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Summary of research

I obtained my PhD in Probability Theory, supervised by Michel Ledoux, from the University of Toulouse, Paul-Sabatier, in 1996. The main objectives of the PhD consisted in analyzing the role of the topology in various results concerning diffusion processes, such as the support theorem, the large deviations principle, or the determination of the Onsager-Machlup functional. The investigation led besides to some logarithmic Sobolev inequalities for elliptic diffusions. The general framework of this investigation was therefore at the interface of stochastic calculus, Malliavin calculus, stochastic differential geometry and semigroup theory. This work gave rise to 4 publications [C1-C4].

I then entered the world of free probability theory, created by Dan Voiculescu, and random matrices theory, naturally via stochastic calculus. Catherine Donati-Martin and I proved in [C5] that Lyons' deterministic approach to differential equations driven by rough paths can be applied successfully to the free Brownian motion. We constructed a Lévy area process for the free Brownian motion and in this way, a typical geometric rough path lying above the free Brownian path. In [C8], we defined free Wishart processes of parameter λ > 0 and proved a free additivity property and invertibility for λ > 1. For λ ≥ 1, we showed that a free Wishart process is a solution of a SDE of square Bessel process type, driven by a free complex Brownian motion. In the case λ > 1, we established existence and uniqueness of a strong solution of a such a SDE.

In [C6], together with Philippe Biane and Alice Guionnet, we proved large deviation bounds for the convergence of Hermitian matrix valued Brownian motion towards free Brownian motion. As a consequence, we obtained upper and lower bounds on the microstates entropy introduced by Dan Voiculescu. The basic idea in the proof was to construct exponential martingales based on the Clark-Ocone formula. As an additional contribution, to obtain the lower bound, we established a characterization of free Brownian motion given by a free version of Lévy's theorem.

My interests then turned towards more combinatorial aspects of free probability theory as developed by Roland Speicher. The motivation behind the joint works [C7], [C9], [C11] and [C12] with Muriel Casalis, was to draw the dotted arrows of the following diagram Freeness ←→ Free cumulants

N → +∞ ↑ . . . ∧ N × N independent matrices < • • • > Matricial cumulants
We defined and studied cumulants of matrices and showed that free cumulants can be naturally seen as their limiting values when the dimension goes to infinity. We analysed the convolution relations on the geodesics on Cayley graphs involving moments and cumulants in free probability, at the matricial level dealing with random matrices whose distribution is invariant under the action of the unitary or orthogonal/symplectic group. These matricial convolution relations involve respectively the symmetric groups (S n ) n∈N and the Gelfand pairs ((S 2n , H n )) n∈N , H n denoting the hyperoctaedral group. It turns out that these combinatorial formulas for moments of random matrices allowed Teo Banica, Serban Belinschi, Benoit Collins and myself to provide matricial models for a family of real probability measures π st , that we introduced in [C14] and called free Bessel laws. These are related to the free Poisson law π via the formula π s1 = π s and π 1t = π t . Our study includes definition and basic properties, analytic aspects (supports, atoms, densities), combinatorial aspects (functional transforms, moments, partitions) and a discussion of the relation with random matrices and quantum groups.

Introduction

There is currently a quite precise knowledge of the asymptotic spectral properties (i.e. when the dimension of the matrix tends to infinity) of a number of "classical" random matrix models (Wigner matrices, Wishart matrices, invariant ensembles...). This understanding covers both the so-called global regime (asymptotic behavior of the spectral measure) and the local regime (asymptotic behavior of the extreme eigenvalues and eigenvectors, spacings...).

Practical problems (in the theory of statistical learning, signal detection etc.) naturally lead to wonder about the spectrum reaction of a given random matrix after a deterministic perturbation. For example, in the signal theory, the deterministic perturbation is seen as the signal, the perturbed matrix is perceived as a "noise", and the question is to know whether the observation of the spectral properties of "signal plus noise" can give access to significant parameters on the signal. Theoretical results on these "deformed" random models may allow to establish statistical tests on these parameters. A typical illustration is the so-called BBP phenomenon (after Baik, Ben Arous, Péché) which put forward outliers (eigenvalues that move away from the rest of the spectrum) and their Gaussian fluctuations for spiked covariance matrices.

My interest in these issues has been concerned with deformed ensembles and polynomials in several random matrices with a particular emphasis towards a universal understanding (i.e. independent of the model) of the various output of deformation. This investigation has been supported at three levels: a common analysis of three classical Hermitian deformed models; the study of the spectral properties of non-commutative Hermitian polynomials in independent random matrices; the study of non-Hermitian deformed models. The crucial aspect of the contributions, with my collaborators, towards these objectives has been the analysis of the phenomenon of outliers via the (operator-valued) subordination functions from free probability theory.

This report focuses on localization and fluctuations of eigenvalues of complex (even if some similar results hold in the real setting) random deformed models and polynomials in asymptotically free random matrices with a particular interest in the outliers and the corresponding eigenvectors. After a very short reminder on the classical Hermitian random models (Chapter 1), Chapter 2 presents the pionner works on three finite rank deformations of these classical models. Chapter 3 tries to bring to light a general methodology, based on scalar free subordination properties, for studying the spectral properties of the corresponding full rank deformations. This universal understanding culminates in Chapter 4 dealing with non-commutative polynomials in random Hermitian matrices; this investigation is achieved by an even more general methodology based on a linearization procedure and operator-valued subordination properties. Chapter 5 investigates full rank additive perturbations of iid random matrices and is the first stage on the way of the analysis of outliers for non-Hermitian random models involving several non-Hermitian matrices. Appendix is a very short reminder on some facts on free probability theory used throughout this exposition.

This presentation of a huge and very active topic of the current research is by far not exhaustive, and mainly focuses on the recent developments in the area in connection with my own contributions. In particular, I did not try to achieve a complete bibliography of the relevant literature and only emphasize some sample results and references.

Chapter 1

Asymptotic spectrum of classical Hermitian random matrix models

Three fundamental classes of Hermitian matrices have been extensively studied in random matrix theory: Wigner matrices, sample covariance matrices and invariant ensembles. The study of spectral properties of such random matrices is twofold: one can consider the spectrum as a whole and study the global properties of the spectrum. This is the field where the first famous results of random matrix theory were obtained. One can also investigate local properties of the spectrum and study interactions between neighboring eigenvalues or the behavior of extreme eigenvalues. We focus on some few pionner works on the asymptotic behavior of the spectral measure and extreme eigenvalues which turn to be relevant for results of the next chapters. We refer to the monographies [START_REF] Anderson | An introduction to random matrices[END_REF][START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF][START_REF] Deift | Orthogonal polynomials and random matrices: a Riemann-Hilbert approach[END_REF][START_REF] Forrester | Log-Gases and Random Matrices[END_REF][START_REF] Mehta | Random Matrices and the Statistical Theory of Energy Levels[END_REF][START_REF] Pastur | Eigenvalue Distribution of Large Random Matrices[END_REF] for a thorough introduction to random matrix theory. Given an arbitrary Hermitian matrix B of size N, we denote by λ 1 (B) ≥ • • • ≥ λ N (B) its N ordered eigenvalues and by µ B its empirical spectral measure

µ B = 1 N N i=1
δ λi(B) .

1.1 Global behaviour of the spectrum of standard models

Sample covariance matrices

Random matrices first appeared in mathematical statistics in the 1930s with the works of Hsu, Wishart and others. They considered sample covariance matrices of the form:

S N = 1 p X N X * N (1.1)
where X N is a random matrix with independent entries. We shall assume here that N ≤ p(N ), X N is a N × p(N ) matrix, (X N ) ij i = 1, . . . , N , j = 1, . . . , p are i.i.d complex variables, with variance 1 and mean zero. If the variables are Gaussian, S N =: S G N is called a Wishart matrix, or from the invariant ensemble viewpoint (see below), a matrix from the Laguerre Unitary Ensemble (LUE).

Note that the spectra of 1 p X N X * N and 1 p X * N X N differ by |p -N | zero eigenvalues.

The behavior of the spectral measure for large size (p = p(N ) tends to ∞ as N tends to ∞) was handled in the seminal work of Marchenko-Pastur.

Theorem 1 ( [START_REF] Marchenko | Distribution of eigenvalues for some sets of random matrices[END_REF] (see also [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF])). If c N := N p(N ) → c ∈]0; 1] when N → ∞,

µ S N w → µ MP a.s. when N → +∞ where µ MP (dx) = 1 2πcx (b -x)(x -a) 1 [a,b] (x)dx, (1.2) 
a = (1 - √ c) 2 , b = (1 + √ c) 2 .

Wigner matrices

Wigner matrices are real symmetric or complex Hermitian random matrices whose entries are independent (up to the symmetry condition). They were introduced by Wigner in the fifties, in connection with nuclear physics. Here, we will consider Hermitian Wigner matrices of the following form :

W N = 1 √ N H N
where H N is an Hermitian matrix whose diagonal entries are iid real random variables and those above the diagonal are iid complex random variables, with variance σ 2 . If the entries are independent Gaussian variables, W N =: W G N is a matrix from the Gaussian Unitary Ensemble (GUE).

Wigner proved that a precise description of the limiting spectrum of these matrices can be achieved.

Theorem 2. [START_REF] Wigner | Characteristic vectors of bordered matrices with infinite dimensions[END_REF][START_REF] Wigner | On the distribution of the roots of certain symmetric matrices[END_REF] (see also [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF])

µ W N w -→ µ sc a.s. when N → +∞ where dµ sc dx (x) = 1 2πσ 2 4σ 2 -x 2 1 [-2σ,2σ] (x) (1.3)
is the so-called semi-circular distribution.

Two classical methods used to be investigated for the proof of these asymptotic global behaviours of the spectrum, after a truncation procedure of the entries: the moment method, boiling down to a combinatorial problem, based on the class of test functions {x → x r , r ∈ N}, and the Cauchy-Stieltjes method, boiling down to an analytical problem, based on the class of test functions {x → (z -x) -1 , z ∈ C, z > 0}. A review of these methods can be found in [START_REF] Anderson | An introduction to random matrices[END_REF][START_REF] Bai | Methodologies in spectral analysis of large dimensional random matrices, a review[END_REF][START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF].

Invariant ensembles

A complex invariant ensemble is the distribution L(M N ) of an Hermitian N × N random matrix M N such that L(M N ) = L(U N M N U N ), ∀U N ∈ U(N ).
M N can be written M N = U N D N U * N almost surely, where U N is distributed according to the Haar measure on the unitary group, D N is a diagonal matrix, U N and D N are independent (see Proposition 6.1 in [START_REF] Collins | The strong asymptotic freeness of Haar and deterministic matrices[END_REF]). The archetypal ensembles of invariant ensembles for Wigner matrices and sample covariance matrices correspond to the GUE and LUE cases. Note that, in particular, Quantum Field Theory uses invariant ensembles whose probability law is absolutely continuous with respect to the Lebesgue measure dH on the set of N × N Hermitian matrices with density 1 C N exp(-N T rV (H)) for some function V . Note that, in the GUE case, V (x) = x 2 2σ 2 . Then the empirical spectral measure of the corresponding model converges weakly towards the equilibrium measure in the external field V (see [START_REF] Pastur | Eigenvalue Distribution of Large Random Matrices[END_REF] Chap 11), which is the semi-circular distribution when V is quadratic. The proof is closely related to the theory of logarithmic potential and the mean field approximation in statistical mechanics (see [START_REF] Saff | Logarithmic Potentials with External Fields[END_REF]).

One can also investigate local properties of the spectrum and study interactions between neighboring eigenvalues or the behavior of extreme eigenvalues. We focus here on extremal eigenvalues since this is the main subject of study in the coming chapters.

Extremal eigenvalues

A priori, the convergence of the spectral measure does not prevent an asymptotically negligeable fraction of eigenvalues from going away from the limiting support (called outliers in the following). Actually, a further analysis of the moment method allows one to deduce the following behaviour of extreme eigenvalues of the above standard models. Theorem 3. [START_REF] Bai | Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix[END_REF] (see also [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF]) Let W N be a Wigner matrix as defined in Section 1.1.2. Assume that the entries of H N has finite fourth moment, then almost surely,

λ 1 (W N ) → 2σ and λ N (W N ) → -2σ when N → +∞.
Similarly, it turns out that sample covariance matrices defined by (1.1) no exhibit outliers. Theorem 4 ([71,[START_REF] Bai | A note on the limit of the largest eigenvalue of a large-dimensional sample covariance matrix[END_REF][START_REF] Yin | On the limit of the largest eigenvalue of the largedimensional sample covariance matrix[END_REF] (see also [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF])). Assume that the entries of X N has finite fourth moment, then almost surely,

λ 1 (S N ) → (1 + √ c) 2 when N → +∞, λ N (S N ) → (1 - √ c) 2 when N → +∞.
In multivariate analysis, certain statistics are defined in terms of the extreme eigenvalues of random matrices, which makes the limiting distribution of normalized extreme eigenvalues of special interest. In [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF], Tracy and Widom derived the limiting distribution (called the Tracy-Widom law) of the largest eigenvalue of a GUE matrix.

Theorem 5. Let W G N be a GUE matrix. Let q : R → R be the unique solution of the differential equation

q (x) = xq(x) + 2q(x) 3 such that q(x) ∼ x→+∞ Ai(x)
where Ai is the Airy function, unique solution on R of the differential equation f

(x) = xf (x) satisfying f (x) ∼ x→+∞ (4π √ x) 1/2 exp(-2/3x 3/2 ). Then lim N →+∞ P N 2/3 λ 1 (W G N ) √ N -2σ ≤ s = F 2 (s),
where

F 2 (s) = exp - +∞ s (x -s)q 2 (x)dx .
This result has been extended to the LUE by Johansson [START_REF] Johansson | Shape fluctuations and random matrices[END_REF] when 0 < c < +∞ and El Karoui [START_REF] Karoui | On the largest eigenvalue of Wishart matrices with identity covariance when n, p and p=n tend to infinity[END_REF] when c = 0 and c = +∞. Borodin and Forrester [START_REF] Borodin | Increasing subsequences and the hard-to-soft edge transition in matrix ensembles[END_REF] extended this result for the smallest eigenvalue of a Laguerre ensemble around the soft edge. (When the leftmost edge is the origin, it is common to refer to it as the hard edge. In contrast, any positive edge is also called a soft edge.) Moreover, dealing with general invariant ensembles, Deift and al [START_REF] Deift | Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory[END_REF][START_REF] Deift | Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices[END_REF] proved that the largest eigenvalue still fluctuates around the supremum of the support of the limiting distribution according to the Tracy Widom distribution. The proofs are based on the fact that, in these frameworks, the process of eigenvalues is a determinantal process (see Section 4.2 [START_REF] Anderson | An introduction to random matrices[END_REF] about general determinantal processes). Note that Ramírez, Rider and Virág [START_REF] Ramírez | Beta ensembles, stochastic Airy spectrum, and a diffusion[END_REF] developed a stochastic operator approach as pioneered by Edelman and Sutton [START_REF] Edelman | From random matrices to stochastic operators[END_REF][START_REF] Sutton | The stochastic Operator approach to Random matrix theory[END_REF] which hinges on tridiagonal representations.

For a wide class of Wigner or sample covariance matrices, the universality of the largest eigenvalue was conjectured. The first main step to prove this universality conjecture has been achieved by Soshnikov [START_REF] Soshnikov | Universality at the edge of the spectrum in Wigner random matrices[END_REF][START_REF] Soshnikov | A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices[END_REF] since he established that the largest eigenvalue of a Wigner matrix or a sample covariance matrix associated to a symmetric probability measure which admits sub-gaussian tails fluctuates according to the Tracy-Widom law. In these works, universality of the fluctuations are reduced to the universality of large traces. By a Lindeberg method, Tao and Vu [START_REF] Tao | From the Littlewood-Offord problem to the circular law: universality of the spectral distribution of random matrices[END_REF] proved a variant of the universality results of Soshnikov for the largest eigenvalues, assuming moment conditions rather than symmetry conditions. In [START_REF] Lee | A necessary and sufficient condition for edge universality of Wigner matrices[END_REF] and [START_REF] Ding | A necessary and sufficient condition for edge universality at the largest singular values of covariance matrices[END_REF], with a Green function comparison method developped by Erdös, Yau and their co-authors [START_REF] Erdös | Universality of Wigner random matrices: a Survey of Recent Results[END_REF][START_REF] Erdös | Dynamical approach to random matrix theory[END_REF], a necessary and sufficient condition on off-diagonal entries of the Wigner matrix or on entries of the sample covariance matrix is established for the distribution of the largest eigenvalue to weakly converge to the Tracy-Widom distribution. We also refer to these papers for references on investigations on edge universality. All these results stress the robustness of the Tracy-Widom distribution at soft edges of the spectrum of random matricial models. Note that the local hard edge regime of sample covariance matrices involves the so-called Bessel kernel (see [START_REF] Pastur | Eigenvalue Distribution of Large Random Matrices[END_REF] chap. 7 and references therein).

Eigenvectors

It is well known that the matrix whose columns are the eigenvectors of a GUE matrix or a LUE matrix can be chosen to be distributed according to the Haar measure on the unitary group. In the non-Gaussian case, the exact distribution of the eigenvectors cannot be computed. However, the eigenvectors of general Wigner matrices or sample covariance matrices have been the object of a growing interest and in several papers, a delocalization and universality property were shown for the eigenvectors of these standard models (see among others [START_REF] Bloemendal | Isotropic local laws for sample covariance and generalized wigner matrices[END_REF][START_REF] Cacciapuoti | Local Marchenko-Pastur law at the hard edge of sample covariance matrices[END_REF][START_REF] Erdös | Local semicicle law and complete delocalization for Wigner random matrices[END_REF][START_REF] Erdös | Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices[END_REF][START_REF] Knowles | Eigenvector distribution of Wigner matrices[END_REF][START_REF] Tao | Random matrices: universal properties of eigenvectors[END_REF] and references therein). Heuristically, delocalization for a random matrix means that its normalized eigenvectors look like the vectors uniformly distributed over the unit sphere. Let us state for instance the following sample result. Theorem 6. (Isotropic delocalization, Theorem 2.16 from [START_REF] Bloemendal | Isotropic local laws for sample covariance and generalized wigner matrices[END_REF]). Let W N be a N × N Wigner matrix as defined in Section 1.1.2 satisfying some technical assumptions. Let v(1), . . . , v(N ) denote the normalized eigenvectors of W N . Then, for any C 1 > 0 and 0 < < 1/2, there exists

C 2 > 0 such that sup 1≤i≤N | v(i), u | ≤ N √ N ,
for any fixed unit vector u ∈ C N , with probability at least 1 -C 2 N -C1 .

The following chapter investigates the impact of a finite rank deformation on the asymptotic spectral properties of the previous classical random matrices. The global behavior of the spectrum is unchanged but the situation is drastically different for extreme eigenvalues. Indeed, some eigenvalues may converge out of the bulk and then, the corresponding eigenvectors are localized; their fluctuations may not be universal (toning down the robustness of the Tracy-Widom distribution) and depend on the spectral properties of the deformation and the law of the entries of the non-perturbed matrix.

Chapter 2

Finite rank deformations of classical random matrix models

The study of deformations of random matrix models has been motivated by statistical investigations [START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF], wireless communications [START_REF] Couillet | Random Matrix Methods for Wireless Communications[END_REF], imaging [START_REF] Garnier | Applications of random matrix theory for sensor array imaging with measurement noise[END_REF], physics [START_REF] Brézin | Correlations of nearby levels induced by a random potential[END_REF] or financial applications [START_REF] Shen | On a spiked model for large volatility matrix estimation from noisy high-frequency data[END_REF]. In this chapter, we outline some results on finite rank deformations of the classical Hermitian ensembles.

Let A N be a deterministic matrix. One may wonder how the spectrum of a classical random model is impacted by the following perturbations. i) Additive perturbation of a Wigner matrix : A N is a N × N Hermitian matrix and W N is a Wigner matrix (see Section 1.1.1),

M N = W N + A N .
ii) Multiplicative perturbation: A N is a non negative Hermitian N × N matrix and S N is a sample covariance matrix defined as in Section 1.1.2,

M N = A N 1 2 S N A N 1 2 .
iii) Information-Plus-Noise type model: A N , X N are rectangular N × p matrices and X N is a random matrix with i.i.d. entries defined as in Section 1.1.2, σ is some positive real number,

M N = σ X N √ p + A N σ X N √ p + A N * .
In the litterature, these three kinds of deformations have been also considered for isotropic models, replacing in i) and ii) W N , S N by U BU * with U Haar distributed on the unitary group and B deterministic, and in iii) X N by a random matrix whose distribution is biunitarily invariant.

In Sections 2.2 and 2.3, we list some pioneer results on extreme eigenvalues of such models dealing with a perturbation A N with finite rank in i) or iii) or such that I N -A N is of finite rank in ii). In Section 2.4, we precise our first contributions [C13] and [C16] in the study of non-Gaussian models, addressing the question of spectral universality. The next chapter will put forward tools from free probability theory to provide a unified understanding, for all these models, of the appearence and localization of outliers as well as of the asymptotic behaviour of the corresponding eigenvectors.

Asymptotic spectral measure

When A N is a finite rank deformation of the null matrix in case i) and iii) (resp. of the identity matrix in case ii)), the limiting spectral measure is not affected by the deformation. Proposition 1. We assume that rank(A N ) = r, r fixed, independent of N in case i) and iii), (resp. rank(A N -I) = r in case ii)). Then, when N goes to infinity,

• In case i), µ M N w → µ sc (defined by (1.3)), • In case ii) and iii), µ M N w → µ MP (defined by (1.2)).
This follows from the rank inequalities (see [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF]Appendix A.6]).

Convergence of extreme eigenvalues: the BBP phase transition

We now present the seminal works on the behavior of the largest (or smallest) eigenvalues of classical models with finite rank deformation. As we have seen above, the limiting behavior of the spectral measure is not modified by a deformation A N of finite rank (or such that I N -A N is of finite rank in the multiplicative case). This is no longer true for the extremal eigenvalues.

The following results deal with finite rank perturbations of Gaussian type or unitarily invariant models.

For each model, a phase transition (called BBP phase transition) is pointed out involving different thresholds and different limiting values of outlying eigenvalues or eigenvectors projection. In the following chapter, we will provide a unified understanding of all these results.

Multiplicative deformations

A complete study of the behavior of the largest eigenvalue of a deformation of a Gaussian sample covariance matrix was considered in a paper of Baik, Ben Arous and Péché where they exhibit a striking phase transition phenomenon for the largest eigenvalue, according to the value of the spiked eigenvalues of the deformation. They considered the following sample covariance matrix :

M N = A 1/2 N S G N A 1/2 N
where S G N is a LUE matrix as defined in Section 1.1.1 and the perturbation A N1 is given by

A N = diag ( 1, . . . , 1 N -r times , π 1 , . . . , π r )
where r is fixed, independent of N and π 1 ≥ . . . ≥ π r > 0 are fixed, independent of N , such that for all i ∈ {1, . . . , r}, π i = 1. The π i 's are called the spikes of A N . Baik, Ben Arous and Péché proved the following result.

Theorem 7. (BBP phase transition) [START_REF] Baik | Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF][START_REF] Baik | Eigenvalues of large sample covariance matrices of spiked population models[END_REF] Let

ω c = 1 + √ c, • If π 1 > ω c , a.s. when N → +∞ λ 1 (M N ) → π 1 1 + c (π 1 -1) > (1 + √ c) 2 .
Therefore the largest eigenvalue of M N is an "outlier" since it converges outside the support of the limiting empirical spectral distribution and then does not stick to the bulk.

• If π 1 ≤ ω c , a.s. when N → +∞ λ 1 (M N ) → (1 + √ c) 2 .
The same phenomenon of phase transition was established by Benaych-Georges and Nadakuditi [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF] in the case of a deformation of an unitarily invariant model of the form :

M N = (I N + P N ) 1/2 U N B N U * N (I N + P N ) 1/2 ,
• B N is a deterministic N × N Hermitian matrix such that: • U N is a random N × N unitary matrix distributed according to the Haar measure.

(B1) B N is non negative definite, ( 
• P N is a deterministic Hermitian matrix having r non-zero eigenvalues

γ 1 ≥ • • • ≥ γ s > 0 > γ s+1 ≥ • • • ≥ γ r > -1, r, γ i , i = 1, . . . r, fixed independent of N .
Note that µ M N weakly converges to µ. Benaych-Georges and Nadakuditi established the following result.

Theorem 8 ([29]

). Define T µ :

C \ supp(µ) → C, T µ (z) = R tdµ(t)
z-t . Then, we have for each 1 ≤ i ≤ s, almost surely,

λ i (M N ) → N →+∞ T -1 µ (1/γ i ) if γ i > 1/ lim z↓b T µ (z), b otherwise, while for each fixed i > s, a.s., λ i (M N ) → N →+∞ b.
Similarly, for the smallest eigenvalues, we have for each 0 ≤ j < r -s, a.s,

λ N -j (M N ) → N →+∞ T -1 µ (1/γ r-j ) if γ r-j < 1/ lim z↑a T µ (z), a otherwise, while for each fixed j ≥ r -s, a.s. λ N -j (M N ) → N →+∞ a.

Additive deformations

Let us consider M N = W G N + A N where W G N is a GUE matrix as defined in Section 1.1.1 and A N is defined by

A N = diag ( 0, . . . , 0 N -r times , θ 1 , . . . , θ r )
for some fixed r, independent of N , and some fixed

θ 1 ≥ • • • ≥ θ r , independent of N .
An analog of the BBP phase transition phenomenon for this model was obtained by Péché [START_REF] Péché | The largest eigenvalue of small rank perturbations of Hermitian random matrices[END_REF]. (Such models were first investigated by Füredi and Komlós [START_REF] Füredi | The eigenvalues of random symmetric matrices[END_REF].) Theorem 9.

• If θ 1 ≤ σ, then λ 1 (M N ) -→ N →+∞ 2σ a.s.. • If θ 1 > σ, then λ 1 (M N ) -→ N →+∞ ρ θ1 a.s. with ρ θ1 := θ 1 + σ 2 θ1 > 2σ.
A similar result has been obtained by Benaych-Georges and Nadakuditi [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF] for

M N = U N B N U * N + A N , (2.1) 
where B N and U N satisfy the same conditions as in Section 2.2.1 except (B1) and A N is a deterministic Hermitian matrix having r non-zero eigenvalues 

γ 1 ≥ • • • ≥ γ s > 0 > γ s+1 ≥ • • • ≥ γ r ,
λ i (M N ) → N →+∞ g -1 µ (1/γ i ) if γ i > 1/ lim z↓b g µ (z), b otherwise, while for each fixed i > s, a.s., λ i (M N ) → N →+∞ b.
Similarly, for the smallest eigenvalues, we have for each 0 ≤ j < r -s, a.s.,

λ N -j (M N ) → N →+∞ g -1 µ (1/γ r-j ) if γ r-j < 1/ lim z↑a g µ (z), a otherwise, while for each fixed j ≥ r -s, a.s λ N -j (M N ) → N →+∞ a.

Information plus noise type matrices

A phase transition phenomenon of the same kind was established by Loubaton and Vallet in [98] for the singular values of a finite rank deformation of a Ginibre ensemble. Let X N be a N × p rectangular matrix as defined in Section 1.1.2 with iid complex Gaussian entries, and A N be a finite rank perturbation of the null matrix with fixed non zero eigenvalues

θ 1 ≥ • • • ≥ θ r . Theorem 11. ([98]) Let M N = (σ X N √ p + A N )(σ X N √ p + A N ) * .
Then, as N → +∞ and N/p → c ∈]0; 1], almost surely,

λ i (M N ) -→ (σ 2 +θi)(σ 2 c+θi) θi if θ i > σ 2 √ c, σ 2 (1 + √ c) 2 otherwise.
This result was extended as follows in [START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF] to the case M N = (V N + A N )(V N + A N ) * where V N is a N × p biunitarily invariant matrix such that the empirical spectral measure of V N V * N converges to a deterministic compactly supported measure µ with convergence of the largest (resp. smallest) eigenvalue of V N V * N to the right (resp. left) end b (resp a) of the support of µ. Theorem 12 ([30]). For each 1 ≤ i ≤ r, almost surely,

λ i (M N ) -→ N → +∞ N/p → c ∈]0; 1] D -1 µ 1 θ 2 i if θ 2 i > 1/D µ (b + ), b otherwise.
where

D µ (z) = z z 2 -t 2 dµ(t) × c z z 2 -t 2 dµ(t) + 1 -c z , for z > b
and D -1 µ denotes its functional inverse on [b, +∞[.

Eigenvectors associated to outliers

In the spiked deformed models, when some eigenvalues separate from the bulk, one may wonder how the corresponding eigenvectors behave. There are some pionneering results concerning finite rank perturbations: [START_REF] Paul | Asymptotics of sample eigenstructure for a large dimensional spiked covariance model Statist[END_REF] in the real Gaussian sample covariance matrix setting, and [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF][START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF] dealing with finite rank additive or multiplicative perturbations of unitarily invariant matrices. Here is a result from [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF] for eigenvector projection onto those of the perturbation corresponding to the largest outlier of a finite rank additive perturbation of a unitarily invariant model.

Theorem 13. Let M N = U N B N U * N + A N
where U N is a Haar unitary matrix, B N satisfies the same hypothesis as in Theorem 9 and A N has all but finitely many non zero eigenvalues θ 1 > . . . > θ J . Then, if θ 1 > 1/ lim z↓b g µ (z), almost surely,

λ 1 (M N ) -→ N →+∞ g -1 µ (1/θ 1 ) := ρ θ1
and for any i = 1, . . . , J, if ξ is a unit eigenvector associated to λ 1 (M N ),

P Ker(θiI-A) ξ 2 -→ N →+∞ - δ i1 θ 2 1 g µ (ρ θ1 )
.

Thus, an eigenvector associated to an outlier of the deformed model asymptotically lies on a cone around the one corresponding to the spike of the perturbation that generates this outlier.

Fluctuations of extremal eigenvalues

The BBP phase transition pointed out in [START_REF] Baik | Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF] for the spiked sample covariance matrix defined in Section 2.2.1, describes three distinct regimes. Assume that N/p = c.

• The subcritical regime

If the spiked eigenvalues π i all remain at some positive distance below 1+ √ c then the largest sample eigenvalue behave exactly as in the non-deformed case, developing Tracy-Widom fluctuations with order N 2/3 around the right endpoint of the Marchenko-Pastur support.

• The critical regime.

If π k = • • • = π 1 = 1+
√ c, the fluctuations order around the right endpoint of the Marchenko-Pastur support is still N 2/3 but the limiting distribution is changed to a deformation of the Tracy-Widom law.

• The supercritical regime.

If π k = • • • = π 1 exceed 1 + √ c
, the largest eigenvalue will separate from the rest and fluctuates according to the distribution of the largest eigenvalue of a k × k GUE matrix around its outlying limit. Moreover the fluctuation order is √ N .

Péché [START_REF] Péché | The largest eigenvalue of small rank perturbations of Hermitian random matrices[END_REF] obtained the following similar striking phase transition phenomenon for the fluctuations of the largest eigenvalue of a finite rank deformation of a GUE. Theorem 14. (with the notations of Section 2.2.2)

1. If θ 1 < σ, σ -1 N 2/3 (λ 1 (M N ) -2σ) converges in distribution to the Tracy Widom distribution. 2. If θ 1 = σ, σ -1 N 2/3 (λ 1 (M N ) -2σ) converges in distribution to a "generalized" Tracy Widom dis- tribution F k1 . 3. If θ 1 > σ, N 1/2 (λ 1 (M N ) -2σ
) converges in distribution to the largest eigenvalue of a GUE matrix of size k 1 and parameter

σ θ1 = σ 1 -(σ/θ 1 ) 2 . In particular, if k 1 = 1, N 1/2 (λ 1 (M N ) -2σ)
converges in distribution to a centered normal distribution with variance σ θ1 .

Note that the additive deformation of a unitarily invariant model investigated in [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF] enters in the framework of [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF] so that a similar supercritical regime can be deduced for the matrix model (2.1) under some assumptions. (See also [START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF] for Information-Plus-Noise type models in the isotropic case).

The proofs of [START_REF] Baik | Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF][START_REF] Péché | The largest eigenvalue of small rank perturbations of Hermitian random matrices[END_REF] are based on the explicit expression of the distribution of the largest eigenvalue in terms of Fredholm determinant and then as a contour integral. The asymptotic properties rely on a saddle point analysis. Note that Bloemental and Virag [START_REF] Bloemendal | Limits of spiked random matrices I[END_REF][START_REF] Bloemendal | Limits of spiked random matrices II[END_REF] used an approach based on the continuum operator limit at the general beta soft edge, developed by Ramirez, Rider and Virág [START_REF] Ramírez | Beta ensembles, stochastic Airy spectrum, and a diffusion[END_REF]. Both of these approaches rely heavily on the Gaussian nature of the non-deformed model.

In [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF] and [START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF], Benaych-Georges and Nadakuditi exhibited a clever, now famous, key idea consisting in reducing the problem of locating outliers of the deformations to a convergence problem of a fixed size r × r random matrix, by using the Sylvester's determinant identity.

In order to study the phase transition for deformed non-Gaussian or non-isotropic matrix ensembles, and in particular address the question of spectral universality, we investigated in the papers [C13] and [C16] different approaches presented in the following Section 2.4. Note that the subsequent paper [START_REF] Loubaton | Almost sure localization of the eigenvalues in a Gaussian informationplus-noise model. Application to the spiked models[END_REF] is in the lineage of our work.

Our first contributions in [C13] and [C16] for finite rank perturbations of Wigner matrices

Let H N be a N ×N Hermitian matrix such that the random variables (H

N ) ii , √ 2 [(H N ) ij ], √ 2 
[(H N ) ij ] i < j, are independent identically distributed with a symmetric distribution τ of variance σ 2 and satisfying a Poincaré inequality. Let M N = W N + A N where W N = 1 √ N H N . Let A N be a deterministic Hermitian matrix of fixed finite rank r whose distinct eigenvalues are J fixed real numbers θ 1 > • • • > θ J independent of N with some j 0 such that θ j0 = 0. We assume that the non-null eigenvalues θ j of A N are of fixed multiplicity k j (with j =j0 k j = r). Define

ρ θj = θ j + σ 2 θ j . (2.2)
Observe that ρ θj > 2σ (resp. < -2σ) when θ j > σ (resp. < -σ) (and ρ θj = ±2σ if θ j = ±σ).

For definiteness, we set

k 1 + • • • + k j-1 := 0 if j = 1.

Almost sure convergence of outliers

In [C13], we first extend Theorem 9 as follows.

Theorem 15. Let J +σ (resp. J -σ ) be the number of j's such that θ j > σ (resp. θ j < -σ).

(1)

∀1 ≤ j ≤ J +σ , ∀1 ≤ i ≤ k j , λ k1+•••+kj-1+i (M N ) -→ ρ θj a.s.
(2)

λ k1+•••+k J +σ +1 (M N ) -→ 2σ a.s. (3) λ k1+•••+k J-J -σ (M N ) -→ -2σ a.s. (4) ∀j ≥ J -J -σ + 1, ∀1 ≤ i ≤ k j , λ k1+•••+kj-1+i (M N ) -→ ρ θj a.s.
The main point in the proof consists in establishing that for any ε > 0, almost surely,

Spect(M N ) ⊂ K ε σ (θ 1 , • • • , θ J ) (2.3)
for all N large, where

K ε σ (θ 1 , • • • , θ J ) = K σ (θ 1 , • • • , θ J ) + (-ε, ε) and K σ (θ 1 , • • • , θ J ) := ρ θ J ; • • • ; ρ θ J-J -σ +1 ∪ [-2σ, 2σ] ∪ ρ θ J +σ ; • • • ; ρ θ1 .
To prove such an inclusion of the spectrum of M N , we use the methods developed by U. Haagerup and S. Thorbjørnsen in [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF], by H. Schultz [START_REF] Schultz | Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases[END_REF]. Define

g µsc (z) = R dµsc(t) z-t
where µ sc is the semicircular

distribution defined by (1.3) and g N (z) = R dµ M N (t) z-t .
The key point of this approach is to obtain a precise estimation at any point z ∈ C\R of the following type

g σ (z) -g N (z) + 1 N L σ (z) = O( 1 N 2 ), (2.4) 
where L σ is the Stieltjes transform of a distribution Λ σ with compact support in

K σ (θ 1 , • • • , θ J ) and O( 1 N 2 ) can be bounded by P ( z) N 2
where P is some polynomial P with nonnegative coefficients. Indeed such an estimation allows us through the inverse Stieltjes transform and some variance estimates to deduce that a.s., tr N (1c

K ε σ (θ1,••• ,θ J ) (M N )) = O(N -4/3
), denoting the normalized trace by tr N . Thus the number of eigenvalues of

M N in c K ε σ (θ 1 , • • • , θ J ) is almost surely a O(N -1/3
) and since for each N this number has to be an integer, we deduce that it is actually equal to zero for large N . The main technical tool to establish (2.4) is the following approximate integration by part lemma (see [START_REF] Khorunzhy | Asymptotic properties of large random matrices with independent entries[END_REF]).

Lemma 1. Let ξ be a real-valued random variable such that E(|ξ| p+2 ) < ∞. Let φ be a function from R to C such that the first p + 1 derivatives are continuous and bounded . Then,

E(ξφ(ξ)) = p a=0 κ a+1 a! E(φ (a) (ξ)) + (2.5)
where κ a are the classical cumulants of ξ,

≤ C sup t |φ (p+1) (t)|E(|ξ| p+2 ), C depends on p only. Actually, given an interval [a, b] ⊂ R \ K σ (θ 1 , • • • , θ J ), saying by (2.3) that [a, b]
does not contain eigenvalues of M N can be improved: it corresponds to [a, b] some interval I a,b lying outside the spectrum of A N and such that the number of eigenvalues of M N in one side of [a, b] is equal to the one of A N in the corresponding side of I a,b . Following [START_REF] Bai | Exact separation of eigenvalues of large-dimensional sample covariance matrices[END_REF], we say that there is exact separation of eigenvalues of the matrices A N and M N . Now, we can adapt the arguments needed for the conclusion of [START_REF] Baik | Eigenvalues of large sample covariance matrices of spiked population models[END_REF] viewing the deformed Wigner model as the additive analogue of the spiked population model, to deduce Theorem 15. This whole approach will be generalized and developed in Section 3.3 dealing with full rank deformations.

Nonuniversality of the fluctuations of outliers, dependence of the fluctuations with respect to the eigenvectors of the perturbation

In [C13], we show that a new phenomenon arises for the fluctuations of the outliers: the limiting distribution can depend on the distribution of the entries (non universality), according to the localization/delocalization of the eigenvectors of A N . Note that in the Gaussian case in the previous subsection, the eigenvectors of the perturbation are irrelevant for the fluctuations, due to the unitary invariance in Gaussian models. Let us illustrate this dependence on the eigenvectors on A N in a very simple situation, in the additive case. Consider two finite rank perturbations of rank 1, with one non null eigenvalue θ > σ.

The first one A

N is a matrix with all entries equal to θ/N (delocalized eigenvector associated to θ). The second one A

N is a diagonal matrix (localized eigenvector). The fluctuations of the largest eigenvalue λ 1 of the matrix M (i)

N = W N + A (i) N (i = 1, 2) around ρ θ := θ + σ 2
θ are given as follows :

Proposition 2.

1. Delocalized case [START_REF] Péché | The largest eigenvalue of rank one deformation of large Wigner matrices[END_REF] : The largest eigenvalue λ 1 (M

N ) have Gaussian fluctua- tions, √ N (λ 1 (M (1) 
N ) -ρ θ ) D -→ N (0, σ 2 (1 -σ 2 /θ 2 )). (2.6) 2. Localized case [C13]: The largest eigenvalue λ 1 (M (1) 
N ) fluctuates as √ N (1 - σ 2 θ 2 )(λ 1 (M (2) 
N ) -ρ θ ) D -→ τ N (0, v θ ). (2.7) (2) 
where τ is the distribution of the entries of the Wigner matrix, the variance v θ of the Gaussian distribution depends on θ and the second and fourth moments of τ .

The proof of (2.6) by Féral and Péché is combinatorial and is based on the computation of large moments of M

(1)

N . The proof of (2.7) is close to the one of [START_REF] Paul | Asymptotics of sample eigenstructure for a large dimensional spiked covariance model Statist[END_REF] and the ideas of [START_REF] Biroli | On the top eigenvalue of heavy-tailed random matrices[END_REF]; the key idea is to associate the fluctuations of the outliers with quadratic forms involving the resolvent of the unperturbed Wigner matrix and to use a central limit theorem proved in an Appendix by J. Baik and J. Silverstein in [C13].

In [C16], we exhibit quite general situations with respect to the eigenvectors of the perturbation matrix that will give rise to universality or non universality of the fluctuations as follows.

Let M N be a deformed Wigner matrix as defined at the beginning of Section 2.4. We denote by

k +σ := k 1 + • • • + k J+σ .
We introduce k ≥ k +σ as the minimal number of canonical vectors among the canonical basis (e i ; i = 1, . . . , N ) of C N needed to express all the eigenvectors associated to the largest eigenvalues θ 1 , . . . , θ J+σ of A N . Without loss of generality (using the invariance of the distribution of the Wigner matrix W N by conjugation by a permutation matrix), we can assume that these k +σ eigenvectors belong to Vect(e 1 , . . . , e k ). We assume that k √ N .

Let us now fix j such that 1 ≤ j ≤ J +σ and let U k be a unitary matrix of size k such that

diag(U * k , I N -k )A N diag(U k , I N -k ) = diag(θ j I kj , (θ l I k l ) l≤J+σ,l =j , Z N -k+σ ) (2.8)
where Z N -k+σ is an Hermitian matrix with eigenvalues strictly smaller than θ J+σ .

Define K j = K j (N ) as the minimal number of canonical vectors among (e 1 , . . . , e k ) needed to express all the orthonormal eigenvectors v j i , 1 ≤ i ≤ k j , of A N associated to θ j . Without loss of generality, we can assume that the v j i , 1 ≤ i ≤ k j , belong to Vect(e 1 , . . . , e Kj ). Considering now the vectors v i j as vectors in C Kj , we define the K j × k j matrix

U Kj ×kj := v j 1 , . . . , v j kj (2.9)
namely U Kj ×kj is the upper left corner of U k of size K j × k j . It satisfies

U * Kj ×kj U Kj ×kj = I kj . (2.10) From Theorem 15, for all 1 ≤ i ≤ k j , λ k1+•••+kj-1+i (M N ) converges to ρ θj a.s.
. We shall describe their fluctuations in the extreme two cases:

Case a) localization of the eigenvectors associated to θ j : The sequence K j (N ) is bounded,

sup N K j (N ) = Kj
and the the upper left corner U Kj ×kj of U k of size Kj × k j converges towards some matrix Ũ Kj ×kj when N goes to infinity; Case b) delocalization of the eigenvectors associated to θ j :

K j = K j (N ) → ∞ when N → ∞ and U k satisfies kj max p=1 Kj max i=1 |(U k ) ip | -→ 0 as N → ∞.
(

The main results are the following two theorems. Set m 4 := x 4 dτ (x) and define c θj by

c θj = θ 2 j θ 2 j -σ 2 .
(2.12)

In Case a) the fluctuations of the corresponding rescaled largest eigenvalues of M N are not universal.

Theorem 16. In Case a): the k j -dimensional vector

c θj √ N (λ k1+...+kj-1+i (M N ) -ρ θj ); i = 1, . . . , k j converges in distribution to (λ i (V kj ×kj ); i = 1, . . . k j )
where λ i (V kj ×kj ) are the ordered eigenvalues of the matrix V kj ×kj of size k j defined in the following way. Let W Kj be an Hermitian matrix of size Kj

such that the entries √ 2 (W Kj ) uv , √ 2 (W Kj ) uv , u < v, (W Kj ) uu are independent random variables with distribution τ . Let G Kj be a centered Hermitian Gaussian matrix of size Kj independent of W Kj with independent entries G pl , p ≤ l with variance        v pp = E(G 2 pp ) = 1 2 m 4 -3σ 4 θ 2 j + σ 4 θ 2 j -σ 2 , p = 1, . . . , Kj , v pl = E(|G pl | 2 ) = σ 4 θ 2 j -σ 2 , 1 ≤ p < l ≤ Kj .
(2.13)

Then, V kj ×kj is the k j × k j matrix defined by

V kj ×kj = Ũ * Kj ×kj (W Kj + G Kj ) Ũ Kj ×kj . (2.14)
Case b) exhibits universal fluctuations.

Theorem 17. In Case b): the k j -dimensional vector

c θj √ N (λ k1+...+kj-1+i (M N ) -ρ θj ); i = 1, . . . , k j converges in distribution to (λ i (V kj ×kj ); i = 1, . . . k j )
where the matrix V kj ×kj is distributed as a k j × k j GUE matrix whose entries have a variance equal to

θ 2 j σ 2 θ 2 j -σ 2 .
The proof is a (quite technical) generalization of the proof of (2.7); using determinant identities, we show that each of these rescaled eigenvalues is an eigenvalue of a k j × k j random matrix which may be expressed in terms of the resolvent of a (N -k) × (N -k) deformed Wigner matrix whose eigenvalues do not jump asymptotically outside [-2σ; 2σ]; then, the matrix V kj ×kj will arise from a multidimensional CLT from [START_REF] Bai | Central limit theorems for eigenvalues in a spiked population model[END_REF] on random sesquilinear forms.

Remark 1. Note that since τ is symmetric, analogue results can be deduced from Theorem 16 and Theorem 17 dealing with the lowest eigenvalues of M N and the θ j such that θ j < -σ.

Example:

A

N = diag(A p (θ 1 ), θ 2 I k2 , 0 N -p-k2 )
where

A p (θ 1 ) is a matrix of size p defined by A p (θ 1 ) ij = θ 1 /p, with θ 1 , θ 2 > σ, p √ N . Then k = p + k 2 , k 1 = 1, K 1 = p, K 2 = k 2 . For j = 1, we are in Case a) if p is bounded and in Case b) if p = p(N ) → +∞. For j = 2, we are in Case a).
Dealing with a spike θ j > σ with multiplicity 1, it turns out that case b) is actually the unique situation where universality holds since we establish the following.

Theorem 18. If k j = 1, θ j > σ, then the fluctuations of λ k1+•••+kj-1+1 (M N ) are universal, namely √ N (λ k1+•••+kj-1+1 (M N ) -ρ θj ) L -→ N (0, σ 2 θj ) where σ θj = σ 1 - σ 2 θ 2 j , if and only if max l≤Kj |(U k ) l1 | → 0 when N → ∞. (2.15) 
Moreover, our approach allows us to describe the fluctuations of λ k1+•••+kj-1+1 (M N ) for some particular situations where the corresponding eigenvector of A N is not localized but does not satisfy the criteria of universality max l≤Kj |(U k ) l1 | → 0 (that is somehow for intermediate situations between Case a) and Case b)). Let m be a fixed integer number. Assume that for any l

= 1, . . . , m, (U k ) l1 is independent of N , whereas max m<l≤Kj |(U k ) l1 | → 0 when N goes to infinity. We can prove that c θj √ N (λ k1+•••+kj-1+1 (M N ) -ρ θj )
converges in distribution towards the mixture of τ -distributed or gaussian random variables m i,l=1 a il ξ il +N where ξ il , (i, l) ∈ {1, . . . , m} 2 , N are independent random variables such that

• for any (i, l) ∈ {1, . . . , m} 2 , the distribution of ξ il is τ ;

• a il =    √ 2 ((U k ) l1 (U k ) i1 ) if i < l √ 2 ((U k ) l1 (U k ) i1 ) if i > l |(U k ) l1 | 2 if i = l; • N is a centered gaussian variable with variance 1 2 m 4 -3σ 4 m l=1 |(U k ) l1 | 4 θ 2 j + σ 4 θ 2 j -σ 2 +   1 - m l=1 |(U k ) l1 | 2 2   σ 2 .
2.5 Some subsequent works on outliers of finite rank deformed models 

(M 3 ) ij = µ 3,ij (1 -δ ij ) where µ 3,ij = E |W ij | 2 W ij .
Then Renfree and Soshnikov prove that, in the case where the l ∞ norm of every orthonormal eigenvector of the perturbation corresponding to θ j goes to zero as N → +∞, the difference between the k j dimensional vector

{c θj √ N λ k1+•••+kj-1+i -ρ j , i = 1, . . . , k j }
and the vector formed by the ordered eigenvalues of a k j × k j GUE matrix (with the variance of the matrix entries given by θ 2 j σ 2 θ 2 j -σ 2 ) plus a deterministic matrix with entries given by 1

θ 2 j N (u l N ) * M 3 u p N
converges to zero in probability. Note that this additional matrix 1

θ 2 j N (u l N ) * M 3 u p N 1≤l
,p≤kj appeared neither in [START_REF] Péché | The largest eigenvalue of small rank perturbations of Hermitian random matrices[END_REF], [C16] or [START_REF] Pizzo | On finite rank deformations of Wigner matrices[END_REF] nor in [START_REF] Péché | The largest eigenvalue of rank one deformation of large Wigner matrices[END_REF] since in [START_REF] Péché | The largest eigenvalue of small rank perturbations of Hermitian random matrices[END_REF] the entries of the Wigner matrix are Gaussian and in [C16] and [START_REF] Péché | The largest eigenvalue of rank one deformation of large Wigner matrices[END_REF] the distribution entries of the Wigner matrix is symmetric so that M 3 ≡ 0 and, in [START_REF] Pizzo | On finite rank deformations of Wigner matrices[END_REF]

, k = o( √ N ) so that 1 θ 2 j N (u l N ) * M 3 u p N l,p → N →+∞ 0.
The first step in proving the above result is to associate the fluctuations of the outliers with quadratic forms of the resolvent R N of the unperturbed Wigner matrix. Then, the proof comes down to study the asymptotic of

√ N u l N , R N (ρ j )u p N - 1 θ j δ lp 1≤l,p≤kj
.

• Dealing with finite rank deformation of Wigner matrices, Knowles and Yin in [START_REF] Knowles | The isotropic semicircle law and deformation of Wigner matrices[END_REF], allow the eigenvalues θ i of the deformation to depend on N under the condition that

||θ i | -1| ≥ (log N ) C log log N N -1/3 ,
meaning that ρ θi -2 is much greater than N -2/3 (setting σ = 1). If r = 1, the outlier associated with θ 1 fluctuates around ρ θ1 on the scale N -1/2 (|θ 1 | -1) 1/2 and the asymptotic distribution is explicitely computed by the authors. In [START_REF] Knowles | The isotropic semicircle law and deformation of Wigner matrices[END_REF], the authors establish actually such a result for any r but if ∀j, |θ j | > 1, min

j =i |θ i -θ j | ≥ (log N ) C log log N N -1/2 ((|θ i | -1) -1/2
which means that the outlier associated with θ i does not overlap with the other outliers since their separation is greater than the scale on which they fluctuate. [START_REF] Knowles | The outliers of a deformed Wigner matrix[END_REF] extends the results of [START_REF] Knowles | The isotropic semicircle law and deformation of Wigner matrices[END_REF] in two directions: the authors allow overlapping outliers and describe the joint distribution of all outliers.

Their proof relies on the isotropic local semicircle law

The next chapter will put forward tools from free probability theory to provide a unified understanding, for all the previous matrix models and dealing with full rank deformations, of several phenomena such as the exact separation phenomenon, the appearence, localization and fluctuations of outliers as well as of the asymptotic behaviour of the corresponding eigenvectors. The main principle of subordination in free probability is emphasized as a main tool in this understanding.
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Chapter 3

Full rank perturbation of classical random matrix models

This chapter first tries to provide a unified understanding based on free subordination properties of the spectral properties (limiting support, behavior of the density at edges, exact separation phenomenon) of the three deformed models i), ii) and iii) introduced at the beginning of Chapter 2, dealing now with full rank deformations. This chapter actually brings to light a general methodology to localize outliers and to describe the asymptotic behaviour of the corresponding eigenvectors for all the preceding models, both in the independent case as well as for the corresponding deformed isotropic models, namely replacing in i) and ii) W N , S N by U BU * with U Haar distributed and B deterministic, and in iii) X N by a random matrix whose distribution is biunitarily invariant. It was the purpose of [C22] to put forward an unified understanding based on subordination in free probability. This investigation relies notably on [C15], [C17], [C18], [C19], [C21] and [C24].

Convergence of spectral measures

This section is devoted to the study of the limiting spectral distribution (LSD) of the deformed matrix M N for the different models i) to iii). We now assume that for some probability ν, the spectrum of the deformation A N satisfies

µ A N -→ N →+∞ ν
weakly, for cases i) and ii)

µ A N A * N -→ N →+∞
ν weakly, for case iii).

The following theorem is a review of the pionner results concerning the limiting spectral distribution for the three deformed models in the independent case. The spectral distribution is characterized via an equation satisfied by its Stieltjes transform. (For any probability measure τ on R, we denote by g τ the Stieltjes transform of τ defined for any z ∈ C + := {z ∈ C, z > 0} by g τ (z) = 

µ M N -→ N →+∞ µ 1 weakly with ∀z ∈ C + , g µ1 (z) = 1 z -σ 2 g µ1 (z) -t dν(t). (3.1)
ii) Sample covariance matrices ( [START_REF] Marchenko | Distribution of eigenvalues for some sets of random matrices[END_REF][START_REF] Silverstein | Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices[END_REF])

µ M N -→ N →+∞ µ 2 weakly with ∀z ∈ C + , g µ2 (z) = 1 z -t(1 -c + czg µ2 (z)) dν(t). (3.2)
iii) Information-Plus-Noise type matrices ( [START_REF] Dozier | On the empirical distribution of eigenvalues of large dimensional information-plus-noise type matrices[END_REF][START_REF] Xie | The convergence on spectrum of sample covariance matrices for information-plus-noise type data[END_REF])

µ M N -→ N →+∞ µ 3 weakly with ∀z ∈ C + , g µ3 (z) = 1 (1 -cσ 2 g µ3 (z))z - t 1-cσ 2 gµ 3 (z) -σ 2 (1 -c) dν(t). (3.3)
Remark 2. The limiting measures µ 1 , µ 2 , µ 3 are deterministic. Note that they are not always explicit. They are universal (do not depend on the distribution of the entries of the non-deformed model) and only depend on A N through the limiting spectral measure ν. Remark 4. Such functional equations for Stieltjes transforms have been obtained for deformations of isotropic models by [START_REF] Pastur | On the Law of Addition of Random Matrices[END_REF] and [START_REF] Vasilchuk | On the law of multiplication of random matrices[END_REF].

Study of LSD of deformed ensembles through free probability theory

In this section, we take an other look of the LSD described in Section 3.1, in the light of free probability theory introduced in the Appendix. We also characterize the limiting supports in terms of free subordination functions. This will prove to be fundamental to understand the outliers phenomenon for spiked models in Section 3.3. We finish with an analysis of the different behaviors of the density at edges of the support of free additive, multiplicative, rectangular convolutions with semi-circular, Marchenko-Pastur and the square-root of Marchenko-Pastur distributions respectively. This provides the rate for fluctuations of eigenvalues at edges as it will be discussed in Section 3.5.

Free probabilistic interpretation of LSD

As noticed in Remark 2, the limiting spectral distributions of the deformed models investigated in Section 3.1 are universal in the sense that they do not depend on the distribution of the entries of the nondeformed model. Therefore, choosing Gaussian entries and applying Theorem 43 and Theorem 44, we readily get the following free probabilistic interpretation of the limiting measures as well as of the equations satisfied by the limiting Stieltjes transforms in Theorem 19.

• Deformed Wigner matrices

µ M N -→ N →+∞ µ 1 weakly, µ 1 = µ sc ν.
• Sample covariance matrices

µ M N -→ N →+∞ µ 2 weakly, µ 2 = µ MP ν.
• Information-Plus-Noise type matrices

µ M N -→ N →+∞ µ 3 weakly, µ 3 = ( √ µ MP c √ ν) 2 .
The equations (3.1), (3.2) and (3.3) satisfied by the limiting Stieltjes transforms correspond to free subordination properties introduced in Section 5.5 and exhibit the subordination functions ω µsc,ν with respect to the semi-circular distribution µ sc for the free additive convolution, F µMP,ν with respect to the Marchenko-Pastur distribution µ MP for the free multiplicative convolution, and Ω µMP,ν with respect to the pushforward of the Marchenko-Pastur distribution by the square root function √ µ MP for the rectangular free convolution. We use here the notations introduced in Section 5.5.

• Deformed Wigner matrices

∀z ∈ C + , g µ1 (z) = g ν (ω µsc,ν (z)).
ω µsc,ν (z) = z -σ 2 g µ1 (z).

• Sample covariance matrices

∀z ∈ C + , ψ µ1 1 z = ψ ν (F µMP,ν 1 z ) (3.4) with ψ τ (z) = tz 1 -tz dτ (t) = 1 z g τ ( 1 z ) -1, F µMP,ν (z) = z -cz + cg µ1 ( 1 z
).

• Information-Plus-Noise type matrices

µ 3 = ( √ µ MP c √ ν) 2 ∀z ∈ C + , H (c) √ µ3 1 z = H (c) √ ν Ω µMP,ν 1 z , (3.5) 
with

H (c) √ τ (z) = c z g τ ( 1 z ) 2 + (1 -c)g τ ( 1 z ), Ω µMP,ν (z) = 1 1 z (1 -cσ 2 g µ3 ( 1 z )) 2 -(1 -c)σ 2 (1 -cσ 2 g µ3 ( 1 z ))
.

Limiting supports of LSD

For each deformed model involving independent entries, several authors studied the limiting support [START_REF] Biane | On the free convolution with a semi-circular distribution[END_REF][START_REF] Choi | Analysis of the limiting spectral distribution of large dimensional random matrices[END_REF][START_REF] Dozier | Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices[END_REF][START_REF] Vallet | Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signal Case[END_REF][START_REF] Loubaton | Almost sure localization of the eigenvalues in a Gaussian informationplus-noise model. Application to the spiked models[END_REF], [C18]. It turns out that in each case there is a one to one correspondance involving the subordination functions between the complement of the support of the limiting spectral measure and some set in the complement of the limiting support of the deformation, as follows.

• Deformed Wigner

µ 1 = µ sc ν R \ supp(µ 1 ) ϕ1 -→ ←- φ 1 O 1 ⊂ R \ supp(ν), O 1 := {u ∈ R \ supp(ν), φ 1 (u) > 0}, u ∈ R \ supp(ν), φ 1 (u ) = u + σ 2 g ν (u), x ∈ R \ supp(µ 1 ), ϕ 1 (x ) = x -σ 2 g µ1 (x). • Sample covariance matrices µ 2 = µ MP ν R \ {supp(µ 2 )} ϕ2 -→ ←- φ 2 O 2 ⊂ R \ {supp(ν)}, (3.6) 
O 2 = {u ∈ c {supp(ν)}, φ 2 (u) > 0} , u ∈ R \ supp(ν), φ 2 (u) = u + cu t u -t dν(t), x ∈ R \ supp(µ 2 ), ϕ 2 (x) = x (1-c)+cxgµ 2 (x) if c < 1 1 gµ 2 (x) if c = 1.
Note that ϕ 2 is well defined on R \ supp(µ 2 ) since its denominator never vanishes according to Lemma 6.1 in [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF].

• Information-Plus-Noise type model µ 3 = ( √ µ MP c √ ν) 2 R \ supp(µ 3 ) ϕ3 -→ ←- φ 3 O 3 ⊂ R \ supp(ν), O 3 = u ∈ R \ supp(ν), φ 3 (u) > 0, g ν (u) > - 1 σ 2 c , u ∈ R \ supp(ν), φ 3 (u) = u(1 + cσ 2 g ν (u)) 2 + σ 2 (1 -c)(1 + cσ 2 g ν (u)), (3.7) x ∈ R \ supp(µ 3 ), ϕ 3 (x) = x(1 -cσ 2 g µ3 (x)) 2 -(1 -c)σ 2 (1 -cσ 2 g µ3 (x)).
Note that ϕ 1 corresponds to the extension of ω µsc,ν on R \ supp(µ 1 ) and for i = 2, 3, ϕ i coincides on R \ {supp(µ i ) ∪ {0}}, with the extension of z → 1/F µMP,ν (1/z) and z → 1/Ω µMP,ν (1/z) respectively.

The above characterization of the support are explicitely given in [START_REF] Biane | On the free convolution with a semi-circular distribution[END_REF] and [C18] for µ 1 and µ 3 . Now, it can be deduced for µ 2 by the following arguments. In a W * -probability space endowed with a faithful state, the support of the distribution of a random variable x corresponds to the spectrum of x. Thus, considering µ 2 as the distribution of b 1/2 ab 1/2 where a and b are free bounded operators whose distributions are µ MP and ν respectively, one can easily see that for c < 1, 0 belongs to the support of µ MP ν if and only if 0 belongs to the support of ν. The latter equivalence and Lemma 6.1 in [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF] readily yield (3.6).

When the support of ν has a finite number of connected components, we have the following description of the support of the µ i 's in terms of a finite union of closed disjoint intervals.

Theorem 20. [C15] [C18]

Assume that the support of ν is a finite union of disjoint (possibly degenerate) closed bounded intervals. For any i = 1, 3, there exists a nonnul integer number p and u 1 < v 1 < u 2 < . . . < u p < v p (depending on i) such that

O i =] -∞, u 1 [ ∪ p-1 l=1 ]v l , u l+1 [ ∪ ]v p , +∞[. We have supp(ν) ⊂ ∪ p l=1 [u l , v l ] and for each l ∈ {1, . . . , p}, [u l , v l ] ∩ supp(ν) = ∅. Moreover, supp(µ i ) = ∪ p l=1 [φ i (u - l ), φ i (v + l )], with φ i (u - 1 ) < φ i (v + 1 ) < φ i (u - 2 ) < φ i (v + 2 ) < • • • < φ i (u - p ) < φ i (v + p ),
where φ i (u - l ) = lim u↑u l φ i (u) and φ i (v + l ) = lim u↓v l φ i (u). Finally, for each l ∈ {1, . . . , p},

µ i ([φ i (u - l ), φ i (v + l )]) = ν([u l , v l ]). (3.8)
Using the characterization of the support (3.6), Remark 3.6 in [C17] and the fact that from [START_REF] Belinschi | The atoms of the free multiplicative convolution of two probability distributions[END_REF] the only possible mass of µ 2 = µ MP ν is at zero, one may check that the above result still holds for µ 2 allowing u 1 = v 1 = 0 or φ 2 (u 1 ) = φ 2 (v 1 ) = 0 in Theorem 20. Note that the latter cases occur only when ν has a Dirac mass at zero since from [START_REF] Belinschi | The atoms of the free multiplicative convolution of two probability distributions[END_REF], µ MP ν({0}) = max(µ MP ({0}), ν({0})) and therefore, since c ≤ 1, µ 2 has a Dirac mass at zero if and only if ν has a Dirac mass at zero. (3.8) can be seen as a consequence of the matricial exact separation phenomenon described in Theorem 3.13 below letting N go to infinity.

Behavior of the density at edges

Biane proved in [START_REF] Biane | On the free convolution with a semi-circular distribution[END_REF] that µ 1 = µ sc ν has a continuous density. Choi and Silverstein [START_REF] Choi | Analysis of the limiting spectral distribution of large dimensional random matrices[END_REF] and Dozier and Silverstein [START_REF] Dozier | Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices[END_REF] proved respectively that, away from zero, µ 2 = µ MP ν and µ 3 = ( √ µ MP c √ ν) 2 possess a continuous density. Let us denote any of theses densities by f . Using the notations of Theorem 20, we have

supp(ν) ⊂ ∪ p l=1 [u l ; v l ] = R \ O i
and for each l ∈ {1, . . . , p}, [u l , v l ] ∩ supp(ν) = ∅. If a =u l or v l are not in supp(ν) that is if supp(ν) does not stick to the frontier of R \ O i at these points, then the previous authors established that the density exhibits behavior closely resembling that of |x -d| for x near d = φ i (a). We will say that such an edge φ i (a) is regular. This is for instance obviously always the case dealing with a discrete measure ν.

Nevertheless for some measures ν with a density decreasing quite fast to zero at an edge of the support of ν, such an edge may coincide with some u l or v l , that is supp(ν) may stick to the frontier of R \ O i at this point. Then, at the corresponding edge of the support of µ i , the density f may exhibit different behaviour. This can be seen for instance in the following example investigated by Lee and Schnelli [START_REF] Lee | Local deformed semicircle law and complete delocalization for Wigner matrices with random potential[END_REF]:

dν(x) := Z -1 (1 + x) a (1 -x) b h(x)1 [-1,1] (x)dx where a < 1, b > 1, h is a strictly positive C 1 -function and Z is a normalization constant. Indeed let σ 0 be such that 1 (1 -x) 2 dν(x) = 1 σ 2 0 . Let us consider R \ O 1 = supp(ν) ∪ {u ∈ R \ supp(ν), 1 (u -x) 2 dν(x) ≥ 1 σ 2 }.
It can be easily seen that for all σ > σ 0

, R \ O 1 = [u σ , v σ ] with u σ < -1 < 1 < v σ , so that supp (µ sc ν) = [φ 1 (u σ ), φ 1 (v σ )];
(3.9) thus, φ 1 (v σ ) is a regular edge and we have f

(x) ∼ C(φ 1 (v σ ) -x) 1 2 . Now, for all σ ≤ σ 0 , one can see that R \ O 1 = [u σ , 1], with u σ < -1, so that supp (µ sc ν) = [φ 1 (u σ ), φ 1 (1) 
]; it turns out that the density exhibits the following behaviour at the right edge

f (x) ∼ C(φ 1 (1) -x) b . (3.10) 
We illustrate by the following picture the difference of behaviour of the density f at edges of µ i depending on wether the support of ν sticks to the frontier of R \ O i or not. We consider a measure ν whose support has three connected components [a i , b i ], i = 1, 2, 3. Then, we know that R \ O i has at most three connected components and each of them contains at least a connected component of the support of ν. We draw one possible case where [a

1 , b 1 ] and [a 2 , b 2 ] are in the same connected component [u 1 , v 1 ] of R \ O i and b 2 = v 1 whereas [a 3 , b 3 ] is in an other connected component [u 2 , v 2 ] of R \ O i . supp(ν) ⊂ R \ O i - [ [ ] ] [ ] [ ] [ ] u 1 = v 1 u 2 v 2 a 1 b 1 a 2 b 2 a 3 b 3 supp(µ i ) - [ ] [ ] φ i (u 1 ) φ i (v 1 ) φ i (u 2 ) φ i (v 2 ) ↑ ↑ f (x) ∼ C|d -x| 1 2 the singularity of f may change! f (x) ∼ C|d -x| 1 2

Outliers of general spiked models

In Section 2.2, we presented the seminal works on the behavior of the largest eigenvalues for finite rank deformations of standard models. It turns out that the previous analysis in Section 3.2 allows us to understand the appearence of outliers of general spikes models that is dealing with full rank deformations and provides the correct way to generalize the pioneering works. Actually, the relevant criterion for a spiked eigenvalue of the deformation to generate an outlier in the spectrum of the deformed model is to belong to the set O i related to the subordination functions and introduced in Section 3.2.2. In the finite rank case this criterion reduces to a critical threshold.

In order to adopt universal notations for the three types of deformations, we set ÃN = A N for additive or multiplicative deformations A N A * N for Information-plus-noise type deformation.

(3.11)

Thus, for each type of deformation, we assume the following on the perturbation ÃN :

• µ ÃN weakly converges towards a probability measure ν whose support is compact.

• The eigenvalues of ÃN are of two types :

-N -r (r fixed) eigenvalues α i (N ) such that

N -r max i=1 dist(α i (N ), supp(ν)) -→ N →∞

0

a finite number J of fixed (independent of N ) eigenvalues called spikes θ 1 > . . . > θ J (≥ 0 for multiplicative deformations and information-plus-noise type models), ∀i = 1, . . . , J, θ i ∈ supp(ν), each θ j having a fixed multiplicity k j , j k j = r.

Location of the outliers

Here is a naive intuition for general additive deformed models in order to make the reader understand the occurence and role of free subordination functions. We have the following free subordination property (see Section 5.5)

g µ ν (z) = g ν (ω µ,ν (z)).
For an Hermitian deformed model such that

M N = Y N + A N ; µ Y N → µ; µ A N → ν, µ M N → µ ν, the intuition is that g µ M N (z) ≈ g µ A N (ω µ,ν (z)).
Assume that A N has a spiked eigenvalue θ outside its limiting support.

If ρ / ∈ supp (µ ν) is a solution of ω µ,ν (ρ) = θ, g µ M N (ρ) ≈ g µ A N (ω µ,ν (ρ)
) explodes! Therefore the conjecture is that the spikes θ's of the perturbation A N that may generate outliers in the spectrum of M N belong to ω µ,ν (R \ supp (µ ν)) and more precisely that for large N , the θ's such that the equation ω µ,ν (ρ) = θ has solutions ρ outside supp (µ ν) generate eigenvalues of M N in a neighborhood of each of these ρ. This intuition in fact corresponds to true results for both models: independent and isotropic case. Nevertheless, their proofs are different. In the following, we present the distinct approaches.

The independent case

In this section, we will denote by φ, ϕ, O, µ, any of φ i , ϕ i , O i , µ i , for i = 1, 2, 3 introduced in Section 3.2.2 related to the investigated deformed model. We choose to present a unified result covering the three types of deformations. a) A deterministic equivalent In the three deformed models, a deterministic measure plays a central role in the study of the spectrum of the deformed models. This measure is a very good approximation of the spectral measure µ M N in the sense that almost surely, for large N , each interval in the complement of the support of this deterministic measure contains no eigenvalue of M N . This was first established by Bai and Silverstein [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices[END_REF] in the multiplicative case. We now express this deterministic measure ν N in the three models : i) Additive deformation of a Wigner matrix [C15]:

ν N = µ sc µ A N .
ii) Multiplicative deformation of a sample covariance matrix ( [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices[END_REF])

ν N = µ MP µ A N .
iii) Information plus noise model ( [START_REF] Vallet | Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signal Case[END_REF] in the Gaussian case, [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of information-plus-noise type matrices[END_REF], [C24])

ν N = ( √ µ MP c N µ A N A * N ) 2 (with c N = N/p).
We denote by K N the support of ν N and for > 0, (K N ) denotes an neighborhood of K N . We have the following result which holds for the three models (we refer to the original papers for the precise technical assumptions on the models):

Proposition 3. ∀ > 0, ∀[a, b] ⊂ (K N ) , P( for large N , M N has no eigenvalue in [a, b]) = 1 (3.12)
For deformed Wigner matrices, (3.12) is established in in [C15, Theorem 5.1] under the assumption that the real part and the imaginary part of the off-diagonal entries of the Wigner matrix are iid with variance one half and the common distribution is symmetric and satisfies a Poincaré inequality; its proof uses the strategy developed by [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF] and [START_REF] Haagerup | A random matrix approach to the lack of projections in C * red (F 2 )[END_REF] already described in Section 2.4.1. Note that [C23] that will be presented in the following Chapter (dealing with much more general polynomial models) extends to more general Wigner matrices. The same method was used in [START_REF] Vallet | Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signal Case[END_REF] for Gaussian Information-Plus-Noise type matrices.

To prove the inclusion of the spectrum (3.12) for sample covariance matrices and information-plus-noise type matrices [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices[END_REF][START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of information-plus-noise type matrices[END_REF], Bai and Silverstein provide a different approach strongly related to the models although it also makes use of Stieltjes transform. Note that, in an Appendix in [C24], we present alternative versions of the earlier result of [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of information-plus-noise type matrices[END_REF] for non-Gaussian Information-Plus-Noise type matrices where we remove some technical assumptions that were difficult to handle but assume that the real part and the imaginary part of the entries of the random matrix are independent with variance one half . Note also that in the context of [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of information-plus-noise type matrices[END_REF], (3.12) is proved only for a > 0 whereas it includes the case a = 0 in the framework of [C24].

b) An exact separation phenomenon A next step in the analysis of the spectrum of deformed models dealing with independent entries is an exact separation phenomenon between the spectrum of M N and the spectrum of ÃN , involving the subordination functions : to a gap in the spectrum of ÃN , it corresponds, through the function ϕ defined in Section 3.2.2, a gap in the spectrum of M N which splits the spectrum of M N exactly as that of ÃN . Let The following picture illustrates this exact separation phenomenon.

[a, b] ⊂ R \ supp(ν N ) ←→ [ϕ(a), ϕ(b)] gap in Spect(M N ) ←→ gap in Spect( ÃN ) - • • • λ l+1 ( ÃN ) ϕ(a) ϕ(b) λ l ( ÃN ) • • • N -l eigenvalues of ÃN l eigenvalues of ÃN - • • • λ l+1 (M N ) a b λ l (M N ) • • • N -l eigenvalues of M N l eigenvalues of M N
This was first observed by Bai and Silverstein [START_REF] Bai | Exact separation of eigenvalues of large-dimensional sample covariance matrices[END_REF], in the case of sample covariance matrices. We refer to [C15] for deformed Wigner matrices and to Loubaton-Vallet [START_REF] Loubaton | Almost sure localization of the eigenvalues in a Gaussian informationplus-noise model. Application to the spiked models[END_REF] (Gaussian case), [C18], [C24] for Information-plus-noise type models when the real part and the imaginary part of the entries of the random matrix are independent with variance one half. This exact separation phenomenon leads asymptotically to the relation (3.8) between the cumulative distribution function of the µ i 's and the cumulative distribution function of ν.

c) Convergence of eigenvalues

The following result gives the precise statement of the intuition given at the beginning of Section 3.3.1 and is a consequence of the inclusion of the spectrum and the exact separation.

Theorem 22. [START_REF] Bai | On sample eigenvalues in a generalized spiked population model[END_REF][START_REF] Rao | Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples[END_REF] [C15], [C18] Assume that the LSD ν of A N has a finite number of connected components. For each spiked eigenvalue θ j , we denote by n j-1 + 1, . . . , n j-1 + k j the descending ranks of θ j among the eigenvalues of ÃN . With the notations of Section 3.2.2, 1) If θ j ∈ O, the k j eigenvalues (λ nj-1+i (M N ), 1 ≤ i ≤ k j ) converge almost surely outside the support of µ towards ρ θj = φ(θ j ).

2) If θ j ∈ R\O then we let [s lj , t lj ] (with 1 ≤ l j ≤ m) be the connected component of R\O which contains θ j .

a) If θ j is on the right (resp. on the left) of any connected component of supp(ν) which is included in [s lj , t lj ] then the k j eigenvalues (λ nj-1+i (M N ), 1 ≤ i ≤ k j ) converge almost surely to φ(t + lj ) (resp. φ(s - lj )) which is a boundary point of the support of µ. b) If θ j is between two connected components of supp(ν) which are included in [s lj , t lj ] then the k j eigenvalues (λ nj-1+i (M N ), 1 ≤ i ≤ k j ) converge almost surely to the α j -th quantile of µ (that is to q αj defined by α j = µ(] -∞, q αj ])) where α j is such that

α j = 1 -lim N nj-1 N = ν(] -∞, θ j ]).

The isotropic case

Here we consider an additive spiked deformation of an isotropic matrix

M N = A N + U * N B N U N . (3.15)
U N is a unitary matrix whose distribution is the normalized Haar measure on the unitary group U(N ).

B N is a deterministic Hermitian matrix of size N × N such that µ B N converges weakly to µ compactly supported as N → ∞ and such that the eigenvalues of B N converge uniformly to supp(µ) as N → ∞.

A N is a deterministic Hermitian N × N perturbation as defined at the beginning of Section 3.3.

Note that if A N has no outlier, that is if {θ 1 , • • • , θ J } = ∅, then the general study of Collins and Male allows to deduce that a.s. neither does M N (see Corollary 3.1 in [START_REF] Collins | The strong asymptotic freeness of Haar and deterministic matrices[END_REF]) meaning that for all large N , all the eigenvalues of M N are inside a small neighborhood of the support of µ ν.

Assume now that A N has outliers. Then we established in [C21] the following result.

Theorem 23. Set K = supp(µ ν),

K = K ∪ J i=1 ω -1 2 ({θ i }) ,
with ω 2 defined as in Section 5.5. The following results hold almost surely for large N : Given ε > 0 and denoting by K an neighborhood of K, we have

spect(M N ) ⊂ K ε .
Let ρ be a fixed number in K \ K and θ i be such that ω 2 (ρ) = θ i . For any ε > 0 such that (ρ

-2ε, ρ + 2ε) ∩ K = {ρ}, we have card({spect(M N ) ∩ (ρ -ε, ρ + ε)}) = k i .
Here we explain the sketch of the proof. Fix α ∈ supp(ν). Due to the left and right invariance of the Haar measure on U(N ) we may assume without loss of generality that both A N and B N are diagonal matrices. More precisely, we let A N be the diagonal matrix ).

A N = Diag(θ 1 , . . . , θ 1 k1times , . . . , θ J , . . . , θ J k J times , α ( 
We have A N = P * N ΘP N , where P N is the r × N matrix representing the usual projection C N → C r onto the first r coordinates, and

Θ = Diag(θ 1 -α, . . . , θ 1 -α k1times , . . . , θ J -α, . . . , θ J -α k J times ).
The matrices A N and B N have no outliers, and therefore [48, Corollary 3.1] applies to the matrix

M N = A N + U * N B N U N .
Note that the limiting spectral measure is still µ ν. The first key idea is due to Benaych-Georges and Nadakuditi [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF] and consists in reducing the problem of locating outliers of the deformations to a convergence problem of a fixed size r × r random matrix, by using the Sylvester's determinant identity: for rectangular matrices X and Y such that XY and Y X are square, we have

det(I + XY ) = det(I + Y X). (3.16) 
Given z outside the support of µ ν, we have

det(zI N -(A N + U * N B N U N )) = det(zI N -M N ) det(I N -(zI N -M N ) -1 P * N ΘP N ),
so that using Sylvester's identity, we obtain that

det(zI N -(A N + U * N B N U N )) = det(zI N -M N ) det(I r -P N (zI N -M N ) -1 P * N Θ).
We conclude that the eigenvalues of A N + U * N B N U N outside µ ν are precisely the zeros of the function det(F N (z)), where

F N (z) = I r -P N (zI N -M N ) -1 P * N Θ. (3.17)
The key idea is now to establish an approximate matricial subordination result. Biane [START_REF] Biane | Processes with free increments[END_REF] proved the stronger result that for any a and b free selfadjoint random variables in a tracial W*-probability space, there exists an analytic self-map ω : C + → C + of the upper half-plane so that

E C[a] (z -(a + b)) -1 = (ω(z) -a) -1 , z ∈ C + . (3.18)
Here E C[a] denotes the conditional expectation onto the von Neumann algebra generated by a. It can be proved that an approximate version does hold in the sense that the compression

P N E (z -(A N + U * N B N U N )) -1 -1 + A N P * N
is close to ω 2 (z)I r , as N goes to infinity, where ω 2 is the subordination function from (5.15). For this task we use the following lemma. Thanks to this lemma, we establish that there exists (ω

(N ) (z)) N in C such that lim N →∞ E (zI N -(A N + U * N B N U N )) -1 -1 + A N -ω (N ) (w)I N = 0,
and thus

E (zI N -(A N + U * N B N U N )) -1 ≈ A N -ω (N ) (z)I N -1
.

Then we use asymptotic freeness and subordination property to prove that ω (N ) (z) converges towards ω 2 (z). Thus, it turns out that almost surely the sequence {F N } N converges uniformly on compact subsets of C \ supp(µ ν) to the analytic function F defined by

F (z) = Diag      1 - θ 1 -α ω 2 (z) -α k1times , . . . , 1 - θ J -α ω 2 (z) -α k J times      .
The set of points z such that F (z) is not invertible is precisely

J i=1 ω -1
2 ({θ i }). Theorem 23 follows by Hurwitz's Theorem.

It follows from this result that a remarkable new phenomenon arises: a single spike of A N can generate asymptotically several outliers of M N . This arises from the fact that the restriction to the real line of some subordination functions may be many-to-one, that is, with the above notation, the set ω -1 i ({θ}) may have cardinality strictly greater than 1, unlike the subordination function related to free convolution with a semicircular distribution that was used in Section 3.3.1. The following numerical simulation illustrates the appearance of two outliers arising from a single spike. We take N = 1000 and

M N = A N + U N B N U * N , where B N = diag(-1, . . . , -1 N 2 , 1, . . . , 1 N 2
), and

A N = W G N -1 2 0 (N -1)×1 0 1×(N -1)
10 , with W G N -1 being sampled from a standard 999 × 999 GUE.. This is not a spiked deformed GUE model and now, the spike θ = 10 is associated to the matrix approximating the semicircular distribution. We have the subordination identities

g µsc ν (z) = g ν (ω 2 (z)) = g µsc (ω 1 (z))
where ω 2 is injective on R \ supp (µ sc ν) but ω 1 may be many to one. The equation ω 1 (ρ) = 10 has 2 solutions ρ 1 and ρ 2 . Actually, in [C21] we also consider additive models where both A N and B N have spiked outliers ([C21]). Namely, let us consider the matricial model (3.15) where we assume that there exist a spiked θ / ∈ supp(ν) which is an eigenvalue of A N with multiplicity k and a spiked α / ∈ supp(µ) which is an eigenvalue of B N with multiplicity l, whereas the other eigenvalues are uniformly close to the limiting supports. We have the subordination properties

g µ ν (z) = g ν (ω 2 (z)) = g µ (ω 1 (z)).
If there exists ρ ∈ R \ supp(µ ν) such that

ω 1 (ρ) = α ω 2 (ρ) = θ
then for all large N , there are k + l outliers of M N in a neighborhood of ρ.

Such results are established in [C21] for multiplicative perturbations of unitarily invariant matricial models, based on similar ideas, with the subordination function replaced by its multiplicative counterpart.

Eigenvectors

For a general perturbation, dealing with sample covariance matrices, S. Péché and O. Ledoit [START_REF] Péché | Eigenvectors of some large sample covariance matrix ensembles[END_REF] introduced a tool to study the average behaviour of the eigenvectors but it seems that this did not allow them to focus on the eigenvectors associated with the eigenvalues that separate from the bulk. It turns out that in our studies [C17], [C21], [C24], we point out that the angle between the eigenvectors of the outliers of the deformed model and the eigenvectors associated to the corresponding original spikes is determined by free subordination functions.

The following theorem [C17], [C21] holds for spiked additive deformations in the independent case as well as in the isotropic case. Let A N be a deterministic deformation as defined as the beginning of Section 3.3; dealing with either a deformed Wigner matrix or a deformed isotropic matrix as defined by (3.15), we have the following Theorem 24. Set K = supp(µ ν),

K = K ∪ p i=1 ω -1 2 ({θ i }) ,
and let ω 2 be the subordination function satisfying (5.15). Let ρ be a fixed number in K \ K and θ i be such that ω 2 (ρ) = θ j . Let ε > 0 be such that (ρ -2ε, ρ + 2ε) ∩ K = {ρ}. Let ξ be a unit eigenvector associated to an eigenvalue of M N in (ρ -, ρ + ). Then when N goes to infinity,

P Ker (θ l I N -A N ) (ξ) 2 → δ jl ω 2 (ρ) almost surely
Similar results are established for spiked multiplicative deformations in the independent case as well as in the isotropic case [C17], [C21] and for information-plus-noise type models in [C24] in the independent case. See the following tabular in Section 3.3.3. Note that in the i.i.d case everything is explicit and can be rewritten as follows using the φ i 's defined in Section 3.2.2.

Theorem 25. Let n j-1 +1, . . . , n j-1 +k j the descending ranks of θ j among the eigenvalues of ÃN defined by (3.11) and ξ(j) a unit eigenvector associated to one of the eigenvalues (λ nj-1+q (M N ), 1 ≤ q ≤ k j ). Then when N goes to infinity,

• For any θ l = θ j , P Ker (θ l I N -ÃN ) (ξ(j)) → 0 almost surely

• P Ker (θj I N -ÃN ) (ξ(j)) 2 → τ j almost surely where τ j =                  φ 1 (θ j ) = 1 -σ 2 1 (θj -x) 2 dν(x) for deformed Wigner matrices θj φ 2 (θj ) φ2(θj ) = 1-c x 2
(θ j -x) 2 dν(x) 1+c

x (θ j -x) dν(x) for sample covariance matrices φ 3 (θj ) 1+σ 2 cgν (θj ) for information-plus-noise type matrices Here are the common basic ideas [C17] of the proof of these results. First note that if u 1 , . . . , u N and w 1 , . . . , w N are respectively a basis of eigenvectors associated with λ 1 ( ÃN ), . . . , λ N ( ÃN ) and with λ 1 (M N ), . . . , λ N (M N ), we have

T r h(M N )f ( ÃN ) = k,l h(λ k (M N ))f (λ l ( ÃN ))| u l , w k | 2 .
Thus, since the θ l 's separate from the rest of the spectrum of ÃN and the outliers of M N separate from the rest of the spectrum of M N , one can deduce the asymptotic norm of the projection onto an eigenspace associated to a spike θ i , of an eigenvector associated to an outlier of M N from the study of the asymptotic behaviour of T r h(M N )f ( ÃN ) for a fit choice of h and f . Then, a concentration of measure phenomenon reduces the problem to the study of E(T r h(M N )f ( ÃN ) ).

The third key point is to approximate the function h by its convolution by the Poisson Kernel in order to exhibit the resolvent of the deformed model

E T r h(M N )f ( ÃN ) = -lim y→0 + 1 π E T r G N (t + iy)f ( ÃN ) h(t)dt
where G N (z) = (zI N -M N ) -1 . Finally, writing ÃN = U * DU , with D diagonal and U unitary, defining GN := U G N U * , the result follows from sharp estimations of E({ GN } kk (z)), for any k in {1, . . . , N }.

Unified understanding

In conclusion, solving the problem of outliers consists in solving an equation involving the relevant free subordination function and the spikes of the perturbation. Moreover, the norm of the orthogonal projection of an eigenvector associated to an outlier of the deformed model onto the eigenspace of the corresponding spike of the perturbation is asymptotically determined by the free subordination function. This is summarized in the following tabular. In the tabular, Y N denotes a Hermitian random matrix of iid type (Y N = W N , S N or σ X N √ p according to the deformations, see Section 1.1) or Y N is unitarily invariant (resp. biunitarily invariant for the information-plus-noise type model). We use notations introduced in Section 5.5.

M N = A N + Y N µ A N → N →+∞ ν µ Y N → N →+∞ µ θ ∈ Spect(A N ) θ multiplicity k i θ /
∈ supp(ν)

M N = A 1/2 N Y N A 1/2 N µ A N A * N → N →+∞ ν µ Y N → N →+∞ µ θ ∈ Spect(A N ) θ multiplicity k i θ > 0, θ / ∈ supp(ν) M N = (A N + Y N )(A N + Y N ) * µ A N A * N → N →+∞ ν µ Y N Y * N → N →+∞ µ √ µ or √ ν c infinitely divisible θ ∈ Spect(A N A * N ) θ multiplicity k i θ > 0, θ / ∈ supp(ν) µ M N → N →+∞ µ ν µ M N → N →+∞ µ ν µ M N → N →+∞ ( √ µ c √ ν) 2 g τ (z) = R dτ (x) z-x Ψ τ (z) = 1 z g τ ( 1 z ) -1 H (c) √ τ = c z g τ ( 1 z ) 2 + (1 -c)g τ ( 1 z ) g µ ν (z) = g ν (ω µ,ν (z)) Ψ µ ν (z) = Ψ ν (F µ,ν (z)) H (c) √ µ c √ ν (z) = H (c) √ ν (Ω µ,ν (z)) k i outliers of M N in the neighborhood of each ρ s.t ω µ,ν (ρ) = θ k i outliers of M N in the neighborhood of each ρ s.t 1 Fµ,ν (1/ρ) = θ k i outliers of M N in the neighborhood of each ρ s.t 1 Ωµ,ν (1/ρ) = θ ξ eigenvector of M N associated to an outlier in the neighborhood of ρ s.t ωµ,ν (ρ) = θ P Ker(θI-A) ξ 2 →N→+∞ 1 ω µ,ν (ρ) ξ eigenvector of M N associated to an outlier in the neighborhood of ρ s.t 1 Fµ,ν (1/ρ) = θ P Ker(θI-A) ξ 2 →N→+∞ ρFµ,ν (1/ρ) F µ,ν (1/ρ) ξ eigenvector of M N associated to an outlier in the neighborhood of ρ s.t 1 Ωµ,ν (1/ρ) = θ P Ker(θI-A) ξ 2 →N→+∞ ρ 2 g ( √ µ c √ ν) 2 (ρ) θ 2 gν (θ)Ω µ,ν (1/ρ)
Note that up to now, the formula in the lower right corner of the previous tabular, concerning the limiting projection of the eigenvectors associated to outliers of Information-Plus-Noise type models in the isotropic case has been proved only for finite rank perturbation A N .

Fluctuations at edges of spiked deformed models

In this section, we present some results on fluctuations of outliers and eigenvalues at soft edges of the limiting support of spiked deformed models, with particular stress on understanding the phenomena through free probability theory. Note that, while global fluctuations of eigenvalues of large random matrices have been described in a series of papers by Mingo et al. [START_REF] Collins | Second Order Freeness and Fluctuations of Random Matrices III. Higher order freeness and free cumulants[END_REF][START_REF] Mingo | Second order freeness and fluctuations of random matrices: II. Unitary random matrices[END_REF][START_REF] Mingo | Second Order Freeness and Fluctuations of Random Matrices: I. Gaussian and Wishart matrices and Cyclic Fock spaces[END_REF] in terms of the so-called second order freeness, second order freeness does not seem to be the apropriate tool for the analysis of fluctuations of outliers.

Deterministic full rank deformations of Gaussian models

The seminal works concerning full rank additive deformations of a GUE matrix made strong assumptions on the rate of convergence of µ A N to ν. In [START_REF] Shcherbina | On universality of local edge regime for the deformed Gaussian unitary ensemble[END_REF], the author investigates the local edge regime which deals with the behavior of the eigenvalues near any regular extremity point u 0 of a connected component of supp(µ sc ν). The typical size of the fluctuations of the eigenvalues at regular edges (see Section 3.2.3) is N -2/3 . [START_REF] Shcherbina | On universality of local edge regime for the deformed Gaussian unitary ensemble[END_REF] considers the case where µ A N concentrate quite fast to the measure ν. In particular, there are no spike. More precisely [START_REF] Shcherbina | On universality of local edge regime for the deformed Gaussian unitary ensemble[END_REF] makes a technical assumption on the uniform convergence of the Stieltjes transform of µ A N to g ν :

sup z∈K |g µ A N (z) -g ν (z)| ≤ N -2/3-, (3.19)
where K is some compact subset of the complex plane at a positive distance of the support of ν. Then, [START_REF] Shcherbina | On universality of local edge regime for the deformed Gaussian unitary ensemble[END_REF] proves that the eigenvalues converging to u 0 have universal asymptotic behavior, characterized by the Tracy-Widom distribution. In [START_REF] Adler | PDEs for the Gaussian ensemble with external source and the Pearcey distribution[END_REF] and [START_REF] Adler | From the Pearcey to the Airy process[END_REF], [START_REF] Bleher | Large n limit of Gaussian random matrices with external source, part I[END_REF][START_REF] Aptekarev | Large n limit of Gaussian random matrices with external source, part II[END_REF] the authors consider the case where A N has two distinct eigenvalues ±a of equal multiplicity. They proved the Tracy-Widom fluctuations at edges (which are all regular since ν is discrete). It turns out that the above strong assumptions made on the rate of convergence of µ A N to ν can be removed by studying the asymptotic distribution of eigenvalues in the vicinity of mobile edges namely the edges of the deterministic equivalent µ sc µ A N of the empirical eigenvalue distribution of the deformed GUE. In [C19], we establish the following results.

Let d be a regular right edge of supp(µ sc ν). Assume moreover that for any θ j such that 

dν(s) (θj -s) 2 = 1/σ 2 , we have d = φ 1 (θ j ) = θ j -σ 2 g ν (θ j ).
N 2/3 α (λ max -d N , λ max-1 -d N , . . . , λ max-k+1 -d N )
converges in distribution as N → ∞ to the so-called Tracy-Widom GUE distribution for the k largest eigenvalues (see [START_REF] Tracy | Level-spacing distributions and the Airy kernel[END_REF]).

To define the limiting correlation function at an outlier, we consider for k = 1, 2, . . . , the distribution G k (•) given by

G k (x) = 1 Z k x -∞ • • • x -∞ 1≤i<j≤k |ξ i -ξ j | 2 • k i=1 e -1 2 ξ 2 i dξ 1 • • • dξ k . (3.20)
G k is the distribution of the largest eigenvalue of a k × k GUE. Let θ i be a spiked eigenvalue with multiplicity k i , such that

1 (θi-x) 2 dν(x) < 1/σ 2 .
Recall that in [C15], we prove that the spectrum of M N exhibits k i eigenvalues in a neighborhood of

ρ θi = θ i + σ 2 dν(x) θ i -x . (3.21)
Dealing with mobile edges related to µ sc µ A N , [C19] obtains the following universal result.

Theorem 27. Let θ i be such that dν(x) (θi-x) 2 < 1/σ 2 Then, for > 0 small enough, for all large N , supp(µ sc µ A N ) has a unique connected component [L i (N ), D i (N )] inside ]ρ θi -, ρ θi + [. Let us denote by λ max the largest of the k i outliers around ρ θi . There exists c > 0 depending on θ i and ν only such that lim

N →∞ P √ N c λ max - L i (N ) + D i (N ) 2 ≤ x = G ki (x).
Actually, the k i outliers of M N close to ρ θi fluctuate at rate

√ N around Li(N )+Di(N ) 2 as the eigenvalues of a k i × k i GUE.
In [START_REF] Adler | From the Pearcey to the Airy process[END_REF][START_REF] Adler | PDEs for the Gaussian ensemble with external source and the Pearcey distribution[END_REF], dealing with A N such that µ A N is a finite combination of Dirac delta masses, the authors also consider the case where u 0 is a point where two connected components of supp(µ sc ν) merge so that, denoting by p the density of µ sc ν, p(u) > 0, ∀u ∈ (u 0 -; u 0 + ) \ {u 0 } for some > 0 and p(u 0 ) = 0 (u 0 is a so-called cusp point). In this case, the limiting eigenvalue statistics are described by the so-called Pearcey kernel defined by

K P (x, y) := 1 2iπ Γ0 dt i∞ -i∞ dse -t 4 +xt+s 4 -sy 1 s -t . (3.22)
The contour Γ 0 is formed by two curves lying respectively to the right and left of 0: one goes from ∞e i π 4 to ∞e -i π 4 and the other from -∞e i π 4 to -∞e -i π 4 . In [C19], we also investigates the fluctuations in a neighborhood of an isolated point of vanishing density. Let u 0 ∈ R be such that p(u 0 ) = 0 and that there exists > 0 such that, ∀u ∈]u 0 -; u 0 + [\{u 0 }, p(u) > 0 . Assume that for any θ i such that dν(s)

(θi-s) 2 = 1/σ 2 , we have θ i + σ 2 g ν (θ i ) = u 0 . Set t 0 = Ψ -1 σ,ν (u 0 ) where Ψ σ,ν (t) = t + σ 2 R (t -x)dν(x) (t -x) 2 + v σ,ν (t) 2
and the function v σ,ν : R → R + is defined by

v σ,ν (u) = inf v ≥ 0, R dν(x) (u -x) 2 + v 2 ≤ 1 σ 2 .
The function Ψ σ,ν has been introduced by Biane in [START_REF] Biane | On the free convolution with a semi-circular distribution[END_REF]: it is an homeomorphism from R \ O 1 (where O 1 is defined in Section 3.2.2) onto the support of µ sc ν. Assuming that the equation

dµ A N (x) (t-x) 2 -1/σ 2 = 0
admits a unique solution t ∈ C in a neighborhood of t 0 , we prove that for η small enough, for all large N, there exists u N in ]u 0 -η; u 0 + η[ such that p N (u N ) = 0 and ∀u ∈]u 0 -η; u 0 + η[\{u N }, p N (u) > 0, where p N denotes the density of µ sc µ A N . Last we derive the asymptotic behavior of eigenvalues at the vicinity of u N . Theorem 28. [C19] Let k be a fixed integer and f : R k → R be a symmetric bounded function with compact support. There exists κ > 0 such that

E 1≤i1<i2<•••<i k ≤N f κN 3 4 (λ i1 -u N ), κN 3 4 (λ i2 -u N ), . . . , κN 3 4 (λ i k -u N ) → N →∞ R k 1 k! f (x 1 , . . . , x k ) det(K P (x i , x j )) k i,j=1 k i=1 dx i .
The basic tool of [C19] is a saddle point analysis of the correlation functions of the deformed GUE, the contours involving the image of R by the continuous extension of the subordination function ω 2 defined by (5.15) with µ = µ sc and ν = µ A N . [START_REF] Hachem | Large Complex Correlated Wishart Matrices: Fluctuations and Asymptotic Independence at the Edges[END_REF][START_REF] Hachem | Large Complex Correlated Wishart Matrices: The Pearcey Kernel and Expansion at the Hard Edge[END_REF][START_REF] Hachem | A Survey on the Eigenvalues Local Behavior of Large Complex Correlated Wishart Matrices[END_REF] investigate the behavior of the eigenvalues of Gaussian Sample covariance matrices in the case of a full rank perturbation A N of the identity, in the vicinity of the soft edges, the hard edge when existing, and the cusp points in the support of µ MP ν. They obtain the analog of Theorems 26 and 28 dealing with mobile edges namely the edges of the deterministic equivalent µ MP µ A N . As for deformed GUE model, the distribution of the eigenvalues is explicit, with a determinantal structure. The analysis of the fluctuations relies on an expression of the distribution of the extremal eigenvalues in terms of a Fredholm determinant and then an asymptotic analysis.

Several recent works proved the universality of the Tracy-Widom fluctuations at soft edges for quite general deformed Wigner matrices or sample covariance matrices without outliers. The methods pursue a Green function comparison strategy [START_REF] Bao | Universality for the Largest Eigenvalue of Sample Covariance Matrices with General Population[END_REF][START_REF] Lee | Edge Universality for Deformed Wigner Matrices[END_REF][START_REF] Lee | Tracy-Widom Distribution for the Largest eigenvalue of real sample covariance matrices with general population[END_REF] or make use of anisotropic local laws [START_REF] Knowles | Anisotropic local laws for random matrices[END_REF]. We do not detail the results since they do not fall under the scope of free probability theory.

Random perturbations

If one let the perturbation matrix A N be random then the mobile edges of the equivalent measure become random and may lead to different rates of convergence and different asymptotic distributions. We present two examples established respectively by Johansson [START_REF] Johansson | From Gumbel to Tracy-Widom[END_REF] and Lee and Schnelli [START_REF] Lee | Extremal eigenvalues and eigenvectors of deformed Wigner matrices[END_REF] that we revisited through free convolutions.

• Johansson [START_REF] Johansson | From Gumbel to Tracy-Widom[END_REF] considered

M N = W G N + A N
where W G N is a GUE matrix as defined in Section 1.1 and

A N = N -1/6 diag(y 1 , . . . , y N )
where the y i 's are iid real random variables with distribution τ and independent from W G N . Let us assume that τ is compactly supported and set v 2 = x 2 dτ (x). Note that almost surely µ A N converges weakly to δ 0 and µ M N converges weakly to µ sc . Denote by dN the deterministic upper right edge of µ sc τ N 1/6 where τ N 1/6 denotes the pushforward of τ by the map x → x N 1/6 . Johansson established that

σ -1 N 2/3 λ max (M N ) -dN D -→ X + Y (3.23)
where X and Y are independent random variables, X has the Tracy-Widom distribution and Y has distribution N (0, v 2 σ 2 ). Note that the upper right edge dN of µ sc τ N 1/6 is defined by

dN = tN + σ 2 1 tN -x/N 1/6 dτ (x), (3.24) 
where tN in the vicinity of σ satisfies

1 ( tN -x/N 1/6 ) 2 dτ (x) = 1 σ 2 .
(3.25)

Consider now the random upper right edge d N of µ sc µ A N . It is defined by

d N = t N + σ 2 1 N N i=1 1 t N -y i /N 1/6 , (3.26) 
where t N in the vicinity of σ satisfies

1 N N i=1 1 (t N -y i /N 1/6 ) 2 = 1 σ 2 . (3.27) 
It is easy to see that (3.24), (3.25), (3.26) and (3.27) yield

d N -dN = σ 2 Z N + O((t N -tN ) 2 ) and t N -tN = O(Z N ),
where N 2/3 Z N = N 2/3 g µ A N ( tN ) -g τ N 1/6 ( tN ) converges weakly to a centered Gaussian distribution with variance v 2 /σ 4 . Thus, it comes readily that

σ -1 N 2/3 d N -dN D -→ N (0, v 2 /σ 2 ). (3.28) 
Now (3.23) readily follows since by Theorem 26, given A N , σ -1 N 2/3 (λ 1 (M N ) -d N ) converges weakly to the Tracy-Widom distribution.

• Another example is provided by [START_REF] Lee | Extremal eigenvalues and eigenvectors of deformed Wigner matrices[END_REF] who considered the following deformed model

W N + diag(v 1 , . . . , v N )
where W N is a Wigner matrix and v i are i.i.d random variables independent with W N , with distribution

dν(x) = Z -1 (1 + x) a (1 -x) b h(x)1 [-1,1] (x)dx with a < 1, b > 1 and h > 0 is a C 1 -function. Assume that W N is a GUE. Let σ 0 be defined by 1 (1-x) 2 dν(x) = 1 σ 2 0 . According to Section 3.2.2, we have supp (µ sc ν) = [d - σ , d + σ ]
. Morevover, by (3.9), for all σ > σ 0 , d + σ is a regular edge, the density p of µ sc ν satisfies p(x) ∼ C(d + σ -x) 

N (d + σ (N ) -d + σ ) D -→ N 0, σ 2 1 -σ 2 g µsc ν (d + σ ) 2 .
Thus, we can deduce that

√ N (λ 1 (M N ) -d + σ ) D -→ N 0, σ 2 1 -σ 2 g µsc ν (d + σ ) 2 .
Note that for all σ < σ 0 , according to (3.10), p(x) ∼ C(d + σ -x) b . Lee and Schnelli also investigate the fluctuations at the non-regular edge d + σ and establish that

N 1 b+1 (λ 1 (M N ) -d + σ ) D -→ G b+1 (s)
as N goes to infinity, where

G b+1 (s) = (1 -exp(( s c ) b+1 ))1 I [0;+∞[ (s) (Weibull distribution with parameters b + 1 and c = c(ν, σ)).
The universal understanding, provided by free probability theory, of the asymptotic spectrum of models involving several matrices, culminates in the following chapter dealing with non-commutative polynomials in random independent Hermitian matrices; this investigation is achieved by a general methodology based on a linearization procedure and operator-valued subordination properties.

Chapter 4

Polynomials in independent random matrices

We refer to the Appendix where we recall some definitions and properties on freeness with amalgamation introduced by Voiculescu in [START_REF] Voiculescu | Operations on certain non-commutative operator-valued random variables. Recent advances in operator algebras[END_REF]. Below, we briefly remind the linearization procedure introduced by Anderson in [3, Proposition 3] and the algorithm elaborated by Belinschi, Mai and Speicher in [START_REF] Belinschi | Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem[END_REF] to compute the distribution of a selfadjoint polynomial in free non commutative random variables. We refer to the book [START_REF] Mingo | Free probability and Random matrices[END_REF] by Mingo and Speicher and references therein. Then, we present our contributions in [C23] and [C25] dealing with strong asymptotic freeness, deterministic equivalent measures and outlying eigenvalues of Hermitian polynomial in independent random matrices.

Linearization

A powerful tool to deal with non commutative polynomials in random matrices or in operators is the so-called "linearization trick" that goes back to Haagerup and Thorbjørnsen [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF][START_REF] Haagerup | A random matrix approach to the lack of projections in C * red (F 2 )[END_REF] in the context of operator algebras and random matrices (see [START_REF] Mingo | Free probability and Random matrices[END_REF]). We use the procedure introduced in [3, Proposition 3], which has several advantages, to be described below.

Given a polynomial P ∈ C X 1 , . . . , X k , we call linearization of P any

L P ∈ M m (C) ⊗ C X 1 , . . . , X k such that L P := 0 u v Q ∈ M m (C) ⊗ C X 1 , . . . , X k where 1. m ∈ N, 2. Q ∈ M m-1 (C) ⊗ C X 1 , . . . , X k is invertible,
3. u is a row vector and v is a column vector, both of size m -1 with entries in C X 1 , . . . , X k , 4. the polynomial entries in Q, u and v all have degree ≤ 1,

5. P = -uQ -1 v,
It is shown in [START_REF] Anderson | Convergence of the largest singular value of a polynomial in independent Wigner matrices[END_REF] that, given a polynomial P ∈ C X 1 , . . . , X k , there exist m ∈ N and a linearization L P ∈ M m (C) ⊗ C X 1 , . . . , X k . The algebra of polynomials in non-commuting indeterminates X 1 , . . . , X k becomes a * -algebra by anti-linear extension of (

X i1 X i2 • • • X im ) * = X im • • • X i2 X i1 . It turns out that if P is self-adjoint, L P can be chosen to be self-adjoint. Example: P (X 1 , X 2 ) = X 1 X 2 + X 2 X 1 + X 2 1 .
Note that

L P =   0 X 1 X 2 + 1 2 X 1 X 1 0 -1 X 2 + 1 2 X 1 -1 0 
 is a selfadjoint linearization of P.

L P = γ ⊗ 1 + α 1 ⊗ X 1 + α 2 ⊗ X 2 ,
where

α 2 =   0 0 1 0 0 0 1 0 0   , α 1 =   0 1 1 2 1 0 0 1 2 0 0   , γ =   0 0 0 0 0 -1 0 -1 0   .
The following results are fundamental for our purpose.

Lemma 3. Let P = P * ∈ C X 1 , . . . , X k and let L P ∈ M m (C X 1 , . . . , X k ) be a linearization of P with the properties outlined above. Let e 11 be the m×m matrix whose single nonull entry equals one and occurs in the row 1 and column 1. Let y = (y 1 , . . . , y k ) be a k-tuple of self-adjoint operators in a C * -algebra A. Then, for any z ∈ C, ze 11 ⊗ 1 A -L P (y) is invertible if and only if z1 A -P (y) is invertible and we have

(ze 11 ⊗ 1 A -L P (y)) -1 = (z1 A -P (y)) -1
.

Lemma 4.

[C23] Let P = P * ∈ C X 1 , . . . , X k and let L P ∈ M m (C X 1 , . . . , X k ) be a linearization of P with the properties outlined above. Let y n = (y

k ) be a k-tuple of self-adjoint operators in a C * -algebra A such that sup n max k i=1 y (i) n = C < +∞. Let z 0 ∈ C be such that, for all large n, the distance from z 0 to the spectrum of P (y n ) is greater than δ. Then, there exists a constant > 0, depending only on δ, L P and C such that the distance from 0 to sp(z 0 e 11 ⊗ 1 A -L P (y n )) is at least .

An algorithm to compute the distribution of a selfadjoint polynomial in free non commutative random variables

Belinschi, Mai and Speicher [START_REF] Belinschi | Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem[END_REF] (see also [START_REF] Arizmendi | On the asymptotic distribution of block-modified random matrices[END_REF]) elaborated a general algorithm to deal with the distribution of selfadjoint polynomials in free variables. The main idea will be to relate such a polynomial with an operator-valued linear polynomial, and then use operator-valued convolution to deal with the latter. The distribution of a self-adjoint polynomial P (x 1 , . . . , x n ) in free variables x 1 , . . . , x n in a C * -probability space (A, φ) can be deduced from the operator-valued distribution with respect to E = id m ⊗ φ of a corresponding linearization

L P := b 0 ⊗ 1 + b 1 ⊗ x 1 + . . . + b n ⊗ x n ∈ M m (C) ⊗ A. Indeed, according to Lemma 3, φ((z1 A -P (x 1 , . . . , x n )) -1 ) = lim ↓0 [id m ⊗ φ((Λ (z) -L P (x 1 , . . . , x n )) -1 )] 11 for all z ∈ C + where Λ (z) =      z (0) (0) 0 i (0) (0) . . . (0) (0) (0) i      (4.1) 
and one can then obtain the desired distribution of P (x 1 , . . . , x n ) by applying the Stieltjes inversion formula. The freeness of x 1 , . . . , x n implies the freeness over M m (C) of b 1 ⊗x 1 , . . . , b n ⊗x n . We have finally reduced the determination of the distribution of P (x 1 , . . . , x n ) to a problem involving operator-valued additive free convolution. However, in spite of the existence of operator-valued Cauchy and R-transforms [START_REF] Voiculescu | Operations on certain non-commutative operator-valued random variables. Recent advances in operator algebras[END_REF][START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF] there are rarely any non-trivial operator-valued examples where an explicit solution can be written down. It is the subordination formulation of those convolutions which comes to the rescue as follows.

For any ξ ∈ M m (C) ⊗ A such that ξ = ξ * , define the M m (C)-valued Cauchy transform

G ξ (κ) = id m ⊗ φ((κ ⊗ 1 A -ξ) -1 ), for any κ ∈ H + (M m (C)) := {b ∈ M m (C), b > 0}.
Note that, for j = 1, . . . , n, the M m (C)-valued Cauchy transform G bj ⊗xj is completely determined by the scalar-valued Cauchy transform

g µx j = 1 z-t dµ xj via G bj ⊗xj (κ) = lim ↓0 - 1 π R (κ -tb j ) -1 m(g µx j (t + i ))dt. Now, by Theorem 45, G b1⊗x1+b2⊗x2 (κ) = G b1⊗x1 (ω m (κ))
where ω m (κ) is the unique fixed point of

f κ : H + (M m (C)) → H + (M m (C)), f κ (w) = h y2 (h y1 (w) + κ) + κ (4.2)
where

y i = b i ⊗ x i , h yi (κ) = E (κ -y i ) -1 -1 -b and ω m (κ) = lim k→+∞ f •k κ (w), for any w ∈ H + (M m (C)).
Then one can compute ω m (κ) = lim k→+∞ f •k κ (w), for some w ∈ H + (M m (C)) and deduce G b1⊗x1+b2⊗x2 (κ). One can get G b1⊗x1+•••bn⊗xn (κ) by iterating this procedure. The Cauchy transform of L P is then given by

G L P (κ) = G L P -b0⊗1 (κ -b 0 ).
Thus, the algorithm of Belinschi, Mai and Speicher [START_REF] Belinschi | Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem[END_REF] to compute the distribution of a self-adjoint polynomial P (x 1 , . . . , x n ) in free variables x 1 , . . . , x n in a C * -probability space (A, φ) can be summarized as follows.

• STEP 1: Find a self-adjoint linearization

L P := b 0 ⊗ 1 + b 1 ⊗ x 1 + . . . + b n ⊗ x n ∈ M m (A). Fix κ ∈ H + (M N (C)). • STEP 2: Compute G bj ⊗xj (κ) = lim ↓0 -1 π R (κ -tb j ) -1 m(g µx j (t + i ))dt. • STEP 3: Compute ω m (κ) = lim k→+∞ f •k κ (w), for some w ∈ H + (M m (C))
, where f κ is defined by (4.2). Then compute G b1⊗x1+b2⊗x2 (κ) = G b1⊗x1 (ω m (κ)) . Iterate and get G b1⊗x1+•••bn⊗xn (κ).

• STEP 4: Compute G L P (κ) = G L P -b0⊗1 (κ -b 0 ).

• STEP 5: For all z ∈ C + , compute g P (z) = lim ↓0 [G L P (Λ (z))] 11 where Λ (z) is defined by (4.1).

• STEP 6: Apply the Stieltjes inversion formula.

Deterministic equivalent measures

In the engineering literature there exists a version of the notion of a deterministic equivalent measure (going back to Girko [START_REF] Girko | Theory of stochastic canonical equations[END_REF], see also [START_REF] Hachem | Deterministic equivalents for certain functionals of large random matrices[END_REF]). This deterministic equivalent measure is obtained by replacing the Cauchy transform g N of the considered N × N random matrix model (for which no analytic solution exists) by a function gN which is defined as the solution of a specified system of equations. In [START_REF] Speicher | Free deterministic equivalents, rectangular random matrix models, and operator-valued free probability theory[END_REF], Speicher and Vargas give a more conceptual approach and show that the only meaningful way to get a closed system of equations when dealing with random matrices is to replace the random matrices by free variables. In Chapter 3, we introduced such deterministic equivalent measures for three classical deformed models. Actually, the results, previously stated in Proposition 3 in Chapter 3, from [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices[END_REF] for sample covariance matrices and [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of information-plus-noise type matrices[END_REF] for Information-plus-noise type models, and [C15] for additive deformations of a Wigner matrix, can be extended to selfadjoint polynomial in Wigner matrices together with deterministic matrices. Indeed, in [C23], we prove that a sequence of deterministic measures plays a central role in the study of the spectrum of such general models. These measures are computed with the tools of free probability and are in some sense obtained by taking partially the limit when the dimension goes to infinity, only for the Wigner matrices, as conceptualized by [START_REF] Speicher | Free deterministic equivalents, rectangular random matrix models, and operator-valued free probability theory[END_REF]. We establish that almost surely, for large dimension, each interval lying at some distance from the supports of these deterministic measures contains no eigenvalue of the Hermitian polynomial model.

Here are the matricial models we deal with. Let t and r be fixed nonzero integer numbers independent from N .

• (A (1) N , . . . , A (t) 
N ) is a t-tuple of N × N deterministic matrices such that for any u = 1, . . . , t,

sup N A (u) N < ∞, (4.3) 
where • denotes the spectral norm.

• We consider r independent N × N random Hermitian matrices X

(v) N = [X (v) ij ] N i,j=1 , v = 1, . . . , r, where, for each v, [X (v) ij ] i≥1,j≥1 is an infinite array of random variables such that X (v) ii , √ 2Re(X (v) ij ), i < j, √ 2Im(X (v)
ij ), i < j, are independent, centered with variance 1 and satisfy:

1. There exists a K v and a random variable Z (v) with finite fourth moment for which there exists x 0 > 0 and an integer number N 0 > 0 such that, for any x > x 0 and any integer number N > N 0 , we have 1

N 2 1≤i,j≤N P |X (v) ij | > x ≤ K v P |Z (v) | > x . (4.4) 2. sup (i<j)∈N 2 E(|X (v) ij | 3 ) < +∞.
Remark 5. Note that assumption such as (4.4) appears in [START_REF] Couillet | Eigen-inference for energy estimation of multiple sources[END_REF]. It obviously holds if the random variables

X (v) ii , √ 2Re(X (v) ij ), i < j, √ 2Im(X (v)
ij ), i < j, are identically distributed with finite fourth moment.

Here is the result roughly stating that there is no eigenvalue of some polynomial model in such matrices outside the support of a deterministic measure. almost surely in the weak * topology, where a and x are freely independent selfadjoint non commutative random variables, µ = µ a and x is the standard semicircular variable (i.e

dµ x = 1 2π √ 4 -x 2 1 1 [-2,2] (x)).
As in the first model, when p = 0, Theorem 30 and Proposition 2.1 [START_REF] Collins | The strong asymptotic freeness of Haar and deterministic matrices[END_REF] show that, almost surely, the sequence {P ( X N √ N , A N )} ∞ N =1 converges strongly in distribution to P (x, a).

Let Y N be either B N or X N √ N and y be either b or x. As precised below, when p = 0, when N is large, the spectrum of P (Y N , A N ) has no outlier, that is, almost surely for N large enough, the spectrum is included in a small neighborhood of the support of µ P (y,a) . Our main result applies to p > 0. The set of outliers is calculated from the spikes θ 1 , . . . , θ p using linearization and Voiculescu's matrix subordination function [START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF] as follows.

Let L P ∈ M m (C X 1 , X 2 ), L P = γ ⊗ 1 + α ⊗ X 1 + β ⊗ X 2 ,
be a selfadjoint linearization of P as introduced in Section 4.1. By Theorem 45, there exists an analytic function ω :

H + (M m (C)) → H + (M m (C)) such that (id m ⊗ τ ) (ω(w) ⊗ 1 -β ⊗ a) -1 = (id m ⊗ τ ) (w ⊗ 1 -(β ⊗ a + α ⊗ b)) -1 for every w ∈ H + (M m (C)). Theorem 31. [C25] Define the function ω o (z) = (ω(ze 11 -γ) + iI m ) -1
. ω o is analytic on C + and has an analytic extension to a neighbourhood of R \ sp(P (b, a)). Define

H j (z) = det[(θ j β + i)ω o (z) -I m ]
and denote by m θj (t) the order of t as a zero of H j (z) at z = t, 1 ≤ j ≤ p. Suppose that t ∈ R \ sp(P (b, a)) and set m(t) = p j=1 m θj (t). Then there exists δ 0 > 0 such that for any δ ∈ (0, δ 0 ), almost surely for large N , the random matrix P (B N , A N ) has m(t) eigenvalues in the interval (t -δ, t + δ), counting multiplicity.

Remark 7. Note that if we know in addition that z → ω(ze 1,1 -γ) is analytic at z = t, then the function H j (z) can be replaced with z → det[θ j β -ω(te 11 -γ)]. Then m(t) is equal to the multiplicity of t as a zero of

z → p j=1 det[θ j β -ω(ze 11 -γ)].
This is always the case when b is a semicircular variable and then, when the unitarily invariant matrix B N is a GUE matrix. When B N is replaced by a Wigner matrix X N satisfying the hypotheses (X1)-(X3), we obtain the following Theorem 32. ([C25]) Let a, x be free selfadjoint elements in a C * -probability space (A, τ ) with distribution µ and the standard semicircular distribution µ sc respectively. Let ω :

H + (M m (C)) → H + (M m (C)) be the M m (C)-valued map such that for all κ ∈ H + (M m (C)), ω(κ) = κ -α(Id Mm(C) ⊗ τ ) (κ ⊗ 1 A -α ⊗ x -β ⊗ a) -1 α.
Let t ∈ R \ sp(P (x, a)). Denote by m θi (t) the order of t as a zero of det(ω(ze 11 -γ) -θ i β) at z = t, 1 ≤ i ≤ p. Then, for small enough, almost surely for large N , there are exactly p i=1 m θi (t) eigenvalues of P ( X N √ N , A N ) in an -neighborhood of t.

After a linearization procedure of P of the form L ∈ M m (C X 1 , X 2 ) described in Section 4.1, the firts step of both proofs of Theorem 31 and Theorem 32 consists in reducing the problem, in the spirit of [START_REF] Benaych-Georges | Outliers in the single ring theorem[END_REF], to the convergence of an M mp (C)-valued map F N , involving a random matrix-valued generalized resolvent. Establishing these convergences is the main part of the proofs. Such a convergence is proved directly for the first model P (U N D N U * N , A N ) by extending the arguments of [C21] and making use of the fundamental operator-valued subordination properties described in Section 5.7. For the second model P ( X N √ N , A N ), the convergence of F N is then obtained by a comparison argument to the Gaussian case.

Remark 8. Suppose that µ = δ 0 . Then the function ω is computed as follows:

ω(w) = id m ⊗ τ [(w ⊗ 1 -α ⊗ b) -1 ] -1 , w ∈ M n (C).
As an illustration, consider the random matrix

M = A N X N √ N + X N √ N A N + X 2 N N ,
where X N is a standard standard GUE matrix of size N and

A N = Diag(θ, 0, . . . , 0), θ ∈ R \ {0}.
In this case, A N has rank one, and thus µ = δ 0 . It follows that the limit spectral measure Π of M is the same as the limit spectral measure of X 2 N /N . Thus, Π is the Marchenko-Pastur distribution with parameter 1:

dΠ(x) = (4 -x) x 2πx 1 (0,4) (x)dx.
The polynomial P is P (X 1 , X 2 ) = X 1 X 2 + X 2 X 1 + X 2 2 , µ = δ 0 and ν is the standard semi-circular distribution. An economical linearization of P is provided by

L = γ ⊗ 1 + α ⊗ X 1 + β ⊗ X 2 , where γ =   0 0 0 0 0 -1 0 -1 0   , α =   0 1 1 2 1 0 0 1 2 0 0   , β =   0 0 1 0 0 0 1 0 0   .

Denote by

G Π (z) = 4 0 1 z -t dΠ(t) = z + √ z 2 -4z 2z , z ∈ C \ [0, 4],
the Cauchy transform of the measure ρ. This function satisfies the quadratic equation zG Π (z) 2 -zG Π (z)+ 1 = 0. Suppose now that x / ∈ [0, 4]. Since µ = δ 0 , we have a = 0. Denoting by E = id 3 ⊗ τ : M 3 (A) → M 3 (C) the usual expectation and using Remark 8, we have

ω(xe 11 -γ) = E((xe 11 -γ -α ⊗ b) -1 ) -1 , x ∈ R \ [0, 4].
The inverse of xe 11 -γ -α ⊗ b is then calculated explicitly and application of the expected value to its entries yields

ω(xe 11 -γ) =    1 GΠ(x) 0 0 0 1 xGΠ(x) -1 1 2xGΠ(x) + 1 2 0 1 2xGΠ(x) + 1 2 1 4xGΠ(x) -1 4    .
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The equation det[βθ -ω(xe 11 -γ)] = 0 is easily seen to reduce to Note that Shlyakhtenko [START_REF] Shlyakhtenko | Free probability of type B and asymptotics of finite-rank perturbations of random matrices[END_REF] considered a framework which makes it possible to understand this kind of result as a manifestation of infinitesimal freeness. In fact, the results of [START_REF] Shlyakhtenko | Free probability of type B and asymptotics of finite-rank perturbations of random matrices[END_REF] also very interestingly allow one to detect the presence of spikes from the behaviour of the bulk of the eigenvalues of the polynomial model, even when there is no outlying eigenvalues.

θ 2 G Π (x) 2 -(1 -G Π (x)) = 0. ( 4 
In the unitarily invariant case, following the strategy of [C17], we also show that the eigenvectors associated to these outlying eigenvalues have projections of computable size onto the eigenspaces of A N . The results are stated precisely as follows.

Proposition 4. ([C25]

) Assume in addition that the spikes of A N satisfy θ 1 > • • • > θ p , that is, each eigenvalue θ j has multiplicity one. Assume that det H i0 (t) = 0. Denote by E A N the spectral measure of A N (thus, if S is a Borel set in C, then E A N (S) is the orthogonal projection onto the linear span of all eigenvectors of A N corresponding to eigenvalues in S). Then, for ε small enough, almost surely

lim N →∞ E A N ({θ i }) E P (U N B N U * N ,A N ) ((t -ε, t + ε)) -δ i,i0 C i (t)I N E A N ({θ i }) = 0, (4.14) 
where

C i (t) = lim z→t (z -t) (ω(ze 11 -γ) -θ i β) -1 1,1
is the residue of the analytic function z → (ω(ze 11 -γ) -θ i β) The following chapter is only the first stage on the way of the analysis of outliers phenomena for general non-Hermitian random models involving several non-Hermitian matrices and the described work does not use free probability theory. Many things remain to understand and generalize; nevertheless, even at this stage, free probability theory may bring some hint to understand some phenomena (see the end of Section 5.3.3).

Chapter 5

Large deformed non-Hermitian matrices

This chapter presents the joint work [C20] with Charles Bordenave investigating full rank additive perturbations of iid random matrices. Under mild assumptions, as N grows, the empirical distribution of the eigenvalues of full rank additive perturbations of iid random matrices converges weakly to a limit probability measure β on the complex plane. This work is devoted to the study of the outlier eigenvalues, i.e. eigenvalues in the complement of the support of β. Even in the simplest cases, a variety of interesting phenomena can occur. We give a sufficient condition to guarantee that outliers are stable (in the sense that outliers of the deformed model and the perturbation coincide asymptotically as pointed out by Tao in the finite rank case) and provide examples where their fluctuations vary with the particular distribution of the entries of the random matrix or the Jordan decomposition of the perturbation. We also exhibit concrete examples where the outlier eigenvalues converge in distribution to the zeros of a Gaussian analytic function.

A concrete motivation: numerical instability of eigenvalues

The instability of the eigenvalues of badly conditioned matrices has dramatic consequences in the numerical computation of eigenvalues. As an example, take N ≥ 1 be an integer and consider the standard nilpotent matrix

A N =    0 1 0 • • • 0 0 0 1 • • • 0 . . . . . . . . . . . . . . .    . (5.1) 
Its eigenvalues are obviously all zero. Let U N be a Haar-distributed orthogonal matrix and consider the unitarily equivalent matrix

B N = U N A N U * N .
If we ask a computer to compute the eigenvalues of B N , we obtain a surprising answer. Figure 5.1 is a plot of these numerically computed eigenvalues of B N . In the spirit of von Neumann and Goldstine [START_REF] Neumann | Numerical inverting of matrices of high order[END_REF], Spielman and Teng [START_REF] Spielman | Smoothed analysis of algorithms[END_REF] or Edelman and Rao [START_REF] Edelman | Random matrix theory[END_REF], a possible way to try to explain this phenomenon is to approximate numerical rounding errors by randomness and study the spectrum of the matrix where Y N is a random matrix normalized to have an operator norm of order 1 and σ is small positive parameter. As we shall see, in Section 5.3.4, in the limit N → ∞ and then σ → 0, one obtain a reasonable explanation of the picture of Figure 5.1.

A N + σY N ,

Finite rank perturbations of i.i.d random matrices

Ginibre (1965) introduced the basic non-Hermitian ensemble of random matrix theory. A so-called Ginibre matrix is a N × N matrix comprised of independent complex Gaussian entries. More generally, an iid random matrix is a N × N random matrix X N = (X ij ) 1≤i,j≤N whose entries are independent identically distributed complex entries with mean zero and variance 1. The following theorem is the culmination of the work of many authors [START_REF] Bai | Circular law[END_REF][START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF][START_REF] Ginibre | Statistical Ensembles of Complex, Quaternion, and Real Matrices[END_REF][START_REF] Götze | The Circular Law for Random Matrices[END_REF][START_REF] Mehta | Random Matrices and the Statistical Theory of Energy Levels[END_REF][START_REF] Pan | Circular law, Extreme singular values and potential theory[END_REF][START_REF] Tao | Random matrices: the circular law[END_REF][START_REF] Tao | Random matrices: universality of ESDs and the circular law[END_REF].

Theorem 33. Let X N be an iid random matrix. Then the empirical spectral distribution of X N √ N converges almost surely to the circular measure µ c where dµ c = 1 π 1 I |z|≤1 dz. One can prove that when the fourth moment is finite, there are no significant outliers to the circular law.

Theorem 34. (see Theorem 1.4 in [START_REF] Tao | Outliers in the spectrum of iid matrices with bounded rank perturbations[END_REF]) Let X N be an iid random matrix whose entries have finite fourth moment: E(X 11 | 4 ) < +∞. Then the spectral radius ρ(

X N √ N ) = sup 1≤j≤N λ j X N √ N
converges to 1 almost surely as N goes to infinity.

We are interested in the impact of a perturbation on the spectrum. Dealing with low rank perturbations, the global behaviour of the spectrum does not change.

Theorem 35.

[140](Corollary 1.17) Let X N be an iid random matrix and for each N let A N be a deterministic matrix with rank o(N ) obeying the Frobenius norm bound

A N F = (TrA N A * N ) 1/2 = O(N 1/2 ).
Then the empirical spectral distribution of X N √ N + A N converges almost surely to the circular measure µ c where σ > 0, Y N is a N × N random matrix and A N is a N × N deterministic matrix. The matrix M N can be thought as a random perturbation of the matrix A N . We set

Y N = X N √ N , (5.3) 
and we shall consider the following set of statistical assumptions on the matrices X N = (X ij ) 1≤i,j≤N :

(X1) (X ij ) i,j≥1 are independent and identically distributed complex random variables with

EX ij = 0, E|X ij | 2 = 1. (X2) E|X ij | 4 < ∞.
(X3) There exists c > 0 such that for all k ≥ 1 integer

E|X ij | k ≤ (ck) c .
Our first assumptions on the matrices A N are as follows:

(A1) There exists M > 0 such that for all N , A N ≤ M .

(A2) For all z ∈ C, µ (A N -zI N )(A N -zI N ) * converges weakly to a probability measure ν z .

Example: If A N converges in -moments to an operator a in a C * -non commutative probability space (A, τ ), i.e. for all ε l ∈ {1, * },

1 N Tr (A ε1 N . . . A ε k N ) N →+∞ -→ τ (a ε1 . . . a ε k ) ,
then ν z is the distribution of (a -z)(a -z) * .

The limiting empirical spectral distribution

In general, the limiting spectral distribution β of M N = σ X N √ N + A N is no more the circular law. For a probability measure τ on C such that log(1 + |λ|)dτ (λ) < ∞, we denote by h τ its logarithmic potential defined for z ∈ C, by

h τ (z) = - C log |λ -z|dτ (λ).
There are various possible characterizations of the limit measure β, the usual relies on its logarithmic potential. It is expressed in terms of Cauchy-Stieltjes transform of the limit measures of shifted singular values of M N as follows. For any z ∈ C, denote by M z N = σY N + A N -zI N . According to Dozier and Silverstein [START_REF] Dozier | On the empirical distribution of eigenvalues of large dimensional information-plus-noise type matrices[END_REF], almost surely the empirical spectral measure µ

M z N M z N * of M z N M z
N * converges weakly towards a nonrandom distribution µ z which is characterized in terms of its Stieltjes transform which satisfies the following equation: for any w ∈ C + ,

g µz (w) = 1 (1 -σ 2 g µz (w))w - t 1-σ 2 gµ z (w) dν z (t).
(5.4)

According to [START_REF] Tao | Random matrices: universality of ESDs and the circular law[END_REF][START_REF] Sniady | Random regularization of Brown spectral measure[END_REF], see also [START_REF] Bordenave | Around the circular law[END_REF], almost surely the empirical spectral measure of µ M N converges weakly to a probability measure β on C which is characterized by its logarithmic potential

h β (z) = - 1 2 log(t)dµ z (t).
For more references, we refer to the surveys [START_REF] Tao | From the Littlewood-Offord problem to the circular law: universality of the spectral distribution of random matrices[END_REF][START_REF] Bordenave | Around the circular law[END_REF]. Concerning Brown's measure, we refer to [START_REF] Haagerup | Brown's spectral distribution measure for R-diagonal elements in finite von Neumann algebras[END_REF][START_REF] Biane | Computation of some examples of Brown's spectral measure in free probability[END_REF][START_REF] Sniady | Random regularization of Brown spectral measure[END_REF][START_REF] Bordenave | Spectrum of markov generators on sparse random graphs[END_REF]. Explicit computation of β are rare, see Biane and Lehner [START_REF] Biane | Computation of some examples of Brown's spectral measure in free probability[END_REF].

Observe that z is an eigenvalue of B ∈ M N (C) if and only if 0 is an eigenvalue of (B -zI

)(B -zI) * . Recall that ∀z ∈ C, µ (M N -zI N )(M N -zI N ) * w -→ µ z , µ M N w -→ β
We will assume that a similar property holds for β and µ z :

(A3) supp(β) = {z ∈ C : 0 ∈ supp(µ z )}.
This is true for instance in most cases when A N is normal. Under assumption (A3) the support of β takes a particularly simple expression.

Proposition 5. ([C20]) If (A3) holds then supp(β) = z ∈ C : 0 ∈ supp(ν z ) or λ -1 dν z (λ) ≥ σ -2 .
We are interested by describing the individual eigenvalues of M N outside {z ∈ C, d(z, supp(β)) ≤ } for some > 0.

Examples, simulations

We start with three examples and simulations that illustrate different phenomena we will study: lack of outliers, stable or unstable outliers ("stable"meaning that outliers of the deformed model and the perturbation coincide asymptotically) . Let us consider the three following perturbations.

(1) 

C N =      0 1 0 • • • 0 0 1 • • • . . . . . . . . . . . . 1 0 • • • • • •      . (5.5) (2) 
B N = C N -5 0 0 D 5 , D 5 = diag(0; 0; i/3; 1; 2). (5.6) (3) 
N N =      0 1 0 • • • 0 0 1 • • • . . . . . . . . . . . . 0 0 • • • • • •      . ( 5 

Stable outliers

We first give a sufficient condition to guarantee that outliers of the deformed model are stable. For this purpose, we introduce the notion of well-conditioned matrix which is related to the phenomenon of lack of outlier and of well-conditioned decomposition of A N which lead to the statement of a sufficient condition for the stability of the outliers. We will denote by s The proof relies on previous results on Information-plus-noise type models [START_REF] Dozier | Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices[END_REF][START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of information-plus-noise type matrices[END_REF], [C18].

1 (B) ≥ • • • ≥ s N (B)
The circulant matrix C N defined by (5. Let us introduce now the notion of well-conditioned decomposition of A N which will allow us to exhibit a sufficient condition for stability of outliers. Let us give a concrete application of Theorem 38 with a specific decomposition of A N = A N + A N . Assume that for all N , there exists a subset J ⊂ {1, • • • , N } of cardinal at most r such that for any ε > 0, for all N large enough and k ∈ J, λ k (A N ) / ∈ B(supp(β), ε). We consider a triangular decomposition of A N :

A N = P T * 0 T P -1 ,
where P is an invertible matrix, T is an upper triangular matrix of size N -|J| with the eigenvalues λ k (A N ), k / ∈ J, on the diagonal, and T is an upper triangular matrix of size |J| with diagonal entries λ k (A N ), k ∈ J. Fix some a ∈ supp(β), we decompose A N as A N = A N + A N with A N = P aI J * 0 T P -1 and A N = P T -aI J 0 0 0 P -1 .

(5.9)

We take a ∈ supp(β) to avoid addition of outliers of A N . Note that det(A N -z) det(A N -z) = k∈J λ k (A N ) -z a -z .

(5.10)

The next statement will be an easy consequence of Theorem 38. It generalizes Tao [START_REF] Tao | Outliers in the spectrum of iid matrices with bounded rank perturbations[END_REF]Theorem 1.7] where A N = 0. When A N is a Wigner random matrix, it is a special case of O'Rourke and Renfrew [START_REF] O'rourke | Low rank perturbations of large elliptic random matrices[END_REF]Theorem 2.4].

Corollary 2. Assume that assumptions (X1-X2) hold and that A N , A N given by (5.9) provide a wellconditioned decomposition of A N in Γ = C \ supp(β). Fix ε > 0. Assume that for all N large enough, ∀k ∈ J, λ k (A N ) / ∈ B(supp(β), 3ε). Then, a.s. for all N large enough, there are exactly |J| eigenvalues of M N in C \ B(supp(β), 2ε). Moreover, if we index them by λ k (M N ), k ∈ J, after labeling properly, a.s. Therefore, for any δ > 0 small enough, for any z 0 in {0; i/3; 2}, there exists > 0 such that min z∈∂B(z0;δ) det(A N -zI N ) det(A N -zI N ) ≥ .

Thus, the stability of the outliers follows. √ N ). Fix ε > 0 and set Γ = C\B(0, 1 + ε). We consider g(z) = k≥0 γ k z -k with γ k independent complex Gaussian variables with variance given by E|γ k | 2 = 1 and Eγ 2 k = (EX 2 11 ) k+1 . Then, as N goes to ∞, the point process of eigenvalues of M N in Γ converges vaguely to the point process of zeros of κz(z -λ) + g(z) in Γ.

Fluctuations of Stable Outliers

Now, we provide examples where the fluctuations of stable outliers vary with the particular distribution of the entries of X N or the Jordan decomposition of A N . We have studied the fluctuations of the convergence of outliers eigenvalues in the simplest case for the decomposition of A N on its outlier eigenspace.

First, more precisely, we will suppose that A N has the following decomposition, for some integer r ≥ 1 and complex number θ N , A N = θ N I r 0 0 ÂN-r .

(5.11)

Theorem 41. Suppose that assumptions (X1-X2) and assumptions (A1-A3) hold with A N given by (5.11). Set m 2 = E(X 2 11 ). We suppose further that θ N converges toward θ ∈ C \ supp(β) when N where η -1 µ is the inverse of η µ relative to composition. The free multiplicative convolution of two compactly supported probability measures µ = δ 0 = ν is another compactly supported probability measure characterized by the identity Σ µ ν (z) = Σ µ (z)Σ ν (z) in a neighbourhood of 0.

Rectangular free convolution

Let c be in ]0; 1]. Let τ be a probability measure on R + . Define for z in C \ [0; +∞[,

M τ (z) = R + t 2 z 1 -t 2 z
dτ (t), H (c) τ (z) := z (cM τ (z) + 1) (M τ (z) + 1), and T (c) (z) = (cz + 1)(z + 1).

The transform C

(c) τ

[26] defined as follows is called the rectangular R-transform:

C (c) τ (z) = T (c) -1 z H (c) τ -1 (z) 
, for z small enough.

The rectangular free convolution with ratio c of two probability measures µ and ν on R + is the unique probability measure on R + whose rectangular R-transform is the sum of the rectangular R-transforms of µ and ν, and it is denoted by µ c ν. Then, we have for z small enough, 

Analytic subordinations

The analytic subordination phenomenon for free convolutions was first noted by Voiculescu in [START_REF] Voiculescu | The analogues of entropy and of Fisher's information measure in free probability theory[END_REF] for free additive convolution of compactly supported probability measures. Biane [START_REF] Biane | Processes with free increments[END_REF] extended the result to free additive convolutions of arbitrary probability measures on R, and also found a subordination result for multiplicative free convolution. A new proof was given later, using a fixed point theorem for analytic self-maps of the upper half-plane [START_REF] Belinschi | A new approach to subordination results in free probability[END_REF]. Note that such a subordination property allows to give a new definition of free additive convolution [START_REF] Chistyakov | Limit theorems in free probability theory[END_REF]. Finally, Belinschi, Benaych-Georges, and Guionnet [START_REF] Belinschi | Regularization by free additive convolution, square and rectangular cases[END_REF] established such a phenomenon for the rectangular free convolution.

Free additive subordination property

Let us define the reciprocal Cauchy-Stieltjes transform J µ (z) = 1/g µ (z), which is an analytic self-map of the upper half-plane. Given Borel probability measures µ and ν on R, there exist two unique analytic functions ω 1 , ω 2 : C + → C + such that 1. lim y→+∞ ω j (iy)/iy = 1, j = 1, 2;

2. ω 1 (z) + ω 2 (z) -z = J µ (ω 1 (z)) = J ν (ω 2 (z)) = J µ ν (z), z ∈ C + .

(5.14)

Operator-valued free probability theory

There exists an extension, operator-valued free probability theory, which still shares the basic properties of free probability but is much more powerful because of its wider domain of applicability. The concept of freeness with amalgamation and some of the relevant analytic transforms were introduced by Voiculescu in [START_REF] Voiculescu | Operations on certain non-commutative operator-valued random variables. Recent advances in operator algebras[END_REF]. As in scalar-valued free probability, one defines [START_REF] Voiculescu | Operations on certain non-commutative operator-valued random variables. Recent advances in operator algebras[END_REF] freeness with amalgamation over B via an algebraic relation similar to freeness, but involving E and noncommutative polynomials with coefficients in B. Let (A i ) i∈I be a family of subalgebras with B ⊂ A i for all i ∈ I. The subalgebras (A i ) i∈I are free with respect to E or free with amalgamation over B if E(a 1 • • • a n ) = 0 whenever a j ∈ A ij , i j ∈ I, E(a j ) = 0, for all j and i 1 = i 2 = • • • = i n .

Random variables in M or subsets of M are free with amalgamation over B if the algebras generated by B and the variables or the algebras generated by B and the subsets, respectively, are so. Note that the subalgebra generated by B and some variable a is not just the linear span of monomials of the form ba n , but, because elements from B and our variable a do not commute in general, we must also consider general monomials of the form b 0 ab 1 ab 2 • • • b n-1 ab n .

The previous results of free subordination property in the scalar case are approached from an abstract coalgebra point of view by Voiculescu in [START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF] and this approach extends the results to the B-valued case. In [START_REF] Belinschi | Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem[END_REF], Belinschi, Mai and Speicher develop an analytic theory. In order to describe operator-valued subordination property, we need some notation. for all b ∈ H + (B).

  B2) when N goes to infinity, µ B N := 1 N N i=1 δ λi(B N ) weakly converges to some probability measure µ with compact support [a; b], (B3) the smallest and largest eigenvalue of B N converge to a and b respectively.

1 z

 1 -t dτ (t).) Theorem 19. Convergence of the spectral measure µ M N i) Deformed Wigner matrices ([111], [4] Theorem 5.4.5)

Remark 3 .

 3 If ν = δ 0 in (3.1), we recover the equation satisfied by the Stieltjes transform of the semicircular distribution. The same is true for the Marchenko-Pastur distribution in (3.2) with ν = δ 1 and in (3.3) with ν = δ 0 .

  [a, b] be a compact set such that for some δ > 0, for all large N , [a -δ, b + δ] ⊂ R \ supp (ν N ). Then, almost surely, for large N , [ϕ(a), ϕ(b)] is in the complement of the spectrum of ÃN . Hence, with the convention that for any N × N matrix Z, λ 0 (Z) = +∞ and λ N +1 (Z) = -∞, there is i N ∈ {0, . . . , N } such that λ i N +1 ( ÃN ) < ϕ(a) and λ i N ( ÃN ) > ϕ(b). (3.13) Moreover, [a, b] splits the spectrum of M N exactly as [ϕ(a), ϕ(b)] splits the spectrum of ÃN as stated by the following. Theorem 21. With i N satisfying (3.13), one has P[λ i N +1 (M N ) < a and λ i N (M N ) > b, for all large N ] = 1. (3.14)

N ) 1 ,

 1 . . . , α (N ) N -r ), and write A N = A N + A N , where A N = Diag(α, . . . , α Diag(θ 1 -α, . . . , θ 1 -α k1times , . . . , θ J -α, . . . , θ J -α k J times , 0, . . . , 0 N -r

Lemma 2 .

 2 Assume that ε > 0, and T ∈ M N (C) satisfies the inequality |k * (T Y -Y T )h| ≤ ε Y for every rank one matrix Y ∈ M N (C) and all unit vectors h, k ∈ C N . Then for any w in the numerical range W (T ) = {h * T h : h = 1}, we have T -wI N ≤ 2ε.

  It turns out that for η small enough, for all large N , there exists a unique right edge d N of supp(µ sc µ A N ) in ]d -η, d + η[ and the asymptotic distribution of eigenvalues in the vicinity of d N is universal as the following Theorem 26 states. Theorem 26. ([C19]) Let k be a given fixed integer. Let λ max ≥ λ max-1 ≥ • • • λ max-k+1 denote the k largest of those eigenvalues of M N converging to d. There exists α > 0 depending on d N only such that the vector

1 2

 1 . Therefore denoting by d + σ (N ) the (random) upper right edge of supp (µ sc µ A N ), Theorem 26 yields the convergence in distribution of α -1 N 2/3 (λ 1 (M N ) -d + σ (N )) towards the Tracy-Widom distribution. A similar study as in Johansson's example shows that the random edge d + σ (N ) fluctuates as √

Figure 4 . 1 :

 41 Figure 4.1: One sample from the model described in Remark 8 corresponding to θ = 10, with matrix size N = 1000.

Figure 5 . 1 :

 51 Figure 5.1: The blue dots are the numerically computed eigenvalues of B N = U N A N U * N , the nilpotent matrix (5.1) conjugated by a Haar-distributed orthogonal matrix U N N = 2000.

Remark 9 .

 9 If A N converges in -moments to an operator a, set b = σc + a, where c is a circular element free of a. Then, µ z is the distribution of (b -z)(b -z) * , β is the Brown's measure of b.

. 7 )Figure 5

 75 Figure 5.3: stable outliers

Definition 1 .Corollary 1 .

 11 the singular values of any N × N matrix B. For any set K and any > 0, B(K, ) stands for the set {z ∈ C, d(z, K) ≤ }.No outlier Let Γ ⊂ C \ supp(β) be a compact set. A N is well-conditioned in Γ if for any z ∈ Γ, there exists η > 0 such that for all N large enough, s N (A N -zI N ) > η.Theorem 37. ([C20]) Assume that A N is well-conditioned in Γ, Then, a.s. for all N large enough, M N has no eigenvalue in Γ. If for any z ∈ C \ supp(β), there exists η > 0 such that for all N large enough, s N (A N -zI N ) > η, then, for any ε > 0, a.s. for all N large enough, all eigenvalues of M N are in B(supp(β), ε).

  [START_REF] Aptekarev | Large n limit of Gaussian random matrices with external source, part II[END_REF]) is well-conditioned in C \ supp(β) wheresupp(β) = z ∈ C : (1 -σ 2 ) + ≤ |z| ≤ 1 + σ 2 .Indeed, for any z outside the support of β, the singular values of C N -zI N are equal to |e 2iπl N -z| ≥ |1 -|z|| > 0, for l = 1, . . . , N . This explains simulations for (1). Contrariwise, A N = B N defined by (5.6) provides an example of badly-conditioned perturbation in neighborhoods of 0, i/3 and 2 since s N (A N ) = s N (A N -i/3I N ) = s N (A N -2I) = 0. An example of badly-conditioned perturbation in the inner disk is the nilpotent matrix N N . Indeed, for |z| > 1, s N (N N -zI N ) ≥ |z| -1; therefore N N is well conditioned out of the maximum circle but for |z| < 1, s N (N N -zI N ) = o(1).

Definition 2 .

 2 Let Γ ⊂ C\supp(β) be a compact set. A N admits a well-conditioned decomposition if :A N = A N + A N where• There exists M > 0 such that for all N , A N + A N ≤ M .• For any z ∈ Γ, there exists η > 0 such that for all N large enough, s N (A N -zI N ) > η (i.e A N is well-conditioned in Γ) and A N has rank r = O(1).Stable outliers Theorem 38. ([C20]) Let Γ ⊂ C\supp(β) be a compact set with continuous boundary. Assume that A N admits a well-conditioned decomposition:A N = A N + A N .If for some ε > 0 and all N large enough,min z∈∂Γ det(A N -z) det(A N -z) ≥ ε,(5.8)then a.s. for all N large enough, the number of eigenvalues of A N and M N in Γ is equal.

D 5 =

 5 max k∈J |λ k (M N ) -λ k (A N )| → 0.This result allows us to understand the simulation involving B N in (2). Indeed, one can writeA N = C N A N + A N with det(A N -zI N ) det(A N -zI N ) = z 2 (i/3 -z)(2 -z) (1 -z) 4 .

Figure 5 . 5 :NCorollary 4 .

 554 Figure 5.5: Eigenvalues of M N where AN = diag e 2iπ N , • • • , e 2iN π N + √ N f N f 1 , with f l =

C

  (c)µ c ν (z) = C (c) µ (z) + C (c) ν (z).

Definition 3 .

 3 Let M be an algebra and B ⊂ M be a unital subalgebra. A linear map E : M → B is a conditional expectation if E(b) = b for all b ∈ B and E(b 1 ab 2 ) = b 1 E(a)b 2 for all a ∈ M and b 1 , b 2 in B. Then (M, E) is called a B-valued probability space. If in addition M is a C * -algebra, B is a C * -algebra of M and E is completely positive, then we have a B-valued C * -probability space.Example: Let (A, φ) be a non commutative probability space. DefineM 2 (A) := a b c d , a, b, c, d ∈ A , E := id 2 ⊗ φ that is E a b c d = φ(a) φ(b) φ(c) φ(d) .(M 2 (A), E) is an M 2 (C)-valued probability space. (C ≈ C1 A )

Definition 4 .

 4 Consider an operator-valued probability space (M, E : M → B). The B-valued distribution of a ∈ M is given by all B-valued moments E(ab 1 ab 2 • • • b n-1 a) ∈ B, n ∈ N, b 0 , . . . , b n-1 ∈ B.

  If A is a unital C * -algebra and b ∈ A, we denote by b = (b + b * )/2 and b = (b -b * )/2i the real and imaginary parts of b, so b = b + i b. For a selfadjoint operator b ∈ A, we write b ≥ 0 if the spectrum of b is contained in [0, +∞) and b > 0 if the spectrum of b is contained in (0, +∞). The operator upper half-plane of A is the set H + (A) = {b ∈ A : b > 0}. Theorem 45. [150],[23] Let (M, E : M → B) be an operator-valued C * -probability space. Let x 1 , x 2 ∈ M be selfadjoint variables which are free with amalgamation over B. There exist an analytic map ω : H + (B) → H + (B) such that E (ω(b) -x 1 ) -1 = E (b -(x 1 + x 2 )) -1

  

  where r and γ i , i = 1, . . . r are fixed (independent of N ). The spectral measure µ M N weakly converges towards the limiting spectral measure µ of B N but we have the following result.

	Theorem 10 ([29]). Define g µ : C \ supp(ν) → C, g µ (z) = almost surely,	R	dµ(t) z-t . Then, we have for each 1 ≤ i ≤ s,

•

  In[START_REF] Pizzo | On finite rank deformations of Wigner matrices[END_REF], Pizzo, Renfrew and Soshnikov extend Theorems 15, 16, 17 to more general Wigner matrices. In the paper[START_REF] Renfrew | On finite rank deformations of Wigner matrices II. Delocalized perturbations[END_REF], Renfrew and Soshnikov extend quite significantly Theorem 17 as follows. They assume that the entries of the Wigner matrix are centered independent random variables, the variance of off-diagonal entries are all equal to σ

2 

, the off-diagonal (resp. diagonal) entries have uniformly bounded fourth (resp. second) moments and satisfy a Lindeberg type condition for the fourth (resp. second) moments. We use the notations introduced at the beginning of Section 2.4 and in (2.12), (2.2). Assume that |θ j | > σ. Let u 1 N , . . . , u kj N be an orthonormal set of eigenvectors of the perturbation associated with θ j . Define the N × N matrix M 3 by

In the Gaussian case, we may assume, without loss of generality, that the perturbation is diagonal
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Theorem 29. ([C23]) Let (A, τ ) be a C * -probability space equipped with a faithful tracial state and x = (x 1 , . . . , x r ) be a semi-circular system in (A, τ ). Let a N = (a (1) N , . . . , a (t) N ) be a t-tuple of noncommutative random variables which is free from x in (A, τ ) and such that the distribution of (a N , a * N ) in (A, τ ) coincides with the distribution of (A N T r). Let P be a selfadjoint polynomial in 2t+r noncommutative indeterminates X 1 , . . . , X r , X r+1 , . . . , X r+t , X * r+1 , . . . , X * r+t , where for any i = 1, . . . , r, X i = X * i . Let [b, c] be a real interval such that there exists δ > 0 such that, for any large N , [b -δ, c + δ] lies outside the support of the distribution of the noncommutative random variable P x 1 , . . . , x r , a 

, the distribution of P (x 1 , a

N , (a Note that it is sufficient to prove Theorem 29 for Hermitian matrices A 

N by considering their Hermitian and anti-Hermitian parts. Moreover, using a truncation and Gaussian convolution procedure, it is sufficient to prove Theorem 29 when we assume that the X (v) ij 's satisfy:

ii , i ∈ N, v = 1, . . . , r, are independent, centered with variance 1 and satisfy a Poincaré inequality with common constant C P I .

Note that this implies that for any p ∈ N, We adopt the strategy from [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF] and [START_REF] Haagerup | A random matrix approach to the lack of projections in C * red (F 2 )[END_REF] based on a linearization trick and sharp estimates on matricial Stieltjes transforms. Hence, the proof of Theorem 29 is based on the following key lemma.

Lemma 5. ([C23]

) Let (A, τ ) be a C * -probability space equipped with a faithful tracial state and x = (x 1 , . . . , x r ) be a semi-circular system in (A, τ ). Let a N = (a

N , . . . , a

N ) be a t-tuple of noncommutative self-adjoint random variables which is free from x in (A, τ ), such that the distribution of a N coincides with the distribution of (A

Then, for all m ∈ N, all self-adjoint matrices γ, α 1 , . . . , α r , β 1 , . . . , β t of size m × m and all > 0, almost surely, for all large N , we have

Here, sp(T ) denotes the spectrum of the operator T , I N the identity matrix and 1 A denotes the unit of A.

Indeed, given a noncommutative polynomial P , choosing in Lemma 5 the γ, (α v ) v=1,...,r , (β u ) u=1,...,t corresponding to a self-adjoint linearization of P as defined in [START_REF] Anderson | Convergence of the largest singular value of a polynomial in independent Wigner matrices[END_REF] and using Lemma 4 allow to deduce Theorem 29. The proof of (4.6) requires sharp estimates of g N (z) -gN (z) where for z ∈ C \ R,

and

We establish that there exists a polynomial Q with nonnegative coefficients such that, for z ∈ C \ R,

where ẼN is the Stieltjes transform of a compactly supported Schwartz distribution

N and such that ∇ N (1) = 0. But this required sharp estimate makes necessary a fit use of free operator-valued subordination maps. In particular, we need an explicit development of the Stieltjes transform up to the order 1 N √ N but the stability under perturbation argument used in [START_REF] Male | The norm of polynomials in large random and deterministic matrices. With an appendix by Dimitri Shlyakhtenko[END_REF] does not provide this development from the approximate matricial subordination equation (obtained by the approximate integration by part formula in Lemma 1). Therefore we use a strategy based on an invertibility property of matricial subordination maps related to M m (C)-valued semicircular variable.

Strong asymptotic freeness

Let k be an integer greater than zero. Denote by P the set of polynomials in 2k noncommutative indeterminates. A sequence of families of variables (a N ) N ≥1 = (a 1 (N ), . . . , a k (N )) n≥1 in C * -probability spaces (A N , τ n ) converge, when N goes to infinity, respectively in distribution if the map P ∈ P → τ n (P (a N , a * N )) converges pointwise and strongly in distribution if moreover the map P ∈ P → P (a N , a * N ) converges pointwise.

Assume that the states τ and (τ N ) N ∈N are faithful. Then, (see Proposition 2.1 [START_REF] Collins | The strong asymptotic freeness of Haar and deterministic matrices[END_REF]) a sequence of k-tuples a N of selfadjoint noncommutative random variables converges strongly in distribution to a ktuple a of selfadjoint noncommutative random variables if and only if for any self-adjoint polynomial P ∈ C X 1 , . . . , X k , µ P (a N ) converges in weak-* topology to µ P (a) and the support of µ P (a N ) converges in the Hausdorff topology to the support of µ P (a) , that is: for any > 0, there exists N 0 such that for any N ≥ N 0 , supp(µ hN ) ⊂ supp(µ h ) + (-, + ).

(For any noncommutative random variable y, µ y denotes its distribution and the symbol supp means the support of the measure.) In particular, the strong convergence in distribution of a single self-adjoint variable is its convergence in distribution together with the Hausdorff convergence of its spectrum.

In [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF], Haagerup and Thorbjørsen proved the strong asymptotic freeness of independent GUE matrices X (i) N , i = 1, . . . , r, namely: almost surely, for any polynomial P in r noncommutative indeterminates,

where (x 1 , . . . , x r ) is a semi-circular system. Note that this result led to the proof of the very important result in the theory of operator algebras that Ext(C * red (F 2 )) is not a group. (4.8) was proved for Gaussian random matrices with real or symplectic entries by Schultz [START_REF] Haagerup | A random matrix approach to the lack of projections in C * red (F 2 )[END_REF], for Wigner matrices with symmetric distribution of the entries satisfying a Poincaré inequality by Capitaine and Donati-Martin [C10] and for Wigner matrices under i.i.d assumptions and fourth moment hypotheses by Anderson [START_REF] Anderson | Convergence of the largest singular value of a polynomial in independent Wigner matrices[END_REF].

Voiculescu [START_REF] Voiculescu | Limit laws for random matrices and free products[END_REF][START_REF] Voiculescu | A strengthened asymptotic freeness result for random matrices with applications to free entropy[END_REF] proved the asymptotic freeness of independent GUE matrices with an extra family of deterministic matrices with limiting distribution. Male [START_REF] Male | The norm of polynomials in large random and deterministic matrices. With an appendix by Dimitri Shlyakhtenko[END_REF] established the strong asymptotic freeness of independent GUE matrices with an extra independent family of matrices with strong limiting distribution. Note that in [START_REF] Collins | The strong asymptotic freeness of Haar and deterministic matrices[END_REF], Collins and Male established the strong asymptotic freeness of Haar and deterministic matrices with strong limiting distribution. Sticking to the proofs in [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF] and [START_REF] Haagerup | A random matrix approach to the lack of projections in C * red (F 2 )[END_REF], we can deduced from Lemma 5 the following strong asymptotic freeness of independent non-Gaussian Wigner matrices and an extra family of deterministic matrices with strong limiting distribution.

Theorem 30. ([C23]) Let (A, τ ) be a C * -probability space equipped with a faithful tracial state. Let x = (x 1 , . . . , x r ) be a semi-circular system and a = (a 1 , . . . , a t ) be a t-tuple of noncommutative random variables which is free from x in (A, τ ). Let (A 

N , . . . , A

N , (A

N ) * , . . . , (A Then, almost surely, for any polynomial P in r + 2t noncommutative variables,

N , . . . , A

N , (A

N ) * , . . . , (A

N ) * = τ (P (x 1 , . . . , x r , a 1 , . . . , a t , a * 1 , . . . , a * t )) (4.9) and lim

N , . . . , A

N , (A 

Outlying eigenvalues

Let µ be a compactly supported probability measure on R, p be a positive integer, and

be a sequence of fixed real numbers. We consider, for all N ∈ N, N ≥ 1, a random selfadjoint matrix A N ∈ M N (C) which satisfies the following conditions:

(A1) the sequence of empirical spectral measures {µ

55

(A3) the other eigenvalues of A N which may be random , say γ j (A N ), j = 1 . . . , N -p, satisfy almost surely that for every ε > 0 there exists N (ε) ∈ N such that

In other words, only the p eigenvalues θ 1 , . . . , θ p prevent {A N } ∞ N =1 from converging strongly in distribution to µ.

In [C25], we investigate two polynomial matricial models, both involving A N .

• Our first model involves a sequence {B N } ∞ N =1 of random Hermitian matrices such that (B1) almost surely, B N converges strongly in distribution to a compactly supported probability measure ν on R, (B2) for each N , the distribution of B N is invariant under conjugation by any N ×N unitary matrix.

We consider the matricial model

for any selfadjoint polynomial P in C X 1 , X 2 .

• Our second model deals with a N × N random Hermitian Wigner matrix

(X2) there exists a K and a random variable Z with finite fourth moment for which there exists x 0 > 0 and an integer number n 0 > 0 such that, for any x > x 0 and any integer number n > n 0 , we have 1 n 2 1≤i,j≤n

We consider the matricial model

for any selfadjoint polynomial

According to results of Voiculescu [START_REF] Voiculescu | Limit laws for random matrices and free products[END_REF] (see also [START_REF] Voiculescu | Free random variables[END_REF]), there exist selfadjoint elements a, b in a II 1 -factor (A, τ ) such that, almost surely, the sequence

almost surely in the weak * topology. When p = 0, [START_REF] Collins | The strong asymptotic freeness of Haar and deterministic matrices[END_REF] shows that, almost surely, the sequence

However, a low rank perturbation A N can now create outliers as we can see in the following simulation from Tao [START_REF] Tao | Outliers in the spectrum of iid matrices with bounded rank perturbations[END_REF] describing eigenvalues of a matrix

Actually, when A N has bounded rank and bounded operator norm and the entries of the iid matrix have finite fourth moment, Tao proved that outliers are stable in the sense that outliers of M N and A N coincide asymptotically. Theorem 36. [START_REF] Tao | Outliers in the spectrum of iid matrices with bounded rank perturbations[END_REF] Let X N be an iid random matrix whose entries have finite fourth moment: E(X 11 | 4 ) < +∞. Let A N be a deterministic matrix with rank O(1) and operator norm O(1). Let > 0, and suppose that for all sufficiently large N , there are :

Then, a.s , for sufficiently large N , there are precisely j eigenvalues of

and after labeling these eigenvalues properly, as N goes to infinity, for each

Now, our issue is to investigate this problem dealing with full rank perturbations.

Full rank perturbations

We will consider the deformed model:

C N is a normal matrix with eigenvalues e

is the Brown's measure of σc + a where a is a Haar unitary and c is a circular element free with a and

Now, the difference between the circulant matrix C N and any of the matrices N N , B N , has rank o(N ). Therefore, for Here are simulations of the eigenvalues of

(1) When A N = C N , we see that there is no outlier. (2) Now, when A N = B N , there are outliers in a neigborhood of 0, 2 and i/3 so that the outliers of the deformed model seem stable in the sense that they stay close to the outliers of A N (see Figure 5.3).

(3) Finally, when A N = N N , there are unstable outliers in the bounded component of the complement of supp(β) in the sense that there are not in a neighborhood of those of A N (see Figure 5.4).

The first aim is to understand these phenomena.

Comparison with finite rank perturbations of the single ring model [START_REF] Benaych-Georges | Outliers in the single ring theorem[END_REF] In [START_REF] Benaych-Georges | Outliers in the single ring theorem[END_REF], Benaych-Georges and Rochet consider matrices of the type

towards a compactly supported probability measure ν on R + , U N , V N are independent Haar unitary matrices, A N has a finite rank and a bounded operator norm. The limiting empirical eigenvalues distribution of such a model is described by the so-called single ring theorem, see [START_REF] Guionnet | The single ring theorem[END_REF][START_REF] Guionnet | Support convergence in the single ring theorem[END_REF][START_REF] Rudelson | Invertibility of random matrices: Unitary and orthogonal perturbations[END_REF]. It is deterministic and its support is {z ∈ C; a ≤ |z| ≤ b} where a = ( x -2 dν(x)) -1/2 and b = ( x 2 dν(x)) 1/2 . Benaych-Georges and Rochet prove that if A N has some eigenvalues out of the maximal circle of the single ring, then M N has outliers in the neighborhood of these eigenvalues of A N . Nevertheless, when a > 0, the eigenvalues of A N which may be in the inner disk of the complement of the limiting support do not generate outliers in the spectrum of M N . Now, in the framework of [C20] dealing with full rank perturbations of iid matrices, there can be outlier eigenvalues in bounded components of the complement of supp(β). Actually, the nature of the bounded connected component of the complement of the support of the limiting empirical eigenvalues distributions considering above is different: the first (in [START_REF] Benaych-Georges | Outliers in the single ring theorem[END_REF]) comes from the limiting support of the non-deformed model whereas the second one (in the framework of [C20]) is created by the deformation. Subordination-like properties of the Stieltjes transform g µ (z) = dµ(λ)/(z -λ) of limiting spectral measures may help to understand these phenomena as explained below. In the case of [START_REF] Benaych-Georges | Outliers in the single ring theorem[END_REF], since the limiting empirical eigenvalues distribution µ is radial, we have

In our case, dealing for instance with diagonal perturbations of a Ginibre matrix, the limiting empirical eigenvalues distribution β is the Brown measure of c + a where c is a circular element which is free with a whose Brown measure is α (see Śniady [START_REF] Sniady | Random regularization of Brown spectral measure[END_REF]). We have the following subordination property.

∀z ∈ C \ supp(β), g c+a (z) = g a (ω(z)) where ω(z) = z.

It can be deduced from [39, Proposition 4.3], see also [START_REF] Biane | Computation of some examples of Brown's spectral measure in free probability[END_REF][START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF].

In both cases, the intuition is that

and that therefore they will be eigenvalues ρ of M N that separate from the bulk whenever some of the equations ω(ρ) = θ admits a solution ρ outside the limiting support, when θ describes the spectrum of A N . Therefore, we understand on the one hand that in the framework of [START_REF] Benaych-Georges | Outliers in the single ring theorem[END_REF], there is no solution inside the inner disk of such an equation since there ω ≡ ∞ and on the other hand that the outliers of the deformed model stay in the neighborhood of the eigenvalues of the perturbation which are located where ω is the identity function.

In the deformed Hermitian models, the outliers of the deformed model are not located in a neighborhood of the spikes of the deformation. It contrasts with Corollary 2. It is rather non-intuitive that additive perturbation by a Hermitian random matrix has more effect on outlier eigenvalues than additive perturbation by a non-Hermitian random matrix.

Unstable outliers

(3) provides a typical situation where (5.8) does not hold. Let us consider the nilpotent matrix defined in (5.7),

Set A N = C N and A N = -e N e * 1 . For any |z| ≤ 1 -ε, we have

We see numerically that the conclusion of Theorem 38 does not seem to hold. Actually, the simulations can be explained by the following results.

Theorem 39 (C20). Let Γ ⊂ C\supp(β) be a compact set with continuous boundary. Assume that

) z∈Γ be a centered Gaussian process with covariance given by, for z, w ∈ Γ,

The Lévy-Prohorov distance between the point process of eigenvalues of M N in Γ and the point process of zeros of g N in Γ goes to 0 as N goes to ∞.

The intensity of zeros of g N can be computed explicitly thanks the Edelman-Kostlan's formula, see Theorem 3.1 in [START_REF] Edelman | How many zeros of a random polynomial are real?[END_REF].

Note that if A N is a normal matrix and X ij are standard complex Gaussian variables, then, by unitary invariance, we can always assume that A N is diagonal. We may rewrite the nilpotent matrix N N in the orthonormal basis of eigenvectors of A N :

Hence the next corollary deals with the phenomenon illustrated by Figure 5.4. Corollary 3. 0 < σ < 1, A N = N N and assume moreover that X ij is gaussian. The point process of eigenvalues of M N in B(0, √ 1 -σ 2 ) converges weakly to the point process of the zeros of the centered Gaussian process g(z) on B(0, √ 1 -σ 2 ) such that for z, w ∈ Γ,

where ϕ(z, w) = 1 1 -z w .

We may notice that, as σ → 0, the kernel K(z, w) appearing in Corollary 3 does not vanish, it converges pointwise to the kernel K 0 (z, w) = ϕ(z, w) 2 on the unit complex disc. The kernel K 0 is the kernel of the Gaussian analytic function

where γ k are iid complex Gaussian variables with Eγ 2 k = 0, E|γ k | 2 = 1. This Gaussian analytic function may thus be related to the numerical phenomenon illustrated by the plot of Figure 5.1.

Basic ideas of the proofs

We present here the ideas of the proofs when A N has rank 1 and

Using the identity

Therefore the eigenvalues of M N and A N , in Γ, are respectively the zeroes of 1

It turns out that when N goes to infinity

is "asymptotically close to" a gaussian vector. Hence we have

We are naturally brought to consider the two following situations.

N (λ)v N plays the central role in the behaviour of the outliers of M N and gives rise to stable outliers by Rouché's theorem.

asymptotically close to a gaussian variable

N v N plays the central role in the behaviour of the outliers of M N and gives rise to unstable outliers through limit theorems for random analytic functions and their zeros from [START_REF] Shirai | Limit theorems for random analytic functions and their zeros[END_REF].

Remark 10. In the unbounded component of C \ supp(β), (ii) cannot hold.

Nevertheless, as in Rajan and Abbott [START_REF] Rajan | Eigenvalue spectra of random matrices for neural networks[END_REF] and Tao [START_REF] Tao | Outliers in the spectrum of iid matrices with bounded rank perturbations[END_REF], outliers may appear in the unbounded component of C\supp(β) when A N is of order √ N . It was observed in [START_REF] Rajan | Eigenvalue spectra of random matrices for neural networks[END_REF] and [START_REF] Tao | Outliers in the spectrum of iid matrices with bounded rank perturbations[END_REF], for A N = 0 and a particular random choice of A N .

Theorem 40. Assume that assumptions (X1-X3) and assumptions (A2-A3) hold. Assume that A N has rank 1, A N is diagonal and for some ε > 0 and all N large enough, all eigenvalues of A N lie in C\B(Γ, ε). Let Γ ⊂ C\supp(β) be a compact set with continuous boundary. We set R N (z) = (zI N -A N ) -1 , and assume further that

Consider the centered Gaussian process (g N (z)) z∈Γ of Theorem 39. Then, the Lévy-Prohorov distance between the point process of eigenvalues of M N in Γ and the point process of zeros of

This result is illustrated with Figure 5.5. As an application, we have for example the following corollary which is related to [START_REF] Tao | Outliers in the spectrum of iid matrices with bounded rank perturbations[END_REF]Theorem 1.11].

goes to infinity and that for some η > 0 and all large N , ÂN-r -θI N -r has no singular value in [0, η]. Finally, assume that m2 N -r Tr (θI

Then, for any 0 < δ < η, almost surely for all large N there are exactly r eigenvalues λ i , i = 1, . . . , r of M N in B(θ, δ). Moreover, the point process of √ N (λ 1 -θ N ), . . . , √ N (λ r -θ N ) converges in distribution towards the point process of the eigenvalues of a r × r matrix V defined as

(5.12)

where X r is independent of G, a r × r Ginibre matrix whose entries are independent copies of a centered complex Gaussian variable Z whose covariance is characterized by,

Theorem 41 shows that the fluctuation of stable outliers are not universal (they may depend on the law of entries). We previously pointed out a similar phenomenon for deformed Wigner matrices in Section 2.4.2. It was recently discovered by Benaych-Georges and Rochet [START_REF] Benaych-Georges | Outliers in the single ring theorem[END_REF] in the related study of the outliers in the single ring theorem that the fluctuations can be larger than 1/ √ N when the Jordan decomposition of an eigenvalue is not a diagonal matrix. Inspired by their work, we have also studied the fluctuations when for some integer r ≥ 2 and complex number θ N ,

and J N ∈ M r (C) is the Jordan matrix

Theorem 42. Suppose that assumptions (X1-X2) and assumptions (A1-A3) hold with A N given by (5.13). We suppose further that θ N converges toward θ ∈ C \ supp(β) when N goes to infinity and that for some η > 0 and all large N , ÂN-r -θI N -r has no singular value in [0, η]. Assume finally that P N -P → 0 for some P ∈ GL r (C), and that either EX 2 11 = 0 or that 1 N -r Tr (θI

Then, for any 0 < δ < η, almost surely for all large N there are exactly r eigenvalues λ i , i = 1, . . . , r of M N in B(θ, δ). Moreover, the point process of N 1/(2r) (λ 1 -θ N ), . . . , N 1/(2r) (λ r -θ N ) converges in distribution towards the point process of the roots of the random polynomial

where V is defined by (5.12).

When ÂN-r = 0 and X N is a complex Ginibre matrix, the above result is contained in [START_REF] Benaych-Georges | Outliers in the single ring theorem[END_REF]Theorem 2.6]. This result shows the strong correlation of the outlier eigenvalues in the setting of Theorem 42: properly rescaled they are asymptotically the r-th roots of the same random complex number. 

(0)

Note that some authors investigated other non-Hermitian models. Let us mention some works among others. In [START_REF] Feldheim | Regularization of non-normal matrices by Gaussian noise[END_REF], Feldheim, Paquette and Zeitouni have recently studied the model (5.2) when σ decays polynomially of N and A N is a block diagonal matrix with blocks of size log N . Rochet [START_REF] Rochet | Complex outliers of Hermitian random matrices[END_REF] consider the sum of a Hermitian random matrix and a finite rank matrix which is not necessarily Hermitian and O' Rourke and Renfrew [START_REF] O'rourke | Low rank perturbations of large elliptic random matrices[END_REF] and Benaych-Georges, Cébron and Rochet [START_REF] Benaych-Georges | Fluctuation of matrix entries and application to outliers of elliptic matrices[END_REF] investigate finite rank perturbation of elliptic matrices.

Appendix : Free probability theory

We refer to [START_REF] Mingo | Free probability and Random matrices[END_REF], [START_REF] Nica | Lectures on the Combinatorics of Free Probability[END_REF] and [START_REF] Voiculescu | Free random variables[END_REF] for an introduction to free probability theory, created by Voiculescu. We only recall here the definitions and properties required to explain how free probability acts for our issues in random matrix theory.

A non-commutative probability space is a unital algebra A over C, endowed with a linear functional φ : A → C such that φ(1) = 1. Elements of A are called non-commutative random variables.

If (a i ) i=1,...,q is a family of non-commutative random variables in (A, φ), the distribution µ (ai)i=1,...,q of (a i ) i=1,...,q is the linear functional on the algebra C X i |i = 1, . . . , q of polynomials in the noncommutating variables (X i ) i=1,...,q given by µ (ai)i=1,...,q (P ) = φ P µ (ai)i=1,...,q .

If A is a C * -algebra endowed with a state φ, then for any selfadjoint element a in A, there exists a measure ν a on R such that, for every polynomial P, we have µ a (P ) = P (t)dν a (t).

Then we identify µ a and ν a .

A family of unital subalgebras (A i ) i=1,...q in (A, φ) is freely independent if for every p ≥ 1, for every (a 1 , . . . , a p ) such that, for every k in {1, . . . , p}, φ(a k ) = 0 and a k is in A i(k) for some i(k) in {1, . . . , q} with i(k) = i(k + 1), then φ(a 1 , . . . , a p ) = 0. Random variables are free in (A, φ) if the subalgebras they generate with 1 are freely independent.

For each n in N \ {0}, let (a n i ) i=1,...,q be a family of noncommutative random variables in a noncommutative probability space (A n , φ n ). The sequence of joint distributions µ (a n i )i=1,...,q converges as n tends to +∞, if there exists a distribution µ such that µ (a n i )i=1,...,q (P ) converges to µ(P ) as n tends to +∞ for every P in C X i |i = 1, . . . , q . µ is called the limit distribution of (a n i ) i=1,...,q . If (a i ) i=1,...,q is a family of noncommutative random variables with distribution µ, we also say that (a n i ) i=1,...,q converges towards (a i ) i=1,...,q . A family of noncommutative random variables (a n i ) i=1,...,q is said to be asymptotically free as n tends to ∞ if it has a limit distribution µ and if (X 1 , . . . , X q ) are free in (C X i |i = 1, . . . , q , µ).

Additive and multiplicative free convolutions arise as natural analogues of classical convolutions in the context of free probability theory. For two Borel probability measures µ and ν on the real line, one defines the free additive convolution µ ν as the distribution of a + b, where a and b are free self-adjoint random variables with distributions µ and ν, respectively. Similarly, if both µ, ν are supported on [0, +∞), their free multiplicative convolution µ ν is the distribution of the product ab, where, as before, a and b are free positive random variables with distributions µ and ν, respectively. The product ab of two free positive random variables is usually not positive, but it has the same moments as the positive random variables a 1/2 ba 1/2 and b 1/2 ab 1/2 . We refer to [START_REF] Bercovici | Free convolution of measures with unbounded support[END_REF][START_REF] Maassen | Addition of freely independent random variables[END_REF][START_REF] Voiculescu | Addition of certain noncommuting random variables[END_REF][START_REF] Voiculescu | Multiplication of certain noncommuting random variables[END_REF] for the definitions and main properties of free convolutions. In the following sections, we briefly recall the analytic approach developed in [START_REF] Voiculescu | Addition of certain noncommuting random variables[END_REF][START_REF] Voiculescu | Multiplication of certain noncommuting random variables[END_REF] to calculate the additive and multiplicative free convolutions of compactly supported measures and the analytical definition of the rectangular free convolution introduced by F. Benaych-Georges in [START_REF] Benaych-Georges | Rectangular random matrices. Related convolution[END_REF]. Then, we present the fundamental analytic subordination properties [START_REF] Belinschi | Regularization by free additive convolution, square and rectangular cases[END_REF][START_REF] Biane | Processes with free increments[END_REF][START_REF] Voiculescu | The analogues of entropy and of Fisher's information measure in free probability theory[END_REF][START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF] of these three convolutions. We also recall asymptotic freeness of some random matricial models [START_REF] Voiculescu | Limit laws for random matrices and free products[END_REF]. Finally, we present the more general context of operator-valued free probability [START_REF] Voiculescu | Operations on certain non-commutative operator-valued random variables. Recent advances in operator algebras[END_REF], [START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF], [START_REF] Belinschi | Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem[END_REF].

Free convolution

Free additive convolution

The Stieltjes transform g µ of a compactly supported probability measure µ is conformal in the neighborhood of ∞, and its functional inverse g -1 µ is meromorphic at zero with principal part 1/z. The R-transform [START_REF] Voiculescu | Addition of certain noncommuting random variables[END_REF] of µ is the convergent power series defined by

The free additive convolution of two compactly supported probability measures µ and ν is another compactly supported probability measure characterized by the identity

satisfied by these convergent power series.

Multiplicative free convolution on [0, +∞)

Recall the definition of the moment-generating function of a Borel probability measure µ on [0, +∞):

This function is related to the Cauchy-Stieltjes transform of µ via the relation

Recall also the so-called eta transform

.

The Σ-transform [START_REF] Voiculescu | Multiplication of certain noncommuting random variables[END_REF][START_REF] Bercovici | Free convolution of measures with unbounded support[END_REF] of a compactly supported Borel probability measure µ = δ 0 is the convergent power series defined by

3. In particular (see [START_REF] Belinschi | A new approach to subordination results in free probability[END_REF]), for any z ∈ C + ∪ R so that ω 1 is analytic at z, ω 1 (z) is the attracting fixed point of the self-map of C + defined by

A similar statement, with µ, ν interchanged, holds for ω 2 .

In particular, according to (5.14), we have for any z ∈ C + ,

(5.15)

Multiplicative subordination property

Given Borel probability measures µ, ν on [0, +∞), there exist two unique analytic functions

3. In particular (see [START_REF] Belinschi | A new approach to subordination results in free probability[END_REF]), for any z ∈ C + ∪ R so that F 1 is analytic at z, the point h 1 (z) := F 1 (z)/z is the attracting fixed point of the self-map of C \ [0, +∞) defined by

A similar statement, with µ, ν interchanged, holds for ω 2 .

In particular (5.16) yields

(5.17)

Rectangular free subordination property

Let c be in ]0; 1]. Let µ and ν be two probability measures on R + . Assume that the rectangular Rtransform C

µ of µ extends analytically to C \ R + ; this happens for example if µ is c infinitely divisible. Then there exist two unique meromorphic functions Ω 1 , Ω 2 on C \ R + so that

The functions ω i , F i and Ω i in the three previous subsections are called subordination functions.

Asymptotic freeness of independent random matrices

Free probability theory and random matrix theory are closely related. Indeed the purely algebraic concept of free relation of noncommutative random variables can be also modeled by random matrix ensembles if the matrix size goes to infinity. Let (Ω, F, P ) be a classical probability space and for every N ≥ 1, let A N be the algebra of N × N random matrices (Ω, F, P ) → M N (C). Define

) is a non-commutative probability space and we will consider random matrices in this non-commutative context.

In his pioneering work [START_REF] Voiculescu | Limit laws for random matrices and free products[END_REF], Voiculescu shows that independent Gaussian Wigner matrices converge in distribution as their size goes to infinity to free semi-circular variables. The following result deals with matrices in generic position.

Theorem 43. [Corollary 5.4.11 [START_REF] Anderson | An introduction to random matrices[END_REF]] Let {D N (i)} 1≤i≤p be a sequence of uniformly bounded real diagonal matrices with empirical measure of diagonal elements converging to µ i , i = 1, . . . , p respectively. Let {U N (i)} 1≤i≤p be independent unitary matrices following the Haar measure, independent from {D N (i)} 1≤i≤p .

• The noncommutative variables {U N (i)D N (i)U N (i) * } 1≤i≤p in the noncommutative probability space (A N , Φ N ) are almost surely asymptotically free, the law of the marginals being given by the µ i 's.

• The spectral distribution of D N (1) + U N (2)D N (2)U N (2) * converges weakly almost surely to µ 1 µ 2 goes to infinity.

• Assume that the diagonal matrices D N (1) and D N (2) are nonnegative. Then, the empirical spectral measure of (D N (1)) Thus, if µ is the eigenvalue distribution of a large selfadjoint random matrix A and ν is the eigenvalue distribution of a large selfadjoint random matrix B then, when A and B are in generic position, µ ν is nearly the eigenvalue distribution of A + B. Similarly, when dealing with nonnegative matrices µ ν is nearly the eigenvalue distribution of A Similarly, for independent rectangular n × N random matrices A and B such that n/N → c ∈]0; 1], when A and B are in generic position, Benaych-Georges [START_REF] Benaych-Georges | Rectangular random matrices. Related convolution[END_REF] proved that rectangular free convolution with ratio c provides a good understanding of the asymptotic global behaviour of the singular values of A + B. Theorem 44. Let A and B be independent rectangular N × p random matrices such that A or B is invariant, in law, under multiplication, on the right and on the left, by any unitary matrix. Assume that there exists two laws µ and ν such that, for the weak convergence in probability, we have Maps of the form b → E (b -X) -1 for some selfadjoint X and (conditional) expectation E are also known as operator-valued Cauchy-Stieltjes transforms.

In our applications, the algebra B is M n (C) for some n ∈ N. The following result from [START_REF] Nica | Operator-Valued Distributions. I. Characterizations of Freeness[END_REF] explains why this case is relevant in our work using linearizations of polynomials. Proposition 6. Let (A, φ) be a C * -probability space, let m be a positive integer, and let x 1 , . . . , x n ∈ A be freely independent. Then the map id m ⊗φ : M m (A) → M m (C) is a unit preserving conditional expectation, and α 1 ⊗ x 1 , . . . , α n ⊗ x n are free over M m (C) for any α i ∈ M m (C).