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Abstract

Big Data is gaining lots of attentions from various research communities
as massive data are becoming real issues and processing such data is now
possible thanks to available high-computation capacity of today’s equipment.
In the meanwhile, it is also the beginning of Vehicular Ad-hoc Networks
(VANET) era. Connected vehicles are being manufactured and will become
an important part of vehicle market. Topology in this type of network is
in constant evolution accompanied by massive data coming from increasing
volume of connected vehicles in the network.

In this thesis, we handle this interesting topic by providing our first con-
tribution on discussing different aspects of Big Data in VANET. Thus, for
each key step of Big Data, we raise VANET issues.

The second contribution is the extraction of VANET characteristics in
order to collect data. To do that, we discuss how to establish tests scenarios,
and to how emulate an environment for these tests. First we conduct an
implementation in a controlled environment, before performing tests on real
environment in order to obtain real VANET data.

For the third contribution, we propose an original approach for driver’s
behavior modeling. This approach is based on an algorithm permitting ex-
traction of representatives population, called samples, using a local density
in a neighborhood concept.
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Résumé

Les technologies Big Data gagnent de plus en plus d’attentions de commu-
nautés de recherches variées, surtout depuis que les données deviennent si
volumineuses, qu’elles posent de réels problèmes, et que leurs traitements
ne sont maintenant possibles que grâce aux grandes capacités de calculs des
équipements actuels. De plus, les réseaux véhiculaires, aussi appelés VA-
NET pour Vehicular Ad-hoc Networks, se développent considérablement et
ils constituent une part de plus en plus importante du marché du véhicule.
La topologie de ces réseaux en constante évolution est accompagnée par des
données massives venant d’un volume croissant de véhicules connectés.

Dans cette thèse, nous discutons dans notre première contribution des
problèmes engendrés par la croissance rapide des VANET, et nous étudions
l’adaptation des technologies liées aux Big Data pour les VANET. Ainsi, pour
chaque étape clé du Big Data, nous posons le problème des VANET.

Notre seconde contribution est l’extraction des caractéristiques liées aux
VANET afin d’obtenir des données provenant de ceux-ci. Pour ce faire, nous
discutons de comment établir des scénarios de tests, et comment émuler un
environnement afin, dans un premier temps, de tester une implémentation
dans un environnement contrôlé, avant de pouvoir effectuer des tests dans un
environnement réel, afin d’obtenir de vraies données provenant des VANET.

Pour notre troisième contribution, nous proposons une approche origi-
nale de la modélisation du comportement de conducteur. Cette approche est
basée sur un algorithme permettant d’extraire des représentants d’une po-
pulation, appelés exemplaires, en utilisant un concept de densité locale dans
un voisinage.
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Introduction en français

Contexte
Ces dernières années, le volume de données a augmenté substantiellement et
dans des domaines de plus en plus variés [1], et plus particulièrement, dans les
véhicules provenant des systèmes de tranports intelligents (ITS pour Intelli-
gent Transport Systems) coopératifs (C-ITS pour Cooperative ITS). Nous ob-
servons l’émergence des véhicules connectés qui génèreront de grandes quan-
tités de données dès demain [2, 3]. Dans les réseaux véhiculaires (VANET
pour Vehicular Ad-Hoc Networks), les données sont générées aussi bien par
l’infrastructure via les unités de bord de route (UBR ou RSU pour Road
Side Unit) que par les véhicules eux-mêmes via les unités embarquées dans
les véhicules (UEV ou OBU pour On-Board Unit). En Europe, les UBR et
les UEV communiquent entre eux en utilisant un Wi-Fi véhiculaire appelé
ITS-G5 qui est basé sur le standard IEEE 802.11p [4]. Avec une prédiction
de 35 % de la part du marché des véhicules qui se vendront en 2022 et des
bénéfices avoisinant les 113 milliards d’euros [5, 6], le volume de données des
ITS deviennent si massives, qu’elles peuvent généralement être considérées
comme Big Data, et donc avoir les même problématiques. La topologie des
VANET est hautement dynamique, ce qui est un défi important pour les
mécanismes et algorithmes sous-jacent, et donc, les algorithmes classiques
peuvent ne pas être efficace.

Contributions
Dans cette thèse, nous proposons deux contributions qui posent les questions
sur ses deux problèmes.

La première contribution est la considération des VANET comme des Big
Data, et donc, soulever les problématiques provenant des Big Data. Pour ce
faire, nous regardons pour chaque étape clef des Big Data, de la génération
des données à leurs analyses, quelles problématiques remontent les VANET.

La seconde contribution est le développement d’une architecture de tests,
ainsi que l’implémentation des standards européens afin d’obtenir des don-
nées émulées provenant des VANET, mais également des données réelles, afin

xi
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de les analyser. Nous proposons aussi une nouvelle méthodologie afin d’ex-
traire des comportements de conducteur types, et ainsi soulever les questions
de vie privée.

Dans cette thèse, six publications furent faites :

1. Hacène Fouchal, Geoffrey Wilhelm, Emilien Bourdy, Marwane Ayaida.
“A testing framework for intelligent transport systems”. Dans : Com-
puters and Communication (ISCC), 2016 IEEE Symposium on. IEEE.
2016, pp. 180–184

2. Hacène Fouchal, Emilien Bourdy, Geoffrey Wilhelm, Marwane Ayaida.
“A framework for validation of cooperative intelligent transport sys-
tems”. Dans : Global Communications Conference (GLOBECOM),
2016 IEEE. IEEE. 2016, pp. 1–6

3. Hacène Fouchal, Geoffrey Wilhelm, Emilien Bourdy, Marwane Ayaida.
“An Extended Tester for Cooperative Intelligent Transport Systems”.
Dans : International Conference on Innovations for Community Ser-
vices. Springer. 2017, pp. 47–55

4. Hacène Fouchal, Emilien Bourdy, Geoffrey Wilhelm, Marwane Ayaida.
“A validation tool for cooperative intelligent transport systems”. Dans :
Journal of computational science 22 (2017), pp. 283–288

5. Emilien Bourdy, Kandaraj Piamrat, Michel Herbin, Hacène Fouchal.
“New Method for Selecting Exemplars Application to Roadway Experi-
mentation”. Dans : International Conference on Innovations for Com-
munity Services. Springer. 2018, pp. 75–84

6. Emilien Bourdy, Kandaraj Piamrat, Michel Herbin, Hacène Fouchal.
“New Method for Exemplar Selection and Application to VANET Ex-
perimentation”. Accepté pour publication au Global Communications
Conference (GLOBECOM), 2018 IEEE.

Plan de thèse
Cette thèse est organisée comme suit : premièrement, dans le chapitre 2,
nous survolerons comment fonctionne les VANET dans la section 2.1 et nous
verrons plus précisément la standardisation européenne dans la section 2.2
et enfin, nous rappellerons les bases des techniques de Big Data dans la
section 2.3. Ensuite, dans le chapitre 3, nous faisons les corrélations entre
VANET et Big Data dans la section 3.1, avant de parler des projets européens
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joignant les Big Data aux VANET dans la section 3.2. Après cela, nous
verrons une implémentation d’un environnement ITS dans le chapitre 4, avec
le développement des standards européens dans la section 4.1, la mise en
place des scénarios de tests sur table et sur route, utilisés dans le projet
Scoop@f, avec des données émulées et réelles dans les sections 4.2 et 4.3,
ce qui nous permet d’obtenir des données VANET à analyser. Ensuite, nous
présenterons une nouvelle méthodologie afin d’analyser ces données dans le
chapitre 5, une revue des méthodes dites de kNN dans la section 5.1, notre
méthodologie dans la section 5.2, la compléxité et le temps d’exécution de
cette méthodologie dans la section 5.3, et, enfin, un cas d’usage de notre
méthodologie avec une réelle expérimentation provenant du projet InterCor
dans la section 5.4. Finalement, nous conclurons dans le chapitre 6.
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Synthèse de la thèse

Informations générales

Que sont les réseaux véhiculaires ?
Les réseaux véhiculaires (VANET pour Vehicular Ad-hoc Networks) sont une
spécialisation des réseaux mobiles (MANET pour Mobile Ad-hoc Networks),
utilisant des véhicules mobiles comme nœuds. Comme ces nœuds sont des
véhicules, ils s’organisent par eux-mêmes, et ajoutent des problèmes liés à la
grande mobilité de la topologie du réseau [7].

Les réseaux des systèmes de transport intelligent (ITS pour Intelligent
Transport System) coopératifs (C-ITS pour Cooperative ITS) sont basés sur
les communications V2X (véhicule à X) : véhicule à véhicule (V2I) et véhicule
à infrastructure (V2I). L’infrastructure est composée d’unités de bord de
route (UBR ou RSU pour Road Side Unit) connectées au centre de gestion
de trafic à travers une station ITS centrale (ITS-C). En Europe, toutes les
stations ITS (ITS-S) sont basées sur la pile ITS standardisée par l’European
Telecommunications Standards Institute (ETSI). Les UBR (appelés ITS-R)
et les véhicules (appelés ITS-V) communiquent via un réseau sans fil appelé
ITS-G5, qui est basé sur le standard IEEE 802.11p [4].

Le standard européen
Le standard de l’ETSI défini plusieurs couches :

1. Access qui correspond à la couche physique et détermine la bande de
fréquence utilisée ;

2. Network & Transport (N&T) qui correspond à l’adressage, au routage
des paquets et à l’émission de Beacon [9] ;

3. Facilities qui correspond aux services avec, entre autres, les Cooperative
Awareness Message (CAM) [11] et les Decentralized Environmental
Notification Message (DENM) [12]. Les CAM sont comme des Beacon
en plus détaillés, tandis que les DENM sont des messages d’événements,
qui peuvent être générés par l’utilisateur ou automatiquement par la
station (un freinage d’urgence par exemple) ;

xv



xvi SYNTHÈSE DE LA THÈSE

4. Application qui correspond à la couche application, où, par exemple,
se trouve la demande d’envoi et la notification d’événement à et par
l’utilisateur ;

5. Management qui gère les capteurs et l’état général de l’ITS-S ;

6. Security qui gère l’intégrité, l’authenticité et la vie privée aux niveaux
Access, N&T et Facilities.

L’ère du Big Data
L’une des premières définitions du Big Data fut proposée par la société
Apache Hadoop [16] : les Big Data sont « les données qui ne peuvent être
capturées, gérées et traitées par des ordinateurs classiques dans un cadre ac-
ceptable ». En 2001, Doug Laney définit les défis du Big Data avec le model
des 3 V : l’accroissement du Volume, de la Vélocité et de la Variété [17].

En 2011, l’International Data Corporation (IDC) ajoute un quatrième V :
la Valeur. Et enfin, en 2013, Yuri Demchenko et al. proposent un cinquième
V : la Véracité [18].

Nous avons donc aujourd’hui des modèles pouvant aller jusque 5 V :

1. Volume → l’échelle des données croissent rapidement ;

2. Vélocité → la collection et l’analyse des données doivent être menés
rapidement ;

3. Variété → l’hétérogénéité des données inclue des structures de données
semi et non structurées ;

4. Value → des données rares mais de grandes valeurs, ou inversement,
pleins de données, mais de valeur moindre ;

5. Véracité → les données peuvent être gênées par du bruit, des données
abérentes, la diversité des points de collecte etc.

Il est à noter qu’il n’est pas nécessaire de faire face aux cinq problèmes pour
faire du Big Data.

Chacune des étapes du Big Data vont avoir à faire face aux différents
problèmes précédents (les 5 V) et sont [7] :

1. Génération des données ;

2. Acquisition des données ;

3. Pré-traitement des données ;
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4. Acheminement des données ;

5. Stockage des données ;

6. Analyse des données.

Appliquer les technologies Big Data avec les
VANET

L’intégration des VANET dans les 4 V
Les VANET s’intègrent dans les Big Data, car ils posent quatre des cinq
problèmes à chacunes des étapes cléf du Big Data :

Variété Du fait des options dans les données générées par les VANET, les
constructeurs implémentent les standards différement (par exemple,
certains peuvent avoir accès au bus CAN et d’autres non) ;

Vélocité Avec une fréquence de 1 à 10 messages par seconde par véhicule,
et pour chaque message, certaines données sont modifiés à chaque fois,
comme la position, la date, la vitesse etc. ;

Véracité Toutes les données ont besoin d’être cohérentes avec la situation si
nous voulons des C-ITS efficaces. De plus, l’intégrité et l’authenticité
sont gérées au niveau de la couche sécurité ;

Volume Avec toutes les données générées par les messages et les capteurs,
plus le nombre de véhicules, le volume de données croît rapidement.

Obtenir des données VANET
Afin d’obtenir des données VANET, nous avons développé la pile ITS de
l’ETSI, et des scénarios de tests sur table nous donnant des données émulées,
ainsi que sur route nous donnant des données réelles.

Développement d’une pile ITS ETSI
Le développement de la pile ITS de l’ETSI s’est axé autour de la biblio-
thèque libre Qt (prononcé /kju:t/), afin de profiter de sa grande bibliothèque
multi-plateforme et de son système de signal et slot, facilitant grandement le
développement.
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Au niveau physique, la disposition du projet se fait de la même façon que
le fonctionnement de SVN : chaque projet et sous-projet sont des répertoires.
Cependant, au niveau logiciel, nous avons implémenté la pile ITS de façon à
être au plus proche du standard ETSI : la couche Application communique
avec l’IHM (interface homme-machine) via du Bluetooth, et en UDP avec
avec la couche Facilities afin de pouvoir s’abstenir de la couche Application
si besoin (dans le cadre de tests sur table par exemple). La couche Facilities
utilise des méthodes de la couche N&T pour émettre et reçois sur une socket
UDP car nous considérons le BTP comme un port IP sur l’adresse locale. La
couche GeoNet permet d’émettre aussi bien sur l’interface ITS-G5 que sur du
TCP pour l’hybridation. Enfin, la couche Management envoie des signaux
aux couches connectées lors de modifications de l’état de l’ITS-S.

Pour plus de détails, la documentation complète de notre pile ITS est
disponible sur http://scoop.univ-reims.fr/ITS_documentat
ion.

Tests sur table
Une fois que la pile ITS est développée, il est nécessaire de la valider. Pour ce
faire, il faut dans un premier temps le tester sur table avec un environnement
contrôlé. Cet environnement contrôlé nous permet de valider les comporte-
ments principaux de l’ITS-S plus facilement que sur route. L’architecture de
test sur table est composé de cinq parties :

1. Test Runtime est le logiciel qui exécute la suite de tests ;

2. Abstract Protocol Tester (APT) est l’implémentation qui simule les
couches à tester ;

3. Component est l’ITS-S à tester. Il implémente un UpperTester qui, par
le biais de primitives, permet d’émuler l’environnment ;

4. Test Adapter (TA) fournit le transport et la traduction des messages
entre le système à tester et l’APT ;

5. Codecs définit les règles d’encodage et du décodage des messages par
le TA.

Dans le projet Scoop@f, afin de tester la functionalité des ITS-S, l’Up-
perTester a dû être étendu. Nous avons ajouté plusieurs primitives afin
d’émuler les différentes situation pour lesquels l’ITS-S doit émettre des DENM
automatiquement.

http://scoop.univ-reims.fr/ITS_documentat
ion
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Aussi, l’interfaçage entre les ITS-C et les ITS-R se fait en DATEX II,
langage qui est très largement utilisé par les gestionnaires de la route. Nous
avons donc développé une émulation de l’ITS-C permettant de tester les
envois et réceptions de messages DATEX II par l’ITS-R.

Enfin le dernier type de tests fait sur table est l’intéropérabilité. Pour
cela, deux solutions sont possibles :

1. toutes les ITS-S se réunissent et utilisent leur UpperTester afin d’émuler
l’environnement, et un par un, une ITS-S émet des messages et les
autres, par le biais de l’UpperTester notifient la bonne réception ou
non des messages ;

2. les fabricants émulent l’émission de messages et enregistrent les PCAP
correspondants, les envoient au testeur, et lorsqu’une autre ITS-S doit
tester son implémentation, ces PCAP sont rejoués, en modifiant les
dates et lieux afin d’être cohérent avec la situation présente.

Tests sur route

Pour faire des tests sur route, nous ne pouvons plus contrôler l’environ-
nement, et donc, nous devons utiliser un système de log afin de connaître
l’état de l’ITS-S à tout moment. Ces logs peuvent être utilisés aussi bien hors
ligne qu’en ligne. En effet, dans le projet Scoop@f, les ITS-R permettent le
transfert de fichier d’une ITS-V vers une ITS-C. Pour ce faire, les CAM ont
étaient étendus en des CAM-I (CAM Infrastructure). Ces CAM-I définissent
les différents services proposés par l’ITS-R. Actuellement, deux services sont
définis, le transfert de fichiers de log et le téléchargement de nouveaux certi-
ficats et listes de certificats révoqués. Malheureusement, par des contraintes
industrielles, la définition de ces CAM-I n’a pu être optimisée. Par con-
séquent, un CAM-I ne peut avoir qu’un seul service à la fois. L’ITS-R envoie
donc plusieurs CAM-I par seconde pour différents services. De plus, toujours
par contraintes industrielles, nous n’avons pas pu automatiser l’analyse des
logs, car il n’y a aucun moyen a priori de connaître l’origine du log et donc
de sa définition.

Pour pallier ces problèmes, nous proposons d’améliorer les CAM-I afin de
pouvoir définir une liste de services, et une définition générique des logs,
permettant en décodant l’en-tête de savoir le type de log présent dans le
fichier.
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Extraction de comportement de conducteur

Revue des techniques utilisant les k plus proches voisins
Les techniques de k plus proches voisins (kNN pour k Nearest Neighbors) sont
des techniques classique utilisées depuis des décennies pour la classification et
l’extraction d’exemplaires [75]. La première de ses techniques fut le k Nearest
Neighbors [76]. Cette méthodologie est simple à utiliser : elle utilise une base
de connaissance afin de déterminer la classe d’une donnée inconnue. Pour
cela, nous définissons une distance entre les données de l’ensemble de base.
Pour chacune des données de cette base, nous calculons sa distance avec la
donnée non classée. Nous trions les données de la base par cette distance,
et nous sélectionnons les k premières données. Nous comptons pour chaque
classe combien de fois elles sont représentées dans cette sélection, celle qui
est le plus représentée est la classe que nous choisissons pour notre nouvelle
donnée. Ensuite, cette technique fut améliorée en ajoutant des poids dans la
méthode de calcul de distance [76].

D’autres améliorations ont été faites dont une qui modélise les données
afin de sélectionner les plus proches voisins [80], et une autre utilisée dans
la reconnaissance faciale, cherche la donnée localement plus proche de notre
donnée non classée [82].

Dans tous les cas, le choix de la valeur k dans les méthodes précédentes
et déterminant pour le choix de la classification.

Une nouvelle méthodologie de k Nearest Neighbors util-
isant la densité locale
Nous proposons une nouvelle méthodologie utilisant les k plus proches voisins
afin d’extraire des exemplaires d’une base de données. Les exemplaires sont
des données réelles permettant de représenter une catégorie, à la différence
des prototypes qui sont des valeurs statistiques (par exemple, si on dit qu’une
famille moyenne à 2,7 enfants, c’est un prototype, et les représentants sont les
familles à 1 ,2 et 3 enfants). Notre méthodologie, contrairement aux autres,
n’utilise pas de base de connaissance pour extraire ses représentants.

La méthodologie utilise des ensembles de données multi-dimensionnels
normalisée entre 0 et 1. C’est-à-dire que chaque donnée à plusieurs vari-
ables. Pour chaque données et chaque variables, nous calculons les distances
euclidiennes. Ensuite, pour chaque donnée, nous regardons ceux qui ont une
distance inférieur à un seuil (k

n
avec n le nombre de données) pour chacune

des variables. Notre premier exemplaire et la donnée ayant le plus grand
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nombre de voisins avec ce seuil. Nous retirons de la base ce représentant
ainsi que son voisinage, et nous continuons le processus jusqu’à ce que la
base de données soit vide.

Comme cette méthodologie est ajoute une notion de densité locale du
voisinage, nous l’avons appelé Fuldon pour Fuldon Uses Local Density Of
Neighborhood.

Complexité du kNN utilisant la densité locale
Notre méthodologie à une complexité qui n’est pas très élevée. En effet, elle
est composée d’une boucle qui sélectionne les exemplaires. La sélection des
exemplaires est une succession de méthodes qui sont en O(1), O(n), O(n2)
et O(n3). La complexité de notre algorithme est donc en O(n3).

L’algorithme a d’abord été développé sur R en utilisant la bibliothèque
Shiny afin d’avoir des résultats graphique, mais l’exécution étant plutôt lente,
nous avons l’avons implémenté en C++ afin de déterminer si c’est l’algo-
rithme ou le langage qui peine. En C++, l’algorithme donnait de bons résul-
tats. De plus, cette algorithme étant fortement parallélisable, nous avons fait
une première parallélisation en parallélisant chacune des méthodes, mais le
temps d’exécution était plus longue que la version séquentielle car les méth-
odes parallélisées s’exécutaient trop rapidement, et donc nous passions plus
de temps à allouer les processus qu’à les exécuter. Une autre méthode de
parallélisation fut donc implémentée, en parallélisant l’ensemble de la sélec-
tion d’exemplaire. Ainsi, avec la parallélisation et en utilisant huit cœurs,
nous divisons par deux le temps d’exécution par rapport à la version séquen-
tielle.

Expérimentation des VANET dans un monde réel
Notre méthodologie fut utilisée avec des données provenant du projet Scoop@f.
Les premières données étaient celles d’une simulation de route glissante. Le
véhicule roule et reçoit un DENM indiquant une route glissante. Le véhicule
enregistre dans ses logs l’état du véhicule, 30 secondes avant et après l’événe-
ment. Nous avons récupéré ces logs et utilisé notre méthodologie dessus afin
d’en extraire des représentants.

Ensuite, lors du second TestFest du projet InterCor [90], nous avons
récupéré les positions des véhicules pendant leurs trajets. Connaissant le
fabriquant de chaque données, nos données étaient classées, nous permettant
d’utiliser la méthodologie de façon supervisée. Chaque exemplaire extrait
de cette façon définit un comportement. Nous avons vu que même avec des
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seuils élevés, les classes étaient peu mélangées, et par conséquent, les com-
portements des conducteurs sont distincts.



Conclusion de la thèse

Conclusion
Dans le chapitre 2, nous avons survolé les technologies VANET de façon
générale dans un premier temps, puis de façon plus spécifique avec le standard
ETSI.

Les VANET sont la base des C-ITS, et communiquent en V2X : véhicule
à véhicule (V2V) et véhicule à infrastructure (V2I/I2V). En Europe, nous
utilisons le standard ETSI appelé ITS-G5, qui est basé sur l’IEEE 802.11p.

Après ça, nous avons vu ce que sont globalement les Big Data, qui étaient
d’abord définis par un modèle utilisant 3 V : Volume, Vélocité et Variété.
Plus tard, deux autres V ont été ajoutés : Valeur puis Véracité. Le Volume
concerne l’échelle des données. La Vélocité concerne le fait que les données
évoluent rapidement, et donc, elles ne peuvent être traitées d’en un temps
raisonnable. La Variété indique l’hétérogénéité des données. La Valeur peut
concercer deux cas, soit nous avons des données rares, mais de grade valeurs,
soit au contraire, nous avons beaucoup de données, mais de peu valeur. Enfin,
la Véracité est liée à la cohérence des données.

Les Big Data peuvent être utilisés dans de nombreux domaines, comme
par exemple, l’Internet des objets, les entreprises, les villes intelligentes etc.

Dans le chapitre 3, nous avons vu que les VANET ont besoin des Big
Data, car elles respectent quatre des cinq V : la Variété, la Vélocité, la
Véracité et le Volume. La Variété est liée aux différentes options dans les
standards et générateurs de données. La Vélocité est intrinsèque au réseau
et au nombre de messages différents envoyés par seconde par véhicule. La
Véracité est nécessaire pour avoir des C-ITS efficaces, et la couche sécurité
du protocole ajoute une autre dimensions à cette problématique. Enfin, le
Volume est lié au nombre croissant de véhicules communiquant.

À cause de ces différentes problématiques, de nombreux projets européens
utilisent les ITS avec des technologies issues du Big Data.

Dans le chapitre 4, nous avons vu une implémentation de la pile ETSI
basée sur la technologie Qt, nous permettant de simplifier le développement,
en particulier par l’apport du système de signal et slot. Notre implémentation
est au plus proche du standard ETSI d’un point de vue logiciel.

Nous avons aussi vu comment valider cette implémentation d’abord sur
table avec les tests écrits en TTCN-3, puis sur route en utilisant un système

xxiii
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de log. Le système de log utilisé dans le projet Scoop@f a des améliorations
possibles, qui n’ont pu être faits dûs à des contraintes industrielles.

Dans le chapitre 5, nous avons vu une revue des méchanismes utilisant les
k plus proches voisins. Ensuite nous avons proposé notre approche originale
utilisant la densité locale des données afin de sélectionner des exemplaires
sans avoir besoin d’utiliser de base de connaissance. Cet algorithme a une
complexité de O(N3), et a été développé en R, puis en C++, et enfin, une
version parallélisée fut développée.

Cet algorithme fut utilisé dans des cas réels de tests sur route, et nous
avons pu en extraire des comportements distincts.

Perspectives
Dès demain, les VANET auront besoin de changements. Le premeir concerne
la législation. En effet, avec le nombre croissant de véhicules communiquant,
il est nécessaire de pouvoir garantir la vie privée (entre autres). Par la mise à
l’échelle, les VANET devront s’adapter afin de pouvoir rester intéropérable.
Pour ce faire, il est nécessaire d’utiliser des solutions agiles.

De plus, par notre méthodologie, nous arrivons à extraire des comporte-
ments distincts de conducteur, ce qui pose des problèmes de vie privée. En
effet, même si le véhicule change de pseudonyme, son conducteur ne change
pas son comportement, et, de fait, reste toujours traçable. Dans nos futurs
travaux, nous allons expérimenter plus finement cette hypothèse qui pour-
rait remettre en cause la vie privée du conducteur.
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Chapter 1

Introduction

1.1 Context
Over the past few years, the volume of data has increased tremendously and
in a very large scale within various domains [1], particularly, in vehicles
with cooperative Intelligent Transport Systems (ITS). We can observe the
emergence of connected vehicles, which will generate huge amount of data
in the near future [2, 3]. In Vehicular Ad-hoc Networks (VANET), the data
are generated either from the infrastructure by the Road Side Unit (RSU),
or from the vehicles themselves by the On-Board Unit (OBU). RSU and
OBU communicate with each other using a vehicular Wi-Fi called ITS-G5
in Europe, based on the IEEE 802.11p standard [4]. With a prediction of
35 % of market share among vehicles that will be marketed in 2022 along
with revenues of around 113 billion euros [5, 6], ITS data volume is becoming
massive in such a way that they can generally be considered as Big Data, and
they will have the same problem. The VANET topology is a highly dynamic
topology, which is an important challenge for the underlying mechanisms and
algorithms, and so classical algorithms may be inefficient.

1.2 Contributions
In this thesis, we propose two contributions to pose questions on these two
problems.

The first contribution is the consideration of VANET as Big Data, and
so, raise the issues that raise Big Data. To do that, we check for each steps
of Big Data from data generation to data analysis, which issues VANET raise.

The second contribution is the development of a testing architecture and
the European standard implementation to get emulated and real VANET
data to analyze. We also wade a new methodology to extract representative
driver’s behavior, and raise privacy issues.

In this thesis, six publications was made:

1. Hacène Fouchal, Geoffrey Wilhelm, Emilien Bourdy, Marwane Ayaida.
“A testing framework for intelligent transport systems”. In: Computers

1
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and Communication (ISCC), 2016 IEEE Symposium on. IEEE. 2016,
pp. 180–184

2. Hacène Fouchal, Emilien Bourdy, Geoffrey Wilhelm, Marwane Ayaida.
“A framework for validation of cooperative intelligent transport sys-
tems”. In: Global Communications Conference (GLOBECOM), 2016
IEEE. IEEE. 2016, pp. 1–6

3. Hacène Fouchal, Geoffrey Wilhelm, Emilien Bourdy, Marwane Ayaida.
“An Extended Tester for Cooperative Intelligent Transport Systems”.
In: International Conference on Innovations for Community Services.
Springer. 2017, pp. 47–55

4. Hacène Fouchal, Emilien Bourdy, Geoffrey Wilhelm, Marwane Ayaida.
“A validation tool for cooperative intelligent transport systems”. In:
Journal of computational science 22 (2017), pp. 283–288

5. Emilien Bourdy, Kandaraj Piamrat, Michel Herbin, Hacène Fouchal.
“New Method for Selecting Exemplars Application to Roadway Experi-
mentation”. In: International Conference on Innovations for Commu-
nity Services. Springer. 2018, pp. 75–84

6. Emilien Bourdy, Kandaraj Piamrat, Michel Herbin, Hacène Fouchal.
“New Method for Exemplar Selection and Application to VANET Ex-
perimentation”. Accepted for publication in Global Communications
Conference (GLOBECOM), 2018 IEEE.

1.3 Thesis Outline
This thesis is organized as follows: first of all, in Chapter 2, we will see an
overview of the communication between vehicles in Section 2.1, and then we
will focus on the European standardization in Section 2.2, and we will re-
mind the basics of Big Data techniques in Section 2.3. Then, in Chapter 3,
we will see the correlations between VANET and Big Data in Section 3.1,
before talking about some European projects joining Big Data and VANET in
Section 3.2. After that, we will see an implemented architecture in Chapter 4,
with an example of an ITS stack development in Section 4.1, laboratory tests
and road tests scenarios, used in the Scoop@f project, with emulated and
real VANET data in Sections 4.2 and 4.3, which enable us to get VANET
data to analyze. After that we will present a methodology to analyze them
in Chapter 5, a review of the kNN methods in Section 5.1, our methodol-
ogy in Section 5.2, the complexity and time to execute the methodology in



1.3. THESIS OUTLINE 3

Section 5.3, and finally, a use case of the methodology with a real experi-
mentation from the InterCor project in Section 5.4. Finally, we will conclude
in Chapter 6.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Background

Before starting with the integration of Big Data in VANET, we have to see
how works the VANET communication in Section 2.1, and particularly the
European standard in Section 2.2. After that, we will see an overview of the
basics of Big Data in Section 2.3.

2.1 What is Vehciular Ad-hoc Networks?
Vehicular Ad-hoc Networks (VANET) are a specification of Mobile Ad-hoc
Networks (MANET), using moving vehicles as network nodes. Since nodes
are vehicles, they are self-organized, and add issues linked to the high mobility
of the network topology [8].

Cooperative Intelligent Transport Systems (C-ITS) networks are based
on the V2X (Vehicular to X) communications: Vehicle to Vehicle (V2V) and
Vehicle to Infrastructure (V2I) communications. The infrastructure is com-
posed of Road Side Units (RSU) connected to the traffic management center
through a central ITS station (ITS-C). In Europe, all the ITS stations are
based on the European Telecommunications Standards Institute (ETSI) ITS
stack. RSUs (called ITS-R) and vehicles (called ITS-V) will communicate
through wireless networks (access layer) based on ITS-G5 network (based on
IEEE 802.11p standard). The application layer uses mainly the following
standard protocols (see Figure 2.1):

• Access layer corresponds to the Physique and Data Link layers from
the OSI stack (i.e. an Ethernet layer using the EtherType 0x8947 on a
5.9 GHz band [9]);

• GeoNetworking corresponds to the Network layer from the OSI stack,
where we define the routing method of the packet (Section 2.2.1);

• Payload, which is optional, corresponds to the Transport and Session
layer with the Basic Transport Protocol (Section 2.2.2), and Presenta-
tion and Application layer, with the payload encoding and the Facilities
layer (Section 2.2.3):

5
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– Cooperative Awareness Messages (CAM) (Section 2.2.3.1) give
continuous vehicle information, positions to all neighbor stations
located within a single hop distance.

– Decentralized Environmental Notification Messages (DENM)
(Section 2.2.3.2) are mainly used by the Cooperative Road Hazard
Warning (RHW) application in order to send information about
particular events (as accidents, heavy raining, ...)

• Application layer is related to usual applications embedded by ITS
components. For example, the following applications could be imple-
mented:

– In-vehicle signaling: it shows driving head, static signaling, dy-
namics of speed.

– Data collection: vehicle data (position, speed, direction, cape),
road event data input manually by driver (animal on the road,
etc.), automatic data (impact, emergency brake, ...)

– Road hazard signaling, unexpected and dangerous events: alerts
from the European directive (temporary slippery road, pedestrian
on the road, reduced visibility, ...)

– Information about the road traffic: traffic light color, journey
time, recommended route, access to services...

– Parks relay and multi modal system: location and availability of
parking relays, schedules of public transportation.

2.2 The European Standard
In Europe, VANET use the European Telecommunications Standards In-
stitute (ETSI) standardization, which defines the communication protocol,
based on the IEEE 802.11p, called ITS-G5.

2.2.1 GeoNetworking
The GeoNetworking layer is the routing layer of the ETSI ITS-G5 stack [10].
This standard defines different headers used by the Networking & Transport
(N&T) layer. These headers determine how the packet will be routed (the
corresponding figures are available in Appendix A). We have three headers:
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Figure 2.1 – GeoNetworking layers

1. Basic Header, which is used to get the packet’s Time To Live (TTL) /
lifetime and type of packet (secured or not).

2. Common Header, which determines the type of payload (BTP, IPv6,
none), the type of the Extended Header, the traffic class for messages
prioritization, flag to know if the station is a mobile station or not,
payload length (if applicable), and the initial TTL.

3. Extended Header, which contains the routing information. This layer
depends on the situation and is one of the eight following headers:

(a) Beacon. This header is used with no payload and is composed of
the ITS station (ITS-S) position.

(b) GeoUnicast (GUC). This header is used to send packet to a spe-
cific ITS-S. This header is composed of a sequence number, the
source and destination positions.

(c) Topologically-Scoped Broadcast (TSB). This header is used to send
packet to neighbors with multi-hop to extend the neighborhood.
This header is composed of a sequence number and the source
position.

(d) Single-Hop Broadcast (SHB). This header is used to send packet
to the neighborhood, without multi-hopping. This header is of the
same size as TSB, but without sequence number and so is only
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composed of the source position (plus a reserved field to align the
size with the TSB).

(e) GeoBroadcast (GBC). This header is used to send packet to an
area and broadcast it inside the area. This header is composed of
a sequence number, the source position, the position of the center
of the area, the dimensions of the area, and the angle in degrees
from North (for non-circular area).

(f) GeoAnycast (GAC). This header is used to send packet to an area,
but unlike GBC, it is not rebroadcasted inside the area. This
header has the same format as the GBC.

(g) Location Service (LS). This header is used to update the neighbor-
hood table of the ITS-S. When requesting for an ITS-S position,
it is composed of a sequence number, the source position and the
requested GN-ADDR, and when replying, of a sequence number,
the source position and the destination position.

2.2.1.1 Packet handling

When the ITS-S is the generating station of the packet, it fills the headers
depending on the requests needs. It uses the routing algorithm corresponding
to the Extended Header to fill the destination address in the Ethernet Header,
and send the packet to the ITS-G5 interface, and add it to its different buffers.

When the ITS-S is receiving a packet, it checks if there is a duplicate
packet (DPD), or if it has the same GeoNetworking Address (DAD). If the
GeoNetworking Address of the source is the same as the receiving ITS-S, it
changes its GeoNetworking Address and discard the packet. If needed, the
ITS-S forward it using the algorithm corresponding to the Extended Header,
and add it in its different buffers. If the packet has a payload, it sends it to
the upper layer.

2.2.1.2 Packet Routing

When we use packets with multi-hops to a destination (area or ITS-S),
GeoNetworking provides some algorithms to route them:

1. Greedy Forwarding (GF) algorithm for GUC

2. Contention-Based Forwarding (CBF) algorithm for GUC

3. Simple Forwarding algorithm for GBC

4. CBF algorithm for GBC
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5. Advanced Forwarding algorithm for GBC

• Greedy Forwarding Algorithm for GUC
The Greedy Forwarding (GF) algorithm is used by GUC packets to deter-
mine the neighbor used for the next hop. This algorithm applies the most
forward within radius (MFR) policy, which selects the neighbor with the
smallest distance to the destination, thus providing the greatest progress
when the GUC packet is forwarded. The GF is also used to determine the
next hop with GBC and GAC packets.

• Contention-Based Forwarding Algorithm for GUC
Unlike the GF algorithm, the Contention-Based Forwarding Algorithm
(CBF) utilizes timer-based rebroadcasting with overhearing of duplicates
in order to enable an implicit forwarding of a packet by the optimal node.
With CBF, the GeoAdhoc router broadcasts the GUC packet. All neigh-
bors, which receive the packet, process it: those routers with a positive
progress buffer the packet and start a timer with a timeout that is in-
versely proportional to the forwarding progress of the GeoAdhoc router
(more details in Appendix B). Upon expiration of the timer, the GeoAd-
hoc router rebroadcasts the GUC packet. Before the timer expires, the
GeoAdhoc router may receive a duplicate of the packet from a GeoAdhoc
router with a shorter timeout, i.e. with a smaller distance to the destina-
tion. In this case, the GeoAdhoc router inspects its packet buffer, stops
the timer and removes the GUC packet from the packet buffer.

• Simple Forwarding Algorithm for GBC
This algorithm utilizes a function F(x,y), described in Appendix C, in
order to determine whether the GeoAdhoc router is located inside, at the
border or outside the area. In the simple forwarding algorithm, if the ITS-
S is inside or at the border of the area, the packet shall be rebroadcasted.
If it is outside the area, the packet shall be forwarded be the previous GF
algorithm.

• Contention-Based Forwarding Algorithm for GBC
As CBF for GUC, CBF for GBC uses a timer proportional inversely to the
distance with the destination area to avoid collisions and so the station,
which rebroadcast the packet, is the nearest station of the destination.

• Advanced Forwarding Algorithm for GBC
The advanced algorithm utilizes the GF and CBF mechanisms and adds
a sectorial contention area. CBF is used to deal with uncertainties. In
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order to minimize the additional forwarding delay introduced by CBF:
upon reception of the packet, the next hop — in case of correct reception
— forwards the message immediately. The CBF efficiency is improved by
choosing potential forwarders only from a specific sector; i.e. GeoAdhoc
routers located inside the sector (see Figure 2.2) refrain from retransmis-
sion of the packet (sectorial backfire). The reliability is increased by a
controlled packet retransmission scheme within the destination area.

Figure 2.2 – Sectorial contention area [10]

For the sectorial backfire, the algorithm is described in Appendix C. The
controlled packet retransmission scheme is a counter, which is increased
every time the packet is received. When the number of retransmissions
for this packet reaches a threshold, the router stops contending for the
packet. In practice, the threshold is set to 3.

2.2.2 Basic Transport Protocol
The Basic Transport Protocol (BTP) [11] (which make part of the GN pay-
load) has the same utility as the classical TCP/IP port: when we receive a
GN packet, we only know its routing method (i.e. SHB, GBC, GUC etc.).
But the routing methodology do not talk about the payload type and the
service behind. To do this, we use the BTP, which consists of a pair of two
ports. If we use the old BTP-A, the first port is the destination port and
the second the source port. It’s used when we need an interactivity between
stations, but in practice, this kind of BTP is not used anymore. The second
type of BTP (the BTP-B), is composed of the destination port and a second
port to precise the type of the service if needed. For the moment, the second
port is always set to 0. Table 2.1 summarizes the defined values in ETSI for
the BTP destination port.

2.2.3 Facilities Layer
The Facilities layer is the layer, which communicates with the application
layer (e.g. HMI or automatic event trigger application) and defines the GN
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Service BTP destination port
CAM 2001

DENM 2002
MAP 2003
SPAT 2004
SAM 2005

Table 2.1 – List of well-known BTP port numbers [11]

payload. Here, we will only focus on two types of messages: the Cooperative
Awareness Message (CAM) [12] and the Decentralized Environmental Notifi-
cation Message (DENM) [13], since they are used for safety and cooperative
purposes, and the only ones used in the Scoop@f project [14].

2.2.3.1 Cooperative Awareness Message

The CAM [12] is a Beacon in Facilities layer, which is more precise than sim-
ple Beacon. As illustrated in Figure 2.3, CAM is composed of five elements:

1. ItsPduHeader : general header, which indicate type of message, protocol
version and station identifier,

2. BasicContainer : generation time and ITS station (ITS-S) position,

3. HighFrequencyContainer : containing data, which evolve quickly for
vehicle (speed, acceleration etc.) and list of protected communication
zone for road side unit like tolling zone,

4. LowFrequencyContainer : containing data, which evolve slowly for vehi-
cle (exterior lights, path history and vehicle role for vehicle and tolling
zone information for RSU).

5. SpecialVechicleContainer : containing data depending on vehicle’s role
to specify how vehicle is a special vehicle (light bar and siren for ex-
ample).

• Sending operation
The CAM generation is controlled by the Cooperative Awareness (CA)
Basic Service (CABS). The CABS works as follows (see Appendix D for
more details):
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Figure 2.3 – CAM structure [12]

1. Check if there is enough time (100 ms) from the last generated CAM.
2. If yes, it looks if the ITS-S position evolve enough, or if the last gener-

ated CAM was late (1 s) to notify potential neighbors.
3. If yes, it fills the ItsPduHeader, the BasicContainer and the HighFre-

quencyContainer, and if the last LowFrequencyContainer filled was at
least 500 ms ago, it fills it

4. When the CAM is filled, it is encoded in ASN.1 UPER and sent to the
N&T layer.

• Reception operation
The CAM reception is controlled by the CA Reception Management,
which executes the following operations:

1. Decode received CAM
2. Make CAM data available by e.g. passing to the ITS application layer

or to the Local Dynamic Map (LDM)
3. End of operation, wait for the next CAM reception

2.2.3.2 Decentralized Environmental Notification Message

The Decentralized Environmental Notification Message (DENM [13]) is used
to warn about events and is composed of five elements as presented in Fig-
ure 2.4:

1. ItsPduHeader : it is the same as for CAM, but with the message type
set to DENM,

2. ManagementContainer : containing event position, validity duration,
etc.
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3. SituationContainer : containing information about the type of event,
information quality of the event (from 1 to 7, with 1 for very poor
quality and 7 for the most reliable information about the event), etc.

4. LocationContainer : containing more information about the location of
the event (paths to go to the event, type of road, etc.)

5. AlacarteContainer : containing more information depending on the use
case.

Figure 2.4 – DENM structure [13]

The DENM can be used in three situations:

1. as a source: we generate a DENM and send it,

2. as a receiver: we receive a DENM and notify the application layer if
necessary,

3. as a forwarder: we receive a DENM, and we forward it to stations,
which could not receive it before.

All the algorithms used for these situations are available in Appendix E.

• Source operation
When the ITS-S is as a source ITS-S, it has three types of operation:

1. AppDENM_trigger to create a new DENM;
2. AppDENM_update to modify a previous DENM;
3. AppDENM_termination to terminate a previous DENM.

– AppDENM_trigger
When the DEN basic service receives a request of type AppDENM_trig-
ger, it shall execute the following operations:
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1. It checks that the DENM is not expired.
2. It fills the DENM by assigning an unused identifier, and fills all

container with values from the request.
3. It encodes the DENM in ASN.1 UPER and send it to the N&T layer.
4. It creates an entry in the originating message table and insert the

DENM.
5. If needed, starts timers, and notify the Application layer of the suc-

cess or failure of DENM generation and sending.
– AppDENM_update

When the DEN basic service receives a request of type AppDENM_up-
date, it shall execute the following operations:
1. It checks that the DENM is not expired.
2. It checks that the DENM is in its originating message table.
3. It stops potential timers.
4. It changes the values of the DENM as asked by the request.
5. It encodes the new DENM in ASN.1 UPER and send it to the N&T.
6. It updates the entry in the originating message table.
7. If needed, starts timers, and notify the Application layer of the suc-

cess or failure of DENM update and sending.
– AppDENM_termination

When the DEN basic service receives a request of type AppDENM_ter-
mination it shall execute the following operations:
1. It checks that the DENM is not expired.
2. It checks that the DENM is in its originating message table or in the

receiving message table.
3. It stops potential timers.
4. It changes the values of the DENM as asked by the request. The

termination value is set to isCancellation if it is the originating of
the DENM, and set to isNegation otherwise.

5. It encodes the new DENM in ASN.1 UPER and send it to the N&T.
6. It updates the entry in the originating message table.
7. If needed, starts timers, and notify the Application layer of the suc-

cess or failure of DENM termination and sending.

• Receiving operation
The DENM reception is controlled by the DEN Reception Management,
which executes the following operations:
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1. Decode the received DENM
2. Check that the DENM is not expired.
3. If the DENM is a termination DENM, end the corresponding DENM

(if exists in one of the ITS-S tables).
4. Update the receiving message table.
5. Start the timer.
6. Notify the Application layer from receiving DENM.
7. If needed, start the Keep-Alive Forwarding (KAF).

• Forwarding operation
When an ITS-S receives a DENM, it can perform a Keep-Alive Forwarding
(KAF) to forward the DENM when there is no neighbor to receive the
original.
The KAF works only if there is the transimissionInterval set in the re-
ceived DENM and as follows:

1. Check if the DENM is a new or an updated DENM by using the for-
warding message table.

2. Stop the potential timers.
3. Calculate the needed timers.
4. Change the ItsPduHeader with the ITS-S identifier.
5. Start the set timers.
6. Reconstruct the DENM with the ASN.1 UPER.
7. Add or update the forwarding message table.

Technologies evolution permits us getting and threat more and more of
data. VANET technologies will face these evolution that we need to antici-
pate, and so, VANET are also concerned by Big Data.

2.3 The Era of Big Data
Before starting with Big Data, it is important to remind some laws that
govern the technological evolutions. The main laws are the Moore’s and
Kryder’s laws, about conjecture on microprocessors “power” and memory
available on computer respectively:
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1. “The complexity for minimum component costs has increased at a rate
of roughly a factor of two per year. Certainly, over the short term this
rate can be expected to continue, if not to increase. Over the longer
term, the rate of increase is a bit more uncertain, although there is
no reason to believe it will not remain nearly constant for at least 10
years.” [15];

2. The number of microprocessor’s transistors on a silicon wafer double
each two years [16].

3. “Inside of a decade and a half, hard disks had increased their capacity
1,000-fold, a rate that Intel founder Gordon Moore himself has called
“flabbergasting”.” [17]

But these conjectures have physical limits: frequency and high temperature
for microprocessor and difficulty for finer hard drive spaces to remain sta-
ble. The microprocessor limit is avoided by the parallelization of chipsets.
However, when we use a very large-scale of data, even with parallelization,
it is still difficult to manage a lot of data with classical computers and hard
drives. That’s what we call Big Data.

One of the first definition of Big Data is a definition proposed by Apache
Hadoop [18]: Big Data are “datasets which could not be captured, managed,
and processed by general computers with an acceptable scope”. In 2001, Doug
Laney defined challenges of Big Data with a 3Vs model: Volume, Velocity,
and Variety increasing [19].

Volume the data scale becomes increasingly big;

Velocity data collection and analysis must be rapidly and timely conducted;

Variety heterogeneous of data including structured and semi- / unstruc-
tured data (see Section 2.3.5).

In 2011, the International Data Corporation (IDC) defined Big Data as “a
new generation of technologies and architectures, designed to economically
extract value from very large volumes of a wide variety of data, by enabling
the high-velocity capture, discovery, and analysis” [1]. They add a fourth V:
Value.

Value huge value but low density, and inversely, few value, but with high
density.

In 2013, Yuri Demchenko et al. proposed a fifth V: Veracity [20].
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Veracity of data can be threatened by noises, irrelevant data, diversity of
collection points, etc.

Figure 2.5 summarizes the 5V concept, but when we talk about Big Data,
it is not necessary to have all the 5V. We use the three basic properties
(Volume, Velocity, Variety), and if needed, we can increase the Big Data
properties by adding the two other V [21]: the technological choices are
oriented by these properties of big data.

• Heterogeneous of data 

including structured and 

semi- / unstructured data 

• Forms 

• Data format 

• Bots 

• Noise 

• Irrelevant data 

• Data collection 

and analysis must 

be rapidly and 

timely conducted 

• Few data with 

huge value 

• Lot of data with 

few values 

• Data scale 

becomes 

increasingly big 

Volume

Velocity

Variety

Veracity

Value

  

Figure 2.5 – The 5V of Big Data

With Big Data, there are some steps from getting the data to analyze
them [7]:

1. Data generation: which kind of data are “Big Data”? We will see three
main type of data which can be considered as Big Data, the Enterprise
data, the Internet of Things data, and the Social Network data.

2. Data acquisition: how can we gather the generated data? For example,
the equipment can gather data explicitly (with log files for example),
or we can gather them without their knowledge by sniffing the network.
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3. Data preprocessing: how can we reduce the gathered data volume or
redundancy?

4. Data transportation: how can we transport data from the equipment
to the server, which will store and analyze them. We will define here
the three main layers of Big Data transportation.

5. Data storage: how can we technically store Big Data, depending on
the type of data?

6. Data analysis: how can we analyze data?

After that, we will see some application examples using Big Data technologies
(see Section 2.3.7).

2.3.1 Data Generation

2.3.1.1 Enterprise Data

The main sources of Big Data are the enterprises [22], and it is estimated
that the business data volume of all company in the world may double every
1.2 years [23]. For example, Amazon processes millions of terminal opera-
tions and more than 500.000 queries from third-party sellers per day [19],
Walmart processes one million customer trades per hour with a database
with a capacity of over 2.5 PB [24] and Akamai analyzes 75 million events
per day for its target advertisements [25], and all these transactions need to
be secured. With the Enterprise data, we tackle the Volume, the Velocity,
the Variety and the Veracity.

2.3.1.2 IoT Data

The Internet of Things (IoT) is an important source of Big Data. IoT consists
of all objects that can be connected, it goes from mirror to watch, smart
home to traffic light and so come from many sources (agriculture, families,
medical care, traffic). Data generated by IoT has the following features [7]:

Large-scale with the number of connected objects and their data acquisi-
tion: location, temperature, multimedia;

Heterogeneity with the variety of connected objects;

Strong time and space correlation for statistical purposes, we need a
good time and location precision;
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Effective data accounts for only a small portion of the Big Data a
great quantity of noises may occur during the acquisition and trans-
mission of data.

2.3.1.3 Social Network Data

Social Network is used increasingly and generates a huge amount of data.
In January 2018, Facebook had 2 196 million active users, YouTube 1 900
million, Instagram 1 000 million, and these Social Network continue to grow:
plus 527 million of users for Facebook or 400 million for Instagram [26, 27].
Social Network can be considered as a graph with everything such as a user,
a book is a node, and the edges are the relation between them [28]. That
growing number of users impose big security and privacy challenges.

2.3.2 Data Acquisition
Once data are generated, we need to get them, and there are many ways to
collect them [7] (each part concerns properties of the 5V model we use).

Log files one of the widely used data, log files are adhoc files where we
will record everything we need, from the click position to the number
of visitors of a website. Log files will massively be in the ASCII text
format, but databases can also be used;

Sensing they are common in daily life to measure physical quantities and
transform them into readable data. Sensed data is transferred to a
data collection point through the network (wired or not);

Methods for acquiring network data the main method to acquire net-
work data is the use of a Web crawler, which download all the content
of a website (not only the visited page) [29];

Libpcap-based packet capture technology widely used with network
data, this tool sniffs all data on selected network interfaces and cap-
ture them. The first problem with Libpcap-based capture is the con-
siderable packet losses, which may occur under a high-speed network
environment;

Zero-copy packet capture technology is the same method as Libpcap,
but without copy between internal memories and so packet arrives di-
rectly to the terminal and there is no packet loss under a high-speed
network environment;
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Mobile equipment with the huge amount of smartphone, they can be used
to acquire customer data (geographical position, pictures, video).

2.3.3 Data Preprocessing
Because of the variety of data sources, datasets may have many problems of
noises, redundancy, or consistency. To avoid them, we can use some prepro-
cessing techniques.

Integration which consists of an aggregation of data from many sources
into a single one [30];

Cleaning which consists of find inaccurate, incomplete, or unreasonable
data and then modify or delete them. Generally, there are five com-
plementary procedures [31]:

1. Defining and determining error types,
2. Searching and identifying errors,
3. Correcting errors,
4. Documenting error examples and error types,
5. Modifying data entry procedures to reduces future errors.

Redundancy elimination to reduce the volume of data, we can eliminate
useless redundancies.

But all these preprocessing techniques need to guarantee the data in-
tegrity, reliability, and Veracity. The preprocessing will so act principally on
Volume, Variety and Veracity.

2.3.4 Data Transportation
To transport data from the source to the Data Center (DC), which will store
them, we have three layers [32] summarized in Figure 2.6:

1. Access network is directly connected to end devices, such as personal
computers, mobile devices. It’s composed of gateways, Wi-Fi access
point, or cellular antenna;

2. Internet backbone, which is the network to transmit data from the
Access network to the Data Center Network (DCN). To do this, there
are many approaches depending on the application, for example, mPath
avoids bottleneck and is used for an end-to-end transmission [33] and
Wittie et al. reduces the service latency for social networks [34];
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3. Inter- and intra- DC networks are the networks between DCN (inter-
DCN) and inside DCN (intra-DCN). As for the Internet backbone,
many approaches are used depending on the application. For example,
for inter-DCN, we have NetStitcher, which improve the network uti-
lization for data backup and migration [35] and Jetway minimizes the
link cost for video delivery [36]. For the intra-DCN, we can cite Or-
chestra, which reduce the job duration with a MapReduce and Dryad
(see Section 2.3.5) utilization [37], or a 3D beamforming with mirror
on the ceiling and antenna on DC: a laser from a DC is sent to another
DC by reflection on the mirror [38].

Figure 2.6 – Three-layered network architecture from the perspective of Big
Data applications [32]

For security reasons, and to be fault-tolerant, we need to use decentralized
communications, and redundancy [39]. We still have the Volume (by using
numbers of DC), the Velocity (with the needs of fast communications, and
fast ways to change data inside DC), and the Veracity (with all the security
problematic in the communication).

2.3.5 Data Storage
When we talk about storage, we need to invoke the three types of data:
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1. Structured data, the simple way of data, which are used with classical
databases;

2. Semi-structured data, which are more complex with some structured
and unstructured part like web pages;

3. Unstructured data, which are the most complex because there is no
structure inside the data like video or audio.

The first one is usable with structured RDBMSs (Relational DataBase Man-
agement System), and the two others will need a NoSQL (Not only SQL)
to use them. Note that NoSQL techniques can also be used with structured
data.

To store Big Data databases, we will have many solutions depending on
the problem [7].
Key-value Databases are constituted by a simple data model and every

key is unique and customers may input queries values according to
the keys. We can cite Dynamo [40] used in the Amazon e-commerce
Platform or Voldemort [41] used by LinkedIn;

Column-oriented Databases which store and process data according to
columns other than rows. We can cite Google’s BigTable [42] which
is the principal inspiration of all column-oriented databases or Cas-
sandra [43], which is a distributed storage system to manage the huge
amount of structured data distributed among multiple commercial ser-
vers;

Document Databases in these databases, we can store more complex data
forms. We can cite the open-source MongoDB [44], which stores doc-
uments as Binary JSON (BSON) or the Apache CoucheDB [45] writ-
ten in Erlang, allowing to manage the concurrency, real time and dis-
tributed in an easy way.

With Big Data storage, we have Volume, Variety, Velocity and Veracity
challenges: the Volume is intrinsic, the Variety is made with the different
types of data structuration, the Velocity with the fast data changes, and
the Veracity due to the possible redundancy of servers, which need to have
coherent values.

2.3.6 Data Analysis
To analyze Big Data databases, we will need new methodologies and tech-
nologies to quickly extract key information from massive data. We call to
mind the main technologies that can be used in this context of Big Data:
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Hashing is a method that essentially transform data into shorter fixed-
length numerical values or index values;

Bloom Filter consists of a series of Hash function;

Index is always an effective method, but has a disadvantage with the addi-
tional cost for storing index files, which should be maintained dynam-
ically when data is updated;

Triel also called trie tree, a variant of Hash Tree, is mainly applied to rapid
retrieval and word frequency statistics.

Traditional parallel models may not be adequate to support such large-
scale parallel programs, and so we can use some other models:

MapReduce is a computing model with only two functions: Map and Re-
duce. The Map function processes input key-value pairs and generates
intermediate key-value pairs. Then, the Reduce function will take the
intermediate key to compress the value set into a smaller set.

Dryad is a directed acyclic graph, in which vertexes represent programs and
edges the data channels. Dryad execute operations on the vertexes in
clusters and transmits data via data channels.

All-Pairs is a system designed for biometrics, bio-informatics and data min-
ing applications. It focuses on comparing element pairs in two datasets
by a given function.

Pregel from Google, which facilitates the processing of large-sized graph
like analysis of network graphs and social networking services.

All these analyses techniques are also used for another purposes:

Data mining: the extraction of the hidden predictive information from
large databases. It scours databases for hidden patterns, finding pre-
dictive information that experts may miss, as it goes beyond their ex-
pectation [46].

Deep Learning is a form of machine learning that enables computers to
learn from experience and understand the world in terms of a hierarchy
of concepts [47].

Machine Learning is used to identify objects in images, transcribe speech
into text, match news items, posts or products with users’ interests,
and select relevant results of search [48].
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Decision-Making is used to help users to make the smarter purchasing
decision than human can do, when it is too complex, due to the amount
of data [49].

Increasingly, applications using Machine Learning make use of Deep Learn-
ing [48], whereas both Deep and Machine Learning will often make use of
Data Mining [50]. To use Decision-Making, we will also use the three others
analyze techniques.

For the same reasons as for Big Data storage, we have here the Volume,
Variety, Velocity and Veracity challenges.

2.3.7 Application of Big Data
Big Data is used in as many domains as types of data. Here, we will see
some applications using the technologies of Big Data.

2.3.7.1 Application of Big Data in Enterprises

The application of Big Data in enterprises can enhance their production effi-
ciency and competitiveness in many aspects: in marketing, on sales planning,
operation, and supply chain for example. In marketing, enterprises can more
accurately predict the consumer behavior and find new business modes. On
sales planning, enterprises can optimize their commodity prices. On oper-
ation, enterprises can optimize their operation efficiency and satisfaction:
optimize avoid excess production capacity, and reduce labor cost. On sup-
ply chain, they can mitigate the gap between supply and demand, control
budgets and improve services by conduct inventory and logistic optimization.

2.3.7.2 Application of IoT Based Big Data

The application of IoT based Big Data can come from various domains due
to the variety of objects, for example, truck can be equipped with sensors to
be supervised, and to manage employees, optimize delivery routes, and pre-
vent engine failures. In smart cities, IoT and Big Data can be used for smart
parking, crosswalk and energy usage [51], smart metering of temperature,
traffic intensity [52], smart transportation, smart energy and water manage-
ment [53].

2.3.7.3 Application of Online Social Network-Oriented Big Data

Big Data of online social network sites (SNS) mainly comes from instant mes-
sages, online social, micro blog, and shared space, which represents various
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user activities, and can be used in many domains: relationship between users
(Facebook, LinkedIn), “newsletter” (Twitter), as a “TV show” (YouTube), or
in transportation (Waze). Classic applications of Big Data from online SNS
mainly mine and analyze content information and structural information to
acquire values [54]:

Content-based Applications language and text are the two most impor-
tant forms of presentation in SNS. Through the analysis of language
and text, user preference, emotion, interest, and demand, may re-
vealed [55];

Structured-based Applications in SNS, users are represented as nodes
while social relation, interest, and hobbies, aggregate relations among
users into a clustered structure [56].

Application of Big Data from online SNS may help to better understand
user’s behavior in the following three aspects:

1. Early Warning to rapidly cope with crises if any by detecting abnor-
malities in the usage of electronic devices and services;

2. Real-time Monitoring to provide accurate information for the formula-
tion of policies and plans by monitoring the current behavior, emotion,
and preference of users;

3. Real-time Feedback acquire groups’ feedback against some social activ-
ities based on real-time monitoring.

2.3.7.4 Collective Intelligence

With the rapid development of wireless communication and sensor technolo-
gies, crowd sensing is becoming a key issue of mobile computing. Crowd
sensing in the form of Crowdsourcing has been successfully applied to geo-
tagged photograph, positioning and navigation, urban road traffic sensing,
market forecast, opinion mining, and other labor-intensive applications. In
the Big Data era, Spatial Crowdsoursing is a hot topic. A user may request
the service and resources related to a specific location. Then the mobile users
who are willing to participate in the task will move to the specified location
to acquire related data. Finally, the acquired data will be sent to the service
requester.
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2.3.7.5 Smart Grid

Smart Grid is the next generation power grid constituted by traditional en-
ergy networks integrated with computation, communications and control for
optimized generation, supply, and consumption of electric energy. It brings
about the following challenges on exploiting Big Data.

Grid planning by analyzing data in the Smart Grid, the regions can be
identified that have excessive high electrical load or high-power outage
frequencies. Such analytical results may contribute to grid upgrading,
transformation, and maintenance;

Interaction between power generation and power consumption
an ideal power grid shall balance power generation and consumption.
However, the traditional power grid is constructed based on one-direc-
tional approach of transmission-transformation-distribution-consump-
tion, thus, leading to electric energy redundancy and waste. Therefore,
smart electric meters are developed to improve power supply efficiency;

The access of intermittent renewable energy there are many new en-
ergy resources, such as wind and solar, that can be connected to power
grids. However, since the power generation capacities of new energy
resources are closely related to climate conditions that feature random-
ness and intermittency, it is challenging to connect them to power grids.

In this chapter, we have seen that Vehicular Ad-hoc Networks (VANET)
are more and more used, and how they work in Europe, with the European
Telecommunications Standards Institute (ETSI) standardization. We have
seen that VANET will not escape to the Big Data technologies needs. After
that, we have seen an introduction to the Big Data technologies, and the
different steps where Big Data is usable. In the next chapter, we will see
why Big Data technologies can be applied with VANET.



Chapter 3

Applying Big Data
Technologies with VANET

We have seen in Chapter 2 how VANET and Big Data work. Technologies
and evolution need some adaptions of the Big Data and VANET standards.
We will see them in Section 3.1, where we will see the concepts of Big Data
from the Section 2.3 adapted to VANET, and then, some European projects
adopting VANET with Big Data technologies in Section 3.2.

3.1 Are VANET Data Big Data?
Now that we know exactly what is Big Data and how it works, we can see if
VANET are compatible with it. We will see how VANET can generate data
in Section 3.1.1, how we can acquire them in Section 3.1.2, how to preprocess
them in Section 3.1.3, the transport them in Section 3.1.4, store them in
Section 3.1.5, and finally, the analysis of them will not be so different from
“classical” Big Data, because when the storage problem is solved, we can use
these data like with others.

3.1.1 Data Generaton in VANET
As seen in Section 2.2, in Europe, the ETSI standardization permits to ITS-S
to generate message data, and we can have some data either in the payload
or in the header.

For each kind of Extended Header, we will be able to get some good data:

Beacon/SHB, we have the position of the sender if we are near to him;

GeoUnicast, we have the position of the sender even if we are not near to
him, and we can see how many hops were needed to reach the destina-
tion ITS-S;

GeoAnycast/GeoBroadcast, we have the position of the sender even if
we are not near to him, and we can see how many hops was needed to

27
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reach the destination area, and with the GeoBroadcast, we can see the
impact of the topology inside the destination area;

LS Request/LS Reply, we can see how the vision of the topology by an
ITS-S involve.

And with the Facilities layer, we can have some other data at a higher
level:

CAM, we can have a better vision of an ITS-S situation, and how the others
ITS-S react with it;

DENM, we can see the behavior of the ITS-S receiving the event, and with
the GeoBroadcast forwarding algorithm, and the KAF, we can see the
impact of the topology.

Besides message data, in VANET, we have another type of data: sensor
data. Sensor data is a big source of data, because it covers from GPS sensor to
exterior lights status or cruise controller etc. Some of these data are present
in the message data, but for the others, we need to put them into log files,
and so the definition of how to get these data is implementation-dependent.

3.1.2 VANET Data Acquisition

In VANET, to get data, we have many options: we can get log files in offline
mode, or get the network data via network sniffing tools or with the ITS-
R. The online mode can also be used to get log files, but it is necessary to
define the transfer protocol from the ITS-V to the ITS-R, which then forward
them to the ITS central platform, or directly from ITS-V to the ITS central
platform through the cellular network. The log files will be mainly used for
sensor data, since they are not all in message data, and message data will be
capture because of LibPcap tools or zero-memory tools (Section 2.3.2).

3.1.3 VANET Preprocessing

When we want to collect the data, we need a preprocessing to make sure not
to get wrong or redundant information. We will see here how we can pre-
process messages, sensor data and how the routing protocol may “implicitly”
preprocess data.
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3.1.3.1 Message Preprocessing

According to CAM and DENM structures, there are two ways that we can
eliminate redundancy and make aggregations for data. First, we can make an
aggregation of CAM data by creating a lighter CAM that contains only av-
erage data (speed, heading, acceleration, length, etc.) in a given observation
interval and transmit only these aggregated data to the Big Data platforms.
Second, we can also select the predefined useful data in the DENM, because
some information (e.g. height and position of the longitudinal career left or
right) are here to improve the impact reduction in pre- and post-crash use
cases, but are a priori not useful for other statistics.

3.1.3.2 Sensor Preprocessing

In order to prevent Internet of Things (IoT), where many sensors are de-
ployed, from sending useless data or too much amount of data too often,
the preprocessing can be set to send data only when significant changes
occur. For example, a temperature sensor does not need to communicate
engine temperature every second, but only when it is hot enough to become
dangerous or to prove that it is still alive. If sensor does not send other data
than “alive data”, it means that data has not evolved enough to be notifi-
able. Some types of thresholds can be set for this.

3.1.3.3 Implicit Preprocessing

Fortunately, some preprocessing is implicitly made by many duplicate packet
detection (DPD), inside the GeoNetworking routing (Section 2.2.1.2, and [10]),
and with the KAF mechanism (Section 2.2.3.2, and [13]). In VANET commu-
nication protocol, if a message is sent many times by multi-hop broadcasting
or by sending many times the same event when new neighbors appears, the
protocol discards these messages, and reduce the redundancy.

The preprocessing is necessary when we have a huge volume of data. For
the moment, there is not enough OBU, RSU and sensors deployed; however,
it will be necessary in very near future.

3.1.4 VANET Communication
Now that we have our data generated and preprocessed, we need to com-
municate them to data centers. For a better understanding, we will firstly
describe the VANET architecture, then dissemination mechanisms to reach
data centers, and finally security mechanisms will be discussed.
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3.1.4.1 VANET Communication Architecture

Figure 3.1 presents the communication in VANET, there exist two types of
communications commonly called V2X (Vehicle to X):

1. Vehicle to Vehicle (V2V), when data are sent from a vehicle to another
to cooperate or to warn of an event;

2. Vehicle to Infrastructure (V2I/I2V), when data are sent from a vehicle
to an RSU (and vice-versa) in order to share informations about events.

As seen in Section 2.3.4, there are three layers in a Big Data network
architecture:

1. Access Network. It is the user side, where devices communicate with
the network infrastructure.

2. Internet Backbone. It is where data is transported to the data center.
This means the communications from RSU to data center (and vice
versa).

3. Inter- and intra- data center network. It is the network formed by the
data centers. Intra-data center when data center are inside the same
building or farms and inter-data center when data center are situated
in different locations.

In VANET, the Access Network is the vehicle itself, but it also can be
a smartphone application. If it is the vehicle, the communication is made
in V2V as in V2I. The V2I permits sending data to the ITS-C, since V2V
is more used in the vehicular context, but it can be used with a multi-hop
usage to access to the ITS-R. The Internet Backbone is composed of all the
ITS-R, which can communicate between them, and the ITS-C. Finally, the
Inter- and Intra-DCN is composed by the different ITS-C and DC.

From a VANET point of view, the specific arrangement will be done at
the access network. There are two main possibilities: use V2I communication
to collect data or use cellular network. However, there is another alternative
using a hybridization between these two technologies: vehicle uses V2I near
an RSU and switches to the cellular network when RSU becomes too far, to
guarantee QoS.

From a Big Data point of view, many challenges are here: we have the
Volume of data to transport, and the Velocity of the data and network to
manage. And so, we need to define how we can transport all these data from
a volatile network topology.
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Figure 3.1 – VANET communication

3.1.4.2 Security and Privacy

When we use cooperative messages in VANET, all data are free of encryp-
tion, because if we encrypt these messages, there is no cooperation between
vendors/manufacturers. So, clear data is mandatory, nevertheless one should
not be able to follow a vehicle by tracking its data, and we need to make
sure that sender is a real sender. To do that, ETSI messages can be secured
with a security header and trailer. Security header contains all informations
about the certificate used to sign the message while security trailer contains
the signature itself. The certificate will not only be used to make a signature
but also to make pseudonym that will change frequently. With this mech-
anism, privacy can be guaranteed. It needs to be mentioned that all these
securities can triple the size of the message. That mechanism is the reason
for the apparition of the PKI on Figure 3.1, but that PKI need to perform
very well, because when we will have many ITS-V, they will need to get new
certificates, and the PKI will also need to be capable to treat revocation lists
and other security stuffs. That problematic increases the question of the Ve-
racity, Variety, Volume and Velocity of VANET: Veracity, because we need
coherent PKIs, Variety because there are many types of certificates that we
can use [57], Volume, because of the number of vehicles, which sign each
message, and finally, the Velocity by the use of pseudonyms, which evolve
over time.

3.1.5 VANET Data Storage
As we have seen in Section 2.3.5, there are three types of databases storage:
structured, semi- and unstructured data, and the storage problematic is not
the same for each one of them. Here we will see which type of structuration
we have, and in consequence, how to store them in a Big Data architecture.
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3.1.5.1 Type of VANET Data

We recall here that CAM and DENM are structured messages defined by
a standard, so they match structured data type. However, sensor data are
implementation-dependent and so are semi-structured data because they are
raw data that have an implicit structure to be able to retrieve data, but they
can also be unstructured data (from video camera for example). Conse-
quently, for messages such as CAM and DENM, we can use classical re-
lational databases systems (RDBMS), however we need NoSQL databases
for sensor data. Fortunately, NoSQL means Not Only SQL, and then we
can use a NoSQL database to store both structured, semi-, and unstruc-
tured data [58]. Nevertheless, in the future VANET, we will need all these
technologies because VANET will also include unstructured data like video,
news, storm warning, etc.

CAM and DENM integrate Volume, Velocity and Variety problematic: we
have a huge amount of various data, which evolve every time: for example, a
moving ITS-S will send up to 10 CAM per second with different values each
time, and two of them have a HighFrequencyContainer (see Section 2.2.3.1).

In the near future, we will need to be able to store efficiently other things
than messages: videos, audio, and, why not, the airplane black box. Because
we talk about vehicles, but airplanes are also vehicular, and they are also
regularized by VANET laws.

3.1.5.2 Current Data Storage in VANET

In VANET, there two levels of storage:

1. ITS-S,

2. ITS-C (ITS Central platform)

At the ITS-S level, ETSI defined a standard called Local Dynamic Map
(LDM) [59], which is used to retrieve events that occur near the ITS-S
and to discover the neighborhood. This LDM is implementation-dependent;
however, this standard only specifies requests between LDM and ETSI layers.
Therefore, LDM mainly stores DENM and CAM. To access to the data, LDM
supports filters in request like equals, not equals, greater than or equal to,
like, not like etc.

At the ITS-C level, the storage method is implementation-dependent.
The method will be made in function of data type we need to store. If we
only store sensors’ data, then semi-structured data will be used, but if we
store only messages, then we will use RDBMS. Another incoming problem is
the certificates and revocation list storage for the security layer, which need



3.1. ARE VANET DATA BIG DATA? 33

to be very efficient to manage them: for example, if a station is revoked, all
the ITS-S need to know it, or, if an ITS-S needs to update its pseudonyms
list, the infrastructure must be able to do it quickly, not matter how many
ITS-S is requesting it at the same time.

3.1.6 The VANET’s Integration Into the 4V
In Section 2.3, we have seen that Big Data comes generally with the 5V:
Variety, Velocity, Veracity, Volume and Value [7]. Here, we have seen that
VANET are compliant with four of them:

Variety Different ITS manufacturers implement standard in different ways
(e.g. some manufacturers have access to CAN bus and some others
not).

Velocity With a frequency of 1 to 10 messages per second for each vehicle,
and for each message, some data will change from one message to an-
other like position, timestamp, speed etc.

Veracity All data need to be coherent with the situation to have an efficient
cooperative ITS.

Volume With all data generated from messages and sensors and the number
of vehicles, data volume increases fast. In [5, 6], they predict that
connected vehicle market will grow from 5 million units to 35 % of
the vehicle marketed in 2022 along with revenues of around 113 billion
euros.

For the moment, Veracity and Volume are not a big concern because there
are not yet enough connected vehicles. On the contrary, Variety and Velocity
already raise new issues. In the near future, when more vehicles will be
connected, then the huge volume of data will require Big Data algorithm
(e.g., 60 bytes per vehicle per 100 ms). Veracity will be essential as well,
because we cannot have an efficient cooperative ITS with incorrect data.
Of course, if the car indicates a location of Berlin instead of Paris, the data
will be absurd, and will be detected easily. However, when the car is near an
access road, it is more difficult to know if it is on the access road or still on
the highway.

Deep-learning approaches will be useful to determine situations and pro-
vide recommendations. We can determine two types of data processing:
off-line and on-line. Deep-learning are more often off-line processing that
need an important volume of data to be processed a priori. Use cases defi-
nition will be trained and validated off-line, and then we will use prediction
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Figure 3.2 – VANET incorporation into the 4V

or recommendation on-line (e.g. for emergency braking). Moreover, we also
need traceability, because if there is a problem, we can go back to look at
the traces. We know that this situation is going to happen soon, so we have
to consider it and begin to prepare solutions.

3.2 European Projects Using Big Data with
ITS

In Europe, many projects are using Big Data in intelligent transports. This
section summarizes four of the representative projects as follows.

1. TransformingTransport [60] is an EU-funded project that represents
a strong consortium of 47 leading transport, logistics and information
technology stakeholders in Europe. With a budget of e18.7 million and
the participation of 47 organizations from 9 countries, the Horizon 2020
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Project name Country Budget Abstract

Transforming
Transport [60]

Spain &
Portugal e18.7 million

Deployment of
Big Data on

ITS to cover 7
domains from

ITS.

LeMO [61] Norway e1.5 million

Study and
analyses Big
Data in the
European
transport
domain.

AutoMat [62] Germany e5.7 million

Standardize a
Common
Vehicle

Information
Model (CVIM).

Big Data
Europe [63] Belgium e5 million

Implementation
of an open

source Big Data
platform.

Table 3.1 – European projects using Big Data with ITS

Big Data Value Lighthouse project is working on finding a more efficient
and more sustainable transport paradigm. It aims to show concrete,
measurable and verifiable evidence of data value that can be achieved
in mobility and logistics. This project aims to deploy Big Data for ITS
in Spain and Portugal and cover 7 domains from ITS and each domain
has its own platform: Highways, Vehicles, Rail, Ports, Airports, Urban
Mobility, and Supply Chains.

2. LeMO [61] for Leveraging Big Data to Manage Transport Operations
is an H2020 project that will explore the implications of the use of
big data to enhance the economic sustainability and competitiveness
of European transport sector. The project will study and analyses Big
Data in the European transport domain in particular with respect to
five transport dimensions: mode, sector, technology, policy and evalua-
tion. LeMO will accomplish this by conducting a series of case studies,
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in order to provide recommendations on the prerequisites of effective
Big Data implementation in the transport field.

3. The core intention of the AutoMat [62] project is to establish a novel
and open ecosystem in the form of a cross-border Vehicle Big Data Mar-
ketplace that leverages currently unused information gathered from
connected vehicles. The interface to the marketplace forms one single
point of data access for service providers and intends to supersede pro-
prietary vehicle data interfaces. AutoMat develops and leverages the
novel Common Vehicle Information Model (CVIM) data format, which
harmonizes information and provides generic and brand-independent
datasets.

4. Big Data Europe [63] aims, firstly, to collect requirements for the infor-
mation and communication technologies (ICT) infrastructure needed
by data-intensive science practitioners tackling a wide range of societal
challenges; covering all aspects of publishing and consuming seman-
tically interoperable, large-scale, multi-lingual data assets and knowl-
edge, and, secondly, design and implement an architecture for an infras-
tructure that meets requirements, minimizes the disruption to current
workflows, and maximizes the opportunities to take advantage of the
latest European RTD developments, including multilingual data har-
vesting, data analytics, and data visualization. This project has been
experimented in Thessaloníki with taxi drivers to make prediction on
traffic flow [64].

In this chapter, we have seen that Big Data can be applied with VANET,
because VANET raise the 4V issues:

1. Variety, by the options from standards, and the number of manufac-
turers;

2. Velocity, due to the number of exchanged messages, with different val-
ues per messages;

3. Volume, due to the increasing number of vehicles multiplying the mes-
sage generation;

4. Veracity, due to the C-ITS situation.
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We have also seen, that in Europe, many projects use Big Data technolo-
gies to manage ITS.

In the next chapter, we will see how we got our VANET data with the
development of an ETSI ITS stack, and by validate ITS implementations
from the Scoop@f project.
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Chapter 4

Getting VANET Data

From now, we have seen how work VANET and Big Data in Chapter 2, if they
can be applied together in Chapter 3, now we will see a testing architecture,
which permit us to get emulated and real data from VANET. This chapter is
presented as follows: Section 4.1 presents the ETSI ITS that we implemented,
Section 4.2 how work laboratory tests, and Section 4.3 how work the road
tests. In the two last sections, we will also present the tests scenario and
methodologies to analyze them.

4.1 Development of an ETSI ITS stack
In order to get VANET data, we implemented the ETSI ITS standardization,
but before explain how we implemented it, we need to introduce the main
technology used: .

4.1.1 An Open-Source Framework: Qt
Qt, pronounced /kju:t/ because creators (Haavard Nord and Eirik Chambe-
Eng) found that Q is cute on Emacs editor, is a cross-platform framework
written in C++ for desktop, embedded and mobile, including Linux, OS X,
Windows, VxWorks, QNX, Android, iOS, BlackBerry, Sailfish OS and other
platforms. A preprocessor, the MOC (Meta-Object Compiler), is used to
extend the C++ language with features like signals and slots. Before the
compilation step, the MOC parses the source files written in Qt-extended
C++ and generates standard compliant C++ sources from them. Thus,
the framework itself and applications/libraries using it can be compiled by
any standard compliant C++ compiler like Clang, GCC, ICC, MinGW and
MSVC [65].

Development of Qt was started in 1990 by the Norwegian programmers
Eirik Chambe-Eng and Haavard Nord. Their company, Trolltech, that sold
Qt licenses and provided support, went through several acquisitions over the
years. Today former Trolltech is named The Qt Company and is a wholly
owned subsidiary of Digia Plc., Finland. Although the Qt Company is the
main driver behind Qt, Qt is now developed by a bigger alliance: The Qt

39
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Project. It consists of many companies and individuals around the globe and
follows a meritocratic governance model. Nowadays, KDE is almost entirely
built with the Qt framework.

Qt is available under various licenses: The Qt Company sells commercial
licenses, but Qt is also available as free software under several versions of the
GPL and the LGPL.

Although, any build system can be used with Qt, Qt brings its own
qmake, which take a .pro file, which structures the project and transform it
on a specific platform Makefile.

Qt comes with its own Integrated Development Environment (IDE), na-
med QtCreator and also an internationalization and localization system and
widgets for GUI development.

The motivations to use this framework were the facility to use its rich
library, the open source license and most of all the signals/slots mechanisms.
Since Qt was designed to GUI development, an event mechanism was built:
signals/slot. When we launch a program, Qt objects can listen for some
signals, which are connected to their slots. And so, when a signal is emitted,
every slot connected to it will be called as described in Figure 4.1. When we
use QObjects (object with Qt properties), we can add signals and slots to the
object (Figure 4.1a), and we can connect signals to slots (Figure 4.1b). Note
that a signal can be connected to many slots, and a slot can be connected by
many signals (from and to many objects, even itself). In Figure 4.1c, when
m_button emit the clicked() signal, application call the slot quit().

Object
Attributes
Methods

Object
Attributes
Methods
Signals
Slots

Before Qt

After Qt

(a) Objects and QObjects differences

Object 1

Connection

Signal 1
Signal 2

Object 2
Signal 1
Slot 1
Slot 2
Slot 3 

(b) Signals and slots connection
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m_button

connect()

clicked()
pressed()

application
lastWindowClosed()
aboutQt()
quit()
closeAllWindows() 

QPushButton

QApplication

(c) Connection between a signal and a slot:
when m_button emit the clicked() signal, ap-
plication call the slot quit()

Figure 4.1 – Signals and slots mechanisms

4.1.2 ETSI ITS implementation
We will divide this part into two sections: the first one talks about the
physical architecture (how are composed the directories and how are the
C structures made and encoded) while the second part talks about the
software architecture (how different parts interact and communicate). All
the documentation is available on http://scoop.univ-reims.fr/
ITS_documentation.

4.1.2.1 Physical Architecture

As described in Figure 4.2, we have a global project ITS, with several sub-
projects: Application, CAN, Facilities, GeoNet, GPS, Hybrid, LibITS, Man-
agement, Network, Security and UpperTester. Some of them have other sub-
projects: Facilities, Network and LibITS. The latter has another sub-project
with sub-projects inside: LibASN. This division in many sub-projects per-
mits to have a better view of the project in the editor and facilitates the
versioning, because as SVN branches, sub-projects are sub-directories.

Application is the layer which interacts with the HMI and manages the
triggering conditions of DENM: if the vehicle state needs to send an
automatic DENM, the Application will trigger it;

CAN from now there is only a fake CAN bus provider, since we do not have
a real CAN bus on our PC, which emulate a CAN bus;

Facilities is the module which launch the CA and the DEN if needed;

GeoNet is composed by the main file, which execute all needed modules;

http://scoop.univ-reims.fr/ITS_documentation
http://scoop.univ-reims.fr/ITS_documentation
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Figure 4.2 – ETSI ITS implementation architecture
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GPS is the GPS module. It is composed of a real GPS module and a fake
GPS provider for lab tests to simulate position or if we do not have a
real GPS sensor;

Hybrid is the configuration module for hybridization between ITS-G5 and
TCP or SSL sockets;

LibITS is where we will find all the API used by everyone;

Management is used to get the state of every module;

Network manages all the datagrams creations, the Beaconing when neces-
sary and the sending to the ITS-G5 interface and hybrid interface;

Security manages the security profiles and configuration like certificate files,
pseudonyms rounding etc.;

UpperTester is the modules used for lab tests (we will talk about it in
Section 4.2.1.1.2, after the definition of an UpperTester).

For the Facilities sub-project, we have:

CA which is composed by the CA Basic Service to generates CAM and
CA Reception Management to receive CAM and notify the application
layer;

DEN which is composed by the DEN Basic Service to execute the DEN Trig-
gering Service for triggering and update (also terminate) of DENM,
DEN Reception Management to receive DENM and notify the appli-
cation layer, and the DEN KAF Management if KAF is needed.

For the Network sub-project, we have:

Packet is the packet description: GBC, Beacon, SHB etc.;

PacketBuffer is the different buffer needed by the GeoNetworking protocol.

And for the LibITS sub-project, we have:

API with a generic API and specifics APIs in function of the module;

Data with serialization of some structures used between different layers of
the projects;

LibASN is the library made by the open source asn1c [66] tool;
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Security is the security layer codec to translate the buffer into a C structure
and conversely.

The LibASN is divided into the different kind of structures (one by ASN
file + the basic types and codecs) to not have a big directory with all inside:

ASN is the ASN types and different codecs;

CAM is the CAM structures;

DENM is the DENM structures;

ITS Container is the Common Data Dictionary structures used by CAM
and DENM;

Security is the security layer structures.

To encode and decode CAM and DENM payload, we need to use the
ASN.1 UPER, and so we use the asn1c tool, which converts ASN.1 files into
C structures with different codecs: XER, BER, DER and UPER. Since this
tool converts ASN.1 files into C structures, we decided to create an ASN.1
file of the security header and trailer, that’s why there is a security sub-project
inside the LibASN, so we can manipulate security layers structures and if the
standard changes, we change the ASN.1 file, not the structures themselves.

4.1.2.2 Software Architecture

To implement the ETSI ITS stack, we decided to be as close as possible to
the standards, and so we have the Figure 4.3 with:

Application layer communicates with the HMI in Bluetooth and with the
Facilities layer in UDP socket;

Facilities layer communicates with the GeoNet layer by using a GeoNet
public function to send packet;

GeoNet layer encapsulates Facilities payload in correct BTP / GeoNet
header and send it with raw socket through the ITS-G5 interface or
in TCP socket if the hybridization is set, and notify the Facilities with
UDP socket;

Management layer communicates data from different sensors (CAN / GPS)
through Qt signals to the others layers.



4.1. DEVELOPMENT OF AN ETSI ITS STACK 45

Application

Facilities

GeoNet

M
an
ag
em

en
t

Bluetooth

UDP

UDP Function

Signal

Signal

Signal

Raw socket TCP

Figure 4.3 – Software architecture of the ETSI ITS implementation

In all the following sub-sections, methods read() and readDebug() have
the same behaviors: read() reads the configuration associated to the module
and set the module, readDebug() prints the values. To read configuration
files, we use the confuse library [67]. In Appendix F, all the classes dia-
grams are available.

• Manager

For better understanding of the working of the different layers we will
first see how we implemented the Management layer. The Manager is
the Management layer class with all the possible sensors and modules
parameters. These sensors and modules are pointers. The Manager
puts all set pointers (i.e. used sensors and modules) into a HashMap
with key string pointing to void pointer. With this implementation,
modules and sensors get the Manager pointer in their constructor, get
the pointer to the sensor or module parameter needed and if value
change in them, they automatically get the new value. The Manager
has a signal midToChange connected to its slot changeMID. This signal
is used by the GeoNet layer when a duplicate address is detected to
virtually change the MAC address.

We use sensors and application in the Manager. Actually, real GPS
and CAN bus providers and application are classes, which inherit Fake
sensors and application. By doing this, if the sensor or application is
used, we put the real sensor / application into the Manager’s HashMap,
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the Fake one otherwise. Parameters are used to initialize different
modules and the GnAddr is the GeoNetworking Address of the ITS-S.

• Sensors

For GPS and CAN bus, the implementation is quite similar. They in-
herit of a Fake CAN and GPS provider used if we do not have / need
the real sensor. They both have a Parameter with all values: heading,
position speed and timestamp for GPS, and acceleration control (gas
pedal, brake pedal cruise control etc.), curvature, curvature calcula-
tion mode, drive direction, exterior lights state, external temperature,
lateral acceleration, light bar and siren state, longitudinal acceleration,
number of occupants, positioning solution type (GNSS, dead reckon-
ing, both), position of occupants, speed (used if we do not have GPS),
steering wheel angle, vertical acceleration and yaw rate for CAN bus.
All these values are the ones used by CAM and DENM. If we need more
values, we need to add them. Fake classes have functions to change
values used by the UpperTester (see Section 4.2.1.1.2). Since we only
have a real GPS sensor, only GPS has a real class GPSProvider with
a function to get the GPS position every 100 ms (minimum frequency
of CAM generation). When a value from a sensor is changed, a posi-
tionChanged() or canChanged() signal is emitted.

Now that we have seen the left side with the Manager and sensors, we
will detail from top to bottom (Application to GeoNet layer).

• Application

As for sensors, there are two types of Application layer: the real one
(the ApplicationManagement) and the fake one for the UpperTester
(see Section 4.2.1.1.2). The difference with sensors, is that the real
Application does not inherit from the Fake one. They do not have
the same job. The Fake one set different parameters and the real one
triggers events (automatic or manual). The FakeApplicationProvider
is composed by a ParameterApplication which have the different type
of static values that can be changed on time by an external application;
and the ApplicationManagement have the connections to the CAN bus
and GPS sensor, the UpperTester if there are tests with CAM (noti-
fication of CAM reception) or DENM (generation and notification of
DENM reception), and all the necessary for a good Bluetooth commu-
nication with the HMI. Functions from the FakeApplicationProvider
will be used by the UpperTester to set some values: station type, vehi-
cle role, embarkation status, priority (on road: with traffic light, cross
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etc.), type of dangerous goods transported and the station ID. The
ApplicationManagement works as follow: if there is the application
needed for triggering event, it connects the CAN and GPS signals to
its slot situationChanged(), if there is Bluetooth, it turns the server
on to communicate with the HMI, initializes UDP sockets with the
Facilities layer and if there is an UpperTester, sets the UDP socket to
communicate with the UpperTester. When a client is connected to the
Bluetooth server, the server adds it to its client list. When it receives
a message from the HMI (or the UpperTester), it sends it to the Facil-
ities, and when it receives a message from the Facilities, it sends the
message to the clients and to the UpperTester if needed.

• Facilities

The Facilities layer is composed by three sub-layers: Facilities, CA and
DEN. The Facilities sub-layer executes the CA and DEN if needed. The
CA is composed by the CA Basic Service to generate CAM and the CA
Reception Management to receive CAM. The DEN is composed by
the DEN Basic Service, the DEN Triggering Management, the DEN
Reception Management and the DEN KAF Management.

The DEN Basic Service set the different modules and forward requests
to the appropriate DEN module and returns the result to the Ap-
plication. The DEN Triggering Management manages the triggering,
updating and termination of DENM; the DEN Reception Management
the DENM reception and executes the KAF if activated; and the DEN
KAF Management the KAF procedures. Besides the three modules,
the DEN Basic Service is composed by the Application parameters,
DENM parameters, a UDP socket to communicate with the Appli-
cation layer, and a function AppDENM_terminate to call the good
module to terminate the DENM (DEN Triggering Management if it
is my event, Reception Management otherwise). The DEN Trigger-
ing Management has some parameters to set DENM and a vector
of denMessageTableSource to store triggered DENM. The DEN Re-
ception Management has also some parameters and a vector of den-
MessageTableReception to store received DENM and a UDP socket to
notify the Application. Both DEN Triggering and Reception Manage-
ment have a sequence number to be coherent with the identification of
DENM. The DEN KAF Management has parameters and a vector of
denMessageTableForwarding to store DENM to repeat. These vectors
have the same working template: they set the different timers and start
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them. The timers are connected to slots from threads, which execute
the functions described in Section 2.2.3.2.
It is easier for the CA: the CA Basic Service wait for a timer or a
signal reception that position or CAN bus changed. It then looks if
it can generate a CAM, generates and send it; and the CA Reception
Management, receives the CAM, decode it and notify the Application.
The DEN Reception and CA Reception Management listen to a UDP
socket on the Localhost and the port corresponding to the destination
port from the BTP standard (see Section 2.2.2). With this mechanism,
we do not need to specify an ad-hoc port, and if there is no Reception
Management, the GeoNetworking layer will not be disturbed. If there is
a destination port info in the BTP layer, it is managed by the Reception
Management.

• GeoNetworking
The GeoNetworking layer has only two working classes: GeoNet and
ReceivePackets. That GeoNet class is responsible for the Beacon gen-
eration and sending (if no source position vector is sent), and has
a function used by it and by the Facilities layer to send data. The
GeoNet class manages also the processing of received packet by the
ReceivePackets class. To send packets, GeoNet create a raw packet
to send in the interface from configuration file. It permits to not have
an ITS-G5 interface to send packet: we can use all kind of interface
(Wi-Fi, Ethernet, Localhost etc.). If the hybridization is turned on, a
TCP socket is created to send the same packet as for ITS-G5 interface
(except for the Ethernet layer). By doing this, when we receive packet
through the ITS-G5 interface or hybridization, it is the same function
to call to process it, and so the same behavior. To know how to send
data, the sending function needs a gnDataRequest_t structure:
typedef struct gnDataRequest_s
{

CommonHeader::e_upperProtocolEntity upperProtocolEntity;
CommonHeader::e_headerType packetTransportType;
quint8 packetTransportSubType;
quint16 destinationPort;
quint16 destinationPortInfo;
destinationAddress_t destinationAddress;
e_gnCommunicationProfile gnCommunicationProfile;
LifeTime* maximumPacketLifeTime;
quint16* repetitionInterval;
quint16* maximumRepetitionTime;
quint8* maximumHopLimit;
TrafficClass trafficClass;
QByteArray payload;

}gnDataRequest_t;

with CommonHeader::e_upperProtocolEntity an enum with possibles
values {ANY, BTP A, BTP B, IPv6}; CommonHeader::e_headerType
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and packetTransportSubType the values of the HeaderType and Head-
erSubType from the CommonHeader ; destinationAddress_t a union
between a GeoNetworking address or a destination area, e_gnCom-
municationProfile an enum with values {Unspecified, ITS G5A}. Each
“person” who wants to send data needs to fill in a gnDataRequest_t
structure.
To be able to use the different routing algorithms, the GeoNet class
is composed by different packet buffer and each kind of packet has a
class to be put in HashMaps (we need comparison functions, and only
classes can do it easily). By making classes of each packet type, we can
fill them faster and easier than with structures.
The ReceivePackets class has only the configuration parameter to know
which interface to listen, and which MAC address to not listen (our
MAC address) and a signal connected to the GeoNet packet processing
slot. In terms of algorithm, using the pcap library [68], we look up for
ITS-G5 interface, open it on live mode, handle it and listen to it with
the filter Ethernet with a protocol number 0x8947 and the Ethernet
source different of the ITS MAC address. When the MAC address
changes for different reason, the ReceivePackets class change the filter
and listen again.
For the security layer, we have a SecurityManager class which knows
the different profiles and stores the received payload and received cer-
tificates. With this, it can adapt the profiles to send and can retrieve
if a sender has the right SSP to send packets. To encode or decode the
security layer of a packet, the GeoNet use the SecurityManager’s func-
tions.

4.1.3 Executing the ITS stack
As mentioned before, configuration files are managed with the confuse
library. All the configuration files are placed in the /etc/its/config directory.
We have 8 files:

1. appli.conf

2. btp.conf

3. can.conf

4. denm.conf

5. gps.conf
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6. security.conf

7. system.conf

8. upperTester.conf

All these files permits to set the ITS default configuration and all parame-
ters need for laboratory testing.: appli.conf for the ParameterApplication
attributes, btp.conf for the BTP ports number, can.conf for the Parame-
terCAN, denm.conf for the KAF and values of request and result identifiers,
gps.conf for the static position and the address of the GPS deamon, secu-
rity.conf for the localization of the private key and certificate, system.conf
for the networking configuration and static values like vehicle length, and the
upperTester.conf for the ports used by the UpperTester and the destination
area to use for DENM triggering.

Once the configuration is made, to execute the ITS stack, we call the
geonet program:

Usage: geonet <abcfCDgHnuh>
-a --application: Activate the ApplicationManager
-b --bluetooth: Activate the Bluetooth
-c --can: Activate the CANProvider
-f --facilities: Activate the facilities layer
-C --cam: Activate CAM only
-D --denm: Activate DENM only
-g --gps: Activate the GPSProvider
-H --hybrid: Activate the hybridization
-n --geonet: Activate the ITS-G5 interface
-u --upperTester: Activate the UpperTester
-h --help: Print this help and quit

4.2 Laboratory Testing
After the implementation of a standardization, we should conduct some tests.
To do so, we can test it in laboratory with an emulated environment, or in a
real situation. The laboratory tests offer a less cost testing, in a controlled
environment, but since the environment is emulated, it cannot reflect all
situations, that’s why in a second time, when the laboratory tests pass, we
can test the implementation on real environment. We will first see how to test
on laboratory the conformance to a standard (Section 4.2.1), then functional
tests (i.e. Scoop@f conformance tests) in Section 4.2.2, and then how to test
an ITS implementation on road (closed or not) in Section 4.3.
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4.2.1 Conformance Testing
On ITS-G5 laboratory tests, each component will be tested in line with
the process presented in Figure 4.4 to see if it is in conformance with the
standardization, we talk about conformance tests. On one hand, we have
the tester composed of two elements: a computer equipped with testing en-
gine, and an ITS-G5 gateway customized to broadcast every 802.11p message
received by the wireless interface, on the other interface. This allows the
computer to analyze the G5 flow in order to execute the tests. The tester is
linked to the System Under Test (SUT, i.e. the implementation to test) by
an Ethernet connection. Thanks to these two links (G5 gateway and Ether-
net link) we can execute automatically a set of tests. Note that the ITS-G5
is required only if the SUT use this type of interface. Indeed, the implemen-
tation can send messages through the classical Wi-Fi or the Ethernet con-
nection, since we have an Ethernet header with the Header Type changed
(as a reminder, with a value of 0x8947). Thanks to this, an implementation
can be tested on the same computer as the tester unit by using the Local-
host (that’s how we first tested our implementation). Of course, the ITS-G5
is useful only for the ETSI ITS-G5 tests, if we test a coffee maker, we do not
use that gateway. To be tested, the SUT needs to implement a piece of code
called UpperTester [69] (which we will talk more about in Section 4.2.1.1.2).

Figure 4.4 – Conformance tests architecture

4.2.1.1 Testing Framework

A testing framework is mainly composed of 5 parts:
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1. Test Runtime: it is the software which executes the bench of test, it
has to be time synchronized with the SUT;

2. Abstract Protocol Tester (APT): it is an implementation which simu-
lates the layer we intend to test;

3. Component to test: it implements the UpperTester in order to be stim-
ulated by the Test Adapter using common primitives, which will trigger
some behaviors on the component;

4. Test Adapter: it is independent of the software, written in any program-
ming language, it provides the transport and translation of messages
between the SUT and the APT;

5. Codecs: it defines the rules that the Test Adapter will use to translate
and to encapsulate the TTCN-3 (the formal testing language) struc-
tures into SUT messages and vice versa.

And the test execution is achieved as follows:

1. APT sends message either to UpperTester or the gateway;

2. Test adapter translates the message in a binary one and add all required
protocol headers;

3. The SUT receives the message and reacts (or sometimes the expected
behavior is to not react), using one of the two links;

4. The test adapter translates the message into a TTCN-3 structure by
using codecs;

5. The APT examines the reaction and provides a verdict, which can be
one of the follows:

success All works as intended;

inconclusive We do not know if there is problem. For example, if we
do not receive an intended message, we do not know if it is because
the implementation does not work or if the connection with it is
broken. Note that the inconclusive result is different from a fail
result;

fail The resulting behavior is not the one expected.
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4.2.1.1.1 TTCN-3 and Test Adapter

The TTCN-3 (for Testing and Test Control Notation Version 3 [70]) is a
testing language used to be independent of the tester unit by offering a hard-
ware abstraction. The tester implements the tests in this language, and then
compile it in the same language as the Test Adapter (if possible). The Test
Adapter (TA), implements the different layers used: the functions to use (get
timestamp for example), the primitives to send to the UpperTester (change
the speed value for example), and all the codecs (encoding in ASN.1 UPER,
add the ETSI headers etc.). The AT and the pre-compiled TTCN-3 tests
are built to make an executable program, which we will configure to make
some tests, as if they were simple functions. The program will be executed
by the Test Runtime. There are a lot of Test Runtimes: TTWorkBench [71]
(TTWB), Titan [72], or Elvior [73], to mention just a few.

TTWorkBench is a proprietary tool developed by Spirent as an Eclipse
plugin with an AT wrote in Java language. This tool is composed
by 2 views: the developing view and the execution view. In the first
one, we can write the TTCN-3 tests and the AT, and compile them to
produce tests campaigns. In the execution view, we can configure tests
and execute them partially or totally.

Elvior is a proprietary tool with an AT, which can be in C, C++, C# or
Java language, and is with its own Graphical User Interface (GUI) [74].

Titan is a free and open-source project developed by Eclipse as an Eclipse
plugin to write TTCN-3 code and execute tests. The AT is written in
C++, and the tests can be executed or built in command line (CLI).

Since the ETSI plugtests are made with the TTWB framework [69], we
used it with the Scoop@f partners, to be in the same conditions as for the
plugtests, but to test our implementation, we used both TTWB and Titan,
with a reimplemented AT. By developing our ITS-G5 stack and the AT
for Titan, it permits us to detect some bugs from the tests used in the
ETSI plugtests and notify them, but also some bugs with TTWB and Titan
behaviors.

4.2.1.1.2 UpperTester

The UpperTester is almost the most important thing when we make labora-
tory test. It is the software, which will communicate with the tester to emu-
late the environment, and notify it from all events (reception of message, or
result of a command from the tester). The UpperTester communicates with



54 CHAPTER 4. GETTING VANET DATA

the tester using UDP. In the ETSI ITS-G5 tests, there are 44 primitives, but
in Scoop@f project, we only use the 27 firsts above the line:

3 common primitives,

14 CAM primitives,

4 DENM primitives,

6 GeoNetworking primitives,

3 IPv6OverGeoNetworking primitives,

3 BTP primitives,

3 MAP/SPAT primitives,

4 IVI primitives,

4 SRE/SSE primitives (traffic light control [75]).
To recognize each primitive, we use the first byte, which define which prim-
itive is in the message. These message type bytes are classified: 0x0x for
the common primitives, 0x1x for DENM primitives and so on (except for the
three lasts, which are all in the range 0xAx).

4.2.1.1.3 UpperTester Implementation

The UpperTester is an emulation of received signals of the tested ITS-S, and
so, it should not change the behavior of the ITS-S by itself, but
make the ITS-S change its behavior. That’s why in our implementation,
the UpperTester use the functions of Fake GPS, CAN and Applications,
and that’s why these Fake modules have attributes corresponding to the
UpperTester primitives. To encode primitives, the UpperTester has a table
of 256 possible primitives (the primitive identifier is encoded in one byte).
These primitives are function pointer to the primitive itself. Using a table of
function pointer is more efficient than a vector or an HashMap, because we
call the m_req[request[0]] (assuming that our table is called m_req, and the
payload request), we are in O(1) and not in O(log(256)) with a vector or an
HashMap. If the request number does not exist, we respond to the tester with
a failure response. When the UpperTester needs to send a GeoNetworking
packet, it calls the GeoNet send function with a filled gnDataRequest_t as
if it is the Facilities layer. If it is a DENM test, it creates an AppDENM
request as if it is the Application layer. If it has to change a parameter, it
uses the parameter’s function dedicated to.
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4.2.2 Functional Testing
To test the functional part of an ITS-S in the Scoop@f project, we have
to test the if the triggering conditions are respected (Section 4.2.2.1), the
log generation that will be used in road tests (Section 4.2.2.2), the inter-
face between ITS-R and central platform (ITS-C) in Section 4.2.2.3, and
some interoperability tests (offline tests in Section 4.2.2.4, and online tests
in Section 4.2.2.5).

4.2.2.1 Triggering Conditions

On an ITS-V, automatic DENM messages can be triggered by respecting
some conditions of the vehicle and their environment. Then a careful at-
tention should be given to this event generation. Series of test cases have
been derived from the specification of these triggering conditions. In order
to achieve these test cases, we either need to have a connection to a CAN
Bus emulator or to implement an adapted UpperTester on each component
to be able to receive primitives emulating car environment events. For the
Scoop@f we needed to extend the UpperTester primitives to emulate the trig-
gering conditions like setting the strength braking to test the emergency
braking for example. To do that, we use the unused message type bytes,
and define the data format (see Figure 4.5, and Table 4.1 for the strength
braking example).

MessageType BrakingPressure

0                      1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 4.5 – An extended UpperTester primitive

Name Length Value
MessageType 1 byte 0xB6
BrakingPressure 1 byte [0-252] braking pressure

253 saturation
254 sensor test running
255 unavailable

Table 4.1 – Strength Braking primitive’s values
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4.2.2.2 Log Generation

Each component should generate all log records related to pertinent events.
The events are mainly those about emission and reception of messages (for
any layer). A common specification of log records should be defined and each
vendor should insert a generation module in the developed component.

Two types of logs are considered:

• TLog (Technical Log) that are generated when an event occurs (mainly
emission or reception of messages). TLogs will be used essentially for
road test;

• ULog (User Log) that are generated periodically with vehicle data.
ULogs will be used essentially for a Scoop@f supervision purpose.

The access to a log file server is also considered in the specification. In
order to use these log files, the generation is tested by simulating the server
and by triggering the SUT for TLogs or just listening for ULogs. The labo-
ratory test of the generation and emission of these logs is crucial, since if it
does not work on road, it is very difficult to determine where the problem is,
and it is more expansive to test.

4.2.2.3 ITS-C and ITS-R Interfaces

Usually, in Europe, most of road operators handle the DATEX messages to
send (or receive) requests from the ITS-C (or to the ITS-C). In the Scoop@f
project, ITS-R can receive or emit DATEX messages. These DATEX are
used to send or notify of DENM, and to aggregate CAM with an average
DATEX CAM. The translation on any RSU of received DATEX message into
an equivalent DENM (or sent DENM into an equivalent DATEX message)
has to be checked by simulating the two aspects: send a DATEX message to
the RSU and listening the derived DENM; send a DENM to the RSU and
listening DATEX messages sent to the ITS-C. To test these aspects, we had
to develop a DATEX server, which send DATEX to create DENM, and a
simulator of ITS-V, which sends CAM and DENM to test if the ITS-R send
the good DATEX to the server.

4.2.2.4 On Laboratory Offline Interoperability Tests

To ensure the interoperability between the equipment (OBU and RSU), we
need first to test the communication between them. Since they are located
in different sites, we will start by testing the interoperability between them
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(using off-line principle). To test on laboratory the interoperability, we ex-
change some PCAP log files, and we replay them with different equipment,
by modifying timestamps and locations.

Figure 4.6 – Log generation architecture

In Figure 4.6, the SUT must be stimulated in order to start sending
CAM and DENM messages. The messages sent will be captured by the
Ethernet-G5 gateway. Then, these messages are transmitted to the PC via
the Ethernet link, where the Wireshark tool should be running. This tool is
used then to save each message in a PCAP format.

For each equipment, we intend to generate these types of messages:

1. CAM: For each equipment, a log file with a minimum of 10 CAM
messages has to be generated.

2. DENM: For DENM messages, 12 messages must be saved each in a
separate file.

The architecture for tests execution is almost the same as for the log file
generation. However, the data flow will be reversed. Figure 4.7 describes
this architecture.

A CAM or a DENM message must be extracted from the PCAP log file.
Then, it has to be broadcasted by the Ethernet-G5 gateway. The message
reception is verified using the OBU/RSU HMI or using the Upper Tester
indication.
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Figure 4.7 – Test execution architecture

4.2.2.5 On Laboratory Online Interoperability Tests

Figure 4.8 shows the architecture of the on-line interoperability. In this
architecture, the SUT is composed of two components (OBU or RSU). One
of the components is stimulated via the Upper Tester (UT) link in order to
send a CAM or a DENM message. When the other equipment receives this
message, it sends a CAM or a DENM indication to the PC via the Ethernet
link. This indication includes all the data received in the message. Then,
the PC compares the data of the message sent and the one received. After
that, it decides if the test succeeds or fails. This is repeated for all DENM
use-cases.

4.3 Road Testing

When we want to make experimentation on road, we have two options: online
or offline tests. In both cases, we need some log systems, because instead
of laboratory tests, vehicles are real, and we can not simulate the vehicle
behavior: each value can not be exactly set. Values from these logs need then
to be parsed with an error rate acceptable, which depends on the standards
and deliverable interpretation. When we use the offline method, we make
several tests, get the logs, and then we compare the values more or less
automatically, and we set verdicts. With online method, the ITS-S needs
to transfer its logs to a test unit, which will compare the values. In both
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Figure 4.8 – Interoperability tests architecture

cases, we need a very precise and well-formed logs file to be sure to not
miss something, and with online tests, we also need a good way to get the
files. All these mechanisms (log generation and transfer) need to be tested
on laboratory, in order not to go to the road with faulty systems.

4.3.1 Road Test in Scoop@f Project
In the Scoop@f project, both online and offline tests can be done. For the
log file format, several ASN.1 definitions were made: two (technical logs
called TLogs for the ITS-S state, and user log called ULogs for the Scoop@f
application utilization supervision) for each type of ITS-S (customer vehicle,
RSU and road operator vehicle). By doing these ASN.1 separations, each
type of ITS-S does not have value which does not concern them, for example,
RSU have no value about its speed. We decided to create ASN.1 definitions to
ensure the implementation independence and not be affected by the hardware
representation of numbers, and to be able to encode the logs file with ASN.1
UPER as for CAM and DENM, since all the manufacturers should be able
to use this encoding for CAM and DENM, and rules are the same with all
kind of ASN.1 structures. The motivation to encode with the ASN.1 UPER
is that this is the most efficient way to encode data without less and with
the small size, because we use the exact number of bits needed to encode the
values.

To send these logs to the test unit, the extension possibility of the ASN.1
was used. In the CAM definition, the RSU container can be extended to add
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some infrastructure services. In the Scoop@f project, that capability was used
for the security procedures and for the file transfer. For the security, the
RSU transfers the requests from the ITS-V to the PKI server for certificates
updates and some other stuff; for the log files, ITS-V send the files to the
RSU, which forwards them to the central unit. The extension, called CAM-I
for CAM-Infrastructure, is made as in Appendix G.1. Three new containers
are added:

1. Service Advertisment Container for the service details mike communi-
cation and type of service;

2. Position Enhancement Container to involve the positioning solution of
ITS-V;

3. Environment and Context Container for the environment information.

The Scoop@f system has some disadvantages due to industrial constraints.
If an RSU wants to make some security services, it will send the CAM-I
with an Advertised Service ID at the security service value, and if it wants
to forward log files, it set the Advertised Service ID with the log file transfer
service number. But if the RSU wants to do both, it needs to send two dif-
ferent CAM-I. In Scoop@f, to send the two different CAM-I, they send five
CAM-I of the first service and then five other CAM-I of the second service
per second, which is in contradiction with the standard (one CAM per sec-
ond for the RSU). Moreover, the BTP port used to send CAM-I is the same
as the CAM, which is not semantically correct. When we use BTP-B, we
have a destination port info which is used for this purpose.

When the log files are collected, we need to decode the UPER, but with
all the different ASN.1 files and no system to identify the type of log file,
and some types has the same name but not the same values and range, if
we want to make a tool to decode them, we have to internally rename them,
and select manually the log type.

To remedy this situation, we propose a new way to send the Advertisment
Services and to define the logs.

4.3.2 Evolution of the Log System Proposition
One of the two Scoop@f problems with the log system and transfer is the
CAM-I. We can not use one CAM-I for multiple services. To solve this, we
propose to change the CAM-I (see Appendix G.2). The Service Advertise-
ment Container is now composed by a list of Service Advertisment Container
and RSU addresses (IP and MAC):
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ServiceAdvertismentContainer ::= SEQUENCE {
rsuMacAddress RsuMacAddress,
rsuIpAddress RsuIpAddress,
ads ServiceAdvertisments

}

ServiceAdvertisments ::= SEQUENCE (SIZE(0..7)) OF ServiceAdvertisment

Since the RSU’s addresses will not change from a Service to another, they
can be defined globally for each Services. By making a list of 0 to 7 Services,
we can have one Service per channel (one Control Channel (CCH) and six
Service Channels (SCH)). To save more bits, the three containers of the
container are optional, and the IP address is modified:

RsuIpAddress ::= CHOICE {
rsuipv4Andv6Address Ipv4Andv6,
rsuiPv4Address IPv4Address,
rsuiPv6Address IPv6Address

}

Ipv4Andv6 ::= SEQUENCE {
rsuiPv4Address IPv4Address,
rsuiPv6Address IPv6Address

}

In Scoop@f project

RsuIpAddress ::= SEQUENCE {
rsuIPv4Address IPv4Address OPTIONAL,
rsuIPv6Address IPv6Address OPTIONAL

}

The proposed version

With the proposed solution, the IP Address is more coherent and take less
space to encode. We can save some other bits with the Advertised Service ID,
by passing from 8 bits to 3, by reducing the range to [0..7], and 5 other bits
with the size of the Service Access Capabilities from 8 bits to 3. The last
reduction was made with the number of Satellite locally available: we were
in 8 bits with 255 possible satellites, and now we have only 30. We chose this
number because with the actual GPS satellites, we can not have more than
12 satellites at the same time, and the Galileo system will have 30 satellites,
6 of which are spare parts.

For the BTP port issue, we just need to set the destination port info to
an unused value (e.g. 1).

For the TLogs and ULogs problem, instead of making 6 different ASN.1
definitions, we propose to make only one definition, which define all kind of
logs, and which we can be extended to other project logs (see Appendix G.3,
where we only show for the TLog optimization, but the ULog can be added
in the same way): we have LogFile composed by a LogHeader and some Logs
(a collection time and the data. Putting the collection time directly here
permit to be sure that it will be in the first position, and not have to search
for it):
TLogFile ::= SEQUENCE {

header TLogHeader,
logs TLogs

}

TLogs ::= SEQUENCE OF TLog

TLog ::= SEQUENCE {
collectionTime TimestampIts,
log TLogType

}



62 CHAPTER 4. GETTING VANET DATA

With this definition, the TLogHeader is always with the same length, and
so, by decoding it, we can get the source with the Actor structure:

Actor ::= SEQUENCE {
projectID ProjectID,
actorID ActorID

}

ProjectID ::= INTEGER {
unavailable (0),
scoopf (1)

} (0..16)

ActorID ::=INTEGER (0..16)

Scoop-ActorID ::= INTEGER {
unavailable (0),
dirif (1),
dira (2),
diro (3),
sanef (4),
ld38 (5),
cd22 (6),
cd35 (7)
stBrieucAgg (8),
rBZH (9),
renault (10),
psa (11)

} (0..16)

The first 4 bits are used to select the project (Scoop@f, InterCor, etc.) and
the 4 last to specify the source of the ITS-S, and so, we can have 16 projects
with 16 sources inside: 256 different sources. We could also specify the
type of log (TLog or ULog), but we potentially divide by two the number
of sources. When we have decoded the Header, we can adapt the codec
to select the good ASN.1 definition of the logs. Another point to see is
the CAM/CAM-I or DENM log. In Scoop@f, we select some data and put
them in the TLog, with some possible error when translating them into a
human readable system, and we have two TLogs per message: on sending
and reception, which double the possible errors. We propose to put directly
the CAM/CAM-I in a CAM-I TLog and DENM in a DENM TLog, with a
boolean to know if we are sending or receiving the message. By doing this,
we can not make mistake by omitting data, and if we need more data, we
have them since we have the entire message. For all TLog divided in two
TLog depending on the sending or reception method, we add the boolean
and aggregate the TLogs. Many other optimizations can be done in the data
values definition, but in Figure 4.9, we can see different size of the biggest
TLogs. We can see that our solution (the dark blue bars) are less or equal
to the Scoop@f one and that they can be very finer when CAM-I is used,
because instead of generating up to 7 CAM-I, we generate only one CAM-I.
But even with one service, our CAM-I is lighter than the Scoop@f CAM-I.
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Figure 4.9 – Comparison between the Scoop@f TLogs and proposed TLogs
sizes

In this chapter, we have seen how we implemented the ETSI ITS stack, and
how we validate ITS implementations in the Scoop@f project in order to
get VANET values to analyze. The validation of ITS is made in two main
steps: the extraction of properties that need to be tested from standards,
the tests of these properties. The tests are first done on laboratory with
emulated environments, in order to manage the behavior more easily than in
real situations. When the implementation successfully pass the laboratory
tests, it is tested on road with a real environment. To do that, we need to
implement log systems to get values of the tested properties.

In the next chapter, we will see our Big Data analysis methodology using
VANET data from the Scoop@f project.



64 CHAPTER 4. GETTING VANET DATA



Chapter 5

Driver’s Behavior Extraction

We have seen how VANET generate data (Chapter 2), how to use them
with Big Data (Chapter 3), and we got some data from the Scoop@f project
(Chapter 4). We will now see a new methodology that we propose to extract
some exemplars, and why we use it with VANET data. Here, our exemplars
are driver’s behavior, i.e. how they manage different dangerous situations.
If we can do that, it will raises privacy issues: the vehicle can change its
pseudonym, but the driver can not change his behavior on the road, and
he is still traceable. Since our methodology uses k Nearest Neighbors princi-
ples, we will first see a review of different methodologies using the k Nearest
Neighbors principle in Section 5.1, then the proposed methodology based on
local density in Section 5.2, its complexity and an implementation of the algo-
rithm in Section 5.3, and finally, a use case from an InterCor experimentation
in Section 5.4.

5.1 Overview of Techniques using the k Near-
est Neighbors

Techniques using the Nearest Neighbors for data classification and sampling
are often used since decades [76]. Here we will see an overview of some of
them: the first two k Nearest Neighbors algorithms, which are used by most
of the others algorithms, and the methods, which use the principle of local
density, since we use it in our methodology.

5.1.1 k Nearest Neighbors [77]
The k Nearest Neighbors (kNN) technique is the simplest way to categorize a
data. It uses a training set Ω = {x1, x2, . . . , xn}, with xi data from different
classes. We define a way to calculate the distance between the data: if the
distance between two data is small, it means that they are similar. When
we want to classify a new incoming data, we calculate the distance between
it and all the data from the training set. We order them, and we take the
k nearest data. We count how many times classes are represented by these

65
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data, and the one which is the most represented is the class of our incoming
data. Of course, if there is a tie, we need to choose the class with different
techniques: randomly, the first class to appear, etc.

We can illustrate the kNN methodology with a simple example: imagine
that we have two classes, with the appropriate training set, the DC Comics™
games and the Marvel™ games. If I take a game (illustrated with question
mark in Figure 5.1), is it a DC Comics™ game or a Marvel™ game? That
distance differ from a use-case to another. According to the Figure 5.1, the
nearest neighbor is DC Comics™. So, with a 1-NN technique, the game is a
Marvel™ game. But if we take the 3 or 5-NN, the game is a DC Comics™
one.

?
k = 1

k = 3

k = 5

Figure 5.1 – Utilization of the kNN technique to determine the game category

As we can see, this technique is strongly impacted by the choice of the k
value. Moreover, more we increase the k value, more the probability of error
increases; for example, if we choose a k value of the number of data in the
training set, the incoming data will be categorize in the most represented
class of the dataset, which is not necessarily the good one.

5.1.2 Weighted k Nearest Neighbor [78]
The Weighted k Nearest Neighbor (WkNN) technique is based on the kNN
mentioned above, but add a distance-weighted function. That weight is then
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calculated between the incoming data and all the members of the training
set. We then use the kNN technique with the distance-weighted computed
to categorize the new data. In the original paper, the author proposed three
functions to compute weights between the incoming data and the i-th data
of the training set:

wi = k − i+ 1 (5.1)

wi =
1

di
, di 6= 0 (5.2)

wi =


dk − di
dk − d1

, dk 6= d1

1, dk = d1

(5.3)

Where:

• wi is the distance-weight between the unclassified data and the classi-
fied i-th data from the training set,

• k is the number of the wanted nearest neighbors,

• i is the classified i-th data of the training set,

• di is the Euclidean distance between the unclassified data and the clas-
sified i-th data of the training set,

• dk is the Euclidean distance between the unclassified data and the
classified k-th data of the training set.

Equations (5.1) and (5.2) are easier to compute, but they give a more
probability of error: “[Equation (5.1)] has a clear drawback of not being able
to adjust the distribution of weights, depending on closeness of the neigh-
bors to the unknown sample”, and “For [Equation (5.2)]. . . , the relationship
between the distance di and the corresponding weight wi is such that the
weights wi take very large values for distances di close to zero, and thus
reduce the corresponding classification algorithm in many cases to a simple
nearest-neighbor rule”, i.e. the kNN mentioned before.

As we can see, the result will be mainly influenced by the distance-weight
calculation technique, improve the efficiency of the kNN methodology with
the third presented way to compute the distance-weight. That methodology
is used in many other methodologies, like the Modified kNN [79], which
improve accuracy of WkNN, or can be used for ordinal classification [80].
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5.1.3 k Nearest Neighbors Model-Based [81]
The k Nearest Neighbors Model-Based (kNNModel) models the training
dataset using local density, and when a new data is inserted to the dataset,
the data is compared with the model entries, and is classified with the most
similar model entry class. The modeling is made as follows:

1. Select a similarity measure (an other possible name for the distance)
and create a similarity matrix from the given training dataset

2. Set to “ungrouped” the tag of all data tuples

3. For each “ungrouped” data tuple, find its largest local neighborhood,
which covers the largest number of neighbors with the same category

4. Find the data tuple xi with a largest global neighborhood Ni among
all the local neighborhoods, create a representative 〈Cls(xi), Sim(xi),
Num(xi), Rep(xi)〉 into M to represent all the data tuples covered by
Ni, and then set to “grouped” the tag of all the data tuples covered by
Ni

5. Repeat steps 3 and 4 until all the data tuples in the training dataset
have been set to “grouped”

6. Model M consists of all the representatives collected from the above
learning process

The representative 〈Cls(xi), Sim(xi), Num(xi), Rep(xi)〉 respectively repre-
sents the class label of xi, the lowest similarity to xi among the data tuples
covered by Ni, the number of data tuples covered by Ni, and a representation
of xi itself. To clear up potential ambiguities in step 4, if some neighborhoods
have the same maximal number of neighbors, the chosen one is the one with
minimal value of Sim(xi) (i.e. the one with the highest density).

To classify the new data, we use the following algorithm:

1. For a new data tuple dt to be classified, calculate its similarity to all
representatives in the model M

2. If dt is covered only by one representative 〈Cls(xi), Sim(xi), Num(xi),
Rep(xi)〉, i.e. the distance of dt to dj is smaller than Sim(dj), dt is
classified as the category of dj

3. If dt is covered by at least two representatives with different category,
classify dt as the category of the representative with largest Num(dj)
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4. If there is no representative in the model M covers dt, classify dt as the
category of a representative, which boundary is closest to dt

That algorithm has the advantage that the k value is selected implic-
itly by the model construction process, but has the disadvantage to have
bad accuracy on marginal data, which fall outside the regions of represen-
tatives. Model-Based algorithms was originally used for text categorization,
but is also used as a defense against profile injection attacks of collaborative
recommender systems [82].

5.1.4 Locally Nearest Neighbors [83]
To explain the Locally Nearest Neighbors, we need to explain the Nearest
Feature Line (NFL). The NFL was originally made for Face Recognition,
and adds a new distance: the Feature Line (FL) distance. For each couple
of points, we “draw” a line between them, and we project the unclassified
point to this line. Since the projection is made perpendicularly, we use the
dot product to calculate the distance:

(p− x)(̇x2 − x1) = [x2 + µ(x2 − x1)− x](̇x2 − x1) = 0

µ =
(x− x1)(̇x2 − x1)

(x2 − x1)(̇x2 − x1)

(5.4)

When µ = 0, the projection p = x1; when µ = 1, p = x2; when 0 < µ < 1,
p is an interpolating point between x1 and x2; when µ > 1, p is a forward
extrapolating point on the x2 side; when µ < 0, p is a backward extrapolating
point on the x1 side.

The NFL distance is calculated by taking the minimum FL.

d(x, xc∗
i∗x

c∗
j∗) = min

16c6C
min

16i<j6Nc

d(x, xc
ix

c
j) (5.5)

where:

• i∗, j∗ are the best matched patterns of the class

• c∗ is the best matched class

• c is the xi and xj classes

• C is the number of classes

• Nc is the number of pattern feature points to represent the class c
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This methodology is a good methodology for face recognition purpose,
but performs also on image, texture, and audio classification and retrieval.

The Locally Nearest Neighbors focuses only on the local NN prototypes
of the query point instead of all the patterns in each class.

5.2 A New k Nearest Neighbors Methodology
Using the Local Density

All these previous methodologies are used when we have a training set and a
new data to classify. Our methodology is new because we use the local density
of a data to extract samples, and does not need training set to work. A set of
exemplars, also called samples, is a classical way for storing and representing
the cognitive structures [84]. The exemplars are real data extracted from
a large dataset unlike the prototypes that are artificial data such as the
statistics. Thus, the selection of few exemplars that represent the whole
dataset is one of the first step when exploring a dataset. For instance, the
selection of exemplars is central to several clustering methods [85]. The
selection of exemplars is a case-oriented process, which is also called sampling
[86]. The goal is to extract a small subset of representative data from the
dataset, the driver’s behavior in our case.

5.2.1 Sampling Method
Let Ω be a dataset with n data defined by:

Ω = {X1, X2, X3, ...Xn}

The goal of sampling is to select a subset of Ω. We call this subset Σ:

Σ = {Y1, Y2, Y3, ...Yp} with Yj ∈ Ω

When sampling, p is much smaller than n (p << n) and Yj (with 1 6 j 6 p)
is a representative or exemplar of Ω.

Our method is based on an estimation of the local density in a neighbor-
hood of each data. The first exemplar we select is the one with the highest
local density. Then the nearest neighbors of this exemplar are removed from
Ω. We obtain the following exemplars by iterating the process until the set
of remaining data is empty.

Since our method is based on the local density of the neighborhood of
each data, we decided to call it Fuldon, which stands for Fuldon Uses Local
Density Of Neighborhood.
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5.2.1.1 Local Density

Here, we only consider multidimensional quantitative data. Thus, Xi with
1 6 i 6 n is a vector defined by:

Xi = (v1(i), v2(i), ...vp(i))

where v1, v2,... vp are the p variables that are the features of data. In this
context each data lies a p-dimensional data space.

Classically the density is defined using a unit hypervolume. For instance,
the hypersphere of radius α can define the unit hypervolume. In the data
space, the local density at X is then equal to the number of data of Ω lying
inside the unit hypersphere centered in X. Unfortunately, the definition of
density comes up against the curse of dimensionality [87]. When the dimen-
sion of the data space increases, the volume of the available data becomes
sparse and the classical definition of density has no meaning. For circum-
venting this drawback, we define the density for each variable using the ap-
proach of parallel coordinates [88] (see Figure 5.2). So, we have p densities
each defined in a one-dimensional space. The sum of these densities gives us
a density-based index we use in the whole data space.

Let us define the density computed in the one-dimensional space of the
variable vj (with 1 6 j 6 p). The dataset Ω is projected in this space, and
we obtain n values with:

Ωj = {vj(1), vj(2), vj(3), ...vj(n)}

These values are in the range [minj,maxj] where minj = min
16i6n

(vj(i)), and
maxj = max

16i6n
(vj(i)). Let us define the unit interval that we use to compute

the density at each value x. Let k be an integer between 1 and n. If we
expected a local density equal to k, then the length αj we propose for the
unit interval is equal to αj =

maxj−minj

n
× k. Thus, the local density at

x is equal to the number of elements of Ωj that are in the unit interval
[x − αj/2, x + αj/2]. The local density at Xi for the variable vj is then
defined by:

densityj(Xi) = #{ [vj(i)− αj/2, vj(i) + αj/2] ∩ Ωj }

Finally, the local density at Xi for all the variables is defined by:

density(Xi) =
∑
16j6p

densityj(Xi)

We select the data which has the highest local density. This data is the first
exemplar of Ω:

Y1 = arg max
Xi∈Ω

density(Xi)
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5.2.1.2 Nearest Neighbors

The previous procedure permits us to select only one exemplar. We obtain
the following exemplars by reducing the dataset and iterating this procedure.
The dataset is reduced by removing Y1 and its nearest neighbors.

Let us describe our definition of the nearest neighbors of a data X in a
dataset Ω. The neighbors of Xi for the variable vj are the data of Ω that are
in the unit interval centered in Xi. This neighborhood Nj is defined by:

Nj(Xi) = {Xk ∈ Ω with vj(k) ∈ [vj(i)− αj/2, vj(i) + αj/2]}

The nearest neighbors of Xi for all the variables should be in the neigh-
borhoods for each variable. Thus, the nearest neighbors of Xi are in the
neighborhood N defined by:

N(Xi) =
⋂

16j6p

Nj(Xi)

To select the second exemplar Y2 we exclude the first one Y1 and its
nearest neighbors N(Y1). We apply the procedure defined in the previous
section within a reduced dataset Ω \ N(Y1). Then Y2 is the data with the
highest local density within the reduced dataset.

We iterate the procedure until the reduced dataset is empty. The exem-
plars we obtain gives us the samples of Ω.

5.2.1.3 Number of Exemplars

We set our method of sampling using the parameter k where k is an expected
local density at each data. The value of k lies between 1 and n when the
dataset has n data. Let us consider a toy example with 200 simulated data
(n = 200) with 5 variables (p = 5). Figure 5.2 uses parallel coordinates [88]
to display the profiles of these data with 200 dashed broken lines. The
exemplars are selected using the parameter value k = 100. We obtain 7
exemplars (bold broken lines in Figure 5.2).

The number of selected exemplars decreases when the parameter value k
increases. Figure 5.3 shows that the number of selected exemplars decreases
from 200 to 1 when the density parameter k increases. This property of our
method permits us to adapt a strategy to select the number of samples that
we extract from the dataset. If we want a specific number of samples selected
from the initial dataset, then we can adjust the parameter k to obtain the
expected number of exemplars.
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Figure 5.2 – Profiles of 200 simulated data with 5 variables (dashed lines),
with the election of 7 exemplars with a parameter value k = 100 (bold lines)

Figure 5.3 – Number of selected exemplars decreases from 200 to 1 when the
density parameter k increases from 1 to 200

5.2.2 Assessment of Sampling

The exploratory analysis of a dataset is complex for many reasons. The
dataset is often divided into classes but the distribution of these classes is
unknown. Moreover, the number of these classes is also unknown. To better
understand data, the use of a complementary exploratory trial on a smaller
dataset is often necessary. The selection of a reduced number of samples
should then represent all the classes of the dataset. For this reason, we will
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Number
of

classes

Distribution in dataset
(n = 200)

Number
of selected
exemplars

Exemplars
distribution

between classes
4 (42, 51, 65, 42) 25 (4, 8, 8, 5)
4 (42, 51, 65, 42) 18 (5, 6, 4, 3)
4 (42, 51, 65, 42) 13 (3, 3, 5, 2)
4 (42, 51, 65, 42) 9 (2, 3, 3, 1)
4 (42, 51, 65, 42) 7 (2, 2, 2, 1)
4 (7, 103, 62, 28) 10 (1, 3, 4, 2)
5 (40, 47, 55, 9, 49) 10 (2, 3, 2, 2, 1)
6 (6, 12, 76, 80, 24, 2) 9 (2, 1, 2, 1, 2, 1)
7 (23, 16, 51, 46, 1, 36, 27) 8 (1, 1, 1, 2, 0, 1, 2)
8 (37, 9, 3, 19, 48, 12, 45, 27) 9 (3, 0, 0, 1, 1, 1, 3, 1)

Table 5.1 – Distribution between classes within a dataset (n = 200) and
within the selected exemplars

evaluate our sampling method under controlled conditions when the distri-
bution of the classes is known. But of course, the method remains designed
for applications in exploratory analysis when the classes are unknown. This
method is particularly useful when classes have large overlapping and when
the classes have very different numbers of data. In such cases the classical
methods of clustering very often fail.

Let us consider a dataset with known distribution of classes for assess-
ing our sampling method. We verify that the distribution of the selected
exemplars between classes remains comparable with the distribution of data
within the initial dataset. Table 5.1 gives the results we obtain with some
simulations.

In the first five rows of the table, we use the dataset displayed in Fig-
ure 5.2. This dataset is simulated using four classes with a large overlapping.
The 200 data are randomly distributed between these classes. (42, 51, 65,
42) is the distribution between the four classes. The number of selected ex-
emplars decreases when the parameter k increases. We obtain 25, 18, 13, 9
and 7 exemplars using respectively 50, 60, 70, 80 and 100 as values of k. In
these five simulations, the four classes are effectively represented by the ex-
emplars. But when k increases, the number of selected exemplars becomes
too small for representing each class.

In the five last rows of Table 5.1 we simulate five datasets with respectively
4, 5, 6, 7 and 8 classes. The number of data in each class is randomly selected
and it could be very different from one class to another one. The datasets



5.3. COMPLEXITY OF THE KNN USING LOCAL DENSITY 75

Name of
dataset n p Distribution in dataset Number of

exemplars
Distribution of

exemplars
Iris 150 4 (50, 50, 50) 8 (3, 3, 2)

Wine 178 13 (59, 71, 48) 9 (2, 4, 3)
Glass 214 9 (70, 76, 17, 13, 9, 29) 19 (1, 6, 1, 5, 1, 5)

Haberman 306 3 (225, 81) 10 (7, 3)

Ecoli 336 7 (143, 77, 2, 2, 35, 20, 5,
52) 23 (3,9,0,0,3,3,2,3)

Table 5.2 – Distributions between classes with a real dataset and with selected
exemplars (n = number of data, p = number of variables)

have 200 data and the parameter k is equal to 80 when selecting exemplars.
When the number of classes increases, the number of exemplars becomes too
small for representing each class (see the two last rows of the table). But
these classes are represented if the number of selected exemplars increases
(i.e. if we decrease the value of the parameter k).

Let us study the sampling with real datasets. We consider some datasets
of UCI repository (see in [89]). Table 5.2 displays the selection of exemplars
using our blind method (i.e. when the classes are unknown) on the classical
dataset called “Iris”, “Wine”, “Glass”, “Haberman” and “Ecoli”.

These datasets have respectively 3, 3, 5, 2 and 8 classes. Our sampling
method gives generally an exemplar in each class. Obviously, the method fails
if the number of classes is high relative to the number of selected exemplars.
Moreover, the method often fails if the number of elements within one class
is very low. For instance, in the last line of Table 5.2, two classes have
only 2 elements and these classes are not represented by the exemplars. But
these classes can be represented by an exemplar if we increase the number of
exemplars we select.

5.3 Complexity of the kNN Using Local Den-
sity

The algorithm is pretty simple: we have a loop to compute the different
samples (see Appendix H for the pseudo-code of all the algorithms). Now
we need to get the most “difficult” part: the sample selection. To do that,
we first compute the Euclidean distance of data, for each variable, then we
compute the neighborhood of each data for each variable, the density for
each data and each variable, the sum of densities for each data, we check the
denser to have the selected sample, the neighborhood for each variable of the
sample data, and finally, the intersection of that neighborhood.

The samples algorithm is a succession of appending function (the ap-
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pending of the selected sample to the list of selected samples), sample se-
lection, removing the sample and its neighborhood from the dataset, and
the normalization of the remaining data set. We can compute the complex-
ity for each of them. We assume that the appending function is in O(1). The
purge of selected samples and neighborhood is in O(N), and normalize is in
O(N × p) = O(N2).
The sample selection is a succession of Euclidean distance computation,
neighborhood computation, densities of this neighborhood computation, sum
of these densities, selection of the denser neighborhood, the neighborhood
of each variable computation, the intersection the neighborhood. The Eu-
clidean distance computation is in O(p×N ×N) = O(N3).
The neighborhood computation is in O(p×N ×N) = O(N3).
The densities computation is in O(p×N ×N) = O(N3).
The sum of densities is in O(N × p) = O(N2).
The denser neighborhood selection is in O(n).
The neighborhood for each variables of the denser neighborhood is in O(N ×
p) = O(N2).
The intersection computation is in O(N × p) = O(N2).
And so, Samples is in

O(N3) +O(N3) +O(N3) +O(N2) +O(N) +O(N2) +O(N2)
= 3O(N3) + 2O(N2) +O(N)
= O(N3)

Samples is so in
O(N) +O(N2) +O(N3) = O(N3) (5.6)

With N the number of observations in the dataset, and p the dimension of
these data.

5.3.1 Algorithm Implementation
The algorithm was first implemented in R with the Shiny package for the
visualization in a parallel coordinates and nodes network view. R is the most
used language for Big Data analysis purposes [7], and uses variables as vector.
The choice of this language was evident for our purpose, because we uses
matrix and vector of matrix. With R, we can easily use them. For example,
the purge of a selected exemplar and its neighborhood is literally made by
substract the vector the exemplar and neighborhood from the matrix:

numbers <- all[-remove] # numbers gets all the
# data numbers "-" what
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# we need to remove
rest <- data[number,] # the rest of the data

# are the remaining data,
# i.e. the numbers data

With the Shiny package, we can make an online demonstrator. The interface
is a web page, and the server will execute the R scripts and print result on
the web page. In the Figure 5.4a we have the data presented in parallel co-
ordinates, where each line is a data with its variables values; the Figure 5.4b
is the same curves, but with a colorization for each class; the Figure 5.4c
presents the selected samples, and the Figure 5.4e the samples and their cor-
responding classes with their distributions; finally, the Figure 5.4d presents
the samples with their neighborhood in a nodes network view, where cen-
tral nodes are the samples while Figure 5.4f adds the classes distributions.
The R/Shiny application offers a good visualization, but has some bad time
executions as we can see in Figure 5.5, with also 4 seconds to execute the
algorithm on the small Iris dataset when k = 1. In these curves, we have the
different k values in abscissa and time value in ordinate. To be sure that it
is not the algorithm but the implementation and the Shiny package, which
delayed the execution time of an algorithm with a complexity of only O(N3),
the algorithm was also implemented in C++ language, and the time execu-
tion is much better as we can see in Figure 5.6. The time division mean is
about 400 as we can see in Table 5.3.

Dataset name Number of
data

Number of
variables Time division

Iris 150 4 105.021
Wine 178 13 553.092
Ecoli 336 7 190.671

Haberman 214 9 472.266
Glass 306 3 695.775

TestFest 58 95 308.382
TLog 3201 17 424.351

Table 5.3 – Time division of the execution when using the C++ version
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(a) Data presentation

(b) Data presentation with classes

(c) Samples without classes
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(d) Samples without classes in a nodes network view

(e) Samples with classes

(f) Samples with classes in a nodes network view

Figure 5.4 – R/Shiny implementation of the algorithm
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(a) Time execution with R/Shiny on small datasets (60 firsts k values)

(b) Time execution with R/Shiny on large datasets

Figure 5.5 – Time execution with R/Shiny
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(a) Time execution with C++ on small datasets (60 firsts k values)

(b) Time execution with C++ on large datasets

Figure 5.6 – Time execution with C++
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5.3.2 Algorithm Parallelization
The proposed methodology is very easily parallelizable to reduce the exe-
cution time. Effectively, the algorithm is mainly composed by loops (apply
function in R programming), and there is no concurrent access to data, and
so, each one of steps can be parallelized. But if we proceed this way, we get
the curves from Figures 5.7a and 5.7b, which are slower than the sequential
ones. This is explained by the fact that we need to allocate the threads, and
it is very expensive in terms of time and computation. A better solution is to
parallelize the sample selection by distributing only the firsts nested loops,
which give the curves from Figures 5.8a and 5.8b with 8 threads. With these
8 threads, we divided by two the execution time against the sequential one.

(a) Time execution with parallelization of all steps on small
datasets (60 firsts k values)

(b) Time execution with parallelization of all steps on large
datasets

Figure 5.7 – Time execution with parallelization of all steps
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(a) Time execution with parallelization of sample algorithm on small datasets (60 firsts k
values)

(b) Time execution with parallelization of sample algorithm on large datasets

Figure 5.8 – Time execution with parallelization of sample algorithm steps
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5.4 VANET From Real World Experimenta-
tion

5.4.1 On a Roadway Experimentation
In the Scoop@f [14] (Cooperative System at France) project, ITS are experi-
mented in the real life. To do that, connected vehicles drive on roadway and
communicate with the infrastructure or other vehicles via the ITS-G5. Mes-
sages used in Scoop@f are CAM and DENM. We first used our methodology
with TLogs from a road test with a slippery road. These logs contain 3 201
data of 6 variables (the brake pedal usage: active or not, the steering wheel
angle, the strength braking and 3 for the exterior lights). The exterior lights
are defined by the left and right turn signal (warning is the combination of
both), and daytime light.

Here we want to describe characteristics from the experimentation and
trying to modeling vehicle behavior on this type of route. By using the 3
201 data we obtain the Figure 5.9. We then used our methodology with the
k ∈ {40, 80, 100, 140, 180, 200} that give us the Table 5.4. With k = 40, 142
samples are extracted, 102 with k = 80, 92 with k = 100, 58 with k = 140, 46
with k = 180, 48 with k = 200 and 18 with k = 500. With our methodology, a
big preprocessing is made, dividing by {22, 31, 34, 55, 69, 6, 178} the number
of data to process.

Figure 5.9 – Profiles of 3 201 data with 6 variables from roadway experimen-
tation.

In order to illustrate the impact of variation of k to the number of rep-
resentative samples, Figure 5.10 presents the obtained profiles while varying
k. It can be seen that it is very difficult to distinguish exemplars among
data. To provide a clearer view, Figures 5.11a and 5.11b present two ex-
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k Number of exemplars Division
40 142 22
80 102 31
100 92 34
140 58 55
180 46 69
200 48 66
500 18 178

Table 5.4 – Selection of exemplars with different values of the parameter k
from roadway experimentation.

Figure 5.10 – Profiles of 3,201 data with 6 variables from roadway experi-
mentation with varying values of k.

treme cases where one obtained with the smallest values (k=40) and another
with the greatest value (k=500). In fact, these figures present the exemplars
(yellow nodes) obtained with the algorithm and their connected neighbors
(blue nodes). It can be seen that the number of exemplars can be limited
depending on the need of use case. When the value of k increases, the num-
ber of selected exemplars decreases. It has to be noticed here that the most
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(a) Data Network with k=40 (b) Data Network with k=500

Figure 5.11 – Data Network of extreme cases

important is to find the compromised tuning between the desired number of
exemplars and the desired processing time and costs.

5.4.2 The InterCor TestFest Event
From the 23rd to the 26th of April 2018, the University of Reims Champagne-
Ardenne (URCA), in France, organized the second InterCor [90] TestFest
event. During this week, 18 European brands tested their connected vehicles
on a 30 km track inside the city of Reims and on roadway around the city (see
Figure 5.12). Unlike the first event at Dordrecht in Netherlands, the security
layer was added. We took advantage of this event to collect real VANET
data, and try to extract driver’s behavior. To do that, we provided 9 tablets
to 9 drivers from the InterCor project. These tablets saved periodically the
vehicular position using the GPS.

Figure 5.12 – TestFest track

1 begin of the
track

5 traffic lights
2 RSUs
3 points between

RSUs
9 DENM position
2 tolling zones
1 yield sign
1 end of the track
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At the end of the event, we got back the tablets, and preprocessed the
data, by selecting 24 strategic points on the track: the dangerous positions
where a deceleration is needed. By doing this, we want to see if drivers
react in the same way with dangerous situation. For each point, we took the
timestamp from the beginning of the track, the vehicle speed, acceleration,
and heading from the North. Since the first point is the start of track, its
timestamp is set to 0, we did not use it, and we had 24×4−1 = 95 variables
per record. With these 9 drivers, we got 58 observations, which correspond
to 58 records with the distribution of records per driver as following (7, 8, 5,
2, 4, 9, 7, 3 ,13).

We applied our methodology with these data. In Figure 5.13, we present
the resulting sample selection and their neighborhood for a k value of 48.
Each number corresponds to a driver, and each driver has its own color
and shape, so we can see that there is only a few samples which gather other
drivers (i.e. nodes connected with an other color and shape). In the Table 5.5,
we can see different values of k. When k > 19 (33 %), samples gather too
many data, and so drivers are mixed together; and with k > 48 (82 %) some
drivers are not represented (0 value in the sampling distribution).

Figure 5.13 – Exemplar neighborhood with a k value of 48
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k
Number of
exemplars Sampling distribution

Number of
samples

representing
an other

class
7 (12 %)

57 (6, 8, 5, 2, 4, 9, 7, 3, 13) 010 (17 %)
14 (24 %) (7, 7, 5, 2, 4, 9, 7, 3, 13)
19 (33 %) 53 (6, 7, 5, 2, 4, 9, 7, 2, 11) 4
29 (50 %) 44 (6, 7, 4, 2, 3, 7, 5, 1, 9)

738 (66 %) 40 (6, 5, 4, 2, 3, 6, 5, 1, 8)
48 (82 %) 34 (7, 4, 3, 0, 3, 5, 4, 2, 6)

Table 5.5 – Different values of k with Intercor TestFest data

In this chapter, we have seen how we can use a Big Data analysis methodology
with VANET data taken from the Scoop@f project, and the second InterCor
TestFest event. That methodology use the local density of variables values to
extract samples. These samples are used with our data as driver’s behavior.
We have seen that these behaviors are distinct from a driver to another, and
raise issues on privacy, because even if the vehicle change its pseudonym
along the journey, the driver does not change his behavior, and so he is still
traceable.



Chapter 6

Conclusions and Perspectives

6.1 Conclusions
In Chapter 2, we have seen an overview of the VANET technologies, firstly
in a large manner, and then, more specifically the ETSI standard.

VANET are the base of Cooperative Intelligent Transport System (C-
ITS), using V2X communications: Vehicle to Vehicle (V2V) and Vehicle to
Infrastructure (V2I). In Europe, we use the European Telecommunications
Standards Institute (ETSI) standardization, which is based on the IEEE
802.11p (an IEEE 802.11a amendment).

After that, we have seen a Big Data overview, with techniques used in
different steps and some applications of Big Data. Big Data was first defined
by the 3V: Volume, Velocity, and Variety. Two other V was added after:
Value and Veracity. Volume concerns the data scale; Velocity that data
collection and analysis must be rapidly and timely conducted; Variety is the
heterogeneity of data; Value is the low density of a huge value; and Veracity
is the reliability of the values.

Big Data can be used in many domains: Enterprises; Internet of Things;
Online Social Media; Collective Intelligent or Smart grid.

In Chapter 3, we have seen that VANET need the Big Data technolo-
gies: actually, VANET challenge answer to the Variety, Velocity, Veracity,
and Volume questions. We have the Variety by the number of options and
the number of different generated data (sensor, message, depend on type of
vehicle); the Velocity intrinsic of the network topology, and the rapidity of
data to change, notably with the security problematic and the privacy with
the anonymization; the Veracity, which is necessary in a C-ITS environment,
and improved by the security layer with the signature, which guarantee the
authenticity and the integrity of the message; and finally, the Volume, be-
cause of the increasing of the number of VANET actors.

Because of these problematic, many ITS projects in Europe need to use
Big Data technologies.

In Chapter 4, we have seen how we implemented the ETSI ITS stack, by
using the Qt framework, enabling us to use a complete library simplifying
the code, and especially, the signals and slots mechanisms, which permit us
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to create fast and easier communications between the different layers. Our
stack is as close as possible as the ETSI standard in a logical point of view:
we have the HMI, which communicates with the Application layer using a
UDP connection (through Bluetooth if needed), the Application communi-
cates with the Facilities by using UDP, which allows us to have a distant
Application layer, as the UpperTester, or if we need to separate the commu-
nication part from the application part. The Facilities layer can use directly
the GeoNet function to send payload, by using a structure to indicate how
it wants that the payload is sent. Finally, the GeoNetworking layer manages
the Beacon and the Headers generation, and send it to the appropriate inter-
faces. We have a Management layer, which is accessible by all parts, which
provides the state of the unit, and an other layer accessible by all the enti-
ties: the Security layer. That last signs and verifies messages, and can be
assigned by everyone if needed.

We have also seen how we can validate systems, by using the TTCN-3 lan-
guage and frameworks to build it and generate tests campaign. The TTCN-3
is the language used to implement the scenarios that we have extracted from
standardization and deliverable. Some extracted properties have to be test
first in laboratory, to be sure that they work before test them on real envi-
ronment, because the road tests are more expensive. When we make labo-
ratory tests, we had a piece of code, the UpperTester, on the unit that will
emulate the environment. The critical problem of the UpperTester is that it
is only to modify the values, not the behavior. For example, if we need to
simulate the modification of the unit yaw rate, it has to indicate to the ap-
propriate sensor the modification, and the sensor will check the constraints
on the value, not the UpperTester.

For road tests, since we do not have the UpperTester, we can not emulate
the environment (and it is not wanted). And so, to know if the unit has
the good behavior, they need to log their state. To do that, in the Scoop@f
project, we use two types of logs: TLogs for the technical tests, and ULogs for
the supervision of the use the Scoop@f application. We have two possibilities
to access these logs: in offline mode where we manually access the log files,
and in online mode, where mobile units send the files to ITS-R, which forward
them to the ITS-C. We have seen that some improvement can be done in
the log format and how they are sent to the ITS-C. The actual definition of
the logs does not permit to automatically use them, since there is no way
to discover, which kind of log we have. Moreover, to send them to the ITS-
R, an extension of the CAM (the CAM-I) is made, but since we can have
only one service per CAM, we need to violate the frequency of ITS-R (of 1
message per second) to send the different services. So, we proposed a new
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version of the CAM-I and of the log files to be more generic and extensible
with others log formats.

In Chapter 5, we have seen an overview of the kNN methods. We have
seen the basic kNN, which permits classifying new element by using a training
set, and some improvements that can be used depending on the use case.
We proposed a new methodology, which is based on the local density of each
data to extract samples from database. That methodology was assessed
with random data, well-known databases, and we have seen that we can
extract exemplars that corresponds to the good classes, i.e. for most of
them, the neighborhood of the sample is from the same class as the sample
itself. Unfortunately, as for most of kNN methods, our methodology has a
big dependency on choice of the k value, and has a complexity of O(N3). We
have implemented the algorithm with different technologies: R / Shiny and
C++. With the C++ technology, the algorithm runs quickly, but not with
R. By parallelize the sample extraction algorithm with 8 threads, we divided
by two the time execution. The parallelization is made on the firsts nested
loop. That way is quicker than parallelize each step, because of the time to
allocate the threads.

We have then used the methodology with real VANET data: firstly, with
Scoop@f road tests, and secondly, with the InterCor TestFest. The Scoop@f
road tests was the simulation of a slippery roadway, where we try with the
TLogs to see if there is differences between different passages. Since we
can extract some samples, it means that we have differences with the same
driver on this road. In the TestFest, vehicles experimented the ITS-G5 se-
cured communication on city, national roads and roadways. We selected 24
strategic points on the 30 km track. These points are where the vehicle need
to decelerate, and where we have events. Each ITS-G5 manufacturer of the
TestFest is considered as a class, and when we use the algorithm with these
data, we see that class are not mixed: the sample class is the same as its
neighborhood.

6.2 Perspectives
In the near future, we will use our new methodology, to extract some driver’s
behaviors, which is an important point for the security challenge. Actually,
if we can extract behaviors, it questions the privacy, since if the pseudonym
changes, the driver’s behavior remain the same.

There are also many challenging issues raised from VANET. We selected
to present here three of the most crucial challenges.

1. Law Evolution
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Law needs to be adapted with VANET evolution to ensure anonymity
and responsibility for VANET usage. Anonymity concerns essentially
Europe, because in Europe there is a culture of privacy, which is
strongly turned up. Each country has its own definition and ways
to ensure privacy, and so they will need to have a consortium to decide
these issues together.

2. Scalability and interoperability
With a prediction of 35 % of the vehicle marketing in 2022 approx-
imating around 113 billion euros of revenue ([5, 6]), interoperability
will be another challenge, among all providers and with more coun-
tries. One of interoperability challenges will be the interoperability
concerning security and privacy infrastructure: each country has its
own infrastructure and so when a vehicle travels to a foreign country,
it needs to adapt communications with the infrastructure. InterCor is
an example of project that intends to do that with the interoperability
of four European countries: Netherland, Belgium, France and United
Kingdom [90].

3. Agile Approach
Since VANET are becoming a Big Data challenge, with the same issues,
we need to change the way we look them: we can not stay with a
classical view, with static implementation in each layer. We need agile
approach, because technology evolve quickly: we have more and more
connected vehicles and the autonomous car is coming on the market.
All these technologies need to be able to be adapted easily. We can not
stay with classical programming, because we could need to make a gap
in the different evolution of the equipment. When we use vehicles, this
is not allowed, because of security constraints. The adaption should be
done easily to be compliant with the security challenges.
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Appendix A

GeoNetworking headers

In this appendix, all the figures and tables are extracted from the ETSI
standard [10].

Figure A.1 – Basic Header structure

Figure A.2 – Common Header structure

Figure A.3 – Beacon structure

Figure A.4 – GeoUnicast structure
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Figure A.5 – Topologically-Scoped Broadcast structure

Figure A.6 – Single-Hop Broadcast structure

Figure A.7 – GeoBroadcast / GeoAnycast structure

Figure A.8 – Location Service Request structure

Figure A.9 – Location Service Reply structure
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Header Header Sub-type Encoding DescriptionType (HT) (HST)
Any 0 Unspecified

Unspecified 0 Unspecified
Beacon 1 Beacon

Unspecified 0 Unspecified
GeoUnicast 2 GeoUnicast

Unspecified 0 Unspecified
GeoAnycast 3 GeoAnycast

GEOANYCAST_ 0 Circular areaCIRCLE
GEOANYCAST_ 1 Rectangular
RECT area
GEOANYCAST_ 2 Ellipsoidal areaELIP

GeoBroadcast 4 GeoBroadcast
GEOBROADCAST_ 0 Circular areaCIRCLE
GEOBROADCAST_ 1 Rectangular
RECT area
GEOBROADCAST_ 2 Ellipsoidal areaELIP

TSB 5 Topologically-
scoped
broadcast (TSB)

SINGLE_HOP Single-hop
0 broadcast

(SHB)
MULTI_HOP 1 Multi-hop TSB

LS 6 Location service
(LS)

LS_REQUEST 0 Location service
request

LS_REPLY 1 Location service
reply

Table A.1 – Header Type and Sub-type
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Appendix B

GeoUnicast Forwarding
Algorithms

B.1 Greedy Forwarding

Algorithm 1 Greedy Forwarding pseudo-code
−− P is the packet to be forwarded
−− i is the i-th neighbor from ITS location table entry (LocTE)
−− NH is the LocTE identified as next hop, NH.LL_ADDR its link layer address
−− NH_LL_ADDR is the link layer address of the next hop
−− LPV is the local position vector
−− PV_P is the destination position vector in the GeoNetworking packet to be forwarded
−− PV_I is the position vector of the i-th LocTE
−− MFR indicates the progress according to the MFR policy
−− B is the forwarding packet buffer
−− LocT is the location table
−− TC is traffic class request by the application (source operation) or the field in the received Common Header
−− BCAST is the Broadcast LL address

MFR ← DIST(PV_P, LPV) −− Initialize MFR
for i ∈ LocT do

if i.IS_NEIGHBOUR then −− LocTE i is neighbor
if DIST(PV_P, PV_I) < MFR then

NH ← i
MFR ← DIST(PV_P, PV_I)

end if
end if

end for
if MFR < DIST(PV_P, LPV) then

NH_LL_ADDR ← NH.LL_ADDR
else −− Forwarder is at a local optimum

if LocT.HAS_NO_NEIGHBOURS & TC.SCF_IS_ENABLED then
ADD P TO B
NH_LL_ADDR ← 0 −− Indicates that packet is buffered

else
NH_LL_ADDR ← BCAST −− No buffering allowed, fall back to BCAST

end if
end if
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B.2 Contention-Based GUC Forwarding Al-
gorithm

TO_CBF_GUC =

TO_CBF_MAX +

TO_CBF_MIN

− TO_CBF_MAX

DIST_MAX
× PROG for PROG 6 DIST_MAX

TO_CBF_MIN for PROG > DIST_MAX

(B.1)

where:

• TO_CBF_MIN is the minimum duration the packet shall be buffered.

• TO_CBF_MAX is the maximum duration the packet shall be buf-
fered.

• PROG is the forwarding progress of the local GeoAdhoc router towards
the destination, i.e. the difference between the sender’s distance and
GeoAdhoc router’s local distance from the destination. The sender
position is taken from its LocTE.

Algorithm 2 Contention-Based Forwarding for GUC pseudo-code
−− P is the GUC packet to be forwarded
−− LPV is the local position vector
−− PV_P is the destination position vector contained in the GeoNetworking packet
−− PV_SE is the position vector in the LocT with position accuracy indicator PAI_SE
−− B is the forwarding packet buffer
−− TO is the timeout that triggers the rebroadcast of the packet
−− NH_LL_ADDR is the link layer address of the next hop
−− BCAST is the Broadcast LL address

if P ∈ B then −− Contending
REMOVE P FROM B
STOP TIMER
DISCARD P
RETURN -1 −− Indicates that packet is discarded

else −− New packet
if (PV_SE EXISTS) AND (PAI_SE = TRUE) then PROG ← (DIST(PV_P, PV_SE) - DIST(PV_P, LPV)

if PROG > 0 then −− Forwarding process
ADD P TO B
TO ← Equation (B.1)
START TIMER(TO)
RETURN 0 −− Indicates that packet is buffered

else
DISCARD P
RETURN -1 −− Indicates that packet is discarded

end if
else

ADD P TO B
TO ← TO_CBF_MAX
RETURN 0 −− Indicates that packet is buffered

end if
end if

if TIMER(TO) EXPIRES then
FETCH P FROM B
NH_LL_ADDR ← BCAST
RETURN NH_LL_ADDR −− Indicates that packet could be forwarded

end if
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P TIMER(TO)GUC packet Timeout 

P in B

[NO]

PV(SE)EXISTS 
AND 

PAI_SE = TRUE 

[YES]

SET PROG = DIST(PV_P, PV_SE) - DIST(PV_P, LPV)

PROG > 0

[YES]

ADD P TO B

SET TO

START
TIMER(TO)

RETURN 0

DISCARD P

RETURN -1

[NO]

ADD P TO B

SET TO

RETURN 0

[NO]

STOP TIMER

DISCARD P

RETURN -1

REMOVE P
FROM B

[YES]

FETCH P
FROM B

SET NH_LL_ADDR = BCAST

RETURN -1

Figure B.1 – Activity diagram for GUC CBF
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Appendix C

GeoBroadcast Forwarding
Algorithms

C.1 GeoBroadcast functions
The F function returns an integer as follows:

F (x, y) =


= 1 for x = 0 and y = 0 (at the center point)
> 0 inside the geographical area
= 0 at the border of the geographical area
< 0 outside the geographical area

(C.1)

and is calculated as follows [91]:

• for circular area
F (x, y) = 1−

(x
r

)2

−
(y
r

)2

(C.2)

• for rectangular area

F (x, y) = min
(
1−

(x
a

)2

, 1−
(x
a

)2
)

(C.3)

• for ellipsoidal area

F (x, y) = 1−
(x
a

)2

−
(y
b

)2

(C.4)

where

• x is the latitude of the center point

• y is the longitude of the center point

• r is the radius of the circle

• a is the distance between the center point and the short side of the
rectangle or the length of the long semi-axis for ellipsoidal area
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• b is the distance between the center point and the long side of the
rectangle or the length of the short semi-axis for ellipsoidal area

The G function returns 1 or -1 as follows:

G =

{
+1 inside or at the border of the sectorial area
−1 outside the sectorial area

(C.5)

and is defined as follows:

G =


+1 for

(DIST_R < DIST_F ) AND
(DIST_F < DIST_MAX) AND
(∠FSR 6 ANGLE_TH)

−1 otherwise

(C.6)

where:

• DIST_R is the distance between the GeoAdhoc router’s local position
and the sender position

• DIST_F is the distance between the forwarder position and the sender
position

• DIST_MAX is the theoretical maximum communication range

• ∠FSR is the angle between the positions of the forwarder, the sender
and the local GeoAdhoc router

• ANGLE_TH is a threshold value for the angle, which should be in the
range [30, 60]° in function of the neighborhood density. For example:

1. 30° when density is less than 0,025 node/m²
2. 45° when density is more than 0,025 node/m² and less than 0,05

node/m²
3. 60° when density is more than 0,05 node/m²
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C.2 Simple Forwarding Algorithm for GBC

Algorithm 3 Simple Forwarding for GBC pseudo-code
−− P is the GBC packet to be forwarded
−− LAT and LONG are latitude of the LPV, respectively
−− PV_SE is the sender position vector in its LocTE with latitude LAT_SE, longitude LONG_SE
−− with LAT_SE and LONG_SE as latitude and longitude
−− and position accuracy indicator PAI_SE
−− A is the center point of the destination area in the GeoNetworking
−− packet to be forwarded
−− NH_LL_ADDR is the link layer address of the next hop
−− BCAST is the Broadcast LL address
−− GREEDY() is the Algorithm 1
−− B is the forwarding packet buffer

Calculate F(LAT, LONG) −− Equation (C.1)
if F > 0 then −− Local GeoAdhoc router is inside or at the border of target area

NH_LL_ADDR ← BCAST
NH_LL_ADDR

else −− Local GeoAdhoc router is outside of target area
if (PV_SE EXISTS) AND (PAI_SE = TRUE) then

Calculate F(LAT_SE, LONG_SE) −− Equation (C.1)
if F < 0 then −− Sender is outside of target area

NH_LL_ADDR ← GREEDY(A)
RETURN NH_LL_ADDR

else
DISCARD P −− The packet as already reached the destination area
RETURN -1 −− Indicates that packet is discarded

end if
else

NH_LL_ADDR ← BCAST
RETURN NH_LL_ADDR

end if
end if
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C.3 Contention-Based GBC Forwarding Al-
gorithm

TO_CBF_GBC =

TO_CBF_MAX +

TO_CBF_MIN

− TO_CBF_MAX

DIST_MAX
×DIST for DIST 6 DIST_MAX

TO_CBF_MIN for DIST > DIST_MAX

(C.7)

where:

• TO_CBF_MIN is the minimum duration the packet shall be buffered.

• TO_CBF_MAX is the maximum duration the packet shall be buf-
fered.

• DIST is the distance between the GeoAdhoc router’s local position and
the sender (i.e. previous forwarder or source) position.

• DIST_MAX is the theorical maximum communication range of the
wireless access technology

P TGBC packet Timeout

P IN B

[NO]

SET F(LAT, LONG)

F(LAT, LONG) ≥ 0

[YES]

ADD P TO B

PV_SE EXISTS 
AND 

PAI_SE = TRUE 

[YES] [NO]

SET TO = TO_CBF_MAX

Local GeoAdhoc
router is inside or
at border of
geographical
area

PV_SE EXISTS 
AND 

PAI_SE = TRUE 

[NO]

Local GeoAdhoc
router is outside of
geographical
area

[YES]

SET F(LAT_SE, LONG_SE)

F(LAT_SE, LONG_SE) ≥ 0

[NO]

DISCARD P

RETURN -1

SET NH_LL_ADDR = GREEDY(A)

RETURN NH_LL_ADDR

START TIMER(TO)

RETURN 0

SET DIST

SET TO
REMOVE P FROM B

STOP TIMER

DISCARD P

RETURN -1

FETCH P FROM B

SET NH_LL_ADDR = BCAST

RETURN NH_LL_ADDR

[YES]

[YES]

Figure C.1 – Activity diagram for GBC CBF
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Algorithm 4 Contention-Based Forwarding for GBC pseudo-code
−− P is the GBC packet to be forwarded
−− LAT and LONG are latitude of the LPV, respectively
−− PV_SE is the sender position vector in its LocTE with latitude LAT_SE, longitude LONG_SE
−− with LAT_SE and LONG_SE as latitude and longitude
−− and position accuracy indicator PAI_SE
−− A is the center point of the destination area in the GeoNetworking
−− packet to be forwarded
−− NH_LL_ADDR is the link layer address of the next hop
−− BCAST is the Broadcast LL address
−− GREEDY() is the Algorithm 1
−− B is the forwarding packet buffer

if P IN B then −− Contending
REMOVE P FROM B
STOP TIMER
DISCARD P
RETURN -1 −− Indicates that packet is discarded

else −− New packet
Calculate F(LAT, LONG) −− Equation (C.1)
if F > 0 then −− Local GeoAdhoc router is inside or at the border of target area

ADD P TO B
if (PV_SE EXISTS) AND (PAI_SE = TRUE) then

DIST ← DIST(PV_SE, LPV)
TO ← TO_CBF_GBC −− Equation (C.7)

else
TO ← TO_CBF_MAX

end if
START TIMER(TO)
RETURN 0 −− Indicates that packet is buffered

else −− Local GeoAdhoc router is outside of target area
if (PV_SE EXISTS) AND (PAI_SE = TRUE) then

Calculate F(LAT_SE, LONG_SE) −− Equation (C.1)
if F < 0 then −− Sender is outside of target area

NH_LL_ADDR ← GREEDY(A)
RETURN NH_LL_ADDR

else
DISCARD P −− The packet as already reached the destination area
RETURN -1 −− Indicates that packet is discarded

end if
else

NH_LL_ADDR ← BCAST
RETURN NH_LL_ADDR

end if
end if

end if

if TIMER(TO) EXPIRES then
FETCH P FROM B
NH_LL_ADDR ← BCAST
RETURN P, NH_LL_ADDR

end if
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C.4 Advanced GBC Forwarding Algorithm

Algorithm 5 Advanced Forwarding for GBC pseudo-code
−− P is the GBC packet to be forwarded
−− L_LL_ADDR is the LL address of the local GeoAdhoc router
−− NH_LL_ADDR is the link layer address of the next hop
−− DEST_LL_ADDR is the LL destination address carried in P
−− B is the forwarding packet buffer
−− LPV is the local position vector with latitude LAT and longitude LONG
−− PV_SE is the sender position vector in its LocTE with latitude LAT_SE, longitude LONG_SE
−− with LAT_SE and LONG_SE as latitude and longitude
−− and position accuracy indicator PAI_SE
−− TO is the timeout that triggers the rebroadcast of the packet
−− COUNTER is the retransmit counter for the packet P
−− MAX_COUNTER is the retransmit threshold
−− BCAST is the Broadcast LL address
−− GREEDY() is the Algorithm 1
−− INOUT1 indicates whether the local GeoAdhoc router is outside the target area or not
−− INOUT2 indicates whether the local GeoAdhoc router is outside the sectorial contention area or not
−− INOUT3 indicates whether the sender is outside the target area or not
−− A is the center point of the destination area in the GeoNetworking
−− packet to be forwarded

NH_LL_ADDR ← -1 −− Initialize NH_LL_ADDR
INOUT1 ← F(LAT, LONG) −− Equation (C.1)
if INOUT1 > 0 then −− Inside or at the border of target area

if P IN B then −− Contending
if B.P.COUNTER > MAX_COUNTER then −− Stop contending

REMOVE P FROM B
STOP TIMER
DISCARD P
RETURN -1 −− Indicates that packet is discarded

else
INOUT2 ← G() −− Equation (C.6) for sectorial contention area
if INOUT2 > 0 then −− Inside or at the border of sectorial area

REMOVE P FROM B
STOP TIMER
DISCARD P
RETURN -1 −− Indicates that packet is discarded

else −− Outside the sectorial area
P.COUNTER++
TO ← TO_CBF_GBC −− Equation (C.7)
START TIMER(TO)

end if
end if

else −− New packet
ADD P TO B
if DEST_LL_ADDR = L_LL_ADDR then −− Greedy forwarding

COUNTER ← 1 −− Initialize COUNTER
NH_LL_ADDR ← GREEDY(A) −− Greedy() returns LL address of next hop or 0
TO ← TO_CBF_MAX −− Equation (C.7)
START TIMER(TO)
RETURN NH_LL_ADDR

else −− CBF
if (PV_SE EXISTS) AND (PAI_SE = TRUE) then

DIST ← DIST(PV_SE, LPV)
TO ← TO_CBF_GBC −− Equation (C.7)

else
TO ← TO_CBF_MAX

end if
START TIMER(TO)
RETURN 0 −− Indicates that packet is buffered

end if
end if

else −− Local GeoAdhoc router is outside of target area
if (PV_SE EXISTS) AND (PAI_SE = TRUE) then

Calculate F(LAT_SE, LONG_SE) −− Equation (C.1)
if F < 0 then −− Sender is outside of target area

NH_LL_ADDR ← GREEDY(A)
else

DISCARD P −− The packet as already reached the destination area
RETURN -1 −− Indicates that packet is discarded

end if
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else
NH_LL_ADDR ← BCAST
RETURN NH_LL_ADDR

end if
end if

if TIMER(TO) EXPIRES then
FETCH P FROM B
NH_LL_ADDR ← BCAST
RETURN P, NH_LL_ADDR

end if

P GBC packet T Timeout

SET NH_LL_ADDR = -1

SET INOUT1 = F(LAT, LONG)

[YES]

INOUT1 ≥ 0

[YES]

P IN B

Inside or at the border of target area

[YES]

P.B.COUNTER ≥
MAX_COUNTER

Contending

SET INOUT2 = G()

[NO]

[YES]

INOUT2 ≥ 0

REMOVE P FROM B

STOP TIMER

DISCARD P

RETURN -1

P.COUNTER++

SET TO = TO_CBF_GBC

START TIMER(TO)

RETURN 0

[NO]

ADD P TO B

[NO]

[YES]

[NO]DEST_LL_ADDR = 
L_LL_ADDR 

SET NH_LL_ADDR = GREEDY(A)

SET TO = TO_CBF_MA

START TIMER(TO)

RETURN NH_LL_ADDR

SET COUNTER = 1

[YES]

(PV_SE EXISTS) 
AND 

(PAI_SE = TRUE) 

SET TO = TO_CBF_GBC

SET DIST = DIST(PV_SE, LPV)

SET TO = TO_CBF_MAX

[NO]

START TIMER(TO)

RETURN 0

[YES]

(PV_SE EXISTS) 
AND 

(PAI_SE = TRUE) 

[NO]

SET NH_LL_ADDR = BCAST

[NO]

RETURN NH_LL_ADDR

SET INPUT3 = F(LAT_SE, LONG_SE)

[YES]

INOUT3 ≥ 0

SET NH_LL_ADDR = GREEDY(A)

RETURN NH_LL_ADDR

DISCARD P

RETURN -1

[NO]

Figure C.2 – Activity diagram for advanced GBC forwarding
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Appendix D

Protocol operation of the CA
basic service

D.1 CAM sending operation

Check_Dynamics

T_GenCamRep = 
T_GenCamMax 

Set(T_GenCam,
T_GenCamRep)

N_GenCam = 0

Idle

Idle

T_GenCam

Stop_Check = True

Generate_CAM

N_GenCam =
N_GenCam + 1

[NO]

N_GenCam ≥ 3

Check (T_GenCam_DCC

[YES]

T_GenCamRep >
T_GenCam_DCC

Set (T_GenCam,
T_GenCamRep)

LastCamGen = Now

Idle

TriggerCam

Generate_CAM

T_GenCamRep =
Now - LastCamGen

Check (T_GenCam_DCC

[YES]

T_GenCamRep >
T_GenCam_DCC

Set (T_GenCam,
T_GenCamRep)

N_GenCam = 1

LastCamGen = Now

Idle

Set (T_GenCam,
T_GenCamMax)

Set (T_GenCam,
T_GenCam_DCC)

[NO]

[YES]

Set (T_GenCam,
T_GenCam_DCC)

[NO]

Figure D.1 – Process Generate_CAM
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Set(T_CheckDyn,
T_CheckCamMin)

Idle

Idle

T_CheckDyn

Stop_Check = False

[NO]

Cond_speed 
or 

Cond_position 
or 

Cond_direction 

Stop_Check

TriggerCam

Check (T_GenCam_DCC)

Set(T_CheckDyn,
T_GenCam_DCC)

Idle

[YES]

[YES]

[NO]

Figure D.2 – Process Check_Dynamics
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[YES]

T_GenCam_DCC 
< T_GenCamMin

T_GenCam_DCC =
T_GenCamMin

[YES]

T_GenCam_DCC 
> T_GenCamMin

T_GenCam_DCC =
T_GenCamMax

[NO]

[NO]

Figure D.3 – Procedure Check
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Appendix E

Protocol operation of the DEN
basic service

E.1 DENM sending operation

AppDENM_trigger

Calculate expiratio of
timer T_O_Validity

[NO]

T_O_Validity in the past

Assign unused
ActionID

transmissionInterval 
provided 

Set fields of Management, 
Situation, Location and

Alacarte containers 

Construct DENM

Pass DENM to ITS 
 Networking &  
Transport Layer

Create entry in the
originating table for
DENM and set state

to ACTIVE

[NO]

repetitionDuration > 0 
and 

reptitionInterval > 0 

Pass DENM to ITS 
 Networking &  
Transport Layer

Calculate timeout
values for timers
T_Repetition and

T_RepetitionDuration
and start timers

[YES]

Send failure notifi- 
cation to requesting 

ITS-S application

[YES]

Set
transmissionInterval[YES]

[NO]

Start T_O_Validity
timer for DENM

Figure E.1 – AppDENM_trigger
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AppDENM_update

Calculate expiratio of
timer T_O_Validity

[NO]

T_O_Validity in the past

Stop timer T_O_Validity for DENM 
Stop timer T_Repetition for DENM if exists 

Stop timer T_RepetitionDuration for DENM if exists 

transmissionInterval 
provided 

Set fields of Management, 
Situation, Location and

Alacarte containers 

Construct DENM

Pass DENM to ITS 
 Networking &  
Transport Layer

Update entry in the
originating table for

DENM

[NO]

repetitionDuration > 0 
and 

reptitionInterval > 0 

Pass DENM to ITS 
 Networking &  
Transport Layer

Calculate timeout
values for timers
T_Repetition and

T_RepetitionDuration
and start timers

[YES]

Send failure notifi- 
cation to requesting 

ITS-S application

[YES]

Set
transmissionInterval[YES]

[NO]

[YES]

Entry exists in
oringinating message
table for ActionID in

update request
[NO]

Set referenceTime to
current time

Start T_O_Validity
timer for DENM

Figure E.2 – AppDENM_update
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AppDENM_termination

Calculate expiratio of
timer T_O_Validity

[NO]

T_O_Validity in the past

Stop timer T_O_Validity for DENM 
Stop timer T_Repetition for DENM if exists 

Stop timer T_RepetitionDuration for DENM if exists 

transmissionInterval 
provided 

Set fields of Management
container 

Construct DENM

Pass DENM to ITS 
 Networking &  
Transport Layer

Update entry in the
originating table for
DENM and set state

to CANCELLED

[NO]

repetitionDuration > 0 
and 

reptitionInterval > 0 

Pass DENM to ITS 
 Networking &  
Transport Layer

Calculate timeout
values for timers
T_Repetition and

T_RepetitionDuration
and start timers

[YES]

Send failure notifi- 
cation to requesting 

ITS-S application

[YES]

Set
transmissionInterval[YES]

[YES]

[NO]

Entry exists in oringinating 
message table for ActionID in

termination request 
and state ACTIVE Start T_O_Validity

timer for DENM

Entry exists in  
receiving message 
table for ActionID 

in termination request 
and state ACTIVE 

[NO]

Set termination to 0 

Set referenceTime to
current time 

Set termination to 1 

Set referenceTime to
referenceTime of

receiving table entry 

[YES]

termination = 0

Update entry in the
originating table for
DENM and set state

to NEGATED

[NO]

[NO]

Figure E.3 – AppDENM_termination

T_O_Validity expires

Stop timer T_Repetition for DENM if exists 
Stop timer T_RepetitionDuration for DENM if exists 

Discard entry in originating message table
corresponding to expired DENM 

Figure E.4 – T_O_Validity expiration
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T_O_RepetitionDuration expires

Stop timer T_Repetition for DENM 

Figure E.5 – T_RepetitionDuration expiration

T_O_Validity expires

Restart T_Repetition timer 

Pass DENM to ITS Networking  
& Transport Layer

Figure E.6 – T_Repetition expiration
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E.2 DENM forwarding operation

DENM received

[YES]

transmissionInterval
exists

[received referenceTime > entry referenceTime  
or entry of the same ID not found]

referenceTime ≥ 
referenceTime of 

received DENM for the 
same actionID

Calculate
T_F_Validity

[YES]

T_F_Validity
valid

Calculate 
T_Forwarding 

[YES]

T_Forwarding 
valid

Start/restart 
T_F_Validity and 

T_Forwarding timers 

Replace
itsPduHeader of
received DENM

Update DENM entry
in forwarding

message table

Start/restart
T_Forwarding timer

Discard received
DENM

[NO]

[received referenceTime =  
entry referenceTime] [received referenceTime <  

entry referenceTime]

[NO]

[NO]

Figure E.7 – KAF operation
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T_F_Validity expires

Stop timer T_Forwarding 

Discard entry in forwarding message table
corresponding to expired DENM 

Figure E.8 – T_F_Validity expiration

T_Forwarding expires

Restart T_Forwarding
timer 

[YES]

ITS-S is 
located inside 
the relevance 

area or 
destination 

area

Pass DENM to ITS 
Networking &  
Transport layer

[NO]

Figure E.9 – T_Forwarding expiration
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E.3 DENM reception operation

Receive DENM

Decode DENMCalculate expiry time
for T_R_Validity

[NO]

T_R_Validity 
in the past

Entry exists 
in receiving message

table 

Termination exists in
received DENM

[NO]

Received referenceTime < entry referenceTime and 
received detectionTime < entry detectionTime

[NO]

Received detectionTime = entry detectionTime and 
received referenceTime = entry referenceTime and 

received termination = entry termination 

[YES]

SSP consistent 
with causeCode

[YES]

SSP consistent 
with causeCode

Discard received DENM
Create entry in 

receiving message 
table with received 

actionID, set state to ACTIVE

Update entry in receiving
message table, set entry state

according to receiving
termination value

Start timer
T_R_Validity for

actionID

Restart timer
T_R_Validity for

actionID

Indicate DENM to upper layer if applicable

[YES][NO]

[NO]

[YES]

[YES]

[NO]

[NO]

[YES]

[YES]

Figure E.10 – DENM reception operation
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T_R_Validity expires

Delete DENM entry from the
receiving ITS-S message table 

Notify application 
if necessary 

Figure E.11 – T_R_Validity expiration



Appendix F

ETSI ITS implementation’s
classes

F.1 Manager

Manager

- m_paramGPS: FakeGPSProvider*
- m_paramCAN: FakeCANProvider*
- m_paramAppli: FakeApplicationProvider*
- m_paramConf: ParameterConfiguration*
- m_paramDENM: ParameterDENM*
- m_paramUpperTester: ParameterUpperTester *
- m_paramSecurity: ParameterSecurity*
- m_paramNetwork: ParameterNetwork*
- m_gnA: GnAddr*
+ hashMap: QHash<QString, void*>

Attributes

Methods

+ Manager(QMutex*, FakeGPSProvider*, FakeCANProvider*,
ParameterDENM*, FakeApplicationProvider*, ParameterUpperTester*) 
+ updateGnAddr(uchar*) 

Signals
midToChange()
Slots
changeMID()

Figure F.1 – Manager class diagram
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F.2 Sensor

FakeGPSProvider

Attributes
# m_data: ParameterGPS 
# startIts: QDateTime 
Methods
+ FakeGPSProvider() 
+ data(): ParameterGPS& 
+ timestamp(): quint64 
+ operator=(const FakeGPSProvider&): FakeGPSProvider& 
+ changePosition(qint32, qint32, qint8): void 
+ changeHeading(quint16): void 
+ changeSpeed(quint16): void 
# getTimestamp(): quint64 
Signals
positionChanged

(a) FakeGPSProvider class diagram

FakeCANProvider

Attributes
# m_data: ParameterCAN
Methods
+ FakeCANProvider() 
+ data(): ParameterCAN& 
+ changeCurvature(qint16): void 
+ changeSpeed(qint16): void 
+ setAccelerationControl(quint8): void 
+ setExteriorLights(quint8): void 
+ setDriverDirection(quint8): void 
+ changeYawRate(qint16): void 
+ setLightBarSirenInUse(quint8): void 
+ operator=(const FakeCANProvider&): FakeCANProvider& 
Signals
positionChanged

(b) FakeCANProvider class diagram

ParameterCAN

Attributes

- m_accelerationControl: AccelerationControl_t* 
- m_curvature: Curvature_t 
- m_curvatureCalculationMode: CurvatureCalculationMode_t 
- m_driveDirection: DriveDirection_t 
- m_exteriorLights: ExteriorLights_t 
- m_externalTemperature: Temperature_t* 
- m_lateralAcceleration: LateralAcceleration_t* 
- m_lightBarSirenInUse: LightBarSirenInUse_t 
- m_longitudinalAcceleration: LongitudinalAcceleration_t 
- m_numberOfOccupants: NumberOfOccupants_t* 
- m_positioningSolution: PositioningSolutionType_t* 
- m_speed: SpeedValue_t 
- m_steeringWheelAngle: SteeringWheelAngle_t* 
- m_verticalAcceleration: VerticalAcceleration_t* 
- m_yawRate: YawRate_t 

Methods
+ ParameterCAN() 
+ operator=(const ParameterCAN&): ParameterCAN& 
+ read(): void 
+ readDebug(): void 
+ accelerationControl() const: AccelerationControl_t* 
+ curvature() const: Curvature_t 
+ curvatureCalculationMode() const: CurvatureCalculationMode_t 
+ driveDirection() const: DriveDirection_t 
+ exteriorLights() const: ExteriorLights_t 
+ externalTemperature() const: Temperature_t* 
+ lateralAcceleration() const: LateralAcceleration_t* 
+ lightBarSirenInUse() const: LightBarSirenInUse_t 
+ longitudinalAcceleration() const: LongitudinalAcceleration_t 
+ numberOfOccupants() const: NumberOfOccupants_t* 
+ positioningSolution() const: PositioningSolutionType_t* 
+ speed() const: SpeedValue_t 
+ steeringWheelAngle() const: SteeringWheelAngle_t* 
+ verticalAcceleration() const: VerticalAcceleration_t* 
+ yawRate() const: YawRate_t 
- calculateCurvatureWithYawRate(): Curvature_t 
- curvatureUnavailable(): Curvature_t 

(c) ParameterCAN class diagram

GPSProvider

Methods
+ GPSProvider() 
+ getPosition(): void 
- getAltitudeConfidence(int): AltitudeConfidence_t 
- checkConstraints(): void 

(d) GPSProvider class diagram

ParameterGPS

Attributes
- m_address: QString 
- m_heading: Heading_t 
- m_port: QString 
- m_referencePosition: ReferencePosition_t 
- m_speed: Speed_t 
- m_timestamp: quint64 
Methods

+ ParameterGPS() 
+ ParameterGPS(const ParameterGPS&) 
+ operator=(const ParameterGPS&): ParameterGPS& 
+ read(): void 
+ readDebug(): void 
+ address() const: QString 
+ heading() const: Heading_t 
+ port() const: QString 
+ referencePosition() const: ReferencePosition_t 
+ speed() const: Speed_t 
+ timestamp() const: quint64 

(e) ParameterGPS class diagram

Figure F.2 – Sensors class diagrams
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F.3 Application

FakeApplicationProvider

Attributes
# m_data: ParameterApplication
Methods
+ FakeApplicationProvider() 
+ data(): ParameterApplication& 
+ operator=(const FakeApplicationProvider&): FakeApplicationProvider& 
+ setStationType(quint8): void 
+ setVehicleRole(quint8): void 
+ setEmbarkationStatus(quint8): void 
+ setPtActivation(quint8, quint8, uchar*): void 
+ setDangerousGoods(quint8): void 
+ setStationID(quint32): void 

(a) FakeApplicationProvider class dia-
gram

ParameterApplication

Attributes

- m_causeCodeEmergency: CauseCode_t 
- m_causeCodeSafety: CauseCode_t* 
- m_causeCodeStationary: CauseCode_t* 
- m_closedLanes: ClosedLanes_t* 
- m_dangerousGoodsBasic: DangerousGoodsBasic_t 
- m_dangerousGoodsExtended: DangerousGoodsExtended_t* 
- m_embarkationStatus: EmbarkationStatus_t 
- m_emergencyPriority: EmergencyPriority_t* 
- m_itsGnIsMobile: bool 
- m_ptActivation: PtActivation_t* 
- m_roadworksSubCauseCode: RoadworksSubCauseCode_t* 
- m_speedLimit: SpeedLimit_t* 
- m_specialTransportType: SpecialTransportType_t* 
- m_stationarySince: StationarySince_t* 
- m_stationID: StationID_t 
- m_stationType: StationType_t 
- m_trafficRule: TrafficRule_t* 
- m_vehicleIdentification: VehicleIdentification_t* 
- m_protectedCommunicationZones: ProtectedCommunicationZonesRSU_t* 
- m_vehicleRole: VehicleRole_t 

Methods
+ ParameterApplication() 
+ read(): void 
+ readDebug(): void 
+ operator=(const ParameterApplication&):  ParameterApplication& 
+ itsGnIsMobile() const: bool 
+ stationID() const: StationID_t 
+ stationType() const: StationType_t 
+ vehicleRole() const: VehicleRole_t 
+ dangerousGoodsBasic() const: DangerousGoodsBasic_t 
+ embarkationStatus() const: EmbarkationStatus_t 
+ ptActivation() const: PtActivation_t* 
+ specialTransportType() const: SpecialTransportType_t 
+ closedLanes() const: ClosedLanes_t* 
+ roadworksSubCauseCode() const: RoadworksSubCauseCode_t* 
+ emergencyPriority() const: EmergencyPriority_t* 
+ causeCodeEmergency() const: CauseCode_t* 
+ causeCodeSafety() const: CauseCode_t* 
+ speedLimit() const: SpeedLimit_t* 
+ trafficRule() const: TrafficRule_t* 
+ dangerousGoodsExtended() const: DangerousGoodsExtended_t* 
+ causeCodeStationary() const: CauseCode_t* 
+ stationarySince() const: StationarySince_t* 
+ vehicleIdentification() const: VehicleIdentification_t* 
+ protectedCommunicationZones() const: ProtectedCommunicationZonesRSU_t* 

(b) ParameterApplication class diagram

ApplicationManagement

Attributes
- m_can: FakeCANProvider* 
- m_gps: FakeGPSProvider* 
- m_ut: ParameterUpperTester* 
- m_network: ParameterNetwork* 
- m_udpSocket: QUdpSocket* 
- m_utSocket: QUdpSocket* 
- m_hasUt: bool 
- m_utPort: quint16 
- m_bt: bool 
- rfcommServer: QBluetoothServer* 
- serviceInfo: QBluetoothServiceInfo 
- clientSockets: QList<QBluetoothSocket*> 
Methods
+ ApplicationManagement(Manager*, bool, bool, bool) 
- transformMessageToBT(const QByteArray): QByteArray 
- getUtPort(const char): quint16 
Signals
btMessageReceived(const QByteArray) 
udpMessageReceived(const QByteArray) 
utMessageReceived(const QByteArray) 
Slots
situationChanged() 
clientConnected() 
clientDisconnected() 
readBtSocket() 
readUdpSocket() 
readUtSocket() 
sendMessageToFac(const QByteArray) 
sendMessageToBt(const QByteArray) 

(c) ApplicationManagement class dia-
gram

Figure F.3 – Application layer class diagrams
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F.4 Facilities

denBasicService

Attributes

- m_denmReception: denReceptionManagement* 
- m_denmReceptionThread: QThread* 
- m_denmTriggering: denTriggeringManagement* 
- m_denmTriggeringThread: QThread* 
- m_denmKAF: denKAFManagement* 
- m_denmKAFThread: QThread* 
- m_paramAppli: FakeApplicationProvider* 
- m_paramDENM: ParameterDENM* 
- m_appliPort: quint16 
- m_appliAddr: QHostAddress 
- m_denm2App: QUdpSocket* 

Methods
+ denBasicService(Manager*) 
+ utInitialize(): void 
+ AppDENM_terminate(QByteArray) 
Signals
utInitializeSignal() 
Slots
getAppRequest() 
appDenmResult(QByteArray) 

(a) DEN Basic Service class diagram

denTriggeringManagement

Attributes

- m_sequenceNumber: SequenceNumber_t 
- QVector<denMessageTableSource*> m_triggeredDENM 
- m_mutexTriggering: QMutex 
- m_paramGPS: FakeGPSProvider* 
- m_paramAppli: FakeApplicationProvider* 
- m_paramDENM: ParameterDENM* 
- m_paramConf: ParameterConfiguration* 
- m_paramCan: FakeCANProvider* 
- m_geonet: GeoNet* 
- m_defaultDestination: DestinationAreaData 
- m_appPort: quint16 

Methods
+ denTriggeringManagement(Manager*) 
- AppDENM_result(ActionID_t, bool, AppDenmResultData::e_failureNotification, DENM_t*): void 
- killTriggeredThreads(): void 
- PassDenmToNetworkAndTransportLayerTrigger(AppDenmTriggerData, char*, int): void 
- setSequenceNumber(SequenceNumber_t): void 
- AppDENM_trigger(QByteArray) 
- AppDENM_update(QByteArray) 
- AppDENM_cancellation(AppDenmTerminationData, ActionID_t) 
- AppDENM_terminationIndication(ActionID_t) 
Signals
setSequenceNumberSignal((quint16) 
appDenmResult(QByteArray) 
Slots

utInitialize() 
appendTriggeredDenm(denMessageTableSource*) 
setSequenceNumberSlot(quint16) 
discardDENMFromTriggeredTable(ActionID_t) 
repeatDENMFromTriggeredTable(ActionID_t) 

(b) DEN Triggering Management class
diagram

denReceptionManagement

Attributes
- m_sequenceNumber: SequenceNumber_t 
- QVector<denMessageTableReception*> m_receivedDENM 
- m_mutexReception: QMutex 
- m_paramGPS: FakeGPSProvider* 
- m_paramAppli: FakeApplicationProvider* 
- m_paramDENM: ParameterDENM* 
- m_paramConf: ParameterConfiguration* 
- m_paramCan: FakeCANProvider* 
- m_geonet: GeoNet* 
- m_denm2app: QUdpSocket* 
- m_internalSocket: QUdpSocket* 
- m_appPort: quint16 
Methods
+ denReceptionManagement(Manager*, GeoNet*) 
- AppDENM_result(ActionID_t, bool, AppDenmResultData::e_failureNotification, DENM_t*): void 
- killReceptionThreads(): void 
- PassDenmToNetworkAndTransportLayerTrigger(AppDenmTriggerData, char*, int): void 
- setSequenceNumber(SequenceNumber_t): void 
- decodeDenm(QByteArray): void 
- denmReception(DENM_t*): void 
- AppDENM_negation(AppDenmTerminationData, ActionID_t) 
- sendRequestResponseIndication_Response(SituationContainer_t*, ActionID_t): void 
- discardDENM(int) 
Signals
setSequenceNumberSignal((quint16) 
appDenmResult(QByteArray) 
appendTriggeredDenm(denMessageTableSource*) 
kaf(DENM_t*) 
Slots

utInitialize() 
appendTriggeredDenm(denMessageTableSource*) 
setSequenceNumberSlot(quint16) 
discardDENMFromReceivedTable(ActionID_t) 
readDatagram() 

(c) DEN Reception Management class
diagram

denKAFManagement

Attributes
- QVector<denMessageTableForwarding*> m_forwardingDENM 
- m_mutexForwarding: QMutex 
- m_paramGPS: FakeGPSProvider* 
- m_paramAppli: FakeApplicationProvider* 
- m_geonet: GeoNet* 
Methods
+ denKAFManagement(Manager*, GeoNet*) 
- killForwardingThreads(): void 
- PassDenmToNetworkAndTransportLayerTrigger(AppDenmTriggerData, QByteArray): void 
Slots
utInitialize() 
kaf(DENM_t*) 
repeatDENMFromForwardingTable(ActionID_t) 
discardDENMFromForwardingTable(ActionID_t) 

(d) DEN KAF Management class dia-
gram

Figure F.4 – DEN layer class diagrams
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caBasicService

Attributes
- m_T_GenCam_DCC: quint16 
- m_T_GenCam: quint16 
- m_N_GenCam: quint16 
- m_T_CheckGenCam: quint16 
- m_currentCAM: CAM_t 
- m_previousCAM: CAM_t 
- m_previousTime: QTime 
- m_previousLF: QTime 
- header: ItsPduHeader_t 
- m_elapsed: QElapsedTimer 
- m_quick: bool 
- m_generatedCam: int 
- m_timer: QTimer 
- m_paramGPS: FakeGPSProvider* 
- m_geonet: GeoNet* 
- m_paramConf: ParameterConfiguration* 
- m_paramAppli: FakeApplicationProvider* 
- m_paramCAN: FakeCANProvider* 
- m_listReferencePosition: QList<ReferencePosition_t> 
- m_listGenerationDeltaTime: QList<GenerationDeltaTime_t> 
- m_listPathPoint: PathPoint_t[40] 
Methods
+ caBasicService(Manager*, GeoNet*) 
- checkCamGeneration(): bool 
- collectMandatoryData(): CAM_t 
- checkForOptionalContainers(): bool 
- checkAndCollectDataForOptionalContainers(CAM_t*) 
- PassCamToNetworkAndTransportLayer(char*, int) 
- collectMandatoryData_BasicContainer(): BasicContainer_t 
- collectMandatoryData_BasicVehicleContainerHighFrequency(): BasicVehicleContainerHighFrequency_t 
- collectMandatoryData_RSUContainerHighFrequency(): RSUContainerHighFrequency_t 
- collectOptionalData_BasicVehicleContainerLowFrequency(): BasicVehicleContainerLowFrequency_t 
- collectOptionalData_SpecialVehicleContainer(VehicleRole_t): SpecialVehicleContainer_t 
- collectOptionalData_PublicTransportContainer(): PublicTransportContainer_t 
- collectOptionalData_SpecialTransportContainer(): SpecialTransportContainer_t 
- collectOptionalData_DangerousGoodsContainer(): DangerousGoodsContainer_t 
- collectOptionalData_RoadWorksContainerBasic(): RoadWorksContainerBasic_t 
- collectOptionalData_RescueContainer(): RescueContainer_t
- collectOptionalData_EmergencyContainer(): EmergencyContainer_t 
- collectOptionalData_SafetyCarContainer(): SafetyCarContainer_t
- needSpecialVehicleContainer(VehicleRole_t): bool 
- getPathHistory(): PathHistory_t 
- getPathPoint(int): PathPoint_t 
- checkPathPoint(int): void 
- utInitialize(): void 
Slots
execute() 
checkToSendCAM() 

(a) CA Basic Service class diagram

caReceptionManagement

Attributes
- m_cam2app: QUdpSocket* 
- m_appPort: quint16 
- m_internalSocket: QUdpSocket* 
Methods
+ caReceptionManagement(Manager*) 
- decodeCam(QByteArray): bool 
- camEventIndication(QByteArray): void 
Slots

readDatagram() 

(b) CA ReceptionManagement class di-
agram

Figure F.5 – CA layer class diagrams
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F.5 GeoNetworking

ReceivePackets

Attributes
+ m_changeFilter: bool 
+ m_handle: pcap_t* 
- m_paramConf: ParameterConfiguration* 
Methods
ReceivePackets(ParameterConfiguration*)
Signals
packetReceived(QByteArray)
Slots
receive()

(a) ReceivePackets
class diagram

GeoNet

Attributes
+ sequenceNumber: quint16 
+ QHash<int, QString> geonetErrors 
- m_beacon: QTimer* 
- gn2fac: QUdpSocket* 
- gn2ut: QUdpSocket* 
- m_sslSocket: QSslSocket* 
- m_tcpSocket: QTcpSocket* 
- m_paramHybrid: ParameterHybrid* 
- m_hybridFlag: bool 
- m_geonetFlag: bool 
- m_paramGPS: FakeGPSProvider* 
- m_paramCAN: FakeCANProvider* 
- m_paramAppli: FakeApplicaitonProvider* 
- m_paramConf: ParameterConfiguration* 
- m_paramUpperTester: ParameterUpperTester* 
- m_paramNetwork: ParameterNetwork* 
- m_paramSecu: ParameterSecurity* 
- m_gnAddr: GnAddr* 
- m_manager: Manager* 
- m_HPB: HistoryPacketBuffer* 
- m_BCFPB: BroadcastForwardingPacketBuffer* 
- m_UCFPB: UnicastFrowardingPacketBuffer* 
- m_CBFPB: CBFPacketBuffer* 
- m_RPB: RepetitionPacketBuffer* 
- m_LSPB: LocationServicePacketBuffer* 
- m_locationTable: QHash<QByteArray, LocationTableEntry*> 
- m_RP: ReceivePackets* 
- m_lsRetransmission: QHash<QByteArray, int> 
- m_mutex: QMutex* 
- m_mutexLocT: QMutex* 
- m_CBFPBCounter: QHash<QByetArray, int> 
- m_angleThreshold: int 
- m_securityManager: SecurityManager 

Methods

+ GeoNet(Manager*, bool, bool) 
+ send(gnDataRequest_t): int 
+ send(QByteArray, bool, BasicHeader): int 
- greedy(PacketBuffersEntry, QByteArray): ForwardingAlgorithmResponse 
+ greedy(BasicHeader, CommonHeader, GACPacket, QByteArray, QByteArray, 
               uchar*, uchar*): ForwardingAlgorithmResponse 
+ greedy(BasicHeader, CommonHeader, GBCPacket, QByteArray, QByteArray, 
               uchar*, uchar*): ForwardingAlgorithmResponse 
+ greedy(BasicHeader, CommonHeader, GUCPacket, QByteArray, QByteArray, 
               uchar*, uchar*): ForwardingAlgorithmResponse 
+ greedy(BasicHeader, CommonHeader, LSReplyPacket, QByteArray, QByteArray, 
               uchar*, uchar*): ForwardingAlgorithmResponse 
+ simpleForwardingAlgorithm(BasicHeader, CommonHeader, GBCPacket, QByteArray, 
                                                e_shape, QByteArray, bool): ForwardingAlgorithmResponse 
+ contentionBasedForwardingAlgorithm(BasicHeader, CommonHeader, GBCPacket, QByteArray,
                                                e_shape, QByteArray, bool): ForwardingAlgorithmResponse
+ advancedForwarding(BasicHeader, CommonHeader, GBCPacket, QByteArray,
                                      e_shape, QByteArray, bool): ForwardingAlgorithmResponse
+ CBFUnicast(BasicHeader, CommonHeader, GACPacket, QByteArray): ForwardingAlgorithmResponse
+ CBFUnicast(BasicHeader, CommonHeader, GUCPacket, QByteArray): ForwardingAlgorithmResponse
- initGeoNetErrors(): void
- sendLsRequest(GnAddr, gnDataRequest_t): int
- sendGAC(gnDataRequest_t): int
- sendGBC(gnDataRequest_t): int 
- sendSHB(gnDataRequest_t): int 
- sendTSB(gnDataRequest_t): int
- basicHeaderProcessing(uchar*, int, sniff_ethernet_t*): int
- commonHeaderProcessing(uchar*, sniff_ethernet_t*, BasicHeader): int
- beaconPacketProcessing(uchar*, sniff_ethernet_t*, BasicHeader, CommonHeader): int
- gacPacketProcessing(uchar*, sniff_ethernet_t*, BasicHeader, CommonHeader): int 
- gbcPacketProcessing(uchar*, sniff_ethernet_t*, BasicHeader, CommonHeader): int 
- gucPacketProcessing(uchar*, sniff_ethernet_t*, BasicHeader, CommonHeader): int 
- shbPacketProcessing(uchar*, sniff_ethernet_t*, BasicHeader, CommonHeader): int 
- tsbPacketProcessing(uchar*, sniff_ethernet_t*, BasicHeader, CommonHeader): int 
- LSRequestPacketProcessing(uchar*, sniff_ethernet_t*, BasicHeader, CommonHeader): int 
- LSReplyPacketProcessing(uchar*, sniff_ethernet_t*, BasicHeader, CommonHeader): int 
- sendEventIndicationToUT(uchar*, int): void
- verifLocT(): void
- InitRawSocket_send(): int
- initHybridSocket(): void
- sslErrors(const QList<QSslError>&): void
- socketError(QAbstractSocket::SocketError): void
- setupUnsercureSocket(): void
- setupSecureSocket(): void
- hybridSend(QByteArray): int
- flushPB(GnAddr): void
- flushLSPB(GnAddr): void
- checkUCFPB(): void
- flushUCFPB(GnAddr): void
- checkBCFPB(): void
- TO_CBF_GBC(int): int
- TO_CBF_GUC(int): int

Signals
lpvSent() 
packetReceived(QByteArray) 
Slots

execute() 
treatPackets(QByteArray) 
sendPacketFromRPB(gnDataRequest_t) 
lpvUpdate() 
sendBeacon() 
utInitialize() 
lsRetransmit(GnAddr, QByteArray, BasicHeader) 
sendGUC(gnDataRequest_t) 
socketReadyRead() 

(b) GeoNet class diagram

Figure F.6 – GeoNetworking layer class diagrams
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F.6 UpperTester

UpperTester

Attributes
- m_readSocket: QUdpSocket* 
- m_readEventIndicationSocket* 
- m_writeSocket: QUdpSocket* 
- m_denmSocket: QUdpSocket* 
- m_mutex: QMutex* 
- m_req: QByteArray(UpperTester::*UpperTesterPrimitive)(void)[256] 
- m_lastSenderAddress: QHostAddress 
- m_lastSenderPort: quint16 
- m_manager: Manager* 
- m_gpsProvider: FakeGPSProvider* 
- m_canProvider: FakeCANProvider* 
- m_geonet: GeoNet* 
- m_facilities: Facilities* 
- m_paramConf: ParameterConfiguration* 
- m_paramUpperTester: ParameterUpperTester* 
- m_appPort: quint16: 
- m_appSocket: QUdpSocket* 

Methods
+ UpperTester(Manager*) 
- utInitialize(): QByteArray 
- utInitializeResult(bool): QByteArray 
- utChangePosition(): QByteArray 
- utChangePositionResult(bool): QByteArray 
- utChangePseudonym(): QByteArray 
- utChangePseudonymResult(bool): QByteArray 
- utCamTriggerResult(bool): QByteArray 
- utChangeCurvature(): QByteArray 
- utChangeSpeed(): QByteArray 
- utSetAccelerationControlStatus(): QByteArray 
- utSetExteriorLights(): QByteArray 
- utChangeHeading(): QByteArray 
- utSetDriveDirection(): QByteArray 
- utChangeYawRate(): QByteArray 
- utSetStationType(): QByteArray 
- utSetVehicleRole(): QByteArray 
- utSetEmbarkationStatus(): QByteArray 
- utSetPtActivation(): QByteArray 
- utSetDangerousGoods(): QByteArray 
- utSetLightBarSiren(): QByteArray 
- utDenmResult(UpperTesterPrimitives::e_DENMUpperTesterPrimitives, 
                         bool, ActionID_t): QByteArray 
- utDenmTriggerResult(bool, ActionID_t): QByteArray 
- utDenmTrigger(): QByteArray 
- utDenmUpdateResult(bool, ActionID_t): QByteArray 
- utDenmUpdate(): QByteArray 
- utDenmTerminateResult(bool, ActionID_t): QByteArray 
- utDenmTerminate(): QByteArray 
- utGnTriggerResult(bool): QByteArray 
- utSendGUC(): QByteArray 
- utSendGBC(): QByteArray 
- utSendGAC(): QByteArray 
- utSendSHB(): QByteArray 
- utSendTSB(): QByteArray 

Signals
utInit()
Slots

readPendingDatagrams() 
readInternalDatagrams() 

Figure F.7 – UpperTester class diagram
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Appendix G

Scoop@f optimization

G.1 Scoop@f extension
RSUContainerHighFrequency ::= SEQUENCE {

protectedCommunicationZonesRSU ProtectedCommunicationZonesRSU OPTIONAL,
...,
serviceAdvertismentContainer ServiceAdvertismentContainer,
positionEnhancementContainer PositionEnhancementContainer,
environmentAndContextContainer EnvironmentAndContextContainer

}

ServiceAdvertismentContainer ::= SEQUENCE {
advertisedServiceItsAid AdvertisedServiceItsAid,
serviceAccessCapabilities ServiceAccessCapabilities,
channelUsedByTheAdvertisedService ChannelUsedByTheAdvertisedService,
communicationProfileUsedForTheService CommunicationProfileUsedForTheService,
rsuMacAddress RsuMacAddress,
rsuIpAddress RsuIpAddress

}

AdvertisedServiceItsAid ::= INTEGER(0..255)

ServiceAccessCapabilities ::= BIT STRING {
globalNetwork (0),
continuousExchangeCapability (1),
storeForwardCapability (2)

} (SIZE(8))

ChannelUsedByTheAdvertisedService ::= ENUMERATED {
cch(0),
sch1(1),
sch2(2),
sch3(3),
sch4(4),
sch5(5),
sch6(6)

}

CommunicationProfileUsedForTheService ::= ENUMERATED {
btpgeonet(0),
tcpipv4(1),
tcpiv6(2)

}

RsuMacAddress ::= OCTET STRING (SIZE(6))

RsuIpAddress ::= CHOICE {
rsuipv4Andv6Address Ipv4Andv6,
rsuiPv4Address IPv4Address,
rsuiPv6Address IPv6Address

}

Ipv4Andv6 ::= SEQUENCE {
rsuiPv4Address IPv4Address,
rsuiPv6Address IPv6Address

}

IPv4Address ::= OCTET STRING (SIZE(4))
IPv6Address ::= OCTET STRING (SIZE(16))

PositionEnhancementContainer ::= SEQUENCE {
gpsPositionDeltaLatitude DeltaLatitude OPTIONAL,
gpsPositionDeltaLongitude DeltaLongitude OPTIONAL,
gpsPositionDeltaAltitude DeltaAltitude OPTIONAL,
satelliteConstellationLocallyAvailable SatelliteConstellationLocallyAvailable OPTIONAL,
tracesLeadingToTheRsu TracesLeadingToTheRsu OPTIONAL

}
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SatelliteConstellationLocallyAvailable ::= INTEGER(0..255)
TracesLeadingToTheRsu ::= SEQUENCE SIZE(1..7) OF PathHistory

EnvironmentAndContextContainer ::= SEQUENCE {
localMeteorologicalData LocalMeteorologicalData OPTIONAL,
roadEnvironment RoadEnvironment OPTIONAL,
trafficCondition TrafficCondition OPTIONAL

}

LocalMeteorologicalData ::= BIT STRING (SIZE(8))
RoadEnvironment ::= INTEGER(0..255)
TrafficCondition ::= INTEGER(0..255)

G.2 Proposed extension
RSUContainerHighFrequency ::= SEQUENCE {

protectedCommunicationZonesRSU ProtectedCommunicationZonesRSU OPTIONAL,
...,
serviceAdvertismentContainer ServiceAdvertismentContainer OPTIONAL,
positionEnhancementContainer PositionEnhancementContainer OPTIONAL,
environmentAndContextContainer EnvironmentAndContextContainer OPTIONAL

}

ServiceAdvertismentContainer ::= SEQUENCE {
rsuMacAddress RsuMacAddress,
rsuIpAddress RsuIpAddress,
ads ServiceAdvertisments

}

ServiceAdvertisments ::= SEQUENCE (SIZE(0..7)) OF ServiceAdvertisment

ServiceAdvertisment ::= SEQUENCE {
advertisedServiceItsAid AdvertisedServiceItsAid,
serviceAccessCapabilities ServiceAccessCapabilities,
channelUsedByTheAdvertisedService ChannelUsedByTheAdvertisedService,
communicationProfileUsedForTheService CommunicationProfileUsedForTheService

}

AdvertisedServiceItsAid ::= INTEGER {
pki (0),
tlogTransfert (1)

} (0..7)

ServiceAccessCapabilities ::= BIT STRING {
globalNetwork (0),
continuousExchangeCapability (1),
storeForwardCapability (2)

} (SIZE(3))

ChannelUsedByTheAdvertisedService ::= ENUMERATED {
cch(0),
sch1(1),
sch2(2),
sch3(3),
sch4(4),
sch5(5),
sch6(6)

}

CommunicationProfileUsedForTheService ::= ENUMERATED {
btpGeonet(0),
tcpIPv4(1),
tcpIPv6(2)

}

RsuMacAddress ::= OCTET STRING (SIZE(6))

RsuIpAddress ::= SEQUENCE {
rsuIPv4Address IPv4Address OPTIONAL,
rsuIPv6Address IPv6Address OPTIONAL

}

IPv4Address ::= OCTET STRING (SIZE(4))
IPv6Address ::= OCTET STRING (SIZE(16))

PositionEnhancementContainer ::= SEQUENCE {
gpsPositionDeltaLatitude DeltaLatitude OPTIONAL,
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gpsPositionDeltaLongitude DeltaLongitude OPTIONAL,
gpsPositionDeltaAltitude DeltaAltitude OPTIONAL,
satelliteConstellationLocallyAvailable SatelliteConstellationLocallyAvailable OPTIONAL,
tracesLeadingToTheRsu Traces OPTIONAL

}

SatelliteConstellationLocallyAvailable ::= INTEGER(0..30)

EnvironmentAndContextContainer ::= SEQUENCE {
localMeteorologicalData LocalMeteorologicalData OPTIONAL,
roadEnvironment RoadEnvironment OPTIONAL,
trafficCondition TrafficCondition OPTIONAL

}

LocalMeteorologicalData ::= BIT STRING (SIZE(8))
RoadEnvironment ::= INTEGER(0..255)
TrafficCondition ::= INTEGER(0..255)

G.3 TLog optimization proposition
Scoop-TLog-PDU-Description DEFINITIONS AUTOMATIC TAGS ::= BEGIN

IMPORTS

CAMI FROM CAMI-PDU-Descriptions

DENM FROM DENM-PDU-Descriptions {
itu-t (0) identified-organization (4) etsi (0) itsDomain (5) wg1 (1) en (302637) denm (1)
version (1)

}

AccelerationControl, ActionID, CauseCode, DeltaReferencePosition, ExteriorLights, Heading,
Latitude, Longitude, LongitudinalAcceleration, ReferencePosition, PositionOfOccupants, Speed,
StationID, SteeringWheelAngle, Temperature, TimestampIts, YawRate
FROM ITS-Container {
itu-t (0) identified-organization (4) etsi (0) itsDomain (5) wg1 (1) ts (102894) cdd (2)
version (1)
}

AccidentStatus, Actor, AirConditioningStatus, AutomobileSafetySystem, CalculationMode,
ChannelOccupation, CountersChannel, DashboardIndication, DefaultCodes, DefrostingActivation,
DistanceValue, DoorsStatus, Duration, ECallStatus, EnergeticCost, EquipmentCode, FaultyMessageCode,
FrictionCoefficient, FunctioningStatus, HeatingLevel, IdentificationMode, IgnitionStatus,
LengthClasses, LogSecurityEventType, LuminosityStatus, Neighborhood, NumberOfAuthentifiedMessage,
Odometer, OriginallyQuery, Percentage, RadioInformation, Reliability, ScreenID, SeatBeltStatus,
SendReception, StorageSize, StrengthBraking, SubActivityOperator, TotalDistanceTraveledSinceStart,
TypeRequest, Username, VersionNumber, Wipers
FROM Scoop-Container;

TLogHeader ::= SEQUENCE {
logVersion VersionNumber,
softwareVersion VersionNumber,
hardwareVersion VersionNumber,
source Actor,
stationIDEgo StationID

}

TLog-FaultyMessage ::= SEQUENCE {
cause FaultyMessageCode

}

TLog-CAMI ::= SEQUENCE {
send SendReception,
cami CAMI

}

TLog-DENM ::= SEQUENCE {
send SendReception,
denm DENM

}

TLog-NetworkAccessPerformances ::= SEQUENCE {
cntsCCH CountersChannel,
cntsSCH1 CountersChannel,
busyRatioCCH ChannelOccupation,
busyRatioSCH1 ChannelOccupation

}
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TLog-DatexIISituation ::= SEQUENCE {
send SendReception,
situationRecordCreationTime TimestampIts,
situationVersionedId IA5String (SIZE(1..45))

}

TLog-GeneralWorking ::= SEQUENCE {
returnCode FunctioningStatus

}

TLog-ModulesWorking ::= SEQUENCE {
itsG5State FunctioningStatus,
wifiState FunctioningStatus,
cellularState FunctioningStatus,
gnssState FunctioningStatus,
hsmState FunctioningStatus,
tabletState FunctioningStatus,
storageUsed Percentage,
occupationRAM Percentage

}

TLog-Radio ::= SEQUENCE {
channelCCH RadioInformation,
channelSCH1 RadioInformation

}

TLog-Configuration ::= SEQUENCE {
equipmentCode EquipmentCode,
username Username,
establishmentLongitude Longitude,
establishmentLatitude Latitude,
lengthClasses LengthClasses,
calculationMode CalculationMode,
speedLengthPeriod Duration,
classedDataPeriod Duration,
raisingStorageSizeMax StorageSize,
raisingPeriod Duration

}

TLog-SecurityIncident ::= SEQUENCE {
eventType LogSecurityEventType,
neighbor Neighborhood,
eventTime TimestampIts,
eventPosition ReferencePosition

}

TLog-Security ::= SEQUENCE {
numberOfAuthentifiedMessage NumberOfAuthentifiedMessage,
signatureDuration Duration,
signatureCheckDuration Duration,
validityCheckDuration Duration,
signatureCost EnergeticCost,
signatureCheckCost EnergeticCost

}

TLog-ObjetsPKI ::= SEQUENCE {
originallyQuery OriginallyQuery OPTIONAL,
typeRequest TypeRequest,
timestampRequest TimestampIts,
successfulRequest BOOLEAN,
timestampResponse TimestampIts,
keyGenerationCost EnergeticCost

}

TLog-DataStation ::= SEQUENCE {
egoMapPosition ReferencePosition OPTIONAL,
egoPosition ReferencePosition OPTIONAL,
speed Speed OPTIONAL,
yawRate YawRate OPTIONAL,
wipers Wipers OPTIONAL,
automobileSafetySystem AutomobileSafetySystem OPTIONAL,
distanceTraveledSinceMotorStarted TotalDistanceTraveledSinceStart OPTIONAL,
longitudinalAcceleration LongitudinalAcceleration OPTIONAL,
accidentStatus AccidentStatus OPTIONAL,
seatBeltStatus SeatBeltStatus OPTIONAL,
eCallStatus ECallStatus OPTIONAL,
frictionCoefficient FrictionCoefficient OPTIONAL,
openDoorsStatus DoorsStatus OPTIONAL,
visibilityDistance DistanceValue OPTIONAL,
positionOfOccupants PositionOfOccupants OPTIONAL,
defrostingActivation DefrostingActivation OPTIONAL,
airConditioningStatus AirConditioningStatus OPTIONAL,
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heating HeatingLevel OPTIONAL,
accelerationControl AccelerationControl,
steeringWheelAngle SteeringWheelAngle,
strengthBraking StrengthBraking,
exteriorLights ExteriorLights,
odometer Odometer,
temperature Temperature OPTIONAL,
ignition IgnitionStatus OPTIONAL,
defaultCodes DefaultCodes OPTIONAL,
indicationDashboard DashboardIndication

}

TLog-DriverRequest ::= SEQUENCE {
send SendReception,
actionID ActionID OPTIONAL,
screenID ScreenID OPTIONAL,
eventType CauseCode,
egoPosition ReferencePosition,
reliability Reliability OPTIONAL

}

TLog-ClimaticEnvironmentContext ::= SEQUENCE {
luminosity LuminosityStatus,
defrosting DefrostingActivation

}

TLog-MapProjectionContext ::= SEQUENCE {
actionID ActionID,
carMapPosition ReferencePosition,
eventMapPosition ReferencePosition,
correction DeltaReferencePosition,
referencePosition ReferencePosition,
eventPosition ReferencePosition,
eventPositionHeading Heading OPTIONAL

}

TLog-StateChangement ::= SEQUENCE {
quitActivityIdentification IdentificationMode,
operatorSubActivity SubActivityOperator,
snowplowBlade BOOLEAN,
flr BOOLEAN,
flu BOOLEAN,
workingSignal BOOLEAN,
gritter BOOLEAN,
revolvingLight BOOLEAN,
punch BOOLEAN,
externalTemperature Temperature OPTIONAL,
degradeMode BOOLEAN

}

TLogFile ::= SEQUENCE {
header TLogHeader,
logs TLogs

}

TLogs ::= SEQUENCE OF TLog

TLog ::= SEQUENCE {
collectionTime TimestampIts,
log TLogType

}

TLogType ::= CHOICE{
cami TLog-CAMI,
climaticEnvironmentalContext TLog-ClimaticEnvironmentalContext,
configuration TLog-Configuration,
dataStation TLog-DataStation,
datexIISituation TLog-DatexIISituation,
denm TLog-DENM,
driverRequest TLog-DriverRequest,
faultyMessage TLog-FaultyMessage,
generalWorking TLog-GeneralWorking,
mapProjectionContext TLog-MapProjectionContext,
modulesWorking TLog-ModulesWorking,
networkAccessPerformances TLog-NetworkAccessPerformances,
objetsPki TLog-ObjetsPKI,
radio TLog-Radio,
security TLog-Security,
securityIncident TLog-SecurityIncident,
stateChangement TLog-StateChangement,
...

}
END
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Appendix H

k Nearest Neighbor Using
Local Density Implementation

For the algorithms, we use a Sample_t structure defined as follows:

Sample_t:
{

sample: integer
neighborhood: list of integer

}

H.1 Sequential Algorithms

Algorithm 6 Samples
−− N: integer, is the number of data in the matrix
−− p: integer, is the number of variables in the matrix
−− inputData: list of N lists of p floats, if the normalized matrix with the data
−− alpha: float, is the density of the neighborhood
−− rpz: list of struct Sample_t, is the list of selected samples and their neighborhood
−− k: integer, is the density parameter

−− append: function, is a function appending a Sample_t structure to a list of Sample_t structure
−− Sample: function, is the Algorithm 7, returning a Sample_t structure
−− purgeSamples: function, is the Algorithm 15, removing the selected sample and its neighborhood, returning the

new number of data
−− normalize: function, is the Algorithm 16

alpha ←
k
N

while N > 1 do
rpz.append(Sample(N, p, inputData, alpha))
N ← purgeSamples(inputData, rpz)
if N > 1 then

normalize(N, p, inputData)
end if

end while
return rpz

H.2 Parallelized Algorithms

143
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Algorithm 7 Sample
−− N: integer, is the number of data in the matrix
−− p: integer, is the number of variables in the matrix
−− inputData: list of N lists of p floats, if the normalized matrix with the data
−− alpha: float, is the density of the neighborhood
−− distances: list of p lists of N lists of N floats, is the distances for each data, for each variable
−− neighbors: list of p lists of N lists of N integers, is the neighborhood for each data, for each variable
−− densities: list of N lists of p integers, is the densities of data for each variable
−− sumDensities: list of N integers, is the sum of densities for each data
−− max: integer, is the number of the denser data, i.e. the selected sample
−− variableNeighbors: list of N lists of p integers, is the neighborhood for each variable of the selected data
−− inter: list of integers, is the intersection of the neighborhood of the selected data
−− rpz: Sample_t structure, is the selected sample with its neighborhood
−− i: integer, is an iterator

−− euclidean: function, Algorithm 8, returning the distances for each data, for each variable
−− neighborhood: function, Algorithm 9, returning the neighborhood for each data, for each variable
−− density: function, Algorithm 10, returning the densities of data for each variable
−− sumDensity: function, Algorithm 11, returning the sum of densities for each data
−− maximum: integer, function, Algorithm 12, returning the number of the denser data, i.e. the selected sample
−− variableNeighborhood: function, Algorithm 13, returning the neighborhood for each variable of the selected data
−− intersection: function, Algorithm 14, returning the intersection of the neighborhood of the selected data
−− num: function, returns the number of the data
−− append: function, is a function appending an integer to a list

distances ← euclidean(N, p, inputData)
neighbors ← neighborhood(N, p, distances, alpha)
densities ← density(N, p, neighbors)
sumDensities ← sumDensity(N, p, densities)
max ← maximum(N, sumDensities)
variableNeighbors ← variableNeighborhood(N, p, max, neighbors)
inter ← intersection(N, p, variableNeighbors)
rpz.sample ← num(inputData[max])
for i ← 0 to N do

if inter[i] = 1 then
rpz.neighborhood.append(num(inputData[i]))

end if
end for
return rpz

Algorithm 8 Euclidean
−− N: integer, is the number of data in the matrix
−− p: integer, is the number of variables in the matrix
−− inputData: list of N lists of p floats, if the normalized matrix with the data
−− distances: list of p lists of N lists of N float, is the distances for each data, for each variable
−− v, n, i: integers, are some iterators

−− fabs: function, return the absolute value of a float value

for v ← 0 to p do
for n ← 0 to N do

for i ← 0 to N do
distances[v][n][i] ← fabs(inputData[i][v] - inputData[j][v])

end for
end for

end for
return distances

Algorithm 9 Neighborhood
−− N: integer, is the number of data in the matrix
−− p: integer, is the number of variables in the matrix
−− distances: list of p lists of N lists of N float, is the distances for each data, for each variable
−− alpha: float, is the density of the neighborhood
−− neighbors: list of p lists of N lists of N integers, is the neighborhood for each data, for each variable
−− v, n, i: integers, are some iterators

for v ← 0 to p do
for n ← 0 to N do

for i ← 0 to N do
if distances[v][n][i] 6 alpha then

neighbors[v][n][i] ← 1
else

neighbors[v][n][i] ← 0
end if

end for
end for

end for
return neighbors
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Algorithm 10 Density
−− N: integer, is the number of data in the matrix
−− p: integer, is the number of variables in the matrix
−− neighbors: list of p lists of N lists of N integers, is the neighborhood for each data, for each variable
−− densities: list of N lists of p integers, is the densities of data for each variable
−− v, n, i: integers, are some iterators

for v ← 0 to p do
for n ← 0 to N do

densities[n][v] ← 0
for i ← 0 to N do

densities[n][v] ← densities[n][v] + neighbors[v][n][i]
end for

end for
end for
return densities

Algorithm 11 SumDensity
−− N: integer, is the number of data in the matrix
−− p: integer, is the number of variables in the matrix
−− densities: list of N lists of p integers, is the densities of data for each variable
−− sumDensities: list of N integers, is the sum of densities for each data
−− n, v: integers, are some iterators

for n ← 0 to N do
sumDensities[n] ← 0
for v ← 0 to p do

sumDensities[n] ← sumDensities[n] + densities[n][v]
end for

end for
return sumDensities

Algorithm 12 Maximum
−− N: integer, is the number of data in the matrix
−− sumDensities: list of N integers, is the sum of densities for each data
−− max: integer, is the maximum value in sumDensities
−− idx: integer, is the index of the maximum value in sumDensities
−− n: integer, is an iterator

max ← sumDensities[0]
idx ← 0
for n ← 1 to N do

if sumDensities[n] > max then
max ← sumDensities[n]
idx ← n

end if
end for
return idx

Algorithm 13 VariableNeighborhood
−− N: integer, is the number of data in the matrix
−− p: integer, is the number of variables in the matrix
−− max: integer, is the maximum value in sumDensities
−− neighbors: list of p lists of N lists of N integers, is the neighborhood for each data, for each variable
−− variableNeighbors: list of N lists of p integers, is the neighborhood for each variable of the selected data
−− n, v: integers, are some iterators

for n ← 0 to N do
for v ← 0 to p do

variableNeighbors[n][v] ← neighbors[n][max][v]
end for

end for
return variableNeighbors
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Algorithm 14 Intersection
−− N: integer, is the number of data in the matrix
−− p: integer, is the number of variables in the matrix
−− variableNeighbors: list of N lists of p integers, is the neighborhood for each variable of the selected data
−− inter: list of integers, is the intersection of the neighborhood of the selected data
−− n, v: integers, are some iterators

for n ← 0 to N do
inter[n] ← 1
for v ← 0 to p do

inter[n] ← inter[n] × variableNeighbors[n][v]
end for

end for
return inter

Algorithm 15 PurgeSamples
−− inputData: list of N lists of p floats, if the normalized matrix with the data
−− rpz: list of struct Sample_t, is the list of selected samples and their neighborhood
−− n, i: integers, are some iterators

−− removeAt: function, remove the data in a certain index
−− length: function, returns a list length

i ← 0
for n ← 0 to rpz.neighborhood.length() do inputData.removeAt(rpz.neighborhood[n] - i) −− The removeAt function
moves the data inside the list i ← i + 1
end for
return rpz.neighborhood.length()

Algorithm 16 Normalize
−− N: integer, is the number of data in the matrix
−− p: integer, is the number of variables in the matrix
−− inputData: list of N lists of p floats, if the normalized matrix with the data
−− max: integer, is the maximum value of a variable for a data
−− min: integer, is the minimum value of a variable for a data
−− diff: integer, is the difference between maximum and minimum
−− n, v: integers, are some iterators

for v ← 0 to p do
max ← inputData[0][v]
min ← inputData[0][v]
for n ← 1 to N do

if max < inputData[n][v] then
max ← inputData[n][v]

end if
if min > inputData[n][v] then

min ← inputData[n][v]
end if

end for
diff ← max - min
if diff = 0 then

diff ← 1
end if
for n ← 0 to N do

inputData[n][v] ←
inputData[n][v]−min

diff
end for

end for
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Algorithm 17 Parallelized Sample
Require: threadNumber: integer, the number (starting by 0) of the thread executing the algorithm
−− N: integer, is the number of data in the matrix
−− p: integer, is the number of variables in the matrix
−− inputData: list of N lists of p floats, if the normalized matrix with the data
−− alpha: float, is the density of the neighborhood
−− distances: list of p lists of N lists of N floats, is the distances for each data, for each variable
−− neighbors: list of p lists of N lists of N integers, is the neighborhood for each data, for each variable
−− densities: list of N lists of p integers, is the densities of data for each variable
−− sumDensities: list of N integers, is the sum of densities for each data
−− max: integer, is the maximum value of the sums
−− i_max: integer, is the number of the denser data, i.e. the selected sample
−− variableNeighbors: list of N lists of p integers, is the neighborhood for each variable of the selected data
−− inter: list of integers, is the intersection of the neighborhood of the selected data
−− rpz: Sample_t structure, is the selected sample with its neighborhood
−− varChunk: integer, is the number of variables computed by the thread
−− dataChunk: integer, is the number of data computed by the thread
−− varStart: integer, is the variable number for which the thread starts to compute
−− varEnd: integer, is the variable number (exclusive) for which the thread ends to compute
−− dataStart: integer, is the data number for which the thread starts to compute
−− dataEnd: integer, is the data number (exclusive) for which the thread ends to compute
−− NTHREADS: integer, is the number of threads
−− i, j, n, v: integer, is an iterator
−− init: boolean, used to know if someone is initializing data

−− threadBarrier: function, the thread waits until all thread reach this function
−− tryLock: function, the thread tries to lock a mutex, if it can (returns value = TRUE), it locks it, otherwise it

continues
−− unlock: function, the thread unlocks a mutex
−− fabs: function, return the absolute value of a float value

−− Work setting
init ← FALSE
if NTHREADS > p then

varChunk ← 1
else

varChunk ←
p

NTHREADS
end if
if NTHREADS > N then

dataChunk ← 1
else

dataChunk ←
N

NTHREADS
end if
varStart ← threadNumber × varChunk
dataStart ← threadNumber × dataChunk
varEnd ← (threadNumber + 1)× varChunk
dataEnd ← (threadNumber + 1)× dataChunk
if threadNumber = (NTHREADS - 1) then

varEnd ← p
dataEnd ← N

end if
if threadNumber > p then

varStart ← threadNumber
varEnd ← threadNumber

end if
if threadNumber > N then

dataStart ← threadNumber
dataEnd ← threadNumber

end if
−− Euclidean algorithm

for v ← varStart to varEnd do
for i ← 0 to N do

for j ← 0 to N do distances[v][i][j] ← fabs(inputData[i][v] - inputData[j][v])
end for

end for
end for
threadBarrier()
−− Neighborhood algorithm

for v ← varStart to varEnd do
for i ← 0 to N do

for j ← 0 to N do
if distances[v][n][i] 6 alpha then

neighbors[v][n][i] ← 1
else

neighbors[v][n][i] ← 0
end if

end for
end for

end for
threadBarrier()
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−− Densities setting
if tryLock() then

if init = FALSE then
init ← TRUE
for i ← 0 to N do

for j ← 0 to p do
densities[i][j] ← 0

end for
end for

end if
unlock()

end if
threadBarrier()
init ← FALSE
−− Densities algorithm

for v ← varStart to varEnd do
for n ← 0 to N do

densities[n][v] ← 0
for i ← 0 to N do

densities[n][v] ← densities[n][v] + neighbors[v][n][i]
end for

end for
end for
threadBarrier()
−− sumDensity algorithm

for n ← dataStart to dataEnd do
sumDensities[n] ← 0
for v ← 0 to p do

sumDensities[n] ← sumDensities[n] + densities[n][v]
end for

end for
threadBarrier()
−− Maximum setting

if tryLock() then
if init = FALSE then

init ← TRUE
max ← sumDensities[0]
i_max ← 0
for i ← 1 to N do

if sumDensities[i] > max then
max ← sumDensities[i]
i_max ← i

end if
end for

end if
unlock()

end if
threadBarrier()
init ← FALSE
−− VariableNeighborhood algorithm

for n ← dataStart to dataEnd do
for v ← 0 to p do

variableNeighbors[n][v] ← neighbors[n][max][v]
end for

end for
threadBarrier()
−− Intersection algorithm

for n ← dataStart to dataEnd do
inter[n] ← 1
for v ← 0 to p do

inter[n] ← inter[n] × variableNeighbors[n][v]
end for

end for
threadBarrier()
−− Sample selection

if tryLock() then
if init = FALSE then

init ← TRUE
rpz.sample ← inputData[i_max].id
for i ← 0 to N do

if inter[i] then rpz.neighborhood.append(inputData[i].id)
end if

end for
end if
unlock()

end if





 

Algorithmes de Big Data adaptés aux VANET pour modélisation de comportement de conducteur 

Les technologies Big Data gagnent de plus en plus d’attentions de communautés de recherches variées, surtout depuis que les données 

deviennent si volumineuses, qu’elles posent de réels problèmes, et que leurs traitements ne sont maintenant possibles que grâce aux grandes 

capacités de calculs des équipements actuels. De plus, les réseaux véhiculaires, aussi appelés VANET pour Vehicular Ad-hoc Networks, se 

développent considérablement et ils constituent une part de plus en plus importante du marché du véhicule. La topologie de ces réseaux en 

constante évolution est accompagnée par des données massives venant d’un volume croissant de véhicules connectés. 

Dans cette thèse, nous discutons dans notre première contribution des problèmes engendrés par la croissance rapide des VANET, et nous 

étudions l’adaptation des technologies liées aux Big Data pour les VANET. Ainsi, pour chaque étape clé du Big Data, nous posons le problème 

des VANET. 

Notre seconde contribution est l’extraction des caractéristiques liées aux VANET afin d’obtenir des données provenant de ceux-ci. Pour ce faire, 

nous discutons de comment établir des scénarios de tests, et comment émuler un environnement afin, dans un premier temps, de tester une 

implémentation dans un environnement contrôlé, avant de pouvoir effectuer des tests dans un environnement réel, afin d’obtenir de vraies 

données provenant des VANET. 

Pour notre troisième contribution, nous proposons une approche originale de la modélisation du comportement de conducteur. Cette approche 

est basée sur un algorithme permettant d’extraire des représentants d’une population, appelés exemplaires, en utilisant un concept de densité 

locale dans un voisinage. 

Big Data, réseaux véhiculaires, exemplaires, IoT, STIC 

Big Data Algorithms Adapted to VANET for Driver's Behavior Modeling 

Big Data is gaining lots of attentions from various research communities as massive data are becoming real issues and processing such data is 

now possible thanks to available high-computation capacity of today’s equipment. In the meanwhile, it is also the beginning of Vehicular Ad-

hoc Networks (VANET) era. Connected vehicles are being manufactured and will become an important part of vehicle market. Topology in this 

type of network is in constant evolution accompanied by massive data coming from increasing volume of connected vehicles in the network.  

In this thesis, we handle this interesting topic by providing our first contribution on discussing different aspects of Big Data in VANET. Thus, for 

each key step of Big Data, we raise VANET issues. 

The second contribution is the extraction of VANET characteristics in order to collect data. To do that, we discuss how to establish tests 

scenarios, and to how emulate an environment for these tests. First we conduct an implementation in a controlled environment, before 

performing tests on real environment in order to obtain real VANET data. 

For the third contribution, we propose an original approach for driver's behavior modeling. This approach is based on an algorithm permitting 

extraction of representatives population, called samples, using a local density in a neighborhood concept. 

Big Data, vehicular networks, samples, IoT, STIC 

Discipline : INFORMATIQUE 

Spécialité : Informatique 

 

   Université de Reims Champagne-Ardenne 

   CReSTIC - EA 3804 

   UFR Sciences Exactes et Naturelles, 
Moulin de la Housse, 51867 Reims 


	Remerciements
	Abstract
	Résumé
	Table des matières
	Introduction en français
	Synthèse de la thèse
	Conclusion de la thèse
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Context
	Contributions
	Thesis Outline

	Background
	What is Vehciular Ad-hoc Networks?
	The European Standard
	GeoNetworking
	Packet handling
	Packet Routing

	Basic Transport Protocol
	Facilities Layer
	CAM
	DENM


	The Era of Big Data
	Data Generation
	Enterprise Data
	IoT Data
	Social Network Data

	Data Acquisition
	Data Preprocessing
	Data Transportation
	Data Storage
	Data Analysis
	Application of Big Data
	Application of Big Data in Enterprises
	Application of IoT Based Big Data
	Online Social Network-Oriented Big Data
	Collective Intelligence
	Smart Grid



	Big Data Technologies with VANET
	Are VANET Data Big Data?
	Data Generaton in VANET
	VANET Data Acquisition
	VANET Preprocessing
	Message Preprocessing
	Sensor Preprocessing
	Implicit Preprocessing

	VANET Communication
	VANET Communication Architecture
	Security and Privacy

	VANET Data Storage
	Type of VANET Data
	Current Data Storage in VANET

	The VANET's Integration Into the 4V

	European Projects Using Big Data with ITS

	Getting VANET Data
	Development of an ETSI ITS stack
	An Open-Source Framework: Qt
	ETSI ITS implementation
	Physical Architecture
	Software Architecture

	Executing the ITS stack

	Laboratory Testing
	Conformance Testing
	Testing Framework

	Functional Testing
	Triggering Conditions
	Log Generation
	ITS-C and ITS-R Interfaces
	On Laboratory Offline Interoperability Tests
	On Laboratory Online Interoperability Tests


	Road Testing
	Road Test in Scoop@f Project
	Evolution of the Log System Proposition


	Driver's Behavior Extraction
	Overview of Techniques using the kNN
	k Nearest Neighbor
	Weighted k Nearest Neighbor
	Model based k Nearest Neighbor
	Locally Nearest Neighbor

	A New kNN Methodology Using Local Density
	Sampling Method
	Local Density
	Nearest Neighbors
	Number of Exemplars

	Assessment of Sampling

	Complexity of the kNN Using Local Density
	Algorithm Implementation
	Algorithm Parallelization

	VANET From Real World Experimentation
	On a Roadway Experimentation
	The InterCor TestFest Event


	Conclusions and Perspectives
	Conclusions
	Perspectives

	Bibliography
	GeoNetworking headers
	GeoUnicast Forwarding Algorithms
	Greedy Forwarding
	CBF Algorithm for GUC

	GeoBroadcast Forwarding Algorithms
	GeoBroadcast functions
	Simple Forwarding Algorithm for GBC
	CBF Algorithm for GBC
	Advanced GBC Forwarding Algorithm

	CA Basic Service
	CAM sending operation

	DEN Basic Service
	DENM sending operation
	DENM forwarding operation
	DENM reception operation

	ETSI ITS implementation's classes
	Manager
	Sensor
	Application
	Facilities
	GeoNetworking
	UpperTester

	Scoop@f optimization
	Scoop@f extension
	Proposed extension
	TLog optimization proposition

	kNN Local Density Implementation
	Sequential Algorithms
	Parallelized Algorithms


