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J’ai eu le plaisir de les rencontrer à plusieurs reprises lors de conférences sur les probabilités libres: je
suis toujours très impressionnée par leur excellence mathématique mais aussi leur grande gentillesse.
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S. Péché, Probab. Theory Relat. Fields, Vol. 165, Issue 1, 117-161.

[C20 ] (2016) Outlier eigenvalues for deformed i.i.d random matrices, C. Bordenave, M. Capitaine, Comm.
Pure Appl. Math. , Vol. 69, Issue 11, 2131-2194.

[C21 ] (2017) Outliers in the spectrum of large deformed unitarily invariant models, S.T. Belinschi, H.
Bercovici, M. Capitaine, M. Février, to appear in Ann. Probab..

[C22 ] (2017) Spectrum of deformed random matrices and free probability, M. Capitaine, C. Donati-
Martin, to appear in SMF volume Panoramas et Synthèses.
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Summary of research

I obtained my PhD in Probability Theory, supervised by Michel Ledoux, from the University of
Toulouse, Paul-Sabatier, in 1996. The main objectives of the PhD consisted in analyzing the role of
the topology in various results concerning diffusion processes, such as the support theorem, the large
deviations principle, or the determination of the Onsager-Machlup functional. The investigation led
besides to some logarithmic Sobolev inequalities for elliptic diffusions. The general framework of this
investigation was therefore at the interface of stochastic calculus, Malliavin calculus, stochastic differential
geometry and semigroup theory. This work gave rise to 4 publications [C1-C4].

I then entered the world of free probability theory, created by Dan Voiculescu, and random matrices
theory, naturally via stochastic calculus. Catherine Donati-Martin and I proved in [C5] that Lyons’
deterministic approach to differential equations driven by rough paths can be applied successfully to the
free Brownian motion. We constructed a Lévy area process for the free Brownian motion and in this
way, a typical geometric rough path lying above the free Brownian path. In [C8], we defined free Wishart
processes of parameter λ > 0 and proved a free additivity property and invertibility for λ > 1. For λ ≥ 1,
we showed that a free Wishart process is a solution of a SDE of square Bessel process type, driven by a
free complex Brownian motion. In the case λ > 1, we established existence and uniqueness of a strong
solution of a such a SDE.

In [C6], together with Philippe Biane and Alice Guionnet, we proved large deviation bounds for the
convergence of Hermitian matrix valued Brownian motion towards free Brownian motion. As a conse-
quence, we obtained upper and lower bounds on the microstates entropy introduced by Dan Voiculescu.
The basic idea in the proof was to construct exponential martingales based on the Clark-Ocone for-
mula. As an additional contribution, to obtain the lower bound, we established a characterization of free
Brownian motion given by a free version of Lévy’s theorem.

My interests then turned towards more combinatorial aspects of free probability theory as developed
by Roland Speicher. The motivation behind the joint works [C7], [C9], [C11] and [C12] with Muriel
Casalis, was to draw the dotted arrows of the following diagram

Freeness ←→ Free cumulants

N → +∞ ↑
...

∧

N ×N independent matrices < · · ·> Matricial cumulants

We defined and studied cumulants of matrices and showed that free cumulants can be naturally seen
as their limiting values when the dimension goes to infinity. We analysed the convolution relations on
the geodesics on Cayley graphs involving moments and cumulants in free probability, at the matricial
level dealing with random matrices whose distribution is invariant under the action of the unitary or
orthogonal/symplectic group. These matricial convolution relations involve respectively the symmetric
groups (Sn)n∈N and the Gelfand pairs ((S2n, Hn))n∈N, Hn denoting the hyperoctaedral group. It turns
out that these combinatorial formulas for moments of random matrices allowed Teo Banica, Serban
Belinschi, Benoit Collins and myself to provide matricial models for a family of real probability measures
πst, that we introduced in [C14] and called free Bessel laws. These are related to the free Poisson law π
via the formula πs1 = π�s and π1t = π�t. Our study includes definition and basic properties, analytic
aspects (supports, atoms, densities), combinatorial aspects (functional transforms, moments, partitions)
and a discussion of the relation with random matrices and quantum groups.
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During the period 2009-17, my research activities aimed at developing the contribution of free proba-
bility theory to the analysis of the spectral properties of deformed ensembles and polynomials in random
matrices. In particular, the main principle of subordination in free probability is emphasized as a main
tool in the understanding of the localization of the outliers and the corresponding eigenvectors of many
matricial models.

This investigation corresponds to my research activities in the last years illustrated by the contribu-
tions [C10], [C13] and [C15− C25]. This report is devoted to these papers exclusively.
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Introduction

There is currently a quite precise knowledge of the asymptotic spectral properties (i.e. when the
dimension of the matrix tends to infinity) of a number of “classical” random matrix models (Wigner
matrices, Wishart matrices, invariant ensembles...). This understanding covers both the so-called global
regime (asymptotic behavior of the spectral measure) and the local regime (asymptotic behavior of the
extreme eigenvalues and eigenvectors, spacings...).

Practical problems (in the theory of statistical learning, signal detection etc.) naturally lead to wonder
about the spectrum reaction of a given random matrix after a deterministic perturbation. For example,
in the signal theory, the deterministic perturbation is seen as the signal, the perturbed matrix is perceived
as a “noise”, and the question is to know whether the observation of the spectral properties of “signal plus
noise” can give access to significant parameters on the signal. Theoretical results on these “deformed”
random models may allow to establish statistical tests on these parameters. A typical illustration is the
so-called BBP phenomenon (after Baik, Ben Arous, Péché) which put forward outliers (eigenvalues that
move away from the rest of the spectrum) and their Gaussian fluctuations for spiked covariance matrices.

My interest in these issues has been concerned with deformed ensembles and polynomials in several
random matrices with a particular emphasis towards a universal understanding (i.e. independent of the
model) of the various output of deformation. This investigation has been supported at three levels: a
common analysis of three classical Hermitian deformed models; the study of the spectral properties of
non-commutative Hermitian polynomials in independent random matrices; the study of non-Hermitian
deformed models. The crucial aspect of the contributions, with my collaborators, towards these objectives
has been the analysis of the phenomenon of outliers via the (operator-valued) subordination functions
from free probability theory.

This report focuses on localization and fluctuations of eigenvalues of complex (even if some similar
results hold in the real setting) random deformed models and polynomials in asymptotically free random
matrices with a particular interest in the outliers and the corresponding eigenvectors. After a very short
reminder on the classical Hermitian random models (Chapter 1), Chapter 2 presents the pionner works
on three finite rank deformations of these classical models. Chapter 3 tries to bring to light a general
methodology, based on scalar free subordination properties, for studying the spectral properties of the
corresponding full rank deformations. This universal understanding culminates in Chapter 4 dealing
with non-commutative polynomials in random Hermitian matrices; this investigation is achieved by an
even more general methodology based on a linearization procedure and operator-valued subordination
properties. Chapter 5 investigates full rank additive perturbations of iid random matrices and is the
first stage on the way of the analysis of outliers for non-Hermitian random models involving several non-
Hermitian matrices. Appendix is a very short reminder on some facts on free probability theory used
throughout this exposition.

This presentation of a huge and very active topic of the current research is by far not exhaustive,
and mainly focuses on the recent developments in the area in connection with my own contributions. In
particular, I did not try to achieve a complete bibliography of the relevant literature and only emphasize
some sample results and references.
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Chapter 1

Asymptotic spectrum of classical
Hermitian random matrix models

Three fundamental classes of Hermitian matrices have been extensively studied in random matrix theory:
Wigner matrices, sample covariance matrices and invariant ensembles. The study of spectral properties
of such random matrices is twofold: one can consider the spectrum as a whole and study the global
properties of the spectrum. This is the field where the first famous results of random matrix theory
were obtained. One can also investigate local properties of the spectrum and study interactions between
neighboring eigenvalues or the behavior of extreme eigenvalues. We focus on some few pionner works
on the asymptotic behavior of the spectral measure and extreme eigenvalues which turn to be relevant
for results of the next chapters. We refer to the monographies [4, 11, 52, 68, 102, 112] for a thorough
introduction to random matrix theory.
Given an arbitrary Hermitian matrix B of size N, we denote by λ1(B) ≥ · · · ≥ λN (B) its N ordered
eigenvalues and by µB its empirical spectral measure

µB =
1

N

N∑
i=1

δλi(B).

1.1 Global behaviour of the spectrum of standard models

1.1.1 Sample covariance matrices

Random matrices first appeared in mathematical statistics in the 1930s with the works of Hsu, Wishart
and others. They considered sample covariance matrices of the form:

SN =
1

p
XNX

∗
N (1.1)

where XN is a random matrix with independent entries.
We shall assume here that N ≤ p(N), XN is a N × p(N) matrix, (XN )ij i = 1, . . . , N , j = 1, . . . , p are
i.i.d complex variables, with variance 1 and mean zero. If the variables are Gaussian, SN =: SGN is called
a Wishart matrix, or from the invariant ensemble viewpoint (see below), a matrix from the Laguerre
Unitary Ensemble (LUE).
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Note that the spectra of 1
pXNX

∗
N and 1

pX
∗
NXN differ by |p−N | zero eigenvalues.

The behavior of the spectral measure for large size (p = p(N) tends to ∞ as N tends to ∞) was
handled in the seminal work of Marchenko-Pastur.

Theorem 1 ([101] (see also[11])). If cN := N
p(N) → c ∈]0; 1] when N →∞,

µSN
w→ µMP a.s. when N → +∞

where

µMP(dx) =
1

2πcx

√
(b− x)(x− a) 1[a,b](x)dx, (1.2)

a = (1−
√
c)2, b = (1 +

√
c)2.

1.1.2 Wigner matrices

Wigner matrices are real symmetric or complex Hermitian random matrices whose entries are independent
(up to the symmetry condition). They were introduced by Wigner in the fifties, in connection with nuclear
physics. Here, we will consider Hermitian Wigner matrices of the following form :

WN =
1√
N
HN

where HN is an Hermitian matrix whose diagonal entries are iid real random variables and those above
the diagonal are iid complex random variables, with variance σ2. If the entries are independent Gaussian
variables, WN =: WG

N is a matrix from the Gaussian Unitary Ensemble (GUE).

Wigner proved that a precise description of the limiting spectrum of these matrices can be achieved.

Theorem 2. [153, 154] (see also[11])

µWN

w−→ µsc a.s. when N → +∞

where
dµsc
dx

(x) =
1

2πσ2

√
4σ2 − x2 1[−2σ,2σ](x) (1.3)

is the so-called semi-circular distribution.

Two classical methods used to be investigated for the proof of these asymptotic global behaviours
of the spectrum, after a truncation procedure of the entries: the moment method, boiling down to a
combinatorial problem, based on the class of test functions {x 7→ xr, r ∈ N}, and the Cauchy-Stieltjes
method, boiling down to an analytical problem, based on the class of test functions {x 7→ (z − x)−1, z ∈
C,=z > 0}. A review of these methods can be found in [4, 8, 11].

1.1.3 Invariant ensembles

A complex invariant ensemble is the distribution L(MN ) of an Hermitian N × N random matrix MN

such that
L(MN ) = L(UNMNUN ),∀UN ∈ U(N).
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MN can be written MN = UNDNU
∗
N almost surely, where UN is distributed according to the Haar

measure on the unitary group, DN is a diagonal matrix, UN and DN are independent (see Proposition
6.1 in [48]). The archetypal ensembles of invariant ensembles for Wigner matrices and sample covariance
matrices correspond to the GUE and LUE cases.
Note that, in particular, Quantum Field Theory uses invariant ensembles whose probability law is abso-
lutely continuous with respect to the Lebesgue measure dH on the set of N ×N Hermitian matrices with

density 1
CN

exp(−NTrV (H)) for some function V . Note that, in the GUE case, V (x) = x2

2σ2 . Then the
empirical spectral measure of the corresponding model converges weakly towards the equilibrium measure
in the external field V (see [112] Chap 11), which is the semi-circular distribution when V is quadratic.
The proof is closely related to the theory of logarithmic potential and the mean field approximation in
statistical mechanics (see [124]).

One can also investigate local properties of the spectrum and study interactions between neighboring
eigenvalues or the behavior of extreme eigenvalues. We focus here on extremal eigenvalues since this is
the main subject of study in the coming chapters.

1.2 Extremal eigenvalues

A priori, the convergence of the spectral measure does not prevent an asymptotically negligeable fraction
of eigenvalues from going away from the limiting support (called outliers in the following). Actually, a fur-
ther analysis of the moment method allows one to deduce the following behaviour of extreme eigenvalues
of the above standard models.

Theorem 3. [16] (see also [11]) Let WN be a Wigner matrix as defined in Section 1.1.2. Assume that
the entries of HN has finite fourth moment, then almost surely,

λ1(WN )→ 2σ and λN (WN )→ −2σ when N → +∞.

Similarly, it turns out that sample covariance matrices defined by (1.1) no exhibit outliers.

Theorem 4 ([71, 13, 156] (see also[11])). Assume that the entries of XN has finite fourth moment, then
almost surely,

λ1(SN )→ (1 +
√
c)2 when N → +∞,

λN (SN )→ (1−
√
c)2 when N → +∞.

In multivariate analysis, certain statistics are defined in terms of the extreme eigenvalues of random
matrices, which makes the limiting distribution of normalized extreme eigenvalues of special interest. In
[142], Tracy and Widom derived the limiting distribution (called the Tracy-Widom law) of the largest
eigenvalue of a GUE matrix.

Theorem 5. Let WG
N be a GUE matrix. Let q : R→ R be the unique solution of the differential equation

q′′(x) = xq(x) + 2q(x)3

such that q(x) ∼x→+∞ Ai(x) where Ai is the Airy function, unique solution on R of the differential
equation f ′′(x) = xf(x) satisfying f(x) ∼x→+∞ (4π

√
x)1/2 exp(−2/3x3/2). Then

lim
N→+∞

P
(
N2/3

(
λ1(WG

N )√
N

− 2σ

)
≤ s
)

= F2(s),

where F2(s) = exp
(
−
∫ +∞
s

(x− s)q2(x)dx
)
.

9



This result has been extended to the LUE by Johansson [84] when 0 < c < +∞ and El Karoui [61]
when c = 0 and c = +∞. Borodin and Forrester [41] extended this result for the smallest eigenvalue of
a Laguerre ensemble around the soft edge. (When the leftmost edge is the origin, it is common to refer
to it as the hard edge. In contrast, any positive edge is also called a soft edge.) Moreover, dealing with
general invariant ensembles, Deift and al [54, 53] proved that the largest eigenvalue still fluctuates around
the supremum of the support of the limiting distribution according to the Tracy Widom distribution.
The proofs are based on the fact that, in these frameworks, the process of eigenvalues is a determinantal
process (see Section 4.2 [4] about general determinantal processes). Note that Ramı́rez, Rider and Virág
[119] developed a stochastic operator approach as pioneered by Edelman and Sutton [60, 136] which
hinges on tridiagonal representations.

For a wide class of Wigner or sample covariance matrices, the universality of the largest eigenvalue
was conjectured. The first main step to prove this universality conjecture has been achieved by Soshnikov
[132, 133] since he established that the largest eigenvalue of a Wigner matrix or a sample covariance matrix
associated to a symmetric probability measure which admits sub-gaussian tails fluctuates according to
the Tracy-Widom law. In these works, universality of the fluctuations are reduced to the universality of
large traces. By a Lindeberg method, Tao and Vu [139] proved a variant of the universality results of
Soshnikov for the largest eigenvalues, assuming moment conditions rather than symmetry conditions. In
[96] and [55], with a Green function comparison method developped by Erdös, Yau and their co-authors
[62, 65], a necessary and sufficient condition on off-diagonal entries of the Wigner matrix or on entries
of the sample covariance matrix is established for the distribution of the largest eigenvalue to weakly
converge to the Tracy-Widom distribution. We also refer to these papers for references on investigations
on edge universality.
All these results stress the robustness of the Tracy-Widom distribution at soft edges of the spectrum of
random matricial models.
Note that the local hard edge regime of sample covariance matrices involves the so-called Bessel kernel
(see [112] chap. 7 and references therein).

1.3 Eigenvectors

It is well known that the matrix whose columns are the eigenvectors of a GUE matrix or a LUE matrix
can be chosen to be distributed according to the Haar measure on the unitary group. In the non-Gaussian
case, the exact distribution of the eigenvectors cannot be computed. However, the eigenvectors of general
Wigner matrices or sample covariance matrices have been the object of a growing interest and in several
papers, a delocalization and universality property were shown for the eigenvectors of these standard
models (see among others [40, 45, 63, 64, 88, 141] and references therein). Heuristically, delocalization
for a random matrix means that its normalized eigenvectors look like the vectors uniformly distributed
over the unit sphere. Let us state for instance the following sample result.

Theorem 6. (Isotropic delocalization, Theorem 2.16 from [40]). Let WN be a N ×N Wigner matrix as
defined in Section 1.1.2 satisfying some technical assumptions. Let v(1), . . . , v(N) denote the normalized
eigenvectors of WN . Then, for any C1 > 0 and 0 < ε < 1/2, there exists C2 > 0 such that

sup
1≤i≤N

|〈v(i), u〉| ≤ N ε

√
N
,

for any fixed unit vector u ∈ CN , with probability at least 1− C2N
−C1 .
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The following chapter investigates the impact of a finite rank deformation on the asymptotic spectral
properties of the previous classical random matrices. The global behavior of the spectrum is unchanged but
the situation is drastically different for extreme eigenvalues. Indeed, some eigenvalues may converge out
of the bulk and then, the corresponding eigenvectors are localized; their fluctuations may not be universal
(toning down the robustness of the Tracy-Widom distribution) and depend on the spectral properties of
the deformation and the law of the entries of the non-perturbed matrix.
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Chapter 2

Finite rank deformations of classical
random matrix models

The study of deformations of random matrix models has been motivated by statistical investigations [86],
wireless communications [50], imaging [70], physics [44] or financial applications [127]. In this chapter,
we outline some results on finite rank deformations of the classical Hermitian ensembles.

Let AN be a deterministic matrix. One may wonder how the spectrum of a classical random model is
impacted by the following perturbations.

i) Additive perturbation of a Wigner matrix : AN is a N ×N Hermitian matrix and WN is a Wigner
matrix (see Section 1.1.1),

MN = WN +AN .

ii) Multiplicative perturbation: AN is a non negative Hermitian N × N matrix and SN is a sample
covariance matrix defined as in Section 1.1.2,

MN = AN
1
2SNAN

1
2 .

iii) Information-Plus-Noise type model: AN , XN are rectangular N × p matrices and XN is a random
matrix with i.i.d. entries defined as in Section 1.1.2, σ is some positive real number,

MN =

(
σ
XN√
p

+AN

)(
σ
XN√
p

+AN

)∗
.

In the litterature, these three kinds of deformations have been also considered for isotropic models, re-
placing in i) and ii) WN , SN by UBU∗ with U Haar distributed on the unitary group and B deterministic,
and in iii) XN by a random matrix whose distribution is biunitarily invariant.

In Sections 2.2 and 2.3, we list some pioneer results on extreme eigenvalues of such models dealing
with a perturbation AN with finite rank in i) or iii) or such that IN−AN is of finite rank in ii). In Section
2.4, we precise our first contributions [C13] and [C16] in the study of non-Gaussian models, addressing
the question of spectral universality. The next chapter will put forward tools from free probability theory
to provide a unified understanding, for all these models, of the appearence and localization of outliers as
well as of the asymptotic behaviour of the corresponding eigenvectors.

13



2.1 Asymptotic spectral measure

When AN is a finite rank deformation of the null matrix in case i) and iii) (resp. of the identity matrix
in case ii)), the limiting spectral measure is not affected by the deformation.

Proposition 1. We assume that rank(AN ) = r, r fixed, independent of N in case i) and iii), (resp.
rank(AN − I) = r in case ii)). Then, when N goes to infinity,

• In case i), µMN

w→ µsc (defined by (1.3)),

• In case ii) and iii), µMN

w→ µMP (defined by (1.2)).

This follows from the rank inequalities (see [11, Appendix A.6]).

2.2 Convergence of extreme eigenvalues: the BBP phase tran-
sition

We now present the seminal works on the behavior of the largest (or smallest) eigenvalues of classical
models with finite rank deformation. As we have seen above, the limiting behavior of the spectral
measure is not modified by a deformation AN of finite rank (or such that IN −AN is of finite rank in the
multiplicative case). This is no longer true for the extremal eigenvalues.
The following results deal with finite rank perturbations of Gaussian type or unitarily invariant models.
For each model, a phase transition (called BBP phase transition) is pointed out involving different
thresholds and different limiting values of outlying eigenvalues or eigenvectors projection. In the following
chapter, we will provide a unified understanding of all these results.

2.2.1 Multiplicative deformations

A complete study of the behavior of the largest eigenvalue of a deformation of a Gaussian sample covari-
ance matrix was considered in a paper of Baik, Ben Arous and Péché where they exhibit a striking phase
transition phenomenon for the largest eigenvalue, according to the value of the spiked eigenvalues of the
deformation. They considered the following sample covariance matrix :

MN = A
1/2
N SGNA

1/2
N

where SGN is a LUE matrix as defined in Section 1.1.1 and the perturbation AN
1 is given by

AN = diag ( 1, . . . , 1︸ ︷︷ ︸
N−r times

, π1, . . . , πr)

where r is fixed, independent of N and π1 ≥ . . . ≥ πr > 0 are fixed, independent of N , such that for
all i ∈ {1, . . . , r}, πi 6= 1. The πi’s are called the spikes of AN . Baik, Ben Arous and Péché proved the
following result.

Theorem 7. (BBP phase transition)[17, 18]
Let ωc = 1 +

√
c,

1In the Gaussian case, we may assume, without loss of generality, that the perturbation is diagonal

14



• If π1 > ωc, a.s. when N → +∞

λ1 (MN )→ π1

(
1 +

c

(π1 − 1)

)
> (1 +

√
c)2.

Therefore the largest eigenvalue of MN is an “outlier” since it converges outside the support of the
limiting empirical spectral distribution and then does not stick to the bulk.

• If π1 ≤ ωc, a.s. when N → +∞
λ1 (MN )→ (1 +

√
c)2.

The same phenomenon of phase transition was established by Benaych-Georges and Nadakuditi [29]
in the case of a deformation of an unitarily invariant model of the form :

MN = (IN + PN )1/2UNBNU
∗
N (IN + PN )1/2,

• BN is a deterministic N ×N Hermitian matrix such that:

(B1) BN is non negative definite,

(B2) when N goes to infinity, µBN := 1
N

∑N
i=1 δλi(BN ) weakly converges to some probability measure

µ with compact support [a; b],

(B3) the smallest and largest eigenvalue of BN converge to a and b respectively.

• UN is a random N ×N unitary matrix distributed according to the Haar measure.

• PN is a deterministic Hermitian matrix having r non-zero eigenvalues γ1 ≥ · · · ≥ γs > 0 > γs+1 ≥
· · · ≥ γr > −1, r, γi, i = 1, . . . r, fixed independent of N .

Note that µMN
weakly converges to µ. Benaych-Georges and Nadakuditi established the following result.

Theorem 8 ([29]). Define Tµ : C \ supp(µ)→ C, Tµ(z) =
∫
R
tdµ(t)
z−t . Then, we have for each 1 ≤ i ≤ s,

almost surely,

λi(MN )→N→+∞

{
T−1
µ (1/γi) if γi > 1/ limz↓b Tµ(z),
b otherwise,

while for each fixed i > s, a.s., λi(MN )→N→+∞ b.
Similarly, for the smallest eigenvalues, we have for each 0 ≤ j < r − s, a.s,

λN−j(MN )→N→+∞

{
T−1
µ (1/γr−j) if γr−j < 1/ limz↑a Tµ(z),
a otherwise,

while for each fixed j ≥ r − s, a.s. λN−j(MN )→N→+∞ a.

2.2.2 Additive deformations

Let us consider MN = WG
N + AN where WG

N is a GUE matrix as defined in Section 1.1.1 and AN is
defined by

AN = diag ( 0, . . . , 0︸ ︷︷ ︸
N−r times

, θ1, . . . , θr)

for some fixed r, independent of N , and some fixed θ1 ≥ · · · ≥ θr, independent of N .
An analog of the BBP phase transition phenomenon for this model was obtained by Péché [115]. (Such
models were first investigated by Füredi and Komlós [69].)
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Theorem 9. • If θ1 ≤ σ, then λ1(MN ) −→
N→+∞

2σ a.s..

• If θ1 > σ, then λ1(MN ) −→
N→+∞

ρθ1 a.s. with ρθ1 := θ1 + σ2

θ1
> 2σ.

A similar result has been obtained by Benaych-Georges and Nadakuditi [29] for

MN = UNBNU
∗
N +AN , (2.1)

where BN and UN satisfy the same conditions as in Section 2.2.1 except (B1) and AN is a deterministic
Hermitian matrix having r non-zero eigenvalues γ1 ≥ · · · ≥ γs > 0 > γs+1 ≥ · · · ≥ γr, where r and
γi, i = 1, . . . r are fixed (independent of N). The spectral measure µMN

weakly converges towards the
limiting spectral measure µ of BN but we have the following result.

Theorem 10 ([29]). Define gµ : C \ supp(ν)→ C, gµ(z) =
∫
R
dµ(t)
z−t . Then, we have for each 1 ≤ i ≤ s,

almost surely,

λi(MN )→N→+∞

{
g−1
µ (1/γi) if γi > 1/ limz↓b gµ(z),
b otherwise,

while for each fixed i > s, a.s., λi(MN )→N→+∞ b.
Similarly, for the smallest eigenvalues, we have for each 0 ≤ j < r − s, a.s.,

λN−j(MN )→N→+∞

{
g−1
µ (1/γr−j) if γr−j < 1/ limz↑a gµ(z),
a otherwise,

while for each fixed j ≥ r − s, a.s λN−j(MN )→N→+∞ a.

2.2.3 Information plus noise type matrices

A phase transition phenomenon of the same kind was established by Loubaton and Vallet in [98] for the
singular values of a finite rank deformation of a Ginibre ensemble.
Let XN be a N × p rectangular matrix as defined in Section 1.1.2 with iid complex Gaussian entries, and
AN be a finite rank perturbation of the null matrix with fixed non zero eigenvalues θ1 ≥ · · · ≥ θr.
Theorem 11. ([98]) Let MN = (σXN√p + AN )(σXN√p + AN )∗. Then, as N → +∞ and N/p → c ∈]0; 1],

almost surely,

λi(MN ) −→

{
(σ2+θi)(σ

2c+θi)
θi

if θi > σ2
√
c,

σ2(1 +
√
c)2 otherwise.

This result was extended as follows in [30] to the case MN = (VN + AN )(VN + AN )∗ where VN is
a N × p biunitarily invariant matrix such that the empirical spectral measure of VNV

∗
N converges to a

deterministic compactly supported measure µ with convergence of the largest (resp. smallest) eigenvalue
of VNV

∗
N to the right (resp. left) end b (resp a) of the support of µ.

Theorem 12 ([30]). For each 1 ≤ i ≤ r, almost surely,

λi(MN ) −→
N → +∞
N/p→ c ∈]0; 1]

{
D−1
µ

(
1
θ2
i

)
if θ2

i > 1/Dµ(b+),

b otherwise.

where

Dµ(z) =

[∫
z

z2 − t2
dµ(t)

]
×
[
c

∫
z

z2 − t2
dµ(t) +

1− c
z

]
, for z > b

and D−1
µ denotes its functional inverse on [b,+∞[.
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2.2.4 Eigenvectors associated to outliers

In the spiked deformed models, when some eigenvalues separate from the bulk, one may wonder how
the corresponding eigenvectors behave. There are some pionneering results concerning finite rank per-
turbations: [114] in the real Gaussian sample covariance matrix setting, and [29, 30] dealing with finite
rank additive or multiplicative perturbations of unitarily invariant matrices. Here is a result from [29]
for eigenvector projection onto those of the perturbation corresponding to the largest outlier of a finite
rank additive perturbation of a unitarily invariant model.

Theorem 13. Let MN = UNBNU
∗
N + AN where UN is a Haar unitary matrix, BN satisfies the same

hypothesis as in Theorem 9 and AN has all but finitely many non zero eigenvalues θ1 > . . . > θJ . Then,
if θ1 > 1/ limz↓b gµ(z), almost surely,

λ1(MN ) −→
N→+∞

g−1
µ (1/θ1) := ρθ1

and for any i = 1, . . . , J , if ξ is a unit eigenvector associated to λ1(MN ),

‖PKer(θiI−A)ξ‖2 −→
N→+∞

− δi1
θ2

1g
′
µ(ρθ1)

.

Thus, an eigenvector associated to an outlier of the deformed model asymptotically lies on a cone around
the one corresponding to the spike of the perturbation that generates this outlier.

2.3 Fluctuations of extremal eigenvalues

The BBP phase transition pointed out in [17] for the spiked sample covariance matrix defined in Section
2.2.1, describes three distinct regimes. Assume that N/p = c.

• The subcritical regime

If the spiked eigenvalues πi all remain at some positive distance below 1+
√
c then the largest sample

eigenvalue behave exactly as in the non-deformed case, developing Tracy-Widom fluctuations with
order N2/3 around the right endpoint of the Marchenko-Pastur support.

• The critical regime.

If πk = · · · = π1 = 1+
√
c, the fluctuations order around the right endpoint of the Marchenko-Pastur

support is still N2/3 but the limiting distribution is changed to a deformation of the Tracy-Widom
law.

• The supercritical regime.

If πk = · · · = π1 exceed 1 +
√
c, the largest eigenvalue will separate from the rest and fluctuates

according to the distribution of the largest eigenvalue of a k × k GUE matrix around its outlying
limit. Moreover the fluctuation order is

√
N .

Péché [115] obtained the following similar striking phase transition phenomenon for the fluctuations
of the largest eigenvalue of a finite rank deformation of a GUE.

Theorem 14. (with the notations of Section 2.2.2)

1. If θ1 < σ, σ−1N2/3(λ1(MN )− 2σ) converges in distribution to the Tracy Widom distribution.
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2. If θ1 = σ, σ−1N2/3(λ1(MN ) − 2σ) converges in distribution to a “generalized” Tracy Widom dis-
tribution Fk1 .

3. If θ1 > σ, N1/2(λ1(MN )− 2σ) converges in distribution to the largest eigenvalue of a GUE matrix
of size k1 and parameter σθ1 = σ

√
1− (σ/θ1)2. In particular, if k1 = 1, N1/2(λ1(MN ) − 2σ)

converges in distribution to a centered normal distribution with variance σθ1 .

Note that the additive deformation of a unitarily invariant model investigated in [29] enters in the
framework of [28] so that a similar supercritical regime can be deduced for the matrix model (2.1) under
some assumptions. (See also [30] for Information-Plus-Noise type models in the isotropic case).

The proofs of [17, 115] are based on the explicit expression of the distribution of the largest eigenvalue
in terms of Fredholm determinant and then as a contour integral. The asymptotic properties rely on a
saddle point analysis. Note that Bloemental and Virag [42, 43] used an approach based on the continuum
operator limit at the general beta soft edge, developed by Ramirez, Rider and Virág [119]. Both of these
approaches rely heavily on the Gaussian nature of the non-deformed model.

In [29] and [30], Benaych-Georges and Nadakuditi exhibited a clever, now famous, key idea consisting
in reducing the problem of locating outliers of the deformations to a convergence problem of a fixed size
r × r random matrix, by using the Sylvester’s determinant identity.

In order to study the phase transition for deformed non-Gaussian or non-isotropic matrix ensembles,
and in particular address the question of spectral universality, we investigated in the papers [C13] and
[C16] different approaches presented in the following Section 2.4. Note that the subsequent paper [98] is
in the lineage of our work.

2.4 Our first contributions in [C13] and [C16] for finite rank
perturbations of Wigner matrices

Let HN be a N×N Hermitian matrix such that the random variables (HN )ii,
√

2<[(HN )ij ],
√

2=[(HN )ij ]
i < j, are independent identically distributed with a symmetric distribution τ of variance σ2 and satisfying
a Poincaré inequality. Let MN = WN +AN where WN = 1√

N
HN . Let AN be a deterministic Hermitian

matrix of fixed finite rank r whose distinct eigenvalues are J fixed real numbers θ1 > · · · > θJ independent
of N with some j0 such that θj0 = 0. We assume that the non-null eigenvalues θj of AN are of fixed
multiplicity kj (with

∑
j 6=j0 kj = r). Define

ρθj = θj +
σ2

θj
. (2.2)

Observe that ρθj > 2σ (resp. < −2σ) when θj > σ (resp. < −σ) (and ρθj = ±2σ if θj = ±σ).
For definiteness, we set k1 + · · ·+ kj−1 := 0 if j = 1.

2.4.1 Almost sure convergence of outliers

In [C13], we first extend Theorem 9 as follows.

Theorem 15. Let J+σ (resp. J−σ) be the number of j’s such that θj > σ (resp. θj < −σ).
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(1) ∀1 ≤ j ≤ J+σ, ∀1 ≤ i ≤ kj , λk1+···+kj−1+i(MN ) −→ ρθj a.s.

(2) λk1+···+kJ+σ
+1(MN ) −→ 2σ a.s.

(3) λk1+···+kJ−J−σ (MN ) −→ −2σ a.s.

(4) ∀j ≥ J − J−σ + 1, ∀1 ≤ i ≤ kj , λk1+···+kj−1+i(MN ) −→ ρθj a.s.

The main point in the proof consists in establishing that for any ε > 0, almost surely,

Spect(MN ) ⊂ Kε
σ(θ1, · · · , θJ) (2.3)

for all N large, where

Kε
σ(θ1, · · · , θJ) = Kσ(θ1, · · · , θJ) + (−ε, ε)

and

Kσ(θ1, · · · , θJ) :=
{
ρθJ ; · · · ; ρθJ−J−σ+1

}
∪ [−2σ, 2σ] ∪

{
ρθJ+σ

; · · · ; ρθ1

}
.

To prove such an inclusion of the spectrum of MN , we use the methods developed by U. Haagerup and

S. Thorbjørnsen in [77], by H. Schultz [125]. Define gµsc(z) =
∫
R
dµsc(t)
z−t where µsc is the semicircular

distribution defined by (1.3) and gN (z) =
∫
R
dµMN (t)

z−t . The key point of this approach is to obtain a
precise estimation at any point z ∈ C\R of the following type

gσ(z)− gN (z) +
1

N
Lσ(z) = O(

1

N2
), (2.4)

where Lσ is the Stieltjes transform of a distribution Λσ with compact support in Kσ(θ1, · · · , θJ) and

O( 1
N2 ) can be bounded by P (=z)

N2 where P is some polynomial P with nonnegative coefficients. Indeed
such an estimation allows us through the inverse Stieltjes transform and some variance estimates to
deduce that a.s., trN (1cKε

σ(θ1,··· ,θJ )(MN )) = O(N−4/3), denoting the normalized trace by trN . Thus the

number of eigenvalues of MN in cKε
σ(θ1, · · · , θJ) is almost surely a O(N−1/3) and since for each N this

number has to be an integer, we deduce that it is actually equal to zero for large N . The main technical
tool to establish (2.4) is the following approximate integration by part lemma (see [87]).

Lemma 1. Let ξ be a real-valued random variable such that E(|ξ|p+2) <∞. Let φ be a function from R
to C such that the first p+ 1 derivatives are continuous and bounded . Then,

E(ξφ(ξ)) =

p∑
a=0

κa+1

a!
E(φ(a)(ξ)) + ε (2.5)

where κa are the classical cumulants of ξ, ε ≤ C supt |φ(p+1)(t)|E(|ξ|p+2), C depends on p only.

Actually, given an interval [a, b] ⊂ R \ Kσ(θ1, · · · , θJ), saying by (2.3) that [a, b] does not contain
eigenvalues of MN can be improved: it corresponds to [a, b] some interval Ia,b lying outside the spectrum
of AN and such that the number of eigenvalues of MN in one side of [a, b] is equal to the one of AN in
the corresponding side of Ia,b. Following [10], we say that there is exact separation of eigenvalues of the
matrices AN and MN . Now, we can adapt the arguments needed for the conclusion of [18] viewing the
deformed Wigner model as the additive analogue of the spiked population model, to deduce Theorem 15.
This whole approach will be generalized and developed in Section 3.3 dealing with full rank deformations.
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2.4.2 Nonuniversality of the fluctuations of outliers, dependence of the fluc-
tuations with respect to the eigenvectors of the perturbation

In [C13], we show that a new phenomenon arises for the fluctuations of the outliers: the limiting dis-
tribution can depend on the distribution of the entries (non universality), according to the localiza-
tion/delocalization of the eigenvectors of AN . Note that in the Gaussian case in the previous subsection,
the eigenvectors of the perturbation are irrelevant for the fluctuations, due to the unitary invariance in
Gaussian models. Let us illustrate this dependence on the eigenvectors on AN in a very simple situation,
in the additive case. Consider two finite rank perturbations of rank 1, with one non null eigenvalue θ > σ.

The first one A
(1)
N is a matrix with all entries equal to θ/N (delocalized eigenvector associated to θ). The

second one A
(2)
N is a diagonal matrix (localized eigenvector). The fluctuations of the largest eigenvalue

λ1 of the matrix M
(i)
N = WN +A

(i)
N (i = 1, 2) around ρθ := θ + σ2

θ are given as follows :

Proposition 2. 1. Delocalized case [67] : The largest eigenvalue λ1(M
(1)
N ) have Gaussian fluctua-

tions, √
N(λ1(M

(1)
N )− ρθ)

D−→ N (0, σ2(1− σ2/θ2)). (2.6)

2. Localized case [C13]: The largest eigenvalue λ1(M
(2)
N ) fluctuates as

√
N(1− σ2

θ2
)(λ1(M

(2)
N )− ρθ)

D−→ τ ?N (0, vθ). (2.7)

where τ is the distribution of the entries of the Wigner matrix, the variance vθ of the Gaussian
distribution depends on θ and the second and fourth moments of τ .

The proof of (2.6) by Féral and Péché is combinatorial and is based on the computation of large

moments of M
(1)
N . The proof of (2.7) is close to the one of [114] and the ideas of [36]; the key idea is to

associate the fluctuations of the outliers with quadratic forms involving the resolvent of the unperturbed
Wigner matrix and to use a central limit theorem proved in an Appendix by J. Baik and J. Silverstein
in [C13].

In [C16], we exhibit quite general situations with respect to the eigenvectors of the perturbation ma-
trix that will give rise to universality or non universality of the fluctuations as follows.

Let MN be a deformed Wigner matrix as defined at the beginning of Section 2.4. We denote by
k+σ := k1 + · · · + kJ+σ

. We introduce k ≥ k+σ as the minimal number of canonical vectors among the
canonical basis (ei; i = 1, . . . , N) of CN needed to express all the eigenvectors associated to the largest
eigenvalues θ1, . . . , θJ+σ of AN . Without loss of generality (using the invariance of the distribution of the
Wigner matrix WN by conjugation by a permutation matrix), we can assume that these k+σ eigenvectors
belong to Vect(e1, . . . , ek). We assume that k �

√
N .

Let us now fix j such that 1 ≤ j ≤ J+σ and let Uk be a unitary matrix of size k such that

diag(U∗k , IN−k)ANdiag(Uk, IN−k) = diag(θjIkj , (θlIkl)l≤J+σ,l 6=j , ZN−k+σ ) (2.8)

where ZN−k+σ is an Hermitian matrix with eigenvalues strictly smaller than θJ+σ .

Define Kj = Kj(N) as the minimal number of canonical vectors among (e1, . . . , ek) needed to express all

the orthonormal eigenvectors vji , 1 ≤ i ≤ kj , of AN associated to θj . Without loss of generality, we can
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assume that the vji , 1 ≤ i ≤ kj , belong to Vect(e1, . . . , eKj ). Considering now the vectors vij as vectors

in CKj , we define the Kj × kj matrix

UKj×kj :=
(
vj1, . . . , v

j
kj

)
(2.9)

namely UKj×kj is the upper left corner of Uk of size Kj × kj . It satisfies

U∗Kj×kjUKj×kj = Ikj . (2.10)

From Theorem 15, for all 1 ≤ i ≤ kj , λk1+···+kj−1+i(MN ) converges to ρθj a.s.. We shall describe
their fluctuations in the extreme two cases:

Case a) localization of the eigenvectors associated to θj: The sequence Kj(N) is bounded,

sup
N
Kj(N) = K̃j

and the the upper left corner UK̃j×kj of Uk of size K̃j × kj converges towards some matrix ŨK̃j×kj when
N goes to infinity;

Case b) delocalization of the eigenvectors associated to θj: Kj = Kj(N) → ∞ when N → ∞
and Uk satisfies

kj
max
p=1

Kj
max
i=1
|(Uk)ip| −→ 0 as N →∞. (2.11)

The main results are the following two theorems. Set m4 :=
∫
x4dτ(x) and define cθj by

cθj =
θ2
j

θ2
j − σ2

. (2.12)

In Case a) the fluctuations of the corresponding rescaled largest eigenvalues of MN are not universal.

Theorem 16. In Case a): the kj-dimensional vector(
cθj
√
N(λk1+...+kj−1+i(MN )− ρθj ); i = 1, . . . , kj

)
converges in distribution to (λi(Vkj×kj ); i = 1, . . . kj) where λi(Vkj×kj ) are the ordered eigenvalues of

the matrix Vkj×kj of size kj defined in the following way. Let WK̃j
be an Hermitian matrix of size K̃j

such that the entries
√

2<(WK̃j
)uv,
√

2=(WK̃j
)uv, u < v, (WK̃j

)uu are independent random variables with

distribution τ . Let GK̃j be a centered Hermitian Gaussian matrix of size K̃j independent of WK̃j
with

independent entries Gpl, p ≤ l with variance
vpp = E(G2

pp) =
1

2

(m4 − 3σ4

θ2
j

)
+

σ4

θ2
j − σ2

, p = 1, . . . , K̃j ,

vpl = E(|Gpl|2) =
σ4

θ2
j − σ2

, 1 ≤ p < l ≤ K̃j .
(2.13)

Then, Vkj×kj is the kj × kj matrix defined by

Vkj×kj = Ũ∗
K̃j×kj

(WK̃j
+ GK̃j )ŨK̃j×kj . (2.14)
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Case b) exhibits universal fluctuations.

Theorem 17. In Case b): the kj-dimensional vector(
cθj
√
N(λk1+...+kj−1+i(MN )− ρθj ); i = 1, . . . , kj

)
converges in distribution to (λi(Vkj×kj ); i = 1, . . . kj) where the matrix Vkj×kj is distributed as a kj × kj
GUE matrix whose entries have a variance equal to

θ2
jσ

2

θ2
j−σ2 .

The proof is a (quite technical) generalization of the proof of (2.7); using determinant identities, we
show that each of these rescaled eigenvalues is an eigenvalue of a kj × kj random matrix which may be
expressed in terms of the resolvent of a (N − k)× (N − k) deformed Wigner matrix whose eigenvalues do
not jump asymptotically outside [−2σ; 2σ]; then, the matrix Vkj×kj will arise from a multidimensional
CLT from [14] on random sesquilinear forms.

Remark 1. Note that since τ is symmetric, analogue results can be deduced from Theorem 16 and
Theorem 17 dealing with the lowest eigenvalues of MN and the θj such that θj < −σ.

Example:
AN = diag(Ap(θ1), θ2Ik2

, 0N−p−k2
)

where Ap(θ1) is a matrix of size p defined by Ap(θ1)ij = θ1/p, with θ1, θ2 > σ, p�
√
N . Then k = p+k2,

k1 = 1, K1 = p, K2 = k2. For j = 1, we are in Case a) if p is bounded and in Case b) if p = p(N)→ +∞.
For j = 2, we are in Case a).

Dealing with a spike θj > σ with multiplicity 1, it turns out that case b) is actually the unique
situation where universality holds since we establish the following.

Theorem 18. If kj = 1, θj > σ, then the fluctuations of λk1+···+kj−1+1(MN ) are universal, namely

√
N(λk1+···+kj−1+1(MN )− ρθj )

L−→ N (0, σ2
θj ) where σθj = σ

√
1− σ2

θ2
j

,

if and only if
max
l≤Kj

|(Uk)l1| → 0 when N →∞. (2.15)

Moreover, our approach allows us to describe the fluctuations of λk1+···+kj−1+1(MN ) for some par-
ticular situations where the corresponding eigenvector of AN is not localized but does not satisfy the
criteria of universality maxl≤Kj |(Uk)l1| → 0 (that is somehow for intermediate situations between
Case a) and Case b)). Let m be a fixed integer number. Assume that for any l = 1, . . . ,m, (Uk)l1
is independent of N , whereas maxm<l≤Kj |(Uk)l1| → 0 when N goes to infinity. We can prove that

cθj
√
N(λk1+···+kj−1+1(MN )−ρθj ) converges in distribution towards the mixture of τ -distributed or gaus-

sian random variables
∑m
i,l=1 ailξil+N where ξil, (i, l) ∈ {1, . . . ,m}2, N are independent random variables

such that

• for any (i, l) ∈ {1, . . . ,m}2, the distribution of ξil is τ ;

• ail =


√

2=((Uk)l1(Uk)i1) if i < l√
2<((Uk)l1(Uk)i1) if i > l
|(Uk)l1|2 if i = l;
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• N is a centered gaussian variable with variance

1

2

[
m4 − 3σ4

]∑m
l=1 |(Uk)l1|4

θ2
j

+
σ4

θ2
j − σ2

+

1−

(
m∑
l=1

|(Uk)l1|2
)2
σ2.

2.5 Some subsequent works on outliers of finite rank deformed
models

• In [117], Pizzo, Renfrew and Soshnikov extend Theorems 15, 16, 17 to more general Wigner matrices.
In the paper [121], Renfrew and Soshnikov extend quite significantly Theorem 17 as follows. They
assume that the entries of the Wigner matrix are centered independent random variables, the
variance of off-diagonal entries are all equal to σ2, the off-diagonal (resp. diagonal) entries have
uniformly bounded fourth (resp. second) moments and satisfy a Lindeberg type condition for the
fourth (resp. second) moments. We use the notations introduced at the beginning of Section 2.4

and in (2.12), (2.2). Assume that |θj | > σ. Let u1
N , . . . , u

kj
N be an orthonormal set of eigenvectors

of the perturbation associated with θj . Define the N ×N matrix M3 by

(M3)ij = µ3,ij(1− δij)

where
µ3,ij = E

[
|Wij |2Wij

]
.

Then Renfree and Soshnikov prove that, in the case where the l∞ norm of every orthonormal
eigenvector of the perturbation corresponding to θj goes to zero as N → +∞, the difference
between the kj dimensional vector

{cθj
√
N
(
λk1+···+kj−1+i − ρj

)
, i = 1, . . . , kj}

and the vector formed by the ordered eigenvalues of a kj×kj GUE matrix (with the variance of the

matrix entries given by
θ2
jσ

2

θ2
j−σ2 ) plus a deterministic matrix with entries given by 1

θ2
jN

(ulN )∗M3u
p
N

converges to zero in probability. Note that this additional matrix 1
θ2
jN

(
(ulN )∗M3u

p
N

)
1≤l,p≤kj

ap-

peared neither in [115], [C16] or [117] nor in [67] since in [115] the entries of the Wigner matrix are
Gaussian and in [C16] and [67] the distribution entries of the Wigner matrix is symmetric so that
M3 ≡ 0 and, in [117], k = o(

√
N) so that

1

θ2
jN

(
(ulN )∗M3u

p
N

)
l,p
→N→+∞ 0.

The first step in proving the above result is to associate the fluctuations of the outliers with quadratic
forms of the resolvent RN of the unperturbed Wigner matrix. Then, the proof comes down to study
the asymptotic of

√
N

(
〈ulN , RN (ρj)u

p
N 〉 −

1

θj
δlp

)
1≤l,p≤kj

.

• Dealing with finite rank deformation of Wigner matrices, Knowles and Yin in [89], allow the eigen-
values θi of the deformation to depend on N under the condition that

||θi| − 1| ≥ (logN)C log logNN−1/3,
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meaning that ρθi − 2 is much greater than N−2/3 (setting σ = 1). If r = 1, the outlier associated
with θ1 fluctuates around ρθ1 on the scale N−1/2(|θ1| − 1)1/2 and the asymptotic distribution is
explicitely computed by the authors. In [89], the authors establish actually such a result for any r
but if

∀j, |θj | > 1,min
j 6=i
|θi − θj | ≥ (logN)C log logNN−1/2((|θi| − 1)−1/2

which means that the outlier associated with θi does not overlap with the other outliers since their
separation is greater than the scale on which they fluctuate. [90] extends the results of [89] in two
directions: the authors allow overlapping outliers and describe the joint distribution of all outliers.
Their proof relies on the isotropic local semicircle law
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The next chapter will put forward tools from free probability theory to provide a unified understanding,
for all the previous matrix models and dealing with full rank deformations, of several phenomena such as
the exact separation phenomenon, the appearence, localization and fluctuations of outliers as well as of
the asymptotic behaviour of the corresponding eigenvectors. The main principle of subordination in free
probability is emphasized as a main tool in this understanding.
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Chapter 3

Full rank perturbation of classical
random matrix models

This chapter first tries to provide a unified understanding based on free subordination properties of the
spectral properties (limiting support, behavior of the density at edges, exact separation phenomenon) of
the three deformed models i), ii) and iii) introduced at the beginning of Chapter 2, dealing now with full
rank deformations. This chapter actually brings to light a general methodology to localize outliers and to
describe the asymptotic behaviour of the corresponding eigenvectors for all the preceding models, both
in the independent case as well as for the corresponding deformed isotropic models, namely replacing in
i) and ii) WN , SN by UBU∗ with U Haar distributed and B deterministic, and in iii) XN by a random
matrix whose distribution is biunitarily invariant.
It was the purpose of [C22] to put forward an unified understanding based on subordination in free
probability. This investigation relies notably on [C15], [C17], [C18], [C19], [C21] and [C24].

3.1 Convergence of spectral measures

This section is devoted to the study of the limiting spectral distribution (LSD) of the deformed matrix
MN for the different models i) to iii). We now assume that for some probability ν, the spectrum of the
deformation AN satisfies

µAN −→
N→+∞

ν weakly, for cases i) and ii)

µANA∗N −→
N→+∞

ν weakly, for case iii).

The following theorem is a review of the pionner results concerning the limiting spectral distribution for
the three deformed models in the independent case. The spectral distribution is characterized via an
equation satisfied by its Stieltjes transform. (For any probability measure τ on R, we denote by gτ the
Stieltjes transform of τ defined for any z ∈ C+ := {z ∈ C,=z > 0} by gτ (z) =

∫
1
z−tdτ(t).)

Theorem 19. Convergence of the spectral measure µMN

i) Deformed Wigner matrices ([111], [4] Theorem 5.4.5)

µMN
−→

N→+∞
µ1 weakly
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with

∀z ∈ C+, gµ1
(z) =

∫
1

z − σ2gµ1
(z)− t

dν(t). (3.1)

ii) Sample covariance matrices ([101, 130])

µMN
−→

N→+∞
µ2 weakly

with

∀z ∈ C+, gµ2
(z) =

∫
1

z − t(1− c+ czgµ2
(z))

dν(t). (3.2)

iii) Information-Plus-Noise type matrices ([56, 155])

µMN
−→

N→+∞
µ3 weakly

with

∀z ∈ C+, gµ3
(z) =

∫
1

(1− cσ2gµ3
(z))z − t

1−cσ2gµ3 (z) − σ2(1− c)
dν(t). (3.3)

Remark 2. The limiting measures µ1, µ2, µ3 are deterministic. Note that they are not always explicit.
They are universal (do not depend on the distribution of the entries of the non-deformed model) and
only depend on AN through the limiting spectral measure ν.

Remark 3. If ν = δ0 in (3.1), we recover the equation satisfied by the Stieltjes transform of the semi-
circular distribution. The same is true for the Marchenko-Pastur distribution in (3.2) with ν = δ1 and
in (3.3) with ν = δ0.

Remark 4. Such functional equations for Stieltjes transforms have been obtained for deformations of
isotropic models by [113] and [143].

3.2 Study of LSD of deformed ensembles through free probabil-
ity theory

In this section, we take an other look of the LSD described in Section 3.1, in the light of free proba-
bility theory introduced in the Appendix. We also characterize the limiting supports in terms of free
subordination functions. This will prove to be fundamental to understand the outliers phenomenon for
spiked models in Section 3.3. We finish with an analysis of the different behaviors of the density at edges
of the support of free additive, multiplicative, rectangular convolutions with semi-circular, Marchenko-
Pastur and the square-root of Marchenko-Pastur distributions respectively. This provides the rate for
fluctuations of eigenvalues at edges as it will be discussed in Section 3.5.

3.2.1 Free probabilistic interpretation of LSD

As noticed in Remark 2, the limiting spectral distributions of the deformed models investigated in Section
3.1 are universal in the sense that they do not depend on the distribution of the entries of the non-
deformed model. Therefore, choosing Gaussian entries and applying Theorem 43 and Theorem 44, we
readily get the following free probabilistic interpretation of the limiting measures as well as of the equations
satisfied by the limiting Stieltjes transforms in Theorem 19.
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• Deformed Wigner matrices

µMN
−→

N→+∞
µ1 weakly, µ1 = µsc � ν.

• Sample covariance matrices

µMN
−→

N→+∞
µ2 weakly, µ2 = µMP � ν.

• Information-Plus-Noise type matrices

µMN
−→

N→+∞
µ3 weakly, µ3 = (

√
µMP �c

√
ν)2.

The equations (3.1), (3.2) and (3.3) satisfied by the limiting Stieltjes transforms correspond to free
subordination properties introduced in Section 5.5 and exhibit the subordination functions ωµsc,ν with
respect to the semi-circular distribution µsc for the free additive convolution, FµMP,ν with respect to the
Marchenko-Pastur distribution µMP for the free multiplicative convolution, and ΩµMP,ν with respect to
the pushforward of the Marchenko-Pastur distribution by the square root function

√
µMP for the rectan-

gular free convolution. We use here the notations introduced in Section 5.5.

• Deformed Wigner matrices

∀z ∈ C+, gµ1(z) = gν(ωµsc,ν(z)).

ωµsc,ν(z) = z − σ2gµ1(z).

• Sample covariance matrices

∀z ∈ C+, ψµ1

(
1

z

)
= ψν(FµMP,ν

(
1

z

)
) (3.4)

with

ψτ (z) =

∫
tz

1− tz
dτ(t) =

1

z
gτ (

1

z
)− 1,

FµMP,ν(z) = z − cz + cgµ1(
1

z
).

• Information-Plus-Noise type matrices

µ3 = (
√
µMP �c

√
ν)2

∀z ∈ C+, H
(c)√
µ3

(
1

z

)
= H

(c)√
ν

(
ΩµMP,ν

(
1

z

))
, (3.5)

with

H
(c)√
τ
(z) =

c

z
gτ (

1

z
)2 + (1− c)gτ (

1

z
),

ΩµMP,ν(z) =
1

1
z (1− cσ2gµ3( 1

z ))2 − (1− c)σ2(1− cσ2gµ3( 1
z ))

.
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3.2.2 Limiting supports of LSD

For each deformed model involving independent entries, several authors studied the limiting support
[33, 47, 57, 97, 98], [C18]. It turns out that in each case there is a one to one correspondance involving
the subordination functions between the complement of the support of the limiting spectral measure and
some set in the complement of the limiting support of the deformation, as follows.

• Deformed Wigner µ1 = µsc � ν

R \ supp(µ1)

ϕ1−→
←−
φ1

O1 ⊂ R \ supp(ν),

O1 := {u ∈ R \ supp(ν), φ′1(u) > 0},

u ∈ R \ supp(ν), φ1(u ) = u+ σ2gν(u),

x ∈ R \ supp(µ1), ϕ1(x ) = x− σ2gµ1
(x).

• Sample covariance matrices µ2 = µMP � ν

R \ {supp(µ2)}
ϕ2−→
←−
φ2

O2 ⊂ R \ {supp(ν)}, (3.6)

O2 = {u ∈c {supp(ν)}, φ′2(u) > 0} ,

u ∈ R \ supp(ν), φ2(u) = u+ cu

∫
t

u− t
dν(t),

x ∈ R \ supp(µ2), ϕ2(x) =

{
x

(1−c)+cxgµ2
(x) if c < 1

1
gµ2

(x) if c = 1.

Note that ϕ2 is well defined on R \ supp(µ2) since its denominator never vanishes according to Lemma
6.1 in [11].

• Information-Plus-Noise type model µ3 = (
√
µMP �c

√
ν)2

R \ supp(µ3)

ϕ3−→
←−
φ3

O3 ⊂ R \ supp(ν),

O3 =

{
u ∈ R \ supp(ν), φ

′

3(u) > 0, gν(u) > − 1

σ2c

}
,

u ∈ R \ supp(ν), φ3(u) = u(1 + cσ2gν(u))2 + σ2(1− c)(1 + cσ2gν(u)), (3.7)

x ∈ R \ supp(µ3), ϕ3(x) = x(1− cσ2gµ3
(x))2 − (1− c)σ2(1− cσ2gµ3

(x)).

Note that ϕ1 corresponds to the extension of ωµsc,ν on R \ supp(µ1) and for i = 2, 3, ϕi coincides on
R \ {supp(µi) ∪ {0}}, with the extension of z 7→ 1/FµMP,ν(1/z) and z 7→ 1/ΩµMP,ν(1/z) respectively.
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The above characterization of the support are explicitely given in [33] and [C18] for µ1 and µ3. Now,
it can be deduced for µ2 by the following arguments. In a W ∗-probability space endowed with a faithful
state, the support of the distribution of a random variable x corresponds to the spectrum of x. Thus,
considering µ2 as the distribution of b1/2ab1/2 where a and b are free bounded operators whose distribu-
tions are µMP and ν respectively, one can easily see that for c < 1, 0 belongs to the support of µMP � ν if
and only if 0 belongs to the support of ν. The latter equivalence and Lemma 6.1 in [11] readily yield (3.6).

When the support of ν has a finite number of connected components, we have the following description
of the support of the µi’s in terms of a finite union of closed disjoint intervals.

Theorem 20. [C15] [C18] Assume that the support of ν is a finite union of disjoint (possibly degenerate)
closed bounded intervals. For any i = 1, 3, there exists a nonnul integer number p and u1 < v1 < u2 <
. . . < up < vp (depending on i) such that

Oi =]−∞, u1[ ∪p−1
l=1 ]vl, ul+1[ ∪ ]vp,+∞[.

We have
supp(ν) ⊂ ∪pl=1[ul, vl]

and for each l ∈ {1, . . . , p}, [ul, vl] ∩ supp(ν) 6= ∅.
Moreover,

supp(µi) = ∪pl=1[φi(u
−
l ), φi(v

+
l )],

with
φi(u

−
1 ) < φi(v

+
1 ) < φi(u

−
2 ) < φi(v

+
2 ) < · · · < φi(u

−
p ) < φi(v

+
p ),

where φi(u
−
l ) = limu↑ul φi(u) and φi(v

+
l ) = limu↓vl φi(u).

Finally, for each l ∈ {1, . . . , p},

µi([φi(u
−
l ), φi(v

+
l )]) = ν([ul, vl]). (3.8)

Using the characterization of the support (3.6), Remark 3.6 in [C17] and the fact that from [20] the
only possible mass of µ2 = µMP � ν is at zero, one may check that the above result still holds for µ2

allowing u1 = v1 = 0 or φ2(u1) = φ2(v1) = 0 in Theorem 20. Note that the latter cases occur only when
ν has a Dirac mass at zero since from [20], µMP � ν({0}) = max(µMP({0}), ν({0})) and therefore, since
c ≤ 1, µ2 has a Dirac mass at zero if and only if ν has a Dirac mass at zero. (3.8) can be seen as a
consequence of the matricial exact separation phenomenon described in Theorem 3.13 below letting N
go to infinity.

3.2.3 Behavior of the density at edges

Biane proved in [33] that µ1 = µsc � ν has a continuous density. Choi and Silverstein [47] and Dozier
and Silverstein [57] proved respectively that, away from zero, µ2 = µMP � ν and µ3 = (

√
µMP �c

√
ν)2

possess a continuous density. Let us denote any of theses densities by f .
Using the notations of Theorem 20, we have

supp(ν) ⊂ ∪pl=1[ul; vl] = R \ Oi

and for each l ∈ {1, . . . , p}, [ul, vl]∩ supp(ν) 6= ∅. If a =ul or vl are not in supp(ν) that is if supp(ν) does
not stick to the frontier of R \ Oi at these points, then the previous authors established that the density
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exhibits behavior closely resembling that of
√
|x− d| for x near d = φi(a). We will say that such an edge

φi(a) is regular. This is for instance obviously always the case dealing with a discrete measure ν.
Nevertheless for some measures ν with a density decreasing quite fast to zero at an edge of the support
of ν, such an edge may coincide with some ul or vl, that is supp(ν) may stick to the frontier of R \ Oi
at this point. Then, at the corresponding edge of the support of µi, the density f may exhibit different
behaviour. This can be seen for instance in the following example investigated by Lee and Schnelli [92]:

dν(x) := Z−1(1 + x)a(1− x)bh(x)1[−1,1](x)dx

where a < 1, b > 1, h is a strictly positive C1-function and Z is a normalization constant. Indeed let σ0

be such that ∫
1

(1− x)2
dν(x) =

1

σ2
0

.

Let us consider

R \ O1 = supp(ν) ∪ {u ∈ R \ supp(ν),

∫
1

(u− x)2
dν(x) ≥ 1

σ2
}.

It can be easily seen that for all σ > σ0, R \ O1 = [uσ, vσ] with uσ < −1 < 1 < vσ, so that

supp (µsc � ν) = [φ1(uσ), φ1(vσ)]; (3.9)

thus, φ1(vσ) is a regular edge and we have f(x) ∼ C(φ1(vσ)− x)
1
2 .

Now, for all σ ≤ σ0, one can see that R \ O1 = [uσ, 1], with uσ < −1, so that supp (µsc � ν) =
[φ1(uσ), φ1(1)]; it turns out that the density exhibits the following behaviour at the right edge

f(x) ∼ C(φ1(1)− x)b. (3.10)

We illustrate by the following picture the difference of behaviour of the density f at edges of µi
depending on wether the support of ν sticks to the frontier of R \ Oi or not. We consider a measure ν
whose support has three connected components [ai, bi], i = 1, 2, 3. Then, we know that R\Oi has at most
three connected components and each of them contains at least a connected component of the support
of ν. We draw one possible case where [a1, b1] and [a2, b2] are in the same connected component [u1, v1]
of R \ Oi and b2 = v1 whereas [a3, b3] is in an other connected component [u2, v2] of R \ Oi.

supp(ν) ⊂ R \ Oi

-
[ [] ][ ] [ ][ ]

u1 = v1 u2 v2a1 b1 a2 b2 a3 b3

supp(µi)

-
[ ] [ ]

φi(u1) φi(v1) φi(u2) φi(v2)

↑ ↑ ↖ ↗

f(x) ∼ C|d− x| 12 the singularity of f
may change!

f(x) ∼ C|d− x| 12
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3.3 Outliers of general spiked models

In Section 2.2, we presented the seminal works on the behavior of the largest eigenvalues for finite rank
deformations of standard models. It turns out that the previous analysis in Section 3.2 allows us to
understand the appearence of outliers of general spikes models that is dealing with full rank deformations
and provides the correct way to generalize the pioneering works. Actually, the relevant criterion for a
spiked eigenvalue of the deformation to generate an outlier in the spectrum of the deformed model is to
belong to the set Oi related to the subordination functions and introduced in Section 3.2.2. In the finite
rank case this criterion reduces to a critical threshold.

In order to adopt universal notations for the three types of deformations, we set

ÃN =

{
AN for additive or multiplicative deformations
ANA

∗
N for Information-plus-noise type deformation.

(3.11)

Thus, for each type of deformation, we assume the following on the perturbation ÃN :

• µÃN weakly converges towards a probability measure ν whose support is compact.

• The eigenvalues of ÃN are of two types :

– N − r (r fixed) eigenvalues αi(N) such that

N−r
max
i=1

dist(αi(N), supp(ν)) −→
N→∞

0

– a finite number J of fixed (independent of N) eigenvalues called spikes θ1 > . . . > θJ (≥ 0
for multiplicative deformations and information-plus-noise type models), ∀i = 1, . . . , J , θi 6∈
supp(ν), each θj having a fixed multiplicity kj ,

∑
j kj = r.

3.3.1 Location of the outliers

Here is a naive intuition for general additive deformed models in order to make the reader understand the
occurence and role of free subordination functions. We have the following free subordination property
(see Section 5.5)

gµ�ν(z) = gν(ωµ,ν(z)).

For an Hermitian deformed model such that

MN = YN +AN ; µYN → µ;µAN → ν, µMN
→ µ� ν,

the intuition is that
gµMN (z) ≈ gµAN (ωµ,ν(z)).

Assume that AN has a spiked eigenvalue θ outside its limiting support. If ρ /∈ supp (µ� ν) is a solution
of ωµ,ν(ρ) = θ, gµMN (ρ) ≈ gµAN (ωµ,ν(ρ)) explodes! Therefore the conjecture is that the spikes θ’s of the
perturbation AN that may generate outliers in the spectrum of MN belong to ωµ,ν (R \ supp (µ� ν)) and
more precisely that for large N , the θ’s such that the equation

ωµ,ν(ρ) = θ

has solutions ρ outside supp (µ� ν) generate eigenvalues of MN in a neighborhood of each of these
ρ. This intuition in fact corresponds to true results for both models: independent and isotropic case.
Nevertheless, their proofs are different. In the following, we present the distinct approaches.
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The independent case

In this section, we will denote by φ, ϕ,O, µ, any of φi, ϕi,Oi, µi, for i = 1, 2, 3 introduced in Section 3.2.2
related to the investigated deformed model. We choose to present a unified result covering the three
types of deformations.

a) A deterministic equivalent
In the three deformed models, a deterministic measure plays a central role in the study of the spectrum
of the deformed models. This measure is a very good approximation of the spectral measure µMN

in the
sense that almost surely, for large N , each interval in the complement of the support of this deterministic
measure contains no eigenvalue of MN . This was first established by Bai and Silverstein [9] in the
multiplicative case. We now express this deterministic measure νN in the three models :

i) Additive deformation of a Wigner matrix [C15]:

νN = µsc � µAN .

ii) Multiplicative deformation of a sample covariance matrix ([9])

νN = µMP � µAN .

iii) Information plus noise model ([97] in the Gaussian case, [12], [C24])

νN = (
√
µMP �cN

√
µANA∗N )2 (with cN = N/p).

We denote by KN the support of νN and for ε > 0, (KN )ε denotes an ε neighborhood of KN . We have the
following result which holds for the three models (we refer to the original papers for the precise technical
assumptions on the models):

Proposition 3. ∀ε > 0, ∀[a, b] ⊂ (KN )ε,

P( for large N , MN has no eigenvalue in [a, b]) = 1 (3.12)

For deformed Wigner matrices, (3.12) is established in in [C15, Theorem 5.1] under the assumption that
the real part and the imaginary part of the off-diagonal entries of the Wigner matrix are iid with variance
one half and the common distribution is symmetric and satisfies a Poincaré inequality; its proof uses
the strategy developed by [77] and [78] already described in Section 2.4.1. Note that [C23] that will be
presented in the following Chapter (dealing with much more general polynomial models) extends to more
general Wigner matrices. The same method was used in [97] for Gaussian Information-Plus-Noise type
matrices.
To prove the inclusion of the spectrum (3.12) for sample covariance matrices and information-plus-noise
type matrices [9, 12], Bai and Silverstein provide a different approach strongly related to the models
although it also makes use of Stieltjes transform. Note that, in an Appendix in [C24], we present alter-
native versions of the earlier result of [12] for non-Gaussian Information-Plus-Noise type matrices where
we remove some technical assumptions that were difficult to handle but assume that the real part and
the imaginary part of the entries of the random matrix are independent with variance one half . Note
also that in the context of [12], (3.12) is proved only for a > 0 whereas it includes the case a = 0 in the
framework of [C24].

34



b) An exact separation phenomenon
A next step in the analysis of the spectrum of deformed models dealing with independent entries is
an exact separation phenomenon between the spectrum of MN and the spectrum of ÃN , involving the
subordination functions : to a gap in the spectrum of ÃN , it corresponds, through the function ϕ defined
in Section 3.2.2, a gap in the spectrum of MN which splits the spectrum of MN exactly as that of ÃN .
Let [a, b] be a compact set such that for some δ > 0, for all large N , [a− δ, b+ δ] ⊂ R \ supp (νN ). Then,
almost surely, for large N , [ϕ(a), ϕ(b)] is in the complement of the spectrum of ÃN . Hence, with the
convention that for any N × N matrix Z, λ0(Z) = +∞ and λN+1(Z) = −∞, there is iN ∈ {0, . . . , N}
such that

λiN+1(ÃN ) < ϕ(a) and λiN (ÃN ) > ϕ(b). (3.13)

Moreover, [a, b] splits the spectrum of MN exactly as [ϕ(a), ϕ(b)] splits the spectrum of ÃN as stated by
the following.

Theorem 21. With iN satisfying (3.13), one has

P[λiN+1(MN ) < a and λiN (MN ) > b, for all large N ] = 1. (3.14)

The following picture illustrates this exact separation phenomenon.

[a, b] ⊂ R \ supp(νN )←→ [ϕ(a), ϕ(b)]

gap in Spect(MN ) ←→ gap in Spect(ÃN )

-

· · · λl+1(ÃN ) ϕ(a) ϕ(b) λl(ÃN ) · · ·

︸ ︷︷ ︸ ︸ ︷︷ ︸N − l eigenvalues of ÃN l eigenvalues of ÃN

-

· · · λl+1(MN ) a b λl(MN ) · · ·

︸ ︷︷ ︸ ︸ ︷︷ ︸N − l eigenvalues of MN l eigenvalues of MN

This was first observed by Bai and Silverstein [10], in the case of sample covariance matrices. We
refer to [C15] for deformed Wigner matrices and to Loubaton-Vallet [98] (Gaussian case), [C18], [C24]
for Information-plus-noise type models when the real part and the imaginary part of the entries of the
random matrix are independent with variance one half. This exact separation phenomenon leads asymp-
totically to the relation (3.8) between the cumulative distribution function of the µi’s and the cumulative
distribution function of ν.

c) Convergence of eigenvalues
The following result gives the precise statement of the intuition given at the beginning of Section 3.3.1
and is a consequence of the inclusion of the spectrum and the exact separation.

Theorem 22. [15, 120] [C15], [C18] Assume that the LSD ν of AN has a finite number of connected
components. For each spiked eigenvalue θj, we denote by nj−1 + 1, . . . , nj−1 + kj the descending ranks of

θj among the eigenvalues of ÃN . With the notations of Section 3.2.2,
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1) If θj ∈ O, the kj eigenvalues (λnj−1+i(MN ), 1 ≤ i ≤ kj) converge almost surely outside the support
of µ towards ρθj = φ(θj).

2) If θj ∈ R\O then we let [slj , tlj ] (with 1 ≤ lj ≤ m) be the connected component of R\O which
contains θj.

a) If θj is on the right (resp. on the left) of any connected component of supp(ν) which is included
in [slj , tlj ] then the kj eigenvalues (λnj−1+i(MN ), 1 ≤ i ≤ kj) converge almost surely to φ(t+lj )

(resp. φ(s−lj )) which is a boundary point of the support of µ.

b) If θj is between two connected components of supp(ν) which are included in [slj , tlj ] then the kj
eigenvalues (λnj−1+i(MN ), 1 ≤ i ≤ kj) converge almost surely to the αj-th quantile of µ (that is
to qαj defined by αj = µ(]−∞, qαj ])) where αj is such that αj = 1− limN

nj−1

N = ν(]−∞, θj ]).

The isotropic case

Here we consider an additive spiked deformation of an isotropic matrix

MN = AN + U∗NBNUN . (3.15)

UN is a unitary matrix whose distribution is the normalized Haar measure on the unitary group U(N).
BN is a deterministic Hermitian matrix of size N ×N such that µBN converges weakly to µ compactly
supported as N → ∞ and such that the eigenvalues of BN converge uniformly to supp(µ) as N → ∞.
AN is a deterministic Hermitian N ×N perturbation as defined at the beginning of Section 3.3.

Note that if AN has no outlier, that is if {θ1, · · · , θJ} = ∅, then the general study of Collins and Male
allows to deduce that a.s. neither does MN (see Corollary 3.1 in [48]) meaning that for all large N , all
the eigenvalues of MN are inside a small neighborhood of the support of µ� ν.

Assume now that AN has outliers. Then we established in [C21] the following result.

Theorem 23. Set K = supp(µ� ν),

K ′ = K ∪

[
J⋃
i=1

ω−1
2 ({θi})

]
,

with ω2 defined as in Section 5.5. The following results hold almost surely for large N :
Given ε > 0 and denoting by K ′ε an ε neighborhood of K, we have

spect(MN ) ⊂ K ′ε.

Let ρ be a fixed number in K ′ \K and θi be such that ω2(ρ) = θi. For any ε > 0 such that (ρ − 2ε, ρ +
2ε) ∩K ′ = {ρ}, we have

card({spect(MN ) ∩ (ρ− ε, ρ+ ε)}) = ki.

Here we explain the sketch of the proof. Fix α ∈ supp(ν). Due to the left and right invariance of the
Haar measure on U(N) we may assume without loss of generality that both AN and BN are diagonal
matrices. More precisely, we let AN be the diagonal matrix

AN = Diag(θ1, . . . , θ1︸ ︷︷ ︸
k1times

, . . . , θJ , . . . , θJ︸ ︷︷ ︸
kJtimes

, α
(N)
1 , . . . , α

(N)
N−r),
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and write AN = A′N +A′′N , where

A′N = Diag(α, . . . , α︸ ︷︷ ︸
r

, α
(N)
1 , . . . , α

(N)
N−r),

and

A′′N = Diag(θ1 − α, . . . , θ1 − α︸ ︷︷ ︸
k1times

, . . . , θJ − α, . . . , θJ − α︸ ︷︷ ︸
kJtimes

, 0, . . . , 0︸ ︷︷ ︸
N−r

).

We have A′′N = P ∗NΘPN , where PN is the r×N matrix representing the usual projection CN → Cr onto
the first r coordinates, and

Θ = Diag(θ1 − α, . . . , θ1 − α︸ ︷︷ ︸
k1times

, . . . , θJ − α, . . . , θJ − α︸ ︷︷ ︸
kJtimes

).

The matrices A′N and BN have no outliers, and therefore [48, Corollary 3.1] applies to the matrix
M ′N = A′N + U∗NBNUN . Note that the limiting spectral measure is still µ � ν. The first key idea is
due to Benaych-Georges and Nadakuditi [29] and consists in reducing the problem of locating outliers of
the deformations to a convergence problem of a fixed size r × r random matrix, by using the Sylvester’s
determinant identity: for rectangular matrices X and Y such that XY and Y X are square, we have

det(I +XY ) = det(I + Y X). (3.16)

Given z outside the support of µ� ν, we have

det(zIN − (AN + U∗NBNUN )) = det(zIN −M ′N ) det(IN − (zIN −M ′N )
−1

P ∗NΘPN ),

so that using Sylvester’s identity, we obtain that

det(zIN − (AN + U∗NBNUN )) = det(zIN −M ′N ) det(Ir − PN (zIN −M ′N )
−1

P ∗NΘ).

We conclude that the eigenvalues of AN +U∗NBNUN outside µ� ν are precisely the zeros of the function
det(FN (z)), where

FN (z) = Ir − PN (zIN −M ′N )
−1

P ∗NΘ. (3.17)

The key idea is now to establish an approximate matricial subordination result. Biane [34] proved the
stronger result that for any a and b free selfadjoint random variables in a tracial W*-probability space,
there exists an analytic self-map ω : C+ → C+ of the upper half-plane so that

EC[a]

[
(z − (a + b))−1

]
= (ω(z)− a)−1, z ∈ C+. (3.18)

Here EC[a] denotes the conditional expectation onto the von Neumann algebra generated by a. It can be
proved that an approximate version does hold in the sense that the compression

PN

[
E
[
(z − (A′N + U∗NBNUN ))−1

]−1
+A′N

]
P ∗N

is close to ω2(z)Ir, as N goes to infinity, where ω2 is the subordination function from (5.15). For this
task we use the following lemma.
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Lemma 2. Assume that ε > 0, and T ∈MN (C) satisfies the inequality

|k∗(TY − Y T )h| ≤ ε‖Y ‖

for every rank one matrix Y ∈MN (C) and all unit vectors h, k ∈ CN . Then for any w in the numerical
range W (T ) = {h∗Th : ‖h‖ = 1}, we have ‖T − wIN‖ ≤ 2ε.

Thanks to this lemma, we establish that there exists (ω(N)(z))N in C such that

lim
N→∞

‖E
[
(zIN − (A′N + U∗NBNUN ))−1

]−1
+A′N − ω(N)(w)IN‖ = 0,

and thus

E
[
(zIN − (A′N + U∗NBNUN ))−1

]
≈
(
AN − ω(N)(z)IN

)−1

.

Then we use asymptotic freeness and subordination property to prove that ω(N)(z) converges towards
ω2(z).
Thus, it turns out that almost surely the sequence {FN}N converges uniformly on compact subsets of
C \ supp(µ� ν) to the analytic function F defined by

F (z) = Diag

1− θ1 − α
ω2(z)− α︸ ︷︷ ︸
k1times

, . . . , 1− θJ − α
ω2(z)− α︸ ︷︷ ︸
kJtimes

 .

The set of points z such that F (z) is not invertible is precisely
⋃J
i=1 ω

−1
2 ({θi}). Theorem 23 follows by

Hurwitz’s Theorem.

It follows from this result that a remarkable new phenomenon arises: a single spike of AN can generate
asymptotically several outliers of MN . This arises from the fact that the restriction to the real line of
some subordination functions may be many-to-one, that is, with the above notation, the set ω−1

i ({θ}) may
have cardinality strictly greater than 1, unlike the subordination function related to free convolution with
a semicircular distribution that was used in Section 3.3.1. The following numerical simulation illustrates
the appearance of two outliers arising from a single spike. We take N = 1000 and MN = AN +UNBNU

∗
N ,

where BN = diag(−1, . . . ,−1︸ ︷︷ ︸
N
2

, 1, . . . , 1︸ ︷︷ ︸
N
2

), and

AN =

[
WG
N−1

2 0(N−1)×1

01×(N−1) 10

]
,

with WG
N−1 being sampled from a standard 999× 999 GUE.. This is not a spiked deformed GUE model

and now, the spike θ = 10 is associated to the matrix approximating the semicircular distribution. We
have the subordination identities

gµsc�ν(z) = gν(ω2(z)) = gµsc(ω1(z))

where ω2 is injective on R \ supp (µsc � ν) but ω1 may be many to one. The equation ω1(ρ) = 10 has 2
solutions ρ1 and ρ2.
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Actually, in [C21] we also consider additive models where both AN and BN have spiked outliers
([C21]). Namely, let us consider the matricial model (3.15) where we assume that there exist a spiked
θ /∈ supp(ν) which is an eigenvalue of AN with multiplicity k and a spiked α /∈ supp(µ) which is an
eigenvalue of BN with multiplicity l, whereas the other eigenvalues are uniformly close to the limiting
supports. We have the subordination properties

gµ�ν(z) = gν(ω2(z)) = gµ(ω1(z)).

If there exists ρ ∈ R \ supp(µ� ν) such that {
ω1(ρ) = α
ω2(ρ) = θ

then for all large N , there are k + l outliers of MN in a neighborhood of ρ.

Such results are established in [C21] for multiplicative perturbations of unitarily invariant matricial
models, based on similar ideas, with the subordination function replaced by its multiplicative counterpart.

3.3.2 Eigenvectors

For a general perturbation, dealing with sample covariance matrices, S. Péché and O. Ledoit [116] in-
troduced a tool to study the average behaviour of the eigenvectors but it seems that this did not allow
them to focus on the eigenvectors associated with the eigenvalues that separate from the bulk. It turns
out that in our studies [C17], [C21], [C24], we point out that the angle between the eigenvectors of the
outliers of the deformed model and the eigenvectors associated to the corresponding original spikes is
determined by free subordination functions.

The following theorem [C17], [C21] holds for spiked additive deformations in the independent case
as well as in the isotropic case. Let AN be a deterministic deformation as defined as the beginning of
Section 3.3; dealing with either a deformed Wigner matrix or a deformed isotropic matrix as defined by
(3.15), we have the following
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Theorem 24. Set K = supp(µ� ν),

K ′ = K ∪

[
p⋃
i=1

ω−1
2 ({θi})

]
,

and let ω2 be the subordination function satisfying (5.15). Let ρ be a fixed number in K ′ \K and θi be
such that ω2(ρ) = θj. Let ε > 0 be such that (ρ − 2ε, ρ + 2ε) ∩ K ′ = {ρ}. Let ξ be a unit eigenvector
associated to an eigenvalue of MN in (ρ− ε, ρ+ ε). Then when N goes to infinity,

‖PKer (θlIN−AN )(ξ)‖2 →
δjl
ω′2(ρ)

almost surely

Similar results are established for spiked multiplicative deformations in the independent case as well as
in the isotropic case [C17], [C21] and for information-plus-noise type models in [C24] in the independent
case. See the following tabular in Section 3.3.3. Note that in the i.i.d case everything is explicit and can
be rewritten as follows using the φi’s defined in Section 3.2.2.

Theorem 25. Let nj−1+1, . . . , nj−1+kj the descending ranks of θj among the eigenvalues of ÃN defined
by (3.11) and ξ(j) a unit eigenvector associated to one of the eigenvalues (λnj−1+q(MN ), 1 ≤ q ≤ kj).
Then when N goes to infinity,

• For any θl 6= θj,

‖PKer (θlIN−ÃN )(ξ(j))‖ → 0 almost surely

•
‖PKer (θjIN−ÃN )(ξ(j))‖

2 → τj almost surely

where τj =



φ′1(θj) = 1− σ2
∫

1
(θj−x)2 dν(x) for deformed Wigner matrices

θjφ
′
2(θj)

φ2(θj)
=

1−c
∫

x2

(θj−x)2
dν(x)

1+c
∫

x
(θj−x)

dν(x)
for sample covariance matrices

φ′3(θj)
1+σ2cgν(θj)

for information-plus-noise type matrices

Here are the common basic ideas [C17] of the proof of these results.
First note that if u1, . . . , uN and w1, . . . , wN are respectively a basis of eigenvectors associated with
λ1(ÃN ), . . . , λN (ÃN ) and with λ1(MN ), . . . , λN (MN ), we have

Tr
[
h(MN )f(ÃN )

]
=
∑
k,l

h(λk(MN ))f(λl(ÃN ))|〈ul, wk〉|2.

Thus, since the θl’s separate from the rest of the spectrum of ÃN and the outliers of MN separate from
the rest of the spectrum of MN , one can deduce the asymptotic norm of the projection onto an eigenspace
associated to a spike θi, of an eigenvector associated to an outlier of MN from the study of the asymptotic

behaviour of Tr
[
h(MN )f(ÃN )

]
for a fit choice of h and f . Then, a concentration of measure phenomenon

reduces the problem to the study of E(Tr
[
h(MN )f(ÃN )

]
).
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The third key point is to approximate the function h by its convolution by the Poisson Kernel in order
to exhibit the resolvent of the deformed model

E
[
Tr
[
h(MN )f(ÃN )

]]
= − lim

y→0+

1

π
=
∫

E
(
Tr
[
GN (t+ iy)f(ÃN )

])
h(t)dt

where GN (z) = (zIN −MN )−1. Finally, writing ÃN = U∗DU , with D diagonal and U unitary, defining
G̃N := UGNU

∗, the result follows from sharp estimations of E({G̃N}kk(z)), for any k in {1, . . . , N}.

3.3.3 Unified understanding

In conclusion, solving the problem of outliers consists in solving an equation involving the relevant
free subordination function and the spikes of the perturbation. Moreover, the norm of the orthogonal
projection of an eigenvector associated to an outlier of the deformed model onto the eigenspace of the
corresponding spike of the perturbation is asymptotically determined by the free subordination function.
This is summarized in the following tabular. In the tabular, YN denotes a Hermitian random matrix of iid
type (YN = WN , SN or σXN√p according to the deformations, see Section 1.1) or YN is unitarily invariant

(resp. biunitarily invariant for the information-plus-noise type model). We use notations introduced in
Section 5.5.

MN = AN + YN
µAN →N→+∞ ν
µYN →N→+∞ µ
θ ∈ Spect(AN )
θ multiplicity ki
θ /∈ supp(ν)

MN = A
1/2
N YNA

1/2
N

µANA∗N →N→+∞ ν
µYN →N→+∞ µ
θ ∈ Spect(AN )
θ multiplicity ki
θ > 0, θ /∈ supp(ν)

MN = (AN + YN )(AN + YN )∗

µANA∗N →N→+∞ ν
µYNY ∗N →N→+∞ µ√
µ or

√
ν �c infinitely divisible

θ ∈ Spect(ANA
∗
N )

θ multiplicity ki
θ > 0, θ /∈ supp(ν)

µMN
→N→+∞ µ� ν µMN

→N→+∞ µ� ν µMN
→N→+∞ (

√
µ�c

√
ν)2

gτ (z) =
∫
R
dτ(x)
z−x Ψτ (z) = 1

z gτ ( 1
z )− 1 H

(c)√
τ
= c

z gτ ( 1
z )2 + (1− c)gτ ( 1

z )

gµ�ν(z) = gν(ωµ,ν(z)) Ψµ�ν(z) = Ψν(Fµ,ν(z)) H
(c)√
µ�c
√
ν
(z) = H

(c)√
ν
(Ωµ,ν(z))

ki outliers of MN

in the neighborhood

of each ρ s.t

ωµ,ν(ρ) = θ

ki outliers of MN

in the neighborhood

of each ρ s.t
1

Fµ,ν(1/ρ) = θ

ki outliers of MN

in the neighborhood

of each ρ s.t
1

Ωµ,ν(1/ρ) = θ

ξ eigenvector of MN

associated to an outlier

in the neighborhood

of ρ s.t ωµ,ν(ρ) = θ

‖PKer(θI−A)
ξ‖2 →N→+∞

1

ω
′
µ,ν(ρ)

ξ eigenvector of MN

associated to an outlier

in the neighborhood

of ρ s.t 1
Fµ,ν(1/ρ)

= θ

‖PKer(θI−A)
ξ‖2 →N→+∞

ρFµ,ν(1/ρ)

F
′
µ,ν(1/ρ)

ξ eigenvector of MN

associated to an outlier

in the neighborhood

of ρ s.t 1
Ωµ,ν(1/ρ)

= θ

‖PKer(θI−A)
ξ‖2 →N→+∞

ρ2g
(
√
µ�c
√
ν)2

(ρ)

θ2gν(θ)Ω
′
µ,ν(1/ρ)
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Note that up to now, the formula in the lower right corner of the previous tabular, concerning the
limiting projection of the eigenvectors associated to outliers of Information-Plus-Noise type models in the
isotropic case has been proved only for finite rank perturbation AN .

3.4 Fluctuations at edges of spiked deformed models

In this section, we present some results on fluctuations of outliers and eigenvalues at soft edges of the
limiting support of spiked deformed models, with particular stress on understanding the phenomena
through free probability theory. Note that, while global fluctuations of eigenvalues of large random
matrices have been described in a series of papers by Mingo et al. [49, 103, 104] in terms of the so-called
second order freeness, second order freeness does not seem to be the apropriate tool for the analysis of
fluctuations of outliers.

3.4.1 Deterministic full rank deformations of Gaussian models

The seminal works concerning full rank additive deformations of a GUE matrix made strong assumptions
on the rate of convergence of µAN to ν. In [126], the author investigates the local edge regime which deals
with the behavior of the eigenvalues near any regular extremity point u0 of a connected component of
supp(µsc � ν). The typical size of the fluctuations of the eigenvalues at regular edges (see Section 3.2.3)
is N−2/3. [126] considers the case where µAN concentrate quite fast to the measure ν. In particular,
there are no spike. More precisely [126] makes a technical assumption on the uniform convergence of the
Stieltjes transform of µAN to gν :

sup
z∈K
|gµAN (z)− gν(z)| ≤ N−2/3−ε, (3.19)

where K is some compact subset of the complex plane at a positive distance of the support of ν. Then,
[126] proves that the eigenvalues converging to u0 have universal asymptotic behavior, characterized by
the Tracy-Widom distribution. In [2] and [1], [37, 5] the authors consider the case where AN has two
distinct eigenvalues ±a of equal multiplicity. They proved the Tracy-Widom fluctuations at edges (which
are all regular since ν is discrete).
It turns out that the above strong assumptions made on the rate of convergence of µAN to ν can be re-
moved by studying the asymptotic distribution of eigenvalues in the vicinity of mobile edges namely the
edges of the deterministic equivalent µsc � µAN of the empirical eigenvalue distribution of the deformed
GUE. In [C19], we establish the following results.

Let d be a regular right edge of supp(µsc�ν). Assume moreover that for any θj such that
∫ dν(s)

(θj−s)2 =

1/σ2, we have d 6= φ1(θj) = θj − σ2gν(θj). It turns out that for η small enough, for all large N , there
exists a unique right edge dN of supp(µsc � µAN ) in ]d − η, d + η[ and the asymptotic distribution of
eigenvalues in the vicinity of dN is universal as the following Theorem 26 states.

Theorem 26. ([C19]) Let k be a given fixed integer. Let λmax ≥ λmax−1 ≥ · · ·λmax−k+1 denote the k
largest of those eigenvalues of MN converging to d. There exists α > 0 depending on dN only such that
the vector

N2/3

α
(λmax − dN , λmax−1 − dN , . . . , λmax−k+1 − dN )

converges in distribution as N → ∞ to the so-called Tracy-Widom GUE distribution for the k largest
eigenvalues (see [142]).
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To define the limiting correlation function at an outlier, we consider for k = 1, 2, . . . , the distribution
Gk(·) given by

Gk(x) =
1

Zk

∫ x

−∞
· · ·
∫ x

−∞

∏
1≤i<j≤k

|ξi − ξj |2 ·
k∏
i=1

e−
1
2 ξ

2
i dξ1 · · · dξk. (3.20)

Gk is the distribution of the largest eigenvalue of a k × k GUE. Let θi be a spiked eigenvalue with
multiplicity ki, such that

∫
1

(θi−x)2 dν(x) < 1/σ2. Recall that in [C15], we prove that the spectrum of

MN exhibits ki eigenvalues in a neighborhood of

ρθi = θi + σ2

∫
dν(x)

θi − x
. (3.21)

Dealing with mobile edges related to µsc � µAN , [C19] obtains the following universal result.

Theorem 27. Let θi be such that
∫ dν(x)

(θi−x)2 < 1/σ2 Then, for ε > 0 small enough, for all large N ,

supp(µsc�µAN ) has a unique connected component [Li(N), Di(N)] inside ]ρθi − ε, ρθi + ε[. Let us denote
by λmax the largest of the ki outliers around ρθi . There exists c > 0 depending on θi and ν only such that

lim
N→∞

P
(√

Nc

(
λmax −

Li(N) +Di(N)

2

)
≤ x

)
= Gki(x).

Actually, the ki outliers of MN close to ρθi fluctuate at rate
√
N around Li(N)+Di(N)

2 as the eigenvalues
of a ki × ki GUE.

In [1, 2], dealing with AN such that µAN is a finite combination of Dirac delta masses, the authors
also consider the case where u0 is a point where two connected components of supp(µsc � ν) merge so
that, denoting by p the density of µsc � ν, p(u) > 0,∀u ∈ (u0 − ε;u0 + ε) \ {u0} for some ε > 0 and
p(u0) = 0 (u0 is a so-called cusp point). In this case, the limiting eigenvalue statistics are described by
the so-called Pearcey kernel defined by

KP (x, y) :=
1

2iπ

∫
Γ0

dt

∫ i∞

−i∞
dse−t

4+xt+s4−sy 1

s− t
. (3.22)

The contour Γ0 is formed by two curves lying respectively to the right and left of 0: one goes from ∞eiπ4
to ∞e−iπ4 and the other from −∞eiπ4 to −∞e−iπ4 . In [C19], we also investigates the fluctuations in a
neighborhood of an isolated point of vanishing density. Let u0 ∈ R be such that p(u0) = 0 and that
there exists ε > 0 such that, ∀u ∈]u0 − ε;u0 + ε[\{u0}, p(u) > 0 . Assume that for any θi such that∫ dν(s)

(θi−s)2 = 1/σ2, we have θi + σ2gν(θi) 6= u0. Set t0 = Ψ−1
σ,ν(u0) where

Ψσ,ν(t) = t+ σ2

∫
R

(t− x)dν(x)

(t− x)2 + vσ,ν(t)2

and the function vσ,ν : R→ R+ is defined by

vσ,ν(u) = inf

{
v ≥ 0,

∫
R

dν(x)

(u− x)2 + v2
≤ 1

σ2

}
.

The function Ψσ,ν has been introduced by Biane in [33]: it is an homeomorphism from R \O1 (where O1

is defined in Section 3.2.2) onto the support of µsc�ν. Assuming that the equation
∫ dµAN (x)

(t−x)2 −1/σ2 = 0
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admits a unique solution t ∈ C in a neighborhood of t0, we prove that for η small enough, for all large
N, there exists uN in ]u0 − η;u0 + η[ such that pN (uN ) = 0 and ∀u ∈]u0 − η;u0 + η[\{uN}, pN (u) > 0,
where pN denotes the density of µsc � µAN .
Last we derive the asymptotic behavior of eigenvalues at the vicinity of uN .

Theorem 28. [C19] Let k be a fixed integer and f : Rk → R be a symmetric bounded function with
compact support. There exists κ > 0 such that

E
∑

1≤i1<i2<···<ik≤N

f
(
κN

3
4 (λi1 − uN ), κN

3
4 (λi2 − uN ), . . . , κN

3
4 (λik − uN )

)
→

N→∞

∫
Rk

1

k!
f(x1, . . . , xk) det(KP (xi, xj))

k
i,j=1

k∏
i=1

dxi.

The basic tool of [C19] is a saddle point analysis of the correlation functions of the deformed GUE, the
contours involving the image of R by the continuous extension of the subordination function ω2 defined
by (5.15) with µ = µsc and ν = µAN .

[79, 80, 81] investigate the behavior of the eigenvalues of Gaussian Sample covariance matrices in the
case of a full rank perturbation AN of the identity, in the vicinity of the soft edges, the hard edge when
existing, and the cusp points in the support of µMP � ν. They obtain the analog of Theorems 26 and 28
dealing with mobile edges namely the edges of the deterministic equivalent µMP �µAN . As for deformed
GUE model, the distribution of the eigenvalues is explicit, with a determinantal structure. The analysis
of the fluctuations relies on an expression of the distribution of the extremal eigenvalues in terms of a
Fredholm determinant and then an asymptotic analysis.

Several recent works proved the universality of the Tracy-Widom fluctuations at soft edges for quite
general deformed Wigner matrices or sample covariance matrices without outliers. The methods pursue
a Green function comparison strategy [19, 94, 95] or make use of anisotropic local laws [91]. We do not
detail the results since they do not fall under the scope of free probability theory.

3.4.2 Random perturbations

If one let the perturbation matrix AN be random then the mobile edges of the equivalent measure
become random and may lead to different rates of convergence and different asymptotic distributions.
We present two examples established respectively by Johansson [85] and Lee and Schnelli [93] that we
revisited through free convolutions.

• Johansson [85] considered

MN = WG
N +AN

where WG
N is a GUE matrix as defined in Section 1.1 and

AN = N−1/6diag(y1, . . . , yN)

where the yi’s are iid real random variables with distribution τ and independent from WG
N . Let

us assume that τ is compactly supported and set v2 =
∫
x2dτ(x). Note that almost surely µAN

converges weakly to δ0 and µMN
converges weakly to µsc. Denote by d̃N the deterministic upper
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right edge of µsc� τ
N1/6 where τ

N1/6 denotes the pushforward of τ by the map x 7→ x
N1/6 . Johansson

established that
σ−1N2/3

(
λmax(MN )− d̃N

)
D−→ X + Y (3.23)

where X and Y are independent random variables, X has the Tracy-Widom distribution and Y has

distribution N(0, v
2

σ2 ). Note that the upper right edge d̃N of µsc � τ
N1/6 is defined by

d̃N = t̃N + σ2

∫
1

t̃N − x/N1/6
dτ(x), (3.24)

where t̃N in the vicinity of σ satisfies∫
1

(t̃N − x/N1/6)2
dτ(x) =

1

σ2
. (3.25)

Consider now the random upper right edge dN of µsc � µAN . It is defined by

dN = tN + σ2 1

N

N∑
i=1

1

tN − yi/N1/6
, (3.26)

where tN in the vicinity of σ satisfies

1

N

N∑
i=1

1

(tN − yi/N1/6)2
=

1

σ2
. (3.27)

It is easy to see that (3.24), (3.25), (3.26) and (3.27) yield

dN − d̃N = σ2ZN +O((tN − t̃N )2) and tN − t̃N = O(ZN ),

where
N2/3ZN = N2/3

{
gµAN (t̃N )− g τ

N1/6
(t̃N )

}
converges weakly to a centered Gaussian distribution with variance v2/σ4. Thus, it comes readily
that

σ−1N2/3
{
dN − d̃N

}
D−→ N(0, v2/σ2). (3.28)

Now (3.23) readily follows since by Theorem 26, given AN , σ−1N2/3 (λ1(MN )− dN ) converges
weakly to the Tracy-Widom distribution.

• Another example is provided by [93] who considered the following deformed model

WN + diag(v1, . . . , vN )

where WN is a Wigner matrix and vi are i.i.d random variables independent with WN , with distri-
bution

dν(x) = Z−1(1 + x)a(1− x)bh(x)1[−1,1](x)dx

with a < 1, b > 1 and h > 0 is a C1-function. Assume that WN is a GUE. Let σ0 be defined by∫
1

(1−x)2 dν(x) = 1
σ2

0
. According to Section 3.2.2, we have supp (µsc � ν) = [d−σ , d

+
σ ]. Morevover, by

(3.9), for all σ > σ0, d+
σ is a regular edge, the density p of µsc�ν satisfies p(x) ∼ C(d+

σ − x)
1
2 . There-

fore denoting by d+
σ (N) the (random) upper right edge of supp (µsc � µAN ), Theorem 26 yields the
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convergence in distribution of α−1N2/3(λ1(MN )− d+
σ (N)) towards the Tracy-Widom distribution.

A similar study as in Johansson’s example shows that the random edge d+
σ (N) fluctuates as

√
N(d+

σ (N)− d+
σ )
D−→ N

(
0, σ2

(
1− σ2

(
gµsc�ν(d+

σ )
)2))

.

Thus, we can deduce that

√
N(λ1(MN )− d+

σ )
D−→ N

(
0, σ2

(
1− σ2

(
gµsc�ν(d+

σ )
)2))

.

Note that for all σ < σ0, according to (3.10), p(x) ∼ C(d+
σ − x)b. Lee and Schnelli also investigate

the fluctuations at the non-regular edge d+
σ and establish that

N
1
b+1 (λ1(MN )− d+

σ )
D−→ Gb+1(s)

as N goes to infinity, where Gb+1(s) = (1 − exp(( sc )
b+1

))1I[0;+∞[(s) (Weibull distribution with
parameters b+ 1 and c = c(ν, σ)).
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The universal understanding, provided by free probability theory, of the asymptotic spectrum of models
involving several matrices, culminates in the following chapter dealing with non-commutative polynomials
in random independent Hermitian matrices; this investigation is achieved by a general methodology based
on a linearization procedure and operator-valued subordination properties.
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Chapter 4

Polynomials in independent random
matrices

We refer to the Appendix where we recall some definitions and properties on freeness with amalgamation
introduced by Voiculescu in [148]. Below, we briefly remind the linearization procedure introduced by
Anderson in [3, Proposition 3] and the algorithm elaborated by Belinschi, Mai and Speicher in [23] to
compute the distribution of a selfadjoint polynomial in free non commutative random variables. We refer
to the book [105] by Mingo and Speicher and references therein. Then, we present our contributions in
[C23] and [C25] dealing with strong asymptotic freeness, deterministic equivalent measures and outlying
eigenvalues of Hermitian polynomial in independent random matrices.

4.1 Linearization

A powerful tool to deal with non commutative polynomials in random matrices or in operators is the
so-called “linearization trick” that goes back to Haagerup and Thorbjørnsen [77, 78] in the context of
operator algebras and random matrices (see [105]). We use the procedure introduced in [3, Proposition
3], which has several advantages, to be described below.

Given a polynomial P ∈ C〈X1, . . . , Xk〉, we call linearization of P any LP ∈Mm(C)⊗C〈X1, . . . , Xk〉
such that

LP :=

(
0 u
v Q

)
∈Mm(C)⊗ C〈X1, . . . , Xk〉

where

1. m ∈ N,

2. Q ∈Mm−1(C)⊗ C〈X1, . . . , Xk〉 is invertible,

3. u is a row vector and v is a column vector, both of size m− 1 with entries in C〈X1, . . . , Xk〉,

4. the polynomial entries in Q, u and v all have degree ≤ 1,

5.
P = −uQ−1v,
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It is shown in [3] that, given a polynomial P ∈ C〈X1, . . . , Xk〉, there exist m ∈ N and a linearization
LP ∈Mm(C)⊗C〈X1, . . . , Xk〉. The algebra of polynomials in non-commuting indeterminates X1, . . . , Xk

becomes a ∗-algebra by anti-linear extension of (Xi1Xi2 · · ·Xim)∗ = Xim · · ·Xi2Xi1 . It turns out that if
P is self-adjoint, LP can be chosen to be self-adjoint.

Example: P (X1, X2) = X1X2 +X2X1 +X2
1 .

Note that LP =

 0 X1 X2 + 1
2X1

X1 0 −1
X2 + 1

2X1 −1 0

 is a selfadjoint linearization of P.

LP = γ ⊗ 1 + α1 ⊗X1 + α2 ⊗X2,

where

α2 =

0 0 1
0 0 0
1 0 0

 , α1 =

0 1 1
2

1 0 0
1
2 0 0

 , γ =

0 0 0
0 0 −1
0 −1 0

 .

The following results are fundamental for our purpose.

Lemma 3. Let P = P ∗ ∈ C〈X1, . . . , Xk〉 and let LP ∈Mm(C〈X1, . . . , Xk〉) be a linearization of P with
the properties outlined above. Let e11 be the m×m matrix whose single nonull entry equals one and occurs
in the row 1 and column 1. Let y = (y1, . . . , yk) be a k-tuple of self-adjoint operators in a C∗-algebra A.
Then, for any z ∈ C, ze11 ⊗ 1A − LP (y) is invertible if and only if z1A − P (y) is invertible and we have

(ze11 ⊗ 1A − LP (y))
−1

=

(
(z1A − P (y))

−1
?

? ?

)
.

Lemma 4. [C23] Let P = P ∗ ∈ C〈X1, . . . , Xk〉 and let LP ∈ Mm(C〈X1, . . . , Xk〉) be a linearization

of P with the properties outlined above. Let yn = (y
(n)
1 , . . . , y

(n)
k ) be a k-tuple of self-adjoint operators

in a C∗-algebra A such that supn maxki=1 ‖y
(i)
n ‖ = C < +∞. Let z0 ∈ C be such that, for all large n,

the distance from z0 to the spectrum of P (yn) is greater than δ. Then, there exists a constant ε > 0,
depending only on δ, LP and C such that the distance from 0 to sp(z0e11 ⊗ 1A − LP (yn)) is at least ε.

4.2 An algorithm to compute the distribution of a selfadjoint
polynomial in free non commutative random variables

Belinschi, Mai and Speicher [23] (see also [6]) elaborated a general algorithm to deal with the distribution
of selfadjoint polynomials in free variables. The main idea will be to relate such a polynomial with an
operator-valued linear polynomial, and then use operator-valued convolution to deal with the latter. The
distribution of a self-adjoint polynomial P (x1, . . . , xn) in free variables x1, . . . , xn in a C∗-probability
space (A, φ) can be deduced from the operator-valued distribution with respect to E = idm ⊗ φ of a
corresponding linearization LP := b0 ⊗ 1 + b1 ⊗ x1 + . . . + bn ⊗ xn ∈ Mm(C) ⊗ A. Indeed, according to
Lemma 3,

φ((z1A − P (x1, . . . , xn))−1) = lim
ε↓0

[idm ⊗ φ((Λε(z)− LP (x1, . . . , xn))−1)]11
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for all z ∈ C+ where

Λε(z) =


z (0) (0)
0 iε (0)

(0)
. . . (0)

(0) (0) iε

 (4.1)

and one can then obtain the desired distribution of P (x1, . . . , xn) by applying the Stieltjes inversion
formula. The freeness of x1, . . . , xn implies the freeness over Mm(C) of b1⊗x1, . . . , bn⊗xn. We have finally
reduced the determination of the distribution of P (x1, . . . , xn) to a problem involving operator-valued
additive free convolution. However, in spite of the existence of operator-valued Cauchy and R-transforms
[148, 150] there are rarely any non-trivial operator-valued examples where an explicit solution can be
written down. It is the subordination formulation of those convolutions which comes to the rescue as
follows.
For any ξ ∈Mm(C)⊗A such that ξ = ξ∗, define the Mm(C)-valued Cauchy transform

Gξ(κ) = idm ⊗ φ((κ⊗ 1A − ξ)−1),

for any κ ∈ H+(Mm(C)) := {b ∈Mm(C),=b > 0}. Note that, for j = 1, . . . , n, the Mm(C)-valued Cauchy
transform Gbj⊗xj is completely determined by the scalar-valued Cauchy transform gµxj =

∫
1
z−tdµxj via

Gbj⊗xj (κ) = lim
ε↓0
− 1

π

∫
R

(κ− tbj)−1=m(gµxj (t+ iε))dt.

Now, by Theorem 45,
Gb1⊗x1+b2⊗x2(κ) = Gb1⊗x1 (ωm(κ))

where ωm(κ) is the unique fixed point of

fκ : H+(Mm(C))→ H+(Mm(C)), fκ(w) = hy2
(hy1

(w) + κ) + κ (4.2)

where yi = bi ⊗ xi, hyi(κ) = E
[
(κ− yi)−1

]−1 − b
and ωm(κ) = lim

k→+∞
f◦kκ (w), for any w ∈ H+(Mm(C)).

Then one can compute ωm(κ) = limk→+∞ f◦kκ (w), for some w ∈ H+(Mm(C)) and deduceGb1⊗x1+b2⊗x2
(κ).

One can get Gb1⊗x1+···bn⊗xn(κ) by iterating this procedure. The Cauchy transform of LP is then given
by

GLP (κ) = GLP−b0⊗1(κ− b0).

Thus, the algorithm of Belinschi, Mai and Speicher [23] to compute the distribution of a self-adjoint
polynomial P (x1, . . . , xn) in free variables x1, . . . , xn in a C∗-probability space (A, φ) can be summarized
as follows.

• STEP 1: Find a self-adjoint linearization LP := b0 ⊗ 1 + b1 ⊗ x1 + . . .+ bn ⊗ xn ∈Mm(A).

Fix κ ∈ H+(MN (C)).

• STEP 2: Compute Gbj⊗xj (κ) = limε↓0− 1
π

∫
R(κ− tbj)−1=m(gµxj (t+ iε))dt.

• STEP 3: Compute ωm(κ) = limk→+∞ f◦kκ (w), for some w ∈ H+(Mm(C)), where fκ is defined by
(4.2). Then compute Gb1⊗x1+b2⊗x2

(κ) = Gb1⊗x1
(ωm(κ)) . Iterate and get Gb1⊗x1+···bn⊗xn(κ).

• STEP 4: Compute GLP (κ) = GLP−b0⊗1(κ− b0).

• STEP 5: For all z ∈ C+, compute gP (z) = limε↓0[GLP (Λε(z))]11 where Λε(z) is defined by (4.1).

• STEP 6: Apply the Stieltjes inversion formula.
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4.3 Deterministic equivalent measures

In the engineering literature there exists a version of the notion of a deterministic equivalent measure
(going back to Girko [73], see also [82]). This deterministic equivalent measure is obtained by replacing
the Cauchy transform gN of the considered N ×N random matrix model (for which no analytic solution
exists) by a function g̃N which is defined as the solution of a specified system of equations. In [134],
Speicher and Vargas give a more conceptual approach and show that the only meaningful way to get
a closed system of equations when dealing with random matrices is to replace the random matrices by
free variables. In Chapter 3, we introduced such deterministic equivalent measures for three classical de-
formed models. Actually, the results, previously stated in Proposition 3 in Chapter 3, from [9] for sample
covariance matrices and [12] for Information-plus-noise type models, and [C15] for additive deformations
of a Wigner matrix, can be extended to selfadjoint polynomial in Wigner matrices together with deter-
ministic matrices. Indeed, in [C23], we prove that a sequence of deterministic measures plays a central
role in the study of the spectrum of such general models. These measures are computed with the tools
of free probability and are in some sense obtained by taking partially the limit when the dimension goes
to infinity, only for the Wigner matrices, as conceptualized by [134]. We establish that almost surely, for
large dimension, each interval lying at some distance from the supports of these deterministic measures
contains no eigenvalue of the Hermitian polynomial model.

Here are the matricial models we deal with. Let t and r be fixed nonzero integer numbers independent
from N .

• (A
(1)
N , . . . , A

(t)
N ) is a t−tuple of N ×N deterministic matrices such that for any u = 1, . . . , t,

sup
N
‖A(u)

N ‖ <∞, (4.3)

where ‖ · ‖ denotes the spectral norm.

• We consider r independent N ×N random Hermitian matrices X
(v)
N = [X

(v)
ij ]Ni,j=1, v = 1, . . . , r, where,

for each v, [X
(v)
ij ]i≥1,j≥1 is an infinite array of random variables such that X

(v)
ii ,
√

2Re(X
(v)
ij ), i < j,

√
2Im(X

(v)
ij ), i < j, are independent, centered with variance 1 and satisfy:

1. There exists a Kv and a random variable Z(v) with finite fourth moment for which there exists
x0 > 0 and an integer number N0 > 0 such that, for any x > x0 and any integer number N > N0,
we have

1

N2

∑
1≤i,j≤N

P
(
|X(v)

ij | > x
)
≤ KvP

(
|Z(v)| > x

)
. (4.4)

2.

sup
(i<j)∈N2

E(|X(v)
ij |

3) < +∞.

Remark 5. Note that assumption such as (4.4) appears in [51]. It obviously holds if the random variables

X
(v)
ii ,
√

2Re(X
(v)
ij ), i < j,

√
2Im(X

(v)
ij ), i < j, are identically distributed with finite fourth moment.

Here is the result roughly stating that there is no eigenvalue of some polynomial model in such matrices
outside the support of a deterministic measure.
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Theorem 29. ([C23]) Let (A, τ) be a C∗-probability space equipped with a faithful tracial state and

x = (x1, . . . , xr) be a semi-circular system in (A, τ). Let aN = (a
(1)
N , . . . , a

(t)
N ) be a t-tuple of noncommu-

tative random variables which is free from x in (A, τ) and such that the distribution of (aN , a
∗
N ) in (A, τ)

coincides with the distribution of (A
(1)
N , . . . , A

(t)
N , (A

(1)
N )∗, . . . , (A

(t)
N )∗) in (MN (C), 1

N Tr). Let P be a self-
adjoint polynomial in 2t+r noncommutative indeterminates X1, . . . , Xr, Xr+1, . . . , Xr+t, X

∗
r+1, . . . , X

∗
r+t,

where for any i = 1, . . . , r, Xi = X∗i . Let [b, c] be a real interval such that there exists δ > 0 such that, for
any large N , [b− δ, c+ δ] lies outside the support of the distribution of the noncommutative random vari-

able P
(
x1, . . . , xr, a

(1)
N , . . . , a

(t)
N , (a

(1)
N )∗, . . . , (a

(t)
N )∗

)
in (A, τ). Then, almost surely, for all large N , there

is no eigenvalue of the N × N Hermitian matrix P

(
X

(1)
N√
N
, . . . ,

X
(r)
N√
N
, A

(1)
N , . . . , A

(t)
N , (A

(1)
N )∗, . . . , (A

(t)
N )∗

)
in [b, c].

Remark 6. When r = t = 1, A
(1)
N = (A

(1)
N )∗ and P (X1, X2, X

∗
2 ) = X1 +

X2+X∗2
2 , the distribution

of P (x1, a
(1)
N , (a

(1)
N )∗) is the free convolution µsc � µ

A
(1)
N

where µ
A

(1)
N

= 1
N

∑N
i=1 λi(A

(1)
N ), denoting by

λi(A
(1)
N ), i = 1, . . . , N , the eigenvalues of A

(1)
N .

Note that it is sufficient to prove Theorem 29 for Hermitian matrices A
(1)
N , . . . , A

(t)
N by considering their

Hermitian and anti-Hermitian parts. Moreover, using a truncation and Gaussian convolution procedure,

it is sufficient to prove Theorem 29 when we assume that the X
(v)
ij ’s satisfy:

(H) the variables
√

2<eX(v)
ij ,
√

2=mX(v)
ij , (i < j) ∈ N2, X

(v)
ii , i ∈ N, v = 1, . . . , r, are independent,

centered with variance 1 and satisfy a Poincaré inequality with common constant CPI .

Note that this implies that for any p ∈ N,

max
v=1,...,r

sup
(i,j)∈N2

E
(
|X(v)

ij |
p
)
< +∞. (4.5)

We adopt the strategy from [77] and [78] based on a linearization trick and sharp estimates on matricial
Stieltjes transforms. Hence, the proof of Theorem 29 is based on the following key lemma.

Lemma 5. ([C23]) Let (A, τ) be a C∗-probability space equipped with a faithful tracial state and x =

(x1, . . . , xr) be a semi-circular system in (A, τ). Let aN = (a
(1)
N , . . . , a

(t)
N ) be a t-tuple of noncommutative

self-adjoint random variables which is free from x in (A, τ), such that the distribution of aN coincides

with the distribution of (A
(1)
N , . . . , A

(t)
N ) in (MN (C), 1

N TrN ). Then, for all m ∈ N, all self-adjoint matrices
γ, α1, . . . , αr, β1, . . . , βt of size m×m and all ε > 0, almost surely, for all large N , we have

sp(γ ⊗ IN +
∑r
v=1 αv ⊗

X
(v)
N√
N

+
∑t
u=1 βu ⊗A

(u)
N )

⊂ sp(γ ⊗ 1A +

r∑
v=1

αv ⊗ xv +

t∑
u=1

βu ⊗ a(u)
N )+]− ε, ε[. (4.6)

Here, sp(T ) denotes the spectrum of the operator T , IN the identity matrix and 1A denotes the unit of
A.

Indeed, given a noncommutative polynomial P , choosing in Lemma 5 the γ, (αv)v=1,...,r, (βu)u=1,...,t

corresponding to a self-adjoint linearization of P as defined in [3] and using Lemma 4 allow to deduce
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Theorem 29.
The proof of (4.6) requires sharp estimates of gN (z)− g̃N (z) where for z ∈ C \ R,

gN (z) = E
1

m
Trm ⊗

1

N
TrN [(zIm ⊗ IN − γ ⊗ IN −

r∑
v=1

αv ⊗
X

(v)
N√
N

(ω)−
t∑

u=1

βu ⊗A(u)
N )−1]

and

g̃N (z) =
1

m
Trm ⊗ τ [(zIm ⊗ 1A − γ ⊗ 1A −

r∑
v=1

αv ⊗ xv −
t∑

u=1

βu ⊗ a(u)
N )−1].

We establish that there exists a polynomial Q with nonnegative coefficients such that, for z ∈ C \ R,∣∣∣gN (z)− g̃N (z) + ẼN (z)
∣∣∣ ≤ Q(|=mz|−1)

N
√
N

, (4.7)

where ẼN is the Stieltjes transform of a compactly supported Schwartz distribution ∇N on R whose

support is included in the spectrum of γ⊗1A+
∑r
v=1 αv⊗xv+

∑t
u=1 βu⊗a

(u)
N and such that ∇N (1) = 0.

But this required sharp estimate makes necessary a fit use of free operator-valued subordination maps.
In particular, we need an explicit development of the Stieltjes transform up to the order 1

N
√
N

but

the stability under perturbation argument used in [100] does not provide this development from the
approximate matricial subordination equation (obtained by the approximate integration by part formula
in Lemma 1). Therefore we use a strategy based on an invertibility property of matricial subordination
maps related to Mm(C)-valued semicircular variable.

4.4 Strong asymptotic freeness

Let k be an integer greater than zero. Denote by P the set of polynomials in 2k noncommutative indeter-
minates. A sequence of families of variables (aN )N≥1 = (a1(N), . . . , ak(N))n≥1 in C∗-probability spaces
(AN , τn) converge, when N goes to infinity, respectively in distribution if the map P ∈ P 7→ τn(P (aN , a

∗
N ))

converges pointwise and strongly in distribution if moreover the map P ∈ P 7→ ‖P (aN , a
∗
N )‖ converges

pointwise.
Assume that the states τ and (τN )N∈N are faithful. Then, (see Proposition 2.1 [48]) a sequence of

k-tuples aN of selfadjoint noncommutative random variables converges strongly in distribution to a k-
tuple a of selfadjoint noncommutative random variables if and only if for any self-adjoint polynomial
P ∈ C〈X1, . . . , Xk〉, µP (aN ) converges in weak-* topology to µP (a) and the support of µP (aN ) converges
in the Hausdorff topology to the support of µP (a), that is: for any ε > 0, there exists N0 such that for
any N ≥ N0,

supp(µhN
) ⊂ supp(µh) + (−ε,+ε).

(For any noncommutative random variable y, µy denotes its distribution and the symbol supp means
the support of the measure.) In particular, the strong convergence in distribution of a single self-adjoint
variable is its convergence in distribution together with the Hausdorff convergence of its spectrum.

In [77], Haagerup and Thorbjørsen proved the strong asymptotic freeness of independent GUE matri-

ces X
(i)
N , i = 1, . . . , r, namely: almost surely, for any polynomial P in r noncommutative indeterminates,∥∥∥∥∥P

(
X

(1)
N√
N
, . . . ,

X
(r)
N√
N

)∥∥∥∥∥→N→+∞ ‖P (x1, . . . , xr)‖, (4.8)
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where (x1, . . . , xr) is a semi-circular system. Note that this result led to the proof of the very important
result in the theory of operator algebras that Ext(C∗red(F2)) is not a group. (4.8) was proved for Gaussian
random matrices with real or symplectic entries by Schultz [78], for Wigner matrices with symmetric
distribution of the entries satisfying a Poincaré inequality by Capitaine and Donati-Martin [C10] and for
Wigner matrices under i.i.d assumptions and fourth moment hypotheses by Anderson [3].

Voiculescu [146, 149] proved the asymptotic freeness of independent GUE matrices with an extra
family of deterministic matrices with limiting distribution. Male [100] established the strong asymptotic
freeness of independent GUE matrices with an extra independent family of matrices with strong limiting
distribution. Note that in [48], Collins and Male established the strong asymptotic freeness of Haar and
deterministic matrices with strong limiting distribution.
Sticking to the proofs in [77] and [78], we can deduced from Lemma 5 the following strong asymptotic
freeness of independent non-Gaussian Wigner matrices and an extra family of deterministic matrices with
strong limiting distribution.

Theorem 30. ([C23]) Let (A, τ) be a C∗-probability space equipped with a faithful tracial state. Let x =
(x1, . . . , xr) be a semi-circular system and a = (a1, . . . , at) be a t-tuple of noncommutative random vari-

ables which is free from x in (A, τ). Let (A
(1)
N , . . . , A

(t)
N , (A

(1)
N )∗, . . . , (A

(t)
N )∗) and X

(v)
N = [X

(v)
ij ]Ni,j=1, v =

1, . . . , r, be matrices as defined in Section 4.3. Assume moreover that (A
(1)
N , . . . , A

(t)
N , (A

(1)
N )∗, . . . , (A

(t)
N )∗)

converges strongly towards a = (a1, . . . , at, a
∗
1, . . . , a

∗
t ) in (A, τ), that is for any polynomial P in 2t non-

commutative indeterminates,

1

N
TrP

(
A

(1)
N , . . . , A

(t)
N , (A

(1)
N )∗, . . . , (A

(t)
N )∗

)
→N→+∞ τ (P (a1, . . . , at, a

∗
1, . . . , a

∗
t )

and ∥∥∥P (A(1)
N , . . . , A

(t)
N , (A

(1)
N )∗, . . . , (A

(t)
N )∗

)∥∥∥→N→+∞ ‖P (a1, . . . , at, a
∗
1, . . . , a

∗
t )‖A .

Then, almost surely, for any polynomial P in r + 2t noncommutative variables,

lim
N→+∞

1

N
TrP

(
X

(1)
N√
N
, . . . ,

X
(r)
N√
N
,A

(1)
N , . . . , A

(t)
N , (A

(1)
N )∗, . . . , (A

(t)
N )∗

)

= τ (P (x1, . . . , xr, a1, . . . , at, a
∗
1, . . . , a

∗
t )) (4.9)

and

lim
N→+∞

∥∥∥∥∥P
(
X

(1)
N√
N
, . . . ,

X
(r)
N√
N
,A

(1)
N , . . . , A

(t)
N , (A

(1)
N )∗, . . . , (A

(t)
N )∗

)∥∥∥∥∥
= ‖P (x1, . . . , xr, a1, . . . , at, a

∗
1, . . . , a

∗
t )‖A . (4.10)

4.5 Outlying eigenvalues

Let µ be a compactly supported probability measure on R, p be a positive integer, and θ1 ≥ θ2 ≥ · · · ≥ θp
in R \ supp(µ) be a sequence of fixed real numbers. We consider, for all N ∈ N, N ≥ 1, a random
selfadjoint matrix AN ∈MN (C) which satisfies the following conditions:

(A1) the sequence of empirical spectral measures {µAN }∞N=1 converges weakly to µ,

(A2) θ1 ≥ θ2 ≥ · · · ≥ θp are p eigenvalues of AN and
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(A3) the other eigenvalues of AN which may be random , say γj(AN ), j = 1 . . . , N − p, satisfy almost
surely that for every ε > 0 there exists N(ε) ∈ N such that

γj(AN ) ∈ supp(µ) + (−ε, ε), j = 1, . . . , N − p,N ≥ N(ε).

In other words, only the p eigenvalues θ1, . . . , θp prevent {AN}∞N=1 from converging strongly in
distribution to µ.

In [C25], we investigate two polynomial matricial models, both involving AN .

• Our first model involves a sequence {BN}∞N=1 of random Hermitian matrices such that

(B1) almost surely, BN converges strongly in distribution to a compactly supported probability
measure ν on R,

(B2) for each N , the distribution of BN is invariant under conjugation by any N×N unitary matrix.

We consider the matricial model
MN = P (BN , AN ) (4.11)

for any selfadjoint polynomial P in C〈X1, X2〉.

• Our second model deals with a N ×N random Hermitian Wigner matrix XN = [Xij ]
N
i,j=1, where

[Xij ]i≥1,j≥1 is an infinite array of random variables satifying

(X1) Xii,
√

2Re(Xij), i < j,
√

2Im(Xij), i < j, are independent, centered with variance 1,

(X2) there exists a K and a random variable Z with finite fourth moment for which there exists
x0 > 0 and an integer number n0 > 0 such that, for any x > x0 and any integer number
n > n0, we have

1

n2

∑
1≤i,j≤n

P (|Xij | > x) ≤ KP (|Z| > x) .

(X3)
sup

(i<j)∈N2

E(|Xij |3) < +∞.

We consider the matricial model

MN = P (
XN√
N
,AN ) (4.12)

for any selfadjoint polynomial P in C〈X1, X2〉.

According to results of Voiculescu [146] (see also [151]), there exist selfadjoint elements a, b in a II1-factor
(A, τ) such that, almost surely, the sequence {(AN , BN )}∞N=1 converges in distribution to (a, b). More
specifically, a and b are freely independent and µ = µa, ν = µb. In particular, if P is a selfadjoint
polynomial in C〈X1, X2〉,

lim
N→∞

µP (BN ,AN ) = µP (b,a)

almost surely in the weak∗ topology. When p = 0, [48] shows that, almost surely, the sequence
{P (BN , AN )}∞N=1 converges strongly in distribution to P (b, a).
According to (2.10) in [C23] and [4, Theorem 5.4.5], if P is a selfadjoint polynomial in C〈X1, X2〉,

lim
N→∞

µ
P (

XN√
N
,AN )

= µP (x,a)
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almost surely in the weak∗ topology, where a and x are freely independent selfadjoint non commutative
random variables, µ = µa and x is the standard semicircular variable (i.e dµx = 1

2π

√
4− x2 11[−2,2](x)).

As in the first model, when p = 0, Theorem 30 and Proposition 2.1 [48] show that, almost surely, the
sequence {P (XN√

N
, AN )}∞N=1 converges strongly in distribution to P (x, a).

Let YN be either BN or XN√
N

and y be either b or x. As precised below, when p = 0, when N is large,

the spectrum of P (YN , AN ) has no outlier, that is, almost surely for N large enough, the spectrum is
included in a small neighborhood of the support of µP (y,a).
Our main result applies to p > 0. The set of outliers is calculated from the spikes θ1, . . . , θp using
linearization and Voiculescu’s matrix subordination function [150] as follows.
Let LP ∈Mm(C〈X1, X2〉), LP = γ⊗1+α⊗X1 +β⊗X2, be a selfadjoint linearization of P as introduced
in Section 4.1. By Theorem 45, there exists an analytic function ω : H+(Mm(C)) → H+(Mm(C)) such
that

(idm ⊗ τ)
[
(ω(w)⊗ 1− β ⊗ a)−1

]
= (idm ⊗ τ)

[
(w ⊗ 1− (β ⊗ a+ α⊗ b))−1

]
for every w ∈ H+(Mm(C)).

Theorem 31. [C25] Define the function ωo(z) = (ω(ze11 − γ) + iIm)−1. ωo is analytic on C+ and has
an analytic extension to a neighbourhood of R \ sp(P (b, a)). Define

Hj(z) = det[(θjβ + i)ωo(z)− Im]

and denote by mθj (t) the order of t as a zero of Hj(z) at z = t, 1 ≤ j ≤ p.
Suppose that t ∈ R \ sp(P (b, a)) and set m(t) =

∑p
j=1mθj (t). Then there exists δ0 > 0 such that for any

δ ∈ (0, δ0), almost surely for large N , the random matrix P (BN , AN ) has m(t) eigenvalues in the interval
(t− δ, t+ δ), counting multiplicity.

Remark 7. Note that if we know in addition that z 7→ ω(ze1,1−γ) is analytic at z = t, then the function
Hj(z) can be replaced with z 7→ det[θjβ − ω(te11 − γ)]. Then m(t) is equal to the multiplicity of t as a
zero of

z 7→
p∏
j=1

det[θjβ − ω(ze11 − γ)].

This is always the case when b is a semicircular variable and then, when the unitarily invariant matrix
BN is a GUE matrix. When BN is replaced by a Wigner matrix XN satisfying the hypotheses (X1)–(X3),
we obtain the following

Theorem 32. ([C25]) Let a, x be free selfadjoint elements in a C∗-probability space (A, τ) with distri-
bution µ and the standard semicircular distribution µsc respectively. Let ω : H+(Mm(C))→ H+(Mm(C))
be the Mm(C)-valued map such that for all κ ∈ H+(Mm(C)),

ω(κ) = κ− α(IdMm(C) ⊗ τ)
[
(κ⊗ 1A − α⊗ x− β ⊗ a)−1

]
α.

Let t ∈ R \ sp(P (x, a)). Denote by mθi(t) the order of t as a zero of det(ω(ze11 − γ) − θiβ) at z = t,
1 ≤ i ≤ p. Then, for ε small enough, almost surely for large N , there are exactly

∑p
i=1mθi(t) eigenvalues

of P (XN√
N
, AN ) in an ε-neighborhood of t.
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After a linearization procedure of P of the form L ∈ Mm(C〈X1, X2〉) described in Section 4.1, the
firts step of both proofs of Theorem 31 and Theorem 32 consists in reducing the problem, in the spirit
of [31], to the convergence of an Mmp(C)-valued map FN , involving a random matrix-valued generalized
resolvent. Establishing these convergences is the main part of the proofs. Such a convergence is proved
directly for the first model P (UNDNU

∗
N , AN ) by extending the arguments of [C21] and making use of the

fundamental operator-valued subordination properties described in Section 5.7. For the second model
P (XN√

N
, AN ), the convergence of FN is then obtained by a comparison argument to the Gaussian case.

Remark 8. Suppose that µ = δ0. Then the function ω is computed as follows:

ω(w) =
{

idm ⊗ τ [(w ⊗ 1− α⊗ b)−1]
}−1

, w ∈Mn(C).

As an illustration, consider the random matrix

M = AN
XN√
N

+
XN√
N
AN +

X2
N

N
,

where XN is a standard standard GUE matrix of size N and

AN = Diag(θ, 0, . . . , 0), θ ∈ R \ {0}.

In this case, AN has rank one, and thus µ = δ0. It follows that the limit spectral measure Π of M is
the same as the limit spectral measure of X2

N/N . Thus, Π is the Marchenko-Pastur distribution with
parameter 1:

dΠ(x) =

√
(4− x)x

2πx
1(0,4)(x)dx.

The polynomial P is P (X1, X2) = X1X2 + X2X1 + X2
2 , µ = δ0 and ν is the standard semi-circular

distribution. An economical linearization of P is provided by L = γ ⊗ 1 + α⊗X1 + β ⊗X2, where

γ =

0 0 0
0 0 −1
0 −1 0

 , α =

0 1 1
2

1 0 0
1
2 0 0

 , β =

0 0 1
0 0 0
1 0 0

 .
Denote by

GΠ(z) =

∫ 4

0

1

z − t
dΠ(t) =

z +
√
z2 − 4z

2z
, z ∈ C \ [0, 4],

the Cauchy transform of the measure ρ. This function satisfies the quadratic equation zGΠ(z)2−zGΠ(z)+
1 = 0. Suppose now that x /∈ [0, 4]. Since µ = δ0, we have a = 0. Denoting by E = id3 ⊗ τ : M3(A) →
M3(C) the usual expectation and using Remark 8, we have

ω(xe11 − γ) = E((xe11 − γ − α⊗ b)−1)−1, x ∈ R \ [0, 4].

The inverse of xe11 − γ − α⊗ b is then calculated explicitly and application of the expected value to its
entries yields

ω(xe11 − γ) =


1

GΠ(x) 0 0

0 1
xGΠ(x) − 1 1

2xGΠ(x) + 1
2

0 1
2xGΠ(x) + 1

2
1

4xGΠ(x) −
1
4

 .
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The equation det[βθ − ω(xe11 − γ)] = 0 is easily seen to reduce to

θ2GΠ(x)2 − (1−GΠ(x)) = 0. (4.13)

This equation has two solutions, namely

2θ4

−(3θ2 + 1)±
√

4θ2 + 1(θ2 + 1)
,

one of which is negative. The positive solution belongs to [4,+∞) precisely when |θ| >
√

2. Thus, the
matrix MN exhibits one (negative) outlier when 0 < |θ| ≤

√
2 and two outliers (one negative and one

> 4) when |θ| >
√

2. This is illustrated by the simulation presented in Figure 4.1.

Note that Shlyakhtenko [129] considered a framework which makes it possible to understand this kind
of result as a manifestation of infinitesimal freeness. In fact, the results of [129] also very interestingly
allow one to detect the presence of spikes from the behaviour of the bulk of the eigenvalues of the poly-
nomial model, even when there is no outlying eigenvalues.

In the unitarily invariant case, following the strategy of [C17], we also show that the eigenvectors
associated to these outlying eigenvalues have projections of computable size onto the eigenspaces of AN .
The results are stated precisely as follows.

Proposition 4. ([C25]) Assume in addition that the spikes of AN satisfy θ1 > · · · > θp, that is, each
eigenvalue θj has multiplicity one. Assume that detHi0(t) = 0. Denote by EAN the spectral measure of
AN (thus, if S is a Borel set in C, then EAN (S) is the orthogonal projection onto the linear span of all
eigenvectors of AN corresponding to eigenvalues in S).
Then, for ε small enough, almost surely

lim
N→∞

∥∥∥EAN ({θi})
[
EP (UNBNU∗N ,AN )((t− ε, t+ ε))− δi,i0Ci(t)IN

]
EAN ({θi})

∥∥∥ = 0, (4.14)

where Ci(t) = limz→t(z − t)
[
(ω(ze11 − γ)− θiβ)

−1
]

1,1
is the residue of the analytic function z 7→[

(ω(ze11 − γ)− θiβ)
−1
]

1,1
at z = t.
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Eigenvalue Distribution, Theta = 10, Dim = 1000
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Figure 4.1: One sample from the model described in Remark 8 corresponding to θ = 10, with matrix size
N = 1000.

60



The following chapter is only the first stage on the way of the analysis of outliers phenomena for
general non-Hermitian random models involving several non-Hermitian matrices and the described work
does not use free probability theory. Many things remain to understand and generalize; nevertheless, even
at this stage, free probability theory may bring some hint to understand some phenomena (see the end of
Section 5.3.3).
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Chapter 5

Large deformed non-Hermitian
matrices

This chapter presents the joint work [C20] with Charles Bordenave investigating full rank additive per-
turbations of iid random matrices. Under mild assumptions, as N grows, the empirical distribution of
the eigenvalues of full rank additive perturbations of iid random matrices converges weakly to a limit
probability measure β on the complex plane. This work is devoted to the study of the outlier eigenvalues,
i.e. eigenvalues in the complement of the support of β. Even in the simplest cases, a variety of inter-
esting phenomena can occur. We give a sufficient condition to guarantee that outliers are stable (in the
sense that outliers of the deformed model and the perturbation coincide asymptotically as pointed out
by Tao in the finite rank case) and provide examples where their fluctuations vary with the particular
distribution of the entries of the random matrix or the Jordan decomposition of the perturbation. We
also exhibit concrete examples where the outlier eigenvalues converge in distribution to the zeros of a
Gaussian analytic function.

5.1 A concrete motivation: numerical instability of eigenvalues

The instability of the eigenvalues of badly conditioned matrices has dramatic consequences in the nu-
merical computation of eigenvalues. As an example, take N ≥ 1 be an integer and consider the standard
nilpotent matrix

AN =

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

 . (5.1)

Its eigenvalues are obviously all zero. Let UN be a Haar-distributed orthogonal matrix and consider the
unitarily equivalent matrix BN = UNANU

∗
N . If we ask a computer to compute the eigenvalues of BN ,

we obtain a surprising answer. Figure 5.1 is a plot of these numerically computed eigenvalues of BN .

In the spirit of von Neumann and Goldstine [152], Spielman and Teng [135] or Edelman and Rao [59], a
possible way to try to explain this phenomenon is to approximate numerical rounding errors by random-
ness and study the spectrum of the matrix

AN + σYN ,
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Figure 5.1: The blue dots are the numerically computed eigenvalues of BN = UNANU
∗
N , the nilpotent

matrix (5.1) conjugated by a Haar-distributed orthogonal matrix UN N = 2000.

where YN is a random matrix normalized to have an operator norm of order 1 and σ is small positive
parameter. As we shall see, in Section 5.3.4, in the limit N →∞ and then σ → 0, one obtain a reasonable
explanation of the picture of Figure 5.1.

5.2 Finite rank perturbations of i.i.d random matrices

Ginibre (1965) introduced the basic non-Hermitian ensemble of random matrix theory. A so-called Ginibre
matrix is a N × N matrix comprised of independent complex Gaussian entries. More generally, an iid
random matrix is a N ×N random matrix XN = (Xij)1≤i,j≤N whose entries are independent identically
distributed complex entries with mean zero and variance 1. The following theorem is the culmination of
the work of many authors [7, 11, 72, 74, 102, 110, 138, 140].

Theorem 33. Let XN be an iid random matrix. Then the empirical spectral distribution of XN√
N

converges

almost surely to the circular measure µc where dµc = 1
π1I|z|≤1dz.

One can prove that when the fourth moment is finite, there are no significant outliers to the circular law.

Theorem 34. (see Theorem 1.4 in [137]) Let XN be an iid random matrix whose entries have finite

fourth moment: E(X11|4) < +∞. Then the spectral radius ρ(XN√
N

) = sup1≤j≤N

∣∣∣λj (XN√N )∣∣∣ converges to 1

almost surely as N goes to infinity.

We are interested in the impact of a perturbation on the spectrum. Dealing with low rank perturbations,
the global behaviour of the spectrum does not change.

Theorem 35. [140](Corollary 1.17) Let XN be an iid random matrix and for each N let AN be a
deterministic matrix with rank o(N) obeying the Frobenius norm bound

‖AN‖F = (TrANA
∗
N )1/2 = O(N1/2).

Then the empirical spectral distribution of XN√
N

+AN converges almost surely to the circular measure µc
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However, a low rank perturbation AN can now create outliers as we can see in the following simulation
from Tao [137] describing eigenvalues of a matrix XN√

N
+ AN , N = 1000, L(Xij) = 1

2δ1 + 1
2δ−1, with

AN = diag(2 + i, 3, 2, 0, . . . , 0).

Actually, when AN has bounded rank and bounded operator norm and the entries of the iid matrix
have finite fourth moment, Tao proved that outliers are stable in the sense that outliers of MN and AN
coincide asymptotically.

Theorem 36. [137] Let XN be an iid random matrix whose entries have finite fourth moment: E(X11|4) <
+∞. Let AN be a deterministic matrix with rank O(1) and operator norm O(1). Let ε > 0, and suppose
that for all sufficiently large N , there are :

• no eigenvalues of AN in {z ∈ C : 1 + ε < |z| < 1 + 3ε},

• j = O(1) eigenvalues λ1(AN ), . . . , λj(AN ) in {z ∈ C : |z| ≥ 1 + 3ε}.

Then, a.s , for sufficiently large N , there are precisely j eigenvalues of XN√
N

+AN in {z ∈ C : |z| ≥ 1+2ε}
and after labeling these eigenvalues properly, as N goes to infinity, for each 1 ≤ i ≤ j,

λi(
XN√
N

+AN ) = λi(AN ) + o(1).

Now, our issue is to investigate this problem dealing with full rank perturbations.

5.3 Full rank perturbations

We will consider the deformed model:

MN = AN + σYN , (5.2)
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where σ > 0, YN is a N ×N random matrix and AN is a N ×N deterministic matrix. The matrix MN

can be thought as a random perturbation of the matrix AN . We set

YN =
XN√
N
, (5.3)

and we shall consider the following set of statistical assumptions on the matrices XN = (Xij)1≤i,j≤N :

(X1) (Xij)i,j≥1 are independent and identically distributed complex random variables with EXij = 0,
E|Xij |2 = 1.

(X2) E|Xij |4 <∞.

(X3) There exists c > 0 such that for all k ≥ 1 integer E|Xij |k ≤ (ck)c.

Our first assumptions on the matrices AN are as follows:

(A1) There exists M > 0 such that for all N , ‖AN‖ ≤M .

(A2) For all z ∈ C, µ(AN−zIN )(AN−zIN )∗ converges weakly to a probability measure νz.

Example: If AN converges in ?-moments to an operator a in a C∗-non commutative probability space
(A, τ), i.e. for all εl ∈ {1, ∗},

1

N
Tr (Aε1N . . . AεkN )

N→+∞−→ τ (aε1 . . . aεk) ,

then νz is the distribution of (a− z)(a− z)∗.

5.3.1 The limiting empirical spectral distribution

In general, the limiting spectral distribution β of MN = σXN√
N

+AN is no more the circular law.

For a probability measure τ on C such that
∫

log(1 + |λ|)dτ(λ) < ∞, we denote by hτ its logarithmic
potential defined for z ∈ C, by

hτ (z) = −
∫
C

log |λ− z|dτ(λ).

There are various possible characterizations of the limit measure β, the usual relies on its logarithmic
potential. It is expressed in terms of Cauchy-Stieltjes transform of the limit measures of shifted singular
values of MN as follows.
For any z ∈ C, denote by

Mz
N = σYN +AN − zIN .

According to Dozier and Silverstein [56], almost surely the empirical spectral measure µMz
NM

z
N
∗ of

Mz
NM

z
N
∗ converges weakly towards a nonrandom distribution µz which is characterized in terms of

its Stieltjes transform which satisfies the following equation: for any w ∈ C+,

gµz (w) =

∫
1

(1− σ2gµz (w))w − t
1−σ2gµz (w)

dνz(t). (5.4)

According to [140, 131], see also [38], almost surely the empirical spectral measure of µMN
converges

weakly to a probability measure β on C which is characterized by its logarithmic potential

hβ(z) = −1

2

∫
log(t)dµz(t).

For more references, we refer to the surveys [139, 38].
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Remark 9. If AN converges in ?-moments to an operator a, set

b = σc+ a,

where c is a circular element free of a. Then, µz is the distribution of (b− z)(b− z)∗, β is the Brown’s
measure of b.

Concerning Brown’s measure, we refer to [83, 35, 131, 39]. Explicit computation of β are rare, see Biane
and Lehner [35].

Observe that z is an eigenvalue of B ∈MN (C) if and only if 0 is an eigenvalue of (B − zI)(B − zI)∗.
Recall that

∀z ∈ C, µ(MN−zIN )(MN−zIN )∗
w−→ µz, µMN

w

−→ β

We will assume that a similar property holds for β and µz:

(A3) supp(β) = {z ∈ C : 0 ∈ supp(µz)}.

This is true for instance in most cases when AN is normal. Under assumption (A3) the support of β
takes a particularly simple expression.

Proposition 5. ([C20]) If (A3) holds then

supp(β) =

{
z ∈ C : 0 ∈ supp(νz) or

∫
λ−1dνz(λ) ≥ σ−2

}
.

We are interested by describing the individual eigenvalues of MN outside {z ∈ C, d(z, supp(β)) ≤ ε} for
some ε > 0.

5.3.2 Examples, simulations

We start with three examples and simulations that illustrate different phenomena we will study: lack
of outliers, stable or unstable outliers (“stable”meaning that outliers of the deformed model and the
perturbation coincide asymptotically) . Let us consider the three following perturbations.

(1)

CN =


0 1 0 · · ·
0 0 1 · · ·
...

...
. . .

. . .

1 0 · · · · · ·

 . (5.5)

(2)

BN =

(
CN−5 0

0 D5

)
, D5 = diag(0; 0; i/3; 1; 2). (5.6)

(3)

NN =


0 1 0 · · ·
0 0 1 · · ·
...

...
. . .

. . .

0 0 · · · · · ·

 . (5.7)
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CN is a normal matrix with eigenvalues e
2iπl
N , 1 ≤ l ≤ N . When AN = CN , the limiting empirical

spectral distribution β of MN = σXN√
N

+AN , is the Brown’s measure of σc+ a where a is a Haar unitary

and c is a circular element free with a and

supp(β) =

{
z ∈ C :

1

2π

∫ 2π

0

dx

|eix − z|2
≥ σ−2

}
=

{
z ∈ C :

√
(1− σ2)+ ≤ |z| ≤

√
1 + σ2

}
.

Now, the difference between the circulant matrix CN and any of the matrices NN , BN , has rank o(N).
Therefore, for AN ∈ {CN ,NN , BN}, for any z ∈ C, νz = limN→ µ(AN−zIN )(AN−zIN )∗ is the same. Thus

the µz’s and the limiting empirical spectral distribution β of MN = σXN√
N

+ AN (uniquely determined

by the νz’s) are the same.

Here are simulations of the eigenvalues of MN = σXN√
N

+ AN dealing with N = 500, σ2 = 1/2, Xij

real Gaussian and AN ∈ {CN ,NN , BN}. Then supp(β) = {z ∈ C : 1/
√

2 ≤ |z| ≤
√

3/2}.

(1) When AN = CN , we see that there is no outlier.

Figure 5.2: no outlier

(2) Now, when AN = BN , there are outliers in a neigborhood of 0, 2 and i/3 so that the outliers of the
deformed model seem stable in the sense that they stay close to the outliers of AN (see Figure 5.3).

(3) Finally, when AN = NN , there are unstable outliers in the bounded component of the complement
of supp(β) in the sense that there are not in a neighborhood of those of AN (see Figure 5.4).

The first aim is to understand these phenomena.
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Figure 5.3: stable outliers

Figure 5.4: unstable outliers

5.3.3 Stable outliers

We first give a sufficient condition to guarantee that outliers of the deformed model are stable. For this
purpose, we introduce the notion of well-conditioned matrix which is related to the phenomenon of lack of
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outlier and of well-conditioned decomposition of AN which lead to the statement of a sufficient condition
for the stability of the outliers. We will denote by s1(B) ≥ · · · ≥ sN (B) the singular values of any N ×N
matrix B. For any set K and any ε > 0, B(K, ε) stands for the set {z ∈ C, d(z,K) ≤ ε}.

No outlier

Definition 1. Let Γ ⊂ C \ supp(β) be a compact set. AN is well-conditioned in Γ if for any z ∈ Γ, there
exists η > 0 such that for all N large enough, sN (AN − zIN ) > η.

Theorem 37. ([C20]) Assume that AN is well-conditioned in Γ, Then, a.s. for all N large enough, MN

has no eigenvalue in Γ.

Corollary 1. If for any z ∈ C \ supp(β), there exists η > 0 such that for all N large enough, sN (AN −
zIN ) > η, then, for any ε > 0, a.s. for all N large enough, all eigenvalues of MN are in B(supp(β), ε).

The proof relies on previous results on Information-plus-noise type models [57, 12], [C18].

The circulant matrix CN defined by (5.5) is well-conditioned in C \ supp(β) where

supp(β) =
{

z ∈ C :
√

(1− σ2)+ ≤ |z| ≤
√

1 + σ2
}
.

Indeed, for any z outside the support of β, the singular values of CN − zIN are equal to |e 2iπl
N − z| ≥

|1− |z|| > 0, for l = 1, . . . , N . This explains simulations for (1).
Contrariwise, AN = BN defined by (5.6) provides an example of badly-conditioned perturbation in neigh-
borhoods of 0, i/3 and 2 since sN (AN ) = sN (AN − i/3IN ) = sN (AN − 2I) = 0.
An example of badly-conditioned perturbation in the inner disk is the nilpotent matrix NN . Indeed, for
|z| > 1, sN (NN − zIN ) ≥ |z| − 1; therefore NN is well conditioned out of the maximum circle but for
|z| < 1, sN (NN − zIN ) = o(1).

Let us introduce now the notion of well-conditioned decomposition of AN which will allow us to exhibit
a sufficient condition for stability of outliers.

Definition 2. Let Γ ⊂ C\supp(β) be a compact set. AN admits a well-conditioned decomposition if :
AN = A′N +A′′N where

• There exists M > 0 such that for all N , ‖A′N‖+ ‖A′′N‖ ≤M .

• For any z ∈ Γ, there exists η > 0 such that for all N large enough, sN (A′N − zIN ) > η (i.e A′N is
well-conditioned in Γ) and A′′N has rank r = O(1).

Stable outliers

Theorem 38. ([C20]) Let Γ ⊂ C\supp(β) be a compact set with continuous boundary. Assume that AN
admits a well-conditioned decomposition: AN = A′N +A′′N . If for some ε > 0 and all N large enough,

min
z∈∂Γ

∣∣∣∣det(AN − z)
det(A′N − z)

∣∣∣∣ ≥ ε, (5.8)

then a.s. for all N large enough, the number of eigenvalues of AN and MN in Γ is equal.
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Let us give a concrete application of Theorem 38 with a specific decomposition of AN = A′N + A′′N .
Assume that for all N , there exists a subset J ⊂ {1, · · · , N} of cardinal at most r such that for any ε > 0,
for all N large enough and k ∈ J , λk(AN ) /∈ B(supp(β), ε). We consider a triangular decomposition of
AN :

AN = P

(
T ′′ ∗
0 T ′

)
P−1,

where P is an invertible matrix, T ′ is an upper triangular matrix of size N − |J | with the eigenvalues
λk(AN ), k /∈ J , on the diagonal, and T ′′ is an upper triangular matrix of size |J | with diagonal entries
λk(AN ), k ∈ J . Fix some a ∈ supp(β), we decompose AN as AN = A′N +A′′N with

A′N = P

(
aIJ ∗
0 T ′

)
P−1 and A′′N = P

(
T ′′ − aIJ 0

0 0

)
P−1. (5.9)

We take a ∈ supp(β) to avoid addition of outliers of A′N . Note that

det(AN − z)
det(A′N − z)

=
∏
k∈J

λk(AN )− z
a− z

. (5.10)

The next statement will be an easy consequence of Theorem 38. It generalizes Tao [137, Theorem 1.7]
where A′N = 0. When A′N is a Wigner random matrix, it is a special case of O’Rourke and Renfrew [108,
Theorem 2.4].

Corollary 2. Assume that assumptions (X1-X2) hold and that A′N , A′′N given by (5.9) provide a well-
conditioned decomposition of AN in Γ = C \ supp(β). Fix ε > 0. Assume that for all N large enough,
∀k ∈ J , λk(AN ) /∈ B(supp(β), 3ε). Then, a.s. for all N large enough, there are exactly |J | eigenvalues
of MN in C \B(supp(β), 2ε). Moreover, if we index them by λk(MN ), k ∈ J , after labeling properly, a.s.

max
k∈J
|λk(MN )− λk(AN )| → 0.

This result allows us to understand the simulation involving BN in (2). Indeed, one can write

AN =

(
CN−5 0

0 I5

)
+

(
0 0
0 −I5 +D5

)
= A′N +A′′N

with ∣∣∣∣det(AN − zIN )

det(A′N − zIN )

∣∣∣∣ =

∣∣∣∣z2(i/3− z)(2− z)
(1− z)4

∣∣∣∣ .
Therefore, for any δ > 0 small enough, for any z0 in {0; i/3; 2}, there exists ε > 0 such that

min
z∈∂B(z0;δ)

∣∣∣∣det(AN − zIN )

det(A′N − zIN )

∣∣∣∣ ≥ ε.
Thus, the stability of the outliers follows.
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Comparison with finite rank perturbations of the single ring model [31]

In [31], Benaych-Georges and Rochet consider matrices of the type MN = UNDNVN +AN with diagonal
DN > 0, µDN converges towards a compactly supported probability measure ν on R+ , UN , VN are
independent Haar unitary matrices, AN has a finite rank and a bounded operator norm.
The limiting empirical eigenvalues distribution of such a model is described by the so-called single ring
theorem, see [75, 76, 123]. It is deterministic and its support is {z ∈ C; a ≤ |z| ≤ b} where a =
(
∫
x−2dν(x))−1/2 and b = (

∫
x2dν(x))1/2. Benaych-Georges and Rochet prove that if AN has some

eigenvalues out of the maximal circle of the single ring, then MN has outliers in the neighborhood of
these eigenvalues of AN . Nevertheless, when a > 0, the eigenvalues of AN which may be in the inner disk
of the complement of the limiting support do not generate outliers in the spectrum of MN .

Now, in the framework of [C20] dealing with full rank perturbations of iid matrices, there can be
outlier eigenvalues in bounded components of the complement of supp(β).
Actually, the nature of the bounded connected component of the complement of the support of the limiting
empirical eigenvalues distributions considering above is different: the first (in [31]) comes from the limiting
support of the non-deformed model whereas the second one (in the framework of [C20]) is created by the
deformation. Subordination-like properties of the Stieltjes transform gµ(z) =

∫
dµ(λ)/(z − λ) of limiting

spectral measures may help to understand these phenomena as explained below.
In the case of [31], since the limiting empirical eigenvalues distribution µ is radial, we have gµ(z) = 1

z if
|z| > b and gµ(z) = 0 if |z| < a so that roughly speaking

gµ(z) = gδ0(ω(z)) where

{
ω(z) = z if |z| > b
“ω(z) =∞” if |z| < a.

In our case, dealing for instance with diagonal perturbations of a Ginibre matrix, the limiting empirical
eigenvalues distribution β is the Brown measure of c+ a where c is a circular element which is free with
a whose Brown measure is α (see Śniady [131]). We have the following subordination property.

∀z ∈ C \ supp(β), gc+a(z) = ga(ω(z)) where ω(z) = z.

It can be deduced from [39, Proposition 4.3], see also [35, 150].
In both cases, the intuition is that

gµMN (z) ≈ gµAN (ω(z))

and that therefore they will be eigenvalues ρ of MN that separate from the bulk whenever some of the
equations ω(ρ) = θ admits a solution ρ outside the limiting support, when θ describes the spectrum of
AN . Therefore, we understand on the one hand that in the framework of [31], there is no solution inside
the inner disk of such an equation since there ω ≡ ∞ and on the other hand that the outliers of the
deformed model stay in the neighborhood of the eigenvalues of the perturbation which are located where
ω is the identity function.

In the deformed Hermitian models, the outliers of the deformed model are not located in a neigh-
borhood of the spikes of the deformation. It contrasts with Corollary 2. It is rather non-intuitive that
additive perturbation by a Hermitian random matrix has more effect on outlier eigenvalues than additive
perturbation by a non-Hermitian random matrix.

5.3.4 Unstable outliers

(3) provides a typical situation where (5.8) does not hold. Let us consider the nilpotent matrix defined
in (5.7),

NN = CN − eNe∗1.
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Set A′N = CN and A′′N = −eNe∗1. For any |z| ≤ 1− ε, we have∣∣∣∣det(NN − zIN )

det(CN − zIN )

∣∣∣∣ =
|z|n

|1− zN |
≤ (1− ε)N

1− (1− ε)N
= o(1/

√
N).

We see numerically that the conclusion of Theorem 38 does not seem to hold. Actually, the simulations
can be explained by the following results.

Theorem 39 (C20). Let Γ ⊂ C\supp(β) be a compact set with continuous boundary. Assume that
AN = A′N+A′′N is a well conditioned decomposition, A′N is diagonal and A′′N = vNu

∗
N where uN , vN ∈ CN ,

‖uN‖∞, ‖vN‖∞ = O(1/
√
N). Assume moreover that

max
z∈Γ

∣∣∣∣det(AN − z)
det(A′N − z)

∣∣∣∣ = o

(
1√
N

)
.

Define R′N (z) = (zIN − A′N )−1, ϕN (z, w) = 1
NTrR′N(z)(R′N(w))∗, ψN (z, w) = 1

NTrR′N(z)R′N(w). Let
(gN (z))z∈Γ be a centered Gaussian process with covariance given by, for z, w ∈ Γ,

EgN (z)ḡN (w) =
u∗NR

′
N (z)(R′N (w))∗uNv

∗
N (R′N (w))∗R′N (z)vN

1− σ2ϕN (z, w)

EgN (z)gN (w) =
u∗NR

′
N (z)R′N (w)ūNv

T
N (R′N (w))TR′N (z)vNEX2

11

1− EX2
11σ

2ψN (z, w)

The Lévy-Prohorov distance between the point process of eigenvalues of MN in Γ̊ and the point process
of zeros of gN in Γ̊ goes to 0 as N goes to ∞.

The intensity of zeros of gN can be computed explicitly thanks the Edelman-Kostlan’s formula, see
Theorem 3.1 in [58].

Note that if A′N is a normal matrix and Xij are standard complex Gaussian variables, then, by unitary
invariance, we can always assume that A′N is diagonal. We may rewrite the nilpotent matrix NN in the
orthonormal basis of eigenvectors of A′N :

CN = UND
′
NU
∗
N and NN = UN (D′N +D′′N )U∗N

where

D′N = diag(e
2iπ
N , · · · , e 2iNπ

N ) and D′′N = −fNf>1 .

with fl = (e
2iπlk
N /
√
N)1≤k≤N . Hence the next corollary deals with the phenomenon illustrated by Figure

5.4.

Corollary 3. 0 < σ < 1, AN = NN and assume moreover that Xij is gaussian. The point process of

eigenvalues of MN in B̊(0,
√

1− σ2) converges weakly to the point process of the zeros of the centered
Gaussian process g(z) on B̊(0,

√
1− σ2) such that for z, w ∈ Γ,

E(g(z)g(w)) = 0,

Eg(z)g(w) =
ϕ(z, w)2

1− σ2ϕ(z, w)
where ϕ(z, w) =

1

1− zw̄
.
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We may notice that, as σ → 0, the kernel K(z, w) appearing in Corollary 3 does not vanish, it
converges pointwise to the kernel K0(z, w) = ϕ(z, w)2 on the unit complex disc. The kernel K0 is the
kernel of the Gaussian analytic function

g(z) =

∞∑
k=0

zkγk
√
k + 1,

where γk are iid complex Gaussian variables with Eγ2
k = 0, E|γk|2 = 1. This Gaussian analytic function

may thus be related to the numerical phenomenon illustrated by the plot of Figure 5.1.

5.3.5 Basic ideas of the proofs

We present here the ideas of the proofs when A′′N has rank 1 and A′N is diagonal. Let Γ ⊂ C \ supp(β)
be a compact set. Let AN = A′N + A′′N be a well-conditioned decomposition such that A′′N = vNu

∗
N ,

uN , vN ∈ CN , and A′N is diagonal.
Define M ′N := σXN√

N
+A′N so that MN = M ′N + vNu

∗
N . For any λ ∈ Γ, define

R
(M ′)
N (λ) := (λIN −M ′N )−1, R

(A′)
N (λ) := (λIN −A′N )−1.

Using the identity

det(B + PQ) = det(B)det(Ir +QB−1P ), P,QT ∈MN,r(C), B ∈ GLN (C)

for 
B = λIN −M ′N
P = vN
Q = u∗N
B = λIN −A′N

we obtain that 
det(λIN−MN )
det(λIN−M ′N ) = 1− u∗NR

(M ′)
N (λ)vN

det(λIN−AN )
det(λIN−A′N ) = 1− u∗NR

(A′)
N (λ)vN .

Therefore the eigenvalues of MN and AN , in Γ, are respectively the zeroes of 1 − u∗NR
(M ′)
N vN and

1− u∗NR
(A′)
N vN .

Now, since M ′N := σXN√
N

+A′N , we have R
(M ′)
N = R

(A′)
N +R

(A′)
N σXN√

N
R

(M ′)
N and thus,

1− u∗NR
(M ′)
N vN =1− u∗NR

(A′)
N vN −

∑
k≥1

u∗N

(
R

(A′)
N σ

XN√
N

)k
R

(A′)
N vN .

It turns out that when N goes to infinity
∑
k≥1 u

∗
N

(
R

(A′)
N σXN√

N

)k
R

(A′)
N vN converges towards zero and(√

Nu∗N

(
R

(A′)
N (zi)σ

XN√
N

)k
R

(A′)
N (zi)vN

)
1≤i≤m

is “asymptotically close to” a gaussian vector. Hence we

have
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whose zeroes=eigenvalues of MN

↓ whose zeroes=eigenvalues of AN 0

︷ ︸︸ ︷
1− u∗NR

(M ′)
N vN =

↓︷ ︸︸ ︷
1− u∗NR

(A′)
N vN −

xN→+∞︷ ︸︸ ︷∑
k≥1

u∗N

(
R

(A′)
N σ

XN√
N

)k
R

(A′)
N vN

We are naturally brought to consider the two following situations.

(i) If minz∈∂Γ

∣∣∣det(λIN−AN )
det(λIN−A′N )

∣∣∣ = minz∈∂Γ

∣∣∣1− u∗NR(A′)
N (λ)vN

∣∣∣ ≥ ε, the term 1−u∗NR
(A′)
N (λ)vN plays the

central role in the behaviour of the outliers of MN and gives rise to stable outliers by Rouché’s
theorem.

(ii) If max
λ∈Γ

∣∣∣∣det(λIN −AN )

det(λIN −A′N )

∣∣∣∣ = max
λ∈Γ

∣∣∣1− u∗NR(A′)
N (λ)vN

∣∣∣ = o( 1√
N

), let us rewrite

0

whose zeroes=eigenvalues of MN︷ ︸︸ ︷√
N
(

1− u∗NR
(M ′)
N (λ)vN

)
=

xN→+∞︷ ︸︸ ︷√
N
(

1− u∗NR
(A′)
N (λ)vN

)
−
∑
k≥1

√
Nu∗N

(
R

(A′)
N (λ)σ

XN√
N

)k
R

(A′)
N (λ)vN︸ ︷︷ ︸

asymptotically close to a gaussian variable

with independence for k 6= k′

Therefore,
∑
k≥1

√
Nu∗N

(
R

(A′)
N σXN√

N

)k
R

(A′)
N vN plays the central role in the behaviour of the outliers

of MN and gives rise to unstable outliers through limit theorems for random analytic functions and
their zeros from [128].

Remark 10. In the unbounded component of C \ supp(β), (ii) cannot hold.

Nevertheless, as in Rajan and Abbott [118] and Tao [137], outliers may appear in the unbounded
component of C\supp(β) when ‖A′′N‖ is of order

√
N . It was observed in [118] and [137], for A′N = 0 and

a particular random choice of A′′N .

Theorem 40. Assume that assumptions (X1-X3) and assumptions (A2-A3) hold. Assume that A′′N has
rank 1, A′N is diagonal and for some ε > 0 and all N large enough, all eigenvalues of A′N lie in C\B(Γ, ε).
Let Γ ⊂ C\supp(β) be a compact set with continuous boundary. We set R′N (z) = (zIN − A′N )−1, and

assume further that ‖A′N‖ = O(1) and A′′N =
√
NvNu

∗
N where ‖uN‖∞, ‖vN‖∞ and u∗NR

′
N (z)vN are of

order O(1/
√
N). Consider the centered Gaussian process (gN (z))z∈Γ of Theorem 39. Then, the Lévy-

Prohorov distance between the point process of eigenvalues of MN in Γ̊ and the point process of zeros of
1−
√
Nu∗NR

′
N (z)vN + σgN (z) in Γ̊ goes to 0 as N goes to ∞.

This result is illustrated with Figure 5.5. As an application, we have for example the following
corollary which is related to [137, Theorem 1.11].
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Figure 5.5: Eigenvalues of MN where AN = diag
(
e

2iπ
N , · · · , e 2iNπ

N

)
+
√
NfNf

>
1 , with fl =

(e
2iπlk
N /
√
N)1≤k≤N ., N = 500, σ2 = 1/2 and XN has complex Gaussian entries. For |z| > 1, we

have fTNR
′
N (z)f1 = 1/(zN − 1) = o(1/

√
N). The outlier eigenvalues in the unbounded component of the

complement of supp(β) = {z ∈ C : 1/
√

2 ≤ |z| ≤
√

3/2} converge in distribution to the zeros of 1 + σg
where g is the Gaussian analytic function with kernel H(z, w) = ϕ(z, w)2/(1 + σ2ϕ(z, w)) and ϕ given
by ϕ(z, w) = 1

1−zw̄ .

Corollary 4. Assume that assumptions (X1-X3) hold, that σ = 1, A′N = 0 and AN = A′′N = θNvNu
T
N

with
√
N/θN → κ ∈ C, uN , vN ∈ RN , ‖uN‖ = ‖vN‖ = 1, θNu

T
NvN → λ ∈ C and ‖uN‖∞, ‖vN‖∞ are

of order O(1/
√
N). Fix ε > 0 and set Γ = C\B(0, 1 + ε). We consider g(z) =

∑
k≥0 γkz

−k with γk
independent complex Gaussian variables with variance given by E|γk|2 = 1 and Eγ2

k = (EX2
11)k+1. Then,

as N goes to ∞, the point process of eigenvalues of MN in Γ converges vaguely to the point process of
zeros of κz(z − λ) + g(z) in Γ.

5.3.6 Fluctuations of Stable Outliers

Now, we provide examples where the fluctuations of stable outliers vary with the particular distribution
of the entries of XN or the Jordan decomposition of AN . We have studied the fluctuations of the con-
vergence of outliers eigenvalues in the simplest case for the decomposition of AN on its outlier eigenspace.

First, more precisely, we will suppose that AN has the following decomposition, for some integer r ≥ 1
and complex number θN ,

AN =

(
θNIr 0

0 ÂN−r

)
. (5.11)

Theorem 41. Suppose that assumptions (X1-X2) and assumptions (A1-A3) hold with AN given by
(5.11). Set m2 = E(X2

11). We suppose further that θN converges toward θ ∈ C \ supp(β) when N
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goes to infinity and that for some η > 0 and all large N , ÂN−r − θIN−r has no singular value in

[0, η]. Finally, assume that m2

N−rTr
{

(θIN−r − ÂN−r)−1(θIN−r − Â>N−r)−1
}

converges to ψ ∈ C. We set

ϕ =
∫
λ−1dνθ(λ).

Then, for any 0 < δ < η, almost surely for all large N there are exactly r eigenvalues λi, i =

1, . . . , r of MN in B(θ, δ). Moreover, the point process of
(√

N(λ1 − θN ), . . . ,
√
N(λr − θN )

)
converges

in distribution towards the point process of the eigenvalues of a r × r matrix V defined as

V = σ (Xr +G) , (5.12)

where Xr is independent of G, a r× r Ginibre matrix whose entries are independent copies of a centered
complex Gaussian variable Z whose covariance is characterized by,

E|Z|2 =
σ2ϕ

1− σ2ϕ
and EZ2 =

σ2m2ψ

1− σ2ψ
.

Theorem 41 shows that the fluctuation of stable outliers are not universal (they may depend on the
law of entries). We previously pointed out a similar phenomenon for deformed Wigner matrices in Section
2.4.2. Figure 5.6 illustrates Theorem 41.

Figure 5.6: Eigenvalues of MN for AN =

(
CN−5 0

0 D5

)
, D5 = diag(0; 0, i/3; 1; 2) with σ2 = 1/2, XN has

complex Gaussian entries, N = 500 and r = 3.

It was recently discovered by Benaych-Georges and Rochet [31] in the related study of the outliers in
the single ring theorem that the fluctuations can be larger than 1/

√
N when the Jordan decomposition

of an eigenvalue is not a diagonal matrix. Inspired by their work, we have also studied the fluctuations
when for some integer r ≥ 2 and complex number θN ,

AN =

(
Âr 0

0 ÂN−r

)
, with Âr = PNJNP

−1
N , PN ∈ GLr(C), (5.13)
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and JN ∈Mr(C) is the Jordan matrix

JN =

θN 1
θN 1

. . .
. . .

 .

Theorem 42. Suppose that assumptions (X1-X2) and assumptions (A1-A3) hold with AN given by
(5.13). We suppose further that θN converges toward θ ∈ C\supp(β) when N goes to infinity and that for
some η > 0 and all large N , ÂN−r−θIN−r has no singular value in [0, η]. Assume finally that ‖PN−P‖ →
0 for some P ∈ GLr(C), and that either EX2

11 = 0 or that 1
N−rTr

{
(θIN−r − ÂN−r)−1(θIN−r − Â>N−r)−1

}
converges to ψ ∈ C (in the first case, we set ψ = 0).

Then, for any 0 < δ < η, almost surely for all large N there are exactly r eigenvalues λi, i = 1, . . . , r
of MN in B(θ, δ). Moreover, the point process of

(
N1/(2r)(λ1 − θN ), . . . , N1/(2r)(λr − θN )

)
converges in

distribution towards the point process of the roots of the random polynomial

zr − e∗rP−1V Pe1,

where V is defined by (5.12).

When ÂN−r = 0 and XN is a complex Ginibre matrix, the above result is contained in [31, Theorem
2.6]. This result shows the strong correlation of the outlier eigenvalues in the setting of Theorem 42:
properly rescaled they are asymptotically the r-th roots of the same random complex number. Figure
5.7 illustrates Theorem 42.

Figure 5.7: Eigenvalues of MN for AN = FN =

CN−3 (0)

(0)
0 1 0
0 0 1
0 0 0

 , N = 500, σ2 = 1/2 we have

N1/(2r) = N1/6 ' 0.35.

Note that some authors investigated other non-Hermitian models. Let us mention some works among
others. In [66], Feldheim, Paquette and Zeitouni have recently studied the model (5.2) when σ decays
polynomially of N and AN is a block diagonal matrix with blocks of size logN . Rochet [122] consider
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the sum of a Hermitian random matrix and a finite rank matrix which is not necessarily Hermitian
and O’ Rourke and Renfrew [108] and Benaych-Georges, Cébron and Rochet [27] investigate finite rank
perturbation of elliptic matrices.
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Appendix : Free probability theory

We refer to [105], [107] and [151] for an introduction to free probability theory, created by Voiculescu.
We only recall here the definitions and properties required to explain how free probability acts for our
issues in random matrix theory.

A non-commutative probability space is a unital algebra A over C, endowed with a linear functional
φ : A→ C such that φ(1) = 1. Elements of A are called non-commutative random variables.

If (ai)i=1,...,q is a family of non-commutative random variables in (A, φ), the distribution µ(ai)i=1,...,q

of (ai)i=1,...,q is the linear functional on the algebra C〈Xi|i = 1, . . . , q〉 of polynomials in the non-
commutating variables (Xi)i=1,...,q given by

µ(ai)i=1,...,q
(P ) = φ

(
P
(
µ(ai)i=1,...,q

))
.

If A is a C∗-algebra endowed with a state φ, then for any selfadjoint element a in A, there exists a
measure νa on R such that, for every polynomial P, we have

µa(P ) =

∫
P (t)dνa(t).

Then we identify µa and νa.

A family of unital subalgebras (Ai)i=1,...q in (A, φ) is freely independent if for every p ≥ 1, for every
(a1, . . . , ap) such that, for every k in {1, . . . , p}, φ(ak) = 0 and ak is in Ai(k) for some i(k) in {1, . . . , q}
with i(k) 6= i(k + 1), then φ(a1, . . . , ap) = 0. Random variables are free in (A, φ) if the subalgebras they
generate with 1 are freely independent.

For each n in N \ {0}, let (ani )i=1,...,q be a family of noncommutative random variables in a noncom-
mutative probability space (An, φn). The sequence of joint distributions µ(ani )i=1,...,q

converges as n tends
to +∞, if there exists a distribution µ such that µ(ani )i=1,...,q

(P ) converges to µ(P ) as n tends to +∞ for
every P in C〈Xi|i = 1, . . . , q〉. µ is called the limit distribution of (ani )i=1,...,q. If (ai)i=1,...,q is a family
of noncommutative random variables with distribution µ, we also say that (ani )i=1,...,q converges towards
(ai)i=1,...,q. A family of noncommutative random variables (ani )i=1,...,q is said to be asymptotically free
as n tends to ∞ if it has a limit distribution µ and if (X1, . . . , Xq) are free in (C〈Xi|i = 1, . . . , q〉, µ).

Additive and multiplicative free convolutions arise as natural analogues of classical convolutions in the
context of free probability theory. For two Borel probability measures µ and ν on the real line, one defines
the free additive convolution µ� ν as the distribution of a+ b, where a and b are free self-adjoint random
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variables with distributions µ and ν, respectively. Similarly, if both µ, ν are supported on [0,+∞), their
free multiplicative convolution µ � ν is the distribution of the product ab, where, as before, a and b
are free positive random variables with distributions µ and ν, respectively. The product ab of two free
positive random variables is usually not positive, but it has the same moments as the positive random
variables a1/2ba1/2 and b1/2ab1/2. We refer to [32, 99, 144, 145] for the definitions and main properties of
free convolutions. In the following sections, we briefly recall the analytic approach developed in [144, 145]
to calculate the additive and multiplicative free convolutions of compactly supported measures and the
analytical definition of the rectangular free convolution introduced by F. Benaych-Georges in [26]. Then,
we present the fundamental analytic subordination properties [21, 34, 147, 150] of these three convolutions.
We also recall asymptotic freeness of some random matricial models [146]. Finally, we present the more
general context of operator-valued free probability [148], [150],[23].

5.4 Free convolution

Free additive convolution

The Stieltjes transform gµ of a compactly supported probability measure µ is conformal in the neigh-
borhood of ∞, and its functional inverse g−1

µ is meromorphic at zero with principal part 1/z. The
R-transform [144] of µ is the convergent power series defined by

Rµ(z) = g−1
µ (z)− 1

z
.

The free additive convolution of two compactly supported probability measures µ and ν is another
compactly supported probability measure characterized by the identity

Rµ�ν = Rµ +Rν

satisfied by these convergent power series.

Multiplicative free convolution on [0,+∞)

Recall the definition of the moment-generating function of a Borel probability measure µ on [0,+∞):

ψµ(z) =

∫
[0,+∞)

zt

1− zt
dµ(t), z ∈ C \

{
z ∈ C :

1

z
∈ supp(µ)

}
.

This function is related to the Cauchy-Stieltjes transform of µ via the relation

ψµ(z) =
1

z
gµ

(
1

z

)
− 1.

Recall also the so-called eta transform

ηµ(z) =
ψµ(z)

1 + ψµ(z)
.

The Σ-transform [145, 32] of a compactly supported Borel probability measure µ 6= δ0 is the convergent
power series defined by

Σµ(z) =
η−1
µ (z)

z
,
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where η−1
µ is the inverse of ηµ relative to composition. The free multiplicative convolution of two com-

pactly supported probability measures µ 6= δ0 6= ν is another compactly supported probability measure
characterized by the identity

Σµ�ν(z) = Σµ(z)Σν(z)

in a neighbourhood of 0.

Rectangular free convolution

Let c be in ]0; 1]. Let τ be a probability measure on R+. Define for z in C \ [0; +∞[,

Mτ (z) =

∫
R+

t2z

1− t2z
dτ(t), H(c)

τ (z) := z (cMτ (z) + 1) (Mτ (z) + 1),

and T (c)(z) = (cz + 1)(z + 1).

The transform C
(c)
τ [26] defined as follows is called the rectangular R-transform:

C(c)
τ (z) = T (c)−1

(
z

H
(c)
τ

−1
(z)

)
, for z small enough.

The rectangular free convolution with ratio c of two probability measures µ and ν on R+ is the unique
probability measure on R+ whose rectangular R-transform is the sum of the rectangular R-transforms of
µ and ν, and it is denoted by µ�c ν. Then, we have for z small enough,

C
(c)
µ�cν

(z) = C(c)
µ (z) + C(c)

ν (z).

5.5 Analytic subordinations

The analytic subordination phenomenon for free convolutions was first noted by Voiculescu in [147] for
free additive convolution of compactly supported probability measures. Biane [34] extended the result
to free additive convolutions of arbitrary probability measures on R, and also found a subordination
result for multiplicative free convolution. A new proof was given later, using a fixed point theorem for
analytic self-maps of the upper half-plane [22]. Note that such a subordination property allows to give a
new definition of free additive convolution [46]. Finally, Belinschi, Benaych-Georges, and Guionnet [21]
established such a phenomenon for the rectangular free convolution.

Free additive subordination property

Let us define the reciprocal Cauchy-Stieltjes transform Jµ(z) = 1/gµ(z), which is an analytic self-map of
the upper half-plane. Given Borel probability measures µ and ν on R, there exist two unique analytic
functions ω1, ω2 : C+ → C+ such that

1. limy→+∞ ωj(iy)/iy = 1, j = 1, 2;

2.

ω1(z) + ω2(z)− z = Jµ(ω1(z)) = Jν(ω2(z)) = Jµ�ν(z), z ∈ C+. (5.14)
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3. In particular (see [22]), for any z ∈ C+ ∪R so that ω1 is analytic at z, ω1(z) is the attracting fixed
point of the self-map of C+ defined by

w 7→ Jν(Jµ(w)− w + z)− (Jµ(w)− w).

A similar statement, with µ, ν interchanged, holds for ω2.

In particular, according to (5.14), we have for any z ∈ C+,

gµ�ν(z) = gµ(ω1(z)) = gν(ω2(z)). (5.15)

Multiplicative subordination property

Given Borel probability measures µ, ν on [0,+∞), there exist two unique analytic functions F1, F2 : C \
[0,+∞)→ C \ [0,+∞) so that

1. π > argFj(z) ≥ arg z for z ∈ C+ and j = 1, 2;

2.
F1(z)F2(z)

z
= ηµ(F1(z)) = ην(ω2(z)) = ηµ�ν(z), z ∈ C \ [0,+∞). (5.16)

3. In particular (see [22]), for any z ∈ C+ ∪ R so that F1 is analytic at z, the point h1(z) := F1(z)/z
is the attracting fixed point of the self-map of C \ [0,+∞) defined by

w 7→ w

ηµ(zw)
ην

(
ηµ(zw)

w

)
.

A similar statement, with µ, ν interchanged, holds for ω2.

In particular (5.16) yields

ψµ�ν(z) = ψµ(F1(z)) = ψν(F2(z)). (5.17)

Rectangular free subordination property

Let c be in ]0; 1]. Let µ and ν be two probability measures on R+. Assume that the rectangular R-

transform C
(c)
µ of µ extends analytically to C\R+; this happens for example if µ is �c infinitely divisible.

Then there exist two unique meromorphic functions Ω1, Ω2 on C \ R+ so that

H(c)
µ (Ω1(z)) = H(c)

ν (Ω2(z)) = H
(c)
µ�cν

(z),

Ωj(z) = Ωj(z) and limx↑0 Ωj(x) = 0, j ∈ {1; 2}.

The functions ωi, Fi and Ωi in the three previous subsections are called subordination functions.

5.6 Asymptotic freeness of independent random matrices

Free probability theory and random matrix theory are closely related. Indeed the purely algebraic concept
of free relation of noncommutative random variables can be also modeled by random matrix ensembles

84



if the matrix size goes to infinity. Let (Ω,F , P ) be a classical probability space and for every N ≥ 1, let
AN be the algebra of N ×N random matrices (Ω,F , P )→MN (C). Define

ΦN :

{
AN → C
A→ 1

N TrA

For each N ≥ 1, (AN ,ΦN ) is a non-commutative probability space and we will consider random matrices
in this non-commutative context.
In his pioneering work [146], Voiculescu shows that independent Gaussian Wigner matrices converge in
distribution as their size goes to infinity to free semi-circular variables. The following result deals with
matrices in generic position.

Theorem 43. [Corollary 5.4.11 [4]] Let {DN (i)}1≤i≤p be a sequence of uniformly bounded real di-
agonal matrices with empirical measure of diagonal elements converging to µi, i = 1, . . . , p respec-
tively. Let {UN (i)}1≤i≤p be independent unitary matrices following the Haar measure, independent from
{DN (i)}1≤i≤p.

• The noncommutative variables {UN (i)DN (i)UN (i)∗}1≤i≤p in the noncommutative probability space
(AN ,ΦN ) are almost surely asymptotically free, the law of the marginals being given by the µi’s.

• The spectral distribution of DN (1) +UN (2)DN (2)UN (2)∗ converges weakly almost surely to µ1 �µ2

goes to infinity.

• Assume that the diagonal matrices DN (1) and DN (2) are nonnegative. Then, the empirical spectral

measure of (DN (1))
1
2UN (2)DN (2)UN (2)∗(DN (1))

1
2 converges weakly almost surely to µ1 �µ2 as N

goes to infinity.

Thus, if µ is the eigenvalue distribution of a large selfadjoint random matrix A and ν is the eigenvalue
distribution of a large selfadjoint random matrix B then, when A and B are in generic position, µ� ν is
nearly the eigenvalue distribution of A+ B. Similarly, when dealing with nonnegative matrices µ� ν is
nearly the eigenvalue distribution of A

1
2BA

1
2 .

Similarly, for independent rectangular n × N random matrices A and B such that n/N → c ∈]0; 1],
when A and B are in generic position, Benaych-Georges [26] proved that rectangular free convolution
with ratio c provides a good understanding of the asymptotic global behaviour of the singular values of
A+B.

Theorem 44. Let A and B be independent rectangular N × p random matrices such that A or B
is invariant, in law, under multiplication, on the right and on the left, by any unitary matrix. As-
sume that there exists two laws µ and ν such that, for the weak convergence in probability, we have
1

N

∑
s sing. val. of AN

δs → µ,
1

N

∑
s sing. val. of BN

δs → ν as n and N goes to infinity with N/p → c ∈

]0; 1]. Then

1

N

∑
s sing. val. of AN+BN

δs −→
N→+∞

µ�c ν,

for the weak convergence in probability.
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5.7 Operator-valued free probability theory

There exists an extension, operator-valued free probability theory, which still shares the basic properties
of free probability but is much more powerful because of its wider domain of applicability. The concept of
freeness with amalgamation and some of the relevant analytic transforms were introduced by Voiculescu
in [148].

Definition 3. Let M be an algebra and B ⊂ M be a unital subalgebra. A linear map E :M→ B is a
conditional expectation if E(b) = b for all b ∈ B and E(b1ab2) = b1E(a)b2 for all a ∈M and b1, b2 in B.
Then (M, E) is called a B-valued probability space. If in addition M is a C∗-algebra, B is a C∗-algebra
of M and E is completely positive, then we have a B-valued C∗-probability space.

Example: Let (A, φ) be a non commutative probability space. Define

M2(A) :=

{(
a b
c d

)
, a, b, c, d ∈ A

}
, E := id2 ⊗ φ that is

E

[(
a b
c d

)]
=

(
φ(a) φ(b)
φ(c) φ(d)

)
.

(M2(A), E) is an M2(C)-valued probability space. (C ≈ C1A)

As in scalar-valued free probability, one defines [148] freeness with amalgamation over B via an alge-
braic relation similar to freeness, but involving E and noncommutative polynomials with coefficients in
B.

Definition 4. Consider an operator-valued probability space (M, E :M→ B).
The B-valued distribution of a ∈ M is given by all B-valued moments E(ab1ab2 · · · bn−1a) ∈ B, n ∈
N, b0, . . . , bn−1 ∈ B.
Let (Ai)i∈I be a family of subalgebras with B ⊂ Ai for all i ∈ I. The subalgebras (Ai)i∈I are free with
respect to E or free with amalgamation over B if E(a1 · · · an) = 0 whenever aj ∈ Aij , ij ∈ I, E(aj) = 0,
for all j and i1 6= i2 6= · · · 6= in.

Random variables in M or subsets of M are free with amalgamation over B if the algebras generated
by B and the variables or the algebras generated by B and the subsets, respectively, are so. Note that
the subalgebra generated by B and some variable a is not just the linear span of monomials of the form
ban, but, because elements from B and our variable a do not commute in general, we must also consider
general monomials of the form b0ab1ab2 · · · bn−1abn.

The previous results of free subordination property in the scalar case are approached from an abstract
coalgebra point of view by Voiculescu in [150] and this approach extends the results to the B-valued case.
In [23], Belinschi, Mai and Speicher develop an analytic theory. In order to describe operator-valued
subordination property, we need some notation. If A is a unital C∗-algebra and b ∈ A, we denote by
<b = (b+ b∗)/2 and =b = (b− b∗)/2i the real and imaginary parts of b, so b = <b+ i=b. For a selfadjoint
operator b ∈ A, we write b ≥ 0 if the spectrum of b is contained in [0,+∞) and b > 0 if the spectrum of
b is contained in (0,+∞). The operator upper half-plane of A is the set H+(A) = {b ∈ A : =b > 0}.

Theorem 45. [150],[23] Let (M, E :M→ B) be an operator-valued C∗ -probability space. Let x1, x2 ∈
M be selfadjoint variables which are free with amalgamation over B.
There exist an analytic map ω : H+(B)→ H+(B) such that

E
[
(ω(b)− x1)−1

]
= E

[
(b− (x1 + x2))−1

]
for all b ∈ H+(B).
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Moreover, if b ∈ H+(B), then ω(b) is the unique fixed point of the map

fb : H+(B)→ H+(B), fβ(w) = hx2
(hx1

(w) + b) + b

where hxi(b) = E
[
(b− xi)−1

]−1 − b

and ω(b) = lim
k→+∞

f◦kb (w), for any w ∈ H+(B).

Maps of the form b 7→ E
[
(b−X)−1

]
for some selfadjoint X and (conditional) expectation E are also

known as operator-valued Cauchy-Stieltjes transforms.

In our applications, the algebra B is Mn(C) for some n ∈ N. The following result from [106] explains
why this case is relevant in our work using linearizations of polynomials.

Proposition 6. Let (A, φ) be a C∗-probability space, let m be a positive integer, and let x1, . . . , xn ∈ A be
freely independent. Then the map idm⊗φ : Mm(A)→Mm(C) is a unit preserving conditional expectation,
and α1 ⊗ x1, . . . , αn ⊗ xn are free over Mm(C) for any αi ∈Mm(C).
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[38] C. Bordenave and D. Chafäı. Around the circular law. Probab. Surv., 9:1–89, 2012.
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Math. Sci. (RIMS), Kyoto, 2012.

[129] D. Shlyakhtenko. Free probability of type B and asymptotics of finite-rank perturbations of random
matrices. arXiv:1509.08841, 2015.

[130] J. Silverstein. Strong convergence of the empirical distribution of eigenvalues of large dimensional
random matrices. Journal of Multivariate Analysis 55(2), 331–339, 1995.

[131] P. Sniady. Random regularization of Brown spectral measure. J. Funct. Anal., 193(2):291–313,
2002.

[132] A. Soshnikov. Universality at the edge of the spectrum in Wigner random matrices. Comm. Math.
Phys. 207, 697–733.

[133] A. Soshnikov, A. A note on universality of the distribution of the largest eigenvalues in certain
sample covariance matrices. J. Stat. Phys. 108, no. 5-6, 1033–1056, 2002.

[134] R. Speicher and C. Vargas. Free deterministic equivalents, rectangular random matrix models, and
operator-valued free probability theory. Random Matrices: Theory and Applications, 1(02):1150008,
2012.

[135] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms. In Proceedings of the International
Congress of Mathematicians, Vol. I (Beijing, 2002), pages 597–606. Higher Ed. Press, Beijing, 2002.

[136] B.D. Sutton. The stochastic Operator approach to Random matrix theory, PhD thesis (2005),
Massachusetts Institute of Technology.

[137] T. Tao. Outliers in the spectrum of iid matrices with bounded rank perturbations. Probab. Theory
Related Fields, 155(1-2):231–263, 2013.

[138] T. Tao and V. Vu. Random matrices: the circular law. Commun. Contemp. Math. 10, 261–307,
2008.

[139] T. Tao and V. Vu. From the Littlewood-Offord problem to the circular law: universality of the
spectral distribution of random matrices. Bull. Amer. Math. Soc. (N.S.), 46(3):377–396, 2009.

96



[140] T. Tao and V. Vu. Random matrices: universality of ESDs and the circular law. Ann. Probab.,
38(5):2023–2065, 2010. With an appendix by Manjunath Krishnapur.

[141] T. Tao and V. Vu. Random matrices: universal properties of eigenvectors. Random Matrices Theory
Appl. 1(1), 1150,001, 27, 2012.

[142] C. Tracy, H. Widom. Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159,
151–174, 1994.

[143] V. Vasilchuk. On the law of multiplication of random matrices. Mathematical Physics, Analysis and
Geometry Volume 4, Issue 1, 1–36, 2001.

[144] D. Voiculescu. Addition of certain noncommuting random variables, J. Funct. Anal. 66, 323–346,
1986.

[145] D. Voiculescu, Multiplication of certain noncommuting random variables. J. Operator Theory 18,
223–235, 1987.

[146] D. Voiculescu. Limit laws for random matrices and free products, Invent. Math. 104, 201–220,
1991.

[147] D. Voiculescu. The analogues of entropy and of Fisher’s information measure in free probability
theory. I, Comm. Math. Phys. 155, 71–92, 1993.

[148] D. Voiculescu. Operations on certain non-commutative operator-valued random variables. Recent
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