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Abstract

High quality panoramic videos for immersive VR content are commonly cre-
ated using a rig with multiple cameras covering a target scene. Unfortunately,
this setup introduces both spatial and temporal artifacts due to the differ-
ence in optical centers as well as the imperfect synchronization. Traditional
image quality metrics cannot be used to assess the quality of such videos, due
to their inability to capture geometric distortions. In addition, the lack of a
reference to these panoramic videos represents another challenging problem.

In this thesis, we propose two approaches for the objective assessment of
panoramic videos which offer alternatives to the ground truth and are able
to quantify the geometric deformations that are present in stitched videos.
These methods are then validated with an empirical experiment that com-
bines human error annotation and eye-tracking.

The first approach suggests to compare the overlapping regions of matched
pairs prior to blending using a method initially proposed for novel view syn-
thesis and which models three visibility features based on the human visual
perception. A combined map is created by pooling the values of the interme-
diate maps. The second approach investigates the use of the original videos
as a reference for the output panorama. We note that this approach is not
directly applicable, because each pixel in the final panorama can have one
to N sources corresponding to N input videos with overlapping regions. We
show that this problem can be solved by calculating the standard deviation
of displacements of all source pixels from the displacement of the panorama
as a measure of distortion. This makes it possible to compare the difference
in motion between two given frames in the original videos and motion in
the final panorama. Salience maps based on human perception are used to
weight the distortion map for more accurate filtering.

An empirical experiment is then conducted with human participants to
validate the proposed objective evaluation methods. The experiment aimed
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at answering the question of whether humans and the objective methods
detect and measure the same errors, and exploring which errors are more
salient to humans when watching a panoramic video.

The methods described have been tested and validated and they yield
promising results which show a high correlation between the proposed al-
gorithms and the humans perception as well as provide interesting findings
regarding human-based perception for quality metrics. They also open the
way to new methods for optimizing video stitching guided by those quality
metrics.
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Résumé

Des vidéos panoramiques de haute qualité pour un contenu VR immersif
sont généralement créées à l’aide d’une plate-forme avec plusieurs caméras
couvrant une scène cible. Malheureusement, cette configuration introduit à
la fois des artefacts spatiaux et temporels dus à la différence entre les centres
optiques et à la synchronisation imparfaite. Les métriques de qualité d’image
traditionnelles ne peuvent pas être utilisées pour évaluer la qualité de telles
vidéos, en raison de leur incapacité à capturer les distorsions géométriques.
De plus, l’absence de référence à ces vidéos panoramiques représente un autre
problème épineux. Dans cette thèse, nous proposons deux approches pour
l’évaluation objective de vidéos panoramiques qui offrent une alternative à la
vérité de terrain et permettent de quantifier les déformations géométriques
présentes dans les vidéos assemblées. Ces méthodes sont ensuite validées
par une expérience empirique associant annotation d’erreur humaine et eye-
tracking.

La première approche suggère de comparer les régions qui se chevauchent
de paires appariées avant le mélange en utilisant une méthode initialement
proposée pour la synthèse de vues nouvelle et qui modélise trois caractéristiques
de visibilité basées sur la perception visuelle humaine. Une carte combinée
est créée en regroupant les valeurs des cartes partielles.

La seconde approche étudie l’utilisation des vidéos originales comme référence
pour le panorama en sortie. Nous notons que cette approche n’est pas di-
rectement applicable, car chaque pixel du panorama final peut avoir une à N
sources correspondant à N vidéos d’entrée avec des régions qui se chevauchent.
Nous montrons que ce problème peut être résolu en calculant l’écart type
des déplacements de tous les pixels source par rapport au déplacement du
panorama en tant que mesure de la distorsion. Cela permet de comparer la
différence de mouvement entre deux images données dans les vidéos d’origine
et le mouvement dans le panorama final. Des cartes de saillance basées sur la

vii



perception humaine sont utilisées pour pondérer la carte de distorsion pour
un filtrage plus précis. Une expérience empirique est ensuite menée avec
des participants humains pour valider les méthodes d’évaluation objectives
proposées. L’expérience visait à déterminer si les humains et les méthodes ob-
jectives détectaient et mesuraient les mêmes erreurs, et à déterminer quelles
erreurs étaient les plus saillantes pour les humains lorsqu’ils regardaient une
vidéo panoramique.

Les méthodes décrites ont été testées et validées et elles donnent des
résultats prometteurs montrant une forte corrélation entre les algorithmes
proposés et la perception humaine, ainsi que des résultats intéressants concer-
nant la perception humaine des métriques de qualité. Ils ouvrent également
la voie à de nouvelles méthodes d’optimisation de l’assemblage vidéo guidées
par ces métriques de qualité.
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Chapter 1

Introduction

1.1 Historical Background
Panorama creation is an ancient concept that has attracted people years
BC. Before the invention of cameras, when the only means of photography
was using paintings or even murals, people have always been interested in
creating wide field of view content.

One of the earliest panoramas was found in the ruins excavated in villa
of the mysteries Pompeii as early as 20 AD. It was later expressed through
artistic paintings to archive historical events or to express the richness of a
landscape. Museums and art galleries have examples of panoramic paintings
(see figure 1.1) such as “Joseph pardons his Brothers” for instance, probably
1515, which is now in the National gallery of London or “La marche du Grand
Seigneur avec sa garde de janissaires et de spahis”, 1834, which can be seen in
Louvre museum, Paris. The term “panorama” itself, from Greek “pan”=all
and “horama”=view, was first introduced by the Irish painter Robert Barker
in 1972 [Wikipedia contributors, 2018] to describe one of his paintings that
he projected on a sphere.

Figure 1.1: Examples of panoramic paintings that existed before panoramic
photography.
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Later on, with the invention of photography using daguerrotypes1 by
Louis Daguerre in the 19th century, panoramas were created using a compo-
sition of daguerrotypes (see figure 1.2). In 1843, the first panoramic camera
was patented by Puchberger using a technique called swing lens, consisting
in a lens swinging around a vertical axis to take a wide field of view. Later
in 1858, Chevalier and Porro invented panoramic cameras independently.
However, it was not until using photo-theodolites2 1895 by Finsterwalder
and Zeiss that the panoramic photography has become successful. With the
emergence of digital cameras in the 1990s, panoramic cameras started to be
available in the market [Luhmann, 2004].

Figure 1.2: Left: Panorama created using 8 daguerrotypes in 1848. Right:
Swing lens used for early panorama shooting. (figures taken from [Luhmann,
2004]).

Many contributions have been made in the past to provide 360◦ images
and videos, especially for the purpose of movie making. In 1897, Raoul
Grimoin-Sanson patented Cineorama which consisted of a circular screen
along with 10 synchronized projectors. It was later used to project frames
of a movie in a circular panorama presenting a simulation of the experience
of a hot air balloon in an expedition in Paris in 1990. Photorama is an
example of a procedure and device taking 360◦ photos and projecting them
onto a cylindrical projection, this was invented by Louis Lumière back in
1900. Later, in 1955, the Walt Disney company had an early panoramic
video system consisting of 9 cameras with a projector between each pair of
cameras and 9 screens placed in a circle to display the projected movie.

1The first publicly available photography methodology in which photos were created on
a silver copper plate placed inside a camera and fumed with mercury to create a permanent
image.

2A camera combined with a theodolite, an optical instrument to measure angles between
the world and the camera.
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Given the importance of panoramic photography and panoramic videos,
this technology has continued to develop and panoramic videos is currently a
highly active field of research that has many applications and that continue
to advance with large steps.

1.2 Motivation
Panoramic videos enable us to capture the richness of the surrounding world.
Producing 360◦ panoramic videos is an interesting tool to provide content
for immersive environments and virtual reality and can be useful for several
applications such as video games, film making, sports events, tourism and
more.

These applications however require a high precision, resolution and they
are intolerant to errors, especially when seen using a stereo head-mounted
display (HMD). Unfortunately, avoiding stitching errors in panoramic videos
is nearly impossible. This is due to the required capture setup that usually in-
volves a panoramic rig with multiple overlapping covering a wide scene. The
placement of these cameras in different positions creates parallax errors that
appear in the form of ghosting, misalignment or deformation. In addition, it
is not always possible to perfectly synchronize these devices together.

Aligning panoramic video frames with image stitching algorithms is not
directly applicable to videos due to the multiple cameras used in panoramic
video setup which cause parallax. In addition applying stitching on a frame-
by-frame basis results in temporal incoherence.

Our goal in this thesis is to understand and quantify those errors using
spatial and temporal metrics. We could not rely on traditional quality metrics
since they are not designed to capture geometric deformations. In addition,
panoramic videos do not have a reference to compare to, instead they are
synthesized out of the input videos. Therefore, we present solutions for these
problems using objective quality metrics and validate them using a human-
centered study.

1.3 Achievements and Contributions
The main achievements and contributions of this thesis are:
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• The creation of a panoramic rig and the creation of a dataset for
panoramic videos using this rig and an Omni GoPro camera.

• The implementation of state-of-the-art video stitching algorithm of Per-
azzi et al. [Perazzi et al., 2015].

• A spatial quality metric for panoramic videos that predicts errors prior
to blending.

• An optical flow-based temporal quality metric for panoramic videos.

• An error annotation interface for subjective quality metric for panoramic
videos.

• A human experiment validation for the proposed objective quality met-
ric, based on the annotation interface and on eye tracking.

1.4 Organization of the Manuscript
Chapter 2 lays the foundation and the background knowledge necessary to
understand the rest of the manuscript and the contributions of the thesis.
It contains basics of panoramic photography and image stitching which are
the baseline to understanding video stitching algorithms. Panoramic pho-
tography challenges are discussed along with suggestions of techniques to
overcome them. Image stitching basics include a discussion of motion mod-
els that are used to establish relationships between images. Image alignment
techniques are presented along with camera parameters estimation. Methods
for blending images to create a seamless panorama are reviewed afterwards.
The chapter also introduces the topic of panoramic videos including the cap-
ture systems, the added implications and why image stitching techniques are
not directly applicable to videos.

This leads to chapter 3 which discusses issues of concern in panoramic
videos and provides a survey of the state-of-the-art video stitching methods.
A large number of research efforts are dedicated to overcome the problem of
parallax errors in panoramic videos. The solutions presented are categorized
into mesh optimization methods, content-aware seam selection and variations
of the blending function. Temporal inconsistency is another issue of concern
that is addressed in this chapter and stabilization or temporal alignment are
suggested to produce coherent panoramic videos. Another set of methods
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are covered whose goal is to create monoscopic or stereoscopic virtual re-
ality content and therefore focus on producing high quality, high-resolution
and real-time panoramic videos. Afterwards, the chapter elaborates on the
video stitching method implemented within this thesis. This chapter gives
the motivation behind this thesis contributions since it shows the difficulty
of overcoming visual artifacts in panoramic videos and eventually the impor-
tance of designing metrics to assess the quality of these videos.

Chapter 4 presents the proposed spatial quality metric and the improved
optical flow-based temporal quality metric after presenting the related state-
of-the-art objective quality metrics. The proposed spatial metric works on
areas of overlap between pairs of panoramic images within the same frame
in time using salience features proposed by Conze et al. [Conze et al., 2012].
A composite distortion map is then built and a blend mask is applied as
a weight map to give more importance to pixels on the overlap area. The
temporal metric works on comparing the final panoramic output frame with
the source input videos. A distortion map is proposed based on optical
flow between two consecutive frames to compare the relative motion flow
change at each pixel between the output frame and the individual inputs
using standard deviation. A saliency map is calculated based on texture,
contrast and orientation of gradients [Conze et al., 2012] and a combined
map is obtained using a weighted sum of the distortion and the salience
maps to represent the hypothesis that attention will be drawn to a salient
region or a distortion.

Chapter 5 describes the human-centered experiment conducted to val-
idate the proposed objective quality methods. The chapter starts with a
background on the human visual system with focus on the parts that con-
trol attention and fixation, both of which are used in the user experiment.
Visual attention is then defined with a review of important experiments in
the literature and their findings conducted by cognitive scientists and psy-
chologists. The related state-of-the-art of subjective quality metrics are then
discussed followed by the protocol for the proposed human-centered study
based on annotations and eye-tracking. The method conducted represents a
study of the human perception to errors using an annotation interface and
human visual attention using eye-tracking and was used to validate the ob-
jective metrics. Overall, the chapter explains another important contribution
which is the human-centered study from design to analysis with the necessary
background and related work.

The results of the proposed methods of chapters 4 and 5 are presented
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in chapter 6. Description of the capture devices and the datasets acquired
and used for these experiments are presented first, then the results of the
algorithms on different datasets are shown visually. Analysis of the gaze
data and annotations is shown and compared to the proposed metric. A
discussion and an interpretation of those results is made for all the proposed
methods.

Finally, chapter 7 summarizes and concludes the thesis content, the
proposed methods and their results. It also explains the limitations of the
suggested approaches with possible solutions.

There are two appendices in this manuscript. The first one explains
briefly panoramic image projections which are mentioned in chapter 2 and
gives examples of the popular projection surfaces used for compositing dif-
ferent views into a single panorama. The second appendix contains further
results of the proposed metrics that were not essential to explain the findings
in chapter 6 but which serve as additional examples.
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Chapter 2

Image Stitching: from Capture
to Display

Computational photo stitching for panoramas and mosaics has been covered
extensively in the research literature. Nowadays, nearly every digital camera
or smartphone has the capability of capturing high quality panoramic images.
Understanding the basic knowledge of this topic and the related literature
is necessary as part of this thesis. The following sections explain panoramic
photography and image stitching in details.

2.1 Overview of Panoramic Photography
Panoramic photography consists in taking multiple overlapping photos in
the intent of generating a single composite seamless wide-angle or panoramic
photo. The process used to combine these input images together is called
image stitching and the resulting image is called a panorama or a mosaic. In
order to appreciate the importance of panoramas, a brief understanding of
camera lenses vs. human eyes is of interest.

A comparison is made in [Mchugh, 2005] mainly on 3 aspects that are of
interest here. The first one is the angle of view, which is demonstrated in
figure 2.1. Each one of the human eyes has an angle of view of around 180◦
as seen in the image to the left 2.1 with an overlap of 130◦ between both eyes.
Although this might seem like a very wide angle of view similar to the fisheye
camera lens shown to the right of figure 2.1, the actual central vision is around
40◦-60◦ comparable to a standard camera lens, whereas the peripheral vision
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Figure 2.1: Angles of view: human eye vs. camera lenses.

is only useful for sending motion and large-scale objects [Mchugh, 2005]. The
camera lenses shown in figure 2.1 vary between 10◦ for telelens which allows
viewing distant objects and up to very wide angle lenses like fisheye lenses
which can only capture closer objects and can suffer from lens distortion.

Another important feature to discuss is resolution. The human eye has
a visual acuity of 20/20 equivalent to 52 megapixel camera, well beyond
most digital cameras with 5-20 megapixels [Mchugh, 2005]. However, it is
important to note that our visual acuity decreases gradually as we move from
the central vision. We need to look at several regions in order to capture the
clarity of a wide range scene.

In addition, the human eye outperforms cameras in dynamic range, which
is the adaptation to light and which is the camera’s ISO. A human eye has
the capability of a dynamic range (24 f-stops [Mchugh, 2005]) and is able to
resolve a very high resolution equivalent to 52 megapixel [Mchugh, 2005].

This comparison is meant to let us appreciate the importance of panora-
mas. A panorama is the output of multiple powerful lenses to capture wide
angle views with high resolution and with higher dynamic range.

A good panoramic photo should be seamless, which means that input
image transitions cannot be perceived when looking at it. To avoid seams,
shooting techniques need to be considered as well as some concepts that will
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be briefly covered below.

Parallax Error Parallax error is the difference in positions of two per-
ceived images taken from different view points. This error is a result of taking
multiple photos from different viewpoints. In order to avoid this problem, a
photographer must move the camera around its optical center/nodal point
or no-parallax point. Figure 2.2 shows the difference between turning the
camera in a trajectory and what is meant by turning the camera around its
center. The resulting images show the difference in positions of the palm tree
with respect to the background building when taken from two optical centers
in the left versus the same position to the right where camera was rotated
around its nodal point. While this seems simple, it is not easy to determine
this point and turn a camera around it. To overcome this difficulty, cam-
era designers have provided an accessory called gimbal shown in figure 2.3,
upon which the camera can be fixed and turned in all the directions. Using a
tripod is usually advised for fixing the gimbal and obtain more stable photos.

Exposure Difference Another important problem that can cause visible
seams in the output panorama is the exposure difference which appears as
a difference in illumination between scenes. To avoid this problem, it is
common to set the camera exposure to a manual mode and choose a fixed
exposure for all scenes rather than letting the camera shoot with automatic
mode.

2.2 Image Stitching
Once photos are taken separately, the next step is to combine those images
together using image stitching. Image stitching algorithms have an estab-
lished history and such algorithms come embedded in most digital camera
and smartphone nowadays. The following sub-sections are meant to be a
tutorial on image stitching basics starting from the perspective camera, mo-
tion models, image alignment, projection surfaces and finally blending images
together.
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Figure 2.2: Panoramic shooting techniques. Left will create parallax, right
is turning around the nodal point, therefore will be parallax-free.

Figure 2.3: Camera gimbal for a parallax-free panorama
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Figure 2.4: Basic transformations applied in image stitching [Szeliski, 2010].
From left to right: translation, affine, perspective and 3D rotation.

2.2.1 Motion Models
Motion models are transformation matrices relating, in our case, one image
to another for registration. Figure 2.4 shows examples of motion models that
are used in image stitching.

While a transformation can be just a translation and rotation in 2D (i.e.
a rigid transformation), in practice to obtain a panoramic image from photos
taken freely in the 3D space, projective transformations are used.

Figure 2.5 illustrates the projective transformations between two images
in a number of situations. In panoramic photography, we are most concerned
the case shown in figure 2.5 (b) in which the two images were taken from the
same optical center. Whereas, figure 2.5 (a) is an example of a homography
used if the camera was not rotated around its nodal point or in the case of
multiple cameras that take the scene simultaneously as we will see later in
panoramic videos.

Perspective Camera Model

Camera calibration is crucial in many computational photography applica-
tions. Image stitching is not an exception. The first step to be able to make
correspondences between images is to recover the camera parameters. Before
explaining this step, we introduce the perspective camera.

The perspective camera model or the pinhole camera model is based on
3D projection which maps a point in 3D to 2D plane. In other words, it maps
a point in the real world to a pixel in the image plane. A simple yet very
important model of the pinhole camera was first introduced by the italian
artist and architect Flippo Brunelleschi in the early 15th century [Forsyth
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Figure 2.5: Examples of the projective transformation between 2 images
from the reference book ”Multiple View Geometry” [Hartley and Zisserman,
2003]. (a) Projective transformation (homography) calculated of two images
taken from different camera positions onto a common plane. (b) A projective
transformation between 2 images taken from the same optical center. (c) A
projective transformation between one plane of a 3D object and its shadow
on another plane.

and Ponce, 2011](see figure 2.6). After he painted Florence Baptisery with
the help of a vanishing point, he used a camera obscura/pinhole camera
model to compare the accuracy of his drawing to the actual building. He did
that by making a hole in the middle of his drawing and placed a mirror in
front of the painting while standing in front of the actual building. Then by
moving the mirror into and outside his field of view, he saw the reflection of
his drawing through the hole and the building itself and he could verify that
his painting was very realistically accurate [Wikipedia Contributors, ].

Figure 2.6: Pinhole Imaging Model as demonstrated in ”Computer Vision:
A Modern Approach” [Forsyth and Ponce, 2011].
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Figure 2.7: Perspective projection notations [Forsyth and Ponce, 2011].

Figure 2.7 introduces the mathematical notations of a perspective projec-
tion using the pinhole camera model. P represents a 3D point with coordi-
nates (X,Y,Z) and is aligned with the point O which represents the camera
center (pinhole origin) and with p with coordinates (x,y,z) which is the 2D
point on the image plane. This collinearity implies that ~Op = λ ~OP . And
since p lies on the image plane, we have z = d. Therefore:

x= λX,y = λY,d= λZ (2.1)

=> λ= x

X
= y

Y
= d

Z
(2.2)

Camera Parameters

In order to map the 3D point to the 2D space, we use homogeneous coordi-
nates. Homogeneous coordinates are used in projective geometry to represent
N dimensions to N+1 dimensions by adding a new dimension w. For exam-
ple, in our case if we need to represent point p in the 3D space, we convert
a point from its cartesian coordinates (X,Y ) to (x,y,w) in homogeneous co-
ordinates such that X = x

w and Y = y
w . Homogeneous coordinates refer to

the fact that they are scale invariant since any point (aX,bY ) will still be
represented with the same coordinates in homogeneous space. Figure 2.8 as-
sumes a normalized image plane which is at a unit distance from the pinhole
camera origin [Forsyth and Ponce, 2011]. This allows us to define the point
p on the image plane or the physical retina as p̂ = (x̂, ŷ,1) in homogeneous
coordinates.
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Figure 2.8: Physical and normalized image coordinate systems [Forsyth and
Ponce, 2011].

Building on this concept, we introduce two types of camera parameters
that are needed in order to know the mapping between the real world and the
image plane, which are called intrinsic and extrinsic camera parameters. The
intrinsic parameters concern the camera internal parameters which are the
focal length, the camera optical center and a skew parameter. The extrinsic
parameters are the position of the camera with respect to the scene, which
can be defined through rotation and translation.

In order to calculate a point p on the image plane using the perspective
camera model we use the following equation:

p= K[Rt]P (2.3)

K =

fx s cx
0 fy cy
0 0 1

 (2.4)

where P is the 3D point in the world coordinates, K is the intrinsic camera
matrix with focal length fx and fy and camera center cx and fy and the skew
parameter s. The extrinsic camera parameters are used to map 3D to 2D
coordinates and are represented by [R t] where R is a rotation matrix and t
is a translation vector.
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2.2.2 Pair-wise image alignment: Pixel-based vs. Feature-
based

In order to use motion models for alignment, we first need to find matches
between images. There are generally two ways to do this:

Direct/pixel-based method

Direct methods can use a brute-force technique or a block matching technique
to find image correspondences. The function used for matching is usually a
cost function that minimizes an error metric between two given images. The
error metric can be defined on the pixel intensities using methods like sum of
square differences or a bias and gain model that exploit exposure difference
between images. It can also be done through correlation to maximize the
product between a pair of images. More details are found in [Szeliski, 2004].

The disadvantage of pixel-based methods is mainly in their difficulty to
converge especially with images that have only a small intersection (usually
20% to 50% in panoramas). Therefore, feature-based methods are generally
used for image stitching methods.

Pairwise feature-based method

Pairwise feature-based approaches rely on detecting features in an image and
then matching feature descriptors using a function such as nearest neigh-
bours. A good feature is usually one that avoids the aperture problem ex-
plained in figure 2.9, which happens when a feature of one image is not
sufficiently discriminating and thus is more difficult to be matched to only
one feature in another image.

Multi-scale oriented patched (MOPS), gradient local orientation histogram
(GLOH), scale-invariant feature transform (SIFT) [Lowe, 2004], speeded-up
robust features(SURF) [Bay et al., 2008] are all efficient feature descriptors
that are considered sufficiently robust, with SIFT and SURF being the most
widely used.

Once features have been detected and added to descriptors, it is possible
to compare images to find the best matches. A 2D homography can then be
calculated using a model fitting technique such as RANSAC [Fischler and
Bolles, 1981] which iteratively attempts to find the plane that maximizes the
number of inliers.
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Figure 2.9: Demonstration of the aperture problem in feature match-
ing [Szeliski, 2010]. Figure (a) shows an example of a good feature point
that can easily be tracked since it falls on a corner. Figure (b) is a point
on a line that is not sufficiently unique and it is a typical example of the
aperture problem. Finally, figure (c) is defined on a texture-less region and
is impossible to track.

2.2.3 Global alignment: Bundle Adjustment
So far, we have obtained a number of pairwise matches. But a panorama can
have a large number of viewpoints that need to be globally matched with the
least error. A global alignment is thus a necessity to have a globally coherent
output.

Bundle adjustment is a method for global alignment that solves for all
camera parameters jointly rather than pairs of cameras. Images are added
one at a time to the bundle adjuster which initializes this image with the
same camera parameters of its best matching image. It then updates the
parameters with Levenberg-Marquardt algorithm [Levenberg, 1944] which is
a non-linear least square fitting method to optimize the image positions with
respect to each other.

2.2.4 Image projection
At this point, images are not yet placed together. In order to do this, a
projection surface is chosen according to the horizontal and vertical fields
of view covered when filming and images are projected one by one to that
surface with the knowledge of the camera parameters and the projection
surface’s coordinate system such as cylindrical, conical, fisheye or more. For
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more discussion of the projection surfaces, please refer to appendix A.

2.2.5 Blending
Placing images into a common surface is not the final step, instead a seamless
single image is required. This process is called blending, which is, as the name
implies, merging images together. A good blending method would create as
smooth as possible image transition while preserving important details of
the original images [Burt and Adelson, 1983]. To achieve this, there are
two important factors, the first is the blending function and the second is
the choice of a blending mask. In this section, we present various blending
methods from simple averaging to more advanced blending techniques along
with a discussion of blend masks.

Basic blending function: Alpha blending/ Feathering

In order to understand blending, it is important to consider the basic case of
a weighted sum that can be also called feathering or alpha blending [CMU,
2005]. Given two intersecting images that need to be blended into one image,
the easiest way to do this is do an average weight in the pixels of intersection.

Iblend = Ileft+ Iright

I(x,y) = (αR,αB,αG,α)

When α is set to 0.5, the blending function works as a simple average,
otherwise α can be chosen according to the image that has more importance.
The problem with this approach is it causes a high ghosting effect, hence
choosing a window for blending can reduce this effect.

Multi-band blending

Burt and Adelson [Burt and Adelson, 1983] were the first to introduce a
blending function that produces seamless output. Although published as
early as 1983, their method is still the pioneer in image blending for panora-
mas. The strength of the method relies on the use of image pyramid equiv-
alent to the method proposed by Crowley [L. Crowley, 1981]. Their blend-
ing function is based on weighted average method described earlier in equa-
tion 2.2.5 and demonstrated by figure 2.10. They observed that the width
of the transition zone between two images is ideally chosen according to the
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Figure 2.10: A demonstration of 1D weighted average function that can be
used to avoid seams [Burt and Adelson, 1983].

size of image features. This is because, if it is small compared to image fea-
tures, the transition will not look smooth enough, while in the opposite case
ghosting artifacts will appear. Therefore, they suggested to subdivide each
image to a sequence of low-pass filtered images in order to target the variety
of features sizes. At each level of the sampled image, images are blended
using weighted average within a transition zone that is proportional to the
size of the feature at this level. Once all levels have been visited, the results
of blending at each stage is summed up.

To formulate the problem mathematically, let us assume there are two

Figure 2.11: 1D example of the down-sampling reduce function [Burt and
Adelson, 1983].
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Figure 2.12: Guided interpolation notations [Pérez et al., 2003].

images, one to the left Il and the other on its right Ir. Let Hl and Hr

be weighting function that decreases monotonically from left to right (see
figure 2.10 and right to left respectively to give more weight to the Il or Ir
respectively and less the farther away. Assuming i is a given pixel location
and u the pixel at the transition line, a blended image Ilr obtained from
weighted averaging Il and Ir can be expressed as follows:

I(i) =Hl(i−u)Fl(i) +Hr(i−u)Fr(i) (2.5)

If we decompose an image I to G0......GN , we can apply equation 2.5 at each
stage. This is done by a REDUCE function (see 2.11 for a 1D example) from
level 0 to level N :

Gl =REDUCE(Gl−1) (2.6)
Then all levels are summed up again to obtain the final image:

Gl = EXPAND(Gl−1) (2.7)

Poisson blending

A more recent blending method is Poisson blending published by Perez et
al. in 2003 [Pérez et al., 2003]. The method is especially suited for image
compositing in the purpose of altering an image content. Figure 2.12 explains
the formulation and notation. Given an image S, we would like to paste
another image in the region Ω, we would like to obtain a seamless image at
the boundary δΩ. First, we define f∗ as a known scalar function representing
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(a) (b)

Figure 2.13: Simplified demonstration of seam selection for blending a pair
of images: (a) Voronoi mask. (b) graph seam cut.

the intensities of image S−Ω and f being the unknown and defined over Ω.
Then we calculate the gradient of the sub-image Ω and we obtain the vector
field v. Now the minimization function can be solved using Poisson equation
with Dirichlet condition:

min
f

∫∫
Ω
|∆f −v|2withf |δΩ = f∗|δΩ (2.8)

A discrete version is derived by assuming S and Ω are finite sets of points
and where the gradient will be calculated through a window of neighbours
that are subtracted from the pixel value.

Seam selection

We have discussed the most important blending functions. The second factor
is choosing a good transition zone that we sometimes call a blending mask
or seam selection. It is possible to just choose the middle line of the over-
lapping region, thus it is highly likely that a seam will appear due to the
regularity of the line. A better approach is using a Voronoi diagram, which
can be sufficient in some cases, however it ignores the image contents and
therefore can cause the loss of some information from the original images.
Alternatively, graph-cut is a content-aware seam selection approach that uses
dynamic programming to optimize the cut with respect to image contents.

Although, graph-cut is the best solution for a panoramic image, it is not
usable in panoramic videos, since contents will be different from one frame to
another and hence a lot of flickering will be produced temporally. Figure 2.13
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show an approximation of what a voronoi mask will look like versus a graph
cut.

2.2.6 Recognizing Panoramas
So far we discussed the steps of image stitching with its different approaches.
In this section, we present the first work that has been done for panorama
recognition by Brown and Lowe in 2003 [Brown and Lowe, 2003]. An auto-
matic panorama construction was presented in this work, which means given
a number of images, identify images that match to form a panorama without
the need to specify an order or any other input restriction. This approach
has become the standard and is the one available in nearly every stitching
software or library such as Hugin [PanoTools developers and contributors, ]
and OpenCV’s stitching module.

We have already discussed two possible alignment techniques, the di-
rect one which is pixel-based and the feature-based one. This paper uses a
Scale-Invariant Feature Transform (SIFT) [Lowe, 1999,Lowe, 2004] keypoint
detector for feature extraction which is partially invariant to affine trans-
formation. By assuming the panorama was taken by rotating the camera
around its optical center, the authors define each camera parameter using
3 rotation angles θ = [θ1, θ2, θ3] and a single focal length f . Therefore, a
pairwise homography relates each pair of images: ui =Hijuj .
Afterwards, a feature matching step is done where each feature vector in
an image is matched to k nearest features using a k-d tree. Each image is
then matched to m potential matching images that share the largest number
of feature matches. RANSAC [Fischler and Bolles, 1981] is used to opti-
mally fit a plane to the feature points, where the highest number of feature
points agree afterwards a probabilistic Bayesian model is applied to verify
the match. Connected sets are then matches to identify all images belong-
ing to a certain panorama and reject others. At this stage, matching has
depended on a pair-wise feature-based homography. This is likely to accu-
mulate errors since no global alignment has been considered. As explained
earlier, bundle adjustment is used to optimize the camera parameters using
Levenberg-Marquardt [Levenberg, 1944]. Finally, blending has been done
using multi-band Laplacian pyramid by Burt and Adelson [Burt and Adel-
son, 1983]. Results of this approach has been tested and shown on several
examples in the paper including 360◦ panoramas.
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2.3 Extension to Panoramic Videos
The very intuitive method for creating panoramic videos is to use the baseline
image stitching algorithms on each frame of the panoramic video. However,
this solution is far from being robust. The first reason is due to the way we
capture panoramic videos, which is usually done using multiple lenses that
cannot be put at the same optical center, which creates high parallax errors.
Another reason is the lack of synchronization between the different cameras
which causes visual artifacts in the final video. Finally, it is important to note
that solving those problems in a frame by frame basis will not be sufficient
and will result in temporal inconsistency and flickering when moving across
the video.

Figure 2.14: Pipeline of the stitching module in OpenCV.

Despite all these drawbacks, the image stitching baseline algorithms are
an essential part of any video stitching algorithm. Two widely used available
open-source libraries are OpenCV and PanoTools. OpenCV implements a
pipeline very similar to that described in [Brown and Lowe, 2007] and is
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shown in OpenCV documentation through figure 2.14.
Panotools provides excellent stitching options by grouping several li-

braries that implement the different steps of stitching. It can be used with
scripts or through its graphical interface called Hugin [PanoTools developers
and contributors, ]. It is an open-source library, therefore source code is also
available.

Methods dedicated to produce panoramic videos are covered in chapter
3, which are based on the baseline methods explained in this chapter.

2.4 Summary
In this chapter, basic panorama photography and image stitching has been
covered. We explored the different challenges of creating panoramas such
as parallax errors and exposure differences. The stitching steps have been
explained from feature extraction and matching, then projection to a com-
positing surface and finally blending. In the last section, panoramic video
issues have been discussed including capture systems, processing panoramic
videos and different display systems. The next chapter will offer more pro-
found details about important concepts in panoramic videos as well as cover
in details some of the most successful state-of-the-art research.
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Chapter 3

Video Stitching Design
Challenges

In this chapter, we discuss various aspects and challenges in panoramic videos
and their solutions in the literature with a focus on one method implemented
within this thesis as a basis for our work.

3.1 Panoramic video capture and display

3.1.1 Capture Systems
As explained in chapter 2 we can perfectly shoot a panoramic image with
a single camera by rotating it around its optical center and thus avoiding
parallax errors. An exception to this will be a scene with high movement
which can still suffer from ghosting errors when the object move between
different viewpoints.

Unlike a still image, filming a panoramic video needs all views to be taken
simultaneously so we can have a panoramic frame of all the scene at each
time t. Therefore, the first challenge is establishing an acquisition system
that can take multiple videos at the same time covering a large field of view
up to 360◦ spherical videos.

There exists a high market competition in the design of panoramic cam-
eras today. Google, Facebook, GoPro and more companies have cameras
available for purchase for shooting panoramic videos varying in size, price
and number of cameras. Figure 3.1 show examples of 3 cameras from Ricoh,
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(a) (b) (c)

Figure 3.1: Commercial 360 degree cameras. (a) Ricoh Theta with two fish-
eye lenses. (b) Omni GoPro with 6 cameras. (c) Surround 360 by Facebook
with 17 cameras.

Figure 3.2: An unstructured camera setup used by Perazzi et al. [Perazzi
et al., 2015]
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GoPro and Facebook that vary from 2 cameras to 17 cameras. Hand-held
Ricoh Theta and Omni GoPro are available for purchase while Facebook’s
Surround360 is made for research with an assembling guide available online.
All these cameras have a particular setup and are usually synchronized but
they have their limitations in resolution, field of view and parallax errors. It
is also possible to build one’s own rig and fixing multiple cameras on it such
as in figure 3.2. This offers a more flexible option with respect to the camera
types, their number and their positions, however there is a number of addi-
tional issues to be dealt with such as synchronization and camera parameters
estimation.

Synchronization Problem

Synchronizing a number of cameras for video shooting is not straightfor-
ward. A hardware synchronization mechanism is embedded in commer-
cial cameras whereas an experimental setup needs a solution. Disney re-
searchers [Wang et al., 2014] propose a temporal alignment approach based
on feature extraction and matching along with an interactive tool that al-
lows an artist to choose frames that are in correspondence to enforce a certain
path. Nguyen and Lhuillier [Nguyen and Lhuillier, 2016] suggest a bundle
adjustment method that estimates time offsets for to achieve synchroniza-
tion in addition to the refinement of 3D camera parameters. Finally, it is
possible to include the sound of a clap while shooting the videos and use the
accompanying audio file for synchronization.

3.1.2 Display Devices
The current options for panoramic video display include regular screens with
a plugin that allows mouse navigation such as the ones present on YouTube
and Facebook today, as well as offline photo viewers like Windows 10 Photo
Viewer.

Another option and a better one is the head-mounted displays(HMD)
which are worn on the head and eyes and allow an immersive environment
simply by moving the head in different directions as seen in figure 3.3. Google
cardboard is another cheap solution for viewing panoramic videos on a smart-
phone.

Finally, more expensive alternatives include cave automatic virtual envi-
ronment (CAVE) systems which consists of a three to six walls with projectors
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in a room-sized cube. Users wear a HMD display to view the stereoscopic
scene and can optionally have a hand controller for navigation. Figure 3.3
shows a photo of UCL’s CAVE which has 5 projection walls. Dome movie
theatres is another display option which allows a large audience to have a
fully immersive experience (see HP’s Antarctic dome in figure 3.3).

While every type of display can offer a different experience, it appears that
HMD offers the best one according to MacQuarrie and Steed 2017 [MacQuar-
rie and Steed, 2017]. In a user study, they compared HMD, a regular TV
and SurroundVideo system based on a number of factors including a par-
ticipant sense of engagement, spatial awareness, their feelings of enjoyment
or fear as well as their attention and feeling overwhelmed about missing an
event. Their results varied on each metric/display with a global preference
to HMD. Preparing content for panoramic videos for these display devices is
an open research topic that is still facing a lot of challenges. Unlike narrower
fields of views, with 360 degree videos, users are required to choose their
viewing points, which totally depend on the content being viewed. Zoric et
al. 2013 [Zoric et al., 2013] conducted a user study to understand the chal-
lenges of designing interactive panoramic videos. Their main conclusion was
about the benefit and the design implication of giving users the possibility of
controlling the view, instead of being obliged to see a subjective viewpoint
imposed by the cameraman. Co-located and remote social viewing where
people can share their chosen view with others was another important as-
pect that could be of interest to many users.
Alternatively, some methods offer a solution to this problem by automatically
choosing a view and therefore produces a natural video from the panoramic
360◦ spherical video. An example is the work presented by Hu et al. [Hu
et al., 2017] which propose an intelligent agent that will automatically choose
viewing angles for sports viewing. The method works well for videos having
clearly salient objects but becomes less efficient when there is equal saliency
within the video. A similar idea is that of Su et al. [Su et al., 2016] who
produce a regular video from 360◦ video by usinga dataset of 360 videos and
learning an optimal human-like camera trajectory using dynamic program-
ming. These methods do not allow a free viewpoint for the user and are not
meant to be used for a HMD.
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Figure 3.3: Top: Oculus Rift to the left and Google Cardboard to the right,
used for viewing panoramic videos. Bottom: projection display rooms, UCL’s
CAVE to the left and HP’s Antarctic Dome to the right.
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3.2 Video Stitching
Video stitching involves the process of taking multiple videos covering a large
scene to provide a single seamless video. Depending on the application, this
video can be just a wide angle video or a spherical 360◦ video. It can also be
a 2D video or a stereoscopic video.

In chapter 2, we covered the basic image stitching with a brief discussion
of the challenges introduced by panoramic videos. We give more details
along with existing solutions in this chapter. We start with an overview
of a typical video stitching software as described by VR post production
specialist, Stephen Les [Les, 2015]. His description is based on his use for
two of the most popular commercial video stitching software, Kolor Autopano
and VideoStitch. The regular workflow is shown in figure 3.4 which shows
how challenging the task is. The process involves a set of pre-processing steps
using other software applications such as 360CamMan and Adobe Premiere
which would organize and analyze the videos prior to importing them to
the stitching software. Afterwards, an attempt to auto synchronization is
made that will have to be done manually in the case of failure. The clips
are eventually sent to the automatic video stitcher, which might succeed or
not. In difficult cases, processing frame by frame will be the alternative. The
pipeline ends by a set of post processing steps such as video stabilization
and exposure compensation and finally further post processing can be done
according to the application.

Figure 3.5 shows the different components present in most video stitching
software. Components with red color are the ones that are handled differ-
ently than the basic image stitching which we will focus on in this chapter.
Camera parameter estimation is not as straightforward as in the case of
still panoramic photos, since panoramic videos are usually taken using mul-
tiple cameras that can be structured or unstructured. Parallax is almost
unavoidable in panoramic videos for the same reason: multiple capture de-
vices impossible to place such that optical centers are in the same position,
therefore parallax compensation or removal is a very important aspect in
video stitching. And finally, since it is no longer a single photo but a series
of frames in time, video issues need to be dealt with, such as stabilization.
Temporal artifacts are produced due to the frame-by-frame processing and
the complex deformation steps involved in each time frame.

Therefore, we explain these challenges in details with the state of the art
solutions.
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Figure 3.4: Workflow of commercial software for video stitching as described
by Stephen Les in [Les, 2015]

Figure 3.5: Different components of video stitching.
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3.2.1 Camera Calibration
As with many computer vision and computational photography applications,
panoramic video camera calibration is a crucial pre-processing step. We
discuss here categories of methods used in the state of the art video stitching
methods for multiple camera calibration.

Feature-based Calibration

A large category of video stitching in the literature use homographies to es-
timate camera parameters [Zheng et al., 2008, El-Saban et al., 2010, Perazzi
et al., 2015, Jiang and Gu, 2015, Kim et al., 2017]. This process involves
the extraction of features from different views then match pairs of images.
A model fitting approach such as RANSAC [Fischler and Bolles, 1981] is
used to obtain the best plane fitting features and allows the calculation of a
2D perspective transform (homography) between both matched image planes
(see Figure 2.5(a) from chapter 2 for an explanation of the projective trans-
formation of 2D images taken from different viewpoints). The pair-wise ho-
mography is used to estimate camera parameters and bundle adjustment is
used to minimize the accumulated error over all cameras. The main advan-
tage of this approach is being fast and simple and yields good results in most
cases.

Checkerboard-like Techniques

Estimating camera parameters based on homographies is subject to inaccu-
racy since it depends on the step of the feature extraction and matching
step. As an alternative, a classical approach can be used which consists in
moving a checkerboard object or a similar pattern in front of the cameras
to detect corners from different positions and accordingly estimate camera
parameters [Tsai, 1987,Heikkila and Silven, 1997,Zhang, 2000]. Variations of
this algorithm are employed depending on the camera setup. Bundle adjust-
ment is also used to optimize parameter estimation globally for all cameras.
This method is adopted in a number of video stitching algorithms [Lee et al.,
2016, Ho et al., 2017] to avoid errors resulting from the feature-based ap-
proach.
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Figure 3.6: Deformation, ghosting and misalignment resulting from parallax
problem (dataset by Perazzi et al. [Perazzi et al., 2015] and our own dataset.)

3.2.2 Removing parallax errors and temporal artifacts
Parallax is the difference in the apparent object position in two images taken
from two different positions. Ideally, we would like to shoot panoramas by
rotating a camera around its optical center. Unfortunately, it is nearly im-
possible in panoramic videos due to the capture setup (figures 3.1 and 3.2).
The resulting error is the most common and highest disturbing artifact in
panoramic videos as shown in figure 3.6. Therefore, most of the video stitch-
ing methods address this problem in their solutions. Usually the solution
falls into one or more of the following categories: mesh optimization, seam
cut selection, the blending function or error metric minimization. We discuss
these categories with examples in the following subsections.

Grid/Mesh Optimization

Similar to a 3D mesh, it is possible to treat an image as a mesh by dividing
it using a grid and treating intersections of lines as vertices that can be
optimized in space and time. This idea has been adopted in different ways
by a number of video stitching methods in the state of the art for parallax
errors removal and temporal consistency.

An example of this approach was suggested by Jiang and Gu [Jiang and
Gu, 2015]. After extracting and matching SIFT features, pair-wise homogra-
phies are calculated in the spatial domain HS

i (where i is the camera number)
relating neighboring camera views then in the temporal domain HT

i,t (where
i is the camera number and t is the frame number in time) to relate frames
in time(see figure 3.7. Each image is then divided into an M1xM2 grid and
vertices are optimized based on a number of terms that enforce alignment
and smoothness both in the spatial domain between neighboring cameras
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Figure 3.7: Spatial-temporal local warping method by Jiang et al. [Jiang and
Gu, 2015].

Figure 3.8: Three steps of joint optimal stitching and stabilization by Guo
et al. [Guo et al., 2016]

and temporally for each video. More precisely, they use two terms to en-
force local alignment of matched features spatially and temporally, this is
used to remove the effects of parallax. Their global alignment terms helps
keep the regions with no matched features to remain unchanged, while the
smoothness terms are added to avoid temporal distortion. In their final cost
function, they allow the terms to be weighted to differently according to the
user preference and the scene content.

Similarly, Guo et al. [Guo et al., 2016] proposed a method that jointly
solves the video stitching and stabilization of videos by optimizing a grid
in space and time to overcome parallax. Since grid-based methods highly
depend on the detected features’ accuracy, they utilize a more sophisticated
feature extraction and matching method. First, they divide a frame into a

33



Figure 3.9: Parallax error in (a)2D versus (b)3D spherical projection surfaces
[Lee et al., 2016].

5*5 grid and then for each region they choose a local threshold that depends
on this region’s texture. Feature matching is done between views of the
same video and in time, which mean they track features through the video.
In addition, they combine stitching and stabilization at the same step where
they generate an optimal trajectory for each camera path by optimizing a
cost function consisting of 3 terms enforcing smoothness between neighboring
camera views and frames in time. Subsequently, frames are then warped
towards this optimal path. They finally divide again each frame into 16*16
grid where each cell is treated as a separate camera path that is optimized
towards the previously calculated optimal camera path. Figure 3.8 explain
the 3 steps of joint stitching and stabilization.

Lee et al. [Lee et al., 2016] propose a 3D grid-based method that differs
in many aspects to the methods discussed earlier. Their mesh is generated
through triangulation after projecting the their videos on a 3D sphere. They
justify their use of a 3D sphere since calculation depth can help remove par-
allax error as shown in the example taken from their paper (see figure 3.9.
A set of points are chosen using feature detection in regions of overlap that
are then projected and converted to the spherical coordinated are used in
to control the minimization function together with a smoothness term. The
method then calculate a salience map from user annotation to improve reso-
lution in regions with higher importance such as a human’s face. Figure 3.10
explains the steps of the algorithm.

Another method that relies on 3D reconstruction was presented by Lin et
al. [Lin et al., 2016] for video stitching from hand-held phone cameras. After
camera calibration, they reconstruct their scene in 3D in the overlap region.
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Figure 3.10: Deformation of 3D mesh and salience detection in [Lee et al.,
2016].

They adopt a mesh-based warping method similar to the previous methods,
but with a difference in the optimization’s cost function terms. Since they
work in the 3D space, they employ an epipolar term together with a line, a
feature and a coherence terms.

Smart Seam Selection

As discussed in chapter 2, Voronoi diagrams and graph cuts are widely used
for seam selection. However, to remove parallax in challenging situations in
panoramic videos, more adapted approaches have been presented in the state
of the art.

Li et al. [Li et al., 2015] proposed a solution to stitching wide angle syn-
chronized videos. Their main idea was based on the choice of two seams
rather than one in the region of overlap between two images. They constrain
their seam selection spatially and temporally and optimize their solution
using dynamic programming. Based on the chosen seams, they build the
remaining steps of their stitching algorithm. Features are extracted as edges
present on the seams, since object boundaries are likely to have visible par-
allax errors. Afterwards, they warp images towards each other based on
the selected features and do a deformation propagation to make the warp-
ing smooth. Finally, they use Poisson Image editing to blend the images
together. Their approach seem to outperform many other algorithms in par-
ticular cases, mainly with indoor scenes and small distance between optical
centers. Their method does not consider the case of multiple image over-
laps where double-seam selection might not work and will likely accumulate
errors.

As mentioned earlier, Jiang et al. [Jiang and Gu, 2015] associate their
grid-based optimization method with a spatial-temporal seam finding method.
Their graph-cut method uses pixels in the overlap as nodes and discriminate
between two edges, the spatial and temporal ones. They optimize their cost
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function such that they choose the best seam cut both spatially and tem-
porally. They also associate higher weights to edges that contains salient
features such as humans so they avoid cutting through them.

Kim et al. [Kim et al., 2017] presented a method for smart seam selection
and content-aware blending. Their seam selection is based on a number of
measurements including whether the seam has an object or not and whether
it cuts through an edge. To avoid temporal artifacts due to seam selection
at each frame, a partial seam-update function is applied which stretches the
seam if an object has been detected. In the same way, blending is restricted
to the detection of objects on the seam line.

Blending Function

Blending is an essential method in image and video stitching that aims to pro-
duce a seamless output panorama out of the composite input images/frames.
The most widely used blending technique for stitching was established in
1983 by Burt and Adelson [Burt and Adelson, 1983] which was explained in
chapter 2. Although the method performs well in most of the situations, par-
allax and motion are still a challenge when it comes to blending. Therefore,
some research has been dedicated to provide more content-aware blending
methods or temporal methods.

An early panoramic video stitching was presented in 2008 by Zheng et
al. [Zheng et al., 2008]. They work on two input video streams taken by
webcams. The method pursue the basic stitching of feature extraction and
matching. Their main contribution is a new blending function that aims
to reduce parallax errors. Their function is basically an alpha blending ap-
proach, where they define α as a non-linear function. They show their results
on various degrees of motion in scenes. Their future work was planned to
extend the approach to several cameras as well as handle exposure difference.

Su et al. [Su et al., 2018] focus their solution on occlusion detection,
which as they state, is the main reason for ghosting artifacts. In order to
detect occlusion, they create a binary map in which they identify occlusions
as feature point pixels that are not identical. They optimize their maps
using dynamic programming. They use the occlusion maps to determine a
blending strip in the area of overlap between a pair of images. They apply
a spatial–temporal Bayesian view synthesis approach to generate their final
view.
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Temporal alignment

El Saban et al. [El-Saban et al., 2010] exploit temporal redundancy in panoramic
videos to speed-up the stitching process. They propose the use of a refer-
ence frame where SURF features were detected and matched once, then the
same correspondence and alignment were used across the video. After the
steps of frame matching, they do feature tracking using optical flow between
frames in time. This allows a temporal alignment in addition to the spatial
alignment. Their dataset was collected using free-moving hand-held mobiles,
thus they do not impose a structure for the camera setup. Their approach is
claimed to work well but a lot of advancements have been done since then.
Also, the paper shows no visual results so it is hard to judge the effectiveness
of their method.

An approach specifically designed for videos taken using two fisheye lenses
was done by Ho et al. [Ho et al., 2017]. The challenge with fisheye-based
360 videos is the small overlap region between the two views. Therefore,
the authors proposed a rigid moving least squares minimization function
to find image correspondences between the two views. This generates a
transformation matrix that deforms one image to the other using control
points. A score is given to the stitching based on a number of measurements
obtained from an empirical experiment. This score is used to identify bad
matches that can cause jitters in the resulting video.

3.2.3 Generating high resolution real-time videos for
virtual reality content

To this point, we addressed the way video stitching state of the art methods
offered solutions to specific challenges. Most of the previous method involve
expensive computations that focus mostly on solving parallax errors or tem-
poral instability. in the aim of reducing visual defects. In this section, we
discuss a number of cutting-edge methods that attempted to provide solu-
tions for virtual reality (VR) content, which means they will be seen with
special immersive equipments (see figure 3.3). These methods usually have
different design implications:

• Videos need to be 360◦ to allow immersion.

• Rendering need to be realtime.
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(a) (b)

Figure 3.11: Real-time 360◦ high-resolution videos solutions. (a) Rich360
solving parallax errors and loss of details by using a deformable 3D sphere
and increasing resolution in salient regions [Lee et al., 2016]. (b) Foveated
stitching mimics human vision by giving less resolution in the foveal vision
and higher acuity in central vision depending on the calculated head direc-
tion [Lee et al., 2017]

• Stereo videos can add further feeling of presence and provide a better
experience.

• Visual artifacts are less tolerated since they can cause visual discomfort
when seen with a VR headset.

• High resolution is crucial, at least in salient regions.

The upcoming subsections provide a survey of a variety of works aimed for
VR applications.

Monocular Videos

As previously mentioned in this chapter, authors in [Lee et al., 2016] suggest
a framework, Rich360, which focuses on reducing parallax by projecting the
video on a 3D sphere that is optimized by mesh deformation. Higher resolu-
tion is made in regions of salience importance. Their final goal is to create
high quality content for VR.

Another 360 video stitching framework for real-time VR has been pro-
posed by Lee et al. [Lee et al., 2017]. Using a client-server architecture,
projection and blending maps are calculated for each camera on the server
side, while the client side collects gaze information from head movements
captured using Google cardboard’s sensor. This information is used to cal-
culate an acuity map which gives a high weight to the central vision and a
low weight to the foveal region of the eye. Another saliency map is calculated
and both are combined to produce high resolution in the salient regions. The
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Figure 3.12: Facebook Surround 360: first and second generations.

method focuses on rendering high-resolution real-time VR but does not pro-
vide solution to parallax removal. See figure 3.11 for a demonstration of this
method versus Rich360.

Stereo Videos

We agree that a third dimension can add a lot to feelings of presence in
immersive environments. However, it is a more challenging problem that
requires the generation of two videos for each eye and thus needs special
equipment. It also needs more sophisticated approaches for stitching and
blending. In addition, it is less tolerant to any stitching error since it is
perceived within a 3D headset that can cause discomfort and fatigue for
observers if a visual artifact is detected.

There is more than one approach to calculate depth maps to provide
stereoscopic panoramic videos. The most popular approaches involve shoot-
ing videos using a stereoscopic cameras or using LIDAR scanners to calculate
depth maps using light field information. We discuss some recent solutions
in the following subsections.

Facebook Surround 360

One of the most interesting panoramic system capture was Surround 360
announced by Facebook in spring 2016 [Cabral, 2016] and open-sourced in
summer of the same year [Briggs, 2016]. The system is a combined hard-
ware and software for producing panoramic 360 cameras. The rig, shown in
figure 3.12 left consists of 17 cameras Point Grey cameras covering a 360◦ x

39



Figure 3.13: Interpolation of virtual camera in Surround 360 and projection
to equirectangular surface where every column of pixels is rendered in the
direction of the nose. Figure taken from [Briggs, 2016]

180◦ view, each of which can provide 8K resolution quality. The criteria for
choosing the camera was meant to provide efficient filming without getting
overheated while functioning for hours.

Their open-source project contain a guide on how to build the rig and
all the camera requirements. It also contain the stitching software along
with sample data for testing. In order to generate stereoscopic content,
the method suggests a view interpolation to generate a virtual camera for
each eye between real cameras. To render pixels in the final view, they
generate equirectangular maps where each pixel represents a ray going from
the interpolated left and right virtual cameras in the direction of the nose
(see figure 3.13 for clarification).

The processing pipeline described in [Briggs, 2016] starts in the hardware,
where the Image Signal Processor (ISP) of the camera converts raw sensor
data into RGB images and apply gamma correction. Afterwards, camera cal-
ibration is done using classic checkerboard approach for all the side cameras.
Each image is then projected individually into an equirectangular surface.
Optical flow is calculated in overlapping regions of two views for parallax
compensation. Optical flow is used for the novel view interpolation for the
virtual camera. At the top of the rig, there is only one camera, so monocular
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Figure 3.14: Removal of the tripod pole and generation of a new view using
two cameras at the bottom of the Facebook Surround 360 rig. Figure taken
from [Briggs, 2016]

video is generated and optical flow is calculated between the top view and
the generated side panorama and used for warping the top to the side views.
At the bottom, there are two cameras which are meant to be used to remove
the tripod pole (see figure 3.14).

A second generation of Surround 360 has been released in 2017. The new
camera is more portable than the first rig and it has 24 lenses, therefore is
more capable. It is also meant to be available for purchase unlike the initial
one.

Google Jump

Google has also published a method [Anderson et al., 2016] for stereo video
generation from videos taken by Google Jump. The method is very similar to
that of Facebook since it also relies on optical flow for parallax compensation
and temporal stability. However, since their system uses GoPro cameras with
rolling shutter they treat the problem in 2D optical flow correspondence
manner than the 1D stereo problem. They project their videos later to the
omnidirectional stereo circle seen in 3.15.

Samsung 360 Round

Samsung released a new 360◦ camera with 17 camera fisheye lenses arranged
in stereo pairs and a single camera in the top (see figure 3.16). Limonov
et al. [Limonov et al., 2018] devised a pipeline that aims to stitch videos
taken from this camera and render it in realtime to be seen with a VR
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(a) (b)

Figure 3.15: (a) Omnidirectional stereo (ODS) projection rendering stereo
rays in all directions using tangents to the circle. Left and right image rays
are shown in different colors. (a) Google Jump rig with ODS overlaid showing
rays for left and right eyes. (Figures taken from [Anderson et al., 2016])

Figure 3.16: Samsung Round 360 VR camera specifications and measure-
ments (Figure taken from [Limonov et al., 2018]).
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(a) (b)

Figure 3.17: Figures taken from [Aggarwal et al., 2016]. (a)Coffee filter
camera by Aggarwal et al. (b)Using a camera to shoot the panoramic video
reflected in the suggested mirror.

device. Similar to [Anderson et al., 2016], they use the ODS projection as
an approximation for the stereoscopic 360 projection to solve the parallax
problem and stitch videos for the left and right eyes. They optimize their
code using parallel processing on GPU to make it faster.

Single camera and one mirror

Aggarwal et al. [Aggarwal et al., 2016] proposed the generation of a stereo
360◦ video using any single standard camera along with a special mirror they
invented (see figure 3.17). The mirror aims to reflect all the rays needed to
render an omnidirectional view for each eye. This is done through the petals
shown in figure 3.17). They also provide a comparison between their method
and a number of other state of the art solutions showing that their method
offers a good compromise in quality and resolution with an affordable capture
system.

Light-Field Scanner with Multiple Cameras

Another popular approach to obtain 3D panoramic videos is using LIDAR
scanners that capture light field data at very high speed and for long dis-
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Figure 3.18: The VR capture system designed by HypeVR and Velodyne
(figure taken from [Juchmann, 2015])

tances. It can be associated with panoramic regular cameras that capture
the 2D colour information of the scene. An example was a VR rig that was
constructed by the American startup HypeVR in collaboration with Velo-
dyne LiDAR in Silicon Valley [Juchmann, 2015]. The rig consisted of 14 Red
Dragon cameras of 6K resolution each and covering a 360◦ scene associated
with Velodyne’s spinning LiDAR scanner (see figure 3.18). Their goal was to
create a seamless 3D video by introducing a dense 3D point cloud extracted
from the LIDAR sensor and map the point cloud to the 2D videos. With
this high resolution and powerful cameras together with the LIDAR’s long
distance estimation and accuracy of the 3D points, the outcome should be
expected to be highly promising. The drawback is that the system is very
expensive and cumbersome.
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3.3 Panoramic Video from Unstructured Cam-
era Array

In this section, we present a paper published by researchers in Disney Zurich [Per-
azzi et al., 2015]. The main idea of this work was to establish a parallax error
metric that is later used to optimally order pairs of panoramic frame views
to minimize this error function. This method was implemented, tested and
output was used for the proposed method of this thesis.

The choice of this algorithm to be the baseline of our experiments since
it was similar to the initial parallax compensation idea we intended to im-
plement. Also because of the availability of the datasets and the output of
their method. And finally because the results were the most promising at
that time. C++ language and OpenCV library were used to implement the
method and the source code will be made available online.

Reference Projection

The first step of this algorithm is the creation a reference projection. By
this term, the authors meant to do the necessary steps of image stitch-
ing once and for all. They proceed on a chosen representative frame with
the baseline stitching steps: feature extraction, pairwise feature matching
and homography-based camera estimation explained in details in chapter 2.
These steps will never need to be recalculated, instead these registration data
and camera parameters will be re-used for every other frame.

Motion Estimation in Overlap Region

As explained earlier, parallax is the apparent difference in position of an ob-
ject in a scene taken from two different view points. Parallax errors cause very
disturbing artifacts in panoramic videos such as misalignment and ghosting.
Thus, a lot of research is dedicated to find a solution to this problem as we
discussed earlier in this chapter. Perazzi et al. [Perazzi et al., 2015] suggest a
solution that falls into the category of error minimization solutions. In order
to calculate their parallax error function, they first calculate an optical flow
between the overlapping regions of of images. This flow is later used to warp
an image to another for parallax compensation.

We consider the case of a pair of images and later extend for any number
of overlapping images. Given image Ii and image Ij with overlapping region
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Ω = Ii∩ Ij, the regions of overlap will be δIi and δIj. The motion field µij
is calculated using optical flow (in this paper Brox 2004 [Brox et al., 2004]).

Parallax Error Function

In order to address the problem of parallax errors globally, Perazzi et al.
suggest an error function that will be calculated between each pair of views
in the reference projection and will be used for optimal warp order. This
step is done only once and used for the rest of the video frames.
The error function is calculated as follows:

• Given M views/cameras and K pairs matched, each pair is considered
if the overlap exceeds 10% of the whole image.

• Optical flow is calculated between pairs in the overlapping regions, thus
we calculate µij for a given pair Ii and Ij in the overlapping regions
δIi and δIj .

• A fused image Iij is created by combining backward warped image I ′i
and unwarped image Ij .

• The idea of the error calculation suggested by Perazzi et al. consists in
trying to find the origin of each patch of the combined image δIij , by
comparing the distance between patch pij and each of pi and pj of the
images in the reference projection keeping the smallest distance.

• The total will be the average of error at each pixel location.

This process does not need to be done on the color images but instead the
authors suggest using the image gradients since they are interested in struc-
tural errors and do not care about image intensities which can be handled in
the blending step. Therefore, the exact steps will be:

1. The images δIi, δIj and δIij are transformed into gradients Gi, Gj and
Gij using Sobel operator.

2. A sliding window patch of 25*25 is used to compare patches from Gij
to Gi and Gj .

3. In order to be able to compare patches of Gi to ij , the warp applied to
δI ′i has to be applied to each patch pij . This is done by calculating a
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Figure 3.19: Diagram from [Perazzi et al., 2015] showing the iterative process
of finding an optimal warp order.

homography for each patch of the image Gi and use this homography
H to affine transform this patch. They suggest doing this to avoid
depending on the per-pixel motion field which can be erroneous.

4. Distance will thus be calculated as follows: d = min(|pij − pi|2, |pij −
(H ◦pj)|2)

5. To constitute the error map φ , the distance value of the patches in-
cluding a given pixel p∗ (x) is accumulated at this pixel location in the
error map which is equal in size to image Iij .

6. Finally the global parallax error of this pair is calculated as the average
of values in φ:
Φij = ∑

xεGij
φ(x).

Optimal Warp Order

After calculating the parallax error value for each pair, the pairs will be
sorted by this error value such that the pairs with the least error will be
warped first in an iterative approach. Each iteration will combine as many
pairs as possible with the correct order blending them into pairs until no
pairs remain. The pairs are now fragments of 2 and probably some single
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Figure 3.20: Warp extrapolation in [Perazzi et al., 2015]. (a) Two images
overlapping with borders highlighted in different colors. (b) Calculated mo-
tion field in the region of overlap. (c) Gap resulting from merging the two
views after warping one image to another in overlap region only. (d) Result
after extrapolation took place.

images will remain if they do not match with anything or if the number of
images is odd. The second iteration will do the same but with fragments,
until all are combined within this iteration. The loop stops when all the
images have become one fragment (see figure 3.19).

Warping for Parallax Compensation

The optimal warp order explained above is calculated only once in the ref-
erence projection. This is saved and used for every frame in the video. It
is also important to note that optical flow, warping and blending calculated
so far are only meant to obtain this optimal warp ordering but the original
images remain intact. After an optimal order has been established, images
are warped one by one using the accumulated flow field calculated at each
step.

Globally Coherent Warping

So far, the warp function has been applied in the overlapping region only
with the accumulated motion fields. This can cause a visible seam and can
even cause a gap between the region of an overlap in an image and the rest
of the image (see figure 3.20).

To overcome this, the authors propose to extrapolate the motion field uij
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Figure 3.21: Motion field extrapolation of [Perazzi et al., 2015] explained.

by minimizing the Poisson equation with Dirichlet conditions shown below:

E(ũij) =
∫

Ω̄ij

|∇ũij |dx (3.1)

where Ω̄ij = Ωj −Ωij is the non-overlapping region for image Ij and ũij is
the unknown motion field to be extrapolated in the non-overlapping region
of the image. Equation 3.1 is solved with the corresponding Euler-Lagrange
equation ∆ũij = 0 with dirichlet conditions ũij = uij along the boundary
δΩij . In addition, they add another set of boundary conditions to increase
smoothness by setting ũij = 0 along Lcf = c, where c is equal to 10% of the
panorama resolution and Lc is a distance transform from the closest pixel in
the region of overlap Ωij . Figure 3.21 clarifies the notations further.

A last step is done which involves aligning all video frames to the reference
frame to avoid temporal instability. This is done using a global relaxation
which imposes a high alignment weights for the pixels in the overlap regions
through the video frames and gives less weight to the rest of the pixels which
can move more freely. This is because the pixels in the overlap region have
been subject to more processing and are more affected by parallax. Therefore,
a relaxed map vs is calculated as follows:

E(vs) =
∫

Ω
w(x)|vs−v|2 + |∇vs|2dx (3.2)

where v is a function mapping a pixel in a given frame to the corresponding
pixel in the reference projection. In the case of multiple original pixels (in
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the overlapping region), an average of all contributing pixels is used.
The energy function in equation 3.2 is solved using the corresponding Euler-
Lagrange equation wvs−λ∆vs.

3.4 Performance Evaluation
The previous sections in this chapter has put the light on how challenging
video stitching can be. Video stitching is a very active research area at the
moment and optimal solutions are not reached. This inspired us to work on
methods that can assess the quality of panoramic videos. We believe this
can be very helpful in order to design better solutions and compare videos
generated with different algorithms. The next chapters are dedicated to the
proposed quality metrics and the experiments and results obtained during
this PhD.

3.5 Summary
We presented an overview of the difficulties in stitching panoramic videos.
These included mainly calibration methods for multiple cameras, parallax
errors and temporal instability. We discussed state of the art methods that
strived to minimize these issues. We also addressed the topic of panoramic
video content for VR including panoramic stereo videos and their added chal-
lenges. We showed a number of stereo capture systems and their associated
video stitching implementations. We finally provided a detailed explanation
of Disney’s solution to video stitching [Perazzi et al., 2015] which was imple-
mented as a baseline for this thesis. We ended by a motivation for the thesis
main contribution in quality assessment for panoramic videos.
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Chapter 4

Objective Quality Assessment
for Panoramic Videos

4.1 Overview of Quality Metrics
Digital videos are one of the most essential multimedia tools. They can suffer
however from many artifacts due to compression, transmission, streaming
issues and more. Synthesized videos are also becoming popular and they
have more challenging problems to solve. Assessing those videos is important
for video production for various reasons. First, it helps comparing different
video processing algorithms as well as the possibility to optimize them by
minimizing the error. Then, it can be beneficial to understand and analyze
video contents and the source of distortions.

Since human observers are the end users for those videos, we would ideally
like to have them rate the quality of those videos. Unfortunately, it is quite
expensive and unpractical to assess every video-based application by human
participants. Therefore, designing automatic quality metrics that mimic the
human perception is the alternative solution.

Employing traditional quality metrics designed for 2D images and videos
is not well suited to capture the geometric nature of panoramic video distor-
tions. A performance evaluation has been conducted by Zhang et al.2017 [Zhang
et al., 2017] on a number of objective quality metrics for assessing omnidirec-
tional visual content. The evaluated algorithms included 4 traditional meth-
ods and 3 others designed particularly for muti-view content, all of which are
PSNR-based. Using subjective experiments they were able to provide a com-
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parison between human-based assessment and automated assessment. They
concluded that the tested algorithms designed for omnidirectional scenes do
not outperform traditional methods, which motivates research to obtain bet-
ter quality metrics for panoramic videos.

We start by an introduction and a categorization of quality metrics sup-
ported by Vranjes et al. survey in 2013 [Vranješ et al., 2013].

Objective vs. subjective metrics Subjective quality assessment consists
in human participants giving their own opinion of the quality of a media, here
a video. Although expensive, it is still essential to validate any automated
metric and to gather statistics and facts human perception. Objective quality
assessment on the other hand involves an algorithm for calculating a distor-
tion metric that gives an indication of the overall quality of a video in our
case.

Full reference, reduced reference or no-reference metrics Objective
quality metrics can fall into one of 3 categories. The first one called full refer-
ence involves the comparison of two videos, one is considered the original and
is used as a reference to compare with the distorted one. The reduced refer-
ence extracts features from the original videos that are taken into account in
the calculation of distortion of the processed video. The last category is the
no-reference metric which only calculates the error on the processed video.

Data metrics vs. picture metrics Data metrics [Vranješ et al., 2013] is
a category of methods where the comparison between reference and processed
images is done directly on the data such as in mean square error (MSE) or
peak signal-to-noise ratio (PSNR). Whereas, picture metrics obtain infor-
mation about the video content and distortion types such as modeling the
human vision perception.

4.2 Motion Estimation for Video Quality As-
sessment

Motion estimation is an important feature when considering videos. Motion-
based objective quality metrics for videos have shown to be successful [Se-
shadrinathan et al., 2010]. An early research in 1993 by Webster et al. [Web-
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ster et al., 1993] has proposed a spatio-temporal approach for videos where
the spatial feature is calculated using a Sobel operator for edge detection
whereas the temporal feature is extracted from frame difference between t
and t+ 1. Standard deviation is used to detect a motion in the degraded
video that highly deviates from the reference video.

A no-reference metric for omnidirectional videoconferencing was presented
by Leorin et al. in 2005 [Leorin et al., 2005] and depends on extracting spatial
and temporal features to signal distortions. The temporal feature is extracted
from motion tracking based on the correlation between motion quantification
and the perceived quality. An additional analysis is done on the seam edges
between images where artifacts are likely to occur.

Although years apart, a similar idea has been adopted by k. et al.
2016 [K. and Channappayya, 2016]. The method calculates a temporal fea-
ture based on optical flow and a spatial feature based on MS-SSIM. Finally,
a pooling method is applied to obtain a single score for the whole video.
The temporal feature is calculated by first computing the optical flow on a
frame-by-frame basis. Statistics are then extracted per patch and deviation
of values between the reference and distorted videos is treated as an indi-
cation of a distortion. The method is similar to ours in the idea of using
statistics from optical flow such as standard deviation used in both works
whereas it is intended for single-view videos and thus does not have to deal
with multiple inputs.

4.3 Quality Metrics for 3D Synthesized Views
3D novel-view images and videos are generated using depth image-based
rendering (DIBR) approaches. This process is carried out through the in-
terpolation of multiple views in the purpose of generating a novel view. We
address this problem given its similarity with panoramic videos, which also
generates a single video out of multiple videos after undergoing a series of
geometric transformations.

Bosc et al. 2011 [Bosc et al., 2011] conducted a set of experiments on
objective and subjective quality metrics for novel-view synthesis and proved
that traditional quality metrics fail to capture distortions for this type of
images/videos. They therefore called for future research to establish tailored
quality metrics for 3D synthesized view assessment.

We investigated a number of related work that address quality metrics
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for this type of problem. Conze et al. [Conze et al., 2012] propose a full
reference quality metric which they call “VSQA: View Synthesis Quality As-
sessment” to capture geometric deformations that occur due to 3D warping
in synthesized views. They base their work on masking effects that happen
in the human visual system when looking at an image. Three visibility maps
are calculated based on 3 features, contrast, texture and diversity of gra-
dient orientations. These three maps are used as a weights for traditional
quality metrics such as structural similarity index metric (SSIM) and peak
signal-to-noise ratio (PSNR). Their experiments are focused on the SSIM
which captures structural similarity between a reference and a distorted im-
age. They use one of the two views to be interpolated as the reference and
the other one warped towards it as the distorted. Their results seem to
outperform the use of simple SSIM and we use their visibility maps in our
experiments presented in the coming sections of this chapter.

In 2015, Battisti et al. [Battisti et al., 2015] propose another full reference
metric called “3DSwIM: 3D Synthesized-view Image Metric”. The method
performs a block-based comparison between the reference and the synthesized
images and calculates the metric using Haar wavelet transform to detect the
statistical variations of both images. A skin detector is used beforehand in
order to increase the weight of distortions present on humans, since it has
been noticed that artifacts are more disturbing when perceived on humans.
The metric is calculated on datasets generated by 7 DIBR algorithms and
compared with other quality metrics. Results shows the metric performs
better or worse depending on the algorithm used.

So far, the methods described are only concerned with synthesized images.
A quality metric for synthesized videos were presented by Liu et al. in
2015 [Liu et al., 2015]. A full reference objective quality metric is proposed
which focus on a particular type of artifact, which is temporal flickering.
Temporal flicker is shown to be the most annoying type of error when it
comes to synthesized videos from multiple views. Flickering in a video will be
represented as a fluctuation in a pixel intensity between consecutive frames.
Therefore, they define it using what they call the temporal gradient which will
signal a flicker in case of a high change of the gradient magnitude between two
frames at a given pixel. They also use a spatio-temporal structure assessment
to detect flicker on foreground or background with camera motion.

All the previous studies validate and compare their works using subjective
studies.
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4.4 Quality Metrics for Panoramic Videos
Most published techniques for panoramic video assessment rely on user ex-
periments where observers wear a HMD (head-mounted display) and salience
data is recorded and analyzed [Xu et al., 2017,Zhang et al., 2017].

However, there still exist very few objective metrics proposed. For in-
stance, Cheung et al. 2017 [Cheung et al., 2017] presented an interesting
research on quality metric for a stitched panoramic image which uses optical
flow calculation in overlapping regions between views along with a salience
map that guides the calculation. This method is well suited for stitched im-
ages but does not include a temporal extension in the case of video. It also
relies on the use of a central image as the reference which constraints the
setup of the cameras. This type of metric however is very useful as a guid-
ance to refining stitching algorithms, such as [Li et al., 2018] who proposed
a human perception based seam-cut stitching algorithms.

4.5 Proposed Spatial Quality Assessment
In this section, we present our proposed solution for a spatial quality evalu-
ation of a panoramic video frame prior to actual blending.

4.5.1 Suggested workflow
We choose to do our error calculation prior to blending for three main reasons:
first, although blending strives to remove some artifacts, it is a blind method
that can introduce new artifacts by removing parts of objects or mistakenly
erasing something that is not actually an error. Second, once images have
been blended into the final panorama, it is very difficult to recover the original
images, which are as the name of the method implies, blended and mixed
together in the overlapping areas, therefore post-processing to correct defects
will also be difficult. Finally, to detect misalignment and discontinuities,
it is essential to compare the structural dissimilarities between intersecting
views, which is only available prior to blending. Thereupon, given a number
of input views, we go through the stitching steps explained in chapter 2
without proceeding to the final step of blending. We examine the differences
between pairs of views in two cases as shown in figure 4.1

55



Figure 4.1: Different blending orders used in the current work. Left is pro-
gressive blending in the order of image appearance used in Hugin [PanoTools
developers and contributors, ]. Right is optimal warp order proposed by the
authors of [Perazzi et al., 2015] who apply a parallax compensation.

1. Non-warped views in the overlapping regions in the order in which they
appear in blending.

2. One unchanged view and the other warped towards it in the overlapping
regions in an optimal order calculated as suggested in [Perazzi et al.,
2015].

4.5.2 View-Synthesis Quality Assessment: VSQA
The core of our method is based on the VSQA quality metric [Conze et al.,
2012], which was designed for DIBR/novel view synthesis, with a new goal,
which is error prediction and identification in panoramas. Figure 4.2 explains
the pipeline in a simplified manner. The VSQA metric is defined as follows:

V SQA(i, j) = dist(i, j).[Wt]δ.[Wo]ε.[Wc]ζ . (4.1)

where dist is the chosen metric, in this case SSIM [Wang et al., 2004], cal-
culated between a reference view and a synthesized view. This metric is
weighted by 3 maps, each representing a type of local feature to which the
human eye is most sensitive. Below is a list of these terms (please refer to
the original paper [Conze et al., 2012] for more details):
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Figure 4.2: A simplified figure for the construction of our error detection on
a panoramic video frame.

The texture-based visibility weighting map Wt which compares the
gradient of a pixel with respect to its neighbors.

Vt(i, j) = 1
N2

i+bN
2 c∑

l=i−bN
2 c

j+bN
2 c∑

k=j−bN
2 c
wl,kgrad[l,k], (4.2)

Wt(i, j) = 2Vt(i, j)−minVt
maxVt−minVt

. (4.3)

The orientation-based visibility weighting map Wo which calculates
the diversity of the gradient orientation of a pixel with respect to its neigh-
bors.

Vo(i, j) =minq[
1
N2

i+bN
2 c∑

l=i−bN
2 c

j+bN
2 c∑

k=j−bN
2 c

wl,kmin[(θ(l,k)− θq)2,(θ(l,k) +π− θq)2]],

(4.4)

Wo(i, j) = 2Vo(i, j)−minVo
maxVo−minVo

. (4.5)
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The contrast-based visibility weighting map Wc which evaluates the
contrast of a pixel with respect to its neighbors.

Vc(i, j) = 1
N2

i+bN
2 c∑

l=i−bN
2 c

j+bN
2 c∑

k=j−bN
2 c
wl,k|Lum(l,k)−Lum(i, j)|, (4.6)

Wc(i, j) = 2Vc(i, j)−maxVc
minVc−maxVc

. (4.7)

In all of the 3 equations, N is the window size and wl,k is a Gaussian
weight.

4.5.3 Global Map Creation
The VSQA map explained above is a similarity metric between two images,
where one is the reference and the other synthesized or processed. In our
case, we do not have a single original image and a processed output, however
we have N input views and one final output, so we build our error map, by
comparing each pair of images in the same order of their blending tree and
creating one final composite map 4.2. Consider N views at a time t, after
calculating pairwise matches Pn(i, j), for each pair Ii and Ij , we calculate the
region of overlap Ii∩Ij and we compute VSQA metric between the region of
interest in each view δIi and δIj .

We finally calculate the equation 4.8 to generate a global map for the
whole panorama:

V SQAglobal(i, j) =maxi,jV SQAi,j(δIi, δIj). (4.8)

Where i, j represent pixel location.
We test another case where we choose one view to be warped towards the

other and in that case the unchanged view is considered the reference. This
will change 4.8 to:

V SQAglobal(i, j) =maxi,jV SQAi,j(δIi,warp(δIj)). (4.9)

A Normalization is performed on the output map globally.
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4.5.4 Blend Mask Visibility Map
The steps described above provide a global prediction of all possible areas
where parallax errors can occur by comparing pairs of overlapping regions and
identifying structural differences weighted by masks that enforce distortions
in areas that are more salient with respect to human perception. However, as
mentioned earlier, the blending step aims mainly to remove as many of these
errors as possible, though it does not succeed in all the cases. The multi-
scale blend described in [Burt and Adelson, 1983] usually uses a Voronoi mask
that chooses the blending line to be irregular and therefore more difficult to
notice a line between boundaries. But still there will be more probability to
see errors around this line where one can imagine it as a pathway between
both images, so we assume that the closer the pixels are to that boundary
line, the more visible it is. Based on this assumption, we propose to create
a weighting mask around this blending edge, which will give more weight to
the pixels that fall onto this line and decreases gradually the more we go
farther away.

Within the same iterations over pair-wise matches as described in the
previous sub-section, for a pair of views Ii and Ij , we calculate the Voronoi
seam cut which produces a mask for each view Mi and Mj that determine
the cutting line between both views. We are also interested only in the region
of intersection between the two images, so we use the sub-masks δMi and
δMj . In order to create the desired mask which gives weight to the errors on
the blending cut, we calculate a distance transform from that line for each of
the latter sub-masks, we then calculate a common mask that will be applied
to the resulting VSQA as the OR between δMi and δMj and we get a mask
Mblend that we normalize between 0 and 1 as shown in 4.3. We multiply this
mask to our VSQA computed at each step in order to enforce errors at the
region where the transition between images takes place and attenuate errors
farther away from this boundary as described in equation 4.10. We call this
measure MVSQA.

MV SQA=Mblend.V SQA. (4.10)

We generate the global MVSQA with the same process used to calculate the
composite VSQA as described previously.
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Figure 4.3: Example of the suggested mask created around the boundary of
the blending line

4.6 Proposed Temporal Quality Assessment
The previous section explained our proposal for a spatial metric that as-
sesses the quality of a single video frame. However, this is not enough for
the assessment of a video, especially in panoramic videos since there might
appear large artifacts when moving from one frame to another. Therefore, we
propose another quality measurement using motion estimation [Nabil et al.,
2018].

4.6.1 Suggested workflow
Unlike the spatial metric which was calculated prior to blending, here we use
our final panoramic image as our processed image and each of the original
input views as a reference. The core of this temporal metric is optical flow
estimation. We calculate optical flow at time t with that of time t+1 for each
of the input views. We do the same for the corresponding output panoramas.
We then compare the difference of the end point of each of the views with
that of the output panoramic frame. Figure 4.4 explains the approach in a
simplified manner.

4.6.2 Quality assessment calculation using motion es-
timation

In a panoramic video, the final output at time t is a composite novel view
from a number of input views that go through a number of geometric transfor-
mations from projection to a common surface up to the final blending stage.
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Figure 4.4: Workflow of the temporal assessment calculation.

Panoramic video stitching methods usually add additional transformations
for parallax compensation [Perazzi et al., 2015,Lee et al., 2016].

Our method suggests using the original videos as a reference to the single
output panorama. The idea is to compare the difference in motion between
two given frames in the original videos and motion in the final panorama.
However, this is not directly applicable since a given pixel xpano in the final
panorama can have one to N sources corresponding to N input videos with
overlapping regions. To overcome this, we suggest to calculate the deviation
of displacements of all source pixels xi, i ∈ N from the displacement of the
panorama xpano between times t and t+ 1. Thereupon, we calculate the
optical flow between two frames at times t and t+1 of each input video and
the final panorama. We calculate the standard deviation at each pixel x of
the whole image to produce our distortion map Md as follows:

Md(xt) =
√∑n

i (xi,t+1−xpano,t+1)2

n
(4.11)

where n ∈ [1,N ] is the number of overlapping images at pixel x and xt+1 =
xt+µ(xt) and µ is the motion field of a pixel between times t and t+ 1.

To obtain more accurate results for error identification, it is important to
include human visual system notion of salience. Thus, we used three visibility
maps suggested by [Conze et al., 2012] for novel view synthesis to extract a
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salience map from our panoramic view. The weight maps represent a model
of three features that are assumed to mask errors, which are contrast, texture
and variation of texture orientation.

Given a panoramic frame Ipano, a salience map Ms is defined as:

Ms =Wc(Ipano).Wt(Ipano).Wo(Ipano) (4.12)

where Wc, Wt and Wo correspond to contrast, texture and orientation weight-
ing maps which are calculated according to equations 4.7, 4.3 and 4.5 respec-
tively.

Building on the assumption that a human would gaze a region if it is
distorted or if it salient, we propose to produce a distortion-salience map
Mds from Md and Ms using a simple weighted sum. The parameter ω can
be changed depending on the video content.

Mds = ωMd+ (1−ω)Ms (4.13)

In order to validate our objective quality metric, we conducted a study
to assess humans perception to errors in panoramic videos. Details of the
experiment are provided in the next section.

4.7 Summary
Objective quality metrics are an important tool for video quality monitoring.
They also help in designing better algorithms for video processing. This
chapter covered the main contributions carried out during this thesis. First,
related work were presented, especially optical flow-based quality metrics and
metrics for depth image-based rendering. Details of the methods proposed for
panoramic videos were covered. The first method worked by comparing pairs
of overlapping images and creating a global map that represents the distortion
of the frame weighted by saliency features. Another assessment approach was
suggested to improve the previous one by incorporating temporal features
using optical flow. The comparison made was between the individual input
videos as references and the final stitched video. A final map was created by
combining the optical flow-based distortion map with a saliency map.
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Chapter 5

Human-centered Evaluation for
the Proposed Objective Quality
Assessment

In the previous chapter, objective metrics were proposed to assess panoramic
videos based on human perception. In order to validate these methods, a
human-centered study was conducted to analyze the human’s perception and
its sensitivity to errors in panoramic videos.

We start by basics on human vision which help understand the proposed
experiment based on eye-tracking. Subsequently, related work in eye-tracking
and omnidirectional subjective quality metrics are presented. Finally, the
proposed experiment’s details are covered from design to analysis.

5.1 The Human Visual System
This section covers the anatomy of the human eye and the visual pathways
from a physiological point of view followed by a discussion of eye movements
and how they are controlled by the visual system. Visual attention is then
introduced with classic experiments that laid foundations of visual attention
modelling.
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Figure 5.1: Simplified eye anatomy

5.1.1 The human eye
The human eye is a complex organ composed of different parts (see figure 5.1)
that work together in order to form an image. The cornea is the curved
transparent frontal surface of the eyeball allowing light refraction. The iris
is the part containing the melanin1 and together with the pupil, they are
responsible to control the amount of light penetrating through the eye, similar
to a camera’s aperture. The lens, along with the cornea, refract the light
and form a focused inverted image on the retina. Ciliary muscles control
the curvature of the lens which in turn changes the focal length to allow
the perception of objects at various distances from the eye, a mechanism
known as accommodation. The retina itself is composed of several layers.
The outermost layer is the layer of photo-receptors: rods and cones. Rods
facilitate vision under low light conditions and cones are responsible for colour
vision. Their distribution in the retina is not uniform. At the region of
fovea2, there is a high concentration of cones while outside the central fovea
the number of cones gradually decrease and the rods start to appear. At the
region of optic disc there are no photo receptor cells making it a physiological
blind spot. The optic nerve starts here to transmit the signals to the brain
which processes and interprets them.

1The substance that gives colour to eyes, skin and hair.
2A pit area of less than 1 square millimeter in the center of the retina responsible for

high visual acuity.
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5.1.2 Visual Pathways
Figure 5.2 (a) shows the schematic representation of the visual pathway from
the left and right retinas to the brain’s visual cortex via optical nerves. Fibers
coming from the retina’s rods and cones travel through the optic nerve. The
side of the retina closer to the nose, called nasal half of the optic nerve fibers,
cross over to the opposite side at the optic chaism. The optic tract, which
is a continuation of the optic nerve, has nerves from both eyes and relays
information to the lateral geniculate nucleus which transmits the received
impulses to the visual cortex via the optic radiation as well as to the supe-
rior colliculus. In addition, the lateral geniculate nucleus receives inhibitory
control from the visual cortex and this regulates the extent of the visual sig-
nal from the optic tract and hence enables it to exert attention. The filtered
signals from the lateral geniculate nucleus then pass to the visual cortex by
the way of optic radiations.

The visual cortex is divided into a primary visual cortex and the secondary
visual areas. The signals first reach the primary cortex responsible for pattern
recognition and motion detection. Afterwards, the signals are transmitted
through two major pathways to the secondary visual areas which analyze
and interpret the visual information received. The black arrows shown in
figure 5.2(b) are the first pathway that analyzes the shape and the 3D location
of objects and whether they are moving. The second pathway represented
by the red arrows is responsible for the analysis of visual detail such as
colour details, contrast and texture as well as the interpretation of letters
and characters [Hall and Guyton, 2011].

5.1.3 Eye movements
Our central fovea is limited a 2 degrees vision field, equivalent to a thumb nail
at a shoulder distance. Foveal vision is what helps us accomplish reading and
similar focusing tasks. The eye movements complement this task by enabling
us to perceive a larger field of view and be able to grasp a lot of information
from the world [Gegenfurtner, 2016].

One of the most important eye movements are those causing fixations.
Voluntary movements allow the human eye to move to locate an object of
interest while an involuntary movement causes the eyes to fixate. This in-
voluntary fixation mechanism is controlled by the superior colliculus and it
causes the eye to lock the image on the fovea.
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(a) (b)

Figure 5.2: (a) Schematic visual pathways. (b) Visual cortex in the brain.
Figures taken from [Hall and Guyton, 2011].

The superior colliculus is also involved in controlling other eye movements
such as saccades and smooth motion pursuit. Saccades are successive fixa-
tions caused by a rapid movement of the pupil without the need to move the
head. They are important for tasks such as scanning the surroundings or
the lines of a book and relevant information is collected. Smooth pursuit is
the movement that allows fixating on a moving object and is responsible for
motion perception.

When perceiving objects at different distances, the eye uses vergence
movements controlled by the superior colliculus to focus on these objects
and the accommodation mechanism mentioned earlier allows it to refocus its
lens in less than a second while achieving its best visual acuity.

5.2 Visual Attention
Visual attention is a filtering process of the visual system allowing humans to
focus on and select a subset of a scene perceived in their field of view [Borji
and Itti, 2013]. Visual attention makes it easier for the brain to interpret a
scene as it provides a small information and thus simplifying the task of scene
understanding. It also provides feedback information that allows interpreting
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the different visual attributes of a perceived object [Itti, 2003].
Visual attention can be bottom-up or top-down. The bottom-up atten-

tion, also known as image-based, is represented by involuntary eye movements
driven by the stimulus. This pre-attentive perception can be demonstrated
using techniques such as the visual search experiments published by Treisman
and Gelade [Treisman and Gelade, 1980]. These experiments involved two
sets of tasks, the first involves presenting to the observer a uniform array of
stimuli where one element pops-out by being different in color or orientation
whereas the second involves a more distracting array of stimuli that are less
uniform and thus the target is more difficultly identified and requires further
search(see figure 5.3). Results indicate that in the first experiment, a global
scan of the scene involving pre-attentive visual processing is used by partic-
ipants whereas in the second task, selective attention is used after the scene
is closely observed until the observer could identify the target stimulus. As a
consequence, the visual system is able to collect simple information from the
scene before the attention can bind them together to interpret more complex
structures. The experiments conducted by Treisman and Gelade [Treisman
and Gelade, 1980] were at the base of many computational models afterwards.

Top-down visual attention is task-dependent which means they depend
on the assigned task and not only the stimulus. The experiments conducted
to measure this category of attention usually involves multiple salient stimuli
within one scene. Results of these experiments show that humans can com-
pletely miss an important event happening within their field of view if they
attend to another [Itti, 2003]. Using eye-tracking to register participants’ eye
movements in the classic Yarbus experiments [Yarbus, 1967], it was possi-
ble to understand the influence of a given task on the attention of observer.
His experiments involved presenting a scene to observers and recording the
scan-paths of their eyes while being given different tasks each time such as
identifying the age of a person in the image, describing his/her clothes from
memory or remembering other details in the image. Figure 5.4 shows an
example of one of the images shown and the eye-tracking paths obtained by
the same subject but with different tasks assigned. It can be observed from
the registered scan-paths that the eye movements and eventually the visual
attention greatly differ according to the requested task.
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(a) (b) (c)

Figure 5.3: Experiments pioneered by Treisman et al. showing two set of
visual search tasks. Figures (a) and (b) are examples of orientation and color
pop-out respectively, both of which were easily identified by the observer,
whereas figure (c) involves a conjunctive search where the target stimulus
being different in more than one feature than others, in this example it is the
only bright element with different orientation. The task shown in figure (c)
was more challenging and resulted in multiple false positives prior to making
the correct choice.

5.3 Subjective Quality Metrics
Subjective quality metrics for image and video are metrics obtained using a
user study involving human participants who are asked to evaluate the quality
of an image or a video. These metrics are considered the most reliable tool for
assessing image and video quality since the end-user is most likely a human.

A survey has been conducted on objective and subjective quality assess-
ment by Mohammadi et al. [Mohammadi et al., 2014] which categorizes the
standard methods for conducting subjective quality metrics as follows:

• Single stimulus categorical rating, in which test images are dis-
played randomly for a given time on a screen and observers are asked
to provide a score using a categorical scale from bad to excellent or
equivalent.

• Double stimulus categorical rating, is the same as the previous
method but with reference images and test images being displayed si-
multaneously.
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Figure 5.4: Results of eye-tracking from one participant at the Yarbus ex-
periments 1967 [Yarbus, 1967]. In the first recording, the subject was left to
observe the scene freely, whereas in the second, he/she was given instructions
to give an estimation of the financial level of the family and in the third, the
observer was required to estimate the age of the persons in the shown im-
age. It is clear how the scan path of the eyes was different depending on the
instructions given.

• Ordering by force-choice pair-wise comparison involves display-
ing two images where the participant is to choose one of them based
on the highest quality. The task has no time limitation.

• Pair-wise similarity judgments, similar to the previous method but
with an added task where the observer has to indicate the level of
difference in quality between both images using a continuous scale.

• Difference mean opinion score (DMOS), a score used by modern
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quality assessment images using the following equation to obtain the
difference between the reference and test images.

dp,I = rp,Iref
− rp,Itest (5.1)

where rp,Iref
corresponds to the score of participant p to reference image

Iref and rp,Itest is the score of participant p to test image Itest.
This metric is also used to compare the scores obtained from subjective
quality assessment experiments with indices calculated by objective
quality metrics.

• Z-score, is a score that normalizes the scores obtained by each observer
to the quality of images. It is calculated according to the following
equation:

zp,I = dp,I − d̄p
σp

(5.2)

where d̄p and σp are the mean and variance of observer p for all images.

5.3.1 Eye Tracking for quality assessment
Given the importance of eye movements in human perception, eye-tracking
has been widely used to collect information about human gaze in several
applications [Krafka et al., 2016]. We focus here on experiments aiming to
study the effect of visual attention on designing quality metrics.

Ninassi et al. [Ninassi et al., 2007] conducted an eye-tracking experiment
examined the effect of where the human eye looks within an image on quality
perception. Twenty participants were asked to observe a reference image and
an impaired image degraded by compression for 8 seconds and rate each on a
5-scale between imperceptible and very annoying. Afterwards, two saliency
maps were obtained using the fixation number and using fixation duration.
Maps are then merged and smoothed to obtain a final saliency map. To assess
its effect on objective metrics, distortion maps were calculated using two
methods, simple absolute difference and structural similarity index(SSIM).
A spatial weighting approach was applied to the distortion map using the
human salience maps.

A similar study was published where two eye-tracking experiments were
conducted by Liu and Heynderick [Liu and Heynderickx, 2011]. They also
aimed to have a ground-truth of visual attention via eye-tracking. In one
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experiment they asked 20 observers to look freely at 29 images while their
gaze data is being captured. In the other, a different group of 20 participants
was asked to score the quality of the images they saw on 5-scale from bad to
excellent. With the gaze data obtained from eye-tracking, they constructed
a salience map of the fixations. To assess the added value of the salience
data, they calculated the mean opinion score with a number of well-known
objective metrics including PSNR and SSIM. Afterwards, they weight the
results of the objective metrics with the salience map obtained from each
experiment.

Both studies [Ninassi et al., 2007, Liu and Heynderickx, 2011] show the
importance of combining salience maps and modelling human visual attention
with objective quality metrics for image or video.

5.3.2 Subjective Quality Evaluation for Omnidirectional
Content

The quality of experience in virtual environments is a very important aspect
that should not be neglected to avoid visual discomfort and fatigue. A num-
ber of experiments [Upenik et al., 2017,Rai et al., 2017] have been published
for quality of experience in the case of omnidirectional images. While it is
related to our work, we are concerned with quality assessment for panoramic
videos which is more challenging. In the following, we review two methods
for quality assessment in viewing panoramic videos.

Xu et al. [Xu et al., 2017] conducted a user experiment that included 40
participants. Each one was asked to put a HTC Vive headset and be seated
on a swivel chair to allow the observer to turn freely. Head tracking data
were collected to represent salience. A rating interface was displayed which
allowed users to score a video without removing their virtual reality headset.
The viewing direction data showed a preference of users to gaze at the center
of the scene even though it might depend on the nature of the video. They
also proposed variations on the existing subjective metric DMOS explained
earlier, which reflect global and local quality scores for each video. They also
proposed objective quality metrics which were validated by a comparison by
the data obtained from the user experiment.

A study conducted by Schatz et al. [Schatz et al., 2017] focused on ex-
ploring the effect of stalling3 when viewing an omnidirectional video using a

3A term referring to the the event of a video freezing in the middle of being played.
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head-mounted display or a TV. Twenty-seven participants watched impaired
videos and rated the overall quality in a range of 1 to 5 after each video.
Furthermore, a questionnaire was filled by participants after viewing each
video. The authors concluded that stalling can gravely affect the quality of
experience when watching panoramic videos.

The main difference of the methods described in this section with respect
to the method proposed in this thesis is the type of stimuli. While these
methods tested immersive 360◦ videos within a virtual reality environment,
our method used wide-angle panoramic videos as stimuli and aimed at study-
ing the type of errors that are most perturbing rather than the global quality
of experience. A detailed description of our method is presented next.

5.4 Proposed Approach
The objective visual quality metric presented in the previous chapter used
a distortion map along with a salience map to model of the human visual
system sensitivity to errors in panoramic videos. To determine its accuracy
with respect to human perception, it was essential to conduct an empirical
human-centered study. The main purpose of designing this experiment was
to compare the objective metric with the subjective data provided by human
participants. Our main experimental question was: Do humans recognize
errors that are not identified by an algorithm and vice-versa?

5.4.1 Designing the experiment
To establish a protocol to the experiment, we used Tracable Human Exper-
iment Design Research (THEDRE) [Mandran, 2017]. The planning step of
the experiment resulted in the conclusion of studying decision-making by par-
ticipants with respect to error perception through error annotations and to
study their visual attention and what’s most salient for them in a panoramic
video setup through eye-tracking.

A user annotation interface

While the regular standardized methods discussed in section 2 are most com-
monly used, we observed that simply giving a score was not sufficient to
achieve the goal of this experiment, instead a more precise comparison of the
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Figure 5.5: Tobii Pro glasses 2.

errors identified by humans versus the algorithm was needed. Consequently,
we decided using an interface of annotation within which the user can play
a video, pause whenever they perceive an error and annotate the error. We
designed a simple application to play the video and allow to draw circles
in the regions where an error is perceived. Once they continue to view the
video, the annotated is saved with the frame and the participant numbers.
Annotations and labelling is widely used to create datasets corresponding
to ground truth [Torralba et al., 2010] that can be used later for training
a neural network for object recognition instance. Similarly, we needed to
have a ground truth of errors recognition, thus we chose annotations for our
experiment.

Eye tracking

In order to study visual attention in panoramic videos, we used eye-tracking
to record gaze data of participants during the experiments. Eye-tracking
was necessary to give us another perspective that is less subjective about
the participants reactions to the video viewing. For this, we used Tobii pro
glasses 2 which is a light pair of glasses that can be worn and that lets
the user watch freely. As seen in figure 5.5, the eye-tracking Tobii glasses
have two side infrared cameras to capture the gaze from each eye. It also
has a microphone to record the voice if needed, exchangeable nose pad to
accommodate the participant and a removable protective lens depending on
the environment in which it is used. Finally, a full HD wide angle camera is
used to capture the gazed scene itself. This gives a reliable high quality gaze
data.
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Figure 5.6: Experimental setup: a participant sitting in front of a large
screen, wearing Tobii eye tracking glasses and annotating errors with key-
board and mouse.

5.4.2 Protocol description
Our methodology involved two approaches: the study of visual attention on
the objects of the panoramic scene and the study of the annotations, made
by the participants to mark an error. We define an error as a region with
high number of fixations and an annotation by at least one participant. The
experimental setup consisted of a large screen where the panoramic videos
were projected in a random order, linked to a keyboard and a mouse that
allowed to perform annotations (see figure 5.6). Gaze data, related to visual
attention, were collected with wearable eye-tracking Tobii Pro Glasses 2 and
processed with the gaze analysis software Tobii Pro Lab. The experiment
took place in INRIA Rhône Alpes and Amiqual4Home buildings for 3 days,
where 26 persons took the experiment with only 20 kept, whose eye-tracking
data accuracy was 90% or above. The protocol for this empirical study is
detailed below:

Goal of the experiment: There are two main goals to our experiment.
The primary goal is to validate the proposed optical flow-based objective
metric by comparing the detection of errors in panoramic videos by the au-
tomated method versus human identification to errors. The secondary one is
to gain further knowledge about the sensitivity of the human visual system to
the perception of errors as well as areas of salience when viewing panoramic
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videos.

Experimental questions: In addition to the main experimental question,
we more specifically wanted to answer the following questions:

• Does the proposed metric capture errors perceived by humans ?

• Are the same errors perceived by all participants?

• Which errors are most salient?

Participants: A total of 27 participants took the experiment, however we
only kept the recordings of 20 whose captured gaze data was 90% or above of
accuracy. The participants were 7 women and 13 men, with only 5 familiar
with image and video stitching.

Duration of the experiment per participant: 20 minutes.

Task: Each participant watches a number of short video sequences (less
than 30 seconds) within an interface that allows them to pause and annotate
a perceived error. The participant wears eye-tracking glasses while watching
for recording gaze information.

Metrics: The measurements we used to draw our statistics are:

• Number of errors annotated per video (from annotation interface).

• Total fixations count [Holmqvist et al., 2011] (from eye-tracker).

• Fixation duration [Holmqvist et al., 2011] (from eye-tracker).

Material: The setup of the experiment involved the following materials:

• A wide screen, a keyboard and a mouse were used for annotations.

• Tobii Glasses 2 Pro, Tobii Controller and Tobii Pro Lab software were
used for the capture and analysis of eye data.
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Stimulus: Four short panoramic videos suffering from stitching errors(ghosting,
misalignment and deformation due to imperfect synchronization and/or par-
allax) were displayed in random order for each participant on a wide screen.

Filter: We used the Velocity-Threshold Identification (I-VT) Tobii filter
for Attention [Salvucci and Goldberg, 2000]. It is a filter used to identify the
eye movements using the velocity of eye shifts.

Analysis: To analyze the data, we used Tobii heat maps to obtain areas
of high fixations by participants. We used Tobii’s Areas of Interests(AOI) to
generate statistics that answer our experimental questions. More details are
provided in the next section.

Description of the experiment The steps of the conducted experiment
which took place over 3 days in INRIA, were as follows:

1. We first explain to the participant the experiment’s purpose, the de-
scription of the problem and what tasks are required.

2. Then, we give the participant an example to get familiar with how the
annotation interface works and understand the task.

3. Afterwards, we calibrate the eye tracker with the participant’s eyes by
asking him/her to hold a card at a shoulder’s length and to gaze at the
black dot in the middle of the card.

4. Once the calibration is done, we start the eye tracking recording and
launch the videos for the participant who continues to watch and an-
notate the errors.

5.4.3 Data analysis
The experiment’s setup allowed the collection of two types of data, partic-
ipants’gaze and frames annotations. Our analysis was conducted on both
types of data jointly. For each video, we chose one or more keyframes rep-
resenting the central view within a sequence of frames. Depending on the
scene being taken from a fixed view-point or a moving camera, we chose one
keyframe or more. To compare this with our objective metric, we calculated
the temporal distortion on a sequence of frames whose center was a given
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keyframe. Temporal pooling of a given sequence was done by a simple OR
then we overlaid our final composite map on the keyframe.

Data analysis was done using Tobii Pro Lab software. For each keyframe,
we defined annotations collected by the 20 participants using Tobii Areas
of Interest (AOI) corresponding to at least one human annotation. On the
same keyframe, we defined the error regions identified by our distortion map.
Qualitative results were obtained by generating heat-maps from gaze data
recordings using an I-VT Tobii attention filter as suggested by Salvucci and
Goldberg [Salvucci and Goldberg, 2000]. Classical metrics such as total
fixation count and total fixation duration [Holmqvist et al., 2011] were used
to obtain descriptive statistics on the defined AOIs. Examples of AOIs are
shown in figures 5.7 and 5.8.

Figure 5.7: Areas of interest defined in regions of human annotations that
agree with those detected by the algorithm in yellow and those that were
only detected by the algorithm in red

.
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Figure 5.8: Areas of interest with labels describing the type of deformation
.

5.5 Summary
This chapter describes the conducted human-centered study that was used
to validate our objective quality metric. It starts with a background on
eye-movement and its effect on visual perception from a physiological and
psychological point of views. It then discusses related work for subjective
quality assessment based on eye tracking and experiments made for omni-
directional videos. Finally, details of our experiment are provided from the
design phase to the analysis. Results of the experiment are shown in the next
chapter in correspondence with results of the proposed objective metrics.
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Chapter 6

Experiments and Results

6.1 Creation of a Panoramic Video Dataset
This section describes the datasets used and acquired within this thesis to
test the proposed methods. Three different datasets were used, the first one
was acquired using a rig within our lab with only 3 cameras. It was used
to capture various scenes that were used for initial testing but that suffered
from synchronization issues and that were constrained by the setup of the rig
and the field of views of the cameras. The second was created and shared by
Disney researchers and it had 7 video sequences taken with a variety of rigs
ranging from 5 to 14 cameras. Disney’s dataset was the one we used the most
since it did not suffer from synchronization problems and also helped testing
the output of their method [Perazzi et al., 2015] which was an example of a
successful stitching method in the state-of-the-art. Finally, we tested using
the commercial camera Omni GoPro to take 360◦ panoramic videos.

6.1.1 A 3-camera rig
To create our first set of panoramic videos, we designed a camera-rig with
the help of engineers from Amiqual4Home [Amiqual4Home, 2016].
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Figure 6.1: 3-camera rig designed with the help of engineers in Ami-
qual4Home [Amiqual4Home, 2016]

The rig, shown in figure 6.1, consisted of a metal bar on which we added
three accessories to fix the cameras that can be adjusted along the bar and
another fixed accessory that allows placing the bar on a tripod. Two wooden
handles were designed and cut using the laser cutter at Atelier numerique
Amiqual4Home that allows carrying the handle in case we would like to shoot
panoramic videos while moving. We used a manfrotto tripod and accessories
that were available at INRIA. The cameras used were all Lumix Panasonic
GH2 cameras with 20mm lens each. They were placed such that they have
a sufficient overlap.

We used the rig to record some datasets within INRIA and outside. With
a lot of trials, we decided to keep two datasets Babyfoot, which consisted of an
indoor scene inside a babyfoot room in INRIA with multiple players and the
rig was placed 1 to 2 meters away and Snow which was taken from the terrace
of INRIA’s cafeteria for the view outside while there was falling snow and
the rig moves a little to show the whole surroundings. The main drawback
of this capture system is the lack of automatic synchronization between the
cameras. To resolve this, we used manual synchronization by registering the
sound of a hand clap then using the audio file associated with the video
to synchronize the videos. However, the resulting video sequences had two
main limitations. First, the number of cameras was relatively small, only
three and the placement of cameras was horizontal, therefore the vertical
field of view was limited. The second shortcoming was the lack of automatic
synchronization which was not completely resolved manually, hence causing
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temporal incoherence to the videos.

6.1.2 Disney dataset
The second dataset we used was shared by Disney researchers [Perazzi et al.,
2015]. The dataset has 7 videos taken with their unstructured camera rigs
mostly for faraway scenes with little movement. We mainly worked on 3 of
these datasets: Opera, which was taken by a 5 camera-rig and the camera
moves while shooting a street near the Opera house in Zurich. This dataset
contains humans walking, buildings, camera movements and only minor non-
synchronization between the cameras. The other two datasets are taken
with 14 cameras, one is called Street which is a taken with a fixed rig for
a street with some cars and pedestrians and having barely noticeable errors
after stitching and the other is Terrace consisting of the inter area of some
buildings taken from a terrace, the camera keeps moving and distortion is
only visible towards the end of the video.

6.1.3 Omni GoPro
We have experienced a more advanced and professional capture system using
Omni GoPro (shown in figure 6.2 that we borrowed from Kolor GoPro.

Figure 6.2: Taking panoramic videos with Omni GoPro at the Giza pyramids.
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The camera-rig is composed of 6 Hero 4 GoPro cameras, placed within
a 3D printed cube. The cameras are connected between them and are fully
synchronized. To start shooting, you only need to turn on the master camera
and the array of cameras will start and will be ready for shooting. The camera
was used to capture both indoor and outdoor scenes, it was always necessary
to place the camera on a tripod and use it to carry the rig around or to fix it
on the ground. Videos recorded with Omni GoPro include 3 videos in Giza
pyramids in Cairo, Egypt and four within Grenoble, France (see figures 6.3
and 6.4).

Figure 6.3: Panoramic video frame taken using Omni GoPro for Giza pyra-
mids, Egypt and stitching using Hugin [PanoTools developers and contribu-
tors, ]

Figure 6.4: Panoramic video frame taken using Omni GoPro for Notre Dame
square in Grenoble France and stitching using Hugin [PanoTools developers
and contributors, ]
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6.2 Results of Experiments with the Proposed
Quality Metrics

As explained in chapter 4, two quality metrics were proposed within this
thesis. Corresponding results of each are shown below along with validation
from chapter 5.

6.2.1 Proposed method 1
The first method suggests a spatial approach that aims to predict errors
prior to blending by comparing only regions of overlap. Each step creates
a distortion map based on the view-synthesis quality assessment (VSQA)
suggested by Conze et al. [Conze et al., 2012]. According to the method of
stitching assessed, a warp is applied to one image towards the other or not.
A global map is created by taking the maximum value at each pixel location.
Finally, a blend mask corresponding to a Voronoi seam is used to weight
errors. A comparison is done with the basic SSIM that shows that VSQA
with the blend weighting mask perform better in precising the error location.

In the first proposed method corresponding to equations 4.8 and 4.9
were tested on two sets of outputs resulting from two stitching algorithms,
basic stitching using Hugin open source software [PanoTools developers and
contributors, ] and video stitching algorithm by [Perazzi et al., 2015].
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Figure 6.5: Example of the output from equation 4.9 on dataset from [Perazzi
et al., 2015].

Figure 6.6: The output from equation 4.9 filtered by 4.10.
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Figure 6.7: Example of the output from equation 4.8 on dataset taken by
the 3-camera rig designed in Amiqual4Home [Amiqual4Home, 2016].

Figure 6.8: The output from equation 4.9 filtered by 4.10.

In order to test our method, we used the dataset Opera, a video sequence
taken by a 5 GoPro camera-rig, provided by Perazzi [Perazzi et al., 2015]
for their work on panoramic videos. We apply equation 4.9 to represent
stitching methods incorporating parallax compensation. We also took our
own panoramic video using a 3-camera rig designed by [Amiqual4Home, 2016]
formed of 3 Panasonic GH2 cameras with 20mm lens each. Video frames were
generated using the open source software Hugin [PanoTools developers and
contributors, ] for panorama creation, with graph-cut multi-band blending,
for which we used equation 4.8. The results shown in 6.8 show a promising
prediction for zones of potential errors not only spatially but across the whole
sequence. Repeating the process for some key-frames in the video, can show
which errors persist and which appear sporadically. It can also be noticed
that the error seems concentrated in the right middle part of the panorama
in the dataset Opera which contains four out of the five views overlapping.
The suggested mask permitted to focus on errors around the blend mask and
therefore reducing the number of false positives.

In order to obtain a metric index out of our distortion map, we calculated
a score according to [Conze et al., 2012], which consists in counting the
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number of remaining erroneous pixels after applying a threshold. We used
the same method of spatial pooling to compare our results with basic SSIM.
Table 6.1 shows the resulting scores in percent of remaining pixels for VSQA
and MVSQA described in equations 4.8 and 4.10 as well as basic SSIM [Wang
et al., 2004].

Metric / Score in % at t=84 at t=105 at t=385

MVSQA 0.38 0.55 0.26
VSQA 0.56 1.04 0.29
SSIM 9.63 10.58 8.45

Table 6.1: Preliminary results of spatial pooling

The measures were applied to 3 chosen frames where we could see clear
parallax errors. Figure 6.9 shows examples of parallax errors that appeared
after stitching and their corresponding maps VSQA, MVSQA and SSIM. The
results show that VSQA calculated in equation 4.9 filters more the errors than
those calculated by SSIM. MVSQA calculated using 4.10 which gives more
weight on the blending line between two images yields more precision and
outperforms SSIM and VSQA and this is because errors on tend to fade the
farther away from the blending seam cut.

Figure 6.9: Zoom on error in Opera sequence. Top row is panorama at time
t=105, the one below is t=385.Then from left to right, the figure shows the
original view before stitching,then the image after being stitched. Then the
error maps for VSQA, MVSQA and SSIM respectively are shown.
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6.2.2 Proposed method 2
Although this method worked globally well, it lacked the temporal aspect
as well as a global assessment of the output panorama with respect to the
original input views.

Therefore, another method based on optical-flow between two consecutive
frames in time was suggested which calculates the deviation of displacements
at each pixel location between the input videos and the final video.

Figure 6.10 shows an example of the visualization of optical flow calcu-
lated between two frames in times t and t+1, with arrows of different colors
showing the deviation between flow in the final panorama and those in the in-
put videos. To emphasize the areas of high distortion, only areas of very high
standard deviation value are kept. The resulting distortion map calculated
using equation 4.11 is shown in figure 6.11.

(a) (b)

Figure 6.10: Example of calculated optical flow with a filter on high deviation
between final panorama and input views (standard deviation >50 and >80).
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Figure 6.11: Distortion map example on Opera dataset.

Afterwards, a salience map is calculated using equation 4.12. The map
models three visibility features, texture, contrast and variation in texture ori-
entation, responsible for masking errors. Examples of these feature maps are
shown in figures 6.12, 6.14and B.4 corresponding to equations 4.3, 4.7and 4.5
respectively.

Results of the distortion map clearly identified zones of errors and out-
performs the spatial metric proposed. The comparison of the deviation of
optical flow in the final panoramic frame with respect to the input videos
could successfully capture geometrical artifacts. Figure 6.11 shows the high-
est response on the area where a person’s face gets completely deformed.
Other distorted regions are given lower intensities according to their degree
of deviation.

The combined map calculated using equation 2.2.5 is shown in the next
section with correspondence to the results of the user experiment.
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Figure 6.12: Texture visibility map calculated using equation 4.3 and used
to model texture in the salience map. An area of high texture like leaves of
a tree will most likely mask an error.

Figure 6.13: Orientation visibility map calculated using equation 4.5 and
used to model variations in gradient orientation in the salience map. The
orientation feature describes whether a textured area is uniform or not.The
more regular the texture is the more visible a defect.
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Figure 6.14: Contrast visibility map calculated using equation 4.7 and used to
model contrast in the salience map. An error on a region with high contrast
variation is more visible.

6.3 Method validation with human-based ex-
periment

The experiment described in chapter 5 provided two types of data: gaze data
from eye-tracking and frames annotated by participants. In order to compare
these data with results of our optical flow-based metric, we used heat maps
calculated using Tobii Pro Lab software to visualize fixations. Results are
shown in figures 6.15. We could conclude that the highest fixation usually
correspond to areas of high salience and/or a distorted region.
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Figure 6.15: Left: calculated distortion-salience map using equation 2.2.5.
Right: heatmaps of participants eye-tracking obtained using Tobii Pro Lab.

In addition, we used Tobii Pro Lab to calculate metrics in regions of the
image where participants made annotations and regions where the algorithm
signaled an error. This allowed us to draw statistics on the number of fixa-
tion in these regions. Figure 6.16 shows the total fixation count in regions
annotated by humans as well as by the algorithm. It shows that people
agreed with the result of the metric on the moving person being distorted
while other regions have variable counts.
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Figure 6.16: Total fixation count on regions annotated as errors by partici-
pants vs. errors detected by the algorithm.

Graph 6.17 shows the average number of participants who gazed a region
annotated by at least one participant with respect to regions identified by
the algorithm as error. The results on three different videos show different
results. For the case of dataset Street, the errors identified by humans were
nearly the same as those by the objective metric, which explains the close
average of participants in both cases. Whereas, in video Opera 1, it seems
that a higher number of participants noticed errors which agreed with what
was identified by the algorithm.

Figure 6.17: Average participants fixating on errors detected by algorithm
vs. annotated by at least one participant.

Finally, we redefined our areas of interest to categorize errors that are
most disturbing to humans as shown in figure 5.8. We extracted statistics
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of several test videos at once to see what types of errors are more salient
(figure 6.18. Results show that the human body deformation in the Opera
sequence was the most perturbing one, while deformations in buildings in
the background was less noticed. The ghosting in the other Opera sequence
appears to be highly salient and we interpret this because of the high contrast
and the regularity of the form of this object. Also, the absence of foreground
in this sequence caused a redirection of the participants’ attention to the
static objects in the background. The emerging relatively fast car appearing
in video sequence Street was slightly more visible to participants with respect
to other types of defect.

Figure 6.18: Number of fixations per error type to show the most disturbing
types of errors.

6.4 Summary
In this chapter, results of the two proposed methods along with the human-
based validation were shown. A discussion of the results is provided along
with comparisons between the metric results and the human participants
data. While the first proposed spatial metric gave more accurate results
than the standard methods such as SSIM, it lacked the temporal aspect for
assessing the video. The second metric incorporated a temporal feature using
optical flow between consecutive frames and was combined with a saliency
map. The second metric’s results clearly outperformed the first one. The
comparison of the second metric with the human participants gaze data and
their annotations showed a good correlation. In addition, the statistics drawn
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from the experiments allowed us to understand further about what drives
human’s vision when perceiving panoramic videos and which stitching errors
are most disturbing. The next chapter presents the conclusion and limitations
of the proposed approaches.
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Chapter 7

Conclusion

7.1 Discussion
In this thesis, two methods are proposed to assess the quality of stitched
panoramic videos. The first is a spatial metric based on an existing method
from the state-of-the-art initially designed to evaluate the quality of novel-
view synthesized images. The second includes a temporal feature using op-
tical flow calculated between consecutive frames and a standard deviation
of the motion fields from the input videos and the output panorama is used
to create the distortion map. A salience map based on the same existing
method used for the first metric is used and combined with the distortion
map. The results of the second method clearly outperform those obtained
by the first one, since it exploits the temporal feature.

To validate the second method further, a human-centered study was sug-
gested based on error annotations and eye-tracking. The analysis resulted in
a good correlation between the proposed method and what humans perceive
as salient and/or mark as distorted. It also clarified some facts about human
sensitivity to errors, mainly that humans are more likely to spot errors in
salient regions especially in the foreground and tend not to notice the areas
of distortions in the background. Statistics show that a human deformation
would immediately catch the attention of most humans and that moving ob-
jects such as cars are more salient than static buildings and other background
elements.

The objective metrics presented should be used to compare the quality
of different stitching algorithms. They can also be used to optimize blending

95



methods by minimizing errors identified. The findings of the human-centered
experiment can help create more accurate salience map that correspond bet-
ter to human perception.

7.2 Limitations
Although the study conducted on humans showed that the suggested optical
flow-based method was able to reflect a lot of areas of attention by humans,
the study might be biased since participants were asked to annotate the errors
they perceived rather than freely viewing the video. This is also the case with
standard quality evaluation methods such as rating and scoring as was shown
in the experiment done by Ninassi et al. [Ninassi et al., 2006]. A solution to
that can be a study that consists of two groups of participants; one will be
asked to freely view the videos and the other will view and annotate. This
will permit to assess the effect of adding a task and how much it affects the
results of gaze data. The analysis done on the collected gaze data can be
improved by extracting metrics on eye saccades and motion pursuit which
were theoretically explained in chapter 5. They should give richer insight
and interpretation for the captured gaze since the stimulus used consisted of
videos rather than still photos.

Another area of improvement is to combine methods for human and/or
object detection with the calculated salience map which uses models contrast,
texture and variation of texture orientation. This can correspond more to
the findings of the experiment which show the high likelihood of fixations on
foreground, especially humans and moving objects.

Finally, it will be interesting to expand the study to be tested on more
videos with other structures and variations and especially 360◦ videos such as
those taken within this work. A Tobii eye-tracking glasses for head-mounted
displays is now available and can be tested to capture gaze data within a
virtual reality environment.
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Appendix A

Panoramic Image Projections

In order to represent the globe’s sphere, cartographers use what is called
“map projection” in order to transform the 3D spherical view to a 2D flat
representation. Figure A.1 shows the way coordinate systems are represented
before being projected. In the same way, when taking a panoramic video,
the view is seen from the surrounding viewing circle of the cameras and to
represent it on a flat surface, image re-projection is a necessity. Below is an
overview of three commonly used projection surfaces for panoramas.

Equirectangular projection (also known as plat carré) is built by dividing
a 2D rectangular surface into equal rectangles then map the latitudes and
longitudes of the sphere to the grid. The main rectangle has almost its width
double its height. This projection can show all the view of a 360◦ spherical
surface, however it will suffer from high distortions near the north and south
poles.

Figure A.1: Geographical coordinate systems and its terminology
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Figure A.2: Equirectangular projection from the interface of Hugin [Pan-
oTools developers and contributors, ] for a panoramic view taken by our
3-camera rig.

Figure A.3: Cylindrical projection from the interface of Hugin [PanoTools
developers and contributors, ] for a panoramic view taken by our 3-camera
rig. It looks identical to equirectangular given the narrow vertical angle of
view.

Cylindrical projection is similar to the equirectangular one, however the
vertical lines are stretched to avoid distortions near the south and north,
which is not suitable for the case of a wide vertical angle view and eventually
not suited for a whole spherical 360◦ panorama.

Rectilinear projection, also known as flat or perspective projection, and
it corresponds to the standard images we see and are familiar with. It works
by mapping straight lines in 3D to straight lines in the flattened 2D surface.
It is not suitable for images with an angle of view higher than 120◦.

Fisheye projection aims to represent the 3D sphere such that the distance
from the center of the 2D surface is proportional to the actual viewing angle.
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Figure A.4: Rectilinear projection from the interface of Hugin [PanoTools
developers and contributors, ] for a panoramic view taken by our 3-camera
rig.

Figure A.5: Fisheye projection from the interface of Hugin [PanoTools de-
velopers and contributors, ] for a panoramic view taken by our 3-camera
rig.

This creates a grid that is more curved the farther away from the center (see
figure A.5)and the resulting image is similar to the reflection of an image into
a metallic sphere. It can be used for a wide angle panorama up to 180◦ but
cannot be used for larger views.
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Appendix B

Full Results

More examples of results from the proposed method 2 are shown in this ap-
pendix. Datasets used are Opera, Street and Terrace from Perazzi et al. [Per-
azzi et al., 2015] and dataset Babyfoot taken with our 3-camera rig.

Figure B.1: Weighting map to ensure the contribution of each pixel in the
image.
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(a) (b)

Figure B.2: Optical flow with high deviation between final panorama and
input views of a frame in Opera dataset (variance>50 and >80) .

Figure B.3: Distortion map on an example frame at t= 385 of Opera dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure B.4: Results of combining different salience maps [Conze et al., 2012]
with our distortion map for frame 97. (a)Texture map+distortion map. (b)
Thresholded (Texture map+distortion map). (c)Orientation map+distortion
map. (d) Thresholded (Orientation map+distortion map). (e)Contrast
map+distortion map. (f) Thresholded (Constrast map+distortion map).
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(a) (b)

Figure B.5: (a)Salience map using equation 4.12. (b) Combined salience
map+distortion map for frame 97 using equation 2.2.5 with equal weights.

Figure B.6: Texture visibility map for frame 385 as suggested by [Conze
et al., 2012].

103



Figure B.7: Orientation visibility map for frame 385 as suggested by [Conze
et al., 2012].
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(a) (b)

(c) (d)

(e) (f)

Figure B.8: Results of combining different salience maps [Conze et al., 2012]
with our distortion map for frame 385. (a)Texture map+distortion map. (b)
Thresholded (Texture map+distortion map). (c)Orientation map+distortion
map. (d) Thresholded (Orientation map+distortion map). (e)Contrast
map+distortion map. (f) Thresholded (Constrast map+distortion map).
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(a) (b)

Figure B.9: (a)Salience map using equation 4.12. (b) Combined salience
map+distortion map using equation 2.2.5 with equal weights for frame 385.

Figure B.10: Overlapping map used to calculate the the standard deviation
(Since each pixel has 1 to N sources depending on the overlap).
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Figure B.11: Visualization of motion fields in regions with high deviation
between output view and input views.

Figure B.12: Distortion map calculated using standard deviation of displace-
ment vectors.
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Figure B.13: Salience map calculated on a frame of dataset Street.

Figure B.14: A highly distorted frame from dataset Terrace shows the huge
variance in flow fields in distorted areas.

108



Figure B.15: Corresponding distortion map showing a lot of error zones.

Figure B.16: Combined map with weight of 0.8 to salience and 0.2 to distor-
tion.
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Figure B.17: Texture map on a frame of dataset Babyfoot

Figure B.18: Contrast map on a frame of dataset Babyfoot

Figure B.19: Variation of gradient orientation map on a frame of dataset
Babyfoot

Figure B.20: Global salience map on a frame of dataset Babyfoot
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