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Abstract

Co-clustering is a class of unsupervised data analysis techniques aiming at ex-
tracting the underlying dependency structure between the rows and columns
of a data table in the form of homogeneous blocks, known as co-clusters.
These techniques can be distinguished into those that aim at simultaneously
clustering the instances and variables, and those that aim at clustering the
values of two or more variables of a data set. Most of these techniques are
limited to variables of the same type, and are hardly scalable to large data
sets while providing easily interpretable clusters and co-clusters.

Among the existing value based co-clustering approaches, MODL is suit-
able for processing large data sets with several numerical or categorical vari-
ables. In this thesis, we propose a value based approach, inspired by MODL,
to perform a simultaneous clustering of the instances and variables of a data
set with potentially mixed-type variables.

The proposed co-clustering model provides a Maximum A Posteriori
based summary of the data that can be used as it is for exploratory analysis
of the data. When the summary is large, exploratory analysis tools, such as
model coarsening, can be used to simplify the co-clustering which facilitates
the interpretation of the results. We show that the proposed co-clustering
approach can handle large data and extract easily interpretable clusters from
mixed data with more than 10 millions observations. We also show the ro-
bustness of the approach, its capacity to extract inter-dependence between
the variables, and its good behavior in extreme cases such as in the case of
pattern-less data and in the case of perfectly correlated variables.
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Résumé

Le co-clustering est une classe de techniques d’analyse non supervisée visant
à extraire la structure sous-jacente de dépendance entre les lignes et les
colonnes d’un tableau de données sous la forme de blocs homogènes, appelés
co-clusters. Ces techniques peuvent être différenciées en deux types: celles
qui effectuent un groupement simultané des instances et des variables d’une
matrice de données, et celles qui effectuent un groupement des valeurs de
deux ou plusieurs variables. Toutefois, la plupart de ces méthodes se lim-
itent à des variables du même type et sont difficilement adaptables à des
bases de données de grande taille, tout en fournissant des clusters facilement
interprétables.

Parmi les méthodes basées sur la classification des valeurs, MODL per-
met de traiter des données de grande taille et de réaliser une partition de
plusieurs variables, numériques et/ou catégorielles. Dans cette thèse, nous
proposons une approche de classification croisée, inspirée de MODL et basée
sur le groupement des valeurs, pour effectuer un groupement simultané des
instances et des variables d’un ensemble de données contenant des variables
potentiellement de type mixte.

Le modèle proposé est basé sur l’estimation par Maximum A Posteri-
ori et fournit un résumé de la base de données, exploitable pour l’analyse
exploratoire. Lorsque ce résumé est très grand, des outils d’analyse ex-
ploratoire, comme la fusion successive des clusters, peuvent être utilisés
pour simplifier le co-clustering, ce qui facilite l’interprétation des résul-
tats. Nous montrons que l’approche proposée permet de traiter des don-
nées volumineuses et d’extraire des clusters facilement interprétables à par-
tir de données mixtes comportant plus de 10 millions d’observations. Nous
montrons également la robustesse de l’approche, sa capacité à extraire
l’interdépendance entre les variables, et son bon comportement dans des
cas extrêmes comme dans le cas des données sans motifs et dans le cas des
variables parfaitement corrélées.
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Chapter 1

Introduction

Nowadays, the amounts of data collected from different sources, in various
formats, and for various application areas is growing not only in the number
of objects and attributes, but also in the complexity of the patterns to be ex-
tracted from the data. This has led to an increasing need for the development
of techniques and tools to assist the analyst in extracting useful information
(knowledge), from the rapidly growing volumes of data. The development of
such techniques would enable intelligent and automatic analysis, exploration
and organization of large and complex data, to extract and understand in-
formation. Moreover, with the emergence of connected objects, the volumes
of available data and their diversity can only keep growing.

On the one hand, the increasing amount of data and the development of
data mining techniques makes knowledge discovery tasks especially interest-
ing for large companies, since they allow the data to be considered as a useful
resource in the decision-making process. On the other hand, the increasing
complexity of the data creates several challenges for the researchers, provided
that many existing techniques are not appropriate to analyze large complex
data. For example, consider the field of market analysis, where millions
of transactions are observed. Data analysis techniques are used to analyze
and summarize the information contained within these large data sets and to
draw conclusions about the data and the studied objects. The collected data
can be anything from demographic descriptors of the customers (age, gender,
social class, occupation, education, income) to markers of customer prefer-
ences such as ratings. The analysis tools can range from simple analysis tools
such as graphical displays such as bar charts and histograms, two-way tables
such as contingency tables, and quantile plots (Amant and Cohen 1995) to
more complex tools such as applying machine learning techniques (Everitt
et al. 2011) to learn a buying pattern or to create a grouping of customers.
Finally, the extracted conclusions can be used in recommendation systems.

However, the growing size of data sets has led to an increasing demand
for efficient and noise tolerant data summarizing techniques for data com-
pression and analysis, while respecting constraints in terms of memory usage
and computation time.

1



2 CHAPTER 1. INTRODUCTION

1.1 Problem definition and main objectives
The main theme of this thesis is the use of co-clustering in exploratory anal-
ysis. Given a data matrix where the rows represent objects and columns
represent their features, the goal of a co-clustering technique is to simulta-
neously extract clusters of objects and clusters of features. The co-clustering
techniques try to exploit the interdependence between the objects and their
descriptive features to create groups of objects and groups of features or of
feature values in a way that best expresses the level of association between
these groups. Hence expressing the association between the two sets.

With mixed-type commercial data in mind (such as e-commerce and
consumer/product data), we seek a simultaneous clustering technique that
would provide an easily exploitable summary of the data. When working
with such data, a first level of complexity arises from the properties of the
various attributes used to describe each data object, such as the fact that
they are categorical or numerical, the cardinality of the domains, and the
dependencies that may exist between different attributes. A second level of
complexity arises from the fact that these data are considerably large and
may have missing values. A third level of complexity arises from the variety
of tasks that can be performed to analyze the data and from the existence
of several alternative ways to perform each task. Thus, depending on the
nature of knowledge one wants to extract, some techniques are more suitable
than others.

Our goal is to propose a co-clustering method that handles data with
mixed-type attributes, handles missing data, provides easily interpretable
clusters and, overall, a good summary of the data and an evaluation measure.

1.2 Outline of the thesis
This manuscript is organized as follows.

• In Chapter 2, we define the problem of co-clustering and explore the
existing literature on the subject. In this chapter, we will notice the
multitude of solutions, their main differences, advantages and limita-
tions.

• In Chapter 3, we propose a new approach for co-clustering mixed-type
data. The approach is based on a user defined pre-processing step
followed by a value oriented co-clustering technique. In this chapter,
we show that the proposed approach enables extracting easily inter-
pretable clusters of objects, captures local as well as global dependen-
cies between the variables, and that it scales to data sets containing
tens of thousands of objects and hundreds of thousands of entries.

• Chapter 4 describes a co-clustering model that formalizes the approach
proposed in Chapter 3. The model eliminates the pre-processing phase
by simultaneously inferring an optimized partitioning of each variable
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and performing a co-clustering, by optimizing a Maximum A Poste-
riori (MAP) based model selection criterion. The model requires no
user parameter and it enables associating values coming from different
variables by setting the data matrix entries as the statistical units.

• Chapter 5 provides experimental results on synthetic and real-world
data sets. These experiments highlight the main features of the co-
clustering model proposed in Chapter 4, some of the possible ways in
which a co-clustering model can be exploited, and provide a didactic
explanation of how the model works and how it differs from the solution
proposed in Chapter 3.

• Finally, in Chapter 6 we draw concluding remarks and highlight pos-
sible future perspectives and use cases for the proposed co-clustering
model.

1.3 Publications
The work presented in this thesis is the subject of the following publications.

1. The work presented in Chapter 3 has contributed to the paper:
Bouchareb, A., Boullé, M., Clérot, F., and Rossi, F. (2017a). Appli-
cation du coclustering à l’analyse exploratoire d’une table de données.
In 17ème Journées Francophones Extraction et Gestion des Connais-
sances, EGC 2017, volume RNTI-E-33, pages 177–188.

2. An extended version of Bouchareb et al. (2017a) is the subject of:
Bouchareb, A., Boullé, M., Clérot, F., and Rossi, F. (2018a). Co-
clustering based exploratory analysis of mixed-type data tables. In
Pinaud, B., Gandon, F., Bisson, G., and Guillet, F., editors, Accepted
for publication in Advances in Knowledge Discovery and Management
Vol. 8 (AKDM-8). Springer.

3. The work presented in Chapter 4 has contributed to the paper:
Bouchareb, A., Boullé, M., Rossi, F., and Clérot, F. (2018c). Un modèle
bayésien de co-clustering de données mixtes. In Extraction et Gestion
des Connaissances, EGC 2018, Paris, France, January 23-26, 2018,
pages 275–280.

4. To perform a co-clustering of mixed data, we have extended the Latent
Block Models to the case of data containing binary and numerical
variables. This extension is not presented in the core of this thesis,
but is the subject of:
Bouchareb, A., Boullé, M., and Rossi, F. (2017b). Co-clustering de
données mixtes à base des modèles de mélange. In 17ème Journées
Francophones Extraction et Gestion des Connaissances, EGC 2017,
24-27 Janvier 2017, Grenoble, France, pages 141–152.



4 CHAPTER 1. INTRODUCTION

5. Appendix B contains an extended version of the work published in
Bouchareb et al. (2017b). This extended version is the subject of:
Bouchareb, A., Boullé, M., Clérot, F., and Rossi, F. (2018b). Model
based co-clustering of mixed numerical and binary data. In Pinaud,
B., Gandon, F., Bisson, G., and Guillet, F., editors, Accepted for pub-
lication in Advances in Knowledge Discovery and Management Vol. 8
(AKDM-8). Springer.
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Chapter 2

Co-clustering for exploratory
data analysis

This chapter gives an introduction to the subject of exploratory data anal-
ysis. In particular, we focus on the co-clustering based techniques. The
objective is to lay out the motivating backgrounds for the rest of the the-
sis by introducing the most commonly known co-clustering techniques, their
advantages and drawbacks as well as their domains of application.

This chapter is organized as follows. First, we briefly outline the con-
text of exploratory analysis in Section 2.1. Section 2.2 presents the types
of data sets we wish to analyze. In Section 2.3, we give a brief overview of
discretization methods and their use for homogenizing the data as well as
some of the most commonly used multivariate data description techniques,
namely clustering and dimensionality reduction techniques. In particular,
we illustrate the various choices involved in the process of data clustering,
starting from the choice of the variables to the choice of the number of clus-
ters, and introduce dimensionality reduction as a commonly used technique
for data visualization and for association extraction. Section 2.4 introduces
co-clustering as an extension of the clustering problem, the most commonly
used co-clustering techniques, the types of structures they extract and their
domains of applicability. In particular, we will distinguish between row and
column based approaches (Section 2.5) and value based approaches (Sec-
tion 2.6). Section 2.7 summarizes the main limitations of these methods and
sets the motivation for the next chapter.

2.1 Introduction
The amount of data available nowadays is too large to process manually.
Hence, one of the most common activities of the data analyst consists in
trying to extract some essence information from an abundance of data.
This urge for information extraction is particularly present in the industrial
context where data is abundant and the necessity to exploit information be-
comes pressing. For example, companies like Orange hold information about
their clients, their purchase history, and their preferences. With a large num-

7
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ber of clients and ultimately a large number of attributes, exploratory data
analysis becomes an essential tool in decision making. In particular, there
is a need to use the collected data about users and their preferences (such
as age, the products purchased, ratings, . . .) to create reliable recommenda-
tions for a set of clients of interest or make general marketing policies like
offering discounts on the products generally purchased together.

Data analysis tools differ in their objectives and underlying hypothesis.
For example, these techniques are usually divided into two main types: su-
pervised and unsupervised methods. In the supervised learning approach,
also called predictive analysis, the goal is to learn a mapping from a set
of inputs x to a set of outputs y, given a so called training set of labeled
input-output pairs D = {(xi, yi)}Ii=1, where I is the size of the training
set (Murphy 2012). These techniques are called predictive because, ulti-
mately, the goal is to predict, using the learned mapping, the output value
yj for new unlabeled values xj . Examples of supervised methods include:
neural networks, simple and multiple linear regression, and support vector
machines (see: Maimon and Rokach (2010), Bishop (2006), Schölkopf and
Smola (2002)).

The second main type of data analysis techniques is the unsupervised
learning approach where only a set of unlabeled inputs D = {xi}Ii=1 is
given, and the goal is to find interesting structure in the data (which is
sometimes called knowledge discovery (Murphy 2012). The work presented
here falls in this context of information extraction and knowledge discovery
in databases. As Maimon and Rokach (2010) put it:

Knowledge Discovery in Databases (KDD) is an automatic, exploratory
analysis and modeling of large data repositories. KDD is the organized
process of identifying valid, novel, useful, and understandable patterns from
large and complex data sets.

Therefore, the goal is to find interesting patterns by organizing and sum-
marizing the data in a way that extracts humanly understandable conclu-
sions. However, the term "interesting" is not well defined in the sense that
the types of expected patterns are either unknown or task dependent, and
that there is no natural error metric as in the case of predictive analysis, for
example. These features make descriptive analysis a more complex task since
the problem is not well defined and lacks a universal evaluation measure. On
the other hand, these same features make descriptive analysis a flexible task
and data dependent tool as there are less performance constraints and the
analyst simply uses a set of discovery tools in order to make statements
about the data and describe what it is or what it shows, through simplifi-
cation. Instead of computing an error metric, the questions to be asked in
an exploratory analysis context are of the type: have the right tools been
chosen with respect to the task at hand, have the tools been used correctly,
how credible are the statements and conclusions.

In the following, we focus on exploratory analysis techniques, which are a
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subset of unsupervised methods, to lay out the motivational backgrounds for
the work presented in this thesis, which falls in the framework of extracting
relevant patterns from the data.

The process of performing an exploratory analysis encompasses a wide
variety of choices that need to be made in order to extract any knowledge
from data. The extracted knowledge, if any, is the composite result of all
the choices. The first of these choices is to define what can be considered as
"data", both in the objective sense and with respect to the type of knowl-
edge we want to extract. The second choice concerns the definition of the
exploratory analysis tools and the type of patterns one is seeking.

2.2 Data representation
Generally, the data D can be of any type and form. However, for easy
manipulation of raw data, the data to be analyzed is usually represented
as a set of points (called objects or instances) in a K-dimensional space
of features (called variables). That is, data are generally represented in
a rectangular table with I rows for the set of instances and K columns
corresponding to the variables.

Choosing the instances and variables to analyze is a crucial phase and
has an important influence on the results. This choice has to take into
account the aim of the study. In particular, the variables have to describe
the phenomenon being analyzed (Anderberg 1973). For example, in census
data, the instances are individual persons and the features could be any
thing from age, income, number of family members, marital status, . . ., to
level of education and household electricity consumption. In market analysis,
when modeling purchasing patterns, the data can consist of a binary matrix
where each column represents a product, each row represents a client, and
an entry is equal to 1 if the corresponding product was purchased by the
corresponding client.

Regardless of the application domain, let X = (xij)1≤i≤I, 1≤j≤K be the
matrix representation of the data containing the observed data values where
I is the number of instances, K is the number of variables, and the entry
xij = v says that the value of the jth variable is v for the ith instance.

Depending on the measured feature, a variable can be:

• categorical (also referred to as qualitative) to designate a variable for
which the space of values is a finite set of un-ordered values,

• numerical (also referred to as quantitative) to designate a variable for
which the values can be ranked in order and are subject to meaningful
arithmetic operations.

Depending on the nature of the variables, data can be uni-type or mixed.
Uni-type data is numerical when all variables are numerical and categorical
when all variables are categorical (note that binary variables are a special
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case of the categorical type but with only two categories). We refer to mixed
data when both types of variables are present.

The goal of this thesis is to introduce an exploratory analysis technique
for large and mixed data sets. More precisely, our goal is to analyze data
containing millions of values (up to 10 millions) while providing easily in-
terpretable results. But first, in the coming sections, we introduce the most
commonly used exploratory analysis techniques. The literature shows that
these techniques are mostly adapted for uni-type data and their performance
can be limited when the data is large and complex in the sense that they
would extract global summaries about the instances or variables but can
miss subtle patterns like local cross-dependencies.

2.3 Standard exploratory analysis techniques
Simple exploratory analysis tools include graphical displays for examining
the shape of the sample distribution such as bar charts and histograms,
two-way tables such as contingency tables, and quantile plots (Amant and
Cohen 1995). More complex exploratory analysis tools include discretization
and scale conversions (Maimon and Rokach 2010, Liu et al. 2002), cluster
analysis (Everitt et al. 2011), and correspondence analysis (Greenacre and
Blasius 2006, Beh and Lombardo 2014). Here, we give a brief overview of
these techniques.

2.3.1 Discretization
Discretization is a data processing procedure that transforms quantitative
data into qualitative data and can also be useful if the variable is categorical
but with too many categories or highly varying frequencies. This process is
an important task of the data pre-processing, not only because some learning
methods do not handle numerical variables, but also because discrete data
and especially intervals are cognitively easier to apprehend and are often
more relevant for a human interpretation than the actual values a variable
takes (Liu et al. 2002). In addition to easier interpretation, the computation
time can be significantly reduced when the data is transformed to a finite
set of categories instead of containing a hypothetically infinite number of
values as is the case for a numerical variable (Ho and Scott (1997), Frank
and Witten (1999), Catlett (1991)). This computation time reduction is
especially relevant if the cutting points are relevant to the learning problem
at hand (Liu et al. (2002), Mittal and Cheong (2002)). Finally, in addition
to harmonizing the nature of the data if it is heterogeneous, discretization
can reveal complex relations between the variables to the learning process
(Chen et al. (2017), Friedman and Goldszmidt (1996)). However, two key
problems in association with discretization are how to select the number of
intervals, and how to perform the discretization (see Maimon and Rokach
(2010) and Liu et al. (2002) for more details on discretization methods).
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Examples of discretization techniques include equal-width and equal-
frequency discretization (Liu et al. 2002, Anderberg 1973), entropy and
minimum description length based discretization (Friedman and Goldszmidt
1996, Fayyad and Irani 1993).

2.3.2 Clustering
Clustering is by far the most widely used exploratory analysis technique.
The goal of clustering is to find a summary of the data in the form of groups
of instances. That is to find an optimal grouping for which the instances
within each cluster are similar, but the clusters are dissimilar to each other.
The similarity between the instances is measured using all the measured
attribute values. Hence, overall, the objects within the same cluster are
assumed to behave similarly with respect to all the measured attributes.

However, in spite of its wide use, data clustering is a challenging task as
it involves many choices (Jain et al. 1999). For example, aside from the data
representation, the major choices in performing a cluster analysis include
the choice of the variables (Anderberg 1973), the structure and type of the
desired clustering (hierarchical, partitioning, density based, grid based, hard,
fuzzy, . . .). Furthermore, many techniques require choosing a similarity or
dissimilarity measure between the items to cluster. Other clustering methods
use a within- and between-cluster variability as a preliminary measure for
clustering optimality (Rencher 2002). Moreover, depending on the type of
clustering and the similarity measure, a variety of different methods can be
used to perform a data clustering. Besides, very often, the number of clusters
need to be specified and there is a multitude of cluster evaluation criteria
(see Jain et al. (1999), and Maimon and Rokach (2010) for a comprehensive
review of data clustering methods).

Because of the existence of several alternative ways to perform a cluster-
ing, and given the lack of consensus on a natural metric to evaluate a clus-
tering, finding an appropriate data clustering is a complex and challenging
task. Furthermore, another level of complexity arises when the data con-
tains mixed-type variables since most clustering techniques are designed for
uni-type data. To cluster mixed data, one of the most common approaches
is converting the data set to a single data type, and applying standard clus-
tering technique to the transformed data (Foss et al. 2016). However, this
raises the same issues raised above for discretization (Section 2.3.1), namely
how to select the number of intervals and how to perform the discretization.

Examples of clustering techniques include: K-means, self-organizing
maps, spectral clustering, density based clustering (Jain et al. 1999).

2.3.3 Dimensionality reduction
A common problem encountered by most of the traditional clustering tech-
niques is the curse of dimensionality (Maimon and Rokach 2010) which refers
to the fact that increasing the number of attributes describing the objects
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quickly leads to significant degradation of the performance of object cluster-
ing techniques (Murphy 2012). In fact, according to Maimon and Rokach
(2010), it has been estimated that, as the number of dimensions (variables)
increases, the number of instances (sample size) needs to increase exponen-
tially in order to have an effective estimate of multivariate densities. To
minimize the effect of high number of variables, dimensionality reduction
techniques have been proposed.

Dimensionality reduction is a set of non-invertible mappings of data to
a lower dimensional space (Maimon and Rokach 2010, Cunningham and
Ghahramani 2015). The underlying hypothesis is that although raw data is
represented in a high dimensional format, the information contained in the
data can be explained in a lower dimensional space. The most commonly
known dimensionality reduction techniques are linear, projection based,
mappings where the goal is to find an optimal low-dimensional projection of
the data (Sun et al. 2009). Namely, these techniques try to maximize the
data variance captured by the low-dimensional projection, or equivalently to
minimize the reconstruction error of the original data from projected data.

Examples of these commonly used techniques include principal compo-
nent analysis (PCA) for numerical variables and multiple correspondence
analysis (MCA) for categorical variables (Rencher (2002), Maimon and
Rokach (2010)). Ultimately, the goal of these techniques is to uncover the
associations between the objects and the features. That is to find the princi-
pal dimensions that capture the most variance possible, allowing for lower-
dimensional description of the data (Saporta 2006). Other examples of linear
mapping based dimensionality reduction techniques include Fisher’s linear
discriminant analysis LDA (Fisher 1936, Bishop 2006) where the purpose is
to project the data such that the separation between classes is maximized.
Non linear techniques include the non-negative matrix factorization NMF
(Lee and Seung 2011), detailed in Section 2.5.2 (see la Torre (2012) and
Scholkopf and Smola (2001) for examples of other nonlinear techniques).

Thanks to their capability of providing a description of the data in a
lower dimensional space, these techniques have been shown to be particu-
larly useful when the observed raw data is high dimensional data, but the
intrinsic information included in the data can be visualized and explained
in a lower dimensional subspace. Hence, they have been extensively used for
visualizing high dimensional data. A common practice is thus to combine
dimensionality reduction with a clustering technique where only the lower
dimensional representation of the data is clustered.

However, despite their popularity, the usage of dimentsonality reduction
methodologies for overcoming the obstacle of high dimensionality has several
drawbacks (Maimon and Rokach 2010). First, the assumption that a large
set of input features can be reduced to a small subset of relevant features is
not always true. In some cases, all the features (or at least a significant ma-
jority) are of equal importance to the information contained in the data, and
removing some features will cause a significant loss of important information.
Second, in some cases, even after eliminating a set of irrelevant features, the
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researcher is left with relatively large numbers of relevant features which
means that a post-analysis method (such as clustering) is required to actu-
ally visualize and analyze the data. Furthermore, these methods have been
shown to be noise sensitive and, although they provide interesting results
when applied to relatively small data sets, they stay of limited use for the
analysis of large data sets.

2.4 Co-clustering
Most of the data analysis literature focuses on the problem of clustering
for structure extraction or a combination of a clustering technique with di-
mensionality reduction. However, the data can contain patterns that may
be hard to capture using a traditional clustering approach. For example,
consider the dyadic data of documents and words represented by a matrix,
whose rows correspond to documents, columns correspond to words, and
entries correspond to the counts of the words in documents. Given such
data, one can perform a clustering of documents or words (depending on
the goal of the analysis) using a traditional clustering approach. However,
such one-sided clustering might fail to discover subtle patterns of the data.
For example, some words may only appear in some sets of documents and
inversely some documents may be clustered together because they contain
specific words, which means that the data matrix exhibits a strong depen-
dency structure between groups of words and groups of documents. In order
to extract such patterns, one approach that has gained increasing attention,
over the years, is the simultaneous clustering of the set of rows and the set
of columns of the data matrix (also called co-clustering, cross-clustering or
bi-clustering).

Proposed by Good (1965), then by Hartigan (1975), as an extension of
standard clustering, co-clustering is a data mining technique that aims to
jointly cluster both the object and feature dimensions simultaneously. Thus,
taking advantage of the duality and interdependence between the set of
objects and the set of variables. Whereas the principle of standard clustering
is that of grouping objects that are similar with respect to the set of variables,
the task of co-clustering is to simultaneously find groups of similar objects
(with respect to the variables) and groups of similar variables (with respect
to the objects).

The main advantage of these techniques is that they provide a powerful
tool for extracting the existing dependencies between the instances and their
descriptive variables, which enhances the interpretability of the clusters of in-
stances using the clusters of variables and vice-versa. In some sense, this can
be seen as a dimensionality reduction that operates both on the dimension
of instances and the dimension of variables. Co-clustering is, for example,
an interesting technique to consider in market analysis where a customer is
represented by a vector, across a list of products (and vice-versa). In this
case, the analyst can be more interested in identifying the subsets of cus-
tomers that tend to buy the same subset of products and which products
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they buy, than simply trying to group customers (or products) based on
buying/selling patterns, which is the task accomplished by regular cluster-
ing. In contrast to a regular clustering technique, co-clustering customers
and purchased products allows to discover the items of interest for a partic-
ular client/set of clients and thus build more precise recommendations and
efficient promotions and sales strategies.

Another advantage of these techniques is their capability of summarizing
a data matrix where the summary matrix is the matrix of co-clusters (also
called blocks). The matrix of co-clusters is, in some sense, the essence of the
data. This point of view is particularly interesting in exploratory data analy-
sis where replacing the original, often large, data matrix by the considerably
smaller matrix of co-clusters can facilitate analysis.

2.4.1 Definition
Let X be a data matrix as defined in Section 2.2 and let U be the set of I
objects and X the set of K variables. Formally, most co-clustering methods
are defined by a mapping ĈU : U → {Ci1, . . . ,Cig} from the set of instances
to groups of instances and a mapping ĈX : X → {Cv1 , . . . ,Cvm} from the
set of variables to groups of variables, where g and m are the number of
clusters of instances and the number of clusters of variables, respectively.
The intersection of a group of instances and a group of variables forms a
co-cluster which can be seen as a sub-matrix of the instance-variable matrix.

The challenge of co-clustering is to extract a structure in the form of
homogeneous blocks. The nature of such structure and the definition this
homogeneity condition depend on the co-clustering method and can be char-
acterized by how the rows and columns are assigned to clusters, and by the
input data-type.

2.4.2 The homogeneity condition
The homogeneity condition, defined by the content of the co-cluster, varies
from one method to another. Most co-clustering methods try to find co-
clusters with constant values per co-cluster or, in the probabilistic context,
co-clusters whose elements are issued from the same probability distribution.
More generally, the literature distinguishes between co-clustering methods
with respect to the content of the co-clusters (non exclusive examples are
given in Table 2.1):

• Co-cluster with constant values (Table 2.1a),

• Co-cluster with constant values per row (Table 2.1b),

• Co-cluster with constant values per column (Table 2.1c),

• Co-cluster with coherent evolution over the rows (Table 2.1d),

• Co-cluster with coherent evolution over the columns (Table 2.1e),
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• Co-cluster with coherent evolution over both rows and columns (Ta-
ble 2.1f),

• Co-cluster with coherent values, obtained via a multiplicative or ad-
ditive relationship between the row and column values or following
a complex mathematical model that depends on the co-cluster. For
example, in Table 2.1g, an element bkl of the co-cluster is given by
the additive model bkl = µ+ αk + βl where µ = 5, α = (4, 2, 3) and
β = (1, 5, 3).

1 1 1
1 1 1
1 1 1

(a)

1 1 1
3 3 3
2 2 2

(b)

1 3 2
1 3 2
1 3 2

(c)

1 3 9
5 20 80
3 15 75

(d)

1 6 3
5 24 9
25 96 18

(e)

1 3 9
3 15 75
5 20 80

(f)

10 19 12
8 12 10
9 13 11

(g)

Table 2.1 – Examples of co-cluster types.

The set of blocks form a structure. However, many different structures
exist in the literature as each co-clustering method searches for a specific
structure of blocks. In the following, we will focus on the methods that
provide co-clusters with constant or coherent values to explore the most
commonly extracted structures.

2.4.3 The co-clustering structure
The co-clustering structure is defined by the relationship between different
clusters. More precisely, let us distinguish four types of methods.

1. Partitioning methods: the clusters define a partition of non empty non
intersecting subsets that span the set of possibilities (the full set of I
instances and the full set of K variables). In such cases, the co-clusters
can be formed of the cartesian product of a partition of rows and a
partition of columns (this is known as block clustering).

2. Overlapping clustering: each instance and each variable can belong to
multiple clusters.

3. Nested clustering: the co-clusters can be defined by intersecting clus-
ters. However, unlike overlapping clusters, if two clusters intersect,
then one of them is necessarily a subset of the other (Mechelen et al.
2004). An example of nested clustering is given by the hierarchical
co-clustering where the row and column clusters are defined by the
cartesian product of a hierarchy of rows and a hierarchy of columns or
a hierarchy of the I ×K values in the data matrix.

4. Other types of structures include sets of subgroups. That is, a co-
cluster is defined by a subgroup of instances and a subgroup of variables
or in the case of value clustering, a subgroup of the I ×K values.
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However, in this case, not all rows/columns or values are required to
belong to clusters.

Madeira and Oliveira (2004) provide a more detailed and general classifi-
cation of these structure types found in gene expression co-clustering meth-
ods as shown in Figure 2.1. The details of these structures are as follows.

(a) Single co-cluster (Figure 2.1a), defined by one group of instances and
one group of variables.

(b) Exclusive row and column co-clusters (Figure 2.1b): the assumption is
that there exists a permutation of the rows and columns of the data
matrix after which the co-clusters form rectangular diagonal blocks.
This corresponds to a particular case of partition of the rows and a
partition of the columns in Figure 2.1c.

(c) Non-overlapping co-clusters with checkerboard structure (Figure 2.1c):
there exists a permutation of the matrix rows/columns after which the
co-clusters form rectangular contiguous blocks. This corresponds to a
partition of the rows and a partition of the columns.

(d) Exclusive-rows co-clusters (Figure 2.1d): this corresponds to co-
clusters defined by a partition of the rows and overlapping clusters
of columns.

(e) Exclusive-columns co-clusters (Figure 2.1e): this corresponds to co-
clusters defined by overlapping clusters of rows and a partition of the
columns.

(f) Non-Overlapping co-clusters with tree structure (Figure 2.1f).

(g) Non-Overlapping non-exclusive co-clusters (Figure 2.1g).

(h) Overlapping co-clusters with hierarchical structure (Figure 2.1h): hi-
erarchical partitioning of the I ×K values of the data matrix.

(i) Arbitrarily positioned overlapping co-clusters (Figure 2.1i): a set of
possibly overlapping subgroups of the I ×K values.

2.4.4 The co-clustering strategy
In order to extract the desired co-clustering structure, many co-clustering
strategies have been studied in the literature. The most commonly followed
strategies include the following.

• Clustering rows then columns independently, using a standard clus-
tering technique, then simultaneously analyzing the results to fetch
for a co-clustering structure (Lerman and Leredde 1977, Madeira and
Oliveira 2004).
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(a) Single co-cluster (b) Diagonal co-
clusters

(c) Checkerboard like
co-clusters

(d) Exclusive-rows
co-clusters

(e) Exclusive-
columns biclusters

(f) Tree like co-
clusters

(g) Non-Overlapping
non-exclusive co-
clusters

(h) Overlapping
hierarchical co-
clusters

(i) Arbitrarily posi-
tioned overlapping
co-clusters

Figure 2.1 – Examples of co-clustering structures.

• Performing a standard clustering technique on the rows (resp.
columns) then a standard clustering technique on the columns (resp.
rows) while taking into account the first clustering results (Tishby
et al. 1999). Examples of these methods include the Coupled Two-way
Clustering (Getz et al. 2000), which performs a bi-clustering by al-
ternating one-dimensional clustering algorithms, and the Interrelated
Two-Way Clustering algorithm (Tang et al. 2001) that combines the
results of one-way clustering(s) on both dimensions of the data matrix
in order to produce co-clusters.

• Simultaneously clustering the rows and columns of data matrix (Go-
vaert 1983; 1995, Kluger et al. 2003, Yoo and Choi 2010, Shan and
Banerjee 2008).

In the coming sections, we introduce some of the most commonly known
co-clustering methods to emphasize the richness of the field and to illustrate
the different types of approaches. In particular, we will focus on the ap-
proaches that perform a simultaneous clustering of the rows and columns.
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For a full survey of the co-clustering methods, readers are refered to: Charrad
and Ahmed (2011), Tanay et al. (2005), Madeira and Oliveira (2004), Brault
and Mariadassou (2015), Brault and Lomet (2015), Pontes et al. (2015), and
Padilha and Campello (2017).

2.5 Simultaneous clustering of the instances
and variables
The simultaneous clustering problem has been shown to be an NP-hard
problem (Tanay et al. 2002). In particular, an exhaustive search of the
space of solutions is infeasible, which requires most of the existing meth-
ods to base their search on heuristic optimization procedures. The use of a
suitable co-cluster evaluation measure and the development of an effective
search heuristic are two crucial factors for finding significant co-clusters with
reasonable resources. Pontes et al. (2015) reviews a large number of biclus-
tering approaches used in gene expression analysis and classifies them into
two categories: biclustering algorithm based on evaluation measures, and
non metric-based biclustering algorithms.

In this section, we introduce some of the most common approaches to
perform a simultaneous clustering of the instances and variables in a data
table. In particular, we will distinguish between cost function, linear algebra,
and parameter identification based methods.

2.5.1 Deterministic cost function based co-clustering
In the literature, many co-clustering algorithms propose to optimize an ob-
jective function called co-cluster evaluation function. Most of theses objec-
tive functions try to summarize the original data matrix X by a new smaller
matrix X̂ = (x̂kl)1≤k≤g,1≤l≤m containing a summarized representation of
the blocks (such as the mean or median value), or by some reconstructed
data matrix X̂ = (x̂ij)1≤i≤I,1≤j≤K of the same size as X but with constant
entries within each block.

Deterministic objective function based algorithms try to define the couple
of mappings from the instances to instance clusters and from the variables to
variable clusters that optimize a co-cluster quality measure that characterizes
the difference between the original data X and the co-clustered data X̂.

Hartigan’s direct clustering

When Hartigan (1972) introduced co-clustering as "direct clustering", he
proposed to simultaneously cluster the rows and columns of a data table.
The algorithm seeks co-clusters with constant values or low within-block
variance. To do this, he approximates the original data matrix by the matrix
X̂ that minimizes the sum of squared residues. As a result, the values within
each co-cluster are identical. The quality of a co-cluster Bkl = (Cik,Cvl )
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(defined by the cluster Cik of rows and the cluster Cvl of columns) is given
by the within-co-cluster variance:

C(Cik,Cvl ) =
∑

i∈Ci
k,j∈Cv

l

(xij − x̂ij)2.

Given a desired number of bi-clusters B, the proposed algorithm is a di-
vide and conquer type algorithm that starts with the entire data in a single
block then at each iteration finds the row split or column split that pro-
duces the largest reduction of the total within-block variance. The splitting
continues until the reduction of block variance is not greater than a given
threshold. The algorithm results in a tree like hierarchical clustering of rows
and columns of the data matrix. The quality of a co-clustering is measured
by the overall variance of the B bi-clusters:

C(X, X̂) =
B∑
b=1

I∑
i=1

K∑
j=1

(xij − x̂ij)2.

However, the main drawback of this successive splitting heuristic is that
partitions cannot be reconsidered once they have been split. Hence, the final
hierarchical clustering can miss some quality biclusters due to premature
division of the data matrix. Also, the number of desired co-clusters need to
be specified.

One block at a time using the Cheng and Church Algorithm

Cheng and Church (2000) were the first to propose a co-clustering algorithm
for gene expression data. The approach uses a measure called Mean Squared
Residue (MSR) as measure of co-cluster quality and a greedy algorithm for
co-cluster extraction. In particular, the residue of an element xij to block
Bkl = (Cik,Cvl ) is defined as:

xij − xi,Cv
l
− xCi

k,j + xCi
k,Cv

l
,

where xCi
k,Cv

l
= 1
|Ci

k||C
v
l |

∑
i∈Ci

k,j∈Cv
l

xij is the average of all entries in the

block Bkl, xi,Cv
l
= 1
|Cv

l |
∑
j∈Cv

l

xij is the mean of all entries in row i whose

columns belong to Cvl , xCi
k,j =

1
|Ci

k|
∑
i∈Ci

k

xij is the mean of all entries in col-

umn j whose rows belong to cluster Cik, and {|Cik|, |Cvl |} are the cardinalities
of Cik and Cvl respectively.

For a block Bkl, the goal is to find a sub matrix defined by the couple of
groups (Cik,Cvl ) that minimizes, up to a certain threshold, the mean squared
residue defined as:

C(Cik,Cvl ) =
1

|Cik||Cvl |
∑

i∈Ci
k,j∈Cv

l

(xij − xi,Cv
l
− xCi

k,j + xCi
k,Cv

l
)2.
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This mean squared residue measures the level of coherence within the co-
cluster as the difference between the observed values xij and the expected
values predicted from the corresponding row mean, column mean and bi-
cluster mean (Madeira and Oliveira 2004).

The approach uses a greedy iterative search algorithm for rows and
columns suppression while minimizing the objective function C up to a given
threshold. The algorithm produces one co-cluster at a time (as in Figure
2.1a) and is composed of two stages. In the node (row or column) deletion
stage, the algorithm starts with one co-cluster containing the original data
matrix then proceeds in iteratively removing rows and columns to achieve
the largest decrease of the score while keeping its value under a threshold
value. This requires the computation of the scores of all the sub-matrices
that may be the consequences of any row or column removal, before each
choice of a row/column removal can be made. Once the threshold is reached,
the second stage consists of adding rows and columns back to the block if
this can be done without increasing the score. After each co-cluster is pro-
duced, the elements corresponding to the co-cluster are replaced with ran-
dom numbers, then the same procedure is applied on the modified matrix to
generate another, possibly overlapping, co-cluster until the required number
of co-clusters is reached. Within a co-cluster, the low mean squared residue
condition enables extracting co-clusters with coherent values and also con-
stant values in some cases. The final extracted structure would reassemble
to that in Figure 2.1i.

The algorithm presents several drawbacks, the most important of which
is the use of a threshold parameter for rejecting solutions, which is dependent
on each data set. Also, the algorithm produces only one co-cluster at a time
and as the algorithm proceeds, the random numbers used as replacements
for the co-clusters can interfere with the future discovery of co-clusters, es-
pecially ones that overlap with the discovered ones which is addressed by
Yang et al. (2003). Yang et al. (2003) propose an algorithm called FLex-
ible Overlapped biClustering (FLOC) that simultaneously produces B co-
clusters whose mean residues are all less than a predefined constant, without
the impact of random interference.

Extracting B-blocks simulatenously

Cho et al. (2004) also use squared residue measures similar to those of Har-
tigan (1972) and Cheng and Church (2000) in k-means like co-clustering
called Minimum Sum-Squared Residue Coclustering (MSSRCC) for homo-
geneous block extraction. An homogeneous block is defined by a sub matrix
having low average square residues. For every element xij that may belong
to co-cluster Bkl, they define two measures for co-cluster quality:

HBkl
= (hij)1≤i≤I,1≤j≤K where hij = xij − xCi

k,Cv
l
,

and

HBkl
= (hij)1≤i≤I,1≤j≤K where hij = xij − xi,Cv

l
− xCi

k,j + xCi
k,Cv

l
,
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where xCi
k,Cv

l
, xi,Cv

l
and xCi

k,j are as defined above. For both measures,
they propose an algorithm to minimize the total squared residues:

||H||22 =
g∑

k=1

m∑
l=1

∑
i∈Ci

k,j∈Cv
l

h2
ij .

The first score measures the sum of squared differences between each
entry in the co-cluster and the mean of the co-cluster, producing co-clusters
with low variance or constant values (as in Hartigan (1972)). The second
score measures the sum of squared differences between each entry in the
co-cluster and the corresponding row mean and the column mean, while
counting for the co-cluster mean for symmetry (as in Cheng and Church
(2000)). For co-cluster extraction, the authors propose two iterative algo-
rithms that monotonically decrease the objective functions and converge to
a local minimum.

The main difference with Cheng and Church (2000) is that Cho et al.
(2004) extract B co-clusters simultaneously while Cheng and Church (2000)
extracts one co-cluster at a time. Cho and Dhillon (2008) provide specific
strategies to enhance the performance of the MSSRCC. For example, like or-
dinary k-means-type clustering algorithms, the approach suffers from being
trapped in local minima and generating empty clusters. Cho and Dhillon
(2008) try to resolve these problems by adopting an incremental local search
(LS) strategy, where incremental moves of rows and columns among clusters
are performed in order to decrease the objective function value. Also, differ-
ent data pre-processing transformations and cluster initialization strategies
are investigated. Anagnostopoulos et al. (2008) propose a generalization of
this approach that minimizes a p-norm of the residue matrix H = (hij).

The CRO methods

In the same context of cost function opitimization, Govaert (1983) proposes
three algorithms: Crobin, Croeuc and Croki2 for binary, continuous and
contingency data. Denote z(I×g), w(K×m) and X̂(g×m) the partition of rows,
the partition of columns and the summary matrix. The algorithms alternate
between finding the row partition and finding the column partition until the
co-clustering criterion reaches a local optimum.

For binary data, the Crobin algorithm searches for homogeneous blocks
(blocks with majority of ones or majority of zeros) by optimizing the crite-
rion:

C(z, w, X̂) = ||X− zX̂wt||1 =
g∑

k=1

m∑
l=1

∑
i∈Ci

k,j∈Cv
l

|xij − x̂kl|,

where X̂ = (x̂kl)1≤k≤g,1≤l≤m and x̂kl ∈ {0, 1}.
For continuous data, the Croeuc algorithm uses alternated k-means al-

gorithm to minimizes the squared euclidean distances between the elements
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in the block Bkl and its characterizing value x̂kl:

C(z, w, X̂) = ||X− zX̂wt||2 =
g∑

k=1

m∑
l=1

∑
i∈Ci

k,j∈Cv
l

(xij − x̂kl)2.

It is worth noting that these algorithms optimize a criterion that is data-
type dependent and that their best bet is to achieve a local optimum of
the objective function. Furthermore, the number of clusters of rows and the
number of clusters of columns need to be specified. The Croki2 algorithm
will be addressed in Section 2.6.1.

2.5.2 Linear algebra and matrix reconstruction based co-
clustering
While the methods introduced above try to optimize the difference between
the original data matrix and a summary data matrix, other co-clustering
methods focus on decomposing the original matrix to extract associated clus-
ters. Among these techniques, we mention those based on latent matrices
like Non-negative Matrix Factorization (NMF), and those based on apply-
ing a dimensionaliy reduction procedure followed by a standard clustering
technique.

Matrix reconstruction based co-clustering

Matrix reconstruction based methods try to re-write the optimization (co-
clustering) problem in the form of matrix approximation problem, and use
matrix factorization (Lee and Seung 2011, Yoo and Choi 2010) to fetch
for co-clusters. These algorithms include non-negative matrix factorization
(NMF), non-negative tri-factorization (NTF) and non-negative block value
decomposition (NBVD).

Non-negative matrix factorization (NMF) searches for the decomposition
of a non negative matrix X into a product of two non negative latent matrices
that are used for row and column clustering. For example, Lee and Seung
(2011) optimize a cost function that characterizes the difference between the
original matrix X(I×K) and the product of two matrices z(I×g), and wT

(K×g)
(T is the transpose). The proposed cost function is either the least square
euclidean distance or a generalized divergence measure D of X from zwT

argmin
z≥0,w≥0

||X− zwT ||2,

or

argmin
z≥0,w≥0

D(X||c = zwT ) =
∑
i,j

(xij log xij
cij
− xij + cij)

 ,

where ||.|| is the Frobenius matrix norm. Iterative minimization algorithms
are used to find local minima and are based on multiplicative updating rules.
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Given the latent matrices z and w, the clustering of rows can be per-
formed by considering the columns of z as row cluster centroids and the ith
row of the data matrix X can be associated to the centroid ci (i.e., to its
corresponding cluster) which gives the maximum contribution in the linear
combination

ci = argmax
k

wki,

and inversely for obtaining clusters of columns (Buono and Pio 2015).
Buono and Pio (2015) note that this basic NMF provides only casual

clustering and that, to obtain a solution that guarantees a real clustering
interpretation, additional orthogonality constraints on z and/or w should
be imposed as in Ding et al. (2006). In Ding et al. (2006), the Frobenius
based optimization problem is modified to generate a clustering of rows, by
imposing the orthogonality constraint on w (wwT = 1, the identity matrix).
In the same manner, a clustering of columns can be achieved by imposing
an orthogonality constraint on z (zTz = 1).

To perform simultaneous clustering of rows and columns, orthogonality
constraints over z and w need to be met simultaneously (solving the op-
timization problem under the constraints wwT = 1 and zTz = 1). This
condition is too restrictive, according to Buono and Pio (2015). Further-
more, under this double orthogonality constraint, the solutions result in a
rather poor low-rank approximation of the data matrix X (always according
to Buono and Pio (2015)). Hence, for better approximation, a third latent
matrix can be introduced, to create non-negative tri-factorization (NTF),
which allows the low-rank approximation to remain accurate, while a soft-
orthogonality of z and w is maintained (Buono and Pio 2015).

Non-negative tri-factorization algorithms are similar to NMF except they
use only the Frobenius norm and they search to decompose X into the prod-
uct zX̂wT of three latent matrices where X̂ is the non negative summary
matrix and the two binary matrices z and w are for rows and columns classifi-
cation respectively (Yoo and Choi 2010). Just like NMF, the tri-factorization
algorithm converges to a local minimum.

Non-negative block value decomposition (NBVD) has the same goal as
the NTF which is factorizing the data matrix into three latent matrices
but uses fuzzy classification matrices for the rows and columns (Long et al.
2005). The algorithm converges to a local minimum by iteratively updating
the decomposition matrices using a set of multiplicative updating rules.

Note that these methods apply only to numerical non negative matrices.
Also, the NMF approach requires the number of row and column clusters to
be the same while NTF allows for the numbers of clusters to differ. However,
in both cases, the number of clusters need to be specified. Note also that the
Croeuc, Crobin and Croki2 algorithms we mentioned earlier for continuous,
binary and contingency data (Govaert 1983) can be reformulated as matrix
decomposition algorithms.
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Spectral co-clustering

Spectral clustering is a technique commonly used in graph theory to extract
clusters in edge-weighted graphs using the spectrum of a Laplacian matrix.
The idea is to reduce the dimensionality of the original data in a manner that
best separates clusters (if they exist), then one can apply a standard cluster-
ing technique in the new lower dimension to extract them. A technique of
choice is singular value decomposition of the graph Laplacian. The reduction
in dimensionnality is performed by computing the first, say l, eigenvectors of
the Laplacian which will constitute the reduced matrix on which a standard
clustering technique can be performed. This technique has been extended
to perform clustering of non graph-data by building a graph in which nodes
correspond to data points and links are related to the similarity between the
data points.

Dhillon (2001) proposes a spectral co-clustering algorithm to co-cluster a
document-word matrix by modeling it by a bipartite graph. The document
collection is first represented by a word-by-document matrix of weights A
whose rows correspond to words and columns to documents and the entries
of which correspond to the number of appearances of the ith word in the
jth document. The word-clusters and document-clusters can then be found
by performing a singular value decomposition of the normalized matrix An
given by:

An = D−1/2
1 AD−1/2

2 , (2.1)

where D1 and D2 are the weights of documents and words expressed in
diagonal matrices such that: D1ii =

∑
j Aij and D2jj =

∑
iAij .

The right singular vector gives a bi-partitioning (two clusters) of docu-
ments while the left singular vector gives a bi-partitioning of words. The
algorithm perform a bi-partitionning of the documents and words by apply-
ing a k-means algorithm on the reduced matrix given by:

z =

(
D
− 1

2
1 u

D
− 1

2
2 v

)
,

where u and v are the second left and right singular vectors u and v, respec-
tively.

To obtain B clusters of documents and B clusters of words (called multi-
partitioning), the authors state that one possibility is to recursively apply
the bi-partitioning algorithm until reaching the number of clusters desired
or construct a reduced data matrix using more singular vectors then apply a
k-means like algorithm. To know how many vectors to choose, the authors
suggest using l = dlog2(B)e right and left singular vectors. Let U be the
matrix containing the l left singular vectors and V the matrix containing the
l right ones, create the l-dimensional reduced data

Z =

(
D
− 1

2
1 U

D
− 1

2
2 V

)
,
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and run a k-means algorithm (on Z). The l-dimensional reduced data often
contains k-modal information about the data set. However, this provides
no guarantees on how many singular vectors to use when seeking B clus-
ters. Furthermore, the algorithm only extracts partitioning structures with
a number of row-clusters equal to the number of column-clusters, and with
the restriction that each document cluster is associated to a word cluster.

Dhillon (2001) illustrated the problem with term-document matrices but
the same can be applied to market baskets or genes expression data. For
example, in their work, Kluger et al. (2003) extend the work of Dhillon (2001)
and propose an algorithm that performs co-clustering of gene expression data
while allowing the number of row clusters to be different from that of column
clusters.

Possibilistic Spectral Biclustering

Cano et al. (2007) proposed the Possibilistic Spectral Biclustering algorithm
(PSB) which is based on the use of Singular Value Decomposition together
with two one-dimensional clusterings. However, unlike the approach pro-
posed by Dhillon (2001), each combination of the resulting clusters of rows
and clusters of columns is a candidate co-cluster. Each candidate co-cluster
will be post-processed in order to improve its quality when possible, or re-
jected if it is not considered a quality solution (Pontes et al. 2015).

Yang et al. (2011) have also proposed a strategy similar to the one of
Cano et al. (2007). The approach uses SVD to decompose the input expres-
sion matrix into a group of centroid rows (genes) and a group of centroid
columns (conditions). After centering the rows of these two basis matrices,
clustering is applied to both of them by a mixed clustering algorithm, based
on agglomerative hierarchical clustering and on the use of the sub-matrix
correlation score as dissimilarity measure. Here too, every pair of the result-
ing row and column clusters form a candidate co-cluster. Like in Cano et al.
(2007), a final post-processing step is executed in order to obtain inclusion-
maximal co-clusters, through merging of the clusters. The authors state
that, unlike the standard spectral biclustering approach proposed by Kluger
et al. (2003), they utilize the eigenvectors corresponding to the eigenvalues
that account for most of the energy as opposed to using only the eigenvectors
corresponding to the first two or three eigenvalues. The approach generates
possibly overlapping co-clusters.

However, the application of the SVD to large and high-dimensional data
is unfeasible since it requires a computational time that is quadratic in the
data size (O(min(IK2, I2K)) for a matrix I ×K). Hence, the applicability
of both possibilistic and standard spectral co-clustering to large and high
dimensional data sets is very limited due to the required SVD. Furthermore,
the SVD input matrix must be complete with no missing values.
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2.5.3 Probabilistic model based co-clustering
Inspired by the use of finite mixture models for standard clustering, prob-
abilistic co-clustering methods (e.g., Dhillon et al. (2003), Banerjee et al.
(2007), Govaert and Nadif (2008), Wang et al. (2009), Shan and Banerjee
(2010)) are based on the assumption that data was generated as a mixture of
probability density functions and their goal is to estimate the parameters of
the underlying distributions and the posterior probabilities of each co-cluster
given the data.

Latent Block Model

Latent Block Model is a co-clustering technique that supposes the existence
of a row partition and a column partition that can explain co-clusters in
a checkerboard like structure (Govaert and Nadif 2008) (Figures 2.1c and
2.1b). It provides an extension of the stochastic block model (SBM), which
is a mixture model often used for clustering the nodes in networks (Snijders
and Nowicki 1997). The idea is to use mixture models to discover the la-
tent structure as homogeneous blocks. In this context, a co-cluster is said
to be homogeneous when all its elements are realizations of a probability
distribution that depends only on the block itself.

A mixture model based clustering is obtained by assuming that the data
is generated from a mixture of densities:

f(X; θ) =
∏
i

g∑
k=1

πk ϕk(xi.;αk), (2.2)

with: πk ∈]0, 1[ ∀ k and
g∑

k=1
πk = 1, πk the probability that the row xi.

belongs to the kth cluster, g the number of components in the mixture, ϕk
the probability density of the kth component, αk the set of all parameters of
the kth component, and θ is a vector containing all parameters of the model:
θ = (π1, . . . , πg,α1, . . . ,αg). The clustering of rows into g components can
be found by estimating the parameters of the model.

For the co-clustering context, let z be the binary row partition matrix
and w be the binary column partition matrix with zik = 1 ⇐⇒ xi. ∈ Cik
and wjl = 1 ⇐⇒ x.j ∈ Cvl . The density function of the observed data X
can be given by:

f(X; θ) =
∑

(z,w)∈(Z×W)

p((z, w); θ)f(X|z, w; θ)), (2.3)

where (Z ×W) is the set of all possible partitions, and θ the set of all
model parameters.

The latent block model (Govaert and Nadif 2003) is based on two main
assumptions:

1. the row partition and column partition are independent,
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2. given the row and column partitions, all elements in a co-cluster are
independent realizations of a probability distribution that depends only
on the latent variables.

Under these assumptions, the LBM’s probability density can be written as:

f(X; θ) =
∑

(z,w)∈(Z×W)

∏
i,k
πzik
k

∏
j,l
ρ
wjl

l

∏
i,j,k,l

ϕkl(xij ;αkl)zikwjl ,

where ϕkl is the block conditional probability distribution. The log-
likelihood of this model is therefore given by

L(θ) = log(f(X; θ)) = log (
∑

(z,w)∈(Z×W)

∏
i,k
π
zi,k
k

∏
j,l
ρ
wjl

l

∏
i,j,k,l

ϕkl(xij ;αkl)zikwjl).

For parameter estimation, Govaert and Nadif (2003) proposed using max-
imum likelihood approximation. Since then, maximum likelihood approxi-
mation algorithms for latent block models have been extensively used. These
algorithms are based on alternating applications of an EM derivative algo-
rithm (McLachlan and Krishnan 2008).

Naturally, Latent Block Models assume a conditional probability ϕkl that
is data-type dependent. For example, ϕkl is considered Gaussian for con-
tinuous data (Govaert and Nadif 2009), Bernoulli for binary data (Govaert
and Nadif 2003; 2008), Poisson for contingency data (Govaert and Nadif
2007) and Multinomial for discrete data (Keribin et al. 2013, Brault 2014).
Therefore, their application to mixed data can be tricky.

In Appendix B, we propose an extension of this model which applies
to data containing numerical and binary variables. However, while this ex-
tension provides a co-clustering of the mixed data, one can see, from the
experiments provided in Appendix B, that its contribution stays limited
to some extent, as it inherits the drawbacks of LBM. Namely, the number
of clusters need to be known in advance. Since this is not always the case,
choosing the right numbers of clusters is crucial for successful modeling both
for the standard LBM and for the extended version. To tackle this prob-
lem, model selection criteria like the Bayesian Information Criterion BIC
(Schwarz 1978), the Akaike Information Criterion AIC (Akaike 1974), and
the Integrated Classification Criterion ICL (Biernacki et al. 2000), can be
used to infer the optimal number of clusters in the standard LBM. However,
these criteria have not been extended to the mixed data version.

Bayesian estimation of LBM

Shan and Banerjee (2008) proposed a Bayesian co-clustering model (BCC).
The generative model is given by Figure 2.2. In fact, Bayesian co-clustering
(Shan and Banerjee 2008) assumes that the model parameters are random
variables with a prior distribution. The associated generative model is as fol-
lows: two separate Dirichlet distributions Dir(α1) and Dir(α2) from which
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the probabilities of each row cluster Cik and column cluster Cvl given each row
xi. and column x.j are generated (denote these probabilities as z1 and z2).
Row clusters for entries in row xi. and column clusters for entries in column
x.j are then generated from a discrete distribution (usually Multinomial)
with parameters π1 and π2 respectively (Shan and Banerjee 2008). Finally,
each entry of the data matrix is generated according to the corresponding
co-cluster which is assumed to have an exponential family distribution.

Figure 2.2 – Bayesian co-clustering: data generative model.

Given this generative model, the probability of observing the data matrix
X can be written:

p(X|α1,α2, θ) =∫
π11

. . .

∫
π1I

∫
π21

. . .

∫
π2K

(∏
i

p(π1i |α1)

)∏
j

p(π2j |α2)∏
i,j

∑
z1ij

,z2ij

(p(z1ij |π1i)p(z2ij |π2j )p(xij |θz1ij
,z2ij

))δijdπ11 . . . π1Idπ21 . . . π2K

 .

Assuming that the latent variables are independent and that the assign-
ments of z1ij and z2ij for an entry xij are independent from the assignments
of other entries, the authors use a variational EM like Bayesian algorithm to
perform inference over an approximation of the latent variable distributions.
The algorithm uses an approximation q of the true latent variable distri-
bution p(z1, z2, π1, π2|α1,α2, Θ) denoted q(z1, z2, π1, π2|γ1, γ2,φ1,φ2) where
{γ1, γ2} are called variational Dirichlet distribution parameters and {φ1,φ2}
are variational discrete distribution parameters. The E-steps estimates the
values of γ1, γ2, φ1 and φ2 that maximize the log-likelihood with regards to
parameters α1, α2 and θ while the M-step estimates α1, α2 and θ based on
the previously estimated variational parameters.

In Wang et al. (2009), the authors extend the BCC model and propose
using collapsed Gibbs sampling and collapsed variational inference instead,
which enhances the accuracy the likelihood estimates.
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Nonparametric bayesian co-clustering

Meeds and Roweis (2007) propose a probabilistic non parametric Bayesian
co-clustering model where each cluster is part of a mixture having a non para-
metric fully Bayesian prior, namely the Pitman-Yor Process prior (Pitman
2002), which is a generalization of Dirichlet Processes that favors uniform
cluster sizes and allows to count for the possibly infinite number of clusters.
Thus, the model does not require the number of row and column clusters to
be specified a priori. The algorithm returns a distribution over row and col-
umn partitions which are averaged according to their posterior probabilities.
Markov Chain Monte Carlo (MCMC) is used for sampling. For missing value
imputation, the predictions are averaged. For cluster analysis, the partitions
are averaged by performing a symmetric neighborhood graph in which the
weight of an edge between two nodes is the fraction of partitions in which
they were found in the same cluster.

The non parametric BCC model differs from the basic BCC model in
that, in the former, each row or column object is assigned to a single row
or column cluster (resulting in a partitioning structure as in Figure 2.1c),
whereas the latter samples distinct row and column cluster latent variables
for each entry of the matrix, resulting in a possibly overlapping clustering
of the data entries as in Figure 2.1i.

The infinite hidden relational model

The infinite hidden relational model IRM (Xu et al. (2006), Wang et al.
(2012)) is an extension of the non-parametric Bayesian model that leverages
features associated to the rows and columns of the contingency matrix to
forecast relationships among previously unseen data. Ishiguro et al. (2012)
proposes an extension of the IRM that applies to binary data and counts for
the noise in the data and only a subset of rows and columns are used for
co-clustering.

Kemp et al. (2006) propose a similar nonparametric bayesian approach
for relational learning which can be seen as a co-clustering technique when
the studied entities are the objects and features of a data table, and an en-
try represents the relation between the corresponding object and features.
The model applies to binary data and extracts clusters of entities (clusters
of objects and clusters of variables) simultaneously and qualifies the rela-
tionships between the clusters as manifested by the data. To do this, two
independent Dirichlet processes are used as priors for the cluster partitions.
Therefore, the model does not require the number of clusters to be specified
in advance. This Infinite Relational Model is very similar to the non para-
metric Bayesian approach of Meeds and Roweis (2007), except that it can
model not only binary relations between two different kinds of objects, but
also binary relations between the same kind of objects. One drawback of
IRM is the Chinese Restaurant Process (CRP) prior which allows for many
very small clusters which raises the question whether these clusters are in
fact clusters or simply a result of the underlying process.
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CrossCat for high dimensional heterogeneous data

The CrossCat model (Mansinghka et al. 2016) is a fully Bayesian non-
parametric method for analyzing heterogeneous, high dimensional data,
through clustering the instances and variables. The model provides a fully
Bayesian non parametric approach for density estimation, using Dirich-
let processes as priors. In particular, CrossCat is based on approximate
Bayesian inference in a hierarchical non parametric model for data tables,
which consists of a hierarchical structure in which an outer clustering groups
the variables in a set of non-overlapping views of independent variables.
Then, each view is clustered independently at the level of instances using
a separate Dirichlet process mixture. These inner mixture components are
simple parametric models whose form depends on the types of data in the
table (Mansinghka et al. 2016). Thus, the final structure extracted by Cross-
Cat contains one clustering of the variables and multiple clustering(s) of the
instances. This makes CrossCat rather flexible but also difficult to interpret.

In terms of flexibility, CrossCat provides a joint density estimation that
simultaneously supports heterogeneous data types, detects independencies
between the variables, and produces representations that support efficient
prediction (Mansinghka et al. 2016). Hence, the model enables clustering
multiple variables of different types in the same view, which lacks from most
existing co-clustering methods. It detects independencies between the vari-
ables through the outer clustering which partitions variables into groups
that are independent of one another. However, because this outer clustering
operates at the variable level, it does not allow to identify complex and par-
tial cross-dependencies between variables. Similarly to the non parametric
model in Meeds and Roweis (2007), CrossCat uses averaged predictions for
prediction and missing value imputation and constructs a similarity function
in which the similarity between two rows and columns is represented by the
fraction of partitions in which they were found in the same cluster.

In terms of interpretability, the model provides approximated posterior
samples. Each sample provides an estimate of the full joint distribution. This
feature contributes to its flexibility and its efficacy for prediction and missing
value imputation, because prediction is based on averaged calculation or
sampling from the conditional densities implied by each sample. However, in
terms of interpretability of the results, analyzing the full space of possibilities
or multiple independent conclusions about the data rather complicates the
task of exploratory analysis.

In terms of scalability, CrossCat has a complexity in O(IKτσ) where I
is the number of instances, K is the number of variables, τ is the maximum
number of variable clusters (a.k.a. views) and σ maximum number of in-
stance clusters. In practice, τ = O(

√
K) and σ = O(

√
I) are reasonable

assumptions. Thus the scalability of CrossCat enables handling data with
millions of entries. However, beyond its computational complexity, the effec-
tive computational time of CrossCat is quite large, since its main transition
in the MCMC algorithm runs from 103 to 105 times.
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Summary. In summary, both metric and probabilistic approaches are
known to have their advantages and limitations: despite being quite efficient
in modeling data issued from virtually any distribution, probabilistic meth-
ods are computationally demanding and hardly scalable. Metric methods on
the other hand are less computationally demanding but present the need to
choose the "right" distance that uncovers the underlying latent co-clusters
structure based on available data (Laclau et al. 2017).

2.6 Simultaneous clustering of two categori-
cal variables
In the previous section, we introduced co-clustering approaches that apply to
data where a set of objects is described by a set of variables. In other words,
the rows and columns of the data table refer to different set of entities, with
different roles. In this section, we introduce a special type of co-clustering
approaches in which an object is described by its relationship with other
objects. These other objects can be of the same nature as the first set, as in
the case of graphs or of a different nature, as is the case of contingency tables
and bipartite graphs. These types of data are often referred to as relational
or contingency data. Co-clustering such data consists of a simultaneous
clustering of the values of two variables instead of a simultaneous clustering
of a set of instances and a set of variables. In the following, we focus on co-
clustering contingency data formed by two categorical variables to set the
ground for the methodology detailed in the next chapter.

The data

A contingency table, also called a cross-tabulation, is a data table that dis-
plays the observed counts of categorical variables (Fagerland et al. 2017).
These tables are often used to describe and analyze the relationship between
two or more categorical variables (Fagerland et al. 2017).

Consider two categorical variables X1 and X2. Let V1 and V2 be their
respective numbers of categories, and X the two-way contingency table as-
sociated to these two variables. The values of the first variable, say X1, are
represented by the rows of X. The values of the second variable X2 are
represented by the columns of X. The entries xij count the co-occurrences
of the ith value of the first variable and the jth value of the second variable.

The contingency table X provides a summary of the variables. Thus,
co-clustering X provides a summary of this summary.

Notations. This section uses the following notations.

N number of observations, giving the total counts in X.
V1 number of values of the categorical variable X1.

It represents the number of rows of the contingency table X.
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V2 number of values of the categorical variable X2.
It represents the number of columns of the contingency table X.

i index over the rows of X, 1 ≤ i ≤ V1.
j index over the columns of X, 1 ≤ j ≤ V2.
g the number of clusters of rows when it is specified.
m the number of clusters of columns when it is specified.
k index: 1 ≤ k ≤ g.
l index: 1 ≤ l ≤ m.
G number of co-clusters.
z matrix of affiliation of the rows to clusters of rows.
zik an entry of z.
w matrix of affiliation of the columns to clusters of columns.
wjl an entry of w.
Crk the kth cluster of rows.
Ccl the lth cluster of columns.
J1 the number of clusters of rows when it is a model parameter.
J2 the number of clusters of columns when it is a model parameter.
j1 index: 1 ≤ j1 ≤ J1.
j2 index: 1 ≤ j2 ≤ J2.
mj1 number of rows in the jth1 cluster of rows.
mj2 number of columns in the jth2 cluster of columns.
Nj1j2 number of observations for the co-cluster formed by the

jth1 cluster of rows and the jth2 cluster of columns.
ni. number of observations per row i.
n.j number of observations per column j.
C co-clustering criterion.

2.6.1 The Croki2 algorithm
Proposed by Govaert (1983), the Croki2 algorithm performs a co-clustering
of contingency data. The algorithm tries to maximize the quantity of infor-
mation included in the summary matrix X̂, measured by the χ2 measure of
information. Maximizing the information included in the summary matrix
amounts to minimizing the loss of information due to regrouping the two
sets into classes (Govaert and Nadif 2013).

The amount of information contained in the original contingency data X
can be written as:

χ2(X) =
V1∑
i=1

V2∑
j=1

(xij − xi.x.j)2

xi.x.j
,

with xi. (respectively, x.j) denoting the marginal row (respectively, col-
umn) frequencies. The amount of information in the summary matrix X̂
is:

χ2(X̂) =
g∑

k=1

m∑
l=1

(x̂kl − x̂k.x̂.l)
2

x̂k.x̂.l
,
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with x̂k. (respectively, x̂.l) denoting the marginal row (respectively, column)
frequencies, and x̂kl is the count per co-cluster x̂kl =

∑
i∈Cr

k ,j∈Cc
l

xij , where

Crk and Ccl denote the kth cluster of rows and the lth cluster of columns. g
and m are the number of clusters of categories of the first variable (rows)
and the number of clusters of categories of the second variable (columns),
respectively.

The optimal partitions are those that minimize the difference between
the two quantities χ2(X) and χ2(X̂), thus minimizing the loss of informa-
tion when representing or "replacing" X by the new contingency table X̂
or equivalently those maximizing the amount of information included in X̂.
The algorithm iterates between finding a partition of rows and finding a par-
titions of columns until reaching an optimum for the co-clustering criterion
χ2(X̂).

The Cemcroki2 alogirithm, proposed by Nadif and Govaert (2005) pro-
vides an extension of the Croki2 algorithm that, like Croki2, requires spec-
ifying the number of clusters in advance. In Nadif and Govaert (2005) and
in Govaert and Nadif (2010), the models are adaptations of the latent block
model for contingency tables, using Poisson distributions. The latent block
models have been detailed in Section 2.5.3.

2.6.2 The Information-Theoretic co-clustering
Dhillon et al. (2003) proposed an information theoretic co-clustering algo-
rithm for contingency tables. The approach views the contingency table
as an empirical joint probability distribution of two discrete random vari-
ables that take values over the rows and columns and poses the co-clustering
problem as an optimization problem in information theory. The optimal
co-clustering is the one that maximizes the mutual information between the
row clusters and column clusters or equivalently minimize the loss of mutual
information between the original sets (the rows and columns) and the clus-
tered sets (the clusters of rows and clusters of columns) under constraints
on the number of row and column clusters.

The loss in mutual information is first written as Kullback-Leibler diver-
gence between the original data distribution and an unknown distribution
which can in turn be written as the product of the conditional distribution
of rows given row clusters and the conditional distribution of columns given
the column clusters. Then, the KL divergence is written as a weighted sum
of the relative entropy between the row distribution and the row-cluster dis-
tribution or as a weighted sum of the relative entropy between the column
distribution and the column-cluster distribution. For a fixed co-clustering:

C(Crk ,Ccl ) = KL(p(X1,X2)||q(X1,X2) =
∑

k,i|xi.∈Cr
k

p(xi.)KL(p(X2|xi.) || q(X2|Crk))

=
∑

l,j|x.j∈Cc
l

p(x.j)KL(p(X1|x.j) || q(X1|Ccl )),

(2.4)
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with X1 and X2 are the random variables representing the set of rows and
columns, and q(xi.,x.j) = p(zik = 1,wjl = 1)p(xi.|zik = 1)p(x.j |wjl = 1)
for xi. ∈ Crk and x.j ∈ Ccl .

The algorithm starts with some initial random partition and itera-
tively computes marginals p(xi.) and p(x.j). It computes the row-cluster
prototypes q(x.j |Crk) = q(x.j |Cvl )q(Crk|Ccl ) and the column cluster proto-
types q(xi.|Ccl ) = q(xi.|Crk)q(Crk|Ccl ), then assigns each row to its clos-
est row-cluster prototype minimizing the divergence between q(X1|Ccl ) and
p(X1|x.j) and each column to its closest column-cluster prototype mini-
mizing the divergence between q(X2|Crk) and p(X2|xi.). The algorithm
monotonically increases the preserved mutual information and eventually
converges to a local minimum. However, the approach is restricted to non-
negative count data and requires specifying the number of row and column
clusters.

A similar co-clustering approach that is based on entropy regularized
optimal transport has been proposed recently by Laclau et al. (2017). The
solution of the optimal transportation problem is obtained from a doubly
stochastic coupling matrix representing an approximation of the joint prob-
ability distribution of the original data. The coupling matrix is factorized
into three terms where one of them reflects the posterior distribution of data
given co-clusters while the two others represent the approximated distribu-
tions of the rows and columns. The approximated distributions are then
used to obtain the final row and column partitions. Similarly to (Dhillon
et al. (2003)), the approach looks for a factorization of the joint probability
distribution between two variables X1 and X2 which is estimated from the
data matrix. However, while Dhillon et al. (2003) minimize the Kullback-
Leibler divergence KL(p(X1,X2)|q(X1,X2)), the approach proposed by La-
clau et al. (2017) minimizes KL(q(X1,X2)|p(X,X2)).

2.6.3 The MODL approach
The MODL approach (Boullé 2007) is a non-parametric model selection
based approach for conditional and joint density estimation. In the consid-
ered models, named data grid models, each variable is partitioned in inter-
vals or groups of values according to whether it is numerical or categorical.
The whole data is then partitioned into a grid of cells resulting from the
cross-product of the variable partitions. The model selection is based on
the maximization of the likelihood of the data, penalized by a prior related
term. The model parameters form a hierarchy where each parameter is cho-
sen according to the previous ones. Consequently, the prior distribution is
itself hierarchical. At each level of the hierarchy, the parameter distribu-
tion is considered flat, which introduces the least a priori knowledge about
the data. Once the data is observed, the penalized likelihood evaluates the
posterior probability of the parameters given the observed data.

For the purpose of this work, we will focus on the application of MODL
approach on estimating the joint density between two categorical variables
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X1 andX2. For more details about the other applications, readers are refered
to the complete presentation of the approach in Boullé (2007).

Let V1 and V2 be the number of categories of the variables X1 and X2,
and N the number of observations (sum of the contingency table formed by
X1 and X2). The grid nature of the approach performs a compression of the
values of the variables with respect to the number of times these values have
been observed together. The parameters of a MODL model are of the form:

• The number of groups per variable J1 and J2. The number of groups is
chosen with equal probabilities from 1 to the number of unique values
of the variable (V1 or V2). These numbers of groups define the size of
the data grid G = J1 × J2.

• The partition of the values of a variable into the previously chosen num-
ber of groups, resulting in the counts {mj1}1≤j1≤J1 and {mj2}1≤j2≤J2
of the number of categorical values per group. All possible partitions
are equally probable.

• The distribution of the N observations into the cells of the grid, result-
ing in the counts {Nj1j2}1≤j1≤J1,1≤j2≤J2 per cell. All possible distri-
butions are equally probable. The number of observations per group
(marginal counts of the summary matrix) can now be deduced by sum-
mation:

Nj1. =
∑
j2

Nj1j2 and N.j2 =
∑
j1

Nj1j2 .

• For each group of values, the distribution of the Nj1. (resp. N.j2)
observations of the group on the mj1 (resp. mj2) values in the group,
resulting in the counts ni. (resp. n.j), giving the number of observations
per value i (resp. j). All possible distributions of the values on the
groups are equally probable.

At each level of the hierarchy, the parameters are chosen conditionally on
the previously chosen ones. However, within the same level, the parameters
are considered independent. With this in mind, the prior probability of the
model parameters M can be written:

P (M) =P (J1|V1)P (J2|V2)

P ({mj1}|J1)P ({mj2}|J2)

P ({Nj1j2}|N , J1, J2)

P ({{ni.}}|{Nj1j2}, J1, J2)

P ({{n.j}}|{Nj1j2}, J1, J2).
Following the hierarchy of the parameters, the respective probabilities

are as follows:

• the choice of the number of groups per variable is governed by P (J1|V1)
and P (J2|V2) given by:

P (J1|V1) =
1
V1

and P (J2|V2) =
1
V2

,
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• the choice of the partition of the V1 (resp. V2) values into J1 (resp.
J2) groups is governed by P ({mj1}|V1) (resp. P ({mj2}|V2)) given by:

P ({mj1}|J1) =
1

B(V1, J1)
and P ({mj2}|J2)) =

1
B(V2, J2)

,

where B(V , J) is the sum of Stirling numbers of the second kind

B(V , J) =
J∑
j=1

S(V , j), giving the number of possible ways of par-

titioning V values into J groups.

• the choice of a distribution of the N observations into the G = J1× J2
cells of the grid is governed by P ({Nj1j2}|N , J1, J2), where Nj1j2 is
the number of observations to be associated to the grid formed by the
jth1 group of the first variable and the jth2 group of the second variable.
The probability of choosing such a distribution is given by:

P ({Nj1j2}|N , J1, J2) =
1

(N+G−1
G−1 )

,

• the choice of a distribution of the Nj1. (resp. N.j2) observa-
tions in a group into the mj1 values of the group is governed by
P ({ni.}|{Nj1j2}, J1, J2) (resp. P ({n.j}|{Nj1j2}, J1, J2)), where ni. is
the number of observations to be associated to the value i of the group
j1 and n.j is the number of observations to be associated to the value
j of the group j2 of the second variable. For a single group of values,
the probability of choosing such a distribution is given by:

P ({ni.}|{Nj1j2}, J1, J2) =
1

(Nj1.+mj1−1
mj1−1 )

, and

P ({n.j}|{Nj1j2}, J1, J2) =
1

(N.j2+mj2−1
mj2−1 )

.

Under the condition of independence between the parameters within
the same level of the hierarchy, the probability of choosing these dis-
tributions simultaneously for all groups is given by:

P ({{ni.}}|N , J1, J2) =
J1∏
j1=1

P ({ni.}|N , J1, J2) =
J1∏
j1=1

1
(Nj1.+mj1−1

mj1−1 )
, and

P ({{n.j}}|N , J1, J2) =
J2∏
j2=1

P ({n.j}|N , J1, J2) =
J2∏
j2=1

1
(N.j2+mj2−1

mj2−1 )
.

Given the model parameters, the likelihood of the data is defined by the
likelihood of the multinomial distribution of the observations on the data
grid cells and the multinomial distribution of the observations per group
over the values in the group:
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• the likelihood of the multinomial distribution of the observations on
the data grid cells, with the counts {Nj1j2} is given by

J1∏
j1=1

J2∏
j2=1

Nj1j2 !

N !
,

• the likelihood of the multinomial distribution of the observations in a
group over the values in the group are given by∏

i∈j1
ni.!

Nj1.!
and

∏
j∈j2

n.j !

N.j2 !
,

where i ∈ j1 (resp. j ∈ j2) means that the value i (resp. j) belongs to
the jth1 (resp. jth2 ) group of the corresponding variable.
Hence, the multinomial distribution of the marginal observations per
variable over the values of the variable are given by:

V1∏
i=1

ni.!

J1∏
j1=1

Nj1.!
and

V2∏
j=1

n.j !

J2∏
j2=1

N.j2 !
.

The likelihood of the full set of parameters M is defined by the product
of the likelihoods of the individual parameters. In order to select the best
set of parameters, a MAP based criterion is optimized to maximize their
probability given the data P (M |D) ∝ P (M)P (D|M) as shown by Theorem
1. The prior distribution on the model parameters serves as a regularization
term which prevents the optimization from selecting systematically a high
number of groups and prevents over-fitting.

Theorem 1 A MODL co-clustering is Bayes optimal if the evaluation of its parameters
according to the following criterion is minimal (Boullé (2011)):

C(M ) =− logP (M)− logP (D|M )

= log V1 + log V2 + logB(V1, J1) + logB(V2, J2)

+ log
(
N +G− 1
G− 1

)
+

J1∑
j1=1

log
(
Nj1. +mj1 − 1

mj1 − 1

)
+

J2∑
j2=1

log
(
N.j2 +mj2 − 1

mj2 − 1

)

+ logN !−
J1∑
j1=1

J2∑
j2=1

logNj1j2 ! +
J1∑
j1=1

logNj1.! +
J2∑
j2=1

logN.j2 !

−
V1∑
i=1

logni.!−
V2∑
j=1

logn.j !.

(2.5)

The first line of this criterion corresponds to the prior distribution of
choosing the numbers of groups and to the partition of the values of each
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variable to the chosen number of groups. The second line represents the
specification of the parameters of the multinomial distribution of the N
observations on the G cells of the data grid and the specification of the
multinomial distribution of the observations of each group on the values of
the group. The third line corresponds to the likelihood of the distribution of
the observations on the data grid cells and the likelihood of the distribution
of the observations per group over the values in the group, by the mean of
a multinomial term.

The approach presented so far performs a simultaneous clustering of the
values of two variables (X1 × X2) by the medium of partition of the observed
counts on a data grid. In the next chapter, we show how this co-clustering
approach can be applied to the problem of co-clustering instances×variables,
in the presence of mixed type variables.

2.7 Summary
In this chapter, we have explored the most commonly known pattern ex-
traction and exploratory analysis techniques. Namely, dimensionality re-
duction, clustering techniques, and co-clustering, with a particular emphasis
on the co-clustering based techniques. Through this chapter, we have seen
that each of these techniques is adapted to a certain type of data. The
only co-clustering like method that handles mixed-type variables is Cross-
cat (Mansinghka et al. 2016) which, in the classical sense, is not really a
co-clustering technique since it provides one clustering of the variables and
multiple clusterings of the set of instances.

In an attempt to solve this problem of mixed-type data co-clustering, we
have extended the latent block models to handle data containing both numer-
ical and binary variables (see Appendix B). While this extension enhances
the performance of the co-clustering when the clusters are intrinsically de-
fined by mixed variables, it still suffers from the same problem as most of
the above mentioned co-clustering methods, which is the need to have the
numbers of clusters specified in advance. For latent block models, model se-
lection criteria like the Bayesian Information Criterion BIC (Schwarz 1978),
the Akaike Information Criterion AIC (Akaike 1974), and the Integrated
Classification Criterion ICL (Biernacki et al. 2000) can be used to infer
the optimal number of clusters but the proposed extension does not extend
these criteria for mixed data. Furthermore, this extension inherits the in-
applicability on large data sets from the underlying LBM model. To handle
these problems, we propose using the MODL approach to perform a co-
clustering of data containing mixed variables. The first advantage for using
MODL is that it extracts the inter-dependencies between the variables in a
non parametric manner. Therefore, there is no need to know the numbers of
clusters in advance. A second advantage is that it scales and can be applied
to large data sets while still providing easily interpretable clusters, which is
an important advantage in exploratory analysis. This approach is discussed
in details in the next chapter.
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Chapter 3

Co-clustering mixed data

In this chapter, we introduce a new MODL based methodology to perform
a co-clustering of the instances and variables of a data table. The objective
of the approach is to find a co-clustering structure that expresses the inter-
dependence between variables of possibly mixed types and provide easily
interpretable clusters even when the data set is large and complex.

This chapter is organized as follows. In order to set the motivating back-
ground for the proposed co-clustering approach, Section 3.1 introduces a
close-up emphasis on the advantages of value based co-clustering compared
to the full-row and full-column based techniques. Section 3.2 presents the
co-clustering approach. We compare the results of the proposed approach
with those of the Multiple Correspondence Analysis approach, presented in
Section 3.4. The experimental results are provided in Section 3.5. In Sec-
tion 3.6, we conclude and summarize the main limitations of the approach,
which sets the motivation for the next chapter.

3.1 Introduction
Clustering methods cluster objects (instances) based on their observed val-
ues with respect to all the studied variables. By contrast, as discussed in the
previous chapter, co-clustering methods try to extract a structure of homo-
geneous blocks from data. This extraction can be performed via a mapping
from the set of instances to a set of clusters of instances and a mapping from
the set variables to the clusters of variables, or through a direct mapping
from the set of entries in the data matrix to clusters of entries. In the first
case, the entries at the intersection of a cluster of instances and a cluster
of variables form a co-cluster while in the latter, the clusters of entries are
themselves co-clusters. In the traditional co-clustering methods (defined by
two mappings), a cluster of instances contains instances that behave simi-
larly with respect to all the variables but with varying degrees (as defined
by the blocks), and similarly, the variables within a cluster are observed
similarly with all the objects but with varying degrees (as defined by the
blocks). Examples of these techniques include those fetching for the struc-
tures in Figures 2.1b and 2.1c (see Section 2.4.3 of the previous chapter).

41
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However, it is often the case that the instances do not exhibit similar pat-
terns in all variables but in a subset of variables, and inversely. This is the
main motivation behind the second type of co-clustering methods (defined
by a mapping of the data entries). This point of view has been particularly
exploited in gene expression bi-clustering techniques where most methods try
to identify genes (instances) that have correlated expression values in various
conditions (variables), known as co-expressed genes (Madeira and Oliveira
2004). Most gene expression bi-clustering methods are used to capture the
genes that are correlated only for a subset of conditions, which is biologically
interesting since not only it allows to capture the correlated genes, but also
enables the identification of genes that do not behave similarly in all condi-
tions (Eren et al. 2013). Examples of these techniques are those fetching for
the structures in Figures 2.1d, 2.1e, and 2.1i (see Section 2.4.3).

In this chapter, we adopt this point of view and we go a step further to
argue that the instances within a cluster of instances (in particular) need
neither to be similar over all the variables (as in the traditional view) nor
to be similar over a subset of variables (as in the co-expressed-genes view)
but they need only to be similar with respect to a subset of values of the
variables, and with varying degrees (as defined by the blocks). Inversely,
the variables do not need to be similar with respect to all the instances. In
particular, two variables can be partly correlated. This partial correlation
can not be explained by a clustering that is based on all of their observed
values. To this end, we propose a co-clustering approach that is based on
MODL (Section 2.6.3) which is the subject of this chapter.

3.2 The co-clustering approach
Let X be a data table containing I instances and K variables. Let the set of
variables be denoted X . Among these variables, suppose Kn are numerical
and form the set Xn. The remaining Kc variables are categorical and form
the set Xc. Each entry xij , numerical or categorical, is called observation.
The observation xij = v says that the value of variable Xj is v for object i.

We propose to form a co-clustering method of the data table X using
a two-step methodology. The first step consists in homogenizing the vari-
ables, then transforming the data into two categorical variables that capture
the relationship between the instances and the homogenized variables. The
second step consists of applying a standard co-clustering approach to the
transformed homogeneous data. Our objective is to require no model related
parameters, such as the number of clusters. Therefore, in the co-clustering
step, we will use the MODL approach (Boullé 2011) for its non parametric
nature, its efficiency for extracting correlation structures, its scalability and
its robustness to over-fitting, induced by the embedded regularization. This
section presents this two-step approach in more details.
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3.2.1 Variable parts
For the double objective of simultaneously processing variables of different
types and capturing local as well as global correlations between the variables,
some homogenizing technique is required. For this purpose, we introduce the
notion of variable parts. Partitioning the variables enables easier approxima-
tion of the joint densities. For example, given two variables, the idea is that
if they are partitioned (the distribution of every variable is approximated
by intervals or groups of values), then if the variables are correlated, their
corresponding partitions will be correlated. If the variables are partly or
locally correlated, then some parts the variables will be correlated, and if
they are uncorrelated, then their partitions will still be uncorrelated.

Naturally, the partitioning of the variables should approximate their dis-
tribution as accurately as possible. Nevertheless, to avoid over-fitting, the
partitions should not be too accurate. Hence, the choice of the partitions
should take into account this trade off between fitness to data and complexity
of the resulting co-clustering.

3.2.2 Creating variable parts: data pre-processing
For the homogenizing step, we choose partitioning all variables using a user
parameter p, which represents the maximal number of parts per variable.
One possible discretization method is with equal-width but we choose to
leverage a frequency based discretization because it reinforces the robust-
ness of the approach and minimizes the effect of outliers, if present in the
data. In particular, the values of a numerical variable are transformed into
p contiguous intervals while the values of the categorical variables are trans-
formed into p groups of values as follows:

• in the case of a numerical variable, the parts are the result of an un-
supervised discretization of the range of the variable into p intervals
with equal frequencies,

• in the case of a categorical variable, we choose to use the p− 1 most
frequent values to define the first p− 1 parts, and to put the other less
frequent values into the pth part.

We use the term part to denote both a numerical interval and a categorical
group.

On the choice of the dicretization parameter

The dicretization parameter p defines the maximal granularity at which the
analysis can be performed. A good choice of p is related to a trade-off
between the fineness of the analysis, the time required to compute the co-
clustering of the second step, and the interpretability of the co-clustering
results.

In theory, the computational cost of the MODL co-clustering
(O(N

√
N logN) where N = I × K is the total number of observation
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(Section 3.2.3)) does not depend on the parameter p, but in practice, the
observed computation time tends to decrease with smaller values of p. Also,
the size of the data set and its complexity can be taken as an indicator.
Small values are probably sufficient for small and simple data sets while for
larger ones, it would be wise to choose a larger parameter p. However, we
would recommend to start with high values of p since it gives a detailed
description of the data, which minimizes the loss of information.

On the Iris data set for example, we choose p = 5 for this dicretization
step. The results of this dicretization are illustrated in Table 3.1.

SepalLength SepalWidth PetalLength PetalWidth Class
]−∞; 5.05] ]−∞; 2.75] ]−∞; 1.55] ]−∞; 0.25] {setosa}
]5.05; 5.65] ]2.75; 3.05] ]1.55; 3.95] ]0.25; 1.15] {versicolor}
]5.65; 6.15] ]3.05; 3.15] ]3.95; 4.65] ]1.15; 1.55] {virginica}
]6.15; 6.55] ]3.15; 3.45] ]4.65; 5.35] ]1.55; 1.95]
]6.55;+∞[ ]3.45;+∞[ ]5.35;+∞[ ]1.95;+∞[

Table 3.1 – The output of the discretization step on iris, for p = 5.

In Table 3.1, the numerical parts are represented as intervals because
they contain contiguous values with boundaries referring to the boundaries
at which the cuts are made. The categorical parts are represented by their
constituting categorical values. This representation is useful for later inter-
pretation of the clusters.

3.2.3 Data transformation
Although designed for joint density estimation, MODL has also been applied
to the case of instances×binary-variables. An example of such application is
that of a large corpus of documents, where each document is characterized
by tens of thousands of binary variables representing the usage of words.
In this case, the corpus of documents is transformed beforehand into a rep-
resentation in the form of two variables IdText and IdWord. In the same
manner, we transform the discretized data resulting from the pre-processing
step into two categorical variables IdInstance and IdVarPart in order to use
the MODL approach for co-clustering these two categorical variables (as
detailed in Section 2.6.3).

The discretized data is transformed into two variables IdInstance and
IdVarPart by creating, for each instance, a record per variable that logs
the link between the instance and its variable part. The set of I initial
instances characterized by K variables is thus transformed into a data set
of N = I ×K new instances and two new categorical variables, the first of
which contains V1 = I values and the second contains, at most, V2 = K × p
values. The approach detailed in Section 2.6.3 can now be applied directly
to these new categorical variables.

For example, for the Iris data set, this transformation results in two
columns of 750 instances. Table 3.2 shows the first ten instances.
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IdInstance IdVarPart
I1 SepalLength]5.05; 5.65]
I1 SepalWidth]3.45;+∞[
I1 PetalLength]−∞; 1.55]
I1 PetalWidth]−∞; 0.25]
I1 Class{setosa}
I2 SepalLength]−∞; 5.05]
I2 SepalWidth]2.75; 3.05]
I2 PetalLength]−∞; 1.55]
I2 PetalWidth]−∞; 0.25]
I2 Class{setosa}

Table 3.2 – The first 10 instances of the transformed Iris data.

Note that after the pre-processing step, the co-clustering can not lever-
age two aspects of the data: the actual value taken by a variable inside a
variable part and the original links between variable parts. In other words,
the approach is oblivious to the fact that SepalLength]5.05; 5.65] and Sepa-
lLength]−∞; 5.05] both refer to the same original variable and to the fact
that they are contiguous (these parts are now two distinct categorical val-
ues). In the formalized model, presented in Chapter 4, we will take into
account this link between the variable parts and we will show that it proves
to be useful.

3.2.4 The co-clustering
Now that our data is represented in the form of two categorical variables,
we can apply MODL to estimate the joint probability distribution between
these two variables. This results in two partitions of the values of the newly
introduced categorical variables. Clusters of values of the variable IdInstance
are clusters of instances while clusters of values of the variable IdVarPart are
clusters of variable parts. Thus, the results consists in a form of co-clustering
in which variables are clustered at the level of parts rather than globally.
As a result, the co-clustering consists of forming clusters of instances and
clusters of variable parts, which has the advantage of enabling mixed clusters
of variables. In the resulting co-clustering, the instances of the original data
set (values of the variable IdInstance) are grouped if they are distributed
similarly over the groups of variables parts (values of the variable IdVarPart),
and vice-versa. Also, the number of clusters does not need to be specified
because MODL optimizes the number of groups of values of the clustered
variables.
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3.3 Exploratory analysis of the results
Given a co-clustering, defined by its set of parameters (see Section 2.6.3),
denote:

• Gu, the number of clusters of instances;

• Gp, the number of clusters of variable parts;

• {mi}1≤i≤Gu , the number of instances in the ith cluster of instances;

• {mj}1≤j≤Gp , the number of parts in the jth cluster of variable parts;

• {Ni,j}1≤i≤Gu,1≤j≤Gp , the number of observations in the co-cluster
(Cuk ,Cpj ) formed by the kth cluster of instances and the jth cluster
of parts;

• Ni. =
∑
j
Ni,j , the numbers of observations in cluster of instances Cuk ;

• N.j =
∑
i
Ni,j , the numbers of observations in cluster of variable parts

Cpj .

To facilitate the analysis of the results, we use model coarsening to sim-
plify the co-clustering and mutual information to explain the clusters.

3.3.1 Model coarsening
When the optimal co-clustering is too detailed (the matrix of co-clusters is
large), coarsening of the partitions (as proposed in Guigourès et al. (2015a))
can be implemented by merging clusters (of objects or variable parts) in or-
der to obtain a simplified structure. While this model coarsening approach
can degrade the co-clustering quality, the induced simplification enables the
analyst to gain insight on complex data at a coarser level, in a way similar
to exploration strategies based on hierarchical clustering. The dimension on
which the merging is performed and the best merging are chosen optimally
at each coarsening step with regards to the minimum divergence from the
optimal co-clustering, measured by the difference between the optimal value
of the MODL criterion (Section 2.6.3) and the value obtained after merg-
ing the clusters (in the next chapter (Chapter 4), we will propose a new
criterion).

3.3.2 The mutual information between clusters
Given a desired coarsening level, the result of the co-clustering approach
is represented as a matrix of counts of the number of observations per co-
cluster. This can be seen as a contingency table between the clusters of
instances and the clusters of variable parts. Each co-cluster associates the
variable parts that constitute the cluster to one another and associates these
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variable parts to the clusters of instances with varying degrees, depending
on their contribution to the cluster of instances. Inversely, each cluster of
instances is explained by the clusters of variable parts with varying degrees.
To measure this association between the clusters, we compute the matrix of
mutual information.

The mutual information I = {I(Cu
k ,Cp

l )
} measures the divergence from

the independence. An entry I(Cu
k ,Cp

l )
is given by:

I(Cu
k ,Cp

l )
= P (Cuk ,Cpl ) log P (Cuk ,Cpl )

P (Cuk )× P (C
p
l )

,

where P (Cuk ,Cpl ), P (Cuk ) and P (Cpl ) are the frequency of a co-cluster, the
frequency of a cluster of instances and the frequency of a cluster of variable
parts, which are given respectively by:

P (Cuk ,Cpl ) =
Ni,j
N

, P (Cuk ) =
Ni.
N

, and P (Cpl ) =
N.j
N

.

This matrix of mutual information is used for basis in associating clusters of
one type to the clusters of the second type with respect to the contribution
of their mutual information to the total information. For visualization, we
use a color-coded version of this matrix where, in each cell, red colors rep-
resent an over-representation of the instances compared to the case where
the two dimensions are independent and blue colors represent an under-
representation (see Figure 3.1 for example). White cells represent empty
co-clusters (no association between the corresponding clusters). A cluster
of instances is described by the parts contained in the cluster(s) of variable
parts with the highest contribution to the total mutual information of the
cluster (of instances).

3.3.3 Summary
In summary, the proposed co-clustering approach takes a mixed-type data
matrix as input and performs a clustering of the instances and a clustering of
the variables at the level of variable parts. Consequently, values coming from
different variable types are grouped within the same co-clusters. However,
the approach requires a user parameter for discretization. Nevertheless, one
should note that this granularity parameter is far less restrictive than other
common parameters such as the number of instance clusters and the number
of variable clusters, commonly required by the vast majority of co-clustering
methods. In the formalized model (Chapter 4), this parameter will be opti-
mized within the model but for the remaining of this chapter we will choose
it manually for each data set.

Since we are in the context of exploratory analysis of a mixed-type data
table, we compared our methodology to the most widely used factor analysis
method in case of the presence of categorical variables: Multiple Correspon-
dence Analysis (MCA). MCA is chosen as a comparison basis because it
enables extracting the correlations between categorical variables while per-
forming a clustering of the instances. Note, however, that this method does



48 CHAPTER 3. CO-CLUSTERING MIXED DATA

not take the original mixed-type data set as input. Therefore, we will com-
pare the co-clustering part of the approach to the results of MCA. That is,
we will apply MCA on the discretized data, resulting from the pre-processing
step. Details of the Multiple Correspondence Analysis techniques, and how
it can be related to the singular value decomposition based co-clustering, are
addressed below.

3.4 Multiple Correspondence Analysis
Factor analysis is a set of statistical methods, the purpose of which is to
analyze the relationships or associations that exist in a data table, where
rows represent instances and columns represent variables (of any type). The
main purpose of these methods is to determine the level of similarity (or
dissimilarity) between groups of instances (problem classically treated by
clustering) and the level of associations (correlations) between the observed
variables. Multiple Correspondence Analysis (MCA) is a factor analysis
technique that enables one to analyze the dependencies between multiple
categorical variables while performing a typology (grouping) of instances
and variables in a complementary manner. We argue that these goals are
very close to those of co-clustering and that by placing MCA in a spectral
clustering context, one can see the similarity between the use of the singular
value decomposition in co-clustering and its use in MCA.

MCA in practice

MCA applies to categorical data. Let Y = (yikc)1≤i≤I,1≤kc≤Kc be the table
of I instances described by Kc categorical variables, and let mkc be the
number of categories for the kthc variable. MCA uses an I ×m indicator

matrix Z (with m =
Kc∑
kc=1

mkc) called complete disjunctive table (CDT).

This CDT is a juxtaposition of Kc indicator matrices of all variables where
rows represent the instances and columns represent the categories of the
variable, and such that Zij = 1 iff the ith instance takes the category j for
a given variable. To put it simply, the matrix Z can be considered as a
contingency table between the instances and the set of all categories in the
data.

The most common way to perform MCA is by applying a correspondence
analysis algorithm to the indicator matrix Z and/or to the Burt matrix
B = ZTZ (T is the transpose), but one equivalent approach is to perform a
SVD on a standardized matrix.

3.4.1 MCA as a correspondence analysis method
The CDT Z has some known characteristics that makes it easily exploitable.
For instance, the sum of all elements of each row is equal to the number Kc

of variables, the sum of all elements of a column j is equal to the marginal
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frequency nj of the corresponding category, the sum of all columns in each
indicator matrix is equal to 1, the sum of all elements in Z is equal to I ×Kc.
Also, assuming equally important instances, the matrix of instance weights
is given by r = 1

I1 (1 is the identity matrix), and the column weights are
given by the diagonal matrix D = diag(D1,D2, . . . ,DKc) where each Dkc is
the diagonal matrix containing the marginal frequencies of all categories of
the kthc variable.

The results that we will exploit from an MCA are the projection of the
instances and categories on the principal axis, which are given as follows.

1. The principal coordinates of categories are given by the eigenvectors
of 1

Kc
D−1ZTZ, which are the solutions of the equation:

1
Kc

D−1ZTZa = µa.

2. The principal coordinates of instances are given by the eigenvectors of
1
Kc

ZD−1ZT , which are the solutions of the equation:

1
Kc

ZD−1Ztz = µz.

3. The transition formulas (Saporta (2006)) are given by z = 1√
µ

1
Kc

Za
and a = 1√

µD−1ZTz, which describes how to pass between the coor-
dinates.

Additional information that might aid in the interpretation of the results
come from the following.

• The total inertia is equal to ( mKc
− 1).

• The inertia of all the mkc categories in the kthc variable is equal to
1
Kc

(mkc − 1). Since the contribution of a variable to the total inertia is
proportional to the number of categories in the variable, it is preferable
to require all variables to have roughly the same number of categories.
Hence, another utility of the pre-processing step.

• The contributions of an instance i and of a category j to a principal
axis h are given by:

Ctrh(i) =
1
I

z2
ih

µh
and Ctrh(j) =

nj
IKc

a2
jh

µh
.

• The contribution of a variable to the inertia of a factor is equal to
the sum of contributions of all categories in the variable to that same
axis. This contribution measures the level of correlation between the
variable and the principal axis.
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3.4.2 MCA as a spectral technique
One can think of the aims of the MCA as equivalent to those of co-clustering
because when placing MCA in a spectral context, one can see the similarity
between the use of spectral techniques in co-clustering and its use in MCA.
Let P = 1

I×Kc
Z be the correspondence matrix (the sum of the entries in

Z is I ×Kc), r the vector of row sums and c the vector of column sums of
P (ri =

∑Kc
kc=1 Pikc and ckc =

∑I
i=1 Pikc). MCA can be performed using a

SVD of a standardized matrix derived from the correspondence matrix. For
instance, when working with the indicator matrix, MCA requires a SVD of

S1 = D−1/2
r PD−1/2

c . (3.1)
When using the Burt matrix, MCA requires a SVD on the standardized
residual matrix:

S2 = D−1/2(F− r̃r̃T )D−1/2,
where F = B

I×K2
c
is the correspondence matrix derived from the Burt

table B, and r̃ is the vector of row sums of F (or column sums since F is
symmetric), and D = Dr̃ is a diagonal matrix containing the elements of r̃
(see D’Enza and Greenacre (2012) and Di Ciaccio et al. (2012)).

Recall that singular value decomposition SVD is a linear algebra tech-
nique that expresses an n×m matrix A as the product A = UAV T where
A is a diagonal matrix with non negative entries λi (called singular val-
ues) which are the square roots of the eigenvalues of AAT and U and V
are n×min(n,m) and m×min(n,m) orthogonal column matrices. The
columns of U , called left singular vectors of A, are the eigenvectors of AAT
and the columns of V , called right singular vectors of A, are the eigenvectors
of ATA.

From the SVD of S1, we get the spectral decomposition:

S1 = UΣ1V
T ,

where U and V are the matrices of right and left singular vectors with
constraints UUT = 1 and V TV = 1 (1 is the identity matrix) and Σ1 is the
diagonal matrix of nonnegative singular values.

The standard coordinates for rows and columns are given, respectively,
by:

Rs = D−1/2
r U and Cs = D−1/2

c V .
The principal coordinates of rows and columns are given, respectively,

by:
Rp = D−1/2

r UΣ1 and Cp = D−1/2
c V Σ1.

From the SVD of S2, we get the spectral decomposition:

S2 = WΣ2W
T ,

where Σ2 is the diagonal matrix of singular values in descending order and
W is the matrix of singular vectors.
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The principal coordinates of the rows, or columns (since S2 is symmetric)
are

F = D−1/2WΣ.

When applying a clustering technique to the principal coordinates of the
rows and columns, a structure of correspondence between the categories and
instances emerges. For example, this is the case in the approach used in
Dhillon (2001) which is based on dimentionality reduction and a clustering
algorithm (see Section 2.5.2). In Dhillon (2001), the partitioned data con-
tains both row projections and column projections on the second eigenvector
which usually expresses the strongest associations and the best seperation
between the clusters. However, Kluger et al. (2003) observe that, while the
partitioning eigenvectors (those providing the best separation) are commonly
associated with the second largest eigenvalue, it can also be one of the eigen-
vectors associated to one of the following largest values and, in some cases,
the partitioning eigenvector can be one of the eigenvectors associated to a
small eigenvalue. Hence, a prudent strategy is to examine all the eigenvec-
tors. In Kluger et al. (2003), the authors do exactly this as they perform a
partitionning of each eigenvector and choose the best candidate as the one
that can be best approximated by a piece wise constant vector. To this end,
they examine all possible partitions of each ordered vector into a number of
parts, for all possible numbers of parts.

3.4.3 Summary
Although multiple correspondence analysis and co-clustering are different
in some aspects, we have seen that they both have the same broader goal
of discovering the correspondence or association between the objects and
features and when they are looked at from a spectral clustering angle, we
hope to make a rightful comparison. In the following we will compare the
proposed co-clustering approach to performing a clustering using all the
eigenvectors when possible or the ones associated to the highest eigenvalues
otherwise.

3.5 Experiments and comparison with MCA
To illustrate the utility of the proposed co-clustering approach, let us con-
sider real-world data sets for which the key characteristics are well known
or from which conclusions may follow common sense, namely the Iris and
Adult data sets (Lichman 2013). We start the experiments by comparing
our methodology (Section 3.2) with MCA (Section 3.4) using the Iris data
set for didactic reasons, then we apply our approach to the Adult data set to
evaluate its scalability, while comparing our conclusions with those obtained
using MCA followed by a clustering.



52 CHAPTER 3. CO-CLUSTERING MIXED DATA

3.5.1 The Iris data set
Fisher’s Iris data (Fisher 1936) is an example of easily exploitable data sets
and for which key properties are well known. The data is available from the
UCI Machine Learning Repository (Lichman 2013) and it consists of 150
instances, 750 observations, 4 numerical variables (PetalLength, PetalWidth,
SepalLength, and SepalWidth) and 1 categorical variable (Class). The pri-
mary prediction task for this data set is to determine the class of a flower
given the four numerical variables. However, we do not use this information
in our co-clustering and to our approach, the data simply contains 5 vari-
ables of equal importance. As a consequence, the class information can be
used to validate the obtained results.

The co-clustering results

After discretizing the Iris data using a granularity of p = 5 parts and ap-
plying the MODL co-clustering method (as explained in Section 3.2), we
found that the optimal co-clustering consists of Gu = 3 clusters of instances
and Gp = 8 clusters of variable parts as shown in Table 3.3 and Figure 3.1.
Table 3.3 shows the table of counts containing the number of observations
per co-cluster, along with the marginal counts per cluster. Figure 3.1 and
Table 3.4 illustrate the co-clustering in terms of mutual information.
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Figure 3.1 – The resulting co-clusters as mutual information. The rows represent
the instance clusters while the columns represent the variable part clusters. In each
cell, the red color represents an over-representation of the instances compared to
the case where the two dimensions are independent and the blue color represents
an under-representation. White cells represent empty co-clusters (no association
between the corresponding clusters).

Composition of the clusters. The clusters of instances contain 50, 54,
and 46 instances. The clusters of variable parts illustrate the association
between parts of the original variables which in the correspondence analysis
vocabulary would be seen as association or co-existence of different categories
coming from different variables. If we denote Cuk the kth cluster of instances
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Cluster Cp1 Cp2 Cp3 Cp4 Cp5 Cp6 Cp7 Cp8 Nk.
Cu1 0 0 0 11 121 49 48 21 250
Cu2 8 131 64 46 0 4 1 16 270
Cu3 109 1 21 56 0 3 34 6 230
N.l 117 132 85 113 121 56 83 43 N = 750

Table 3.3 – The contingency-table representation of Iris. Cuk denotes the kth cluster
of instances and Cpl denotes the lth cluster of variable parts.

Cluster Cp1 Cp2 Cp3 Cp4 Cp5 Cp6 Cp7 Cp8 marginal
Cu1 0 0 0 -0.018 0.177 0.063 0.035 0.011 0.268
Cu2 -0.018 0.177 0.063 0.008 0 -0.009 -0.004 0.001 0.218
Cu3 0.161 -0.005 -0.006 0.036 0 -0.007 0.013 -0.006 0.186
marginal 0.143 0.172 0.057 0.026 0.177 0.047 0.044 0.006 0.672

Table 3.4 – Table of mutual information of the Iris data co-clustering.

and Cpl , the lth cluster of variable parts, the compositions of the clusters of
instances and of variable parts are given by Tables 3.5 and 3.6.

Cluster |Cui |
Cu1 50
Cu2 54
Cu3 46

Table 3.5 – Composition of the instance clusters.

Exploratory analysis of the results

The obtained co-clustering is easily exploitable because the data set is small.
Therefore, no model coarsening is required and we will analyze the optimal
co-clustering as it is.

Interpretation of the clusters. By ranking the clusters of variable parts
by their contributions to each cluster of instances, we conclude the following
associations: (Cu1 ,Cp5 ), (Cu2 ,Cp2 ), and (Cu3 ,Cp1 ). From these associations,
one can conclude that the data set contains three clusters of instances and
their characteristics are as follows:

• a cluster Cu1 of 50 flowers that are characterized by Cp5 (i.e. the vari-
able parts Class{setosa}, PetalLength]−∞; 1.55] and PetalWidth]−
∞; 0.25]),

• a cluster Cu2 of 54 flowers characterized by Cp2 (i.e. the variable parts
Class{virginica}, PetalLength]5.35;+∞[, PetalWidth]1.95;+∞[ and
PetalWidth]1.55; 1.95]),
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Cluster Cp1 Cp2 Cp3 Cp4
Class{versicolor} Class{virginica} PetalLength]4.65; 5.35] SepalWidth]2.75; 3.05]
PetalWidth]1.15; 1.55] PetalLength]5.35;+∞[ SepalLength]6.55;+∞[ SepalWidth]−∞; 2.75]
PetalLength]3.95; 4.65] PetalWidth]1.95;+∞[ SepalLength]6.15; 6.55] SepalLength]5.65; 6.15]

PetalWidth]1.55; 1.95]
Cluster Cp5 Cp6 Cp7 Cp8

Class{setosa} SepalLength]−∞; 5.05] SepalLength]5.05; 5.65] SepalWidth]3.15; 3.45]
PetalLength]−∞; 1.55] SepalWidth]3.45;+∞[ PetalWidth]0.25; 1.15] SepalWidth]3.05; 3.15]
PetalWidth]−∞; 0.25] PetalLength]1.55; 3.95]

Table 3.6 – Composition of the variable part clusters.

• a cluster Cu3 of 46 flowers characterized by Cp1 (i.e. the variable parts
Class{versicolor}, PetalLength]3.95; 4.65] and PetalWidth]1.15; 1.55]).

These three instance clusters are easily understandable as they represent
the small, large and medium flowers respectively. These clusters are mainly
explained by three clusters of variable parts containing the variables Class,
PetalLength and PetalWidth. In fact it is well known that, in the Iris data set,
the three classes are well separated by the Petal variables. This is reflected
here by the grouping of the variables as well as by the instance clusters.

Non-informative clusters of variable parts. By looking at the con-
tribution of the clusters of variable parts to mutual information, one can
distinguish two non informative clusters (the fourth and eighth columns Cp4
and Cp8 of Figure 3.1 and Table 3.4), which are based essentially on the
variable SepalWidth:

• the fourth column Cp4 contains the parts: SepalWidth] −∞; 2.75],
SepalWidth]2.75; 3.05], and SepalLength]5.65; 6.15],

• the eighth Cp8 column contains the parts: SepalWidth]3.05; 3.15] and
SepalWidth]3.15; 3.45].

The small values of SepalWidth (Cp4 ) are slightly over-represented in the
clusters of instances associated to the classes versicolor and virginica while
the intermediate values (Cp8 ) are slightly over-represented in the cluster of
instances associated to setosa.

Notice that, as expected, the methodology enables us to group values of
different nature in the same cluster. However, it does not leverage the origins
of the variable parts nor their inter-relations. For example, the variable parts
PetalWidth]1.55; 1.95] and PetalWidth]1.95;+∞[ belong to the same cluster
but, since they both come from the variable PetalWidth and are contiguous,
their presence in the same cluster is equivalent to having the variable part
PetalWidth]1.55;+∞[ that groups them both.

MCA analysis

For comparison, we perform a multiple correspondence analysis approach to
the discretized data resulting from the pre-processing step. The distribution
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of eigenvalues (Figure 3.2) indicates that the first two principal axes do cap-
ture enough information with a cumulative variance of 38.30%. Therefore,
we can limit our analysis to the first factorial plan.

Figure 3.2 – Histogram of eigenvalues (on the left) and the percentage of variance
captured by the axes in the MCA analysis of Iris (on the right).
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Figure 3.3 – K-means clustering of the projection of the set of instances and vari-
able parts.

To exploit the results, we perform a k-means clustering on the projections
of the instances and the variable parts on the factor space formed by the first
two axes. Figure 3.3 shows the projection of the instances and the variable
parts by their k-means clusters with k = 3, which is the number of clusters
discovered by our approach.

A comparison between the k-means clustering and the clustering resulting
from our co-clustering shows a nearly perfect correspondence (Table 3.7).

Analysis of the results. The k-means clustering enables us to make the
following conclusions:

1. The first cluster of instances (in the top left corners of Figure 3.3),
containing 51 instances, is associated to the variable parts:

• SepalWidth]3.05; 3.15]
• SepalLength]6.15; 6.55] and SepalLength]6.55;+∞[
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Co-clustering vs K-means
Confusion C1 C2 C3

Cu1 0 0 50
Cu2 5 49 0
Cu3 46 0 0

Table 3.7 – Confusion table between our clustering and the k-means clustering. Ci
stands for the ith k-means cluster.

• PetalLength]4.65; 5.35] and PetalLength]5.35;+∞[

• PetalWidth]1.55; 1.95] and PetalWidth]1.95;+∞[

• Class{virginica}.

Thus associating virginica with high values of PetalLength (greater
than 4.65), high values of PetalWidth (greater than 1.55) and high
values of SepalLength (greater than 6.15).

2. The second cluster (on the right of Figure 3.3) associates 49 instances
in the cluster to the variable parts:

• SepalLength]−∞; 5.05], SepalLength]5.05; 5.65],
• SepalWidth]3.15; 3.45], SepalWidth]3.45;+∞[,
• PetalLength]1.55; 3.95],
• PetalWidth]−∞; 0.25], PetalWidth]0.25; 1.15],
• Class{setosa}.

Thus, strongly associating setosa with low values of PetalLength (less
than 3.95), low values of PetalWidth (less than 1.15) and low values of
SepalLength (less than 5.65).

3. The third cluster (in the bottom left corners of Figure 3.3) associates
the 50 instances in the cluster to:

• SepalLength]5.65; 6.15], SepalLength]6.15; 6.55],
• SepalWidth]−∞; 2.75], SepalWidth]2.75; 3.05],
• PetalLength]3.95; 4.65],
• PetalWidth]1.15; 1.55],
• Class{versicolor}.

Thus, associating versicolor with intermediate values of PetalLength,
PetalWidth and SepalLength, and with low values of SepalWidth.

4. The projection of instances (on the left of figure 3.3) shows a mixture
between virginica and versicolor. These results are identical to those
found using the co-clustering analysis.
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5. The variable parts issued from SepalWidth are weakly correlated with
the others and contribute less to the first factorial plan: the small
values (less than 3.05) are associated with the mixture zone between
virginica and versicolor, the intermediate values (between 3.05 and
3.45) have their projections in between virginica and setosa (they are
therefore present in both clusters). These results are also in agree-
ment with the results deduced from the co-clustering (see the above
interpretation of the clusters Cu4 and Cu8 ).

In summary, on this didactic example where the results of MCA are easily
interpretable, a good agreement emerges between a k-means clustering on
the MCA projections and the proposed co-clustering approach.

3.5.2 The Adult data set
The Adult data set (Lichman (2013)) is composed of I = 48.842 instances
represented byKn = 6 numerical andKc = 9 categorical ones. The variables
are income related variables such as age, working class, education, sex, hours
worked, and salary. The prediction task for this data set is to determine
whether a person makes more or less than 50K a year (the variable class).
However, we do not use this information in our co-clustering and to our
model, the data simply contains K = 15 variables of equal importance. As
a consequence, the class information can be used to validate the obtained
results.

The co-clustering results

For this data set we choose p = 10. When the Adult data is discretized, and
the transformation into two variables is performed as presented previously,
we obtain a data set of N ≈ 750, 000 rows and two columns: the IdInstance
variable containing around I ≈ 50, 000 values (corresponding to the initial
instances) and the IdVarPart variable containing K × p ≈ 150 values (cor-
responding to the variable parts). The result of the co-clustering is shown
in Figure 3.4 in terms of mutual information.

Exploratory analysis of the results

The obtained result is very detailed, with 34 clusters of instances and 62
clusters of variable parts. In an exploratory analysis context, this level of
detail hinders the interpretability. Thus, we start by simplifying the co-
clustering structure by iteratively merging the rows and columns of the finest
co-clustering until reaching a reasonable percentage of the initial amount of
information (see Section 3.3).

Model coarsening. For this analysis, we choose to extract conclusions at
two levels of granularity. Namely, from the simplified co-clustering given in
Figure 3.5, which contains 10× 14 co-clusters and captures 70% of the initial
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Figure 3.4 – Co-clustering of the Adult data set. Each square represents a co-
cluster. This MODL optimal co-clustering contains 34× 62 co-clusters.

information in the data, and from a simplified co-clustering that contains two
clusters of instances as in Figure 3.6. In the former the merging have been
performed on both dimensions where in the latter we keep 14 clusters of
variable parts and merge on the dimension of instances.
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Figure 3.5 – A simplified co-clustering of the Adult data set, with 70% of informa-
tion. The rows represent clusters of instances while the columns represent clusters
of variable parts.

The composition of the clusters of variable parts is shown in Table 3.10.
From the co-clustering results we make the following conclusions.

1. The first level of retrieved patterns appears clearly when we consider
dividing the clusters of instances into two parts, visible on the top half
and the bottom half of the co-clustering cells presented in Figure 3.6.
The instance clusters in the top half are mainly men with a good salary,
with an over-representation of the variable part clusters containing:
sex{Male}, relationship{Husband}, relationship{Married...}, class-
{More}, age]45.5; 51.5], age]51.5; 58.5], hours_per_week]48.5; 55.5],
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Figure 3.6 – A simplified co-clustering of the Adult data set, with 2×14 co-clusters.

hours_per_week]55.5;+∞[. The instance clusters in the bottom
half are mainly for women or rather poor unmarried men, with an
over-representation of the variable part clusters containing: class-
{Less}, sex{Female}, maritalStatus{Never-married}, maritalStatus-
{Divorced}, relationship{Own-child}, relationship{Not-in-family},
relationship{Unmarried}.

2. From the optimal co-clustering (Figure 3.4), the most informative clus-
ters of instances is on the first row and it can be interpreted by the
over-represented variable part clusters in the same row:

• relationship{Husband}, relationship{Married...},
• educationNum]13.5;+∞[, education{Masters},
• education{Prof-school},
• sex{Male},
• class{more},
• occupation{Prof-specialty},
• age]45.5; 51.5], age]51.5; 58.5],
• hours_per_week]48.5; 55.5], hours_per_week]55.5;+∞[.

It is therefore a cluster of around 2000 instances, with mainly married
men with rather long studies, working in the field of education, at the
end of their careers, working extra-time with good salary.

3. From the simplified co-clustering (Figure 3.5), the most contrasted
clusters of variable parts, hence the most informative, are those pre-
sented by the columns Cp4 to Cp9 . These contain only variable parts
issued from the variables education and educationNum which are the
most correlated variables in this data set. The compositions of these
clusters are as follows.
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• educationNum]11.5; 13.5], education{Assoc-acdm}, educa-
tion{Bachelors} (the 4th column),
• educationNum] − ∞; 7.5], education{10th}, education{11th},
education{7th-8th}(the 5th column),
• educationNum]13.5;+∞[, education{Masters}(the 6th column),
• educationNum]10.5; 11.5], education{Assoc-voc}, education{Prof-
school} (the 7th column),
• educationNum]7.5; 9.5], education{HS-grad}(the 8th column),
• educationNum]9.5; 10.5], education{Some-college}(the 9th col-

umn).

This illustrates that the variables education (categorical) and educa-
tionNum (numerical) are very correlated as their variable part clusters
seem particularly consistent.

MCA analysis

Figure 3.7 shows the distribution of the variability captured by the axes
along with the cumulative level of information.

Figure 3.7 – Barplots of the variability (on the left) and the cumulative information
captured by the axes (on the right) in the MCA analysis of Adult.

On the contrary to the smaller Iris data set, the distribution of the vari-
ance (Figure 3.7) indicates that the first two principal axes capture a cu-
mulative variance of only 7.5%. Figure 3.8 shows the projections of the
instances and variable parts on the first factorial plan where in the left side
figure, the black circles are the instances that gain less than 50K and the
red triangles are the instances that gain more than 50K. Without the prior
knowledge about the class of each instance, which is the case in exploratory
analysis, the projection of instances appears as a single dense cluster.

The projection on the first factorial plan does not allow to distinguish any
clusters, which is not surprising given the low level of variability captured
by this plan. However, in order to capture 20%, 25% or 30% of the variance,
one needs to choose 7, 10 or 13 axes, respectively. Choosing a high number
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Figure 3.8 – Projection of the set of instances and variable parts, of the Adult data
set, on the first factorial plan.

of axes, say 13, means that some post analysis of the projections is required
not just for partitioning but also for visualization.

K-means of the MCA projections. In order to extract potentially
meaningful clusters from the MCA results, we perform a k-means on the
projections of the instances and the variable parts on the factor space formed
by the first 13 axes. Figure 3.9 shows the projection of the k-means centers
with k = 10 (on the left) and k = 100 (on the right to illustrate how complex
the data is).

Figure 3.9 – Projection of the k-means centers with k=10 and k=100 clusters, on
the first factorial plan.

The k-means clustering of the projections with k = 2 gives two clus-
ters containing 26178 instances associated to 50 variable parts, and 22664
instances associated with 46 variable parts, respectively. The first cluster
of instances associates the variable part class{more} with being married,
white, a men, having more than 10.5 years of education, being more than
30.5 years old, working more than 40.5 hours per week, or originating from
Canada, Cuba, India or Philippines. The second cluster of instances asso-
ciates the variable part class{less} with being young (age]−∞; 30.5]), having
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less than 10.5 years of education, being never married, divorced or widowed,
being Amer-Indian-Eskimo, black or another non white race (race{Other}),
working for less than 40.5 hours per week, being a women or originated
from countries like El-Salvador, England, Germany, Mexico, Puerto-Rico,
and United-States. These clusters are consistent with the two main clusters
found by the co-clustering, particularly in combining being a men, married,
middle aged and working extra hours with earning more than 50K and as-
sociating being a women, never married, divorced, or having a child with
earning less than 50k.

Table 3.8 shows a summary of the k-means clustering with k = 10 in-
dicating the contribution of each cluster to the intra-cluster variance. To
avoid confusion with the clusters resulting from co-clustering, we name the
k-means clusters using letters: {a, b, c, d, e, f , g,h, i, j}.

cluster a b c d e f g h i j
size 4297 1572 9325 4033 2061 7686 1581 4075 7163 7049
withinss 4484.7 1849.6 8185.9 3919.8 1738.8 5156.8 1720.7 2490.5 5447.2 3701.6
withinss% 11.58 4.77 21.15 10.12 4.49 13.32 4.44 6.43 14.07 9.56

Table 3.8 – Summary of the clusters of instances using k-means.

Table 3.9 shows the confusion matrix between the clusters issued from the
co-clustering method and the clusters issued from the k-means of projections.

The problem of comparing the two clusterings can be seen as a maxi-
mum weight matching problem in a weighted bipartite graph, also known
as the assignment problem. It consists of finding the one-to-one matching
between the nodes that provides a maximum total weight. This assignment
problem can be solved using the Hungarian method Kuhn and Yaw (1955).
Applied to the matrix of mutual information (derived from Table 3.9), the
Hungarian algorithm results in the following cluster associations: (Cu1 , d),
(Cu2 , g), (Cu3 , j), (Cu4 , i), (Cu5 , b), (Cu6 ,h), (Cu7 , f), (Cu8 , c), (Cu9 , a), (Cu10, e)
as highlighted in Table 3.9. These same associations are also obtained when
applying the algorithm to the χ2 table. This one-to-one matching carries
76.3% of the total mutual information. The highest contributions to the
conserved mutual information associate the k-means cluster a with the co-

cluster a b c d e f g h i j
Cu1 1679 444 141 2289 886 12 7 0 48 111
Cu2 0 20 4096 0 0 0 0 0 0 0
Cu3 0 96 0 0 0 18 5 0 0 6377
Cu4 0 31 0 0 0 0 0 13 3588 0
Cu5 114 88 576 247 129 331 54 28 455 434
Cu6 0 59 0 0 0 0 252 3314 3072 0
Cu7 1 183 0 1 0 7318 776 609 0 127
Cu8 0 27 4512 0 0 3 150 93 0 0
Cu9 2503 617 0 0 0 2 299 16 0 0
Cu10 0 7 0 1496 1046 2 38 2 0 0

Table 3.9 – The confusion matrix between the co-clustering and k-means partitions.
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clustering cluster Cu9 , the k-means cluster c with the co-clustering cluster
Cu8 , the k-means cluster f with the co-clustering cluster Cu7 , the k-means
cluster h with the co-clustering cluster Cu6 , the k-means cluster i with the
co-clustering cluster Cu4 , the k-means cluster j with the co-clustering cluster
Cu3 . In terms of variable parts, these clusters are as follows:

• the cluster a contains individuals who never-worked or work as
handlers-cleaners, have less than 7.5 years of education, or have a level
of education from the 7th to the 11th grade,

• the cluster c contains instances characterized by: workclass{Self-
emp-inc}, education{Assoc-acdm}, education{Bachelors}, edu-
cation_num]11.5; 13.5], occupation{Exec-managerial}, occupa-
tion{Sales}, race{Asian-Pac-Islander}, capital_loss]77.5;+∞[,
hours_per_week]40.5; 48.5], hours_per_week]48.5; 55.5], native-
country{Germany}, native-country{Philippines},

• the cluster f contains instances characterized by: earning less
than 50K (class{less}), being relatively young (age]26.5; 33.5]),
having relatively low level of education (education{HS-grad} and
education_num]7.5; 9.5]), being unmarried, divorced or separated,
being an Amer-Indian-Eskimo, Black or Female,

• the cluster h contains instances that work less than 35.5 hours per
week, are under 26.5 years old, never married and have a child,

• the cluster i contains middle-aged individuals (between 41.5 and 45.5
years old), with moderate education (9.5 to 10.5 years of education)
and working in farming or fishing,

• the cluster j contains instances characterized by the vari-
able parts: age]33.5; 37.5], age]37.5; 41.5], age]45.5; 51.5],
age]51.5; 58.5], workclass {Self-emp-not-inc}, fnlwgt]65739; 178144.5],
hours_per_week]55.5;+∞[, relationship{Husband}, marital_status
{Married-AF-spouse}, marital_status {Married-civ-spouse},
sex{Male}, race{White}, occupation{Craft-repair}, occupation{Transport-
moving}.

To summarize, the clusters obtained using a k-means on the projections
of the MCA, are somewhat consistent with those obtained using the co-
clustering.

Discussion. An important contribution of our methodology, compared to
MCA, is its ease of application and the direct interpretability of its results.
When MCA is applied to a data set of significant size, such as Adult, the
projections of instances and variables on the first factorial plan (and even
on the second plan) do not enable us to distinguish any particularly dense
clusters. Therefore, it is necessary to choose a high number of axes in order
to capture enough information. On the Adult data set, we found that 13
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axes explain only 30% of the information. Choosing this high number of
axes means that some post analysis of the projections (such as k-means) is
necessary to visualize the clusters. Using this approach, the results obtained
using k-means, although only explaining 30% of the information, are consis-
tent with those obtained using the co-clustering using our two-step method-
ology. However, with our methodology, the hierarchy of clusters enables us
to choose the desired level of detail and the percentage of information, then
one can distinguish, and eventually explain, the most informative clusters,
by their contribution to the total information (Section 3.3).

3.6 Conclusion
This chapter have proposed a methodology for using co-clustering in ex-
ploratory analysis of mixed-type data. The methodology consists in homog-
enizing the variables, then applying a standard value based co-clustering
approach to the transformed homogeneous data. For co-clustering, we have
used the MODL approach (Boullé (2011)) which have the advantage of au-
tomatically inferring the numbers of clusters.

We have shown that the exploratory analysis of the co-clustering reveals
a good agreement between MCA and co-clustering, despite the differences
between the models and the methodologies. We have also shown that the
proposed approach can be applied to significantly large and complex data
sets.

However, this methodology is limited by the need for the analyst to
choose the number of parts per variable, used for data discretization, and
the discretization method. Furthermore, the co-clustering method does not
follow the origins of the parts which would be useful in order to take into
account the intrinsic correlation structure that exists between the parts orig-
inating from the same variable, forming a partition. In the next chapter, we
will handle these limitations by defining a co-clustering model that integrates
the granularity parameter and tracks the variable parts that form a partition
of the same variable.
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Cp1 :
sex{Female}
Cp2 :
relationship{Not− in− family}
relationship{Own− child}
relationship{Unmarried}
age]−∞; 22.5]
marital_status{Never−married}
marital_status{Divorced}
marital_status{Separated}
marital_status{Widowed}
marital_status{Married− spouse− absent}
workclass{Never−worked}

Cp3 :
marital_status{Married− civ− spouse}
relationship{Husband}
marital_status{Married−AF − spouse}
Cp4 :
education_num]11.5; 13.5]
education{Bachelors}
education{Assoc− acdm}
Cp5 :
education_num]−∞; 7.5]
education{11th}
education{10th}
education{7th− 8th}

Cp6 :
education_num]13.5;+∞[
education{Masters}
Cp7 :
education{Prof − school}
education_num]10.5; 11.5]
education{Assoc− voc}
Cp8 :
education_num]7.5; 9.5]
education{HS − grad}
Cp9 :
education_num]9.5; 10.5]
education{Some− college}
Cp10:
relationship{Wife}

Cp11:
capital_loss]−∞; 77.5], capital_gain]−∞; 57]
native_country{United− States}
race{White}, workclass{Private}
hours_per_week]35.5; 40.5]
fnlwgt]130708.5; 157936.5]
fnlwgt]178144.5; 196318]
fnlwgt]220158; 260259.5]
fnlwgt]260259.5; 328492]
fnlwgt]−∞; 65739]
fnlwgt]196318; 220158]
fnlwgt]106068.5; 130708.5]
fnlwgt]157936.5; 178144.5]
fnlwgt]65739; 106068.5], fnlwgt]328492;+∞[
occupation{Sales}, occupation{Farming− fishing}
native_country{Germany}, native_country{Cuba}

Cp12:
class{less}
occupation{Adm− clerical}
hours_per_week]24.5; 35.5]
age]26.5; 30.5]
hours_per_week]−∞; 24.5]
occupation{Other− service}
age]22.5; 26.5]
race{Black}

Cp12 (continued):
native_country{England}
race{Asian− Pac− Islander}
relationship{Other− relative}
race{Amer− Indian−Eskimo}
race{Other}
native_country{Philippines}
native_country{Puerto−Rico}, native_country{India}
workclass{Without− pay}

Cp13:
sex{Male}
occupation{Craft− repair}
occupation{Machine− op− inspct}
occupation{Transport−moving}
occupation{Handlers− cleaners}
native_country{Mexico}
native_country{El− Salvador}

Cp14:
class{more}
occupation{Prof − specialty}
occupation{Exec−managerial}
age]45.5; 51.5] ,age]33.5; 37.5], age]37.5; 41.5]
age]58.5;+∞[, age]41.5; 45.5], age]51.5; 58.5]
age]30.5; 33.5]
hours_per_week]40.5; 48.5]
hours_per_week]48.5; 55.5]
hours_per_week]55.5;+∞[
capital_gain]57;+∞[, capital_loss]77.5;+∞[
workclass{Self − emp− not− inc}, workclass{Local− gov}
workclass{State− gov}, workclass{Self − emp− inc}
workclass{Federal− gov}
native_country{Canada}

Table 3.10 – Composition of the clusters of variable parts in the simplified Adult
co-clustering.





Chapter 4

A new co-clustering model for
mixed type data

In the previous chapter, we have proposed a co-clustering methodology for
mixed type data. The approach consists of homogenizing the data to create
categorical variable parts then using the MODL approach for co-clustering.
This approach requires specifying the number of parts per variable and uses
equal frequency dicretization. In this chapter, we propose a general-purpose,
integrated generative model, for co-clustering mixed data at the instances
× mixed variable parts level. The proposed model automatically infers the
number of parts per variable, creates an optimized partitioning of each vari-
able, and performs a co-clustering, by optimizing a MAP based criterion.

This chapter is organized as follows. Section 4.1 introduces the moti-
vation of this model, and the underlying assumptions. In particular, we
introduce the notion of observation, which is the value of a measured fea-
ture for a given object and a given measurement, as the statistical unit.
Section 4.2 details the basic components of the model including the set of
parameters, the supposed co-clustering structure, the data generation mech-
anism, and the proposed model selection criterion. The optimization of the
proposed criterion allows to simultaneously estimate the model parameters,
the cluster memberships and the number of clusters on each dimension. For
optimization, a greedy minimization algorithm is used. We conclude in Sec-
tion 4.3.

4.1 Introduction
This chapter introduces a MAP based approach to perform co-clustering of
mixed data. The goal of the proposed approach is to perform a cluster-
ing of the values in a data matrix through simultaneous clustering of the
objects and variables. The approach we proposed in the previous chapter
had the same goal but required a pre-processing step to discretize the data.
The pre-processing results in a coarse approximation of the distribution of
each variable individually. However, this partitioning of variables is not op-
timized. Hence the efficacy of the approach and its level of accuracy rely

67
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on this dicretization. In this chapter, we propose a non parametric model
that takes, as input, the data presented as values indexed by their rela-
tive instances and variables and outputs both an optimal partitioning of
the variables, that takes into account their interdependence, and an opti-
mal co-clustering of the values. As a result of this optimized partitioning,
the approach performs a clustering of the objects while extracting the in-
terdependence between the variables with respect to the clusters of objects,
through optimized partitioning.

4.1.1 Data representation
Our goal is to co-cluster mixed data. Therefore, we rely on a specific data
representation and on specific data considerations that enable us to handle
numeric and categorical data simultaneously.

Instances and variables. We consider an instance to be a representation
of an object in the physical world. Assume a set of I instances, denoted U =
u1, . . . ,uI , described by K variables denoted X = {X1, . . . ,XK}. Among
these variables, suppose Kn are quantitative (i.e. take values in R) and form
the set Xn. The remaining Kc variables are qualitative (i.e. take values in
finite sets) and form the set Xc. For any variable Xk, Vk denotes the set of
possible values for this variable, its domain.

In the remaining of this chapter, we use the term instance to denote a real
world object. We also use the terms categorical and qualitative, numerical
and quantitative, interchangeably, to describe the variables.

Observations. The proposed model performs a co-clustering of the set of
observations. An observation occurs when an instance takes a value for a
variable. In general, not all instances have to be observed at the same time
for all variables. Also, a couple instance-variable can be observed multiple
times, resulting in a series of values for the same instance. Therefore, we
represent the data by a set of N observations O = {o1, . . . , oN}. Each
observation is a triple ol = (u, k, v) where u is an object, k is a variable
index and v is an element of Vk. The observation ol means that the value
of variable Xk is v for object u, for a given measurement. This arguably
complex representation has two initial advantages over a classical tabular
representation, namely counting for missing values and set valued variables.
Table 4.1 shows an example of data for which the model is proposed, contain-
ing Kn = 3 numerical variables, Kc = 2 categorical variables, and N = 26
observations.

Ranks of the numerical values. In order to avoid the limitations of
a parametric approach for modeling the distributions of the quantitative
variables, we replace their values by their rank in the data set, variable per
variable. Thus, when Xk ∈ Xn, then Vk ∈ {1, . . . , N} (see Section 4.2.5 for
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u1 →
u2 →
u3 →
u4 →
u5 →

X1 X2 X3 X4 X5
0 −1 . {b, a} A
3 {0.2, 1, 0} 0 b B
2 . 5 {a, c} A
. 2 22 c C
5 3 24 d C


Table 4.1 – Data example.

an example). When providing results of the method, we would revert the
ranks to the original values which are easier to interpret.

4.2 The co-clustering model
The co-clustering model is composed of a mapping of the variables to ranges
of values (called variable parts), a mapping of the instances to clusters of
instances, a mapping of the variable parts to clusters of variable parts, and
a mapping of the observations to co-clusters.

4.2.1 Variable parts
In order to be able to group observations of different variable types in the
same cluster, we require partitions of the variable domains. That is, a trans-
formation of the variable values (the Vk sets) into dense categories (parts).
Then, we would perform a simultaneous grouping of the instances and the
new categories. More precisely, we suppose the existence of K partitions of
the variable domains {P1, . . . ,PK} that, on the uni-variate level, approxi-
mate the densities of the variables, and globally allow for a better detection
of the associations between the variables with respect to a clustering of the
instances. By association, we mean that, ideally, the variables should be
partitioned based on their mutual interdependence relationships.

A variable partition is defined by the number of parts and the actual
partitioning of the observed values. A partition of size Jk is a grouping of
the observed values into Jk groups if the variable is categorical (Xk ∈ Xc) and
a partition of the ranks of the observed values into Jk contiguous intervals
if the variable is numerical (Xk ∈ Xn). In the following, each class of those
partitions will be called a variable part and it is naturally associated to an
indicator variable Xk,c. Indeed if c ∈ Pk is a class of Pk (in other word, a
variable part), Xk,c is the variable with values in {0, 1} which takes value 1
if and only if Xk takes a value in c. The indicator variables can be used as
a way to keep track of an easy mapping between the variable parts and the
original variables.

The variable partitions are a model parameter. They need to be es-
timated with respect to the clusters of objects and with respect to inter-
variable associations, which is expressed by the clusters of variable parts.
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4.2.2 Co-clusters
Now that all variables are represented by their approximating partitions,
the main goal is to co-cluster the instances and variables. Clearly, this co-
clustering acts as a second level of clustering built upon the variable domain
partitions. As such, it consists in a partition Cu of the instances and in a
partition Cp of the variable parts. The former is a simple partition of the
set of instances U = {u1, . . . ,uI} while the latter is a partition of the set
of partitions P = P1 ∪ . . .∪ PK . The model can therefore be interpreted as
a co-clustering model on transformed data, i.e. where the original variables
would have been replaced by the indicator variables associated to variable
parts.

The co-clustering is defined by the co-clustering structure and the actual
co-clustering of the instances and variables. The co-clustering structure is
defined by the number of clusters of instances and the number of clusters of
variable parts. The act of co-clustering is defined by distributing the set of
observations on the co-clustering structure. Clearly, an arbitrary distribution
is of no use to the task of extracting knowledge from the data. Therefore,
a well controlled distribution is needed, along with a measure for evaluating
its fit to the data.

The co-clustering structure (the partitions Cu and Cp) is a model pa-
rameter to be estimated.

4.2.3 The model parameters
The co-clustering model of mixed-type is based on: variable partitions, a
partition Cu of the instances into clusters, and a partition Cp of the variable
parts into clusters. The model is defined using a hierarchy of the parameters.
At each stage of the hierarchy, the parameters are chosen with respect to
the previous ones.

The model parameters. The co-clustering model of mixed-type data is
built upon the following parameters:

1. φ the number of observations to generate,

2. µ the number of instances,

3. a number of parts Jk for each variable Xk,

4. for each qualitative variable Xk ∈ Xc, a partition Pk =
{Pk,1, . . . ,Pk,Jk

} of its values into the chosen number of parts Jk.
We will show later that the partitions of the ranks of the numerical
variables do not need to be defined as a model parameter.

5. a number of instance clusters, Gu,
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6. a partition Cu of the set of instances U into the previously chosen
number of instance clusters Gu. From this partition, let m(u)

gu denote
the number of instances in the gthu cluster of instances Cugu

.

7. a number of variable part clusters, Gp,

8. a partition Cp of P = P1 ∪ . . .∪PK into the previously chosen number
of variable part clusters Gp. From this partition, let m(p)

gp denote the
number of parts in the gthp cluster of variable parts Cpgp

.

9. the distribution of the observations over the cells of the resulting
instances×parts co-clusters. This distribution is represented by a ma-
trix of counts Φ = (φgu,gp)1≤gu≤Gu, 1≤gp≤Gp , giving the number of
observations per co-cluster. More precisely for each co-cluster, formed
by the cluster of instance Cugu

and the cluster of variable parts Cpgp
, the

model will generate φgu,gp triples (u, k, v) with u ∈ Cugu
and such that

Pk,l ∈ Cpgp
and v ∈ Pk,l for some part index l.

10. the vector nu = (nu1 , . . . ,nuµ) containing the number of observations
per instance, giving the distribution of the observations of each cluster
of instances over the instances in the cluster. We use nugu,i to denote the
number of observations associated to the instance ui of the cluster Cugu

,
and nui when we refer to the ith instance (within the set U) without
reference to a cluster.

11. the vector np = (np1, . . . ,npJ ) containing the number of observations
per variable part. We use npk,l to denote the number of observations
associated to the lth part of the variable Xk, and equivalently npgp,l to
denote the number of observations associated to the lth part of the
cluster of variable parts Cpgp

. The vector np gives the distribution of
the observations of each cluster of parts over the parts in the cluster.

12. for each qualitative variable Xk ∈ Xc, the vector nvk =
(nvk,1, . . . ,nvk,|Vk|). In this vector nvk,t gives the number of observations
of the form (ut, k, vt) that the model will generate, where vt is the t-th
value in Vk. The vector nvk gives the distribution of the observations
in each part of the variable Xk over the set of values that belong to
the part. The set of vectors nvk form the set nv = (nv1, . . . ,nvKc

) which
gives the distribution of the observations in each categorical variable
part over the set of values that belong to the part.

Remark.

• Notice that, the number of instances per cluster of instances, the num-
ber of parts per cluster of variable parts, the number of observations
per cluster of instances and per cluster of variable parts can all be
deduced from the model parameters.
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• In this model, clusters can be empty. This enables to decouple the
number of clusters from the clustering itself. Notice also that contrarily
to numerous classical models, the co-clustering structure is a parameter
of the model, not a set of latent variables nor a user parameter.

4.2.4 Constraints over the parameters
The parameters described in the previous section must fulfill the following
structural constraints:

φ =
Gu∑
gu=1

Gp∑
gp=1

φgu,gp , (4.1)

∀gu, the cluster Cugu
satisfies

∑
ui∈Cu

gu

nugu,i =
Gp∑
gp=1

φgu,gp , (4.2)

∀gp, the cluster Cpgp
satisfies

∑
l∈Cp

gp

npgp,l =
Gu∑
gu=1

φgu,gp , (4.3)

∀ Xk ∈ Xc
∑
t

nvk,t =
Jk∑
l=1

npk,l, (4.4)

∀ Xk ∈ Xn, ∀l |Pk,l| = npk,l. (4.5)

The first equation matches the total number of observations to the counts
per co-cluster. The second and third equations match marginal counts to
joints. For instance, equation (4.2) says that, for each cluster of instances
Cugu

, the total number of observations associated to the instances of this
cluster (left hand part of the equation) must be equal to the total number
of observations as specified over variable part clusters (right hand part).

Equation (4.4) matches per variable part count to the counts per value
for qualitative variables. Equation (4.5) plays a similar role for quantitative
variables but in a stricter way as the values of those variables are unique
ranks. Notice that for these variables, the parts Pk,l consist in intervals of
values, and thus those constraints completely specify the partition.

In the rest of this chapter, Θ denotes a vector of parameters for the model
that fulfills the above constraints:

Θ = {φ,µ, {Jk}, {Pk}Xk∈Xc ,Gu, Cu,Gp, Cp, Φ,nu,np,nv}.

Individual components of Θ are referred to using the notations introduced
in the previous section.

4.2.5 Illustrative data example
Let us consider a simple data set to illustrate our notations and the data
representation by observations. Suppose we have I = 5 instances described
by K = 5 variables in a standard representation as in Table 4.2.
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Instance X1 X2 X3 X4 X5

u1 0 −1 . {b, a} A
u2 3 {0.2, 1, 0} 0 b B
u3 2 . 5 {a, c} A
u4 . 2 22 c C
u5 5 3 24 d C

Table 4.2 – A simple data set in its natural representation.

Each line gives one of the 5 instances. A dot . stands for a missing value,
while a set is used to denote several values for a given variable. For example,
the instance u1 has a missing value for the variable X3 and has two values,
b and a, for variable X4.

Table 4.3 gives the observation based representation of the data set. We
have N = 26 observations (taking into account missing values and set valued
variables). This table illustrates several important aspects of the representa-
tion. The two values of variable X4 for the instance u1 are now represented
by two observations (o3 and o4). Numerical variables X1, X2 and X3 are
represented via ranks rather than values. For example, as 0.2 is the third
value for X2, the corresponding observation is o7 = (u2, 2, 3) rather than
o7 = (u2, 2, 0.2).

observation instance variable value
o1 u1 1 1
o2 u1 2 1
o3 u1 4 b
o4 u1 4 a
o5 u1 5 A
o6 u2 1 3
o7 u2 2 3
... ...
o14 u3 3 2
... ...
o26 u5 5 C

Table 4.3 – Data set from table 4.2 in the observation representation.
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Variable parts

From the data set in Table 4.2, we know the domain of each variable (with
ranks in the case of quantitative variables):

V1 = {1, 2, 3, 4},
V2 = {1, 2, 3, 4, 5, 6},
V3 = {1, 2, 3, 4},
V4 = {a, b, c, d},
V5 = {A,B,C}.

Variable parts are obtained by partitioning those sets, with an ordering
constraint for quantitative variables. For instance, suppose the following
partitions:

P1 = {P1,1,P1,2} = {{1, 2}, {3, 4}},
P2 = {P2,1,P2,2} = {{1, 2, 3, 4}, {5, 6}},
P3 = {P3,1} = {{1, 2, 3, 4}},
P4 = {P4,1,P4,2,P4,3} = {{a, c}, {b}, {d}},
P5 = {P5,1,P5,2} = {{A}, {B,C}}.

Using the binary variable representation associated to those variables parts
enables us to translate Table 4.2 into Table 4.4.

instance X1,1 X1,2 X2,1 X2,2 X3,1 X4,1 X4,2 X4,3 X5,1 X5,2

u1 1 0 1 0 0 1 1 0 1 0
u2 0 1 1 0 1 0 1 0 0 1
u3 1 0 0 0 1 1 0 0 1 0
u4 0 0 0 1 1 1 0 0 0 1
u5 0 1 0 1 1 0 0 1 0 1

Table 4.4 – A binary representation of the data based on the variable parts.

Co-clustering

Co-clustering operates in our model at the instance level (i.e., a partition
of U = {u1, . . . ,uI}) and at the variable part level (i.e., a partition of P =
P1 ∪ . . . ∪ PK). For data in Table 4.2, and using the previously chosen
variable parts, one possible co-clustering structure would be the following



4.2. THE CO-CLUSTERING MODEL 75

one:

Gu = 2,
Gp = 4,
Cu = {{u1,u3}, {u2,u4,u5}},
Cp = {{P1,1,P5,1}, {P1,2,P2,2,P4,3},

{P2,1,P4,2}, {P3,1,P4,1,P5,2}}.

An example of a co-cluster is therefore

{u1,u3} × {P1,1,P5,1} =
{u1,u3} × {X1 ∈ {1, 2},X5 = A}.

The co-clustering can be summarized by a contingency table that counts the
number of observations in each co-cluster, as illustrated in Table 4.5.

Cp1 Cp2 Cp3 Cp4

X1 ∈ {1, 2}, X1 ∈ {3, 4},X2 ∈ {5, 6}, X2 ∈ {1, 2, 3, 4}, X3 ∈ {1, 2, 3, 4},
X5 = A X4 = d X4 = b X4 ∈ {a, c},X5 ∈ {B,C}

Cu1 = {u1,u3} 4 0 2 4 10

Cu2 = {u2,u4,u5} 0 5 4 7 16

4 5 6 11

Table 4.5 – Contingency table associated to the co-clustering. Each cell contains
the number of observations (see Table 4.3) that fulfill the constraints associated to
the corresponding clusters: the instance must be in the instance cluster of the row,
while the variable must fulfill one of the conditions associated to the variable parts
of the column. The last column and row are marginal counts. On this example,
one can see that the co-clustering is revealing a dependency between instances and
variable parts in the first two columns as some co-clusters are empty.

Notice that the contingency table itself is the parameter Φ, i.e.

Φ =

(
4 0 2 4
0 5 4 7

)
,

while the marginal counts φgu. and φ.gp given by:

φgu. = (10, 16),
φ.gp = (4, 5, 6, 11).

The counts per instance and per variable part nu and np are given by

nu = (5, 7, 5, 4, 5),
np = (2, 2, 4, 2, 4, 4, 2, 1, 2, 3),
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for the instances (u1, . . . ,u5) and the variable parts (X1,1, X1,2, X2,1,
X2,1, X3,1, X4,1, X4,2, X4,3, X5,1, X5,2), respectively.

Finally, the nv can be obtained from the data themselves, leading to

nv = (nv4,nv5),
nv4 = (2, 2, 2, 1),
nv5 = (2, 1, 2),

using the ordering given above for V4 and V5.
This illustrates the fact that the parameters are redundant and that,

when we restrict ourselves to parameters that are compatible with a
given data set (as per Definition 1), knowing the co-clustering structure
((Pk)1≤k≤K , Cu, Cp) is sufficient to determine all the parameters of the
model.

4.2.6 Data generation mechanism
Given the parameter Θ, the following hierarchical model is used to generate
a set of φ observations O = {o1, . . . , oφ} associated to µ instances forming
the set U = {u1, . . . ,uµ}. Notice first that the number of observations is
given by φ =

∑
i,j φi,j .

1. The distribution of the φ observations over the co-clusters which
is defined by a random mapping F from {1, . . . ,φ} to the set of
G = Gu ×Gp co-clusters, i.e. to {1 ≤ gu ≤ Gu} × {1 ≤ gp ≤ Gp}.
The mapping chooses which co-cluster is responsible for generating
the corresponding observation: ol is generated by co-cluster F (l). F is
distributed uniformly in the set of compatible mappings. That is, all
mappings that respect the counts given in Φ are equally probable.
Under these constraints, combinatorial arguments show that the prob-
ability of such a mapping is

P (F = f |Gu,Gp,φ, Φ) =

Gu∏
gu=1

Gp∏
gp=1

φgu,gp !

φ!
.

Once a distribution f is chosen, φgu,gp (for every gu and gp) becomes

known. By summation, we can deduce φgu. =
Gp∑
gp=1

φgu,gp and φ.gp =

Gu∑
gu=1

φgu,gp .

2. On one hand, given F , each cluster of instances Cugu
is responsible for

generating φgu. observations. On the other hand, the partition of the
instances to clusters of instances (the model parameter Cu) gives the
instances per cluster. The observations in the cluster are generated
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by a distribution of the φgu. observations over the instances, which is
defined by a mapping F ugu

from {l|ol ∈ Cugu
} to {i|ui ∈ Cugu

}.
The mapping F ugu

is distributed uniformly on the set of all compati-
ble mappings, that is mappings that respect the counts given in nu.
Therefore

P (F ugu
= fugu

|F = f ,φ, Φ,nu, Cu) =

∏
ui∈Cu

gu
nugu,i!

φgu.!
.

Conditionally on F , mappings for the different clusters of instances
are independent random variables. The Gu mappings can thus be
collated into a global mapping F u, from {1, . . . ,φ} to U , such that
ol = (F u(l), kl, vl) for all l. Under these constraints, combinatorial
arguments show that the probability of a global mapping fu is

P (F u = fu|F = f ,φ, Φ,nu, Cu) =
Gu∏
gu=1

∏
ui∈Cu

gu
nugu,i!

φgu.!
.

Note that the product over all instance clusters and all instances in
clusters is identical to the simple product over all instances:

Gu∏
i=1

∏
ui∈Cu

gu

nugu,i! =
µ∏
i=1

nui !.

3. Similarly, and independently, we define a random mapping F p to gener-
ate the variable part associated to each observation. For each variable
part cluster Cpgp

, F pgp
maps the φ.gp observations in the cluster to the

variable parts forming the cluster. The distribution is defined by a
random mapping from {l|ol ∈ Cpgp

} to {j|Pk,j ∈ Cpgp
}, with respect to

the counts given in np.
Under the same conditional independence condition used for the in-
stance clusters, F p is the collated global mapping. We define alsoHp(l)
as the index of the variable from which F p(l) is a variable part. Those
random mapping are such that ol = (ul,Hp(l), vl) and vl ∈ F p(l).
A similar uniform probability as in the case of instances is used, which
leads to the probability of a mapping fp:

P (F p = fp|F = f ,φ, Φ, Cp,np) =
Gp∏
gp=1

∏
Pk,l∈C

p
gp
npgp,l!

φ.gp !
.

Note that the product
Gp∏
gp=1

∏
Pk,l∈C

p
gp

over all variable part clusters

and all parts in the cluster is equal to the product over all parts for all

variables. Thus:
Gp∏
gp=1

∏
Pk,l∈C

p
gp
npgp,l! =

K∏
k=1

Jk∏
jk=1

npgp,l!.
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4. Given the variable part associated to each observation (via F p), we now
generate the actual categorical values. For each variable part Pk,j , a
random mapping F cj from the set of observations associated to the part
{l|ol ∈ Pk,j} to the values in the part {t|vt ∈ Pk,j} is considered. Then
for ol = (ul, kl, vl), kl = k implies vl = F cj (l). Conditionally on F p,
all F cj are independent.
In the case of qualitative variables, F cj is distributed uniformly on the
set of mappings that respect the counts given in nv. Therefore, for any
f cj ,

P (F cj = f cj |F p = fp,npk,n
v) =

∏
vt∈Pk,j

nvk,t!

npk,j !
.

The probability of a collated global mapping f c over all variables is
therefore

P (F c = f c|F p = fp,npk,n
v) =

∏
k∈Xc

∏
Pk,l∈Pk

∏
vt∈Pk,j

nvk,t!

npk,j !
.

5. In the case of numerical variables, the mapping Fnj is a bijection from
{l|F p(l) = Pk,j} to Pk,j (according to equation (4.5)). Using a uniform
distribution on those bijections, for any fnj

P (Fnj = fnj |F p = fp,np) = 1
npk,j !

.

for the part Pk,j of the variable Xk ∈ Xn.
The different parts of the same variable now belong to different clusters.
Therefore, the mappings are independent. Also, the mappings of the
different numerical variables are independent. Therefore, the collated
global mapping fn for all the numerical variables is given by

P (Fn = fn|F p = fp,np) =
∏

Xk∈Xn

Jk∏
j=1

1
npk,j !

.

Denoting F k = F c ∪ Fn, the collated random mappings to the values
regardless of the variable type, we have ol = (ul, kl, vl) with kl = Hp(l)
and vl = F k(l).

The final data set is

O =
{(
F u(l),Hp(l),F k(l)

)}
1≤l≤φ

.

The generative model. Figure 4.1 provides a simplified representation of
the proposed generative model. Parameters are omitted for clarity. Collated
maps F u and F p, as well as the variable index map Hp are not represented
on the graphical model since they are deterministic functions of the random
variables (F ugu

)1≤gu≤Gu and (F pgp
)1≤gp≤Gp .
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F

Fugu F pgp

F kO

Gu Gp

J

Figure 4.1 – A directed graphical model of the distribution. Parameters are omitted
on this representation for simplicity.

µ

Gu

Cu

Φ

φ

nu

Gp

Cp

np

Jk

Xn
Vk

Jk

Pk

nvk

F

Fugu F pgp

Gu Gp

F cj

Xc

Fnj

Xn

O

Figure 4.2 – A directed graphical model of the full distribution. Variable related
elements have been separated into one plate for qualitative variables (with Xc as
the range of the plate) and two plates for quantitative variables (with Xn as the
range of the plates).
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Bayesian version of the model. Figure 4.2 gives a representation of the
full distribution as a directed graphical model. As in Figure 4.1, derived
elements such as collated maps have been omitted for clarity. Notice also
that, while variable partitions on quantitative variables have been presented
as a parameter of the model, they are derived in a deterministic way from
np. Thus, they are also omitted from the graphical model.

Likelihood. The likelihood of the data O generated according to the
model defined by Θ is given by the product of probabilities which simplifies
to:

L(Θ|O,U) =  Gu∏
gu=1

Gp∏
gp=1

φgu,gp !

( µ∏
i=1

nui !
) ∏

Xk∈Xc

|Vk|∏
t=1

nvk,t!


φ!

 Gu∏
gu=1

φgu.!

 Gp∏
gp=1

φ.gp !

 . (4.6)

4.2.7 Parameter estimation
Given some observed data O = {(ol, kl, vl)}1≤l≤N , we use a Maximum A
Posteriori (MAP) approach to estimate the parameters of a model Θ.

Notations. From the model Θ and the observed data O =
{(ol, kl, vl)}1≤l≤N , let us introduce the following necessary notations.

1. From the data O

• N : number of observations,
• I: number of instances,
• Kn: number of numerical variables,
• Kc: number of categorical variables,
• Vk = |Vk|: number of values for a categorical variable Xk,
• Nu

i = |{l|ol = ui}|: number of observations associated to the
instance ui,
• Nv

k,t = |{l|kl = k and vl = vt}|: number of observations for
the value vt of the categorical variable Xk (with Xk ∈ Xc and
vt ∈ Vk).

2. From the model Θ

• Jk: number of parts of the kth variable Xk,
• J =

∑
k Jk: number of variable parts,

• Gu: number of instance clusters,
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• Gp: number of variable part clusters,
• G = Gu ×Gp: number of co-clusters,

• m(u)
gu : number of instances in the gthu cluster of instances,

• m(p)
gp : number of variable parts in the gthp cluster of variable parts,

• mp
jk
: number of values in the jthk part of Xk.

3. From the couple (O, Θ)

• Ngu,gp =

∣∣∣∣∣∣
l
∣∣∣∣∣∣ol ∈ Cui and vl ∈

⋃
V ∈Cp

j
V


∣∣∣∣∣∣: number of observa-

tions (from the data) that belong to the co-cluster formed by the
gthu cluster of instances and the gthp cluster of variable parts,

• N (u)
gu =

∑
gp
Ngu,gp : number of observations (from the data) that

belong to the gthu cluster of instances (with gu ∈ 1 . . . Gu),

• N (p)
gp =

∑
gu
Ngu,gp : number of observations (from the data) that

belong to the gthp cluster of variable parts (with gp ∈ 1 . . . Gp),
• Np

k,jk = |{l|kl = k and vl ∈ Pk,jk}|: number of observations (from
the data) that belong to the jthk part of Xk (with jk = 1 . . . Jk).

For some observed data O and a model Θ, we define the following compati-
bility constraint.

Definition 1 Let O = {(ol, kl, vl)}1≤l≤N be some observed data containing N observa-
tions, associated to I instances U = {u1, . . . ,uI}. A parameter

Θ = (µ, (Jk,Pk,nvk)1≤k≤K ,Gu, Cu,Gp, Cp,φ,nu,np)

is compatible with the observed data O and U if and only if:

1. µ = I,

2. φ = N ,

3. ∀i, nui = Nu
i ,

4. ∀k, jk, npk,jk = Np
k,jk ,

5. ∀k|Xk ∈ Xc, ∀t|vt ∈ Vk, nvk,t = Nv
k,t,

6. ∀(gu, gp), φgu,gp = Ngu,gp,

where: 1 ≤ i ≤ I, 1 ≤ k ≤ K, 1 ≤ jk ≤ Jk, 1 ≤ t ≤ |Vk|, 1 ≤ gu ≤ Gu, and
1 ≤ gp ≤ Gp.
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The first condition implies that the model parameter for the number of
instances is equal to the observed number of instances. The second condition
implies that the model parameter for the total number of observations is
equal to the observed number. The third, fourth and fifth conditions state
that the number of observations per instance, per variable part, and per
categorical value, in the model, are all equal to those in the observed data.
The last condition implies that the counts per co-cluster coincide with the
data and that N =

∑
gu,gp

φgu,gp .
The likelihood is considered null when the model Θ is not compatible

with the data O. When it is compatible, the model parameters become
directly related to the corresponding counts in the data set via the clustering
parameters and the compatibility restrictions. Therefore, the likelihood of
the observed data can be written directly using these counts:

L(Θ|O,U) =  Gu∏
gu=1

Gp∏
gp=1

Ngu,gp !

( I∏
i=1

Nu
i !

) ∏
Xk∈Xc

|Vk|∏
t=1

Nv
k,t!


N !

(
Gu∏
i=1

N (u)
gu

!

) Gp∏
gp=1

N (p)
gp

!

 . (4.7)

Prior distribution on the parameters

As mentioned earlier, the model is defined using a hierarchy of the param-
eters where, at each stage of the hierarchy, the parameters are chosen with
respect to the previous ones. We use a non informative prior on the pa-
rameters to perform a Maximum A Posteriori (MAP) estimation. The prior
distribution is built hierarchically, using uniform distributions at each level.
This enables us to obtain a co-clustering model automatically without user
input while letting the data "speak for itself".

Globally, the model parameters are defined by 3 levels of hierarchy as
follows.

1. The variable partitions:

(a) The number of parts per variable.
• For a categorical variable Xk ∈ Xc, the number of parts is

uniformly distributed between the 1 and the number of values
of the variable Vk = |Vk|. The probability of choosing a given
number of parts Jk is therefore:

P (Jk) =
1
Vk

, for k|Xk ∈ Xc. (4.8)

• For a numerical variable, the number of parts is uniformly
distributed on the values between 1 and the total number of
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observations N . The probability of choosing a given number
of parts Jk is therefore:

P (Jk) =
1
N

, for k |Xk ∈ Xn. (4.9)

Knowing the number of parts per variable, the total number of
parts J is given by: J =

K∑
k=1

Jk.

(b) The partition of the values.
• For a categorical variable Xk, all partitions of its Vk values

into the previously chosen number of parts Jk are equally
likely. The number of possible ways of partitioning Vk values
into Jk groups is given by the sum of Stirling numbers of the

second kind
Jk∑
jk=1

S(Vk, jk). Hence, the probability of choosing

a particular partition Pk is:

P (Pk|Jk) =
1

B(Vk, Jk)
, for k |Xk ∈ Xc. (4.10)

where B(Vk, Jk) is the sum of Stirling numbers of the second

kind B(Vk, Jk) =
Jk∑
jk=1

S(Vk, jk).

For each categorical variable Xk ∈ Xc, we can now deduce
the number mp

jk
of values per part jk with jk ∈ {1 . . . Jk}.

• Because of the constraints of contiguous intervals on the
quantitative variables, knowing the number of intervals Jk
and the number of observations per part Np

k,jk is enough to
know the partition. Therefore, we chose to build a prior on
Np
k,jk rather than on the partitions.

2. The co-clustering structure:

(a) The number of instance clusters is uniformly distributed on the
values between 1 and I, the number of instances. Similarly, and
independently, the number of variable part clusters is uniformly
distributed between 1 and J , the number of variable parts. The
probabilities of choosing a given number Gu of instance clusters
and a given number Gp of variable part clusters are given by:

P (Gu) =
1
I
and P (Gp) =

1
J

. (4.11)

(b) All partitions of the I instances intoGu clusters are equally proba-
ble. The probability of choosing a given partition Cu is therefore:

P (Cu|Gu) =
1

B(I,Gu)
, (4.12)
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where B(I,Gu) is, as defined above, the sum of Stirling numbers

of the second kind B(I,Gu) =
Gu∑
gu=1

S(I, gu) giving the number

of ways to partition I into Gu clusters.
From the chosen partition Cu, we can now deduce the number
m

(u)
gu of instances per instance cluster.

(c) Similarly to the partition of instances, all partitions of the J vari-
able parts into Gp clusters are equally probable. The probability
of choosing a given partition Cp is therefore:

P (Cp|Gp) =
1

B(J ,Gp)
, (4.13)

where B(J ,Gp) is as defined above.
Notice that Cp is defined on the indexes of the variable parts
within the set P = P1 ∪ . . . ∪ PK rather than on their actual
content. This allows to postpone the definition of the contents
of those variable parts for the quantitative variables (as they are
obtained through np).
From the chosen partition Cp, we can now deduce the number
m

(p)
gp of parts per variable part cluster.

3. The actual clustering of the observations, which is defined by three
levels of multinomial distributions as follows.

(a) Distribution of all the N observations over the co-clusters. All
possible distributions of theN observations over theG = Gu×Gp
co-clusters are equally probable. In other words, the matrix of
counts N = (Ngu,gp)1≤gu≤Gu,1≤gp≤Gp is distributed uniformly in
the set of integer valued (Gu×Gp)-matrices whose contents sum

to N . The number of such matrices is given by
(
N +G− 1
G− 1

)
.

Therefore
P (N| G) = 1(

N +G− 1
G− 1

) . (4.14)

Once a matrix N is chosen, Ngu,gp (for every gu and gp) becomes

known. By summation, we deduceN (u)
gu =

Gp∑
gp=1

Ngu,gp andN (p)
gp =

Gu∑
gu=1

Ngu,gp .

(b) Distributing the observations of a cluster over instances/parts
within the cluster.
i. All distributions of the N (u)

gu observations over the m(u)
gu in-

stances of the gthu instance cluster that fulfill the structural
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constraint in equation (4.2) are equally probable. The num-

ber of possible distributions is
(
N

(u)
gu +m

(u)
gu − 1

m
(u)
gu − 1

)
for each

cluster of instances Cugu
. The probability of choosing one of

these distributions is therefore

P ({Nu
i }{i∈gu} | G, N) =

1N (u)
gu +m

(u)
gu − 1

m
(u)
gu − 1

 .

Conditionally on the clustering of instances, these distribu-
tions are independent. Therefore the probability of distribut-
ing all observations on all instances is

P (Nu | G, N) =
Gu∏
gu=1

1N (u)
gu +m

(u)
gu − 1

m
(u)
gu − 1

 , (4.15)

where Nu is the vector containing all the counts.
ii. Similarly, but independently, all distributions of the N (p)

gp ob-
servations over the m(p)

gp variable parts of the part cluster
Cpgp

that fulfill the structural constraint in equation (4.3)
are equally probable. The number of such distributions is(
N

(p)
gp +m

(p)
gp − 1

m
(p)
gp − 1

)
.

Thus, the probability of distributing all observations over all
variable parts is given by:

P (Np| G, N) =
Gp∏
gp=1

1(
N

(p)
gp +m

(p)
gp − 1

m
(p)
gp − 1

) , (4.16)

where Np = (Np
1 , . . . ,Np

J ) is the vector containing all the
counts of number of observations per part.

(c) Distributing the observations of a variable part over the values in
the part.
i. For every cluster of variable parts Cpgp

and every categorical
part jk ∈ Cpgp

, all distributions of the Np
k,jk observations in

the part over the set ofmp
jk

values that constitute the variable
part are equally probable, under the structural constraint in
equation (4.4). The probability of choosing one distributing
is

P (Nv| G, N, Np, gp) =
∏

jk∈C
p
gp |Xk∈Xc

1(
Np
k,jk +mp

jk
− 1

mp
jk
− 1

) ,



86 CHAPTER 4. MIXED DATA CO-CLUSTERING MODEL

for a given cluster Cpgp
.

Given a clustering Cp, the distributions are independent.
Hence, the probability of distributing all the observations is
given by

P (Nv| G, N, Np) =
Gp∏
gp=1

∏
jk∈Cp

gp |Xk∈Xc

1(
Np
k,jk +mp

jk
− 1

mp
jk
− 1

) ,

(4.17)
where Nv is the vector containing all the counts of num-
ber of observations for the categorical values. However, this
is equivalent to distributing all the observations per cate-
gorical variable over the parts of the variable. Therefore
equation (4.17) is equivalent to the following equation (4.18),
which we will prefer for its simplicity:

P (Nv| G, N, Np) =
∏

Xk∈Xc

Jk∏
jk=1

1(
Np
k,jk +mp

jk
− 1

mp
jk
− 1

) . (4.18)

ii. In the case of numerical variables, the number of observa-
tions Np

k,jk per variable part (given by the mapping of the
observations of the variable part cluster on the parts) indi-
cates the boundaries of the intervals. Because the parts are
ordered, finding the correct ranks of the observations within
each interval gives the global ranking of the observations in
the variable, which is a likelihood term.

From the equations (4.8) to (4.18), the prior probability of the model pa-
rametersM (written in terms of the data counts) is given by

P (M) =
Kn∏
k=1

P (Jk|Xk ∈ Xn)
Kc∏
k=1

P (Jk|Xk ∈ Xc)P (Pk|Jk,Xk ∈ Xc)

P (Gu|I)P (Cu|Gu, I)P (Gp|J)P (Cp|Gp, J)
P (N|Gu,Gp)
P (Nu |Gu,Gp, N, Cu)P (Np|Gu,Gp, N, Cp)P (Nv|Gu,Gp, N, Cp, Np).

(4.19)

MAP based model selection criterion

The product of the prior distributions (equation (4.19)) and the likelihood
(equation (4.7)) results in the posterior probability, the negative log of which
is used to build the criterion given by Defintion 2.
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Definition 2 According to the MAP approach, the best parameters are the ones that
minimize the following criterion:

C(M) =
∑

Xk∈Xc

log Vk +Kn logN +
∑

Xk∈Xc

logB(Vk, Jk)

+ log I + log J + logB(I,Gu) + logB(J ,Gp) + log
(
N +G− 1
G− 1

)

+
Gu∑
gu=1

log
(
N

(u)
gu +m

(u)
gu − 1

m
(u)
gu − 1

)
+

Gp∑
gp=1

log
(
N

(p)
gp +m

(p)
gp − 1

m
(p)
gp − 1

)

+
∑

Xk∈Xc

Jk∑
jk=1

log
(
Np
k,jk +mp

jk
− 1

mp
jk
− 1

)
+ logN !−

Gu∑
gu=1

Gp∑
gp=1

logNgu,gp !

+
Gu∑
gu=1

logN (u)
gu

!−
I∑
i=1

logNu
i ! +

Gp∑
gp=1

logN (p)
gp

!−
∑

Xk∈Xc

Vk∑
t=1

logNv
k,t!.

(4.20)

Interpretation. The criterion (4.20) contains terms that correspond to
the prior distribution of the parameters and terms that come from the like-
lihood of the data given the parameters. The likelihood terms tend to favor
complex models that fit well the data, whereas the prior terms, that increase
with the number of parameters, have a regularization role and tend to favor
simpler models. Hence, this cost function is a discrete and regularized model
selection criterion that performs a trade off between the goodness of fit of
the model (given by the likelihood part) and the model complexity evaluated
by the prior related part. By optimizing this criterion, the instances simi-
larly distributed on the clusters of variable parts are grouped together and,
inversely, the variable parts similarly distributed on the clusters of instances
are grouped together. Furthermore, the further the optimization is pushed,
the better is the resulting model, yet the criterion will not allow over-fitting
because it is regularized by the prior cost.

The proposed model is thus a MAP data descriptive approach to trans-
form variables into dense categories (parts) and perform a simultaneous
grouping of the objects and the new categories. Given the optimized vari-
able partitions, the simultaneous clustering is MAP optimum. However, the
variable parts are optimized with respect to a simultaneous clustering of the
instances and of the resulting parts. It is thus a recursive cycle that should
converge to an optimal trade off.

Optimization strategy

The criterion given in equation (4.20) is a non convex discrete criterion
which is quite difficult to optimize. Fortunately, the criterion is close to the
one used in the MODL approach (Boullé 2011) (see also Guigourès et al.
(2015b)). In particular, when the variable parts are fixed, the proposed
approach can be seen as a direct application of the MODL approach to
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the binary variables associated to variable parts. Thus, a natural solution
consists in leveraging solutions developed for the MODL approach which are
already implemented in the software Khiops1. More precisely, the criterion
is optimized as follows.

1. Initialization: choose a set of initial numbers of parts J.

(a) Initial variable parts: for each j ∈ J, create an initial partition of
the variables into j variable parts. For numerical variables, those
partitions are uniform (in term of frequency, as implied by the
rank representation). For qualitative variables, the most frequent
values are kept in separated variable parts while the last variable
part gathers the less frequent values.

(b) Initial co-clusters: MODL co-clustering is applied on the binary
variables obtained from the previous step. The obtained co-
clustering is considered as an initial solution.

These two steps give a set of initial partitions and co-clustering struc-
tures.

2. Evaluate each of the initial structures with respect to the criterion in
equation (4.20) and retain the best one as the starting point of a model
(and partition) refining process.

3. Model refining: the chosen model is refined using an iterative greedy
moving/merging process. The process consists of iterative testing of
the effect (on the criterion) of operations such as moving a variable
part from a cluster to another, moving a value from a variable part
to another, merging clusters, merging variable parts, etc. Operations
that decrease the criterion are accepted. When no further improvement
can be done, the obtained co-clustering structure is considered as the
optimal model. It is clear that the this process provides only locally
optimum solutions.

Null model. The null model is when all variables are partitioned into one
single interval or group and there is only one co-cluster (G = Gu = Gp =
Jk = 1).

Definition 3 According to the MAP approach, the criterion of a null modelM∅ is given
1http://www.khiops.com/

http://www.khiops.com/
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by:
C(M∅) =

∑
Xk∈Xc

log Vk +Kn logN + log I + logK

+ log
(
N + I − 1
I − 1

)
+ log

(
N +K − 1
K − 1

)

+
∑

Xk∈Xc

log
(
n.k + Vk − 1
Vk − 1

)
+ 2 logN !

−
I∑
i=1

log (ni.!)−
∑

Xk∈Xc

Vk∑
vk=1

log (nvk
!)

(4.21)

This criterion corresponds to the posterior probability of distributing the
N observations over theK variables, over the I instances, and over the values
of each categorical variable regardless of any partitioning.

Model coarsening for interpretation

The optimal model is considered an optimal starting point for the exploratory
analysis. However, when the data is complex and large, this optimal co-
clustering remains very detailed and complex for easy exploitation. Thus,
to ease the analysis of the data using the model, like in Section 3.3.1, a
process of coarsening the clusters is used. Like in Section 3.3.1, we use a
greedy procedure that chooses automatically the best dimension to merge
between instances and variable parts at each step. Furthermore, given that
the criterion (equation 4.20) gives the exact posterior probability of the
model, we can compute the degradation in probability when using the coarser
model (as per Definition 4).

Definition 4 LetM be a co-clustering model, we define a similarity between two clusters
of the same type (two clusters of instances or two clusters of variable parts)
C1 and C2 as follows:

S(C1,C2) = C(MC1∪C2)−C(M), (4.22)
whereMC1∪C2 is the obtained model after merging C1 and C2.

To define a stopping criteria for the coarsening process, we define a mea-
sure of informativeness of the co-clustering that corresponds to the percent-
age of informativity the co-clustering has kept after the merges, compared
to the optimal model and to the null model.

Definition 5 Let M∗ and M∅ be the best model as obtained by optimizing (4.20) and
the null model. The informativity of a co-clusteringM is given by:

τ (M) =
C(M)−C(M∅)
C(M∗)−C(M∅)

(4.23)

The informativity of a null model is null while the maximum informativ-
ity level is considered for the optimized model M∗. The index is bounded
0 ≤ τ (M) ≤ 1. Hence, all the intermediate models are more probable than
the null model and less probable than the best model, by definition.
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4.3 Conclusion
In this chapter, we proposed a co-clustering model that applies to data with
mixed type variables. While most co-clustering approaches perform a co-
clustering via a mapping of the instances to clusters of instances coupled
with a mapping of the variables to variable clusters, or via a direct mapping
of the observations to co-clusters, our approach performs a mapping of the
instances to clusters of instances, a mapping of the variables to variable
parts (intervals or groups of values), a mapping of the variable parts to
clusters of variable parts, and a mapping of the observations to co-clusters.
These mapping have the advantage of allowing us to handle mixed type
variables, missing observations and set-valued variables. Furthermore, the
model requires no user-defined parameter as the mappings are optimized
within the model, using a Maximum A Posteriori approach.

In the next chapter, we show the contribution of this model and contrast
its results with those obtained from the methodology proposed in the pre-
vious chapter. In particular, the co-clustering model optimizes the numbers
of variable parts, the variable partitions, the number of clusters and the
clusterings.



Chapter 5

Experimental results

In the previous chapter, we have proposed a parameter-less co-clustering
model for mixed type data. In this chapter, we apply the model to real and
artificial data sets to illustrate its efficacy and to emphasize its contribution
compared to the co-clustering methodology proposed in Chapter 3.

This chapter is organized as follows. Section 5.1 introduces the objectives
and motivations of this chapter. Section 5.2 presents experimental results
on real-world data sets with increasing sizes and complexities. Section 5.3
illustrates the results of the co-clustering model in extreme cases, namely
in the case of independent variables and in the case of perfectly correlated
ones, while comparing with the Crosscat model (Mansinghka et al. 2016).
Finally, conclusions and axis of improvements are discussed in Section 5.4.

5.1 Introduction
In this chapter, we apply the co-clustering model, proposed in Chapter 4,
to data sets of increasing sizes and complexities. To highlight the main fea-
tures of the co-clustering and compare it with the methodology proposed in
Chapter 3, we explore the results using the tools introduced in Section 3.3.
In particular, we show that the inferred variable partitions do approximate
the global distribution of the variables better than in Chapter 3. Namely,
in the methodology proposed in Chapter 3, the number of parts is equal for
all variables, the variable parts have equal frequencies, and the origin of the
variable part is not leveraged in the sense that a cluster of variable parts
may contain many parts of the same variable. Here, we show that when
applying the co-clustering model, the number of parts may be different from
one variable to another and they do not necessarily have equal frequencies.
Instead, the retained partitions are those that are more relevant to the task
of co-clustering. In terms of clusters, we show that because the variable
partitions are optimized, the clusterings are better tuned and the interpre-
tation of the different clusters can be significantly more precise than in the
parameter-based methodology.

To compare with the methodology of Chapter 3, we apply the co-
clustering model to the same real-world data sets (Section 3.5). Further-

91
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more, to evaluate the scalability of the co-clustering model, we apply it
to an additional large data set containing around 12 millions observations.
Keep in mind that the same co-clustering analysis tools explained in Chap-
ter 3 (Section 3.3) apply to the formalized co-clustering model proposed in
Chapter 4. Therefore, given a co-clustering, whether optimum or simplified,
we use these tools without redefining them.

Additionally to comparing with the proposed methodology, we also com-
pare the results with those obtained using the CrossCat model (described
in Section 2.5.3) which is, to the best of our knowledge, the most compa-
rable model. Recall here that CrossCat is a fully Bayesian non parametric
approach for density estimation. It uses approximate Bayesian inference to
extract a hierarchical structure in which an outer clustering groups the vari-
ables in a set of non-overlapping views of independent variables. Then, each
view is clustered independently at the level of instances using a separate
Dirichlet process mixture.

Notice that CrossCat has a complexity in O(IKτσ) where τ is the maxi-
mum number of variable clusters (a.k.a. views) and σ the maximum number
of instance clusters (see Section 2.5.3). Thus, the scalability of CrossCat and
our approach are comparable. Both models can handle millions of observa-
tions.

5.2 Experiments on real-world data sets
To contrast the results of the parameter-less co-clustering model with those
obtained when applying the approach in Chapter 3, this section explores the
results of the model on the data sets Iris and Adult. We also show that
the model scales to large data sets. For all these experiments, we follow the
optimization procedure explained in Section 4.2.7.

Interpretation methodology
In this section, we proceed as follows for cluster interpretation.

1. Choose the co-clustering: perform model coarsening if necessary.
Once the desired coarsening level is reached, we compute the matrix
of mutual information. For comparison with the methodology (Chap-
ter 3), we give the composition of the co-clusters and examples of the
variable partitions.

2. Choose the clusters to analyze: select the clusters of instances with
the highest mutual information. For each of these clusters, we select
the variable part clusters that contribute the most to the information
of the cluster, and extract the compositions of the selected clusters for
analysis.

3. Analyze the results: the selected clusters of instances are character-
ized by the variable parts contained in their most contributing clusters
of variable parts.
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4. Compare the results: for the data sets already analyzed in Chap-
ter 3, we compare the results with those obtained using the parameter-
based approach to illustrate the contribution of the co-clustering
model. When possible, the results are also compared with those ob-
tained using CrossCat.

This process can be used iteratively at each level of the hierarchy of
co-clusters.

5.2.1 Iris data
Fisher’s Iris data (Fisher 1936) is available from the UCI Machine Learn-
ing Repository (Lichman 2013) and it consists of 150 instances, 750 obser-
vations, 4 numerical variables (PetalLength, PetalWidth, SepalLength, and
SepalWidth) and 1 categorical Class variable (see Section 3.5.1).

Initialization

Following the optimization strategy in 4.2.7, we start by partitioning all vari-
ables using predefined partition sizes ranging from 2 to 10 parts per variable.
The MODL approach is then applied to the resulting partitioned data to ob-
tain an initial co-clustering structure. We then evaluate the resulting models
using the proposed criterion in equation (4.20). Figure 5.1 shows the crite-
rion values per initial model and the optimized model. Before optimization
(the red line in Figure 5.1), we find that the minimal criterion value (best
seen co-clustering model) is found when each variable is partitioned into 3
parts with roughly equal frequencies, which corresponds to 15 variable parts.

2 3 4 5 6 7 8 9 10
Initial value for the number of parts per variable
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Figure 5.1 – Iris: evolution of the criterion values.

The co-clustering

The optimized co-clustering contains 3 clusters of instances, 14 variable
parts, and 7 clusters of variable parts, which is easily exploitable. Therefore,
no model coarsening is required and we will analyze the optimal co-clustering
as it is.
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Table 5.1 shows the table of counts containing the number of observa-
tions per co-cluster, along with the marginal counts per cluster. Table 5.2
illustrates the co-clustering in terms of mutual information while Figure 5.2
shows a color coded version of the mutual information explained by the op-
timized co-clustering. In this representation, the red color marks an over
representation of the observations compared to the case where the two di-
mensions would be independent (high values of mutual information). The
blue color marks an under representation (low values of mutual information),
and the white color represents an empty co-cluster.

Cluster Cp1 Cp2 Cp3 Cp4 Cp5 Cp6 Cp7 φgu.
Cu1 150 45 37 0 0 0 18 250
Cu2 0 1 13 145 38 8 50 255
Cu3 0 6 5 4 13 143 74 245
φ.gp 150 52 55 149 51 151 142 φ = 750

Table 5.1 – Iris: number of observations per co-cluster.

Cluster Cp1 Cp2 Cp3 Cp4 Cp5 Cp6 Cp7 marginal
Cu1 0.219 0.057 0.034 0 0 0 -0.023 0.287
Cu2 0 -0.003 -0.006 0.203 0.039 -0.019 0.002 0.216
Cu3 0 -0.008 -0.008 -0.013 -0.004 0.203 0.046 0.216
marginal 0.219 0.046 0.02 0.19 0.035 0.184 0.025 0.719

Table 5.2 – Iris: mutual information.
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Figure 5.2 – Iris: the resulting co-clustering.
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Figure 5.3 – Iris: the co-clustering resulting from the methodology in Chapter 3.

For comparison with the parameter-based methodology in Chapter 3
(Section 3.5.1), Figure 5.3 shows the co-clustering resulting from the method-
ology. Notice that the mutual information of the optimized co-clustering (Ta-
ble 5.2) provides stronger association between the clusters and a cleaner sep-
aration between the different clusters compared to Table 3.4 (Section 3.5.1),
as can be seen from the most informative co-clusters (0.177 against 0.219,
0.177 against 0.203, and 0.161 against 0.203).

The variable parts

On the level of individual variables, the optimum variable partition is given
by Table 5.3.

Variable Parts np

P1,1 = PetalLength]−∞; 2.4] 50
PetalLength P1,2 = PetalLength]2.4; 4.85] 49

P1,3 = PetalLength]4.85;+∞[ 51
P2,1 = PetalWidth]−∞; 0.8] 50

PetalWidth P2,2 = PetalWidth]0.8; 1.65] 52
P2,3 = PetalWidth]1.65;+∞[ 48
P3,1 = SepalLength]−∞; 5.45] 52

SepalLength P3,2 = SepalLength]5.45; 6.25] 47
P3,3 = SepalLength]6.25;+∞[ 51

SepalWidth P4,1 = SepalWidth]−∞; 3.15] 95
P4,2 = SepalWidth]3.15;+∞[ 55
P5,1 = Class{setosa} 50

Class P5,2 = Class{virginica} 50
P5,3 = Class{versicolor} 50

Variable Part Values nv

P5,1 setosa 50
Class P5,2 virginica 50

P5,3 versicolor 50

Table 5.3 – Iris: the variable parts and their compositions.

Notice that, compared to the initial co-clustering structure which had 15
parts, two parts of the variable SepalWidth have been merged which changed
the partitioning and the resulting co-clustering structure. Thus, the variable
parts have neither equal numbers of parts nor equal frequencies (Table 5.3).
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The clusters

We notice that, for this data set, all clusters of instances have very compa-
rable contribution to the mutual information. Thus, we will explain all of
them.

Instance cluster |Cugu
|

Cu1 50
Cu2 51
Cu3 49

Part cluster Composition npj
Class{setosa} 50

Cp1 PetalLength]−∞; 2.4] 50
PetalWidth]−∞; 0.8] 50

Cp2 SepalLength]−∞; 5.45] 52
Cp3 SepalWidth]3.15;+∞[ 55

Class{virginica} 50
Cp4 PetalWidth]1.65;+∞[ 48

PetalLength]4.85;+∞[ 51
Cp5 SepalLength]6.25;+∞[ 51

Class{versicolor} 50
Cp6 PetalWidth]0.8; 1.65] 52

PetalLength]2.4; 4.85] 49
SepalWidth]−∞; 3.15] 95

Cp7 SepalLength]5.45; 6.25] 47

Table 5.4 – Iris: composition of the clusters.

Table 5.4 gives the compositions of the clusters of instances and of vari-
able parts.

Analysis of the results

From the extracted co-clusters (Figure 5.2 and Table 5.2), and from the
compositions of the clusters (Tables 5.4 and 5.3), it is clear that the resulting
co-clustering distinguishes:

• a cluster (Cu1 ) of 50 instances containing small flowers character-
ized by Cp1 (i.e. PetalLength] −∞; 2.4], PetalWidth] −∞; 0.8], and
Class{setosa}),

• a cluster (Cu2 ) of 51 instances containing the large flowers character-
ized by Cp4 (i.e. PetalLength]4.85;+∞[, PetalWidth]1.65;+∞[, and
Class{virginica}),

• a cluster (Cu3 ) of 49 instances containing the medium sized flowers
characterized by Cp6 (i.e. PetalLength]2.4; 4.85], PetalWidth]0.8; 1.65],
and Class{versicolor}).

This indicates that the small flowers are setosa, the large ones are mostly
virginica, and the medium sized ones correspond to versicolor. We also find
that the clusters of instances are characterized mainly by the low, medium
and large values for the PetalLength and PetalWidth variables, and by the
variable Class, which means that these are the most informative variables
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with respect to the clusters of instances. Hence, we recover some well known
facts of the Iris data set, such as the correlation between the Petal variables
and the fact that these variables are strong predictors for the class variable.
Additionally, from the counts in Table 5.1 (second and third clusters of
instances), one can deduce a mixture between Cu2 and Cu3 . In fact, knowing
the actual nature of the data set, we find that the distribution of the values
of at least one versicolor flower is more similar to the virginica distribution
than to the other versicolors.

If we are now to consider the composition of the least informative clusters
of variable parts, we can conclude the following:

• The cluster Cp2 contains the small SepalLength values, and these are
mostly present in the cluster of instances Cu1 . The cluster Cp3 contains
large SepalWidth values, and these values are also mostly present in
the cluster of instances Cu1 . From these two clusters, one can char-
acterize the setosa flowers (cluster Cu1 ) by: small PetalLength, small
PetalWidth, small SepalLength and large SepalWidth.

• The cluster Cp5 contains the large values of SepalLength, and it is mostly
present in the cluster of instances Cu2 . Thus, we can characterize the
virginica flowers (cluster Cu2 ) by: large PetalLength, large PetalWidth,
and large SepalLength.

• The cluster Cp7 contains medium values of SepalLength and small values
of SepalWidth. This cluster is not very informative as it is present in
all the clusters of instances, more in Cu3 than in Cu1 though.

Comparison with the co-clustering methodology

In comparison with the approach proposed in Chapter 3, we notice that
globally, the interpretations of the clusters are similar. Both approaches
extract three clusters of small, medium and large flowers described by the
variables PetalLength, PetalWidth, and Class, which are the most informative
for the task of clustering. However, the two approaches are different in many
aspects.

1. Optimized partitioning of the variables. In the formalized model,
the number of variable parts and the partition of the variables are no
longer a user parameter. They are optimized automatically as a model
parameter. In the first approach (Chapter 3), we had chosen 5 initial
parts with equal frequencies per variable while the criterion evolution
in Figure 5.1 shows that a 5 parts based partition is less probable than
a 3, 4 or 6 parts based partition, as shown by the values of the cri-
terion before optimization. As a results, the variables neither need to
be partitioned into equal number of parts nor to be partitioned with
equal frequencies. For example, the variable SepalWidth only needs
to be partitioned into two parts SepalWidth] −∞; 3.15] and Sepal-
Width]3.15;+∞[, with 95 and 55 observations, respectively.
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2. Optimized co-clustering structure. The structure resulting from
the first approach contains 3 clusters of instances and 8 clusters of
variable parts while the optimized clustering structure, which is more
probable, contains 3 clusters of instances and only 7 clusters of variable
parts. Furthermore, the counts per co-cluster are better tuned. The
optimized model (criterion value 7459.8) is more probable than the
initial model (7462.6) and more probable than the model starting with
5 parts per variable (7551.8). As a result, the mutual information in
the optimized model provides a better association between the clusters
of instances and their most representative clusters of variable parts.

3. Detection of the origins of the variable parts. Whenever two
(or more) parts of a variable are contained within the same cluster of
variable parts, they are merged if they belong to a categorical variable
or if they are contiguous otherwise, which is the case here for the
variable parts SepalWidth]−∞; 2.85] and SepalWidth]2.85; 3.15] which
are merged to create SepalWidth]−∞; 3.15].

4. More precise conclusions about the data. Without a measure for
evaluating the partitioning, it would be impossible to guess the right
number of parts per variable or the right boundaries. While the two ap-
proaches describe three clusters of instances containing small, medium,
and large Iris flowers, the boundaries of the variable parts describing
the clusters in both cases are not the same. For example, from the
first approach the small flowers are described by the variable parts
Class{setosa}, PetalLength] −∞; 1.55] and PetalWidth] −∞; 0.25],
while from the optimized model, the cluster of small flowers is ex-
plained by the parts Class{setosa}, PetalLength]−∞; 2.4], and Petal-
Width]−∞; 0.8].

5. More probable clustering of the instances. The clustering re-
sulting from the first approach (50, 54, and 46 instances per cluster) is
not as precise as the optimized one (50, 51, and 49 instances per clus-
ter). This is mainly due to the fact that the partitioning is optimized.
Similarly, the number of observations associated to each co-cluster is
more precise (compare Figure 5.2 with Figure 5.3).

The Iris data set is small and the patterns it contains are relatively sim-
ple to recover, which makes the distinction between the two models rather
subtle, although visible. In section 5.2.2, with the Adult data set, the dis-
tinction between the two models will be more easily visible because the data
is complex and relatively large.

Comparison with CrossCat

For comparison, we applied CrossCat on the Iris data set. To apply Cross-
Cat, two main user-parameters need to be specified, namely the number of
Markov chains and the number of transitions. The number of chains defines
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the number of samples returned by CrossCat from the posterior model dis-
tribution. We set the number of transitions to 500 and the number of chains
to 20. These values fall within the range recommended by the authors (10-
100 independent samples and 100-1000 transitions per chain) and provide a
trade-off between stability of the results and the computation time.

On the Iris data set, CrossCat provides a single view for the data (1
cluster of variables) which correctly retrieves the interdependence between
the variables. However, it produces 7 to 13 homogeneous clusters of instances
as shown in Figure 5.4. Furthermore, the recovered clusters are of largely
variable sizes as shown in Figure 5.5. Clusters containing one single instance
are in fact very common. This is not a limitation of the CrossCat model. It
simply follows from the different natures of the two models.
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Figure 5.4 – Iris: number of clus-
ters of instances (CrossCat).
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Figure 5.5 – Iris: distribution of
the number of instances per clus-
ter (CrossCat).

Comparison. To summarize, CrossCat detects the correlation between
all the variables in the Iris data set. However, it provides a very detailed
clustering of instances, for each of the 20 posterior samples. Our proposed
MAP co-clustering model provides a better trade-off between the number
of produced clusters of instances (and of variable parts) on one hand and
expressing the intrinsic structure of the data on the other hand. Indeed, our
optimized model provides just as many variable parts and as many clusters
(of instances as well as variable parts) as necessary to summarize the data set.
For example, Figure 5.6 shows the inferred optimum partitions of the most
informative variables (PetalLength, PetalWidth, and Class) with respect to
our co-clustering. Figure 5.7 shows an example of projected CrossCat clus-
tering on the same variables, for one of the 20 samples. The projection of the
data set, along with our optimized clustering of instances, emphasizes the
correspondence between the recovered clusters (shown by color) compared to
the Class values (shown by different markers) and shows the existing mixture
between virginica and versicolor. The projected CrossCat clustering shows
a global homogeneity of the clusters but a large variance in the cluster sizes
(the diamond shaped black cluster contains 50 instances while the circled
pink cluster contains 1 instance).
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Figure 5.6 – Our model: projec-
tion of the Iris flowers.
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Figure 5.7 – CrossCat: projec-
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The difference in results is natural since our approach uses a MAP ap-
proach to find the best fitting parameters while CrossCat is a full Bayes
model for density estimation. In short, our model focuses on scalability,
interpretability and robustness while the full Bayes CrossCat model could
be more useful in other aspects such as joint density estimation and missing
value imputation (see Mansinghka et al. (2016)).

Next, we report on the experimental results obtained with our co-
clustering model on medium and large sized data sets.

5.2.2 Adult data
In this section, we discuss the results obtained on the relatively large data
set Adult. The Adult data set (Lichman (2013)) is composed of I = 48.842
instances represented by Kn = 6 numerical variables and Kc = 9 categorical
ones. The data set is extracted from the 1994 Current Population Surveys
conducted by the U.S. Census Bureau (Kohavi 1996), and it is available in
the UCI Machine Learning Repository (Lichman 2013). See Section 3.5.2
for a detailed description of this data set.

Initialization

Following our proposed optimization strategy, we started by partitioning
variable domains into a predefined set of partition sizes ranging from 2
parts to 128 parts per variable. In particular, we used the set J =
{2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 32, 64, 128}. Among these initial models, the best
model in terms of criterion corresponds to the solution starting with 64 parts
per variable (Figure 5.8).

The optimal co-clustering

Before optimization, the initial co-clustering (resulting from the MODL co-
clustering) contained 265 variable parts, 61 clusters of instances, and 73
clusters of variable parts (i.e 61× 73 co-clusters). Starting from this ini-
tial solution, we follow the optimization strategy described in Section 4.2.7.
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Figure 5.8 – Adult: evolution of the criterion values.

After optimization, the obtained optimal co-clustering contains 61× 72 co-
clusters and only 107 variable parts. This relatively low number of parts
facilitates the process of cluster interpretation. However, with 61 clusters
of instances and 72 clusters of variable parts, the co-clustering is still very
detailed. Figure 5.9 shows this co-clustering in terms of mutual information.

Figure 5.9 – Adult: the optimal co-clustering. Each square represents a co-cluster.
This optimal co-clustering contains 61× 72 co-clusters.

At this level of detailed co-clustering we recover the strong correlation be-
tween the variables education and education_num which is expressed by the
existence of 13 clusters of variable parts that contain a simultaneous parti-
tioning of these two variables. These co-clusters are shown by the highlighted
zones in Figure 5.9. Their composition and the corresponding contingency
table are given by Table 5.5 and Table 5.6.

This first insight demonstrates the ability of the model to detect strong
dependencies between the variables and to cluster variable of different types
in a meaningful way. The two variables are partitioned accordingly and their
respective values are consistently grouped together (see Table 5.5). Notice,
from the counts per co-cluster (Table 5.6), that these two variables create
almost diagonal co-clusters.
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Cluster Variable parts
Cp13 education_num]9.5; 10.5], education{Some− college}
Cp14 education{11th}, education_num]6.5; 7.5]
Cp15 education_num]4.5; 5.5], education_num]7.5; 8.5], education{12th+ 9th}
Cp16 education{10th}, education_num]5.5; 6.5]
Cp17 education_num]3.5; 4.5], education{7th− 8th}
Cp18 education{HS − grad}, education_num]8.5; 9.5]
Cp19 education_num]12.5; 13.5], education{Bachelors}
Cp20 education{Masters}, education_num]13.5; 14.5]
Cp21 education{Prof − school}, education_num]14.5; 15.5]
Cp22 education{Doctorate}, education_num]15.5;+∞[
Cp23 education_num]10.5; 11.5], education{Assoc− voc}
Cp24 education_num]11.5; 12.5], education{Assoc− acdm}
Cp26 education_num]−∞; 3.5], education{Preschool+ 1st− 4th+ 5th− 6th}

Table 5.5 – Adult: composition of the variable part clusters, showing the strong
interdependence between the variables education_num and education. The cate-
gorical parts delimited by a plus sign (+) are the result of multiple parts that are
merged in the optimization step into one.

Model coarsening: a simplified co-clustering
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Figure 5.10 – Adult: cumulative mutual information per co-clustering structure.

With 61 clusters of instances and 72 clusters of variable parts, the co-
clustering remains too detailed. To facilitate the analysis, the coarsening
approach outlined in Section 3.3.1 is applied progressively. We proceed the
analysis using two levels of granularities. The first provides a good compro-
mise between interpretability and details: a co-clustering (Figure 5.11) that
contains 12 clusters of instances, 17 clusters of variable parts, and captures
70% of information as shown in Figure 5.10. The second level of granularity
is achieved starting from the first one by merging clusters of instances only
to create 2 clusters of instances and keep the 17 clusters of variable parts as
shown in Figure 5.12.

The associated counts of number of observations per co-cluster are given
in Table 5.8 and Table 5.9. The composition of the clusters of instances is
given in Table 5.7. The composition of the clusters of variable parts is given
in Appendix A.
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Cp13 Cp14 Cp15 Cp16 Cp17 Cp18 Cp19 Cp20 Cp21 Cp22 Cp23 Cp24 Cp26
0 0 0 0 0 0 2900 0 0 0 0 0 0
0 0 0 0 0 0 1904 0 0 0 0 0 0
0 0 0 0 0 0 2284 0 0 0 0 0 0
0 0 0 0 0 0 0 2684 0 0 0 0 0
0 0 0 0 0 0 0 0 1192 0 0 0 0
0 0 0 0 0 0 0 0 0 808 0 0 0
0 0 0 0 0 2714 0 0 0 0 0 0 0
0 0 0 0 0 2134 0 0 0 0 0 0 0
0 0 0 0 0 1276 0 0 0 0 0 0 0
0 0 0 0 0 2702 0 0 0 0 0 0 0
0 0 0 0 0 2584 0 0 0 0 0 0 0
0 0 0 0 0 1244 0 0 0 0 0 0 0
0 0 0 0 0 1982 0 0 0 0 0 0 0
0 0 0 0 0 1840 0 0 0 0 0 0 0
0 0 0 0 0 1390 0 0 0 0 0 0 0
0 0 0 0 0 1722 0 0 0 0 0 0 0
0 0 0 0 0 1324 0 0 0 0 0 0 0
0 0 0 0 0 1312 0 0 0 0 0 0 0
0 0 0 0 0 2210 0 0 0 0 0 0 0
0 0 0 0 0 2122 0 0 0 0 0 0 0
0 0 0 0 0 1896 0 0 0 0 0 0 0
0 0 0 0 0 1238 0 0 0 0 0 0 0
1686 0 0 0 0 0 0 0 0 0 0 0 0
1524 0 0 0 0 0 0 0 0 0 0 0 0
2158 0 0 0 0 0 0 0 0 0 0 0 0
1918 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 896 366 0 0 0 0 0
120 0 0 0 0 342 462 0 2 0 0 0 0
0 0 0 0 0 1536 0 0 0 0 0 0 0
972 0 0 0 0 0 0 0 0 0 0 0 0
0 88 122 90 0 0 0 0 0 0 258 226 0
0 0 0 0 0 0 0 0 0 0 1772 0 0
0 0 0 0 0 0 0 0 0 0 0 1170 0
0 0 0 0 1006 0 0 0 0 0 0 0 0
0 984 0 0 0 0 0 0 0 0 0 0 0
0 0 974 0 0 0 0 0 0 0 0 0 0
0 0 0 954 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2666 0 0 0 0 0 0
0 0 0 0 0 0 2636 0 0 0 0 0 0
0 0 0 0 0 0 2302 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2092 0 0
0 0 0 0 0 0 0 0 0 0 0 1806 0
0 0 0 0 0 0 0 1278 0 0 0 0 0
0 0 0 0 0 0 0 984 0 0 0 0 0
0 0 0 0 0 0 0 0 474 380 0 0 0
2242 0 0 0 0 0 0 0 0 0 0 0 0
2330 0 0 0 0 0 0 0 0 0 0 0 0
1240 0 0 0 0 0 0 0 0 0 0 0 0
1344 0 0 0 0 0 0 0 0 0 0 0 0
1756 0 0 0 0 0 0 0 0 0 0 0 0
1398 0 0 0 0 0 0 0 0 0 0 0 0
1714 0 0 0 0 0 0 0 0 0 0 0 0
1354 0 0 0 0 0 0 0 0 0 0 0 0
0 1200 0 0 0 0 0 0 0 0 0 0 0
0 0 490 542 0 0 0 0 0 0 0 0 0
0 1352 0 0 0 0 0 0 0 0 0 0 0
0 0 1240 0 0 0 0 0 0 0 0 0 0
0 0 0 1192 0 0 0 0 0 0 0 0 0
0 0 0 0 904 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 934
0 0 0 0 0 0 0 0 0 0 0 0 744

Table 5.6 – Adult: counts per co-cluster, showing the strong dependence between
the variables education_num and education.
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Figure 5.11 – A co-clustering of the Adult data set containing 12× 17 co-clusters.
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Figure 5.12 – A co-clustering of the Adult data set containing 2× 17 co-clusters.

Cluster Cugu
Cu1 Cu2 Cu3 Cu4 Cu5 Cu6 Cu7 Cu8 Cu9 Cu10 Cu11 Cu12

|Cugu
| 6689 3460 8518 3802 3507 2277 1303 6327 3544 2342 3643 3430

Cluster Cugu
Cu1 Cu2

|Cugu
| 28253 20589

Table 5.7 – Adult: composition of the clusters of instances in the 12 × 17 co-
clustering (top) and the 2× 17 co-clustering (bottom).
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Analysis of the results

For simplicity, we start by explaining the co-clustering with 2 clusters of
instances (Figure 5.12) which provides a high level view of the data, then
we zoom in on the 12× 17 co-clustering for more detailed conclusions.

The 2× 17 co-clustering: from Figure 5.12, the clusters of variable parts
Cp1 , C

p
2 , C

p
3 , C

p
8 , C

p
15, and Cp17 oppose two major clusters of instances.

For example, the cluster of variable parts Cp2 contains the variable part
sex{Female} and it is over represented in the cluster of instances Cu1 and
under represented in the cluster of instances Cu2 . Inversely, the cluster of
variable parts Cp15 contains the variable part sex{Male} which is under rep-
resented in the cluster of instances Cu1 and over represented in the cluster
Cu2 . These two clusters of variable parts oppose the female individuals from
males. More precisely, we distinguish:

• a cluster Cu1 of 28253 instances containing individuals who are char-
acterized by Cu1 , C

p
2 , and C

p
17. This cluster can be described as: un-

married (Cp1 ) females (Cp2 ) who are likely to gain less than 50K a year
(Cp17),

• a cluster Cu2 of 20589 instances containing individuals who are charac-
terized by Cp3 , C

p
8 , and C

p
15. This cluster can be described as: married

(Cp3 ) males (Cp15) who are likely to gain more than 50K a year (Cp8 ).

The 12 × 17 co-clustering: for interpretation, one can view the co-
clustering from the perspective of the instances, or from the perspective
of the variable parts. Here, we provide examples of the conclusions that can
be retrieved from both dimensions separately.

The clusters of instances. For simplicity, only the most informative
clusters of instances are explained here. A detailed description of the 12
clusters can be found in Appendix A.
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(c) Cu1
Figure 5.13 – Adult: examples of ranking clusters of instances by clusters of vari-
able parts.

The most informative clusters of instances are Cu8 , Cu3 , and Cu1 , which
can be characterized by their most contributing clusters of variable parts
(Figure 5.13) as follows:
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• Cu8 is characterized by Cp4 and Cp3 . Thus, it contains individuals who
are high school graduates, have about 9 years of education, and are
married males.

1. Cp4 contains the variable parts: education{HS − grad}, educa-
tion_num]8.5; 9.5].

2. Cp3 contains the variable parts: marital_status{Married− civ−
spouse+Married−AF − spouse}, relationship{Husband}.

• Cu3 is characterized by Cp4 and Cp1 . Thus, it contains young individuals
who are high school graduates, have around 9 years of education, and
are not married.

1. Cp4 contains the variable parts detailed above.
2. Cp1 contains the variable parts: age] − ∞; 21.5], rela-

tionship{Own − child + Unmarried + Not − in − family},
marital_status{Separated + Married − spouse − absent +
Divorced+Widowed+Never−married}.

• Cu1 is characterized by Cp12 and Cp1 . Thus, it contains young individuals
who have some college degree, have around 10 years of education, and
are not married.

1. Cp12 contains the variable parts: education_num]9.5; 10.5], educa-
tion{Some− college}.

2. Cp1 is as described above.

The clusters of variable parts. As seen earlier with the 2 × 17 co-
clustering, the clusters of variable parts Cp1 , C

p
2 , C

p
3 , C

p
8 , C

p
15, and C

p
17 oppose

the clusters of instances Cu1 to Cu6 from the clusters Cu7 to Cu12.

• The cluster of variable parts Cp2 contains the part sex{Female} and
it is over represented in the clusters of instances Cu1 to Cu6 and under
represented in the clusters of instances Cu7 to Cu12. The clusters of
instances Cu1 to Cu6 can thus be characterized as Females. Note that
inversely, the cluster of variable parts Cp15 contains the variable part
sex{Male} and is under represented in the clusters of instances Cu1 to
Cu6 and over represented in the clusters Cu7 to Cu12.

• The clusters of variable parts Cp1 and Cp3 oppose unmarried females in
the clusters Cu1 to Cu5 and married males (husbands) in the clusters Cu7
to Cu12. The cluster of instances Cu6 is a special case since it contains
married females characterized by the variable part cluster Cp11 which
contains the part relationship{Wife}.

• The clusters of variable parts Cp8 and Cp17 oppose the clusters of in-
stances who are likely to gain less than 50K a year (clusters Cu1 to Cu5 )
and those who are likely to gain more (clusters Cu6 to Cu12).
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These oppositions can be seen clearly from the simplified co-clustering
(Figure 5.12).

The most correlated variables. As seen from the optimal co-clustering,
the simplified co-clustering still shows a correlation between the variables
education and education_num. The clusters Cp4 , C

p
5 , C

p
6 , Cp9 , Cp12, and

Cp13 express this correlation. Furthermore, one can notice that each of these
variable parts is present in a set of male instances and a set of female in-
stances. Table 5.10 shows the composition of the co-clusters expressing this
correlation.

Cluster Cp4 Cp5 Cp6 Cp9 Cp12 Cp13
Cu1 0 0 0 0 13378 0
Cu2 0 0 0 0 0 6920
Cu3 17036 0 0 0 0 0
Cu4 0 7604 0 0 0 0
Cu5 0 0 3116 3898 0 0
Cu6 1536 896 366 484 972 300
Cu7 342 462 4 0 120 0
Cu8 12654 0 0 0 0 0
Cu9 0 7088 0 0 0 0
Cu10 0 0 4684 0 0 0
Cu11 0 0 0 0 7286 0
Cu12 0 0 0 2942 0 3918

Table 5.10 – Adult: content of the co-clusters expressing the correlation between
education and education_num from the simplified 12× 17 co-clustering.

Summary. In summary, note that these are only brief examples of the
insights one can gain from the model. In fact, with a maximum of 61 clusters
of instances, 72 clusters of variable parts, and with the many levels of the
hierarchy of instance and variable parts clusters, lies a wide range of co-
clustering models for the exploratory analyst to study. Thus, a wide range
of explainable clusters and co-clusters.

From the analysis we performed on the 12× 17 co-clustering, we have
detected strong dependence between variables of different types, a non in-
formation variable grouped in one part (the cluster Cp14 contains the variable
part fnlwgt]−∞;+∞]), and easily interpretable clusterings of the instances.

Comparison with the co-clustering methodology

In comparison with the approach proposed in Chapter 3, we notice that
globally, the interpretations of the clusters are similar. However, below are
some of the aspects in which the two approaches differ.

1. The initial number of parts. In the formalized model, the number
of variable parts and the partition of the variables is optimized auto-
matically as a model parameter. In the first approach (Chapter 3), we
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had chosen 10 initial parts with equal frequencies per variable. The
criterion evolution in Figure 5.1 shows that a 10 parts based parti-
tion is less probable than a 16, 32, 64 or 128 parts based partition, as
explained by the value of the criterion.

2. The optimized number of parts. The variables do not need to be
partitioned into equal number of parts or with equal frequencies per
part. Tables 5.11 and 5.12 show the number of parts per variable and
examples of the number of observations per part which shows that the
optimized partitioning is not equal frequency. Also, Figure 5.14 shows
a comparison between the optimized partition and the parameter based
one. The full list of the number of observations per part is given in
Appendix A.

variable capital_gain hours_per_week race age capital_loss fnlwgt relationship
number of parts 5 10 5 10 3 3 6
marital_status native_country education sex workclass class education_num occupation
5 10 13 2 6 2 14 13

Table 5.11 – Adult: the optimized number of parts per variable.

Part Observations
age]−∞; 18.5] 1457
... ...
age]32.5; 39.5] 9073
... ...
age]63.5;+∞] 2427
class{less} 37155
class{more} 11687
hours_per_week]−∞; 29.5] 6151
... ...
hours_per_week]39.5; 40.5] 22803
... ...
hours_per_week]59.5;+∞] 3853

Table 5.12 – Adult: examples of the number of observations per part.
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Figure 5.14 – Adult: comparison of the optimized partition of the variable educa-
tion_num with the parameter based one.
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3. The co-clustering structure is optimized. The structure resulting
from the first approach contained 34× 62 co-clusters while the opti-
mized model contains 61× 72 co-clusters. Also the counts of number
of observations per co-cluster differ greatly. The former co-clustering
(with criterion value 13176327.26) is less probable than the latter (with
criterion value 13160261.72).

4. Detection of the origins of the variable parts. In the optimiza-
tion phase, whenever two (or more) parts of a variable are contained
within the same cluster of variable parts, they are merged if they be-
long to a categorical variable or if they are contiguous otherwise. For
example, in the initial model the variable age contained 47 parts while
in the optimized model, it contains only 10 parts. Overall, the initial
model contained 265 parts while the optimized one contains 107 parts.

5. More tuned bounds of the parts. Without a measure for evaluat-
ing the partitioning, it would be impossible to guess the right number
of parts per variable or the right boundaries. When explaining the
clusters of instances, the optimized partitions provide more precise
description of the clusters since their bounds are better tuned.

Next, we report on the experimental results obtained with our co-
clustering model on the large data set CensusIncome. Unfortunately, we
could not run the CrossCat model on the Adult data set (nor on CensusIn-
come) for scalability reasons. The process stops after hours of computation.
Therefore, this section presents only the results of our co-clustering model.

5.2.3 CensusIncome data
To evaluate the scalability of the co-clustering model on a large data set,
we now apply it to the CensusIncome data set. The CensusIncome data
set is a larger version of the Adult data studied in the previous section. It
contains census data extracted from the 1994 and 1995 Current Population
Surveys conducted by the U.S. Census Bureau (Kohavi 1996). The data
is available in the UCI Machine Learning Repository (Lichman 2013) and
it is composed of I = 299.285 instances represented by 8 numerical and
34 categorical demographic and employment related variables. The data
includes 624.096 missing values, thus a total of N = 11.945.874 observations
is considered. As for the Adult data set, this data set is frequently used to
test supervised classification methods where the goal is to predict whether a
person makes more or less than 50K a year (the variable class). We build
the co-clustering with the class variable but not in a supervised way. To
our model, the data simply contains 42 variables of equal importance. As
a consequence, the class information can be used to validate the obtained
results.
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The co-clustering results

Since the data set is considerably large, the first optimization step is applied
with the predefined number of parts from 2 to 128, by power of 2. The
optimal model is found at the starting point corresponding to a maximum
of 64 parts per variable. The optimized model contains 249 variable parts,
607 clusters of instances and 97 clusters of variable parts. Figure 5.15 shows
the color coded version of the mutual information. Extracting relevant in-
formation from this many clusters and co-clusters is a tedious task. Thus,
we simplify the model to a reasonable 12× 12 co-clusters (Figure 5.16).

Figure 5.15 – CensusIncome: the optimized co-clustering. Each square represents
a co-cluster. This optimal co-clustering contains 607× 97 co-clusters.
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Figure 5.16 – CensusIncome: 12× 12 co-clusters.

Analysis of the results

To analyze the data set, we use the simplified model containing 12 clusters
of instances and 12 clusters of variable parts (Figure 5.16). An example
of easily interpretable results from Figure 5.16, can be derived from the
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Figure 5.17 – CensusIncome: 2× 12 co-clusters.

fact that the 2nd cluster of variable parts Cp2 is over represented on the
clusters of instances from Cu1 to Cu6 and under represented on the clusters
of instances from Cu7 to Cu12. On the other hand, the 12th cluster of variable
parts (Cp12) is under represented on the instance clusters from Cu1 to Cu6
and over represented on the clusters from Cu7 to Cu12. This indicates that
these clusters of variable parts can be used to distinguish two major groups
of instances, as shown in Figure 5.17, if one merged all the corresponding
clusters of instances. The clusters of instances Cu1 and Cu10 are the most
representative of these major clusters (as they contain the most represented
co-clusters in Figure 5.16). Each of these two clusters of instances can be
explained by the most represented clusters of variable parts.

The cluster Cu1 contains individuals who, based on the co-clusters with
the highest contribution to the mutual information, can be characterized as
follows:

• from (Cu1 ,Cp2 ): less than 15 years old, not in university, do not work
and are not tax payers,

• from (Cu1 ,Cp7 ): males and females with low capital gain (less than 57),
low capital loss (less than 70), low wage per hour (less than 10), who
earn less than 50K (Class{−50000}), are not enrolled in a university,
do not have their own business, and are not self employed.

The cluster of instances Cu10 contains individuals who, based on the co-
clusters with the highest contribution to the mutual information, can be
characterized as follows:

• from (Cu10,Cp3 ): have stayed in the same house for over a year (called
non mover),

• from (Cu10,Cp4 ) and (Cu10,Cp6 ): are united states citizens by naturaliza-
tion or native born,
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• from (Cu10,Cp9 ): aged from 27 to 64, have high education (from high
school graduate to doctorate degree), are married, pay taxes as a cou-
ple, earn more than 50K a year, have a high capital loss and a high
capital gain,

• from (Cu10,Cp12): work more than 30 weeks a year, with a wage of
more than 10 dollars per hour, and work in the local, state or federal
government.

Overall, this first insight clearly separates the active and inactive indi-
viduals. Note that the CensusIncome data is considerably large. Within an
optimal model of 607 clusters of instances and 97 clusters of variable parts,
lies a wide range of exploitable insights, depending on the level of details
one chooses to consider in their exploratory analysis. We do not provide a
full recount of the conclusions that can be retrieved from this data set be-
cause our objective is not to study this data set but rather to show that the
co-clustering model applies to large data sets and still provides interpretable
results.

5.3 Experiments on artificial data sets: com-
parison with CrossCat
In this section, we apply the co-clustering model to artificial data sets to
evaluate its behavior in extreme cases. Namely, in the case of data that con-
tains no clusters and in the case of perfectly correlated variables. The results
are compared with those obtained with the CrossCat model. The objective
here is to show the robustness of the co-clustering model and its capacity to
extract the correlations between variables. We show that the co-clustering
model consistently detects an absence of pattern when the variables are in-
dependent, by creating one co-cluster and one part per variable, and that it
approximates the correlated variables with increasing numbers of clusters.

5.3.1 The data
In order to evaluate the behavior of our co-clustering model, with respect to
structure extraction, experiments have been conducted on artificial data. To
this end, synthetic data is generated according to different scenarios reflect-
ing different types of patterns. The first scenario contains only independent
variables. Each categorical variable is sampled uniformly from a set of possi-
ble values Vp (say |Vp| = p+ 1, where p is the index of the variable) whereas
each numerical variable is sampled from a continuous uniform distribution
on the interval [0; 1]. The data generated according to this scenario contains
no particular pattern.

The second scenario contains strongly correlated variables. We start
by sampling a numerical variable X1 (according to a uniform distribution
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[0; 1]). The remaining variables are obtained from X1 as follows:Xp = X1 for 2 ≤ p ≤ Kn = P
2 ,

Yp = b(p+ 1)X1c for 1 ≤ p ≤ Kc =
P
2 ,

where P is the number of variables, Xp denotes a numerical variable, Yp de-
notes a categorical variable, and bxc denotes the integer part of the numerical
value x.

This ensures a strong correlation between the numerical variable and
the categorical values. Given this configuration, we expect the retrieved co-
clusters to be diagonal and the number of co-clusters to increase with the
number of observations in the data.

For both scenarios, samples are generated with a varying number of vari-
ables P (from 2 to 32 by power of 2) and varying number of independent
instances I (from 16 to 4096, by power of two).

Our co-clustering model is applied with an initial number of variable parts
ranging from 2 to 512, by power of 2. As mentioned earlier, for CrossCat,
we set the number of sampled models to 20 and the number of transitions
to 500 per sample.

5.3.2 Results
We measure the ability of a model to extract the data structure by the
number of different produced clusters.

To evaluate our resulting models, we collect the number of clusters of
instances, the number of clusters of variable parts, and consequently the
number of co-clusters as a function of the number of variables and the number
of instances in the data. For CrossCat, we collect the number of views
(clusters of variables) in every model and the number of clusters of instances
per view. The mean and standard deviation of each collected measure, over
the 20 samples obtained in a run, are considered for a final measure of the
number of instance/variable clusters.

Independent variables

In the case of independent variables, our co-clustering model systematically
detects the absence of structure by producing one cluster of instances, one
cluster of variable parts, and one part per variable.

Using CrossCat, the number of variable clusters (views) increases as the
number of variables increases which is expected since the variables are inde-
pendent. However, total independence between the variables is not detected
as the number of clusters is inferior to the number of variables. The number
of clusters of instances increases also with the number of instances in the
data. For example, it produces more than one hundred clusters of instances
for a data set containing 1000 instances (Figure 5.18).
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Figure 5.18 – CrossCat on independent variables.

Correlated variables

For the strongly correlated data, the number of recovered clusters of in-
stances and of variables parts, retrieved by our co-clustering model, increases
as expected with the number of instances and with the number of variables
as shown in Figure 5.19.

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

Number of instances

1

2

4

8

16

32

64

128

N
u
m

b
e
r 

o
f 

in
st

a
n
ce

 c
lu

st
e
rs

P= 2

P= 4

P= 8

P= 16

P= 32

(a) Number of instance clusters

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

Number of instances

1

2

4

8

16

32

64

128

256

N
u
m

b
e
r 

o
f 

v
a
ri

a
b
le

 p
a
rt

s 
cl

u
st

e
rs

P= 2

P= 4

P= 8

P= 16

P= 32

(b) Number of variable part clusters

Figure 5.19 – Our co-clustering on correlated variables.

For very small data sets (16 instances), CrossCat detects 1 to 6 views in
the data which corresponds to 1 to 6 independent sets of mutually correlated
variables. Given larger data, CrossCat correctly detects the correlation with
one view containing all variables. However, the number of instance clus-
ters is in average less than 10 (with large variance), whatever the number
of instances and of variables. More unexpectedly, the accuracy of the re-
trieved correlation structure does not improve with the number of instances
or variables (Figure 5.20).

5.3.3 Comparison of the results
The experiments conducted on artificial data confirms the expected behav-
ior of our co-clustering model in the extreme cases of pattern-less data and
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Figure 5.20 – CrossCat on correlated variables: the number of clusters of instances
and variables.

perfectly correlated variables. When the data contains no structure, our co-
clustering model systematically returns a single co-cluster. On perfectly cor-
related variables, the number of recovered clusters of instances and clusters
of variable parts increases systematically with the number of observations
in the data. In comparison, CrossCat detects the correlation between the
variables. However, it produces too many clusters of instances when there
is no pattern and produces fewer clusters than expected when the variables
are strongly correlated.

Contrasting our model with CrossCat

It is worth noting that our experiments focus on interpretability of the results
and robustness rather than other aspects of data analysis, such as missing
value imputation and density estimation. Thus, further experiments are
required for a full comparison between the proposed co-clustering model
and CrossCat. The difference in the experimental results follows from the
difference in nature of the two models.

• CrossCat is a full Bayes model while our proposed model uses a max-
imum a posteriori estimation.

• CrossCat is a multi-vue approach while our model provides a single
summarizing view of the data.

• CrossCat provides a clustering at the level of variables and multiple
clusterings at the level of instances. Our model provides a clustering at
the level of variable parts and one clustering at the level of instances.
Because the outer clustering of CrossCat operates at the variable level,
it does not allow to identify partial cross-dependencies between vari-
ables. Our clustering of the partitions of variables enable extracting
such partial dependencies.

• CrossCat uses different distributions and priors than the ones we use.
For example, numerical variables are modeled via Gaussian distribu-
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tions in CrossCat while our model uses a much more flexible rank based
non parametric approach. Also, CrossCat uses Dirichlet processes as
priors for its clusterings while we use a flatter prior that allows for
more balanced clustering structures (in the small data regime where
priors strongly influence the results).

• While the complexity of the two models are very comparable in the-
ory, the implementation provided by the authors (Mansinghka (2017))
could not run on large data sets (namely Adult and CensusIncome).

• CrossCat is more flexible and provides predictions for missing values
but the clusterings are difficult to interpret while our model provides
more interpretable results and facilitates the exploratory analysis of
the data.

• The experiments conducted here do not evaluate the density estimation
aspect of our model versus CrossCat. Further experiments are required
to compare these aspects.

In summary, while closely related, CrossCat and the proposed co-clustering
model are very different.

5.4 Conclusion
In this chapter, we have applied the co-clustering model proposed in Chap-
ter 4 to various data sets in order to highlight its main features. We have
shown that the co-clustering model can discover complex dependencies be-
tween variables of different types, and provides clustering of the instances
that is easily interpretable via the variable part clusters and the over/under
representation diagrams. We have also shown that the model scales by ap-
plying it to data sets containing up to around 12 millions of observations.
Furthermore, the analysis shows the utility of the exploration tools such as
model coarsening which enables us to simplify the structure and analyze the
data on various levels of granularity.

Two important aspects could be studied in further works. Namely, the
choice of the initial number of parts and improvement of the optimization
algorithm, which could allow to reach different solutions.





Chapter 6

Conclusion

Exploratory analysis is the first go-to approach for understanding large and
complex data sets. The importance of this approach comes from the fact
that, beforehand, we have no prior knowledge about the data. Afterwards,
the conclusions made about the data, as a result of the exploratory analysis,
can be used as they are in decision making or used as a basis for further
confirmatory analysis. For example, in market research, exploratory analysis
driven conclusions can provide enough insights to answer client, product or
service related specific questions and to suggest (or not) launching a new
product or service. Additionally, the post-exploratory understanding of the
data can indicate the appropriate techniques to use for further analysis. In
this thesis, we have investigated the use of co-clustering as an exploratory
analysis technique.

6.1 Contribution of this thesis
In Chapter 2, we have shown that co-clustering methods tend to differ in
their underlying assumptions and the types and shapes of clusters and co-
clusters they aim to extract. In particular, some techniques aim for ex-
tracting one single co-cluster defined by a group of instances and a groups
of variables that express a pattern of interest. Other techniques aim for
simultaneously extracting multiple co-clusters but the overall co-clustering
structure differs from one method to another.

In Chapter 3, we have proposed a co-clustering methodology that consists
in homogenizing the data to create categorical variable parts, via discretiza-
tion of numerical variables and value grouping for the categorical ones, then
using the MODL approach to create clusters of instances and clusters of vari-
able parts. We have shown that this approach extracts easily interpretable
clusters since each cluster of instances can be associated to one or many clus-
ters of variable parts and inversely. We have also shown that the approach
can extract local and global dependencies between the variables if the ho-
mogenizing process is chosen wisely. Furthermore, the conclusions derived
from this co-clustering approach are consistent with those obtained when
applying a singular value decomposition based data transformation followed
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by a standard k-means algorithm. However, this approach requires speci-
fying the dicretization. Given a user defined number of parts per variable,
it uses equal frequency dicretization. Hence, the accuracy of the results is
dependent on this granularity parameter.

In Chapter 4, we have proposed a parameter-less co-clustering model
that formalizes the approach proposed in Chapter 3. The proposed model
relies on a specific data representation. Namely, it sets the entries of the
data matrix (observations) as statistical units. For parameter estimation,
it optimizes a MAP based model selection criterion to infer the number
of parts per variable automatically, to create an optimized partitioning of
the variables, and to perform a co-clustering. The model itself consists
of a mapping of the instances to clusters of instances, a mapping of the
variables to variable parts (ranges of values), a mapping of the variable
parts to clusters of variable parts, and a mapping of the observations to
the co-clusters formed at the intersection of the clusters of instances and the
clusters of variable parts. As a result of the used data representation, this co-
clustering enables us to handle numeric and categorical data simultaneously,
and to count for missing values and set valued variables.

Chapter 5 presents experimental results on real-world data sets with in-
creasing sizes and complexities and on artificially generated data to highlight
the features of the co-clustering model in extreme cases, namely in the case
of absence of pattern and in the case of perfectly correlated variables. This
chapter also provides a comparison with the CrossCat model (Mansinghka
et al. 2016) which relates to our model in some aspects and differs in others.

6.2 Perspectives for future work
We have shown that the proposed co-clustering model enables to extract
a particular structure that is previously unseen in the literature. The ex-
tracted structure consists of a partition of the instances and a partition of
partitions of variables. The evaluation criterion computes the exact proba-
bility of fitting a given set of model parameters to the data. However, it is
computationally infeasible to evaluate all the possible partitions. Therefore,
we have proposed a greedy iterative optimization procedure that enables
us to choose the best set of parameters starting from a set of initial so-
lutions. Hence, improvement over the optimization algorithm and/or the
choice of the initial solutions could allow to reach different, potentially bet-
ter, solutions. Furthermore, it would be useful to propose more elaborated
exploratory analysis techniques and visualization tools for easier analysis of
the co-clustering results. For example: tools for choosing the clusters to an-
alyze and for ranking the instances within a cluster of instances (to identify
the most typical instance for a cluster similarly to identifying the center in
k-means); tools for ranking the variable parts within a cluster of variable
parts, and associating the clusters of instances with single variable parts
instead of a cluster of parts; etc.

A second promising future work is to use the co-clustering model to
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generate new data. It could be interesting in privacy preserving applications
to publish the generated data instead of the original data. The goal would
be to ensure that no object from the original data set is directly identifiable
from the released data while ensuring that data mining techniques can still
be applied to the synthetic data. This approach has been used for example
by Fessant et al. (2017).
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Appendix A

Adult: details of the
co-clustering results

A.1 Results from the optimal co-clustering
Table A.1 shows the optimized variable partitions in the optimal co-
clustering with 61× 72 co-clusters. This table illustrates that the variables
are neither partitioned with equal parts nor with equal frequencies.

variable Xk Jk Pk np
jk

capital_gain 5

capital_gain]−∞; 57]
capital_gain]57; 1839]
capital_gain]1839.0; 5119.0]
capital_gain]5119; 7560]
capital_gain]7560.0;+∞]

44807
219

1484
664

1668

hours_per_week 10

hours_per_week]−∞; 29.5]
hours_per_week]29.5; 35.5]
hours_per_week]35.5; 39.5]
hours_per_week]39.5; 40.5]
hours_per_week]40.5; 44.5]
hours_per_week]44.5; 45.5]
hours_per_week]45.5; 49.5]
hours_per_week]49.5; 55.5]
hours_per_week]55.5; 59.5]
hours_per_week]59.5;+∞]

6151
4181
1355

22803
934

2717
1020
5623
205

3853

race 5

race{Other}
race{Amer− Indian−Eskimo}
race{Asian− Pac− Islander}
race{Black}
race{White}

406
470

1519
4685

41762

age 10

age]−∞; 18.5]
age]18.5; 21.5]
age]21.5; 23.5]
age]23.5; 27.5]
age]27.5; 32.5]
age]32.5; 39.5]
age]39.5; 46.5]
age]46.5; 58.5]
age]58.5; 63.5]
age]63.5;+∞]

1457
3262
2507
4786
6359
9073
7951
8869
2151
2427

capital_loss 3
capital_loss]−∞; 1748.0]
capital_loss]1748; 1975.5]
capital_loss]1975.5;+∞[

47332
730
780

fnlwgt 3
fnlwgt]−∞; 61655.0]
fnlwgt]61655.0; 208067.5]
fnlwgt]208067.5;+∞]

4578
27475
16789
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relationship 6

relationship{Other− relative}
relationship{Wife}
relationship{Unmarried}
relationship{Own− child}
relationship{Not− in− family}
relationship{Husband}

1506
2331
5125
7581

12583
19716

marital_status 5

marital_status{Widowed}
marital_status{Separated}+{Married− spouse− absent}
marital_status{Divorced}
marital_status{Never−married}
marital_status{Married− civ− spouse}
+{Married−AF − spouse}

1518
2158
6633

16117

22416

native_country 10

native_country{France}
native_country{Ireland}+{Poland}
native_country{Hungary}+{Iran}+{Greece}+{Y ugoslavia}
native_country{Trinadad&Tobago}
+{Outlying−US}+{Jamaica}+{Haiti}
native_country{Italy}+{Nicaragua}+{Ecuador}+{Cuba}
native_country{Puerto−Rico}+{Honduras}
+{Scotland}+{Peru}+{Columbia}
native_country{Canada}+{Germany}+{England}
native_country{V ietnam}+{India}+{China}
+{Hong}+{Thailand}+{South}+{Taiwan}
+{Philippines}+{Laos}+{Japan}+{Cambodia}
native_country{Portugal}+{Dominican−Republic}
+{Mexico}+{Guatemala}+{El− Salvador}
native_country{United− States}

38
124
151

231
337

356
515

1037

1364
44689

education 13

education{Doctorate}
education{Prof − school}
education{Preschool}+{1st− 4th}+{5th− 6th}
education{7th− 8th}
education{10th}
education{12th}+{9th}
education{Assoc− acdm}
education{11th}
education{Assoc− voc}
education{Masters}
education{Bachelors}
education{Some− college}
education{HS − grad}

594
834
839
955

1389
1413
1601
1812
2061
2657
8025

10878
15784

sex 2 sex{Female}
sex{Male}

16192
32650

workclass 6

workclass{Without− pay}+{Never−worked}
workclass{Self − emp− inc}
workclass{State− gov}
workclass{Self − emp− not− inc}
workclass{Local− gov}+{Federal− gov}
workclass{Private}

31
1695
1981
3862
4568

36705

class 2 class{more}
class{less}

11687
37155

education_num 14

education_num]−∞; 3.5]
education_num]3.5; 4.5]
education_num]4.5; 5.5]
education_num]5.5; 6.5]
education_num]6.5; 7.5]
education_num]7.5; 8.5]
education_num]8.5; 9.5]
education_num]9.5; 10.5]
education_num]10.5; 11.5]
education_num]11.5; 12.5]
education_num]12.5; 13.5]
education_num]13.5; 14.5]
education_num]14.5; 15.5]
education_num]15.5;+∞[

839
955
756

1389
1812
657

15784
10878
2061
1601
8025
2657
834
594
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occupation 13

occupation{Priv− house− serv}
occupation{Protective− serv}+{Armed− Forces}
occupation{Tech− support}
occupation{Farming− fishing}
occupation{Handlers− cleaners}
occupation{Transport−moving}
occupation{Machine− op− inspct}
occupation{Other− service}
occupation{Sales}
occupation{Adm− clerical}
occupation{Exec−managerial}
occupation{Craft− repair}
occupation{Prof − specialty}

242
998

1446
1490
2072
2355
3022
4923
5504
5611
6086
6112
8981

Table A.1 – Adult: partitioning of the variables in the optimal co-clustering.

A.2 Results from the simplified co-clustering
Table A.2 and Table A.3 show the mutual information expressed by the
12× 17 co-clustering and the 2× 17 co-clustering, respectively. Table A.4
and Table A.5 show the partitioning of the variables and the composition of
the clusters of variable parts in the 12× 17 co-clustering. The composition
of the clusters of instances is given in Chapter 5 (Section 5.2.2, Table 5.7).

A.2.1 Interpretation of the clusters of instances
As mentioned in Section 5.2.2, we provide here a full description of the 12
clusters of instances in the simplified 12× 17 co-clustering. Recall that this
co-clustering captures 70% of the information included in the Adult data
set. This co-clustering (from Figure 5.9, Table A.2 and Table A.5) enables
us to distinguish:

1. a cluster of instances Cu1 containing 6689 individuals who are females
(Cp2 ), less than 23 years old, are not married, with a child (Cp1 ), have
around 9 years of education in Some-college (Cp12), work less than 35
hours a week and gain less than 50K a year (Cp17);

2. a cluster of instances Cu2 containing 3460 individuals who are fe-
males (Cp2 ), less than 27 years old (Cp1 and Cp17), are not mar-
ried, with a child (Cp1 ), have more than three years and less than
nine years of education (Cp13), are likely to work in Farming-fishing,
Handlers-cleaners, Transport-moving, Machine-op-inspct, Craft-repair
(Cp16), and are likely to gain less than 50K a year (Cp17);

3. a cluster of instances Cu3 containing 8518 individuals who are females
(Cp2 ), less than 33 years old (Cp1 , C

p
14 and Cp17), are not married,

with a child (Cp1 ), have around 9 years of education and some high
school degree (HS-grad) (Cp4 ), are likely to work in Farming-fishing,
Handlers-cleaners, Transport-moving, Machine-op-inspct, Craft-repair
(Cp16), and to gain less than 50K a year (Cp17);
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4. a cluster of instances Cu4 containing 3802 individuals who are females
(Cp2 ) of all ages (C

p
1 , C

p
7 , C

p
14 and Cp17), not married, with a child (Cp1 ),

have bachelor’s degree (Cp5 ), are as likely to work around 40 hours a
week (Cp14) and to gain less than 50K a year (Cp17);

5. a cluster of instances Cu5 containing 3507 individuals who are females
(Cp2 ) of all ages (Cp1 , C

p
7 , C

p
14 and Cp17), are not married, with a child

(Cp2 ), have conducted more than 10 years of studies (Cp6 and Cp9 ),
have Doctorate, Masters or Prof-school degree, and are likely to work
as Exec-managerial, Prof-specialty, Protective-serv, Armed-Forces or
Tech-support, more than 40 hours a week (Cp7 ), and are likely to gain
less than 50K a year (Cp17);

6. a cluster of instances Cu6 containing 2277 individuals who are females
(Cp2 ), are married (Cp11), are more than 32 years old (Cp7 ), and are likely
to work as Exec-managerial, Prof-specialty, Protective-serv, Armed-
Forces or Tech-support (Cp7 ), and to gain more (Cp8 ) or less than 50K
a year (Cp17);

7. a cluster of instances Cu7 containing 1303 individuals who have no
education (less than 4 years and up to the 6th grade) (Cp10), and gain
less than 50K a year (Cp17);

8. a cluster of instances Cu8 containing 6327 individuals who are prob-
ably married (Cp3 ), have conducted around 8 years of studies and
have a HS-grad grade (Cp4 ), males (Cp15), and are likely to work
as Exec-managerial, Prof-specialty, Protective-serv, Armed-Forces or
Tech-support (Cp7 ) or to work in Farming-fishing , Handlers-cleaners,
Transport-moving, Machine-op-inspct, Craft-repair (Cp16). These indi-
viduals work more than 40 hours a week (Cp7 ), and are likely to gain
more than 50Ka year (Cp8 );

9. a cluster of instances Cu9 containing 3544 individuals who have high
probability of being: married (Cp3 ), males (Cp15), with bachelor’s degree
(Cp4 ), gain more than 50K a year (Cp8 ), are more than 32 years old (Cp7 ),
work more than 40 hours per week as Exec-managerial, Prof-specialty,
Protective-serv, Armed-Forces or Tech-support (Cp8 );

10. a cluster of instances Cu10 containing 2342 individuals who have high
probability of being married (Cp3 ), have conducted long studies (more
than 13 years), have Masters, Doctorate or Prof-school degree (Cp6 ),
males (Cp15), gain more than 50K a year (Cp8 ), are more than 32 years
old, work more than 40 hours per week as Exec-managerial, Prof-
specialty, Protective-serv, Armed-Forces or Tech-support (Cp7 );

11. a cluster of instances Cu11 containing 3643 individuals who are proba-
bly married (Cp3 ), have conducted around 9 years of studies in Some-
college (Cp12), males (Cp15), and are likely to work in Farming-fishing ,
Handlers-cleaners, Transport-moving, Machine-op-inspct, Craft-repair
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(Cp16) or as Exec-managerial, Prof-specialty, Protective-serv, Armed-
Forces or Tech-support (Cp7 ), work more than 40 hours a week (Cp7 ),
and are likely to gain more than 50K a year (Cp8 );

12. a cluster of instances Cu12 containing 3430 individuals who are prob-
ably married (Cp3 ), have more than three years and less than ten
years of education (Cp9 and Cp13), males (Cp15), are likely to work
in Farming-fishing, Handlers-cleaners, Transport-moving, Machine-
op-inspct, Craft-repair (Cp16) or as Exec-managerial, Prof-specialty,
Protective-serv, Armed-Forces and Tech-support (Cp7 ), more than 40
hours a week (Cp7 ), and to gain more than 50K a year(Cp8 ).
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variable Xk Jk Pk npjk

capital_gain 4

capital_gain]−∞; 57]
capital_gain]57; 1839]
capital_gain]1839.0; 5119.0]
capital_gain]5119.0;+∞]

44807
219
1484
2332

hours_per_week 3
hours_per_week]−∞; 39.5]
hours_per_week]39.5; 40.5]
hours_per_week]40.5;+∞]

11687
22803
14352

race 3
race{Asian− Pac− Islander}
race{Black} + {Amer− Indian−Eskimo}
race{Other} + {White}

1519
5155
42168

age 4

age]−∞; 21.5]
age]21.5; 27.5]
age]27.5; 32.5]
age]32.5;+∞]

4719
7293
6359
30471

capital_loss 3
capital_loss]−∞; 1748.0]
capital_loss]1748; 1975.5]
capital_loss]1975.5;+∞[

47332
730
780

fnlwgt 1 fnlwgt]−∞;+∞] 48842

relationship 4

relationship{Other− relative}
relationship{Wife}
relationship{Husband}
relationship{Own− child} + {Unmarried}
+ {Not− in− family}

1506
2331
19716

25289

marital_status 2

marital_status{Married− civ− spouse}
+ {Married−AF − spouse}
marital_status{Separated} + {Married− spouse− absent}
+ {Divorced} + {Widowed} + {Never−married}

22416

26426

native_country 4

native_country{Trinadad&Tobago} + {Outlying−US}
+ {Jamaica} + {Haiti} + {Puerto−Rico} + {Honduras}
+ {Scotland} + {Peru} + {Columbia}
native_country{Hungary} + {Iran} + {Greece} + {Y ugoslavia}
+ {Ireland} + {Poland} + {France} + {Italy} + {Nicaragua}
+ {Ecuador} + {Cuba} + {Canada} + {Germany} + {England}
native_country{V ietnam} + {India} + {China} + {Hong}
+ {Thailand} + {South} + {Taiwan} + {Philippines}
+ {Laos} + {Japan} + {Cambodia} + {Portugal}+ {Mexico}
+ {Dominican−Republic} + {Guatemala} + {El− Salvador}
native_country{United− States}

587

1165

2401
44689

education 7

education{Preschool} + {1st− 4th} + {5th− 6th}
education{Assoc− acdm} + {Assoc− voc}
education{Prof − school} + {Masters} + {Doctorate}
education{7th− 8th} + {10th} + {11th} + {12th} + {9th}
education{Bachelors}
education{Some− college}
education{HS − grad}

839
3662
4085
5569
8025
10878
15784

sex 2 sex{Female}
sex{Male}

16192
32650

workclass 3

workclass{Without− pay} + {Never−worked}
workclass{State− gov} + {Self − emp− inc}
+ {Self − emp− not− inc} + {Local− gov}
+ {Federal− gov}
workclass{Private}

31

12106
36705

class 2 class{more}
class{less}

11687
37155

education_num 7

education_num]−∞; 3.5]
education_num]3.5; 8.5]
education_num]8.5; 9.5]
education_num]9.5; 10.5]
education_num]10.5; 12.5]
education_num]12.5; 13.5]
education_num]13.5;+∞]

839
5569
15784
10878
3662
8025
4085

occupation 4

occupation{Sales}
occupation{Priv− house− serv} + {Other− service}
+ {Adm− clerical}
occupation{Machine− op− inspct} + {Craft− repair}
+ {Transport−moving} + {Handlers− cleaners}
+ {Farming− fishing}
occupation{Tech− support} + {Protective− serv}
+ {Armed− Forces} + {Prof − specialty} + {Exec−managerial}

5504

10776

15051

17511

Table A.4 – Adult: partitioning of the variables in the 12× 17 co-clustering.
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Cluster Variable parts
Cp1 age]−∞; 21.5], relationship{Own− child} + {Unmarried}

+ {Not− in− family}, marital_status{Separated} + {Married− spouse− absent}
+ {Divorced} + {Widowed} + {Never−married}

Cp2 sex{Female}
Cp3 marital_status{Married− civ− spouse} + {Married−AF − spouse},

relationship{Husband}
Cp4 education{HS − grad}, education_num]8.5; 9.5]
Cp5 education_num]12.5; 13.5], education{Bachelors}
Cp6 education{Prof − school} + {Masters} + {Doctorate}, education_num]13.5;+∞]
Cp7 occupation{Tech− support} + {Protective− serv} + {Armed− Forces}

+ {Prof − specialty} + {Exec−managerial}, workclass{State− gov}
+ {Self − emp− inc} + {Self − emp− not− inc} + {Local− gov}
+ {Federal− gov}, hours_per_week]40.5;+∞], native_country{Hungary}
+{Iran} + {Greece} + {Y ugoslavia} + {Ireland} + {Poland} + {France}
+ {Italy} + {Nicaragua} + {Ecuador} + {Cuba} + {Canada} + {Germany}
+ {England}, age]32.5;+∞], capital_loss]1975.5;+∞[

Cp8 class{more}, capital_loss]1748; 1975.5], capital_gain]5119.0;+∞]
Cp9 education_num]10.5; 12.5], education{Assoc− acdm+Assoc− voc}
Cp10 education_num]−∞; 3.5], education{Preschool} + {1st− 4th} + {5th− 6th},

race{Asian− Pac− Islander}, native_country{V ietnam} + {India} + {China}
+ {Hong} + {Thailand} + {South} + {Taiwan} + {Philippines} + {Laos}
+ {Japan} + {Cambodia} + {Portugal} + {Dominican−Republic} + {Mexico}
+ {Guatemala} + {El− Salvador}

Cp11 relationship{Wife}
Cp12 education_num]9.5; 10.5], education{Some− college}
Cp13 education_num]3.5; 8.5], education{7th− 8th} + {10th} + {11th} + {12th} + {9th}
Cp14 age]27.5; 32.5], capital_loss]−∞; 1748.0], native_country{United− States},

capital_gain]−∞; 57], fnlwgt]−∞;+∞], workclass{Private}, occupation{Sales},
race{Other} + {White}, hours_per_week]39.5; 40.5], capital_gain]1839.0; 5119.0]

Cp15 sex{Male}
Cp16 occupation{Machine− op− inspct} + {Craft− repair} + {Transport−moving}

+ {Handlers− cleaners} + {Farming− fishing}
Cp17 relationship{Other− relative}, workclass{Without− pay} + {Never−worked},

class{less}, capital_gain]57; 1839], occupation{Priv− house− serv}
+ {Other− service} + {Adm− clerical}, race{Black} + {Amer− Indian−Eskimo},
native_country{Trinadad&Tobago} + {Outlying−US} + {Jamaica} + {Haiti}
+ {Puerto−Rico} + {Honduras} + {Scotland} + {Peru} + {Columbia},
hours_per_week]−∞; 39.5], age]21.5; 27.5]

Table A.5 – Adult: composition of the clusters of variable parts in the 12× 17
co-clustering.
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Model based co-clustering
of mixed numerical and binary data

Aichetou Bouchareb, Marc Boullé, Fabrice Clérot and Fabrice Rossi

Abstract Co-clustering is a data mining technique used to extract the un-
derlying block structure between the rows and columns of a data matrix.
Many approaches have been studied and have shown their capacity to ex-
tract such structures in continuous, binary or contingency tables. However,
very little work has been done to perform co-clustering on mixed type data.
In this article, we extend the latent block models based co-clustering to the
case of mixed data (continuous and binary variables). We then evaluate the
effectiveness of the proposed approach on simulated data and we discuss its
advantages and potential limits.

1 Introduction

The goal of co-clustering is to jointly perform a clustering of rows and a
clustering of columns of a data table. Proposed by [Good, 1965] then by
[Hartigan, 1975], co-clustering is an extension of the standard clustering that
extracts the underlying structure in the data in the form of clusters of row
and clusters of columns. The advantage of this technique, over the standard
clustering, lies in the joint (simultaneous) analysis of the rows and columns
which enables extracting the maximum of information about the interdepen-
dence between the two entities. The utility of co-clustering lies in its capacity
to create easily interpretable clusters and its capability to reduce a large data
table into a significantly smaller matrix having the same structure as the orig-
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SAMM EA 4534 - University of Paris 1 Panthéon-Sorbonne, 90 rue Tolbiac 75013 Paris -
France, e-mail: firstname.lastname@univ-paris1.fr

1

134 APPENDIX B. MODEL BASED MIXED DATA CO-CLUSTERING



inal data. Performing an analysis on the smaller summary matrix enables the
data analyst to indirectly study the original data while significantly reducing
the cost in space and computing time.

Since its introduction, many co-clustering methods have been proposed
(for example, [Bock, 1979, Cheng and Church, 2000, Dhillon et al., 2003]).
These methods differ mainly in the type of data (continuous, binary or
contingency data), in the considered hypotheses, the method of extrac-
tion and the expected results (hard clustering, fuzzy clustering, hierarchi-
cal clustering, etc.). One of the renowned approaches is the co-clustering
using latent block models which is a mixture model based technique where
each cluster of rows or columns is defined by latent variables to estimate
([Govaert and Nadif, 2013]). These models extend the use of Gaussian mix-
ture models and Bernoulli mixture models to the context of co-clustering.

Latent block based co-clustering models have therefore been proposed and
validated for numerical, binary, categorical, and contingency data. Neverthe-
less, to our knowledge, these models have never been applied to mixed data.
Actually, real life data is not always either numerical or categorical and an
outright information extraction method is required to handle mixed type data
as well as uni-typed data. Since the majority of data analysis methods are
designed for a particular type of input data, the analyst finds himself/herself
forced to go through a phase of data pre-processing to transform the data
into a uni-type data (often binary) in order to use an appropriate method.
Another option is to separately analyze each part of the data (by type) using
an appropriate method, then perform a joint interpretation of the results.
However, data pre-processing is very likely to result in a loss of information
while independently analyzing different parts of the data, using methods that
are based on different models, makes the joint interpretation of the results
even harder and sometimes the results are simply incoherent.

Mixture models have been used to analyze mixed data in the context of
clustering, by [McParland and Gormley, 2016] who propose using a latent
variable model according to the Gaussian distribution regardless of the data
type (numerical, binary, ordinal, or nominal data). However, the use of these
models in co-clustering remains uncommon. In this paper, we propose to ex-
tend the co-clustering mixture models, proposed by [Govaert and Nadif, 2003,
Govaert and Nadif, 2008], to the case of mixed data (with numerical and bi-
nary variables) by adopting the same approach of maximum likelihood esti-
mation as the authors.

The remainder of this paper is organized as follows. In section 2, we start
by defining the latent block models and their use in co-clustering. In section 3,
we extend these models to mixed data co-clustering. Section 4 presents our
experimental results on simulated data. Section 5 provides a discussion of the
results. Finally, conclusions and future work are presented in section 6.
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2 Latent block model based co-clustering

Consider the data table x = (xij , i ∈ I, j ∈ J) where I is the set of n objects
and J the set of d variables characterizing the objects, defined by the rows
and columns of the matrix x, respectively. The goal of co-clustering is to find
a partition Z of the rows into g groups and a partition W of the columns
into m groups, describing the permutation of rows and columns that defines
groups of rows and groups of columns and forms homogeneous blocks at the
intersections of the groups. Supposing the number of row clusters and the
number of column clusters to be known, an entry xij belongs to the block
Bkl = (Ik, Jl) if and only if the row xi. belongs to the group Ik of rows, and
the column x.j belongs to the group Jl of columns. The partitions of the rows
and columns can be represented by the binary matrix z of row affiliations to
the row clusters and the binary matrix of column affiliations w, where zik = 1
if and only if xi. ∈ Ik and wjl = 1 if and only if x.j ∈ Jl.

The likelihood of the latent block model LMB is given by:

f(x; θ) =
∑

(z,w)∈Z×W
p((z,w); θ)p(x|z,w; θ), (1)

where θ is the set of unknown model parameters, and Z × W is the set
of all possible partitions z of I and w of J that fulfill the following LBM
hypotheses:

1. the existence of a partition of rows into g clusters {I1, . . . , Ig} and a par-
tition of columns into m clusters {J1, . . . , Jm} such that each entry xij ,
of the data matrix, is the result of a probability distribution that depends
only on its row cluster and its column cluster. These partitions can be
represented by latent variables that can be estimated,

2. the memberships of the row clusters and of the column clusters are inde-
pendent,

3. knowing the cluster memberships, the observed data units are independent
(conditional independence to the couple (z, w)).

Under these hypotheses, the log-likelihood of the data is given by:

L(θ) = log f(x; θ) = log


 ∑

(z,w)∈Z×W

∏

ik

π
zik
k

∏

jl

ρ
wjl

l

∏

ijkl

ϕkl(xij ;αkl)
zikwjl


 ,

where the sums and products over i, j, k, and l have their limits from 1 to
n, d, g, and m, respectively, πk and ρl are the proportions of the kth cluster of
rows and the lth cluster of columns, and αkl is the set of parameters specific
to the block Bkl. The likelihood ϕkl is that of a Gaussian distribution in the
case of numerical data and that of a Bernoulli distribution in the case of
binary data.

For an (n×d) data matrix and a partition into g×m co-clusters, the sum
over Z×W would take at least gn×md operations ([Brault and Lomet, 2015]).
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Directly computing the log-likelihood is infeasible in a reasonable time, pre-
venting therefore a direct application of EM algorithm, classically used in
mixture models. Thus, [Govaert and Nadif, 2008] use a variational approxi-
mation and a Variational Expectation Maximization algorithm for optimiza-
tion.

3 LBM based co-clustering of mixed data

The latent block model as defined in Section 2 can only be applied to uni-
type data. To extend their use to the case of mixed data, we now consider a
mixed type data table x = (xij , i ∈ I, j ∈ J = Jc ∪ Jd) where I is the set of
n objects characterized by continuous and binary variable, Jc is the set of dc
continuous variables and Jd the set of dd binary variables. Our goal is to find
a partition of rows into g clusters, a partition of the continuous columns into
mc clusters, and a partition of the binary columns into md clusters, denoted
Z, Wc and Wd respectively.

Additionally to the previously mentioned LBM hypotheses, we suppose
that the partition of rows, the partition of continuous columns and the parti-
tion of the binary columns are independent. These partitions are represented
by the binary clustering matrices z, wc, wd and by the fuzzy clustering ma-
trices s, tc and td, respectively. Furthermore, conditionally on wc, wd and z,
the data matrix entries (xij){i∈I,j∈J} are supposed independent and there is
a mean, independent from the model, to distinguish the continuous columns
from the binary ones. Under these hypotheses, the likelihood of the generative
model for mixed data can be written as:

f(x; θ) =
∑

(z,wc,wd)∈Z×(Wc,Wd)


∏

ik

π
zik
k

∏

jclc

ρ
wcjclc
lc

∏

jdld

ρ
wdjdld
ld

∏

ijcklc

ϕc
klc

(xijc ;αklc )zikwcjclc
∏

ijdkld

ϕd
kld

(xijd ;αkld )
zikwdjdld


.

Note that the aforementioned hypotheses lead to a simple combination of
the previously existing situations (binary and continuous). Therefore, this
combination adds no further mathematical difficulty, but rather potential
practical consequences, resulting from coupling two different distributions (in
the clustering of rows) and by the incommensurable natures of the densities
(continuous variables) and probabilities (binary variables).

For likelihood optimization, we use an iterative Variational Expectation
Maximization algorithm, inspired by [Govaert and Nadif, 2008], as described
below.
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3.1 Variational approximation

In the latent block model, the goal is to optimize the full-information, which
requires knowing the latent variables z, wc and wd. The full-information
log-likelihood is given by:

Lc(x, z,wc,wd; θ) =
∑

ik

zik log πk +
∑

jclc

wcjclc log ρlc +
∑

jdld

wdjdld log ρld

+
∑

ijcklc

zikwcjclc logϕc
klc

(xijc ;αklc ) +
∑

ijdkld

zikwdjdld logϕd
kld

(xijd ;αkld ),

where the sums over i, jc, jd, k, lc, ld have their limits from 1 to n, dc, dd, g,mc

and md respectively.
However, a direct application of the EM algorithm is impractical due to

the dependency between the memberships to the clusters of rows z and the
memberships to the clusters of continuous columns wc on one hand, and be-
tween the memberships to the clusters of rows z and the memberships to the
clusters of binary columns wd, on the other hand. This makes the computa-
tion of the joint distribution p(z,wc,wd|x, θ) rather an impossible task. It is
thus impractical to integrate the log-likelihood of the full-information data,
given this distribution.

As in [Govaert and Nadif, 2008], we use a variational approximation that
consists of approximating the conditional distributions of the latent variables
to a factorisable form. More precisely, we approximate p(z,wc,wd|x, θ) by
the adjustable distribution product q(z|x, θ), q(wc|x, θ) and q(wd|x, θ), of
parameters sik = q(zik = 1|x, θ), tcjl = q(wcjl = 1|x, θ) and tdjl = q(wdjl =
1|x, θ) respectively.

The full-information likelihood is thus lower bounded by the following Fc
criterion

Fc(s, tc, td, θ) =
∑

ik

sik log πk +
∑

jclc

tcjclc log ρlc +
∑

jdld

tdjdld log ρld

+
∑

ijcklc

siktcjclc logϕc
klc

(xijc ;αklc ) +
∑

ijdkld

siktdjdld logϕd
kld

(xijd ;αkld )

−
∑

ik

sik log sik −
∑

jclc

tcjclc log tcjclc −
∑

jdld

tdjdld log tdjdld .

,

which provides an approximation for the likelihood. The maximization
of Fc is simpler to conduct and yields a maximization of the expected full-
information log-likelihood. Therefore, the goal will onward be to maximize
the criterion Fc.
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3.1.1 The Variational Expectation Maximization algorithm

Maximizing the lower bound Fc in the mixed-data latent block model
(MLBM) is performed, until convergence, in three steps:

• with regard to s, with fixed θ, tc and td, which amounts to computing

ŝik ∝ πk exp (
∑

jclc

tcjclc logϕc
klc

(xijc , αklc )) exp (
∑

jdld

tdjdld logϕd
kld

(xijd , αkld )) (2)

• with regard to tc and td with fixed s and θ, which amounts to computing

t̂cjclc ∝ ρlc exp (
∑

ik

sik logϕc
klc(xijc , αklc))

and t̂djdld ∝ ρld exp (
∑

ik

sik logϕd
kld

(xijd , αkld)),
(3)

with:
∑
k

sik =
∑
lc

tcjlc =
∑
ld

tdjld = 1.

• with regard to θ, which amounts to computing the cluster proportions and
parameters

π̂k =

∑
i ŝik

n
; ρ̂lc =

∑
jc
t̂cjlc

dc
; ρ̂ld =

∑
jd
t̂djld

dd
; µ̂klc =

∑
ijc

ŝik t̂cjclcxijc∑
i ŝik

∑
jc
t̂cjclc

;

σ̂2
klc

=

∑
ijc

ŝik t̂cjclc (xijc − µ̂klc )2

∑
i ŝik

∑
jc
t̂cjclc

et α̂kld =

∑
ijd

ŝik t̂djdldxijd∑
i ŝik

∑
jd
t̂djdld

(4)

In our implementation (Algorithm 1), we used ε = 10−5 as convergence con-
stant for the inner loops, ε = 10−10 for the outer loop, and we normalized ŝ,
t̂c and t̂d, after calculation, by taking the relative values : ŝik ← ŝik∑

h ŝih
and

similarly for t̂c and t̂d.

4 Experiments

In this section, we evaluate the proposed approach on simulated data with
controlled setups. This evaluation step is necessary to measure how well the
approach can uncover the true distributions from data with known parame-
ters. To do this, we start by presenting the setups used to produce artificial
data followed by an analysis of the experimental results of the proposed
LBM extension. The first experiment is set to validate our implementation
on uni-type data and confirm the contribution of the approach. The second
experiment is set to investigate the influence of various parameters such as
the number of co-clusters, the size of the data matrix and the level of overlap
in the data.
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Algorithm 1: : The Mixed-data Latent Block Model VEM algorithm
Require: Data x, the number of clusters g, mc, md, maximum number of iterations

maxITER and InnerMaxIter

iteration c←0
Initialization : choose s = cc, td = tcc, td = tdc randomly and compute θ = θc

(equation (4))

while c ≤ maxITER and Unstable(Criterion) do
t←0, st ← sc, tc← tcc, td← tdc, θt ← θc

while t ≤ InnerMaxIter and Unstable(Criterion) do

For every i = 1 : n and k = 1 : g, compute st+1
ik : equation (2)

For every k = 1 : g, lc = 1 : mc and ld = 1 : md, compute

πt+1
k , µt+1

klc
, σt+1

klc
et αt+1

kld
: equation (4)

Criterion← Fc(st+1, tc, td, θt+1)

t← t+ 1

end while
s← sc+1 ← st−1, θ ← θc+1 ← θt−1

t← 0

while t ≤ InnerMaxIter and Unstable(Criterion) do
For every jc = 1 : dc, jd = 1 : dd, lc = 1 : mc and ld = 1 : md, compute tct+1

jclc

and tdt+1
jdld

: equation (3)
For every k = 1 : g, lc = 1 : mc and ld = 1 : md, compute

ρt+1
c , ρt+1

d , µt+1
klc

, σt+1
klc

and αt+1
kld

: equation (4)

Criterion← Fc(s, tct+1, tdt+1, θt+1)

t← t+ 1

end while
tc← tcc+1 ← tct−1, td← tdc+1 ← tdt−1, θ ← θc+1 ← θt−1

Criterion← Fc(s, tc, td, θ)

c← c+ 1
end while

Ensure: (s, tc, td, θ)

4.1 First experiment

The purpose of this experiment is two-fold: validate our implementation and
evaluate the interest of considering continuous and binary data jointly.

4.1.1 The data set

Our first data sets consist of simulated data matrices containing g = 4 clusters
of rows, mc = 2 clusters of continuous columns and md = 2 clusters of binary
columns.

The particularity of this experiment lies in the fact that independently
co-clustering the continuous and the binary parts of the data would only
distinguish two clusters of rows but jointly, the co-clustering of the data sets
should extract four clusters of rows. In this experiment, we study the effect
of:
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• The size of the data matrix: the data size is defined by the number
of rows which is equal to the number of continuous columns and to the
number of binary columns. We consider the sizes 25, 50, 100, 200 and 400
rows (and columns of each type) for which the resulting matrices will have
25× 50, 50× 100, 100× 200, 200× 400 and 400× 800 entries respectively.

• The level of confusion where we study the effect of the overlap be-
tween the distributions. Here, we consider three levels of overlap (called
confusion) between the co-clusters:

– Low: every continuous co-cluster follows a Gaussian distribution of
mean µ ∈ {µ1 = 1, µ2 = 2} and a standard deviation σ = 0.25
while a binary co-cluster follows a Bernoulli distribution of parame-
ter α ∈ {α1 = 0.2, α2 = 0.8}). This setup provides easily separable
co-clusters since the regions of overlap between the observed values is
small.

– Medium: every continuous co-cluster follows a Gaussian distribution
of mean µ ∈ {µ1 = 1, µ2 = 2} and a standard deviation σ = 0.5
while a binary co-cluster follows a Bernoulli distribution of parameter
α ∈ {α1 = 0.3, α2 = 0.7}. This setup provides a relatively large overlap
region which should make the cluster separability harder than in the
case of low confusion.

– High: every continuous co-cluster follows a Gaussian distribution of
mean µ ∈ {µ1 = 1, µ2 = 2} and a standard deviation σ = 1
while a binary co-cluster follows a Bernoulli distribution of parame-
ter α ∈ {α1 = 0.4, α2 = 0.6}. This provides a large overlap region
which should make the cluster separability even more difficult.

The exact configuration of the parameters is shown in Table 1. One should
note that a Gaussian mixture based co-clustering on the columns Jc1 and
Jc2 from Table 1, would distinguish two clusters of rows by coupling {I1 and
I3}, on one hand, then {I2 and I4}, on the other hand, as single row clusters.
Similarly, a Bernoulli based co-clustering on the columns Jd1 and Jd2 should
distinguish two clusters of rows by associating {I1 with I2} and {I3 with I4}.
By performing a co-clustering on the mixed data, we expect to distinguish
four clusters of rows.

µ and α Jc1 Jc2 Jd1 Jd2
I1 µ2 µ1 α2 α1

I2 µ2 µ2 α2 α1

I3 µ2 µ1 α2 α2

I4 µ2 µ2 α2 α2

Table 1: The specification of the true parameters.
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Our experiments are performed in two steps: apply the co-clustering algo-
rithm to the continuous data and to the binary data separately, then apply
the algorithm on the mixed data.

4.1.2 Evaluation of the results

Knowing the true clusters of each row and column of the data, we choose
to measure the performance of a co-clustering using the Adjusted Rand’s
Index ([Hubert and Arabie, 1985]) for the rows and columns. The Adjusted
Rand index (ARI) is a commonly used measure of similarity between two
data clusterings that can be used to measure the distance (as a probability of
agreements) between the true row and column partitions and the partitions
found by the co-clustering. The ARI has a maximum value of 1 for identical
partitions and a minimal value of zero for independent partitions. We will
thus recover and compare the ARI of rows and columns in the three cases:
when co-clustering the continuous data alone, when co-clustering the binary
data alone, and when co-clustering the mixed data.

For each configuration, we generate 3 data samples according to the previ-
ously illustrated parameters and we present the results in the form of violin
plots. A violin plot ([Hintze and Nelson, 1998]) is a numeric data visualiza-
tion method that combines the advantages of a box plots with an estimation
of the probability density over the different values, which gives a better visu-
alization of the variability of the results as well as important statistics such
as the mean, the median and the extent of the measured values.

4.1.3 Validating our implementation

To validate our implementation, we applied our implementation of the co-
clustering algorithm to the continuous part alone and to the binary part
alone while comparing the results with those of the blockcluster package
([Bhatia et al., 2014]). Blockcluster is an R package for co-clustering binary,
contingency, continuous and categorical data that implements the standard
latent block models for co-clustering uni-type data.

Figure 1 shows a comparison between the adjusted Rand index (of rows
and columns) of the co-clustering obtained using blockcluster compared to
our proposed approach. The comparison confirms that our implementation
provides very comparable results, in terms of ARI and of parameter esti-
mation, with respect to the blockcluster package in most of the cases. In
particular, BC provides better ARI when co-clustering the binary data while
our approach provides similar or remarkably better results when co-clustering
the continuous data. However, in terms of computation time, our implemen-
tation takes at least ten times longer than the blockcluster package. This
is mainly because we needed high quality in our comparison experiments,
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Fig. 1: First experiment: comparing the ARI of rows and the ARI of columns (the y-

axis) using our implementation (MLBM) with the blockcluster (BC) package, applied to

the continuous and binary data. Compare the red plots with the green ones and the blue

with the magenta. The higher the ARI values, the better.

and therefore we focused on quality rather than computation time in our
implementation (see section 5).

4.1.4 The advantage of mixed data co-clustering

One approach to co-clustering mixed data consists of performing a co-
clustering on each data type then jointly analyzing the results to conclude a
co-clustering like structure for the complete data. This experiment provides
an example of configurations where such joint analysis remains incapable of
finding the true clusters of rows.

Figure 2 compares the partition of rows found by the co-clustering of the
continuous data with the partition found by the co-clustering of the binary
part. Had the two co-clusterings correctly discovered the true clusters of rows,
the partitions would be coherent and the ARI would approach 1, which is
not the case. In fact, regardless of the data size and of the level of overlap
between the distributions, the two partitions are completely independent as
shown by the ARI values, which are at maximum zero. This shows that
although the same row clusters are present in both data types, the joint
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Fig. 2: First experiment: comparing the partition of rows obtained using the continuous

part alone with the partition obtained using the binary part of the data. The y axis shows

the measured ARI values.

analysis of the two independent co-clusterings does not extract the common
and global structure and does not provide any additional information on the
true distribution compared to a uni-type data analysis.

Given such mixed data, the correspondence between the continuous and
binary partitions is virtually null. This leaves the choice open for interpreting
either the continuous co-clusters or the binary ones. Our approach proposes
to use the full data and provides co-clusters for which the accuracy of the
row clusters is at least as good as the best of the two choices. Furthermore,
mixed data co-clustering significantly improves the accuracy of the retrieved
partition in the majority of the studied cases (Figure 3).

From figure 3, it is clear that, regardless of the level of overlap between the
distributions and regardless of the size of the matrix, co-clustering the mixed
data, instead of separately co-clustering the continuous and the binary parts,
improves significantly the quality of the obtained row partition (see figures 3a,
3b, and 3c). In fact, in the worst case scenarios, mixed data co-clustering
provides ARI of rows that are at least as good as the best ARI results when
performing uni-type data analysis. On the other hand, the adjusted Rand
indexes of columns do not necessarily improve significantly (in some cases, it
does), which is expected because the configuration is set so that the clusters of
columns are separable using uni-type data and the mixed analysis would not
improve the performance of the clustering of columns (independence between
the two data types in terms of column clusters). With respect to the data size
and the level of overlap between the distributions, we notice the following:

• Influence of the data size: as the data size increases, the quantity of the
data units used by the optimization algorithm increases, which facilitates
the convergence of the algorithms to the true underlying distributions.
This effect can be observed from the ARI values, shown in Figure 3, and
mainly in the case of binary and mixed data.

• Influence of the level of confusion: as expected, when the level of confusion
between the distributions increases, it becomes harder to recover the exact
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Fig. 3: First experiment: ARI of rows and ARI of columns (in the y-axis) in the contin-

uous, binary and mixed data.

true partition of rows. This effect is particularly visible in Figures 3f and
3c, where the high level of confusion makes the separation of the clusters
difficult in the case of binary (and consequently mixed) data and particu-
larly in small matrices.

To summarize, the joint co-clustering of the continuous and binary vari-
ables of the simulated data sets enables us to use the full data and obtain
considerably better accuracy, compared to an independent analysis by data
type. The results of the co-clustering (both uni-type and mixed) are at their
best when the level of confusion is low or the data matrix is big. With respect
to the level of confusion, this behavior is expected since the true structure of
the data is well separable. In fact, the level of confusion simulates the overlap
between the distributions. Therefore, the higher the overlap, the data will
contain more observations with relatively equal probabilities to belong to ei-
ther of the distributions. Hence, a decrease in the accuracy of the clustering
as it is measured over all the observations. The effect of bigger matrices can
be explained by the fact that the more data is present, the more iterations
are required by the algorithm which improves the quality of the estimated
parameters.

However, this is a well known phenomenon in the standard the standard
LBM context. For example, in [Govaert and Nadif, 2013], the authors note
that given the same number of co-clusters in the data, the classification error
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rate depends not only on the parameters but also on the size of the data
matrix (the Bayes classification risk decreases with the size of the data). Also,
[Mariadassou and Matias, 2015] show that, when the estimated parameters
converge to the true parameters, the recovered partitions will converge to the
true partitions when the size of the data becomes sufficiently large. Using the
mixed data latent block model, the accuracy of the estimated parameters is
remarkable which reinforces the hypothesis that, as in the standard latent
block models, given enough data, our approach would converge to the true
partitions. Table 2 shows examples of the estimated parameters using the
mixed data latent block model MLBM on the data containing 100 rows.

Low confusion

(True µ, estimated µ) (True σ, estimated σ) (True α, estimated α)

Jc1 Jc2
I1 (2, 2.001) (1, 1.004)
I4 (2, 1.992) (2, 1.013)

I2 (2, 2.000) (2, 2.005)

I3 (2, 1.988) (1, 0.975)

Jc1 Jc2
(0.25, 0.246) (0.25, 0.255)
(0.25, 0.250) (0.25, 0.239)

(0.25, 0.251) (0.25, 0.248)

(0.25, 0.266) (0.25, 0.259)

Jd2 Jd1
(0.2, 0.208) (0.8, 0.790)
(0.8, 0.804) (0.8, 0.822)

(0.2, 0.496) (0.8, 0.811)

(0.8, 0.797) (0.8, 0.758)

Medium confusion

(True µ, estimated µ) (True σ, estimated σ) (True α, estimated α)

Jc2 Jc1
I2 (2, 1.981) (2, 1.985)
I1 (1, 1.023) (2, 1.995)

I4 (2, 1.990) (2, 2.010)

I3 (1, 1.013) (2, 1.962)

Jc2 Jc1
(0.50, 0.520) (0.50, 0.497)
(0.50, 0.502) (0.50, 0.493)

(0.50, 0.505) (0.50, 0.505)

(0.50, 0.501) (0.50, 0.504)

Jd1 Jd2
(0.7, 0.718) (0.3, 0.297)
(0.7, 0.695) (0.3, 0.315)

(0.7, 0.704) (0.7, 0.685)

(0.7, 0.700) (0.7, 0.674)

High confusion

(True µ, estimated µ) (True σ, estimated σ) (True α, estimated α)

Jc2 Jc1
I2 (2, 1.994) (2, 2.042)

I1 (1, 0.998) (2, 1.987)
I4 (2, 2.005) (2, 2.008)

I3 (1, 1.012) (2, 2.017)

Jc2 Jc1
(1.00, 1.016) (1.00, 0.989)

(1.00, 1.018) (1.00, 0.979)
(1.00, 0.999) (1.00, 1.001)

(1.00, 0.992) (1.00, 1.008)

Jd2 Jd1
(0.4, 0.351) (0.6, 0.597)

(0.4, 0.399) (0.6, 0.594)
(0.6, 0.591) (0.6, 0.590)

(0.6, 0.631) (0.6, 0.616)

Table 2: Examples of the estimated parameters for the 100 rows data.

4.2 Second experiment

The objective of this experiment is to study the impact of the number of
co-clusters, the size of the data and the level of confusion between the distri-
butions.

4.2.1 The data set

To study the influence of the number of co-clusters, the data sets are gener-
ated using the following parameters:

• The number of co-clusters: we choose three different partitions g ×
(mc + md) of the original data matrix : 2 × (2 + 2), 3 × (3 + 3), and
4× (4 + 4).
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• The size of the data: the size of the data is defined by the number of
rows and the total number of columns. For this experiment, we choose the
sizes 25, 50, 100, 200 and 400 for rows. For the number of columns, we
distinguish two different configurations:

– square matrices: the number of columns of each type is equal to the
number of rows.

– rectangular matrices: we set the number of columns (of each type) to
5, 10, and 20.

• The level of confusion: similarly to the first experiment, we consider
three levels of overlap between the distributions: Low (with Gaussian
means µ ∈ {p1 = 1, p2 = 2}, Gaussian standard deviations σ = 0.25
and Bernoulli parameters α ∈ {p1 = 0.2, p2 = 0.8}), Medium (µ ∈
{p1 = 1, p2 = 2}, σ = 0.5 and α ∈ {p1 = 0.3, p2 = 0.7}) and High
(µ ∈ {p1 = 1, p2 = 2}, σ = 1 and α ∈ {p1 = 0.4, p2 = 0.6}).

µ or α J1 J2
I1 p1 p1
I2 p1 p2

µ or α J1 J2 J3
I1 p1 p2 p1
I2 p1 p2 p2
I3 p1 p1 p1

µ or α J1 J2 J3 J4
I1 p2 p1 p2 p1
I2 p2 p1 p2 p2
I3 p2 p2 p2 p2
I4 p2 p1 p1 p1

Table 3: The true parameter specification with 2 × (2 + 2), 3 × (3 + 3) and 4 × (4 + 4)

co-clusters.

The specification of the co-clusters and their configuration are shown in
Table 3. Similarly to the first experiment, we generate 3 samples of each data
configuration according to its parameters and we present the resulting ARI
in the form of violin plots. To present the co-clustering results, we distinguish
between square matrices and rectangular ones.

4.2.2 The co-clustering results: square matrices

Although each of the continuous and binary parts of the data can be sufficient
to extract the underlying structure of the data, we notice that, as in the
first experiment, jointly co-clustering the continuous and binary data clearly
improves the performance of the co-clustering.

Figures 4, 5 and 6 show the adjusted Rand indexes of rows and columns
by level of confusion and with respect to the various parameters, in the case
of continuous, binary and mixed data co-clustering.

From the ARI plots (Figure 4 and Figure 5 in particular), the first no-
ticeable result is that the binary part of the data is sensitive to the size of
the data, to the number of co-clusters and to the level of confusion while the
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Fig. 4: Second experiment (Low confusion): ARI of rows and ARI of columns (in the

y-axis) in the case of continuous, binary and mixed data.
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Fig. 5: Second experiment (Medium confusion): ARI of rows and ARI of columns (the

y-axis) in the case of continuous, binary and mixed data.
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Fig. 6: Second experiment (High confusion): ARI of rows and ARI of columns (the y-axis)

in the case of continuous, binary and mixed data.

continuous part is generally more stable and is mostly influenced only by the
number of co-clusters and the size of the data.

• Influence of the number of co-clusters: given the same data size and the
same level of overlap between the clusters, we notice (see Figure 4) that
as the number of co-clusters increases, the extraction of the true partition
(both in terms of rows and column clusters) becomes harder. This effect
is observed in particular in the case of binary variables as the variability
of the results is greater when the number of co-clusters becomes high.
However, this variability is less drastic in the case of continuous and mixed
data (see Figures 5a , 5b, and 5c for example). The greater the number of
clusters, the more data is required for the true partition to be found.

• Influence of the data size: the global performances of the co-clustering of
uni-type data (which we have established is equivalent to the standard
LBM co-clustering) confirms (as established in section 4.1.4) that the co-
clustering performs better as the data size increases. Additionally, we no-
tice that the continuous part of the data is always easier to co-cluster than
the binary part. This is almost regardless of the data size (except in the
case of large number of co-clusters: 4 × (4 + 4)). The binary part on the
other hand performs particularly worse for small matrices. In summary,
the best partitioning of the mixed co-clusters is obtained, regardless of the
number of co-clusters and the level of confusion, with medium to large
matrices.
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• Influence of the level of confusion: the co-clustering of the mixed data
performs as expected with respect to the level of confusion. The higher the
confusion, the more difficult is the extraction of the true partition of the
rows, particularly in the case of small matrices (compare for example the
Figures 4a, 5a, and 6a). On the contrary, even when the level of confusion
is high, the quality of the recovered co-clusters improves with the size of
the data (see the evolution of the ARI values in Figure 6).

4.2.3 The co-clustering results: rectangular matrices

Figure 7 shows the adjusted Rand indexes of rows by level of confusion and
with respect to the various parameters, in the case of rectangular matrices
and 2× (2 + 2) co-clusters.

From this experiment, we notice that even for rectangular matrices, the
same conclusions are valid. In particular, the proposed approach extracts the
true structure of the data in the case of low confusion. As the level of overlap
between the co-clusters increases, the co-clustering of the binary part becomes
less accurate both in the case of a standard LBM on uni-type data and the
case of mixed data. Finally, the bigger the data size, the more accurate is
the co-clustering both using uni-type and mixed data. As with the square
matrices, an improvement in the ARI of columns is also noticed when using
mixed data. The same conclusions are valid for the configurations containing
3× (3 + 3) and 4× (4 + 4) co-clusters.

5 Discussion

When applying the co-clustering algorithm on uni-type data, we noticed some
optimization problems. Firstly, the algorithm converges to a local optimum
which corresponds, very often, to a unique cluster of rows and a unique cluster
of columns. We have thus addressed the problem by forcing a minimal number
of iterations (the c parameter in Algorithm 1) which considerably enhanced
the quality of the optimization results.

µ or α J1 J2
I1 p1 p2
I2 p2 p1

µ or α J1 J2 J3
I1 p1 p1 p2
I2 p1 p2 p1
I3 p2 p1 p1

µ or α J1 J2 J3 J4
I1 p1 p1 p1 p2
I2 p1 p1 p2 p1
I3 p1 p2 p1 p1
I4 p2 p1 p1 p1

Table 4: The true specification of the co-clusters in a symmetric configuration with 2×
(2 + 2), 3× (3 + 3) and 4× (4 + 4) co-clusters.

150 APPENDIX B. MODEL BASED MIXED DATA CO-CLUSTERING



0
0.

2
0.

4
0.

6
0.

8
1

25 50 100 200 400

● ● ● ● ●

● MLBM Continuous
MLBM Binary
MLBM Mixed

Number of rows

A
R

I

(a) Low confusion, 5

columns

0
0.

2
0.

4
0.

6
0.

8
1

25 50 100 200 400

● ● ● ● ●

● MLBM Continuous
MLBM Binary
MLBM Mixed

Number of rows

A
R

I

(b) Low confusion, 10

columns

0
0.

2
0.

4
0.

6
0.

8
1

25 50 100 200 400

● ● ● ● ●

● MLBM Continuous
MLBM Binary
MLBM Mixed

Number of rows

A
R

I

(c) Low confusion, 20

columns

0
0.

2
0.

4
0.

6
0.

8
1

25 50 100 200 400

●

●

●

●
●

● MLBM Continuous
MLBM Binary
MLBM Mixed

Number of rows

A
R

I

(d) Medium confusion, 5

columns

0
0.

2
0.

4
0.

6
0.

8
1

25 50 100 200 400

● ●

●
● ●

● MLBM Continuous
MLBM Binary
MLBM Mixed

Number of rows

A
R

I

(e) Medium confusion, 10

columns

0
0.

2
0.

4
0.

6
0.

8
1

25 50 100 200 400

● ● ● ● ●

● MLBM Continuous
MLBM Binary
MLBM Mixed

Number of rows

A
R

I

(f) Medium confusion, 20

columns

0
0.

2
0.

4
0.

6
0.

8
1

25 50 100 200 400

●

●

● ●

●

● MLBM Continuous
MLBM Binary
MLBM Mixed

Number of rows

A
R

I

(g) High confusion, 5
columns

0
0.

2
0.

4
0.

6
0.

8
1

25 50 100 200 400

●

●

●

●

●

● MLBM Continuous
MLBM Binary
MLBM Mixed

Number of rows

A
R

I

(h) High confusion, 10
columns

0
0.

2
0.

4
0.

6
0.

8
1

25 50 100 200 400

●

●

●

●

●

● MLBM Continuous
MLBM Binary
MLBM Mixed

Number of rows

A
R

I

(i) High confusion, 20
columns

Fig. 7: Second experiment (2× (2 + 2) co-clusters): ARI of rows (the y-axis) in the case

of continuous, binary and mixed data.

However, the algorithms (both our approach and the blockcluster package)
do not perform the same way when the marginal parameters are equal per
cluster or when they are different. To study this effect, we have considered a
second configuration (call it the symmetric case) where the marginal param-
eters are equal. Table 4 shows an example of the parameter specification of
such configurations. In the symmetric configuration, where the marginal pa-
rameters are equal, the problem of cluster separability becomes intrinsically
difficult (especially for square matrices) and the optimization algorithm tends
to have trouble getting out of the zone of the local optimum corresponding
to one single cluster of rows and one single cluster of columns, in which it
falls since the very first iterations. To solve this problem, we required the
algorithm to start with small steps when computing the assignments to the
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clusters (s, tc and td) without letting the criterion fully stabilize, then after
few first steps in this initial phase, we iterate until criterion stabilization.
This strategy provides better solutions in the case of binary data but results
in no notable improvement in some continuous cases. As mentioned earlier,
because of this focus on obtaining high quality results, our implementation
takes at least ten times longer than the blockcluster package but provides
more accurate row and column partitions and more accurate parameter esti-
mation. Table 5 shows a comparative example of the means computation time
for the rectangular matrix containing 100 rows and 2× (2 + 2) co-clusters.

Number of columns → 5 columns 10 columns 20 columns

Level of overlap

Low confusion

Medium confusion

High confusion

measure\method

mean
sd

mean

sd

mean

sd

MLBM BC

2.97 0.01
0.11 0.005

8.01 0.01

1.2 0.01

15 0.04

12 0.01

MLBM BC

4.3 0.016
0.4 0.005

5.5 0.01

0.2 0

16.4 0.01

6.4 0.01

MLBM BC

8.31 0.03
0.6 0.005

8.4 0.01

0.3 0

25.9 0.01

5.2 0.01

Table 5: Example of the computation time (in seconds).

6 Conclusion and future work

In this article, we have proposed an extension of the latent block models to
the co-clustering of mixed type data. The experiments show the capability
of the approach to estimate the true model parameters, extract the true
distributions from simulated data, and provide better quality results when the
complete data set is used rather than separately co-clustering the continuous
or binary parts. The proposed approach comes as a natural extension of the
LBM based co-clustering and performs a co-clustering of mixed data in the
same way that a standard LBM based co-clustering applies to uni-type data.

On the course of our experiments, we have noticed that for the data sets
with equal marginal parameters, both our algorithm and the state of the
art algorithm implemented in the package blockcluster tend to fall in a local
optimum. This is a limitation to the latent block based methods for co-
clustering, mainly in the context of an exploratory analysis where the true
underlying distributions are unknown.

In our future works, we aim to extend the approach to the case of cate-
gorical data and beyond binary data and to study the option of BIC based
regularization to automatically infer the number of clusters of rows and the
number of clusters of columns.
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