waterfall plots for all deployments in Fig. 5.8. The rules
above allow us to get good insights into the connectivity in the deployments
(circled number refer to the rules above). The IoT-LAB Lille and Strasbourg
testbeds (Figs. 5.8a and 5.8c) suffer from the fact that nodes are deployed
too close to one another ..1 . Nodes are deployed in clusters in SmartMarina,
as shown by the discontinuity in the plot ..2 . The fact that the EvaLab and
SmartMarina waterfall plot are shifted right compared to Peach indicates ex-
ternal interference in the former two, very little in the latter ..3 . A WiFi
camera interferes with a small number of links in SmartMarina; this can be
seen by the “dip” in the plot ..4 . Nodes in the IoT-LAB Grenoble testbed are
deployed far enough apart from each other, but lacks dynamics in the envi-
ronment ..5 .

5.6.4 Directions for Future Work

The format of the dataset highlighted in Section 5.4 is generic enough to
include additional datasets. There would be great value in creating a stan-
dardized connectivity evaluation kit and deploy it in various environments
for several weeks, in order to generate a comprehensive set of connectivity
datasets.
Simulation platforms could be modified to “replay” these connectivity

datasets, rather than relying on propagation models at the physical layer.
The benefits would be that (1) this would increase the realism and confidence
in the simulation results, and (2) the same simulation could be run against a
number of datasets, which would serve as connectivity scenarios.
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(a) [testbed] Lille (b) [testbed] Grenoble (c) [testbed] Strasbourg

(d) [real-world] EvaLab (e) [real-world] SmartMa-
rina

(f) [real-world] PEACH

Figure 5.8: Waterfall plots for the different deployments.

There would be great value in defining a set of metrics to quantify how
much external interference, multi-path fading and dynamics there is in a net-
work. Networking solution could be benchmarked against several deploy-
ments, covering a range of metrics.
Similarly, it would be interesting to evaluate howmuch the type of connec-

tivity impacts the performance of networking solution, such as those proposed
by the academic community.

5.7 Summary

In this chapter, we compare results obtained from real-world networks with
ones obtained by running radio connectivity experiments on testbeds. Having
dense radio connectivity information allows us to have a closer look of what
happens at the MAC layer. We identify key metrics and behaviors that we
must take into account when developing a protocol for the IIoT and propose
a methodology to ensure that a protocol that performs well on a testbed also
does so when moving beyond testbeds. More specifically, we look at External
Interferences, Multipath Fading, and their variations over time.
Now that we have more insight of what happens at the MAC level, we want

to study TSCH in more details and find its limits and trade-offs. In Chapter 6,
we present and use the 6TiSCH Simulator to study the capacity of TSCH in
terms of end-to-end latency, reliability and energy consumption.
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Chapter 6

TSCH Limits and Trade-offs

....

In this chapter, we analyze the limits and trade-offs of TSCH
in term of end-to-end latency and network lifetime. We
compare the performance results obtained by simulation with
that of real deployments, and propose a tool to estimate the
performance of 6TiSCH networks.

Based on what we learned from our previous work, we study the limits and
trade-offs of TSCH in terms of end-to-end (E2E) latency, E2E reliability, and
energy consumption (battery lifetime). Section 6.1 defines those concepts and
explains their theoretical limits. Section 6.2 presents the 6TiSCH simulator
that we used to compare real-world network performances against the theo-
retical limits. Finally, we introduce the 6TiSCH Performance Estimator, a
tool we developed to predict the performance of a 6TiSCH network.

6.1 Theoretical Limits

In this section, we assess the performance limits of TSCH under certain as-
sumptions. We consider the E2E reliability as a fixed requirement, and tune
the TSCH schedule to explore the trade-off between latency and energy con-
sumption. We start by defining the set of assumptions we make, then define
what we mean by reliability, latency and energy consumption, before present-
ing theoretical results under various hypothesis.
I want to answer the following questions:

• Given a 99.999% minimum E2E reliability, what is the minimal latency
a network can achieve?

• By how much does the network lifetime increase when relaxing the la-
tency constraint?

101



6.1.1 Assumptions

We assume that each device has a unique radio interface. That is, a device
can only be assigned to one cell at a time. A node cannot receive and transmit
at the same time and cannot receive from multiple other nodes at the same
time. This is a fair assumption, given the devices on the market today.

We only consider convergecast traffic, that is, all the nodes in the net-
work send their traffic to the gateway. This assumption reduces the applica-
tion scope to monitoring and alert detection application, and does not encom-
pass applications that require actuation (triggered by the manager or other
nodes). While we strongly agree that other scenarios should be studied too,
we consider it as a second step and present our vision towards it in Chapter 7.

We consider monitoring applications (application that generate periodic
traffic) and time-critical alerting applications as identical from a scheduling
point of view. The same amount of resources (cells) have to be allocated for
both types of applications. While in time-critical alerting applications those
allocated cells will are not used most of the time, they still need to be present
as reactive allocation would induce large delays.

As this is the default 6TiSCH behavior, we only consider routing topolo-
gies where each node has only one parent. While we understand this is a min-
imal configuration to prove the effectiveness of 6TiSCH, we strongly believe
that topologies with multiple parents should be adopted in IIoT as their offer
more stability (e.g. fallback links) and routes diversity (e.g. load balancing).

6.1.2 Key Performance Indicators

E2E Upstream Reliability

For low-power wireless technologies to be adopted by the industry, they need
to provide wire-like end-to-end (E2E) reliability. The end-to-end reliabil-
ity can be expressed as the amount of messages that reach their destination,
given a total number of messages generated in the network. As an example,
SmartMesh IP is a TSCH-based commercial wireless sensor technology that
yields over 99.999% E2E reliability. E2E Reliability is the first parameter
we look at.
If a packet is too long to fit in an IEEE802.15.4 frame (>127 B, including

headers), it can be fragmented and sent over user multiple frames. The packet
can only be considered as received if all of its fragments are received. We
define the “E2E Upstream reliability” as the packet reliability between a
node and the network root.

E2E Upstream Latency

The E2E Upstream latency is a key parameter in time-critical applications.
It is the time delta between the generation of an application packet and its
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arrival at its final destination.
We define the “E2E Upstream latency” as the time a packet takes from

the moment it was generated in a node to the moment it was received by the
manager. The latency can be expressed in seconds, for easy understanding, or
in slots, for easy comparison (as the duration of a timeslot can differ between
implementations). We consider that the time between the packet generation
by application layer and its reception as frames in the MAC layer as negligible.
Latency cannot be bounded. In other words, we cannot claim that all pack-

ets (or frames) are going to be delivered within a given time. This happens
because the probability of an infinite number of consecutive retransmissions
is not null. Instead, we can only provide latency guarantees in “most cases”.
In my work, I use the latency distribution percentile as a mean to quantify
“most cases”. For instance, I claim that, given a certain set of conditions,
the maximum E2E upstream latency is going to be X seconds for X% of the
packets.

Network Lifetime

It is commonly agreed that the lifetime of a node is the time before it runs out
of battery. But looking at the lifetime of a network, three definitions can come
to mind: the time before every node runs out of battery, the average node
lifetime, or the time before the first node runs out of battery. In industrial
applications, the last definition is often the most appropriate. Indeed, we are
interested in applications where each sensing point is critical. We define the
network lifetime as the time until first node runs out of battery.

6.1.3 Objectives

Collision-Free Schedule

The radio connectivity traces we collected do not contain information about
how the radio connectivity behaves when there are multiple transmissions on
the same channel at the same time. Thus, rather than using a theoretical
model which would estimate a link quality when multiple transmissions occur
at the same time and on the same channel, we prefer to make sure this never
happens by building a schedule that guarantees such a property. We want to
build a collision-free schedule.

Minimizing the Maximum Latency

Our first step is to provide latency bounds so that network operators can quan-
tify the worst case latency they can expect, that is the maximum E2E latency.
We also want latency to be as low as possible to know if a low-power wireless
network can tackle time-critical applications. We want to build a schedule
that minimizes the maximum E2E upstream latency.
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6.1.4 A Canonical Case

We start with a canonical case to have a better understanding of the challenge.
We consider a network with perfect links and that follows the assumptions
presented above.
We define a node’s Load as the number of cells it requires to transmit the

frames it generates locally (later denoted as Gen(n)) as well as the number
of cells it requires to forward (i.e. receive and transmit) the frames generated
by its descendants (later denoted as Fwd(n)).

Flows

We define a flow as the series of frames that travel from a source to a des-
tination. In the following, we allocate cells along a path from a source to a
destination, and assume that those cells are available for any incoming frame
generated by the source. This is true only if flow-isolation or flow-priority is
assigned to a cell. Indeed, any node along the path from a source to a des-
tination could use a cell allocated for the source’s frames, and make that cell
unavailable when a source’s frame wants to use it. As an example, in Fig. 6.2,
let’s assume nodes C and D generate frames tC and tD, both addressed to node
A. If node C decides to use its second slot for frame tC , then frame tD will have
to use the next available slot, and its latency will increase.
There are two ways to avoid such situation:

• flow-isolation: Cells among a path are reserved for exactly one flow.

• flow-prioritization: A flow can be used by any frame, but gives priority
to the frames belonging to that flow.

In our canonical case, both ways ensure that all cells are available for a
flow so that (6.2) is true. Flow-prioritization would however lead to lower
average latency as frames would have more resource (i.e. cells) available.

Schedule Lower Bound

In their publication, Khoufi et al. calculate the minimum number of slots re-
quired for a convergecast application of a network using TSCH with perfect
links (no retransmissions) [22]. They prove that the minimum number of slots
assigned to nodes is lower bounded by max(Sn, St), with:

max(Sn, St)Sn =
∑

Gen(i)St = Gen(c1) + 2
∑

Gen(v) (6.1)

Sn indicates the number of cells required by the gateway to receive all the
frames generated by the network without retransmission. St indicates the
number of cells required by the first-hop node with the highest Load (c1). We
simplified Sn and St as we only consider nodes with one network interface.
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Figure 6.1: Valid Cascading Schedule. New frame worst case scenario. Max
E2E US latency is 8 slots.

Figure 6.2: Optimal Cascading Schedule. New frame worst case scenario.
Max E2E US latency is 7 slots.

Latency Upper Bound

Fig. 6.1 depicts a topology and its corresponding schedule that fits in the
slotframe size optimal bounds. That is, it delivers all the packets within a
5-slot slotframe (i.e. St=5).
A schedule that fits the optimal slotframe size is not necessarily a schedule

that is optimal in terms of E2E US latency. As an example, Fig. 6.2 shows
a schedule that has a smaller maximum E2E US Latency than the schedule
presented in Fig. 6.1.
The minimal latency is achieved when the series (i.e. a cascade) of pairs

of cells (i.e. links) between the source and the destination are consecutive in
time. Without retransmissions, this corresponds to the number of links that
separate a source node to the destination. In convergecast traffic, this is the
depth of a node. As we consider a frame lifetime to start when the frame is
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given to the MAC layer, the worst case occurs when the frame is given right
after the cascade starts. As we assume one cascade per slotframe, the time
before the cascade restarts is equal to the size of a slotframe -1. The maximum
E2E upstream latency is thus defined as:

Min((SlotframeSize− 1) +Depth(n)) (6.2)

For each node, where n is the node and Depth(n) the depth of node n.

Lifetime Bounds

The energy spent by a mote can be directly derived by the number and type
of cells in its schedule [12]. We first consider that a cell requires the same
electric charge whether it is used or not. In the schedule presented in Fig. 6.2,
B is the node with the maximum number of cells and its average energy con-
sumption can be expressed as:

(3× TxCharge+ 2×RxCharge)/SFLength (6.3)

Knowing this, we can increase the lifetime of a mote by increasing the size
of its slotframe with Idle cells. This reduces the average energy consumption
but also increases latency. The maximum average consumption of a node can
be expressed as:

MinSFLength×ActiveAvgCharge+ SlotIncrease× IdleCharge

MinSFLength+ SlotIncrease
(6.4)

Where ActiveAvgCharge is the average charge spent during the minimal
slotframe, and IdleCharge is the charge spent during one Idle slotframe (i.e. a
slotframe with not transmissions or receptions scheduled). Fig. 6.3 depicts
the lifetime vs. latency trade-off.
For instance, let’s assume an IdleCharge of 1 µA, and an

ActiveAvgCharge of 300 µA with a 510 slots MinSFLength. To in-
crease the lifetime by one year, 443 idle slots would need to be added. Taking
a 7.25 ms slot, this would increase the latency by 3.21 s.
Using those equations can give a rough idea of the estimated lifetime of

a mote before any communication starts, however, those equations can be
refined at run time. We considered that cells would use the same electric
charge whether they are used or not, and this is false in most implementations.
RxCells. When in an RxCell, a node listen for incoming traffic. If no traffic
arrives within the first ms (configuration dependent), the node knows that no
traffic will arrive in the rest of that cell and can thus turn its radio off. By doing
so, a node consumes a few mC per cell (e.g. 4 mC for the LTC5800-IPM).
TxCell. When in a TxCell, if a node has not frame to send, it will not start
its radio. The cell can thus be considered as an IdleCell (e.g. 5̃2 mC saving
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Figure 6.3: We can tune the lifetime vs. latency trade-off by changing the
slotframe size.

per cell for the LTC5800-IPM). ACK. When in a Tx or RxCell, if no ACK
frame is required, both communicating nodes can turn there radio off after the
DATA frame exchange (e.g. 4̃ mC saving per cell for the LTC5800-IPM).
The lifetime of a mote can thus be expressed as a range between the best

case scenario (when no cells are used) and the worst case (when all cells are
used with ACKs).
We defined the network lifetime as the time before the first node runs out

of battery. The network lifetime can thus be expressed as:

Min(lifetime(n)), ∀n ∈ Nodes (6.5)

Note that those estimations only take into account application packets. A
finer energy consumption estimation should also account for network control
traffic.

6.1.5 With Retransmissions

Assuming perfect links, Eq. 6.9 allows us to calculate the minimal slotframe
size, Eq. 6.2 the maximal E2E US latency, and Eq.6.5 the network lifetime.
We now try to find corresponding equations considering links where a certain
number of retransmissions must be made before one succeeds. Our goal is
to build a schedule that allocates enough cells so that a frame, even when
retransmitted multiple times, gets to its final destination within one slotframe.
The challenge is to find the right number of retransmissions a link (or an E2E
path) should be able to handle.
Pöttner et al. [34] introduce Bmax, the maximum count of consecutive

transmissions needed for a frame to be transmitted on a link. This metric is
obtained empirically for each link based on previous transmissions and can
be seen as an observed worst case. Then, they build a schedule that allocates
Bmax cells for every frame than a link is supposed to carry. The problem with
such a method is that it may require a long delay (authors shows that it could
take more than 140 hours) before a representative Bmax is known for all the
links.
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We use a different approach and derive the maximum number of transmis-
sions required before success from the Packet Delivery Ratio (PDR). Such a
metric does not provide information about when the failure or success hap-
pens; so for every transmissions, there is a probability of P = PDR% of
success and 1 − P of failure. The probability of success after k consecutive
transmissions attempts on the same link is equal to the probability of k consec-
utive failures followed by the probability of success, that is, (1− P )k · P . We
want to find k, the number of consecutive failures before a successful trans-
mission, so that the probability of success after k transmissions must be over
the E2E reliability we want the network to achieve. Said differently (this
leads to a simpler equation), we want to find the probability of non reception
(1−R) after k consecutive transmissions. We express this problem in (6.6),
where Pab is the PDR of the link from node A to node B, and R is the expected
E2E US reliability.

(1− Pab) ≤ 1−R (6.6)

This leads to (6.7). For instance, to achieve an E2E reliability R of
99.999% with a link of PDR=70% (Pba = 0.7), a node B at one hop of the
root A would need to transmit K ≥ 9.56, that is, 10 times.

k ≥ log(1−R)

log(1− Pab)
(6.7)

Eq. 6.7 allows us to compute the number of transmissions required before
a successful transmission for one link (same result is shown in [84]). As the
number of retransmissions is an integer, we usually round the result up.
As we want to guarantee an E2E US reliability, we need to extend this

equation to work with multiple consecutive links. Applying (6.7) to each link
of the path from source to gateway does not work, as the probability depends
on the delivery of the previous link. This would lead to R′ = R#hops and
because R < 1; the resulting reliability would be inferior to the expected
reliability (R′ < R).
We need to find which reliability (Ri) each link must provide in order to

fulfill the E2E reliability. There are many combinations of multiplications
that could result in R. In their article [85], Gaillard et al. propose a greedy
algorithm that optimizes the distribution of links network-wide. In our case,
we consider the optimal solution as the one that minimizes the total number
of transmissions.

Min(
∑

i∈linksf

ki) (6.8)
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Schedule Lower Bound

Unlike when building schedules with perfect links (see Section 6.1.4), the
most loaded node is not necessarily the root or one of the first hops. There
could be nodes with a high Load because of retransmissions, and not because
they have many descendants.
Empirically, we find that unless the number of concurrent transmissions

is superior to the number of available channels, Eq. 6.9 allows us to calculate
the minimal slotframe size. kab corresponds to the number of transmissions
required for node A to transmit a frame to node B.

Max( TxCells + RxCells )

Max((Gen(n) + Fwd(n))× knp +
∑

c∈preds
(Gen(c)× kcn))) (6.9)

Latency Upper Bound

Like in Section 6.1.4, the worst frame acquisition time is right after the cas-
cade starts. If this happens, the first opportunity to transmit the frame arrives
SlotframeSize−1 slots later. Then, in the worst conditions, the frame needs
the maximum number of retransmissions per hop to reach the destination. We
call CascadeSize the time between the first and the last slot of the cascade.
The minimal maximum E2E upstream latency is defined by (6.10).

Min((SlotframeSize− 1) + CascadeSize) (6.10)

Lifetime Bounds

The lifetime bounds can be estimated the same way than the ones presented
in Section 6.1.4.

6.1.6 Conclusion

In this section, we show that, theoretically, we can provide estimated per-
formances in term of E2E upstream latency and network lifetime. We use
the equations provided in this section to estimate the limits a TSCH-based
network can achieve, given a routing topology and link quality informations.
In the following sections, we test those equations against real-world network
performance using the 6TiSCH simulator, a simulator dedicated to 6TiSCH
networks.
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6.2 Simulating the IIoT

Before a company adopts (and invests in) 6TiSCH, it needs to know whether
the technology works for its applications. This means answering very down-
to-earth questions about the performance of the network: What is the latency
distribution 6TiSCH would offer in this particular industrial deployment? If
I use 6TiSCH in my smart agriculture application, how often will I have to
replace batteries? Would 6TiSCH offer over 99.999% end-to-end reliability
in this particular smart parking deployment? What is needed to answer
these questions is a way of benchmarking the solution standardized today.
That is, we need a tool which can turn a particular deployment and traffic
pattern in key networking performance indicators such as per-node battery
lifetime, end-to-end reliability, and latency distribution.
Of course, it would be possible to answer these questions through a com-

prehensive real-world experimentation campaign. And while extensive ex-
perimentation is happening (and will be happening more and more), we argue
that it lacks the flexibility of doing quick “what-if” analysis. For that, sim-
ulation offers several advantages. First, it allows us to quickly estimate the
performance for a given scenario and a set of parameters. Second, it allows
us to tune the parameters in a flexible manner until the desired performance is
reached, and map these values to the real-world deployment. That being said,
simulation is necessarily an imperfect model of physical reality, in particular
the radio propagation/connectivity between nodes. And while simulation re-
sults must be taken with a grain of salt, they are a necessary first step before
any deployment (discussed further in Section 5.2).
To conduct our work, we combine the large datasets we obtain from pre-

vious work together with the knowledge we gain from comparing them.
We compare real-world network results with optimized network results

obtained using Trace-Based Simulation in Section 6.3. We present the
6TiSCH Performance Estimator in Section 6.4, a tool to predict 6TiSCH
network performance.

6.2.1 Related Work

Network simulation is a common approach used in the design, implementa-
tion and performance evaluation of different algorithms and protocols when
there is a need for assessing the behavior of a network given a set of models
and constraints. In the low-power wireless case, discrete event-driven net-
work simulators are widely used since (1) they can be used as a flexible and
inexpensive tool for testing the network without the need of having to deploy
an actual physical network, and (2) they can be more accurate and realistic
than mathematical models where usually simplifications and abstractions are
assumed.
Although real-world deployments are the most reliable approach for eval-
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uating network performance, it involves important practical difficulties (lo-
gistically and economically), not only for deployment and testing but also for
modifying and debugging the network. This is especially relevant in large-
scale deployments. Unlike real-world deployments, network simulators allow
us to flexibly switch and exchange the different protocols and layers in the
stack and quickly evaluate network performance for a number of configura-
tions and scenarios.
Mathematical models and problem formulations, although very relevant

for describing and predicting behaviors, sometimes lack the accuracy present
not only in the standards and RFCs but also aspects inherent to real-world
deployments. In this sense, network simulators can provide the required
standard-compliant accuracy in a flexible manner. Additionally, complex
models become impossible to solve in acceptable time when the network size
increases. This makes network simulators a crucial research tool for bridging
the mathematical models with real-world deployments.
The open-source network simulators NS-2 [86] and JSim [87] have been

traditionally used for simulating low-power wireless networks. Currently,
NS-3 [88], OMNet++ [89] and TOSSIM [90] are arguably the most widely
used. However, none of these simulators fulfill the goals for which the
6TiSCH Simulator was designed: compliance with the standard, scalability
and simplicity.

• NS-3, an advanced and more modular version of NS-2, is probably the
most widely used network simulator today. It has a number of mod-
ules for different technologies and protocols, and the support of a big
community of users. Although NS-3 is a very powerful simulator, its
complexity and generic purpose involve a significant learning curve and
non-significant programming time for a non-expert user. No 6TiSCH
implementation currently exists.

• OMNet++ is also a very extensively used simulator for simulating low-
power wireless networks. Its INET framework implements most of the
more common network protocols. A very realistic PHY layer is avail-
able in Castalia [91], an OMNet++-based simulator which implements
accurate wireless channels and radio access models. As in NS-3, no
6TiSCH implementation is available.

• TOSSIM is a simulator for TinyOS [92]. Although TinyOS has been
one of the first low-power wireless implementations, support has offi-
cially ended in 2013.

Other emulation options are available, including Cooja [93] (the Contiki
emulator)1 and OpenSim [94] (the OpenWSN emulator). These platforms

1A less detailed, but fully-simulated version is also available, but is still significantly time
consuming.
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Simulator Learning Curve Scalability 6TiSCH implementation Standard-Compliant
ns-3 High Medium None N/A

OMNet++ High Medium None N/A
TOSSIM Medium High None N/A

Cooja (emulator) High Low Yes (Partial) Partially
OpenSim (emulator) High Low Yes Yes (byte-accurate)
6TiSCH Simulator Low High Yes Yes (behavioral)

Table 6.1: Comparison between the 6TiSCH Simulator and the different net-
work simulator alternatives.

are very powerful for emulating the behavior of a 6TiSCH network without
needing the actual hardware, since they run the same binary as goes on a low-
power wireless device. Yet, the emulation approach has two main drawbacks.
First, unlike discrete event-driven simulators, their scalability is poor, since
the real-time requirements of the instances limits the size of the network up to
few tens of nodes. Second, due to its bit-level accuracy, new implementations
in routing, scheduling functions or traffic management require significantly
more effort than in discrete event-driven simulators where some functions
can be abstracted.
A comparison between the different existing alternatives is shown in Ta-

ble 6.1. It evidences why the 6TiSCH Simulator has been developed. First,
it has a 6TiSCH implementation that follows the requirements specified in
the 6TiSCH RFCs and drafts (e.g. Cooja does not implement MSF). Second,
it scales up easily up to several hundreds of nodes. Finally, it has low com-
plexity, enabling to quickly implement and test different scheduling functions,
RPL objective functions and traffic management strategies. These points are
detailed in Section 6.2.2. In that sense, the 6TiSCH simulator is not really
comparable to NS-3 or OMNet++, since they are generic purpose simulators
which contain a high number of libraries supporting different protocols and
models. The 6TiSCH simulator is a highly specialized protocol specific tool
for fast prototyping.

6.2.2 6TiSCH Simulator

The 6TiSCH Simulator is a discrete-event simulator written in Python. Its
design minimizes typical simulation drawbacks by careful abstractions spe-
cific to 6TiSCH. It makes no attempt at simulating physical behavior that
can be better studied with real hardware such as: synchronization issues due
to imperfect crystals, bit-specific transmission errors, hardware-dependent
processing delays. Instead, it focuses on simulating the behavior that is ob-
served in the network from the MAC layer. We achieve this with two ab-
stractions. First, we quantize time in TSCH slots: an event can only take
place at the slot boundary. Second, we abstract the protocol messages to only
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Figure 6.4: Internal architecture of the 6TiSCH Simulator.

carry semantically-relevant parameters: exchanged messages are not byte-
accurate.
We build upon these two abstractions to provide a simulator that can ac-

curately monitor:

• the behavior of the scheduling function in response to generated traffic
(in frames/second).

• the behavior of the routing protocol in response to topological changes.

• the behavior of 6P in response to MAC-layer drops.

• the behavior of the application in response to scheduling, routing, and
network stack configuration.

Different simulator instances can be scheduled to execute in parallel on
available processor cores (tested up to 56 cores).
The simulator is implemented in approximately 8000 lines of Python code,

spanning 6 core files and a graphical interface2. The internal architecture
of the simulator is shown in Fig. 6.4. The main component is Mote, where
the major part of the 6TiSCH stack is implemented. It is configured by
SimSettings, which contains the input parameters introduced by the user.
Mote also generates metrics for SimStats, and schedules events that are
scheduled and processed by SimEngine. Some of these events are the TXs
and RXs, which are evaluated by Propagation depending on the existing
Topology.
Now that we defined our tools, we show in the following sections how

we use them to estimate the performance of TSCH-based networks. In Sec-
tion 6.3, we compare real-world results with simulator ones. We replay the
real-world routing graph, link quality and network configurations in the sim-
ulator, and apply different scheduling algorithms. We try to find the distance

2In contrast, other network simulators, such as NS-3 in the current 3.28 version, have up
to 1,483,072 lines when considering ”.cc”, ”.h” and ”.py” files.
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between commercial products performances and the theoretical optimum. In
Section 6.4, we generalize our approach and estimate the 6TiSCH perfor-
mances under a wide range of scenarios.

6.3 Real-World vs. Simulation

To have a better idea of the capabilities of TSCH, I first wanted to know its
performances in commercial products, and use this as a point of reference. To
do so, I deployed a SmartMesh IP network in a building across three floors
and recorded its network statistics, particularly looking for three Key Per-
formance Indicators (KPIs): E2E Upstream Latency, E2E Reliability, and
Network Lifetime. All three are described in detail in the following para-
graphs. I then compared those reference results against simulator results
using the same network configuration (e.g. data rate, topology, link quality).
My goal is not to verify the accuracy of the simulator (this is already done
in [95]), but to quantify and understand the difference between theoretical
and experimental TSCH limits.
We deploy a 50 node SmartMesh IP networks in both Inria-Paris office

buildings (as it is done in the EvaLab presented in Chapter 4) for 72 hours,
and log all network events and network statistics. We could not reuse net-
work statistics we collected in Chapter 4, as we wanted to test the network
in various schedule configuration. We then “replayed” the topology and links
connectivity in the simulator. Finally, we compare the results against theo-
retical limits.

6.3.1 Experiment Description

We deployed 50 Analog Devices DC9025 boards equipped with external an-
tennas on the ceilings of 4 floors in the Inria-Paris building. Each node has
two parents, and sends its temperature (27 B payload) every 30 seconds.
We ran 3 experiments for 24 hours each, and logged the network statis-

tics. In each experiment, we varied a parameter called base bandwidth
(base_bw). The base bandwidth is the expected time interval between pack-
ets, in ms. We ran our experiment with the base bandwidth values 10,000,
20,000 and 30,000. The smaller the base bandwidth, the more cells are al-
located. We thus expect the experiments with base_bw = 10000 to have a
shorter E2E US latency and a smaller network lifetime than the experiment
with base_bw = 30000.

6.3.2 Replaying the Experiment

To replicate the SmartMesh IP network, we use the same configurations:
50 nodes sending a 27 B message every 30 s.
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Wedisable RPL and force the topology so that the network graph and links
quality (PDR) are the same as in the real deployment. In SmartMesh IP, each
node has two parents whereas in the default 6TiSCH configuration of RPL
there is only one parent per node. In our simulation, we chose to use only the
parent with the best PDR, or the root if the root is one of the two parents (to
reduce the load of the one-hop nodes).
To force the topology in the simulator, we first disable RPL and its tasks

(e.g. sending of DIO and DAO, rank calculation) as well as the joining mech-
anisms (such as the secure join). Then, based one the topology we extracted
from the real deployment traces, we force the neighbor tables, the preferred
parent, and the time source neighbor (used for time synchronization). We
only start the simulation when all neighbors are set up. As we want to take
into account the topology changes over time, the real deployment trace and
the simulation topology are synchronized. When the simulation reaches the
time of an event in the trace file, the simulation topology is updated (including
the neighbor tables and preferred parents).
Like the topology, the scheduling task is ran every time there is a change

in the trace file. An overall schedule is built and then pushed into the nodes
schedule. From the nodes’ point of view, the scheduling changes are instan-
taneous. Again, this is somewhat artificial, as in 6TiSCH nodes need to ex-
change data to modify their schedule.
In IEEE802.15.4-2015, there are 6 different types of timeslots:

• TxDataRxAck. A timeslot during which the node sends some data
frame, and receives an acknowledgment (ACK) indicating successful re-
ception.

• TxData. Similar to the previous, but no ACK is expected. This is typi-
cally used when the data packet is broadcast.

• RxDataTxAck. A timeslot during which the node receives some data
frame, and sends back an ACK to indicate successful reception.

• RxData. Similar to the previous, but no ACK is exchanged.

• IdleListen. Time slot during which a node listens for data, but receives
none.

• Sleep. Time slot during which the node’s radio stays off.

We use the results from the radio chip (LTC5800-IPM) datasheet to de-
termine the charge consumed by the mote in type of timeslot. This enables us
to estimate the energy spent by each mote, at any time. The values are listed
in Table 6.2.
We estimate the lifetime of each node assuming a 2821.5 mAh capacity

(a pair of Energizer L-91 AA batteries, accounting for a 10% decrease due to
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Type of slot Charge
TxDataRxAck 54.5 µC
TxData 52.0 µC
TxDataRxAckNone 54.5 µC
RxDataTxAck 32.6 µC
RxData 28.6 µC
IdleListen 6.4 µC
Sleep 0 µC

Table 6.2: The charge spent by a mote for each type of timeslot.

manufacturing differences). We measure the energy spent from the moment
the mode joins, until the end of the simulation. In SmartMesh IP, we measure
the time delta and energy delta between the first and the last HRDevice (the
first HR is sent 15 min after the mote joined).

6.3.3 Simulating the Limits

Cascading Load-Based Scheduling

We first calculate each mote’s required Load, that is, the total number of cells
each node requires. Then we sort the nodes by decreasing Load order. Start-
ing with the most loaded node, we allocate the cells the node requires for its
own traffic to be transfered to the root in a time (i.e. slot_offset) increasing
manner. We then repeat this for each node, until all required cells are sched-
uled.

Algorithm 1 Cascading Scheduling Algorithm

Calculate Load of each node
for node ∈ nodes do
node.Load←

∑
Tx(node)× knp +Rx(node)× kcn

Allocate cascading cells for each flow
slotOffset← 0
for node ∈ nodes, ordered by decreasing Load do
child← node
while child != root do
getNumberOfRequiredTransmissions(child, child.parent)
for each requiredTransmissions do
allocateFirstAvailablePairOfCell(child, child.parent)
slotOffset← slotOffset+ 1

child← parent
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This algorithm matches (6.9).
To calculate the number of retransmissions required on a flow, we use

Ri = R1/h, where Ri is the expected reliability for a link, R the expected E2E
reliability, and h the number of hops in the flow (i.e. the number of links). This
leads to a sub-optimal total number of retransmissions (see (6.8)). A greedy
algorithm could be used to find the best number of retransmissions per hop so
that the sum of the retransmissions is minimized on the path considered.
We use flow-prioritization to make sure that when using a Tx cell, if mul-

tiple frames are available in a node’s frame queue, the frame associated with
the cell’s flow is sent fist. In 6TiSCH, this is done using the concept of Track.
Both cells and frames can be associated with a trackID. We use that identifier
to prioritize the frames.
When multiple frames are available, a node’s frame queue and none of this

frame is associated with the current cell trackID (or no trackID is associated
with the current cell), the first frame to send is the one that has the oldest
timestamp. This is known as the Oldest First mechanism. This mechanism
helps reduce the maximum latency (we did not quantify the gain in our study).
Note that this mechanism can be extended to work with multiple types of QoS
such as presented in Kausa [21], where certain frames have more stringent
latency requirements than other.

Simulation Parameters

We ran the simulator under the configurations summarized in Table 6.3.
We run the simulator for 20,000 slotframes. With an average of 600 slots

per slotframe and a slot duration of 7.25 ms (the SmartMesh IP value), this
corresponds to 24 h of simulated time, i.e. the same as the SmartMesh IP
traces we collected.

Parameter Value
num. nodes 50
num. runs 100
num. channels 15
app data rate 1 pkt every 30 s
slot duration 7.25 ms
num. sloframes 20,000

target minimum E2E US reliability 99.999%
target minimum E2E US Lifetime none, then [1-3] years

Table 6.3: The 6TiSCH Simulator Parameters.
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Simulation Results

Table 6.4 lists the results obtained from the simulation. We explain how we
obtained those results in the next section.

SmartMesh IP simulation
bbw_10s bbw_20s bbw_30s min yr1 yr2 yr3

E2E US Latency (s) 9.76 22.21 17.28 4.69 11.06 17.33 23.37
Net. Lifetime (yrs) 2.99 2.99 2.82 1.08 1.88 2.63 2.98

E2E US Reliability (%) 100 100 100 100 100 100 100

Table 6.4: The 6TiSCH Simulator Results.

6.3.4 E2E Upstream Latency

The first result we look at is E2E upstream latency. To verify the equations
presented in Section 6.1, we start by using only the first network snapshot
collected from the 24 h SmartMesh IP network with base_bandwidth =10 s.
By applying the Load-based Cascading scheduling algorithm (Algorithm 1),
we find that the slotframe size is 415 slots and the maximal cascade size
is 54 slots. Note that (6.9) also results in a slotframe size of 415 slots.
From (6.10), we expect the maximum E2E upstream latency to be (571 −
1 + 75)× 0.00725 = 4.67625 s.
In Fig. 6.5, we plot the latency CDF for the SmartMesh IP network in its

3 configurations, and the simulator results in its 4 configurations. In the first
simulation configuration (sim_loadbased_min), we minimize the latency by
setting the slotframe length to the smallest schedule length we found (given
by (6.9)). In the following simulation configurations, we increase the slot-
frame length so that the network lifetime increases by 1, 2 and 3 years, re-
spectively (given by (6.4)). The number in parenthesis in the legend indicates
the maximumE2EUS latency of 99.999% of the packets. We can see that the
schedule that minimizes the maximum E2E upstream latency offers a shorter
latency than the SmartMesh IP network in its 3 configurations, with 99.999%
of the packets delivered within 4.69 s. This number is slightly below the ex-
pected maximum E2E upstream latency defined in the previous paragraph.
We can also see that lowering the base_bw SmartMesh IP parameter low-

ers the E2E US latency for 9̃9%, but after that limit, the last percents are not
following the same trend (the 99.999% value for base_bw = 30000 is lower
than for base_bw = 20000).
Looking at the simulation results for the configurations that aim at ex-

tending the network lifetime, we can clearly see that our solution is not good
at (and not designed for) reducing the average E2E US latency of the pack-
ets, but outperforms the SmartMesh IP latency when looking at the extreme
values.
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Figure 6.5: End-to-end Upstream Latency CDF. The value in parenthesis
indicates the maximum value for 99.999% of the packets.

6.3.5 Network Lifetime

The second result we look at is network lifetime. In Fig. 6.6, we plot the
lifetime CDF of each mote for the SmartMesh IP network in its 3 configu-
rations, and the simulator results in its 4 configurations. We define network
lifetime as the time until the first mote runs out of battery, i.e. the minimum
of the motes’ lifetimes. The number in parenthesis in the legend indicates the
minimum lifetime. We can see that the schedule that minimizes the maximum
E2E upstream latency also presents the worst network lifetime.
The first simulation configuration is only looking at latency and tries to

minimize the maximum E2E US latency. For the 3 other configuration, we
increase the slotframe size by adding Idle frames at the end of the slotframe.
This will increase the network lifetime but also increase the E2E US latency.
For the last 3 simulation configuration, we respectively added 388, 787 and
1184 slots to the slotframe. We obtain this value by looking at the average
energy consumption of the first simulation (without extra Idle slots) and com-
puted the number of Idle slots that needed to be added to increase the network
lifetime by 1, 2 and 3 years respectively.
The network lifetime for each network configuration (simulated or real)

is lower than expected. From the SmartMesh IP Performance Estimator, the
expected lifetime of a 50-node network sending messages every 30 s is above
6 years. We believe that this is due to the presence of links with poor quality.
If nodes cannot find at least two parents with good link quality (PDR stable
and above 50%), they are forced to use unstable links. This largely increases
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Figure 6.6: Motes’ Lifetime CDF. The minimal value in parenthesis indicates
the network lifetime.

the number of retransmissions and topology changes. This illustrates the fact
that device placement and density are important and must not be forgotten
when deploying real-world networks.
Compared to simulation, we attribute the higher network lifetime of the

SmartMesh IP results to the use of two parents per mote. Using multiple
parents allows to balance the load between the different available paths and
thus to reduce the load of the most loaded nodes (the ones that reduce the
network lifetime). In SmartMesh IP, each node uses its two parents fairly.
When the network is formed and we know that no other node will

join, SmartMesh IP has the ability to turn off advertisement messages
(i.e. IEEE 802.15.4 Enhanced Beacon). After turning advertisement off,
no other node is able to join the network. Turning advertisement off saves
energy. In the SmartMesh IP Performance Estimator, the average electric
charge required for advertisements is set to 16.3 µA for instance. This could
correspond to years of network lifetime. In the network we deployed, we left
the advertisement on. This further explains the low network lifetime we ob-
serve in Fig. 6.6

6.3.6 Discussion & Future Work

Virtual Frame Drop Limit

One issue with this approach is that we introduce a virtual limit on the number
of retransmissions after which frames are dropped, even if the frame could be
delivered within the latency requirement. Rather than dropping the frames
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after a given number of retransmissions, we could keep on trying to transmit
until the frame reaches a limit lifetime. Not dropping a packet after a certain
number of retransmissions would however impact queue size and use schedule
resources reserved for another frame. While there is space for optimization,
this subject requires an in-depth evaluation.

Payload Size & Fragmentation

In the simulator, we do not take into account the payload size to calculate the
energy consumption. We consider the worst case, that is, when frames are
127 B long. A finer energy model could be user that take into account the
time need for the transmission of a frame depending on its size.
We also only studied unfragmented packets. As explained in Kausa [21],

the probability of successful transmission of a packet is the product of the
probability of successful transmission of all its fragment. Our equation cur-
rently do not take this into account.

Adaptivity to Changes

In this section, we only considered applications with a fixed resources require-
ment. This is not always the case in reality. Applications might dynamically
adapt the amount of cells they require. For time-critical applications where
resources requirements might change over time, and if those requirements
need to be done as fast as possible not to slow down the new traffic, we argue
that they should plan ahead and reserve resources for the worst-case scenario.
If new application requirements are not required as soon as possible and will
not slow down the new traffic while reserving the new resources, the new
schedule can be entirely rebuilt and adapted to the new traffic.
Our goal is to understand the capabilities and limits of TSCH, thus, we do

not consider routing changes. Routing changes would however have a large
impact on E2E latency, energy consumption and overall reliability, especially
with one parent topologies. In Section 4, we show that those routing changes
can be lowered to a few per days on a 23-node network. We thus assume
that the topology stability should be the first objective to take into account.
For the remaining, reserving flow resources over multiple parent topologies
should be investigated to ensure that at least one track is always available (or
at least for 99.999% of the packets).

6.3.7 Conclusions

In this section, we compare the results obtained from a real network deployed
in a building office, with results from a copy of that same network in the
6TiSCH simulator under different scheduling configurations. This experi-
ment confirms the equations presented in Section 6.1. Given a target mini-
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mum E2E upstream reliability, we show that we are able to predict the upper
performance bounds of a TSCH network taking into account the topology and
links quality. There is a clear trade-off between E2E upstream latency and
network lifetime that we are now able to quantify.

6.4 6TiSCH Performance Estimator

Testing the performances of a new lower-power wireless solution using simu-
lation is not enough. Testing the performances of a new lower-power wireless
solution using testbeds is not enough. To accurately validate aWSN protocol,
the protocol has to be tested under various conditions (or at least in the worst-
case conditions). To answer such demand, we propose the 6TiSCH tisch Per-
formance Estimator, a tool that combines simulation and testbed, along with
network statistics obtained from real-world deployments to provide network
performance estimations when designing protocols for the IIoT.

6.4.1 Trace-based Simulation

The default propagationmodel implemented in the 6TiSCHSimulator is based
on the Pister-Hack model [96]. This model is used to obtain the initial RSSI
value of each pair of nodes in the network. This value is calculated by sub-
tracting a uniform variance of 40 dB from the received signal strength calcu-
lated using the Friis model. The model was independently verified in an ex-
perimental setting [36]. RSSI values are then converted to Packet Delivery
Ratio (PDR) values by a conversion table that is based on real-world deploy-
ments3. It accurately reflects the relationship between the RSSI and PDR in
large indoors industrial scenarios in the 2.4 GHz band. This model does not,
however, reflects the PDR variation over time. We shown in Chapter 5 that
this parameter can have a large impact on network performance.
What we need is a way to replay the connectivity traces we collected in

previous work in order to precisely reflect the radio connectivity. We modified
the 6TiSCH Simulator in order to do so. We replaced the default Pister-Hack
propagation model and made the simulator use trace files instead. As said
earlier, the time is quantized in TSCH slots and the length of a slot is known.
It is therefore possible to map the simulation time to the trace file time. The
simulation connectivity then follows directly the trace connectivity. If the
simulation runs for longer than the traces, the simulator connectivity model
starts replaying the trace from the start, i.e. it “loops”. If the simulator has
more nodes than the trace, then the simulation is aborted.

3 The connectivity traces were obtained from the http://wsn.berkeley.edu/
connectivity/ project at the University of California, Berkeley, lead by Thomas Watteyne
and Prof. Kris Pister. The dataset used is “soda”, created by Jorge Ortiz and Prof. David
Culler.
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Using only one trace results in unrepresentative outputs. The simulation
needs to runs on a series of traces in order to have significant results.

6.4.2 Inputs and Outputs

The input and output parameters are similar to the ones presented in the
SmartMesh IP Performance Estimator we presented in Chapter 4. The user
provides a topology (i.e. the number of motes per hop in a table or a file) and
an application data-rate for each mote. On top of that, the user can select
the Scheduling Function (SF), or the RPL routing policy. The 6TiSCH Per-
formance Estimator then outputs a series of KPIs estimations (e.g. latency,
network lifetime).
The main difference with the SmartMesh IP Performance Estimator,

apart that it is based on the 6TiSCH standards, is that the 6TiSCH Per-
formance Estimator uses per-link and time-varying link quality whereas the
SmartMesh IP Performance Estimator uses a link quality that is fixed and the
same for each link. The user can select a connectivity trace from a list of files
(i.e. the connectivity traces we collected during this thesis).
The output KPIs are extrapolated from similar simulator results. As we

do not want to run simulations every time the user requests a performance
estimation, we pre-run simulations and extrapolate the results to match the
user requested combination. If the user asks for 45 nodes and the simulation
was run only for 40 and 50 nodes (with the same scheduling and routing),
we can estimate the value for 45 nodes. Every time a new version of the
simulator is released, the simulator runs a series of different combinations
(e.g. number of motes, application data-rates, schedules) and produce KPIs.
From those KPIs we extrapolate the estimated performances of the network
that corresponds to the user configuration.

6.4.3 Status

The 6TiSCH Performance Estimator is still on development. We believe that
this tool (or a similar one) should be used to estimate the performances of
6TiSCH networks and be part of the 6TiSCH protocol development process.
To address Industrial IoT challenges and build networks that can be depended
upon, we need a common way to test and validate the network performances.

6.5 Summary

In this chapter, we study the limits and trade-offs of TSCH-based networks.
We start by presenting the theoretical limit of E2E upstream latency and how
it trades off against network lifetime. The latency can be infinite due to the
fact that the probability of an infinite number of consecutive retransmissions
is not null. However, we show that we can provide bounds when observing
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a subset of the packets. Following a similar approach, we show that network
lifetime and its trade-off against latency can also be quantified. We then com-
pare results obtained from simulation with network statistics from real-world
traces, and explain the observed differences. We show that the commercial
product we use has shorter E2E US latency on average but longer maxi-
mum latencies than when using an algorithm to minimize maximum the E2E
US latency. Finally, we present the 6TiSCH Performance Estimator, a tool
for low-power wireless protocol designers to estimate the performance of a
6TiSCH network.
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Chapter 7

Conclusion and Perspectives

Currently, commercial IIoT products offer wire-like end-to-end reliability
(>99.999%) together with very long network lifetime (>10 years). While
those solutions are not fully standardized yet, they will soon be, and we con-
sider E2E reliability issues as a solved problem. In the meantime, network
solutions that address time-critical applications are at their early development
stage, and their latency performance bounds are still not fully understood.
This thesis contributes to filling this gap and understand the performance
limits and trade-offs of TSCH-based networks in terms of e2e latency and
network lifetime.

7.1 Contributions

To start with a clear understanding of the current IIoT challenges, we de-
ployed 4 real-world low-power wireless sensor networks:

• PEACH: A frost prediction system for peach orchards in Mendoza (Ar-
gentina). We deployed 23 devices on a 11km2 area to measure temper-
ature and humidity at different locations in the orchard.

• SnowHow: A snow-pack monitoring system in the Sierra Nevada (Cal-
ifornia). We deployed 27 devices in a 100km2 area to measure snow
level, solar radiation and other environmental data in the mountain.

• EvaLab: A Smart Building monitoring system in Paris (France). We
deployed 22 devices in a 800m2 area to measure temperature in an office
building.

• SmartMarina: A metering and management system for marinas in
Agde (France). We deployed 19 devices in a 5km2 area to measure
the presence and electricity consumption of the boats in the marina.
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We collected a total of 3M network statistics and 32M sensor data and
made those publicly accessible. We believe that this is the largest real-world
low-power wireless dataset available to the research community. We analyzed
those datasets and found not-so-intuitive results, such as the fact that a very
low number of routing changes (less than 5 per day) are actually happening
in real-world deployments.
We collected radio connectivity traces on different testbeds to have data

that is dense in time, space and frequency. We compared those radio con-
nectivity traces with results obtained from the real-world deployments, and
identified key metrics and behaviors that must be taken into account when
developing a protocol for the IIoT. We further proposed a methodology to
ensure that a protocol that performs well on a testbed also does so when mov-
ing beyond testbeds. More specifically, we looked at External Interferences,
Multipath Fading, and their variations over time.
We identified the theoretical limits and trade-off points of the Time Slot-

ted Channel Hopping (TSCH) mode of the IEEE 802.15.4 MAC layer. We
focused on E2E upstream reliability, E2E upstream latency, and network
lifetime. We tested those theoretical limits against real-world performances
by “replaying” connectivity traces and topologies in the 6TiSCH simulator.
We show that we are able to quantify the E2E upstream latency bounds in
99.999% of the network packets. We also propose a method to estimate the
trade-off between network lifetime and E2E upstream latency.
Finally, we present the 6TiSCH Performance Estimator, a tool for low-

power wireless protocol designers to estimate the performance of a network,
given a set of inputs (e.g. network topology, connectivity traces, traffic).

7.2 Perspectives

Designing Protocols for the IIoT

The available of open testbed platforms to the research community increased
the impression of realism in the networking protocol validation process. Yet,
a solution validated on a testbed might not work well when deployed in real-
world conditions. We still lack a generic way of characterizing networks
experimentation. The IoTBench initiative proposes an architecture to char-
acterize a network experiment considering its inputs, outputs, and observed
metrics. I believe adopting a common benchmarking architecture is the right
approach to measure and compare network experiments in a standard way, in
order to produce results that one can rely upon.

Trace-based Simulation

Simulation is a great tool for rapid evaluation and performance estimation
of networking protocols. In wireless networking simulators, the component
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to simulate which is most tricky is often the radio propagation. Using mod-
els that are too simple often leads to unrealistic results; models that are too
complex often leads to high computation and processing time. I believe Trace-
Based Simulation should be used more, as it offers a good trade-off between
complexity and realism.

6TiSCH Performance Estimator

The 6TiSCH Performance Estimator is a tool to help protocol designers es-
timate the performance of their protocols. To go further than just provid-
ing performance estimation, this tool should be extended to identify the per-
formance bottlenecks and protocols weak points. We could consider using
Machine-Learning techniques to identify performance bottlenecks that are not
straightforward.
Both the 6TiSCH Simulator and 6TiSCH Performance Estimator are

made to test the capabilities and performances of the 6TiSCH networking
stack. We envision those tools to be part of the standardization process
and that they should be systematically used before validating any protocol
in 6TiSCH.

Node’s Mobility

So far we only considered networks where nodes are static. Our work could be
extended to encompass networks with mobile nodes. As reserving resources
along a path takes times and energy, I do not believe that networks where
every node is mobile can offer reliability or latency guarantees. However, I
think that hybrid networks can. By having a fixed backbone the network can
allocate extra resources to carry traffic of potential leaf mobile nodes. Thus,
the mobile nodes only have to allocate resource with their parents, the rest of
the path to the root being already reserved. Such scheduling policy needs of
course to be tested and validated.

Downward Traffic & Actuation

In this thesis, I only studied upward traffic for convergecast applications. This
type of traffic encompasses periodic monitoring applications and event-driven
data collecting applications. We showed that TSCH-based networks can pro-
vide predictable performances, and can be used in time-critical applications.
However, we did not study the performance of such networks when using
downstream traffic. Providing latency performances estimation for down-
stream traffic would enable the use of low-power wireless for applications
that require actuation in industrial applications.
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Industrial Process Control

Industrial Process Control (IPC) is a production process where tasks are auto-
mated to optimize the efficiency of the process. IPC applications require high
reliability and low latency. Schindler et al. introduced the first characteriza-
tion and implementation of a closed-loop wireless feedback control network
using TSCH over a 4-hop network[38]. To the best of my knowledge, this is
the first work on IPC using completely standards-compliant and TSCH-based
network. As IIoT matures, it tends toward applications that require service
guarantees and predictable performances.
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