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General introduction

For several decades, two-phase flows have been a topic of rising interest within the scientific and industrial communities. This high degree of interest can be explained. The first reason is linked to the substantial development potential with regard to the high level of physics that two-phase flow models can take into account. Moreover in the current economic context, as industrial processes become more and more specific, the theoretical models developed in the past require nowadays important extensions and adaptations. Besides, the computing resources simultaneously booming, more massive and accurate numerical simulations can now be envisaged. Finally, two-phase flows are omnipresent in industry and in nature as well. In this context, the present thesis addresses compressible two-phase flow modeling in the frame of space, energy and safety areas.

The research work presented in this manuscript is highly linked to a continued need of scientific expertises destined to the above-mentioned industrial communities. Those possess indeed many applications involving a large range of highly transient physical phenomena, where the compressibility of the materials is of utmost importance. Within this framework, a fundamental and applied research has been developed with respect to the following research topics:

-Interface motion and related instabilities, -Stiff evaporation and condensation phenomena, -Equations of state for sub-and-supercritical liquid-gas systems, -Dispersion of non-miscible fluids.

Those problematics are indeed present in many industrial situations. Knowledge of the involved physical phenomena is of paramount importance for the correct operating conditions of industrial systems and for safety purposes as well. In this context, the present thesis addresses the design of theoretical models and numerical methods to describe physical phenomena occurring in industrial systems more and more sophisticated.

The dynamics of interfaces, phase transition phenomena or the thermodynamics of liquid and gas phases as well as two-phase mixtures are part of the physics present within such multiphase flows.

The present research work addresses these topics as well as gas dispersal computations involving large time and space scales.

Figure 1 illustrates a portion of such physics in an application reminiscent of multiphase flows evolving in cryotechnic rocket engines. Dimensioning combustion chambers and injection systems of cryotechnic engine of the space launching systems of Ariane 6 is of typical interest. In this Ph.D. thesis, this technical area is addressed through the ANR SUBSUPERJET project. This Ariane-6 launcher will be the first rocket engine able to be reignited multiple times while in space for commercial purposes, namely: dropping several satellites on distinct orbits. In such combustion chambers, intense phase change phenomena are expected as well as combustion of resulting gases. A temperature rise is naturally expected, resulting in supercritical flow conditions. However, the treatment of combustion reactions is out of the scope of the present manuscript. This project involves three of the above-mentioned research thematics. Indeed, before the engine reaches supercritical conditions, the flow consists of a liquid oxygen jet surrounded by a high speed gaseous hydrogen flow. The entrance of the liquid jet into the combustion chamber obviously involves the dynamics of material interfaces that must be captured correctly by an appropriate numerical method. In addition, under such thermodynamic circumstances, those interfaces are expected to get evaporated and this phase transition is meant to play a significant role within the two-phase flow. Finally the thermodynamics of pure phases as well as mixtures, considered through appropriate equations of state, is of paramount importance and is also an important motivation for the present research work.

Sharpening diffuse interfaces

Part of this manuscript dwells in the extension of a theory partly initiated by the advisor of this thesis, Professor Richard Saurel. This theory addresses the treatment of interfaces between two fluids and two continuous media. Pioneering work in this direction was done with "Volume of Fluid" (VOF) methods [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF] [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF]) in the frame of incompressible fluids. In this context, an extra evolution equation is added to the flow model representing the volume fraction of a given phase. At this level, the model adopts a two-phase description of the flow, with subvolumes occupied by the phases and several mass balance equations. Later, extensions to compressible fluids were done in Saurel and Abgrall (1999) [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF], [4] and [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF]. This approach often called "diffuse interface" is initially linked to the computation of mixture cells that hydrodynamic codes have to handle. Those mixture cells are inevitable because of the numerical dissipation, inherent to all numerical methods.

In particular, they are responsible for many difficulties regarding the numerical resolution and can yield computational failures.

The main idea of the diffuse interface strategy is to consider numerical mixture cells as physical Figure 1: Density (kg.m -3 , top) and temperature (K, bottom) profiles of a liquid oxygen jet surrounded by vapor at high speed entering a combustion chamber of a cryotechnic rocket engine. Shear effects induce jet fragmentation. The filaments separating the main liquid core and the gas gradually vanish as a consequence of evaporation. Details are given in Chiapolino et al. (2017) [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF]. In this situation, three research topics addressed in this Ph.D. thesis are illustrated. Material interfaces separating liquid oxygen and gas phase are present and subject to phase transition that modifies significantly the two-phase flow dynamics. In such circumstances, the thermodynamics of pure phases as well as the one of the two-phase mixture is essential. Since the two-phase flow is expected to result in a supercritical flow, an extension of the thermodynamics is consequently necessary. These research areas are addressed in Chapters 1, 2 and 3 while Chapter 4 deals with fluid dispersal situations involving much larger time and space scales.

P P P P P P P P q Interfaces motion and related instabilities

Evaporation ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✿
Thermodynamics and Equations of state

❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ •
multiphase mixtures, via an appropriate modeling method. The resulting hyperbolic system allows the resolution of each continuous medium as well as the interfacial zone via a unique system of partial deferential equations, solved in each numerical cell with the same numerical scheme (Saurel and Le [START_REF] Saurel | A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation[END_REF] [START_REF] Saurel | A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation[END_REF]).

This approach yields some advantages. The most obvious relies on its coding simplicity as well as its robustness since the very same algorithm is used throughout the entire computational domain.

Conservation is guaranteed for the mixture whereas conventional algorithms only guarantee mass conservation at best. Interface conditions are perfectly matched, even during the coupling of complex media in the presence of shock waves and mass transfer (evaporation, condensation, detonation, ...).

Particularly, this approach is the only one able to describe the appearance of interfaces that would not be initially present as it is the case with cavitation or spallation phenomena.

In these references, a hyperbolic modeling approach where the phases are separate is developed.

It is to say that each fluid possesses its own thermodynamics (thus its own equation of state) and its own system of equations. The satisfaction of the interface conditions is simultaneously ensured by relaxation processes and by the treatment of non-conservative terms present in the equations.

Over the last years, extra physics extensions have been addressed: chemical reactions [START_REF] Petitpas | Modelling detonation waves in condensed energetic materials: Multiphase CJ conditions and multidimensional computations[END_REF], phase change [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF], surface tension [START_REF] Perigaud | A compressible flow model with capillary effects[END_REF], solid-fluid [START_REF] Favrie | Solid-fluid diffuse interface model in cases of extreme deformations[END_REF], plastic transformation [START_REF] Ndanou | Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation[END_REF], to cite a few. Diffuse interface methods have shown their ability to address a wide range of difficult flow situations. However, progress is required at the level of numerical accuracy. Indeed, the main limitation of these diffuse interface methods is related to their excessive numerical diffusion. This unphysical dissipation is essential to the stability of those methods but is too often unreasonable, especially with long-time computations dealing with unstructured meshes. This last point is nonetheless crucial in view of the intended industrial problems. While diffuse interface methods allow to take into account physics increasingly richer, the excessive artificial diffusion is still present and may corrupt the computed results as their analyses are affected by this lingering liability.

This problematic is undertaken in Chapter 1 where a new, very simple but dramatically efficient, numerical method relying on diffuse interface models is proposed to control the artificial dissipation which remains essential in the frame of these methods. As it will be seen further, the simplicity and efficiency of diffuse interface models are kept but the quality of computed results is significantly improved at the price of slight but subtle code modifications.

This method can be placed in the framework of the "MUSCL" numerical method (Monotonic Upstream-centered Scheme for Conservation Laws) very used in production codes. In this framework, various efforts have been done in the direction of limitation or control of numerical smearing of contact discontinuities. For instance, Shyue and Xiao (2014) [START_REF] Shyue | An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach[END_REF] examined a flux limiter combined with a hyperbolic tangent reconstruction. This technique was first applied to the [START_REF] Allaire | A five-equation model for the simulation of interfaces between compressible fluids[END_REF] [START_REF] Allaire | A five-equation model for the simulation of interfaces between compressible fluids[END_REF] model. The key idea of this method is to replace the linear reconstruction of the volume fraction α from the cell-averaged ᾱi , used in second-order MUSCL-type methods, with a non-linear hyperbolic tangent reconstruction. This method provides excellent results on structured grids and its extension to unstructured meshes seems possible. It is an Eulerian-sharpening algorithm referred to as the tangent of hyperbola for interface capturing. However, this strategy seems inappropriate for flow computations involving more than two fluids. Additional efforts are consequently required in view of the intended industrial applications.

In this manuscript, an approach relying on the Total Variation Diminishing (TVD) limiter technique is considered. The TVD notion was first presented in the original work of [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF] [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF] who proposed this concept to characterize oscillation free schemes. In such context, the use of limiter functions is mandatory. Those are indeed essential to ensure that the numerical scheme maintains its TVD property and consequently remains stable. Later a graphical analysis was presented by [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF], who defined the so-called first-order TVD area. In the same contribution Sweby completed the TVD theory by introducing the second-order TVD area that is actually delimited by the Superbee limiter function developed by Roe [START_REF] Roe | Some contributions to the modelling of discontinuous flows[END_REF]. Most of the existing limiter functions lie inside the second-order TVD region, the first-order one (upper region) is inappropriate for continuous fields and shock waves.

However, only interfaces are of interest in Chapter 1. Those are Heaviside-type discontinuous fields and require thereby a specific attention. In this special context, the research work presented in the next chapter reconsiders the TVD region of interest. As it will be seen later, when dealing with Heaviside-type discontinuities only, the first-order TVD area (upper region) is this actual restriction of the Total Variation Diminishing theory. This statement will be clarified in Chapter 1 where a new limiter named "Overbee" is created for the specific case of interfaces. Unlike conventional limiters, the "Overbee" function is a first-order TVD limiter and is the cornerstone of the sharpening method developed in the next chapter. In this context, the limiter function of all fields is set to zero in the interfacial zone with the exception of the volume fraction (Heaviside-type discontinuity) where the new "Overbee" limiter is used. This approach is unusual in the context of MUSCL-type schemes, where most of the existing gradient limiters belong to the second-order TVD region. As the new limiter goes beyond the second-order area, it is consequently inappropriate for smooth flows and shock waves but behaves very well for Heaviside-type discontinuous fields like the volume fraction at interfaces as seen in Chapter 1.

The resulting numerical method is able to deal with both structured and unstructured meshes, multiple interfaces and multiple fluids. Those last characteristics are essential in view of real industrial applications. This research work has been published in Chiapolino et al. (2017) [START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF].

Phase transition solvers

Under specific thermodynamic conditions, material interfaces may be subject to phase transition.

Knowledge of phase change phenomena is essential for many applications and must be taken into account in computer codes in order to reproduce the desired effects.

Cryogenic flows in rocket engines are for instance characterized by their multiphase, unsteady and multidimensional aspects in addition to their reacting properties through phase change phenomena playing significant roles. In such configurations, the state of the fluid must be predicted, as well as the thermodynamic state in combustion chambers. In the present manuscript, this research topic is linked to the filling of those combustion chambers with a cryogenic fuel.

During the ignition stage (for which the engine has not yet reached supercritical conditions), the flow consists of a liquid oxygen (LOX) jet surrounded by a high-speed gaseous hydrogen (H 2 ) flow, injected in conditions above the saturation point of the inner oxygen core. The aim of this operation is to produce a combustion reaction (not addressed in this document) within the gas phase (H 2 and O 2 ). Gaseous oxygen is then needed but is initially absent in the chamber. Phase change from liquid oxygen to vapor is consequently required.

From a physics point of view, phase transition happens when one of the two phases (liquid or vapor) is said to be metastable. This denomination refers to a state involving a thermodynamical disequilibrium. This can happen, -Either when a liquid is overheated. Such situations appear for example through heat exchanges with the gas, or through an expansion wave that lowers the saturation temperature of the liquid.

In that case, the liquid evaporates and becomes saturated vapor.

-Or when a vapor species is subcooled. It is to say that the temperature becomes lower than the saturation temperature at the current pressure. In that case, the vapor condensates into a liquid at saturation. This situation can happen for instance through a shock wave, as the liquid's temperature barely varies whereas the saturation temperature increases. Condensation can also appear near walls if those are cooled.

When one of these conditions is satisfied, phase transition phenomena appear and are often of utmost importance for many industrial applications. In such circumstances, the equation of state must reproduce the behavior of each fluid (liquid and vapor), as well as the behavior of the two-phase mixture appearing in the so-called saturation dome. Furthermore, additional non-condensable gases are present in practical applications. Those do not react and do not have any reason a priori to be in thermodynamic equilibrium with the liquid-vapor couple but must be taken into account in the mixture equation of state as well.

In this context, Chapter 2 focuses on the theoretical modeling and the numerical treatment of phase transition. In our approach, phase change at material interfaces is treated by an instantaneous relaxation process involving Gibbs free energies [START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF] [START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF]). This consists in a non-linear algebraic system that is made from the equilibrium conditions (equality of the temperatures, pressures and free energies of the phases) and mixture mass and mixture energy definitions. Its resolution is non-trivial and may yield unstable computations, particularly when the final state gets out of the two-phase domain to join one of the pure phases. Besides, additional complexity is added to the system when non-condensable gases are present. This situation is however present in many practical applications. The most common way to compute such phase change situations is to directly solve the corresponding system via complex root-finding procedures, sometimes draining more CPU time than the flow computation itself. As such strategy may be detrimental to the computation, it motivates the introduction of a new relaxation method where the solution relaxes weakly (smoothly during time evolution) to the correct solution, on the basis of some estimates. This new method developed in Chapter 2 happens to be stable, accurate, fast and particularly simple to code. This work has been the subject of two publications in scientific journals, Chiapolino et al. (2017) [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF], [START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF].

Construction of equations of state

Moreover, equations of state used to describe the thermodynamic behavior of the different phases have their own ranges of validity. In view of future industrial applications, extension of these ranges of validity is necessary. Several forms of equation of state (EOS) can be found in the literature (see Le [START_REF] Métayer | Modélisation et résolution de la propagation de fronts perméables, application aux fronts d'évaporation et de détonation[END_REF][START_REF] Métayer | [END_REF] [START_REF] Métayer | Modélisation et résolution de la propagation de fronts perméables, application aux fronts d'évaporation et de détonation[END_REF], [START_REF] Métayer | Modélisation et élaboration d'outils de simulations dédiés aux écoulements multiphasiques compressibles réactifs[END_REF] for more details). Each form is more or less complex depending on the medium to represent and the transformations that may occur.

When envisioning the whole phase diagram presenting liquid, vapor and supercritical states, the most common thermodynamic option relies on cubic equations of state. Such type of thermodynamic modeling is particularly attractive as it involves all possible effects occurring in matter, namely: agitation, attraction and repulsion, with one unique formulation by foreseeing the transition from one state into another. Its particular interest for phase transition modeling relies on variable attractive effects responsible, at least qualitatively, for cohesion of liquids. Those effects vanish when the density becomes low. Cubic equations of state are thereby well-suited, at least in appearance, for the thermodynamic description of liquid, vapor and supercritical state as well. However, this type of thermodynamic modeling involves serious theoretical and numerical difficulties as listed in Chapter 3. Among these complexities, the loss of convexity within the two-phase region and consequently the loss of hyperbolicity of related flow models is a severe flaw of cubic equations of state.

The "philosophy" of diffuse interface methods relies on convex equations of state and hyperbolic systems. The convexity property is indeed essential both for theoretical and numerical points of view.

The recent Noble-Abel-Stiffened-Gas (NASG) EOS (Le Métayer and Saurel (2016) [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF]) is a wellposed formulation involving the three above-mentioned molecular forces of a fluid and is consequently appealing.

To address supercritical conditions, large temperature and pressure variation ranges are considered in Chapter 3. Nevertheless, the NASG EOS is only well-suited in a limited temperature range [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF].

Wherefore, an extension of the NASG EOS is necessary in view of the intended industrial applications.

A novel convex equation of state is consequently developed in Chapter 3 and presents an alternative to well-known cubic equations of state. The formulation is named ENASG with "E" standing for "Extended". With the ENASG description, attractive and repulsive effects depend on the temperature and the density respectively whereas the NASG equation of state considers these effects constant, restricting consequently its range of validity. This work has been published in Chiapolino and Saurel (2018) [START_REF] Chiapolino | Extended Noble-Abel Stiffened-Gas Equation of State for Sub-and-Supercritical Liquid-Gas Systems Far from the Critical point[END_REF].

Large-scale dispersion

In another framework, Chapter 4 deals with fluid dispersal at both large time and space scales.

Many situations may involve fluid dispersal in large urban or natural places after an important period of time. Consequently, this topic is of interest to the safety community as gas dispersal may yield severe consequences. Figure 2 illustrates circumstances of typical interest. In the present example, a cloud of chlorine is spread to the surrounding of the area of "La Défence" in Paris, France, due to the explosion of a TNT charge. At early times, the explosion stage is to be treated by an appropriate flow model such as the one presented in [START_REF] Hank | Modeling blast waves, gas and particles dispersion in urban and hilly ground areas[END_REF] [START_REF] Hank | Modeling blast waves, gas and particles dispersion in urban and hilly ground areas[END_REF]. This Ph.D. thesis focuses on the dispersal of the resulting dense gases happening at much longer times. The evolution of dense gases is also of interest to the safety community as the gases spreading throughout large places may be dangerous chemical species.

This technical area motivates the design of a new two-layer shallow water type system. Indeed, in such context one of the difficulties is to address long-time computations involving large-scale numerical domains while providing accurate results at a reasonable cost in CPU time.

The two-layer shallow water strategy is consequently attractive as it allows to address 2D simulations to mimic 3D results. However, it also involves serious theoretical and numerical difficulties related to the conditional hyperbolicity of most mathematical systems and their non-conservative character.

This problematic is undertaken in Chapter 4 where a new strictly hyperbolic two-layer shallow water type model is developed. Pressure disequilibrium and fluid compressibility are responsible for its well-posedness. Its numerical resolution is treated as well through a HLL-type Riemann solver and provides an attractive alternative over conventional multi-fluid flow models to deal with fluid dispersal Figure 2: Dispersion of a chlorine cloud spreading under gravity effects and weather conditions. In the present case, a mixture of air and chlorine was set to motion by the explosion of a TNT charge placed near the area of "La Défence" in Paris, France. The evolution of the resulting dense and toxic chlorine cloud is observed at t = 3.24 s after the detonation. Its spreading throughout the city at much larger periods of time is of interest to the safety community and motivates the work presented in Chapter 4. The present simulation is adapted with permission from Hank (2012) [START_REF] Hank | Modélisation et Simulation de la Dispersion de Fluide en Milieu Fortement Hétérogène[END_REF] (see also Hank et al. (2014) [START_REF] Hank | Modeling blast waves, gas and particles dispersion in urban and hilly ground areas[END_REF]).

Long-time dispersion of dense gases into large places

computations involving large time and space scales. This work has also been valued by a scientific publication, Chiapolino and Saurel (2018) [START_REF] Chiapolino | Models and methods for two-layer shallow water flows[END_REF].

The overall contents of this manuscript may be of interest to "Computational Fluid Dynamics"

(CFD) practitioners working on multiphase flows. At the cost of some repetitiveness, each chapter is almost self-contained and has plenty of cross-referencing, so that the reader may decide to start reading this manuscript in the middle or jump to the last chapter.

Part I

Material interfaces Introduction

As their name suggests, diffuse interface methods rely on numerical diffusion. This artificial dissipation is essential to ensure robustness and stability of any flow computation where discontinuities are present. However, this numerical diffusion is often unreasonable, especially at long times and with unstructured-mesh computations.

Diffuse interface computations rely on discontinuity capturing (instead of "tracking" or "reconstruction") but progress is still needed to handle these interfaces with the minimum amount of points.

In certain situations this may become pathologic, for instance if physical dissipation such as mass diffusion must be differentiated from numerical dissipation.

The following chapter attempts to provide an efficient method reducing the dissipation zone around interfaces while keeping simplicity and stability of diffuse interface methods. Phase transition is omitted and a multiphase flow formulation able to cope with interfaces of simple mechanical contact is considered.

Over the years several methods, more or less complex and efficient, have been developed to lower the numerical dissipation, inherent to all numerical methods. However, those are mainly devoted to Cartesian grids and to this day, there are no simple and efficient numerical methods able to deal with unstructured meshes and an arbitrary number of fluids. These characteristics are major features nonetheless, in view of real practical applications.

At the price of slight but subtle code modifications, a very simple, robust and efficient numerical method is developed in Chapter 1 and is able to deal with both structured and unstructured meshes, this property being very important. Besides, multiple interfaces and multiple fluids can be treated with the proposed method, this asset being significant as well. The method relies on a new flux limiter developed in the following chapter. This limiter is named "Overbee" and is a major asset for the numerical capture of interfaces.

For the sake of simplicity, the diffuse interface model of [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] is used in the following chapter. As recalled further, Saurel et al.'s model is a two-phase flow formulation involving interfaces which simplifies the numerical resolution of the mechanical-equilibrium two-phase flow model of [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF]. However, the proposed method is not restricted to this specific formulation but can deal with any two-phase flow models involving material interfaces.

Introduction

The present contribution deals with the computation of compressible flows with material interfaces.

As soon as the computational domain involves more than one fluid or material, a fundamental difficulty arises, as an extra type of discontinuity appears in addition to shocks and contact discontinuities, present in single-phase flows. An interface separates two materials possibly governed by the same set of balance equations (for example interfaces separating air and liquid water) but with different thermodynamics. As soon as the interface moves in a given cell, this latter becomes a mixture cell and the computation of the thermodynamic state becomes problematic. The fluids have significantly different densities and internal energies, these latter ones being different from the density and internal energy of the mixture in the computational cell as well. It is not possible to compute the cell thermodynamics and in particular the pressure without extra information. In this frame, several approaches have been developed along several decades.

The first class of methods attempts to avoid appearance of mixture cells by maintaining sharp interface profiles. Lagrangian [START_REF] Vonneumann | A method for the numerical calculation of hydrodynamic shocks[END_REF] and "Arbitrary Lagrangian Eulerian" (ALE) methods [START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF] track interfaces but are limited by mesh distortions of arbitrary amplitude [START_REF] Caramana | Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures[END_REF]. Front tracking [START_REF] Glimm | Three-dimensional front tracking[END_REF] attempted to reduce these distortions by considering fixed meshes and moving interfaces, tracked by Lagrangian markers. This was done at the price of limitations, such as the management of several flow solvers, as well as interface distortions involving geometrical singularities, resulting in computational issues.

To progress in the direction of simplicity and generality, the Level Set Method [START_REF] Dervieux | A finite element method for the simulation of a Rayleigh-Taylor instability[END_REF] was adapted to compressible fluids and the Ghost Fluid Method [START_REF] Fedkiw | A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method)[END_REF] was used to compute approximate thermodynamic state in mixture cells and particularly pressure. To avoid complexity related to mesh management with previous methods, the interface was tracked implicitly through an Eulerian function and two sets of Euler equations were used to store and evolve the fluid variables when needed, in particular in mixture cells. The Ghost Fluid Method is used to transfer the boundary conditions at interfaces through specific extrapolations from one set of Euler equations to the other. Although apparently simple, this method still needs efforts to improve robustness in severe flow conditions, to maintain conservation and address extra physics.

The last family of methods devoted to mixture cells is termed "diffuse interface methods" (DIM).

Two subclasses of DIM are present in the literature. The first one considers physically diffuse interfaces, having a visco-capillary structure [START_REF] Cahn | Free energy of a nonuniform system. I. Interfacial free energy[END_REF]. Here the spatial resolution must be less than the interface width,

i.e. a few nanometers. Also, the equation of state is aimed to describe phase transition between a liquid and its vapor through a cubic-type equation of state. To the authors' knowledge, this approach has never shown its capability to compute interfaces between immiscible fluids (water and air for example). Its seems restricted to small scale computations of phase transition.

The second subclass of DIM addresses mixture cells having computational origins instead of physi-cal ones. Pioneering work in this direction was done with "Volume of Fluid" (VOF) methods [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF] in the frame of incompressible fluids. An extra evolution equation is added to the flow model representing the volume fraction of a given phase. At this level, the model adopts a two-phase description of the flow, with subvolumes occupied by the phases and several mass balance equations. Extensions of this approach to compressible fluids were done in [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF] and [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF].

Contrarily to shocks, captured with the help of some artificial viscosity, the computation of interfaces separating materials with different thermodynamics has no viscous regularization. As shown in [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF], [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF], [35], the computation of mixture thermodynamics can be achieved through relaxation effects in multiphase mixtures. In this frame, as pure materials, far from interfaces, are governed by hyperbolic systems (Euler equations or more sophisticated models), it is natural to address hyperbolic models of diffuse interfaces.

The present contribution is placed in this framework. The simplicity of the implementation of diffuse interface methods is a key point for the computation of complex flows, with distorted interfaces, shocks and interactions among them. Insertion of these methods into existing CFD compressible flow codes is in general easy.

In this frame, Abgrall (1996) [36] considered interfaces separating two ideal gases. Shyue (1998) [37] and Saurel and Abgrall (1999) [4] considered liquid-gas interfaces and added evolution equations for the Stiffened-Gas equation of state parameters to compute mixture cells' thermodynamics. These methods were generalized and rationalized with the help of multiphase flow modeling [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF], [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF], [START_REF] Allaire | A five-equation model for the simulation of interfaces between compressible fluids[END_REF], [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF], [START_REF] Massoni | Proposition de méthodes et modèles Eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur: Some models and Eulerian methods for interface problems between compressible fluids with heat transfer[END_REF], [START_REF] Murrone | A five equation reduced model for compressible two phase flow problems[END_REF], [START_REF] Pelanti | A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves[END_REF], to cite a few.

In these formulations, the aim is to solve interfaces with a unique set of partial differential equations (an extended flow model) and a unique hyperbolic solver. The interfaces are captured and not tracked or reconstructed. Such an approach is mandatory in most compressible flow computations as interface deformations are arbitrarily complex.

These methods are permanently improved, for example to reduce artificial smearing and sharpen interfaces [START_REF] Shyue | An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach[END_REF], [START_REF] Shukla | An interface capturing method for the simulation of multiphase compressible flows[END_REF], [START_REF] Tiwari | A diffuse interface model with immiscibility preservation[END_REF] as well as to increase the order of approximation and global accuracy [START_REF] Loubere | A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws[END_REF].

Extra physics extensions have been addressed as well: chemical reactions [START_REF] Petitpas | Modelling detonation waves in condensed energetic materials: Multiphase CJ conditions and multidimensional computations[END_REF], phase change [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF],

surface tension [START_REF] Perigaud | A compressible flow model with capillary effects[END_REF], solid-fluid [START_REF] Favrie | Solid-fluid diffuse interface model in cases of extreme deformations[END_REF], plastic transformation [START_REF] Ndanou | Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation[END_REF], to cite a few.

The main limitation of these diffuse interface methods is related to their excessive numerical diffusion, typically four mesh points and even more. This is not problematic for fast transient flows as the interfaces are in general maintained sharp during sufficiently long time, but becomes problematic at least for slow transient flows. Several contributions have been done to maintain or restore sharp interfaces. [START_REF] Shyue | A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions[END_REF] [START_REF] Shyue | A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions[END_REF] adapted the interface reconstruction method of [START_REF] Youngs | Time-dependent multi-material flow with large fluid distortion[END_REF] [START_REF] Youngs | Time-dependent multi-material flow with large fluid distortion[END_REF] to a diffuse interface model of compressible fluids. Pantano and coworkers (2010, 2013) [START_REF] Shukla | An interface capturing method for the simulation of multiphase compressible flows[END_REF], [START_REF] Tiwari | A diffuse interface model with immiscibility preservation[END_REF] adapted the sharpening method of [START_REF] Olsson | A conservative level set method for two phase flow[END_REF] [START_REF] Olsson | A conservative level set method for two phase flow[END_REF] to another diffuse interface model. Kokh and Lagoutiere (2010) [START_REF] Kokh | An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model[END_REF] promoted another method based on a downwind limiter. Shyue and Xiao (2014) [START_REF] Shyue | An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach[END_REF] examined another limiter, combined with a hyperbolic tangent reconstruction. It is clear that this research area is very active and that various directions are under investigation.

The present contribution addresses interface sharpening on unstructured meshes. With the help of mild modifications of existing flux limiters in conventional MUSCL methods [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF], interfaces are captured with 3 ± 1 mesh points depending on the test problem, improving significantly quality of the results.

The chapter is organized as follows. The considered flow model is recalled in Section 1. -Coupling with a diffuse interface formulation.

The last sections 1.7 and 1.8 deal with validations and illustrations of the method capabilities.

Flow model

The almost sharp algorithm developed in the present chapter considers the diffuse interface model of [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF]. This model is a pressure non-equilibrium variant of Kapila et al.'s model (2001) [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] that facilitates consideration of non-conservative terms. The sharpening algorithm can also be applied to simplified versions of these models, such as for example, models given in [START_REF] Allaire | A five-equation model for the simulation of interfaces between compressible fluids[END_REF] and [START_REF] Massoni | Proposition de méthodes et modèles Eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur: Some models and Eulerian methods for interface problems between compressible fluids with heat transfer[END_REF] as well as variants [START_REF] Pelanti | A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves[END_REF]. Furthermore, the method also applies to more general models such as Baer and Nunziato's (1986) [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF]. The model of reference [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] is recalled hereafter: 

                     ∂α k ∂t + u. grad (α k ) = µ(p k -p I ), ∂ (α k ρ k e k ) ∂t + div (α k ρ k e k u) + (α k p k ) div (u) = -p I µ(p k -p I ), ∂ (α k ρ k ) ∂t + div (α k ρ k u) = 0, ∂ (ρu) ∂t + div ρu ⊗ u + pI = 0, ( 1 
p I = p k Z k 1 Z k , (1.2.2)
where Z k = ρ k c k denotes the acoustic impedance of fluid k. The entropy equations read,

∂ (α k ρ k s k ) ∂t + div(α k ρ k s k u) = µ(p I -p k ) 2 T k . (1.2.3)
System (1.2.1) is hyperbolic with wave speeds u, u + c, u -c with the following definition for the square sound speed:

c 2 = Y k c 2 k .
It is convenient to write this system in compact form as,

∂U ∂t + div{F (U )} + B(U ) div (u) = µS(U ), (1.2.4) with, U =         α k α k ρ k e k α k ρ k ρu         F (U ) =         α k u α k ρ k e k u α k ρ k u ρu ⊗ u + pI         B(U ) =         -α k α k p k 0 0         S(U ) =         p k -p I p I (p I -p k ) 0 0         . (1.2.5)
This system is non-conservative and is subject to multiple weak solutions. The aim being to couple two systems of Euler equations with different thermodynamics across the diffuse interface, the flow model must tend to the appropriate Euler equations with corresponding jump conditions on both sides of the interface when the volume fractions tend to 0 and 1. Such aim is reached by adding Eq. (1.2.6):

∂ (ρE) ∂t + div u ρE + p = 0, (1.2.6) 
with E the mixture total energy (E = e + 1 2 u 2 ). In this frame, the equation of state must correspond to the one of the appropriate phase (as guaranteed by Eq. (1.2.9)) in the same limit when the volume fractions tend to 0 and 1.

This "forcing" of appropriate Rankine-Hugoniot conditions is simple and accurate when dealing with pure (or nearly pure) fluids separated by interfaces. The situation becomes much more complex when one of the media is a mixture with phases in non-negligible proportions. The difficulty corresponds to the correct partition of the shock energy among the phases. Progresses in this direction were done in [START_REF] Saurel | Shock jump relations for multiphase mixtures with stiff mechanical relaxation[END_REF] [START_REF] Saurel | Shock jump relations for multiphase mixtures with stiff mechanical relaxation[END_REF], [START_REF] Petitpas | A relaxation-projection method for compressible flows. part II: Artificial heat exchanges for multiphase shocks[END_REF] [START_REF] Petitpas | A relaxation-projection method for compressible flows. part II: Artificial heat exchanges for multiphase shocks[END_REF], Petitpas et al. (2009) [START_REF] Petitpas | Modelling detonation waves in condensed energetic materials: Multiphase CJ conditions and multidimensional computations[END_REF], [START_REF] Schoch | Multi-phase simulation of ammonium nitrate emulsion detonations[END_REF] [START_REF] Schoch | Multi-phase simulation of ammonium nitrate emulsion detonations[END_REF], but this is out of the scope of the present chapter as the interfaces considered herein separate two pure (or nearly pure) fluids.

The formulation based on (1.2.4)-(1.2.6) with equation of state (EOS) (1.2.9) tends to the appropriate equations on both sides of the interface separating pure fluids, with appropriate shock relations.

But the flow model must also enforce interface conditions of equal pressures and equal normal velocities. As it involves a single velocity, the second interface condition is immediately satisfied. To fulfill the condition of equal pressures, stiff pressure relaxation is done through the pressure relaxation parameter µ that tends to infinity. Such a method is now well-accepted (Saurel and Abgrall (1999) [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF], [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF]) and its efficiency has been demonstrated on many examples. This method does not require resolution of stiff ordinary differential equations (ODEs), as will be summarized later.

At the end of the pressure relaxation step, the volume fractions at mechanical equilibrium are determined and the mixture EOS (1.2.9) is used to compute the pressure in agreement with the total energy evolution (1.2.6).

As the numerical integration of the non-conservative internal energy equations necessarily lacks of accuracy, there is no guarantee that the computed internal energies e k are in agreement with the mixture pressure p and their respective equations of state e k = e k (p, ρ k ). To enforce thermodynamic compatibility, the internal energies are reset with the computed pressure at mechanical equilibrium with the EOS (1.2.9) and their respective EOSs: e k (p, ρ k ). The global procedure is summarized in System (1.2.7) where the two stiff relaxations (pressure relaxation and internal energy reset) are present in the right-hand side,

     ∂U ∂t + div{F (U )} + B(U ) div (u) = µS(U ) + 1 ǫ R(U, ρE), ∂ (ρE) ∂t + div u ρE + p = 0. (1.2.7)
Internal energy reset is done through the relaxation vector R(U, ρE) defined as,

R(U, ρE) =            0 α k ρ k (e k (p, ρ k ) -e k ) 0 0 0            , (1.2.8)
where p is the mixture pressure computed with the mixture total energy,

p = p(U, ρE) = ρE -1 2 ρu • u - α k (1-ρ k b k )γ k p ∞,k γ k -1 α k (1-ρ k b k ) γ k -1
.

(1.2.9)

The mixture EOS (1.2.9) can be derived explicitly or implicitly from any convex EOS p k (ρ k , e k ) and definition of mixture internal energy ρe = α k ρ k e k (p k , ρ k ) under pressure equilibrium condition p = p k . The mixture EOS (1.2.9) above is derived from the NASG EOS, used for each fluid,

p k (ρ k , e k ) = (γ k -1) ρ k e k 1 -ρ k b k -γ k p ∞,k . (1.2.10)
NASG stands for Noble-Abel-Stiffened-Gas (Le Métayer and Saurel (2016) [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF]). It is a generalization of the Stiffened-Gas (SG) EOS, to covolume effects to improve its range of validity and accuracy, at the price of mild modifications. Associated parameters are given for example in [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF], [START_REF] Métayer | Elaborating equations of state of a liquid and its vapor for two-phase flow models; élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques[END_REF].

The numerical approximation of System (1.2.7) is achieved with three distinct steps: hyperbolic evolution, relaxation of the phase pressures and reset of the phase internal energies. Those three steps are briefly recalled hereafter.

Hyperbolic evolution

At the beginning of this step, the following relation is satisfied at the current time denoted n,

k (α k ρ k e k ) n = (ρE) n - 1 2 ρ n u n 2 . (1.2.11)
The associated dynamics is driven by the following set of non-conservative equations, describing the evolution of U as well as the evolution of ρE,

     ∂U ∂t + div{F (U )} + B(U ) div (u) = 0, ∂ (ρE) ∂t + div u ρE + p = 0.
(1.2.12)

This system is evolved during a time step ∆t. In the following, the superscript (1) will indicate the output variables coming from this hyperbolic step. When this latter is fully computed, the sum of the phase internal energies is in general different from its definition,

k (α k ρ k e k ) (1) = (ρE) (1) - 1 2 ρ (1) u (1) 2 .
This feature is particularly true for discontinuous solutions. This inconsistency vanishes with the following corrections.

Pressure relaxation

At this point, the vector U (1) and (ρE) (1) are available and used as inputs of System (1.2.13).

During the second step, the phase pressures are relaxed according to,

     ∂U ∂t = µS(U ), ∂ (ρE) ∂t = 0.
(1.2.13)

Rather than solving (1.2.13) that involves the pressure relaxation rate µ, the combination of the various ODEs results in the following non-linear algebraic system,

           e k p (2) , ρ (2) k -e (1) 
k -p (2) 1 ρ (2) k - 1 ρ (1) k = 0, k (α k ρ k ) (1) ρ (2) k = 1, (1.2.14)
where ρ

k , (α k ρ k ) (1) and e

k come from the previous hyperbolic step. The superscript (2) denotes here the relaxed pressure state. System (1.2.14) is solved with Newton's method [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF]. When only two fluids are considered, an exact solution is available (given here for the Stiffened-Gas EOS),

p (2) = 1 2 A 1 + A 2 -(p ∞,1 + p ∞,2 ) + 1 4 A 2 -A 1 -(p ∞,2 -p ∞,1 ) 2 + A 1 A 2 , (1.2.15)
with,

A 1 = α (1) 1 γ 1 p (1) 1 + p ∞,1 α (1) 1 γ 1 + α (1) 2 γ 2 and A 2 = α (1) 2 γ 2 p (1) 2 + p ∞,2 α (1) 1 γ 1 + α (1) 2 γ 2 . (1.2.16) When ρ (2) 
k are computed, new volume fractions are deduced as α

(2) k = (α k ρ k ) (1) ρ (2) k 
. However, the computed phase internal energies at relaxed pressure e k p (2) , ρ

(2) k are, once more, incompatible with the mixture total energy (in the presence of shocks) and the next and final step attempts to remedy to this.

Internal energy reset

At this point, the variables coming from the hyperbolic step (1) and the pressure relaxation one

(2) are available. Another relaxation process is achieved, this time regarding the internal energies of the phases. The corresponding system is then,

     ∂U ∂t = 1 ǫ R(U, ρE), ∂ (ρE) ∂t = 0, (1.2.17)
in the asymptotic limit where ǫ → 0. During this step, only the phase internal energies are reset as, e

k = e k p (3) , ρ

.

(1.2.18)

Here the superscript (3) denotes the pressure computed with the mixture EOS (1.2.9), based on the mixture total energy (invariant through steps 1-2-3) and the volume fractions after pressure relaxation (α

k ). As the internal energies e

k are computed with the mixture pressure p (3) through EOS (1.2.9), those are now compatible with the conservation of the mixture internal energy,

k (α k ρ k e k ) (3) = (ρE) (3) - 1 2 ρ (3) u (3) 2 .
The time step update is now complete and reads, 3) and (ρE) n+1 = (ρE) (3) .

U n+1 = U (
It is worthwhile to note that the variables (α k ρ k ) n+1 , (ρu) 

                         (α k ρ k ) n+1 = (α k ρ k ) (3) = (α k ρ k ) (2) = (α k ρ k ) (1) ,
(ρu) n+1 = (ρu) (3) = (ρu) (2) = (ρu) (1) ,

(ρE) n+1 = (ρE) (3) = (ρE) (2)
= (ρE) (1) ,

α n+1 k = α (3) k = α (2) 
k ,

e n+1 k = e (3) k . 
(

The overall method can thus be summarized as follows. Considering the flow model (1.2.4)-(1.2.6), a quasi-conservative-variable vector U is defined, as well as a primitive-variable vector W ,

U =            α k α k ρ k e k α k ρ k ρu ρE            , W =         α k ρ k p k u         . (1.2.20)
and the method summarizes as:

-Solve the Riemann problem of System (1.2.4)-(1.2.6) (without relaxation terms) at each cell boundary with favorite solver. The HLLC solver [START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF] is recommended as this system involves 3 waves only. Such solver preserves positivity of density, mass and volume fractions.

-Evolve all flow variables with a Godunov-type method (or higher order variants).

-Determine the relaxed pressure by solving (1.2.14).

-Compute the mixture pressure with the mixture equation of state, EOS (1.2.9).

-Reset the internal energies with the computed pressure from Eq. (1.2.9) and respective EOSs, e k = e k (ρ k , p). During this step, the internal energies are computed by the mixture pressure, determined itself by the mixture internal energy, computed from the mixture total energy equation which is conservative and unambiguously updated.

The interface sharpening algorithm developed in the present chapter acts only during the hyperbolic step. The pressure relaxation and reset steps being unchanged and detailed in [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF], the reader is referred to that reference. The hyperbolic step is recalled hereafter and the new flux limiter, rendering interfaces sharp is presented afterwards.

Hyperbolic solver on unstructured meshes

To develop the interface-sharpening algorithm, numerical resolution of the non-conservative system (Eqs. (1.2.4)-(1.2.6)) has to be addressed. The Godunov-type method given in [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] is extended hereafter to unstructured meshes. Second-order type extension is done with a MUSCL-type method summarized hereafter. Denoting by V i (P i ) and V j (P j ) two elements with cell centers P i and P j delimited by the boundary S ij (see Fig. 1.1), the space-time Taylor expansion at the point P ij , barycenter of S ij , from the point P i of a primitive variable W reads,

W L (P ij ) = W (P i ) + r ij . ∇W (P i ) + △t ∂W (P i ) ∂t , r ij = ---→ P i P ij . (1.3.1)
Similar expansion at P ij from P j reads, W R (P ij ) = W (P j ) + r ji . ∇W (P j ) + △t ∂W (P j ) ∂t , r ji = ---→ P j P ij .

(1.3.2) The reconstructed solutions at left W L (P ij ), and at right W R (P ij ), are used as initial conditions for the Riemann problems in order to obtain more accurate numerical fluxes. The MUSCL-type scheme takes into account both data reconstruction and time evolution with the following sequence of computations.

P 3 P 03 P 0 P 1 P 2 P 02 P 01 W (P j ) W (P i ) W R (P ij ) W L (P ij ) Riemann

Spatial reconstruction at cell boundaries

The spatial reconstruction step uses the preceding formulas (1.3.1), (1.3.2) without the time derivative, this one being approximated in the next predictor step,

W n L (P ij ) = W n (P i ) + r ij . ∇W n (P i ), r ij = ---→ P i P ij . (1.3.3)
Similar expansion at P ij from P j reads, 

W n R (P ij ) = W n (P j ) + r ji . ∇W n (P j ), r ji = ---→ P j P ij . ( 1 

Half-time step evolution

The cell-center-variable-state vector U n i is evolved during a half-time step with the conventional Godunov method, requiring Riemann problem resolutions at cell faces, 

U n+1/2 i = U n i - △t 2V i N f aces j=1 S ij F * n ij . ( 1 
α n+1/2 k,i = α n k,i - △t 2V i N f aces j=1 S ij (S m α k ) * n ij -α n k,i S * n m ij , (1.3.6) 
where S m denotes the contact wave speed projected along the face normal vector, solution of the Riemann problem. Regarding the non-conservative internal energy equations, similar approximation of the corresponding equations is used by assuming the product (α k p k ) constant during the time step,

(α k ρ k e k ) n+1/2 i = (α k ρ k e k ) n i - △t 2V i N f aces j=1 S ij (α k ρ k e k S m ) * n ij + (α k p k ) n i S * n m ij . (1.3.7)
The lack of accuracy in the internal energy computation resulting from the present scheme is not crucial. The internal energies are only used to estimate the pressure of the phases at the end of the hyperbolic step, before relaxation. The relaxation step gives a first correction to the internal energies, in agreement with the second law of thermodynamics. A second correction is made with the help of the mixture total energy and mixture EOS (1.2.9) [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF]. Thereby, a single value of the pressure is available for the next step and for the various phases.

Full-time step evolution

The previous cell-center and quasi-conservative vector U n+1/2 i is converted into the primitive one

W n+1/2 i
as this latter is preferable for the extrapolation step:

W n+1/2 L (P ij ) = W n+1/2 (P i ) + r ij . ∇W n (P i ), r ij = ---→ P i P ij . (1.3.8)
Similar expansion at P ij from P j reads,

W n+1/2 R (P ij ) = W n+1/2 (P j ) + r ji . ∇W n (P j ), r ji = ---→ P j P ij . (1.3.9) 
The gradients ∇W n (P i ) and ∇W n (P j ) come from the first spatial reconstruction step and add robustness to the method as no combination of gradients computed at time t n and t n+1/2 is made. From the extrapolated variables at left W n+1/2 L (P ij ) and right W n+1/2 R (P ij ), a second Riemann problem is solved yielding more accurate numerical fluxes. The solution vector is then evolved during the full-time step with the conventional Godunov method for the various quasi-conservative variables,

U n+1 i = U n i - △t V i N f aces j=1 S ij F * n+1/2 ij , (1.3.10) 
while spacial care is taken for the non-conservative variables,

             α n+1 k,i = α n k,i - △t V i N f aces j=1 S ij (S m α k ) * n+1/2 ij -α n+1/2 k,i S * n+1/2 m ij , (α k ρ k e k ) n+1 i = (α k ρ k e k ) n i - △t V i N f aces j=1 S ij (α k ρ k e k S m ) * n+1/2 ij + (α k p k ) n+1/2 i S * n+1/2 m ij . (1.3.11)
Then, another pressure relaxation step is done followed by mixture EOS (1.2.9) pressure computation and internal energy reset.

This MUSCL-type scheme is thus summarized in three steps,

-Spatial reconstruction at cell boundaries.

-Half-time step evolution (prediction) followed by pressure relaxation.

-Full-time step evolution followed by another pressure relaxation step.

Figure 1.2 displays a schematic representation of the procedure. The MUSCL-type scheme presented previously requires to solve two Riemann problems per time step but only one gradient computation of the various flow variables. This point is addressed in the following section. 

t n t n+1/2 t n+1 U n i W n L (P ij ) W n R (P ij ) U n+1/2 i U n+1 i △t 2 t W n+1/2 L (P ij ) W n+1/2 R (P ij )

Gradient computation on unstructured meshes

A robust and accurate method for the computation of gradient variables is based on least squares approximation. This method is perhaps the simplest and the cheapest approach on unstructured grids.

It is based on multiple Taylor expansions about P i and a cloud of neighboring cells,

W j = W i + --→ P i P j . e x ∂W i ∂x + --→ P i P j . e y ∂W i ∂y + --→ P i P j . e z ∂W i ∂z + O --→ P i P j 2 = W i + △x ij ∂W i ∂x + △y ij ∂W i ∂y + △z ij ∂W i ∂z + O --→ P i P j 2 .
(1.4.1)

Using Eq. (1.4.1) with a set of neighbors results in the following system:

     w 1 △x i1 • • • w 1 △z iN . . . . . . . . . w N △x iN • • • w N △z iN           ∂W i ∂x ∂W i ∂y ∂W i ∂z      =      w 1 (W 1 -W i ) . . . w N (W N -W i )      ⇔ AX = B, (1.4.2)
with,

w j = 1 △x 2 ij + △y 2 ij + △z 2 ij j = 1, • • • , N
where N is the number of neighboring elements. The introduction of weights w j allows to control numerical instabilities (division by small numbers) when the mesh is skewed. In three dimensions, a minimum of three neighboring elements is necessary to solve the system. When the number of available neighbors is greater than three, then the system is over-determined and solution of minimum residual AX -B is addressed. A classical way to solve this over-determined system is to multiply both sides by the transpose matrix. A square system (the so-called normal equations) is obtained:

AX = B, A T AX = A T B, and the solutions reads, X = (A T A) -1 A T B.
The main issue regarding this methodology is linked with the condition number of the matrix A, cond(A). If it is big (ill-conditioned) then the system of normal equations A T AX = A T B yields a condition number even bigger, cond(A) 2 . A large condition number is highly undesirable as its numerical solution may be very difficult to achieve accurately. A second approach is to use a QR decomposition. Q is an orthogonal matrix (Q T Q = I) and R is an upper-triangle matrix:

AX = B, QRX = B, RX = Q T B, X = R -1 Q T B.
In this framework, QR decomposition is performed using Gram-Schmidt algorithm. It is important to note that for non-moving meshes, the factors (A T A) -1 A T or R -1 Q T are computed once for all at the beginning of the computation, so that the whole least squares method only yields one matrix-vector product per element.

The direct neighbors of the considered cell are used. Nevertheless, some configurations may require to extend the gradient computation to the indirect neighbors. This configuration is slightly more complex but is sometimes necessary. This situation is depicted in Fig. 1.3.

In the presence of discontinuities, the solution vector cannot be decomposed into Taylor series. In order to avoid oscillation appearances, the gradients are limited. In this framework, the [START_REF] Barth | The design and application of upwind schemes on unstructured meshes[END_REF] [START_REF] Barth | The design and application of upwind schemes on unstructured meshes[END_REF] approach is employed. To avoid reconstructed solution at the face exceeding minimum or maximum values at cell centers on each side of the face (TVD property consequence), the gradient is scaled by factor Θ. The primitive variables W are used during this step, 

W =         α k ρ k p k u         .
The reconstruction at the center of the face separating P i and P j "to the left" becomes,

W lim ij = W i + Θ i r ij . ∇W i , with Θ i = min (θ (φ ij )) , j ∈ neigh(i),
and

φ ij =              W max -W i 2(W n lim ij -W i) if W n lim ij -W i > 0, W min -W i 2(W n lim ij -W i) if W n lim ij -W i < 0, 1 if W n lim ij -W i = 0, (1.4.3) with W n lim ij = W i + r ij .
∇W i , the unlimited reconstruction solution and W max , W min respectively the maximum and minimum value between the current cell and all its direct neighbors.

θ (φ ij ) is limiter dependent. For instance, θ (φ ij ) = max 0, min(βφ ij , 1), min(φ ij , β) , (1.4.4)
gives the Minmod limiter [START_REF] Sweby | Convergence of Roe's scheme for the general non-linear scalar wave equation[END_REF] for β = 1 and the Superbee limiter [START_REF] Roe | Some contributions to the modelling of discontinuous flows[END_REF] for β = 2. In the sharpening method that follows, a specific limiter is used for the volume fraction computation in the vicinity of interfaces only.

Development of a new limiter for Heaviside-type discontinuities

The present interface-sharpening algorithm consists in a specific flux limiter to insert into the former MUSCL-type scheme. Many gradient limiters are available in the literature in order to prevent local extrema and sharpen discontinuities. Among them the Minmod, van Leer and Superbee limiters are often used. The Ultrabee limiter is another one [START_REF] Roe | Some contributions to the modelling of discontinuous flows[END_REF], very accurate for one-dimensional advection of discontinuous profiles. It handles discontinuities in one point only (see for example [START_REF] Leonard | The ULTIMATE conservative difference scheme applied to unsteady onedimensional advection[END_REF] [57], Toro (1997) [58]).

However, when dealing with smooth functions, the Ultrabee limiter produces unacceptable results. It adds "negative numerical viscosity" (locally) and results in wrong "steepening" and "squaring" of the solution profiles.

Nevertheless, flows involving non-miscible fluids present volume fraction discontinuities at interfaces rendering the Ultrabee limiter an interesting candidate. The Ultrabee limiter has been intensively used in the sharpening method of Kokh and Lagoutiere (2010) [START_REF] Kokh | An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model[END_REF]. However, this method seems restricted to Cartesian grids.

The present chapter aims at computing "sharp-but-still-diffuse" interfaces on unstructured meshes.

To this end, a specific limiter is considered and inserted into the compressible two-phase flow model considered previously.

The sought-after function is aimed to deal with multi-dimensional computations, compressive enough to sharpen discontinuous profiles, but diffusive enough to ensure stability. As stated in Sidilkover and Roe (1995) [START_REF] Sidilkover | Unification of some advection schemes in two dimensions[END_REF], "artificial compression" may be used in multi-dimensional computations to improve the resolution of discontinuities. This feature is not to be used in smooth regions as some undesirable effects may appear. However it can lead to significant improvements in resolving discontinuous profiles.

The investigation of the "artificial compression or interface sharpening" prompted the work of this chapter. In the present manuscript, several modifications of the Superbee limiter are examined in order to:

-Sharpen discontinuities for simple transport equations.

-Maintain stability.

-Work on multi-D with unstructured meshes.

Flux limiters are well-understood in 1D (van Leer (1979) [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF], [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]) but a clear theory is lacking for multi-dimensional computations. The present investigations are based on numerical experiments, in one and two dimensions, with and without coupling with the diffuse interface flow model. Various modifications of the Superbee limiter are considered as options A, B, C, D, E and F shown in Fig. 1.5. In this figure, the first-order TVD region is presented as the shaded region. The TVD property is briefly recalled hereafter, for more details or discussions, the reader is referred to [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF], [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF], [58], [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF], [START_REF] Harten | On a class of high resolution total-variation-stable finite-difference schemes[END_REF], [START_REF] Van Leer | Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme[END_REF], [63] for example.

Ideally, a second-order accuracy is used while guaranteeing that no nonphysical oscillations arise.

The notion of total variation (TV) is a measurement of oscillations in the solutions. The total variation of a solution Q is defined by,

T V (Q n ) = ∞ i=-∞ |Q n i -Q n i-1 |,
and the method is called total variation diminishing (TVD) if, for any set of data Q n , the values Q n+1 computed by the method satisfy,

T V (Q n+1 ) ≤ T V (Q n ). (1.5.1)
The TVD notion was first presented in the original work of [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF] [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF] who proposed this concept to characterize oscillation free schemes. In the same contribution, Harten introduced a fundamental tool to obtain an algebraic proof that the resulting method is TVD.

Later, the Lax-Wendroff scheme (1960) [START_REF] Lax | Systems of conservation laws[END_REF] prompted the work of [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] who introduced the first and second-order TVD regions. Lax-Wendroff scheme is known to be non-TVD and [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] attempted to remedy to this drawback by introducing a function θ(φ). φ is a ratio of gradient variables, as it will be detailed further.

To design a TVD method, the function θ(φ) should satisfy the following relations,

0 ≤ θ (φ) φ ≤ 2 and 0 ≤ θ (φ) ≤ 2.
These constraints are rewritten concisely as,

0 ≤ θ(φ) ≤ minmod(2, 2φ). (1.5.2)
This defines the first-order TVD region in a φ-θ plane. The curve θ(φ) must lie in this region, shown as the shaded region in Fig. 1.4. 
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Figure 1.4: Sweby TVD regions. The shaded region of the left figure represents the Sweby region of first-order TVD methods. The dashed line θ = 1 [START_REF] Lax | Systems of conservation laws[END_REF] [START_REF] Lax | Systems of conservation laws[END_REF]) and the dash-dotted line θ = φ (Beam- [START_REF] Warming | Upwind second-order difference schemes and applications in aerodynamic flows[END_REF] [START_REF] Warming | Upwind second-order difference schemes and applications in aerodynamic flows[END_REF]) are displayed and led to the Sweby region of second-order TVD methods [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] represented as the shaded region of the right figure. This graphical analysis of (1.5.2) was first presented by [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF], who analyzed a wide class of flux-limiter methods. In the same reference, Sweby introduced the second-order TVD region depicted in Fig. 1.4 as well. According to [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF], for any second-order accurate method, it is better to take θ as a convex combination of θ = 1 [START_REF] Lax | Systems of conservation laws[END_REF] [START_REF] Lax | Systems of conservation laws[END_REF]) and θ = φ (Beam-Warming (1976) [START_REF] Warming | Upwind second-order difference schemes and applications in aerodynamic flows[END_REF]). Other choices apparently give too much compression and smooth data such as a sine wave tends to turn into a square wave as time evolves. Imposing this additional restriction provides the second-order TVD region of Sweby depicted in Fig. 1.4.

However, as only Heaviside-type discontinuities are aimed to be sharpened in the present framework, those other choices are to be reconsidered as they may provide compression of discontinuities.

In that sense, the second-order TVD region of Sweby may no longer be a restriction and the first-order TVD region (upper area) is to be reconsidered. As this latter goes beyond the second-order area, it may provide extra compression while remaining TVD. The first numerical experiments are depicted in Fig. 1.5.

In the following, one-dimensional advection of a Heaviside function ψ at prescribed velocity is computed as a reference test. Numerical solutions of this equation are examined in 1D first and Nevertheless, it is demonstrated (see [START_REF] Leveque | Numerical methods for conservation laws[END_REF] [START_REF] Leveque | Numerical methods for conservation laws[END_REF], [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: A practical introduction[END_REF] [58] for details) that the actual equation solved by a Godunov-type scheme is,
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∂ψ ∂t + u ∂ψ ∂x = ζ ∂ 2 ψ ∂x 2 with ζ = 1 2 ∆x u (1 -|c|) and c = u∆t ∆x . (1.5.4)
The viscous term ζ ∂ 2 ψ ∂x 2 corresponds to the numerical viscosity of the scheme and vanishes when ∆x tends to zero. It also vanishes when |c| = 1, which is only of the academic importance. It thus appears that the dependence on both cell size and CF L number has to be considered with the various experimental limiters. The results of the first test series are given in Fig. 1.6 with a CF L number of 0.8.

As the present chapter is based on MUSCL schemes and unstructured meshes, gradient computations have to be specified. As mentioned earlier, least squares approximation is appropriate for unstructured meshes and its 1D analogue corresponds to the centered approximation,

∂ψ ∂x i = 1 2△x (ψ i+1 -ψ i-1 ) , (1.5.5) 
with i denoting the current cell.

All tests presented in Fig. 1.6 use this approximation for gradient computation and show much better results than the conventional Superbee limiter thanks to their first-order TVD behavior.

While test F tends to Superbee as it is quite close, all other variants present comparable results and capture the discontinuities with two mesh points.

In the following, it would be interesting to build a limiter which can be reduced to the upper boundary of the second-order TVD area, that corresponds to the Superbee limiter, and can be increased to the extreme boundary of the first-order TVD region as well, in order to provide a class of compressive flux limiters for Heaviside-type discontinuities.

To this end, option A is selected as it lies along both first and second-order TVD boundaries with an intermediate constant region. Again, all tests show clear improvements compared to the conventional Superbee limiter. In the following, the first-order TVD boundary (test J of Fig. 1.7) keeps being analyzed by modifying the mesh size and the CF L number. Figure 1.9 provides the results obtained with limiter of test J for meshes of 100, 1000 and 10, 000 cells with CF L = 0.8.

In addition, it is interesting to see the behavior of the present compressive limiter when the gradients are computed according to the upwind (ψ i+1 -ψ i ) and downwind formulas (ψ i -ψ i-1 ).
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Their ratio,

φ i = ψ i -ψ i-1 ψ i+1 -ψ i , (1.5.6)
is used as argument in the limiter as it is the conventional method for one dimensional computations (see [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: A practical introduction[END_REF] [58] for example). When the upwind and downwind formulas (Eq. (1.5.6)) are used with the Superbee limiter, discontinuities are captured with four points (results of the right column of Fig. 1.9) while the firstorder TVD method (option J of Fig. 1.7) requires two points only.

However, multi-slope computation as Eq. (1.5.6) is inappropriate for unstructured meshes. The least squares method (Eq. (1.5.5)) is convenient for unstructured meshes but the numerical diffusion is excessive as seen in Fig. 1.9. The present limiter captures the discontinuities with the same amount of cells whether the least squares method (Eq. (1.5.5)) or the upwind-downwind formulas (Eq. (1.5.6)) are used. This is a major feature as only two mesh points are required to capture the discontinuities for all mesh resolutions. The next test (Fig. 1.10) uses a 100-cell mesh and a longer simulation time. The final time is about 10 times longer than the previous tests and CF L numbers of 0.8 and 0.1 are considered with gradients computed with the least squares method (Eq. (1.5.5)) and the upwind-downwind formulas (Eq. (1.5.6)). The boundary conditions are periodic. The present limiter handles both high and low CF L numbers. Again the number of points required to capture the discontinuities remains the same for both gradient computation methods (least squares method and downwind formulas) whereas the Superbee limiter presents significantly different results.

The Superbee limiter lies along the upper boundary of the second-order TVD region of Sweby. This region is able to deal with discontinuities as well as smooth solutions. However, when dealing with Heaviside-type discontinuities only, according to the numerical experiments, the upper boundary of the first-order TVD region seems to be the actual restriction and provides significant improvement over the second-order TVD region.

Similarly to Sweby who introduced a class of flux limiters which includes both extremes of the upper and lower boundaries of the second-order TVD region with the limiter,

θ (φ ij ) = max 0, min(βφ ij , 1), min(φ ij , β) , 1 ≤ β ≤ 2, (1.5.7)
we propose the following limiter that includes the upper boundaries of the first and second-order TVD regions,

θ (φ ij ) = max 0, min 2, 2φ ij , max min(2φ ij , β), min{(2 -β)φ ij + 2(β -1), φ ij } , 1 ≤ β ≤ 2.
(1.5.8)

Both limiters (1.5.7) and (1.5.8) are depicted in Fig. 1.11. Many other compressive limiters can be considered according to the numerical experiments. The present limiter is proposed here as Eq.

(1.5.8) is convenient. For β = 1, it reduces to the upper boundary of the second-order TVD region corresponding to the Superbee limiter. For β = 2, it increases to the upper boundary of the first-order TVD region. Because of this feature, the proposed limiter is named "Overbee". The parameter β corresponds to the height of the constant region of the present limiter and controls the amount of artificial compression while remaining TVD as the constraint 0 ≤ θ(φ) ≤ minmod(2, 2φ) is satisfied.

In the specific case β = 2, this formulation simplifies to,

θ (φ ij ) = max 0, min 2φ ij , 2 .
(1.5.9)

As shown latter, this limit is of particular interest.

Two-dimensional transport

Two-dimensional computations are now considered. In the following, the previously developed limiter (1.5.8) is used with β = 2. The limiter then lies along the boundary of the first-order TVD region. β = 2 will be used in all the following tests as it corresponds to the maximum value of interest and to the maximum amount of artificial compression while remaining TVD.

The various tests are schematically depicted in Fig. 1.12. In this section, 2D-Cartesian-structured meshes are used. 12: Schematic representation of the initial conditions of simple transport tests on a twodimensional-Cartesian-structured grid. On the left, the rotation of Zalesak's disk is studied. In this configuration, the velocity is set to u x = y -0.5 and u y = 0.5 -x with x, y the coordinates of the cell centers. Non-reflecting boundary conditions are used. The mesh consists in 100 × 100 cells. On the right, the advection of a square profile along a diagonal is studied. The advection speed is 100 m.s -1 in both directions (x, y). Non-reflecting boundary conditions are used. The mesh consists in 200 × 200 cells.
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The first test deals with the rotation of Zalesak's disk. Inside the disk, function ψ is set to 1 and 0 outside. With 2D Cartesian grids made of squares, the least squares method (Eq. 1.4.2) reads,

∇ψ ij =   ∂ψ ∂x ∂ψ ∂y   ij =   1 2△x (ψ i+1,j -ψ i-1,j ) 1 2△y (ψ i,j+1 -ψ i,j-1 )   .
(1.5.10) Figure 1.13 compares the results obtained with the Superbee limiter and the previously developed function with a CF L number of 0.5. The discontinuity is clearly sharpened with the new limiter whereas the least squares method with Superbee limiter produces much more diffusion. Figure 1.13

shows the computed profile of function ψ along x at given y = 0.65 m. About 4 cells are needed to capture the discontinuity with the new limiter whereas Superbee needs about 9 cells.

The next test examines the advection of a square profile along a diagonal. As previously, inside the square, function ψ is set to 1 and 0 outside. For this test, as a consequence of transport along diagonal direction, the influence of the indirect neighbors is studied in addition to the direct ones. As the mesh is made of squares, the stencil used in the computation of gradients is depicted in Fig. 1.14.

Gradient computation with the least squares method reduces to,

∇ψ ij =   ∂ψ ∂x ∂ψ ∂y   ij =   1 6△x (ψ i+1,j + ψ i+1,j-1 + ψ i+1,j+1 -ψ i-1,j -ψ i-1,j+1 -ψ i-1,j-1 ) 1 6△y (ψ i,j+1 + ψ i+1,j+1 + ψ i-1,j+1 -ψ i,j-1 -ψ i+1,j-1 -ψ i-1,j-1 )   .
(1.5.11)

The results are given in Fig. 1.15 with CF L = 0.5. Again the least squares method with the conventional Superbee limiter provides a much more diffused discontinuity than the developed new limiter.

Diagonal transport induces distortions when only the direct neighbors are used in the gradient computation via Eq. (1.5.10). The present limiter does its part nonetheless. This drawback is linked to the mesh geometry and the advection direction. It can hardly be seen when the conventional Superbee limiter is used as the square is quite diffused. Nevertheless, this drawback is fixed when the indirect neighbor cells are used in addition via Eq. (1.5.11). The square keeps its shape and remains sharp. For this example, as the mesh structure and the test case itself are simple, the addition of the indirect neighbors has negligible extra CPU cost.

We now have in hands a simple MUSCL-type method to transport accurately Heaviside-type discontinuities with limited diffusion, independent of time and CF L. Rotation of Zalesak's disk with the situation depicted in Fig. 1.12. Eight values of isocontours of ψ are displayed within the range [0.1-0.9] in both top figures. The results are given at t ≈ 6.3 s (one full rotation). The figures at bottom show the ψ profile versus x at a given y = 0.65 m. The solid lines represent the initial conditions. The full diamond and circle symbols represent respectively the results provided by Superbee (left) and "Overbee" (right). Cartesian mesh: 100 × 100 , CF L = 0.5.
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.14: Schematic representation of the direct and indirect neighbors of the cell (i, j) on a Cartesian structured mesh, for gradient computation. The cell of interest (i, j) is represented as the shaded cell. On the left, only the direct neighbors are represented as the darker cells. On the right, the indirect neighbors are represented in addition as the darkest cells.

Coupling with the diffuse interface formulation

The aim of this section is to use the previously developed limiter to sharpen interfaces in the diffuse interface formulation (1.2.4)-(1.2.6). However, because it goes beyond the second-order region of TVD methods (Fig. 1.4) this limiter fails with continuous and shock waves. Therefore, interfaces have to be detected, and the "Overbee" limiter has to be used at interfaces only.

At interfaces, pressure and velocity must be invariant while volume fractions must be as sharp as possible. Near interfaces, the pressure and velocity gradients are very weak but the density gradient is not. To avoid oscillations resulting from bad limiter combinations, all flow variables are computed with zero gradient at interfaces, except volume fractions. It is therefore important to detect interfaces and use a specific procedure in corresponding cells.

To this end, an interface indicator is developed. The interfaces are detected with the help of the volume fractions as follows,

α n k α n j > ǫ, and j = k.

(1.6.1)

It consists in using the products of phase volume fractions that correspond to Gaussian functions centered at interfaces. According to the numerical experiments, using ǫ ≃ 10 -2 seems to be a fair choice. Another efficient filter can be considered as well,

|α n k (i) -α n k (l)| > ǫ, with l = 1, • • • , N (1.6.2)
where N is the number of neighboring elements and i denotes the present cell. Equation (1.6.2) allows to deal with variables presenting bounds different from 0 and 1 unlike filter (1.6.1). In the rest of the chapter, filter (1.6.1) is used only. 

Validations

The "Overbee" limiter is now used in two-phase flow computations. This test is the analogue of the previous advection of a Heaviside function ψ. In the following, the method is tested on situations involving both continuous and discontinuous waves in addition to interfaces. The mixture density and volume fraction graphs show that the interface is sharpened with the new limiter. In addition, Fig. 1.18 shows that the pressure and velocity are unchanged in the interface region. 

Advection problem

Liquid-gas shock tube test

Illustrations on unstructured meshes

In the following, the capabilities of the present limiter are highlighted with two-phase flow computations on unstructured meshes.

Advection

This test consists in advecting a liquid water column, initially shaped as Zalesak's disc, into surrounding air. The numerical domain is a square of 1 m by 1 m. The initial conditions are schematically represented in Fig. 1.19. A mesh made of about 50, 000 triangles is used. The initial density of liquid water and air are set to 1000 kg.m -3 and 1 kg.m -3 respectively. The atmospheric conditions are considered (p = 0.1 MPa). Nearly pure fluid conditions are initially used as α min = 10 -6 and α max = 1 -10 -6 . The advection speed is 100 m.s -1 in both directions (x, y). Figure 1.20 displays the results obtained with the Superbee limiter (Eq. (1.5.7), β = 2) and the new function (Eq. (1.5.8), β = 2). The isocontours of volume fractions are presented, showing enhancements of the present method. For this test, as a consequence of transport along diagonal direction, the influence of the indirect neighbors is studied in addition to the direct ones. When only the direct neighbors are considered, Zalesak's disc tends to become asymmetric. This drawback is lowered when the indirect neighbors are used in addition. For this test, including the indirect neighbors required additional computational cost of about 8% with a commercial computer using 8 cores and MPI architecture. 

Air-krypton-shock-interaction

This test addresses both interfaces and shocks. As pressure and density gradients are not collinear, vorticity appears through Richtmyer-Meshkov instabilities [START_REF] Richtmyer | Taylor instability in shock acceleration of compressible fluids[END_REF], [START_REF] Meshkov | Instability of the interface of two gases accelerated by a shock wave[END_REF]. In this section a bubble filled with krypton is considered. The surrounding gas is air. The SG parameters are given in Table 1.1.

The geometry is schematically represented in Fig. 1.19 and the initial conditions are given in Table 1.2. Those conditions consist in a low pressure chamber filled with air at atmospheric pressure. The second chamber is filled with shocked air, resulting in the propagation of a left-facing shock at Mach number M ≈ 1.5. The Mach number is defined as M = σ/c 0 with σ the speed of the incident shock wave and c 0 the speed of sound in the surrounding air at atmospheric conditions. The bubble of krypton at atmospheric conditions is initially set in the low pressure chamber. Again, nearly pure fluid conditions are initially used as α min = 10 -6 and α max = 1 -10 -6 .

Location Density (kg.m -3 ) Pressure (Pa) u x (m.s -1 ) u y (m.s ) is used in the hydrodynamic solver with both computations (conventional and sharpening). In this flow configuration, the bubble is filled with krypton which is heavier than the surrounding air (ρ krypton = 3.506 kg.m -3 and ρ air = 1.29 kg.m -3 ). The gas properties (densities and acoustic impedances Z = ρc) are strongly different. In addition to these differences, combination of pressure and density gradients induces vorticity as shown in Fig. 1.22. However, at first instants, these effects are dominated by compression ones. During that stage, the transmitted shock wave through krypton is slower than the incident one through air. At further instants, vorticity effects develop and become dominant. As shown in Fig. 1.22, filaments are created initially at top and bottom of the bubble in the flow direction. Then a vortex ring issued from their rolling-up gets formed and grows with time. For more details on the physics of this interaction, see Layes and Le Métayer (2007) [START_REF] Layes | Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion[END_REF] for instance.

The benefit of the present method is clearly seen in Fig. 1.22. The mixture zone is much reduced at the interface when the volume fraction computation is done with the "Overbee" limiter (Eq. (1.5.8), β = 2). The numerical gain is especially visible at the rolling regions of the krypton bubble. As time goes on, the numerical dissipation gets more intense with the conventional method, while the interface and the rolls are clearly distinguishable with the new method. Figure 1.23 presents the cells detected by the interface indicator (Eq. (1.6.1)). Again, about 4 cells are detected with Eq. (1.6.1) and the interface is always sharper than this zone with the new limiter. The additional neighbors provide no significant differences for this test and require additional CPU cost of about 8% (distributed memory parallel implementation using 8 cores).

Underwater explosion

The computational test that follows corresponds to a high pressure gas bubble settled underwater, close to the water-air surface. Such a situation occurs when an underwater explosion bubble reaches the surface. Relevant literature on the subject may be found in [START_REF] Holt | Underwater explosions[END_REF] [70], Grove and Menikoff (1990) [START_REF] Grove | Anomalous reflection of a shock wave at a fluid interface[END_REF]. The detonation is treated as a constant volume explosion resulting in high pressure gas products at high density. Liquid water surrounding the charge is considered initially at atmospheric conditions. The air above is at rest and at atmospheric conditions as well. The initial situation is shown in Fig. 1.19 and the initial data are summarized in Table 1.3. Three different fluids are considered with thermodynamic data given in Table 1.1. Near pure fluid conditions are initially used as α min = 10 -6 and α max = 1 -2.10 -6 .

Due to the high pressure differential between detonation products and surrounding water, a strong shock is emitted into the water while an expansion wave propagates into the gas. The liquid-gas interface is set to intense motion and the bubble deforms. Another wave diffraction occurs at the liquidair interface, resulting in the motion of the two liquid-gas interfaces. The bubble grows intensively resulting in a thin liquid layer appearance between the air and the detonation products. This layer is stretched during time evolution and finally breaks into several fragments.

Phase transition has not been considered in these computations, nor surface tension and viscosity.

Fragment size selection is thus numerical. However, the method is able to fragment a liquid film subjected to tension. Indeed, if the single phase Euler equations were solved, the pressure would be negative due to liquid tension and discrepancy with the interface condition where air is present (at positive pressure) would appear. With the present diffuse interface formulation (Eqs. (1.2.4)-(1.2.6)), thanks to the small amount of air present in the liquid, sub-scale bubbles grow during pressure relaxation, maintaining pressure positivity and resulting in the dynamic appearance of new interfaces, which result in the formation of fragments. Such break-up is done automatically as a result of stretching [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF]. Such simplified modeling of cavitation is in principle representative enough in explosion situations such as the present case.

Figure 1.24 shows the isocontours of the liquid water volume fraction. The mesh consists in approximately 75, 000 triangles (computing only half of the domain for symmetry reasons). The Minmod limiter (Eq. (1.5.7) with β = 1) is used in the hydrodynamic solver for both methods (conventional and sharpening). When an interface is located via filter (1.6.1), either the Superbee or the "Overbee" function is used for volume fraction computation. The improvement with the present method is clearly visible. At the end of the simulation, the break-up of the liquid water layer is barely seen with the conventional Superbee limiter whereas the fragmentation process is clearly observable with the new limiter. Figure 1.25 presents the cells detected by filter (1.6.1). Again, about 4 cells are detected with (1.6.1) and the interface is always sharper than this zone with the new limiter. The additional neighbors provide no significant differences for this test and require additional CPU cost of about 8% (distributed memory parallel implementation using 8 cores).

Conclusion

A simple interface sharpening method bas been built, especially devoted to the computation of Part II

Stiff phase transition phenomena Introduction

The present part of this manuscript focuses on the treatment of phase transition in compressible multiphase flows through a fast thermochemical relaxation solver and the building of an appropriate mixture equation of state. When a system reaches thermodynamic equilibrium, the mechanical, thermal and molecular exchanges between liquid and vapor phases are in balance. Thermodynamic equilibrium thus corresponds to the combination of the mechanical, thermal and chemical equilibria.

Mechanical and thermal equilibrium solvers have been successfully developed in Le Métayer et al. ( 2013) [72] and are consequently out of the scope of this research work. Chemical equilibrium has also been addressed in [72] through a stiff relaxation solver. However, this latter happens to be computationally expensive and may be unstable as a result of non-linearities. Also transition to single phase bounds of pure liquid and pure vapor is problematic.

While reaching chemical equilibrium, mass transfer takes place between the liquid and its vapor. In order to isolate the specific difficulties related to the chemical equilibrium, from both theoretical and numerical points of view, a mixture two-phase model involving implicitly both thermal and mechanical equilibria is considered in the following chapter. In this work, as in Le Métayer et al. (2013) [72], mass transfer is treated by an instantaneous thermochemical relaxation process regarding Gibbs free energies [START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF] [START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF]). It consists in a non-linear algebraic system that is made from the equilibrium conditions (equality of the temperatures, pressures and free energies of the phases) and mixture mass and mixture energy definitions. Its numerical resolution is non-trivial and may yield unstable computations, the culprit being the non-trivial relation linking pressure (p) and temperature (T ) at saturation. Besides, additional complexity is added to the system when non-condensable gases are present. In such context, p and T are not directly linked to the saturation curve but are related through the partial pressure of the vapor component in the multicomponent gas phase bringing extra difficulties. This situation is however present in many practical applications.

The most common way to compute such phase change situations is to directly solve the corresponding system via complex root-finding procedures as done in Le Métayer et al. (2013) [72]. Nevertheless, such strategy is computationally expensive and may be detrimental to the computation. Consequently, it motivates the introduction of a new relaxation method where the solution relaxes weakly to the correct solution, on the basis of some estimates. As a result, there is no non-linear system to solve and the transition from two-phase mixture to single phase flows is straightforward. The present chapter aims at building a fast and accurate specific phase equilibrium solver, specifically devoted to unsteady multiphase flow computations. The main idea constituting the present phase transition solver is first presented in the context of two-phase flows involving only a liquid and its corresponding vapor phase. In a second time, the solver's range of application is extended by considering a multicomponent gas phase instead of pure vapor, a necessary improvement in most practical applications. The solver proves easy to implement compared to common iterative procedures, and allows systematic CPU savings over 50%, at no cost in terms of accuracy. It is validated against solutions based on an accurate but expensive iterative solver. Its capability to deal with cavitating, evaporating and condensing two-phase flows is highlighted on severe test problems both 1D and 2D.

Introduction

Most multiphase flow computations face phase transition modeling and one of the difficulties is to adopt the correct mass transfer model, appropriate to a given situation. Some approaches deal with mixtures out of thermal and velocity equilibria. When it is possible to determine the specific interfacial area separating the liquid and gas phases, determination of the mass transfer rate may be done on the basis of Nusselt and Sherwood correlations. Such a method was derived for spray evaporation by Ambramzon and Sirignano (1989) [START_REF] Abramzon | Droplet vaporization model for spray combustion calculations[END_REF] and atmospheric flows by [START_REF] Jacobson | Fundamentals of atmospheric modeling[END_REF] [START_REF] Jacobson | Fundamentals of atmospheric modeling[END_REF]. Generalization to flashing and condensing sprays was done in Furfaro and Saurel (2016) [START_REF] Furfaro | Modeling droplet phase change in the presence of a multi-component gas mixture[END_REF].

However, determination of the specific interfacial area in two-phase mixtures is possible only for droplets and bubbly flows. When the topology is arbitrary, only limit case computations are possible, assuming the absence of mass transfer if the interfacial area is supposed to be very small, or assuming infinitely fast mass transfer (local thermodynamic equilibrium) if the interfacial area is supposed to be very large. When such an assumption is made, an appropriate equilibrium solver is needed.

The present chapter deals with the building of such an equilibrium solver when non-equilibrium hyperbolic models, such as Baer and Nunziato's (1986) [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] are considered. However, the present method is not restricted to such a model, but is also valid for its reduced versions such as the 5- The theoretical link between these models was derived on the basis of asymptotic analysis in Saurel et al. ( 2008) [START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF], and more systematically by Lund (2012) [START_REF] Lund | A hierarchy of relaxation models for two-phase flow[END_REF]. Basically the present phase transition solver may be used each time both liquid and gas compressibility are considered, as all formerly cited models consider this effect, and this effect is responsible for their hyperbolic nature.

equation
The 5-4-3-equation models are able to consider mixtures of fluids evolving respectively in mechanical, mechanical and thermal, and thermodynamic equilibrium. As they involve a single velocity (velocity disequilibrium is indeed absent), they are restricted mainly to specific applications such as:

-Cavitating flows, as it appears impossible in practice to address specific interfacial area deter- In the present chapter a novel approach is promoted where the solution relaxes weakly (smoothly during time evolution) to the correct solution, on the basis of some estimates. After providing the background and context of the model in Sections 2.2, 2.3, 2.4 and 2.5, the main idea constituting the present solver is detailed in Section 2.6:

-"Limitation" of the relaxation term, following a Minmod-type procedure, reminiscent of slope limiters in high-order hyperbolic solvers (van Leer et al. (1979) [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF]).

This treatment leads to a faster procedure than the usual iterative process: reported computational times can be halved with the new algorithm. In addition, the algorithm described hereafter presents a very simple implementation, which is also a significant improvement over iterative procedures.

In the first place, we will focus on two-phase flow configurations where only a liquid and its corresponding vapor coexist within the medium. Indeed, it is worth focusing on this specific case as a first step, as this latter presents enough complexities as it is. When only liquid and vapor phases are present within the two-phase flow, the thermodynamic equilibrium directly translates into p * = p sat (T * ) with p * and T * being respectively the equilibrium pressure and equilibrium temperature.

p sat denotes the saturation pressure.

In a second time (Section 2.7), a multicomponent gas phase is considered instead of a pure vapor phase. A necessary extension in view of the intended industrial applications. In such context, p * and T * are not directly linked to the saturation curve but are related through the partial pressure of the vapor component in the multicomponent gas phase.

The thermodynamic closure of the two-phase flow model is necessary reconsidered in Sections 2.7, 2.8 and 2.9. The thermochemical relaxation solver is consequently reconsidered as well in Sections 2.10 and 2.11. The last sections, 2.12, 2.13 and 2.14, are dedicated to displaying and validating the algorithm capabilities, through a series of 1D and 2D test cases involving cavitating, evaporating and condensing flows.

Flow model

The phase transition relaxation solver may be used with models mentioned previously (with 7, 5, 4 and 3 partial differential equations) but its presentation is simplified in the context of the 4-equation model (often called HRM) as the solver directly connects the 4 and 3-equation models. When dealing with more sophisticated formulations, for instance the 7-equation model, extra ingredients have to be presented, such as velocity and pressure relaxation solvers (see for example [START_REF] Lallemand | Pressure relaxation procedures for multiphase compressible flows[END_REF]). Here, there is a single step that makes the connection from the 4-equation model (modeling mixtures out of thermodynamic equilibrium) and the 3-equation model (mixtures in full equilibrium). Therefore, for the sake of simplicity the 4-equation model (HRM) is considered in the present chapter as the starting point. The corresponding hyperbolic flow model reads,

                     ∂ρ ∂t + div(ρu) = 0, ∂(ρu) ∂t + div ρu ⊗ u + pI = 0, ∂(ρE) ∂t + div ρE + p u = 0, ∂(ρY l ) ∂t + div(ρY l u) = 0, (2.2.1)
alternatively, the last equation can be written as,

∂(ρ l α l ) ∂t + div(ρ l α l u) = 0,
where Y l,g , α l,g , ρ l,g denote respectively the mass fraction, the volume fraction and the material density of the liquid ( l subscript) and gas ( g subscript) phases. ρ represents the mixture density, u represents the mixture centre of mass velocity, p denotes the mixture pressure and E the mixture total energy (E = e + u 2 /2). The mixture internal energy is defined as e = Y l e l + Y g e g . System (2.2.1) is currently restricted to two fluids. Besides, mass transfer has been omitted as it is addressed later.

System (2.2.1) is clearly reminiscent of the reactive (or multicomponent) Euler equations widely used in chemically reacting flows. However, the thermodynamic closure differs significantly from the one used in gas mixtures since each phase is assumed to occupy its own volume. Indeed the mixture equation of state (EOS) is a consequence of the following algebraic system:

                     T l = T g = T, e = Y l e l (p, T ) + Y g e g (p, T ), p l = p g = p, v = Y l v l (p, T ) + Y g v g (p, T ), (2.2.2) 
where v l , v g and v are respectively the specific volumes of the liquid, gas, and mixture. T denotes the mixture temperature.

In this system, the two phases are in mechanical and thermal equilibria and each fluid is assumed to occupy its own volume. This is significantly different from ideal gas mixtures modeled through Dalton's law. Indeed, Dalton's law supposes that each fluid occupies the entire available volume and supposes that the mixture pressure is the sum of the partial pressures:

p = k p partial,k .
For ideal gases, it is fairly conceivable that each molecule is free to move through the entire volume.

For a liquid-gas mixture, the liquid cannot occupy the entire space. Its density would no longer make sense and neither would the notion of its liquid state.

System (2.2.1) is closed by the consequent mixture equation of state (EOS) that arises from Eqs.

(2.2.2).

Mixture equation of state

In this frame, both liquid and gas require their own equation of state (EOS), with parameters carefully chosen to fit the phase diagram. The building of such EOS has been addressed in Le Métayer et al. ( 2004) [START_REF] Métayer | Elaborating equations of state of a liquid and its vapor for two-phase flow models; élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques[END_REF], on the basis of the Stiffened-Gas (SG) EOS, an improved formulation (NASG) being available as well [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF]. The main formulas for the SG EOS read for a given phase k = l, g,

                       p k (ρ k , e k ) = ρ k (γ k -1)(e k -q k ) -γ k p ∞,k , T k (p k , ρ k ) = p k + p ∞,k ρ k (γ k -1)C v,k , g k (p k , T k ) = (γ k C v,k -q ′ k )T k -C v,k T k ln T γ k k (p k + p ∞,k ) γ k -1 + q k , c k (p k , ρ k ) = γ k p k + p ∞,k ρ k , (2.3.1) 
where the following parameters are needed for each phase: γ k , p ∞,k , C v,k , q k , and q ′ k . From Eqs. (2.3.1), two other relations are found,

       v k (p k , T k ) = (γ k -1)C v,k T k p k + p ∞,k , e k (p k , T k ) = p k + γ k p ∞,k p k + p ∞,k C v,k T k + q k . (2.3.2)
As shown in [START_REF] Métayer | Elaborating equations of state of a liquid and its vapor for two-phase flow models; élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques[END_REF] there is no difficulty to obtain these parameters once the saturation curves (p sat (T ), v g,sat (T ), v l,sat (T ), h g,sat (T ), h l,sat (T )) are known. Saturation pressure and temperature obeying formulation (2.3.1) are linked through the saturation curve,

ln(p sat + p ∞,g ) = A + B T sat + C ln (T sat ) + D ln (p sat + p ∞,l ) , (2.3.3) 
with

A = C p,l -C p,g + q ′ g -q ′ l C p,g -C v,g , B = q l -q g C p,g -C v,g , C = C p,g -C p,l C p,g -C v,g , D = C p,l -C v,l C p,g -C v,g , (2.3.4) 
which comes from the equality of the Gibbs free energies g l and g g of the Stiffened-Gas EOS (2.3.1)

(see [START_REF] Métayer | Elaborating equations of state of a liquid and its vapor for two-phase flow models; élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques[END_REF] for details).

For liquid water and steam, the fluid parameters optimized in the [300 -500] K temperature range are given in Table 2.1.

Coefficients

Liquid phase Vapor phase 

C p (J/kg/K) 4267 1487 C v (J/kg/K) 1816 1040 γ 2.35 1.43 P ∞ (Pa) 10 9 0 q (J/kg) -1167 × 10 3 2030 × 10 3 q ′ (J/kg/K) 0 -23 × 10 3
           T = T (p, v, Y l ), e = e(p, T, Y l ), p = p(v, e, Y l ).
(2.3.5)

The thermodynamic closure presented in [START_REF] Métayer | Elaborating equations of state of a liquid and its vapor for two-phase flow models; élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques[END_REF] or its improved formulation [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF] is very convenient, as the above relations (2.3.5) are fully explicit for the mixture [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF][START_REF] Le Martelot | Towards the direct numerical simulation of nucleate boiling flows[END_REF]. Combining Eqs. (2.2.2) and (2.3.5), the mixture temperature reads,

T (p, v, Y l ) = v (γ l -1)Y l C v,l p + p ∞,l + (γ g -1)Y g C v,g p + p ∞,g -1 , (2.3.6) 
the mixture internal energy reads,

e(p, T, Y l ) = Y l C v,l T p + γ l p ∞,l p + p ∞,l + q l + Y g C v,g T p + γ g p ∞,g p + p ∞,g + q g , (2.3.7) 
and the pressure reads,

p(v, e, Y l ) = 1 2 A l + A g -(p ∞,l + p ∞,g ) + 1 4 A g -A l -(p ∞,g -p ∞,l ) 2 + A l A g , (2.3.8) 
with

A k = Y k (γ k -1)C v,k Y l C v,l + Y g C v,g e -(Y l q l + Y g q g ) v -p ∞,k , (2.3.9) 
where the subscript k denotes liquid (l) and gas (g) phases (see Le Martelot et al. ( 2014) [START_REF] Le Martelot | Towards the direct numerical simulation of nucleate boiling flows[END_REF] for details).

Albeit the apparent simplicity of the thermodynamic closure chosen, the phase transition model presented here may be extended to other thermodynamic closures given each phase EOS is convex.

Such extension is immediate with the NASG EOS [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF] and will be addressed in Section 2.8 in the context of two-phase flows involving a multicomponent gas phase.

Mixture speed of sound

The "reactive" Euler equations govern the propagation of three waves throughout space (Fig. 2.1).

The middle wave (traveling along u) is a contact discontinuity, while the left and right waves (traveling along u ± c, c being the speed of sound) are non-linear acoustic waves and can be either shocks or rarefactions. With the thermodynamic closure (2.2.2), System (2.2.1) is hyperbolic with wave speeds u, u + c and u -c. The sound speed for this system is given in Le Martelot et al. ( 2014) [START_REF] Le Martelot | Towards the direct numerical simulation of nucleate boiling flows[END_REF],

x t u u + c u -c
c 2 = 1 2 [e -(Y l q l + Y g q g )] (a 1 + a 2 ) + 1 2 ∂R 1 ∂ρ e R 1 + ∂R 2 ∂ρ e 1 4 R 1 R 1 + R 2 + p ρ 2    ρ (a 1 + a 2 ) + 1 2 ∂R 1 ∂e ρ R 1 + ∂R 2 ∂e ρ 1 4 R 1 R 1 + R 2    , (2.4.1) 
where

                     a 1 = Y l (γ l -1) C v,l Y l C v,l + Y g C v,g , 
a 2 = Y g (γ g -1) C v,g Y l C v,l + Y g C v,g , R 1 = a 2 ρ [e -(Y l q l + Y g q g )] -a 2 p ∞,g -a 1 ρ [e -(Y l q l + Y g q g )] + a 1 p ∞,l -p ∞,g + p ∞,l , R 2 = a 1 a 2 {ρ [e -(Y l q l + Y g q g )] -p ∞,l }{ρ [e -(Y l q l + Y g q g )] -p ∞,g } . (2.4.2)
This sound speed can then be compared with a simpler approximation of the sound speed given by [START_REF] Wood | A textbook of sound[END_REF] [87]:

1 ρc 2 = α l ρ l c 2 l + α g ρ g c 2 g . (2.4.3)
As shown in Fig. 2.2, Wood's expression (2.4.3) for the sound speed is always slightly greater than the sound speed given by Eq. (2.4.1). It is thus more convenient (and simpler) for computational purposes related to the hyperbolic solver.

Phase transition model

When phase transition is addressed in System (2.2.1), the equations for the mixture mass, momentum and energy are unaffected, and only the mass fraction equation is modified through Gibbs free energy relaxation terms. The analysis of the entropy production associated with System (2.2.1) is addressed in Saurel et al. ( 2008) [START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF] and leads to the following admissible formulation of the mass transfer terms, pressure and temperature. Its determination is possible only when the interfacial area A I is available, as with droplets and bubbly flows. In this framework, when a fluid is metastable, ν is considered very big, so that relaxation to thermodynamic equilibrium is immediate.

∂ (ρY l ) ∂t + div(ρuY l ) = ρν(g g -g l ), ( 2 
The consideration of mass transfer in Eq. (2.5.1) combined with the equations of mass, momentum and energy of System (2.2.1) does imply,

∂ (ρs) ∂t + div(ρsu) = ρν(g g -g l ) 2 T ,
where the mixture entropy is defined as s = Y l s l + Y g s g . Obviously this formulation does respect the second law of thermodynamics,

∂ (ρs) ∂t + div(ρsu) 0.
Using a fractional step method, phase transition is decoupled of transport and wave propagation. At each time step of the flow solver, the following equation has to be resolved for the mass fraction Y l ,

∂ (ρY l ) ∂t = ρ (Y * l -Y l ) τ , (2.5.2)
where Y * l is the liquid mass fraction at thermodynamic equilibrium. This equation trivially solves to a solution exponentially tending to Y * l , with a characteristic time τ . In this work, τ is assumed to be smaller than the other characteristic times of the flow model: stiff relaxation is considered. As a consequence, solving Eq. (2.5.1) at every time step reduces to setting Y l = Y * l after each hyperbolic step.

With the infinitely fast mass transfer relaxation strategy, it is interesting to represent the effective thermodynamic path that the fluid undergoes during the phase change process. The isentrope of the liquid and the one of the gas are connected with a kinetic path corresponding to a mass transfer between the two states (liquid and vapor). The metastable states are immediately transformed into a mixture at equilibrium. The effective thermodynamic path is represented. The slope of the isentrope is purposely exaggerated in order to insist on the fact that this slope is weak but non-zero.

At the two-phase zone boundaries, the connection between the liquid's isentrope (or the vapor's)

and the one of the two-phase mixture is made continuously through the thermodynamic path represented in Fig. 2.3. It is also worth mentioning that the use of the thermochemical relaxation solver allows to omit the integration of stiff source terms.

Although the specific volume v = 1/ρ and energy e do not vary in the mixture during thermodynamic relaxation, the pressure and temperature do, also reaching their equilibrium values (p * , T * ) on the saturation curve, since g l = g g is equivalent to the saturation condition: Eq. (2.3.3). The phase transition model thus reduces to computing the equilibrium state (p * , T * , v, e, Y * l ), at every time step, from the state described by (p, T, v, e, Y l ), as represented schematically in Fig. 2.4. With the thermodynamic closure (2.2.2) presented above, the equilibrium state satisfies,

Y l Y g p l = p g T l = T g g l = g g phase transition p eq = p sat (T * ) Y * l Y * g p * l = p * g T * l = T * g g * l = g * g
             p * (v, e, Y * l ) = p sat T * (v, e, Y * l, ) , v = Y * l v l (p * , T * ) + (1 -Y * l )v g (p * , T * ), e = Y * l e l (p * , T * ) + (1 -Y * l )e g (p * , T * ), (2.5.3)
unless there is a solution in which the mixture is a pure phase (resp. Y * l = 0 or Y * l = 1), with a temperature respectively above or below the saturation temperature. The above non-linear system can be solved following an iterative algorithm such as Le Métayer et al.'s (2013) [72] but the aim of the present work is to offer a simpler and faster alternative.

Thermochemical relaxation algorithm

Let us recall that with an iterative approach, the goal of the thermochemical relaxation is to compute accurately Y * l , the liquid mass fraction at equilibrium (or alternatively Y * g ), while with the present method, the aim is to reach the same solution but gradually (typically 2 or 3 time steps). 

T = T (v, p, Y l ).
The corresponding temperatures are compared to the saturation one at the current pressure (T sat (p)),

     if (Y l = ǫ and T > T sat ) then Y * l = ǫ (overheated vapor) , if (Y l = 1 -ǫ and T < T sat ) then Y * l = 1 -ǫ (subcooled liquid) .
(2.6.1)

If one of the two inequalities is fulfilled the equilibrium liquid mass fraction Y * l is fully determined and no further computation is required. If none of the above statements is true, then necessarily,

ǫ < Y * l < 1 -ǫ, p * is unknown, (2.6.2)
and System (2.5.3) has to be resolved. The difficulty resides in the non-trivial relationship between the saturation pressure and saturation temperature arising from Eq. (2.3.3):

T sat (p) = - B C.W - Be A/C p -1/C (p+p ∞,l ) D/C C , (2.6.3)
where W is the Lambert function1 , which cannot be expressed analytically, calling for an iterative method such as Newton's.

The idea of the algorithm is to start from a rough estimate of the equilibrium pressure p * = p, and the associated equilibrium temperature T * = T sat (p) and reach gradually the solution. Since the pressure and temperature are related at saturation, the liquid internal energy e l (p, T ) and specific volume v l (p, T ) become two functions depending on p only, and two values for Y * l as functions of the initial pressure p are obtained from System (2.5.3), by either using the mixture mass definition,

Y m l (p) = v -v g (p) v l (p) -v g (p) , (2.6.4) 
or the mixture internal energy definition,

Y e l (p) = e -e g (p) e l (p) -e g (p)
.

(2.6.5) Indeed, these two formulas are only equal if p is exactly the equilibrium pressure p * , which is not the case a priori since the process is not isobaric.

Based on these two guesses, a strategy inspired by flux limiters used in high-order schemes [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF] is adopted. Let us introduce the ratio of the liquid mass fraction variations induced by the mass (Y m -Y ) and internal energy (Y e -Y ) guesses for the equilibrium mass fraction,

r = Y m l (p) -Y l Y e l (p) -Y l .
An estimate of the equilibrium mass fraction is then obtained as,

             if r < 0, Y * l = Y l if 0 < r < 1, Y * l = Y mass l if r > 1, Y * l = Y energy l .
Alternatively, it also expresses as,

r = (Y m l (p) -Y l ) (Y e l (p) -Y l ) , (2.6.6)      if r < 0, Y * l = Y l otherwise Y * l = Y l + sgn Y m l (p) -Y l × M in |Y m l (p) -Y l |, |Y e l (p) -Y l | .
(2.6.7)

In the first case, the evolutions indicated by the two equilibrium guesses are discordant: one tends to evaporate whereas the other tends to condensate. The four quantities (Y l , Y * l , Y m l , Y e l ) are then likely to be very close to one another, and no mass transfer is to be considered. In the other case, among (Y m l , Y e l ), the closest to the initial value Y l is to be chosen. In that sense, the algorithm ensures equality of Eqs. (2.6.4) and (2.6.5) in the weak sense, rather than in the strong sense. When Y * l is determined, the entire Y l field is reset for the next time step resolution.

Negative mass fractions are impossible to obtain with this algorithm. This can be seen from Fig.

2.5: slopes of Y e

g and Y m g are of different sign. Since the crossing of the two lines occurs at a positive mass fraction (which is the exact solution), only one of Y e g and Y m g can be negative at a time. Following the algorithm, there are then two possibilities: if the initial Y g (from the hyperbolic step) is between Y e g and Y m g , then nothing happens thanks to the Minmod-like limitation. If Y g is not between Y e g and Y m g , then it is necessarily above the maximum of the two (since Y g > 0), and the algorithm will automatically pick the closest estimation (which is then positive).

The reason for this algorithm efficiency is illustrated in Fig. 2.5, which presents the evolution of Y m l and Y e l as functions of the initial guess for the pressure, for a mixture initially away from thermodynamic equilibrium. It is seen that following the above algorithm, which in the depicted case returns Y * l = Y e l , gives a result within half a percent of the exact value, even though the initial state is quite far from equilibrium: 30 K below the saturation temperature at the initial pressure of 1 atm. Accuracy of the relaxation algorithm is illustrated in Fig. 2.6. A shock tube containing liquid water and its own vapor is considered. In the present example, the tube is 1 meter long and the initial discontinuity is located at 0.5 meter. Boundary conditions are considered as non-reflecting. The computation that follows is addressed with the first-order Godunov method and the HLLC Riemann solver (see [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: A practical introduction[END_REF] [58], [START_REF] Saurel | Le solveur d'équilibre thermodynamique développé au Chapitre 2 est un point essentiel pour les modèles hyperboliques et diphasiques à 7, 5, 4 et 3 équations. En effet ce dernier permet de déterminer l'équilibre thermodynamique local et ainsi le taux d'évaporation maximalement admissible[END_REF] [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF], for details). Doing so, computed results are free of extra ingredients such as gradient limiters. As liquid and vapor coexist in the present context, the initial conditions correspond to both saturated liquid and vapor. Given initial pressures and mass fractions, the initial temperatures are computed with Eq. (2.3.3), initial mixture energy and specific volumes are deduced from the definitions given by Eqs. (2.2.2). Figure 2.6 presents the results obtained with the present relaxation solver and a classic root-finding procedure method such as Newton's. x (m) x (m) Excellent agreement is obtained between the present relaxation solver and the iterative method.

ρ (kg.m -3 ) p (MPa) u (m.s -1 ) T (K) Y l α l
Clearly the shock compression yields total evaporation while the rarefaction results in condensation.

Appearance of pure vapor is computed without oscillations by the two methods. Note that the specific management of pure phases is handled by Eq. (2.6.1) for both algorithms ("Minmod-type" and iterative).

In view of the intended industrial applications, the thermodynamic closure of the two-phase flow must necessarily be extended to account for a multicomponent gas phase. The present thermochemical relaxation solver must consequently be adapted. The main idea constituting the present solver remains nonetheless unchanged (Minmod-like limitation). The basics of the previous thermochemical algorithm are indeed essential for the design of a simple, robust and fast solver able to deal with a liquid in equilibrium with a multicomponent gas phase. This problematic is addressed in the next sections.

Extension to a multicomponent gas phase

The work introduced in Section 2.6 [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF] presents the basis required to build a simple and efficient thermochemical solver able to deal with a liquid and its vapor.

When only liquid and the corresponding vapor are present (previous sections), p and T are linked by the saturation curve p = p sat (T ), simplifying somewhat the system to solve. In the present section, we aim at extending the model to liquid in equilibrium with a multicomponent gas phase. In this case, p and T are not directly on the saturation curve, but are related through the partial pressure of the vapor component in the multicomponent gas phase. This allows the well-known existence of water vapor in air at atmospheric conditions, albeit a temperature below the boiling point.

The range of flow solvers to which the present model applies is identical to its previous version: it is designed in association with non-equilibrium hyperbolic flow models, such as Baer and Nunziato's (1986) [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] and its reduced versions. This includes the 5-equation model of [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] and its extension for cavitating flows [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF][START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF][START_REF] Le Martelot | Liquid and liquid-gas flows at all speeds[END_REF], as well as formulations for thermal equilibrium two-phase mixtures such as the Homogeneous Relaxation Model (HRM) and Homogeneous Equilibrium Model (HEM) [START_REF] Downar-Zapolski | The non-equilibrium relaxation model for one-dimensional flashing liquid flow[END_REF][START_REF] Barret | Schemes to compute unsteady flashing flows[END_REF].

The phase transition relaxation solver may be used with models mentioned previously (with 7, 5, 4 and 3 partial differential equations) but its presentation is simplified in the context of the 4-equation model (often called HRM). When dealing with more sophisticated formulations, as for example the 7-equation model, extra ingredients have to be presented, such as velocity, pressure and temperature relaxation solvers, as done for example in [72,[START_REF] Lallemand | Pressure relaxation procedures for multiphase compressible flows[END_REF]. Here, there is a single step that makes the connection from the 4-equation model (modeling mixtures out of thermodynamic equilibrium) and the 3-equation model (mixtures in full equilibrium).

Considering multicomponent effects within the gas phase needs additional mass balance equations,

∂(ρ g α g y k ) ∂t + div(ρ g α g y k u) = 0, (2.7.1)
where y k denotes the k-th gas component mass fraction within the gas phase. In the thermodynamic closure considered in this study, and detailed in the next section, the gas phase is assumed to obey the ideal gas equation of state.

As the molar volume is independent of the gas constituent, it is equivalent to considering the constituents as ideally mixed within the gas phase (each occupying the whole gas phase volume), or assuming that each component within the gas phase occupies its own separate volume. The equivalence between these two approaches is clarified in the next section. Under the latter assumption, all mass balance equations can be written as:

∂(ρY k ) ∂t + div(ρY k u) = 0,
where the subscript k refers to the various physical and chemical components. In the following, let us introduce the following convention:

-k = 1 for the liquid, -k = 2 for the gas component corresponding to vapor of species 1, -k = 3, . . . , N for the remaining gas components, considered non-condensable in this work.

This notation for the species conservation equation is more convenient, as Y k is now the mass fraction for the k-th species in the entire mixture (containing both liquid and gas), so that the conservation equation for each species within the gas phase is of the same form as the liquid mass conservation equation.

The extended two-phase flow model consequently reads,

                     ∂ρ ∂t + div(ρu) = 0, ∂(ρu) ∂t + div ρu ⊗ u + pI = 0, ∂(ρE) ∂t + div ρE + p u = 0, ∂(ρY k ) ∂t + div(ρY k u) = 0, (2.7.2) 
with

E = e + 1 2 u 2 , e = N k=1
Y k e k .

Mass transfer has been omitted in System (2.7.2) as it is addressed later. System (2.7.2) is clearly reminiscent of the reactive (or multicomponent) Euler equations widely used in chemically reacting flows. However, like in previous sections, the thermodynamic closure differs significantly from the one used in gas mixtures as examined hereafter.

Extended thermodynamic closure

This section presents the equations of state (EOS) used for each pure component as well as the mixture equation of state. Preliminarily, let us demonstrate the equivalence between the ideal gas mixture model that follows Dalton's law, and a gas phase where each constituent is assumed to occupy its own volume, in the specific context of temperature and pressure equilibria.

To this aim, the question of the gaseous mixture model is to be asked. Should we consider that the pressure within the gaseous mixture obeys Dalton's law, or should we consider, like in the liquid-vapor mixture case (see Section 2.2), that all pressures are equal (liquid, vapor, non-condensable gases) ?

Basically, it boils down to an ideal gaseous mixture, or a mixture where all gaseous species are assumed to evolve in their own separate volume. This essential question is schematically depicted in Fig. 2.7. In order to clarify this statement, let us come back to the mixture rules for some ideal gases following the two possible options: ideal mixture or separate species. Note also that for the sake of clarity, we will use the mass fractions y k in the next analyses. Indeed, those are the mass fractions of the chemical species of the gaseous mixture. Though, to remain consistent with the convention introduced previously, the index counting will start at 2 as it corresponds to the first gas component (vapor). We will come back to the mass fractions Y k of the entire mixture (containing both liquid and gas phases) when building the equation of state of the two-phase mixture. and the separate phase approach (right figure). This illustration represents a liquid, its own vapor and the atmospheric air as a non-condensable gas. The two approaches are different as Dalton's law considers an ideal mixture of gases whereas the other option considers all the gas constituents as separate.

The gas phase is ideally mixed: Dalton's law

The gas phase is analyzed under the assumption of a gaseous mixture respecting Dalton's law.

The index 2 is the index of the vapor which is the first constituent of the gas phase. The ideal gas EOS is considered. With this approach, the associated mixture rules are: In this context, the ideal gas law for a given species reads,

                     T = T k : mixture in temperature equilibrium, V = V k : each chemical
p partial, k V k = n k RT k and becomes p partial, k V = n k RT.
Consequently the gas mixture pressure expresses,

pV = N k=2 p partial, k V = N k=2 n k RT, (2.8.1)
where R denotes the universal gas constant in molar units and n k is the number of moles of species k. The ideal gas Joule's relation, Mayer's relation and the ratio of the specific heats are now used,

                 e k = C v,k T k + q k = Ĉv,k W k T k + q k , R = Ĉp,k -Ĉv,k , γ k = Ĉp,k Ĉv,k = C p,k C v,k , Ĉv,k = R γ k -1 , (2.8.2) 
and lead to the following relation expressing the internal energy of a gaseous constituent,

e k = RT W k (γ k -1) + q k .
In this relation, W k denotes the molar mass and γ k the polytropic coefficient of chemical species k. C p,k and C v,k are the heat capacities at constant pressure and volume respectively and q k is the reference energy of fluid k. Note that theˆsuperscript defines the molar values. In relation (2.8.1), the temperature is deduced from the caloric equation of state for the gas mixture. Indeed, the definition of the mixture internal energy yields, 

e = RT N k=2 y k /W k γ k -1 + N k=2 y k q k . ( 2 
p = N k=2 n k V   e -N k=2 y k q k N k=2 y k /W k γ k -1   = N k=2 n k V    e -N k=2 y k q k N k=2 y k Ĉv,k W k R    . (2.8.4)
Let us now manipulate Eq. (2.8.4). Making use of the next decomposition,

         n V = nW V W = ρ W , N k=2 n k V = n V = ρ W ,
(2.8.5)

and by using the mass definition and the ideal gas EOS, the following relations arise,

               ρ k = m k V , y k = m k m = m k V V m = ρ k ρ , p partial, k = ρ k R W k T = ρ y k W k RT,
where m k and m denote respectively the mass of species k and the mass of the gaseous mixture.

According to the ideal gas EOS, the gas mixture pressure reads,

p = ρ R W T. (2.8.6)
Using Dalton's law properties, the gas mixture pressure also expresses as,

             p = N k=2 p partial, k , p = ρ N k=2 y k W k RT.
( 

n k V = ρ W = ρ N k=2 y k W k .
(2.8.9)

Using Eqs. (2.8.4) and (2.8.9), the gas mixture pressure for a gaseous mixture respecting Dalton's law finally reads,

p = ρ N k=2 y k W k e -N k=2 y k q k N k=2 y k /W k γ k -1 = Rρ N k=2 y k W k e -N k=2 y k q k N k=2 y k Ĉv,k W k . ( 2 

.8.10)

A mixture polytropic coefficient can be defined as well. Mayer's relation for ideal gases stats:

Ĉp -Ĉv = R.
The polytropic coefficient is the ratio of the specific heats: γ = Ĉp Ĉv = Cp Cv . Mayer's relation can then be written as:

γ = 1 + R Ĉv = 1 + R C v .
Applying this relation to the gas mixture, the mixture polytropic coefficient is found. Using Eq.

(2.8.8), relation (2.8.10) expresses as:

p = ρ R W e - q C vm = ρR e - q C vm , with R = R W , q = N k=2 y k q k and C vm = N k=2 y k Ĉv,k W k . It is then straightforward to find, γ = 1 + R C vm = 1 + R/W C vm , γ = 1 + R N k=2 y k W k N k=2 y k Ĉv,k W k = N k=2 y k Ĉv,k W k + R N k=2 y k W k N k=2 y k Ĉv,k W k = N k=2 y k Ĉv,k W k + R/W N k=2 y k Ĉv,k W k , γ = C vm + R C vm = C pm C vm .
This well-known result does validate this approach. The opposite mixture model is now to be considered.

Each gas constituent occupies its own volume in pressure and temperature equilibria

We now consider another configuration with separate chemical species. Corresponding mixture rules are, The ideal gas law for a given species now reads,

                     T = T k : mixture in temperature equilibrium, v = N k=2 y k v k :
p k V k = n k RT k and becomes p k V k = n k RT.
In mass units, it expresses as,

p k = n k W k V k R W k T = ρ k R W k T.
Consequently, the specific volume of a given chemical species as a function of pressure and temperature reads,

v k = R W k T p k .
This result is inserted into the specific volume definition,

v = N k=2 y k v k , yielding, v = T p N k=2 y k R W k , and 
p = ρ RT N k=2 y k W k . (2.8.11) 
In this last equation, both pressure and temperature equalities have been used. Using the ideal gas EOS and the definition of the mixture internal energy (which is unchanged), the mixture temperature expresses, 

                     e k = C v,k T k + q k = Ĉv,k W k T k + q k , e = N k=2 (y k C v,k T ) + N k=2 (y k q k ) , T = e -N k=2 (y k q k ) N k=2 (y k C v,k ) . ( 2 
y k /W k γ k -1 + N k=2 y k q k . (2.8.13)
Eliminating the temperature by combining Eqs. (2.8.11) and (2.8.13), the mixture pressure for ideal gases under the assumption of a separate-phase mixture is obtained, The previous remark no longer makes sense for mixtures of fluids governed by a NASG-type equation of state [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF] as Dalton's law is not valid anymore. A liquid for instance cannot occupy the whole multiphase volume (except of course if it is a one-phase configuration).

p = ρ N k=2 y k W k e -N k=2 y k q k N k=2 y k /W k γ k -1 = Rρ N k=2 y k W k e -N k=2 y k q k N k=2 y k Ĉv,k W k . ( 2 
The separate-phase strategy of Section 2.2 can then be repeated without any ambiguity for the building of the mixture equation of state in the context of a mixture made of a liquid, its vapor and any non-condensable gases evolving in both mechanical and thermal equilibria. Note that the vapor and the non-condensable gases must be considered as ideal gases for the previous analysis to be valid.

EOS for pure constituent

In this frame, it is assumed that each gaseous constituent (k = 2, . . . N ) obeys the ideal gas equation of state. The EOS coefficients for the vapor (species k = 2) must be carefully computed, in accordance with the liquid (k = 1) EOS, as to fit the phase diagram. The building of such an EOS has been addressed in Le Métayer et al. ( 2004) [START_REF] Métayer | Elaborating equations of state of a liquid and its vapor for two-phase flow models; élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques[END_REF], on the basis of the Stiffened-Gas (SG) EOS.

In later developments, the same authors proposed the "Noble-Abel-Stiffened-Gas" (NASG) EOS [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF],

which improves considerably the liquid specific volume accuracy by taking into account the repulsive molecular effects in addition to those already present in the SG EOS (agitation and attraction). The main formulas for the NASG EOS read for a given constituent k = 1, . . . N (liquid, vapor, gas),

                           p k (v k , e k ) = (γ k -1) (e k -q k ) v k -b k -γ k p ∞,k , T k (p k , v k ) = (v k -b k ) (p k + p ∞,k ) (γ k -1)C v,k , g k (p k , T k ) = (γ k C v,k -q ′ k )T k -C v,k T k ln T γ k k (p k + p ∞,k ) γ k -1 + b k p k + q k , c k (p k , v k ) = γ k v 2 k (p k + p ∞,k ) v k -b k , (2.8.15)
where the following parameters are needed for each phase: γ k , p ∞,k , C v,k , q k , q ′ k and b k . These parameters are constant coefficients characteristic of the thermodynamic properties of the fluid. Among The following results can be adapted to the SG EOS framework by setting b k = 0. For all gaseous constituents (k = 2, . . . N ), b k = 0 and p ∞,k = 0, and the above system reduces to the ideal gas EOS.

Note that, for the k-th gaseous constituent, the pressure p k is based on the subvolume containing the constituent. It is therefore equal to the pressure of the whole gas phase, and not to the partial pressure of the constituent in the gas phase. In the following, it is explicitly stated when a partial pressure is introduced.

The same strategy as in [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF] and [START_REF] Métayer | Elaborating equations of state of a liquid and its vapor for two-phase flow models; élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques[END_REF] is repeated in order to find a formulation connecting the saturation pressure and temperature, by equating the liquid and the vapor chemical potentials g 1 = g 2 , leading to the following equation:

ln (p sat + p ∞,2 ) = A + B + E p sat T sat + C ln (T sat ) + D ln (p sat + p ∞,1 ) , (2.8.16) 
where,

A = C p,1 -C p,2 + q ′ 2 -q ′ 1 C p,2 -C v,2 , B = q 1 -q 2 C p,2 -C v,2 , C = C p,2 -C p,1 C p,2 -C v,2 , D = C p,1 -C v,1 C p,2 -C v,2 , E = b 1 -b 2 C p,2 -C v,2
.

(2.8.17)

For liquid water and steam, the NASG fluid parameters, determined in the [300 -500] K temperature range are given in 

T (K) T (K) p sat (bar) L v (kJ/kg) h l (kJ/kg) h v (kJ/kg) v l (m 3 /kg) v v (m 3 /kg)
Figure 2.8: Comparison between experimental and theoretical saturation curves for liquid l water and steam v with coefficients determined in the temperature range [300 -500] K. The symbols represent the experimental data. The thick lines represent the NASG theoretical saturation curves and the dash-dotted lines represent the SG theoretical saturation curves. p sat denotes the saturation pressure, L v the latent heat, h the specific enthalpy and v the specific volume. The SG coefficients are given in Table 2.1 and the NASG coefficients are given in Table 2.2.

Mixture equation of state

Each constituent is assumed to follow the NASG EOS (reduced to the ideal gas EOS for gaseous constituents). However the mixture equation of state, based on mechanical and thermal equilibria has yet to be built. Under the assumption of mechanical and thermal equilibria, an inherent assumption of the 4-equation model, we have:

                           T = T k ∀k, p = p k ∀k, v = N k=1 Y k v k , e = N k=1
Y k e k .

(2.8.18)

As shown at the beginning of this section, considering (2.8.18) for the mixture of gases is equivalent to Dalton's law. Therefore the computed mixture pressure for the gas mixture is in agreement with both Dalton's law in the gas mixture and with the liquid-gas interface condition of equal pressures.

Consequently, System (2.8.18) summarizes correctly the separate-phase mixture model between the liquid and the gas mixture on one hand and the ideal gas mixture on the other hand.

From the expressions given in Eqs. (2.8.15) for pure constituents, the specific volumes and internal energies read,

       v k (p k , T k ) = (γ k -1)C v,k T k p k + p ∞,k + b k , e k (p k , T k ) = p k + γ k p ∞,k p k + p ∞,k C v,k T k + q k , (2.8.19) 
which can be rewritten to give two expressions for the temperature (since T k = T, ∀k),

T = v -N k=1 Y k b k N k=1 Y k (γ k -1)C v,k p+p ∞,k , (2.8.20) 
T = e -N k=1 Y k q k N k=1 Y k C v,k p+γ k p ∞,k p+p ∞,k . (2.8.21)
Equating these two expressions, and taking into account that p ∞,k = 0 and b k = 0, ∀k > 1, a quadratic expression for the mixture pressure is obtained as,

p = b + √ b 2 + 4ac 2a , (2.8.22) with                a = Cv , b = e - q v -b Cp -Cv -p ∞,1 Cv -p ∞,1 Y 1 (C p,1 -C v,1 ) , c = e - q v -b p ∞,1 Cp -Cv -Y 1 (C p,1 -C v,1 ) , (2.8.23)
where mixture quantities are introduced, 

Cv = N k=1 Y k C v,k , Cp = N k=1 Y k C p,k , q = N k=1 Y k q k , b = N k=1 Y k b k . ( 2 
p = N k=2 Y k ρ RT /W k ,
or, in other words, the classical Dalton's Law for the gas mixture. This provides an additional verification as to the possibility of considering each gas constituent to be in its own volume, as already discussed. Albeit the apparent simplicity of the thermodynamic closure chosen, the phase transition model presented here may be extended to other thermodynamic closures provided each phase EOS is convex.

Phase transition model

When phase transition is addressed between the liquid and its vapor, only the conservation equations of the first two constituents are modified as,

     ∂(ρY 1 ) ∂t + div(ρY 1 u) = ρν(g 2 -g 1 ), ∂(ρY 2 ) ∂t + div(ρY 2 u) = -ρν(g 2 -g 1 ),
(2.9.1)

where g k denotes the phase k Gibbs free energy g k = h k -T s k with h k and s k respectively the specific enthalpy and entropy and ν(A I , p, T ) represents a relaxation parameter that controls the rate at which thermodynamic equilibrium is reached. It is a function of the specific interfacial area A I , pressure and temperature. Its determination is possible only when the interfacial area A I is available, as with droplets and bubbly flows (see [START_REF] Furfaro | Modeling droplet phase change in the presence of a multi-component gas mixture[END_REF] for example [START_REF] Furfaro | Modeling droplet phase change in the presence of a multi-component gas mixture[END_REF]) and sometimes for stratified flows. A natural way to determine this exchange area would be to use a very fine mesh to capture interfaces at all spatial scales. However this strategy would require tremendous computing resources and can hardly be envisaged when considering large-scale problems. Nevertheless a realistic method in specific limit situations is to consider instantaneous thermodynamical relaxation between phases by the use of additional source terms [72]. In the present work, ν is considered very large, so that relaxation to thermodynamic equilibrium is immediate.

During the phase transition process, the mixture specific volume v = 1/ρ and energy e do not vary.

The mass fractions for all gas species other than the vapor (Y k≥3 ) also remain constant. However, pressure and temperature do vary, reaching their equilibrium values (p * , T * ). The phase transition model thus reduces to computing the equilibrium state (p * , T * , Y * k ), at every time step, from the state described by (p, T, v, e, Y k ).

Since pressure and temperature are functions of (v, e, Y k ), and v and e are constant during the phase transition, the primary goal of the procedure is to compute accurately Y * 1 , since Y * 2 is linked through mass conservation,

Y * 2 = 1 -Y * 1 - k≥3 Y k .
In our approach, phase transition is decoupled of transport and wave propagation using a fractional step method, essentially reducing the model to setting Y 1 = Y * 1 and Y 2 = Y * 2 after each hyperbolic step (resolution of System (2.7.2) without mass transfer).

Link between the mass fractions Y k of the two-phase flow and the mass fractions y k of the gaseous phase

The separate-phase strategy is used since the presence of liquid naturally imposes this approach when envisioning the whole two-phase flow mixture. However, it has been demonstrated previously that within the gas phase, Dalton's law is actually equivalent to the separate-phase approach in the specific context of ideal gases evolving in both mechanical and thermal equilibria.

The equality of Gibbs free energies g 1 = g 2 implies that the partial pressure of the vapor component is equal to the saturation pressure at the current temperature, p partial,2 = p sat (T ).

(2.9.2)

Let us first examine the thermodynamic description of the gaseous mixture. According to Dalton's mixture rules, the partial pressure of the vapor species is linked to the volume occupied by the gaseous mixture, to the number of moles and to the temperature as,

p partial,2 V g = n 2 RT,
with V g the volume of the gaseous phase. The pressure of the gaseous mixture is obtained as the sum of the partial pressures, that implies,

pV g = RT N k=2 n k .
We now define the molar fraction of the vapor species as,

x v = n 2 N k=2 n k .
With this definition, the following equation is obtained,

x v = p partial,2 p = p sat (T ) p .
(2.9.3)

This molar fraction is now to be converted into mass fraction,

x v = y 2 W 2 N k=2 y k W k , (2.9.4) 
where y k represent the mass fractions of the chemical species within the gas phase and are not to be confused with the mass fractions of the whole two-phase flow Y k . Hence,

N k=2 y k = y 2 + N k=3 y k = 1, (2.9.5) 
and

             v g = 1 - N k=3 y k v 2 (p, T ) + N k=3 y k v k (p, T ), e g = 1 - N k=3 y k e 2 (p, T ) + N k=3 y k e k (p, T ), (2.9.6) 
with the subscript g denoting the combined group of gaseous components. Those last equations are important because it has been previously demonstrated that they lead to Dalton's law for the gaseous mixture. Using Eqs. (2.9.3) and (2.9.4), another equation linking the saturation pressure and the current one is obtained as,

p sat (T ) = y 2 W 2 N k=2 y k W k p.
The pressure p is the one obtained by the 4-equation model (before Gibbs free energy relaxation) and the mass fractions are those transported by the very same model. Indeed, as it will be seen further, there exist simple relations that convert the mass fractions of the two-phase flow Y k into those of the gaseous mixture y k .

From Eq. (2.9.3), the saturation relation is used to find the temperature in the gaseous mixture, which is also the temperature of the two-phase flow, at the end of the Gibbs free energy relaxation process:

T = T sat (p sat ) = T sat (x v p).
(2.9.7)

Naturally, this temperature is different from the one of the 4-equation system (before Gibbs free energy relaxation). With this temperature (that will be the one of the fluids after the relaxation process converges to the equilibrium state), the following definitions are considered,

     v = Y 1 v 1 (p, T ) + (1 -Y 1 ) v g (p, T ), e = Y 1 e 1 (p, T ) + (1 -Y 1 ) e g (p, T ).
Note that the separate-phase approach is now used within the whole two-phase flow. Indeed, since a condensed phase (liquid) is present in the considered flow, only this approach is valid when dealing with a mixture containing a liquid and some gases. Thereby Y k are used and define the mas fractions of the components present in the two-phase flow.

We now inject Eqs. (2.9.6) into these identities and find,

             v = Y 1 v 1 (p, T ) + (1 -Y 1 ) 1 - N k=3 y k v 2 (p, T ) + (1 -Y 1 ) N k=3 y k v k (p, T ), e = Y 1 e 1 (p, T ) + (1 -Y 1 ) 1 - N k=3 y k e 2 (p, T ) + (1 -Y 1 ) N k=3
y k e k (p, T ).

Analyzing these last equations, it appears that,

Y k = (1 -Y 1 ) y k with k ≥ 3,
and then,

y k = Y k (1 -Y 1 )
with k ≥ 3.

(2.9.8)

Hence,

             v = Y 1 v 1 (p, T ) + 1 -Y 1 - N k=3 Y k v 2 (p, T ) + N k=3 Y k v k (p, T ), e = Y 1 e 1 (p, T ) + 1 -Y 1 - N k=3 Y k e 2 (p, T ) + N k=3
Y k e k (p, T ).

We then obtain the following definitions,

             Y m 1 = v -1 -N k=3 Y k v 2 (p, T ) -N k=3 Y k v k v 1 (p, T ) -v 2 (p, T ) , Y e 1 = e -1 -N k=3 Y k e 2 (p, T ) -N k=3 Y k e k e 1 (p, T ) -e 2 (p, T )
.

That is to say,

       Y m 1 = v -v g (p, T ) v 1 (p, T ) -v 2 (p, T ) , Y e 1 =
e -e g (p, T ) e 1 (p, T ) -e 2 (p, T ) .

It is important to note that in these relations,

             v g = 1 - N k=3 Y k v 2 (p, T ) + N k=3 Y k v k (p, T ), e g = 1 - N k=3 Y k e 2 (p, T ) + N k=3 Y k e k (p, T ).
Also, it is worth mentioning that if Y 3→N = 0, then Eqs. (2.6.4) and (2.6.5) of Section 2.6 in the context of a liquid evolving with its own vapor only are recovered.

All these relations are now expressed in terms of mass fractions of the two-phase mixture. Let us then convert relation (2.9.4) with those previously-mentioned mass fractions. Using Eq. (2.9.5), the relation,

x v = y 2 W 2 N k=2 y k W k , becomes, x v = 1-N k=3 y k W 2 1-N k=3 y k W 2 + N k=3 y k W k .
Thanks to relation (2.9.8), this last equation becomes,

x v = 1-N k=3 Y k (1-Y 1 ) W 2 1-N k=3 Y k (1-Y 1 ) W 2 + N k=3 Y k (1-Y 1 )
W k , that is to say,

x v = 1-Y 1 -N k=3 Y k W 2 1-Y 1 -N k=3 Y k W 2 + N k=3 Y k W k .
Finally, by use of the saturation constraint,

Y 2 = 1 -Y 1 - N k=3 Y k ,
the sought-after relation is found,

x v = Y 2 /W 2 Y 2 /W 2 + N k=3 Y k /W k = Y 2 /W 2 N k=2 Y k /W k .
(2.9.9)

This equation will simplify dramatically the building of the thermochemical relaxation algorithm as this notation is much more convenient. The mass fractions Y k , before relaxation, are known from the hyperbolic step.

Expression of the thermochemical equilibrium

When only liquid and vapor are present (Y k≥3 = 0), as in Section 2.6 [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF], the thermochemical equilibrium directly translates into p * = p sat (T * ), independently of

Y * 1 .
Here an extra complexity is added, as the vapor partial pressure in the gas phase is equal to the saturation pressure at the current temperature.

The relation between p * and T * then depends on the composition of the multicomponent gas Y k≥2 . Within ideal gas mixtures, the vapor partial pressure is directly proportional to the vapor molar fraction:

p partial = Y 2 /W 2 k≥2 Y k /W k p, (2 
.9.10) so that the expression satisfied at thermochemical equilibrium is

p sat (T * ) = p partial = Y * 2 /W 2 k≥2 Y * k /W k p * . (2.9.11)
This relation is indeed essential as it allows equilibrium of liquid and multicomponent gas in conditions below saturation (for instance, existence of water vapor at ambient temperature and pressure). Case 2 T < T sat (p): the mixture can be purely gaseous when the vapor quantity does not exceed its saturation limit, to be established hereafter. If this value is reached, then liquid is present.

Solution of a simplified problem

The attainable limit for the vapor mass fraction before condensation in the multicomponent gas is obtained by solving p partial = p sat (T ). Using Eq. (2.9.10), one gets,

Y sat 2 = p sat (T )W 2 p -p sat (T ) k≥3 Y k /W k .
(2.9.12)

Below the saturation temperature, we then have,

Y * 2 = min   Y sat 2 , 1 - k≥3 Y k   .
(2.9.13)

The equilibrium mass fraction Y * 2 cannot exceed the available room (1 -k≥3 Y k ), nor can it exceed the saturation limit, after which liquid is present. Y * 1 is then deduced from mass conservation. Figure 2.9 shows the solution for Y * 1 and Y * 2 of this simple problem, for a mixture of liquid water, water vapor and air (N = 3), at atmospheric pressure, and a mixture temperature of 350 K. On the right-hand side of the plot, there is so much air content that water vapor is diluted enough (below the saturation limit), and no liquid is present. On the left part, Y * 2 varies linearly with Y 3 , as a consequence of the saturation relation p partial = p sat (T ). The figure also indicates the variation of the mixture specific volume, which increases up to the saturation limit (since the liquid fraction diminishes), and then decreases, because air is heavier than water vapor. This simplified problem is convenient for two reasons: it illustrates well the problem to be solved, and also provides a simple way to compute initial conditions in a simulation.

Y 3 = Y air Y * 1 = Y liq Y * 2 = Y vap Y sat 2 mass fractions v = 1/ρ (m 3 /kg)
When the problem is to be solved at constant (v, e), instead of (p, T ), an analytic approach is no longer possible, and the problem has to be solved numerically. In the following section, we present an alternative to a tedious iterative process.

Extended thermochemical relaxation algorithm

The idea of our method is to gradually reach the exact solution (typically in 1 to 3 time steps of the flow solver), by providing a fair approximation for Y * 1 , while iterative approaches, such as the one promoted in Le Métayer et al. (2013) [72], directly computes the exact solution. In that direction, we will follow a similar strategy as in our previous work (Section 2.6) [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF], extended to the fact that the relation between pressure and saturation pressure is modified compared to Eq. (2.9.11), and now depends on the result (since the partial pressure is a function of Y 2 ). First, let us bound the equilibrium

mass fractions Y * 1 and Y * 2 ,          Y min = ǫ, Y max = 1 -Y min - N k=3 Y k , (2.10.1) 
with ǫ → 0 for numerical purposes, typically on the order of 10 -8 . As in our previous work (Section Note that, unlike in Section 2.6 [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF], there is no need to check the existence of the pure liquid phase: no matter how small ǫ is chosen, there will always be a (very small) solution for Y * 2 satisfying that its partial pressure is equal to the saturation pressure. Section 2.11 (about the algorithm's stability) provides additional comments and clarify this last feature. If Y * 1 = Y min , the following system has to be solved:

             p partial = x * v .p * = p sat (T * ), v = Y * 1 v 1 (p * , T * ) + Y * 2 v 2 (p * , T * ) + N k=3 Y k v k (p * , T * ), e = Y * 1 e 1 (p * , T * ) + Y * 2 e 2 (p * , T * ) + N k=3 Y k e k (p * , T * ), (2.10.2) 
leaving us with three equations for three unknowns (p * , T * , Y * 1 ). The vapor molar fraction x * v is defined as,

x * v = Y * 2 /W 2 Y * 2 /W 2 + N k=3 Y k /W k .
(2.10.3)

We will now evaluate three approximate expressions for Y * 1 . Rewriting the specific volume definition from System (2.10.2) leads to the following approximate expression, (2.10.5)

Y m 1 (p, T ) = v -v g (p, T ) v 1 (p, T ) -v 2 (p, T ) , with v g (p, T ) = 1 - N k=3 Y k v 2 (p, T ) + N k=3 Y k v k (p, T ). ( 2 
Equations for Y m 2 (p, T ) and Y e 2 (p, T ) (expressed for the vapor phase instead of the liquid phase) can be obtained as,

Y 2 = 1 -Y 1 - N k=3 Y k .
In Section 2.6 [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF], these two functions of (p, T ) could be reduced to functions of p in finding the equilibrium as p = p sat (T ) for a liquid-vapor mixture. As shown in Eq. (2.9.11), the new relation p partial = p sat (T * ) includes an additional dependence on Y * 2 (or, equivalently, on Y * 1 ), leading to Eq. (2.9.11), reminded here:

Y sat 2 (p, T ) = p sat (T )W 2 p -p sat (T ) k≥3 Y k /W k . (2.10.6)
The exact solution to the problem relies on determining pressure and temperature satisfying all three equations of System (2.10.2), or, equivalently:

Y m 2 (p * , T * ) = Y e 2 (p * , T * ) = Y sat 2 (p * , T * ).
This is illustrated in Fig. 2.10, for a set of conditions initially out of equilibrium (30 K below saturation). -Y m = Y m 2 (p, T ) is evaluated for the initial values of (p, x v ) (from the hyperbolic step), and

T = T sat (x v .p), -Y e = Y e
2 (p, T ) is evaluated for the initial values of (p, x v ) (from the hyperbolic step), and

T = T sat (x v .p), -Y sat = Y sat 2 (p, T ) is evaluated at the initial (p, T ).
As in Section 2.6 [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF], the idea of this method is then to pick the value with the smallest variation, under the condition that all three associated mass transfers are of the same sign. This idea is reminiscent of the well-known Minmod slope limiter widely used in high-order CFD solvers for limitation of gradients.

In other words, we introduce: -If r 1 < 0, or r 2 < 0, no mass transfer happens:

     r 1 = (Y m -Y 2 ) (Y e -Y 2 ) , r 2 = (Y m -Y 2 ) Y sat -Y 2 , ( 2 
Y * 2 = Y 2 .
-Else, the minimum mass transfer is used.

For instance, if Y m is the closest value to Y 2 (out of Y m , Y e , Y sat ), then Y * 2 = Y m .
Under the latter condition, it can be implemented as:

Y * 2 = Y 2 + sgn [Y m -Y 2 ] × M in |Y m -Y 2 |, |Y e -Y 2 |, |Y sat -Y 2 | . (2.10.8)
Summary of the procedure:

1) Search for a solution without liquid -The limit case Y * l → ǫ is considered with computation of the pressure and temperature according to the mixture equations of state (2.8.20) and (2.8.22). Additionally the corresponding saturation pressure and partial pressure for vapor are computed according to Eqs. (2.8.16) and (2.9.10).

-If the partial pressure is below the saturation pressure, no liquid is to be considered and the solution is Y * 1 = Y min and Y 2 = Y max according to Eq. (2.10.1).

2) If liquid is present, thermodynamic equilibrium is to be computed 

-

Algorithm's stability

In the present work's context, we can find a value for the vapor mass fraction Y 2 = Y vap , no matter the conditions given, as traces of non-condensable gas are present Y 3 = Y air . For instance, at 300 K and 1 atm for a mixture of liquid water, vapor water and air, assuming Y 3 = ǫ (which can be as small as numerically allowed) will lead to a very small but non-zero Y 2 . With these considerations, the transition from "pure" liquid into two-phase mixture is continuous.

Additionally, let us note that presence of air in water is physical (dissolved), and can be estimated through Henry's law. For instance, in ambient conditions, the air mass fraction dissolved is of the order of Y 3 = 10 -5 , leading to a value of Y 2 of the same order, satisfying System (2.10.2). Indeed, such low values do not have significant effect on mean density and energy, which remain close to the pure phase values.

In practical computations presented in the following, unless stated otherwise, a small value is set for Y 3 in the "pure" liquid, and Y 2 is computed accordingly, following Eq. (2.9.13) for the initial prescribed pressure and temperature.

Another key property responsible for the algorithm's stability is that ∀(p, T ) (a priori away from the equilibrium point), the exact solution for Y * 2 always lies between the minimum and maximum values of Y m 2 (p, T ), Y e 2 (p, T ), Y sat 2 (p, T ). This is clearly visible in Fig. 2.10. Although we have not proved this result because of the non-linear dependence of p sat (T ) (as in our previous contribution, Section 2.6 [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF]), we have not found a case in which this does not apply. As a consequence:

-If Y 2 > Y *
2 initially, mass transfer will be activated only if Y m , Y e and Y sat are all smaller than Y 2 . Given the above property, one of them at least is superior to Y * 2 . The algorithm then cannot "overestimate" the mass transfer.

-The same thing can be said when Y 2 < Y * 2 initially.

-Last but not least, since 0 < Y 2 < 1 -k≥3 Y k (given the hyperbolic step is properly implemented) and the exact solution also satisfies 0 < Y * 2 < 1 -k≥3 Y k , the approximate solution from the algorithm can never go out of bounds.

Numerical results

In the current context, non-condensable gases are present. The proposed relaxation solver is to be compared to an iterative algorithm such as the one promoted in Le Métayer et al. (2013) [72]. Unlike this last algorithm, the notion of vapor molar fraction and partial pressures in the gas phase must be taken into account, bringing additional difficulties. The corresponding iterative solver is consequently recalled and modified in Appendix B.1.

To illustrate robustness and accuracy of the relaxation algorithm, a shock tube containing liquid water, its own vapor and some non-condensable air is considered, with variable initial conditions. Shock tube tests appear as excellent benchmarks as the flow contains shock waves, contact discontinuities and rarefaction fans that create some arduous conditions. In this section, the tube is 1 meter long and the initial discontinuity is located at 0.5 meter. Boundary conditions are non-reflecting ones. The computations that follow are addressed with the MUSCL method using van Leer's slope limiter and the HLLC Riemann solver (see [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: A practical introduction[END_REF] [58], [START_REF] Saurel | Le solveur d'équilibre thermodynamique développé au Chapitre 2 est un point essentiel pour les modèles hyperboliques et diphasiques à 7, 5, 4 et 3 équations. En effet ce dernier permet de déterminer l'équilibre thermodynamique local et ainsi le taux d'évaporation maximalement admissible[END_REF] [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF] for details). This section compares the results obtained with the present relaxation solver and the classic root-finding method given in Appendix B.1. Unless stated otherwise, the one-dimensional simulations are carried out on meshes with 100 cells.

Shock tube test with a mixture far from the phase bounds

A two-phase mixture with initial mass fractions set to Y 1 = 0.1 (liquid), Y 2 = 0.2 (vapor) and Y 3 = 0.7 (air) is considered throughout the entire tube with an initial pressure ratio of 2, resulting in the presence of initial density and temperature discontinuities. In order to find an initial thermodynamic equilibrium, the temperatures in both chambers are deduced as,

T = T sat (x v p) with x v = Y 2 /W 2 Y 2 /W 2 + N k=3 Y k /W k . (2.12.1)
The mixture density is then computed as, Excellent agreement is obtained between the present relaxation solver and the iterative method.

ρ = 1 v with v = N k=1 Y k v k (p, T ), ( 2 
x (m) x (m) ρ (kg.m -3 ) p (MPa) u (m.s -1 ) T (K) Y 1 Y 2
The shock compression yields evaporation and the expansion wave results in condensation in this example.

Shock tube test with a mixture with air in major proportions

Mass fractions of the previous test were given as inputs and the temperatures were deduced in order to respect initial thermodynamic equilibrium. Let us now consider a different point of view. As it is easier to measure or impose temperature in a given flow, it is now used as initial input. Pressures, velocities and the mass fraction of the non-condensable gas (air) remain inputs as well. Proportions of liquid and vapor are then deduced according to Eq. (2.9.13).

The following test considers a shock tube with an initial pressure ratio of 2 and initial temperature Excellent agreement is obtained between the two solvers. The shock compression results in total evaporation of the liquid water and the rarefaction results in condensation. Disappearance of liquid water is computed without oscillations by the two methods. Note that the specific management of pure phases is handled by Eq. (2.10.1) for both algorithms ("Minmod-type" and iterative). Excellent agreement is again obtained between the two solvers. The liquid phase having the highest internal heat capacity, the resulting flow is quasi-isothermal despite the slight evaporation and condensation processes appearing through the shock and rarefaction.

Shock tube test with a mixture mainly made of liquid water

Double expansion test with a two-phase mixture mainly made of liquid water

The following test mimics cavitation in an initial subcooled liquid. The initial pressure, temper- x (m) x (m) Excellent agreement is again obtained between the two solvers. Appearance of vapor in the liquid is computed without oscillations by the two methods.

u l = u r = 0 m.s -1 , Y lef t 1 ≃ 1.073 • 10 -2 , Y right 1 ≃ 1.186 • 10 -3 , Y lef t 2 ≃ 9.263 • 10 -3 , Y right
x (m) ρ (kg.m -3 ) p (MPa) u (m.s -1 ) T (K) Y 1 Y 2
x (m) ρ (kg.m -3 ) p (MPa) u (m.s -1 ) T (K) Y 1 Y 2

Computational time, efficiency and simplicity

All computational examples considered in this multicomponent-gas-phase context led to the same observation: the present relaxation solver is much faster than the iterative algorithm given in Appendix B.1. The CPU saving is at least 50% in all reported cases. The main argument for this time gain is related to its simplicity: the relaxation solver is direct whereas the iterative method requires solving a non-linear-algebraic system that may cause difficulties as a result of non-linearities. Besides, the rootfinding method requires the calculation of the saturation pressure via Eq. (2.8.16) at each iterative step, which itself requires an iterative method.

In practical applications, fine discretization is usually used on zones of interest. However, as the method is not iterative, and converges after some time steps, it is interesting to address its robustness and accuracy in situation with both coarse space and time resolutions. To this end, Fig. 2.15 repeats the test case already presented in Fig. 2.12, with a 10-cell mesh and first-order Godunov numerical scheme. These results are very reasonable, illustrating the robustness of the method and its correct behavior even on coarse meshes.

Results for the same test case are also given in Fig. 2.15 for a higher-order solver (MUSCL scheme with the Superbee limiter), on a 1000-cell mesh. Again, excellent agreement is found between the present relaxation solver and the iterative method. Robustness of the present method thus seems quite independent of mesh resolution and order of accuracy of the numerical scheme. 

Multi-dimensional illustrations

Evaporating liquid jet

In this section, the capabilities of the flow model are illustrated on an evaporating liquid jet configuration in conditions typical of cryotechnic rocket engines during the ignition phase (for which the engine has not yet reached supercritical conditions). The flow consists of a coaxial liquid oxygen jet surrounded by a high-speed hydrogen flow, injected in conditions above the saturation point of the inner oxygen core, which then evaporates whilst being destabilized. Such a case is very challenging, because there is initially no vapor oxygen, and the phase transfer model developed is the only possible term for vapor production. The Stiffened-Gas EOS is used, the parameters for oxygen and hydrogen are given in Table 2 The small scale destabilization of the liquid jet requires to extend the numerical solver presented in Saurel et al. ( 2016) [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF] to second order. This was achieved following the MUSCL scheme with the Superbee limiter, as detailed for example in Toro (1997) [58].

Two computations have been carried out on the same mesh, with the aim of studying the effect of the thermochemical relaxation on jet destabilization. The contours of mass fraction of liquid oxygen as obtained with and without evaporation effects are compared in Figs. 2.17.a and 2.17 As expected, the filaments separating the main liquid core and the gas gradually vanish as a consequence of evaporation, resulting in much steeper contours of liquid mass fraction in the vicinity of the jet, and very few pockets of liquid with significant life time. Figure 2.17.d shows the contour of vapor oxygen (which indeed remains at zero in the case without phase transfer). Figure 2.17.c plots the total oxygen mass fraction contour (Y 1 + Y 2 ). It can also be compared to Fig. 2.17.a.

Although the results in terms of total mass fraction for oxygen qualitatively seem close whether or not the mass transfer is activated, it is clear that the vapor mass fraction is of utmost importance for future works, which shall include the gaseous combustion between vapor oxygen and hydrogen.

Capillary effects are not included in these simulations, as the intense velocity gradients make them negligible in the present jet destabilization conditions. However, capillary effects may be of importance when the filaments start separating from the jet and will be included in future works, following the approach presented in Le Martelot et al. ( 2014) [START_REF] Le Martelot | Towards the direct numerical simulation of nucleate boiling flows[END_REF].

Explosive liquid water dispersal into air

The present relaxation solver has been presented in the context of the 4-equation formulation. This model considers mechanical and thermal equilibria but thermochemical disequilibrium. However the relaxation solver is not restricted to such a model and can be extended to non-equilibrium hyperbolic flow models, such as Baer and Nunziato's (1986) [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] and its reduced versions. This last model is a 7-equation formulation assuming mechanical, thermal and chemical disequilibria. Thereby, finding local thermodynamic equilibrium requires extra ingredients such as velocity, pressure and temperature relaxation solvers such as the ones given in [72,[START_REF] Lallemand | Pressure relaxation procedures for multiphase compressible flows[END_REF]. We propose here to repeat the explosive liquid water dispersal test presented in Furfaro and Saurel (2015) [START_REF] Furfaro | A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows[END_REF] with the 4 and 7-equation models. The test consists in a cylindrical gas-liquid explosion schematically represented in Fig. 2.18. The results are given in Fig. 2.19.

Nearly pure gas (1 kg/m 3 ) Atmospheric pressure (0.1 MPa)

Nearly pure liquid water (1000 kg/m 3 ) Atmospheric pressure (0.1 MPa)

Nearly pure dense gas (1500 kg/m 3 ) HP chamber (7000 MPa) Figure 2.18: Schematic representation of the cylindrical gas-liquid explosive system. A cylindrical explosive charge is surrounded by a liquid water layer. The internal cylinder is 160 mm long with a 52 mm radius and is initially filled with nearly pure dense gas (1500 kg/m 3 ) at high pressure (7000 MPa). The external cylinder is 160 mm long with a 96 mm radius and is initially filled with nearly pure liquid water (1000 kg/m 3 ) at atmospheric pressure (0.1 MPa). Atmospheric conditions with nearly pure gas (1 kg/m 3 ) at 0.1 MPa are considered around both cylinders. No noticeable changes are visible in Fig. 2.19 illustrating the capabilities of the relaxation solver to model phase change in both 7-equation and 4-equation models . An evaporation front is clearly visible with both models.

Conclusion

A simple relaxation solver has been built, able to deal with phase transition between a liquid phase and a multicomponent gas phase. Computational examples have shown that the method converges to the same solution as methods based on iterative (and exact) equilibrium solvers. The Minmod-type treatment of the source term is the main ingredient of the thermochemical relaxation algorithm.

Several features are in favor of the present solver compared to iterative ones:

-CPU savings over 50%, -high simplicity of implementation and verification, -increased robustness with high-order methods. This is reached without any noticeable loss of accuracy.

This research can be continued in many directions. Among them, consideration of supercritical fluids in the same theoretical frame appears important. This task is undertaken in Chapter 3. Another perspective deals with the consideration of combustion effects within the gas phase.

Part III

Equations of state Introduction

The three states of a fluid (liquid, vapor, supercritical) present radically different thermodynamic behaviors. For instance, the speed of sound of a liquid is generally higher than the sound speed of a gas. The standard density is also representative of a fluid, as well as its compressibility and its heat capacity. The most common thermodynamic description relies on cubic equations of state (EOS), the basic prototype being the van der Waals (VdW) EOS. Indeed, the VdW EOS involves all possible effects occurring in matter, i.e. agitation, attraction and repulsion within a unique formulation. This thermodynamic modeling is consequently attractive as it is able to describe (at least qualitatively) liquid, vapor and supercritical states as well as two-phase mixtures. Unfortunately, the use of this EOS, as all cubic ones, implies a loss of hyperbolicity (through the convexity of the EOS) within the two-phase mixture region. An isentropic curve is represented in Fig. 2.20 and displays this behavior. The square speed of sound c 2 = -v 2 ( ∂P ∂v ) s is well-defined in the pure liquid zone where the slope of the isentrope is negative as well as in the pure gas zone, but it is not defined in the two-phase zone.

Cubic EOSs present an inadmissible behavior regarding acoustic wave propagation during phase change. In the present manuscript, convex EOSs are addressed and used in hyperbolic two-phase flow models, phase transition being considered through the stiff thermochemical relaxation solver of Chapter 2. The recent Noble-Abel-Stiffened-Gas (NASG) equation of state (Le Métayer and Saurel (2016) [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF]) is a well-posed formulation that involves the various molecular effects present in matter while remaining simple. Nevertheless, the NASG EOS is only well-suited in a limited temperature range [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF]. In Chapter 3, large temperature and pressure variation ranges are considered to address supercritical conditions. Consequently, the range of validity of the convex NASG EOS is to be extended in view of future industrial applications. This topic is addressed in the next chapter where the ENASG equation of state is developed ("E" stands for "Extended"). Its particular interest relies on variable attractive and repulsive effects that consequently extend the range of validity of the NASG description where they are considered constant.

Introduction

Modeling liquid-gas systems with or without phase transition is an old research topic in the physics community but still challenging at both theoretical and computational levels. The most common thermodynamical approach relies on cubic equations of state (EOS), the van der Waals one being the basic prototype. Indeed, this EOS involves all relevant molecular effects present in matter, i.e., thermal agitation, short distance repulsive forces and long range attractive ones. It is thus able to deal, at least qualitatively, with pure liquid, pure gas and two-phase mixture. This EOS, as all cubic ones, is aimed to close flow models based on balance equations of mass, momentum and energy for the mixture. The Euler equations are one of the relevant possible options, as well as more sophisticated ones aimed to model capillary effects, such as the [START_REF] Cahn | Free energy of a nonuniform system. I. Interfacial free energy[END_REF] [START_REF] Cahn | Free energy of a nonuniform system. I. Interfacial free energy[END_REF] model for example.

In this context, the thermodynamical state is determined from two internal variables only, the density and the internal energy of the mixture, or alternatively the density and the temperature, depending on the formulation of the equations. This approach consequently seems simple, but involves serious difficulties and limitations:

-The first and certainly the most obvious and limiting is related to its inability to deal with liquid and non-condensable gas separated by well-defined interfaces, such as for example interfacial flows of liquid water and air. The thermodynamics of these two media being considered as discontinuous, specific theoretical and numerical treatments have been addressed. In this context, Arbitrary Lagrangian Eulerian [START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF] [START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF]), Interface Reconstruction [START_REF] Youngs | An interface tracking method for a 3D Eulerian hydrodynamics code[END_REF] [START_REF] Youngs | An interface tracking method for a 3D Eulerian hydrodynamics code[END_REF]), Front Tracking [START_REF] Glimm | Three-dimensional front tracking[END_REF] [START_REF] Glimm | Three-dimensional front tracking[END_REF]), Level-Set [START_REF] Fedkiw | A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method)[END_REF] [START_REF] Fedkiw | A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method)[END_REF]), anti-diffusion (Kokh and Lagoutiere (2010) [START_REF] Kokh | An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model[END_REF]) methods are possible options. Another approach relies on continuous models with extra internal variables, such as volume and mass fractions and extended equation of state. Examples of such models are the [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] one and its extension with phase transition [START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF] [START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF]), to cite a few. With these formulations the same equations are solved everywhere routinely, in pure liquid, pure gas and interface which becomes a diffuse zone. These models are indeed often named "diffuse interface methods" (Saurel and Pantano (2018) [START_REF] Saurel | Diffuse Interfaces and Capturing Methods in Compressible Two-Phase Flows[END_REF]). In this approach, hyperbolic models with relaxation are considered and each phase evolves in its own volume, with its own thermodynamics. In particular there is no need to address cubic formulations. When phase transition is addressed, it occurs through mass transfer terms that can be considered finite rate [START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF] [START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF] -The second limitation is related to the lack on convexity of cubic EOSs, having dramatic con-sequences on sound propagation during phase transition. The square sound speed becomes negative in the spinodal decomposition zone, such behavior being unphysical.

-The third limitation is related to the description of phase transition with such EOSs. Cubic equations of state consider phase transition as a thermodynamic process and not a kinetic one. It is unclear at this level whether cubic EOSs are limited to the description of global two-phase mixtures with many interfaces and not local ones, at the scale of a single interface.

-The fourth, but possibly not the last, is related to the numerical treatment of boundary conditions (BC) in practical compressible flow computations. Subsonic inflow and outflow BCs rely on stagnation enthalpy and entropy invariance coupled to Riemann invariants that can be defined and computed correctly only if the equation of state is well-posed. The second issue related to EOS convexity consequently reemerges at this level. Moreover, the practical expression of Riemann invariants may be inextricable with these EOSs. This list of arguments gives motivations to the present work where an extended version of the Noble-Abel-Stiffened-Gas (NASG, Le Métayer and Saurel (2016) [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF]) EOS is examined to:

-Represent the thermodynamics of pure liquid, pure vapor and supercritical fluid. Combination of the pure liquid and pure vapor EOSs must be able to represent as accurately as possible the two-phase region.

-Each phase EOS must be convex in its respective domain.

-The EOS must be as simple as possible, while remaining accurate, to simplify practical computations and building of mixture EOS in hyperbolic multiphase flow models.

Hyperbolic multiphase flow models have demonstrated their ability to solve a wide range of complex flow situations in severe conditions. Material interface problems [START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] (Chapter 1), chemical reactions [START_REF] Petitpas | Modelling detonation waves in condensed energetic materials: Multiphase CJ conditions and multidimensional computations[END_REF], phase change [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF] (Chapter 2), surface tension [START_REF] Perigaud | A compressible flow model with capillary effects[END_REF], solid-fluid [START_REF] Favrie | Solid-fluid diffuse interface model in cases of extreme deformations[END_REF], plastic transformation [START_REF] Ndanou | Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation[END_REF], dense and dilute flows [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF], shallow water flows [START_REF] Chiapolino | Models and methods for two-layer shallow water flows[END_REF] (Chapter 4) can be cited for instance. In these flow models, compressibility of each phase is responsible for the hyperbolic character of the equations and an appropriate and convex EOS is required for each fluid.

The NASG EOS combines relevant physics and simplicity. Its predictions are in a good agreement with experimental data but in restricted temperature range, [300 -500] K for example with liquid water at saturation. This limitation is linked to constant attractive and repulsive effects. Indeed, this assumption no longer holds when larger pressure and temperature ranges are addressed.

The present contribution aims at extending the liquid NASG EOS to variable attractive and repulsive effects to improve its range of validity, a necessary improvement in view of future engineering applications.

represents attractive ones, present in condensed matter only.

In the NASG formulation, the parameters b and p ∞ are considered constant, yielding simplicity while ensuring presence of the main molecular forces present in a fluid. Besides, as the formulation is close to the ideal gas expression, it facilitates the resolution of the Riemann problem [START_REF] Plohr | Shockless acceleration of thin plates modeled by a tracked random choice method[END_REF] [93], [START_REF] Menikoff | The Riemann problem for fluid flow of real materials[END_REF] [START_REF] Menikoff | The Riemann problem for fluid flow of real materials[END_REF], [START_REF] Cocchi | A Riemann problem based method for the resolution of compressible multimaterial flows[END_REF] [START_REF] Cocchi | A Riemann problem based method for the resolution of compressible multimaterial flows[END_REF]). The Riemann problem is indeed the cornerstone of numerical methods used to solve hydrodynamic problem, see [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: A practical introduction[END_REF] [58] for example.

The simplicity of the corresponding formulas is beneficial to the theoretical analysis and computational efficiency. This section aims at extending the liquid NASG EOS to deal with large pressure and temperature variations while remaining simple and convex.

In this work, simple linear dependencies on the specific volume and temperature have been added to the NASG EOS regarding respectively the covolume b(v) and attractive pressure p ∞ (T ). The formulation is meant to be convex and thermodynamically consistent. These two points are addressed hereafter. Inverting Eq. (3.2.1), the internal energy reads,

e(v, T ) = p(v, T ) + γp ∞ (T ) γ -1 v -b(v) + q. (3.2.3) 
From postulate (3.2.1) or its alternative (3.2.3) form, the aim is now to derive the thermal EOS p = p(v, T ) and the caloric one e = e(v, T ).

Thermal and caloric EOSs

Thermal and caloric EOSs must fulfill the compatibility condition, From postulate (3.2.3), the following partial derivatives arise,

∂ ∂v ∂f ∂T v T = ∂ ∂T ∂f ∂v T v , (3.2 
∂e ∂T v = v -b(v) γ -1 ∂p ∂T v + γp ∞,1 , (3.2.6 
)

∂e ∂v T = v -b(v) γ -1 ∂p ∂v T + 1 -b 1 γ -1 p + γp ∞ (T ) . (3.2.7)
As the thermal capacity at constant volume is defined as, 

C v = ∂e ∂T v , ( 3 
∂p ∂T v = (γ -1)C v v -b(v) -γp ∞,1 . (3.2.9)
The preceding relation (3.2.9) is now integrated over the temperature T leading to,

p(v, T ) = (γ -1)C v T v -b(v) -γp ∞,1 T + K(v), (3.2.10) 
where K(v) is a function depending on the specific volume v. Expression (3.2.10) is differentiated over v and at constant temperature T yielding, 

∂p ∂v T = - (1 -b 1 )(γ -1)C v T v -b(v) 2 + dK(v) dv . ( 3 
∂p ∂v T = (γ -1)T v -b(v) ∂p ∂T v - γ p + p ∞ (T ) v -b(v) + b 1 p + p ∞ (T ) v -b(v) . ( 3 
∂p ∂v T = - (γ -1)C v T (1 -b 1 ) v -b(v) 2 - K(v)(γ -b 1 ) + γp ∞ (T )(1 -b 1 ) v -b(v) + p ∞,1 γT (1 -b 1 ) v -b(v) . ( 3 

.2.13)

The equality between Eqs. (3.2.11) and (3.2.13) yields a first-order ordinary differential equation,

dK(v) dv + K(v)(γ -b 1 ) + γp ∞,0 (1 -b 1 ) v -b(v) = 0. (3.2.14)
The solution of Eq. (3.2.14) is given by, 

K(v) = cst (γ -b 1 ) v -b(v) γ-b 1 1-b 1 - γp ∞,0 (1 -b 1 ) γ -b 1 . ( 3 
p(v, T ) = (γ -1)C v T v -b(v) -p ′ ∞ (T ) - d v -b(v) γ-b 1 1-b 1 , (3.2.16) 
where d = -cst/(γ -b 1 ) is a constant to be determined and the "attractive" pressure p ′ ∞ (T ) is defined as,

p ′ ∞ (T ) = γp ∞,1 T + γp ∞,0 (1 -b 1 ) γ -b 1 . (3.2.17)
In the present approach, as in Le Métayer et al. ( 2004) [START_REF] Métayer | Elaborating equations of state of a liquid and its vapor for two-phase flow models; élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques[END_REF] and Le Métayer and Saurel (2016) [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF], each fluid, liquid and gas, is governed by the same EOS, here Eq. (3.2.16) but with different parameters unlike cubic EOSs. The term p ′ ∞ (T ) is important for the liquid state whereas the second attractive term d/ v -b(v) γ-b 1 1-b 1 , reminiscent of cubic EOSs, is important for dense gases. However, this coefficient yields conditional convexity (see Appendix C.5). The same observation holds for cubic EOSs. As this section aims to build an unambiguously convex EOS, the parameter d is set to zero.

Note that d = 0 is a particular solution of Eq. (3.2.14). The corresponding ENASG EOSs then read,

p(v, T ) = (γ -1)C v T v -b(v) -p ′ ∞ (T ), (3.2.18) 
e(v, T ) = C v T + γp ∞,0 v -b(v) γ -b 1 + q. (3.2.19)
With the help of the caloric EOS (3.2.19), the temperature expresses as,

T (e, v) = e -q C v - γp ∞,0 v -b(v) C v (γ -b 1 ) , (3.2.20) 
and yields, 

p(e, v) = (γ -1)(e -q) v -b(v) -γp ∞ (T (e, v)) . ( 3 
= p + γp ∞ (T ) p + p ′ ∞ (T ) C v T + q. (3.2.22)
The expressions of the thermal and caloric EOSs being now available, the other thermodynamic variables may be obtained from the knowledge of the two independent variables p and T . This task is addressed hereafter. With the help of Eq. (3.2.18), the partial derivative expresses,

Expression of the entropy

∂v ∂T p = - 1 1 -b 1 -(γ -1)C v p + p ′ ∞ (T ) + γp ∞,1 (γ -1)C v T p + p ′ ∞ (T ) 2 . (3.2.25) 
Also, by use of Maxwell's rule (3.2.24), the next equations arise, 

∂s ∂p T = 1 1 -b 1 -(γ -1)C v p + p ′ ∞ (T ) + γp ∞,1 (γ -1)C v T p + p ′ ∞ (T ) 2 , (3.2.26) s(p, T ) = 1 1 -b 1 -(γ -1)C v ln p + p ′ ∞ (T ) - γp ∞,1 (γ -1)C v T p + p ′ ∞ (T ) + K(T ). ( 3 
s(v, T ) = 1 1 -b 1 -(γ -1)C v ln (γ -1)C v T v -b(v) -γp ∞,1 v -b(v) + K(T ). ( 3 

.2.28)

This last equation admits the partial derivative,

∂s ∂T v = - (γ -1)C v T (1 -b 1 ) + dK(T ) dT . (3.2.29)
The definition of the thermal capacity at constant volume may be used under the following form,

∂s ∂T v = C v T . (3.2.30)
Consequently, the next equation arises,

dK(T ) = C v dT T + (γ -1)C v (1 -b 1 ) dT T ,
and is directly integrated yielding a temperature-dependent function K(T ),

K(T ) = C v ln(T ) + (γ -1)C v (1 -b 1 ) ln(T ) + q ′ , (3.2.31)
where q ′ is defined as a constant (reference entropy). Equation (3.2.31) is now embedded in Eq.

(3.2.28). After some algebraic manipulations, the resulting equation reads,

s(v, T ) = C v ln(T ) - γp ∞,1 v -b(v) 1 -b 1 + (γ -1)C v (1 -b 1 ) ln v -b(v) - (γ -1)C v (1 -b 1 ) ln (γ -1)C v + q ′ .
As the last term of this equation is constant, it is convenient to define,

q ′′ = - (γ -1)C v (1 -b 1 ) ln (γ -1)C v + q ′ . (3.2.32)
The entropy equation consequently reads, 

s(v, T ) = C v ln(T ) + (γ -1)C v (1 -b 1 ) ln v -b(v) - γp ∞,1 v -b(v) 1 -b 1 + q ′′ . ( 3 
s(p, T ) = C v ln(T ) + (γ -1)C v (1 -b 1 ) ln (γ -1)C v T p + p ′ ∞ (T ) - γp ∞,1 (γ -1)C v T 1 -b 1 p + p ′ ∞ (T ) + q ′′ . (3.2.34)
The relation s(p, T ) being now available, it is worth analyzing the expression of the heat capacity at constant pressure. Equation (3.2.34) admits as partial derivative,

∂s ∂T p = C v T + (γ -1)C v (1 -b 1 )T - γp ∞,1 (γ -1)C v 1 -b 1 p + p ′ ∞ (T ) 1 + p + p ′ ∞ (T ) -γp ∞,1 T p + p ′ ∞ (T ) . ( 3 

.2.35)

As the heat capacity is defined as,

∂s ∂T p = C p T , (3.2.36) 
the ENASG thermal capacity at constant pressure consequently reads,

C p (T ) = C v + (γ -1)C v (1 -b 1 ) - γp ∞,1 (γ -1)C v T 1 -b 1 p + p ′ ∞ (T ) 1 + p + p ′ ∞ (T ) -γp ∞,1 T p + p ′ ∞ (T ) . (3.2.37)
It then appears that C p = γC v . However, if p ∞,1 = 0 and b 1 = 0, then the preceding relation reduces to,

C p = C v + (γ -1)C v = γC v ,
and the NASG thermal capacity at constant pressure is recovered. Note also that this feature is valid for the Stiffened-Gas (SG) (b 0 = 0) and ideal gas (b 0 = 0 and p ∞,0 = 0) equations of state as well.

Equation (3.2.34) can be manipulated to obtain an entropy relation closer to the NASG one.

Indeed, after some algebraic manipulations, Eq. (3.2.34) can be written as,

s(p, T ) = C v ln(T ) + ln T p + p ′ ∞ (T ) γ-1 1-b 1 - γp ∞,1 (γ -1)C v T 1 -b 1 p + p ′ ∞ (T ) + (γ -1)C v 1 -b 1 ln (γ -1)C v + q ′′ .
Using Eq. (3.2.32), the last term of this equation reduces to,

(γ -1)C v 1 -b 1 ln (γ -1)C v + q ′′ = q ′ .
Equation (3.2.34) consequently transforms to, 

s(p, T ) = C v ln   T γ-b 1 1-b 1 p + p ′ ∞ (T ) γ-1 1-b 1   - γp ∞,1 (γ -1)C v T 1 -b 1 p + p ′ ∞ (T ) + q ′ . ( 3 

Speed of sound

The sound speed is defined as,

c 2 = -v 2 ∂p ∂v s . (3.2.39)
The pressure is expressed as a function of the specific volume and the specific entropy by combining relations (3.2.18) and (3.2.38),

p(v, s) = exp s-q ′′ Cv exp γp ∞,1 v-b(v) Cv (1-b 1 ) (γ -1)C v -γp ∞,1 v -b(v) v -b(v) γ-b 1 1-b 1 - γp ∞,0 (1 -b 1 ) γ -b 1 , (3.2.40) 
with

q ′′ = - (γ -1)C v (1 -b 1 ) ln (γ -1)C v + q ′ . (3.2.41)
The ENASG speed of sound consequently expresses after some algebraic manipulations as,

c 2 (p, v) = -v 2 γp ∞,1 p + γp ∞,0 (1 -b 1 ) γ -b 1 γ -1 (γ -1)C v -γp ∞,1 v -b(v) + 1 C v +   p + γp ∞,0 (1-b 1 ) γ-b 1 (γ -1)C v -γp ∞,1 v -b(v)   v 2 (γ -b 1 )(γ -1)C v v -b(v) . (3.2.42)
It is worth mentioning that Eq. (3.2.42) reduces to,

c 2 (p, v) = v 2 (p + p ∞,0 )γ v -b 0 , (3.2.43) 
if p ∞,1 = 0 and b 1 = 0, that corresponds to the NASG speed of sound. It also appears that c 2 > 0 unambiguously if p ∞,1 ≤ 0, p ∞,0 ≥ 0 and b 1 < 1. Obviously v -b(v) must be positive as well.

For a liquid state, the attractive effects summarized by the terms p ∞ (T ) and p ′ ∞ (T ) are expected to decrease when the temperature rises. The conditions p ∞,1 ≤ 0 and p ∞,0 ≥ 0 are consequently in agreement with the physics to represent, at least qualitatively. The same observation holds for the repulsive effects summarized by the covolume b(v). When the density decreases, those short distance effects are expected to vanish as the liquid tends to become a dense gas. Condition b 1 < 1 is then not restrictive for liquids. Also, it is worth noticing from Eq. (3.2.42), that

p ∞,1 = γ -1 v -b(v) C v γ ,
must be satisfied for the ENASG sound speed function to be defined. However, as the right-hand side of this relation is necessarily positive, considering p ∞,1 ≤ 0 satisfies unambiguously this condition.

The two linear dependencies p ∞ (T ) and b(v) are thus in agreement with the description of a liquid state. As it will be seen further, those simple functions result in predictions in very good agreement with experimental data.

This set of liquid EOS relationships results in a convex formulation, this feature being essential both for theoretical and numerical considerations. Indeed, sufficient conditions to ensure convexity are summarized by, For the gas phase, the attractive effects are expected to increase with the temperature but this evolution is not in agreement with the convexity condition (3.2.44). Gas attractive effects are thus removed by setting p ∞,0 = 0 and p ∞,1 = 0, reducing the formulation to the Noble-Abel (NA) EOS with a variable covolume b(v).

p ∞,1 ≤ 0, p ∞,0 ≥ 0 and b 1 < 1, (3.2 
However, covolume effects alone are not enough to describe dense gases near the critical point.

Attractive effects are needed in addition (see Appendix C.5) but yield conditional convexity. As it will be seen further, the ideal gas EOS is well-suited for fluids evolving away from the critical point, either at low temperatures where thermal capacities can be considered constant or at much higher ones where heat capacities are meant to evolve with the temperature.

Thereby, for the sake of simplicity, covolume effects are removed as well reducing the formulation to the ideal gas description. Consequently, the saturated vapor phase lacks of accuracy near the critical point since attractive effects are absent but the overall formulation remains convex, a key feature for computational fluid dynamics.

For ENASG formulation completion, the expression of the saturation condition of the liquid-vapor couple must be determined. This task is addressed in the next section.

Saturation condition of the liquid-vapor couple

Thermodynamic equilibrium is considered when the fluids are in pressure, temperature and Gibbs free energies (g l = g v ) equilibria. The saturation condition results from these equilibria. As, 

g(p, T ) = h(p, T ) -T s(p, T ), (3.3 
h(p, T ) = C v T p + p ′ ∞ (T ) γ p + p ∞ (T ) -pb 1 -γb 1 p ∞ (T ) 1 -b 1 + pb 0 1 -b 1 + q. (3.3.3)
Note that the partial derivative of Eq. (3.3.3) gives after some algebraic manipulations, 

∂h ∂T p = C v + (γ -1)C v (1 -b 1 ) - γp ∞,1 (γ -1)C v T 1 -b 1 p + p ′ ∞ (T ) 1 + p + p ′ ∞ (T ) -γp ∞,1 T p + p ′ ∞ (T ) . ( 3 
C p = T ∂s ∂T p = ∂h ∂T p . (3.3.5) Note that if p ∞,1 ≤ 0, b 1 < 1 and γ > 1, then the thermodynamic condition C p > C v is ensured.
These conditions are the same that preserve convexity of the formulation. Note also that γ = C p /C v , so it cannot be defined as the heat capacity ratio. However, the condition γ > 1 remains for the sake of thermodynamic consistency of the ENASG EOS. 

g(p, T ) = C v 1 -b 1 γ p + p ∞ (T ) -pb 1 -γb 1 p ∞ (T ) p + p ′ ∞ (T ) -q ′ T -C v T ln   T γ-b 1 1-b 1 p + p ′ ∞ (T ) γ-1 1-b 1   + pb 0 1 -b 1 + q + γp ∞,1 (γ -1)C v T 2 1 -b 1 p + p ′ ∞ (T ) . (3.3.6)
Solution of the equation,

g l (p, T ) = g v (p, T ), (3.3.7)
provides the saturation pressure as a function of temperature p sat (T ). Subscripts l and v denote respectively the liquid and vapor states.

The equality of Gibbs free energies of both phases corresponds to phase equilibrium and leads to the following expression linking pressure and temperature,

ln p + p ′ ∞,v (T ) = C v,l (1 -b 1,v ) (1 -b 1,l )(γ v -1)C v,v γ l p + p ∞,l (T ) -pb 1,l -γ l b 1,l p ∞,l (T ) p + p ′ ∞,l (T ) - 1 γ v -1 γ v p + p ∞,v (T ) -pb 1,v -γ v b 1,v p ∞,v (T ) p + p ′ ∞,v (T ) + (q ′ v -q ′ l )(1 -b 1,v ) (γ v -1)C v,v B + Ep T + C ln(T ) + D ln p + p ′ ∞,l (T ) -T γ v p ∞,1,v p + p ′ ∞,v (T ) - γ l p ∞,1,l D p + p ′ ∞,l (T ) , (3.3.8) 
with with

B = (q l -q v )(1 -b 1,v ) (γ v -1)C v,v , C = (γ v -b 1,v )C v,v 1 -b 1,v - (γ l -b 1,l )C v,l 1 -b 1,l 1 -b 1,v (γ v -1)C v,v , D = (γ l -1)C v,l (1 -b 1,v ) (γ v -1)C v,v (1 -b 1,l ) , E = b 0,l 1 -b 1,l - b 0,v 1 -b 1,v 1 -b 1,v (γ v -1)C v,v . (3 
A = γ l C v,l -γ v C v,v + q ′ v -q ′ l γ v C v,v -C v,v , B = q l -q v γ v C v,v -C v,v , C = γ v C v,v -γ l C v,l γ v C v,v -C v,v , D = γ l C v,l -C v,l γ v C v,v -C v,v , E = b 0,l -b 0,v γ v C v,v -C v,v . (3.3.11)
The NASG relation is then recovered. The whole ENASG formulation is summarized in the next section and is compared with experimental data in the following ones.

Summary of the Extended NASG state functions

The different liquid ENASG functions of common use are,

                                                                                       p(e, v) = (γ -1)(e -q) v -b(v) -γp ∞ (T (e, v)) , v(p, T ) = (γ -1)C v T (1 -b 1 )(p + p ′ ∞ (T )) + b 0 (1 -b 1 ) , e(p, T ) = p + γp ∞ (T ) p + p ′ ∞ (T ) C v T + q, h(p, T ) = C v T p + p ′ ∞ (T ) γ p + p ∞ (T ) -pb 1 -γb 1 p ∞ (T ) 1 -b 1 + pb 0 1 -b 1 + q, s(p, T ) = C v ln   T γ-b 1 1-b 1 p + p ′ ∞ (T ) γ-1 1-b 1   - γp ∞,1 (γ -1)C v T 1 -b 1 p + p ′ ∞ (T ) + q ′ , g(p, T ) = C v 1 -b 1 γ p + p ∞ (T ) -pb 1 -γb 1 p ∞ (T ) p + p ′ ∞ (T ) -q ′ T -C v T ln   T γ-b 1 1-b 1 p + p ′ ∞ (T ) γ-1 1-b 1   + pb 0 1 -b 1 + q + γp ∞,1 (γ -1)C v T 2 1 -b 1 p + p ′ ∞ (T ) , c 2 (p, v) = -v 2 γp ∞,1 p + γp ∞,0 (1 -b 1 ) γ -b 1 γ -1 (γ -1)C v -γp ∞,1 v -b(v) + 1 C v +   p + γp ∞,0 (1-b 1 ) γ-b 1 (γ -1)C v -γp ∞,1 v -b(v)   v 2 (γ -b 1 )(γ -1)C v v -b(v) , (3.4.1)
with

T (e, v) = e -q C v - γp ∞,0 v -b(v) C v (γ -b 1 ) , p ∞ (e, v) = p ∞ (T ) = p ∞,1 T + p ∞,0 , p ′ ∞ (T ) = γp ∞,1 T + γp ∞,0 (1 -b 1 ) γ -b 1 and b(v) = b 1 v + b 0 .
Those different functions are in agreement with the fundamental relations of Maxwell analyzed in Appendix C.2 and are thermodynamically consistent and convex under conditions p ∞,1 ≤ 0, p ∞,0 ≥ 0 and b 1 < 1. The whole formulation reduces to the NASG EOS if p ∞,1 = 0 and b 1 = 0. In addition, the ideal gas description is recovered if p ∞,0 = 0, b 0 = 0 and is used for the sake of convexity and simplicity of the gas-phase formulation. The corresponding formulas thus read,

                                             p(e, v) = (γ -1)(e -q) v , v(p, T ) = (γ -1)C v T p , e(T ) = C v T + q, h(T ) = γC v T + q, s(p, T ) = C v ln T γ p γ-1 + q ′ , g(p, T ) = γC v -q ′ T -C v T ln T γ p γ-1 + q, c 2 (p, v) = γpv. (3.4.2)
In these formulations (ENASG and ideal gas), heat capacities are considered constant. This assumption is fair for the liquid phase. It is also valid for the gas phase evolving at low temperatures.

However, this assumption fails at high temperatures motivating consideration of variable heat capacities as introduced in Section 3.6. This situation is typical of supercritical fluids at high temperatures.

Extended NASG parameters

The method used in this work to determine the different EOS parameters is summarized in Appendix C.3. The liquid parameters are computed with experimental saturation data as in Le Métayer and Saurel (2016) [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF], but unlike this last reference the gas parameters are chosen regardless of the saturation conditions. The present method is directly applied to water and oxygen liquid-gas couples as countless engineering applications involve those two fluids. Safety studies of thermohydraulic systems of power plants and flows in cryotechnic rocket engines can be cited for instance. This latter example involves specific situations where transitions from pure fluid into two-phase mixture are present as well as transition to supercritical state. In the same context, combustion systems of modern automotive engines also involve transitions from pure phase to both two-phase mixture and supercritical fluid. The saturated pressure resulting from the equality of the liquid and vapor Gibbs free energies is rather good as well. Away from the critical point, the vapor phase, described by the ideal gas expressions (3.4.2), is also in good agreement with experimental data. However, the saturated vapor phase necessarily lacks of accuracy near the critical point as the attractive effects have been removed in order to keep an unambiguously convex formulation. 

0 0 0 b 0 (m 3 /kg) 1.3131 × 10 -3 0 5.7003 × 10 -4 0 p ∞,1 (Pa/K) -324997 0 0 0 p ∞,0 (Pa) 50890107 0 196815802 0 q (J/kg) -278134 -1589 -285545 6528 q ′ (J/kg/K)
-3691 4237 8171 4650 Table 3.2: Extended NASG (ENASG) coefficients for oxygen. The NASG parameters are also given and determined with the method given in Le Métayer and Saurel (2016) [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF] except for the liquid reference entropy q ′ that is computed with the NASG reduction of Eq. (C. As the attractive pressure is constant in such formulation, liquid density necessarily lacks of accuracy away from its reference temperature range. However, as the ideal gas parameters have been determined

thanks the saturation curve in [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF] (unlike the present work, see Appendix C.3), the vapor enthalpy and latent heat are in slightly better agreement than the present ENASG EOS (3.4.1), (3.4.2).

The present chapter aims at building an overall EOS able to deal with pure liquid, pure vapor and supercritical phases, while being as accurate as possible at saturation. When thermodynamic conditions remain close to the saturation ones and away from the critical point, the original NASG EOS with its associated parameters (Le Métayer and Saurel (2016) [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF]) is preferred as the formulation is simpler than the ENASG one and yields excellent results as seen in Figs. 3.1 and 3.2.

However, as the original method [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF] uses the saturation curves both for liquid and vapor phases when determining the corresponding parameters, the NASG EOS lacks of accuracy away from the saturation conditions. This will be illustrated in the following section. As it will be seen later, the overall ENASG EOS presents good agreement with experimental data away from the saturation conditions while being rather satisfying at saturation (except for the vapor phase near the critical point as discussed earlier).

In the next section, the theoretical behavior of the ENASG EOS is analyzed with thermodynamic conditions corresponding to the transition from single phase to supercritical state.

Transition to supercritical fluids

This section deals with fluids transitioning from a pure phase to supercritical state as schematically illustrated in Fig. The saturation curve is composed of the boiling and the dew curves separating the twophase mixture zone and the pure phase zones. Beyond the critical isotherm, there is no transition between the liquid and the gaseous state. The fluid is neither liquid nor gas, it is said to be supercritical. Phase transition can happen either through the saturation dome corresponding to liquid-vapor phase change, or through the critical isotherm corresponding to a pure-phase-to-supercritical-state transition.

At high temperatures, the assumption of constant heat capacities no longer holds for the supercritical phase. The ideal gas description can still be fairly assumed in the supercritical state but variable heat capacities are required when reaching a certain temperature. Consequently, the following definition of heat capacity (at constant volume or pressure) is considered:

     C v = C v,0 if T ≤ T 0 , C v = C v (T ) otherwise, (3.6.1)
where C v,0 denotes the constant heat capacity given in Tables 3.1 and 3.2. T 0 is the temperature at which the assumption of constant heat capacities starts to fail. In this work, at such temperature the fluid is necessarily supercritical. These temperatures are reported in Table 3.3 for water and oxygen.

For ideal gases, Mayer's relation C p (T ) -C v (T ) = R holds and the ratio of heat capacities reads

γ(T ) = Cp(T )
Cv (T ) . In these relations, R = R/W where R denotes the universal gas constant and W the molar mass. In the present work, C p (T ) is estimated via the NASA polynomial expression [START_REF] Mcbride | Coefficients for Calculating Thermodynamic and transport Properties of Individual Species[END_REF],

C p (T ) = R a 1 + a 2 T + a 3 T 2 + a 4 T 3 + a 5 T 4 , (3.6.2)
with corresponding parameters reported in Table 3.3. Proceeding similar derivations as in Section 3.2, the ideal gas formulation yields,

Fluid T 0 (K) a 1 a 2 (K -1 ) a 3 (K -2 ) a 4 (K -3 ) a 5 (K -
                                       p(v, T ) = RT v , e(T ) = C v (T )dT + q, h(T ) = C p (T )dT + q, s(p, T ) = C p (T ) dT T -R ln(p) + q ′ , c 2 (T ) = γ(T )RT = C p (T ) C v (T ) RT, C p (T ) -C v (T ) = R. (3.6.3)
As explained in Appendix C.3, the γ parameter of the gas phase is determined thanks to Mayer's relation as to ensure γ(T ) -1 C v (T ) = R. Note that the ideal gas reduction of the NASG EOS (Le Métayer and Saurel (2016) [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF]), with its associated original method to determine the different coefficients, does not ensure the preceding Mayer's relation as the gas parameters are determined with the saturation curves.

Liquid-to-supercritical-state transition

The liquid phase is described with the ENASG EOS as its particular interest resides in variable repulsive and attractive effects. In the transcritical zone, attractive and repulsive molecular forces are the dominant effects of the fluid. Thereby, the ENASG EOS is also used to describe liquids transitioning to their supercritical state. The transition is then continuous.

At much higher temperatures, thermal agitation becomes the dominant effect. The ideal gas description is then to be used in this context. However, as two different EOSs are used through different parameters, the continuity between the ENASG EOS and its ideal gas reduction is not trivial.

Indeed, the two EOSs must be connected in order to make a continuous formulation. For a given pressure, there exists a connection temperature where the two EOSs are equal. Nevertheless, those connection temperatures are a priori dependent on the variable of interest.

Equations (3.4.1) and (3.4.2) provide expressions of the different variables for the ENASG and ideal gas EOSs. Equality of both expressions provides the connection temperature that is the positive solution of a quadratic equation,

aT 2 + bT + c = 0. (3.6.4)
Note that the admissible range of the sought-after temperature is known as this latter is necessarily higher than the critical one (T c ) and must ensure p + p ∞,l (T ) > 0 and p + p ′ ∞,l (T ) > 0. Note also that Eq. (3.6.4) is available only if the heat capacities are constant. An iterative method is required otherwise, but this situation (high temperatures, T ≥ T 0 ) is not to be encountered in this work as the fluid is necessarily supercritical and the ENASG EOS is not to be used (see Section 3.7). The different parameters of the quadratic equation (3.6.4) are provided in Appendix C.4.

In the following, two isobars are considered for both fluids (water and oxygen). The first one is rather close (230 bar for water and 60 bar for oxygen) to the critical pressure (220 bar for water and 50 bar for oxygen) and the second is much higher (500 bar for water and 200 bar for oxygen). At the temperature of connection, the ideal gas EOS is considered with constant heat capacities until the temperature T 0 is reached. From this temperature, variable thermal capacities are used.

Consequently, the ideal gas formulation is rather well-suited in the supercritical state. At such high temperatures, thermal agitation is indeed expected to be the dominant effect determining the properties of the fluid. The fundamental assumption of the ideal gas description (molecules free to evolve regardless of the others) then reappears in such thermodynamic conditions. The results computed with the ideal gas expression in the supercritical state are in excellent agreement with experimental data with the exception of the specific volume of supercritical water that presents a lesser agreement.

The results of the overall ENASG formulation are in good agreement with experimental data at 3). The thin solid lines represent the original NASG EOS also reducing to the ideal gas formulation for the supercritical phase. The dashed lines represent the van der Waals (VdW) theoretical predictions and the dash-dotted lines represent the Soave-Redlich-Kwong (SRK) ones. The critical temperature is indicated with the dotted lines. From this temperature, the liquid ENASG EOS is extended and joins the ideal gas EOS (except for the sound speed). The temperature T 0 = 1000 K at which variable heat capacities are considered is indicated in dotted lines as well. 3). The thin solid lines represent the original NASG EOS also reducing to the ideal gas formulation for the supercritical phase. The dashed lines represent the van der Waals (VdW) theoretical predictions and the dash-dotted lines represent the Soave-Redlich-Kwong (SRK) ones. The critical temperature is indicated with the dotted lines. From this temperature, the liquid ENASG EOS is extended and joins the ideal gas EOS (except for the sound speed). The temperature T 0 = 400 K at which variable heat capacities are considered is indicated in dotted lines as well. 3). The thin solid lines represent the original NASG EOS also reducing to the ideal gas formulation for the supercritical phase. The dashed lines represent the van der Waals (VdW) theoretical predictions and the dash-dotted lines represent the Soave-Redlich-Kwong (SRK) ones. The critical temperature is indicated with the dotted lines. From this temperature, the liquid ENASG EOS is extended and joins the ideal gas EOS (except for the sound speed). The temperature T 0 = 400 K at which variable heat capacities are considered is indicated in dotted lines as well. with pure liquids and supercritical states in pressure conditions both close and much higher than the critical pressure. Figures 3.8 and 3.9 illustrate the good behavior of the overall formulation with much lower pressures as well. The liquid expression seems able to represent the whole liquid phase diagram including the saturation conditions and the transcritical zone with a unique set of parameters.

The corresponding vapor and supercritical phases are described accurately as well with the ideal gas expressions, except near the critical point as attractive terms have been removed in order to remain unambiguously convex, as discussed earlier.

The results of the original NASG EOS (Le Métayer and Saurel (2016) [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF]), with associated parameters given in Tables 3.1 and 3.2, are also plotted in Figs. 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9 for comparison. As already discussed, the supercritical phase is inaccurate as the different parameters have been determined with the help of experimental saturation data.

Nevertheless, for flows evolving away from saturation and at pressures much lower than the critical one, the NASG EOS is preferred to the ENASG one for the sake of simplicity. However, its reduction to the ideal gas formulation should use parameters determined away from the saturation curves since the ones determined at the thermodynamic equilibrium [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF] induce inaccuracy as seen in Figs. 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9. The results at saturation may be slightly degraded but the overall formulation is expected to deal with multiple thermodynamic conditions.

Two-phase flow illustrations

In the following, two-phase flows subject to phase changes are of interest. When evaporation or condensation phenomena appear, instantaneous phase transition is considered through the stiff thermochemical relaxation solver of Chiapolino et al. ( 2017) [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF], [START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF] (Chapter 2, Section 2.10). Note that in the present chapter, the specific management of pure phases is not handled by Eq. (2.10.1) but by the Minmod-type method (see Chapter 2, Section 2.10). For the sake of simplicity, the Homogeneous Relaxation Model (HRM) [START_REF] Downar-Zapolski | The non-equilibrium relaxation model for one-dimensional flashing liquid flow[END_REF] is considered and is reminiscent of the reactive (or multicomponent)

Euler equations widely used in chemically reacting flows. The corresponding system reads, 

                                     ∂ρ ∂t + div(ρu) = 0, ∂(ρu) ∂t + div ρu ⊗ u + pI = 0, ∂(ρE) ∂t + div ρE + p u = 0, ∂(ρY 1 ) ∂t + div(ρY 1 u) = ρν(g 2 -g 1 ), ∂(ρY 2 ) ∂t + div(ρY 2 u) = -ρν(g 2 -g 1 ), ∂(ρY k ) ∂t + div(ρY k u) = 0,
T = T k ∀k, p = p k ∀k, v = Y k v k , e = Y k e k , (3.7 
T v = pv N k=2 Y k (γ k -1)C v,k
and

T e = e -N k=2 Y k q k N k=2 Y k C v,k . (3.7.3)
Equality of T v and T e provides the mixture gas pressure,

p(e, v) = e -N k=2 Y k q k N k=2 Y k (γ k -1)C v,k v N k=2 Y k C v,k . 
(3.7.4) Figure 3.10 shows such a situation where water vapor transforms into supercritical state through compression effects of a shock wave. A shock tube is indeed considered with liquid water, vapor water and air. In the high pressure chamber, air is initially in major proportions, Y 3 → 1 with thermodynamic conditions p = 30 bar and T = 800 K. In the second chamber, water vapor is in major proportion Y 2 → 1 with p = 1 bar and T = 600 K. The mixture is initially at thermodynamic equilibrium according to the conditions detailed in [START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF] (Chapter 2, Section 2.9, Eq. (2.9.13)). The ideal gas reduction of the ENASG EOS is used with parameters for water given in Table 3.1 while the only coefficients needed for air are: C v,3 = 719 J/kg/K and γ 3 = 1.4. Liquid is present but in negligible proportions so mixture equation of state (3.7.4) is used in practice.

As seen in Fig. 3.10, the transition from "pure" vapor to supercritical state is naturally continuous when the temperature becomes higher than the critical one T c = 646 K. ≃ 0.99999989. The test was carried out with Godunov time integration method and HLLC Riemann solver extended to second order: MUSCL scheme with Minmod flux limiter. The solution is given at t ≈ 0.3 ms on a 1000-cell mesh using CF L = 0.8.

Let us now consider a situation where liquid is in major proportions. In that case, the combination of the mixture definitions (3.7.2) and the ENASG relations (3.4.1) leads to two quadratic expressions for the mixture temperature (note that only one liquid is considered in this work),

aT 2 + bT + c = 0, (3.7.5)
with the corresponding coefficients,

                     a v = γ 1 p ∞,1,1 p N k=2 Y k (γ k -1)C v,k , b v = Y 1 (γ 1 -1)C v,1 1 -b 1,1 + 1 + γ 1 p ∞,0,1 (1 -b 1,1 ) (γ 1 -b 1,1 )p N k=2 Y k (γ k -1)C v,k + Y 1 b 0,1 1 -b 1,1 -v γ 1 p ∞,1,1 , c v = Y 1 b 0,1 1 -b 1,1 -v p + γ 1 p ∞,0,1 (1 -b 1,1 ) γ 1 -b 1,1 , (3.7.6)                      a e = Y 1 γ 1 p ∞,1,1 C v,1 + γ 1 p ∞,1,1 N k=2 Y k C v,k , b e = Y 1 (p + γ 1 p ∞,0,1 ) C v,1 + p + γ 1 p ∞,0,1 (1 -b 1,1 ) γ 1 -b 1,1 N k=2 Y k C v,k + (q -e) γ 1 p ∞,1,1 , c e = (q -e) p + γ 1 p ∞,0,1 (1 -b 1,1 ) γ 1 -b 1,1 , (3.7.7)
where the mixture quantity is introduced:

q = N k=1 Y k q k . (3.7.8)
Equality of the two positive solutions provides the mixture pressure p(e, v). An iterative method is required nonetheless. However, Eq. (3.7.4) is to be used where Y 1 ≤ ǫ → 0 corresponds to a gaseous mixture.

The transition from supercritical state to "pure" liquid is now considered through a double expansion test. In Fig. 

x (m) x (m) ρ (kg.m -3 ) p (MPa) u (m.s -1 ) T (K)
Figure 3.11: Double expansion test illustrating the transition from supercritical state to "pure" liquid water. The critical pressure and temperature are indicated with the dotted lines. The thick lines represent the solution obtained with the mixture ENASG EOS. The dashed lines represent the initial conditions. Liquid water is initially in major proportions with

Y 1 = 1 -2 • 10 -6 , Y 2 = Y 3 = 10 -6
, p = 350 bar, T = 655 K and u = ±45 m/s. The test was carried out with Godunov time integration method and HLLC Riemann solver extended to second order: MUSCL scheme with Minmod flux limiter. The solution is given at t ≈ 0.3 ms on a 1000-cell mesh using CF L = 0.8.

surrounded by a high-speed hydrogen flow (non-condensable gas), injected in conditions above the saturation point of the inner oxygen core, which then evaporates whilst being destabilized. Such a case is very challenging, because there is initially no vapor oxygen, and mass transfer is the only possible term for vapor production. The ENASG EOS is used with parameters for oxygen given in Table 3.2 while the only coefficients needed for hydrogen are: C v,3 = 10183 J/kg/K, γ 3 = 1.4 and q 3 = -1.2 • 10 6 J/kg. Mass transfer is treated with the thermochemical relaxation solver detailed in [START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF] (Chapter 2, Section 2.10). Figure 3.12 shows the density contours and the vapor mass fraction created.

Figure 3.12: Density and vapor mass fraction profiles of a liquid oxygen jet surrounded by hydrogen at high speed entering a combustion chamber of a cryotechnic rocket engine. Shear effects induce jet fragmentation. The filaments separating the main liquid core and the gas gradually vanish as a consequence of evaporation. The computation was done with the MUSCL scheme with Superbee limiter and CF L = 0.7. The solution is given at t ≈ 4.1 ms. The mesh is unstructured and made of about 360, 000 triangles.
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As expected, the filaments separating the main liquid core and the gas gradually vanish as a consequence of evaporation and the created vapor mass fraction is of utmost importance for future works, which shall include the gaseous combustion between vapor oxygen and hydrogen. In that case, only the ideal gas reduction of the ENASG EOS is to be used with variable heat capacities.

Conclusion

The Noble-Abel-Stiffened-Gas (NASG) equation of state has been extended to variable attractive and repulsive effects to deal with liquids when large temperature and pressure ranges are considered.

The liquid phase is well-described at thermodynamic conditions both near and away from the saturation ones with a convex formulation. The overall ENASG EOS reduces to the ideal gas description both for vapor and supercritical phases for the sake of convexity.

The transition from pure fluid to supercritical state is of interest as well, including at high pressures where the liquid directly transforms to supercritical fluid. The ENASG EOS proposes a solution in the direction of such transition while remaining convex, an essential property in computational fluid dynamics.

Two different liquid-gas couples have been addressed, water and oxygen, presenting respectively triatomic and diatomic molecular fluids. The overall formulation presents good agreement with experimental data. However, the saturated vapor phase necessarily lacks of accuracy near the critical point as attractive effects are absent.

Those latter ones seem nonetheless responsible for conditional convexity, a feature reminiscent of cubic equations of state.

The Extended NASG (ENASG) equation of state recovers the NASG one when the new introduced coefficients are set to zero. Its formulation remains quite simple, convex and is beneficial to the introduction of phase transition solvers such as the ones promoted in Chiapolino et al. (2017) [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF], [START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF] (Chapter 2).

Part IV

Fluid dispersal at large scales Introduction

Gas dispersal at large time and space scales may appear in many urban places, industrial plants and natural environments. This topic is consequently of interest to the safety community as the gas dispersion may yield severe consequences.

In this manuscript, the situations of typical interest involve multiple dense gases. In this context, one of the difficulties is to address long-time simulations involving large-scale numerical domains while providing accurate results at a reasonable cost in CPU time.

The two-layer shallow water strategy is consequently an interesting candidate as it allows to address 2D simulations to mimic 3D results. The computational gain in CPU time is thereby expected to be tremendous compared to conventional multi-fluid approaches.

However, two-layer shallow water models present serious difficulties as well. Those are related to the conditional hyperbolicity of most models and to the presence of non-conservative terms in the corresponding theoretical formulations.

The research work presented in Chapter 4 addresses these problematics and provides solutions. A new two-layer shallow water system is introduced in the following chapter and its numerical resolution is treated as well through a HLL-type Riemann solver. The new system is strictly hyperbolic as a consequence of pressure disequilibrium and compressible character of the fluids.

Introduction

Two-layer (and multi-layer) shallow water models are particularly useful in some limit cases of multi-fluid and variable density flows separated by nearly horizontal interfaces. These models govern the dynamics of incompressible fluids spreading under gravity effects. It can be for example:

-Flows of the same liquid but at different temperatures, resulting in density differences, such situation being typical of oceanic flows;

-Flows of two liquids of different densities;

-Flows of two gases evolving at low Mach number.

The two-layer approach is particularly interesting compared to multidimensional approaches, that consider vertical motion, as it enables much faster computations. It is also helpful when the height of one of the phases is arbitrarily small, as there is no need to spatially resolve it. Thereby, no numerical diffusion of the nearly horizontal interface is present and no interface tracking is needed. However, there are obviously some limitations with this approach:

-The vertical velocity component is neglected;

-The velocity is assumed uniform in cross sections of each layer.

Such type of modeling also involves serious difficulties. Indeed, most models are not hyperbolic, this issue having serious consequences both for propagation phenomenon, which becomes ill-posed, and for the design of numerical methods. A second serious difficulty appears as non-conservative terms are present in the momentum equations. The present chapter addresses these two difficulties and provides solutions.

In the frame of averaged (or homogenized) equations in fluid mechanics, the issue related to the lack of hyperbolicity appears in different type of models, such as those of non-equilibrium two-phase flows. Only a few models seem well-posed with this respect, [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] [100], Baer and Nunziato (1986) [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF], Saurel et al. (2017) [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF]). There are mainly two types of remedy to cure this issue:

-Consider compressibility of the phases and deal with pressure relaxation [START_REF] Lallemand | Pressure relaxation procedures for multiphase compressible flows[END_REF]. This approach involves sound propagation in the phases and is particularly efficient in many situations. It has been adopted in the last two above-mentioned references.

-Consider turbulent effects in the phases, as they result in the appearance of a "turbulent sound In the frame of shallow water flows, these effects have been studied in Richard and Gavrilyuk (2012) [START_REF] Richard | A new model of roll waves: comparison with Brock's experiments[END_REF] and [START_REF] Gavrilyuk | Spilling breakers in shallow water: Applications to Favre waves and to the shoaling and breaking of solitary waves[END_REF] [START_REF] Gavrilyuk | Spilling breakers in shallow water: Applications to Favre waves and to the shoaling and breaking of solitary waves[END_REF].

In the present work, the first method is adopted and the fluids are considered weakly compressible.

The resulting model is strictly hyperbolic and in the limit of stiff pressure relaxation, the conventional (non-hyperbolic) two-layer model is recovered. This approach is reminiscent of the model of Abgrall and Karni (2009) [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF], except that extra pressure terms are present in the momentum equations of the new formulation. It also gives another interpretation of the relaxation approach, now based on compressibility and pressure effects.

The second issue is addressed as well and is related to the presence of non-conservative terms in the momentum equations. By examining the Riemann problem structure, it appears that local constants are present, at locations where the derivative of the Heaviside function emerges. Consequently the non-conservative products become well-defined. Also, local conservation laws are obtained and used in the frame of HLL-type Riemann solver.

The accuracy of the new solver is checked against results of Abgrall and Karni (2009) [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] as well as results obtained with a flow solver based on the VFRoe method of Gallouet and Masella (1996) [START_REF] Gallouet | Un schéma de Godunov approché[END_REF] as it is able to deal, to some extent, with both conservative and non-conservative systems. The new method, based on HLL-type solver, shows results of high accuracy and is oscillation free.

This chapter is organized as follows. The two-layer hyperbolic model is presented in Section 4.2 and its stiff mechanical relaxation limit is examined. Both approximate VFRoe solver and nonconservative HLL solver are considered in Section 4.3. A Godunov-type scheme is derived in the same section. Results and validations are addressed in Sections 4.4 and 4.5. Conclusions are given in Section 4.6.

Hyperbolic two-layer shallow water model

The conventional two-layer shallow water model [START_REF] Ovsyannikov | Two-layer "shallow water" model[END_REF] [START_REF] Ovsyannikov | Two-layer "shallow water" model[END_REF]) reads,

                       ∂(h 1 ρ 1 ) ∂t + ∂ (h 1 ρ 1 u 1 ) ∂x = 0, ∂ (h 1 ρ 1 u 1 ) ∂t + ∂ h 1 ρ 1 u 2 1 + 1 2 ρ 1 gh 2 1 + gρ 2 h 1 h 2 ∂x = ρ 2 gh 2 ∂h 1 ∂x , ∂(h 2 ρ 2 ) ∂t + ∂ (h 2 ρ 2 u 2 ) ∂x = 0, ∂ (h 2 ρ 2 u 2 ) ∂t + ∂ h 2 ρ 2 u 2 2 + 1 2 ρ 2 gh 2 2 ∂x = -ρ 2 gh 2 ∂h 1 ∂x . (4.2.1) 
h 1 and h 2 denote the heights of the two layers, ρ 1 and ρ 2 represent the densities of the fluids, considered constant at this level, u 1 and u 2 denote the fluid velocities, averaged in each layer and g represents the gravity constant. Topography effects have been omitted for the sake of simplicity as well as friction with the bottom and between layers.

System (4.2.1) has been examined in [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF], [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF] [109] and Monjarret (2015) [START_REF] Monjarret | Local well-posedness of the two-layer shallow water model with free surface[END_REF] and appeared hyperbolic for small velocity drift only,

(u 1 -u 2 ) 2 < (h 1 + h 2 )g 1 - ρ 2 ρ 1 . (4.2.2)
Moreover the wave speeds can hardly be computed, rendering the system intricate to solve numerically.

A method is given in Kurganov and Petrova (2009) [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF] to overcome this difficulty. In the present approach, pressure non-equilibrium effects result in an unconditionally hyperbolic formulation: 

                                         ∂h 1 ∂t + u 1 ∂h 1 ∂x = µ(p 1 -p 0 ) ρ 1 c 2 1 , ∂(h 1 ρ 1 ) ∂t + ∂ (h 1 ρ 1 u 1 ) ∂x = 0, ∂ (h 1 ρ 1 u 1 ) ∂t + ∂ h 1 ρ 1 u 2 1 + h 1 p 1 (ρ 1 ) + 1 2 ρ 1 gh 2 1 + gρ 2 h 1 h 2 ∂x = ρ 2 gh 2 ∂h 1 ∂x + p 0 ∂h 1 ∂x , ∂h 2 ∂t + u 2 ∂h 2 ∂x = µ(p 2 -p 0 ) ρ 2 c 2 2 , ∂(h 2 ρ 2 ) ∂t + ∂ (h 2 ρ 2 u 2 ) ∂x = 0, ∂ (h 2 ρ 2 u 2 ) ∂t + ∂ h 2 ρ 2 u 2 2 + h 2 p 2 (ρ 2 ) + 1 2 ρ 2 gh 2 2 ∂x = -ρ 2 gh 2 ∂h 1 ∂x + p 0 ∂h 2 ∂x .
p k (ρ k ) = p (0) k + c 2 k ρ k -ρ (0) k , (4.2.4) 
with k = 1, 2. Other options, such as Tait EOS for instance are possible. We will see that the choice of the EOS is not important, only the related sound speed c k has importance. p 0 denotes the (constant) atmospheric pressure and p

(0) k = p 0 .
The assumption of constant atmospheric pressure is quite realistic when dealing with flows of gases having different densities. When dealing with liquids and large hydrostatic effects, the model can be reformulated with extra pressure terms as a function of heights of the fluid layers, and does not cause extra fundamental issues than those already addressed in the present contribution. Such extension is given in Appendix D.1, but for the sake of simplicity of the presentation, this extended model is not considered in the rest of the chapter.

The pressure relaxation parameter µ is related to the fluid sound speeds and heights of layers. It controls the rate at which pressure equilibrium is reached. Following [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF], the first equation of System (4.2.3) can be written as,

d 1 h 1 dt = h 1 τ p 1 -p 0 ρ 1 c 2 1 ,
where

d 1 dt = ∂ ∂t + u 1 ∂
∂x and τ is the pressure relaxation time,

τ = h 1 c 1 , (4.2.5) 
corresponding to the following pressure relaxation parameter estimate:

µ ≃ h 1 τ ≃ c 1 . (4.2.6) 
In most situations, this relaxation time is of the order of 1 100 second, meaning that the relaxation parameter µ is large:

µ ≃ Max τ -1 1 , τ -1 2
or alternatively µ ≃ Min (c 1 , c 2 ). In practical computations, the relaxation time τ will be assumed of the same order as the computational time step and stiff pressure relaxation will be done at the end of each time step. Therefore, there is no need of precise knowledge of the pressure relaxation parameter µ.

This system is reminiscent of Baer and Nunziato's (1986) [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] model widely used in two-phase flow modeling. It is also reminiscent of Abgrall and Karni's (2009) [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] relaxation model, except that pressure terms have been added to the momentum equations (h 1 p 1 (ρ 1 ) and h 2 p 2 (ρ 2 )). To maintain mechanical equilibrium, extra non-conservative terms have been added in the right-hand side (p 0 ∂h k ∂x ). These terms are not in contradiction with the total momentum conservation that reads:

∂ (h 1 ρ 1 u 1 + h 2 ρ 2 u 2 ) ∂t + ∂ h 1 ρ 1 u 2 1 + h 1 p 1 (ρ 1 ) + 1 2 ρ 1 gh 2 1 + gρ 2 h 1 h 2 + h 2 ρ 2 u 2 2 + h 2 p 2 (ρ 2 ) + 1 2 ρ 2 gh 2 2 -p 0 (h 1 + h 2 ) ∂x = 0.
Let us now examine some relevant properties to check validity of this formulation.

Hyperbolicity

System (4.2.3) is expressed in primitive-variable formulation (in the absence of source terms) as,

∂W ∂t + A(W ) ∂W ∂x = 0, (4.2.7) 
with

W =               h 1 ρ 1 u 1 h 2 ρ 2 u 2               , A(W ) =               u 1 0 0 0 0 0 0 u 1 ρ 1 0 0 0 p 1 -p 0 h 1 ρ 1 + g c 2 1 + 1 2 gh 1 ρ 1 u 1 g ρ 2 ρ 1 gh 2 ρ 1 0 0 0 0 u 2 0 0 0 0 0 0 u 2 ρ 2 g 0 0 p 2 -p 0 h 2 ρ 2 + g c 2 2 + 1 2 gh 2 ρ 2 u 2               . (4.2.8) 
The wave speeds are solutions of det A(W ) -λI = 0 resulting in,

(u 1 -λ) (u 2 -λ) (u 2 -λ) 2 -c 2 2 + 1 2 gh 2 (u 1 -λ) 2 -c 2 1 + 1 2 gh 1 = 0. ( 4.2.9) 
Six real and distinct eigenvalues appear as:

       λ 1 = u 1 , λ 2 = u 1 + c 2 1 + 1 2 gh 1 , λ 3 = u 1 -c 2 1 + 1 2 gh 1 , λ 4 = u 2 , λ 5 = u 2 + c 2 2 + 1 2 gh 2 , λ 6 = u 2 -c 2 2 + 1 2 gh 2 . (4.2.10) 
Those eigenvalues correspond to the wave speeds emerging at a given initial discontinuity, as schematized in Fig. 4.1. System (4.2.3) is consequently strictly hyperbolic. This model is however relevant with respect to the physics expressed in (4.2.1) if it tends to the same equations when pressure relaxation is stiff. This limit is examined hereafter.

x t λ 5 λ 2 λ 3 λ 6 λ 1 λ 4

Stiff pressure relaxation limit

The mass and height equations of a given phase are analyzed:

       ∂h k ∂t + u k ∂h k ∂x = µ(p k -p 0 ) ρ k c 2 k , ∂(h k ρ k ) ∂t + ∂ (h k ρ k u k ) ∂x = 0, with k = 1, 2.
Their combination results in,

d k ρ k dt + ρ k ∂u k ∂x = - ρ k h k µ (p k -p 0 ) ρ k c 2 k .
Inserting the phase k equation of state p k (ρ k ), the following pressure evolution equation is obtained,

d k p k dt + ρ k c 2 k ∂u k ∂x = - µ (p k -p 0 ) h k .
As the atmospheric pressure p 0 is constant, the last equation can be expressed as,

d k (p k -p 0 ) dt + ρ k c 2 k ∂u k ∂x = - µ (p k -p 0 ) h k .
The phase pressure is expressed around the equilibrium state with the following expansion,

p k = p (0) k + ǫp (1) 
k + . . . , where -ǫ is of the order of the inverse of pressure relaxation parameter (ǫ ≃ µ -1 ≃ τ ), tending to zero in most situations (ǫ → 0 + ) as discussed earlier (see also [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] for estimates in the context of granular flows), -p

(1) k

represent respectively the leading and first-order pressure terms of the Taylor expansion.

Inserting these definitions in the pressure evolution equation,

d k p (0) k + ǫp (1) k + . . . -p 0 dt + ρ k c 2 k ∂u k ∂x = - p (0) k + ǫp (1) k + . . . -p 0 h k ǫ ,
the following results are obtained:

-At leading order (ǫ -1 ):

p (0) k = p 0 ; -At first order p (1) 
k = -ρ k c 2 k h k ∂u k ∂x .
Inserting this last result in the height equations,

∂h k ∂t + u k ∂h k ∂x = µ (p k -p 0 ) ρ k c 2 k ≃ p (1) k ρ k c 2 k ≃ -h k ∂u k ∂x ,
they become,

∂h k ∂t + ∂ (h k u k ) ∂x ≃ 0.
The mass equations are unchanged while modifications in the momentum equations appear as a consequence of the equilibrium condition (p k = p 0 ). They finally result at leading order in,

       ∂ (h 1 ρ 1 u 1 ) ∂t + ∂ h 1 ρ 1 u 2 1 + 1 2 ρ 1 gh 2 1 + gρ 2 h 1 h 2 ∂x = ρ 2 gh 2 ∂h 1 ∂x , ∂ (h 2 ρ 2 u 2 ) ∂t + ∂ h 2 ρ 2 u 2 2 + 1 2 ρ 2 gh 2 2 ∂x = -ρ 2 gh 2 ∂h 1 ∂x .
System (4.2.1) is recovered, complemented by two conservation equations for the heights, that are in agreement with the two mass equations as soon as the densities are constants.

It thus appears that System (4.2.3) tends to System (4.2.1) when pressure relaxation is stiff. As System (4.2.3) is hyperbolic, it is a good candidate to approximate (4.2.1) numerically with a two-step procedure:

-Solve the hyperbolic system (4.2.3) without source terms;

-Relax the pressures onto the atmospheric one and reset the heights. This is similar to the method of Saurel and Abgrall (1999) [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF] to compute flows with interfaces separating fluids. Before entering in the details of the hyperbolic solver, let us present the pressure relaxation process, that is particularly simple in the present context.

Stiff pressure relaxation solver

Let us consider for example EOS (4.2.4). Consequently, the densities as functions of pressures are given by:

ρ k = ρ (0) k + p k -p (0) k c 2 k . ( 4 

.2.11)

As the pressures relax to the atmospheric one (p k = p (0) k = p 0 ), the densities at relaxed pressure are just,

ρ * k = ρ (0) k , (4.2.12) 
where the superscript * denotes the relaxed pressure state. As the masses of each layer are computed by associated mass balance equations and are constant during the relaxation process,

m k = h k ρ k = h * k ρ * k , (4.2.13) 
the heights at relaxed states are reset as,

h * k = h k ρ k ρ (0) k . (4.2.14) 
The stiff pressure relaxation solver just consists in the reset of the heights of the fluids h k → h * k and is independent of the equations of state. At this level, the relaxation method of Abgrall and Karni (2009) [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] is recovered. We now address the design of hyperbolic solvers.

Approximate Riemann solvers

Two different approximate methods are considered to solve the Riemann problem of System (4.2.3), the VFRoe method [START_REF] Gallouet | Un schéma de Godunov approché[END_REF] [START_REF] Gallouet | Un schéma de Godunov approché[END_REF]) and a new HLL-type Riemann solver [START_REF] Harten | On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws[END_REF] [START_REF] Harten | On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws[END_REF]). As System (4.2.3) contains non-conservative terms, an approach dealing with both conservative and non-conservative systems is examined first.

VFRoe solver

The VFRoe method considers the equations in non-conservative formulation,

∂W ∂t + A(W ) ∂W ∂x = 0, (4.3.1) 
with

W = (h 1 , ρ 1 , u 1 , h 2 , ρ 2 , u 2 ) T and W = W L + W R 2 ,
where W L and W R are respectively the left and right-state vectors at a given cell boundary.

The VFRoe method considers the exact Riemann problem solution of (4.3.1). Note that (4. The exact solution of (4.3.1) may be found in many textbooks related to hyperbolic systems (LeVeque (2002) [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF], Toro (2013) [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: A practical introduction[END_REF]) and can be summarized as follows,

W * = W L + λ i <0 a i R i = W R - λ i >0 a i R i , (4.3.2) 
where the wave strengths a i are the coefficients resulting from the decomposition of the eigenvectors,

W R -W L = λ i a i R i . (4.3.3) 
For the sake of space, the right eigenvectors R i and the wave strengths a i are not detailed, associated formulas being considerably large. The main weakness of this method is related to the average W which can be far from the solution of the non-linear problem, resulting in positivity issues especially when large amplitude waves are present.

With the help of the Riemann problem solution (4.3.2), the various equations of System (4.2.3) are updated with a Godunov-type method (stable under the conventional CF L condition) as,

h n+1 k,i = h n k,i - ∆t ∆x (h k u k ) * i+ 1 2 -(h k u k ) * i-1 2 + ∆t ∆x h n k,i u * k,i+ 1 2 -u * k,i-1 2 , (4.3.4) 
(h k ρ k ) n+1 i = (h k ρ k ) n i - ∆t ∆x (h k ρ k u k ) * i+ 1 2 -(h k ρ k u k ) * i-1 2 , (4.3.5) 
(h 1 ρ 1 u 1 ) n+1 i = (h 1 ρ 1 u 1 ) n i - ∆t ∆x h 1 ρ 1 u 2 1 + h 1 (p 1 -p 0 ) + 1 2 ρ 1 h 2 1 * i+ 1 2 -h 1 ρ 1 u 2 1 + h 1 (p 1 -p 0 ) + 1 2 ρ 1 h 2 1 * i-1 2 + ∆t ∆x h n 1,i (-ρ 2 gh 2 ) * i+ 1 2 -(-ρ 2 gh 2 ) * i-1 2 , (4.3.6) 
(h 2 ρ 2 u 2 ) n+1 i = (h 2 ρ 2 u 2 ) n i - ∆t ∆x h 2 ρ 2 u 2 2 + h 2 (p 2 -p 0 ) + 1 2 ρ 2 h 2 2 + ρ 2 gh 1 h 2 * i+ 1 2 -h 2 ρ 2 u 2 2 + h 2 (p 2 -p 0 ) + 1 2 ρ 2 h 2 2 + ρ 2 gh 1 h 2 * i-1 2 + ∆t ∆x h n 1,i (ρ 2 gh 2 ) * i+ 1 2 -(ρ 2 gh 2 ) * i-1 2 , (4.3.7) 
where n + 1 and n denote two consecutive time steps and superscript * denotes the VFRoe Riemann problem solution given by Eq. (4.3.2). Indexes i and i± 1 2 denote respectively the center of the current numerical cell and its corresponding boundaries.

HLL-type Riemann solver

Let us consider a simplified solver, based on Rankine-Hugoniot conditions, such as the HLL solver.

In this frame, the two extreme waves S L and S R are approximated following [START_REF] Davis | Simplified second-order Godunov-type methods[END_REF] [START_REF] Davis | Simplified second-order Godunov-type methods[END_REF] as,

           S L,k = min u L,k -c 2 L,k + 1 2 gh L,k , u R,k -c 2 R,k + 1 2 gh R,k , S R,k = max u L,k + c 2 L,k + 1 2 gh L,k , u R,k + c 2 R,k + 1 2 gh R,k , (4.3.8) 
with k = 1, 2. The indexes L and R denote respectively the left and right states at a given cell boundary. The two extreme waves are considered as,

S L = min (S L,1 , S L,2 ) , S R = max (S R,1 , S R,2 ) . (4.3.9) 
The two contact waves u 1 and u 2 are considered as well for the transport of the heights h 1 and h 2 , as depicted in Fig. 4.2. Regarding the transport equations, the exact Riemann problem solution is straightforward:

x t S R S L u 1 u 2 W R W L W * W * L W * R
     h * 1 x t < u * 1 = h 1,L , h * 1 x t > u * 1 = h 1,R , h * 2 x t < u * 2 = h 2,L , h * 2 x t > u * 2 = h 2,R . (4.3.10) 
These solutions indicate that the non-conservative terms have contributions between the two extreme waves S R and S L , at points where h 1 and h 2 are discontinuous. More precisely, only the discontinuity in h 1 needs attention, as the non-conservative terms involving the atmospheric pressure (considered constant) transform to fluxes,

p 0 ∂h k ∂x = ∂(p 0 h k ) ∂x .
It thus remains to analyze only the non-conservative term,

ρ 2 gh 2 ∂h 1 ∂x .
The solution states for (ρ 2 h 2 ) are given by,

(ρ 2 h 2 ) * L = (ρ 2 h 2 ) L u 2,L -S L u * 2 -S L and (ρ 2 h 2 ) * R = (ρ 2 h 2 ) R u 2,R -S R u * 2 -S R .
A schematic representation is given in Fig. 4.3.

x t S R S L u 1 u 2 W R W L (h 2 ρ 2 ) * L (h 2 ρ 2 ) * R Figure 4.3: Schematic representation in the (x, t) diagram of the two levels (ρ 2 h 2 ) * L,R in the Riemann problem solution.
These formulas need u * 2 for their practical use that is unknown at this level. However, according to the sign of the velocity difference u * 1 -u * 2 , only two instances may occur:

-If u * 1 > u * 2 , the ρ 2 gh 2 ∂h 1 ∂x term becomes locally g (ρ 2 h 2 ) * R ∂h 1 ∂x . As (ρ 2 h 2 ) *
R is constant at the point where ∂h 1 ∂x is discontinuous, the non-conservative term becomes locally;

ρ 2 gh 2 ∂h 1 ∂x = ∂ g (ρ 2 h 2 ) * R h 1 ∂x .
-If u * 1 < u * 2 , the same reasoning yields,

ρ 2 gh 2 ∂h 1 ∂x = ∂ g (ρ 2 h 2 ) * L h 1 ∂x .
It thus appears that the momentum equations are locally conservative. However, their explicit determination and use require knowledge of both u * 1 and u * 2 that are themselves solutions of the integration of the momentum equations.

To simplify the algorithm, a single solution state is considered for the apparent densities (ρ k h k ) * instead of the two (ρ k h k ) * L and (ρ k h k ) * R in the same spirit as in the HLL solver for the Euler equations:

(h k ρ k ) * = (h k ρ k ) R (u k,R -S R ) -(h k ρ k ) L (u k,L -S L ) S L -S R . (4.3.11) 
Thanks to this approximation, the momentum equations become locally,

       ∂ (h 1 ρ 1 u 1 ) ∂t + ∂ h 1 ρ 1 u 2 1 + h 1 p 1 (ρ 1 ) -p 0 + 1 2 ρ 1 gh 2 1 + gρ 2 h 1 h 2 -g(h 2 ρ 2 ) * h 1 ∂x = 0, ∂(h 2 ρ 2 u 2 ) ∂t + ∂ h 2 ρ 2 u 2 2 + h 2 p 2 (ρ 2 ) -p 0 + 1 2 ρ 2 gh 2 2 + g(h 2 ρ 2 ) * h 1 ∂x = 0. (4.3.12)
Denoting the momentum fluxes by,

     F 1,mom =h 1 ρ 1 u 2 1 + h 1 p 1 (ρ 1 ) -p 0 + 1 2 ρ 1 gh 2 1 + gρ 2 h 1 h 2 -g(h 2 ρ 2 ) * h 1 , F 2,mom =h 2 ρ 2 u 2 2 + h 2 p 2 (ρ 2 ) -p 0 + 1 2 ρ 2 gh 2 2 + g(h 2 ρ 2 ) * h 1 , (4.3.13) 
the momentum numerical fluxes are then given by,

F * k,mom = F k,mom,R S L -F k,mom,L S R + S L S R (U k,mom,L -U k,mom,R ) S L -S R , (4.3.14) 
with U k,mom = h k ρ k u k . The mass numerical fluxes are computed by the HLL approximation as well and read,

F * k,mass = (h k ρ k ) R S L (u k,R -S R ) -(h k ρ k ) L S R (u k,L -S L ) S L -S R . (4.3.15) 
System (4.2.1) being non-conservative, the conservative variable-state vector and in particular the fluid velocities are also needed for the computations. With the help of Eqs. (4.3.12) and (4.3.13), the momentum variables are computed with the HLL approximation as,

(h k ρ k u k ) * = F k,mom,R -F k,mom,L -S R U k,mom,R + S L U k,mom,L S L -S R . (4.3.16) 
Using Eqs. (4.3.11) and (4.3.16), the speeds of the fluids are given by,

u * k = (h k ρ k u k ) * (h k ρ k ) * . (4.3.17)
The associated Godunov-type method now reads,

                     h n+1 k,i = h n k,i - ∆t ∆x (hu) * k,i+ 1 2 -(hu) * k,i-1 2 + ∆t ∆x h n k,i u * k,i+ 1 2 -u * k,i-1 2 , (h k ρ k ) n+1 i = (h k ρ k ) n i - ∆t ∆x F * k,mass,i+ 1 2 -F * k,mass,i-1 2 , (h 1 ρ 1 u 1 ) n+1 i = (h 1 ρ 1 u 1 ) n i - ∆t ∆x F * 1,mom,i+ 1 2 -F * 1,mom,i-1 2 + ∆t ∆x h n 1,i -g (h 2 ρ 2 ) * i+ 1 2 -(h 2 ρ 2 ) * i-1 2 , (h 2 ρ 2 u 2 ) n+1 i = (h 2 ρ 2 u 2 ) n i - ∆t ∆x F * 2,mom,i+ 1 2 -F * 2,mom,i-1 2 + ∆t ∆x h n 1,i g (h 2 ρ 2 ) * i+ 1 2 -(h 2 ρ 2 ) * i-1 2 . (4.3.18) 
Efficiency of both VFRoe and HLL solvers are now investigated on various test problems of the literature.

Results and validations

It is important to address in priority the effects of the fluid EOS with the present relaxation approach. Indeed the model is hyperbolic as a consequence of compressibility terms in the momentum equations. Extra tests, where VFRoe and HLL solvers are compared, are addressed subsequently.

Effects of the artificial sound speed

The EOS (4.2.4) involves sound speed c k that has influence on computed results, as shown hereafter in Figs. 4.4, 4.5 and 4.6. The examined configuration consists in a limit case where the initial height of the first fluid (lower layer) is as low as numerically admissible, so that only the upper layer (second fluid) evolves significantly. With this specific configuration, the solution of the two-layer shallow water system (4.2.3) is meant to be compared to the exact solution of the one-layer Saint-Venant equations.

A dam-break problem is used to this end. The following test is proposed in LeVeque's textbook (2002) [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] to illustrate behavior of the solution of the Saint-Venant equations. It consists in a dam, separating two levels of fluids, that bursts at time t = 0. All variables of the current test problem are in dimensionless units as done in [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF]. This test is the shallow water equivalent of the shock-tube problem of gas dynamics and appears to be an excellent benchmark as the flow deals with shock and expansion waves that create arduous conditions. The constant gravity is normalized and reads g = 1.

The numerical domain has a length set to 10 with a height discontinuity initially located in the middle.

On the left of this discontinuity, the fluid is initially at h = 3 and h = 1 on the right. The fluid is initially at rest on either side of the discontinuity.

To mimic the Saint-Venant system with the two-layer model (4.2.3), the height of the first fluid is initially set to h 1 = ǫ = 10 -6 throughout the whole numerical domain. Its density is set to ρ 1 = 1.2 and its velocity is set to u 1 = 0. The second fluid, placed above the first one, has initial heights h 2 = 3 at left and h 2 = 1 at right. Its density is set to ρ 2 = 1 and its velocity is set to u 2 = 0. 

h lef t 1 = h right 1 = 10 -6 , u lef t 1 = u right 1 = 0, ρ 1 = 1.2, h lef t 2 = 3, h right 2 = 1, u lef t 2 = u right 2 = 0, ρ 2 = 1. Final time: t ≈ 2.
All results use a 100-cell mesh. First-order Godunov-type numerical scheme is used with CF L = 0.9. For the sake of clarity, 50 symbols are plotted for the exact solution. An optimum appears for θ k = 2. All variables are in dimensionless units.

experiments suggest existence of a subcharacteristic condition:

c k > 1 2 gh k . (4.4.1)
In the upcoming computations, the following sound speed is used:

c k = θ k 1 2 gh k , with θ k > 1, k = 1, 2. (4.4.2)
θ k is a numerical parameter that controls the numerical diffusion as illustrated in Fig. 4.5.

In order to unambiguously fulfill the above-mentioned subcharacteristic condition (4. including non-conservative terms is extended to second order with the MUSCL-type method detailed for example in Toro (2013) [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: A practical introduction[END_REF] (see also Chiapolino et al. (2017) [START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] (Chapter 1, Section 1.3) when non-conservative terms are present).

The results show excellent agreement with the exact solution. Besides, they also reveal that:

-Incompressible behavior is recovered as the densities ρ k are constant;

-The two-layer shallow water model (4.2.3) tends to the single-layer Saint-Venant equations in the limit h 1 → ǫ;

-Second-order extension of the Godunov-type scheme (4.3.18) and associated non-conservative terms does not cause specific difficulties.

These various computations have been done with the HLL solver while the VFRoe one failed immediately, as it was unable to preserve positivity of the height h 1 . It is also important to note that the method does not require any fluid EOS, nor relaxation parameter, as Eq. (4.2.14) determines efficiently the heights at relaxed states. The only "thermodynamic" information is the sound speed, and more precisely θ k in Eq. (4.4.2). The method is robust and accurate with 2 ≤ θ k ≤ 5.

Effects of the fluid densities

The preceding dam-break problem showed that the two-layer shallow water model (4.2.3) is able to recover the single-layer Saint-Venant system in the limit h 1 → 0. When the density ratio r = ρ 2 ρ 1 is small, the effects of the surrounding fluid (upper layer) are expected to become insignificant and the one-layer Saint-Venant solution is meant to be recovered as well. 

h lef t 1 = h right 1 = 10 -6 , u lef t 1 = u right 1 = 0, ρ 1 = 1.2, h lef t 2 = 3, h right 2 = 1, u lef t 2 = u right 2 = 0, ρ 2 = 1. Final time: t ≈ 2.
Second-order MUSCL-type numerical scheme using van Leer's limiter (see [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF], [START_REF] Van Leer | Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme[END_REF]) is considered with CF L = 0.5 and 1000 cells. For the sake of clarity, only 50 symbols out of 1000 are plotted for the HLL-type computation. All variables are in dimensionless units.

The forthcoming tests analyze the effects of the fluid densities on a configuration presenting initially a Heaviside function regarding the height of the first fluid (lower layer) located in the middle of the numerical domain. The first layer is initially at height h 1 above the flat ground and the top of the plateau is located at height h ′ 1 . The second fluid surrounds the lower layer and is set initially at constant height h 2 . The initial configuration is schematically depicted in Fig. 4.7 with data summarized in Table 4.1. m while the right column uses h 1 = 10 -6 m. We will see that this initial data influences significantly x (m) x (m) gh k with θ k = 2. The dashed lines represent the initial conditions. Final time: t ≈ 1 s. All results use a 1000-cell mesh. Second-order MUSCL-type numerical scheme is used with Sweby's limiter (β = 1.1, see Chapter 1, Section 1.5, Eq. (1.5.7), see also [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]) and CF L = 0.5. For the sake of clarity, 50 symbols are plotted for the exact solutions of the single-layer model. On the column at left, the initial height is h 1 = 4 m and on the column at right h 1 = 10 -6 m. When the density ratio is small: r = ρ 2 ρ 1 ≪ 1, as in configurations G and H, the two-layer and single-layer models are in excellent agreement. Large differences appear when the density ratio increases as shown in configurations I, J, K and L. difference of initial height for the first fluid h 1 = 4 m (Plot K) and h 1 = 10 -6 m (Plot L) is minor compared to the effect of the large layer of second fluid (h 2 = 100 m). As the entire domain is mainly filled with heavy fluids, the flow is slowly set to motion under gravity effects.

h 1 h ′ 1 h 2 x 1 = 20 m x 2 = 10 m x 3 = 20 m ρ 1 ρ 2 g x y h 2
h 1 (m) h 1 (m) h 1 (m) h 1 (m) h 1 (m) h 1 (m) G H I J K L

Concluding remarks

Those last results reveal that the two-fluid model (4.2.3) is able to recover the one-layer Saint-Venant system when the effects of the surrounding fluid are negligible, as expected. This behavior appears when the density ratio between the lightest fluid and the heaviest one is small: r = ρ 2 ρ 1 ≪ 1. They also reveal the importance of the two-layer model when the density ratio is arbitrary. Indeed, the two-layer system is able to deal with interactions between fluids unlike the conventional one-fluid Saint-Venant model. Note that the previous tests have been computed with the HLL-type Riemann solver presented in Section 4.3, the VFRoe method being unable to keep positivity of the heights.

Note also that drag effects are absent in these computations.

Comparison of VFRoe and HLL

The two solvers considered in the present chapter are tested on a flow configuration examined in [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] and [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF] [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF]. The following tests set gravity constant to g = 10 m.s -2 and density ratio to r = ρ 2 ρ 1 = 0.98. Hereby, ρ 1 = 1200 kg.m -3 and ρ 2 = 1176 kg.m -3 are used. Initially, different heights are present from either side of the initial discontinuity and result in the creation of a flow under gravity effects. The numerical domain is 1 m long and the initial discontinuity is located at x = 0.5 m. On the left of this discontinuity, h 1 = 0.5 m and h 2 = 0.5 m. On the right, h 1 = 0.45 m and h 2 = 0.55 m. The initial conditions are schematically depicted in Fig. 4.9. The first-order Godunov-type scheme is used with CF L = 0.7 in the following tests. Doing so, the comparison between solvers is free of extra ingredients, such as gradient limiters. = 0 m.s -1 , ρ 1 = 1200 kg.m -3 , ρ 2 = 1176 kg.m -3 . For the first fluid, the numerical parameter reads θ 1 = 3.5, for the second fluid, θ 2 = 3. Final time: t ≈ 0.12 s. First-order Godunov-type numerical scheme is used with CF L = 0.7 and 10, 000 cells. For the sake of clarity, only 50 symbols out of 10, 000 are plotted for the VFRoe method. Both methods converge to the same solution.

h lef t 1 h lef t
The next test repeats the previous one with non-zero initial velocities. Those are set to u 1 = u 2 = 2.5 m.s -1 throughout the entire domain. This test was examined in [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] and computed with both 400 and 10, 000-cell meshes. The same grids are used here to compare the present model and HLL solver with the results given in [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF]. Figure 4.12 shows the results at time t ≈ 0.07 s with 400-cell mesh. First-order Godunov-type numerical scheme is used with CF L = 0.7 and 400 cells. For the sake of clarity, only 50 symbols out of 400 are plotted for the VFRoe method.

x (m) x (m) h 2 (m) u 2 (m.s -1 ) h 1 (m) u 1 (m.s -1 ) ρ 1 (kg.m -3 ) ρ 2 (kg.m -3 )
As a consequence of non-zero initial velocities and fine mesh resolution, computational conditions are easier for the VFRoe-type solver that does not oscillate. The expected behavior is recovered. The heights and velocity profiles are transported to the right and the effects of gravity seen in Figs. 4.10 and 4.11 are still present. As expected the densities remain constant as a consequence of pressure relaxation. Figure 4.13 shows the results of the same test with 10, 000-cell mesh. x (m) x (m) First-order Godunov-type numerical scheme is used with CF L = 0.7 and 10, 000 cells. For the sake of clarity, only 100 symbols out of 10, 000 are plotted for the VFRoe method.

h 2 (m) u 2 (m.s -1 ) h 1 (m) u 1 (m.s -1 )
The HLL-type solver and the VFRoe-type method are in excellent agreement and are in excellent agreement with the results given in [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] as well.

It is interesting to examine the rate of convergence of the present method (HLL-type solver) and give comparison to existing methods. In [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF], only first-order computations were carried out while in [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF] [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF], higher-order computational results are provided. Comparisons are consequently done with the results of figures 2.2, 2. [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF] [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF] x (m) x (m)

h 1 (m) h 1 (m) h 1 + h 2 -1 (m) h 1 + h 2 -1 (m) u 1 (m.s -1 ) u 1 (m.s -1 )
Figure 4.14: Rate of convergence of the present HLL-type solver. The second-order Godunov-type method is used with Minmod limiter (β = 1, see Chapter 1, Section 1.5, Eq. (1.5.7), see also [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]) and with four mesh resolutions. The thin solid lines represent results obtained with 100 cells (left column) and 400 cells (right column). The dash-dotted lines represent results obtained with 200 cells (left column) and 800 cells (right column). The thick solid lines represent the results obtained with 10, 000 cells and considered as "reference" solution. The thick dashed lines represent the initial conditions:

h lef t 1 = 0.5 m, h right 1 = 0.45 m, h lef t 2 = 0.5 m, h right 2 = 0.55 m, u lef t 1 = u right 1 = u lef t 2 = u right 2 = 2.5 m.s -1 , ρ 1 = 1200 kg.m -3 , ρ 2 = 1176 kg.m -3
. For the two fluids, the numerical parameters read θ 1 = θ 2 = 3. Final time: t ≈ 0.07 s. The CF L number is 0.7. A close-up view of the spanning plateau is provided at top with the h 1 profile. The overall height h 1 + h 2 + B(x) is given in the middle. B(x) represents topography of the ground and is considered constant in the present work, B(x) = 0 m. For proper comparison with the results of [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF] [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF] who considered B(x) = -1 m, unit is subtracted from h 1 + h 2 . Finally the velocity profile u 1 is displayed at bottom. sizes. The second-order MUSCL-type scheme provides velocity profiles accurate enough with both 400-cell and 800-cell meshes as observed in [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF]. However, the velocity spike with the 800-cell mesh seems slightly greater than the reference solution and the close-up view on the height profiles reveals that only the 800-cell mesh cancels out sufficiently numerical dissipation and allows to observe properly the constant plateau. The same conclusions are obtained in [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF] [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF]. Also, a slight oscillation is observed with the coarse mesh made of 100 cells. The same observation holds in [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF]. However, the left and right-facing shocks, seen on the velocity profiles, differ from those observed in [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF] where initial data seem to be not exactly the same as those of [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF]. The present results are nonetheless in agreement with the ones of [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF]. The overall height is consequently different from the results of [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF] [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF]. Nevertheless, velocity profiles indicate that the present method seems to have a similar rate of convergence as the one of [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF].

Note that for this test problem, θ 1 = θ 2 = 2 induces spurious oscillations, similar to those observed in Fig. 4.5, Plot C. Consequently, θ 1 = θ 2 = 3 is used for both fluids.

Comparison of two-layer shallow water solutions versus twodimensional two-fluid computations

The averaged (or homogenized) solution computed by the present one-dimensional two-layer shallow water system (4.2.3) is now compared to the solution of a multidimensional model involving material interfaces. As mentioned in the introduction, the two-layer approach is expected to provide comparable results with considerable computational savings.

In the following, the solution computed with the compressible two-phase flow model of Saurel et al. (2009) [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] is used as a reference solution. This model is a pressure disequilibrium system which tends, in its asymptotic limit of stiff pressure relaxation, to the model of [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF], able to compute fluid interfaces as diffuse numerical zones. Interface sharpening can be achieved with the method of Chiapolino et al. (2017) [START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] (Chapter 1).

To compare the solutions computed by both approaches (multidimensional interface model and one-dimensional two-layer shallow water one), the test configuration schematically depicted in Fig. 4.15 is used with data summarized in Table 4 The accurate capture of interfaces in multidimensional computations is improved with a secondorder numerical method. The MUSCL-type method with "Overbee" limiter at interfaces is used as detailed in [START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] (Chapter 1). The very same second-order method is used with the two-layer shallow water system, computed on a 1000-cell mesh with van Leer's limiter [START_REF] Van Leer | Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme[END_REF]. Non-reflecting boundary conditions are used for the shallow water computations.

.2. Test h 1 (m) h ′ 1 (m) h 2 (m) ρ 1 (kg.m -3 ) ρ 2 (kg.m -3 ) γ 1 γ 2 1D/2D
Results are shown in Fig. 4.16 at times t = 5 s and t = 8 s. The computed averaged height and averaged velocity of the multidimensional computation are determined by the integration on the two-dimensional numerical domain as,

h 1 = h 2 0 α 1 dy, (4.5.1) 
and As expected, the two-layer model provides better results than the one-fluid model. The density ratio r = ρ 2 ρ 1 = 1.29 3.506 ≃ 0.37 being moderate, the interaction between the two fluids is meant to be significant. The results of the two-layer shallow water system present a large zone where the agreement with the two-dimensional simulation is very good. Beyond this zone, the results computed by the multidimensional interface model present oscillations. These oscillations are due to the presence of Kelvin-Helmholtz instabilities as seen for example in Fig. 4.17 showing the 2D results at time t = 2 s.

u x = h 2 0 (α 1 ρ 1 u x ) dy
Indeed, the multidimensional solution involves hydrodynamic instabilities that cannot be accounted for with the present two-layer shallow water model. The overall qualitative behavior of the onedimensional approach is correct but the krypton is spread too far ahead with the two-layer model.

To improve agreement between 1D and 2D computations, drag effects are added in the two-layer [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] on an unstructured mesh made of about 510, 000 triangular elements. MUSCL-type method is used with the "sharpening-interface" method of Chiapolino et al. (2017) [START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] (Chapter 1) and CF L = 0.8. For symmetry reasons, only half of the numerical domain is computed. formulation. Pressure (or "acoustic") drag is considered only and is modeled through the velocity relaxation terms that appear in the right-hand side of the momentum equations, x (m) x (m) 
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Conclusion

A pressure relaxation model with 6 equations has been built, especially devoted to two-layer shallow water flows. The mathematical structure of the new formulation is well-posed and results in a strictly hyperbolic model. The system considers weak compressibility of the fluids, which is responsible for its hyperbolic behavior, and is shown to tend to the conventional, but conditionally hyperbolic, two-layer shallow water model in the stiff pressure relaxation limit.

A simple, efficient and robust HLL-type Riemann solver has been derived to solve the corresponding non-conservative system. Computational examples have shown capabilities of the present formulation.

Compared to multi-D computations of gravity-driven interfacial flows, the new model offers tremendous numerical advantages and computational savings. This is done at the price of a single parameter in the drag force model.

This research work can be continued in many directions. Among them, the consideration of variable topography, friction with the ground and interfacial area creation through turbulence modeling seem important.

General conclusion

A fundamental and applied research work has been developed in this manuscript. The present scientific topics are highly linked to a continued need of scientific expertises destined to industries of space, energy and the safety community as well. In this context, efforts have been done regarding the theoretical modeling and the numerical treatment of compressible two-phase flows.

Sharpening diffuse material interfaces and contact waves for compressible fluid models has been reconsidered in Chapter 1, in the frame of diffuse interface models. A numerical method, relying on a new flux limiter named "Overbee", has been developed and allows to reduce significantly the interface capture zone at the price of slight but subtle code modifications. The proposed method can be adapted to multiple situations. For example, solid-fluid interaction considered through a Level-Set-type characteristic function has been considered in Carmouze et al. (2018) [START_REF] Carmouze | Coupling rigid bodies motion with single phase and two-phase compressible flows and unstructured meshes[END_REF] with the help of the new "Overbee" limiter, yielding efficient and simple computations. The sharpening method developed in Chapter 1 is expected to appeal to CFD practitioners working on two-phase flows presenting multiple interfaces. Indeed, in addition to its simplicity, the ability of the sharpening method to deal with both structured and unstructured meshes and an arbitrary number of fluids is also in favor of the present algorithm. In future work, the sharpening method is expected to be coupled with a mixture model involving phase transition as well.

Mass transfer computation has also been addressed in this manuscript through a stiff thermochemical relaxation solver. Stiffness assumes mass exchanges between liquid and vapor phases to happen instantaneously. Such relaxation solver can be used when the topology of the flow is unknown, insufficiently documented or unnecessary. In Chapter 2, a new instantaneous thermochemical relaxation solver has been developed. The new method relies on the basis of simple estimates resulting in efficient, fast and robust computations. Hereby, many industrial situations involving severe thermodynamic conditions and complex geometries can be treated with the proposed method. The design of this latter is in agreement with the physics brought into play in such instantaneous phase change phenomena. In future work, the theoretical modeling and the numerical treatment of situations in-volving several liquids seem important. The specific case of mixture of several liquids is of particular interest and requires a consequent theoretical and applied research work.

Moreover, equations of state used to describe the thermodynamic behavior of different phases have their own ranges of validity. In specific contexts, it is necessary to extend these ranges of validity.

Consequently, the extension of the "Noble-Abel-Stiffened-Gas" (NASG) equation of state (EOS) has been considered in Chapter 3, as future industrial applications intend to consider fluids transitioning to supercritical state. The ENASG equation of state has been developed in this manuscript ("E" stands for "Extended"). It is a well-posed formulation that seems able to deal with a liquid evolving in the whole liquid phase domain. Besides, the transition from pure liquid to supercritical state seems to be possible and accurate with the ENASG EOS. Its particular interest dwells in variable attractive and repulsive effects. For the sake of convexity and simplicity, the formulation reduces to the ideal gas description for vapor and supercritical phases. Thereby, the saturated vapor phase necessarily lacks of accuracy near the critical point. This drawback constitutes nonetheless a great incentive for future works. Water and oxygen have been considered in Chapter 3. Those two fluids present respectively a triatomic and diatomic molecular structure, but future applications may require to address different families of fluids as well.

In another framework, Chapter 4 deals with dense fluid dispersal at both large time and space scales. Many situations may involve fluid dispersal in large urban or natural places during an important period of time. These large time and space scales motivated the design of a new, strictly hyperbolic, two-layer shallow water type model in the direction of dense-gas-dispersion computations.

Indeed, the shallow water strategy allows to address 2D simulations to mimic 3D results. The gain in CPU time compared to conventional multi-fluid models is expected to be tremendous. Besides, this research work may appeal to CFD practitioners working with shallow water systems used in oceanic flows or weather predictions for example. Indeed, the extension of the proposed model to multiple layers while keeping the hyperbolic property of the mathematical system seems possible with the new formulation that is well-posed as a consequence of pressure disequilibrium and compressible character of the fluids. In future works, the consideration of variable topographies, friction with the ground and interfacial area creation through turbulence modeling seem important in addition to 2D computations.

The overall content of this manuscript is meant to provide fundamental and applied tools in the interest to the computational fluid dynamics community. The different projects mentioned in this manuscript already use these contributions routinely. This section summarizes the iterative procedure that computes phase changes in the context of a liquid in equilibrium with a multicomponent gas phase. Only the liquid and vapor species react through phase transition as the other components of the gas phase are considered non-condensable. The solutions of the iterative algorithm are compared to the ones computed with the simple thermochemical relaxation solver developed in Chapter 2.

The algebraic system to be solved is,

                     v = Y * 1 v 1 (p * , T * ) + Y * 2 v 2 (p * , T * ) + k 3 Y k v k (p * , T * ), e = Y * 1 e 1 (p * , T * ) + Y * 2 e 2 (p * , T * ) + k 3 Y k e k (p * , T * ), p sat (T * ) = Y * 2 W 2 Y * 2 W 2 + k 3 Y k W k p * , (B.1.1)
where the superscript * denotes the thermodynamic equilibrium state. Since Y Le Métayer and Saurel (2016) [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF]). Let us define, The algebraic system thus reads, 
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The system F (X) = 0 has to be resolved. Its solution is given by,

X n = X n-1 -J F (X n-1 ) -1 F (X n-1 ), (B.1.9)
with n denoting the current iteration and J F (X n-1 )

-1

the inverse of the Jacobian matrix,

J(f 1 , f 2 , f 3 , f 4 ) =         ∂f 1 (p * ,T * ,Y * 2 ) ∂p * ∂f 1 (p * ,T * ,Y * 2 ) ∂T * ∂f 1 (p * ,T * ,Y * 2 ) ∂Y * 2 ∂f 1 (p * ,T * ,Y * 2 ) ∂p * sat ∂f 2 (p * ,T * ,Y * 2 ) ∂p * ∂f 2 (p * ,T * ,Y * 2 ) ∂T * ∂f 2 (p * ,T * ,Y * 2 ) ∂Y * 2 ∂f 2 (p * ,T * ,Y * 2 ) ∂p * sat ∂f 3 (p * ,p * sat ,Y * 2 ) ∂p * ∂f 3 (p * ,p * sat ,Y * 2 ) ∂T * ∂f 3 (p * ,p * sat ,Y * 2 ) ∂Y * 2 ∂f 3 (p * ,p * sat ,Y * 2 ) ∂p * sat ∂f 4 (p * sat ,T * ) ∂p * ∂f 4 (p * sat ,T * ) ∂T * ∂f 4 (p * sat ,T * ) ∂Y * v ∂f 4 (p * sat ,T * ) ∂p * sat         . (B.1.10)
In order to gain accuracy and robustness, it is convenient to write Eq. (B.1.9) as,

     J(F (X n-1 ))△X = -F (X n-1 ), △X = X n -X n-1 . (B.1.11)
Thereby, for a given X, a linear system is found and the variation △X is determined via the Gauss elimination method. The variables are then updated as,

X n = △X + X n-1 . (B.1.12)
A solution is obtained when △X < ǫ or alternatively when

|f 1 | < ǫ, |f 2 | < ǫ, |f 3 | < ǫ, |f 4 | < ǫ, with ǫ → 0.
This procedure is robust and accurate. It is used in all test problems of Section 2.12.

Appendix C

Equations of state

This appendix is related to the Extended-Noble-Abel-Stiffened-Gas (ENASG) equation of state developed in Chapter 3.

C.1 Convexity of the ENASG formulation

The convexity of the equation of state requires five different conditions to be fulfilled ( 

(γ -1)C v γp ∞,0 v -b(v) (γ -b 1 ) (γ -1)C v -γp ∞,1 v -b(v) - γ 2 p ∞,1 p ∞,0 v -b(v) 2 (γ -b 1 ) (γ -1)C v -γp ∞,1 v -b(v) + C v exp s-q ′′ Cv exp γp ∞,1 v-b(v) Cv(1-b 1 ) v -b(v) γ-b 1 1-b 1 . (C.1.2)
After some algebraic manipulations, the first partial derivative reads, 

∂e ∂v s = exp s-q ′′ Cv exp γp ∞,1 v-b(v) Cv (1-b 1 ) -(γ -1)C v + γp ∞,1 v -b(v) v -b(v) γ-b 1 1-b 1 + γp ∞,0 (1 -b 1 ) γ -b 1 . (C.
s-q ′′ Cv =(γ -b 1 )(γ -1)C v v -b(v) -γ-1+2b 1 1-b 1 exp γp ∞,1 v -b(v) C v (1 -b 1 ) + (γp ∞,1 ) 2 C v exp γp ∞,1 v -b(v) C v (1 -b 1 ) v -b(v) 1-γ 1-b 1 -2γp ∞,1 (γ -1) v -b(v) -γ+b 1 1-b 1 exp γp ∞,1 v -b(v) C v (1 -b 1
) . 

∂e ∂s v = exp s-q ′′ Cv exp γp ∞,1 v-b(v) Cv(1-b 1 ) v -b(v) γ-1 1-b 1 . (C.1.5)
Furthermore, manipulating Eq. (3.2.33), the liquid temperature can be expressed as, 

T (v, s) = exp s-q ′′ Cv exp γp ∞,1 v-b(v) Cv(1-b 1 ) v -b(v) γ-1 1 
∂ 2 e ∂s 2 v = exp s-q ′′ Cv exp γp ∞,1 v-b(v) Cv(1-b 1 ) C v v -b(v) γ-1 1 
v = exp s-q ′′ Cv exp γp ∞,1 v-b(v) Cv(1-b 1 ) γp ∞,1 v -b(v) -(γ -1)C v C v v -b(v) γ-b 1 1-b 1 . ( C 
= exp s -q ′′ C v 2 exp γp ∞,1 v -b(v) C v (1 -b 1 ) 2 (1 -b 1 )(γ -1) v -b(v) -2γ+2b 1 
∂ 3 e ∂v 3 s exp s-q ′′ Cv = γp ∞,1 C v exp γp ∞,1 v -b(v) C v (1 -b 1 ) (γ -b 1 )(γ -1)C v v -b(v) -γ-1+2b 1 1-b 1 + (γp ∞,1 ) 2 C v v -b(v) 1-γ 1-b 1 -2γp ∞,1 (γ -1) v -b(v) -γ+b 1 1-b 1 + exp γp ∞,1 v -b(v) C v (1 -b 1 ) (γ -b 1 )(γ -1)C v (-γ -1 + 2b 1 ) v -b(v) -γ-2+3b 1 1-b 1 -(γ -1) (γp ∞,1 ) 2 C v v -b(v) -γ+b 1 1-b 1 + 2γp ∞,1 (γ -1)(γ -b 1 ) v -b(v) -γ-1+2b 1 

C.2 Maxwell's relations

Maxwell's relations arise from the equality of the mixed partial derivatives of the fundamental thermodynamic relations [START_REF] Callen | THERMODYNAMICS, an introduction to the physical theories of equilibrium thermostatics and irreversible thermodynamics[END_REF]. 

= - (γ -1)C v (1 -b 1 ) p + p ′ ∞ (T ) + γp ∞,1 (γ -1)C v T (1 -b 1 ) p + p ′ ∞ (T ) 2 = - ∂v ∂T p . ( C 
∂p ∂T v = (γ -1)C v v -b(v) -γp ∞,1 = ∂s ∂v T . ( C 
= exp s -q ′′ C v exp γp ∞,1 v -b(v) C v (1 -b 1 ) -(γ-1) v-b(v) -γ+b 1 1-b 1 + γp ∞,1 C v v-b(v) -γ+1 1-b 1 = - ∂p ∂s v , ( 
= - -(γ -1)C v p + p ′ ∞ (T ) + γp ∞,1 (γ -1)C v T Cv T (γ -b 1 ) p + p ′ ∞ (T ) 2 -γp ∞,1 (γ -1)C v 2p + γp ∞,1 T + 2γp ∞,0 (1-b 1 ) γ-b 1 . (C.2.7) ∂p ∂s v
has also been determined previously (Eq. (C.2.4)) and thanks to relation (3.2.40), the next derivative arises after some algebraic manipulations,

∂p ∂v s = exp s -q ′′ C v exp γp ∞,1 v -b(v) C v (1 -b 1 ) -(γ -b 1 )(γ -1)C v v -b(v) -γ-1+2b 1 1-b 1 + 2(γ -1)γp ∞,1 v -b(v) -γ+b 1 1-b 1 - (γp ∞,1 ) 2 C v v -b(v) 1-γ 1-b 1 . (C.2.8)
Equation (C.2.6) then reads after calculations,

∂v ∂s p = - (γ -1)C v -γp ∞,1 v -b(v) -C 2 v (γ -1)(γ -b 1 ) v -b(v) -1 + 2γp ∞,1 (γ -1)C v -(γp ∞,1 ) 2 v -b(v) . (C.2.9)
Inserting Eq. (3.2.18) into Eq. (C.2.9), the following result is obtained after some algebraic manipulations, 

∂v ∂s p = - -(γ -1)C v p + p ′ ∞ (T ) + γp ∞,1 (γ -1)C v T Cv T (γ -b 1 ) p + p ′ ∞ (T ) 2 -γp ∞,1 (γ -1)C v 2p + γp ∞,1 T + 2γp ∞,0 (1-b 1 ) γ-b 1 . (C.

C.3 Methodology to determine the various Extended NASG (ENASG) parameters

This section details the procedure used in this work to determine the different ENASG parameters for liquid and gas phases. Depending on the studied application, the determination of the corresponding parameters can be different, but the use of the experimental curves is mandatory.

arises,

f (C l ) = -c 2 0,l - A l (C l )v 2 0,l (p 0 + C l ) C v,l (C l ) -v 2 0,l p 0 + C l γ l (C l ) -1 C v,l (C l ) -A l (C l ) v 0,l -b(v 0,l ) × A l (C l ) γ(C l ) -1 - γ l (C l ) -b 1,l γ l (C l ) -1 C v,l (C l ) v 0,l -b(v 0,l ) , (C.3.9)
and can be solved with an iterative method. p ∞,0,l and p ∞,1,l are then determined via Eq. (C.3.1), and the reference internal energy is computed with Eq. (C.3.4). The reference entropy is the only unknown value at this point. The least squares method is used one more time with Eq. (3.2.38). Searching the optimum q ′ l coefficient, the following relation appears after some algebraic manipulations,

q ′ l = 1 N N i=1 s exp,l,i -C v,l ln     T γ l -b 1,l 1-b 1,l exp,l,i p exp,l,i + p ′ ∞ (T exp,l,i ) γ l -1 1-b 1,l     + γ l p ∞,1,l (γ l -1)C v,l T exp,l,i 1 -b 1,l p exp,l,i + p ′ ∞ (T exp,l,i ) . (C.3.10)
The different reference state values used for the calculation of the liquid ENASG coefficients are summarized in Tables C.1 and C.2. In this work, all experimental data come from NIST1 website.

For the liquid phase, the saturation (boiling) curve is considered. 

Gas phase

In the present formulation (3.4.2), the gas phase is considered as ideal and the different parameters are determined regardless of the saturation conditions. Only four parameters are required for the gas phase, C v , γ, q and q ′ . The atmospheric conditions are used in this work via the experimental isobar A reference point on the present isobar p 0 = 1 bar is used to determine the coefficient q, q = e 0 -C v T 0 .

(C. 3.11) In this work T 0 = 393.38 K and e 0 = 2537.7 kJ/kg are used for water and T 0 = 100.07 K and e 0 = 63.657 kJ/kg for oxygen.

The last coefficient q ′ g is finally determined with the least squares method, corresponding to the ideal gas reduction of Eq. (C. Note that for the VdW and SRK EOSs, the specific internal energy, enthalpy and entropy require C (0) v , q and q ′ as well for practical computations. In the present work

C (0) v,H 2 O = 1750 J/kg/K, C (0) 
v,O 2 = 652 J/kg/K both for VdW and SRK EOSs. q H 2 O = 1799218 J/kg, q O 2 = 17918 J/kg, q ′ H 2 O = -3360 J/kg/K, q ′ O 2 = 2793 J/kg/K for the VdW EOS and q H 2 O = 1799885 J/kg, q O 2 = -682 J/kg, q ′ H 2 O = -3360 J/kg/K, q ′ O 2 = 2793 J/kg/K for the SRK EOS.

C.4 Connection temperature between the ENASG EOS and ideal gas formulation

The different parameters of the quadratic equation (3.6.4) are provided hereafter for the specific volume (v), internal energy (e) and enthalpy (h). The solution of Eq. (3.6.4) provides the connection temperature between the ENASG EOS and ideal gas formulation during the liquid-to-supercritical 3). The thin solid lines represent the theoretical saturation curves obtained with the ENASG EOS reducing to the ideal gas description for the vapor species (Chapter 3, Table 3.1). The dotted lines represent the theoretical saturation curves obtained with the NASG EOS (Chapter 3, Table 3.1). p sat denotes the saturation pressure, L v the latent heat, h the specific enthalpy and ρ the density. 3.2). The dotted lines represent the theoretical saturation curves obtained with the NASG EOS (Chapter 3, Table 3.2). p sat denotes the saturation pressure, L v the latent heat, h the specific enthalpy and ρ the density.

∂h 1 ∂t + u 1 ∂h 1 ∂x = µ(p 1 -p 0 -ρ 2 gh 2 ) ρ 1 c 2 1 , ∂(h 1 ρ 1 ) ∂t + ∂ (h 1 ρ 1 u 1 ) ∂x = 0, ∂ (h 1 ρ 1 u 1 ) ∂t + ∂ h 1 ρ 1 u 2 1 + h 1 p 1 (ρ 1 , ρ 2 , h 2 ) + 1 2 ρ 1 gh 2 1 ∂x = ρ 2 gh 2 ∂h 1 ∂x + p 0 ∂h 1 ∂x , ∂h 2 ∂t + u 2 ∂h 2 ∂x = µ(p 2 -p 0 ) ρ 2 c 2 2 , ∂(h 2 ρ 2 ) ∂t + ∂ (h 2 ρ 2 u 2 ) ∂x = 0, ∂ (h 2 ρ 2 u 2 ) ∂t + ∂ h 2 ρ 2 u 2 2 + h 2 p 2 (ρ 2 ) + 1 2 ρ 2 gh 2 2 ∂x = -ρ 2 gh 2 ∂h 1 ∂x + p 0 ∂h 2 ∂x . (D.1.1)
With this formulation, the equation of state of the first (heaviest) fluid transforms to,

p 1 = p 0 + ρ 2 gh 2 + c 2 1 ρ 1 -ρ (0) 1 , (D.1.2)
while it is unchanged for the upper layer, It is important to check that the hyperbolicity of the reformulated system is still valid. Also, the stiff pressure relaxation limit is meant to recover Ovsyannikov's [START_REF] Ovsyannikov | Two-layer "shallow water" model[END_REF] system (Eq. (4.2.1)). These points are examined hereafter. 3), is therefore strictly hyperbolic.

p 2 = p 0 + c 2 2 ρ 2 -ρ ( 

Asymptotic limit

Let us now consider the following expansion, de déterminer la thermodynamique de la cellule de calcul et en particulier la pression sans informations supplémentaires. Dans ce contexte, plusieurs approches ont été développées au cours de ces dernières décennies.

La première classe de méthodes a pour principe d'éviter l'apparition de mailles de mélange en maintenant des profils d'interface raides. Les méthodes Lagrangienne [START_REF] Vonneumann | A method for the numerical calculation of hydrodynamic shocks[END_REF] et "Arbitrary Lagrangian Eulerian" (ALE) [START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF] traquent ces interfaces mais sont limitées par des distorsions de maillage d'amplitudes arbitraires [START_REF] Caramana | Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures[END_REF]. La méthode de Front Tracking [START_REF] Glimm | Three-dimensional front tracking[END_REF] Ces méthodes sont en permanence améliorées, par exemple pour réduire l'étalement artificiel et raidir les interfaces [START_REF] Shyue | An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach[END_REF], [START_REF] Shukla | An interface capturing method for the simulation of multiphase compressible flows[END_REF], [START_REF] Tiwari | A diffuse interface model with immiscibility preservation[END_REF] ou pour augmenter l'ordre d'approximation de la méthode globale [START_REF] Loubere | A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws[END_REF].

Une extension de la physique a également été prise en compte: réactions chimiques [START_REF] Petitpas | Modelling detonation waves in condensed energetic materials: Multiphase CJ conditions and multidimensional computations[END_REF], changement de phase [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF], tension de surface [START_REF] Perigaud | A compressible flow model with capillary effects[END_REF], solide-fluide [START_REF] Favrie | Solid-fluid diffuse interface model in cases of extreme deformations[END_REF] ou les transformations plastiques [START_REF] Ndanou | Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation[END_REF] Celle-ci repose sur la théorie des schémas TVD (Total Variation Diminishing) basée sur l'utilisation de limiteurs de flux. La notion TVD a été historiquement présentée dans les travaux de Harten en 1983 [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF] qui proposa ce concept afin de construire des schémas numériques ne présentant pas d'oscillation.

Dans ce contexte, l'emploi des limiteurs de flux est essentiel afin de s'assurer que la propriété TVD du schéma soit maintenue et que ce dernier demeure par conséquent stable. Sweby proposa en 1984 [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] une analyse théorique et graphique de la notion TVD et définit ce que l'on dénomme la zone TVD du -Soit lorsque le liquide est surchauffé, ce qui peut se produire en raison des échanges de chaleur avec le gaz ou par propagation d'une onde de détente qui diminue la température de saturation du liquide. Dans ce cas le liquide s'évapore en vapeur saturée.

-Soit lorsque la vapeur est sous refroidie, c'est à dire à une température inférieure à la température de saturation à la pression courante. Dans ce cas la vapeur se condense en liquide à saturation.

Ceci peut se produire par exemple au travers d'une onde de choc, car la température du liquide varie peu alors que la température de saturation augmente. La condensation peut également apparaître au niveau des parois si celles-ci sont froides.

Lorsqu'une de ces conditions est satisfaite (comparaison de la température du mélange par rapport à la température de saturation) la transition de phase s'opère.

De nombreuses simulations d'écoulements diphasiques sont sujettes à la modélisation des phénomènes de changement de phase. Dans ce contexte, une des difficultés est d'adopter le modèle de transfert de masse approprié à une situation donnée. Certaines approches considèrent des mélanges en déséquilibre des températures et des vitesses. Lorsqu'il est possible de déterminer l'aire interfaciale spécifique séparant les phases liquide et gazeuse, la détermination du taux de transfert de masse peut être réalisée en se basant sur les corrélations de Nusselt et Sherwood. Une telle méthode a été dérivée pour l'évaporation "sprays" dans Ambramzon and Sirignano (1989) [START_REF] Abramzon | Droplet vaporization model for spray combustion calculations[END_REF] et pour les écoulements atmosphériques dans Jacobson (2005) [START_REF] Jacobson | Fundamentals of atmospheric modeling[END_REF]. La généralisation aux "flashing" et "condensing spray" a été réalisée dans Furfaro and Saurel (2016) [START_REF] Furfaro | Modeling droplet phase change in the presence of a multi-component gas mixture[END_REF].

Cependant, la détermination de l'aire interfaciale spécifique dans un mélange diphasique est seulement possible pour des écoulements à bulles ou comportant des gouttes. Quand la topologie est arbitraire, seule l'étude de cas limites est possible, en supposant par exemple l'absence de transfert -La seconde limitation des équations d'état cubiques apparaît lorsque l'on s'intéresse à la propagation des ondes dans le dôme de saturation. En effet, ce type de lois d'état présente un vitesse du son imaginaire, traduisant la perte de convexité, à l'intérieur de la zone diphasique et présente donc un comportement inadmissible pour la propagation des ondes lorsque la transition de phase se produit.

-Une autre inconsistance apparaît lorsque l'on s'intéresse à la description du changement d'état.

Dans la représentation de van der Waals ainsi que toutes autres lois d'état cubiques, la transition de phase apparaît comme un chemin thermodynamique. La notion de retard temporel ou de cinétique d'évaporation est donc absente.

-La quatrième limitation mais peut être pas la dernière est liée au traitement numérique des condi- -Les écoulements d'un même liquide mais à différentes températures résultant en des différences de densités. Une telle situation est typique des écoulements océaniques.

-Les écoulements de deux liquides de différentes densités.

-Les écoulements de deux gaz évoluant à faible nombre de Mach.

L'approche bi-couche est particulièrement intéressante lorsqu'on la compare avec les approches multidimensionnelles qui considèrent le mouvement vertical. En effet des simulations beaucoup plus rapides sont attendues avec la stratégie bi-couche. Cette dernière est également très utile lorsque la hauteur d'une des couches est arbitrairement faible. En effet, il n'est dans ce cas pas nécessaire de "résoudre" spatialement cette couche. La diffusion numérique des interfaces presque horizontales est alors absente et aucune méthode de "tracking" de l'interface est requise. Cependant, il y a bien évidemment des limitations avec cette approche:

-La vitesse verticale est négligée.

-La vitesse est supposée uniforme dans chaque section de chaque couche.

Ce type de modélisation implique également de sérieuses difficultés. En effet, la plupart des modèles ne sont pas hyperboliques. Ce problème amenant de néfastes conséquences pour la description de la propagation des ondes, qui devient mal posée, et pour la construction de schémas numériques associés. 

2 .

 2 The hyperbolic flow solver on unstructured meshes is summarized in Section 1.3. In the frame of unstructured meshes and MUSCL methods (Monotonic Upstream-centered Scheme for Conservation Laws), gradient computations have importance, as detailed in Section 1.4. The two main ingredients constituting the present sharpening method are successively detailed in Sections 1.5 and 1.6, -Development of a specific flux limiter.

.2. 1 )

 1 with k varying from 1 to the number of fluids considered. The notations are conventional in the two-phase flow literature. α k , ρ k , p k , e k denote respectively the volume fraction, density, pressure and internal energy of phase k. u represents the center of mass velocity. The mixture internal energy is defined as e = Y k e k where Y k = (α k ρ k )/ρ denotes the mass fraction of phase k. The mixture density and pressure are defined as ρ = α k ρ k and p = α k p k . The interfacial pressure appearing in the right-hand side reads,

Figure 1 . 1 :

 11 Figure 1.1: Schematic representation of an unstructured mesh made of triangles. • centers of the cells, centers of the faces. The Riemann problem is solved on each face of the triangles.

.3. 5 )

 5 Superscript * denotes the solution of the Riemann problem. During this step, the primitive variables at left W n L (P ij ) and right W n R (P ij ) (Eqs. (1.3.3), (1.3.4)) of cell faces come from the previous spatialreconstruction-at-cell-boundary step and are used as initial data of the Riemann problems providing the fluxes F * n ij at the cell faces. The non-conservative volume fraction equations are evolved with the following scheme:

Figure 1 . 2 :

 12 Figure 1.2: Schematic representation of the MUSCL-type numerical scheme. At time t n , values at the faces W n L (P ij ) and W n R (P ij ) (Eqs. (1.3.3), (1.3.4)), reconstructed via the gradients ∇W n (P i ), are used as initial data of a Riemann problem providing fluxes F * n ij . The solution evolves at time t n+1/2 via the Godunov-type scheme (Eqs. (1.3.5), (1.3.6), (1.3.7)). At this intermediate time, the previous gradients are used to reconstruct the solution at the faces W n+1/2 L (P ij ) and W n+1/2 R (P ij ), (Eqs. (1.3.8), (1.3.9)). Those states are used as initial data of a second Riemann problem providing fluxes F * n+1/2 ij. Finally, values at cell center U n i are updated to U n+1 i
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 13 Figure 1.3: Schematic representation of the direct and indirect neighbors of the cell P 0 on an unstructured mesh made of triangles, for gradient computation. The cell of interest P 0 is represented as the shaded cell. On the left, only the direct neighbors are represented as the darker cells. On the right, the indirect neighbors are represented in addition as the darkest cells.
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 15 Figure 1.5: Modifications of the Superbee limiter (A, B, C, D, E and F) considered for the various numerical experiments. The dashed lines represent the various options and the full lines represent the conventional Superbee limiter. The first-order TVD region is shown as the shaded region.
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 117 7 examines various variants of option A by experimenting various levels of the plateau region. Those tests are named G, H, I and J and are presented in Fig. Figure 1.8 displays the results with CF L = 0.8.

Figure 1 . 6 :

 16 Figure 1.6: Comparison of the various limiters A, B, C, D, E and F shown in Fig. 1.5 (full circle symbols •) to the Superbee limiter (diamond symbols ⋄) for the simple transport of a Heaviside function ψ at prescribed velocity. The advection speed is 100 m.s -1 . The dashed lines represent the initial condition and the full lines represent the exact solution. Here ∆x = 0.01 m corresponding to 100 cells. The final time is t ≈ 4 ms and CF L = 0.8.
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 1718 Figure 1.7: Modifications of the Superbee limiter (G, H, I and J) considered for the various numerical experiments. The first-order TVD region of Sweby is presented in this figure as the shaded region. The dashed lines represent the various options and the full lines represent the Superbee limiter.
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 19 Figure 1.9: Comparison of the limiter J shown in Fig. 1.7 (full circle • and square symbols) to the Superbee limiter (diamond ⋄ and triangle △ symbols) for the simple transport of a Heaviside function ψ at prescribed velocity. The advection speed is 100 m.s -1 . The dashed lines represent the initial condition. The full lines represent the exact solution. The left column displays the results with gradients computed with the least squares method (Eq. (1.5.5)) and the right column with the upwind-downwind formulas (Eq. (1.5.6)). Final time: t ≈ 4 ms. Meshes: 100 cells (top), 1000 cells (middle), 10, 000 cells (bottom). CF L = 0.8.
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 110 Figure 1.10: Comparison of the limiter J shown in Fig. 1.7 (full circle • and square symbols) to the Superbee limiter (diamond ⋄ and triangle △ symbols) for the simple transport of a Heaviside function ψ at prescribed velocity (100 m.s -1 ). The dashed lines represent the initial condition. The full lines represent the exact solution. The graphs at top display the results with gradients computed with the least squares method (Eq. (1.5.5)) and the graphs at bottom with the upwind-downwind formulas (Eq. (1.5.6)). Final time: t ≈ 44 ms. Mesh: 100 cells, CF L = 0.8 (left figures) and CF L = 0.1 (right figures). The boundary conditions are periodic.
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 111 Figure 1.11: Graphical representation of the proposed limiter (1.5.8) on the left and Sweby's limiter (1.5.7) on the right. Both limiters use β = 1.5 for this example. The dark gray shaded region represents the region of first-order TVD methods (left figure). The light gray shaded region represents the region of second-order TVD methods (left and right figures).

Figure 1 .

 1 Figure1.12: Schematic representation of the initial conditions of simple transport tests on a twodimensional-Cartesian-structured grid. On the left, the rotation of Zalesak's disk is studied. In this configuration, the velocity is set to u x = y -0.5 and u y = 0.5 -x with x, y the coordinates of the cell centers. Non-reflecting boundary conditions are used. The mesh consists in 100 × 100 cells. On the right, the advection of a square profile along a diagonal is studied. The advection speed is 100 m.s -1 in both directions (x, y). Non-reflecting boundary conditions are used. The mesh consists in 200 × 200 cells.
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 113 Figure 1.13: Comparison of the Superbee limiter (left) and the new limiter (right) with β = 2.Rotation of Zalesak's disk with the situation depicted in Fig.1.12. Eight values of isocontours of ψ are displayed within the range [0.1-0.9] in both top figures. The results are given at t ≈ 6.3 s (one full rotation). The figures at bottom show the ψ profile versus x at a given y = 0.65 m. The solid lines represent the initial conditions. The full diamond and circle symbols represent respectively the results provided by Superbee (left) and "Overbee" (right). Cartesian mesh: 100 × 100 , CF L = 0.5.
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 115 Figure 1.15: Comparison of the Superbee limiter (left column) and the new limiter (right column) with β = 2. Advection of a square along the diagonal with the situation depicted in Fig. 1.12. The results at top are computed with gradients based on direct neighbors. At bottom, the intermediate neighbors are used in addition. Eight values of isocontours of ψ are displayed within the range [0.1-0.9] in all figures. The results are given at t ≈ 7 ms. Cartesian mesh: 200 × 200, CF L = 0.5. Direct and intermediate neighbors are mandatory to keep the correct shape, at least for this example.

First

  let us consider a pure advection problem. A column of liquid water is advected at velocity 100 m.s -1 . The initial density of liquid water is set to 1000 kg.m -3 . The second fluid is air with initial density set to 1 kg.m -3 . The atmospheric conditions are considered (p = 0.1 MPa). Nearly pure fluid conditions are initially used as α air = 10 -6 in the liquid phase and α air = 1 -10 -6 in the gas phase. The results are given in Fig. 1.16 at time t ≈ 5 ms. The Superbee flux limiter (Eq. (1.5.7) with β = 2) is used in the flow solver except regarding the volume fractions computed alternatively with the "Overbee" limiter (Eq. (1.5.8) with β = 2).

Figure 1 .

 1 [START_REF] Roe | Some contributions to the modelling of discontinuous flows[END_REF] shows that the mixture pressure and velocity are free of spurious oscillations. The volume fractions and the mixture density are clearly sharpened compared to the least squares method with the conventional Superbee limiter.It appears that volume fraction profiles are slightly more diffused compared to the previous advection tests. The CF L being now based on sound speed, much more time steps are required to reach the final simulation time, resulting in extra diffusion.

Aα 1 Figure 1 . 16 :α 1 Figure 1 . 17 : 1 , α lef t 1 = 1 - 10 - 6 , α right 1 = 10 - 6 .

 111611171111061106 Figure 1.16: Comparison of the present interface-sharpening method versus the conventional method (without sharpening) with Superbee limiter. Advection of a liquid water column with coupling of flow model (1.2.4)-(1.2.6) and volume fraction sharpening. The advection speed is 100 m.s -1 . The dashed lines represent the initial conditions: p = 0.1 MPa, ρ water = 1000 kg.m -3 , ρ air = 1 kg.m -3 , u = 100 m.s -1 . The diamond symbols ⋄ represent the solution with the Superbee limiter used for all flow variables. The full circle symbols • represent the solution when interface sharpening is used in addition (Eq. (1.5.8), β = 2). The full lines represent the exact solution. Final time: t ≈ 5 ms. Mesh: 100 cells. CF L = 0.8.

Figure 1 . 18 : 1 , α lef t 1 = 1 - 10 - 6 , α right 1 = 10 - 6 .

 1181111061106 Figure 1.18: Liquid-gas shock tube computation with and without interface sharpening. Close-up view on the interface region. The dashed lines represent the initial conditions: p lef t = 1 GPa, p right = 0.1 MPa, ρ water = 1000 kg.m -3 , ρ gas = 10 kg.m -3 , u lef t = u right = 0 m.s -1 , α lef t 1 = 1 -10 -6 , α right 1 = 10 -6 . The diamond symbols ⋄ represent the solution with Sweby's limiter (Eq. (1.5.7), β = 1.35). The full circle symbols • represent the solution when interface sharpening is used in addition (Eq. (1.5.8), β = 2). The full lines represent the exact solution. Final time: t ≈ 240 µs. Mesh: 200 cells. CF L = 0.5.

Figure 1 .

 1 Figure 1.21 shows the cells activated by filter (1.6.1), where the new limiter is active. About 4 cells are detected with (1.6.1) and the interface is always sharper than this zone with the new limiter.

Figure 1 . 19 :

 119 Figure 1.19: Schematic representation of the various two-dimensional tests. The figure on the left represents an advection test of a liquid water column shaped as Zalesak's disc. Non-reflecting boundary conditions are used for this test. The figure in the middle represents a shock tube test where the interface is accelerated by a shock wave moving towards a krypton bubble. The krypton bubble is initially located at x = 0.26 m and y = 0.04 m. Wall boundaries are considered except for the right one considered as non-reflecting. The figure on the right represents an underwater explosion test. The boundaries are non-reflecting.

Figure 1 . 20 :

 120 Figure 1.20: Comparison of the present interface-sharpening method (right figures) versus the Superbee limiter (left figures). Two dimensional advection test of Zalesak-disc shaped liquid water column. The results at top are computed with gradients based on direct neighbors. At bottom, the intermediate neighbors are used in addition. Eight values of the volume fraction isocontours are displayed within the range [0.1-0.9] in all figures. The initial conditions are p = 0.1 MPa, ρ water = 1000 kg.m 3 , ρ air = 1 kg.m 3 , u x = u y = 100 m.s -1 . Final time: t ≈ 7 ms. Mesh ≈ 50, 000 triangles. CF L = 0.8.

Figure 1 . 21 :

 121 Figure 1.21: Two dimensional advection test of Zalesak-disc shaped liquid water column of Fig. 1.20 (computation with indirect neighbors in addition to the direct ones). The figure on the left represents the cells computed by the interface indicator (Eq. (1.6.1)) (not to be confused with the interface cells required to capture the interface). On the right, cells of water are shown. t ≈ 0.7 ms. Mesh ≈ 50, 000 triangles. CF L = 0.8.

Figure 1 . 22 :

 122 Figure 1.22: Comparison of the present interface-sharpening method (Eq. (1.5.8), β = 2) versus Superbee limiter (Eq. (1.5.7), β = 2). The test consists in a krypton-bubble/air configuration where a left-facing shock wave moving at M = 1.5 interacts with the interface. Eight values of the volume fraction isocontours are displayed within the range [0.1-0.9] in all figures. The left column corresponds to the results with the Superbee limiter and the right column with the present compressive limiter. The results are shown at times: t ≈ 0.013 ms, t ≈ 0.155 ms and t ≈ 0.297 ms. The reference time t 0 = 0 corresponds to the moment when the shock wave interacts with the interface. Mesh ≈ 60, 000 triangles (computing only half of the domain for symmetry reasons), CF L = 0.5. Only the direct neighbors are used for this test.

Figure 1 . 23 :

 123 Figure 1.23: Krypton bubble shock interaction test of Fig. 1.22. The figure on the left represents the cells computed by the interface indicator (Eq. (1.6.1)) (not to be confused with the interface cells required to capture the interface). On the right, the krypton bubble cells are displayed. The results are given at time: t ≈ 0.155 ms. The reference time t 0 = 0 corresponds to the moment when the shock wave interacts with the interface. Mesh ≈ 60, 000 triangles (computing only half of the domain for symmetry reasons), CF L = 0.5. Only the direct neighbors are used for this test.

  compressible two-phase flows. The method has been presented in the context of[START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] diffuse interface model but can be implemented in the models of[START_REF] Allaire | A five-equation model for the simulation of interfaces between compressible fluids[END_REF] [START_REF] Allaire | A five-equation model for the simulation of interfaces between compressible fluids[END_REF],[START_REF] Massoni | Proposition de méthodes et modèles Eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur: Some models and Eulerian methods for interface problems between compressible fluids with heat transfer[END_REF] [START_REF] Massoni | Proposition de méthodes et modèles Eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur: Some models and Eulerian methods for interface problems between compressible fluids with heat transfer[END_REF], Pelanti and Shyue (2014)[START_REF] Pelanti | A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves[END_REF] and many others. The method relies on a specific limiter for the volume fraction computation in MUSCL-type schemes. This limiter is TVD and deals with Heaviside-type discontinuities only as it is compressive but diffusive enough to behave satisfactorily in multi-D computations. Insertion of this limiter into diffuse interface formulations requires detection of interfaces. A simple indicator function is used for this aim. The developed algorithm thus uses two main ingredients, -localization of interfaces via an interface indicator, -volume fraction gradient limitations with the "Overbee" limiter (a first-order TVD limiter).Computational examples have shown capabilities of the present method. It is able to capture interfaces in two mesh points, improving significantly quality of the results, at the price of slight modifications.The present work has been developed in the context of two-phase flows with inmiscible fluids. A reduced version is given in Appendix A.1 for the computation of contact discontinuities with the Euler equations, in the single phase limit.
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 124125 Figure 1.24: Comparison of the present compressive limiter (figures on the right, Eq. (1.5.8), β = 2) versus the Superbee limiter (figures on the left, Eq. (1.5.7), β = 2). Underwater explosion test. Eight values of the volume fraction isocontours are displayed within the range [0.1-0.9] in all figures. The results are shown at times: t ≈ 1.8 ms, t ≈ 22 ms and t ≈ 29 ms. Mesh ≈ 75, 000 triangles (computing only half of the domain for symmetry reasons), CF L = 0.1. Only the direct neighbors are used for this test.

  It is indeed important to consider the simplest model involving the pertinent physics. Such reduction is equivalent to considering the two-phase flow model of[START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] presented in Chapter 1 with stiff temperature relaxation in addition to the pressure one. Besides, as mentioned in Chapter 2, a large range of applications can be considered with such reduced model (see[START_REF] Saurel | Le solveur d'équilibre thermodynamique développé au Chapitre 2 est un point essentiel pour les modèles hyperboliques et diphasiques à 7, 5, 4 et 3 équations. En effet ce dernier permet de déterminer l'équilibre thermodynamique local et ainsi le taux d'évaporation maximalement admissible[END_REF] [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF] for more details).

Chapter 2 A

 2 simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows Abstract Determining liquid-vapor phase equilibrium is often required in multiphase flow computations. Existing equilibrium solvers are either accurate but computationally expensive, or cheap but inaccurate.

  model of[START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] and its extension for cavitating flows,[START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF] [18], Le Martelot et al. (2013)[START_REF] Le Martelot | Liquid and liquid-gas flows at all speeds[END_REF]. The Homogeneous Relaxation Model (HRM) and Homogeneous Equilibrium Model (HEM) (Downar-Zapolski et al.(1996) [START_REF] Downar-Zapolski | The non-equilibrium relaxation model for one-dimensional flashing liquid flow[END_REF],[START_REF] Barret | Schemes to compute unsteady flashing flows[END_REF] [START_REF] Barret | Schemes to compute unsteady flashing flows[END_REF]) being also reduced versions of these models with respectively 4 and 3 equations, the present phase transition solver similarly applies to them.

  mination and consequently model velocity slip. Computational examples of such flows are given for instance in Singhal et al. (2002) [80], Petitpas et al. (2009) [81], Le Martelot et al. (2013) [76] and Saurel et al. (2016) [8]. -Flashing and condensing flows, as they are high-speed flows and subject to stiff thermodynamic relaxation. -Interfacial flows, as the same equations deal with the direct numerical simulation of boiling flows at sub-bubble scale (Le Martelot et al. (2014) [82], Saurel et al. (2016) [8]). Therefore the equilibrium solver addressed in the present work is a key point of the 7-5-4-3-equation hyperbolic two phase flow models as it computes local thermodynamic equilibrium, this feature being important in many situations. In the frame of flows where only the liquid and vapor phases coexist, the building of such an equilibrium solver has been addressed in Orbey et al. (1998) [83], Allaire et al. (2007) [84], Faccanoni et al. (2012)[85] and LeMétayer et al. (2013) [72] on the basis of a highly non-linear algebraic model based on the saturation conditions, mixture mass and mixture energy definitions. This system may cause difficulties as a result of non-linearities and single phase bounds of pure liquid and pure vapor, where it becomes ill-posed.

Figure 2 . 1 :

 21 Figure 2.1: Schematic representation in a (x, t) diagram of the three waves present in the flow model (2.2.1).

.5. 1 )Figure 2 . 2 :

 122 Figure 2.2: The speed of sound of System (2.2.1) given by Eq. (2.4.1) is compared with Wood's sound speed, Eq. (2.4.3). Full view and close up. The thick lines represent Wood's sound speed. The dashed lines represent the augmented Euler's sound speed. The two-phase mixture is made of liquid water and air at atmospheric conditions.

Figure 2

 2 Figure 2.3:The isentrope of the liquid and the one of the gas are connected with a kinetic path corresponding to a mass transfer between the two states (liquid and vapor). The metastable states are immediately transformed into a mixture at equilibrium. The effective thermodynamic path is represented. The slope of the isentrope is purposely exaggerated in order to insist on the fact that this slope is weak but non-zero.

Figure 2 . 4 :

 24 Figure 2.4: Representation of a control volume in the flow model during the phase transition step in the context of a flow involving only a liquid and its own vapor.

  The first step is to check with pure fluid existence. For numerical reasons, pure fluid conditions are considered via ǫ → 0, typically on the order of 10 -8 . To do this, Y * l = ǫ and Y * l = 1 -ǫ are successively assumed. Under these assumptions, the pressures are computed by use of the equation of state for the mixture (2.3.5), p = p(v, e, Y l ), since v and e are invariant through phase transition. The associated temperatures are then computed through Eq. (2.3.6),

Figure 2 . 5 :

 25 Figure 2.5: Evolution of Y m l and Y e l with p (thick dashed and dash-dotted lines resp.) corresponding to Eqs. (2.6.4) and (2.6.5). The exact values of Y * l and p * are found at the crossing of the two lines ( ). Initial state (•): p = 1 atm, Y l = 0.2, T = T sat -30 K= 343 K. The triangles represent the value of Y m l ( ) and Y e l ( ) evaluated by the algorithm. Relative error between the exact solution Y * l and that obtained with the algorithm is indicated.

Figure 2 . 6 :

 26 Figure 2.6: Comparison of the present relaxation algorithm (thick lines) versus the iterative Newton's method (symbols). Shock tube test with a two-phase mixture involving a vanishing liquid phase. The dotted lines represent the solution without phase transition. The dashed lines represent the initial conditions: p l = 2 • 10 5 Pa, p r = 10 5 Pa, u l = u r = 0 m.s -1 , Y liq l = Y liq r = 0.01. Final time: t ≈ 0.5 ms. Mesh: 100 cells. For the sake of clarity, only 50 symbols out of 100 are plotted for the iterative Newton's method.

Figure 2 . 7 :

 27 Figure 2.7: Representation of a control volume in the flow model according to Dalton's law (left figure)and the separate phase approach (right figure). This illustration represents a liquid, its own vapor and the atmospheric air as a non-condensable gas. The two approaches are different as Dalton's law considers an ideal mixture of gases whereas the other option considers all the gas constituents as separate.

  species occupies the entire volume, p = N k=2 p partial, k : the mixture pressure is the sum of partial pressures, e = N k=2 y k e k : mixture internal energy definition.

  the total specific volume is the sum of fluid specific subvolumes, p = p k : pressure equilibrium among the chemical species, e = N k=2 y k e k : mixture internal energy definition.

  them the coefficient b k represents the covolume of the fluid. g k denotes the phase Gibbs free energy of fluid k, g k = h k -T s k with h k and s k respectively the specific enthalpy and entropy. c k denotes the speed of sound of fluid k.

  Instead of solving thermochemical equilibrium at constant v * = v, e * = e and Y * k≥3 = Y k≥3 , and computing (p * , T * , Y * 1 ), let us assume p * = p, T * = T and Y * k≥3 = Y k≥3 are constant, and v and e are varying. The thermochemical equilibrium problem is straightforward to solve analytically in these conditions: Case 1 T > T sat (p): the mixture is necessarily purely gaseous. We then have Y * 1 = 0.

Figure 2 . 9 :

 29 Figure 2.9: Equilibrium mass fractions obtained from water liquid/vapor, as a function of the air mass fraction. Conditions: atmospheric pressure, T=350 K. Dashed line: Y * 1 , dash-dotted: Y * 2 . The thick line represents the specific volume obtained for the mixture in these conditions.
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 6 [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF], we first assume Y * 1 = Y min , to check if the system has a solution without liquid. Under this assumption, pressure and temperature are computed by use of the mixture equation of state (2.8= p(v, e, Y ),T = T (v, e, Y ),since the mixture variables v and e are invariant through phase transition. Additionally, we compute the corresponding partial pressure for vapor Eq. (2.9.10), and compare it to the saturation pressure Eq. (2.8.16). If the partial pressure is below the saturation pressure, no liquid is present and the solution is Y * 1 = Y min and Y * 2 = Y max .

.10. 4 )

 4 Any mass fraction computed from this formula after the hyperbolic step will satisfy the mass conservation ∀(p, T ). Similarly, we can rewrite the specific mixture energy definition from System (2.10.2),Y e 1 (p, T ) = e -e g (p, T ) e 1 (p, T ) -e 2 (p, T ) , with e g (p, T ) = 1 -N k=3 Y k e 2 (p, T ) + N k=3Y k e k (p, T ).

Figure 2 . 10 :

 210 Figure 2.10: Illustration of the algorithm for the multicomponent phase transition solver. From light gray to dark gray: Y m (p * , T * ), Y e (p * , T * ), Y sat (p * , T * ). The exact solution to the problem is found at the intersection of the three surfaces. The value from hyperbolic step corresponds to the initial conditions of the algorithm: Y 2 = 2.Y * 2 (far from equilibrium) at p = 1 atm, T = T sat (p) -30 K = 343 K, and Y 3 = 0.1. Here, computations lead to Y * 2 = 0.1, Y m = 0.11, Y e = 0.09, Y sat = 0.03, so that the algorithm retains Y m , within 10% of the exact solution.

  .10.7) where Y 2 is the initial mass fraction (from the hyperbolic step), and Y m , Y e , Y sat are three estimates for the equilibrium Y * 2 ,

Figure 2 . 11 : 1 = Y right 1 = 0 . 1 , Y lef t 2 = Y right 2 = 0. 2 and Y lef t 3 = Y right 3 = 0 . 7 .

 21111012223307 Figure 2.11: Comparison of the present relaxation algorithm (thick lines) versus the iterative solver (symbols). Shock tube test with a two-phase mixture made of liquid water, vapor water and air. The dotted lines represent the solution without phase transition. The dashed lines represent the initial conditions: p l = 2 • 10 5 Pa, p r = 10 5 Pa, u l = u r = 0 m.s -1 , Y lef t 1

  of T = 293 K throughout the tube. The air mass fraction is initially set to Y 3 = 0.98 in the whole tube. The liquid and vapor mass fractions are then deduced as Y 1 ≃ 1.073 • 10 -2 and Y 2 ≃ 9.263 • 10 -3 in the left chamber and Y 1 ≃ 1.186 • 10 -3 and Y 2 ≃ 1.881 • 10 -2 in the right chamber. The results are shown at time t ≈ 1 ms in Fig. 2.12.

  Mass fractions from the previous test case are reversed by considering Y 3 = 10 -5 and T = 293 K initially throughout the tube, corresponding to a subcooled liquid. The following test considers a shock tube with an initial pressure ratio of 2. The liquid and vapor mass fractions are then deduced as Y 1 ≃ 0.9999899 and Y 2 ≃ 9.426 • 10 -8 in the left chamber and Y 1 ≃ 0.99989 and Y 2 ≃ 1.919 • 10 -7 in the right chamber. The results are shown at time t ≈ 1.5 ms in Fig. 2.13.

2 Figure 2 . 12 :

 2212 Figure 2.12: Comparison of the present relaxation algorithm (thick lines) versus the iterative solver (symbols). Shock tube test with a two-phase mixture with air in major proportions. The dotted lines represent the solution without phase transition. The dashed lines represent the initial conditions: p l = 2 • 10 5 Pa, p r = 10 5 Pa, u l = u r = 0 m.s -1 , Y lef t

2 ≃ 1 . 3 = Y right 3 = 0 . 98 .

 2133098 881 • 10 -2 and Y lef t Final time: t ≈ 1 ms. Mesh: 100 cells. For the sake of clarity, only 50 symbols out of 100 are plotted for the iterative method. Full liquid evaporation is correctly computed by both methods.

Figure 2 . 13 : 1 ≃ 0.9999899, Y right 1 ≃ 0.99989, Y lef t 2 ≃ 9 . 45 • 10 - 8 , Y right 2 ≃ 1 . 3 = Y right 3 = 10 - 5 .

 2131129451082133105 Figure 2.13: Comparison of the present relaxation algorithm (thick lines) versus the iterative solver (symbols). Shock tube test with a two-phase mixture mainly made of liquid water. The dotted lines represent the solution without phase transition. The dashed lines represent the initial conditions: p l = 2•10 5 Pa, p r = 10 5 Pa, u l = u r = 0 m.s -1 , Y lef t 1

Figure 2 . 14 : 1 = Y right 1 ≃ 2 = Y right 2 ≃ 1 .

 21411221 Figure 2.14: Comparison of the present relaxation algorithm (thick lines) versus the iterative solver (symbols). Double expansion test with a mixture mainly made of liquid water. The dotted lines represent the solution without phase transition. The dashed lines represent the initial conditions: p l = p r = 10 5 Pa, u l = -1 m.s -1 , u r = +1 m.s -1 , Y lef t 1

1 Figure 2 . 15 : 1 ≃ 1 . 1 ≃ 1 . 2 ≃ 9 . 2 ≃ 1 . 3 = Y right 3 = 0 . 98 .

 12151111292133098 Figure 2.15: Comparison of the present relaxation algorithm (thick lines) versus the iterative solver (symbols). Shock tube test with a two-phase mixture mainly made of air, computed on coarse (left figure) and fine (right figure) meshes to assess method robustness. The dashed lines represent the initial conditions: p l = 2 • 10 5 Pa, p r = 10 5 Pa, u l = u r = 0 m.s -1 , Y lef t 1

Figure 2 . 16 :

 216 Figure 2.16: Geometrical data for half the computational domain of the evaporating liquid jet.

2 Figure 2 . 17 :

 2217 Figure 2.17: Fragmentation of a liquid O 2 jet by a coaxial high-speed H 2 current. The results from Figs. b), c) and d) are from the same computation, whereas Fig. a) is taken at the same time, from a computation without phase transition. All results present mass fraction contours, on the same color map. Figs. a) and b) compare the liquid mass fraction of oxygen without and with phase transfer. Fig. d) shows the contour of vapor oxygen resulting from the liquid jet evaporation. Fig. c) represents the sum Y 1 + Y 2 (Fig. b+d), showing a total mass fraction of oxygen, to be compared to the case without mass transfer (Fig. a).

Figure 2 . 19 :

 219 Figure 2.19: Vapor mass fraction created during a 2D cylindrical gas-liquid explosive dispersal. The figure compares the results obtained with the 4-equation model (mechanical and thermal equilibria, top) and with the 7-equation model (total disequilibrium, bottom) after relaxation of the velocities, pressures, temperatures following the relaxation solvers presented in [72] and phase transition consideration through the relaxation method presented in this chapter. The results computed by both models are in close agreement.

pressure v = 1 /ρ isentrope c 2 < 0 Figure 2 . 20 :

 120220 Figure2.20: Thermodynamic path according to the van der Waals representation in the (p, v) plan alongside an isentropic curve. The square speed of sound c 2 = -v 2 ( ∂P ∂v ) s is well-defined in the pure liquid zone where the slope of the isentrope is negative as well as in the pure gas zone, but it is not defined in the two-phase zone.

  ,[START_REF] Furfaro | Modeling droplet phase change in the presence of a multi-component gas mixture[END_REF] [START_REF] Furfaro | Modeling droplet phase change in the presence of a multi-component gas mixture[END_REF]) or assumed stiff when the physical knowledge of the phase change kinetics is insufficiently documented (LeMétayer et al. (2013) [72],Chiapolino et al. (2017) [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF],[START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF],Chapter 2) or unnecessary.

. 4 )

 4 that is precisely the first Maxwell's relation, where f represents the Helmholtz free energy defined by, f = e -T s, where s denotes the specific entropy. With the help of the thermodynamic definition of pressure and entropy, p = -∂f ∂v T and s = -∂f ∂T v , identity (3.2.4) transforms to a more convenient expression linking the thermal EOS p(v, T ) and the caloric one e(v, T ), ∂e ∂v T = T ∂p ∂T v -p. (3.2.5)

. 44 )

 44 related calculations being given in Appendix C.1.

  Thanks to Eqs. (3.2.38), (3.3.1) and (3.3.3), the Gibbs free energy of a pure constituent expresses as,

.3. 9 )Relation ( 3 . 3 . 8 )

 9338 provides a unique value of the pressure for a given temperature and implicitly represents the theoretical saturated pressure as a function depending on the temperature. Numerical resolution is needed to compare the predictions with experiments, as will be examined later. When p ∞,1,k and b 1,k are set to zero, the preceding relation reduces to, ln p + p ∞,0,v = A + B + Ep T + C ln(T ) + D ln p + p ∞,0,l , (3.3.10)

Tables 3 .

 3 1 and 3.2 provide the associated parameters of the ENASG EOS (3.4.1), (3.4.2).

Figures 3 .

 3 Figures 3.1 and 3.2 compare the present theoretical predictions to experimental data at saturation for water and oxygen. The ENASG EOS (3.4.1) presents good agreement with liquid experimental data at saturation.

3 )Figure 3 . 1 :

 331 Figure 3.1: Comparison between experimental and theoretical saturation curves for liquid l and vapor v water. Symbols represent experimental data. The thick lines represent the theoretical saturation curves obtained with the Extended NASG EOS (ENASG) reducing to the ideal gas description for the vapor phase, Eqs. (3.4.1) and (3.4.2). The thin lines represent results obtained with the original NASG EOS also reducing to the ideal gas formulation for the vapor phase. p sat denotes the saturation pressure, L v the latent heat, h the specific enthalpy and ρ the density.

3 )Figure 3 . 2 :

 332 Figure 3.2: Comparison between experimental and theoretical saturation curves for liquid l and vapor v oxygen. Symbols represent experimental data. The thick lines represent the theoretical saturation curves obtained with the Extended NASG EOS (ENASG) reducing to the ideal gas description for the vapor phase, Eqs. (3.4.1) and (3.4.2). The thin lines represent results obtained with the original NASG EOS also reducing to the ideal gas formulation for the vapor phase. p sat denotes the saturation pressure, L v the latent heat, h the specific enthalpy and ρ the density.

  3.10) (see Appendix C.3). The NASG oxygen parameters are determined with N = 41 experimental saturation points in the temperature range T exp ∈ [60 -100] K. The results of the original NASG EOS (Le Métayer and Saurel (2016) [22]) are plotted as well in Figs. 3.1 and 3.2 for comparison. The corresponding parameters are given in Tables 3.1 and 3.2.

  Figure 3.3: The saturation curve is composed of the boiling and the dew curves separating the twophase mixture zone and the pure phase zones. Beyond the critical isotherm, there is no transition between the liquid and the gaseous state. The fluid is neither liquid nor gas, it is said to be supercritical. Phase transition can happen either through the saturation dome corresponding to liquid-vapor phase change, or through the critical isotherm corresponding to a pure-phase-to-supercritical-state transition.

Figures 3 .

 3 4, 3.5, 3.6 and 3.7 show results corresponding to the transition from pure liquid to the supercritical state as schematically represented in Fig. 3.3. As seen in Figs. 3.4, 3.5, 3.6 and 3.7, the liquid ENASG EOS (3.4.1) presents excellent agreement with experimental data. Passed the critical temperature T c , the ENASG EOS is also used until connection with the ideal gas EOS and yields good agreement as well.

hFigure 3 . 4 :

 34 Figure 3.4: Comparison between experimental and theoretical isobar for water. The symbols represent the experimental isobar p = 230 bar. Beyond the critical temperature T c = 646 K, the liquid transforms to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS, reducing to the ideal gas description for the supercritical phase, Eqs. (3.4.1), (3.4.2) and (3.6.3). The thin solid lines represent the original NASG EOS also reducing to the ideal gas formulation for the supercritical phase. The dashed lines represent the van der Waals (VdW) theoretical predictions and the dash-dotted lines represent the Soave-Redlich-Kwong (SRK) ones. The critical temperature is indicated with the dotted lines. From this temperature, the liquid ENASG EOS is extended and joins the ideal gas EOS (except for the sound speed). The temperature T 0 = 1000 K at which variable heat capacities are considered is indicated in dotted lines as well.

hFigure 3 . 5 :hFigure 3 . 6 :

 3536 Figure 3.5: Comparison between experimental and theoretical isobar for water. The symbols represent the experimental isobar p = 500 bar. Beyond the critical temperature T c = 646 K, the liquid transforms to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS, reducing to the ideal gas description for the supercritical phase, Eqs. (3.4.1), (3.4.2) and (3.6.3). The thin solid lines represent the original NASG EOS also reducing to the ideal gas formulation for the supercritical phase. The dashed lines represent the van der Waals (VdW) theoretical predictions and the dash-dotted lines represent the Soave-Redlich-Kwong (SRK) ones. The critical temperature is indicated with the dotted lines. From this temperature, the liquid ENASG EOS is extended and joins the ideal gas EOS (except for the sound speed). The temperature T 0 = 1000 K at which variable heat capacities are considered is indicated in dotted lines as well.

hFigure 3 . 7 :

 37 Figure 3.7: Comparison between experimental and theoretical isobar for oxygen. The symbols represent the experimental isobar p = 200 bar. Beyond the critical temperature T c = 154 K, the liquid transforms to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS, reducing to the ideal gas description for the supercritical phase Eqs. (3.4.1), (3.4.2) and (3.6.3). The thin solid lines represent the original NASG EOS also reducing to the ideal gas formulation for the supercritical phase. The dashed lines represent the van der Waals (VdW) theoretical predictions and the dash-dotted lines represent the Soave-Redlich-Kwong (SRK) ones. The critical temperature is indicated with the dotted lines. From this temperature, the liquid ENASG EOS is extended and joins the ideal gas EOS (except for the sound speed). The temperature T 0 = 400 K at which variable heat capacities are considered is indicated in dotted lines as well.
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 3839 Figure 3.8: Comparison between experimental and theoretical isobar for water. The symbols represent the experimental isobar p = 30 bar. Beyond the critical temperature T c = 646 K, the vapor transforms to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS, reducing to the ideal gas description for vapor and supercritical phases, Eqs. (3.4.1), (3.4.2) and (3.6.3). The thin solid lines represent the original NASG EOS also reducing to the ideal gas formulation. The dashdotted lines represent the van der Waals (VdW) theoretical predictions and the dashed lines represent the Soave-Redlich-Kwong (SRK) ones. The critical temperature is indicated with the dotted lines. The temperature T 0 = 1000 K at which variable heat capacities are considered is indicated in dotted lines as well.

Y

  k e k . System (3.7.1) considers implicitly mechanical and thermal equilibria. The thermodynamic equilibrium is reached through the instantaneous relaxation (ν → ∞) of Gibbs free energies g 1 = g 2 where the indexes 1 and 2 denote respectively the liquid and vapor phases (see[START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF],[START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF], Chapter 2, Section 2.7). The other constituents of the flow (N = 3 → N ) are considered as non-condensable gases. u represents the mixture centre of mass velocity and E the mixture total energy. System (3.7.1) is closed by a mixture equation of state made from mechanical and thermal equilibria. In the first place, let us considered gaseous flows transitioning to a supercritical state. When the critical temperature is reached, liquid is no longer present and the ENASG EOS is not to be used.Following the strategy ofChiapolino et al. (2017) [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF],[START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF] (Chapter 2, Section 2.8), two expressions of the mixture temperature can be found according to the definitions of the mixture mass and mixture energy,

. 2 )

 2 with Y k denoting the mass fraction of the chemical species k. In practical computations, gaseous mixture can be considered if Y 1 < ǫ with ǫ ≃ 10 -8 . In that case, k = 2 → N and the combination of Eqs. (3.7.2) and (3.4.1) leads to,

ρFigure 3 . 10 : 3 = 1 - 2 • 1 ≃ 10 - 8 and Y lef t 2 ≃ 1 . 9 • 1 ≃

 31031211082191 Figure 3.10: Shock tube test illustrating the transition from "pure" water vapor to supercritical state. The critical temperature is indicated with the dotted line. The thick lines represent the solution obtained with the mixture ENASG EOS reducing to Eq. (3.7.4) in the present example as liquid mass fraction is non-zero but in negligible proportions. The dashed lines represent the initial conditions. In the left chamber, air is initially in major proportions with Y lef t 3 = 1 -2 • 10 -7 , p = 30 bar and T = 800 K. Liquid and vapor mass fractions are deduced as Y lef t 1

  3.11, vapor water and air are present in negligible proportions and supercritical water undergoes expansion waves. Those induce pressure drop from 350 bar to about 226 bar. The final pressure then remains slightly above the critical one, p c = 220 bar. They also induce temperature drop from 655 K to about 641 K. The final temperature is consequently inferior to the critical one T c = 646 K resulting in transition from supercritical to liquid phase that is computed continuously. A configuration where liquid-gas interfaces are present is now considered. Phase change is illustrated on the evaporating liquid jet configuration detailed in Chiapolino et al. (2017) [19] (Chapter 2, Section 2.14, Fig. 2.16). In this last reference, the mixture EOS is made from the NASG EOS for each fluid (reduced to SG in this test) and is reconsidered in the following in the frame of the ENASG EOS. The conditions are typical of cryotechnic rocket engines during the ignition phase (for which the engine has not yet reached supercritical conditions). The flow consists of a coaxial liquid oxygen jet

  speed"[START_REF] Forestier | Solveur de type Godunov pour simuler les écoulements turbulents compressibles[END_REF] [START_REF] Forestier | Solveur de type Godunov pour simuler les écoulements turbulents compressibles[END_REF],[START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF] [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF],[START_REF] Lhuillier | On the quest for a hyperbolic effective-field model of disperse flows[END_REF] [START_REF] Lhuillier | On the quest for a hyperbolic effective-field model of disperse flows[END_REF]).
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 423 Two equations have been added and express the transport of the heights of the fluid layers that are assumed to vary as a function of pressure differentials (p k -p 0 ). p k denotes the thermodynamic pressure of fluid k, given by barotropic (and convex) equations of state p k (ρ k ). Example of such equation of state (EOS) is,

Figure 4 . 1 :

 41 Figure 4.1: Schematic representation in the (x, t) diagram of the six waves (4.2.10) present in the flow model (4.2.3) and emerging at a given initial discontinuity.

  3.1) is a local linearization of the non-linear flow model (4.2.3) around state W . The VFRoe solution is thus the exact solution of an approximate problem.
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 42 Figure 4.2: Schematic representation in the (x, t) diagram of the two extreme waves and the two contact waves considered for the transport of the two heights.

Figure 4 .

 4 Figure 4.4 shows the results with constant sound speed set to c k = 100. The same sound speed has been taken for both fluids for the sake of simplicity in this illustration. Also, two mesh resolutions are used in Fig. 4.4, a coarse one made of 100 cells (A) and a fine one made of 10, 000 cells (B).
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 44451 Figure 4.4: Comparison of the computed solutions with the present HLL-type Riemann solver (thick lines) versus the exact solution of the one-layer Saint-Venant equations (thin lines and symbols).Results on the left (A) use a 100-cell mesh while results on the right (B) use a 10, 000-cell mesh. The two plots use constant sound speed set to c k = 100 for both fluids. The dashed lines represent the initial conditions. For the sake of clarity, 50 symbols are plotted for the exact solution, shown at time t ≈ 2. First-order Godunov-type numerical scheme is used with CF L = 0.9. Computed results are shown at the same time in full lines. Results at left (A) show a curved line where the shock and expansion waves have already exited the domain. Same computation is rerun with 10, 000 cells (B) restoring the two waves inside the domain. All variables are in dimensionless units.

4 . 1 )

 41 , θ k must be greater than unit. θ k ∈ [2 , 5] seems to be a fair choice as it is low enough to control numerical diffusion and high enough to ensure stability. Indeed, as seen in Plot D of Fig.4.5, θ k = 2 provides accurate results whereas θ k = 10 (Plot E) and θ k = 50 (Plot F) show excessive numerical dissipation.

Figure 4 .

 4 Figure 4.6 repeats the same test with θ k = 2 and a 1000-cell grid. The Godunov method (4.3.18)

2 Figure 4 . 6 : 1 2

 2461 Figure 4.6: Comparison of the computed solution with the present HLL-type Riemann solver (symbols) versus the exact solution of the one-layer Saint-Venant equations (thick lines). The numerical system uses an artificial sound speed reading c k = θ k 1 2 gh k with θ k = 2. The dashed lines represent the initial conditions: h lef t

Figure 4 . 7 : 1 :

 471 Figure 4.7: Schematic representation of the test problem analyzing the effects of the fluid densities. A fluid layer with a Heaviside profile is set to motion under gravity effects and interacts with the lighter fluid initially above with a Heaviside profile as well.

Figure 4 .

 4 8 examines two different density ratios. Plots G and H consider ρ 1 = 1000 kg.m -3 and ρ 2 = 1 kg.m -3 , this situation being typical of water-air configurations while Plots I, J, K and L consider ρ 1 = 1000 kg.m -3 and ρ 2 = 990 kg.m -3 , a situation reminiscent of water-oil flows. Besides, two different values of h 1 are used. The left column of Fig. 4.8 considers initially h 1 = 4

Figure 4 . 8 :

 48 Figure 4.8: Influence of the density ratio between the two fluids. Two different density ratios are used: r = ρ 2 ρ 1 ≪ 1 and r = ρ 2 ρ 1 → 1. The computed solutions of the present HLL-type Riemann solver for the two-layer system are displayed in thick lines. The exact solutions of the one-layer Saint-Venant equations are shown in thin lines and symbols for comparison. System (4.2.3) uses an artificial sound speed reading ck = θ k 1 2 gh k with θ k = 2.The dashed lines represent the initial conditions. Final time: t ≈ 1 s. All results use a 1000-cell mesh. Second-order MUSCL-type numerical scheme is used with Sweby's limiter (β = 1.1, see Chapter 1, Section 1.5, Eq. (1.5.7), see also[START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]) and CF L = 0.5. For the sake of clarity, 50 symbols are plotted for the exact solutions of the single-layer model. On the column at left, the initial height is h 1 = 4 m and on the column at right h 1 = 10 -6 m. When the density ratio is small: r = ρ 2 ρ 1 ≪ 1, as in configurations G and H, the two-layer and single-layer models are in excellent agreement. Large differences appear when the density ratio increases as shown in configurations I, J, K and L.
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 4910510452052112211222 Figure 4.9: Schematic representation of the test problem comparing the computed solutions with the present HLL-type Riemann solver and those computed with the VFRoe method. The initial conditions are h lef t 1

Figure 4 .u 2 3 )Figure 4 . 10 : 1 = 0 . 5 m, h right 1 = 0 . 45 m, h lef t 2 = 0 . 5 m, h right 2 = 0.55 m, u lef t 1 = u right 1 = u lef t 2 = u right 2 = 1 = u right 1 = u lef t 2 = u right 2 =

 4234101051045205211221122 Figure 4.10 displays the results obtained with the HLL-type solver and the VFRoe method on a

Figure 4 .

 4 Figure 4.11 addresses the same test problem on a 10, 000-cell mesh, showing convergence to the same solution of both VFRoe and HLL. With refined mesh, the interfacial waves are clearly connected to a constant plateau spanning as time evolves. Besides the four-wave structure is clearly observable in the velocity plots.

u 2 1 )Figure 4 . 11 : 1 = 0 . 5 m, h right 1 = 0.45 m, h lef t 2 = 0 . 5 m, h right 2 = 0.55 m, u lef t 1 = u right 1 = u lef t 2 = u right 2

 21411105120521122 Figure 4.11: Comparison of the computed solution with the present HLL-type Riemann solver (thick lines) versus the computed solution with the VFRoe method (thin lines and symbols). The dashed lines represent the initial conditions: h lef t 1 = 0.5 m, h right 1

Figure 4 . 12 : 1 = 0 . 5 m, h right 1 = 0.45 m, h lef t 2 = 0 . 5 m, h right 2 = 0.55 m, u lef t 1 = u right 1 = u lef t 2 = u right 2 = 2 .

 4121051205211222 Figure 4.12: Comparison of the computed solution with the present HLL-type Riemann solver (thick lines) versus the computed solution with the VFRoe algorithm (thin lines and symbols). The dashed lines represent the initial conditions: h lef t 1

Figure 4 . 13 : 1 = 0 . 5 m, h right 1 = 0 . 45 m, h lef t 2 = 0 . 5 m, h right 2 = 0. 55 m, u lef t 1 = u right 1 = u lef t 2 = u right 2 = 2 .

 413105104520525511222 Figure 4.13: Comparison of the computed solution with the present HLL-type Riemann solver (thick lines) versus the computed solution with the VFRoe algorithm (thin lines and symbols). The dashed lines represent the initial conditions: h lef t 1

  3 and 2.4 of this last reference. The results are given in Fig. 4.14.

Figure 4 .

 4 Figure 4.14 shows results comparable to those of[START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF] [START_REF] Kurganov | Central-upwind schemes for two-layer shallow water equations[END_REF] with all mesh
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 415 Figure 4.15: Schematic representation of the test problem comparing the multidimensional interface approach and the one-dimensional two-layer shallow water model. A fluid layer with a Heaviside profile is set to motion under gravity effects and interacts with the lighter fluid initially above.

h 2 0Figure 4 . 16 :

 2416 Figure 4.16: Comparison of the one-dimensional solution (thin lines and symbols) of the present twolayer shallow water model (HLL-type solver, θ k = 2) versus the two-dimensional computation of the diffuse interface model of Saurel et al. (2009)[START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] (thick lines). The exact solution of the one-layer Saint-Venant equations is plotted (dotted lines) as well for comparison. The dashed lines represent the initial conditions. For the sake of clarity, 50 symbols are plotted for the two-layer solution. The column at left shows the results at time t = 5 s and the column at right shows the same results at time t = 8 s. For symmetry reasons, only half of the numerical domain is computed with the two-dimensional simulation. Both computations (two-layer and diffuse interface systems) use CF L = 0.8.

Figure 4 .

 4 Figure 4.17: Kelvin-Helmholtz instabilities observed during the descent of krypton due to gravity effects, g = -10 m.s -2 . The figure presents krypton volume fraction contours. The black rectangle represents the initial position of the gas. The results are shown at time t = 2 s and are computed with the diffuse interface model of Saurel et al. (2009)[START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] on an unstructured mesh made of about 510, 000 triangular elements. MUSCL-type method is used with the "sharpening-interface" method ofChiapolino et al. (2017) [START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] (Chapter 1) and CF L = 0.8. For symmetry reasons, only half of the numerical domain is computed.
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 453418419 Figure 4.18: Comparison of the one-dimensional solution (thin lines and symbols) of the present twolayer shallow water model (HLL-type solver, θ k = 2) versus the two-dimensional computation of the diffuse interface model of Saurel et al. (2009)[START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] (thick lines). Drag effects are included in the shallow water system with A I = 0.0003. For the sake of clarity, 50 symbols are plotted for the twolayer solution. The column at left shows the results at time t = 5 s and the column at right shows the same results at time t = 8 s. For symmetry reasons, only half of the numerical domain is computed with the two-dimensional simulation. Both computations (two-layer and diffuse interface systems) use CF L = 0.8.

m) u x (m.s - 1 )AFigure 4 . 20 :

 1420 Figure 4.20: Influence of the interfacial area in drag force between the two layers. The solutions of the present one-dimensional two-layer shallow water system (HLL-type solver, θ k = 2) are displayed in thin lines and symbols. The solution of the two-dimensional computation of the diffuse interface model of Saurel et al. (2009) [27] is shown in thick lines. Drag effects are included in the shallow water system with various values of the specific interfacial area A I . For the sake of clarity, 50 symbols are plotted for the two-layer solution. The results are shown at time t = 8 s. For symmetry reasons, only half of the numerical domain is computed with the two-dimensional simulation. Both computations (two-layer and diffuse interface systems) use CF L = 0.8. 1D and 2D computations are in good agreement with A I = 0.0002.

x

  Figure A.1: Air shock tube computation with and without contact-surface sharpening. The dashed lines represent the initial conditions: p lef t = 2 bar, p right = 1 bar, ρ lef t = 2 kg.m -3 , ρ right = 1 kg.m -3 , u lef t = u right = 0 m.s -1 . The full circle symbols • on the left graph represent the solution with Superbee limiter. The full circle symbols • on the right graph represent the solution when contact-surface sharpening is used in addition. The full lines represent the exact solution. Final time: t ≈ 1 ms. Mesh: 100 cells. CF L = 0.8.

(C. 1 . 4 )

 14 Analyzing Eq. (C.1.4), it appears that condition (C.1.1) (a) is satisfied unambiguously if p ∞,1 ≤ 0 and b 1 < γ. Equation (C.1.2) is now used and yields the following partial derivative,

-b 1 .

 1 (C.1.6) Analyzing Eqs. (C.1.5) and (C.1.6), it appears that the thermodynamic definition of the temperature is satisfied, T = ∂e ∂s v . With the help of (C.1.5), the second partial derivative is expressed as,

-b 1 .

 1 (C.1.7) Condition (C.1.1) (b) is then satisfied ∀ p ∞,1 and b 1 = 1. Also, from Eq. (C.1.3), relation (C.1.1) (c)

1 -b 1 .

 11 .1.1) (d) is then satisfied as well if b 1 < 1. Finally, from Eq. (C.1.4), relation (C.1.1) (e) reads,

1 -b 1 .(C. 1 . 10 ) 1 < 1 2 + γ 2 .

 1111012 Analyzing Eq. (C.1.10), condition (C.1.1) (e) is satisfied unambiguously if p ∞,1 ≤ 0, b 1 < γ and b As γ > 1, the most restrictive condition regarding the covolume remains b 1 < 1.The present formulation is then unambiguously convex if, p ∞,1 ≤ 0, p ∞,0 ≥ 0 and b 1 < 1.(C.1.11) 

Fluid N T c

  (K) p c (bar) v c (m 3 /kg) p ′ ∞,c (Pa) b c (m 3 /kg) c 0 (m/s) p 0 (bar) v 0 (m

p 0 = 1

 1 bar. According to the experimental data of water and oxygen at such low pressure, there exists a significant temperature range where the heat capacity (C v ) is quite constant. The parameter C v is thereby chosen as a constant, representative of the present thermodynamic conditions. The parameter γ is then determined as γ = Cp Cv with C p -C v = R/W according to Mayer's relation. In the previous relation, R denotes the universal gas constant and W the molar mass. The values reported in Tables 3.1 and 3.2 are consequently close to the expected triatomic (H 2 O) and diatomic (O 2 ) predictions for ideal gases (γ = 1.3079 ≃ 9/7 and C v = 1500 J/kg/K ≃ (7/2)R for water and γ = 1.3985 ≃ 1.4 and C v = 652 J/kg/K ≃ (5/2)R for oxygen).

  3.10). The isobar p 0 = 1 bar is used one more time with N = 542 points for water corresponding to the temperature range T exp ∈ [372.76 -1275] K and N exp = 579 points, T exp ∈ [90.062 -1000] K for oxygen.

p 3 )Figure C. 1 :

 31 Figure C.1: Comparison between experimental and theoretical saturation curves for liquid l and vapor v water. Symbols represent experimental data. The thick lines represent the theoretical saturation curves obtained with the liquid Extended NASG EOS (ENASG) Eq. (3.4.1) and its "alternative" but conditionally convex formulation for the vapor phase, Eq. (C.5.3). The thin solid lines represent the theoretical saturation curves obtained with the ENASG EOS reducing to the ideal gas description for the vapor species (Chapter 3, Table3.1). The dotted lines represent the theoretical saturation curves obtained with the NASG EOS (Chapter 3, Table3.1). p sat denotes the saturation pressure, L v the latent heat, h the specific enthalpy and ρ the density.

p 3 )Figure C. 2 :

 32 Figure C.2: Comparison between experimental and theoretical saturation curves for liquid l and vapor v oxygen. Symbols represent experimental data. The thick lines represent the theoretical saturation curves obtained with the liquid Extended NASG EOS (ENASG) Eq. (3.4.1) and its "alternative" but conditionally convex formulation for the vapor phase, Eq. (C.5.3). The thin solid lines represent the theoretical saturation curves obtained with the ENASG EOS reducing to the ideal gas description for the vapor species (Chapter 3, Table3.2). The dotted lines represent the theoretical saturation curves obtained with the NASG EOS (Chapter 3, Table3.2). p sat denotes the saturation pressure, L v the latent heat, h the specific enthalpy and ρ the density.

0) 2 .

 2 (D.1.3) The gρ 2 h 1 h 2 flux term present in System (4.2.3) is now considered in the equation of state of the first fluid. The hydrostatic pressure of the first fluid has been consequently reformulated in the relaxation term of the height equation as well.

System (D. 1 . 1 ) 4 ) 6 )λ 1 = u 1 , λ 2 = u 1 4 = u 2 , λ 5 = u 2 + c 2 2 + 1 2 gh 2 , λ 6 = u 2

 11461121425262 is expressed in primitive-variable formulation (without source terms) as,The wave speeds are solutions of det A(W ) -λI = 0 resulting in,(u 1 -λ) (u 2 -λ) (u 2 -λ) 2 -The six real and distinct eigenvalues of System (4.2.3) are recovered,

1 +

 1 . . . ,p 0 + h 2 ρ 2 g = (p 0 + h 2 ρ 2 g) (0) + ǫ (p 0 + h 2 ρ 2 g)(1) + . . . , (D.1.8) 

  tente de réduire ces distorsions en considérant des maillages fixes et des interfaces mobiles, traquées par des marqueurs Lagrangiens. Ceci est réalisé aux prix de limitations telle que la gestion de plusieurs solveurs d'écoulement, ou la distorsion des interfaces impliquant des singularités géométriques, résultant en d'importantes difficultés numériques.Pour progresser dans la direction de la simplicité et de la généralité, la méthode Level-Set[START_REF] Dervieux | A finite element method for the simulation of a Rayleigh-Taylor instability[END_REF] a été adaptée aux fluides compressibles et la méthode Ghost Fluid[START_REF] Fedkiw | A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method)[END_REF] a été utilisée pour déterminer un état thermodynamique approché dans les mailles de mélange, en particulier la pression. Pour éviter les complexités liées à la gestion du maillage avec les méthodes précédentes, l'interface est suivie implicitement via une fonction Eulérienne et deux jeux d'équations d'Euler sont utilisés pour stocker et faire évoluer les variables désirées de l'écoulement quand ceci est nécessaire, en particulier dans les mailles de mélange. La méthode Ghost Fluid est utilisée pour transférer les conditions limites aux interfaces. Dans ce contexte, une extrapolation spécifique permet une communication entre les deux jeux d' équations d'Euler. Bien que simple en apparence, cette méthode demande toujours des efforts afin d'améliorer sa robustesse dans des conditions d'écoulements sévères, pour maintenir la conservation et pour considérer une physique supplémentaire.La seconde famille de méthodes dédiées aux mailles de mélange est appelée "Méthodes des interfaces diffuses" (DIM). Deux sous-classes de DIM sont présentes dans la littérature. La première considère des interfaces physiquement diffuses ayant une structure visco-capillaire[START_REF] Cahn | Free energy of a nonuniform system. I. Interfacial free energy[END_REF]. Dans ce contexte, la résolution spatiale doit être plus petite que la largeur de l'interface, i.e. quelques nanomètres. De plus, l'équation d'état est prévue pour décrire le changement de phase entre un liquide et sa vapeur à l'aide d'une formulation de type cubique. À la connaissance des auteurs, cette approche n'a jamais montré sa capacité à décrire des interfaces séparant des fluides non-miscibles (eau et air par exemple).Ceci semble restreint aux simulations de changement de phase aux petites échelles.La seconde classe de DIM considère les mailles de mélange ayant une origine numérique et non physique. Les travaux pionniers dans cette direction ont été faits avec la méthode "Volume of Fluid" (VOF)[START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF] dans le cadre de fluides incompressibles. Une équation supplémentaire est ajoutée et le modèle adopte une description diphasique de l'écoulement avec des sous-volumes occupés par les phases et plusieurs équations de masse. L'extension de cette approche aux fluides compressibles a été réalisée dans Saurel and Abgrall (1999)[START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF] et[START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF].dérivées partielles (un modèle d'écoulement étendu) avec un solveur hyperbolique unique. Les interfaces sont capturées et non traquées ou reconstruites. Une telle approche est obligatoire pour la plupart des écoulements compressibles où les déformations des interfaces sont arbitrairement complexes.

  pour en citer quelques unes.La principale limitation de ces méthodes d'interfaces diffuses est liée à leur excessive diffusion numérique, typiquement quatre points et même plus lors des évolutions en temps longs. Dans certains cas, ceci peut devenir pathologique, s'il s'agit par exemple de distinguer la diffusion physique telle que la diffusion de masse avec la dissipation numérique. Ceci n'est pas problématique pour des écoulements rapides et transitoires où les interfaces sont en général maintenues suffisamment raides pendant une durée suffisante, mais cela devient problématique du moins pour les écoulements plus lents. Plusieurs contributions ont été promues pour maintenir ou restaurer des interfaces raides.[START_REF] Shyue | A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions[END_REF] [START_REF] Shyue | A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions[END_REF] adapta la méthode de reconstruction d'interface de[START_REF] Youngs | Time-dependent multi-material flow with large fluid distortion[END_REF] [START_REF] Youngs | Time-dependent multi-material flow with large fluid distortion[END_REF] à un modèle compressible d'interface diffuse. Pantano et ses collaborateurs (2010, 2013)[START_REF] Shukla | An interface capturing method for the simulation of multiphase compressible flows[END_REF],[START_REF] Tiwari | A diffuse interface model with immiscibility preservation[END_REF] adaptèrent la méthode de raidissement d'[START_REF] Olsson | A conservative level set method for two phase flow[END_REF] [START_REF] Olsson | A conservative level set method for two phase flow[END_REF] à un autre modèle d'interface diffuse.Kokh and Lagoutiere (2010)[START_REF] Kokh | An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model[END_REF] promurent une autre méthode basée sur un limiteur "downwind" (décentré aval). Shyue and Xiao (2014)[START_REF] Shyue | An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach[END_REF] examinèrent un autre limiteur, combiné avec une reconstruction de type tangente hyperbolique. Il est clair que ce domaine de recherche est très actif et que des directions variées sont examinées.Cependant, il n'existe à ce jour aucune méthode simple et efficace permettant de réduire la dissipation numérique sur des maillages non-structurés et pour des écoulements comportant un nombre arbitraire d'interfaces et de fluides. Ces deux derniers points sont pourtant essentiels à la vue des situations industrielles visées. La problématique de la capture des interfaces et ondes de contact pour les modèles de fluides compressibles a en conséquence été reconsidérée dans ce manuscrit. Une nouvelle méthode est développée au Chapitre 1 permettant de réduire considérablement la zone de capture des interfaces moyennant de simples mais subtiles modifications de code de calculs. Cette méthode se place dans le contexte de la méthode MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws), très employée dans les codes de production, et sur maillage non-structuré, cette caractéristique étant très importante pour les applications réelles. La méthode est également indifférente au nombre de fluides présents dans l'écoulement, ce qui constitue un autre atout majeur.

Chapitre 2 :

 2 premier ordre. Dans la même contribution, Sweby compléta la théorie TVD en introduisant la zone d'ordre deux qui est en fait délimitée par la fonction limiteur Superbee développée précédemment parRoe (1981) [START_REF] Roe | Some contributions to the modelling of discontinuous flows[END_REF]. Depuis, la majorité des limiteurs de flux reposent dans cette zone TVD d'ordre 2, la zone d'ordre 1 (région supérieure) étant inappropriée pour les champs continus et les ondes de choc.Cependant, leChapitre 1 s'intéresse en particulier à la capture numérique d'interfaces. Ces dernières sont représentées par des fonctions discontinues de type Heaviside et nécessitent en conséquence une attention particulière. Dans ce contexte bien précis, la zone TVD d'intérêt est reconsidérée dans ce manuscrit. Il s'avère alors que lorsqu'une discontinuité de type Heaviside comme par exemple une interface est considérée, la zone TVD d'ordre 2 n'est en réalité plus une limite et la zone d'ordre 1 (partie supérieure) devient la véritable restriction. Ceci est examiné au Chapitre 1 de cet ouvrage où un nouveau limiteur de flux dénommé "Overbee" est développé. Contrairement aux limiteurs conventionnels, la fonction "Overbee" est un limiteur TVD du premier ordre et est la pierre angulaire de la méthode de raidissement d'interface développée dans ce travail de thèse. Dans ce contexte, la fonction limiteur de toutes les variables de l'écoulement est mise à zéro à l'exception de la fraction volumique, discontinue à l'interface, où le nouveau limiteur "Overbee" est utilisé. Cette approche est inhabituelle dans le contexte de la méthode MUSCL où la majorité des limiteurs de gradients appartiennent à la zone TVD d'ordre 2. Le nouveau limiteur va au dela de cette zone d'ordre 2 et est donc inapproprié pour les chocs et les solutions continues. Cependant, il permet d'obtenir d'excellents résultats pour les champs discontinus de type Heaviside comme les fractions volumiques aux interfaces. La méthode de raidissement d'interface repose ainsi sur l'utilisation d'un nouveau limiteur de flux appartenant à la zone TVD d'ordre 1 (partie supérieure). Cette méthode est particulièrement simple et s'adapte aisément aux maillages non-structurés. De plus, cette dernière peut être utilisée dans d'autres situations impliquant la capture de discontinuités de type Heaviside, tel que le couplage fluide-solide indéformable (Carmouze et al. (2018) [115]).Ce travail a été publié dans un journal scientifique, Chiapolino et al. (2017)[START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF]. Dans le futur, l'adaptation de la méthode de raidissement d'interface incluant le changement de phase sera considérée. Solveurs rapides pour la détermination de l'équilibre thermodynamique liquide-gaz Le transfert de masse résultant en un changement de phase a également été considéré dans cet ouvrage. En effet sous certaines conditions, les interfaces matérielles peuvent être sujettes à des phénomènes de transition de phase. Ceux-ci sont d'une importance fondamentale dans de nombreuses activités industrielles. Leur connaissance et leur prise en compte dans les codes de calcul sont primordiales afin de reproduire les effets souhaités.Les écoulements dans les moteurs cryotechniques de lanceurs spatiaux sont caractérisés par leurs états multiphasiques, instationnaires et multidimensionnels qui viennent s'ajouter aux phénomènes de changement de phase, jouant un rôle primordial. Dans ce manuscrit, cette thématique est liée à l'étude du remplissage de chambres de combustion par un combustible cryogénique dans le cadre du nouveau lanceur spatial d'Ariane 6. Dans de telles circonstances, il est nécessaire de prédire non seulement l'état du fluide mais également les conditions thermodynamiques régnant au sein de la chambre de combustion à chaque redémarrage du moteur.Pendant la phase d'ignition (pour laquelle le moteur n'a pas encore atteint les conditions supercritiques), l'écoulement au sein de la chambre de combustion consiste en un jet d'oxygène liquide (LOX) encerclé d'un écoulement d'hydrogène (H 2 ) à grande vitesse. L'objectif de cette opération est de produire une réaction de combustion (non considérée dans ce document) au sein de la phase gazeuse (H 2 et O 2 ). De l'oxygène sous forme gazeuse est alors nécessaire mais est initialement absent de la chambre de combustion. Le changement de phase de l'oxygène liquide en vapeur est alors la seule source d'oxygène sous forme gazeuse. D'un point de vue physique, la transition de phase s'effectue lorsqu'un fluide atteint un état dit "métastable". Cette terminologie fait référence à un déséquilibre thermodynamique. Ceci peut arriver:

  de masse si l'aire interfaciale est supposée très petite, ou au contraire un transfert de masse instantané (équilibre thermodynamique local) si l'aire interfaciale est supposée très grande. Lorsqu'une telle hypothèse est faite, un solveur d'équilibre approprié est requis.La Chapitre 2 de ce manuscrit entreprend la construction d'un tel solveur à destination de modèles hyperboliques hors équilibres comme celui de[START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF]. Toutefois, la méthode proposée n'est pas restreinte à ce modèle seul mais est aussi valide pour des modèles réduits tels que le modèle à 5 équations de[START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] et son extension aux écoulements cavitants,[START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF] [START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF], Le Martelot et al. (2013)[START_REF] Le Martelot | Liquid and liquid-gas flows at all speeds[END_REF]. Les modèles HRM (Homogeneous Relaxation Model) et HEM (Homogeneous Equilibrium Model) de Downar-Zapolski et al.(1996) [START_REF] Downar-Zapolski | The non-equilibrium relaxation model for one-dimensional flashing liquid flow[END_REF] et[START_REF] Barret | Schemes to compute unsteady flashing flows[END_REF] [78] sont aussi des versions réduites de ces modèles avec respectivement 4 et 3 équations. Le solveur de changement de phase développé au cours de cette thèse s'applique également à ces formulations.Le lien théorique entre tous ces modèles a été dérivé sur la base de l'analyse asymptotique de[START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF] [START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF] et plus systématiquement dansLund (2012) [START_REF] Lund | A hierarchy of relaxation models for two-phase flow[END_REF]. Principalement, le solveur de changement de phase peut être utilisé chaque fois que les effets de compressibilité des phases liquide et gazeuse sont considérés. Tous les modèles mentionnés ci-dessus considèrent ces effets et ceux-ci sont responsables de la nature hyperbolique des équations. Les modèles à 5, 4 et 3 équations sont capables de représenter des mélanges de fluides évoluant respectivement en équilibre mécanique, mécanique et thermique, et en équilibre thermodynamique. Ces derniers impliquent une seule vitesse (le déséquilibre des vitesses est en effet absent) et sont en conséquence restreints principalement pour des applications spécifiques tels que, -Les écoulements cavitants car il apparaît impossible en pratique de déterminer l'aire interfaciale et par conséquent le glissement entre phases. Des simulations de tels écoulements sont données dans Singhal et al. (2002) [80], Petitpas et al. (2009) [81], Le Martelot et al. (2013) [76] et vapeur pure et un mélange liquide-vapeur. Cette loi d'état, comme toutes les autres équations cubiques, est utilisée pour clore les modèles d'écoulements basés sur les équations de conservation de la masse de mélange, du mouvement du mélange et de l'énergie de mélange. Les équations d'Euler font partie des options pertinentes comme d'autres plus sophistiquées visant à décrire les effets capillaires, à titre d'exemple: le modèle de Cahn and Hiliard (1958) [34]. Dans ce contexte, l'état thermodynamique est déterminé à partir de deux variables internes seulement, la densité et l'énergie interne du mélange ou alternativement la densité et la température en fonction de la formulation choisie des équations. Cette approche semble en conséquence simple mais implique de sérieuses difficultés et limitations: -La première et certainement la plus évidente et restrictive est liée à l'incapacité des équations d'état cubiques à décrire un liquide et un gaz incondensable comme par exemple les écoulements présentant des interfaces eau-air. La thermodynamique de ces deux milieux étant considérée comme discontinue, des traitements spécifiques (théoriques et numériques) ont été proposés.Dans ce contexte, les méthodes Arbitrary Lagrangian Eulerian[START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF] [START_REF] Hirt | An arbitrary Lagrangian-Eulerian computing method for all flow speeds[END_REF], Interface Reconstruction[START_REF] Youngs | An interface tracking method for a 3D Eulerian hydrodynamics code[END_REF] [START_REF] Youngs | An interface tracking method for a 3D Eulerian hydrodynamics code[END_REF]), Front Tracking[START_REF] Glimm | Three-dimensional front tracking[END_REF] [START_REF] Glimm | Three-dimensional front tracking[END_REF]), Level-Set[START_REF] Fedkiw | A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method)[END_REF] [START_REF] Fedkiw | A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method)[END_REF]) font partie des options possibles. Une autre approche porte sur l'utilisation de modèles continus avec des variables internes supplémentaires comme les fractions volumiques et massiques et des lois d'état étendues. Le système de[START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] [START_REF] Kapila | Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations[END_REF] fait partie de ces modèles tout comme son extension au changement de phase[START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF] [18]). Avec ces formulations, les mêmes équations sont résolues partout de façon routinière, dans le liquide pur, le gaz pur et à l'interface qui devient une zone diffuse. Ces modèles sont envisagés dans les chapitres qui précèdent. Avec cette approche, les modèles hyperboliques avec relaxation sont considérés et chaque phase évolue dans son propre volume et avec sa propre thermodynamique. En particulier, il n'est pas nécessaire d'utiliser des formulations cubiques.Quand le changement de phase apparaît, ceci se fait par le biais de termes de transfert de masse qui peuvent être caractérisés à taux fini[START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF] [START_REF] Saurel | Modelling phase transition in metastable liquids: application to cavitating and flashing flows[END_REF], Furfaro and Saurel (2016)[START_REF] Furfaro | Modeling droplet phase change in the presence of a multi-component gas mixture[END_REF]), ou supposés instantanés lorsque la connaissance de la cinétique de changement d'état est inconnue, pas assez documentée ou simplement non-nécessaire (LeMétayer et al. (2013) [72],Chiapolino et al. (2017) [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF],[START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF]).

Chapitre 4 :

 4 tions aux limites. Par exemple, le couplage entre l'enthalpie d'arrêt, l'invariance de l'entropie et les invariants de Riemann permet la modélisation d'entrées ou de sorties subsoniques. Cependant ces derniers sont définis correctement seulement si l'équation d'état est bien posée. La seconde difficulté liée au manque de convexité des équations cubiques réapparaît donc à ce niveau. De plus, les expressions des invariants de Riemann peuvent être inextricables avec ce type de lois d'état. Cette liste d'arguments motive le travail entrepris au Chapitre 3 de ce manuscrit où une version étendue de l'équation d'état Noble-Abel-Stiffened-Gas (NASG, Le Métayer and Saurel (2016) [22]) est développée afin d': -Améliorer la représentation de la thermodynamique des phases liquide, vapeur et supercritique. La combinaison de la loi d'état du liquide et celle de la vapeur doit représenter aussi précisément que possible la zone diphasique. -L'équation d'état de chaque phase doit être convexe dans son domaine respectif. -L'équation d'état doit être aussi simple que possible tout en restant précise afin de simplifier son implémentation. Il existe une équation convexe, et donc bien posée, liant richesse du point de vue physique et simplicité: la récente loi d'état Noble-Abel-Stiffened-Gas (NASG, Le Métayer ans Saurel (2016) [22]). L'équation d'état NASG est une combinaison de la loi d'état Noble-Abel (NA), aussi appelée équation du covolume, et de la loi d'état Stiffened-Gas (SG), décrite dans Harlow and Amsden (1971) [122]. Cette dernière correspond à une linéarisation d'une loi d'état de type "Mie-Grüneisen" autour d'un point de référence. La combinaison de ces deux lois d'état (NA et SG) permet d'améliorer considérablement les prédictions de la densité d'un liquide en prenant en compte les effets répulsifs au travers du covolume (NA) en complément de ceux déjà présents dans la représentation Stiffened-Gas (attraction et agitation). Les principales forces moléculaires sont alors représentées par la description NASG. Ses prédictions sont en bon accord avec les données expérimentales mais seulement dans une gamme de température restreinte, [300 -500] K pour l'eau liquide à saturation par exemple. Cette limitation est liée aux effets attractifs et répulsifs qui sont considérés constants dans cette représentation. En effet, cette hypothèse n'est plus valable lorsque de larges variations de pression et de température sont considérées. Le Chapitre 3 de cette thèse tente alors d'étendre la loi d'état NASG en considérant des effets attractifs et répulsifs variables afin d'améliorer son champ de validité. En effet, dans la direction des écoulements supercritiques, de fortes variations en température et en pression sont présentes. La loi d'état NASG est alors intéressante et est une alternative aux équations cubiques. Cependant cette équation d'état, dans sa forme originale, permet seulement de décrire de façon satisfaisante les écoulements diphasiques évoluant dans des conditions sous-critiques et dans une gamme de température réduite. Une extension est alors nécessaire et est entreprise dans ce manuscrit. Ainsi l'équation d'état ENASG est développée au Chapitre 3 ("E" traduit "Extended"). Il s'agit d'une équation d'état convexe capable de décrire de façon satisfaisante un liquide dans de nombreuses et variées conditions thermodynamiques. Son intérêt repose sur la description des effets attractifs et répulsifs, présents dans les milieux condensés, qui évoluent respectivement avec la température et la densité contrairement à la loi d'état NASG où ces effets demeurent constants. De plus, la transition de la phase liquide en fluide supercritique semble possible et continue avec cette nouvelle formulation. Les thermodynamiques des phases liquide et vapeur doivent être combinées correctement afin de reproduire le diagramme de phase ainsi que ses propriétés pertinentes comme la chaleur latente de changement de phase par exemple. La détermination des différents paramètres de l'équation d'état est également discutée au Chapitre 3. Ce travail a été publié dans un journal scientifique, Chiapolino and Saurel (2018) [23]. Afin de préserver la convexité de la formulation lors de la description du gaz, la nouvelle loi d'état ENASG est réduite en équation d'état des gaz parfaits. En conséquence, elle présente une description imprécise de la vapeur à l'approche du point critique. Ceci constitue cependant une perspective de recherche pour le futur. La prise en compte des capacités calorifiques variables avec la température est alors aisément considérée, rendant l'équation d'état du gaz capable de décrire le fluide supercritique à des températures élevées. Dispersion de fluides non-miscibles sur de grandes échelles de temps et d'espace Dans un autre contexte, la problématique de la dispersion de fluides non-miscibles sur de grandes échelles de temps et d'espace a également été abordée dans ce manuscrit. En effet, ceci correspond à une thématique intéressant les communautés industrielles notamment celles des Risques et de la Sûreté. De nombreuses situations impliquant la dispersion de fluides sur de grandes échelles de temps peuvent se produire dans de grands espaces urbains ou naturels. La dispersion de gaz denses est une situation d'un intérêt particulier. Dans de telles circonstances, les gaz denses et potentiellement toxiques peuvent être dispersés sur des kilomètres et entraîner de sévères conséquences. Du point de vue de la modélisation et de la simulation numérique, la difficulté dans ce contexte est d'obtenir des résultats relativement précis pour un temps de calcul raisonnable. Les modèles de type "shallow water" bi-couche sont alors très attractifs. En effet ceux-ci permettent d'obtenir des résultats 2D mais imitant les effets 3D obtenus par un modèle multi-fluide conventionnel. Le gain attendu en temps de calcul dans ce cas est alors considérable. Les modèles de type "shallow water" bi-couche (ou multi-couche) sont particulièrement intéressants pour certains cas limites d'écoulements multi-fluides à densités variables séparés par des interfaces presque horizontales. Ce type de formulation concerne la dynamique de fluides incompressibles s'écoulant sous l'effet de la gravité. Ces modèles peuvent en outre décrire par exemple:

  Une seconde difficulté apparaît quant à la présence de termes non-conservatifs dans les équations de la conservation du mouvement. Le Chapitre 4 de ce manuscrit entreprend ces problématiques et propose des solutions.Dans le cadre d'équations moyennées ou homogénéisées en mécanique des fluides, le problème lié à l'hyperbolicité des formulations théoriques apparaît dans différents types de modèles. Les modèles diphasiques en déséquilibre en sont un exemple. Seules quelques formulations semblent bien posées dans ce contexte, le modèle de[START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF],[START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF], Saurel et al. (2017)[START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF]. Il existe principalement deux solutions pour s'affranchir de ce problème.-Considérer les phases comme compressibles et utiliser des procédures de relaxation[START_REF] Lallemand | Pressure relaxation procedures for multiphase compressible flows[END_REF]. Cette approche implique la propagation du son dans les phases et est particulièrement efficace dans de nombreuses situations. Cette stratégie a été adoptée dans les deux dernières références mentionnées ci-dessus.-Considérer les effets turbulents dans les phases. Ceux-ci résultent en l'apparence d'une vitesse du son "turbulente"[START_REF] Forestier | Solveur de type Godunov pour simuler les écoulements turbulents compressibles[END_REF] [101], Saurel et al. (2003) [102], Lhuillier et al. (2013) [103]. Dans le contexte des modèles "shallow water", ces effets ont été étudiés dans Richard and Gavrilyuk (2012) [104] et Gavrilyuk et al. (2016) [105]. Dans ce manuscrit, la première méthode est adoptée et les fluides sont considérés faiblement compressibles. Ceci résulte en un modèle strictement hyperbolique présenté au Chapitre 4. Dans la limite instantanée de relaxation des pressions, le modèle "shallow water" bi-couche conventionnel mais non-hyperbolique est retrouvé. Cette stratégie est semblable à l'approche développée par Abgrall and Karni (2009) [106] à la différence que des termes supplémentaires en pression sont présents dans la nouvelle formulation. Cette dernière donne également une nouvelle interprétation de l'approche de relaxation qui est maintenant basée sur les effets de compressibilité.La seconde problématique résidant en la présence de termes non-conservatifs dans les équations de conservation du mouvement est également abordée au Chapitre 4. En analysant la structure du problème de Riemann, il s'avère que des constantes locales apparaissent aux endroits où la dérivée de la fonction Heaviside émerge. En conséquence, les produits non-conservatifs deviennent localement bien définis et une forme conservative locale est obtenue. Cette propriété est exploitée dans un solveur de Riemann de type HLL.La précision du nouveau solveur de type HLL est vérifiée en comparant ses résultats avec ceux obtenus par[START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF] et avec ceux obtenus avec un solveur basé sur la méthode VFRoe de[START_REF] Gallouet | Un schéma de Godunov approché[END_REF] [START_REF] Gallouet | Un schéma de Godunov approché[END_REF]. Cette dernière est en effet capable de considérer des systèmes conservatifs et non-conservatifs. Comme présenté au Chapitre 4, le nouveau modèle "shalow water" bi-couche et le nouveau solveur de type HLL montrent des résultats de grande précision et sont exempt d'oscillation.La formulation théorique développée dans ce travail de thèse ainsi que sa résolution numérique constituent alors une stratégie intéressante pour la simulation de la dispersion de gaz denses sur de grandes échelles de temps et d'espace. De plus l'extension à un nombre arbitraire de couches semble possible avec la nouvelle formulation et sera réalisée dans le futur. Ce travail a également résulté en une publication scientifique,Chiapolino and Saurel (2018) [START_REF] Chiapolino | Models and methods for two-layer shallow water flows[END_REF]. Le modèle est pour le moment restreint au cas 1D mais son extension au cas 2D sera nécessaire. La considération des effets de la topographie, la friction avec le sol et la création d'aire interfaciale au travers de la modélisation de la turbulence font également partie des perspectives futures.Le contenu global de ce manuscrit apparaît alors intéressant pour la communauté "CFD" travaillant avec les écoulements diphasiques. Les différents projets entrepris au cours de ce travail de recherche utilisent déjà les outils numériques développés dans cette thèse et ce de façon routinière. Au prix de quelques répétitions, chaque chapitre est pratiquement indépendant et possède de nombreuses références. Le lecteur peut alors choisir de commencer à lire cet ouvrage depuis le milieu ou sauter directement au dernier chapitre.

  

  

  n+1 and (ρE) n+1 are already updated at the end of the first hyperbolic step. The pressure relaxation step provides the updates of the volume

	fractions α n+1 k	and the energy reset step restores thermodynamic compatibility between the EOS

(1.2.9), the mixture energy definition (1.2.11) and the phase EOSs (1.2.18),

  .3.4) Superscript n denotes the current time step. During this step the gradients ∇W n (P i ) and ∇W n (P j ) are computed with the method recalled in Section 1.4. The primitive variables W are preferred to

quasi-conservative ones U as they preserve uniform velocity and pressure at interfaces. Extrapolation (1.3.3) and (1.3.4) yields a second-order-in-space discretization. At this time, reconstructed variables are available at left W n L (P ij ) and right W n R (P ij ) of the cell faces.
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3: Initial conditions of the underwater explosion test.

Table 2 .

 2 

1: Stiffened-Gas coefficients for water determined in the temperature range [300 -500] K. These parameters are used in the computational examples (Figs. 2.5, 2.6 and 2.8) of the present chapter. With the mixture thermodynamic closure (2.2.2), it is straightforward to derive the following analytical relations for the mixture temperature, energy and pressure, that correspond to the mixture EOS:

  .8.14) It then appears that Eqs. (2.8.10) and (2.8.14) are exactly the same. Consequently, when several ideal gases are present, the two mixture models (Dalton's law and separate phases) assuming thermal and mechanical equilibria are strictly equivalent. This is an essential observation for the determination of the mixture equation of state of the present 4-equation model.

Table 2

 2 

	Coefficients	Liquid water Water vapor	air
	C p (J/kg/K)	4285	1401	1007
	C v (J/kg/K)	3610	955	719
	γ	1.19	1.47	1.4
	P ∞ (Pa) q (J/kg) q ′ (J/kg/K)	7028 × 10 5 -1177788 0	0 2077616 14317	0 0 0
	b (m 3 /kg) W (g/mol)	6.61 × 10 -4 18	0 18	0 29
	Table 2.2: Noble-Abel-Stiffened-Gas (NASG) coefficients for water and air determined in the temper-
	ature range [300 -500] K.			

.2. In the same table, the coefficients for air 2 are given (in the frame of the ideal gas assumption).

These parameters are used in the following computational examples. A comparison between the NASG EOS and experimental data is displayed in Fig.

2

.8, showing good agreement.

  .8.[START_REF] Hank | Modeling blast waves, gas and particles dispersion in urban and hilly ground areas[END_REF] Although not trivial, Eq.(2.8.22) ensures the strict positivity of the mixture pressure p: if Y 1 = 1, both a and c are strictly positive leading to p > (b + |b|)/a. The mixture pressure is then strictly positive. When Y 1 = 1, a > 0 and c = 0, and the strict positivity of the pressure is less trivial to demonstrate. However, combining Eqs.(2.8.19) and (2.8.23) in this limit leads to b > 0, and consequently p > 0, where p follows the NASG EOS for the pure liquid phase. Let us add that when

	Y 1 = 0 (absence of liquid), the pressure equation (2.8.22) reduces to
	p =	e -v	q	( Cp -Cv ) Cv	,
	which after substituting e = N k=2 Y				

k e k , and noticing that ( Cp -Cv ) = N k=2 Y k R/W k for ideal gases, leads to,

  Computation of the liquid mass fraction at equilibrium Y * 1 is done according to the Minmod-like procedure Eqs. (2.10.7), (2.10.8) using Eqs. Y m (2.10.4), Y e (2.10.5), Y sat (2.10.6), and the EOS (2.8.19).

Table 2 .

 2 .3. 3: Stiffened-Gas coefficients for the simulation of the evaporating liquid jet.The 2D computations are carried out on a simplified geometry given in Fig.2.16.

		Coefficients	Liquid phase (O 2 ) Vapor phase (O 2 ) Hydrogen (H 2 )
		C p (J/kg/K)	1702		780	14256
		C v (J/kg/K)	695		531	10183
		γ	2.45		1.47	1.4
		P ∞ (bar)	1062		0		0
		q (J/kg) q ′ (J/kg/K)	-258000 0	6900 -9280	-1.2 × 10 6 0
			G				H
	E		F			
	D		C			
	A	B					I
		X (abscissa) (mm) Y (mm)	X(abscissa) (mm) Y (mm)
		A	-20	1.75	E	-20	8
		B	-12	1.75	F	0	8
		C	-2	2.5	G	0	40
		D	-20	2.5	H	100	40

  Expression of the specific entropy is mandatory to express the Gibbs free energy, a key function to address phase transition. The entropy formulation must fulfill the compatibility relation,

		∂ ∂p	∂g ∂T p T	=	∂ ∂T	∂g ∂p T p	,	(3.2.23)
	that is precisely the second Maxwell's relation, where g represents the Gibbs free energy defined by,
			g = h -T s,
	where h represents the specific enthalpy. As the thermodynamic definition of entropy and specific
	volume implies s = -∂g ∂T p	and v = ∂g ∂p T	, identity (3.2.23) transforms to a more convenient
	expression,						
			∂s ∂p T	= -	∂v ∂T p	.	(3.2.24)

Table 3 .

 3 1: Extended NASG (ENASG) coefficients for water. The NASG parameters are also given and determined with the method given in Le Métayer and Saurel (2016)[START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF] except for the liquid reference entropy q ′ that is computed with the NASG reduction of Eq. (C.3.10) (see Appendix C.3). The NASG water parameters are determined with N = 201 experimental saturation points in the temperature range T exp ∈ [300 -500] K.

	Coefficients	ENASG Liq	ENASG gas	NASG Liq	NASG gas
	γ	1.0147	1.3079	1.1807	1.5377
	C v (J/kg/K)	4014	1500	3630	856
	b 1 b 0 (m 3 /kg) p ∞,1 (Pa/K) p ∞,0 (Pa)	-0.6050 1.5196 × 10 -3 -471025 307078403	0 0 0 0	0 6.8428 × 10 -4 0 664961465	0 0 0 0
	q (J/kg) q ′ (J/kg/K)	-1112426 -22049	1947630 1136	-1178154 -10742	2176064 4863
	Coefficients	ENASG Liq	ENASG gas	NASG Liq	NASG gas
	γ	1.0281	1.3985	1.6610	1.4730
	C v (J/kg/K)	1535	652	1016	548
	b 1	-0.6721			

Table 3 .

 3 3: Parameters of the NASA polynomial expression[START_REF] Mcbride | Coefficients for Calculating Thermodynamic and transport Properties of Individual Species[END_REF] for the heat capacity at constant pressure, Eq. (3.6.2).

Table 4 .

 4 2: Initial conditions of the test problem comparing the multidimensional interface approach and the one-dimensional two-layer shallow water model. γ k represents the thermodynamic polytropic coefficient of fluid k used in the compressible two-phase flow model.

	10 -6	1	10	3.506	1.29	1.67 1.4

  1.2) However the relation between p sat (T * ) and T * ,ln (p sat + p ∞,v ) = A + B + E p sat T sat + C ln (T sat ) + D ln (p sat + p ∞,l ) , (B.1.3)is non-linear and no analytical relation can be found. An additional equation is consequently added

	to System (B.1.2).
	It is convenient to use a reference state defined with the other NASG or SG coefficients that have
	been determined via theoretical equations and experimental data (see Le Métayer et al. (2004) [53],

  1.3) Analyzing Eqs. (3.2.40) and (C.1.3), it appears that the thermodynamic definition of the pressure is satisfied, p = -∂e ∂v s . Continuing the calculations, the second derivative reads,

	∂ 2 e ∂v 2 s
	exp

  .1.8) Condition (C.1.1) (c) is then unambiguously satisfied and defined if p ∞,1 ≤ 0 and b 1 = 1. Besides, combining Eqs. (C.1.4), (C.1.7) and (C.1.8) leads to the next relation,

	∂ 2 e ∂s 2	v	∂ 2 e ∂v 2	s	-	∂s ∂	∂v s v ∂e	2

  The different functions of common use read,

	This section aims at verifying that those fundamental relations are satisfied with the ENASG formu-
	lation. Using Eqs. (3.2.18) and (3.2.38), the next relation directly arises,		
	∂s										
	∂p T										
	a) c)	∂s ∂p T ∂T ∂v s	= -= -	∂v ∂T p ∂p ∂s v	, ,	b) d)	∂p ∂T v ∂T ∂p s	= =	∂s ∂v T ∂s p ∂v	, .	(C.2.1)

Table C .

 C 2: Reference state values used for the determination of liquid ENASG coefficients (continued).

										3 /kg)
	H 2 O	374 646.16	221	0.0025101	100	10 -6	1552.1	1	0.0010182
	O 2	101 154.36	50	0.0019522	100	10 -6	1065.7	1	0.00080871
	Table C.1: Reference state values used for the determination of liquid ENASG coefficients.
		Fluid T H 2 O 300.16	3570.2	0.0010035	113.23	0.0009125
		O 2	70.631	6684.7	0.00080952	-166.823	0.000769

ref (K) p ref (Pa) v ref (m 3 /kg) e ref (kJ/kg) b ref (m 3 /kg)

The Lambert W function is defined as z = W (ze z ).

Note that we only consider mass transfer between liquid and vapor, so the reference energies of the other gas components have no importance. If other mass transfers are to be considered (between gas species), reference energies have to be set appropriately.

http://webbook.nist.gov/chemistry/
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The Noble-Abel-Stiffened-Gas (NASG) equation of state (Le [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF] [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF]) is extended to variable attractive and repulsive effects to improve the liquid phase accuracy when large temperature and pressure variation ranges are considered. The transition from pure phase to supercritical state is of interest as well. The gas phase is considered through the ideal gas assumption with variable specific heat rendering the formulation valid for high temperatures. The liquid equationof-state constants are determined through the saturation curves making the formulation suitable for two-phase mixtures at thermodynamic equilibrium. The overall formulation is compared to experimental characteristic curves of the phase diagram showing good agreement for various fluids (water, oxygen). Compared to existing cubic equations of state the present one is convex, a key feature for computations with hyperbolic flow models.

The thermodynamics of the liquid and vapor phases must be combined correctly to reproduce the phase diagram and relevant properties, such as the latent heat of phase change and saturation pressure for example. Building of appropriate EOSs in this direction was done by Le [START_REF] Métayer | Elaborating equations of state of a liquid and its vapor for two-phase flow models; élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques[END_REF] [START_REF] Métayer | Elaborating equations of state of a liquid and its vapor for two-phase flow models; élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques[END_REF] and Le [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF] [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF] with extended "Stiffened-Gas" (SG) formulations.

In the present contribution, the proposed EOS is also meant to describe transitions from pure fluids to supercritical state. Such transition is indeed essential in some industrial applications such as flows evolving in combustion chambers of cryotechnic rocket engines as well as combustion systems of modern automotive engines for the sake of reduced pollutant emissions and fuel consumption.

The determination of the corresponding EOS parameters is of interest as well. For gases, the new formulation reduces to the ideal gas description. Variable heat capacities can easily be considered with such formulation making the equation of state able to deal with supercritical fluids at high temperatures.

This chapter is organized as follows. The determination of the novel liquid EOS is described in Section 3.2. Among the different relations, the Gibbs free energies of the liquid-vapor couple provide the saturation conditions. Those latter ones are developed in Section 3.3 and the overall formulation is summarized in Section 3.4. Experimental and theoretical curves are compared in Section 3.5, considering water and oxygen at saturation. The abilities of the proposed EOS are illustrated in Section 3.6 with transitions from sub to supercritical state. Practical applications are illustrated in Section 3.7.

Extended NASG EOS

The following Extended NASG EOS (ENASG) is considered as a postulate,

where p, T , v, e and q represent respectively, the pressure, temperature, specific volume, specific internal energy and reference energy of a corresponding single phase fluid. q and γ are parameters considered as constant coefficients and are meant to be characteristics of the thermodynamic properties of the fluid. Note that in this formulation, we are yet to define γ as the heat capacity ratio (γ = C p /C v ) of the fluid. However, γ is still considered as γ > 1. Further calculations will show that this condition remains essential for the sake of convexity and thermodynamic consistency of the ENASG EOS (see Section 3.3). b(v) represents the covolume, modeling short range repulsive effects. The term γp ∞ (T )

both pressures close to the critical one and much higher. They also show the good behavior of the ENASG EOS when dealing with conditions away from the saturation ones.

As seen in Figs. 3.4, 3.5, 3.6 and 3.7, the extension of the liquid ENASG EOS results in good agreement with experimental data and provides a continuous formulation in the transcritical zone.

The only discontinuous thermodynamic variable is the speed of sound. This is clearly seen in Fig. 3.7 for example. Regarding the sound speed, the liquid ENASG EOS is not extended beyond the critical temperature as the formulation may not connect to the ideal gas expression. The discontinuous speed of sound at the critical temperature appears to be in practice similar to situations involving large sound-speed variations such as the transition from a pure fluid into a two-phase mixture at equilibrium, which does not cause practical difficulties. Obviously, this flaw is not encountered with cubic EOSs.

The ENASG EOS is also compared to cubic ones in the preceding figures. The van der Waals (VdW) [START_REF] Van Der Waals | On the Continuity of the Gaseous and Liquid States[END_REF] and Soave-Redlich-Kwong (SRK) [98] are used in this work. Detailed reviews of cubic equations of state can be found in Wei and Sadus (2000) [99] for instance.

As shown in Figs. 3.4 and 3.5, the cubic EOSs present poor accuracy regarding liquid water.

However, the supercritical phase is well-described and the transition from liquid to supercritical state is naturally continuous since a unique formulation is used for both phases.

When oxygen is considered (Figs. 3.6 and 3.7), the VdW EOS shows very good results regarding the supercritical phase but is unable to represent properly the liquid state. Nevertheless, the SRK EOS presents excellent agreement with experimental data both for liquid and supercritical phases.

Vapor-to-supercritical-state transition

Much lower pressures (30 bar for water and 10 bar for oxygen) are considered in Figs. 3.8 and 3.9.

Consequently, the three states of the corresponding fluids are involved (liquid, vapor, supercritical)

and the vapor phase transforms to supercritical fluid beyond the critical temperature (Fig. 3.3).

As seen in Fig. 3.8, the ENASG EOS is able to represent correctly the liquid water unlike the VdW and SRK ones. The vapor and supercritical phases are rather well-described with all EOSs (ideal gas, VdW, SRK) and with continuous formulations (except for the sound speed with the ideal gas EOS).

The ENASG EOS is also well-suited for oxygen as seen in Fig. 3.9. The VdW EOS is again unable to represent properly the liquid state but the SRK one presents excellent results.

Concluding remarks

The results of the present section illustrate the good behavior of the ENASG EOS (3.4.1) and its reduction to the ideal gas expression (3.4.2), (3.6.3) in situations away from the saturation thermodynamic conditions. Figures 3.4 However, the solution in Plot H of Fig. 4.8 is significantly different as the initial height of the lower layer is as low as numerically acceptable (outside the Heaviside profile). Thereby the solution evolves continuously throughout the entire numerical domain as there is not enough fluid, regarding the lower layer (h 1 ), to observe a compression process: expansion waves only are present. those of the single-layer system. These shocks induce height increase of the fluid layer. They are followed by expansion waves that decrease these heights. Contact waves follow these expansion waves, followed by extra expansion waves that decrease the initial height h ′ 1 . The solution is quite different when h 1 = 10 -6 m initially (Plot J) where only two expansion waves are observable. The interaction of the two fluids influences the flow, as the first fluid moves more difficultly into the second one as a result of comparable densities.

Large upper layer

Plots K and L of Fig. 4.8 keep on analyzing the present density ratio (water-oil) but with a different height for the second fluid that is now set to h 2 = 100 m. Doing so, the domain is mainly filled with the upper layer and Plots K and L show that the first fluid moves into the second one difficultly. The Appendix A

Material interfaces A.1 Sharpening contact discontinuities in single-phase flows

This appendix follows the conclusion given in Chapter 1 where a very simple and dramatically efficient sharpening method is developed and wisely used in the context of two-phase flows.

It is interesting to examine the capabilities of the new "Overbee" limiter to sharpen contact discontinuities in single-phase flows. The Euler equations (A.1.1) are thus considered with the ideal gas equation of state (A.1.2),

The new limiter is unable to compute shocks and smooth profiles, such as expansion waves. The main issue is thus to detect contact discontinuities only. This is done with the following filter (A.1.3):

where n and n + 1 denote two successive time steps. This "contact discontinuity detection" can be done with the predicted variables of the MUSCL-type scheme. When the contact discontinuity is detected, the second-order process is repeated on the cells of interest with zero gradients for variables u and p while the density gradient is limited by "Overbee".

A typical computational example is shown in 

Liquid phase

In this section, let us introduce,

In the calculations that follow, these coefficients will be considered as known. Their numerical values will be addressed later. The liquid coefficients are determined with the help of experimental saturation data. In the following, the least squares method is used with the specific volume, Eq. (3.2.18).

Searching the optimum γ l coefficient, the next relation appears after some algebraic manipulations,

(C. 

A reference state ref is now used to express the liquid reference energy q l . Using (C.3.3), the next relation arises,

Inserting Eq. (C.3.4) into (C.3.3), the internal energy transforms to,

The least squares method is now applied to Eq. (C.3.5). Searching the optimum C v,l coefficient, the following relation appears after some algebraic manipulations,

- 

The expressions of γ l and C v,l are now available. Their numerical values will be determined with the help of the parameters A l , B l , C l and b 0,l , b 1,l . Those are addressed hereafter. From Eq. (3.2.17), the The coefficient B l is then known through b 0,l , b 1,l . The parameter A l depending only on C l , the coefficients γ l and C v,l become consequently, γ l = γ l (C l ) and C v,l = C v,l (C l ). The coefficient C l is then the only unknown at this point. To determine this latter, the speed of sound is used with another reference state denoted 0 (atmospheric conditions). With the help of Eq. (3.2.42), the next relation state transition,

The subscripts l and g denote the liquid and gas phases respectively. Note that the determination of connection temperature for the entropy requires an iterative method because of the logarithmic function present in Eq. (3.4.1).

C.5 Towards the critical point

Near the critical point, the vapor phase necessarily lacks of accuracy with the present ENASG EOS that is reduced to the ideal gas expression. The reason is linked to the absence of gas attractive effects.

However, the introduction of those latter ones results in conditional convexity. They are thereby removed in this work. Nevertheless, they also result in much better agreement with experimental data as illustrated in the following.

Equation (3.2.16), recalled hereafter, does consider an attractive term via the parameter d,

Previously the coefficient d was set to zero for the sake of convexity and simplicity. This

extra term is reminiscent of cubic EOSs but seems nonetheless essential to describe dense gases near the critical point. With this parameter, the attractive pressures p ∞ (T ) and p ′ ∞ (T ) are no longer required for the gas phase and the thermal equation of state reads, Following a mathematical procedure based on Maxwell's relations, similar to the derivations detailed in the previous sections, the present "alternative" formulation yields,

(C.5.

3)

The v subscript denotes here the vapor phase. For the sake of space, the details of calculations are omitted. This "alternative" formulation respects Maxwell's relations and is thermodynamically consistent and convex under condition,

To represent correctly the physics of attractive terms, d v > 0 must be chosen and condition (C.5.4) becomes restrictive. The same observation holds for cubic EOSs. It is worth mentioning that despite this conditional convexity, the speed of sound remains unambiguously positive unlike cubic EOSs and corresponds to the Noble-Abel (NA) sound speed. available temperature to the critical one. Yet, the vapor enthalpy seems to present lesser agreement.

It is interesting to note that vapor enthalpy is the only thermodynamic variable that presents a nonmonotonic behavior. However, analyzing the range of variation, it seems that the theoretical order of magnitude is satisfied. The latent heat, very important during phase transition To account for variable external pressure, System (4.2.3) is generalized as,

The first equation of System (D.1.1) becomes,

Hence, at leading order,

This last result is introduced in the momentum equation of the first fluid of System (D.1.1) and yields,

The momentum equation of System (4.2.1) is thus recovered. Similar manipulations on the second layer momentum equation of the present model lead to,

The second momentum equation of System (4.2.1) is recovered as well. The present formulation thus tends in the limit of stiff pressure relaxation to the conventional two-layer Saint-Venant model.

Thereby, System (D.1.1) allows to compute solutions of the non-hyperbolic model [START_REF] Ovsyannikov | Two-layer "shallow water" model[END_REF] with a hyperbolic step using the preceding wave speeds (Eq. (D.1.7)) followed by a correction step regarding the heights.

This latter is supposed to be isentropic. The equation of state (EOS) for the second fluid (lightest) reads:

. At the end of the relaxation step, p * 2 = p 0 and implies ρ * 2 = ρ (0)

2 . As the mass quantity is known from the hyperbolic evolution and is constant during the relaxation process, m 2 = h 2 ρ 2 = h * 2 ρ * 2 , the relaxation step just consists in reseting the height:

For the first fluid, the EOS now reads:

. At the end of the relaxation process, the pressure reads

1 and the relaxation step reduces to h

as before with System (4.2.3). The only difference is that ρ

1 no longer represents the density of fluid 1 at atmospheric pressure p 0 but is corrected by hydrostatic effects as

, where ρ 
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This manuscript addresses the theoretical modeling and numerical simulation of compressible twophase flows. In this context, diffuse interface methods are now well-accepted but progress is still needed at the level of numerical accuracy regarding their capture. A new method is developed in this research work, that allows significant sharpening. This method can be placed in the framework of MUSCL-type schemes, widely used in production codes and on unstructured grids. Phase transition is addressed as well through a relaxation process relying on Gibbs free energies. A new instantaneous relaxation solver is developed and happens to be accurate, fast and robust. Moreover, in view of the intended industrial applications, an extension of the thermodynamics of the phases and of the mixture is necessary. A new equation of state is consequently developed. The formulation is convex and based on the "Noble-Abel-Stiffened-Gas" equation of state. In another context, the dispersion of non-miscible fluids under gravity effects is considered as well. This problematic involves large time and space scales and has motivated the development of a new multi-fluid model for "two-layer shallow water" flows. Its numerical resolution is treated as well.